
Embedded Software Design Methodology
Based on Formal Models of Computation

Soonhoi Ha(B) and EunJin Jeong

Seoul National University, Seoul, Korea
{sha,chjej202}@snu.ac.kr
http://peace.snu.ac.kr

Abstract. The current practice of embedded software design resorts to
test or simulation to verify the correctness of the design, which is very
time-consuming and incapable of covering all cases. Existent software
engineering techniques are not concerned about real-time performance
and resource requirements that embedded systems should satisfy for cor-
rect operation. In this work, we propose a new methodology to design
dependable software for embedded systems. The key idea of the pro-
posed methodology is to define a universal execution model (UEM) of
heterogeneous multiprocessor embedded systems and to design the soft-
ware based on the UEM that hides the underlying system architecture
from the programmer. UEM puts restrictions on how to communicate
and synchronize tasks that conventional operating systems deal with.
We define the UEM by extending well-known formal models such as
Synchronous Dataflow (SDF) and finite state machine (FSM). There are
several benefits to use formal models for software design. First, we can
detect critical design errors such as deadlock and buffer overflow by static
analysis of formal models. Second, we can estimate the resource require-
ment and real-time performance at compile time. Last, not the least, we
can synthesize the target code from the UEM automatically minimizing
the manual coding efforts. By preserving the semantics of the UEM, the
synthesized code will be correct by construction. The key challenge lies in
the expression capability of the proposed UEM. Preliminary experiments
with several non-trivial applications prove the viability of the proposed
methodology.

Keywords: SW design methodology · Universal execution model
SDF

1 Introduction

The application domain of embedded computers as special purpose computers
is steadily increasing as virtually all things are becoming smart or intelligent.
The complexity of embedded computers is also incessantly increasing as can be
observed in automotive electronic systems, intelligent robots, medical devices, as
well as mobile devices. Since everyday life will depend on embedded computers
c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 306–325, 2018.
https://doi.org/10.1007/978-3-319-95246-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95246-8_18&domain=pdf

Embedded Software Design Methodology Based on Formal Models 307

extensively in the future, it is crucial to make them dependable to avoid serious
damages caused by an error or failure of the. For instance, in 2013, the US
Department of Justice issued a ruling that imposed a fine of 12 billion dollars to
a car manufacturer for sudden acceleration incident that was caused by a software
defect in the electronic control unit. Thus it is needless to say how significant
is to increase the dependability of embedded computer systems, particularly
dependability of the software.

The user of an embedded computer system anticipates that the system works
correctly any time, even with the non-zero possibility of hardware component
failure. Above all, the correctness of the software should be ensured under the
normal operating condition. Unfortunately, it is a well-known fact that it is
not possible to detect all errors of a sequential program even though extensive
research efforts have been made to develop static analysis techniques to solve
this problem. Ensuring functional correctness of parallel programs is much more
difficult since the program may have non-deterministic behavior at run-time
due to unpredictable access order to shared resources. To make matters worse,
embedded systems impose extra constraints on memory space, energy budget,
real-time performance, and so on. For real-time applications, we need to guar-
antee that the real-time constraints are satisfied under the worst-case scenario
of the system behavior.

The current practice of software design resorts to test or simulation to ver-
ify the functional correctness. To improve the functional safety of automotive
electronics systems, for instance, the ISO26262 standard defines how to perform
unit test and integration test. However, verification by test or simulation is very
time consuming and incapable of covering all possible behaviors. Thus there is
non-zero possibility to face an unexpected software behavior at run-time that
has not been visited in the test or simulation phase.

There have been various methodologies proposed in software engineering to
increase the design productivity and maintainability of software, including struc-
tural programming, object-oriented programming, model-driven development,
component-based development, and so on. Each methodology has its advantages
and disadvantages depending on the application area and the hardware platform.
Most of those approaches use a test-based or a simulation-based method to verify
the correctness. Nay more, they do not consider the memory space constraints,
energy budget, and real-time performance requirements that should be satisfied
in the embedded system. It is the designer’s responsibility to meet those con-
straints. A common way to satisfy the real-time performance is to over-design
the system with a significant safety margin (at least 50% for instance) over the
worst-case values measured in the test phase.

In short, how to verify the correctness of embedded software is still an open
problem, a stronghold that could not be conquered by existent methodologies.
In this work, we propose a new methodology to make an embedded software
correct by construction by designing embedded applications with formal models
of computation at the OS level. It is motivated by the observation that a parallel
application consists of a set of tasks, or threads, at the operating system (OS)
level regardless of the initial specification. A task, or thread, is a unit of mapping

308 S. Ha and E. Jeong

and scheduling and there are various ways of communication and synchroniza-
tion between tasks. In the proposed methodology, we define a set of rules on
task synchronization and communication that tasks are enforced to follow. To
be concrete, we make computation tasks follow a dataflow model where tasks
communicate with each other through channels, disallowing implicit communi-
cation through shared variables. By using a restricted form of dataflow model
such as Synchronous Data Flow (SDF) [1] for application specification, we can
perform static analysis to check the possibility of deadlock or channel buffer
overflow. Moreover, we can estimate the worst-case performance and resource
requirement at compile-time.

The proposed methodology separates design and implementation of embed-
ded software. The designed software based on formal models of computation
is mostly independent of the hardware platform, except for a minimal set of
platform-dependent tasks Parallelizing an application is easily performed by
mapping tasks onto processors, and inter-processor interface code is automat-
ically synthesized in the proposed methodology. By keeping the semantics of
formal models, the implemented software is free from a class of errors that can
be detected by static analysis performed at compile time. It is distinguished from
the current practice of embedded software development that is tightly coupled
with a given hardware platform. Parallelizing an application is performed manu-
ally considering the features of the given hardware platform. Since an embedded
application is tailored to a specific platform, it is not easy to port an application
to a different hardware platform.

The proposed methodology concerns about the execution of tasks at the OS
level and above, assuming that each task is already verified and its execution
profile is given a priori. It is complementary to the existing methodologies in
that test-based verification or formal verification should be used to verify each
task. Defining a set of rules on task synchronization and communication can be
understood as defining a universal execution model1 (UEM) for multi-processor
embedded systems. Even though we aim to make the proposed execution model
be universal, because the baseline model is a data flow model, it fits better for
computation-oriented applications than database-oriented applications.

Figure 1 shows the vertical software structure based on the UEM. The UEM
is positioned on top of the OS layer, hiding the low-level details of the architec-
ture from the application programmers. The UEM layer consists of three layers
internally. The UEM execution engine serves the role of middleware that exe-
cutes the UEM tasks on the target architecture, which is platform-dependent.
To the application programmer, the UEM layer provides a set of APIs (appli-
cation programming interface) for communication and synchronization between
tasks. Thus, the application programmer can design an embedded software on
top of the UEM without knowing the actual hardware platform on which the pro-
gram runs. In the middle, a set of UEM tasks is generated from the application

1 The term universal is not based on any formal proof but on our goal to make the
model independent of underlying hardware platforms.

Embedded Software Design Methodology Based on Formal Models 309

Network

App 1 App 2 App 3 App 4

PE 1 PE 2 PE 3

UEM (Universal Execution Model) Layer

OS 2
OS 1 OS 3

UEM execution engine

UEM task set

UEM API

SW
Platform

HW
Platform

PE: Processing Element

Fig. 1. Vertical software structure based on the UEM (universal execution model)

program. The UEM execution engine customized to a specific architecture aims
to emulate the UEM efficiently.

The key challenge of the proposed methodology lies in the expression capa-
bility of the proposed UEM. Since the existent formal models of computation
exhibit limitation on expression capabilities, several extensions have been made
to the existent models in UEM. Preliminary experiments with several non-trivial
applications prove the viability of the proposed methodology.

2 Dataflow Specification of an Application

In the proposed UEM, an application is specified by an extended synchronous
dataflow (SDF) model. We first review the baseline SDF model and explain how
the SDF model is extended.

2.1 Synchronous Data Flow

In the SDF model [1], an application is specified with a dataflow graph, G(V,E),
where V is a set of nodes and E is a set of arcs. A node v ∈ V represents
a function module, or a task, and an arc e ∈ E is a FIFO channel between
two tasks. Communication between two tasks is performed by explicit message
passing via a FIFO channel. Figure 2(a) shows an example SDF graph where
the number annotated on the arc indicates the number of data samples, called a
sample rate, to produce or consume per task execution. If unspecified, the sample
rate is 1 by default. The input sample rate and the output sample rate on an
arc are represented as cons(e) and prod(e), respectively. In the SDF model, a
task becomes executable only when all input arcs have no fewer samples than
the specified sample rate in the associated arcs.

By comparing the input and the output sample rates on each arc, e, we
can determine the relative execution rates between the source task, denoted by
src(e), and the destination task, denoted by dest(e). For instance, the execution
rate of task C should be twice higher than that of task A in Fig. 2(a), in order

310 S. Ha and E. Jeong

Fig. 2. (a) An example SDF graph with annotated sample rates on the arcs, (b) an
inconsistent SDF graph that has a buffer overflow error, and (c) a mapping and schedul-
ing result of the SDF graph onto two processing elements

to make the number of samples produced from the source task the same as the
number of samples consumed by the destination task. This constraint can be
formulated as the following equation, called balance equation: prod(e)×R(src(e))
= cons(e)×R(dest(e)) where R(v) indicates the repetition counts of task v. An
SDF graph is said to be consistent if we can find the repetition counts of all
tasks to satisfy the balance equations of all arcs. Otherwise, the graph is called
sample rate inconsistent, shortly inconsistent. The SDF graph shown in Fig. 2(b)
is inconsistent, which may incur a buffer overflow error on arc AC. An iteration
of an SDF graph is defined by the set of task executions with minimum repetition
counts. The minimum repetition counts of tasks in the SDF graph of Fig. 2(a)
are R(A) = R(B) = 1 and R(C) = R(D) = 2.

Since we can compute the minimum repetition counts of all tasks and the
graph shows the dependency relationship between tasks, we can perform task
scheduling at compile time, which is to determine where and in what order
tasks will be executed on a given hardware platform. By constructing a static
schedule of tasks at compile time, we can detect the critical software faults such
as buffer overflow and deadlock. Figure 2(c) illustrates a parallel scheduling result
by mapping tasks onto two processing elements. From the parallel scheduling
result, we can estimate the buffer size and the real-time performance of the graph
if the execution time of each task is bounded. Note that even though there may
exist numerous schedules for a given application, determinism of the execution
behavior is guaranteed, meaning that the execution result is independent of the
schedule.

In summary, by using the SDF model, we can verify the satisfaction of real-
time requirement and resource constraints with static scheduling. Moreover, we
can detect buffer overflow and deadlock errors at compile time. While the SDF
model has the aforementioned benefits from its static analyzability, it has a
severe limitation to be used as a general model for behavior specification. It is
not possible to specify the dynamic behavior of an application since the sample
rate may not change dynamically. To overcome this limitation while preserving
the static analyzability of the SDF model, several extensions have been proposed,
including CSDF (cyclo-static dataflow) [2], SADF (scenario-aware dataflow) [3],
and PSDF (parameterized SDF) [4]. In the proposed methodology, we use the
FSM model in combination with the SDF model to express the dynamic behavior
of an application at the task level.

Embedded Software Design Methodology Based on Formal Models 311

2.2 Dynamic Behavior Specification

In case an application has a finite number of different behaviors, called modes of
operation, the behavior of each mode is expressed by an SDF graph, and mode
transitions are specified by a tabular specification of an FSM, called Mode Tran-
sition Machine (MTM) [5]. It is similar to FSM-SADF [3]. An MTM describes
the mode transition rules for the SDF graph, defined as a tuple {Modes, Vari-
ables, Transitions} where Modes and Variables represent a set of modes and a set
of mode variables respectively, and Transitions is a set of transitions that con-
sists of the current mode, a Boolean function of conditions, and the next mode.
A Boolean function of the transition condition is defined by a simple comparison
operation between a mode variable and a value.

An example of MTM-SDF specification is shown in Fig. 3 in which an appli-
cation has two modes of operation, S1 and S2. The input and output sample
rates of a task may vary, depending on the mode. In this example, the MTM
is quite simple since it needs to distinguish two modes of operation by a single
mode variable. Since the granularity of a task is large and the dynamic behavior
inside a task is not visible in the UEM, an MTM is not complex in general. At
compile time, the SDF graph is scheduled separately for each mode of opera-
tion. We assume that all modes share the same initial buffer states. Then, mode
change can be made at the iteration boundary safely without any inconsistency
of buffer states between modes.

Fig. 3. Extended SDF graph with an MTM with 2 modes

Mode transition is enabled by setting the mode variable. There are two ways
of setting the mode variable. It can be set by a hidden supervisor, which will be
explained in the next section. Alternatively, it can be set by a designated task.
A stream-based application usually starts with parsing a header information
that determines the mode of operation, followed by processing a stream of data.
In this case, the SDF task that parses the header information is designated as a
special task that may change the mode variable. In the example of Fig. 3, task
A can be designated as the special task that determines the mode of operation.

When mode transition occurs, the SDF schedule is changed accordingly. If the
mode change is enabled by the hidden supervisor, it is activated at the iteration
boundary of the SDF graph. If it is enabled by a designated task, mode change
occurs right after the task finishes its execution. For consistency of operation, in
this case, the schedules of all modes should have the same task schedule before
the designated task. In case the designated task is the first task in the SDF
schedule, this restriction is satisfied easily.

312 S. Ha and E. Jeong

2.3 Library Task

In the dataflow specification, use of shared variables among tasks is not allowed
since the access order to a shared variable may vary depending on the execution
order of tasks and the application behavior will be non-deterministic. In many
embedded applications, however, it is popular to use a global data structure
that is shared among tasks. In the UEM, another extension is made to the SDF
graph by introducing a special type of task, called library task, to allow the use
of shared resources in the SDF model [6].

A library task is a mappable object that defines a set of service functions to a
shared resource among tasks. Figure 4 shows an SDF graph that consists of three
normal SDF tasks (T1 - T3) and two library tasks (L1 - L2). For connection with
a library task, we introduce new types of ports, library master port and library
slave port that are represented by a red circle and a blue square, respectively
in the figure. An arc between a library master port and a library slave port is
not a data channel, but represents a client-server relation. A library task plays
the role of a server with a single slave port that can be connected to multiple
masters that request the predefined services of the library task. Unlike a normal
SDF task, a library task is not invoked by input data but by a function call
inside an SDF task; it is a passive object.

T1

T2

T3

L1

L2

Fig. 4. Extended SDF graph with library tasks (Color figure online)

There are several use cases of library task depending on the kind of a shared
resource. A library task can be used as a monitor that handles the access conflict
to the shared variables at a high level. If a shared resource is a hardware device,
the library task is a thread-safe device driver that provides a set of Application
Programming Interfaces (APIs) to access the device. In a server-client applica-
tion, the server task can be specified by a library task that may be shared by
multiple clients. Another use case of a library task is to make a vertically lay-
ered software structure by providing a set of APIs of the software layer below
the application layer. Figure 4 depicts three layers of software structure.

In case multiple masters access a shared variable that a library task manages,
it is unavoidable that the return value of a library function depends on the
execution order of the master tasks, which is anathema to any deterministic
model. By the use of a library task, however, we explicitly specify the possibility
of such non-determinism. In case the library task has no state or returns the
same value to the master tasks regardless of the calling order, the library task
is classified as deterministic. Otherwise, the developer should be aware that the

Embedded Software Design Methodology Based on Formal Models 313

library task does not guarantee deterministic behavior in the sense that the
return value to a master task depends on the scheduling order of master tasks.
Nonetheless, the same behavior can be repeated if the same scheduling order is
followed since the SDF model allows us to construct a static schedule of tasks.
Then the application behavior becomes deterministic if the static schedule of
tasks is followed at run-time.

2.4 Loop Structure (SDF/L)

A compute-intensive application usually spends most of its execution time in loop
structures and how to parallelize them is the main challenge for accelerating the
application. Even though dataflow models, including the SDF model, are good at
exploiting the task-level parallelism of an application, it is difficult to exploit the
parallelism of loop structures since they are not explicitly specified in existent
dataflow models. In SDF, a loop structure is implicitly expressed by sample rate
changes as illustrated in Fig. 2(a). Among many possible schedules, a looped
schedule AB2(CD) can be constructed. In case 2 executions of (CD) can be
parallelized with 2 output samples from A and B, a user may want to construct
a parallel schedule as illustrated in Fig. 5(b). However, identifying such a loop
structure and parallelizing it is not easy because existent parallel scheduling
techniques usually aim to exploit task-level parallelism only.

Fig. 5. SDF graph with a loop structure

Recently, we proposed a novel extension to specify a loop structure as a
super node to make the SDF graph hierarchical [7]. The extended SDF graph
with loop structures is called an SDF/L graph. Figure 5(a) is the SDF/L graph
representation of the application of Fig. 2(a).

In the SDF/L model, two types of loop structures are distinguished, data loop
(D-type) and convergent loop (C-type), and two types of input ports, distributing
port and broadcasting port. In a D-type loop (data loop), each iteration of the
loop consumes new input data from each distributing input port. The number
of iterations is determined by the sample rate change of the associated input
channel. The loop structure of Fig. 5(a) is a D-type loop.

On the other hand, Fig. 6 shows an SDF graph that has a C-type loop. For a
C-type loop. The C-type loop has two attributes, loop count and exit flag. The
former is the maximum iteration count and the second is set by a designated

314 S. Ha and E. Jeong

Fig. 6. SDF graph with a C-type loop structure

task, task C in this figure. The number of iteration is dynamically decided by
the result of computation that will set the exit flag. All input ports of a C-type
loop should be broadcasting ports from which input samples are reused in all
iterations of the loop; the sample rate of the output connection is equal to the
sample rate of the input connection.

In summary, in UEM the SDF model is extended to express dynamic behav-
ior with an MTM, to allow the use of shared resources with a library task, and
to explicitly specify the loop structures hierarchically. Refer to the correspond-
ing references for more detailed explanation of each extension. Note that these
extensions preserve the static analyzability of the SDF model. We perform static
scheduling for each mode of operation. In the SDF/L model, static scheduling
can be performed hierarchically from the bottom layer. A loop structure is encap-
sulated as a regular SDF task at the upper layer.

3 Universal Execution Model (UEM)

Figure 7 shows the overall software architecture of the UEM that is layered hier-
archically. Each application that is specified by an aforementioned extended SDF
model is encapsulated as a dataflow process at the upper layer. We can group
a set of dataflow processes in case whose execution states are inter-related. For
each application group, a control process is defined in the dynamic behavior of
an application group is specified formally by an FSM (finite state machine).

Figure 8(a) represents a multi-mode multimedia terminal (MMMT) applica-
tion group that contains 8 dataflow processes and 1 control process. Among 8
dataflow processes, 4 processes with pink color have internal dataflow graphs
while the other 4 processes with yellow color are single sequential tasks. This
application group has the following 4 different modes of operation: Menu, Video
player, MP3 player, and Video phone. The UserInput task receives a user input
to select a mode of operation and sends it to the control process. Based on
the selected model, the control process enables a set of applications that run
concurrently to serve the mode of operation.

Figure 8(b) shows the FSM specified inside the control process The FSM
consists of 4 states that correspond to the modes of operation. In the Video play
mode, it enables 2 dataflow processes, H264 decoder and MP3 player. During
execution, the mode transition may occur from the Video play mode to Video
phone mode if a call is received from the Interrupt task. Then, the control process

Embedded Software Design Methodology Based on Formal Models 315

Fig. 7. Software architecture of the UEM

Fig. 8. A multi-mode multimedia terminal application group (a) specification, and (b)
the control task specification (Color figure online)

suspends the dataflow tasks of the Video play mode and enables 4 dataflow
processes, H264 decoder, x264 encoder, G723 Decoder, and G723 Encoder. After
the call is completed, it resumes the suspended dataflow processes of the Video
play mode. We can perform model checking to verify the behavior of the control
task satisfies the specification at compile time.

In case there are multiple application groups, we can add another layer as
shown in Fig. 7. At the top level, each application group is represented by an
extended KPN. A process in the KPN (Kahn process network) [8] model allows
only blocking read, which makes the KPN determinate, meaning that the exe-
cution result is independent of the execution order of processes. To allow shared
resources among KPN processes, we extend the KPN with library processes,
similarly to the extended SDF model with library tasks.

316 S. Ha and E. Jeong

3.1 Dataflow Task Code Template

In the proposed methodology, a programmer is supposed to specify the system
behavior following the software architecture of Fig. 7, starting from dataflow
specification of tasks at the bottom layer. As a unit of mapping and scheduling,
a dataflow task is a sequential program that should be written with the UEM
APIs, based on the coding guidelines defined in the UEM. Figure 9 shows the
task code template that consists of three sections, TASK INIT, TASK GO, and
TASK WRAPUP. In the current implementation, it is assumed that the task
is written in C programming language that is most popular for embedded SW
design.

TASK_INIT {/* task initialization code */
 port_in = PORT_INITIALIZE(TASK_ID, “in”);

 port_out = PORT_INITIALIZE(TASK_ID, “out”);}
TASK_GO {
 MQ_RECEIVE(port_in, …)
 /* main body of the task */
 MQ_SEND(port_out, …) }
TASK_WRAPUP { /* task wrapup code */ }

Fig. 9. A code template of a dataflow task that uses generic APIs for communication

The TASK INIT section contains the code that will be executed in the ini-
tialization stage of the task such as initialization of internal variables and data
structures associated with ports. The TASK GO section is the main body of
the task that will be executed repeatedly when it is scheduled by the operat-
ing system. The TASK WRAPUP section is executed just before the task is
terminated.

In the TASK GO section, the task reads the input data from its input ports,
perform computation, and sends the output data to the output ports. To make
it independent of the hardware architecture and FIFO channel implementation,
generic APIs are defined for communication via ports and port initialization as
shown in Table 1.

The UEM assumes that there is a hidden supervisor that manages the tasks.
We define a set of services that a task can request to the supervisor using a
special API, SYS REQ. The first argument of this API is the service name.
Remind that a task may vary its internal behavior depending on the mode of
operation in the extended SDF model as explained in the previous section. To
change its internal definition, a task can ask the supervisor of what is the current
mode; Mode = SYS REQ(GET CURRENT MODE NAME). A designated task
can set the mode by using the following API; SYS REQ(SET MTM PARAM,
task name, var name, value).

Embedded Software Design Methodology Based on Formal Models 317

Table 1. UEM application programming interfaces

Task type API Description

Common PORT INITIALIZE(task id,
port name)

Initialize a port

MQ RECEIVE(channel id, buffer,
buffer length)

Read data from the FIFO-type channel

MQ SEND(channel id, buffer,
data length)

Write data to the FIFO-type channel

MQ AVAILABLE(channel id) Check if there is data in the input FIFO

BUF RECEIVE(channel id, buffer,
buffer length)

Read data from the buffer-type channel

BUF SEND(channel id, buffer,
data length)

Write data to the buffer-type channel

SYS REQ(service name, arguments) Request a service to the hidden
supervisor. The first argument of the
API designates the service name

Dataflow LIBCALL(master port,
function name, function arguments)

Call a library function from the library
task connected through the library
master port

Library LIBFUNC(return type,
function name, function arguments)

Define a library function

3.2 Control Task Code Template

A control task is supposed to specify its internal behavior with an FSM. The
FSM code template is defined as shown in Fig. 10, which can be automatically
generated from the graphic FSM editor in our design environment. In each state,
the programmer may use SYS REQ API to define the control action, which is
similar to action scripts of the statechart in STATEMATE [9].

The control services that a control task can request to the supervisor are listed
in Fig. 11. The first category is to control the execution status of an application

while(1){
 MQ_AVAILABLE(all_ports); // 1-1. Check the existence of a new event
 SYS_REQ(CHECK_TASK_STATE, “task_name”, …); // 1-2. Check the termination of a task
 if(available) MQ_RECEIVE(selected port); // 2. read the new event
 if(some event or task state is triggered) break; // 3. Break a loop to make transition
}
switch(current_state) {
 case ID_STATE_S1:
 if(selected port==1 && input data==2) { // 4. check the transition condition
 current_state = ID_STATE_S2;
 SYS_REQ(SET_PARAM_INT, “task_name", “param_name", data, 0, 0);
 } // 5. send the control message through the system port
 break;
 case ID_STATE_S2: { }
 case ID_STATE_S3: { }
 ….
}

Fig. 10. An example code template of a control task in UEM

318 S. Ha and E. Jeong

and the second category is to change or monitor a specific parameter of an
application. The third category is defined to specify the timing requirements of
the system explicitly.

Category APIs Description

Execution
Status
Control

SYS_REQ(RUN_TASK, task_name); Run the task
SYS_REQ(STOP_TASK, task_name); Terminate the task
SYS_REQ(SUSPEND_TASK, task_name); Suspend the task
SYS_REQ(RESUME_TASK, task_name); Resume the task
status=SYS_REQ(CHECK_TASK_STATE, task_name); Get the current state of the task

Parameter
Control

p_value = SYS_REQ(GET_PARAM_INT/FLOAT, task_name, param_name); Get the value of a task parameter
SYS_REQ(SET_PARAM_INT/FLOAT, task_name, param_name); Change a value of a task parameter

Timing
Control

SYS_REQ(SET_THROUGHPUT, task_name, thr_val); Set throughput requirement

SYS_REQ(SET_DEADLINE, src_task, dst_task, lat_val); Set deadline requirement to the task
chain (src_task to dst_task)

Fig. 11. Control actions that a control task can request to the supervisor

3.3 Library Task Code Template

Figure 12 illustrates code templates associated with a library task. A library
task has two separate files associated: a library header file and a library code
file. The library header file declares the library functions, while the library code
file defines the function bodies. The prototype of a library function is defined by
a directive, LIBFUNC(), that will be translated into a regular function definition
automatically by the CIC translator.

T1

T2

L1

extern LIBFUNC(void, init, void);
extern LIBFUNC(void, wrapup, void);

extern LIBFUNC(int, getValue, void);
extern LIBFUNC(void, setValue, int value);

static int my_value;

LIBFUNC(void, init, void) { .. }
LIBFUNC(void, wrapup, void) { .. }
LIBFUNC(int, getValue, void) {

return my_value;
}
LIBFUNC(void, setValue, int value) {

my_value = value;
}

CIC Library Header File (.cicl.h)

CIC Library Code File (.cicl)

TASK_GO { /*T2 task code */
:
val = LIBCALL(MP1, getValue);
LIBCALL(MP1, setValue, newVal);
:

}

MP1

Fig. 12. Code templates associated with a library task

A library task defines init and wrapup functions like a normal SDF task for
initialization and finalization of the library task. A caller task uses LIBCALL
directive to call a library function as shown in Fig. 12. The first parameter of
LIBCALL() is the name of the library master port, the second is the function
name, and the others are the arguments. If the function has a return value, it
can be taken from the LIBCALL invocation. Note that pointers may not be used
for arguments and return values to make the SDF graph portable to a variety
of target architectures. For shared address space architectures, however, the

Embedded Software Design Methodology Based on Formal Models 319

developer may use pointers for efficient implementation, giving up portability.
A library task may have a persistent internal state, simply called a state. Then
the access to the state should be protected by synchronization primitives, Lock()
and Unlock() to avoid data race problems.

4 Automatic Code Generation

Based on the mapping and the scheduling result, we can generate the target
code automatically from the UEM assuming that the task code inside each node
of a SDF graph and the control task is given and correct. It remains as a future
work to check the correctness of each task.

We can synthesize the communication and interface code between tasks as
well as the scheduling code automatically. Since the HW/SW interface code and
the task synchronization code are particularly error-prone, automatic synthesis
of those codes will alleviate the burden of the programmer significantly. More-
over, by keeping the SDF semantics, the synthesized code is guaranteed to be free
of buffer overflow and deadlock error. Then, functional verification of embedded
software can be performed by verifying the functional correctness of each task
only. Since each task is a sequential code, we can use the state-of-the-art verifi-
cation techniques of a sequential code, which is complementary to the proposed
methodology.

Another benefit of automatic code generation from the UEM is that we can
add extra software modules to enhance the reliability or the safety of the soft-
ware. Even though the software is designed based on the UEM without consid-
eration of any possibility of hardware failure, we apply fault-tolerant techniques
to insert extra codes to the generated target code, while satisfying the real-time
requirements and the resource constraints.

If the efficiency of the automatically generated code is much worse than the
manually optimized code, people may prefer manual coding even with the higher
risk of error to automatic code synthesis because embedded systems are usually
cost-sensitive. Since the internal code of each task is assumed to be optimized, the
overhead will be associated with inter-task communication if exists. For efficient
code generation, we may use several techniques that have been developed to
minimize the buffer size when constructing a static schedule of an SDF graph
[10,11].

Note that code generation is specific to the system architecture that runs the
application. Then a key challenge in the proposed methodology is how difficult
is to make the UEM compiler to synthesize the software automatically for a
given architecture. If the difficulty of making the UEM compiler is higher than
that of developing the software manually for a given architecture, the proposed
technique will be of no use. For UEM compilation, following the well-established
procedure of traditional compilation, we separate the platform-independent part
and the platform-dependent part of UEM compilation. By pre-defining the HW-
specific interface as software component libraries, we simplify the platform-
dependent part maximally. From our experience, we expect that it will take
less than a month to make a UEM compiler for a new hardware platform.

320 S. Ha and E. Jeong

5 Preliminary Experiments

The proposed methodology has been applied to the development of a paral-
lel embedded software design framework, called HOPES [12]. Specification and
parallel scheduling of the MMMT application group in Fig. 8(a) can be found
in [12]. The reference also presents the scheduling and mapping result of a lane
detection algorithm for a CPU-GPU heterogeneous system. In this section, we
present two more examples that use library tasks.

5.1 A Cryptographic System

Figure 13 shows the captured screen of HOPES that specifies a cryptographic
system following the UEM software architecture. The pink task represents two
dataflow processes that have an extended SDF graph inside as displayed in the
figure. Two tasks, Encryption and Decryption, call library functions inside to
request the service of a library task, CrytographyLibrary that provides a set of
service functions for cryptography. The Control task activates the Sender task
if it receives a user input and the Sender task packs the input data, encrypts
the packed message, and transfers the encrypted message. If the control task is
triggered by an incoming message, it decrypts, unpacks and displays it.

Fig. 13. A cryptographic system example (Color figure online)

5.2 Cooperating Robots

Figure 14 specifies a multi-robot system where multiple robots accomplish a mis-
sion, sharing the information. The mission in this experiment is to find all color
papers scattered on the floor whose boundary is marked by black tapes. While
each robot searches color papers in the region independently, the found papers
are reported to the library task to avoid the redundant labor of robots. When all
papers are found, the robots go back to the initial position. Each robot performs
a group of applications that are depicted in the figure. An application group
consists of 8 tasks: 3 sensor tasks, 4 actuator tasks, and 1 control task.

Embedded Software Design Methodology Based on Formal Models 321

Robot #1

Robot #2

Robot #3

Fig. 14. A cooperative robots example (Color figure online)

In this experiment, three different types of robots used: TI Evalbot, NXT
LEGO, and iRobot Create. The robots have different hardware platforms and
operating systems as shown in Fig. 15. The library task is mapped to iRobot
Create that is most powerful. The figure also shows the distribution of code size.
In addition to the task code given by the user, the scheduler code, data structure,
and communication codes are automatically generated. In this example, the task
code takes about 21.9% of the total code size on average. Since the coding error
probability is known to be dependent on the code size in general, it can be said
that automatic code synthesis increases the design productivity of this control
oriented application.

TI Evalbot NXT LEGO IRobot Create

OS uC-OS III NXT-OSEK Linux (Ubuntu)

Proc. LM3S9B92 (80MHz) Atmel® 32-bit ARM (48MHz) Intel i3-4000M (2.4GHz)

Mem. 96KB 64KB 4GB

Total code size 2721 3301 2996

Given task code 580 604 787

Scheduler code 1171 928 931
Other code 970 1,769 1,278

Fig. 15. Robot hardware specs and synthesized code size

322 S. Ha and E. Jeong

6 Related Work

Defining a universal execution model is not a unique idea of the proposed
methodology. Several executions models have been proposed in various appli-
cation domains, to make the software independent of the hardware platform
and so portable to different types of architecture easily. A good example is
the AUTOSAR (AUTomotive Open Software Architecture) methodology that
defines the open and standardized software architecture for automotive electronic
control units [13]. AUTOSAR defines a set of APIs assuming that the software
components communicate with each other through virtual sockets. Thus, soft-
ware developer can design software using the APIs, without knowledge of the
underlying hardware platform, which is the same as the proposed technique
that provides the UEM APIs to the programmer. After mapping of software
components onto the ECUs is determined, the runtime environment supervises
the execution of software components and communication between them. Since
the AUTOSAR is not based on formal models of computation, however, this
methodology resorts to test-based methods for software verification.

The proposed methodology has been evolved from a hardware/software code-
sign methodology where the behavior specification of a system is made separately
from architecture specification. In this codesign methodology, formal models of
computations are widely for behavior specification since they make it easy to
explore the wide design space of architecture configuration and mapping of the
application to the processing elements. In case the hardware platform is given,
the design space is reduced to find an optimal mapping of the application and
the software code for each processing element is automatically generated based
on the mapping and scheduling decision. In other words, the HW/SW codesign
methodology becomes an embedded SW design methodology if the hardware
platform is fixed.

Nonetheless, the proposed methodology differs from conventional model-
based codesign environments such as Daedalus [14] and DAL [15]. While they
use the KPN model for behavior specification, the UEM model is defined as the
execution model at the operating system level, combining three different models
of computation. Its model composition rule is different from that of Ptolemy [16]
which allows hierarchical composition of models without limitation on the depth
of hierarchy and the kinds of models. Last, not the least, a major difference
between the codesign methodology and the software design methodology is the
granularity of the atomic actor. The atomic actor is as large as a function module
that can be implemented as a hardware component in the codesign methodology,
while it is larger in the software design methodology as a sequential task that is
a unit of mapping and scheduling at the operating system level.

7 Conclusion

For the design of embedded software, we have to ensure not only the functional
correctness but also satisfaction of several constraints on real time performance

Embedded Software Design Methodology Based on Formal Models 323

and resource limitation. In this work, a novel methodology to make an embedded
software correct by construction is proposed by designing embedded applications
with formal models of computation. Unlike the conventional model-based design,
formal models of computation are applied to the software architecture of tasks
that are mapped and scheduled by the operating systems. Thus, the proposed
software architecture can be understood as a universal execution model (UEM)
of underlying hardware platforms. We define the UEM by extending well-known
formal models, Synchronous Dataflow (SDF) for the computation parts of the
system and finite state machine (FSM) for the control structure of the system.
At the top level, an extended KPN (Kahn process network) is used to define the
interaction between applications. To be concrete, the SDF model is extended
to specify dynamic behavior by combining a FSM model, called MTM (mode
transition machine), to allow the use of shared resources by defining a new type
of task, called library tasks, and to express loop structures explicitly by defining
a loop super node to make the SDF model hierarchical.

There are several benefits to use formal models for software design. First, we
can detect critical design errors such as deadlock and buffer overflow by static
analysis of formal models. Second, we can estimate the resource requirement and
real-time performance at compile time. Last, not the least, we can synthesize the
target code from the UEM automatically minimizing the manual coding efforts.
By preserving the semantics of the UEM, the synthesized code will be correct by
construction. The key challenge lies in the expression capability of the proposed
UEM. Preliminary experiments with several non-trivial applications prove the
viability of the proposed methodology.

8 Epilogue

I am very grateful that I was involved in the development of Ptolemy [16] from
its birth during my doctoral study. Under the supervision of Prof. E.A. Lee, I
developed and implemented several models of computations and their hierarchi-
cal structure. Naturally, I became an advocate of formal models of computa-
tion and their mixture for system specification and simulation. After joining the
faculty of SNU (Seoul National University, Korea), I switched my gear to the
HW/SW codesign of embedded systems and had developed a HW/SW codesign
environment, called PeaCE (Ptolemy extension as a Codesign Environment) [17]
for the first 12 years. As the name implies, the baseline of the environment is
Ptolemy classic. Since our aim was to synthesize the system automatically from
the behavior specification, we had to restrict the use of formal models and their
composition. Our choice was to use SDF and FSM models since they offer good
static analyzability and the refinement path from specification to implementa-
tion is well established. To overcome the limitation of expression capability, we
have proposed several extensions to those models. The viability of the proposed
approach was proven with a design of a simple smartphone application.

As the number of processors integrated into a chip increases and platform
based design becomes popular, parallelizing software becomes more challenging

324 S. Ha and E. Jeong

than partitioning an application into hardware and software. Since the PeaCE
environment was not well engineered from the start, graduate students had dif-
ficulty of maintaining the environment. So we decided to develop a new design
environment, HOPES [18], from scratch, focusing on the development of paral-
lel embedded software based on the formal models of computation, keeping the
spirit of Ptolemy and PeaCE. Since a hardware component can be regarded as a
special processing element that can perform a designated task only, the HOPES
environment can be used as a HW/SW codesign environment. By increasing the
granularity of a task, it is easier to use formal models for behavior specification.
Another 12 years have passed. We are now renovating the HOPES environment.
Our goal is to make the HOPES environment as a software engineering tool that
can be adopted in the industries.

Acknowledgments. This research was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-
2016R1A2B3012662). The ICT at Seoul National University provided research facilities
for this study.

References

1. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75, 1235–1245
(1987)

2. Bilsen, G., Engels, N., Lauwereins, R., Peperstraete, J.: Cyclo-static dataflow.
IEEE Trans. Signal Process. 44, 397–408 (1996)

3. Stuijk, S., Geilen, M., Theelen, B.D., Basten, T.: Scenario-aware dataflow: mod-
eling, analysis and implementation of dynamic applications. In: Proceedings of
International Conference on Embedded Computer Systems: Architecture, Model-
ing, and Simulation, vol. 72, pp. 404–411 (2011)

4. Bhattacharya, B., Bhattacharyya, S.: Parameterized dataflow modeling for DSP
systems. IEEE Trans. Signal Process. 49, 2408–2421 (2001)

5. Jung, H., Lee, C., Kang, S., Kim, S., Oh, H., Ha, S.: Dynamic behavior specification
and dynamic mapping for real-time embedded systems: HOPES approach. ACM
Trans. Embed. Comput. Syst. 13, 135:1–135:26 (2014)

6. Park, H., Jung, H., Oh, H., Ha, S.: Library support in an actor-based parallel
programming platform. IEEE Trans. Ind. Inform. 7, 340–353 (2011)

7. Hong, H., Oh, H., Ha, S.: Hierarchical dataflow modeling of iterative applications.
In: Proceedings of Design Automation Conference, vol. 39 (2017)

8. Kahn, G.: The semantics of a simple language for parallel processing. In: Proceed-
ings of the IFIP Congress (1974)

9. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Trans.
Softw. Eng. Methodol. 5, 293–333 (1996)

10. Shin, T., Oh, H., Ha, S.: Minimizing buffer requirements for throughput con-
strained parallel execution of synchronous dataflow graph. In: Proceedings of Asia
and South Pacific Design Automation Conference (2012)

11. Oh, H., Ha, S.: Memory-optimized software synthesis from dataflow program
graphs with large size data samples. EURASIP J. Appl. Signal Process. 2003,
514–529 (2003)

Embedded Software Design Methodology Based on Formal Models 325

12. Ha, S., Jung, H.: HOPES: programming platform approach for embedded sys-
tems design. In: Ha, S., Teich, J., et al. (eds.) Handbook of Hardware/Software
Codesign, pp. 951–981. Springer, Dordrecht (2017). https://doi.org/10.1007/978-
94-017-7267-9 1

13. Pelz, G., Oehler, P., Fourgeau, E., Grimm, C.: Automotive system design and
AUTOSAR. In: Boulet, P. (ed.) Advances in Design and Specification Languages
for SoCs, pp. 293–305. Springer, Boston (2005). https://doi.org/10.1007/0-387-
26151-6 21

14. Nikolov, H., et al.: Daedalus: toward composable multimedia MP-SoC design. In:
Proceedings of Design Automation Conference, pp. 574–579 (2008)

15. Schor, L., Bacivarov, I., Rai, D., Yang, H., Kang, S.-H., Thiele, L.: Scenario-based
design flow for mapping streaming applications onto on-chip many-core systems.
In: Proceedings of CASES, pp. 71–80 (2012)

16. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a framework for
simulating and prototyping heterogenous systems. Int. J. Comput. Simul. 4, 155–
182 (1994)

17. Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S., Joo, Y.: PeaCE: a hardware-software
codesign environment for multimedia embedded systems. ACM Trans. Des. Autom.
Electron. Syst. 12, 24:1–24:25 (2007)

18. Kwon, S., Kim, Y., Jeun, W., Ha, S., Paek, Y.: A retargetable parallel programming
framework for MPSoC. ACM Trans. Des. Autom. Electron. Syst. 13, 39:1–39:18
(2008)

https://doi.org/10.1007/978-94-017-7267-9_1
https://doi.org/10.1007/978-94-017-7267-9_1
https://doi.org/10.1007/0-387-26151-6_21
https://doi.org/10.1007/0-387-26151-6_21

	Embedded Software Design Methodology Based on Formal Models of Computation
	1 Introduction
	2 Dataflow Specification of an Application
	2.1 Synchronous Data Flow
	2.2 Dynamic Behavior Specification
	2.3 Library Task
	2.4 Loop Structure (SDF/L)

	3 Universal Execution Model (UEM)
	3.1 Dataflow Task Code Template
	3.2 Control Task Code Template
	3.3 Library Task Code Template

	4 Automatic Code Generation
	5 Preliminary Experiments
	5.1 A Cryptographic System
	5.2 Cooperating Robots

	6 Related Work
	7 Conclusion
	8 Epilogue
	References

