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Abstract

Nucleus is a specialized organelle that serves
as a control tower of all the cell behavior.
While traditional biochemical features of nu-
clear signaling have been unveiled, many of
the physical aspects of nuclear system are still
under question. Innovative biophysical studies
have recently identified mechano-regulation
pathways that turn out to be critical in cell
migration, particularly in cancer invasion and
metastasis. Moreover, to take a deeper look
onto the oncologic relevance of the nucleus,
there has been a shift in cell systems. That is,
our understanding of nucleus does not stand
alone but it is understood by the relationship
between cell and its microenvironment in the
in vivo-relevant 3D space.
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3.1 Introduction

Despite decades of research, cancer metastasis
still remains an unsolvable process that induces
a devastating prognosis. Recent investigations
on the biomechanical aspects of tumorigenesis
are highlighted to find genetic and biochemical
changes associated with cancer progression. Tu-
mor cells are known to alter their own mechan-
ical properties and responses to external physi-
cal cues. Thus, the development and metastasis
of cancer are closely regulated by mechanical
stresses of the nucleus that regulate the gene
expression and protein synthesis. This chapter re-
capitulates the importance of nuclear mechanobi-
ology, whose malfunctioning provokes overall
setbacks of cancer progression.

3.2 Nuclear Structure
and Property

3.2.1 Nuclear Envelope

Nuclear envelope is divided into three parts: the
outer membrane, inner nuclear membrane, and
perinuclear membrane. The outer membrane is
connected to the endoplasmic reticulum (ER).
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The difference between outer membrane and ER
is the existence of ribosomes [1]. Nesprin, an
important protein connecting the nuclear enve-
lope and the cytoskeleton in the outer nuclear
membrane of mammals, regulates the cellular
mechanosensation [2]. The space between outer
membrane and inner membrane is called lumen
or perinuclear membrane. The outer membrane
and the inner membrane converge at the nuclear
pore complexes (NPCs) (Fig. 3.1), through which
small molecules diffuse. However, molecules that
are larger than 40 kDa can diffuse only by sig-
naling [3]. Nucleoporin, essential for aggregation
of lamina in late mitosis [4], is a molecular
constituent of NPC. It interacts with the lamina
[5] and may be involved in its biogenesis [6]. In-
ner nuclear membrane consists of transmembrane
proteins and membrane -associated proteins such
as lamina-associated protein (LAP)s, lamin B
receptor (LBR), emerin, and SUN proteins. Inter-
action between the inner nuclear membrane and
proteins is known to occur through these proteins
[2].

In the nucleus, integral membrane proteins in
the inner nuclear membrane connect the cyto-
plasm to the chromatin. The inner nuclear mem-
brane has, for example, the lamin-binding pro-
teins, having at least one transmembrane domain
and lamin-binding domain [7]. Varied biochem-
ical and physical factors are involved in their
interaction with different partners, leading to the
subsequent deformation of the nuclear structure.
Lamin is connected to chromatin lamin-binding
proteins and is involved in the regulation of gene
expression. Lamin connected to emerin interacts
with chromatin and other inner nuclear mem-
brane proteins [8].

Generally round or oval, the nuclear shape
reflects the condition of cells, disease, and age
[9]. Lamina regulates the nuclear shape, which
affects functioning of the nucleus through alter-
ing the shape, structure of chromatin, and gene
expression. In addition to lamina, changes in the
nuclear shape are caused by forces from cyto-
plasm and by lipid synthesis. Neutrophils have a
distinguishable nuclear shape. If neutrophils have
LBR mutation, the nuclei are hypolobulated and
the cells malfunction [10]. Lobulation is affected

by LBR, nuclear lamina proteins, microtubule,
and Kugelkern proteins [11]. In drosophila em-
bryos, the nuclear shape changes from spheroid
to ellipsoid by Charleston, inner nuclear mem-
brane protein, and microtubules [12].

Nuclear size is also affected by the cell cycle,
reaching its maximum size during interphase
[13]. Yeast are able to regulate their nuclear
volume, although it has no lamin and lamin-
associated protein mechanisms. The nuclear vol-
ume and shape are dependent on the physical
forces, the osmotic pressure, and the hydrostatic
pressure [14].

3.2.2 Nuclear Lamina

Located under the inner nuclear membrane, the
nuclear lamina is mainly composed of lamin
and lamin-associated proteins, which connect the
lamina to chromatin, involved in regulating the
gene expression [15]. Lamin is an intermedi-
ate filament IV and is the main component of
lamina [15]. Lamins have a N-terminal end and
a C-terminal end [16]. There are two subtypes
of lamin: A-type lamin from LMNA splicing
and B-type lamin from LMNB1/LMNB2. B-type
lamins are expressed in all tissues, have a CAAX
box, and attach to the membrane vesicles during
the cell cycle. Expression of A-type lamin is
observed later during development and is tissue-
specific. A-type lamin is soluble during mitosis.
Not all A-type lamins have a CAAX box where
posttranslational modification occurs [17]. All
lamins have isoprenylated and carboxymethy-
lated end. In addition, A-type lamins undergo
proteolytic cleavage [18]. After initiation of mi-
tosis, phosphorylation occurs and the lamina gets
disassembled. On completion of mitosis, the lam-
ina reassembles with the emerin, lamin B recep-
tor, and lamina-associated proteins (LAP) [19].

Electron microscopy revealed that the lamina
from Xenopus oocyte was composed of filaments
having similar diameter to the cytoplasmic in-
termediate filaments and mesh network of in-
termediate filaments [15]. The mesh network of
the nuclear lamina provides supports to nuclear
size, load-bearing, and viscoelastic behavior of
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Fig. 3.1 Alteration of nuclear architecture in normal and
cancer cells. Cancer cells have lobulated, enlarged, irreg-
ular, and folded nuclei. Intranuclear architecture features
redistribution of heterochromatin and alteration of struc-

tural integrity of lamin proteins. Translocation through
nuclear pore complex (NPC) is upregulated, and the
formation of PML bodies is inhibited in cancer cells [92]
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the nucleus under exterior forces [20, 21]. Nuclei
from lamin-Xenopus oocytes, which are bigger
than mammals, can be easily manipulated and are
observed to be weak [22]. Nuclei from LMNA
knockdown mouse cells are deformable [23].
Interestingly, depletion of lamin B does not cause
any change in stiffness, but additional blebbing
occurs in the nucleus. This implies that lamin
A is the dominant factor in controlling nuclear
stiffness [24].

Laminopathies are caused by defects of
LMNA (Hutchinson-Gilford progeria, cardiopa-
thy, muscular dystrophy) and affect a wide range
of tissues. A-type lamin depletion decreases
the nuclear stiffness, resulting in enhanced
sensitivity to outer stress [24]. Dysregulation
in coupling of nucleoskeleton and cytoskeleton
and the failure in critical cellular functions such
as mechanosensing, differentiation, proliferation,
and repairing intracellular damage are the results
of diminished lamin proteins [8]. In humans, in
particular, autosomal dominant leukodystrophy
and adult-onset leukoencephalopathy are
associated with disruption of LMNB1 [8]. Since
lamin proteins are connected to the chromatin,
mutation of lamin could result in malignant
cancers as well [8]. The relationship between
nuclear lamin and onset of cancer will be
discussed more specifically in a later section.

Emerins interact with the inner nuclear mem-
brane, lamin, and chromatin. Emerin-deficient
cells show abnormal nuclear shape and mechan-
otransduction [8]. Several evidences display that
microtubule and nuclear envelope are directly
connected to each other. In cells which are emerin
and A-type lamin-deficient, there is mislocation
of MTOC, leading to abnormal cell migration.
Interaction between kinesin and nesprin mediates
the coupling of microtubule and nucleus. An
actin cap is composed of stress fibers on the top
of the nucleus, from the apical surface to the
bottom. Actin cap is coupled to the nuclear lam-
ina through the LINC complex and nesprins. The
actin cap associated with large focal adhesions
may be involved in mechanotransduction [25].

3.2.3 Nuclear Chromatin
and Associated Proteins in the
Nucleus

The building blocks of nucleic acid are
nucleotides, which structurally is composed of
a nucleoside and phosphate. The DNA double
helix combined with histones in the eukaryotic
nucleoplasm forms the chromatin, which is
organized into chromosomes. Histone H2A,
H2B, H3, and H4 are assembled as octamer
beads, histone complex [26]. H1, which is not
involved in the histone complex, stabilizes the
structure. Chromatin is classified as euchromatin
and heterochromatin [27]. Heterochromatin is
a packed structure, has a low gene expression,
and is located on the nuclear lumen or nucleus.
Euchromatin is intranuclear, less dense than
heterochromatin, and has a high activity of gene
expression. Euchromatin has more deformability
than heterochromatin, implying that euchromatin
is more affected by the extracellular forces
[28]. Chromatin untethered to the inner nuclear
membrane induces deformable nuclei [29]. Chro-
matin can deform plastically under fixed stress,
influencing the viscosity of the nucleus [30].

Subnuclear structures include the nucleoli,
Cajal bodies, and PML. Nucleoli is a fluid-
like structure, significantly different from the
nucleoplasm [30, 31], having a role in ribosome
biogenesis [32]. Cajal bodies are related to
the cell cycle. The number and size of Cajal
bodies are dependent on the cell cycle, which
is maximum at the G1/S phase [33]. PML
bodies are responsive to cellular chemical stress.
Stressed PML bodies aggregate and achieve
posttranslational modification [34].

Other structural proteins present in the nu-
clear cytoskeleton include nuclear actins, nuclear
myosins, and nuclear spectrins. Nuclear actin is
not stained with phalloidin because it mainly
forms the structure of G-actin and not F-actin
[35]. It modulates the gene transcription and
chromatin remodeling [36]. Nuclear myosin and
spectrin are involved in chromosome movement
[37, 38].
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3.3 Nuclear Mechanics
and Nuclear
Mechanotransduction

3.3.1 Intrinsic Mechanics
of the Nucleus

Depending on the method of measurement, nu-
clear stiffness ranges from 0.1 kPa to 10 kPa.
Nuclear mechanical properties are largely con-
tributed by the lamina. The proteins associated
with lamin compose the lamina and are incorpo-
rated into the nuclear membrane and chromatins.
Lamina supports the nuclear membrane and ren-
ders the stiffness associated with it. Lamina is
the mesh network of A-type and B-type lamins;
the A-type lamins control the viscosity of lamina,
enabling the nucleus to endure applied force [39],
whereas the B-type lamins have elasticity which
helps restore local deformation [21]. The elastic
stiffness of B-type lamin is dependent on the
applied force [40]. The ratio of A-type and B-
type lamins affects the cellular migration ability
[41] and nuclear mechanics.

There are several techniques to measure nu-
clear properties: micropipette aspiration, AFM,
substrate strain, and nuclear microrheology [42].
Measuring the rheology of the nucleus uses the
correlation of the applied force and induced de-
formation of the nucleus [42]. To measure the
nucleus, the result is dependent on the condition
of nuclei, nuclei in cells or isolated nuclei [42].
In case of measuring nucleus within the cell,
the state of nucleus can be preserved physiologi-
cally; however, the result is influenced by the cy-
toskeleton. Measuring isolated nuclei is directly
accessible to the probe, but the status of nuclei
differs from the living nucleus [42]. Micropipette
aspiration is the most widely used technique.
Briefly, the nucleus is isolated, or cytochalasin-
treated micropipette aspiration directly measures
the properties of the nucleus. AFM is used to
study adherent cells, providing a high-resolution
measurement [42]. However, the results are af-
fected by the environmental factors around the
nucleus and are hard to analyze. Substrate strain
experiment uses the deformity of the nucleus

when cells are stretched by the substrate under
the cell. Nuclear microrheology uses inserted
magnetic beads to control forces by tweezers
[43]. A-type lamin-depleted cells are more easily
deformable and enter small pores effortlessly,
thus emphasizing that A-type lamin is important
for nuclear mechanics.

3.3.2 Cytoskeleton and Nucleus
Coupling

Forces from outside the cell are transduced
through integrin and cytoskeleton, finally
reaching the nucleus through cytoskeleton and
nucleus molecular coupling [44]. In this regard,
the coupling of nucleus and the cytoskeleton
is important for sensing microenvironment
and responding mechanically. There are three
kinds of cytoskeleton: actin microfilament,
microtubule, and intermediate filament. Actin
is used to compose protrusions and contractile
forces. Intermediate filaments enhance the
structure. Microtubule supports the cell shape,
motility, mechanical integrity, and division.
Hence, these three types of filaments are essential
for mediating mechanosensing [28].

The nucleus has a specific complex to interact
with exterior forces. The cell is anchored by
focal adhesion called the linker of nucleoskele-
ton and cytoskeleton (LINC). The inner nuclear
membrane protein and outer nuclear membrane
protein form and connect cytoplasmic and nucle-
oplasmic skeletons [45]. Nesprins are present on
the outer nuclear membrane, connecting with the
cytoskeleton in the cytoplasm via actin-binding
sites [45]. There are five types of isoforms in
nesprin. Nesprin-1 and nesprin-2 are connected
to actin filaments in the cytoplasm [46]. Nesprin-
3 is connected to the plectin required for cell
migration [47]. Nesprin-4 is bound to kinesin-
1 positioning MTOC and Golgi complex [48].
KASH domain of nesprin is bound to SUN,
which resides in the inner nuclear membrane.
In mammals, SUN 1/2 is widely expressed and
interacts with A-type lamin. SUN1 connects the
lamin A, chromatin, and nesprin 2. SUN2 is
involved in vesicle formation and is bound to
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lamin, nesprin, and chromatin. SUN3 interacts
with nesprin-1 [49]. As emerin stabilizes the
lamin, nesprin, and chromatin, the cells with de-
pleted emerin suffer from irregular nuclear shape
and lack of mechanotransduction. Increasing ev-
idences suggest a direct connection between the
nuclear envelop and microtubules. Emerin and β-
tubulin interaction provides an element for cen-
trosomes to attach [50].

LINC establishes the location of nuclear mem-
branes, appropriate positioning, size, anchorage
of nucleus, cell migration, and cytoskeletal po-
sitioning. Increasing evidence reveals that lamin,
especially A-type lamin rather than B-type lamin,
plays a critical role in managing mechanotrans-
duction. Depletion of Nesprin-1, SUN-1, or A-
type lamin results in synaptic nuclei mislocation,
which induces muscular dystrophy [8]. Cells in-
teract with ECM through integrin which consists
of FAK, talin, and vinculin. The characteristics
of ECM are reflected in the variations seen in
cell adhesion, shape, motility, and differentiation
properties of cells. The A-type lamin is especially
essential for regulating the mechanics of nucleus
and cellular mechanotransduction [24].

3.3.3 Nuclear Mechanotransduction

In vivo, cells undergo shear stress, compres-
sion, forces during migration, and strain. Nu-
clear shape changes depending on the transmit-
ted forces from the microenvironment. Nuclear
deformation is the rate-limiting step in cell mi-
gration through small pores. During migration
through collagen, the nucleus can be compressed
up to 10% of the initial nuclear size. Alterations
in composition of nuclear envelope affects the
nuclear shape, inhibits the transmission of forces
through the envelope, and finally hinders the cell
polarization [51], differentiation [52], migration
[53], and proliferation [54].

Vascular endothelial cells suffer from shear
stress. Shear stress aligns cells toward the di-
rection of flow. On application of 24 h-shear
stress, the nuclei of endothelial cells remodel
the cytoskeleton, and nuclear structures flatten,
elongate, and become more dense. These changes

are stable and persist even after removal of the
shear stress [55]. Also, the cells in cartilage or
muscle get frequently compressed. In response to
the compression force, the nuclear shape, height,
and chromatin structure get altered [56]. Chon-
drocytes lacking the A-type lamins have less stiff
nuclei and therefore undergo less resistance, dis-
rupted linkage, and finally isotropic deformation.
Wild-type chondrocytes undergo anisotropic de-
formation [57].

Stretching of tissues can be easily observed
in vivo. To mimic the stretched tissue, mouse
and human fibroblasts were seeded on the
silicon membrane, and the silicon substrate was
stretched. Nuclei with A-type lamin-deficient
cells were deformed at up to 30% of the applied
force. The result indicates that depletion of the
LINC complex can ruin the deformation of
nucleus by strain stress [23]. Substrate patterning
and stiffness control the cellular cytoskeletal
tension and positioning. The stiffness of the sub-
strate is associated with the magnitude of traction
force delivered to the nucleus [58]. Patterning
influences cell polarization and nuclear position-
ing. Cells on micropattern spread and form the
axis of the nucleus-centrosome-Golgi [59].

When forces are applied to cells, mechanosen-
sitive proteins react through phosphorylation,
modifying the conformation and binding affinity
and initiating biochemical signaling. MAPK
pathway is one of the major pathways of
regulating cellular response to mechanical
stresses. Mutation of LMNA elevates the level
of phosphorylation of ERK and JNK, causing
cardiomyopathy [60]. YAP/TAZ pathway is
one of the pathways in the Hippo pathway.
YAP/TAZ mediates cellular response to substrate
stiffness and tension of the cytoskeleton [61].
A-type lamin overexpression induces decrease
in YAP1 levels [39]. MLK1/SRF pathway
regulates growth factor, muscle-specific fusion
and differentiation, and cytoskeletal dynamics.
MLK1/SRF is very sensitive to organization
of actin. MLK1 interacts with G-actin and is
unable to translocate to the nucleus. This location
of MLK1 regulates gene expression [62]. Wnt
signaling is critical in bone differentiation upon
physical cues. The transcriptional coactivator β-
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catenin, which is involved in the Wnt pathway,
interacts with nuclear envelope proteins and
regulates the sensitivity of osteoblasts or
osteocytes to physical stress [63].

3.3.4 Nuclear Mechanoresponse
and Chromosomal
Reorganization

Epigenetic modification is defined as the
regulation of gene expression without altering
the DNA sequencing. Chromatin, which is
repeated to form nucleosome, is the complex
of DNA and core histone proteins [64]. Epi-
genetic mechanisms include DNA methylation,
covalent histone modification, and noncovalent
modifications. DNA methylation occurs at
CpG-rich dinucleotides, called “CpG islands,”
which are usually located in the 5′ end of the
genes and the promoter [65]. Most of DNA
methylations disappear during differentiation and
development [66]. However, some CpG islands
remain methylated during differentiation and
development, which results in long-term effects
[67]. Recent studies focus on the role of non-
CpG island methylation which occupies 40% of
the human gene promoter [65].

DNA methylation hinders the approach of the
transcription regulators [68].. DNA methylation
in mammals is operated by de novo methyltrans-
ferases (DNMT1/DNMT2/DNMT3A/DNMT3B)
in normal development and disease [69]. Histone
modifications occur at the N-terminal of histone
proteins by covalent modification such as
methylation, acetylation, and phosphorylation
[26]. Changes of histone modifications remain
in the form of a histone code, activating or
repressing the movement and expression of
the chromatin. [27] However, the mechanism
of passing down the histone code is not fully
identified. Lysine acetylation increases the
transcription activity; lysine methylation may
activate transcription, depending on the type
of residue [26, 70]. In mammals, H3K4me3
increases transcription activity [71], whereas
H3K9me3 and H3K27me3 play a converse role

[26]. Histone modification is controlled by en-
zymes, which include histone acetyltransferases
(HATs), histone methyltransferases (HMTs),
histone deacetylases (HDACs), and histone
demethylases (HDMs) [72, 73].

Histone modifications and DNA methylation
interact with each other [74]. DNA methyltrans-
ferases can be induced due to specific genomic
space to promote methylation by some HMTs.
HMTs in turn regulate the stability of DNA
methyltransferases. DNMT can induce HDACs
to achieve gene condensation, which is mediated
by MeCP2 [75].

Besides covalent histone modifications, non-
covalent nucleosome and histone repositioning
regulate the gene expression by changing chro-
matin organization. Nucleosomes control the ac-
cessibility of DNA sequences, altering gene ex-
pression by ATP-dependent chromatin remodel-
ing complexes [76]. The nucleosome-free region
(NFR), located upstream of the expressed genes,
mediates the transcription complex to bind or
detach to both ends of genes [77]. Incorporating
histone variants, for example, H3.3 and H2A.Z,
influences gene expression. Histone variants have
a few differences of amino acid from that of
normal histone proteins. Activated promoters are
occupied by H3.3 and H2A.Z [78]. Histone vari-
ants are also modified by acetylation and ubiqui-
tylation, affecting nuclear location and function
[79, 80].

miRNAs, which are endogenous ∼22 nt
RNAs [81], are a family of small RNAs that
cleaves directly specific mRNA, repressing gene
expression [82]. RNA polymerase II generates
a primary-miRNA (pri-miRNA). Pri-miRNA
becomes a hairpin-shaped structure by a Drosha.
Pre-miRNA is translocated to cytoplasm and
forms short double-stranded miRNA by Dicer.
The double-stranded miRNA is disorganized to
a single-stranded miRNA. Mature miRNAs are
incorporated into the RNA-induced silencing
complex (RISC). miRNAs bind to corresponding
nucleotides and regulates the expression of the
sequence [83]. miRNA can also affect DNA
methylation and histone modification mutually
by targeting specific enzymes (DNMT and
EZH2) [84, 85].
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3.3.5 The Role of Nucleus During
Cell Migration

The direction of cell migration is related to the
nuclear position, which determines cellular po-
larity [86]. In case of cells migration in the two-
dimensional (2D) flat surface, intracellular or-
ganelles are placed in the order of leading edge—
MTOC—nucleus rear end [87], which is typi-
cally observed in the wound healing assay. The
monolayered cells on the wound edge are polar-
ized toward the opposite wound edge and formed
protrusions to move to the cell-absent space.
Cell migration is triggered to collectively migrate
by the serum or lysophosphatidic acid (LPA),
which activates CDC42 that reorients the nuclear
position. As shown in the previous studies where
nuclear reorientation is blocked without activa-
tion of dynein motors [88], cytoskeletal reorga-
nization is also critical to guide cell migration.
Recent studies have identified transmembrane
actin-associated nuclear (TAN) line that is bound
to nesprin-2 giant at the outer nuclear membrane
and plays a critical role in nucleus repositioning
for cell migration [89]. The perinuclear actin cap
is a well-characterized subset of actin stress fibers
that regulates the nuclear shape in a migrating
cell. The actin cap is the contractile actomyosin
filamentous structure attached to the interphase
nucleus by linkers of nucleoskeleton and cy-
toskeletons (LINC) [25]. Cells typically display
an elongated shape in case that the actin cap
forms, which also elongates the nuclear shape in
parallel to the actin cap fibers [90].

Nucleus-associated proteins and nucleo-
cytoskeleton connections therefore could control
the cell migration. Depletion of lamin A/C and/or
nesprin-1 hinders cell migration because the
disruption of nucleus-cytoskeletal connection
via outer nuclear membrane proteins inhibits the
formation of focal adhesions that promotes cell
adhesion and migration [91].

3.4 Nuclear Mechanics
in Oncology

3.4.1 Nuclear Structure in Cancer

Nuclear structure of malignant cells is dif-
ferent from that of normal cells (Fig. 3.1). The
structure depends on the cancer type and can be a
significant parameter for diagnosis. A variety of
cancers feature poly-lobulated, irregular, folded,
and enlarged nuclear morphology [92]. Morpho-
logical alteration of the nucleus can contribute
to cancer metastasis and tumorigenesis, where
cancer cells undergo severe nuclear deformation
and cytoskeletal remodeling to invade neighbor-
ing sites. Since the nucleus is stiffer than the
cytoskeletons, nuclear deformability becomes a
rate-limiting step in cell migration. Thus, the
cross-sectional area of the nucleus and its ratio
to the size of pores in the matrix could modulate
cancer metastasis [93].

Cancer cells undergo nuclear rupture in the
confined micro-channels during the metastasis,
where nuclear lamina consisting of two types of
nuclear lamin proteins is critical to recover the
nuclear envelope. Thus incomplete lamin expres-
sion induces the frequent nuclear rupture that
ultimately influences the location and function-
ality of nucleoplasmic and cytoplasmic proteins
as well as chromatin structure [23, 94].

3.4.2 Nuclear Proteins in Cancer

Increasing evidences suggest that changes of nu-
clear protein composition are related to charac-
teristics of malignant cancer cells. For examples,
nuclear matrix proetin22 (NMP22) and nucle-
ophosmin (B23) are considered as biomarkers of
prostate cancer [95, 96]. Nuclear lamin proteins
are known to be differently expressed depending
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on the type of cancer. A-type lamins are over-
expressed in skin cancer and underexpressed in
leukemia and lymphomas [97]. The proteins in
nucleoplasm are also altered in cancer cells [98].
Based on these findings, pathologists can judge
whether or not there is any malignancy of cancer
patients.

Changes in the nuclear proteins in cancer
induce malfunctioning in cell division, migration,
signaling, and gene expression. Overexpressed
A-type lamin promotes the reconstruction of
cytoskeleton by upregulation of PLS3 (actin
binding protein) and downregulation of E-
cadherin in colon cancer cells, resulting in
increased migration and invasiveness of cancer
cells [99]. Underexpressed nucleoporin 153
alters the structure of nuclear lamina, causing
decreased cell migration in human breast cancer
cells [6]. Lamin B-deficient microdomains
(LDMDs) are frequently observed in prostate
cancer (CaP) cells, resulting in multi-lobulations
of nucleus and RNA polymerase II stall, which
also promotes the cellular aggressiveness and
motility of CaP cell line [100]. Emerin is
suppressed in ovarian cancer. The loss of emerin
induces suppression of GATA6, aberrant mitosis,
and nuclear deformation [101]. LAP (lamina-
associated polypeptide)-2β is overexpressed
in cells of rapidly proliferating malignant
hematological diseases, but not in chronic
malignant hematological diseases. LAP2β-
HDAC (histone deacetylase) binding structure
modifies the histone structure, enhancing
malignancy in lymphocytes [102]. Genetic
alterations of nesprin-1 and nesprin-2 were found
in breast cancer cells [103]. Nuclear pore protein
88 kDa (NUP88) is a constituent of nuclear pore
complex. Overexpression of NUP88 induces
the transport of NF-κB between nucleus and
cytoplasm in breast cancer, colon cancer, and
melanoma. NF-κB is associated with the immune
system, apoptosis, and cancer. Accumulation
of NUP88 in the nucleus upregulates NF-
κB activation, which may cause cells to act
malignantly [104].

Nuclear matrix (NM) proteins regulate gene
expression, DNA replication, and repair. Recent
studies have revealed that the NM proteins

are associated with progression of cancers
and they can be used as biomarkers, e.g.,
CvC 1–5 (cervical cancer protein) for cervix
cancer marker, BLCA-4 (bladder cancer-specific
antigen) for bladder cancer marker, RCCA (renal
cell carcinoma antigen) 1–2 for renal cancer
marker, NMBC-6 (nuclear matrix breast cancer)
for breast cancer marker, and CCSA-3 (colon
cancer-specific antigen) for colon cancer marker
[96].

3.4.3 Nuclear Epigenetics in Cancer

Changes in nuclear architecture are tightly
associated with the epigenetic modification of
intranuclear chromosomal organization due to
chromatin deformation. DNA methylation plays
a role in cancer initiation by hypomethylation and
aberrant promoter hypermethylation [105]. DNA
hypomethylation is verified by amplification
of intermethylated sites (AIMS). AIMS are
used to find epigenetic alterations in colorectal
cancer [106]. Hypomethylated genes repress
apoptosis and promote cell proliferation,
making cancer cells malignant [106]. Moreover,
DNA hypermethylation in cancer inhibits the
expression of tumor suppressor genes, which
undergoes site-specific gene silencing and cancer
initiation. For instance, CAGE [107] and cyclin
D2 [108] in gastric cancer and 14-3-3 [109]
in pancreatic cancer are hypomethylated, while
hypermethylated BRCA1 causes initiation of
breast cancer [110].

Loss of histone acetylation, for example,
deacetylated H4-lysine 16 (H4K16ac) and
H4-lysine 20 trimethylation (H4K20me3) by
HDAC, represses gene expression; HDAC is
overexpressed in several cancers. For instance,
HDAC1 protein plays a role in proliferation
and prostate cancer development [111], and
the loss of monoacetylated histone H4 is
commonly found in human tumor cells [112].
Histone acetyltransferase (HAT) and HAT-
related genes are also rearranged to provoke
alterations in cancer [113]. Abnormal histone
methylation such as H3K9 hypermethylation and
H3K27 hypomethylation promotes aberrant gene
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silencing in cancer [114]. For example, enhancer
of zeste homolog 2(EZH2) is over-activated in
breast and prostate cancer [115] because EZH2
expression leads to malfunctioning in regulating
cell cycle [115]. EZH2 is involved in the poly-
comb complex 2 (PRC2) that interacts with the
protein influencing the histone methyltransferase
activity. DNA methyltransferases (DNMTs)
methylate histone H3 lysine 9 and 27 to induce
chromatin silencing [116]. This modification
recruits the PRC1 which prolongs the silencing
[116].

Nucleosome positioning in cancer cells occurs
with DNA methylation and histone modification,
which renders the nucleosome at the transcription
start site. Nucleosome remodeling and deacety-
lase compressor complex (NuRD) are involved
in abnormal gene silencing in leukemia [117].
The switch/sucrose non-fermentable (SWI-SNF)
complex mediating ATP-dependent chromatin
remodeling is known to play a key role in cancer
development and progression. The subunit of
SWI-SNF complexes, hSNF5, acts as a tumor
suppressor, where depletion of hSNF5 causes
inactivation of p21and p16, the cyclin-dependent
kinase (CDK) inhibitors. This dysregulated cell
cycle induces malignant behavior in rhabdoid
tumor cells [105]. One of the histone variants,
H2A.Z, prevents the gene to be methylated and
mediates the gene activation and controls cellular
proliferation and cancer progression. Thus
overexpressed H2A.Z is frequently observed in
colorectal cancer and breast cancer cells [118].

In cancer cells, some miRNA control gene
expressions. These miRNAs, such as lethal-7
(let-7), regulate the stem cell differentiation and
prevent the outbreak of tumor by regulating cell
differentiation or apoptosis through interrupting
gene expression [119]. But some miRNAs have
increased gene expression to promote cell dif-
ferentiation and tumor-like activity [105]. For
instance, miR-125b, miR-145, miR-21, and miR-
155 are underexpressed in breast cancer [120],
and lung cancer cells have underexpressed let-7
[121] and overexpressed miR-17-92 [122], while
miR-143 and miR-145 are underexpressed in
colorectal neoplasia [123].

3.4.4 The Role of Nucleus During
Metastasis

Overcoming nuclear deformation is necessary for
effective cancer metastasis [124]. Cancer cells
migrate through tissues away from primary tu-
mor via blood vessel and/or lymphatic systems,
which causes attenuation of nuclear structural
integrity. In case that the pore is smaller than
10% of nucleus diameter, cell can rarely migrate
without matrix remodeling [125], which could
induce DNA damage and/or epigenetic modifica-
tion [126].

Cytoskeletons and cytoplasmic structural pro-
teins bound to the nucleus control cell morphol-
ogy, polarity, and migration patterns. Myosin II
activation regulates nucleus sizing process by
making cytoplasmic contractile force and squeez-
ing the nucleus during metastasis [127]. Re-
cently, the combination of molecular biology
and pathological inspection has shown that the
expression of lamin A/C is different from the type
of cancers [128], and cancer cells lacking lamin
A/C display softer nuclei to make cells invade
tissues more easily [129].

3.5 Remarks

Nucleus is a specialized organelle that serves as
a control tower of all the cell behavior. While
traditional biochemical features of nuclear sig-
naling have been unveiled, many of physical
aspects of nuclear system are still under ques-
tion. Innovative biophysical studies have recently
identified mechano-regulation pathways that turn
out to be critical in cell migration, particularly in
cancer invasion and metastasis. Moreover, to take
a deeper look onto the oncologic relevance of the
nucleus, there has been a shift in cell systems.
That is, our understanding of the nucleus does
not stand alone, but it is understood by the rela-
tionship between cell and its microenvironment
in the in vivo relevant 3D space. For instance,
nuclear positioning is known to be mediated by
connection between nuclear envelope and sev-
eral filaments such as actin filament architec-
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ture, particularly by the perinuclear actin cap
that is typically identified in 2D planar space.
Recently research focuses on the discovery of a
3D version of actin cap, the actomyosin fibers
binding to nucleus. Since these nucleus-wrapping
actin stress fibers could exert mechanical force to
squeeze the nucleus and form the pseudopodial
protrusions [130], it is implicated to trigger and
regulate cell migration in 3D tissue environment.
Moreover, since nuclear lamin A/C is required
to form organized actin stress fibers, lamin A/C
presenting cells in 3D microenvironment could
migrate more persistently and faster in 3D than
in 2D. Therefore, selection of proper microsys-
tem is as important as underlying mechanism of
nuclear biophysics to fully understand the role of
nuclear mechanics in the oncology.
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