
Web-Based Real-Time LADAR Data
Visualization with Multi-user

Collaboration Support

Ciril Bohak1(B), Byeong Hak Kim2, and Min Young Kim2

1 Faculty of Computer and Information Science, University of Ljubljana,
Večna pot 113, 1000 Ljubljana, Slovenia

ciril.bohak@fri.uni-lj.si
2 School of Electronics Engineering, Kyungpook National University,

1370 Sankyuk-dong, Buk-gu, Daegu, Korea
durumy98@hanmail.net, minykim@knu.ac.kr

Abstract. In this paper we present a web-based visualization sys-
tem developed for visualizing real-time point cloud data obtained from
LADAR (or other) sensors. The system allows direct visualization of
captured data, visualization of data from database or visualization of
preprocessed data (e.g. labeled or classified data). The system allows the
concurrent visualization from same or different data-sources on multiple
clients in the web browser. Due to the use of modern web technologies the
client can also be used on mobile devices. The system is developed using
modern client- and server-side web technologies. The system allows con-
nection with an existing LADAR sensor grabber applications through
use of UDP sockets. Both server- and client-side parts of the system
are modular and allow the integration of newly developed modules and
designing a specific work-flow scenarios for target end-user groups. The
system allows the interactive visualization of datasets with millions of
points as well as streaming visualization with high throughput speeds.

Keywords: LiDAR · LADAR · Point cloud data · WebGL
Data visualization

1 Introduction

There are many different ways of storing and presenting the data describing the
world around us. One of more popular ways in the recent years is use of point
cloud representation — a set of points in space which store different parameters
and information regarding the specific spatial location. Such representation is
mostly used for representing the shapes of the objects and surrounding world,
but it can also be used for storing other information (e.g. meteorological data,
physical measurements, simulation data etc.). In our case the point cloud data
is representing the surrounding world and objects in it.

c© Springer International Publishing AG, part of Springer Nature 2018
L. T. De Paolis and P. Bourdot (Eds.): AVR 2018, LNCS 10850, pp. 214–224, 2018.
https://doi.org/10.1007/978-3-319-95270-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95270-3_17&domain=pdf


Web-Based Real-Time LADAR Data Visualization 215

Point cloud data for shape representation can be acquired using several dif-
ferent sensors (e.g. depth camera [1], LiDAR [2] or LADAR [3]) or can be even
extracted from image data [4]. In our case the LiDAR and/or LADAR sensors
were used to acquire the point cloud data representing the shape of the world
(terrain, vegetation, buildings, etc.). While the LiDAR data is acquired from
the planes (see Fig. 1a) the LADAR data is acquired from stationary ground
position using gimbal system (see Fig. 1b).

(a) (b)

Fig. 1. Figure shows the acquisition process for LiDAR terrain data by plane (a) and
an example of LADAR sensor structure (b)

Point cloud data obtained with LADAR or LiDAR system are mostly used
for detection and tracking purposes [5,6], but to get better perception of the
data it is crucial to visualize them. Real-time visualization of large point cloud
data sets with up to tens or hundreds of millions of points poses a challenge
even with today’s GPU hardware. This is even more true if we want to dis-
play real-time streaming data with lots of newly added points per time frame
(e.g. hundreds of thousands of points per second). To achieve such performance
even on consumer accessible hardware (or even on mobile devices) several lim-
itations have to be defined. A well accepted approach for processing as well as
visualization of point cloud data is presented in [7] where authors present a pro-
gramming library for platform specific applications. An immersive visualization
using dedicated platform specific software for CAVE setup is presented in [8].
Some approaches convert the point cloud data into mesh geometry before visu-
alization. Such approach which uses rapid Delaunay triangulation for generating
the mesh model is presented in [9].

A very important aspect for fast real-time visualization of large point cloud
data sets is also the ability to process and provide such large amount of data fast
enough to the visualization system. LASTools [10] were developed for such pur-
pose, which are fast command line tools for simple processing of point cloud data.
For streamed data this speed is defined by speed of input sensors, but providing
the already stored large amount of data at high speed is also important [11].



216 C. Bohak et al.

While the data visualization for as single user is the main goal, it is often
appreciated if the same data visualization can bee seen by multiple users at the
same time or even if those users have an option of mutual interaction with the
data. Such collaborative approach is well known in online productivity tools (e.g.
Google Docs) and even in some specialized scientific tools. Such example for col-
laborative annotation of medical data with use of modern web technologies [12]
does not only allow the collaboration between user at a distance but also allows
replacement of specialized software and hardware with a modern web browser.
A similar concept is exploited in the presented system.

In the following section we present the developed system for real-time visual-
ization of 3D point cloud data with support for real-time data streaming, collab-
orative viewing and labeling of the data. In Sect. 3 we present evaluation of the
developed system and it’s results. In the final Sect. 4 we present the conclusions
and give the pointers for possible future work.

2 Developed System

The main goal was to determine whether it is possible to develop a real-time mas-
sive point cloud visualization system with support for visualization of real-time
streamed data with support for multi-user viewing and labeling of the displayed
data. Figure 2 shows the basic structure of the system: (1) Data Sender1 is a stan-
dalone application for reading raw sensor data and sending it to desired appli-
cation, (2) Data Preparation Module is a server based application for acquiring
the data, packaging the data into desired form and sending the data to (3) Data

Data
Preparation

Module
(NodeJS)

Data
Storage
Module

(PostgreSQL)

Data
Visualization

Module
(web browser)

Data
Sender
(C++)

Fig. 2. The basic system structure.

1 The application is developed in C++ and does was not developed as part of the
presented work.



Web-Based Real-Time LADAR Data Visualization 217

Storage module or (4) Data Visualization Module – a web application with sup-
port for WebGL for real-time visualization of point cloud data. The developed
modules (2–4) are presented in more detail in the following subsections.

2.1 Data Preparation Module

The Data Preparation Module is a NodeJS2 based server-side application devel-
oped for linking the Data Visualization Module with data resources. Data
resources can be either real-time data provider such as Data Sender or off-line
providers such as Data Storage Module. While data from Data Sender is acquired
from sensors and directly sent to Data Visualization Module, it is up to the Data
Preparation Module to request the data from Data Storage Module.

The application supports multiple connections and can simultaneously han-
dle multiple data streams (live streams and data storage requests) and pipe them
to multiple users individually. This allows multiple users to request data from
diverse data sources. The module will prepare the data and send it to the users
who requested it. The system does not support user management, but distin-
guishes between clients using uniquely generated tokens. The layer of security
was not implemented at this stage of development due to specific use-cases where
there is not such need (completely independent computer network or single com-
puter deployment).

The Data Preparation Module also allows to simultaneously send the data
obtained from Data Sender to data storage module, where the data is stored, and
to multiple data visualization modules where the data is displayed in real-time.
The communication between Data Preparation Module and Data Visualization
Module is implemented using Socket.IO3 – a library for fast and reliable contin-
ues communication. The communication with Data Sender is implemented using
standard UTP sockets.

The data from Data Sender is received in form of binary blocks, where each
block contains information from 200 points. Each point is represented with x,
y and z position values with 32-bit float precision. Each package is directly
submitted to all the clients (Data Visualization Modules) who are subscribed to
live data streaming.

For preparation of stored data, module allows customization of query com-
mands sent to the Data Storage Module. Some parameters of for query com-
mands can also be defined by users through settings in Data Visualization Mod-
ule. The data obtained from the Data Storage Module is packed and sent in
JSON form to the client which requested it, but can also be packed into binary
form for faster transmission.

While the basic functionality of module is to obtain, prepare and send the
point cloud data, it can be easily extended for use with data from other domains
as well. Such example might be the use of ortho-photo data or other GIS data
for purposes of better/different final visualization.

2 https://nodejs.org/.
3 http://socket.io/.

https://nodejs.org/
http://socket.io/


218 C. Bohak et al.

2.2 Data Storage Module

Data Storage Module consists of a NodeJS based server-side application for
interfacing with PostgreSQL4 relational database with Pointcloud extension5.
The extension deals with the variability of point dimensionality by using custom
database schema which describes the content of individual point in the database.
This takes care of number of point dimensions and their data types and possible
scaling and/or offsets between the actual values and values stored in database.

The above presented storage is not the fastest possible option for storing large
amounts of point cloud data, but offers a good trade-off between complexity of
use, speed and price [11].

2.3 Data Visualization Module

The Data Visualization Module was developed as web application using Angular6

and Bootstrap7 for implementing interactive responsive GUI, and ThreeJS8 and
Potree [13] for implementing fast and reliable 3D visualization using WebGL
technology.

The module’s GUI consists of two parts as can be seen in Fig. 3: (1) pref-
erences panel on the left, where users can select the data source and set the

Fig. 3. The data visualization module GUI.

4 https://www.postgresql.org/.
5 https://github.com/pgpointcloud/pointcloud.
6 https://angular.io/.
7 http://getbootstrap.com/.
8 https://threejs.org.

https://www.postgresql.org/
https://github.com/pgpointcloud/pointcloud
https://angular.io/
http://getbootstrap.com/
https://threejs.org


Web-Based Real-Time LADAR Data Visualization 219

parameters of the visualization and (2) visualization panel on the right, where
users can see and interact with displayed data.

In preference panel users can select data source from one of the existing
databases or they can turn on the live data receiving option. User can set next
database point loading parameters:

Number of Concurrent Loading Patches: points in database are stored in
patches containing several number of neighboring points according to their
spatial position. This allows faster retrieval of neighboring points. We can
choose how many patches of points we want to load in one call and thus
speeding up the database response time.

Load Every n-th Point: in dense point clouds it is not necessary to load all
the points to get the idea of the shape they are representing. For this reason
users can choose the density of points they want to display selecting only
every n-th point in the database according to the geolocation sorting. This
also means that client will draw less points which will result in higher frame
rate. An example of visualization of same data with different setting can be
seen in Fig. 4. More complex methods of level-of-detail approach are planned
for future work.

Progressive Loading: when the option of loading every n-th point has value
higher than 1 this switch will define whether after every n-th point is loaded
the loading will continue with incremented offset or not.

(a) Every point is loaded. (b) Every 10-th point is loaded. (c) Every 50-th point is loaded.

Fig. 4. The comparison of the same data visualization with different setting for loading
every n-th point.

Users can navigate in the visualization scene with use of mouse and keyboard.
Mouse is used for simple view rotation and zooming. The keyboard is used for
moving the camera view through the scene, speed of navigation can be adjusted
by changing the velocity multiplier.

When switch for Live data visualization is active the visualization module is
waiting for the data to be piped from Data Sender through Data Preparation
Module in real-time. If no Data Sender is connected to Data Preparation Module
or no data is sent, the Data Visualization Module will wait and no data will be
rendered.

Colors of visualization display the distance from camera to individual point.
A jet color-map is used to represent distances from the viewpoint (red being



220 C. Bohak et al.

closest and dark blue being the farthest away). Color-map is scaled for individual
data set and can be adjusted easily. To make distance even more apparent the
size of rendered points decreases with distance.

The visualization module also supports selection of desired points in the point
cloud. Because the interaction with individual point would require too much
overhead only selection of point groups is supported in the current version. The
size of selection group can be defined as parameter. In our case the size of few
thousands points per group in data set with millions of points proved to be best
option for good performance. To allow faster selection of groups of points we
allow two-level point selection: (1) single group under mouse cursor is selected
and (2) all the groups with points under mouse cursor are selected. The focused
points are rendered with pink color while selected points are rendered in white
(both colors are not in jet color-map and are thus easily distinguishable from
the rest). An example of focused and selected point groups can be seen in Fig. 5.

Fig. 5. The example of focused points (pink) and selected points (white). (Color figure
online)

To get even better visualization experience, complete Potree visualization
pipeline could be integrated, adding point shadowing and other more advanced
visualization features. In our case we only followed few implementation solutions
used in Potree library (point render size, server-client communication and few
other features).

2.4 User Collaboration

Collaboration allows users to share their view on data with other users in real
time similar to [14]. The user initiates sharing by activating share switch in
preferences panel. Once activated other users can see such users in list of users



Web-Based Real-Time LADAR Data Visualization 221

(as shown in Fig. 6a) and connect to a selected user by clicking on button with
his/her designation (see Fig. 6b). Users that want to join the shared session must
do so before the host user initiates data loading. After the loading is initiated
by host other users can not connect anymore. The initiation of the loading
starts loading the data from same database for all the connected users. The data
loading is independent for each user due to the different speeds of the network
connections and request handling speed of individual client. Users can navigate
the scene separately and change their view on the data as is presented in Fig. 6c
(view of the main user) and 6d (view of the connected user).

(a) List of users who are sharing their view. (b) Connected to a selected user.

(c) The view on the data for main user. (d) The view for user connected to user (c)

Fig. 6. The sharing options.

The sharing is implemented as presented in the Fig. 7. Currently only the
following types of sharing is supported by the system: (1) camera view param-
eters, (2) loading initiation cancellation and (3) data selection. While view and
loading initialization are only shared in one direction (from host to connected
users) the data selection is supported in both directions and the selection state is
kept on the server. The framework supports simple implementation for sharing
other data or parameters as well.



222 C. Bohak et al.

Host
user

Data
Preparation

Module

Data
Storage
Module

Camera
view

parameters
point

selection

Point
cloud
data

points

requests

Connected
user

Connected
mobile

user

. . .
Camera

view
parameters

point
selection

point
selection Point

cloud
data

+

+

Fig. 7. The diagram is showing how the shared data is distributed.

3 Evaluation and Results

We only conducted preliminary evaluation of the system. The developed system
allows interactive visualization of datasets with up to tens of millions of points
on a consumer based hardware: i7 (2.3 GHz), 16 GB RAM, NVIDIA GeForce GT
650M 1024 MB. The visualization had on average more than 25 FPS. Streaming
live data from the Data-Sender module on local network speed was approx.
200.000 points per second which presented the upper limit for the sending system.
Streaming data from the server-side database system speed was approx. 30.000
points per second. The bottleneck in this case was the database system which
ran on a low-end infrastructure, also the time for querying the database was a
bit slow. The visualization test was performed with Autzen sample data supplied
with liblas9 library, which was imported into PostgreSQL database on virtual
machine with single core (2.3 GHz) and 4 GB RAM. The loading of 10.6 million
points in the dataset took on average 341 s while sending the data in JSON
format over the wireless network connection.

The collaborative features worked fine on local network as well as over the
Internet. This was expected since the data is sent to each client individually
except the annotation information which is only sent between connected clients.
As part of future work we are also planning more in-depth evaluation of the
system.

4 Conclusion

The presented system is used for real-time visualization of real-time as well as
stored point cloud data. The preliminary results show that the presented system
9 https://www.liblas.org/samples/.

https://www.liblas.org/samples/


Web-Based Real-Time LADAR Data Visualization 223

can be used in real-life scenarios. While there are some downsides to slow data
streaming from the database it is still sufficient for the tested scenarios. How-
ever in the future we are planning to test different database solutions for faster
data throughput. We are also planning on improving the client-side visualization
implementation for easier user interaction and navigation as well as support for
level-of-detail display of data with support for user defined detail parameters.
Other possible future work contains reimplementation of user annotation and
selection of the displayed data.

References

1. Du, H., Henry, P., Ren, X., Cheng, M., Goldman, D.B., Seitz, S.M., Fox, D.:
Interactive 3D modeling of indoor environments with a consumer depth camera.
In: Proceedings of the 13th International Conference on Ubiquitous Computing,
pp. 75–84. ACM (2011)

2. Haala, N., Peter, M., Kremer, J., Hunter, G.: Mobile LiDAR mapping for 3D point
cloud collection in urban areas - a performance test. Int. Arch. Photogrammetry
Remote Sens. Spat. Inf. Sci. 37, 1119–1127 (2008)

3. Molebny, V., McManamon, P.F., Steinvall, O., Kobayashi, T., Chen, W.: Laser
radar: historical prospective-from the east to the west. Opt. Eng. 56, 56 (2016).
https://spie.org/publications/journal/10.1117/1.OE.56.3.031220?SSO=1

4. Rosnell, T., Honkavaara, E.: Point cloud generation from aerial image data acquired
by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.
Sensors 12(1), 453–480 (2012)

5. Wang, C.C., Thorpe, C., Suppe, A.: LADAR-based detection and tracking of mov-
ing objectsfrom a ground vehicle at high speeds. In: IEEE IV2003 Intelligent Vehi-
cles Symposium. Proceedings (Cat. No.03TH8683), pp. 416–421, June 2003

6. Navarro-Serment, L.E., Mertz, C., Hebert, M.: Pedestrian detection and track-
ing using three-dimensional LADAR data. Int. J. Robot. Res. 29(12), 1516–1528
(2010)

7. Rusu, R.B., Cousins, S.: 3D is here: Point cloud library (pcl). In: IEEE Interna-
tional Conference on Robotics and automation (ICRA) 2011, pp. 1–4. IEEE (2011)

8. Kreylos, O., Bawden, G.W., Kellogg, L.H.: Immersive visualization and analysis
of LiDAR data. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P.,
Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe,
L. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 846–855. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89639-5 81

9. Su, T., Wang, W., Lv, Z., Wu, W., Li, X.: Rapid delaunay triangulation for ran-
domly distributed point cloud data using adaptive hilbert curve. Comput. Graph.
54, 65–74 (2016). Special Issue on CAD/Graphics 2015

10. Hug, C., Krzystek, P., Fuchs, W.: Advanced lidar data processing with lastools.
In: ISPRS Congress, pp. 12–23 (2004)

11. van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer, M., Geringer,
D., Ravada, S., Tijssen, T., Kodde, M., Gonçalves, R.: Massive point cloud data
management. Comput. Graph. 49(C), 92–125 (2015)

12. Lavrič, P., Bohak, C., Marolt, M.: Collaborative view-aligned annotations in web-
based 3D medical data visualization. In: MIPRO 2017, 40th Jubilee International
Convention, 22–26 May 2017, Opatija, Croatia, proceedings, pp. 276–280 (2017)

https://spie.org/publications/journal/10.1117/1.OE.56.3.031220?SSO=1
https://doi.org/10.1007/978-3-540-89639-5_81


224 C. Bohak et al.

13. Schütz, M.: Potree: Rendering Large Point Clouds in Web Browsers. Master’s the-
sis, Institute of Computer Graphics and Algorithms, Vienna, University of Tech-
nology, Favoritenstrasse 9–11/186, A-1040 Vienna, Austria, September 2016

14. Marion, C., Jomier, J.: Real-time collaborative scientific WebGL visualization with
WebSocket. In: Proceedings of the 17th International Conference on 3D Web Tech-
nology, pp. 47–50. ACM (2012)


	Web-Based Real-Time LADAR Data Visualization with Multi-user Collaboration Support
	1 Introduction
	2 Developed System
	2.1 Data Preparation Module
	2.2 Data Storage Module
	2.3 Data Visualization Module
	2.4 User Collaboration

	3 Evaluation and Results
	4 Conclusion
	References




