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Abstract

We review the current understanding of the
mechanics of DNA and DNA-protein com-
plexes, from scales of base pairs up to whole
chromosomes. Mechanics of the double helix
as revealed by single-molecule experiments
will be described, with an emphasis on the
role of polymer statistical mechanics. We will
then discuss how topological constraints—
entanglement and supercoiling—impact
physical and mechanical responses. Models
for protein–DNA interactions, including
effects on polymer properties of DNA of
DNA-bending proteins will be described,
relevant to behavior of protein–DNA
complexes in vivo. We also discuss control
of DNA entanglement topology by DNA-
lengthwise-compaction machinery acting in
concert with topoisomerases. Finally, the
chapter will conclude with a discussion
of relevance of several aspects of physical
properties of DNA and chromatin to oncology.
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2.1 Overview of DNAMechanics
and Nuclear Function

Over the past several decades our understand-
ing of the cell has become increasingly based
on the concept of “molecular machines” that
groups of enzymes associate together to accom-
plish specific tasks. In many cases, these enzyme
machines perform “mechanical” functions, for
example, transporters that actively push a specific
“cargo” across a cell membrane. Many of the
most impressive examples of active biomolecular
machines are found in the cell nucleus, where
very highly processive enzyme motors are in-
volved in transcription, replication, and repair
of double helix DNA molecules. Given that the
DNAs in human cells are on the order of centime-
ters in length, the physical properties of DNA
are essential to understanding how cell nuclear
machinery operates. Proper regulation of DNA
transcription, replication, and repair is essential
to controlling cell behavior and development, and
dysfunction of these processes is the root of many
genetic diseases including many cancers.
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The mechanics of DNA and DNA–protein
complexes (notably chromatin, i.e., strings
of nucleosomes formed on DNA as occur in
eukaryote chromosomes) affects many different
aspects of nuclear function. For example, the
flexibility of DNA and its modification by
DNA-binding proteins affects how DNA bends
and fluctuates, and therefore the probabilities
and rates at which DNA sequences along the
same molecule can “meet”: this meeting of
distant sequences occurs when distant sequences
regulate genes. In some cases, it is known
that gene activation repositions genes in the
nucleus, another process which is affected on
DNA mechanics. Homologous-sequence-based
DNA repair depends on the transport together
of sequence-matching DNA segments from
different homologous chromosomes, a process
which is still only partially understood, but
which undoubtedly depends on DNA mechanics.
Perhaps most impressive is the process by which
chromosomal DNAs are replicated, and then
the duplicated sister chromatids are physically
and topologically separated from one another,
culminating in mitosis and cell division, perhaps
the most mechanically impressive feat carried
out by eukaryote cells.

This chapter will focus on the mechanics
of DNA and DNA–protein structures, focusing
on the behavior of the double helix at scales
from base pairs up to whole chromosomes.
As might be expected, different force scales
and descriptions are relevant at microscopic
(few nanometer [nm]/single-molecular) and
at mesoscopic (micron[µm]/chromosome-cell
nucleus) scales. We will begin by focusing on
the microscopic scales, discussing mechanics of
the double helix as revealed by single-molecule
biophysics experiments; we will then discuss
how the topological properties of DNA impact
its thermodynamics and mechanics. We will then
discuss how proteins which bind to DNA can
change its mechanical properties, which is the
situation we find in vivo and in particular in chro-
mosomes throughout the cell cycle. Finally we
will conclude with a very brief summary of the
chapter and a very brief discussion of relevance
of DNA and chromatin mechanics to cancer.

Before launching into quantitative aspects of
DNA mechanics, we begin with a few words

about DNA chemical structure (Fig. 2.1) and ba-
sic physical properties. DNA molecules in cells
are found in double helix form, consisting of
two long polymer chains wrapped around one
another, with complementary chemical structures
(Fig. 2.1b). The double helix encodes genetic
information through the sequence of chemical
groups—the bases adenine, thymine, guanine,
and cytosine (A, T, G, and C). Corresponding
bases on the two chains in a double helix bind one
another according to the complementary base-
pairing rules A=T and G≡C. These rules follow
from the chemical structures of the bases, which
permit two hydrogen bonds to form between A
and T (indicated by =), versus three that form be-
tween G and C (indicated by ≡). Each base pair
has a chemical weight of about 600 Daltons (Da).
The presence of the two complementary copies
along the two polynucleotide chains in the dou-
ble helix provides redundant storage of genetic
information and also facilitates DNA replication,
via the use of each chain as a template for as-
sembly of a new complementary polynucleotide
chain.

Inside the double helix, the two polynu-
cleotide strands wrap around one another,
forming a structure which has on average about
0.34 nm of helix length (“rise”) per base pair,
and with one helix repeat per 10.5 base pairs
(a good scale to keep in mind is that there are
approximately three base pairs per nm along
the double helix axis). Now, double helix DNAs
in vivo are long polymers: the chromosome of
the bacteriophage (a virus that infects E. coli
bacteria) is 48,502 base pairs (bp) or about 16µm
in length; the E. coli bacterial chromosome is
4.6 × 106 bp (4.6 Mb) or about 1.5 mm long;
small E. coli “plasmid” DNA molecules used in
genetic engineering are typically 2–10 kb (0.7–
3µm) in length; and the larger chromosomal
DNAs in human cell nuclei are roughly 200 Mb
or a few cm in length.

A key physical feature of DNA that should
be kept in mind is that in physiological aqueous
solution (e.g., under conditions similar to those
found in the human cell nucleus: 150 mM of
univalent cations, predominantly K+; 1 mM of
Mg2+; pH 7.5) the phosphates along the back-
bones (see Fig. 2.1a; shown as the dark groups in
Fig. 2.1b) are ionized, giving the double helix a
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Fig. 2.1 DNA double helix structure. (a) Chemical
structure of one DNA chain, showing the deoxyribose
sugars (note numbered carbons) and charged phosphates
along the backbone, and the attached bases (A, T, G,
and C following the 5 to 3 direction from top to bot-
tom). (b) Space-filling diagram of the double helix. Two
complementary-sequence strands as in (a) noncovalently
bind together via base-pairing and stacking interactions,
and coil around one another to form a regular helix.

The two strands can be seen to have directed chemical
structures, and are oppositely directed. Note the different
sizes of the major (M) and minor (m) grooves, and the
negatively charged phosphates along the backbones (dark
groups). The helix repeat is 3.6 nm, and the DNA cross-
sectional diameter is 2 nm. Image reproduced from [1]. (c)
Molecular-dynamics snapshot suggestive of a typical dou-
ble helix DNA conformation for a short 10 bp molecule in
solution at room temperature. Reproduced from [2]

linear charge density of about 2 e− per base pair
or about 6 e− per nm. DNA under cellular con-
ditions is therefore a strongly charged polyelec-
trolyte and has strong electrostatic interactions
with other electrically charged biomolecules at
short ranges. At ranges beyond the Debye length
(λD ≈ 0.3 nm/

√
M, where M is the concentration

of 1:1 salt in mol/litre = M), univalent ions in
the cell screen electrostatic interactions, cutting
it off beyond a distance of about 1 nm. Thus
electrostatic repulsions between DNA molecules
can be thought of as giving rise to an effective
hard-core diameter of dsDNA of ≈3.5 nm under
physiological salt conditions [3].

In the nm-scale world of the double helix
(note that the “information granularity” of cells,

the size of nucleotides, amino acids, nucleotides,
and other elementary molecules is about 1 nm),
thermal fluctuations excite individual mechanical
degrees of freedom with energy ≈ kBT ≈ 4 ×
10−21 J (at room temperature, T ≈ 300 K). This
energy scale of thermal motion is well below
that associated with covalent bonds (≈ 1 eV ≈
40 kBT ), which is good—thermal fluctuations
by themselves can’t easily break the covalently
bonded DNA backbone! A second physical con-
sequence of the thermal energy scale is that com-
bined with the 1 nm length of molecular struc-
ture, one obtains a molecular-biological force
scale of 1 kBT/nm = 4 × 10−12 Newtons (4 pi-
conewtons, or pN). This force scale is what must
be used to hold a molecule in one place to nm
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precision, and is on the order of forces generated
by single-enzyme biomolecular motors, which
typically release several kBT during reactions
causing them to move by a few nm. In fact,
RNA and DNA polymerases fall into this class
of enzymes, and actually generate forces in the
tens of pN range [4, 5] since their step length is
roughly 1 nm, the linear distance separating bases
along the sugar-phosphate backbone (Fig. 2.1).

2.2 Mechanical Properties
of DNA

The stacked nature of the bases makes the double
helix a stiff polymer, allowing only a few degrees
of lateral bending per base pair. One degree of
lateral bend corresponds to roughly 0.03 nm of
separation between adjacent bases. However, one
may expect to see occasional large bends arising
from correlated distortions over many base pairs.
In this section, we develop a quantitative under-
standing of how the double helix responds to me-
chanical perturbations in a thermal environment.

2.2.1 DNA as a Stiff Polymer

A starting point for modeling DNA is that of a
polymer with a bending stiffness or a semiflexi-
ble polymer. Our goal is to describe the double
helix at longer length scales (few hundreds of
nanometers or more), such that we can ignore any
potential anisotropy in the bending of our DNA
polymer arising from the double helical structure.
Let us consider a double helix of total contour
length that follows a space curve r(s), where
s denotes the parameterization of the arclength
of the space curve. The gradient of the tangent
vector to the curve gives the local curvature κ =
∣
∣
∣d t̂/ds

∣
∣
∣, where t̂(s) = dr/ds is the tangent

vector. The total bending energy for a DNA
conformation:

βEbend = A

2

∫ L

0
ds

(

d t̂
ds

)2

(2.1)

where A is the persistence length, that controls
the bending degree of freedom of the double helix

(β−1 ≡ kBT ). A longer persistence length indi-
cates a stiffer polymer. For DNA, A ≈ 50 nm or
150 bp [6, 7], hence the flexible polymer limit of
DNA is achieved in the hundreds-of-nanometers
scale (L � A). In the opposite limit L �
A, the polymer will essentially be unbent by
thermal fluctuations. Note that Eq. (2.1) is similar
to that describing small bending of an elastic
rod, however, it is perhaps better served to think
about the “bending” energy as the free energy
describing bending deformations in a thermally
fluctuating statistical polymer.

Before discussing the statistical properties of
the double helix, let us think about some static
configurations and their corresponding energies
to better understand the role of the DNA persis-
tence length. For a circular arc of radius R, the

curvature κ =
∣
∣
∣d t̂/ds

∣
∣
∣ = 1/R, and hence, from

Eq. (2.1), βEcirc = AL/(2R2). So, we find that
thermal fluctuations of energy kBT/2 can induce
a 1 rad bend in a DNA segment of length A. Thus,
for a long polymer, each persistence length worth
of the double helix gets bent by roughly a radian
in a random direction.

Along similar lines, a piece of DNA of length
L bent into a circle costs energy: βEcirc =
2π2A/L ≈ 19.7A/L. However, the optimal
shape of a looped piece of a DNA where the
ends are held together is that of a “teardrop”
geometry: βEteardrop ≈ 14.1A/L [8], which is
about 70% of the energy of a circle. This kind
of description works well till ≈ 200 bp lengths,
some experiments suggest that the simple elastic
description may be applicable to ≈ 75 bp long
pieces of DNA [9–11].

That being said, it is interesting to note
that circularly bent segments of DNA, forming
nucleosomes are a common occurrence inside
the cell. Nucleosomes are a basic unit of
DNA compaction in eukaryotic cells, where
≈ 50 nm of DNA is wrapped around a core of
≈ 10 nm diameter constituted of an octamer of
histone proteins [12]. The elastic bending energy
stored in the DNA forming the nucleosome:
Ebend ≈ 50kBT , which is roughly 0.3kBT

per base pair of the DNA. Although this is a
substantial amount of energy, this corresponds to
a mere (0.34 nm)/(5 nm)≈ 0.07 rad or 4◦ of bend
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per base pair, which only moderately disrupts the
stacked double helix structure.

Note that Eq. (2.1) tells us that the zero cur-
vature state or the straight line configuration has
the lowest energy. Such a picture ignores any po-
tential inhomogeneity in the double helix struc-
ture arising from structural differences of various
DNA sequences. It is possible by stacking certain
bases in certain specific orders, to generate a
permanently bent double helix structure. Some of
these strongly bent DNA sequences have biolog-
ically relevant roles in modulating the propensity
of a DNA segment to be bent or wrapped by pro-
teins. In this way, DNA sequences can play a role
in positioning nucleosomes [13, 14]. However,
for most sequences in most conditions the coarse-
grained model described above is sufficient and
will be used in the rest of this chapter.

2.2.2 Statistical Mechanics of DNA

We discussed how different static conformations
of the double helix have different energies.
In a statistical sense, all these conformations
constitute the configuration phase space of a
thermally fluctuating polymer, however, the
probability of occupancy of a configuration
decreases exponentially with the energy of the
configuration (Maxwell–Boltzmann statistics).
We can write the partition function of an
unconstrained polymer:

Z =
∫

D t̂(s) exp (−βEbend) , (2.2)

where D t̂ represents a path integral. This
“free” polymer model can be solved in a
closed form [15]. The two-point correlation
of tangent fluctuations decays exponentially:
〈

t̂(s) · t̂(s + �)
〉

∝ e−|�|/A.

The end-to-end vector of the polymer R can be
obtained from the tangent vectors: R = r(L) −
r(0) = ∫ L

0 ds t̂(s). Using the tangent correlation
we can write the mean-squared distance between
the ends of the polymer of length L:

〈R2〉 = 〈|r(L) − r(0)|2〉
= 2AL + 2A2

(

e−L/A − 1
)

, (2.3)

which furnishes the Gaussian polymer limit
(freely jointed chain) for L � A : 〈R2〉 = 2AL.
The correspondence between A and the statistical
segment length b for Gaussian polymers is b =
2A, and number of steps N = L/(2A) = L/b.
The stiff polymer limit is obtained for L � A:
〈R2〉 ≈ L2.

2.2.2.1 Elasticity of the Semiflexible
Polymer at Low Forces

For a long polymer (L � A), 〈R2〉 � L2

implies that work needs to be done to stretch
out the ends of the polymer, which gives rise to
polymer elasticity. In the absence of force, since
〈

R2
〉 = 〈

x2
〉 + 〈

y2
〉 + 〈

z2
〉

where x, y, and z

are the Cartesian components of the end-to-end
vector R, we have

〈

R2
〉 = 3

〈

x2
〉

. In the linear
force response regime, the spring constant can
be written as k = kBT/〈x2〉 = 3kBT/(2AL).
This corresponds to a Gaussian polymer, where
the spring constant is inversely proportional to
polymer length. The low-force response is f =
kx + O(x3), with the linear response regime
essentially holding for f < kBT/A. For double
helix DNA, this characteristic force is quite low
since A = 50 nm; kBT/A ≈ 0.1 pN (recall
kBT/(1 nm) ≈ 4 pN).

As the length of DNA is increased, the self-
avoidance of the polymer plays an important
role that makes the force response nonlinear
[16]. However, for double helix DNA, the
narrow effective thickness (≈ 3.5 nm at 100 mM
univalent salt including electrostatic effects [3])
of the double helix compared to its segment
length b = 2A ≈ 100 nm) leads to quite weak
self-avoidance, and makes dsDNA elasticity
quite close to that of an ideal polymer for DNA
lengths (< 50 kb ≈ 16µm) routinely studied
experimentally [7].

We note that for single stranded nucleic acid
molecules (e.g., one of the polynucleotide chains
in the double helix) the far shorter persistence
length ≈ 1 nm leads to much stronger self-
avoidance effects [17, 18], especially for low-salt
conditions.
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2.2.2.2 Polymer Elasticity Under
Applied External Tension

For any polymer model, to go beyond the linear
force response, we need to include force in the
energy function:

E = Ebend − f · R (2.4)

Force is added as a field coupled to the end-to-
end vector, so that averages of end-to-end exten-
sion are generated by derivatives of the partition
function Z with respect to force, as expected for
identification of −kBT ln Z as a free energy in
the fluctuating-extension, constant-force ensem-
ble (the ensemble relevant to magnetic tweezers
experiments, which apply a constant force to a
paramagnetic particle attached to one end of a
DNA [19]).

There are a number of general consequences
for this form of statistical weight. For nonzero
force along the z direction, or f = f ẑ, we
have an average end-to-end extension 〈z〉 =
∂ ln Z/(∂βf ), and an extension fluctuation of
〈

z2
〉 − 〈z〉2 = ∂2 ln Z/∂(βf )2. Components of

R transverse to the force have zero average by
symmetry (〈x〉 = 〈y〉 = 0), but their fluctua-
tions are nonzero, and are computed as

〈

x2
〉 =

∂2 ln Z/∂(βfx)
2
∣
∣
f=f ẑ.

An important feature of any model of the
form of Eq. (2.4), where there is no preferred
orientation other than that of the force f, is that
the free energy only depends on the magnitude
of force f, ln Z = ln Z(|f|). As a result, the
extension and transverse fluctuations are related:
〈

x2
〉 = 〈z〉 /(βf ). Therefore, if we measure ther-

mally averaged transverse fluctuations
〈

x2
〉

, and
average extension 〈z〉, we can infer the applied
force f . This exact relationship holds for any
polymer model with a rotationally symmetric
conformational energy (essentially any model
without a preferred direction in space other than
the applied force, notably including models with
polymer self-interactions) and is a powerful tool
used for force calibration in magnetic tweezers
experiments. This relation is model-independent
and not limited to the case of small fluctuations
[20].

2.2.2.3 Highly Stretched Semiflexible
Polymer

Continuing our discussion of the double helix
DNA under a stretching force, we now exam-
ine the limit of strong stretching forces (f �
kBT/A ≈ 0.1 pN), where the transverse fluc-
tuations are small. Using Eq. (2.4) under an
applied force f ẑ and the end-to-end vector R =
∫ L

0 ds t̂(s) we write the energy functional:

βE =
∫ L

0
ds

⎡

⎣
A

2

(

d t̂
ds

)2

− βf ẑ · t̂

⎤

⎦ (2.5)

The asymptotic high-force behavior is readily ob-
tained using small-fluctuation analysis. We split
the tangent vector into components longitudinal
and transverse to applied force: t̂ = tzẑ + u, with
u in the xy plane. Since |t̂| = 1 = √

t2
z + u2, we

have tz = ẑ · t̂ = 1−u2/2+· · · . For large force, t̂
is aligned with ẑ, so u is small; to Gaussian order
we have

βE = −βf L + 1

2

∫ L

0
ds

[

A

(
dû
ds

)2

+ βf u2

+O(u4)
]

(2.6)

Now using Fourier mode representation [7],
we compute the average extension

〈z〉
L

=
〈

ẑ · t̂
〉

= 1 − 1

2

〈

u2
〉 + O(u4)

= 1 −
√

kBT

4Af
+ · · · (2.7)

This characteristic reciprocal square-root de-
pendence of extension on force for a semiflexible
polymer in the regime f � kBT/A is observed
in single-molecule experiments on double helix
DNA for forces from about 0.1 up to 10 pN
(Fig. 2.2). In the force range of 10–40 pN, the
double helix starts to stretch elastically. The ex-
tension in this regime is obtained by adding
an elastic term (f/f0, where f0 ≈ 1 nN) aris-
ing from stretching distortions in helix stacking
[7, 22].
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Fig. 2.2 Force versus
extension data for 97 kb
dsDNA (L ≈ 33µm) of
Smith et al. [21] compared
to predictions from
semiflexible polymer
model (solid curve) and
freely jointed chain model
(dashed curve). Inset is
proportional to 1/

√
f and

shows a linear dependence
on extension as expected
for the semiflexible
polymer

2.2.2.4 DNA Denaturation by Stress
From DNA “melting” studies, we know that the
energy required to separate the helically stacked
single-stranded DNAs (ssDNA) is g ≈ 2.5kBT

per base pair [23]. The secondary structure of
DNA, which is held together by weak non-
covalent bonds of binding energy ≈ kBT ,
is expected to strongly deform under highly
stressed conditions. This has been observed in a
few different ways.

Unzipping Pulling the two strands of the DNA
in opposite directions leads to unzipping of the
double helix DNA strands. The helical arclength
associated with each base pair is � ≈ 1 nm, which
is the length released upon unzipping. Hence, the
force, at which the required work to procure �

length of ssDNA from a double helix equals the
base-pairing energy, gives a simple estimate of
the unzipping force: funzip ≈ g/� = 10 pN. The
experimentally observed unzipping force ranges
from 8 to 15 pN, depending on DNA sequence
[24–27]. The variations in unzipping force has
been proposed to be used to analyze DNA
sequence.

Overstretching Under a large applied force a
long dsDNA undergoes a structural transition,
where the double helix length per base pair
increases from 0.34 to 0.6 nm. Again using DNA
strand separation energy as the free energy scale,
we estimate the overstretching force: foverstretch ≈
2.5kBT /(0.2 nm) ≈ 50 pN. Experimentally
observed overstretching transition occurs at a
well-defined force 65 pN [28–30].

Unwinding One might imagine an applied
torque with a negative helicity (double helix
DNA has positive helicity) will unwrap the
two single strands of the DNA. Unwind-
ing the DNA releases ≈ 0.6 rad/bp (2π

radians per 10.5 bp), which along with the
base-pairing energy of 2.5kBT /bp gives an
estimate of the critical unwinding torque:
τunwind ≈ −2.5kBT /(0.6 rad)≈ −16 pN nm
(the sign reflects helicity or handedness). The
experimentally observed unwinding torque is
≈ −10 pN nm (a slightly lower torque than the
above estimate occurs since there is left-handed
wrapping resulting after denaturation).
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Fig. 2.3 Simple links of oriented loops. Lk for each pair
is computed by adding up the signs of the crossings and
dividing the sum by 2. (a) unlinked rings; the signs of the
crossings cancel, so Lk = 0. (b) the Hopf link; the signs
of the crossings add, so Lk = +1 (Lk would be −1 if the
orientation of one of the loops were reversed). (c) for this
link (sometimes called “Solomon’s knot”) the signs of the
crossings again add, making Lk = +2. (d) the Whitehead
link has canceling signs of its crossings, and has Lk = 0
despite being a nontrivial link

Experimental observations and more detailed
theoretical work has resulted in development of
a force-torque “phase-diagram” for the double
helix, with a variety of structural states [31–33].

2.3 Topology of DNA

The two helically wrapped strands of a DNA are
linked, i.e., for a circular DNA the two strands
cannot be separated or unlinked from one another
without breaking one of them. This gives rise to
an internal linking number for the double helix,
which is closely connected to its twist response.
All cells have topoisomerase enzymes that ma-
nipulate DNA topology, proper functioning of
which is critical for the cell.

Topology of a polymer refers to linking or
entanglement of the polymer. Topology is invari-
ant under smooth geometric deformations, and
only changes when one polymer passes through
another. A simple example is the linking of two
rings; they can be linked or unlinked, and one
cannot pass from the linked to the unlinked state
without breaking one of the rings.

2.3.1 Linking Number

The linking number of two oriented closed curves
can be computed by counting their signed cross-
ings, according to the rules shown in Fig. 2.4.

Fig. 2.4 Sign convention for computation of linking
number using crossings. Left: left-handed (−1) crossing.
Right: right-handed (+1) crossing

Dividing the total crossing number by two gives
an integer, the linking number Lk of the two
curves (Fig. 2.3). This quantity can only change
when one curve is passed through another.1

The Gauss invariant computes the same quan-
tity, but determines it from the geometry of the
two curves:

Lk = 1

4π

∮

C1

∮

C2

dr1 × dr2 · (r1 − r2)

|r1 − r2|3 (2.8)

For DNA, we can distinguish between external
linking of two double helix molecules together,
and the internal linking property of the double
helix itself.

1Linking topology is perfectly well defined only for closed
curves or polymers. However, it is sometimes useful to de-
fine linkage of open curves, using suitably defined closure
boundary conditions, e.g., closing chains at infinity by
extending them with long straight paths. This introduces
small corrections to the properties of entanglement of
interest here (primarily estimates of linking number).
Qualitatively this can be understood by considering the
definition of linking number in terms of signed crossings
(Fig. 2.4). If we imagine deforming part of one of the links
of Fig. 2.3 so that it closes far from the other crossings
(not introducing any new crossings in the process) the
topology and linking number of the polymer will be
unchanged. This will be true for all closure paths that
do not introduce additional strand crossings, indicating
a rather weak dependence of linking number on closure
boundary conditions, and further allowing us to talk about
the topology of the region of the polymers not including
the closure in a reasonably well-defined way. This is
particularly true for linking of stretched polymers as will
be discussed below; see, e.g., [34].
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2.3.1.1 Internal Double Helix Linking
Number Lk

The two strands of a double helix DNA are
wrapped around each other in a right-handed
manner, with a preferred helix-repeat of one turn
every nh ≈ 10.5 bp, or every h ≈ 3.6 nm. This
causes linking of the two strands, resulting in a
net linking number associated with the double
helix structure: Lk ≈ Lk0 = L/h = N/nh,
for a double helix of length L or N base pairs.
However, Lk is an integer for a closed double
helix, and is not in general equal to Lk0.

The difference between double helix link-
ing number and the preferred linking number,
�Lk = Lk−Lk0, is often expressed as a fraction
of the preferred linking number (linking number
density), σ ≡ �Lk/Lk0 (the excess linking
number per DNA length is �Lk/L = σ/h).
In E. coli and many other species of bacteria,
circular DNA molecules are maintained in a state
of appreciably perturbed Lk, with σ ≈ −0.05.
This is a sufficient perturbation to drive the DNA
to supercoil, or wrap around itself in the manner
of a twisted extension cord, due to competition
between bending and twisting elasticity of the
double helix.

2.3.1.2 DNA Twist Stiffness
If Lk is sufficiently different from Lk0, then there
will be a buildup of twist in the DNA, leading
to a response in the form of chiral bending. This
response is often a wrapping of the double helix
around itself, a phenomenon known as supercoil-
ing. One can observe this by taking a stiff cord
and twisting it. This behavior arises from a com-
petition between the bending energy [Eq. (2.1)]
and the elastic twist energy, the latter being

βEtwist = C

2L
Θ2 (2.9)

where Θ is the net twist angle along the double
helix. This is just the form of the twisting energy
for a uniform elastic rod [35]. Experimentally,
this simple linear model has been observed to
have a surprisingly wide range of validity for
DNA, for C ≈ 100 nm [31].

In the absence of other constraints, thermal
fluctuations of twist give rise to a fluctuation

〈

Θ2〉 = L

C
(2.10)

suggesting the interpretation of C as a char-
acteristic length for twist fluctuations. For the
double helix, this twist persistence length is C ≈
100 nm. Note that the derivative of Etwist with
respect to Θ is the torque or “torsional stress” in
the DNA:

τ = ∂Etwist

∂Θ
= kBT C

L
Θ (2.11)

If there is no bending, then any excess linking
number �Lk goes entirely into twisting the dou-
ble helix: Θ = 2π�Lk (or σ = Θ/[2πL/h]).
The mechanical torque in DNA will be τ =
2πkBT C�Lk/L = (2πkBT C/h)σ . The param-
eter 2πC/h ≈ 175 sets the scale for when the
linking number density will start to appreciably
perturb DNA conformation, i.e., when |τ | ≈
kBT . This level of torque occurs for |σ | ≈ 0.005.

2.3.1.3 Decomposition of Double Helix
Lk into Twist Tw andWrithe Wr

The previous computation supposed that there
was no bending, in which case all of the �Lk
is put into twisting the double helix. This DNA
twisting can be quantified through the twist angle
Θ , or equivalently through the twisting number.2

If DNA bending occurs, there may be non-
local crossings of the double helix over itself.
These nonlocal crossings contribute to double
helix linking number, and the separation of length
scales between DNA thickness and the longer
scale of DNA self-crossing (controlled by the
persistence length A) allows linking number to
be decomposed into local (twist) and nonlocal
(writhe) crossing contributions:

Lk = Tw + Wr (2.12)

or equivalently, �Lk = �Tw + Wr. This is
known as White’s Theorem.

2The total twist of a DNA molecule is often written as
the excess twist �Tw plus the intrinsic twist, or Tw =
�Tw + Lk0 = �Tw + L/h, where �Tw = Θ/(2π).



20 S. Brahmachari and J. F. Marko

Fig. 2.5 Left: a ribbon with Tw ≈ −1 and Wr ≈
0. Right: deforming the ribbon allows the twist to be
transferred to writhe, so that Tw ≈ 0 and Wr ≈ −1. The
linking number is fixed at Lk = −1 as long as the strip is
not broken

One can demonstrate this with a thin strip of
paper (30 cm by 1 cm works well). Put one twist
into the strip, closing it in a ring. The two edges
of the strip are linked together once. Now without
opening the ring, let it assume a figure-8 shape;
you will see that you can make the twist go away:
in this state there is only writhe (Fig. 2.5).

For elastic ribbon models of DNA, suitable
definition of the twist allows Wr to be expressed
by the analytical formula [36, 37]:

Wr = 1

4π

∮

C

∮

C

dr1 × dr2 · (r1 − r2)

|r1 − r2|3 (2.13)

where r1 and r2 are the two edges of the ribbon.
The similarity of this equation to the Gauss
invariant, Eq. (2.8), arises from the partitioning
of the double integral into contributions from
local wrapping of the strands in the double he-
lix (Tw), and from nonlocal contributions (Wr)
arising from nonlocal crossings of the centerline
of the molecule. Equation (2.13) is the sum of the
signed nonlocal crossings for one curve (follow-
ing the rule of Fig. 2.4), averaged over all orien-
tations [37]. While Lk is a topological property
and is quantized for a covalently closed double
helix, Wr and Tw are geometrical, and change
value smoothly as the molecule is distorted.

2.3.1.4 Supercoiled DNA: Plectonemes
The ability to transfer Tw to Wr suggests that
when there is appreciable torsional stress in a

flexible filament, it can be relaxed by wrapping
the filament around itself. For DNA we should
also include the entropic cost of bringing the
filament close to itself. A type of model widely
used to describe the “plectonemic” wrapping of
DNA around itself (Fig. 2.6) is based on treating
the wrapping as helical, and by writing down a
variational free energy [33, 38–40]:

βF = C

2L
Θ2 + AL

2
κ2 + L

(Ar2)1/3
+ Lv(r)

(2.14)

where Θ = 2π�T w is the DNA twisting (which
costs twist elastic energy), κ is the bending cur-
vature, which is κ = r/[r2 + p2] for a regular
helix of radius r and pitch p (the intercrossing
distance is � = πp, Fig. 2.6). The final two terms
respectively describe the entropic confinement
free energy for a semiflexible polymer in a tube
[39, 41, 42] and direct electrostatic and hard-core
interactions per molecule length, v(r).3

The confinement entropy is based on estima-
tion of the correlation length ξ for bending fluc-
tuations for a semiflexible chain of persistence
length A confined in a cylindrical tube of radius
r , where ξ ∼ A1/3r2/3 [44]. From equipartition
theorem, there is ≈ kBT energy per correlation
length. Hence, the entropy cost of radial confine-
ment per unit length is ≈ kBT/ξ .

The important final ingredient is Eq. (2.12)
which allows the twist to be expressed in terms of
linking number and the writhe: Θ = 2π�Tw =
2π(�Lk − Wr). For a plectoneme based on
regular helices, Wr = ∓Lp/(2π [r2 +p2]) where
the upper/lower signs are for right-/left-handed
plectonemic wrapping [39].

Putting this together gives the free energy per
length

3Electrostatic interactions are usually treated using a far-
field approximation of the Poisson–Boltzmann equation,
where the electrostatic potential is that of the screened-
Coulomb type [7, 43].
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Fig. 2.6 Geometry of plectonemic supercoil, based on consideration of the shape as two interwound regular helices of
radius r and an intercrossing distance �. Note that the helix repeat is 2� and the helix pitch p = �/π

βF

L
= 2π2C

(
�Lk

L
− p

2π(r2 + p2)

)2

+ A

2

r2

(r2 + p2)2
+ 1

(Ar2)1/3
+ v(r)

(2.15)

where the sign of the writhe has been chosen
to provide the lower twist energy for positive
�Lk, which is the case of a left-handed super-
helix (note that left-handed plectonemes form
for �Lk > 0 while right-handed ones form for
�Lk < 0).

The free energy (2.15) can be optimized nu-
merically to determine r and p [33, 39, 40, 45].
However, an approximate analytical computation
for a slender superhelix (r � p) informs of a
linking number threshold �Lk∗ = kl/(2π2C)

for the appearance of a valid minimum [k ∼
O(1)], introduced by the confinement entropy.
Beyond this characteristic value of linking num-
ber, the plectoneme becomes stable, and has
a free energy below the essentially unwrithed,
twisted molecule. This provides a rough idea
of the behavior of the full plectoneme model
Eq. (2.15) [33, 38, 39, 45]. For sufficient �Lk,
“screening” of the twist energy Eq. (2.9) by
the writhe becomes favorable, which has little
bending free energy cost if the superhelix radius
r is kept relatively small.

Given that the main result for the free energy
of the plectoneme is a free energy that rises from
zero and eventually becomes superlinear, a useful
approximate form to use for the free energy
per length of the plectoneme is βF(σ)/L =
(2π2Cp/h2)σ 2, where Cp ≈ 25 nm, Cp < C

reflecting the twist-energy-screening effect [46].

2.3.1.5 Twisting Stretched DNA
In single-molecule DNA stretching experiments,
if a force in the pN range is applied, the double
helix will be nearly straight. If it is then slightly
twisted while under ≈ pN forces, the molecule
will tend to coil chirally, leading to a slight
contraction. For larger amounts of twisting, the
torque in the DNA will build up to a point where
the molecule will buckle, forming plectonemic
supercoils.

For small twisting, a small-fluctuation-
amplitude computation can be done [47, 48],
expanding the tangent vector fluctuations around
the force direction (again t = tzẑ + u, where u
are the components of t perpendicular to ẑ). We
begin with the energy for a DNA under tension
and twist:

βE = 2π2C

L
(�Lk − Wr)2 − βf L

+ 1

2

∫ L

0
ds

[

A

2

(
du
ds

)2

+ βf

2
u2

]

+ O(u4) (2.16)

which is just Eq. (2.6) with the addition of the
twist energy. For a single-DNA experiment, �Lk
is just the number of full turns made of the end of
the molecule (in a magnetic tweezers experiment,
the number of times the magnet and therefore the
bead at the end of the DNA is rotated [49]).

The challenge is how to include the linking
number constraint in Eq. (2.16). The solution is
to use an alternative representation of the writhe
which takes the form of a single integral over
contour length s [50], which can be expanded
in u:
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Wr = 1

4π

∫

ds ẑ · u × du
ds

+ O(u4) (2.17)

This quantity is quadratic in u since the writhe of
a straight line configuration is zero.

Using this in the twisting energy Eq. (2.16)
and expanding to quadratic order in u gives the
total elastic Hamiltonian for chiral fluctuations
in a twisted stretched DNA. The Hamiltonian
shows an elastic instability for a critical DNA
torque: βτc = √

4βAf , which is the classical
buckling instability of a rod subject to tension and
torque [51]. The same instability can be observed
in dynamical models of twisted and stretched
DNA [52]. This corresponds to a critical linking
density σc ≈ 0.028 for f = 0.5 pN. The
Hamiltonian allows computation of

〈

u2
〉

and the
free energy, in a Gaussian approximation. The

extension is
〈

t̂ · z
〉

= 1 − 〈

u2
〉

/2 + O(u4), or

〈z〉
L

=1−
√

kBT

4Af
− 1

2

(
2πC

h
σ

)2(
kBT

4Af

)3/2

+ · · ·
(2.18)

where the neglected terms are of higher order in
1/f . Changing σ from zero leads to additional
shrinkage over the untwisted case, due to chiral
bending fluctuations.

Either integration of the extension with force,
or direct computation of the partition function
gives the free energy per length in a similar 1/f

expansion:

βF

L
= − ln Z

L
= −βf +

√

f

kBT A

+ 2π2C

h2

[

1 − 1

2

C

A

(
kBT

4Af

)1/2
]

σ 2

(2.19)

The last term shows that the effect of the chiral
fluctuations is to, as for DNA supercoiling, par-
tially screen the twist energy, generating a reduc-
tion in the effective twist modulus C → Cf =
C

[

1 − (C/2A)(kBT/4Af )1/2
]

. This effect was
used by Moroz and Nelson [47] to estimate the
twist elastic constant C from single-molecule
data of Strick et al. [49] and led to a substantial

revision in the accepted value of C from 75 nm
up to the range 100–125 nm.

2.3.1.6 Coexistence of Supercoiled and
Twisted-Stretched DNA

For fixed force and sufficient �Lk, one has
“phase coexistence” of domains of plectonemic
supercoiling and extended DNA (sketched in
Fig. 2.7) [33, 38, 39, 46]. These “pure” states can
be described by free energies per B-DNA length
dependent on applied force f and the linking
number density σ , say S (σ ) for stretched and
P(σ ) for plectonemic DNA (the free energies
per length discussed in the prior two sections, i.e.,
up to a factor of kBT , Eqs. (2.19) and (2.15)). For
these pure states, the rate at which work is done
in injecting linking number is proportional to
torque, for example:

τ = 1

ω0

∂S (σ )

∂σ
(2.20)

The prefactor ω0 = 2π/h = 2π/(3.6 nm) is the
angle of twist per molecule length for relaxed B-
DNA, which converts the σ derivatives to ones
with respect to angle.

If the pure state free energy densities, S (σ )

and P(σ ), plotted as a function of the linking
number density σ , never cross or intersect, then
one pure state or the other will be the equilib-
rium state. On the other hand, if the free energy
densities cross, there will be a range of σ values
over which linking number will be partitioned
between the two states exhibiting coexisting do-
mains of the stretched and the plectoneme state.
Along a molecule which is a fraction xs of state
S and fraction xp = 1 − xs of state P , the free
energy per base pair of the mixed phase is

F (σ ) = xsS (σs) + xpP(σp) (2.21)

The equilibrium length fraction xs and the free
energy is determined by minimization of this free
energy subject to the constraint of fixed linking
number: σ = xsσs + xpσp.

Figure 2.7b shows this situation, sketched to
correspond to the case of main interest here,
where at low values of σ the stretched state is
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plectoneme

end loop

(a)

(b)

Fig. 2.7 (a) Sketch of a DNA molecule under tension
f , and with linking number �Lk fixed so as to put
the double helix under torsional stress. Over a range of
applied tension, the molecule breaks up into “domains” of
extended and plectonemically supercoiled DNA. Only a
single domain of plectonemic DNA is shown for clarity.
(b) Free energies of extended (dot-dashed curve, S (σ ))
and plectonemic supercoil (dashed curve, P(σ )) DNA
states as a function of linking number σ . For σ < σs,
the S state is lower in free energy than either P or any
mixture of the two. Similarly, for σ > σp, pure P is the

lowest-free energy configuration. On the other hand, for σ

between σs and σp the tangent construction shown (solid
line segment between tangent points indicated by stars),
representing coexisting domains of S (σs) and P(σp), is
the lowest-free energy state. Note that the gap between
the two states near σ = 0 is the free energy difference
between random coil DNA [S (0)] and stretched unsuper-
coiled DNA [P(0)]; this difference grows with applied
force and is due to the term −βf in the extended state
free energy Eq. (2.19)

stable (lower in free energy) relative to the plec-
toneme state, but where at large σ the stability
reverses due to “screening” of the twist energy
by the plectonemic state’s writhe [7, 33, 38].

Minimization of Eq. (2.21) leads to a double-
tangent construction that ensures monotonic in-
crease of torque, which is required for mechan-
ical stability. In the coexistence region, the frac-
tions of the two states in the mixed state depend
linearly on σ , as

xs = σp − σ

σp − σs
xp = σ − σs

σp − σs
(2.22)

In the coexistence region (σ between the lim-
its σs and σp) the torques in the two types of
domains are equal and σ -independent. Equa-
tion (2.22) indicates that the rate of change of the
length fractions with σ is constant; ∂xs/∂σ =
−1/(σp − σs). This generates the linear depen-
dence of molecule extension z on linking number
in the coexistence state:

z

L
= −∂F

∂f
= −xs

∂S (σs)

∂f
− xp

∂P(σp)

∂f
(2.23)

In the coexistence region, the only σ dependence
is the linear variation of xs and xp, making the
dependence of extension on σ linear.

However, the linearity of extension in
the coexistence state may not be robust for
finite sized molecules. In the finite-size case,
contribution from the plectoneme end loops
(Fig. 2.7a), loop-shaped chiral structures where
the molecule in a plectoneme bends back, is
non-negligible. A series of extension versus
linking number curves are plotted in Fig. 2.8a
showing the initial stretched-unbuckled state
and the onset of the plectoneme coexistence
state characterized by a steep decrease in the
extension. The results shown in Fig. 2.8 are from
an improved model (see [40] for details) that
considers the coexistence of the stretched state,
the plectoneme state, and plectoneme end loops.
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Fig. 2.8 (a) End-to-end extension of the DNA as a func-
tion of the linking number �Lk for various forces f =
0.25 (lowest curve, blue), 0.5 (green), 1 (cyan), 2 (orange),
and 4 pN (highest curve, red). The onset of the coexistence
state σs can be identified from the change in the slope

of the extension curves, and σp corresponds to zero
extension. (b) DNA torque increases linearly and plateaus
in the coexistence state. The results are reproduced from
a model that considers coexistence of plectoneme end
loops, reflected in the discontinuous onset of the buckling
transition near σs , see [40] for details

The end loops associate a nucleation energy cost
to a plectoneme domain, which is manifested
as a discontinuity in extension and overshoot
in the torque at the buckling point (Fig. 2.8).
The geometry and the size of the chiral loop are
directly related to the first-order-like buckling
transition observed in supercoiled DNA [53].

DNA torque increases in the stretched state
and is nearly constant in the coexistence state
(Fig. 2.8b). This is quite useful for experiments
on topoisomerases, since measurements carried
out in the rather broad plectoneme-extended co-
existence regions (along the linear portions of
the “hat” curves of Fig. 2.8a) are done at fixed
torque, which is controlled by the constant force,
e.g., about 7 pN nm at 0.5 pN, approximately the
torque in a plasmid with physiological super-
coiling σ ≈ 0.06 [46, 54] (note that there is
an appreciable torque decrease with increased
salt [54], since DNA hard-core diameter drops
and therefore plectoneme tightness increases [45]
with increased salt concentration).

For 10 pN and positive supercoiling, and for
above 0.5 pN for negative supercoiling, one sees
the effect of additional “stress-melted” DNA
states not included in the model described here;
see [33] for details.

An interesting aspect of experiments done on
twisted DNA is that now one has an additional
control parameter, �Lk which can be used to
construct a thermodynamical “Maxwell relation”
involving torque 〈τ 〉 = ∂F/∂(2π�Lk) and force

(and, also, chemical potential of molecules bind-
ing to the double helix) [55]. The Maxwell rela-
tion involving f and �Lk has, for example, been
used to indirectly measure torque, starting from
extension-σ curves at a series of fixed forces [54]
in reasonable accord with direct measurements
[53].

Branching of the plectoneme is an interesting
phenomenon. The energy cost associated with the
end loops oppose branching, however, the config-
uration entropy gain from branched plectoneme
structures favors branching. Thus, branching or
proliferation of multiple domains of plectoneme
is favored when the entropy gain dominates the
nucleation energy cost (predominantly bending
energy associated with the large curvature of
an end loop). However, entropy gain is only
logarithmic: ≈ kB ln(L/A), and is expected to
be a small contribution for short molecules (≈
4 kb); nonetheless, branching can occur in short
molecules due to relative instability of the plec-
toneme superhelical windings caused by a larger
excluded diameter of the DNA at low salts.

Structural defects on the double helix, such as
a base-mismatched region or a DNA bubble or
a single-stranded DNA bulge, introduces kinks
along the DNA contour that may spatially pin
a plectoneme domain [56–58]. This feature also
hints at the potential role of supercoiling in cel-
lular base-pair repair mechanism, as the defect
placed at the tip of a plectoneme allows easier
access to the lesion site [58–61].
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(a)

(b)

Fig. 2.9 (a) Sketch of torsionally stressed DNA braid
showing buckled plectoneme states (two domains of plec-
toneme are shown). (b) Braid extension as a function of
the catenation number. Note the initial jump in extension

which is related to the distance between the tether points
on the two DNAs. The change in slope corresponds to the
coexistence state, which is characterized by proliferation
of multiple domains. See [68] for details

2.3.1.7 Intertwined DNAs
A slightly more complicated structure than a
single twisted DNA is that of two nicked4 DNAs
wrapped around each other or braided DNAs,
such that there is a net inter-DNA linking or
catenation number associated with the structure.
DNA braids are biologically relevant substrates
for type-II topoisomerases, enzymes that manip-
ulate inter-DNA topology to facilitate segrega-
tion of catenated sister chromatids. This makes
them a suitable substrate for in vitro assays of
topoisomerases and recombinases [62–67].

The unstressed condition for a DNA braid is
that of the unlinked or the zero catenation config-
uration of the two torsionally unconstrained dou-
ble helices (Fig. 2.9a). Wrapping the two DNAs
around one another introduces catenation, which
results in a buildup of torsion. However, the
torque in the braid grows nonlinearly [68–70],
in contrast with a linear torque in twisted DNAs
(Fig. 2.8b). The stacked double helical structure
of a DNA gives rise to constant twist stiffness
(C ≈ 100 nm) which is interpreted as a linear

4A nick on a DNA means there is a break in one of the
strands of the double helix. Nicks act as a “sink” for
twist in the molecule via mechanical rotation about the
single-stranded region. In other words, nicked DNAs are
torsionally unconstrained.

DNA torque; braids, however, are soft struc-
tures that exhibit twist stiffening or catenation-
dependent twist stiffness.

Similar to the twisted double helices, torsion-
ally stressed braids also show coexistence of
a stretched-braid state with a braid plectoneme
state beyond a critical catenation. This buckled
state can be identified in the experiments as the
point of change in slope of extension curves.5

However, unlike supercoiled single DNAs, the
buckled braid-plectoneme state shows prolifera-
tion of multiple domains [71], where each do-
main has an end loop, as is sketched in Fig. 2.9.
This contrast in the mechanical response of cate-
nated DNAs with that of single DNAs informs
how structural bulkiness plays into mechanical
buckling. Another interesting aspect of braids is
that the distance between the tether points of the
two DNAs or the intertether distance is connected
to the torque in the braid, and strongly influences
the mechanical response.

We discussed how polymer topology leads
to a wide array of mechanical properties of the
double helix. Topology manipulation in eukary-

5Note that the extension curves for nicked DNA braids
(Fig. 2.9b) are symmetric for positive and negative cate-
nations, as a virtue of the individual dsDNAs being tor-
sionally unconstrained.
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ote chromatin is a topic of ongoing research.
Nucleosomes, the building blocks of chromatin,
have a net negative writhe associated with its
native structure. As a result, positive supercoil-
ing destabilizes nucleosomes, whereas, negative
supercoiling aids assembly; which is interesting
given that unzipping of the DNA by polymerases
and helicases generates positive (negative) super-
coiling downstream (upstream). Single-molecule
studies suggest that chromatin fibers are able to
absorb substantial amounts of twist, possibly via
structural rearrangement in nucleosomes [72,73].
However, the in vivo role of supercoiling in
chromatin fibers is less clear.

2.3.2 Knotting and Catenation of
DNA

The DNA molecules inside the nucleus are ex-
pected to get knotted, a consequence of their
long length. Knotting of DNA poses a topological
problem to primary cellular functions such as
DNA replication and post-replication segregation
of sister chromosomes. Cells possess a special
class of enzymes, DNA topoisomerases, which is
the topic of our next discussion, that manipulate
DNA topology in order to suppress knotting.
Now, the enzymes acting locally cannot sense the
global topological state of the DNA, nonetheless,
they are able to control DNA entanglement. The
mechanisms underlying such behavior is a topic
on current research [74, 75].

2.3.2.1 DNA Topoisomerases
Single-molecule experiments studying twisted
or catenated DNAs change DNA topology
(the value of �Lk or Ca) by directly twisting
or intertwining the DNA molecules. In the
cell, specialized proteins manipulate DNA
topology by introducing transient cuts in the
sugar-phosphate backbones of the double helix;
depending on whether one or both backbones
are cut, topoisomerases are classified as type I or
type II [76].

Type-I topoisomerases (topo I) cut one back-
bone of the double helix, allowing unrestricted
rotation of the broken strand about the intact

one, thus relaxing DNA linking number. These
enzymes do not require ATP for their operation,
and they tend to equilibrate DNA linking number
to zero, �Lk → 0. However, the mechanical-
chemical equilibrium may be altered by other
processes, thus driving topo I activity. At present
there are three subclasses of type I topoiso-
merases, which differ in details of their structures
and their mechanisms [76]. The most important
distinction is between type IA and IB, the former
accomplishing a change in �Lk = +1 per
backbone cut-reseal catalytic cycle, and the latter
changing �Lk by one or more turns per catalytic
cycle. Type I topos also can act on separate DNA
molecules, facilitating decatenation (disentangle-
ment) of entangled single-stranded DNAs [77].

Type-II topoisomerases (topo II) cut both the
strands of a double helix, making a gap through
which a second double helix is passed, thus al-
tering the linking or catenation of the two double
helices. When a type II topo makes this topology
change on two DNA molecules, the result is
a change of the sign of a crossing (as in the
two crossings shown in Fig. 2.3). Therefore the
total number of crossings changes by ±2, and
so the catenation number of the two molecules
changes by ±1. An important example of a type
II topoisomerase is Topo IIα, which is the main
enzyme acting to remove entanglements between
DNAs in eukaryote cells. Type II topoisomerases
can also act at two points along a single DNA
molecule, leading to a total change in �Lk of
the molecule being operated on by ±2. Bacteria
contain a type II topoisomerase called DNA gy-
rase which is specially adapted for this function.
This is thought to be accomplished via the en-
zyme binding a +1-crossing loop, which then is
changed in sign to −1. By this mechanism DNA
gyrase is able to couple the energy stored in ATP
into reduction of �Lk to negative values (towards
unwinding the double helix).

Topo II is thought to perform selective de-
catenation in order to suppress the equilibrium
probabilities of knotted DNA states [78], which
is consistent with the fact that topo II medi-
ated decatenation requires ATP hydrolysis (the
requirement of ATP seems to ensure that the
second molecule is passed through the gap in
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a specific direction). However, the mechanism
underlying active suppression of entanglements
via selective decatenation is not fully understood
[74, 75, 79].

2.3.2.2 Knotting Probabilities
A single circular molecule is in one of many pos-
sible knotted states. We can imagine having an
ensemble of circular polymers which are allowed
to slowly change their topology, so as to have
equilibrated knotting topology (this is possible
to achieve using topoisomerases, or using en-
zymes that alternately linearize and recircularize
the molecules). We can ask what the probability
Punknot is that any molecule will be unknotted.

One might ask how Punknot behaves with the
length L of the circles. For small L, (more
precisely for L/b < 1, where b is the segment
length; recall A = b/2 and N = L/b) there will
be a large free energy cost of closing a molecule
into a circle making Pknot → 1. One can argue
that for large L, Punknot ≈ exp[−L/(N0b)], for
some constant N0, over some polymer length
(say N0 segments) the probability of having no
knot drops to 1/e. Applying this probability to
each L0 along a DNA of length L gives us
Punknot(L) ≈ e−L/(N0b). This rough argument can
be made mathematically rigorous [80].

Remarkably, even for an “ideal” polymer
which has no self-avoidance interactions,
N0 ≈ 300; for a slightly self- avoiding polymer
like dsDNA in physiological buffer, N0 ≈ 400
[81]. What this means is that to have an
appreciable probability (1 − 1/e) to find even
one knot along a double helix DNA, it has to
be 400 × 300 = 120,000 bp long (the long
persistence length of DNA - b contains 300 bp,
which helps make this number so impressive).
The knotting length N0 depends very strongly
on self-avoidance; for a strongly self-avoiding
polymer (meaning an excluded volume per
statistical segment approaching b3), N0 ≈ 106.
The remarkably low probability of polymer
knotting lacks fundamental understanding, being
based on numerical simulation results [81].

Experiments on circular DNAs are in good
quantitative agreement with statistical mechan-

ical results for the semiflexible polymer model
including DNA self-avoidance interactions. For
example, it is found that the probability of finding
a knot generated by thermal fluctuations for a
10 kb dsDNA is about 0.05 both experimentally
and theoretically [3, 82]. This can be interpreted
thermodynamically; the free energy of the knot-
ted states relative to the unknotted state in this
case is kBT ln(0.95/0.05) ≈ 3kBT .

A remarkable experimental observation is that
type II topoisomerases are by themselves able to
push this probability down, by a factor of be-
tween 10 and 100 [78]. Somehow topo II is able
to use energy from ATP hydrolysis to actively
suppress entanglements.

2.3.2.3 Catenation Probabilities
The Gauss invariant of two closed curves or the
catenation number Ca—also computed via sum-
ming the signed crossings in a projection plane—
is not a unique classifier of the topological states
of the two curves, i.e., two non-trivially linked
or entangled polymers may have zero catena-
tion number (Fig. 2.3). However, the probability
distribution of catenation, more specifically, the
broadness of the distribution 〈Ca2〉, is a good
identifier of the degree of entanglement in the
polymers; larger 〈Ca2〉 indicates higher entangle-
ment.

Consider two circular DNA molecules each
containing N segments (L = Nb, R = b

√
N ),

attached together at one segment (Fig. 2.10), a
situation reminiscent of the replicated sister chro-
matids in the cell. We expect 〈Ca〉 = 0; right- and
left-handed crossings occur with equal probabil-

Fig. 2.10 Two polymer of N segments each, joined at
one point along their contours
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ities.6 Now, the width of the distribution 〈Ca2〉
is at least as large as the number of nearby
crossings, where the segments involved are a
segment length or less in the projection direction.
The number of near crossings is ≈ Nφ, where
φ ≈ N/R3 is the segment density. This implies a
scaling relation

〈Ca2〉 = a0N
1/2 (2.24)

or, |Ca| ≈ N1/4, which has been suggested by
Cloizeaux [83] and calculated by Tanaka [84];
numerical simulations suggest a0 ≈ 0.25 [85].

In case of self-avoiding polymers the num-
ber of nearby crossings drops to O(1) due to
segment-position correlations [86], and only the
distant nonlocal crossings contribute:

〈

Ca2
〉 ≈

a1 ln N [85].

2.3.2.4 Linking of Confined Polymers
The two examples discussed above—knotting of
one polymer and catenation of two polymers
tethered together at one point—both indicate that
entanglements cost a good deal of free energy, but
these were cases of isolated polymers. We now
consider entanglements between n polymers each
of N segments, in a dense melt or semidilute-
solution- like state, confined to a radius-R spher-
ical cavity. The polymers are long enough so
that their random-walk size, N1/2 � R, fills the
confinement volume. This is a crude model of
chromosomes confined to a nucleus, or inside a
bacterial cell.7

We now ask what the degree of catenation
will be if the entanglement topology of these
confined chains is equilibrated (for example, by
topoisomerases). For a polymer melt, along a
chain of N segments, every segment is nearby
other segments (not counting the segments to the
left and right along the same chain). Most of

6In vivo, type II topos may control 〈Ca〉 via selective
decatenation, thus driving disentanglement.
7The shape of the confining volume is an interesting as-
pect. For tight cylindrical confinement, chains will tend to
separate from one another along the cylinder, to minimize
their stretching (and therefore to maximize their entropy).
This effect has been proposed to play a role in the segre-
gation of bacterial chromosomes in rod-shaped bacteria
[87, 88], although folding and compaction of bacterial
chromosomes may also play a role in their separation [89].

these near encounters are with segments from
other chains, since the number of collisions of
a chain with itself is ≈ N1/2 for the random-
walk statistics in a melt. This means that each
chain has N near collisions with other chains,
or N/n near collisions with any particular chain.
But since these near collisions appear in the
ensemble of configurations with either crossing
sign, we expect 〈Ca2〉 ≈ N/n. For this problem,
the high segment density and the proximity of the
polymers to one another forces them to be much
more entangled than isolated chains.

In the semidilute solution case (volume frac-
tion φ = nNb3/R3 � 1, but with overlapping
chains), exactly the same argument can be made,
but now for semidilute solution blobs, which each
have g ≈ φ5/4 segments in them. The result is
that 〈Ca2〉 = φ5/4N/n. Simulations indicate that
the two regimes can be described by one scaling
formula [90]

〈Ca2〉 = N

n
c(φ) (2.25)

where c is a scaling function with limiting be-
haviors c(φ � 1) ∝ φ5/4, and c(φ → 1) → 1
(Fig. 2.11).

Fig. 2.11 Scaling behavior of catenation fluctuations for
circular polymers of N unit-length segments confined to
a sphere of R. The segments have a diameter 0.2 times
their length (d/b = 0.2) and interact via excluded-volume
interactions. Catenation 〈Ca2〉/N scales linearly with the
segment density φ = nN/R3 for φ > 1, and faster than
linearly for φ < 1. Solid curve is a fit function that
interpolates between the asymptotic behaviors φ5/4 and
φ → 1 expected for φ < 1 and φ > 1, respectively
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Closely related to disentanglement of DNA is
its lengthwise compaction following replication.
Lengthwise compaction modifies the contour
length of the DNA to be L′ < L, as well as the
thickness or the statistical segment length b′ > b,
thus decreasing the number of segments N ′ < N .
This leads to a decrease in catenation fluctuations
in semidilute conditions with constant φ

[Eq. (2.25)]. Compaction can also drive spatial
“condensation” of helical catenations, on which
topo II can be expected to act to release
catenations. The knotting probabilities also
decrease upon lengthwise compaction (Punknot ≈
e−L/[N0b]). We will discuss lengthwise com-
paction of DNA in more detail in the next section
alongside the proteins that facilitate the process.

2.4 Protein–DNA Interactions
and Nuclear Mechanics

2.4.1 Overview of DNA–Protein
Interactions

In cells, proteins cover the DNA double helix,
allowing it to be stored, read, repaired, and repli-
cated. We now briefly review some basic aspects
of DNA–protein interactions.

Different proteins have different functions on
the double helix. Examples of classes of DNA-
acting proteins include:

Architectural Proteins that help to package
DNA, bending and folding it, typically binding
to 10–20 bp regions and often without a great
deal of sequence dependence; examples include
histones (eukaryotes) and HU, H-NS, and Fis (E.
coli), which all bind to and bend DNA to help
package it.

Regulatory Proteins that bind to specific DNA
sequences from 4 to 20 bp in length, and which
act as “landmarks” for starting transcription or
other genetic processes; examples include TATA-
binding protein (eukaryotes) and Lac repressor
(E. coli).

DNA-Sequence-Processing Proteins which burn
NTPs or dNTPs and which move processively

along the DNA backbone, reading, replicating,
unwinding, or otherwise performing functions
while translocating along DNA; examples in-
clude RNA polymerases, DNA polymerase, and
DNA helicases.

Catalytic. Proteins which cut and paste DNA,
accomplishing breaking and resealing of the co-
valent bonds along the DNA backbone, or inside
the bases; examples include topoisomerases, re-
combinases, and repair enzymes such as DNA
oxoguanine glycosylase (Ogg1, an enzyme that
recognizes and repairs oxidative chemical dam-
age to the base guanine).

An additional important class of cat-
alytic DNA-interacting proteins are Structural
Maintenance of Chromosome (SMC) protein
complexes, large protein machines which use
energy from ATP hydrolysis to drive looping-
organization of DNA, possibly through active
“loop-extrusion” processes.

In general all these types of proteins alter
DNA structure and therefore DNA mechanics,
especially architectural proteins. A few proteins
that alter DNA structure either architecturally, or
catalytically, are shown in Fig. 2.12.

2.4.2 Classical Two-State
Kinetic/Thermodynamic
Model of Protein Binding a
DNA Site

The starting point for thinking about protein–
DNA interactions is binary chemical reaction
kinetics (P + D ↔ C) where P is a particular
protein, D is one of its binding sites, and C

is the protein–DNA bound “complex.” Consider
just one binding site in a sea of proteins at con-
centration c. Supposing diffusion-limited binding
kinetics, we have to wait for a particular protein
to “find” the binding site; the on-rate in this case
is the result of Smoluchowski, ron = 4πDac

where D is the diffusion constant for the pro-
tein, and a is the “reaction radius,” the distance
between reactants at which the reaction occurs, a
scale comparable in size to the binding site. Since
D ≈ kBT/(6πηR), where R is the approximate
size of the protein, we have ron = konc, where the
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Fig. 2.12 Structural models of protein–DNA complexes
based on X-ray crystallography studies, all shown at
approximately the same scale. (a) Fis, a DNA-bending
protein and transcription factor from E. coli; the two
polypeptide chains are shown in green and blue. Im-
age courtesy of R.C. Johnson. (b) HU, another DNA-
bending protein from E. coli. Image reproduced from
data of [91]. (c) Four resolvase proteins bound to two
DNA segments. The proteins mediate cut-and-paste site-
specific recombination between the halves of the DNA

segments. Exchange of the cut DNAs is thought to occur
by rotation of the flat protein–protein interface in the
middle of the structure. Image reproduced from [92].
(d) Topoisomerase V, an archaeal enzyme that cuts one
strand of DNA, allowing internal linking number of the
double helix to change. Image reproduced from [93].
(e) Eukaryote nucleosome. The roughly 10-nm-diameter
particle contains 147 bp of DNA wrapped around eight
histone proteins (purple chains). Top view is shown on
the left, side view is shown on the right. Image reproduced
from data of [12]

chemical forward rate constant for the reaction
is kon ≈ (a/R)kBT/η. Since R > a we can
take kBT/η as a kind of “speed limit” for a
binary reaction controlled by three-dimensional
diffusion. For T = 300 K and η = 10−3 Pa s
(appropriate for water at room temperature),

kon <
kBT

η
= 4 × 10−21 J

10−3 Pa s

= 4 × 10−18 m3/s ≈ 109 M−1 s−1 (2.26)

where the final units indicate a rate per unit con-
centration (M = mol/l; recall 1 M = 6 × 1023/l).

It turns out that this rate can be increased
by roughly an order of magnitude if in addition
to three-dimensional diffusion, there is also one-
dimensional “search” over a restricted region of
a long DNA polymer in which a specific binding
site is embedded [15, 94]. However, the rate at
which initial encounters of protein and DNA oc-
cur is still controlled by Eq. (2.26). There remain
many interesting problems having to do with
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(small) proteins binding to a (long) DNA poly-
mer, for example, the dependence of multiple
sequential interactions on polymer conformation
[95].

Returning to the basic picture of proteins bind-
ing to one DNA binding site, once the complex
is formed, one usually considers it to have a
lifetime, described by a concentration-dependent
rate koff of dissociation of the protein from the
DNA (units of koff measured in s−1).

Once our proteins come to equilibrium with
the binding site, the probability that the site will
be bound relative to being unbound will be

Pon

Poff
= konc

koff
≡ c

Kd

(2.27)

where the dissociation constant Kd ≡ koff/kon

describes the strength of the binding. Since Kd

is the concentration at which the site is 50%
bound, the smaller Kd is, the tighter the binding.8

The site-occupation probability is the familiar
Langmuir adsorption isotherm, Pon = c/(Kd +
c).

The Boltzmann distribution gives the equilib-
rium free energy difference between the bound
and unbound states,

Gon−Goff = −kBT ln
Pon

Poff
= kBT (ln Kd − ln c)

(2.28)

The bound state is reduced in free energy (be-
comes more probable) as solution concentration
of protein is increased. Equation (2.28) can be
thought of as reflecting the free energy associated
with interactions (Gint = kBT ln Kd ; smaller Kd

gives a more negative “binding” free energy)
in competition with the ideal-gas entropy loss
associated with localizing the protein to the DNA
binding site (Gent = −kBT ln c; an ideal-gas
entropy model is appropriate since the volume
fraction of any particular DNA-binding protein
species is usually very small in vivo or in test-
tube experiments).

8Kd is used widely by biochemists; note that the equi-
librium constant used widely by chemists is just Keq ≡
1/Kd .

This basic type of model is widely used to ana-
lyze protein–DNA interactions. It should be kept
in mind that it has been found for some proteins
that the off-rates are strongly dependent on the
concentration of other molecules in solution [96–
103], an effect which makes definition of binding
equilibrium more complex.

2.4.3 Force Effect on Protein–DNA
Binding

If tension f is present in a DNA molecule during
interaction with proteins (or other molecules that
bind DNA, e.g., DNA-intercalating agents like
ethidium bromide), that tension can affect the
binding. In general there will be some mechan-
ical change in length of a DNA if a protein
binds it. This might be only a few nanometers in
the case of a single DNA-bending protein (e.g.,
Fig. 2.12a or b); for a nucleosome it might be
the entire 150 bp or ≈ 50 nm of DNA wrapped
around the histones (Fig. 2.12e).

Suppose there is a length contraction � > 0
(or a lengthening by � < 0 [104]) of a DNA
molecule when binding of a protein occurs. As
an example, imagine a protein which bends or
loops DNA, cases for which � > 0. Tension
plausibly slows down kon (since now one must
get to a transition state by doing work against
the applied tension) and plausibly speeds up
koff (the chemical bonds in the complex will be
destabilized by any applied tension).

By Eq. (2.27), if binding equilibrium can be
achieved, the ratio of these rates and therefore
the binding/unbinding probability ratio reflect the
presence of the additional mechanical work f �

[105]:

Pon

Poff
= c

Kd

e−βf � (2.29)

where β = (kBT )−1, and where Kd indicates
the dissociation constant at zero force. Equa-
tion (2.29) suggests that we identify a force-
dependent dissociation constant, Kd(f ) =
Kd(0) exp(βf �) and for � > 0 we see that
applied force increases the Kd strongly, since
tension is destabilizing the bound complex. In
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the “DNA-lengthening” case � < 0, stretching
the double helix stabilizes binding.

This effect becomes dramatic for DNA loop-
ing. Note that even in the absence of force, the
stiffness of the double helix essentially constrains
thermally formed loops to be longer than ≈
50 nm (somewhat shorter loops can form but at
a large free energy cost, i.e., slowly). If tension
is present, there is an additional force-retraction
free energy cost [105]. For example, even a rather
small loop with � ≈ 100 nm under moderate
tension of f = 0.5 pN will have f � ≈ 12.5kBT ,
leading to a large perturbation of the Kd . In
such a case, the on-rate will be most strongly
affected (suppressed) by applied force, since the
“transition state” for the looping reaction requires
nearly all of the work f � to be done by thermal
fluctuation, if the protein-mediated looping inter-
action is of short range [106, 107].

It is to be emphasized that protein–DNA com-
plexes can easily fall out of binding equilibrium
due to the large barriers associated with on- and
off-dynamics. An excellent example of this are
isolated nucleosomes under tension, the unwind-
ing of which show barrier-crossing nonequilib-
rium dynamics [108]. However, these barriers,
and therefore the kinetics of proteins binding and
unbinding to DNA are often profoundly affected
by other nearby biomolecules [96, 99, 101]. No-
tably, in the presence of additional “chaperone”
protein molecules associated with nucleosome
assembly and disassembly in vivo even large
complexes such as nucleosomes can be studied
in mechanical-biochemical equilibrium [109].

2.4.4 DNA-Bending Proteins and
Effective Persistence Length

DNA in most organisms is covered with
“architectural” DNA-bending proteins, to help
package it compactly. In eukaryotes the “histone”
proteins (two each of histones H2A, H2B,
H3, and H4) complex together as octamers to
form “nucleosomes,” with each histone acting
to bend DNA [110]. In addition a variety of
small DNA-bending proteins act to further

kink DNA between nucleosomes (including
HMG proteins such as HMGB1). In bacteria,
“nucleoid” proteins (in E. coli, Fis, HU, H-NS,
and StpA) act independently to generate bends
along DNA [111].

It follows that one should consider the situa-
tion where one has a long dsDNA subject to in-
sertion of kinks when proteins bind to it; this situ-
ation has been studied in a variety of single-DNA
experiments [112–116], and is a simplified ver-
sion of the situation occurring with chromosomes
in vivo. As long as the proteins do not bind the
DNA too densely, the additional bends generated
generally act to reduce the persistence length,
compacting the DNA contour and increasing the
forces needed to stretch out the protein–DNA
complex over that of the stiffer naked dsDNA
molecule. Indeed this effect has been observed
experimentally for a number of DNA-bending
proteins, with a shift of the force-extension curve
to larger forces as protein concentration is in-
creased [112–115, 117]; theoretical models for
protein-induced bending of DNA show the same
effects [55, 118].

It has been observed for at least two DNA-
bending proteins that once they reach a high
binding density along the double helix, a stiff-
ening effect occurs [113–115]. This may be due
to the formation of phased bends which act to
essentially stretch the DNA double helix contour
length.

Finally, the same general comments apply to
eukaryote chromatin, which can be considered
as a string of nucleosomes, with the added pro-
vision that the wrapping of DNA around nu-
cleosomes also compacts the total length of the
resulting DNA–protein complex by a factor of
very roughly 10.

2.4.5 Chromosome Organization:
DNA Loops

At scales larger than individual DNA-bending
proteins, which typically bind ≈ 20 bp regions
along the double helix, the long DNA molecules
of prokaryotes and eukaryotes are generally
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organized into loops by the binding of two
distance segments together by a protein complex.
If one imagines constructing a sequential series
of loops, this can accomplish a large length
compaction, from the original length of the
DNA molecule, to approximately the length of
the inter-loop DNA along the resulting “loop
axis.” Indeed a large number of DNA-binding
proteins form loops by binding two sites: a
classic example is the lac repressor from the
bacterium E. coli. [119]; a key example from
human cells is the protein CTCF, which binds
together two copies of a specific DNA sequence
[120]. In both these examples the interaction
between DNA sequences plays a gene-regulatory
role.

One mechanism for formation of such loops
is simple Brownian polymer dynamics, which
can bring distant sites together at a rate roughly
proportional to ≈ (R/L)3 ≈ (A/L)3/2, where
L is the inter-site distance and R is the end-
to-end distance. While this can be efficient at
relatively short (kilobase) scales, is it unclear
how loops can be formed efficiently at longer
scales by a pure random collision mechanism, or
how the tight arrays of loops thought to orga-
nize metaphase chromosomes can be efficiently
formed. A further point is that folding of chro-
mosomes by dense loop formation, as is thought
to occur during cell division in eukaryotes, if
done by random collision, can lead to “bad sol-
vent” conditions for chromatin, resulting in a
catastrophic sticking of chromosomes together
with no hope of sister chromatid resolution or
chromosome individualization [85, 90, 121].

2.4.6 Lengthwise Compaction of
Chromosomes

Actual chromosomes in cells are substantially
lengthwise-compacted by the action of locally
acting DNA-binding proteins. In eukaryotes,
histone protein octamers wrap 147 bp of
dsDNA into nucleosomes about 10 nm in
diameter [110]. Chromosomal DNAs typically
have short (15–50 bp) “linker” DNA stretches

between successive nucleosomes. It is currently
thought that a persistence length of this type
of “chromatin” fiber contains roughly 10
nucleosomes, or about 2 kb of DNA. This
means that even with no self-avoidance, a
knot in an isolated chromatin fiber will only
become likely for an 800 kb segment (4000
nucleosomes). In a cell, additional proteins that
mediate chromatin–chromatin contacts will keep
the statistics of the fibers from being those of
simple polymers at very large scales, but there
should still be a strong knotting suppression
by the folding of DNA by architectural
proteins.

At larger scales, chromosomes are folded and
compacted by other proteins. One of the most im-
portant classes of proteins which accomplish this
are “Structural Maintenance of Chromosomes”
(SMC) complexes (Fig. 2.13) [122–125]. These
protein complexes are based on heterodimers of
SMC proteins, which are long (≈ 50 nm), stick-
like coiled-coil proteins with a dimerization do-
main at one end and an ATP-binding/hydrolyzing
domain at the other end. These SMC “sticks”
dimerize at one end, and are thought to be ca-
pable of undergoing conformational changes in
response to ATP binding and hydrolysis so as to
compact DNA molecules that they are interacting
with. Via interactions with a third “kleisin” pro-
tein, SMC dimers form a tripartite ring structure
that can encircle DNA, indicating a topological
element to their DNA-organizing functions [126–
128]. Furthermore, eukaryote SMCs appear to fa-
vor formation of right-handed DNA loops (loops
with positive DNA writhe) [129–132].

Single-molecule experiments do indicate that
SMC complexes can compact DNA molecules
by mediating contacts between distant DNA
loci [132–135]. Cell-biological experiments
indicate clearly that the lengthwise compaction
that occurs during mitosis in eukaryote cells
depends crucially on the presence of “condensin”
SMCs [124], and that proper regulation of
contacts (“cohesion”) between replicated DNAs
depends on “cohesin” SMCs [122, 123].
Cohesins also play a critical role in stabilizing
gene-regulating loops along chromosomes in



34 S. Brahmachari and J. F. Marko

Fig. 2.13 Schematic diagrams of cohesin and condensin eukaryote SMC complexes. SMC complexes are built around
stick-like heterodimeric SMC proteins, each of which is approximately 50 nm in length. Reproduced from [122]

eukaryotes [136, 137]. SMC complexes are found
in bacteria and archaea [138], making SMCs the
most universal class of DNA-folding proteins,
present in all three domains of life.

2.4.7 The Loop Extrusion
Hypothesis for SMC
Mechanism andMechanics of
Chromosomes

A number of lines of evidence are starting to
point to the possibility that SMC complexes are
capable of actively organizing looping, by some-
how using energy from ATP hydrolysis to “ex-
trude” DNA loops (Fig. 2.14). While this idea be-
gan as a hypothesis [139, 140], DNA-sequencing
experiments indicate that cohesin is able to orga-
nize DNA loops on megabase scales with DNA
sequence in a specific orientation [141], an ob-
servation which is difficult to explain without
invoking an extrusion, or tracking mechanism.

Secondly, it is hard to explain how the dense
arrays of chromatin loops in metaphase chro-
mosomes [142] can be formed by condensin
SMCs without crosslinking occurring between
different chromatids and chromosomes. Again
this is rather naturally accomplished by “loop
extrusion” [140, 143, 144], which forces sister

Fig. 2.14 Mechanisms of DNA loop formation. (a) Ran-
dom collision. Loop-forming sites (black square) meet
by random polymer motion to form a loop anchoring
complex (left to right shows time sequence). (b) Loop
extrusion. A loop-extruding enzyme (bold ⊂) lands on
one spot on a DNA molecule, and then actively pulls
DNA from the outside to the inside of the loop, gradually
increasing the loop in size (left to right shows time
sequence). This process may continue increasing the size
of the loop until the loop-extruding enzyme dissociates,
reaches a loop boundary element, or perhaps collides with
an adjacent loop extruding enzyme complex

chromatids apart by lengthwise-compacting each
chromatid into an array of tightly packed loops.
The resulting dense structure can then be further
compacted by chromatin-crosslinking proteins to
form robust metaphase chromosome [145, 146].
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Thirdly, recent data from “Hi-C” DNA se-
quencing experiments in bacteria also suggest
that bacterial SMC complexes are able to extrude
DNA loops to organize bacterial chromosomes
[147]. Finally, very recent results indicate that
yeast condensin complexes are able to use ATP
to translocate processively along dsDNA [148].
While not definite, all these recent experiments
point in the same direction, towards active loop
enlargement by SMC complexes. The forced en-
largement of DNA loops can help to organize
genomes by generating internal osmotic pressure
inside individual large DNA molecules, thus pro-
viding a driving force for topoisomerases to re-
solve linkages between distinct DNA molecules
and allowing cells to separate replicated chro-
mosomes from one another [121]. It may well
be that the basic principle of active extrusion of
DNA loops is an essentially universal feature of
chromosome organization in all cell types.

The self-crosslinking of DNA molecules
resulting from active loop extrusion suggests that
in general, genomes should behave as chromatin
“gels,” i.e., crosslinked networks of DNA.
Indeed, this has been observed for the mechanics
of isolated nuclei [149] as well as isolated
metaphase chromosomes [145, 146], both
of which show DNA-connectivity-dependent
mechanics with shear moduli in the few hundred
Pa range. While it remains for the precise
mechanisms and schemes underlying large-scale
genome organization to be fully understood,
it does appear at this point that SMCs play a
fundamental and central role in chromosome
dynamics, folding, and mechanics.

2.5 Conclusion

This chapter has focused on the molecular biome-
chanics of DNA and DNA–protein interactions,
with an emphasis on how global DNA topol-
ogy, and ultimately chromosome individualiza-
tion, can be controlled by enzyme-DNA inter-
actions. We close by summarizing main ideas
touched on in the chapter, along with indications
of their relevance to oncology and to the remain-
ing chapters of this book.

2.5.1 Mechanics of DNA and
DNA–Protein Complexes

We have emphasized the importance of DNA-
bending properties at the scale smaller than the
persistence length (150 bp), as well as the emer-
gence of DNA flexible polymer behavior at larger
DNA length scales (Sect. 2.2). It is important to
recognize that the fundamental events of gene
regulation—the binding of transcription factors
to 10–20 bp-long sequences—occur inside the
persistence length, while global chromosome dy-
namics (genome folding, chromosome rearrange-
ment, chromosome segregation) take place at
larger than the persistence length.

One must keep in mind that the folding, and
all of the mechanics (and polymer statistical me-
chanics) of DNA vivo is profoundly modulated
by the binding of proteins along the double helix,
which we have given some rough ideas of how
to understand from the point of view of quan-
titative theory (Sect. 2.4). DNA and chromatin
mechanical properties are known to be modulated
by epigenetic marks, both on DNA (methylation)
[150, 151] and on nucleosomes (notably histone
methylation and acetylation) [152].

2.5.2 Control of DNA Topology,
Sister Chromatid Segregation,
and Chromosome
Individualization

As for any long polymer, entanglement topology
plays a key role for DNA in vivo, and all cells
work hard to avoid having their chromosomes en-
tangled together (especially sister chromatids re-
sulting from DNA replication). Not surprisingly,
the enzymes which allow entanglement topology
to change, principally type II topoisomerases,
are key targets for antibiotics and anti-cancer
drugs [153], precisely because cell proliferation
requires physical and topological separation of
replicated chromatids.

A key recent development in this area is the
role that structural maintenance of chromosome
(SMC) complexes play in chromosome self-
organization, which involves their interplay with



36 S. Brahmachari and J. F. Marko

the actions of topoisomerases. Increasingly,
the condensin SMC complexes are being seen
as the key architects defining the folding
of chromosomes into their noodle-shaped
mitotic form, which we have argued to be
central to chromosome individualization and
sister chromatid separation. Interestingly, the
cohesin SMC complexes, which play a central
role in chromosome folding, replicated sister
chromatid cohesion, and gene regulation, have
been observed to have characteristic mutations
associated with specific cancers [154].

2.5.3 Global Nuclear Organization

The G1 eukaryote nucleus as a whole is or-
ganized into a highly regulated combination of
chromosome “data center” and gene expression
factory, with all activities controlled to some
degree by the physical properties of DNA and
chromatin [155]. Classically, the mechanical sta-
bility of the nucleus has been considered in terms
of properties of the nuclear envelope, particu-
larly the network of nuclear lamins that give
the nucleus its “toughness” to resist large strains
[156]. In addition to having a structural role
(lamin A), the lamins (lamin B) also play a key
gene-regulatory role; interplay between struc-
tural and gene-regulation functions is at the base
of a variety of “laminopathies” where defects
in nuclear shape regulation are correlated with
aberrant gene expression, particularly associated
with development [157].

Recent work has broadened this view to em-
phasize the role of chromatin itself in controlling
the small-strain mechanics of the nucleus, via
mechanisms including organizational changes
associated with epigenetic marks. Histone
hyperacetylation associated with euchromatin
(notably H3K9ac and H3K27ac) has been shown
to soften the human cell nucleus, while marks
associated with compacted heterochromatin
(H3K9me2,3 and H3K27me3) stiffen the nucleus
[149]. In addition, adjusting the balance of
euchromatin and heterochromatin has been
observed to be correlated with instabilities of
nuclear shape including the nuclear “blebs”

[158], long used as diagnostic marks of many
cancers [159]. Indeed, changes in epigenetic
histone marks are well known to be associated
with many cancers [160], suggesting a chain of
links leading from epigenetic marks, chromatin
folding and function, nuclear mechanics, nuclear
morphology, to genome instability. These effects
are amenable to theoretical analysis. Minimal
modeling of the behavior of the nucleus in
micromechanical studies reveals that the lamina
behaves as a bendable meshwork resulting
in buckling under strain [161]. This buckling
behavior is suppressed by the chromatin, which
fills the nucleus, providing further evidence of
the importance of chromatin in dictating small-
strain mechanics and nuclear shape [158].

In addition to being changed during the de-
velopment of many cancers and genetic diseases,
global nuclear organization is modulated dur-
ing metazoan development [162]. Nuclei in em-
bryonic cells are known to be quite distinct in
chromatin density, euchromatin/heterochromatin
balance, and nuclear mechanics. Just as one ex-
ample, one can imagine rather profound changes
in nuclear mechanics via changes in the density
of “crosslinking” by SMCs, or by proteins like
HP1α [163] which are thought to act to compact
heterochromatin. Micromechanical experiments
on nuclei from cells at different stages of de-
velopmental pathways, as well as experiments
on nuclei with different degrees of chromosomal
ploidy are also of interest. Understanding the
control of nuclear mechanics and organization
via redistribution of epigenetic marks and chro-
matin crosslinkers such as SMC complexes is an
objective for the near future.
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