
Abstraction and Refinement
in Hierarchically Decomposable

and Underspecified CPS-Architectures

Bernhard Rumpe and Andreas Wortmann(B)

Software Engineering, RWTH Aachen University, Aachen, Germany
{rumpe,wortmann}@se-rwth.de

Abstract. Model-driven development of cyber-physical systems (CPS)
requires modeling techniques based on a well-founded theory that sup-
ports addressing development techniques, such as decomposition, refine-
ment and the different notions of time required by its components. Based
on an elaborated theory for the modeling of underspecification with
respect to nondeterminism, hierarchical composition, refinement that is
compatible with composition, and finally proven correct evolution pat-
terns, we discuss how such a theory can be practically applied for the
development of CPS. Through an orchestrated efficient simulation, we
can identify potential bottlenecks, function failures, hardware risks, etc.
early. All models as well as the simulation take advantage of the compo-
sitionality and the timing refinement properties of the theory. In sum-
mary, we discuss how the elaborated theory shapes the simulation and
the results.

1 Motivation

Rigorous model-driven development requires a well-defined set of integrated
modeling notations that allows to define a set of possible implementations as
well as a well-founded theory that is able to capture important aspects of the
system while at the same time. It should (a) be as abstract as possible, (b) allow
to specify known properties and to leave unknown properties unspecified, and
(c) assist the core techniques in a development process.

A typical development process today has to provide various forms of under-
specification to allow describing known properties and open issues, to support
refinement along the development process from abstract requirements to very
fine-grained technical specifications, and to compose specifications. It is not the
composition itself, that is of prime importance, but the ability to decompose the
problem, solve the smaller problems independently through a chain of refine-
ments, and ultimately compose the solutions. This in particular implies that
decomposition and refinement must be compatible. This full compatibility of
the composition and refinement is important, because only then a decomposi-
tion of the problem leads to component specifications that can be independently

c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 383–406, 2018.
https://doi.org/10.1007/978-3-319-95246-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95246-8_23&domain=pdf


384 B. Rumpe and A. Wortmann

developed and refined. Ultimately, their implementations can be composed being
sure that the properties specified originally still hold.

There are not many theories that can serve as the foundation for the develop-
ment of systems, which potentially consist of a physical and a software part, are
inherently distributed, and need to cope with a dynamically changing context,
while having to fulfill tasks under given time constraints. Much has been said
and written about cyber-physical systems (CPS) [33,34] and how those systems
can be described and developed [13,16,30]. Only few theories, such as Focus
[8] and consideration of superdense time [36,39], can actually serve the chal-
lenges discussed above. The more development techniques a theory assists, the
more complex it necessarily has to be. Many earlier theories, such as CSP [25],
CCS [43], Petri Nets [50], or the π-calculus [44] yield specific advantages, but
unfortunately yield shortcomings in other techniques. Especially the existence of
techniques for decomposition and refinement as well as their compatibility are
crucial.

In this article, we summarize stream based theory, that emerges from Focus
[5,8,31,53] and has been elaborated by Manfred Broy and his group over sev-
eral decades in a larger set of publications. Model-driven development [15,65]
can facilitate engineering of CPS [29], but requires implementing the underlying
theory properly. Consequently, we also present how the theory is implemented
in a tool suite called MontiArc [9,18,20], that allows to model various aspects
of CPS and to simulate CPS with a focus on the interactions within and to the
systems context. We briefly discuss, how this theory and its techniques for time
and time refinement are realized and we sketch, how MontiArc models are used
for example in robotic applications [24,52]. The key idea of the orchestrated
efficient simulation that MontiArc provides, is to early identify potential bottle-
necks, function failures, hardware risks, etc. All models as well as the simulation
take advantage of the compositionality and the timing refinement properties of
the theory.

In the following, Sect. 2 summarizes parts of the Focus theory, before Sect. 3
presents the MontiArc tool suite with its architecture description language and
simulation framework. Afterwards, Sect. 4 discuss the benefits of this approach
and Sect. 5 highlights related work. Section 6 concludes.

2 Theory of Streams

This section contains a condensed form of stream theory. Literature, such as
[7,8,53] gives more detailed motivation and discussion of the properties. Ulti-
mately, employing stream theory as the foundation for model-driven develop-
ment enables modeling architectures for software-intensive CPS as depicted
in Fig. 1 under consideration of time as required by its different components.

2.1 Streams and Stream Processing Functions

We consider components that only interact through explicit, directed, and typed
communication ports. Such a component can be atomic or decomposed into



Abstraction and Refinement in Hierarchically Decomposable 385

sub-components. When composing components, ports are connected through
directed channels.

A channel observation is modeled as stream Mω of finite or infinitely mes-
sages over a message alphabet M . Progress of time is modeled by an explicit �
(called “tick”) message assuming that each occurrence of the message denotes
the start of the next time slice. Thus Mω

� describes a timed observation of a
certain time interval (count the ticks!). A complete observation therefore has to
contain infinitely many ticks. Within a time slice any finite sequence of messages
including the empty sequence may occur. This models the order of messages, but
abstracts away from the concrete time. Time synchronous systems are modeled
as N → M , which is the core embedding in the AutoFocus tool suite [2,3,6,26–
28]. If messages are optional, N → M ∪ {⊥} is used and ⊥ is a pseudo message
describing the absence of a real message.

There are various forms of mappings of one timing domain into the other
as well as many operations on streams [53]. It is possible to choose the form
of streams that fit the modeling interests best, but we mostly use Mω in the
following. In [53], we also embed dense time [39] and Edward Lee’s superdense
streams [35,36] into the framework.

Ticks partition time into slices, each with a finite sequence of events. The
semantics of integrated behavior thus follows the concept of superdense time [35,
39], which, distinguishes between a discrete “time continuum” (the global Focus
time) and “untimed causally-related actions” (a behavior model’s actions within
the time slice of a component).

One stream describes one behavior observation. A specification of allowed
behaviors is therefore described by a set of streams in ℘(Mω). It is a general

Fig. 1. A MontiArc software architecture of a mobile robot. The composed component
BumperBot contains four sub-components of different types to read sensor data, inter-
pret it, and actuate two motors. The robot explores uncharted territory and avoids
obstacles in the process.



386 B. Rumpe and A. Wortmann

principle to use sets as a mechanism for specification and especially underspec-
ification, because using a set we can precisely define the allowed properties.
Furthermore, consistency of a specification corresponds to non-emptiness of a
set and refinement of a specification corresponds to set inclusion. A set A refines
another set B exactly, if A ⊆ B. Refinement thus is transitive and reflects that
the more information we have the less (mis-)behaviors are possible.

It is not the channel that is of primary interest, but the component and its
behavior. The signature of a component is a pair (I,O) of port names from
P describing the input and the output. Each port p ∈ P is typed by the set
of messages Mp. An observation set of channels I ⊂ P then is described by a
type-preserving mapping of each i ∈ I to Mω

i . In short, this mapping is called
−→
I .

The behavior of a component can then be modeled as a mathematical object
of sort

−→
I → −→

O that maps input behaviors to output behaviors. Please note, that
this function completely embeds temporal behavior, because the mapping does
not map a single message but has the full observation on its inputs available to
determine the full observation on the outputs. However, to be implementable a
component may not predict the future, i.e., the output in one time slice may not
depend on the input of a later time slice. In the untimed case, monotonicity and
continuity, and in the timed case, weak and strong causality, are mathematically
precise constraints that describe if a function is realizable. Fortunately, the forms
of streams defined above each form a well-founded CPO (complete partial order)
based on prefix ordering that allows defining these constraints.

A realizable function of sort
−→
I → −→

O describes exactly one possible imple-
mentation of the component. We call those stream processing functions. Again,
we generalize to specifications by using the power set construction, regarding
each component specification as element of ℘(

−→
I → −→

O ). Refinement again is
defined as subset.

2.2 Composition

Several techniques for modification for components exist, such as renaming ports
or hiding output ports, but of particular interest is composing two component
specifications, denoted with ⊗. Specification composition is defined by point-
wise specification of functions and two functions f, g are connected through the
channels with same names (and inverted directions). f ⊗ g basically is func-
tion composition and thus very well understood. Its new output signature is
O = Of ∪ Og and input I = (If ∪ Ig) \ O and thus does not hide connected
channels.

Other forms of composition include explicitly named pairs of channels that
shall be connected, automatic hiding of connected channels, as well as special-
ized variants, such as parallel and sequential composition or feedback. All are
grounded on the same composition principle. As composition is associative and
commutative, it can be generalized to composing any forms of architectures.



Abstraction and Refinement in Hierarchically Decomposable 387

Fig. 2. General form of composition.

Composition is well defined in each of the individual streams’ domains. And
because it is defined pointwise for specifications, properties of the resulting com-
posed specification can be inferred from properties of the individual specifica-
tions. For example, the composition is a consistent specification exactly when
both components have a consistent specification (Fig. 2).

But most importantly, composition and refinement are compatible, i.e., given
three specifications S, S′, T , where S′ is a refinement of S, then

S′ ⊆ S −→ S′ ⊗ T ⊆ S ⊗ T.

Therefore, refinement of any decomposed component leads to a refinement of
the overall composition. Refinement means that details on the implementation
are decided and more information added and thus less behavior possible. The
compatibility of refinement with composition means that once the system is
decomposed, each component can be developed and refined independently.

Because decomposition can be applied hierarchically, a complex CPS can be
decomposed into individual, atomic, and manageable components.

2.3 Description Styles for Components

A mathematical theory such as streams for describing CPS needs to be backed up
by more pragmatic styles of denoting specifications. The stream theory does not
directly qualify as a specification technique, but serves as a semantic domain [23]
for an appropriate set of concrete modeling notations.

Neither infinite streams, nor stream processing functions, nor sets over both
should directly be used in mathematical definitions. Instead a structural model-
ing technique should be available to define the internal decomposition of compo-
nents. A hierarchy of such structural decompositions finally leads to an architec-
ture comprising ports, channels, components and their composition. MontiArc’s
main modeling sublanguage allows to describe system architectures based on
streams. Message types and potentially other, internally used, forms of types
must be defined using an appropriate data structure language, e.g., UML class
diagrams [17,60]. Behavior of components can be defined in a relational form,
using for example the assumption/guarantee style composed of two logic specifi-
cations [8], where the assumption restricts the allowed input and the guarantee
relates input to output.



388 B. Rumpe and A. Wortmann

Fig. 3. State machine describing the behavior of the BumpControl component of the
BumperBot software architecture (cf. Fig. 1).

State Machines. Today, state machines are used in various forms, which
include Statecharts [21,22], finite or infinite automata, Büchi automata [64],
I/O-automata [1,37], or I/Oω-automata [53,58,59] allow to describe behavior in
a stepwise manner, based on an internal state. Dependent on the form of the
state machine, different specific properties, such as liveness or completeness, can
potentially be described. The important concept of underspecification, which we
above realize through power sets, can partially be used within the automaton
language directly, using alternate transitions. Indeed is nondeterminism in the
state machine specification technique perfectly corresponding to underspecifica-
tion in the development process and if the developer does not decide, which of
the alternatives to be taken, actually the implementation may choose nondeter-
ministically.

Figure 3 depicts a state machine leveraging nondeterminism to specify the
behavior of the component BumpControl of the BumperBot software architec-
ture illustrated in Fig. 1: based on stimuli received through input dist, it
describes how the systems explores an area until finding an obstacle (states
Exploring and Avoiding). Afterwards it can drive backward, turn left, or turn
right (states Avoiding, Turning Left, and Turning Right) until it selects to
continue exploring. All decisions following entering state Avoiding are based
on nondeterministic choice, which is suitable to underspecify CPS properties in
different design stages.

I/Oω automata are still not a concrete modeling language, but are concep-
tually rather close. Such an automaton is a tuple (S,Min,Mout, δ, I) with a
potentially infinite set of states S, input and output alphabet Min and Mout, a
state transition function δ ⊆ S × Min × S × Mω

out and initial state and output
pairs I ⊆ S×Mω

out. An I/Oω automaton can easily be mapped to a set of stream
processing functions [58].



Abstraction and Refinement in Hierarchically Decomposable 389

If the automaton is total, then the component specification is consistent (i.e.,
a nonempty set of functions). If the automaton is deterministic, then exactly one
function is in the semantics. If the automaton is not total, then several choices,
such as error completion, full underspecification or ignoring input messages that
cannot be handled are available. This all holds for the untimed and timed cases.

Furthermore, there are a larger set of modifications on automata available,
such as removing one of several alternate transitions or splitting states, that by
application are correct refinements [53,59]. These modifications allow an evolu-
tionary development of atomic component specifications. One of the advantages
of state machines is that they can always be directly interpreted as implemen-
tation (with more or less choices) and thus used in simulations.

Architectures. The composition operation ⊗ allows to build hierarchically
composed systems. To explicitly understand the architecture, it can be modeled
explicitly. A static architecture is minimally modeled by (A, sub, σ, β), where A
denotes the set of components (respectively component identifiers), sub : A →
℘(A) the hierarchy of compositions, for a ∈ A, σ(a) = (Ia, Oa) is the signature
of the component and β(a) denotes a behavioral specification of the component
in form of a set of stream processing functions ℘(

−→
Ia → −→

Oa). Signatures as well as
behavior can now be derived bottom-up through the composition operator as well
as specified top-down using for example functional or state based specifications.

It is possible, to use several specification techniques describing different
aspects of the same component. Dependent on the form of development process,
it may make sense to start with an incomplete assumption/guarantee specifica-
tion, complete it into a state machine and then hierarchically refine the structure
and decompose the overall behavior into a number of interacting components.
Semantically, we always know, whether the development steps have been cor-
rect, because either they are refinements or we can compare the semantics of a
composed architecture and the semantics of a state machine on the basis of the
sets of stream processing functions that they define.

2.4 Refinement

It is worth to have a deeper look at refinement. Refinement is defined as relation
between mathematical models that exhibits useful properties. Model B gener-
ally is a refinement of A, when implementations allowed by B are all correct
implementations of A. In its simplest form, A and B are sets of implementa-
tions themselves and refinement is realized by the subset equation. This holds
for stream specifications as well as for specification of components, which are
sets of stream processing functions.

The notion of refinement can be extended in two ways: (1) instead of using
a pure semantic relation, constructive transformation techniques are defined,
and (2) if the signature of the components changes then signature mappings for
abstraction and refinement need to be added.



390 B. Rumpe and A. Wortmann

Constructive transformations T can be used instead of using a pure semantic
relation R(., .). They by definition lead to the appropriate refinement. That
means for all models A we have R(A, T (A)). A sequence of transformations
always leads to a refinement of the system. As a consequence, refinement needs to
be transitive. The refinement techniques need to be chosen and defined according
to the methodical steps that the developer needs. While the refinement relation
is defined in a general form concrete transformation steps should be handy,
simple and understandable and thus many kinds of small transformation steps
are useful.

Refinement of State Machines Through Transformation. We demon-
strate the general principle of constructive transformations for refinement on
the already mentioned refinement concept for state machines as defined in [59].
We repeat the list of concrete refinement steps from [53] in Table 1.

Table 1. Refinement transformations preserving or refining semantics of automata
models A = (S, Min, Mout, δ, Init) to T (A) = (S′, M ′

in, M ′
out, δ

′, Init′)

Transformation Condition and Description

Init′ ⊆ Init Removing initial non-determinism

δ′ ⊆ δ Removing non-deterministic transitions (with same input in
same state); constraint: only for reduction of nondeterminism

δ′ ⊇ δ Add transitions: removing partiality of accepted input;
constraint: not allowed to introduce alternatives to existing
transitions

S′ ⊆ S, δ′ ⊆ δ Removing states not reachable with any finite or infinite
transition sequence

S′ ⊇ S Adding states

S � S′ S replaced by S′ with a total, surjective relation that respects δ′

from S to S′ (adapting δ′ and Init′)

Init � Init′ Changing initial state where initial output is infinite

δ � δ′ Changing destination state where output is infinite

Min ⊆ M ′
in Extending input alphabet: semantics preserved for inputs of Mω

in

that do not contain any of the new messages

S′ = S⊥, δ ⊆ δ′ Chaos complete: adding error state ⊥, making transition relation
total using target state ⊥, and allowing any output

δ ⊇ δ′ Compactify: transforming transitions with infinite output to
self-loops

In each case T (A) is a refinement of the original state machine A, if we ensure
that the context conditions (i.e., well-formedness rules and the application rules
for the transformation) are met. Refinement here means, that the semantics



Abstraction and Refinement in Hierarchically Decomposable 391

�A� and �T (A)�, which of both sets of stream processing functions, are in the
appropriate relation: �A� ⊇ �T (A)�.

As discussed, (S,Min,Mout, δ, Init) is still not a concrete modeling syntax,
but it exhibits many more concepts of a concrete modeling language. It will
therefore be easier to map a concrete state machine modeling language to these
concepts and then understand, what the appropriate evolution steps on state
machines are to ensure refinement.

Refinement of Architectures. There also is an evolutionary calculus avail-
able that allows to modify the given structure of a decomposed component in a
controlled way, such that the overall behavior defined by the outside specification
is not altered or only refined, when modifying the component internally [48,49].
We call this glass-box refinement. This contrasts both, the black-box refinement,
where only specifications are considered, as well as the decomposition refine-
ment, where a black-box is decomposed into an architecture of communicating
components using a composition operator.

A decomposition refinement actually is a modification of the architecture
(A, sub, σ, β) in such a way that a so far atomic component a ∈ A becomes
decomposed by a set of new components. Glass-box refinement allows to modify
components and their interconnections and thus leads to calculus like the one
presented in Table 2, taken from [48,49], where also the context conditions are
precisely defined.

In addition, the papers [40,41,51,56] also have explored to use architecture
definitions as incomplete views. That means while syntactically equivalent to an
architectural definition, the view only depicts certain components, omits unin-
teresting channels and also boundaries, how these components are embedded
into an architecture. A view based specification therefore corresponds well to
the independent modeling of a feature in a high-level form independent of any
technical architecture. And those features can in the development process be
merged into a complete architecture allowing, e.g., an efficient form of variant
management. Again a variety of refinement techniques are possible on views.

Refinement of Component Signatures Using Mappings. If the signature
of the discussed components change or the set of messages in a set of streams
changes, then the specifications are not directly comparable. This happens at
many architectural modifications, e.g., if new inputs or outputs are added or
a port is renamed. In this case an abstraction mapping and a representation
mapping—we call them α and ρ—are necessary to relate the two specifications
respectively their semantics. Details of these mappings differ depending on the
form of refinement. Again it is mandatory that signature refinements are tran-
sitive, which is achieved through function composition on chains of refinement
and abstraction mappings.

As simple refinement for two sets of messages M , N is defined using an
injective ρ : M → N and α(ρ(m)) = m for m ∈ M . Then ρ is an encoding
of the old messages into a potentially more technical representation and α is



392 B. Rumpe and A. Wortmann

Table 2. Refinement transformations preserving or refining semantics of architecture
models S = (A, sub, σ, β) to T (S) = (A′, sub′, σ′, β′)

Transformation Condition and Description

β′(a) ⊆ β(a) Behavioral refinement of the specification for component
a ∈ A, usually under an invariant Φ that is valid on any
system execution that has this architecture

A′ = A ∪ N Architectural decomposition of an atomic component a ∈ A,
i.e., sub(a) = ∅, by a set of new components N �∈ A, where
sub′(a) = N , sub′(N) = ∅ and sub′ = sub otherwise

σ′
o(a) = σo(a) ∪ {c} Adding output channel to a component that has previously

been hidden internally i.e., c ∈ σo(sub(a))

σ′
o(a) = σo(a) \ {c} Removing an output channel that is not used by sibling

components, nor further exported, i.e., for parent p with
a ∈ sub(p): c �∈ σi(sub(p)) and c �∈ σo(p)

σ′
i(a) = σi(a) ∪ {c} Adding input channel that is now available, but unused

σ′
i(a) = σi(a) \ {c} Removing an input channel of a component. This is only

allowed, when the component does not rely on the input
channel under an invariant Φ. This can either be checked
syntactically (absence of use of c) or needs a proof

A′ = A ∪ {a} Adding a component a is always uncritical. The component
may be added at any level of the hierarchy and read all
available channels. It’s output isn’t used (yet) and thus the
modification is uncritical. (sub′ includes a, β′ extended on a
as well)

A′ = A \ {a} Removal of a component a is allowed, when the component
has no impact, i.e., doesn’t emit any channel – σo(a) = ∅ – or
it’s channels are not used anymore (see removing output
channels)

A′ = A \ {a} Expanding component structure of a ∈ A, where
sub′(p) = sub(p) \ {a} ∪ sub(a), leading to an expansion of the
internal structure of a into it’s father component p

A′ = A ∪ {a} Folding a sub-component structure by introducing new
component a ∈ A and embedding a subset C ⊆ sub(p) in
component a, for instance, sub′(p) = sub(p) ∪ {a} \ C and
sub(a) = C

the corresponding abstraction. All messages in N\ρ(M) are not needed and
should therefore not occur in system executions. However, components may react
robustly on those messages, for example by ignoring them.

Components a using M as input on a port p may be refined accordingly.
With ρc(a) and αc(a), we denote the specifications resulting from the signature
change of component a induced by ρ and α. Because specifications are sets of
stream processing functions, ρc and αc are mappings between sets, resulting



Abstraction and Refinement in Hierarchically Decomposable 393

in αc(ρc(a)) = a. The latter equality ensures the faithfulness of the encoding
representation.

There are many possible forms to extend encodings. We, for example, can
use a surjective, but not necessarily injective abstraction α, allowing that many
messages in N represent the same abstract message in M . Then ρ is a relation,
but still (α ⊗ ρ)(m).

We could represent an abstract message in M by a sequence of messages
in N . This can be described by ρ : Mω → Nω and again α(ρ(s)) = s for
s ∈ Mω. Again, the encoding does not discuss, what happens with illegitimate
sequences of messages, i.e., s 
∈ ρ(Mω), which gives additional freedom when
further refining the resulting specification. However, illegitimate sequences of
messages should not even occur in a system execution, because through proper
refinement of an architecture, the emitting component obeys the same encodings
as the receiving component.

If the encoding covers even several channels, e.g., when mapping an 32-bit
integer into 32 separate binary channels, then ρ and α will be applied on sets of
channels.

Through these various generalizations and the possibility to build chains of
encodings ρ1(ρ2(. . .)), we finally are able to map abstractly defined components
to concrete components and relate their specifications in form of an U-simulation
(see [4]). U-simulation uses the idea that the input is mapped down via ρ to a
concrete representation and the output is mapped back via α: The refinement
of component a is therefore ρc(a) = α ◦ a ◦ ρ. This technique is useful, when a
single component is to be refined and shall be used in the original, unchanged
context.

If a complete architecture is to be refined, then it is sufficient to define repre-
sentation mappings for all channels using ρ and apply the representation map-
ping to all components in an architecture. However, ρ also needs to have an
inverse relation with certain properties, to ensure that an encoding is complete
and faithful. [4] calls this refinement under the representation specification ρ or
downward simulation. In that article, upward simulation and U−1-simulation are
defined also.

Relatively simple forms of refinement, namely the renaming of a channel
or the replacement of a set of messages by an equivalent one are easily sub-
sumed under these forms of interaction refinement. Several of the above dis-
cussed glass-box modifications for a given architecture can also be derived by
applying abstraction and representation mappings on the architectures.

Refinement of Time. Time is a very special concept. It is worth to take a
deeper look at the possibilities of modifying specifications, that incorporate time.
Above we introduced the tick � to model the progress of time. Precisely, in a
stream two consecutive ticks represent the beginning and end of a time slice. All
time slices in a stream are of equal length, although we do not necessarily need
to know the length explicitly. Furthermore, in all streams on all channels ticks
model the same progress of time.



394 B. Rumpe and A. Wortmann

Initially, the tick was introduced mainly to model delay. With the tick it
became possible to describe, for example, the merge function inductively, which
previously was not possible. When real-time functions became more important
e.g., in the domain of CPS, the tick was also used to represent equidistant
progress of time. Formally, the tick is handled like any other message in a stream,
which means that stream processing functions may react on progress of time.
In particular, we may model timeouts by counting the ticks, which implements
clocks.

Timed streams, therefore, have a very similar power of description compared
to the concept of superdense event structures [35,36]. All messages within a time
slice are known to consecutively follow each other, but nothing is said about the
actual progress of time between them. While in the superdense event structure
[36], each event has a precise time stamp, in streams only the time slice (and the
relative order of events) are known. If real-time comes into play, but the exact
timing is not necessary, it should be possible to define time slices small enough
to accommodate timed behavior specifications. This abstraction might be useful
in specifications especially for underspecification.

Assuming, that a given specification uses a time slice of size t. When refining
the specification to be able to more precisely describe expected behavior, we
might be interested in refining time as well, splitting each time slot into n sub-
slots. Formally, such a refinement is defined by an abstraction mapping α :
Mω

� → Mω
� that filters each consecutive n − 1 ticks, while emitting each n-th

tick. The representation ρ is therefore a relation allowing many different forms
of splits for the time slice, i.e., injecting ticks at different places in a stream.
Time refinement can also be chained, allowing a hierarchy of time slices.

For simulation purposes, it is interesting to relax the constraint that all ticks
model the same time slices. First, we may use channels, where the observed
behavior differs from channel to channel. We may even allow timed and untimed
channels within the same architecture, which allows us to model system struc-
tures and component behaviors as abstract as desired. Formally, we assume a
minimal and potentially very small time slice t that is available in the whole
system. Each channel is then accompanied with a natural number n (or ∞)
describing the size of its time slice as multiple n ∗ t. For a simple mathematical
description, we may use �n to denote ticks on a channel with multiplicity n.

A component can then accept a variety of timed channels, allowing to be
internally decomposed into sub-components of different (synchronous) clocks as
well as introducing specification components the main purpose of describing how
timing behavior is handled.

There is a lot more theory available, e.g., there are interesting techniques
to refine time in a state based specification, where each transition describes an
event (including timing events) or describes a time slice [4,58].

Equipped with the above summarized theory, we are in the following looking
at the simulation environment provided by MontiArc and how several of the
above described techniques are practically realized.



Abstraction and Refinement in Hierarchically Decomposable 395

3 Architecture Models in MontiArc

MontiArc [9,18,20] is an extensible component & connector ADL [42] allowing
to describe the architecture of hierarchically composed components. MontiArc,
furthermore, comprises languages for definition of data types and the behavior or
of components. MontiArc’s components realize stream processing functions that
can implement the above discussed timing paradigms. All MontiArc languages
are realized as textual modeling languages with the MontiCore [32] language
workbench, which supports MontiArc’s language extension mechanisms [9]. Mon-
tiArc and its variants have been applied to the software engineering of automo-
tive software [19], cloud systems [45], and robotics applications [52] in indus-
trial [24] and academic contexts [54,55].

Fig. 4. Textual representation of the component BumpControl controlling the behav-
ior of the BumperBot architecture using an embedded I/Oω automaton emulating the
behavior depicted in Fig. 3.

Components, such as BumperBot of Fig. 4 directly correspond to sets of
stream processing functions. MontiArc architectures support refinement and
composition. The outermost component BumperBot defines the system bound-
ary and through instantiation relations and establishment of connectors between
its subcomponents defines a software architecture in the sense of (A, sub, σ, β)
(cf. Sect. 2.3). With MontiArc, A is the set of components transitively used by
the outermost component, sub is characterized by the instantiation relation of
the contained components, σ is defined by their incoming and outgoing ports,
and β is defined by the behavior models employed by the instantiated com-
ponents. To this end, MontiArc components yield interfaces of typed, directed
input and output ports through which they receive and emit streams of messages
to from and to the environment (ll. 2–6). Components also are either composed
or atomic: composed components comprise connectors that realize aforemen-
tioned communication channels (cf. Sect. 2.1) and through which they define



396 B. Rumpe and A. Wortmann

Fig. 5. Quintessential interfaces of MontiArc’s run-time environment and how they are
related to the generated implementation of component BumpControl of Fig. 1.

their sub-components’ composition (cf. Sect. 2.2). Atomic components feature
local variables and an I/Oω automaton describing component behavior (ll. 8–
13). An I/Oω automaton comprises a finite set of states (ll. 9–10), initial variable
values, a set of initial states with optional outputs (l. 9), and a set of transitions
(ll. 11 ff). Every transition has a source state, a pattern of values read on input
ports (inputs) and local variables, a target state, values written to output ports
(outputs), and values assigned to local variables (assignments). Inputs, outputs,
and assignments may refer to values read from input ports and to values of
variables. Embedding other behavior modeling languages is possible [52]. For
detailed definitions and well-formedness rules see [20,57].

3.1 Transforming MontiArc Models to Executable Java

MontiArc leverages MontiCore’s template-based code generation framework [61]
to translate component models into executable Java artifacts. To this end, Mon-
tiArc parses textual models into abstract syntax trees (ASTs), checks their well-
formedness, and applies FreeMarker [63] templates to transform ASTs into Java
classes that are compatible to a run-time environment featuring component sim-
ulation. This section illustrates this transformation and the next section presents
how the Java classes are employed for simulation.

The code generator of MontiArc aims to minimize memory footprint of archi-
tectures and operates in the context of a run-time environment (RTE) that
provides functionality required by every generated architecture. To this end, it
provides various interfaces that generated component code as well as parts of the
RTE rely upon. Its quintessential interfaces for describing component structure
are IComponent and IPort, which are implemented by generated component
implementations and their ports as depicted in Fig. 5.

Components interact with their environment through sets of incoming and
outgoing ports only and can comprise sub-components (composed components
only) or behavior implementations (atomic components only) that realize, for



Abstraction and Refinement in Hierarchically Decomposable 397

instance, the embedded automata. Each emitting port is connected to a set of
receiving ports. This conforms to the Focus property that a sender can transmit
data to multiple receivers. As sending ports are directly connected to receiving
ports, MontiArc does not require to reify connectors (channels) as Java classes.
This reduces the number of required objects at runtime and increases schedul-
ing flexibility. Component implementations take care of creating and initializing
their sub-components hierarchically according to the corresponding architecture
model.

At the core of MontiArc’s simulation capabilities is its scheduling infras-
tructure, which enables simulation of hierarchical architectures of components
following different timing paradigms. Each component may carry its own sched-
uler. Default schedulers are provided, which interact in such a way, that time
progress is ensured and all messages are scheduled in their time slot.

Figure 6 depicts its infrastructure but omits the associations already depicted
in Fig. 5. Aside from IComponent and IPort, the schedulers use the following
classes and interfaces:

– Interfaces IOutPort and IInPort: Both interfaces implement IPort and
enable component developers to send and receive messages respectively.

– Interface ISimComponent provides two methods to the scheduler to acti-
vate components. Via method handleMessage(port, message), the sched-
uler invokes processing the passed data message on port port. The method
handleTick() to make a component increase its internal clock and emit √
messages on each outgoing port.

– Abstract class AComponent serves a common superclass for generated compo-
nent classes (such as BumpControl) and comprises the component name as
well as an error handler.

– Interface IOutSimPort provides methods to register receivers (i.e., establish
connectors).

– Interface IInSimPort enables to setup the containing component and related
scheduler to outgoing port instances.

– Additional scheduling-related methods to manipulate the state of ports are
provided but omitted in the Figure (e.g., put to sleep, wake up, etc.).

– Interface IScheduler features the setupPort(inPort) method to set up a
concrete scheduler and the registerPort(inPort, msg) method to trigger
scheduling of a certain port and message.

– Interface IPort unifies the use of incoming and outgoing ports throughout
the generated architecture.

– Interface IForwardPort defines incoming ports for decomposed components
and forwards messages to the connected incoming ports of the corresponding
sub-components.

– Class Port is the default port implementation for simulation. To conserve
memory, Port instances are created for incoming ports of atomic components
only. Through IPort, instances of the connected incoming ports can be used
as outgoing ports and dedicated objects for outgoing port are unnecessary.



398 B. Rumpe and A. Wortmann

Fig. 6. Quintessential classes and interfaces of MontiArc’s simulation run-time envi-
ronment as presented in [18].

Leveraging interfaces to describe MontiArc’s scheduling facilitates extending
its simulator for different scheduling purposes and timing paradigms. The next
section describes how this infrastructure is employed to realize various timing
paradigms with MontiArc.

The default scheduling can be individually replaced by specific schedulers,
that either know more about the implementation and the order of how mes-
sages are processed, or can for example in the simulation be used to experiment
with different possible orders to understand how parallel processing respectively
interleaving affects the overall outcome. Default scheduling is underspecified in
the order of executing the messages (within a given time frame).

The default scheduling is also able to manage cycles of communicating com-
ponents. Such a cycle needs to be broken up in order to allow progress. In
accordance to the theory of Sect. 2, we break each cycle at components that
are strongly causal. Strong causality means that the output of a time slice is
determined by the inputs of the previous time slice, which means that the com-
ponent introduces delay, and the calculation of the following components can
start already based on the predetermined result of the strongly causal compo-
nent. If there is a cycle where no component is a strongly causal, the feedback
composition will not be well-defined and the simulation would correspondingly
get stuck (respectively issues a halting error).

The scheduling order of messages introduces certain form of nondeterminism
that may for example occur, if several messages in different channels arrive in the
same time slot and are individually processed based on a potentially changed



Abstraction and Refinement in Hierarchically Decomposable 399

internal state. Introducing our own schedulers allows to control this form of
nondeterminism. Furthermore, for an intensive set of tests of the component
interaction, different schedules should be experimented with.

The very same challenge occurs, if the component itself is underspecified,
allowing different potential implementations. This is for example the case for
nondeterministic state machines, where alternative transitions can be taken with
different reactions and different target states. For an extensive simulation, this
form of nondeterminism is also to be controlled and scheduled using different
alternatives. A typically possible way to control these forms of nondeterminism
is to externalize the choice. I.e. instead of nondeterminism, the choice can be con-
trolled by an additional external oracle, which may for example be a stream of
binary suggestions. I.e. mathematically, we replace and set of stream processing
functions ℘(

−→
I → −→

O ) by a single deterministic function with an additional input
channel

−→
B ×−→

I → −→
O ). The binary decisions B can be extended to finite or even

unbounded choice if necessary. A given architecture can be adapted accordingly,
such that each underspecified component and each scheduler receive appropri-
ate oracles. The adapted architecture can be well used for extensive tests in
simulations.

3.2 Simulating Time in MontiArc Architectures

Simulating time of logically distributed and concurrent components in a single
thread requires explicit scheduling, where the schedulers are responsible for mes-
sage processing and the simulation of time. As discussed above, each component
can yield an individual scheduler and a larger variety of scheduling schemes is
possible. Each scheduler decides which sub-component executes next and the
schedulers synchronize incoming data and ticks received on the incoming ports
of components. One strategy is to merge incoming events to a simulated timed
input trace. This trace is then propagated to scheduled components, which inter-
nally process each event and also process timing progress through �-events.

As different applications favor different communication timing strategies –
embedded applications might favor global clocks whereas cloud systems might
benefit from event-driven communication – MontiArc supports all paradigms
of time described in Sect. 2. As complex architectures can be composed from
components realizing different time paradigms, MontiArc supports registering
different schedulers for each composed component. It also provides a default
scheduler supporting all three timing paradigms through temporal unification.
This is presented in the following.

The foundation of MontiArc simulations are the timed streams discussed in
Sect. 2. The timing paradigm of a component determines how the tick messages
and data messages of those streams are translated to events, which are propa-
gated to the component implementation. For composed components comprising
sub-components of different timing paradigms, the distinct timing behavior is
unified to the underlying timed stream paradigm automatically. This entails
not forwarding time events to untimed components and forwarding only a single



400 B. Rumpe and A. Wortmann

message per time interval to time-synchronous components. Where special trans-
lations between different timing paradigms of sub-components are required, the
models have to be adapted to enable proper interaction. This can be achieved
by introducing upscaling and downscaling sub-components [8] that translate
between different timings in terms of a behavior refinement and serve as adapters
between sub-components with different time paradigms.

Fig. 7. Unification of time-synchronous streams, timed streams, and untimed streams
into timed input traces.

MontiArc’s default scheduler unifies time in composed components as
depicted in Fig. 7: upon receiving a bundle of streams of the component to be
scheduled, the scheduler synchronizes these streams into a timed input trace. For
each completed time interval in all received input streams, a time event (√) is
present in the produced input trace produced by the scheduler. All data events
are propagated to the components input trace in order of their occurrence also.
The scheduler then uses the timed input trace to trigger the scheduled compo-
nent. Time events are raised at the component using its handleTick() method,
data events are raised using its handleMessage() method. The Specific Event
Creation part of a component then creates timing paradigm specific events that
are passed to the concrete implementation of a component.

Unless modeled differently, MontiArc components communicate in a timed
fashion. Timed components react to the progress of time as well as data messages
on each incoming port. Hence, timed components can produce arbitrary many
output messages in a single time slice. Their output is produced in the same time
interval in which the triggering input occurred. The Specific Event Creation
of timed components forwards the received timed input trace from the scheduler
to the component implementation. Hence, the timing domain specific event trace
directly corresponds to the timed input trace.

Time-synchronous components process up to one input event per time slice
and also send up to one message per outgoing port as a reaction to the received
input event. Input events of time-synchronous components are tuples holding
exactly one message (which may be the empty message ⊥) per input channel.



Abstraction and Refinement in Hierarchically Decomposable 401

The propagation of messages from timed input streams to time-synchronous
event traces defines the semantics of time-synchronous components operating
over timed streams. The Specific Event Creation takes care of creating cor-
responding tuples to liberate component developers from addressing synchro-
nization.

Untimed components are unaware of timing events, but react to data events
only. To this end, the Specific Event Creation filters the tick (√) messages
produced by the scheduler as part of the timed input event trace and forwards
the result to untimed components accordingly.

Components receiving streams of any timing paradigm can refine the time
indicated by these streams as required through decomposing time slices into
smaller slices processed by their subcomponents as presented in Sect. 2.4.
This corresponds to subcomponents operating in a superdense time where the
time continuum can be decomposed until (through architecture decomposition)
atomic component perform multiple untimed causally-related actions in a single
time slice. Details on realizing the different timing paradigms in MontiArc [18,20]
as well as its implementation and tutorials1 are available.

One of the big advantages of �s in the simulation are that the modeled time in
the simulation becomes explicit and thus is decoupled from the time necessary to
execute the simulation. The simulation can therefore run much larger time frames
than it needs to execute the simulation, e.g. necessary for climatic simulations,
or vice versa can simulate very tiny timeslots, such as typical for physical atomic
processes. Furthermore, when distributing the simulation to many computational
cores, then individual cores can run different time frames and can even partially
look far into the future, as long as they don’t rely on other older parts of the
simulation from other cores.

With code generation, hierarchical component instantiation, and extensi-
ble scheduling for different timing paradigms in place, MontiArc is suitable to
address many challenges arising from engineering software-intensive CPS.

4 Discussion

MontiArc supports simulating logically distributed systems of stream processing
functions according to different timing paradigms. This enables exploring and
validating MontiArc architecture in an agile way. Together with its extensible
ADL MontiArc is suitable for rapidly prototyping system models.

The MontiArc simulation realizes the Focus architecture and communica-
tion model. Outgoing ports directly transmit messages to connected incoming
ports and records of these transmissions correspond to Focus streams that
describe the timed communication between sender and receiver. As the MontiArc
simulation aims to minimize the memory footprint of architectures at runtime
and streams are rarely needed during the execution of a simulation, streams are,
by default, not recorded to reduce the amount of allocated memory. However,

1 See http://www.monticore.de/languages/montiarc/.

http://www.monticore.de/languages/montiarc/


402 B. Rumpe and A. Wortmann

for analysis and testing, the relevant ports can be flexibly replaced with test
ports that explicitly record transmitted messages in a stream data structure for
analysis during or after the simulation execution.

Despite the simulation being executed in a single thread with synchronous
blocking method calls, atomic components can be implemented in an event-
based fashion. To this end, the MontiArc runtime system prescribes interacting
interfaces for components and ports that enable its schedulers to stimulate com-
ponents with incoming events. Although the message transmission and event
propagation by the scheduler require some real time, no simulation time has
passed when the control flow returns to a component. Consequently, MontiArc’s
simulation is logically asynchronous and event-based, which is suitable to a wide
range of software-intensive CPS.

5 Related Work

A study on architecture description languages discovered over 120 different lan-
guages for different kinds of systems operating in different domains [38]. Of
these, various languages serve modeling the structure and behavior of software-
intensive CPS, including automotive systems [12], avionics [14], consumer elec-
tronics [46], and robotics [62]. The languages focus on different aspects and
challenges of architecture engineering from academic and industrial perspectives.
Overall, architecture description languages rarely are grounded in a well-defined
theory. Many prominent ADLs rely on theories realized implicitly through their
tooling.

In contrast, AutoFOCUS 3 [26] is a tool suite for developing reactive embed-
ded systems that also bases its semantics on Focus [8]. In contrast to MontiArc,
AutoFOCUS 3 cannot leverage the language composition of an underlying lan-
guage workbench and, hence, does not feature MontiArc’s powerful language
embedding mechanisms [9]. Further prominent examples of ADLs with well-
founded semantics are the π-ADL [47], LEDA [10], and PiLar [11], all of which
rest on the π-calculus [44], which lacks the powerful properties of Focus regard-
ing composition of refined components.

6 Conclusion

We have presented how the Focus theory of stream processing functions can be
leveraged to facilitate the model-driven development of cyber-physical systems
through early simulation under consideration of different timing paradigms. To
this end, we summarized refinement and composition in Focus and showed how
automata can employ underspecification to support model-driven specification
in early design stages. Based on this theory, we presented the MontiArc archi-
tecture modeling tool suite and explained how its code generation and simula-
tion capabilities support engineering software-intensive cyber-physical systems
with underspecification and different timing requirements through simulation.
We believe that this combination of well-founded theory and practical modeling
technique facilitates software engineering of cyber-physical systems.



Abstraction and Refinement in Hierarchically Decomposable 403

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26(5), 109–120 (2001)

2. Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., Schtäz, B.: Autofocus 3: tooling con-
cepts for seamless, model-based development of embedded systems. In: 8th Inter-
national Workshop on Model-based Architecting of Cyber-physical and Embedded
Systems, pp. 19–26 (2015)

3. Bauer, A., Romberg, J., Schätz, B.: Integrierte entwicklung von automotive-
software mit autofocus. Informatik - Forschung und Entwicklung 19, 194–205
(2005)

4. Broy, M.: (Inter-)action refinement: the easy way. In: Broy, M. (ed.) Program
Design Calculi. NATO ASI F, vol. 118, pp. 121–158. Springer, Heidelberg (1993).
https://doi.org/10.1007/978-3-662-02880-3 5

5. Broy, M., Dederich, F., Dendorfer, C., Fuchs, M., Gritzner, T., Weber, R.: The
design of distributed systems - an introduction to FOCUS. Technical report, TUM-
I9202, SFB-Bericht Nr. 342/2-2/92 A (1993)

6. Broy, M., Huber, F., Schätz, B.: Autofocus - ein werkzeugprototyp zur entwick-
lung eingebetteter systeme. Informatik-Forschung und Entwicklung 14(3), 121–134
(1999)

7. Broy, M., Rumpe, B.: Modulare hierarchische modellierung als grundlage der
software- und systementwicklung. Informatik-Spektrum 30(1), 3–18 (2007)

8. Broy, M., Stølen, K.: Specification and Development of Interactive Systems. Focus
on Streams, Interfaces, and Refinement. Springer, Heidelberg (2001). https://doi.
org/10.1007/978-1-4613-0091-5

9. Butting, A., et al.: Systematic language extension mechanisms for the montiarc
architecture description language. In: Anjorin, A., Espinoza, H. (eds.) ECMFA
2017. LNCS, vol. 10376, pp. 53–70. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61482-3 4

10. Canal, C., Pimentel, E., Troya, J.M.: Specification and refinement of dynamic
software architectures. In: Donohoe, P. (ed.) Software Architecture. ITIFIP, vol.
12, pp. 107–125. Springer, Boston, MA (1999). https://doi.org/10.1007/978-0-387-
35563-4 7

11. Cuesta, C.E., de la Fuente, P., Barrio-Soĺırzano, M., Beato, M.E.G.: An “abstract
process” approach to algebraic dynamic architecture description. J. Log. Algebraic
Program. 63, 177–214 (2005)

12. Debruyne, V., Simonot-Lion, F., Trinquet, Y.: EAST-ADL—an architecture
description language. In: Dissaux, P., Filali-Amine, M., Michel, P., Vernadat, F.
(eds.) Architecture Description Languages. ITIFIP, vol. 176, pp. 181–195. Springer,
Boston, MA (2005). https://doi.org/10.1007/0-387-24590-1 12

13. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. Proc.
IEEE 100(1), 13–28 (2012)

14. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston
(2012)

15. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: Future of Software Engineering (FOSE 2007), pp. 37–54, May 2007

16. Giese, H., Rumpe, B., Schätz, B., Sztipanovits, J.: Science and engineering of cyber-
physical systems (Dagstuhl seminar 11441). Dagstuhl Rep. 1(11), 1–22 (2012)

https://doi.org/10.1007/978-3-662-02880-3_5
https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-3-319-61482-3_4
https://doi.org/10.1007/978-3-319-61482-3_4
https://doi.org/10.1007/978-0-387-35563-4_7
https://doi.org/10.1007/978-0-387-35563-4_7
https://doi.org/10.1007/0-387-24590-1_12


404 B. Rumpe and A. Wortmann

17. OM Group: OMG Unified Modeling Language (OMG UML), Infrastructure version
2.3 (10-05-03) (2010)

18. Haber, A.: MontiArc - Architectural Modeling and Simulation of Interactive Dis-
tributed Systems. Aachener Informatik-Berichte, Software Engineering, Band, vol.
24. Shaker Verlag, September 2016

19. Haber, A., Rendel, H., Rumpe, B., Schaefer, I.: Evolving delta-oriented software
product line architectures. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop
2012. LNCS, vol. 7539, pp. 183–208. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34059-8 10

20. Haber, A., Ringert, J.O., Rumpe, B.: Montiarc - architectural modeling of interac-
tive distributed and cyber-physical systems. Technical report AIB-2012-03, RWTH
Aachen University, February 2012

21. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8, 231–274 (1987)

22. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.)
Logics and Models of Concurrent Systems. NATO ASI F, vol. 13, pp. 477–498.
Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-82453-1 17

23. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of “semantics”?
IEEE Comput. 37(10), 64–72 (2004)

24. Heim, R., Mir Seyed Nazari, P., Ringert, J.O., Rumpe, B., Wortmann, A.: Modeling
robot and world interfaces for reusable tasks. In: Intelligent Robots and Systems
Conference (IROS 2015), pp. 1793–1798. IEEE (2015)

25. Hoare, C.A.R.: Communicating sequential processes. In: Hansen, P.B. (ed.) The
Origin of Concurrent Programming, pp. 413–443. Springer, New York (1978).
https://doi.org/10.1007/978-1-4757-3472-0 16

26. Hölzl, F., Feilkas, M.: 13 AutoFocus 3 - a scientific tool prototype for model-
based development of component-based, reactive, distributed systems. In: Giese,
H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) MBEERTS 2007. LNCS,
vol. 6100, pp. 317–322. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16277-0 13

27. Huber, F., Schätz, B.: Rapid prototyping with AutoFocus. In: Wolisz, A., Schiefer-
decker, I., Rennoch, A. (eds.) Formale Beschreibungstechniken für verteilte Sys-
teme, GI/ITG Fachgespräch, pp. 343–352. GMD Verlag, St. Augustin (1997)

28. Huber, F., Schätz, B., Schmidt, A., Spies, K.: AutoFocus—a tool for distributed
systems specification. In: Jonsson, B., Parrow, J. (eds.) FTRTFT 1996. LNCS,
vol. 1135, pp. 467–470. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61648-9 58

29. Jensen, J.C., Chang, D.H., Lee, E.A.: A model-based design methodology for
cyber-physical systems. In: 2011 7th International on Wireless Communications
and Mobile Computing Conference (IWCMC), pp. 1666–1671. IEEE (2011)

30. Karsai, G., Sztipanovits, J.: Model-integrated development of cyber-physical sys-
tems. Softw. Technol. Embed. Ubiquit. Syst. 5287, 46–54 (2008)

31. Klein, C., Rumpe, B., Broy, M.: A stream-based mathematical model for dis-
tributed information processing systems - SysLab system model. In: Workshop
on Formal Methods for Open Object-based Distributed Systems. IFIP Advances
in Information and Communication Technology, pp. 323–338. Chapmann & Hall
(1996)

32. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional devel-
opment of domain specific languages. Int. J. Softw. Tools Technol. Transf. (STTT)
12(5), 353–372 (2010)

https://doi.org/10.1007/978-3-642-34059-8_10
https://doi.org/10.1007/978-3-642-34059-8_10
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-1-4757-3472-0_16
https://doi.org/10.1007/978-3-642-16277-0_13
https://doi.org/10.1007/978-3-642-16277-0_13
https://doi.org/10.1007/3-540-61648-9_58
https://doi.org/10.1007/3-540-61648-9_58


Abstraction and Refinement in Hierarchically Decomposable 405

33. Lee, E.A.: Cyber-physical systems-are computing foundations adequate. In: Posi-
tion Paper for NSF Workshop On Cyber-Physical Systems: Research Motivation,
Techniques and Roadmap, vol. 2 (2006)

34. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), pp. 363–369. IEEE (2008)

35. Lee, E.A.: CPS foundations. In: 2010 47th ACM/IEEE Design Automation Con-
ference (DAC), pp. 737–742. IEEE (2010)

36. Lee, E.A.: Constructive models of discrete and continuous physical phenomena.
IEEE Access 2, 1–25 (2014)

37. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q.
2, 219–246 (1989)

38. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: a survey. IEEE Trans. Softw. Eng. 39(6), 869–891
(2013)

39. Manna, Z., Pnueli, A.: Verifying hybrid systems. In: Grossman, R.L., Nerode, A.,
Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 4–35. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6 22

40. Maoz, S., Ringert, J.O., Rumpe, B.: Synthesis of component and connector models
from crosscutting structural views. In: Meyer, B., Baresi, L., Mezini, M. (eds.)
Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE
2013), pp. 444–454. ACM, New York (2013)

41. Maoz, S., Ringert, J.O., Rumpe, B.: Verifying component and connector models
against crosscutting structural views. In: Software Engineering Conference (ICSE
2014), pp. 95–105. ACM (2014)

42. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26, 70–93 (2000)

43. Milner, R.: Communication and Concurrency, vol. 84. Prentice Hall, Upper Saddle
River (1989)

44. Milner, R.: Communicating and Mobile Systems: the π Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

45. Navarro Pérez, A., Rumpe, B.: Modeling cloud architectures as interactive sys-
tems. In: Model-Driven Engineering for High Performance and Cloud Computing
Workshop. CEUR Workshop Proceedings, vol. 1118, pp. 15–24 (2013)

46. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala compo-
nent model for consumer electronics software. Computer 33(3), 78–85 (2000)

47. Oquendo, F.: π-ADL: an architecture description language based on the higher-
order typed π-calculus for specifying dynamic and mobile software architectures.
ACM SIGSOFT Softw. Eng. Notes 29, 1–14 (2004)

48. Paech, B., Rumpe, B.: State based service description. In: Proceeding of the IFIP
TC6 WG6.1 International Workshop on Formal Methods for Open Object-Based
Distributed Systems, FMOODS 1997, pp. 293–302. Chapman & Hall Ltd., London
(1997)

49. Philipps, J., Rumpe, B.: Refinement of pipe-and-filter architectures. In: Wing,
J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 96–115.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2 8

50. Reisig, W.: Petri Nets: An Introduction, vol. 4. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-69968-9

https://doi.org/10.1007/3-540-57318-6_22
https://doi.org/10.1007/3-540-48119-2_8
https://doi.org/10.1007/978-3-642-69968-9


406 B. Rumpe and A. Wortmann

51. Ringert, J.O.: Analysis and Synthesis of Interactive Component and Connec-
tor Systems. Aachener Informatik-Berichte, Software Engineering, Band, vol. 19.
Shaker Verlag (2014)

52. Ringert, J.O., Roth, A., Rumpe, B., Wortmann, A.: Language and code genera-
tor composition for model-driven engineering of robotics component & connector
systems. J. Softw. Eng. Rob. (JOSER) 6(1), 33–57 (2015)

53. Ringert, J.O., Rumpe, B.: A little synopsis on streams, stream processing functions,
and state-based stream processing. Int. J. Softw. Inform. 5(1–2), 29–53 (2011)

54. Ringert, J.O., Rumpe, B., Schulze, C., Wortmann, A.: Teaching agile model-driven
engineering for cyber-physical systems. In: International Conference on Software
Engineering: Software Engineering and Education Track (ICSE 2017), pp. 127–136.
IEEE (2017)

55. Ringert, J.O., Rumpe, B., Wortmann, A.: A case study on model-based devel-
opment of robotic systems using montiarc with embedded automata. In: Giese,
H., Huhn, M., Philipps, J., Schätz, B. (eds.) Dagstuhl-Workshop MBEES: Modell-
basierte Entwicklung eingebetteter Systeme, pp. 30–43 (2013)

56. Ringert, J.O., Rumpe, B., Wortmann, A.: From software architecture structure
and behavior modeling to implementations of cyber-physical systems. In: Software
Engineering Workshopband (SE 2013). LNI, vol. 215, pp. 155–170 (2013)

57. Ringert, J.O., Rumpe, B., Wortmann, A.: Architecture and behavior modeling of
cyber-physical systems with MontiArcAutomaton. No. 20 in Aachener Informatik-
Berichte, Software Engineering. Shaker Verlag (2014)

58. Rumpe, B.: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag Wissenschaft, München, Deutschland (1996)

59. Rumpe, B.: Modellierung mit UML. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-642-22413-3

60. Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-319-33933-7

61. Schindler, M.: Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P.
Aachener Informatik-Berichte, Software Engineering, Band, vol. 11. Shaker Verlag
(2012)

62. Schlegel, C., Steck, A., Lotz, A.: Model-driven software development in robotics:
communication patterns as key for a robotics component model. In: Chugo, D.,
Yokota, S. (eds.) Introduction to Modern Robotics. iConcept Press (2011)

63. Tedd, L.A., Radjenovic, J., Milosavljevic, B., Surla, D.: Modelling and implemen-
tation of catalogue cards using freemarker. Program 43(1), 62–76 (2009)

64. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, vol. B, pp. 133–191. Elsevier (1990)

65. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., Czarnecki, K., von Stock-
fleth, B.: Model-Driven Software Development: Technology, Engineering, Manage-
ment. Wiley Software Patterns Series. Wiley, Hoboken (2013)

https://doi.org/10.1007/978-3-642-22413-3
https://doi.org/10.1007/978-3-642-22413-3
https://doi.org/10.1007/978-3-319-33933-7

	Abstraction and Refinement in Hierarchically Decomposable and Underspecified CPS-Architectures
	1 Motivation
	2 Theory of Streams
	2.1 Streams and Stream Processing Functions
	2.2 Composition
	2.3 Description Styles for Components
	2.4 Refinement

	3 Architecture Models in MontiArc
	3.1 Transforming MontiArc Models to Executable Java
	3.2 Simulating Time in MontiArc Architectures

	4 Discussion
	5 Related Work
	6 Conclusion
	References




