
Transforming Threads into Actors:
Learning Concurrency Structure from

Execution Traces

Gul Agha(B) and Karl Palmskog

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{agha,palmskog}@illinois.edu

Abstract. The threads and shared memory model is still the most
commonly used programming model. However, programs written using
threads interacting with shared memory model are notoriously bug-prone
and hard to comprehend. An important reason for this lack of com-
prehensibility is thread based programs obscure the natural structure
of concurrency in a distributed world: actors executing autonomously
with their own internal logic and interacting at arms length with each
other. While actors encapsulate their internal state, enabling consis-
tency invariants of the data structures to be maintained locally, thread-
based programs use control-centric synchronization primitives (such as
locks) that are divorced from the concurrency structure of a program.
Making the concurrency structure explicit provides useful documenta-
tion for developers. Moreover, it may be useful for refactoring thread-
based object-oriented programs into an actor-oriented programs based on
message-passing and isolated state. We present a novel algorithm based
on Bayesian inference that automatically infers the concurrency struc-
ture of programs from their traces. The concurrency structure is inferred
as consistency invariants of program data, and expressed in terms of
annotations on data fields and method parameters. We illustrate our
algorithm on Java programs using type annotations in Java classes and
suggest how such annotations may be useful.

Keywords: Concurrency · Actors · Shared memory · Threads · Java
Dynamic analysis · Bayesian inference

1 Introduction

A natural way to model the world is as a collection of actors that are autonomous
and concurrent [25]. The notion of actors has been developed as a programming
model [1,3] and given a formal semantics [2]. An actor encapsulates (isolates)
its local state; other actors may access an actor’s data only through an interface
defined by the latter. Such encapsulation, or isolation of data, enables us to
guarantee the consistency of the data that is owned by an actor.

An alternative for concurrency is independent threads of control manipulat-
ing shared memory. As Lee points out, a fundamental problem with threads is
c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 16–37, 2018.
https://doi.org/10.1007/978-3-319-95246-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95246-8_2&domain=pdf

Transforming Threads into Actors 17

the unrestricted nondeterminism of thread interleavings in the absence of syn-
chronization primitives [30]. In addition to being difficult to understand and
maintain, this makes thread-based programs notoriously prone to bugs such as
data races, deadlocks, and atomicity violations [36].

In practical terms, an important reason for concurrency-related bugs in
thread-based programs is that control-centric synchronization primitives that
enable atomic actions with respect to other threads, e.g., locks, are divorced
from consistency invariants relating data structures in programs.

Consider an object representing a concurrently accessed list. This list object
may have an array field and an integer field, where the integer field indicates
how much of the array field is in use. In other words, there is an invariant
which relates the array and integer fields. Locks must prevent the two fields from
being modified concurrently by different threads. Otherwise, the program could
exhibit a “high-level race” [4,9], where the list object reaches an inconsistent
state. Observe that in a thread-based program, there is no explicit connection
between the invariant and the code that uses locks to preserve the invariant
against concurrent modification.

In order to make the concurrency structure in a program perspicuous, we
need to make its consistency invariants explicit. Making the concurrency struc-
ture of programs with threads and shared memory explicit is desirable for several
reasons. For example, if a certain consistency invariant is documented, a pro-
grammer can use this knowledge to avoid unintended atomicity violations when
calling methods in existing classes and when adding new methods; both may
require adding synchronization for accessing fields. Moreover, as we argue in
this paper, knowledge of the concurrency structure of a multi-threaded object-
oriented program can be used to transform this program to use the actor model,
i.e., to introduce message-passing interfaces between active program components
to isolate their state [1,29,31].

One way to express consistency invariants is to provide annotations on data
fields and method parameters. Since we are mainly interested in the existence of
invariants between fields, and not their exact formulation in some program logic
such as JML [13], only basic annotation facilities are required. An example of
such annotations are those provided by Java 8 [43]. In earlier work, Vaziri et al.
provided the syntax and semantics for a set of annotations which represent
consistency invariants, and proved their soundness in a minimal calculus for
a Java-like language [17].

Unfortunately, manually adding consistency invariant annotations is time-
consuming and error-prone. Annotating a legacy program requires understand-
ing the program through its use of control-centric primitives. Even for relatively
small and simple programs of a few hundred lines, the conversion process can
take several hours. The manually produced annotations can also be problematic
in two ways: first, unrelated fields may be connected by annotations; and sec-
ond, related fields may not be connected. The first type of erroneous annotations
underestimate the permitted degree of concurrency; the second type is consis-
tent with unintended executions due to high-level data races. Several techniques

18 G. Agha and K. Palmskog

based on either static or dynamic program analysis to infer annotations related
to consistency invariants have been proposed [15,27,34,37]. However, these tech-
niques have serious limitations–both in the kind of data-centric primitives they
can infer, and in the precision and stability of their results.

In this paper, we present a novel machine learning algorithm that automat-
ically infers consistency invariant annotations for concurrent programs using
the threads and shared memory model from program execution traces. The
algorithm, called Bayesian Annotation Inference Technique (Bait), is based on
Bayesian inference [44]. Bait achieves robustness against intermittent devia-
tions from normal behavior in a trace by weighing such occurrences against a
preponderance of contrary evidence and correspondingly devaluing their impact.
Bait performs its analysis on-the-fly and scales to large programs and long exe-
cutions. Bait improves the accuracy of its results as the number of observations
grows by taking into account the distance (in terms of basic operations) between
two related observations, thus distinguishing between unrelated computation
phases. Finally, we discuss how such annotations may be facilitate transforma-
tion of threaded programs analyzed into actor-based programs.

2 Concurrency Structure Annotations and Actors

To concretize our discussion of concurrency structure, annotation inference, and
actors, we consider Java programs. We describe our concurrency structure anno-
tations for these programs, and how they related to program behavior using a
running example. We then outline how annotations can be used to transform
the example program to use actors.

2.1 Syntax and Semantics of Annotations

To capture consistency invariants, we adapt core constructs from the calculus
of Dolby et al. [17] to the syntax of Java 8 type annotations. We consider three
kinds of annotations: atomic sets, aliases, and unitfors. An atomic set is a group
of fields inside an object that are connected by a consistency invariant; objects
can contain multiple, but disjoint atomic sets. An alias extends atomic sets
beyond object boundaries–an alias merges the atomic set containing a field with
an atomic set in the object that is the field’s value. A unitfor intuitively merges
atomic sets of objects passed as parameters to a method with atomic sets in the
callee object, but only for the duration of the method call.

Figure 1 shows Java code with our annotations. The @AtomicSets annotation
on line 1 declares an atomic set L, and the @Atomic("L") annotations of the
field declarations for size and elements and these fields to L. The class List

corresponds to the example mentioned in Sect. 1: the value of a list’s size integer
field must equal the number of elements in the elements array actually used to
store list entries, so the fields size and elements form an atomic set. Each List

object has its own atomic set L. Recall that atomic sets express the existence of

Transforming Threads into Actors 19

Fig. 1. Example annotated Java classes.

consistency invariants, without requiring an explicit expression such invariant,
e.g., size < elements.length, for the class List.

Semantically, an atomic set is associated with one or more units of work. A
unit of work is a method that preserves the consistency of its associated atomic
sets when executed sequentially. Thus, atomic sets can ensure the application’s
consistency by inserting synchronization operations that guarantee the sequen-
tial execution of all units of work. By default, all non-private methods of a class
are units of work for all atomic sets declared in the class or any of its subclasses.
Like field declarations, atomic sets use classes as scopes, but are instance spe-
cific at runtime. Consider the methods get(int) and addAll(List) from Fig. 1.
Each method is (implicitly) a unit of work for the atomic set L of its receiver
List object. Hence, two threads, t1 and t2, that concurrently invoke get(int)

and addAll(List) on a List l cannot interleave when accessing l’s field: either
t1 executes get(int) first, or t2 executes addAll(List) first. The interleaved
case where t2 has updated l.size but not l.elements, which causes t1 to violate
the array bounds cannot occur.

For aliases, consider the DownloadManager class from Fig. 1. The alias anno-
tation @Alias("L") of the urls field declaration combines the atomic set L

in List with the atomic set U. Hence, the method getNextURL() is a unit of
work for this combined atomic set; its access to the urls list cannot be inter-
leaved, which guarantees that no other thread can empty the list between the
invocations of urls.get(0) and urls.remove(0).

The unitfor annotation allows methods to be declared as units of work for
atomic sets in the method’s parameters. For example, the method addAll(List)

is not only a unit of work for the atomic set L of its receiver List object but
also for the atomic set L of its argument. Hence, if two threads, t1 and t2,
concurrently invoke get(int) on a List l and pass the same l as the argument
to addAll(List), they still cannot interleave when accessing l’s field.

20 G. Agha and K. Palmskog

The program in Fig. 2 illustrates how the classes in Fig. 1 can be used to
implement concurrent downloading of a collection of files given as URLs. Note
that the program uses control-centric synchronization in the form of Java mon-
itors. While this particular use of monitors gives rise to program behavior con-
sistent with the meaning of the concurrency structure annotations in the List

and DownloadManager classes, other uses can easily cause atomicity violations.
We suggest that another option is to refactor the program to use actors and
message-passing rather than explicit threads and synchronization, as described
below.

Fig. 2. Example download program that uses threads to manage multiple network con-
nections. Threads share a single manager that maintains the list of URLs to download.
The program uses control-centric synchronization (Java monitors).

2.2 From Annotations and Threads to Actors

The aliased atomic sets in List and DownloadManager in Fig. 1 suggest that
we can encapsulate as a single actor one instance of the latter containing an
instance of the former. Then, instead of synchronizing on a DownloadManager

instance, which would require assuming shared memory, we can simply use mes-
sage passing to retrieve URLs and rely on actors having a single locus of control.

To enable wrapping objects into actors and passing (immutable) actor names
instead of in-memory object references, we also have to change the program
to rely on interfaces rather than classes directly in the code. Figure 3 shows

Transforming Threads into Actors 21

two classes in the resulting program. We use the syntax new actor to indicate
actor-wrapped objects.

Fig. 3. Actor program involving classes from Figs. 1 and 2.

Note that in order to execute the program in Fig. 3, the runtime system
must perform actor initialization on new actor assignments and convert method
invocations on actor names to message passing. However, not all programs can
be straightforwardly converted in this way. In particular, to preserve program
semantics, data passed through a message passing interface must have the same
meaning to the sender and the receiver.

Consider the example where the receiver resides in a different runtime envi-
ronment, memory references from the sender will not be valid: a message m
sent from actor A to actor B at runtime may contain references to objects at
A’s location which do not exist at B’s location. What is required is that the
data passed in messages be immutable, e.g., consist of only actor names and
constants. In the example actor program, only actor references (manager) and
immutable URL objects are passed in messages. In the case of a Java Virtual
Machine (JVM) based actor framework such as Akka [32], A may live in a differ-
ent JVM than B, so that some object references in m do not refer to meaningful
memory locations in the JVM of B. Even when actors live in the same JVM,
Akka developers recommend messages be made immutable [33], i.e., that their
contents are passed as (unchangeable) values. This was the case in the actor
program in Fig. 3: the only objects passed in messages have class URL, and all
its instances are by nature completely immutable.

22 G. Agha and K. Palmskog

Nevertheless, passing whole mutable objects (rather than references) in actor
messages can be consistent with the behavior of the original object-oriented pro-
gram in some situations. For example, if actors other than the receiver do not
interact with the object at all after the message with the object has been sent,
different actors will never have an inconsistent view of the object. More gener-
ally, if actors pass ownership of objects in messages [8], behavior is preserved
in a distributed environment. Weaker guarantees than ownership passing may
sometimes be acceptable, such as when actors promise not to call methods that
mutate a received object’s state [39]. For example, the Pony object-oriented
actor language has a type system which can account for many of these situations
and guarantee expected behavior in distributed program runtime settings [12];
however, the programmer must add such type annotations manually.

We believe that both static and dynamic inference can assist in inferring
properties such as immutability and ownership passing to establish preserva-
tion of behavior of actorized programs with their original purely object-oriented
behavior [5,39,40,45]. If safe message-passing behavior cannot be established
for some methods automatically by inference, one option is to make the actor
decomposition more coarse-grained, i.e., let fewer objects be wrapped by actors
in the program translation. This results in less concurrency, and less flexibility in
distributing actors at runtime to different locations, but does not require com-
plex refactoring of the program to ensure the actor message-passing semantics
preserves the original behavior.

3 Annotation Inference Example

In this section, we use an example based on the code in Sect. 2 to explain
the key concepts in Bait. Suppose that we are given the classes List and
DownloadManager from Fig. 1 but without the annotations. Moreover, we use
the code from Fig. 2 that downloads files in parallel, and manages its network
connections via threads. (Note that the synchronization in the DownloadThread

method run() makes calls to the DownloadManager instance atomic.) We show
how our algorithm infers the annotations during an execution of the program.

Bait observes program execution as a sequence of concurrency-related
events. One such sequence is partially displayed in Fig. 4. Bait infers data-
centric synchronization annotations based on the two following intuitions:

1. the fields of an object that a thread accesses together, without interleaving,
likely belong to the same atomic set; and

2. groups of objects that a thread accesses together are likely to be connected
by aliases.

In the partial execution shown in Fig. 4, one of the downloading threads
invokes getNextURL() to request a new URL to download from the shared
manager. After ensuring that the list of pending URLs contains an entry, the
manager picks and removes the first entry. The manager then announces the
start of the download in the program’s user interface and finally returns the
value to the thread.

Transforming Threads into Actors 23

Fig. 4. Sample execution of the program from Fig. 2 used to demonstrate the basic
ideas of the algorithm.

3.1 Inference of Atomic Sets

Bait assumes that the methods of a program perform semantically meaning-
ful operations and that the trace during an execution (mostly) represents the
intended behavior of the program—for example, such a trace may be generated
by running an existing integration test.

Given these assumptions, the fields of an object accessed atomically by a
method in close succession are likely connected by some invariant. The set of
fields that a method accesses atomically is consequently a candidate atomic set ;
the method itself is a candidate unit of work for this atomic set. For example, the
get(int) method reads the fields size and elements in the same list object.
In the sample execution of Fig. 4, the reads (accesses 3 and 4) happen close
together and without interleaving. Thus, we have evidence that the class List

should contain an atomic set with these two fields. Method get(int) is the
context of the field accesses and thus a unit of work for this potential atomic set.

However, field accesses within a method may be far apart. For example,
the two accesses to the thread object’s manager field in the run() method of
DownloadThread (1 and 5) are separated by a method call with many opera-

24 G. Agha and K. Palmskog

tions. Observing a large distance like a between two field accesses diminishes the
likeliness of an invariant between the fields. Such an observation hence counts
as evidence against an atomic set containing the fields. The same is true for
interleaved accesses to fields by multiple threads.

The central idea of the algorithm is to use this evidence for and against
atomic sets in Bayesian inference. Collecting evidence, Bait updates its belief
that fields belong to the same atomic set. If the belief is high enough at the end
of the execution—intuitively, there was stronger evidence for an atomic set than
against it—Bait outputs corresponding @Atomic annotations.

3.2 Inference of Aliases

Since high-level semantic operations often employ low-level operations, field
accesses may belong to different contexts. In Fig. 4, access 2 happens within
the size() method, while access 3 happens within the get(int) method of
List. Increasing the distance between the accesses (b > c) suffices to adjust
the atomic set evidence in this case. However, the context that contains both
accesses is no longer obvious.

The algorithm uses the lowest common ancestor in the call tree as the context
for field accesses belonging to different methods. For accesses 2 and 3, e.g., this
is the getNextURL() method. Intuitively, we observe a pair of nearby atomic
accesses to urls.size within that context. Besides being evidence for an atomic
set containing field size, this suggests that getNextURL() is a unit of work for
this atomic set. Because the method accesses size via the field urls, there
should be an alias from the atomic set containing urls to the one containing
size.

However, aliases can remove all concurrency from the program when they
include objects shared between threads. In Fig. 5, two download threads share
a manager. Each thread’s run() method is context for two nearby atomic
accesses to the field urls in the manager object (accesses 6, 7 and 8, 9). Per-
forming inference as above, this suggests an alias that merges the atomic set
in class DownloadThread containing the manager field with the atomic set in
DownloadManager containing the urls field. The alias would make the run()

method a unit of work for the manager’s atomic set that contains the urls field.
As a consequence, the execution of the run() methods must be sequentialized,
which would mean that only one of the two threads can be active at all, reducing
performance.

Bait mitigates the sequentialization problem by tracking which objects
threads access together and weakening the belief in aliases across the boundaries
of such object clusters. In our example, both threads access themselves, the man-
ager, and the list object. Thus, the heuristic detects three clusters of objects:
two that are accessed by a single thread (the thread objects themselves), and
one that is accessed by both threads (the manager and the list object). Main-
taining the boundaries between these clusters, the heuristic prevents aliases from
manager to manager.urls, but it allows an alias from urls to urls.size.

Transforming Threads into Actors 25

Fig. 5. Sample execution of the program in Fig. 2 that highlights a challenge in alias
inference.

4 Algorithm

In this section, we describe Bait in detail, building upon the ideas introduced
in Sect. 3.

4.1 Field Access Observations

During the execution of a workload, the algorithm records get and put operations
on the fields of each object. These observations are captured in the scope of a
method call for a thread. From two consecutive observations for the same object,
Bait generates a field access event e, which is a tuple

(f, g, d, a) ∈ Fd × Fd × N × At.

Here, Fd denotes the set of all fields in the program; f is the first field accessed,
g is the second field. The distance d between the two accesses is the number
of basic operations executed by the thread, such as Java byte code instructions.
The entry a ∈ At = {atomic, interleaved} signals whether access to both f and g
was atomic or access to g was interleaved with some other thread. To detect such
interleaved accesses, Bait relies on a separate race detection algorithm such as
FastTrack [21], which is used in the implementation described in Sect. 5.

26 G. Agha and K. Palmskog

4.2 Bayesian Detection of Semantic Invariants

Using the generated field access events, the algorithm aims to determine whether
there are invariants that hold between pairs of fields. Consider two fields f and g
accessed in method m of a thread when executing a program on some workload.
Suppose the workload generates the events e1, . . . , en, all related to f and g.
Write H for the hypothesis that there exists a semantic invariant connecting f
and g in the method, and ¬H for the negated hypothesis that there is no such
invariant.

Our goal is to find out to what degree the evidence, in the form of e1, . . . , en,
supports the conclusion that H holds. In the Bayesian probabilistic reasoning
framework [44], this degree of support is formalized as the conditional probability
of H given e1, . . . , en, which through Bayes’s formula can be written as

P (H|e1, . . . , en) =
P (e1, . . . , en|H) · P (H)

P (e1, . . . , en)
. (1)

Unfortunately, the right-hand side is difficult to estimate because it would require
guessing the absolute probability that the events e1, . . . , en occur in a program.
For estimation, it is more convenient to use relative values such as the so-called
odds and likelihood ratios. Intuitively, the likelihood ratio expresses how many
times more likely an event is when the hypothesis is true versus when the hypoth-
esis is false. Thus, we divide the left-hand side of Eq. 1 with its complementary
form, yielding

P (H|e1, . . . , en)
P (¬H|e1, . . . , en)

=
P (e1, . . . , en|H)

P (e1, . . . , en|¬H)
· P (H)
P (¬H)

.

What the equation says is that our revised belief in H, when presented with
e1, . . . , en, is equal to the ratio of the chances of observing e1, . . . , en under H
and ¬H, times our initial belief in H. We call the revised belief posterior odds,
the ratio of the chances of making observations the likelihood ratio, and our
initial belief the prior odds. More compactly, then, we write the equation as

O(H|e1, . . . , en) = L(e1, . . . , en|H) · O(H). (2)

These quantities are easier to estimate than probabilities, yet must be recom-
puted from scratch every time new evidence is added. However, if e1, . . . , en are
conditionally independent given H, an assumption discussed in Sect. 4.3, we have

P (e1, . . . , en|H) =
n∏

k=1

P (ek|H),

and similarly for ¬H, which together with Eq. 2 gives

O(H|e1, . . . , en) = O(H) ·
n∏

k=1

L(ek|H).

Transforming Threads into Actors 27

This equation suggests that recursive, on-the-fly computation of odds is possible,
as becomes clear when adding one more piece of evidence en+1, yielding

O(H|e1, . . . , en, en+1) = L(en+1|H) · O(H|e1, . . . , en).

We set O(H) = 1, that is, we assume that H and ¬H are initially equally likely.
We have thus reduced the problem of obtaining the degree of support for H to
computing L(e|H), given the data from e.

4.3 Conditional Independence of Events

Conditional independence means that knowledge of H, or ¬H, makes evidence
up to that point irrelevant with respect to future evidence. Equivalently, under
conditional independence, the hypothesis influences the evidence directly, with-
out systematic interference from external factors. However, in a run of the algo-
rithm directly on the JVM, the evidence produced can clearly be skewed through
systematic influence from the chosen workload and the scheduler. While a work-
load is simple to revise, controlling thread schedules is difficult for programs
running on the JVM. JPF provides a virtual machine implemented on top of the
regular JVM that enables full control over nondeterminism such as scheduling
points. Hence, running the algorithm on JPF with random scheduling can rule
out influence by the scheduler.

Another way to address this problem is to refine the (coarse-grained) hypoth-
esis space that either H or ¬H holds into multi-valued variables [44]. This leads
to a considerably more complicated mapping of evidence to likelihoods ratios.
Instead of taking this route, we argue that the influence of external factors can
be minimized by running Bait on workloads with sufficient code coverage for
long enough to exhibit all critical interleavings, using JPF where feasible.

Although Bait can falsely conclude that two fields are related by an invariant
(and thus include them in an atomic set or add an alias) when they are not,
the resulting behavior is still safe. However, performance may suffer because of
such an error, due to increased overhead from synchronization and reduction of
concurrency.

4.4 Estimation of Likelihood Ratios

Suppose the field access event e reports we have a distance d between atomic
accesses of f and g. Intuitively, the likelihood ratio L(e|H) we assign based on
e should have the following properties:

1. As d decreases, L(e|H) must increase, but only up to some point, after which
it becomes a flat maximum value; even if atomic accesses of f and g happen
in close proximity, it is not conclusive that H holds.

2. As d increases, L(e|H) must decrease, but only to some minimum value
greater than zero; one observation should not make it impossible to conclude
that H holds.

28 G. Agha and K. Palmskog

Bait therefore uses a logistic function �(d), as shown in Fig. 6, to map field
access events to likelihood ratios. For example, accesses 2, 3, and 4 in Fig. 4 occur
in close succession. We interpret this as evidence that it is more likely than not
that an invariant connects the fields size and elements. Hence, we assign the
distances b and c, with b > c, likelihood ratios �(c) > �(b) > 1. In contrast, the
large distance a diminishes our belief that an invariant connects the two accesses
to the manager field. Thus, we set 1 > �(a) > 0. We leave the exact parameters of
the logistic curve—its steepness and minimum and maximum likelihood ratios—
to be determined during an implementation of the algorithm.

distance d

lik
el
ih
oo

d
ra
ti
o

�(
d
)

0

1

Fig. 6. Logistic curve for mapping atomic-access distances to likelihood ratios.

However, distance is not the only criterion for estimating the likelihood ratio.
Suppose that e reports interleaved access. We then disregard the distance and set
L(e|H) to a real number p (“penalty”) close to zero. This reflects that, intuitively,
our belief in an invariant goes down significantly after witnessing interleaving,
while not making it impossible to infer the invariant’s existence later on, through
overwhelming atomic access. Bait is thus robust against sporadic errors like very
rare data races. We again leave the precise value of p to an implementation.

In summary, given a field access event e = (f, g, d, a), we define the estimated
likelihood ratio for e as

�(d, a) =

{
�(d) if a = atomic;
p if a = interleaved.

4.5 Belief Configurations

We can now define how Bait stores odds of invariants and uses likelihood ratios
to update these odds in the course of workload execution.

Odds are stored in affinity matrices. An affinity matrix A is a symmetric
map from pairs of fields (f, g) to real numbers. Symmetric means that the
value assigned to (f, g) equals the one assigned to (g, f). Setting x as the value
of (f, g), written A[(f, g) �→ x], maintains the symmetry: after the update, it is
A(g, f) = x.

Transforming Threads into Actors 29

Belief configurations describe the algorithm’s state. A belief configuration B
contains an affinity matrix Am for every method m. Recall that an access event
for a thread t in method m is a tuple consisting of two fields f, g ∈ Fd, a
distance d ∈ N, and an atomicity indicator a ∈ At. The transition function for
belief configurations

δt,m : Config × Fd × Fd × N × At → Config

is now defined as δt,m
(
B, (f, g, d, a)

)
= B[m �→ A′

m] with

A′
m = Am

[
(f, g) �→ �(d, a) · Am(f, g)

]
. (3)

For all methods m, define an initial affinity matrix Ainit
m such that

Ainit
m (f, g) = 1 for all (f, g) ∈ Fd × Fd and an initial belief configuration Binit

with Binit(m) = Ainit
m . Then, if the events e1, . . . , en are generated in t for m,

the algorithm computes the final belief configuration

δt,m(· · · δt,m(Binit, e1) · · · , en).

4.6 Inference of Aliases and Unitfors

Inference of aliases and unitfors is done at the same time as inference of atomic
sets, and in a similar way, but with several important differences.

Suppose we observe an atomic access of the field g after an access of f in
the method m. Within m, the object that contains f and g may be known by
a source code identifier, that is, by a field or parameter name n. For example,
in Fig. 4, the field access event generated for the accesses 2 and 3 occurs in
method getNextURL(). Within that method, the list object that contains the
accessed size field is known by the field name url. Hence the method observes
the accesses in the context of this name, as urls.size; and more generally, m
observes the accesses of f and g as n.f and n.g.

Such an observation indicates that m performs multiple operations on
another object (the list in our example). As before, if the distance d between the
accesses n.f and n.g is small, then these operations likely maintain an invariant.
Therefore, they should be atomic, which means that an atomic set containing
n should be extended—by an alias—to also contain n.f and n.g. Translated to
our example, the close accesses to urls.size count as evidence for an alias that
merges the manager object’s atomic set containing urls with the list object’s
atomic set containing size.

In summary, to infer aliases and units of work, we associate with each identi-
fier n an affinity matrix An, and update this matrix with the likelihood ratio �(d),
penalizing interleaved accesses as for atomic sets above. Then, most straightfor-
wardly, if An(f, g) > 1 for An in the final configuration, this suggests an alias
from the inferred atomic set of n—should n be a field name—to the inferred
atomic set of f and g. Should n be a parameter of m, then this suggests declar-
ing m a unit of work for the atomic set of f and g in n.

30 G. Agha and K. Palmskog

Preventing Global Locks. Without further adjustments, inferring aliases this way
can lead to undesirable global locks, as shown in Fig. 5: if an alias merges an
atomic set in a thread object with an atomic set S in an object shared between
threads, then the thread’s methods become units of work for S. Consequently,
only one thread object can execute at a time, making (this part of) the program
sequential.

We apply the following heuristic to detect this situation and lower the respec-
tive alias beliefs. Whenever a thread t accesses a field in object o, we record t as
the owner of o. Using this data, we maintain an alias factor α for objects. Con-
sider the situation in Fig. 5, just after the left thread tl’s call to getNextURL()

has returned. At this point, tl owns itself, the manager object, and the list object.
When the right thread tr accesses its local manager field just after that, Bait
detects that tr owns the object that contains the accessed manager field (itself),
but another thread owns the object that is the field’s value (tl owns the man-
ager object). Therefore, the thread object tr and the manager object appear to
belong to two different clusters in the object graph upon which different threads
operate concurrently. Merging these clusters with an alias would remove the
concurrency. Therefore, we set a fixed alias factor α in the range (0, 1) for the
manager object (the field’s value). Otherwise, if tr was the owner of itself and the
manager object, we set α based on the recorded (same-thread) distance between
the accesses, which can result both in lowering or raising belief in an alias.

Given an atomic field access event, we use the computed alias factor α for
the field-containing object as weight when updating an alias affinity matrix.
Adapting Eq. 3, the updated affinity matrix A′

n for the name n of o is thus
computed as

A′
n = An

[
(f, g) �→ α · �(d, a) · An(f, g)

]
.

In the example shown in Fig. 5, the alias factor α < 1 for the manager object
prevents the small distance between the observed accesses of manager.urls (6, 7
and 8, 9) in the run() methods from increasing the odds of the problematic alias
from DownloadThread.manager to DownloadManager.urls.

A slight modification of the heuristic is necessary to account for clusters
consisting of more than two objects. In its current form, the heuristic detects a
different owner thread for the first accessed object o of a cluster, and the same
owner for the second object v, say, accessed via field f in o. However, the access
of f establishes the current thread as the owner of o. Thus, when accessing a third
object w via the field g in o, the heuristic would detect different owners again,
discouraging an alias even though the previous thread operated on o, v, and w.
Bait solves this problem by not only recording the current owning thread to for
each object, but also the previous (distinct) owning thread t′o. Different clusters
are detected only if to �= tv and t′o �= tv. Thus, for the access of w we have t′o = tw
and correctly associate w with o and v.

4.7 Atomic Set, Alias and Unitfor Formation

After the workload of the program has finished executing, all atomic set field
affinity matrices are merged into a single matrix. From this combined matrix,

Transforming Threads into Actors 31

the atomic sets are extracted by using the matrix values as edge-weights on
the fully-connected graph of all fields (node set Fd), removing the edges with
weight less than a threshold (e.g., 1), and grouping the fields in the remaining
connected components by their declaring class (accounting for inheritance). The
atomic sets are added as annotations to the class hierarchy, which forms the
basis for computing aliases using the alias affinity matrices. Finally, unitfors are
inferred using the class hierarchy and the alias affinity matrices.

5 Implementation Concerns

Most directly, Bait can be implemented for Java programs using instrumenta-
tion at the byte code level. In an initial phase, the instrumented byte code is
executed, allowing the Bait implementation to record field accesses and build
and update the affinity matrices. In the next phase, the Bait implementation
can use the final affinity matrices to infer and output the annotations, or even
fully annotated code.

While the algorithm mandates logistic functions for mapping distances to
likelihood ratios for atomic sets and aliases, an implementation may settle for
an approximation of such a function, e.g., a coarse-grained piecewise approxi-
mation. Minor extensions of the algorithm may be necessary to handle realistic
Java programs, which may contain arrays, synchronized blocks, and wait–notify
synchronization. Earlier work may be prove pertinent for such extensions [16].
Additional optimizations are possible, such as removal of non-aliased final fields
from atomic sets. While the algorithm requires tracking all names that a field-
owning object can have, an implementation may choose to only track the last
known name at runtime. We believe this would give a reasonable tradeoff between
overhead and correctness. Another implementation option besides instrumenta-
tion is to implement the dynamic analysis inside a special-purpose JVM such as
Java PathFinder [42].

Finally, any implementation will have to make choices regarding several
parameters that can affect the inferred annotations, most prominently the
parameters that define (piecewise approximations of)) logistic functions for
atomic set and alias likelihoods. Such parameters may be calibrated, e.g., on
simple test cases.

6 Related Work

The automatic inference of a program’s concurrency semantics has been treated
in the context of data race detection. There, the concurrency semantics is used
to warn about violations of the likely intended atomicity semantics of variables.

A dynamic approach that learns the atomicity intentions for shared variables
from execution traces is the AVIO system of Lu et al. [37,38]. In contrast, Artho
et al. [4] introduce the notion of high-level data races and explicitly design their
dynamic algorithm to consider races on sets of semantically related variables. The
AssetFuzzer algorithm of Lai et al. [28] uses partial order relaxation to detect

32 G. Agha and K. Palmskog

potential, but unmanifested, violations in the execution trace. All of these meth-
ods are similar to our algorithm in that they work without user annotations.
The Atomizer system of Flanagan and Freund [20] additionally considers win-
dows of vulnerability, but requires a few source code annotations and potentially
raises false alarms. The MUVI tool of Lu et al. [35] follows a static approach to
inferring atomicity intentions at the variable level.

The static heuristic [24,46] of defining one atomic set per class that con-
tains all non-static fields has also been proposed in the context of race detec-
tion. Targeting race detection, none of the aforementioned approaches considers
aliasing information, which is essential for our use case. Huang and Milanova’s
static inference system for the AJ types defined by Dolby et al. [17] significantly
reduces the number of annotations that a developer has to write [27]. While sim-
plifying the use of AJ, it needs a set of foundational annotations. Hence, their
and our methods complement each other: the static inference rules propagate the
base annotations inferred by our analysis, yielding a complete set of annotations.
Liu et al. [34] present a technique for statically inferring atomic sets based on
program dependence analysis. The inferred sets are then used for finding atomic
composition bugs dynamically in programs. This is a different focus compared to
our algorithm, whose main aim is to provide annotations for documentation and
safe execution. In addition, our algorithm also infers aliases, which are arguably
harder to infer than atomic sets, least of all statically.

Dinges et al. [15,16] present a dynamic inference algorithm of data-centric
concurrency annotations as described by Vaziri et al. [17]. The algorithm is based
on classification of fields into atomic sets using simple set membership criteria
rather than careful weighing of evidence as in Bait. Additionally, unlike Bait,
the algorithm does not scale to long executions with many field accesses, and
does not improve results as more evidence becomes available; in some cases,
results may even become significantly worse after observing more field accesses,
since previous conclusions are replaced.

Flanagan et al. [22] present a sound and complete dynamic atomicity checker
for Java programs. The tool, Velodrome, takes a workload and list of methods
that are assumed to be atomic as input, and outputs a list of atomicity violations.
Biswas et al. [7] improve on the significant overhead introduced by Velodrome
in their DoubleChecker tool, while maintaining soundness and completeness. A
tentative list of atomic methods can be derived from the annotations produced
by an implementation of Bait by enumerating all methods that are units of
work for some atomic set.

Atomic sets take a declarative approach to synchronization. Synchroniz-
ers [14,23] provide a similar notion in the context of actor systems, where they
constrain the message dispatch in a group of actors. The available constraints
differ from atomic sets in that synchronizers can provide temporal atomicity—
messages arrive at the same time—not the spatial atomicity offered by atomic
sets. Synchronizers do not support transitive extensions similar to aliases in
atomic sets. Moreover, expressing the non-interleaving of message sequences,
which is the actor equivalent of non-interleaved access to shared data, is more

Transforming Threads into Actors 33

complicated. In its simplest form, such non-interleaving in messages to a single
actor is expressed in terms of local synchronization constraints which force an
ordering on messages to a given actor [26,47]. Local synchronization constraints
may be used to force FIFO ordering of messages between pairs of senders or
recipients, or to ensure that a two actors follow a more complex communication
protocol. Synchronizers generalize this to multiple actors: by disabling a spe-
cific type of message until another has been received, synchronizers can force
an ordering between messages sent to different actors. Another declarative app-
roach to ensuring synchronization at the actor level is that of multiparty session
types [10,41].

By boosting belief in the existence of an invariant after atomic access and
maintaining or possibly even strengthening that belief unless witnessing inter-
leaved access, Bait follows the approach of accentuating the positive [37,48]
by suppressing rarely observed Heisenbugs that violate atomicity. Non-deadlock
bugs: 74 (Atomicity: 51, Order: 24, Other: 2), Deadlock bugs: 31 A study of
real-world concurrency bugs [36] finds that nearly half of all errors are related
to atomicity; with deadlocks ruled out, that fraction rises to nearly 70 %. While
this kind of safety comes at the cost of a coarser concurrency semantics, the
experiments of Weeratunge et al. [48] suggest that a low runtime overhead of
15 % can be achieved.

The problems inherent in threads and their usual synchronization primitives,
such as locks and monitors, have been examined previously, e.g., by Lee [30].
Lee argues against letting programmers start with maximally nondeterministic
interleaving of threads and adding just enough determinism to avoid concurrency
errors. Instead, he proposes that programmers start from a deterministic model
and selectively add operations for nondeterministic composition where appropri-
ate. While the resulting executions have more coarse-grained concurrency and
thus potentially worse performance, they are inherently easier to reason about
due to many thread interleavings being ruled out. Lee suggests to focus on
development of coordination languages rather than thread-based primitives and
libraries. We believe the concurrency structure annotations we showed in this
paper can be viewed as a kind of data-driven coordination language.

7 Discussion

Although the use of actor languages (e.g., through Akka [32] and Erlang [19]) has
grown dramatically in recent years, threads with shared memory and control-
centric primitives continue to dominate concurrent programming. Thread-based
programming often obscures key properties in programs and leads programmers
to introduce concurrency bugs such as atomicity violations [36]. Moreover, it
is hard to scale the thread-based model–one reason actors have been used to
implement large-scale applications such as Facebook chat servers and Twitter.

In this paper, we highlight consistency invariants involving class fields and
method parameters which may help reduce bugs in thread-based object-oriented
programs. Unfortunately, we expect that programmers in general will not man-
ually write, document, and check such invariants when writing thread-based

34 G. Agha and K. Palmskog

programs. Our algorithm improves on the state of the art for inferring invariant
annotations automatically, freeing programmers of some of the burden.

Consistency invariant annotations are useful in several ways besides giving
programmers an understanding of atomicity requirements of data structures.
For example, if a class contains several atomic sets of fields, and each method
accesses fields from only one atomic set, this suggests decomposing the class
into several classes with methods that access only the fields in the decomposed
class. While such lower-level concerns are important, we can also ask high-level
questions, such as whether concurrent programs can avoid dealing with threads
(partially or entirely).

As discussed earlier, the actor model avoids explicit locks by introducing a
unit of computation, an actor, that has its own state, an independent single locus
of control, and communicates with others via asynchronous message passing [3].
The actor-oriented programming approach of Lee [29,31] drops the requirement
for independent control and asynchrony in message passing. In particular, Lee
emphasizes the difference between object-orientation and actors as one that per-
tains to whether communication implies transfer of control from the sender to the
receiver. In semantic terms, Lee’s notion of actor-oriented programming incor-
porates programming abstractions that may be built using meta-actors which
can used to customize naming and scheduling [6,18]. Clavel et al. [11] give a
formal semantics to reason about such systems.

According to the hierarchy of platforms presented by Lee [29], actor-oriented
models are above object-oriented programs, with the latter being closer to low-
level concepts such as executables and silicon chips. From this perspective, an
implementation of the algorithm we presented and our suggested actor pro-
gram transformations can assist in raising the abstraction level of programs,
making them amenable to conversion to concurrent programs following actor-
oriented design techniques. Further exploration of such techniques will be needed
to improve legacy concurrent codes, facilitating their dependability and main-
tainability.

Acknowledgements. The authors thank Peter Dinges, Farah Hariri, and Darko
Marinov. This work is supported in part by the National Science Foundation under
grants NSF CCF 14-38982 and NSF CCF 16-17401, and by AFOSR/AFRL Air Force
Research Laboratory and the Air Force Office of Scientific Research under agreement
FA8750-11-2-0084 for the Assured Cloud Computing at the University of Illinois at
Urbana-Champaign.

References

1. Agha, G.: Concurrent object-oriented programming. Commun. ACM 33(9), 125–
141 (1990)

2. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor compu-
tation. J. Funct. Program. 7(1), 1–72 (1997)

3. Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press Series in Artificial Intelligence. MIT Press, Cambridge (1986)

Transforming Threads into Actors 35

4. Artho, C., Havelund, K., Biere, A.: High-level data races. In: NDDL 2003, pp.
82–93. ICEIS Press (2003)

5. Artzi, S., Quinonez, J., Kieżun, A., Ernst, M.D.: Parameter reference immutability:
formal definition, inference tool, and comparison. Autom. Softw. Eng. 16(1), 145–
192 (2009)

6. Astley, M., Sturman, D.C., Agha, G.: Customizable middleware for modular dis-
tributed software. Commun. ACM 44(5), 99–107 (2001)

7. Biswas, S., Huang, J., Sengupta, A., Bond, M.D.: Doublechecker: efficient sound
and precise atomicity checking. In: PLDI 2014. ACM (2014)

8. Boyapati, C., Lee, R., Rinard, M.C.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: OOPSLA 2002, pp. 211–230. ACM (2002)

9. Burrows, M., Leino, K.R.M.: Finding stale-value errors in concurrent programs.
Concurr. Pract. Exp. 16(12), 1161–1172 (2004)

10. Charalambides, M., Dinges, P., Agha, G.A.: Parameterized, concurrent session
types for asynchronous multi-actor interactions. Sci. Comput. Program. 115–116,
100–126 (2016)

11. Clavel, M., et al.: Reflection, metalevel computation, and strategies. In: Clavel, M.,
et al. (eds.) All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350, pp. 419–458. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71999-1 14

12. Clebsch, S., Drossopoulou, S., Blessing, S., McNeil, A.: Deny capabilities for safe,
fast actors. In: Proceedings of the 5th International Workshop on Programming
Based on Actors, Agents, and Decentralized Control, AGERE! 2015, pp. 1–12.
ACM, New York (2015)

13. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 35

14. Dinges, P., Agha, G.: Scoped synchronization constraints for large scale actor sys-
tems. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 89–103.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30829-1 7

15. Dinges, P., Charalambides, M., Agha, G.: Automated inference of atomic sets for
safe concurrent execution. In: Proceedings of the 11th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE 2013,
pp. 1–8. ACM, New York (2013)

16. Dinges, P., Charalambides, M., Agha, G.: Automated inference of atomic sets for
safe concurrent execution. Technical report, UIUC, April 2013. http://hdl.handle.
net/2142/43357

17. Dolby, J., Hammer, C., Marino, D., Tip, F., Vaziri, M., Vitek, J.: A data-centric
approach to synchronization. ACM TOPLAS 34(1), 4 (2012)

18. Donkervoet, B., Agha, G.: Reflecting on aspect-oriented programming, metapro-
gramming, and adaptive distributed monitoring. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 246–
265. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74792-5 11

19. Erlang programming language. https://www.erlang.org
20. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-

threaded programs. Sci. Comput. Program. 71(2), 89–109 (2008)
21. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection.

In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, pp. 121–133. ACM, New York (2009)

https://doi.org/10.1007/978-3-540-71999-1_14
https://doi.org/10.1007/978-3-540-71999-1_14
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-30829-1_7
http://hdl.handle.net/2142/43357
http://hdl.handle.net/2142/43357
https://doi.org/10.1007/978-3-540-74792-5_11
https://www.erlang.org

36 G. Agha and K. Palmskog

22. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sound and complete dynamic
atomicity checker for multithreaded programs. In: Proceedings of the 2008 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2008, pp. 293–303. ACM, New York (2008)

23. Frølund, S., Agha, G.: A language framework for multi-object coordination. In:
Nierstrasz, O.M. (ed.) ECOOP 1993. LNCS, vol. 707, pp. 346–360. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-47910-4 18

24. Hammer, C., Dolby, J., Vaziri, M., Tip, F.: Dynamic detection of atomic-set-
serializability violations. In: ICSE 2008, pp. 231–240. ACM (2008)

25. Hewitt, C., Bishop, P.B., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Nilsson, N.J. (ed.) Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, Standford, CA, USA, 20–23 August
1973, pp. 235–245. William Kaufmann (1973)

26. Houck, C.R., Agha, G.: HAL: a high-level actor language and its distributed imple-
mentation. In: Shin, K.G. (ed.) Proceedings of the 1992 International Conference
on Parallel Processing, University of Michigan, An Arbor, Michigan, USA, 17–21
August 1992, Volume II: Software, pp. 158–165. CRC Press (1992)

27. Huang, W., Milanova, A.: Inferring AJ types for concurrent libraries. In: FOOL
2012, pp. 82–88 (2012)

28. Lai, Z., Cheung, S.C., Chan, W.K.: Detecting atomic-set serializability violations
in multithreaded programs through active randomized testing. In: ICSE 2010, pp.
235–244. ACM (2010)

29. Lee, E.A.: Model-driven development-from object-oriented design to actor-oriented
design. In: Workshop on Software Engineering for Embedded Systems: From
Requirements to Implementation (a.k.a. The Monterey Workshop) (2003)

30. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)
31. Lee, E.A., Liu, X., Neuendorffer, S.: Classes and inheritance in actor-oriented

design. ACM Trans. Embed. Comput. Syst. 8(4), 29:1–29:26 (2009)
32. Lightbend: Akka. https://akka.io
33. Lightbend: Akka and the Java memory model. https://doc.akka.io/docs/akka/

current/general/jmm.html
34. Liu, P., Dolby, J., Zhang, C.: Finding incorrect compositions of atomicity. In: Pro-

ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pp. 158–168. ACM, New York (2013)

35. Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R.A., Zhou, Y.: MUVI:
automatically inferring multi-variable access correlations and detecting related
semantic and concurrency bugs. In: SOSP 2007, pp. 103–116. ACM (2007)

36. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: ASPLOS 2008, pp. 329–339.
ACM (2008)

37. Lu, S., Park, S., Zhou, Y.: Detecting concurrency bugs from the perspectives of
synchronization intentions. IEEE Trans. Parallel Distrib. Syst. 23(6), 1060–1072
(2012)

38. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: detecting atomicity violations via
access-interleaving invariants. IEEE Micro 27(1), 26–35 (2007)

39. Milanova, A., Dong, Y.: Inference and checking of object immutability. In: Pro-
ceedings of the 13th International Conference on Principles and Practices of Pro-
gramming on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ
2016, pp. 6:1–6:12. ACM, New York (2016)

https://doi.org/10.1007/3-540-47910-4_18
https://akka.io
https://doc.akka.io/docs/akka/current/general/jmm.html
https://doc.akka.io/docs/akka/current/general/jmm.html

Transforming Threads into Actors 37

40. Negara, S., Karmani, R.K., Agha, G.A.: Inferring ownership transfer for efficient
message passing. In: Cascaval, C., Yew, P. (eds.) Proceedings of the 16th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPOPP
2011, San Antonio, TX, USA, 12–16 February 2011, pp. 81–90. ACM (2011)

41. Neykova, R., Yoshida, N.: Multiparty session actors. In: Kühn, E., Pugliese, R.
(eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 131–146. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43376-8 9

42. Palmskog, K., Hariri, F., Marinov, D.: A case study on executing instrumented
code in Java PathFinder. In: Proceedings of JPF Workshop, JPF 2015 (2015)

43. Papi, M.M., Ernst, M.D.: Compile-time type-checking for custom type qualifiers in
Java. In: Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications Companion, OOPSLA 2007, pp. 809–810.
ACM, New York (2007)

44. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

45. Srinivasan, S., Mycroft, A.: Kilim: isolation-typed actors for Java. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70592-5 6

46. Sumner, W.N., Hammer, C., Dolby, J.: Marathon: detecting atomic-set serializabil-
ity violations with conflict graphs. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS,
vol. 7186, pp. 161–176. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29860-8 13

47. Tomlinson, C., Kim, W., Scheevel, M., Singh, V., Will, B., Agha, G.: Rosette:
an object-oriented concurrent systems architecture. SIGPLAN Not. 24(4), 91–93
(1989)

48. Weeratunge, D., Zhang, X., Jagannathan, S.: Accentuating the positive: atomicity
inference and enforcement using correct executions. In: OOPSLA 2011, pp. 19–34.
ACM (2011)

https://doi.org/10.1007/978-3-662-43376-8_9
https://doi.org/10.1007/978-3-540-70592-5_6
https://doi.org/10.1007/978-3-642-29860-8_13
https://doi.org/10.1007/978-3-642-29860-8_13

	Transforming Threads into Actors: Learning Concurrency Structure from Execution Traces
	1 Introduction
	2 Concurrency Structure Annotations and Actors
	2.1 Syntax and Semantics of Annotations
	2.2 From Annotations and Threads to Actors

	3 Annotation Inference Example
	3.1 Inference of Atomic Sets
	3.2 Inference of Aliases

	4 Algorithm
	4.1 Field Access Observations
	4.2 Bayesian Detection of Semantic Invariants
	4.3 Conditional Independence of Events
	4.4 Estimation of Likelihood Ratios
	4.5 Belief Configurations
	4.6 Inference of Aliases and Unitfors
	4.7 Atomic Set, Alias and Unitfor Formation

	5 Implementation Concerns
	6 Related Work
	7 Discussion
	References

