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Abstract. Fuzzy implications has drawn attention of many authors
along the years, as their theoretical features seem to be a useful tool
in a fair amount of applications. Meanwhile, functional equations are
those in which the unknowns are functions instead of a traditional vari-
able, and within the fuzzy logic, they can be considered generalizations
of some tautologies of the classical logic. In this paper we investigate the
validity of five functional equations for the class of (T,N)-implications,
namely, we have selected the law of importation and four distributivity
properties and have studied them in the context of the aforementioned
operator.

1 Introduction

Fuzzy implications [1,4,18] are one of the most relevant operators in fuzzy logics.
Many applications have been constructed making use of them as we can see in
[2,3,18] and they are also applied in different areas such as approximate reason-
ing, control and decision-making theories, expert systems, fuzzy mathematical
morphology, image processing, among others [8,9,11,15,20,21,24,27].

In [22,23], a new class of fuzzy implication named (T,N)-implication (firstly
presented by [5]) was studied. Such implications were given by the composition
of a fuzzy negation and a t-norm. The conditions under which such functions
preserved the principal properties of fuzzy implications were also investigated
and it was proved the necessary and sufficient conditions for a function I :
[0, 1]2 → [0, 1] to be a (T,N)-implication.

It is important to recall that the classical implication is found in various tau-
tologies in classical logic. It is clear that not all generalizations of these tautolo-
gies hold for all fuzzy operators. That is the reason why one should have a deep
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and careful study on such tautologies in order to convert them into functional
equations that would include fuzzy operations. In [1] it is stated that considering
the generalized equivalences, some properties of implications had received more
attention due to their value on the many applications, namely the properties of
contrapositive symmetry, the law of importation, the distributivity properties
of fuzzy implications over t-norms and t-conorms, and also the T-conditionality
property. In [11], a fuzzy generalization for I(x, I(y, z)) = I(I(x, y), I(x, z)) law
was made, providing the requirements for that Boolean-like law to be valid within
some classes of fuzzy implications, among which the (T,N)-implications. In this
sense, the aim of this work is to study the law of importation and four distribu-
tivity properties regarding the class of (T,N)-implications over t-norms and
t-conorms.

The paper is organized as follows. Sect. 2 recalls some of the basic concepts
demanded to comprehend the developments in this work, including the concept
of fuzzy implication and related properties. The study of (T,N)-implications and
functional equations is done in Sect. 3, including the most important results. Al
last, we conclude in Sect. 4 with our final remarks and discuss some ideas for
future works.

2 Preliminares

Definition 1. A function T : [0, 1]2 → [0, 1] is called a triangular norm (t-
norm, for short) if it satisfies the following conditions:

(T1) T (x, y) = T (y, x) for all x, y ∈ [0, 1];
(T2) T (x, T (y, z)) = T (T (x, y), z) for all x, y, z ∈ [0, 1];
(T3) If x1 ≤ x2 and y1 ≤ y2 then T (x1, y1) ≤ T (x2, y2), for all x1, x2, y1, y2 ∈

[0, 1];
(T4) T (x, 1) = x, for all x ∈ [0, 1]. (boundary condition)

Proposition 1. Let T be a t-norm. Then T (0, y) = 0 for each y ∈ [0, 1].

In fuzzy logic, the conjunction is often represented by a t-norm. The standard
fuzzy conjunction TM : [0, 1]2 → [0, 1] given by TM (x, y) = min{x, y} is the only
idempotent t-norm (see [17] - Theorem 3.9).

Definition 2. A function S : [0, 1]2 → [0, 1] is called a triangular conorm (t-
conorm, for short) if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:

(S1) S(x, y) = S(y, x) for all x, y ∈ [0, 1];
(S2) S(x, S(y, z)) = S(S(x, y), z) for all x, y, z ∈ [0, 1];
(S3) If x1 ≤ x2 and y1 ≤ y2 then S(x1, y1) ≤ S(x2, y2), for all x1, x2, y1, y2 ∈

[0, 1];
(S4) S(x, 0) = x for all x ∈ [0, 1]. (boundary condition)

The standard fuzzy disjunction SM : [0, 1]2 → [0, 1] given by SM (x, y) =
max{x, y} is the only idempotent t-conorm (see [17] - Theorem 3.14).
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Definition 3. A function N : [0, 1] → [0, 1] is a fuzzy negation if

(N1) N is antitonic, i.e. N(x) ≤ N(y) whenever y ≤ x;
(N2) N(0) = 1 and N(1) = 0.

A fuzzy negation N is said to be strict if
(N3) N is continuous and
(N4) N(x) < N(y) whenever y < x.

A fuzzy negation N is said to be strong if
(N5) N(N(x)) = x, for each x ∈ [0, 1].

A fuzzy negation N is said to be crisp if
(N6) N(x) ∈ {0, 1}, for all x ∈ [0, 1].

By [14], a fuzzy negation N : [0, 1] → [0, 1] is crisp if and only if there exists
α ∈ [0, 1) such that N = Nα or there exists α ∈ (0, 1] such that N = Nα, where

Nα(x) =

{
0, if x > α

1, if x ≤ α
(1)

and

Nα(x) =

{
0, if x ≥ α

1, if x < α
. (2)

Definition 4. Let T be a t-norm, S be a t-conorm and N be a strict fuzzy
negation. Then S is said to be N-dual to T if, for all x, y ∈ [0, 1],

N(S(x, y)) = T (N(x), N(y)) (3)

and T is said to be N-dual to S if, for all x, y ∈ [0, 1],

N(T (x, y)) = S(N(x), N(y)). (4)

Definition 5. A function I : [0, 1]2 → [0, 1] is a fuzzy implication if the
following properties are satisfied, for all x, y, z ∈ [0, 1]:

(I1 ) If x ≤ z then I(x, y) ≥ I(z, y); (left antitonicity)
(I2 ) If y ≤ z then I(x, y) ≤ I(x, z); (right isotonicity)
(I3 ) I(0, y) = 1; (left boundary condition)
(I4 ) I(x, 1) = 1; (right boundary condition)
(I5 ) I(1, 0) = 0. (boundary condition)

Definition 6. [1] Let I be a fuzzy implication and T be a t-norm. We say that
I satisfies the Law of importation (LI) with respect to a t-norm T if

I(T (x, y), z) = I(x, I(y, z)), (5)

for all x, y, z ∈ [0, 1].
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3 Functional Equations and (T,N)-Implications

As already mentioned, functional equations are the ones in which the unknowns
are functions instead of being a traditional variable. In this section we investigate
the validity of some functional equations by the function IN

T , introduced in [22].
In [1], Baczyński states that functional equations come up as generalizations of
the corresponding tautologies in classical logic involving boolean implications.
The results presented in the sequel consider the law of importation (LI), Eq. 5,
and four basic distributive equations involving an implication, which will be
discussed later.

Proposition 2. Let T be a t-norm and let N be a fuzzy negation. Then the
function IN

T : [0, 1]2 → [0, 1] defined by

IN
T (x, y) = N(T (x,N(y))) (6)

is a fuzzy implication, for all x, y ∈ [0, 1].

Definition 7. Let T be a t-norm and let N be a fuzzy negation. The function
IN
T defined by Eq. (6) is called (T, N)-implication.

The principle of exchange is one of the crucial properties of fuzzy implications.
Due to the commutativity property of the t-norm T , one of the conditions for
an implication to satisfy it is that (LI) is also satisfied. The well-known fuzzy
implications called (S, N), R, QL and D-implications satisfy (LI) under some
conditions (see [15,19]). In addition, some possible applications were pointed
out in [15]. As follows, we show under which conditions (T, N)-implications
satisfy (LI).

Proposition 3. Let IN
T be a (T, N)-implication. Then:

(i) If N is strong then IN
T satisfies (LI) with respect to the t-norm T ;

(ii) If N is continuous and IN
T satisfies (LI) with respect to the t-norm T , then

N is strong.

Proof. (i) Indeed, for all x, y, z ∈ [0, 1]

IN
T (x, IN

T (y, z)) = N(T (x,N(N(T (y,N(z))))))
= N(T (x, T (y,N(z))))

(T2)
= N(T (T (x, y), N(z)))
= IN

T (T (x, y), z).

(ii) As IN
T satisfies (LI) with respect to the t-norm T , then, for x = y =

1, IN
T (1, IN

T (1, z)) = IN
T (T (1, 1), z)

(T4)⇒ N(T (1, N(N(T (1, N(z)))))) =
N(T (1, N(z))) for all z ∈ [0, 1], still by (T4),

N(N(N(N(z)))) = N(N(z)). (7)
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Given that N is continuous, for all y ∈ [0, 1] there exists x′ ∈ [0, 1] such that
N(x′) = y. Only for this x′ there exists x ∈ [0, 1] such that N(x) = x′.
Thus, for all y ∈ [0, 1] there exists x ∈ [0, 1] such that N(N(x)) = y.
Therefore, by Eq. (7), N(N(N(N(x)))) = N(N(x)) ⇒ N(N(y)) = y, for
all y ∈ [0, 1].

Note that if N is continuous and non-strong then IN
T does not satisfy (LI).

However, there are non-continuous negations N such that IN
T satisfies (LI) for

some t-norm T . See the following example:

Example 1. Take a crisp negation N given by N = Nα and the minimum t-norm
T , so

INα

T (x, INα

T (y, z)) = Nα(T (x,Nα(Nα(T (y,Nα(z))))))

=

{
Nα(T (x,Nα(Nα(y)))), if z ≤ α

1, if z > α

=

{
Nα(x), if z ≤ α and y > α

1, if z > α or y ≤ α

=

{
0, if z ≤ α and y > α and x > α

1, otherwise

and

INα

T (T (x, y), z) = Nα(T (T (x, y), Nα(z)))

=

{
Nα(T (T (x, y), 1)), if z ≤ α

1, if z > α

=

{
Nα(T (x, y)), if z ≤ α

1, if z > α

=

{
0, if z ≤ α and T (x, y) > α

1, if z > α or T (x, y) ≤ α

=

{
0, if z ≤ α and x > α and y > α

1, otherwise
,

thus, INα

T satisfies (LI).

Another example can be given by taking the crisp fuzzy negation N = Nα

with α = 0 and any t-norm T . In this case, by Proposition 1 we also have that
INα

T satisfies (LI).
In classic logic, the distributivity of binary operators over one another can

somehow define the framework of the algebra imposed by these operators. In
fuzzy logic, one can find a variety of studies on the distributivity of t-norms
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over t-conorms [6,7,10,16]. In this sense, taking into account the four basic
distributive equations involving an implication, Eqs. 8, 9, 10, 11, we present in
the next proposition the generalizations of them which yields to the distributivity
of (T,N)-implications over t-norms and t-conorms.

I(T (x, y), z) = S(I(x, z), I(y, z)) (8)
I(S(x, y), z) = T (I(x, z), I(y, z)) (9)

I(x, S1(y, z)) = S2(I(x, y), I(x, z)) (10)
I(x, T1(y, z)) = T2(I(x, y), I(x, z)) (11)

Proposition 4. Let IN
T be a (T, N)-implication and S be a t-conorm. Then:

(i) If T is N -dual of S and the range of N is a subset of the idempotent elements
of T then IN

T satisfies Eq. (8) with respect to the t-norm T and to the t-
conorm S;

(ii) If IN
T satisfies Eq. (8) with respect to the t-norm T and to the t-conorm S,

then
(1) T is N -dual of S and,
(2) If N is strict then the range of N is a subset of the idempotent elements
of T .

Proof. (i) As T is N -dual of S and the range of N is a subset of the idempotent
elements of T , i.e., T (N(x), N(x)) = N(x) for all x ∈ [0, 1], then, for all
x, y, z ∈ [0, 1]:

S(IN
T (x, z), IN

T (y, z)) = S(N(T (x,N(z))), N(T (y,N(z))))
Eq. (4)

= N(T (T (x,N(z)), T (y,N(z))))
(T2)(T1)

= N(T (T (x, y), T (N(z), N(z))))
= N(T (T (x, y), N(z)))
= IN

T (T (x, y), z).

(ii) (1) As IN
T satisfies Eq. (8) with respect to the t-norm T and to the t-

conorm S, then, for z = 0, N(T (T (x, y), N(0))) = S(N(T (x,N(0))),
N(T (y,N(0)))), so by (T4), N(T (x, y)) = S(N(x), N(y)) for all x, y ∈ [0, 1]
and
(2) For x = y = 1, S(IN

T (1, z), IN
T (1, z)) = N(T (T (1, 1), N(z))), so by (T4),

S(N(N(z)), N(N(z))) = N(N(z)) for all z ∈ [0, 1], since T is N -dual of S

we have N(T (N(z), N(z))) = N(N(z)) N strict⇒ T (N(z), N(z)) = N(z), for
all z ∈ [0, 1].

Corollary 1. Let N be a strict negation and T be a t-norm. Then, IN
T satisfies

Eq. (8) if and only if T = TM and S = SM .

In the previous corollary, the continuity of N ensures that if IN
T satisfies

Eq. (8) then T is minimum. However, there are non-continuous negations such
that IN

T satisfies Eq. (8) for some t-norms. See the following example:



308 J. Pinheiro et al.

Example 2. Take a crisp negation N given by N = Nα and take T as the mini-
mum t-norm, so

S( INα

T (x, z), INα

T (y, z)) =
= S(Nα(T (x,Nα(z))), Nα(T (y,Nα(z))))

=

{
S(Nα(x), Nα(y)), if z ≤ α

1, if z > α

=

{
0, if z ≤ α and x > α and y > α

1, otherwise

and, by Example 1

INα

T (T (x, y), z) =

{
0, if z ≤ α and x > α and y > α

1, otherwise

thus, INα

T satisfies Eq. (8).

Another example can be given for any t-norm T . Just take the crisp fuzzy
negation N = Nα with α = 0. Then, by Proposition 1 we also have that IN0

T

satisfies Eq. (8).

Proposition 5. Let IN
T be a (T, N)-implication. Then,

(i) IN
T satisfies Eq. (9) for TM and SM , i.e., considering TM as T and SM as

S in Eq. (9);
(ii) If IN

T satisfies Eq. (9) with respect to the t-norm T and to the t-conorm S,
then
(1) S is N -dual of T and
(2) If N is strict then the range of N is a subset of the idempotent elements
of S.

Proof. (i) For all x, y, z ∈ [0, 1], if x ≤ y then SM (x, y) = y and, by (T3) and
(N1), IN

T (y, z) ≤ IN
T (x, z), so

TM (IN
T (x, z), IN

T (y, z)) = IN
T (y, z) = IN

T (SM (x, y), z).

Therefore, IN
T satisfies Eq. (9). Similarly, if x > y the result follows.

(ii) (1) As IN
T satisfies Eq. (9) with respect to the t-norm T and to the t-

conorm S, then, for z = 0, N(T (S(x, y), N(0))) = T (N(T (x,N(0))),
N(T (y,N(0)))), so by (T4), N(S(x, y)) = T (N(x), N(y)) for all x, y ∈ [0, 1]
and
(2) for x = y = 1, T (IN

T (1, z), IN
T (1, z)) = IN

T (S(1, 1), z), so by (T4),
T (N(N(z)), N(N(z))) = N(N(z)) for all z ∈ [0, 1], since S is N -dual of T

we have N(S(N(z), N(z))) = N(N(z)) N strict⇒ S(N(z), N(z)) = N(z), for
all z ∈ [0, 1].
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Corollary 2. Let N be a strict negation and T be a t-norm. Then, IN
T satisfies

Eq. (9) if and only if T = TM and S = SM .

Proposition 6. Let IN
T be a (T, N)-implication and S1 and S2 be t-conorms.

Then:

(i) If S1 = S2 = SM then, for any t-norm T and any negation N , IN
T satisfies

Eq. (10);
(ii) If IN

T satisfies Eq. (10) with respect to t-conorms S1 and S2, then:
(1) The range of N is a subset of the idempotent elements of S2 and
(2) If N is strict then S1 = S2 = SM .

Proof. (i) For all x, y, z ∈ [0, 1], if y ≤ z then SM (y, z) = z and, by (N1) and
(T3), IN

T (x, y) ≤ IN
T (x, z), so

SM (IN
T (x, y), IN

T (x, z)) = IN
T (x, z) = IN

T (x, SM (y, z)).

Therefore, IN
T satisfies Eq. (10). Similarly, if y > z the result follows.

(ii) (1) As IN
T satisfies Eq. (10) then, in particular for y = z = 0,

N(T (x,N(S1(0, 0)))) = S2(N(T (x,N(0))), N(T (x,N(0)))),

so by (T4), N(x) = S2(N(x), N(x)), for all x ∈ [0, 1]. (2) Since N is strict
and S2(N(x), N(x)) = N(x) for all x ∈ [0, 1], then

S2(y, y) = S2(N(N−1(y)), N(N−1(y))) = N(N−1(y)) = y

for all y ∈ [0, 1], so S2 = SM . On the other hand, for x = 1 and z = y,
N(T (1, N(S1(y, y)))) = S2(N(T (1, N(y))), N(T (1, N(y)))) for all y ∈ [0, 1],
so by (T4),

N(N(S1(y, y))) = S2(N(N(y)), N(N(y))) S2=SM= N(N(y)),

for all y ∈ [0, 1]. Thus, S1(y, y) = y for all y ∈ [0, 1], since N is strict.
Therefore, S1 = SM .

Corollary 3. Let N be a strict negation and T be a t-norm. Then, IN
T satisfies

Eq. (10) if and only if S1 = S2 = SM .

Proposition 7. Let IN
T be a (T, N)-implication and T1 and T2 be t-norms.

Then:

(i) If T1 = T2 = TM then, for any t-norm T and any negation N , IN
T satisfies

Eq. (11);
(ii) If IN

T satisfies Eq. (11) with respect to t-norms T1 and T2, then:
(1) The range of N is a subset of the idempotent elements of T2 and
(2) If N is strict then T1 = T2 = TM .
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Proof. (i) For all x, y, z ∈ [0, 1], if y ≤ z then TM (y, z) = y and, by (N1) and
(T3), IN

T (x, y) ≤ IN
T (x, z), so

TM (IN
T (x, y), IN

T (x, z)) = IN
T (x, y) = IN

T (x, TM (y, z)).

Therefore, IN
T satisfies Eq. (11). Similarly, if y > z the result follows.

(ii) (1) As IN
T satisfies Eq. (11) then, in particular for y = z = 0,

N(T (x,N(T1(0, 0)))) = T2(N(T (x,N(0))), N(T (x,N(0)))),

so by (T4), N(x) = T2(N(x), N(x)), for all x ∈ [0, 1]. (2) Since N is
strict and the range of N a subset of the idempotent elements of T2,
we have that T2(x, x) = T2(N(N−1(x)), N(N−1(x))) = N(N−1(x)) = x.
On the other hand, for x = 1 and z = y, N(T (1, N(T1(y, y)))) =
T2(N(T (1, N(y))), N(T (1, N(y)))), so by (T4),

N(N(T1(y, y))) = T2(N(N(y)), N(N(y))) T2=TM= N(N(y)),

for all y ∈ [0, 1]. Thus, T1(y, y) = y for all y ∈ [0, 1], since N is strict.
Therefore, T1 = TM .

There are other conditions for t-norms and negations that imply that a (T,
N)-implication satisfies Eq. (11). The following example ensures that if we take
T1 = TM and the crisp negation N , given by N = Nα with α ∈ [0, 1), then,
independently from t-norms T and T2, IN

T satisfies Eq. (11).

Example 3. Take the crisp negation N given by N = Nα and take T1 as the
minimum t-norm, so

T2( INα

T (x, y), INα

T (x, z)) =
= T2(Nα(T (x,Nα(y))), Nα(T (x,Nα(z))))

=

{
Nα(T (x,Nα(y))), if z > α

T2(Nα(T (x,Nα(y))), Nα(x)), if z ≤ α

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if z > α and y > α

Nα(x), if z > α and y ≤ α

Nα(x), if z ≤ α and y > α

T2(Nα(x), Nα(x)), if z ≤ α and y ≤ α

=

{
0, if x > α and T1(y, z) ≤ α

1, otherwise
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and,

INα

T (x, T1(y, z)) = Nα(T (x,Nα(T1(y, z))))

=

{
1, if T1(y, z) > α

Nα(x), if T1(y, z) ≤ α

=

⎧⎪⎨
⎪⎩

1, if T1(y, z) > α

0, if T1(y, z) ≤ α and x > α

1, if T1(y, z) ≤ α and x ≤ α

=

{
0, if T1(y, z) ≤ α and x > α

1, otherwise

thus, IN
T satisfies Eq. (11).

4 Final Remarks

In this work, we carried on the study on (T,N)-implications and presented some
results considering functional equations, namely the law of importation and prop-
erties related to distributivity. It is well-known that fuzzy implications can used
to construct many types of measures such as fuzzy subsethood measures, penalty
functions and fuzzy entropy [9,14,25,26], which are useful for several practical
applications. Thus, similarly to the works mentioned previously, we believe that
(T,N)-implications can also be used to construct fuzzy subsethood measures.
Besides that, we are willing to investigate other operators to define different
classes of implications, for instance, functions given by the composition of over-
laps and negations yielding what we call (O, N)-implication, that possibly can
be related to (G, N)-implications [12], (R, O)-Implications [13] and (O, G, N)-
implications [14].
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