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Abstract. Smartwatches, which contain an accelerometer and gyroscope, have
recently been used to implement gait/activity-based biometrics. However, many
research questions have not been addressed in the prior work such as the training
and test data was collected in the same day from a limited dataset, using
unrealistic activities (e.g., punch) and/or the authors did not carry out any
particular study to identify the most discriminative features. This paper aims to
highlight the impact of these factors on the biometric performance. The accel-
eration and gyroscope data of the gait and game activity was captured from 60
users over multiple days, which resulted in a totally of 24 h of the user’s
movement. Segment-based approach was used to divide the time-series accel-
eration and gyroscope data. When the cross-day evaluation was applied, the best
obtained EER was 0.69%, and 4.54% for the walking and game activities
respectively. The EERs were significantly reduced into 0.05% and 2.35% for the
above activities by introducing the majority voting schema. These results were
obtained by utilizing a novel feature selection process in which the system
minimizing the number of features and maximizing the discriminative infor-
mation. The results have shown that smartwatch-based activity recognition has
significant potential to recognize individuals in a continuous and user friendly
approach.

Keywords: Biometrics - Mobile authentication + Gait biometrics
Accelerometer + Smartwatch authentication + Activity recognition
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1 Introduction

Activity recognition studies that used the acceleration (Acc) and gyroscope (Gyr) data
to identify the user’s identity based on their physical activities (e.g., normal walking
and typing) attracted a lot of research. However, a large amount of the prior art
captured the user’s movement data by using costly specialized devices (i.e., attaching a
wearable sensor to different positions around the human body such as hip, waist, and
lower leg) [1-3]. Furthermore, these devices require a comprehensive set-up that
reduce the usefulness of their performance and increases the cost of implementation
into a potential real-world system. Although the applications of activity recognition are
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greatly expanded by utilizing the potential of smartphone sensors (i.e., Acc and Gyr), it
is widely understood that smartphones suffer from several issues to produce a con-
sistent and reliable biometric signal in real life. For example, the problem of orienta-
tions (i.e., screen rotations) and off-body carry (e.g., when the device is carried in a
handbag), making the collected data less accurate or unusable. These limitations can be
addressed by alternative techniques such as smartwatches, which contain the requisite
sensors such as Acc Gyr, due to their fixed contact with individuals (i.e., either on left
or right wrist). As a result, these devices have the ability to capture more accurate
personal data than smartphones do.

Traditional user authentication approaches on smartphones and smartwatches such
as password and PIN-based authentication are considered significantly intrusive which
impact their usability and subsequently security [4-6]. For example, Microsoft con-
ducted a comprehensive study and showed that 72% of participants disabled their login
credentials (i.e., PIN code) because of its intrusive implementation [7]. Moreover, PIN-
based authentication technique is susceptible to several types of attacks such as brute
force and shoulder surfing [8]. Given that smartwatches are usually connected with a
smartphone via Bluetooth, implicit and continuous authentication to secure information
on both devices from unauthorized access is essential. Activity recognition using
smartwatches offers several advantages over traditional authentication techniques. For
instance, it is reliable (i.e., nearly impossible to imitate), convenient for a user (i.e.,
does not require explicit user interaction with a sensor during authentication), and
provides transparent and continuous user authentication as long as the user’s hand
moves [6]. To this end, this paper explores the use of smartwatches for transparent
authentication based upon gait and game activities. The main contributions of this
study are demonstrated as follows:

e To the best of the author’s knowledge, this is the biggest dataset for smartwatch-
based gait authentication, which contains gait data of 60 users over multiple days

e The novel feature selection method utilised a dynamic feature vector for each user
and successfully reduced the feature vector size with better performance.

e Identifying the optimal source sensor for the authentication task.

e Highlighting the impact of Majority schema on the system accuracy.

e Vastly superior results were achieved that outperform the prior accelerometer —
based studies.

The rest of the paper is organized as follows: Sect. 2 reviews the state of the art in
transparent and continuous authentication that specifically uses accelerometer and
gyroscope sensors. Data collection, feature extraction, the experimental procedure, and
results are outlined in Sects. 3 and 4. Section 5 presents the conclusions and future
research directions.

2 Related Work

Behavioural biometrics systems aim to authenticate individuals transparently based
upon their activities (e.g., gait, keystroke, and handwriting). Apart from the traditional
authentication approaches (i.e., PIN and passwords), a significant amount of studies
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have recently explored the use of built in smartphones sensors in order to improve the
level of security as well as offer continuous and unobtrusive authentication. For
example, Zhen et al. [9] proposed to verify users based upon their keystroke while
other studies involved gait [16-20], activity [11-14], typing [33, 34], and arm
movement [15, 23, 25]. The use of sensor data, specifically the Acc and Gyr data,
attracting an enormous amount of attention. Whilst previous research in activity
recognition has focused on body worn sensors or using the smartphone sensors (i.e.
Acc and Gyr), little attention is given to the use of smartwatches — which tend to be
sensor-rich highly personal technologies. Moreover, given that smartwatches are
usually worn in a fixed position (i.e. right or left wrist), they offer the opportunity to
collect the user’s motion data in a more effective and reliable fashion than smartphones
could. A comprehensive analysis of the prior studies on activity and gait recognition
using smartphones and smartwatches sensors is summarized in Table 1.

Although the presented studies in Table 1 provide important insight in the domain
of sensor-based activity recognition, they suffer from several issues such as data col-
lection methodology. In most evaluations a relatively small dataset was used and
frequently obtained on the same day (SD), which is not a realistic evaluation as such
data does not show the variability of the human behaviour over the time and might be
overlap across a large population. Most research claim a system resilient to the cross-
day (CD) problem either trains on data from trials that are also used to test (thus not
making it a true cross-day system) or has a high error rate, preventing the system being
used practically. The lack of realistic data underpins a significant barrier in applying
activity recognition in practice. Therefore, this study presents a realistic scenario (in
terms of the data collection) by training and testing the user’s movement data over
multiple days. Moreover, the most effective device (i.e., smartwatches) is used to
collect the user’s motion signal, and hence design an effective transparent and con-
tinuous user authentication system for both smartphones/smartwatches.

With respect to features, cycle and segment-based approaches are used in order to
pre-process the raw Acc and Gyr data and then extract several statistical and cepstral
coefficient features from the segmented data (e.g., standard deviation, Variance, and
Mel Frequency Cepstral Coefficients). While the cycle-based approach offers a precise
manner of generating samples from the testing data by detecting steps and splitting the
data accordingly, most recent studies showed that the fundamental performance of
using cycle extraction method was low (At best 14.4% of EER). The high error rate of
using this method was highlighted by several studies [4—6, 18] such as smartphones not
being securely fastened to the user, cheap sensors, cycles are not guaranteed to be the
same length, and rounding errors. In contrast, more promising results (i.e., EERs
ranging from 1.4% to 8.24%) were reported by applying the segment-based approach
to the raw data [19, 22].

To predict the user’s identity, several studies utilized the standard classification
methods (e.g. Euclidean Distance and Dynamic Time Warping metrics) to create a single
reference template and is later tested based upon the similarity between the template and
the test data. While this approach works well for certain biometric modalities (e.g.,
fingerprint or facial recognition), it does not seem to be the most effective type of system
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Table 1. Comprehensive analysis on gait authentication using mobile and smartwatch sensors.

Study | Approach | Features | Classification Accuracy % Users | Duration | Device | System
type methods type
[10] |S TD NN 91.7 (CCR) 29 |SD M G
[11] |S TD&FD | KNN 93.3 (CCR) 28 |SD M AR
[12] |S TD SVM 92 (TP) 315 |SD M AR
1 (FP)
[13] |S TD RF 5.6 (EER) 57 |CD M AR
[14] |S TD&FD | SVM 85 (CCR) 5 |SD M AR
[15] |S TD EUC 5 (EER) 22 | SD M GES
[16] |C TD DTW 29.4 (EER) 48 | CD M G
[17] |C TD DTW 21.7 (EER) 48 |CD M G
[18] |S FD HMM 6.15 (EER) 48 | CD M G
[19] |S FD KNN 8.24 (EER) 36 |CD M G
[20] |C TD GMM UBM 14.4 (EER) 35 |CD M G
[211 |S TD RF 10 (FRR), 0 20 |SD Sw AR
(FAR)
[22] |S TD RF 1.4 (EER) 59 |SD SwW G
[23] |S TD DTW 3.3 (EER) 26 |CD SW GES
[24] |S TD SVM 88.5 (CCR) 13 |SD SW&M |G
[25] |S TD & FD | KNN 88.4(TP), 1.3 10 |SD SW GES
(FP)
[26] |S D RF 8.8 (EER) 15 |SD SwW GES
[27] |S TD RF 93.3 (CCR) 17 |SD SW AR
[28] |S TD&FD | KNN 95 (CCR) 40 |SD SwW G
[29] |S TD RF 4 (EER) 18 |CD M+ SW |G
[30] |S TD KNN 2.9 (EER) 15 |SD SwW G
[31] |S TD SVM 0.65 (EER) 20 | SD M+ SW |G
[32] |C TD DTW 30 (FRR), 15 5 |CD SwW GES
(FAR)
[33] |S TD Man 427 (EER) 10 |SD SW GES
[34] |S TD SVM 6.56 (EER) 20 |CD SwW GES
[35] |S FD EUC 13.3 (EER) 29 |SD M + SW | GES
[36] |S TD SVM 4 (EER) 20 |CD SwW GES
[371 |S TD&FD | SVM 92.8 (TP), 04 | 30 |SD SW AR
(FP)
[38] |S TD KNN 5 (EER) 20 |CD SW G
Legend: C: Cycle-based; S: Segment-based; TD: Time Domain; FD: Frequency Domain; DTW: Dynamic

Time Warping; HMM: Hidden Markov Model; SVM: Support Vector Machine; KNN: k-nearest neighbors;
RF: Random Forest; NN Neural Network; EUC: Euclidean Distance; Man: Manhattan Distance; GMM-

UBM: Gaussian Mixture Model-Universal Background Model; KRR: Kernel Ridge Regression; EER: Equal
Error Rate; CCR: Correct Classification Rate; TP: True Positive; FP: False Positive; FRR: False Rejection
Rate; FAR: False Acceptance Rate; M: Mobile; SW Smartwatch AR: Activity Recognition; G: Gait; GES:
Gesture; SD: Same Day; CD: Cross Day.

for activity recognition or other behavioural biometric techniques. This is because the
user’s behaviour can change over time and be affected by other factors (e.g., mood and
health). Therefore, this paper applied more complex algorithms (e.g., Neural Networks)
to train and test the user’s reference template.
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3 Experimental Methodology

In order to overcome some of the shortcomings of prior work, this paper will explore
the following research questions:

1- How does the accuracy vary across same and cross-day evaluation methodologies?

2- Which sensor can provide a more consistent and reliable motion data for recog-
nizing individuals?

3- What impact do features have upon performance?

4- What is the impact of applying the Majority voting schema on the system
performance?

To address these questions, the following experiments were conducted:

e Same & Cross day evaluation, accelerometer Vs gyroscope sensor (research
questions 1 and 2)

e Dynamic feature selection (research question 3)

e Majority Voting Schema (research question 4).

3.1 Data Collection

This section describes the procedure for collecting the data and transforming it into a
form suitable for traditional machine learning classification algorithms. As mentioned
earlier in Sect. 2, the data collection methodology is definitely an issue for most gait
and activity recognition related studies (e.g., the user’s motion data was collected by
placing a smartphone in a fixed position, using small dataset that was frequently
captured on the same day). Therefore, it is important to select the most appropriate
technology to capture the movement data and ensure the population sample being used
as large and significantly reliable as possible. To achieve that, this study utilized the
Microsoft Band to collect 24 hours of the movement data from 60 users; to the best of
the author’s knowledge, this is the largest dataset within this domain. During the data
collection, the Acc and Gyr signal were sampled at 32 Hz. As soon as the data was
collected by the smartwatch, it was sent to a smartphone residing in the user’s pocket
via Bluetooth. For all 60 users, each was asked to follow a predefined scenario. Aiming
to study the practicality of such a system, the scenario included two simple and realistic
activities that reflect the user’s daily activities (i.e., normal walk, and playing Game).
Each user completed six sessions for each activity over multiple days (a single session
contained two minutes of the user’s motion data); each of the three sessions were
provided on different days within a time frame of 3 weeks. For the gait activity, users
were required to walk on a predefined route on flat ground and encouraged to walk in
their own natural and comfortable manner. For a more realistic scenario, the user had to
stop in order to open a door, and take multiple turns. Moreover, no other variables,
such as type of footwear or clothing, were controlled. In the game activity, users were
asked to sit and playing a simple game on the touch screen of their smartphone. Once
the data collection was completed, the signal processing phase was undertaken - a brief
description of the steps are
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e Time interpolation: Due to the limited accuracy of the sensors in the Microsoft
Band, the smartwatch was not able to record data at a fixed sample rate. Therefore,
time interpolation was required to make sure that the time period between two
successive data points was always equal.

e Filtering: a low pass filter was applied in order to enhance the accuracy of the
signal. This was carried out with several settings (i.e., 10, 20, and 30) and through
experimentation the cut-off frequency of 20 Hz achieved the best accuracy (ex-
amples of the filtering are shown in Fig. 1).

e Segmentation: the tri-axial raw format for both Acc and Gyr signals were seg-
mented into 10 seconds segments by using a sliding window approach with no
overlapping. Therefore, in total 72 samples for each activity and each user over
multiple days were gathered.

Sample of Acceleration Signal Before Filtering
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Fig. 1. The acceleration signal before and after filtering

3.2 Feature Extraction

As illustrated earlier, the raw Acc and Gyr signals are segmented into 10 seconds of
time-series data and hence represented by a fixed set of features. In total, 88 of the time
domain features were extracted based upon prior work identified in gait and activity
recognition studies [10-20]. These features are the same regardless of whether the
sample is being generated from Acc and Gyr sensor data. Since most features are
generated on a per-axis basis and each sensor has 3 axes, most features are represented
by a vector of three values. Details of these features (e.g., what they are and how they
are calculated) are presented in Table 2.

The feature selection step has become the focus of many research studies in the area
of authentication in order to reduce the potentially large dimensionality of input data,
with the resultant effect of enhancing performance and reducing the computational
complexity of the classifier. Subsequently making it easier to manipulate and calculate
feature vectors on processing and battery limited digital devices. This study utilised a
dynamic feature vector that contains distinctive features for each user. For example, the
reference template of user 1 could be created by using features 1, 2, 3, and 7 while
features 3, 4, 5, and 7 might be used to form the reference template of user 2. This is



Continuous User Authentication Using Smartwatch Motion Sensor Data

21

Table 2. List of the extracted time domain features

Features NF | Description

Interquartile range 3 The range in the middle of the data. It is the difference between
the upper and lower quartiles in the segment

Skewness 3 A measure of the symmetry of distributions around the mean
value of the segment

Kurtosis 3 A measure of the shape of the curve for the segment data

Percentile 25,50 6 The percentile rank is measured using the following formula:
R = (P/100) * (N + 1). Where R represents the rank order of
the values, P: percentile rank, and N is the total number of data
points

Correlation 3 The relationship between two axes is calculated. The

coefficients Correlation Coefficients is measured between X and Y axes, X
and Z axes, and Y and Z axes

Difference 3 The difference between the maximum and minimum of the
values in the segment

Median 3 The median values of the data points in the segment

Root mean square 3 The square root of the mean squared

Maximum 3 The largest 4 values are calculated and averaged.

Minimum 3 The smallest 4 values are calculated and averaged

Average 3 The mean of the values in the segment

Standard deviation 3 The Standard Deviation of the values in the segment

Average absolute 3 Average absolute distance of all values in the segment from the

difference mean value over the number of data point

Time between 3 During the user’s walking, repetitive peaks are generated in the

peaks signal. Thus, the time between consecutive peaks was
calculated and averaged

Peaks occurrence 3 Determines how many peaks are in the segment

Variance 3 The second-order moment of the data

Cosine similarity 3 All pairwise cosine similarity measurements between axes

Covariance 3 All pairwise covariances between axes

Binned distribution 30 Relative histogram distribution in linear spaced bins between
the minimum and the maximum acceleration in the segment.
Ten bins are used for each axis

Average resultant 1 For each value in the segment of x, y, and z axes, the square

acceleration roots of the sum of the values of each axis squared over the
segment size are calculated

Legend: NF stands for the number of generated features.

achieved by calculating the mean and standard deviation (STD) for each feature
individually for all users and then compares the authorized user’s results against
impostors to select the feature set with the minimal overlap. In other words, for each
feature, a score is calculated based upon the following condition:
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e If the mean of imposter’s activity is not within the range of the mean +/- STD of
genuine, add 1 to the total score.

e Dynamically select the features according to their score order from high to low. The
highest means less overlap between imposters and the genuine user as shown in
Fig. 2.
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Fig. 2. The effect of the dynamic feature selection approach

3.3 Experimental Procedure

Biometric authentication or verification is a binary classification problem, where the
aim is to determine if a system can identify a user correctly (a “genuine” user) or as an
imposter. The reference and testing templates were created under two different sce-
narios (i.e., SD, and CD). In the SD scenario, the dataset was divided into two parts:
60% was used to train the classifier while the remaining 40% was utilised to evaluate
the performance. To test the system under the CD scenario, the data from the first day
was used for training and the second day data was employed for testing. A Feedforward
Multi-layer Perceptron (FF MLP) neural network was used as the default classifier for
the walking and game activities due to its reliable performance [6, 10]. For each
experiment, four different FF MLP neural network training size were evaluated (i.e.,
10, 15, 20, and 25) with an average of repeating each of them 10 times. All the
presented results in this study were based on using FF MLP neural network of size 10
as it showed the lowest EER.

4 Results

After research questions of the prior art were identified and presented in the previous
section, details of the results for the two evaluation scenarios (SD and CD), the two
different smartwatch sensors (i.e., Acc and Gyr), are presented in the following sub-
sections. The results are first presented for “single-sample mode” and then using the
majority voting scheme.
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4.1 Single Day vs Cross Day Evaluation

A well-known serious criticism of the prior gait/activity-based biometrics is the data
collection strategy, which the training and test data captured during a single session—
on a single day. This contradicts the notion that the only more reliable test comes from
multi-day testing. This maxim holds because performance on single day datasets does
little to test how resistant the system is to the variability of human gait over the time. In
cases when the CD scenario is considered, the evaluation of most studies is often either
done improperly (e.g., mixes the training and test data from multiple days [18, 19]) or
the results are very poor [16, 17, 20, 32]. Table 3 demonstrates that the performance of
using SD scenario is overly optimistic (i.e., EERs of 0.15% and 3.73% for the Acc and
Gyr respectively). While the EERs are increased to 0.93% (for Acc) and 8.29% (for
Gyr) under the CD test, this is a more realistic evaluation scenario as it avoids training
the user’s model every day.

Although sensor based-authentication systems could be implemented using
accelerometers and/or gyroscopes as the source triaxial (three axes) sensor, the results
clearly indicate that the gyroscope is not as effective as the accelerometer for
authentication, which is consistent with what other researchers have found [4-6, 22,
27]. For example, the gait activity reported EERs of 0.15% and 0.93% for the SD and
CD scenarios respectively, compared to 3.73% and 8.29% EER’s by using the Gyr data
of both scenarios respectively.

Table 3. The EER (%) of SD and CD using the Acc and Gyr sensors of walking activity

Activity type | Evaluation scenario | Sensor type | All features
Walking SD Acc 0.15
Walking CD Acc 0.93
Walking SD Gyr 3.73
Walking CD Gyr 8.29

Further experiments were conducted and the results presented in Table 4 in order to
highlight the impact of selecting the most discriminative features subset for classifi-
cation. The proposed feature selection approach successfully discarded some irrelevant
and/or redundant features and improved the system accuracy. Impressive results were
achieved by using the SD scenario for the walking activity (an EER of only 0.13%
compared to EERs of 1.4%, 2.9%, and 0.65% [22, 30, 31]). By using a small feature
subset of only 20 features, the proposed system can still precisely recognize the users
with an EER of 0.78%.

As regards of the game activity, the reported results can be directly compared with
the prior art [15, 26, 33, 35] that reported EERSs in the range of 4.27%-13.3% (against
to 0.89% in this study). Although the EERs of both activities are increased to 0.69%
and 4.54% by applying the CD scenario, these results still managed to produce a high
level of security and better than the previous accelerometer-based studies that achieved
EERs ranging from 5.6% [13] to 29.4% [16].
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Table 4. The EER (%) of the SD and CD test for the walking and game activities
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Walking SD Acc 1.13 | 0.78 | 0.24 | 0.26 | 0.27 | 0.13 | 0.20 | 0.16 | 0.15
Walking CD Acc 4.68 | 2.39 1.43 0.9 0.84 | 0.83 | 0.69 | 0.77 | 0.93
Walking SD Gyr 6.6 488 | 3.63 | 3.74 | 3.12 | 3.58 | 3.48 | 3.43 | 3.73
Walking CD Gyr | 11.09| 9.76 | 8.62 | 849 | 894 | 853 | 842 | 7.97 | 8.29
Game SD Acc | 2.40 1.76 | 1.38 1.18 1 0.89 | 120 |1.14 | 1.20 | 1.33
Game CD Acc | 497 | 482 |483 (479 | 462 |454 | 517 |580 |5.61
Game SD Gyr 8.7 7.18 | 6.12 | 6.74 | 6.53 | 6.67 | 6.44 | 6.91 | 7.11
Game CD Gyr | 12.88 | 11.08 | 10.40 | 9.96 | 10.21 | 10.33 | 10.09 | 10.20 | 10.82

Table 4 shows that the walking activity contains high levels of distinguished
information, hence surpasses the results of the game activity. This most probably due to
that more movement data can be obtained when users are walking (compared to a
limited motion while playing a game on the touch screen of smartphones). As expected,
the results demonstrate that biometric performance is degraded under the more realistic
evaluation scenario (i.e., CD scenario), but that smartwatch-based biometrics is still
highly recommended and viable to be used at least as a complementary mechanism to

password-based authentication.

4.2 The Impact of the Proposed Dynamic Feature Vector

As mentioned earlier, it is clear that the proposed feature selection method was capable
of reducing the number of features and has a positive impact on the system perfor-
mance. With respect to the feature subset size, the reported EERs in Table 4 show that
the SD test for both activities, requires less features than the CD (i.e., 60 and 50
features for the walking and game activities respectively). This could be explained
because the user’s arm pattern could be vary or be inconsistent over the time, hence
more features are required for individual to be identified. Moreover, the selected feature
subset was fixed for all users (i.e., the size of the user’s reference template of each
activity was same for all users such as 60 features). Therefore, creating a dynamic
feature vector size for each user independently might greatly reduce the EER (see
Fig. 3). As shown in Fig. 3, reducing the number of features of the NW activity from
70 to 40 features decreased the EER for the majority of users or remains similar (apart
from users 10, 16 18, 19, 24, 25, 30, 31, and 48 that negatively affect the overall system
accuracy). Surprisingly, the EER was even better for some of the users (e.g., 3, 6, 10,
17, 20, 29, 37, 38, 40, 44, 47, 50, and 51). Therefore, the creation of dynamic feature

vector size might offer better accuracy/error rates.
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Acceleration Results of Using Different Feature Subset Size Seperateted by Users
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Fig. 3. The EER of using the walking activity and utilizing different feature subset size
separated by users

4.3 Majority Voting Schema

So far all the presented results were based upon classifying single sample in order to
calculate the EER. Although the findings in Table 4 yield good results, it was inter-
esting to find out the possibility of reducing the amount of the rejected samples of a
genuine user. Several studies [17-19, 22] have investigated the use of majority and
quorum voting schemas in order to make a decision. The former is a scheme which
accepts a user as genuine if a half or more of the user’s test samples are positive; The
biometric decision is then based upon merging multiple classification output to a single
one. The latter is a method that authenticates a user as genuine if a requisite number of
the user’s samples are positive.

Although quorum voting usually yields greater performance, the majority voting
appears to be more resilient to error given the higher threshold for classification.
Quorum, while lowering the level of accuracy required to verifying a user, may result
in a high false acceptance rate. This failure to identify imposters can be explained by
the extremely low proportions of correct classifications required to accepting a user as
genuine. Although this may be acceptable for systems more concerned with usability,
such permissiveness will most likely render the system impractical for most uses.
Majority voting, while requiring the system to be more discriminative, offers a greater
level of security and thus is more likely to offer a suitable balance between usability
and security. Ultimately, conscious decisions must be made to create a system that does
not appear to the end user as too demanding without compromising the security.
Therefore, this study utilized the majority voting rather than the quorum voting schema.

As shown in Table 5, the majority voting scheme yields significant improvement
on the system performance. At best, the EERs of the walking and game activities were
0.05% and 2.53% respectively (compared to 0.69% and 4.54% of EERs when a single-
sample evaluation was used). It is also interesting to notice that only 10 features were
required for the game activity to produce the lowest EER. This might be explained
because the user’s arm pattern for this particular activity was consistent hence, less
features was required to verify the legitimate user.
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Table 5. The EER (%) of the CD scenario using the majority voting for the walking and game
activities

Activity | Evaluation Sensors | 10 20 30 40 50 60 70 80 88

type scenario features | features | features | features | features | features | features | features | features
Walking | CD Acc 1.68 0.51 0.21 0.15 0.08 0.05 0.12 0.18 0.15
Game CD Acc 2.53 2.90 2.77 3.40 2.94 2.81 2.74 3.33 3.12

5 Conclusion and Future Work

This study shows that smartwatch-based activity recognition can produce vastly supe-
rior results when evaluated properly by using the realistic CD scenario. It does show that
the results do improve when authentication decisions are made using the majority voting
schema rather than single 10 seconds sample of data. This paper shows that the proposed
feature selection approach has a positive effect on the system accuracy with a reduction
of 32% of the whole features. For example, 60 features were used for the walking
activity rather than 88 features in order to produce the lowest EER. It is also examined
the effect of using the CD scenario on the system performance. Overall, this study serves
as an endorsement for smartwatch-based activity recognition.

Future work will explore the impact of the dynamic feature vector size for each
user, applying a sensor fusion approach to combine the smartwatch accelerometer and
gyroscope data, and testing different segment sizes (e.g., 7 and 5 seconds). Addition-
ally, whilst this study utilized cross-day data collection, collecting real life data (i.e.,
users do not need to perform certain activities, but merely wear the smartwatch for a
prolonged period) will enable a real-world evaluation of the approach. The challenge
then becomes being able to identify which activity a user is doing —in order to be able
to select the appropriate classifier to utilise. As such, future research will also focus
upon developing a context-aware approach to predict the activity.
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