
Modular Code Generation
from Synchronous Block Diagrams:

Interfaces, Abstraction, Compositionality

Stavros Tripakis1(B) and Roberto Lublinerman2

1 Aalto University, Espoo, Finland
stavros.tripakis@gmail.com

2 Google, Mountain View, USA
rluble@gmail.com

Abstract. We study abstract, compositional and executable represen-
tations of synchronous models in general and hierarchical synchronous
block diagrams in particular. Our work is motivated by the problem of
modular code generation, where sequential code (in, say, C or Java) must
be generated for a given block independently of its context, that is, inde-
pendently of the diagrams in which this block may be embedded.

We propose non-monolithic interfaces called profiles as a representa-
tion of blocks. A profile contains a set of interface functions that imple-
ment the semantics of the block, and a set of dependencies between
these functions. Profiles are executable through the implementation of
their interface functions. Profiles are compositional in the sense that a
diagram of profiles can be represented as a single profile without loss of
important information, such as input-output dependencies. This is con-
trary to traditional methods which use monolithic interfaces that contain
a fixed number of interface functions, usually just one or two. Monolithic
interfaces generally result in loss of input-output dependency informa-
tion and are non-compositional. Profiles are abstract in the sense that
they hide most of the internal details of a diagram (e.g., functionality).

We provide methods for profile synthesis and modular code genera-
tion: to automatically produce profiles and profile implementations of
composite blocks, given profiles of their sub-blocks. Our work reveals
fundamental trade-offs between the size and reusability of a profile, as
well as between characteristics of the generated code and complexity
of the synthesis algorithms. We discuss various algorithms that explore
these trade-offs, among which algorithms that achieve maximal reusabil-
ity with optimal profile size.

This paper unifies and extends the work presented in [30–32]. We gratefully acknowl-
edge the contributions of our co-author Christian Szegedy. Roberto Lublinerman con-
tributed to this work while he was at Cadence Design Systems; he is now at Google.
We also thank the anonymous Reviewers of earlier versions of this work. This work
was partially supported by the National Science Foundation (awards #1329759 and
#1139138), and by the Academy of Finland. We gratefully acknowledge the support
of Edward Lee, without whom this work would not have been possible.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 449–477, 2018.
https://doi.org/10.1007/978-3-319-95246-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95246-8_26&domain=pdf

450 S. Tripakis and R. Lublinerman

1 Introduction

What is the parallel composition of two Mealy machines, or even two stateless
functions? Consider, for instance, the block diagram shown to the left of Fig. 1.
Blocks A and B represent two stateless functions (over some input and output
domains). Block P is a composite block formed by encapsulating A and B: P
represents the parallel composition of A and B. It is tempting to view P as a new
stateless function whose input and output domains are the cartesian products
of the input and output domains of A and B, respectively. This is problematic,
however, as we then lose the information that the output of A does not depend
on the input of B, and vice versa. Such information turns out to be critical
when using P in certain contexts. For instance, if we connect P in a feedback
configuration, as shown in the middle of Fig. 1, we obtain a diagram with a cyclic
dependency: the input of P depends on its output. Although some methods
exist to deal with such dependencies, they are expensive or even undecidable in
general (see discussion below). Moreover, using such methods is sometimes an
overkill. In our example, for instance, the situation is really simple: there is no
real dependency cycle in the feedback configuration, as revealed by flattening P
(right of Fig. 1).

y2

A

B

P

A

P
B

x1

x2

y1

Fig. 1. A hierarchical block diagram (left), a possible way to connect macro block P
(middle) and the same connection after flattening P (right).

The problem really lies in the fact that representing the parallel composition
of functions A and B as a new function P loses the dependency information
between inputs and outputs. In this paper we present a systematic method to
represent, maintain and efficiently compute such information. Before further
discussing our method and its benefits over alternatives, let us place our work
in context.

This work is motivated by the need to develop reliable and efficient methods
for the design and implementation of embedded systems [25]. Current practice
can be qualified as being mostly about low-level design: build a prototype system,
test it, discover problems, fix them and repeat the process. This is costly both
in terms of money and time, and also offers few guarantees of producing reliable
systems. So-called model-based design (MBD) has been proposed as an alterna-
tive. The MBD paradigm is based on the premise of using models for high-level
design. Models can be analyzed in more exhaustive and less costly ways than

Modular Code Generation from Synchronous Block Diagrams 451

prototype systems. MBD relies on powerful implementation techniques to derive
executable systems from models. These techniques need to be as automatic as
possible, in order to produce implementations efficiently. They also need to pre-
serve as many of the properties of the high-level model as possible. This allows to
produce implementations that are, as much as possible, correct by construction,
which reduces the effort of testing at the implementation level.

In the field of embedded systems, like in many other fields, specialized (some-
times called “domain-specific”) languages are used. These languages include
features such as concurrency, time and system dynamics, which are integral
parts of embedded system design. In this paper, we are particularly interested
in synchronous models, whose execution proceeds by an infinite sequence of syn-
chronous rounds. The synchronous model of computation (MoC) is a funda-
mental one, especially relevant in the context of embedded systems, since it is
prevalent in many application domains, from control software to synchronous
hardware.

Examples of synchronous models coming from the academia are the so-called
synchronous languages [3], such as Lustre [14], Esterel [6,34] or Signal [20,27],
or the synchronous-reactive domain of Ptolemy [19]. Simulink from The Math-
Works1 and SCADE from Esterel Technologies2 are two commercial products,
especially widespread in the automotive and avionics domains. SCADE has its
foundations on Lustre and uses a purely synchronous MoC. Simulink contains
both a continuous-time and a discrete-time part: the latter follows essentially
the synchronous MoC.

The tools associated with languages such as the above include graphical
model editors, simulators and code generators.3 Automatic generation of code
that implements the semantics of a model is useful in different contexts: the
code can be used for simulation; but it can also be embedded in a real-time
digital control system (X-by-wire). In fact, uses of the latter type are increasingly
being adopted by the industry. Thus, these tools can be seen as programming
languages, debuggers and compilers for the embedded system domain.

In this paper, we use synchronous block diagrams (SBDs) [19,32] as a formal
model that captures the synchronous MoC. A fundamental concept in our ver-
sion of SBDs, directly inspired by Simulink, SCADE and Ptolemy, is hierarchy:
a set of blocks can be connected to form a diagram, which may be encapsulated
in a composite, or macro, block. The latter can be itself further connected and
encapsulated. Hierarchies of arbitrary depth can be formed in this way. Hierar-
chy is essential in graphical formalisms since it allows to master complexity by
building designs in a modular manner. Hierarchy facilitates the reuse of high-
level components, both during model construction and code generation.

Our work has been motivated by the problem of modular code generation
from synchronous models such as SBDs. We already explained the importance

1 See http://www.mathworks.com/products/simulink/.
2 See http://www.esterel-technologies.com/products/scade-suite/.
3 Primarily software code generators, since software is becoming predominant in

embedded systems, but also hardware code generators in some cases.

http://www.mathworks.com/products/simulink/
http://www.esterel-technologies.com/products/scade-suite/

452 S. Tripakis and R. Lublinerman

of code generation in the discussion above. Modular code generation consists
in generating code from pieces of a model independently from other pieces. In
the context of SBDs, modular code generation consists in generating code from
a given block P independently from its context, that is, independently from
the diagrams that P is or will be connected to. Just as separate compilation of
different files of a large piece of software written in C++ or Java is essential,
so is modular code generation from hierarchical models such as SBDs. It allows
incremental compilation and scalability of the code generation process. It also
allows building reusable model libraries. Finally, it allows to treat blocks as
“black boxes” as much as possible. This is important in an industrial context,
where intellectual property (IP) of models is a primary concern.

Most existing approaches to code generation from synchronous models are
monolithic: they consist in generating, for a given block, a single step function
that computes all block outputs given all its inputs. This is problematic because
it loses input-output dependency information, as illustrated above. If the block
has state, often two functions are generated, an output function to compute the
outputs from the inputs and current state, and an update function to update the
state, as in a Mealy machine. This does not solve the problem either, however,
since inputs and outputs are still treated in a monolithic way in the output
function.

One way to deal with this problem is to follow the approach proposed
in [5,19,33] and used in Ptolemy [29]. This approach consists in generating two
functions per block, an output and an update function as above (in Ptolemy
these are called fire and postfire, respectively) but with the addition that
these functions can operate over a special unknown value, corresponding to the
bottom element of a complete partial order. At run-time, at every synchronous
round, the output functions of all blocks are executed repeatedly until a fix-
point is computed. The fixpoint may contain unknown values, in which case the
diagram is not well-defined and execution stops. Otherwise, execution proceeds
to the next round where a new fixpoint is computed.

One problem with this approach is that it cannot guarantee statically (i.e., at
compile-time) that no unknown values will be produced at run-time. Therefore,
the approach is mostly suited for simulation, and cannot be used to produce code
for safety-critical applications. One way to guarantee statically that the diagram
is well-defined is to prove that the model is constructive in the sense of Berry [5].
Unfortunately, proving constructiveness is generally undecidable for models with
infinite domains, and is expensive even for models with finite domains. Moreover,
this approach requires semantic knowledge about each block, namely, what is the
function that the block computes. Having such semantic knowledge is contrary
to the goal of treating blocks as black boxes, that we pursue in this paper.

Our approach allows to make static guarantees. The key idea is to gener-
ate for a given block a non-monolithic interface, also called profile. The latter
consists of a not a-priori fixed number of interface functions, plus a set of depen-
dencies between these functions. Each function computes some outputs from
some inputs. The dependencies capture the IO dependencies of the block. As an

Modular Code Generation from Synchronous Block Diagrams 453

Fig. 2. Two possible profiles for block P of Fig. 1: the left one is monolithic; the right
one is not.

example, two possible profiles for block P of Fig. 1 are shown in Fig. 2. The left-
most profile is monolithic, and corresponds to the standard approach of treating
P as simply a new function from both inputs to both outputs. The rightmost
profile is non-monolithic, and corresponds to what one of our methods automat-
ically generates.

The profile can be seen as an abstraction of the information contained in
the block (i.e., in its internal hierarchy, which is not exposed in the profile).
We present profile synthesis methods that allow to generate profiles automati-
cally, and moreover, to explore different trade-offs during the generation of such
profiles. In particular, trade-offs between the size of the generated profile and
its accuracy. The smaller the size the better, for scalability and IP reasons. On
the other hand, a profile that is too small may lose IO dependency information.
This in turn results in a profile that is less reusable, that is, that cannot be
used in some contexts. Apart from profile size vs. reusability trade-offs, we also
study other trade-offs, such as between the quality of the resulting code and the
complexity of computing the profile.

Contributions: This paper unifies and extends the work presented in [30–32].
This work provides a general and automatic solution to the problem of modular
code generation from synchronous models, with static guarantees. Compared to
the fixpoint-based approaches discussed above, ours can handle a smaller class
of models, namely, those that exhibit no dependency cycles once the hierar-
chy is flattened (dependency cycles are allowed at higher levels, however, as
in the example of Fig. 1). On the other hand, our approach can provide static
(compile-time) guarantees, which cannot be generally provided by fixpoint-based
approaches, as discussed above. With our method, diagrams (and the corre-
sponding generated code) are guaranteed to have well-defined semantics (no
unknown values) at compile-time. Moreover, interface functions are called at
most once per round, in a statically determined order. Compared to fixpoint-
based methods, where more than one iterations may be required to reach a
fixpoint, static execution order has the benefits of smaller run-time overhead,

454 S. Tripakis and R. Lublinerman

better performance, and better predictability of the execution time of the gen-
erated code. All are crucial properties in an embedded system setting.

Organization: The rest of this paper is organized as follows. In Sect. 2 we discuss
other related work. In Sect. 3 we explain the syntax and semantics of hierarchi-
cal SBDs. In Sect. 4 we present profiles. In Sect. 5 we describe our method for
automatically synthesizing profiles and generating code that implements those
profiles. Section 6 concludes this paper.

2 Other Related Work

Compositionality of synchronous models, and in particular the problem of cyclic
dependencies, has been the topic of extensive study, and a variety of solutions
have been proposed (e.g., see [3,15] for overviews). The most general is probably
the one used in Esterel [5], however, it is often infeasible as discussed above.
Simulink and Lustre compilers both rely of statically detecting cyclic dependen-
cies and rejecting the model if one is found. In order to do this they flatten the
model, however, which is not modular. SCADE does not flatten the model, but
requires absence of cyclic dependencies at every level of the hierarchy, which is
quite restrictive.

Equipping models with input-output dependency information has been pro-
posed in [2] and also in [48]. These works use such information mainly for analysis
(e.g., distinguish between true and false dependencies). Our goals are also syn-
thesis and code generation. We also study trade-offs such as between profile size
vs. reusability, which are not studied in these works.

Code generation for synchronous models and languages has been extensively
studied, however, modular code generation has received less attention: in 2003,
[3] stated that “a unified treatment [of this problem] remains a research topic”.
In fact, separate compilation (essentially the same problem) for synchronous
languages has been identified as synonymous with monolithic compilation, and
as such deemed to be generally infeasible [23,35]. Our non-monolithic framework
provides the unified treatment that has been missing.

Although not identified explicitly as such, non-monolithic approaches have
been described previously, for instance, in [4,21,24,38]. These works are, how-
ever, focusing on different problems, such as static scheduling and code distribu-
tion, and as such provide incomplete solutions to the modular code generation
problem. In particular, they do not deal with hierarchies of arbitrary depth, they
do not identify code generation trade-offs and they do not address the problems
of optimizing metrics such as profile size or reusability.

[47] study partial evaluation in Esterel: generating code that computes out-
puts even in the presence of unknown inputs. Modular compilation for Quartz
(a variant of Esterel) is studied in [10,39]. Their work focuses more on problems
such as so-called schizophrenia which are specific to imperative synchronous
languages like Esterel, and less on causality problems which is our main focus.
Causality problems are also outside the focus of work on composable code gen-
eration from languages like Giotto where by definition all outputs are produced

Modular Code Generation from Synchronous Block Diagrams 455

with a unit delay [26]. The focus there is on compositionality of timing and
scheduling, as is the case with work on compositional real-time scheduling [40].

Profiles are rich interfaces. Interfaces are a key mechanism for abstraction,
modularity, compositionality, and many other important properties of software
and systems. Interfaces have appeared in the literature in many different settings
and communities, such as software engineering and programming languages (e.g.,
Typestate [41]), or formal methods (e.g., interface automata [1], relational inter-
faces [45], and timed actor interfaces [22]). Particularly close to our work here
is the theory of relational interfaces which have synchronous semantics similar
to SBDs [45]. This work has since been extended into a powerful compositional
framework called refinement calculus of reactive systems (RCRS) [37]. RCRS
includes methods and tools to translate hierarchical SBDs into a formal algebra
of contracts which can be manipulated formally (e.g., using a theorem prover)
and symbolically [18]. RCRS also includes a formal notion of refinement which
allows to specify a system at different levels of abstraction, and also to speak
formally about substitutability (when can a component replace another one) [45].

Interfaces are key for simulation environments like Ptolemy. Most modern
simulators are built in a modular fashion, where the simulation engine is sep-
arated from the simulated models. This allows the same engine to be used for
a large variety of models, and also allows the addition of new models, model
components, model libraries, etc. To achieve this modularity in the implementa-
tion, a clear API (application program interface) is used. This API is typically
implemented by the model components (e.g., “blocks” in Simulink, “actors” in
Ptolemy) and called by the simulation engine (although call-backs are also some-
times used, e.g., the fireAt method in Ptolemy). A formalization of (part of)
Ptolemy’s actor interface is provided in [46], as part of an attempt to give formal
semantics to the language.

Different simulators typically use different APIs, which hinders the shar-
ing and exchange of models, if these models are written in different languages.
The FMI standard [7,8] aims to remedy this by providing standard APIs for
model exchange and co-simulation. The development of FMI has received great
attention recently as it raises several interesting questions, such as what prop-
erties should a “good” co-simulation algorithm have [11,12,16], how to bridge
the semantic gap between heterogeneous modeling formalisms and the standard
API [9,43], how to integrate FMI in existing simulation tools [17], etc.

The ideas presented in this paper are not limited to models with synchronous
semantics. They have indeed inspired us to explore modular code generation and
compositionality in other contexts, such as dataflow [28]. Our study revealed that
hierarchical SDF graphs used in tools such as Ptolemy are non-compositional in
the sense that a composite SDF actor cannot always be replaced by an atomic
one [42], a problem reminiscent of the limitations of monolithic interfaces in the
case of SBDs. A compositional alternative inspired from the concept of non-
monolithic interfaces is proposed in [28].

A broader discussion about the role of compositionality in the science of
system design can be found in [44].

456 S. Tripakis and R. Lublinerman

3 Synchronous Block Diagrams

3.1 Hierarchical Block Diagrams

We consider a notation based on a set of blocks that can be connected to form
diagrams (see Fig. 3). Each block has a number of input ports (possibly zero) and
a number of output ports (possibly zero). Diagrams are formed by connecting
some output port of a block A to some input port of a block B (B can be the
same as A). We assume that a port can only be connected to a single other port:
fan-out can be explicitly modeled using blocks that replicate their input to their
outputs. We also assume that every output port in a diagram is connected: again,
this is without loss of generality, since outputs can be connected to “dummy”
blocks that do nothing. Each port has a given data type (integer, boolean, ...)
and connections can only be done among ports with compatible data types, as
in a standard typed programming language. We will not worry about data types
in this paper as these can be handled using standard type-theoretic methods.

Blocks are either atomic or macro. A macro (i.e., composite) block encapsu-
lates a block diagram into a block. The blocks forming the diagram are called
the internal blocks of the macro block, or (synonymously) its sub-blocks. In the
example shown to the left of Fig. 3, block Q is a macro block and A,B,C are its
sub-blocks. The connections between blocks (“wires”) are called signals. Upon
encapsulation, each input port of the macro block is connected to one or more
inputs of its internal blocks, or to an output port of the macro block; and each
output port of the macro block is connected to exactly one port, either an output
port of an internal block, or an input of the macro block. Signals inherit the data
types of their source ports.

In the context of a modular and hierarchical notation such as the block
diagrams we consider in this paper, it is useful to distinguish between block
types and block instances. Indeed, a block, whether atomic or composite, can
be used in a given diagram multiple times. For example, a block of type Adder,
that computes the arithmetic sum of its inputs, can be used multiple times in a
given diagram. In this case, we say that the block of type Adder is instantiated
multiple times. Each “copy” of the block is called an instance. In the rest of the
paper, we omit to distinguish between type and instance when the distinction is
clear from context.

Q

C

B
A

y1

y2

x1

x2

y2

A

C DB

initial:v

T

x1

x2

y1

Fig. 3. Left: a hierarchical block diagram consisting of macro block Q with sub-blocks
A,B,C. Right: a diagram with a triggered block C.

Modular Code Generation from Synchronous Block Diagrams 457

3.2 Triggers

In a diagram, any (atomic or macro) block may be triggered by a Boolean signal
x: the intention is that the triggered block is to “fire” only when x is true. If
x is false, then the outputs of the triggered block retain their value (i.e., the
value that they had in the previous synchronous round). The signal x is called
the trigger of the triggered block. A block can have at most one trigger. The
diagram shown to the left of Fig. 3 has no triggers. An example of a diagram
with triggers is shown to the right of Fig. 3: block A produces a (Boolean) signal
that triggers block C.

When a block is triggered, the user specifies initial values for each output
of that block. These determine the values of the outputs during the initial time
interval (possibly empty) until the block is triggered for the first time. We call
such a value a trigger-initial value. In the example shown to the right of Fig. 3,
a trigger-initial value v is specified for the (single) output of triggered block C.
Note that if a block has many outputs, a potentially different trigger-initial value
can be specified for each output.4

[31] show that triggers do not add to the expressiveness of synchronous block
diagrams and can be eliminated by a structural transformation, which essentially
transforms triggers into inputs. This transformation is not modular, however,
because it propagates in a top-down manner throughout the entire hierarchy, all
the way to the atomic blocks. This contradicts our requirement that blocks be
seen as “black boxes”. To achieve modularity, we provide methods that handle
triggers directly, without eliminating them.

Our motivation for studying triggers is to capture Simulink’s triggered sub-
systems. Triggers are a simpler and more restricted concept than the con-
cept of clocks, used in synchronous languages and more generally in syn-
chronous dataflow [13]. Indeed, signals in a synchronous block diagram are always
“present”, that is, they have a well-defined value at every synchronous round.
This includes signals that are outputs of triggered blocks. For this reason, a
sophisticated type-checking mechanism such as a clock calculus [13] is not needed
in our case.

3.3 Combinational, Sequential, and Moore Blocks

Blocks (more precisely, block types) can be either combinational (i.e., stateless)
or sequential (i.e., stateful, that is, having internal state). Atomic blocks are pre-
classified as either combinational or sequential. A macro block is combinational

4 A Reviewer of an earlier version of this article correctly pointed out that there may
be potential problems with the specification of trigger-initial values. In particular,
complications may arise if downstream models are only valid for certain inputs: what
happens if a trigger-initial value is not a legal input for the downstream model?
While we agree that this is a problem, we feel that it is not confined to the use of
triggers. The same problem might arise in a diagram without triggers. In general,
the problem arises from non-input-receptive components. For a thorough study of
such components, we refer the reader to [36,45].

458 S. Tripakis and R. Lublinerman

iff all its sub-blocks are combinational; otherwise it is sequential. Some sequential
blocks are Moore (from Moore machines). All outputs of a Moore block only
depend on the current state of the block, but not on the inputs. See also Sect. 3.4.

3.4 Semantics

As we shall see in Sect. 4, each block in our framework is represented by a set of
interface functions and a directed acyclic graph whose nodes are these functions.
Let f be such an interface function with inputs x1, . . . , xn and outputs y1, . . . , ym,
where m,n ∈ N and N = {0, 1, 2, 3, . . .}. Implicitly, f is also associated with a
state variable s (possibly a vector). Denote by Dv the domain of variable v.
Then, semantically f is a function

f : Dx1 × · · · × Dxn
× Ds → Dy1 × · · · × Dym

× Ds (1)

Such a function f then defines the behavior of a SBD as a dynamical system in
time. In particular, each signal x is interpreted semantically as a total function
x : N → Dx, where x(k) denotes the value of x at synchronous round k. Suppose,
for the moment, that f belongs to a non-triggered block in the diagram (the case
of triggered blocks is examined below). Then, if x is an input to f then x(k) is
determined by the environment (which can be another function in the diagram),
otherwise it is determined by f as follows:

(
y1(k), . . . , ym(k), s(k + 1)

)
= f

(
x1(k), . . . , xn(k), s(k)

)
(2)

That is, f takes as input the current values of all its input ports and the current
value of the state, and produces as output the current values of all its output
ports and the next value of the state.

For example, if f+ is the (unique) interface function for an Adder block that
has two inputs x1, x2, one output y, and no internal state, then semantically f+
is defined by

f+(vx1 , vx2 , vs) = (vx1 + vx2 , vs) (3)

which defines the dynamical system

y(k) = x1(k) + x2(k) (4)

As can be seen in this example, stateless blocks can be formalized as blocks with
a single, “dummy” state vs that never changes.

As another example, consider the unit-delay block, also denoted 1
z . This is a

stateful block with a single input port x and a single output port y. As we shall
see in Sect. 4 the profile of 1

z contains two interface functions, one that computes
the output from the current state and one that updates the state based on the
input. Both are semantically the identity function, and define the dynamical
system

(
y(k), s(k + 1)

)
=

(
s(k), x(k)

)
(5)

Modular Code Generation from Synchronous Block Diagrams 459

The behavior of the unit-delay block is illustrated in Fig. 4. The value of the
input signal x at round k is x(k). The value of the state at round 0, i.e., s(0), is
denoted sinit.

y

y:
s:
x:

sinit

0

x(0)
sinit

1 3 5

...
x(1) x(3) x(5)
x(0)

2

x(2)
x(1)

4

x(4)
x(3)x(2) x(4)

rounds
x(0) x(1) x(2) x(3) x(4)

1
z

x

Fig. 4. A unit-delay block (left) and its semantics (right).

We now turn to the case of triggered blocks. Suppose f is an interface function
of some block A which is triggered, in the diagram in question, by some signal t.
Notice that the semantics of f remain the same, since f is defined independently
from context. However, the semantics of the output signals of f change, because
of the fact that A is triggered. In particular, let y ∈ {y1, . . . , ym} be an output
of f . Then, Eq. (2) generalizes to

y(k) =

⎧
⎨

⎩

fy(x1(k), . . . , xn(k), s(k)), if t(k) = true
y(k − 1), if t(k) = false and k > 0
vy, if t(k) = false and k = 0

(6)

s(k + 1) =
{
fs(x1(k), . . . , xn(k), s(k)), if t(k) = true
s(k), if t(k) = false (7)

where fy, fs are projections of f to variables y and s, respectively, and vy is the
trigger-initial value specified in the diagram for y.

An example that illustrates the semantics of triggered blocks is given in Fig. 5:
t is the triggering signal, “T” and “F” denote true and false, respectively, and v
is the trigger-initial value for y.

y

x(0) x(1) x(3) x(5)x(2) x(4)

y:
s:

v

0

sinit

1 3 5

...

2

x(1)

4

x(1)x(1) x(4)

rounds
x(1) x(4)

1
z

t
t: F T F TF T

v

sinit

sinit

sinit sinit

x

x:

Fig. 5. A triggered unit-delay block (left) and its semantics (right).

Now, consider a given composite block P so that the profiles of all its sub-
blocks are known. That is, the interface functions of the sub-blocks of P are
semantically defined. The internal diagram of P defines a set of dependencies
between these interface functions, corresponding to the scheduling dependency

460 S. Tripakis and R. Lublinerman

graph, described in Sect. 5.1. If this graph contains a cycle, then the semantics of
P is undefined. Otherwise, the semantics is defined in terms of a new function fP
of the same form as in (1). fP is obtained by function composition of the interface
functions of the sub-blocks of P . Acyclicity of the scheduling dependency graph
guarantees that the composition is well-defined.

4 Profiles: An Abstract, Compositional and Executable
Representation of Synchronous Block Diagrams

4.1 Profiles

A profile can be seen as an interface or a summary of a block type. All blocks,
atomic or composite, have profiles. A block may have multiple profiles, each
suited for different purposes. This will become clear when we discuss tradeoffs
in Sect. 4.3.

The profile of a block contains:

– A list of interface functions and their signatures. Each such function takes as
input a set of values corresponding to some of the input ports of the block,
and returns as output a set of values corresponding to some of the output
ports of the block. The signature specifies which ports the arguments of the
function correspond to, their data types, and so on.5

– A profile dependency graph (PDG). The PDG is a directed, acyclic graph
(DAG), the nodes of which are the interface functions listed in the profile.
The PDG specifies the correct order in which these functions are to be called
at every synchronous round. If f → g is an edge in the PDG, then function
f must be called before function g.

Profile of Adder:

1
z

Interface functions Profile dependency graphs

Profile of 1
z
:

(combinational) A.step(x1, x2) returns y1;

U.get() returns y2;

U.step(x3) returns void;
U.stepU.get

A.stepAdder

(Moore)

x1

x2

y1

y2x3

y1

y2 x3

x1

x2

Fig. 6. Profiles for Adder and Unit-Delay blocks.

For example, Fig. 6 shows the profiles of an Adder block and a Unit-Delay
block. Data types are omitted from the signatures of the profiles. The inputs and
5 For sequential blocks (i.e., blocks with internal state) profiles contain a special init

function that initializes the state. In our framework, init functions of macro blocks
are synthesized from init functions of their sub-blocks. This is a simple procedure
whose details are omitted.

Modular Code Generation from Synchronous Block Diagrams 461

Fig. 7. Three possible profiles for block Q of Fig. 3.

outputs of the interface functions are also shown on the nodes of the PDG: note
that this information can be derived from the signatures of the interface func-
tions. Figure 2 shows two possible profiles for macro block P of Fig. 1. Figure 7
shows three possible profiles for macro block Q of Fig. 3. As these examples
illustrate, a given block can have more than one profile. Indeed, different profiles
realize different trade-offs and thus are more or less suited in different situa-
tions, as discussed in Sect. 4.3. Also note that different blocks can have identical
profiles, as illustrated by Figs. 2 and 7.

Profiles that contain a single interface function are called monolithic. The
profile of the Adder in Fig. 6 is monolithic, whereas the profile of 1

z is not.
Profile 1 in Figs. 2 and 7 is monolithic, whereas the other profiles shown in these
figures are non-monolithic.

Let P be a macro block and consider a profile of P . The PDG of the profile
induces a set of dependencies between inputs and outputs of the block. In par-
ticular, output y depends on input x if the PDG has a directed path from x to
y. On the other hand, the internal diagram of P , together with the profiles of all
sub-blocks of P , also induce a set of dependencies between inputs and outputs.
These dependencies are captured in the scheduling dependency graph, formalized
in Sect. 5.1. Here we discuss them informally, through examples. For instance,
from the internal diagram of block P of Fig. 1 we can deduce that y1 does not
depend on x2. Now, y1 may or may not depend on x1, depending on the profile
of A. If A has a monolithic profile, then its output depends on its input, thus,
y1 depends on x1. If A has a profile like the one of the Moore block 1

z then y1
does not depend on x1.

We require that all input-output dependencies that are induced by the inter-
nal graph of a block P and the profiles of its sub-blocks are also induced by the
PDG of the profile of P . We then say that the profile of P is sound. The profile
synthesis methods presented in Sect. 5 guarantee that the generated profiles are
sound.

Note that the profile of a block is independent of whether the block is trig-
gered or not. Indeed, whether the block is triggered is not a property of the
block, it is a property of its context: the same block (type) may be triggered in
some diagrams and not triggered in other diagrams. The same profile for this

462 S. Tripakis and R. Lublinerman

block can be used in both cases. Triggering will affect how the profile is used,
however, as explained in Sect. 5.

4.2 Profile Implementations

The profile contains a list of interface functions. These functions are implemented
in a given programming language, e.g., C++ or Java. The implementations of
these functions are part of the profile implementation. The latter also includes
state and other internal variables, encapsulated in some form, depending on
the mechanisms that the programming language provides (e.g., a C++ or Java
class).

For example, the profile implementations of the Adder and Unit-Delay blocks
(Fig. 6) are given below in object-oriented pseudo-code:

class Adder {

Adder.step(x1, x2)

returns y1

{

return (x1 + x2);

}

}

class UnitDelay {

private state;

UnitDelay.init() { state := ... }

UnitDelay.get() returns y2 {

return state;

}

UnitDelay.step(x3) {

state := x3;

}

}

The implementations of the two profiles of P shown in Fig. 2 are as follows:

Monolithic profile:

P.step(x1, x2) returns (y1, y2)

{

return (A.step(x1), B.step(x2));

}

Non-monolithic profile:

P.get1(x1) returns y1 {

return A.step(x1);

}

P.get2(x2) returns y2 {

return B.step(x2);

}

In the above example we have assumed monolithic profiles for sub-blocks A
and B of P , with functions A.step and B.step, respectively. Unless otherwise
stated, we assume monolithic profiles for sub-blocks in all examples that follow.

The implementation of Profile 3 of block Q, shown in Fig. 7, is as follows:

Q.get1(x1) returns y1 {

(z1,z2) := A.step(x1);

y1 := B.step(z1);

return y1;

}

Q.get2(x2) returns y2 {

y2 := C.step(z2,x2);

return y2;

}

More examples of profile implementations are given in the sequel.

Modular Code Generation from Synchronous Block Diagrams 463

4.3 Trade-Offs

As can be seen from the examples above, the same block can have multiple dif-
ferent profiles. These accomplish different trade-offs, some of which are discussed
below.

Modularity vs. Reusability. This is probably the most important tradeoff.
We define reusability in terms of the set of contexts (i.e., diagrams) that the pro-
file can be used in: the larger this set, the more reusable the profile is (note that
this is a partial order). It follows that monolithic profiles are no more reusable
than non-monolithic ones. Often they are strictly less reusable (e.g., examples
of Figs. 2 and 7). Reusability is directly related to the set of IO dependencies
defined by the PDG of a profile. The larger the set of IO dependencies, the less
reusable the profile. A monolithic profile is the least reusable, as it contains all
possible IO dependencies. A profile is maximally reusable if it contains exactly
those IO dependencies contained in the internal diagram of the corresponding
macro block. (A profile cannot contain less dependencies, otherwise it would
not be sound.) The non-monolithic profiles of Figs. 2 and 7 are both maximally
reusable.

Modularity, in our framework, is a quantitative notion: it is measured in terms
of the size of the profile, for instance, the number of interface functions, or the
size of the PDG. The smaller the profile, the more modular it is. In that sense,
the most modular profile is the monolithic profile. This definition is justified by
a number of considerations. First, scalability: the complexity of profile synthesis
algorithms is a direct function of the size of the profiles, thus, the smaller the
profiles, the better the algorithms scale. A second consideration has to do with
IP concerns: the smaller the profile, the less details it reveals about the internals
of the block, therefore, the more the block appears as a “black box” to its user.

From the above definitions, it follows that modularity and reusability are in
conflict. To optimize modularity we are led towards monolithic profiles, but we
may have to pay a price in terms of reusability. Both examples in Figs. 2 and 7
illustrate this trade-off.

Modularity vs. Code Size and Other Metrics. An interesting set of trade-
offs arise between modularity and various metrics of the profile implementation,

Profile 2

A

B

C

y1

y2

R
x1

x2

x3 R.get2

R.get1x1

x2

x3
y2

y1

R.put

R.get1

R.get2

y1

y2

x2

x3

x1

Profile 1

Fig. 8. A macro block R (left) and two possible profiles for R (middle and right).

464 S. Tripakis and R. Lublinerman

such as size of the code that implements the interface functions, run-time perfor-
mance (e.g., worst-case execution time), and so on. We illustrate such trade-offs
here through an example. More details can be found in [30].

Figure 8 shows a macro block R and two maximally-reusable profiles for R.
Profile 1 is smaller, since it contains only 2 functions, whereas Profile 2 contains
3. The implementation of Profile 1 is as follows:

R.get1(x1,x2) returns y1 {

if (c = 0) {

(z1, z2) := A.step(x2);

}

c := (c + 1) modulo 2;

return B.step(x1, z1);

}

R.get2(x2,x3) returns y2 {

if (c = 0) {

(z1, z2) := A.step(x2);

}

c := (c + 1) modulo 2;

return C.step(z2, x3);

}

It can be seen that the first three lines of code in P.get1 and P.get2 are
identical. These lines serve to guard execution of A.step, which should only be
called once per synchronous round. Since the order of calling P.get1 and P.get2
depends on the context of R, it is not known at compile-time which function will
first call A.step, and the choice is made at run-time.

The implementation of Profile 2 of Fig. 8 is as follows:

R.put(x2) {

(z1,z2) :=

A.step(x2);

}

R.get1(x2) returns y1 {

return B.step(x1,z1);

}

R.get2(x3) returns y2 {

return C.step(z2,x3);

}

This implementation has better characteristics than the previous one: it con-
tains no conditionals and no code replication. Thus, the code is both smaller in
size and also executes faster. Such differences may seem small in this example,
but they can be critical in the context of a real embedded application, where
memory and execution time are often scarce resources.

Algorithmic Complexity Trade-Offs. Another set of trade-offs concerns the
complexity, in theory or in practice, of the algorithms involved in profile synthe-
sis, against other metrics such as modularity, reusability, or code characteristics.
For example, producing a monolithic profile is trivial and inexpensive. Synthe-
sizing non-monolithic profiles involves more sophisticated algorithms such as
clustering. Many of these algorithms have polynomial worst-case complexity,
but may result in profiles that are non-optimal in terms of modularity, or that
cannot be implemented without conditional code, as with Profile 2 of Fig. 7, or
Profile 1 of Fig. 8. These issues are discussed in more detail in Sect. 5.

4.4 Abstraction, Compositionality and Executability

In summary, profiles in general, and non-monolithic profiles in particular, form
a modular, compositional and executable representation of hierarchical SBDs.

Modular Code Generation from Synchronous Block Diagrams 465

They are executable in the sense that every interface function comes with a piece
of executable code: by calling these functions in an order that respects the depen-
dencies prescribed in the PDG, we have an implementation of the semantics of
the model. This is in contrast, for instance, to non-executable representations
that simply maintain input-output dependencies, as in the works of [2,48]. Pro-
files are compositional in the sense that a diagram of profiles can be abstracted
into a single profile without any loss of information, that is, preserving exactly
the same set of input-output dependencies. Finally, profiles are abstract in the
sense that they allow many of the internal details of composite blocks to be
omitted (e.g., as in Fig. 7) which results in a more compact and thus less costly
representation.

5 Profile Synthesis and Code Generation

In this section we describe how profiles and their implementations can be gen-
erated automatically. In summary, our method takes as inputs:

1. a macro block M with its internal block diagram;
2. a profile for each type of sub-block of M ; and
3. a set of user constraints or goals;

and automatically generates as outputs:

1. a profile for M (this part of the process is called profile synthesis);
2. the implementation of the profile in a certain programming language such as

C++ or Java.

User constraints and goals include any sort of information that the user
may provide to influence the profile and code that is generated. This includes
modularity vs. reusability preferences, desired code characteristics, and so on. In
practice, this type of information is given as options and inputs to the algorithms
involved in the different steps of the process, discussed below.

It is worth noting that although the profiles of the sub-blocks of M are
required in the profile synthesis and code generation process, the implementation
of the interface functions of these profiles is not required. The implementation of
the sub-blocks of M is only required for model execution. This is another aspect
of modularity in our approach, and a desirable feature especially for IP reasons,
or treating blocks as “black boxes”. In particular, only executable code (e.g.,
object files) need to be made available to the user, and not source code.

Profile synthesis can be applied to SBDs of arbitrary hierarchy depths, in a
bottom-up manner. Starting with macro blocks that contain only atomic blocks,
synthesizing a profile for the former, and then moving up the hierarchy. Profiles
of atomic blocks are inputs to this process. They can be produced “manually”,
or automatically, for instance, by some method that automatically extracts sum-
maries from the implementation of blocks. How to do this is beyond the scope of
this paper. Note that once a profile has been synthesized for a macro block, the
latter can be viewed as an atomic block, since no information about its inter-
nals (e.g., its internal diagram) is any longer necessary. Thus, apart from the
information contained in the profile, the block is a “black box”.

466 S. Tripakis and R. Lublinerman

5.1 Profile Synthesis

Profile synthesis consists in synthesizing a profile for a macro block M given
the internal diagram of M and profiles for all sub-blocks of M . Profile synthesis
involves a number of sub-steps, described below:

Building the Scheduling Dependency Graph (SDG). The SDG is a
directed graph obtained by connecting the PDGs of the profiles of all sub-blocks
of M . The connections are made according to the internal diagram of M , that
is, by inserting an edge f → g if an output of function f is connected in the
diagram to an input of function g.

Consider the example of Fig. 9. At the top left of the figure is shown a macro
block M and its internal diagram. At the top right of the figure are shown
the profiles of all sub-blocks of M . Sub-blocks A and C have a single interface
function each, which takes the input and returns the output of these blocks.
Block U has two interface functions: U.step and U.get. U.get takes no input
and returns the output of U . U.step takes the input of U and returns no output.
U is a Moore-sequential block: its get method returns the outputs and its step
method updates the state, given the inputs. The PDG of U shown in the figure
states that U.get must be called before U.step, at every synchronous round.

Profile dependency graphs

C

M.getM.step

U.getU.step

A.step

Profile of A:

Profile of U :

Profile of C:

(combinational)

(Moore-sequential)

(combinational)

A.step(x) returns y;

U.get() returns y;

U.step(x) returns void;

C.step(x) returns y;

y

x

x y

y

x

Resulting interface functions
and PDG of P

SDG of M clustered in two sub-graphs

A macro block P
and its internal diagram

U.getU.step

A.step

SDG of M

C.step

C.step

U.stepU.get

A.step

in out

C.step

AU

M

in out

in out

Interface functions

Fig. 9. Example of profile synthesis.

The SDG of block M is shown at the bottom left of Fig. 9. The SDG of M has
been produced by connecting the PDGs of sub-blocks C,U and A. For instance,
the output port of C is connected to the input port of U . This results in adding

Modular Code Generation from Synchronous Block Diagrams 467

A.step

B.step C.step D.stepx2

x1

y2

y1
x1 T.get1 y1

x2 T.get2 y2

Fig. 10. Left: clustered SDG of macro block T of Fig. 3. Right: profile for T .

a directed edge from C.step (which produces the output of C) to U.step (which
consumes the input of U) to the SDG of M . Similarly with the rest of the edges
added to the SDG of M .

When the internal diagram of M contains triggers, these are handled by
adding directed edges from the interface function that produces the trigger to
all interface functions of the triggered sub-block of M . For example, the SDG of
macro block T of Fig. 3 is shown in Fig. 10.

Dependency Analysis. Once the SDG of M is built, it is checked to see
whether it contains a directed cycle. If it does, then this implies a cyclic depen-
dency that cannot be resolved, either because the original diagram has a true
such dependency, or because the profiles of the sub-blocks of M are too coarse
(i.e., not reusable in the context of M). A cycle in the SDG results in rejecting
the diagram and stopping the profile synthesis process. If the SDG is acyclic, we
proceed to the clustering step.

Clustering. Clustering consists in grouping the nodes of the SDG G of M into a
set of clusters. Every node of G must be included in at least one cluster, however,
the clusters need not be disjoint, i.e., some nodes may belong to more than one
clusters. Each cluster can also be seen as a sub-graph of G that contains all the
nodes in the cluster along with all dependencies between any two such nodes.
For purposes of clustering, input and output ports of M are also considered to
be nodes of the SDG, called input and output nodes, respectively. For example,
x1, x2 are input nodes in the SDG of T shown in Fig. 10 and y1, y2 are output
nodes. Nodes that have no outputs (and therefore no outgoing edges either) are
called terminal nodes. For example, node U.step in the SDG of M shown in
Fig. 9 is a terminal node.

Once clustering is fixed, each cluster is mapped into an interface function
for M . Therefore, the number of clusters is equal to the number of interface
functions contained in the synthesized profile of M .

Dependencies between nodes of G that belong to different clusters induce
dependencies between those clusters. In the case of disjoint clusters, these depen-
dencies are defined as follows. Let C1, C2 be two clusters and let f1, f2 be two
nodes of G such that f1 ∈ C1 and f2 ∈ C2. (Notice that, since clustering is
assumed to be disjoint, f1 �∈ C2 and f2 �∈ C1.) A dependency f1 → f2 in G
induces a dependency C1 → C2 between the two clusters. In the case of over-
lapping (i.e., non-disjoint) clusters, how the dependencies between clusters are

468 S. Tripakis and R. Lublinerman

defined generally depends on the clustering algorithm. An example is the O2C
algorithm, explained in Sect. 5.1 below.

Once the dependencies between clusters are fixed, they define a directed
graph GM whose nodes are clusters. Since every cluster corresponds to an inter-
face function for M , GM is also a graph whose nodes are interface functions of M .
Therefore, GM is the PDG of M . GM needs to be acyclic, therefore, care must
be taken so that clustering results in no cyclic dependencies between clusters.
The clustering algorithms that we discuss below all have this property. Moreover,
the profile of M must be sound, which means that all input-output dependencies
included in G, the SDG of M , must also be included in GM , the PDG of M .
This always holds in the case of disjoint clusterings, as follows from the defini-
tion of GM given above. For overlapping algorithms, care must be taken so that
the definition of inter-cluster dependencies results in a PDG that is sound. In
Sect. 5.1 we show that this is the case for the O2C algorithm.

From the above discussion, it follows that clustering completely determines
the profile of M . This is why clustering is the most important step in profile syn-
thesis. It is also a step where different choices can be made, that lead to different
trade-offs. For instance, a coarse-grain clustering results in a more modular pro-
file than a fine-grain clustering. In particular, grouping all nodes of the SDG
into a single cluster results in a monolithic profile. A clustering that introduces
false input-output dependencies, that is, input-output dependencies not exist-
ing in the SDG, results in a non-maximally-reusable profile. A clustering with
disjoint clusters (i.e., clusters that do not share nodes) results in code without
conditionals or replication. Let us illustrate these points through examples.

In Fig. 9, the SDG of M is clustered in two sub-graphs, resulting in a two-
function profile for M , shown to the bottom-right of the figure. Observe that
the profile of M is identical to the profile of the unit-delay block 1

z (Fig. 6). This
is not a coincidence, since this is a maximally-reusable and optimal in terms of
modularity profile for all Moore blocks. The example of Fig. 9 also illustrates a
simple case of reduction in size, where a macro block with three sub-blocks has
the same profile as one of its sub-blocks.

Other examples of clustering are the following:

– The non-monolithic profile of P shown in Fig. 2 is produced by grouping all
nodes in the PDG of A in one cluster (corresponding to P.get1) and all nodes
in the PDG of B in a second cluster (corresponding to P.get2).

– The non-monolithic profile of Q shown in the middle of Fig. 7 is produced
by grouping nodes of A and B in one cluster (corresponding to Q.get1) and
nodes of A and C in a second cluster (corresponding to Q.get2). In this case
the clusters overlap (i.e., are not disjoint). A similar clustering produces the
profile shown in the middle of Fig. 8.

– The non-monolithic profile of Q shown to the right of Fig. 7 is produced by
grouping nodes of A and B in one cluster (corresponding to Q.get1) and
nodes of C in a second cluster (corresponding to Q.get2). In this case the
clusters are disjoint.

Modular Code Generation from Synchronous Block Diagrams 469

– The profile of R shown to the right of Fig. 8 is produced by grouping nodes
of A in one cluster (corresponding to R.put), nodes of B in a second cluster
(corresponding to R.get1), and nodes of C in a third cluster (corresponding
to R.get2).

We now briefly describe some clustering algorithms.

Step-Get Clustering (SGC). The SGC algorithm, proposed in [32], generates at
most two interface functions for a given macro block M . In particular, if M is
Moore, then SGC generates two interface functions for M : an M.get function that
computes the outputs of M and an M.step function that updates the state of M .
This is an optimal, in terms of modularity, and maximally-reusable profile for all
Moore blocks. If M is not Moore, then SGC generates a single interface function
for M , that is, a monolithic profile. In this case the profile is not maximally
reusable, in general.

The SGC algorithm is simple. It starts by analyzing the SDG of M , checking
whether there exists some output of M that depends on some input. If this is
the case, then M is not Moore, and SGC produces a single cluster containing all
nodes in the SDG. Otherwise, the SDG can be partitioned into two sub-graphs,
a “right” sub-graph that contains all nodes that have a path to some output, and
a “left” sub-graph that contains all the remaining nodes. The “right” and “left”
sub-graphs correspond to M.get and M.step, respectively. SGC has polynomial
worst-case complexity.

The SGC algorithm produces the clustering of Fig. 9 where block M is Moore.
For all other examples given in the paper, SGC produces a monolithic profile.

Optimal Overlapping Clustering (O2C). The O2C algorithm is an improved vari-
ant of the dynamic clustering algorithm proposed in [32]. O2C achieves maximal
reusability and optimal modularity, that is, a minimal number of clusters (sub-
ject to the maximal reusability constraint). Moreover, O2C is guaranteed to
generate no more than n+1 clusters in the worst case, where n is the number of
outputs of macro block M , and no more than n clusters if M is combinational.
O2C has polynomial worst-case complexity. The only drawback of O2C is that
it may result in overlapping clusters, therefore, in profile implementations that
require conditionals.

O2C executes the following procedure:

for each output node or terminal node f do {

create a cluster C := { f };

while there exist nodes g in C and h not in C s.t. h -> g do

add h to C;

}

merge clusters containing exactly the same sets of input nodes;

for each terminal cluster C do

if there exists cluster C’ s.t. inputs(C) is a subset of

inputs(C’) then merge C with C’;

merge all remaining terminal clusters (if any) into a single

cluster;

470 S. Tripakis and R. Lublinerman

where a terminal cluster is a cluster containing a terminal node, and inputs(C)
denotes the set of input nodes contained in cluster C.

O2C starts by creating a cluster for every output node and every terminal
node in the SDG of M . Then the backward closure of each of these clusters is
computed, by adding all predecessor nodes, i.e., all nodes that have a directed
edge to some node already in the cluster, until no new nodes can be added. If
at this point two clusters C1 and C2 contain the same sets of input nodes, i.e.,
inputs(C1) = inputs(C2), then these clusters are merged into a single cluster
C1 ∪ C2, and this is repeated until no more clusters can be merged in this
way. Then, for each terminal cluster C for which there exists cluster C ′ such
that inputs(C) ⊆ inputs(C ′), C and C ′ are merged into C ∪ C ′, and again the
process is repeated until no terminal clusters can be merged in this way. Finally,
all remaining terminal clusters (if any) are merged into a single cluster named
M.step. The rest of the clusters are named M.get1, M.get2, and so on.

The inter-cluster dependencies defined by O2C are as follows: all clusters of
type M.geti are independent from each other; if there is a cluster M.step, then
there is a dependency M.geti → M.step, for every cluster of type M.geti. In
other words, interface function M.step must be called after all interface functions
M.geti are called, and the latter can be called in any order.

Examples of profiles produced by O2C are: Profile 2 of block P in Fig. 2;
Profile 2 of block Q in Fig. 7; Profile 1 of block R in Fig. 8; and the profile of
block M in Fig. 9.

O2C has the following properties:
First, if M has n output ports, and therefore the SDG of M has n output

nodes, O2C will generate at most n + 1 clusters. This is because there can be
at most one cluster per output node, plus at most one terminal cluster, M.step,
when O2C terminates. It can be also shown that for combinational blocks, i.e.,
blocks without internal state, there can be at most n clusters.

Second, O2C produces a sound and acyclic PDG. Acyclicity follows from
the fact that the only edges in the PDG of M are from some node M.geti to
M.step, if it exists, and the latter has no outgoing edge. To see why the PDG
is also sound, consider a path x → f1 → · · · → fn → y in the SDG of M , from
some input node x to some output node y. Let C be the cluster that contains y.
C is closed by predecessors, therefore, all nodes in the above path from x to y are
contained in C. Thus, the dependency x → y is maintained in the PDG of M .

Third, O2C achieves maximal reusability, that is, every IO dependency x → y
in the PDG of M is a true IO dependency. Consider such a dependency. By
definition of the PDG, there exists a cluster C such that both x and y are in
C. Since y is in C, C cannot be a terminal cluster. C is generally the result
of merging clusters C1, . . . , Ck produced in the first for each loop of O2C,
for k ≥ 1. By definition, the set inputs(Ci) is the same for all i = 1, . . . , k.
Therefore, there exists Ci such that both x and y are in Ci, and Ci was obtained
by computing the backward closure of y. Thus, there is a path from x to y in
the SDG of M , and x → y is a true dependency.

Fourth, O2C is optimal, that is, there exists no clustering with fewer clusters
that achieves maximal reusability. Suppose such a clustering C∗ exists. C∗ must

Modular Code Generation from Synchronous Block Diagrams 471

merge in one cluster at least two nodes f1, f2 that the clustering C produced by
O2C separates in two different clusters, f1 ∈ C1 and f2 ∈ C2. Suppose, first,
that both C1, C2 are of type M.geti. Then inputs(C1) �= inputs(C2), otherwise
C1 and C2 would have been merged by O2C. Let, without loss of generality,
x ∈ inputs(C2) \ inputs(C1). Let y be an output node in C1 (C1 is not terminal,
so it must contain at least one output node). Then merging f1 and f2 introduces
false IO dependency x → y, thus, C∗ cannot be maximally reusable. Now suppose
C1 is of type M.geti and C2 is M.step. Then inputs(C2) �⊆ inputs(C1), otherwise
terminal cluster C2 would have been merged with C1. Thus, we can find again
x ∈ inputs(C2) \ inputs(C1) and y ∈ C1 and repeat the last argument.

Note that O2C may unnecessarily produce an overlapping clustering. This
means that there exists a disjoint clustering with the same number of clusters
that is also maximally reusable. For example, for the SDG shown in Fig. 10,
O2C would produce an overlapping clustering where A.step is shared between
two clusters, whereas a disjoint clustering of two clusters exists, as shown in the
figure.

Optimal Disjoint Clustering (ODC). The ODC algorithm, proposed in [30], guar-
antees, like O2C, maximal reusability. Unlike O2C, ODC always produces disjoint
clusters. Finally, ODC generates a minimal number of clusters, subject to the
maximal reusability and disjointness constraints. Unfortunately, the problem of
partitioning a DAG into a minimal number of disjoint clusters without introduc-
ing false input-output dependencies is NP-complete [30]. Thus, the worst-case
complexity of ODC is exponential. Nevertheless, ODC uses powerful SAT solvers
and performs well in practice, as the experimental results reported in [30] show.

We will only sketch the main ideas behind ODC, and refer the reader to [30]
for the details, which are involved. ODC executes the following procedure:

partition output nodes according to input dependencies;

let k be the number of output partitions;

i := k;

repeat

build a boolean formula stating that a solution

with i clusters exists;

call a SAT solver to check whether the formula is satisfiable;

if formula is satisfiable then solution found

else i := i+1;

until solution found;

The first step consists in partitioning the outputs of M into a set of disjoint
partitions such that in every partition, all output nodes depend on exactly the
same set of input nodes. If k partitions are found then there can be no less
than k clusters required to achieve maximal reusability. Indeed, it can be seen
that O2C produces at least k clusters in this case, and since O2C is optimal,
at least k disjoint clusters are needed to achieve maximal reusability. Therefore,
we start the iteration by setting i to k. For each i, we build a boolean formula
that encodes the existence of a solution with i clusters. A “solution” means a

472 S. Tripakis and R. Lublinerman

disjoint clustering that introduces no false input-output dependencies. A SAT
solver is used to check satisfiability of the formula (and also produce a solution).
If the formula is satisfiable we have found a solution, otherwise, no solution with
i clusters exists, and we increment i. The procedure is guaranteed to terminate
when i reaches the number of nodes in the SDG of M : indeed, clustering every
node separately is obviously a valid disjoint clustering.

Examples of profiles produced by ODC are: Profile 3 of block Q in Fig. 7;
Profile 2 of block R in Fig. 8; and the profile of block T in Fig. 10.

Disjoint Clustering Heuristics. A number of heuristics can be used to produce
disjoint clusterings that are maximally-reusable, albeit not always optimal in
terms of modularity. A simple heuristic is to use O2C and check whether the
clustering it produces is disjoint: if it is we are done, otherwise, we turn it into
a disjoint clustering by somehow separating shared nodes (a trivial method is
to cluster every such node separately). Other, more sophisticated heuristics,
are proposed in [42]. More experimental work is needed to evaluate how these
algorithms compare in practice, both in terms of execution time, as well as in
terms of the optimality of results produced. Such experiments are beyond the
scope of this paper.

Non-Maximally-Reusable Clusterings. All algorithms discussed above, with the
exception of SGC, are guaranteed to introduce no false input-output dependen-
cies, thus producing maximally-reusable profiles. In SGC, on the other hand, the
user has no way of “controlling” the reusability of the produced profile. In some
cases, it may be desirable to relax the requirement on maximal reusability, for
instance, in order to gain in modularity. This may be the case, for example, if it
is known that a given block will never be connected in a context with feedback.
Then, a monolithic profile suffices. More generally, it may be known that, even
though a certain output y of the block does not depend on a certain input x, it is
“safe” to introduce a false dependency x → y. That is, such a false dependency
is known not to result in serious restrictions in the set of contexts that the block
can be used in. The above algorithms can be modified so as to allow the user
to provide this type of information, thus being able to control the reusability
of the produced profile. For instance, in ODC, the encoding of the formula can
be modified so that it selectively allows some false IO dependencies, whereas it
forbids the rest.

5.2 Code Generation

Profile synthesis determines the profile of macro block M given as input. In
the code generation step, code that implements each interface function in the
profile of M is generated in a language such as C++ or Java. Any internal state
variables, or other persistent variables needed to communicate data between
different calls of the interface functions are generated as well. Together with an
init function, these functions and data can be encapsulated in a class or other
object-oriented mechanism that the target language may provide. In Java, for

Modular Code Generation from Synchronous Block Diagrams 473

instance, the code is encapsulated in a Java class, the interface functions become
public methods of this class, and the variables become private variables of the
class.

The principle of generating code implementing the interface functions is the
following. Every interface function fi corresponds to a sub-graph Gi of the SDG,
produced in the clustering step. To generate code for fi, the nodes of Gi are
ordered in a total order that respects the dependencies of Gi: the SDG of M is
acyclic, therefore Gi is also acyclic and such a total order always exists. Now,
every node of Gi corresponds to an interface function of some sub-block of M .
The code of fi then consists in calling these functions in the order specified
above.

Interface functions generally need to communicate data to one another. This
arises when an output y of a sub-block A of M is connected to an input x of
another sub-block B, and the interface functions producing y and consuming x
belong to different clusters. If f and g are two such functions, then a persistent
variable z is created, to store the value of y. z is persistent in the sense that it
maintains its value across calls to f and g. It can be implemented, for instance,
as a private variable in the class generated for M .6 Whenever f is called, it
writes to z and whenever g is called, it can read from z.

Following the above principles, we can generate code for all interface functions
without conditionals given in our examples so far. For the additional example of
block M of Fig. 9, the implementation of the interface functions is shown below:

M.get() returns out {

return A.step(U.get());

}

M.step(in) {

U.step(C.step(in));

}

Slight complications arise in two cases: first, in the case of overlapping clus-
ters; second, in the case of diagrams with triggers. Both cases require code with
conditionals.

In the case of overlapping clusters, the objective is to generate code that
ensures that, despite overlapping, every interface function of every sub-block of
M is called only once at every synchronous round. Notice that calling an interface
function more than once is generally incorrect, since the function may modify
some state variables. Even when a function does not update state variables,
calling it more than once in a round is wasteful, thus we want to avoid it.

To do this, we use a counting scheme that keeps track of how many times a
function has been called so far in the synchronous round. In particular, for each
interface function f of a sub-block of M , let Nf be the number of clusters that
f is included in. If Nf > 1 (i.e., f is shared among multiple clusters) then we
create a modulo-Nf counter for f , denoted cf : the counter is initialized to 0 and
“wraps” again to 0 when its value reaches Nf . Each such counter is part of the
persistent internal variables of the class of M . Counter cf indicates whether f
has already been called in the current round: f has been called iff cf > 0. Every

6 If f and g belong to the same cluster, a local variable in the corresponding interface
function of M can be used to store the value of y.

474 S. Tripakis and R. Lublinerman

call to a function f that has Nf > 1 is guarded by the condition cf = 0. The
counter is incremented by 1, independently of whether the condition is true or
false. An example of using this technique is the implementation of the profile
shown in the middle of Fig. 8.

We now turn to the case of diagrams with triggers. First, we identify all sub-
blocks of M that are triggered. To do this, we use the internal diagram of M .7

Let A be a triggered sub-block of M . For every output port y of A, a persistent
variable zy is generated in the profile implementation of M . This variable is
initialized to the trigger-initial value for y specified in the diagram. It is updated
every time A is triggered, and maintains its previous value in other rounds. Let
f be an interface function of A. Let t be the signal that triggers A: t is either
an input of M , or is produced by some other sub-block of M .8 When generating
code for M , every call to f is embedded in a conditional, guarded by t: if t is
true then f is called, otherwise it is not.

For example, consider macro block T of Fig. 3 and suppose its SDG is clus-
tered in two clusters, as shown in Fig. 10. The synthesized profile for T is then
as shown to the right of Fig. 10 and the implementation of the two interface
functions is as follows:

T.get1(x1) returns y1 {

z1 := A.step(x1);

return z1;

}

T.get2(x2) returns y2 {

local tmp := B.step(x2);

if (z1) {

z2 := C.step(tmp);

}

return D.step(z2);

}

Persistent variables z1 and z2 have been added for communication between
the two interface functions and for the output of triggered sub-block C, respec-
tively. Note that, even when z1 is false, z2 has a well-defined value because it is
initialized to the trigger-initial value specified for C.

6 Conclusions and Perspectives

We have proposed non-monolithic profiles as an abstract, compositional and
executable representation of hierarchical synchronous block diagrams. Our work
offers the unified treatment of the problem of modular code generation from
synchronous models which has been lacking so far. A prototype implementation
of our methods exists and experimental results reported in [30] encourage us to
believe that the approach is also feasible and relevant in practice.

A number of issues remain open. Clustering is of course a topic in itself,
as mentioned above. Apart from devising new or evaluating new and existing

7 Note that information about triggers is lost in the SDG of M : indeed, in the SDG,
dependencies arising due to triggers and those arising due to port connections are
indistinguishable.

8 t cannot be produced by A, as this would result in a cycle in the SDG of M .

Modular Code Generation from Synchronous Block Diagrams 475

clustering algorithms, another aspect of particular interest is integrating user
controls in the algorithms. For example, the user could specify which input-
output dependencies can be relaxed, i.e., which false input-output dependencies
can be admitted in order to obtain better clusterings.

Enriching profiles with additional information is another interesting direc-
tion. It has been partly explored in [31] in the case of timed diagrams, a subclass
of triggered diagrams where triggers are known at compile time (e.g., they are
periodic). In that paper, it is shown how profiles can be enriched with finite-
state automata representing the set of rounds when a given block is triggered.
This allows to avoid redundant function calls in the generated code, and also to
identify false IO dependencies during profile synthesis.

References

1. de Alfaro, L., Henzinger, T.: Interface automata. In: Foundations of Software Engi-
neering (FSE). ACM Press (2001)

2. Alur, R., Henzinger, T.: Reactive modules. Formal Methods Syst. Des. 15, 7–48
(1999)

3. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

4. Benveniste, A., Le Guernic, P., Aubry, P.: Compositionality in dataflow syn-
chronous languages: specification & code generation. Technical report 3310, Irisa
- Inria (1997)

5. Berry, G.: The Constructive Semantics of Pure Esterel (1999). http://www-sop.
inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf

6. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

7. Blochwitz, T., Otter, M., et al.: The functional mockup interface for tool inde-
pendent exchange of simulation models. In: Proceedings of the 8th International
Modelica Conference. Linkoping University Electronic Press (2011). http://www.
ep.liu.se/ecp/063/013/ecp11063013.pdf

8. Blochwitz, T., Otter, M., et al.: Functional mock-up interface 2.0: the standard
for tool independent exchange of simulation models. In: Proceedings of the 9th
International Modelica Conference. Linkoping University Electronic Press (2012).
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf

9. Bogomolov, S., Greitschus, M., Jensen, P.G., Larsen, K.G., Mikucionis, M.,
Strump, T., Tripakis, S.: Co-simulation of hybrid systems with SpaceEx and
Uppaal. In: Proceedings of the 11th International Modelica Conference. Linkop-
ing University Electronic Press (2015). http://www.ep.liu.se/ecp article/index.en.
aspx?issue=118;article=017

10. Brandt, J., Schneider, K.: Separate compilation for synchronous programs. In:
SCOPES 2009: 12th International Workshop on Software and Compilers for
Embedded Systems, pp. 1–10 (2009)

11. Broman, D., Brooks, C., Greenberg, L., Lee, E.A., Tripakis, S., Wetter, M., Masin,
M.: Determinate composition of FMUs for co-simulation. In: Proceedings of the
13th ACM and IEEE International Conference on Embedded Software (EMSOFT
2013), pp. 2:1–2:12. IEEE (2013)

12. Broman, D., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wetter, M.: Require-
ments for hybrid cosimulation standards. In: Hybrid Systems: Computation and
Control (HSCC 2015) (2015)

http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf
http://www.ep.liu.se/ecp_article/index.en.aspx?issue=118;article=017
http://www.ep.liu.se/ecp_article/index.en.aspx?issue=118;article=017

476 S. Tripakis and R. Lublinerman

13. Caspi, P.: Clocks in dataflow languages. Theor. Comput. Sci. 94, 125–140 (1992)
14. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: LUSTRE: a declarative language

for programming synchronous systems. In: 14th ACM Symposium POPL. ACM
(1987)

15. Caspi, P., Raymond, P., Tripakis, S.: Synchronous programming. In: Lee, I., Leung,
J., Son, S. (eds.) Handbook of Real-Time and Embedded Systems, pp. 14-1–14-21.
Chapman & Hall, London (2007)

16. Cremona, F., Lohstroh, M., Broman, D., Natale, M.D., Lee, E.A., Tripakis, S.:
Step revision in hybrid co-simulation with FMI. In: 14th ACM-IEEE International
Conference on Formal Methods and Models for System Design (MEMOCODE)
(2016)

17. Cremona, F., Lohstroh, M., Tripakis, S., Brooks, C., Lee, E.: FIDE - an FMI inte-
grated development environment. In: 31st ACM/SIGAPP Symposium on Applied
Computing, Embedded Systems Track (SAC), pp. 1759–1766. ACM (2016)

18. Dragomir, I., Preoteasa, V., Tripakis, S.: Compositional semantics and analysis of
hierarchical block diagrams. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS,
vol. 9641, pp. 38–56. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
32582-8 3

19. Edwards, S., Lee, E.: The semantics and execution of a synchronous block-diagram
language. Sci. Comput. Program. 48, 21–42 (2003)

20. Gamatié, A.: Designing Embedded Systems with the SIGNAL Programming Lan-
guage. Springer, New York (2009). https://doi.org/10.1007/978-1-4419-0941-1

21. Gautier, T., Le Guernic, P.: Code generation in the SACRES project. In: Redmill,
F., Anderson, T. (eds.) SSS 1999, pp. 127–149. Springer, London (1999). https://
doi.org/10.1007/978-1-4471-0823-8 9

22. Geilen, M., Tripakis, S., Wiggers, M.: The earlier the better: a theory of timed
actor interfaces. In: 14th International Conference Hybrid Systems: Computation
and Control (HSCC 2011). ACM (2011)

23. Girault, A.: A survey of automatic distribution method for synchronous programs.
In: International Workshop on Synchronous Languages, Applications and Pro-
grams, SLAP 2005. ENTCS, Elsevier, Edinburgh, April 2005. ftp://ftp.inrialpes.
fr/pub/bip/pub/girault/Publications/Slap05/main.pdf

24. Hainque, O., Pautet, L., Le Biannic, Y., Nassor, É.: Cronos: a separate compilation
tool set for modular esterel applications. In: Wing, J.M., Woodcock, J., Davies,
J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1836–1853. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48118-4 47

25. Henzinger, T., Sifakis, J.: The discipline of embedded systems design. IEEE Com-
put. 40(10), 32–40 (2007)

26. Henzinger, T.A., Kirsch, C.M., Matic, S.: Composable code generation for dis-
tributed Giotto. In: Proceedings of the 2005 ACM SIGPLAN/SIGBED Confer-
ence on Languages, Compilers, and Tools for Embedded Systems, LCTES 2005,
pp. 21–30. ACM, New York (2005). https://doi.org/10.1145/1065910.1065914

27. Le Guernic, P., Gautier, T., Borgne, M.L., Lemaire, C.: Programming real-time
applications with signal. Proc. IEEE 79(9), 1321–1336 (1991)

28. Lee, E., Messerschmitt, D.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245
(1987)

29. Lee, E., Zheng, H.: Leveraging synchronous language principles for heterogeneous
modeling and design of embedded systems. In: EMSOFT 2007: Proceedings of 7th
ACM and IEEE International Conference on Embedded software, pp. 114–123.
ACM (2007)

https://doi.org/10.1007/978-3-319-32582-8_3
https://doi.org/10.1007/978-3-319-32582-8_3
https://doi.org/10.1007/978-1-4419-0941-1
https://doi.org/10.1007/978-1-4471-0823-8_9
https://doi.org/10.1007/978-1-4471-0823-8_9
ftp://ftp.inrialpes.fr/pub/bip/pub/girault/Publications/Slap05/main.pdf
ftp://ftp.inrialpes.fr/pub/bip/pub/girault/Publications/Slap05/main.pdf
https://doi.org/10.1007/3-540-48118-4_47
https://doi.org/10.1145/1065910.1065914

Modular Code Generation from Synchronous Block Diagrams 477

30. Lublinerman, R., Szegedy, C., Tripakis, S.: Modular code generation from syn-
chronous block diagrams - modularity vs. code size. In: 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2009), pp.
78–89. ACM, January 2009

31. Lublinerman, R., Tripakis, S.: Modular code generation from triggered and timed
block diagrams. In: 14th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS 2008), pp. 147–158. IEEE CS Press, April 2008

32. Lublinerman, R., Tripakis, S.: Modularity vs. reusability: code generation from
synchronous block diagrams. In: Design, Automation, and Test in Europe (DATE
2008), pp. 1504–1509. ACM, March 2008

33. Malik, S.: Analysis of cyclic combinational circuits. IEEE Trans. Comput.-Aided
Des. 13(7), 950–956 (1994)

34. Potop-Butucaru, D., Edwards, S., Berry, G.: Compiling Esterel. Springer, New
York (2007). https://doi.org/10.1007/978-0-387-70628-3

35. Pouzet, M., Raymond, P.: Modular static scheduling of synchronous data-flow net-
works: an efficient symbolic representation. In: ACM International Conference on
Embedded Software (EMSOFT 2009), pp. 215–224, October 2009

36. Preoteasa, V., Dragomir, I., Tripakis, S.: The refinement calculus of reactive sys-
tems. CoRR abs/1710.03979 (2017)

37. Preoteasa, V., Tripakis, S.: Refinement calculus of reactive systems. In: Proceed-
ings of the 14th ACM and IEEE International Conference on Embedded Software
(EMSOFT 2014), pp. 2:1–2:10. ACM, October 2014

38. Raymond, P.: Compilation séparée de programmes Lustre. Master’s thesis, IMAG
(1988). (in French)

39. Schneider, K., Brandt, J., Vecchié, E.: Modular compilation of synchronous pro-
grams. In: Kleinjohann, B., Kleinjohann, L., Machado, R.J., Pereira, C.E., Thi-
agarajan, P.S. (eds.) DIPES 2006. IIFIP, vol. 225, pp. 75–84. Springer, Boston
(2006). https://doi.org/10.1007/978-0-387-39362-9 9

40. Shin, I., Lee, I.: Compositional real-time scheduling framework with periodic
model. ACM Trans. Embed. Comput. Syst. 7, 30:1–30:39 (2008). https://doi.org/
10.1145/1347375.1347383

41. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986)

42. Tripakis, S., Bui, D., Geilen, M., Rodiers, B., Lee, E.A.: Compositionality in syn-
chronous data flow: modular code generation from hierarchical SDF graphs. ACM
Trans. Embed. Comput. Syst. (TECS) 12(3), 83:1–83:26 (2013)

43. Tripakis, S.: Bridging the semantic gap between heterogeneous modeling for-
malisms and FMI. In: International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation - SAMOS XV (2015)

44. Tripakis, S.: Compositionality in the science of system design. Proc. IEEE 104(5),
960–972 (2016)

45. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-
tional interfaces. ACM Trans. Program. Lang. Syst. (TOPLAS) 33(4), 14 (2011)

46. Tripakis, S., Stergiou, C., Shaver, C., Lee, E.A.: A modular formal semantics for
Ptolemy. Math. Struct. Comput. Sci. 23, 834–881 (2013)

47. Zeng, J., Edwards, S.A.: Separate compilation for synchronous modules. In: Yang,
L.T., et al. (eds.) ICESS 2005. LNCS, vol. 3820, pp. 129–140. Springer, Heidelberg
(2005). https://doi.org/10.1007/11599555 15

48. Zhou, Y., Lee, E.: Causality interfaces for actor networks. ACM Trans. Embed.
Comput. Syst. 7(3), 1–35 (2008)

https://doi.org/10.1007/978-0-387-70628-3
https://doi.org/10.1007/978-0-387-39362-9_9
https://doi.org/10.1145/1347375.1347383
https://doi.org/10.1145/1347375.1347383
https://doi.org/10.1007/11599555_15

	Modular Code Generation from Synchronous Block Diagrams: Interfaces, Abstraction, Compositionality
	1 Introduction
	2 Other Related Work
	3 Synchronous Block Diagrams
	3.1 Hierarchical Block Diagrams
	3.2 Triggers
	3.3 Combinational, Sequential, and Moore Blocks
	3.4 Semantics

	4 Profiles: An Abstract, Compositional and Executable Representation of Synchronous Block Diagrams
	4.1 Profiles
	4.2 Profile Implementations
	4.3 Trade-Offs
	4.4 Abstraction, Compositionality and Executability

	5 Profile Synthesis and Code Generation
	5.1 Profile Synthesis
	5.2 Code Generation

	6 Conclusions and Perspectives
	References

