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Abstract. This work extends the study of properties related to the
Atanassov’s interval-valued intuitionistic fuzzy entropy obtained as
aggregation of generalized Atanassov’s intuitionistic fuzzy index, by con-
sidering the concept of conjugate fuzzy implications and their dual con-
structions. Many ways to define the interval entropy were compared
leading to the equation proposed in this work which is more sensitive
to determine the interval entropy when using different interval-valued
fuzzy sets.
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1 Introduction

By allowing the expression related to the expert uncertainty in identifying a par-
ticular membership function or even to approximate the (unknown) membership
degrees, the Atanassov interval-valued intuitionistic fuzzy logic (A-IvIFL) is an
increasingly popular extension of fuzzy set theory.

The Atanassov’s interval-valued intuitionistic fuzzy index (A-IvIFIx), called
as hesitancy or indeterminacy degree of an element in an Atanassov-intuitionistic
fuzzy set (A-IFS), provides either a measure of the lack of supporting information
or a given incomplete/inconsistent proposition based on Atanassov-intuitionistic
fuzzy logic (A-IFL). Thus, using intervals in U = [0, 1] that approximate the
unknown data related to membership degrees, we are able to model applications
in which experts do not have precise knowledge.

The concept of fuzzy entropy was introduced in order to measure how far a
fuzzy set (FS) is from a crisp one [14]. Since then, this concept has been adapted
to the distinct extensions of FSs and with many interpretations, describing the
general measure of fuzziness through the mapping between fuzzy and real sys-
tems. Analogous interpretations lead to model data of the decision-making pro-
cesses which cannot be measured precisely, taking extensions of the value of
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entropy from a number to an interval value or even from an interval-valued
intuitionistic value based on the definition of interval entropy [19].

This paper contributes with both approaches: (i) the new concept of gener-
alized Atanassov’s intuitionistic fuzzy index (A-GIFIx) associated with a strong
intuitionistic fuzzy negation NI [2], characterized in terms of fuzzy implication
operators which is described by a construction method based on the action of
automorphisms; and (ii) the Atanassov’s intuitionistic fuzzy entropy (A-IFE),
introduced by means of special aggregation functions of the A-GIFIx in [7].

Following the former approach, this work extends the study of the gener-
alized Atanassov’s interval-valued intuitionistic fuzzy index (A-GIvIFIx) [10],
considering the concept of conjugate and dual interval-valued fuzzy implications,
mainly interested in representation method [6,11] and providing impact on prop-
erties satisfied by the generated operations. Additionally, A-GIvIFIx associated
with the standard negation together with the known Reichenbach interval-valued
fuzzy implications are considered [13].

From the later approach, the Atanassov’s interval-valued intuitionistic fuzzy
entropy (A-IvIFE) is studied, describing main notions for measuring fuzziness
degree or uncertain information in A-IvIFL. Such entropy is able to measure
how far a set defined by actions of fuzzy connectives in A-IvIFL is from one in
A-IvFL or A-IFL, and therefore, from a set in FL.

Our study mainly focuses on useful information entropy measures providing
another way to explore IvIFL as a model by offering application developers as
method of construction of A-IvIFE from A-GIvIFIx.

Among several papers found in the literature, see [12,19], connecting entropy
measures for interval-valued intuitionistic fuzzy sets (IvIFSs) and discussing their
relationships with similarity measures and inclusion measures. In [12], Jing and
Min deal with the entropies of IvIFSs, proposing a λ-parametrized set of general-
ized entropy on IvIFSs and then it is proved that the new entropy is an increasing
λ-parametrized function. In [19], a new axiomatical definition of entropy measure
for A-IvIFL based on distance is proposed, which is consistent with the defini-
tion introduced in [14]. These formal studies underlying the main contribute
for multi-criteria decision making problem, ranking the alternatives to study
interval-valued fuzzy set models, offering application developers a method of
construction of A-IvIFE from A-GIvIFIx preserving fuzziness and intuitionism
based on generalized approach for an A-IvIFIx.

The preliminaries describe the basic properties of fuzzy connectives and basic
concepts of A-IvIFL. The study of the A-GIvIFIx(NI) and general results in the
analysis of its properties are stated in Sect. 3. In Sect. 4, an interval version of
entropy is presented based on the generalized Atanassov’s intuitionistic fuzzy
index. We also consider a relationship with IvIFIx and conjugate operators.
Concluding, final remarks and further work are reported.

2 Preliminaries

Main results on interval-valued fuzzy connectives and IvIFSs are reported below.
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2.1 Interval-Valued Fuzzy Connectives

Let U = {[x1, x2] |x1, x2 ∈ U e 0 ≤ x1 ≤ x2 ≤ 1}. For each x ∈ U , a degenerate
interval [x, x] will be denoted by x and the subset of all degenerate interval will
be denoted by D. And, let ≤U ⊆ U

2 be the Kulisch-Miranker (or product) order,
such that for all X,Y ∈ U, it is given by:

X ≤U Y ⇔ X ≤ Y and X ≤U Y ,

such that ∀X,Y ∈ U, 0=[0, 0]≤UX≤U=[1, 1]. We also consider �U⊆ U
2 given as

∀X,Y ∈ UX �U Y ⇔ X ≤ Y .

By [5] an interval-valued aggregation (IvA) M :Un→U demands the conditions:

M1: M(X) = 0 and X = (0, . . . ,0); M(X) = 1 and X = (1, . . . ,1);
M2: If X = (X1, . . . , Xn) ≤Un Y = (Y1, . . . , Yn) then M(X) ≤U M(Y);
M3: M(Xσ) = M(Xσ1 , . . . , Xσn

) = M(X1, . . . , Xn) = M(X).

Definition 1 [18]. An interval function N : U → U is an interval-valued fuzzy
negation (IvFN) if, for all X,Y ∈ U, it verifies the following conditions:

N1: N([0, 0]) = 1; e N([1, 1]) = 0;
N2a: If X ≥ Y then N(X) ≤ N(Y ). N2b: If X ⊆ Y then N(X) ⊇ N(Y ).

An IvFN N is called strong IvFN [17] if N also satisfies the involutive prop-
erty:

N3: N(N(X)) = X, for all X ∈ U,

The interval extension of the standard negation NS(x) = 1 − x is given as:

NS(X) = [1, 1] − X = [1 − X, 1 − X],∀X[X,X] ∈ U. (1)

The N-dual operator of an interval-valued function f : Un → U is given as

fN(X1, . . . Xn)=N(f(N(X1), . . . ,N(Xn)). (2)

Definition 2 [3]. A function I(J) : U2 → U is a interval fuzzy (co)implication
if for all satisfies the following boundary conditions:
I1a: I(1,1)= I(0,0)= I(0,1)=1; J1a: J(1,1) = J(1,0)=J(0,0)=0;
I1b: I(1,0)=0; J1b: J(0,1)=1;
I2: If X ≤ Z then I(X,Y ) ≥ I(Z, Y ); J2: If X ≤ Z then J(X,Y ) ≥ J(Z, Y );
I3: If Y ≤ Z then I(X,Y ) ≤ I(X,Z); J3: If Y ≤ Z then J(X,Y ) ≤ J(X,Z);

Additional properties can be demanded for IvFI(IvFJ):
I4: I(X, Y )=1 ⇔ X ≤U Y ; J4: J(X, Y )=0 ⇔ X ≥U Y ;
I5:I(X, Y )=I(N(Y ),N(X)), N is a SIvFN; J5:J(X, Y )=J(N(Y ),N(X)), N is a SIvFN;
I6: I(X, Y ) = 0 ⇔ X = 1 and Y = 0; J6: J(X, Y ) = 1 ⇔ X = 0 and Y = 1.

Analogously, these properties Ik(Jk) can be restricted to fuzzy (co)impli-
cations by projections on D and will be denoted as Ik(Jk).



220 L. Costa et al.

Proposition 1. [8, Prop 21], A fuzzy (co)implication I(J) : U2 → U satisfies
I1 (J1) and I2 (J2) iff the interval fuzzy (co)implication I(J) is given as

I(X,Y ) = [I(X,Y ), I(X,Y )];
(
J(X,Y ) = [J(X,Y ), J(X,Y )]

)
. (3)

Example 1. The interval-valued extension of the Reichenbach (co)implication
IRH(X,Y )=NS(X)+X·Y (JRH(X,Y )=NS(X) ·Y ) can be expressed as follows:

IRH(X,Y )=(NS(X)+X ·Y ,NS(X)+X ·Y ); (4)

(JRH(X,Y )=[NS(X)·Y ,NS(X)·Y ]). (5)

2.2 Interval-Valued Atanassov’s Intuitionistic Fuzzy Sets

Based on [1] and later on [11], we briefly report main concepts and properties
on interval-valued Atanassov’s intuitionistic fuzzy sets (IvIFSs shortly).

An A-IvIFS AI in a non-empty universe χ is expressed as

AI={(x,MAI
(x), NAI

(x)) : x∈χ,MAI
(x) + NAI

(x))≤U1}, (6)

and the set of all IvIFSs is denoted by AI . Thus, an intuitionistic fuzzy truth
value of an element in AI is given by a pair of intervals (MAI

(x), NAI
(x)), and

Ũ={X̃ = (X1,X2)∈U
2 : X1 + X2 ≤U 1} (7)

denotes the set of all Atanassov’s interval-valued intuitionistic fuzzy degrees1

such that (Ũ,≤
Ũ
) and (Ũ,�

Ũ
) are partial ordered sets given as

RI1: X̃ ≤
Ũ

Ỹ ⇔X1 ≤U Y1 and X2 ≥U Y2;
RI2: X̃ �

Ũ
Ỹ ⇒ X1 ≤U Y1 and X2 ≤U Y2, for all X̃, Ỹ ∈ Ũ;

with 0̃ = (0,1) and 1̃ = (1,0) as the least and greatest elements on Ũ, respec-
tively. Additionally, an interval-valued Atanassov’s intuitionistic fuzzy degree
has two projections lII , rII : Ũ → U, defined by lII(X̃) = X1 and rII(X̃) = X2.
When X1 +X2 = 1 then AI is restricted to the set A of all interval-valued fuzzy
sets. Moreover, the function πAI

: χ→U, called an interval-valued Atanassov’s
intuitionistic fuzzy index (A-IvIFIx shortly), related to an IvIFS AI , is given as

πAI
(x) = NS(MAI

(x) + NAI
(x)). (8)

An IvIFIx models not only the uncertainty degree but also the hesitancy/indeter-
minance degree of each x in AI . The difference between AI and BI is given by:

AI − BI = {X̃ =(inf(NAI
(x), NBI

(x)), sup(NAI
(x),MBI

(x))) : X̃ ∈ Ũ, x ∈ χ}.

According with [18], an interval-valued Atanassov’s intuitionistic fuzzy nega-
tion (IvIFN) NI : Ũ → Ũ satisfies, for all X̃, Ỹ ∈ Ũ, the following properties:
1 We assume the componentwise addition on U, see [16].
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NI1: NI(0̃)=NI(0,1)= 1̃ and NI(1̃)=NI(1,0) = 0̃;
NI2: If X̃ ≥

Ũ
Ỹ then NI(x̃)≤

Ũ
NI(ỹ).

Moreover, NI is a strong IvIFN if it also verifies the involutive property:

NI3: NI(NI(X̃)) = X̃, ∀X̃ ∈ Ũ.

Consider NI as IvIFN and FI : Ũn → Ũ. By [18], the NI -dual interval-valued
Atanassov’s intuitionistic function of f̃ , denoted by FINI

: Ũn → Ũ, is given by:

FINI
(X̃) = NI(FI(NI(X̃1), . . . ,NI(X̃n))),∀X̃ = (X̃1, . . . , X̃n) ∈ Ũ

n. (9)

When ÑI is a strong IvIFN, f̃ is a self-dual interval-valued intuitionistic function.
And, by [18], taking a strong IvFN N : U → U, a IvIFN NSI : Ũ → Ũ such that

NSI(X̃) = (N(NS(X2)),NS(N(X1))), (10)

is a strong IvIFN generated by the IvFNs N and NS . By [6]), a strong IvIFN is
also a representable IvIFN. Additionally, if N = NS , Eq. (10) can be reduced to
NSI(X̃) = (X2,X1). Moreover, the complement of A-IvIFS AI is defined by

AIc={(x,NAI
(x),MAI

(x)) : x∈χ,MAI
(x) + NAI

(x))≤U1}, (11)

An interval-valued Atanassov’s intuitionistic automorphism (A-IvIA) is a
bijection increasing operator Φ : Ũ → Ũ. For all X̃, Ỹ ∈ Ũ, the following hold:

AI1: Φ(1̃) = 1̃ and Φ(0̃) = 0̃;
AI2: Φ ◦ Φ−1(X̃) = X̃;
AI3: X̃ ≤

Ũ
Ỹ iff Φ(X̃) ≤

Ũ
Φ(Ỹ ).

In the set of all A-IvIAs (Aut(Ũ)), the conjugate function of fI : Ũn → Ũ is
a function fΦ

I : Ũn → Ũ, defined as follows

fΦ
I (X̃1, . . . , X̃n) = Φ−1(fI(Φ(X̃1), . . . , Φ(X̃n))). (12)

Reporting main results in [9, Theorem 17], let φ : U → U be an interval-
valued automorphism, φ ∈ Aut(U). Then, a φ-representability of Φ is given by

Φ(X̃) = (φ(l
Ũ
(X̃)),1 − φ(1 − r

Ũ
(X̃))),∀X̃ ∈ Ũ; (13)

Moreover, if φ ∈ Aut(U), for all X̃ ∈ Ũ, a φU -representability of Φ is given by

Φ(X̃) =
(
[φU (X1), φU (X1)], [1 − φU (1 − X2), 1 − φU (1 − X2)]

)
. (14)

Thus, if an IvIA is φ-representable, it is also a φU -representable automorphism
[18].
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3 Interval Extension of the Generalized Atanassov’s
Intuitionistic Fuzzy Index

Definition 3. Let N be a strong IvFN. A function Π : Ũ→U is called a gen-
eralized interval-valued intuitionistic fuzzy index (A − GIvIFIx(N)) if,
for all X1,X2, Y1, Y2 ∈ U, it holds that:

Π1: Π(X1,X2) = 1 iff X1 = X2 = 0;
Π2: Π(X1,X2) = 0 iff X1 + X2 = 1;
Π3: If (Y1, Y2) �

Ũ
(X1,X2) then Π(X1,X2) ≤U Π(Y1, Y2);

Π4: Π(X1,X2) = Π(NSI(X1,X2)) when NSI is given by Eq.(10).

3.1 Relationship with Interval-Valued Fuzzy Connnectivess

In the following, Theorem 1 extends main results in [2].

Theorem 1. Let I(J) :U2 →U be a (co)implicator verifying I1(J2),I4(J4),I5(J5)
and I6(J6) and N : U→U be an involutive IvFN. A function ΠN,I(ΠN,J) : Ũ→U
is A-GIvIFIx(N) iff it can be given as

ΠN,I(X) = N(I(NS(X2),X1)) (ΠN,J(X) = J(N(NS(X2)),N(X1))) . (15)

Proof. Equation(15b) is proved below. Analogously, it can be done to Eq.(15a).
(⇒) Consider that J : U2 → U verifies J2, J4, J5 and J6, it holds that:

Π1 : ΠN,J(X1, X2) = 1 ⇔ J(N(NS(X2)),N(X1)) = 1(by Eq.(15b))

⇔ NS(X2) = 1 andN(X1) = 1 ⇔ X2 = X1 = 0(by J6,N1).

Π2 : ΠN,J(X1, X2) = 0 ⇔ J(N(NS(X2)),N(X1)) = 0 (by Eq.(15b))

⇔ N(NS(X2)) ≥U N(X1)(by J4)

⇔ NS(X2) ≤U X1(by N3) and NS(X2) ≥U X1(by Eq.(7))

⇔ X1 + X2 = 1.

Π3 : (Y1, Y2) � (X1, X2) ⇒ Y1 ≤U X1 and Y2 ≤ X2(by RI2)

⇒ N(X1) ≥U N(Y1) and N(NS(X2)) ≤U N(NS(Y2))(by N2)

⇒ J(N(NS(X2)),N(X1)) ≤U J(N(NS(Y2)),N(Y1))(by J1, J2)

⇒ ΠN,J(X1, X2) ≤U ΠN,J(Y1, Y2)(by Eq.(15))

Π4 : ΠN,I(N(X1, X2)) = J(N(NS(X2)),NS(N(X1))(by Eq.(10))

= J(X1,NS(X2))(by Eq.(15))

= J(N(NS(X2))),N(X1)) = ΠN,J(X1, X2)(by J5 and Eq.(15))

(⇐) Considering the function J : U2 → U given as J(X1,X2) = 1, if X1 > X2;
and J(X1,X2) = ΠN,J(X2,NS(N(X1))), otherwise. The following holds:
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J2 :Y1 ≥Y2 ⇔J(X, Y1)=

{
1, if X > Y1,
ΠN,J(Y1,NS(N(X))), otherwise; (by Eq.(15); )

≥
{
1, if X > Y2,
ΠN,J(Y2,NS(N(X))) = J(X, Y2), otherwise; (by Π3 andEq.(15))

J4 : Straightforward.

J5 : J(N(X2),N(X1)) =

{
1, if N(X2) > N(X1),

ΠN,J(N(NS(N(X1)), X2), otherwise; (by Eqs.(15) and (10))

=

{
1, if X1 ≥ X2,
ΠN,J(N(NS(X2),N(X1)), otherwise (by Π4 and N3)

= J(X1, X2), (Eq.(15))

J6 : J(X1, X2) = 1 ⇔ΠN,J(N(X2),NSN(X1)) = 1 (by Eq.(15))

⇔N(X2) = NS(N(X1)) = 0 ⇔ X1 = 0 and X2 = 1 (by Π1)

Therefore, Theorem 1 holds.

The Φ-representability and N-dual IvIFIx constructions are discussed below.

Proposition 2. Let IN(JN) be the N-dual operator of a (co)implication I(J). The
following holds:

ΠN,IN(X̃) = ΠN,I(X̃)
(
ΠN,JN(X̃) = ΠN,J(X̃)

)
. (16)

Proof. ΠN,IN(X̃) = IN(N(NS(X2)),N(X1)) = N(I(NS(X2),X1)) = ΠN,I(X̃), ∀X̃ ∈
Ũ.

Corollary 1. When N = NS, Eq.(15) in Theorem 1 is given as

ΠNS ,I(X̃) = NS(I(NS(X2),X1))
(
ΠNS ,J(X̃) = J(X2,NS(X1)

)
. (17)

Proposition 3. Let N be an N -representable IvFN and πN,I : Ũ → U be A-
IFIx(N). If I, J are representable (co)implications given by Eq.(3), a function
ΠN,I : Ũ → U given by Eq.(17) can be expressed as

ΠN,I(X̃)=[ΠN,I(X2, X1),ΠN,I(X2, X1)] (ΠN,J(X̃)=[ΠN,J (X2, X1),ΠN,J(X2, X1)]).

Proof. We proof Eq.(18a), the other one can be analogously done. By taking
(X1,X2) ∈ Ũ, X1 = [X1,X1],X2 = [X2,X2] then X1 + X2 = [X1 + X2,X1 +
X2] ≤ 1, meaning that X1+X2 ≤ 1 and X1+X2 ≤ 1. Then, we have the result
ΠN,I(X̃) = N(I([1−X2, 1−X2], [X1,X1])) = [N(I(1−X2,X1)), N(I(1−X2,X1))].
Concluding, ΠN,I(X̃) = [ΠN,I(X2,X1),ΠN,I(X2,X1)]. So, Proposition 3 holds.

Example 2. Consider IRC and related NS-dual construction ΠNS,JRC . By preserv-
ing the conditions of Proposition 3, Eq.(18) can be expressed as

ΠNS,IRC(X1,X2)=
{

0, if X1 + X2 = 1,
1−[1−X2−X1+X2X1, 1−X2−X1+X2X1], otherwise.
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3.2 Relationship with Interval-Valued Automorphisms

Proposition 4. Let NΦ :U→U be the φ-conjugate of a strong IvFN N : U → U

and φ : U → U be a φ-representable IvA given by Eq.(14). When Φ : Ũ → Ũ is a
Φ-representable IvIFa given by Eq.(13), a function ΠΦ : Ũ → U given by

ΠΦ(X1,X2) = (φ−1(Π(φ(X1)),1 − φ(1 − X2)), (18)

is a A − GIvIFIx(NI) whenever Π : Ũ → U is also a A − GIvIFIx(NI).

Proof. Let φ : Ũ → U be a φ-representable A-IvA and Π : Ũ → U be a A −
GIvIFIx(NI). It holds that:

Π1 :ΠΦ(X1,X2) = 1 ⇔ φ−1(Π(φ(X1),1 − φ(1 − X2))) = 1 (by Eq.(18))
⇔ Π(φ(X1),1 − φ(1 − X2)) = 1 (by AI1)
⇔ φ(X1) = 0 and1 − φ(1 − X2) = 0 (by Π1)
⇔ X1 = 0 and X2 = 0(by AI1)

Π2 :It is analogous to Π1.

Π3 :(X1, X2) � (Y1, Y2) ⇒ X1 ≤U Y1 and X2 ≤U Y2 by �−relation

⇒ φ(X1) ≤U φ(Y1) and 1 − φ(1 − X2) ≤U 1 − φ(1 − Y2) by AI1

⇒ Π(φ(X1),1 − φ(1 − X2)) ≤U Π(φ(Y1),1 − φ(1 − Y2)) by Π3

⇒ φ−1 (Π(φ(X1),1 − φ(1 − X2))) ≤U φ−1 (Π(φ(Y1),1 − φ(1 − Y2))) by A1

⇒ Πφ
G(X1, X2) ≤U Πφ

G(Y1, Y2) (by Eq.(13)).

Let NI be a strong IvIFN given by Eq.(10) and N
Φ
I its Φ−conjugate function.

Π4 :ΠΦ
(
N

Φ
I (X1,X2)

)
= Φ−1

(
Π(Φ ◦ Φ−1(NI(Φ(X1,X2))))

)
(by Eq. (18))

= Φ−1 (Π(NI(φ(X1,X2)))) = Φ−1 (Π(Φ(X1,X2)) = Π(X1,X2) (by Π4)

The new results follow from Proposition 4 and Theorem 1.

Corollary 2. In conditions of Proposition 4 and also considering φ-
representable IvA given by Eq.(14), we can express Eq.(18) as follows:

ΠΦ(X1,X2) =
(
Πφ(X1,X2),Πφ(X1,X2)

)
. (19)

Corollary 3. Let Φ be a φ-representable automorphism in Aut(Ũ) and I(J) :
Ũ

2 → Ũ be the corresponding φ-conjugate operator related to a (co)implication
I(J) : U2 → U, verifying the conditions of Theorem 1. And, let N

Φ be a strong
φ-conjugate IvFN negation. A function ΠN,Iφ(ΠN,Jφ) : Ũ → U given by

ΠΦ
N,I(X1,X2) = N

Φ(IΦ(NS(X2),X1)) (20)
(
ΠΦ

N,J(X1,X2) = J
φ(NΦ(NS(X2),NΦ(X1))

)
. (21)

is an A−IvGIFIx(N) whenever ΠN,I(ΠN,J) : Ũ → U is also a A−GIvIFIx(N).
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Example 3. Consider IRC and related Φ-conjugate construction ΠΦ
NS,JRC

given by
Eq.(18). For a φ-representable IvIA, taking φ(X) = Xn and n as an integer
non-negative integer, we have the following:

ΠΦ
NS,IRC(X1,X2)=

[
n

√
(1 − X

n

1 )(1 − X2)n; n
√

(1 − Xn
1 )(1 − X2)n

]
. (22)

4 Interval-Valued Intuitionistic Fuzzy Entropy

This section generalizes results from [7, Definition 2] also discussing properties
related to the Atanassov’s interval-valued intuitionistic fuzzy entropy (A-IvIFE)
which are obtained by action of an interval-valued aggregation of A-GIvIFIx.

Definition 4. An interval-valued function E : AI → U is called an A-IvIFE if
E verifies the following properties:

E2: E(AI) = 0 ⇔ AI ∈ A;
E2: E(AI) = 1 ⇔ MAI

(x) = NAI
(x) = 0, ∀x ∈ χ;

E3: E(AI) = E(AIc);
E4: If AI �

Ũ
BI then E(AI) ≥U E(BI), ∀AI , BI ∈ AI .

Now, main properties of A-IvIFE obtained by A-GIvIFI are studied [15].

Theorem 2. Consider χ = {x1, . . . , xn}. Let M : Un → U be an automorphism,
N be a strong IvFN and Π ∈ Aut(Ũ). A function E : AI → U given by

E(AI) = M
n
i=1Π(AI(xi)),∀xi ∈ χ, (23)

is an A-IvIFE in the sense of Definition 4.

Proof. Let AIc be the complement of AI given by Eq.(11). For all xi ∈ χ and
AI , BI ∈ AI , we have that:

E1 : E(AI) = 0 ⇔ M
n
i=1Π(AI(xi)) = 0. By M1, E(AI) = 0 ⇔ MAI

(xi) +
NAI

(xi) = 1, ∀xi ∈ χ. Then, by Π2, E(AI) = 0 ⇔ AI ∈ A.
E2 : E(AI) = 1 ⇔ M

n
i=1Π(AI(xi)) = 1. By M1, E(AI) = 1 ⇔ MAI

(xi) +
NAI

(xi) = 0, meaning that MAI
(xi) = NAI

(xi) = 0.
E3 : E(AI)c = M

n
i=1Π(AIc(xi)) = Π(NI(X1,X2)). By Π3, the following holds

E(AI)c = Π(X1,X2). Concluding, E(AI)c = E(AI).
E4 : If AI �

Ũ
BI then AI(xi) �

Ũ
BI(xi). Based on Π3, it holds that

Π(BI(xi)) ≤U Π(AI(xi)). By M3, we obtain that M
n
i=1Π(BI(xi)) ≤U

M
n
i=1Π(BI(xi)). As conclusion, E(AI) ≥U E(BI).

Therefore, Theorem 2 is verified.

Proposition 5. Consider χ = {x1, . . . , xn}. Let M : Un → U be an IvA, N be
a strong IvFN and ΠN,I(ΠN,J) : Ũ→U is A-GIvIFIx(N) given by Eq.(15). Then,
for all xi ∈ χ, an A-IvIFE E : AI → U can be given by

EΠN,I
(AI)=M

n
i=1ΠN,I(AI(xi))

(
EΠN,I

(AI)=M
n
i=1ΠN,J(AI(xi))

)
. (24)
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Proof. Straightforward Theorems 1 and 2.

Corollary 4. Consider N = NS, A-GIvIFIx (NS) ΠN,I given by Eq.(15). Then,
by taking AI(xi) = (MAI

(xi), NAI
(xi)) = (X1i,X2i) for all xi ∈ χ, an A-IvIFE

E : AI → U which is given in Eq.(24) can be expressed as

EΠN,I
(AI)=M

n
i=1 (NS(I(NS(X2i),X1i))

(
EΠN,J

(AI)=M
n
i=1J(X2i,NS(X1i)

)
. (25)

Proof. Straightforward Proposition 5 and Theorem 1.

Example 4. By taking the arithmetic mean as an aggregation operator, IRC

in Eq.(4) and related IvIFIx given in Eq.(18). Let AI be an IvIFS defined
by pairs (X1i,X2i) ∈ Ũ, for all xi ∈ χ, an IvIFE as EΠNS,IRB

(X1i,X2i) =
1
n

∑n
i=1 NS(IRB(NS(X2i),X1i) can be given as follows:

EΠNS,IRB
(X1i,X2i)=

1
n

n∑

i=1

[1−X2i−X1i+X2iX1i, 1−X2i−X1i+X2iX1i]. (26)

4.1 Relationship with Intuitionistic Index and Conjugate Operators

Conjugation operator and duality properties related to generalized Atanassov’s
Intuitionistic Fuzzy Index are reported from [10].

Proposition 6. Consider χ = {x1, . . . , xn} and Φ ∈ Aut(Ũ) a φ-representable
A-IvIFA given by Eq.(13). When Π is A − GIvIFIx(N), an A-IvIFE is a func-
tion E

Φ : AI → U defined by

E
Φ(AI) = M

φn

i=1Π
φ(AI(xi)),∀xi ∈ χ. (27)

Proof. Based on Eqs.(12) and (13), the following holds:

E
Φ(AI(xi)) = E

Φ(AI) = φ−1(E(φ(l
Ũ
(AI(xi))),1 − φ(1 − r

Ũ
(AI(xi)))

= φ−1
(
M

n
i=1(φ ◦ φ−1)Π(φ(l

Ũ
(AI(xi))),1 − φ(1 − r

Ũ
(AI(xi))

)

= φ−1
(
M

n
i=1(φ(Πφ(AI(xi)))

)
= M

φn

i=1Π
φ(AI(xi))

Figure 1 summarizes the main results related to the classes of A-GIvIFIx(N)
and A-IvIFE denoted by C(Π) and C(E), respectively. This A-IvIFE is obtained
not only from generalized IvIFIx [4] but also from dual and conjugate operators.

Proposition 7. Let Φ be a φ-representable automorphism in Aut(Ũ) and I(J) :
Ũ

2 → Ũ be the corresponding φ-conjugate operator related to a (co)implication
I(J) : U2 → U, verifying the conditions of Theorem 1. Additionally, let NΦ be a
strong φ-conjugate IvFN negation and M : Un → U be an aggregation function.
Then, for A ∈ A, the functions EN,I,E

Φ
N,I(EN,I,E

Φ
N,I) : A → U given by

EN,I(A)(xi) = M
n
i=1 N(I(1 − NAI

(xi),MAI
(xi))), (28)

E
Φ
N,I(A)(xi) = M

φn

i=1 N
φ(Iφ(1 − NAI

(xi),MAI
(xi))); (29)

EN,J(A)(xi) = M
n
i=1 J(NAI

(xi),1 − MAI
(xi)) (30)

E
Φ
N,J(A)(xi) = M

φn

i=1 J
φ(NAI

(xi),1 − MAI
(xi)). (31)

express an interval-valued Atanassov’s intuitionistic fuzzy entropy.
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Fig. 1. Conjugate construction of A − GIFIx(N) and A − IFE on Aut(Ũ)

Proof. Straightforward from Proposition 6.

Example 5. By Eqs.(28) and (26), an IvIFE expression is obtained as follows:

E
Φ
NS ,IRB

(A)(xi) =
1
n

n∑

i=1

[
n

√
(1 − X

n

1i)(1 − X2i)n; n
√

(1 − Xn
1i)(1 − X2i)n

]
.(32)

4.2 Preserving Fuzzyness and Intuitionism Based on IvIFE

Based on [12], assuming that χ = {u}, A1 = {(u, [0.1, 0.2], [0.3, 0.4])} and A2 =
{(u, [0.2, 0.3], [0.4, 0.5])} in order to calcule the entropies by equations below

EY (A) =
1
n

n∑

i=1

[√
2 cos

μA(xi) + μA(xi) − νA(xi) − νA(xi)
8

π − 1]
1√

2 − 1
(33)

EG(A) =
1
n

n∑

i=1

cos
|μA(xi) − νA(xi)| + |μA(xi) − νA(xi)|

8
π. (34)

Thus, E(A1) and (E(A2)) contains the difference between the membership and
non-membership degrees related to the hesitancy degree. However, despite the
differences, the same value for related IvIFEs are matched, making impossible
to distinguish the fuzziness and intuitionism of these two cases. Intuitively, it
is easy to observe that A1 is more fuzzy than A2, meaning that πA1 ≥ πA2 .
However, this cannot be seen by using the above Eqs.(33) and (34). So, a more
sensitive definition of IvIFE is introduced in order to deal with this problem.

In our proposed methodology, we calculate the related IvIFEs by using
Eqs.(26) and (32) together with corresponding IvIFIx given by Eqs.(18) and (22).
See these results presented in 1st and 2nd columns of Table 1 when the inputs are
given as A1 and A2. Since χ is singleton IvIFS, the resulting hesitant degree and
corresponding entropy measure coincide. Additionally, it is possible to naturally
preserve properties of related interval entropy, meaning that IvIFE is an order
preserving index, by including IFE. Moreover, taking A3 = [0.2, 0.2], [0.3, 0.3]
and A4 = [0.3, 0.3], [0.4, 0.4] as inputs, the entropy values obtained with the
degenerate intervals related to membership and non-membership degrees are
included in the interval entropy obtained with non-degenerated interval-valued
inputs. See these results in the 3rd and 4th columns of Table 1.
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Table 1. IvIFIxs and IvIFEs related to IvIFSs from A1 to A4IvIFSs.

IvIFIx A1 A2 A3 A4

Π(Ai) = EΠ(Ai) [0, 48; 0, 63] [0, 35; 0, 48] [0, 56; 0, 56] [0, 42; 0, 42]

Πφ(Ai) = E
φ
Π(Ai) [0, 5879; 0, 6965] [0, 4769; 0, 5879] [0, 4704; 0, 4704] [0, 3276; 0, 3276]

5 Conclusion

The generalized concept of the Atanassov’s interval-valued intuitionistic fuzzy
index was studied by dual and conjugate construction methods. We also extend
the study of Atanassov’s intuitionistic fuzzy entropy based on such two construc-
tors. Further work considers the extension of such study related to properties
verified by the A−GIvIFIx(N) and A− IvIFE and also the use of admissible
linear orders to compare the results of the interval entropy, since, in some cases,
the values of interval entropy cannot be compared using the Moore’s method.
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9. Costa, C., Bedregal, B., Dória Neto, A.: Relating De Morgan triples with
Atanassov’s intuitionistic De Morgan triples via automorphisms. Int. J. Approx.
Reason. 52, 473–487 (2011)



Interval Version of Generalized Atanassov’s Intuitionistic Fuzzy Index 229

10. Costa, L., Matzenauer, M., Zanottelli, R., Nascimento, M., Finger, A., Reiser, R.,
Yamin, A., Pilla, M.: Analysing fuzzy entropy via generalized Atanassov’s intu-
itionistic fuzzy indexes. Mathw. Soft Comput. 42, 22–31 (2017)

11. Cornelis, G., Deschrijver, G., Kerre, E.: Implications in intuitionistic fuzzy and
interval-valued fuzzy set theory: construction, classification and application. Int.
J. Approx. Reason. 35, 55–95 (2004)

12. Jing, L., Min, S.: Some entropy measures of interval-valued intuitionistic fuzzy sets
and their applications. Adv. Model. Optim. 15, 211–221 (2013)

13. Lin, L., Xia, Z.: Intuitionistic fuzzy implication operators: expressions and proper-
ties. J. Appl. Math. Comput. 22, 325–338 (2006)

14. Luca, A., Termini, S.: A definition of nonprobabilistic entropy in the setting of
fuzzy sets theory. Inf. Control 20, 301–312 (1972)

15. Miguel, L., Santos, H., Sesma-Sara, M., Bedregal, B., Jurio, A., Bustince, H.: Type-
2 fuzzy entropy sets. IEEE Trans. Fuzzy Syst. 25, 993–1005 (2017)

16. Moore, E.: Interval arithmetic and automatic error analysis in digital computing.
Stanford University (1962)

17. Reiser, R.H.S., Dimuro, G.P., Bedregal, B.C., Santiago, R.H.N.: Interval valued
QL-implications. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol.
4576, pp. 307–321. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73445-1 22

18. Reiser, R., Bedregal, B.: Correlation in interval-valued Atanassov’s intuitionis-
tic fuzzy sets - conjugate and negation operators. Int. J. Uncertain. Fuzziness
Knowl.Based Syst. 25, 787–820 (2017)

19. Zhang, Q., Xing, H., Liu, F., Ye, J., Tang, P.: Some new entropy measures for
interval-valued intuitionistic fuzzy sets based on distances and their relationships
with similarity and inclusion measures. Inf. Sci. 283, 55–69 (2014)

https://doi.org/10.1007/978-3-540-73445-1_22
https://doi.org/10.1007/978-3-540-73445-1_22

	Interval Version of Generalized Atanassov's Intuitionistic Fuzzy Index
	1 Introduction
	2 Preliminaries
	2.1 Interval-Valued Fuzzy Connectives
	2.2 Interval-Valued Atanassov's Intuitionistic Fuzzy Sets

	3 Interval Extension of the Generalized Atanassov's Intuitionistic Fuzzy Index
	3.1 Relationship with Interval-Valued Fuzzy Connnectivess
	3.2 Relationship with Interval-Valued Automorphisms

	4 Interval-Valued Intuitionistic Fuzzy Entropy
	4.1 Relationship with Intuitionistic Index and Conjugate Operators
	4.2 Preserving Fuzzyness and Intuitionism Based on IvIFE

	5 Conclusion
	References




