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Abstract. In this paper we introduce the class of fuzzy kernel associa-
tive memories (fuzzy KAMs). Fuzzy KAMs are derived from single-step
generalized exponential bidirectional fuzzy associative memories by inter-
preting the exponential of a fuzzy similarity measure as a kernel function.
The output of a fuzzy KAM is obtained by summing the desired responses
weighted by a normalized evaluation of the kernel function. Furthermore,
in this paper we propose to estimate the parameter of a fuzzy KAM by
maximizing the entropy of the model. We also present two approaches
for pattern classification using fuzzy KAMs. Computational experiments
reveal that fuzzy KAM-based classifiers are competitive with well-known
classifiers from the literature.
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1 Introduction

Associative memories (AMs) are mathematical models inspired by the human
brain ability to store and recall information by means of associations [1]. More
specifically, they are designed for the storage of a finite set of association pairs
{(xξ,yξ), ξ = 1, · · · , p}, called fundamental memory set. We refer to x1, . . . ,xp as
the stimuli and y1, . . . ,yp as the desired responses. Furthermore, an AM should
exhibit some error correction capability, i.e, it should yield the desired response
yξ even upon the presentation of a corrupted version x̃ξ of the stimulus xξ. An
AM is said autoassociative if xξ = yξ for all ξ = 1, · · · , p, and heteroassociative
if there is at least one ξ ∈ {1, · · · , p} such that xξ �= yξ. Applications of AM
models include diagnosis [2], emotional modeling [3], pattern classification [4–7],
and image processing and analysis [8,9].

The Hopfield neural network is one of the most widely known neural network
used to implement an AM [10]. Despite its many successful applications, the
Hopfield network suffers from a very low storage capacity [1]. A simple but
significant improvement in storage capacity of the Hopfield network is achieved
by the recurrent correlation associative memory (RCAMs) [11]. RCAMs are
closely related to the dense associative memory model introduced recently by
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Krotov and Hopfield to establish the duality between AMs and deep learning [12,
13]. Furthermore, a particular RCAM, called exponential correlation associative
memory (ECAM), is equivalent to a certain recurrent kernel associative memory
proposed by Garcia and Moreno [14,15].

Like the traditional Hopfield neural network, the original ECAM is an autoas-
sociative memory designed for the storage and recall of bipolar vectors. Many
applications of AMs, however, require either an heteroassociative memory or
the storage and recall of real-valued data. A heteroassociative version of the
ECAM, called exponential bidirectional associative memory (EBAM), have been
proposed by Jeng et al. [16]. As to the storage and recall of real-valued vectors,
Chiueh and Tsai introduced the multivalued exponential recurrent associative
memory (MERAM) [17].

Recently, we introduced the class of generalized recurrent exponential fuzzy
associative memories (GRE-FAMs), which have been effectively applied for pat-
tern classification [5,18]. Briefly, GRE-FAMs are autoassociative fuzzy memories
obtained from a generalization of a fuzzy version of the MERAM. Recall that a
fuzzy associative memory is a fuzzy system designed for the storage and recall
of fuzzy sets [19,20]. The generalized exponential bidirectional fuzzy associative
memories (GEB-FAMs), which generalize the GRE-FAMs for the heteroassocia-
tive case, have been applied for face recognition [21]. We would like to point out,
however, that the dynamic of the GEB-FAMs are not fully understood yet. In
view of this remark, we mostly considered single-step versions of these two AM
models.

Summarizing, on the one hand, GEB-FAMs can be viewed as a fuzzy ver-
sion of the bidirectional (heteroassociative) ECAM. On the other hand, ECAM
is equivalent to a certain kernel associative memory. Put together, these two
remarks suggest us to interpret the single-step GEB-FAMs using (fuzzy) kernel
functions and, from now on, we shall refer to them as fuzzy kernel associative
memories (fuzzy KAMs). Recall that a kernel is informally defined as a simi-
larity measure that can be thought of as a dot product on a high-dimensional
feature space [22]. Disregarding formal definitions, we interpret a fuzzy similarity
measure as a fuzzy kernel. Such interpretation lead us to information theoretical
learning whose goal is to capture the information in the parameters of a learning
machine [23]. In this paper, we propose to fine tune the parameter of a fuzzy
KAM using information theoretical learning.

The paper is structured as follows. Next section presents the fuzzy kernel
associative memory and some theoretical results. In this section, we also describe
how information theoretical learning can be used to determine the parameter of
a fuzzy KAM. An application of autoassociative and heteroassociative fuzzy
KAMs for pattern classification is given in Sect. 3. Computational experiments
on pattern classification are provided in Sect. 4. The paper finishes with the
concluding remarks in Sect. 5.
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2 Fuzzy Kernel Associative Memory

A fuzzy similarity measure, or simply similarity measure, is a function that
associates to each pair of fuzzy sets a real number that expresses the degree of
equality of these sets. According to De Baets and Meyer [24], a fuzzy similarity
measure is a symmetric binary fuzzy relation on the family of all fuzzy sets F(U).
In mathematical terms, a similarity measure is a mapping S : F(U) × F(U) →
[0, 1] such that S(A,B) = S(B,A) for all fuzzy sets A,B ∈ F(U). We speak of
a strong similarity measure if S(A,B) = 1 if, and only if, A = B.

Given a fuzzy similarity measure, the mapping κ : F(U) × F(U) → [0, 1]
defined by the following equation for α > 0 is also a fuzzy similarity measure

κ(A,B) = eα(S(A,B)−1). (2.1)

Disregarding formal definitions, we shall refer to κ as a fuzzy kernel.
We would like to call the reader’s attention to the dependence of the fuzzy

kernel κ on the parameter α when S is a strong similarity measure. On the one
hand, κ approximates the strict equality of fuzzy sets as α increases. Precisely,
we have κ(A,B) = 1 if A = B and κ(A,B) = 0 otherwise as α → ∞. On
the other hand, κ(A,B) = 1 for all A,B ∈ F(U) as α → 0. In other words,
κ is unable to discriminate fuzzy sets for sufficiently small α > 0. Hence, the
parameter α controls the capability of the fuzzy kernel to distinguish fuzzy sets.

Let us now introduce the fuzzy kernel associative memory (fuzzy KAM):

Definition 1 (Fuzzy KAM). Consider a fundamental memory set {(Aξ, Bξ) :
ξ = 1, . . . , p} ⊂ F(U) × F(V ). Let α > 0 be a real number, S : F(U) × F(U) →
[0, 1] a similarity measure, and H a p × p real-valued matrix. A fuzzy KAM is a
mapping K : F(U) → F(V ) defined by the following equation where X ∈ F(U)
is the input and Y = K(X) ∈ F(V ) is the output:

Y (v) = ϕ

⎛
⎜⎜⎜⎜⎜⎝

p∑
ξ=1

p∑
μ=1

hξμκ(Aμ,X)Bξ(v)

p∑
η=1

p∑
μ=1

hημκ(Aμ,X)

⎞
⎟⎟⎟⎟⎟⎠

. (2.2)

Here, the piece-wise linear function ϕ(x) = max(0,min(1, x)) ensures Y (v) ∈
[0, 1], for all v ∈ V .

Alternatively, we can write the output of a fuzzy KAM as

Y (v) = ϕ

⎛
⎝

p∑
ξ=1

wξB
ξ(v)

⎞
⎠ where wξ =

p∑
μ=1

hξμκ(Aμ,X)

p∑
η=1

p∑
μ=1

hημκ(Aμ,X)

. (2.3)
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In words, the output Y = K(X) is given by a linear combinations of the desired
responses Bξ’s. Moreover, the coefficients of the linear combinations are calcu-
lated by using the parametrized fuzzy kernel κ given by (2.1).

As pointed out in the introduction, an autoassociative fuzzy KAM is equiva-
lent to the single-step generalized recurrent exponential fuzzy associative mem-
ories (GRE-FAM) designed for the storage of a finite family of fuzzy sets
A = {Ai, i = 1, · · · , p} ⊂ F(U) [18]. Similarly, the heteroassociative fuzzy KAM
corresponds to the single-step generalized exponential bidirectional fuzzy asso-
ciative memories (GEB-FAM) in the heteroassociative case [25].

The matrix H plays a very important role in the storage capacity and noise
tolerance of a fuzzy KAM. The next theorem shows how to define the matrix H
so that the fundamental memories are all correctly encoded in the memory.

Theorem 1. Let A = {(Aξ, Bξ) : ξ = 1, · · · , p} ⊂ F(U) × F(V ) be the funda-
mental memory set, S : F(U) × F(U) → [0, 1] a similarity measure, α > 0 a
real number, and κ : F(U)×F(U) → [0, 1] a fuzzy kernel defined by (2.1). If the
matrix K = (kij) ∈ R

p×p, whose entries are defined by

kij = κ(Ai, Aj), ∀i, j = 1, . . . , p, (2.4)

is invertible, then the fuzzy KAM obtained by considering the matrix H = K−1

satisfies the identity K(Aξ) = Bξ for all ξ = 1, . . . , p.

Let us briefly address the computational effort required to synthesize a fuzzy
KAM based on Theorem 1. First, the fuzzy kernel κ is evaluated (p2 + p)/2
times to compute the symmetric p × p matrix K defined by (2.4). Then, instead
of determining the inverse H = K−1, we compute the LU factorization (or
the Cholesky factorization if H is symmetric and positive definite) of K using
O(p3) operations. Then, the multiplication of H by a vector is replaced by the
solution of two triangular systems during the recall phase. Summarizing, O(p3)
operations are performed to synthesize a fuzzy KAM.

The parameter α plays an important role on the noise tolerance of a fuzzy
KAM. Briefly, the higher the parameter α, the greater the weight of the funda-
mental memories most similar to the input X in the calculation of the output
K(X). In other words, increasing α emphasizes the role of the fundamental mem-
ories most similar to the input. Thus, in some sense, the parameter α controls
how each fundamental memory contributes to the output of a fuzzy KAM. For-
mally, the next theorem states that, as α tends to infinity, the output K(X)
converges point-wise to the arithmetic mean of the desired responses Bξ’s whose
associated stimulus Aξ’s are the most similar to the input X.

Theorem 2. Let A = {(Aξ, Bξ) : ξ = 1, · · · , p} ⊆ F(U) × F(V ) be a family
of fundamental memories and S a strong similarity measure. Suppose that the
matrix K given by (2.4) is invertible for any α > 0. Given a fuzzy set X ∈ F(U),
define Γ ⊆ {1, . . . , p} as the set of the indexes of the stimulus which are the most
similar to the input X in terms of S, that is:

Γ = {γ : S(Aγ ,X) ≥ S(Aξ,X),∀ξ = 1, . . . , p}. (2.5)
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Then,

lim
α→∞ Y (v) =

1
Card(Γ )

∑
γ∈Γ

Bγ(v), ∀v ∈ V. (2.6)

where Y = K(X) is the output of a fuzzy KAM. Furthermore, the weights wξ

given by (2.3) satisfy the following equation for all ξ = 1, . . . , p:

lim
α→∞ wξ =

⎧⎨
⎩

1
Card Γ

, ξ ∈ Γ,

0, otherwise.
(2.7)

2.1 Estimating the Parameter of a Fuzzy KAM

In this section, we propose to estimate the parameter α of a fuzzy KAM using
information theoretical learning [23]. The basic idea is to maximize the capability
of the fuzzy kernel κ to discriminate between two different stimulus. To this end,
we use the information-theoretic descriptor of entropy.

The concept of entropy, introduced by Shannon in 1948 [26], represents a
quantitative measure of uncertainty and information of a probabilistic system
[27,28]. The entropy of a n-state system is defined by the following equation
where pi denotes the probability of occurrence of the i-th state [27]:

E =
n∑

i=1

pi log(1/pi). (2.8)

The entropy given by (2.8) can be used as a measure of the amount of uncer-
tainty of a system. Given a fundamental memory set A = {(Aξ, Bξ) : ξ =
1, . . . , p} ⊆ F(U) × F(V ) and a strong similarity measure S : F(U) × F(U) →
[0, 1], we define the entropy of a fuzzy KAM K by means of the equation

EK(α) =
p∑

i=1

p∑
j=1

κ(Ai, Aj) log
(
1/κ(Ai, Aj)

)
(2.9)

=
p∑

i=1

p∑
j=1

− eα(S(Ai,Aj)−1) log
(
eα(S(Ai,Aj)−1)

)
(2.10)

= −
p∑

i=1

p∑
j=1

α(S(Ai, Aj) − 1))eα(S(Ai,Aj)−1). (2.11)

Note that the entropy EK of a fuzzy KAM is a function of the parameter α.
Furthermore, EK(α) tend to zero if either α → 0 or α → ∞. Intuitively, EK
quantifies the capability of the fuzzy kernel κ to discriminate between Ai and Aj

as a function of α. By maximizing EK, we expect to improve the noise tolerance
of the fuzzy KAM. In view of this remark, we suggest to choose the parameter
α∗ that maximizes (2.11). Formally, we propose to define

α∗ = argmax
α>0

EK(α). (2.12)
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At this point, we would like to recall that Shannon derived (2.8) using clas-
sical probability theory. A fuzzy entropy that does not take into account proba-
bilistic concepts in its definition have been provided by De Luca and Termini [29].
Although the fuzzy entropy would be more appropriate in our context, we have
not observed significant improvements in our preliminary computational exper-
iments using the fuzzy entropy compared to those obtained using the entropy
of Shannon. Moreover, besides presenting lower computational cost, Shannon’s
entropy showed to be more robust. Therefore, we only consider the entropy of
Shannon in this paper.

3 Classifiers Based on Fuzzy KAMs

A classifier is a mapping C : W → L that associates to each pattern w ∈
W a label l ∈ L that represents the class which w belongs to. Classifiers are
usually synthesized using a family of labeled samples, called training set. In this
section, we present two approaches to define classifiers based on fuzzy KAMs.
The first approach, which is inspired by sparse representation classifiers [30], is
based on autoassociative fuzzy KAMs. The second approach contemplates the
heteroassociative case.

3.1 The Autoassociative-Based Approach

Sparse representation classifiers [30] are based on the hypothesis that a sample
Y from class i is approximately equal to a linear combination of the training
data from class i. Formally, let AL = {(Aξ, �ξ), ξ = 1, · · · , p} ⊂ F(U)×L be the
training set, where Aξ are distinct non-empty fuzzy sets on U and L is a finite
set of labels. If Y belongs to class i, then

Y (u) ≈
∑

ξ:�ξ=i

αξA
ξ(u), ∀u ∈ U. (3.13)

Equivalently, Y can be written as:

Y (u) ≈
p∑

ξ=1

αξA
ξ(u), ∀u ∈ U, (3.14)

where αξ = 0 if �ξ �= i. In other words, Y can be written as a sparse linear
combination of the training data.

Assume we have an autoassociative fuzzy KAM K : F(U) → F(U) designed
for the storage of the fundamental memory set {A1, . . . ,Ap}. Given a pattern
X from class i (or a noisy version X̃ of X), the autoassociative fuzzy KAM is
expected to produce a pattern K(X) = Y that also belongs to class i. From
(2.3), the output of the autoassociative fuzzy KAM satisfies

Y (u) = ϕ

⎛
⎝

p∑
ξ=1

wξA
ξ(u)

⎞
⎠ , (3.15)
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where ϕ(x) = max(0,min(1, x)). By comparing (3.14) and (3.15), except for
the piece-wise linear function ϕ which can be disregarded if

∑p
ξ=1 wξA

ξ(u) ∈
[0, 1], we conclude that the linear combination in (3.15) should also be sparse.
Therefore, the coefficients αξ in (3.14) can be approximated by

αξ = wξχi(�ξ), ∀ξ = 1, . . . , p, (3.16)

where χi : L → {0, 1}, for i ∈ L, denotes the indicator function:

χi(x) =

{
1, x = i,

0, otherwise.
(3.17)

Observe that (3.16) implies αξ = wξ if �ξ = i and αξ = 0 otherwise. Concluding,
if the input X belongs to class i, we presuppose that

Y (u) ≈
p∑

ξ=1

wξχi(�ξ)Aξ(u), ∀u ∈ U, (3.18)

In practice, however, we do not know a priori to which class the input X
belongs. As a consequence, we assign to X the class i ∈ L that minimizes the

distance between Y and the linear combination
p∑

ξ=1

wξχ�(�ξ)Aξ. Formally, we

attribute to X a class label i ∈ L such that

d2

(
Y,

p∑
ξ=1

wξχi(�ξ)Aξ

)
≤ d2

(
Y,

p∑
ξ=1

wξχj(�ξ)Aξ

)
,∀j ∈ L, (3.19)

where d2 denotes the L2-distance.

3.2 Heteroassociative-Based Approach

In the second approach, we define a classifier using the heteroassociative case.
Precisely, we synthesize a heteroassociative fuzzy KAM designed for the storage
of a fundamental memory set {(Aξ, Bξ), ξ = 1, . . . , p} ⊂ F(U) × {0, 1}n, where
n = Card(L) denotes the number of classes, Aξ represents a sample from a cer-
tain class, and Bξ ⊂ {0, 1}n indicates to which class Aξ belongs. In mathematical
terms, the (fuzzy) set Bξ associated to the stimulus Aξ of class i is defined by:

Bξ(v) =

{
1, if v = i

0, if v �= i.
(3.20)

Now, given an input X ∈ F(U), the fuzzy KAM yields a fuzzy set Y = K(X).
According to Eqs. (2.2) and (3.20), Y (i) is the sum of the weights wξ’s for ξ such
that Aξ belongs to the class i. Hence, we associate the input X to the i-th class,
where i is the first index such that Y (i) ≥ Y (j), for all j = 1, . . . , n.
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4 Computational Experiments and Results

In this section, we carry out computational experiments to evaluate the per-
formance of the fuzzy KAM-based classifiers. Let us begin by clarifying the
benchmark classification problems that we have used.

4.1 Classification Problems

Let us consider the following twenty two classification problems available at the
Knowledge Extraction Based on Evolutionary Learning (KEEL) database reposi-
tory as well as at the UCI Machine Learning Repository: appendicitis, cleveland,
crx, ecoli, glass, heart, iris, monks, movementlibras, pima, sonar, spectfheart,
vowel, wdbc, wine, satimage, texture, german, yeast, spambase, phoneme, and
page-blocks [31]. We would like to point out that, due to computational limi-
tations, we refrained to consider the classification problems: magic, pen-based,
ringnorm, and twonorm. Precisely, recall that O(p3) operations are performed
to synthesize a fuzzy KAM and, in these four databases, we have p ≈ 104.

Similar to previous experiments described on the literature, the experiments
were conducted by using ten-fold cross validation technique. This method con-
sists of dividing the data-set in ten parts and performing 10 tests, each one using
one of the parts as a test set and the others nine parts as developing/training
set. Afterward, we compute the mean of the ten accuracy values obtained in
each one of the ten tests. In order to ensure a fair comparison, we used the same
partitioning as in [31,32].

Some of the data sets considered in this experiment contain both categorical
and numerical features. Therefore, a pre-processing step to convert the original
data into fuzzy sets was necessary. First, in order to have only numerical values,
we transformed each categorical feature f ∈ {v1, . . . , vc}, with c > 1, into a
c-dimensional numerical feature n = (n1, n2, . . . , nc) ∈ R

c as follows for all
i = 1, . . . , c:

ni =

{
1, f = vi,

0, otherwise.
(4.21)

For example, the crx data set contain nine categorical features, one of them
with 14 possibilities. Such categorical feature was transformed into 14 numerical
features using (4.21). At the end, an instance of the transformed crx data set
contain 46 numerical features instead of 9 categorical and 6 numerical features
of the original classification problem.

After all categorical features were converted into numerical values, an
instance from a data set can be written as a pair (x, �), where x = [x1, . . . , xn]T ∈
R

n is a vector of numerical features and � ∈ L denotes its class label. More-
over, each feature vector x ∈ R

n can be associated with a fuzzy set A =
[a1, a2, . . . , an]T by means of the equation

ai =
1

1 + e−(xi−μi)/σi
∈ [0, 1], ∀i = 1, . . . , n, (4.22)
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where μi and σi represent respectively the mean and the standard deviation
of ith component of all training instances. Concluding, any training set can be
written as a labeled family of fuzzy sets AL = {(Aξ, �ξ) : ξ = 1, . . . , p}.

Besides, we have removed some repeated elements from the fundamental
memories sets of the spambase and page-blocks data sets.

In our computational experiments, we considered the fuzzy KAM defined by
using the Gregson similarity measure and the parameter α∗ that maximizes the
entropy. The Gregson similarity measure SG : F(U)×F(U) → [0, 1] is given by:

SG(A,B) =

n∑
i=1

min(A(ui), B(ui))

n∑
i=1

max(A(ui), B(ui))

. (4.23)

Note that SG given by (4.23) is a strong similarity measure which can be inter-
preted as the quotient between the cardinality of the intersection by the cardinal-
ity of the union of A and B. Finally, we would like to point out that we studied
extensively the role of a fuzzy similarity measure in GEB-FAM models applied
for face recognition and the Gregson similarity measure achieved competitive
results in comparison with others models from the literature [21].

Figure 1 shows the boxplot of the average accuracy produced by the autoas-
sociative and heteroassociative fuzzy KAM-based classifiers as well as other
nine models from the literature, namely: 2SLAVE [33], FH-GBML [34], SGERD
[35], CBA [36], CBA2 [37], CMAR [38], CPAR [39], C4.5 [40], and FARC-HD
[32]. The accuracy of the nine first classifiers have been extract from [32]. We
can observe from Fig. 1 that the fuzzy KAM-based classifiers outperformed (or
are at least competitive!) with the other classifiers from the literature. Let us

2SLAVE FH-GBML SGERD CBA CBA2 CMAR CPAR C4.5 FARC-HD FKAM-AUTO FKAM-HETERO 

10

20

30

40

50

60

70

80

90

100

Fig. 1. Boxplot of classification accuracies of several models of the literature in twenty
two problems. The accuracy of the nine first classifiers have been extract from [32].
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conclude by pointing out that the outliers in the boxplot of the fuzzy KAM-based
classifiers correspond to the Cleveland and Yeast classification problems.

5 Concluding Remarks

In this paper, we introduced the class of fuzzy kernel associative memories (fuzzy
KAMs). Basically, a fuzzy KAM corresponds to single-step generalized expo-
nential bidirectional fuzzy associative memories (GEB-FAMs), which have been
introduced and investigated by us in the last years [5,18,21,25]. Like the single-
step GEB-FAMs, fuzzy KAMs can be applied in classification problems. Indeed,
in this paper we reviewed two approaches for pattern classification: one using
the autoassociative case and the other based on the heteroassociative case.

The main contribution of this paper is the new interpretation of the exponen-
tial of a similarity measure as a kernel function. Although we did not elaborated
rigorously on the notion of a fuzzy kernel, it allowed us to apply concepts from
information theoretical learning to fine tune the parameter α of a fuzzy KAM.
Precisely, in view of its simplicity, we proposed to determine the parameter α∗

that maximizes the Shannon entropy of a fuzzy KAM.
Computational experiments with some well-know benchmark classification

problems showed a superior performance, in terms of accuracy, of the fuzzy
KAM-based classifiers over many other classifiers from the literature. In the
future, we plan to formalize the notion of a fuzzy kernel and to investigate
further the performance of the fuzzy KAM-based classifiers. We also intent to
study other applications of the fuzzy KAM models.

Acknowledgment. This work was supported in part by FAPESP and CNPq under
grants nos 2015/00745-1 and 310118/2017-4, respectively.
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Camacho-Nieto, O.: Pattern classification using smallest normalized difference
associative memory. Pattern Recogn. Lett. 93, 104–112 (2017)

8. Grana, M., Chyzhyk, D.: Image understanding applications of lattice autoassocia-
tive memories. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1920–1932 (2016)

9. Valdiviezo-N, J.C., Urcid, G., Lechuga, E.: Digital restoration of damaged color
documents based on hyperspectral imaging and lattice associative memories. SIViP
11(5), 937–944 (2017)

10. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proc. Nat. Acad. Sci. 79, 2554–2558 (1982)

11. Chiueh, T.D., Goodman, R.M.: Recurrent correlation associative memories. IEEE
Trans. Neural Netw. 2(2), 275–284 (1991). https://doi.org/10.1109/72.80338
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