
123

Guilherme A. Barreto  
Ricardo Coelho (Eds.)

37th Conference of the North American Fuzzy
Information Processing Society, NAFIPS 2018
Fortaleza, Brazil, July 4–6, 2018
Proceedings

Fuzzy Information
Processing

Communications in Computer and Information Science 831



Communications
in Computer and Information Science 831

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Ślęzak,
and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, USA

Lizhu Zhou
Tsinghua University, Beijing, China



More information about this series at http://www.springer.com/series/7899



Guilherme A. Barreto • Ricardo Coelho (Eds.)

Fuzzy Information
Processing
37th Conference of the North American Fuzzy
Information Processing Society, NAFIPS 2018
Fortaleza, Brazil, July 4–6, 2018
Proceedings

123



Editors
Guilherme A. Barreto
Department of Teleinformatics Engineering
Federal University of Ceará
Fortaleza, Ceará
Brazil

Ricardo Coelho
Department of Statistics & Applied
Mathematics

Federal University of Ceará
Fortaleza, Ceará
Brazil

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-95311-3 ISBN 978-3-319-95312-0 (eBook)
https://doi.org/10.1007/978-3-319-95312-0

Library of Congress Control Number: 2018947460

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-7002-1216
http://orcid.org/0000-0001-9074-2515


Preface

In 1965, Lofti Asker Zadeh published the seminal paper “Fuzzy Sets” (Information and
Control, 8, 338–353), which describe the first ideas about a formal mathematical
modelling intended to bridge the gap between classic binary modelling and the sub-
jective way that humans relate to day-to-day situations. Despite these ideas being
ambitious, this preliminary work inspired many researchers around the world and today
his ideas are found in almost all branches of science. According to the website Google
Scholar, this seminal paper has been cited in more than 100,000 scholarly works, and
many consumer products and software have been built based on its mathematical
concepts. Unfortunately, Professor Zadeh died in September 2017, and this book is a
modest tribute to the generous, gentle continuous and always friendly support that the
authors received over the years from Professor Lofti A. Zadeh.

It can be noted that the research field of fuzzy sets and systems has undergone
tremendous growth since 1965. This growth is in no small measure the result of the
emergence of some important scientific societies in North America (North American
Fuzzy Information Processing Society – NAFIPS – and IEEE Computational Intelli-
gence Society – IEEE CIS), Europe (European Society for Fuzzy Logic and Tech-
nology – EUSFLAT), Asia (Japan Society for Fuzzy Theory and Intelligent Informatics
– JSFTII), and South America, especially in Brazil, (Brazilian Society of Automatics –
SBA – and Brazilian Society of Computational and Applied Mathematics – SBMAC).
There is also a transnational scientific society (International Fuzzy Systems Association
– IFSA). These societies promote scientific events in order to spread the state of the art,
its applications, and technological advances. A quick search in the Scopus database
gives an idea of the number of published articles about fuzzy sets and systems. By
dividing time from 1965 until today into four periods, we obtain the following:
(a) 4,754 published papers until 1990; (b) 27,773 published papers from 1991 to 2000;
(c) 93,012 from 2001 to 2010; and (d) 105,604 from 2011 to the current date (May
2018). This search was made by using the words “Fuzzy Sets” or “Fuzzy Systems” or
“Fuzzy Logic” as title, abstract, or keywords.

Among the societies mentioned, NAFIPS is the premier fuzzy society in North
America, which was founded in 1981. The purpose of NAFIPS is “the promotion of the
scientific study of, the development of an educational institution for the instruction in,
and the dissemination of educational materials in the public interest including, but not
limited to, theories and applications of fuzzy sets through publications, lectures, sci-
entific meetings, or otherwise.” In this role, we understand the importance and
necessity of developing a strong intellectual base and encouraging new and innovative
applications. In addition, we recognize our leading role in promoting interactions and
technology transfer to other national and international organizations so as to bring the
benefits of this technology to North America and the world. The scientific event
organized by the NAFIPS has been contributing for more than 30 editions to the



growth of the number of articles published in the fuzzy sets and systems field. The first
edition took place in the city of Logan, Utah, USA, in 1982, and it is held annually.

One of the objectives of NAFIPS is to expand the network of collaborators and
enthusiasts of fuzzy thinking beyond the borders of North American countries. The
37th North American Fuzzy Information Processing Society Annual Conference
(NAFIPS 2018) was held during July 4–6, 2018, in the beautiful city of Fortaleza,
capital of the state of Ceará, located on the sunny northeast coast of Brazil. This event
was held simultaneously with the 5th Brazilian Congress on Fuzzy Systems (CBSF
2018), bringing together researchers, engineers, and practitioners to share and present
the latest achievements and innovations in the area of fuzzy information processing, to
discuss thought-provoking developments and challenges, and to consider potential
future directions. Bearing this in mind, the NAFIPS 2018 meeting was the first edition
of the meeting to be organized outside the USA, Canada, and Mexico. NAFIPS 2018
had an international Program Committee including researchers from industry and
academia worldwide.

The organization of NAFIPS 2018 and CBSF 2018 was the result of a joint action
of the Brazilian Computational Intelligence Society (SBIC), the Brazilian Society of
Computational and Applied Mathematics (SBMAC), the Federal University of Ceará
(UFC), and the Brazilian funding agencies CAPES, process 88887.155510/2017-00,
and CNPq, project 407666/2017-6, in addition to the executive boards of NAFIPS and
CBSF.

This book is a collection of high-quality papers ranging over a large spectrum of
topics, including theory and applications of fuzzy numbers and sets, fuzzy logic, fuzzy
inference systems, fuzzy clustering, fuzzy pattern classification, neuro-fuzzy systems,
fuzzy control systems, fuzzy modeling, fuzzy mathematical morphology, fuzzy
dynamical systems, time series forecasting, and making decision under uncertainty.

We received 73 submissions from 11 countries, from which 54 papers were
accepted. The authors were from Brazil, Chile, Colombia, Czech Republic, India, Iran,
Mexico, Romania, Spain, Turkey, and the USA. Each submitted paper was reviewed
by at least three independent referees. The acceptance/rejection decision used the
following criteria: every paper with two positive reviews was accepted, and those with
two negative reviews were rejected. Borderline papers, those with one positive and one
negative review, were analyzed carefully by the conference chairs in order to evaluate
the reasons given for acceptance or rejection. Our final decision on these submissions
took into account mainly the potential of each paper to foster fruitful discussions and
the future development of the research on the theory and applications of fuzzy sets and
systems in Brazil and, for extension, in the whole of Latin America.

We are enormously grateful to all reviewers for their goodwill in cooperating for the
success of the aforementioned events. We very much appreciate their willingness for
hard work and prompt feedback, which certainly guaranteed the high quality of the
technical program.

We wish NAFIPS a long life. And we wish a long life for the Brazilian community,
who organizes CBSF, with which we share this mutual congress.

June 2018 Guilherme A. Barreto
Ricardo Coelho

VI Preface
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Formal Verification of a Fuzzy Rule-Based
Classifier Using the Prototype

Verification System

Solomon Gebreyohannes, Ali Karimoddini(B), Abdollah Homaifar,
and Albert Esterline

Department of Electrical and Computer Engineering,
North Carolina A&T State University, 1601 East Market Street,

Greensboro, NC 27411, USA
{shgebrey,akarimod,homaifar,esterlin}@ncat.edu

Abstract. This paper presents the formal specification and verification
of a Type-1 (T1) Fuzzy Logic Rule-Based Classifier (FLRBC) using the
Prototype Verification System (PVS). A rule-based system models a
system as a set of rules, which are either collected from subject mat-
ter experts or extracted from data. Unlike many machine learning tech-
niques, rule-based systems provide an insight into the decision making
process. In this paper, we focus on a T1 FLRBC. We present the for-
mal definition and verification of the T1 FLRBC procedure using PVS.
This helps mathematically verify that the design intent is maintained
in its implementation. A highly expressive language such as PVS, which
is based on a strongly-typed higher-order logic, allows one to formally
describe and mathematically prove that there is no contradiction or false
assumption in the procedure. We show this by (1) providing the formal
definition of the T1 FLRBC in PVS and then (2) formally proving or
deducing rudimentary properties of the T1 FLRBC from the formal spec-
ification.

Keywords: Formal verification · Fuzzy rule-based classifier
Prototype verification system

1 Introduction

Unlike many machine learning techniques, which treat systems as “black boxes”
and model them using input-output relationships, Rule-Based Systems (RBSs)
model systems using rules that can provide an insight into their decision mak-
ing processes. RBCs are effective tools for encoding a human expert’s knowledge
into an automated system [1]. They can be used for different applications such as
prediction and control applications. Recently, they have been used for a classifi-
cation purpose. A fuzzy logic based RBS that is used for classification is called a
Fuzzy Logic Rule-Based Classifier (FLRBC). It translates the expert’s heuristic
knowledge into fuzzy “IF-THEN” statements (i.e., rules), which, along with an
c© Springer International Publishing AG, part of Springer Nature 2018
G. A. Barreto and R. Coelho (Eds.): NAFIPS 2018, CCIS 831, pp. 1–12, 2018.
https://doi.org/10.1007/978-3-319-95312-0_1
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appropriate inference engine, are used for system classification [2,3]. FLRBCs
have been used to classify various kinds of items such as text, image [4], gesture
[5], and video [2,3] and have been applied to several areas such as battlefield
ground vehicles [6], sentiment analysis [7], and so on. FLRBCs are also com-
bined with genetic algorithms [8], deep learning [9], decision trees, and other
techniques to optimize their performance.

Despite the great capabilities of FLRBCs and their wide range of applica-
tions, a major challenge is that how can we be sure (i.e., mathematically ver-
ify) that the design intent of an FLRBC is maintained in its implementation?
Regarding to design procedures, FLRBC is no exception to the general point
that natural language lacks the formality needed for requirement verification,
i.e., with natural language, one cannot show (and hence cannot ensure) consis-
tency and completeness of the procedure. Hence, a formal way (from a mathe-
matical perspective) of representing the FLRBC design procedure and verifying
its properties is necessary.

Formal verification can be defined as a “systematic process based on math-
ematical reasoning in order to verify that the design intent (specifications) is
maintained during implementation” [10]. There are different tools developed for
conducting formal verification such as Prototype Verification System (PVS) [11],
B [12], HOL [13], and Coq [14]. Using a higher-order theorem-proving system,
such as PVS, it is possible to reach a much higher level of confidence compared
to lighter formal methods. Formalizing specifications using PVS has been used
in a range of applications. In [15], a formal specification and verification of the
requirements for an airline reservation system using PVS is presented. As a more
sophisticated use of PVS in industrial applications, [16] uses PVS for verification
of two hardware examples, the pipelined microprocessor and n-bit ripple-carry
adder. Butler [17] also uses PVS for formal capturing of requirements of an
autopilot (related to an early Boeing-737 autopilot). In [18], PVS is used for
analysis of a space shuttle software requirements. Despite the progress made on
employing PVS for different verification applications, we are not aware of any
PVS formalization of the FLRBC.

This paper, therefore, proposes to use formal verification techniques to sys-
temically and formally verify a fuzzy RBC whether it is consistent with required
specifications. We present FLRBC specifications and verify them using the PVS
framework. Our focus in this paper is on Type-1 (T1) FLRBC; however, the
approach can be extended to other fuzzy RBCs. We encode PVS theories for the
T1 FLRBC main components (viz., fuzzifier, inference, and defuzzifier), keeping
their generality. This means that the developed PVS theories are not dependent
on any particular application. Therefore, one can call and instantiate them to
be used for any other application that utilizes the FLRBC technique.

The rest of the paper is organized as follows. Section 2 discusses a fuzzy logic
rule-based classification. Section 3 presents a brief introduction to PVS. Section 4
presents the formal definition and verification of the T1 FLRBC. PVS theories
are developed and formal proofs are shown. Section 5 concludes this paper.
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2 Fuzzy Logic Rule-Based Classification: An Informal
Description

In this section, we present fuzzy sets and systems preliminaries, and will discuss
fuzzy rule-based classification, mainly borrowed from [2,3,19].

2.1 Fuzzy Sets and Systems Preliminaries

This section introduces fuzzy sets and fuzzy logic systems. A fuzzy set is char-
acterized by a membership function (MF), mapping the elements of a domain
space or universe of discourse to the interval [0, 1]. A type-1 fuzzy set can be
defined as follows:

Definition 1. A type-1 fuzzy set A is a set function on universe X into [0, 1],
i.e., μA : X → [0, 1].

A = {(x, μA(x))|x ∈ X, 0 ≤ μA(x) ≤ 1} (1)

where the MF of A is denoted μA(x) and is called a type-1 MF.

A fuzzy system that operates on type-1 fuzzy sets (and crisp sets) is called a
type-1 fuzzy system.

Definition 2. A Type-1 fuzzy system contains four components - rules, fuzzifier,
inference engine, and defuzzifier - that are interconnected as shown in Fig. 1.
Once the rules have been established, the fuzzy system can be viewed as a mapping
from p inputs x = {x1, . . . , xp} to an output y, and the mapping can be expressed
quantitatively as y = f(x).

Figure 1 shows a type-1 fuzzy logic system. Note that x′ is a specific value of x.
The components of this fuzzy system are described below.

Fig. 1. A type-1 fuzzy system [2,3]

Rules are sets of IF-THEN statements that model the system and can have
two commonly different structures.
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1. Zadeh’s lth rule, l = 1, . . . ,M , has a form:

Rl
Z : IF x1 is F l

1 and . . . , xp is F l
p,THEN y is Gl (2)

where F l
i is the ith antecedent MF and Gl is the consequent MF of the lth

rule.
2. Takagi, Sugeno, and Kang (TSK) lth rule, l = 1, . . . ,M , has a form:

Rl
TSK : IF x1 is F l

1 and . . . , xp is F l
p,THEN y is gl(x1, . . . , xp) (3)

where F l
i is the ith antecedent MF and gl is the function for the lth rule.

The fuzzifier maps a crisp input x = {x1, . . . , xp} into a fuzzy set in X. There
are two kinds of fuzzifiers: singleton and non-singleton. A singleton fuzzification
maps a specific value x′

i into μF l
i
(x′

i) ∈ [0, 1] while a non-singleton maps into a
type-1 fuzzy number.

In the fuzzy inference engine, fuzzy logic principles are used to map fuzzy
input sets in X1×. . .×Xp, that flow through an IF-THEN rule (or a set of rules),
into fuzzy output sets in Y . Each rule is interpreted as a fuzzy implication.

A defuzzifier maps a fuzzy output of the inference engine to a crisp
output y.

2.2 Type-1 Fuzzy Logic Rule-Based Classifier

This section discusses a singleton T1 FLRBC. The classifier consists of five
components, as shown in Fig. 2, by adding a comparator to a fuzzy system.
The T1 FLRBC is used for a binary classification, i.e., it classifies its inputs as
either Class 1 or Class 2.

Fig. 2. A type-1 fuzzy logic rule-based classifier

Recall that x is a set of p input features, i.e., x = {x1, x2, . . . , xp}, and y is
an output of the fuzzy system.

The rules of an FLRBC are a special case of Zadeh’s rule, in which the
consequent is a singleton or TSK rule with a constant function [3]. They are
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characterized by MFs. For the lth Mamdani rule [20], l = 1, . . . , M, we have Rl :
Al → Gl, which can be represented by μAl→Gl(x, y), where Al = F l

1 × . . . × F l
p.

For the consequent, a crisp value +1 is used for Class 1 and −1 is used for
Class 2.

yl =
{

1 Class 1
−1 Class 2 (4)

Correspondingly, for the consequent sets, Gl, the MFs can be defined as

μGl(y) =
{

1 y = yl

0 otherwise (5)

where yl could be either +1 for Class 1 or −1 for Class 2.
The fuzzy inference engine for this rule-base classifier is shown in Fig. 3.

Fig. 3. Fuzzy inference engine ([3], p. 108)

The membership function of each fired rule for singleton input can be calcu-
lated using a t-norm as:

μBl(y) =
{

T p
i=1μF l

i
(xi) = f l(x), y = yl

0, y �= yl (6)

where μF l
i
(xi), i = 1, . . . , p, represents a singleton fuzzification and T is a t-norm

operation.
Using height defuzzification, the output can be calculated as:

yRBC(x) =
∑M

l=1 f l(x)yl∑M
i=1 f l(x)

, yl = ±1 (7)

A classification then can be performed as:

If yRBC(x) > 0, classify x as Class 1
If yRBC(x) ≤ 0, classify x as Class 2

(8)

3 Prototype Verification System

PVS [11] is a formal verification environment which provides a highly expressive
specification language based on a strongly-typed higher-order logic.



6 S. Gebreyohannes et al.

The type system of PVS supports the use of both interpreted and uninter-
preted types. Uninterpreted types support abstraction (using type) with a min-
imum of assumptions on the type; e.g., var1: TYPE. Interpreted types, on the
other hand, detail the type. For example, var2: TYPE = nat declaration intro-
duces the type name var2 (interpreted) as a natural number. The PVS prelude
[21] provides definitions of a comprehensive collection of basic interpreted types,
such as booleans, natural numbers, integers, reals, etc. The type system can be
easily extended by defining new types using well-known type operators, such as
functional, tuple and record combinators. It is also possible to define enumer-
ated types and predicate subtypes as well as abstract data types, such as lists,
stacks, binary trees, etc. Details on the PVS language may be found in the PVS
Language Reference [22].

Since the PVS language is so expressive, the type checking process is not
decidable. For that reason, the type checker usually generates additional proof
obligations, which must be proved by the user in order to verify the type con-
sistency of the specification. Such obligations are called Type-Correctness Con-
ditions (TCC).

Formalizations in PVS are organized in theories, which include type, con-
stant, variable, and formula definitions. Formulas can be constructed using
propositional operators as well as first-order and higher-order quantifications.
Every formula definition can be stated as an axiom or a theorem. Axioms are
assumed to be valid in the specification, but formal proofs must be provided
by the user for theorems. Specifications for many foundational and standard
theories are preloaded into PVS as prelude theories.

Fig. 4. Theorem proving in PVS

The theorem prover implemented in PVS is based on a formalism called
sequent calculus. A proof in such a calculus can be seen as a tree, where every
node is a sequent composed of two collections of formulas, called antecedents and
consequents, respectively.

| antecedents
consequents

(9)

The intuition behind the notion of a sequent is that it represents the logical
consequence between the conjunction of its antecedents and the disjunction of
its consequents. In order to prove that a formula, for example, α → β, is valid,
the user must start with the sequent α � β (the operator ‘�’ denotes a sequent)
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and try to reach trivially valid sequents by applying predefined proof rules to the
leaves of the proof tree. Although proofs in PVS are constructed interactively,
it does provide a considerable degree of automatization for a wide spectrum
of cases. Details about proofs can be found in the PVS prover guide [23]. The
steps in theorem proving using PVS as are shown in Fig. 4. There are also PVS
tutorials and applications developed in [15,16].

4 Formal Description and Verification of Fuzzy
Rule-Based Classification

This section presents the formal representation and verification of a singleton T1
FLRBC using PVS. Table 1 summarizes the semantic mapping of T1 FLRBC
components to PVS.

Table 1. Fuzzy RBC constructs to PVS mapping

Fuzzy RBC PVS

Input feature Uninterpreted Type

Output Enumerated type

Input, antecedent Finite sequence

µ, consequent Subtypes

Membership function, rule Record type

Inference, defuzzification RECURSIVE function

To formally describe a fuzzy RBC, we start by defining basic objects in the
following sections.

4.1 Basic TYPE Definition

The first step in the design of a T1 FLRBC system is selecting features that act
as antecedents. They are usually represented using their MFs. The antecedent
features are encoded as PVS (uninterpreted) TYPEs and their MFs as RECORD
TYPEs defined in the fbasic defs PVS theory. An MF consists of a range of
values and a function that maps a value (within the range) into [0, 1].

fbasic_defs: THEORY
BEGIN

Feature: TYPE
m: TYPE = nat
mu: TYPE = {u:real| 0 <= u AND u <= 1}
MF: TYPE = [# range: [real,real],

f: [{x:real|range‘1<=x
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AND x<=range‘2}-> mu] #]
Feat_MF: TYPE = [# feat: Feature,

mf: MF #]

A rule (R) maps a set of antecedents (A = F1 × F2 . . . × Fp) to a consequent
(G), i.e., R : A → G; it is usually described by the MF μR(X, y) = μA→G(X, y).
In an RBC, the consequent is a singleton where ‘Class 1’ is represented by +1
and ‘Class 2’ is represented by −1. Hence, a consequence is represented as a
subtype in PVS. Each rule has a specifier l <= M , where M is the total number
of rules. An input X has p features, x1, x2, x3, . . . , xp. We represent the input
as a finite sequence of real values. A fuzzy rule is encoded using PVS RECORD
with accessors rule number, antecedents, and consequents.

Input: TYPE = finseq[real]
Output: TYPE = {class1, class2}
Antecedents: TYPE = finseq[Feat_MF]
Consequent: TYPE = {n: nat| n = -1 OR n = 1}
Rule: TYPE = [# rulen: l,

antcs: Antecedents,
consq: Consequent #]

Rules: TYPE = finseq[Rule]
END fbasic_defs

4.2 Describing Fuzzy RBC Using PVS

This section formally defines the T1 FLRBC using PVS. We put the definition
in a fls theory. We start by importing fbasic defs theory defined in Sect. 4.1
and declaring input and rule variables. Let X,r, and rs be input, a rule, and a
set of rules, respectively. There are p inputs and M rules.

fls: THEORY
BEGIN

IMPORTING fbasic_defs
p,M: VAR nat
X: VAR Input
r: VAR Rule
rs: VAR Rules

The number of antecedents in a rule r should be the same as the length of
the input vector x. This is encoded as a PVS AXIOM.

inpt_length: AXIOM FORALL (X,r): X‘length = r‘antcs‘length

Now, we can represent the inference engine. Based on Eq. 6, the inference engine
can be represented as a PVS RECURSIVE function as follows:
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fl(X,r,p): RECURSIVE mu =
IF p=0 THEN 0
ELSE r‘antcs‘seq(p)‘mf‘f(X‘seq(p))*fl(X,r,p-1)
ENDIF

Measure p

The defuzzified output of the RBC can be obtained using Eq. 7. The numerator
of Eq. 7 is encoded using a PVS RECURSIVE function as:

sumfy(X,rs,M): RECURSIVE mu =
IF M=0 THEN 0
ELSE

fl(X,rs‘seq(M),X‘length)*rs‘seq(M)‘consq + sumfy(X,rs,M-1)
ENDIF

Measure M

Similarly, the denominator of Eq. 7 is encoded using a PVS as:

sumf(X,rs,M): RECURSIVE mu =
IF M=0 THEN 0
ELSE fl(X,rs‘seq(M),X‘length) + sumf(X,rs,M-1)
ENDIF

Measure M

Therefore, Eq. 7 can now be represented using PVS as:

yRBC(X,rs): real = sumfy(X,rs,rs‘length)/sumf(X,rs,rs‘length)

The final decision of the classifier is based on the sign of the defuzzified output
as shown in Eq. 8. This is encoded using a PVS IF-ELSE statement.

decision(X,rs): Output =
IF (yRBC(X,rs) > 0) THEN class 1
ELSE class 2
ENDIF

END fls

This completes the formal definition of the T1 FLRBC process.

4.3 Formal Verification

This section presents the formal verification - well-formedness (to verify our spec-
ification is correct, i.e., free of contradiction or false assumption) and requirement
verification (to verify a given requirement or property can be deduced from the
specification).
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Well-Formedness. PVS requires theorem proving in order to guarantee that
the specification is type correct [15]. Type checking of the fbasic defs theory
generates no TCCs, but the fls theory does generate TCCs. For example, one
TCC generated is

yRBC_TCC1: OBLIGATION
FORALL (X:Input, rs: Rules): sumf(X, rs, rs‘length) /= 0

The denominator of Eq. 7 needs to be non-zero to avoid division by zero. This
was not contained in our definition. Therefore, we add a PVS AXIOM for this.

nz_tnorm: AXIOM FORALL (X,rs): NOT (sumf(X,rs,rs‘length) = 0)

Any TCC should be discharged if we are to guarantee the correctness (no con-
tradiction nor false assumptions) of the specification. We revise the theory for
no TCC. We successfully discharged some of the TCCs using the axioms. The
rest of the TCCs are proved automatically by a PVS standard strategy (tcc).

Once all the TCCs are discharged, the theories are well-formed; i.e., there is
no contradiction (nor false assumption) in the declaration. However, we do not
know yet whether it satisfies any given properties (or requirements). We show
this in Sect. 4.3.

Verification of Properties. Now, since the T1 FLRBC is formally represented,
one can mathematically verify properties of the T1 FLRBC by encoding them
as PVS THEOREMs and proving them interactively using appropriate prover
commands. In this section, we prove some rudimentary properties.

Lemma 1. The output of the T1 FLRBC should be either Class 1 or Class 2.
We define two PVS predicates: first we check independently that if a given output
is Class 1 or Class 2.

class1?(X,rs): bool = decision(X,rs) = class1
class2?(X,rs): bool = decision(X,rs) = class2

Then, the theorem will be the XOR of the two predicates.

bin_class: THEOREM FORALL(X,rs):xor(class1?(X,rs),class2?(X,rs))

This theorem is discharged automatically by a prover command grind. Q.E.D.
Let us check the dependence of the output of the classifier on the rules.

Lemma 2. (a) If the output of the classifier is Class 1, then there exists a rule
with a consequent of 1.

class1_det: THEOREM
decision(X,rs) = class1 IMPLIES

EXISTS r:member(rs,r) AND r‘consq = 1

(b) If the output of the classifier is Class 2, then there exists a rule with a
consequent of −1.
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class2_det: THEOREM
decision(X,rs) = class2 IMPLIES

EXISTS r:member(rs,r) AND r‘consq = -1

This is proved again using the prover command grind. Q.E.D.
Finally, let us examine the defuzzified output of the fuzzy system from Eq. 7.

Lemma 3. The numerator in Eq. 7 is less than or equal to the denominator. The
two values are equal only if yl = 1, for l = 1, . . . ,M . Therefore, the following
theorem needs to be proved from our formal definition.

yrbc_def: THEOREM
FORALL (X,rs): sumfy(X,rs,rs‘length) <= sumf(X,rs,rs‘length)

It too is proved using the prover command grind. Q.E.D.
Similarly, more properties can be formally represented and then deduced from

the theories. Also, if a particular example uses the FLRBC technique (and so its
formalization will be represented by instantiating the PVS theories developed in
this paper), then application-dependent properties can be proved.

5 Conclusion

This paper presented the formalization of a T1 FLRBC using PVS. We devel-
oped PVS theories to formally represent the FLRBC procedure. We also verified
some rudimentary properties of the FLRBC by discharging PVS type-checking
requirements and proving theorems. For the future, we aim to formalize a specific
application that utilizes the FLRBC technique by instantiating the developed
PVS theories.
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Abstract. This paper presents a training algorithm for regularized fuzzy neural
networks which is able to generate consistent and accurate models while adding
some level of interpretation to applied problems to act in the prediction of time
series. Learning is achieved through extreme learning machines to estimate the
parameters and a technique of selection of characteristics using regularization
concept and resampling, which is able to perform the definition of the network
topology through the selection of subsets of fuzzy neuron more significant to the
problem. Numerical experiments are presented for time series problems using
benchmark bases on machine learning problems. The results obtained are
compared to other techniques of prediction of reference series in the literature.
The model made rough estimates of the responses obtained by the models of
fuzzy neural networks for time series forecasting with fewer fuzzy rules.

Keywords: Fuzzy neural networks � Regularization � Bolasso
Fuzzy logic neurons � Time series forecasting

1 Introduction

Intelligent models that are composed of artificial neural networks and concepts of fuzzy
systems have great utility for classification, regression or prediction of time series. The
fuzzy neural networks use the structure of an artificial neural network, where classical
artificial neurons are replaced by fuzzy neurons [16]. It has as its relevance factor its
transparency, allowing the use of information a priori to define the initial structure of
the network and the extraction of relevant information from the resulting topology.
Thus, the neural network is seen as a linguistic system with level of interpretation,
preserving the learning capacity of RNA. Its fuzzy neurons are composed of triangular
norms, which generalize the union and intersection operations of classical clusters to
the theory of fuzzy sets.
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Examples of fuzzy neurons include neurons, and, or, nullneurons and unineuron
where their differences are based on the way in which inputs and weights are aggre-
gated [8]. The use of extreme learning machine theory (ELM) [9] has been used for the
training of fuzzy neural networks as in [3, 14, 18, 20]. This motivation is mainly due to
the performance and low computational cost presented by algorithms based on ELMs,
however, most of these cases were used in pattern classification techniques. Already
[12, 17, 21, 22] uses fuzzy neural networks to work with time series prediction.

This paper proposes to use the learning methodology for fuzzy neural networks of
the feed forward type with a layer of fuzzification, a hidden layer composed of fuzzy
neurons, and a linear output layer. The algorithm is able to generate consistent and
accurate models by aggregating interpretation to the resulting structure. The learning of
the model is carried out through extreme learning machine concepts, but a regular-
ization term is added in the cost function which, together with a resampling technique,
is able to perform the selection of the best neurons in internal layers, generating
parsimonious models. Initially, fuzzy sets with equally spaced membership functions
are defined for each input variable in the fuzzification layer. Subsequently an initial set
of fuzzy candidate neurons is generated. From this initial set of neurons, the bootstrap
lasso algorithm [2], is used to define the network topology, selecting a subset of the
significant fuzzy neurons. Finally, the least squares algorithm is used to estimate the
weights of the network output layer. This technique was used to classify binary patterns
using unineuron [18] and andneuron [20], but due to the characteristics present in the
ELM, the model’s ability to predict time series was verified. Through all the steps the
fuzzy neural network is able to act effectively in the forecast of time series. In this
paper, we performed tests of time series prediction in the Box and Jenkins gas furnace
[5] and the proposed model was compared to other algorithms of fuzzy neural networks
for the same purpose widely used in the literature.

The remainder of the paper is organized as follows. Section 2 presents the theo-
retical concepts related to fuzzy neural networks and neural logic neurons. Section 3
describes the methodology used to train fuzzy neural networks. In Sect. 4 results of
numerical experiments are presented. Finally, Sect. 5 presents the conclusions.

2 Fuzzy Neural Networks

2.1 Artificial Neural Networks and Fuzzy Systems

In [23] the authors defines an artificial neural network composed of an input layer, one
or more hidden layers and an output layer. The network can be completely connected
where each neuron is connected to all the neurons of the next layer, partially connected
where each neuron is, or locally connected where there is a partial connection oriented
to each type of functionality. To perform the training of a neural network, a set of data
is required that contains patterns for training and desired outputs. In this way, the
problem of neural network training is summarized in an optimization problem in which
we want to find the best set of weights that minimizes the mean square error calculated
between the network outputs and the desired outputs. The fuzzy systems are based on
fuzzy logic, developed by [24]. His work was motivated because of the wide variety of
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vague and uncertain information in making human decisions. Some problems can be
not solved with classical Boolean logic. In some situations only two values are
insufficient to solve a problem.

2.2 Neural Logic Neurons

Among the several studies performed to simulate the behavior of the human neuron, we
highlight those who sought to add fuzzy nature to the artificial neuron model, adding
the ability to treat inaccurate information. This neuron is called fuzzy neuron [8]. This
paper deals with a class of neurons called fuzzy logic neurons [16]. These neurons
perform a mapping in the space formed by the Cartesian product between the input
space and the space of the weights in the unit interval, i.e. X � W ! [0, 1] [8].
Examples of such neurons are neurons and and or [16] and unineuron [16, 14].

The logical or neuron uses a t-norm in the weighting operation and an s-norm in the
final aggregation [8]. Given an input vector x ¼ x1; x2; . . . xn½ � and a vector of weights
of neuron w = [w1, w2,… wn] for ai 2 [0, 1] and wi 2 [0, 1] for i of 1,…, n. The output
of logical neuron or is described as [16]:

z ¼ ORðx;wÞ ¼ Sni¼1ðxitwiÞ ð1Þ

where t is t-norms and S is s-norms. Figure 1 presents the structure of an OR-type
neuron

2.3 Fuzzy Neural Networks

The fuzzy neural networks have several characteristics from which we can distinguish
the models through their basic properties, such as the way the network is connected, the
type of fuzzy neurons used, the type of learning (training) and the way the inputs are
handled in the first layers of the models. In this models, each layer is responsible for a
specific function or task. Usually the first layer is responsible for handling the inputs
and the last to bring the network response. Between these two layers there are other
intermediate, which can be hidden or not. Depending on the model and what it is
proposed, each layer has a specific function. Evaluating the type of training for fuzzy
neural networks we can highlight that these algorithms are a set of well-defined rules
for solving learning problems. These training methodologies seek to simulate human
learning by learning or updating their new concepts, mainly by updating network
factors, such as synaptic weights.

Fig. 1. Orneuron architecture
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As the use of the extreme learning machine can be verified as a faster and more
efficient alternative to adjust the parameters of a fuzzy neural network, it was proposed
ways of modifying methodologies that act on these models, either the way of updating
the parameters or the way of granulize the input in the model. In [4] a new method-
ologies to train fuzzy neural networks based also on extreme learning machine concepts,
creating a model which they called XUninet. To train their fuzzy network, [17] used the
extreme learning machine where weights of the hidden layer of a neural network are
randomly chosen. To find the weights of the output layer we use the technique of
recursive weighted least squares. For their algorithm, they defined the weights in the
hidden layer and the identity elements of the uninorm [19] between zero and one. These
values are updated recursively in training. Finally, [20] uses the ELM and to train the
parameters of its network after the regularization method select the most representative
neurons to the problem. In this context pattern classification techniques are used.

3 Fuzzy Neural Networks for Time Series Forecasting

3.1 Fuzzy Neural Networks Architecture

The fuzzy neural networks discussed below use the two types of neural logic neurons
described in the previous subsection. The logical neurons that make up the network are
described in (1). The structure of the network is illustrated in Fig. 2 in which the
z-neurons are orneurons.

Fig. 2. Fuzzy neural network.
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The architecture of the model used in this article presents its structure in [20],
however changes are necessary so that the network can act as a model capable of
predicting a time series. The first layer is defined as a fuzzification layer and is com-
posed of neurons whose activation functions are membership functions of the
respective fuzzy sets used in the partition of the input variables. For each input variable
xij are definedM fuzzy sets A

m

j , for m varying from 1…M. The outputs of the first layer
are the degrees of membership associated with the input values, that is, ajm ¼ lAm

j
for

j = 1, .., N at = 1,…,M, where N is the number of inputs and M is the number of fuzzy
sets for each input variable. The second layer is composed of L fuzzy neurons of the
orneuron type. Each neuron performs a weighted aggregation of some outputs of the
first layer. The fuzzy logic neurons perform the aggregation using the wil weights (for
i = 1, …, N, and l = 1, …, L). The strategy of creation of the fuzzy neurons uses the
grid partition defined by the ANFIS model [10]. Finally, the output layer is composed
of a single linear neuron. In [15, 20] used the output of the neuron adapted for pattern
recognition, transforming their final responses into −1 or 1. For time series problems,
we consider the following neuron:

y ¼ ð
XL
j¼0

zjvjÞ ð2Þ

where z0 = 1, v0 is bias, and zj and vj, j = 1,…, l are the output of each fuzzy neuron of
the second layer and their corresponding weight, respectively. Fuzzy rules can be
extracted from the network topology. To see how the fuzzy rules are generated, see
[15, 20].

The ELM [9] is a learning algorithm developed for hidden layer feedforward neural
networks (SLNFs) where random values are assigned to the weights of the first layer
and the weights of the output layer are estimated analytically. In [15, 20] defined a
training model for the fuzzy neural network where the parameters of the neurons are
randomly assigned and the output parameters are calculated through least squares. The
difference between them is the approach in creating the fuzzy rules of the first layer
performed directly the amount of input data [20] and using the grid to divide the input
space [15], in addition to [20] the neuron used to be the andneuron and in [20] there is
also the use of unineuron [15].

This paper will use the same partitioning technique proposed in [15] where it will
use equally spaced membership functions for each input variable to define the fuzzi-
fication layer neurons and the use of a smoothing technique to define the topology of
the hidden layer. The model is able to generate parsimonious models, selecting more
relevant neurons within the context of the problem. From the resulting model it is
possible to extract a set of fuzzy rules.

The learning algorithm initially defines the neurons of the first layer through the
partition of each interval of each input variable into M fuzzy sets with equally spaced
Gaussian membership functions with its center at 0.5. Then, a strategy of partitioning
the input space by a grid [10] is used to define an initial set of candidate neurons. The
initial number of neurons in the hidden layer is defined as MN, that is, for each possible
combination of the membership functions of each input, a neuron is generated and its
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inputs are defined. The weights associated to the neuron inputs are randomly defined in
the interval [0, 1], similarly to the ELMs. This approach to defining the network
topology facilitates the interpretability of the extracted rules. For example, if three
fuzzy sets are used per input variable (M = 3), each fuzzy set can be interpreted as
“Small”, “Medium” and “Large”. Figure 3 presents the Gaussian relevance functions
proposed for problem solving.

The final architecture of the network is defined by a feature extraction technique
based on L1 regularization and resampling, called Bolasso [2]. The learning algorithm
assumes that the output hidden layer composed of the candidate neurons can be written
as:

f ðxiÞ ¼
XL
l¼0

vlzlðxiÞ ¼ zðxiÞv ð3Þ

where v ¼ v0; v1; v2; . . .; vL½ � is the weight vector of the output layer and z xið Þ ¼
½z0; z1 ðxiÞ; z2 ðxiÞ� the output vector of the second layer, for z0 = 1. In this context,
z xið Þ is considered as the non-linear mapping of the input space for a space of fuzzy
characteristics of dimension L. Since the weights connecting the first two layers are
randomly assigned, the only parameters to be estimated are the weights of the output
layer. Thus, the problem of network parameter estimation can be seen as a simple linear
regression problem, allowing the use of regression techniques [7] for estimating
parameters and selecting candidate neurons. The regression algorithm used by the
model proposed by [15] for high-dimensional data estimating the regression coeffi-
cients and the subset of candidate regressors to be included in the final model is the
LARS [6]. When we evaluate a set of K distinct samples ðxi; yiÞ, where xi ¼
xi1; xi2; . . .; xiN½ � e R and yi e R for i = 1, …, K, the cost function of this regression
algorithm can be defined as:

XK
i¼1

zðxiÞv� yik k2 þ k vk k1 ð4Þ

Fig. 3. Gaussian membership functions.
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where k is a regularization parameter of L1 norm, commonly estimated via
cross-validation [15].

The LARS algorithm is used to perform the model selection, since, for a given
value of k only a fraction (or none) of the regressors have corresponding weights other
than zero. For the problem considered in this work, the regressors zls are the outputs of
the significant neurons. Thus, the LARS algorithm can be used to select an optimal
subset of the significant neurons (Ls) that minimize (4) for a given value of k. The
approach used to increase the stability of the model selection algorithm is the use of
resampling. This procedure developed by [2] is defined as a bootstrap-enhanced least
absolute shrinkage operator where LARS algorithm runs on several bootstrap repli-
cations of the training data set. For each repetition, a distinct subset of the regressors is
selected. The regressors to be included in the final model are defined according to the
frequency with which each of them is selected through different tests. A consensus
threshold is defined, say c = 60%, and a regressor is included, if selected in at least
60% of the assays. Finally, after the definition of the network topology, the calculations
of the estimation of the vector of weights of the output layer are performed. In this
paper, this vector is estimated by the Moore-Penrose pseudo Inverse:

v ¼ Z þ y ð5Þ

where Z+ is pseudo-inverse of Moore-Penrose of Z which is the minimum norm of the
solution of the least squares for the weights of the exit. The learning process can be
synthesized as demonstrated in Algorithm 1. It has three parameters:

• the number of fuzzy sets that will partition the input space, M;
• the number of bootstrap replications, b;
• the consensus threshold, c.

Algorithm 1- Learning Algorithm for Fuzzy Neural Networks Proposed in time series forecasting

Define M equally spaced fuzzy sets for each input variable.
Define candidate neurons (L) 
For all K entries do
Calculate the mapping z (xi) 
end for
Select Ls significant neurons using bootstrap lasso.
Estimate the weights of the output layer (5)

4 Tests and Experiments

The learning model of normalized fuzzy neural networks was evaluated through
numerical experiments of time series prediction. A time series, x (t), can be defined as a
function of an independent time t variable, tied to a process in which a mathematical
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description is considered to be unknown. Its most relevant feature is that its future
behavior can not be predicted exactly, as can be predicted from a deterministic func-
tion, known at t. However, the behavior of a time series can sometimes be anticipated
through stochastic procedures. The database used is the time series of Box-Jenkings
(Gas-Furnace). The gas furnace of Box and Jenkins [5] consists of a furnace where uk is
the feed rate of methane gas (cubic feet per minute) and the output yk is the concen-
tration of carbon dioxide (% CO2) in a gas mixture. A set of 296 samples (pairs of input
and output data) is available for identification. The normalized data set represents the
concentration of CO2, and k, from the values yk−1 and uk−4. See more in [12]. The
studies in [5] state that a suitable model to act on this data set is in the form of:

y0k ¼ f yk�1; uk�4
� � ð6Þ

Figure 4 shows the input data of the experiment and the output data of the base
used in the experiments.

The experiment was set up to use 200 samples for the neural network training phase
and 96 samples for the validation phase of the model for this time series. All samples
were normalized with mean zero and unit variance. In all experiments, the test
assumptions defined in [15] were considered, as well as Gaussian activation functions.
The performance of the proposed model was evaluated using the Root Mean Square
Error (RMSE). The RMSE was calculated in the same way as in [13].

RMSE ¼ 1
N

Xn

k¼1
yk � y0k
� �� �1

2

ð7Þ

In the tests carried out using Matlab, we tried to verify the ability of the learning
model proposed in this paper to improve the structure of the network through the

Fig. 4. Sample of the gas furnace input and output data.
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method of definition of the proposed structure, in addition to verifying that the method
has the capacity to work in solving problems of time series. Table 1 shows the rules
used (best value in the test), the best value of RMSE obtained in the test and the
average value of RMSE for the model used in this work, besides presenting a com-
parison with the results of fuzzy neural networks commonly employed in time series
problems. For a version where it is desired to evaluate the best network, RMSE can be
considered as the value to be considered for analysis, but the mean value of RMSE can
help in the definition of a more stable model. To avoid that the choice of the parameters
of the models used interfere in the accuracy of the final training of the models, each
algorithm was executed 30 times and the RMSE mean values were the indices used for
the comparison.

The algorithm proposed in this paper was compared with other efficient method-
ologies to solve time series problems that are widely used in the literature.
R-ORNEURON is considered the network formed by logical neurons composed by
neurons or. The other fuzzy neural network models used were the DENFIS, proposed
by [11], the FbeM, proposed by [12], the XUninet, developed by [4], eRFH, proposed
by [17], the model of [13] based on uninorms, called in this paper of UN-RNN and also
proposed by [14] FL-RNN which deals with a rapid learning approach, the model eTS,
developed by [1]. Table 1 summarizes the results obtained.

The results of Table 1 allow an analysis that the proposed model uses a smaller
number of rules to solve the problem and presents better RMSE to the models that are
traditionally used in the literature to solve time series problems. Figure 5 shows the
result obtained by the OrNeuron model in the final validation of the results.

Table 1. Performance evaluation of the algorithms.

Models Rules RMSE Standard deviation RMSE average

DENFIS 12 0.021 0.005 0.021
FEeM 3 0.052 0.012 0.052
XUninet 13 0.038 0.432 0.048
eRFH 9 0.027 0.004 0.031
eTS 7 0.066 0.065 0.066
NU-RNN 6 0.052 0.008 0.052
FL-RNN 6 0.047 0.014 0.046
OrNeuron 2 0.019 0.007 0.020
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5 Conclusion

This paper presents a new way to use regularized fuzzy neural networks based on the
concepts of extreme learning machine to act in the forecast of time series. The method
presented highlighted numerical results compared to the models of fuzzy neural net-
works to act in time series prediction, in addition to using a smaller number of fuzzy
rules to solve the problem. The experiments performed and the results suggest that the
network is able to act as a model capable of solving time series, presenting consistent
results and close to the results obtained by models commonly used for this purpose in
the literature. Future actions can be taken so that the model is submitted to other types
of time series models and to regression problems and their results with statistical tests.
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Abstract. Hepatitis, is one of the most common and dangerous diseases which
affects liver. If hepatitis does not detect early, some side effects such as cirrhosis,
hepatocellular carcinoma, liver failure and mature death will be occurred. Among
different types of this disease, hepatitis C arises from HCV viruses, is the leading
cause of liver disease. Although hepatitis C can be easily diagnosed by a simple
test, the intensity rate of this disease is a qualitative and controversial issue. This
paper attempts to design a fuzzy expert system for diagnosing the intensity rate of
hepatitis C with FibroScan results. The proposed system includes three steps:
pre-processing, create the primary fuzzy system and optimize the membership
functions’ parameters. KNN method is used for filling missing data; moreover,
feature selection is done by decision tree and genetic algorithm. The primary
fuzzy system is established and in the third step, three different evolutionary
algorithms are implemented to optimize the parameters of primary system.
Results portray that Differential Evolution algorithm presents better performance
in learning the pattern of data and decreases the error around 30%.

Keywords: Hepatitis C � Diagnosing intensity rate � Fuzzy expert system
Evolutionary algorithms

1 Introduction

1.1 Hepatitis C

About 170 million people in the world are infected with hepatitis C virus. This is a
major cause of chronic liver disease. It has been recognized as a global health problem
because of the progression to cirrhosis and hepatocellular cancer. The major routes of
transmission are injection drug use, blood transfusion, hemodialysis, organ trans-
plantation and less frequently sexual intercourse. Hepatitis C virus infection can present
as acute or chronic hepatitis. Acute hepatitis usually is asymptomatic and rarely leads to
hepatic failure. About 60–80% people with acute infection develop chronic infection
which is usually asymptomatic but can cause considerable liver damage before its
recognition [1].
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1.2 Fuzzy Expert System

An expert system that uses fuzzy logic instead of Boolean logic is known as fuzzy
expert system. A fuzzy expert system is a collection of fuzzy rules and membership
functions that are used to reason about data. Using fuzzy expert system expert
knowledge can be represented that use vague and ambiguous terms in computer [2].
Fuzzy logic is a set of mathematical principles for knowledge representation based on
degree of membership rather than the crisp membership of classical binary logic.
Unlike two-valued Boolean logic, fuzzy logic is multi valued. Fuzzy logic is a logic
that describes fuzziness. As fuzzy logic attempts to model human’s sense of words,
decision making and common sense of words, decision making and common sense, it
is leading to more human intelligent machines [3].

2 Literature Review

Up to now, many studies have been performed in the diagnosis of hepatitis literature. In
some cases, articles attempted to increase the classification accuracy, others focused on
fuzzy-rules and the value membership function’s parameters to design a fuzzy system.
Although there are lots of works on designing a system for diagnosing hepatitis, just
one fuzzy system was defined for diagnosing the intensity rate of hepatitis which
utilized hepatitis B database and generated fuzzy-rules according to the specialist’s
experience [4]. However, our system uses the pattern of hepatitis C data for generating
rules; moreover, we optimize the primary fuzzy system with evolutionary algorithms.
Table 1 presents the classification of previous hepatitis diagnosis methods [5].

3 Hepatitis C Dataset

Most of the studies on creating system of diagnosing system were utilized UCI
repository of machine learning database. This database includes 155 records with 19
features. The outputs of UCI’s database has 2 classes of ‘live’ and ‘die’ [15]. In

Table 1. Literature methods for classification

Author Method Author Method

Grudzinski et al. [6] Weighted 9NN Ster and Dobnikar [13] LDA
Duch and Grudziński [7] 18NN, stand, Manhattan Ster and Dobnikar [13] QDA
Duch and Grudziński [7] 15NN, stand, Euclidean Ster and Dobnikar [13] 1NN
Duch and Adamczak [8] FSM with rotations Ster and Dobnikar [13] ASR
Duch and Adamczak [8] FSM without rotations Ster and Dobnikar [13] FDA
Duch and Adamczak [8] RBF (Tooldiag) Ster and Dobnikar [13] LVQ
Duch et al. [9] MLP + BP (Tooldiag) Ster and Dobnikar [13] CART
Ozyildirim et al. [10] MLP Ster and Dobnikar [13] MLP with BP
Ozyildirim et al. [11] RBF Ster and Dobnikar [13] ASI
Ozyildirim et al. [11] GRNN Ster and Dobnikar [13] LFC
Polat and Gunes [12] FS-AIRS with fuzzy res. Jankowski [14] Inc Net
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addition to the low number of records, the output wasn’t useful for determining
intensity rate of hepatitis. Therefore, we required to gather enough sample of data with
suitable outputs. Consequently, we use the database of hepatitis C patients from Liver
Institute of Shariati Hospital. This Database includes 480 instances of hepatitis C
patients with the FibroScan test results as an output [16].

A FibroScan is noninvasive test that measures the amount of fibrosis (thickening or
scarring of tissues) in liver. It can be used alone or with other tests (such as biopsy,
blood tests, ultrasounds) to see how much scarring there is on liver. Results are
measured using kilopascal and range from 2 to 75. The results will vary based on the
type of liver disease. Thus, they can be divided into 4 classes and illustrate the amount
of scarring with 1, 2, 3 and 4 values. The stages of fibrosis and their relations with
FibroScan results are presented in Table 2 [17].

After consulting with liver specialists in Shariati hospital, we selected some of
blood tests results and individual informations from patients as input features of our
expert system. The 10 proposed attributes are given in Table 3 [5]. The selected
attributes, except Age and Sex, are blood tests which consist liver enzymes and other
blood factors affecting liver’s function.

Table 2. Classification of FibroScan results

Approximate cutoff value Fibrosis stage Qualitative parameter

[2, 7] Mild Fibrosis F0 to F1
[8, 9] Moderate Fibrosis F2
[10, 14] Sever Fibrosis F3
[15,75] Advanced Fibrosis F4

Table 3. The attributes of hepatitis C database

Number Labels Values

1 Age [23, 98]
2 Sex Male, Female
3 Platelet [10000, 780000]
4 Creatinine [0.4, 8.98]
5 Sodium [130, 148]
6 Bilirubin total [0.2, 19]
7 ALP [36, 965]
8 ALT [10, 525]
9 AST [13, 316]
10 INR [0.22, 4.06]
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4 Pre-processing

4.1 Missing Values

Among the 480 sample of our database, 102 patients had 1 or 2 missing values in
different features. This was an impressive number of missing data; thus, we should use
an appropriate method with minimum error for filling missing values. It was decided
that the best method to fill missing data was KNN algorithms. In this method we
separate complete database from others with missing data. By removing the column of
features with missing values, the algorithm compares second database with the com-
plete one and tries to find nearest instance for each case with missing data. The missing
value fills with the amount of nearest neighborhood sample in complete database,
which has the lowest Euclidean distance from it. Therefore, all of the missing values in
each sample can be filled with this method.

4.2 Feature Selection

The number of features in the raw dataset can be enormously large. This enormity may
cause serious problems to many data mining systems. Feature selection is one of the
oldest existing methods that deals with these problems. Its objective is to select a
minimal subset of features according to some reasonable criteria so that the original
task can be equally achieved well, if it was not better. By choosing a minimal subset of
features, irrelevant and redundant features are removed according to the criterion [12].
In this essay, two different methods including decision tree and genetic algorithm are
considered for feature selection.

Decision Tree. Decision trees classify instances by sorting them down the tree from
the root to some leaf node, which provides the classification of the instance. Each node
in the tree specifies a test of some attribute of the instance, and each branch descending
from that node corresponds to one of the possible values for this attribute [18]. This
process, which is done by learning the pattern of data, helped us to determine the low
important attributes and remove them from our database.

Genetic Algorithm. As we conclude from previous algorithm, 2 attributes were
removed; however, we use another algorithm to ensure. Genetic algorithm is a kind of
search algorithm based on the mechanics of natural selection and natural genetics. They
combine survival of the fittest among string structures with a structured yet randomized
information exchange to form a search algorithm with some of the innovative flair of
human search [19]. We define MSE1 as an objective function for GA and try to
calculate the error of our system with and without 2 proposed features. Hence, the
population size of GA is set to 10 and we repeat the algorithm 300 times. A small
sample was chosen, since comparing the presence of features in reducing error was just
important for us. It means that the point of using GA was comparison and the per-
formance of algorithm was not our case. Table 4, clearly shows that removing sodium

1 Mean Squared Error.
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and sex from our database, not only make any problem, but also reduce the amount of
system error. However, by removing other attributes the error of the system increases
comparing to total database. For example, if we delete AST, Platelet or Age the error
will reach to 0.859, 0.854, and 0.81 respectively; this illustrates that the existence of
other attributes have a fundamental role in our system.

5 Design the Primary Fuzzy System

5.1 Train and Test Data

We divide our database to 2 subset, including train and test database for creating the
first diagnosing system. 70% of the database was randomly selected as train data.
Therefore, 336 random instances were selected as training data and remaining were
labeled as testing data.

5.2 Determining the Number of Rules

In a fuzzy clustering algorithm, we should use a cluster validity index to determine the
most suitable number of clusters. In this paper, the validity index proposed by Fazel
Zarandi et al. is used. The validity index VECAS (an exponential compactness and
separation index) can find the number of clusters as the maximum of its function with
respect to c. This index is defined as:

VECAS ¼ ECAS cð Þ ¼ ECcompðcÞ
maxcðECcomp cð ÞÞ �

ESsepðcÞ
maxcðESsepðcÞÞ ð1Þ

Where ECcompðcÞ and ESsepðcÞ are exponential compactness and exponential sep-
aration measures respectively, and are defined as [20]:

ECcompðcÞ ¼
Xc

i¼1

Xn

j¼1
umij expð�ðk xi � vj k2

bcomp
þ 1

cþ 1
ÞÞ ð2Þ

ESsep cð Þ ¼
Xc

i¼1
expð�mini6¼kf c� 1ð Þ k vi � vk k2

bsep
gÞ ð3Þ

Table 4. Examining the system’s error with genetic algorithm

Database MSE

Total database 0.757
Without the feature of sex 0.755
Without the feature of sodium 0.745
Without sex and sodium 0.75
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In which,

bcomp ¼ ð
Xn

k¼1
k xi � �v k2 =n ið ÞÞ ð4Þ

bsep ¼ ð
Xc

l¼1
k vl � �v k2 =c ið ÞÞwith�v ¼ ð

Xn

j¼1
xj
�
nÞ ð5Þ

The most suitable number of clusters based on this cluster validity is obtained in 4
clusters. Thus, the system contains 4 rules.

5.3 Implementation of the Primary System

In this step, we try to design our primary diagnosing system with 4 rules, 8 input
features and FibroScan results as the output for the training database. Thus, the con-
struction of system is based on the pattern of data. Inputs are consisting age, platelet,
creatinine, bilirubin total, ALP, ALT, AST and INR. We use Sugeno-style and wtaver
defuzzification method. Moreover, the 4 rules of the proposed system are as follows:

• If (AGE is in1cluster1) and (PLATELET is in2cluster1) and (CREATININE is
in3cluster1) and (BILIRUBIN TOTAL is in4cluster1) and (ALP is in5cluster1) and
(ALT is in6cluster1) and (AST is in7cluster1) and (INR is in8cluster1) then (output
is out1cluster1)

• If (AGE is in1cluster2) and (PLATELET is in2cluster2) and (CREATININE is
in3cluster2) and (BILIRUBIN TOTAL is in4cluster2) and (ALP is in5cluster2) and
(ALT is in6cluster2) and (AST is in7cluster2) and (INR is in8cluster2) then (output
is out1cluster2)

• If (AGE is in1cluster3) and (PLATELET is in2cluster3) and (CREATININE is
in3cluster3) and (BILIRUBIN TOTAL is in4cluster3) and (ALP is in5cluster3) and
(ALT is in6cluster3) and (AST is in7cluster3) and (INR is in8cluster3) then (output
is out1cluster3)

• If (AGE is in1cluster4) and (PLATELET is in2cluster4) and (CREATININE is
in3cluster4) and (BILIRUBIN TOTAL is in4cluster4) and (ALP is in5cluster4) and
(ALT is in6cluster4) and (AST is in7cluster4) and (INR is in8cluster4) then (output
is out1cluster4)

Designing the primary fuzzy system, we compare the results of system’s outputs
with the real output values in training database (targets). As we consider to Fig. 1, it is
obvious that there is a lot of difference between outputs and targets. Therefore, we need
to improve the parameters of this system.

5.4 Membership Function

As it was discussed in previous section, we require to improve our primary system
which consists different rules and various membership functions for attributes. Diffi-
culties of changing rules made us to improve the parameters of MFs. While the type of
fuzzy system is Sugeno, inputs and output have Gaussian and linear MFs, respectively.
We can introduce each feature with 4 MFs which includes two parameters of mean and
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variance. Moreover, 9 values are determined for output in each cluster. Overall 64
parameters, defined as inputs and 36 values, stored as MFs of output.

6 Optimize the Parameters of Primary Fuzzy System

6.1 Objective Function

In this approach, we use RMSE2 for comparing system’s output and real values in
database. It seems to be an appropriate criterion for evaluating the efficiency of diag-
nosing system. The RMSE in primary system is equal to 0.92, hence, we attempt to
utilize suitable methods to minimize RMSE for reducing error.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1
yn � eynð Þ2

r
ð6Þ

6.2 Optimization Approach

Due to the extraction of MFs from primary system, the values were saved in the vector
of P0

i . This section aims to find the improved vector of MFs defined as P�
i . We assume

the following linear equation, which illustrates the linear relationship between the MFs
of primary and optimized system. Another hypothesis is that xi 2 ½10�/; 10/�. Nor-
malizing the variables is the reason of assuming xi in one interval. / controls the scale
factor and is considered as / ¼ 0:1 to obtain better performance on system. Figure 2
presents the exact approach for improving the primary system.

P�
i ¼ xi � P0

i ð7Þ

Fig. 1. Primary system for training data

2 Root Mean Square Error.
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6.3 Optimization

The value of xi would be determined with three different evolutionary algorithms
consist of Adaptive-Neuro Fuzzy Inference System, Particle Swarm Optimization and
Differential Evolution which are defined below. Those algorithm proved their efficient
performances in training the pattern of data in literature. We aim to find the best
method with minimum RMSE as a result.

ANFIS.3 An adaptive network, as its name implies, is a network structure consisting of
nodes and directional links through which the nodes are connected. Moreover, part or
all of the nodes are adaptive, which means their outputs depend on the parameters
pertaining to these nodes, and the learning rule specifies how these parameters should
be changed to minimize a prescribe error measure. Thus, ANFIS can serve as a basis
for constructing a set of fuzzy if-then rules with appropriate membership functions to
generate the stipulated input-output pairs [21].

PSO. Particle Swarm Optimization is a population-based search algorithm inspired by
the behavior of biological communities that exhibit both individual and social behavior,
like the communities of birds, bees and fishes. PSO has become an established opti-
mization algorithm to control and engineering design. PSO is appropriate for Problems
with immense search spaces that present mane local minima [22].

Fig. 2. Flowchart of optimization approach

3 Adaptive Neuro Fuzzy Inference System.
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DE. Differential Evolution reserves population-based global search strategy and uses a
simple mutation operation of the differential and one-on-one competition, so it can
reduce the genetic complexity of the operation. At the same time, the specific memory
capacity of DE enables it to dynamically track the current search to adjust their search
strategy with strong global convergence and robustness [23].

7 Results

Given the above concepts, we designed our system with three evolutionary algorithms
to optimize the primary fuzzy system considering to minimize RMSE. PSO and DE
start their optimization cycle with 30 instances as the first random population. Also,
stop condition is assumed 900 repetitions of those algorithm. Finally, we run all the
three algorithms in a loop of 30 times and present the final results of RMSE for test and
train database in Table 5.

Comparing the results, although all the three methods improve system, we conclude
DE’s algorithm as the best method for error reducing, resulting in improving system
behavior in learning the pattern of data. Figures 3 and 4 show the outcomes of opti-
mized system with DE algorithm in determining the outputs.

Table 5. RMSE results

Optimization algorithm Train data Test data

ANFIS 0.79 1.24
PSO 0.7 1.02
DE 0.64 0.99

Fig. 3. Optimized system with DE algorithm for training data
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It is obvious that comparing to primary system, errors reduce and the system
becomes more efficient in diagnosing the intensity rate of hepatitis c with specific
inputs. Thus, compared with the RMSE of primary system, we summarized the amount
of optimization with each algorithm in Table 6.

Below, in Figs. 5 and 6 we present the membership functions of 2 attributes
optimized with DE algorithm. Moreover, the rule’s surface of improved fuzzy system
with DE’s algorithm is presented in Fig. 7.

Fig. 4. Optimized system with DE algorithm for testing data

Table 6. Percentage of improvement

Optimization algorithm Percentage of decreasing error

ANFIS 14.13
PSO 23.91
DE 30.4

Fig. 5. Optimized membership function of age
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8 Conclusion

In this study, our goal was designing a fuzzy expert system to diagnose the severity of
hepatitis C. First, the primary fuzzy system was implemented according to the data;
then we try to optimize membership functions’ parameters of system due to the evo-
lutionary algorithms. Three different methods were utilized and finally Differential
Evolution algorithm introduced better results with 30% error-reducing. Thus, we can
create an optimal diagnosing fuzzy system with the pattern of data as our aim.

Fig. 6. Optimized membership function of platelet

Fig. 7. The surface of optimized fuzzy rules
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9 Future Study

Although by changing membership functions’ parameters we reached to optimal fuzzy
system, the other part of fuzzy systems did not consider in this approach. Defining
appropriate rules has an important role in achieving optimal fuzzy system. Therefore,
changing the period of rules, we will be able to introduce better systems. Moreover, we
assume Sugeno-type system with Gaussian and linear MFs for inputs and outputs,
respectively. However, there are various types of MFs which can be tested to achieve
better results in optimization.
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Abstract. This paper develops an evolving fuzzy min-max algorithm
for fuzzy rule-based systems modeling. Starting with an initially empty
rule base, the algorithm may add, modify, or delete fuzzy rules of the
rule base while processing input stream data. The data space is granu-
lated using hyperboxes. Membership functions and affine functions are
assigned to the hyperboxes, and each hyperbox defines a corresponding
functional fuzzy rule. The model output is found combining the affine
rule consequents weighted by the normalized activation degrees of the
rules. The parameters of the consequent affine functions are updated
with the recursive least squares with forgetting factor. The algorithm is
intrinsically incremental, learns in one-pass, and allows gradual model
changes in an online like manner. Computational experiments suggest
that evolving granular fuzzy min-max modeling procedure is competi-
tive with state of the art approaches.

Keywords: Evolving fuzzy systems · System modeling
Incremental learning · Regression

1 Introduction

Real-world system dynamics are highly nonlinear and non-stationary. Learn-
ing in these environments requires fast and efficient processing of stream data.
Because of limited computational resources, traditional system modeling may
be unpractical if all data need to be stored.

Evolving systems are an important alternative in complex system modeling
because they can learn the model structure and its parameters simultaneously
with input data processing. Evolving modeling is intrinsically incremental, can
capture shifts in data caused by abrupt changes (data shift), and track gradual
changes in data (data drifts).

Fuzzy min-max systems were originally developed as neural fuzzy networks
for classification [1] and clustering [2]. Numerous papers have improved the pio-
neering classification and clustering algorithms [3,4], but few address system
modeling, especially in the realm of fuzzy rule-based models. Exceptions include
a min-max regression technique with a gradient descent algorithm to tune rule
c© Springer International Publishing AG, part of Springer Nature 2018
G. A. Barreto and R. Coelho (Eds.): NAFIPS 2018, CCIS 831, pp. 37–48, 2018.
https://doi.org/10.1007/978-3-319-95312-0_4
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consequent parameters [5], and a min-max network to cluster input data with an
ANFIS network [6]. However, these approaches are not suited to process stream
data, neither for recursive learning.

This paper improves the evolving fuzzy min-max algorithm (eFMM) for fuzzy
rule-based system modeling from stream data recently introduced in [7]. The
eFMM processes stream data and simultaneously learns the rule base structure,
and the parameters of the local rule consequent models in a single pass basis. The
learning algorithm needs simple operations such as maximum, minimum, and
comparison, an important feature for complex data processing. The efficiency of
the algorithm is shown using real world data to forecast daily electrical energy
load. The results show that eFMM is highly efficient and competitive with state
of the art evolving algorithms.

The paper proceeds as follows: Sect. 2 details the eFMM algorithm, Sect. 3
addresses the computational experiments to evaluate the performance of eFMM
against evolving, neural, and neural fuzzy evolving modeling. Section 4 concludes
the paper and lists issues to be pursued in the future.

2 Evolving Fuzzy Min-Max Modeling

This section explains the evolving granular fuzzy min-max algorithm. The algo-
rithm has three main steps. The first step develops the structure of the model
using a hyperbox-based input data space granulation procedure to find the num-
ber of fuzzy rules. The idea is to associate to each hyperbox a functional fuzzy
rule. The second step estimates the coefficients of affine rule consequents assigned
to each hyperbox using the recursive least squares with forgetting factor. The
third and final step assesses the rule base quality to identify either redundant
or outdated rules. The purpose is to keep the rule base concise and representa-
tive of the current data. This step is a major improvement upon the algorithm
reported in [7].

2.1 eFMM Modeling

The first step of evolving fuzzy min-max modeling is to granulate the input
data space using hyperboxes. Here we assume that the domain of the data space
is the n-dimensional unit cube In. A hyperbox in In is a n-dimensional rect-
angle defined by a maximum (W) and a minimum (V) points, as shown in
Fig. 1a. Figure 1b illustrates how a collection of hyperboxes granulates the data
space, and how membership functions and affine functions are assigned to the
hyperboxes. The maximum and minimum points, regardless of the data space
dimension, uniquely define a hyperbox. Formally, a hyperbox Bi is defined as
follows:

Bi = {X,Vi,Wi, bi(x, Vi,Wi, ci)} (1)

where X ⊆ In denotes the input data space, bi is the membership function
associated with the i-th hyperbox, x ∈ X is an input data point, and Vi, Wi,
ci ∈ X are the minimum, maximum, and the centroid points, respectively.
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Wi

Vi

Fig. 1. Hyperbox and granulation

More precisely, eFMM can be viewed as a fuzzy rule-based modeling approach
whose rules are endowed with local models forming their consequents, referred
to as fuzzy functional models. We adopt Takagi-Sugeno [8] type of fuzzy model
with affine functions in the rule consequents. These are models composed by a
set of R fuzzy rules of the following form:

Ri : If x is Bi then ȳi = θ0i +
n∑

j=1

θjixj (2)

where Ri is the i-th fuzzy rule, ȳi is the i-th rule output, θji, i = 1, ..., R,
j = 1, ..., n are the consequent parameters, and R is the total number of fuzzy
rules in the rule base. The collection of the R fuzzy rules assembles the overall
model as a weighted combination of the local affine models. The contribution of
each local model to the overall output is proportional to the normalized firing
degree of each rule. eFMM uses antecedent fuzzy sets that are an aggregation of
elementwise Gaussian membership functions:

σji = min(wji − cji, cji − vji), bi =
n∏

j=1

bji, bji = exp

(
xj − cji

2σ2
ji

)
(3)

where bji is the j-th component of the i-th rule membership function, σji is
width, xj is the j-th component of the n-dimensional input data x, and wji, vji,
cji are the components of the i-th rule maximum point, minimum point, and
centroid, respectively.

The output of the eFMM model at step k is computed as the weighted average
of the individual rule contributions, that is

ŷ =
R∑

i=1

ψiθ
T
i x̄k, ψi =

bi∑R
l=1 bl

(4)
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where ψi is the normalized firing degree of the i-th rule, yk is the model output
at step k, and x̄k = [1, xk

1 , x
k
2 , ..., x

k
n]T is the extended input vector.

The second step of eFMM estimates the parameters of the affine functions
of the rule consequents using the recursive least squares with forgetting factor
(RLS). Let θk

i = (θ0i, θ1i, θ2i, ..., θni) be the vector of parameters of the i-th rule
at step k. Then, the RLS processing steps can be summarized as follows:

K =
P k−1

i

γ + (x̄)T P k−1
i x̄

x̄ (5)

θk
i = θk−1

i + K(yk − ȳk
i ) (6)

P k
i =

1
γ

(I − K(x̄k)T )P k−1
i (7)

where γ is the forgetting factor, ȳk
i is the i-th rule output at k, I is the identity

matrix, and P is initially set as P 0 = ωI, ω = [100, 10000].
The third and final step monitors the rule base to identify obsolete or redun-

dant rules. This is done using the utility measure [9]:

Uk
i =

∑k
p=1 ψp

i

k − I∗
i

(8)

where I∗
i is the step at which the i-th rule was created, and ψp

i is the normalized
firing degree of the i-th rule at step p. The utility measures how often a rule
is activated. This quality measure avoids unused clusters to be kept in the rule
base because outdated fuzzy rules no longer are representative of the current
data. The criterion to delete rules is:

IF Uk
i < εŪk, THEN delete{Bi} (9)

where ε = [0.03, 0.5] is a user defined parameter, and Ūk is the mean utility of
the R rules at k. It is important to mention that, even though ε is defined by
the user, the threshold to delete an old rule also depends on the mean utility at
k, which reduces the user responsibility. Setting a threshold by a proportion of
the mean utility value also helps the user to understand if a given ε value is a
strict, or a tolerant threshold for deleting outdated rules from the rule base.

The eFMM also has a procedure to find redundant rules. This is an automatic
mechanism that uses the maximum, minimum, and center points to classify a
rule pair as either redundant or not. Merging similar rules is important due to
the dynamic behavior of the algorithm, which displaces hyperboxes positions
as new data arrive. If two rules are sufficiently close to each other, and their
consequents are similar, then they can be replaced by a unique rule with no
model performance degeneration. This is desirable to avoid unnecessary rule
base complexity.



Evolving Granular Fuzzy Min-Max Modeling 41

The eFMM decides if rules i and l are redundant in the following way:

condition 1: vji ≤ vjl AND wji ≥ wjl, for j = 1, 2, ..., n

condition 2: vjl ≤ vji AND wjl ≥ wji, for j = 1, 2, ..., n

condition 3: vji ≤ cjl ≤ wji AND vjl ≤ cji ≤ wjl AND volil < voli + voll

voll =
n∏

j=1

(wjl − vjl), voli =
n∏

j=1

(wji − vji) (10)

volil =
n∏

j=1

(max(wji, wjl) − min(vji, vjl)) (11)

IF condition 1 OR condition 2 OR condition 3 (12)
THEN merge{Bi, Bl}

where voli, voll and volil are the volumes of the hyperboxes i, l, and the hyperbox
il formed by the union of hyperboxes i and l.

Rules i and l are merged if any of the three conditions hold. Conditions
1 and 2 say that if hyperbox l is located inside hyperbox i, or hyperbox i is
located inside hyperbox l, then they should be merged. Figure 2a illustrates
the situation in which hyperbox i includes hyperbox l. Even though partial
superposition is allowable, eventually desirable, the complete superposition may
produce contradictions if the two centers are close, but rule consequents are not
alike. Condition 3 evaluates the situation in which none of the hyperboxes include
each another, but there is reasonable superposition between two of them. This
test requires the values of three hyperbox volumes, expressions (10) and (11). The
volume voli is the product of the i-th hyperbox lengths in all n dimensions. The
value of volil is the volume of the hyperbox formed by the union of hyperboxes
i and l. Figure 2b shows hyperboxes i, l and il. Condition 3 holds in Fig. 2b
(top) and the hyperboxes should be merged. At the bottom of Fig. 2b merging
condition 3 does not hold. Figure 2b exhibits the union hyperbox il delimited by
dashed lines. The reason to use hyperbox il volume as a merging criteria is that
the volume increases if hyperboxes i and l do not have similar dispersions. This
property is verified in Fig. 2b: as the example at the top shows, the volume of
hyperbox il is smaller than the sum of the volumes of covered hyperboxes i and
l,whereas for the example at the bottom this is not true.

If one of the three merging conditions is met, then the following merging
operation is performed on boxes i and l:

pi =
voli

voli + voll
(13)

wji = piwji + (1 − pi)wjl, vji = pivji + (1 − pi)vjl (14)

cji = picji + (1 − pi)cjl, θji = piθji + (1 − pi)θjl (15)

R = R − 1, delete{Bl} (16)
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Fig. 2. Hyperbox merging

When two rules are merged, the resulting rule is a convex combination of
the two original ones. The combination weights, pi and pl, are computed as
the normalized rule volumes, where pl = 1 − pi. Behind this approach is the
assumption that the rule volume is an indicative of consistency because new
rules have small volumes, and volumes tend to increase as new data samples
are encompassed. This procedure avoids the merging operation to discard the
knowledge stored in the structure of a well established rule when merging it with
smaller ones.

2.2 Automatic Parameter Selection

The eFMM includes an automatic selection mechanism of the learning param-
eters α and δ. The first controls the update rate of the maximum size of the
most influential rule. This parameter is commonly referred to as the learning
ratio. Setting the magnitude of the learning ratio is not a trivial task because
the same value can speed up or delay the model updating process depending on
data distribution. The eFMM estimates the value of α using:

αk =
(

1 − |ȳk − yk|
maxerr

)t

maxα (17)

The coefficient maxerr is the maximum magnitude of the difference |ȳk − yk|
which produces α > 0. The value of maxα is the maximum allowed value for the
α parameter, which occurs when ȳk = yk, meaning that the local affine model is
fully compatible with the local functional relationship between input and output
data. Parameter t sets the function decay rate. The values of these parameters
are maxerr = 0.3, maxα = 0.03 and t = 10. These values were kept constant
during the computational experiments.
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The parameter δ determines the maximum size a hyperbox may achieve along
any dimension. It is commonly referred to as θ in the fuzzy min-max literature,
and its value critically affects the algorithm performance. Given the importance
of this parameter, it is not reasonable to let to the user the responsibility to
accurately choose a suitable value. The eFMM algorithm uses an automatic
approach to adjust δ in an online fashion using the data local dispersion, and
the α parameter. The adjustment proceeds as follows:

dk
ji =

√
Mi − 1

Mi

(
dk−1

ji

)2
+

1
Mi

(xj − cji)
2 (18)

δk
ji = (1 − α) δk−1

ji + 2αFdd
k
ji (19)

where dk
ji is the local data dispersion in the j-th dimension, and Mi is the i-

th rule counter, which stores the number of data points incorporated by this
rule. The chosen value of Fd is 2, so the i-th rule will cover the 2σ zone [10],
since, in practice, the values of the membership functions outside this zone are
negligibly small [9]. The 2 factor on the left size of α in Eq. 19 is applied since
the maximum size parameter should allow the hyperbox to expand in the 2σ
zone in both senses of a given direction (i.e. right and left from the center, up
and down from the center, and so forth). Figure 3a illustrates hyperbox i along
with its data dispersion (dashed line ellipse, with horizontal di length) and the
maximum size 2Fddi (dashed line box). The maximum value initially is a value
δji = δ0 given by the user. As new data are input, the value of δji gradually
converges to 2Fdd

k
ji through expression 19.

2.3 Learning Algorithm

The eFMM is a recursive algorithm that can learn on-the-fly using a stream of
input data without any retraining, or storing past data. Initially, there are no
fuzzy rules. As the algorithm progress processing input data, rules are created,
or existing ones modified. Rule modification means to displace the maximum
and/or minimum points until input data is accommodated within the bound-
aries of a hyperbox. Every hyperbox has a centroid whose value depends on the
arrangement of all data points lying within its boundary. Each hyperbox has a
counter Mi to store the number of the data samples it encompasses.

Parameters ε and Mmin are user defined. ε controls the threshold to delete
outdated rules. Mmin is the minimum number of data samples required to accept
a hyperbox as valid granule of information. A valid hyperbox is assumed to have
a consistent local model. Even though it is not strictly guaranteed that the
model is locally consistent, setting a minimum number of samples could prevent
initial condition issues regarding the recursive least squares during parameter
estimation of the affine rule consequents in the second learning step. A similar
procedure is used in [11].

The first input data x1 is the first rule centroid, minimum, and maximum
points, that is, V1 = W1 = c1 = x1. The counter of the first hyperbox B1 is set
as M1 = 1. Whenever a new data sample is input, its membership degree to all
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existing hyperboxes is computed using (3). Next, the hyperbox with the highest
membership value undergoes the following test:

max(wji, x
k
j ) − min(vji, x

k
j ) ≤ δji, j = 1, 2, ..., n (20)

Condition (20) is the requirement needed by the most active hyperbox to
include current input data xk. Thus, if (20) holds, then the hyperbox Bi is
expanded to include sample xk, that is, the values of Wi and Vi become:

Wi = max(xk,Wi), Vi = min(xk, Vi) (21)

Figure 3b illustrates the expansion of hyperbox Bi.

Fig. 3. Maximum size and expansion

Whenever a hyperbox Bi includes input data xk, the corresponding hyperbox
counter and centroid are updated as follows:

Mk
i = Mk−1 + 1

ck
i =

Mk
i − 1
Mk

i

ck−1
i +

1
Mk

i

xk (22)

Next, data dispersion di and maximum size δi are adjusted with (18) and (19).
After updating the antecedent part, the affine function of the corresponding

hyperbox has its parameters adjusted using the recursive least squares with
forgetting factor, using (5), (6) and (7). Only the winning hyperbox Bi is updated
at each processing step k.

If (20) does not hold, then the hyperbox with the second highest membership
value undergoes the same test. If (20) is satisfied, then the second hyperbox is
expanded to include the data, otherwise the next hyperbox with the highest
membership value is evaluated until all current existing hyperboxes are checked.
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If all hyperboxes for which bi > 0 are tested, and none of them satisfied (20),
then it is checked if there are rules with zero firing degrees. Recently created
rules have zero initial influence, and therefore, their firing degrees are zero until
they expand to acquire new samples. If there are such rules, the elementwise
distance between their centers and xk are calculated:

disti =
n∑

j=1

|cji − xk
j | (23)

The values disti are then sorted in ascending order, and the corresponding
rules are checked, one at a time, for Condition (20). If one of these rules satisfy
(20), then the corresponding rule is expanded, and the test stops.

If there is no hyperbox for which (20) holds, then a new one is created:

R = R + 1 (24)

VR = WR = cR = xk (25)

δjR = δ0 for j = 1, 2, ..., n, MR = 1 (26)

After updating the model antecedents and consequents, the algorithm
assesses the rule base quality. Outdated rules are identified and deleted using
(9), whereas redundant rule pairs are merged applying (13) to (16).

The model output is produced at every at step k using (4). The algorithm
generates the output for the current processing step, and then uses the actual
output to update the rule consequent parameters with RLS.

3 Computational Experiments

This section evaluates the performance of the eFMM using a short-term load
forecasting example. Comparisons with alternative evolving and batch model-
ing approaches are reported considering root mean squared error and the non-
dimensional error indexes as performance measures. The expressions for these
two indexes are:

RMSE =

(
1
N

N∑

k=1

(
ŷk − yk

)2
) 1

2

, NDEI =
RMSE

std(y)
(27)

where N is the size of the test dataset, yk and ŷk are the target and the model
output, respectively, and std() is the standard deviation function.

The number of rules, for fuzzy rule-based methods, or the number of neurons,
for neural-based approaches, gives an idea of the model complexity.
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3.1 Short-Term Load Forecast

Forecast of load demand is very important to operate electric energy systems
because load considerably impacts system operation planning, security analysis,
and market decisions. Significant load forecast errors may result in economic
losses, security constraints violations, and system operation drawbacks. Load
forecast can be long, medium, or short term. Long-term forecasting is important
for capacity expansion of the electric system, and medium term to organize fuel
supply, maintain operations, and interchange scheduling. Short-term forecast-
ing is needed for daily planning and operation of the electrical system, energy
transfer, and demand management [12,13].

In this section, the effectiveness of the eFMM is evaluated using load data of
a major electrical utility located in the southeast region of Brazil. Load data is
expressed in kilowatts per hour (kW/h), and correspond to 31 days of August,
2000. Data were normalized between 0 and 1 to preserve privacy.

The eFMM model was used as a one-step ahead forecaster: the purpose is to
predict the current load value using lagged load values. Previous study [13] has
analyzed the sample partial autocorrelation function for the first 36 observations
of the series, and suggested the use of the last two previous load values as model
inputs, i.e., the forecast model is of the form:

ŷk = f(yk−1, yk−2) (28)

The experiment was conducted as follows. The hourly load for first 30 days
were input to the eFMM algorithm (718 observations). The performance of the
evolved model is evaluated using data of the last day (24 observations), keeping
the model structure and parameters fixed at the values found after evolving
during the 30-days period. Table 1 shows how eFMM performs against evolving
and fixed structure modeling methods using RMSE and NDEI error measures.
The values of Table 1 for the algorithms other than eFMM were taken from
[13]. The multilayer perceptron (MLP) has one hidden layer with five neurons
trained with backpropagation algorithm, and the adaptive-network-based fuzzy
inference system (ANFIS) has three fuzzy sets for each input variable and seven
fuzzy rules. The MLP adopted the following scheme for initialization phase:
small weights values randomly assigned, α = 0.9 as momentum parameter, 1000
as the maximum number of epochs, and a adaptive learning rate starting from
η = 0.01 as the initial step size. The ANFIS has 1000 as maximum number of
epochs, ηi = 0.01 as initial step size, sd = 0.9 as step size decrease rate, and
si = 1.1 as step size increase rate. The parameters of the eTS model were set to
r = 0.4 and Ω = 750. The extended TakagiSugeno (xTS) has a Ω = 750. The
parameters of the ePL model were τ = 0.3, r = 0.25, and λ = 0.35. The eMG
has parameters λ = 0.05, Σinit = 10−2I, where I is the identity matrix, and
α = 0.01. Table 1 has two results for the eMG algorithms, one for the window
size ω = 20 and another for ω = 25. These two results were included to compare
the eMG and the eFMM performances with different rule base complexities.

The parameters of eFMM were γ = 0.95, Mmin = 3.5(n + 1) and ε = 0.05.
Three forecasts are presented, for δ0 = 0.1, 0.2 and 0.5. The result for δ0 = 0.1 is
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considerably superior than the remaining ones, even though the model complex-
ity is higher. Different values for δ0 were tested to verify eFMM performance with
simpler rule base structures. Notice that, with the same number of rules, eFMM
outperforms eMG and xTS . Figure 4 shows the forecast results for δ0 = 0.1.

Table 1. Short-term load prediction

Model Number of rules RMSE NDEI

xTS 4 0.0574 0.2135

MLP 5 0.0552 0.2053

ANFIS 9 0.0541 0.2012

eTS 6 0.0527 0.1960

ePL 5 0.0508 0.1889

eMG (ω = 20) 5 0.0459 0.1707

eMG (ω = 25) 4 0.0524 0.1948

eFMM (δ0 = 0.1) 39 0.0279 0.1038

eFMM (δ0 = 0.2) 13 0.0434 0.1614

eFMM (δ0 = 0.5) 4 0.0487 0.1810

Fig. 4. Short-term load forecast.

4 Conclusion

This paper has introduced a generalized evolving fuzzy min-max regression algo-
rithm. The algorithm uses hyperboxes to granulate the data space, and associates
a functional fuzzy rule with each hyperbox to develop models from stream data.
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The current version continuously monitors the rule base, excludes unnecessary
rules, or merges similar ones to keep parsimonious models. Furthermore, some of
the user defined parameters are automatically tuned. The algorithm uses compu-
tationally fast operations such as maximum, minimum, and comparison. Because
of its recursive, one-pass learning nature, it is also memory efficient. Computa-
tional experiments show the efficiency of the algorithm when compared against
more complex approaches. Future work shall address the issue of how to either
automatically, or help the user to select all parameters the algorithm requires.
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Abstract. The methods of spatial clustering analyze the phenomenon under
study, identifying the significant and not significant clusters, which when used
individually do not exactly reflect the reality of the phenomenon studied.
However, with the combination of the methods it becomes possible to obtain
better results. The objective of this work was to perform a combination of
methods of spatial clustering, by using weighted average voting rule, for
identification of municipalities in the state of Paraiba more vulnerable to the
dengue fever. For methodology application, dengue fever cases in the state of
Paraiba-Brazil in the year of 2011 were used. The spatial Scan statistic,
Getis-Ord, Besag-Newell methods combined by the weighted average voting
rule were used in order to obtain a final map with the classification of each
municipality according to “priority municipalities”, “transition municipalities”
(which can become priority or not) and “non-priority”. This method allowed the
visualization of the spatial distribution of the dengue fever in all municipalities
of Paraiba, allowing to identify vulnerable municipalities to the dengue fever.
The levels of priority can help managers for decisions concerning the specific
characteristics of each municipality.

Keywords: Weighted average voting � Spatial clustering methods
Dengue fever � Combining classifiers

1 Introduction

The methods of Spatial clustering analyze the phenomenon under study identifying the
significant and not significant clusters. The methods Getis-Ord, Spatial Scan Statistics,
Besag-Newell, Tango, Geary and M Statistics are the most used in the area of spatial
statistics. These methods, when used individually, do not exactly reflect the reality of
the phenomenon studied. With the combination of the methods, though, it is possible to
obtain satisfactory results, indicating an analysis closer to the phenomenon reality. The
purpose of the combination of classifiers of spatial clustering is to improve the effi-
ciency of decision making, adopting rules of combination [1].

When implementing different spatial clustering methods, they have different
decision thresholds and generalizations. To use the combined information from mul-
tiple classifiers, the output of each classifier can be combined with the others, allowing
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a capability of generalization and stability of classification in the final decision [2]. The
results of combining multiple classifiers bring a general improvement in accuracy when
compared to individual classifiers, as it combines the independent decisions of each
classifier [3].

The only one paper found in the scientific literature was Holmes [1], which sug-
gests the combination for spatial clustering methods and provides interesting results for
dengue fever epidemiology in Brazil. As limitation of that study, they used binary
majority voting on significant and not significant p-values resulting from spatial
clustering methods.

Latif proposed a new algorithm for the weighted average voting based on a soft
threshold. It has some benefits over the previously introduced weighted average voters
for computing weights. It uses two tuneable parameters, each with a ready interpre-
tation, to provide a flexible voting performance when using the voter in different
applications. The weight assignment technique is transparent to the user because the
impact of the degree of agreement between any voter input and the other inputs is
directly reflected in the weight value assigned to that input. The voter can be tuned to
behave either as the well known inexact majority voting that is generally used in safety-
critical control systems at different voting planes or as a simple average voting used in
many sensory voting planes, giving better performance in terms of safety and avail-
ability [4].

This paper proposes the combination of spatial grouping methods through a new
approach based on the weighted average voting in p values resulting from the spatial
grouping methods directly. As advantage, all information available can be used in the
voting process and it brings an innovation. Beyond that, it strives to optimize results,
allowing provide more than two classes for municipalities as for instance: “priority”,
“transition” (which can become priority or not) and “non-priority”, which is important
to the knowledge of the health-disease process. In order to present the new approach
characteristics, a study of case was performed with goal of identification classes of
priority of Paraiba state municipalities for dengue fever in Brazil.

2 Materials and Methods

2.1 Study Characterization

The state of Paraiba-Brazil was selected as an area of research. It occupies a land area
of 56,585 km2, with a population of around 3.943.885 inhabitants, being constituted by
223 municipalities [5]. This study is characterized by being an ecological, retrospective
study with a quantitative approach, which used data of the secondary type of cases
reported in the Information System on Diseases of Compulsory Declaration/Dengue
(SINAN/Dengue) of the Department of Health of Paraiba, in 2011. Data from resident
population in each municipality were obtained from the Brazilian Institute of Geog-
raphy and Statistics [5].

Dengue fever is a systemic and dynamic viral disease and has a wide clinical
spectrum that includes both severe and non-severe manifestations, transmitted by the
Aedes mosquito and its incidence has increased about 30 times over the last 50 years.
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Estimates from the World Health Organization (WHO) indicate that in 2014, about 2.3
million individuals were diagnosed with dengue fever in the world. The registered
incidence rate was around 455.4 per 100,000 inhabitants (inhab.) in the world [6].

In Brazil, 1.452.489 new cases were reported in 2013 in the SINAN. Regarding the
incidence rate (IR), the year 2011 showed a rate of 400/100,000 inhab., with a decrease
in 2012, with a value of 303.9/100,000 in hab. and significant growth in 2013, with a
rate of 722.4/100,000 inhab. In the state of Paraiba, 7,366 suspected dengue fever cases
were reported in 2014, of which 3,442 were confirmed cases. All regions of the country
showed a reduction of reported cases, and the Southeast had the most significant
decrease (67%), followed by the South (64%), the Midwest (58%), Northeast (42%)
and the North (12%) [7].

The factors contributing to this large quantity of cases are impoverished urban
areas, suburbs and rural areas, but it also affects the richest regions in tropical and
subtropical countries [6]. In this context, with the high incidence of dengue fever cases
in the state of Paraiba, an interesting question to raise is how this morbidity is dis-
tributed spatially.

A combination of spatial clustering methods using majority voting rule was pro-
posed by study [1]. A general kind of combining spatial clustering methods is pre-
sented in the Fig. 1. A predefined N (N > 1) spatial clustering methods are applied on
epidemiological database and their results are combined in order to provide a decision
map, in which subareas are identified with different degree of priority.

A refinement of the database was performed to identify the variables of interest:
year of the notification and municipality of residence of the reported case. Normality
distribution for data was tested by the Lilliefors test [8]. The test identifies data that do
not follow a normal distribution, and for this reason, nonparametric spatial clustering
methods were used in this study.

In study [1] the authors used the Getis-Ord, Spatial Scan Statistics and Besag-
Newell spatial clustering methods, aggregated by majority voting. As a result,
municipalities are classified in two classes of priority: priority and non-priority. In
otherwise, in this paper, combining classifiers was performed using the same three
methods (Fig. 1), but preserving probability values from spatial clustering methods,
which are used as input for weighted average voting rule, in order to obtain a final map
with the classification of each location.

Spatial
Clustering
Method 1 Combination 

Method
Decision

MapSpatial
Clustering
method N

Fig. 1. The combination model of spatial clustering methods.
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2.2 Relative Risk

The relative risk (RR) is a measure of frequency which measures the probability of an
individual being affected by a disease. It is a measure that represents the occurrence of a
phenomenon in an area with respect to the entire study area [9]. Its calculation is given
by the ratio of the incidence rate in a sub-region and the incidence rate in the region in
its entirety. Next, the result obtained is divided in classes, and thereby generates a
choropleth map (colored) associating a color to each preset interval. Such maps allow
the comparison of information from different areas, because it standardizes the data
removing, thus, the effect of different populations. This study follows the interpretation
of Relative Risk through classes displayed in Table 1.

The RR map was used in a comparison with the outputs of spatial clustering
methods for choosing the most appropriate map, i.e., the one which showed significant
clusters of regions that coincided with the highest risk regions in the RR map.

2.3 Spatial Scan Statistic

The Scan statistic, proposed by Kulldorff and Nagarwalla [10], aims to identify clus-
ters. To this end, the association of the information of the area with a single point
within a polygon is done, be it a circle [11], an ellipse [12], a rectangle [13] or other
geometrical shape [14]. This point is called centroid, representing the center of mass of
each area of the region. For this study a circular shape was used, since it facilitates the
observation of the functionality of the method.

The method, in turn, makes a search through the entire region to find areas where a
phenomenon is significantly more likely to occur. With this, it handles all sets of
possible candidates for clusters, centering circles of arbitrary radius in the centroid of
each covered area of the region and calculating the number of occurrences within that
circle [15]. If the value of observed occurrences is greater than expected, the area
demarcated by the circle is called cluster, if not, the circle radius is increased until it
involves other centroids. The process is repeated until all centroids have been tested
and the null hypothesis is that there is no clusters in the study region [16].

There are two models for the Scan statistic, Binomial and Poisson [10]. The
Poisson model is adopted for this study, as the number of events in each area is
considered to be distributed according to the known population at risk. Therefore, the
Poisson model consists of computing the centroids’ radius whose p zð Þ values, which

Table 1. Interpretation of relative risk through classes.

Relative risk Interpretation of relative risk

0 � x < 0.5 Very low risk
0.5 � x < 1 Low risk
1 � x < 1.5 Medium risk
1.5 � x < 2 High risk
x � 2 Very high risk
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represents cases in the circle, and q zð Þ, which are the cases out of the circle, maximize
the likelihood function conditioned to the total of cases observed [16]. For the z circle,
there is the following statistic Eq. 1 [17]:

k ¼ maxz�Z
Lðz; p̂ðzÞ; q̂ðzÞÞ

L0
; ð1Þ

where p̂ zð Þ and q̂ zð Þ are estimators for p zð Þ and q zð Þ and Z ¼ fz1; . . .; zkg is the set of
all possible cluster candidates. The calculation of L0 is given by Eq. 2:

L0 ¼ CC M � Cð ÞM�C

MM ; ð2Þ

where C is the total of observed cases in the region of study and M is the total
population. L z; p̂ðzÞ; q̂ðzÞð Þ can be defined as Eq. 3:

L z; p̂ zð Þ; q̂ zð Þð Þ ¼ exp �p zð Þnz � q zð Þ M � nzð Þ½ �
C!

p zð ÞCzq zð ÞC�Cz
Y

i
Ci; ð3Þ

where nz is the number of individuals at risk in circle z, in this case, at risk of
contracting dengue fever; exp represents the exponential function and cz and
ci i; z ¼ 1; 2; . . .; kð Þ are, respectively, the number of cases in circle z and in circle i.

Based on the above, the circle starts in a single centroid, being calculated the k
value for each new centroid involved. Next, the k that has greater value and the
significance of the test via Monte Carlo simulation are recorded. The process is
repeated for each of the centroids of the study region [18]. There is a restriction on the
percentage of the population at risk, in which the search radius increases until it covers
at maximum x% of the population. However, there is no standardization of this per-
centage, it is only recommended that it does not exceed 50% of the population, being
necessary the comparison of the percentage with the relative risk maps.

Such method is non-parametric, i.e., it does not depend on the statistical distribu-
tion. Because of this assumption, tests were conducted in order to verify the normality
of the data, coming to the conclusion that they do not have a distribution that
approximates the normal. Therefore, it is possible to make use of statistical Scan.

2.4 Getis-Ords

The index of Getis-Ord can be applied to data with a non-normal distribution, with the
purpose of measuring a nonparametric spatial autocorrelation. The indexes of Getis-
Ord are estimated from neighbor groups of critical distance d in each area i. The critical
distance is formed from a proximity matrix W, where each element is defined in
function of the critical distance, wij dð Þ [19].

Getis-Ord proposed two statistical functions: the global index G dð Þ, which is
similar to traditional measures of spatial autocorrelation, and local indexes Gi and GA

i ,
which are spatial association measures for each area i. From a level of significance,
which can be defined as the probability of rejecting the null hypothesis (existence of
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spatial autocorrelation), the p-value is compared to the generated index. Its evaluation
is made from the positive value and significance: the positive and significant value of
G dð Þ indicates spatial clustering of high values. In contrast, negative and significant
values of G dð Þ indicate spatial clustering of low values [19].

A second type of statistic suggested by Getis-Ord is a measure of association for
each individual spatial unit for each observation i, where Gi and GA

i indicate the extent
to which this position is surrounded by higher values or lower values for the variable.
This index is simply a ratio of the sum of the values in the surrounding positions to the
sum of the values in the data series as a whole (excluding the considered position) [19].

The local index is interpreted as follows: the positive and significant standardized
values (p-value lower than 5%) report a spatial clustering of high values. The negative
and significant standadized values of statistics (p-value lower than 5%) indicate a
spatial clustering of low values (Table 2).

2.5 Besag-Newell

Besag-Newell proposed a method with a visual output of multiple overlapping circles
of varying sizes and covering the whole of the study area, whose centroids of each
subregion are their centers [20]. Denoted by Besag-Newell, the method determines the
required radius the circle must have to contain at least k cases inside. The procedure
starts with a circle of radius equal to zero. If it contains k or more cases, the process is
interrupted; otherwise, the radius is increased until the circle includes the nearest
centroid. This way, their respective cases and exposed population are added. Thus, the
radii are defined in such a way to include new centroids when necessary, executing this
process until there are at least k cases inserted in the circle [21].

The interpretation is done in the following way: if the p-value obtained is less than
the adopted significance the cluster is said significant. Thus, after obtaining all the
circles that encompass a number k of cases through the Besag-Newell method, only
significant circles are drawn on the map (p-value < a). Generally the choice of a is
made to allow many simultaneous tests and values lower than the usual significance
0.05 or 0.01 are considered [21].

Table 2. Interpretation of local index.

Negatives*** Negative Index with p-value lower than 0.005
Negatives** Negative Index with p-value between 0.005 e 0.025
Negatives* Negative Index with p-value between 0.025 e 0.05
Negatives Negative Index with p-value higher than 0.05
Positives Positive Index with p-value higher than 0.05
Positives* Positive Index with p-value between 0.025 e 0.05
Positives** Positive Index with p-value between 0.005 e 0.025
Positives*** Positive Index with p-value lower than 0.005
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2.6 Combining Spatial Clustering Methods

In the scientific literature, several cases can be found, in which combining multiple
classifiers provided an improvement of the results with respect to each individual
classifier performance. So, that combination makes them more efficient [22–25].
Combining classifiers can be done using three architectures:in sequential (or linear)
way, in parallel or hierarchically [25]. In order to provide the final decision, an
architecture should be chosen, as well as a combination scheme of classifiers, which is
called combiner [1].

In this study, combining spatial clustering methods was performed using Getis-Ord,
Spatial Scan Statistics and Besag-Newell methods. They were aggregated by weighted
average voting in order to provide a map where municipalities of a state were labeled as
“priority” (colored brown on the decision map), “in transition” (municipalities can
become priority or non-priority, and they are colored yellow on the decision map) and
“non-priority” (colored beige on the decision map).

Given a set of inputs (redundant module results) x1; x2 and x3 for a particular voting
cycle, a distance measure based weighted average voter determines the numerical
distance of input pairs, d12 ¼ x1 � x2j j; d13 ¼ x1 � x3j j and d32 ¼ x3 � x2j j from which
weighting values of individual inputs, w1; w2 and w3 are computed. A module result
which is far away from other module results is assigned a smaller weight value
compared with a result that is close to any of the other module results. The weight
values are then used to calculate a single value as the voter output [4].

Latif-Shabgahi [4] proposes a new voting that uses the concept of light threshold
for determining the degree of proximity of all entries in the voting pairs. For all input
voting pairs i and j; the degree of proximity Sij is defined as follows Eq. 4:

Sij ¼
1 if dij � a

n
n�1

� �
1� dij

n:a

� �
if a\dij\n:a

0 if dij � n:a

8><
>:

ð4Þ

where dij is the numerical distance of the input pairs i and j; one is the fixed voting
threshold value (used in conventional voters of inexact majority), and n is a tunable
proportionality constant, parameter to be used to control the voting. We call Sij the
indicator according to the input pairs xi and xj: for input pairs with a distance less than a
threshold specified in an application; Sij ¼ 1; and for those with a distance greater than
n:a (where n is a constant of proportionality) S_(ij) = 0. For input pairs with a distance
between a and n:a, a value from the range [0, 1] is given to Sij.

According to the values of the computed indicators for all voter input pairs, the
weighted value of each voter i is defined based on the following Eq. 5 (m - assumed
input).

wi ¼
Pm

j¼1; j6¼1 sij
m� 1

i; j ¼ 1; . . .m; where i ¼ j : sij¼0

�� ð5Þ
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The voter output is given by Eq. 6:

y ¼
Pm

i¼1 xi:wiPm
i¼1 wi

ð6Þ

3 Results and Discussion

In the year 2011, 11,490 cases of dengue fever were reported in the state of Paraiba,
Brazil, SINAN, 2014. From that data, it was used the Poisson probability model for the
spatial Scan method in order to identify spatial clusters. Population percentages of
0.1%, 0.5%, 0.7% and 1% were tested, to know which presents better results, when
compared with the map of relative risk. The appropriatest percentage was the one with
restriction of 0.1% of the population.

Figure 2 shows the RR map for 2011, which illustrates dengue fever behavior in
the municipalities of Paraiba, where the RR presented values between 0 (zero) and 6.07
per 100,000 inhabitants. Spatial analysis of cases through the Scan statistic identified
clusters of high and low risk. Forty-eight (48) municipalities belong to spatial clusters
for that year, with a percentage of the population of 0.1%. It is possible to verify
regions coincidence when comparing the Scan map with the relative risk map, with
respect to regions with the greatest RR indexes and those ones with significant spatial
clusters.

In Fig. 3(a), the resultant map of applying the Getis-Ord method, it was observed
that only some municipalities present spatial clusters of high values. These were
located mostly in the regions of Central and West in Paraíba. The clusters of low values
were distributed in an heterogeneous way in the state of Paraiba. In the map resulting
from the Besag-Newell method for dengue fever data in 2011 (Fig. 3b), several spatial

Fig. 2. (a) Relative Risk Map and (b) spatial Scan of dengue fever cases according to
municipality of residence. Paraíba, Brazil, 2011.
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clusters were observed in all regions. There was a concentration of clusters in the West
region in the state of Paraíba. The Lest region in the state of Paraíba had the lowest
number of spatial clusters.

The combination of the three spatial clustering methods (spatial Scan statistic,
Besag-Newell method and Getis-Ord statistic) by weighted average voting generated
the decision map, which is shown in Fig. 4. In that Figure, it is possible to note 37
priority municipalities, 17 transition municipalities and 169 non-priority municipalities.
When it is compared the maps obtaining from the each one of three methods (Figs. 2
and 3) with the decision map (Fig. 4), the coincidence in the concentration of
municipalities in the region Central and West as well as in municipalities with large
populations are remarkable.

Fig. 3. (a) Getis-Ord map and (b) Besag-Newell map of dengue fever cases according to
municipality of residence. Paraíba, Brazil, 2011

Fig. 4. Decision map for the combination of spatial clustering methods through weighted
average voting for dengue fever cases. Paraíba, Brazil, 2011.
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This concentration in less developed municipalities or the most densely populated
municipalities can be justified by an association of demographic, ecological and
socioeconomic factors to the spread of dengue fever. In literature have shown that areas
with the highest human population densities are associated with the higher risk cate-
gories for dengue fever [26].

The inverse relation between infection and income is well known, since morbidity
is correlated with housing conditions, access to urban sanitation services, and espe-
cially the quality of life of the region, in general. Corroborating the results [27], related
dengue fever virus epidemics and high-risk population groups with demographic
parameters such as age distribution and age-dependent behavior at the local level. They
have affirmed that variations in socioeconomic status, housing and housing density
standards should also be investigated for a potential role in the disease group.

It is observed, in relation to educational level, that lower information available,
implies higher spread of the vector. Have observed that the majority of the population
that has few years of formal education have a higher predominance of dengue fever
records [28]. In studies have affirmed that public education is essential to mitigate the
dengue fever epidemic through improved preventive practices [29].

It is known that the eradication of dengue fever is uncertain, because it depends on
several factors related to the disease. The most efficient and cost-effective measure, so
far, is to combat the vector (Aedes aegypti). The joint efforts made by society and
government are key to an organized urban environment, whether it is sanitary super-
vision and access to health services, or even educational measures and population
awareness so that all are active in combating the disease, particularly in the most
affected districts.

4 Conclusion

In this paper was proposed a new combining of spatial clustering methods. It is based
on weighted average voting approach. The previous paper used binarizing the infor-
mation. This new approach allows using all available information available. It opens a
new path in the area of spatial statistics, and provide better agreement with relative risk
map.

A case study was carried out with goal of identifying priority classes for dengue
fever for municipalities in Paraíba State, Brazil. The combination of spatial clustering
methods allowed to visualize that the municipalities of the Central and West regions of
Paraíba, are vulnerable to dengue fever. This result can support managers for decision
making regarding the specificities of each locality.
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Abstract. Living better, with health and stay prepared for the challenges on
getting older is becoming one of the most concerns for people. In USA, there are
studies that have shown that the amount of people living alone or, at most, with
just one person, is increasing over the years. Technology products applied for
health are receiving prominence because they help those people to achieve their
goals. Considering this, the article proposes a multi-agent system architecture
that uses IoT devices to monitor patients’ heart signals and, using fuzzy logic
process, estimates the level of hypertension, considering systolic pressure,
diastolic pressure, age and body mass index. Information of 768 patients were
obtained from “Pima Indians Diabetes Data Set” public database and used to
evaluate the performance of the presented fuzzy logic model. The results of such
fuzzy logic were compared with an evaluation made by accredited nurses,
reaching a 94.40% of positive predictiviness in the diagnosis.

Keywords: Fuzzy logic � Multi-agent system � Health � IoT

1 Introduction

In developed countries, such as USA, there are benefits from sweeping advances in
nutrition, sanitation, and medicine that transformed public health practice and increased
average lifespan during the first half of the twentieth century [1]. Figure 1 depicts the
evolution of American’s expectance of life, where in 2012 there were 43 million
Americans with 65 years or more, and in 2050 the expectance is an increase of
approximately 200%.

Blood pressure (BP) measurements are usually used to diagnose Hypertension.
Casual BP measurements are of limited value because they do not reflect the circadian
variation in BP, the “white-coat effect,” regression to the mean, observer bias, and other
factors [16]. There are other factors that contributes to the variability of blood pressure,
such as sex, age and BMI.

In the last decade, wearable devices have attracted much attention from the aca-
demic community and industry and have recently become very popular. The most
relevant definition of wearable electronics is the following: “devices that can be worn
or mated with human skin to continuously and closely monitor an individual’s activ-
ities, without interrupting or limiting the user’s motions” [2]. Currently, mobile apps
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and wearable devices have been integrated with medicine purposes, structuring the
medical internet of things. IoT has areas residing on medical and health care [3].
Interconnection of sensors and medical devices has been the goal of many industry
players, considering that this is part of the core of IoT. This research has been con-
ducted in order to provide an environment on which technology can improve people’s
health and welfare.

In this article, a Multi-Agent solution using IoT that monitors heart signals, pro-
cesses remotely the information gathered from the device, and infers diagnosis related
to high blood pressure is proposed. The solution proposed applies fuzzy logic, a
multi-agent system and a publish/subscribe pattern. It is organized with theoretical
reference on Sect. 2, related works on Sect. 3, the architecture of the MAS on Sect. 4,
Sect. 5 presents the application and results of the solution proposed, and Sect. 6
concludes the article and brings future works.

2 Theoretical Reference

2.1 IoT Healthcare Networks

One of the most important elements of the IoT in healthcare is the IoT Healthcare
Network (IoThNet) [19]. It provides access to the IoT backbone, facilitates medical
data transmission and reception, and enables the use of healthcare-tailored communi-
cations. The way on which sign data are gathered using sensors, such as ECG, Blood
Pressure, etc., and how IoThNet topology distributes, processes and visualizes those
data are depicted over Fig. 2.

Fig. 1. Evolution of Americans’ expectance of life
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2.2 Sensors and Controllers

In order to get the electrical activity from the heart over a period of time, it is necessary
using electrodes placed on the skin, and a shield connected to those electrodes over
wires. There are several types of shields available on the market, such as the AD8232
Heart Rate Monitor Hookup [4], to provide ECG. That hardware works with an
Arduino or NodeMCU board.

Arduino consists of both a physical programmable circuit board (often referred to
as a microcontroller) and a piece of software, or IDE (Integrated Development Envi-
ronment) which runs on a computer and is used to write and upload computer code to
the physical board. NodeMCU is an open source IoT platform, that includes firmware
which runs on a Wi-Fi environment. These devices are shown on Fig. 3.

2.3 Publish/Subscribe Pattern

Considering software architecture, there are patterns which are used as a solution that
can be reused in order to solve problems related to software architecture within a given
context. The publish/subscribe pattern belongs to message pattern which describes how

Fig. 2. A conceptual diagram of IoT-based ubiquitous healthcare solutions [19].

Fig. 3. (A) AD8232, (B) Arduino, (C) NodeMCU.
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two different parts of a message passing system connect and communicate with each
other. The way a publish/subscribe pattern works is presented in Fig. 4.

2.4 Fuzzy Logic

The context of the theory of fuzzy sets, presented by Zadeh [5] was used to introduce
Fuzzy logic. A fuzzy set is a class of objects with a continuum of grades of mem-
bership. Such a set is characterized by a membership (characteristic) function which
assigns to each object a grade of membership ranging between zero and one. The
notions of inclusion, union, intersection, complement, relation, convexity, etc., are
extended to such sets, and various properties of these notions in the context of fuzzy
sets are established.

While variables usually take numerical values in mathematics, in fuzzy logic
applications non-numeric values are often used to facilitate the expression of rules and
facts. A linguistic variable such as height may accept values such as tall and its antonym
short. Because natural languages do not always contain enough value terms to express a
fuzzy value scale, it is common practice to modify linguistic values with adjectives or
adverbs [6]. As shown in Fig. 5, fuzzy logic process consists in four main steps:

• Fuzzifier Module - It transforms the system inputs, which are crisp numbers, into
fuzzy sets.

• Rule Base - It stores IF-THEN rules provided by experts.
• Inference Engine - It simulates the human reasoning process by making fuzzy

inference on the inputs and IF-THEN rules.
• Defuzzifier Module - It transforms the fuzzy set obtained by the inference engine

into a crisp value.

Membership functions are used to quantify linguistic term and represent a fuzzy set
graphically. A membership function for a fuzzy set A on the universe of discourse X is
defined as

lA : X ! 0; 1½ � ð1Þ

Fig. 4. Publish/Subscribe pattern.
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2.5 Multi-Agent Systems (MAS)

In artificial intelligence research, the agent-based approach is now extremely popular in
software engineering [18]. It has also infiltrated the area of operating systems, where
autonomic computing refers to computer systems and networks that monitor and
control themselves with a perceive–act loop and machine learning methods. According
to Russell and Norving [7], an agent is “anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through actuators.”
Figure 6 shows the elements of an agent.

Increasingly, multiple agents that can work together are required by applications.
A multi-agent system (MAS) is a loosely coupled network of software agents that
interact to solve problems that are beyond the individual capacities or knowledge of
each problem solver [8].

Fig. 5. Fuzzy logic overview.

Fig. 6. Elements of an agent [7].
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3 Related Works

Considering that data exchange performs a vital role in healthcare, a Publish/Subscribe
based Architecture moderated through a web service that can enable an early exchange
of healthcare data among different interested parties e.g. doctors, researchers, and
policy makers was proposed by Wadhwa et al. [9].

Studies about lifestyle profiling were presented by Días-Rodríguez et al. [17]. They
proposed an ontology which is a fuzzy version and augmentation of the wearables
ontology presented in [18]. Fuzzy Description Logics was used, because it is a
well-known family of logics for knowledge representation. They are considered the
main formalism to represent fuzzy ontologies. The fuzzy datatypes in that fuzzy
ontology were automatically learnt from data records using clustering algorithms.

The interest in keeping a good health status through the use of monitoring devices
has been growing during last decade. Considering this, a two-stage fuzzy logic
approach in which the device tries to learn and fit customer habits to discover outlier
warning signals was proposed by Santamaria et al. [10].

4 MAS Solution Architecture Using IoT

It is important to know and understand where the agents will work. As stated by
Russell [7], the task environment involves the PEAS (Performance, Environment,
Actuators, Sensors) that should be described when designing an agent, as described on
Table 1.

The architecture proposed consists in three agents. The embedded multi-agent
architecture that we propose for our MAS/IoT solution using Publish/Subscribe Pattern
is resumed in Fig. 7.

All Agents works separately. The Mobile Agent works catching the vital signs of
the user. The Processing Agent can process information through fuzzy logic and infer
how the blood pressure of the user is going, based on four parameters - systolic blood
pressure, diastolic blood pressure, age and body mass index, and indicates some
abnormality. The Monitoring Agent gets the process result which is shown on an
output device. Publish/Subscribe Pattern allows the connectivity of this environment.

Table 1. PEAS description of the task environment

Agent type Performance
measure

Environment Actuators Sensors

Mobile Correct signals Home Pub/Sub topic ECG/PPG
sensors

Processing Diagnosis
accuracy

Cloud Pub/Sub topic Pub/Sub
topic

Monitoring Availability
time

Monitor
centre

Mobile phone screen/
Monitor screen

Pub/Sub
topic
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In this article we proposed a MAS/IoT solution, that consists in:

1. Publish/Subscribe environment using MQTT broker;
2. Mobile Agent: consists in a mobile MQTT client encapsulated on a physical device

containing ECG sensors and NodeMCU board, eliminate some noise, and publish
on a topic on MQTT broker. Each mobile agent should have unique Id of the user
and information of age and BMI.

3. Processing Agent: There is a subscriber service developed in python that gets the
published data. As proposed in [13], we developed a fuzzy expert system using R
[16], for the management of hypertension (High Blood Pressure), that classifies the
hypertension risk as Mild, Moderate or Severe. The results are stored on the
database and published on a topic named “alerts” on MQTT broker;

4. Monitoring Agent: The results can be shown in two ways: NodeMCU with a Led,
that is a subscriber of a specific patient pre-configured topic, and a website that
access the database and show the results according to available filters.

5 Application and Results

In order to implement the proposed MAS/IoT solution, we used AD8232 and
MAX30100 shields and nodeMCU board considering the mobile agent. The MQQT
[12] connected the environment. Regarding estimation of blood pressure using ECG
and PPG signals, we followed Kumar and Ayub [4]. In [13] it is proposed a web-based
fuzzy expert system for the management of hypertension (High Blood Pressure), whose
classifiers can detect the hypertension risk as Mild, Moderate or Severe.

The solution has been used in two ways: first, using ECG and EPP sensors,
allowing that all three agents could be used. Second, we imported the “Pima Indians
Diabetes Data Set” from UCI Machine Learning Repository Database [14] into
MySQL database, allowing the processing agent to be used in its fullness, using real
data from 768 distinct patients.

Some adjustments were made on classifiers to keep them aligned to 7th Brazilian
Director of Blood Hypertension [10]. The input membership function for input
parameters is shown in Fig. 8.

Fig. 7. Architecture proposed - MAS (3 agents).
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The input membership functions considered the following:

– SBP (Trapezoidal): Mild, Moderate, Severe
– Diastolic (Trapezoidal): Mild, Moderate, Severe
– Age (Trapezoidal): Young, Middle-Aged, Old, Very Old
– Body Mass Index (Trapezoidal): Low, Normal, High, Very High

The output membership function considered the following, as shown in Fig. 9:
Blood Pressure (Trapezoidal): Mild, Moderate, Severe

Fig. 8. Input membership functions.

Fig. 9. Output membership function.
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Using the first way, the data was validated and published on MQTT broker. After
that, the published values are taken by Processing Agent and the information is pro-
cessed using fuzzy logic. When some abnormality was detected, the inferred diagnostic
was published on MQTT broker into an alert topic. Finally, the Monitoring Agent has a
feature as subscriber of that alert topic and when any alert is read, the NodeMCU turn
its LED on, meaning that some ab-normality was detected. During the tests using this
first method some inconsistences where detected, indicating improvements in the code.

Considering the second way of use the application, to validate the applied fuzzy
logic, the data stored into MySQL database was processed by the Processing Agent,
and the results were stored into another table of the database. Figure 10 presents the
achieved results by diagnosis.

Using either fuzzy or nurse evaluation, the severe diagnosis where the same – 57
patients. The moderate diagnosis had a little difference applying those evaluation – 215
for nurse and 194 for fuzzy (difference on 21 results). The mild diagnosis was the most
expressive representation, but the difference between the evaluation methods – 476 for
fuzzy and 455 for nurse (difference on 21 results).

Analyzing the universe set of 768 patients on the database, 41 patients data were
considered invalid due to some constraints, such as diastolic blood pressure value
equals to zero. As shown in Fig. 11, the remaining universe of 727 patients, we had an
amount of 41 where the diagnosis given by the nurses and fuzzy don’t match, and 686
that match.

The monitoring agent has taken the results of processing stored in the database and
made available through a web page with search filters. Moreover, that agent turned the
led of the shield on, taking into account that some alert topic was generated on MQTT
broker.

Fig. 10. Achieved results by diagnosis.
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6 Conclusion

Multi-agent systems working together with IoT devices has been increasing in last
years. Moreover, applying a certain level of artificial intelligence on some of those
agents makes things become better, considering fast and precise diagnosis. This article
shows an implementation of such agents in order to capture ECG and PPG signals,
using affordable hardware devices, and the due treatment of them.

In addition, the application of the implemented model based on fuzzy logic for the
diagnosis of blood pressure level, with data obtained from public databases, was
interesting, achieving a positive predictivity of 94.40% in High Blood Pressure
Diagnosis.

As a future work, we intend finish the integration of this model that uses fuzzy logic
within an agent as proposed in the architecture, turning all elements into a single
solution and improve the code to calculate systolic and diastolic blood pressure from
ECG and PPG data.
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Abstract. Six examples of powerset theories based on lattice-valued
fuzzy sets are presented and relations between these powerset theories
and F-transforms are investigated. It is proved that powerset extensions
corresponding to these powerset theories are identical to, or restrictions
of the F-transforms with respect to spaces with fuzzy partitions, consist-
ing of objects of corresponding powerset theories.

1 Introduction

In fuzzy set theory there are two important methods which are frequently used
both in theoretical research and applications. These methods are the powerset
theory and the F-transform. Both these methods were in full details and theoreti-
cal backgrounds introduced relatively recently and, in the present, both methods
represent very strong tools in the theory and applications.

The powerset structures are widely used in algebra, logic, topology and also
in computer science. The standard example of a powerset structure P (X) = {A :
A ⊆ X} and the corresponding extension of a mapping f : X → Y to the map
f→

P : P (X) → P (Y ) is widely used in almost all branches of mathematics and
it applications, including computer science. For illustrative examples of possible
applications see, e.g., the introductory part of the paper of [22]. Because the
classical set theory can be considered to be a special part of the fuzzy set theory,
introduced by [25], it is natural that powerset objects associated with fuzzy
sets were soon investigated as generalizations of classical powerset objects. The
first approach was done again by Zadeh [25], who defined [0, 1]X to be a new
powerset object Z(X) instead of P (X) and introduced the new powerset operator
f→

Z : Z(X) → Z(Y ), such that for s ∈ Z(X), y ∈ Y ,

f→
Z (s)(y) =

∨

x,f(x)=y

s(x).

A lot of papers were published about Zadeh’s extension and its generalizations,
see, e.g., [5,9,11,13,19–22]. Zadeh’s extension was for the first time intensively
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studied by Rodabaugh in [19]. This paper was, in fact, the first real attempt to
uniquely derive the powerset operator f→

Z from f→
P and not only explicitly stip-

ulate them. The works of Rodabaugh gave very serious basis for further research
of powerset objects and operators. That new approach to the powerset theory
was based on application of the theory of monads in clone form, introduced by
Manes [8]. A special example of monads in clone form was introduced by Rod-
abaugh [21] as a special structure describing powerset objects. In the papers [9]
and [11] we presented some examples of powerset theories based on fuzzy sets
which are generated by monads in clone form.

Another important method which was recently introduced in the fuzzy set
theory is the F-transform. This theory was in lattice-valued form introduced
by Perfilieva [17] and elaborated in many other papers (see, e.g., [14–16,18]).
Analogically as the powerset operator f→

P : P (X) → P (Y ), F-transform is a
special transformation map F : LX → LY , that transforms L-valued fuzzy sets
defined in the set X to L-valued fuzzy sets defined in another set Y.

Fuzzy transforms represent new methods that have been successfully used in
signal and image processing [1,2,5], signal compressions [14], numerical solutions
of ordinary and partial differential equations [7,23,24], data analysis [3,4,16] and
many other applications.

The aim of the paper is to show that there exists a very close relation between
these two theories. Namely, we show that many of powerset theories are, in fact,
identical to F-transforms, or are restrictions of the F-transforms. Especially, it
holds for powerset theories T = (T,→, V, η) in a category K, such that for any
object X ∈ K there exists a natural embedding iX : T (X) ↪→ LX .

In the paper we introduce six examples of powerset theories T in the cate-
gories Set of sets, the category Set(L) of sets with similarity relations and in the
category SpaceFP of spaces with fuzzy partitions, respectively, and we prove
that all these powerset theories are, in fact, restrictions of F-transforms. Hence,
in those examples, both theories coincide. This relation between powerset theo-
ries and F-transforms enables us to apply together all methods and tools used
in both theories.

2 Preliminary Notions

In this section we present some preliminary notions and definitions which could
be helpful for better understanding of results concerning sets with similarity
relations and other tools. A principal structure used in the paper is the complete
residuated lattice (see e.g. [23]), i.e., a structure L = (L,∧,∨,⊗,→, 0, 1) such that
(L,∧,∨) is a complete lattice, (L,⊗, 1) is a commutative monoid with operation
⊗ isotone in both arguments and → is a binary operation which is residuated
with respect to ⊗, i.e.

α ⊗ β ≤ γ iff α ≤ β → γ.

Recall that a set with a similarity relation (or L-set) is a couple (X, δ), where
δ : X × X → L is a reflexive, symmetric and ⊗-transitive map. In the paper we
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use the category Set(L) of L-sets as objects and with maps f : X → Y such that
γ(f(x), f(y)) ≥ δ(x, y), for all x, y ∈ X, as morphisms f : (X, δ) → (Y, γ). If ↔
is the bi-residuum operation in L, then ↔ is a similarity relation in L and we
can consider the L-set (L,↔). A morphism f : (X, δ) → (L,↔) in the category
Set(L) is called an extensional map with respect to δ. The set of all extensional
maps with respect to (X, δ) is denoted by F (X, δ).

Recall that a cut in a set X is a system (Cα)α∈L of subsets of X such that
Cα ⊆ Cβ if α ≥ β, and the set {α ∈ L : a ∈ Cα} has the greatest element for
any a ∈ X. By D(X) we denote the set of all cuts in X.

Analogically as in classical sets, in L-sets we can define the so called f-cuts.

Definition 1 ([10]). Let (X, δ) be an L-set. Then a system C = (Cα)α of sub-
sets in A is called an f-cut in (X, δ) in the category Set(L) if

1. ∀a, b ∈ X, a ∈ Cα ⇒ b ∈ Cα⊗δ(a,b),
2. ∀a ∈ X,∀α ∈ L, ∨

{β:a∈Cβ} β ≥ α ⇒ a ∈ Cα.

The set of all f-cuts in (X, δ) is denoted by C(X, δ).
Any system of subsets (Cα)α in a set X can be extended to the f-cut (Cα)α,

defined by
Cα = {a ∈ X :

∨

{(x,β):x∈Cβ}
β ⊗ δ(a, x) ≥ α}.

The set C(X, δ) of all f-cuts in a L-set (X, δ) can be ordered by (Cα)α ≤ (Dα)α

iff Cα ⊆ Dα, for each α ∈ L. Then C(X, δ) is a complete ∨-semilattice, such
that

∨
i∈I(C

i
α)α = (

⋃
i∈I Ci

α)α.
We recall some basic facts about the F-transform method. Recall that a core

of a (L-valued) fuzzy set f : X → L is defined by core(f) = {x ∈ X : f(x) = 1}.
A normal (L-)valued fuzzy set f in a set X is such that core(f) = ∅.

The F -transform in a form introduced by Perfilieva [18] is based on the so
called fuzzy partitions on the crisp set. It should be noted that the definition
introduced in [18] differes from the standard definition of a fuzzy partition, which
is mostly defined by a L-valued similarity relation.

Definition 2 ([18]). Let X be a set. A system A = {Aλ : λ ∈ Λ} of normal
L-valued fuzzy sets in X is a fuzzy partition of X, if {core(Aλ) : λ ∈ Λ} is a
partition of X. A pair (X,A) is called a space with a fuzzy partition. The index
set of A will be denoted by |A|.

In the paper [12] we introduced the category SpaceFP of spaces with fuzzy
partitions.

Definition 3. The category SpaceFP is defined by

1. Fuzzy partitions (X,A), as objects,
2. Morphisms (g, σ) : (X, {Aλ : λ ∈ Λ}) → (Y, {Bω : ω ∈ Ω}), such that

(a) g : X → Y and is σ : Λ → Ω are mappings,
(b) ∀λ ∈ Λ, Aλ(x) ≤ Bσ(λ)(g(x)), for each x ∈ X.
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3. The composition of morphisms in SpaceFP is defined by (h, τ) ◦ (g, σ) =
(h ◦ g, τ ◦ σ).

Objects of the category SpaceFP represent ground structures for a fuzzy
transform, firstly proposed by Perfilieva [17] and, in the case where it is applied to
L-valued functions with L-valued partitions, in [18]. Lattice-valued fuzzy trans-
forms are defined in two variants - lower and upper F-transforms. In the paper
we deal with the upper F-transform only.

Definition 4 ([18]). Let (X,A) be a space with a fuzzy partition A = {Aλ : λ ∈
|A|}. The (upper) F-transform of functions from LX with respect to the space
(X,A) is a function FX,A : LX → L|A|, defined by

f ∈ LX , λ ∈ |A|, FX,A(f)(λ) =
∨

x∈X

(f(x) ⊗ Aλ(x)).

In the residuated lattice L we can define a fuzzy partition L = {Lα : α ∈ L},
such that Lα(β) = α ↔ β, β ∈ L.

The following notion of the extensional fuzzy set in the category SpaceFP
extends the notion of the extensional mapping in the category Set(L).

Definition 5. A mapping f : X → L is called the extensional L-fuzzy set in
a space with a fuzzy partition (X,A) in the category SpaceFP, if there there
exists a map σ : |A| → L, such that (f, σ) is a morphism (X,A) → (L,L) in the
category SpaceFP. By F (X,A) we denote the set of all extensional fuzzy sets
in (X,A).

In [12] we proved that for any space with a fuzzy partition (X,A) it is possible
to construct the L-set (X, δX,A) with the similarity relation called characteris-
tic similarity relations of (X,A). The similarity relation δX,A is the minimal
similarity relation defined in X, such that for arbitrary map f : X → L, f is
extensional in (X,A) iff f is extensional with respect to δX,A. Hence, we have

F (X,A) = E(X, δX,A).

3 Examples of Powerset Theories

In this section we repeat the basic definition of the powerset theory and we
introduce six examples of typical powerset theories which are used in fuzzy sets
and are based on standard fuzzy objects. Our claim is to show, that all these
powerset theories are, in fact, identical to, or restrictions of the F-transform for
appropriate fuzzy partition.

In what follows, by CSLAT (∨) we denote the category of complete ∨-
semilattices as objects and with ∨-preserving maps as morphisms. By Set we
denote the classical category of sets with mappings. We introduce the definition
of a CSLAT (∨)-powerset theory, which we use in the sequel.
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Definition 6 (Rodabaugh [21]). Let K be a ground category. Then T = (T,→
, V, η) is called CSLAT (∨)-powerset theory in K, if

1. T : |K| → |CSLAT (∨)| is an object-mapping,
2. for each f : A → B in K, there exists f→

T : T (A) → T (B) in CSLAT (∨),
3. There exists a concrete functor V : K → Set, such that η determines in Set

for each A ∈ K a mapping ηA : V (A) → T (A),
4. For each f : A → B in K, f→

T ◦ ηA = ηB ◦ V (f).

In the paper we will deal with several examples of CSLAT (∨)-powerset the-
ories. Some of these examples were derived by previous authors, e.g., Rodabaugh
[21], Höhle [6], Solovyov [22], other examples was presented in Močkoř [9,11].
It should be observed that in all these examples the object function T : |K| →
|CSLAT (∨)| is, in fact, the object function of a functor T : K → CSLAT (∨),
with T (f) = f→

T , for any morphism f in K.

Example 1. CSLAT (∨)-Powerset theory P = (P,→, id, η) in the category Set,
where

1. P : |Set| → |CSLAT (∨)| is defined by P (X) = (2X ,⊆), and any element S
of P (X) is identified with the characteristic function χX

S of a subset S ⊆ X
in X.

2. for each f : X → Y in Set, f→
P : P (X) → P (Y ) is defined by f→

P (χX
S ) =

χY
f(S),

3. for each X ∈ Set, ηX : X → P (X) is the characteristic function χX
{x} of a

subset {x} defined in X.

Example 2. CSLAT (∨)-Powerset theory Z = (Z,→, id, χ) in the category Set,
where

1. Z : |Set| → |CSLAT (∨)| is defined by Z(X) = LX ,
2. for each f : X → Y in Set, f→

Z : LX → LY is defined by f→
Z (s)(y) =∨

x∈X,f(x)=y s(x),
3. for each X ∈ Set, χX : X → LX is defined by χX(a) = χX

{a}, for a ∈ X.

Example 3. CSLAT (∨)-Powerset theory D = (D,→, id, ρ) in the category Set,
where

1. D : |Set| → |CSLAT (∨)| is defined by D(X) = the set of all cuts (Cα)α∈L

in a set X, naturally ordered by inclusion,
2. for each f : X → Y in Set, f→

D : D(X) → D(Y ) is defined by f→
D ((Cα)α) =

(f(Cα))α ∈ D(Y ), where the closure (Sα)α in a set Y is defined by Sα = {a ∈
Y :

∨
β:a∈Cβ

β ≥ α},
3. for each X ∈ Set, ρX : X → D(X) and ρX(x) is defined as the constant cut

({x})α.

Example 4. CSLAT (∨)-Powerset theory E = (E,→, V, χ̂) in the category
Set(L), where
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1. E : |Set(L)| → |CSLAT (∨)|, where E(X, δ) is the set of all functions f ∈ LX

extensional with respect to the similarity relation δ, ordered point-wise,
2. for each morphism f : (X, δ) → (Y, γ) in Set(L), f→

E : E(X, δ) → E(Y, γ) is
defined by f→

E (s)(y) =
∨

x∈X s(x) ⊗ γ(f(x), y),
3. V : Set(L) → Set is the forgetfull functor,
4. for each (X, δ) ∈ Set(L), χ̂(X,δ) : X → E(X, δ) is defined by χ̂(X,δ)(a)(x) =

δ(a, x), for a, x ∈ X.

Example 5. CSLAT (∨)-Powerset theory C = (C,→, V, χ) in the category
Set(L), where

1. C : |Set(L)| → |CSLAT (∨)| is defined by C(X, δ) = set of all f-cuts in (A, δ)
in the category Set(L), naturally ordered by inclusion,

2. for each morphism f : (X, δ) → (Y, γ) in Set(L), f→
C : C(X, δ) → C(Y, γ) is

defined by

f→
C ((Eα)α) = (f(Eα))α, f(Eα) = {b ∈ Y :

∨

(y,β):y∈f(Eβ)

β ⊗ γ(b, y) ≥ α},

3. V : Set(L) → Set is the forgetfull functor,
4. for each (X, δ) ∈ Set(L), χ(X,δ) : X → C(X, δ) is defined by χ(X,δ)(a) =

({a})α, where {a}α = {b ∈ X : δ(a, b) ≥ α}.

Example 6. A CSLAT (∨)-powerset theory F = (F,→,W, ϑ) in the category
SpaceFP is defined by

(1) F : |SpaceFP| → |CSLAT (∨)|, defined by

F (X,A) = {f |f : X → L is extensional in (X,A)},

ordered pointwise.
(2) For each (f, u) : (X,A) → (Y,B) in SpaceFP, (f, u)→

F : F (X,A) → F (Y,B)
is defined by

g ∈ F (X,A), y ∈ Y, (f, u)→
F (g)(y) =

∨

x∈X

g(x) ⊗ δY,B(f(x), y),

where δY,B is the characteristic similarity relation in Y in a space with a
fuzzy partition (Y,B).

(3) V : SpaceFP → Set is the forgetfull functor, V (X,A) = X,
(4) For each (X,A) in SpaceFP, ϑ(X,A) : V (X,A) → F (X,A), ϑ(X,A)(a)(x) =

δX,A(a, x), for each a, x ∈ X.

It is clear that the powerset extension uP from the Example 1 is the reduction
of the powerset extension uZ from the Example 2 to the set of all characteristic
functions χX

S of subsets from the set X. On the other hand, the powerset exten-
sion uZ is the reduction of the powerset extension uE from the Example 4 to the
subcategory Set of the category Set(L).
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4 Powerset Functors and F-Transform

In this section we investigate relationships between powerset theories T from
Examples 1–6 on one hand, and F-transforms F : T (X) → T (Y ), defined for
appropriate fuzzy partitions. We show that all powerset theories from these
examples are, in fact, identical to F-transforms or restrictions of F-transform. In
what follows, for α ∈ L, by αX we denote the constant function from LX with
the value α.

Proposition 1. Let P be the powerset theory in the category Set from the
Example 1 and let u : X � Y be a surjective map. Then there exists a fuzzy
partition A ⊆ P (X), such that the powerset operator u→

P is the restriction of the
F-transform FX,A, i.e., the following diagram commutes:

P (X)
u→

P> P (Y )

LX

∨
∩

FX,A
> LY .

∨
∩

Proof. Let α ∈ L, α = 0, or α = 1. Then, for any x ∈ X,S ⊆ X,

u→
P (αX ⊗ χX

S ) = αY ⊗ χY
u(S). (1)

holds. The equality (1) is correct, because αX ⊗χX
S ∈ P (X). As it can be proved

simply, for arbitrary S ⊆ X, the following equality holds:

χX
S =

∨

x∈X

χX
S (x)

X
⊗ χX

{x}.

Let A = {Ay : y ∈ Y } ⊆ P (X) be defined by Ay(x) = u→
P (χX

{x})(y), for
arbitrary x ∈ X, y ∈ Y . Then, A is a fuzzy partition in P (X), as follows from
Au(x)(x) = u→

P (χ{x})(u(x)) = χ{u(x)}(u(x)) = 1. Since u→
P is a morphism in

CSLAT (∨), from the relation (1) it follows for arbitrary y ∈ Y

u→
P (χX

S )(y) = u→
T (

∨

x∈X

χX
S (x)

X
⊗ χX

{x})(y) =

∨

x∈X

u→
P (χX

S (x)
X

⊗ χX
{x})(y) =

∨

x∈X

χX
S (x)

Y
⊗ u→

P (χX
{x})(y) =

∨

x∈X

χX
S (x) ⊗ Ay(x) = FX,A(χX

S )(y),

and the diagram commutes. In that case, for arbitrary x ∈ X, y ∈ Y , we have

Ay(x) =

{
1, iff u(x) = y,

0, otherwise.

��
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Proposition 2. Let Z be the powerset theory in the category Set from the
Example 2 and let u : X � Y be a surjective map. Then there exists a fuzzy par-
tition A ⊆ Z(X), such that the powerset operator u→

P equals to the F-transform
FX,A,

u→
Z = FX,A.

Proof. Let α ∈ L, f ∈ LX . Then, we have

u→
Z (αX ⊗ f) = αY ⊗ u→

Z (f), (2)

as follows by a simple computation. The following equality was proven by Rod-
abaugh [20] for arbitrary f ∈ LX :

f =
∨

x∈X

f(x)
X

⊗ χX
{x}. (3)

Let A = {Ay : y ∈ Y } ⊆ Z(X), where Ay(x) = u→
Z (χ{u(x)})(y), for arbitrary

x ∈ X, y ∈ Y . Since Au(x)(x) = 1, A is a fuzzy partition of Z(X). Since u→
Z

is a morphism in the category CSLAT (∨), from the equalities (2) and (3), for
arbitrary f ∈ LX , it follows

u→
Z (f)(y) = u→

Z (
∨

x∈X

f(x)
X

⊗ χX
{x})(y) =

∨

x∈X

u→
Z (f(x) ⊗ χX

{x})(y) =

∨

x∈X

f(x)
Y

(y) ⊗ u→
Z (χX

{x})(y) =
∨

x∈X

f(x)
Y

(y) ⊗ χY
{u(x)}(y) =

∨

x∈X

f(x) ⊗ Ay(x) = FX,A(f)(y).

In that case, fuzzy sets Ay are the same as in the previous proposition.
��

Proposition 3. Let E be the powerset theory in the category Set(L) from the
Example 4 and let u : (X, δ) � (Y, γ) be an morphism in Set(L), such that u is
surjective. Then there exists a fuzzy partition A ⊆ E(X, δ), such that the pow-
erset operator u→

E is the restriction of the F-transform FX,A, i.e., the following
diagram commutes:

E(X, δ)
u→

E> E(Y, γ)

LX

∨
∩

FX,A
> LY .

∨
∩

Proof. Let α ∈ L, f ∈ LX . Then, we have

u→
E (αX ⊗ f) = αY ⊗ u→

E (f), (4)
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as follows by a simple computation. The following equality was proven in [11];
Lemma 3.4, for arbitrary f ∈ E(X, δ), where χ̂(X,δ) : X → E(X, δ) is the
embedding from the powerset theory E :

f =
∨

x∈X

f(x)
X

⊗ χ̂(X,δ)(x). (5)

Let A = {Ay : y ∈ Y } ⊆ E(X, δ), where

Ay(x) = u→
E (χ̂(X,δ)(x))(y) =

∨

z∈X

δ(z, x) ⊗ γ(u(z), y) = γ(u(x), y),

for arbitrary x ∈ X, y ∈ Y . Since Au(x)(x) = 1, A is a fuzzy partition of E(X, δ).
Since u→

E is a morphism in the category CSLAT (∨), for arbitrary f ∈ E(X, δ),
from the equalities (4) and (5), it follows,

u→
E (f)(y) = u→

E (
∨

x∈X

f(x)
X

⊗ χ̂(X,δ)(x))(y) =
∨

x∈X

u→
E (f(x) ⊗ χ̂(X,δ)(x))(y) =

∨

x∈X

f(x)
Y

(y) ⊗ u→
E (χ̂(X,δ)(x))(y) =

∨

x∈X

f(x) ⊗ χ̂(X,δ)(x)(y) = FX,A(f)(y).

��
Proposition 4. Let C = (C,→, V, χ) be the powerset theory in the category
Set(L) from the Example 5 and let u : (X, δ) � (Y, γ) be a morphism in Set(L),
such that u is surjective. Then there exists a fuzzy partition A ⊆ C(X, δ) and
injective maps iX , iY , such that the powerset operator u→

C is the restriction of
the F-transform FX,iX(A), i.e., the following diagram commutes:

C(X, δ)
u→

C > C(Y, γ)

LX

iX∨
∩

FX,iX (A)
> LY .

iY∨
∩

Proof. Let D = (Dα)α ∈ C(X, δ). Then, we set

x ∈ X, iX(D)(x) =
∨

β,x∈Dβ

β.

In [10]; Theorem 4.2, it was proven that iX is an injective maps. Let λ ∈
L, (Cα)α ∈ C(X, δ), then we set

λ ⊗ (Cα)α := (Gα)α ∈ C(X, δ), Gα = {x ∈ X : λ ⊗
∨

x∈Cγ

γ ≥ α}.

It can be proven that χ(X,δ) generates C(X, δ), i.e., for arbitrary C = (Cα)α ∈
C(X, δ), the following equality holds:

C =
∨

x∈X

iX(C)(x) ⊗ χ(X,δ)(x). (6)
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Further, for arbitrary D ∈ C(X, δ), α ∈ L, the following equalities can be
proven simply:

u→
C (α ⊗ D) = α ⊗ u→

C (D),
iX(α ⊗ D) = α ⊗ iX(D).

We set

A = {Ay : y ∈ Y } ⊆ C(X, δ),
∀y ∈ Y, y = u(x), Ay = ({z ∈ Y : iY (u→

C χ(X,δ)(x))(z) ≥ α})α.

It can be proven that this definition is correct, i.e., Ay ∈ C(X, δ). Then, for
arbitrary D ∈ C(X, δ), y ∈ Y , using the relation (6), we obtain

iY (u→
C (D))(y) = iY u→

C (
∨

x∈X

iX(D)(x) ⊗ χ(X,δ)(x))(y) =

∨

x∈X

iX(D) ⊗ iY (u→
C χ(X,δ)(x))(y) =

∨

x∈X

iX(D) ⊗ iX(Ay)(x) = FX,iX(A)(iX(D))(y).

��
Proposition 5. Let D = (D,→, id, ρ) be the powerset theory in the category
Set from the Example 3 and let u : X � Y be a surjective mapping. Then
there exists a fuzzy partition A ⊆ D(X) and injective maps iX , iY , such that
the powerset operator u→

D is the restriction of the F-transform FX,iX(A), i.e., the
following diagram commutes:

D(X)
u→

D > D(Y )

LX

iX∨
∩

FX,iX (A)
> LY .

iY∨
∩

Proof. Since = is the similarity relation, the proof follows directly from the
equation D(X) = C(X,=) and from the proof of Proposition 4.

��
Proposition 6. Let F = (F,→,W, ϑ) be the powerset theory in the category
SpaceFP from the Example 6 and let (u, σ) : (X,A) → (Y,B) be a morphism in
SpaceFP, such that u is a surjective map. Then there exists a fuzzy partition
A ⊆ F (X,A), such that the powerset operator (u, σ)→

F is the restriction of the
F-transform FX,A, i.e., the following diagram commutes:

F (X,A)
(u,σ)→

F> F (Y,B)

LX

∨
∩

FX,A
> LY .

∨
∩
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Proof: The proof follows directly from the equality F (X,A) = E(X, δX,A) and
from the proof of Proposition 3.

��

5 Conclusions

We introduced six examples of powerset theories T = (T,→, V, η) based on
L-valued fuzzy objects in the category Set of crisp sets, the category Set(L)
of sets with similarity relations and in the category SpaceFP of spaces with
fuzzy partitions, respectively. For these powerset theories we constructed special
fuzzy partitions of powerset objects and we proved that for any epimorphism
f : X → Y in these categories, the powerset extension f→

T is identical, or a
restriction, of the F-transform based on these fuzzy partitions. These results show
that for some powerset theories T based on functors T from a category to the
category of complete

∨
-semilattices CSLAT (∨), where T (X) can be embedded

into the set LV (X), the powerset extension f→
T : T (X) → T (Y ) of a morphism

f : X → Y can be substituted by the F-transform FV (X),A : LV (X) → LV (Y ).
Hence, in that case, the powerset theory and the F-transform theory coincide.
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Abstract. We present a comparison between two approaches of numer-
ical solutions for bidimensional initial value problem with interactive
fuzzy numbers. Specifically, we focus on SI epidemiological model con-
sidering that initial conditions are given by interactive fuzzy numbers.
The interactivity is based on the concept of joint possibility distribution
and for this model, it is possible to observe two types of interactivities
for fuzzy numbers. The first one is based on the completely correlated
concept, while the other one is given by a family of joint possibility
distributions. The numerical solutions are given using Euler’s method
adapted for the arithmetic operations of interactive fuzzy numbers
via sup-J extension principle, which generalizes the Zadeh’s extension
principle.

Keywords: Interactive fuzzy numbers · Joint possibility distribution
Interactive arithmetic · Epidemiology

1 Introduction

This paper proposes numerical solutions for bidimensional initial value prob-
lems with interactive fuzzy numbers. The proposed method can be applied to
any fuzzy initial value problems. In particular, we focus on the well-known SI
epidemiological model. The mathematical model SI [1] is used to describe the
dynamic of a diseases that affect the population whose is divided in two subpop-
ulations, susceptible (S) and infected (I). In this model, a susceptible individual
is a member of a population who is at risk of becoming infected by a disease and
when it becomes infected there is no cure for it. AIDS is an example of disease
that behaves this way.
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The initial values of susceptible and infected populations in the SI model
may be uncertain, as well as the parameters involved (the infection rate, for
example). Classical models do not consider this fact, instead of that, the fuzzy
numbers are being used especially in applications involving parameters contain-
ing uncertainties and inaccuracies.

Consequently, arithmetic on fuzzy numbers is necessary. The most common is
the standard arithmetic whose is based on Zadeh’s extension principle and that
does not consider interactivity, that is, each quantity involved in the arithmetic
operation does not influences the other. However, in several areas such as in
epidemiology, one can observe that, in phenomena, different uncertain compound
influences on one another to a certain unknown degree, influencing the final
result. For example, Grenfell et al. [2] show that pathogen epidemic dynamics
and genetics can each potentially influence the other, depending on the biology of
the host-parasite interaction. When we express these compounds through fuzzy
numbers, this interaction is described using the concept of interactive fuzzy
numbers. The interactive notion of fuzzy numbers can be defined in terms of a
joint possibility distribution [3], which Carlsson et al. [4], employed to propose
a generalization of Zadeh’s extension principle [5].

This manuscript considers the SI model with initial conditions given by inter-
active fuzzy numbers. Moreover, we suppose that in each instant of time t the
following equation is satisfied S(t) + I(t) = p, where p > 0. In other words, we
are supposing that the population is constant, with respect to time. Under these
conditions, we are not able to use the standard sum, even if the initial conditions
were not interactive, since S and I are fuzzy numbers and k is a real number (cf.
[6]). From the definition of sup-J extension principle [7], it is possible to define
an arithmetic for interactive fuzzy numbers. In this paper, we use this concept
to provide a numerical solution for the SI model using the Euler’s method with
the arithmetic operations adapted for fuzzy numbers. Depending on the shape
of the fuzzy numbers involved, different types of interactivity can be used in the
numerical solution.

One type of interactivity between fuzzy numbers is called completely corre-
lated [4,8]. This approach assumes that two given fuzzy numbers have a special
kind of relationship. In this manuscript, we provide another type of interactivity
that is more general. Moreover, we present a discussion about when to use one
or the other interactivity, in the SI model.

This manuscript is divided as follows. In Sect. 2, we recall some mathematical
background used in subsequent sections. In Subsect. 2.1 we present the interac-
tivity based on the concept of completely correlated. In Subsect. 2.2 we present
the join possibility distribution that we propose. In Sect. 3, we present the fuzzy
numerical solution for the SI model, as well as a discussion about the interac-
tivity that can be used in different cases.

2 Mathematical Background

Let us review some pertinent concepts and results for our study.
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A fuzzy set A of an universe X is associated with a function μA : X → [0, 1]
called membership function, where μA(x) represents the membership degree of
x in A for all x ∈ X [9]. For notational convenience, we may simply use the
symbol A(x) instead of μA(x). The class of fuzzy subsets of X is denoted by
F(X). Note that each subset of X can be uniquely identified with the fuzzy set
whose membership function is given by its characteristic function.

The α−cut of a fuzzy set A ⊆ X, denoted by [A]α, is defined as [A]α =
{x ∈ X : A(x) ≥ α}, ∀α ∈ (0, 1] [10]. If X is also a topological space, then
[A]0 = cl{x ∈ X : A(x) > 0}, where cl Y, Y ⊆ X, denotes the closure of Y.

A fuzzy set A of R is called a fuzzy number if all α−cuts are bounded, closed
and non empty nested intervals for all α ∈ [0, 1]. Thus the α−cuts of the fuzzy
number A are denoted by [A]α = [a−

α , a+
α ] [10]. The class of fuzzy numbers,

denoted by RF , represents a special class of fuzzy sets of R that includes the
sets of the real numbers as well as the set of the bounded closed intervals of
R. Note that every trapezoidal fuzzy number is an example contained in RF .
Recall that a trapezoidal fuzzy number A is denoted by the quadruple (a; b; c; d)
for some a ≤ b ≤ c ≤ d. By means of α−cuts we have [A]α = [a + α(b − a), d −
α(d − c)], ∀α ∈ [0, 1] [10]. If b = c, then we speak of a triangular fuzzy number,
denoted (a; b; d) instead of (a; b; b; d).

Each fuzzy set A of X can be associated with an uncountable family of crisp
sets of X namely α−cuts of A. In particular, Negoita-Ralescu’s representation
Theorem established a formula to obtain the membership function of A from its
α−cuts [11].

Theorem 1 [11]. Let {Mα : α ∈ [0, 1]} be a family of subsets that satisfies the
following conditions:

(a) Mα is a non-empty closed interval for any α ∈ [0, 1];
(b) If 0 ≤ r1 ≤ r2 ≤ 1, then we have Mα2 ⊆ Mα1 ;
(c) For any sequence αn which converges from below to α ∈ (0, 1] we have

∞⋂

n=1

Mαn
= Mα;

(d) For any sequence αn which converges from above to 0 we have

M0 = cl

( ∞⋃

n=1

Mαn

)
.

Then there exists a unique M ∈ RF , such that [M ]α = Mα, for any α ∈ [0, 1].

Theorem 1 clarifies when a family of subsets can be uniquely associated with
a fuzzy number.

Definition 1 [9] (Zadeh’s extension principle). Let f : X → Y . The Zadeh’s
extension of f at A ∈ F(X) is the fuzzy set f̂(A) ∈ F(Y ) whose membership
function is given by

μf̂(A)(y) =
∨

x∈f−1(y)

μA(x), ∀ y ∈ V, (2.1)
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where f−1(y) = {x ∈ X | f(x) = y} is the inverse image of the function f at y
and, by definition,

∨ ∅ = 0.

Zadeh’s extension principle [9] can be viewed as a mathematical method to
extend a function f : U → V to a function f̂ : F(U) → F(V ). A fuzzy relation
R between two universes X and Y is given by the mapping R : X × Y → [0, 1],
where R(x, y) ∈ [0, 1] is the degree of relationship between x ∈ X and y ∈ Y .
An n-ary relation on X = X1 × ... × Xn is nothing else than a fuzzy (sub)set of
X.

The projection of a fuzzy relation R ∈ F(X1 × ... × Xn) onto Xi, where
1 ≤ i ≤ n, is the fuzzy set Πi

R of Xi given by

Πi
R(y) =

∨

x:xi=y

R(x), ∀y ∈ Xi.

A fuzzy relation J ∈ F(Rn) is said to be a joint possibility distribution among
the fuzzy numbers A1, ..., An ∈ RF if

Ai(y) = Πi
J (y) =

∨

x:xi=y

J(x), ∀y ∈ R, (2.2)

for all i = 1, ..., n.
Let t be a t-norm, that is, an associative, commutative and increasing opera-

tor t : [0, 1]2 → [0, 1] that satisfies t(x, 1) = x for all x ∈ [0, 1]. The fuzzy relation
Jt given by

Jt(x1, ..., xn) = A1(x1) t ... t An(xn) (2.3)

is called the t-norm-based joint possibility distribution of A1, ..., An ∈ RF . In
the special case where t = ∧, the fuzzy numbers A1, ..., An are said to be non-
interactive. Otherwise, A1, ..., An are called interactive. Thus, the interactivity
of the fuzzy numbers A1, ..., An arises from a given joint possibility distribution.

Remark 1. Note that Eq. (2.2) guarantees that J(x1, ..., xn) ≤ Ai(xi), for all
i = 1, ..., n. Thus J(x1, ..., xn) ≤ J∧(x1, ..., xn). This implies that every joint
possibility distribution is contained in the joint possibility distribution based on
minimum t-norm among the fuzzy numbers A1, ..., An.

It is possible, from Definition 2 below, to obtain an interactive arithmetic
operations for fuzzy numbers by taking f(x1, ..., xn) = x1 ⊗ ... ⊗ xn, where ⊗
represents an arithmetic operation. This is done as follows.

Definition 2 [7]. Let J ∈ F(Rn) be a joint possibility distribution of (A1, ..., An)
∈ R

n
F and f : Rn → R. The sup-J extension of f at (A1, ..., An) ∈ R

n
F , denoted

fJ(A1, ..., An), is the fuzzy set defined by:

fJ(A1, ..., An)(y) =
∨

(x1,...,xn)∈f−1(y)

J(x1, ..., xn), (2.4)

where f−1(y) = {(x1, ..., xn) ∈ R
n : f(x1, ..., xn) = y} is the inverse image of

the function f at y.
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Note that, if in Definition 2 the joint possibility distribution is given by (2.3) with
t = ∧ then the Sup-J extension principle boils down to the Zadeh’s extension
principle.

2.1 Completely Correlated Fuzzy Numbers

We can see from (2.2) that it is possible to obtain an interactivity relation among
fuzzy numbers that is not based on t-norm. Specifically, Carlsson et al. [4] intro-
duced a correlation concept. They stated that two fuzzy numbers are said to
be completely correlated if there is a linearly connection between their mem-
bership functions. Mathematically, two fuzzy numbers A and B are completely
correlated if there exists q, r ∈ R with q �= 0 such that the corresponding joint
possibility distribution J = J{q,r} is given by

J{q,r}(x1, x2) = A(x1)χ{qu+r=v}(x1, x2) (2.5)
= B(x2)χ{qu+r=v}(x1, x2),

for all x1, x2 ∈ R, where χ{qu+r=v} stands for the characteristic function of the
set {(u, qu + r = v) : ∀u}, that is

χ{qu+r=v}(x1, x2) =

{
1, if qx1 + r = x2

0, otherwise
.

Remark 2. Recall that if q < 0 then A and B are said to be completely negatively
correlated. In this case, we have that A +{q,r} B = A + B, where + is the
standart sum. Moreover, if q > 0 then A and B are said to be completely
positively correlated and, in this case, we have A −{q,r} B = A − B, where − is
the standart difference [4,8].

We denoted A +L B instead of A +{q,r} B for simplicity of notation. From
Definition 2, the joint possibility distribution J{q,r}, given by (2.5), produces the
interactive arithmetic that satisfies the following properties [12]

(a) [A +L B]α = (q + 1)[A]α + r, for all α ∈ [0, 1];
(b) [A −L B]α = (1 − q)[A]α + r, for all α ∈ [0, 1];
(c) [A ∗L B]α = {qx2

1 + rx1 ∈ R : A(x1) ≥ α}, for all α ∈ [0, 1];
(d) [A ÷L B]α = { x1

qx1+r ∈ R : A(x1) ≥ α}, for all α ∈ [0, 1].

2.2 Join Possibility Distribution J0

The joint possibility distribution (2.5) is restrictive because it can not be applied
to a pair of fuzzy numbers that do not have a colinear relation, for example, it
can not be applied when A is a triangular fuzzy number and B is a trapezoidal
fuzzy number. Our purpose is defined a joint possibility distribution that has no
restrictions, as we see in [13,14]. Thus, let A1 and A2 be two fuzzy numbers and
the functions g1,2 : R × [0, 1] → R given by

g1(z, α) =
∧

w∈[A2]α

|w + z| and g2(z, α) =
∧

w∈[A1]α

|w + z|. (2.6)
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Also, let us consider the classical sets

Ri
α =

{
{a−

iα
, a+

iα
} if α ∈ [0, 1)

[Ai]1 if α = 1
(2.7)

and
Li(z, α) = [A3−i]α ∩ [−gi(z, α) − z, gi(z, α) − z], (2.8)

for all z ∈ R, α ∈ [0, 1] and i = 1, 2.
Let J0 be the fuzzy relation given by

J0(x1, x2) =

{
A1(x1) ∧ A2(x2) , if (x1, x2) ∈ P

0 , otherwise
, (2.9)

where

P =
2⋃

i=1

⋃

α∈[0,1]

P i(α)

and P i(α) is given as follows

P i(α) = {(x1, x2) : xi ∈ Ri
α and x3−i ∈ Li(xi, α)}, ∀α ∈ [0, 1],

for i ∈ {1, 2}.
The joint possibility distribution J0, from Definition 2 given by (2.9), pro-

vides the arithmetic for interactive fuzzy numbers as follows

(A1 ⊗J0 A2)(y) =
∨

x1⊗x2=y

J0(x1, x2), (2.10)

where J0 is the joint possibility distribution of A1 and A2 given by (2.9) and ⊗
represents the arithmetic operations +,−, ∗ and ÷.

This new approach towards joint possibility distribution can be applied to
every pair of fuzzy numbers. Note that the norm and the width of the sum are not
equivalent, that is, ‖ A ‖F≤‖ B ‖F does not imply that width(A) ≤ width(B).
For example, for A = (−2; 0; 2) and B = (1; 2; 3) we have that ‖ A ‖F= 2 ≤ 3 =
‖ B ‖F but width(A) = 4 > 2 = width(B). As we will recall below, translations
of fuzzy numbers can be used in order to control the width of the sum based on
sup-J extension principle.

Definition 3. Let A ∈ RF . The translation of A by k ∈ R is defined as the
following fuzzy number Ã:

Ã(x) = A(x + k), ∀x ∈ R. (2.11)

Next, we provide a joint possibility distribution using the concept of Defini-
tion (3)
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Theorem 2 [14]. Given A1, A2 ∈ RF and c = (c1, c2) ∈ R
2. Let Ã1, Ã2 ∈ RF

be such that Ã1(x) = A1(x + c1) and Ã2(x) = A2(x + c2),∀x ∈ R.
Let J̃0 be the joint possibility distribution of fuzzy numbers Ã1, Ã2 ∈ RF

defined as Eq. (2.9). The fuzzy relation Jc
0 given by

Jc
0(x1, x2) = J̃0(x1 − c1, x2 − c2), ∀(x1, x2) ∈ R

2, (2.12)

is a joint possibility distribution of A1 and A2.

We denote the sum between two fuzzy numbers A1 and A2 based on sup-J
extension principle, with J = Jc

0 , by A1 +0 A2. In addition, we have that A1 −0

A2 = A1 +0 (−A2), ∀A1, A2 ∈ RF [14] for simplicity of notation.

3 Fuzzy Numerical Solution for SI Model

This Section presents a fuzzy numerical solution for the SI model with interactive
fuzzy conditions. The numerical solution is given by the Euler’s method with the
appropriate arithmetic operations for fuzzy numbers. The arithmetic is based on
sup-J extension principle and we use the joint possibility distributions given by
(2.5) and (2.9).

First, we present the Euler’s method. Let yi : R → R
n, with i = 1, ..., n,

functions that depend on time t. Consider the following initial value problem
(IVP) composed of ordinary differential equations (ODE) and initial condition

{
dyi

dt = fi(t, y1, y2, ..., yn)
y(t0) = y0 ∈ R

n
, (3.13)

where fi is a function that depends on y1, y2, ..., yn and t, for each i = 1, ..., n.
Euler’s method consists in determining numerical solutions for (3.13). The

algorithm is given by

yk+1
i = yk

i + hfi(tk, yk
1 , ..., yk

n), (3.14)

with 0 ≤ k ≤ N − 1, where N is the number of partitions of the interval time
divided in equally spaced intervals [tk, tk+1] with size h and initial condition
(t0, y0).

The SI model is given by [1]
{

dS
dt = −βSI, S(0) = S0

dI
dt = βSI, I(0) = I0

, (3.15)

where β is the rate of the infection of disease and S0 and I0 are given by inter-
active fuzzy numbers.
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Thus, the fuzzy numerical solution for (3.15) that we propose is given by
{

Sk+1 = Sk +0 h(−βSk ∗0 Ik)
Ik+1 = Ik +0 h(βSk ∗0 Ik)

. (3.16)

where the arithmetic operations are based on sup-J extension principle with
J = J0.

Now, suppose that the initial values S0 and I0 are given by interactive fuzzy
numbers with respect the joint possibility distribution J{q,r}, given by (2.5).
Even if S and I are interactive, we do not have that S ∗L I and S are interactive.
The same observation can be made for S ∗L I and I. Thus, we can not apply the
arithmetic operations in (3.14) by sup-J extension principle with J = J{q,r}, we
need first to make some appropriated changes in Eq. (3.14). Since S(t)+I(t) = p,
∀t ∈ [0,∞) the following equations are equivalent

Sk+1 = Sk + h(−βSkIk) ⇔ Sk+1 = Sk(1 − phβ + hβSk). (3.17)

In this case, Sk and (1 − phβ + hβSk) are also completely correlated and then
we can use the sup-J extension principle for J = J{q,r}, where q = hβ and
r = 1 − phβ. The same holds for Ik. Thus, the fuzzy numerical solution for
(3.15), with respect J{q,r}, is given by

{
Sk+1 = Sk ∗L (1 − phβ + hβSk)
Ik+1 = Ik ∗L (1 + phβ − hβIk)

. (3.18)

3.1 Example 1

Let S0 = (4; 5; 6) and I0 = (0; 1; 2). Since S0 and I0 are completely correlated
with respect to J{1,4} and J{−1,6}, we can use the fuzzy solution provided by
(3.18) whose is depicted in Fig. 1.

Fig. 1. The fuzzy solution provided by (3.18). The left and right Figures present the
susceptible and infected populations, respectively. The parameters used were p = 6,
h = 0.125 and β = 0.01. The gray lines represent the α-cuts of the fuzzy solutions,
where their endpoints for α varying from 0 to 1 are represented respectively from the
gray-scale lines varying from white to black.
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The fuzzy solution provided by (3.16) is depicted in Fig. 2.

Fig. 2. The fuzzy solution provided by (3.16). The left and right Figures present the
susceptible and infected populations, respectively. The parameters used were h = 0.125
and β = 0.01. The gray lines represent the α-cuts of the fuzzy solutions, where their
endpoints for α varying from 0 to 1 are represented respectively from the gray-scale
lines varying from white to black.

Note that the susceptible population given in Fig. 1 decreases faster than
susceptible population given in Fig. 2. Moreover, the infected population given
in Fig. 1 increases faster than infected population given in Fig. 2.

3.2 Example 2

Let S0 = (9; 10; 12) and I0 = (0; 1; 2). Even though S0 and I0 are triangular
fuzzy numbers, there is no linear correlation between the membership functions
of S0 and I0. Therefore the fuzzy solution provided by (3.18) can not be applied
in this case. However, the fuzzy solution provided by (3.16) has no restriction.
Figure 3 presents the fuzzy solution given by (3.16).

Fig. 3. The fuzzy solution provided by (3.16). The left and right Figures present the
susceptible and infected populations, respectively. The parameters used were h = 0.125
and β = 0.01. The gray lines represent the α-cuts of the fuzzy solutions, where their
endpoints for α varying from 0 to 1 are represented respectively from the gray-scale
lines varying from white to black.
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The behavior of the susceptible and infected populations are the same as in
Example 3.1.

3.3 Example 3

Now suppose that the initial number of susceptible population is “around” 11
and the initial number of infected population is “around” the interval [1, 3].
Thus, we model the population S0 and I0 by the interactive fuzzy numbers S0 =
(10; 11; 12) and I0 = (0; 1; 3; 4). Since, S0 is a triangular fuzzy number and I0 is
a trapezoidal fuzzy number, obviously S0 and I0 are not completely correlated.
Therefore, between the two approaches only the joint possibility distribution J0

can be used in this case. The fuzzy solution is depicted in Fig. 4.

Fig. 4. The fuzzy solution provided by (3.16). The left and right Figures present the
susceptible and infected populations, respectively. The parameters used were h = 0.125
and β = 0.01. The gray lines represent the α-cuts of the fuzzy solutions, where their
endpoints for α varying from 0 to 1 are represented respectively from the gray-scale
lines varying from white to black.

Note that, in Example 3.1 both joint possibility distributions produces a
numerical solution such that its width decreases with respect to time. This means
that the uncertainty decreases over time.

It was only possible to consider the interactivity based on joint possibility
distribution J0 in Example 3.2. Note that, the same observation that we made
before with respect to width holds here.

Finally, in Example 3.3 the numerical solution for the susceptible population
presents the same property with respect to the width as in the Examples 3.1 and
3.2. However, the numerical solution for the infected population present a slight
growth with respect to the width.

Recall that, if the initial conditions S0 and I0, given in (3.16), are real num-
bers (crisp) then the obtained solution coincides with the classical solution as it
is depicted in Fig. 5.
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(a) Numerical solution for SI model given by Example
3.1 with initial conditions S0 = 5 and I0 = 1.

(b) Numerical solution for SI model given by Example
3.2 with initial conditions S0 = 10 and I0 = 1.

(c) Numerical solution for SI model given by Example
3.3 with initial conditions S0 = 11 and I0 = 2.

Fig. 5. Numerical solution for SI model given by Examples 3.1 (Subfigure 5(a)), 3.2
(Subfigure 5(b)) and 3.3 (Subfigure 5(c)). The used parameters were h = 0.125 and
β = 0.01.

4 Conclusion

This manuscript presented a numerical method for bidimensional IVPs with
interactivity on state variables. We focused on SI epidemiological model, where
the initial conditions are interactive fuzzy numbers. We considered this interac-
tivity by two approaches, completely correlated (cf. (2.5)) and via joint possi-
bility distribution J0 (cf. (2.9)). The fuzzy numerical solution for the SI model
is given by the Euler’s method, whose arithmetic operations are adopted for
interactive fuzzy numbers based on sup-J extension principle.
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We also presented a comparison between these two approaches for interactive
fuzzy numbers. On the one hand, the numerical solution provided by (3.18) is
restrictive, since can only be applied when the membership functions of the
fuzzy numbers involved have a linear correlation. It was only possible to use
this concept in Example 3.1. On the other hand, the numerical solution provided
by (3.16) has no restrictions and it was possible to use the joint possibility
distribution J0 in Examples 3.1, 3.2 and 3.3.

Finally, differently of a fuzzy initial value problem (FIVP) where the deriva-
tive is obtained by interactive difference [8], here we only use numerical methods
for the IVP, considering that initial conditions are fuzzy numbers.
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Abstract. This paper presents a study of the relevance property in a fuzzy
partition from a fuzzy classification system. This study allows establishing a
stopping criterion for the inclusion of a class in a fuzzy partition based on
relevance. Such a criterion is constructed from a stable relationship on the
commutative group formed by two new mappings (and the aggregation opera-
tors conjunctive and disjunctive) of the fuzzy classification system. The criterion
is illustrated through an example on image analysis by the fuzzy c-means
algorithm.

Keywords: Relevance � Covering � Overlap � Classification � Fuzzy partition

1 Introduction

Since fuzzy logic was proposed by Zadeh [1], classification systems have presented
great advances in their theoretical and practical development. Clear examples can be
found in [2–4] dealing with fuzzy classification.

The fuzzy approach in this area has allowed, on the one hand, the reduction of the
amount of information handled by users in complex environments, and on the other
hand, the representation of information by means of gradable predicates, modeled by
fuzzy set membership functions. In particular, the development of fuzzy classification
system has received great attention from remote sensing or image segmentation
applications [5, 6]. The aim of this paper is to study fuzzy classification systems and
their application in image segmentation. An example of such an application will be
presented at the end of the paper.

The fuzzy classification system developed by Del Amo et al. [5] is based on a
generalization of the fuzzy partition concept proposed by Ruspini [7], and defines this
classification system by means of families of aggregation functions. Based on the
theoretical framework developed by Dombi [8, 9] about aggregation operators, an
alternative approach for non-associative connectives is proposed in [5] through the use
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of the concept of recursiveness. That is, from the classical approach of aggregation of
information by a single index (associative conjunctive rules), the notion of associativity
is extended through the establishment of recursive rules.

Such an approach proposes indexes that allow measuring the redundancy, relevance
and coverage of the classes obtained in a fuzzy partition; that is to say, a system is
constructed that in turn allows, evaluating the obtained classification. However, the
evaluation of the quality of a partition is a problem that still needs to be addressed in
greater depth (see [5, 10]) with special emphasis on the proposed indexes.

In this line of research, some first approaches led to the development of works such
as those presented in [11–13], and more recently in [14, 15] about a more in-depth
study of aggregation functions, which allow evaluating the redundancy and coverage of
a particular classification by means of overlapping and grouping functions, respec-
tively. Even studies on redundancy, based on other fuzzy partition concepts, have been
developed (see e.g. [16]).

An issue that is still open and with a broad field of development, is the study of the
relevance property as initially explored in [2]. In [6] an alternative approach is pro-
posed from a more statistical perspective. Here we propose some first steps towards the
study of relevance, its characterization, and with it, a general study of a global quality
index for a fuzzy classification system.

2 The Relevance Property

In the study of the intrinsic properties of a fuzzy partition, we can highlight the
covering and redundancy properties, respectively graded by the degree in which a
family of classes allows explaining the object’s main attributes and the degree of
overlapping between that family of classes. (see [5]).

Relevance, in general terms, is a fuzzy concept and from a more general and
intuitive perspective, people may be able to distinguish irrelevant information or, in
some cases, more relevant information from less relevant information. The fact that
there is a linguistic notion of relevance with a vague and variable meaning exposes the
complexity of the problem and reveals different ways of approaching it. Moreover,
intuitions of relevance are relative to contexts, and there is no way of controlling
exactly which context someone will have in mind at a given moment or how to
understand such a context [17].

By its nature, the concept of relevance requires a treatment beyond its etymological
meaning; the fundamental thing is to characterize when an object is relevant with
respect to a given context. Therefore, as a technical concept which can be suitable of
being measured by computational methods, relevance requires a characterization that
allows its formal understanding for computational use. Keeping this in mind, here we
propose a new approach over relevance (following [5] but also [6]), and the means for
evaluating and measuring it regarding a given fuzzy partition.

In particular, establishing that a proposition is relevant necessarily requires con-
sidering a space or context of reference, in such a way that the element or proposition
generates changes or modifications when it is removed or added from the context or
space. Therefore, relevance implies a comparison process, understanding relevance as a
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local property and not a global property. Hence, we evaluate the relevance of an object
in a context and not the relevance of the context or space in which the object is framed.

According to the above, in a first stage, the relevance of an object in a context can
be established through the comparison of diverse information provided by the con-
formation of three sets: the information of the context with the object, the information
of the context without the object and the information provided by object in itself,
without any context.

The comparison process necessary to establish relevance may or may not reveal
changes in the context, however, in case of changes, these changes may be more or less
intense in the context. It is possible that the changes are significant or not. Therefore,
establishing the relevance of an object in a context requires identifying the kind of
changes that occur in that context, and their degree of intensity. In this sense, it is
desirable to establish a threshold or admissible parameter of relevance, or in general, of
modification in the context and kind of changes.

According to the above, the relevance of an object depends on two fundamental
aspects: on the one hand, a process of comparison between the object and the context
that allows determining changes by the inclusion or elimination of the object and, a
measure of the intensity of the changes.

In the framework of a fuzzy partition, let us assume a finite set of objects X. A fuzzy
classification system is a finite family C of fuzzy sets or classes (each c 2 C with its
associated membership function lcðxÞ : X ! ½0; 1�Þ, together with a recursive triplet1

ðu;/;NÞ, where:
1. / is a standard recursive rule such that /2ð0; 1Þ ¼ /2ð1; 0Þ ¼ 0
2. N : 0; 1 !� ½0; 1½ � is a strict negation function2, i.e., a bijective strictly decreasing

function such that N � N�1 l xð Þð Þ ¼ l xð Þ for all l xð Þ 2 0; 1½ �
3. u is a standard recursive rule such that un l x1ð Þ; . . .; lðxnÞð Þ ¼ N�1 /n N l x1ð Þð Þ;ð½

. . .;N l xnð Þð ÞÞ�8n[ 1.

Notice that, un is a disjunctive recursive rule, in the sense that un l x1ð Þ;ð
. . .; lðx2ÞÞ ¼ 1 whenever there is j such that l xj

� � ¼ 1, while /n is a conjunctive
recursive rule in the sense that /n l x1ð Þ; . . .; lðx2Þð Þ ¼ 0 whenever there is j such that
l xj
� � ¼ 0.
About the relevance property in [5] it is proposed to compare the behavior of each

family of non-empty classes A � C with the behavior of the remaining classes C � A,
taking into account the values obtained through the following expressions for each
object x 2 X.

1 Recursiveness is a property of a sequence of operators /nf gn[ 2 allowing the aggregation of any
number of items: /2 tells us how to aggregate two items, /3 tells how to aggregate three items and
so on. A recursive rule / is a family of aggregation functions f/n : 0; 1½ �n! 0; 1½ �gn[ 1 allowing a
sequential reckoning by means of a successive application of binary operators, once data have been
properly ordered: the ordering rule assures that new data do not introduce modifications in the
relative position of items already ordered. For more details see [5, 18].

2 Here we refer to strict negations of the type N xð Þ ¼ f �1 f 1ð Þ � f xð Þð Þ with f : 0; 1½ � ! 0; 1½ �
increasing, bijective, f 0ð Þ ¼ 0, and 0\f 1ð Þ� 1. In particular, if N xð Þ ¼ 1� x, then f xð Þ ¼ x.
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1. un lc xð Þ=c 2 Cf g
2. un lk xð Þ=k 2 Af g
3. un ld xð Þ=d 2 C � Af g

The following criterion is established: when the value obtained through expres-
sion 1 above is significantly greater than that obtained through expression 3, then A is a
family of relevant classes, as long as the value obtained through expression 2 is not
high. When expression 1 produces a value not significantly different from that obtained
through expression 3, then A is a family of non-relevant classes, as long as expres-
sion 2 does not produce a low value.

The above criterion requires additional developments since,

1. There may be x 2 X such that some of the above situations do not appear clearly,
for instance, when the values of l1 xð Þ; . . .; lc xð Þ, for x 2 X, are in a highly uniform.

2. It is opportune to establish a global index for each of the properties studied, that is,
the aggregation of the degrees of coverage, relevance and overlap for all x 2 X for
each class c, in the perspective posed by [19].

According to the above, it would be desirable to establish one or several criteria for
evaluation of the relevance property. In general, it is sought to establish a set of criteria
that allows the evaluation of a fuzzy classification system.

3 The Group of Aggregation Operators

From the fuzzy classification system C;u;/;Nð Þ, with c; d 2 C and in particular
working on /2 : 0; 1½ �2! 0; 1½ � with

u2 lc xð Þ; ld xð Þð Þ ¼ N�1 /2 N lc xð Þð Þ;N ld xð Þð Þ½ �½ �;

two new mappings are built for all aggregation operators /2 and u2 such that the
standard strict negation is N xð Þ ¼ 1� x (in this particular case, we have that
u2 lc xð Þ; ld xð Þð Þ ¼ 1� /2 1� lc xð Þ; 1� ld xð Þð Þ. These mappings are:

1. r2 : 0; 1½ �2! 0; 1½ �, defined as:

r2 lc xð Þ; ld xð Þð Þ ¼ lc xð Þþ ld xð Þ � u2 lc xð Þ; ld xð Þð Þ; and

2. d2 : 0; 1½ �2! 0; 1½ �, defined as:

d2 lc xð Þ; ld xð Þð Þ ¼ lc xð Þþ ld xð Þ � /2 lc xð Þ; ld xð Þð Þ

The proposed mappings can be generalized by (conjunctive, disjunctive or average)
aggregation operators, leaving its formal specification for future research.

When we use the strict negation N l xð Þð Þ on d2 lc xð Þ; ld xð Þð Þ or r2 lc xð Þ; ld xð Þð Þ,
this can be interpreted as the complement of the set of aggregated classes
flc xð Þ; ld xð Þg. In particular, if u2 lc xð Þ; ld xð Þð Þ represents the degree of coverage of
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the classes, then Nðu2Þ represents the degree of non-coverage of the classes, under-
standing u2 as a proposition and Nðu2Þ as the negation of such a proposition.

Notice that the mapping r2 can be understood as the degree of partial non-coverage
of the aggregated classes and d2 as the degree up to which the aggregated classes do not
partially overlap. In general, both mappings can be understood as partial complements
of the aggregated classes.

The idea that motivates this construction is based on the possibility of establishing a
relationship between the conjunctive, disjunctive operators and their partial comple-
ments, in such a way that a fuzzy partition can be evaluated taking into account a global
vision of the corresponding fuzzy classification system. It seeks to compare the degrees
of coverage, overlap and partial complements of pairs of classes in fuzzy partitions with
different number of classes, and determine the partition with highest quality.

A close relationship is established between the set of mappings /2;u2; r2 and d2.
Let A ¼ /2;u2; r2; d2f g, the composition of the mappings (denoted by �) is defined as
presented in Table 1.

For instance, we have that: r2 � u2ð Þ lc xð Þ; ld xð Þð Þ ¼ lc xð Þþ ld xð Þ � 1þu2
1� lc xð Þ; 1� ld xð Þð Þ ¼ lc xð Þþ ld xð Þ � /2 lc xð Þ; ld xð Þð Þ ¼ d2 lc xð Þ; ld xð Þð Þ

Clearly, A; �ð Þ is a commutative group, where /2 is the neutral element and each
element is its own inverse. As mentioned above, r2 and d2 mappings can be formulated
under a general framework, considering the strict negation function N for each pair /2
and u2 and an adequate aggregation of the classes that maintains the group structure.

The composition of the defined mappings obtains a particular structure for the
algebraic group and therefore, allows proposing a relation of similarity between the
functions of aggregation and their partial complements in the perspective presented by
[20]. Therefore, such a similarity relation allows a first comparison process between the
information obtained from the aggregated classes. Based on [20], for each pair
lc xð Þ; ld xð Þð Þ 2 C, the mapping m0 : A� A ! 0; 1½ � is defined in the following way:

m0 h2 lc xð Þ; ld xð Þð Þ; k2 lc xð Þ; ld xð Þð Þð Þ ¼
Pm

i¼1 h2 lc xið Þ; ld xið Þð Þ � k2 lc xið Þ; ld xið Þð Þ½ ��� ��

m

With h2, k2 2 A, m ¼ Xj j, lc xið Þ is the membership degree of the element xi in
class c. For simplicity, let us consider:

Table 1. Composition

� /2 r2 d2 u2

/2 /2 r2 d2 u2

r2 r2 /2 u2 d2
d2 d2 u2 /2 r2
u2 u2 d2 r2 /2
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m0 h2 lc xð Þ; ld xð Þð Þ; k2 lc xð Þ; ld xð Þð Þð Þ ¼ m0 h2; k2ð Þ c; dð Þ:

Let us also denote:

1. m0 /2; r2ð Þ c; dð Þ ¼ m0 r2;/2ð Þ c; dð Þ ¼
Pm

i¼1
r2 lc xið Þ;ld xið Þð Þ�/2 lc xið Þ;ld xið Þð Þ½ �j j

m ¼ b0

2. m0 /2;u2ð Þ c; dð Þ ¼ m0 u2;/2ð Þ c; dð Þ ¼
Pm

i¼1
u2 lc xið Þ;ld xið Þð Þ�/2 lc xið Þ;ld xið Þð Þ½ �j j

m ¼ a0

Then, the relation for all the element of A� A is represented in Table 2.

For instance, if m0 /2; r2ð Þ c; dð Þ ¼ m0 r2;/2ð Þ c; dð Þ ¼ b0; then we have that:

m0 /2; r2ð Þ c; dð Þ ¼
Pm

i¼1 r2 lc xið Þ; ld xið Þð Þ � /2 lc xið Þ; ld xið Þð Þ½ ��� ��

m

¼
Pm

i¼1 lc xið Þþ ld xið Þ � u2 lc xið Þ; ld xið Þð Þ � /2 lc xið Þ; ld xið Þð Þ½ ��� ��

m

¼
Pm

i¼1 d2 lc xið Þ; ld xið Þð Þ � u2 lc xið Þ; ld xið Þð Þ½ ��� ��

m
¼ m0 d2;u2ð Þ c; dð Þ

Consider the complements of the images of m0, i.e., the mapping m : 0; 1½ � ! 0; 1½ �,
such that:

m b0ð Þ ¼ 1� b0 ¼ bc;d

m a0ð Þ ¼ 1� a0 ¼ ac;d

m b0 þ a0ð Þ ¼ 1� b0 þ a0ð Þ ¼ pc;d

m b0 � a0j jð Þ ¼ 1� b0 � a0j j ¼ cc;d

Therefore, for this mapping m it is possible to establish the relationships shown in
Table 3.

Table 2. Mapping m0

m0 /2 r2 d2 u2

/2 0 b0 b0 þ a0 a0
r2 b0 0 a0 b0 � a0j j
d2 b0 þ a0 a0 0 b0
u2 a0 b0 � a0j j b0 0
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Proposition 1. Let C;u;/;Nð Þ be a fuzzy classification system. If /2 lc xð Þ; ld xð Þð Þ ¼
r2 lc xð Þ; ld xð Þð Þ for all x 2 X then, ac;d ¼ pc;d ¼ cc;d\bc;d ¼ 1:

Proof. If /2 lc xð Þ; ld xð Þð Þ ¼ r2 lc xð Þ; ld xð Þð Þ then b0 ¼ 0 wherewith bc;d ¼ 1 and
pc;d ¼ 1� a0 ¼ ac;d . Similarly, cc;d ¼ 1� �a0j j ¼ cc;d .

As established in [8], a fuzzy partition is of a higher quality, if the aggregated
classes have high degrees of coverage and low degrees of overlap. Therefore, if classes
are considered in pairs for comparison, a similar result would be expected. That is, if
the pairs of classes (c, d), are analyzed, it is expected that:

• The degree of coverage and non-overlap of the classes studied are high, so that their
difference must be small, and, bc;d must be high.

• The degree of overlap is less than its partial complement and the degree of coverage
is greater than its partial complement, expecting that pc;d and cc;d are low.

Definition 1. Given a fuzzy classification system C;u;/;Nð Þ it is said that the pair of
classes {c, d} are relevant in C if cc;d\bc;d. The following cases are established:

1. If /2 lc xð Þ; ld xð Þð Þ ¼ r2 lc xð Þ; ld xð Þð Þ, the relevance of {c, d} is established from a
parameter t 2 0; 1½ �, such that, t ¼ ac;d ¼ pc;d ¼ cc;d: The lower, the better.

2. If /2 lc xð Þ; ld xð Þð Þ 6¼ r2 lc xð Þ; ld xð Þð Þ, the relevance of {c, d} is established from a
parameter t, such that, t ¼ cc;d\bc;d . The lower, the better.

3. If /2 lc xð Þ; ld xð Þð Þ 6¼ r2 lc xð Þ; ld xð Þð Þ and ¼ cc;d [ bc;d then, the classes {c, d} are
not relevant.

In this sense, the coverage and overlapping of the classes analyzed by pairs, allow
estimating the degree of relevance of such pair of classes (comparing the information
obtained from the degree of grouping, the degree of partial non-coverage, the degree of
overlap and the degree of partial overlap). Therefore, in a first stage the relevance of
any pair of classes offers information on their usefulness, or relative meaning regarding
their significance with respect to the already considered set of classes i.e., there is a
significative lose if the classes are deleted.

Table 3. Mapping m

m /2 r2 d2 u2

/2 1 b p a

r2 b 1 a c

d2 p a 1 b

u2 a c b 1
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4 Application

In order to apply the defined criterion, the image presented in Fig. 1 has been selected,
and the unsupervised classification problem of obtaining a set of classes such that
similar pixels are assigned to the same class is considered. The conjunctive operator

/n l1 xð Þ; . . .; ln xð Þð Þ ¼ 3
Qn

k¼1
lk xð Þ

1þ 2
Qn

k¼1
lk xð Þ and the disjunctive operator un l1 xð Þ; . . .;ð

lc xð ÞÞ ¼ 1�
Qn

k¼1
ð1�lk xð ÞÞ

1þ 2
Qn

k¼1
ð1�lk xð ÞÞ whose negation is N l xð Þð Þ ¼ 1� l xð Þ have been selected.

The fuzzy c-means algorithm has been applied for c ¼ 3.

The values ac;d; pc;d; cc;d and bc;d are presented for each pair of classes (class 1, 2
and 3) in Tables 4, 5 and 6, and the classes are presented in Fig. 2.

Fig. 1. Aurora Borealis

Table 4. m m0 h2; k2ð Þ 1; 2ð Þð Þ
m /2 r2 d2 u2

/2 1 0; 93 0; 6 0; 67
r2 0; 93 1 0; 67 0,74
d2 0; 6 0; 67 1 0; 93
u2 0; 67 0; 74 0; 93 1

a ¼ 0; 67 c ¼ 0; 74 p ¼ 0; 6 b ¼ 0; 93

Table 5. m m0 h2; k2ð Þ 1; 3ð Þð Þ
m /2 r2 d2 u2

/2 1 0; 8 0; 4 0; 5
r2 0; 8 1 0; 5 0; 7
d2 0; 4 0; 5 1 0; 8
u2 0; 5 0; 7 0; 8 1

a ¼ 0; 5 c ¼ 0; 7 p ¼ 0; 4 b ¼ 0; 8
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In the case of the fuzzy c-means algorithm for c ¼ 4, the results are presented in
Tables 7, 8, 9, 10, 11 and 12, and the classes are presented in Fig. 3

Fig. 2. Classes applying fuzzy 3-means algorithm (top left: class 1, top right: class 2, bottom:
class 3). The gray scale represents the membership degree of each pixel to each class, where
black = 0 and white = 1

Table 6. m m0 h2; k2ð Þ 2; 3ð Þð Þ
m /2 r2 d2 u2

/2 1 0; 93 0; 63 0:69
r2 0; 93 1 0; 69 0; 76
d2 0:63 0; 69 1 0; 93
u2 0; 69 0; 76 0; 93 1

a ¼ 0; 69 c ¼ 0; 76 p ¼ 0; 63 b ¼ 0; 93

Table 7. m m0 h2; k2ð Þ 1; 2ð Þð Þ
m /2 r2 d2 u2

/2 1 0; 92 0; 71 0; 79
r2 0; 92 1 0; 79 0; 86

d2 0; 71 0; 79 1 0; 92
u2 0; 79 0; 86 0; 92 1

a ¼ 0; 79 c ¼ 0; 8 p ¼ 0; 71 b ¼ 0; 9

Table 8. m m0 h2; k2ð Þ 1; 3ð Þð Þ
m /2 r2 d2 u2

/2 1 0; 87 0; 57 0; 7
r2 0; 87 1 0; 7 0; 82

d2 0; 57 0; 7 1 0; 87
u2 0; 7 0; 82 0; 87 1

a ¼ 0; 7 c ¼ 0; 82 p ¼ 0; 57 b ¼ 0; 87
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Fig. 3. Classes applying fuzzy 4-means algorithm (top left: class 1, top right: class 2, bottom
left: class 3, bottom right: class 4) The gray scale represents the membership degree of each pixel
to each class, where black = 0 and white = 1

Table 10. m m0 h2; k2ð Þ 2; 3ð Þð Þ
m /2 r2 d2 u2

/2 1 0; 86 0; 6 0; 74
r2 0; 86 1 0; 74 0; 88

d2 0; 6 0; 74 1 0; 86
u2 0; 74 0; 88 0; 86 1

a ¼ 0; 74 c ¼ 0; 88 p ¼ 0; 6 b ¼ 0; 86

Table 9. m m0 h2; k2ð Þ 1; 4ð Þð Þ
m /2 r2 d2 u2

/2 1 0; 861 0; 58 0; 72
r2 0; 861 1 0; 72 0; 864

d2 0; 58 0; 72 1 0; 861
u2 0; 72 0; 864 0; 861 1

a ¼ 0; 7 c ¼ 0; 864 p ¼ 0; 5 b ¼ 0; 861

Table 11. m m0 h2; k2ð Þ 2; 4ð Þð Þ
m /2 r2 d2 u2

/2 1 0; 9 0; 72 0; 82
r2 0; 9 1 0; 82 0; 91

d2 0; 72 0; 82 1 0; 9
u2 0; 82 0; 91 0; 9 1

a ¼ 0; 82 c ¼ 0; 91 p ¼ 0; 72 b ¼ 0; 9

Table 12. m m0 h2; k2ð Þ 3; 4ð Þð Þ
m /2 r2 d2 u2

/2 1 0; 93 0; 75 0; 81
r2 0; 93 1 0; 81 0; 88

d2 0; 75 0; 81 1 0; 93
u2 0; 81 0; 88 0; 93 1

a ¼ 0; 81 c ¼ 0; 88 p ¼ 0; 75 b ¼ 0; 93
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From these tables it is observed that for the case of fuzzy 3-means, for all pairs of
classes c, d holds that cc;d\bc;d : By contrast, in fuzzy 4-means the inequality is not
met, i.e., c1;4 [ b1;4, c2;3 [ b2;3 and c2;4 [ b2;4. Therefore, it is established that there
are pairs of classes for which their degree of non-coverage is greater than their degree
of coverage without considering their overlap. In principle, class 2 and class 4 are those
that most affect the relevance of the classes analyzed by pairs. Therefore, the fuzzy
3-means algorithm application obtains greater relevance, illustrating the proposed
criterion for identifying the partition with highest quality.

5 Final Comments

Through this work, some of the fundamental elements that allow characterizing the
property of relevance in the framework of the evaluation of a fuzzy classification
system are given. Three determining aspects are considered for the study of relevance:
(1) a process of comparison between classes and the way they cover the objects under
consideration, (2) degrees of intensity in the changes generated by the elements in the
space and (3) a stopping criterion for inclusion of classes in a fuzzy partition.

The complement of two ratios b0 and c0 for each pair of classes {c, d} have been
established as elements for comparison. The ratio b0 expresses the global degree
(aggregation of the degree for all items x 2 X) in which the overlap of the two classes
covers the objects under consideration, while c0 expresses the global degree in which
the coverage of the two classes differs in relation to their partial complement. Com-
paring the complements of these two ratios it is expected that b ¼ 1� b0 is greater
than c ¼ 1� c0.

According to the above, the stopping criterion corresponds to a comparison process
in which a pair of classes is relevant up to a degree t, provided that the degree of
coverage of two classes without considering their overlap is greater than the degree of
non-coverage of the classes in relation to the objects under consideration. In this sense,
the class pair {c, d} will be non-relevant when c[ b.

As future work, it is proposed to build a model that allows generalizing the
mappings together with the stopping criterion, while maintaining the group structure.
Such a model should be general enough to include cases that do not meet the Ruspini´s
partition.

The characterization of the relevance of classes in a fuzzy partition still requires
further developments and as future research, we propose to study the kinds of changes
that the inclusion or elimination of a class can generate in a partition. Although the
changes are measured in degrees of intensity, such changes can also be of a different
nature, for example, affecting both the grouping and overlapping of each element, as
there may be changes that affect only one of the properties. Likewise, a more in-depth
study is necessary to relate the degrees of coverage and overlap of the partition, with
the degree of relevance for every pair of classes.
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Abstract. In this study we analyze an two-dimensional epidemiological
model via fuzzy differential equation considering that the solution is an
interactive fuzzy process. More particularly, we will consider the case
where this process is linearly correlated.
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1 Introduction

Epidemiological models of direct transmission are of great importance for epi-
demic prediction. Normally, they are modeled by ordinary differential equations
and partial differential equations [9]. In this manuscript, we study the model
with only two compartments, namely susceptible-infectious. In this type of sys-
tem, the infected individual is never considered to be susceptible again (e.g.,
HIV).

It is difficult to accurately determine the infected and susceptible population
in epidemiology. Therefore, fuzzy sets can be a good tool to model the popu-
lation over time. In addition, there seems to be a relationship between these
populations, so that considering interactivity in the process is indispensable. For
instance, the susceptible-infected (SI) model without vital dynamics, that is, the
mortality rate is equal to the birth rate, it is possible to consider that the sum
of the susceptible and infected populations is constant for all t > 0 [4].

We solve a system of two-dimensional fuzzy differential equations by the
interactive fuzzy derivative theory. The system in question is the epidemiological
model of direct transmission without vital dynamics.

The manuscript is organized as follows. Section 2 presents the mathematical
background. Section 3 presents the interactive fuzzy derivative theory. Section 4
presents the epidemiological fuzzy model. Lastly, our final remarks are presented
in Sect. 5.
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2 Mathematical Background

A fuzzy number A is a fuzzy subset of R with a normal, fuzzy convex and
continuous membership function μA : R → [0, 1], and with compact support. We
denote the family of fuzzy numbers by RF . The α-levels of A are given by

[A]α = {x ∈ R : μA(x) ≥ α},

if α > 0,
[A]0 = cl{x ∈ R : μA(x) > 0} = suppA

and when α = 1 we say [A]1 is a core of A [1,2].
A joint possibility distribution J , n-dimensional, is a fuzzy subset of Rn with

a normal membership function and a compact support. We denote by FJ(Rn)
the family of joint possibility distribution of Rn.

Let A1, A2, . . . , An be fuzzy numbers and J ∈ FJ(Rn), then μJ is a joint
possibility distribution of A1, A2, . . . , An if

max
xj∈R,j �=i

μJ(x1, . . . , xn) = μAi
(xi). (1)

Besides that, μAi
is called the i-th marginal distribution marginal of J [3]. The

interactivity between fuzzy numbers is determined from a possibility distribution
[3]. If J is a possibility distribution of fuzzy numbers A1, A2, . . . , An then the
following relationship is satisfied

μJ(x1, . . . , xn) ≤ min{μA1(x1), . . . , μAn
(xn)},

and
[J ]α ⊆ [A1]α × ... × [An]α,

for all α ∈ [0, 1].
We say that the fuzzy numbers A1, A2, . . . , An are non-interactive when

μJ(x1, . . . , xn) = min{μA1(x1), . . . , μAn
(xn)},

or equivalently,
[J ]α = [A1]α × ... × [An]α,

for all α ∈ [0, 1]. Otherwise they are interactive. The metric used in this study
is the Pompieu-Hausdorff distance d∞ : R × R → [0,∞), and is defined [1] by
equation

d∞(A,B) = sup
0≤α≤1

max {|a−
α − b−

α |, |a+
α − b+α |},

where A,B ∈ RF , [A]α = [a−
α , a+

α ] and [B]α = [b−
α , b+α ].

Let J be a joint possibility distribution of A1, . . . , An ∈ RF and f : Rn → R

a continuous function. The function fJ is said to be the extension principle of f
via J [3] and its membership function is defined by

μfJ (A1,...,An)(y) = sup
y=f(x1,...,xn)

μJ (x1, . . . , xn). (2)

Notice that fJ(A1, . . . , An) ∈ RF .
The next result is a generalization of Nguyen’s theorem.
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Theorem 1 [3]. Let A1, . . . , An be completely correlated fuzzy numbers, J their
joint possibility distribution and f : Rn → R a continuous function, then

[fJ(A1, . . . , An)]α = f([J ]α),

for all α ∈ [0, 1].

Carlsson et al. [3] introduced the concept of completely correlated fuzzy num-
bers using the concept of possibility distribution. Let A1 and A2 be fuzzy num-
bers. Then, we say that A1 and A2 are completely correlated fuzzy numbers if
exist q �= 0 and r real numbers, such that their joint possibility distribution is
given by

μC(x1, x2) = μA1(x1)X{qx1+r=x2}(x1, x2)
= μA2(x2)X{qx1+r=x2}(x1, x2)

(3)

where X{qx1+r=x2}(x1, x2) is the characteristic function of line {(x1, x2) ∈ R
2 :

qx1 + r = x2}. Barros and Pedro [6,7], introduced the concept of linearly corre-
lated fuzzy numbers to model correlations where knowledge of the joint distri-
butions are not known.

Two fuzzy numbers A and B are called linearly correlated if there exist
q, r ∈ R such that

μB(y) =

{
sup

y=qx+r
μA(x) if q �= 0 or y = r

0 if q = 0 and y �= r
. (4)

Notice that the fuzzy number B is given by the Zadeh’s extension principle of the
fuzzy number A by f(x) = qx + r, thereby μB(x) = μA(x−r

q ). Thus, according
to [1, Theorem 2.1], the α-levels is given by

[B]α = q[A]α + r.

Let A and B be linearly correlated fuzzy numbers. We define:

– The addition between two linearly correlated fuzzy numbers B +L A is given
by the following membership function

μB+LA(z) =

{
sup

x∈Φ−1(z)

μA(x) if Φ−1(z) �= ∅
0 if Φ−1(z) = ∅

,

where Φ−1(z) = {x|z = (q + 1)x + r}.
– The subtraction between two linearly correlated fuzzy numbers B −L A is

given by the following membership function

μB−LA(z) =

{
sup

x∈Φ−1(z)

μA(x) if Φ−1(z) �= ∅
0 if Φ−1(z) = ∅

,

where Φ−1(z) = {x|z = (q − 1)x + r}.
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– The product between two linearly correlated fuzzy numbers B ·L A is given
by the following membership function

μB·LA(z) =

{
sup

x∈Φ−1(z)

μA(x) if Φ−1(z) �= ∅
0 if Φ−1(z) = ∅

,

where Φ−1(z) = {x|z = qx2 + rx}.
– The division between two linearly correlated fuzzy numbers B ÷L A is given

by the following membership function

μB÷LA(z) =

{
sup

x∈Φ−1(z)

μA(x) if Φ−1(z) �= ∅
0 if Φ−1(z) = ∅

,

where Φ−1(z) = {x|z = q + r
x} and 0 /∈ suppA.

We reiterate once again the fact that for linearly correlated fuzzy numbers we
do not need to know the joint possibility distribution involved.

Notice that the arithmetic operations between two linearly correlated fuzzy
numbers are given as restrictions of the traditional operators to the curve
(x, qx + r). Moreover, the operations are given by the extension principle of
the functions: Φ(x) = (q + 1)x + r, Φ(x) = (q − 1)x + r, Φ(x) = qx2 + rx and
Φ(x) = q + r

x , respectively.
So, according to [1, Theorem 2.1], in terms of α-levels, the four operations of

linearly correlated fuzzy numbers are given, respectively, by

– [B +L A]α = (1 + q)[A]α + r, ∀α ∈ [0, 1].
– [B −L A]α = (q − 1)[A]α + r, ∀α ∈ [0, 1].
– [B ·L A]α = {qx2

1 + rx1 ∈ R|x1 ∈ [A]α}, ∀α ∈ [0, 1].
– [B ÷L A]α = {q + r

x1
∈ R|x1 ∈ [A]α}, ∀α ∈ [0, 1].

There is another set difference operator for subtraction that appears in the
literature. Let A and B be fuzzy numbers. The generalized Hukuhara difference
(gH-difference) A −gH B = C is the fuzzy number C (if it exists) such that
A = B + C or B = A − C [2,5,10].

3 Fuzzy Interactive Differential Equations

The modeling of dynamical systems from an initial condition, takes into account
the “past” moment. Then, we have a process memory and the derivative
operator must therefore incorporate these past relations between their states.
The interactive fuzzy derivative, in particular the L-derivative, expresses these
relations through the interactivity between their states. For h with absolute value
sufficiently small, this interaction is given, in levels, by

[F (t + h)]α = q(h)[F (t)]α + r(h).
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It means that the future value F (t + h) is linearly correlated with the present
value F (t), for each h with absolute value sufficiently small. Thus F is an auto-
correlated fuzzy processes.

Let F : [a, b] → RF be a fuzzy-number-valued function and for each h with
absolute value sufficiently small, let F (t0 + h) and F (t0) with t0 ∈ [a, b] be
linearly correlated fuzzy numbers. According to [6], F is called L-differentiable
at t0 if there exists a fuzzy number F

′
L(t0) such that the limit

lim
h→0

F (t0 + h) −L F (t0)
h

exists and is equal to F
′
L(t0), using the metric d∞. Additionally, F

′
L(t0) is called

linearly correlated fuzzy derivative of F at t0. At the endpoints of [a, b], we
consider only one-sided derivative.

The next theorem gives us a practical way to calculate the L-derivative.

Theorem 2 [6]. Let F : [a, b] → RF be L-differentiable at t0 and [F (t)]α =
[f−

α (t), f+
α (t)], for α ∈ [0, 1], then f−

α and f+
α are differentiable at t0 and for

each h with absolute value sufficiently small, we have

[F
′
L(t0)]α =

⎧⎨
⎩

i. [(f−
α )

′
(t0), (f+

α )
′
(t0)] if q(h) ≥ 1

ii. [(f+
α )

′
(t0), (f−

α )
′
(t0)] if 0 < q(h) < 1

iii. {(fα)
′
(t0)} if q(h) ≤ 0

.

Let F : [a, b] → RF be a fuzzy-number-valued function. According to [2,5,10],
F is called gH-differentiable at t0 if there exists a fuzzy number F

′
gH(t0) such

that the limit

lim
h→0

F (t0 + h) −gH F (t0)
h

exists and is equal to F
′
gH(t0), using the metric d∞. Additionally, F

′
gH(t0) is

the generalized Hukuhara derivative of F at t0. At the endpoints of [a, b], we
consider only one-sided derivative.

A strongly measurable and integrably bounded fuzzy-valued function is called
integrable according to Kaleva [8]. A fuzzy Aumann integral of F : [a, b] → RF
is defined level-wise by

[
(FA)

∫ b

a

F (x)dx

]
α

=
∫ b

a

[F (x)]αdx

=
{ ∫ b

a

f(x)dx/f : [a, b] → R

is a measurable selection for Fα

}
,

for all α ∈ [0, 1].
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Theorem 3 [6]. Let F : [a, b] → RF be an autocorrelated fuzzy processes and
L-differentiable, with [F (t)]α = [f−

α (t), f+
α (t)]. If F

′
L is Aumann integrable then,

for t ∈ [a, b], we have

F (t) = F (a) +L

∫ t

a

F
′
L(s)ds, (5)

where +L is the addition between fuzzy numbers linearly correlated.

The fuzzy initial value problem (FIVP)

x
′
L(t) = F (t, x(t)), x(0) = x0, (6)

where F : [a, b] × RF → RF is a continuous function and x0,
is a fuzzy number. Let [x(t)]α = [x−

α (t), x+
α (t)] and [F (t, x(t))]α =

[f−
α (t, x−

α (t), x+
α (t)), f+

α (t, x−
α (t), x+

α (t))].

Lemma 1 [6]. Let F be an autocorrelated fuzzy processes. The function x :
[a, b] → RF is a solution for (6) if only if F is continuous and satisfies

x(t) = x0 +L

∫ t

a

F
′
L(s, x(s))ds, t ∈ [a, b]. (7)

4 Biological Problem: Fuzzy Epidemiological Model
of Direct Transmission with Two Compartments

Infectious diseases can be classified into two categories, namely, microparasitic
and macroparasitic. The first one is related to virus and bacteria, and the second
one is related to worms. The difference between them is not just the size of the
infectious agent. Microparasites reproduce within their host and are transmit-
ted from one host to another, whereas macroparasites have a somewhat more
complicated life cycle normally involving more than one host. When the dis-
ease spreads within a community without migration and immigration due to the
contact of healthy and infected people we have an epidemic.

Let X be the healthy population, that is, susceptible to disease, and Y be
the infectious population, that is, which transmits the disease. Consider the
epidemiological model of direct transmission with two compartments without
vital dynamics, given by the diagram

X Y
β

Note that the increase of Y is proportional to the encounter between healthy
people (X) and infectious people (Y ). The diagram supports the following system
of differential equations
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⎧⎪⎪⎨
⎪⎪⎩

X
′
L(t) = −βX(t) ·L Y (t)

Y
′
L(t) = βX(t) ·L Y (t)

X(0) = X0 ∈ RF
Y (0) = Y0 ∈ RF

, (8)

where the parameter β ∈ (0,∞) is the rate of transmission of the disease, X,Y ∈
RF , and

X(t) +L Y (t) = 1. (9)

From condition (9), we have

X(t) = 1 −L Y (t). (10)

Notice that there is a clear functional relation between X and Y . Therefore, one
says they are fuzzy numbers linearly correlated.

Substituting (10) into the system (8), we have{
Y

′
L(t) = β(1 −L Y (t)) ·L Y (t)

Y (0) = Y0
. (11)

According to the operations between fuzzy numbers linearly correlated, we have
[β(1 −L Y (t)) ·L Y (t)]α =⎧⎨

⎩
[β(1 − y−

α )y−
α , β(1 − y+

α )y+
α ], y−

α < y+
α < 1

2

[ min {c−
α , c+α }, β

4 ], y−
α ≤ 1

2 ≤ y+
α

[β(1 − y+
α )y+

α , β(1 − y−
α )y−

α ], y+
α > y−

α > 1
2

, (12)

where c−
α = β(1 − y−

α )y−
α and c+α = β(1 − y+

α )y+
α .

Consider that the function Y (t) is an autocorrelated fuzzy processes with
0 < q < 1, since when the time increases the susceptible population tends to
decreases. Hence, we expect that the uncertainty will vanish over time. Thus, we
use the case ii. of Theorem 2.

Therefore, system (11), ∀α ∈ [0, 1], becomes{
[(y+

α )
′
, (y−

α )
′
] = [f−

α (t, y−
α , y+

α ), f+
α (t, y−

α , y+
α )]

[Y (0)]α = [y−
0α, y+

0α]
, (13)

where [F (t, y)]α = [β(1 −L Y (t)) ·L Y (t)]α. That is,

– For y−
α < y+

α < 1
2 ⎧⎪⎪⎨

⎪⎪⎩
(y−

α (t))
′
= β(1 − y+

α )y+
α

(y+
α (t))

′
= β(1 − y−

α )y−
α

y−
α (0) = y−

0α

y+
α (0) = y+

0α

(14)

– For y−
α ≤ 1

2 ≤ y+
α ⎧⎪⎪⎨

⎪⎪⎩
(y−

α (t))
′
= β

4

(y+
α (t))

′
= min {c−

α , c+α }
y−

α (0) = y−
0α

y+
α (0) = y+

0α

(15)
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– For y+
α > y−

α > 1
2 ⎧⎪⎪⎨

⎪⎪⎩
(y−

α (t))
′
= β(1 − y−

α )y−
α

(y+
α (t))

′
= β(1 − y+

α )y+
α

y−
α (0) = y−

0α

y+
α (0) = y+

0α

(16)

Notice that (14), (15) and (16) are real systems of differential equations. Thus,
for each α ∈ [0, 1], we solve the system numerically using the fourth order Runge-
Kutta method or any IVP numerical method. In Fig. 1, we show the curves of
0-level and 1-level and in Fig. 2, we can see the graphical representation of fuzzy
solution X(t) and Y (t) for a contractive fuzzy process.

(a) Susceptible population (b) Infectious population

Fig. 1. The 0-level (continuous line) and the core (dashed-dotted line) of solution Y
of the system (13), and its correspondent X with β = 0.02 and initials conditions
X0 = (0.85; 0.9; 0.95) and Y0 = (0.05; 0.1; 0.15).

Now if one considers that the function Y (t) is an autocorrelated fuzzy pro-
cesses with q > 1 one expects that the uncertainty will increase over time. Thus,
we use the case i. of Theorem 2, and system (11), ∀α ∈ [0, 1], becomes{

[(y−
α )

′
, (y+

α )
′
] = [f−

α (t, y−
α , y+

α ), f+
α (t, y−

α , y+
α )]

[Y (0)]α = [y−
0α, y+

0α]
, (17)

where [F (t, x)]α = [β(1 −L Y (t)) ·L Y (t)].
Proceeding in an equivalent way to the previous case we obtain Figs. 3 and 4.

In Fig. 3, we show the curves of 0-level and 1-level and in Fig. 4, we can see the
graphical representation of fuzzy solution X(t) and Y (t) for expansive fuzzy
process.

Let us consider the gH-derivative in the system (11), that is,{
Y

′
gH(t) = β(1 −gH Y (t)) · Y (t)
Y (0) = Y0

. (18)

Thus, ∀α ∈ [0, 1], we have{
[(y+

α )
′
, (y−

α )
′
] = [β(1 − y+

α )y−
α , β(1 − y−

α )y+
α ]

[Y (0)]α = [y−
0α, y+

0α]
. (19)
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(a) Susceptible population (b) Susceptible population

(c) Infectious population (d) Infectious population

Fig. 2. Graphical representation of solution Y of the system (13), and its correspondent
X with β = 0.02 and initials conditions X0 = (0.85; 0.9; 0.95) and Y0 = (0.05; 0.1; 0.15).
The darkest region represents 1-level of X(t) and Y (t).

(a) Susceptible population (b) Infectious population

Fig. 3. The 0-level (continuous line) and the core (dashed-dotted line) of solution Y
of the system (13), and its correspondent X with β = 0.02 and initials conditions
X0 = (0.85; 0.9; 0.95) and Y0 = (0.05; 0.1; 0.15).

We show the curves of 0-level and 1-level n Fig. 5 of the solution X and Y
with L-derivative and gH-derivative. It is worth noticing that in the case with
gH-derivative one considers that the difference is interactive with gH but the
product operation is non-interactive. In this way, there is an inconsistency with
the choice of the product operation in system (18). Comparing the solutions in
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(a) Susceptible population (b) Susceptible population

(c) Infectious population (d) Infectious population

Fig. 4. Graphical representation of solution Y of the system (13), and its correspondent
X with β = 0.02 and initials conditions X0 = (0.85; 0.9; 0.95) and Y0 = (0.05; 0.1; 0.15).
The darkest region represents 1-level of X(t) and Y (t).

(a) Susceptible population (b) Infectious population

Fig. 5. The 0-level (dashed line) and the core (dashed-dotted line) of solution Y of the
system (8), and its correspondent Y with L-derivative, and the 0-level (continuous line)
and the core (dashed-dotted line) of solution Y of the system (8), and its correspondent
X with gH-derivative. Both with β = 0.02 and initials conditions X0 = (0.85; 0.9; 0.95)
and Y0 = (0.05; 0.1; 0.15).

Fig. 5, one can see the difference between the solution via gH-derivative and the
solution via L-derivative.

We stress the importance of using the fuzzy interactive arithmetic. Since X
and Y are interactive fuzzy numbers, one needs to maintain the coherence over
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all operations between them. That is, if one uses the interactive subtraction
operation, then the sum and product operations must also be interactive.

5 Conclusion

We solved the fuzzy epidemiological model of direct transmission with two com-
partments by using the L-derivative and gH-derivative. When one considers
the L-derivative, two solutions are possible: (i) when the process is expansive
(q > 1), and (ii) when it is contractive (0 < q < 1). The latter solution being
consistent with the biological interpretation of the problem. Considering the gH-
derivative, we note that although the difference is interactive, the product used
is non-interactive. This causes an inconsistency in the model. In short, the app-
roach that best represents the fuzzy epidemiological model of direct transmission
without vital dynamics is the one with linearly correlated differentiability, since
all operations are interactive, and the solution obtained by 0 < q < 1 shows a
similar behavior to the classical solution of the model.
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Abstract. The Internet of Things (IoT) is characterized by a broad
range of resources connected to the Internet, requesting and provid-
ing services simultaneously. Given this scenario, suitably selecting the
resources that best meet users’ demands has been a relevant and current
research challenge. Based on the non-functional parameters of Quality
of Service (QoS), IoT plays an important role in the ranking of these
resources according to the offered services. This paper presents a pro-
posal to classify and select the most appropriate resource for the client’s
request, applying fuzzy logic to address uncertainties in the definition of
ideal weights for QoS attributes, and aggregating machine learning to the
pre-classification of EXEHDA middleware resources, in order to reduce
the computational cost generated by MCDA algorithms. As the main
contribution, the pre-classification of new resources of the EXEHDA-RR
is presented. The experimental results show the efficiency of the proposed
model.

Keywords: IoT · Resources ranking · MCDA · Machine learning
Fuzzy logic

1 Introduction

The current scenario accounts for more than six billion things connected to
the Internet, in a dynamic composition environment, by providing services to
customers and forecasting more than 100 billion services by 2025 [1].

A challenge to be overcome after resource discovery is to classify services
to select what best suits the user’s request [2], which is a difficult and time-
consuming task. Classification processes have focused on user preferences, which
often establish an order based on Quality of Service (QoS) or Non-Functional
Properties (NFPs) [3].

Another challenge after discovering resources is to classify the services to
select which one best suits the user’s request [2]. Classification processes focus
on user preferences that often establish an order based on Quality of Service

c© Springer International Publishing AG, part of Springer Nature 2018
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(QoS) [4] or the non-functional properties (NFPs). Using these preferences, the
set of discovered services can be classified so that the best service can be chosen.

Considering the typical IoT infrastructure, the resource discovery process
must consider both functional and non-functional requirements in order to meet
the demands of the applications. Functionalities explicitly describe the features
of the resources, that is, what they can offer, and the non-functional require-
ments define additional information about the services, such as performance and
safety [5].

The resources, which are usually made available through services, have QoS
attributes with values presenting units of different measurements and broad
ranges in minimum and maximum values. The entity responsible for defining
these values should be aware of all the characteristics of the quality attributes.
Considering that in each institution the definition of these values can be done by
specialists with different perceptions, the uncertainty arises when defining the
values to be adopted as attributes of QoS. This paper presents a new proposal
for resource ranking, considering EXEHDA middleware [6], called EXEHDA-RR
(Resource Ranking). The proposal models the treatment of uncertainty when
defining the importance of the different attributes of QoS. Furthermore, this
model considers customer preferences and service quality attributes and aggre-
gates Semantic Web technologies to the specification and query of resources.

The original contribution of this proposal lies in the combined use of fuzzy
logic and machine learning in recognition of standards for resource classifica-
tion. The resources are initially classified by Multiple-Criteria Decision Analysis
(MCDA) algorithms. At each rating, a new machine learning algorithm train-
ing is performed to pre-classify new resources as they enter the computational
infrastructure. This process reduces the need to process all MCDA algorithm
computations at each client request. The evaluation scenario of the EXEHDA-
RR showed satisfactory results for the accuracy obtained by combining fuzzy
logic with machine learning. Considering the literature and the demands of a
research group, the results achieved are timely for use in the EXEHDA middle-
ware.

This paper is organized as follows: Sect. 2 presents preliminaries of fuzzy
logic. Section 3 presents preliminaries in multiple-criteria decision analysis, which
describe the process of the resource classification used. The model and evaluation
of EXEHDA-RR are described in Sect. 4. The related works are discussed in
Sect. 5. Finally, conclusion is given in Sect. 6.

2 Preliminaries in Fuzzy Logic

Fuzzy set theory (FST), which has been widely applied to model the ambi-
guities of human thinking, also adequately addresses the uncertainties in the
information available for decision-making based on multiple criteria. The ade-
quacy of substitutions versus criteria and the significant weight of criteria are
evaluated regarding linguistic values represented by diffuse numbers. In FST,
linguistic variables are used to describe fuzzy terms mapping linguistic variables
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to numerical ones. The truth values of Boolean logic are replaced by fuzzy values
in the unit interval in the decision-making process [7].

Thus, mathematically, a set is defined as a finite, infinite, or infinite countable
collection of elements. In each case, each element is either a member of a the set
or not. However, in fuzzy systems, the element may be partially in or out of the
set. So the answer to the question: “is X a member of a set A” does not have a
definite answer, either true or false.

Fuzzy Sets

A fuzzy set A defined in the discourse universe U¬∅ is characterized by a mem-
bership function µA :U→ [0, 1], given by

A = {(x, µA(x)) | x ∈ U ∧ µA(x) ∈ [0, 1]}
For each x ∈ X, µA(x) represents the degree of relevance of x in A.

x ∈ (A,µ) ⇐⇒ x ∈ A ∧ µ(x) �= 0

Additionally, by the membership function, each element x ∈ U has a degree of
relevance in each set A, expressing how much it is possible for the element x
belonging to the set A. Thus, when an element of degree of relevance 0, means
that it is not included in the fuzzy set, while a grade 1 element is fully included
in it.

Fuzzification

Considering specifications related to applied area of the present work, triangular
membership functions were adopted. A triangular fuzzy number A can be set by
a triple (a, b, c) with the membership function given by Eq. (1) below:

µA(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, se x ≤ a;
x−a
b−a , se a ≤ x ≤ b;
c−x
c−b , se b ≤ x ≤ c;
0, se x ≥ c.

(1)

Defuzzification

Defuzzification is the process which produces a quantifiable real-number (crisp)
result in fuzzy logic, meaning that a fuzzy number is transformed into a single
number based on different methods. This work considers the weighted average
of the maximum, expressed as

Z0 =
µ(x)iwi

µ(x)i
, (2)

According to Eq. (2), where Z0 is the defuzzified output, µ(x)i is the degree of
relevance and wi is the fuzzy output weight value.
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3 Preliminaries in Multiple-Criteria Decision Analysis

The resource discovery process encompasses the classification and selection of
the best resources, which are suited to the client’s request. In this section, the
MCDA algorithm is used for classification and selection of resources used in this
work.

An MCDA refers to decision-making in the presence of multiple and often
conflicting criteria. The MCDA algorithms aim to aid in the judgment of
decision-making using a set of objectives and criteria, estimating their relative
importance by weights, establishing the contribution of each option about of
multi-criteria performance. MCDA is not only a set of theories, methodologies,
and techniques but it also includes a particular perspective in order to deal with
decision-making problems [8].

The Simple Additive Weighting (SAW) algorithm, using an evaluation score
to rank each available option is obtained by normalized criteria values, which are
multiplied by corresponding weights. The options are sorted in descending order
according to the final score, which is the sum of the scores for each criterion [9].

The proposed MCDA algorithm developed for resource classification is based
on the algorithms SAW and Web Service Relevancy Function (WsRF) [10], the
first stage of data normalization as proposed by [11]. For the matrix normaliza-
tion, two vectors are defined. In the former, N = {n1, n2, . . . , nm}, the value of
nj can be given as binary number: (i) 1, when the increase in qi,j benefits the cus-
tomer’s request; or (ii) 0, when the increase in qi,j does not benefit the client’s
request. The latter vector C = {c1, c2, . . . , cm} contains the related constants
with the maximum normalized value for each attribute.

The following steps must be performed for the calculation of resource assess-
ment applying the MCDA algorithm:

1. Normalize the matrix Q = (qij)n×m according to Eq. (3) whether the criterion
should be maximized or to Eq. (4) whether the criterion should be minimized.
In these equations, 1

n

∑n
i=1 qi,j is the mean of the quality attributes j in the

Q matrix.

vi,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

qi,j
1
n

∑n
i=1 qi,j

if 1
n

∑n
i=1 qi,j �= 0

and
qi,j

1
n

∑n
i=1 qi,j

< cj

and nj = 1
cj if 1

n

∑n
i=1 qi,j = 0

and nj = 1
or

qi,j
1
n

∑n
i=1 qi,j

≥ cj
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2. Calculating the vector scoring of each available option. Each score can be
calculated using Eq. (5) and the operator max(vj) representing the high-
est normalized attribute value in column j. Therefore, we need to define
an array that represents the contribution of weights to each resource, where
w = {w1, w2, w3, . . . , wj}. Each weight in this matrix represents the degree
of importance or weight factor associated with a specific QoS property. The
values of these weights vary from 0 to 1. The Eq. (6) sums all the quality
attributes for the resource Ri, where N represents the number of attributes.

hi,j = wj

[
vi,j

max(vj)

]

(5)

Ri =
N∑

j=1

hi,j (6)

MCDA(Ai) =
[
100 ∗ Ri

max(R)

]

(7)

3. The final result of the MCDA algorithm, Eq. (7), is reclassified, as shown
in Fig. 1. The leaves of the tree are represented by a box containing the
classification (1 a 4).

Fig. 1. Reclassification of the proposed MCDA algorithm

4 EXEHDA-RR: Model and Evaluation

The EXEHDA-RR uses ontologies for describing resources and their quality
attributes (QoS) [12], MCDA algorithm, considers client preferences, treats
uncertainty in defining attribute weights through fuzzy logic, and performs pre-
classification of resources through of the LMT machine learning algorithm.
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4.1 Exploring Treatment of Uncertainty Using Fuzzy Logic

This resource classification process, which can satisfy the user’s request, the eval-
uation of QoS attributes, is a challenging step. The definition of the degree of
importance of QoS attributes by the user and administrators of the computa-
tional infrastructure is an activity that depends on the experience and knowledge
of each. The treatment of the uncertainty introduced by these divergences is one
of the contributions of this work.

The evaluation process uses fuzzy logic in the specification of the ideal QoS
attributes, defined by the experts of the computational environment. We use the
QWS version 2.0 available from [10], with 2.505 resources and nine attributes of
quality. Table 1 describes the five used attributes.

Table 1. QWS dataset attributes

Attribute Description Unit

RT - Response Time Time to send a request and receive your response ms

AV - Availability Number of correct invocations/total invocations %

TH - Throughput Total Number of invocations for a given period of time %

RE - Reliability Ratio of the number of error messages over total messages %

LA - Latency Time taken for the server to process a given request ms

Figure 2 and Table 2 display the Linguistic Terms and the assigned weights.

Fig. 2. Representation of fuzzy sets

Table 3 simulates the definition of the degree of importance for each quality
attribute using the Linguistic Terms defined by five experts. This evaluation aims
to set the weights to be assigned to each attribute providing the most adequate
resources to the user’s request.

Table 4 contains the conversion of the Linguistic Terms, assigned by the
experts, into fuzzy triangular numbers is presented. Fuzzy mean between the
specialists and the defuzzification using the weighted average method is also
shown. In the end, the values of the attributes are normalized.
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Table 2. Degree of importance

Linguistic Term Value

VH - Very High (0.8,1.0,1.0)

H - High (0.6,0.8,1.0)

M - Medium (0.4,0.6,0.8)

L - Low (0.2,0.4,0.6)

VL - Very Low (0.0,0.2,0.4)

Table 3. Expert evaluation

Attr Exp1 Exp2 Exp3 Exp4

RT M H L H

AV VH VH H VH

TH M M H H

RE H H VH H

LA VH H VL H

Table 4. Calculation of QoS weights

Attr Exp1 Exp2 Exp3 Exp4 Fuzzy Avg Def Norm

RT (0.4,0.6,0.8) (0.6,0.8,1.0) (0.2,0.4,0.6) (0.6,0.8,1.0) (0.45,0.65,0.85) 0.65 0.70

AV (0.9,1.0,1.0) (0.9,1.0,1.0) (0.6,0.8,1.0) (0.9,1.0,1.0) (0.83,0.95,1.00) 0.93 1.00

TH (0.4,0.6,0.8) (0.4,0.6,0.8) (0.6,0.8,1.0) (0.6,0.8,1.0) (0.50,0.70,0.90) 0.70 0.75

RE (0.6,0.8,1.0) (0.6,0.8,1.0) (0.9,1.0,1.0) (0.6,0.8,1.0) (0,68,0.85,1.00) 0.87 0.94

LA (0.9,1.0,1.0) (0.6,0.8,1.0) (0.0,0.2,0.4) (0.6,0.8,1.0) (0,53,0.70,0.85) 0.70 0.75

The resulting normalized values will be applied in the process of classification
and selection of resources with the application of the MCDA algorithm. In this
step we evaluate the accuracy in the classification performed by the algorithm
of machine learning in the process of pre-classification of new resources. In order
perform the tests, the dataset QWS [10] was considered. Table 1 describes the
attributes that were used. Massive Online Analysis (MOA) framework for data
mining was used, prototyping decision tree algorithms. The MOA and WEKA
libraries were developed in Java and Jpype was used so that Python can manip-
ulate libraries in Java.

4.2 Exploring MCDA in the Constrution of Reference Ranking

The application of the MCDA algorithm is demonstrated in the classification of
a data set containing 5 quality attributes for 10 resources. Each row represents
a resource and each column has a quality attribute (Table 5). The values of the
Resp.Time and Latency attributes are best if they are low, and the values of
the Availability, Throughput, the higher the values, the better the Reliability
attributes.

The first step of the classification is the normalization of the data. Therefore,
we consider the vectors N={0,1,1,1,0}, C={6,2,3,2,50} and w={0.70, 1.00, 0.75,
0.94, 0.75}. The Resp.Time and Latency attributes qualify the resource with
low values (Eq. 4) and Availability, Throughput and Reability qualify with high
values (Eq. 3). All attributes are normalized with maximum value defined in
“C”, the result is shown in Table 6.
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Table 5. Dataset example

Resp.Time Availability Throughput Reliability Latency

302.75 89 7.1 73 187.75

482 85 16 73 1

3321.4 89 1.4 73 2.6

126.17 98 12 67 22.77

107 87 1.9 73 58.33

107.57 80 1.7 67 18.21

255 98 1.3 67 40.8

136.71 76 2.8 60 11.57

102.62 91 15.3 67 0.93

200 40 13.5 67 41.66

Table 6. Normalized attributes

RT AV TH RE LA

1.70 1.07 0.97 1.06 0.21

1.07 1.02 2.19 1.06 38.56

0.15 1.07 0.19 1.06 14.83

4.07 1.18 1.64 0.98 1.69

4.80 1.04 0.26 1.06 0.66

4.78 0.96 0.23 0.98 2.12

2.02 1.18 0.18 0.98 0.95

3.76 0.91 0.38 0.87 3.33

5.01 1.09 2.10 0.98 41.46

2.57 0.48 1.85 0.98 0.93

Table 7. Classified attributes

RT AV TH RE LA MCDA Classif

0.24 0.91 0.33 0.94 0.00 61.18 2

0.15 0.87 0.75 0.94 0.70 85.99 1

0.02 0.91 0.07 0.94 0.27 55.67 3

0.57 1.00 0.56 0.86 0.03 76.42 1

0.67 0.89 0.09 0.94 0.01 65.68 2

0.67 0.82 0.08 0.86 0.04 62.27 2

0.28 1.00 0.06 0.86 0.02 56.14 3

0.53 0.78 0.13 0.77 0.06 57.22 3

0.70 0.93 0.72 0.86 0.75 100 1

0.36 0.41 0.63 0.86 0.02 57.59 3

Table 7 presents the values of the attributes after applying Eq. (5), that is,
to divide the normalized value of the Table 6 by the highest normalized value of
each column. After Eq. (6) is applied, it will add up all the attribute values in
each row. The following is applied to Eq. (7) that will qualify the resource with
a value ranging from 0 to 100. The value 100 will be given for the best resource
of dataset. The rank of 1 to 4 is assigned through the rule shown in Fig. 1.

The MCDA algorithm presented in this step was used to classify the dataset
containing the initial repository of 100, 200 or 300 resources. After classifying and
grouping 1000 resources in different ways, the behavior of the machine learning
algorithm is evaluated.
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4.3 Improving the Reference Ranking Exploring Machine Learning

This section presents the results of 4 evaluations performed in the pre-
classification of resources through the LMT machine learning algorithm. The
LMT algorithm was chosen because it obtained the best accuracy among the
decision tree algorithms analyzed.

The algorithms J48, LMT, RandomForest, SimpleCart, DecisionStump, Ran-
domTree, HoeffdingTree, and REPTree were evaluated in the WEKA tool [13].
The classification of the services was done through supervised learning to classify
the attribute “Service Classification” defined in the QWS dataset [10]. According
to the results presented in Table 8, it is noticed that the LMT classifier obtained
an accuracy of 85.99%.

Table 8. Evaluation of classifiers

Classifiers Hits Misses Accuracy

LMT 313 51 85.99%

RandomForest 294 70 80.77%

J48 258 106 70.88%

RandomTree 248 116 68.13%

SimpleCart 248 116 68.13%

REPTree 239 125 65.66%

HoeffdingTree 198 166 54.40%

DecisionStump 160 204 43.95%

All resources were ranked through the MCDA algorithm presented in Sect. 3
and classified from 1 to 4. This classification was used to train the machine
learning algorithm. In each evaluation, the group of resources classified through
the MCDA algorithm is taken from the training dataset and used in the test
dataset of the machine learning algorithm. The evaluations were carried out
with the following initial repositories for training the LMT algorithm: (a) - initial
repository with 100 resources; (b) - initial repository with 200 resources and (c)
- initial repository with 300 resources.

Table 9 shows incorrect resource classifications in 4 evaluations. The first
evaluation (E1) considered groups of 50 resources, totaling 20 groups. The sec-
ond evaluation (E2) considered groups of 100 resources, totalizing 10 groups.
The third evaluation (E3) considered groups of 200 resources, totaling 5 groups.
The fourth evaluation (E4) considered groups of 500 resources, totaling 2 groups.
For each evaluated group, the MCDA algorithm reclassifies resources and trains
the machine learning algorithm. By analyzing the accuracy obtained using pre-
ranking the machine learning algorithm LMT, we can observe that E1c evalua-
tion obtained the accuracy of 82%. The initial repository was with 300 resources
that were used for training and every 50 resources for new training.
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Table 9. Accuracy assessment

Qty E1a E1b E1c E2a E2b E2c E3a E3b E3c E4a E4b E4c

50 14 7 8

100 13 8 10 26 21 21

150 8 12 8

200 11 10 11 20 24 16 41 45 42

250 11 10 11

300 14 10 11 22 17 18

350 7 6 10

400 11 8 10 13 14 15 35 34 28

450 5 6 6

500 6 6 5 14 12 13 109 106 108

550 7 6 14

600 12 14 8 16 14 27 63 61 77

650 20 21 6

700 17 19 9 35 38 16

750 17 16 5

800 16 17 6 34 31 12 73 76 24

850 11 14 11

900 11 9 19 22 23 45

950 14 10 7

1000 7 11 5 26 22 12 46 50 87 213 193 356

TOTAL 232 223 180 228 216 195 258 266 258 322 299 464

Accuracy% 76.8 77.7 82 77.2 78.4 80.5 74.2 73.4 74.2 67.8 70.1 53.6

E2b and E2c evaluations are also satisfactory, with accuracy of 78.4% and
80.5%. These evaluations were performed every 100 resources, so the data nor-
malization and calculation processes of the MCDA algorithm was only performed
every 100 resources.

Evaluation 4 proved to be inappropriate for pre-classification of resources,
with accuracy below 54% (E4c). Additionally, the interval of 500 resources for
recalculation of the MCDA algorithm and machine learning training showed to
be very large, resulting in loss of accuracy.

5 Related Works

The Table 10 presents a comparison of the main methods, such as: (i) expres-
siveness in the representation of resources; (ii) use of MCDA algorithms; (iii)
application of Customer Preferences; (iv) use of QoS; (v) employment of fuzzy
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logic and (vi) Machine Learning (ML) employment. The presence of the criterion
is represented by the character “ + ” and the absence by “ − ”.

Table 10. Comparison of related work

Works Expr. MCDA Pref. QoS Fuzzy ML

Maheswari [14] + + + + + −
Salah [15] − + + + + −
Perera [16] + + + − − −
Gomes [17] + − − − − −
Almulla [18] − + + + + −
Nunes [19] − + + − − −
Suchithra [20] − + + + − −
Vaadaala [21] − + + + − +

EXEHDA-RR + + + + + +

The specification of resources through highly expressive languages is per-
formed in the research of [14,16,17]. Only [17] does not use MCDA algorithms
and does not consider client preferences because it works with context data.
Quality of Service (QoS) criteria are evaluated in [14,15,18,20,21]. The fuzzy
logic is discussed in [14,15,18]. None of them apply fuzzy logic to solve uncer-
tainty among experts.

It can be seen that only [21] uses Machine Learning. But with the objective of
measuring the accuracy of a single quality attribute with the J48 algorithm. The
authors considered the results satisfactory and obtained an accuracy of 63%.

6 Conclusion

This paper presented a model for the IoT resource ranking, called EXEHDA-
RR. As a principal contribution of the work developed so far we can highlight:
(i) the use of fuzzy logic in the definition of attribute weights and its use in
the MCDA algorithm to classify the adequate resources to the client’s request;
(ii) the use of the decision tree algorithm in the pre-classification of resources,
considering different training intervals. By applying fuzzy logic in the resolution
of conflicts among the experts in defining degrees of importance for each attribute
of QoS, it was possible to promote adequacy of the weights used in the algorithm
MCDA, thus considering the resources of better quality as the result of the
clients’ requests.

Moreover, using of supervised machine learning, from a dataset, ranked by
the MCDA algorithm, it was possible to classify resources with considerable
accuracy. The LMT algorithm was adequate, with up to 82% correct in the pre-
classification. The proposed resource ranking model considers the dynamicity
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of the computational infrastructure provided by IoT, with a large number of
consumers and resource providers.

The use of machine learning algorithms in the pre-classification of resources
promotes a relevant reduction of the computational effort of the MCDA algo-
rithms in the classification of resources to each request of the clients. This tech-
nique was modeled using semantic web technologies for the specification of the
resources and their quality attributes. The objective of the EXEHDA-RR propo-
sition was to improve the EXEHDA middleware’s resource allocation process,
enabling it to be highly scalable and dynamic when compiling the computational
environment, a typical situation of the infrastructure provided by IoT.
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Abstract. This work focus on the least square method to fit a fuzzy
function to longitudinal data given by fuzzy numbers. In order to con-
sider the intrinsic correlation of longitudinal data, we assume that there
exits a linear relation among the involved fuzzy numbers that arises from
the concept of a joint possibility distribution. We propose a numerical
method to solve a fuzzy least square problem taking into account this lin-
ear correlation. To this end, we extend the classical least square method
by means of the sup-J extension principle, which consists of a generaliza-
tion of Zadeh’s extension principle. Finally, we use our proposal method
to fit a longitudinal dataset.

Keywords: Fuzzy least square method · Interactive fuzzy numbers
Joint possibility distribution · Longitudinal data

1 Introduction

The least squares methods are used, in general, to obtain a continuous function
that best fit pairs of data in a dataset [1]. The fuzzy least squares method arises
when the dataset is composed by fuzzy numbers. Tanaka et al. proposed a fuzzy
least squares method based on fuzzy regression models [2]. This method was
used to find fuzzy parameters of a fuzzy linear function from a fuzzy dataset.
However, this approach converts the problem to a classic linear programming
problem which may lead to losing the notion of close distance between the fuzzy
data and the obtained solution.

Celmins [3] proceeded with the same methodology of [2] but considered a
intrinsic relation among the dataset based on conical membership functions that
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are (geometrically) similar to joint possibility distributions. In addiction, the
concept of interactive fuzzy numbers [4–6] was only considered in [7], which
improved the approach presented by [3].

In contrast to these previous methods, Diamond [8] proposed a fuzzy least
squares method based on distance between functions. He used projection theo-
rems for cones in Banach spaces to find the fuzzy linear function that best fit a
dataset.

It is worth noting that all these approaches were developed for data given
only by triangular fuzzy numbers and for fitting only fuzzy linear functions. Nev-
ertheless, these methods can be used to model many phenomenons, for example,
in economy [9], psychology [10], medicine [11], and logistics [12].

Data correlations arise naturally in longitudinal datasets. A dataset is said
to be longitudinal if it contains the same type of information on the same itens
at multiple points in time. Therefore, longitudinal data is characterized by the
fact that repeated observations are correlated [13]. In this work, we suppose that
this correlation is given by the notion of completely correlated fuzzy numbers
[5,14].

The method proposed here is based on the (sup-J) extension of classical
numerical algorithm to the fuzzy context and does not take into account any
distance between fuzzy numbers. Moreover, our method can be applied not only
for triangular fuzzy numbers, but for any type of completely correlated fuzzy
numbers, and it can approximate the dataset with higher orders functions.

In Sect. 2 we briefly recall the classical least squares method and some basic
definitions and results from fuzzy set theory. In Sect. 3, we develop the extension
of the classical least squares method for the case where dataset is composed by
completely correlated fuzzy numbers. Finally, in Sect. 4, we apply the proposed
method to fit a fuzzy function to the longitudinal dataset given in [15].

2 Mathematical Background

This section presents the least squares method [1] and some basic concepts of
fuzzy set theory [16].

2.1 Least Square Method

Let f : [c, d] → R be a continuous function. Given n functions g1, . . . , gn, where
gi : R → R for i = 1, . . . , n, we need to find n coefficients a1, . . . , an ∈ R such
that the function ϕ : R → R given by

ϕ(x) = a1g1(x) + . . . + angn(x)

is the best approximation of the function f , i.e., ϕ ≈ f .
The function ϕ is obtained by minimizing the distance between f and ϕ. More

precisely, let ||·||2 be the L2-norm defined on the class of the continuous functions

from [c, d] to R (denoted by C([c, d])) given by ||h||2 =
(∫ d

c
|h(s)|2ds

)1/2

, ∀h ∈
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C([c, d]). The coefficients a1, . . . , an of the function ϕ which produces the best
fit to f are obtained by solving the following minimization problem:

min
a1,...,an∈R

1/2||ϕ − f ||22.

In the case some values of f are known, say D = {f(x1) = y1, . . . , f(xm) =
ym}, the function ϕ must fit the data D, that is, ϕ(xi) ≈ yi, for all i = 1, . . . , m.
Therefore the following minimization problem must be solved.

min
a1,...,an∈R

1/2||(ϕ(x1) − y1, . . . , ϕ(xm) − ym)||22. (2.1)

The real coefficients a1, . . . , an that minimize the problem (2.1), i.e., that
produces the best approximation ϕ of f , are obtained by solving the following
matrix equation called normal equation:

Ma = b,

where

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

g1(xk)g1(xk) . . .

m∑
k=1

g1(xk)gn(xk)

...
. . .

...
m∑

k=1

gn(xk)g1(xk) . . .

m∑
k=1

gn(xk)gn(xk),

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

a =

⎡
⎢⎣

a1

...
an

⎤
⎥⎦ and b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

ykg1(xk)

...
m∑

k=1

ykgn(xk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

If the matrix M is non singular, say P = M−1 = [pij ], then the vector a is
obtained by

a = Pb. (2.2)

Thus, each parameter ai is given by

ai = pi1b1 + pi2b2 + . . . + pinbn

= pi1

(
m∑

k=1

ykg1(xk)

)
+ . . . + pin

(
m∑

k=1

ykgn(xk)

)

=

⎛
⎝

n∑
j=1

pijgj(x1)

⎞
⎠ y1 + . . . +

⎛
⎝

n∑
j=1

pijgj(xm)

⎞
⎠ ym

= ci1y1 + . . . + cimym,
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where cik =
n∑

j=1

pijgj(xk), for i = 1, . . . , n and k = 1, . . . ,m. In general case, the

matrix P stands for the pseudoinverse of M .
Since the parameters of the function ϕ can be obtained by computing the

matrix product (2.2), we rewrite the function ϕ in terms of y1, . . . , ym as follows:

ϕ(x) = a1g1(x) + . . . + angn(x)
= (c11y1 + . . . + c1mym)g1(x) + . . . + (cn1y1 + . . . + cnmym)gn(x)

=

⎛
⎝

n∑
j=1

gj(x)cj1

⎞
⎠ y1 + . . . +

⎛
⎝

n∑
j=1

gj(x)cjm

⎞
⎠ ym

= s1(x)y1 + . . . + sm(x)ym, (2.3)

where

si =

⎛
⎝

n∑
j=1

gj(x)cji

⎞
⎠

for each i = 1, . . . , n.

2.2 Fuzzy Set Theory

A fuzzy subset A of an universe X is characterized by a function μA : X → [0, 1],
called membership function [16], where μA(x), or simply A(x), represents the
membership degree of x in A, for all x ∈ X. The class of fuzzy sets of X is denoted
by the symbol F(X). Each classical subset A of X is a particular fuzzy set whose
membership function is given by its characteristic function χA : X → {0, 1}, i.e.,
χA(x) = 1 if and only if x ∈ A.

The α-cut of a fuzzy set A of X, denoted by [A]α, is defined as [A]α = {x ∈
X : A(x) ≥ α}, ∀α ∈ (0, 1]. If X is also a topological space, then we can define
the 0-cut of A by [A]0 = cl{x ∈ X : A(x) > 0} [17], where cl Y, Y ⊆ X, denotes
the closure of Y .

Zadeh’s extension principle [18] can be viewed as mathematical method to
extend a function f : X → Y to a function f̂ : F(X) → F(Y ).

Definition 1 (Zadeh’s extension principle [17,18]). Let f : X → Y . The Za-
deh’s extension of f at A ∈ F(X) is the fuzzy set f̂(A) ∈ F(Y ) whose member-
ship function is given by

f̂(A)(y) =
∨

x∈f−1(y)

A(x), ∀ y ∈ Y,

where f−1(y) = {x ∈ X : f(x) = y} is the preimage of the function f at y and,
by definition,

∨ ∅ = 0.
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A fuzzy set A ∈ F(R) is called a fuzzy number if its α-cuts are closed,
bounded and non-empty intervals for all α ∈ [0, 1] [17]. Since each α-cut of a
fuzzy number A is an interval that satisfies the previous properties, we can write
[A]α = [a−

α , a+
α ]. We denote the class of fuzzy numbers by the symbol RF . The

next theorem indicates when a family of subsets can be uniquely associated with
a fuzzy number.

Theorem 1 (Negoita-Ralescu’s characterization theorem [19,20]). Given a fam-
ily of subsets {Aα : α ∈ [0, 1]} that satisfies the following conditions

(a) Aα is a non-empty, closed, and bounded interval for any α ∈ [0, 1];
(b) Aα2 ⊆ Aα1 , for all 0 ≤ α1 ≤ α2 ≤ 1;
(c) For any sequence αn which converges from below to α ∈ (0, 1] we have

∞⋂
n=1

Aαn
= Aα;

(d) For any sequence αn which converges from above to 0 we have

A0 = cl

( ∞⋃
n=1

Aαn

)
.

Then there exists a unique A ∈ RF , such that [A]α = Aα, for each α ∈ [0, 1].
Conversely, let A ∈ RF , if Aα = [A]α for all α ∈ [0, 1] then the family of

subsets {Aα : α ∈ [0, 1]} satisfies the conditions (a)–(d).

An example of fuzzy number is a triangular fuzzy number that is denoted by
the triple (a; b; c), with a ≤ b ≤ c. In view of Theorem 1, the triangular fuzzy
number can be defined in terms of its α-cuts as follows:

[A]α = [a + α(b − a), c − α(c − b)], ∀α ∈ [0, 1].

Note that a real number a is a particular case of triangular fuzzy number since
we have a ≡ (a; a; a).

A fuzzy relation R over X = X1 × . . . × Xn is any fuzzy subset of X1 ×
. . . × Xn. Thus, a fuzzy relation R is associated with a membership function
R : X1 × . . . × Xn → [0, 1], where R(x1, . . . , xn) ∈ [0, 1] represents the degree of
relationship among x1, . . . , xn with respect to R [17].

The projection of fuzzy relation R ∈ F(X1 × . . . × Xn) onto Xi, for i ∈
{1, . . . , n}, is the fuzzy set Πi

R of Xi given by

Πi
R(y) =

∨
x∈X:xi=y

R(x1, . . . , xn).

A fuzzy relation J ∈ F(Rn) is said to be a joint possibility distribution of
A1, . . . , An ∈ RF if

Ai(y) = Πi
J(y) =

∨
x∈X:xi=y

J(x1, . . . , xn),

for all y ∈ R and for all i = 1, . . . , n.
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Given a t-norm t, that is, a commutative, associative, and increasing operator
t : [0, 1]2 → [0, 1] satisfying t(x, 1) = x t 1 = x for all x ∈ [0, 1]. A fuzzy relation
Jt given by

Jt(x1, . . . , xn) = A1(x1) t . . . t An(xn) (2.4)

is said to be a t-norm-based joint possibility distribution of A1, . . . , An ∈ RF [4].
Well-known example of t-norm include the minimum t-norm “∧”. In particular,
when J = J∧, that is, J is given by (2.4) with t = ∧, we say that A1, . . . , An

are non-interactive. Otherwise, J �= J∧, we say that A1, . . . , An are interactive
[5,18,21].

Thus, the notion of interactivity between fuzzy numbers is given by means
of joint possibility distributions. Carlsson et al. [5] introduced a possible type of
interactivity relation between two fuzzy numbers that is not based on t-norms.
Specifically, two fuzzy numbers A and B are said to be completely correlated
if there exist q, r ∈ R with q �= 0 such that the corresponding joint possibility
distribution J{q,r} is given by

J{q,r}(x1, x2) = A(x1)χ{qu+r=v}(x1, x2)
= B(x2)χ{qu+r=v}(x1, x2), (2.5)

where χ{qu+r=v} stands for the characteristic function of the set {(u, v) ∈ R
2 :

qu + v = r} ⊂ R
2. In addition, if q > 0 (q < 0) then A and B are said to

be completely positively (negatively) correlated. Since q �= 0 in Eq. (2.5), the
membership function of B can be written as B(qx+r) = A(x) for all x ∈ R, and
consequently [B]α = q[A]α + {r} for all α ∈ [0, 1]. Moreover, for each α ∈ [0, 1],
the α-cut of the joint possibility distribution J{q,r} is given by [5]:

[J{q,r}]α = {(x, qx + r) : x ∈ [A]α} .

Remark 1. Note that if the fuzzy numbers A and B are completely correlated
by the line qu + r1 = v, and we choose r2 = q(a−

α + a+
α ) + r1, then A and

B are also completely correlated if we consider J{−q,r2}, that is, A and B are
also completely correlated with respect to the line −qu + r2 = v. Therefore, the
distribution J is not unique.

The next definition is a generalization of Zadeh’s extension principle (cf.
Definition 1).

Definition 2 (Sup-J Extension Principle [6]). Let J ∈ F(Rn) be a joint possi-
bility distribution of A1, . . . , An ∈ RF and let f : Rn → R. The sup−J extension
of f at (A1, . . . , An) is defined by

fJ(A1, . . . , An)(y) = f̂(J)(y) =
∨

(x1,...,xn)∈f−1(y)

J(x1, . . . , xn),

where f−1(y) = {(x1, . . . , xn) ∈ R
n : f(x1, . . . , xn) = y}.
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From Definition 2, we can define arithmetic operations among n fuzzy num-
bers by taking the sup-J extension of the corresponding arithmetic operator. For
example, let f(x1, . . . , xn) = x1 + . . .+xn for all x1, . . . , xn ∈ R. If J∧ is defined
as in (2.4) with t = ∧, then fJ∧(A1, . . . , An) boils down to Zadeh’s extension of
f at (A1, . . . , An), i.e.,

f̂(A1, . . . , An)(y) =
∨

(x1,...,xn)∈f−1(y)

A1(x1) ∧ . . . ∧ An(xn), ∀ y ∈ R.

The next proposition ensures that the completely correlation is a transitive
relation of interactivity between fuzzy numbers. Moreover, under some condi-
tions, the sup-Jq,r extensions of the addition operator, denoted by the symbol
+L, satisfies the associative property.

Proposition 1 [22]. Let A, B, C ∈ RF . If A and B are completely correlated
with respect to J{q1,r1} and B and C are completely correlated with respect to
J{q2,r2}, then there are real numbers q3 and r3 such that A and C are completely
correlated with respect to J{q3,r3}.

Moreover, if each A, B, C ∈ RF is completely correlated to D ∈ RF\R, then
the associative property holds true, i.e., A +L (B +L C) = (A +L B) +L C.

The notion of completely correlation can be extended to n fuzzy numbers as
follows.

Definition 3. The fuzzy numbers A1, . . . , An ∈ RF are said completely corre-
lated if the joint possibility distribution J is given by

J(x1, . . . , xn) = χU (x1, . . . , xn)A1(x1) (2.6)
= χU (x1, . . . , xn)A2(x2)
...
= χU (x1, . . . , xn)An(xn),

where U = {(u, q2u + r2, . . . , qnu + rn) : u ∈ R}, qi, ri ∈ R, with qi �= 0,
∀i = 1, . . . , n.

From (2.5) and (2.6), one can see that A1 and Ai, i > 1, are also completely
correlated since we have [Ai]α = qi[A1]α + {ri}, for all i = 2, . . . , n. This implies
that, for each α ∈ [0, 1], the α-cut of J is given as follows

[J ]α = {(x, q2x + r2, . . . , qnx + rn) : x ∈ [A1]α} (2.7)

Remark 2. From Eq. (2.7), we can note that the α-cuts of the joint possibility
distribution J can be expressed in terms of α-cuts of A1 and the parameters qi

and ri, for all i = 2, . . . , n.

Theorem 2 [23,24]. Let f : Rn → R be a continuous function and J ∈ F(Rn).
We have that

[f̂J (A1, . . . , An)]α = f([J ]α), ∀α ∈ [0, 1].
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By Theorem 2, if the sup-J extension of f at (A1, . . . , An) is a fuzzy number,
then the α-cuts of f̂J(A1, . . . , An) = f̂(J) can be written as follows:

[f̂(J)]α =

⎡
⎣ ∧
(x1,...,xn)∈[J]α

f(x1, . . . , xn)
∨

(x1,...,xn)∈[J]α

f(x1, . . . , xn)

⎤
⎦ . (2.8)

In the next section, we consider the problem given in (2.1) for the case where
the known values yi are interactive fuzzy numbers.

3 Least Squares Method for Interactive Fuzzy Data

In this paper, we deal with least squares method to fit uncertain data given by
interactive fuzzy numbers. In particular, we focus on the case where these fuzzy
numbers are completely correlated. A typical example of correlated data are the
well-known longitudinal data, which are widely studied in the statistical area
[13].

Let D = {(x1, Y1), . . . , (xm, Ym)} ⊂ R × RF such that Y1, . . . , Ym are com-
pletely correlated fuzzy numbers, with respect to a joint possibility distribution
J as in (2.6), and let F : R → RF be a function that satisfies F (xi) = Yi for
i = 1, . . . ,m. We produce a function Φ : R → RF that approximates F given by
means of the sup-J extension principle of a function ϕ : R → R of the form

ϕ(x) = a1g1(x) + . . . + angn(x),

where a1, . . . , an ∈ R and g1, . . . , gn are real-valued-functions. More precisely,
we define the function Φ in terms of the sup-J extension principle of (2.3) at
(Y1, . . . , Ym). Since Eq. (2.3) is continuous with respect to y1, . . . , ym, from The-
orem 2 and Eq. (2.7), we have that α-cuts of the fuzzy number Φ(x) is given by

[Φ(x)]α = {s1(x)y1 + . . . + sm(x)ym : (y1, . . . , ym) ∈ [J ]α} (3.9)
= {s1(x)y + s2(x)(q2y + r2) + . . . + sm(x)(qmy + rm)y : y ∈ [Y1]α}.

Since the interval [Y1]α = [y1−
α , y1

+
α ] can be rewritten as the set of all convex

combination of y1
−
α and y1

+
α , that is, [Y1]α = {(1−λ)y1−

α +λy1
+
α : λ ∈ [0, 1]}, the

α-cut of J can also be expressed in terms of a parameter λ ∈ [0, 1] as follows:

[J ]α = {(1 − λ)Y −
α + λY +

α : λ ∈ [0, 1]},

where Y −
α = (y1−

α , q2y1
−
α + r2, . . . , qmy1

−
α + rm) and Y +

α = (y1+α , q2y1
+
α + r2, . . . ,

qmy1
+
α + rm). Thus, Eq. (3.9) can be expressed as

[Φ(x)]α = {(1 − λ)〈S(x), Y −
α 〉 + λ〈S(x), Y +

α 〉 : λ ∈ [0, 1]} (3.10)

where 〈·, ·〉 denotes the usual inner product of Rm and S(x) = (s1(x), s2(x), . . . ,
sm(x)), x ∈ R.
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In order to characterize the endpoints of each α-cut of Φ(x), we define the
auxiliary function h by

h(x, α, λ) = (1 − λ)B1(x, α) + λB2(x, α), ∀x ∈ R and ∀α, λ ∈ [0, 1],

where
B1(x, α) = 〈S(x), Y −

α 〉 and B2(x, α) = 〈S(x), Y +
α 〉.

By Eqs. (3.10) and (2.8), we have that

[Φ(x)]α = {h(x, α, λ) : λ ∈ [0, 1]}

=

⎡
⎣ ∧

λ∈[0,1]

h(x, α, λ),
∨

λ∈[0,1]

h(x, α, λ)

⎤
⎦ . (3.11)

Note that if B1(x, α) ≤ B2(x, α), then the function h(x, α, ·) assumes the
minimum and the maximum values at λ = 0 and λ = 1, respectively. On the
other hand, if B1(x, α) > B2(x, α) then the minimum and maximum values of
h(x, α, ·) are achieved at λ = 1 and λ = 0, respectively. In other words, the
global minimizer and maximizer of h(x, α, λ) for λ ∈ [0, 1] are given at λ = 0 or
λ = 1. Therefore, for each x ∈ R, the α-cuts of the fuzzy solution ϕ is given by

[Φ(x)]α = [min{h(x, α, 0), h(x, α, 1)},max{h(x, α, 0), h(x, α, 1)}], (3.12)

where
h(x, α, 0) = B1(x, α) = 〈S(x), Y −

α 〉
and

h(x, α, 1) = B2(x, α) = 〈S(x), Y +
α 〉.

In the next section we illustrate this proposed method by means of an
example.

4 Application of Least Squares Method for Completely
Correlated Fuzzy Data

In this section we apply the proposed method to determine a function that
fits longitudinal data obtained from [15]. The authors discussed the association
between children mortality and air pollution in São Paulo, Brazil, from 1994 to
1997. In their study were collected longitudinal data of sulfur dioxide (SO2),
carbon monoxide (CO), inhalable particulate (PM10) and ozone (O3). Here, we
focus on the ozone dataset.

For simplicity, suppose that the longitudinal data are given by completely
correlated triangular fuzzy numbers of the form (M−σ;M ;M+σ), where M and
σ are the mean and the standard deviation of the collected data in each year,
respectively. Recall that the proposed method is not restricted to triangular
fuzzy numbers, then other types of fuzzy number can be considered.
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Let D = {(x1, Y1), (x2, Y2), (x3, Y3), (x4, Y4)} ⊂ R×RF be the fuzzy dataset
given in Table 1. The values x1 = 1, x2 = 2, x3 = 3, and x4 = 4 rep-
resent respectively the years 1994, 1995, 1996, and 1997. The fuzzy num-
bers Y1 = (17.6; 57; 96.4), Y2 = (25.3; 60.7; 96.1), Y3 = (34.8; 76.3; 117.8), and
Y4 = (29.5; 63; 96.5) are completely correlated with respect to joint possibility
distribution J , whose membership function is given by

J(v1, v2, v3, v4) = χU (v1, v2, v3, v4)Y1(v1), ∀ (v1, v2, v3, v4) ∈ R
4,

where

U = {(u, 0.8985u + 9.4855, 1.0533u + 16.2619, 0.8502u + 14.5386) : u ∈ R}.
(4.13)

Table 1. Fuzzy dataset D

x: 1 2 3 4

Y : (17.6; 57; 96.4) (25.3; 60.7; 96.1) (34.8; 76.3; 117.8) (29.5; 63; 96.5)

Note that Eq. (4.13) suggests that Y1 and Y2 are positively completely cor-
related, as well as Y1 and Y3, Y1 and Y4, since qi > 0, for all i = 2, 3, 4.

Consider the functions g1(x) = x2, g2(x) = x and g3(x) = 1. From (3.12),
for each α ∈ [0, 1] and x ∈ [1, 4], the fuzzy function Φ is given by [Φ(x)]α =
[min{h(x, α, 0), h(x, α, 1)},max{h(x, α, 0), h(x, α, 1)}], where

h(x, α, 0) = −3.24x2 + 20.76x − 0.75 + α(−x2 + 3.84x + 35.34)

and

h(x, α, 1) = −5.24x2 + 28.44x + 69.93 − α(−x2 + 3.84x + 35.34).

Figure 1 exhibits the fuzzy function Φ produced by our proposal. One can
observe in Subfigure 1(a) fits the data of Table 1 which varies from 1994 to 1997.
The red triangles and the gray-scale surface depicted in Subfigure 1(b) corre-
spond to the membership functions of fuzzy data Yi, i = 1, . . . , 4, and fuzzy
solution, respectively.

Note that Y1, . . . , Y4 are completely correlated with respect to 23 different
joint possibility distributions. Thus, we can obtain 23 fuzzy functions Φ. However,
in general, the choice of a joint possibility distribution is not arbitrary and
depends on the context. For example, if each object is measured m times with
the same n measuring devices then we can assume that the obtained values
depend only on the calibration of each equipment and not on the objects. This
type of assumption induces the choice of specific parameters qi and ri in (2.7).
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Fig. 1. Subfigures (a) and (b) exhibit respectively the top and depiction views of the
fuzzy solution Φ where the greatest and smallest membership values are represented
respectively by the black and white colors. In Subfigure (a), the red dots represent the
endpoints of the α−cuts of the fuzzy data Yi for α = 0, 0.5, 1 and i = 1, . . . , 4. Each
fuzzy data Yi is represented by red lines in Subfigure (b).

5 Conclusion

In this manuscript, we considered a fuzzy least squares problem based on dataset
that has some type of correlation, for example a longitudinal dataset. We
assumed that the dataset is composed by completely correlated fuzzy numbers
[5]. In particular, we presented a method that provides a fuzzy function that
fits a given fuzzy data. This fuzzy function depends on the choice of a joint
possibility distributions as in (2.6).

The α-cut of the fuzzy solution given by means of the sup-J extension prin-
ciple is a non-empty, bounded, closed interval whose endpoints are obtained by
solving a minimization and maximization problems given in Eq. (3.11). Investi-
gating this problem, we concluded that the endpoints of the α-cut of the pro-
posed solution can be evaluated by taking the minimum and maximum of two
associated real functions (see Eq. (3.12)).

Finally, we applied the proposed method to determine a fuzzy function which
fits a longitudinal air polution dataset [15]. The fuzzy data in this dataset was
modelled using triangular fuzzy numbers, but it can be done with other types
of completely correlated fuzzy numbers. The fuzzy solution was calculated con-
sidering polynomial functions g1, g2, and g3. For further works, we intend to
investigate fuzzy least squares method for dataset with other intrinsic type of
interactivity.
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Abstract. This paper aims to introduce the proposal of replacing the usual
pooling functions by the Choquet integral in Deep Learning Networks. The
Choquet integral is an aggregation function studied and applied in several areas,
as, e.g., in classification problems. Its importance is related to the fact that it
considers the relationship between the data to be aggregated by means of a fuzzy
measure, unlike other aggregation functions such as the arithmetic mean and the
maximum. The idea of this paper is to use the Choquet integral to reduce the size
of an image, obtaining an abstract form of representation, that is, reducing the
perception of the network corresponding to small changes in the image. The use
of this aggregation function in the place of the max-pooling and mean-pooling
functions of Convolutional Neural Networks presented promising results. This
assertion is based on the Normalized Cross-Correlation and Structural Content
quality measures applied to the original images and resulting images. It is
important to emphasize that this preliminary study of Choquet integral as a pool
layer has not yet been implemented on Convolutional Neural Networks until the
present moment.

Keywords: Choquet integral � Deep Learning Networks
Convolutional Neural Networks � Image classification
Aggregation functions

1 Introduction

Image classification is a very common problem in Computer Vision area. The main
problems faced in this area are identifying patterns in images, distinguishing living
beings and objects, labelling collected images, among others. Most of the problems
mentioned above have complex information to be identified, using machine learning
methods such as Convolutional Neural Networks (CNN) [23] and Deep Learning
Networks (DLN) [10].
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These methods use a variety of functions within the different steps that are
employed in their architectures. One of them consists in the usage of aggregation
functions, such as the maximum and the arithmetic mean [20], are used. Aggregation is
understood as the process of combining different numeric values by returning a single
value. The function that accomplishes this task is called aggregation function [3, 9],
which is an increasing function satisfying appropriate boundaring conditions.

The research of different aggregation functions inside the area of DLP can be found
mainly in subjects related to CNN [18]. First, we point out the importance of the role of
pooling layers in CNN, which often take convolutional layer as input. The convolu-
tional layer is a stack of feature maps where we have one feature map for each filter [1].
A complicated dataset with many different object categories requires a large number of
filters, where each one is responsible for finding a pattern in the image. Then, the usage
of more filters enlarges the dimensionality of the convolutional layers. Higher
dimensionality means we will need to use more parameters which can lead to over-
fitting [12]. Thus, we need a method for reducing this dimensionality so that we can
avoid overfitting, and this is the role of pooling layers.

The goals of the application of max-pooling are the reduction of the number of
parameters of the model (can observed in Fig. 1, the output is smaller than the input),
which is called down-sampling or sub-sampling, in addition to a generalization of the
results from a convolutional filter (making the detection of features invariant to scale or
orientation). The main motivation of the application of these methods is to aggregate
multiple low-level features in the neighborhood by using the Choquet integral to gain
invariance mainly in object recognition.

There are several works that study different types of aggregation methods in
convolutional networks and the impact of different pooling methods as [4, 19]. In [4], it
is presented a detailed theoretical analysis of max-pooling and mean-pooling, and
extensive empirical comparisons for object recognition tasks are presented. In [19], it is
shown that a surprising fraction of the performance of certain state-of-the-art methods
can be attributed to the architecture alone. In addition, the application of aggregation
functions in DLN presented acceptable results with the combination of two methods
presented in [10].

In this context, the objective of this work is the study of the application of
state-of-the-art aggregation functions used in classification (as, e.g., in [14–16]) in
Deep Learning Networks, replacing the processes of max-pooling or mean-pooling
performed by the network. The purpose is to use the Choquet integral [5] to reduce the
size of an image, obtaining an abstract form of representation. This preliminary study is
being carried applying the aggregation functions in a group of images, obtaining the
results of each image individually and comparing the results of the three functions with
the original image using the Measurements of Image Quality [8]. In this way, we intend
to evaluate the performance of the Choquet integral in representing, in smaller
dimension and without the loss of robustness and spatial invariance, the structural
information present in the images.
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2 Preliminary Concepts

The Choquet integral is an extension of the integral of Lebesgue, being defined based
on a fuzzy measure. The fuzzy measure has several interpretations depending on the
context of the problem to be worked. In the context of aggregation functions, the fuzzy
measure represents the degree of relationship between the elements to be aggregated
[3]. In this way, the great use of the Choquet integral occurs due to its model to
consider the importance of each attribute to be aggregated, as well as its interactions.

Definition 2.1 [3]. Consider N ¼ 1; 2; . . .; nf g and 2N the power set of N. The function
l: 2N ! 0; 1½ � is a fuzzy measure if, for all, B�N, the following conditions hold:

(M1) Boundary conditions: l ;ð Þ ¼ 0 and l Nð Þ ¼ 1;
(M2) Increasingness: l Að Þ� l Bð Þ sempre que A�B.

Definition 2.2 [3]. Let l be a fuzzy measure. The discrete Choquet integral of ~x ¼
x1; x2; . . .; xnð Þ 2 0; 1½ �n with respect to the fuzzy measure l is the functions
Cl ~xð Þ : 0; 1½ �n! 0; 1½ �, defined by

Cl ~xð Þ ¼
Xn
i¼1

x ið Þ � x i�1ð Þ
� �

l A ið Þ
� �

where ðx 1ð Þ; x 2ð Þ; . . .; xðmÞÞ is a non-decreasing permutation ~x, that is,
0� x 1ð Þ � x 2ð Þ; � � � � � x nð Þ, where, by convention, x 0ð Þ ¼ 0 and A ið Þ ¼ 1ð Þ; . . . nð Þf g is
the subset of indices of the n� iþ 1 greatest components of~x.

The fuzzy measure adopted in this work is the power measure [3], given by:

lp Að Þ ¼ Aj j
n

� �q

where q[ 0, A�N and Aj j is the cardinality of the set A.
The main characteristic of the Choquet integral, compared to other aggregation

functions, lies in the fact that it considers through the fuzzy measure the interaction
between the elements to be aggregated. For example, the maximum does not consider
the relationship between the elements to be aggregated, discarding important infor-
mation between those elements. In the context of image processing the values to be
aggregated are the pixels that appear in a window. So, in this sense, it is understood that
the more information of the relations between the pixels of the window, the better the
output image.

3 Aggregation Functions in Deep Learning Neural Networks

The area of deep learning networks or DLN has received more attention in recent years
and has stood out as a new area of research in machine learning [7]. Deep learning,
according to [6], can be broadly defined as: a class of machine learning techniques that
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analyze many layers of non-linear data processing for extraction and alteration of
supervised or unsupervised aspects and for recognition and classification of data.

The architecture of the networks is modified according to the purpose of its use.
Normally, the input of a CNN takes an order 3 tensor, e.g., an image with H rows, W
columns, and 3 channels (R, G, B color channels) [23]. Then the input goes through a
sequence of processing.

An abstract description of the CNN structure is given by:

x1 ! w1 ! x2 ! . . . ! xL�1 ! wL�1 ! xL ! wL ! z ð1Þ

It can be verified how a CNN runs layer by layer in a forward pass. The input is
shown as x1 usually an image (order 3 tensor). It follows by processing the first layer,
which is w1. The output of the first layer is x2, which also acts as the input to the second
layer processing of the neural network. This process is carried out until all layers of the
neural network were made, resulting in the output variable xL. However one additional
layer is added for backward error propagation, a method that learns good parameter
values in the CNN. Assuming, e.g., the problem is in image classification with C
classes. For resolution, a strategy used is to output xL as a C dimensional vector, whose
i-th entry encodes the prediction (posterior probability of x1 comes from the i-th class).
There is a possibility to set the processing in the (L − 1)-th layer as a softmax trans-
formation of xL−1 to make xL a probability mass function. In other applications, the
output xL may have other forms and interpretations.

The last layer of the CNN architecture is a loss layer. The operation of this layer is
given by:

z ¼ 1
2

t� xL
�� ���� ��2; ð2Þ

where the variable t is the corresponding target (ground-truth) value for the input x1.
Equation (2) demonstrates how a cost or loss function can be used to measure the
discrepancy between the CNN prediction xL and the target t. This equation is less
complex than other functions that are most commonly used.

The ground-truth in a classification problem is a categorical variable t. The cate-
gorical variable t is convert to a C dimensional vector t. Then both t and xL are
probability mass functions, and the cross entropy loss measures the distance between
them. In this way it is possible to minimize cross-entropy.

Equation (1) explicitly models the loss function as a loss layer, whose processing is
modeled as a box with parameters wL. There are some layers may not have any
parameters, that is, wi may be empty for some i. The softmax layer is one such example
in the structure.

The pooling layer acts by aggregating a group of data, where the input can be of
type array, image, and among other data types.

Max-pooling is the application of a moving window across a 2D input space, where
the maximum value within that window is the output. A visual example is show below
(see Fig. 1) with some padding (it’s a margin given to the data when the structure is
smaller than the stride given the window).
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The max-pooling reduces the number of parameters in the model. Observe in Fig. 1
that the output is smaller than the input. This is called down-sampling or sub-sampling
and generalizes the results from a convolutional filter (making the detection of features
invariant to scale or orientation changes).

The diagram in Fig. 2 shows that the max-pooling allows a generalization which
detects a “9” no matter what the orientation (or size etc.) inside the input. This is a kind
of movement from low level data to higher level information.

The same procedure is done for other aggregation functions such as mean-pooling
and the Choquet integral, and it is possible to vary the window size and the stride of the
windows. Depending on the variations chosen, the size of the resulting matrix will
vary.

Fig. 1. Illustration of the application of the max-pooling function with stride 2 and 2 � 2
window. Each colored moving window captures the maximum value inside the 2 � 2 square and
outputs it on the right hand side. (Color figure online)

Fig. 2. A stylized representation of various convolutional feature maps that have been tuned
during training to detect the digit “9” in an image, but at different orientations.
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4 Methodology

To improve the aggregation of meaningful information without degrading its dis-
criminative power for image processing, we propose replace the max-pooling and
mean-pooling functions by the Choquet integral in the context of pooling layers on
CNN. Grouping layers reduce the size of the input by synthesizing the neurons of a
small neighborhood. Figure 3 shows a general architecture of a Convolutional Neural
Network similar to the models of [2, 13]. The values above the images represent the
number of layers and the size in pixels of the images.

For example, in the first layer of the network represented in the figure (input layer
L0: 2 @ 96 � 96), there are 2 layers of 1 image with the size of 96 � 96. After the first
convolution (C1: 16 @ 92 � 92) 16 layers with the size of 92 � 92 each were gen-
erated. In the end, these layers will be fully connected (fully connected feature maps)
creating a single volume F5 and F6, as shown in the figure.

Another important issue associated with the convolutional layer is the stride, which
defines how many pixels of the image (or values of a numerical array) will be jumped
between each neighborhood, representing the size of the next layer of the processed
input.

The Choquet integral domain are the pixels values of an input image, ranging from
0 to 255, in a normalized way. In addition, to facilitate the analysis of the results, the
input images are converted to grayscale. Another point for the use of grayscale images
is the application of the measurements of image quality performed later. Such mea-
surements are applied in grayscale images and not in colored images [8]. It is important
to emphasize that in this work the Choquet integral is being implemented as a pre-
liminary study in order to evaluate it as an aggregation function and dimensional
reduction, able to improve the representation and summarize the information of the
input data.

The stride and window size of the input images can be defined by the user. For
example, if you set the window size to size 2, and stride 2, the function will be executed
generating multiple 2 � 2 arrays and 2 pixels will be skewed between each window,
limited to the total size of the input image. That is, a common input image of total size
of 500 � 500 pixels will output as a 250 � 250 pixels image.

Fig. 3. Architecture of a CNN [20] for NORB (an object recognition dataset) experiments,
consisting of alternating convolution and grouping layers. Grouping layers can implement
subsampling or grouping operations of maxima.
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After setting the parameters window size and the stride, we apply the Choquet
integral, in the same way as the other aggregators. However, to perform the Choquet
integral it is necessary to convert the input matrix into a vector and organize it in
non-decreasing form. After sort the vector, the Choquet integral is applied. Finally, the
vector is transformed into an array, resulting in a smaller representation of the original
image.

In order to evaluate our method automatically, without a visual inspection of each
image, we have used two different quality measures, which are calculated for the image
with the application of max-pooling, mean-pooling and Choquet integral, in relation to
the original image in grayscale.

These image quality measures help the systematic design of coding, communica-
tion and image systems, as well as improving or optimizing image quality for a desired
application quality at minimal cost [8].

The Normalized Cross-Correlation measure verifies the matching of the resulting
image with the original image, which can also be quantified in terms of the correlation
function, the higher the measurement result value, the more the output image is close to
the input image. The Structural Content (SC) measure is used to compare original
image and resulting images in several small image points, which they have in common.
This measure is also based on correlation, measuring the similarity between the two
images. If the value of SC is low, the image quality is good.

From the values obtained from the results of the Structural Content and Normalized
Cross-Correlation measurements, a hypothesis test was applied to have a statistical
analysis of the results. The non-parametric Fridman test [11] was applied, where it is
desired to detect statistical differences between a group of results, that is, between the
aggregation functions used. After the existence of differences between groups, a
post-hoc test is applied to verify among which groups there are these differences. For
this test the non-parametric Wilcoxon paired test was used [21]. The level of signifi-
cance considered for the hypothesis tests was 0.05.

The purpose of this comparison is to verify if the information obtained as output of
the pooling functions is close to the information of the input images.

5 Experimental Evaluation

We used 12 images containing words. The choice of images of this genre is due to the
facility of visually evaluating its qualitative characteristics. The 12 images were taken
from an IIIT 5K-Word dataset [17].

The experiments were performed using Matlab1, where new images were generated
from the original images applying the aggregation functions of maximum, mean and
Choquet integral. The parameters presented in the methodology were configured as
follows: stride s = {2 and 3}, fuzzy measure exponent q = {0, 1, 0.3, 0.5 and 0.7},
window size ws = {2 � 2, 3 � 3 and 4 � 4}. These values were chosen by the

1 https://www.mathworks.com/products/matlab.html.
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specialists in order to obtain better performance of the function and based on a pilot
experiment using the same methodology.

In Figs. 4 and 5, it is possible to do a visual comparison of two images, of the 12
used in the work, where the aggregation functions of max, mean and Choquet integral
were applied. The values configured for the application of the functions were: stride 3,
exponent value of fuzzy measure 0.3 and window size 3 � 3. It is possible to verify
visually that the image resulting from the integral function of Choquet is more com-
plete when compared to the other results. In the quantitative results of the image quality
measurements, the resulting image of the Choquet Pooling also stands out: the image in
Fig. 4 obtained the value 1.31 in the Normalized Cross-Correlation measure while the
resulting image of the max-pooling obtained 1.10 e of mean-pooling 0.93. That is, the
image in which the Choquet pooling was applied has characteristics closer to that of the
original image.

The values of the other measure (Structural Content) the image of the choquet
pooling also stood out: it obtained 0.52 as resulting, while the max-pooling obtained
0.71 and the mean-pooling obtained 1.06. In this case, the higher the value, the worse
the quality of the image and the farther it is from the original image. The central goal of
this work is to get a resulting image closer to the input image.

The results of Fig. 5 were also good, when evaluated by the measurements of
image quality: the image of the choquet pooling function reached 1.23, while the result
of max-pooling was 1.09 and mean-pooling was 0.92 when using the normalized
cross-correlation. In the results of the structural content measure, the choquet pooling
image was also highlighted with a value of 0.58, as the max-pooling image reached
0.72 and mean-pooling 1.06.

These images support this study of the application of Choquet integral in the pool
layer of the deep neural network, validating the assertions that such a function can
improve the interpretation of the network with the input images.

Fig. 4. Results of the aggregation functions max, mean and Choquet integral, obtained through
the experiments applied to one of the images of the IIIT 5K-Word dataset called 138_4.
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There were cases, such as the results of the applied images with stride 3, exponent
value of the fuzzy 0.1 measurement and 3 � 3 windows, in which the values of the
measurements of image quality for each applied arithmetic function were very different.
However, the values of the images of the maximum function and Choquet integral have
always been closer compared to the images of the arithmetic mean function, as can be
seen previously in the shown examples.

The tests of hypotheses applied in the results of the measures of image evaluation
generated the same interpretations. The Fridman test resulted in rejection of the null
hypothesis, so there are statistical differences between the aggregators for both quality
measures. Thus, it was necessary to apply the paired Wilcoxon post-hoc test to identify
among which groups the difference exists.

The Wilcoxon test identified a statistical difference between the Choquet integral
and the maximum, where the Choquet integral presented results of quality measure-
ment better than the maximum. In contrast, there was no statistical difference between
the Choquet integral and the mean, but the analysis of the results of the measurements
of image quality showed that the results of the Choquet integral compared to the output
images of the mean presented more concrete information about the original image.

In sum, the Choquet integral is better than the maximum in both visual and sta-
tistical analysis, using two measures of quality.

The maximum draws the most important features, such as borders, and captures the
strongest activation, disregarding all other units in the pool region. By this detail, the
maximum aggregation is better than the mean for extraction of extreme resources. The
mean takes into account all activations in a pooling region with equal contributions
[24]. This can minimize the high activations, since many low activations are included
in the mean [22]. The mean can then end up not extracting good resources, since the
result that will be an average value has the possibility of being or not being important.

Then, some works use the maximum for better performance and better network
results. Therefore, the choice of the use of the Choquet integral in the pooling layer,

Fig. 5. Results of the aggregation function max, mean and Choquet integral obtained through
the experiments applied to one of the images of the IIIT 5K-Word dataset called 138_6.
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substituting these functions usually employed, is valid, since the Choquet integral is
better than the maximum in the analyses performed.

In this way, it can be affirmed that this study is promising within the area of
Artificial Neural Networks, leading to generate new experiments not only with images
but with any data that needs to pass through each pool of Neural Network, since the
architectures of networks vary depending on their purpose.

6 Conclusions

In this paper, we presented a preliminary study on the implementation of the arithmetic
function Choquet integral in the pool layers of a deep neural network. Based on these
results, it was verified that the Choquet integral resulted in quality images and main-
tained the integrity of the original image, that is, at the moment the original image
passes through the neural network and the pooling function is applied, at the end the
network will be able to keep the input image information, which results in better
performance for the deep neural network.

In general, the results presented in these initial works are promising and this is
intended to refine the studies, so that the q parameter used in the Choquet integral with
respect to the power fuzzy measure is learned by the neural network itself, thus gen-
erating better results than those presented.

We also intend to analyse the behaviour of generalizations of the Choquet integral
introduced by Lucca et al. [14–16], which presented excellent results in classification
problems.
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Abstract. In this work we propose to use ordered directionally mono-
tone functions to build an image feature extractor. Some theoretical
aspects about directional monotonicity are studied to achieve our goal
and a construction method for an image application is presented. Our
proposal is compared to well-known methods in the literature as the
gravitational method, the fuzzy morphology or the Canny method, and
shows to be competitive. In order to improve the method presented, we
propose a consensus feature extractor using combinations of the differ-
ent methods. To this end we use ordered weighted averaging aggregation
functions and obtain a new feature extractor that surpasses the results
obtained by state-of-the-art methods.

Keywords: Edge detection · Feature extraction
Ordered directionally monotone functions
Ordered weighted averaging aggregation functions

1 Introduction

Whenever an object detection problem is faced in, key information has to be
extracted from an image. A primary approach to obtain this information are
edge detection methods. A great variety of information is involved in the defi-
nition of an edge, going from the basic concept that considers an edge as a big
enough intensity jump, to the fact that texture can be considered as a jump
but it should not represent an edge. For this reason, the process of extracting
edges is very difficult, and many different methods have been proposed in the
literature [11,15,19]. Among the most common edge detection methods there
are those based on gradients, i.e., vectors measuring the variation of intensity
c© Springer International Publishing AG, part of Springer Nature 2018
G. A. Barreto and R. Coelho (Eds.): NAFIPS 2018, CCIS 831, pp. 155–166, 2018.
https://doi.org/10.1007/978-3-319-95312-0_14
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along specific directions in the neighbourhood of each pixel. These gradients are
commonly calculated applying a filter over the original image trough a convo-
lution operation. Some examples of this type of edge detectors are Sobel and
Feldman [22], Prewitt [20] and Canny [7].

Edge detection has been traditionally considered as a unique operation, but
the resulting objective is mainly obtained through a concatenation of procedures.
Several approaches have been presented in the literature in order to encom-
pass this series of procedures, and explain edge detection as a multi-step tech-
nique [23]. For example, Law et al. [12] proposed a process consisting of three
steps: filtering, detection and tracing. Some years later, Bezdek et al. [3] intro-
duced a framework to embrace a variety of methods in the literature (primarily
those based on gradient extraction), proposing a four step process: conditioning,
where the image is enhanced in order to improve their quality, feature extrac-
tion, where an estimation of geometric changes at edges is computed, blending,
which aggregate information to represent edges and scaling, where the original
intensity scale of the image is recovered.

In our work we mainly follow the Bezdek Breakdown Structure (BSS) for
the experimentation, focusing on to the feature extraction step, i.e., the process
that converts visual information from pixels into unique properties that define
the image. Usually in edge detection methods these properties are based on the
gradient. In this work, besides the gradient magnitude we also use the gradient
direction.

The presented method consists in building a feature map of the image
based on pixels neighbourhood information. The information is taken from the
surrounding intensity values and fused using Ordered Directionally Monotone
(ODM) functions. The importance of this type of functions resides in their abil-
ity to consider different directions of increasingness.

Finally, we use our method for the construction of a consensus feature image,
combining different edge detection methods, including the one that we define and
some other well known as the Canny method, the gravitational method and the
fuzzy morphology.

This work is organized in the following way. In Sect. 2 we include some math-
ematical concepts related to image processing, as well as some notions about
aggregation theory to introduce ODM functions. Section 3 is devoted to introduce
our proposal. In Sect. 4 an application to edge detection is presented. Finally, in
Sect. 5 we expose conclusions and future work.

2 Preliminaries

An image IL is represented as a matrix of elements with positions in the set
D = X × Y = {1, ..., w} × {1, ..., h}, being w and h the number of rows and
columns respectively.

Each particular element, known as pixel, of the matrix can take values in a
set L. This set represent the number of possible values for the intensity of the
corresponding pixel. In the particular case of grey-scale images, pixels will be
represented in L = {0, ..., 255}.
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Let n > 1. We use bold letters to denote points in the hypercube [0, 1]n,
i.e., x = (x1, . . . , xn) ∈ [0, 1]n. In particular, we write 0 = (0, . . . , 0) and 1 =
(1, . . . , 1). Given x,y ∈ [0, 1]n we write x ≤ y if xi ≤ yi for every i ∈ {1, . . . , n}.
Note that this relation is a partial order which extends the usual linear order
between real numbers.

We use the notation ( #»· ) for n-dimensional vectors in the Euclidean space
R

n, i.e., #»r = (r1, . . . , rn) ∈ R
n.

For n > 1, we denote by Sn the set of permutations of {1, . . . , n}. That is,

Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ is bijective}.

Given σ ∈ Sn, x ∈ [0, 1]n and #»r ∈ R
n, we define:

xσ = (xσ(1), . . . , xσ(n))

and

#»r σ = (rσ(1), . . . , rσ(n)).

As in this work we are dealing with aggregation and monotonicity theory we
fix some concepts and notation.

Definition 1. [2,6] A mapping M : [0, 1]n → [0, 1] is an aggregation function if
it is monotone non-decreasing in each of its components and satisfies M(0) = 0
and M(1) = 1.

An aggregation function M is an averaging or mean if

min(x1, . . . , xn) ≤ M(x1, . . . , xn) ≤ max(x1, . . . , xn).

One relevant type of aggregation functions was presented by Yager [26], and
it is known as Ordered Weighted Averaging (OWA) operators.

Definition 2. An OWA operator of dimension n is a mapping Φ : [0, 1]n → [0, 1]

such that it exists a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n with
n∑

i=1

wi = 1,

and such that

Φ(x1, . . . , xn) =
n∑

i=1

wi · xσ(i),

where xσ = (xσ(1), . . . , xσ(n)) is a decreasing permutation on the input x.

In [25] a way to compute the weighting vector is presented:

wi = Q

(
i

n

)

− Q

(
i − 1

n

)

,

where Q is a fuzzy linguistic quantifier as, for instance,
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Q(r) =

⎧
⎨

⎩

0 if 0 ≤ r < a,
r−a
b−a if a ≤ r ≤ b,
1 if b < r ≤ 1,

(1)

with a, b, r ∈ [0, 1].
Monotonicity is a key concept, but in some applications it can be too restric-

tive. Many non-monotonic averaging functions, like the mode, are used in a wide
variety of applications, e.g., in image filtering. Due to this fact the notion of weak
monotonicity was introduced by Wilkin and Beliakov [24].

This definition was later extended into the notion of directional monotonic-
ity [5].

Definition 3. [5] Let #»r = (r1, . . . , rn) be a real n-dimensional vector, #»r �= 0. A
function F : [0, 1]n → [0, 1] is #»r -increasing if for all points (x1, . . . , xn) ∈ [0, 1]n

and for all c > 0 such that (x1 + cr1, . . . , xn + crn) ∈ [0, 1]n it holds

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn) .

That is, a #»r -increasing function is a function which is increasing along the
ray (direction) determined by the vector #»r . In particular, weak monotonicity
corresponds to the case #»r = (1, . . . 1).

From this concept of directional monotonicity, we come to ordered direc-
tionally monotone functions, where the direction along which monotonicity is
required varies depending on the relative size of the coordinates of the consid-
ered input.

Definition 4. [4] Let F : [0, 1]n → [0, 1] be a function and let #»r �= 0. F is
said to be ordered directionally (OD) #»r -increasing if for any x ∈ [0, 1]n, for any
c > 0 and for any permutation σ ∈ Sn with xσ(1) ≥ · · · ≥ xσ(n) and such that

1 ≥ xσ(1) + cr1 ≥ · · · ≥ xσ(n) + crn ≥ 0,

it holds that

F (x + c #»r σ−1) ≥ F (x),

where #»r σ−1 = (rσ−1(1), . . . , rσ−1(n)).

3 Specific Example of Ordered Directionally
Monotone Functions

This section is devoted to introduce a particular example to construct ODM
functions. This example is obtained by considering an affine function.

Theorem 1. Let G : [0, 1]n → [0, 1] be defined, for x ∈ [0, 1]n and σ ∈ Sn such
that xσ(1) ≥ . . . ≥ xσ(n), by

G(x) = a +
n∑

i=1

bixσ(i),
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for some a ∈ [0, 1] and
#»

b = (b1, . . . , bn) ∈ R
n such that 0 ≤ a + b1 + · · · + bj ≤ 1

for all j ∈ {1, . . . , n}. Then G is OD #»r -increasing for every non-null vector
#»r such that

#»

b · #»r ≥ 0. In particular, for every non-null vector #»r which is
orthogonal to

#»

b .

Theorem 1 can be generalized taking into account the following lemma.

Lemma 1. [4] Let ϕ : [0, 1] → [0, 1] be an automorphism (i.e., an increasing
bijection). Then, if G : [0, 1]n → [0, 1] is an ordered directionally increasing
function, the function ϕ ◦ G is also an ordered directionally increasing function.

Corollary 1. Let p > 0. Let G : [0, 1]n → [0, 1] be defined, for x ∈ [0, 1]n and
σ ∈ Sn such that xσ(1) ≥ . . . ≥ xσ(n), by

G(x) =

(

a +
n∑

i=1

bixσ(i)

) 1
p

, (2)

for some a ∈ [0, 1] and
#»

b = (b1, . . . , bn) ∈ R
n such that 0 ≤ a + b1 + · · · + bj ≤ 1

for all j ∈ {1, . . . , n}. Then G is OD #»r -increasing for every non-null vector #»r

such that
#»

b · #»r ≥ 0.

From Theorem 1 the following corollary is straight.

Corollary 2. Let A : [0, 1]n → [0, 1] be an OWA operator associated to the
weighting vector w = (w1, . . . , wn). Then A is OD #»r -increasing for every non-
null vector #»r such that w · #»r ≥ 0.

4 Experimental Study

4.1 Proposed Method and Parameters

Given a grey-scale image Ig we normalize each pixel intensity value to the range
[0, 1]. Then, using Algorithm 1, we obtain a feature image trough ODM functions.

Algorithm 1. Algorithm to construct a feature image using ODM functions
Input: A normalized grey-scale image Ig and an ODM function G as in Corollary 1.
Output: A feature image If .
1: for each pixel (x, y) of Ig do
2: Compute the corresponding values by means of the absolute value of the differ-

ence between Ig(x, y) and its 8-neighbourhood;
3: Order the eight values of step 2 in a decreasing way;
4: Apply the ODM function G, with its corresponding a, p values and #»r ,

#»

b vectors
(see Eq. (2)), to the values obtained in step 3;

5: Assign as intensity of the pixel (x, y) of If the value obtained in step 4.
6: end for
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In order to treat step 2 we consider an 8-neighbourhood for each position
(x, y), taking pixels from (x − 1, y − 1) to (x + 1, y + 1). Let us consider pixel
aij as the one to be treated, each one of the values of the neighbourhood is
computed in the following way:

x1 = |aij − a(i−1)(j−1)|, x2 = |aij − a(i−1)j |,
x3 = |aij − a(i−1)(j+1)|, x4 = |aij − ai(j+1)|,
x5 = |aij − a(i+1)(j+1)|, x6 = |aij − a(i+1)j |,
x7 = |aij − a(i+1)(j−1)|, x8 = |aij − ai(j−1)|.

Note that, as we are working with a 3× 3 window, the pixels from the image
border are not considered in the computation of the feature image.

In step 3 these intensity differences are ordered in a decreasing way; that is,

xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(7) ≥ xσ(8) .

Finally, in step 4 an ODM function is applied with different a, p, #»r and
#»

b
parameters.

Using Corollary 1 and Eq. (2) we build a new expression for ODM functions
for step 4 of Algorithm 1.

As indicated in [9], we propose to vary the brightness level of the feature
image obtained, to better adapt our objective of finding edges. To control the
brightness level we vary the parameter p in Eq. (2), taking p > 1 to get a brighter
image or 0 < p < 1 to get a darker one.

For the sake of the experiment we put our method to the test using the
following parameters:

#»r = (xσ(1) , xσ(2) , xσ(3) , xσ(4) , xσ(5) , xσ(6) , xσ(7) , xσ(8));

#»

b =

⎛

⎜
⎜
⎝

∣
∣xσ(1) − xσ(8)

∣
∣

8∑

i=1

∣
∣xσ(i) − xσ(8)

∣
∣
, . . . ,

∣
∣xσ(7) − xσ(8)

∣
∣

8∑

i=1

∣
∣xσ(i) − xσ(8)

∣
∣
, 0

⎞

⎟
⎟
⎠

a = 0
1
p

= 0.35

The specific value of a comes from the condition of Corollary 1, where 0 ≤
a + b1 + . . . + b8 ≤ 1, therefore 0 ≤ a and a + 1

2 ≤ 1, then we can use any value
of a between 0 and 1

2 .
Note that in the case of a flat region in the image, i.e., when all the pixels

have the same value we would obtain a zero denominator, so we mark directly
the corresponding position in the feature image as not containing an edge. That

is, if
8∑

i=1

∣
∣xσ(i) − xσ(8)

∣
∣ = 0 we take

#»

b = (0, . . . , 0).
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Finally, 1
p has been selected as the best value from a series of tests, made

with Algorithm 1 over the train images of the BDSDS dataset. That is, taking
different values from 0.1 to 0.9 partitioned uniformly in steps of 0.05.

In Fig. 1 we show the results obtained by applying our proposed algorithm
with the ODM construction method.

(a) Original (b) ODM

Fig. 1. Original image from BSDS [1] (100007) along with feature image obtained after
applying Algorithm 1 with ODM functions to original image.

4.2 Experimental Framework

In order to analyse the behaviour of our proposal we follow the Bezdek et al. [3]
scheme, adding the final quantification of the results:

(S1) Smooth the image applying a Gaussian filter (with σ = 1.5) to Ig;
(S2) Obtain the feature image with Algorithm1;
(S3) Thin the feature image using non-maxima suppression [7];
(S4) Binarize the thinned image using the hysteresis method [18].
(S5) Compare the binary image with ground truth images [8].

In order to measure the performance of the proposed method, we put it to
the test with the following well-known edge detection approaches:

– The Canny method [7] with σC = 2.25 as a usual value in [14,17];
– The Gravitational Edge Detection (GED) method [13] with two configura-

tions:
• Probabilistic sum (GSP

).
• Maximum (GSM

).
– Fuzzy morphology [10] using Schweizer and Sklar [21] t-norm and t-conorm

(FMSS).

4.3 Consensus Feature Image Construction with OWA Operator

As a further step in the improvement of the presented method, we consider dif-
ferent feature images obtained in step (S2), by means of different edge detection
methods, and we build a consensus feature image using OWA operators.

Concretely we use the OWA operator representing the linguistic label the
majority of constructed with Eq. (1) considering parameters a = 0.3 and b = 0.8.
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To obtain the consensus feature image we order the set of intensity values of
each position of the image and apply the OWA operator with the corresponding
weights.

As an example of this procedure we test this construction method combining
from two to five feature images obtained with different methods.

4.4 Dataset and Quantification of the Results

In order to show the behaviour of the presented method we have tested it over
the images of the Berkeley Segmentation Dataset (BSDS500) [1], specifically we
have selected 100 images from the test set. Each one of this images comes with
a series of ground truth images that has been defined by experts. Usually there
are between 4 and 9 images associated to each original image.

The performance measure of our method is considered as a classification
problem, as the ground truth images are binary images indicating in each pixel
if there is an edge or not. Each one of the pixels is counted in a in a confusion
matrix as in the Martin et al. approach [16], where True Positive, False Positive,
etc. are considered.

In order to quantify the results, we use the following well-known Preci-
sion/Recall measures:

Prec =
TP

TP + FP
, Rec =

TP

TP + FN
, Fα =

Prec · Rec

α · Prec + (1 − α) · Rec
.

4.5 Experimental Results

Table 1 reflects the results of each edge detection method indicating the average
of Prec, Rec and F0.5 obtained. As we can observe, in terms of Prec the maxi-
mum score is obtained by the Canny method, although the next best performer
is one of our consensus construction method, concretely C2. In terms of Rec the
highest value is obtained by the Fuzzy morphology and then we have our ODM
proposal. Considering the F0.5 measure we can see that, before going over the
consensus methods, our ODM proposal, is the best performer comparing it to
all the individual methods considered.

Then, in the case of the consensus methods, we show the best performers
in each case. We observe that the results obtained in terms of F0.5 is identical
when using two, three and four feature images. We can see that adding feature
images to the consensus image has an effect over Prec and Rec, reducing the
first one and increasing the second. This behaviour makes the F0.5 to remains
unchanged. Then, when adding the fifth the results in terms of F0.5 recovers
the one obtained with the ODM function. We can extract from this results that
the feature images obtained with FMSS , GSP

and GSM
do not contribute with

useful information to the consensus image, when using the OWA operator.
As complementary comparative measure we consider the number of images

being the best and worst performer in terms of F0.5. In Table 2 we show the
results obtained. On one hand, we observe that with our proposed approaches,
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Table 1. Comparison of ODM functions approach, along with OWA operator consensus
approach from two to five combinations with respect to gravitational, fuzzy morphology
and the Canny method in terms of Prec, Rec and F0.5.

Edge detection methods Prec Rec F0.5

ODM 0.572 0.779 0.639

ODM-Canny (C2) 0.647 0.686 0.645

ODM-Canny-FMSS (C3) 0.621 0.719 0.645

ODM-Canny-FMSS −GSP (C4) 0.612 0.735 0.645

ODM-Canny-FMSS −GSP −GSM (C5) 0.607 0.729 0.639

Canny 0.666 0.641 0.631

FMSS 0.498 0.807 0.596

GSP 0.617 0.702 0.631

GSM 0.616 0.691 0.625

both when using ODM functions and with the consensus method, we obtain in
all the cases the lowest results in terms of worst count. On the other hand, in
terms of best count we are below the Canny method. But we are comparable
when we use the consensus image combining three feature images.

Table 2. Comparison of best and worst approaches in terms of F0.5 considering
ODM functions approach and consensus approaches with two to five feature images
C2,C3,C4,C5. ✓ and ✗ indicates the number of best images and worst images respec-
tively.

Edge detection methods

* FMSS Canny GSP GSM

✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

ODM 20 2 13 53 31 20 27 17 9 8

C2 18 1 19 54 27 20 30 18 6 7

C3 23 1 17 54 27 20 27 18 6 7

C4 21 1 18 53 30 20 25 18 6 8

C5 17 1 21 54 30 20 27 18 5 7

In order to see a visual example, we show in Fig. 2 the results obtained with all
the approaches considered in our experiments, along with one of the ground truth
images. We can clearly observe that our methods (ODM,C2,C3,C4,C5 ) detect
a great majority of edges. The bear contour is detected by all the methods, but
the edges separating the image in top middle and bottom are not detected in
some cases, i.e., GSP

. Comparing the top of the ground truth we see that our
methods detects many more edges than the real ones. Particularly, our methods,
both the single ODM and the consensus ones detect quite well the bottom edges
of the image.
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ODM C2 C3

C4 C5 Canny

FMSS GSP GSM

Fig. 2. Binary image obtained with ODM functions (ODM ) and consensus construction
using OWA (C2, C3, C3, C4, C5), Canny, Fuzzy Morphology (FMSS) and Gravita-
tional forces (GSP , GSM ).

5 Conclusion

Our work has treated edge detection from the perspective of ODM functions. In
particular, we have used this type of functions in the specific task of extracting
features from gray-scale images. In addition, we have presented a method to
build, using ODM functions along with other edge detection methods, consensus
feature images by means of OWA operators.

Our procedure is based on a local approach, in which we extract the informa-
tion at each pixel of the image using its neighbourhood. In this way we obtain
intensity changes along with the direction of the variation in the intensity.

As the experimentation has shown, on one hand, ODM functions result in
competitive scores with respect to classical methods, like the Canny method. On
the other hand, when we combine our approach with other methods to build a
consensus image, we obtain the best scores. Besides, when looking at the quan-
tification of best and worst results, we see that we outperform all the presented
methods in terms of worst count, obtaining the lowest scores.

From a preliminary study on ODM functions applied to the problem of edge
detection, the results are promising and indicate that this type of function appear
to be a good alternative for edge detection. In order to confirm the results
obtained, more experiments should be carried out, studying different parameters,
as well as using different datasets.
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3 Laboratório de Sistemas Inteligentes e Modelagem - LabSIM,
Universidade Federal do Pampa - UNIPAMPA, Itaqúı, RS 97650-000, Brazil
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Abstract. In this paper we investigate about lattice-valued restricted
equivalence functions and its characterization by means a particular class
of lattice-valued implication operators.
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1 Introduction

The study of global image and entropy comparison among fuzzy sets has been
the subject of research by many professionals in recent years in different areas
of knowledge due to the need for large scale data processing and classification
[9,14,26].

There are several ways to define measures of comparison in the literature,
each one trying to be the most accurate in each scenario in which it is considered.
Bustince et al. in [8,9] have been defined the concept of restricted equivalence
functions (REF) in the context of fuzzy sets (on [0,1]) as a particular case of
the Fodor and Roubens equivalence functions [14]. Precisely speaking the REF
is able to provide a local measure for comparing images by considering a pixel
in one image with its corresponding pixel in the other image.

Later Julio et al. in [17] have defined the interval version of restricted equiv-
alence functions and Palmeira and Bedregal in [24] have defined those functions
on L([0, 1]). Recently Palmeira et al. in [26] also have presented the definition of
lattice-valued restricted equivalence funtions and normal Ee,N -functions.
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In this paper a characterization theorem is presented for lattice-valued
restricted equivalence funtions by means of a particular implication operators.

Section 2 brings some usual concepts on lattice theory and Sect. 3 presents
the characterization theorem for L-REF. Main results are analyzed in Sect. 4.

2 Preliminaries

Definitions and properties presented in this section are part of the lattice theory.
For a detailed review of them we strongly recommend the following references
[6,11–13,15,18–20,28]. In the whole paper we write L for a lattice and M for its
sublattice.

2.1 Lattices and Morphisms

This section is devoted to recall some important definitions and properties of
lattices that we consider in the whole text.

Definition 1 [23]. Let L be a nonempty set. If ∧L and ∨L are two binary oper-
ations on L, then 〈L,∧L,∨L〉 is an alg-lattice provided that for each x, y, z ∈ L,
the following properties stand:

1. x ∧L y = y ∧L x and x ∨L y = y ∨L x (commutativity);
2. (x∧L y)∧L z = x∧L (y∧L z) and (x∨L y)∨L z = x∨L (y∧L z) (associativity);
3. x ∧L (x ∨L y) = x and x ∨L (x ∧L y) = x (absorption law).

If in L there are elements 0L and 1L such that, for all x ∈ L, x ∨L 0L = x
(bottom) and x ∧L 1L = x (top), then 〈L,∧L,∨L, 0L, 1L〉 is a bounded lattice.

It is clear that the following equivalence

x �L y if and only if x ∧L y = x (1)

provides a partial order on L and it can be proved that 〈L,≤L〉 is a lattice.

Definition 2 [6]. A lattice L is called a complete lattice if every subset of it
has a supremum and an infimum element. Notice that every complete lattice is
bounded.

Example 1. The set [0, 1] endowed with the operations defined by x ∧ y =
min{x, y} and x ∨ y = max{x, y} for all x, y ∈ [0, 1] is a complete lattice in
the sense of Definitions 1 and 2 which has 0 as the bottom and 1 as the top
element.

Example 2. For all x, y ∈ [0, 1] it is possible to define the interval set L([0, 1]) =
{[x, y] ; 0 � x � y � 1}. This set equipped with the operations

[x, y] ∧L [w, z] = [x ∧ w, y ∧ z] and [x, y] ∨L [w, z] = [x ∨ w, y ∨ z].

with a∧b = min(a, b) and a∨b = max(a, b), is a complete lattice (in the sense of
Definition 1) which has [0, 0] and [1, 1] as a bottom and a top respectively. It is
easy to see that this lattice is also obtained by considered in L([0, 1]) the partial
order [a, b] �2 [c, d] if and only if a � c and b � d.
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Remark 1. When �L is a partial order on L and there are two elements x and
y belonging to L such that neither x �L y nor y �L x, these elements are said
to be incomparable and we denote this by x ‖ y. Otherwise we say they are
comparable (notation: x ¨ y).

Definition 3 [13]. Let (L,�L, 0L, 1L) and (M,�M , 0M , 1M ) be bounded lattices.
A mapping f : L −→ M is said to be an order-preserving lattice homomorphism
if, for all x, y ∈ L, it follows that

1. If x �L y then f(x) �M f(y);
2. f(0L) = 0M and f(1L) = 1M .

Definition 4 [13]. Let (L,∧L,∨L, 0L, 1L) and (M,∧M ,∨M , 0M , 1M ) be bounded
lattices. A mapping f : L −→ M is said to be a lattice homomorphism if, for all
x, y ∈ L, we have

1. f(x ∧L y) = f(x) ∧M f(y);
2. f(x ∨L y) = f(x) ∨M f(y);
3. f(0L) = 0M and f(1L) = 1M .

Definition 5 [16]. A given lattice homomorphism f (in the sense of both Defi-
nitions 3 and 4) on L is called:

1. A monomorphism if it is injective;
2. An epimorphism if f is surjective;
3. An isomorphism when f is bijective. An automorphism is an isomorphism

from a lattice to itself.

Proposition 1 [6]. Every lattice homomorphism in the sense of Definition 4 is
order-preserving.

However, in general, the reciprocal of Proposition 1 does not hold. If f : L −→
M is an order homomorphism, since x∧Ly �L x and x∧Ly �L y, so f(x∧Ly) �M

f(x) and f(x∧Ly) �M f(y). Thus, f(x∧Ly) �M f(x)∧M f(y) = inf{f(x), f(y)},
however it is possible for f(x ∧L y) 
= inf{f(x), f(y)} to occur. For example,
consider the lattices L and M , as depicted in Hasse diagram shown in Fig. 1.
Nevertheless, the map f : L −→ M defined by f(0L) = 0M , f(1L) = 1M ,
f(x) = u and f(y) = v, preserves infimum and supremum elements and, hence,
is an order homomorphism, though it is not an alg-homomorphism as ∧ operation
is not preserved.

2.2 Negations on L

Now we are interest in study about the notion of lattice-valued negations and
its properties.

Definition 6. A function N : L −→ L is called a fuzzy negation if it satisfies:

(N1) N(0L) = 1L and N(1L) = 0L;
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Fig. 1. Hasse diagrams of lattices L and M

(N2) If x �L y then N(y) �L N(x), for all x, y ∈ L.

Moreover, if a fuzzy negation N on L satisfies the involution property, namely

(N3) N(N(x)) = x, for all x ∈ L

it is called a strong fuzzy negation.
Negations satisfying Property (N4) are called frontier.

(N4) N(x) ∈ {0L, 1L} if and only if x = 0L or x = 1L

Other notions of fuzzy negation as a generalization of the classical one can
be found in [3,5,10,22,23].

Definition 7. Let N : L → L a fuzzy negation on bounded lattice L. If x ∈ L
is such that N(x) = x then x is called an equilibrium point of N .

Example 3. Let L and M be bounded lattices as shown in the Fig. 2. The func-
tion N1 : M → M defined by N1(0M ) = 1M , N1(x) = y, N1(y) = x and
N1(1M ) = 0M is a strong M -negation. Nevertheless, N1 has no equilibrium
point.

Now, consider a function N2 : L → L given by N2(0L) = 1L, N2(a) = e,
N2(e) = a, N2(1L) = 0L and N2(u) = u for each u ∈ {b, c, d}. In this case, N2 is
a strong fuzzy negation with three equilibrium points, namely b, c and d.

2.3 L-Implications

It is well-known that there are some different ways to interpret L-implications
(see [1,5,7,21,25,29]) but here we consider the notion considered in [1].

Definition 8. A L-implication on bounded lattice L is a function I : L×L −→
L such that for each x, y, z ∈ L the following properties hold:

(FPA) if x �L y then I(y, z) �L I(x, z) (First variable antitonicity);
(SPI) if y �L z then I(x, y) �L I(x, z) (Second variable isotonicity);
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Fig. 2. Hasse diagrams of lattices M and L

(CC1) I(0L, 0L) = 1L (Corner condition 1);
(CC2) I(1L, 1L) = 1L (Corner condition 2);
(CC3) I(1L, 0L) = 0L (Corner condition 3).

Below it is presented some properties for a given function I : L × L → L:

(CC4) I(0L, 1L) = 1L (Corner condition 4);
(LB) I(0L, y) = 1L, for all y ∈ L;
(RB) I(x, 1L) = 1L, for all x ∈ L;
(NP) I(1L, y) = y for each y ∈ L (left neutrality principle);
(EP) I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ L (exchange principle);
(IP) I(x, x) = 1L for each x ∈ L (identity principle);
(OP) I(x, y) = 1L if and only if x � y (ordering property);
(IBL) I(x, I(x, y)) = I(x, y) for all x, y, z ∈ L (iterative Boolean law);
(CP) I(x, y) = I(N(y), N(x)) for each x, y ∈ L with N a fuzzy negation on
L (law of contraposition);
(P) I(x, y) = 0L if and only if x = 1L and y = 0L (Positive);
(LEM) S(N(x), x) = 1L for each x ∈ L (law of excluded middle).

Example 4. Let L be a bounded lattice (see Fig. 2) and N2 the strong fuzzy
negation on L in Example 3. The function I : L2 → L given by

I(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1L, if x �L y;
N2(x), if y = 0L and x 
= 0L;

y, if x = 1L;
e, otherwise.

(2)

satisfies the properties (FPA), (OP ), (CP ) (with respect to N2) and (P ). It is
a easy to see that it holds by Table 1.
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Table 1. A function I on L

I 0L a b c d e 1L

0L 1L 1L 1L 1L 1L 1L 1L

a e 1L 1L 1L 1L 1L 1L

b b e 1L e e 1L 1L

c c e e 1L e 1L 1L

d d e e e 1L 1L 1L

e a e e e e 1L 1L

1L 0L a b c d e 1L

3 Lattice-Valued Restricted Equivalence Functions

Restricted equivalence functions play an important role for image processing due
to it provides a similarity measure used to make a global comparison between
images. Bustince et al. in [8] have been defined that operator in the context of
fuzzy sets and shown how to construct similarity measures between fuzzy sets.
Indeed, if F(X) is set of all fuzzy subsets of a given set X hence the function SM :
F(X) × F(X) → [0, 1] given by SM(A,B) = Mn

i=1REF (µA(xi), µB(xi)) where
M is an aggregation function and REF is a restricted equivalence function, is a
similarity measure satisfying the following properties:

– SM(A,B) = SM(B,A), for all A,B ∈ F(X);
– SM(A,Ac) = 0 if and only if is non-fuzzy;
– SM(A,B) = 1 if and only if A = B;
– SM(A,B) = SM(Ac, Bc);
– if A ≤ B ≤ C then SM(A,B) ≥ SM(A,C) and SM(B,C) ≥ SM(A,C).

Later, Palmeira et al. [26] have been constructed similar measures from
restricted equivalence function in the context of lattice theory.

Definition 9 [26]. Let N be a strong negation on L. A function REF : L2 → L
is called a restricted equivalence function on L with respect to N , or just an L-
REF with respect to N , if it satisfies, for all x, y, z ∈ L, the following conditions:

(L1) REF (x, y) = REF (y, x);
(L2) REF (x, y) = 1L if and only if x = y;
(L3) REF (x, y) = 0L if and only if {x, y} = {0L, 1L};
(L4) REF (x, y) = REF (N(x), N(y));
(L5) if x �L y �L z then REF (x, z) �L REF (x, y).

It is important to point out it is not easy to say when there exists a strong
fuzzy negation for an arbitrary lattice L. However, negation in Definition 9 must
be a strong negation in order to avoid a conflict between properties (L2) and
(L4).

Notice that from (L4), (L5) and (L1), it is also possible to conclude that
REF (x, z) �L REF (y, z) whenever x �L y �L z.
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Table 2. Restricted equivalence function on lattice M

R 0L x y 1L

0L 1L x y 0L

x x 1L x y

y y x 1L x

1L 0L y x 1L

Example 5. Let M be a bounded lattice and N1 be the strong M -negation in
Example 3. Thus, the function R : M2 → M generated as in Table 2 is an L-REF
with respect to N1 in the sense of Definition 9.

Notice that in this case, the mapping N1(x) = R(0L, x) defines a strong
negation on the lattice M .

Below we generalize the method of constructing L-REF based on L-
implication operators (see Theorem 7 of [9]). We start recalling the concept of
implications on bounded lattices.

Theorem 1. Let N : L2 → L be a strong L-negation and M : L2 → L be a
function such that, for all x, y ∈ L, it holds:

(M1) M(x, y) = M(y, x);
(M2) M(x, 1L) = x;
(M3) M(x, y) = 1L if and only if x = y = 1L;
(M4) M(x, y) = 0L if and only if x = 0L or y = 0L.

If there exist a function I : L2 → L satisfying (FPA), (OP), (CP) for N and
(P) then the function REF : L2 → L defined by

REF (x, y) = M(I(x, y), I(y, x)) (3)

is a L-REF with respect to N .

Proof. We shall prove that the conditions (L1)− (L5) hold. It is clear that (M1)
implies (L1). The proof for the other properties is given as follows:

(L2)
Suppose that REF (x, y) = 1L. Thus, by (3) we have that M(I(x, y), I(y, x)) =
1L and hence I(x, y) = 1L and I(y, x) = 1L by (M3). Therefore, by (OP ) it
follows that x �L y and y �L x, i.e. x = y.
Conversely, if x = y, that is x �L y and y �L x then I(x, y) = I(y, x) = 1L by
(OP ). Thus, it is easy to see that REF (x, y) = 1L.

(L3)
If REF (x, y) = 0L then M(I(x, y), I(y, x)) = 0L which allow us to conclude
that either I(x, y) = 0L or I(y, x) = 0L since M satisfies (M3). Thus, by (P ) we
have that either x = 1L and y = 0L or x = 1L and y = 0L.
On the other hand, if x = 1L and y = 0L then I(x, y) = 0L by (P ). Therefore,
REF (x, y) = M(I(x, y), I(y, x)) = M(0L, I(y, x)) = 0L by (M3). Analogously
it can be proved that REF (x, y) = 0L whenever x = 0L and y = 1L.
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(L4)
For all x, y ∈ L we have that

REF (N(x), N(y)) = M(I(N(x), N(y)), I(N(y), N(x))) by (3)
= M(I(y, x), I(x, y)) by (CP )
= M(I(x, y), I(y, x)) by (M1)
= REF (x, y)

(L5)
Given x, y, z ∈ L such that x �L y �L z we have that I(x, y) = 1L and
I(x, z) = 1L. Thus

REF (x, y) = M(I(x, y), I(y, x)) = M(1L, I(y, x)) = I(y, x) (4)

and
REF (x, z) = M(I(x, z), I(z, x)) = M(1L, I(y, x)) = I(z, x) (5)

Since y �L z then by (FPA) it follows that I(z, x) �L I(y, x) for all x ∈ L.
Therefore, considering this fact, by Eqs. (4) and (5) it can be concluded that
REF (x, z) �L REF (x, y). �

Table 3. Restricted equivalence function on lattice L

REF 0L a b c d e 1L

0L 1L e b c d a 0

a e 1L e e e e a

b b e 1L e e e b

c c e e 1L e e c

d d e e e 1L e d

e a e e e e 1L e

1L 0L a b c d e 1L

Example 6. Let L be the bounded lattice shown in Fig. 2. If I : L2 → L is
the function defined in the Example 4 and M : L2 → L is a function given
by M(x, y) = min{x, y} for all x, y ∈ L then, by Theorem 1, REF (x, y) =
M(I(x, y), I(x, y)) is a restricted equivalence function on L (see Table 3).

It is worth noting that reciprocal of Theorem1 does not hold, in general.
In other words, given an L-REF with respect to a strong L-negation N and a
function M : L2 → L satisfying (M1), (M2) and (M3) it is not always possible
to define a function I : L2 → L which satisfy (FPA), (OP ), (CP ), (P ) and
REF (x, y) = M(I(x, y), I(y, x)). This is due to there is not a specific way to
define restricted equivalence function for pairs (x, y) ∈ L2 such that x ‖ y
(incomparable elements of L). According to properties (L2) and (L3) we can
just infer that 0L <L REF (x, y) <L 1L if x ‖ y.

It means that determining how to define a general condition for L-REF on
incomparable elements of L2 in order to make the reciprocal of the Theorem 1
holds constitute a very interesting open problem to be studied.
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Proposition 2. Let REF be an L-REF related to a strong L-negation N . Then
the function IREF : L2 → L defined by

IREF (x, y) =
{

1L if x �L y
REF (x, y) otherwise (6)

satisfies the properties (OP), (CP) and (P).

Proof.

(OP )
Let x, y ∈ L. If x �L y then, by definition, it is trivial that IREF (x, y) = 1L.

Reciprocally, if IREF (x, y) = 1L then either x �L y or REF (x, y) = 1L and
y <L x or x ‖ y. But, note that if REF (x, y) = 1L then x = y by (L2) which
is a contradiction with both y <L x and x ‖ y. Therefore, it can be concluded
that x �L y.

(CP )
Note that if x �L y we have N(y) �L N(x) and hence IREF (x, y) = 1L =
IREF (N(y), N(x)) by definition of IREF . Beyond that we can have y <L x
or x ‖ y which implies that N(x) <L N(y) and N(x) ‖ N(y) respectively.
Thus in both cases it follows that IREF (N(y), N(x)) = REF (N(y), N(x)) =
REF (N(x), N(y)) and IREF (x, y) = REF (x, y) what allow us to conclude that
IREF (N(y), N(x)) = IREF (x, y) since REF (N(x), N(y)) = REF (x, y) by (L4).

(P )
If IREF (x, y) = 0L then either REF (x, y) = 0L and y <L x or REF (x, y) = 0L
and x ‖ y. But, the second case is a contradiction by (L3). Hence we must have
REF (x, y) = 0L and y <L x and again by (L3) it follows that x = 1L and
y = 0L.

Reciprocally, if x = 1L and y = 0L then IREF (x, y) = REF (x, y) =
REF (1L, 0L) = 0L. �

Remark 2. Notice that if REF and IREF are functions as in Proposition 2 and
M : L2 → L is a function as in Theorem1 (satisfying also M(x, x) = x for all
x ∈ L) then the Identity (3) holds.

Indeed, let x, y ∈ L and suppose that they are comparable. In this case, if
x �L y then IREF (x, y) = 1L and IREF (y, x) = REF (y, x) = REF (x, y). Thus

REF (x, y) = IREF (y, x) = M(1L, IREF (y, x)) = M(IREF (x, y), IREF (y, x))

Analogously, one can prove that (3) holds if y �L x.
On the other hand, if x ‖ y then IREF (x, y) = REF (x, y) and IREF (y, x) =
REF (y, x) = REF (x, y). Therefore

REF (x, y) = M(REF (x, y), REF (y, x)) = M(IREF (x, y), IREF (y, x))
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Table 4. The function IREF on lattice M

IREF 0L x y 1L

0L 1L 1L 1L 1L

x x 1L x 1L

y y x 1L 1L

1L 0L y x 1L

Example 7. Here we show that the reciprocal of Theorem 1 does not hold in
general. Actually, we would like to highlight the fact that the property (FPA)
fails for the function IREF defined in (6) (by Theorem 7 in [8] it is known
that IREF should satisfy (FPA), (OP), (CP) and (P)). To do so, consider the
bounded lattice M (see Fig. 1) and the restricted equivalence function defined
in Example 5. In this case, the function IREF in (6) is defined as in Table 4.
Note that y < 1M but IREF (1M , x) = y and IREF (y, x) = x which means that
IREF (1M , x) ‖ IREF (y, x) since x ‖ y.

Taking into account the important fact highlighted above, we can see that the
problem of proving the reciprocal of Theorem1 becomes the problem of seeking
conditions under which the function IREF as in Proposition 2 satisfies (FPA).
Clearly if all the elements of the bounded lattice L are comparable then the
problem is sold, it means:

Theorem 2. Let L be a bounded chain and suppose that M : L2 → L is a
function satisfying (M1), (M2), (M3) and M(x, x) = x for all x ∈ L. Thus a
function REF : L2 → L is an L-REF for a strong L-negation N if and only if
there exist a function IREF : L2 → L satisfying (FPA), (OP), (CP) for N and
(P) in such a way that the Eq. (3) holds.

Proof. Let REF be a L-REF with respect to a strong negation N . Define:

IREF (x, y) =
{

1L if x �L y;
REF (x, y) otherwise.

From Proposition 2 and Remark 2 we can conclude that IREF satisfies (OP ),
(CP ), (P ) and REF (x, y) = M(IREF (x, y), IREF (y, x)) for all x, y ∈ L. Thus,
it remains to prove that property (FPA) holds.

Take y ∈ L and x, z ∈ L such that x ≤L z. We want to see that IREF (z, y) ≤L

IREF (x, y). There are three possibilities.
(i) If y ≤L x ≤L z we have that IREF (z, y) = REF (z, y) and IREF (x, y) =
REF (x, y). But by (L5), REF (z, y) ≤L REF (x, y) and hence IREF (z, y) �
IREF (x, y).
(ii) When x ≤L y ≤L z it follows that IREF (z, y) = REF (z, y) ≤L 1L =
IREF (x, y).
(iii) If x ≤L z ≤L y then IREF (z, y) = 1L = IREF (x, y).

The reciprocal is straightforward from Theorem1. �
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4 Final Remarks

On one hand the main contribution of this is paper is related to the theoretical
study on lattice-valued restricted equivalence functions and its characterization
by implication operators. Results shown that REF can be generated by aggre-
gating a suitable L-implication operator. On the other hand, it has been proven
that of that result does not holds. Proposition 2 present an operator contructed
from a given REF that is not an L-implication. boundcan be constructed as one
can see in Theorem 2.

As future work we wish to apply the extension method via e-operator [22]
for constructing similarity measures from a given one.
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Abstract. We analyze the impact of applying families of T-norm and
LexiT-ordering aggregation functions in the context of egalitarian rea-
soning. We compare both of them with the minimum and lexicographic
minimum aggregation functions, which are well-known functions used in
the aggregation approach in the decision making problem. For this task,
we consider three logical properties in the Social Choice theory and Eco-
nomics: Hammond Equity, Strong Pareto and Anonymity. It is known
that lexicographic minimum satisfies all of these properties. We present
in this paper some conditions to T-norms and LexiT-orderings satisfy
these logical properties or restrictions of them.

1 Introduction

Aggregation of information are basic concerns for all kinds of knowledge based
systems, from image processing to decision making, from pattern recognition to
machine learning. From a general point of view we can say that aggregation has
as purpose the simultaneous use of different pieces of information (provided by
several sources/agents) in order to come to a conclusion or a decision [4].

The purpose of aggregation functions (or aggregation operators) is to combine
inputs that are typically interpreted as degrees of membership in fuzzy sets,
degrees of preference, strength of evidence, or support of a hypothesis, and so
on. There exists a large number of different aggregation functions that differ
on the assumptions related to data (data types) and on the properties of their
results [2].

Some of most popular aggregation functions are the average, the median, the
minimum and the maximum, as well as some classical generalizations like the
weighted mean, lexicographic minimum, lexicographic maximum and the k-order
statistics [2].

In the decision making field, an important topic, considered the heart of
social choice theory [1], is the analysis of aggregation functions, which involves
some aspects of their rationality. Indeed, there are two main theories approached
when aggregating values: the utilitarianism and egalitarianism.
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Utilitarianism sustains the idea the best choice for a group is that maximizing
the input of the group. The average function is an example of utilitarian aggre-
gation function. Egalitarianism, on the other hand, tries to reach equality for
all agents in the group. The minimum and lexicographic minimum functions are
examples of egalitarian aggregation functions. Intuitively, they seek to promote
equality of the group by favoring those agents in bad situation.

This work aims at exploring further egalitarian aggregation functions. The
idea is to generalize the minimum function and employ fuzzy connectives. As it
is known, T-norms are functions weaker than the minimum function, which can
be commonly used to capture the worst case in some group decision problems.
The motivation for this paper is to offer a new view about aggregation func-
tions with T-norms, exploring their properties with respect to egalitarian condi-
tions. We will begin our analysis with the minimum and lexicographic minimum
aggregation functions and their relation with three important logical proper-
ties: Hammond Equity, Strong Pareto and Anonymity [11], which are closely
related with the idea of egalitarianism. Right after, we will analyze the relation
of T-norm aggregation functions with these logical properties. Furthermore, we
will consider the lexicographic generalization of T-norms, called LexiT-ordering
[15], and we will make a comparative between LexiT-ordering and lexicographic
minimum aggregation functions.

The paper is structured as follows. In Sect. 2, we will present some basic
notions about the framework of aggregation, aggregation functions, justice rela-
tions and its egalitarian logical properties. In Sect. 3, we will review the concepts
of T-norms and parameterized T-norms. In Sect. 4, we will find one of the main
contributions of this work, where we will consider T-norms justice relation and
their connections with egalitarian logical properties, and consequently minimum
and lexicographic minimum functions. In Sect. 5, we will continue this investiga-
tion with the LexiT-ordering justice relations. Finally, in Sect. 6 we will conclude
the paper.

2 The Framework and Some Logical Properties

In this section, we present some fundamental notions about frameworks of aggre-
gation and their logical properties.

We assume a fixed population of agents A = {1, . . . , n}, and a set of outcomes
Ω = {ω1, . . . , ωm}, where each outcome ωi is represented by a n−dimensional
utility vector. Each outcome ωi ∈ Ω can be viewed as a possible world or an
alternative which contains the utility levels of all agents. For ωi = (ω1

i , . . . , ωn
i ),

we will refer to ωj
i as the utility value of the agent j in the outcome i. For any ωj

i ,
we will impose that ωj

i ∈ [0, 1]. We will use the binary relation ≤ to rank these
utility levels. We define < as follows: ωk

i < ωk
j iff ωk

i ≤ ωk
j and ωk

j �= ωk
i . Hence,

the ranking of the outcomes will only depend on these utility values contained
in each vector.

We assume that ≤f over Ω is a reflexive and transitive binary relation (i.e.,
a pre-order), where f : [0, 1]n → [0, 1] is an aggregation function between out-
comes. We will refer to ≤f as a f justice relation. A pre-order ≤f is total if
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∀ωi, ωj ∈ Ω, ωi ≤f ωj or ωj ≤f ωi. We define <f as follows: ωi <f ωj iff
ωi ≤f ωj and ωj �≤f ωi, and ≈f as ωi ≈f ωj iff ωi ≤f ωj and ωj ≤f ωi. When
ωi <f ωj , we say ωj is more just (or preferable) than ωi with respect to f ; when
ωi ≤f ωj , we say ωj is at least as just as ωi with respect to f ; and ωi ≈f ωj

denotes ωi is as just as ωj with respect to f .

Definition 1 ( min and leximin justice relations). Let A = {1, . . . , n}
be a set of agents, Ω = {ω1, . . . , ωm} be a set of outcomes, where each ωi =
(ω1

i , . . . , ωn
i ) and ωj

i ∈ [0, 1], for j ∈ {1, . . . , n}. Let min and leximin be two
aggregation functions.

– We define ≤min over Ω as ωi ≤min ωj iff min(ω1
i , . . . , ωn

i ) ≤
min(ω1

j , . . . , ωn
j );

– For each ωi we build the list (ω(1)
i , . . . , ω

(n)
i ) of utilities sorted in ascending

order. Let ≤lex be the lexicographical order between sequences of values in
[0,1], i.e., (x1, . . . , xn) ≤lex (y1, . . . , yn) if (1) for all i, xi ≤ yi or (2) there
exists i such that xi < yi and for all j < i, xj ≤ yj. We define ≤leximin over
Ω as ωi ≤leximin ωj iff (ω(1)

i , . . . , ω
(n)
i ) ≤lex (ω(1)

j , . . . , ω
(n)
j ).

When comparing outcomes, the min justice relation considers more just an
outcome with a higher minimum utility value. Alternatively, we can say that we
are giving absolute preference to the worst off agent in the group. The leximin
justice relation follows the same idea, but when the utility value of the worst off
agents are equivalent, then we consider the utility value of the second worst off
agents (if they are still equivalent, we continue to the third worst agents and so
on). For instance, consider the following three outcomes: ω1 = (0.5, 0.8, 0.2), ω2 =
(0.9, 0.5, 0.1) and ω3 = (0.6, 0.1, 0.6). Thus, ω1 is more just than ω2 with respect
to min and leximin, and ω2 is as just as ω3 only with respect to min. For
leximin, ω3 is more just than ω2, since (0.1, 0.5, 0.9) <lex (0.1, 0.6, 0.6).

In the analysis of justice relations we will take into account the following
properties of theories of social justice: Hammond Equity, Strong Pareto and
Anonymity [11].

(a) Hammond Equity (HE): Let f be an aggregation function. For all ωi, ωj ∈
Ω, there exist k, l such that: (1) ωk

i < ωk
j ; (2) ωl

j < ωl
i; (3) ωk

j ≤ ωl
j ; (4) ωm

i = ωm
j ,

for any m �= k, l, then ωi ≤f ωj .
(HE) assigns absolute priority to the worse off agent in two-person cases, that

is, cases where everyone but two agents attains the same utility value in both out-
comes. For example, consider ω4 = (0.3, 0.1, 0.7, 0.8) and ω5 = (0.3, 0.1, 0.6, 0.9).
If a justice relation ≤f satisfies (HE), then ω4 is at least as just as ω5 with
respect to f .

(b) Strong Pareto (SP): Let f be an aggregation function. For all ωi, ωj ∈ Ω,
if for all k, ωk

i ≤ ωk
j and there is l such that ωl

i < ωl
j , then ωi <f ωj .

A justice relation ≤f satisfies Strong Pareto property when comparing two
outcomes ωi and ωj , if the utility value of every agent is better or equal in ωj

than in ωi and there is at least one agent the utility level is better in ωj than in
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ωi, then ωj is more just than ωi with respect to a specific aggregation function f .
For example, if ≤f satisfies (SP) then ω6 = (0.3, 0.8, 0.5) <f (0.3, 1, 0.6) = ω7.

(c) Anonymity (A): Let f be an aggregation function. For all ωi, ωj ∈ Ω, if
ωi is a permutation of ωj , then ωi ≈f ωj .

Anonymity is also called Symmetry or Commutativity. For instance, if ≤f

satisfies (A), then ω6 = (0.3, 0.8, 0.5) ≈f (0.3, 0.5, 0.8) ≈f (0.5, 0.3, 0.8) ≈f

(0.5, 0.8, 0.3) ≈f (0.8, 0.3, 0.5) ≈f (0.8, 0.5, 0.3). With these three logical proper-
ties we can achieve the Leximin Principle.

Leximin (LM): Let f be an aggregation function. For all ωi, ωj ∈ Ω, if there
exists a position k < n such that (1) ωk

i < ωk
j ; and (2) ωl

i = ωl
j , for every l < k,

then ωi <f ωj . Otherwise, ωi ≈f ωj .
(LM) captures the idea behind the leximin justice relation. Leximin Prin-

ciple comes with an absolute preference to the least well off agent(s), meaning
that the status of their least well off agent(s) are preferred, regardless of the
utility values involved, and the rest of the agents are ignored.

Below, we have a characterization for the Leximin Principle.

Theorem 1 [11]. A reflexive and transitive justice relation satisfies (HE),
(SP) and (A) if and only if it satisfies (LM).

For the justice relations presented in this section, it is known the following
results.

Theorem 2. The justice relation ≤min satisfies only (A) and ≤leximin satisfies
(HE), (SP) and (A).

The min justice relation falsifies (HE) and (SP), which are typical proper-
ties associated to the egalitarian reasoning. A question that arises is if for other
T-norms, besides min, they behave equivalently in terms of these logical proper-
ties. A distinction between T-norms and leximin (or min) is that not only the
least well off agent(s) is/are considered, but every other agent in the population.

3 T-Norms and Parameterized T-Norms

In this section we will describe some notions about T-norms which will be
employed in the remaining of this work. With regard to the min operation,
it compares only the least value to take a decision. The minimum can also be
viewed as the conjunction logic operator, i.e., (a ∧ b) = min{a, b}, and as a
T-norm in the fuzzy logic literature.

Definition 2 (T-norm [8]). A binary function ⊗ : [0, 1] ×[0, 1] → [0, 1] is
a T-norm if it satisfies the following conditions: (i) ⊗{a, b} = ⊗{b, a} (Com-
mutativity); (ii) ⊗{a,⊗{b, c}} = ⊗{⊗{a, b}, c} (Associativity); (iii) a ≤ c and
b ≤ d ⇒ ⊗{a, b} ≤ ⊗{c, d} (Monotonicity); and (iv) ⊗{a, 1} = a (Neutral
Element).
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Every T-norm has an absorbent element, also called annihilator, which is the
natural number 0, i.e., ⊗{a, 0} = 0 (in this case, 0 can also be associated as an
implicit veto). A T-norm is called strict if it is continuous and strictly monotone
(i.e., ∀x, y, z ⊗ {x, y} < ⊗{x, z} whenever x > 0 and y < z). A T-norm is called
nilpotent if it is continuous and if each a ∈]0, 1[ is a nilpotent element of ⊗, i.e.,
there exists some n ∈ N such that ⊗{a, . . . , a}

︸ ︷︷ ︸

n

= 0. Besides, for all T-norm ⊗,

we have ⊗{a, b} ≤ min{a, b} [5,7].

Definition 3 (Basic T-norms [6]). The following are the four basic T-norms:

– Minimum T-norm: ⊗M{x, y} = min(x, y);
– Product T-norm: ⊗P{x, y} = x · y;
– �Lukasiewicz T-norm: ⊗L{x, y} = max(x + y − 1, 0);
– Drastic T-norm: ⊗D{x, y} = y, if x = 1; x, if y = 1; 0, otherwise.

These four basic T-norms are remarkable for several reasons. The drastic
T-norm ⊗D and the minimum ⊗M are the smallest and the largest T-norms,
respectively (with respect to the pointwise order). The minimum ⊗M is the
only T-norm where each x ∈ [0, 1] is an idempotent element (recall x ∈ [0, 1] is
called an idempotent element of ⊗ if ⊗{x, x} = x). The product ⊗P and the
�Lukasiewicz T-norm ⊗L are examples of two important subclasses of T-norms,
namely, the classes of strict and nilpotent T-norms, respectively (more details in
[6]). Many families of T-norms can be defined by an explicit formula depending
on a parameter λ. Let us give a quick overview of some of them.

Definition 4 (Schweizer-Sklar T-norms [9]). The family of Schweizer-Sklar
T-norms (⊗SS

λ )λ∈[−∞,∞] is given by

⊗SS
λ {x, y} =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

⊗M{x, y}, if λ = −∞
⊗P{x, y}, if λ = 0
⊗D{x, y}, if λ = ∞
(max((xλ + yλ − 1), 0))

1
λ , otherwise

This family of T-norms is remarkable in the sense that it contains all four
basic T-norms. When λ = 1, ⊗SS

1 = ⊗L.

Definition 5 (FrankT-norms [3]). The family of Frank T-norms (⊗F
λ)λ∈[0,∞]

is given by

⊗F
λ{x, y} =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

⊗M{x, y}, if λ = 0
⊗P{x, y}, if λ = 1
⊗L{x, y}, if λ = ∞
logλ(1 + (λx−1)(λy−1)

λ−1 ), otherwise

The Frank family comprehends a series of T-norms between the �Lukasiewicz
and the product T-norms (for λ ∈ [2,∞[).
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Definition 6 (Yager T-norms [14]). The family of Yager T-norms
(⊗Y

λ )λ∈[0,∞] is given by

⊗Y
λ {x, y} =

⎧

⎨

⎩

⊗D{x, y}, if λ = 0
⊗M{x, y}, if λ = ∞
max(1 − ((1 − x)λ + (1 − y)λ)

1
λ , 0), otherwise

It is one of the most popular families for modeling the intersection of fuzzy
sets. The idea is to use the parameter λ as a reciprocal measure for the strength of
the logical operator “and”. In this context, λ = 1 expresses the most demanding
(i.e., smallest) “and”, and λ = ∞ the least demanding (i.e., largest) “and”.
The Yager family comprehends a series of T-norms between the drastic and the
minimum T-norms. When λ = 1, ⊗Y

1 = ⊗L.

Definition 7 (Sugeno-Weber T-norms [13]). The family of Sugeno-Weber
T-norms (⊗SW

λ )λ∈[−1,∞] is given by

⊗SW
λ {x, y} =

⎧

⎨

⎩

⊗D{x, y}, if λ = −1
⊗P{x, y}, if λ = ∞
max(x+y−1+λxy

1+λ , 0), otherwise

Note that (⊗SW
λ )λ>−1 are increasing functions of the parameter λ.

4 T-Norms and the Leximin Principle

In section, we define a T-norm (basic or parameterized) justice relation as well
as exploit its relation with the Leximin Principle.

Definition 8 (⊗ justice relation ). Let ⊗ be a T-norm, A = {1, . . . , n}
be a set of agents, Ω = {ω1, . . . , ωm} be a set of outcomes, where each
ωi = (ω1

i , . . . , ωn
i ) and ωj

i ∈ [0, 1], for j ∈ {1, . . . , n}. We define ≤⊗ over Ω
as ωi ≤⊗ ωj iff ⊗{ω1

i , . . . , ωn
i } ≤ ⊗{ω1

j , . . . , ωn
j }.

T-norm justice relations may produce different results from min and
leximin justice relations. For instance, let ω1 = (0.2, 0.1, 0.6, 0.4) and ω2 =
(0.3, 0.1, 0.4, 0.3). It is true that ω1 ≈min ω2, ω1 <leximin ω2, but ω2 <⊗P

ω1,
since ⊗P{0.3, 0.1, 0.4, 0.3} = 0.0036 < 0.0048 = ⊗P{0.2, 0.1, 0.6, 0.4}. In this
context, the distinguishing aspect of a T-norm is that it gives preference for an
outcome by considering all the utility values in it. On the other hand, min and
leximin give preference to the worst cases of an outcome.

Observe that for any T-norm the presence of the annihilator 0 on the
evaluation of ωi works as an implicit veto for that outcome; for instance, if
ω8 = (0.2, 0.5, 0), then ω8 ≤⊗ ωj , for j ∈ {1, . . . , n}, since ⊗{0.2, 0.5, 0} = 0.
So, if an outcome has the least utility value for an agent, that outcome will be
the least preferred by the group when the T-norm is the aggregation function.
It brings a principle of equality where the worst scenarios inside a group need to
be avoided. In other words, the use of T-norms as a justice relation presupposes
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there exists a consensus among the agents stating that if a choice is the worst
for an agent, then this choice has to be the worst for the group. Now, we will
show which properties the justice relation with T-norms satisfy in the general
case:

Theorem 3. Let ⊗ be a T-norm. The justice relation ≤⊗ satisfies only (A) in
general.

This result is similar to that for the min justice relation ≤min. An important
concern when dealing with T-norms is the presence of the annihilator 0. The
first property we need to revisit is (SP). Recall that according to (SP), if an
outcome ωj is strictly more preferable than an outcome ωi for an agent l and
ωj is at least as preferable as ωi for every other agents, then ωj will be strictly
more preferable than ωi. Note that the presence of an annihilator is sufficient
to falsify this property. Consider ω1 = (0, 0.5) and ω2 = (0, 0.6). We see that
ω1
1 = ω1

2 = 0 and ω2
1 < ω2

2 , but ω1 �<⊗ ω2. To overcome this issue, we will define
a weaker version of (SP) which ignores the presence of the annihilator.

Definition 9 (Strong Pareto free from 0). (SP-0) Let f be an aggregation
function. For all ωi, ωj ∈ Ω, if for all k, ωk

i , ωk
j �= 0, ωk

i ≤ ωk
j , and there is l

such that ωl
i < ωl

j, then ωi <f ωj.

This weaker version of (SP) supports the idea the justice relation satisfies
(SP) when the annihilator is absent. The second important condition we will
reconsider is Hammond Equity [10].

Definition 10 (Hammond Equity Condition free from 0). (HE-0) Let
f be an aggregation function. For all ωi, ωj ∈ Ω, there exist k, l such that: (1)
ωk

i < ωk
j ; (2) ωl

j < ωl
i; (3) ωk

j ≤ ωl
j; (4) ωm

i = ωm
j �= 0, for any m �= k, l, then

ωi ≤f ωj.

Now, let ω4 = (0.3, 0, 0.7, 0.8) and ω5 = (0.3, 0, 0.6, 0.9). For any T-norm ⊗,
we have ⊗{0.3, 0, 0.7, 0.8} = ⊗{0.3, 0, 0.6, 0.9} = 0, which is enough to falsify
(HE). As in (SP-0), (HE-0) considers (HE) when the annihilator is absent.
We can continue with the analysis of logical properties for each specific T-norm:

Theorem 4. ≤⊗P
satisfies (SP-0), but does not satisfy (HE-0) in the general

case. ≤⊗M
, ≤⊗L

and ≤⊗D
satisfy neither (SP-0) nor (HE-0) in the general

case.

One point to highlight is strict T-norms satisfies (SP-0) (e.g., ⊗P is a strict
T-norm), whereas those nilpotent do not satisfy (SP-0).

Theorem 5. Let ⊗ be a strict T-norm, then ≤⊗ satisfies (SP-0).

As the drastic T-norm is not continuous, little changes in the variables can
change drastically the result, and this reflects the loss of (SP-0) and (HE-0).
The �Lukasiewicz T-norm is a nilpotent T-norm; in this case, the presence of a
nilpotent element leads to the loss of properties.
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Theorem 6. Let ⊗ be a nilpotent T-norm, then ≤⊗ satisfies neither (SP-0)
nor (HE-0) in the general case.

The nilpotent element works as a sort of implicit annihilator (that is, there
exists some n ∈ N such that ⊗{a, . . . , a}

︸ ︷︷ ︸

n

= 0). Hence, it is not captured by

the restrictions imposed to the annihilator in both (SP-0) and (HE-0). In the
sequel, we will investigate deeper the behavior of some parameterized T-norms
to show in what conditions we can achieve the properties discussed in this paper.

Theorem 7. ≤⊗SS
λ

satisfies (SP-0) when λ ∈ ] − ∞, 0]. Let Ω = (ω1, . . . , ωn).

If ωj
i ∈ [

0
n , 1

n , . . . , n
n

]

, for j ∈ {1, . . . , n}, then ≤⊗SS
λ

satisfies (HE-0) when
−∞ < λ ≤ − ⌊

2n
3

⌋

.

The interval [1,∞] comprises strictly increasing T-norms from the
�Lukasiewicz T-norm (⊗SS

1 ) to the drastic T-norm (⊗SS
∞ ). It is clear that all

these conditions are falsified in this interval (since all T-norms in this interval
are weaker than �Lukasiewicz T-norm). Schweizer-Sklar T-norm is strict for the
interval ]−∞, 0], therefore its justice relation satisfies (SP-0) in this case. Con-
sidering this interval yet, we have any Schweizer-Sklar T-norm satisfies (HE-0)
when −∞ < λ ≤ − ⌊

2n
3

⌋

, where ωj
i ∈ [

0
n , 1

n , . . . , n
n

]

, for j ∈ {1, . . . , n}. For
instance, if ωj

i ∈ [

0, 1
3 , 2

3 , 1
]

, then ≤⊗SS
λ

satisfies (HE-0), for any λ ≤ −2.

Theorem 8. ≤⊗F
λ

satisfies (SP-0) for λ ∈ ]0,∞[. If ωj
i ∈ [ 0n , 1

n , . . . , n
n ], ≤⊗F

λ

satisfies (HE-0) when 0 < λ ≤ 10−n.

We showed previously that converging to the minimum T-norm tends to
satisfy (HE-0). The limit of 0 < λ ≤ 10−n is rather loose, but it is a statement
that there is an interval between minimum and product in the Frank T-norms
where (HE-0) is satisfied. In the sequel, we will see the Yager and Sugeno-Weber
families of T-norms.

Theorem 9. ≤⊗Y
λ

and ≤⊗SW
λ

do not satisfy (SP-0) and (HE-0) in the general
case.

Yager T-norms comprise from drastic T-norm (⊗Y
0 ), passing through

�Lukasiewicz T-norm (⊗Y
1 ), to minimum T-norm (⊗Y

∞). Unlike the previous
parameterized T-norms, Yager T-norms are nilpotent for λ ∈]0,∞[. As con-
sequence, they satisfy neither (SP-0) nor (HE-0). Sugeno-Weber T-norms are
another class of nilpotent T-norms, which range from drastic T-norm (⊗SW

∞ ) to
�Lukasiewicz (⊗SW

0 ) and product T-norms (⊗SW
−1 ). Thus, for the same reasons

mentioned above, ≤⊗SW
λ

does not satisfy (SP-0) and (HE-0).
Now we will use the results of [11] to characterize an egalitarian property of

some parameterized T-norms with respect to the Leximin principle. It is known
every T-norm ⊗ ≤ min, and min justice relation does not satisfy properties
as (HE) and (SP); nonetheless some T-norms can satisfy weakened versions of
them.
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This analysis shows some T-norms present a similar (weaker) behavior to the
leximin justice relation. What we want to achieve is that those T-norms can also
follow some weaker versions of the Leximin principle. We introduce a restriction
to the Leximin principle, named Leximin principle free from annihilator 0.

Definition 11 (Leximin free from 0). (LM-0) Let f be an aggregation func-
tion. For all ωi, ωj ∈ Ω, if there exists a position k < n such that (1) ωk

i < ωk
j ;

and (2) ωl
i = ωl

j �= 0, for every l < k, then ωi <f ωj. Otherwise, ωi ≈f ωj.

Thus, we have the following results.

Corollary 1. A reflexive and transitive justice relation satisfies (HE-0), (SP-
0) and (A) if and only if it satisfies (LM-0).

This characterization restricts the Leximin principle when the annihilator is
excluded from the possible utility values of the agents. As a consequence, we
have

Corollary 2. If ωj
i ∈ [

0
n , 1

n , . . . , n
n

]

, for j ∈ {1, . . . , n}, then ≤⊗SS
λ

satisfies
(LM-0) when −∞ < λ ≤ − ⌊

2n
3

⌋

; and ≤⊗F
λ

satisfies (LM-0) when 0 < λ ≤
10−n.

These justice relations satisfy (HE-0), (SP-0) and (A) in these specific
intervals and utility values. In other words, when the annihilator is not present
in the aggregation, we can say that these T-norms have a behavior similar to
the leximin justice relation. For the other T-norms considered in this paper,
(LM-0) is not satisfied.

5 LexiT-Ordering Justice Relations

In this section we will propose a refinement for T-norm justice relations. It is the
same idea behind the leximin refinement of minimum aggregation function. It is
called LexiT-ordering and it was introduced in [15]. We will introduce the LexiT-
ordering justice relation and we will show that for some specific LexiT-orderings
and intervals, their behavior are equivalent to the leximin justice relation. In
other words, LexiT-orderings do not have the same issues with the annihilator
as T-norms have.

Definition 12 (LexiT-norm [15]). Let a = (a1, a2, . . . , an) ∈ [0, 1]n and let
⊗ be a T-norm. Let Pa be the power set of {a1, a2, . . . , an} excluding the empty
set, that is, the set of all subsets of the indexed set {a1, a2, . . . , an} minus ∅ (the
empty set). For any A ∈ Pa, we let ⊗(A) indicate the T-norm of the elements of
A. Let ā = (ā1, ā2, . . . , ¯a2n−1) be the (2n−1)-tuple of the family {⊗(A) : A ∈ Pa}
put into ascending order. On [0, 1]2

n−1 we have the lexicographic ordering ≤lex

which is a linear ordering. The binary relation a ≤Lexi⊗ b is defined as follows:

– For a, b ∈ [0, 1]n, use ⊗ to construct ā and b̄ ∈ [0, 1]2
n−1. Then a ≤Lexi⊗ b if

and only if ā ≤lex b̄.
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In other words,

– a <Lexi⊗ b if and only if there exists k ≥ 1 such that āk < b̄k and for
1 ≤ i < k, āi = b̄i;

– a ≈Lexi⊗ b if and only if āi = b̄i for all i = 1, 2, . . . , 2n − 1.

Here we show a simple example: take the product T-norm ⊗P{x, y} = x ·
y. Let a = (0.2, 0.8) and b = (0.3, 0.5). In this case, both Pa and Pb have
3 elements: Pa = ({0.2}, {0.8}, {0.2, 0.8}) and Pb = ({0.3}, {0.5}, {0.3, 0.5}).
After calculating ⊗{A} and ⊗{B} for each A ∈ Pa and B ∈ Pb we get ā =
(0.16, 0.2, 0.8) and b̄ = (0.15, 0.3, 0.5). Now, comparing ā and b̄ lexicographically,
we obtain b̄ ≤lex ā, and consequently b ≤Lexi⊗P

a.
Before proceeding with the application of LexiT-orderings as a justice rela-

tion, we emphasize the following property about LexiT-orderings:

Theorem 10 [15]. Let ⊗M be the Minimum T-norm. Then for a, b ∈ [0, 1]n,
a ≤leximin b if and only if a ≤Lexi⊗M

b.

That is, if ⊗ is the Minimum T-norm, Leximin and Lexi⊗ are the same
ordering. Below, we will introduce a LexiT-ordering justice relation, based on
the definition of LexiT-ordering.

Definition 13 (Lexi⊗ justice relation). Let ⊗ be a T-norm, A = {1, . . . , n}
be a set of agents, Ω = {ω1, . . . , ωm} be a set of outcomes, where each ωi =
(ω1

i , . . . , ωn
i ) and ωj

i ∈ [0, 1], for j ∈ {1, . . . , n}. Let ω̄i = (ω̄1
i , . . . , ¯ω2n−1

i ) be the
(2n−1)-tuple of the family {⊗{S} : S ∈ Pωi

} put in ascending order. Let ≤lex be
the lexicographical order between sequences of numbers. We define ≤Lexi⊗ over
Ω as ωi ≤Lexi⊗ ωj iff ω̄i ≤lex ω̄j.

For strict T-norms, computing the LexiT-ordering can be done in a simpler
way.

Theorem 11 [12]. If a T-norm ⊗ is strict, it takes at most n steps to determine
whether or not (a1, a2, . . . , an) <Lexi⊗ (b1, b2, . . . , bn).

From this Theorem, we can calculate (a1, a2, . . . , an) <Lexi⊗ (b1, b2, . . . , bn)
as follows: let ¯̄a = ( ¯̄a1, ¯̄a2, . . . , ¯̄an) and ¯̄b = ( ¯̄b1, ¯̄b2, . . . , ¯̄bn) be the n-tuples of
(a1, a2, . . . , an) and (b1, b2, . . . , bn) put into ascending order, and (a1, a2, . . . , an)
<Lexi⊗ (b1, b2, . . . , bn) iff (⊗{ ¯̄a1, ¯̄a2, . . . , ¯̄an},⊗{ ¯̄a1, ¯̄a2, . . . , ¯̄an−1}, . . . ,⊗{ ¯̄a1,
¯̄a2}, ¯̄a1) <lex (⊗{ ¯̄b1, ¯̄b2, . . . , ¯̄bn},⊗{ ¯̄b1, ¯̄b2, . . . , ¯̄bn−1}, . . . , ⊗{ ¯̄b1, ¯̄b2}, ¯̄b1). It is now
possible to simplify the definition of a strict Lexi⊗ justice relation.

Definition 14 (Strict Lexi⊗ justice relation). Let ⊗ be a strict T-norm,
A = {1, . . . , n} be a set of agents, Ω = {ω1, . . . , ωm} be a set of out-
comes, where each ωi = (ω1

i , . . . , ωn
i ) and ωj

i ∈ [0, 1], for j ∈ {1, . . . , n}.
Let ¯̄ωi = ( ¯̄

ω1
i , . . . , ¯̄ωn

i ) be the n-tuple put into ascending order. Let ≤lex be
the lexicographical order. We define ≤Lexi⊗ over Ω as ωi ≤Lexi⊗ ωj iff

(⊗{ ¯̄
ω1

i ,
¯̄
ω2

i , . . . , ¯̄ωn
i },⊗{ ¯̄

ω1
i ,

¯̄
ω2

i , . . . ,
¯̄

ωn−1
i }, . . . ,⊗{ ¯̄

ω1
i ,

¯̄
ω2

i },
¯̄
ω1

i ) <lex (⊗{ ¯̄
ω1

j ,
¯̄
ω2

j ,

. . . , ¯̄ωn
j },⊗{ ¯̄

ω1
j ,

¯̄
ω2

j , . . . ,
¯̄

ωn−1
j }, . . . ,⊗{ ¯̄

ω1
j ,

¯̄
ω2

j },
¯̄
ω1

j ).
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For instance, consider ω = (0.6, 1, 0.6) and ⊗P, then the vector ω̄ =
(0.36, 0.36, 0.6, 0.6, 0.6, 0.6, 1) can now be computed as ¯̄ω = (⊗P{0.6, 0.6, 1},
⊗P{0.6, 0.6}, 0.6) = (0.36, 0.36, 0.6). In terms of results, both forms of compu-
tation are equivalent. Another example to compare the differences among the
justice relations: let ω1 = (0.2, 0.1, 0.6, 0.4, 0.6) and ω2 = (0.3, 0.1, 0.4, 0.3, 0.8)
be outcomes. For the min justice relation, ω1 ≈min ω2. For ⊗P justice rela-
tion, ω1 ≈⊗P

ω2, because ⊗P{0.2, 0.1, 0.6, 0.4, 0.6} = ⊗P{0.3, 0.1, 0.4, 0.3, 0.8} =
0.00288. The scenario is different for leximin justice relation, i.e., ω1 <leximin

ω2, since (0.1, 0.2, 0.4, 0.6, 0.6) <lex (0.1, 0.3, 0.3, 0.4, 0.8). For Lexi⊗P, the
result is even different from all of them: ω2 <leximin ω1, since (0.00288,
0.0036, 0.009, 0.03, 0.1) <lex (0.00288, 0.0048, 0.008, 0.02, 0.1).

As the class of strict T-norms presented previously may have a (weak) similar
behavior to the leximin justice, we will see in the sequel that some LexiT-
orderings may be equivalent to leximin.

Theorem 12. Let ⊗ be a T-norm and ≤⊗ a ⊗ justice relation. We have the
following results:

– If ≤⊗ satisfies (HE-0). then ≤Lexi⊗ satisfies (HE);
– If ≤⊗ satisfies (SP-0). then ≤Lexi⊗ satisfies (SP).

From Theorems 1, 7, 8 and 12 we have

Corollary 3. If ωj
i ∈ [

0
n , 1

n , . . . , n
n

]

, for j ∈ {1, . . . , n}, then ≤⊗SS
λ

and ≤⊗F
λ

satisfy (LM) when λ ≤ − ⌊
2n
3

⌋

and 0 < λ ≤ 10−n, respectively.

These results guarantee it is possible some parameterized LexiT-ordering
justice relations behave as the leximin justice relation in some specific intervals
and utility values. Finally, for the pre-orders described in this paper, we have
the following results accounting their discriminating power.

Theorem 13. Let ⊗ be a T-norm and ⊗∗ be a parameterized T-norm such that
≤⊗∗ satisfies (LM-0). We have the following results, for any ωi, ωj ∈ Ω:

1. ωi ≤leximin ωi ⇒ ωi ≤min ωj;
2. ωi ≤leximin ωi ⇒ ωi ≤⊗∗ ωj;
3. ωi ≤leximin ωi ⇔ ωi ≤Lexi⊗∗ ωj;
4. ωi ≤Lexi⊗ ωi ⇒ ωi ≤⊗ ωj.

This Theorem states that solutions being indifferent for an order could be
distinguished by a higher discriminating power one. For instance, by item 1. if
ωi ≈min ωj , then it could be possible that ωi <leximin ωj or ωj <leximin ωi. The
same idea happens for T-norms that satisfy (LM-0) and lexmin in item 2; and
for T-norms and LexiT-orderings in item 4. In item 3, it is stated that leximin
and LexiT-orderings that satisfy (LM) have the same discriminating power.
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6 Conclusions

In this paper, we proposed to use T-norms operators as aggregation functions.
T-norms are a generalization of the usual two-valued logical conjunction, i.e., the
minimum operator. In the aggregation context, the minimum (min) operator is
equivalent to the maximin rule in the decision theory: it tries to maximize the
worst cases among the agents. Indeed, T-norms allow us to diversify the method
of the maximin rule by applying generalized versions of the min operator.

The purpose of this work is to explore the logical properties of T-norm aggre-
gation functions in the context of egalitarian reasoning. We considered the logi-
cal properties Hammond Equity, Strong Pareto and Anonymity. Together these
properties are responsible to characterize the Leximin (Lexicographic Minimum)
Principle, which is a principle that gives absolute priority to worst cases in a
group. As a Leximin is a generalization of min, it is natural also to see if the
T-norms are compatible with these logical properties.

In terms of egalitarianism, T-norms differs from min and leximin as they do
not give preference only to the worst cases in a group, but everyone in group has a
relevance in the aggregation. In terms of logical properties, T-norms are weaker
than leximin, since they do not satisfy Hammond Equity (HE) and Strong
Pareto (SP). The reason for this, it is the presence of an absorbent element in
T-norms, also called annihilator. However, we proved that if we weaken Ham-
mond Equity (resulting in (HE-0)) and Strong Pareto (resulting in (SP-0)),
without the presence of the annihilator, some families of T-norms are compatible
with it.

We chose in this paper some of the most representative classes of T-norms.
First, we analyzed the four basic T-norms: drastic, �Lukasiewicz, product and
minimum T-norms. The highest T-norm minimum satisfies neither (HE-0) nor
(SP-0). The product falsifies (HE-0), but satisfies (SP-0). �Lukasiewicz and
drastic falsify all of them.

When analyzing parameterized T-norms, which are basically generalizations
of some of the four basic T-norms, we observed strict T-norms converging to
minimum tend to satisfy (HE-0), as it is the case of the Schweizer-Sklar and
Frank T-norms. The same idea does not follow from nilpotent T-norms, since
they do not satisfy (HE-0) in the general case. For the logical property (SP-0),
we proved that it is satisfied by the family of strict T-norms, while it is not the
case for nilpotent T-norms.

Finally, we generalized further the T-norms into LexiT-orderings. With this
generalization it is possible to solve the problem of the annihilator for those
T-norms which satisfy (HE-0) and (SP-0). Their corresponding Lexicographic
version satisfy (HE) and (SP), respectively. With this result, we achieved that
in specific situations, some LexiT-ordering aggregation functions are equivalent
to leximin aggregation function. Lastly, we presented a comparison of discrimi-
nating power of the justice relations investigated in this work.
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Abstract. Formal Context Analysis is a mathematical theory that
enables us to find concepts from a given set of objects, a set of attributes
and a relation on them. There is a hierarchy of such concepts, from
which a complete lattice can be made. In this paper we present a gener-
alization of these ideas using fuzzy subsets and fuzzy implications defined
from lower semicontinuous t-norms which, under suitable conditions, also
results in a complete lattice.

Keywords: Formal Concept Analysis · FCA
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1 Introduction

Formal Concept Analysis (FCA) constitutes a powerful tool for acquisition and
representation of knowledge as well as for conceptual data analysis, based on
notions from general lattice theory. In FCA, data is represented as a conceptual
hierarchy, organized as a concept lattice that relates objects and their properties
(see Ganter and Wille 1999). FCA has applications in several fields.

According to Hardy-Vallée, a concept is “a general knowledge that [...] rep-
resents a category of objects, events or situations.”1 For example, the con-
cept “Library” represents each individual library. One such “general knowledge”
(“Library”) abstracts attributes (e.g. having a catalogue of its books) common
to all objects (libraries). A concept in FCA is defined by a set of objects and a
corresponding set of attributes.

Nevertheless, real life knowledge is seldom precise. For instance, an automo-
bile manufacturer may construct “concepts” that relate car features (objects)
and consumer profiles (attributes). These concepts would be useful if they are
1 “une connaissance générale qui [...] représente une catégorie d’objets, d’événements
ou de situations.” See https://www.researchgate.net/profile/Benoit Hardy-Vallee/
publication/228799196.
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interested for example in selling more cars to young women. Because “young-
ness” is a linguistic imprecise idea, a good strategy would be to use fuzzy FCA.

Fuzzy FCA has been previously proposed in the literature and there exists a
vast body of literature on the field, a fair portion of which has been surveyed by
Poelmans et al. (2014). Most authors, such as Belohlávek and Vychodil (2007),
consider left continuous t-norms in order to define fuzzy implications underlying
the fuzzy FCA notions. In this paper we propose the use of fuzzy implications
defined from lower semicontinuous t-norms. It should be observed that, due to
monotonicity (and commutativity), both notions of continuity are equivalent for
t-norms. However, the techniques used in the proofs are different.

2 Formal Concept Analysis

The definitions and theorems presented in this section follow those presented by
Ganter and Wille (1999) with a different notation and slightly different proofs.

Definition 1. A formal context is an ordered triple C := 〈O,A, I〉, in which O
and A are non-empty sets, and I ⊆ O × A is a binary relation.

The elements of O are called objects, and the elements of A attributes. We
say that, in the context C, object o has attribute a iff oIa. A finite context can
be represented as a table, indexing rows by objects and columns by attributes,
and marking cell (o, a) iff oIa, as in Table 1.

Table 1. A formal context of animals

O A
Vertebrate Lay eggs Carnivorous Has wings Flies Quadruped Crawls

Eagle X X X X X

Snake X X X X

Goose X X X X

Swan X X X X

Lion X X X

Definition 2. Let C = 〈O,A, I〉 be a formal context. We define two maps,
∗ : 2O → 2A and ∧ : 2A → 2O (and write O∗ and A∧) as follows:

O∗ := {a ∈ A : oIa for all o ∈ O} (1)
A∧ := {o ∈ O : oIa for all a ∈ A}. (2)

Finally, we define the central object of FCA:
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Definition 3. Let C = 〈O,A, I〉 be a formal context. A formal concept (or
simply concept) of C is an ordered pair C = 〈O,A〉 such that O ⊆ O, A ⊆ A,
O∗ = A and A∧ = O. The sets O and A are called the extent and intent of the
concept C respectively.

Thus, C = 〈O,A〉 is a concept when O is precisely the subset of objects that
has all the attributes of A in common.

Example 4. The following are formal concepts of the context presented in
Table 1:

CLion = 〈{Lion}, {Quadruped, Carnivorous, Vertebrate}〉, (3)
CCarnivorous = 〈{Eagle, Snake, Lion}, {Carnivorous, Vertebrate}〉. (4)

Notice that there is an inverse relation between the numbers of elements in
the intent and the extent of a concept. If we increase the number of elements in
the extent (we added “Eagle” and “Snake” to it), the number of elements in the
intent is reduced (“Quadrupede” is not in the intent of CCarnivorous). In fact, the
following useful properties hold:

Theorem 5. Let O,O1, O2 ⊆ O and A,A1, A2 ⊆ A. Then

1. If O1 ⊆ O2 then O∗
2 ⊆ O∗

1 1’. If A1 ⊆ A2 then A∧
2 ⊆ A∧

1

2. O ⊆ O∗∧ 2’. A ⊆ A∧∗

3. O∗ = O∗∧∗ 3’. A∧ = A∧∗∧

4. O ⊆ A∧ iff A ⊆ O∗ iff O × A ⊆ I

Proof. We shall prove items 1., 2., 3. and 4.. Items with a prime can be proved
analogously.

1. Let a ∈ O∗
2 . Then oIa for all o ∈ O2. In particular, oIa for all o ∈ O1. Thus,

a ∈ O∗
1 .

2. Let o ∈ O. Then oIa for all a ∈ O∗, by definition of O∗. Thus, by definition
of O∗∧, we have o ∈ O∗∧.

3. From 2’. with A = O∗ we already know that O∗ ⊆ O∗∧∗. Let a ∈ O∗∧∗. Then

(i) oIa for all o ∈ O∗∧,

by definition of O∗∧∗. Now let õ ∈ O∗∧ be fixed. For all ã ∈ A,

(ii) if õIã then ã ∈ O∗,

by definition of O∗∧. From (i) we have õIa. Thus, using (ii) we conclude that
a ∈ O∗.

4. Suppose O ⊆ A∧. By 1., A∧∗ ⊆ O∗. Using 2’. and transitivity of ⊆, we have
A ⊆ O∗.
Now suppose A ⊆ O∗. By 1’. and 2., we have O ⊆ O∗∧ ⊆ A∧.
Assuming A ⊆ O∗, let o ∈ O and a ∈ A. By definition of O∗, oIã for all
ã ∈ O∗. By hypothesis, a ∈ A ⊆ O∗. Thus, oIa. Since o ∈ O and a ∈ A are
arbitrary, O × A ⊆ I. Hence, A ⊆ O∗ ⇒ O × A ⊆ I.
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Finally, suppose O × A ⊆ I. Let o ∈ O. By hypothesis, for all a ∈ A we have
oIa. By definition of O∗, if oIa then a ∈ O∗. Thus if a ∈ A then a ∈ O∗. This
completes the proof.

From properties 3. and 3’. we see that, given O ⊆ O and A ⊆ A, 〈O∗∧, O∗〉
and 〈A∧, A∧∗〉 are concepts. On the other hand if C = 〈O,A〉 is a concept then
by definition

C = 〈A∧, A〉 = 〈(O∗)∧, O∗〉.
Consequently every concept has either form 〈O∗∧, O∗〉 or 〈A∧, A∧∗〉, where O ⊆
O and A ⊆ A are arbitrary.

This gives us a procedure for finding concepts. Choose a subset of objects
(or attributes), apply ∗ to get an intent, and then apply ∧ to get an extent (in
fact, the smallest extent containing the original object subset). To find all the
concepts of a given context, simply list all the subsets of objects (or attributes),
and then apply the maps ∗ and ∧ respectively (or ∧ and ∗).

Example 6. Notice that

{Eagle}∗∧ = {Vertebrate, Lay eggs, Carnivorous, Has wings, Flies}∧ = {Eagle}.

Thus, the following is a concept:

CEagle = 〈{Eagle}, {Flies, Has Wings, Lay eggs, Carnivorous, Vertebrate}〉.
(5)

There are also interesting properties regarding intersections of extents and
intents. For instance, the intersection of the intents of (3) and (5) is the intent
of (4). This is a particular case of a more general fact, presented in the following
proposition.

Proposition 7. Let J be an index set and, for each α ∈ J , let Oα ⊆ O and let
Aα ⊆ A. Then

⋂

α∈J

O∗
α =

(
⋃

α∈J

Oα

)∗
, (6)

⋂

α∈J

A∧
α =

(
⋃

α∈J

Aα

)∧
. (7)

Proof. We shall prove only (6). The proof of (7) is analogous.

a ∈
⋂

α∈J

O∗
α iff a ∈ O∗

α for all α ∈ J

iff oIa for all o ∈ Oα, for all α ∈ J

iff oIa for all o ∈
⋃

α∈J

Oα

iff a ∈
(

⋃

α∈J

Oα

)∗
.
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Given two sets Y ⊆ X and a partial order ≤ on X, the infimum of Y (if it
exists) is the element iY such that iy ≤ y for any y ∈ Y and if x ≤ y for all
y ∈ Y then x ≤ iy. Replacing ≤ by ≥ and iY by sY we get the definition of the
supremum sY of Y . L = 〈X,≤〉 is called a lattice if every finite subset of X has
both an infimum and a supremum. If every subset of X has an infimum and a
supremum, then L is said to be complete.

From Proposition 7 we can show that, with an order induced by set inclusion,
the set of all formal concepts of any context constitutes a complete lattice.

Theorem 8. Let C be a formal context. Let B(C) be the set of all concepts of
C. Define the relation ≤ on B(C)2 by 〈O1, A1〉 ≤ 〈O2, A2〉 iff O1 ⊆ O2. Then
≤ is an order on B(C). If C1 ≤ C2 we say that C1 is a subconcept of C2.
Correspondingly, C2 is a superconcept of C1. Furthermore, LC := 〈B(C),≤〉 is
a complete lattice, called the concept lattice of C.

If J is an index set and Cα = 〈Oα, Aα〉 ∈ B(C) for each α ∈ J then

inf
α∈J

Cα =

〈
⋂

α∈J

Oα,

(
⋂

α∈J

Oα

)∗〉
(8)

sup
α∈J

Cα =

〈(
⋂

α∈J

Aα

)∧
,

⋂

α∈J

Aα

〉
. (9)

Proof. That ≤ is an order is clear from the fact that ⊆ is an order. Now we
prove (9). For each α ∈ J we have Aα = O∗

α. Thus, by (6),

⋂

α∈J

Aα =
⋂

α∈J

O∗
α =

(
⋃

α∈J

Oα

)∗

is the intent of a concept (applying ∧ gives the concept’s extent). Hence, by
properties of set intersection, ∩α∈JAα is the greatest intent smaller than all the
Cα. Using 1’. of Theorem 5, (∩α∈JAα)∧ is the smallest extent greater than all
the Oα, and so the supremum of ≤ is as stated.

The proof of (8) is similar to that of (9), only working with the extents of
the Cα rather than their intents, and applying (7) instead of (6).

Theorem 8 allows us to use lattice theory for finding out many properties that
come from a formal context. In particular, a finite concept lattice has an easy
visual representation (see Example 9 below). In order to interpret the concept
lattice from the diagram, one may write, for each concept on the diagram, the
elements of its intent and extent. However, from the order ≤ of the concept lattice
a tidier manner of presenting the diagram can be devised: for a given concept,
instead of writing every element of its extent (or intent), we write only those
objects (attributes) that did not appear below (above) in the concept lattice.

Example 9. The concept lattice of the context presented in Table 1 is shown
in Fig. 1. Each concept is represented by a circle. Here animals are represented
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by numbers 1–5 in the order they appear in Table 1. Attributes are represented
by letters a-g, also in the order they appear in the table. The extent (intent) of
a given concept C has an object (attribute) iff that object (attribute) appears
near a concept C̃ such that there is a descending (ascending) path from C to C̃.

C1

a

C1

C2

b

C2 C3

c

C3

C4

d,e

C4

3,4
C5C5

C6C6

1

C7

g
C7

2 C8

f

C8

5C9C9

Fig. 1. Concept lattice of animals

Take, for instance, the concept C3. It has ascending paths to concepts C1

and C3, and descending paths to concepts C8, C5, C6, C7 and C9. On the other
hand, C3 has no (strictly ascending or descending) paths to C2 or C4. Thus,
C3 = 〈{1, 2, 5}, {a, c}〉.

Concept lattices are visual tools that allow us to find out relations on
attributes and objects (for example, any animal with property e also has prop-
erty b). However, limitations may arise on the theory, as, for example, the defi-
nition of formal context allows us only to work only with precise relations. For
example, a chicken can fly for short distances, but this information could not be
expressed on a formal context as defined earlier. In the next section we generalize
these ideas to allow fuzzy objects, attributes and relations.

3 Fuzzy Formal Concept Analysis

We first state some basic definitions of fuzzy logic and then proceed to a fuzzy
generalization of FCA. Definition of triangular norm corresponds to that pre-
sented by Klement et al. (2000), whereas definitions of fuzzy implication, fuzzy
subset and fuzzy (binary) relation correspond to definitions by de Barros et al.
(2017).

Definition 10. A triangular norm (or t-norm) is a map �: [0, 1]2 → [0, 1]
satisfying, for all x, y, z ∈ [0, 1]:

1. x�y = y�x (commutativity)
2. x� (y�z) = (x�y)�z (associativity)
3. If y ≤ z then x�y ≤ x�z (monotonicity)
4. x�1 = x (boundary condition)

Definition 11. A fuzzy implication is a map ⇒: [0, 1]2 → [0, 1] such that for
all x, y, z ∈ [0, 1]:
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1. (0 ⇒ 0) = 1, (1 ⇒ 0) = 0, (boundary conditions)
(0 ⇒ 1) = 1 and (1 ⇒ 1) = 1

2. If y ≤ x then (x ⇒ z) ≤ (y ⇒ z) (monotonicity in the first component)
3. If x ≤ y then (z ⇒ x) ≤ (z ⇒ y) (monotonicity in the second component)

Definition 12. A R-implication is a fuzzy implication ⇒R defined by

(x ⇒R y) =
∨

{z ∈ [0, 1] : x�z ≤ y}, (10)

where � is a t-norm and
∨

stands for supremum. We say that ⇒R is induced
by �.

Definition 13. Let U be a (classical universal) set. A fuzzy subset F of U is
defined by a function φF : U → [0, 1], called the membership function of F .

Given two fuzzy subsets F1, F2 of U , we say that F1 is a (fuzzy) subset of F2

if φF1(u) ≤ φF2(u) for all u ∈ U , and in this case we write F1 ⊆ F2.
If 〈Fα〉α∈J is a family of fuzzy subsets of U , then their union and intersection

are defined respectively by the membership functions

φ∪α∈JFα
(u) =

∨

α∈J

φα(u) (11)

φ∩α∈JFα
(u) =

∧

α∈J

φα(u), (12)

where
∨

and
∧

stand for supremum and infimum respectively.

Definition 14. A fuzzy (binary) relation on a pair of (classical) sets U1, U2 is
a fuzzy subset of U1 × U2. In particular, if A1, A2 are fuzzy subsets of U1, U2

respectively, and � is a t-norm, then the (fuzzy) cartesian product of A1, A2

induced by � is the fuzzy relation A1×�A2 on U1×U2 defined by the membership
function

φA1×�A2(x1, x2) = φ1(x1)�φ2(x2). (13)

Now we can start defining the objects of Fuzzy Formal Concept Analysis
(fFCA).

Definition 15. A fuzzy formal context is an ordered triple Cf := 〈O,A, If〉, in
which O and A are non-empty (classical) sets, and If ⊆ O ×A is a fuzzy binary
relation.

Notice that, in (1) and (2), the characteristic functions of O∗ and A∧ can be
expressed respectively by

χO∗(ã) = ∀o ∈ O(o ∈ O −→ oIã),
χA∧(õ) = ∀a ∈ A(a ∈ A −→ õIa).

Since an application of the universal quantifier, ∀, returns the smallest truth
value a predicate assumes (∀xP (x) = 1 iff P (u) = 1 for each u ∈ U), we
generalize ∀ as an infimum.
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Definition 16. Let Cf = 〈O,A, If〉 be a fuzzy formal context. Let ⇒ be a fuzzy
implication. Then we define, for all fuzzy subsets O ⊆ O and A ⊆ A, the fuzzy
subsets O∗ ⊆ A and A∧ ⊆ O by their membership functions defined as

φO∗(a) = inf
o∈O

[φO(o) ⇒ φIf (o, a)] , (14)

φA∧(o) = inf
a∈A

[
φA(a) ⇒ φIf (o, a)

]
. (15)

With these maps defined we can finally generalize the idea of formal concept.

Definition 17. Let Cf = 〈O,A, If〉 be a fuzzy formal context and let ⇒ be a
fuzzy implication. Let O,A be fuzzy subsets of O and A, respectively. We say
that Cf = 〈O,A〉 is a fuzzy formal concept of Cf if O∗ = A and A∧ = O.

Our goal is to show that, as in the classical case, it is possible to produce
a complete lattice of fuzzy formal concepts. Our definitions of semicontinuous
functions are proven by Bourbaki (1966) to be equivalent with the definitions
of semicontinuity he presents. The upper semicontinuous R-implication induced
by a lower semicontinuous t-norm is precisely what allows us to have a complete
lattice of fuzzy concepts.

In what follows, a sequence (x1, x2, ...) is denoted by (xn), and so x0 is not
an element of the sequence (xn).

Definition 18. Let X,Y ⊆ IR2 be non-empty (classical) sets. Let f : X → Y
be a function. We say that f is upper semicontinuous at x0 ∈ X if, for any
sequence (xn) converging to x0,

inf
n>0

(
sup
m≥n

f(xm)
)

=: lim sup
n→∞

f(xn) ≤ f(x0). (16)

If f is upper semicontinuous at every x0 ∈ X then f is upper semicontinuous.
Similarly, f is lower semicontinuous at x0 ∈ X if for any sequence (xn)

converging to x0,

sup
n>0

(
inf

m≥n
f(xm)

)
=: lim inf

n→∞ f(xn) ≥ f(x0). (17)

If f is lower semicontinuous at every x0 ∈ X then f is lower semicontinuous.
If f is both upper and lower semicontinuous at x0 then f is continuous at

x0, and
lim sup

n→∞
f(xn) = f(x0) = lim inf

n→∞ f(xn). (18)

If f is continuous at every x0 ∈ X then it is continuous.

We now derive a useful expression concerning lower semicontinuous t-norms
in Lemma 20, and for its proof we use Proposition 19.

In the following, we shall write xn ↗ x0 meaning that the increasing sequence
(xn) converges to x0. Similarly, xn ↘ x0 means that the decreasing sequence
(xn) converges to x0.



200 A. Brito et al.

Proposition 19. Let � be a lower semicontinuous t-norm. Let x, y ∈ [0, 1].
Define

S = {z ∈ [0, 1] : x�z ≤ y}.

Then supS ∈ S.

Proof. Let z0 = supS, and let (zn) be a sequence on [0, 1] such that zn ↗ z0.
Then

x�zm ≤ y for all m > 0,

as zm ≤ z0 for each m > 0. Thus, for each n > 0,

inf
m≥n

(x�zm) ≤ x�zn ≤ y.

Taking the supremum for n > 0 on the left-hand side we have, by lower semi-
continuity of �,

x�z0 ≤ lim inf
n→∞ (x�zn) = sup

n>0

(
inf

m≥n
(x�zm)

)
≤ y.

Therefore, z0 ∈ A.

Lemma 20. Let � be a lower semicontinuous t-norm and let ⇒ be the R-
implication induced by �. Then, for all x, y ∈ [0, 1] we have x ≤ [(x ⇒ y) ⇒ y].

Proof. Let x, y ∈ [0, 1]. By Proposition 19, x� (x ⇒ y) ≤ y. Using commutativ-
ity of �, it is clear that x ∈ S := {z ∈ [0, 1] : (x ⇒ y)�z ≤ y}. Hence

x ≤ supS = [(x ⇒ y) ⇒ y] .

Now we have what is necessary to generalize Theorem 5, establishing dual
relations for the maps ∗ and ∧ in the fuzzy case.

Theorem 21. Let Cf = 〈O,A, If〉 be a fuzzy context. Let O,O1, O2 be fuzzy
subsets of O and A,A1, A2 be fuzzy subsets of A. Let �: [0, 1]2 → [0, 1] be a
lower semicontinuous t-norm, and let ⇒ be the R-implication induced by �.
Then:
1. If O1 ⊆ O2 then O∗

2 ⊆ O∗
1 1’. If A1 ⊆ A2 then A∧

2 ⊆ A∧
1

2. O ⊆ O∗∧ 2’. A ⊆ A∧∗

3. O∗ = O∗∧∗ 3’. A∧ = A∧∗∧

4. O ⊆ A∧ iff A ⊆ O∗ iff O ×� A ⊆ If

Proof. We shall prove items 1., 2., 3. and 4.. Items with a prime can be proved
analogously.

1. Suppose that O1 ⊆ O2. Let a ∈ A. Let o ∈ O. By hypothesis, φO1(o) ≤
φO2(o). Since ⇒ is decreasing in its first component we have

(φO2(o) ⇒ φIf (o, a)) ≤ (φO1(o) ⇒ φIf (o, a)) .

Taking the infimum over o on both sides, we see that

φO∗
2
(a) ≤ φO∗

1
(a)

by definition of the map ∗. But a ∈ A is arbitrary. Thus O∗
2 ⊆ O∗

1 .
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2. Let o ∈ O. By hypothesis, � is lower semicontinuous and so Lemma 20 holds.
Using monotonicity of ⇒ in its first component we get

φO(o) ≤ [(φO(o) ⇒ φIf (o, a)) ⇒ φIf (o, a)]

≤
[

inf
õ∈O

(φO(õ) ⇒ φIf (õ, a)) ⇒ φIf (o, a)
]

= [φO∗(a) ⇒ φIf (o, a)] .

Taking the infimum over a on the right-hand side, we get

φO(o) ≤ φO∗∧(o).

Since o ∈ O is arbitrary, O ⊆ O∗∧.
3. From 2., we have O ⊆ O∗∧. Thus, using 1., O∗∧∗ ⊆ O∗. On the other hand,

using A = O∗ in 2’., we have O∗ ⊆ O∗∧∗. Hence, O∗ = O∗∧∗.
4. We shall first prove that if A ⊆ O∗ then O ⊆ A∧; then we show that O ⊆ A∧

implies O ×� A ⊆ If ; and finally we prove that if O ×� A ⊆ If then A ⊆ O∗,
concluding that the three properties are equivalent.
(a) Suppose that A ⊆ O∗. By 1’., O∗∧ ⊆ A∧. Using 2. and transitivity of ⊆,

we have O ⊆ A∧.
(b) Suppose that O ⊆ A∧. Let o ∈ O and a ∈ A. Then

φO(o) ≤ φA∧(o) = inf
ã∈A

[φA(ã) ⇒ φIf (o, ã))]

≤ [φA(a) ⇒ φIf (o, a)]
= sup{z ∈ [0, 1] : φA(a)�z ≤ φIf (o, a)}.

By lower semicontinuity of �, Proposition 19 holds and so

φO(o) ∈ {z ∈ [0, 1] : φA(a)�z ≤ φIf (o, a)}.

Using commutativity of �, we have

φO×�A(o, a) = φO(o)�φA(a) ≤ φIf (o, a).

But o ∈ O and a ∈ A are arbitrary and so O ×� A ⊆ If .
(c) Suppose that O ×� A ⊆ If . Then for all o ∈ O and for all a ∈ A,

φA(a) ∈ {z ∈ [0, 1] : φO(o)�z ≤ φIf (o, a)},

whence

φA(a) ≤ sup{z ∈ [0, 1] : φO(o)�z ≤ φIf (o, a)} = [φO(o) ⇒ φIf (o, a)] .

Taking the infimum over o on the right-hand side, we see that

φA(a) ≤ φO∗(a).

But a ∈ A is arbitrary, and so A ⊆ O∗.
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As stated earlier, we want to prove that a lattice of fuzzy formal concepts is
complete. As we shall see, the fuzzy implication we use when defining ∗ and ∧ has
to be upper semicontinuous. It turns out that for R-implicationsm this property
follows from lower semicontinuity of the t-norm, as we show in Proposition 23.
Before that we make an intermediate step.

Lemma 22. Let X,Y ⊆ IR. Let f : X → Y be an increasing function. Let (xn)
be a sequence on X such that xn ↘ x ∈ X. Let (yn) be a sequence on Y such
that, for all n > 0, f(xn) ≤ yn. Then

f(x) ≤ lim inf
n→∞ yn. (19)

Proof. By monotonicity of (xn), we have supm≥n0
xm = xn0 for all n0 > 0,

whence for each n0 > 0 fixed, infn>0

(
supm≥n xm

) ≤ xn0 . But (xn) converges
to x, and so for all n0 > 0 we have x = lim supn→∞ xn ≤ xn0 . Because f is
increasing we have, for each n0 > 0, f(x) ≤ f(xn0) ≤ yn0 . Now, taking the limit
inferior over n0 on the right-hand side and changing the variable n0 to n, we
complete the proof.

Proposition 23. Let � be a lower semicontinuous t-norm, and let ⇒ be the
R-implication induced by �. Then for all x0, y0 ∈ [0, 1] fixed, the maps x �→
(x ⇒ y0) and y �→ (x0 ⇒ y) are upper semicontinuous.

Proof. Let x′, y′ ∈ [0, 1]. We want to show that x �→ (x ⇒ y0) and y �→ (x0 ⇒ y)
are upper semicontinuous at x′ and y′ respectively. Let (xn), (yn) be sequences on
[0, 1] converging respectively to x′ and y′. For each n > 0, consider the following
definitions:

z(1)n = (xn ⇒ y0) , z(2)n = (x0 ⇒ yn) , (20)

x̃(1) = x′, x̃(2) = x0, (21)

x̃(1)
n = inf

m≥n
xm, x̃(2)

n = x0, (22)

ỹ(1) = y0, ỹ(2) = y′, (23)

ỹ(1)
n = y0, ỹ(2)

n = sup
m≥n

ym, (24)

z̃(1)n =
(
x̃(1)

n ⇒ ỹ(1)
n

)
, z̃(2)n =

(
x̃(2)

n ⇒ ỹ(2)
n

)
. (25)

Notice that, for i = 1, 2 the following hold:

1. x̃
(i)
n ↗ x̃(i), as the x̃

(1)
n are infima of decreasing sets and

(
x̃
(2)
n

)
is constant;

2. ỹ
(i)
n ↘ ỹ(i), because

(
ỹ
(1)
n

)
is constant and the x̃

(2)
n are suprema of decreasing

sets;
3. For all n > 0 monotonicity of ⇒ yields z

(i)
n ≤ z̃

(i)
n , whence lim supn→∞ z

(i)
n ≤

lim supn→∞ z̃
(i)
n .

4. The sequence (z̃(i)n ) is decreasing, for i = 1, 2.
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Now let n0 > 0 be fixed, and let n > n0. By Proposition 19 and (25), we
have

x̃(i)
n0

� z̃(i)n ≤ x̃(i)
n � z̃(i)n ≤ ỹ(i)

n .

Thus, (19) yields

x̃(i)
n0

�
(

lim sup
n→∞

z̃(i)n

)
≤ lim inf

n→∞ ỹ(i)
n = ỹ(i).

Taking the limit inferior over n0 on the left-hand side and using lower semicon-
tinuity of �,

x̃(i) �
(

lim sup
n→∞

z̃(i)n

)
≤ lim inf

n0→∞

[
x̃(i)

n0
�

(
lim sup

n→∞
z̃(i)n

)]
≤ ỹ(i).

Hence by definition of
(
x̃(i) ⇒ ỹ(i)

)
and 3. above,

lim sup
n→∞

z(i)n ≤ lim sup
n→∞

z̃(i)n ≤
(
x̃(i) ⇒ ỹ(i)

)
.

For i = 1 this means x �→ (x ⇒ y0) is upper semicontinuous at x′, and
for i = 2, y �→ (x0 ⇒ y) is upper semicontinuous at y′. But x′, y′ ∈ [0, 1] are
arbitrary. Therefore, both the maps x �→ (x ⇒ y0) and y �→ (x0 ⇒ y) are upper
semicontinuous.

Proposition 24. Let Cf = 〈O,A, If〉 be a fuzzy context. Let � be a lower semi-
continuous t-norm, and let ⇒ be the implication induced by it. Let J be an index
set and, for each α ∈ J , let Oα ⊆ O and Aα ⊆ A. Then

⋂

α∈J

O∗
α =

(
⋃

α∈J

Oα

)∗
, (26)

⋂

α∈J

A∧
α =

(
⋃

α∈J

Aα

)∧
. (27)

Proof. We prove (26). The proof of (27) is analogous. Let a ∈ A. For each α0 ∈ J
we have

φ(∪α∈JOα)∗(a) = inf
o∈O

[φ∪α∈JOα
(o) ⇒ φIf (o, a)]

= inf
o∈O

[(
sup
α∈J

φOα
(o)

)
⇒ φIf (o, a)

]

≤
[(

sup
α∈J

φOα
(o)

)
⇒ φIf (o, a)

]

≤ [
φOα0

(o) ⇒ φIf (o, a)
]
,

as ⇒ is decreasing in the first component. Applying the infimum over o ∈ O
and then the infimum over α ∈ J on the right-hand side yields φ(∪α∈JOα)∗(a) ≤
φ∩α∈JO∗

α
(a). Since a ∈ A is arbitrary,

(⋃
α∈J Oα

)∗ ⊆ ⋂
α∈J O∗

α.
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On the other hand, suppose for the sake of contradiction that for some o ∈ O
and a ∈ A,

κ := inf
α∈J

[
inf
õ∈O

(φOα
(õ) ⇒ φIf (õ, a))

]
>

[(
sup
α∈J

φOα
(o)

)
⇒ φIf (o, a)

]
.

Define x0 = supα∈J φOα
(o). Let (αn) be a sequence on J such that

(
φOαn

(o)
)

converges to x0 and, for each n > 0, define xn = φOαn
(o). By hypothesis, for

each n > 0,

(x0 ⇒ φIf (o, a)) < inf
α∈J

[
inf
õ∈O

(φOα
(õ) ⇒ φIf (õ, a))

]
(= κ)

≤ inf
õ∈O

(
φOαn

(õ) ⇒ φIf (õ, a)
)

≤ (
φOαn

(o) ⇒ φIf (o, a)
)

= (xn ⇒ φIf (o, a)) .

Thus,
(x0 ⇒ φIf (o, a)) < κ ≤ lim sup

n→∞
(xn ⇒ φIf (o, a)) ,

and so x �→ (x ⇒ φIf (o, a)) is not upper semicontinuous, contradicting Proposi-
tion 23.

Hence, for all o ∈ O and for all a ∈ A,

φ∩α∈JO∗
α
(a) = κ ≤

[(
φ⋃

α∈J Oα
(o)

)
⇒ φIf (o, a)

]
.

Taking the infimum over o on the right-hand side, and since a ∈ A is arbitrary,
we conclude that

⋂
α∈J O∗

α ⊆ (⋃
α∈J Oα

)∗
.

Theorem 25. Let Cf = 〈O,A, If〉 be a fuzzy formal context. Using a lower
semicontinuous t-norm and the R-implication induced by it to define the maps ∗

and ∧, define the order ≤ on the set Bf(Cf) of all the fuzzy formal concepts of
Cf by

〈O1, A1〉 ≤ 〈O2, A2〉 iff O1 ⊆ O2 (iff A2 = O∗
2 ⊆ O∗

1 = A1). (28)

Then LCf := 〈Bf(Cf),≤〉 is a complete lattice, called the fuzzy concept lattice
of Cf .

Proof. Similar to that of Theorem 8, using Proposition 24 rather than Proposi-
tion 7.

4 Final Remarks

As mentioned in the Introduction, there exists a vast body of literature on
fuzzy Formal Context Analysis. Burusco and Fuentes-González (1994) intro-
duced fuzzy concept lattices. Belohlávek and Vychodil (2007) have shown that
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it is possible to define a complete lattice of fuzzy concepts, by means of fuzzy
implications obtained from left continuous t-norms. These t-norms are equiva-
lent to lower semicontinuous t-norms. In this paper we recast some basic notions
and results from fuzzy FCA in terms of lower semicontinuous t-norms. Given the
difference between both definitions for t-norms (left continuous and lower semi-
continuous), proving the results requires somewhat different techniques. Within
our framework it is shown that the set of fuzzy concepts is a complete lattice.

Acknowledgement. This research was financially supported by CAPES (Brazil) and
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Abstract. Computer systems based on intuitionistic fuzzy logic are
capable of generating a reliable output even when handling inaccurate
input data by applying a rule based system, even with rules that are
generated with imprecision. The main contribution of this paper is to
show that quantum computing can be used to extend the class of intu-
itionistic fuzzy sets with respect to representing intuitionistic fuzzy bi-
implications. This paper describes a multi-dimensional quantum register
using aggregations operators such as t-(co)norms and implications based
on quantum gates allowing the modeling and interpretation of intuition-
istic fuzzy bi-implications.

Keywords: Quantum computing · Intuitionistic fuzzy sets
Intuitionistic bi-implications

1 Introduction

The similarities between Fuzzy Logic (FL) and Quantum Computing (QC ) moti-
vate researches towards a better understanding of their relationship [1–4]. Such
study is relevant to understand how one can explore the phenomena of quan-
tum mechanics to improve the efficiency of algorithms employed in the design of
expert systems.

And even further, the Intuitionistic Fuzzy Logic (IFL) or type-2 fuzzy logic
extends the concept of FL by adding the concept of imprecision when a set of
rules is defined. Since both IFL and QC concern about types of uncertainties,
it is important to investigate possible contributions from one area to another.

In this context, the logical structure describing the uncertainty associated
with the intuitionistic fuzzy set theory can be modeled by quantum transforma-
tions (QTs) and quantum states (QSs) [5]. Thus, it is possible to model quantum
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algorithms which represent operations on intuitionistic fuzzy sets such as unions,
intersections, differences, implications making use of superposition of quantum
states [6].

This work introduces a methodology representing operations of Intuitionistic
Fuzzy Set Theory (CFIs), as proposed by Krassemir Atanassov, making use
of properties such as superposition, linearity and distributivity of the tensorial
product in the state space and transformations of Quantum Computation (QC).

The information regarding each intuitionistic fuzzy connective is represented
by pairs of quantum registers, guaranteeing the inherent unitarity of quantum
states and transformations as well as the flexibility of the complementarity rela-
tion of membership and non-membership functions characterizing CFIs [7].

The achieved results make significant contributions:

(i) consolidating the qfuzz-Analyzer methodology for representing fuzzy sets via
operators and states fo QC; and

(ii) collaborating with the development of the qfuzz2-Analyzer methodology,
extending the representation of information modelled by intuitionist fuzzy
sets and their operations, both of which are defined by intuitionistic fuzzy
connectors via registers and quantum transformations in the Quantum Cir-
cuits model.

As the main contribution, based on the extensibility from qfuzz-Analyzer, the
qfuzz2-Analyzer methodology guarantees the preservation of the representable
intuitionistic fuzzy connectives. The work also considered the validation of
the methodology by extending the library of intuitionistic fuzzy operators in
the Visual Programming Environment for Quantum Geometric Machine Model
(VPE-qGM).

The simulation of quantum intuitionistic fuzzy operators via interfaces of the
VPE-qGM components (simulator, memory and process editors), contributes
to the generation of the computations minimizing problems as the exponential
increase in the quantum memory and the complexity of quantum measurement
projection operations, facilitating the interpretation and analysis by applying
quantum algorithms of qfuzz2-Analyzer.

The remainder of this paper is organized as follows: Sect. 2 presents the foun-
dations on IFL. Section 3 brings the main concepts of QC. In Sect. 4, we present
the study and modeling of fuzzy bi-implications using QC, Sect. 5 presents the
results about simulating this proposal in the VPE-qGM. Finally, conclusions and
further work are discussed in Sect. 6.

2 Intuitionistic Fuzzy Logic

The Atanassov’s Intuitionistic Fuzzy Logic (A-IFL) is a type-2 fuzzy logic con-
ceived as a generalization of fuzzy logic (FL) based on the intuitionistic fuzzy set
theory [8], introduced to overcome the limitations related to fuzzy sets for dealing
with problems where the rules applied to the system could not be defined with
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precision, mainly related to non-memebrship degree which cannot be defined as
a complement of its membership degree.

An element x ∈ X belongs to the subset A with a membership a non-
membership degrees given by μA(x) and νA(x), such that 0 ≤ μA(x) + νA ≤ 1:

A = {(x, μA(x), νA(x)) : x ∈ X and μA(x) + νA ≤ 1}, (1)

denoting by Ũ the set of all intuitionistic fuzzy values considering the research
of IFL in a narrow sense [9], extending the multi-valued logic, makes it possible
to extend the usual logic connectives, as follows [10]:

– Conjunction, usually modelled by a triangular norm (T-norm) operator [11],
which is a kind of binary operation used in the framework of multi-valued
logic.

– Disjunction, similarly to the above case, are usually modelled by t-
conorms [11] (also called S-norms), and represents the dual operation to
t-norms.

– Negation, which follows the seminal work of Atanassov [8], presenting several
studies on the properties of intuitionistic fuzzy negations. Although Atanassov
intuitionistic fuzzy negation μA(x) = νA(x) and μA(x) = νA(x) is the most
used in intuitionistic fuzzy systems, there are important classes of intuition-
istic fuzzy negation proposed with different motivations.

– Implication, which can be represented by many different and non equiv-
alent approaches, although some of them have been more used and well
accepted [12].

– Bi-implication, which has been studied in FL under different contexts, where
we can cite among others [13,17], all of them were constrained to at least one
of the following restrictions [10]:

• Satisfy the fuzzy equivalence properties.
• Be compatible with the notion of distance on [0, 1].
• Define the fuzzy bi-implication in terms of the conjunction and implica-

tion connectives.

Now, the connectives used to make the correlation between quantum com-
puting and IFL will be described in function of Fuzzy Connective. Firstly, we
consider the standard intuitionistic fuzzy negation [8] expressed as:

NIS (x̃) = NIS ((x1, x2)) = (x2, x1),∀x̃ = (x1, x2) (2)

Meanwhile, for all x̃ = (x1, x2), ỹ = (y1, y2) ∈ Ũ , the intersection and union can
be defined, respectively, in terms of a t-norm T and a t-conorm S, given as:

TI(x̃, ỹ) = TI((x1, x2), (y1, y2)) = (T (x1, y1), S(x2, y2)); (3)
SI(x̃, ỹ) = SI((x1, x2), (y1, y2)) = (S(x1, y1), T (x2, y2)). (4)

We consider both intuitionistic aggregations: the Product t-norm TIP and Alge-
braic Sum SIP , respectively described by Eqs. (5) and (6).

TIP (x̃, ỹ) = (TP (x1, y1), SP (x2, y2)) = (x1y1, x2 + y2 + x2y2); (5)
SIP (x̃, ỹ) = (SP (x1, y1), TP (x2, y2)) = (x1 + y1 + x1y1, x2y2)). (6)
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According to [5], fuzzy sets can be obtained by quantum superposition of
classical fuzzy states associated with a quantum register. Thus, interpretations
related to the fuzzy operations as complement and intersection are obtained
from the NOT and AND quantum transformations (QTs). The modeling of
these operations can be found in [15], where the complement is obtained by the
quantum NOT operator (Pauli-X gate) and the intersection is expressed using
the quantum Toffoli transformation.

Extending this approach, other operations were introduced, such as union,
difference, fuzzy (co)implication, which were derived from interpretations of OR,
DIV and (CO)IMP quantum operators [14]. Now, the interpretation of the fuzzy
bi-implication operator [10] through quantum computing is considered just mak-
ing use of the NOT and AND operations:

A ↔ B ≡ (A → B) ∧ (B → A) ≡ (¬A ∨ B) ∧ (¬B ∨ A) (7)

Based on the normal expression in Eq. (7), one can construct the Atanassov’s
intuitionistic fuzzy bi-implication (BI) through the operators TI , SI , NIS , as
shown below:

BI(x̃, ỹ) = TI(SI(NIS (x̃), ỹ), SI(NIS (ỹ), x̃))
= TI(SI((x2, x1), (y1, y2)), SI((y2, y1), (x1, x2)))
= TI((S(x2, y1), T (x1, y2)), (S(y2, x1), T (y1, x2)))
= (T (S(x2, y1), S(y2, x1)), S(T (x1, y2), T (y1, x2)))

The BIP membership and non-membership degrees are respectively, given by:

μBIP
(x̃, ỹ) = (x1y2 − x1 − y2)(x2y1 − x2 − y1) (8)

νBIP
(x̃, ỹ) = x1y2 + x2y1 − x1x2y1y2, ∀ x̃ = (x1, x2), ỹ = (y1, y2) ∈ Ũ (9)

3 Quantum Computing

The basic unit of information in classical computing is the traditional bit, a
binary classical physical system. In quantum computing the basic unit infor-
mation is represented by a quantum bit, or qubit, a binary quantum physical
system.

The qubit is a vector usually represented as a superposition of basic states,
using the Dirac braket 1 notation [16]:

|ψ〉 = α|0〉 + β|1〉.

The Dirac notation has the advantage that it labels the basis vectors explicitly.
The basic states |0〉 and |1〉 can be explained by analogy with the classical bit,

1 The name braket comes from the convention that a column vector is called a “ket”
and is denoted by | 〉 and a row vector is called a “bra” and is denoted by 〈 |.
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i.e., form a two-level system and are an orthonormal basis for the quantum vector
space (usually called the standard or computational basis) [18].

The coefficients or also called probability amplitudes, α and β, are complex
numbers, such that |α|2 + |β|2 = 1. In other words the qubit can be formalized
as a vector in a complex vector space (Hilbert space), with norm (size) equals
to one.

As an example, the classical bit 0 can be represented as the basis state
|0〉 = 1|0〉 + 0|1〉 and the classical bit 1 can be represented as the basis state
|1〉 = 0|0〉 + 1|1〉.

Any other state with different values for α and β is said to be in a quantum
superposition of |0〉 and |1〉, for instance the state 1/

√
2|0〉+1/

√
2|1〉. The inter-

pretation of the probability amplitudes α and β can be given by the following:
when we interact or measure a quantum state such as α|0〉+β|1〉 we will see/get
the state |0〉 with probability |α|2 and the state |1〉 with probability |β|2.

The superposition of states gives to quantum computing a relevant charac-
teristic called quantum parallelism. Essentially, due to superposition of states,
a qubit can assume values of 0 and 1 at the same time. This gives an exponen-
tial power to quantum algorithms, as we can design algorithms that can verify
various possibilities in parallel [18]. Table 1 shows the state space of the qubit
grows with the number of qubits. We can verify that the power of a quantum
computer doubles each time a qubit is added.

Table 1. State space of the qubit

# qubits Possibilities Power

1 0 or 1 2

2 00,01,10,11 4

3 000,001,010,011,100,101,110,111 8
...

...

N 2N

A composite quantum state with two independent qubits like |q〉 = α|0〉+β|1〉
and |p〉 = γ|0〉 + δ|1〉 are defined as α|00〉 + γ|01〉 + δ|10〉 + β|11〉.

More formally, an intuitionistic fuzzy value x̃ = (x1, x − 2) is represented by
a composite quantum state with two independent qubits like |q〉 = α|0〉 + β|1〉
and |p〉 = γ|0〉 + δ|1〉, both define the following linear combination of the four
classical states |00〉, |01〉, |10〉, |11〉, as state in Eq (10):

α|00〉 + γ|01〉 + δ|10〉 + β|11〉 (10)

However, there are some combined quantum bits which are not of the form q⊗p.
For instance, the state: 1/

√
2|00〉 + 1/

√
2|11〉 is clearly not of the form q ⊗ p,

for any q and p. This kind of bi-dimensional quantum state which cannot be
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described using the tensor product operation is called entangled, and will be
consired in further work.

4 Intuitionistic Fuzzy Bi-implications Using Quantum
Computing

In this section, the description of quantum circuits for specifying the intuition-
istic fuzzy bi-implication operator, extending previous works [14].

This operation was also studied in the visual programming environment VPE-
qGM (Visual Programming Environment for the Quantum Geometric Machine
Model), described in [19], which aims to support the modelling and simulation
of quantum algorithms using a set of graphical interfaces.

The description of IFSs from the QC viewpoint extends the work in [5] by
modeling an element x̃ by a pair of quantum register:

(|x1〉, |x2〉) =
(√

1 − x1|0〉 +
√

x1|1〉,√1 − x2|0〉 +
√

x2|1〉) (11)

When modeling fuzzy operators in quantum computing, it is possible to represent
the TP through the Toffoli gate (T) and the standard negation through the Pauli-
X gate (N). So the first step to generate the quantum representation for the BIP

is to apply De Morgan’s law to t-conorms S in Eq. 8 in order to remain only with
T and N , resulting on the following fuzzy expressions for the membership and
non-membership degrees:

μBI
(x̃, ỹ) = T (N(T (N(x2), N(y1))), N(T (N(y2), N(x1)))) (12)

νBI
(x̃, ỹ) = N(T (N(T (x1, y2)), N(T (y1, x2)))) (13)

Then, Eqs. (12) and (13) can be translated to the quantum representation,
respectively showed in Eqs. (14) and (15). Using 10 qubits: 2 pairs for the
inputs (x̃, ỹ), 4 ancillaries qubits to store intermediate results and 1 pair for
the result. The membership degree obtained is stored on qubit 9 and the non-
membership degree on qubit 10.

|SμBI
(x̃,ỹ)〉 = T5,6

9 ◦ N1,4,6 ◦ T1,4
6 ◦ N1,4 ◦ N2,3,5 ◦ T2,3

5 ◦ N2,3
(|Sμx̃

〉, |Sνx̃
〉, |Sμỹ

〉, |Sνỹ
〉, |0〉, |0〉, |0〉, |0〉, |0〉, |0〉) (14)

|SνBI
(x̃,ỹ)〉 = N10 ◦ T7,8

10 ◦ N8 ◦ T2,3
8 ◦ N7 ◦ T1,4

7
(|Sμx̃

〉, |Sνx̃
〉, |Sμỹ

〉, |Sνỹ
〉, |0〉, |0〉, |0〉, |0〉, |0〉, |0〉) (15)

Figure 1 shows the correspondent BIP representation as a quantum circuit
given by the composition of Eq. (14) (from T1 to T7) and Eq. (15) (from T8 to
T13).

The evolution of superposition quantum registers in modeling quantum cir-
cuit BI(x̃, ỹ) is shown in Table 2 for the most relevant points of the algorithm,
presenting all non-void amplitudes related to 16 classical states of the initial
multi-dimensional quantum state:

|Φ〉 = |x1〉 ⊗ |x2〉 ⊗ |y1〉 ⊗ |y2〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉.
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Fig. 1. Quantum circuit for fuzzy bi-implication.

One can observe that in Table 2, the evolution from T0 to T13 of the initial
quantum state |SμBI

(x̃,ỹ)〉 ⊗ |SνBI
(x̃,ỹ)〉,. When a measure at the end of this

computation is performed on 10th qubit and related to |1〉, the resulting non-
normalized quantum state is given by the following expression:

|SνBI
(x̃, ỹ)〉 =

√
(1 − x1)x2y1|011〉⊗

(√
1 − y2|010100〉 +

√
y2|111101〉

)
⊗|1〉

+
√

x1y1y2|1〉⊗(√
1 − x2|01111011〉 +

√
x2|1111001

)⊗|1〉
+

√
x − 1(1 − y1)y2|1〉⊗(√

1 − x2|00101010〉 +
√

x2|10111011
)⊗|1〉

+
√

x1x2y1(1 − y2)|111011101〉 ⊗ |1〉. (16)

Moreover, the new amplitude is given as follows:

x1y1 + x2y1 − x1x2y1y2 (17)

Therefore, according with Eq. (9), this is the expression of non-membership
degree of a A-IFS related to an application of the BI bi-implicator performed
on the pair of intuitionist fuzzy value (x̃ = (x̃1, x2), ỹ = (ỹ1, y2).

Analogously, a measure at the end of this computation performed on 10th

qubit and related to |1〉 provide the expression of corresponding membership
degree, as given in Eq. (8).

5 Experiments and Results

For simulating the proposed operator, we build the quantum algorithm presented
in Fig. 1 through VPE-qGM environment, contributing to the visualization and
also the calculation of the results and the validation of the proposed algorithm.
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The VPE-qGM simulator provides interpretations of the quantum mem-
ory, quantum processes and computations related to transition quantum states
obtained from the simulation of related QSs and QTs.

Values x̃ = (0.7, 0.2) and ỹ = (0.5, 0.3) were used on the simulation, given by
the following quantum registers:

|x1〉 =
√

0.3|0〉 +
√

0.7|1〉 |x2〉 =
√

0.8|0〉 +
√

0.2|1〉 (18)

|y1〉 =
√

0.5|0〉 +
√

0.5|1〉 |y2〉 =
√

0.7|0〉 +
√

0.3|1〉 (19)

Figures 2 and 3 show the simulator VPE-qGM running the proposed quantum
algorithm considering measurement on qubit 9 and 10 to obtain the result of the
membership degree and non-membership degree, respectively.

Fig. 2. Quantum process for BI MD simulated using VPE-qGM.

Fig. 3. Quantum process for BI NMD simulated using VPE-qGM.
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According to the results presented by the VPE-qGM simulator, qubit 9 will
have the probability p = 39% of being one and qubit 10 will have the probability
p = 37% of being one, which are correspondingly the membership degree and
non-membership degree of the intuitionistic bi-implication for the used inputs.

6 Conclusions

This paper describes how to model bi-implications on intuitionistic fuzzy sets
through concepts of QC. It was modelled using a quantum register using opera-
tions over fuzzy sets described by QTs. Therefore, this work shows another basic
construction in the specification of fuzzy expert systems from QC, in order to
obtain new information technologies based on intuitionistic fuzzy approach.

Computer systems based on IFL and performed over quantum computers
may be able to generate an output from the manipulation of inaccurate data,
by applying an imprecision rule-based system taking advantage of properties as
quantum parallelism. The states are quantum registers, and the rules for the
fuzzyfication process can be modeled by composition of controlled and unitary
QTs.

This paper not only describes and analyses the operation of intuitionistic
fuzzy bi-implication but also implements and simulates it in the VPE-qGM
presenting an extension of such construction to be used in others important
intuitionistic fuzzy operations.

Acknowledgements. The authors thank the partial funding of this project via
448766/2014-0 (MCTI/ CNPQ/ Universal 14/2014 - B), 310106/2016-8 (CNPq/PQ
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Abstract. This work extends the study of properties related to the
Atanassov’s interval-valued intuitionistic fuzzy entropy obtained as
aggregation of generalized Atanassov’s intuitionistic fuzzy index, by con-
sidering the concept of conjugate fuzzy implications and their dual con-
structions. Many ways to define the interval entropy were compared
leading to the equation proposed in this work which is more sensitive
to determine the interval entropy when using different interval-valued
fuzzy sets.

Keywords: Generalized Atanassov’s intuitionistic fuzzy index
Atanassov’s interval-valued intuitionistic fuzzy entropy · Conjugation
Duality

1 Introduction

By allowing the expression related to the expert uncertainty in identifying a par-
ticular membership function or even to approximate the (unknown) membership
degrees, the Atanassov interval-valued intuitionistic fuzzy logic (A-IvIFL) is an
increasingly popular extension of fuzzy set theory.

The Atanassov’s interval-valued intuitionistic fuzzy index (A-IvIFIx), called
as hesitancy or indeterminacy degree of an element in an Atanassov-intuitionistic
fuzzy set (A-IFS), provides either a measure of the lack of supporting information
or a given incomplete/inconsistent proposition based on Atanassov-intuitionistic
fuzzy logic (A-IFL). Thus, using intervals in U = [0, 1] that approximate the
unknown data related to membership degrees, we are able to model applications
in which experts do not have precise knowledge.

The concept of fuzzy entropy was introduced in order to measure how far a
fuzzy set (FS) is from a crisp one [14]. Since then, this concept has been adapted
to the distinct extensions of FSs and with many interpretations, describing the
general measure of fuzziness through the mapping between fuzzy and real sys-
tems. Analogous interpretations lead to model data of the decision-making pro-
cesses which cannot be measured precisely, taking extensions of the value of
c© Springer International Publishing AG, part of Springer Nature 2018
G. A. Barreto and R. Coelho (Eds.): NAFIPS 2018, CCIS 831, pp. 217–229, 2018.
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entropy from a number to an interval value or even from an interval-valued
intuitionistic value based on the definition of interval entropy [19].

This paper contributes with both approaches: (i) the new concept of gener-
alized Atanassov’s intuitionistic fuzzy index (A-GIFIx) associated with a strong
intuitionistic fuzzy negation NI [2], characterized in terms of fuzzy implication
operators which is described by a construction method based on the action of
automorphisms; and (ii) the Atanassov’s intuitionistic fuzzy entropy (A-IFE),
introduced by means of special aggregation functions of the A-GIFIx in [7].

Following the former approach, this work extends the study of the gener-
alized Atanassov’s interval-valued intuitionistic fuzzy index (A-GIvIFIx) [10],
considering the concept of conjugate and dual interval-valued fuzzy implications,
mainly interested in representation method [6,11] and providing impact on prop-
erties satisfied by the generated operations. Additionally, A-GIvIFIx associated
with the standard negation together with the known Reichenbach interval-valued
fuzzy implications are considered [13].

From the later approach, the Atanassov’s interval-valued intuitionistic fuzzy
entropy (A-IvIFE) is studied, describing main notions for measuring fuzziness
degree or uncertain information in A-IvIFL. Such entropy is able to measure
how far a set defined by actions of fuzzy connectives in A-IvIFL is from one in
A-IvFL or A-IFL, and therefore, from a set in FL.

Our study mainly focuses on useful information entropy measures providing
another way to explore IvIFL as a model by offering application developers as
method of construction of A-IvIFE from A-GIvIFIx.

Among several papers found in the literature, see [12,19], connecting entropy
measures for interval-valued intuitionistic fuzzy sets (IvIFSs) and discussing their
relationships with similarity measures and inclusion measures. In [12], Jing and
Min deal with the entropies of IvIFSs, proposing a λ-parametrized set of general-
ized entropy on IvIFSs and then it is proved that the new entropy is an increasing
λ-parametrized function. In [19], a new axiomatical definition of entropy measure
for A-IvIFL based on distance is proposed, which is consistent with the defini-
tion introduced in [14]. These formal studies underlying the main contribute
for multi-criteria decision making problem, ranking the alternatives to study
interval-valued fuzzy set models, offering application developers a method of
construction of A-IvIFE from A-GIvIFIx preserving fuzziness and intuitionism
based on generalized approach for an A-IvIFIx.

The preliminaries describe the basic properties of fuzzy connectives and basic
concepts of A-IvIFL. The study of the A-GIvIFIx(NI) and general results in the
analysis of its properties are stated in Sect. 3. In Sect. 4, an interval version of
entropy is presented based on the generalized Atanassov’s intuitionistic fuzzy
index. We also consider a relationship with IvIFIx and conjugate operators.
Concluding, final remarks and further work are reported.

2 Preliminaries

Main results on interval-valued fuzzy connectives and IvIFSs are reported below.
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2.1 Interval-Valued Fuzzy Connectives

Let U = {[x1, x2] |x1, x2 ∈ U e 0 ≤ x1 ≤ x2 ≤ 1}. For each x ∈ U , a degenerate
interval [x, x] will be denoted by x and the subset of all degenerate interval will
be denoted by D. And, let ≤U ⊆ U

2 be the Kulisch-Miranker (or product) order,
such that for all X,Y ∈ U, it is given by:

X ≤U Y ⇔ X ≤ Y and X ≤U Y ,

such that ∀X,Y ∈ U, 0=[0, 0]≤UX≤U=[1, 1]. We also consider �U⊆ U
2 given as

∀X,Y ∈ UX �U Y ⇔ X ≤ Y .

By [5] an interval-valued aggregation (IvA) M :Un→U demands the conditions:

M1: M(X) = 0 and X = (0, . . . ,0); M(X) = 1 and X = (1, . . . ,1);
M2: If X = (X1, . . . , Xn) ≤Un Y = (Y1, . . . , Yn) then M(X) ≤U M(Y);
M3: M(Xσ) = M(Xσ1 , . . . , Xσn

) = M(X1, . . . , Xn) = M(X).

Definition 1 [18]. An interval function N : U → U is an interval-valued fuzzy
negation (IvFN) if, for all X,Y ∈ U, it verifies the following conditions:

N1: N([0, 0]) = 1; e N([1, 1]) = 0;
N2a: If X ≥ Y then N(X) ≤ N(Y ). N2b: If X ⊆ Y then N(X) ⊇ N(Y ).

An IvFN N is called strong IvFN [17] if N also satisfies the involutive prop-
erty:

N3: N(N(X)) = X, for all X ∈ U,

The interval extension of the standard negation NS(x) = 1 − x is given as:

NS(X) = [1, 1] − X = [1 − X, 1 − X],∀X[X,X] ∈ U. (1)

The N-dual operator of an interval-valued function f : Un → U is given as

fN(X1, . . . Xn)=N(f(N(X1), . . . ,N(Xn)). (2)

Definition 2 [3]. A function I(J) : U2 → U is a interval fuzzy (co)implication
if for all satisfies the following boundary conditions:
I1a: I(1,1)= I(0,0)= I(0,1)=1; J1a: J(1,1) = J(1,0)=J(0,0)=0;
I1b: I(1,0)=0; J1b: J(0,1)=1;
I2: If X ≤ Z then I(X,Y ) ≥ I(Z, Y ); J2: If X ≤ Z then J(X,Y ) ≥ J(Z, Y );
I3: If Y ≤ Z then I(X,Y ) ≤ I(X,Z); J3: If Y ≤ Z then J(X,Y ) ≤ J(X,Z);

Additional properties can be demanded for IvFI(IvFJ):
I4: I(X, Y )=1 ⇔ X ≤U Y ; J4: J(X, Y )=0 ⇔ X ≥U Y ;
I5:I(X, Y )=I(N(Y ),N(X)), N is a SIvFN; J5:J(X, Y )=J(N(Y ),N(X)), N is a SIvFN;
I6: I(X, Y ) = 0 ⇔ X = 1 and Y = 0; J6: J(X, Y ) = 1 ⇔ X = 0 and Y = 1.

Analogously, these properties Ik(Jk) can be restricted to fuzzy (co)impli-
cations by projections on D and will be denoted as Ik(Jk).
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Proposition 1. [8, Prop 21], A fuzzy (co)implication I(J) : U2 → U satisfies
I1 (J1) and I2 (J2) iff the interval fuzzy (co)implication I(J) is given as

I(X,Y ) = [I(X,Y ), I(X,Y )];
(
J(X,Y ) = [J(X,Y ), J(X,Y )]

)
. (3)

Example 1. The interval-valued extension of the Reichenbach (co)implication
IRH(X,Y )=NS(X)+X·Y (JRH(X,Y )=NS(X) ·Y ) can be expressed as follows:

IRH(X,Y )=(NS(X)+X ·Y ,NS(X)+X ·Y ); (4)

(JRH(X,Y )=[NS(X)·Y ,NS(X)·Y ]). (5)

2.2 Interval-Valued Atanassov’s Intuitionistic Fuzzy Sets

Based on [1] and later on [11], we briefly report main concepts and properties
on interval-valued Atanassov’s intuitionistic fuzzy sets (IvIFSs shortly).

An A-IvIFS AI in a non-empty universe χ is expressed as

AI={(x,MAI
(x), NAI

(x)) : x∈χ,MAI
(x) + NAI

(x))≤U1}, (6)

and the set of all IvIFSs is denoted by AI . Thus, an intuitionistic fuzzy truth
value of an element in AI is given by a pair of intervals (MAI

(x), NAI
(x)), and

Ũ={X̃ = (X1,X2)∈U
2 : X1 + X2 ≤U 1} (7)

denotes the set of all Atanassov’s interval-valued intuitionistic fuzzy degrees1

such that (Ũ,≤
Ũ
) and (Ũ,�

Ũ
) are partial ordered sets given as

RI1: X̃ ≤
Ũ

Ỹ ⇔X1 ≤U Y1 and X2 ≥U Y2;
RI2: X̃ �

Ũ
Ỹ ⇒ X1 ≤U Y1 and X2 ≤U Y2, for all X̃, Ỹ ∈ Ũ;

with 0̃ = (0,1) and 1̃ = (1,0) as the least and greatest elements on Ũ, respec-
tively. Additionally, an interval-valued Atanassov’s intuitionistic fuzzy degree
has two projections lII , rII : Ũ → U, defined by lII(X̃) = X1 and rII(X̃) = X2.
When X1 +X2 = 1 then AI is restricted to the set A of all interval-valued fuzzy
sets. Moreover, the function πAI

: χ→U, called an interval-valued Atanassov’s
intuitionistic fuzzy index (A-IvIFIx shortly), related to an IvIFS AI , is given as

πAI
(x) = NS(MAI

(x) + NAI
(x)). (8)

An IvIFIx models not only the uncertainty degree but also the hesitancy/indeter-
minance degree of each x in AI . The difference between AI and BI is given by:

AI − BI = {X̃ =(inf(NAI
(x), NBI

(x)), sup(NAI
(x),MBI

(x))) : X̃ ∈ Ũ, x ∈ χ}.

According with [18], an interval-valued Atanassov’s intuitionistic fuzzy nega-
tion (IvIFN) NI : Ũ → Ũ satisfies, for all X̃, Ỹ ∈ Ũ, the following properties:
1 We assume the componentwise addition on U, see [16].
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NI1: NI(0̃)=NI(0,1)= 1̃ and NI(1̃)=NI(1,0) = 0̃;
NI2: If X̃ ≥

Ũ
Ỹ then NI(x̃)≤

Ũ
NI(ỹ).

Moreover, NI is a strong IvIFN if it also verifies the involutive property:

NI3: NI(NI(X̃)) = X̃, ∀X̃ ∈ Ũ.

Consider NI as IvIFN and FI : Ũn → Ũ. By [18], the NI -dual interval-valued
Atanassov’s intuitionistic function of f̃ , denoted by FINI

: Ũn → Ũ, is given by:

FINI
(X̃) = NI(FI(NI(X̃1), . . . ,NI(X̃n))),∀X̃ = (X̃1, . . . , X̃n) ∈ Ũ

n. (9)

When ÑI is a strong IvIFN, f̃ is a self-dual interval-valued intuitionistic function.
And, by [18], taking a strong IvFN N : U → U, a IvIFN NSI : Ũ → Ũ such that

NSI(X̃) = (N(NS(X2)),NS(N(X1))), (10)

is a strong IvIFN generated by the IvFNs N and NS . By [6]), a strong IvIFN is
also a representable IvIFN. Additionally, if N = NS , Eq. (10) can be reduced to
NSI(X̃) = (X2,X1). Moreover, the complement of A-IvIFS AI is defined by

AIc={(x,NAI
(x),MAI

(x)) : x∈χ,MAI
(x) + NAI

(x))≤U1}, (11)

An interval-valued Atanassov’s intuitionistic automorphism (A-IvIA) is a
bijection increasing operator Φ : Ũ → Ũ. For all X̃, Ỹ ∈ Ũ, the following hold:

AI1: Φ(1̃) = 1̃ and Φ(0̃) = 0̃;
AI2: Φ ◦ Φ−1(X̃) = X̃;
AI3: X̃ ≤

Ũ
Ỹ iff Φ(X̃) ≤

Ũ
Φ(Ỹ ).

In the set of all A-IvIAs (Aut(Ũ)), the conjugate function of fI : Ũn → Ũ is
a function fΦ

I : Ũn → Ũ, defined as follows

fΦ
I (X̃1, . . . , X̃n) = Φ−1(fI(Φ(X̃1), . . . , Φ(X̃n))). (12)

Reporting main results in [9, Theorem 17], let φ : U → U be an interval-
valued automorphism, φ ∈ Aut(U). Then, a φ-representability of Φ is given by

Φ(X̃) = (φ(l
Ũ
(X̃)),1 − φ(1 − r

Ũ
(X̃))),∀X̃ ∈ Ũ; (13)

Moreover, if φ ∈ Aut(U), for all X̃ ∈ Ũ, a φU -representability of Φ is given by

Φ(X̃) =
(
[φU (X1), φU (X1)], [1 − φU (1 − X2), 1 − φU (1 − X2)]

)
. (14)

Thus, if an IvIA is φ-representable, it is also a φU -representable automorphism
[18].
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3 Interval Extension of the Generalized Atanassov’s
Intuitionistic Fuzzy Index

Definition 3. Let N be a strong IvFN. A function Π : Ũ→U is called a gen-
eralized interval-valued intuitionistic fuzzy index (A − GIvIFIx(N)) if,
for all X1,X2, Y1, Y2 ∈ U, it holds that:

Π1: Π(X1,X2) = 1 iff X1 = X2 = 0;
Π2: Π(X1,X2) = 0 iff X1 + X2 = 1;
Π3: If (Y1, Y2) �

Ũ
(X1,X2) then Π(X1,X2) ≤U Π(Y1, Y2);

Π4: Π(X1,X2) = Π(NSI(X1,X2)) when NSI is given by Eq.(10).

3.1 Relationship with Interval-Valued Fuzzy Connnectivess

In the following, Theorem 1 extends main results in [2].

Theorem 1. Let I(J) :U2 →U be a (co)implicator verifying I1(J2),I4(J4),I5(J5)
and I6(J6) and N : U→U be an involutive IvFN. A function ΠN,I(ΠN,J) : Ũ→U
is A-GIvIFIx(N) iff it can be given as

ΠN,I(X) = N(I(NS(X2),X1)) (ΠN,J(X) = J(N(NS(X2)),N(X1))) . (15)

Proof. Equation(15b) is proved below. Analogously, it can be done to Eq.(15a).
(⇒) Consider that J : U2 → U verifies J2, J4, J5 and J6, it holds that:

Π1 : ΠN,J(X1, X2) = 1 ⇔ J(N(NS(X2)),N(X1)) = 1(by Eq.(15b))

⇔ NS(X2) = 1 andN(X1) = 1 ⇔ X2 = X1 = 0(by J6,N1).

Π2 : ΠN,J(X1, X2) = 0 ⇔ J(N(NS(X2)),N(X1)) = 0 (by Eq.(15b))

⇔ N(NS(X2)) ≥U N(X1)(by J4)

⇔ NS(X2) ≤U X1(by N3) and NS(X2) ≥U X1(by Eq.(7))

⇔ X1 + X2 = 1.

Π3 : (Y1, Y2) � (X1, X2) ⇒ Y1 ≤U X1 and Y2 ≤ X2(by RI2)

⇒ N(X1) ≥U N(Y1) and N(NS(X2)) ≤U N(NS(Y2))(by N2)

⇒ J(N(NS(X2)),N(X1)) ≤U J(N(NS(Y2)),N(Y1))(by J1, J2)

⇒ ΠN,J(X1, X2) ≤U ΠN,J(Y1, Y2)(by Eq.(15))

Π4 : ΠN,I(N(X1, X2)) = J(N(NS(X2)),NS(N(X1))(by Eq.(10))

= J(X1,NS(X2))(by Eq.(15))

= J(N(NS(X2))),N(X1)) = ΠN,J(X1, X2)(by J5 and Eq.(15))

(⇐) Considering the function J : U2 → U given as J(X1,X2) = 1, if X1 > X2;
and J(X1,X2) = ΠN,J(X2,NS(N(X1))), otherwise. The following holds:
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J2 :Y1 ≥Y2 ⇔J(X, Y1)=

{
1, if X > Y1,
ΠN,J(Y1,NS(N(X))), otherwise; (by Eq.(15); )

≥
{
1, if X > Y2,
ΠN,J(Y2,NS(N(X))) = J(X, Y2), otherwise; (by Π3 andEq.(15))

J4 : Straightforward.

J5 : J(N(X2),N(X1)) =

{
1, if N(X2) > N(X1),

ΠN,J(N(NS(N(X1)), X2), otherwise; (by Eqs.(15) and (10))

=

{
1, if X1 ≥ X2,
ΠN,J(N(NS(X2),N(X1)), otherwise (by Π4 and N3)

= J(X1, X2), (Eq.(15))

J6 : J(X1, X2) = 1 ⇔ΠN,J(N(X2),NSN(X1)) = 1 (by Eq.(15))

⇔N(X2) = NS(N(X1)) = 0 ⇔ X1 = 0 and X2 = 1 (by Π1)

Therefore, Theorem 1 holds.

The Φ-representability and N-dual IvIFIx constructions are discussed below.

Proposition 2. Let IN(JN) be the N-dual operator of a (co)implication I(J). The
following holds:

ΠN,IN(X̃) = ΠN,I(X̃)
(
ΠN,JN(X̃) = ΠN,J(X̃)

)
. (16)

Proof. ΠN,IN(X̃) = IN(N(NS(X2)),N(X1)) = N(I(NS(X2),X1)) = ΠN,I(X̃), ∀X̃ ∈
Ũ.

Corollary 1. When N = NS, Eq.(15) in Theorem 1 is given as

ΠNS ,I(X̃) = NS(I(NS(X2),X1))
(
ΠNS ,J(X̃) = J(X2,NS(X1)

)
. (17)

Proposition 3. Let N be an N -representable IvFN and πN,I : Ũ → U be A-
IFIx(N). If I, J are representable (co)implications given by Eq.(3), a function
ΠN,I : Ũ → U given by Eq.(17) can be expressed as

ΠN,I(X̃)=[ΠN,I(X2, X1),ΠN,I(X2, X1)] (ΠN,J(X̃)=[ΠN,J (X2, X1),ΠN,J(X2, X1)]).

Proof. We proof Eq.(18a), the other one can be analogously done. By taking
(X1,X2) ∈ Ũ, X1 = [X1,X1],X2 = [X2,X2] then X1 + X2 = [X1 + X2,X1 +
X2] ≤ 1, meaning that X1+X2 ≤ 1 and X1+X2 ≤ 1. Then, we have the result
ΠN,I(X̃) = N(I([1−X2, 1−X2], [X1,X1])) = [N(I(1−X2,X1)), N(I(1−X2,X1))].
Concluding, ΠN,I(X̃) = [ΠN,I(X2,X1),ΠN,I(X2,X1)]. So, Proposition 3 holds.

Example 2. Consider IRC and related NS-dual construction ΠNS,JRC . By preserv-
ing the conditions of Proposition 3, Eq.(18) can be expressed as

ΠNS,IRC(X1,X2)=
{

0, if X1 + X2 = 1,
1−[1−X2−X1+X2X1, 1−X2−X1+X2X1], otherwise.
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3.2 Relationship with Interval-Valued Automorphisms

Proposition 4. Let NΦ :U→U be the φ-conjugate of a strong IvFN N : U → U

and φ : U → U be a φ-representable IvA given by Eq.(14). When Φ : Ũ → Ũ is a
Φ-representable IvIFa given by Eq.(13), a function ΠΦ : Ũ → U given by

ΠΦ(X1,X2) = (φ−1(Π(φ(X1)),1 − φ(1 − X2)), (18)

is a A − GIvIFIx(NI) whenever Π : Ũ → U is also a A − GIvIFIx(NI).

Proof. Let φ : Ũ → U be a φ-representable A-IvA and Π : Ũ → U be a A −
GIvIFIx(NI). It holds that:

Π1 :ΠΦ(X1,X2) = 1 ⇔ φ−1(Π(φ(X1),1 − φ(1 − X2))) = 1 (by Eq.(18))
⇔ Π(φ(X1),1 − φ(1 − X2)) = 1 (by AI1)
⇔ φ(X1) = 0 and1 − φ(1 − X2) = 0 (by Π1)
⇔ X1 = 0 and X2 = 0(by AI1)

Π2 :It is analogous to Π1.

Π3 :(X1, X2) � (Y1, Y2) ⇒ X1 ≤U Y1 and X2 ≤U Y2 by �−relation

⇒ φ(X1) ≤U φ(Y1) and 1 − φ(1 − X2) ≤U 1 − φ(1 − Y2) by AI1

⇒ Π(φ(X1),1 − φ(1 − X2)) ≤U Π(φ(Y1),1 − φ(1 − Y2)) by Π3

⇒ φ−1 (Π(φ(X1),1 − φ(1 − X2))) ≤U φ−1 (Π(φ(Y1),1 − φ(1 − Y2))) by A1

⇒ Πφ
G(X1, X2) ≤U Πφ

G(Y1, Y2) (by Eq.(13)).

Let NI be a strong IvIFN given by Eq.(10) and N
Φ
I its Φ−conjugate function.

Π4 :ΠΦ
(
N

Φ
I (X1,X2)

)
= Φ−1

(
Π(Φ ◦ Φ−1(NI(Φ(X1,X2))))

)
(by Eq. (18))

= Φ−1 (Π(NI(φ(X1,X2)))) = Φ−1 (Π(Φ(X1,X2)) = Π(X1,X2) (by Π4)

The new results follow from Proposition 4 and Theorem 1.

Corollary 2. In conditions of Proposition 4 and also considering φ-
representable IvA given by Eq.(14), we can express Eq.(18) as follows:

ΠΦ(X1,X2) =
(
Πφ(X1,X2),Πφ(X1,X2)

)
. (19)

Corollary 3. Let Φ be a φ-representable automorphism in Aut(Ũ) and I(J) :
Ũ

2 → Ũ be the corresponding φ-conjugate operator related to a (co)implication
I(J) : U2 → U, verifying the conditions of Theorem 1. And, let N

Φ be a strong
φ-conjugate IvFN negation. A function ΠN,Iφ(ΠN,Jφ) : Ũ → U given by

ΠΦ
N,I(X1,X2) = N

Φ(IΦ(NS(X2),X1)) (20)
(
ΠΦ

N,J(X1,X2) = J
φ(NΦ(NS(X2),NΦ(X1))

)
. (21)

is an A−IvGIFIx(N) whenever ΠN,I(ΠN,J) : Ũ → U is also a A−GIvIFIx(N).
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Example 3. Consider IRC and related Φ-conjugate construction ΠΦ
NS,JRC

given by
Eq.(18). For a φ-representable IvIA, taking φ(X) = Xn and n as an integer
non-negative integer, we have the following:

ΠΦ
NS,IRC(X1,X2)=

[
n

√
(1 − X

n

1 )(1 − X2)n; n
√

(1 − Xn
1 )(1 − X2)n

]
. (22)

4 Interval-Valued Intuitionistic Fuzzy Entropy

This section generalizes results from [7, Definition 2] also discussing properties
related to the Atanassov’s interval-valued intuitionistic fuzzy entropy (A-IvIFE)
which are obtained by action of an interval-valued aggregation of A-GIvIFIx.

Definition 4. An interval-valued function E : AI → U is called an A-IvIFE if
E verifies the following properties:

E2: E(AI) = 0 ⇔ AI ∈ A;
E2: E(AI) = 1 ⇔ MAI

(x) = NAI
(x) = 0, ∀x ∈ χ;

E3: E(AI) = E(AIc);
E4: If AI �

Ũ
BI then E(AI) ≥U E(BI), ∀AI , BI ∈ AI .

Now, main properties of A-IvIFE obtained by A-GIvIFI are studied [15].

Theorem 2. Consider χ = {x1, . . . , xn}. Let M : Un → U be an automorphism,
N be a strong IvFN and Π ∈ Aut(Ũ). A function E : AI → U given by

E(AI) = M
n
i=1Π(AI(xi)),∀xi ∈ χ, (23)

is an A-IvIFE in the sense of Definition 4.

Proof. Let AIc be the complement of AI given by Eq.(11). For all xi ∈ χ and
AI , BI ∈ AI , we have that:

E1 : E(AI) = 0 ⇔ M
n
i=1Π(AI(xi)) = 0. By M1, E(AI) = 0 ⇔ MAI

(xi) +
NAI

(xi) = 1, ∀xi ∈ χ. Then, by Π2, E(AI) = 0 ⇔ AI ∈ A.
E2 : E(AI) = 1 ⇔ M

n
i=1Π(AI(xi)) = 1. By M1, E(AI) = 1 ⇔ MAI

(xi) +
NAI

(xi) = 0, meaning that MAI
(xi) = NAI

(xi) = 0.
E3 : E(AI)c = M

n
i=1Π(AIc(xi)) = Π(NI(X1,X2)). By Π3, the following holds

E(AI)c = Π(X1,X2). Concluding, E(AI)c = E(AI).
E4 : If AI �

Ũ
BI then AI(xi) �

Ũ
BI(xi). Based on Π3, it holds that

Π(BI(xi)) ≤U Π(AI(xi)). By M3, we obtain that M
n
i=1Π(BI(xi)) ≤U

M
n
i=1Π(BI(xi)). As conclusion, E(AI) ≥U E(BI).

Therefore, Theorem 2 is verified.

Proposition 5. Consider χ = {x1, . . . , xn}. Let M : Un → U be an IvA, N be
a strong IvFN and ΠN,I(ΠN,J) : Ũ→U is A-GIvIFIx(N) given by Eq.(15). Then,
for all xi ∈ χ, an A-IvIFE E : AI → U can be given by

EΠN,I
(AI)=M

n
i=1ΠN,I(AI(xi))

(
EΠN,I

(AI)=M
n
i=1ΠN,J(AI(xi))

)
. (24)
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Proof. Straightforward Theorems 1 and 2.

Corollary 4. Consider N = NS, A-GIvIFIx (NS) ΠN,I given by Eq.(15). Then,
by taking AI(xi) = (MAI

(xi), NAI
(xi)) = (X1i,X2i) for all xi ∈ χ, an A-IvIFE

E : AI → U which is given in Eq.(24) can be expressed as

EΠN,I
(AI)=M

n
i=1 (NS(I(NS(X2i),X1i))

(
EΠN,J

(AI)=M
n
i=1J(X2i,NS(X1i)

)
. (25)

Proof. Straightforward Proposition 5 and Theorem 1.

Example 4. By taking the arithmetic mean as an aggregation operator, IRC

in Eq.(4) and related IvIFIx given in Eq.(18). Let AI be an IvIFS defined
by pairs (X1i,X2i) ∈ Ũ, for all xi ∈ χ, an IvIFE as EΠNS,IRB

(X1i,X2i) =
1
n

∑n
i=1 NS(IRB(NS(X2i),X1i) can be given as follows:

EΠNS,IRB
(X1i,X2i)=

1
n

n∑

i=1

[1−X2i−X1i+X2iX1i, 1−X2i−X1i+X2iX1i]. (26)

4.1 Relationship with Intuitionistic Index and Conjugate Operators

Conjugation operator and duality properties related to generalized Atanassov’s
Intuitionistic Fuzzy Index are reported from [10].

Proposition 6. Consider χ = {x1, . . . , xn} and Φ ∈ Aut(Ũ) a φ-representable
A-IvIFA given by Eq.(13). When Π is A − GIvIFIx(N), an A-IvIFE is a func-
tion E

Φ : AI → U defined by

E
Φ(AI) = M

φn

i=1Π
φ(AI(xi)),∀xi ∈ χ. (27)

Proof. Based on Eqs.(12) and (13), the following holds:

E
Φ(AI(xi)) = E

Φ(AI) = φ−1(E(φ(l
Ũ
(AI(xi))),1 − φ(1 − r

Ũ
(AI(xi)))

= φ−1
(
M

n
i=1(φ ◦ φ−1)Π(φ(l

Ũ
(AI(xi))),1 − φ(1 − r

Ũ
(AI(xi))

)

= φ−1
(
M

n
i=1(φ(Πφ(AI(xi)))

)
= M

φn

i=1Π
φ(AI(xi))

Figure 1 summarizes the main results related to the classes of A-GIvIFIx(N)
and A-IvIFE denoted by C(Π) and C(E), respectively. This A-IvIFE is obtained
not only from generalized IvIFIx [4] but also from dual and conjugate operators.

Proposition 7. Let Φ be a φ-representable automorphism in Aut(Ũ) and I(J) :
Ũ

2 → Ũ be the corresponding φ-conjugate operator related to a (co)implication
I(J) : U2 → U, verifying the conditions of Theorem 1. Additionally, let NΦ be a
strong φ-conjugate IvFN negation and M : Un → U be an aggregation function.
Then, for A ∈ A, the functions EN,I,E

Φ
N,I(EN,I,E

Φ
N,I) : A → U given by

EN,I(A)(xi) = M
n
i=1 N(I(1 − NAI

(xi),MAI
(xi))), (28)

E
Φ
N,I(A)(xi) = M

φn

i=1 N
φ(Iφ(1 − NAI

(xi),MAI
(xi))); (29)

EN,J(A)(xi) = M
n
i=1 J(NAI

(xi),1 − MAI
(xi)) (30)

E
Φ
N,J(A)(xi) = M

φn

i=1 J
φ(NAI

(xi),1 − MAI
(xi)). (31)

express an interval-valued Atanassov’s intuitionistic fuzzy entropy.
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Fig. 1. Conjugate construction of A − GIFIx(N) and A − IFE on Aut(Ũ)

Proof. Straightforward from Proposition 6.

Example 5. By Eqs.(28) and (26), an IvIFE expression is obtained as follows:

E
Φ
NS ,IRB

(A)(xi) =
1
n

n∑

i=1

[
n

√
(1 − X

n

1i)(1 − X2i)n; n
√

(1 − Xn
1i)(1 − X2i)n

]
.(32)

4.2 Preserving Fuzzyness and Intuitionism Based on IvIFE

Based on [12], assuming that χ = {u}, A1 = {(u, [0.1, 0.2], [0.3, 0.4])} and A2 =
{(u, [0.2, 0.3], [0.4, 0.5])} in order to calcule the entropies by equations below

EY (A) =
1
n

n∑

i=1

[√
2 cos

μA(xi) + μA(xi) − νA(xi) − νA(xi)
8

π − 1]
1√

2 − 1
(33)

EG(A) =
1
n

n∑

i=1

cos
|μA(xi) − νA(xi)| + |μA(xi) − νA(xi)|

8
π. (34)

Thus, E(A1) and (E(A2)) contains the difference between the membership and
non-membership degrees related to the hesitancy degree. However, despite the
differences, the same value for related IvIFEs are matched, making impossible
to distinguish the fuzziness and intuitionism of these two cases. Intuitively, it
is easy to observe that A1 is more fuzzy than A2, meaning that πA1 ≥ πA2 .
However, this cannot be seen by using the above Eqs.(33) and (34). So, a more
sensitive definition of IvIFE is introduced in order to deal with this problem.

In our proposed methodology, we calculate the related IvIFEs by using
Eqs.(26) and (32) together with corresponding IvIFIx given by Eqs.(18) and (22).
See these results presented in 1st and 2nd columns of Table 1 when the inputs are
given as A1 and A2. Since χ is singleton IvIFS, the resulting hesitant degree and
corresponding entropy measure coincide. Additionally, it is possible to naturally
preserve properties of related interval entropy, meaning that IvIFE is an order
preserving index, by including IFE. Moreover, taking A3 = [0.2, 0.2], [0.3, 0.3]
and A4 = [0.3, 0.3], [0.4, 0.4] as inputs, the entropy values obtained with the
degenerate intervals related to membership and non-membership degrees are
included in the interval entropy obtained with non-degenerated interval-valued
inputs. See these results in the 3rd and 4th columns of Table 1.
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Table 1. IvIFIxs and IvIFEs related to IvIFSs from A1 to A4IvIFSs.

IvIFIx A1 A2 A3 A4

Π(Ai) = EΠ(Ai) [0, 48; 0, 63] [0, 35; 0, 48] [0, 56; 0, 56] [0, 42; 0, 42]

Πφ(Ai) = E
φ
Π(Ai) [0, 5879; 0, 6965] [0, 4769; 0, 5879] [0, 4704; 0, 4704] [0, 3276; 0, 3276]

5 Conclusion

The generalized concept of the Atanassov’s interval-valued intuitionistic fuzzy
index was studied by dual and conjugate construction methods. We also extend
the study of Atanassov’s intuitionistic fuzzy entropy based on such two construc-
tors. Further work considers the extension of such study related to properties
verified by the A−GIvIFIx(N) and A− IvIFE and also the use of admissible
linear orders to compare the results of the interval entropy, since, in some cases,
the values of interval entropy cannot be compared using the Moore’s method.
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9. Costa, C., Bedregal, B., Dória Neto, A.: Relating De Morgan triples with
Atanassov’s intuitionistic De Morgan triples via automorphisms. Int. J. Approx.
Reason. 52, 473–487 (2011)



Interval Version of Generalized Atanassov’s Intuitionistic Fuzzy Index 229

10. Costa, L., Matzenauer, M., Zanottelli, R., Nascimento, M., Finger, A., Reiser, R.,
Yamin, A., Pilla, M.: Analysing fuzzy entropy via generalized Atanassov’s intu-
itionistic fuzzy indexes. Mathw. Soft Comput. 42, 22–31 (2017)

11. Cornelis, G., Deschrijver, G., Kerre, E.: Implications in intuitionistic fuzzy and
interval-valued fuzzy set theory: construction, classification and application. Int.
J. Approx. Reason. 35, 55–95 (2004)

12. Jing, L., Min, S.: Some entropy measures of interval-valued intuitionistic fuzzy sets
and their applications. Adv. Model. Optim. 15, 211–221 (2013)

13. Lin, L., Xia, Z.: Intuitionistic fuzzy implication operators: expressions and proper-
ties. J. Appl. Math. Comput. 22, 325–338 (2006)

14. Luca, A., Termini, S.: A definition of nonprobabilistic entropy in the setting of
fuzzy sets theory. Inf. Control 20, 301–312 (1972)

15. Miguel, L., Santos, H., Sesma-Sara, M., Bedregal, B., Jurio, A., Bustince, H.: Type-
2 fuzzy entropy sets. IEEE Trans. Fuzzy Syst. 25, 993–1005 (2017)

16. Moore, E.: Interval arithmetic and automatic error analysis in digital computing.
Stanford University (1962)

17. Reiser, R.H.S., Dimuro, G.P., Bedregal, B.C., Santiago, R.H.N.: Interval valued
QL-implications. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol.
4576, pp. 307–321. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73445-1 22

18. Reiser, R., Bedregal, B.: Correlation in interval-valued Atanassov’s intuitionis-
tic fuzzy sets - conjugate and negation operators. Int. J. Uncertain. Fuzziness
Knowl.Based Syst. 25, 787–820 (2017)

19. Zhang, Q., Xing, H., Liu, F., Ye, J., Tang, P.: Some new entropy measures for
interval-valued intuitionistic fuzzy sets based on distances and their relationships
with similarity and inclusion measures. Inf. Sci. 283, 55–69 (2014)

https://doi.org/10.1007/978-3-540-73445-1_22
https://doi.org/10.1007/978-3-540-73445-1_22


Fuzzy Ontologies: State of the Art Revisited

Valerie Cross(&) and Shangye Chen

Computer Science and Software Engineering,
Miami University, Oxford, OH 45056, USA

crossv@miamioh.edu

Abstract. Although ontologies have become the standard for representing
knowledge on the Semantic Web, they have a primary limitation, the inability to
represent vague and imprecise knowledge. Much research has been undertaken
to extend ontologies with the means to overcome this and has resulted in
numerous extensions from crisp ontologies to fuzzy ontologies. The original
web ontology language, and tools were not designed to handle fuzzy informa-
tion; therefore, additional research has focused on modifications to extend them.
A review of the fuzzy extensions to allow fuzziness in ontologies, web lan-
guages, and tools as well as several very current examples of fuzzy ontologies in
real-world applications is presented.

Keywords: Ontologies � Fuzzy logic � Web ontology language
OWL � Fuzzy formal concept analysis � Ontology tools � Semantic web

1 Introduction

An ontology is a shared explicit specification of a conceptualization formalizing
concepts pertaining to a domain, properties of these concepts, and relationships existing
between the concepts [1]. An ontology is the main knowledge representation method
for describing information on the Semantic Web and promotes the inclusion of
semantic content in web pages. Ontologies are both understandable to humans and
expressed in a machine-readable format using a web ontology language. Being
understandable to humans is important to representing knowledge, but one capability
initially missing in ontologies is the ability to represent and manage imprecision and
vagueness that often exists in domain knowledge as understood by humans.

This need to handle uncertainty in ontologies motivated researchers in knowledge
representation to propose fuzzy ontologies. With fuzzy ontologies, the ability is pro-
vided to model real world environments that naturally include uncertainty with fuzzy
set theory and mathematics and through “computing with words” [2], that is, the use of
linguistic terms represented by fuzzy sets. This ability is extremely important to
knowledge being extracted from human experts since they often are more comfortable
with the use of inexact, fuzzy linguistic terms rather than precise numbers. Besides
human imprecision in domain knowledge modeling, some concepts themselves cannot
be precisely model and require a formalism to allow for a vague specification and yet
still require the ability to be used in a reasoning process. Other factors also contribute to
the need for modeling uncertainty in ontologies. For example, a wide variety of
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knowledge sources may require the integration of diverse inexact specifications in
modeling the domain knowledge. Although many different logical formalisms have
been proposed to extend ontologies for handling uncertainty, this paper addresses only
extensions using type-1 fuzzy sets.

The more recent research in ontological knowledge representation for the Semantic
Web has had a proliferation of approaches to defining, constructing and using fuzzy
ontologies. Numerous places exists where uncertainty can occur in the specification of
a fuzzy ontology since there are many ways that domain knowledge can contain
uncertainty and vagueness from human description. This paper outlines some of the
progression of the development of fuzzy ontologies from simplest to the more complex
and provides examples illustrating the fuzzy extensions. It is hoped that this paper can
provide readers an introduction and an a more intuitively understanding of fuzzy
ontology development so that formalisms used in other fuzzy ontology research papers
which are referenced further in the paper are better understood. Section 2 examines
where and why an ontology becomes a fuzzy ontology and how “fuzzy” is the
ontology, that is, can only certain features of the ontology be allowed to have uncer-
tainty. Once an ontology designer has identified places and/or levels where uncertainty
needs to be specified what languages and tools are available to specify this uncertainty
in the fuzzy ontology. Section 3 discusses current fuzzy languages and tools to describe
fuzzy ontologies and examples of the different approaches to actually building a fuzzy
ontology. Several very current uses of fuzzy ontologies in a wide variety of domains
ranging from medical and transportation and for different tasks such as information
retrieval and opinion-mining of social media platforms are described in Sect. 4. Sec-
tion 5 summarizes and discusses some limitations of fuzzy ontologies that hinder them
from becoming more widespread and presents areas for future work to increase their
use.

2 What Makes an Ontology Fuzzy?

The answer to the question varies depending what the research on fuzzy ontologies is
focused on. At what place and for what purpose is the uncertainty, imprecision or
vagueness introduced? The simplest answer is given as “a fuzzy ontology is simply an
ontology which uses fuzzy logic to provide a natural representation of imprecise and
vague knowledge and eases reasoning over it” [3]. This vague definition indicates no
universal standard definition of fuzzy ontologies exists since the needs of different
applications require different fuzzy extensions to an ontology.

There are many places where fuzzy extensions may be made since an ontology has
many components. An ontology consists of concepts C, instances of those concepts I,
hierarchical or taxonomic relationships between concepts H, attributes specified in
defining concepts A, properties that are nonhierarchical relationships between concepts
P, and axioms that must hold for the concepts X. Some of these components may not be
present; for example, simple ontologies, do not have axioms specified. All these
components are similar to those found in an object-oriented database. Research on
fuzzy object oriented databases previously addressed many of these issues when fuzzy
extensions were proposed to object oriented databases [43]. The natural fuzzy
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extensions made to ontologies to produce fuzzy ontologies parallel those seen in fuzzy
object oriented databases.

One of the earliest and instinctive ways to declare an ontology as fuzzy is in the
definition of the concept hierarchy, that is, in the taxonomic or hierarchical relation-
ships H such as equivalence, generalization, specialization, and part of. Here the
purpose for introducing fuzziness is that a concept may not be a crisp subconcept of
another concept. The concepts themselves are not fuzzy. Initial proposals for fuzzy
ontologies centered on subjective judgments of membership degrees in defining the
concept hierarchy. For example, suppose a concept of “vehicle” has been defined and a
subconcept of “bicycle” is defined. Then a domain expert’s subjective judgment might
be that a “bicycle” has a 0.8 membership with respect to a “vehicle.” Here what is
fuzzy is the hierarchical structure of the ontology. Typically, this approach is more
focused on an intensional ontology such as a vocabulary structure and there is no actual
extensional ontology, i.e., no instances for the ontology.

Another approach used in terminological ontologies first assumes an initial crisp
ontology hierarchy as a starting point and then uses information obtained from a data
source such as a corpus to assist in determining membership degrees between concepts
in the ontology hierarchy. An example of this approach can be found in [4] where an
ontological terminology is created and the hierarchical relationships are interpreted as
“narrower-than” and “broader-than”. A fuzzy binary relation is naturally used to
specify the fuzziness between two ontological concepts. Given a set of domain con-
cepts C, a set of fuzzy binary relations R is defined for the ontology. Each fuzzy binary
relation rC in RC is of the form rC: C x C ! dC, where dC in [0, 1] is the strength of the
relationship between the two concepts. The relationship could be hierarchical or
associative; for example, the concept ‘purchase’ and the concept ‘bill’ may have an
associative relationship.

Another very instinctive place for fuzziness is simply using the notion that a fuzzy
concept is specified by a fuzzy set of instances that belong to it. Each instance has a
membership degree in the fuzzy concept. Given a set of domain concepts C and a set of
instances I, a set of fuzzy sets FC is defined for the ontology. Each element in FC is a
fuzzy concept that has its own membership function ufc where fc is the fuzzy concept
label. The membership function takes the form ufc: I ! dfc, where dfc is the mem-
bership degree in [0, 1] of the instance in the fuzzy concept. Again this is nothing more
than using the natural definition of a fuzzy set for defining a fuzzy concept, i.e., the
instances of the fuzzy concept have a degree of membership in [0, 1]. The complicating
factor is how to determine these membership degrees. As before, a domain expert
might specify the membership degree subjectively. For example, the fuzzy concept
‘likeable person’ could be created that contains person instances but with a membership
degree based on how likeable the rater considers that person.

A more formal method may be used to determine the instance’s membership degree
in the fuzzy concept such as specifying what attributes or properties specified for the
concept are the basis for the membership function defining the fuzzy concept [44]. For
example, using the attribute age, a fuzzy concept ‘old person’ might be defined as those
instances that are crisply people but that have an age that is considered old. The
membership degree in the fuzzy concept ‘old person’ is then determined using a
comparison or fuzzy set similarity measure [5] between the fuzzy linguistic term ‘old’
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and the person’s age. Here if the value of the attribute age is precise, the membership
degree of that precise value in ‘old’ can be used to specify the membership degree of
that instance of person in the fuzzy concept ‘old person’. In this example, there is no
fuzziness between the concept ‘person’ and ‘old person’ since an ‘old person’ is crisply
a ‘person’, i.e., no fuzziness exists in the taxonomic relationship between the two
concepts. The fuzzy extension is needed to define the fuzzy concept ‘old person’ only.

Some researchers have described a fuzzy concept as a concept with attributes
A and/or properties P that may have fuzzy set values. In the previous example for ‘old
person’, the ‘person’ concept itself might be defined to have an attribute age, which in
addition to precise values, permits fuzzy set values such as ‘middle-age’ or ‘old’. Other
researchers, however, might not consider ‘person’ a fuzzy concept just because it has
attribute such as age that may have a fuzzy set or fuzzy linguistic term for its value.
That fuzzy set value may still be compared to the fuzzy linguistic term ‘old’ to
determine its similarity degree. That similarity degree then specifies the membership
degree of the instance of the concept ‘person’ whose age is, for example, ‘middle-age’
for belonging to the fuzzy concept ‘old person’.

A property for an instance of a concept has a value, which is a set of instances that
have a non-taxonomic relationship to that instance. For example, the property ‘frien-
dOf’ for an instance of ‘person’ has links to all instances of ‘person’ that are considered
friends of that instance. Concept properties may allow fuzzy sets for their values. For
example, the property ‘friendOf’ for an instance of ‘person’ along with the link may be
associated the membership degree of this instance in the fuzzy property ‘friendOf’.
This membership degree most likely is a subjective membership degree indicating the
strength of the friendship. A membership function, however, could be defined based on
other attribute or property values contained within the instances themselves, for
example, number of years knowing the person.

Fuzzy extensions become more complicated when fuzziness is introduced both in
the hierarchical structure of the ontology and in defining concepts, i.e., a fuzzy hier-
archy and fuzzy concepts in the same ontology. One issue becomes defining the
interaction between these two different places of fuzziness. For example, consider a
fuzzy concept N which is defined as a fuzzy subconcept of the fuzzy concept M with a
strength of d in the hierarchical relation. A generalization principle for fuzzy extensions
to the hierarchy of an ontology is that instance i in N with membership degree uN(i)
requires uN(i) � uM(i). The instance i cannot belong more to the subconcept than it
belongs to the superconcept. The issue is the fuzzy operation used to determine the
membership degree of i in the fuzzy concept M; that is, how do d, the strength of the
hierarchical relation between N and M, and uN(i) interact in the calculation of this
membership degree uM(i).

Fuzzy extensions to axioms are necessary to allow fuzziness in the various places
needed within the ontology. In order to have fuzzy concepts, properties and individ-
uals, the axioms must allow specifying this possibility. The relationships among these
concepts, properties and individuals use the fuzzy extensions to the axioms. Descrip-
tion logics (DL) is a family of logics for representing structured knowledge that is
concept-based. DL has a well-defined model-theoretic semantics [6] and has as its basis
Attributive Language with Complement (ALC). To allow the ontology hierarchy to
permit fuzziness, fuzzy extensions to the axioms defining the ontology hierarchy are
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necessary. The first introduction of fuzziness to DL was used only in terminological
ontologies and concept knowledge [7]. This early proposal was followed up with
simple fuzzy extensions to ALC [8, 9]. To handle concept instances, that is, concrete
instances knowledge, not simply concept definitions, numerous researchers proposed
fuzzy extensions to produce more sophisticated fuzzy DLs.

The first tableaux based reasoning algorithm for a fuzzy⟵DL uses specifically
min for conjunction, max for union, and 1 − x for negation, i.e., the standard fuzzy
operators and the Kleene-Dienes implication operator [10]. As previously discussed,
many places exist where fuzziness may be needed in an ontology. Researchers have
focused on fuzzy extensions dependent on the specific need, for example, fuzzy con-
cept inclusions [11], fuzzy quantifiers [12], fuzzy modifiers [13], fuzzy nominals and
fuzzy comparison expressions [14]. Due to space limitations, this paper is unable to
review the numerous proposals for fuzzy extensions to DL and tableau reasoning
methods. A more detailed discussion is presented in [15]. An earlier survey on fuzzy
DL is given in [16]. A very recent survey on fuzzy description logics in [17] presents a
clear explanation of a prototypical fuzzy DL but does not provide an intuitive expla-
nation of the natural fuzzy extensions to ontologies. In [18] fuzzy DLs are classified
into four different categories that are described based on their usage or their properties,
for example, their tractability. A more recent presentation on fuzzy reasoners can be
found in [45].

Since numerous researchers have introduced fuzziness in a wide variety of loca-
tions within an ontology, the simplest definition of a fuzzy ontology is an ontology that
depends on fuzzy set theory and logic in any needed ontology location to express
uncertainty that also can take many different forms such as vagueness, imprecision, or
degree of truth within an ontological representation.

3 Approaches to Constructing and Managing a Fuzzy
Ontology

In order to use fuzzy ontologies, a means of constructing and representing them for real
world applications is required. First, the primary representation languages for fuzzy
ontologies are summarized mostly in historical order. Then examples of tools created to
develop and manage fuzzy ontologies are presented. Finally various approaches to
building and manipulating fuzzy ontologies are examined.

3.1 Representation Languages

The Semantic Web has had numerous proposals and iterations for an ontology repre-
sentation language over the years. The earlier accepted standard languages are
Resource Description Framework (RDF) and its RDF Schema (RDFS) languages. RDF
and RDFS have been used mostly for creating vocabularies in hierarchically structured
organization. Early attempts extended the syntax and semantics to include fuzzy
information for these languages such as in [19] where the focus is representing
uncertainty in the trust of RDF statements and in [20] where they introduced fuzzy
extensions for RDFS. Later the semantics of fuzzy logic is more formally introduced
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for the purposes of querying over RDF triples [21] with the use of t-norms and
r-implications. The natural extension for this feature is associating a truth degree with
an RDF triple, for example, (Boise rdf:type StateCapital):0.9. Since the World Wide
Web Consortium (W3C), however, later recommended the web ontology language
OWL [22] as its standard, much research has focused on proposing extensions to OWL
for representing a fuzzy ontology.

An easy approach for fuzzy extensions is to add to the current capabilities of OWL
to specify vague information without modification of the original OWL language. The
fuzzy OWL language simply adds to the same syntax of the crisp OWL language. The
additions are only needed to specify, for example, extensions specifying membership
degrees of instances in fuzzy concepts and for the definition of fuzzy concepts. One of
the early approaches [23] FOWL began with fuzzy DL and created fuzzy constructors,
axioms, and constraints by mapping fuzzy terms to fuzzy DL. It defines fuzzy classes,
fuzzy relationships and based on the fuzzy DL ALC and extends some OWL axioms.
This proposal, however, only presented a theoretical analysis and did not provide any
algorithms for reasoning algorithm. A fuzzy relation is also specified as simply a set of
triples {<u, v, lR(u, v)> | u 2 U, v 2 V} where the lR(u, v) is the membership degree
of relation R between u and v. Another early but incomplete proposal [24] is fuzzy
OWL which provided the RDF/XML syntax of several axioms in fuzzy OWL
language.

A more difficult approach to introduce handling fuzzy data in OWL is to design and
implement fuzzy extensions to the OWL language itself. This approach actually
modifies the structure and semantics of the language. Since OWL has DL as its basis
and numerous fuzzy DL versions exist based on the selected DL, diverse fuzzy
extensions to OWL exist using the various fuzzy DLs. Fuzzy OWL was proposed in
[25] and used the fuzzy DL f-SHIN which is a more expressive DL as its basis for
representing fuzzy information. f-OWL [26] resulted from addressing problems related
to modifying the OWL language to handle fuzzy extensions. The f-OWL language
augmented OWL instance axioms by allowing degrees for fuzzy instance relations. In
addition, f-OWL provided model-theoretic semantics and made syntactic modification
to both the abstract and RDF/XML syntax. Then f-OWL further made fuzzy extension
to allow fuzzy nominal and fuzzy subsumption. These researchers also studied other
fuzzy extensions for role range axioms, disjointness axioms and functional role axioms.

With the introduction OWL 2, researchers again proposed adding fuzzy extensions
to OWL 2. The focus initially was to minimize changes to OWL 2 itself and to use
features of the language to incorporate fuzzy logic. In one early approach [27] instead
of changing OWL 2, an ontology was created to handle fuzzy concepts and was
referred to as FuzzyOwl2Ontology. The objective of FuzzyOwl2Ontology was to
define fuzzy extensions but to specify them through an ontology definition and not by
making modifications to OWL 2 itself. The FuzzyOwl2Ontologyhas 8 main classes
representing different elements of a fuzzy ontology with each class having several
subclasses. This approach has numerous advantages such as easy extensions for other
fuzzy OWL 2 statements and easy development of a fuzzy ontology using standard
OWL editors.

Continuing with this approach, a later proposal in [28] identifies the syntactic
differences that must be managed in a fuzzy ontology and provides a specific method to
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represent fuzzy ontologies using OWL 2 annotation properties. Annotation properties
represent the features of the fuzzy ontology that cannot be directly specified in the
OWL 2 ontology. Fuzzy concepts denote fuzzy sets of individuals. Fuzzy roles denote
fuzzy binary relations and five different fuzzy data types such as standard trapezoidal
(Z) and the triangular membership functions are provided. Using this approach, a fuzzy
ontology could also be created using OWL 2 editors and have reasoning performed on
it with OWL 2 reasoners. More research followed on how best to include aggregation
operators and resulted in a method handle aggregation operators in fuzzy OWL [29].

3.2 Tools for Creating Fuzzy Ontologies

As discussed, the primary means of representing fuzzy ontologies is the use of a
“fuzzy” OWL or OWL 2 language. The form of this language, that is, whether the
language simply uses features of the original language to specify fuzzy information or
actually extends the language with new capabilities to represent fuzzy information,
determines the requirements for the tools used in constructing and managing a fuzzy
ontology. With the simple approaches, standard ontology editors such as Protégé can
be used.

An early effort to add fuzzy logic handling into Protégé is Fuzzy Protégé [30], built
as a plug-in for Protégé 3.3.1 and released over ten years ago. Fuzzy Protégé extended
Protégé to permit defining fuzzy concepts and fuzzy roles or relations and their
instantiations. The two top level additional metaclasses are Fuzzy-Class and Fuzzy-
Relation. For each of these only parameterized trapezoidal, triangular, L-shoulder, and
R-Shoulder membership function classes are defined. The functionality provided is
computing of instance membership degree of a crisp attribute value in the fuzzy set
value used to define a fuzzy concept. For example, ‘young person’ can be defined as
fuzzy concept with a fuzzy set value for the attribute age in the crisp concept ‘person’.
The person’s age in the membership function for ‘young’ is then used to determine that
person’s membership in ‘young person’. In addition a query can be made to determine
those persons meeting the fuzzy condition of young person to a specified membership
degree, that is, threshold degree that must be met. An advantage of Protégé is its full
support of OWL 2 and permits extensions easily through its plug-in architecture.
Knowledge-based tools and applications can be built using a Java-based Application
Programming Interface (API). To build fuzzy ontologies using OWL 2 annotation
properties as proposed in [28], the researchers also developed a Protégé plug-in. First the
non-fuzzy part of the ontology is created using Protégé, and then the user can trans-
parently use the FuzzyOWL tab to build the fuzzy information using OWL 2 annotation
properties. This tab can be used to create fuzzy datatypes, fuzzy modified concepts,
weighted concepts, weighted sum concepts, fuzzy nominals, fuzzy modifiers, fuzzy
modified roles, fuzzy axioms, and fuzzy modified datatypes.

3.3 Construction Methods

The construction of ontologies differ based on the data sources used, the complexity or
level of details needed in the ontology, and the process or algorithm applied on the data
sources. An examination of the early approaches to constructing ontologies can be
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found in [31]. The kinds of data sources include simple text based documents, dic-
tionaries, XML documents, relational database models, object-oriented database
models, UML models and others depending on the application.

Early on, the construction focused on creating simple terminological ontologies, a
hierarchical vocabulary with fuzziness introduced as a strength of the association
relations between the term concepts. As previously discussed, the work in [4] repre-
sents a fuzzy terminological ontology where the term relationships “narrower-than” and
“broader-than” may be fuzzy since the degree of strength is automatically determined
from information directly obtained from a corpus. This fuzzy ontology is used to refine
a user’s query and is incorporated in a domain-specific search engine for intelligent text
information retrieval. Abstracts of research papers are manually tagged. The tagging
step uses items such as the article’s title, body of the abstract and keywords provided by
the authors. A fuzzy ontology is constructed from the collection of keywords by
creating the hierarchy from co-occurrence measures. The shortcoming of this process is
relying on user judgment for determining the relevance of articles to user queries.

Since the process of creating an ontology is time-consuming much research have
proposed methods of automating and/or semi-automating this process. One approach
that has been much researched is the use of formal concept analysis (FCA) [32, 33].
FCA is an unsupervised learning method commonly applied for knowledge discovery
that groups data into formal concepts which comprise of two components, the set of
instance objects referred to as the formal concept’s extent, and the set of attributes
describing the objects referred to as its intent. Fuzzy formal concept analysis (FFCA) is
a natural extension of FCA and it use in developing fuzzy ontologies is a predictable
approach that follows. The main difference is for FFCA an attribute has a degree of
membership when describing the object. For FCA, an attribute has a crisp membership
when describing an object, i.e., the membership degree is either a 0 or a 1.

One of the earliest approaches to use FFCA is the Fuzzy Ontology Generation
Framework (FOGA) [34]. An issue with the use of FFCA is the manual assignment of
labels to the concepts, attributes and relations which necessitates domain experts to
provide expressive labels for the ontology components. FOGA is also not able to
produce fuzzy relational concepts from unstructured or semi-structured text documents.
Others have produced fuzzy formal contexts but then use an a-cut on them to produce a
crisp formal context [35, 36]. Only those entries in the fuzzy formal context with a
membership degree greater than or equal to a are kept and converted to a crisp entry of
1. FCA is used on the crisp context to create the formal concepts and its lattice
structure. This method, referred to as the one-sided a-cut thresholding approach,
because of its simplicity, has been used as the basis of research to create fuzzy
ontologies from fuzzy formal contexts.

The crisp concept lattice is modified to add fuzziness back in by using several fuzzy
operators on the formal context. The methods used to re-introduce fuzziness, however,
vary somewhat. One simple approach in [35] adds fuzziness by determining each
object’s membership in the extent as the minimum of the membership degrees of the
attributes that the object possesses in the intent of the concept. Although the work in
[36] uses the same method of creating the fuzzy formal context, instead of using
clustering methods on the fuzzy formal concepts to create the hierarchy of the fuzzy
ontology, it uses a direct transformation method. As part of constructing the hierarchy,
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it adds a membership degree between child and parent concepts calculated using a
fuzzy set similarity measure between the fuzzy set extents of the child and parent
concepts.

The research in [37] differs from the one-sided a-cut thresholding approach since it
does not create a crisp concept lattice from the fuzzy formal context. The method
directly uses the fuzzy formal context to create the fuzzy formal concepts from all the
fix-points produced using a fuzzy closure operator over a finite chain of truth degrees.
Both fuzzy extents and fuzzy intents defined a fuzzy formal concept. This aspect differs
from the one-sided a-cut approach which has fuzzy extents only. The structure of the
fuzzy concept lattice is determined by the partial order on the set of all fixpoints. This
research only produces the fuzzy concept lattice and does not produce a resulting fuzzy
ontology. Further research in [38] studies the fuzzy closure approach in order to
compare the fuzzy concept lattices it produces to those produced by the much simpler
a-cut approach.

Some researchers prefer to use existing techniques to first develop the crisp
ontology and then follow a methodology to extend the crisp ontology into a fuzzy
ontology. IKARUS-Onto [39], a detailed methodology for extending crisp ontologies
to fuzzy ontologies, provides specific guidelines to correctly detect vague knowledge
within a domain and not confuse different forms of uncertain knowledge such as
ambiguity and inexactness with vagueness. Another objective is the explicit modeling
of vague knowledge using fuzzy elements in a fuzzy ontology as accurately as possible.
This research provides a methodology to take a traditional ontology and convert it into
a fuzzy ontology. Others have presented how crisp OWL ontologies can be automat-
ically enriched with fuzziness [46, 47].

4 Where are Fuzzy Ontologies Currently Being Used?

Current examples of fuzzy ontologies in the past two years and from a variety of
domains and for different tasks include information retrieval with a variation in its
usage for image retrieval, case-based reasoning in the medical domain, and interesting
sentiment analysis in transportation monitoring for a sensor network based traffic
system.

The Semantic Web uses ontologies as its primary means of knowledge represen-
tation. A key task is information retrieval. An early uses of fuzzy set theory is fuzzy
information retrieval; that is, representing documents as a fuzzy set of keywords and
queries as fuzzy sets of relevant terms. A natural application of fuzzy ontologies is
information retrieval as can be seen by one of the earliest proposals for fuzzy
ontologies [4]. Numerous examples exist where systems employ fuzzy ontologies to
improve the performance of a general information retrieval system. Fuzzy ontologies
are also used for specialized domains such as user profiling, medical documents,
multimedia retrieval, industrial documents, and user profiling for retrieval tasks. An
example of a recent use of fuzzy ontologies is for image retrieval [40]. The standard
approach is to annotate images with keywords based on human judgment. The user
queries for images using keywords meeting the user’s requirements. To improve the
efficiency and the query results an ontology is used to resolve semantic heterogeneities.
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The crisp annotation and retrieval methods, however, are limited because the process
uses human perceptions. Fuzzy ontologies, therefore, are used to overcome these
problems to improve the performance of the image retrieval system. The semantic
description of an image is modeled by dividing it into regions. The regions are then
classified into concepts. A combination of concepts create a category. The concepts,
categories and images are linked among themselves with fuzzy link degrees in the
ontology. The retrieved results are ranked based on the relevancy between the key-
words of a query and images.

Ontologies have also been used for case-based reasoning, especially in the medical
domain which is also using fuzzy set theory and logic more and more. The combination
of the two in a fuzzy ontology is a natural fit as a tool to improve performance of a
Knowledge-Intensive Case-Based Reasoning Systems (KI-CBR) [41]. KI-CBR diag-
noses diabetes with a case-based fuzzy OWL2 ontology developed using a fuzzy
Extended Entity Relation (EER) data model. It contains 63 (fuzzy) classes, 54 (fuzzy)
object properties, 138 (fuzzy) datatype properties, and 105 fuzzy datatypes. This fuzzy
ontology contains 60 instance cases. It can be queried using SPARQL-DL. It is accurate,
consistent, and covers terminologies and logic for diagnosing diabetes mellitus.

A fuzzy ontology and inference system [42] for sentiment analysis has as its
domain real-time monitoring of an entire transportation system for mega-cities. Such
systems must intelligently deliver emergency services and provide timely and useful
information to users about city transportation and travel. The system relies on the
information on social network platforms and performs sentiment analysis. Current
conventional ontology-based systems cannot extract vague information from reviews
and often provide inadequate results. The fuzzy ontology contains vague and imprecise
information found on these platforms and aids in monitoring transportation activities
such as accidents, traffic volume, street conditions and closures and city features such
as bus and train stations, bridges, parks, restaurants, and airports. Reviews and tweets
about the features and activities are retrieved and then extraction for feature opinions is
performed. The fuzzy ontology is used to process the feature opinions to determine
transportation and city-feature polarity and to provide a city-feature polarity or opinion
map for travelers. The fuzzy inference layer has four components: fuzzification,
inference, knowledge base and rule base, and defuzzification exist. The fuzzification
specifies membership values for the opinion words. The fuzzy ontology contains the
SWRL rules and linguistic values. Fuzzy inference is applied using these rules with the
fuzzy interval memberships. Five linguistic values (Strongly positive, Positive, Neutral,
Negative and Strongly Negative) exist for each input variable. Defuzzification converts
the fuzzy output into normal terms and provides the result in the form of a value, the
polarity value. The Protégé OWL language has been used to create a prototype system
with the fuzzy ontology and intelligent systems software implemented using Java.

5 Conclusions

This updated review on fuzzy ontologies shows that they are becoming more widely
used as a means of knowledge representation. Many researchers have contributed to
both their theoretical development and practical, real world use. Recent applications of
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fuzzy ontologies demonstrate their advantages for domains where vague, imprecise or
uncertain information must be managed for the application’s success. Current progress
on fuzzy ontology research to enable more advanced uses appears to have slowed
down. Further research needs more tightly integrate fuzzy set theory and logic into
OWL. Better tools for construction and evaluation are essential whether they result
from learning methods or conversion methods from a crisp ontology. Fuzzy ontologies
are proving their usefulness. With more research contributions to make their con-
struction, reasoning with, and use more integrated for practical Semantic Web and
other real world applications, fuzzy ontologies can become the go-to choice for
knowledge representation.
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Abstract. This work proposes a system to detect visual defects in an optical
fiber. Fibers of different types and with different simulated deformations were
used, looking for an approximation of a real case of defect in an optical fiber.
Some continuous fiber patterns were detected in images captured with a
microscopic camera. The identification of these patterns was searched using
different image processing techniques, such as edge detection, line detection and
feature descriptors. In order to classify images of the fibers in good and defective
ones, a fuzzy classifier was used. Experimental results of the algorithm are
shown and is demonstrated that the proposed method helps to detect defects and
classify optical fibers.

Keywords: Image processing � Optical fiber � Fuzzy logic

1 Introduction

The demand for optical fibers has increased rapidly in the last decades due to the
reduction of impurities of the material in the manufacturing process and the use of
better materials. The physical characteristics such as dimensions, immunity to elec-
tromagnetic interference and chemical resistance make it more attractive for industrial
applications [1]. Optical fibers are also recognized as the superior medium for trans-
mitting broadband signals over long distances. The key attribute that allows this per-
formance is its low attenuation, that is, the signals have little loss of power as they
propagate along the optical fiber [2]. To maintain this low attenuation, several factors
must be taken into account, such as environmental and mechanical effects. Some of the
most common effects that cause signal attenuation in fiber are macro and micro cur-
vatures, however, there are no industry standard specifications or test methods for
micro curvatures [2]. It was found that optical fiber need to undergo through an
inspection process before its utilization. Due to the high cost of installation and
maintenance, the industry uses a system that aids in the optical fiber inspection.
However, this system still depends on the operator to judge the state of the fiber.

An image processing algorithm is described in this paper. The algorithm uses, in
order to take a final decision about the quality of the fiber, an intelligent system based
on fuzzy logic. It inspects visually and automatically a segment of fiber optic cable,
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using a microscopic camera, in order to detect deformations and curvatures that can
reduce its performance, since the lateral section length, depth, and surface roughness
have great influence on the sensor sensitivity, hysteresis, and linearity [3]. The algo-
rithm proposed in this paper is novel. As far as we know there are not similar methods
to the one proposed in this paper.

The second section of this paper explains the related work, the third section
explains the materials and methods applied, the forth section relates the results
obtained. Finally, the conclusion is presented.

2 Related Work

After a literature review, was found that this is one of the first works that uses image
processing from an external transversal point of view, in order to detect defects in fiber
optics. One close related work is the Defect Detection, Classification and Quantifica-
tion in Optical Fiber Connectors work, from Shahraray et al. in [4], which visually
inspects the fiber from a transversal perspective. Some close references of the use of
image processing to detect defects in other type of materials such as tubes or ducts
could be found in the work of Sinha and Fieguth [5] on automatic inspection of
underground ducts, in which a technique for inspection is developed using image
recognition. We also have the application developed by Hägele et al. in [6], which
consists in determining the angle of curvature of the fiber through the graphical analysis
of the fiber specular pattern. The contours of the speckles in a region of interest in the
specular pattern are visible by an edge detection algorithm and their quantity is adjusted
in relation to the angle of bending. The work of Xiao-rong et al. in [7], shows us a
Research on the Algorithm about Optical Fiber Parameters Measurement, which
demonstrates a comparison between a developed method and traditional optical fiber
measurement algorithm. There is also the work of Schneider [8] on a methodology to
be applied in the automatic segmentation of defects in welds and pipes radiographic
images, as well as to extract characteristics for the defects recognition.

3 Materials and Methods

The fiber images are obtained with an USB digital microscope thinking of the need for
the fiber to remain extended during the recognition process, due to the constructive
characteristics of the fiber. Images of good quality, clean and fibers with simulated
deformation and micro curvatures were collected. The image processing algorithm is
divided in three parts. In the first part we preprocessed the image using some filters as
Canny, median, etc. The second part we extract the lines using Hough transform and
more characteristics using the features descriptors, SURF and MSER. The third part is
the fuzzy classification with the results of the second part. Figure 1 shows the steps
followed by the image processing algorithm.

Figure 2 shows the experimental setup used for the experimental results, a micro
USB camera and optical fibers of different colors are shown in the figure. The optical
fibers used have been previously deformed in order to simulate the defects, because it
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Fig. 1. Summarized steps of the proposed method.

Fig. 2. Experimental setup: USB camera and optical fibers.
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would’ve required a large amount of fibers, to have sufficient deformed fibers to tune
the algorithm. It was used a microscopical USB Lenovo EasyCamera with 2MP, video
framerate of 30 fps that capture images of 640 � 480. The characteristics of the optical
fiber cables are shown in Table 1.

3.1 Optical Fiber

Optical fibers, in a simplified form, are wires that are directed to a luminous emitting
power of light until the photo detector. They are transparent structures, composed of
two dielectric materials (Fig. 3).

Several factors can cause signals power losses in optical fibers. These factors are
divided into intrinsic and extrinsic. Intrinsic attenuation is a result of fiber inherent
materials. It is mainly caused by impurities in the glass during manufacturing. As
precise as a manufacturing process have become, there is no way to eliminate all
impurities [9]. The extrinsic attenuation is caused mainly by curvatures, which cause
considerable reductions in optical power due to a stress appearing in the region of the
curvature, as a result, refractions begin to happen, as well as signal attenuation. The
curvatures are divided into macro (Fig. 4a) or micro curvatures (Fig. 4b).

The proposed algorithm in this paper deal with macro and micro curvatures. Macro
curvatures are characterized by being curves visible to the human eye. Macro curvature
attenuation occurs when the fiber is curved physically beyond the point at which the
critical reflection angle is exceeded. This attenuation is reversible after the curvatures
are corrected. The critical reflection angle is what determines how much a fiber can
bend before there are signal losses in the fiber.

Table 1. Optical cables used in tests.

Optical cable Single
Mode UT 09/125

Optical cable Multi Mode
62,5/125

Optical cable
Single Mode Drop
Cm 01f

Color Red/green Yellow Blue/light green

Minimum bending radius (installation) 124 mm 90 mm 30 mm
Minimun bending radius (post
installation)

62 mm 60 mm 15 mm

External diameter 6.2 mm 6.0 mm 5.0 mm

Fig. 3. Optical fiber. Font: (Basics of fiber optics [11])

246 M. Mafalda et al.



Micro curvatures are deformations caused by lateral contact of the fiber with other
surfaces, by bending or twisting, and by defects in the fiber production process. They
have very punctual location and are not clearly visible in inspections. Curves that cause
micro deformations typically have a radius of less than 1 mm, and commonly described
as a random distribution of spacing and amplitude. Micro-bending losses occur when
small pressure points generate retreats on the fiber surface, even if the fiber is straight,
thus changing the critical angle and refracting light for the coating. There are no
industry standards or specifications for detecting micro-curvatures [2].

3.2 Morphology

Image processing techniques were used in this paper, one of these techniques are
morphological operations, which are employed to extract data related to the shape,
topology and geometry of objects in images. They interact between a structuring
element implicit in the operations, which functions as a reference, with sets in the
image, modifying their shape and thus obtaining information about the set. The mor-
phological operations used in this paper are: opening, closing, and reconstruction.

3.3 Hough Transform

Another technique used was the Hough Transform, which is able to detect groups of
pixels belonging to a straight line. The idea is to apply a transformation in the image
such that all the points belonging to the same curve are mapped in a single point of a
new parameterization space of the searched curve. The transform creates a plane with
the dimensions H and q. Theta (H) is the angle with the origin and rho (q) the shortest
distance to the origin of the center of coordinates. Analyzing a pixel in the image, look
for the values of H and q for all the lines that pass at this point, because when the
points are collinear in the space x-y, there will be an intersection of their sine-wave
curves in the plane H - q. A necessary step in the process of applying the Hough
Transform is edge detection and thresholding. The Canny method was used to
accomplish this task.

Fig. 4. Macro (a) and micro curvatures (b). Font: (Fiber optics technologies [10])
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3.4 Image Feature Descriptors

We have used two image descriptors, SURF and MSER. The Speeded Up Robust
Features descriptor (SURF) is inspired by another descriptor, SIFT, and makes use of a
Hessian determinant approach to detect points of interest in the image [12]. Another
method to detect features would be the Maximum Stable Extreme Region (MSER). It
draws regions of interest based on the connected components and the intensity of the
region. It’s based on the idea of joining regions that satisfy certain thresholds [13].

4 Experimental Results and Discussion

To simulate the micro curvatures in the fibers used in this work, the fibers were
removed from the optical cables and placed between two sheets of paper, after vertical
pressure was applied gradually. There are no actual test methods for micro-curvatures.
Some solutions are to apply pressures between two sheets of paper by pressing on some
cavity or pin or wrapping over a wire, however, the results are not faithfully repro-
ducible, so there is no standard for testing micro curvatures [10].

It was noticed that fibers of the same color had similar values, so that the param-
eters of the filters were made in the algorithm, for each color specifically, through the
color segmentation, which improved the identification in some cases of defects. Thus,
sufficient data were obtained from the fiber images to configure a fuzzy classifier that
decides whether the fiber is good or bad. The results of the application of the image
processing algorithms will be detailed in the next subsections:

4.1 Hough Transform

The Hough Transform was introduced to detect straight lines, initially as many lines as
possible, then only two lines. We also used the Otsu method for thresholding, and area
opening for eliminate noise, together with the Canny filter, to detect only the outer
edges of the fiber. This made the detection of Hough lines more accurate. The Hough
transform algorithm detected lines with a minimum length of 30 and fill gap of 100.
Figure 5 shows the step of the algorithm using the Hough Transform for a good and a
bad fiber. The Hough lines are in red color.

Fig. 5. Detected fiber edge using the Hough Transform. (Color figure online)
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4.2 Feature Descriptors

Figures 6 and 7 show the application of the features descriptors in cases of good fiber
and bad fiber. The SURF descriptors are depicted as green circles in Fig. 6 and the
MSER regions in Fig. 7. In the case of SURF we can see that the points are con-
centrated in regions of abrupt change in uniformity in the image, which may indicate a
failure in the fiber. And the MSER highlights regions of the image that have a “uni-
formity”, which can indicate a good fiber with few and extensive regions. Both were
applied on a gray image of the fiber after the application of a mask that separates the
contour of the fiber and its internal part from the rest of the image, thus increasing its
effectiveness.

4.3 Fuzzy Classifier

It was used a fuzzy classifier, and the type chosen was Mamdani. The inputs of the
classifier are the characteristics extracted from the images by the algorithm, there were
three inputs: number of MSER regions and SURF points, the length of the lines
detected by the Hough transform and the distance between them. The classifier has one
output, that is to define if the quality of fiber is good or bad.

The set of instructions or fuzzy rules had its implementation facilitated by the time
spent in obtaining the image data, since it is already clear which values of which
variables constitute a good fiber and which mean that the fiber is damaged. In Fig. 8 we
can see how the fuzzy rules were designed. obtaining the four input variables of the
fuzzy classifier.

Fig. 6. Detected features using SURF.
(Color figure online)

Fig. 7. Detected regions using MSER.
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The output of the classifier tells us whether the fiber is in good condition or not.
Figure 9 shows us the output of the classifier for a case of good fiber and a bad fiber.

It is noticed that the fuzzy system made the correct decision in both cases. In the
image of the good fiber (left), we have as a good indicator the detected lines, as well as
the distance between them, a good length of axis and of detected lines, and still few
SURF points and MSER regions. While in the case of the defective fiber we have the
detection of straight lines, but these are not parallel because their distance cannot not be
calculated, which already indicates a defect. Also, we still have many SURF points and
MSER regions, even though the lines are within acceptable values, but the fuzzy
system has different weights for the variables in its decision making.

Fig. 8. Fuzzy classifier rules

Fig. 9. Fuzzy classifier outputs
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After several runs of the algorithm in different fibers with different conditions, it
was obtained the following table of results (Table 2):

5 Conclusions

It has been proposed an algorithm to detect defects in optical fibers. As far as we know,
our method is unique, because after a review in the scientific literature we have not
found other related works. Fibers of different types and different simulated deforma-
tions were analyzed in order to approach a real case of defect in an optical fiber. It was
then sought to identify a pattern in the fiber through image recognition techniques, such
as edge detection, line detection and feature descriptors. It was also used a fuzzy
classifier, tuned to the parameters that interest us of the image obtained through the
algorithm, to classify the images of the fibers in good and defective. At the end of the
work it was concluded that the fiber characteristics obtained by the image processing
program were relevant to the classification of the fiber in good or defective, as we can
observe by the results of the fibers inspected by the fuzzy classifier, we have 87%
accuracy on the good fibers that are good and 89% on the bad fibers that are bad.
Obtaining the features represented a certain degree of difficulty due to variations of the
microscopic images, thus necessitating a more robust program, requiring many tests
with several different versions of the program. However, this difficulty translates into
ease in setting the fuzzy controller, since the values that defined the good and bad fiber
were already clear.
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Abstract. This paper presents a comparison among ANFIS, ANNs, and
a Self Organized Neuro Fuzzy Inference System (SONFIS) for time series
prediction. The Turkish stock index (ISE) series is analyzed using the
three methods, a statistical analysis of the residuals per method is per-
formed, and the advantages/disadvantages per method are discussed.
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1 Introduction and Motivation

Volatile time series analysis has been extensively treated from a statistical per-
spective, but complex problems have been analyzed using neural networks in
most cases. Neuro-fuzzy approaches like ANFIS (see Jang [13,17], Jang et al.
[14], Ben et al. [3], Wang and Fsas [30], and Figueroa and Soriano [6]) have
shown interesting results in complex problems, and ANNs also have been applied
to time series forecasting (see Huang and Du [12], and Huang [11]).

Intelligent algorithms also offer efficient methods to train FLSs (see Soto
et al. [26,27], Melin et al. [20], Wang and Mendel [32,33], Obayashi et al. [24],
Numberger and Kruse [23], Wu and Goo [34], and Figueroa-Garćıa et al. [5,7]).
We focus on the proposal of Juang and Tsao [16], and Figueroa-Garćıa et al.
[2,8,9] applied to a volatile time series example.

The paper is divided into five principal sections. Section 1 shows the intro-
duction and motivation of the work. Section 2 presents some basics on fuzzy
logic systems. In Sect. 3, the Self Organized Fuzzy Inference System (SONFIS)
method is described. Section 4 shows an application example, and finally some
concluding remarks are presented in Sect. 5.

2 Basic Definitions of FLSs

A fuzzy set A generalizes crisp/interval sets. It is defined over an universe of
discourse X using a membership function μA(x) : X → [0, 1]. Then the set
c© Springer International Publishing AG, part of Springer Nature 2018
G. A. Barreto and R. Coelho (Eds.): NAFIPS 2018, CCIS 831, pp. 253–264, 2018.
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A may be represented as a set of ordered pairs of a generic element x and its
membership degree, μA(x), i.e.,

A = {(x, μA(x)) |x ∈ X}. (1)

A is a linguistic label that defines the sense of a fuzzy set. Now, x can be
represented with j ∈ Rn sets {A1, A2, · · · , An}, each one defined by a member-
ship function {μA1(x), μA2(x); · · · , μAn

(x)}, so basically a particular x ∈ X can
have different membership degree/affinity to different labels/sets Aj .

An FLS is defined by Rj rules that relates a set of inputs to a set of outputs
(consequences of operationalizing of rules). This way, each rule Rj is represented
as follows (see Mendel [22], and Klir and Folger [18]):

Ri : if x1 is Ai
1 and · · · and xn is Ai

n, then ŷ is Gi; i = 1, · · · ,M (2)

where Gi represents the output of the ith rule.
In this paper, we consider Mandami FLSs in which inference is made using

t-norms and t-conorms to represent and (∧) – or (∨) operators. Also, the output
of each rule Gi is considered as a singleton, as described as follows:

μG(x) =

{
1 for x,

0 for X �= x.
(3)

The last step of fuzzy inference is defuzzification which is basically a func-
tion ŷ : Gi → R. As we use singletons as outputs, we use the center of sets
defuzzification method (which is the average of outputs), as shown as follows:

ŷ =

M∑
i=1

Giwi

M∑
i=1

wi

=
M∑
i=1

Gi/M. (4)

Note that each rule in an FLS leads to a singleton output. This means that
an FLS has as many outputs as rules it has, so the selection of all input fuzzy
sets and rule-base is an important issue to be addressed when using FLS. The
main idea is to select rules that improve the performance of the FLS only.

3 A Neuro-Fuzzy Approach for Rule Generation

As proposed by Figueroa-Garćıa et al. [9] based on Juang and Tsao [16], the goal
is to generate rules of an FLS using self organized neural networks. The general
structure of the FLS considered in this paper is displayed in Fig. 1.

Input data is composed by n vectors {X1, · · · ,Xn} of size k, and output data
(a.k.a. goal or desired response) is defined as ŷ where {Xj , ŷ} ∈ R (see Fig. 2).
Now, the proposed structure is described as follows:
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Fig. 1. Neuro-FLS design methodology

The selected method uses a five-layer neural network, as shown in Fig. 2.

Fig. 2. Self organized neural network

Layer 1 - Normalization: In this layer, all input data X1, · · · ,Xn should be
normalized to any of two choices: either the interval of [−1, 1] or [0, 1].

Layer 2 - Fuzzification: Every input Xi
j is characterized by a fuzzy set Ai

j

whose μji must be derivable, so we use Gaussian shapes (see Eq. (9)).
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Layer 3 - Intersection: Every node of this layer is a rule of the FLS, and we
use a product t-norm to compute intersection. The output of a node is its
activation level namely f i, defined as follows:

n∏
j=1

μji, ∀ i ∈ M

Layer 4 - Aggregation: The number of nodes in this layer is the same as layer
3. The aggregation process consists on normalizing each f i using the sum of
all activation levels coming from Layer 3, in other words:

Gi =
f i∑
i f i

(5)

Layer 5 - Defuzzification: This layer computes the defuzzified output of the
system ŷ using the average among all aggregated values of Layer 5, as follows:

ŷ =
∑

i

Gi/M (6)

where M is the amount of rules.

3.1 Generation of Rules and Parameters

Figueroa-Garćıa et al. [9] proposed the following method for generating rules:

1. For the first input data x generate a new rule.
2. For a new input data x̌, do:

(a) Compute:
f I(x̌) = arg max

1�i�M(t)
f i(x) (7)

where M(t) is the existant amount of rules at the time t.
(b) If f I(x̌) � φ, generate a new rule:

M(t + 1) = M(t) + 1 (8)

where φ is a predefined parameter.
3. Define a new fuzzy set μj,i=M(t)+1 for each input variable j = 1, · · · , n and a

new node in Layer 3.

This algorithm has two parameters: a threshold φ which operates as the acti-
vation level for incoming data x̌ to generate a new rule, and β which represents
how much space an initial rule covers. If φ is small, then a small amount of rules
centered on X1, · · · ,Xn are generated. On the other hand, if φ is high then the
algorithm creates a large amount of rules. All new data for which f I(x̌) � φ is
contained into an existent rule.

3.2 Initialization of the Algorithm

The membership functions of the antecedents/inputs are Gaussian:
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μji(xj) = exp
(
−0.5

(
(xj − mi

j)/δi
j

)2)
(9)

where mi
j and δi

j are the center and spread of μji.
The consequents/outputs of the FLS are singletons w where we start by

adding a new group (M + 1) of data xj , and the parameters of μji(xj) are
initialized as follows:

m
(M+1)
j = xj (10)

δ
(M+1)
j = −β · ln(f I) (11)

w(M+1) = ŷ · K; K ∈ [0, 1] (12)

where β > 0 is the initial cluster width.
As proposed by Juang and Lin [15] and Juang and Tsao [16], we generate

K using a uniform generator and β using a chi-square generator to broaden the
search space.

3.3 Learning Algorithm

The selected learning method is the fuzzy-based backpropagation algorithm (See
Wang and Mendel [31]) based on εt as error function:

εt =
N∑

k=1

(yk − ŷk)2

where t is the actual iteration of the algorithm, yt is the target data, and ŷ is
the output of the FLS (see Eq. (6)).

The updating algorithm for m and δ to compute μji(xj) is based on a Kalman
filter and a gradient descend algorithm (see Mendel [21]):

mi
j(t + 1) = mi

j(t) − η · ŷ − y∑M
i=1

fi · (wi(t) − ŷ) · fi · 2(xj − mi
j(t))

δi
j(t)2

(13)

δi
j(t + 1) = δi

j(t) − η · ŷ − y∑M
i=1

fi · (wi(t) − ŷ) · fi · 2(xj − mi
j(t))

2

δi
j(t)3

(14)

wi(t + 1) = wi(t) − η · ŷ − y∑M
i=1

fi (15)

where η ∈ [0, 1] is the learning rate which can be modified to user convenience.
Usually, higher values of η lead to a faster convergence of the algorithm

with higher deviations from its objective, and smaller values of η lead to larger
computing efforts with a possible overtraining of the algorithm.
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3.4 Evaluation of the Performance of the Algorithm

As error measures we use the RMSE (root mean squared error) since it is deriv-
able and positive semi-definite:

RMSE =

√√√√ 1
N

N∑
k=1

(yk − ŷk)2, (16)

and the EMA (absolute mean deviation), defined as follows:

EMA =
N∑

k=1

| yk − ŷk|. (17)

Gaussian white noise residuals are highly desirable in time series as well
since Gaussian residuals are less prone to be autocorrelated. Thus, we test ε for
normality i.e. ε ≈ N(0, δ2). To do so, we use the F-test (See Thode [28]), T-test
(See Tukey [29]), Walf-Wolfowitz test (See Gujarati [10]), ARCH (See Engels
[4]), and Ljung-Box test (See Ljung and Box [19]).

3.5 Selecting a Configuration of the Network

Two information criteria are used to select the most adequate model: Akaike
Information Criterion (AIC) (see Akaike [1]) and Schwarz/Bayesian Informa-
tion Criterion (BIC) (see Schwarz [25]):

S2
e = RMSE2, (18)

AIC = ln(S2
e ) + 2m/N, (19)

BIC = ln(S2
e ) + m ln(N)/N (20)

where N is the sample size, and m is the number of regressors (the number of
inputs of the model).

Thus, a model l1 is better than the model l2 when l1 has less AIC and BIC
i.e. the model l1 is better than L2 if AICl1 < AICl2 and BICl1 <BICl2 .

4 Application Example

The Istanbul Stock Index (ISE) benchmark dataset taken from the
UCI repository https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+
EXCHANGE composed by the daily closing value of the ISE index removing
weekends, and seven related indexes Standard & poors 500 return index (SP),
Stock market return index of Germany (DAX), Stock market return index of UK
(FTSE), Stock market return index of Japan (NIKKEI), Stock market return
index of Brazil (BOVESPA), MSCI European index (EU), and the MSCI emerg-
ing markets index (EM), since they have volatility i.e. heteroscedasticity. Figure 4
shows the ISE stock index series for 426 training data and 107 validation data.

https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE


A Comparative Study Among ANFIS, ANNs, and SONFIS 259

Fig. 3. Pre-processed ISE stock index (Color figure online)

Figure 4 shows differentiated data at the first lag i.e. Δxt = xt − xt−1 and
standardized using the z transformation zt = (Δxt − Δ̄x)/sΔx, where Δx̄ is the
sample mean of ΔX and sΔx is the sample variance of ΔX.

426 observations were used for training, and 107 observations for validation.
Each algorithm was ran 10 times per combination, so we have performed a total
of 1250 experiments changing β, φ (for SONFIS), activation functions (for ANN),
shapes of fuzzy sets (for ANFIS), and training algorithm (for ANNs and ANFIS).

The foreign indexes SP, DAX, FTSE, NIKKEI, BOVESPA, EU, and EM were
used for prediction. A brief description of the selected methods is as follows:

ANN: The selected network architecture was a feedforward backpropagation
with 5 hidden layers, linear activation functions, max amount of iterations:
1000 as stoping criteria, training algorithm: Levenberg-Mardquart.

ANFIS: We used 2 Gaussian fuzzy sets per input for a total of 128 rules,
max amount of iterations: 1000 as stoping criteria, training algorithm: hybrid
(backpropagation for learning and least squares for training).

SONFIS: The proposed method generated a total of 73 rules, max amount of
iterations: 1000 as stoping criteria, training algorithm: hybrid (backpropaga-
tion for training and threshold for creating rules).

4.1 Obtained Results

The best SONFIS experiment was reached with α = 0.05, β = 0.26 and φ = 0.85.
The best ANN experiment was obtained with 5 hidden layers, 7 neurons per
layer, and linear activation functions. The best ANFIS trial was obtained using
two fuzzy sets per input, Gaussian fuzzy sets, and singleton outputs.

Some statistics and tests applied for contrasting the adequation of the model
(independence and normality of the residuals) are shown in Tables 1 and 2, and
the obtained residuals are shown in Fig. 4.
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Fig. 4. Residual errors for the three selected methods (Color figure online)
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Table 1. Statistical measures

Measure SONFIS ANN ANFIS

Training Test Training Test Training Test

MSE 1.2785 0.5906 0.8979 0.5386 0.1006 8.82

MAD 356.74 66.88 298.41 60.336 85.83 156.79

AIC 279.4 283.71 204.11 207.89 304.48 298.3

AICc 433.25 −789.39 278.38 −11564 486.58 −681.38

BIC 285.45 285.45 210.16 212.56 310.54 302.97

Runs 0.0000675 0.4316 0.7343 0.1735 0.62808 0.62513

WW 0.0000769 0.1652 0.9388 0.0374 0.8781 0.9382

SW ≈0 0.764 ≈0 0.021 ≈0 ≈0

KS ≈0 0.15 ≈0 0.135 ≈0 ≈0

AD ≈0 0.461 ≈0 0.007 ≈0 ≈0

Table 1 shows the Mean Squared Error (MSE), Mean Absolute Devia-
tion (MAD), Akaike Information Criterion (AIC), Corrected Akaike Informa-
tion Criterion (AICc), Bayesian Information Criterion (BIC); Runs test and
Walf-Wolfowitz (WW) tests on randomness; Shapiro-Wilks (SW), Kolmogorov-
Smirnov (KS) and Anderson-Darling (AD) tests for normality.

Table 2. Statistical tests

Lag ARCH test SONFIS ARCH test ANN ARCH test ANFIS

Training Test Training Test Training Test

1 0.001 0.721 0.000 0.873 0.272 0.802

2 0.000 0.715 0.000 0.753 0.542 0.957

3 0.000 0.768 0.000 0.834 0.717 0.980

4 0.000 0.081 0.001 0.069 0.821 0.996

5 0.000 0.137 0.002 0.114 0.905 0.997

Lag Ljung-Box test SONFIS Ljung-Box test ANN Ljung-Box test ANFIS

Training Test Training Test Training Test

1 0.002 0.152 0.786 0.035 0.953 0.616

2 0.003 0.340 0.727 0.033 0.668 0.639

3 0.006 0.514 0.878 0.075 0.214 0.736

4 0.000 0.612 0.948 0.140 0.309 0.825

5 0.001 0.611 0.979 0.225 0.192 0.902

In Table 2, the ARCH (autoregressive conditional heteroscedasticity) and
Ljung-Box (serial correlation) tests show mixed results, but we can conclude
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that SONFIS and ANFIS outperform ANNs since validation residuals have nei-
ther heteroscedasticity nor serial correlation in 1, 2, 3, 4 and 5 lags.

Roughly speaking, ANFIS has a good performance over training data, but
bad performance over validation data (see its MSE, MAD, AIC, AICc, and BIC).
The ANN model shows a good performance (see its MSE, MAD, AIC, AICc, and
BIC) over both training/validation data but rejects normality tests. SONFIS has
very similar MSE, MAD, AIC, AICc, and BIC to ANN, but SONFIS produces
normally distributed residuals over validation data (it is the only method that
accepted normality tests).

This way, SONFIS arises as a good method since it produces satisfactory
results while outperforming ANFIS. When compared to the ANN, SONFIS pro-
duces normally distributed validation residuals without ARCH effect and serial
correlation, and most important: SONFIS is a rule-based fuzzy inference system
that provides knowledge about ISE while ANNs are black-box models.

Table 3. Performance of SONFIS for some β and φ

β φ S2
e training S2

e test

0.2 0.2 1.322 0.795

0.2 0.4 1.335 0.624

0.2 0.6 1.348 0.640

0.22 0.6 1.361 0.697

0.24 0.6 1.299 0.643

0.24 0.7 1.290 0.737

0.22 0.75 1.294 0.686

0.22 0.8 1.294 0.621

0.26 0.85 1.279 0.591

And finally Table 3 shows the performance of SONFIS for different selections
of β and φ. Note that higher values of β and φ lead to better residuals S2

e .

5 Concluding Remarks

The application of our proposal to the ISE stock index obtained adequate results,
with only 73 rules. Its results are similar to the applied ANN model and outper-
forms ANFIS. We experimented with different β and φ, and our findings are that
convergence is proportionally inverse to β while the amount of rules is directly
proportional to φ.

While ANFIS shows over training, SONFIS shows heteroscedastic residuals,
and ANN rejects normality test over its residuals. This means that there is
no perfect method for forecasting volatile time series, and every method shows
different performance over different measures.

Other rule generation algorithms (see Jang [17], and Obayashi et al. [24]) can
be combined to our proposal to improve convergence and fit of our proposal.
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Abstract. n-dimensional interval fuzzy sets are a type of fuzzy sets
which consider ordered n-tuples in [0, 1]n as membership degree. This
paper considers the notion of representable n-dimensional interval fuzzy
negations, in particular, these that are Moore continuous, proposed in a
previous paper of the authors, and we study some conditions that guaran-
tee the existence of equilibrium point in classes of representable (Moore
continuous) n-dimensional interval fuzzy negations. In addition, we prove
that the changing of the dimensions of representable Moore continuous
n-dimensional fuzzy negations inherits their equilibrium points.

Keywords: n-dimensional interval fuzzy sets · Fuzzy negations
Moore metric · Representable · Equilibrium point

1 Introduction

The concept of the fuzzy set was introduced by Zadeh (1965) and since then, sev-
eral mathematical concepts such as number, group, topology, differential equa-
tion, etc have been fuzzified. Several extensions or types of fuzzy set theory had
been proposed in order to solve the problem of constructing the membership
degrees functions of fuzzy sets or/and to represent the uncertainty associated to
the considered problem in a way different from fuzzy set theory [11]. In particu-
lar, Shang et al. in [27] propose a new type of fuzzy sets, namely n-Dimensional
fuzzy sets, where the membership values are n-truples of real numbers in the
unit interval [0, 1] ordered in increasing order, called n-dimensional intervals. n-
dimensional fuzzy sets are a special class of L-fuzzy sets introduced by Goguen
in [14] and a discrete kind of Type-2 fuzzy sets introduced in [29], is a kind
of (ordered) fuzzy multiset introduced by Yager in [28] and generalize some
extensions of fuzzy sets, such as interval-valued fuzzy sets and interval-valued
Atanassov intuitionistic fuzzy sets [11]. In addition, n-dimensional fuzzy sets are
c© Springer International Publishing AG, part of Springer Nature 2018
G. A. Barreto and R. Coelho (Eds.): NAFIPS 2018, CCIS 831, pp. 265–277, 2018.
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adequated in situations where the memberships degrees are provided for a fixed
numbers of experts or methods, and the information of which expert/method
given a determined degree is unrelevant. The set of n-dimensional intervals is
and denoted by Ln([0, 1]).

In the context of L-fuzzy logic, the main classes of fuzzy connectives (t-
norm, t-conorm, fuzzy implication and fuzzy negations) were generalized for
lattice-valued fuzzy logics, as we can be seen in [2,23]. In [4] the construction of
bounded lattice negations from bounded lattice t-norms is considered.

In [6], it was considered the main properties of an n-dimensional fuzzy set A
on Ln[0, 1] defined over a set X and was introduced the notion of n-dimensional
interval fuzzy negations (nDIFN) and the notion of representable functions. A
deeper study of nDIFN was made in [9].

In [18], we investigate the class of nDIFN which are continuous and strictly
decreasing, called n-dimensional strict fuzzy negations. In particular, we inves-
tigate the class of representable n-dimensional strict fuzzy negations, i.e., n-
dimensional strict fuzzy negations which are determined by strict fuzzy nega-
tion. The main properties of strict fuzzy negations on [0, 1] are preserved by
representable strict fuzzy negations on Ln([0, 1]).

A metric space on a set S is a real-valued function d : S × S → R such
that satisfy the axioms of positiveness, symmetry and triangular inequality [22].
In [21], Moore et al. generalized the usual metric space of real numbers for
real intervals and extends the notion of continuity of real functions for interval
functions based on the Moore metric space. The Moore metric has been restricted
to subintervals of [0, 1] for the study of interval-valued fuzzy connectives [3,8].
In [20], we extent this restricted Moore metric for n-dimensional interval fuzzy
sets for characterizing the notion of Moore continuous nDIFN and prove some
results about them. In addition, we consider the intuitive notion of strict nDIFN
and study the way of changing of the dimensions of Moore continuous nDIFN.

In this work, we consider the notion of the equilibrium point (or fixed point1)
of the fuzzy negations, investigated by [3,15,17,25,26] for defining an equilibrium
point of nDIFN and we obtain results envolving representable (Moore contin-
uous) nDIFN and equilibrium points. The remaining parts of this paper are
organized as following. In Sect. 2, we introduce some preliminary concepts for
the paper as continuity, Moore metric, n-dimensional fuzzy sets and equilibrium
point of n-dimensional fuzzy negations. In Sect. 3, we consider the notion of rep-
resentable nDIFN these that are Moore continuous, proposed in [20], and study
some conditions that guarantee the existence of equilibrium point in classes of
representable (Moore continuous) nDIFN. In Sect. 4, we characterize the increase
and decrease of the dimension of nDIFN and provide conditions for a change of
the dimensions of representable Moore continuous nDIFN inherits their equilib-
rium point.

1 In the literature on fuzzy negations had been widely used both terms for the same
notion, namely, an element e ∈ [0, 1] such that N(e) = e, with N being a fuzzy
negation. We choice “equilibrium point” over “fixed point” but this not means that
we consider the term equilibrium point more correct or better than the fixed point.
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2 Preliminaries

2.1 Fuzzy Negations

A function N : [0, 1] → [0, 1] is a fuzzy negation if
N1: N(0) = 1 and N(1) = 0;
N2: If x ≤ y, then N(x) ≥ N(y), for all x, y ∈ [0, 1].

A fuzzy negation N satisfying the involutive property
N3: N(N(x)) = x, for all x ∈ [0, 1],

is called strong fuzzy negation. And, a continuous fuzzy negation N is strict if it
satisfies

N4: N(x) < N(y) when y < x, for all x ∈ [0, 1].
Strong fuzzy negations are also strict fuzzy negations [16]. The standard fuzzy

negation is defined as NS(x) = 1 − x is strong and, therefore, strict. The fuzzy
negation defined as NS2(x) = 1 − x2 is an example of the fuzzy negation that is
strict, but not strong.

An equilibrium point of a fuzzy negation N is a value e ∈ [0, 1] such that
N(e) = e.

Proposition 1. [3, Proposition 2.1] Let N1 and N2 be fuzzy negations such
that N1 ≤ N2. Then, if e1 and e2 are the equilibrium points of N1 and N2,
respectively, then e1 ≤ e2.

See [3, Remarks 2.1 and 2.2] for additional studies related to main properties
of equilibrium points.

2.2 Topology and Metric Spaces

According to Dugundji [13], a topology on a set A is a collection of subsets of
A which is closed under finite intersections and arbitrary unions, including the
empty set and the set A. A set A together with a topology T on A is a topological
space denoted by (A, T ). The elements of T are the open sets of the space.

Note that a distance or metric on A is a function d : A × A → R
+ such that,

for all x, y, z ∈ A, satisfies the following properties:

1. d(x, y) = 0 ⇔ x = y;
2. d(x, y) = d(y, x);
3. d(x, z) ≤ d(x, y) + d(y, z).

A metric space is a set A endowed with a metric d and denoted by (A, d).

Example 1. Let I(R) be the set of the reals intervals X = [x, x], where x, x ∈ R

and x ≤ x. The function dM defined on I(R) by

dM (X,Y ) = max{|x − y|, |x − y|} (1)

is called Moore metric. �
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Let A and B be two sets. For all distance dA : A×A → R and dB : B×B → R

we have the following notion of continuity f : A → B is (dA, dB)-continuous, if
for each x ∈ A and ε > 0 there exists δ > 0 such that, for all y ∈ A,

dA(x, y) ≤ δ ⇒ dB(f(x), f(y)) ≤ ε (2)

Continuous functions with respect to dM will be called Moore-continuous.
For more details see: [1,7,24].

2.3 n-Dimensional Fuzzy Sets

Let X be a non empty set and n ∈ N
+ = N − {0}. According to [27], an n-

dimensional fuzzy set A over X is given by

A = {(x, μA1(x), . . . , μAn
(x)) : x ∈ X},

where, for each i = 1, . . . , n, μAi
: X → [0, 1] is called i-th membership degree

of A, which also satisfies the condition: μA1(x) ≤ . . . ≤ μAn
(x), for each x ∈ X.

In [5], for n ≥ 1, an n-dimensional upper simplex is given as

Ln([0, 1]) = {(x1, . . . , xn) ∈ [0, 1]n : x1 ≤ . . . ≤ xn}, (3)

and its elements are called n-dimensional intervals.
For each i = 1, . . . , n, the i-th projection of Ln([0, 1]) is the function π

(n)
i :

Ln([0, 1]) → [0, 1] defined by

π
(n)
i (x1, . . . , xn) = xi. (4)

When is clear the value of (n) in π
(n)
i , this indice will be omitted by simplicity

of notation.
Notice that L1([0, 1]) = [0, 1] and L2([0, 1]) reduces to the usual lattice of all

the closed subintervals of the unit interval [0, 1].
A degenerate element x ∈ Ln([0, 1]) satisfies the following condition

πi(x) = πj(x), ∀i, j = 1, . . . , n. (5)

The degenerate element (x, . . . , x) of Ln([0, 1]), for each x ∈ [0, 1], will be denoted
by /x/ and the set of all degenerate elements of Ln([0, 1]) will be denoted by
Dn.

An m-ary function F : Ln([0, 1])m → Ln([0, 1]) is called Dn-preserve function
or a function preserving degenerate elements if the following condition holds

(DP) F (Dm
n ) = F (/x1/, . . . , /xm/) ∈ Dn, ∀x1, . . . , xm ∈ [0, 1].

By considering the natural extension of the order ≤ on L2([0, 1]) as in [3,10]
to higher dimensions, for all x,y ∈ Ln([0, 1]), it holds that

x ≤ y iff πi(x) ≤ πi(y), ∀ i = 1, . . . , n. (6)
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Based on [5], the supremum and infimum on Ln([0, 1]) are both given as

x ∨ y = (max(x1, y1), . . . ,max(xn, yn)), (7)
x ∧ y = (min(x1, y1), . . . ,min(xn, yn)), ∀ x,y ∈ Ln([0, 1]). (8)

Definition 1. [6] A function N : Ln([0, 1]) → Ln([0, 1]) is a n-dimensional
interval fuzzy negation (nDIFN) if, for each x,y ∈ Ln([0, 1]):

N1 N (/0/) = /1/ and N (/1/) = /0/;
N2 If x ≤ y, then N (y) ≤ N (x).

Proposition 2. [6, Proposition 3.1] Let N1, . . . , Nn be fuzzy negations such that
N1 ≤ . . . ≤ Nn. Then ˜N1 . . . Nn : Ln([0, 1]) → Ln([0, 1]) defined by

˜N1 . . . Nn(x) = (N1(πn(x)), . . . , Nn(π1(x))) (9)

is an n-dimensional fuzzy negation.

Definition 2. A n-dimensional interval fuzzy negation (nDIFN) N is repre-
sentable if there exists fuzzy negation N1, . . . , Nn such that Ni ≤ Ni+1 for each
i = 1, . . . , n − 1 and N = ˜N1 . . . Nn.

The tuple (N1, . . . , Nn) will be called the representant of N .

Observe that πi(N (x)) = Ni(πn−i+1(x)) for each i = 1, . . . , n.
In particular, when Ni = Nj for each i, j = 1, . . . , n, we say that (N) is the

representant of N and denote Ñ . . . N by ˜N .

Proposition 3. [9, Proposition 9] Let N be an n-dimensional fuzzy negation.
Then, for all i = 1, . . . , n, the function Ni : [0, 1] → [0, 1] defined by

Ni(x) = πi(N (/x/)) (10)

is a fuzzy negation.

Definition 3. Let N be a nDIFN and i ∈ {1, . . . , n}. N is i-representable if
Ni : [0, 1] → [0, 1] defined by Eq. (10) is a fuzzy negation such that, for all
x ∈ Ln([0, 1])

Ni(πn−i+1(x)) = πi(N (x)). (11)

Obviously, N is i-representable, for all i = 1, . . . , n, iff N is representable.
If an nDIFN N satisfies

N3 N (N (x)) = x, ∀ x ∈ Ln([0, 1]),

it is called strong n-dimensional interval fuzzy negation.

Theorem 1. [9, Theorem 24] N is a strong n-dimensional fuzzy negation iff
there exists a strong fuzzy negation N such that (N) is the representant of N .
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3 Moore Continuous n-dimensional Interval Functions

In this section we generalize the Moore metric for n-dimensional intervals.

Proposition 4. [20, Proposition 3.1] Let dnM : Ln([0, 1]) × Ln([0, 1]) → R
+ be

the function defined by

dnM (x,y) = max(|π1(x) − π1(y)|, . . . , |πn(x) − πn(y)|) (12)

Then dnM is a metric on Ln([0, 1]) called n-dimensional interval Moore metric
on Ln([0, 1]).

Remark 1. Observe that d1M is the usual distance on real numbers restricted to
[0, 1] and d2M is the Moore metric [12].

Definition 4. [20, Definition 3.1] Let F : Ln([0, 1]) → Ln([0, 1]) be a
n-dimensional interval function. F is Moore continuous if F is (dnM , dnM )-
continuous.

Theorem 2. [20, Theorem 3.1] Let N be a representable nDIFN with
(N1, . . . , Nn) as representant. N is Moore continuous iff every Ni is continu-
ous.

Corollary 1. [20, Corollary 3.1] Each strong nDIFN is Moore continuous.

Proposition 5. If N is i-representable nDIFN and Moore continuous, then Ni

is continuous.

Proof. Let ε > 0, i ∈ {1, . . . , n}, N is Moore continuous and x, y ∈ [0, 1]. Since
N is (dnM , dnM )-continuous then there exists δ > 0 satisfying the Eq. (2).

|x − y| ≤ δ

⇒ max(|x − y|, . . . , |x − y|
︸ ︷︷ ︸

n−times

) ≤ δ

⇒ dnM (/x/, /y/) ≤ δ

⇒ dnM (N (/x/),N (/y/)) ≤ ε

⇒ max(|π1(N (/x/)) − π1(N (/y/))|, . . . , |πn(N (/x/)) − πn(N (/y/))|) ≤ ε

⇒ |πi(N (/x/)) − πi(N (/y/))| ≤ ε

⇒ |Ni(x) − Ni(y)| ≤ ε

Therefore, Ni is continuous. �

Proposition 6. [20, Proposition 4.2] Let N be a Moore continuous nDIFN such
that N is an i and i + 1-representable for some 1 ≤ i ≤ n − 1 and N be a
continuous fuzzy negation satisfying Ni ≤ N ≤ Ni+1. Then the function N+ :
Ln+1([0, 1]) → Ln+1([0, 1]) defined by

N+(x) = (π(n)
1 (N (x0)), . . . , π

(n)
i (N (x0)), N(xn−i+2),

π
(n)
i+1(N (x0)), . . . , π(n)

n (N (x0)))
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where

x0 = (π(n+1)
1 (x), . . . , π(n+1)

n−i+1(x), π(n+1)
n−i+3(x), . . . , π(n+1)

n+1 (x))

and xn+1
2

= π
(n+1)
n+1
2

(x), is Moore continuous (n + 1)DIFN.

3.1 Equilibrium Point of Moore Continuous n-dimensional Interval
Fuzzy Negations

Definition 5. An element e ∈ Ln([0, 1]) is an equilibrium point for an nDIFN
N if N (e) = e. In addition, if πi(e) ∈ (0, 1), for each i = 1, . . . , n, then e is
called of the positive equilibrium point.

Remark 2. Let N be a strict nDIFN. If x < e then N (x) > e and if e < x then
N (x) < e.

Proposition 7. Let N be a fuzzy negation with the equilibrium point e. Then,
/e/ is an n-dimensional equilibrium point of ˜N .

Proof. Straightforward. �

Proposition 8. Let N be a representable nDIFN. If n is even then N has at
least one equilibrium point.

Proof. If N is a representable nDIFN then there exist N1, . . . , Nn fuzzy negations
such that N = ˜N1 . . . Nn. Consider the equilibrium point e = (0, . . . , 0

︸ ︷︷ ︸

n
2 −times

, 1, . . . , 1
︸ ︷︷ ︸

n
2 −times

).

Since Ni(0) = 1 and Ni(1) = 0, for all i ∈ {1, . . . , n}, then ˜N1 . . . Nn(e) = e. �

Theorem 3. All representable Moore continuous nDIFN N has an equilibrium
point .

Proof. If n is even the proof is similar to Proposition 8.
If n is odd, let (N1, . . . , Nn) be the representant of N . Then by Theorem

2, Nn+1
2

is continuous and so, it has an equilibrium point e ∈ (0, 1). Clearly,
( 0, . . . , 0

︸ ︷︷ ︸

(n−1
2 )−times

, e, 1, . . . , 1
︸ ︷︷ ︸

(n−1
2 )−times

) is an equilibrium point of N . �

Proposition 9. Let N be a representable nDIFN. If n is even and Ni is crisp,
for all i ∈ {1, . . . , n}, then N has an unique equilibrium point.

Proof. Let e = (e1, . . . , en). If, for some i ∈ {1, . . . , n}, ei �∈ {0, 1}, then N (e) =
(N1(en), . . . , Nn(e1)). Since Nj is crisp, for all j ∈ {1, . . . , n}, then there exists
0 ≤ k ≤ n such that N (e) = (0, . . . , 0

︸ ︷︷ ︸

k−times

, 1, . . . , 1
︸ ︷︷ ︸

(n−k)−times

) �= e. Hence, e is not an
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equilibrium point of N . Thus, if e is an equilibrium point of N , then there exist
a 0 ≤ k ≤ n such that e = (0, . . . , 0

︸ ︷︷ ︸

k−times

, 1, . . . , 1
︸ ︷︷ ︸

(n−k)−times

). So,

(0, . . . , 0
︸ ︷︷ ︸

k−times

, 1, . . . , 1
︸ ︷︷ ︸

(n−k)−times

) = (N1(1), . . . , Nn−k(1), Nn−k+1(0), . . . , Nn(0))

= ( 0, . . . , 0
︸ ︷︷ ︸

(n−k)−times

, 1, . . . , 1
︸ ︷︷ ︸

(k)−times

).

Hence, k = n − k. Therefore, by proof of the Proposition 8, N has a unique
equilibrium point. �

Lemma 1. Let N be a n+1
2 -representable nDIFN for n odd. If N has an equi-

librium point, then Nn+1
2

has an equilibrium point.

Proof. Let e = (e1, . . . , en+1
2

, . . . , en) be an equilibrium point of N . Then,

N (e) = (π1(N (e)), . . . , πn−1
2

(N (e)), πn+1
2

(N (e)) , πn+3
2

(N (e)), . . . , πn(N (e)))

= (π1(N (e)), . . . , πn−1
2

(N (e)), Nn+1
2

(
πn+1

2
(e)

)
, πn+3

2
(N (e)), . . . , πn(N (e))).

But,

Nn+1
2

(

en+1
2

)

= Nn+1
2

(

πn+1
2

(e)
)

= πn+1
2

(N (e)) by Eq. (11)

= πn+1
2

(e)
= en+1

2
.

Therefore, the proposition holds. �

Proposition 10. Let N be a representable nDIFN and n be odd. If Ni has
no equilibrium point, for all i ∈ {1, . . . , n−1

2 , n+3
2 , . . . , n}, then N has just one

equilibrium point when Nn+1
2

has an equilibrium point.

Proof. In this case, the unique equilibrium point is ( 0, . . . , 0
︸ ︷︷ ︸

(n−1
2 )−times

, e, 1, . . . , 1
︸ ︷︷ ︸

(n+3
2 )−times

)

where e is the equilibrium point of Nn+1
2

. �

Proposition 11. Let N be a representable Moore continuous n-dimensional
interval fuzzy negation with (N1, . . . , Nn) as representant. N has a positive equi-
librium point with equilibrium point (e1, . . . , en) such that N1(en) = en iff all
representants have the same equilibrium point.

Proof. Since N is a representable Moore continuous n-dimensional interval fuzzy
negation, then by Theorem 2, all representant Ni are continuous.
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(⇒) By Eq. (9), we have that N1(en) = e1 and by hypothesis, N1(en) = en.
Because e1 ≤ . . . ≤ en, then ei = en, for all i = {1, . . . , n}. Therefore, for all
i = 1, . . . , n, by Eq. (9), Ni(en) = Ni(en−i+1) = ei = en, that is, all representants
have the same equilibrium point en.

(⇐) Since, every Ni has the same equilibrium point e ∈ (0, 1) then, by
Proposition 7, /e/ is a positive equilibrium point of N . �

Remark 3. [9] Note that, if (e1, . . . , en) is an equilibrium point of ˜N1 . . . Nn, but
it may not be the unique. For example, (0, e2, . . . , en−1, 1) also is an equilibrium
point.

4 Change of the Dimension on Representable Moore
Continuous nDIFN and Equilibrium Point

In [20], we proposed a way to increasing and decreasing the dimension of Moore
continuous nDIFN preserving the Moore continuity. However, these methods not
preserving the equilibrium point. Now, to maintain the equilibrium points we
will provide new ways of changing the dimension, considering only when the
dimension n is odd.

Proposition 12. Let n be odd and N be a n+1
2 -representable Moore continuous

nDIFN. Then the function N− : Ln−1([0, 1]) → Ln−1([0, 1]) defined by

N−(x1, . . . , xn−1) = (π
(n)
1 (N (z)), . . . , π

(n)
n−1
2

(N (z)), π
(n)
n+3
2

(N (z)), . . . , π(n)
n (N (z)))))

where z = (x1, . . . , xn−1
2

, e, xn+1
2

, . . . , xn−1) and e is the equilibrium point of
Nn+1

2
, is Moore continuous (n − 1)DIFN.

Proof. Clearly N− is well defined and N−(/0/) = /1/ and N−(/1/) = /0/. Let
x0,y0 ∈ Ln−1([0, 1]), then

x = (π(n−1)
1 (x0), . . . , π

(n−1)
n−1
2

(x0), πn
2
(e), π(n−1)

n+1
2

(x0), . . . , π
(n−1)
n−1 (x0)) ∈ Ln([0, 1])

and

y = (π(n−1)
1 (y0), . . . , π

(n−1)
n−1
2

(y0), πn
2
(e), π(n−1)

n+1
2

(y0), . . . , π
(n−1)
n−1 (y0)) ∈ Ln([0, 1]).

Suppose that

x0 ≤ y0 ⇒ x ≤ y

⇒ N (y) ≤ N (x)

⇒ [π(n)
1 (N (y)), . . . , π(n)

n−1(N (y))] ≤ [π(n)
1 (N (x)), . . . , π(n)

n−1(N (x))]
⇒ N−(y0) ≤ N−(x0).

Hence, N− is an (n − 1)DIFN.
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Let ε > 0. By the continuity of N there exists δ > 0 satisfying for each
x,y ∈ Ln([0, 1])

dnM (x,y) ≤ δ ⇒ dnM (N (x),N (y)) ≤ ε.

Thus, if

dn−1
M (x0,y0) ≤ δ

⇒ max(|π(n−1)
1 (x0) − π

(n−1)
1 (y0)|, . . . , |π(n−1)

n−1
2

(x0) − π
(n−1)
n−1
2

(y0)|,

|π(n−1)
n+1
2

(x0) − π
(n−1)
n+1
2

(y0)|, . . . , |π(n−1)
n−1 (x0) − π

(n−1)
n−1 (y0)|) ≤ δ

⇒ max(|π(n−1)
1 (x0) − π

(n−1)
1 (y0)|, . . . , |π(n−1)

n−1
2

(x0) − π
(n−1)
n−1
2

(y0)|, |πn
2
(e) − πn

2
(e)|,

|π(n−1)
n+1
2

(x0) − π
(n−1)
n+1
2

(y0)|, . . . , |π(n−1)
n−1 (x0) − π

(n−1)
n−1 (y0)|) ≤ δ

⇒ max(|π(n)
1 (x) − π

(n)
1 (y)|, . . . , |π(n)

n−1
2

(x) − π
(n)
n−1
2

(y)|, |πn+1
2

(e) − πn+1
2

(e)|,

|π(n)
n+3
2

(x) − π
(n)
n+3
2

(y)|, . . . , |π(n)
n (x) − π(n)

n (y)|) ≤ δ

⇒ dn
M (x,y) ≤ δ

⇒ dn
M (N (x), N (y)) ≤ ε

⇒ max(|π(n)
1 (N (x)) − π

(n)
1 (N (y))|, . . . , |π(n)

n−1
2

(N (x)) − π
(n)
n−1
2

(N (y))|, |πn+1
2

(N (e)) −

πn+1
2

(N (e))|, |π(n)
n+3
2

(N (x)) − π
(n)
n+3
2

(N (y))|, . . . , |π(n)
n (N (x)) − π(n)

n (N (y))|) ≤ ε

⇒ max(|π(n)
1 (N (x)) − π

(n)
1 (N (y))|, . . . , |π(n)

n−1
2

(N (x)) − π
(n)
n−1
2

(N (y))|,

|π(n)
n+3
2

(N (x)) − π
(n)
n+3
2

(N (y))|, . . . , |π(n)
n (N (x)) − π(n)

n (N (y))|) ≤ ε

⇒ max(|π(n−1)
1 (N−(x0)) − π

(n−1)
1 (N−(y0))|, . . . , |π(n−1)

n−1
2

(N−(x0)) − π
(n−1)
n−1
2

(N−(y0))|

|π(n−1)
n+1
2

(N−(x0)) − π
(n−1)
n+1
2

(N−(y0))|, . . . , |π(n−1)
n−1 (N−(x0)) − π

(n−1)
n−1 (N−(y0))|) ≤ ε

⇒ dn−1
M (N−(x0), N−(y0)) ≤ ε.

Therefore, N− is Moore continuous (n − 1)DIFN.

Proposition 13. Let n be odd and N be a Moore continuous nDIFN such that
N is an i and n+1

2 -representable for some 1 ≤ i ≤ n − 1 and N be a continuous
fuzzy negation satisfying Ni ≤ N ≤ Ni+1. Then the function N+ : Ln+1([0, 1]) →
Ln+1([0, 1]) defined by

N+(x) = (π
(n)
1 (N (x0)), . . . , π

(n)
n+1
2

(N (x0)), N(xn−i+2), π
(n)
n+3
2

(N (x0)), . . . , π
(n)
n (N (x0)))

where

x0 = (π(n+1)
1 (x), . . . , π(n+1)

n+1
2

(x), π(n+1)
n+5
2

(x), . . . , π(n+1)
n+1 (x))

and xn−i+2 = π
(n+1)
n−i+2(x), is Moore continuous (n + 1)DIFN.
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Proof. Analogously from Proposition 6.

Proposition 14. Let n be odd and N be a n+1
2 -representable Moore contin-

uous nDIFN. If (e1, . . . , en) is an equilibrium point of N , then (e1, . . . , en−1
2

,

en+3
2

, . . . , en) is an equilibrium point of N−.

Proof. Once N is n+1
2 -representable Moore continuous nDIFN then by Propo-

sition 5, Nn+1
2

is continuous. So, Nn+1
2

has a unique equilibrium point. If

z = (e1, . . . , en) is an equilibrium point of N , then Nn+1
2

(

en+1
2

)

= en+1
2

. Let
y = (e1, . . . , en−1

2
, en+1

2
, . . . , en), then by Proposition 12

N−(y) = (π(n)
1 (N (z)), . . . , π(n)

n−1
2

(N (z)), π(n)
n+3
2

(N (z)), . . . , π(n)
n (N (z)))

= (π(n)
1 (z), . . . , π(n)

n−1
2

(z), π(n)
n+3
2

(z), . . . , π(n)
n (z))

= (e1, . . . , en−1
2

, en+3
2

, . . . , en)
= y.

Therefore, (e1, . . . , en−1
2

, en+3
2

, . . . , en) is an equilibrium point of N−. �

Proposition 15. Let n be odd and N be a n+1
2 -representable Moore

continuous nDIFN. If (e1, . . . , en) is an equilibrium point of N , then
(e1, . . . , en−1

2
, e, e, en+3

2
, . . . , en) is an equilibrium point of N+, where e is the

equilibrium point of Nn+1
2

.

Proof. Analogous from Proposition 14. �

Proposition 16. Let n ≥ 2, N be a Moore continuous nDIFN with representant
N1, . . . , Nn. If /e/(n) is an n-dimensional equilibrium point of N , then /e/(n−1)

is an equilibrium point of N−.

Proof. Straightforward. �

5 Conclusion

In this paper, we characterizing the notion of the equilibrium point of repre-
sentable Moore continuous nDIFN and prove some results about them. Our aim
was to investigate the existence of equilibrium point of this kind of nDIFN as well
as the conditions for changing the dimensions of representable Moore continuous
nDIFN and inherits their equilibrium point.

As further works, we intend to deepen the study in Moore continuous n-
dimensional intervals fuzzy sets exploring the topological aspects.
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Abstract. Mathematical morphology is a theory with applications in
image processing and analysis. In a supervised approach to mathemati-
cal morphology, pixel values are ranked according to sets of foreground
and background elements specified a priori by the user. In this paper,
we introduce a supervised fuzzy color-based approach to color mathe-
matical morphology that provides an elegant alternative to the support
vector machine-based approach developed by Velasco-Forero and Angulo.
Briefly, color elements are ranked according to the degree of truth of the
proposition “the considered color is a foreground color but it is not a
background color” in the new supervised color morphological approach.
Furthermore, the vagueness and uncertainty inherent to the description
of colors by humans can be naturally incorporated in the new approach
using the concept of fuzzy colors.

Keywords: Image processing · Mathematical morphology
Complete lattice · Fuzzy color · Supervised learning

1 Introduction

Mathematical morphology (MM) is a powerful non-linear image processing
framework based on geometrical and topological concepts [1,2]. Applications of
MM include, edge detection, segmentation and automatic image reconstruction,
pattern recognition and image decomposition [3–6].

The first morphological operators have been developed by Matheron and
Serra in the 1960s for the analysis of binary images. Later, binary MM operators
have been successfully generalized to deal with gray-scale images [7]. Some gray-
scale morphological operators were also developed using concepts from fuzzy
logic and fuzzy set theory [8–11].

Morphological operators are very well defined on complete lattices [1,12].
A complete lattice L is a partially ordered non-empty set in which any subset
admits both a supremum and an infimum [13,14]. Since the only requirement is
a partial order with well-defined extreme operations, complete lattices allowed
the development of morphological operators to multivalued data, including color
images [15,16]. In contrast to gray-scale approaches, however, there is no natural
c© Springer International Publishing AG, part of Springer Nature 2018
G. A. Barreto and R. Coelho (Eds.): NAFIPS 2018, CCIS 831, pp. 278–289, 2018.
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ordering for colors. Hence, most researches on color MM consist on finding an
appropriate ordering scheme for a given color image processing task. The inter-
ested reader can find a detailed discussion on many approaches to multivalued
MM, including color MM, on [15].

Among the many partial orderings used on color MM, total orderings have
been widely used because they avoid the appearance of false colors [17,18]. For
example, Hanbury and Serra introduced a conditional ordering on the CIELab
space to color MM [19]. Reduced orderings followed by a lexicographical cascade
to remove ambiguities have also been successfully applied on color MM. Specifi-
cally, in a reduced ordering (R-ordering) color elements are ranked according to
a surjective – often real-valued – mapping h [20]. For example, Louverdis and
Adreadis proposed a reduced ordering in which colors are ranked using fuzzy IF-
THEN rules [21]. Also, Velasco-Forero and Angulo proposed a reduced ordering
scheme using statistical depth functions [22]. Another promising unsupervised
ordering scheme, in which the surjective mapping is constructed from the values
of an image, have been proposed by Lézoray [16].

In contrast to the unsupervised reduced ordering schemes, supervised order-
ings are defined using a set of color references. For example, Sartor and Weeks
proposed a reduced ordering scheme based on the distance to a reference color
[23]. Ordering schemes based on distance have also been investigated by many
other researchers [24–29]. It turns out, however, that many distance-based
approaches to color MM can be viewed as particular cases of the supervised
ordering proposed by Velasco-Forero and Angulo, in which the surjective map-
ping is determined using support vector machines (SVMs) [30,31].

In this paper we introduce an R-ordering for color MM using concepts from
fuzzy set theory. Precisely, we introduce a total ordering scheme which ranks
color elements according to their membership on two families of fuzzy colors;
one family corresponding to the foreground and the other representing the back-
ground fuzzy colors. Fuzzy colors, which attempt to solve the problem known as
“semantic gap”, address the vagueness and subjectivity in the modeling of colors
[32]. Like the supervised ordering proposed by Velasco-Forero and Angulo, our
R-ordering generalizes many distance-based approaches to color MM. In con-
trast to the SVM approach, however, the approach based on fuzzy colors does
not involve the solution of an optimization problem. Furthermore, it can natu-
rally take into account the imprecision used by humans to describe and perceive
colors.

The paper is organized as follows. The next section reviews some mathemati-
cal background on color images and mathematical morphology. Some approaches
to color MM are described in Sect. 3. Section 4 presents the new approach to color
MM using fuzzy set theory. The paper finishes with some concluding remarks
on Sect. 5.

2 Color Images and Mathematical Morphology

First of all, recall that a color image can be modeled as a mapping from a point
set D into a color space C. Let us denote the family of all images from D to C
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by CD. In this paper, we assume that the point set is either D ⊆ R
2 or D ⊆ Z

2

and the color space C is a subset of R̄3, where R̄ = R ∪ {+∞,−∞}. There are
many color spaces in the literature but we shall restrict our attention to the
RGB space [33,34].

The RGB color space is based on the tristimulus theory of vision in which a
color is decomposed into the primitives: red (R), green (G), and blue (B) [34].
Geometrically, this color space is represented by the cube CRGB = [0, 1]× [0, 1]×
[0, 1] whose axes correspond to the intensities in each primitive. In the RGB
space, a certain color x = (xR, xG, xB) is a point in or inside the cube CRGB .
The origin corresponds to “black” while the edge (1, 1, 1) represents “white”.
The RGB color space is widely used in hardware devices including image scan-
ners, digital cameras, and liquid-crystal display systems. In fact, most capturing
devices are equipped with three sensors that are sensitive to the red, green, and
blue spectrum [34]. Therefore, we may assume that a natural color image is
captured using the RGB color space.

2.1 Mathematical Morphology

Briefly, morphological operators examine an image by probing it with a small
pattern called structuring element [1,2]. Precisely, the structuring element is used
to extract useful information about the geometrical and topological structures
on an image. Such as the domain of a color image, we assume that a structuring
element S corresponds to a subset of either R

2 or Z
2.

As pointed out in the introduction, complete lattices constitute an appropri-
ate framework for a general theory of MM [1,12]. A partially ordered set (L,≤)
is a complete lattice if any subset X ⊆ L admits a supremum and an infimum,
denoted respectively by

∨
X and

∧
X. Examples of complete lattices used in

color MM are given in the following sections.
Let us assume that the color space C, equipped with a certain partial ordering

“≤”, is a complete lattice. The erosion of a color image I ∈ CD by a structuring
element S, denoted by εS(I), is the color image defined by:

εS(I)(p) =
∧

{I(p + s) : s ∈ S, p + s ∈ D}, ∀p ∈ D. (1)

Dually, the dilation of a color image I ∈ CD by a structuring element S, denoted
by δS(I), is the color image given by:

δS(I)(p) =
∨

{I(p + s) : s ∈ S, p + s ∈ D}, ∀p ∈ D. (2)

Erosions and dilations are the two elementary operations of mathematical
morphology [2]. Many other morphological operators are obtained by combin-
ing erosions and dilations. For example, their compositions yield the so-called
opening and closing, which have interesting topological properties and are used
as non-linear image filters [2].
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3 Some Approaches to Color Mathematical Morphology

3.1 Marginal and Lexicographical Approaches

A straightforward extension of the gray-scale MM to color images, referred to as
the marginal or component-wise approach, is obtained by processing separately
each color component [15,26]. In mathematical terms, the marginal approach is
obtained by ordering the colors x = (x1, x2, x3) and y = (y1, y2, y3) as follows:

x ≤marg y ⇐⇒ x1 ≤R y1, x2 ≤R y2, x3 ≤R y3, (3)

where “≤R” denotes the usual ordering scheme of real numbers. One can easily
check that “≤marg” is a partial ordering on CRGB . Also, it is not hard to show that
(CRGB ,≤marg) is a complete lattice. The elementary morphological operators of
the marginal approach, given by (1) and (2) with the ordering defined by (3),
are denoted respectively by εM

S and δM
S .

Although the marginal approach yielded excellent results in computational
experiments concerning the removal of Gaussian noise [15], it does not take into
account the correlations between the color components. In fact, certain features
can be removed or enhanced in one of the color components but not in the others.
As a consequence, there is the possibility of introducing false colors, changing
the color balance, or altering the edges of objects [26]. These undesired effects
can be avoided by endowing the color space with a total ordering instead of a
partial ordering.

In contrast to the marginal approach, colors are ranked sequentially in the
lexicographical approach. Formally, the lexicographical ordering, denoted by the
symbol “≤lex”, is defined by means of the following equation for x,y ∈ CRGB:

x ≤lex y ⇐⇒

⎧
⎪⎨

⎪⎩

x1 <R y1,

x1 = y1 and x2 <R y2,

x1 = y1, x2 = y2 and x3 ≤R y3.

(4)

One can easily show that “≤lex” is a total ordering and (CRGB ,≤lex) is a complete
lattice. The lexicographical erosion and the lexicographical dilation of a color
image by a structuring element S, denoted by εL

S and δL
S , are given respectively

by (1) and (2) with the ordering defined by (4).
The lexicographical approach has been widely used in color MM partially

because it prevents the apparition of “false colors”. It turns out, however, that
this ordering scheme prioritizes excessively the first condition in the lexicograph-
ical cascade [15]. As a consequence, many fruitful approaches to color MM are
obtained by reducing the colors to a scalar whose comparison is evaluated in the
first condition of a lexicographical cascade.

3.2 Some Approaches Based on Reduced Orderings

In a reduced ordering (R-ordering), the elements are ranked according to a map-
ping h from the color space C into a complete lattice L. In this paper, we only
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consider continuous real-valued mappings h : CRGB → R̄. Furthermore, the col-
ors are ranked by comparing the value of h followed by a lexicographical cascade.
Precisely, we define an R-ordering, denoted by the symbol “≤h”, as follows for
any x,y ∈ CRGB :

x ≤h y ⇐⇒
{

h(x) <R h(y)
h(x) = h(y) and x ≤lex y.

(5)

It is not hard to show that “≤h” yields a total ordering on a color space CRGB

when h : CRGB → R̄ is a continuous mapping. Hence, (CRGB ,≤h) is a complete
lattice and we can define the h-erosion εh

S and the h-dilation δh
S of an image

by a structuring element S by means of Eqs. (1) and (2). Since (CRGB ,≤h) is a
totally ordered set, the h-morphological operators prevent the apparition of false
colors. Furthermore, the function h allows us to define adaptive morphological
operators [31]. Examples of adaptive mappings include distance-based mappings
[25] and, more generally, supervised mappings [30].

In the distance-based approach to color MM, we assume that the color space
C is equipped with a metric d. For instance, the metric d can be the Euclidean
distance or the Mahanolabis distance [25]. Given a reference color r ∈ C, the
distance-based ordering “≤d,r”, which depends on the metric d as well as the
reference r, corresponds to the R-ordering obtained by considering in (5) the
mapping hr(x) = κ(x, r), where κ is the Gaussian radial basis function kernel
defined by the following equation for σ > 0:

κ(x, r) = exp
(

−d2(x, r)
2σ2

)

. (6)

Note that, using the distance-based ordering “≤d,r”, a color element y is larger
than or equal to another color x if y is closer to the color reference r than x.
One the one hand, the largest element of the complete lattice (C,≤d,r) is the
reference r. As a consequence, the dilation δhr

S (I), defined by (2), the R-ordering
given by (5), and the h-mapping hr(x) = κ(x, r), expands objects of color r in
the color image I. On the other hand, the least element is the color farthest from
the reference. Thus, the erosion εhr

S given by (1) with the distance-based reduced
ordering does not have a simple interpretation. Concluding, the distance-based
morphological operators are usually efficient if we intent to treat objects with a
specific color r.

In many practical situations, however, we are interested in objects composed
of many different color elements. Alternatively, we may want to discriminate
foreground and background colors. A h-supervised ordering proposed by Velasco-
Forero and Angulo generalizes the distance-based approach by allowing the user
to inform sets of foreground and background color references [30]. Precisely, let

F = {f1, f2, . . . , fK} and B = {b1,b2, . . . ,bM}, (7)

denote respectively the set of foreground and the set of background color ref-
erences. In a h-supervised ordering, the mapping h is expected to satisfy the
conditions
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h(fi) = �, ∀i = 1, . . . , K, and h(bj) = ⊥, ∀j = 1, . . . , M, (8)

where � =
∨

h(C) and ⊥ =
∧

h(C) denote respectively the largest and the least
values of the image of the mapping h. Therefore, the supremum and the infimum
on the complete lattice (C,≤h) are interpretable with respect to the color sets
B and F .

An effective approach is obtained by considering in (5) the supervised map-
ping hSVM given by

hSVM(x) =
K∑

i=1

αiκ(x, fi) −
M∑

j=1

βjκ(x,bj), ∀x ∈ C, (9)

where κ is the Gaussian kernel given by (6) and, αi’s and βj ’s are the Lagrange
multipliers of the dual formulation of the support vector machine (SVM) trained
to discriminate background and foreground color elements [30]. In mathematical
terms, αi’s and βj ’s are determined by solving the quadratic problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize
K∑

i=1

αi +
M∑

j=1

βj − 1
2

K∑

i,�=1

αiα�κ(fi, f�) − 1
2

M∑

j,�=1

βjβ�κ(bj ,b�)

+
1
2

K∑

i=1

M∑

j=1

αiβjκ(fi,bj),

subject to
K∑

i=1

αi −
M∑

j=1

βj = 0 and 0 ≤ αi, βj ≤ C,

(10)
where C is a user-specified positive parameter which controls the tradeoff
between complexity and the number of nonseparable points [35]. Geometrically,
hSVM yields the signed distance to the separating surface between background
and foreground color references.

In spite of its elegant formulation, the R-ordering given by (5) with hSVM

defined by (9) may fail do satisfy the desired conditions in (8). In terms of the
elementary morphological operators, we cannot ensure that the h-supervised
dilation δhSVM

S defined by (2), (5), and (9) will expand the foreground and shrink
the background. Dually, the h-supervised erosion εhSVM

S given by (1), (5), and (9)
may fail to expand the background and shrink the foreground. The following
example illustrate this remark.

Example 1. Consider the following sets of foreground and background colors

F = {(0, 0, 0), (1, 1, 0)} and B = {(1, 0, 0), (0, 1, 0), (0.5, 0.5, 0)}. (11)

In words, black and yellow are the foreground while red, green, and olive consti-
tute the background reference colors. Note that, purposefully, the foreground as
well as the background color references belong to {x = (xR, xG, xB) : xB = 0},
i.e., the red-green plane of the RGB color space. By solving the quadratic pro-
gramming problem defined by (10) with C = 10 and the kernel κ defined by (6)
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Fig. 1. Surfaces of the functions hSVM and hfuzzy in the red-green plane. (Color figure
online)

with σ = 1, we obtain the mapping hSVM whose surface1 in the red-green plane
is shown in Fig. 1(a). In particular, we obtain

hSVM(1, 1, 0) = −0.37486 <R hSVM(0, 1, 0) = −0.35992. (12)

Therefore, although we admitted yellow as a foreground color and green as a
background color, we conclude from the the hSVM-supervised ordering that yellow
is less than green. A visual interpretation of the hSVM-supervised elementary
morphological operators is given in Fig. 2. Precisely, Fig. 2(a) shows a synthetic
color image I composed of the nine squares of size 3 × 3 with colors in the red-
green plane. Figures 2(b) and (c) depict respectively the erosion εhSVM

S (I) and the
dilation δhSVM

S (I) of the image I shown in Fig. 2(a) by a 3 × 3 square structuring
element S. Since yellow is a foreground color and red, green, and olive belong all
to the background color set, a h-supervised dilation and a h-supervised erosion
are expected to respectively expand and shrink the yellow square towards the
green, red, and olive squares. Figure 2(b) and (c), however, show that the dilation
δhSVM

S and the erosion εhSVM

S have not performed as expected.

4 Fuzzy Color-Based Approach to Color Morphology

Like the hSVM-ordering proposed by Velasco-Forero and Angulo, in this section
we generalize the distance-based approach by considering sets B and F of back-
ground and foreground colors. However, instead of defining the mapping h in
terms of the solution of a quadratic problem, we use concepts from fuzzy set
theory, namely, the concept of fuzzy color [32]:

1 The surface of a mapping h in the red-green plane is formally defined by the set
{(x, y, z) : z = h(x, y, 0), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
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Fig. 2. Synthetic color image and its h-supervised erosions and dilations obtained by
considering black and yellow as foreground and red, green, and olive as background.
(Color figure online)

Definition 1. A fuzzy color on a color space C is a linguistic label whose seman-
tics are given by a normal fuzzy subset of C.
Fuzzy colors attempts to model colors by considering the imprecision, subjectiv-
ity, and context dependency widely used by humans to describe them.

It turns out that the mapping hr : C → [0, 1] defined by hr(x) = κ(x, r)
with the Gaussian radial basis function kernel can be interpreted as membership
function of a fuzzy color. As a consequence, given sets of color elements F and
B, we can define the families F̃ = {F1, . . . , FK} and B̃ = {B1, . . . , BM} of fuzzy
colors whose membership functions are given by the following equations:

ϕFi
(x) = κ(x, fi) and ϕBj

(x) = κ(x,bj), ∀x ∈ C. (13)

Let us now assume that we have families F̃ and B̃ of foreground and back-
ground fuzzy colors. These two families can be defined from sets of color ref-
erences using (13) or using a user-friendly framework such as the one devel-
oped by Soto-Hidalgo et al. [36]. Furthermore, we can define the mapping
hfuzzy : C → [0, 1] such that hfuzzy(x) corresponds to the degree of truth of
the proposition

“the color x is a foreground color but it is not a background color”.
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Alternatively, we can formulate hfuzzy as the membership function of the fuzzy
set difference between the union of foreground and the union of background
fuzzy colors. In other words, hfuzzy is the membership function of the fuzzy set

H =

(
K⋃

i=1

Fi

)

\
⎛

⎝
M⋃

j=1

Bj

⎞

⎠ . (14)

Using the membership functions of the fuzzy colors Fi’s and Bj ’s, we obtain

hfuzzy(x) ≡
(
ϕF1(x) � . . . � ϕFK

(x)
)

� η
(
ϕB1(x) � . . . � ϕBM

(x)
)
, (15)

where �, �, and η denote respectively a triangular norm, a triangular co-norm,
and a strong fuzzy negation [37]. Note that (15) does not require the solution of
an optimization problem. Therefore, it can be implemented more easily than the
supervised hSVM-mapping proposed by Velasco-Forero and Angulo [30]. Moreover,
the following theorem shows that the mapping satisfies the expected conditions
(8) if a foreground color element does not belong to the support of a background
fuzzy color Bj :

Theorem 1. Let F̃ = {F1, . . . , FK} and B̃ = {B1, . . . , BM} be families of fuzzy
colors whose membership functions satisfy ϕFi

(fi) = 1 and ϕBj
(bj) = 1. If

ϕBj
(fi) = 0, then the mapping hfuzzy : C → [0, 1] defined by (15) satisfies

hfuzzy(fi) = 1 and hfuzzy(bj) = 0 for all i = 1, . . . , K and j = 1, . . . , M .

In view of Theorem 1, the fuzzy set-based mapping hfuzzy : C → [0, 1] consti-
tutes a promising alternative for the development of h-morphological operators.
Let us confirm this remark with a simple illustrative example where δ

hfuzzy

S and
ε
hfuzzy

S denote respectively the h-supervised dilation and the h-supervised erosion
given by (2) and (1) with the R-ordering defined by (5) and (15).

Example 2. Consider the sets of foreground and background colors references
given by (11). Let us define the foreground fuzzy colors Fblack, Fyellow and the
background fuzzy colors Bred, Bgreen and Bolive using the Gaussian radial basis
function kernel defined by (6) with σ = 1 and the Euclidean distance. For exam-
ple, the membership function of fuzzy color yellow is given by the following
equation for all color x = (xR, xG, xB) ∈ CRGB :

ϕFyellow
(x) = exp

(

− (xR − 1)2 + (xG − 1)2 + x2
B

2

)

. (16)

Note that the foreground colors black and yellow belong to the support of any
background fuzzy color. For example, yellow belongs to the support of the fuzzy
color red because ϕBred

(1, 1, 0) = 0.61. Hence, the families F̃ = {Fblack, Fyellow}
and B̃ = {Bred, Bgreen, Bolive} do not satisfy the hypothesis in Theorem 1. Nev-
ertheless, the mapping hfuzzy defined by (15) performs as expected using the
maximum (� ≡ ∨), the minimum (� ≡ ∧), and the standard fuzzy nega-
tion (η(x) = 1 − x). The surface of hfuzzy in the red-green plane is shown in
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Fig. 1(b). Note that hfuzzy has local maximums at the foreground colors (0, 0, 0)
and (1, 1, 0), and global minimums at the background colors (1, 0, 0), (0, 1, 0),
and (0.5, 0.5, 0). Indeed, we have hfuzzy(bj) = 0 for any background color bj ,
j = 1, 2, 3. Moreover, we clearly have hfuzzy(fi) ≥ hfuzzy(bj) for all i = 1, 2
and j = 1, 2, 3. As a consequence, the hfuzzy-supervised morphological operators
δ

hfuzzy

S and ε
hfuzzy

S perform as expected. For instance, consider the synthetic color
image I depicted in Fig. 2(a). The erosion εhSVM

S (I) and the dilation δhSVM

S (I) of I by
a 3×3 square structuring element S are shown in Fig. 2(d) and (e), respectively.
As expected, the yellow square in the middle have been expanded by the dilation
δ

hfuzzy

S while it have been shrank by the erosion ε
hfuzzy

S .

5 Concluding Remarks

Mathematical morphology is a theory widely used for image processing and
analysis. From the mathematical point of view, the elementary morphological
operators are very well defined using complete lattices. Briefly, a complete lat-
tice is a partially ordered set in which every subset has a supremum and an
infimum. It turns out, however, that there is no natural and widely accepted
partial ordering for colors. In this sense, reduced orderings (R-ordering) pro-
vides an powerful and elegant tool. In a loose sense, colors are ranked according
to real-valued mapping h in an R-ordering. We speak of a supervised R-ordering
if the mapping h attains its maximum and minimum respectively at the sets of
foreground and background color elements specified a priori by the user. The
support vector machine-based (SVM-based) supervised ordering proposed by
Velasco-Forero and Angulo is an example of a supervised R-ordering that have
been effectively applied for processing hyper-spectral images [30].

In this paper, we introduced a supervised R-ordering for color mathematical
morphology which provides an elegant alternative to the SVM-based approach
of Velasco-Forero and Angulo. The new supervised R-ordering can address the
vagueness and uncertainty inherent to the description of colors by humans using
the concept of fuzzy colors. Precisely, given families F̃ = {F1, . . . , FK} and B̃ =
{B1, . . . , BM} of foreground and background fuzzy colors, we propose to rank
colors according to the value of the hfuzzy defined by (15). In words, hfuzzy(x)
corresponds to the degree of truth of the proposition “x is a foreground (fuzzy)
color but it is not a background (fuzzy) color”. We would like to point out that
the families F̃ and B̃ of fuzzy colors can be defined from sets of color references
using (13) or using a user-friendly framework such as the one developed by Soto-
Hidalgo et al. [36]. We provided in this paper a synthetic example in which the
fuzzy color-based approach performs as expected while the SVM-based approach
failed to treat foreground and background colors in an appropriate manner.

In the future, we plan to investigate further the theoretical properties of the
fuzzy color-based approach to color mathematical morphology. We also intent to
study applications of the new approach for color image processing and analysis.

Acknowledgment. This work was supported in part by CNPq under grant no
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Abstract. In this paper we introduce the class of fuzzy kernel associa-
tive memories (fuzzy KAMs). Fuzzy KAMs are derived from single-step
generalized exponential bidirectional fuzzy associative memories by inter-
preting the exponential of a fuzzy similarity measure as a kernel function.
The output of a fuzzy KAM is obtained by summing the desired responses
weighted by a normalized evaluation of the kernel function. Furthermore,
in this paper we propose to estimate the parameter of a fuzzy KAM by
maximizing the entropy of the model. We also present two approaches
for pattern classification using fuzzy KAMs. Computational experiments
reveal that fuzzy KAM-based classifiers are competitive with well-known
classifiers from the literature.

Keywords: Fuzzy associative memory · Similarity measure
Entropy · Pattern classification

1 Introduction

Associative memories (AMs) are mathematical models inspired by the human
brain ability to store and recall information by means of associations [1]. More
specifically, they are designed for the storage of a finite set of association pairs
{(xξ,yξ), ξ = 1, · · · , p}, called fundamental memory set. We refer to x1, . . . ,xp as
the stimuli and y1, . . . ,yp as the desired responses. Furthermore, an AM should
exhibit some error correction capability, i.e, it should yield the desired response
yξ even upon the presentation of a corrupted version x̃ξ of the stimulus xξ. An
AM is said autoassociative if xξ = yξ for all ξ = 1, · · · , p, and heteroassociative
if there is at least one ξ ∈ {1, · · · , p} such that xξ �= yξ. Applications of AM
models include diagnosis [2], emotional modeling [3], pattern classification [4–7],
and image processing and analysis [8,9].

The Hopfield neural network is one of the most widely known neural network
used to implement an AM [10]. Despite its many successful applications, the
Hopfield network suffers from a very low storage capacity [1]. A simple but
significant improvement in storage capacity of the Hopfield network is achieved
by the recurrent correlation associative memory (RCAMs) [11]. RCAMs are
closely related to the dense associative memory model introduced recently by
c© Springer International Publishing AG, part of Springer Nature 2018
G. A. Barreto and R. Coelho (Eds.): NAFIPS 2018, CCIS 831, pp. 290–301, 2018.
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Krotov and Hopfield to establish the duality between AMs and deep learning [12,
13]. Furthermore, a particular RCAM, called exponential correlation associative
memory (ECAM), is equivalent to a certain recurrent kernel associative memory
proposed by Garcia and Moreno [14,15].

Like the traditional Hopfield neural network, the original ECAM is an autoas-
sociative memory designed for the storage and recall of bipolar vectors. Many
applications of AMs, however, require either an heteroassociative memory or
the storage and recall of real-valued data. A heteroassociative version of the
ECAM, called exponential bidirectional associative memory (EBAM), have been
proposed by Jeng et al. [16]. As to the storage and recall of real-valued vectors,
Chiueh and Tsai introduced the multivalued exponential recurrent associative
memory (MERAM) [17].

Recently, we introduced the class of generalized recurrent exponential fuzzy
associative memories (GRE-FAMs), which have been effectively applied for pat-
tern classification [5,18]. Briefly, GRE-FAMs are autoassociative fuzzy memories
obtained from a generalization of a fuzzy version of the MERAM. Recall that a
fuzzy associative memory is a fuzzy system designed for the storage and recall
of fuzzy sets [19,20]. The generalized exponential bidirectional fuzzy associative
memories (GEB-FAMs), which generalize the GRE-FAMs for the heteroassocia-
tive case, have been applied for face recognition [21]. We would like to point out,
however, that the dynamic of the GEB-FAMs are not fully understood yet. In
view of this remark, we mostly considered single-step versions of these two AM
models.

Summarizing, on the one hand, GEB-FAMs can be viewed as a fuzzy ver-
sion of the bidirectional (heteroassociative) ECAM. On the other hand, ECAM
is equivalent to a certain kernel associative memory. Put together, these two
remarks suggest us to interpret the single-step GEB-FAMs using (fuzzy) kernel
functions and, from now on, we shall refer to them as fuzzy kernel associative
memories (fuzzy KAMs). Recall that a kernel is informally defined as a simi-
larity measure that can be thought of as a dot product on a high-dimensional
feature space [22]. Disregarding formal definitions, we interpret a fuzzy similarity
measure as a fuzzy kernel. Such interpretation lead us to information theoretical
learning whose goal is to capture the information in the parameters of a learning
machine [23]. In this paper, we propose to fine tune the parameter of a fuzzy
KAM using information theoretical learning.

The paper is structured as follows. Next section presents the fuzzy kernel
associative memory and some theoretical results. In this section, we also describe
how information theoretical learning can be used to determine the parameter of
a fuzzy KAM. An application of autoassociative and heteroassociative fuzzy
KAMs for pattern classification is given in Sect. 3. Computational experiments
on pattern classification are provided in Sect. 4. The paper finishes with the
concluding remarks in Sect. 5.
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2 Fuzzy Kernel Associative Memory

A fuzzy similarity measure, or simply similarity measure, is a function that
associates to each pair of fuzzy sets a real number that expresses the degree of
equality of these sets. According to De Baets and Meyer [24], a fuzzy similarity
measure is a symmetric binary fuzzy relation on the family of all fuzzy sets F(U).
In mathematical terms, a similarity measure is a mapping S : F(U) × F(U) →
[0, 1] such that S(A,B) = S(B,A) for all fuzzy sets A,B ∈ F(U). We speak of
a strong similarity measure if S(A,B) = 1 if, and only if, A = B.

Given a fuzzy similarity measure, the mapping κ : F(U) × F(U) → [0, 1]
defined by the following equation for α > 0 is also a fuzzy similarity measure

κ(A,B) = eα(S(A,B)−1). (2.1)

Disregarding formal definitions, we shall refer to κ as a fuzzy kernel.
We would like to call the reader’s attention to the dependence of the fuzzy

kernel κ on the parameter α when S is a strong similarity measure. On the one
hand, κ approximates the strict equality of fuzzy sets as α increases. Precisely,
we have κ(A,B) = 1 if A = B and κ(A,B) = 0 otherwise as α → ∞. On
the other hand, κ(A,B) = 1 for all A,B ∈ F(U) as α → 0. In other words,
κ is unable to discriminate fuzzy sets for sufficiently small α > 0. Hence, the
parameter α controls the capability of the fuzzy kernel to distinguish fuzzy sets.

Let us now introduce the fuzzy kernel associative memory (fuzzy KAM):

Definition 1 (Fuzzy KAM). Consider a fundamental memory set {(Aξ, Bξ) :
ξ = 1, . . . , p} ⊂ F(U) × F(V ). Let α > 0 be a real number, S : F(U) × F(U) →
[0, 1] a similarity measure, and H a p × p real-valued matrix. A fuzzy KAM is a
mapping K : F(U) → F(V ) defined by the following equation where X ∈ F(U)
is the input and Y = K(X) ∈ F(V ) is the output:

Y (v) = ϕ

⎛
⎜⎜⎜⎜⎜⎝

p∑
ξ=1

p∑
μ=1

hξμκ(Aμ,X)Bξ(v)

p∑
η=1

p∑
μ=1

hημκ(Aμ,X)

⎞
⎟⎟⎟⎟⎟⎠

. (2.2)

Here, the piece-wise linear function ϕ(x) = max(0,min(1, x)) ensures Y (v) ∈
[0, 1], for all v ∈ V .

Alternatively, we can write the output of a fuzzy KAM as

Y (v) = ϕ

⎛
⎝

p∑
ξ=1

wξB
ξ(v)

⎞
⎠ where wξ =

p∑
μ=1

hξμκ(Aμ,X)

p∑
η=1

p∑
μ=1

hημκ(Aμ,X)

. (2.3)
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In words, the output Y = K(X) is given by a linear combinations of the desired
responses Bξ’s. Moreover, the coefficients of the linear combinations are calcu-
lated by using the parametrized fuzzy kernel κ given by (2.1).

As pointed out in the introduction, an autoassociative fuzzy KAM is equiva-
lent to the single-step generalized recurrent exponential fuzzy associative mem-
ories (GRE-FAM) designed for the storage of a finite family of fuzzy sets
A = {Ai, i = 1, · · · , p} ⊂ F(U) [18]. Similarly, the heteroassociative fuzzy KAM
corresponds to the single-step generalized exponential bidirectional fuzzy asso-
ciative memories (GEB-FAM) in the heteroassociative case [25].

The matrix H plays a very important role in the storage capacity and noise
tolerance of a fuzzy KAM. The next theorem shows how to define the matrix H
so that the fundamental memories are all correctly encoded in the memory.

Theorem 1. Let A = {(Aξ, Bξ) : ξ = 1, · · · , p} ⊂ F(U) × F(V ) be the funda-
mental memory set, S : F(U) × F(U) → [0, 1] a similarity measure, α > 0 a
real number, and κ : F(U)×F(U) → [0, 1] a fuzzy kernel defined by (2.1). If the
matrix K = (kij) ∈ R

p×p, whose entries are defined by

kij = κ(Ai, Aj), ∀i, j = 1, . . . , p, (2.4)

is invertible, then the fuzzy KAM obtained by considering the matrix H = K−1

satisfies the identity K(Aξ) = Bξ for all ξ = 1, . . . , p.

Let us briefly address the computational effort required to synthesize a fuzzy
KAM based on Theorem 1. First, the fuzzy kernel κ is evaluated (p2 + p)/2
times to compute the symmetric p × p matrix K defined by (2.4). Then, instead
of determining the inverse H = K−1, we compute the LU factorization (or
the Cholesky factorization if H is symmetric and positive definite) of K using
O(p3) operations. Then, the multiplication of H by a vector is replaced by the
solution of two triangular systems during the recall phase. Summarizing, O(p3)
operations are performed to synthesize a fuzzy KAM.

The parameter α plays an important role on the noise tolerance of a fuzzy
KAM. Briefly, the higher the parameter α, the greater the weight of the funda-
mental memories most similar to the input X in the calculation of the output
K(X). In other words, increasing α emphasizes the role of the fundamental mem-
ories most similar to the input. Thus, in some sense, the parameter α controls
how each fundamental memory contributes to the output of a fuzzy KAM. For-
mally, the next theorem states that, as α tends to infinity, the output K(X)
converges point-wise to the arithmetic mean of the desired responses Bξ’s whose
associated stimulus Aξ’s are the most similar to the input X.

Theorem 2. Let A = {(Aξ, Bξ) : ξ = 1, · · · , p} ⊆ F(U) × F(V ) be a family
of fundamental memories and S a strong similarity measure. Suppose that the
matrix K given by (2.4) is invertible for any α > 0. Given a fuzzy set X ∈ F(U),
define Γ ⊆ {1, . . . , p} as the set of the indexes of the stimulus which are the most
similar to the input X in terms of S, that is:

Γ = {γ : S(Aγ ,X) ≥ S(Aξ,X),∀ξ = 1, . . . , p}. (2.5)
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Then,

lim
α→∞ Y (v) =

1
Card(Γ )

∑
γ∈Γ

Bγ(v), ∀v ∈ V. (2.6)

where Y = K(X) is the output of a fuzzy KAM. Furthermore, the weights wξ

given by (2.3) satisfy the following equation for all ξ = 1, . . . , p:

lim
α→∞ wξ =

⎧⎨
⎩

1
Card Γ

, ξ ∈ Γ,

0, otherwise.
(2.7)

2.1 Estimating the Parameter of a Fuzzy KAM

In this section, we propose to estimate the parameter α of a fuzzy KAM using
information theoretical learning [23]. The basic idea is to maximize the capability
of the fuzzy kernel κ to discriminate between two different stimulus. To this end,
we use the information-theoretic descriptor of entropy.

The concept of entropy, introduced by Shannon in 1948 [26], represents a
quantitative measure of uncertainty and information of a probabilistic system
[27,28]. The entropy of a n-state system is defined by the following equation
where pi denotes the probability of occurrence of the i-th state [27]:

E =
n∑

i=1

pi log(1/pi). (2.8)

The entropy given by (2.8) can be used as a measure of the amount of uncer-
tainty of a system. Given a fundamental memory set A = {(Aξ, Bξ) : ξ =
1, . . . , p} ⊆ F(U) × F(V ) and a strong similarity measure S : F(U) × F(U) →
[0, 1], we define the entropy of a fuzzy KAM K by means of the equation

EK(α) =
p∑

i=1

p∑
j=1

κ(Ai, Aj) log
(
1/κ(Ai, Aj)

)
(2.9)

=
p∑

i=1

p∑
j=1

− eα(S(Ai,Aj)−1) log
(
eα(S(Ai,Aj)−1)

)
(2.10)

= −
p∑

i=1

p∑
j=1

α(S(Ai, Aj) − 1))eα(S(Ai,Aj)−1). (2.11)

Note that the entropy EK of a fuzzy KAM is a function of the parameter α.
Furthermore, EK(α) tend to zero if either α → 0 or α → ∞. Intuitively, EK
quantifies the capability of the fuzzy kernel κ to discriminate between Ai and Aj

as a function of α. By maximizing EK, we expect to improve the noise tolerance
of the fuzzy KAM. In view of this remark, we suggest to choose the parameter
α∗ that maximizes (2.11). Formally, we propose to define

α∗ = argmax
α>0

EK(α). (2.12)
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At this point, we would like to recall that Shannon derived (2.8) using clas-
sical probability theory. A fuzzy entropy that does not take into account proba-
bilistic concepts in its definition have been provided by De Luca and Termini [29].
Although the fuzzy entropy would be more appropriate in our context, we have
not observed significant improvements in our preliminary computational exper-
iments using the fuzzy entropy compared to those obtained using the entropy
of Shannon. Moreover, besides presenting lower computational cost, Shannon’s
entropy showed to be more robust. Therefore, we only consider the entropy of
Shannon in this paper.

3 Classifiers Based on Fuzzy KAMs

A classifier is a mapping C : W → L that associates to each pattern w ∈
W a label l ∈ L that represents the class which w belongs to. Classifiers are
usually synthesized using a family of labeled samples, called training set. In this
section, we present two approaches to define classifiers based on fuzzy KAMs.
The first approach, which is inspired by sparse representation classifiers [30], is
based on autoassociative fuzzy KAMs. The second approach contemplates the
heteroassociative case.

3.1 The Autoassociative-Based Approach

Sparse representation classifiers [30] are based on the hypothesis that a sample
Y from class i is approximately equal to a linear combination of the training
data from class i. Formally, let AL = {(Aξ, �ξ), ξ = 1, · · · , p} ⊂ F(U)×L be the
training set, where Aξ are distinct non-empty fuzzy sets on U and L is a finite
set of labels. If Y belongs to class i, then

Y (u) ≈
∑

ξ:�ξ=i

αξA
ξ(u), ∀u ∈ U. (3.13)

Equivalently, Y can be written as:

Y (u) ≈
p∑

ξ=1

αξA
ξ(u), ∀u ∈ U, (3.14)

where αξ = 0 if �ξ �= i. In other words, Y can be written as a sparse linear
combination of the training data.

Assume we have an autoassociative fuzzy KAM K : F(U) → F(U) designed
for the storage of the fundamental memory set {A1, . . . ,Ap}. Given a pattern
X from class i (or a noisy version X̃ of X), the autoassociative fuzzy KAM is
expected to produce a pattern K(X) = Y that also belongs to class i. From
(2.3), the output of the autoassociative fuzzy KAM satisfies

Y (u) = ϕ

⎛
⎝

p∑
ξ=1

wξA
ξ(u)

⎞
⎠ , (3.15)
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where ϕ(x) = max(0,min(1, x)). By comparing (3.14) and (3.15), except for
the piece-wise linear function ϕ which can be disregarded if

∑p
ξ=1 wξA

ξ(u) ∈
[0, 1], we conclude that the linear combination in (3.15) should also be sparse.
Therefore, the coefficients αξ in (3.14) can be approximated by

αξ = wξχi(�ξ), ∀ξ = 1, . . . , p, (3.16)

where χi : L → {0, 1}, for i ∈ L, denotes the indicator function:

χi(x) =

{
1, x = i,

0, otherwise.
(3.17)

Observe that (3.16) implies αξ = wξ if �ξ = i and αξ = 0 otherwise. Concluding,
if the input X belongs to class i, we presuppose that

Y (u) ≈
p∑

ξ=1

wξχi(�ξ)Aξ(u), ∀u ∈ U, (3.18)

In practice, however, we do not know a priori to which class the input X
belongs. As a consequence, we assign to X the class i ∈ L that minimizes the

distance between Y and the linear combination
p∑

ξ=1

wξχ�(�ξ)Aξ. Formally, we

attribute to X a class label i ∈ L such that

d2

(
Y,

p∑
ξ=1

wξχi(�ξ)Aξ

)
≤ d2

(
Y,

p∑
ξ=1

wξχj(�ξ)Aξ

)
,∀j ∈ L, (3.19)

where d2 denotes the L2-distance.

3.2 Heteroassociative-Based Approach

In the second approach, we define a classifier using the heteroassociative case.
Precisely, we synthesize a heteroassociative fuzzy KAM designed for the storage
of a fundamental memory set {(Aξ, Bξ), ξ = 1, . . . , p} ⊂ F(U) × {0, 1}n, where
n = Card(L) denotes the number of classes, Aξ represents a sample from a cer-
tain class, and Bξ ⊂ {0, 1}n indicates to which class Aξ belongs. In mathematical
terms, the (fuzzy) set Bξ associated to the stimulus Aξ of class i is defined by:

Bξ(v) =

{
1, if v = i

0, if v �= i.
(3.20)

Now, given an input X ∈ F(U), the fuzzy KAM yields a fuzzy set Y = K(X).
According to Eqs. (2.2) and (3.20), Y (i) is the sum of the weights wξ’s for ξ such
that Aξ belongs to the class i. Hence, we associate the input X to the i-th class,
where i is the first index such that Y (i) ≥ Y (j), for all j = 1, . . . , n.
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4 Computational Experiments and Results

In this section, we carry out computational experiments to evaluate the per-
formance of the fuzzy KAM-based classifiers. Let us begin by clarifying the
benchmark classification problems that we have used.

4.1 Classification Problems

Let us consider the following twenty two classification problems available at the
Knowledge Extraction Based on Evolutionary Learning (KEEL) database reposi-
tory as well as at the UCI Machine Learning Repository: appendicitis, cleveland,
crx, ecoli, glass, heart, iris, monks, movementlibras, pima, sonar, spectfheart,
vowel, wdbc, wine, satimage, texture, german, yeast, spambase, phoneme, and
page-blocks [31]. We would like to point out that, due to computational limi-
tations, we refrained to consider the classification problems: magic, pen-based,
ringnorm, and twonorm. Precisely, recall that O(p3) operations are performed
to synthesize a fuzzy KAM and, in these four databases, we have p ≈ 104.

Similar to previous experiments described on the literature, the experiments
were conducted by using ten-fold cross validation technique. This method con-
sists of dividing the data-set in ten parts and performing 10 tests, each one using
one of the parts as a test set and the others nine parts as developing/training
set. Afterward, we compute the mean of the ten accuracy values obtained in
each one of the ten tests. In order to ensure a fair comparison, we used the same
partitioning as in [31,32].

Some of the data sets considered in this experiment contain both categorical
and numerical features. Therefore, a pre-processing step to convert the original
data into fuzzy sets was necessary. First, in order to have only numerical values,
we transformed each categorical feature f ∈ {v1, . . . , vc}, with c > 1, into a
c-dimensional numerical feature n = (n1, n2, . . . , nc) ∈ R

c as follows for all
i = 1, . . . , c:

ni =

{
1, f = vi,

0, otherwise.
(4.21)

For example, the crx data set contain nine categorical features, one of them
with 14 possibilities. Such categorical feature was transformed into 14 numerical
features using (4.21). At the end, an instance of the transformed crx data set
contain 46 numerical features instead of 9 categorical and 6 numerical features
of the original classification problem.

After all categorical features were converted into numerical values, an
instance from a data set can be written as a pair (x, �), where x = [x1, . . . , xn]T ∈
R

n is a vector of numerical features and � ∈ L denotes its class label. More-
over, each feature vector x ∈ R

n can be associated with a fuzzy set A =
[a1, a2, . . . , an]T by means of the equation

ai =
1

1 + e−(xi−μi)/σi
∈ [0, 1], ∀i = 1, . . . , n, (4.22)
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where μi and σi represent respectively the mean and the standard deviation
of ith component of all training instances. Concluding, any training set can be
written as a labeled family of fuzzy sets AL = {(Aξ, �ξ) : ξ = 1, . . . , p}.

Besides, we have removed some repeated elements from the fundamental
memories sets of the spambase and page-blocks data sets.

In our computational experiments, we considered the fuzzy KAM defined by
using the Gregson similarity measure and the parameter α∗ that maximizes the
entropy. The Gregson similarity measure SG : F(U)×F(U) → [0, 1] is given by:

SG(A,B) =

n∑
i=1

min(A(ui), B(ui))

n∑
i=1

max(A(ui), B(ui))

. (4.23)

Note that SG given by (4.23) is a strong similarity measure which can be inter-
preted as the quotient between the cardinality of the intersection by the cardinal-
ity of the union of A and B. Finally, we would like to point out that we studied
extensively the role of a fuzzy similarity measure in GEB-FAM models applied
for face recognition and the Gregson similarity measure achieved competitive
results in comparison with others models from the literature [21].

Figure 1 shows the boxplot of the average accuracy produced by the autoas-
sociative and heteroassociative fuzzy KAM-based classifiers as well as other
nine models from the literature, namely: 2SLAVE [33], FH-GBML [34], SGERD
[35], CBA [36], CBA2 [37], CMAR [38], CPAR [39], C4.5 [40], and FARC-HD
[32]. The accuracy of the nine first classifiers have been extract from [32]. We
can observe from Fig. 1 that the fuzzy KAM-based classifiers outperformed (or
are at least competitive!) with the other classifiers from the literature. Let us

2SLAVE FH-GBML SGERD CBA CBA2 CMAR CPAR C4.5 FARC-HD FKAM-AUTO FKAM-HETERO 
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20
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Fig. 1. Boxplot of classification accuracies of several models of the literature in twenty
two problems. The accuracy of the nine first classifiers have been extract from [32].
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conclude by pointing out that the outliers in the boxplot of the fuzzy KAM-based
classifiers correspond to the Cleveland and Yeast classification problems.

5 Concluding Remarks

In this paper, we introduced the class of fuzzy kernel associative memories (fuzzy
KAMs). Basically, a fuzzy KAM corresponds to single-step generalized expo-
nential bidirectional fuzzy associative memories (GEB-FAMs), which have been
introduced and investigated by us in the last years [5,18,21,25]. Like the single-
step GEB-FAMs, fuzzy KAMs can be applied in classification problems. Indeed,
in this paper we reviewed two approaches for pattern classification: one using
the autoassociative case and the other based on the heteroassociative case.

The main contribution of this paper is the new interpretation of the exponen-
tial of a similarity measure as a kernel function. Although we did not elaborated
rigorously on the notion of a fuzzy kernel, it allowed us to apply concepts from
information theoretical learning to fine tune the parameter α of a fuzzy KAM.
Precisely, in view of its simplicity, we proposed to determine the parameter α∗

that maximizes the Shannon entropy of a fuzzy KAM.
Computational experiments with some well-know benchmark classification

problems showed a superior performance, in terms of accuracy, of the fuzzy
KAM-based classifiers over many other classifiers from the literature. In the
future, we plan to formalize the notion of a fuzzy kernel and to investigate
further the performance of the fuzzy KAM-based classifiers. We also intent to
study other applications of the fuzzy KAM models.

Acknowledgment. This work was supported in part by FAPESP and CNPq under
grants nos 2015/00745-1 and 310118/2017-4, respectively.
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Abstract. Fuzzy implications has drawn attention of many authors
along the years, as their theoretical features seem to be a useful tool
in a fair amount of applications. Meanwhile, functional equations are
those in which the unknowns are functions instead of a traditional vari-
able, and within the fuzzy logic, they can be considered generalizations
of some tautologies of the classical logic. In this paper we investigate the
validity of five functional equations for the class of (T,N)-implications,
namely, we have selected the law of importation and four distributivity
properties and have studied them in the context of the aforementioned
operator.

1 Introduction

Fuzzy implications [1,4,18] are one of the most relevant operators in fuzzy logics.
Many applications have been constructed making use of them as we can see in
[2,3,18] and they are also applied in different areas such as approximate reason-
ing, control and decision-making theories, expert systems, fuzzy mathematical
morphology, image processing, among others [8,9,11,15,20,21,24,27].

In [22,23], a new class of fuzzy implication named (T,N)-implication (firstly
presented by [5]) was studied. Such implications were given by the composition
of a fuzzy negation and a t-norm. The conditions under which such functions
preserved the principal properties of fuzzy implications were also investigated
and it was proved the necessary and sufficient conditions for a function I :
[0, 1]2 → [0, 1] to be a (T,N)-implication.

It is important to recall that the classical implication is found in various tau-
tologies in classical logic. It is clear that not all generalizations of these tautolo-
gies hold for all fuzzy operators. That is the reason why one should have a deep
c© Springer International Publishing AG, part of Springer Nature 2018
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and careful study on such tautologies in order to convert them into functional
equations that would include fuzzy operations. In [1] it is stated that considering
the generalized equivalences, some properties of implications had received more
attention due to their value on the many applications, namely the properties of
contrapositive symmetry, the law of importation, the distributivity properties
of fuzzy implications over t-norms and t-conorms, and also the T-conditionality
property. In [11], a fuzzy generalization for I(x, I(y, z)) = I(I(x, y), I(x, z)) law
was made, providing the requirements for that Boolean-like law to be valid within
some classes of fuzzy implications, among which the (T,N)-implications. In this
sense, the aim of this work is to study the law of importation and four distribu-
tivity properties regarding the class of (T,N)-implications over t-norms and
t-conorms.

The paper is organized as follows. Sect. 2 recalls some of the basic concepts
demanded to comprehend the developments in this work, including the concept
of fuzzy implication and related properties. The study of (T,N)-implications and
functional equations is done in Sect. 3, including the most important results. Al
last, we conclude in Sect. 4 with our final remarks and discuss some ideas for
future works.

2 Preliminares

Definition 1. A function T : [0, 1]2 → [0, 1] is called a triangular norm (t-
norm, for short) if it satisfies the following conditions:

(T1) T (x, y) = T (y, x) for all x, y ∈ [0, 1];
(T2) T (x, T (y, z)) = T (T (x, y), z) for all x, y, z ∈ [0, 1];
(T3) If x1 ≤ x2 and y1 ≤ y2 then T (x1, y1) ≤ T (x2, y2), for all x1, x2, y1, y2 ∈

[0, 1];
(T4) T (x, 1) = x, for all x ∈ [0, 1]. (boundary condition)

Proposition 1. Let T be a t-norm. Then T (0, y) = 0 for each y ∈ [0, 1].

In fuzzy logic, the conjunction is often represented by a t-norm. The standard
fuzzy conjunction TM : [0, 1]2 → [0, 1] given by TM (x, y) = min{x, y} is the only
idempotent t-norm (see [17] - Theorem 3.9).

Definition 2. A function S : [0, 1]2 → [0, 1] is called a triangular conorm (t-
conorm, for short) if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:

(S1) S(x, y) = S(y, x) for all x, y ∈ [0, 1];
(S2) S(x, S(y, z)) = S(S(x, y), z) for all x, y, z ∈ [0, 1];
(S3) If x1 ≤ x2 and y1 ≤ y2 then S(x1, y1) ≤ S(x2, y2), for all x1, x2, y1, y2 ∈

[0, 1];
(S4) S(x, 0) = x for all x ∈ [0, 1]. (boundary condition)

The standard fuzzy disjunction SM : [0, 1]2 → [0, 1] given by SM (x, y) =
max{x, y} is the only idempotent t-conorm (see [17] - Theorem 3.14).
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Definition 3. A function N : [0, 1] → [0, 1] is a fuzzy negation if

(N1) N is antitonic, i.e. N(x) ≤ N(y) whenever y ≤ x;
(N2) N(0) = 1 and N(1) = 0.

A fuzzy negation N is said to be strict if
(N3) N is continuous and
(N4) N(x) < N(y) whenever y < x.

A fuzzy negation N is said to be strong if
(N5) N(N(x)) = x, for each x ∈ [0, 1].

A fuzzy negation N is said to be crisp if
(N6) N(x) ∈ {0, 1}, for all x ∈ [0, 1].

By [14], a fuzzy negation N : [0, 1] → [0, 1] is crisp if and only if there exists
α ∈ [0, 1) such that N = Nα or there exists α ∈ (0, 1] such that N = Nα, where

Nα(x) =

{
0, if x > α

1, if x ≤ α
(1)

and

Nα(x) =

{
0, if x ≥ α

1, if x < α
. (2)

Definition 4. Let T be a t-norm, S be a t-conorm and N be a strict fuzzy
negation. Then S is said to be N-dual to T if, for all x, y ∈ [0, 1],

N(S(x, y)) = T (N(x), N(y)) (3)

and T is said to be N-dual to S if, for all x, y ∈ [0, 1],

N(T (x, y)) = S(N(x), N(y)). (4)

Definition 5. A function I : [0, 1]2 → [0, 1] is a fuzzy implication if the
following properties are satisfied, for all x, y, z ∈ [0, 1]:

(I1 ) If x ≤ z then I(x, y) ≥ I(z, y); (left antitonicity)
(I2 ) If y ≤ z then I(x, y) ≤ I(x, z); (right isotonicity)
(I3 ) I(0, y) = 1; (left boundary condition)
(I4 ) I(x, 1) = 1; (right boundary condition)
(I5 ) I(1, 0) = 0. (boundary condition)

Definition 6. [1] Let I be a fuzzy implication and T be a t-norm. We say that
I satisfies the Law of importation (LI) with respect to a t-norm T if

I(T (x, y), z) = I(x, I(y, z)), (5)

for all x, y, z ∈ [0, 1].
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3 Functional Equations and (T,N)-Implications

As already mentioned, functional equations are the ones in which the unknowns
are functions instead of being a traditional variable. In this section we investigate
the validity of some functional equations by the function IN

T , introduced in [22].
In [1], Baczyński states that functional equations come up as generalizations of
the corresponding tautologies in classical logic involving boolean implications.
The results presented in the sequel consider the law of importation (LI), Eq. 5,
and four basic distributive equations involving an implication, which will be
discussed later.

Proposition 2. Let T be a t-norm and let N be a fuzzy negation. Then the
function IN

T : [0, 1]2 → [0, 1] defined by

IN
T (x, y) = N(T (x,N(y))) (6)

is a fuzzy implication, for all x, y ∈ [0, 1].

Definition 7. Let T be a t-norm and let N be a fuzzy negation. The function
IN
T defined by Eq. (6) is called (T, N)-implication.

The principle of exchange is one of the crucial properties of fuzzy implications.
Due to the commutativity property of the t-norm T , one of the conditions for
an implication to satisfy it is that (LI) is also satisfied. The well-known fuzzy
implications called (S, N), R, QL and D-implications satisfy (LI) under some
conditions (see [15,19]). In addition, some possible applications were pointed
out in [15]. As follows, we show under which conditions (T, N)-implications
satisfy (LI).

Proposition 3. Let IN
T be a (T, N)-implication. Then:

(i) If N is strong then IN
T satisfies (LI) with respect to the t-norm T ;

(ii) If N is continuous and IN
T satisfies (LI) with respect to the t-norm T , then

N is strong.

Proof. (i) Indeed, for all x, y, z ∈ [0, 1]

IN
T (x, IN

T (y, z)) = N(T (x,N(N(T (y,N(z))))))
= N(T (x, T (y,N(z))))

(T2)
= N(T (T (x, y), N(z)))
= IN

T (T (x, y), z).

(ii) As IN
T satisfies (LI) with respect to the t-norm T , then, for x = y =

1, IN
T (1, IN

T (1, z)) = IN
T (T (1, 1), z)

(T4)⇒ N(T (1, N(N(T (1, N(z)))))) =
N(T (1, N(z))) for all z ∈ [0, 1], still by (T4),

N(N(N(N(z)))) = N(N(z)). (7)
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Given that N is continuous, for all y ∈ [0, 1] there exists x′ ∈ [0, 1] such that
N(x′) = y. Only for this x′ there exists x ∈ [0, 1] such that N(x) = x′.
Thus, for all y ∈ [0, 1] there exists x ∈ [0, 1] such that N(N(x)) = y.
Therefore, by Eq. (7), N(N(N(N(x)))) = N(N(x)) ⇒ N(N(y)) = y, for
all y ∈ [0, 1].

Note that if N is continuous and non-strong then IN
T does not satisfy (LI).

However, there are non-continuous negations N such that IN
T satisfies (LI) for

some t-norm T . See the following example:

Example 1. Take a crisp negation N given by N = Nα and the minimum t-norm
T , so

INα

T (x, INα

T (y, z)) = Nα(T (x,Nα(Nα(T (y,Nα(z))))))

=

{
Nα(T (x,Nα(Nα(y)))), if z ≤ α

1, if z > α

=

{
Nα(x), if z ≤ α and y > α

1, if z > α or y ≤ α

=

{
0, if z ≤ α and y > α and x > α

1, otherwise

and

INα

T (T (x, y), z) = Nα(T (T (x, y), Nα(z)))

=

{
Nα(T (T (x, y), 1)), if z ≤ α

1, if z > α

=

{
Nα(T (x, y)), if z ≤ α

1, if z > α

=

{
0, if z ≤ α and T (x, y) > α

1, if z > α or T (x, y) ≤ α

=

{
0, if z ≤ α and x > α and y > α

1, otherwise
,

thus, INα

T satisfies (LI).

Another example can be given by taking the crisp fuzzy negation N = Nα

with α = 0 and any t-norm T . In this case, by Proposition 1 we also have that
INα

T satisfies (LI).
In classic logic, the distributivity of binary operators over one another can

somehow define the framework of the algebra imposed by these operators. In
fuzzy logic, one can find a variety of studies on the distributivity of t-norms
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over t-conorms [6,7,10,16]. In this sense, taking into account the four basic
distributive equations involving an implication, Eqs. 8, 9, 10, 11, we present in
the next proposition the generalizations of them which yields to the distributivity
of (T,N)-implications over t-norms and t-conorms.

I(T (x, y), z) = S(I(x, z), I(y, z)) (8)
I(S(x, y), z) = T (I(x, z), I(y, z)) (9)

I(x, S1(y, z)) = S2(I(x, y), I(x, z)) (10)
I(x, T1(y, z)) = T2(I(x, y), I(x, z)) (11)

Proposition 4. Let IN
T be a (T, N)-implication and S be a t-conorm. Then:

(i) If T is N -dual of S and the range of N is a subset of the idempotent elements
of T then IN

T satisfies Eq. (8) with respect to the t-norm T and to the t-
conorm S;

(ii) If IN
T satisfies Eq. (8) with respect to the t-norm T and to the t-conorm S,

then
(1) T is N -dual of S and,
(2) If N is strict then the range of N is a subset of the idempotent elements
of T .

Proof. (i) As T is N -dual of S and the range of N is a subset of the idempotent
elements of T , i.e., T (N(x), N(x)) = N(x) for all x ∈ [0, 1], then, for all
x, y, z ∈ [0, 1]:

S(IN
T (x, z), IN

T (y, z)) = S(N(T (x,N(z))), N(T (y,N(z))))
Eq. (4)

= N(T (T (x,N(z)), T (y,N(z))))
(T2)(T1)

= N(T (T (x, y), T (N(z), N(z))))
= N(T (T (x, y), N(z)))
= IN

T (T (x, y), z).

(ii) (1) As IN
T satisfies Eq. (8) with respect to the t-norm T and to the t-

conorm S, then, for z = 0, N(T (T (x, y), N(0))) = S(N(T (x,N(0))),
N(T (y,N(0)))), so by (T4), N(T (x, y)) = S(N(x), N(y)) for all x, y ∈ [0, 1]
and
(2) For x = y = 1, S(IN

T (1, z), IN
T (1, z)) = N(T (T (1, 1), N(z))), so by (T4),

S(N(N(z)), N(N(z))) = N(N(z)) for all z ∈ [0, 1], since T is N -dual of S

we have N(T (N(z), N(z))) = N(N(z)) N strict⇒ T (N(z), N(z)) = N(z), for
all z ∈ [0, 1].

Corollary 1. Let N be a strict negation and T be a t-norm. Then, IN
T satisfies

Eq. (8) if and only if T = TM and S = SM .

In the previous corollary, the continuity of N ensures that if IN
T satisfies

Eq. (8) then T is minimum. However, there are non-continuous negations such
that IN

T satisfies Eq. (8) for some t-norms. See the following example:
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Example 2. Take a crisp negation N given by N = Nα and take T as the mini-
mum t-norm, so

S( INα

T (x, z), INα

T (y, z)) =
= S(Nα(T (x,Nα(z))), Nα(T (y,Nα(z))))

=

{
S(Nα(x), Nα(y)), if z ≤ α

1, if z > α

=

{
0, if z ≤ α and x > α and y > α

1, otherwise

and, by Example 1

INα

T (T (x, y), z) =

{
0, if z ≤ α and x > α and y > α

1, otherwise

thus, INα

T satisfies Eq. (8).

Another example can be given for any t-norm T . Just take the crisp fuzzy
negation N = Nα with α = 0. Then, by Proposition 1 we also have that IN0

T

satisfies Eq. (8).

Proposition 5. Let IN
T be a (T, N)-implication. Then,

(i) IN
T satisfies Eq. (9) for TM and SM , i.e., considering TM as T and SM as

S in Eq. (9);
(ii) If IN

T satisfies Eq. (9) with respect to the t-norm T and to the t-conorm S,
then
(1) S is N -dual of T and
(2) If N is strict then the range of N is a subset of the idempotent elements
of S.

Proof. (i) For all x, y, z ∈ [0, 1], if x ≤ y then SM (x, y) = y and, by (T3) and
(N1), IN

T (y, z) ≤ IN
T (x, z), so

TM (IN
T (x, z), IN

T (y, z)) = IN
T (y, z) = IN

T (SM (x, y), z).

Therefore, IN
T satisfies Eq. (9). Similarly, if x > y the result follows.

(ii) (1) As IN
T satisfies Eq. (9) with respect to the t-norm T and to the t-

conorm S, then, for z = 0, N(T (S(x, y), N(0))) = T (N(T (x,N(0))),
N(T (y,N(0)))), so by (T4), N(S(x, y)) = T (N(x), N(y)) for all x, y ∈ [0, 1]
and
(2) for x = y = 1, T (IN

T (1, z), IN
T (1, z)) = IN

T (S(1, 1), z), so by (T4),
T (N(N(z)), N(N(z))) = N(N(z)) for all z ∈ [0, 1], since S is N -dual of T

we have N(S(N(z), N(z))) = N(N(z)) N strict⇒ S(N(z), N(z)) = N(z), for
all z ∈ [0, 1].
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Corollary 2. Let N be a strict negation and T be a t-norm. Then, IN
T satisfies

Eq. (9) if and only if T = TM and S = SM .

Proposition 6. Let IN
T be a (T, N)-implication and S1 and S2 be t-conorms.

Then:

(i) If S1 = S2 = SM then, for any t-norm T and any negation N , IN
T satisfies

Eq. (10);
(ii) If IN

T satisfies Eq. (10) with respect to t-conorms S1 and S2, then:
(1) The range of N is a subset of the idempotent elements of S2 and
(2) If N is strict then S1 = S2 = SM .

Proof. (i) For all x, y, z ∈ [0, 1], if y ≤ z then SM (y, z) = z and, by (N1) and
(T3), IN

T (x, y) ≤ IN
T (x, z), so

SM (IN
T (x, y), IN

T (x, z)) = IN
T (x, z) = IN

T (x, SM (y, z)).

Therefore, IN
T satisfies Eq. (10). Similarly, if y > z the result follows.

(ii) (1) As IN
T satisfies Eq. (10) then, in particular for y = z = 0,

N(T (x,N(S1(0, 0)))) = S2(N(T (x,N(0))), N(T (x,N(0)))),

so by (T4), N(x) = S2(N(x), N(x)), for all x ∈ [0, 1]. (2) Since N is strict
and S2(N(x), N(x)) = N(x) for all x ∈ [0, 1], then

S2(y, y) = S2(N(N−1(y)), N(N−1(y))) = N(N−1(y)) = y

for all y ∈ [0, 1], so S2 = SM . On the other hand, for x = 1 and z = y,
N(T (1, N(S1(y, y)))) = S2(N(T (1, N(y))), N(T (1, N(y)))) for all y ∈ [0, 1],
so by (T4),

N(N(S1(y, y))) = S2(N(N(y)), N(N(y))) S2=SM= N(N(y)),

for all y ∈ [0, 1]. Thus, S1(y, y) = y for all y ∈ [0, 1], since N is strict.
Therefore, S1 = SM .

Corollary 3. Let N be a strict negation and T be a t-norm. Then, IN
T satisfies

Eq. (10) if and only if S1 = S2 = SM .

Proposition 7. Let IN
T be a (T, N)-implication and T1 and T2 be t-norms.

Then:

(i) If T1 = T2 = TM then, for any t-norm T and any negation N , IN
T satisfies

Eq. (11);
(ii) If IN

T satisfies Eq. (11) with respect to t-norms T1 and T2, then:
(1) The range of N is a subset of the idempotent elements of T2 and
(2) If N is strict then T1 = T2 = TM .
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Proof. (i) For all x, y, z ∈ [0, 1], if y ≤ z then TM (y, z) = y and, by (N1) and
(T3), IN

T (x, y) ≤ IN
T (x, z), so

TM (IN
T (x, y), IN

T (x, z)) = IN
T (x, y) = IN

T (x, TM (y, z)).

Therefore, IN
T satisfies Eq. (11). Similarly, if y > z the result follows.

(ii) (1) As IN
T satisfies Eq. (11) then, in particular for y = z = 0,

N(T (x,N(T1(0, 0)))) = T2(N(T (x,N(0))), N(T (x,N(0)))),

so by (T4), N(x) = T2(N(x), N(x)), for all x ∈ [0, 1]. (2) Since N is
strict and the range of N a subset of the idempotent elements of T2,
we have that T2(x, x) = T2(N(N−1(x)), N(N−1(x))) = N(N−1(x)) = x.
On the other hand, for x = 1 and z = y, N(T (1, N(T1(y, y)))) =
T2(N(T (1, N(y))), N(T (1, N(y)))), so by (T4),

N(N(T1(y, y))) = T2(N(N(y)), N(N(y))) T2=TM= N(N(y)),

for all y ∈ [0, 1]. Thus, T1(y, y) = y for all y ∈ [0, 1], since N is strict.
Therefore, T1 = TM .

There are other conditions for t-norms and negations that imply that a (T,
N)-implication satisfies Eq. (11). The following example ensures that if we take
T1 = TM and the crisp negation N , given by N = Nα with α ∈ [0, 1), then,
independently from t-norms T and T2, IN

T satisfies Eq. (11).

Example 3. Take the crisp negation N given by N = Nα and take T1 as the
minimum t-norm, so

T2( INα

T (x, y), INα

T (x, z)) =
= T2(Nα(T (x,Nα(y))), Nα(T (x,Nα(z))))

=

{
Nα(T (x,Nα(y))), if z > α

T2(Nα(T (x,Nα(y))), Nα(x)), if z ≤ α

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if z > α and y > α

Nα(x), if z > α and y ≤ α

Nα(x), if z ≤ α and y > α

T2(Nα(x), Nα(x)), if z ≤ α and y ≤ α

=

{
0, if x > α and T1(y, z) ≤ α

1, otherwise
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and,

INα

T (x, T1(y, z)) = Nα(T (x,Nα(T1(y, z))))

=

{
1, if T1(y, z) > α

Nα(x), if T1(y, z) ≤ α

=

⎧⎪⎨
⎪⎩

1, if T1(y, z) > α

0, if T1(y, z) ≤ α and x > α

1, if T1(y, z) ≤ α and x ≤ α

=

{
0, if T1(y, z) ≤ α and x > α

1, otherwise

thus, IN
T satisfies Eq. (11).

4 Final Remarks

In this work, we carried on the study on (T,N)-implications and presented some
results considering functional equations, namely the law of importation and prop-
erties related to distributivity. It is well-known that fuzzy implications can used
to construct many types of measures such as fuzzy subsethood measures, penalty
functions and fuzzy entropy [9,14,25,26], which are useful for several practical
applications. Thus, similarly to the works mentioned previously, we believe that
(T,N)-implications can also be used to construct fuzzy subsethood measures.
Besides that, we are willing to investigate other operators to define different
classes of implications, for instance, functions given by the composition of over-
laps and negations yielding what we call (O, N)-implication, that possibly can
be related to (G, N)-implications [12], (R, O)-Implications [13] and (O, G, N)-
implications [14].
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Abstract. This paper introduces briefly the notion of SBCI algebras
and its role as candidate to model Fuzzy and Interval Fuzzy Logics. Its
main goal is to provide how such algebraic structures behaves from the
categorical theoretical standpoint.

1 Introduction

Algebraic structures are commonly used to model logical systems (Logical
Algebras); e.g. MV-algebras (�Lukasiewicz Logics), BL-algebras (Fuzzy Log-
ics), Boolean Algebras (Classical Logic), etc. In the 1960’s Iséki [15] intro-
duced the notion of BCI-algebras to model Curry combinators : (B)λxyx.x(yz),
(C)λxyz.xzy and (I)λx.x. This algebra is the basic building block for many log-
ical algebras including BL-algebras. However, when we deal with Interval Fuzzy
Logic as an extension of usual Fuzzy Logic, BCI-algebras are not more suitable as
a logical algebra. To overcome this situation Santiago et al. provided the notion
of Semi-BCI algebras (SBCI) [17].

Every BCI algebra is a SBCI-algebra and every correct intervalization of a
BCI-algebra is a SBCI-algebra. It means that such structure is a candidate to
model both Fuzzy and Interval Fuzzy Logics.

SBCI-algebra is not the first extension of BCI algebras, another approach
called Pseudo-BCI algebras was proposed by Dudek and Jun [9], although they
have a similar signature, they are completely different from SBCIs [17]. Recently,
category theory was applied to model the construction of pseudo-BCI-algebras
[7]. This work goes in the same direction, here we provide an investigation of
which categorical entities are available in the category of SBCIs. The paper is
organized in the following way: Sect. 2 provides a brief review of SBCI-algebras,
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their properties and some required concepts. Section 3 shows the category of
SBCI-algebras and proves some of its properties. Finally, Sect. 4 provides some
final remarks.

2 SBCI Algebras

The interval counterpart of �Lukasiewicz implication, introduced by Bedregal and
Santiago [3], fails to satisfy a basic property of BCI’s; namely the order property
(OP). (OP) expresses the internalization (codification) of underlying partial
order by implication;

X → Y = 1 ⇔ X ≤ Y. (1)

The authors, however, revealed that the resulting implication satisfy, for all
intervals X = [X,X] and Y = [Y , Y ]:

1. if X � Y 1, then X → Y = 1;
2. if X → Y = 1, then X ≤KM Y 2.

(*)

The relation “�” is precisely the way-below relation [4] of the usual Kulisch-
Miranker order on intervals “≤KM”. Way-below relations, “≺≺”, are auxiliary
relations [4] of partial orders “�”; they have the following properties:

1. if x ≺≺ y, then x � y.
2. if u � x ≺≺ y � z, then u ≺≺ z.
3. if a smallest element 0 exists, then 0 ≺≺ x.

Since partial orders are connected to auxiliary relations Bedregal et al.
observed that (*) reveals that if �Lukasiewcz implication is intervalized the inter-
nalization is spitted in terms of the partial order and its auxiliary relation [17].
In order to formalize this fact and provide an investigation about that Santiago
et al. proposed an algebraic structure called semi-BCI algebra. SBCI-algebras
model both: BCIs and the intervalization of BCIs, therefore they seems to model
logics in which the notion of impreciseness is required. In what follows we present
SBCI-algebras:

Definition 1 (Semi-BCI (SBCI) algebra). Given a set X endowed with two
binary operations: “�” and “�”, a structure 〈X,�,�,�〉 is a Semi-BCI
(SBCI) algebra whenever for all x, y, z ∈ X:

(SBCI1) x � (y � z) = y � (x � z)
(SBCI2) x � (y � z) = y � (x � z)
(SBCI3) x � y � (z � x) � (z � y)
(SBCI4) � � x = x

1 X � Y iff X < Y .
2 X ≤KM Y iff X ≤ Y and X ≤ Y .
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(SBCI5) x � y � z =⇒ x � z
(SBCI6) x � y � z =⇒ x � z
(SBCI7) x � y e y � x =⇒ x = y,

where x � y ⇐⇒ x � y = � and x � y ⇐⇒ x � y = �.

A SBCI-algebra which satisfies: x � �, for all x ∈ X, is called Semi-BCK
(SBCK) algebra. An element x ∈ X of a SBCI-algebra which satisfies: “x �
x”, is called total.

Example 1. The structure A = 〈[0, 1],�,→, 1〉, where x � y = 1 − x + xy and
x � y = min{1, 1 − x + y} is a SBCI-algebra. The corresponding relations are
given by: (1) x � y if and only if x � y = 1 if and only if x = 0 or y = 1; (2)
x � y if and only if x � y = 1 if and only if x ≤ y.

Proposition 1. [17] For all x, y, z ∈ X the following properties are valid:

(SBCI8) x � x = �
(SBCI9) x � y =⇒ x � y

(SBCI10) x � y and y � z =⇒ x � z,
(SBCI11) x � y and y � x =⇒ x = y,
(SBCI12) (y � z) � ((z � x) � (y � x)),
(SBCI13) If � � x then x = �,
(SBCI14) x � y � x � y,
(SBCI15) x � ((x � y) � y) = �,
(SBCI16) x � ((x � y) � y) = �, when x � y.

Given a SBCI-algebra 〈X,�,�,�〉, we can observe that the relations “�”
and “�” are not necessarily partial orders. The relation � is transitive and
antisymmetric, but it is not necessarily reflexive, whereas � is antisymmetric and
reflexive, but is not necessarily transitive. The following proposition provides a
condition to have partial orders:

Proposition 2. [17] The relation “�” coincides with “�” if and only if “�”
is reflexive.

Example 2. The structure A = 〈[0, 1],�GD,→FD, 1〉 is a SBCI, where

x �GD y =

{
1, if x ≤ y

y, if x > y

and

x →FD y =

{
1, if x ≤ y

max(1 − x, y), if x > y
.

In this case, the relations � and � coincide with the usual order ≤.

Definition 2. Given a SBCI-algebra X = 〈X,�,�,�〉 and S ⊆ X, we say
that 〈S,�,�,�〉 is a SBCI sub-algebra of X if, for all x, y ∈ S, x � y ∈ S
and x � y ∈ S.
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Definition 3. Let X1 = 〈A1,�1,�1,�1〉 and X2 = 〈A2,�2,�2,�2〉 be SBCI-
algebras. An application, ϕ : A1 → A2, is called SBCI-homomorphism, when-
ever ϕ(x �1 y) = ϕ(x) �2 ϕ(y) and ϕ(x �1 y) = ϕ(x) �2 ϕ(y) for all
x, y ∈ A1.

Note that if ϕ : A1 → A2 is a SBCI-homomorphism, then ϕ(�1) = �2, since for

any x ∈ A1 we have ϕ(�1)
(SBCI8)1= ϕ(x �1 x)

def.hom.
= ϕ(x) �2 ϕ(x)

(SBCI8)2=
�2.

Proposition 3. Let X1 = 〈A1,�1,�1,�1〉 and X2 = 〈A2,�2,�2,�2〉 be
SBCI-algebras and ϕ : A1 → A2 a SBCI-homomorphism. The relations “�i”
and “�i” are preserved by ϕ, i.e. for x, y ∈ A1, x �1 y implies ϕ(x) �2 ϕ(y)
and x �1 y implies ϕ(x) �2 ϕ(y).

Proof. Indeed, given x, y ∈ A1 such that x �1 y ⇔ x �1 y = �1

(respectively x �1 y ⇔ x �1 y = �1). Then applying ϕ to both equality
members we get ϕ(x) �2 ϕ(y) = �2 (respectively ϕ(x) �2 ϕ(y) = �2). But
this last result is valid if and only if ϕ(x) �2 ϕ(y) (respectively ϕ(x) �2 ϕ(y)).

3 Category of Semi-BCI Algebra

In what follows we introduce the Category of Semi-BCI algebras and provide
some results about it. We also give the required categorial notions. For more
details and further examples the reader can see the following references: [1,10,12].

Definition 4 (Categories). A category C comprises:

1. a collection of objects: ObjC ;
2. a collection of arrows (often called morphisms): MorC ;
3. operations assigning to each arrow ϕ an object dom ϕ, its domain, and an

object cod ϕ, its codomain (we write ϕ : A → B or A
ϕ→ B to show that

dom ϕ = A and cod ϕ = B). The collection of all arrows with domain A and
codomain B is written C(A,B);

4. a composition operator assigning to each pair of arrows ϕ and ψ, with cod ϕ =
dom ψ, a composite arrow ψ ◦ ϕ : dom ϕ → cod ψ, satisfying the following
associative law: for any arrows ϕ : A → B,ψ : B → C, and α : C → D (with
A,B,C, and D not necessarily distinct),

α ◦ (ψ ◦ ϕ) = (α ◦ ψ) ◦ ϕ;

5. for each object A, an identity arrow idA : A → A satisfying the following
identity law: for any arrow ϕ : A → B,

idB ◦ ϕ = ϕ and ϕ ◦ idA = ϕ.
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The class of all sets together with the class of all total functions, the func-
tion composition and the operations which respectively return the domain and
codomain of a function forms a category called Set. Further examples, mainly
not set-based can be found in [10]. The next proposition shows that the class of
all SBCI-algebras together with SBCI-homomorphisms form a category.

Proposition 4 (Category SBCI). The structure

SBCI = 〈ObSBCI ,MorSBCI , ∂0, ∂1, ι, ◦〉
such that:

(a) ObSBCI is the collection of all SBCI algebras;
(b) MorSBCI is a collection of all SBCI-homomorphisms;
(c) ∂0, ∂1 : MorSBCI → ObSBCI are such that, for any SBCI-homomorphism

ϕ : A1 → A2 for A1 = 〈A1,�1,�1,�1〉 and A2 = 〈A2,�2,�2,�2〉,
∂0(ϕ) = A1 e ∂1(ϕ) = A2;

(d) ◦ : MorSBCI × MorSBCI → MorSBCI is the composition of SBCI-
homomorphisms;

(e) ι : ObSBCI → MorSBCI is such that each A = 〈A,�,�,�〉 is associated
with the identity homomorphism ιA : A → A, i.e. ιA(x) = x.

is a category.

Proof. In order to verify that SBCI is a category, it is sufficient to verify the
associativity of composition and the property of identity, which is given, for any
morphism ϕ ∈ HomSBCI(A,B) by:

ϕ ◦ ιA = ιB ◦ ϕ = ϕ.

Indeed, given Ai = 〈Ai,�i,�i,�i〉, with i = 1, 2, 3, 4, consider the homomor-
phisms: ϕ : A1 → A2, ψ : A2 → A3, α : A3 → A4 and, for any a ∈ A1,

((α ◦ ψ) ◦ ϕ)(a) = (α ◦ ψ)(ϕ(a)) = α(ψ(ϕ(a))) = α(ψ ◦ ϕ(a)) = (α ◦ (ψ ◦ ϕ))(a).

Therefore, the composition is associative. Moreover, ι : ObSBCI → MorSBCI
satisfies propriety of identity. Indeed, for any morphism ϕ : A → B and a ∈ A,

(ϕ ◦ ιA)(a) = ϕ(ιA(a)) = ϕ(a) = ιB(ϕ(a)) = (ιB ◦ ϕ)(a).

So, SBCI is a category.
Q.E.D

The next two results show that in category SBCI, injective morphisms coin-
cide with the categorial notion of monomorphism, but surjective morphisms
generally do not match with the categorial notion of epimorphism.

Definition 5. Given a category C and objects A,B,C, an arrow ϕ : B → C is
a monomorphism (or “is monic”) if, for any pair of C-arrows ψ : A → B
and α : A → B, the equality ϕ ◦ ψ = ϕ ◦ α implies that ψ = α.
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Proposition 5. For any morphism ϕ : X → Y in SBCI, the following condi-
tions are equivalent:

(i) ϕ is injective;
(ii) ϕ ◦ ψ = ϕ ◦ α implies ψ = α for any morphisms ψ, α : Z → X;
(iii) ker(ϕ) = {�X}, where Ker(ϕ) = {x ∈ X | ϕ(x) = �Y }.
Proof. (i) ⇒ (ii) Assuming that ϕ : X → Y is an injective morphism, then
ϕ ◦ ψ = ϕ ◦ α implies ψ = α for any morphisms ψ and α. In fact, let Z be
another object of category SBCI and ψ, α : Z → X morphisms such that
ϕ ◦ψ = ϕ ◦α. Then, for all z ∈ Z, ϕ(ψ(z)) = ϕ(α(z)). Thus, since ϕ is injective,
then ψ(z) = α(z), for all z ∈ Z. Therefore ψ = α.

(ii) ⇒ (iii) Assuming ker(ϕ) �= {�X}, then there is z ∈ ker(ϕ) such that
z �= �X . Consider the morphisms i : ker(ϕ) → X and j : ker(ϕ) → X such that
i(x) = x and j(x) = �X , for all x ∈ ker(ϕ). Then, ϕ◦ i = ϕ◦j, so by hypothesis,
i = j. Contradiction! Therefore, ker(ϕ) = {�X}.

(iii) ⇒ (i) Given x1, x2 ∈ X such that ϕ(x1) = ϕ(x2), then x1 = x2. Indeed,

since ϕ is a homomorphism, ϕ(x1 �X x2) = ϕ(x1) �Y ϕ(x2)
(SBCI8)Y= �Y

and ϕ(x2 �X x1) = ϕ(x2) �Y ϕ(x1)
(SBCI8)Y= �Y , so x1 �X x2, x2 �X x1 ∈

Ker(ϕ) = {�X}. Therefore, x1 �X x2 = x2 �X x1 = �X , i.e., x1 �X x2 and
x2 �X x1, so by (SBCI7)X , x1 = x2. Q.E.D

We conclude that morphisms are mono if and only if they are injective.

Definition 6. An arrow ϕ : A → B in a category C is an epimorphism (or
“is epic”) if, for any pair of C-arrows α,ψ : B → C, the equality ψ ◦ ϕ = α ◦ ϕ
implies that ψ = α.

Proposition 6. For any morphism ϕ : X → Y in SBCI, if ϕ is surjective then
it is also epic.

Proof. Assuming that ϕ : X → Y is a surjective morphism, Z is an object and
ψ, α : Y → Z are morphisms such that ψ ◦ ϕ = α ◦ ϕ. Since ϕ is surjective, for
any y ∈ Y there is x ∈ X such that y = ϕ(x). Then, for all y ∈ Y ,

ψ(y) = ψ(ϕ(x)) = α(ϕ(x)) = α(y).

Therefore, ψ = α. Q.E.D

Proposition 7. There are epimorphisms which are not surjective homomor-
phisms.

Proof. In 2010, Busneag shows examples of epimorphisms of Hilbert algebras
whose are not surjective functions (See [8, Example 4.1]). Since all Hilbert alge-
bra is a BCK-algebra (see [2]) and in turn all BCK-algebra is a SBCI-algebra
(see [17]), then not all SBCI epimorphism is a surjective function. Q.E.D
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Definition 7. In a Category C, an object 0 is called an initial object if, for
every object A, there is exactly one morphism from 0 to A. And dually, an object
1 is called a terminal or final object if, for every object A, there is exactly
one morphism from A to 1.

Proposition 8. SBCI has as initial and final object.

Proof. In fact, given any SBCI algebra A = 〈X,�X ,�X ,�X〉 and the SBCI
O = 〈{�},�,�,�〉, there is an unique morphism 0 : O → A; namely: 0(�) =
�X , so O is a initial object. On the other hand, there is also a unique morphism
1 : A → O; namely: 1(x) = �,∀x ∈ X, in fact: (1) 1 is a morphism because

1(x �X y)
def
= � (SBCI4)

= � � � def
= 1(x) � 1(y) and 1(x �X y)

def
=

� (SBCI8)
= � � � def

= 1(x) � 1(y); (2) 1 is unique, since {�} has an unique
element then any morphism g : X → {�} satisfies g(x) = �,∀x ∈ X, so
g(x) = � = 1(x),∀x ∈ X, therefore g = 1, i.e., 1 is unique. Q.E.D

Definition 8. Let C be a category. A product of a family of objects (Xi)i∈I

of C indexed by a set I consists of an object P =
∏

i∈I Xi and a family of pro-
jection morphisms (πi : P → Xi)i∈I such that for each object P ′ and a family
of morphisms (fi : P ′ → Xi)i∈I there is only one morphism u : P ′ → P such
that πi ◦ u = fi, for all i ∈ I, i.e., the following diagram commute3 for all i ∈ I:

P ′

P Xi

fi
u

πi

A category C has products if there is a product of any family of objects of C.

Lemma 1. Let {〈Ai,�i,�i,�i〉}i∈I be a family of SBCI algebras and P =∏
i∈I

Ai = {f : I →
⋃
i∈I

Ai | f(i) ∈ Ai,∀i ∈ I}. 〈P,�,�,�〉 is a SBCI, if for any

f, g ∈ P , the binary operations “ � ” and “ � ” are given by: (f � g)(i) =
f(i) �i g(i) and (f � g)(i) = f(i) �i g(i) for all i ∈ I, and the function

� : I →
⋃
i∈I

Ai satisfies �(i) = �i ∈ Ai, ∀i ∈ I.

Proof. Indeed, given f, g, h ∈ P , (SBCI1): By definition (f � (g � h))(i) =
f(i) �i (g � h)(i) = f(i) �i (g(i) �i h(i)), since 〈Ai,�i,�i,�i〉 is SBCI,
f(i) �i (g(i) �i h(i)) = g(i) �i (f(i) �i h(i)), so (f � (g � h))(i) =
g(i) �i (f(i) �i h(i)) = (g � (f � h))(i) for all i ∈ I, therefore f � (g �
h) = g � (f � h). (SBCI2): Analogous. (SBCI4): By definition, (f � g)(i) =
f(i) �i g(i), since 〈Ai,�i,�i,�i〉 is SBCI then f(i) �i g(i) �i (h(i) �i

f(i)) �i (h(i) �i g(i)) = ((h � f) � (h � g))(i),∀i ∈ I, therefore, f �
g � (h � f) � (h � g). (SBCI4): By definition, (� � f)(i) = �(i) �i

3 i.e. fi = πi ◦ u.
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f(i)
(SBCI4)i= f(i),∀i ∈ I, so � � f = f . (SBCI5): f � g � h ⇒ f(i) �i

g(i) = �(i) e g(i) �i h(i) = �(i),∀i ∈ I ⇒ f(i) �i g(i) e g(i) �i h(i),∀i ∈
I ⇒ f(i) �i g(i) �i h(i),∀i ∈ I

(SBCI15)i⇒ f(i) �i h(i),∀i ∈ I ⇒ (f �
h)(i) = �(i),∀i ∈ I ⇒ f � h = � ⇒ f � h. (SBCI6): Analogous. (SBCI7):
f � g e g � f ⇒ (f � g)(i) = �(i) e (g � f)(i) = �(i),∀i ∈ I ⇒ f(i) �i

g(i) = �(i) e g(i) �i f(i) = �(i),∀i ∈ I ⇒ f(i) �i g(i) e g(i) �i f(i),∀i ∈
I

(SBCI7)i⇒ f(i) = g(i),∀i ∈ I ⇒ f = g. Q.E.D

Theorem 1. SBCI has products.

Proof. Given a family of objects (〈Ai,�i,�i,�i〉)i∈I of SBCI, consider the

set P =
∏
i∈I

Ai = {f : I →
⋃
i∈I

Ai | f(i) ∈ Ai,∀i ∈ I}. By Lemma 1, the

structure 〈P,�,�,�〉 is a SBCI. For each i ∈ I, there is a projection pi :
P → Ai defined by pi(f) = f(i),∀f ∈ P . Moreover, given any object P ′ and
morphisms p′

i : P ′ → Ai for all i ∈ I, define the application u : P ′ → P by
(u(x))(i) = p′

i(x),∀x ∈ P ′. Since (pi ◦ u)(x) = pi(u(x)) = (u(x))(i) = p′
i(x), for

all x ∈ P ′, then pi ◦u = p′
i. The application u is a morphism between the objects

〈P ′,�′,�′,�′〉 and 〈P,�,�,�〉, since (u(x �′ y))(i) = p′
i(x �′ y)

p′
imorphism

=
p′

i(x) �i p′
i(y) = (u(x))(i) �i (u(y))(i) = (u(x) � u(y))(i),∀i ∈ I, therefore,

u(x �′ y) = u(x) � u(y). Similarly, u(x �′ y) = u(x) � u(y). Suppose now,
there exist a morphism v : P ′ → P such that pi ◦v = p′

i,∀i ∈ I. For each x ∈ P ′,
(pi ◦ v)(x) = p′

i(x) = (pi ◦ u)(x) for all i ∈ I, so pi(v(x)) = pi(u(x)),∀i ∈ I,
therefore v(x) = u(x). Since this holds for every x ∈ P ′, then v = u. Therefore,
u : P ′ → P is the unique morphism that satisfies pi ◦ u = p′

i. Q.E.D

Definition 9. In a Category C, an arrow e : X → A is an equalizer of a pair
of arrows f, g : A → B whenever

1. f ◦ e = g ◦ e;
2. if e′ : X ′ → A satisfies f ◦e′ = g◦e′, then there is a unique arrow u : X ′ → X

such that e ◦ u = e′:

X A B

X ′

e f

g

e′u

A category C has equalizer if there is a equalizer for any pair of arrows
of C.

Theorem 2. Category SBCI has equalizer.

Proof. Given two morphisms f, g : X1 → X2, consider the set E1 = {x ∈ X1 |
f(x) = g(x)}. Since f and g are morphisms, then f(�1) = �2 = g(�1), there-
fore �1 ∈ E1, so E1 �= ∅. Also, given x, y ∈ E1, f(x �1 y) = f(x) �2 f(y) =
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g(x) �2 g(y) = g(x �1 y) and analogously, f(x �1 y) = g(x �1 y), so x �1

y, x �1 y ∈ E1, therefore 〈E1,�1,�1,�1〉 is a subalgebra of 〈X1,�1,�1,�1〉.
Consider the embedding e : E1 → X1, then f ◦ e = g ◦ e. Given any other object
〈A,�A,�A,�A〉 and a morphism e′ : A → X1 such that f ◦ e′ = g ◦ e′, if
we define u : A → E1 s.t. u(a) = e′(a), then the following diagram commutes.

E1 X1 X2

A

e f

g

e′
u

In fact, given a morphism e′, we have that u is a morphism and e ◦ u = e′.
Since (e ◦ u)(a) = e(u(a)) = u(a) = e′(a),∀a ∈ A. To prove the uniqueness,
suppose there is a morphism v : A → E1 such that e ◦ v = e′, then for all a ∈ A,
(e ◦ v)(a) = e′(a) = (e ◦ u)(a), so e ◦ v = e ◦ u. Since e is a embedding, then, by
Proposition 5 “e” is a monomorphism, therefore v = u. Q.E.D

4 Final Remarks

In this paper we have shown how SBCI algebras behave from the categorical
theoretical standpoint. We presented how some categorial entities are realized by
such kind of algebra. From the algebraic viewpoint an important result remains
to be proved; namely if this category is closed under homomomorphical images
(which together with some of the results presented here establishes that there
exists a set of equations which is able to describe the class of all SBCI algebras).
Another open problem is the verification of co-Products and Exponenciation.
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Abstract. Predicting prices, as well as giving buy and sells recommendations
in a Stock market, is considered difficult given the very complex behavior of the
price itself. It is considered dynamic, non-linear and stochastic. In similarity to
other fields, stock trading firms may profit from using computational intelligence
systems, reducing the analysis time and enhancing the accuracy of recommen-
dations. This paper shows a Fuzzy trading system based in technical analysis
developed in two steps: primarily, a fuzzy trading system based on common
technical indicators used by technical analysts is proposed, and after, the system
is supported with a price prediction methodology. The first result shows that not
all the stock tickers are eligible for a simple indicator operation, which may
result in a severe loss. The usage of a price prediction methodology shows real
improvement on the recommendation system.

Keywords: Fuzzy � Stock market � Forecasting � Recommendation systems

1 Introduction

Although the process of buying or selling a stock may be very simple, the task of
choosing which stock to buy/sell is tiresome and challenging, also involving psycho-
logical factors and lifetime savings. To avoid risks people often recur to recommen-
dations systems. The objective of this paper is to build a recommendation system based
on a fuzzy algorithm that uses basically technical analysis.

Such systems may be comprised of simply following a trusted individual indication
or analyzing common criteria often used by experts, such as fundamental analysis and
technical analysis. Fundamental Analysis recommendations are drawn from company’s
operational periodic results and indicate their economical healthiness and effectiveness
in pursuing goals. Technical analysis, on the other hand, relies only on candlestick
chart patterns (figures built over time that indicates a probable movement) and indi-
cators which are built over the price time series.

The recommendations systems based on trusted individual indications may be
roughly split into paid recommendation services and discussion groups- that naturally
occur for the investors to discuss, trade, invest, learn and share knowledge.
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According to [1], their key components are the trustworthiness and expertise. These
systems, however, are vulnerable to fake news and bad intentions, and may deliberately
guide the unaware to enter a loss operation. Aiming to enhance confidence these authors
developed a recommendation system based on trust analysis between entities, leading to
a trust-based network after verified by a trusted agency. Another paper [2] uses tweets as
a measure to forecast stock movements. Using data mining and hashtags during a short
period of 2016 UK local elections, a good correlation (trustable model) was noted
between Tweeter mood and changes in FTSE 100 index price. Big Data methods using
financial website news were also applied [3] and shows good prediction capability.
Hybrid methods [4] consisting of price time series also shows good performance.

Is worth mentioning the work made in [5] where an analysis of recommendations of
Brazilian capital market analysts shows that, in the period from 2000 to 2010, a bias in
favorable recommendations were measurable and also, that analysts were unable to
identify another opportunity of greater return, confirming the effectiveness of analysts.

There are many works using fuzzy logic and fuzzy inference systems applied to
stock trading strategies. A fuzzy metagraph was used in [6] to predict an occurrence of
a buy/sell signal using MACD, RSI, EMA and SMA technical indicators, aiming at the
future to apply it in daily operations. Also, [7] uses a fuzzy approach to classify data
based on time, sequencing, and associative rules. They described the pattern of the
prices rise and fall of a company in respect of another. Reversion patterns in Japanese
candlestick charts were also studied in [8] with use of fuzzy systems. Open, low, high
and close prices were converted to fuzzy candlestick chart, showing the evidence of a
symptom sequence before a reversal point.

At first, to clarify the approach, a fuzzy system will classify a group of technical
indicators and predict buy/sell operations for a list of BOVESPA stocks. After, it will
be supported by a price prediction algorithm to compose a new recommendation
system. The results of both systems will be compared.

The remainder of the paper is organized as follows: Sect. 2 describes the technical
indicators used, the preliminary fuzzy system built and the result of its application.
Section 3 describes the model used for price prediction and shows how it was used to
assist the fuzzy system as well as the result. In Sect. 4 results will be compared and
Sect. 5 provides an overall conclusion.

2 Momentum Indicators in Technical Analysis and Its
Application into a Fuzzy System

According to [9] indicators are calculations based on the price and the volume traded
over time and measures factors such as money flow, trends, volatility, and momentum.
Indicators can be used as the basis for trading as they can show buy-and-sell signals.
Their two main types are leading and lagging. Lagging indicators tracks price move-
ment and therefore are always late as predictors, such as moving averages. Leading
indicators gives predictive qualities, pointing a direction to price. In this work, only
leading indicators that relate to price’s momentum were used, applied as inputs on the
fuzzy system. They are clarified in the following subsection. After, they are applied to a
BOVESPA set of tickers to verify its effectiveness.
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2.1 Momentum Indicators

Momentum indicators measure the rate price changes over time. This work used RSI,
Williams %R and Stochastic Oscillator as momentum indicators.

RSI – Relative Strength Index – compares the magnitude of recent gains and losses
over a specified time period to measure changes in price. It is primarily used to identify
overbought and oversold conditions. It is calculated by the formula:

RSI ¼ 100 � 100= 1 þ RSð Þ ð1Þ

where RS, during the time frame desired, is the average gain of up periods divided by
an average loss in down periods. Traditional usage of RSI is to sell in overbought
periods (RSI > 70) and buy in oversold periods (RSI < 30).

Stochastic Oscillator (%K) measures how strong a trend is by comparing the
direction of closing prices to the direction of price movement. It is measured relative to
past absolute maxima and minima, according to the formula:

%K ¼ 100 � Actual Closing Price � Minimað Þ= Maxima�Minimað Þ ð2Þ

It oscillates between 0 and 100 and the traditional usage signals overbought con-
ditions above 80 (sell opportunity) and oversold below 20 (buy opportunity).

Williams %R also determine oversold and overbought conditions by measuring
how the closing price is trending over the last periods, according to the formula:

%R ¼ �100 � Maxima � Actual Closing Priceð Þ= Maxima�Minimað Þ ð3Þ

oscillating between 0 and −100. It indicates buy signals from −80 to −100 and sell
signals from 0 to −20.

2.2 The Momentum Based Fuzzy System

Those 3 momentum indicators shown in the last subsection where used as inputs in a
Fuzzy system. The objective was to build a structure capable of evaluating how strong
the indication of buy and sell are, given the inputs. A set of membership functions were
built to evaluate each of the indicators. With classifications combined, the system
should supply the investor with a more robust recommendation. Figure 1 depicts the
form of the membership functions.

The membership functions were designed with the MATLAB Fuzzy Logic Tool-
box. For the sake of simplicity, they were taken as trapezoidal functions, assuming that
not all investors decide to buy and sell exactly on the same value of the indicator, thus
creating a blur region for the decision to be made. However, the very extremes and
middles of the indicators are respected by traditional usage.

The set of rules qualifies a buy or sell signal according to the number of indicators
pointing towards the same direction, e.g. if RSI and Williams are both in oversold
region, while stochastic is in the middle, a weak buy is predicted. If all indicators are in
the same region then a strong operation is predicted. Even though for each indicator
listed there exists three possible actions, only 15 rules are meaningful from the whole
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27, since the they trend to the same directions. It is unlikely to have two indicators in
oversold and other in the overbought region, so these possibilities were disconsidered.
The output membership functions are depicted in Fig. 2.

Figure 3 show the decision surface plotted pairing Stochastic with RSI. The other
pairs - Stochastic with Williams and RSI with Williams - provide a similar surface, so
they were omitted. A prediction of negative momentum indicates a sell signal while
positive a buy signal. The absolute value of the output indicates the degree of
robustness of the operation, given the regions the indicators are - strong (Mt > 3) and
weak (Mt < 3), loosely. So, if the fuzzy system infers Mt as −2.47 the operation is said
to be selling 2.47 standard set of stocks.

Fig. 1. Membership functions for RSI. Other indicators are also classified accordingly to
traditional their traditional usage and trapezoidal membership functions.

Fig. 2. Output’s membership functions.

Fig. 3. Decision surface for RSI and stochastic indicators. Similar for other pairs.
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After the rules for inputs and outputs were defined, the next step is to apply the
multiplier (Mt) in the future price oscillation to perform the recommended trading
operation and earn the supposed gains.

2.3 Trading Methodology and Application

To test the proposed system a database composed of 11 stocks tickers was taken from
BOVESPA listed companies. The thicker list is composed by PETR3, PETR4, ITSA4,
ITUB4, VALE3, VALE5, BBDC4, BBAS3, BVMF3, USIM5, and ABEV3. The data
contains date and hour, open (Po), close (Pc), maximum (Pmax) and minimum (Pmin)
prices, and also volume (V) traded. The period tested is comprised of Jan 2nd 2012 to
Dec 29th 2016.

To establish if the investor should buy or sell, a vector containing the information
of the momentum indicators at time t � 1 is input into the system, which gives, as
output, the operational multiplier Mt at time t. So, if one supposes an initial capital of
C0 = R$100,000.00, maximum capital allocation r = 20% and assume the investor
would start the operation on open price and finishes at close price, a daily capital
variation is expected to be

DCt ¼ Mt � Ct�1 � r � Po � Pcð Þ=Po ð4Þ

Equation 4 is positive just in case of correct predictions. Figures 4 and 5 show the
results for two of the tickers, namely BBAS3 and VALE3. A similar trend to Fig. 4
occurs for USIM5, PETR3, VALE5; while ABEV3, BVMF3, ITSA4 are similar to
VALE3 in Fig. 5.

Fig. 4. Capital time series for investing only in BBAS3.
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The conclusion drawn from these preliminary results is that the strategy is not
universal, lacking consistency, motivating the creation of a more robust fuzzy system
that considers a price prediction, complementing the decisions of the first.

3 Price Prediction Methodology and the New Fuzzy System

A new parameter, derived from price and volume traded (Peq), is explained in this
section. It will be used as input in the new fuzzy system together with the outputs of the
first and the on balance volume. The new outputs will be tested against the same market
data in Sect. 2 to evaluate the new system performance.

3.1 Price Prediction

Predict the price of an asset just a time step after actual is a very complicated task. It is
considered to be dynamic, highly non-linear and stochastic. Many papers [10–13] were
published applying artificial neural networks and some other very powerful technics to
perform the job.

In this paper, a prediction strategy considering the weighing of a moving average
and an expected value is made, based on the price’s Brownian movement. According to
this kind of motion, the price variation of an asset Y at time t is given by Eq. 5, which
solves into Eq. 6.

Fig. 5. Capital time series for investing only in VALE3.
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dYt ¼ Yt ldt þ rdWtð Þ ð5Þ

ln Ypred=Yt
� � ¼ l�r2=2 þ rWt ð6Þ

where Ypred is the predicted price, l is the drift, r is the standard deviation and Wt a
Brownian random step. In this paper, the expected value of Yt+1 is taken as

E Ytþ 1½ � ¼ Yt�1 þ Yt þ Ypred
� �

=3 ð7Þ

Because Eq. 6 overestimates the variations, a moving average is made in Eq. 7, thus
smoothening the price series. Since a price is just one measure at which two investors
wants to close a deal, its prediction for a trading system may become meaningless.
Considering the stochastic nature of price movement, close, max and min prices are just
one realization set of many possible for the process at that time. However, predict the
price at which most deals will be made might give important information about the
future and trend. To perform this task, a volume weighted mean of the dealt prices was
made for each candlestick and named as Peq. For Peq Eq. 7 becomes:

E Peq tþ 1
� � ¼ Peq t�1 þ Peq t þ Peq pred

� �
=3 ð8Þ

3.2 On Balance Volume

On Balance Volume (OBV) is also a momentum indicator and measures the accu-
mulated amount of capital traded. If after a trading period, the closing price ðPc;tÞ is
lower than before ðPc;t�1Þ, OBV is reduced by the amount traded. If Pc;t is higher than
Pc;t�1, OBV adds the amount. It is wise to note that its derivative direction normally
coincides with price trend. Its derivative can be positive even if, at some period, the
price went down. OBV’s derivative is more important than the numerical value itself,
given its cumulative nature. It’s commonly accepted in technical trading that volume
variations precedes price variation.

3.3 Trend Prediction and Application to the Fuzzy System

A simple estimate of price’s second derivative at time t d2Peq=dt2
� �

was made to be
used as another input to the new fuzzy system. The second derivative’s model was
taken as

d2Peq=dt2 ¼ Peq t�1 � 2Peq t þ Peq tþ 1
� �

=2 ð9Þ

and it will serve as a prediction of price trends variation.
The block representation of the proposed recommendation system is given as

follows in Fig. 6. The three inputs are evaluated simultaneously at each time to esti-
mate the correct action at the beginning of next period: Momentum measured from the
first system, trend taken by OBV’s inclination and the second derivative of price’s
mean calculated by Eq. 9.
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The input membership function for Fuzzy System 1 into Fuzzy System 2 is the
same as in Fig. 2. For OBV’s inclination and trend variations a relative measure is
taken with respect to actual time OBV’s and mean price, respectively. Their input
membership functions are also trapezoidal had parameters estimated so any changes
within 0.5% are considered neutral. Their membership functions can be seen in Fig. 7
while the output membership functions of system 2, which are also trapezoidal, can be
seen in Fig. 8.

For each pair of momentum measure and non-zero OBV’s inclination two possible
second order variations were evaluated to generate the output orders. For neutral trend
(zero OBV’s variation) and neutral trend variations one should go with the measured
momentum. In general, the main strategy is to avoid going against a persisting trend
motivated only by a strong momentum indication, what has been proved to be no better
than a coin toss. Also using the momentum predictive capability together with the
trend’s variation d2Peq=dt2

� �
allows one to make a correct operation on reversal

movements. Lastly, if the two trends estimations are pointing to the same direction

Fig. 6. Overview of the proposed system.

Fig. 7. Membership function of the OBV and d2Peq=dt2
� �

at fuzzy system 2
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while no action is predicted by the momentum indicators, it is still possible to receive a
trend following recommendation. Table 1 summarizes the relations used for
input-output membership functions. Figure 9 shows the cumulative results of System 2
testing the same data for System 1.

Fig. 8. Membership function of the output at fuzzy system 2

Table 1. Laws for the second fuzzy system

Inputs Output orders
Mt dOBV/dt d2Peq=dt2

Strong sell >0 High Do nothing
Neutral Sell

Strong sell <0 Low Sell
Neutral Sell

Weak sell >0 High Do nothing
Neutral Do nothing

Weak sell <0 Low Do nothing
Neutral Sell

Weak buy >0 High Buy
Neutral Buy

Weak buy <0 Low Do nothing
Neutral Buy

Strong buy >0 High Buy
Neutral Buy

Strong buy <0 Low Do nothing
Neutral Buy

Do nothing >0 High Buy
Neutral Buy

Do nothing <0 Low Sell
Neutral Sell

Strong sell 0 Neutral Sell
Weak sell 0 Neutral Sell
Weak buy 0 Neutral Buy
Strong buy 0 Neutral Buy
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4 Systems Comparison

From Fig. 9 in the last section, it is possible to notice that system 2 performs well. The
objective of this section is to quantify how well it performs by counting the number of
recommendations made in the period and the number of positive results from them.

Since Eq. 4 can only be different from 0 when a recommendation occurs, it was
used to count the number of recommendations and the positive variations (hits). The
values of Mt may be summed for each set of recommendations. The total of correct
recommendations greater than 50% does not guarantee positive earnings, since the
absolute value of Mt in wrong recommendations may be greater. So, even if a correct
sequence of small Mt operations ends in a large Mt wrong operation it is possible to
lose money. This happened for tickers similar to that in Fig. 5, using system 1.

For system 2, the sum of Mt for all correct operations is much bigger, given the
higher accuracy of the system. Table 2 summarizes the measurements.

For comparison reasons it is necessary to remember that both systems evaluated the
same amount of possible operations. From Table 2 we conclude that not only the
System 2 is more accurate but it also prevents losses being more conservative. The total
number of operations possible in the time span for the tickers analyzed is equal to 1237
per ticker, or 13607 overall. System 2 indicates that only 3.5% to 15.5% operations per
ticker may be profitable, while System 1 indicates 36.6% to 47.1%. In whole time
spam, System 2 indicates only 10% of all operations for all tickers as profitable while
System 1 indicates 42.9%.

Fig. 9. Capital Time series for investing 0.2C0 only in one of the tickers depicted.
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So, it is also possible to infer that system 2 avoids losses by not entering in so many
operations as System 1. Entering in fewer operations is not bad, in the sense that it is
safer to keep money in the pocket instead of risking it at random. Of course, better
would be to know for sure how and when to enter into a profitable operation, and for
the data analyzed System 2 can perform with 73.5% accuracy.

5 Conclusion

In this paper, two fuzzy systems for the recommendation of financial operations were
presented, both based on technical analysis. They were tested against real market data,
spanning from Jan 2nd 2012 to Dec 29th 2016.

Since the strategy in System 1 was not so much better than random, it was upgraded
to System 2. Both price prediction parameters added provided reliable indications that,
together with a set of rules, achieved a high bias of profitable recommendations, and
thus, high profitability on the long term.
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Abstract. A methodology to system identification based on Evolving
Fuzzy Kalman Filter is proposed in this paper. The mathematical for-
mulation using an evolving Takagi-Sugeno (TS) structure is presented:
the offline Gustafson Kessel (GK) Algorithm is used to a initial data set;
after that, an evolving GK algorithm estimate the antecedent param-
eters. A fuzzy version OKID (Observer/Kalman Filter Identification)
algorithm is formulated to obtain the matrices A, B, C, D, and K (state
matrix, input influence matrix, output influence matrix, direct transmis-
sion matrix, and Kalman gain matrix, respectively), recursively, com-
posing the consequent parameters. Experimental results from black-box
modeling applied to rocket trajectory forecasting show the efficiency and
applicability of the proposed methodology.

Keywords: Black-box modeling · Evolving Fuzzy Kalman Filter
Rocket trajectory

1 Introduction

Algorithms for state estimation aim to recover some desired state variables from
a dynamic system with incomplete measurements and/or in the presence of noise.
State estimation is a significant problem in the area of control and signal pro-
cessing, with many research. In 1940, Wiener, founder of the modern theory
of statistical estimation, established the Wiener filtering theory, which solves
the problem of estimation with minimum variance for stationary stochastic pro-
cesses. In the early 1960s, Kalman filtering theory was developed from a novel
recursive filtering algorithm which does not require the assumption of station-
arity, although it is applicable only to linear systems [1].

Several practical dynamic systems are nonlinear. Once that Kalman filter
theory is applicable only to linear systems, many researchers have been moti-
vated in extending Kalman filtering theory to non-linear systems. The Extended
Kalman Filter (EKF), first proposed by Smith et al. [2] is an efficient recur-
sive algorithm and widely used method for nonlinear systems estimation, but
c© Springer International Publishing AG, part of Springer Nature 2018
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it has a number of limitations: efficiency is guaranteed only in quasi-linear sys-
tems in the updates time scale; linearization can be only applied if the Jacobian
matrix exists; computation of Jacobian matrices can be a very difficult process
and susceptible to errors, in some applications; limitations in implementation,
tuning and reliability. To overcome issues, Julier and Uhlmann proposed the
UKF (Unscented Kalman Filter) [3]. It is a non-linear estimation method that
propagates information about mean and covariance of parameters, recursively,
through a non-linear transformation.

Althought the UKF is more accurate than EKF, it still has some limitations
of the traditional KF: in some applications [4], an incompatibility between the
noise characteristic of the actual process and the filter, is observed; added to this,
UKF can respond to sudden disturbance slowly, decreasing filter performance.
Attempting to overcome these limitations, many adaptive techniques of Kalman
filtering, which guarantee robustness in the modeling of system uncertainties and
perturbations, are observed in the literature: In [5], an adaptive KF approach
is proposed for stochastic short-term traffic flow rate prediction; In [6], a study
of satellite motion estimation algorithm is performed, with fault detection; In
[7], an Asynchronous Adaptive Direct Kalman Filter (AADKF) algorithm for
underwater integrated navigation system is developed.

Since 1980, fuzzy systems have been applied to dynamic systems model-
ing and control. Among fuzzy systems, there is a very important class called
Takagi-Sugeno (TS). It has recently become a powerful tool for modeling and
control. This is due to its structure based on rules as universal approximator
of non-linearities and uncertainties [8,9]. It is observed the fuzzy systems in the
KF literature for design of filters that require robustness in relation uncertain-
ties and perturbations modeling. In [10], a scheme for improving the estimation
accuracy and convergence speed for the agriculture industry, with an accurate
estimation of the environmental changes, combining Kalman filter, fuzzy neural
network with PID control algorithm, is proposed; In [11], a position estimation
of AUV (Autonomous Underwater Vehicle) based on the Ensemble Kalman Fil-
ter (EnKF) and the Fuzzy Kalman Filter (FKF), is presented; In [12], the use
of fuzzy based reasoning in conjunction with a Kalman filtering like approach
in order to enhance the localization accuracy of mobile positioning in cellular
network, is proposed.

In mid-2002, the evolving fuzzy systems emerged as a version of fuzzy sys-
tems with adaptive adjustment of parameters and structure [13,14]. Since then,
this type of advanced fuzzy system has been of great interest to academy and
industry. In [15], a new methodology for learning evolving fuzzy systems (EFS)
from data streams in terms of online regression/system identification problems,
is proposed. In [16], a new evolving fuzzy system referred to as evolving Het-
erogeneous Fuzzy Inference System (eHFIS), which can simultaneously perform
local input selection and system identification in an evolving and integrative
manner, is proposed. In [17], a Self-evolving Probabilistic Fuzzy Neural Net-
work with Asymmetric Membership Function (SPFNN-AMF) controller for the
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position servo control of a Permanent Magnet Linear Synchronous Motor
(PMLSM) servo drive system, is presented.

However, despite important contributions on fuzzy Kalman filters and Evolv-
ing Fuzzy Systems, the integration of both approaches is still open issue. There-
fore, in this paper, a novel methodology for modeling of Evolving Fuzzy Kalman
Filters from experimental data, is proposed. The mathematical formulation using
an evolving Takagi-Sugeno (TS) structure is presented: the offline Gustafson
Kessel (GK) algorithm is used for initial parametrization of antecedent terms
of fuzzy Kalman filter inference system, considering an initial data set; and an
evolving version of the GK algorithm is developed for online parametrization
of antecedent of the fuzzy Kalman filter inference system. A fuzzy recursive
version of OKID (Observer/Kalman Filter Identification) algorithm is proposed
for parametrizing the matrices A, B, C, D and K (state matrix, input influ-
ence matrix, output influence matrix, direct transmission matrix, and Kalman
gain matrix, respectively), in the consequent of the fuzzy Kalman filter inference
system.

This paper is organized as follows: in Sect. 2, the formulation for evolving
fuzzy Kalman filter parametric estimation, is presented, where the structure of
the rule base is presented in the Sect. 2.1. The antecedent estimation by evolving
GK clustering algorithm is formulated in the Sect. 2.2 and in the Sect. 2.3 the
consequent estimation using OKID algorithm based on clustering, is proposed. In
Sect. 3, experimental results show the efficiency and applicability of the proposed
methodology, respectively. Finally, the Sect. 4 presents conclusions.

2 Evolving Fuzzy Kalman Filter Parametric Estimation:
Formulation

2.1 Fuzzy Kalman Filter Model

The TS Evolving Fuzzy Kalman Filter presents the i|[i=1,2,...,c]-th rule, given by:

R(i): IF ˜Zk IS M i
j|˜Zk

THEN

x̂i
k = Aix̂i

k−1 + Biũi
k + Kiεrk

ỹi
k = Cix̂i

k + Diũi
k + εrk

(1)

where Ai, Bi, Ci, Di, and Ki (state matrix, input influence matrix, out-
put influence matrix, direct transmission matrix, and Kalman gain matrix,
respectively) are estimated by OKID algorithm based on clustering. The
matrix ˜Zk = [ũk ỹk]T belongs to fuzzy set M i

j|˜Zk
with a value μi

Mj|˜Zk

defined by a membership function μi
˜Zk

: R → [0, 1], with μi
Mj|˜Zk

∈
μi

M1|˜Zk

, μi
M2|˜Zk

, μi
M3|˜Zk

, . . . , μi
Mp

˜Zk
|˜Zk

, where p
˜Zk

is the partitions number of the
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universe of discourse related to linguistic variable ˜Zk; and, a sequence of residual,

εrk
= yk −

l
∑

i=1

γiỹi
k, with

l
∑

i=1

γiỹi
k = Cix̂i

k + Diũi
k, where

l
∑

i=1

γi = 1.

2.2 Parametric Estimation of Antecedent

The antecedent estimation by evolving GK clustering algorithm is formulated
in this section. Firstly, an offline approach of GK algorithm is formulated for
initial estimation of antecedent parameters. After that, an evolving approach of
GK algorithm is formulated for online estimation of antecedent parameters.

Initial Estimation: Offline
It is assumed that an offline clustering algorithm has been applied to identify
an initial set of c clusters about previously collected data. The offline clustering
algorithm used in this paper was Gustafson-Kessel [18], described as follow:

Given the data set Z, an initial set of experimental data, the number of
clusters 1 < c < N , where c is the cluster number and N is the number of
samples of data set Z; the weighting exponent m > 1 and the termination
tolerance ε > 0. Randomly, the partition matrix is chosen, such that U0 ∈ Mfc,
where Mfc is the set that represent the fuzzy partitioning space for Z.

The cluster prototypes (means), vi, are computed as follow:

v(l)
i =

N
∑

k=1

[(

μ
(l−1)
ik

)m

zk

]

N
∑

k=1

(

μ
(l−1)
ik

)m
, 1 ≤ i ≤ c (2)

where zk is the sample at instant k and μik is its membership degree in the
i-th cluster, at instant k. The cluster covariance matrices, Fi, are computed, as
follow:

Fi =

N
∑

k=1

[

(

μ
(l−1)
ik

)m (

z − v(l)
i

)(

z − v(l)
i

)T
]

N
∑

k=1

(

μ
(l−1)
ik

)m
(3)

with 1 ≤ i ≤ c. The GK algorithm employs an adaptive distance norm, in order
to detect clusters of different geometrical shapes in a data set. Each cluster
has its own norm-inducing matrix Oi, which yields the following inner-product
norm, computed by:

DikO i
=

√

(

z(k) − v(l)
i

)T

Oi

(

z(k) − v(l)
i

)

, (4)

with 1 ≤ i ≤ c and 1 ≤ k ≤ N . Finally, if DikOi
> 0 for 1 ≤ i ≤ c, 1 ≤ k ≤ N ,

the partition matrix is updated as follow:
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μ
(k)
(i) =

1
c

∑

j=1

(

D(i)kA(i)

D(i)kA(i)

)2/(m−1)
(5)

Evolving Estimation: Online
In the evolving Takagi-Sugeno (eTS) Fuzzy Systems, the density of the data
evaluated recusively around the last data point, Dt (zt), is given by [19]:

Dt (zt) =
t − 1

(t − 1)

⎛

⎝

n+m
∑

j=1

z2tj + 1

⎞

⎠ + bt − 2
n+m
∑

j=1

ztjgtj

(6)

where D1 (z1) = 1; t = 2, 3, . . .; bt = bt−1 +
n+m
∑

j=1

z2(t−1)j ; b1 = 0; gtj = g(t−1)j +

z(t−1)j ; g1j = 0; zt is the data stream provided to algorithm; n is the dimension
of the inputs vector; m is the dimension of the outputs vector; and, t is the
number of points for which information about z is available.

The density of the focal points is uptaded recursively as follow:

Dt

(

zi∗) =
t − 1
D∗ (7)

where i∗ corresponds to focal points of the ith fuzzy rule, and:

D∗ = t − 1 + (t − 2)
(

1
Dt−1 (zi∗)

− 1
)

+
n+m
∑

j=1

(

ztj − z(t−1)j

)

(8)

Forming representative clusters with high generalization capability can be
achieved by analyzing focal points that have high density, checking the Condition
A, given by:

Condition A1:
ηDt (zt) >

R
max
i=1

Dt

(

zi∗
t

)

;

η =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 μi
j (xt) > e−2,∀i,∀j

Nt − 3
log t

otherwise
; t = 2, 3, . . .

Condition A2:

Dt (zt) >
R

max
i=1

Dt

(

zi∗
t

)

OR Dt (zt) <
R

min
i=1

Dt

(

zi∗
t

)

.

If Condition A is attended, form a new focal point (R ← R + 1; zi∗ ← zt;
D

(

zi∗) ← 1; Ii∗ ← 1).
To avoid redundancy and to control the level of overlap, condition B is

checked. It is given by:
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Condition B: IF (∃i, i = [1, R] : μj
i (xt) > e−1,∀j, j = [1, n] , t = 2, 3, . . .)

THEN (R ← R − 1)
If Condition B is satisfied, remove the rule for which it holds, because this

rule describes any of the previously existing cluster focal points.

2.3 Parametric Estimation of Consequent

The OKID (Observer/Kalman Filter Identification) method is a direct Kalman
filter gain approach. It is a similar to an adaptive Kalman filter, which requires no
prior statistical information and does not rely on sample correlation or covariance
calculations [20,21]. This method has been successfully applied to several real
systems identification, and it can effectively identify state-space models using
experimental data [22–24].

The original OKID is formulated in [25], but in this paper this algo-
rithm is presented in the clustering context. A fuzzy formulation of the OKID
(Observer/Kalman Filter Identification) algorithm, proposed in this paper, has
the following steps: Given l (number of samples), p (appropriate number of
observer Markov parameters from the given set of input-output data), ur×l

(input data, r is the number of inputs), and ym×l (output data, m is the number
of outputs).

Step 1: Compute the matrix of regressors, called V, given by:

V =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u0 u1 . . . up . . . ul−1

0 Z0 . . . Zp−1 . . . Zl−2

0 0 . . . Zp−2 . . . Zl−3

0 0
. . .

... . . .
...

0 0
. . . Z0 . . . Zl−p−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

where Zk = [uk yk]T corresponds to input and output data at time k.
Step 2: Obtain from experimental data the Observer Markov Parameters ˜̄Y
based on fuzzy sets, as follow:

ỹ =
l

∑

i=1

˜̄Y
i
V (10)

˜̄Y
i
=

[

VΓ iVT
]−1

VT Γ iy (11)

where y = [y0 y1 . . . yp . . . yl−1] is the output matrix m × l of the
dynamical system and

Γ i =

⎡

⎢

⎢

⎢

⎣

γi
0 0 . . . 0
0 γi

1 . . . 0
...

...
. . .

...
0 0 . . . γi

l−1

⎤

⎥

⎥

⎥

⎦

(12)
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is the diagonal weighting matrix of membership values from the i-th rule, and

˜̄Y
i
= [Di

(

γi
)

Ci
(

γi
)

B̄i
(

γi
)

Ci
(

γi
)

Āi
(

γi
)

B̄i
(

γi
)

. . . Ci
(

γi
)

Āi(p−1) (

γi
)

B̄i
(

γi
)

]
(13)

is the observer Markov Parameters of the i-th rule.
Step 3: Construct a block correlation matrix ℵi

τ with the elements Gi
hhk+τ

,
which corresponds to product between Hi

τ and Hi
k+τ , as follow:

Gi
hhk+τ

= Hi
k+τH

iT
τ ,with τ = 0 (14)

and

Hi
k+τ =

⎡

⎢

⎢

⎢

⎣

Yi
k+1 . . . Yi

k+β

Yi
k+2 . . . Yi

k+β+1
...

. . .
...

Yi
k+α . . . Yi

k+α+β+1

⎤

⎥

⎥

⎥

⎦

(15)

where Yi
k is a matrix m×r, whose columns are the Markov parameters (sampled

pulse response) corresponding to m inputs. The size of Hi
k and Hi

0 is αm × βr,
since the size of Gi

hhk
is αm × αm. So, it has:

ℵi
k =

⎡

⎢

⎢

⎢

⎢

⎣

Gi
hhk

. . . Gi
hhk+ξτ

Gi
hhk+τ

. . . Gi
hhk+(ξ+1)τ

...
. . .

...
Gi

hhk+ετ
. . . Gi

hhk+(ε+ξ)τ

⎤

⎥

⎥

⎥

⎥

⎦

(16)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Pi
α

Pi
αAiτ

...

Pi
αAiετ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Aik (

γi
)

[

Qi
c Aiτ Qi

c . . . Aiξτ

Qi
c

]

= Pi
εA

ik (

γi
)

Qi
ξ (17)

Step 4: Decompose ℵi
0 using singular value decomposition, that is, ℵi

0 =
RiΣiSiT .
Step 5: Determine the order of the system by examining the singular values of
Hankel matrix ℵi

0.
Step 6: Construct a minimum order realization

[

Ai,Qi
c,P

i
α

]

using a shifted
block Hankel matrix ℵi

1 according to Eq. (14), as follow:

Gi
hh1

= Hi
1H

iT
0 = Pi

αAi1 (

γi
)

Qi
c (18)
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Step 7: Calculate the controllability matrix Qi
β and determine a minimum order

realization [Ai(γi),Bi(γi),Ci(γi)], as follow:

Hi
0 = Pi

αQi
β (19)

where:

Pi
α =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ci
(

γi
)

Ci
(

γi
)

Ai
(

γi
)

Ci
(

γi
)

Ai2
(

γi
)

...
Ci

(

γi
)

Aiα−1 (

γi
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(20)

Qi
β = [Bi (γi

)
Ai (γi

)
Bi (γi

)
. . . Aiβ−2 (

γi
)
Bi (γi

)
Aiβ−1 (

γi
)
Bi (γi

)
]

(21)
and

Qi
β = Pi+

α Hi
0 (22)

Ai =
(

Σi)−1/2
RiT

n Hi
1S

i
n

(

Σi)−1/2
(23)

Di = Ȳi
m×1; Bi = first r columns of Qi

β ;Ci = firstm rows of Pi
α (24)

Step 8: Compute the Kalman gain matrix:

Ki = −
[

ψiT

p ψi
p

]−1

ψiT

p Ỹi0

k (25)

where

ψp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ci

CiAi

...

CiAi
p−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; Ỹi0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ci

CiAi

...

CiAi
p−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(26)

Ỹi0

k = ˜̄Y
i(2)

+
k−1
∑

i=1

Ỹi0

k−i
˜̄Y

i(2)

, k = 1, 2, . . . , p (27)

˜̄Y
i(2)

= [0 − third column of ˜̄Y
i − fifth column of ˜̄Y

i
. . . 0] (28)
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3 Experimental Results

To illustrate the applicability of the proposed methodology, consider a black-
box modeling applied to rocket trajectory forecasting. The real experimental
data was obtained from a rocket FTI or Fogtrein-I (Foguetes de Treinamento
- Intermediário, in portuguese), observed in Fig. 1. It is a medium vehicle of a
family of Brazilian training rockets created jointly by the Air Force Command
(COMAER) and Avibrá, with a diameter of 0.3 m and a length of 5.4 m (the
490 kg rocket can achieve an apogee height of 60 km). These vehicles are used
for testing, qualification, training and are designed to be launched in adverse
conditions such as high salinity, winds up to 10 m/s and rain up to 10 mm/h.
All models admit payloads (5 kg to 30 kg), with electric networks and telemetry
equipment, along experiments of interest in the academic and scientific commu-
nity. The mission of FTI is to be a model for operational training of a launch
center, in isolation, without participation of the remote station for redundant
monitoring vehicle, with telemetry in S-band, C-band transponders, flight ter-
mination, and height above 60 km [26].

The FTI outputs are pitch angle y1, yaw angle y2 and distance y3. In order
to estimate the fuzzy sets, the offline GK Clustering Algorithm was implemented
for 2 clusters, and tolerance 10−6, using the 82 first samples. From the output
data obtained by FTI, from the time step 83 to 3500 the evolving GK Clustering
Algorithm, described in Sect. 2, is applied to identify the fuzzy Kalman filter,
in every new sample of experimental data, taking into account the weights of
fuzzy sets. The TS Evolving Fuzzy Kalman Filter presents the i|[i=1,2,...,c]-th
rule, given by:

R(i): IF ˜Zk IS M i
j|˜Zk

THEN

x̂i
k = Aix̂i

k−1 + Biuk + Kiεrk

yi
k = Cix̂i

k + Diuk + εrk

(29)

where ˜Zk =
[

ỹ1k−1 ỹ2k−1 ỹ3k−1 ỹ1k
ỹ2k

ỹ3k

]T and εrk
= yk −

l
∑

i=1

ŷi
k is

a sequence of residual, with ŷi
k = Cix̂i

k + Diuk.
The outputs obtained by FTI, that are pitch angle y1, yaw angle y2 and

distance y3, to the proposed, are shown in Fig. 2. It is observed that the proposed
methodology follows the system outputs. The number of rules, the degrees during
model evolution and the absolute error between real distance and estimated
distance by proposed methodology, are observed in Fig. 3.
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Fig. 1. A rocket FTI [26].

Fig. 2. (a) Pitch angle y1; (b) yaw angle y2; (c) distance y3.

Fig. 3. (a) Number of rules; (b) degrees during model evolution; (c) absolute error
between real distance and estimated distance by proposed methodology.
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4 Conclusion

The methodology presented in this paper to system identification based on
Evolving Fuzzy Kalman Filter applied to rocket trajectory forecasting allowed to
adapt the model and Kalman Filter structure in real time. Experimental results
from a black-box modeling with real experimental data of a rocket to trajectory
forecasting show efficiency and applicability of the proposed methodology.
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Abstract. Implications play an important role in fuzzy logics as they
can be used both in practical and theoretical works. There exist many
works in the literature where fuzzy implications behave in a crisp manner,
i.e., implications that map to either zero or one. In this sense, we call
those implications as crisp fuzzy implications and our goal is to study
some their main features.

1 Introduction

A great deal of studies involving fuzzy implications can be found in the litera-
ture over the last years [1,2,4–6,12]. Fuzzy implications are interesting from the
theoretical point of view to its use on a variety of applications. For instance, they
can be used to perform any fuzzy “if-then” rule in fuzzy systems and inference
processes, which basically combine membership functions with the control rules
to derive the fuzzy output. Regarding the theoretical aspect, many works have
also been done aiming to generalize the traditional implication into fuzzy logic,
explaining why there exists so many classes of fuzzy implications. The existence
of those classes of fuzzy implications is justified by the fact that depending on
the context or/and on the rules and their behavior, different implications with
different properties can be adequate.

In the literature, it is possible to find examples of fuzzy implications with
a crisp behavior, i.e., fuzzy implications that always map to either 0 or 1. For
instance, in [13], it was defined two crisp-valued operators, named standard sharp
and standard strict, as follows:

1. Standard sharp

Is(x, y) =

{
1, if x < 1 or y = 1
0, otherwise

c© Springer International Publishing AG, part of Springer Nature 2018
G. A. Barreto and R. Coelho (Eds.): NAFIPS 2018, CCIS 831, pp. 348–360, 2018.
https://doi.org/10.1007/978-3-319-95312-0_30
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2. Standard strict (also called Rescher-Gaines implication [8])

IG(x, y) =

{
1, if x ≤ y

0, otherwise

Those implications were used in various applications, for instance, in the
domains of approximate reasoning [8], relational databases [9], fuzzy control
[10,16], face recognition [17].

Thus, in this paper we intend to study the class of crisp fuzzy implications,
i.e. fuzzy implications which always map to 0 or 1.

The paper is organized as follows. Section 2 summarizes some of the basic con-
cepts demanded to understand the proposal in this work, including the concept
of fuzzy implication and related properties. The study of crisp fuzzy implica-
tions is done in Sect. 3, including the most important results. At last, we finish
in Sect. 4 with our final conclusions.

2 Preliminaries

Definition 1. A function T : [0, 1]2 → [0, 1] is said to be a triangular norm
(t-norm, for short) if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:

(T1) Symmetry: T (x, y) = T (y, x);
(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);
(T3) Monotonicity: If x1 ≤ x2 and y1 ≤ y2 then T (x1, y1) ≤ T (x2, y2);
(T4) 1-identity: T (x, 1) = x. (boundary condition)

In fuzzy logic, the conjunction is often represented by a t-norm. The standard
fuzzy conjunction TM : [0, 1]2 → [0, 1] given by TM (x, y) = min{x, y} is the only
idempotent t-norm (see [11] - Theorem 3.9).

Proposition 1 [3]. Let T be a t-norm. Then T (0, y) = 0, for each y ∈ [0, 1].

Definition 2. A t-norm T is called positive if satisfies the following condition:
T (x, y) = 0 if and only if x = 0 or y = 0.

Definition 3. A function S : [0, 1]2 → [0, 1] is said to be a triangular conorm
(t-conorm, for short) if it satisfies the following conditions, for all x, y, z ∈
[0, 1]:

(S1) Symmetry: S(x, y) = S(y, x);
(S2) Associativity: S(x, S(y, z)) = S(S(x, y), z);
(S3) Monotonicity: If x1 ≤ x2 and y1 ≤ y2 then S(x1, y1) ≤ S(x2, y2);
(S4) 0-identity: S(x, 0) = x. (boundary condition)

From an axiomatic point of view, the difference between t-norms and t-
conorms is just their boundary conditions.
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Definition 4. A function N : [0, 1] → [0, 1] is called a fuzzy negation if

(N1) N is antitonic, i.e. N(x) ≤ N(y) whenever y ≤ x;
(N2) N(0) = 1 and N(1) = 0.

A fuzzy negation N is strict if
(N3) N is continuous and
(N4) N(x) < N(y) whenever y < x.

A fuzzy negation N is strong if
(N5) N(N(x)) = x, for each x ∈ [0, 1].

A fuzzy negation N is crisp if
(N6) N(x) ∈ {0, 1}, for all x ∈ [0, 1] (see [7]).

A fuzzy negation N is frontier if it satisfies the following property:
(N7) N(x) ∈ {0, 1} if and only if x = 0 or x = 1.

Remark 1. By [7], a fuzzy negation N : [0, 1] → [0, 1] is crisp if and only if there
exists α ∈ [0, 1) such that N = Nα or there exists α ∈ (0, 1] such that N = Nα,
where

Nα(x) =

{
0, if x > α

1, if x ≤ α
Nα(x) =

{
0, if x ≥ α

1, if x < α

Theorem 1 [1]. If a function N : [0, 1] → [0, 1] satisfies (N1) and (N5), then it
also satisfies (N2) and (N3). Moreover, N is a bijection, i.e., it satisfies (N4).

Corollary 1 [1]. Every strong negation is strict.

Definition 5. A function I : [0, 1]2 → [0, 1] is a fuzzy implication if the
following properties are satisfied, for all x, y, z ∈ [0, 1]:

(I1) If x ≤ z then I(x, y) ≥ I(z, y);
(I2) If y ≤ z then I(x, y) ≤ I(x, z);
(I3) I(0, y) = 1;
(I4) I(x, 1) = 1;
(I5) I(1, 0) = 0.

The set of all fuzzy implications will be denoted by FI.

Definition 6. Let I ∈ FI. The function NI : [0, 1] → [0, 1] defined by NI(x) =
I(x, 0), x ∈ [0, 1] is called the natural negation of I or the negation induced
by I.

Definition 7. Let T be a t-norm, S a t-conorm and N a fuzzy negation, then:
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– A function I : [0, 1]2 → [0, 1] is called a (S, N)-implication (denoted
by IS,N ) if I(x, y) = S(N(x), y).

– A function I : [0, 1]2 → [0, 1] is called an R-implication (denoted by
IT ) if I(x, y) = sup{t ∈ [0, 1] | T (x, t) ≤ y}.

– A function I : [0, 1]2 → [0, 1] is called a QL-implication (denoted by
IS,N,T ) if I(x, y) = S(N(x), T (x, y)).

– A function I : [0, 1]2 → [0, 1] is called a D-implication (denoted by
IS,T,N ) if I(x, y) = S(T (N(x), N(y)), y).

Definition 8. A fuzzy implication I is said to satisfy:

(i) the exchange principle if, for all x, y, z ∈ [0, 1]
I(x, I(y, z)) = I(y, I(x, z)); (EP)

(ii) the left neutrality property, if
I(1, y) = y, y ∈ [0, 1]; (NP)

(iii) the identity principle, if
I(x, x) = 1, x ∈ [0, 1]; (IP)

(iv) the left-ordering property if, for all x, y ∈ [0, 1]
I(x, y) = 1 whenever x ≤ y; (LOP)

(v) the right-ordering property if for all x, y ∈ [0, 1]
I(x, y) �= 1 whenever x > y. (ROP)

Definition 9. Let I ∈ FI and let N be a fuzzy negation. I is said to satisfy
the:

(i) contraposition law (or in other words, the contrapositive symmetry)
with respect to N , if
I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1]; (CP)

(ii) left contraposition law with respect to N , if
I(N(x), y) = I(N(y), x), x, y ∈ [0, 1]; (L-CP)

(iii) right contraposition law with respect to N , if
I(x,N(y)) = I(y,N(x)), x, y ∈ [0, 1]. (R-CP)

If I satisfies the (left, right) contrapositive symmetry with respect to a specific
N , then we will denote this by L−CP (N), R−CP (N) and CP (N), respectively.

In [14,15], Pinheiro et al. introduced a new class of implication, named
(T,N)-implications which was defined by means of fuzzy negations and a t-
norm.

Definition 10 [15]. Let N and N ′ be fuzzy negations and T be a t-norm. The
function IN ′

T,N defined by IN ′
T,N (x, y) = N ′(T (x,N(y))) is called a (N′,T,N)-

implication.

Actually, in [15] for (T,N)-implications we had N ′ = N which is differ-
ent from the previous definition where we have different negations. In order
to avoid misunderstanding between definitions, from here forth, implications
defined according to Definition 10 we be called (N ′, T,N)-implications.
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3 Crisp Fuzzy Implications

In classical logic there is only one bivalent implication, however in the fuzzy
setting the notion of bivalence gives rise to an uncountable family of such impli-
cations. They are called here Crisp fuzzy implication.

Definition 11. Let I : [0, 1]2 → [0, 1] be a fuzzy implication. We say that I is a
crisp fuzzy implication if I(x, y) ∈ {0, 1} for all x, y ∈ [0, 1].

Proposition 2. Let I : [0, 1]2 → [0, 1] be a fuzzy implication. Then I is crisp if
and only if one of the following conditions are satisfied, for all x, y ∈ [0, 1]:

(C1) If there exists α ∈ (0, 1] and β ∈ [0, 1) such that I(x, y) = Iα,β(x, y),
where

Iα,β(x, y) =

{
0, if x ≥ α and y ≤ β

1, otherwise
;

(C2) If there exists α ∈ [0, 1) and β ∈ (0, 1] such that I(x, y) = Iα,β(x, y),
where

Iα,β(x, y) =

{
0, if x > α and y < β

1, otherwise
;

(C3) If there exists α, β ∈ (0, 1] such that I(x, y) = Iα
β(x, y), where

Iα
β(x, y) =

{
0, if x ≥ α and y < β

1, otherwise
;

(C4) If there exists α, β ∈ [0, 1) such that I(x, y) = Iα
β(x, y), where

Iα
β(x, y) =

{
0, if x > α and y ≤ β

1, otherwise
.

Proof. First, suppose I is crisp, then as I(0, 0) = 1 and I(1, 0) = 0, we have by

(I1) that there exists: (1) α ∈ (0, 1] such that I(x, 0) =

{
0, if x ≥ α

1, otherwise
or (2)

α ∈ [0, 1) such that I(x, 0) =

{
0, if x > α

1, otherwise
. By (I2), we have for case (1)

that there exist: (i)1 β ∈ [0, 1) such that I(x, y) =

{
0, if x ≥ α and y ≤ β

1, otherwise

or (ii)1 β ∈ (0, 1] such that I(x, y) =

{
0, if x ≥ α and y < β

1, otherwise
. Hence,

I(x, y) = Iα,β(x, y) or I(x, y) = Iα
β(x, y), for all x, y ∈ [0, 1], respectively.



Crisp Fuzzy Implications 353

Similarly, still by (I2), for case (2) there exist: (i)2 β ∈ [0, 1) such that

I(x, y) =

{
0, if x > α and y ≤ β

1, otherwise
or (ii)2 β ∈ (0, 1] such that I(x, y) ={

0, if x > α and y < β

1, otherwise
. Hence, I(x, y) = Iα

β(x, y) or I(x, y) = Iα,β(x, y),

for all x, y ∈ [0, 1], respectively.
The reciprocal case follows straightforward.

Definition 12. Let I be a crisp fuzzy implication. Independently from I being
of type C1, C2, C3 or C4, the pair (α, β) is called the threshold pair of I.

In the following proposition, we can observe that we can obtain a crisp fuzzy
implications from any fuzzy implication I.

Proposition 3. Let I ∈ FI. Then, for any γ ∈ (0, 1], Iγ(x, y) ={
1, if I(x, y) ≥ γ

0, if I(x, y) < γ
is a crisp fuzzy implication.

Proof. We will first prove that Iγ satisfies the conditions demanded in Definition
5. Indeed,

(Iγ1) For all x, y, z ∈ [0, 1], such that x ≤ y, we have by (I1) that I(y, z) ≤
I(x, z). We will analyze the following cases: (1) If I(x, z) ≥ I(y, z) ≥ γ, then
Iγ(x, z) = Iγ(y, z) = 1; (2) If I(x, z) ≥ γ > I(y, z), then Iγ(x, z) = 1 >
0 = Iγ(y, z) and (3) if γ > I(x, z) ≥ I(y, z), then Iγ(x, z) = Iγ(y, z) = 0.
Therefore, Iγ satisfies (I1).

(Iγ2) For all x, y, z ∈ [0, 1], such that y ≤ z, we have by (I2) that I(x, y) ≤
I(x, z). We will analyze the following cases: (1) If γ ≤ I(x, y) ≤ I(x, z), then
Iγ(x, y) = Iγ(x, z) = 1; (2) If I(x, y) < γ ≤ I(x, z), then Iγ(x, y) = 0 <
1 = Iγ(x, z) and (3) if I(x, y) ≤ I(x, z) < γ, then Iγ(x, y) = Iγ(x, z) = 0.
Therefore, Iγ satisfies (I2).

(Iγ3) For all y ∈ [0, 1], we have by (I3) that I(0, y) = 1. So, I(0, y) ≥ γ and
thereby Iγ(0, y) = 1. Therefore, Iγ satisfies (I3).

(Iγ4) For all x ∈ [0, 1], we have by (I4) that I(x, 1) = 1. So, I(x, 1) ≥ γ and
thereby Iγ(x, 1) = 1. Therefore, Iγ satisfies (I4).

(Iγ5) By (I5), I(1, 0) = 0. So, I(1, 0) < γ and thereby Iγ(1, 0) = 0. Therefore,
Iγ satisfies (I5).

We conclude that Iγ is a fuzzy implication. As, Iγ(x, y) ∈ {0, 1} for all x, y ∈
[0, 1], then Iγ is a crisp fuzzy implication.

Notice that if we take γ ∈ [0, 1), and Iγ(x, y) =

{
1, if I(x, y) > γ

0, if I(x, y) ≤ γ
, Iγ is

also a crisp fuzzy implication.

Proposition 4. Let IN ′
T,N be a (N ′, T,N)-implication. Then IN ′

T,N is crisp if and
only if N ′ is a crisp fuzzy negation.
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Proof. Suppose N ′ is not crisp, then there is z ∈ (0, 1) such that N ′(z) /∈ {0, 1}.
So, for any t-norm T and any fuzzy negation N we have that T (z,N(0)) =
T (z, 1) = z, thus IN ′

T,N (z, 0) = N ′(T (z,N(0))) = N ′(z) /∈ {0, 1}. Therefore IN ′
T,N

is not crisp. Conversely, if N ′ is crisp then, for any t-norm T and any fuzzy
negation N , IN ′

T,N (x, y) = N ′(T (x,N(y))) ∈ {0, 1}.

Corollary 2. Let IN
T be a (T,N)-implication. Then IN

T is crisp if and only if
N is a crisp fuzzy negation.

Proposition 5. Let I be a (T, N)-implication for any crisp negation N and
any t-norm T . Then:

(i) I satisfies (LOP );
(ii) I does not satisfy (ROP ).

Proof. Since N is crisp we have, by Corollary 2, that I = IN
T is crisp. Note that:

I(x, y) = N(T (x,N(y))) =

{
1, if N(y) = 0
N(x), if N(y) = 1

.

Then,

(i) For all x, y ∈ [0, 1] such that x ≤ y, since N is crisp, we will analyze
two cases:
(1) if there exists α ∈ [0, 1) such that N = Nα, then

I(x, y) =

{
1, if y > α

N(x), if y ≤ α
. (1)

For y ≤ α, as x ≤ y, then x ≤ α. So Nα(x) = 1 and hence I(x, y) = 1.
(2) If there exists α ∈ (0, 1] such that N = Nα, then

I(x, y) =

{
1, if y ≥ α

N(x), if y < α
. (2)

For y < α, as x ≤ y, then x < α. So Nα(x) = 1 and therefore,
I(x, y) = 1. Thus, I satisfies (LOP ).

(ii) We will analyze two cases again:
(1) if N = Nα for some α ∈ [0, 1), then there exists x, y ∈ [0, 1] such
that x > y > α. So, by Eq. (1), I(x, y) = 1.
(2) If N = Nα for some α ∈ (0, 1], then there exists x, y ∈ [0, 1] such
that y < x < α. So, by Eq. (2) I(x, y) = Nα(x) = 1. In any case, there
exists x > y, but I(x, y) = 1, therefore I does not satisfy (ROP ).

Proposition 6. Let I be a crisp fuzzy implication. Then:

(i) I satisfies (EP );
(ii) I satisfies R−CP (NI), where NI is the natural negation of I;
(iii) I does not satisfy (NP );
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Proof. (i) Since I is crisp, then by Proposition 2, I satisfies one of the
conditions (C1), (C2), (C3) or (C4). If I satisfies (C1), then there
exists α ∈ (0, 1] and β ∈ [0, 1) such that I(x, y) = Iα,β(x, y). So, (1)

for z ≤ β, we have I(y, z) =

{
0, if y ≥ α

1, if y < α
. Thus,

I(x, I(y, z)) =

{
I(x, 0), if y ≥ α

I(x, 1), if y < α
=

{
0, if x ≥ α and y ≥ α

1, otherwise
,

and we also have I(x, z) =

{
0, if x ≥ α

1, if x < α
. Thus,

I(y, I(x, z)) =

{
I(y, 0), if x ≥ α

I(y, 1), if x < α
=

{
0, if x ≥ α and y ≥ α

1, otherwise
.

Then, for z ≤ β, (EP ) is satisfied. Now, (2) for z > β, we have I(y, z) =
I(x, z) = 1. So I(x, I(y, z)) = I(x, 1) = 1 = I(y, 1) = I(y, I(x, z)).

Cases (C2), (C3) and (C4) are similar to the previous one.Therefore,
I satisfy (EP ).

(ii) Indeed, for all x, y ∈ [0, 1],

I(x,NI(y)) = I(x, I(y, 0))
(EP )
= I(y, I(x, 0)) = I(y,NI(x)).

(iii) As I(x, y) ∈ {0, 1}, since I is crisp then, for all y ∈ (0, 1), I(x, y) �= y.

Proposition 7. Let I be a crisp fuzzy implication with (α, β) as its threshold.
If β < α then I satisfies (IP).

Proof. Indeed, if I is of type (C1) then there is no x ∈ [0, 1] such that x ≥ α and
x ≤ β simultaneously, since β < α. So I(x, x) = 1, for all x ∈ [0, 1]. Similarly,
if I is of type (C2), (C3) or (C4) we prove that I(x, x) = 1. Therefore, in any
case, I satisfies (IP).

Proposition 8. Let I be a crisp fuzzy implication with (α, β) as its threshold.
If α < β then I does not satisfy (IP).

Proof. Indeed, because there exists x between α and β such that I(x, x) = 0,
therefore I does not satisfy (IP).

Proposition 9. Let I be a crisp fuzzy implication with (α, β) as its threshold.
If α = β then:

(i) If I is of type (C1) then I does not satisfy (IP);
(ii) If I is of type (C2), (C3) or (C4) then I satisfies (IP).
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Proof. In fact,

(i) There is x = α such that I(x, x) = 0 �= 1, so I does not satisfy (IP).
(ii) If I is of type (C2) then there is no x ∈ [0, 1] such that x > α and x < β

simultaneously, since β = α. So I(x, x) = 1, for all x ∈ [0, 1]. Similarly, if I
is of type (C3) or (C4) we prove that I(x, x) = 1. Therefore, in any case, I
satisfies (IP).

In [4], the conditions under which the Boolean-like law holds for some classes
of fuzzy implications were given. Here, we prove that it is valid for a crisp fuzzy
implication whenever (IP) is satisfied.

Proposition 10. Let I be a crisp fuzzy implication. Then:

(i) If I satisfies (IP) then I(x, I(y, x)) = 1, for all x, y ∈ [0, 1];
(ii) If I does not satisfy (IP) then there are x, y ∈ [0, 1] such that

I(x, I(y, x)) �= 1.

Proof. Indeed,

(i) If I satisfies (IP) then I(x, x) = 1, for all x ∈ [0, 1], so by Proposition 6:

I(x, I(y, x))
(EP )
= I(y, I(x, x)) = I(y, 1) = 1.

(ii) If I does not satisfy (IP) then there exist x ∈ (0, 1) such that I(x, x) = 0.
So, for y = 1, I(x, I(1, x)) = I(1, I(x, x)) = I(1, 0) = 0 �= 1.

Corollary 3. Let I be a crisp fuzzy implication with (α, β) as its threshold.

(i) If β < α then I(x, I(y, x)) = 1, for all x, y ∈ [0, 1];
(ii) If α < β then there exists x, y ∈ [0, 1] such that I(x, I(y, x)) �= 1;
(iii) If α = β then there exists x, y ∈ [0, 1] such that I(x, I(y, x)) �= 1

whenever I is of type (C1). And I(x, I(y, x)) = 1, for all x, y ∈ [0, 1]
whenever I is of type (C2), (C3) or (C4).

Proof. It follows straight from Propositions 7, 8 and 9.

Definition 13. Let I be a crisp fuzzy implication with (α, β) as its threshold and
let N be a fuzzy negation. We say that IN is a dual crisp fuzzy implication
of I with respect to N , or dual NCrisp, if it satisfies one of the following
types, for all x, y ∈ [0, 1]:

(NC1) IN(x, y) = IN(β),N(α)(x, y), whenever I satisfies (C1);
(NC2) IN(x, y) = IN(β),N(α)(x, y), whenever I satisfies (C2);
(NC3) IN(x, y) = IN(β)

N(α)(x, y), whenever I satisfies (C3);
(NC4) IN(x, y) = IN(β)

N(α)(x, y), whenever I satisfies (C4).

Definition 14. Let I be a crisp fuzzy implication and N be a fuzzy negation. I
is said to be a

(i) Crisp-CP with respect to N , if
I(x, y) = IN(N(y), N(x)), (C-CP)
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(ii) Crisp Left-CP with respect to N , if
I(N(x), y) = IN(N(y), x), (C-LCP)

(iii) Crisp Right-CP with respect to N , if
I(x,N(y)) = IN(y,N(x)), (C-RCP)

where IN is its dual NCrisp.

Proposition 11. Let I be a crisp fuzzy implication and N be a fuzzy negation.
If N is strict, then I is C-CP with respect to N .

Proof. (1) If I satisfies (C1), then, by Proposition 2, there exist α ∈ (0, 1] and
β ∈ [0, 1) such that I(x, y) = Iα,β(x, y). So, as N is strict, x ≥ α if and only
if N(x) ≤ N(α) and y ≤ β if and only if N(y) ≥ N(β). Therefore, by (NC1)

IN(N(y), N(x)) = IN(β),N(α)(N(y), N(x))

=

{
0, if N(y) ≥ N(β) and N(x) ≤ N(α)
1, otherwise

=

{
0, if x ≥ α and y ≤ β

1, otherwise
= Iα,β(x, y) = I(x, y).

(2) If I satisfies (C2), then, by Proposition 2, there exist α ∈ [0, 1) and β ∈ (0, 1]
such that I(x, y) = Iα,β(x, y). So, as N is strict, x > α if and only if
N(x) < N(α) and y < β if and only if N(y) > N(β). Therefore, by (NC2)

IN(N(y), N(x)) = IN(β),N(α)(N(y), N(x))

=

{
0, if N(y) > N(β) and N(x) < N(α)
1, otherwise

=

{
0, if x > α and y < β

1, otherwise
= Iα,β(x, y) = I(x, y).

(3) If I satisfies (C3), then, by Proposition 2, there exist α, β ∈ (0, 1] such that
I(x, y) = Iα

β(x, y). So, as N is strict, x ≥ α if and only if N(x) ≤ N(α) and
y < β if and only if N(y) > N(β). Therefore, by (NC3)

IN(N(y), N(x)) = IN(β)
N(α)(N(y), N(x))

=

{
0, if N(y) > N(β) and N(x) ≤ N(α)
1, otherwise

=

{
0, if x ≥ α and y < β

1, otherwise
= Iα

β(x, y) = I(x, y).

(4) If I satisfies (C4), then, by Proposition 2, there exist α, β ∈ [0, 1) such that
I(x, y) = Iα

β(x, y). So as N is strict, x > α if and only if N(x) < N(α) and
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y ≤ β if and only if N(y) ≥ N(β). Therefore, by (NC4)

IN(N(y), N(x)) = IN(β)
N(α)(N(y), N(x))

=

{
0, if N(y) ≥ N(β) and N(x) < N(α)
1, otherwise

=

{
0, if x > α and y ≤ β

1, otherwise
= Iα

β(x, y) = I(x, y).

Therefore, in any case, I is C-CP.

Notice that for C-LCP and C-RCP, the requirements are different from
Proposition 11. The proof for both is analogous as we can see in the follow-
ing proposition.

Proposition 12. Let I be a crisp fuzzy implication and N be a fuzzy negation.
If N is strong, then I is C-LCP and C-RCP with respect to N .

Proof. Straightforward.

Finally, we also studied that is impossible for some implications to be crisp
fuzzy implications.

Proposition 13. None of the following classes of fuzzy implications (S, N)-,
R-, QL- and D-implication is a crisp fuzzy implication.

Proof. In fact,

(1) if I is an (S, N)-implication, then there exist a t-conorm S and a fuzzy
negation N such that I(x, y) = S(N(x), y) for all x, y ∈ [0, 1]. In particular,

for x = 1, I(1, y) = S(N(1), y) = S(0, y)
(S4)
= y. So, for all y ∈ (0, 1),

I(1, y) /∈ {0, 1}. Therefore, I is not crisp.
(2) If I is an R-implication, then there exists a t-norm T such that I(x, y) =

sup{t ∈ [0, 1] | T (x, t) ≤ y} for all x, y ∈ [0, 1]. In particular, for x = 1,

I(1, y) = sup{t ∈ [0, 1] | T (1, t) ≤ y} (T4)
= sup{t ∈ [0, 1] | t ≤ y} = y. So, for

all y ∈ (0, 1), I(1, y) /∈ {0, 1}. Therefore, I is not crisp.
(3) If I is a QL-implication, then there exist a t-norm T , a t-conorm S and a

fuzzy negation N such that I(x, y) = S(N(x), T (x, y)) for all x, y ∈ [0, 1].

In particular, for x = 1, I(1, y) = S(N(1), T (1, y)) = S(0, T (1, y))
(S4)
=

T (1, y)
(T4)
= y. So, for all y ∈ (0, 1), I(1, y) /∈ {0, 1}. Therefore, I is not crisp.

(4) If I is a D-implication, then there exist a t-norm T , a t-conorm S and a fuzzy
negation N such that I(x, y) = S(T (N(x), N(y)), y) for all x, y ∈ [0, 1]. In
particular, for x = 1, I(1, y) = S(T (N(1), N(y)), y) = S(T (0, N(y)), y) =

S(0, y)
(S4)
= y. So, for all y ∈ (0, 1), I(1, y) /∈ {0, 1}. Therefore, I is not crisp.
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4 Final Remarks

One can find many examples of studies which use fuzzy implications with crisp
behavior such as [8–10,17]. Our purpose in this work was to study those fuzzy
implications which always map to 0 or 1, therefore named crisp fuzzy implica-
tions. We provided a characterization for those implications, presenting four pos-
sible classes (Proposition 2) and studied some properties and conditions under
which fuzzy implications need in order to be considered crisp.
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Abstract. This paper suggests an enhanced fuzzy rule-based evolv-
ing participatory learning with kernel recursive least squares algorithm
for stock market index forecasting. The algorithm combines an incre-
mental clustering algorithm to learn the antecedent part of functional
fuzzy rules, and a kernel recursive least squares method to compute the
parameters of the consequents of the rules. The algorithm uses a small
number of user-defined parameters to enhance its autonomy. Computa-
tional experiments concerning one-step-ahead forecasts of the S&P 500
stock market index from January 2010 to December 2017 is conducted to
compare the algorithm with traditional forecasting and state-of-the-art
evolving fuzzy algorithms. Accuracy and computational effort evaluation
indicate the high potential of the kernel recursive participatory learning
algorithm for stock market index time series forecasting.

Keywords: Evolving fuzzy systems · Adaptive modeling
Time series forecasting

1 Introduction

The financial economics literature has a long research history on the predictabil-
ity of stock markets [5,6]. Asset price forecasting is a challenging task because of
the high degree of noise and the semi-strong form of market efficiency [8]. Despite
the divergence of opinions on the efficiency of markets, several works show that
financial time series are to some extent predictable [16,17]. Econometric and
statistical methods such as autoregressive models have been the widely adopted
in finance and economics forecasting [2]. Artificial neural networks (ANN) is
a nonlinear approach that also became popular in financial forecasting [1,9]
to overcome restrictive assumptions on data distribution made by traditional
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forecasting algorithms. Financial market data are affected by press news, expec-
tations and the psychological state of investors, and ANN does not account for
the imprecision and uncertainty induced in data.

This paper addresses stock price forecasting using evolving fuzzy systems to
account for financial data uncertainty and to process stream data, both essen-
tial characteristics in decision making with market data in intraday frequency.
Evolving fuzzy systems are incremental procedures to process stream data, and
to simultaneously adapt the structure and parameters of fuzzy models. In partic-
ular, functional evolving fuzzy rule-based models are adaptive, incremental fuzzy
models in which the number of rules and the rules parameters are continuously
evaluated whenever data are input.

A wide range of evolving fuzzy models can be found in the literature. For
instance, an autonomous user-free control parameters modeling scheme called
eTS+ is given in [4]. The eTS+ uses criteria such as age, utility, local density,
and zone of influence to update the model structure. In [11], the concept of
participatory learning (PL) [23] was joined with the evolving fuzzy modeling
idea, resulting in the ePL model. Later, ePL+ was developed in the realm of
participatory learning clustering and extends the ePL by using the updating
strategy of eTS+ [14]. An evolving Takagi-Sugeno model that uses least squares
support vector machine (eTS-LS-SVM) to update the consequent parameters of
each rule was conceived in [10]. In [20] it is also proposed an evolving Takagi-
Sugeno fuzzy model with non-linear parameter estimation (eTS-KRLS). The
authors have used a modified version of the recursive least squares method, called
KRLS [7], for this purpose. A comprehensive review of evolving approaches is
found in [13].

Recently, the authors conceived an evolving fuzzy rule-based participatory
learning model called ePL-KRLS, for time series forecasting [22]. The ePL-KRLS
brings a novel recursive, incremental approach to update the structure and
parameters of a fuzzy rule-based model. Specifically, it combines the concepts
of evolving systems with participatory learning and kernel methods to achieve
higher forecast accuracy, robustness, stability, with acceptable computational
cost. The participatory learning concept appears as an unsupervised clustering
algorithm, whereas the KRLS [7] updates the parameters of the affine functions
of fuzzy rules consequents.

This paper suggests an enhanced fuzzy rule-based evolving Participatory
Learning with Kernel Recursive Least Squares (ePL-KRLS+) for stock mar-
ket prices forecasting. Differently from ePL-KRLS developed in [22], the ePL-
KRLS+ uses an updating mechanism similar to that of ePL+. Kernel-based
methods are more sensitive to variations in the input data and are able to approx-
imate nonlinear systems efficiently. Because financial data are affected by noise
and outliers (press news, reversion practitioners expectations, etc.) the enhanced
algorithm appears as a potential tool for asset price prediction, as experiments
with the S&P 500 index suggest. Performance of the ePL-KRLS+ is compared
against traditional econometric benchmarks, and with state-of-the-art evolving
fuzzy approaches in terms of accuracy and computational costs.
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The paper proceeds as follows. After this brief introduction, Sect. 2 details
the ePL-KRLS+. Section 3 shows the results achieved by the computational
experiments with the S&P 500 data. Finally, Sect. 4 concludes the paper and
suggests issues for further investigation.

2 The ePL-KRLS+ Algorithm

An overview of the ePL-KRLS+ algorithm developed in this paper is shown in
Fig. 1. It uses a fuzzy rule base composed by functional fuzzy rules of Takagi-
Sugeno (TS) type. The antecedent of the functional rules contain linguistic vari-
ables associated with the input data, and consequents in the form of functions
of the input variables.

Fig. 1. ePL-KRLS+ modeling.

The fuzzy rule adopted by ePL-KRLS+ is of the following form:

Ri : IF x is Ai
︸ ︷︷ ︸

Antecedent

THEN ŷi = fi(x,θi)
︸ ︷︷ ︸

Consequent

(1)

where Ri corresponds to the i-th fuzzy rule, i = 1, 2, . . . , R, R is the number
of fuzzy rules, x = [x1, . . . , xm]T ∈ R

m is the input, Ai is the fuzzy set of the
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antecedent of the i-th fuzzy rule whose membership function is Ai(x) : Rm →
[0, 1] and

ŷi = fi(x,θi) =
ni
∑

j=1

θij κ(dij ,x) (2)

is the output of the i-th rule, as a function of the input data and the con-
sequent parameters θi = [θi1, . . . , θini

]T ∈ R
ni of the i-th rule. In (2), Di =

[di1, . . . ,dini
] ∈ R

ni×m is the dictionary of the i-th rule, dij ∈ R
m is the j-th

element of Di, ni is the number of elements in Di, θij ∈ R is the j-th conse-
quent parameter of the i-th rule and κ(·, ·) is the Gaussian kernel function [19]
of sample vectors xi and xj :

κ(xi,xj) = exp

(

−||xi − xj ||2
2ν2

ij

)

(3)

where νij > 0 is the kernel size. The model output, ŷ ∈ R, is computed using:

ŷ =
R

∑

i=1

ŷi ΓN
i (x) (4)

with

ΓN
i (x) =

Ai(x)
∑R

j=1 Aj(x)
(5)

being the normalized activation level of the i-th rule. We recall that TS modeling
requires two tasks: (i) learning the model structure, that is, the number of rules
R and the membership functions Ai(x) and; (ii) estimation of the parameters
θi = [θi1, . . . , θini

]T .

2.1 Learning the Model Structure

Learning the rule-based structure of ePL-KRLS+ is done using the participatory
learning clustering algorithm (PL) [21] which assigns a rule to a unique cluster.
Participatory learning [23] assumes that the learning process depends on what
the system has already learned from the data. The current knowledge is part of
the learning process itself and influences the way in which new data are used for
self-organization. A characteristic property of PL is the impact of new data cause
in self-organization or model revision. The impact depends on the compatibility
of the current knowledge with input data.

Let vk = {vk
i }R

i=1 ⊂ R
R×m as a set of i = 1, . . . , R rule centers at step k.

The goal of PL clustering algorithm is to learn each vector vk
i ∈ [0, 1]m using the

input data stream xk ∈ R
m. In participatory learning, a rule center is updated

using a compatibility measure ρk
i ∈ [0, 1] and an arousal index, ak

i ∈ [0, 1]. While
ρk

i measures how much a data point is compatible with the rule-base structure,
the arousal index ak

i acts as a critic to remind when the rule base should be
revised in front of new information.
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Due to its unsupervised nature, PL may create or delete a new cluster (rule,
merge, or modify the existing ones at each learning step k. If ak

i is greater than a
threshold τ ∈ [0, 1], then a new rule is created. The arousal index ak

i is updated
as follows:

ak
i = ak−1

i + β(1 − ρk
i − ak−1

i ), (6)

where β ∈ [0, 1] controls the rate of change of arousal, the closer β is to one, the
faster the system is to sense compatibility variations, a0

i = 0, and

ρk
i = 1 − ||xk − vk

i ||
m

(7)

with m as the size of the input space, and vk
i is the i-th rule center at step k.

Otherwise, the most compatible rule center, v̂k
i |i = argmaxj {ρk

j }, is updated
using:

v̂k+1
i = v̂k

i + α(ρk
i )1−ak

i (xk − v̂k
i ) (8)

where α ∈ [0, 1] is the learning rate. If ak
i increases, the similarity measure has a

reduced effect. Hence, the arousal index can be interpreted as the complement of
the confidence we have in the truth of the current rule-based structure. Likewise,
PL assumes that a rule must be deleted if its center vk

i has compatibility greater
than a threshold γ ∈ [0, 1] in relation to the remaining centers vk

j as:

ρk
ij = ρk

ij(v
k
i ,vk

j ) = 1 − 1
m

m
∑

l=1

|vk
il − vk

jl| (9)

Two additional mechanisms were added in ePL-KRLS+ to improve its auton-
omy and adaptability in complex systems modeling: a utility measure to shrink
the rule base, and the use of distinc radius for each rule. The quality of each rule
is monitored by the utility measure introduced in [4]. The utility measure is an
indicator of the accumulated relative firing level of rule i at step k:

Uk
i =

∑k
j=1 Γi(xj)
k − Ii

, (10)

where Ii is the step in which the fuzzy rule i is created. Once a rule is created,
the utility indicates how often the rule has been fired. Therefore it is a way to
avoiding unused rules kept as part of the model. Therefore, low-quality rules can
be deleted:

IF Uk
i < ε THEN R ← R − 1, (11)

where ε ∈ [0.03, 0.1] is a threshold that controls the utility of each rule [4].
The second mechanism updates the radius of the most compatible rule center
recursively. In general, the size of the radius has considerable influence in the
activation level of the fuzzy rule, and ultimately in the algorithm output. As in
[4], the radius is updated according to:

σk
i = ζσk−1

i + (1 − ζ)�k
i (12)



366 R. Vieira et al.

where ζ ∈ [0.3, 0.5] is a constant that regulates the compatibility of the new
information with the old one [4] and �k

i is the local density over the input data
space, found as:

�k
i =

√

√

√

√

√

1
Sk

i − 1

Sk
i −1
∑

j=1

||vk
i − xj ||2 (13)

having Sk
i = Sk−1

i + 1 as the support of the i-th rule, i.e., the number of data
points that are in the zone of influence of that rule.

2.2 Estimation of the Consequent Parameters

After PL clustering, the ePL-KRLS+ proceeds to estimate the consequent
parameters of the rules using the kernel recursive least squares (KRLS) [7].
The KRLS method is a modified version of the traditional RLS method, where
operations with the input data are viewed in a high dimensional Hilbert space H.
In this case, a transformation must be applied in xk using a nonlinear function
φ : Rm → H, so that xk → φ(xk). It should be noted that thanks to the kernel
trick [12], neither the φ function, nor the H space dimension need to be explicitly
found.

Recall that the KRLS in Hilbert spaces considers a dataset {(φ1, y1), . . . ,
(φk, yk)} with k pairs of values, where φk ∈ H is the k-th input data in a high
dimensional space, and yk is the k-th model output. At each step, the weight
vector ω is determined solving

min
ω

L(ω) =
k

∑

j=1

∣

∣yj − ωT φj
∣

∣
2

+ λ ‖ω‖2 (14)

where λ ∈ [10−5, 10−2] is a regularization parameter. The solution of (14) is:

ωk =
[

λI + Φk(Φk)T
]−1

ΦkYk (15)

where I ∈ R
k×k is the identity matrix, Φk = [φ1, . . . , φk] and Yk = [y1, . . . , yk]T .

Expression (15) cannot be used directly because of the dimension of Φk. To
addres this issue, it is necessary to describe ωk in terms of inner products using
the matrix inversion lemma. It is easy to verify that:

[

λI + Φk(Φk)T
]−1

Φk = Φk
[

λI + (Φk)T Φk
]−1

(16)

Replacing (16) for (15), one obtains

ωk = Φk
[

λI + (Φk)T Φk
]−1

Yk (17)
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From this transformation, one can apply the kernel trick to reduce the dimen-
sion of (Φk)T Φk and turn feasible the calculation of ωk, as follows:

Kk = (Φk)T Φk =

⎡

⎢

⎣

κ(x1,x1) . . . κ(x1,xk)
...

. . .
...

κ(xk,x1) . . . κ(xk,xk)

⎤

⎥

⎦ (18)

where Kk is the kernel matrix. Updating of Kk occurs incrementally to avoid
redundancy in the calculation of its elements. This means that, for each new
data,

Kk =
[

Kk−1 gk

(gk)T 1

]

(19)

where gk = [Φk−1]T φk = [κ(x1,xk), . . . , κ(xk−1,xk)]T . Now, one can show that
the weight vector ωk can be expressed as a linear combination of the input data
in H:

ωk = Φkθk (20)

θk =
[

λI + Kk
]−1

Yk (21)

The updated solution of θk requires the calculation of the k×k inverse matrix
[

λI + Kk
]

, which is computationaly expensive [12]. Hence, recursive calculation
of

[

λI + Kk
]

is indispensable. Defining Qk =
[

λI + Kk
]−1, the inverse of Qk

can be calculated recursively as follows:

Qk = (rk)−1

[

Qk−1 rk + zk(zk)T −zk

−(zk)T 1

]

(22)

where zk = Qk−1gk ∈ R
n and rk = λ + (Φk)T φk − (zk)Tgk ∈ R. The updated

solution θk can now be calculated:

θk = Qk Yk

=
[

θk−1 − zk(rk)−1ẽk

(rk)−1ẽk

] (23)

where ẽk = yk − ŷk ∈ R is the model error.

Sparcification. The recursive computation of Qk increases quadratically with
the number of data, and computation of θk become costly over time. Therefore,
a sparsification for KRLS is vital to reduce processing time and memory [19].
Sparcification techniques involve creation of a data dictionary with only a subset
of the most relevant stored to update the matrix Kk and the parameter vector
θk. Because this paper uses KRLS in local models, one must define a local
dictionary Dk

i = [dk
i1, . . . ,d

k
ini

]T ∈ R
ni×m for each rule, and only the dictionary

associated with the most compatible rule, v̂k
i |i = argmaxj {ρk

j } is modified at k.
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This process specifies a kernel matrix Kk
i and a parameters vector θk

i for each
fuzzy rule, which must be updated under the same conditions.

This paper uses the novelty criterion (NC) to control the insertion of elements
in each local dictionary [12,18]. Novelty criterion first computes the distance of
xk to all elements dk

ij ∈ Dk
i of the dictionary of rule Rk

i :

disx = min
∀dk

ij∈Dk
i

∥

∥xk − dk
ij

∥

∥ . (24)

If disx is smaller than a threshold δ, then xk is not added into the dictionary.
Otherwise, the algorithm computes the approximated modeling error, � ek

i for the
rule vk

i . If the error with xk is lower than the error obtained without xk, then
the input data is added to the dictionary. Otherwise, it is discarded. The value of
δ is set as δ = 0.1νk

ij [18]. The use of NC-based sparcification technique reduces
time and space complexities of the ePL-KRLS+ model from O(k2) to O(R2),
where R is the number of fuzzy rules of the model at step k.

Adaptive Tuning of the Kernel Parameters. The Gaussian kernel (3) is
commonly used in many kernel-based methods. Gaussian kernels require param-
eter ν, called the kernel size. Choosing an appropriate value of ν is complex,
and impacts the model approximation ability: if ν is too large, then the process
reduces to linear regression; if ν is too small, then all the data look distinct,
resulting in over-fitting. In this paper, ν is adjusted using a recursive version of
the Levenberg-Marquardt algorithm [15]. Let νk

i = [νk
i1, . . . , ν

k
ini

] be the vector of
kernel parameters to be optimized, where each νk

ij is associated with an element
dk

ij in the local dictionary Dk
i = [dk

i1, . . . ,d
k
ini

]. The most suitable values for νk
i

can be found by minimizing the local error function:

ẽk
i = ΓN

i (xk) (yk − ŷk
i ) (25)

The vector of parameters νk
i is updated as follows:

νk
i = νk−1

i + Pk
i ∇k

i ẽk
i (26)

where Pk
i ∈ R

ni is found using

Pk
i =

[

Pk−1
i − Pk−1

i ∇k
i [∇k

i ]TPk−1
i

1 + [∇k
i ]TPk−1

i ∇k
i

]T

(27)

and ∇k
i ∈ R

ni is the vector of the derivatives of ẽk
i with respect to νk

i1, . . . , ν
k
ini

:

∇k
i = −

[

∂ẽk
i

∂νk−1
i1

, . . . ,
∂ẽk

i

∂νk−1
ini

]T

= ΓN
i (xk)

⎡

⎢

⎢

⎢

⎢

⎣

θk−1
i1

‖xk−dk
i1‖2

(νk−1
i1 )3

κ(xk,dk
i1)

...

θk−1
ini

‖xk−dk
ini

‖2

(νk−1
ini

)3
κ(xk,dk

ini
)

⎤

⎥

⎥

⎥

⎥

⎦

(28)
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with P1
i = ΩI , 0 < Ω < 1000 and ν1

i1 = 0.5. Algorithm 1 summarizes ePL-
KRLS+.

3 Computational Experiments

This section evaluates the performance of ePL-KRLS for stock market price fore-
casting. Data comprises the daily S&P 500 from 4 January 2010 to 29 December
2017 with a total of 2,013 observations. This section summarizes performance
evaluation and forecasting results.

3.1 Methodology

ePL-KRLS+ performance is compared with traditional forecasting algorithms
such as ARIMA, ANFIS and MLP neural network, and with state-of-the-art
evolving fuzzy modeling approaches, namely eTS, xTS, eTS+, ePL, ePL+, eTS-
LS-SVM and eTS-KRLS+ [3,4,10,11,14,20]. Performance evaluation of the algo-
rithms considers two criteria: i) forecasting error and; ii) complexity. Tradi-
tional forecasting error measures, the root mean squared error (RMSE) and
non-dimensional index error (NDEI) are considered. They are computed as fol-
lows:

RMSE =

√

√

√

√
1
T

T
∑

k=1

(yk − ŷk)2 (29)

NDEI =
RMSE

std([y1, . . . , yT ])
(30)

where ŷk is the k-th forecasted value, yk the k-th actual value and T is the
sample size.

Complexity is assessed using average memory storage (bytes), and total pro-
cessing time (seconds). Considering the evolving fuzzy approaches, the number
of rules/neurons at the end of the simulations is also recorded. The data for all
simulations were normalized in the [0,1] interval.

Forecasts are one step ahead. Each evaluation considers [xk, xk−1] as inputs
because correlation for S&P 500 time series decreases to non-significant values
for higher-order lags. The holdout technique is used for data partitioning: 25%
of samples for training, and the remaining 75% for testing.

The parameters are defined as follows: the MLP neural network has one hid-
den layer with seven neurons trained with backpropagation algorithm. The acti-
vation functions are hyperbolic tangents. Initialization of weights is performed
randomly at values around 10−2. The stopping criterion was defined as 500
epochs. The ANFIS model was granularized with three fuzzy sets for each input
variable, 9 fuzzy rules and the grid partition as the data space partitioning
method. The stopping criterion was defined as 50 epochs. For the ARIMA(p, d,
q), the AR order is p = 2, the degree of integration is d = 1 and the MA order
is q = 1. Parameters of evolving fuzzy approaches were obtained from related
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Algorithm 1 – The ePL-KRLS+ learning algorithm

Input: data samples, xk = [xk
1 , . . . , xk

n] , k = 1, 2, . . .

Output: model output

Initialize the parameters α, β, τ , γ and λ

1. Read new data xk

2. Compute the compatibility index ρk
i using (7)

3. Compute the arousal index ak
i using (6)

4. If ak
i ≥ τ , ∀i ∈ {1, . . . , R} then:

5. xk is a new rule center; set R = R + 1

6. Initialize the local dictionary Dk
R and the consequent parameters θk

R

7. Else:

8. Update the most compatible rule center v̂k
i using (8)

9. Update the kernel size (26), the consequent parameters (23) and the rule radius (13)

10. Add xk to local dictionary if it was not consistent with Dk
i

11. Compute ρk
ij for i, j = 1, . . . , R, i �= j using (9)

12. If ρk
ij ≥ γ then:

13. Merge rules vk
i , v

k
j and set R = R − 1

14. Compute the utility measure Uk
i using (10)

15. If Uk
i < ε then:

16. Remove rule vk
i and set R = R − 1

17. Compute the normalized firing degree ΓN
i (xk) using (5)

18. Compute the local output ŷk
i using (2) and the global output: ŷk using (4)

works. The initial setup of ePL-KRLS+ considers α = 0.01, the β = 0.20,
τ = 0.80, γ = 0.20, λ = 10−4 and ν0 = 0.5. Notice that models parameters
where selected based on simulations considering the RMSE values.

3.2 Results and Discussion

Table 1 shows the forecasting performance in terms of RMSE, NDEI, and com-
putational costs. Results are based on the test set, and the best results are
highlighted in bold. The classic ARIMA shows the worst RMSE and NDEI val-
ues, and MLP and ANFIS have poor performance as well. Amongst the evolv-
ing techniques, eTS-LS-SVM, eTS-KRLS and ePL-KRLS outperform all the
remaining competitors. eTS-LS-SVM and eTS-KRLS show a slightly better per-
formance than ePL-KRLS+. Comparison between ePL+ and ePL-KRLS+ shows
that using KRLS marginally improves accuracy.

Figure 2 shows the actual and the forecasted values for 2017. Interestingly, the
ePL-KRLS+ gives a good fit of the stock market index, indicating the potential
of the method. Further, regarding the computational complexity of the models,
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Table 1. Performance evaluation for S&P 500 index forecasting.

Models RMSE NDEI Rules/neurons Time (s) Memory (b)

ARIMA 0.017 0.082 – 3.67 14338

MLP 0.013 0.060 7 7.01 22394

ANFIS 0.012 0.055 9 3.92 12983

eTS 0.008 0.037 9 0.34 871

xTS 0.010 0.046 6 0.43 789

eTS+ 0.009 0.040 2 0.18 312

ePL 0.009 0.041 3 0.73 485

ePL+ 0.009 0.040 2 0.88 519

eTS-LS-SVM 0.005 0.024 2 1.77 2295

eTS-KRLS 0.005 0.026 2 1.23 1729

ePL-KRLS+ 0.007 0.032 2 0.95 1394

eTS, eTS+, ePL, and ePL+ outperform the remaining algorithm. The need
to store past input data makes batch ARIMA, MLP, and ANFIS potentially
costly over time. Moreover, retraining is needed whenever new samples are input.
Algorithms eTS-LS-SVM, eTS-KRLS and ePL-KRLS+ show higher temporal
and spatial complexity than the remaining evolving fuzzy models. This is because
of the initial construction of the rule-based structure, and the inclusion of new
elements in the dictionaries when learning the consequents. However, they still
require lower computational cost than ARIMA, MLP, and ANFIS. The results
are similar when comparing the number of rules/neurons, which is another way
to measure complexity.

Fig. 2. Actual S&P 500 and one-step-ahead ePL-KRLS+ forecast.

4 Conclusion

This paper has addressed an enhanced fuzzy rule-based evolving participatory
learning with kernel recursive least squares algorithm for stock market prices
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forecasting. The algorithm is a novel recursive, incremental approach to update
the structure and parameters of a functional fuzzy rule-based forecasting model.
The algorithm combines concepts of evolving systems, participatory learning,
and kernel methods to produce higher forecast accuracy, robustness, stability,
with acceptable computational cost, and has higher autonomy than its prede-
cessors. Computational results concerning one-step-ahead forecasting using S&P
500 stock market index show that the proposed algorithm achieves higher accu-
racy than traditional benchmarks such as ARIMA, MLP, ANFIS, and state-of-
the-art evolving fuzzy models, with an acceptable computational cost. Future
investigation will consider ways to automatically set participatory learning clus-
tering procedure parameters and applications to distinct financial data sets.
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A Fuzzy Approach Towards Parking
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Low-Quality Magnetic Sensors
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Abstract. The detection of vehicles in parking spaces is an important
problem for the administration of large-sized parking lots. Economic rea-
sons suggest the use of low cost and low quality magnetic sensors for
this purpose. The traditional approach consists in applying thresholds
to the signals for the x, y and z axes. Passing these threshold values
indicates that a vehicle is located in the corresponding parking space.
The literature also includes a straightforward extension of this threshold
approach using fuzzy logic. The fuzzy approach described in this paper
differs from the aforementioned approaches as well as other ones in the
literature since it incorporates additional expert knowledge into a fuzzy
rule-based decision system.

Keywords: Fuzzy rule base · Parking space occupancy detection
Anisotropic magneto-resistive sensor · Digital signal analysis

1 Introduction

One of the technologies that smart cities should be equipped with is smart park-
ing in-ground vehicle detection using magnetic or infrared sensors. According to
internet sources [1], the benefits include:

1. Live, full information on each and every parking space;
2. Guides drivers to available spaces, improving traffic flow and reducing pollu-

tion;
3. Instant information on overstays for infringement enforcement;
4. Facilitates simple, ticketless, barrier free payment systems;
5. Comprehensive information enables profitable future planning;
6. Best possible use of available space.

The smart parking problem consists basically in deciding whether a given
parking space can be considered empty or occupied. More precisely, the approach
presented in this paper yields three different responses:

c© Springer International Publishing AG, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-319-95312-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95312-0_32&domain=pdf


A Fuzzy Approach Towards Vehicle Detection 375

– E: The parking spot is empty;
– T: A car is transiting into or out of the parking space;
– O: The parking spot is occupied by a vehicle.

Hence, we are dealing with a classification problem that can be solved using
a number of different methodologies including Bayesian inference, artificial neu-
ral networks, and fuzzy logic. Note that statistical methods such as Bayesian
inference [3] require some prior knowledge about a probability distribution and
that a conventional neural network acts as a black box, i.e., a learning algorithm
is responsible for tuning the network’s parameters [4] but the result is difficult
to interpret for the human practitioner. Neuro-fuzzy approaches [5] combine the
main advantages of fuzzy systems and neural networks, namely interpretability
and learning capability. On the one hand, such an approach is is not viable for
the problem that is discussed in this paper since we only have a few training
samples at hand. On the other hand, G. Yoshizawa and E. Ferdinando of the
company Cogneti-Tec [2] helped us to relate parts of the signals generated by
the magnetic sensors to the events E, T, and O above.

Therefore, we chose to develop a fuzzy rule-based approach whose final
response is determined by a crisp decision rule. Our novel approach towards
the vehicle detection problem has the following properties:

1. Computationally inexpensive compared to statistical methods and neural net-
works;

2. Allows to connect the AMR sensor to a microcontroller with low processing
power;

3. Capable of handling uncertainties;
4. Capable of incorporating advanced expert knowledge described by linguistic

expressions;
5. Methodology is interpretable by human practitioners.

Section 2 provides a few more details on the problem of vehicle detection
through magnetic sensors. Section 3 discusses two approaches used to handle
this problem, namely the widely used threshold approach and the existing fuzzy
approach of Jian et al. [6]. Section 4 introduces our new fuzzy approach together
with its main advantages. Section 5 exhibits the results produced by our method-
ology in applications to some test signals generated by the anisotropic magneto-
resistive sensor. We finish with some concluding remarks.

2 Description of the Problem

Recent advances of research and industry and the low cost of anisotropic
magneto-resistive (AMR) sensors make them attractive for several types of appli-
cations related to magnetic field disturbance. One of the most well-known appli-
cations is vehicle detection, since vehicle presence causes a noticeable variation
of the Earth’s magnetic field due to the existence of ferrous material in their
chassis.
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(a) Earth’s magnetic field without
vehicle presence

(b) Earth’s magnetic field with ve-
hicle presence

Fig. 1. Illustration of a variation in the earth’s magnetic field.

Figure 1 illustrates these observations. The vectors representing the Earth’s
magnetic field are visualized without and with vehicle presence.

Since we are dealing with vectors, the sensor outputs the magnetic read-
ings in three axis (x, y, and z). Evidently, AMR sensors produced by different
manufacturers have different precisions and exhibit signals in non-standardized
scales. Moreover, these sensors tend to be significantly affected by temperature
variations throughout the day. These factors significantly increase the difficulty
of the automated parking space occupancy detection problem, especially when
using an approach that is merely based on evaluating if the signal emitted by
an AMR sensor surpasses a certain threshold.

3 Current Approaches

3.1 Threshold Approach

Some authors [7,8] suggest the use of approaches that are based on the follow-
ing simple idea: If the signal emitted by a sensor surpasses a pre-determined
threshold, then it appears reasonable to assume that a vehicle is present,

However, this approach fails to consider natural variations in the signal,
even without any other types of interference such as the ones caused by cars.
Figure 2 illustrates the variations of the magnetic signal caused by temperature
and sunlight throughout the day.

Fig. 2. Variations of a magnetic signal throughout a day.

In this scenario, the algorithm is subject to produce false alarms or should be
dynamically adjusted according to the time of the day as well as the temperature
and weather conditions.
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3.2 The Fuzzy Approach of Jian et al.

As an improvement, Jian et al. proposed a fuzzy approach [6] that replaces
the crisp thresholds by fuzzy sets. To begin with, the means of the first n signal
values for each axis are calculated. Formally, if i = 1, . . . , n denote the first n data
points and if xi, yi, and zi denote respectively the signal values corresponding
to the x, y, and z axes, then the means x̄, ȳ, and z̄ are given by

x̄ =
∑n

i=1 xi

n
, ȳ =

∑n
i=1 yi
n

, z̄ =
∑n

i=1 zi
n

. (1)

Then Jian et al. proceed by calculating the absolute values of the differences
between the current reading and this mean. Formally, we have x̃i = |xi − x̄|,
ỹi = |yi − ȳ|, and z̃i = |zi − z̄|. These values serve as inputs for a Mamdani-
Assilian- style fuzzy inference system [9]. Figure 3 shows the Gaussian member-
ship functions that were used to model the fuzzy sets low, medium and high in
the antecedent part of the fuzzy rule base. The same fuzzy sets were used for all
axes.

Fig. 3. Membership functions of the fuzzy sets low, medium and high.

The consequent part of the fuzzy rule base describes the probability of park-
ing space occupancy in terms of the fuzzy sets very low, low, moderate, high, and
very high whose membership functions are depicted in Fig. 4 below.

The rule base suggested by Jian et al. includes the following rules:

1. If x̃i is low and ỹi is low and z̃i is low then the probability of occupancy
is very low

2. If x̃i is low and ỹi is low and z̃i is medium then the probability of occu-
pancy is low

3. If x̃i is low and ỹi is medium and z̃i is medium then the probability of
occupancy is medium
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Fig. 4. Membership functions that are meant to describe the probability of parking
spot occupancy.

Finally, the resulting output fuzzy is defuzzified using the centroid method
in the range 0–100%.

According to [6], this fuzzy approach leads to better results than the threshold
method since the result is supposed to estimate the probability that the parking
space is occupied. Hence, this approach is able to deal with cars passing slowly
through the parking space without stopping whereas the threshold approach
would be alternating between “free” and “occupied”.

However, this approach does not tackle the problems that are due to the
natural variations of the magnetic signal caused by temperature and weather
conditions. Moreover, this approach which considers all three axes separately
can lead to failures in detection, since it depends on the orientation of the axes
when the sensor was installed. For example, Fig. 5 describes the scenario where a
car enters backwards into a parking space that is perpendicular to the sidewalk.
Note that, in the y and z axes, there is almost no difference between the signal
values that correspond to the situations where the parking space is free and
where the parking space is occupied.

4 Our Fuzzy Approach

This paper is concerned with the problem of parking spot occupancy detection
using AMR sensors, that is a central point to intelligent traffic management
in big parking sites such as shopping malls and airports. Note that detecting
vacant parking spaces on the basis of digital signals bears some similarities with
the noise detection phase of an image denoising method. Several authors have
suggested the use of a fuzzy rule base followed by a crisp decision rule for impulse
noise detection in digital images [11]. In this case, the result of the image noise
detector at a pixel location x only depends on the values in an N ×N window
that is centered at x.
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Fig. 5. Scenario where the fuzzy approach of Jian et al. is likely to fail.

Here, we are are considering a sliding window of size N = 2T + 1 which is
centered at the position that is under consideration. Hence, the center of the
window as well as the previous T points and the next T points are taken into
account. Since only current and past values but no future values may be part
of the decision process, our method will lead to a delay of T time units. Apart
from the values in the window that is centered at the current location x, we also
record the smallest mean in a window that is located before a window whose
values have a variance that is considered to be big. To this end, we first used a
crisp decision rule: The variance of the values in a window is considered to be
big if its degree of membership in the fuzzy set big is larger than or equal to its
degree of membership in the fuzzy set small depicted in Fig. 7.

Note that the variance in the window centered at location i is given by the
equation

T∑

k=−T

(vi+k)2

N
.

In the following, we evaluate the following quantities:

1. The variance in the current window;
2. The difference between the mean in the current window and the smallest

mean in a window before the occurence of a big variance.

The difference between means can be better visualized in the Fig. 6:
As stated in [7,8], the vector magnitude deviation from the earth’s magnetic

field is a reliable method for detecting vehicle presence since we are not concerned
with the vehicle’s direction of movement. The vector magnitude at location i is
given by

vi =
√

x2
i + y2i + z2i
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Fig. 6. Consider the location x. The mean of the values in Wi = {i + k | k = −T,−T +
1, . . . , T} corresponds to the upper line. The smallest mean in a window that occurs
before a big variance in values corresponds to the lower line.

Let us suggest the following rules:

1. If the variance is big, then a car is in transition into or out of the parking
spot.

2. If the variance is small and the difference is positive, then the parking
spot is occupied.

3. If the variance is small and the difference is not positive, then parking
spot is free.

As mentioned before, the fuzzy sets small and big that describe the variance
of the Euclidean norm of the signal vector are depicted in Fig. 7. More precisely,
the membership functions of the fuzzy sets small and big are determined by the
following equations:

µsmall(x) =

⎧
⎪⎨

⎪⎩

1 if x ≤ 8000
20000− x

12000
if 8000 < x ≤ 20000

0 otherwise

µbig(x) =

⎧
⎪⎨

⎪⎩

0 if x ≤ 8000
x− 8000
12000

if 8000 < x ≤ 20000

1 otherwise

Fig. 7. Membership functions small and big for the variance of the values in a window.
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Similarly, the membership functions of not positive and positive are shown
in Fig. 8 below and are given by the following equations:

µnotpositive(x) =

⎧
⎪⎨

⎪⎩

1 if x ≤ 20
50− x

30
if20 < x ≤ 50

0 c.c.

µpositive(x) =

⎧
⎪⎨

⎪⎩

0 if x ≤ 20
x− 20

30
if 20 < x ≤ 50

1 c.c.

Fig. 8. Membership functions of the variable difference.

The membership functions above were determined manually on the basis
of the three training scenarios that are visualized in Fig. 9. In this paper, we
considered real-valued inputs corresponding to the variance within the current
window of size N and a difference between the mean of the values in the current
window and the smallest mean in a window before a big variance occurs. The
rules were activated using Zadeh’s compositional rule of inference. As an output,
we receive degrees of membership in the fuzzy sets in transition, occupied, and
free. The maximum of these three values was taken in order to produce a crisp
decision.

5 Experimental Results

The subsequent experiments were performed using a sensor that has a sampling
frequency of 40 Hz and three different vehicles with different metal compositions
of their chassis, inducing different disturbances of the earth’s magnetic field as
verified on [10]. In the following, we will refer to these vehicles as Vehicles 1, 2
and 3. We adopted the following color scheme:

green: Our method indicates that the parking space is free;
blue: Our method indicates that a car is passing through;
red: Our method indicates that the parking space is occupied.

The membership functions and the size of the moving window were manu-
ally adjusted in the training phase in which we merely considered the simplest
scenario:
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– the monitored parking space that is perpendicular to the sidewalk.
– A single vehicle enters the parking space from the front and remains in the

parking space for a while before leaving.

Specifically, we used the training set consisting of the three signals that are
depicted in Fig. 9.

(a) Vehicle 1.

(b) Vehicle 2.

(c) Vehicle 3.

Fig. 9. Magnitudes of the signals that were used as a training set. (Color figure online)

Using the knowledge of our experts from Cogneti-Tec [2], the parameters of
the method were adjusted to correctly identify when the parking space is empty
(Time Intervals 1 and 5), when the vehicle is entering of leaving the parking
space (Intervals 2 and 4) and when the parking space is occupied (Interval 3).
As a result of this process, we obtained the membership functions presented
in Sect. 4 and 501 as a suitable window size. Note that, for this application, it
suffices to determine parameters that allow the correct identification of the three
main situation within a few seconds.

In the testing phase, we applied our method to a more complex scenario
where the sensor is parallel to the sidewalk and the order of events is as follows:

1. Initially there is no vehicle around (interval 1)
2. Vehicle 1 passes through the parking spot that is equipped with the sensor

and parks in the parking space in front of the considered parking space with
the sensor (intervals 2 and 3)
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3. Vehicle 2 parks in the parking spot with the sensor, behind Vehicle 1 (intervals
4 and 5)

4. Vehicle 3 parks in the parking spot behind the one that has the sensor (on
the interval 5)

5. Vehicle 2 leaves (interval 6)
6. The parking spot is free (interval 7)

Our method was able to detect the car passing through the parking space
under consideration and that the car did not remain in the observed parking
space. Moreover, we were able to detect the arrival of the second vehicle, that it
parked in the observed space and that it left (Fig. 10).

Fig. 10. Results for test case 1.

This scenario was repeated several times while changing the order of the
vehicles. Nevertheless, our method managed to correctly identify all the events
as can be seen in Fig. 11.

Fig. 11. Results for test case 2.

In the last scenario, the sensor is parallel to the sidewalk and there are already
two cars parked: one in front of the parking spot monitored by the sensor and
one behind. Then, a third vehicle arrives and is parallel parked in this spot.

Fig. 12. Results for test case 3.
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We can see that, in this case, the driver of the vehicle takes more time to
maneuver which is clearly represented by the larger “transition” period seen
in Intervals 2 and 4. Nevertheless, the method correctly identified all events
(Fig. 12).

6 Concluding Remarks

This paper introduces a simple, but effective approach towards detecting vehi-
cles in parking spaces on the basis of signals produced by AMR sensors. We
argued that our approach is relatively unaffected by common pitfalls such as
signal variations due to differences in temperature and vehicle chassis composi-
tions. Our methodology yields degrees of certainty regarding the parking spot
occupancy that can be used to reach a crisp decision. Some preliminary experi-
mental results reveal that the proposed methodology performs well in a number
of different scenarios.
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Abstract. Over the past decade, a variety of research fields studied
high-dimensional temporal data for pattern recognition, signal process-
ing, fault detection and other purposes. Time series data mining has been
constantly explored in the literature, and recent researches show that
there are important issues yet to be addressed in the field. Currently,
neural network based algorithms have been frequently adopted for solv-
ing classification problems. However, these techniques generally do not
take advantage from expert knowledge about the processed data. In con-
trast, Fuzzy-based techniques use expert knowledge for performing data
mining classification but they lack on adaptive behaviour. In this con-
text, Hybrid Intelligent Systems (HIS) have been designed based on the
concept of combining the adaptive characteristic of neural networks with
the informative knowledge from fuzzy logic. Based on HIS, we introduce a
novel approach for Learning Vector Quantization (LVQ) called Adaptive
Fuzzy LVQ (AFLVQ) which consists in combining a Fuzzy-LVQ neu-
ral network with adaptive characteristics. In this paper, we conducted
experiments with a time series classification problem known as Human
Activity Recognition (HAR), using signals from a tri-axial accelerometer
and gyroscope. We performed multiple experiments with different LVQ-
based algorithms in order to evaluate the introduced method. We per-
formed simulations for comparing three approaches of LVQ neural net-
work: Kohonen’s LVQ, Adaptive LVQ and the proposed AFLVQ. From
the results, we conclude that the proposed hybrid Adaptive-Fuzzy-LVQ
algorithm outperforms several other methods in terms of classification
accuracy and smoothness in learning convergence.

Keywords: Pattern recognition · Time series classification
Artificial neural networks · Fuzzy logic · Hybrid Intelligent Systems
Neuro-fuzzy · Learning Vector Quantization

1 Introduction

Machine learning (ML) is a research field from Artificial Intelligence (AI) which
studies techniques for building systems capable of learning automatically by
c© Springer International Publishing AG, part of Springer Nature 2018
G. A. Barreto and R. Coelho (Eds.): NAFIPS 2018, CCIS 831, pp. 385–397, 2018.
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experience. Within this area, there is a specific field dedicated to working
with temporal data or time series. Time series data mining techniques have
been constantly explored in the literature in the past decade and it is still an
important topic frequently addressed by researches nowadays. Numerous works
have contributed in multiple advances in time series data mining techniques
[2,11,12,15,17,21]. Applications such as classification, clustering, anomaly detec-
tion and forecast are examples of common data mining tasks applied in time
series.

Time series classification has been subject of various researches that explored
temporal data collected from sensors, such as accelerometers, electrocardiogram
(ECG) and electroencephalogram (EEG) as sources for multi-class identification.
Examples of applications are: Human Activity Recognition (HAR) [15], ECG-
based [2,5,17,21] and EEG-based [11] classification.

As time series data may have complex characteristics, it is necessary to apply
sophisticated solutions that can handle the nonlinear operations. Among the
data mining techniques, the Artificial Neural Network (ANN) is an interesting
computational intelligent approach for addressing the problem due to its adap-
tive and generalization capabilities. Classical neural network based algorithms
such as Support Vector Machine (SVM) [17], Multi-Layer Perceptron (MLP)
[15], Learning Vector Quantization (LVQ) [5,12] have been employed in time
series classification problems. Furthermore, deep learning based neural networks
such as Deep MLP [2] and Convolution Neural Network (CNN) [21] have been
increasingly explored in related studies.

Another category of intelligent classifiers is based on Hybrid Neural Systems
(HNS) [19]. HNS are systems which combine artificial neural networks with mul-
tiple intelligent methods in a single model for solving a specific problem. This
approach aims to extract specific advantages from different techniques in order
to build a more robust system. A type of hybrid neural system is Fuzzy Neural
Network. In this approach, concepts of Fuzzy Sets and Artificial Neural Networks
are combined in a unique method.

Hybrid Fuzzy-LVQ neural networks have been widely explored in the liter-
ature. For instance, in [5], the authors presented a new model for data classi-
fication using LVQ-based neural network combined with type-2 fuzzy logic. In
this work, a fuzzy inference system was employed to determine which network’s
prototype is the nearest to an input vector. This new method was implemented
and tested with two data sets for comparing its effectiveness against the original
LVQ algorithm and a type-1 Fuzzy-LVQ. In a different approach, [8] employed a
FLVQ-based algorithm with wavelet transformation for classifying abnormalities
in images of inner surface of the eye. In this work, the authors compared the
FLVQ method with other two methods: Levenger-Marquardt (LM) and Adaptive
Neuro-Fuzzy Inference System (ANFIS).

In [4], a study is conducted on the application of the FLVQ model proposed
by [18] for probability distribution identification. In a more practical way, a
classification algorithm based on Generalized Fuzzy-LVQ method was designed
and implemented in a FPGA [1,10]. Furthermore, in [20] three different variation
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of LVQ algorithms are introduced and compared: Fuzzy-soft LVQ, batch LVQ
and Fuzzy-LVQ. As a motivation, few works have explored Fuzzy-LVQ strategies
for dealing with high-dimensional temporal data. Therefore, we believe hybrid
Fuzzy-LVQ classifiers have the potential to be explored more deeply.

In this paper, we present a hybrid neuro-fuzzy algorithm that combines adap-
tive LVQ-ANN proposed by [3] and the Fuzzy-LVQ introduced in [7]. In our
study, we employ the proposed technique for classifying human activities through
tri-axial accelerometer time series patterns. The next sections of this paper are
organized as follows: in Sect. 2 we introduce the main concepts of Learning Vec-
tor Quantization theory. In Sect. 3 we present the fundamentals of the proposed
method (AFLVQ). In Sect. 4, we describe the methodology of this work, includ-
ing a brief description of the data set used and the performed experiment. In
Sect. 5 we present the results of the simulations and in Sect. 6 we conclude the
article by summarizing the results and suggesting future works.

2 Learning Vector Quantization (LVQ)

Learning Vector Quantization (LVQ) is a prototype-based supervised classifica-
tion algorithm which adopts a learning strategy based on similarity measures
(distance functions) and winner-take-all approach. LVQ is a neural network
based method proposed by Kohonen [13]. Kohonen’s LVQ is a supervised com-
petitive learning algorithm substantiated in concepts of vector distance as a
similarity measure.

Its architecture is composed by a layered feedforward network which has a
competitive layer where the neurons compete among them based on a distance
metric, or a similarity measure, between training instances and prototypes. Gen-
erally, Euclidean Distance is chosen as the distance metric for LVQ implementa-
tion. This method aims to divide the data space into distinct regions and defining
a vector prototype (or neuron) for each region. This process is also known as
Vector Quantization.

2.1 Kohonen’s LVQ1

The learning method in LVQ consists in using the input vector as guidance for
organizing the prototypes in specific regions that defines a class. Firstly, a set
of prototypes is initialized and for each prototype is assigned a class. Each class
must be represented by at least one prototype, a class can have multiple proto-
types, and one prototype only represents a unique class. Then, during the learn-
ing process, each instance from the training set is compared with all network’s
prototypes, using a similarity measure. LVQ-based algorithms are classified as
competitive learning due to the selection of the closest prototype within the set
of P prototypes:

w = arg
P

min
i=1

d(xj ,pi) (1)
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where w is the index of the winner prototype (the closest prototype of an specific
instance xj). The distance is measured by a distance function. The Euclidean
distance, or L2-norm, is generally used to calculate this distance.

d(xj ,pi) = ‖xj − pi‖2 =

√
√
√
√

n∑

k=1

(xjk − pik)2 (2)

where n is the dimension of the instance xj , which is the same for pi . If the
class of an instance is equal to the class of the closest prototype (winner proto-
type), this prototype is moved towards the instance, otherwise it moves away.
Consider t as the iteration counter of the training algorithm. The learning rule
for Kohonen’s LVQ1 algorithm is given by:

pw (t + 1) =

{

pw (t) + α(t)[xj − pw (t)] if C(pw ) = C(xj );
pw (t) − α(t)[xj − pw (t)] if C(pw ) �= C(xj ).

(3)

For all prototypes pi(t) where i �= w, the prototypes remains the same. In our
experiments, we adopted a linearly decreasing learning rate α(t) = α(0)(1− t

N ),
where α(0) is the initial learning rate and N is the maximum number of training
iterations.

2.2 Kohonen’s LVQ2

Kohonen introduced in 1988 the LVQ2 algorithm, another variation similar to
the original LVQ [14]. However, the learning process is based on two prototypes
p1st and p2nd that are the first and second nearest prototypes to an instance
xj , respectively. One of them must belong to the correct class and the other to
a incorrect class. Furthermore, these prototypes must fall into a zone defined
around the mid plane between them. For an instance xj and the two nearest
prototypes p1st and p2nd, let d1st and d2nd be the distances of xj to p1st and
p2nd, respectively. Then xj will fall into a window of a width w if Eq. 4 is satisfied.
It is recommended to adopt the width w between 0.2 and 0.3 [13]. The prototype
LVQ2 learning rule is given by the Eq. 5.

min

(
d1st

d2nd
,
d2nd

d1st

)

> s, where s =
1 − w

1 + w
(4)

p1st(t + 1) = p1st(t) − α(t)[xj − p1st(t)]
p2nd(t + 1) = p2nd(t) + α(t)[xj − p2nd(t)]

(5)

2.3 Quantization Error (QE )

In prototype-based algorithms, the prototypes can be considered quantization
vectors, as they represent a specific region in the input data [16]. For evaluating
the vector quantization in a prototype-based algorithm, a Quantization Error
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(QE) can be used. This error metric is based on the average of the distances
between prototypes and the instances of the data.

QE =
1
N

N∑

j=1

‖xj − pw ‖2 (6)

where N is the number of instances, xj is the jth instance, and pw is a prototype
that represents the class of xj . Given a set of prototypes P = {p1, p2, . . . , pk},
w represents the index of the closest prototype to the instance xj . The value w
can be calculated by the Eq. 1.

3 Adaptive Fuzzy Learning Vector Quantization
(AFLVQ)

3.1 Fundamentals on AFLVQ

The Adaptive-Fuzzy-LVQ model is inspired by two concepts:

Adaptability
Adaptive LVQ-ANN is a specific variation of LVQ-based methods which has
the capability of adjusting their architecture to improve network performance
during the training process. In general, the adaptive characteristics implies the
ability of making changes in the network’s structure by including or removing
prototypes (codebooks or neurons). In previous work [3], a study was conducted
on a proposed adaptive LVQ algorithm, applied to human activity recognition
using data collected from a tri-axial accelerometer. In [3], the Kohonen’s LVQ
algorithm was modified to include an adaptive step at the end of each epoch
during the network training. The adaptive process consisted of two stages:

– Prototype inclusion: The inclusion of new prototypes is based on Koho-
nen’s Self-Organizing Map [13] applied on misclassified samples. The number
of prototypes to be included is calculated based on the quantity of misclas-
sified instances of a specific class. Hence, the greater the presence of mis-
classified instances of a class Ci, the greater the number of new prototypes
(pnew → Ci) that will be included to represent this class.

– Prototype removal: The removal of prototypes is determined by a score
calculated for each prototype. For a prototype k, its score can be calculated
by scorek = Ak − Bk, where Ak and Bk represent how many times this pro-
totype has been a winner and correctly classified and misclassified, respec-
tively. Removal of a prototype will be done whenever this score is lower than
a removal threshold (ψ). Low scores indicate that a prototype frequently clas-
sify incorrectly instances or do not contribute significantly to the classification
performance.

The neural network growth is restricted by a variable called Budget. There-
fore, the number of prototypes will not overstep the pre-defined architecture size.
Further implementation details about this method can be found in [3].
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Fuzzy
In the proposed AFLVQ method, the fuzzy part is based on the Fuzzy-LVQ
introduced by Chung [7]. Its algorithm consists in optimizing a fuzzy objective
function by minimizing the network output error, calculated by the difference of
the class membership of the target and actual values, and minimizing the dis-
tances between training patterns and competing neurons. In their works, Chung
and Lee [7] define the following objective function:

Qm(U,V) =
N∑

j=1

P∑

i=1

[(tji)m − (μji)m]d(xj ,pi) (7)

subject to the following constraints:
∑c

i=1 μji = 1;∀j and μji ∈ [0, 1];∀j, i. The
term d(xj , pi) represents the distance between the ith prototype and the jth
instance (See Eq. 1). The fuzziness parameter m define weights for the mem-
bership functions for each prototype in a manner that the greater the value of
m, the smoother is the learning process. The target class membership value of
neuron i for input pattern j is represented by tji ∈ {0, 1}. Hence, the FLVQ
learning rule and the membership updating rule will be:

pi(t + 1) = pi(t) + α(t)[(tji)m − (μji)m][xj − pi(t)];∀i (8)

μji =

[
P∑

�=1

(
d(xj ,pi)
d(xj ,p�)

) 1
m−1

]−1

(9)

Note that the previous equations are only valid when the number of pro-
totypes P is equal to the number of instances N . For LVQ architectures with
multiple prototypes per class, we introduce a competitive step in the training
process. In Fig. 1 the FLVQ network is described.

Fig. 1. Fuzzy-LVQ architecture
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In the figure, we have an input layer that receives the instances from the
dataset. The distance layer calculates the distance between each prototype to the
presented instance. Then, in the competitive layer (called MIN layer by Chung
[7]), only the closest prototype from each class is chosen to undergo the fuzzy
competition. Therefore, the membership computations and parametric vector
modification will be applied at the maximum number of classes in the problem
or k prototypes.

3.2 AFLVQ Algorithm

The presented Adaptive-Fuzzy-LVQ algorithm can be divided in two stages:

– Training: During the training stage, the instances from the training dataset
is presented to the neural network, and the prototypes are adjusted based on
Chung’s Fuzzy-LVQ algorithm [7].

– Adaptation: After completing an epoch, the resulted LVQ-network is evalu-
ated in order to verify the need for adaptation.If there is a need for adaptation,
the adaptive method from our previous work [3] removes or includes proto-
types, according to criteria that aim to improve the network performance.

Fig. 2. Flow-chart of training an Adaptive-Fuzzy-LVQ model

Figure 2 presents a flowchart describing the process of training an Adaptive-
Fuzzy-LVQ model. First, the prototypes’ weights are initialized. We used the
Kohonen Self-Organizing Map for initializing the prototypes. Afterwards, the
FLVQ is executed during a whole epoch i. In the end of each epoch, the algorithm
verifies the need for adaptation and, depending on this decision, the network is
adapted (pi(adapted)) or not (pi). Then, the cycle restarts in the next epoch.
When the stop criteria are satisfied, the algorithm returns the trained model.
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4 Methodology

4.1 Dataset

The dataset used in our experiments was selected from the UCI Machine Learn-
ing Repository [9]. It is an Activity Recognition database, built from the record-
ings of 30 volunteers executing multiple activities while carrying a waist-mounted
smartphone. This dataset was introduced by Anguita [6] and it contains the col-
lection of data from embedded inertial sensors: a tri-axial accelerometer and a
gyroscope. In this time series classification problem, the aim is to recognize activ-
ities or actions performed by humans based on the information retrieved from
body-worn motion sensors. The selected activities classes are: standing, sitting,
laying down, walking, walking downstairs and walking upstairs. The dataset is
composed by 10299 samples which of them 7352 compose the training set and
2947 the test set, representing a division of 70% and 30% for training and test
data, respectively.

Features
In order to properly represent the input data, multiple features were extracted
from the sensors’ raw data. As it is a time series classification problem, the
features from each instance were calculated based on multiple observations in
an ordered sequence, usually called sub-series or data window. Examples of
extracted features are described in Table 1. These features were selected and
extracted by Anguita [6].

Table 1. Example of extracted features from signals

Function Description

mean Mean value

std Standard deviation

max Largest values in array

min Smallest value in array

sma Signal magnitude area

correlation Correlation coefficient

energy Average sum of the squares

The total features extracted was 561. Thus, for an instance x ∈ R
D, its

dimension is given by D = 561.

4.2 Experiments

Experiments were designed to verify the algorithm’s performance based on the
number of prototypes (Nc). The occurrence of adaptation is strongly dependent
on the amount of prototypes in the network. Hence, by analyzing this aspect, we
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Table 2. Experiment’s attributes and values

Attributes Epochs P Algorithms α0 w m

Values 100 {Nc, 5Nc, 10Nc} LVQ1, LVQ2, FLVQ,
ALVQ1, ALVQ2, AFLVQ

0.09 0.2 1.4

can demonstrate the influence of adaptation in the training performance. The
attributes of the conducted experiments are described in Table 2.

The number of prototypes (P ) depends on the number of classes (Nc). There-
fore, since there are Nc = 6 classes in the dataset, the experimented networks
will have 6, 30 and 60 prototypes, respectively. We executed the experiments
with different variations of LVQ: LVQ1 and LVQ2 from Kohonen [13], FLVQ
from Chung [7], ALVQ1 and ALVQ2 from our previous work [3] and AFLVQ,
which is the approach presented in this paper. Note that w and m are specific
parameter for LVQ2 and FLVQ learning rules.

5 Results

The classification performances of LVQ-based algorithms with networks com-
posed by 6, 30 and 60 prototypes are presented in Table 3. For networks with
fewer prototypes, the adaptation is generally nonexistent. Take, for example, the
case where there is only one prototype representing each class, thus P = Nc = 6.
In this case, it is unlikely that a prototype will be removed. As each prototype
is representing a class by itself, eventually all prototypes will be chosen as a
winner during the training process. Hence, in this case, the non-adaptive LVQ
algorithm is equivalent to its adaptive version. As we can see in Table 3, for
P = 6 the algorithms LVQ1, LVQ2 and FLVQ are equivalent to ALVQ1, ALVQ2
and AFLVQ, respectively.

As the number of prototypes grows, they reduce their chance to be chosen,
and after one epoch, many prototypes may be removed for not being chosen
at least once. Adaptation is more effective for greater number of prototypes.
As we can see in the cases where P = 30 and P = 60, the training accuracy in
adaptive methods increases. However, in some cases there is a cost of reducing its
generalization. Hence, it is necessary to properly select the number of prototypes
(P ) in order to avoid overfitting. Note also that, in all three scenarios presented
in Table 3, LVQ2 and ALVQ2 had the same results. In other words, ALVQ2 has
not been adapted during training. This can also be seen in Fig. 3.a, where the
chart of LVQ2 (Orange) and ALVQ2 (Green dots) are overlapping.

In Fig. 3 we present the evolution of two error measures throughout the
epochs: classification error (CE) and quantization error (QE). Classification error
can be calculated by: CE = Nmiss/N , where CE is the classification error, Nmiss

is the number of misclassified instances and N is the total of instances. Quanti-
zation error is described in Sect. 2.3. In Fig. 3.(a) we can notice that FLVQ and
AFLVQ are methods which converge smoothly, with minor oscillations when
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Table 3. Experiment results for P = {Nc, 5Nc, 10Nc}

P Set LVQ1 LVQ2 FLVQ ALVQ1 ALVQ2 AFLVQ

Nc Training 83.62% 98.83% 86.48% 83.62% 98.83% 86.48%

P = 6 Test 82.76% 95.45% 86.19% 82.76% 95.45% 86.19%

5Nc Training 90.61% 99.67% 90.44% 90.61% 99.67% 91.04%

P = 30 Test 84.63% 93.96% 87.61% 86.73% 93.96% 87.58%

10Nc Training 94.08% 99.62% 93.27% 94.27% 99.62% 94.07%

P = 60 Test 87.75% 91.99% 89.18% 88.12% 91.99% 89.65%

comparing to LVQ1 and ALVQ1. Regarding the proposed AFLVQ, it outper-
forms all other algorithms, except LVQ2 and ALVQ2, which have demonstrated
to be significantly superior than the other algorithms, for this specific dataset.
ALVQ2 and LVQ2 also presented the fastest convergence by reaching low error
values in less than 20 epochs.

In Fig. 3.(b), taking as an example the best model (LVQ2 and ALVQ2), we
can observe that initially the QE = 15.78. After training, the error increased
to QE = 30.45, instead of reducing. Strange as it may seem, low QE does not
necessarily mean a well trained model, neither high QE means a poorly trained
model. However, there are limits for acceptable QE values that may change
accordingly to the disposition of the data. It is extremely important to evaluate
the relationship between quantization error and classification error in order to
properly choose a classification model.
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Fig. 3. Classification Error (CE) and Quantization Error (QE) evolution throughout
the epochs (Color figure online)

The dataset employed in our experiments has a specific characteristic where
pairs of classes share very similar instances. For example, the class walking and
walking downstairs present similar patterns. This can be evidenced by exam-
ining the confusion matrix obtained from the best trained model. In Table 4,
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we observe that most of the misclassifications were caused by mistaking class 4
for class 5, or the other way around. This characteristic existing in this dataset
is well suited for LVQ2 learning rules, which explains the remarkable results
obtained through this algorithm.

Table 4. Confusion matrix for the best test result (LVQ2 and ALVQ2 with Nc = 6)

C1 C2 C3 C4 C5 C6 Recall

C1 478 7 11 0 0 0 96.37%

C2 18 450 3 0 0 0 95.54%

C3 5 18 397 0 0 0 94.52%

C4 0 2 0 448 40 1 91.24%

C5 0 0 0 29 503 0 94.55%

C6 0 0 0 0 0 537 100.00%

Precision 95.41% 94.34% 96.59% 93.92% 92.63% 99.81% 95.45%

6 Conclusion

In this paper, we presented a novel Adaptive-Fuzzy-LVQ method applied in
human activity classification from high-dimensional signals of motion sensors.
We conducted experiments in order to evaluate different variations of the LVQ
algorithm to compare with the proposed method. It is possible to conclude from
the results that employing AFLVQ provides considerable improvements in accu-
racy on the classification of time series, comparing to other LVQ-based algo-
rithms. In general, AFLVQ outperformed all variations, except for LVQ2 and
ALVQ2.

Comparing LVQ1 and FLVQ, we observed that both are very similar in over-
all accuracy. However, the learning process in LVQ1 seems to be more unstable
while FLVQ presents a smoother evolution over training epochs and tends to con-
verge to better results. The learning rate weighted by the membership values of
each prototype justifies the FLVQ to be smoother as the adjustment rate will be
relative to the distance of a prototype to a specific instance. From the obtained
results, we can also conclude that LVQ-based algorithms are effective for per-
forming classification of high-dimensional time series, since in most experiments,
they demonstrated convergence to high training accuracy. Regarding generaliza-
tion, all algorithms achieved test accuracy between 82.76% and 95.45%, which
is satisfactory, considering the problem complexity.

Concerning future works, we intend to combine Kohonen’s LVQ2 with Fuzzy
Logic to evaluate its performance in the problem addressed in this paper. Based
on the experiment’s results, we understand that fuzzy can improve LVQ-based
algorithms by smoothing the training convergence, avoiding major oscillation
that may result in poor classification performance. Once LVQ2 and ALVQ2 have
presented the best classification performances, we can improve their learning
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rule by including fuzzy aspects. Furthermore, we intend to explore the changes
in performance by varying the fuzziness parameter m, as well as the learning
rate α. Properly tuning these parameters is important, as they can significantly
influence the training results. Finally, we plan to work with Type-2 Fuzzy sets for
evaluating its performance in dealing with uncertainties present in input data.

Acknowledgements. We would like to express our gratitude to the Coordination for
the Improvement of Higher Education Personnel (CAPES) for the financial support.
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dinâmicas de sistemas utilizando redes neurais LVQ adaptativas. In: Conferência
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Abstract. This paper introduces a new approach to select reference
points of minimal learning machines (MLM) for classification tasks. The
proposal is based on the Fuzzy C-means algorithm and consists of select-
ing data samples from regions where no overlapping between classes
exists. Such an idea has been empirically shown capable of achieving
simpler decision boundaries in comparison to the standard MLM, and
thus less susceptible to overfitting. Experiments were performed using
UCI data sets. The proposal was able to both reduce the number of ref-
erence points and achieve competitive performance when compared to
conventional approaches for selecting reference points.

Keywords: Machine learning · Minimal learning machines
Fuzzy-C means

1 Introduction

The Minimal Learning Machine (MLM, [1]) is a supervised learning algorithm
that has recently been applied to a diverse range of problems, such as fault
detection [2], ranking of documents [3], and robot navigation [4].

The basic operation of MLM consists in a linear mapping between the geo-
metric configurations of points in the input space and the respective points in the
output space. The geometric configuration is captured by two distance matrices
(input and output), computed between the training/learning points and a subset
of it whose elements are called reference points (RPs). The learning step in the
MLM consists of fitting a linear regression model between these two distance
matrices. In the test phase, given an input, the MLM predicts its output by first
computing distances in the input space and then using the learned regression
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model to predict distances in the output space. Those distances are then used
to provide an estimate to the output.

The determination of the RPs, including its quantity, is fundamental to the
quality of the surface boundary generated by the MLM model. In this regard,
the original formulation of the MLM training algorithm establishes a random
reference points choice, leaving just the number of points definition determined
by the user. The random reference points choice ignores the data set disposition.

Clustering algorithms, such fuzzy C-means [5], are unsupervised machine
learning methods that aim to separate objects into groups, based on the charac-
teristics that these objects have. The basic idea is to bring objects with similar
characteristics together into one group. The similarity of these objects is defined
according to pre-established criteria.

The use of Fuzzy C-Means together with classification methods occurs mainly
for the reduction of datasets with a large number of samples. In addition, some
works use this algorithm and its variations in several types of applications, such
as the classification of epilepsy risk [6], feature selection [7] and image segmen-
tation [8].

In this work, it is proposed to use the algorithm Fuzzy C-Means for the
selection of reference points of Minimum Learning Machines applied to problems
of patterns recognition. Simulation with real-world datasets was performed to
validate the proposal. The proposal was able to significantly reduce the number
of reference points, as well as maintain its capacity of generalization equivalent
or superior when compared to the approaches proposed in the original article [1].

The remainder of the paper is organized as follows. Section 2 briefly describes
the MLM. Section 3 emphasizes the need for novel methods for selecting RPs.
Section 4 introduces the Fuzzy C-Means MLM. Section 5 reports the empirical
assessment of the proposal and the conclusions are outlined in Sect. 6.

2 Minimal Learning Machine

The Minimal Learning Machine is a supervised method whose training step con-
sists of fitting a multiresponse linear regression model between distances com-
puted from the input and output spaces. Output prediction for new incoming
inputs is achieved by estimating distances in the output spaces using the under-
lying linear model followed by a search/optimization procedure in the space of
possible outputs.

Basic Formulation. Let us define the learning problem as the problem of
approximating a smooth continuous target function f : X → Y from the data
D = {(xn,yn = f(xn))}Nn=1, where xn ∈ X and yn ∈ Y. We call X and Y
the input and output spaces, respectively. Henceforth, we assume X = R

D and
Y = R

S .
The MLM aims to approximate the target function f through the use of

surrogate functions δk : Y → R+ and dk : X → R+. The surrogate functions are
distance functions taken from fixed points R = {(mk, tk = f(mk)) ∈ D}Kk=1, also



400 J. A. V. Florêncio et al.

called reference points. More precisely, we have dk(x) = d(x,mk) and δk(y) =
δ(y, tk), with both d(·, ·) and δ(·, ·) given by the Euclidean distance function. In
addition, we refer to the set {mk}Kk=1 as input reference points, and {tk}Kk=1 as
the corresponding output reference points.

We assume the existence of a mapping between the spaces induced by the
distance functions δ and d. Formally, we have gk :

∏K
j=1 dj(X ) → δk(Y), or

equivalently gk : RK
+ → R+. Considering now the data D, we collect the distances

taken in the input space between the data points and the input reference points
in a matrix D ∈ R

N×K
+ . Similarly, take the pointwise distance matrix in the

output space between the N data points (outputs yn) and the output reference
points to be represented by Δ ∈ R

N×K
+ . Using the data, we are interested in

finding the mapping gk using the model Δn,k = gk(Dn,·)+εn for all n = 1, . . . , N .
The term εn represents the residuals whereas Dn,· denotes the n-th row of the
matrix D; by the same token, Δn,k stands for the element in the n-th row and
k-th column of Δ.

The MLM assumes that the mappings gk can be sufficiently well approxi-
mated by linear models. In doing so, we have that distances in the output space
can be approximated by a linear combination of distances in the input space,
i.e., Δn,k = Dn,·bk + εn, where bk ∈ R

K represents the coefficients of the linear
mapping gk. Putting all the mappings together for all data points, we represent
the so-called distance regression model of the MLM in a matrix form given by

Δ = DB + ε, (1)

where the matrix B ∈ R
K×K comprises the K vectors of coefficients bk in its

columns.
Given that, the MLM computes a function hB(x) : X → Y given by:

hB(x) = arg min
y

K∑

k=1

⎡

⎣δ2k(y) −
(

K∑

i=1

di(x)Bi,k

)2
⎤

⎦

2

, (2)

where δk(y) = ‖y − tk‖ represents the Euclidean distance between y and the
k-th output reference point tk; similarly, di(x) = ‖x−mi‖ denotes the Euclidean
distance between x and the i-th input reference point mi; K denotes the number
of reference points.

Learning Algorithm. The learning algorithm of the Minimal Learning
Machine simply requires the (i) selection of the set reference points {(mk, tk)};
and (ii) determination of the parameters B. With regard to the selection of
reference points, in the original proposal, the MLM assigns the reference points
randomly from the available data points for learning. This paper focus on alter-
natives to such random assignment.

Since the reference points are taken from the data, we have that K ≤ N . The
number of reference points K controls the model capacity, thus it can be used
to avoid overfitting. Under the normal conditions where the number of selected
reference points is smaller than the number of training points (i.e., K < N), the
matrix B can be approximated by the usual least squares estimate
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B̂ = (DTD)−1DTΔ, (3)

where D and Δ are the pairwise distance matrices between the data and the
reference points in the input and output space respectively.

Out-of-Sample Prediction. Predicting the outputs for new input data mainly
refers to solving the minimization problem embedded in Eq. (2). For an out-
of-sample input point x whose distances from the K input reference points
{mk}Kk=1 are computed, i.e., d1(x) . . . dK(x), we then estimate the distances
between its unknown output y and the output reference points using the linear
model between distances, that is

δ̂k(y) =
K∑

i=1

di(x)B̂i,k, ∀k = 1, . . . , K. (4)

Together the estimates δ̂1(y) . . . δ̂K(y) can be used to locate y in the Y-
space. The location of y can be estimated from the minimizer given in Eq. (2)
and rewritten here to emphasize the dependence of y:

ŷ = arg min
y

K∑

k=1

(
(y − tk)T (y − tk) − δ̂2k(y)

)2

. (5)

It is worth mentioning that δ̂k(y) is not a function of y but rather a point
estimate of the actual distance function δk(y) = ‖y − tk‖2. Thus, from an opti-
mization perspective, δ̂k(y) must be treated as a constant.

For the classification case, where outputs yn are represented using the 1-of-
S encoding scheme1. It was showed in [9] that under the assumption that the
classes are balanced, the optimal solution to Eq. (5) is given by

hB(x) = ŷ = tk∗ , (6)

where k∗ = arg mink δ̂k(y). It means that output predictions for new incoming
data can be carried out by simply selecting the output of the nearest reference
point in the output space, estimated using the linear model B̂. This method was
named Nearest Neighbor MLM (NN-MLM).

3 Empirical Analysis of RP Selection

Similarly to the support vector machines (SVM, [10]) and the relevance vector
machines (RVM, [11]), the out-of-sample phase of the MLM requires the deter-
mination of a subset of points taken from the training set. However, unlike the
1 A S-level qualitative variable is represented by a vector of S binary variables or bits,

only one of which is on at a time. Thus, the j-th component of an output vector y
is set to 1 if it belongs to class j and 0 otherwise.
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SVM and RVM, the choice of such points is not a by-product of the training
step. In the original MLM proposal, the choice of such points is random, leaving
just the number of points determined by the user. However, such an approach is
not a warranty of model effectiveness. In other words, a model generated from a
random reference points selection can provide bad decision boundaries that can
be overfitting or underfitting. In Fig. 1 we show examples of decision boundaries
generated by underfitting, overfitting and appropriate-fitting models.

(a)

(b)

(c)

Fig. 1. Examples of decision boundaries generated by (a) underfitting, (b) overfitting
and (c) appropriate-fitting models.

As can be seen in Fig. 1(a), using a small value for K and making the choice at
random can lead to an unrepresentative subset, disregarding possibly important
regions. Conversely, with the use of all points in the data set as reference points, a
rather complex decision surface is created, as can be seen in Fig. 1(b). The ideal
choice is to make reference points not in “confusing” regions, in other words,
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regions of data overlap. In Fig. 1(c) the ideal choice of a subset of reference points
is presented. It is interesting to note that the number of points in Fig. 1(a) and
(c) is the same.

4 Proposal: Fuzzy C-means MLM (FCM-MLM)

Our proposal, called fuzzy C-means MLM (FCM-MLM), uses the fuzzy C-
means [5] algorithm as the main tool for select reference points (RPs) in minimal
learning machines. As in the original proposal, FCM-MLM requires only a single
hyper-parameter K, which in our case denotes the maximum number of RPs.
The number of RPs obtained by the FCM-MLM will always be less than or equal
to the parameter K (i.e. |R| ≤ K). This is possible due to the execution of an
extra step for removing points that are in heterogeneous regions—regions that
contain data of different classes. This is carried out by eliminating subsets of
data (derived from fuzzy C-means) that contain patterns of different classes.

Briefly, FCM-MLM comprises three steps. In the first step, the fuzzy C-means
algorithm runs under all the data set. After that, the next step is to perform the
removal of prototypes resulting from the execution of fuzzy C-means that group
patterns from different classes. Finally, the set of homogeneous prototypes is
selected as RPs. The main idea of the proposal is to ensure that reference points
are well distributed over the input space and, jointly, to ensure that such points
are not located in class-overlapping regions. Algorithm1 presents the pseudocode
of the FCM-MLM method.

Algorithm 1. FCM-MLM
Input: Initial RPs number (K), data set inputs (X ) and outputs (Y)
Output: Regression model (B̂), set of PRs inputs (R) and outputs (T )
1: Apply the fuzzy C-means algorithm in the whole data set

{ck}Kk=1, {μnk}N,K
n=1,k=1 ← C–Means(X ,K)

where μnk ∈ [0, 1] are the cluster membership values.
2: Create K subsets with label of the data

Yk ← {yn ∈ Y | k = arg max
1≤i≤K

μni}, 1 ≤ k ≤ K

3: Create the RP set only with the closest patterns of homogeneous centroids

R ←
⋃

k

{

arg min
xn∈X

‖xn − ck‖
}

, ∀k : |Yk| = 1

The set T are given by the corresponding output of the elements in R.
4: Compute the distance matrices Dx using X and R; and Δy using Y and T
5: Compute B̂ using the Eq. (3)
6: return R, T , B̂
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5 Simulations and Discussion

For a qualitative analysis, we have applied FCM-MLM, RN-MLM and FL-MLM
to solve an artificial problem. The problem, well-known Ripley (RIP) dataset
problem consists of two classes where the data for each class have been generated
by a mixture of two Gaussian distributions (Fig. 2).

(a) (b)

(c) (d)

Fig. 2. (a) RIP data set and decision boundaries generated by (b) FL-MLM, (c) RN-
MLM, and (d) FCM-MLM.

Based on the Fig. 2, we can infer that FCM-MLM produced better decision
boundary when compared to the other algorithms. In the Fig. 2(c) and (d), one
can see that the number of RPs for FCM-MLM is lower than the number of RPs
for RN-MLM. Moreover, the decision boundary generated from the FCM-MLM
is more smoothed than the other models.

Experiments with real-world benchmarking data sets were also carried out
in this work. We used UCI data sets [12]; Heart (HEA), Haberman’s Sur-
vival (HAB), Vertebral Column Pathologies (VCP), Breast Cancer Wincon-
sin (BCW), Statlog Australian Credit Approval (AUS), Pima Indians Diabets
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(PID) and Human Immunodeficiency Virus protease cleavage (HIV). In addi-
tion, three well-known artificial data sets were also used in our simulations, Two
Moon (TMN), Ripley (RIP) and Banana (BNA). Some description, abbrevia-
tion, number of patterns (# patterns) and number of features (# features) about
the aforementioned datasets are presented in the Table 1.

Table 1. General description for datasets used in this work.

Dataset Abbreviation # patterns # train # test # features

Heart HEA 270 216 54 13
Haberman’s Survival HAB 306 245 61 3
Vertebral Column VCP 310 248 62 6
Breast Cancer W. BCW 688 550 138 9
Australian Credit A. AUS 690 552 138 14
Pima Indians Diabetes PID 768 614 154 8
Two Moon TMN 1001 801 200 2
Ripley RIP 1250 1000 250 2
HIV-1 Protease Cleavage HIV 3272 2617 655 8
Banana BNA 5300 4240 1060 2

The performance of our proposal is compared to two variants of the MLM,
regarding the selection of RPs. The first variant is the full MLM (FL-MLM), in
which the set of reference points is equal to the training set (i.e., K = N). The
second variant is the random MLM (RN-MLM), where we randomly select K
reference points from the training data. It corresponds to the original proposal. A
combination of the k-fold cross-validation and holdout methods was used in the
experiments. The holdout method with a 80% training and 20% test division was
used to estimate the performance metrics. In Table 2 we report the performance
metrics of each RP selection method.

The adjustment of the parameter K for the FCM-MLM and the RN-MLM
model was performed using grid search combined with 10-fold cross-validation.
The RPs were selected in the range of 5–100% (with a step size of 5%) of the
available training samples. The classification error was used to choose the best
value of K. Each experiment was performed for 30 independent runs.

In order to verify the possible equivalence between the classifier accuracies,
we perform a statistical hypothesis tests. Such tests aim to establish the limits
beyond which two samples should no longer be considered to be taken from
the same population, but as belonging to two different populations. That being
said, we adopted a non-parametric test, named Friedman, which does not rely on
any assumptions about the form of distribution that is taken to have generated
the accuracy values. Besides, it can be used when comparing three or more
classifiers [13]. Given the null and the alternative hypothesis, that all algorithms
are equivalent or not, respectively; whether the test provided a significance level
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value less than or equal to the chosen significance level (in our case, 0.01), the
test suggests that the observed data is inconsistent with the null hypothesis and,
thus, the null hypothesis should be rejected. Information about superiority and
inferiority can also be infered by Friedman statistical hypothesis test.

Table 2. Performance comparison – Accuracy (ACC) and reduction percentage in
comparison with the training set (RED) – with the FCM-MLM, RN-MLM and FL-
MLM; and results of statistical tests. The symbols ✓ and ✗ with respect to the Friedman
statistical test means equivalence and no equivalence, respectively.

Data set Metric FCM-MLM RN-MLM FL-MLM

HEA ACC 71.36 6.03 70.00 6.29 ✓ 72.16± 6.29 ✓ ✗

RED 59.44 16.50 33.12 18.10
HAB ACC 72.13 4.47 71.97 4.27 ✓ 68.09 ± 4.98 ✗ ✗

RED 88.01 11.58 80.20 14.22
VCP ACC 84.78 4.48 82.58 4.39 ✗ 82.15 ± 4.23 ✗ ✓

RED 80.60 5.99 56.51 26.86
BCW ACC 97.00 1.31 96.98 1.40 ✓ 96.96 ± 1.27 ✓ ✓

RED 86.91 4.65 62.61 22.71
AUS ACC 69.13 3.06 72.15 3.05 ✗ 70.97 ± 3.59 ✓ ✓

RED 60.65 5.13 55.59 22.22
PID ACC 73.44 2.86 74.59 2.58 ✗ 73.16 ± 2.38 ✓ ✗

RED 84.61 8.11 75.92 16.10
TMN ACC 99.87 0.22 99.82 0.28 ✓ 99.87 ± 0.22 ✓ ✓

RED 63.63 23.71 61.92 20.72
RIP ACC 89.81 1.88 89.75 1.77 ✓ 88.32 ± 1.61 ✗ ✗

RED 87.30 11.01 76.64 18.83
HIV ACC 86.68 1.30 86.50 1.30 ✓ 85.99 ± 1.14 ✗ ✗

RED 96.73 1.39 75.32 23.16
BNA ACC 88.16 0.90 89.87 0.81 ✗ 87.58 ± 0.89 ✓ ✗

RED 78.19 23.94 89.33 2.54

By analyzing the Table 2 one can conclude that the performances of the
FCM-MLM were equivalent or even superior to those achieved by the RN-MLM
and FL-MLM for each data sets evaluated. Moreover, one can also see that our
proposal achieves sparse solutions, i.e., the FCM-MLM produces a reduced set
of RPs.

6 Conclusions

In this paper, we propose an algorithm to select the reference points of the MLM
for classification tasks based on the fuzzy C-means algorithm. Three strategies of
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MLM reference point selection are evaluated. Our proposal called FCM-MLM is
able to obtain the RP subset for MLMs. The experimental results indicate that
the FCM-MLM represents a good alternative to the random selection, providing
a competitive classifier while maintaining its simplicity.
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Abstract. This work studies the influence of fuzzy uncertainties on the
asymptotic behavior of the solution of a prey-predator model. Here, ini-
tial conditions and parameters are interpreted as fuzzy variable. The
population densities at a specific time are also interpreted as a fuzzy
variable in which the possibility distribution function depends on the
possibility distribution functions of the parameters. We provide closed
formulas for expected values of some equilibrium points. We also compare
the expected value of the fuzzy solution with the deterministic solution
providing computational simulations in order see the difference between
theses approaches.

Keywords: Fuzzy dynamical systems · Expected value
Fuzzy variables · Possibility theory · Fuzzy solutions

1 Introduction

It is not always possible to know exactly the initial number of individuals or
the carrying capacity in a given environment in applied problems of population
dynamics. In general, one gets information by means of linguistic statements
such as the initial condition is approximately x0 or the carrying capacity is about
k0. To the extent that the label approximately is imprecise, it can be modeled as
a fuzzy set. Thus, linguistic statements like these can be seen as fuzzy restrictions
on the values taken by the variable of interest [1].

Zadeh proposed a fuzzy restriction as a possibility distribution with its mem-
bership function playing the role of a possibility distribution function. In the
context of population dynamics, let us suppose that the label approximately x0

is modeled by a fuzzy set x0 with membership μx0(x). Thus, given a specific
numerical value x = u0, the value μx0(u0) is the degree of possibility that the
actual initial condition of the dynamical system assumes the value u0 given
the proposition the initial condition is approximately x0. Thus, the membership
function μx0(x) is the distribution of the possibility associated with the variable
initial condition.

Once we do not have precise information about the actual value of initial
condition or parameters we can not require a precise description of the state of
c© Springer International Publishing AG, part of Springer Nature 2018
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the population on a fixed time t > 0. It is reasonable to look for a description of
the state of the system by means of a fuzzy restriction as the state of the system
at time τ is approximately u0. This, in turn, defines a possibility distribution on
the values assumed by the state of the system.

Several approaches have been presented in order to consider fuzzy uncertain-
ties on differential equations. Some authors use the H – derivative to obtain
solutions with fuzzy uncertainties [2–11]. Others construct the fuzzy solutions
of differential equations by means of a family of differential inclusions [12–15].
A third approach consists in applying the Zadeh extension principle on the ini-
tial conditions of deterministic solutions to obtain fuzzy solutions of differential
equations [16–24].

However, when dealing with fuzzy uncertainties as fuzzy restrictions on the
values taken by the variable of interest, or possibility distribution function, one
faces the problem of describing how the possibility distribution function evolves
over time. One gets a similar problem when looking at the initial condition as a
random variable described by probability distribution functions [25–28]. Thus,
here we follow a similar approach used in probability theory to deal with fuzzy
uncertainties on initial conditions and parameters. As we will see, interpreting in
this way, we end up with the approach of applying the Zadeh extension princi-
ple on the initial condition and parameters of deterministic solutions. Therefore,
considering parameters and initial conditions as possibility distribution func-
tions of fuzzy variables lead us to define fuzzy solutions by taking Zadeh exten-
sion of deterministic solutions which is similar to the third approach previously
described.

A naive approach to handle deterministic differential equations with uncer-
tainties, fuzzy or probabilistic, on parameters of the dynamical systems would be
to obtain a representative value of these parameters by means of some statistical
procedure [31]. These representative values, in turn, are inserted in the equation
and the analysis is carried on. That is, by this approach, we deal with uncertain-
ties prior to the analysis of the dynamical systems. Here we are going to think
in another direction. First, we are interested in describing how the possibility
distribution function evolves over time and, after that, we calculate a represen-
tative value of such a fuzzy variable. As we will see, these two approaches may
lead to distinct results.

Thus, in order to measure the effects of the fuzzy uncertainties on the dynam-
ics we wonder about the expected value of the values assumed by the state of
the system. We do this by comparing the expected value with the deterministic
solution defined by the expected value of the initial condition and parameters.
We provide closed-form expressions for the expected value of the fuzzy variable
described by the logistic equation and for the fuzzy variable that represents the
maximum growth time.

The organization of this article is as follows: in Sect. 2 we discuss some basic
concepts on fuzzy sets and fuzzy variables; in Sect. 3 we present the prey-predator
model we are considering in this work; in Sect. 4 we discuss about the expected
value of the fuzzy variable that describes the state of the system at time t > 0; in
Sect. 5 we discuss about the expected value of the equilibrium points; in Sect. 6
we provide numerical simulations to illustrate our main results.
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2 Some Basic Concepts

2.1 Fuzzy Sets

As it is well known, given a set U , a fuzzy subset of U is characterized by a
function defined on U taking values on [0, 1] [33]. This function is called mem-
bership function. Given α ∈ [0, 1], an α-cut or α-level of a fuzzy set is defined as
the set of points of U where the membership function is greater than or equal to
α. Precisely, if u is a fuzzy set of U with membership function μu : U → [0, 1]
then, for 0 < α ≤ 1, the α-cut of u is a subset of U given by

[u]α = {x ∈ U : μu (x) ≥ α}

and, for α = 0,
[u]0 = {x ∈ U : μu (x) > 0}

is the support of u [4].
Let us denote by F (U) the set of fuzzy subsets of U ⊂ R, in which the α-cuts

are non-empty, compact and (simply-) connected for every α ∈ [0, 1]. We can
measure the distance between two fuzzy sets in the following way: given two
points u,v ∈ F (U), the distance between u and v is defined by

d∞(u,v) = sup
α∈[0,1]

dH([u]α, [v]α), (1)

where dH is the Hausdorff distance for compact sets. We also denote by χ{A}
the characteristic function of the set A.

In this work, we are interested in fuzzy variables taking values on U =
[0,+∞), the set of non-negative real numbers. However, we describe the fol-
lowing concepts for a general set U ⊂ R

n.
A fuzzy subset u of U , defined by a membership function μu : U → [0, 1],

induces, according to Zadeh [1], a possibility distribution function on the set of
values of a variable of interest ξ. That is, if ξ is a fuzzy variable then μu (x) is
the degree of possibility that ξ assumes the particular value x. In the context
of possibility theory, μu (x) = 0 means that it is impossible that the variable ξ
assumes the value x. The quantity μu (x) represents the degree of possibility of
the assignment ξ = x, where some values x being more possible than others. The
closer the value μu (x) is to 1, the more possible it is that x is the actual value
of the variable.

It is well known [1] that given a subset A ⊂ U , the possibility measure of A
is defined by

Posμ(A) = sup
x∈A

μu (x),

and the necessity measure of A is defined by

Necμ(A) = 1 − Posμ(Ac),
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where Ac stands for the complement set of A in U . The credibility measure of
A, A ⊂ U , according to [32], is defined as

Crμ(A) =
1
2

(Posμ(A) + Necμ(A)) .

We point out that Posμ(A) is a measure of the possibility of the fuzzy variable
ξ to assume values in A. Note that Posμ(∅) = 0 and Posμ(U) = 1. On the other
hand, Necμ(A) can be seen as a measure of the fuzzy variable ξ not assume
values in Ac. Thus, both numbers are measures for the question if an event A
either occur or not [36]. Thus, the Crμ(A) is the average of these two answers to
the occurrence of an event A.

In order to get a representative value of a fuzzy variable ξ, it is important to
define the concept of its expected value [1]. The expected value of ξ is defined as

E[ξ] =
∫ ∞

0

Crμ([r,+∞))dr −
∫ 0

−∞
Crμ((−∞, r))dr,

provided that at least one of these integrals is finite [32].
Now, when U is the set of non-negative real numbers, if we define the quan-

tities
ξ′
α = inf{x : μu (x) ≥ α} and ξ′′

α = sup{x : μu (x) ≥ α},

for all α > 0, then the previous formula becomes

E[ξ] =
1
2

∫ 1

0

(ξ′
α + ξ′′

α) dα, (2)

provided that ξ′
α and ξ′′

α are finite [32]. We emphasize that the definition of
Pos(A), Nec(A) and Cr(A) depends on the possibility distribution function μu

of the fuzzy variable ξ.

2.2 Transformations of Fuzzy Variables

Consider now a continuous function g defined on some subset of the real numbers.
If ξ is a fuzzy variable then so is η = g(ξ), and there is a natural way to define
a possibility distribution function μg(u)(x) to g(ξ) from the distribution μu (x)
of ξ as it follows: given A ⊂ U , then g(ξ) assumes values on A if and only if ξ
assumes values on g−1(A). Thus, by definition, the possibility of g(ξ) to assume
values in A is the same as the possibility of ξ to assume values on g−1(A). Thus,
following [1], it turns out that

Posη(A) = sup
y∈A

μĝ(u)(y) = sup
x∈g−1(A)

μu (x) = Posξ

(
g−1(A)

)
,

and, as a consequence, we obtain the possibility distribution function of the fuzzy
variable η = g(ξ) by taking

μĝ(u)(y) = sup
x∈g−1(y)

μu (x). (3)
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We remark that expression (3) is the Zadeh extension of g as given in [33].
This is the reason why we denote the possibility distribution function of g(ξ) by
μĝ(u)(y). We also remark that this approach is similar to that one followed in
the context of transformation of random variables in probability theory (see, for
instance, [25]).

According to [34], if g is monotone (increasing or decreasing) then the
expected value of the fuzzy variable η = g(ξ) can be computed by

E [g (ξ)] =
1
2

∫ 1

0

(g(ξ′
α) + g(ξ′′

α)) dα. (4)

This formula will be useful in the following sections.

2.3 Several Fuzzy Variables

One faces the problem of uncertainties on several variables in population dynam-
ics and other applications. Before proceeding to the next section, let us present
the main ideas on this subject.

Let ξ1 and ξ2 be fuzzy variables with possibility distribution functions μu1

and μu2 , respectively, both defined on U . Following [1], these variables define
a fuzzy variable, namely η = (ξ1, ξ2), on U × U , in which its joint possibility
distribution function μu : U × U → [0, 1] is given by

μu (x, y) = min{μu1(x), μu2(y)}. (5)

We are assuming that the variables ξ1 and ξ2 are unrelated, or non-interactive,
in the sense that a specific value of ξ1 gives no information about the possible
values that ξ2 can assume.

3 A Prey-Predator Model

We are considering the prey-predator model given by the system of differential
equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx

dt
= a1x − b1x

2 − c1xy, x(0) = xo > 0,

dy

dt
= a2y − b2y

2 + c2xy, y(0) = yo > 0,

(6)

in which the parameters are all non negative except possibly a2. Let ϕt(xo, yo, p)
be the solution of Eq. (6) at (xo, yo) and a vector of parameters p. As is well
known, the application ϕt : R2 → R

2 is the flow acting on the phase space R
2.

Thus, for every initial condition (xo, yo) ∈ R
2 we have a deterministic solution

ϕt(xo, yo, p) = (x(t, xo, yo, p), y(t, xo, yo, p)) .
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Equation (6) has Jacobian matrix at (x̄, ȳ) given by

J(x̄, ȳ) =
(

a1 − 2b1x̄ − c1ȳ −c1
c2 a2 − 2b2ȳ + c2x̄

)
(7)

and thus it turns out that:

(a) The equilibrium point q1 = (0, 0) is unstable;
(b) The equilibrium point q2 = (a1/b1, 0) is unstable;
(c) The equilibrium point q3 = (0, a2/b2) is unstable provided that c1a2 < a1b2;
(d) The equilibrium point

q4 =
(

a1b2 − a2c1
b1b2 + c1c2

,
a2b1 + a1c2
b1b2 + c1c2

)

is unstable provided that a1b2 < a2c1.

The following analyzes the behavior of the solution x(t) and y(t) under fuzzy
uncertainties.

4 Fuzzy Uncertainties on the Model

Due to the lack of complete information or error of measurements, more often
than not, one needs to deal with imprecision on the parameters. A naive approach
to deal with uncertainties in models like the previous one defined by Eq. (6), it
could be to compute the average values of the parameters and then analyzing
the dynamics by means of its deterministic solution using these average values
for the parameters.

Thus, let us assume that parameters and initial conditions are under restric-
tion given by fuzzy label as approximately, for instance. That is, we are assuming
that these variables satisfy a statement like the variable ξ is approximately ξo.
Thus, according to Zadeh, the membership function of the fuzzy label approx-
imately is the possibility distribution function of ξ. In works like [24] and [16],
in case of having fuzzy uncertainties on the initial conditions, the authors define
the fuzzy solution of Eq. (6) as the Zadeh’s extension of the deterministic flow
ϕt : R

2 → R
2. In case of having fuzzy uncertainties on other parameters of

Eq. (6), we consider those parameters as initial conditions of a differential equa-
tion with zero derivative and proceed as before, taking the Zadeh’s extension on
the initial condition of the deterministic flow.

Here, however, we are going to take another direction. Since we are assuming
that xo, yo and some parameter, or vector of parameters, p in Eq. (6) are fuzzy
variables, these quantities x(t, xo, yo, p) and y(t, xo, yo, p), for a fixed t > 0,
are fuzzy variables as well. Following the recipe described in the previous sec-
tions, for a fixed t > 0, we can obtain the possibility distribution function of
ϕt(xo, yo, p) by means of the Zadeh’s extension on the parameters xo, yo and p
of the functions x(t, xo, yo, p) and y(t, xo, yo, p). That is, the number of pray and
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predators at a fixed time t ≥ 0 are fuzzy variables whose possibility distribution
are x̂(t,xo,yo,p) and ŷ(t,xo,yo,p).

Although these two approaches seem different, the relationship between them
is as it follows [17].

Theorem 1 ([17]). Let the applications π̂x and π̂y be the Zadeh’s extensions of
the orthogonal projections πx : R2 → R and πy : R2 → R on the x and y axis,
respectively. Then it follows that:

x̂ = π̂x ◦ ϕ̂t ŷ = π̂y ◦ ϕ̂t.

4.1 Fuzzy Uncertainties on Equilibrium Points

We consider fuzzy uncertainties on the parameters so that the equilibrium
points are also fuzzy variables whose the possibility distribution function are
the Zadeh’s extension of the expressions that define such equilibrium points.
In [17] the authors have proved if an equilibrium point is asymptotically stable
then x̂ and ŷ converge to the Zadeh’s extension of the x and y coordinates of
the expressions that define such equilibrium point. In other words, we have that
q̂ is the Zadeh’s extension of an equilibrium point then

x̂ = π̂x ◦ ϕ̂t → π̂x ◦ q̂

ŷ = π̂y ◦ ϕ̂t → π̂y ◦ q̂

Theorem 2. Suppose that the fuzzy set c1 is possibility distribution function of
the fuzzy variables c1 and furthermore suppose that

η′
α = inf{x : μc1(x) ≥ α}, η′′

α = sup{x : μc1(x) ≥ α}.

Then it turns out that:

(a) The α-cuts of the fuzzy set π̂x ◦ q̂ are
[
a1b2 − a2η

′′
α

b1b2 + c2η′′
α

,
a1b2 − a2η

′
α

b1b2 + c2η′
α

]
.

(b) The α-cuts of the fuzzy set π̂y ◦ q̂ are
[
a2b1 + a1c2
b1b2 + c2η′′

α

,
a2b1 + a1c2
b1b2 + c2η′

α

]
.

Proof. Since πx, πy and each coordinate of the equilibrium point q4 are con-
tinuous functions for c1 > 0 then we have for a continuous function f that
[f̂(u)]α = f([u]α). In both cases, the x and y coordinates are decreasing func-
tions with respect to c1 and this proves the statement.

Next we look at the expected values of fuzzy solutions and equilibrium points.
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5 Expected Values of Fuzzy Solutions and Equilibrium
Points

We are interested, in this section, in the behavior of the expected values of the
fuzzy solution defined by considering xo, yo and c1 as fuzzy variables whose the
possibility distribution functions are xo, yo, c1, respectively. To this end, we
have the following theorem.

Theorem 3. Let qx(c1) and qy(c1) the fuzzy variables defined by the x and y
coordinates of q4 respectively. If c1 is a fuzzy variable with triangular possibility
distribution function μc1(x) = (c − ε/c/c + ε) then we have that:

E [qx] = −a2

c2
+

b2A

2c22ε
ln

(
B + c2ε

B − c2ε

)

E [qy] =
A

2c2ε
ln

(
B + c2ε

B − c2ε

)

in which A = a2b1 + a1c2 and B = b1b2 + c2c.

Proof. To prove the first statement we must observe that the α-cuts of μc1(x)
are the intervals [η′

α, η′′
α] where

η′
α = c − (1 − α)ε and η′′

α = c + (1 − α)ε.

Since the expected value of the fuzzy variable qxc is given by

E[qx(c1)] =
1
2

∫ 1

0

[qx(η′
α) + qx(η′′

α)] dα,

integrating we obtain the desired result.
On the other hand, the second statement can be prove similarly taking into

account the expression that defines qy(c1).

We have also the following theorem.

Theorem 4. Suppose that the fuzzy sets xo, yo and c1 are possibility distribu-
tion functions of the fuzzy variables xo, yo and c1, respectively, and let qx and qy

be the fuzzy variables defined by the x and y coordinates of q4. If the equilibrium
point q4(c1) is asymptotically stable for all c1 ∈ [c1]0 then we have that:

(a) The expected value of the fuzzy variable x(t) converges to the expected value
of qx. That is, E [x(t)] → E [qx] as t → ∞.

(b) The expected value of the fuzzy variable y(t) converges to the expected value
of qy. That is, E [y(t)] → E [qy] as t → ∞.

Proof. Since q4(c1) is asymptotically stable for all c1 ∈ [c1]0, according to [35]
(Corollary 14, p. 12), the family of function indexed by t, x(t) : K → R, K =
[xo]0× [yo]0× [c1]0, converges uniformly to f : K → R, defined by f(xo, yo, c1) =
qx, as t → ∞. That is, given ε > 0, there is a T > 0 such that for all t > T we
have |x(t, xo, yo, c1) − qx(c1)| < ε for all (xo, yo, c1) ∈ K. Thus,
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|E [x(t, xo, yo, c1)] − E [qx(c1)]| =
∣
∣
∣
∣

1

2

∫ 1

0

[
x(t, h′

α) − qx(ζ
′′
α) + x(t, h′′

α) − qx(ζ
′
α)

]
dα

∣
∣
∣
∣

≤ 1

2

∫ 1

0

∣
∣x(t, h′

α) − qx(ζ
′′
α)

∣
∣ dα +

1

2

∫ 1

0

∣
∣x(t, h′′

α) − qx(ζ
′
α)

∣
∣ dα

< ε

in which h′
α = (ξ′

α, η′
α, ζ ′

α) and h′′
α = (ξ′′

α, η′′
α, ζ ′′

α). This inequality proves the first
statement.

We can prove the second statement analogously.

Once that qx(E(c1)) is not necessarily equal to E(qx(c1)) then we can con-
clude from last theorem that the expected value a the fuzzy solution are not
necessarily equal a deterministic solution, at least not near an equilibrium point.
Thus, although we are not able to find a closed-formula for the expected value
of fuzzy solutions of Eq. (6) from last statement we can conclude that the two
approaches of dealing with uncertainties discussed here provide different numer-
ical values.

6 Worked Example

In order to illustrate the results obtained in previous sections, let us con-
sider xo, yo and c1 as fuzzy variables given by the triangular fuzzy possibil-
ity distribution functions μxo(x) = (5/6/7), μyo

(x) = (0.01/0.51/1.01) and
μc1(x) = (0.0150/0.0250/0.0400). The others parameters of Eq. (6) are: a1 =
0.1, b1 = 0.01, a2 = −0.02, b2 = 0.01 and c2 = 0.005.

The expected value of the fuzzy variable c1 is 0.0250 and so the equilibrium
point q4 = (6.6667, 1.3333) is asymptotically stable. However, since c1 is a fuzzy
variable thus q4 is also a fuzzy variable and, as predicted by Theorem3, the

Fig. 1. Projections of the fuzzy solutions of Eq. (6). The white curve represents the
deterministic solution calculated using the expected values of the fuzzy variables xo, yo

and c1. The red curve represents represents the expected value of the fuzzy projections.
(Color figure online)
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expected value of this fuzzy variable is E(q4) = (6.7119, 1.3560). By Theorem 4,
the expected value of the projections of the fuzzy solution of Eq. (6), the red
curves in Fig. 1, converges to E(q4) as the time evolves.

7 Conclusion

In this work we have interpreted the initial condition and parameters of a prey-
predator model as fuzzy variables in which the possibility distribution function
is given by a membership function of fuzzy sets. These fuzzy sets represent a
label acting as a restriction on the values taken by the variables of interest.
As we have shown, this approach leads to different results than the standard
approach in which the uncertainties are handled apart from the dynamical sys-
tem. Finally, we would like to point out that if we see parameters and initial
conditions as possibility distributions functions of fuzzy variables then Zadeh’s
extension of deterministic solutions is the natural way to define fuzzy solutions
for autonomous differential equations.
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Abstract. We present in this paper a mathematical model of the dis-
persion of atmospheric methane that is proposed for the surface of lake
in the region of the Santo Antônio Hydroelectric Dam in the state of
Rondônia of Brazil. The model was elaborated from a general diffusion-
advection-reaction for methane in which the diffusion coefficient was eval-
uated with techniques of fuzzy-logic-based. The numerical approximation
was obtained with the use of the finite element method (FEM) for the
spatial approximations and the Crank-Nicolson method for the tempo-
ral approximations. The approach provided scenarios for the directional
fields of methane fluxes for different time periods and the results suggest
a relation to the location in the reservoir, with flooded biomass, and with
advective components for the dispersion of the gas.

Keywords: Fuzzy FEM · Environmental contamination
Greenhouse gases · Fuzzy biomathematical · Ecological models

1 Introduction

The dynamics of tropical ecosystems has received significant attention consider-
ing the effects that global warming can have on the Amazon, as well as the need
to understand the effects of land cover change, regional bio-geochemical cycles
and the role of tropical terrestrial ecosystems in the carbon balance [4]. Activi-
ties based on natural resource explorations can significantly alter landscapes and
ecosystems, such as energy flows between natural systems. The climatic charac-
teristics of a region can be altered by local development, such as changes in the
hydrological cycle in a hydroelectric project.

The best hydro-power alternatives available are found in the Amazon region,
where 51% of the total hydroelectric potential is concentrated in Brazil, and up to
the year 2000, only 5% of the regional hydroelectric potential was in operation.
The region to be flooded in a hydroelectric reservoir has as a characteristic the
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destruction of part of the native forest, resulting in an increase in the temperature
of the air, causing changes in its capacity to retain water vapor.

In addition to the potential for electricity generation, the Madeira River his-
torically is a natural navigation route that goes back to a prehistoric times,
extended from the first Portuguese flags that ventured through the region and
which today represents an important regional integration route, in the trans-
portation of people and cargo. Therefore, it should be considered that the hydro-
electric potential of Jirau (3,300 MW) and Santo Antônio (3,150 MW) could be
combined with other hydroelectric projects and a combined waterway system
that will allow South American integration, due to its proximity to Bolivia and
Peru, opening spaces for energy infrastructure projects and transport between
the three countries, boosting regional development.

Thus, it is evaluated that a hydroelectric project can produce the alteration
of regional climatic characteristics. The emission of greenhouse gases in the Ama-
zon can generate imbalance in natural ecosystems, altering hydrological cycles
and, among other factors, increase the absorption of the so-called atmospheric
window.

Methane gas in the atmosphere is related to the greenhouse effect, contribut-
ing with about 20% of the observed effect, besides being one of the main sinks of
the radical hydroxyl (OH), thus influencing the oxidizing capacity of the atmo-
sphere. The determinant conditions for the production and release of this gas into
the atmosphere depend on many factors, such as decomposing organic matter,
temperature, pH, among others [4]. The ability to monitor environmental factors
that may generate imbalance for the region becomes a challenge, considering the
dimensions involved and the possible logistics required for implementation.

Almost research on methane in the atmosphere uses observation towers whose
measurements are made only on the vertical axis and assuming a homogeneous
distribution over the surface in the tower region [9,22]. While the researches
using fuzzy models, for the most part, are models applied to reactors for control
mechanisms [17–19].

Considering this context, the implementation of methodologies that can con-
tribute to an understanding of the dynamics of greenhouse gases for the region
becomes relevant. In this sense, we propose this study in which the mathemat-
ical model and numerical codes are presented for computational simulation of
scenario. In addition, due to the uncertainties of parameters that appear in the
model, it was essential to use techniques fuzzy-logic-based [1].

2 Methane Gas in Tropical Reservoirs

Despite the increase in measurements, natural emissions of greenhouse gases in
aquatic environments in the Amazon are still poorly understood [3]. The emission
of methane gas has grown over the years, in a proportion that arouses concern
in the scientific community. Data on the evolution of methane in the atmosphere
can be seen in Fig. 1(a). And in the last 20 years, hydroelectric reservoirs have
been identified as important sources of greenhouse gases. The release of methane
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to the atmosphere occurs due to the action of methanobacteria Archaea, respon-
sible for the decomposition of organic matter to obtain energy [8,21].

(a) Methane emissions, adapted from [13]. riovreseroinôtnA.SehtfognidoolF)b(
in February 2012.

Fig. 1. Methane emission and flooding S. Antônio dam.

We can observe, in Fig. 1(b), organic matter being flooded in February 2012
in the reservoir of the Santo Antônio hydroelectric plant. In aquatic environ-
ments subject to seasonal flooding, the emission of methane by boiling can be
an important source for the atmosphere, and can correspond to up to 90% of
the total emission of this gas [10].

Methane is, after carbon dioxide, the most impacting greenhouse gas, with
an infrared radiation absorption band between 7 and 8 µm of the so-called atmo-
spheric window. In this region of the spectrum, gases with absorption capacity
may have some relation with the radiation balance in the Earth-atmosphere
system, contributing to its imbalance.

Although we have natural sinks, we have observed a surplus of methane gas
emitted in relation to that removed annually, causing an increase in atmospheric
concentration [6,7]. Per molecule, methane is a greenhouse gas 20 times more
effective than carbon dioxide.

The broader analysis of emissions of 5000 lakes consists of only 2% represent
tropical lakes with the majority of carbon dioxide emission studies, neglecting the
effect of CH4 emission. Considering the context above and taking into account
the dimensions of the reservoirs and the variations in water levels throughout
the year, samples taken at specific places in the reservoirs do not have the power
to measure the flow of greenhouse gases such as methane effectively.

The emission of methane into the atmosphere depends on several interacting
factors according to [12], such as climate, texture of surrounding soils, fauna and
flora, land use and also geochemical processes reflect the difference in emissions
between lakes and rivers; the nutrients, where a larger amount of decomposed
organic matter, fixed by photosynthesis, is recycled as carbon dioxide in oxides
and methane under anoxic conditions.
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High primary production may, during the summer, reduce the emission of car-
bon dioxide into the atmosphere by acting as a collector; according to [2] some
of the largest methane fluxes were obtained in eutrophic environments. High
temperature has the potential to increase biological processes, including decom-
position of organic matter by bacteria, which allows the release of methane (CH4)
and carbon dioxide (CO2) into the atmosphere. The atmospheric concentration
of CH4 is controlled by the reaction with hydroxyl radicals in the troposphere
via reaction

CH4 + OH → H20 + CH3

This reaction is largely responsible for the water vapor in the atmosphere; the
measurements of CH4 fluxes can vary with high frequency and are strongly
influenced by external factors such as climatic conditions. Winds and rains mixed
with water can intensify greenhouse gas emissions [20].

Thus, the use of mathematical modeling and an assembly of concepts and
fuzzy systems is justified for a better understanding of the phenomena described
here because they have demonstrated great potential for studies of the modeling
in Ecology [1].

3 Mathematical Model

The modeling of substances such as methane presents the challenge of obtaining
relevant knowledge of the behavior of this gas in the environment and the use of
this knowledge to make the necessary simplifications in the implementation of
the model. Difficulties in obtaining methane measurements in Amazonian regions
are still a challenge, either because of the dimensions involved or because of the
processes by which the gas is produced and emitted to the surface.

The equation used in this paper is well-known as diffusion-advection equa-
tion, which models phenomena related to the dispersion of pollutants in the
aquatic systems and is associated with analyzes in mathematical ecology and
general situations [15]. Taking into account the models proposed by [5,11,14],
an equation adapted for the situation will be presented here. Denote by c(x, y, t)
the concentration of methane at a given position of the domain Ω at a time
t ∈ (0, T ], the proposed problem can be presented in generic form by

∂c(x, y, t)
∂t

= −diffusion − transport − decay + source,

according to [16].
Thus, Eq. 1 represents the mathematical model that describes the phe-

nomenon.

∂c

∂t
= −div(α∇C) − div(

−→
V c) − σc + f(x, y, t), ∀ t ∈ (0, T ] and (x, y) ∈ Ω (1)

In Eq. (1) the term div(α∇c) is representing the diffusion to the environment,
that is the natural scattering due to molecular movements or movements related
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to turbulence, depends on the gas itself in this case, position, time, and tem-
perature; the term div(

−→
V c) models the advective transport, related to external

agents, in this case the transport of methane following the direction given by
the vector of the dominant wind currents, in this approach we are considering
div(

−→
V ) = 0, as a conservative system; the term σc refers to phenomena related

to changes suffered by the gas when reacting with the environment over time,
and the function f(x, y, t) represents the source gas term.

The part of the reservoir that will be considered for the computational sim-
ulations is depicted in Fig. 2.

Fig. 2. The part of the S. Antônio reservoir considered.

Using the representation of Fig. 4, we must now establish the boundary con-
ditions for the problem, which will considered be of the Robin type, in part of
the boundary and of the Neumann type in another part of the border, as follows.

− α
∂c

∂η

∣
∣
∣
∣
Γ3∪Γ4

= βc, (2)

− α
∂c

∂η

∣
∣
∣
∣
Γ1∪Γ2

= 0, (3)

where η is the external unit vector, and the initial condition that will be consid-
ered, for the time t = 0 is given by

c(x, y, 0) = c0(x, y) (4)

This condition represent the initial distribution of methane on the domain
considered, and the Eqs. (1) to (4) that model this phenomenon are denominated
strong or classical formulation. It is important to emphasize that the diffusion
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is variable in relation to the altitude of the polluting source and with the tem-
perature, expected behavior due to the chemical reactions that can occur in the
atmosphere and the variation of air density, for example.

Thus, in this approach to the problem, we need to consider the uncertainty
aspect of the diffusion coefficient (α). Hence, the need to use fuzzy-logic-based
to treatment of this uncertainty.

4 Fuzzy Approach to Diffusion

According to [11,14], effective diffusion has a dependence relation with transport,
so a model based on two inputs, altitude and temperature related to bands of
the vertical layer of the atmosphere is proposed. We will consider that diffusion
increases with increasing temperature and altitude.

The membership for input variable temperature can be observed in Fig. 3(a),
where the choice for the membership functions were for low a gaussian type 1

by f(x) = exp
(

− (x − μ)2

2σ2

)

and [σ, μ] = [8, 4 × 10−16]; for medium a number

fuzzy with parameters [a, b, c] = [10, 28, 46], and for high a gaussian type 2 by

f(x) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if μ1 < x < μ2

exp
(

− (x − μ1)2

2σ2
1

)

if x < μ1

exp
(

− (x − μ2)2

2σ2
2

)

if x > μ2

with parameters [σ1, μ1, σ2, μ2] = [6.5, 52, 8, 62]. The membership functions
for the other input variable altitude can be observed in Fig. 3(b), where the
choice for the membership functions were for low a gaussian type 1 with param-
eters [σ, μ] = [125, 1.5 × 10−14]; for medium a number fuzzy with parame-
ters [a, b, c] = [200, 500, 800], and for high a gaussian type 2 with parameters
[σ1, μ1, σ2, μ2] = [122, 1000, 272, 2080].

(a) Membership functions for the temper-
ature.

(b) Membership functions for the altitude.

Fig. 3. Membership functions for input variables.

The membership functions for the output variable diffusion coefficient
can be observed in Fig. 4(a), where the choice for the membership func-
tions were for low a gaussian type 2 with parameters [σ1, μ1, σ2, μ2] =
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[5 × 10−7, 0, 0.0006, 0.0086]; low medium was fuzzy number with parameters
[a, b, c] = [0.0015, 0.003, 0.0045], medium was fuzzy number with parameters
[a, b, c] = [0.0035, 0.005, 0.0065], high medium was fuzzy number and param-
eters [a, b, c] = [0.0055, 0.007, 0.0085], and high was a gaussian type 2 with
parameters [σ1, μ1, σ2, μ2] = [0.0003, 0.009, 0.002, 0.011].

(a) Membership functions for the diffusion
coefficient (α).

(b) Graphic for the output results by in-
ference and defuzzified output.

Fig. 4. The membership functions for the output variable and the graphic result.

Based on these variables and considering some suggestions of expertise, we
propose the following base rule for the problem.

– If temperature is low ‘and’ altitude is low, ‘then’ the diffusion coefficient is
low.

– If temperature is low ‘and’ altitude is medium, ‘then’ the diffusion coefficient
is low medium.

– If temperature is low ‘and’ altitude is high, ‘then’ the diffusion coefficient is
low medium.

– If temperature is medium ‘and’ altitude is low, ‘then’ the diffusion coefficient
is low medium.

– If temperature is medium ‘and’ altitude is medium, ‘then’ the diffusion
coefficient is medium.

– If temperature is medium ‘and’ altitude is high, ‘then’ the diffusion coeffi-
cient is high medium.

– If temperature is high ‘and’ altitude is low, ‘then’ the diffusion coefficient is
medium.

– If temperature is high ‘and’ altitude is medium, ‘then’ the diffusion coeffi-
cient is high medium.

– If temperature is high ‘and’ altitude is high, ‘then’ the diffusion coefficient
is high.

For the rule base above we use a Mamdani-type fuzzy inference system as the
inference operator, and the centroid method was employed for defuzzification
method (see Fig. 4(b)).
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5 Weak Formulation of the Problem

To obtain the numerical approximation for the solution of the strong formulation
it is necessary to establish the problem in its weak formulation, which consists
of using variational principles defined in convenient metric spaces, whose for-
mulation allows the existence and uniqueness of solution to the problem in its
weak formulation to be obtained. Thus, considering the space of square Lebesgue
integrable function given by

L2(Ω) =
{

ν : Ω → R, com
∫∫

Ω

[ν(x, y)]2dμ < ∞
}

,

and multiplying Eq. (1) by any test function ν and integrating in the sense of
Lebesgue we arrive at Eq. (5) as follows.

∫∫

Ω

∂c

∂t
νdμ − α

∫∫

Ω

Δcνdμ +
∫∫

Ω

∇(
−→
V c)νdμ +

∫∫

Ω

σcνdμ

=
∫∫

Ω

f(x, y, t)νdμ.
(5)

Now, applying Green’s first identity to the diffusive term, we arrive at the weak
formulation of the problem given by Eq. (6).

∫∫

Ω

∂c

∂t
νdμ − α

∫∫

Ω

∇c · ∇νdμ +
∫∫

Ω

∇(
−→
V c)νdμ +

∫∫

Ω

σcνdμ0

= β

∫

∂Γ

cνdγ +
∫∫

Ω

f(x, y, t)νdμ.
(6)

6 Discretization of the Problem

The finite elements method (FEM) applied to this problem requires for the com-
putational simulation, a discretization of the problem for the spatial variables.
The chosen option was triangular elements and linear base functions, better
known as the standard Galerkin method. Using the inner product notation given
by ∫∫

Ω

f(u)g(u)dμ = (f, g)Ω and
∫

Γ

f(u)g(u)dγ = 〈f, g〉Γ ,

the weak formulation becomes Eq. (7).
(

∂c

∂t
, ν

)

Ω

+ α (∇c,∇ν)Ω + Vx

(
∂c

∂x
, ν

)

Ω

+ Vy

(
∂c

∂y
, ν

)

Ω

+ (σc, ν)

= β 〈c, ν〉Γ + (f, ν)Ω

, (7)

where Vx and Vy represent the components given by the projections of the veloc-
ity of wind in each coordinates axes.
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7 Results

The results used routines found in standard computational environments, whose
graphic interface allows facilities in the analysis of the treated phenomena,
besides the use of fuzzy concepts and characteristics. The region of the reservoir
of the hydroelectric dam of Santo Antônio that was considered is closer to the
dam of the reservoir, where we have environmental impact due to the flooding of
nearby regions, thus being a place with potential for high emissions. In order to
obtain the simulations for region 1 of the reservoir in which we adopt a mesh with
257.835 nodes generated through software Gmesh�. We used the parameters in
Table 1, with 2000 iterations, and [0, 48] hours for interval of time, for which we
consider that the diffusion coefficient is constant for an altitude range of 200 m of
the surface and average temperature of 25 ◦C, that resulted by centroid method
for defuzzification the coefficient α = 0.007 km2/h.

Table 1. Value of parameters used in simulation

Parameter Symbol Value Unit

Velocity of wind V 3.6 km/h

Direction of wind θ −3π/4 Radians

Charge of methane met 0.018 µmol/km2/h

Permeability in the border β 0.01 km/h

Decay coefficient σ 1.2 × 10−5 km2/h

Diffusion coefficient α 0.007 km2/h

Figure 5(a) shows the discretization for the part of region of study, named by
Ω domain.

(a) Discretization of Ω domain. (b) The initial distribution of methane
(μmol/km2) on the domain Ω.

Fig. 5. The discretized domain and the initial condition for the simulation.
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Based on these parameters we were able to run the simulation shown in
Fig. 5(b) until Fig. 6(b), where the process of dispersion and increase of methane
concentration is evident.

(a) The distribution of methane
(μmol/km2) on the Ω in t = 12
hours.

(b) The distribution of methane
(μmol/km2) on the Ω in t = 48
hours.

Fig. 6. The distribution of methane on the domain for 2 instances of time.

Figure 7 shows the evolution process for 2 nodes in the domain over time,
for the period of time considered [0, 48], where the first node (206103) has coor-
dinates (x, y) = (21.3373; 21.8410) and second node (224471) has coordinates
(x, y) = (19.1414; 35.2565).

Fig. 7. The evolution process for 2 nodes of the domain in 48 h.
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8 Conclusion

The various scenarios portray the dispersion of methane gas in the atmosphere,
in a two-dimensional domain over the Santo Antônio hydroelectric reservoir, a
complex phenomenon due to difficulties encountered in the advective dynamics,
such as chemical reactions and natural processes, anthropogenic actions, in par-
ticular on the Amazon region. Thus, the scenario presented in the simulation,
considering the dark waters in peripheral regions and amount of flooded biomass
was shown to be consistent with theoretical studies on the gas emission process,
presenting a gradient profile for the central region of the river.

The diffusive coefficient was estimated taking into account fuzzy concepts and
procedures for factors such as temperature and altitude, where it is expected with
the increase of altitude and temperature, allowing for greater diffusion, which is
obtained through the proposed rules bases.

Finally, we believe that this paper brings relevant contributions to the study
of methane dispersion in the Santo Antônio dam region, which has no study
similar to this type until now.
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michael.diniz@ifsp.edu.br

2 Departamento de F́ısica, Qúımica e Matemática,
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Abstract. This paper investigates conditions to solve a fuzzy varia-
tional problem using Zadeh’s extension. The fuzzy problem is obtained
by extending a classical one in the initial condition. The solution to the
problem is a fuzzy bunch of functions (fuzzy set of functions) obtained by
extending the classical solution in the initial condition. For convex func-
tionals the resulting functional value is a fuzzy number that is proved to
be the smallest element in a partial order.

Keywords: Fuzzy variational problem · Zadeh’s extension
Partial order

1 Introduction

Conditions for existence of solutions to variational problems have been exten-
sively explored in the literature (see [7] for instance), but in the fuzzy context
few results are available. As an example, recently, [4] studied fuzzy variational
problems with fuzzy boundary conditions and the Euler-Lagrange conditions
considering differentiability and integrability of fuzzy-number-valued functions.

The variational problem is commonly stated as

min
x∈C(1)[t0,tf ]

J(x) =
∫ tf

t0

F (t, x, ẋ) dt

x(t0) = x0 x(tf ) = xf

(1)

where F is a real function, x0 and xf are real numbers and C(1)[t0, tf ] is the space
of continuously differentiable functions from the closed interval [t0, tf ] to R.

The fuzzy version explored by [4] defines minimization using a partial order.
Also, the author regards x, ẋ and F as fuzzy-number-valued functions with t as
a real variable. Calculation is on α-cuts, generalizing the classical methods, but
taking into account the fuzzy specifics.
c© Springer International Publishing AG, part of Springer Nature 2018
G. A. Barreto and R. Coelho (Eds.): NAFIPS 2018, CCIS 831, pp. 431–438, 2018.
https://doi.org/10.1007/978-3-319-95312-0_37
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The present paper is based on Zadeh’s extension principle: each solution to
problem (1) where the initial condition is in the support of a fuzzy set of initial
conditions x̂0 will be used to build a fuzzy subset of functions. The derivative and
integral of the classical functions will also be extended and, assuming some con-
ditions, the extended functional will take values in fuzzy numbers. We will prove
that the fuzzy subset of functions minimizes the extension of convex functionals
J in x in the same partial order as in [4].

2 Preliminaries

Definitions, notation and results used in this paper are presented in what follows.
Let û be a fuzzy subset of X and denote by μû : X → [0, 1] the membership

function of û. The support of û is the classical set supp û = {x ∈ X : μû(x) > 0}.
The α-levels are defined by [û]α = {x ∈ X |μû(x) ≥ α} for all α ∈ (0, 1] and
[û]0 = supp û.

Definition 1 (See [1]). A fuzzy subset û is a fuzzy number if μû : R → [0, 1]
and

1. all α-levels of û are nonempty, with 0 ≤ α ≤ 1;
2. all α-levels of û are closed intervals of R;
3. supp û = {x ∈ R : μû(x) > 0} is bounded.

The symbol F(R) stands for the set of fuzzy numbers. The α-levels of a fuzzy
number û are closed intervals denoted by [û]α = [uα

L, uα
R].

Definition 2. Let û and v̂ be two fuzzy numbers. The partial order relation �F

is defined as: û �F v̂ if uα
L ≤ vα

L and uα
R ≤ vα

R for all α ∈ [0, 1].

If û �= v̂ and Definition 2 holds we write û ≺F v̂. Usually, the order of
Definition 2 is known as fuzzy-max order.

Definition 3. Let P be a set partially ordered by �. Then

– x is the smallest element of P if x � y, for all y ∈ P .
– x is the minimal element of P if for all y ∈ P , y � x implies y = x.

Definition 4. Let X be a metric space, Ĵ : X → F(R) and x̂∗ ∈ X. The element
x̂∗ is a local minimum of Ĵ on X if Ĵ(x̂∗) �F Ĵ(x̂), for all x̂ in a neighborhood
of x̂∗ in X. If Ĵ(x̂∗) �F Ĵ(x̂), for all x̂ ∈ X, x̂∗ is a global minimum of Ĵ on X.

Note that Ĵ(x̂∗) is the smallest element of the image Im(Ĵ) of X through Ĵ
according Definition 3.

Definition 5 (See [1,8]) (Zadeh’s Extension Principle). Let f : U → Z be a
function and û be a fuzzy subset of U. Zadeh’s extension of f is a function f̂
that maps û to the fuzzy subset f̂(û) of Z with membership function

μf̂(û)(z) =

{
sup

x=f−1(z)

μû(x) if f−1(z) �= ∅
0 if f−1(z) = ∅

where f−1(z) = {x : f(x) = z} is the preimage of z.
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Theorem 1 (See [5]). Let U and V be two Hausdorff spaces and f : U → V be
a function. If f is continuous, then f̂ : FK(U) → FK(V) is well-defined and

[f̂(û)]α = f([û]α) (2)

for all α ∈ [0, 1], where FK(U) denotes the family of all fuzzy subsets of U with
compact and non-empty α-levels.

Definition 6. Let f : [a, b] ⊂ R → R and g : [a, b] ⊂ R → R. The inequality
f(·) ≤ g(·) is said to hold if f(t) ≤ g(t), for all t ∈ [a, b]. If f(·) ≤ g(·) and
f(t∗) < g(t∗) for some t∗ ∈ [a, b] then we write f(·) < g(·).
It is well-known that not all pairs of functions are comparable.

Definition 7. A set of real functions X parameterized by λ is increasing in λ
if λ1 < λ2 implies fλ1(·) ≤ fλ2(·) and it is decreasing in λ if λ1 < λ2 implies
fλ1(·) ≥ fλ2(·) for λ1, λ2 ∈ I, fλ1(·), fλ2(·) ∈ X and I is a real interval.

Definition 8. Let X and Y be two sets of continuous functions that map [a, b]
into R. The distance dcf between X and Y is

dcf (X,Y ) = dH(X,Y ) = max{sup
x∈X

inf
y∈Y

df (x, y), sup
y∈Y

inf
x∈X

df (y, x)}.

where dH is Pompeiu-Hausdorff distance for sets of functions and df is a distance
for functions.

Definition 9. Let X be a function space from [a, b] into R, f̂ ∈ F(X) and ĝ ∈
F(X). The distance d̃cf between f̂ and ĝ is

d̃cf (f̂ , ĝ) = sup
α∈[0,1]

dcf ([f̂(·)]α, [ĝ(·)]α).

Definition 10 (See [2,3]). Let xλ be a real function, continuously parameterized
by λ ∈ [λL, λR] ⊂ R and differentiable for each fixed λ ∈ [λL, λR]. We define the
derivative of the extension of xλ(t) in λ as

dx̂
̂λ(t)
dt

=
d̂x

̂λ(t)
dt

.

where λ ∈ F([λL, λR]) and
d̂x

̂λ(t)
dt

is Zadeh’s extension of
dxλ(t)

dt
in λ.

Similarly, we can define the integral of functions with fuzzy parameters as
follows.

Definition 11 (See [2,3]). Let xλ be a real function, continuously parameterized
by λ ∈ [λL, λR] ⊂ R and integrable for each fixed λ ∈ [λL, λR]. We define the
integral of the extension of xλ(t) in λ as

∫ b

a

x̂
̂λ(t) dt =

∫̂ b

a

x
̂λ(t) dt

where λ ∈ F([λL, λR]) and
∫̂ b

a
x

̂λ(t)dt is Zadeh’s extension of
∫ b

a
xλ(t) dt in λ.
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Theorem 2 (See [7]). Let D be a domain in R
2 and for given a1, b1, set

D = {x ∈ C(1)[a, b] : x(a) = a1, x(b) = b1; (x(t), x′(t)) ∈ D}.

If f(t, x, z) is [strongly] convex on [a, b] × D, then

F (y) =
∫ b

a

f(t, x(t), x′(t))dt

is [strictly] convex on D. Hence each y ∈ D for which

d

dt
fz[x(t)] = fx[x(t)]

on (a, b), minimizes F on D [uniquely].

We define Zadeh’s extension of (1) in the initial condition as a minimization of
the extension in the initial condition of the classical functional in (1) according
to the fuzzy partial order in Definition 2. A solution to this fuzzy variational
problem is a fuzzy set of functions (fuzzy bunch of functions) that solves this
fuzzy minimization problem. The initial condition is a fuzzy number and the
final condition is crisp.

Remark 1. It is well-known that integral is a continuous functional. If F is con-
tinuous in t, x and ẋ, and x and ẋ depends continuously on x0, then the mapping
that takes x0 into J(x) = J(x(·, x0)) is continuous. Hence if x̂0 is a fuzzy number,
the extension Ĵ(x̂(·, x̂0)) is also a fuzzy number [5,6].

3 Results

In what follows, the symbol (XF , d̃cf ) stands for the set of all fuzzy subsets of
functions x̂(t, x̂0) having a continuous mapping from [x̂0]0 to [x̂(·, x̂0)]0 and a
continuous mapping from [x̂0]0 to [̂̇x(·, x̂0)]0 with the metric d̃cf of Definition 9.

Theorem 3. Let

min
x∈C1([t0,tf ])

J(x) =
∫ tf

t0

F (t, x, ẋ) dt

x(t0) = x0 x(tf ) = xf

(3)

such that F is continuous and strongly convex and the solution x∗(·, x0) is con-
tinuous and monotonic in x0 ∈ [xL

0 , xR
0 ]. If the initial condition x0 = x̂0 ∈ F(R)

and Ĵ is obtained via Zadeh’s extension of J then Ĵ(x̂∗) �F Ĵ(x̂) for all
x̂ ∈ (XF , d̃cf ).
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Proof. Remark 1 assures that Ĵ(x̂∗(·, x̂0)) is a fuzzy number and that Ĵ(x̂(·, x̂0))
is also a fuzzy number if x̂ ∈ (XF , d̃cf ). Now we will show that

Ĵ(x̂∗(·, x̂0))α
L ≤ Ĵ(x̂(·, x̂0))α

L (4)

and
Ĵ(x̂∗(·, x̂0))α

R ≤ Ĵ(x̂(·, x̂0))α
R (5)

in order to prove that Ĵ(x̂∗(·, x̂0)) �F J(x̂(·, x̂0)) for all x̂ ∈ (XF , d̃cf ). From
Theorem 1,

Ĵ(x̂∗(·, x̂0))α
L = min[Ĵ(x̂∗(·, x̂0))]α = min J([x̂∗(·, x̂0)]α). (6)

And for any x̂(t, x̂0) ∈ (XF , d̃cf ),

Ĵ(x̂(·, x̂0))α
L = min J([x̂(·, x̂0)]α). (7)

Suppose that the fuzzy bunches of functions x∗(·, x∗
0) and x(·, x0) mini-

mize J([x̂∗(·, x̂0)]α) and J([x̂(·, x̂0)]α). Then x0 ∈ [x̂0]α resulting in x∗(·, x0) ∈
[x̂∗(·, x̂0)]α. As a consequence,

J(x∗(·, x∗
0)) ≤ J(x∗(·, x0)). (8)

Since F is convex, x∗(t, x0) is the (only) global solution to the classical case with
initial condition x0 (see Theorem 2), meaning

J(x∗(·, x0)) ≤ J(x(·, x0))

for all x(·, x0) ∈ C(1)[t0, tf ]. Hence

J(x∗(·, x∗
0)) ≤ J(x∗(·, x0)) ≤ J(x(·, x0)) = Ĵ(x̂(·, x̂0))α

L.

This proves (4).
In order to prove (5), we first write

Ĵ(x̂∗(·, x̂0))α
R = max J([x̂∗(·, x̂0)]α) and Ĵ(x̂(·, x̂0))α

R = max J([x̂(·, x̂0)]α).

Let x∗(·, x∗
0) e x(·, x0) maximize J([x̂∗(·, x̂0)]α) and J([x(·, x̂0)]α). Then x∗(·, x∗

0)
is the global solution to the classical case of minimizing J with initial condition
x∗
0, meaning

J(x∗(·, x∗
0)) ≤ J(x(·, x∗

0)) (9)

for all x(·, x∗
0) ∈ C(1)[t0, tf ]. Since x∗

0 ∈ [x̂0]α, we have x(·, x∗
0) ∈ [x̂(·, x̂0)]α and

J(x∗(·, x∗
0)) ≤ J(x(·, x∗

0)) ≤ J(x(·, x0)) = max J([x̂(·, x̂0)]α) = Ĵ(x̂(·, x̂0))α
R

Then
Ĵ(x̂∗(·, x̂0))α

R ≤ Ĵ(x̂(·, x̂0))α
R

which proves (5).

This result is illustrated in the next section.
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4 Example

Example 1. Consider the following fuzzy variational problem

min
x∈C1[0,2]

J(x) =
∫ 2

0

[x2(t) + 2x(t)ẋ(t) + ẋ2(t)]dt

x̂(0) = x̂0 x (2) = −3

where x̂0 = (−1; 0; 1), i.e., x̂0 is a triangular fuzzy number with [−1, 1] as support
and 0 as core.

Using Euler-Lagrange equation we have the following necessary condition for
optimality:

2x∗(t) − 2ẍ∗(t) = 0

with boundary conditions x(0) = x0 and x (2) = −3. The solution to this bound-
ary value problem is

x∗(t, x0) =
x0 e−2 + 3
e−2 − e2

et − 3 + e2 x0

e−2 − e2
e−t (10)

Its derivative in t is

dx∗(t, x0)
dt

=
x0 e−2 + 3
e−2 − e2

et +
3 + e2 x0

e−2 − e2
e−t.

The solution and its derivative depend continuously on the initial condition x0

for x0 ∈ [−1, 1] = [x̂0]0. Moreover, F is continuous and convex with respect to
all variables, therefore, we conclude by Theorem 3 that x̂∗(·, x̂0) is the solution
of the fuzzy variational problem in XF .

Fig. 1. Fuzzy optimal solution x̂∗(·, x̂0)
and feasible fuzzy solution x̂(·, x̂0) for
x̂0 = (−1; 0; 1).

Fig. 2. Optimal fuzzy functional ̂J(x̂∗)
and perturbation ̂J(x̂).

First Comparison. Let’s compare the optimal solution given by Eq. (10) with
a feasible perturbation given by Eq. (11),

x(t, x0) = −
(

3 + x0

2

)
t + x0. (11)
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Both x̂∗ and x̂ satisfy the boundary conditions x̂(0) = (−1; 0; 1) and x̂
(π

2

)
= 1.

Figure 1 shows the graphics of both functions. Based on Fig. 2 it is possible to
note that Ĵ(x̂∗(·, x̂0) is smaller than Ĵ(x̂(·, x̂0), as expected by Theorem 3.

Second Comparison. Let’s compare the optimal solution given by Eq. (10)
with a feasible perturbation given by Eq. (12),

x(t, x0) =
[(

x0e
−2 + 3

e−2 − e2

)
et −

(
x0e

2 + 3
e−2 − e2

)
e−t

](
sen(10πt)

10
+ 1

)
. (12)

This feasible solution depends on x0 and its derivative is given by Eq. (13) (Figs. 3
and 4),

dx(t, x0)
dt

=
(

x0e
−2 + 3

e−2 − e2

)
et +

(
x0e

2 + 3
e−2 − e2

)
e−t. (13)

Fig. 3. Optimal solution x∗(·, x0) and
feasible solution x(·, x0) for x0 = 0.

Fig. 4. Fuzzy optimal solution x̂∗(·, x0)
and feasible fuzzy solution x̂(·, x0) for
x̂0 = (−1; 0; 1).

Figure 5 illustrates the fact that Ĵ(x̂∗(·, x̂0)) ≺ Ĵ(x̂(·, x̂0)) as was expected
from Theorem 3.

Fig. 5. Membership functions of ̂J(x̂∗(·, x̂0)) and ̂J(x̂(·, x̂0)), illustrating that
̂J(x̂∗(·, x̂0)) ≺ ̂J(x̂(·, x̂0)).
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5 Conclusion

We proposed a fuzzy version with fuzzy initial condition from a classical vari-
ational problem with fixed boundary conditions. To this end, we used Zadeh’s
extension of the solutions in the initial condition and, consequently, the func-
tional was also obtained via extension. The solution was regarded as the resulting
fuzzy bunch of functions that minimizes the fuzzy functional in a partial order.
Convexity assured uniqueness of the classical global solution and provided means
to extending it to a fuzzy bunch of functions. This fuzzy bunch of functions was
proved to minimize the fuzzy-number-valued functional in a partial order. A
quadratic variational problem illustrated the result. The minimum fuzzy value
of the functional, compared to other possible values, provided visual illustration.
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Abstract. This article is devoted to obtaining necessary optimality
conditions for optimization problems with interval-valued objective and
interval inequality constraints. These objective and constraint functions
are obtained from continuous functions by using constrained interval
arithmetic. We give a concept of derivative for this class of interval-
valued functions and we find necessary conditions based on Karush-
Kunh-Tucker theorem in their interval version. We present an example
to illustrate our results.

Keywords: Interval optimization problem
Constrained interval arithmetic

1 Introduction

In mathematical programming models, from a practical point of view, it is usu-
ally difficult to determine the coefficients of an objective function as a real num-
ber since, most often, these possess inherent uncertainty and/or inaccuracy [3].
Given that this is the usual state, we consider interval mathematical program-
ming as one approach to tackle uncertainty and inaccuracies in the objective
function coefficients [4,5,8].

Constrained interval arithmetic (CIA) was introduced in [6]. The idea is to
consider an interval through a constrained parametric representation and operate
via this parametric representation. CIA is the complete implementation of united
extension introduced in [10] and so the interval-valued functions obtained via
CIA preserve the properties of the crisp function.

In this article we consider interval-valued functions obtained from crisp func-
tions applying CIA. We introduce a concept of differentiability for this class of
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functions which is equivalent to the concept of differentiability previously intro-
duced in [1,2]. This concept is based in the constrained parametric representation
of the images of each element of domain which is an interval.

Based in the constrained parametric representation of the image of each
element of the domain we also introduce the concept constraint qualification for
the interval optimization problem. We show that the newly introduced concept
of constraint qualification for the interval optimization problem is important
to obtain the Karush-Kuhn-Tucker theorem in their interval version using the
constrained interval arithmetic.

2 Linear Representation of an Interval and Constrained
Interval Arithmetic

Given a bounded and closed interval A, we denote the extreme points of A by
a and a, where a ≤ a, i.e., A = [a, a]. We denote by I the family of all bounded
and closed intervals,

I = {[a, a] : a ≤ a, a, a ∈ R} .

Lodwick [6,7] was primarily concerned about constrained interval arithmetic
(CIA). This new arithmetic is derived directly from the united extension of [10].
To this end, an interval is redefined into an equivalent form as the real-valued
function of one variable and two coefficients or parameters over the compact
domain [0, 1].

Definition 1. An interval A = [a, a] is the real single-valued function AI(λa)

AI(λa) = (1 − λa)a + λaā, (1)
= waλa + a, 0 ≤ λa ≤ 1.

Here wa = ā − a ≥ 0 is the width of the interval.

Strictly speaking, in (1), since the numbers a and ā (consequently wa) are
known (inputs or data), they are coefficients, whereas λa is varying, although
constrained between 0 and 1. Hence the name “constrained interval arithmetic”.
This means that AI(λa) is a single-valued real function with two coefficients.
Moreover, we write λa to denote the parameter associated to the interval A.

To simplify the notation we will write λ, λ1, λ2, ... to denote the parameters
associate to each interval. So the constrained parametric representation of an
interval A will be (see [1])

A = [a, a] = {a(λ) = waλ + a : λ ∈ [0, 1]} (2)
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The algebraic operations for CIA are defined as follows. Let A = {a(λ1) :
λ1 ∈ [0, 1]} and B = {b(λ2) : λ2 ∈ [0, 1]} two intervals, then

A ∗ B = C

= [c, c̄]
= {a(λ1) ∗ b(λ2) : λ1, λ2 ∈ [0, 1]}
= {c : c = a(λ1) ∗ b(λ2), λ1, λ2 ∈ [0, 1]}

where c = min {c}, c̄ = max {c}, 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1 (3)
and ∗ ∈ {+,−,×,÷}.

It is clear from (3) that constrained interval arithmetic is a constrained global
optimization problem.

Remark 1. From CIA [6] we know that, for dependent operations, we consider
the same constrained parametric representation for the same intervals involved
in the algebraic operations, i.e., A ∗ A = {a(λ) ∗ a(λ) : λ ∈ [0, 1]}, where
∗ ∈ {+,−,×,÷}.

CIA is the complete implementation of the united extension, and possesses
an algebra which has desired properties. For instance A − A = [0, 0] = {0},
A ÷ A = [1, 1] = {1} when 0 /∈ A and possess a distributive law A × (B + C) =
A × B + A × C. For more details of properties of the constrained parametric
representation of an interval and CIA see [6,7].

Several partial order relations on I have been introduced in the literature.
For instance, the usual order relation is �LU defined by (see [4,5,9,11,12]).

A �LU B iff a ≤ b and a ≤ b.

Now considering the constrained parametric representation of an interval we
have the following order relations on I.

Definition 2. For A, B ∈ I we write

(i) A
≺= B iff a(λ) ≤ b(λ), ∀λ ∈ [0, 1];

(ii) A � B iff A
≺= B and A �= B; equivalently

A � B iff a(λ) ≤ b(λ), ∀λ ∈ [0, 1] and there exists λ0 ∈ [0, 1] such that
a(λ0) < b(λ0);

(iii) A ≺ B iff a(λ) < b(λ), ∀λ ∈ [0, 1].

The idea of the previous definition of order is to compare level by level.

3 Interval Valued Function and Differentiability

In this section we uses interval-valued functions F : R → I. Functions which are
generated from a real-valued function considering the parameters as intervals.
For this, we denote by I

k the product space, i.e.,

I
k = I × I × ... × I

︸ ︷︷ ︸

k times

.
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We also denote by Ck a k-uple of k-intervals. That is Ck ∈ I
k, where

Ck = (C1, ..., Ck), Cj = [cj , cj ], j = 1, ..., k.

Since each interval Cj has a constrained parametric representation cj(λj) we can
write the constrained parametric representation of Ck by

Ck =
{

c(λ) : c(λ) = (c1(λ1), ..., ck(λk)) , cj(λj) = (cj − cj)λj + cj ,

λ = (λ1, ..., λk), 0 ≤ λj ≤ 1, j = 1, ..., k} .

Let us consider the function f : R × R
k → R. For each c = (c1, ..., ck) ∈ R

k,
which are parameters involved with function f , we can write fc : R → R. For
instance, fc can represent the objective function of an optimization problem
which has k-parameters (k-coefficient) c1, ..., ck, with cj ∈ R. In the present
article we are going to consider constrained interval arithmetic to obtain FCk

from fc.

Definition 3 ([1]). Let f : R × R
k → R be a function and let c = (c1, ..., ck) ∈

R
k be parameters involved with f . For each k-uple of intervals Ck, we define a

constrained parametric representation of FCk(x) by

FCk(x) =
{

fc(λ)(x) : fc(λ) : R → R, c(λ) ∈ Ck
}

. (4)

Proposition 1. Let f : R × R
k → R be a continuous function in the second

argument c ∈ R
k. Then the interval-valued functions FCk : R → I given by

expression (4) is well defined and

FCk(x) =
[

min
λ∈[0,1]k

fc(λ)(x), max
λ∈[0,1]k

fc(λ)(x)
]

, (5)

for all x ∈ R.

Proof. Since f is a continuous function in the second argument and c(λ) =
(c1(λ1), ..., ck(λk)), with λ = (λ1, ..., λk) ∈ [0, 1]k, is continuous in λ then for
each x fixed fc(λ)(x) is continuous in λ. So we have that minc(λ)∈Ck fc(λ)(x) and
maxc(λ)∈Ck fc(λ)(x) exist and

min
λ∈[0,1]k

fc(λ)(x) = min
c(λ)∈Ck

fc(λ)(x) and max
λ∈[0,1]k

fc(λ)(x) = max
c(λ)∈Ck

fc(λ)(x).

Thus we obtain (5). ��
Example 1. Consider the interval-valued function FC1 : R → I defined by

FC1(x) = [1, 3]x2 − 2x.

Clearly FC1 is obtained from fc(x) = cx2 − 2x by applying (4). In fact, in this
case C1 = [1, 3], c(λ) = 2λ + 1 and the constrained parametric representation of
FC1(x) is given by

FC1(x) =
{

fc(λ)(x) : λ ∈ [0, 1]
}

=
{

(2λ + 1)x2 − 2x : λ ∈ [0, 1]
}

.
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Since fc(λ)(x) is linear in λ, from (5), we have

FC1(x) = [x2 − 2x, 3x2 − 2x] = [1, 3]x2 − 2x.

Next we will give a concept of derivative for an interval-valued function.
This concept is based on the differentiability of each element of the constrained
parametric representation.

Definition 4. Let X ⊂ R be an open set and let FCk : X → I be an interval-
valued function. Suppose that fc(λ) is differentiable at x0 for each λ ∈ [0, 1]k.
Then we define the derivative of FCk at x0, denoted by F

′
Ck(x0), by the con-

strained parametric representation

F
′
Ck(x0) =

{

f
′
c(λ)(x0) : c(λ) ∈ Ck, λ ∈ [0, 1]k

}

.

We say that FCk is differentiable at x0 ∈ X iff F
′
Ck(x0) ∈ I.

Proposition 2. Let X ⊂ R be an open set and let FCk : X → I be an interval-
valued function. Suppose that fc(λ) is differentiable at x0 for each λ ∈ [0, 1]k and
f ′

c(λ)(x0) is continuous at λ. Then FCk is differentiable and

F
′
Ck(x0) =

[

min
λ∈[0,1]k

f ′
c(λ)(x0) , max

λ∈[0,1]k
f ′

c(λ)(x0)
]

. (6)

Proof. Since f ′
c(λ)(x0) is continuous as a function of λ then minλ∈[0,1]k f ′

c(λ)(x0)
and maxλ∈[0,1]k f ′

c(λ)(x0) exist and (6) holds.

4 Interval Optimization Problems with Inequality
Constraints

In this section we consider the following (scalar) interval optimization problem
with interval inequality constraints

(CIO) min FCk(x)
subject to Gi,Cli (x) ≺= 0, i = 1, 2, ...,m

x ∈ X

where FCk , Gi,Cli : X → I are interval-valued functions, every Gi,Cli is a con-
straint of the problem (CIO) and X is a nonempty open subset of R.

A way to interpret a solution for problem (CIO) is to use the partial order
relations given in Definition 2, the constrained parametric representation of an
interval-valued function (4) and we may follow a similar solution concept to the
Pareto optimal solution. For this we denote by Nδ(x∗) the δ-neighborhood of x∗.
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Definition 5. Let x∗ ∈ X.

(i) It is said to be a (local) strict minimum for FCk iff there does not exist
another x ∈ X, x �= x∗, (x ∈ X ∩ Nδ(x∗)) such that FCk(x) ≺= FCk(x∗).

(ii) It is said to be a (local) minimum for FCk iff there does not exist another
x ∈ X, x �= x∗, (x ∈ X ∩ Nδ(x∗)) such that FCk(x) � FCk(x∗).

(iii) It is said to be a (local) weak minimum for FCk iff there does not exist
another x ∈ X, x �= x∗, (x ∈ X ∩ Nδ(x∗)) such that FCk(x) ≺ FCk(x∗).

Lemma 1. If x∗ ∈ X is a strict minimum, then x∗ is a minimum, and conse-
quently x∗ is a weak minimum.

Proof. The proof follows immediately from Definition 5.

Example 2. Let FC1 : R → I be defined, as in the Example 1, by

FC1(x) = [1, 3]x2 − 2x.

In this case, the constrained parametric representation of FC1 is

FC1(x) = {fc(λ)(x) = (2λ + 1)x2 − 2x : λ ∈ [0, 1]}.

Then x∗ = 1 is a strict minimum for FC1 . In fact, if there exists another x ∈ R,
x �= 1, such that FC1(x) ≺= FC1(1) then

fc(λ)(x) ≤ fc(λ)(1), ∀λ ∈ [0, 1];

equivalently, for all λ ∈ [0, 1],

(2λ + 1)x2 − 2x ≤ (2λ + 1) − 2 ⇔ (2λ + 1)(x − 1)(x + 1) ≤ 2(x − 1).

If x > 1 we have, for all λ ∈ [0, 1],

(2λ + 1)(x + 1) ≤ 2 ⇔ x ≤ 2
2λ + 1

− 1 ≤ 1,

which is absurd. In the same way, if x < 1 we have, for all λ ∈ [0, 1],

(2λ + 1)(x + 1) ≥ 2 ⇔ x ≥ 2
2λ + 1

− 1,

so x ≥ 1 which is absurd.

Below, we will consider the conditions that must be satisfied so that a certain
feasible point of the problem (CIO) be optimal. Such conditions, commonly
known as first order conditions, involve the first order interval derivative. We
also present constraint interval versions of well known optimization results.

We denote by

M = {x ∈ X : Gi,Cli (x) ≺= 0, i = 1, 2, ...,m}
the feasible solution set of problem (CIO).
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For simplicity, we define I = {1, 2, ..,m} and for every feasible point x ∈ M
the set of index of the active constraints:

I(x) =
{

i ∈ I : 0 ∈ Gi,Cli (x)
}

.

As in the previous sections, we use the constrained parametric representation
given by (5) for all interval expressions.

Remark 2. We associate to the (CIO) problem its equivalent constrained para-
metric representation given by

(CCIO) min fc(λk)(x)
subject to gi,c(λli )(x) ≤ 0, i = 1, 2, ...,m

x ∈ X,

where λk ∈ [0, 1]k is a vector with k components where each component is related
to its respective component of the interval k-uple Ck, λli ∈ [0, 1]l, li means that
there are l new parameters in the constraint i. fc(λk), gi,c(λli ) : R → R are
assumed to be differentiable functions.

From the Remark 1 it is clear that the coordinates of the parameters c(λk)
and c(λli), i = 1, 2, ...,m will be interdependent, as in the next example.

Example 3. Consider the problem

(CIO1) min [0, 3]x2 + [−1, 2]x + [1, 4]
subject to [0, 3]x + [−2, 0] ≺= 0

[−1, 2]x ≺= 0.

Here

– FC3(x) = [0, 3]x2 + [−1, 2]x + [1, 4];
– G1,C11 (x) = [0, 3]x + [−2, 0];
– G2,C02 (x) = [−1, 2]x.

The interval [0, 3] of the cost function and constraint 1 is interdependent, as
well interval [−1, 2] in the cost function and constraint 2. It follows from (4) and
Remark (1), that:

– fc(λ3)(x) = (0 + 3λ1)x2 + (−1 + 3λ2)x + (1 + 3λ3);
– g1,c(λ11 )(x) = (0 + 3λ1)x + (−2 + 2λ4);
– g2,c(λ02 )(x) = (−1 + 3λ2)x.

with (λ1, λ2, λ3, λ4) ∈ [0, 1]4, consequently the constrained equivalent associated
problem is

(CCIO1) min (0 + 3λ1)x2 + (−1 + 3λ2)x + (1 + 3λ3)
subject to (0 + 3λ1)x + (−2 + 2λ4) ≤ 0,

(−1 + 3λ2)x ≤ 0,

with (λ1, λ2, λ3, λ4) ∈ [0, 1]4.
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5 Necessary Conditions of Interval Optimality

In this section, we will present first order interval conditions so that a feasible
point of (CIO) problem is optimal. For this, we will use the (CCIO) equivalent
problem.

Next, we present a geometrical characterization of local optimality for our
problem (CIO).

Proposition 3. Let FCk , Gi,Cli : X → I, i ∈ I be differentiable interval-valued
functions. If x∗ ∈ M is a local weak minimum of FCk over M , then the system

F ′
Ck(x∗) · d ≺ 0

G′
i,Cli

(x∗) · d ≺ 0, i ∈ I(x∗), (7)

has no solution d ∈ R.

Proof. Let x∗ ∈ M a local weak minimum of (CIO). Suppose by contradiction
that, exist a direction d ∈ R that resolves the system (7). This implies that it
also solves the equivalent constrained parametric representation system below

f ′
c(λk)(x

∗) · d < 0, λk ∈ [0, 1]k

g′
i,c(λli )(x

∗) · d < 0, i ∈ I(x∗) λli ∈ [0, 1]li . (8)

These contradicts the local optimality of x∗ for every λ in the problem (CCIO),
consequently, exist x ∈ M , such that,

fc(λk)(x) < fc(λk)(x
∗), ∀λk ∈ [0, 1]k.

Minimizing and maximizing fc(λk)(x) and fc(λk)(x∗) in λk,

FCk(x) < FCk(x∗)

therefore x ∈ M contradicts the minimality of x∗.

Another important result in optimization is the Fritz John theorem that we
present their interval version next.

Theorem 1. Let x∗ ∈ M be a local weak minimum of (CIO) and FCk , Gi,Cli :
X → I be differentiable interval-valued functions with their constraint parametric
representations continuous in λk and λli , i ∈ I, respectively. Then, there exist
scalars δ0, δi ∈ R, i ∈ I, not all simultaneously zero, such that

0 ∈ δ0 · F ′
Ck(x∗) +

∑

i∈I

δi · G′
i,Cli

(x∗); (9)

δ0, δi ≥ 0, i ∈ I; (10)

0 ∈ δi · Gi,Cli (x∗), i ∈ I. (11)
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Proof. Let x∗ ∈ M , be a weak local minimum of (CIO) problem, consider-
ing Remark 2, x∗ is also solution of (CCIO) for every (λk, λl1 , λl2 , ..., λlm) ∈
[0, 1]k+l1+l2+...+lm . From the differentiability of fc(λk) and gc(λli ), i ∈ I, we have
that there exist δ0, δi, i ∈ I not all nulls, such that

δ0 · f ′
c(λk)(x

∗) +
∑

i∈I

δi · g′
i,c(λli )(x

∗) = 0

δ0, δi ≥ 0, i ∈ I

δi · gi,c(λli )(x
∗) = 0, i ∈ I.

From, continuity of f ′
c(λk)(x

∗) at λk, and continuity of g′
i,c(λli )

(x∗) at λli , ∀i ∈ I

we obtain,

0 ∈ δ0 · [ min
λk∈[0,1]k

f ′
c(λk)(x

∗), max
λk∈[0,1]k

f ′
c(λk)(x

∗)]

+
∑

i∈I

δi · [ min
λk∈[0,1]k

g′
i,c(λli )(x

∗), max
λk∈[0,1]k

g′
i,c(λli )(x

∗)];

δ0, δi ≥ 0, i ∈ I;

0 ∈ δi · [ min
λk∈[0,1]k

gi,c(λli )(x
∗), max

λk∈[0,1]k
gi,c(λli )(x

∗)], i ∈ I.

From the above it follows immediately the desired result.

In the last proof, it is important to note that the multipliers are the same
for all λ = (λk, λl1 , λl2 , ..., λlm) ∈ [0, 1]k+l1+l2+...+lm , consequently they are inde-
pendent of the parameter λ.

As it is well known in classical optimization, Karush-Kuhn-Tucker conditions,
which provides nonzero multiplier associated with the cost function, are obtained
by imposing some constraints qualification. Next we present these type results
in an interval version involving constraint interval arithmetic.

We say that the set {Vi}i∈I of interval elements is independent if for every
λ ∈ [0, 1] the set of vectors {vi(λ)}i∈I is linearly independent.

Definition 6. We say that the (CIO) problem satisfies the constraint qualifi-
cation at x∗ if the set

{

G′
i,Cli

(x∗)
}

i∈I(x∗)
is independent.

Theorem 2. Let x∗ ∈ M be a weak minimum for (CIO), let FCk , Gi,Cli : X → I

be differentiable interval-valued functions with their constraint parametric repre-
sentations continuous in λk and λli , i ∈ I, respectively, and suppose that (CIO)
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problem satisfies the constraint qualification in x∗. Then there exist μi ∈ R, i ∈ I,
such that

0 ∈ F ′
Ck(x∗) +

∑

i∈I

μi · G′
i,Cli

(x∗); (12)

μi ≥ 0, i ∈ I; (13)

0 ∈ μi · Gi,Cli (x∗), i ∈ I. (14)

Proof. From the last theorem, there exist multipliers δ0, δi, (i ∈ I) verifying the
Eqs. (9), (10) and (11). If δ0 = 0, by Eq. (9) we obtain

∑

i∈I δi · g′
i,c(λli )

(x∗) = 0
with δi ≥ 0 and not all zero, which contradicts the constraint qualification. Now
just define

μi =
δi

δ0
, i ∈ I,

and analogously to the last proof we obtain the desired result.

A feasible point x∗ ∈ M for (CIO) problem is called a Karush-Kuhn-Tucker
point if there exists μi ∈ R, i ∈ I verifying the Eqs. (12), (13) and (14).

Example 4. Consider the following (scalar) interval optimization problem

(CIO2) min [1, 3]x2 − 2x

subject to x2 − [ 12 , 3
2 ] ≺= 0,

−x
≺= 0

Let x∗ be an optimal point of our (CIO2) problem, from KKT conditions (The-

orem 2) we can see that x∗ ∈ [ 13 ,
√

1
2 ]. Consequently, for example, if x∗ = 1

3 it

saturates the constraint G1,C11 (I(x∗) = {1}). Since {G′
i,Cli

( 13 )} is independent
the (CIO2) problem satisfies the constraint qualification (Definition 6), and the
interval KKT conditions guarantee the existence of μ1, μ2 ∈ R such that

0 ∈ F ′
Ck(x∗) +

∑

i∈I

μi · G′
i,Cli

(x∗);

μi ≥ 0, i ∈ I;

0 ∈ μi · Gi,Cli (x∗), i ∈ I.

As x∗ does not saturate i = 2, we have μ2 = 0.
Since F ′

Ck( 13 ) = [− 4
3 , 0], G′

1,C11 ( 13 ) = 2
3 and G′

2,C02 ( 13 ) = −1, it is obtained
μ1 = 0.
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6 Conclusions

In this paper we have considered optimization problems with constraints where
the parameters (coefficient) of the objective function and the constraints are
intervals and used the constrained interval arithmetic recently introduced by
Lodwick [6]. And, for the constrained problem, we provided both interval Fritz-
John and interval Karush-Kuhn-Tucker necessary conditions of optimality. For
the Karush-Kuhn-Tucker theorem in their interval version, we use the concept
of constraint qualification in the interval version.
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fuzzy version is given by means of the Kaleva integral and of the order relation
“ĎF” which is an extension of “Ď”. On the other hand, it is well-known that
“Ď” compares only nested intervals. Consequently, the Jensen’s integral inequal-
ities versions given in [6] are applicable only for the class of nested intervals and
for the class of nested fuzzy intervals. Moreover, the Jensen’s integral inequality
versions given in [6] does not extend the classical Jensen’s integral inequality for
real-valued functions.

The main objective of this study is to present interval and fuzzy versions of
Jensen’s integral inequality using order relations that allow us to compare non-
nested intervals as well as non-nested fuzzy intervals, which complement the
versions given in [6] and which extend the classical Jensen’s integral inequality
for real-valued functions. In order to achieve this goal, we use the order relations
given by Ishibuchi and Tanaka [10], which have the desired property, and which
can represent the decision makers’ preference between intervals. The order rela-
tions in the space of fuzzy intervals are constructed level-by-level through the
order relations considered in interval spaces.

This study is organized as follows: Sect. 2 presents some preliminary results
on interval spaces. Section 3 recalls the order relations given in [10] and presents
some definitions of convexity for interval-valued functions that will be useful to
provide the new interval versions of Jensen’s integral inequality in Sect. 4. In
Sect. 5 is presented preliminary results in the space of fuzzy intervals, which are
used in Sect. 6, where the order relations are defined level-wise through the order
relations given in interval spaces, and the concepts of convexity for fuzzy-interval-
valued functions are presented. Section 6 also provides new fuzzy versions of the
Jensen’s integral inequality. Section 7 presents our final considerations.

2 Preliminaries: Interval Space

Consider the space KC of all closed and bounded intervals of real numbers, that
is, KC “ tra, as a, a P R and a ď au, which is called the interval space. Given
A “ ra, as, B “ rb, bs P KC and λ P R, the interval arithmetic operations are
defined by

A`B “ ra, as`“
b, b

‰ “ “
a ` b, a ` b

‰
and λ ¨ ra, as “

#
rλa, λas if λ ě 0,

rλa, λas if λ ă 0.
(1)

Moreover, A “ B if and only if a “ b and a “ b. In this presentation S represents
a non-empty subset of R.

A map F : S Ñ KC such that F ptq “ rfptq, fptqs for all t P S, where
f, f : S Ñ R are real-valued functions with fptq ď fptq for all t P S, it is called
an interval-valued function. The functions f and f are called the lower and
upper functions of F , respectively.

Given the interval-valued functions F,G : S Ñ KC and λ P R, the notation
used for the algebraic operations between interval-valued functions is given by
pF ` Gqptq :“ F ptq ` Gptq and pλ ¨ F qptq :“ λ ¨ F ptq.
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Remark 1 ([6]). Let F : ra, bs Ñ KC be an interval-valued function, with
F ptq “ rfptq, fptqs, where f, f : ra, bs Ñ R. Given a real-valued function
g : S Ñ R such that gpSq Ď ra, bs, then pF ˝ gq means the interval-valued
function pF ˝ gq : S Ñ KC that associates each t P S to the interval pF ˝ gq ptq ““pf ˝ gqptq, pf ˝ gqptq‰ “ “

fpgptqq, fpgptqq‰ P KC .

It is known that the space pKC , dHq, where dHpA,Bq “ maxt|a ´ b|,
|a ´ b|u is the Pompeiu-Hausdorff distance between A “ ra, as, B “ rb, bs P KC ,
it is a complete and separable metric space (see [1,8]). Let Sd be the set of all
accumulation points in S Ď R.

Definition 1 (see [1,8]). Let F : S Ñ KC be an interval-valued function. Then
L P KC is called a limit of F at t0 P Sd if for every ε ą 0 there exists δpε, t0q “
δ ą 0 such that dHpF ptq, Lq ă ε for every t P S with 0 ă |t ´ t0| ă δ. This is
denoted by lim

tÑt0
F ptq “ L.

Theorem 1 (see [1,8]). Let F : S Ñ KC be such that F ptq “ rfptq, fptqs for

all t P S. Given t0 P Sd, it follows that lim
tÑt0

F ptq “
„

lim
tÑt0

fptq, lim
tÑt0

fptq
j

.

Definition 2 (see [1,8]). Let F : S Ñ KC be an interval-valued function. Then
F is said to be dH´continuous at t0 P S if for every ε ą 0 there exists δpε, t0q “
δ ą 0 such that dHpF ptq, Lq ă ε for every t P S with |t ´ t0| ă δ.

An interval-valued function F : ra, bs ÝÑ KC is said to be measurable if and
only if tpt, xq : x P F ptqu P A ˆ B, where A denotes the σ´algebra composed of
all Lebesgue-measurable subsets of R and B denotes the σ´algebra composed of
all Borel-measurable subsets of R. F is said to be integrably bounded on ra, bs
if and only if there exists a Lebesgue-integrable function h : ra, bs ÝÑ r0, `8q
such that |x| ď hptq for all x and t such that x P F ptq.

Given an interval-valued function F : ra, bs ÝÑ KC , the Aumann
integral (pIAq´ integral, for short) of F over ra, bs is defined in [2] by
pIAq şb

a
F ptqdt “

!şb

a
fptqdt : f P SpF q

)
, where SpF q :“ tf P L1pra, bsq : fptq P

F ptq for almost every t P ra, bsu and L1pra, bsq is the space of all functions
f : ra, bs ÝÑ R that are Lebesgue-integrable over ra, bs. We say that the
(IA)-integral of F over ra, bs exists por that F is pIAq-integrable over ra, bsq
if SpF q ‰ H.

Theorem 2 (see [1,8,11]). If an interval-valued function F : ra, bs Ñ KC is
measurable and integrably bounded on ra, bs, then F is pIAq´ integral over ra, bs.
Theorem 3 (see [1,8,11]). Let F : ra, bs ÝÑ KC be such that F ptq “ rfptq, fptqs
for all t P ra, bs. Then F is pIAq´integrable over ra, bs if and only if f and
f belongs to L1pra, bsq. Moreover, if F is pIAq´integrable over ra, bs, then
pIAq şb

a
F ptqdt “

”şb

a
fptqdt,

şb

a
fptqdt

ı
.
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3 Order Relations and Concepts of Convexity
for Interval-Valued Functions

This section recalls some interesting interval order relations for comparing inter-
vals, which represent the decision makers’ preference between intervals. These
order relations are defined by means of upper bound, lower bound, centre and
radius of the intervals. Based on these order relations, concepts of convexity for
interval-valued functions are presented.

3.1 Order Relations on KC

It is attributed to Moore the introduction of (2) and (3) (see [12]). This is why
he is considered the pioneer of the study about interval relations order.

ra, as ăM rb, bs if and only if a ă b, (2)

ra, as Ď rb, bs if and only if b ď a and a ď b. (3)

It is easy to see that “ăM” is a partial order relation that extends the usual
strict order relation “ă” defined on R. From (2), it follows that two intervals
are comparable via “ăM” if and only if they are disjoint. On the other hand,
although “Ď” is a partial order relation that does not extend the usual order
relation “ď” defined on R, from (3) it is clear that two intervals may be com-
parable via “Ď” if they are not disjoint. To be more precise, two intervals are
comparable via“Ď” if and only if one of these intervals is nested in the other.

In order to handle interval minimization and interval maximization problems,
Ishibuchi and Tanaka [10] introduced the following partial order relations that
allow to compare two intervals under different conditions from those given in (2)
and (3). The order relations related with interval maximization problems are:

ra, as ĺLR rb, bs ô a ď b and a ď b (4)

and
ra, as ăLR rb, bs ô ra, as ĺLR rb, bs and ra, as ‰ rb, bs. (5)

Other two order relations suggested by Ishibuchi and Tanaka [10] in order to
deal with maximization problems in which the use of “ĺLR” and/or “ăLR” are
not suitable, are given as:

ra, as ĺCW rb, bs ô a ` a

2
ď b ` b

2
and

a ´ a

2
ě b ´ b

2
(6)

and
ra, as ăCW rb, bs ô ra, as ĺCW rb, bs and ra, as ‰ rb, bs. (7)

By defining the partial order relations “ĺLC” and “ăLC” on KC as

ra, as ĺLC rb, bs ô a ď b and
a ` a

2
ď b ` b

2
(8)
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and
ra, as ăLC rb, bs ô ra, as ĺLR rb, bs and ra, as ‰ rb, bs, (9)

respectively, Ishibuchi and Tanaka [10] proved that, for two given intervals
ra, as, rb, bs P KC , one has that

ra, as ĺLC rb, bs if and only if ra, as ĺLR rb, bs or ra, as ĺCW rb, bs (10)

and

ra, as ăLC rb, bs if and only if ra, as ăLR rb, bs or ra, as ăCW rb, bs. (11)

Ishibuchi and Tanaka [10] also use (4) to handle interval minimization problems,
and in order to deal with maximization problems in which the use of “ĺLR”
and/or “ăLR” are not suitable, they defined the following order relations:

ra, as ĺCW ˚ rb, bs ô a ` a

2
ď b ` b

2
and

a ´ a

2
ď b ´ b

2
(12)

and
ra, as ăCW ˚ rb, bs ô ra, as ĺCW ˚ rb, bs and ra, as ‰ rb, bs. (13)

By defining the partial order relations “ĺRC˚” and “ăRC˚” on KC as

ra, as ĺRC˚ rb, bs ô a ď b and
a ` a

2
ď b ` b

2
(14)

and
ra, as ăRC˚ rb, bs ô ra, as ĺRC˚ rb, bs and ra, as ‰ rb, bs, (15)

respectively, Ishibuchi and Tanaka [10] proved that, for two given intervals
ra, as, rb, bs P KC , one has that

ra, as ĺRC˚ rb, bs if and only if ra, as ĺLR rb, bs or ra, as ĺCW ˚ rb, bs (16)

and

ra, as ăRC˚ rb, bs if and only if ra, as ăLR rb, bs or ra, as ăCW ˚ rb, bs. (17)

In terms of applications, it is the semantics of a problem that indicates which
one of these order relations it is more suitable to deal with such a problem. This
fact has motivated the elaboration of a diversity of mathematical concepts where
each one of them is based on an specific order relation on KC . Here we recall some
convexity concepts for interval-valued functions where each convexity concept is
interpreted through a particular order relation on KC .
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3.2 Convexity for Interval-Valued Functions

In the sequel, some concepts of convexity for interval-valued functions that are
based on the partial order relations “Ď”, “ĺLR”, “ĺCW ”, and “ĺCW ˚” are
presented. Moreover, necessary and sufficient conditions for convexity of interval-
valued functions are provided.

Henceforth S denotes an interval in R and F denotes an interval-valued
function F : S Ñ KC .

Definition 3 (see [6]). F is said to be Ď ´convex if

p1´λqF pt0q`λF pt1q Ď F pp1´λqt0`λt1qq for any t0, t1 P S and λ P r0, 1s. (18)

Definition 4 (see [5]). F is said to be LR´convex if

F pp1 ´ λqt0 ` λt1q ĺLR p1 ´ λqF pt0q ` λF pt1q for any t0, t1 P S and λ P r0, 1s.
(19)

Definition 5. F is said to be CW´convex if

F pp1 ´ λqt0 ` λt1q ĺCW p1 ´ λqF pt0q ` λF pt1q for any t0, t1 P S and λ P r0, 1s.
(20)

Definition 6. F is said to be CW ˚´convex if

F pp1 ´ λqt0 ` λt1q ĺCW ˚ p1 ´ λqF pt0q ` λF pt1q for any t0, t1 P S and λ P r0, 1s.
(21)

It is easy to see that both Definitions 4, 5 and 6 extend the classical concept of
convexity for real-valued functions.

Proposition 1. Given a convex set S Ď R, let F : S Ñ KC be such that
F ptq “ rfptq, fptqs for all t P S. Thus,

(i) F is Ď ´convex if and only if f is convex and f is concave;
(ii) F is LR´convex if and only if f is convex and f is convex;
(iii) F is CW´convex if and only if pf ` fq is convex and pf ´ fq is concave;
(iv) F is CW ˚´convex if and only if pf ` fq and pf ´ fq are convex.

Proof. This result follows directly from Definitions 3, 4, 5 and 6, respectively.

4 Some Jensen’s Inequalities for Interval-Valued
Functions

Recently, using the Ď ´convexity, Costa [6] showed the following result.
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Theorem 4 (Jensen’s Interval Inequality with the Ď ´convexity) ([6]).
Let g : r0, 1s Ñ pa, bq be a Lebesgue-integrable real-valued function. Given a
Ď ´convex interval-valued function F : ra, bs Ñ KC by F ptq “ rfptq, fptqs,
where f, f : ra, bs Ñ R are real functions such that pf ˝ gq and pf ˝ gq are
Lebesgue-integrable over r0, 1s, it follows that

pIAq
ż 1

0

F pgptqqdt Ď F

ˆż 1

0

gptqdt

˙
.

That is, the interval pIAq ş1
0
F pgptqqdt is nested in the interval F

´ş1
0
gptqdt

¯
.

Next we present our interval versions of Jensen’s integral inequality using the
concepts of LR´convexity, CW´convexity, and of CW ˚´convexity. These ver-
sions are interpreted by means of order relations that allow us to compare
non-nested intervals, and consequently, they complement that one given in Theo-
rem 4. Moreover, these inequalities extend the classical Jensen’s integral inequal-
ity for real-valued functions.

Theorem 5 (Jensen’s Interval Inequality with the LR´convexity). Let
g : r0, 1s Ñ pa, bq be a Lebesgue-integrable real-valued function. Given a
LR´convex interval-valued function F : ra, bs Ñ KC by F ptq “ rfptq, fptqs,
where f, f : ra, bs Ñ R are real functions such that pf ˝ gq and pf ˝ gq are
Lebesgue-integrable over r0, 1s, it follows that

F

ˆż 1

0

gptqdt

˙
ĺLR pIAq

ż 1

0

F pgptqqdt. (22)

Proof. Since F is LR´convex, from item piiq in Proposition 1, it follows that f

and f are convex. Thus, from Jensen inequality for convex real-valued functions,
it follows that

f

ˆż 1

0

gptqdt

˙
ď

ż 1

0

fpgptqqdt and f

ˆż 1

0

gptqdt

˙
ď

ż 1

0

fpgptqqdt. (23)

On the other hand, from Remark 1 and Theorem3, it follows that

F

ˆż 1

0

gptqdt

˙
“

„
f

ˆż 1

0

gptqdt

˙
, f

ˆż 1

0

gptqdt

˙j
(24)

and

pIAq
ż 1

0

F pgptqqdt “
„ż 1

0

fpgptqqdt,

ż 1

0

fpgptqqdt

j
. (25)

Therefore, from (23), (24), (25), and from definition of ĺLR, it follows that (22)
holds. [\
Theorem 6 (Jensen’s Interval Inequality with the CW´convexity).
Let g : r0, 1s Ñ pa, bq be a Lebesgue-integrable real-valued function. Given a
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CW´convex interval-valued function F : ra, bs Ñ KC by F ptq “ rfptq, fptqs,
where f, f : ra, bs Ñ R are real functions such that pf ˝ gq and pf ˝ gq are
Lebesgue-integrable over r0, 1s, it follows that

F

ˆż 1

0

gptqdt

˙
ĺCW pIAq

ż 1

0

F pgptqqdt. (26)

Proof. Since F is LR´convex, from item piiq in Proposition 1, it follows that
pf ` fq is convex and pf ´ fq is concave. Thus, from Jensen inequality for

convex and concave real-valued functions, it follows that pf ` fq
´ş1

0
gptqdt

¯
ď

ş1
0
pf ` fqpgptqqdt and

ş1
0
pf ´ fqpgptqqdt ď pf ´ fq

´ş1
0
gptqdt

¯
. Consequently,

f

ˆż 1

0

gptqdt

˙
` f

ˆż 1

0

gptqdt

˙

2
ď

ż 1

0

fpgptqqdt `
ż 1

0

fpgptqqdt

2
(27)

and

f

ˆż 1

0

gptqdt

˙
´ f

ˆż 1

0

gptqdt

˙

2
ě

ż 1

0

fpgptqqdt ´
ż 1

0

fpgptqqdt

2
. (28)

On the other hand, from Remark 1 and Theorem3, it follows that

F

ˆż 1

0

gptqdt

˙
“

„
f

ˆż 1

0

gptqdt

˙
, f

ˆż 1

0

gptqdt

˙j
(29)

and

pIAq
ż 1

0

F pgptqqdt “
„ż 1

0

fpgptqqdt,

ż 1

0

fpgptqqdt

j
. (30)

Therefore, from (28), (29), (27), and from definition of ĺCW , it follows that
(26) holds. [\
Theorem 7 (Jensen’s Interval Inequality with the CW ˚´convexity).
Let g : r0, 1s Ñ pa, bq be a Lebesgue-integrable real-valued function. Given a
CW ˚´convex interval-valued function F : ra, bs Ñ KC by F ptq “ rfptq, fptqs,
where f, f : ra, bs Ñ R are real functions such that pf ˝ gq and pf ˝ gq are
Lebesgue-integrable over r0, 1s, it follows that

F

ˆż 1

0

gptqdt

˙
ĺCW ˚ pIAq

ż 1

0

F pgptqqdt. (31)

Proof. This result is obtained using similar argumentation to that used in the
prove of Theorem6.
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5 Preliminaries: Space of Fuzzy Intervals

This section recalls concepts and results from fuzzy literature used in this pre-
sentation.

Definition 7 (see [3,8]). A fuzzy subset A of R is characterized by a function
ũ : R Ñ r0, 1s called the membership function of A. In general, in order to
simplify the notation, a fuzzy subset A of R is presented as being its membership
function ũ. That is, a fuzzy subset A of R is a function ũ : R Ñ r0, 1s. In this
study this representation is adopted. Moreover, the family of all fuzzy subset of
R is denoted by FpRq.

A fuzzy subset ũ of R is called a real fuzzy interval if it has the following
properties:

(i) ũ is normal, i.e., there exists x̄ P R such that ũpx̄q “ 1;
(ii) ũ is fuzzy convex, i.e., mintũpx1q, ũpx2qu ď ũpλx1`p1´λqx2q for all x1, x2 P

R and for all λ P r0, 1s;
(iii) ũ is upper semicontinuous on R, i.e., given x̄ P R, for every ε ą 0 there

exists δ ą 0 such that ũpxq ´ ũpx̄q ă ε for all x P R with |x ´ x̄| ă δ;
(iv) ũ is compactly supported, i.e., cltx P R : 0 ă ũpxqu is compact, where clpAq

denotes the closure of a classical set A.

The family of all real fuzzy intervals is denoted by FCpRq.
Definition 8 (see [3,8]). Given ũ P FCpRq, the level sets of ũ are given by
rũsα “ tx P R : α ď ũpxqu for all α P p0, 1s and by rũs0 “ cltx P R : 0 ă ũpxqu.
These sets are called the α´level sets of ũ for all α P r0, 1s.
Theorem 8 ([8,13]). ũ P FCpRq if and only if rũsα Ă R is a nonempty, bounded,
and closed interval for each α P r0, 1s.
Theorem 9 ([3,9]). Let u be a fuzzy interval and let rũsα “ ruα, uαs. Then the
functions u, u : r0, 1s Ñ R, defining the endpoints of the α´level sets, satisfy the
following conditions:

(i) upαq “ uα P R is bounded, non-decreasing, left-continuous function on p0, 1s
and it is right-continuous at 0.

(ii) upαq “ uα P R is bounded, non-increasing, left-continuous function on p0, 1s
and it is right-continuous at 0.

(iii) up1q ď up1q.
Theorem 10 ([3,9]). Consider the functions u, u : r0, 1s ÝÑ R satisfying the
following conditions:

(i) upαq “ uα P R is bounded, non-decreasing, left-continuous function on p0, 1s
and it is right-continuous at 0.

(ii) upαq “ uα P R is bounded, non-increasing, left-continuous function on p0, 1s
and it is right-continuous at 0.

(iii) up1q ď up1q.
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Then there is a fuzzy interval ũ P FCpRq such that rũsα “ ruα, uαs for every
α P r0, 1s.
Remark 2 ([6]). Let F̃ : ra, bs Ñ FCpRq be whose α´levels are Fα : ra, bs Ñ KC

such that Fαptq “
”
fαptq, fαptq

ı
with fα, f

α
: ra, bs Ñ R for all α P r0, 1s. From

Theorem 9, it follows that

(I) fpα, tq “ fαptq P R is bounded, non-decreasing, left-continuous function on
p0, 1s and it is right-continuous at 0 with respect to α for all t P ra, bs.

(II) fpα, tq “ f
αptq P R is bounded, non-increasing, left-continuous function on

p0, 1s and it is right-continuous at 0 with respect to α for all t P ra, bs.
(III) fp1, tq ď fp1, tq for all t P ra, bs.
In particular, given a real-valued function g : S Ñ R such that gpSq Ď ra, bs,
we can define the fuzzy-interval-valued function pF̃ ˝ gq : S Ñ FCpRq, which

associates to each t P S the value
´
F̃ ˝ g

¯
ptq P FpRq such that

”´
F̃ ˝ g

¯
ptq

ıα “
pFα ˝gqptq “

”
fαpgptqq, fαpgptqq

ı
P KC for all t P S and for all α P r0, 1s.

´
F̃ ˝ g

¯

is well defined because fpα, tq and fpα, tq satisfy I ´ III for all t P ra, bs. In
particular, it follows that fpα, gptqq and fpα, gptqq satisfy I ´ III for all t P S,

and from Theorem10, it follows that
´
F̃ ˝ g

¯
ptq P FCpRq.

It is well-known that, given λ P R and ũ, ṽ P FCpRq, then the multiplication
by scalar λ d ũ and the multiplication ũ ‘ ṽ are characterized level-wise, respec-
tively, by rλd ũsα “ λ ¨ rũsα and rũ‘ ṽsα “ rũsα ` rṽsα for all α P r0, 1s. Another
well-known fact is that, ũ “ ṽ if and only if rũsα “ rṽsα for all α P r0, 1s.

A fuzzy-interval-valued map F̃ : S Ñ FCpRq is called a fuzzy-interval-
valued function. Given a fuzzy-interval-valued function F̃ : S Ñ FCpRq, the
interval-valued function Fα : S Ñ KC given by Fαptq “ rF̃ ptqsα for all t P S is
called the α´level of F̃ for all α P r0, 1s.
Theorem 11 (see [8,14]). The space FCpRq equipped with the supremum metric,
i.e., d8pũ, ṽq “ sup

αPr0,1s
dH prũsα, rṽsαq , it is a complete metric space.

Definition 9 (see [3,8]). A fuzzy-interval-valued function F̃ : S Ñ FCpRq is
said to be continuous at t0 P S if for any ε ą 0, there exists δpε, t0q “ δ ą 0 such
that d8

´
F̃ ptq, F̃ pt0q

¯
ă ε for all t P S with |t ´ t0| ă δ.

Remark 3 ([6]). A fuzzy-interval-valued function F̃ : ra, bs Ñ FCpRq is said to
be integrably bounded if there exists a Lebesgue-integrable function h : ra, bs Ñ
r0, `8q such that |x| ď hptq for all x and t such that x P F0ptq. A fuzzy-interval-
valued function F̃ : ra, bs Ñ FCpRq is said to be strongly measurable [11] if
and only if its α´levels Fα : ra, bs Ñ KC are measurable for all α P r0, 1s.
This concept is equivalent to the concept of measurability given in [14] and such
equivalence can be obtained through Theorem III-2 and Theorem III-30 given
in [4].
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Definition 10 ([11]). Let F̃ : ra, bs Ñ FCpRq be a fuzzy-interval-valued func-

tion. The integral of F̃ over ra, bs, denoted by pFAq
ż b

a

F̃ ptqdt, it is defined level-

wise by
«

pFAq
ż b

a

F̃ ptqdt

ffα

“ pIAq
ż b

a

Fαptqdt “
#ż b

a

fptqdt : f P S pFαq
+

for all α P r0, 1s. F̃ is pFAq´integrable over ra, bs if pFAq şb

a
F̃ ptqdt P FCpRq.

Theorem 12 ([14]). Given a fuzzy-interval-valued function F̃ : ra, bs Ñ FCpRq,
if F̃ is strongly measurable and integrably bounded, then F̃ is FA´integrable
over ra, bs.

Given the fuzzy-interval-valued function F̃ : ra, bs Ñ FCpRq, whose α´levels
are given by Fα : ra, bs Ñ KC for all α P r0, 1s, if Fα is dH´continuous for all
α P r0, 1s, then from Definition 10 and from Theorem 3, it is follows that F̃ is
FA´integrable over ra, bs.
Theorem 13 (see [8,11]). Let F̃ : ra, bs Ñ FCpRq be the fuzzy-interval-valued
function, whose α´levels Fα : ra, bs Ñ KC are given by Fαptq “

”
f

α
ptq, fαptq

ı

for all t P ra, bs and for all α P r0, 1s. Then F̃ is integrable over ra, bs if and only
if f

α
, fα P SpFαq for all α P r0, 1s. Moreover, if F̃ is FA´integrable over ra, bs,

then
„

pFAq
ż b

a

F̃ ptqdt

jα

“ pIAq
ż b

a

Fαptqdt “
„ż b

a

f
α

ptqdt,

ż b

a

fαptqdt

j
for all α P r0, 1s.

6 Jensen’s Integral Inequalities for Fuzzy-Interval-Valued
Functions

This section presents new versions of Jensen’s integral inequality for fuzzy-
interval-valued functions. To this end, order relations on FCpRq and concepts
of convexity for fuzzy-interval-valued functions are defined as extensions from
those mentioned in Sect. 3.

Henceforth S denotes an interval in R and F̃ denotes a fuzzy-interval-valued
function F̃ : S Ñ FCpRq.

6.1 Order Relations, and Concepts of Convexity for
Fuzzy-Interval-Valued Functions

Given ũ, ṽ P FCpRq, let ĎF , ĺLRF , ĺCWF , ĺCW ˚
F be the relations given on

FCpRq, respectively, by

ũ ĎF ṽ ô rũsα Ď rṽsα @α P r0, 1s, ũ ĺLRF ṽ ô rũsα ĺLR rṽsα @α P r0, 1s,
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ũ ĺCWF ṽ ô rũsα ĺCW rṽsα @α P r0, 1s, and ũ ĺCW F̊ ṽ ô rũsα ĺCW ˚ rṽsα @α P r0, 1s.
Since “Ď”, “ĺLR”, “ĺCW ”, and “ĺCW ˚” are partial order relations on KC , it

follows that ĎF , ĺLRF , ĺCWF , ĺCW ˚
F are partial order relations on FCpRq.

Definition 11 (see [6]). F̃ is said to be ĎF ´convex if

p1 ´ λqF̃ pt0q ` λF̃ pt1q ĎF F̃ pp1 ´ λqt0 ` λt1qq for any t0, t1 P S and λ P r0, 1s.
(32)

Definition 12 (see [5]). F̃ is said to be LRF ´convex if

F̃ pp1 ´ λqt0 ` λt1q ĺLRF p1 ´ λqF̃ pt0q ` λF̃ pt1q for any t0, t1 P S and λ P r0, 1s.
(33)

Definition 13. F̃ is said to be CWF ´convex if

F̃ pp1 ´ λqt0 ` λt1q ĺCWF p1 ´ λqF̃ pt0q ` λF̃ pt1q for any t0, t1 P S and λ P r0, 1s.
(34)

Definition 14. F̃ is said to be CWF̊ ´convex if

F̃ pp1´λqt0 `λt1q ĺCW ˚F p1´λqF̃ pt0q`λF̃ pt1q for any t0, t1 P S and λ P r0, 1s.
(35)

Proposition 2. Let F̃ : S Ñ FCpRq be such that Fα : S Ñ KC is its α´level
for all α P r0, 1s. Thus,
(i) F̃ is ĎF ´convex if and only if Fα is Ď ´convex for all α P r0, 1s.
(ii) F̃ is LRF ´convex if and only if Fα is LR´convex for all α P r0, 1s.
(iii) F̃ is CWF ´convex if and only if Fα is CW´convex for all α P r0, 1s.
(iv) F̃ is CWF̊ ´convex if and only if Fα is CW ˚´convex for all α P r0, 1s.
Proof. This result follows directly from the definitions of “ĎF”, “ĺLRF”,
“ĺCWF”, “ĺCW ˚

F”, and from Definitions 11, 12, 13 and 14, respectively.

6.2 Some Jensen’s Inequalities for Fuzzy-Interval-Valued Function

Recently, using the ĎF ´convexity, Costa [6] showed the following result.

Theorem 14 (Fuzzy Jensen’s Inequality with the ĎF ´convexity) ([6]).
Let g : r0, 1s Ñ pa, bq be a Lesbesgue-integral function. Given a ĎF ´convex
fuzzy-interval-valued function F̃ : ra, bs Ñ FCpRq whose α´levels Fα : ra, bs Ñ
KC are given by Fαptq “

”
f

α
pgptqq, fαpgptqq

ı
, where f

α
, fα : ra, bs Ñ R and

pf
α

˝ gq and pfα ˝ gq are Lebesgue-integrable over r0, 1s for all α P r0, 1s, then

pFAq
ż 1

0

F̃ pgptqqdt ĎF F̃

ˆż 1

0

gptqdt

˙
. (36)
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We now provide our fuzzy versions of Jensen’s integral inequality based on the
LRF´convexity, CWF ´convexity, and on the CWF̊ ´convexity.

Theorem 15 (Fuzzy Jensen’s Inequality with the LRF´convexity). Let
g : r0, 1s Ñ pa, bq be a Lesbesgue-integral function. Given a LRF ´convex fuzzy-
interval-valued function F̃ : ra, bs Ñ FCpRq whose α´levels Fα : ra, bs Ñ KC

are given by Fαptq “
”
f

α
pgptqq, fαpgptqq

ı
, where f

α
, fα : ra, bs Ñ R and pf

α
˝ gq

and pfα ˝ gq are Lebesgue-integrable over r0, 1s for all α P r0, 1s, then

F̃

ˆż 1

0

gptqdt

˙
ĺLRF pFAq

ż 1

0

F̃ pgptqqdt. (37)

Proof. From definition of ĺLRF and definition of pFAq´integral, and from
Remark 2, it follows that (37) holds if and only if

F̃α

ˆż 1

0

gptqdt

˙
ĺLR pIAq

ż 1

0

F̃αpgptqqdt for all α P r0, 1s. (38)

Since F̃ is LRF ´convex, then from item (ii) in Proposition 2, it follows that Fα

is LR´convex for all α P r0, 1s. Then, applying Theorem5 for each α P r0, 1s, it
follows that (38) holds. Therefore, (37) also holds. [\

Using similar argumentation to that used in the proof of Theorem15, one
can obtain easily a proof of the following two results.

Theorem 16 (Fuzzy Jensen’s Inequality with the CWF ´ convexity). Let
g : r0, 1s Ñ pa, bq be a Lesbesgue-integral function. Given a CWF ´convex fuzzy-
interval-valued function F̃ : ra, bs Ñ FCpRq whose α´levels Fα : ra, bs Ñ KC

are given by Fαptq “
”
f

α
pgptqq, fαpgptqq

ı
, where f

α
, fα : ra, bs Ñ R and pf

α
˝ gq

and pfα ˝ gq are Lebesgue-integrable over r0, 1s for all α P r0, 1s, then

F̃

ˆż 1

0

gptqdt

˙
ĺCWF pFAq

ż 1

0

F̃ pgptqqdt. (39)

Theorem 17 (Fuzzy Jensen’s Inequality with the CW ˚
F ´convexity). Let

g : r0, 1s Ñ pa, bq be a Lesbesgue-integral function. Given a CW ˚
F´convex fuzzy-

interval-valued function F̃ : ra, bs Ñ FCpRq whose α´levels Fα : ra, bs Ñ KC

are given by Fαptq “
”
f

α
pgptqq, fαpgptqq

ı
, where f

α
, fα : ra, bs Ñ R and pf

α
˝ gq

and pfα ˝ gq are Lebesgue-integrable over r0, 1s for all α P r0, 1s, then

F̃

ˆż 1

0

gptqdt

˙
ĺCW ˚

F pFAq
ż 1

0

F̃ pgptqqdt. (40)

7 Conclusion

In this presentation we introduce Theorems 5, 6, 7, 15, 16 and 17 that provide
new interval and fuzzy versions of Jensen’s integral inequality. Different from the
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inequalities given in [6], these Jensen’s inequalities are extensions of the classical
Jensen’s integral inequality for real-valued functions, and these inequalities are
interpreted by means of order relations that allow us to compare non-nested
intervals as well as to compare non-nested fuzzy intervals. From analytic view-
point, these inequalities allow one to obtain interval numeric estimations for a
class of integrals of interval-valued function and for a class of integrals of fuzzy-
interval-valued functions (also interpreted as fuzzy interval expected values as
is done by de Barros et al. in [7] and by Puri and Ralescu in [14]) through the
values that the interval integrands and fuzzy integrands assume at real num-
bers, respectively. Our next step is to try to extend these inequalities for fuzzy
functions, that is, for applications of type ˜̃F : FCpRq Ñ FCpRq.
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Campus II - Samambaia, Goiânia, GO 74690-900, Brazil

tuyako@ufg.br

http://www.ime.ufg.br

Abstract. This article provides a survey of the available literature on
Fuzzy Initial Value Problem (FIVP) and various different interpreta-
tions. The fuzzy differential equations can be studied using the deriva-
tive concept or without it. The Malthusian population model with fuzzy
initial condition is used to illustrate the different approaches, namely,
Hukuhara derivative, gh-differentiability, π−derivative and Zadeh’s
extension applied to derivative operator using the differentiability and
differential inclusion theory, Zadeh’s extension principle applied in deter-
ministic solution without derivative concept.

Keywords: FIVP · Differential inclusion · Fuzzy differentiability
Stability · Hukuhara derivative

1 Introduction

The modeling of various phenomenon is frequently made by using deterministic
differential systems

x′(t) = f(t, x(t)); x(0) = x0, (1)

where x(t), x0 ∈ R
n and f : R × R

n → R
n is a function that satisfies some

existence conditions.
In practice, exact knowledge of the initial condition or parameters of (1)

may be unavailable, or difficult to obtain. Generally, their values are imprecise
because they are either approximately known, or result from observations prone
to error. As Rouvray [44], “all scientific pronouncements have some inherent
uncertainty about them and cannot be assumed to be strictly valid”. A way
to address imprecise initial conditions is to rewrite (1) as Fuzzy Initial Value
Problem (FIVP)

x′(t) = f(t, x(t)); X(0) = X0,

where X0 ∈ F(R) and f : [0, T ] × F(Rn) → F(Rn) with x(t) ∈ F(Rn) or
f : [0, T ] × R

n → F(Rn) for x(t) ∈ R
n.

c© Springer International Publishing AG, part of Springer Nature 2018
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Uncertainty was formally admitted into sciences about four centuries ago
and since then the modeling has been dominated by stochastic methods. In the
1930’s, differential inclusions theory was introduced by the Polish and French
mathematicians Zaremba [47] and Marchaud [31] as a generalization of differ-
ential equations by considering the uncertainty in direction the vector velocity.
They studied the so-called paratingent and contingent equations, respectively.
In 1962, Wazewski [48] proved that the solutions can be understood in the
Caratheodory sense of absolute continuity satisfying the differential inclusion
almost everywhere for all time.

Fuzzy set and possibility theory are notions that have introduced recently.
Interval analysis and fuzzy set theory emerged in 1959 and 1965, respectively
with Moore [34] and Zadeh [46]. Subsequently in [29] was proposed the study of
the interval theory using Constraint Interval Arithmetic (CIA). According with
Lodwick and Dubois [30] interval analysis is not only useful but necessary to
the understanding of fuzzy interval analysis especially in the context of linear
systems.

The initial value problem is discussed in [41] and a comprehensive overview
of the computational aspects are given in [12]. Differential inclusion in the frame-
work of fuzzy set theory was first discussed by Baidosov [4] as follows:

x′(t) ∈ F (t, x(t)),

where the right side is a fuzzy multivalued function. Alternatively, Aubin [1]
assumes taht the right side of differential inclusion is a fuzzy set. Hullermeier
[18] has suggests to solve the FIVP looking at it as a family of differential
inclusions.

The term fuzzy differential equation was introduced in 1978 by Kandel and
Byatt [22] and an extended version of this short note was published two years
later [23]. The concept of differentiability and integrability for fuzzy multivalued
were introduced by Puri and Ralescu [39]. The Cauchy problem for first-order
fuzzy differential equation was investigated by Kaleva [21], Seikkala [45], Ouyang
and Wu [37] using a extension of Hukuhara derivative.

Fuzzy differential equations can be studied from a point of view discrete
[2,27,28,42,43] or continuous [7,15,21,22,45]. In the continuous case we have
two different approaches: in the first one without the derivative concept by differ-
ential inclusion theory [13,14] or Zadeh’s extension principle [8,33]; in the second
case, the differentiability is considered, Hukuhara derivative [21], π−derivative
[9], gh-differentiability [6], extension in derivative operator [17]. The spaces of
all closed and bounded interval of R are not linear spaces and therefore the
subtraction is not well defined. As a consequence, alternative formulations for
subtraction have been suggested and so on there are different definitions for the
differentiability in a fuzzy differential equation. The concept of fuzzy derivative,
leads the connection between interval and fuzzy theories. By considering the
generalized derivative some authors obtained both the solution to linear interval
systems and to fuzzy differential equations. Another point of view is the dynamic
systems obtained by means of a Mamdani type fuzzy rule-based system [19,38].
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Oberguggenberger and Pittshmann [20,36] studied differential equations system
with fuzzy parameter by applying the Zadeh’s extension in equations and solu-
tion operators. Finally, fuzzy periodic solutions were studied in [10,11,14,35].

We consider the Fuzzy Initial Value Problem, in particular one dimensional
Malthusian model to concretize our review of the different approaches to solution
and stability of fuzzy differential equations.

2 Basic Concepts

First of all, we provide some notation and recall known results.
We denote by Kn the family of all the nonempty compact subsets of Rn. For

A,B ∈ Kn and λ ∈ R the operations of addition and scalar multiplication are
defined by

rA + B = {a + b| a ∈ A, b ∈ B} λA = {λa | a ∈ A} .

Let X be metric space. A fuzzy subset U of X is given by a mapping μU :
X → [0, 1] such that the set of ordered pairs (x, μU (x)), x ∈ X indicates the
degree of each x in U. The degrees 0 and 1 represent, respectively, the non-
belonging and the maximum belonging of x to fuzzy subset U . To simplify the
notation we indicate the membership function μU by U.

Let U be a fuzzy set in R
n, the n-dimensional Euclidian space, we define

[U ]α = {x ∈ R
n/ U(x) ≥ α} the α-level of U , with 0 < α ≤ 1. For α = 0 we

have [U ]0 = supp(U) = {x ∈ Rn | U(x) > 0}, the support of U .
A fuzzy set U is called compact if [U ]α ∈ Kn, ∀α ∈ [0, 1]. We will denote by

F(Rn) the space of all the compact fuzzy sets whose α−level are compact and
connected set in R

n.
The operations of addition and scalar multiplication on F(Rn) for all

α−levels are defined by

[U + V ]α = [U ]α + [V ]α; and [λU ]α = λ[U ]α, ∀α ∈ [0, 1]. (2)

The metric on F(U) is given by

d∞(U, V ) = sup
0≤α≤1

dH([U ]α, [V ]α),

where dH is the usual Pompieu-Hausdorff metric defined for compact subsets of
R

n. This metric turns the space (F(R), d∞) into a complete metric space [40].
Zadeh [46] proposed the so called extension principle [5], which became an

important tool in fuzzy set theory. The idea is that each function, f : X → Y,
induces a corresponding function ̂f : F(X) → F(Y ) (i.e., ̂f is a function mapping
fuzzy sets in X to fuzzy sets in Y ) defined for each fuzzy set U in X by

̂f(U)(y) =

{

sup
u∈f−1(y)

U(u), if f−1(y) �= ∅
0, if f−1(y) = ∅.

(3)
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The function ̂f is said to be obtained from f by the extension principle.
An important result of extension principle is the characterization of the levels

of the image of a fuzzy set through ̂f , where f is a continuous function.

Theorem 1 [2]. If f : R
n −→ R

n is continuous, then the Zadeh’s extension
̂f : F(Rn) −→ F(Rn) is well-defined and

[

̂f(U)
]α

= f([U ]α),∀α ∈ [0, 1]. (4)

Relation (4) continues to be valid if f : W → R
n, and W is an open subset

in R
n. Moreover, according to Román-Flores et al. [42] it was shown that ̂f is

a continuous function with respect to Pompieu-Hausdorff metric extended to
F(Rn).

Let us consider the following differential inclusion,
{

x′(t) ∈ F (t, x(t))
x(t0) = x0 ∈ X0

(5)

where F : [t0, T ] × R
n → Kn is a set-valued function and X0 ∈ Kn.

A function x(t, x0) with the initial condition x0 ∈ X0 is a solution of (5) in
interval [t0, T ] if it is absolutely continuous and satisfies (5) for all t ∈ [t0, T ],
(for more details, see [1]). The attainable set in time t ∈ [t0, T ], associated with
problem (5), is the subset of Rn given by

At(X0) = {x(t, x0) / x(·, x0) is solution of (5) with x0 ∈ X0}.

The set-valued function F allows modeling of certain types of uncertainty [26]
and because for each pair (t, x) ∈ [t0, T ] ×R

n, the derivative may not be known
precisely, but known to be an element of the set F (t, x).

The following presents a survey of Fuzzy Initial Value Problems (FIVP) con-
sidering differential inclusion, extension principle and fuzzy differentiability.

3 FIVP and Some Interpretations

Consider the FIVP
{

X ′(t) = f(t,X(t))
X(0) = X0.

(6)

To study the stability of solutions of (6) we need to understand what is a solution
of (6).

We consider the deterministic Malthusian problem
{

x′(t) = −ax(t)
x(0) = x0.

, (7)

where 0 < a ∈ R and x : [0, T ] × R → R to illustrate the different approach to
fuzzy differential equations.
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3.1 FIVP with Differentiability

In this section we consider the problem 6 where is a fuzzy function f that indi-
cates a fuzzy direction and the trajectory for FIVP are or different deterministic
solutions with a membership degree to each of them or a function that assigns
to each instant t ∈ [0, T ] a fuzzy subset.

First Approach: The first interpretation about (6) appears in 1987 with
Seikkala and Kaleva using the Hukuhara derivative. In this interpretation,
̂f : [0, T ] × F(Rn) → F(Rn),X0 ∈ F(Rn) and the solution is a fuzzy-set-
valued function X : [0, T ] → F(Rn). Next, we present the concept established
by Seikkala [45] for F(R), which was used by author to rewrite problem (6) from
the one dimensional case into a bidimensional system of ordinary differential
equations.

Definition 1. Let I = [0, T ], T ∈ R+ be a real interval. The application X :
I −→ F(R) is called a fuzzy process. We denoted [X(t)]α = [xα

1 (t), xα
2 (t)], t ∈

I, α ∈ [0, 1]. The derivative X ′(t) of a fuzzy process X is defined by [X ′(t)]α =
[(xα

1 (t))′, (xα
2 (t))′], 0 < α ≤ 1 provided that the equation defines a fuzzy number

X ′(t) ∈ F(R).

Let [X(t)]α = [xα
1 (t), xα

2 (t)] and f : [0, T ] × F(R) → F(R) is a continuous
mapping. Applying the Zadeh’s extension principle to f , (6) in the one dimen-
sional case can be rewritten as:

{

(xα
1 )′(t) = f1(xα

1 , xα
2 ), xα

1 (0) = xα
01

(xα
2 )′(t) = f2(xα

1 , xα
2 ), xα

2 (0) = xα
02,

(8)

for t ∈ [0, T ) e α ∈ [0, 1], where
{

f1(xα
1 , xα

2 ) = min{f(x)/x ∈ [X]α}
f2(xα

1 , xα
2 ) = max{f(x)/x ∈ [X]α}.

Note that the fuzzy problem has been reduced to an initial value problem in R
2.

Example 1. [3]: Suppose the size a population occurs in accordance the law of
Malthusian growth. Then, FIVP associated to (7) is given by:

{

X ′(t) = −aX(t)
X(0) = X0,

(9)

where X(t),X0 ∈ F(R) , 0 < a ∈ R and the α−levels of X(t) are given by
[X]α = [xα

1 , xα
2 ].

Using the Hukuhara derivative it follows that: [X ′(t)]α = [(xα
1 )′(t),

(xα
2 )′(t)], α ∈ [0, 1], t ∈ [0, T ]. By Zadeh’s extension principle we have that

f(t,X(t)) = −aX(t) such that the α−levels are:
[f(t,X(t))]α = [min{−axα

1 (t),−axα
2 (t)},max{−axα

1 (t),−axα
2 (t)}],∀α ∈

[0, 1], t ∈ [0, T ].
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Thus for a > 0
⎧

⎨

⎩

(xα
1 )′(t) = −axα

2 (t)
(xα

2 )′(t) = −axα
1 (t)

xα
1 (0) = xα

01, x
α
2 (0) = xα

02 , α ∈ [0, 1].
(10)

The solutions of (10) are given by
⎧

⎪

⎨

⎪

⎩

xα
1 (t) =

1
2

(xα
01 − xα

02) eat +
(

1
2
xα
01 + xα

02

)

e−at

xα
2 (t) = +

1
2

(−xα
01 + xα

02) eat +
1
2

(xα
01 + xα

02) e−at

(11)

Therefore, the solution X(t) of (9) has α−levels given by (11) for a ≥ 0.
Then, diam(xα

1 (t), xα
2 (t)) = |xα

01 − xα
02|eat,∀α ∈ [0, 1], t > 0.

This means that, the solution is more fuzzy when t is increasing, implying
that we do not have the stability condition that we had in deterministic theory.

Then, we consider another type of differentiability in (6) because the
Hukuhara derivative leads to solutions with increasing support. A complete
review about as type of differentiability of fuzzy multivalued as compared solu-
tions of fuzzy differential equations can be found in [16].

Second Approach: Strongly generalized differentiability was defined by con-
sidering the lateral Hukuhara derivative (four cases) and a generalization is given
in [6], which is called weakly generalized differentiable. The advantage these def-
initions is that if g is differentiable on (a, b), then f : (a, b) → F(R) such that
f(x) = c 	 g(x),∀x ∈ (a, b) is the strongly generalized differentiable on (a, b)
and f ′(x) = c 	 g′(x). In this context the fuzzy differential equation has no
unique solution but we can choose among the solutions to find one solution with
increasing or decreasing support. This feature allow us to choose singular points
where the solutions change monotonicity, such points are called switch points.

From Theorem 4.2.4 in [17], the problem (6) on some interval [t0, t0 + k]
with X(t),X(t0) ∈ F(R) is the union of the following two ordinary differential
equations:

⎧

⎨

⎩

(xα
1 (t))′ = fα

1 (t, xα
1 , xα

2 )
(xα

2 (t))′ = fα
2 (t, xα

1 , xα
2 )

xα
1 (t0) = xα

01, x
α
2 (t0) = xα

02

(12)

⎧

⎨

⎩

(xα
1 (t))′ = fα

2 (t, xα
1 , xα

2 )
(xα

2 (t))′ = fα
1 (t, xα

1 , xα
2 )

xα
1 (t0) = xα

01, x
α
2 (t0) = xα

02,
(13)

where were considered the following α−levels [X(t0)]α = [xα
01, x

α
02], [X(t)]α =

[xα
1 , xα

2 ], [f(t,X(t))]α = [fα
1 (t, xα

1 , xα
2 ), fα

2 (t, xα
1 , xα

2 )] , α ∈ [0, 1].

Third Approach: Chalco-Cano et al. [9] studied fuzzy differential equations
using the π−derivative.The spaces of all closed and bounded interval of R

by using the Radstrø̈m Embedding Theorem guarantee the existence of a
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real normed linear space [9]. The π-derivative for fuzzy interval valued func-
tions is a generalization of π−derivative for set-valued mappings. The map-
ping X : [a, b] → F(R) is called a fuzzy function and [X(t)]α = Xα(t) =
[fα(t), gα(t)], t ∈ [a, b], 0 ≤ α ≤ 1. In this context, we have in (6)
that f : [0, T ] × F(R → F(R is a continuos function and X0 ∈ F(R). A
solution in this case is a fuzzy function x : [0, T ] → F(R which satisfies
the FIVP for each t ∈ [0, T ]. Then, if [X(t)]α = [xα

1 (t), xα
2 (t)], [X(t0)]α =

[xα
01(t), x

α
02(t)], [f(t,X(t))]α =

[fα
1 (t, xα

1 (t), xα
2 (t)), fα

2 (t, xα
1 (t), xα

2 (t))] such that π([X(t)]α) = (xα
1 (t), xα

2 (t) −
xα
1 (t) = δα(t)), π([X(t0)]α) = (xα

01(t), x
α
02(t) − xα

01(t) = δα
0 (t)) and

π([f(t,X(t))]α) = (gα
1 (t, xα

1 (t), δα(t)), gα
2 (t, xα

1 (t), δα(t))). Thus (6) is equivalent
to solving

(xα
1 )′(t) = gα

1 (t, xα
1 (t), δα(t))

(xα
2 )′(t) = gα

2 (t, xα
1 (t), δα(t)) . (14)

whose solution is [xα
1 (t), xα

1 (t) + δα(t)], if δα(t) > 0 and [xα
1 (t) + δα(t), xα

1 (t)], if
δα(t) < 0.

Fourth Approach: Actually, Gomes and Barros [16,17] studied (6) by con-
sidering that f is a function that indicates the direction of stable variable X
in a time t using extended derivative operator ̂D. This approach is not equiva-
lent to any another considered because as ̂D is a fuzzy derivative, then we can
to consider as Hukuhara derivative as strongly generalized derivative. Besides,
provided some conditions it is possible to obtain the same solution via differen-
tial inclusion theory and Zadeh’s extension of the deterministic solution. In this
context, the FIVP (6) becomes

{

̂DX(t) = f(t,X(t))
X(0) = X0,X0, ̂DX(t) ∈ F(Rn).

(15)

Gomes et al. [16] proved that if f is continuous and has an unique solution
in deterministic autonomous IVP then the solution obtained via extension of
deterministic solution and ̂D−derivative is the same. Besides, in some conditions
for f and X0 the FIVP has at least two solutions.

Example 2. Considering the problem (9) for a > 0 in context of the strong
generalized differentiability we have that (12) is the same that (10) in according
with Hukuhara differentiable solution. Now, for (13) we have

⎧

⎨

⎩

(xα
1 (t))′ = −axα

1 (t)
(xα

2 (t))′ = −axα
2 (t)

xα
1 (t0) = xα

01, x
α
2 (t0) = xα

02,
(16)

whose solution is xα
1 (t) = xα

01e
−at, xα

2 (t) = xα
02e

−at such that lim
t→+∞ xα

1 (t) =

lim
t→+∞ xα

2 (t) = 0.



Fuzzy Initial Value Problem: A Short Survey 471

Now, by considering the π−derivative, the solution for FIVP (9) with the
initial condition being a fuzzy number whose α−levels are given by [xα

01, x
α
01] is

(xα
1 )′(t) = −axα

1 (t)
(δα)′(t) = −aδα(t))
xα
10(t0) = xα

01, δ
α(t) = xα

02 − xα
01

. (17)

with solution [X(t)]α = [xα
01e

−at, xα
01e

−at].
Finally, the solution of (10) via the interpretation of (6) considering the

extended derivative operator is
[ ̂DX(.)]α = D[X(.)]α = {Dx(.) : x(t) = x0e

−at, x0 ∈ [X0]α} = {ax(.) :
X(t) = x0e

−at, x0 ∈ [X0]α} = [aX(.)]α.
Therefore, in all this cases the diameter of solutions are decreasing.

3.2 FIVP Without Differentiability

In this section we study FIVP without the derivative concept. We consider uncer-
tainties in modelling(coefficient and/or initial condition) via IVP with fuzzy ini-
tial condition. The preference less or more about the trajectories are considered
by the value of its membership degrees. For each α− level of fuzzy initial condi-
tion we have a family of trajectories with the same membership degree.

First Approach: The interpretation for (6) is considering a family of differential
inclusions. Hüllermeier [18] proposal that (6), where f : [0, T ]×R

n −→ F(Rn) is
a fuzzy multivalued and X0 ∈ F(Rn), can be rewritten as a family of differential
inclusions

{

x′(t) ∈ [f(t, x(t))]α

x(0) ∈ [X0]α,
(18)

where [f(t, x(t))]α e [X0]α are the α−levels of the fuzzy subsets f(t, x(t)) and X0,
respectively and x : I −→ R

n. For each α ∈ [0, 1], we say that x : [t0, T ] −→ R
n,

is an α-solution of (6) if it is a solution of (5). We will denote by At([X0]α) := Aα
t ,

t0 ≤ t ≤ T, the attainable set of the α-solutions, that is,

Aα
t = At([X0]α) = {x(t, x0) / x(., x0) is solution of (5) with x0 ∈ [X0]α}.

According Gomes [17], the solution is a fuzzy bunch of functions X(t) ∈
F(AC([0, t];Rn)) whose elements satisfy (18) a.e. in [0, t]. But, here we don’t
have the fuzzy derivative concept in equations of (6).

Diamond, in [13], uses the Representation Theorem to prove that Aα
t are

the α-levels of a fuzzy set At(X0) in R
n for all t0 ≤ t ≤ T . The fuzzy set

At(X0) will be said to be the attainable set of problem (6). In [14] the author
studied Lyapunov stability and periodicity of the fuzzy solution set for both the
time-dependent and autonomous case.

Second Approach: Oberguggenberger and Pittschmann [36] studied (6) when
the coefficients and initial conditions are fuzzy subsets. The authors define the
equation, restriction and solution for

{

x′(t) = f(x)
x(0) = x0, x0 ∈ R

n,
(19)
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and apply the Zadeh’s extension principle in operator to obtain a solution for
(6). In addition, they establish in formal way the concepts for fuzzy solution
and fuzzy componentwise solution. Also, in this interpretation we don’t have
the fuzzy derivative concept and f : [0, T ] × R

n → F(Rn) was obtained from a
continuous function g : [0, T ]×X → R

n by applying Zadeh’s extension principle
and X0 ∈ F(Rn).

Buckley et al. [8] in similar way to idea of Oberguggenberger and Pittschmann
also obtained solutions for (6) by fuzzifying the deterministic solution using the
Zadeh’s extension principle.

Mizukoshi et al. [33] was prove that the solution obtained via family of differ-
ential inclusions for (6) and the solution via Zadeh’s extension principle of deter-
ministic solution is equivalent in some conditions. In the context of Mizukoshi
et al., if the coefficients and/or initial condition are fuzzy subsets then ̂X(t,X0)
is a solution for (6) by applying the Zadeh’s extension principle in deterministic
solution. The point of view in [32,33] was that if the solutions satisfy the concept
of flow, then we can to stablish results equilibrium and stability (for more details
see [32]).

Let ϕt(x0) be the solution (unique) of (19) for each x0 in time t, defined
on its maximal interval of existence I(x0). For each t ∈ I(x0), the family of
mappings ϕt : X −→ X defined by ϕt(x0) = ϕ(t, x0) such that ϕ0 = I, where
I is the identity mapping on X and ϕt+s = ϕt ◦ ϕs, t, s ∈ R

+, where “◦” is the
composition operation.

The mapping ϕ̂t : F(X) → F(X) obtained by applying the Zadeh’s extension
principle on the initial condition in ϕt : X → X is a fuzzy flow for (6).

Recall that X̄ ∈ F(X) is a fuzzy equilibrium for the FIVP if ϕ̂t(X̄) = X̄,∀t ≥
0 or equivalentely, ϕ̂t(X̄)]α = [X̄]α,∀α ∈ [0, 1].

Let X̄ be an equilibrium point of the FIVP (6). We say that,

(a) X̄ is stable if and only if for all ε > 0, there is a δ > 0, such that, for every
X ∈ F(Rn) with D(X, X̄) < δ, then D(ϕ̂t(X), X̄) < ε,∀t ≥ 0.

(b) X̄ is asymptotically stable if it is stable and, in addition, ∃r > 0 such that
lim

t→+∞ D(ϕ̂t(X), X̄) = 0, for all X satisfying D(X, X̄) < r.

Example 3. Consider the fuzzy Malthusian problem
{

x′(t) = ax(t)
x(0) = X0,

(20)

where X0 ∈ F(R), a, x(t) ∈ R.
In according Hullermeier’s interpretation, the FIVP (9) is the following family

of differential inclusions:
{

X ′(t) ∈ [−aX(t)]α

X(0) ∈ [X0(t)]α
(21)

where X : [0, T ] × R → F(R) and X0 is a a fuzzy number.
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The α−levels are given by [X]α = [xα
1 , xα

2 ] and [X(0)]α = [xα
01, x

α
02], in such

way (21) is given as
{

[X ′(t)]α ∈ [−axα
1 ,−axα

2 ]
(

[X(0)]
)α ∈ [xα

01, x
α
02]

, 0 ≤ α ≤ 1. (22)

Then, for (22) we have that the solution set is the attainable set give by level
sets:

S([X(0)]α, τ) = {x(.) : x(t) ∈ [xα
01e

−at, xα
02e

−at], 0 ≤ t ≤ τ} and
A([X(0)]α, t) = [xα

01e
−at, xα

02e
−at].

Note that for a > 0, the diameter is decreasing.
According Mizukoshi et al. to obtain the solution for (20), firstly we consider

the deterministic solution of (7), x(t) = x0e
at. If the initial condition is a fuzzy

number whose α−levels are [X(0)]α = [xα
01, x

α
02], then the solution for (7) with

fuzzy initial condition is given by [X(t)]α = [X0e
at]α = [xα

01e
at, xα

02e
at]. By

definition we have that the α−levels of the flow of (20) with fuzzy initial condition
are given by [ϕ̂t(X0)]

α = ϕt ([X0]α) = [xα
01e

−at, xα
02e

−at].
Then, the fuzzy equilibrium is obtained from equality ϕt(X0) = X0, i. e.,

ϕt ([X0]α) = [X0]α. From [xα
01e

−at, xα
02e

−at] = [xα
01, x

α
02],∀t ≥ 0, if xα

01 = xα
02 =

0. That is χ{0} is an equilibrium for (20). Moreover, in [32] is proved that χ{0}
is asymptotically stable.

Therefore, in this approaches the diameter of solutions are decreasing.

The FIVP was discussed only in the continuous case, but Barros et al. [2]
studied a discrete fuzzy dynamical system

xn+1 = ̂f(xn), (23)

where ̂f : F(R)n → F(R)n and x0 ∈ F(R)n. The authors used the semi-
group properties, i.e, that the solution of (23) is a flow and obtained results
about stability of fixed points using the Pompieu-Hausdorff distance. In [25]
the authors studied nonautonomous difference inclusions as difference inclusion
cocycles, which generalize set-valued semigroups establishing the existence of a
difference cocycle attractor.

Other authors have studied (6) with periodic behavior using a different app-
roach. Cecconello et al. [10] establish a result of stability conditions by using
Zadeh’s extension principle. Nieto et al. [24] studied the existence of solutions of
a class of first-order linear fuzzy differential equations using generalized differen-
tiability. Diamond [14] presented results about periodicity of the fuzzy solution
set for the time-dependent and autonomous case via fuzzy differential inclusion.

4 Conclusion

The FIVP has two approaches: (1) The first one analysis the FIVP without the
derivative fuzzy concept that are fuzzy differential inclusions or by applying the
Zadeh’s extension principle in deterministic solution; (2) The second one applies
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the concept of derivative for fuzzy functions, but the Hukuhara derivative lead
us to solutions with increasing support; π−derivative we have solutions with
decreasing diameter; gh-differentiability the uniqueness is not present and we
obtain one solution with decreasing support while the others have increasing sup-
port. The solutions for the extended operator are all found in other approaches
but they are not easy to obtain analytically. The FIVP for gh-differentiability
and π−derivative were established only for unidimensional case. The concepts of
equilibrium point and classification are also open issues for the extended opera-
tor.

References

1. Aubin, J.P.: Fuzzy differential inclusions. Probl. Control Inf. Sci. Theory 19(1),
55–67 (1990)

2. Bassanezi, R.C., de Barros, L.C., Tonelli, P.A.: Attractors and asymptotic stability
for fuzzy dynamical systems. Fuzzy Sets Syst. 113, 473–483 (2000)

3. Barros, L.C., Bassanezi, R.C., Lodwick, A.W.: A First Course in Fuzzy Logic,
Fuzzy Dynamical Systems, and Biomathematics: Theory and Applications. Studies
in Fuzziness and Soft Computing. Springer, New York (2017). https://doi.org/10.
1007/978-3-662-53324-6

4. Baidosov, V.A.: Fuzzy differential inclusions. Prikl. Matem. Mekhan. 54(1), 12–17
(1990)

5. Barros, L.C., Bassanezi, R.C., Tonelli, P.A.: On the continuity of Zadeh’s extension.
In: Proceedings of the 7th IFSA World Congress, Praga, pp. 3–8 (1997)

6. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy number valued
functions with applications to fuzzy differential equation. Fuzzy Set Syst. 151,
581–599 (2005)

7. Bhaskar, T.G., Lakshmikantham, V., Devi, V.: Revisiting fuzzy differential equa-
tions. Nonlinear Anal. 58, 351–358 (2004)

8. Buckley, J.M., Eslami, E., Feuring, T.: Fuzzy Mathematics in Economics and
Enginnering. Springer, New York (2002). https://doi.org/10.1007/978-3-7908-
1795-9

9. Chalco-Cano, Y., Román-Flores, H., Jiménez-Gamero, M.D.: Fuzzy differential
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Abstract. This article aims to provide some necessary conditions so
that the solution of the Euler-Lagrange equation, arising from the nec-
essary conditions of a variational calculation problem is increasing with
respect to the initial condition. This result is important for the study of
the variational calculus problems with fuzzy initial condition and arbi-
trary final condition, since it establishes conditions to apply Zadeh’s
extension with respect to the initial condition for a quadratic functional
type.
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Euler-Lagrange equation

1 Introduction

Variational problems are a type of optimization problem that are characterized
by being defined in spaces of functions (infinite dimension), and whose func-
tional objective is represented by an integral operator. Formal study and how to
obtain necessary and sufficient conditions for this type of problem is known as
variational calculus.

The problem of variational calculus is an optimization problem. Bellman and
Zadeh [2] studied optimization in fuzzy context where the fuzzy set of feasible
solutions to structure decision making strategies in fuzzy environments.

The fuzzy set theory was introduced by Zadeh [15] and initially was applied
for control theory. However, it was diffusing for other areas and consequently
for calculus of variation. In [7], for example, the author presents a version for
the fuzzy variational problem with optimality conditions established via Euler-
Lagrange equations and by using the concept of differentiability and integrability
of fuzzy functions that can be parameterized by left and right functions of their
level sets.
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Differently from the approach in [7] we are interested in studying the extremes
of functional for variational problem using the same point of view of Diniz [5].
Diniz proved that under some conditions the minimum of a variational calcula-
tion problem with initial fuzzy condition and fixed final condition is the Zadeh’s
extension of the classical solution in relation to the initial condition with a par-
tial order relation. Diniz demonstrated that for the fuzzy variational calculus
problem with initial fuzzy condition and fixed boundary conditions it is always
possible to apply Zadeh’s extension to solve it provided that the solutions of the
Euler-Lagrange equations never intersect.

We are interested in verifying that with the conditions established in Diniz
and some additional hypotheses the same result is valid for variational problems
with fuzzy initial condition and arbitrary final condition. However, the hypothe-
sis of increasing monotonicity of the solution with respect to the initial condition
is not always true for this type of problem. Then, we added conditions to enable
the application of Zadeh’s extension and to obtain the solution of variational
problem.

We used a type of quadratic functional to obtain a candidate for minimum
that is monotonic decreasing in relation to the initial condition. The choice of
function seems to be the best in our construction because the minimum of this
functional is the solution of second order differential equation. The study can
also be done with linear functional and other types of quadratic functional.

2 Preliminaries

In this section we present basic concepts and results, referring to fuzzy set theory
and variational calculus necessary to obtain the proposed Theorem 2.

2.1 Variational Calculus

The definitions and results presented regarding variational calculus were
extracted from the references [6,8,11,12,14].

The simplest form of a variational problem is finding a continuously differ-
entiable function x : [a, b] → R that minimizes

J(x(t)) :=
∫ b

a

F (t, x(t), ẋ(t))dt, (1)

where [a, b] is a fixed interval and F : [a, b] × R × R �→ R is a given function.
Moreover, the functional minimization is often subject to some restrictions.

In our case, we will work with problems with given initial condition and arbitrary
final condition, that is, x(a) = xa and x(b) is arbitrary.

We say that x∗(t) is an extreme of the functional if it is a maximum or a
minimum of (1).

In order to try to find a solution to problem (1), Theorem 1 establishes the
necessary conditions for existence of an extreme. These conditions consist of the
resolution of the Euler-Lagrange equation, together with the initial condition
and the transversality condition according to Theorem 1.
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Theorem 1. Let J be a functional of the form of Eq. (1) where x(a) = xa and
x(b) is arbitrary and F has continuous first and second partial derivatives with
respect to x, ẋ and t. If J has an extremum at x∗, then x∗ satisfies the Euler-
Lagrange equation:

∂F

∂x
(t, x∗(t), ẋ∗(t)) − d

dt

(
∂F

∂ẋ
(t, x∗t), ẋ∗(t))

)
= 0, (2)

with the initial condition x(a) = xa and the transversality condition

∂F

∂ẋ
(b, x(b), ẋ∗(b)) = 0. (3)

Diniz [5] shows that the solution of the variational calculus problem with
fixed final condition is monotonous with respect to the initial condition, which
means that when the classical solution is extended via Zadeh’s extension in
relation to initial condition the trajectories never intersect and it is possible to
apply Zadeh’s extension principle. The following example shows that the result
is not assured when the final condition is arbitrary.

Example 1. Consider the following variational calculus problem

min
∫ 1

0

[
x(t)2 − 3x(t)ẋ(t) + ẋ(t)2

]
dt,

where x(0) = x0 and x(1) is arbitrary.
We will use the Euler-Lagrange equation to pursue a candidate to the min-

imum of the problem and show that the solution is not monotone with respect
to the initial condition, that is, for two different values of x0 in [x0i, x0f ], trajec-
tories intersect.

So,

∂F

∂x
(t, x∗(t), ẋ∗(t)) − d

dt

[
∂F

∂ẋ
(t, x∗(t), ẋ∗(t))

]
= 0.

ẍ∗(t) − x∗(t) = 0

Therefore, a necessary condition for x∗(t) to be the solution of the variational
problem is that it satisfies the second-order differential equation ẍ∗(t)−x(t) = 0
[4] , whose general solution is given by x∗(t) = c1e

t + c2e
−t, where c1 and c2 are

constants. To find the constants we use the initial condition x(0) = x0 and the
transversality conditions

∂F

∂ẋ
(t, x∗(1), ẋ∗(1)) = 0

2ẋ∗(1) − 3x∗(1) = 0
−ec1 + 5e−1c2 = 0.

Therefore, c1 and c2 must satisfy the system{
c1 + c2 = x0

−ec1 + 5e−1c2 = 0,
(4)
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whose solution is c1 = 5e−1x0
5e−1−e and c2 = x0 − 5e−1x0

5e−1−e Therefore, the solution,
dependent on the initial condition, is given by

x∗(t) =
(

5e−1x0

5e−1 − e

)
et +

(
x0 − 5e−1x0

5e−1 − e

)
e−t.

The Fig. 1 illustrates the solution graph for x0 = 1 and x0 = 2 and shows
that the solution is not monotonic with respect to the initial condition.
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Fig. 1. Solution of the Euler-Lagrange equation for x0 = 1 and x0 = 2

2.2 Fuzzy Sets

The concepts and results described here on fuzzy set theory, as well as more
details, can be found in [3,10,13,15].

Definition 1 (Fuzzy set). Let U be a (classic universal) set. A fuzzy subset û
of U is defined by a function ϕû, called the membership function (of û)

ϕû : U → [0, 1].

The value of ϕû(x) ∈ [0, 1] indicates the degree to which the element x of U
belongs to the fuzzy set û.

Definition 2 (support). The classic subset of U

supp û = {x ∈ U : ϕû(x) > 0}.

is called the support of û.

The support of û and has a fundamental role in the interrelation between
classical and fuzzy set theory. Interestingly, unlike fuzzy subsets, a support is a
crisp set.
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Definition 3 (α-cut). Let û be a fuzzy subset of U and α ∈ [0, 1] . The α-cut
of the subset û is the set [û]α of U defined by

[û]α = {x ∈ U : ϕû(x) ≥ α}, 0 < α ≤ 1

and [û]0 = ŝuppû.

Definition 4 (Zadeh’s Extension Principle). Let f be a function such that
f : X �→ Z and let û be a fuzzy subset of X. Zadeh’s extension of f is the function
f̂ which applied to û gives us the fuzzy subset f̂(û) of Z with the membership
function given by

ϕ
̂f(û)(z) =

{
supf−1(z) ϕû(x) if f−1(z) �= ∅
0 if f−1(z) = ∅,

where f−1(z) = {x; f(x) = z} is the preimage of z.

Note that if f is bijective, then the membership function of f(û) is given as
follows

ϕ
̂f(û)(z) = sup

{x:f(x)=z}
ϕû(x) = ϕû(f−1(z))

where f−1 is the inverse function of f .

Definition 5 (Fuzzy Number). A fuzzy subset û is called a fuzzy number
when the universal set on which ϕû is defined is the set of all real numbers R

and satisfies the following conditions:

(i) all the α-levels of û are not empty for 0 ≤ α ≤ 1;
(ii) all the α-levels of û are closed intervals of R;
(iii) supp û = {x ∈ R : ϕû(x) > 0} is bounded.

Definition 6 (Triangular Fuzzy Number). A fuzzy number û is said to be
triangular if its membership function is given by

ϕû(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ a
x−a
p−a if a < x ≤ p
x−b
p−b if p < x ≤ b

0 if x ≥ b,

where a, p, b are given numbers. Let us denote a triangular fuzzy number by
(a; p; b).

Definition 7. Let v̂ and û fuzzy numbers. We say that [û]α 	 [v̂]α([û]α ≺ [v̂]α),
if ûα

L ≤ ûα
L (ûα

L < ûα
L) and ûα

R ≤ ûα
R (ûα

R < ûα
R), ∀α ∈ [0, 1], where [û]α = [ûα

L, ûα
R]

and [v̂]α = [v̂α
L, v̂α

R].

Definition 8 establishes a relation of partial order between fuzzy numbers, and
is this relation of order that we are using to optmize a fuzzy functional.

Definition 8. Let v̂ and û fuzzy numbers. We say that û 	 v̂ (û ≺ v̂), if only
if, respectively, [û]α 	 [v̂]α([û]α ≺ [v̂]α), ∀α ∈ [0, 1].



482 J. D. S. Oliveira et al.

3 Results

Consider the following variational calculus problem

min
x∈C1([0,tf ])

J (x) =
∫ tf
0

[
ax(t)2 + bx(t)ẋ(t) + cẋ(t)2

]

x (0) = x0 and x (tf ) is arbitrary.

(5)

In this section we derive conditions on the candidate of the solution of the
problem (5) so that it is increasing in x0

Applying the Euler-Lagrange equation for this problem we obtain

∂F

∂x
(t, x∗(t), ẋ∗(t)) − d

dt

[
∂F

∂ẋ
(t, x∗(t), ẋ∗(t))

]
= 0

2ax∗(t) + bẋ∗(t) − d

dt
[bx∗(t) + 2cẋ∗(t)] = 0

cẍ∗(t) − ax∗(t) = 0.

Then a necessary condition for x∗(t) to be a solution of the variational problem
(5) is that the function is solution of differential equation cẍ∗(t) − ax∗(t) = 0,
with initial condition x(0) = x0 and boundary condition

∂F

∂ẋ
(t, x∗(tf ), ẋ∗(tf )) = 0. (6)

The differential equation can be solved analytically since it is a linear second-
order differential equation with constant coefficients. To solve it we will divide
in four cases.

1st case: a and c have the same sign. In this case the characteristic equation
of the differential equation cẍ∗(t) − ax∗(t) = 0 has two distinct real roots and
the general solution is given by

x∗(t) = c1e
√

a
c t + c2e

−
√

a
c t. (7)

By using the initial condition x(0) = x0 and the Eq. (6), we have

c1 = x0 − k1x0
k1−k2

and c2 = k1x0
k1−k2

Therefore the solution of Euler-Lagrange equation, dependent on the initial solu-
tion is given by

x∗(t, x0) =
(

x0 − k1x0

k1 − k2

)
e
√

a
c t +

(
k1x0

k1 − k2

)
e−

√
a
c t. (8)

where k1 = be
√

a
c tf + 2

√
ace

√
a
c tf and k2 = be−

√
a
c tf − 2

√
ace−

√
a
c tf . Now, we

will establish conditions for (8) to be monotone increasing in relation to x0.
Calculating the partial derivative with respect to x0

∂x∗

∂x0
(t, x0) =

(
1 − k1

k1 − k2

)
e
√

a
c t +

(
k1

k1 − k2

)
e−

√
a
c t,
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as e
√

a
c t and e−

√
a
c t are always positive ∀ t ∈ [0, tf ], we will need to analyze the

signal of
(
1 − k1

k1−k2

)
and k1

k1−k2
, dividing in two cases.

– If b = 0 in (8, so

k1 = 2
√

ace
√

a
c tf e k2 = −2

√
ace−

√
a
c tf .

Therefore

k1
k1 − k2

=
2
√

ace
√

a
c tf

2
√

ace
√

a
c tf + 2

√
ace−

√
a
c tf

⇒ 0 <
k1

k1 − k2
≤ 1

so ∂x∗
∂x0

(t, x0) is always positive. Thus (t, x0) is always increasing with respect
to the condition initial

– If b �= 0, so

k1
k1 − k2

=
(b + 2

√
ac) e

√
a
c tf

(b + 2
√

ac) e
√

a
c tf + (2

√
ac − b) e−

√
a
c tf

.

Then, a sufficient condition for 0 < k1
k1−k2

≤ 1 is that 2
√

ac − b > 0 ⇒ b <

2
√

ac and b + 2
√

ac > 0 ⇒ b > −2
√

ac, this is, b < |2√
ac| and, In this case,

∂x∗
∂x0

(t, x0) is always positive and x∗(t, x0) is always increasing with respect to
the initial condition. Note that if b > 0 then b + 2

√
ac > 0 and x∗(t, x0) is

always increasing with respect to the initial condition if b < 2
√

ac.

2nd case: a = 0 and c �= 0 . If a = 0 and c �= 0, the Euler-Lagrange equation
is reduced to cẍ(t) = 0, Here the general solution is given by

x(t) = c1 + c2t. (9)

By using the initial and the boundary condition, we have

c1 = x0 e c2 = −bx0
btf+2c

Then the solution of the Euler-Lagrange equation is

x∗(t, x0) = x0 +
( −bx0

btf + 2c

)
t

In this case, ∂x∗
∂x0

(t, x0) = 1 − bt
btf+2c , and a condition sufficient for ∂x∗

∂x0
(tx0) ≥

and if 0 ≤ bt
btf+2c < 1, for all t, and thus x∗(t, x0) will be monotonous with

respect to the initial condition.
We analyze under what conditions 0 ≤ bt

btf+2c < 1. Note that if b and c

has the same sign then the inequality is always satisfied because for tf > t,
∀ t ∈ [0, tf ), we have

1 =
btf
btf

>
bt

btf
>

bt

btf + 2c
≥ 0.
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3rd case: a �= 0 and c = 0. In this case, the Euler-Lagrange equation provides
that the optimal solution x∗(t) must satisfy ax∗(t) = 0, which implies that
x(t) = 0 . If x0 = 0, then the null function is the unique solution of the variational
problem, otherwise the variational problem has no solution. In both situations
we have nothing to analyze.
4th case: a · c < 0. If a · c < 0 , the characteristic equation associated to
cẍ∗(t) − ax∗(t) = 0 has two complex conjugate roots, namely r1 =

√−a
c i and

r2 = −√−a
c i. Then the general solution is given by

x∗(t) = c1 cos
(√

−a

c
t

)
+ c2 sin

(√
−a

c
t

)
. (10)

By using the initial x(0) = x0 and the boundary condition we obtain

c1 = x0 and c2 =
x0

[
2c

√−a
c sin

(√−a
c tf

) − b cos
(√−a

c tf
)]

b sin
(√−a

c tf
)

+ 2c
√−a

c cos
(√−a

c tf
) .

To analysis the general case of c2 signal is hard then we study when b = 0.
If b = 0, then

c2 =
x0 sin

(√−a
c tf

)
cos

(√−a
c tf

) = x0 tan
(√

−a

c
tf

)
.

Therefore, the general solution is given by

x∗(t, x0) = x0 cos
(√

−a

c
t

)
+ x0 tan

(√
−a

c
tf

)
sin

(√
−a

c
t

)
. (11)

Now, we establish conditions for x∗(t, x0) to be monotonically increasing with
respect to the initial condition

∂x∗

∂x0
(t, x0) = cos

(√
−a

c
t

)
+ tan

(√
−a

c
tf

)
sin

(√
−a

c
t

)
.

A sufficient condition for ∂x∗
∂x0

(t, x0) > 0 ∀ t ∈ [0, tf ] is that

0 ≤ t <

√
− c

a

π

2
,

and in this case x∗(t, x0) is monotonically increasing with respect to the initial
condition x0.

The following Theorem provides conditions to obtain a monotonic increasing
solution for (5).

Theorem 2. Consider the following variational problem

min
x∈C1([0,tf ])

J (x) =
∫ tf
0

[
ax(t)2 + bx(t)ẋ(t) + cẋ(t)2

]
dt

x (0) = x0 x (tf ) = arbitrary.

(12)
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(i) If ac > 0 and b = 0 or
(ii) If ac > 0, b �= 0 and b < |2√

ac| or
(iii) If a = 0, c �= 0 and 0 ≤ bt

btf+2c < 1, ∀ t ∈ [0, tf ] or
(iv) If a and c are non-zero, have different signs, b = 0 and 0 ≤ t <

√− c
a

π
2 ∀

t ∈ [0, tf ]

Then, if it exists, the extremum x∗(t, x0) of (12) is monotonically increasing with
respect to the initial condition.

3.1 Example

Example 2. In this example, we will solve the Euler-Lagrange equation of the
following minimization problem

min
x∈C1([0,2])

Ĵ (x) =
∫ 2

0

[
x(t)2 + ẋ(t)2

]
dt

x (0) = x̂0 x (tf ) = arbitrary.

(13)

where x̂0 is the triangular fuzzy number (1; 1.5; 2) and the fuzzy functional is
obtained by applying the Zadeh’s extension in composition of the following func-
tions:

x0
φ1−→ xx0(t)

φ2−→ F (t, x, ẋ)
φ3−→

∫ tf

t0

F (t, x, ẋ)dt = J(x), (14)

where

φ1 : [xL
0 , xR

0 ] ⊂ R �→ C1([a, b], R), (15)

φ2 : C1([a, b], R) �→ C([a, b], R), (16)

φ3 : C([a, b], R) �→ R, (17)

Thus by applying the Zadeh’s extension in each of the functions in (14), we
obtain:

x̂0

̂φ1−→ x̂x̂0(t)
̂φ2−→ F̂ (t, x̂, ̂̇x)

̂φ3−→
∫̂ tf

t0

F̂ (t, x̂, ̂̇x)dt = Ĵ(x̂0). (18)

By the using the Nguyen’s Theorem ([1,3,9]) and the continuity of the functional
with respect to the initial condition we can show that Ĵ(x̂0) is a fuzzy number.
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First, note that J(x) given in (13) is a quadratic functional with a = c = 1
and b = 0 in (5). Therefore, by item i) of Theorem 2, the solution to Problem
(13), if there is, is monotonically increasing with respect to the initial condition.

Therefore, the necessary condition of optimality for the classical problem, is
the solution of the Euler-Lagrange equation

Fx(t, x(t), ẋ(t)) − d

dt
(Fẋ(t, x(t), ẋ(t)) = 0 (19)

2x(t) − d

dt
(2ẋ(t)) = 0 (20)

x(t) − ẍ(t) = 0. (21)

Thus a necessary condition for x(t) to be a solution to Problem (13) is that
this function is the solution of the second-order differential equation x(t)−ẍ(t) =
0, this is, x∗ = c1e

t + c2e
−t. To find the values of constants c1 and c2, we use

the initial condition x(0) = x0 in

c1 + c2 = x0,

together with the boundary conditions

Fẋ(tf , x(tf ), ẋ(tf )) = 0
c1e

2 − c2e
−2 = 0.

Then c1 = x0
1+e4 and c2 = x0e4

1+e4 and follows that the extremum of the classical
problem dependent on the initial condition is given by

x∗(t) =
x0

1 + e4
(
et + e4−t

)
. (22)

Figures 2 and 3 illustrate, respectively, the Zadeh’s extension of solution (2),
considering x0 the triangular fuzzy number x̂0 = (1; 1.5; 2), Ĵ(x̂0) and evolution
of the value of the functional with respect to x0 ∈ [1, 2] .

Fig. 2. Zadeh’s extension of solution (2) with x̂0 = (1; 1.5; 2).
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Fig. 3. ̂J(x̂0) and evolution of the value of the functional with respect to x0.

In [5] it is shown that the Zadeh’s extension, with respect to initial condition
is the minimum solution for the variational calculus problem with fixed final
condition using a partial order relation. Using this same relation of order, the
same result is valid when the final condition is free.

4 Conclusions

This paper establishes conditions for the solution of the Euler-Lagrange equation,
of a certain type of quadratic functional, be increasing with respect to the initial
condition. In this case, the trajectories do not intersect, allowing the application
of Zadeh’s extension. Theorem 2 shows that these conditions are obtained via
the parameters of this quadratic functional.

References

1. Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35221-8

2. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci.
17(4), B-141 (1970)

3. De Barros, L.C., Bassanezi, R., Lodwick, W.: A First Course in Fuzzy Logic, Fuzzy
Dynamical Systems, and Biomathematics. Springer, Berlin (2016). https://doi.org/
10.1007/978-3-662-53324-6

4. Boyce, W.E., DiPrima, R.C., Haines, C.W.: Elementary Differential Equations and
Boundary Value Problems, vol. 9. Wiley, New York (1969)

5. Diniz, M.M.: Otimização de funções, funcionais e controle fuzzy. Tese de doutorado,
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Abstract. Agricultural practices that use various xenobiotics can con-
taminate surface water and groundwater with xenobiotics mixtures con-
centrations which cause serious risks to water quality and to the health of
aquatic organisms that inhabit them. Xenobiotics in water when present
as mixtures can exacerbate or reduce the toxic effects in aquatic organ-
isms, when compared to the toxic effects of each individual component
concentrations of the xenobiotics mixture. The objective of this study
is to develop a mathematical method using α-level of the fuzzy num-
bers with less accounts and simpler calculations to sort ecotoxicological
effects in aquatic organisms of xenobiotics mixtures concentrations occur-
ring in water, classifying them into antagonistic, additive or synergistic
and also establishing the magnitude of the effects of concentrations of
mixtures. The proposed method in this paper using fuzzy numbers can
be suggested in protocols established by regulatory agencies to classify
ecotoxicological effects of xenobiotics mixtures in water.

Keywords: Mixtures · Fuzzy numbers · α-level · Ecotoxicological

1 Introduction

Agricultural practices that use various xenobiotics can contaminate surface water
[3,22] and groundwater [5,6,14] with xenobiotics mixtures concentrations that
can cause serious risks to water quality and to the health of aquatic organisms
that inhabit them [1,9,18]. Xenobiotics when present in water as mixtures can
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exacerbate or reduce the toxic effects on aquatic organisms, when compared
to the toxic effects of each individual component concentrations of the xenobi-
otics mixture. For instance, the combination of the insecticides quinalphos and
phenthoate showed synergistic toxicity to tilapia Oreochromis mossambicus [7].
The association of the fungicides piraclostrobin and epiconazole increased the
toxicity to microalgae in 13.6 times when compared to the toxicity of individ-
uals compounds [20]. According to Nair et al. [16], the insecticide combination
malathion-endosulfan showed a “more than additive” effect to juveniles of rohu
fishes (Labeo rohita). Qu et al. [21] proposed an ecological risk assessment of pes-
ticide residues for wetland ecosystems and the risks of eight pesticides in Taihu
Lake wetland were assessed, as single substances and in mixtures.

The simultaneous presence of substances in the aquatic compartment can
also be derived from the commercial formulations that contain more than one
active ingredient, or from the mixture of products in the spray tanks [19,23]. In
this context, the use of more than one active ingredient is seen as an advantage
due to the reduced cost and the reduced spraying of the recommended dose. Also
because the increase of the number of pest species to be chemically controlled.

When two xenobiotics enter concurrently in a biological system there is a
need to characterize the toxic effect of the combination in relation to the toxic
effect of each compound individually [12]. Some methods allow the classification
of such chemical interactions. In this classification, additivity can be generalized
for two compounds that act independently on the same target and their effects
are additive. Synergism is defined as an interaction among compounds producing
a higher effect (more than additive effect) when compared with the individual
effect of each compound. Conversely, antagonist compounds would reduce the
effect [8].

The toxicity of a compound can be expressed by the value of the median
effective concentration (LC50), or concentration that affects 50% of individu-
als in a population in a given time interval. Therefore, the smaller this value,
the more toxic the compound [15]. Thus, by knowing the LC50 values for the
individual compounds and LC50 values for the compounds in the mixture (with
their confidence intervals), one can classify the magnitude of the mixtures effect
when compared to the individual component concentrations of mixture. Also it
is possible to establish confidence intervals for the magnitude of the effect [12].

A fuzzy set has been defined as a collection of objects with membership values
between 0 (complete exclusion) and 1 (complete membership). The membership
values express the degrees to each object with respect to the properties or dis-
tinctive features to the collection. Recently, a fuzzy model have been applied
in the field of mixture toxicity prediction to solve the limitations of existing
prediction models of mixture toxicity [24].

Then, the objective of this study was to develop a mathematical method using
α-level of the fuzzy numbers with less accounts and simpler calculations to sort
ecotoxicological effects in aquatic organisms of xenobiotics mixtures concentra-
tions occurring in water. The method allows classify the mixture into antago-
nistic, additive or synergistic and also establish the magnitude of the effects of
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concentrations of mixtures. The legislation establishing limits of chemicals in
water bodies in Brazil [4] does not report such limits for chemicals mixtures.
Thus, the importance in detecting a synergistic action, that results in a poten-
tiation of the effect, contributes to the establishment of public policies in order
to improve the water quality standards.

2 Additive Toxicity

Toxicity was defined by the median effective concentration LC50, that is, the
concentration calculated to produce 50% of effect and 95% confidence intervals
according to the procedures of [11,12]. The procedures for determining the addi-
tive index is based on the toxic unit concept in which each component in the
mixture contributes to toxicity.

Definition 1. The contributions of two components of chemical mixtures are
summed accordingly

(Am/Ai) + (Bm/Bi) = S,

where A and B are chemicals, Ai and Bi are toxicities (LC50) of the individual
chemicals, Am and Bm are toxicities (LC50) of the mixtured chemicals and S is
the sum of biological activity [12].

Definition 2. The additive index is defined by

AI =
{

(1/S) − 1.0 if S ≤ 1.0
(−S) + 1.0 if S > 1.0 (1)

The range for additive index is derived by selecting values of 95% confidence
interval yielding the greatest derivation from the additive index. The lower limits
of the individual toxicants – Ai and Bi – and the upper limits of the mixtures –
Am and Bm – are substituted for LC50 to determine the lower limit of the index.
Analogously, the upper limits of the mixture – Am and Bm – are substituted
into the formula to determine the upper limit of the index.

If the range overlaped zero, then toxicity of the chemicals in combination is
considered additive [12].

We suggest [11,12] for a detailed study of the procedures for classifying the
mixture into antagonistic, additive or synergistic.

Remark: The additive toxicity of n chemicals in a mixture is assessed by
adding the contributions of additional chemicals according to the formula

(A1
m/A1

i ) + (A2
m/A2

i ) + (A3
m/A3

i ) + · · · + (An
m/An

i ) = S

3 Fuzzy Numbers

Next, we develop brief reviews of the concept of fuzzy numbers, and we detail
the method suggested in this paper.
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Fuzzy Sets and Fuzzy Logic have become one of the emerging areas in con-
temporary technologies of information processing. Fuzzy Sets Theory was first
developed by [25] in the mid-1960s to represent uncertain and imprecise knowl-
edge. It provides an approximate but effective means of describing the behavior
of the system that is too complex, ill defined, or not easily analyzed mathemat-
ically.

Definition 3. Let U be a classical non-empty set. A fuzzy subset F of U is
described by a function,

F : U → [0, 1],

called membership function of fuzzy set F [25].

The value F (x) ∈ [0, 1] indicates the membership degree of the element x of
U in fuzzy set F , with F (x) = 1 and F (x) = 0 designating, the belonginness and
not-belongingness of x in F , respectively. Note that the membership function of
empty, ∅, and universe, U , sets are, respectively, ∅(x) = 0 and U(x) = 1 for all
X ∈ U [13].

Linguistic variables (or fuzzy) are variables whose values are fuzzy sets [17].
The set of all elements that belong to a fuzzy set A with at least α degree is

called α-level of A and denoted by [A]α.

Definition 4. Let A be a fuzzy subset of X and α ∈ [0, 1]. The α-level of A is
the subset of X defined by

[A]α = {x ∈ X/A(x) ≥ α}
for 0 < α ≤ 1.

So, the set [A]α consists of those elements of the universe X whose member-
ship degree is larger than α [10].

A very special class of fuzzy sets is the so-called “fuzzy numbers”. This is
due to the fundamental role that they play in fuzzy modeling. In this sense, the
majority of the fuzzy sets belongs to the fuzzy numbers class [13].

Definition 5. A fuzzy subset A in R is called fuzzy number when:

1. all α-levels of A are non-empty with 0 ≤ α ≤ 1, that is, A must be normal;
2. all α-levels of A are closed intervals of R;
3. the support of A, that is, suppA = {x ∈ R/A(x) > 0}.
Definition 6. Let us represent the α-levels of the fuzzy numbers A by

[A]α = [aα
1 , aα

2 ].

A fuzzy subset F of real numbers is called triangular if its membership func-
tion is a triangular function. This function is specified by three parameters,
F (x : a, b, c), such as:

F (x : a, b, c) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < a
x−a
b−a if a ≤ x < b
c−x
c−b if b ≤ x < c

0 if x ≥ c

where a, b, c are given numbers.
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The α-levels of triangular fuzzy numbers have the following simplified from:

[aα
1 , aα

2 ] = [(b − a)α + a, (b − c)α + c], (2)

fo ll α ∈ [0, 1].
The great advantage of fuzzy numbers is that it is possible to compute with

them. Thus, we can define arithmetic operations on fuzzy numbers.

Definition 7. Let A and B be fuzzy numbers and λ a real number.

1. the addition of A and B produces a third fuzzy number A + B, whose mem-
bership function is given by:

ψA+B(x) =
{

supφ(z)min[ψA(x), ψB(x)] if φ(z) �= 0
0 if φ(z) = 0

where φ(z) = {(x, y) : x + y = z}.
2. the subtraction of two fuzzy numbers A and B produces a third fuzzy number

A − B, whose membership function is given by:

ψA−B(x) =
{

supφ(z)min[ψA(x), ψB(x)] if φ(z) �= 0
0 if φ(z) = 0

where φ(z) = {(x, y) : x − y = z}.
3. the multiplication of λ by fuzzy number A produces a third fuzzy number λA,

whose membership function is given by:

ψλA(x) =
{

sup{x:λx=z}min[ψA(x)] if λ �= 0
χ{0}(x) if λ = 0

where χ{0} is the characteristic function of {0}.
4. the multiplication of A and B produces a third fuzzy number A.B, whose

membership function is given by:

ψA.B(x) =
{

supφ(z)min[ψA(x), ψB(x)] if φ(z) �= 0
0 if φ(z) = 0

where φ(z) = {(x, y) : x.y = z}.
5. the division of A and B, if 0 �∈ supp(B), produces a third fuzzy number A/B,

whose membership function is given by:

ψA/B(x) =
{

supφ(z)min[ψA(x), ψB(x)] if φ(z) �= 0
0 if φ(z) = 0

where φ(z) = {(x, y) : x/y = z}.
From concept of α-level we have a “practical method” to obtain the

results of each arithmetic operation between fuzzy numbers, because the
arithmetic operations with fuzzy numbers are closely linked to the interval
mathematics [2].
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Theorem 1. Let A and B be fuzzy numbers with α-levels [A]α = [aα
1 , aα

2 ] and
[B]α = [bα

1 , bα
2 ], respectively; andλ a real number. Then, we have the following

properties:

1. the addition between A and B is a fuzzy number A + B, whose α-levels are
given by

[A + B]α = [A]α + [B]α = [aα
1 + bα

1 , aα
2 + bα

2 ].

2. the subtraction between A and B is a fuzzy number A − B whose α-levels are
given by

[A − B]α = [A]α − [B]α = [aα
1 − bα

2 , aα
2 − bα

1 ].

3. the multiplication of a real number λ by the fuzzy number A produces is a
fuzzy number λA, whose α-levels are given by

[λA]α = λ[A]α = [λaα
1 , λaα

2 ] if λ ≥ 0

or

[λA]α = λ[A]α = [λaα
2 , λaα

1 ] if λ < 0.

4. the multiplication of a fuzzy number A by a fuzzy number B is a fuzzy number
A.B, whose α-levels are

[A.B]α = [A]α.[B]α = [min Pα,max Pα],

where Pα = {aα
1 bα

1 , aα
1 bα

2 , aα
2 bα

1 , aα
2 bα

2 }.
5. the division of a fuzzy number A by a fuzzy number B, if 0 �∈ suppB, is a

fuzzy number A/B, whose α-levels are given by
[

A

B

]α

=
[A]α

[B]α
= [aα

1 , aα
2 ].

[
1
bα
2

,
1
bα
1

]
.

Proof: See [2].
Thus, it is enough to consider the interval arithmetic operations.

4 Additive Toxicity Using α-level of the Fuzzy Numbers

In this section, we have developed a mathematical method using α-level of the
fuzzy numbers to sort ecotoxicological effects in aquatic organisms of xenobiotics
mixtures concentrations occurring in water, classifying them into antagonistic,
additive or synergistic and also establishing the magnitude of the effects of con-
centrations of mixtures.

We have proposed to use α-level of the fuzzy numbers to classify the mixture
prepared by the adaptation of classic method (1). By these means, we intend to
simplify the calculus of the additive index.

For this method, we consider the values of the LC50 individually and in
combination of the chemicals A and B and the 100(1 − α)% confidence interval
individually and in combination of each chemicals as being the α-level.



Estimating the Xenobiotics Mixtures Toxicity 495

Definition 8. Let [A]α be the α-level of the fuzzy number (LC50) the xenobiotic
A individually, [Am]α the α-level of the fuzzy number (LC50) the xenobiotic A
in combination, [B]α the α-level of the fuzzy number (LC50) the xenobiotic B
individually, [Bm]α the α-level of the fuzzy number (LC50) the xenobiotic B in
combination, then we define the interval sum of biological activity, denoted IS, by

[Am]α

[A]α
+

[Bm]α

[B]α
= IS. (3)

And considering 1 = [1, 1], we have

Definition 9. The fuzzy additive index, FAI, is defined by

FAI =
{

([1, 1]/IS) − [1, 1] if SM ≤ 1.0
IS(−[1, 1]) + [1, 1] if SM > 1.0 (4)

where SM is the arithmetic mean between the lower limit and the upper one
of IS.

We can see (4) as the adaptation of classic method (1).

5 Results

In this section we use the method of the Sect. 4 to classify the toxicity of mixtures.
Fish are exposed simultaneously to more than one contaminant because some
chemicals are applied as combinations to increase efficacy or reduce costs [12].

In Table 1 the columns 2, 3 and 4 are available in [12]. Note that the column
4 is the values obtained by classic model (Sect. 2). In column 5, we have the
corresponding fuzzy number obtained through the mathematical model proposed
in Sect. 4 with α = 0.05.

It has been highlighted that is possible to choose any α, but it was chosen
α = 0.05 in order to compare the results by the classic method [11] and the results
obtained by our method because the classical method considers 95% confidence
intervals.

Considering case 1 of the Table 1:
Let A and B be two xenobiotics such that:

– LC50 of xenobiotic A individually is equal to 0.0312 μg/L;
– LC50 of xenobiotic B individually is equal to 0.049 mg/L;
– LC50 of xenobiotic A in combination is equal to 0.03 μg/L;
– LC50 of xenobiotic B in combination is equal to 0.03 mg/L;
– 95% confidence interval of xenobiotic A individually is equal to

[0.0266, 0.0366];
– 95% confidence interval of xenobiotic B individually is equal to

[0.0279, 0.0633];
– 95% confidence interval of xenobiotic A in combination is equal to

[0.0272, 0.0331];
– 95% confidence interval of xenobiotic B in combination is equal to

[0.0272, 0.0331].
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Table 1. Toxicity and additive indices for xenobiotics, pairs of xenobiotics combina-
tions against rainbow trout in soft water at 12 ◦C.

LC50 and LC50 and

interval interval fuzzy

Xenobiotics 95% confidence 95% confidence additive index additive

interval interval and range index

individually in combination

Antimycin 0.0312 0.03

µg/L [0.0266, 0.0366] [0.0272, 0.0331] -0.574 [-1.4307, -0.1729]

Dibrom 0.049 0.03 [-1.43, -0.173] Antagonism

mg/L [0.0279, 0.0633] [0.0272, 0.0331] Antagonism

TFM 1.81 1.16

lampricide, mg/L [1.53, 2.14] [0.998, 1.35] -0.326 [-0.8083, 0.0287]

Bayer 73 0.0346 0.0237 [-0.808, 0.0295] Additive

lampricide, mg/L [0.0204, 0.0275] [0.0204, 0.0275] Additive

Malathion 70 3.44

µg/L [59.2, 82.7] [2.92, 4.06] 7.20 [5.0851, 10.0106]

Delnav 47.2 3.44 [5.09, 10.0] Synergism

µg/L [42.4, 52.6] [2.92, 4.06] Synergism

According to Sect. 2, the classic method to calculate the additive index and
the range is

S =
0.03

0.0312
+

0.03
0.049

= 1.574.

Since S > 1, then
−1.574 + 1.0 = −0.574.

Thus, the additive index for A and B is equal to −0.574.
Next, we calculate the range for A and B:

– the lower limit of range is equal to (−S) + 1.0 = −2.431 + 1.0 = −1.43,
since S = 0.0331

0.0266 + 0.0331
0.0279 = 2.43 > 1.

And
– the upper limit of range is equal to (−S) + 1.0 = −1.173 + 1.0 = −0.173,

since S = 0.0272
0.0366 + 0.0272

0.0633 = 1.173 > 1.

Hence, the range of mixture is equal to [−1.43,−0.173], i.e., 0 /∈ [−1.43,
−0.173] and [−1.43,−0.173] ⊂ R

∗
−. Therefore, the toxicity of A mixed with B is

antagonistic because the fuzzy additive index belongs to negative values.
Now, the fuzzy method to calculate the fuzzy additive index is

– for the xenobiotic A, we defined the fuzzy number LC50 of A individually is
equal to A = (x : 0.0264, 0.0312, 0.0369), that is, [A]0.05 = [0.0266, 0.0366];
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– for the xenobiotic B, we defined the fuzzy number LC50 of B individually is
equal to B = (x : 0.0268, 0.048, 0.0641), that is, [B]0.05 = [0.0279, 0.0633];

– for the xenobiotic A, we defined the fuzzy number LC50 of Am in combination
is equal to Am = (x : 0.0271, 0.03, 0.0333), that is, [Am]0.05 = [0.0272, 0.0331];

– for the xenobiotic B, we defined the fuzzy number LC50 of Bm in combination
is equal to Bm = (x : 0.0271, 0.03, 0.0333), that is, [Bm]0.05 = [0.0272, 0.0331];

that is,

IS =
[0.0272, 0.0331]
[0.0266, 0.0366]

+
[0.0272, 0.0331]
[0.0279, 0.0633]

= [1.1729, 2.4307].

Since SM > 1, then

FAI = [1.1729, 2.4307](−[1, 1]) + [1, 1] = [−1.4307,−0.1729].

Therefore, the fuzzy additive index is equal to [−1.4307,−0.1729]. Observe
that, we get the same range of the combination between A and B of the classic
method (1). In this way, the toxicity of A mixed with B is antagonism.

Nevertheless, the quantity of the mathematical calculations is smaller than
the classic method and the formula (4) is easiest solution than the classic formula
(1).

Analogously, we determine the values of the Table 1 for cases 2 and 3.

6 Conclusions

In this study we develop a method using fuzzy numbers to sort ecotoxicological
effects in aquatic organisms of xenobiotics mixtures concentrations occurring
in water, classifying them into antagonistic, additive or synergistic and also
establishing the magnitude of the effects of concentrations of mixtures.

It can be observed that the values obtained by the fuzzy model are very close
to the values found in the literature but there are less accounts and simpler cal-
culations. It has been used the formulas (1) of Sect. 2 three times to determine
the values of the additive index, the lower limit and the upper one of the confi-
dence interval. And it has been used the formulas (4) just once to determine the
fuzzy additive index of Sect. 4.

Furthermore, it can be applied our method for any confidence interval. Simply
take the α-level as desired. It has been highlighted that is possible to choose any
α, but it was chosen α = 0.05 in order to compare the results by the classic
method [11] and the results obtained by our method.

The method developed using fuzzy numbers can be suggested in protocols
established by regulatory agencies to classify ecotoxicological effects of xenobi-
otics mixtures in water. In this way, public policies would be implemented to
ensure the health of the aquatic environment.
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Abstract. This work considers an optimization problem where the
objective function possesses interval uncertainty in the coefficients. In
this sense, first, an order relation will be defined for the interval space
and, from this, it will be defined a solution concept for the interval prob-
lem in question. Subsequently, it will be shown that an interval problem
is equivalent to a bi-objective problem. Finally, it will be established the
necessary conditions of Fritz John and Karush-Kuhn-Tucker types for
the interval-valued optimization problem.

Keywords: Multi-objective optimization problems
Classical necessary condition of Fritz John · Karush-Kuhn-Tucker
Interval optimization problems · LU order relation · LU solutions
Necessary optimality conditions for the LU-solution

1 Introduction

The importance of the study of interval analysis from a theoretical point of
view, as well as its applications, is well known (Aubin and Cellina [1], Aubin
and Frankowska [2]). Many advances in interval analysis have been motivated
by mathematical programming and control theory (Aubin and Franskowska [3]).
In general, problems have coefficients as fixed and deterministic values. How-
ever, there are many situations where this assumption is not valid, the problems
involve some kind of uncertainty. Thus, methods to deal with uncertainty are
needed. We assume an interval type uncertainty in order to solve these problems.

The work is organized as follows. The next section is devoted to give some
preliminaries. The third section presents the interval optimization problem, the
lower and upper, LU in short, definition of order relation, then, we present the
LU-solution, the strictly weakly LU-solution, the weakly LU-solution, and their
local definitions, respectively, and after this, we show that to determine the
LU-solutions of the interval problem is equivalent to determining the solution
of a classical multi-objective optimization problem. In Sect. 4, we give the nec-
essary conditions of Fritz John and Karush-Kuhn-Tucker types. Finally, some
conclusions are given.
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2 Preliminaries

In this section we follow the classical nomenclature of Sawaragi et al. [4].
Let Rp be the p-dimensional Euclidean space. Let x = (x1, . . . , xp) ∈ R

p and
y = (y1, . . . , yp) ∈ R

p,

(1) x � y means xi ≥ yi for all i = 1, . . . , p;
(2) x ≥ y means x � y and x �= y, i.e., xi ≥ yi for all i = 1, . . . , p and we have

at least one strict inequality;
(3) x > y means xi > yi for all i = 1, . . . , p.

Let us denote R
p
+, the nonnegative orthant of Rp, i.e.,

R
p
+ := {y ∈ R

p : yi ≥ 0 for i = 1, . . . , p}.

Let us denote R̊
p
+, the positive orthant of Rp, i.e.,

R̊
p
+ := {y ∈ R

p : yi > 0 for i = 1, . . . , p}.

The Multi-objective Optimization problem. Let’s consider:

(P )

{
minimize f(x) = (f1(x), f2(x), . . . , fp(x))
subject to x ∈ X ⊂ R

n.

Definition 1 (Pareto Optimal Solution). A point x ∈ X is said to be a
(globally) Pareto optimal solution (or efficient or non-dominated, or non-inferior
solution) to the problem (P ) if there exists no x ∈ X such that f(x) ≤ f(x).

In some cases a slightly weaker solution concept than Pareto optimality is
often used. It is called weak Pareto optimality, which corresponds to the case in
which we consider the positive orthant

R̊
p
+ = {y ∈ R

p : y > 0}.

Definition 2 (Weak Pareto Optimal Solution). A point x ∈ X is said to
be a weak Pareto optimal solution to the problem (P ) if there is no x ∈ X such
that f(x) < f(x).

The Multi-objective Programming Problem. Let’s consider:

(P ′)

{
minimize f(x) = (f1(x), . . . , fp(x))
subject to x ∈ X = {x| g(x) = (g1(x), . . . , gm(x)) � 0}.

That is, X is supposed to be specified by m inequality constraints. Here,
all the functions fi (i = 1, . . . , p) and gj (j = 1, . . . ,m) are assumed to be
continuously differentiable.
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Definition 3 (Kuhn-Tucker’s Constraint Qualification). Let us consider
the problem (P ′), x ∈ X is said to satisfy the Kunh-Tucker constraint quali-
fication if, for any h ∈ R

n such that 〈∇gj(x), h〉 ≤ 0 and for any j ∈ J(x) =
{j| gj(x) = 0}, there exist t > 0, a vector-valued function θ on [0, t] differentiable
at t = 0, and a real number α > 0, such that

θ(0) = x, g(θ(t)) � 0 for any t ∈ [0, t], θ̇(0) = αh.

Next, we have the necessary conditions for multi-objective programming
problems for weak Pareto optimality:

Theorem 1 [The Kuhn-Tucker Condition]. Suppose that at the problem (P ′),
x ∈ X satisfies the Kuhn-Tucker constraint qualification. Then, a necessary
condition for x to be a weak Pareto optimal solution to (P ′) is that there exist
λ ∈ R

p and μ ∈ R
m such that

(i) 〈λ,∇f(x)〉 + 〈μ,∇g(x)〉 = 0,
(ii) 〈μ, g(x)〉 = 0,
(iii) λ ≥ 0, μ ≥ 0,

where 〈λ,∇f(x)〉 and 〈μ,∇g(x)〉 stand for
∑p

i=1 λi∇fi(x) and
∑m

j=1 μj∇gj(x),
respectively.

3 The Interval Optimization Problem

The optimization problem that will be considered has the feasible set

X = {x ∈ R
n| gi(x) ≤ 0, i = 1, . . . , m},

where g : R
n → R

m is a real vector-valued function, and F : R
n → I(R) is

the interval objective function given as F (x) = [f1(x), f2(x)], with fi : Rn →
R, i = 1, 2, and f1(x) ≤ f2(x) ∀x ∈ X. In this way, we have the following
interval-valued problem:

(IP )

{
minimize F (x) = [f1(x), f2(x)]
subject to gi(x) ≤ 0, i = 1, . . . ,m.

We are going to use the differentiability concept of an interval function,
by just considering the differentiability of the extreme functions of the interval
function.

Definition 4. Let F :]a, b[→ I(R) be an interval function and x0 ∈]a, b[. We
say that F is differentiable extremal, E-differentiable in short, at x0 if and only
if the extreme functions of real value f1 and f2 are differentiable at x0.

Next, will be defined the order relation concept proposed by Kulish and
Miranker [5]:
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Definition 5. Let A = [a1, a2] and B = [b1, b2] be two intervals. The order
relation lower and upper, LU in short, is defined by

1. A �LU B if and only if a1 ≤ b1 and a2 ≤ b2.
2. A ≤LU B if and only if A �LU B and A �= B, that is, a1 < b1 and a2 ≤ b2

or a1 ≤ b1 and a2 < b2 or a1 < b1 and a2 < b2.
3. A <LU B if and only if a1 < b1 and a2 < b2.

The concept of the LU-solution for the optimization problem above is given
by:

Definition 6. Let x be a feasible solution of the problem (IP), i.e., x ∈ X .
Then,

(i) x is a LU-solution of the problem (IP) if there does not exist x ∈ X ,
x �= x̄, such that F (x) �LU F (x).
Furthermore, x is a local LU-solution of the problem (IP) if there does
not exist x ∈ Nε(x) ∩ X , x �= x̄, such that F (x) �LU F (x), where Nε(x) is
an ε−neighborhood of x.

(ii) x is a strictly weakly LU-solution of the problem (IP) if there does
not exist x ∈ X such that F (x) ≤LU F (x).
Furthermore, x is a local strictly weakly LU-solution of the problem
(IP) if there does not exist x ∈ Nε(x) ∩ X such that F (x) ≤LU F (x).

(iii) x is a weakly LU-solution of the problem (IP) if there does not exist
x ∈ X such that F (x) <LU F (x).
Furthermore, x is a local weakly LU-solution of the problem (IP) if
there does not exist x ∈ Nε(x) ∩ X such that F (x) <LU F (x).

The set of the LU-solutions is given by:

X LU =
{

x ∈ R
n|x = arg min

x∈X
F (x)

}
.

Remark 1. 1. The following relations are immediate:

LU-solution ⇒ strictly weakly LU-solution ⇒ weakly LU-solution.

2. The theory that will be developed for the weakly LU-solutions is applicable to
the LU-solutions and to the strictly weakly LU-solutions as well.

The method to obtain the weakly LU-solutions is equivalent to the resolu-
tion of a classical bi-objective optimization problem, derived from the interval
problem in question. This is seen in the next Theorem:

Theorem 2. If x is a weakly LU-solution of the problem (IP), then x is a weak
Pareto optimal solution of the following classical bi-objective problem:

(BP )LU

{
minimize (f1(x), f2(x))
subject to gi(x) ≤ 0, i = 1, . . . ,m.

Conversely, if x is a weak Pareto optimal solution of (BP )LU , then x is a weakly
LU-solution of the problem (IP).
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Proof. Let x be a weakly LU-solution of the problem (IP), that is, there does
not exist x ∈ X such that

F (x) <LU F (x)
⇔ [f1(x), f2(x)] <LU [f1(x), f2(x)]

⇔ f1(x) < f1(x) and f2(x) < f2(x). (1)

Suppose that x does not solve the classical problem (BP )LU . Then there exist
a solution x ∈ X such that

(f1(x), f2(x)) < (f1(x), f2(x))
⇔ f1(x) < f1(x) and f2(x) < f2(x),

which contradicts the weakly LU-optimality of x (see (1)). Conversely, if x ∈ X
is a weak Pareto optimal solution of the problem (BP )LU , then there does not
exist x ∈ X such that

(f1(x), f2(x)) < (f1(x), f2(x))
⇔ f1(x) < f1(x) and f2(x) < f2(x)

⇔ [f1(x), f2(x)] <LU [f1(x), f2(x)]
⇔ F (x) <LU F (x),

which is the definition of weakly LU-optimality for x.

4 Necessary Optimality Conditions for the LU-Solution

The next two theorems present the necessary conditions of Fritz John and
Karush-Kuhn-Tucker type for the weakly LU-solution using the continuous dif-
ferentiability of f1 and f2 of the interval objective function F (x) = [f1(x), f2(x)]
and also the continuous differentiability of the restriction function g in order to
apply classical theorems that require just the continuous differentiability of the
involved functions.

Theorem 3 (Necessary condition of Fritz John). Let’s suppose that the
interval-valued function F : R

n → I(R) is continuously E-differentiable and
g : R

n → R
m is continuously differentiable. If x ∈ X is a local weakly LU-

solution of the problem (IP), then there exist multipliers 0 � (λ, μ) ∈ R
2+m with

(λ, μ) �= (0, 0), such that

μigi(x) = 0, i = 1, . . . , m;

λ1∇f1(x) + λ2∇f2(x) +
m∑

i=1

μi∇gi(x) = 0.
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Proof. If x is a local weakly LU-solution of the problem (IP), then, by Theorem2,
x is a local weak Pareto optimal solution of the problem (BP )LU . Applying the
necessary conditions of Fritz John at x (Theorem 2.1) of Maciel, Santos and
Sottosanto [8], there exist multipliers 0 � (λ, μ) ∈ R

2+m with (λ, μ) �= (0, 0),
such that

μigi(x) = 0, i = 1, . . . ,m;

λ1∇f1(x) + λ2∇f2(x) +
m∑

i=1

μi∇gi(x) = 0.

To ensure the positivity of λ, some regularity condition must be presupposed
(see Luenberger [6], Miettinen [7], Maciel et al. [8]), and these regularity con-
ditions are called constraints qualification. We are going to consider the Kuhn-
Tucker constraint qualification of Sawaragi et al. [4] presented at the prelimi-
naries. The following theorem will present the necessary conditions of Karush-
Kuhn-Tucker for a local weakly LU-solution of the interval-valued optimization
problem.

Theorem 4 (Necessary condition of Karush-Kuhn-Tucker). Let’s sup-
pose that the interval-valued function F : R

n → I(R) is continuously E-
differentiable and g : Rn → R

m is continuously differentiable. If x ∈ X satisfies
the Kuhn-Tucker constraint qualification and is a local weakly LU-solution of
the problem (IP), then there exist (Lagrange) multipliers 0 � (λ, μ) ∈ R

2+m

with λ1 + λ2 = 1, such that

μigi(x) = 0, i = 1, . . . ,m; (2)

λ1∇f1(x) + λ2∇f2(x) +
m∑

i=1

μi∇gi(x) = 0. (3)

Proof. If x is a local weakly LU-solution of the problem (IP), then, by Theorem2,
x is a local weak Pareto optimal solution of the problem (BP )LU . Applying the
Theorem 1 at x, there exist (Lagrange) multipliers 0 � (λ, μ) ∈ R

2+m such
that (2) and (3) hold and also satisfying the property that λ1 + λ2 = 1. In
fact, if (λ1, λ2) and (μ1, . . . , μm) serve as sets of multipliers then, for all c > 0,
(λ̃1, λ̃2) := (cλ1, cλ2) and (μ̃1, . . . , μ̃m) := (cμ1, . . . , cμm) also serve as sets of
multipliers.

If λ̃1 = cλ1 �= 0 and λ̃2 = cλ2 �= 0 we can always choose c := 1
λ1 +λ2

such
that

λ̃1 + λ̃2 = cλ1 + cλ2 = c(λ1 + λ2) =
1

λ1 + λ2
(λ1 + λ2) = 1.

If μ̃1 = cμ1 �= 0, . . . , μ̃m = cμm �= 0 we have that

μigi(x) = 0, for all i = 1, . . . , m

⇔ cμigi(x) = 0, for all i = 1, . . . , m and for all c > 0
⇔ μ̃igi(x) = 0, for all i = 1, . . . , m
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and

λ1∇f1(x) + λ2∇f2(x) +
m∑

i=1

μi∇gi(x) = 0

⇔ c

(
λ1∇f1(x) + λ2∇f2(x) +

m∑
i=1

μi∇gi(x)

)
= 0, for all c > 0

⇔ cλ1∇f1(x) + cλ2∇f2(x) +
m∑

i=1

cμi∇gi(x) = 0

⇔ λ̃1∇f1(x) + λ̃2∇f2(x) +
m∑

i=1

μ̃i∇gi(x) = 0.

Therefore, we have that there exist (Lagrange) multipliers 0 � (λ̃, μ̃) ∈ R
2+m

with λ̃1 + λ̃2 = 1, such that

μ̃igi(x) = 0, i = 1, . . . , m;

λ̃1∇f1(x) + λ̃2∇f2(x) +
m∑

i=1

μ̃i∇gi(x) = 0.

5 Conclusion

We considered an interval optimization problem and the LU order relation which
defines the concept of solution for the problem. With this in hand, we presented
a method to determine the LU-solutions. Then using the continuous differen-
tiability of the involved functions and classical necessary conditions, we gave
the necessary conditions of the Fritz John and Karush-Kuhn-Tucker types for
the interval optimization problem. The next step is to consider an interval opti-
mal control problem and give necessary conditions of the Maximum Principle
type. Similar results can be obtained using other order relations such as the UC
order relation (see Ishibuchi and Tanaka [10]) and LS order relation (see Chalco-
Cano et al. [11]) by just changing the objective function of the bi-objective
problem (f1(x), f2(x)) for (f2(x), fC(x)) and (f1(x), fS(x)), respectively, where
fC(x) = f1(x)+ f2(x)

2 and fS(x) = f2(x) − f1(x).
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Abstract. We are concerned with tools to find bounds on the range
of certain polynomial functions of n variables. Although our motivation
and history of the tools are from crisp global optimization, bounding the
range of such functions is also important in fuzzy logic implementations.
We review and provide a new perspective on one such tool. We have been
examining problems naturally posed in terms of barycentric coordinates,
that is, over simplexes. There is a long history of using Bernstein expan-
sions to bound ranges of polynomials over simplexes, particularly within
the computer graphics community for 1-, 2-, and 3-dimensional prob-
lems, with some literature on higher-dimensional generalizations, and
some work on use in global optimization. We revisit this work, identify-
ing efficient implementation and practical application contexts, to bound
ranges of polynomials over simplexes in dimensions, 2, 3, and higher.

1 Introduction

Finding bounds on the range of a function

f(x) = f(x0, . . . , xn) : D ⊆ R
n+1 → R

of n+1 variables x0, . . . , xn over some region D is an important problem occur-
ring in many forms and contexts. Indeed, evaluating the value of a function over
fuzzy inputs involves finding its range over the appropriate non-fuzzy (“crisp”)
sets (namely, alpha-cuts); such evaluations are central to computing fuzzy out-
puts based on fuzzy inputs; see [6] for an excellent explanation of this. Finding
the exact range (or good numerical approximation thereof), or equivalently, the
global optimization problem, is known, for general continuous f and general
compact region D, to be NP-hard, and is not NP-hard only for certain special
classes of f and D. However, non-sharp bounds, if not too wide, can be a use-
ful basic tool, even in global optimization algorithms. The literature is replete
with discussion of the relationship between bounding the range of a function
and fuzzy computations, as pointed out, say, in the overviews [8,11], in [24], or
the more recent work [22]. (A plethora of references is omitted.) One survey on
fuzzy optimization, including its relationship to crisp optimization techniques,
is [18].
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Various approaches to easily computing usable bounds on ranges, many
depending on particular contexts and applications, have been proposed and
implemented. A common context is where the region D is defined by lower and
upper bounds xi and xi on each of the variables xi, that is, xi ≤ xi ≤ xi,
0 ≤ i ≤ n. We speak of such regions as a box, or interval vector, and write

x = (x0, . . . ,xn) = ([x0, x0], . . . , [xn, xn]).

In this context, simple (or “naive”) interval arithmetic, introduced and explained
in numerous texts and reviews, such as our relatively recent work [10], is a
possibility. However, such bounds are not guaranteed to be sufficiently close to
the actual range to be useful; experts in interval arithmetic have extensively
studied techniques to obtain the best possible bounds with the minimal amount
of work.

1.1 Simplexes

In various applications, range bounds are required, not over a box, but over a
simplex S. In particular, to within an affine transformation, an n-dimensional
simplex in R

n+1 is characterized by:

Sc =

{
(x0, . . . , xn), xi ≥ 0,

n∑
i=0

xi = 1

}
, (1)

Thus, a simplex can be viewed as a box x ∈ R
n+1 subject to the additional

(commonly occurring) constraint
∑n

i=0 xi = 1. Alternatively, a simplex can be
viewed as a volume in R

n bounded by affine constraints:

S =

{
n∑

i=0

xiPi, xi ≥ 0, Pi ∈ R
q, q ≥ n,

n∑
i=0

xi = 1

}
. (2)

The Pi in (2) are called the vertexes of S, and the xi are called the barycentric
coordinates of points in S. (In (1), the vertexes are the coordinate vectors in
R

n+1.) Simplexes are often specified in terms of their vertexes:

S = 〈P0, . . . , Pq〉 (and usually q = n). (3)

When n = 1, a simplex corresponds to a line segment, when n = 2, a sim-
plex corresponds to a triangle in R

3, while simplexes with n = 3 correspond to
tetrahedra.

Remark 1. In branch and bound algorithms for global optimization, the simplex
S is partitioned or subdivided in various ways. That is,

Definition 1. A subdivision of a simplex S is a set of simplexes {S1, . . . ,Sm}
such that

S =
m⋃

i=1

Si, Si ∩ Sj lies on the boundary of Si and Sj for each i, j. (4)
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A common subdivision in this context is bisection into two simplexes, S1 and
S2, by replacing Pi by 1

2 (Pi + Pj) in S1 and replacing Pj by 1
2 (Pi + Pj) in S2,

for some suitably chosen i and j. If S is identified with Sc and f(x0, . . . xn) is
defined on Sc, we can identify each of S1 and S2 with S, but then the domain of
f (or coefficients of f if f is a polynomial in the barycentric coordinates) needs
to be rescaled to the barycentric coordinates over S1 and over S2.

1.2 Bernstein Polynomials

Univariate Bernstein Polynomials. If f is a polynomial, or in some cases a
rational function, bounds on the ranges can be computed with Bernstein polyno-
mials, both over boxes and simplexes. Bernstein polynomials have been analyzed
by approximation theorists for over a century. The d + 1 Bernstein polynomials
of degree d form a basis for degree d polynomials over the interval [0, 1], and are
given by

B
(d)
i (t) =

(
d

i

)
ti(1 − t)d−i, 0 ≤ i ≤ d, (5)

Following the notation in [2, p. 7], the properties of Bernstein polynomials that
make them useful are:∑d

i=0 B
(d)
i (t) ≡ 1 (partition of unity).

B
(d)
i (t) ≥ 0 for t ∈ [0, 1] (non-negativity).

B
(d)
i (t) = (1 − t)B(d−1)

i (t) + tB
(d−1)
i−1 (t) (recursion).

⎫⎪⎬
⎪⎭ (6)

The general form (5) combined with the partition of unity property makes
Bernstein polynomials suitable for representation of functions defined on sim-
plexes. Observe, for n = 1, if x0 = 1 − t and x1 = t, B

(1)
i = xi. For a general

function f defined on [0, 1], the Bernstein approximation to f by a degree d
polynomial is

f(t) ≈ fB(d)(t) =
d∑

i=0

f

(
i

d

)
B

(d)
i (t). (7)

For continuous f , the Bernstein approximation converges relatively slowly to f
as the degree n increases, but the fB are very smooth (without the overshoot
in high degree polynomial interpolation and regression, or even in splines), and
the convergence is uniform. Furthermore:

1. Because of the partition of unity property (6), fB(d)(t) is a weighted average
of the f(ti) = f(i/d), and therefore lies between the smallest and largest
values of f at these n + 1 equally spaced sample points ti.

2. Suppose f is a homogeneous degree d polynomial of two variables:

f(x0, x1) =
d∑

i=0

aix
i
0x

d−i
1 with the condition x0 + x1 = 1.
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Then

f(x0, x1) =
d∑

i=0

ai

(d
i)
B

(d)
i (t), where x0 = t, x1 = 1 − t, and

min
x0∈[0,1],
x0+x1=1

f(x0, x1) = min
0≤i≤d

ai

(d
i)
, max

x0∈[0,1],
x0+x1=1

f(x0, x1) = max
0≤i≤d

ai

(d
i)
.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(8)

Property 2 concerns a homogeneous polynomial defined on a one-dimensional
simplex (n = 1), and shows a quick way of computing exact bounds on the range
of that polynomial. For example, a multi-dimensional analog of Property 2 can
be used directly in algorithms for quadratic programming problems.

Property 1 can be used in conjunction with (7) for vector valued functions
�f(t), in particular for �f(t) ∈ R

2 or R
3. In that case, the resulting curve �f(t),

0 ≤ t ≤ 1 is called a Bézier curve, and the values �f(i/d), usually given as dis-
crete points in R

2 or R
3 rather than with reference to an underlying function,

are called the control points. In 1959, Paul de Casteljau at Citroën (and inde-
pendently, Pierre Bézier at Renault) at developed an ingenious algorithm, based
on the above properties of Bernstein polynomials, to evaluate Bézier curves, for
computer aided geometric design. The de Casteljau algorithm is now ubiquitous
throughout the computer science literature and common in implementations.
Furthermore, the de Casteljau algorithm is found in the literature on global
optimization. Information about Bézier curves is available in numerous papers
and course notes; a somewhat recent review is [3].

In addition to Bézier curves, the de Casteljau algorithm has been studied in
the context of bounding ranges of functions. Thus, the plethora of literature on
the de Casteljau algorithm within the computer aided geometric design literature
is available to designers of global optimization algorithms.

Multivariate Bernstein Polynomials. Computer-aided geometric design
researchers, as well as global optimization experts and others, have examined
generalizations of the definition (5), properties (6) and the approximation (7)
to n > 1. Tensor products of the Bi(d) are used, with generalizations to both
boxes and simplexes. Here, we focus on such generalizations to homogeneous
polynomials and n-simplexes in R

n+1.
In much of the literature, the multi-dimensional forms are written down with

the aid of multi-indexes. Loosely following the notation in [14] for the simplicial
extension, we have

Definition 2. A multi-index �i is simply an (n + 1)-vector of indexes:

�i = (i0, . . . , in), |�i| =
n∑

j=0

ij , and x
�i =

n∏
j=0

x
ij

j ,

(
d
�i

)
=

d!∏n
j=0(ij !)

.
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The multi-dimensional simplicial Bernstein functions are defined on the canon-
ical n-simplex1 Sc ∈ R

n+1 of (1). With the notation in Definition 2, the n-
dimensional simplicial Bernstein basis functions corresponding to (5) are

B
(d,n)
�i

(�x) =
(

d
�i

)
x
�i for �x = (x0, . . . xn) ∈ Sc and |�i| = d, (9)

where Sc is the canonical simplex (1). Observe that (9) corresponds to (5) for
n = 1, x0 = 1 − t, x1 = t.

Definition 3. A homogeneous degree d polynomial of n+1 variables is a poly-
nomial of the form f(x0, . . . xn) =

∑
|�i|=d

a�ix
�i, that is, a polynomial of n + 1

variables each of whose non-zero terms has total degree d.

Remark 2. Corresponding to (8), if f is a homogeneous polynomial of n + 1
variables of the form in Definition 3 defined on Sc, and �x = (x0, . . . , xn), then

f(�x) =
∑

|�i|=d

a�i

(d
�i)

B
(d,n)
�i

(t), where �x ∈ Sc, and

min
�x∈Sc

f(�x) = min
|�i|=d

ai

(d
�i)

, max
�x∈Sc

f(�x) = max
|�i|=d

ai

(d
�i)

.

⎫⎪⎪⎬
⎪⎪⎭ (10)

In fact, arbitrary (non-homogeneous) polynomials can be represented in
terms of the Bernstein basis; this is necessary for many important problems
when using Bernstein techniques in global optimization. The conversion process,
for various n has been presented and studied in the literature; for example, an
algorithm for the n = 2 case is given in [23]. We analyze the conversion for an
important case in global optimization in Sect. 2 below.

An advantage of the Bernstein polynomial representation is that the de
Casteljau algorithm can simultaneously compute coefficients and bounds over
each element Si of a subdivision (4) of S, with respect to the local barycentric
coordinates for Si, by taking combinations of the coefficients over S. In partic-
ular:

Remark 3. if S1 and S2 are formed from bisection and the coefficients are known
for S, then the coefficients (and hence bounds on f , via (10)) can be computed
in

(
d+n
n+1

)
add-and-shift operations; see [14, Lemma 3.2].

For example, for quadratic programming problems (d = 2) with the constraints∑n
i=0 xi = 1, xi ≥ 0, 0 ≤ i ≤ n, this requires n + 2 adds and shifts, and may

require less if many of the coefficients are non-zero.

Remark 4. Points to make: The multidimensional de Casteljau algorithm is most
clearly implemented using recursion within a programming language, a technique
that can be very inefficient in certain environments. On the other hand, imple-
mentation without recursion leads to confusing indexing schemes. Identification
of important problems representing special cases where the algorithm can be
simplified may thus be of use.
1 Not to be confused with the standard simplex in R

n of the literature, defined in
terms of (2).
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1.3 Alternatives and Previous Work

Garloff et al. (see [19–21] and earlier works) Leroy (see [7]), Nataraj et al. (see
[13,15,16], etc.) and others have studied Bernstein polynomials in the context of
global optimization, in particular, in the conjunction with interval arithmetic to
supply mathematical guarantees on the results. Muñoz and Narkawicz (see [12])
consider efficient representation of Bernstein polynomials for symbolic compu-
tations to be incorporated in global optimization algorithms.

In [5], we analyze the interplay between interval arithmetic and the con-
straints defining a simplex, to obtain formulas that are superior to naive interval
arithmetic.

Here, we identify applications for which the simplicial Bernstein form is nat-
ural and likely to be competitive. We look at sharpness of bounds on the range,
and we count the number of operations. Exhaustive comparison of implementa-
tion efficiencies on appropriate problems will be in future work.

2 Quadratic Programming Problems

The quadratic programming problems naturally suited to benefiting from Bern-
stein representations can be written as

minimize f(�x) =
n∑

i=0

n∑
j=0

ai,jxixj +
n∑

i=0

bixi

subject to
n∑

i=0

xi = 1, xi ≥ 0, i = 0, . . . , n,

hj(�x) =
n∑

i=0

hi,jxi = rj , j = 1, . . . ,m.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(11)

The non-negativity conditions and the condition
∑n

i=0 xi = 1 are common
to many practical problems, and define the optimization to be over the unit
simplex S. However, the linear terms

∑n
i=0 bixi and

∑n
i=0 hi,jxi in the objective

function as well as in the m additional equality constraints are usually present,
and cannot be easily eliminated. In the absence of these additional constraints,
(11) would be of the form in (10) with d = 2, and no conversion would be
required. However, for this d = 2 case, rewriting each xk, 0 ≤ k ≤ n in terms of
the basis functions B

(2,n)
�i

is relatively simple, so the objective function f and the
constraints hj are written in terms of barycentric coordinates over the canonical
simplex S. We have

xk = 1 −
n∑

j=0
j�=k

xj , so xk

⎛
⎜⎝1 −

n∑
j=0
j�=k

xj

⎞
⎟⎠ = xk −

n∑
j=0
j�=k

xkxj = x2
k. (12)

Adding the sum
∑n

j=0
j�=k

xkxj to both sides thus gives

xk =
n∑

j=0

xkxj =
n∑

j=0

B
(2,n)
�ij,k(
d

�ik

) = 2
n∑

j=0
j�=k

B
(2,n)
�ij,k

+ B
(2,n)
�ik,k

, where (13)
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�ij,k is the multi-index with n + 1 entries whose j-th and k-th entries are 1
and all of whose other entries are 0, and

B
(2,n)
�ij,k

=

{
2xkxj , j �= k,

x2
k, j = k.

(14)

Replacing linear terms in (11) using (13) and collecting terms gives the linear
programming problem completely in terms of barycentric coordinates:

minimize f(�x) =
n∑

i=0

n∑
j=0

αi,jB
(2,n)
�ii,j

subject to
n∑

i=0

xi = 1, xi ≥ 0, i = 0, . . . , n,

hj(x) =
n∑

i=0

n∑
k=0

γj,i,kB
(2,n)
�ii,k

= rj , j = 1, . . . ,m.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(15)

The conversion process need be done only once, before beginning the branch
and bound algorithm. Once the conversion is done, the de Casteljau algorithm
may be applied separately to f and the hj in (15), to obtain a barycentric
representation of the quadratic program over each element of a subdivision of
S. As those elements of the subdivision are further subdivided, the process can
be repeated.

Remark 5. Higher degree polynomials can be treated with this method, but the
total number of adds and shifts for a bisection

(
d+n
d+1

)
grows rapidly with the

degree d, and implementation is not as simple. This may cause computations
with high d to be impractical, although parallelization, and indeed, computations
similar to fast Fourier transforms can possibly be used; see [1].

3 Examples

The following examples are applications that have appeared in the literature or
in private correspondence.

Example 1. This example, namely, the Markowitz model of stock portfolio opti-
mization, originates with [9]. It consists precisely of (11), with bi = 0, 0 ≤ i ≤ n,
and m = 1. The objective f represents risk to be minimized, the ai,j are the
correlations between holdings, and the constant r in the constraint c represents
the required rate of return.

We will illustrate the use of Bernstein expansions in the de Casteljau algorithm,
as in [14], to facilitate computations associated with a subdivision process. In
Example 1. f and the hj have separate Bernstein expansions, and their ranges
subject to the barycentric condition

∑N
i=0 xi = 1 can be computed in parallel

(e.g. in a vector computation). For brevity, we illustrate the technique with f
alone. The objective function of Example 1 is exactly the objective function f in
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(2). We consider the case d = 2, n = 2. Then �x = (x0, x1, x2), and the objective
function has 6 coefficients a0,0, a0,1, a0,2, a1,1, a1,2, and a2,2. In our illustration,
set the coefficients the following:

a0,0 = 2, a0,1 = 6, a0,2 = 8, a1,1 = 4, a1,2 = 12, a2,2 = 8,

so the objective function is

f (�x) = 2x2
0 + 6x0x1 + 8x0x2 + 4x2

1 + 12x1x2 + 8x2
2. (16)

To apply the de Casteljau algorithm, the homogeneous polynomial (16) needs to
be transformed into Bernstein form according to Remark 2. The corresponding
Bernstein coefficients after conversion are

α0,0 = 2, α0,1 = 3, α0,2 = 4, α1,1 = 4, α1,2 = 6, α2,2 = 8.

The objective function in Bernstein form is given by

f (�x) = 2B(2,2)
�i0,0

+ 3B
(2,2)
�i0,1

+ 4B
(2,2)
�i0,2

+ 4B
(2,2)
�i1,1

+ 6B
(2,2)
�i1,2

+ 8B
(2,2)
�i2,2

. (17)

We introduce additional notation, similar to that in [14], to denote Bernstein
coefficients associated with subdivisions of the original simplex, as follows.

α0,0 = c�i0,0
= c2,0,0 = 2; α0,1 = c�i0,1

= c1,1,0 = 3; α0,2 = c�i0,2
= c1,0,1 = 4

α1,1 = c�i1,1
= c0,2,0 = 4; α1,2 = c�i1,2

= c0,1,1 = 6; α2,2 = c�i2,2
= c0,0,2 = 8.

The indexes for these coefficients correspond to scaled barycentric coordinates on
edges of the simplex, as illustrated in Fig. 1; they are related to the values of the
polynomial at those points through (9). According to Remark 2, the objective
function is bounded within [2, 8].

We now illustrate how these coefficients are reassigned and combined to
obtain the coefficients for the barycentric representation over the two sub-
simplexes S1 and S2 obtained by bisecting the edge connecting P1 and
P2. The corresponding computations may be done efficiently with the Edge
DeCasteljau algorithm in [14]. In particular, running EdgeDecasteljau(b2,2[S],
1
2;...) gives the coefficients in Fig. 2(b). The de Casteljau algorithm computes
these coefficients through a simple averaging process of adjacent coefficients.
One reads off the Bernstein coefficients of the polynomials in barycentric form
for S1 and S2 directly from this diagram, as illustrated in Fig. 3 According to
Remark 2, f is bounded over S1 by [2, 8], and f is bounded over S2 by [2, 6]. If
we continued the process within a branch and bound algorithm, S1 and / or S2

can replace S, for the process to be repeated. Note that, since f is quadratic,
the ranges [2, 8] and [2.6] are exact ranges over S1 amd S2, respectively.

Example 2. The condition
∑n

i=0 x2
i = 1 is equivalent to requiring the optimum

be on the unit (n+1)-sphere, a much-studied condition with many applications.
As one of many examples of this, the work [17] deals with minimization of a
homogeneous polynomial on a sphere. If each xi only occurs to even powers in
the objective and other constraints, a change of variables x̃i = x2

i transforms the
problem to optimization over the unit simplex.
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S

P0 P1

P2

(a) The original simplex.

8
c0,0,2

4 6
c1,0,1 c0,1,1

2 3 4
c2,0,0 c1.1.0 c0,2,0

(b) Corresponding coefficient labeling.

Fig. 1. Simplex coefficients for Example 1.

P0 P1

P2

S1

S2

(a) Bisected simplex.

8

7

4 6

7
2

5

2 3 4

(b) de Casteljau output.

Fig. 2. Bisecting the simplex.

8
c0,0,2

4 7
c1,0,1 c0,1,1

2 7
2

6
c2,0,0 c1.1.0 c0,2,0

(a) Coefficients for S1.

6
c0,0,2

7
2

5
c1,0,1 c0,1,1

2 3 4
c2,0,0 c1.1.0 c0,2,0

(b) Coefficients for S2.

Fig. 3. Bernstein coefficients for S1 and S2.

Example 3. Minimization over the �1 sphere is minimization subject to the con-
dition

∑n
i=0 |xi| = 1. Minimization over the first orthant of the �1-sphere can

thus be viewed as minimization over the standard simplex S. If, for example,
there is some symmetry across orthants, techniques for optimization over a sim-
plex (and in particular, the Bernstein representation) can be used. This would
happen, for example, if most of the individual variables only occur with even
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powers, or if there are a few variables that just occur with odd powers. How-
ever, associated branch and bound algorithms are likely to be practical only for
relatively small n.

4 Summary

We have reviewed simplexes and the simplicial Bernstein form for multivariate
polynomials in the context of global optimization and, indirectly, computing α-
cuts of a fuzzy logic output. We have identified contexts commonly occurring
in applications in which the simplicial Bernstein form and computations with it
simplify and are likely to prove practical and competitive, and have presented
some preliminary examples. Actual comparisons and computations, including
within a fuzzy logic context, will appear in future work.
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1 Introduction

This article presents the Moore library for interval arithmetic in C++20. It
gives examples of how the library can be used, and explains the basic principles
underlying its design. It also describes how the library differs from the several
other good libraries already available [1–12]. The Moore library is not compliant
with the recent IEEE standards for interval arithmetic [13,14], and it will never
be, but it would fair to rank in the top five in terms of compliance among the
libraries in [1–12], the first and only truly compliant being [5], followed by [9],
which is almost compliant. Of course, the library has limitations, and some of
them are addressed in the last section, but only by playing a bit with it you will
be able to tell whether its pluses offset its minuses.

The library was written mainly for myself and my students, to be used in
our research about interval arithmetic and scientific computing in general. It is
also meant to be used by other people, and its open source code and manual are
available upon request to me. It is distributed under the Mozilla 2.0 license.

The Moore library will be useful for people looking for better performance
or more precise types of endpoints for their intervals. To emphasize this point,
Sect. 7 presents experiments showing that it is competitive with well known
libraries, and it is significantly faster than some of them. The library will be most
helpful for people using single or double precision arithmetic for most of their
computation, with sporadic use of higher precision to handle critical particular
cases. In this scenario the Moore library offers tools which are not available “out
of the box” in other libraries, if available at all.

I assume that you are familiar with interval arithmetic, and understands me
when I say that the library satisfies all the usual containment requirements of
interval arithmetic. I also assume that you have some experience with templates,
but you do not need to be familiar with the feature of C++20 which distinguishes
most the Moore library from the others: Concepts [15], which are described in
Sect. 3.

In the rest of the article I present the library, starting from the basic oper-
ations and moving to more advanced features, and present extensions of the
library for linear algebra and automatic differentiation.

2 Hello Interval World

The Moore library can be used by people with varying degrees of expertise. Non
experts can simply follow what is outlined in the code below:
c© Springer International Publishing AG, part of Springer Nature 2018
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#include "moore/config/minimal.h"

...

using namespace Ime::Moore;

...

UpRounding r;

TInterval<> x(2.0, 3.0);

TInterval<> y("[-1/3, 2/3]");

for(int i = 0; i < 10; ++i)

{

y = (sin(x) - (y/x + 5.0) * y) * 0.05;

cout << y << endl;

}

With the Moore library you construct intervals by providing their endpoints as
numbers or strings, and then use them in arithmetical expressions as if they
were numbers. The library also provides trigonometric and hyperbolic functions,
their inverses, exponentials and logarithms, and convenient ways to read and
write intervals to streams.

The file /moore/config/minimal.h contains the required declarations for
using the library with double endpoints. The line

UpRounding r;

is mandatory. It sets the rounding mode to upwards, and the rounding mode is
restored when r is destroyed. This is like one of the options in the boost library
[1], but the Moore library uses only one rounding policy. In fact, giving fewer
options instead of more is my usual choice. I only care about concrete use cases
motivated by my own research, instead of all possible uses of interval arithmetic.
I prefer to provide a better library for a few users rather than trying to please a
larger audience which I will never reach.

Intervals are represented by the class template TInterval<E>, which is
parameterized by a single type E. The letter E stands for endpoint, and both
endpoints of the same interval are of the same type E, but intervals of different
types may have different types of endpoints, and we can operate with them, as
illustrated below. The default value for E is double, so that TInterval<> repre-
sents the plain vanilla intervals with endpoints of type double available in other
libraries.

The library does not contain class hierarchies, virtual methods or policy
classes. On the one hand, you can only choose the type of the endpoints defining
the intervals of the form [a, b] with −∞ ≤ a ≤ b ≤ +∞, or the empty interval. On
the other hand, I do believe that it goes beyond what is offered by other libraries
in its support of generic endpoints, intervals and operations. The library works
with several types of endpoints “out of the box,” that is, it provides tested code
in which several types of endpoints can be combined, as in the example below.
It also implements other kinds of convex subsets of the real line. For instance,
it has classes to represent intervals of the form (a,b], [a,b) or (a,b), in which
the “openness” of the endpoints can be decided at compile or runtime, and these
half open intervals are used to implement tight arithmetic operations.
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The code below illustrates the use of intervals with four types of endpoints:

TInterval<> x(5,6);

TInterval<float> y(-1,2);

TInterval<__float128> z("[-inf,4"]);

TInterval<RealEnd<256>> w("[-1/3,2/3]");

auto h = x | y | 0.3; // the convex hull of x,y and 3

auto i = x & y & z & w; // the intersection of x,y,z and w

auto j = sin(z * x/cos(y * z)) - exp(w);

– The interval x has endpoints of type double.
– y has endpoints of type float.
– The endpoints of z have quadruple precision.
– w has endpoints of type RealEnd<256>, which are floating point numbers with
N = 256 bits of mantissa, and you can choose other values for N .

– The compiler deduces that h is an interval with endpoints of type double,
which is the appropriate type for storing the convex hull of x, y and 0.3.

– It also deduces that RealEnd<256> is the appropriate type of endpoints for
the interval representing the intersection of x, y, z and w, and this is the
endpoint type for j.

I ask you not to underestimate the code above. It is difficult to develop the
infrastructure required to handle intervals with endpoints of different types in
expressions as natural as the ones in that code. In fact, there are numerous issues
involved in dealing with intervals with generic endpoints, and simply writing
generic code with this purpose is not enough. The code must be tested, and my
experience shows that it may compile for some types of endpoints and may not
compile for others.

3 Concepts

The Moore Library differs significantly from the previous C++ interval arith-
metic libraries due to its use of Concepts, a feature which will be part of the
C++20 standard [15]. Concepts improve the diagnostic of errors in the com-
pilation of templated C++ code, and they can be motivated by the following
example. Suppose we write the code below to compute the length of intervals of
types Interval provided by several libraries.

template <typename Interval> // Code in a header file somewhere.

double length(Interval const& i) { // Interval is meant to be a type

return sup(i) - inf(i); // provided by an existing interval

} // arithmetic library.

This code works as long as the functions inf and sup are provided, either by
the original library for the type Interval or by an adapter. However, it will
not take long for someone to code something like the snippet below and get
indecipherable error messages about infs, sups and strings.
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void unlucky() // code in a source file unrelated to intervals.

{

std::string str("I know nothing about intervals!!!");

std::cout << length(str) << std::endl;

}

When reading the error messages about infs and sups of strings in the compi-
lation of the unlucky function, the programmer may not be aware of the chain
of inclusions leading to the header file containing the declaration of the function
length for intervals, and the length function for strings will be declared in yet
another header file. It will be difficult to relate the error messages to the code
which is apparently being compiled, and unexperienced programmers will get
lost. Even people experienced with templates will tell you how frustrating these
error messages can be, and this is indeed a problem with templates.

We could solve this problem by telling the compiler what an interval is.
Knowing that strings are not intervals, it would not consider the function tem-
plate length below as an option for strings, and there would be no meaningless
error messages about infs and sups of strings.

template <Interval I> // Telling the compiler that I must be an

double length(I const& i) { // interval for this function template to

return sup(i) - inf(i); // be considered.

}

In essence, this is what a concept is: a way to tell the compiler whether a
type should be be considered in the instantiation of templates. In the Moore
library concepts are used, for example, to tell whether a type represents an
interval (the Interval concept) or an endpoint (the End concept), or when
there exist an exact conversion from endpoints of type T to endpoints of type E
(the Exact<T,E> concept.) We then can code as follows and the compiler will
instantiate the appropriate templates. In the end, concepts allow us to operate
naturally with intervals and endpoints of different types.

template <Interval I> // sum of intervals of the same type

I operator+(I const&, I const&)

template <Interval I, Interval J> // sum of intervals when there

requires Exact<EndOf<J>, EndOf<I>>() // is an exact conversion from

I operator+(I const&, J const&) // J to I.

template <Interval I, Interval J> // sum of intervals when there

requires Exact<EndOf<I>, EndOf<J>>() // is an exact conversion from

J operator+(I const&, J const& ) // I to J.

template <Interval I, End E> // sum of an intervals and an

requires Exact<E, EndOf<I> >() // endpoint when there is an

I operator+(I const&, E const&) // exact conversion form E to I.

The code above also presents an alternative way to enforce concepts: the
requires clauses. These clauses make sure that the operator+ will be con-
sidered only when there is an obviously consistent type for the output.
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Overall, the motivation for concepts is clear and intuitive. Their problems lie
in the details and the crucial question: How should we tell the compiler what
an interval or and endpoint is (or any concept, really)? I do not know the best
answer to this question, and neither does the rest of the C++ community. This
is why concepts are taking so long to become part of the C++ standard.

This ignorance should not prevent us from using concepts. They are a great
tool, and we can do a lot with what is already available. With time, as concepts
and our experience with them evolve, we will improve our code. For now the
Moore library tells the compiler in an ad-hoc way what intervals and endpoints
are. It basically lists explicitly which types qualify for a concept, and avoids the
more elaborate schemes to declare concepts which are already available, for two
reasons: First, their current implementation has bugs (it does not handle recur-
sion properly, for instance.) Second, it is difficult to list precisely and concisely
all the requirements which would characterize intervals and endpoints. I would
not be able to do it even if the current implementation of concepts were perfect.

The last questions are then: do concepts work for interval arithmetic? Are
they worth the trouble? I would not have written this article if my answer to
these questions were not an enthusiastic “yes!!”, and I invite you to try out the
library and verify whether you share my enthusiasm.

4 Input and Output

Flexible and precise input and output are essential for an interval arithmetic
libary. The Moore library accepts as input interval literals and streams as follows

try {

TInterval<> x("[]"); // the empty interval

x = "[-inf, 1]"; // -inf = minus infinity

x = "[2.0e-20, 1/3]"; // rational numbers are ok

x = "[-2.345, 0x23Ap+4]"; // hexadecimal floats too

std::cin >> x; // reading from an input stream

} catch(...){}

As the code above indicates, the library throws an exception when the string
literal meant to represent an interval is invalid. Strings in hexadecimal nota-
tion are handled exactly, and by using them for both input and output you
can persist intervals without rounding errors. In the other formats the result-
ing interval is usually the tightest representable interval containing the input,
the only exception being contrived rational numbers for which it would take an
enormous amount of memory or time to compute this tight enclosure. In these
rare cases you may get a memory allocation exception or need to wait forever.

Properly formatted output is important to visualize the results of interval
computations, and the library implements an extension of the usual printf format
to specify how intervals are written to streams. This extension is needed in order
to align numbers properly in columns when printing vectors and matrices. For
example, the code below creates a 3 × 3 matrix of intervals (a box matrix) and
writes it to the standard output. The output is formatted according to the string
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"11.2E3W26", which extends the argument "+11.2E" passed to printf to write
floating point numbers in scientific notation (E), showing the plus sign (+), with
11 characters per number and 2 digits after the decimal point. We add the suffix
"3W26" to the format to ensure that exponents are printed with 3 digits and
each interval is 26 characters wide. Without this extension the output would not
be as well as organized at it is below.

using I = TInterval<>;

text_format() = "+11.2E3W26";

TBoxMatrix<> a( { { I(0x1p-1021,0x1p+100), I() },

{ I("[-inf,0]"), I("[0,inf]") },

{ I(-12343,0), I(50,10000) } } );

std::cout << a << std::endl;

This is the output:

[ +4.45E-308, +1.27E+030] [ ]

[ -INF, +0.00E+000] [ +0.00E+000, +INF]

[ -1.24E+004, +0.00E+000] [ +5.00E+001, +1.00E+004]

5 Linear Algebra

Besides plain intervals, the library provides vectors of intervals, called boxes, and
matrices with interval entries (box matrices) The arithmetic operations involving
vectors and matrices are implemented using expression templates and one can
write code as the one below, which handles the three dimensional vectors x and
y and the 3 × 3 matrix a in a natural way.

using I = TInterval<>;

TBox<> x( {I(1,3), I(2,4), I(1,5)} );

TBox<> y( {I(1,2), I(2,3), I(2,3)} );

TBoxMatrix<> a( { { I(1,1), I(0,1), I(3,5) },

{ I(2,1), I(2,2), I(4,7) },

{ I(2,1), I(2,2), I(3,5) } });

TBox<> z = a * x + 2 * y + x;

TBox<> w = tr(a) * y + dot(y,z) * x; // tr(a) = transposed(a)

6 Automatic Differentiation

The Moore library is part of a larger collection of tools for scientific computing,
called Ime library. As part of the work of my student Fernando Medeiros, the
Ime library provides classes for automatic differentiation, and I now describe
how these automatic differentiation tools by Fernando and myself are integrated
with the Moore library. First, we use a function template to declare the function
which we want to differentiate.
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template <typename T>

T example(T const& x) {

return exp( sqrt(exp(x)/ 3) + x) * (2 * x) - 10;

}

Once we have declared example, it is easy to compute its derivative using interval
arguments. For instance, the function newton step below performs one step
of Newton’s method for solving the equation f(x) = 0. In this code the type
ADT<I> represents the usual pair of function value and derivative used in forward
automatic differentiation schemes.

template <Interval I>

void newton_step(I& x, ADT<I> (*f)(I const& i)) {

auto fd = adt(x, example); // evaluating f and its derivative

x &= x - fd.f / fd.d; // x = (x - f(x)/f’(x)) intersected with x

}

void calling_newton() {

TInterval<> x(1,2);

newton_step(x, example);

}

The library Ime also provides automatic differentiation for functions of sev-
eral variables, like in the example below in which we print the enclosure of the
function value and gradient of the given multivariate function.

template <typename T, int N>

T multivariate_example(StaticVector<T,N> const& x) {

return exp( sqrt(exp(x[0] + x[1] / 3) + x[2]) * (2 * x[3])) / x[4];

}

void print_function_value_and_gradient() {

using I = TInterval<>;

text_format() = "+10.4E";

StaticVector<I,5> x( {I(1,2), I(-2,3), I(3,4), I(-1,1), I(1,2)} );

std::cout << adtnf(x, multivariate_example);

}

This is the output:

f = [+2.730E-05,+1.832E+04]

g[0] = [-3.509E+05,+3.509E+05]

g[1] = [-1.170E+05,+1.170E+05]

g[2] = [-1.748E+04,+1.748E+04]

g[3] = [+5.724E-05,+3.596E+05]

g[4] = [-1.832E+04,-1.365E-05]

7 Experiments

This section presents the results of experiments comparing the Moore library
with three other interval arithmetic libraries: boost interval [1], Filib [3] and
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Table 1. Normalized times for the Lebesgue function

Moore Filib boost P1788

1 3.8 1.1 268.5

libieeep1788 [9]. In summary, the experiments show that, for arithmetic opera-
tions, the Moore library is slightly faster than the boost library, it is significantly
faster than the libieeep1788 library, and it is faster than the Filib library. How-
ever, in double precision the elementary functions (sin, cos, etc.) in Filib are
significantly faster than the Moore library, which is in turn significantly faster
than the boost library and the libieeep1788 library.

Besides the difference in speed, there is a difference in the accuracy of the
elementary functions. When using IEEE754 double precision, due to the way in
which argument reduction is performed, the boost and Filib libraries can lead to
errors of order 10−8 in situations in which the Moore library and the libieeep1788
library lead to errors of the order 10−16. In fact, in extreme cases these other
libraries can produce intervals of length 2 when the sharpest answer would be
an interval of length of order 10−16.

The Moore library was implemented to be used in my research, and the exper-
iments reflect this. I present timings related to my current research about the
stability of barycentric interpolation [16–18]. In this research I look for parame-
ters w0, . . . wn which minimize the maximum of the Lebesgue function

L(w;x, t) :=
n∑

k=0

∣∣∣∣
wk

t − xk

∣∣∣∣

/∣∣∣∣∣

n∑

k=0

wk

t − xk

∣∣∣∣∣ (1)

among all t ∈ [−1, 1], for a given vector x of nodes, and I use interval arithmetic
to find such minimizers and validate them.

The first experiment timed the evaluation of the Lebesgue function for 257
Chebyshev nodes of the second kind [16], with interval weights, at a million points
t. I obtained the normalized times in Table 1 (the time for the Moore library
was taken as the unit.) This table indicates that for the arithmetic operations
involved in the evaluation of the Lebesgue function (1) the Moore library is more
efficient that the boost, Filib and libieeep1788 libraries. The difference is slight
between Moore and boost (10%), more relevant between Moore and Filib (about
300%) and very significant between Moore and libieeeP1788 (about 25000%).

In the second experiment, myself and my former student Tiago Montanher
considered the computation of the roots of functions which use only arithmetic
operations, like the Lebesgue function in Eq. (1) and its derivatives with respect
to its parameters. The data for this experiment was generated with an interval
implementation of Newton’s method which can use any one of the four libraries
mentioned above. We compared the times for the solution of random polyno-
mial equations, with the polynomials and their derivatives evaluated by Horner’s
method. We obtained the times in Fig. 1, which corroborate the data in Table 1.
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Fig. 1. Times for Newton’s method with polynomials, in log scale.

Table 2. Time for 106 evaluations of the elementary functions with random intervals.

Function Moore Filib boost P1788

sin 0.552 0.032 1.444 9.320

cos 0.156 0.032 1.560 10.172

tan 0.124 0.020 0.756 2.476

atan 0.408 0.036 10.424 10.656

exp 0.308 0.164 4.532 4.644

asin 0.356 0.088 16.572 16.156

acos 0.368 0.088 16.724 16.748

log 0.272 0.044 5.404 5.272

The first two experiments show that the Moore library is competitive for
arithmetic operations, but they tell only part of the history about the relative
efficiency of the four libraries considered. In order to have a more balanced
comparison, in the third and last experiment I compared the times that the four
libraries mentioned above take to evaluate of the elementary functions (sin, cos,
exp, etc.) using the IEEE 754 double precision arithmetic. The results of this
experiment are summarized in Table 2 below, which shows that the Filib library
is much faster than the Moore library in this scenario, and the Moore library is
much faster than the other two libraries.

I emphasize that I tried to be fair with all libraries and, to the best of my
knowledge, I used the faster options for each library. For instance, I used the
boost library on its unprotected mode, which does not change rounding modes
in order to evaluate arithmetical expressions. The code was compiled with gcc
6.2.0 with flag -O3 and NDEBUG defined (the flag -frounding-math should also be
used when compiling the Moore library.)
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8 Limitations

The Moore library was designed and implemented using a novel feature of the
C++ language called concepts [15], and it pays the price for using the bleed-
ing edge of this technology. The main limitations in the library are due to the
current state of concepts in C++. For instance, only the latest versions of the
gcc compiler support concepts, and today the library cannot be used with other
compilers. Concepts are not formally part of C++ yet, and it will take a few
years for them to reach their final form and become part of the C++ standard.

Additionally, several decisions regarding the library were made in order to get
around bugs in gcc’s implementations of concepts and in the supporting libraries,
and in order to reduce the compilation time. The code would certainly be cleaner
if we did not care about these practical issues, but without the compromises we
took using the library would be more painful.

Another limitation is the need to guard the code by constructing an object
of type UpRounding. In other words, the code must look like this

UpRounding r;

code using the Moore library

A similar requirement is made by the most efficient rounding policy for the
boost library, but that library allows users to choose other policies for rounding,
although the resulting code is less efficient. Things are different with the Moore
library: as the buyers of Henry Ford’s cars in the 1920 s, its users can choose
any rounding mode as they want, so long as it is upwards. Users wanting to mix
code from the Moore library with code requiring rounding to nearest will need
to resort to kludges like this one:

{

UpRounding r;

do some interval operations

}

back to rounding to nearest

{

UpRounding r;

do more interval operations

}
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Abstract. The traditional utility-based decision making theory assumes
that for every two alternatives, the user is either absolutely sure that the
first alternative is better, or that the second alternative is better, or that
the two alternatives are absolutely equivalent. In practice, when faced
with alternatives of similar value, people are often not fully sure which
of these alternatives is better. To describe different possible degrees of
confidence, it is reasonable to use fuzzy logic techniques. In this paper, we
show that, somewhat surprisingly, a reasonable fuzzy modification of the
traditional utility elicitation procedure naturally leads to intuitionistic
fuzzy degrees.

1 Formulation of the Problem

Need to Help People Make Decisions. In many practical situations, we
need to make a decision, i.e., we need to select an alternative which is, for us,
better than all other possible alternatives.

If the set of alternatives is small, we can easily make such a decision: indeed,
we can easily compare each alternative with every other one, and, based on
these comparisons, decide which one is better. However, when the number of
alternatives becomes large, we have trouble making decisions. Even in simple
situations, when we are looking for cereal in a supermarket, there are usually so
many selections that we just ignore most of them and go with a familiar one –
instead of the optimal one.

The situation is even more complicated if we are trying to make a decision
not on behalf of ourselves, but rather on behalf of a company or a community.
In this case, even comparing two alternatives is not easy: it requires taking into
account interests of different people involved, so the decision making process
becomes even more complicated.
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Traditional Approach to Decision Making: The Notion of Utility. The
traditional approach to decision making was originally motivated by the idea of
money.

We all know what money is, but when money was invented, it was a revo-
lutionary idea that made economic exchange much easier. Indeed, before money
was invented, people exchanged goods by barter: chicken for a shirt, jewelry for
boots, etc. Thus, to make a proper decision, every person needed to be able
to compare every two items with each other: how many chickens is this person
willing to exchange for a shirt, how many boots for a golden earing, etc. For n

goods, we have
n · (n − 1)

2
≈ n2

2
possible pairs. So, each person had to have in

mind a table of n2/2 numbers.
With money as a universally accepted means of exchange, all the person

needs to do is to decide, for each of n items, how much he or she is willing to pay
for 1 unit. So, to successfully make decisions, it is sufficient to know n numbers –
the values of each of n items. Then, even when we want to barter, we can easily
decide how many chickens are worth a shirt: it is sufficient to divide the price of
a shirt by the price of a chicken.

A similar idea can be used to compare different alternatives. All we need is
to have a numerical scale, i.e., a 1-parametric family of “standard” alternatives
whose quality increases with the increase in the value of the parameter. This can
be the money amount. Alternatively, this can be the probability p of a lottery in
which we get something very good: the larger the probability, the more preferable
the lottery.

Then, instead of comparing every alternative with every other alternative,
we simply compare every alternative with alternatives on the selected scale, and
thus, for each alternative, we find the numerical value of the standard alternative
which is equivalent to a given one. This numerical value is known as the utility
u(a) of a given alternative a; see, e.g., [3,4,6,8,11].

In terms of utility, an alternative a is better than the alternative a′ if and
only the utility u(a) of the alternative a is larger than the utility u(a′) of the
alternative a′. Thus, once we have found the utility u(a) of each alternative, then
it is easy to predict which alternative the person will select: he/she will select
the alternative for which the utility u(a) is the largest possible.

How to Actually Find the Utility. From the algorithmic viewpoint, the
fastest way to find the utility of a given alternative a based on binary comparisons
is to use bisection. Usually, we have an a prior lower bound and an a priori upper
bound for the desired utility u(a) : u ≤ u(a) ≤ u. In other words, we know that
the desired utility u(a) is somewhere in the interval [u, u]. In this procedure, we
will narrow down this interval.

Once an interval is given, we can compute its midpoint ũ =
u + u

2
and

compare a with the corresponding standard alternative s(ũ).
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If a is exactly equivalent to the resulting standard alternative, this means
that we have found the exact value of the utility u(a): it is equal to ũ. However,
such exact equivalences are rare; in most cases, we will find out that:

– either a is better than s(ũ); we will denote it by s(ũ) < a; or
– the standard alternative is better: a < s(ũ).

In the first case, the preference s(ũ) < a means that ũ < u(a). Thus, we know
that u(a) ∈ [ũ, u]. In other words, we have a new interval containing the desired
utility. We can obtain this new interval if we replace the previous lower bound
u with the new lower bound ũ.

In the second case, the preference a < s(ũ) means that u(a) < ũ. Thus, we
know that u(a) ∈ [u, ũ]. In other words, we have a new interval containing the
desired utility. We can obtain this new interval if we replace the previous upper
bound u with the new upper bound ũ.

In both cases, the width of the interval is decreased by a factor of 2. Then,
we can repeat this procedure, and in k steps, we get u(a) with accuracy 2−k.
For example, in 7 steps, we get an accuracy of 1%.

Need to take Fuzziness into Account. The above procedure works well if
a person is absolutely sure about his/her preferences. In practice, we are often
not 100% sure about our preferences, especially when we compare alternatives
of nearby value.

It is reasonable to describe this uncertainty in fuzzy terms. For example, if
we use money as a standard scale, then for each alternative a, instead of having a
single amounts of money equivalent to this item, we may have different amounts
with different degree of certainty. In other words, instead of the above crisp
model, in which a person has an exact utility value u(a) for each alternative a,
we know have a fuzzy model in which for each person and for each alternative
a, we have a membership function µa(u) that describes, for each possible value
u, to what extend this value u is equivalent to the alternative a; see, e.g., [2,5,
7,9,10,12].

How to Elicit Fuzzy Utility: A Reasonable Idea. We know how to elicit
crisp utility u(a) of a given alternative a: we need to compare the alternative a
with different values u0 of the scale. In the case of fuzzy utility, it is reasonable
to apply the same procedure. The only difference is that now, since the utility
value u(a) is fuzzy, this comparison will not lead to a crisp “yes”-“no” answer;
instead, we will get a fuzzy answer – the degree to which it is possible that a is
better than u0 (and, if needed, the degree to which it is possible that a is worse
than u0).

Remaining Open Problems and What we do in this Paper. In the
crisp case, we can determine the utility value u(a) from the results of the user’s
comparisons.
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To deal with the more realistic fuzzy case, we need to be able to extract
the fuzzy utility from the fuzzy answers to different comparisons. This is the
question that we deal with in this paper.

Interestingly, it turns out that in this context, intuitionistic fuzzy degrees
(see, e.g., [1]) naturally appear – in other words, instead of a single degree of
confidence in each corresponding statement, we now get two degrees:

– the degree to which this statement is true, and
– the degree to which this statement is false,

and, in contrast to the traditional fuzzy logic, these degrees do not add up to 1.

2 Analysis of the Problem

What Happens if we Compare the Alternative a with a Fixed Value
u0 on the Utility Scale? As we have mentioned earlier, while in the crisp case,
each alternative a is equivalent to a single number u(a) on the utility scale, in
general, the utility of an alternative is characterized not by a single number, but
rather with a membership function µa(u). This function describes, for each value
u from the utility scale, to what extent the alternative a is equivalent to u.

What will happen is we compare the alternative a to a value u0 on the utility
scale? In the crisp case, since the changes that a is exactly equivalent to a0 are
slim, we have either a < u0 or u0 < a. So, we can ask whether a is better than
u0, or we can ask whether u0 is better than a – whatever question we ask, we
get the exact same information.

Let us first consider the question of whether a is better than u0, i.e., whether
u0 < a. How can we extend this to the fuzzy case? To perform this extension,
it is convenient to take into account that while from the purely mathematical
viewpoint, < is a relation – and in mathematics, relations usually treated differ-
ently than functions – from the computational viewpoint, < is simply a function.
Just like + is a function that takes two numbers and returns a number which
is their sum, the relation < is a function that takes two numbers and returns a
boolean value: true or false.

Since < can be naturally treated as function, the question of how to extend
this to fuzzy becomes a particular case of a more general question of how to
extend functions to fuzzy – and this extension is well known, it is described by
Zadeh’s extension principle. Let us recall how this principle is usually derived.

Zadeh’s Extension Principle and How it is Usually Derived. Sup-
pose that we have a function y = f(x1, . . . , xn) of n real-valued variables,
and we have fuzzy information about the values x1, . . . , xn, i.e., we know
membership functions µ1(x1), . . . , µn(xn) that describes our knowledge about
the inputs x1, . . . , xn. Based on this information, what do we know about
y = f(x1, . . . , xn)?
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Intuitively, Y is a possible value of the variable y if there exists values
X1, . . . , Xn for which X1 is a possible value of x1 and . . . and Xn is a possi-
ble value of xn and Y = f(X1, . . . , Xn). We know the degrees, µi(Xi) to which
each real number Xi is a possible values of the input xi. To combine these
degrees into our degree of confidence in a composite and-statement, we can use
an “and”-operation (t-norm), the simplest of which is min(a, b). Thus, for each
tuple (X1, . . . , xn) for which Y = f(X1, . . . , Xn), our degrees of confidence is
the above and-statement is min(µ1(X1), . . . , µn(Xn)).

The existential quantifier “there exists” is, in effect, an “or”: it means that
either this property is true for one tuple, or for another tuple, etc. Thus, to find
the degree to which the value Y is possible, we need to apply an “or”-operation
(t-conorm) to the degrees of confidence of the corresponding and-statements. The
simplest “or”-operation is max(a, b). Thus, we arrive at the following formula
for the degree µ(Y ) to which Y is a possible value of the variable y:

µ(Y ) = max{min(µ1(X1), . . . , µn(Xn)) : f(X1, . . . , Xn) = Y }.

This formula – first proposed by L. Zadeh himself – is known as Zadeh’s extension
principle.

Let us Apply Zadeh’s Extension Principle to our Problem: Resulting
Formulas. In our case, we have a Boolean-valued function f(x1, x2) = (x1 < x2)
of n = 2 real-valued variables. When we compare an alternative a with fuzzy
utility µa(u) with a crisp value u0, Zadeh’s extension principle takes the following
form:

– for the value y =“true”, the degree µ+(a < u0) that the statement a < u0 is
true is equal to

µ+(a < u0) = max(µa(u) : u < u0);

– for the value y =“false”, the degree µ−(a < u0) that the statement a < u0 is
false is equal to

µ−(a < u0) = max(µa(u) : u ≥ u0).

Let us Analyze the Resulting Formulas. Intuitively, since in fuzzy logic
negation is represented by the function 1 − a (in the sense that our degree of
believe that A is false is estimated as 1 minus degree that A is true), we should
expect that µ+(a < u0) + µ−(a < u0) = 1. Let us show, however, that this is
not the case.

Indeed, let us consider a typical case when µa(u) is a fuzzy number, i.e., when
for some value U :

– the function µa(u) increases to 1 when u ≤ U , and
– this function decreases from 1 when u ≥ U .
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When u0 < U , then the function µa(u) is increasing for all u < u0 and thus,
µ+(a < u0) = µa(u0). On the other hand, since u0 < U and for u = U , we have
µa(U) = 1, we get µ−(a < u0) = 1. Thus,

µ+(a < u0) + µ−(a < u0) = 1 + µa(u) �= 1,

unless, of course, we consider absolutely impossible values u for which µa(u) = 0.
Similarly, when u0 ≥ U , then the function µa(u) is decreasing for all u > u0

and thus, µ−(a < u0) = µa(u0). On the other hand, since u0 ≥ U and for u = U ,
we have µa(U) = 1, we get µ+(a < u0) = 1. Thus, in this case too, we have

µ+(a < u0) + µ−(a < u0) = 1 + µa(u) �= 1,

unless, of course, we consider absolutely impossible values u for which µa(u) = 0.

So, we get Intuitionistic Fuzzy Degrees. In the traditional fuzzy logic, the
sum of degrees to which each statement is true and to which this same statement
is false is always equal to 1. This means that when we compare alternatives, we
get beyond the traditional fuzzy logic.

How can we describe where we are? This is not the only case when the degrees
of confidence in a statement and in its negation doe not add up to 1. To describe
such cases, K. Atanassov came up with an idea of intuitionistic fuzzy logic (see,
e.g., [1]), in which, for each statement, we have two degrees:

– the degree to which this statement is true, and
– the degree to which this statement is false,

and these degrees do not necessarily add to 1. Our analysis this leads us to a
conclusion that the result of comparing two alternatives is an intuitionistic fuzzy
degree.

3 Discussion

What we got is Somewhat Different from Intuitionistic Fuzzy Logic.
There is a minor difference between what we observe when comparing two alter-
native and the traditional intuitionistic fuzzy logic is that:

– in the intuitionistic fuzzy logic, the sum of positive and negative degrees is
always smaller than or equal to 1, while

– in our case, the sum is always greater than or equal to 1.

However, such (minor) generalization of intuitionistic fuzzy logic has been pro-
posed in the past.

There is also a way to reconcile the results of comparing alternatives with
the traditional intuitionistic fuzzy logic. Indeed, in general, Zadeh’s extension
principle, we compute the degree to which y is a possible value. In particular,
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µ+(a < u0) is the degree to which is possible that a < u0, and µ−(a < u0) is
a degree to which it is possible that a ≥ u0. Instead, we can consider degrees
n+(a < u0) and n−(a < u0) to which it is necessary that a < u0 and that a ≥ u0

– defined, as usual, as 1 minus the degree to which the opposite statement is
possible. Then, we get

n+(a < u0) = 1 − µ−(a < u0)

and
n−(< u0) = 1 − µ+(a < u0).

From the fact that µ+(a < u0) + µ−(a < u0) ≥ 1, we can now conclude that

n+(a < u0) + n−(a < u0) = 2 − (µ+(a < u0) + µ−(a < u0)) ≤ 1.

Thus, the degrees of necessity are consistent with the traditional intuitionistic
fuzzy logic.

We can Still Reconstruct the Original Membership Function from the
Results of Expert Elicitation. We assume that the expert’s preferences are
described by a membership function µa(u0). As we have mentioned, as a result
of expert elicitation, we do not get this function, we get instead a more complex
construct, in which for each possible value u0, we get two degrees µ+(a < u0)
and µ−(a < u0).

We should mention, however, that from this construct, we can uniquely recon-
struct the original membership function. Indeed, as have shown:

– when u0 ≤ U , then we have µ+(a < u0) = µa(u0) and µ−(a < u0) = 1; and
– when u0 ≥ U , then we have µ−(a < u0) = µa(u0) and µ+(a < u0) = 1.

In both cases, we thus have

µa(u0) = min(µ+(a < u0), µ−(a < u0)).
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Abstract. This paper shows a method for solving transhipment prob-
lems where its delivery costs and constraints are defined using infor-
mation coming from experts. Then, we use fuzzy numbers to represent
delivery costs and constraints, and an iterative algorithm based on the
cumulative membership function of a fuzzy set to find an overall solution
among fuzzy delivery times and constraints.
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1 Introduction and Motivation

Transhipment problems are important problems in logistics and production plan-
ning since they involve not only customers and suppliers but transhipment points
with different conditions/characteristics (see Pinedo [19], Johnson and Mont-
gomery [15], and Sipper and Bulfin [27]). The classical transportation problem
only considers crisp transportation costs, so it is often solved using classical
optimization techniques (except in large-scale cases where metaheuristics help).

In several transhipment problems we have transportation times/costs and
requirements that cannot be defined as constants, so we need an alternative
source to define them. Statistical analysis help to obtain such information in
most of cases (see Heyman and Sobel [12]), but in some cases there is not enough
statistical information to get them. This way, we suggest to ask the experts of
the system to get reliable information, so their perceptions about transportation
times and requirements of customers can be summarized as fuzzy sets.

This paper focuses on a transhipment problem with fuzzy transportation
times and fuzzy demands. Based on Linear Programming (LP) models proposed
by Bazaraa et al. [1], we extend those results to a fuzzy environment using the
method proposed by Figueroa-Garćıa [6], and Figueroa-Garćıa and López-Bello
[8,9].
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This paper is divided into five principal sections. Section 1 shows the intro-
duction and motivation of the work. In Sect. 2, the classical transhipment model
is presented; Sect. 3 presents some basics on fuzzy sets/numbers. In Sect. 4, the
Fuzzy Transhipment Problem (FTP) and the proposed method for solving it are
presented. Section 5 shows an application example, and finally some concluding
remarks are presented in Sect. 6.

2 The Crisp Transhipment Problem

A transhipment problem is similar to a classical transportation problem in the
sense that an amount of some resource is required to be sent from a set of
plants to a customer. The transhipment problem addresses a situation where
a transportation mean (car, aircraft, train, ship, etc.) is required to cover a
specified route no matter its capacity, and some mandatory routes are required
to be covered (this is quite common in practice where not all connections between
destinations are easy to be covered).

Thus, there is a specific time associated to cover a route, and some desti-
nations are available only by transhipment i.e. some routes cannot be directly
reached, so there is a need for transhipment through some available routes. In
addition, every destination requires a specific amount of transportation means.

The mathematical form of a transhipment problem (minimizing the total
transportation time) is as follows:

z = Min
∑

i

∑

j

tijxij (1)

s.t.
∑

j

xij � bi ∀ i ∈ Nm (2)

∑

k

xki � bi ∀ i ∈ Nm (3)

xij ∈ Z
+ ∀ {i, j} ∈ Nm (4)

Index sets:

i, j, k ∈ Nm is the set of m routes

Parameters:

tij ∈ R is the delivering time that a transportation mean coming off from the
ith route takes to cover the jth route
bi ∈ Z is the amount of transportation means needed in the ith route

Decision variables:

xij ∈ Z is the amount of transportation means coming off from the route ith
to be assigned to the jth route
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xki ∈ Z is the amount of transportation means coming off from the route kth

to be assigned to the ith route

Equation (2) ensures to every route i ∈ Nm to be covered by a needed
amount of bi transportation means and all of them are to be assigned to the jth

route. Equation (3) ensures to cover all bi transportation means from a set of k
routes. In general, what we want is to satisfy the required transportation means
bi from the k routes to then dispatch all of them to the j routes, at a minimal
transportation time.

On the other hand, the transportation objective is to minimize the total
time used in transportation/transhipment of all bi via different routes. This
time (including transhipment) is computed using tij which is the time used
by a transportation mean coming off the ith route to take the jth. The total
elapsed time depends on some other aspects such as setup times at every ori-
gin/destination per route plus transportation times tij . This way, the main idea
of this transhipment problem is to minimize the total elapsed time z as defined
in Eq. (1).

Fig. 1. Transhipment problem (Color figure online)

Figure 1 shows how the transhipment problem works. Suppose that you want
to come from origin a to destination d (blue line), but there is no a direct
available connection between both places. The continuous black line indicates
two mandatory routes i which covers a → b and route j which covers c → d
using an amount of means bi and bj . The dashed line between b → c indicates a
non-mandatory (but possible) route which makes the connection between a → d
possible, so we consider this non-mandatory route as a transhipment route. The
vertical dashed line getting from b indicates that all bi means must be dispatched
to other routes, and the vertical dashed line coming to c indicates that other
routes can come to c to supply needed transportation means bj .
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3 Fuzzy Sets/Numbers

A fuzzy set is denoted by emphasized capital letters Ã with a membership func-
tion μÃ(x) over a universal set x ∈ X. μÃ(x) measures the membership of a
value x ∈ X regarding the concept/word/label A. P(X) is the class of all crisp
sets, F(X) is the class of all fuzzy sets, F(R) is the class of all real-valued fuzzy
sets, and F1(R) is the class of all fuzzy numbers. Thus, a fuzzy set A is a set of
ordered pairs of an element x and its membership degree, μA(x), i.e.,

Ã = {(x, μÃ(x)) |x ∈ X}. (5)

Then, a fuzzy number is:

Definition 1. Let Ã : R → [0, 1] be a fuzzy subset of the reals. Then Ã ∈ F1(R)
is a Fuzzy Number (FN) iff there exists a closed interval [xl, xr] �= ∅ with a
membership function μÃ(x) such that:

μÃ(x) =

⎧
⎨

⎩

c(x) for x ∈ [cl, cr],
l(x) for x ∈ [−∞, xl],
r(x) for x ∈ [xr,∞],

(6)

where c(x) = 1 for x ∈ [cl, cr], l : (−∞, xl) → [0, 1] is monotonic non-decreasing,
continuous from the right, i.e. l(x) = 0 for x < xl; l : (xr,∞) → [0, 1] is
monotonic non-increasing, continuous from the left, i.e. r(x) = 0 for x > xr.

The α-cut of a set Ã ∈ F1(R) namely αÃ is defined as follows:

αÃ = {x |μÃ(x) � α} ∀ x ∈ X, (7)

αÃ =
[
inf
x

αμÃ(x), sup
x

αμÃ(x)
]

=
[
Ǎα, Âα

]
. (8)

The cumulative function F (x) of a probability distribution f(x) is:

F (x) =
∫ x

−∞
f(t) dt, (9)

where x ∈ R. Its fuzzy version is as follows (see Figueroa-Garćıa and López-Bello
[8,9], Figueroa-Garćıa [6], Pulido-López et al. [21]).

Definition 2 (Cumulative Membership Function). Let Ã ∈ F(R) be a
fuzzy set and X ⊆ R, then the cumulative membership function (CMF) of Ã,
ψÃ(x) is defined as:

ψÃ(x) = PsÃ(X � x), (10)

Equation (10) shows the possibility of the set X � x i.e. Ps(X � x). In
probability theory F (∞) = 1 while in fuzzy theory 1 < ψ(∞) < Λ where Λ is
the cardinality (or total area) of Ã:

ΛÃ =
∫ ∞

−∞
μÃ(t) dt. (11)
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To normalize ψÃ(x) can be divide it by ΛÃ:

ψÃ(x) =
1

ΛÃ

∫ x

−∞
μÃ(t) dt. (12)

Figure 2 presents the CMF ψÃ of a triangular fuzzy number:

Fig. 2. Cumulative membership function ψÃ of a triangular fuzzy set

4 The Proposed Fuzzy Transhipment Optimization
Method

The mathematical programming form of the transhipment problem with fuzzy
transportation times, fuzzy constraints, and positive integer amount of trans-
portation means is as follows:

z̃ = Min
∑

i

∑

j

t̃ijxij (13)

s.t.
∑

j

xij � b̃i ∀ i ∈ Nm (14)

∑

k

xki � b̃i ∀ i ∈ Nm (15)

xij ∈ Z
+ ∀ {i, j} ∈ Nm (16)

Index sets:

i, j, k ∈ Nm is the set of m routes
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Parameters:

t̃ij ∈ F1 is the uncertain delivering time that a transportation mean coming
off from the ith route takes to cover the jth route
b̃i ∈ F1 is the uncertain amount of transportation means needed in the ith
route

Decision variables:

xij ∈ Z is the amount of transportation means coming off from the route ith
to be assigned to the jth route
xki ∈ Z is the amount of transportation means coming off from the route kth

to be assigned to the ith route

We focus on a transhipment problem where its transportation times see (13)
(total transportation time) and the amount of required transportation means
are uncertain (see Eq. (14) for the outgoing means from the ith route and Eq.
(15) for the incoming means to the ith route), so they are defined by the experts
of the system as fuzzy numbers (see Definition 1). Basically, this model con-
siders uncertainty over transportation times since there are several sources that
can affect them such as climate, immigration times, road conditions, etc. and
uncertain amount of transportation means since the exact amount of goods to
be sent are uncertain itself (customers demands, clients requirements, etc.)

Fig. 3. Fuzzy transhipment problem

So that, in the fuzzy transhipment problem (see Fig. 3) we consider t̃ij as
a fuzzy number (see Eq. (6)), and every requirement b̃i of Eqs. (14) and (15)
as linear fuzzy sets since customers have no deterministic requirements due to
market conditions, uncertain demands, etc.:

μb̃i
(f(x), b̌i, b̂i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, f(x) � b̂i

f(x) − b̌i

b̂i − b̌i

, b̌i � f(x) � b̂i

0, f(x) � b̌i

(17)
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where b̌i ∈ Z is the lower bound of bi, and b̂i ∈ Z is the upper bound of bi.
In the Zimmermann soft constraints model μb̃i

(f(x)) is a linear fuzzy set
that represents a soft � namely � where f(x) is the left side of every constraint
i.e.

∑
j xij in Eq. (14) and

∑
k xki in Eq. (15) seen as the universe of discourse

of b̃ and for which every f(x) returns a membership degree. This way, we use an
iterative version of the Zimmermann soft constraints model (extensively applied
in fuzzy optimization with linear fuzzy constraints) to solve this FTP.

4.1 The Proposed Method

Based on fuzzy optimization concepts introduced by Rommelfanger [25], Ramı́k
[23], Inuiguchi and Ramı́k [13], Fiedler et al. [5], Ramı́k [22], Inuiguchi et al. [14],
we apply the proposal of Figueroa-Garćıa [6] and Figueroa-Garćıa and López-
Bello [8,9] in order to minimize

∑
i

∑
j t̃ijxij .

1- Iterative method:

– Set α ∈ [0, 1],
– Compute ψt̃ij

and αψt̃ij
∀ (i, j),

2- Soft constraints method:

– Set ž = Min{z =
∑

i

∑
j

αψt̃ij
xij :

∑
j xij � b̌i,

∑
k xki � b̌i} (see Eqs. (14),

(15), (16)),
– Set ẑ = Min{z =

∑
i

∑
j

αψt̃ij
xij :

∑
j xij � b̂i,

∑
k xki � b̂i} (see Eqs. (14),

(15), (16)),
– Define the set z̃ with the following membership function:

μz̃(z, ž, ẑ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, z � ž
ẑ − z

ẑ − ž
, ž � z � ẑ

0, z � ẑ

(18)

– Thus, solve the following LP model:

Max {λ} ,

s.t.
∑

i

∑

j

αψt̃ij
xij + λ(ẑ − ž) = ẑ, (19)

∑

j

xij − λ(b̂i − b̌i) � b̌i ∀ i ∈ Nm (20)

∑

k

xki − λ(b̂i − b̌i) � b̌i ∀ i ∈ Nm (21)

xij � 0 ∀ {i, j} ∈ Nm (22)
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3- Convergence:

– If λ∗ = α then stop and return λ∗ as the overall satisfaction degree of z̃, t̃ij ,
and b̃i; if λ∗ �= α then go to Step 1 and set λ∗ = α.

The set z̃ is defined over a universe of discourse z =
∑

i

∑
j tijxij and it is

intended to represent minimum transportation cost so its highest membership
degree is given by ž and its lowest membership degree is given by ẑ. We point
out that no matter the crisp objective z is, the Zimmermann method looks for
maximizing the overall satisfaction degree of all soft constraints (via x) and the
goal z, so it is always required to maximize λ.

4.2 Other Approaches

Several approaches to the fuzzy transportation problem have been proposed by
Sakawa et al. [26], Chanas et al. [3], and Lee and Kim [16] which are based on
fuzzy constraints only. The problem Min{z = c̃x : Ãx � b̃, x � 0} has been
treated by Herrera and Verdegay [11], Peidro et al. [18], Najafi et al. [17] and
Pishvaee and Khalaf [20] who defuzzified Ã using the Yager index (see Yager
[28]); Donga and Wan [17] who defuzzified Ã using the mean-value of a fuzzy set
proposed by Dubois and Prade [4], and Rena et al. [24] who defuzzified Ã using
the Heilpern’s definition of the average value of a fuzzy set (see Heilpern [10]).

5 Application Example

We fuzzified the Tanker Scheduling problem proposed by Bazaraa et al. (see [1])
composed by 4 mandatory routes over 6 origins/destinations. We use triangular
fuzzy transportation times T = (ť, t̄, t̂) and requirements as defined in Eq. (17).
Mandatory routes bi and their requirements b̌i, b̂i are shown next.

R1 : Dhahran → New York b̌1 = 8 b̂1 = 12
R2 : Marseilles → Istanbul b̌2 = 4 b̂2 = 7
R3 : Naples → Mumbai b̌3 = 3 b̂3 = 6
R4 : New York → Marseilles b̌4 = 1 b̂4 = 6

Transportation times are triangular fuzzy sets T (ť, t̄, t̂) as shown in Table 1.

5.1 The Proposed Solution

We solve the problem using the method shown in Sect. 4.1. First, we initially set
α = 0.2 to then compute ψt̃ij

and αψt̃ij
∀ (i, j) as shown in (12) and Fig. 2. After

2 iterations we found an optimal λ∗ = 0.4396 and the following solution:

x14 = 10, x21 = x23 = x31 = 5, x42 = 4; x22 = 2.

For instance x14 = 10 means that 10 ships should be sent from New York
to Marseilles, x31 = 5 means that six ships came off from the route Naples →
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Table 1. Fuzzy transportation times

Orig/Dest Naples Marseilles Istanbul New York Dhahran Mumbai

Naples — (0.5,1,2) (1.5,2,3.5) (12,14,17) (4,7,10) (6,7,9)

Marseilles (0.5,1,2.5) — (1,3,4.5) (11,13,16) (5.5,8,9) (7,8,12)

Istanbul (1.8,2,4) (1.5,3,5) — (14,15,17) (3.5,5,7) (4,5,6)

New York (11,14,15.8) (9.5,13,15) (14.5,15,17.5) — (14,17,18) (17,20,24)

Dhahran (5,7,8.5) (6,8,10) (4.5,5,7) (15,17,18.5) — (1.5,3,5)

Mumbai (5.5,7,9.5) (7,8,11) (3,5,8) (18,20,23.5) (1.5,3,5.5) —

Mumbai and should be sent from New York → Marseilles which implies to cover
the route Mumbai → New York. x22 = 2 means that two ships should be sent
from Marseilles → Istanbul and then be sent from Dhahran → New York, so
they must cover the route Istanbul → Dhahran, etc.

Note that λ∗ � 0.5 because x ∈ Z
+, so there is a chance of having some

excesses in some constraints.

Table 2. Optimal fuzzy transportation times and requirements

Orig/Dest Naples Marseilles Istanbul New York Dhahran Mumbai bi

Naples — 1.09 2.21 14.11 6.82 7.17 9.76

Marseilles 1.21 — 2.76 13.11 7.47 8.66 5.32

Istanbul 2.43 3.02 — 15.17 5.02 4.94 4.32

New York 13.52 12.41 15.45 — 16.3 20.04 3.20

Dhahran 6.76 7.88 5.33 16.76 — 3.02 —

Mumbai 7.14 8.41 5.11 20.22 3.14 — —

Table 2 shows defuzzified transportation times and requirements (note that
the obtained optimal λ∗ = 0.4396 does not change with the initial α =
{0.2, 0.8}). Figure 4 shows the set z̃ of optimal transhipment time for a final
optimal degree λ∗ = 0.4386.

We point out that λ∗ = 0.4396 is an overall satisfaction degree of z̃, t̃ij and
b̃i. Also note that the algorithm finds the same overall satisfaction degree no
matter the value of α ∈ [0, 1] we use to initialize it. Figure 5 shows the values of
λ∗ per iteration for 2 different starting values α = {0.2, 0.8} where both points
reach λ∗ = 0.4396.

5.2 Pre-defuzzified Solution

As we referred before, some other approaches use centroids and/or Yager indexes
of tij to later solve a soft constraints model.
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Fig. 4. Optimal solution of the problem.

Fig. 5. Convergence of the proposed method for α = {0.2, 0.8}

(i) First, we defuzzify t̃ij using the Yager index for triangular fuzzy sets e.g.
I(t) = 0.5(t̄ + 0.5(ť + t̂)) as proposed by Herrera and Verdegay [11]. The
obtained optimal λ∗ = 0.4395 results into ž = 299.1, ẑ = 501.2, z∗ = 412.37
which is more expensive than the obtained results.

(ii) Now, if we defuzzify t̃ij using the centroid of a triangular fuzzy set e.g.
C(t) = (ť + t̄ + t̂)/3, then the obtained optimal λ∗ = 0.4391 results into
ž = 299.46, ẑ = 501.6, z∗ = 412.84 which is still more expensive.

(iii) Finally, if we defuzzify t̃ij using the mode of a triangular fuzzy set e.g.
M(t) = t̄, then the obtained optimal λ∗ = 0.3353 results into ž = 298, ẑ =
500, z∗ = 432.27 which again is more expensive than our proposal.
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6 Concluding Remarks

We proposed a fuzzified version of the crisp transhipment problem whose solution
is given by the algorithm proposed by Figueroa-Garćıa [6] and Figueroa-Garćıa
and López-Bello [8,9] with satisfactory results. The main goal of the algorithm is
to obtain an optimal overall satisfaction degree (λ∗ = 0.4396 in the application
example), and the defuzzified solution of the parameters of the problem.

The algorithm reaches an overall satisfaction degree λ∗ based on the cumu-
lative membership function ψÃ of a fuzzy set (which can be computed for non-
convex and non-linear membership functions), and it operates as a defuzzification
degree for z̃, t̃ij and b̃i. The optimal solution provides the amount of ships per
route, and single values of tij and bi, useful to handle uncertainty in order to
provide expected shipping dates/costs to customers.

The pre-defuzzified solution obtains an average-based solution of the problem
by reducing its complexity using the Yager index. This leads to have an optimal
membership regarding the fuzzy constraints only, while the proposed algorithm
satisfies both fuzzy goal and constraints at a maximum degree, as intended by
the Bellman-Zadeh fuzzy decision making principle (see Bellman and Zadeh [2]).

Further Topics

Transportation problems involving Type-2 fuzzy sets (see Figueroa-Garćıa [7])
are a natural extension of this model and the applied algorithm. Also a more
detailed description/analysis of the algorithm will be discussed in a journal
paper.
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Abstract. At present, there exist several automatic tools that, given a
software, find locations of possible defects. A general tool does not take
into account a specificity of a given program. As a result, while many
defects discovered by this tool can be truly harmful, many uncovered
alleged defects are, for this particular software, reasonably (or even fully)
harmless. A natural reaction is to repair all the alleged defects, but the
problem is that every time we correct a program, we risk introducing
new faults. From this viewpoint, it is desirable to be able to gauge the
repair risk. This will help use decide which part of the repaired code is
most likely to fail and thus, needs the most testing, and even whether
repairing a probably harmless defect is worth an effort at all – if as
a result, we increase the probability of a program malfunction. In this
paper, we analyze how repair risk can be gauged.

1 Formulation of the Problem

Traditional Approach to Software Testing. The main objective of software
is to compute the desired results for all possible inputs. From this viewpoint, a
reasonable way to test the software is:

– to run it on several inputs for which we know the desired answer, and
– to compare the results produced by this software with the desired values.

This was indeed the original approach to software testing.

It Turned out that Experts can Detect Some Software Defects With-
out Running the Program. Once it turns out that on some inputs, the pro-
gram is not producing the desired result, the next step is to find – and correct
– the defect that leads to the wrong answer.

After going through this procedure many times, programmers started seeing
common patterns in the original defect locations. For example, a reasonably
typical mistake is forgetting to initiate the value of the variable. In this case,
we may get different results depending on what happens to be the initial value
stored in the part of the computer memory which is allocated for this variable.
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This defect is even more dangerous if the variable is a pointer, i.e., crudely
speaking, if it stores not the actual value of the corresponding object, but rather
the memory address at which the actual value is stored. In this case, if we do not
initialize the pointer, not only can we access the wrong value, but we may also
end up with a non-existing address or an address outside the memory segment
in which your program is allowed to operate – at which point the program stops,
since it either does not know what value to pick or is not allowed to pick up the
corresponding value (this is known as segmentation fault).

In many programming language that do not automatically check the array
indices, another typical defect is asking for a value a[i] of an array a for an index
i which is outside the array’s range. In this case, the compiler obediently finds
the corresponding space in the memory, not realizing that it is beyond the place
of the original array – this can overwrite important information; this is known
as buffer overrun.

Static Analysis Tools. Once programmers realized that there are certain pat-
terns of code typical for software defects, they started to come up with automatic
tools for detecting such patterns and thus, warning the user of possible defects
of different potential severity.

At present, there are many such tools – Coverity [1], Fortify, Lint, etc. – and
most of these tools are efficiently used in practice; see, e.g., [3].

Some “Defects” Found by Static Analysis Tools Do not Harm the
Program’s Functionality. For the purpose of this paper, it is important to
mention that not all “defects” uncovered by a static analysis tool are actually
hurting the program.

For example, some programs have extra variables, i.e., variables which are
never used. This happens if a programmer originally planned to use the vari-
able, started coding with it, then changed her mind but forgot to delete all the
occurrences of this variable. Static analysis tools mark it as a possible detect,
since in some situations, it is indeed an indication that some important value is
never used. However, in many other cases, it may be syntactically clumsy, but
does not cause any problem for the program.

Another defect that may not necessarily be harmful is the logically dead code,
when a branch in a branching code is never visited. For example, if as part of
the computations, we compute a square root of some quantity, it makes sense
to make sure that this quantity is non-negative. When this quantity appears
as result of long computations, it may happen that, due to rounding errors, a
small non-negative value becomes small negative. In this case, it makes sense,
if the value is negative, to replace this with 0. However, if we write a code this
way, but we only use it to compute the square root of an input which is always
non-negative (e.g., of the weight), then the branch corresponding to a negative
value is never used. In some cases, this may be a real defect, indicating that we
may have missed something that would lead to the possibility of this condition.
However, in cases like described above, this “defect” is mostly harmless.
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Yes another example of a possible defect is indentation. In some programming
languages like Python, indentation is used to indicate the end of the condition or
the end of the loop. However, in most other programming languages, indentation
is ignored by the compiler, it simply helps people better understand each other’s
code. A static analysis tool will indicate the discrepancy between the indentation
and the actual end of the condition or of a loop as a defect – and it indeed may
be a defect. However, in many cases, it is just a sloppiness of a programmer that
does not affect the program’s execution.

Correcting Non-harmful Defects May Cause Real Problems. Once a
static analysis tool marks a piece of code as containing a possible defect, a
natural reaction is to repair this part of the code.

The problem is that, every time you change even a few lines of software,
this may introduce additional faults – and this time, serious ones. The only
way to avoid this problem is to thoroughly test the changed software. However,
an extensive testing – that would, in principle, reveal all new faults – is very
expensive. As a result, many of these changes have to be performed without
complete testing, thus introducing many possible points of failure at every place
where the code was changed.

We Need to Gauge Repair Risk. To make the repair effort cost-efficient, it
would be useful to know which defect repair have the highest risk of causing a
problem after the fix. This way, we can focus our testing effort on these defects,
and save money by performing only limited testing of low-risk repairs.

And if an alleged defect is usually harmless but its repair may cause trouble,
maybe a better strategy would be to keep this alleged defect in place. This
is specially true for legacy software, software that was developed before static
analysis tools became ubiquitous. If we apply such a tool to this software, we may
find lots of alleged defects, but since the program has been running successfully
for many years, it is highly probable that most of these alleged defects are
actually harmless.

What We do in This Paper. In this paper, we describe how repair risk can
be gauged.

In our analysis, we use two different approaches: a probabilistic approach
and a fuzzy-based approach. Interestingly, both approaches lead to the same
expression for the repair risk, which makes us confident that this is indeed the
correct expression for the repair risk.

2 Analysis of the Problem: Which Factors Determine
the Risk

First Factor: How Big are the Changes. Every time we change a line of
code, we increase a risk. The more lines of code we change, the more we increase
the risk.
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Thus, one of the factors affecting the risk is the number L of lines of code
that has been changed.

Second Factor: How Frequently are the Changed Lines Used. Simple
errors, when a piece of code always produced wrong results, are usually mostly
filtered out by simple testing.

As a result, a faulty piece of code usually leads to correct results, but some-
times, for some combination of inputs, produces an erroneous value.

If we run this piece of code once, the chances that we accidentally hit the
wrong inputs are small, so most probably, this will not lead to any serious prob-
lem. However, if this piece of code appears inside a loop, then for each program
run, this piece of code runs many times with different inputs. As a result, it
becomes more and more possible that in one of these inputs, we will get a wrong
result – and thus, that the overall software will fail.

Thus, the second factor that we need to take into account is the number of
iterations I that this particular piece of code is repeated in the program.

For example, if this piece of code is inside a for-loop that repeats 1000 times,
then I = 1000. If this piece of code is inside a double for-loop – i.e., a for-loop
for which each of its 1000 iterations is itself a for-loop with 1000 iterations (as
often happens with matrix operations), we get I = 1000 × 1000 = 106.

What We Want. We want to be able to gauge the repair risk based on these
two parameters: L and U .

Two Types of Software Errors. As we have mentioned, there are, in effect,
two types of software errors:

– rarer fatal error that practically always lead to a wrong result or, more gen-
erally, to a program malfunction; and

– more frequent subtle error which are usually harmless, but can cause trouble
for a certain (reasonably rare) combination of inputs.

In our analysis, we need to take into account both types of software errors.

3 How to Gauge Repair Risk: Probabilistic Approach

Taking Fatal Errors into Account. Let pf denote the probability that a line
of code contains a fatal error. Then, the probability that a line of code does not
contain a fatal error is equal to 1 − pf .

Software errors in different lines are reasonably independent. Thus, the prob-
ability that an L-line new piece of code does not contain a fatal error can be
computed as a product of L probabilities corresponding to each of the lines, i.e.,
as (1 − pf )L.

Taking Subtle Errors into Account. Let ps denote the probability that one
run of a line will lead to a fault. So, the probability that a line performs correctly
during one run is equal to 1 − ps.
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Faults on different lines are, as we have mentioned, reasonably independent.
Also, inputs corresponding to different iterations are reasonably independent.
When we run an L-line piece of new code I times, this means that we perform
a running-of-one-line process I · L times. Thus, the probability that all lines
will run correctly on all iterations is equal to the product of I · L individual
probabilities, i.e., to the value (1 − ps)I·L.

Taking Both Errors into Account. Fatal and subtle errors are reasonably
independent; e.g., as we have mentioned, discovering a fatal error does not pre-
vent the software from having subtle error.

We know that the probability that fatal errors will not affect the result is
equal to (1− pf )L. We also know that the probability that subtle errors will not
affect the result is equal to (1−ps)I·L. Thus, due to independence, the probability
that the new piece of code will perform correctly, i.e., that neither of the two
types of errors will surface, is equal to the product of these two probabilities,
i.e., to the value

P = (1 − pf )L · (1 − ps)I·L. (1)

Resulting Criteria for Repair Risk. Ideally, we would like to know the
probability of the program’s fault. However, this requires that we know two
parameters pf and ps, which may be difficult to get.

In the first approximation, it would be sufficient to simply order different
repaired piece of code by risk – so that, in realistic situations with limited
resources, we should concentrate all the testing on the pieces with the high-
est repair risk – and among probably harmless alleged defects, only repair those
whose repair risk is the lowest.

From the viewpoint of such comparison, comparing the probabilities is equiv-
alent to comparing their logarithms

log(P ) = L · log(1 − pf ) + I · L · log(1 − ps).

This is, in turn, equivalent to comparing the ratios

log(P )
log(1 − ps)

= I · L + c · L = L · (I + c),

where we denoted

c
def=

log(1 − pf )
log(1 − ps)

.

So, we arrive at the following conclusion.

Probabilistic Case: Conclusion. To gauge the risk of repairing an alleged
defect, we need to know:

– the number of lines L changed in the process of this repair, and
– the number of times I that this piece of code is repeated during one run of

the software.
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The relative repair risk is represented by the product

L · (I + c), (2)

for some constant c.

Comment. Note that, in contrast to the expression for probability, which required
two parameters, this expression requires only one parameter – and one parameter
is easier to experimentally determine than two.

4 How to Gauge Repair Risk: Fuzzy Approach

Need to Go Beyond the Traditional Probabilistic Approach. To follow
through with the probabilistic approach, we needed to make an assumption that
faults corresponding to different lines and/or different iterations are completely
independent. While in the first approximation, this assumption may sound rea-
sonable, it is clear that in reality, this assumption is only approximately true:
programmers know that a fault in one line often causes faults in the neighboring
lines as well.

This can happen if the same mistake appears in different lines due to the
same programmer’s misunderstanding, or due to the fact that the second line
may be obtained from the first one by editing – and so, an undetected error in
the first line is simply copied into the second one.

Ideally, in addition to probabilities of one line being correct, we should also
consider:

– a separate probability of two lines being correct – which is, in general, different
from the square of the first probability,

– a separate probability that three lines are being correct, etc.

However, as we have mentioned earlier, even obtained two probabilities is
difficult. Obtaining many others – corresponding to different numbers of lines
and different numbers of iterations – would be practically impossible. What can
we do?

Solution: Fuzzy Approach. Lotfi Zadeh faced a similar problem when he
decided to analyze expert knowledge. Expert knowledge contains many imprecise
(“fuzzy”) rules that uses imprecise words from natural language like “small”.

For each such word, and for each value x of the corresponding quantity, we
can ask the expert to gauge to what extent the given value satisfies the given
property: e.g, to what extent the value x is small. We can call the resulting
estimate the degree of belief, the degree of confidence, we can call it a subjective
probability – the name does not change anything.

The problem appears if we take into account that the condition of an expert
rule contains usually not just one simple statement like “x is small”, but an
“and”-combination of several such statements. For example, a typical expert
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rule for driving a car would say something like “if we are going fast and the car
in front decelerates a little bit, and the road is reasonably slippery, then we need
to break gently”.

To utilize this rule, we need to find the subjective probability (degree of
confidence) that for a given velocity v, for a given distance d to the car in front,
etc. the corresponding “and”-condition is satisfied.

How can we find this condition? Ideally, we should elicit this subjective prob-
ability from the expert for each possible combination of the inputs (v, d, . . .)
However, for a large number of parameters, the number of such combinations
becomes astronomical, and there is no way to ask an expertthe resulting millions
and billions of questions.

What Zadeh proposed – and what is one of the main ideas behind what he
called fuzzy logic (see, e.g., [2,4,5,7–9]) is that, since we cannot elicit all degree
of belief in “and”-statement A&B from the experts, we thus need to come up
with an algorithm f&(a, b) that would:

– given degree of belief a in the statement A and b in the statement B,
– return an estimate f&(a, b) for the expert’s degree of confidence in the “and”-

statement A&B.

This algorithm should satisfy some reasonable properties. For example, since
A&B means the same as B &A, it is reasonable to require that f&(a, b) =
f&(b, a), i.e., in mathematical terms, that the operation f&(a, b) is commutative.

Similarly, since A& (B &C) means the same as (A&B)&C, it is reasonable
to require that f&(a, f&(b, c)) = f&(f&(a, b), c), i.e., that the operation f&(a, b)
is associative. An “and”-operation f&(a, b) that satisfies these and other similar
properties is known as a t-norm.

There are many possible t-norms. One of them is the product f&(a, b) = a ·b,
that corresponds to the case when all the events are independent. However, there
are many other t-norms – that correspond to possible dependence.

Let us Apply this Approach to our Problem. In this approach, we no
longer assume independence. To compute the subjective probability (degree of
confidence) in an “and”–combination of different events, instead of a product,
we can use an appropriate t-norm f&(a, b). Thus, instead of the formula (1), we
get a more complex formula

P = f&(1 − pf , . . . , 1 − pf (L times), 1 − ps, . . . , 1 − ps (I · L times)). (3)

It is known (see, e.g., [6]) that every t-norm can be approximated, with
arbitrary accuracy, by t-norms of the type f&(a, b) = h−1(h(a) · h(b)), for some
strictly increasing function h(x), where h−1(x) denotes an inverse function, for
which h−1(h(x)) = x. So, for all practical purposes, we can safely assume that
our t-norm is exactly of this type.

For such t-norms, f&(a, b, . . . , c) = h−1(h(a)·h(b)·. . . h(c)). Thus, the formula
(3) takes the form

P = h−1
(
(h(1 − pf ))L · (h(1 − ps))I·L)

. (4)
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Comparing such values is equivalent comparing the values

h(P ) = (h(1 − pf ))L · (h(1 − ps))I·L,

or, equivalently, the value

log(h(P )) = L · log(h(1 − pf )) + I · L · log(h(1 − ps)),

or the value
log(h(P ))

log(h(1 − ps))
= I · L + c · L = L · (I + c),

where

c
def=

log(h(1 − pf ))
log(h(1 − ps))

.

Conclusion. The fact that in this more general not-necessarily-independent
case, we get the same expression L · (I + c) for repair risk makes us confident
that this is indeed the correct expression.
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Abstract. Chronic kidney disease is a worldwide public health problem with
an increasing incidence and prevalence, poor outcomes, and high cost. Diag-
nosis of Chronic Kidney Disease has always been a challenge for physicians.
This paper presents an effective method for diagnosis of Chronic Kidney Dis-
ease based on interval Type-II fuzzy. This proposed system includes three steps:
pre-processing (feature selection), Type-II fuzzy classification, and system
evaluation. Fuzzy Rough QuickReduct algorithm feature selection is used as the
preprocessing step in order to exclude irrelevant features and to improve clas-
sification performance and efficiency in generating the classification model.
Rough set theory is a very useful tool for describing and modeling vagueness in
ill-defined environments. In the type-II fuzzy classification step, an “indirect
approach” is used for II fuzzy system modeling by implementing the Sugeno
index for determining the number of rules in the fuzzy clustering approach. In
the proposed system, the process of diagnosis faces vagueness and uncertainty
in the final decision. The results that were obtained show that interval Type-II
fuzzy has the ability to diagnose Chronic Kidney Disease with an average
accuracy of 90%.

Keywords: Chronic kidney disease � Interval type-II fuzzy � Rough set
Diagnosis � Feature selection

1 Introduction

1.1 Chronic Kidney Disease

Chronic kidney disease includes conditions that damage your kidneys and decrease
their ability to keep you healthy by doing the jobs listed. If kidney disease gets worse,
wastes can build to high levels in your blood and make you feel sick. Also, kidney
disease increases your risk of having heart and blood vessel disease. These problems
may happen slowly over a long period of time. When kidney disease progresses, it may
eventually lead to kidney failure, which requires dialysis or a kidney transplant to
maintain life. The number of persons with kidney failure who are treated with dialysis
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and transplantation is projected to increase from 340 000 in 1999 to 651 000 [1].
Unfortunately, chronic kidney disease is underdiagnosed and undertreated, resulting in
lost opportunities for prevention [2, 3] in part because of a lack of agreement on a
definition and classification of stages in the progression of chronic kidney disease [4]
and a lack of uniform application of simple tests for detection and evaluation. Chronic
kidney disease affects approximately 11% of the U.S. adult population (20 million
people from 1988 to 1994). The prevalence of earlier stages of disease (10.8%) is more
than 100 times greater than the prevalence of kidney failure (0.1%). Adverse outcomes
of chronic kidney disease, including loss of kidney function and development of kidney
failure can often be prevented or delayed through early detection and treatment.

1.2 Fuzzy Logic System

The theory of Fuzzy logic was introduced by Prof. Zadeh. In this theory an element
belongs to a set according to the membership function values. Theory of FSs is an
expansion of the traditional sets theory in which an element either is or is not a set
member [5]. The fuzzy logic systems (FLSs) are well known for their ability to model
linguistics and system uncertainties. Due to this ability, FLSs have been successfully
used for many real world applications, including modeling and controlling [6–8].

1.3 Interval Type-II Fuzzy

Type II fuzzy sets have grades of membership that are themselves fuzzy. A type II
membership grade can be any subset in [0, 1]. When the secondary memberships are
either zero or one, we call them interval type II sets [9]. As Type II fuzzy logic is better
suited for modeling linguistic terms [10] in this study, we use the Type II FLS and
introduce a type II fuzzy system for diagnosing Chronic Kidney disease. A type II

fuzzy set denoted as A
�
, is characterized by a type-II membership function

l
A
� ðx; uÞ:U � I ! I where x 2 U and u 2 Jx �½0; 1� i.e.

A
� ¼ fððx; uÞ; l

A
� ðx; uÞÞj8x 2 X; 8u 2 Jx �½0; 1�g ð1Þ

Where 0� l
A
� ðx; uÞ� 1. A

�
can also be expressed as:

A
� ¼

Z

x2X

Z

u2Jx

l
A
� ðx; uÞ=ðx; uÞ; Jx �½0; 1� ð2Þ

The upper membership function (UMF) and lower membership function (LMF) of

A
�

are two type 1 membership function that bound the FOU. The UMF of A
�

is the

upper bound of the FOU(A
�
) and denoted l

A
� ðxÞ 8x 2 X, and the LMF is the lower

bound of the FOU(A
�
) and denoted l

A
� ðxÞ 8x 2 X.
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l
A
� ðxÞ ¼ FOUðA

�Þ; 8x 2 X ð3Þ

l
A
� ðxÞ ¼ FOUðA

�Þ; 8x 2 X ð4Þ

Figure 1 shows the bounds of type-II membership function for Gaussian MF.
A structure of a type-II fuzzy logic system shows in Fig. 2.

Figure 2 shows the structure of an IT2 FLS. IT2 FLS contain the four mentioned
major components (rules, fuzzifier, inference engine, and output processor) but the only
difference between T1 and T2 structures is in the output processing part. In type-I

Fig. 1. The type-II membership function [10]

Fig. 2. A structure of a type-II fuzzy logic system [10]
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FLSs, output processing consists of a defuzzifier which transforms the fuzzy output of
the system into a crisp value. But, output processing component in an IT2 FLS has two
parts: Type reducer and defuzzifier. So before defuzzifying the output, it should be
transformed from type-II to type-1. After type reduction, the output becomes a type-I
FS and then we can implement various dufuzzification methods to obtain the crisp
output [10]. Due to this ability, I2FLSs have been successfully used for many real
world applications, including modeling and controlling [11–13].

1.4 Rough Set Theory

These two denominators (fuzzy and rough) have been successfully used in various
uncertainty information processing systems. The RST, attributed by prof. Pawlak, is
based on the research in the logical properties of information systems, and the
uncertainty in information systems which are expressed by a boundary region [14].
RST has been generalized in many ways to tackle various problems. In particular, in
1990, Dubois and Prade [15] combined concepts of vagueness expressed by mem-
bership degrees in fuzzy sets [16] and indiscernibility in RST to obtain fuzzy rough set
theory (FRST). FRST has been used e.g., for feature selection, instance selection,
classification, and regression. There are many application areas that have been
addressed by FRST, see e.g. [17–21].

For the sake of simplicity we assume that R is an equivalence relation. Let X is a
subset of U. R-lower approximation of X (R�ðxÞ) and R-upper approximation of X
(R� ðxÞ) and R-boundary region of X (RNRðXÞ) are as follows:

R�ðxÞ ¼
[

x2U fRðxÞ�Xg ð5Þ

R� ðxÞ ¼
[

x2U fRðxÞ : RðxÞ \X 6¼ ;g ð6Þ

RNRðXÞ ¼ R� ðxÞ 	 R�ðxÞ ð7Þ

The paper is organized as follows: in Sect. 2, the used database is explained. In
Sect. 3, the proposed feature selection is explained. In Sect. 4, the proposed type fuzzy
system modeling is presented. Finally, in Sect. 5, the discussion and conclusion are
presented.

2 Chronic Kidney Disease (CKD) Dataset

In this study, the Chronic Kidney database gathered from the Chamran Hospital in
Tehran, Iran [22]. This data set contains 600 samples, 2 classes and fifteen features for
each sample. These classes are assigned to the values that named as patient and healthy.
The attributes of Chronic Kidney dataset are given in Table 1.
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3 Feature Selection

The number of features in the raw dataset can be enormously large. This enormity may
cause serious problems to many data mining systems. Feature selection is one of the
oldest existing methods that deal with these problems. A method is used to compute
reducts for fuzzy rough sets, where only the minimal elements in the discernibility
matrix are considered. First, relative discernibility relations of conditional attribute are
defined and relative discernibility relations are used to characterize minimal elements in
the discernibility matrix. Then, an algorithm to compute the minimal elements is
developed. Finally, novel algorithms to find proper reducts with the minimal elements
are designed [23]. In general, there are two methods for choosing a feature by Rough
sets: Measure the dependencies between features and Detection Matrix Method. In the
first method, the degree of dependence between the features is calculated by the Eq. 8.

cðc; dÞ ¼ POScðdÞj j
U

ð8Þ

POScðdÞ ¼ UX2U=INDðdÞ CðXÞ ð9Þ

Which in Eq. 9, C is a set of conditional properties, and POScðdÞ denotes a set of
samples that are obtained in the positive region resulting from the division of samples
into equivalence classes and finally a set the features that have the most dependency are
introduced as optional features.

This method was used and the most important variables between the possible
candidates were selected. Based on the results of this feature selection method, the

Table 1. The attributes of chronic kidney disease dataset

The number of attribute The name of attribute The values of attribute

1 Sex Male – Female
2 Age* 2–100
3 Blood pressure max* 6–22
4 Blood pressure min 5–13
5 FBS 41–600
6 Bacteria* Yes, No
7 Blood urea* 5–138
8 Serum creatinine* 0.5–12
9 Na - sodium* 120–150
10 K - potassium 2–8
11 Hemoglobin* 4–21
12 Rbc - red blood cells 2–7
13 Wbc - white blood cells* 0.4–40
14 Diabetes Yes, No
15 Anemia Yes, No
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number of features was reduced to 8, which show by star in Table 1, and we used these
features in our proposed system.

4 Type - II Fuzzy System Modeling

4.1 Determining the Number of Rules

In a fuzzy clustering algorithm, we should use a cluster validity index to determine the
most suitable number of clusters. In this study, we used the validity index proposed by
Fukuyama and Sugeno [24]. This validity index can find the number of clusters as the
minimum of its function with respect to c. This index is defined as:

FSðcÞ ¼
Xc

i¼1

Xn

j¼1
lmij jjxj 	 aijj2 	

Xc

i¼1

Xn

j¼1
lmij jjai 	 ajj2 ¼ Jmðl; aÞþKmðl; aÞ ð10Þ

Where a ¼ Pc
i¼1

ai=c. Jmðl; aÞ is the FCM objective function which measures the

compactness and Kmðl; aÞ measures the separation. This cluster validity index is
implemented to determine the most suitable number of clusters or rules. The best
number of clusters based on this cluster validity index is obtained in five clusters. So,
the system contains five rules.

4.2 The Proposed Type - II Fuzzy Model

In the, we obtain fuzzy model with five rules, eight inputs and one output. The inputs
are age, blood pressure (max), bacteria, urea, creatinine, Na, hemoglobin and wbc. The
output of our rule-base is an interval type II fuzzy set that must be type reducted and
then defuzzify. We used centroid type reduction and defuzzifier. The proposed system
used the mamdani fuzzy inference method. Figures 4, 5 and 6 show the memberships
functions of samples of features. In the proposed model, Gaussian membership function
was used. The numbers of rules consist five.these rules are as follow:

Rule 1: IF (Age isr in1cluster1) AND (blood pressure (max) isr in2cluster1) AND
(bacteria isr in3cluster1) AND (urea isr in4cluster1) AND (creatinine isr
in5cluster1) AND (Na isr in6cluster1) AND (hemoglobin isr in7cluster1)
AND (wbc isr in8cluster1) THEN (out isr cluster1).

Rule 2: IF (Age isr in1cluster2) AND (blood pressure (max) isr in2cluster2) AND
(bacteria isr in3cluster2) AND (urea isr in4cluster2) AND (creatinine isr
in5cluster2) AND (Na isr in6cluster2) AND (hemoglobin isr in7cluster2)
AND (wbc isr in8cluster2) THEN (out isr cluster2).

Rule 3: IF (Age isr in1cluster3) AND (blood pressure (max) isr in2cluster3) AND
(bacteria isr in3cluster3) AND (urea isr in4cluster3) AND (creatinine isr
in5cluster3) AND (Na isr in6cluster3) AND (hemoglobin isr in7cluster3)
AND (wbc isr in8cluster3) THEN (out isr cluster3).
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Rule 4: IF (Age isr in1cluster4) AND (blood pressure (max) isr in2cluster4) AND
(bacteria isr in3cluster4) AND (urea isr in4cluster4) AND (creatinine isr
in5cluster4) AND (Na isr in6cluster4) AND (hemoglobin isr in7cluster4)
AND (wbc isr in8cluster4) THEN (out isr cluster4).

Rule 5: IF (Age isr in1cluster5) AND (blood pressure (max) isr in2cluster5) AND
(bacteria isr in3cluster5) AND (urea isr in4cluster5) AND (creatinine isr
in5cluster5) AND (Na isr in6cluster5) AND (hemoglobin isr in7cluster5)
AND (wbc isr in8cluster5) THEN (out isr cluster5).

Figure 3 represents the type-II fuzzy rules of the proposed system.

Fig. 3. Type-II-fuzzy rule-based

Fig. 4. Membership function of blood pressure Fig. 5. Membership function of hemoglobin

Interval Type II Fuzzy Rough Set Rule Based Expert System to Diagnose CKD 565



4.3 Performance Evaluation

In this study, we used classification accuracy as criteria for evaluating the performance
of the proposed system. For this purpose, we divided the CKD data set to training data
and testing data. Training data consists of 480 sample data for modeling and devel-
oping the system and 120 sample data as testing data for evaluating the proposed
system. By using confusion matrix method, the classification accuracy of the proposed
system for diagnosis of chronic kidney disease was obtained about 90% (Eq. 11).
Table 2 represents the test results of 120 testing data. As you can see in Table 3, the
accuracy of the proposed method is greater than the method used in the previous article
with the same data.

accuracy ¼ 47þ 62
120

¼ 0:90 ð11Þ

5 Conclusion

This paper represents an Interval type-II fuzzy rule-based expert system as an assis-
tance system for diagnosing chronic kidneys function disease. This system uses the
results of the prescribed measurement of chronic kidney as input data and by entering

Fig. 6. Membership function of blood urea

Table 2. The result of confusion matrix

Testing data Class - healthy Class - disease

Class - healthy 47 6
Class - disease 5 62

Table 3. Comparison methods

Methods Accuracy

Type - I fuzzy [6] 80%
Proposed method 90%
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the input data, the output of the system will be a crisp value. In this study, we focused
on identifying the rules and the parameters of the type-II fuzzy system. We used an
Interval type-II fuzzy classification based on Sugeno index and FCM algorithm for
determining the number of clusters and values of parameters. The classification
accuracy of the proposed system for diagnosis of chronic kidney disease was obtained
about 90%.
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Abstract. This paper describes the comparison of dynamic adjustment
parameters in the firefly algorithm using type-1 and type-2 fuzzy logic for the
optimization of a fuzzy controller. The adjustment is performed to improve the
behavior of the method. Fuzzy systems use fuzzy sets by defining membership
functions, which indicate how much an element belongs to the fuzzy set. Type-2
fuzzy logic assigns degrees of belonging that are fuzzy and this can be viewed as
an extension of type-1 fuzzy logic. The Firefly algorithm has 3 main parameters
Beta, Gamma and Alpha with a range of 0 to 1 each, which need to the
dynamically adjusted to improve the performance of the algorithm.

Keywords: Type-1 fuzzy logic � Type-2 fuzzy logic � Fuzzy logic
Firefly algorithm � Dynamic adjustment

1 Introduction

This paper focuses on the performance of the firefly algorithm, [1–5] by making one of
its main parameters to be dynamic, with this aiming to obtain better results in terms of
error minimization when optimizing a fuzzy controller of an autonomous mobile robot
[6–9]. Applying a fuzzy dynamic adjustment, a simple fuzzy system of one input and
one output was developed to make the adjustment to the alpha parameter, which in the
firefly algorithm represents the randomization values of fireflies movement in the search
of mimimizing the objective function. This paper is organized as follows. Section 2
describes Type-1 and Type-2 Fuzzy Logic, Sect. 3 presents in detail the Firefly
Algorithm, Sect. 4 describes the Model of Fuzzy Dynamic Adjustment, Sect. 5 shows
the Fuzzy Controller Autonomous Mobile Robot, Sect. 6 describes the Experimenta-
tion, Sect. 7 presents in detail the results obtained in the experiments and finally Sect. 8
describes the conclusions.

2 Type-1 and Type-2 Fuzzy Logic

Fuzzy logic [10–12], emerged based on the principle of incompatibility between
accuracy and complexity, since normal computational procedures are so exact that they
are incompatible with the complexity of human reasoning, and for this reason fuzzy
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logic uses linguistic variables that are words like those humans use and not exact
numbers as they use machines.

Type-2 fuzzy logic [13–15] is an extension of the classical fuzzy logic that gives
values to the linguistic variables and improves the inference in the type-1 fuzzy sets. In
Figs. 1 and 2, type-1 and type-2 the triangular membership functions are illustrated,
respectivelly.

triangular u; a; b; cð Þ ¼
0; u� a

u�a
b�c ; a� x� b
c�x
c�b ; b� x� c
0; c� x

8>><
>>:

ð1Þ

Fig. 1. Type-1 triangular membership functions.

Fig. 2. Type-2 triangular membership functions.
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~l xð Þ ¼ lðXÞ; l xð Þ
h i

¼ itritype2 x; a1; b1; c1; a2; a2; a2½ �ð Þ ð2Þ

where a1\a2; b1\b2; c1\c2

l1 xð Þ ¼ max min
x� a1
b1 � a1

;
c1 � x
c1 � b1

� �
; 0

� �

l2 xð Þ ¼ max min
x� a2
b2 � a2

;
c2 � x
c2 � b2

� �
; 0

� �

3 Firefly Algorithm

The Firefly algorithm was developed by Yang [16] in 2008, and its inspiration is based
on the behavior of the flickering fireflies. The algorithm has 3 important rules.

1. All the fireflies are unisex so that a firefly can be attracted by any other.
2. The attractiveness is in conformity with the brightness and it is minimized when its

distance is greater, the less bright firefly will move towards the brightest, if there is
not a brighter firefly they will move at random.

3. The brightness of a firefly is given by its function fitness.

Attractiveness Equation
The equation for defining attraction is:

b ¼ b0e
�cr2 ð3Þ

b0 = Attractive initial in r = 0 Є [0, 1].
e � 2,71828 Natural logarithm.
r = Distance between each of two fireflies.
c = Determines the variation of attractiveness by increasing the distance between
the fireflies Є [0, 1].

Movement Equation
The equation for defining the movement is:

xtþ 1
i ¼ xti þ b0e

�cr2ij xtj � xti
� �

þ ate
t
i ð4Þ

Where:

xtþ 1
i = Next position.
xti = Actual position.

b0e
�cr2ij xtj � xti

� �
= The attraction.

at = The randomization with a being the parameter of randomness a Є [0, 1].
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eti = Vector of random numbers extracted from a Gaussian distribution.

Distance Equation
The equation for defining the distance is:

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

k¼1
xi;k � xj;k
� �2r

; ð5Þ

Where:

rij = Euclidian distance between two fireflies i and j.
xi;k = Is the kth component of the spatial coordinate.
xi = The i-th firefly.
d = Number of dimensions.

4 Model of Fuzzy Dynamic Adjustment

As it was already mentioned previously, a fuzzy system was developed to make the
dynamic adjustment to the alpha parameter, the fuzzy system has an input that rep-
resents the iterations and an output that is the value that takes alpha for each iteration,
in the following Figs. 3 and 4 input and output are observed of fuzzy models where
each has a range [0 1] and as linguistic variable low, medium and high Figs. 5 and 6.

Model Type-1 and Type-2 Fuzzy Systems
The equation for defining the iteration variable is:

Iteration ¼ Current Iteration
Maximum of Iterations

ð6Þ

Fig. 3. Type-1 Fuzzy system input iterations with 3 triangular membership functions.
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Fig. 4. Type-1 fuzzy systems output alpha

Fig. 5. Type-2 fuzzy systems input iterations.
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5 Fuzzy Controller Autonomous Mobile Robot

The firefly algorithm was co The Fuzzy systems to be optimized [17] using fuzzy
dynamic adjustment in the firefly algorithm, is of Mamdani type which has 2 inputs and
2 outputs as shown in the following Figs. 7, 8, 9, and 10.

Fig. 6. Type-2 fuzzy systems output alpha.

Fig. 7. Type-1 fuzzy system input 1 linear error evð Þ.
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The First input is the linear error evð Þ and represents the error in linear velocity,
with 3 triangular membership functions with their respective linguistic variables
Negative, Zero and Positive, in a range of −1 to 1.

The Second input of the angular error ewð Þ represents the error in angular velocity
and is designed with the same characteristics as the first input.

Fig. 8. Type-1 fuzzy systems input 2 angular error ewð Þ.

Fig. 9. Type-1 fuzzy systems output 1 torque 1 t1ð Þ.
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First output is called the Torque 1 t1ð Þ. This output represents the rotation of the
wheel one that the autonomous robot can give. It consists of 3 triangular membership
functions with Negative, Zero and positive as linguistic variables respectively, with a
range of −1 to 1.

Second output Torque 2 t2ð Þ represents the turn that has the wheel two and meets
the same characteristics of the output one.

As can be seen in the fuzzy controller model, this has two inputs and two outputs
which represent the error generated by the robot in motion, but this error is very high,
one might think that it is because the membership functions do not they are overlapped
with each other, to improve this design we opted to do the optimization of the
parameters of the membership functions using the fireflies algorithm with fuzzy
dynamic adjustment.

6 Experimentation

At the beginning of the experiments, random values were taken for the Beta, alpha and
gamma parameters with a range of 0 to 1 as suggested by the author of the algorithm,
just as the population and the iterations were randomized. These experiments per-
formed manually trial and error were performed unfairly when evaluating the fitness
function since it is not the same number of evaluations for each experiment for example
a population of 35 and 550 iterations which results in a total of 19,250 evaluations and
a population of 25 fireflies and 100 iterations give a total of 2500 evaluations to the
functions fitness, took that information obtained to given an idea of how many eval-
uations could be used for the next experimentation, experiments ware performed with
30,000 evaluation per experiment, although they seem Many evaluations the opti-
mization problem is more complicated than a benchmark function therefore it asks for

Fig. 10. Type-1 fuzzy systems output 2 torque 2 t2ð Þ.
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more evaluation time. We show in the following Tables 2 and 3 the results obtained
from the fuzzy controller optimization, with dynamic adjustment of type-1 and type-2.

This Table 1 describes the values the Beta, alpha and gamma parameters the Firefly
Algorithm.

7 Simulation Results

In this work the dynamic adjustment to the alpha parameter of the firefly algorithm was
proposed, to improve the performance of the method in the optimization of the
parameters of the membership functions, of an autonomous mobile controller, using
type-1 and type-2 fuzzy logic.

As we can see the results of the experiment doing the dynamic adjustment by
iteration are better than changing the value manually by experiment. The results show
that type-2 fuzzy logic helps more the behavior of the method in this particular case of

Table 1. Firefly algorithm parameters

Experiment Firefly Iterations Beta Gamma Alpha Error

1 25 100 1 0.1 0.5 0.26
2 30 500 1 0.1 0.6 0.075920923
3 30 550 1 0.1 0.7 0.082229181
4 30 1000 1 0.1 0.8 0.0739153
5 35 550 0.3 0.1 0.3 0.2818
6 35 550 0.4 0.1 0.7 0.004817189
7 40 300 0.3 0.1 0.8 0.073915
8 45 600 0.9 0.1 0.1 0.3279
9 45 750 0.4 0.1 0.2 0.110954
10 50 680 0.6 0.1 0.9 0.0759
11 50 800 0.5 0.1 0.6 0.1952

Table 2. Dynamic adjustment type-1 firefly algorithm parameters

Experiment Firefly Iterations Beta Gamma Alpha Error

1 12 2500 0.3 0.2 D 0.01572
2 15 2000 0.3 0.2 D 0.3739
3 20 1500 0.2 0.2 D 0.01562
4 25 1200 0.1 0.2 D 0.0077152
5 30 1000 0.3 0.2 D 0.24964
6 40 750 0.5 0.1 D 0.07927
7 50 600 0.7 0.1 D 0.039156
8 50 600 0.8 0.1 D 0.053435
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decreasing the error which produces the simulation of the robot using the mean square
error (mse). As can be seen in the previous Table 2, the results of the dynamic
adjustment with type-1 fuzzy logic.

8 Conclusions

Fuzzy logic is a tool that is serving as an interface between the reasoning of the human
being and the actions of the machines, in this regard fuzzy logic can have linguistic
variables that are used in fuzzy control systems.

In this work, the dynamic adjustment of the alpha parameter of the firefly algorithm
was performed to improve the performance of the algorithm when optimizing the fuzzy
controller of a mobile autonomous fuzzy controller. Test experiments were carried out
to take a base of evaluations to the objective function, and with these data, experiments
were carried out for optimization. We envision as future work applying the proposed
method to the optimization of fuzzy systems in other applications.
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Abstract. The study of metaheuristics has become an important area for
research, these metaheuristics contain parameters and the literature provides us
with a range of values in which the algorithm can have good results. For this
paper we propose to use the Differential Evolution algorithm combined with
fuzzy logic to enable having dynamic crossover parameter, and to complement
this work we include the diversity variable based on Euclidean distance, which
will help us to know if the individuals of the population are separated or near in
the search space in other words is the exploration and the exploitation in the
search space, and for this article we work with two types of Simple Multimodal
and Hybrid functions belonging to set of CEC 2015 benchmark functions.

Keywords: Diversity � Crossover � Dynamic parameter adaptation
Fuzzy logic

1 Introduction

The Differential Evolution (DE) algorithm was originally proposed by Storn and Price
in 1994, and the algorithm has several variants, but in this work we use the original
algorithm. We in particular use the Differential Evolution algorithm and make dynamic
one of its parameters, in this case crossover with the help of fuzzy logic and then apply
it to set of CEC 2015 benchmark functions.

The use of benchmark functions to experiment with metaheuristics is an element of
a study, there is currently a set of benchmark functions that have a broader level of
complexity, and in this paper we decided to work with certain functions of the set of
CEC 2015 functions benchmark some outstanding works of this competence are
mentioned below: a self-optimization approach for L-SHADE incorporated with
eigenvector-based crossover and successful-parent-selecting framework on CEC 2015
benchmark Set [6] (rank 1), a differential evolution algorithm with success-based
parameter adaptation for CEC 2015 learning-based optimization [3] (rank 2), testing
MVMO on learning-based real-parameter single objective benchmark optimization
problems [13] (rank 3) and a neuro-dynamic differential evolution algorithm and
solving CEC 2015 competition problems [14] (rank 3).
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On the other hand we can find works where fuzzy logic is combined with meta-
heuristics converting parameters that are fixed during the execution of the algorithm
and with the help of fuzzy logic can be made dynamic, and this combination is what we
are working on this paper [20–22]. Here are some works related to this type of com-
bination: a new fuzzy bee colony optimization with dynamic adaptation of parameters
using interval type-2 fuzzy logic for tuning fuzzy controllers [2], imperialist compet-
itive algorithm with dynamic parameter adaptation using fuzzy logic applied to the
optimization of mathematical functions [4], comparison between ant colony and
genetic algorithms for fuzzy system optimization [7], fuzzy dynamic adaptation of
parameters in the water cycle algorithm. in nature-inspired design of hybrid intelligent
systems [9], differential evolution using fuzzy logic and a comparative study with other
metaheuristics [10], an adaptive fuzzy control based on harmony search and its
application to optimization [11], a fuzzy hierarchical operator in the grey wolf opti-
mizer algorithm [12], fuzzy system optimization using a hierarchical genetic algorithm
applied to pattern recognition [15], optimization of benchmark mathematical functions
using the firefly algorithm with dynamic parameters [16] and Evolutionary method
combining particle swarm optimization and genetic algorithms using fuzzy logic for
decision making [17].

We have as inspiration to our work some other works where the diversity variable
was used to improve the performance of the respective algorithm, and to mention some
we have: Optimal design of fuzzy classification systems using PSO with dynamic
parameter adaptation through fuzzy logic [8], Statistical Analysis of Type-1 and
Interval Type-2 Fuzzy Logic in dynamic parameter adaptation of the BCO [1] and
Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy
dynamic parameter adaptation [5].

The paper is organized in the following form: Sect. 2 describes the Differential
Evolution algorithm. Section 3 describes the methodology using the fuzzy logic
approach. Section 4 presents the experimentation with the set of CEC 2015 Benchmark
functions. Section 5 finally offers some Conclusions.

2 Differential Evolution Algorithm

The use of the Differential Evolution algorithm is very wide at present time, for this
article we use the original version of algorithm which has the following mathematical
structure [10]:

Population structure

Px;g ¼ xi;g
� �

; i ¼ 0; 1; . . . ; Np; g ¼ 0; 1; . . .; gmax ð1Þ

xi;g ¼ xj;i;g
� �

; j ¼ 0; 1; . . .; D� 1 ð2Þ

Pv;g ¼ vi;g
� �

; i ¼ 0; 1; . . .; Np� 1; g ¼ 0; 1; . . .; gmax ð3Þ
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vi;g ¼ vj;I;g
� �

; j ¼ 0; 1; . . .; D� 1 ð4Þ

Pv;g ¼ ui;g
� �

; i ¼ 0; 1; . . .; Np� 1; g ¼ 0; 1; . . .; gmax ð5Þ

ui;g ¼ uj;I;g
� �

; j ¼ 0; 1; . . .; D� 1 ð6Þ

Initialization

xj;i;0 ¼ randj 0; 1ð Þ � bj;U � bj;L
� �þ bj;L ð7Þ

Mutation

vi;g ¼ xr0;g þ F xr1;g � xr2;g
� � ð8Þ

Crossover

ui;g ¼ uj;i;g
� � ¼ vj;i;g if randj 0; 1ð Þ�Cr or j ¼ jrand

� �
xj;i;g otherwise

(
ð9Þ

Selection

xi;gþ 1 ¼ ui;g if f ui;g
� �� f xi;g

� �
;

xi;g otherwise:

�
ð10Þ

3 Methodology

The methodology applied in this paper is the use of the Differential Evolution algorithm
combined with fuzzy logic, and this combination will help make the algorithm have
dynamic parameters, in this case is the crossover parameter.

Figure 1 represents the structure of the Differential Evolution algorithm to which
we have added the fuzzy system which gives as the output the crossover parameter,
which means that dynamically the crossover parameter will change during the exe-
cution of the algorithm.
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The fuzzy system is constructed with two inputs which are the generations and are
calculated in Eq. 11 and the diversity is the second input, which is calculated with
Eq. 12

Generations ¼ Current Generations
Maximum of Generations

ð11Þ

Fig. 1. Scheme of the proposed method
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Diversity S tð Þð Þ ¼ 1
nS

XnS

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnx

j¼1
ðxij tð Þ � xj tð ÞÞ2

r
ð12Þ

Where Eq. 1, is the current generation and is defined by the number of generations
elapsed and maximum number of generations is defined by the number of generations
established for the DE to find the best solution. In Eq. 2, S is the population of the DE; t
is the current time, ns is the size of the individuals, i is the number of the individuals, nx
is the total number of dimensions, j is the number of the dimension, xij is the j
dimension of the individual i, xj is the j dimension of the current best individual of the
individuals. The structure of the fuzzy system is illustrated in Fig. 2.

The inputs and the output are granulated into three membership functions which are
triangular. Figure 3 represents the membership functions and the parameters of each
are described below:

Generations:

• M. F. 1 = Low [−0.5 0 0.5]
• M. F. 2 = Medium [0 0.5 1]
• M. F. 3 = High [0.5 1 1.5]

Diversity:

• M. F. 1 = Low [−0.5 0 0.5]
• M. F. 2 = Medium [0 0.5 1]
• M. F. 3 = High [0.5 1 1.5]

Mutation F parameter:

• M. F. 1 = Low [−0.5 0 0.5]
• M. F. 2 = Medium [0 0.5 1]
• M. F. 3 = High [0.5 1 1.5]

Fig. 2. Structure of the fuzzy system
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Figure 4 outlines the rules of the fuzzy system and Fig. 5 shows the surface of the
interval-type 2 fuzzy logic system.

Fig. 4. Rules for the fuzzy system

Fig. 3. Representation of the membership functions
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4 Simulation Results

In this paper we used 6 functions of the set of CEC 2015 benchmark functions, which
are described in Table 1. We performed experiments with the original algorithm and
later using the proposed method, where a fuzzy system will help us to dynamically
change the CR parameter. Previously we have already worked with the F parameter
(mutation) to realize the dynamics and the work now for the CR parameter is a
complementary part of our work and thus to be able to construct a more complete fuzzy
system and to apply it to more complex systems.

The parameters used for these experiments are shown in Table 2 where NP is the
size of the population, D is the dimension of each individual, F is the mutation, CR is
the crossover and GEN are the generations. For the case of the experiments using the
original algorithm CR is assigned a value of 0.6 and subsequently for the following

Fig. 5. Surface of the fuzzy system

Table 1. Summary of the CEC’15 learning-based benchmark suite

No. Functions Fi* = Fi(x*)

Simple multimodal functions 3 (f1) Shifted and rotated Ackley’s function 300
4 (f2) Shifted and rotated Rastrigin’s function 400
5 (f3) Shifted and rotated Schwefel’s function 500

Hybrid functions 6 (f4) Hybrid function 1 (N = 3) 600
7 (f5) Hybrid function 2 (N = 4) 700
8 (f6) Hybrid Function 3(N = 5) 800
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experiments CR is dynamic by using the fuzzy system. Experiments were only carried
out with a number of dimensions of 10 and 30 with the same guidelines of the CEC
2015 competition.

The results obtained with the original algorithm are shown in Table 3 for number of
dimensions of 10, the table contains the best and the worst result, the mean and the
standard deviation.

Table 4 shows the results for number of dimensions of 30 and contains the best and
the worst result, the mean and the standard deviation.

Table 3. Results for dimensions D = 10

Differential Evolution algorithm for D = 10

Best Worst Mean Std
f1 3.21E+02 3.21E+02 3.21E+02 1.45E−01
f2 4.80E+02 5.64E+02 5.28E+02 2.01E+01
f3 2.42E+03 3.50E+03 2.97E+03 2.41E+02
f4 1.52E+05 1.37E+08 2.92E+07 2.78E+07
f5 7.14E+02 8.01E+02 7.53E+02 2.18E+01
f6 7.48E+04 1.39E+07 4.39E+06 4.13E+06

Table 4. Results for dimensions D = 30

Differential Evolution algorithm for D = 30

Best Worst Mean Std
f1 3.21E+02 3.21E+02 3.21E+02 7.28E−02
f2 9.31E+02 1.13E+03 1.05E+03 4.21E+01
f3 8.62E+03 1.09E+04 9.93E+03 4.54E+02
f4 7.26E+07 1.09E+09 4.44E+08 2.51E+08
f5 1.14E+03 4.05E+03 2.07E+03 5.89E+02
f6 1.33E+07 4.65E+08 1.43E+08 5.89E+02

Table 2. Parameters of the experiments

Parameters

NP = 250
D = 10 and 30
F = 0.6
CR = 0.5 and dynamic
GEN = 100000 and 300000
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Tables 5 and 6 represent the results obtained with a dynamic CR parameter for 10
and 30 dimensions respectively and contains the best and the worst result, the mean and
the standard deviation.

Table 7 represents a comparison between the original method and the proposed
method where CR is dynamic, and a comparison of the best results obtained for the
number or dimensions of 10 and 30 is made.

Table 7. Comparison between DE and DE with dynamic CR

Comparison between DE and DE with dynamic CR

D = 10 D = 30
Original Proposed Original Proposed

f1 3.21E+02 5.15E−01 5.15E−01 2.18E−01
f2 4.80E+02 8.23E+00 9.41E+01 1.00E+02
f3 2.42E+03 1.76E+01 1.65E+03 2.36E−01
f4 1.52E+05 1.69E+04 5.94E+05 5.04E+01
f5 7.14E+02 4.65E−01 1.67E+01 3.70E−01
f6 7.48E+04 3.86E+04 3.86E+04 9.63E+01

Table 6. Results with CR dynamic for D = 10

D. E. with CR dynamic for D = 30

Best Worst Mean Std
f1 2.18E−01 2.15E+01 2.07E+01 3.86E+00
f2 1.00E+02 7.44E+02 6.43E+02 1.13E+02
f3 2.36E−01 1.02E+04 6.70E+03 4.48E+03
f4 5.04E+01 7.58E+08 2.41E+08 2.45E+08
f5 3.70E−01 1.75E+03 5.61E+02 6.36E+02
f6 9.63E+01 3.67E+08 9.88E+07 1.05E+08

Table 5. Results with CR dynamic for D = 10

D. E. with CR dynamic for D = 10

Best Worst Mean Std
f1 5.15E−01 2.12E+01 1.62E+01 8.83E+00
f2 8.23E+00 1.55E+02 1.01E+02 5.36E+01
f3 1.76E+01 2.89E+03 2.16E+03 8.63E+02
f4 1.69E+04 1.12E+08 2.22E+07 2.68E+07
f5 4.65E−01 1.12E+02 4.45E+01 3.25E+01
f6 3.86E+04 1.55E+07 4.38E+06 3.73E+06
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Figures 6 and 7 show graphically the comparison of the best results between the
original algorithm and the proposed method, and Fig. 6 shows the results for dimen-
sions of 10 and Fig. 7 shows the results for dimensions of 30.

We can notice graphically that the proposed method has better results than the
original algorithm for both comparisons, the separation between the two methods is
clearly shown.

5 Conclusions

The study carried out with the experimentation of at least 6 functions of CEC 2015
gives us an idea of the behavior of the CR parameter in the algorithm, with the obtained
results we can notice that we are on the right track although we cannot yet affirm that
the fuzzy system used is the optimal one since we need more experimentation and a
statistical test to be able to demonstrate the improvement of the algorithm.

Fig. 7. Graphic to D = 30

Fig. 6. Graphic to D = 10
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We can rescue the following points the use of the diversity variable helps the
algorithm to obtain better results. We can also state that the use of the diversity variable
helps the algorithm to obtain better results until now, we lack more experimentation,
the goal is to use the whole set of the CEC 2015 benchmark functions and thus to make
a comparison of our proposed method and the winning algorithm of the CEC 2015
benchmark functions competition and carry out the corresponding statistical test. As
future work, we can consider extending to use type-2 fuzzy logic, and also deal with
applications of optimizing neural networks [18, 19].
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Abstract. This paper presents a Knowledge engineering application whereby a
Fuzzy Network (FN) is used to build a computing model to reproduce corporate
dynamics and to implement a Model Reference Adaptive Control (MRAC)
strategy [2] for Corporate Control. This model is used as a What If? Environ-
ment to explore future consequences of actions planned within a strategic sce-
nario context in terms of KPIs displayed in a Balanced ScoreCard (BSC) control
board. Corporation’s Strategy Map is required to plan the Knowledge Identifi-
cation and Capture Activity (KICA) required to obtain the knowledge to be
represented in the FN’s Nodes Rule Bases. KICA produces linguistic variables
as well as the qualitative relationships amongst them. A FN appears as a natural
solution to model the knowledge distributed within the members participating in
all analysis and decision making tasks along the organization. As an example an
application done for a Utility Corporation is included.

1 Introduction

Since BSC officially appeared [1] it has become an important corporate control tool.
However the feedback it provides through the KPIs takes a good time after an action
has been taken. This occurs because the time constants involved in a corporate
dynamics are rather long ranging from weeks to months depending of the strategic deep
of decisions and the corresponding actions. This paper presents an enhancement of the
BSC control strategy by means of a knowledge based computing model representing
the corporate dynamics and implementing a Model Reference Adaptive Control
(MRAC) strategy [3]. Since the Strategy Map [4] displays the inner causality in an
organization’s dynamic it is used to conduct the KICA required to identify the involved
linguistic variables and the qualitative relationships amongst them. The model is
constructed using a FN which stores the knowledge gathered through a KICA. This
model is used to provide the What If? Environment to test different strategic scenarios
and to identify the best actions to be taken on order to obtain desired KPI’s values in a
given time horizon. FN have already been used and reported [6, 7] as a tool to build
Expert Systems using distributed knowledge.
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2 BSC Control Structure

The current BSC control loop is displayed in Fig. 1. No matter how good the mea-
surement system is the values entered for the KPIs in the BSC Board will reflect the
consequences of the taken actions only after a good amount of time since the time
constants involved in the corporate dynamics are some times weeks or even months
long. The What If? Environment introduced here allows to test groups of actions, in
fact, whole strategies, to examine the future KPI’s values and so to determine the best
strategy in terms of future KPI’s values.

3 Model Reference Adaptive Control Structure

TheWhat If? Environment is obtained using the mentioned MRAC control strategy and
this is showed in Fig. 2. The Corporate Model allows to test actions showing future
KPI’s values in the BSC Model Board.

Fig. 1. Current BSC control loop structure

Fig. 2. MRAC structure with What If? environment
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Once the structure depicted in Fig. 2 is constructed all that is needed is a good
Simulation Barnacle to start testing strategies and actions to be input to the model in
order to observe over the BSC Model Board the resultant KPIs in the specified time
horizon.

4 Corporate Model

Figure 3 shows a typical FN structure for the corporate model.

The FN structure is distributed along the four BSC Perspectives: Financial Per-
spective (FP), Customer Perspective (CP), Internal Perspective (IP) and Learning and
Grow Perspective (LGP). Every Node in the FN is separately created and tuned using
the MRAC interface included in the MANAGEMENT Block (Fig. 2). Design
parameters for each node are determined through the tuning procedure using criteria
obtained in the KICA. Figure 4 shows the structure of a Fuzzy System (FS) in every
node with the design parameters for every module. Depending on the particular
dynamic associated to a company the FN could be either Feedforward or Recurrent.

Fig. 3. Corporate model

594 G. Pérez Hoyos



The Rule Base for every Node will contain the fuzzy rules obtained after analyzing the
results obtained with the KICA. The nodes producing the KIP’s values are explicitly
shown. All the fuzzy rules for every node contain the time as a linguistic variable in the
Antecedent. Rule k is then explicitly written as (1). Although the Inputs go into nodes
in the Learning and Growing Perspective in Fig. 3, inputs can actually go into any node
in any perspective.

Rk: IF X1 is LX1 AND … AND Xm is LXm AND

Time is LT THEN Y1 is LY1 AND . . . AND Yn is LYn ð1Þ

Where:
X1 … Xm are the inputs to the node and Y1 … Yn are the outputs,

LXi e L, M, Hf g; LYi e L, M, Hf g

LT e VS, S, M, L, VLf g

With: L = Low, H = High, VS = Very Short, S = Short, M = Medium, L = Long,
VL = Very Long.

Although only one layer is shown for the FN in each perspective, it is the particular
dynamics for each corporation’s value-creating processes which determines the FN’s
nodes structure for every perspective. The particular FN structure constructed for any
particular organization will reflect the particular dynamics and the inner causality
within the value-creating processes in that corporation.

5 The What If? Environment

The User Interface also contains the simulation environment so that managers and/or
planners can perform the simulation tasks required to test any strategy. This environ-
ment keeps the record of all simulations to facilitate the supervision tasks required to
identify the best strategies.

When a corporation has a comprehensive and well maintained Data Base with a
few years of data, rules can be identified using a mining procedure with the help of
Adaptive (Trainable) Fuzzy Systems [3]. This capability is built in the UNFUZZY tool
[5] used for the developments reported in [6, 7].

Implementing this MRAC strategy with What If? Environment requires the com-
mitted participation of all members in the organization. KEA in particular requires the
open and patient collaboration since many times it is necessary to go over some
particular subjects in order to clearly identify the linguistic variables as well as the
nature of relationships.

MRAC with What If? Environment was implemented in a local utility. It is cur-
rently used in the planning tasks and it has been taken as a pilot experience to scout
new possibilities. The task force organized for this accomplishment is now working on
model refinement to include risks, using the experience gathered in a recent work [7].
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This means identifying the associated risks to every strategic goal and to actually
acquire the heuristics associated to its assessment. This approach intends to reach the
point where we can modify the fuzzy rules for the KPI nodes in the corporate model to
include risk values. The BSC Boards, Corporate Board as well as Model Board, will
also be modified to include the column corresponding to risk values.

6 Utility Company Application

The example presented in this paper is an application developed for a Utility Corpo-
ration. Figure 5 shows the strategy map for this utility, where the inputs are also
indicated. As a result of KICA the input and output linguistic variables for every
process in the map were identified as well as the proper fuzzy relationship relating each
input-output pair in order to elaborate the fuzzy rules for every node. Identifying the
proper fuzzy rules includes detecting the adequate set of Qualifying Linguistic Terms
(QLT) as well as the Trend relationships, i.e. whether a variable appearing in the
consequent of a particular fuzzy rule is growing or decaying when a variable in the
antecedent is growing.

Fig. 4. Node’s structure with design parameters
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7 Fuzzy Network Architecture

Figure 6 shows the final FN designed architecture. Five layers were required in order to
implement the network using UNFUZZY [5], a software tool to implement and sim-
ulate FS and FN, developed at Universidad Nacional de Colombia.

Fig. 5. Strategy map

Fig. 6. FN architecture
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Functionality, input/output variables, rules and fuzzy system parameters for every
node are not included in this paper since the confidentiality agreement signed with the
company prevent us from doing so. In [7] they were included explicitly because that
was not an industrial application with a signed contract but an academic research work.

For all the nodes the fuzzy inference employed was Mandani (Minimum), mem-
bership functions employed were the standard L, Lambda (Triangle) and Gamma
Functions, available in most Fuzzy Systems software tools. Defuzzification was done
with Center of Gravity DeDuzzifier. The Time Horizon selected for a particular sim-
ulation exercise is entered as input linguistic variable to every one of the nodes. The
antecedent for every rule in the corresponding Rule Base will contain the component
time is LT, where

LT � Very Short, Short, Medium, Long, Very Longf g

As it was stated before. Besides the inputs to the nodes in the following layer, The
outputs of the nodes in every layer include the Key Performance Indexes (KPIs) that go
to BSC simulation Board. Then Layer 1 outputs include the KPIs related to the
Training and Selection Processes, Layer 2 outputs include the KPIs related to corporate
Empowerment, Layer 3 outputs include KPIs related to Quality Control and Layer 4
outputs include KPIs related to Positioning and Growth.

8 Conclusions and Final Recommendations

• The Corporate Model constructed after the KICA using a Fuzzy Network is a good
example of a working asset obtained through capitalizing organization knowledge.

• A Fuzzy Network is a versatile way to model corporate knowledge since this is
distributed all over the people working in analysis and decision making activities
within the organization’s value-creating processes.

• A What If? Environment provides the BSC corporate control strategy a powerful
tool to explore different strategic scenarios. Using different action scenarios and
different time horizons to detect the best possible results in terms of KPIs requires a
great deal of expertise achieved through consistently using this tool.

• Identifying the risks associated to every strategic goal as well as the associated
heuristic to its assessment would allow to add the Risk column to the BSC Board,
adding Risk Management to the MRAC STRATEGY.
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