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Abstract. This work focus on the least square method to fit a fuzzy
function to longitudinal data given by fuzzy numbers. In order to con-
sider the intrinsic correlation of longitudinal data, we assume that there
exits a linear relation among the involved fuzzy numbers that arises from
the concept of a joint possibility distribution. We propose a numerical
method to solve a fuzzy least square problem taking into account this lin-
ear correlation. To this end, we extend the classical least square method
by means of the sup-J extension principle, which consists of a generaliza-
tion of Zadeh’s extension principle. Finally, we use our proposal method
to fit a longitudinal dataset.
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1 Introduction

The least squares methods are used, in general, to obtain a continuous function
that best fit pairs of data in a dataset [1]. The fuzzy least squares method arises
when the dataset is composed by fuzzy numbers. Tanaka et al. proposed a fuzzy
least squares method based on fuzzy regression models [2]. This method was
used to find fuzzy parameters of a fuzzy linear function from a fuzzy dataset.
However, this approach converts the problem to a classic linear programming
problem which may lead to losing the notion of close distance between the fuzzy
data and the obtained solution.

Celmins [3] proceeded with the same methodology of [2] but considered a
intrinsic relation among the dataset based on conical membership functions that
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are (geometrically) similar to joint possibility distributions. In addiction, the
concept of interactive fuzzy numbers [4–6] was only considered in [7], which
improved the approach presented by [3].

In contrast to these previous methods, Diamond [8] proposed a fuzzy least
squares method based on distance between functions. He used projection theo-
rems for cones in Banach spaces to find the fuzzy linear function that best fit a
dataset.

It is worth noting that all these approaches were developed for data given
only by triangular fuzzy numbers and for fitting only fuzzy linear functions. Nev-
ertheless, these methods can be used to model many phenomenons, for example,
in economy [9], psychology [10], medicine [11], and logistics [12].

Data correlations arise naturally in longitudinal datasets. A dataset is said
to be longitudinal if it contains the same type of information on the same itens
at multiple points in time. Therefore, longitudinal data is characterized by the
fact that repeated observations are correlated [13]. In this work, we suppose that
this correlation is given by the notion of completely correlated fuzzy numbers
[5,14].

The method proposed here is based on the (sup-J) extension of classical
numerical algorithm to the fuzzy context and does not take into account any
distance between fuzzy numbers. Moreover, our method can be applied not only
for triangular fuzzy numbers, but for any type of completely correlated fuzzy
numbers, and it can approximate the dataset with higher orders functions.

In Sect. 2 we briefly recall the classical least squares method and some basic
definitions and results from fuzzy set theory. In Sect. 3, we develop the extension
of the classical least squares method for the case where dataset is composed by
completely correlated fuzzy numbers. Finally, in Sect. 4, we apply the proposed
method to fit a fuzzy function to the longitudinal dataset given in [15].

2 Mathematical Background

This section presents the least squares method [1] and some basic concepts of
fuzzy set theory [16].

2.1 Least Square Method

Let f : [c, d] → R be a continuous function. Given n functions g1, . . . , gn, where
gi : R → R for i = 1, . . . , n, we need to find n coefficients a1, . . . , an ∈ R such
that the function ϕ : R → R given by

ϕ(x) = a1g1(x) + . . . + angn(x)

is the best approximation of the function f , i.e., ϕ ≈ f .
The function ϕ is obtained by minimizing the distance between f and ϕ. More

precisely, let ||·||2 be the L2-norm defined on the class of the continuous functions

from [c, d] to R (denoted by C([c, d])) given by ||h||2 =
(∫ d

c
|h(s)|2ds

)1/2

, ∀h ∈
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C([c, d]). The coefficients a1, . . . , an of the function ϕ which produces the best
fit to f are obtained by solving the following minimization problem:

min
a1,...,an∈R

1/2||ϕ − f ||22.

In the case some values of f are known, say D = {f(x1) = y1, . . . , f(xm) =
ym}, the function ϕ must fit the data D, that is, ϕ(xi) ≈ yi, for all i = 1, . . . , m.
Therefore the following minimization problem must be solved.

min
a1,...,an∈R

1/2||(ϕ(x1) − y1, . . . , ϕ(xm) − ym)||22. (2.1)

The real coefficients a1, . . . , an that minimize the problem (2.1), i.e., that
produces the best approximation ϕ of f , are obtained by solving the following
matrix equation called normal equation:

Ma = b,

where

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

g1(xk)g1(xk) . . .

m∑
k=1

g1(xk)gn(xk)

...
. . .

...
m∑

k=1

gn(xk)g1(xk) . . .

m∑
k=1

gn(xk)gn(xk),

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

a =

⎡
⎢⎣

a1

...
an

⎤
⎥⎦ and b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

ykg1(xk)

...
m∑

k=1

ykgn(xk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

If the matrix M is non singular, say P = M−1 = [pij ], then the vector a is
obtained by

a = Pb. (2.2)

Thus, each parameter ai is given by

ai = pi1b1 + pi2b2 + . . . + pinbn

= pi1

(
m∑

k=1

ykg1(xk)

)
+ . . . + pin

(
m∑

k=1

ykgn(xk)

)

=

⎛
⎝

n∑
j=1

pijgj(x1)

⎞
⎠ y1 + . . . +

⎛
⎝

n∑
j=1

pijgj(xm)

⎞
⎠ ym

= ci1y1 + . . . + cimym,
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where cik =
n∑

j=1

pijgj(xk), for i = 1, . . . , n and k = 1, . . . ,m. In general case, the

matrix P stands for the pseudoinverse of M .
Since the parameters of the function ϕ can be obtained by computing the

matrix product (2.2), we rewrite the function ϕ in terms of y1, . . . , ym as follows:

ϕ(x) = a1g1(x) + . . . + angn(x)
= (c11y1 + . . . + c1mym)g1(x) + . . . + (cn1y1 + . . . + cnmym)gn(x)

=

⎛
⎝

n∑
j=1

gj(x)cj1

⎞
⎠ y1 + . . . +

⎛
⎝

n∑
j=1

gj(x)cjm

⎞
⎠ ym

= s1(x)y1 + . . . + sm(x)ym, (2.3)

where

si =

⎛
⎝

n∑
j=1

gj(x)cji

⎞
⎠

for each i = 1, . . . , n.

2.2 Fuzzy Set Theory

A fuzzy subset A of an universe X is characterized by a function μA : X → [0, 1],
called membership function [16], where μA(x), or simply A(x), represents the
membership degree of x in A, for all x ∈ X. The class of fuzzy sets of X is denoted
by the symbol F(X). Each classical subset A of X is a particular fuzzy set whose
membership function is given by its characteristic function χA : X → {0, 1}, i.e.,
χA(x) = 1 if and only if x ∈ A.

The α-cut of a fuzzy set A of X, denoted by [A]α, is defined as [A]α = {x ∈
X : A(x) ≥ α}, ∀α ∈ (0, 1]. If X is also a topological space, then we can define
the 0-cut of A by [A]0 = cl{x ∈ X : A(x) > 0} [17], where cl Y, Y ⊆ X, denotes
the closure of Y .

Zadeh’s extension principle [18] can be viewed as mathematical method to
extend a function f : X → Y to a function f̂ : F(X) → F(Y ).

Definition 1 (Zadeh’s extension principle [17,18]). Let f : X → Y . The Za-
deh’s extension of f at A ∈ F(X) is the fuzzy set f̂(A) ∈ F(Y ) whose member-
ship function is given by

f̂(A)(y) =
∨

x∈f−1(y)

A(x), ∀ y ∈ Y,

where f−1(y) = {x ∈ X : f(x) = y} is the preimage of the function f at y and,
by definition,

∨ ∅ = 0.
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A fuzzy set A ∈ F(R) is called a fuzzy number if its α-cuts are closed,
bounded and non-empty intervals for all α ∈ [0, 1] [17]. Since each α-cut of a
fuzzy number A is an interval that satisfies the previous properties, we can write
[A]α = [a−

α , a+
α ]. We denote the class of fuzzy numbers by the symbol RF . The

next theorem indicates when a family of subsets can be uniquely associated with
a fuzzy number.

Theorem 1 (Negoita-Ralescu’s characterization theorem [19,20]). Given a fam-
ily of subsets {Aα : α ∈ [0, 1]} that satisfies the following conditions

(a) Aα is a non-empty, closed, and bounded interval for any α ∈ [0, 1];
(b) Aα2 ⊆ Aα1 , for all 0 ≤ α1 ≤ α2 ≤ 1;
(c) For any sequence αn which converges from below to α ∈ (0, 1] we have

∞⋂
n=1

Aαn
= Aα;

(d) For any sequence αn which converges from above to 0 we have

A0 = cl

( ∞⋃
n=1

Aαn

)
.

Then there exists a unique A ∈ RF , such that [A]α = Aα, for each α ∈ [0, 1].
Conversely, let A ∈ RF , if Aα = [A]α for all α ∈ [0, 1] then the family of

subsets {Aα : α ∈ [0, 1]} satisfies the conditions (a)–(d).

An example of fuzzy number is a triangular fuzzy number that is denoted by
the triple (a; b; c), with a ≤ b ≤ c. In view of Theorem 1, the triangular fuzzy
number can be defined in terms of its α-cuts as follows:

[A]α = [a + α(b − a), c − α(c − b)], ∀α ∈ [0, 1].

Note that a real number a is a particular case of triangular fuzzy number since
we have a ≡ (a; a; a).

A fuzzy relation R over X = X1 × . . . × Xn is any fuzzy subset of X1 ×
. . . × Xn. Thus, a fuzzy relation R is associated with a membership function
R : X1 × . . . × Xn → [0, 1], where R(x1, . . . , xn) ∈ [0, 1] represents the degree of
relationship among x1, . . . , xn with respect to R [17].

The projection of fuzzy relation R ∈ F(X1 × . . . × Xn) onto Xi, for i ∈
{1, . . . , n}, is the fuzzy set Πi

R of Xi given by

Πi
R(y) =

∨
x∈X:xi=y

R(x1, . . . , xn).

A fuzzy relation J ∈ F(Rn) is said to be a joint possibility distribution of
A1, . . . , An ∈ RF if

Ai(y) = Πi
J(y) =

∨
x∈X:xi=y

J(x1, . . . , xn),

for all y ∈ R and for all i = 1, . . . , n.
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Given a t-norm t, that is, a commutative, associative, and increasing operator
t : [0, 1]2 → [0, 1] satisfying t(x, 1) = x t 1 = x for all x ∈ [0, 1]. A fuzzy relation
Jt given by

Jt(x1, . . . , xn) = A1(x1) t . . . t An(xn) (2.4)

is said to be a t-norm-based joint possibility distribution of A1, . . . , An ∈ RF [4].
Well-known example of t-norm include the minimum t-norm “∧”. In particular,
when J = J∧, that is, J is given by (2.4) with t = ∧, we say that A1, . . . , An

are non-interactive. Otherwise, J �= J∧, we say that A1, . . . , An are interactive
[5,18,21].

Thus, the notion of interactivity between fuzzy numbers is given by means
of joint possibility distributions. Carlsson et al. [5] introduced a possible type of
interactivity relation between two fuzzy numbers that is not based on t-norms.
Specifically, two fuzzy numbers A and B are said to be completely correlated
if there exist q, r ∈ R with q �= 0 such that the corresponding joint possibility
distribution J{q,r} is given by

J{q,r}(x1, x2) = A(x1)χ{qu+r=v}(x1, x2)
= B(x2)χ{qu+r=v}(x1, x2), (2.5)

where χ{qu+r=v} stands for the characteristic function of the set {(u, v) ∈ R
2 :

qu + v = r} ⊂ R
2. In addition, if q > 0 (q < 0) then A and B are said to

be completely positively (negatively) correlated. Since q �= 0 in Eq. (2.5), the
membership function of B can be written as B(qx+r) = A(x) for all x ∈ R, and
consequently [B]α = q[A]α + {r} for all α ∈ [0, 1]. Moreover, for each α ∈ [0, 1],
the α-cut of the joint possibility distribution J{q,r} is given by [5]:

[J{q,r}]α = {(x, qx + r) : x ∈ [A]α} .

Remark 1. Note that if the fuzzy numbers A and B are completely correlated
by the line qu + r1 = v, and we choose r2 = q(a−

α + a+
α ) + r1, then A and

B are also completely correlated if we consider J{−q,r2}, that is, A and B are
also completely correlated with respect to the line −qu + r2 = v. Therefore, the
distribution J is not unique.

The next definition is a generalization of Zadeh’s extension principle (cf.
Definition 1).

Definition 2 (Sup-J Extension Principle [6]). Let J ∈ F(Rn) be a joint possi-
bility distribution of A1, . . . , An ∈ RF and let f : Rn → R. The sup−J extension
of f at (A1, . . . , An) is defined by

fJ(A1, . . . , An)(y) = f̂(J)(y) =
∨

(x1,...,xn)∈f−1(y)

J(x1, . . . , xn),

where f−1(y) = {(x1, . . . , xn) ∈ R
n : f(x1, . . . , xn) = y}.
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From Definition 2, we can define arithmetic operations among n fuzzy num-
bers by taking the sup-J extension of the corresponding arithmetic operator. For
example, let f(x1, . . . , xn) = x1 + . . .+xn for all x1, . . . , xn ∈ R. If J∧ is defined
as in (2.4) with t = ∧, then fJ∧(A1, . . . , An) boils down to Zadeh’s extension of
f at (A1, . . . , An), i.e.,

f̂(A1, . . . , An)(y) =
∨

(x1,...,xn)∈f−1(y)

A1(x1) ∧ . . . ∧ An(xn), ∀ y ∈ R.

The next proposition ensures that the completely correlation is a transitive
relation of interactivity between fuzzy numbers. Moreover, under some condi-
tions, the sup-Jq,r extensions of the addition operator, denoted by the symbol
+L, satisfies the associative property.

Proposition 1 [22]. Let A, B, C ∈ RF . If A and B are completely correlated
with respect to J{q1,r1} and B and C are completely correlated with respect to
J{q2,r2}, then there are real numbers q3 and r3 such that A and C are completely
correlated with respect to J{q3,r3}.

Moreover, if each A, B, C ∈ RF is completely correlated to D ∈ RF\R, then
the associative property holds true, i.e., A +L (B +L C) = (A +L B) +L C.

The notion of completely correlation can be extended to n fuzzy numbers as
follows.

Definition 3. The fuzzy numbers A1, . . . , An ∈ RF are said completely corre-
lated if the joint possibility distribution J is given by

J(x1, . . . , xn) = χU (x1, . . . , xn)A1(x1) (2.6)
= χU (x1, . . . , xn)A2(x2)
...
= χU (x1, . . . , xn)An(xn),

where U = {(u, q2u + r2, . . . , qnu + rn) : u ∈ R}, qi, ri ∈ R, with qi �= 0,
∀i = 1, . . . , n.

From (2.5) and (2.6), one can see that A1 and Ai, i > 1, are also completely
correlated since we have [Ai]α = qi[A1]α + {ri}, for all i = 2, . . . , n. This implies
that, for each α ∈ [0, 1], the α-cut of J is given as follows

[J ]α = {(x, q2x + r2, . . . , qnx + rn) : x ∈ [A1]α} (2.7)

Remark 2. From Eq. (2.7), we can note that the α-cuts of the joint possibility
distribution J can be expressed in terms of α-cuts of A1 and the parameters qi

and ri, for all i = 2, . . . , n.

Theorem 2 [23,24]. Let f : Rn → R be a continuous function and J ∈ F(Rn).
We have that

[f̂J (A1, . . . , An)]α = f([J ]α), ∀α ∈ [0, 1].
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By Theorem 2, if the sup-J extension of f at (A1, . . . , An) is a fuzzy number,
then the α-cuts of f̂J(A1, . . . , An) = f̂(J) can be written as follows:

[f̂(J)]α =

⎡
⎣ ∧
(x1,...,xn)∈[J]α

f(x1, . . . , xn)
∨

(x1,...,xn)∈[J]α

f(x1, . . . , xn)

⎤
⎦ . (2.8)

In the next section, we consider the problem given in (2.1) for the case where
the known values yi are interactive fuzzy numbers.

3 Least Squares Method for Interactive Fuzzy Data

In this paper, we deal with least squares method to fit uncertain data given by
interactive fuzzy numbers. In particular, we focus on the case where these fuzzy
numbers are completely correlated. A typical example of correlated data are the
well-known longitudinal data, which are widely studied in the statistical area
[13].

Let D = {(x1, Y1), . . . , (xm, Ym)} ⊂ R × RF such that Y1, . . . , Ym are com-
pletely correlated fuzzy numbers, with respect to a joint possibility distribution
J as in (2.6), and let F : R → RF be a function that satisfies F (xi) = Yi for
i = 1, . . . ,m. We produce a function Φ : R → RF that approximates F given by
means of the sup-J extension principle of a function ϕ : R → R of the form

ϕ(x) = a1g1(x) + . . . + angn(x),

where a1, . . . , an ∈ R and g1, . . . , gn are real-valued-functions. More precisely,
we define the function Φ in terms of the sup-J extension principle of (2.3) at
(Y1, . . . , Ym). Since Eq. (2.3) is continuous with respect to y1, . . . , ym, from The-
orem 2 and Eq. (2.7), we have that α-cuts of the fuzzy number Φ(x) is given by

[Φ(x)]α = {s1(x)y1 + . . . + sm(x)ym : (y1, . . . , ym) ∈ [J ]α} (3.9)
= {s1(x)y + s2(x)(q2y + r2) + . . . + sm(x)(qmy + rm)y : y ∈ [Y1]α}.

Since the interval [Y1]α = [y1−
α , y1

+
α ] can be rewritten as the set of all convex

combination of y1
−
α and y1

+
α , that is, [Y1]α = {(1−λ)y1−

α +λy1
+
α : λ ∈ [0, 1]}, the

α-cut of J can also be expressed in terms of a parameter λ ∈ [0, 1] as follows:

[J ]α = {(1 − λ)Y −
α + λY +

α : λ ∈ [0, 1]},

where Y −
α = (y1−

α , q2y1
−
α + r2, . . . , qmy1

−
α + rm) and Y +

α = (y1+α , q2y1
+
α + r2, . . . ,

qmy1
+
α + rm). Thus, Eq. (3.9) can be expressed as

[Φ(x)]α = {(1 − λ)〈S(x), Y −
α 〉 + λ〈S(x), Y +

α 〉 : λ ∈ [0, 1]} (3.10)

where 〈·, ·〉 denotes the usual inner product of Rm and S(x) = (s1(x), s2(x), . . . ,
sm(x)), x ∈ R.
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In order to characterize the endpoints of each α-cut of Φ(x), we define the
auxiliary function h by

h(x, α, λ) = (1 − λ)B1(x, α) + λB2(x, α), ∀x ∈ R and ∀α, λ ∈ [0, 1],

where
B1(x, α) = 〈S(x), Y −

α 〉 and B2(x, α) = 〈S(x), Y +
α 〉.

By Eqs. (3.10) and (2.8), we have that

[Φ(x)]α = {h(x, α, λ) : λ ∈ [0, 1]}

=

⎡
⎣ ∧

λ∈[0,1]

h(x, α, λ),
∨

λ∈[0,1]

h(x, α, λ)

⎤
⎦ . (3.11)

Note that if B1(x, α) ≤ B2(x, α), then the function h(x, α, ·) assumes the
minimum and the maximum values at λ = 0 and λ = 1, respectively. On the
other hand, if B1(x, α) > B2(x, α) then the minimum and maximum values of
h(x, α, ·) are achieved at λ = 1 and λ = 0, respectively. In other words, the
global minimizer and maximizer of h(x, α, λ) for λ ∈ [0, 1] are given at λ = 0 or
λ = 1. Therefore, for each x ∈ R, the α-cuts of the fuzzy solution ϕ is given by

[Φ(x)]α = [min{h(x, α, 0), h(x, α, 1)},max{h(x, α, 0), h(x, α, 1)}], (3.12)

where
h(x, α, 0) = B1(x, α) = 〈S(x), Y −

α 〉
and

h(x, α, 1) = B2(x, α) = 〈S(x), Y +
α 〉.

In the next section we illustrate this proposed method by means of an
example.

4 Application of Least Squares Method for Completely
Correlated Fuzzy Data

In this section we apply the proposed method to determine a function that
fits longitudinal data obtained from [15]. The authors discussed the association
between children mortality and air pollution in São Paulo, Brazil, from 1994 to
1997. In their study were collected longitudinal data of sulfur dioxide (SO2),
carbon monoxide (CO), inhalable particulate (PM10) and ozone (O3). Here, we
focus on the ozone dataset.

For simplicity, suppose that the longitudinal data are given by completely
correlated triangular fuzzy numbers of the form (M−σ;M ;M+σ), where M and
σ are the mean and the standard deviation of the collected data in each year,
respectively. Recall that the proposed method is not restricted to triangular
fuzzy numbers, then other types of fuzzy number can be considered.
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Let D = {(x1, Y1), (x2, Y2), (x3, Y3), (x4, Y4)} ⊂ R×RF be the fuzzy dataset
given in Table 1. The values x1 = 1, x2 = 2, x3 = 3, and x4 = 4 rep-
resent respectively the years 1994, 1995, 1996, and 1997. The fuzzy num-
bers Y1 = (17.6; 57; 96.4), Y2 = (25.3; 60.7; 96.1), Y3 = (34.8; 76.3; 117.8), and
Y4 = (29.5; 63; 96.5) are completely correlated with respect to joint possibility
distribution J , whose membership function is given by

J(v1, v2, v3, v4) = χU (v1, v2, v3, v4)Y1(v1), ∀ (v1, v2, v3, v4) ∈ R
4,

where

U = {(u, 0.8985u + 9.4855, 1.0533u + 16.2619, 0.8502u + 14.5386) : u ∈ R}.
(4.13)

Table 1. Fuzzy dataset D

x: 1 2 3 4

Y : (17.6; 57; 96.4) (25.3; 60.7; 96.1) (34.8; 76.3; 117.8) (29.5; 63; 96.5)

Note that Eq. (4.13) suggests that Y1 and Y2 are positively completely cor-
related, as well as Y1 and Y3, Y1 and Y4, since qi > 0, for all i = 2, 3, 4.

Consider the functions g1(x) = x2, g2(x) = x and g3(x) = 1. From (3.12),
for each α ∈ [0, 1] and x ∈ [1, 4], the fuzzy function Φ is given by [Φ(x)]α =
[min{h(x, α, 0), h(x, α, 1)},max{h(x, α, 0), h(x, α, 1)}], where

h(x, α, 0) = −3.24x2 + 20.76x − 0.75 + α(−x2 + 3.84x + 35.34)

and

h(x, α, 1) = −5.24x2 + 28.44x + 69.93 − α(−x2 + 3.84x + 35.34).

Figure 1 exhibits the fuzzy function Φ produced by our proposal. One can
observe in Subfigure 1(a) fits the data of Table 1 which varies from 1994 to 1997.
The red triangles and the gray-scale surface depicted in Subfigure 1(b) corre-
spond to the membership functions of fuzzy data Yi, i = 1, . . . , 4, and fuzzy
solution, respectively.

Note that Y1, . . . , Y4 are completely correlated with respect to 23 different
joint possibility distributions. Thus, we can obtain 23 fuzzy functions Φ. However,
in general, the choice of a joint possibility distribution is not arbitrary and
depends on the context. For example, if each object is measured m times with
the same n measuring devices then we can assume that the obtained values
depend only on the calibration of each equipment and not on the objects. This
type of assumption induces the choice of specific parameters qi and ri in (2.7).
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Fig. 1. Subfigures (a) and (b) exhibit respectively the top and depiction views of the
fuzzy solution Φ where the greatest and smallest membership values are represented
respectively by the black and white colors. In Subfigure (a), the red dots represent the
endpoints of the α−cuts of the fuzzy data Yi for α = 0, 0.5, 1 and i = 1, . . . , 4. Each
fuzzy data Yi is represented by red lines in Subfigure (b).

5 Conclusion

In this manuscript, we considered a fuzzy least squares problem based on dataset
that has some type of correlation, for example a longitudinal dataset. We
assumed that the dataset is composed by completely correlated fuzzy numbers
[5]. In particular, we presented a method that provides a fuzzy function that
fits a given fuzzy data. This fuzzy function depends on the choice of a joint
possibility distributions as in (2.6).

The α-cut of the fuzzy solution given by means of the sup-J extension prin-
ciple is a non-empty, bounded, closed interval whose endpoints are obtained by
solving a minimization and maximization problems given in Eq. (3.11). Investi-
gating this problem, we concluded that the endpoints of the α-cut of the pro-
posed solution can be evaluated by taking the minimum and maximum of two
associated real functions (see Eq. (3.12)).

Finally, we applied the proposed method to determine a fuzzy function which
fits a longitudinal air polution dataset [15]. The fuzzy data in this dataset was
modelled using triangular fuzzy numbers, but it can be done with other types
of completely correlated fuzzy numbers. The fuzzy solution was calculated con-
sidering polynomial functions g1, g2, and g3. For further works, we intend to
investigate fuzzy least squares method for dataset with other intrinsic type of
interactivity.
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