
Marten Lohstroh 
Patricia Derler
Marjan Sirjani (Eds.)

Principles of Modeling

Fe
st

sc
hr

ift
LN

CS
 1

07
60

Essays Dedicated to Edward A. Lee 
on the Occasion of His 60th Birthday

 123



Lecture Notes in Computer Science 10760

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Marten Lohstroh • Patricia Derler
Marjan Sirjani (Eds.)

Principles of Modeling
Essays Dedicated to Edward A. Lee
on the Occasion of His 60th Birthday

123



Editors
Marten Lohstroh
University of California, Berkeley
Berkeley, CA
USA

Patricia Derler
National Instruments
Berkeley, CA
USA

Marjan Sirjani
Mälardalen University, Västerås, Sweden
Reykjavík University
Reykjavik
Iceland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-95245-1 ISBN 978-3-319-95246-8 (eBook)
https://doi.org/10.1007/978-3-319-95246-8

Library of Congress Control Number: 2018947456

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: Confusing the Map with the Territory (By Rusi Mchedlishvili and Marten Lohstroh)

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Fig. 1. Self Portrait (acrylic on canvas, 2007, 24 00 � 24 00) by Edward A. Lee



Preface

It is our great pleasure to dedicate this Festschrift volume to the scholarship and
teaching of Edward A. Lee, Robert S. Pepper Distinguished Professor Emeritus and
Professor in the Graduate School in the Department of Electrical Engineering and
Computer Sciences at the University of California, Berkeley.

The title of this Festschrift is Principles of
Modeling because Edward has long been devoted
to research that centers on the role of models in
science and engineering. Edward has been
examining the use and limitations of models,
their formal properties, their role in cognition and
interplay with creativity, and their ability to
represent reality and physics. He admonishes not
to “confuse the map with the territory”1 (this also
inspired Fig. 2, the cover art for this book) and he
is keen to quote George Box’s famous phrase:
“All models are wrong, but some are useful” [1],
notwithstanding that models and their ability to
provide layered abstractions have been a key
enabler of the Digital Revolution.

At the same time, Edward points out that
the layers of abstraction that work so well
for information technology fail to expose
details that are necessary for the realization of
other classes of systems, such as
cyber-physical systems or time-sensitive sys-
tems (Fig. 3). He also emphasizes that, for
engineers, modeling is a “two-way street”
since, unlike scientists, engineers can manip-
ulate both the model and the thing being
modeled. As such, we have the ability to
improve our designs by giving expression to
useful properties such as concurrency, deter-
minism, and time representation, both in our
models and the realizations thereof. As an
educator and engineer (and self-proclaimed
nerd), Edward is very cognizant of the origin
of ideas and design artifacts, and he is

Fig. 2. “You will never strike oil by
drilling through the map.” A phrase
coined by SolomonGolomb [2]. (Artwork
by R. Mchedlishvili and M. Lohstroh)

Fig. 3. Layers of abstraction that work sowell
for information technology break down for
time-sensitive systems. (By Edward A. Lee)

1 It was Polish-American scientist and philosopher Alfred Korzybski who first remarked that “the map
is not the territory” [3].



consistent and thorough at crediting the people who formed them. In other words, he
acknowledges not only the giants on whose shoulders we stand, but also our con-
temporaries from whose ideas we can gain impetus. Edward genuinely enjoys engaging
other minds and exchanging ideas—preferably via code—and has contributed greatly
to the fields of embedded systems, real-time computing, computer architecture, mod-
eling and simulation, and systems design.

It was heartwarming that so many fellow leaders in these fields were excited to
contribute articles to this special publication and were willing to travel from afar to
attend the Edward A. Lee Festschrift Symposium, held at the Berkeley City Club on
Friday October 13, 2017. Among the attendees of this day-long symposium we wel-
comed many of Edward’s collaborators, colleagues, industrial fellows, current and
former graduate students, friends and family, his wife, Rhonda, and, of course, Edward
himself. It was an unforgettable event that featured an array of phenomenal talks
keynoting technical contributions—punctuated with personal anecdotes and references
to Edward’s work—a highly engaging panel discussion on the topic of determinism,
and an opportunity to relax and socialize during the reception that followed in the
evening.

We, as organizers, are grateful to all authors for accepting our invitation and sub-
mitting first-rate contributions, to the reviewers who provided invaluable feedback on
the submissions, to all presenters, panelists, and session chairs, for sharing their unique
perspectives, as well as to everyone who helped make the symposium such a memo-
rable event. We are grateful to Berkeley faculty members Prabal Dutta, Jan Rabaey,
Alberto Sangiovanni-Vincentelli, and Sanjit Seshia for their generous financial support,
and we would like to thank Springer for granting us the opportunity to publish this
Festschrift in their Lecture Notes in Computer Science series.

In his three decades of teaching at one of the most prestigious universities in the
world, Edward has influenced many students, scholars, and members of industry with
his contagious drive for hands-on experimentation and his inquisitive mind that is

Fig. 4. Attendees of the Edward A. Lee Festschrift Symposium (Photo by Rusi Mchedlishvili)
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always in pursuit of grounding observations in a
sound framework of theory. These traits, together
with a wealth of experience, steadfast commitment,
and proverbial efficiency, serve as an impetus and
inspiration—to his students and collaborators alike—
for rising above one’s self and achieving insightful
research results.

Despite being a professor emeritus, Edward still
considers himself a student, and is ever so eager to
learn. Edward has a real passion for programming
and has kept honing his programming skills
throughout his career. He has an extraordinary
capacity and willingness to experience paradigm
shifts in technology, not least by learning and mas-
tering new programming languages—a feat that not
many professionals are able to pull off as gracefully
as he can. Edward also has a passion for art—as an
undergraduate in college, he took more art classes than engineering classes. He has
always continued to create artwork, among which are paintings (Fig. 1), mashups
(Fig. 6), and photographs. Over the years, some of his works have become permanent

fixtures on the walls of the Donald O. Pederson
Center in Cory Hall, one of which is shown in Fig. 5.

More recently, Edward has focused on the phi-
losophy of engineering, which he discusses in his
first book for a general audience: Plato and the
Nerd: The Creative Partnership of Humans and
Technology. This book, written for literate technol-
ogists and numerate humanists, examines the role of
digital technology in our lives and explains why it
has been so transformative and liberating, while it
tempers runaway enthusiasm that may lead one to
believe that anything physical is computational.
Living in a time where we witness the tremendous
impact of technology, but cannot always seem to
agree on whether to fear or to embrace it, we need
more torchbearers like Edward. We hope that he will
continue to inspire and illuminate us with his bril-
liance for many, many years to come.

Fiat Lux!

May 2018 Marten Lohstroh
Patricia Derler
Marjan Sirjani

Fig. 5. All Tied Up (Construction,
1998, 3 0 � 40) by Edward A. Lee

Fig. 6. Human and Technology
Forming Each Other (By Edward A.
Lee, Plato and the Nerd: The Crea-
tive Partnership of Humans and
Technology)
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Fig. 9. Panel discussion with Stephen A. Edwards, Gul Agha, Ruzena Bajcsy, Thomas Henzinger,
and Hermann Kopetz (Photo by Ben Zhang)

Fig. 8. A view from the audience (Photo by Rusi Mchedlishvili)
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Fig. 10. Edward Lee engaging in the panel discussion on determinism (Photo by Ben Zhang)

Fig. 11. Marten Lohstroh, Patricia Derler, Marjan Sirjani, and Edward Lee during the closing remarks
(Photo by Chamberlain Fong)
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Fig. 12. Stephen Neuendorffer, Xiaojun Liu, Elaine Cheong, Edward Lee, Thomas Feng, and Jie Liu
(Photo by Rusi Mchedlishvili)

Fig. 13. Christian Buckl, Edward Lee, Janette Cardoso, Marjan Sirjani, and John Eidson (Photo by
Rusi Mchedlishvili)
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Fig. 14. Hermann Kopetz, Thomas Henzinger, and Radu Grosu (Photo by Rusi Mchedlishvili)

Fig. 15. Edward Lee, Chadlia Jerad, and Christopher Brooks (Photo by Rusi Mchedlishvili)
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Fig. 16. Edward Lee and his wife, Rhonda Righter (Photo by Rusi Mchedlishvili)
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Fig. 17. Christopher Brooks, Janette Cardoso, and Patricia Derler (Photo by Rusi Mchedlishvili)

Fig. 18. Edward Lee and his PhD advisor David Messerschmitt (Photo by Rusi Mchedlishvili)
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Fig. 19. Edward Lee’s mother, Kitty Fassett; Rhonda Righter and Edward Lee in the background
(Photo by Rusi Mchedlishvili)
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Personal Notes for Edward

From Rajeev Alur Dear Edward, you have been an inspiration and a role model to me
all these years. Your breadth of knowledge, ability to connect insights from diverse
fields into coherent research themes, a natural gift for communicating, and leadership in
defining cyber-physical systems as a scientific discipline are all exemplary. Wishing
you the best at this mode-change in your life!

From Sanjoy Baruah Thanks very much for all that you have done to keep the
“science” strong in our small corner of computer science… Thanks, too, for your
endeavors in education and outreach in real-time computing–I feel fortunate to belong
to a community in which one of our foremost research contributors is also such a gifted
and willing communicator. You have strengthened our discipline tremendously!

From Shuvra S. Bhattacharyya It has truly been a privilege to be your PhD student
and collaborator. I am deeply grateful for your great positive influence on my career.
Happy birthday and my very best wishes!

From David Broman I would like to thank you for the really great time we have had
together. The years that I worked in your group have really shaped me as a researcher,
and I will always be extremely grateful for all the support and encouragement that you
have given me. Besides all the interesting research we have done together, I am even
more grateful for our friendship. It has been a pleasure to meet your family, and you are
always welcome to come and visit my family in Stockholm again. Happy birthday!

From Janette Cardoso I was a very privileged guest in your lab during my sabbatical
during 2010–2011. Ever since, I refer to you as an admirable scientist. In addition to
your technical contributions, you have two human qualities that I highly appreciate:
you always value collaborations and give credit to people you work with; and you are
not afraid to express doubts, or recognize possible errors. These rare qualities are the
foundation of human respect and esteem. Working with you is richly rewarding!

From Marco Di Natale It is always a pleasure to work with you. I am always looking at
you as a role model for how to work in research in the purest sense, with strong ethics and
without compromises; pursuing what you believe is important and worthy, regardless of
trends, outside interests, metrics and money, with continuing enthusiasm and passion.

From Stephen A. Edwards Thanks for everything: direction, structure, freedom,
inspiration, and a level to aspire to. I’m not sure who I would be or what I would be
doing were it not for your help, but I’m sure it wouldn’t be as good. I’m still annoyed at
you, however, for making it look so easy. I still haven’t figured out how to do half of
what you’ve done.



From Alain Girault Cher Edward, many thanks for all the fun, inspiration, guidance,
kindness. I enjoyed each day of my postdoc at UCB in your group. One part of my
current research is still based on Ptolemy and SDF, and another part is based on PRET,
so, as you see, your inspiration has been invaluable. I know how much I owe you.
Thanks for everything and happy birthday!

From Soonhoi Ha I am always thankful that I was privileged to be involved in the
development of Ptolemy Classic from its birth as your second PhD student. Naturally, I
became an advocate of formal models of computation and their mixture for system
behavior specification in the design of embedded systems. In retrospect, I enjoyed my
graduate years very much with good memories of having parties at your house, going for
a picnic in the park, having any-time any-where discussions on research topics, and so
on. After graduation, whenever I meet an alumnus of your laboratory in any place, we
feel closely related. Thank you for being the center of such a community. You are my
role model, showing students the pleasure and passion for research and still actively
writing code, which I find very difficult as a professor with various duties. I’d like to
bless you abundantly in Jesus’s name. Congratulations on your 60th birthday!

From Reinhard von Hanxleden Dear Edward, I’m not sure I ever mentioned this to
you, but a while before our first “official” meeting in the early 2000s, I sat in on a class
you taught at UCB in the fall of 1995. When a student presented the result of a
computation that would have been a bit tedious to check and not all that enlightening
right then, you incorporated this nicely with an “I trust you on this” and moved on from
there—which I assume not only made that student a bit proud at that moment, but also
motivated most of us to check for ourselves later. Ever since then, “how would Edward
handle this” has been a standard tool for me, and probably also for pretty much all the
members of my group fortunate enough to have spent time with you. Thank you—and
happy birthday!

From Tom Henzinger Happy birthday, Edward, and thank you for being such an
inspiring and thought-provoking colleague over the years!

From Christoph Kirsch I wish you all the best for your 60th birthday! The first time we
met was in late 1999 when I joined Tom Henzinger’s group as a postdoc. I still
remember your group lunches to which I was soon invited and that I enjoyed very much.
The friendly atmosphere and the inspiring conversations with you felt like a liberation
of the mind from which I still benefit to this day. Thank you, Edward!

From Hermann Kopetz Dear Edward, you have achieved a tremendously important
paradigm shift: bringing the issues around real-time into the minds of many computer
scientists. This is a most important contribution, since it helps to build a new foundation
for systems that leave the confines of cyber-space and act in the physical world of things.
Happy birthday and many more years of great contributions!

From Eugenio Moggi I had the privilege to meet Edward only once, at a workshop in
Uppsala in 2017. His invited talked was very thought provoking. In particular, he gave a
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very simple example of a non-deterministic system: three balls with different masses
hitting each other at the “same” time. His point was that determinism is very desirable
for system analysis, but it should not be taken for granted. Also, chatting with him over a
beer was “thought provoking.” At some point we discussed Donald Rumsfeld’s “known
unknowns” and “unknown unknowns,” and I was wondering what could possibly be an
“unknown known.” Edward said: “A prejudice!” I was baffled by his answer, but in
retrospect it was a very good example. Also, in academia, we make a lot of implicit
assumptions and take things for granted. What can save us from our prejudices is the
ability to change our views when the evidence is against them, or simply accept that
there are alternative views and no clear evidence to prefer one to the other.

From Pierluigi Nuzzo Happy birthday, Edward! Thank you for constantly being a role
model, and such an inspiring professor, educator, researcher, and collaborator. Thank
you for your leadership and guidance in the many research centers and efforts I was part
of during my journey at Berkeley. Thank you for your support during key stages of my
path. Thank you for all the interactions we have had, both technical and philosophical,
the great discussions during “formal” meetings as well as the uplifting, impromptu
conversations over coffee in Cory Hall. My very best wishes for the journey ahead!

From Alberto Sangiovanni-Vincentelli It has been 35 years since I saw you the first
time in Cory Hall while you were studying for your PhD! What a long trip! It has been a
super great pleasure to work with you, to enjoy wines and food, and exchange stories
about our families. There have been difficult times for both of us due to the health of our
kids, and I believe sharing our preoccupations helped considerably (at least me). Your
generosity in helping the Berkeley community cannot be overemphasized. You went
way above the lines of duty in all endeavors and we all should be grateful to you. And
yes, I am a big fan of Plato! You are indeed like a good bottle of wine: you grow better
with age! All the very best for your “retired” (what a joke!) life. You have been a
wonderful friend and colleague.

From Sanjit Seshia Dear Edward, long before I started on the Berkeley faculty, I was
inspired by your research and writings on embedded software and systems. Arriving at
Cal and working closely with you on a range of amazing projects, spanning research and
teaching, has truly been a dream come true. Thank you for your leadership and wisdom,
and for being a fountain of inspiration! Wishing you a happy birthday and all the very
best!

From Bruno Sinopoli Thank you for being true and pure to science. You have inspired
and keep inspiring many of us. I will always be indebted to you for our discussions and
for your continued support.

FromMarjan Sirjani Edward is a “one of a kind” person who has a broad and yet deep
understanding and knowledge of electrical engineering, control engineering, hardware
and computer architecture, embedded and real-time systems, programming, computer
network, and physics… and that’s why he has no choice but to become a philosopher! In
his first book for a general audience, Plato and the Nerd: The Creative Partnership of
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Humans and Technology, he speaks with his philosopher’s hat on. Edward calls himself
a citizen of the world, he does not classify people, he says there are only two types of
people, those who classify people and those who do not. He is also a warrior, he fights
his battles by writing books.

From Walid Taha Since our first meeting, you have been a constant source of
inspiration, starting from the way you summarized the outcomes of a complex meeting
with exceptional precision when we first met in 1999, to asking the most insightful
questions during a talk I gave about why functional programming matters for real-time
systems, to explaining in so many ways—sometimes on a dime—why CPS matters, to
your genuine modesty and kindness. Thank you for everything. Happy birthday, and
here is to many more happy years!

From Martin Törngren In 2007 I had the opportunity to meet Edward Lee for the first
time at a Dagstuhl seminar on Model-Based Engineering of Embedded Real-Time
Systems. We had a useful exchange that included not only research but also rather
advanced cyber-physical systems exercise in the form of table-tennis! This combined
mode of interactions was probably decisive for my initiative to reach out to Edward,
asking for the possibility to visit UC Berkeley. As a result, I did a sabbatical during
2011–2012 with Edward’s group. The stay at Berkeley was a great success in many
ways for me professionally and for my family. The inspiration and the collaborative
work has been important for my career since. It led me in the direction of research in
cyber-physical systems, in turn, among other things, leading to road-mapping efforts on
CPS with the European Commission. Like at Dagstuhl, while at UC Berkeley, I insisted
on interactions that also involved applied motion control (advanced CPS)—in this case
in terms of juggling. I believe this is something that was appreciated at UC Berkeley.
Edward continues to be an important inspiration and role model for me and he is always
welcome to Stockholm for further exchanges of both scientific and applied CPS nature;
like juggling!

From Stavros Tripakis I’d like to thank Edward for finding the time and energy to
support my research at UC Berkeley at a difficult moment in his life. Thank you Edward
and happy birthday!

From Reinhard Wilhelm Dear Edward, it is really impossible to repeat one’s
professional life or most of the research attempts one has tried. It is, at least theoretically,
possible to predict one’s professional success and personal happiness. Beyond this
predictability, I wish you even more professional success and personal happiness for the
time to come.
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Organization

This Festschrift was organized by Edward’s doctoral student Marten Lohstroh, his
former postdoc Patricia Derler, and his friend and colleague Marjan Sirjani.
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Abstract. Computers are the most fascinating machines ever invented.
Virtually everyone uses them in one form or another every day. However,
most people only have a vague understanding of how computers work, let
alone how to program them. Yet computing has become a commodity
almost like energy, food, or water. The question is if the general pub-
lic, for modern society to work properly, needs to understand computing
better than what people generally know about, say, producing electricity
or clean water. We argue that the intractability and even undecidability
of so many important problems in computer science are the reason that
computing is indeed different. It is the limits of computability, not just
the capabilities of computers, that is the source of unbounded potential
in the automation of everything. The challenge is to teach people not
just programming but also how programming is the neverending process
of overcoming those limits. We have developed a system called selfie that
implements a self-referential compiler, emulator, and hypervisor that can
compile, execute, and virtualize itself. We use selfie to teach undergrad-
uate and graduate students computer science from first principles. In
particular, we show them how self-referentiality in selfie is capability
and limitation of computing at the same time. Here, we discuss ongoing
early work on integrating verification technology into selfie as yet another
way of exploring what computing is.

1 Introduction

How many people know how to read and write and understand at least some
elementary arithmetic? What about elementary set theory, in particular, Can-
tor’s diagonal argument then? And, if some people know and understand that,
do they also know how diagonalization beautifully explains the limits of com-
putability [13] as the source of unbounded potential in computing? Teaching and
understanding Cantor is actually not that hard and should be part of any school
curriculum. Connecting Cantor to computing, however, that is, teaching and
understanding Gödel, Turing, and others, is a lot more difficult. But there ought
to be a way to reach out to larger audiences. The trend towards teaching how to
code already in school is an important step forward. However, we believe that

c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-319-95246-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95246-8_1&domain=pdf


2 A. S. Abyaneh and C. M. Kirsch

understanding the limits of computability is at least as important as learning
how to code, if not more important, especially for broader audiences.

We have developed a software system called selfie1 in a tiny subset of C
called C* that implements a self-compiling compiler, a self-executing emulator
of a tiny MIPS subset called MIPSter targeted by the compiler, and a self-hosting
hypervisor that virtualizes a MIPSter machine [8]. Selfie is written in a single,
self-contained file of around 7k lines of C* code. Selfie compiles itself, executes
the code it generates including the emulator itself, and can even virtualize the
execution of that code.

Through compilation, emulation, and virtualization, selfie provides three dif-
ferent perspectives on how to create the semantics of formalisms such as C*
and MIPSter code using these very formalisms. Selfie, just like Cantor’s diag-
onal argument, employs self-referentiality. Learning about self-referentiality is
difficult for many students but nevertheless seen by us as key to understanding
basic principles of computer science including the limits of computability. Selfie
is a sandbox for teaching undergraduate and graduate students computer sci-
ence from first principles. However, we also use selfie in classes targeting broader
audiences by identifying and exemplifying in selfie basic principles of computer
science everyone should know about [8].

In order to provide another perspective on computing and in particular its
limitations and how to overcome them, we have recently begun a new project
integrating verification technology into selfie. We have already started imple-
menting a state-of-the-art SAT solver in selfie and are working on an SMT solver
and a symbolic execution engine for MIPSter. We report on the effort here which
is still in an early stage but has already lead to some interesting insights.

We first introduce the programming language C* and the MIPSter instruction
set by example and point out that we removed undefined behavior in all signed
integer operations of C* through wrap-around semantics. However, as part of an
ongoing effort, we are also exploring alternatives such as using unsigned integers
only. Establishing a well-defined semantics of C* and MIPSter before trying to
verify anything is in fact the first positive outcome of the effort.

We then provide an overview of selfie and argue that the simplicity and
realism of system and language may lead to something beyond a purely educa-
tional effort. In particular, we show performance data comparing execution time
and code size of programs written in C and ported to C* when compiled with
state-of-the-art C compilers. The programs are mostly microbenchmarks written
for this purpose but also one macrobenchmark which is a state-of-the-art SAT
solver. It turns out that modern C compilers produce code for both versions with
essentially the same performance characteristics. In short, C* is simple but still
fast, motivating us to see it as a promising target for verification from within
the system. We conclude with an outlook on how the project may evolve.

1 http://selfie.cs.uni-salzburg.at.

http://selfie.cs.uni-salzburg.at
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2 Programming

C* is a tiny subset of the programming language C [7]. C* features global variable
declarations with optional initialization as well as procedures with parameters
and local variables. C* has five statements (assignment, while loop, if-then-else,
procedure call, and return) as well as five built-in functions that are sufficient
to bootstrap selfie (exit, malloc, open, read, write). In particular, there
is no free and no close. C* features standard arithmetic (+, -, *, /, %) and
comparison (==, !=, <, <=, >, >=) operators as well as integer, character, and
string literals. C* includes the unary * operator for dereferencing pointers hence
the name but excludes data types other than int and int* [12], bitwise and
Boolean operators, and many other features.

Listing 1.1. Simplified atoi procedure in selfie

1 int atoi(int* s) {
2 int i;
3 int n;
4 int c;
5
6 // the conversion of the ASCII string in s to its
7 // numerical value n begins with the leftmost digit in s
8 i = 0;
9

10 // and the numerical value 0 for n
11 n = 0;
12
13 // load character (one byte) at index i in s from memory
14 // requires bit shifting since memory access is in words
15 c = loadCharacter(s, i);
16
17 // loop until s is terminated
18 while (c != 0) {
19 // the numerical value of ASCII-encoded decimal digits
20 // is offset by the ASCII code of ’0’ (which is 48)
21 c = c - ’0’;
22
23 // assert: 0 <= c <= 9 and 0 <= n * 10 + c <= INT_MAX
24
25 // use base 10 to compute numerical value
26 n = n * 10 + c;
27
28 // go to the next digit
29 i = i + 1;
30
31 c = loadCharacter(s, i);
32 }
33
34 return n;
35 }

The C* grammar is LL(1) with six keywords (int, while, if, else,
return, void) and 22 symbols (=, +, -, *, /, %, ==, !=, <, <=, >, >=, ,,
(, ), {, }, ;, integer, character, string, identifier). Whitespace is
ignored including one-line comments (//).

For an example of C* code, consider Listing 1.1 which shows a simpli-
fied C* implementation of the standard atoi procedure for converting a
(decimal) number represented as an ASCII string into its numerical integer value.
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An ASCII string in C is a null-terminated sequence of bytes, one byte per char-
acter, contiguously stored in memory. Here, the only non-standard part of the
implementation are the calls to loadCharacter in Lines 15 and 31 to retrieve
the individual characters of the string s. Because of the lack of a byte-size data
type such as char we can only access memory at the granularity of signed inte-
gers (or pointers to signed integers). Signed integers contain four bytes, that is,
up to four characters which are then retrieved individually through bit shifting,
see Listing 1.2 for details, in particular Lines 13 through 15.

Listing 1.2. loadCharacter procedure in selfie

1 int loadCharacter( int* s, int i) {
2 // assert: i >= 0
3 int a;
4
5 // a is the index of the word where the
6 // to-be-loaded i-th character in s is
7 a = i / SIZEOFINT;
8
9 // shift to-be-loaded character to the left

10 // resetting all bits to the left of it then
11 // shift to-be-loaded character all the way
12 // to the right and return
13 return rightShift(leftShift(*(s + a),
14 ((SIZEOFINT - 1) - (i % SIZEOFINT)) * 8),
15 (SIZEOFINT - 1) * 8);
16 }

The C* semantics in selfie is, to the best of our knowledge, standard C seman-
tics except for undefined behavior through arithmetic overflow. In particular, C*
programs compiled and executed by selfie implement standard C semantics with
32-bit wrap-around semantics for all arithmetic operators on signed integers
and pointers. This is true even if the bootstrapping compiler does not imple-
ment wrap-around semantics (except for multiplication). The system neverthe-
less prints a console warning for any overflow (and division by zero) that occurs
during runtime. However, because of efficiency concerns, the actual result of a
multiplication operation depends on the semantics implemented by the boot-
strapping compiler.

The MIPSter instruction set generated by selfie is a tiny subset of MIPS32 [5].
It consists of 16 instructions (nop, addu, subu, multu, divu, mfhi, mflo,
slt, jr, syscall, addiu, lw, sw, beq, jal, j). MIPSter allows straightfor-
ward compilation of C* programs into MIPSter code. Bitwise and sub-word data
transfer instructions are not needed.
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Listing 1.3. MIPS assembly for the atoi procedure in selfie

0x168(˜18): lw $t0,-12($fp) // while (c != 0)
0x16C(˜18): addiu $t1,$zero,0
0x170(˜18): beq $t0,$t1,4[0x184]
0x178(˜18): addiu $t0,$zero,1
0x17C(˜18): beq $zero,$zero,2[0x188]
0x184(˜18): addiu $t0,$zero,0
0x188(˜18): beq $zero,$t0,31[0x208]
0x190(˜21): lw $t0,-12($fp) // c = c - ’0’
0x194(˜21): addiu $t1,$zero,48
0x198(˜21): subu $t0,$t0,$t1
0x19C(˜21): sw $t0,-12($fp)
0x1A0(˜26): lw $t0,-8($fp) // n = n * 10 + c
0x1A4(˜26): addiu $t1,$zero,10
0x1A8(˜26): multu $t0,$t1
0x1AC(˜26): mflo $t0
0x1B8(˜26): lw $t1,-12($fp)
0x1BC(˜26): addu $t0,$t0,$t1
0x1C0(˜26): sw $t0,-8($fp)
0x1C4(˜29): lw $t0,-4($fp) // i = i + 1
0x1C8(˜29): addiu $t1,$zero,1
0x1CC(˜29): addu $t0,$t0,$t1
0x1D0(˜29): sw $t0,-4($fp)
0x1D4(˜31): lw $t0,8($fp) // push s onto call stack
0x1D8(˜31): addiu $sp,$sp,-4
0x1DC(˜31): sw $t0,0($sp)
0x1E0(˜31): lw $t0,-4($fp) // push i onto call stack
0x1E4(˜31): addiu $sp,$sp,-4
0x1E8(˜31): sw $t0,0($sp)
0x1EC(˜31): jal 0xE1D[0x3874] // call loadCharacter(s, i)
0x1F4(˜31): addiu $t0,$v0,0 // c = loadCharacter(s, i)
0x1F8(˜31): addiu $v0,$zero,0
0x1FC(˜31): sw $t0,-12($fp)
0x200(˜34): beq $zero,$zero,-39[0x168] // go back to while

Listing 1.3 shows the MIPSter code generated by selfie for the while loop in
the atoi code in Listing 1.1. The first line reads as follows. The instruction lw
$t0,-12($fp) is stored in memory at address 0x168 and has been generated
for source code at approximately Line 18. In fact, the instruction loads the
current value of the local variable c occurring in the loop condition c != 0
into the temporary CPU register $t0. The value is stored in memory on the call
stack, 12 bytes below the address to which the frame pointer $fp refers. The
next instruction loads the value 0 into another temporary register $t1 to prepare
for the comparison with $t0 in the following branch instruction. The code that
follows is inefficient but straightforward to generate keeping the compiler simple.
It loads 1 or 0 into $t0 depending on whether the loop condition evaluates to
true or false, respectively. Only then the branch instruction at 0x188 either
enters the loop body or terminates the loop by branching to the first instruction
past the code implementing the loop body at 0x208.
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Listing 1.4. C* code preventing integer overflows in the atoi procedure in selfie

...
while (c != 0) {

c = c - ’0’;

i f (c < 0)
// c was not a decimal digit
return -1;

else i f (c > 9)
// c was not a decimal digit
return -1;

// use base 10 but avoid integer overflow
i f (n < INT_MAX / 10)

n = n * 10 + c;
else i f (n == INT_MAX / 10) {

i f (c <= INT_MAX % 10)
n = n * 10 + c;

else i f (c == (INT_MAX % 10) + 1)
// s must be terminated next, check below
n = INT_MIN;

else
// s contains a decimal number larger than INT_MAX
return -1;

} else
// s contains a decimal number larger than INT_MAX
return -1;

i = i + 1;
c = loadCharacter(s, i);

i f (n == INT_MIN)
i f (c != 0)

// n is INT_MIN but s is not terminated yet
return -1;

}
...

The rest of the code is hopefully self-explanatory leaving us more space to
show in Listing 1.4 the actual implementation of atoi in selfie that prevents
the occurrence of any integer overflows during scanning of integer literals. The
code is considerably more complex than the simplified code in Listing 1.1 but
nevertheless an important part of the educational experience with selfie. In fact,
the whole implementation of selfie is designed to avoid integer overflows and
there are indeed none in our experiments which include self-compilation, self-
execution, and self-hosting of selfie. A proof of absence is of course another story
which is ongoing work as discussed next.

3 Computing

Selfie is a self-contained system of a C* compiler, a MIPSter emulator, and a
MIPSter hypervisor implemented in a single 7k-line file of C* code.2 Selfie can
compile, execute, and virtualize itself. In particular, the C* compiler targets
the MIPSter emulator which can execute any MIPSter code including its own
implementation any number of times until time and space run out. The MIPSter

2 https://github.com/cksystemsteaching/selfie/releases/tag/Festschrift17.

https://github.com/cksystemsteaching/selfie/releases/tag/Festschrift17
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hypervisor virtualizes the machine emulated by the emulator and can therefore
host any MIPSter code execution, again including its own implementation any
number of times. The difference between emulator and hypervisor is that the
emulator interprets MIPSter code while the hypervisor asks the machine on
which it runs to interpret MIPSter code on its behalf in temporal and spatial
isolation through context switching and virtual memory. Thus the hypervisor
requires at least one emulator instance to run on.

Self-compilation, self-execution, and self-hosting with selfie enable three dis-
tinguished features of the system:

1. Selfie not only compiles itself, it can even execute the compiled code in the
same invocation of the system, to compile itself again and enable checking if
the code it then generates is the same as the code it executes (fixed-point of
self-compilation). The backend of the compiler is even implemented next to
the frontend of the emulator. In particular, encoding and decoding of machine
instructions is literally done next to each other in the source code. Also,
system call wrappers are generated by the compiler next to the actual system
call implementations in the emulator.

2. Selfie can execute any MIPSter code including itself [11]. Interestingly, exe-
cuting an emulator such as mipster on itself is arguably the simplest form
of an operating system kernel (top emulator) running on a given processor
(bottom emulator), just very inefficiently as interpreter of code rather than
through context switching and virtual memory. However, the top emulator
does provide a machine instance perfectly isolated from the machine instance
on which it runs as provided by the bottom emulator. In fact, enhancing the
top emulator to emulate multiple isolated machine instances is easy using a
dedicated interpreter per instance. With selfie this can be done by students
in a one-week homework assignment. It is only the speed of code execution
that gets exponentially slower in the number of emulators running on top of
each other, but for that there is virtualization.

3. Selfie can virtualize a MIPSter machine for hosting the execution of any
MIPSter code including itself. In contrast to code interpretation, however,
machine virtualization maintains the speed of code execution modulo the
overhead of context switching and virtual memory. Nevertheless, emulator
and hypervisor in selfie share most of their code and are supposed to provide
functionally indistinguishable machine instances, just through very different
means. Selfie can even alternate between emulation and virtualization of the
same machine instance at runtime.

Selfie has originally been developed exclusively for educational purposes. By
now, we use the system in introductory architecture, compiler, and operating
systems classes. There is also an advanced operating systems class based on
selfie as well as an introductory computer science class for students not majoring
in computer science. In that class selfie helps exemplifying basic principles of
computer science. A textbook in early draft form is available online.3

3 http://leanpub.com/selfie.

http://leanpub.com/selfie
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3.1 Software Verification in Selfie

We recently noticed that selfie has also potential in making more advanced topics
such as software verification accessible to broader and younger audiences. We
have therefore started a project integrating verification technology into selfie.
Surprisingly, this effort appears to have potential in research as well. Selfie is
simple yet realistic. In fact, programming language and software system are so
simple that selfie may be amenable to formal reasoning from within the system
itself. Moreover, C* is still sufficiently realistic to serve as input to state-of-the-
art compiler optimizations. In short, C* is simple but may still be fast.

While there is considerable amount of literature on software verification and
related topics there is little hands-on information on how to do what we are
interested in. Ideally, we would like to have selfie perform self-verification of non-
trivial correctness properties [9] and self-optimization of its own implementation.
This may or may not be feasible but at least verifier and optimizer “only” need to
work on selfie code and not “any” code. We are even free to trade-off complexity
between subject and object. In other words, we can make the system smarter or
the code, that is, its proof obligations simpler.

Because of selfie’s dual role in education and research, we are interested
in the absolute simplest yet sufficiently efficient design. There are essentially
two key challenges that we are facing in this project. The first challenge is to
figure out what the simplest way of doing things actually is. For example, it is
difficult to choose the right data structures sufficient for our purpose. The second
challenge is to figure out which optimizations dominate others in their effect on
performance and scalability and are actually needed for our purpose.

So far, we have considered SAT and SMT solvers [2], (bounded) model
checkers [1,2,14], symbolic execution engines [3,4], and even inductive theorem
provers [6]. The very first step we have already taken is to implement a näıve
SAT solver in selfie which we call babysat. We also implemented a parser for
SAT instances encoded in the DIMACS CNF file format. The babysat algorithm
simply enumerates all possible variable assignments of a given SAT instance and
takes 58 lines of C* code. In contrast, even the most näıve implementations we
found online feature some form of optimization such as a watchlist, for example.
However, at least for SAT, instead of introducing optimizations one by one, we
decided to take microsat,4 an existing state-of-the-art SAT solver implemented
in C, port it to C*, and integrate it into selfie.

We are now working on implementations of a näıve SMT solver with babysat
and microsat in the backend as well as a näıve symbolic execution engine for
MIPSter code. The idea is to stay away from any optimizations unless we have
evidence that they are really needed to make the system scale up to selfie. Also,
näıve implementations often turn out to have significant pedagogical value help-
ing students and us understand the problem better.

4 https://github.com/marijnheule/microsat.

https://github.com/marijnheule/microsat
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3.2 C* Performance

To our initial surprise, we noticed that the C* port of microsat is not slower than
the original C version in our experiments. The port of microsat to C* essentially
requires three potentially performance-relevant modifications:

1. structs and arrays are eliminated by removing their declarations and replacing
their access operators with adequate pointer arithmetic and casting,

2. control-flow statements such as break, continue, and goto are eliminated
by introducing new variables that enable modifying the truth value of loop
conditions without changing the rest of the program state, and

3. logical operators such as &&, ||, and ! are eliminated by replacing them with
adequately nested if statements.

All other modifications are minor. In particular, macros are easily expanded,
for loops are turned into while loops, and, more surprisingly, all bitwise opera-
tors in the microsat implementation can be replaced by simple integer arithmetic.

We report on a macrobenchmark with microsat and on eight microbench-
marks each focusing on a particular aspect of the three modifications. Our
experiments ran on a 512 GB NUMA machine with four 16-core 2.3 GHz AMD
Opteron 6376 processors (16 KB L1 data cache, 64KB L1 instruction cache,
16MB L2 cache, 16 MB L3 cache) and Linux kernel version 3.13.0. We used gcc
6.4 and 7.2 as well as clang 4.0.1 to generate 32-bit binaries with −O0 and −O3
optimization levels. For simplicity, selfie only supports 32-bit binaries.

Tables 1, 2, and 3 show the data obtained with x86 binaries generated by gcc
6.4, gcc 7.2, and clang 4.0.1, respectively. The microsat performance data shows
the total execution time of running microsat on the industrial benchmark of the
SAT 2004 competition5 with a timeout of 120 s. Instances that took less than 5 s
to solve were excluded. We repeated the experiment to obtain a ±5% margin of

Table 1. Performance and binary size of C* over C using gcc 6.4

Benchmark −O0 −O3

C
[sec.]

C*
[sec.]

Perf.
[%]

Size
[%]

C
[sec.]

C*
[sec.]

Perf.
[%]

Size
[%]

microsat 4036.26 6912.24 58.3 64.1 2671.34 2678.82 99.6 88.9

struct 97.41 327.48 29.7 91.8 0.23 0.25 92 92.8

array 160.63 308.83 52 91.6 7.09 39.05 18.2 101.1

array pointer - 270.85 59.3 91.3 - 7.13 99.4 93.6

struct with int* - 326.9 29.8 91.5 - 0.23 100 93

array of int* - 306.61 52.4 91.3 - 7.12 99.6 93.6

break 65.12 65.51 99.4 99.6 26.71 17.17 155.6 100.5

logical and 90.63 90.6 100 100 41.49 41.49 100 100

logical or 118.85 100.15 118.7 100 68.02 68.06 99.9 100

5 http://www.satcompetition.org.

http://www.satcompetition.org
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Table 2. Performance and binary size of C* over C using gcc 7.2

Benchmark −O0 −O3

C
[sec.]

C*
[sec.]

Perf.
[%]

Size
[%]

C
[sec.]

C*
[sec.]

Perf.
[%]

Size
[%]

microsat 4037.47 6907.40 58.4 64 2866.97 2817.88 101.9 77.8

struct 110.77 327.92 33.8 91.6 0.31 0.31 100 92.9

array 160.03 312.1 51.3 91.4 4.69 37.67 12.5 98.3

array pointer - 264.67 60.5 91.1 - 4.7 99.8 93.3

struct with int* - 325.67 34 91.6 - 0.31 100 92.9

array of int* - 307.86 52 91.3 - 4.69 100 93.3

break 64.81 65.51 98.9 99.6 26.71 26.71 100 99.9

logical and 90.06 90.14 99.9 100 24.13 24.1 100.1 100

logical or 120.55 101.89 118.3 100 44.92 44.91 100 100

Table 3. Performance and binary size of C* over C using clang 4.0.1

Benchmark −O0 −O3

C
[sec.]

C*
[sec.]

Perf.
[%]

Size
[%]

C
[sec.]

C*
[sec.]

Perf.
[%]

Size
[%]

microsat 4011.74 7787.89 51.5 73.3 2630.39 2514.90 104.2 90.1

struct 89.26 418.07 21.4 98.2 33.8 22.7 148.9 98.2

array 106.02 416.14 25.5 98.3 34.42 32.66 105.4 98.3

array pointer - 329.07 32.2 98.2 - 6 573.7 98.2

struct with int* - 418.85 21.3 98.2 - 33.86 99.8 98.2

array of int* - 420.94 25.2 98.2 - 6.01 572.7 98.2

break 72.05 72.41 99.5 99.9 27.63 27.63 100 99.9

logical and 99.4 98.93 100.5 100 48.27 48.27 100 100

logical or 131.77 137.98 95.5 100 65.97 65.97 100 100

error with a probability of 90%. For the microbenchmark performance data the
margin of error is ±2% with a probability of 99%.

In nearly all cases, the size of x86 binaries generated from C* versions of the
code is either the same or less than the size of the binaries generated from the
corresponding C versions. Without any compiler optimizations (option −O0),
code generated from C* versions is generally slower by up to around 79%. There
is one notable exception which is the microbenchmark replacing the logical oper-
ator || with adequate if statements. Code generated from the C* version with
both versions of gcc runs around 18% faster in this case.

With compiler optimizations (option −O3), the picture is quite different.
Performance is generally the same for both the C and C* versions in nearly all
benchmarks, in particular the macrobenchmark with microsat. However, there
are some notable exceptions as well. For example, struct access mimicked in C*
and compiled with clang is faster than the original in C. However, with array
access and gcc it is the opposite.
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Structs and Arrays. In order to measure the impact of porting C structs and
arrays to C* pointer arithmetics and casting, we designed five microbenchmarks
that share the code in Listing 1.5 for exercising struct and array accesses in
two nested while loops. The input1 and input2 parameters were set to
200,000,000 and 100, respectively.

Listing 1.5. Code for microbenchmarking struct and array access performance

1 int* ptr; // used in inlined code
2 ...;
3 while (i < input1) {
4 j = input2;
5 while (j > 0) {
6 // inline code here for microbenchmarking
7 // struct and array access performance
8 ...;
9 j = j - 1;

10 }
11 i = i + 1;
12 }

Listing 1.6 shows the C code for measuring struct and array access perfor-
mance. For example, for measuring struct access performance we inlined the
body of the struct-access procedure into the body of the inner while loop
in Listing 1.5.

Listing 1.6. Struct and array microbenchmarks in C

1 struct strc_t {
2 int* f1;
3 int f2;
4 int f3;
5 };
6 struct strc_t* strc;
7
8 void struct_access() {
9 strc->f1 = ptr + j;

10 strc->f2 = j;
11 strc->f3 = strc->f2 + j;
12 }
13
14 void array_access() {
15 strc->f1[j] = 1;
16 strc->f2 = j;
17 strc->f3 = strc->f2 + j;
18 }

Listing 1.7 shows the C* version of the C code in Listing 1.6 using getters
and setters for struct and array access through pointer arithmetics and casting.
This method is used in our C* port of microsat as well as in the implementation
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of selfie. The array access performance with C* is poor using both versions of
gcc with -O3 since they fail to move the loop-invariant base address of the array
outside the loops.

Listing 1.7. Struct and array microbenchmarks in C*

1 int* getF1(int* strc) { return (int*) *strc; }
2 int getF2(int* strc) { return *(strc + 1); }
3 int getF3(int* strc) { return *(strc + 2); }
4 void setF1(int* strc, int* f1) { *strc = (int) f1; }
5 void setF2(int* strc, int f2) { *(strc + 1) = f2; }
6 void setF3(int* strc, int f3) { *(strc + 2) = f3; }
7
8 int* strc;
9

10 void struct_access() {
11 setF1(strc, ptr + j);
12 setF2(strc, j);
13 setF3(strc, getF2(strc) + j);
14 }
15
16 void array_access() {
17 *(getF1(strc) + j) = 1;
18 setF2(strc, j);
19 setF3(strc, getF2(strc) + j);
20 }
21
22 int* array;
23
24 void array_pointer_access() {
25 *(array + j) = 1; // with array set to getF1(strc)
26 setF2(strc, j);
27 setF3(strc, getF2(strc) + j);
28 }

We therefore designed another microbenchmark in C* for measuring array
access performance when using a variable called array that caches the pointer
to the beginning of the accessed array. The data shows that this modification
restores the array access performance of the optimized C* code compiled with
both versions of gcc. With clang performance even multiplies by a factor of five.
However, the code generated for the array access microbenchmark in C as well
as in C* is inefficient.

Listing 1.8. Struct and array microbenchmark with content typed as int*
1 int* getF1(int** strc) {return *strc; }
2 int getF2(int** strc) {return (int) *(strc + 1);}
3 int getF3(int** strc) {return (int) *(strc + 2);}
4 void setF1(int** strc, int* f1) {*strc = f1;}
5 void setF2(int** strc, int f2) {*(strc + 1) = (int*) f2;}
6 void setF3(int** strc, int f3) {*(strc + 2) = (int*) f3;}
7
8 int** strc;
9

10 void struct_with_intstar_access() {
11 setF1(strc, ptr + j);
12 setF2(strc, j);
13 setF3(strc, getF2(strc) + j);
14 }
15
16 void array_of_intstar_access() {
17 *(getF1(strc) + j) = 1;
18 setF2(strc, j);
19 setF3(strc, getF2(strc) + j);
20 }
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The fact that array access performance with C* is so poor with both versions
of gcc made us look even closer and design two more microbenchmarks as shown
in Listing 1.8. The code is not proper C* which we acknowledge by underlining
the obtained data. However, the code still reveals that gcc is able to optimize
struct and array access through pointer arithmetics and casting if the struct is
declared as int** rather than just int* and casting in the getters and setters
is adapted accordingly.

Control Flow. Listing 1.9 shows on the left C code using a break statement
and on the right its equivalent C* version. The C* code avoids the break state-
ment by using a variable tmp for saving and restoring the loop variable j which
we modify temporarily in order to mimic the behavior of the original C code. We
used this technique in the C* port of microsat to eliminate break, continue,
and goto statements.

Listing 1.9. C code and its equivalent C* version replacing break

1 int tmp;
2 while (i < input1) { while (i < input1) {
3 j = input2; j = input2;
4 while (j > 0) { while (j > 0) {
5 i f (j < input3) { i f (j < input3) {
6 ...; ...;
7 tmp = j;
8 break; j = 0;
9 } } else

10 j = j - 1; j = j - 1;
11 } }
12 j = tmp;
13 i = i + 1; i = i + 1;
14 } }

The data shows that performance is generally unaffected except when using
gcc 6.4 with -O3. In this case, surprisingly, performance increases significantly
with the C* version.

Boolean Operators. Listing 1.10 shows the microbenchmark for eliminating
the logical operator && using adequately nested if statements. The microbench-
mark for || works similarly. We used this technique in the C* port of microsat.

Listing 1.10. C code and its equivalent C* version replacing &&

1 while (i < input1) { while (i < input1) {
2 j = input2; j = input2;
3 while (j > 0) { while (j > 0) {
4 i f (j < input3 && j % 12) { i f (j < input3)
5 i f (j % 12) {
6 ...; ...;
7 } }
8 j = j - 1; j = j - 1;
9 } }

10 i = i + 1; i = i + 1;
11 } }

The data shows that performance is generally maintained. In fact, the gener-
ated code is almost the same for the C and C* versions using any of the compilers
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with -O3. As mentioned before, performance even improves for || when using
both versions of gcc with -O0.

4 Conclusions

Software verification is difficult. Many important problems in that field are
intractable or even undecidable. However, that challenge and the fact that ver-
ification provides another way of constructing the semantics of formalisms is
our motivation to try integrating verification technology into selfie. We see ver-
ification integrated with compilation, emulation, and virtualization as key to
advancing both the rigorous and efficient design of software systems as well as
the computer science education of broader audiences. What is the meaning of
code and how is it constructed by a machine? What happens during execution?
How does that become a utility? Why can I not compute everything and how is
this a good thing? The simplicity and realism of selfie has already helped us give
increasingly better answers to some of these questions. We conclude that with
the verification technology already available there is a good chance that we are
able to continue that development with selfie even in a largely intractable and
undecidable problem domain.
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Abstract. The threads and shared memory model is still the most
commonly used programming model. However, programs written using
threads interacting with shared memory model are notoriously bug-prone
and hard to comprehend. An important reason for this lack of com-
prehensibility is thread based programs obscure the natural structure
of concurrency in a distributed world: actors executing autonomously
with their own internal logic and interacting at arms length with each
other. While actors encapsulate their internal state, enabling consis-
tency invariants of the data structures to be maintained locally, thread-
based programs use control-centric synchronization primitives (such as
locks) that are divorced from the concurrency structure of a program.
Making the concurrency structure explicit provides useful documenta-
tion for developers. Moreover, it may be useful for refactoring thread-
based object-oriented programs into an actor-oriented programs based on
message-passing and isolated state. We present a novel algorithm based
on Bayesian inference that automatically infers the concurrency struc-
ture of programs from their traces. The concurrency structure is inferred
as consistency invariants of program data, and expressed in terms of
annotations on data fields and method parameters. We illustrate our
algorithm on Java programs using type annotations in Java classes and
suggest how such annotations may be useful.

Keywords: Concurrency · Actors · Shared memory · Threads · Java
Dynamic analysis · Bayesian inference

1 Introduction

A natural way to model the world is as a collection of actors that are autonomous
and concurrent [25]. The notion of actors has been developed as a programming
model [1,3] and given a formal semantics [2]. An actor encapsulates (isolates)
its local state; other actors may access an actor’s data only through an interface
defined by the latter. Such encapsulation, or isolation of data, enables us to
guarantee the consistency of the data that is owned by an actor.

An alternative for concurrency is independent threads of control manipulat-
ing shared memory. As Lee points out, a fundamental problem with threads is
c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 16–37, 2018.
https://doi.org/10.1007/978-3-319-95246-8_2
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the unrestricted nondeterminism of thread interleavings in the absence of syn-
chronization primitives [30]. In addition to being difficult to understand and
maintain, this makes thread-based programs notoriously prone to bugs such as
data races, deadlocks, and atomicity violations [36].

In practical terms, an important reason for concurrency-related bugs in
thread-based programs is that control-centric synchronization primitives that
enable atomic actions with respect to other threads, e.g., locks, are divorced
from consistency invariants relating data structures in programs.

Consider an object representing a concurrently accessed list. This list object
may have an array field and an integer field, where the integer field indicates
how much of the array field is in use. In other words, there is an invariant
which relates the array and integer fields. Locks must prevent the two fields from
being modified concurrently by different threads. Otherwise, the program could
exhibit a “high-level race” [4,9], where the list object reaches an inconsistent
state. Observe that in a thread-based program, there is no explicit connection
between the invariant and the code that uses locks to preserve the invariant
against concurrent modification.

In order to make the concurrency structure in a program perspicuous, we
need to make its consistency invariants explicit. Making the concurrency struc-
ture of programs with threads and shared memory explicit is desirable for several
reasons. For example, if a certain consistency invariant is documented, a pro-
grammer can use this knowledge to avoid unintended atomicity violations when
calling methods in existing classes and when adding new methods; both may
require adding synchronization for accessing fields. Moreover, as we argue in
this paper, knowledge of the concurrency structure of a multi-threaded object-
oriented program can be used to transform this program to use the actor model,
i.e., to introduce message-passing interfaces between active program components
to isolate their state [1,29,31].

One way to express consistency invariants is to provide annotations on data
fields and method parameters. Since we are mainly interested in the existence of
invariants between fields, and not their exact formulation in some program logic
such as JML [13], only basic annotation facilities are required. An example of
such annotations are those provided by Java 8 [43]. In earlier work, Vaziri et al.
provided the syntax and semantics for a set of annotations which represent
consistency invariants, and proved their soundness in a minimal calculus for
a Java-like language [17].

Unfortunately, manually adding consistency invariant annotations is time-
consuming and error-prone. Annotating a legacy program requires understand-
ing the program through its use of control-centric primitives. Even for relatively
small and simple programs of a few hundred lines, the conversion process can
take several hours. The manually produced annotations can also be problematic
in two ways: first, unrelated fields may be connected by annotations; and sec-
ond, related fields may not be connected. The first type of erroneous annotations
underestimate the permitted degree of concurrency; the second type is consis-
tent with unintended executions due to high-level data races. Several techniques
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based on either static or dynamic program analysis to infer annotations related
to consistency invariants have been proposed [15,27,34,37]. However, these tech-
niques have serious limitations–both in the kind of data-centric primitives they
can infer, and in the precision and stability of their results.

In this paper, we present a novel machine learning algorithm that automat-
ically infers consistency invariant annotations for concurrent programs using
the threads and shared memory model from program execution traces. The
algorithm, called Bayesian Annotation Inference Technique (Bait), is based on
Bayesian inference [44]. Bait achieves robustness against intermittent devia-
tions from normal behavior in a trace by weighing such occurrences against a
preponderance of contrary evidence and correspondingly devaluing their impact.
Bait performs its analysis on-the-fly and scales to large programs and long exe-
cutions. Bait improves the accuracy of its results as the number of observations
grows by taking into account the distance (in terms of basic operations) between
two related observations, thus distinguishing between unrelated computation
phases. Finally, we discuss how such annotations may be facilitate transforma-
tion of threaded programs analyzed into actor-based programs.

2 Concurrency Structure Annotations and Actors

To concretize our discussion of concurrency structure, annotation inference, and
actors, we consider Java programs. We describe our concurrency structure anno-
tations for these programs, and how they related to program behavior using a
running example. We then outline how annotations can be used to transform
the example program to use actors.

2.1 Syntax and Semantics of Annotations

To capture consistency invariants, we adapt core constructs from the calculus
of Dolby et al. [17] to the syntax of Java 8 type annotations. We consider three
kinds of annotations: atomic sets, aliases, and unitfors. An atomic set is a group
of fields inside an object that are connected by a consistency invariant; objects
can contain multiple, but disjoint atomic sets. An alias extends atomic sets
beyond object boundaries–an alias merges the atomic set containing a field with
an atomic set in the object that is the field’s value. A unitfor intuitively merges
atomic sets of objects passed as parameters to a method with atomic sets in the
callee object, but only for the duration of the method call.

Figure 1 shows Java code with our annotations. The @AtomicSets annotation
on line 1 declares an atomic set L, and the @Atomic("L") annotations of the
field declarations for size and elements and these fields to L. The class List

corresponds to the example mentioned in Sect. 1: the value of a list’s size integer
field must equal the number of elements in the elements array actually used to
store list entries, so the fields size and elements form an atomic set. Each List

object has its own atomic set L. Recall that atomic sets express the existence of
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Fig. 1. Example annotated Java classes.

consistency invariants, without requiring an explicit expression such invariant,
e.g., size < elements.length, for the class List.

Semantically, an atomic set is associated with one or more units of work. A
unit of work is a method that preserves the consistency of its associated atomic
sets when executed sequentially. Thus, atomic sets can ensure the application’s
consistency by inserting synchronization operations that guarantee the sequen-
tial execution of all units of work. By default, all non-private methods of a class
are units of work for all atomic sets declared in the class or any of its subclasses.
Like field declarations, atomic sets use classes as scopes, but are instance spe-
cific at runtime. Consider the methods get(int) and addAll(List) from Fig. 1.
Each method is (implicitly) a unit of work for the atomic set L of its receiver
List object. Hence, two threads, t1 and t2, that concurrently invoke get(int)

and addAll(List) on a List l cannot interleave when accessing l’s field: either
t1 executes get(int) first, or t2 executes addAll(List) first. The interleaved
case where t2 has updated l.size but not l.elements, which causes t1 to violate
the array bounds cannot occur.

For aliases, consider the DownloadManager class from Fig. 1. The alias anno-
tation @Alias("L") of the urls field declaration combines the atomic set L

in List with the atomic set U. Hence, the method getNextURL() is a unit of
work for this combined atomic set; its access to the urls list cannot be inter-
leaved, which guarantees that no other thread can empty the list between the
invocations of urls.get(0) and urls.remove(0).

The unitfor annotation allows methods to be declared as units of work for
atomic sets in the method’s parameters. For example, the method addAll(List)

is not only a unit of work for the atomic set L of its receiver List object but
also for the atomic set L of its argument. Hence, if two threads, t1 and t2,
concurrently invoke get(int) on a List l and pass the same l as the argument
to addAll(List), they still cannot interleave when accessing l’s field.
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The program in Fig. 2 illustrates how the classes in Fig. 1 can be used to
implement concurrent downloading of a collection of files given as URLs. Note
that the program uses control-centric synchronization in the form of Java mon-
itors. While this particular use of monitors gives rise to program behavior con-
sistent with the meaning of the concurrency structure annotations in the List

and DownloadManager classes, other uses can easily cause atomicity violations.
We suggest that another option is to refactor the program to use actors and
message-passing rather than explicit threads and synchronization, as described
below.

Fig. 2. Example download program that uses threads to manage multiple network con-
nections. Threads share a single manager that maintains the list of URLs to download.
The program uses control-centric synchronization (Java monitors).

2.2 From Annotations and Threads to Actors

The aliased atomic sets in List and DownloadManager in Fig. 1 suggest that
we can encapsulate as a single actor one instance of the latter containing an
instance of the former. Then, instead of synchronizing on a DownloadManager

instance, which would require assuming shared memory, we can simply use mes-
sage passing to retrieve URLs and rely on actors having a single locus of control.

To enable wrapping objects into actors and passing (immutable) actor names
instead of in-memory object references, we also have to change the program
to rely on interfaces rather than classes directly in the code. Figure 3 shows
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two classes in the resulting program. We use the syntax new actor to indicate
actor-wrapped objects.

Fig. 3. Actor program involving classes from Figs. 1 and 2.

Note that in order to execute the program in Fig. 3, the runtime system
must perform actor initialization on new actor assignments and convert method
invocations on actor names to message passing. However, not all programs can
be straightforwardly converted in this way. In particular, to preserve program
semantics, data passed through a message passing interface must have the same
meaning to the sender and the receiver.

Consider the example where the receiver resides in a different runtime envi-
ronment, memory references from the sender will not be valid: a message m
sent from actor A to actor B at runtime may contain references to objects at
A’s location which do not exist at B’s location. What is required is that the
data passed in messages be immutable, e.g., consist of only actor names and
constants. In the example actor program, only actor references (manager) and
immutable URL objects are passed in messages. In the case of a Java Virtual
Machine (JVM) based actor framework such as Akka [32], A may live in a differ-
ent JVM than B, so that some object references in m do not refer to meaningful
memory locations in the JVM of B. Even when actors live in the same JVM,
Akka developers recommend messages be made immutable [33], i.e., that their
contents are passed as (unchangeable) values. This was the case in the actor
program in Fig. 3: the only objects passed in messages have class URL, and all
its instances are by nature completely immutable.
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Nevertheless, passing whole mutable objects (rather than references) in actor
messages can be consistent with the behavior of the original object-oriented pro-
gram in some situations. For example, if actors other than the receiver do not
interact with the object at all after the message with the object has been sent,
different actors will never have an inconsistent view of the object. More gener-
ally, if actors pass ownership of objects in messages [8], behavior is preserved
in a distributed environment. Weaker guarantees than ownership passing may
sometimes be acceptable, such as when actors promise not to call methods that
mutate a received object’s state [39]. For example, the Pony object-oriented
actor language has a type system which can account for many of these situations
and guarantee expected behavior in distributed program runtime settings [12];
however, the programmer must add such type annotations manually.

We believe that both static and dynamic inference can assist in inferring
properties such as immutability and ownership passing to establish preserva-
tion of behavior of actorized programs with their original purely object-oriented
behavior [5,39,40,45]. If safe message-passing behavior cannot be established
for some methods automatically by inference, one option is to make the actor
decomposition more coarse-grained, i.e., let fewer objects be wrapped by actors
in the program translation. This results in less concurrency, and less flexibility in
distributing actors at runtime to different locations, but does not require com-
plex refactoring of the program to ensure the actor message-passing semantics
preserves the original behavior.

3 Annotation Inference Example

In this section, we use an example based on the code in Sect. 2 to explain
the key concepts in Bait. Suppose that we are given the classes List and
DownloadManager from Fig. 1 but without the annotations. Moreover, we use
the code from Fig. 2 that downloads files in parallel, and manages its network
connections via threads. (Note that the synchronization in the DownloadThread

method run() makes calls to the DownloadManager instance atomic.) We show
how our algorithm infers the annotations during an execution of the program.

Bait observes program execution as a sequence of concurrency-related
events. One such sequence is partially displayed in Fig. 4. Bait infers data-
centric synchronization annotations based on the two following intuitions:

1. the fields of an object that a thread accesses together, without interleaving,
likely belong to the same atomic set; and

2. groups of objects that a thread accesses together are likely to be connected
by aliases.

In the partial execution shown in Fig. 4, one of the downloading threads
invokes getNextURL() to request a new URL to download from the shared
manager. After ensuring that the list of pending URLs contains an entry, the
manager picks and removes the first entry. The manager then announces the
start of the download in the program’s user interface and finally returns the
value to the thread.
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Fig. 4. Sample execution of the program from Fig. 2 used to demonstrate the basic
ideas of the algorithm.

3.1 Inference of Atomic Sets

Bait assumes that the methods of a program perform semantically meaning-
ful operations and that the trace during an execution (mostly) represents the
intended behavior of the program—for example, such a trace may be generated
by running an existing integration test.

Given these assumptions, the fields of an object accessed atomically by a
method in close succession are likely connected by some invariant. The set of
fields that a method accesses atomically is consequently a candidate atomic set ;
the method itself is a candidate unit of work for this atomic set. For example, the
get(int) method reads the fields size and elements in the same list object.
In the sample execution of Fig. 4, the reads (accesses 3 and 4) happen close
together and without interleaving. Thus, we have evidence that the class List

should contain an atomic set with these two fields. Method get(int) is the
context of the field accesses and thus a unit of work for this potential atomic set.

However, field accesses within a method may be far apart. For example,
the two accesses to the thread object’s manager field in the run() method of
DownloadThread (1 and 5) are separated by a method call with many opera-
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tions. Observing a large distance like a between two field accesses diminishes the
likeliness of an invariant between the fields. Such an observation hence counts
as evidence against an atomic set containing the fields. The same is true for
interleaved accesses to fields by multiple threads.

The central idea of the algorithm is to use this evidence for and against
atomic sets in Bayesian inference. Collecting evidence, Bait updates its belief
that fields belong to the same atomic set. If the belief is high enough at the end
of the execution—intuitively, there was stronger evidence for an atomic set than
against it—Bait outputs corresponding @Atomic annotations.

3.2 Inference of Aliases

Since high-level semantic operations often employ low-level operations, field
accesses may belong to different contexts. In Fig. 4, access 2 happens within
the size() method, while access 3 happens within the get(int) method of
List. Increasing the distance between the accesses (b > c) suffices to adjust
the atomic set evidence in this case. However, the context that contains both
accesses is no longer obvious.

The algorithm uses the lowest common ancestor in the call tree as the context
for field accesses belonging to different methods. For accesses 2 and 3, e.g., this
is the getNextURL() method. Intuitively, we observe a pair of nearby atomic
accesses to urls.size within that context. Besides being evidence for an atomic
set containing field size, this suggests that getNextURL() is a unit of work for
this atomic set. Because the method accesses size via the field urls, there
should be an alias from the atomic set containing urls to the one containing
size.

However, aliases can remove all concurrency from the program when they
include objects shared between threads. In Fig. 5, two download threads share
a manager. Each thread’s run() method is context for two nearby atomic
accesses to the field urls in the manager object (accesses 6, 7 and 8, 9). Per-
forming inference as above, this suggests an alias that merges the atomic set
in class DownloadThread containing the manager field with the atomic set in
DownloadManager containing the urls field. The alias would make the run()

method a unit of work for the manager’s atomic set that contains the urls field.
As a consequence, the execution of the run() methods must be sequentialized,
which would mean that only one of the two threads can be active at all, reducing
performance.

Bait mitigates the sequentialization problem by tracking which objects
threads access together and weakening the belief in aliases across the boundaries
of such object clusters. In our example, both threads access themselves, the man-
ager, and the list object. Thus, the heuristic detects three clusters of objects:
two that are accessed by a single thread (the thread objects themselves), and
one that is accessed by both threads (the manager and the list object). Main-
taining the boundaries between these clusters, the heuristic prevents aliases from
manager to manager.urls, but it allows an alias from urls to urls.size.
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Fig. 5. Sample execution of the program in Fig. 2 that highlights a challenge in alias
inference.

4 Algorithm

In this section, we describe Bait in detail, building upon the ideas introduced
in Sect. 3.

4.1 Field Access Observations

During the execution of a workload, the algorithm records get and put operations
on the fields of each object. These observations are captured in the scope of a
method call for a thread. From two consecutive observations for the same object,
Bait generates a field access event e, which is a tuple

(f, g, d, a) ∈ Fd × Fd × N × At.

Here, Fd denotes the set of all fields in the program; f is the first field accessed,
g is the second field. The distance d between the two accesses is the number
of basic operations executed by the thread, such as Java byte code instructions.
The entry a ∈ At = {atomic, interleaved} signals whether access to both f and g
was atomic or access to g was interleaved with some other thread. To detect such
interleaved accesses, Bait relies on a separate race detection algorithm such as
FastTrack [21], which is used in the implementation described in Sect. 5.
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4.2 Bayesian Detection of Semantic Invariants

Using the generated field access events, the algorithm aims to determine whether
there are invariants that hold between pairs of fields. Consider two fields f and g
accessed in method m of a thread when executing a program on some workload.
Suppose the workload generates the events e1, . . . , en, all related to f and g.
Write H for the hypothesis that there exists a semantic invariant connecting f
and g in the method, and ¬H for the negated hypothesis that there is no such
invariant.

Our goal is to find out to what degree the evidence, in the form of e1, . . . , en,
supports the conclusion that H holds. In the Bayesian probabilistic reasoning
framework [44], this degree of support is formalized as the conditional probability
of H given e1, . . . , en, which through Bayes’s formula can be written as

P (H|e1, . . . , en) =
P (e1, . . . , en|H) · P (H)

P (e1, . . . , en)
. (1)

Unfortunately, the right-hand side is difficult to estimate because it would require
guessing the absolute probability that the events e1, . . . , en occur in a program.
For estimation, it is more convenient to use relative values such as the so-called
odds and likelihood ratios. Intuitively, the likelihood ratio expresses how many
times more likely an event is when the hypothesis is true versus when the hypoth-
esis is false. Thus, we divide the left-hand side of Eq. 1 with its complementary
form, yielding

P (H|e1, . . . , en)
P (¬H|e1, . . . , en)

=
P (e1, . . . , en|H)

P (e1, . . . , en|¬H)
· P (H)
P (¬H)

.

What the equation says is that our revised belief in H, when presented with
e1, . . . , en, is equal to the ratio of the chances of observing e1, . . . , en under H
and ¬H, times our initial belief in H. We call the revised belief posterior odds,
the ratio of the chances of making observations the likelihood ratio, and our
initial belief the prior odds. More compactly, then, we write the equation as

O(H|e1, . . . , en) = L(e1, . . . , en|H) · O(H). (2)

These quantities are easier to estimate than probabilities, yet must be recom-
puted from scratch every time new evidence is added. However, if e1, . . . , en are
conditionally independent given H, an assumption discussed in Sect. 4.3, we have

P (e1, . . . , en|H) =
n∏

k=1

P (ek|H),

and similarly for ¬H, which together with Eq. 2 gives

O(H|e1, . . . , en) = O(H) ·
n∏

k=1

L(ek|H).
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This equation suggests that recursive, on-the-fly computation of odds is possible,
as becomes clear when adding one more piece of evidence en+1, yielding

O(H|e1, . . . , en, en+1) = L(en+1|H) · O(H|e1, . . . , en).

We set O(H) = 1, that is, we assume that H and ¬H are initially equally likely.
We have thus reduced the problem of obtaining the degree of support for H to
computing L(e|H), given the data from e.

4.3 Conditional Independence of Events

Conditional independence means that knowledge of H, or ¬H, makes evidence
up to that point irrelevant with respect to future evidence. Equivalently, under
conditional independence, the hypothesis influences the evidence directly, with-
out systematic interference from external factors. However, in a run of the algo-
rithm directly on the JVM, the evidence produced can clearly be skewed through
systematic influence from the chosen workload and the scheduler. While a work-
load is simple to revise, controlling thread schedules is difficult for programs
running on the JVM. JPF provides a virtual machine implemented on top of the
regular JVM that enables full control over nondeterminism such as scheduling
points. Hence, running the algorithm on JPF with random scheduling can rule
out influence by the scheduler.

Another way to address this problem is to refine the (coarse-grained) hypoth-
esis space that either H or ¬H holds into multi-valued variables [44]. This leads
to a considerably more complicated mapping of evidence to likelihoods ratios.
Instead of taking this route, we argue that the influence of external factors can
be minimized by running Bait on workloads with sufficient code coverage for
long enough to exhibit all critical interleavings, using JPF where feasible.

Although Bait can falsely conclude that two fields are related by an invariant
(and thus include them in an atomic set or add an alias) when they are not,
the resulting behavior is still safe. However, performance may suffer because of
such an error, due to increased overhead from synchronization and reduction of
concurrency.

4.4 Estimation of Likelihood Ratios

Suppose the field access event e reports we have a distance d between atomic
accesses of f and g. Intuitively, the likelihood ratio L(e|H) we assign based on
e should have the following properties:

1. As d decreases, L(e|H) must increase, but only up to some point, after which
it becomes a flat maximum value; even if atomic accesses of f and g happen
in close proximity, it is not conclusive that H holds.

2. As d increases, L(e|H) must decrease, but only to some minimum value
greater than zero; one observation should not make it impossible to conclude
that H holds.
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Bait therefore uses a logistic function �(d), as shown in Fig. 6, to map field
access events to likelihood ratios. For example, accesses 2, 3, and 4 in Fig. 4 occur
in close succession. We interpret this as evidence that it is more likely than not
that an invariant connects the fields size and elements. Hence, we assign the
distances b and c, with b > c, likelihood ratios �(c) > �(b) > 1. In contrast, the
large distance a diminishes our belief that an invariant connects the two accesses
to the manager field. Thus, we set 1 > �(a) > 0. We leave the exact parameters of
the logistic curve—its steepness and minimum and maximum likelihood ratios—
to be determined during an implementation of the algorithm.

distance d

lik
el
ih
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d
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Fig. 6. Logistic curve for mapping atomic-access distances to likelihood ratios.

However, distance is not the only criterion for estimating the likelihood ratio.
Suppose that e reports interleaved access. We then disregard the distance and set
L(e|H) to a real number p (“penalty”) close to zero. This reflects that, intuitively,
our belief in an invariant goes down significantly after witnessing interleaving,
while not making it impossible to infer the invariant’s existence later on, through
overwhelming atomic access. Bait is thus robust against sporadic errors like very
rare data races. We again leave the precise value of p to an implementation.

In summary, given a field access event e = (f, g, d, a), we define the estimated
likelihood ratio for e as

�(d, a) =

{
�(d) if a = atomic;
p if a = interleaved.

4.5 Belief Configurations

We can now define how Bait stores odds of invariants and uses likelihood ratios
to update these odds in the course of workload execution.

Odds are stored in affinity matrices. An affinity matrix A is a symmetric
map from pairs of fields (f, g) to real numbers. Symmetric means that the
value assigned to (f, g) equals the one assigned to (g, f). Setting x as the value
of (f, g), written A[(f, g) �→ x], maintains the symmetry: after the update, it is
A(g, f) = x.
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Belief configurations describe the algorithm’s state. A belief configuration B
contains an affinity matrix Am for every method m. Recall that an access event
for a thread t in method m is a tuple consisting of two fields f, g ∈ Fd, a
distance d ∈ N, and an atomicity indicator a ∈ At. The transition function for
belief configurations

δt,m : Config × Fd × Fd × N × At → Config

is now defined as δt,m
(
B, (f, g, d, a)

)
= B[m �→ A′

m] with

A′
m = Am

[
(f, g) �→ �(d, a) · Am(f, g)

]
. (3)

For all methods m, define an initial affinity matrix Ainit
m such that

Ainit
m (f, g) = 1 for all (f, g) ∈ Fd × Fd and an initial belief configuration Binit

with Binit(m) = Ainit
m . Then, if the events e1, . . . , en are generated in t for m,

the algorithm computes the final belief configuration

δt,m(· · · δt,m(Binit, e1) · · · , en).

4.6 Inference of Aliases and Unitfors

Inference of aliases and unitfors is done at the same time as inference of atomic
sets, and in a similar way, but with several important differences.

Suppose we observe an atomic access of the field g after an access of f in
the method m. Within m, the object that contains f and g may be known by
a source code identifier, that is, by a field or parameter name n. For example,
in Fig. 4, the field access event generated for the accesses 2 and 3 occurs in
method getNextURL(). Within that method, the list object that contains the
accessed size field is known by the field name url. Hence the method observes
the accesses in the context of this name, as urls.size; and more generally, m
observes the accesses of f and g as n.f and n.g.

Such an observation indicates that m performs multiple operations on
another object (the list in our example). As before, if the distance d between the
accesses n.f and n.g is small, then these operations likely maintain an invariant.
Therefore, they should be atomic, which means that an atomic set containing
n should be extended—by an alias—to also contain n.f and n.g. Translated to
our example, the close accesses to urls.size count as evidence for an alias that
merges the manager object’s atomic set containing urls with the list object’s
atomic set containing size.

In summary, to infer aliases and units of work, we associate with each identi-
fier n an affinity matrix An, and update this matrix with the likelihood ratio �(d),
penalizing interleaved accesses as for atomic sets above. Then, most straightfor-
wardly, if An(f, g) > 1 for An in the final configuration, this suggests an alias
from the inferred atomic set of n—should n be a field name—to the inferred
atomic set of f and g. Should n be a parameter of m, then this suggests declar-
ing m a unit of work for the atomic set of f and g in n.
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Preventing Global Locks. Without further adjustments, inferring aliases this way
can lead to undesirable global locks, as shown in Fig. 5: if an alias merges an
atomic set in a thread object with an atomic set S in an object shared between
threads, then the thread’s methods become units of work for S. Consequently,
only one thread object can execute at a time, making (this part of) the program
sequential.

We apply the following heuristic to detect this situation and lower the respec-
tive alias beliefs. Whenever a thread t accesses a field in object o, we record t as
the owner of o. Using this data, we maintain an alias factor α for objects. Con-
sider the situation in Fig. 5, just after the left thread tl’s call to getNextURL()

has returned. At this point, tl owns itself, the manager object, and the list object.
When the right thread tr accesses its local manager field just after that, Bait
detects that tr owns the object that contains the accessed manager field (itself),
but another thread owns the object that is the field’s value (tl owns the man-
ager object). Therefore, the thread object tr and the manager object appear to
belong to two different clusters in the object graph upon which different threads
operate concurrently. Merging these clusters with an alias would remove the
concurrency. Therefore, we set a fixed alias factor α in the range (0, 1) for the
manager object (the field’s value). Otherwise, if tr was the owner of itself and the
manager object, we set α based on the recorded (same-thread) distance between
the accesses, which can result both in lowering or raising belief in an alias.

Given an atomic field access event, we use the computed alias factor α for
the field-containing object as weight when updating an alias affinity matrix.
Adapting Eq. 3, the updated affinity matrix A′

n for the name n of o is thus
computed as

A′
n = An

[
(f, g) �→ α · �(d, a) · An(f, g)

]
.

In the example shown in Fig. 5, the alias factor α < 1 for the manager object
prevents the small distance between the observed accesses of manager.urls (6, 7
and 8, 9) in the run() methods from increasing the odds of the problematic alias
from DownloadThread.manager to DownloadManager.urls.

A slight modification of the heuristic is necessary to account for clusters
consisting of more than two objects. In its current form, the heuristic detects a
different owner thread for the first accessed object o of a cluster, and the same
owner for the second object v, say, accessed via field f in o. However, the access
of f establishes the current thread as the owner of o. Thus, when accessing a third
object w via the field g in o, the heuristic would detect different owners again,
discouraging an alias even though the previous thread operated on o, v, and w.
Bait solves this problem by not only recording the current owning thread to for
each object, but also the previous (distinct) owning thread t′o. Different clusters
are detected only if to �= tv and t′o �= tv. Thus, for the access of w we have t′o = tw
and correctly associate w with o and v.

4.7 Atomic Set, Alias and Unitfor Formation

After the workload of the program has finished executing, all atomic set field
affinity matrices are merged into a single matrix. From this combined matrix,
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the atomic sets are extracted by using the matrix values as edge-weights on
the fully-connected graph of all fields (node set Fd), removing the edges with
weight less than a threshold (e.g., 1), and grouping the fields in the remaining
connected components by their declaring class (accounting for inheritance). The
atomic sets are added as annotations to the class hierarchy, which forms the
basis for computing aliases using the alias affinity matrices. Finally, unitfors are
inferred using the class hierarchy and the alias affinity matrices.

5 Implementation Concerns

Most directly, Bait can be implemented for Java programs using instrumenta-
tion at the byte code level. In an initial phase, the instrumented byte code is
executed, allowing the Bait implementation to record field accesses and build
and update the affinity matrices. In the next phase, the Bait implementation
can use the final affinity matrices to infer and output the annotations, or even
fully annotated code.

While the algorithm mandates logistic functions for mapping distances to
likelihood ratios for atomic sets and aliases, an implementation may settle for
an approximation of such a function, e.g., a coarse-grained piecewise approxi-
mation. Minor extensions of the algorithm may be necessary to handle realistic
Java programs, which may contain arrays, synchronized blocks, and wait–notify
synchronization. Earlier work may be prove pertinent for such extensions [16].
Additional optimizations are possible, such as removal of non-aliased final fields
from atomic sets. While the algorithm requires tracking all names that a field-
owning object can have, an implementation may choose to only track the last
known name at runtime. We believe this would give a reasonable tradeoff between
overhead and correctness. Another implementation option besides instrumenta-
tion is to implement the dynamic analysis inside a special-purpose JVM such as
Java PathFinder [42].

Finally, any implementation will have to make choices regarding several
parameters that can affect the inferred annotations, most prominently the
parameters that define (piecewise approximations of)) logistic functions for
atomic set and alias likelihoods. Such parameters may be calibrated, e.g., on
simple test cases.

6 Related Work

The automatic inference of a program’s concurrency semantics has been treated
in the context of data race detection. There, the concurrency semantics is used
to warn about violations of the likely intended atomicity semantics of variables.

A dynamic approach that learns the atomicity intentions for shared variables
from execution traces is the AVIO system of Lu et al. [37,38]. In contrast, Artho
et al. [4] introduce the notion of high-level data races and explicitly design their
dynamic algorithm to consider races on sets of semantically related variables. The
AssetFuzzer algorithm of Lai et al. [28] uses partial order relaxation to detect
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potential, but unmanifested, violations in the execution trace. All of these meth-
ods are similar to our algorithm in that they work without user annotations.
The Atomizer system of Flanagan and Freund [20] additionally considers win-
dows of vulnerability, but requires a few source code annotations and potentially
raises false alarms. The MUVI tool of Lu et al. [35] follows a static approach to
inferring atomicity intentions at the variable level.

The static heuristic [24,46] of defining one atomic set per class that con-
tains all non-static fields has also been proposed in the context of race detec-
tion. Targeting race detection, none of the aforementioned approaches considers
aliasing information, which is essential for our use case. Huang and Milanova’s
static inference system for the AJ types defined by Dolby et al. [17] significantly
reduces the number of annotations that a developer has to write [27]. While sim-
plifying the use of AJ, it needs a set of foundational annotations. Hence, their
and our methods complement each other: the static inference rules propagate the
base annotations inferred by our analysis, yielding a complete set of annotations.
Liu et al. [34] present a technique for statically inferring atomic sets based on
program dependence analysis. The inferred sets are then used for finding atomic
composition bugs dynamically in programs. This is a different focus compared to
our algorithm, whose main aim is to provide annotations for documentation and
safe execution. In addition, our algorithm also infers aliases, which are arguably
harder to infer than atomic sets, least of all statically.

Dinges et al. [15,16] present a dynamic inference algorithm of data-centric
concurrency annotations as described by Vaziri et al. [17]. The algorithm is based
on classification of fields into atomic sets using simple set membership criteria
rather than careful weighing of evidence as in Bait. Additionally, unlike Bait,
the algorithm does not scale to long executions with many field accesses, and
does not improve results as more evidence becomes available; in some cases,
results may even become significantly worse after observing more field accesses,
since previous conclusions are replaced.

Flanagan et al. [22] present a sound and complete dynamic atomicity checker
for Java programs. The tool, Velodrome, takes a workload and list of methods
that are assumed to be atomic as input, and outputs a list of atomicity violations.
Biswas et al. [7] improve on the significant overhead introduced by Velodrome
in their DoubleChecker tool, while maintaining soundness and completeness. A
tentative list of atomic methods can be derived from the annotations produced
by an implementation of Bait by enumerating all methods that are units of
work for some atomic set.

Atomic sets take a declarative approach to synchronization. Synchroniz-
ers [14,23] provide a similar notion in the context of actor systems, where they
constrain the message dispatch in a group of actors. The available constraints
differ from atomic sets in that synchronizers can provide temporal atomicity—
messages arrive at the same time—not the spatial atomicity offered by atomic
sets. Synchronizers do not support transitive extensions similar to aliases in
atomic sets. Moreover, expressing the non-interleaving of message sequences,
which is the actor equivalent of non-interleaved access to shared data, is more
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complicated. In its simplest form, such non-interleaving in messages to a single
actor is expressed in terms of local synchronization constraints which force an
ordering on messages to a given actor [26,47]. Local synchronization constraints
may be used to force FIFO ordering of messages between pairs of senders or
recipients, or to ensure that a two actors follow a more complex communication
protocol. Synchronizers generalize this to multiple actors: by disabling a spe-
cific type of message until another has been received, synchronizers can force
an ordering between messages sent to different actors. Another declarative app-
roach to ensuring synchronization at the actor level is that of multiparty session
types [10,41].

By boosting belief in the existence of an invariant after atomic access and
maintaining or possibly even strengthening that belief unless witnessing inter-
leaved access, Bait follows the approach of accentuating the positive [37,48]
by suppressing rarely observed Heisenbugs that violate atomicity. Non-deadlock
bugs: 74 (Atomicity: 51, Order: 24, Other: 2), Deadlock bugs: 31 A study of
real-world concurrency bugs [36] finds that nearly half of all errors are related
to atomicity; with deadlocks ruled out, that fraction rises to nearly 70 %. While
this kind of safety comes at the cost of a coarser concurrency semantics, the
experiments of Weeratunge et al. [48] suggest that a low runtime overhead of
15 % can be achieved.

The problems inherent in threads and their usual synchronization primitives,
such as locks and monitors, have been examined previously, e.g., by Lee [30].
Lee argues against letting programmers start with maximally nondeterministic
interleaving of threads and adding just enough determinism to avoid concurrency
errors. Instead, he proposes that programmers start from a deterministic model
and selectively add operations for nondeterministic composition where appropri-
ate. While the resulting executions have more coarse-grained concurrency and
thus potentially worse performance, they are inherently easier to reason about
due to many thread interleavings being ruled out. Lee suggests to focus on
development of coordination languages rather than thread-based primitives and
libraries. We believe the concurrency structure annotations we showed in this
paper can be viewed as a kind of data-driven coordination language.

7 Discussion

Although the use of actor languages (e.g., through Akka [32] and Erlang [19]) has
grown dramatically in recent years, threads with shared memory and control-
centric primitives continue to dominate concurrent programming. Thread-based
programming often obscures key properties in programs and leads programmers
to introduce concurrency bugs such as atomicity violations [36]. Moreover, it
is hard to scale the thread-based model–one reason actors have been used to
implement large-scale applications such as Facebook chat servers and Twitter.

In this paper, we highlight consistency invariants involving class fields and
method parameters which may help reduce bugs in thread-based object-oriented
programs. Unfortunately, we expect that programmers in general will not man-
ually write, document, and check such invariants when writing thread-based
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programs. Our algorithm improves on the state of the art for inferring invariant
annotations automatically, freeing programmers of some of the burden.

Consistency invariant annotations are useful in several ways besides giving
programmers an understanding of atomicity requirements of data structures.
For example, if a class contains several atomic sets of fields, and each method
accesses fields from only one atomic set, this suggests decomposing the class
into several classes with methods that access only the fields in the decomposed
class. While such lower-level concerns are important, we can also ask high-level
questions, such as whether concurrent programs can avoid dealing with threads
(partially or entirely).

As discussed earlier, the actor model avoids explicit locks by introducing a
unit of computation, an actor, that has its own state, an independent single locus
of control, and communicates with others via asynchronous message passing [3].
The actor-oriented programming approach of Lee [29,31] drops the requirement
for independent control and asynchrony in message passing. In particular, Lee
emphasizes the difference between object-orientation and actors as one that per-
tains to whether communication implies transfer of control from the sender to the
receiver. In semantic terms, Lee’s notion of actor-oriented programming incor-
porates programming abstractions that may be built using meta-actors which
can used to customize naming and scheduling [6,18]. Clavel et al. [11] give a
formal semantics to reason about such systems.

According to the hierarchy of platforms presented by Lee [29], actor-oriented
models are above object-oriented programs, with the latter being closer to low-
level concepts such as executables and silicon chips. From this perspective, an
implementation of the algorithm we presented and our suggested actor pro-
gram transformations can assist in raising the abstraction level of programs,
making them amenable to conversion to concurrent programs following actor-
oriented design techniques. Further exploration of such techniques will be needed
to improve legacy concurrent codes, facilitating their dependability and main-
tainability.
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Abstract. Efficient processing of input data streams is central to IoT
systems, and the goal of this paper is to develop a logical foundation for
specifying the computation of such stream processing. In the proposed
model, both the input and output of a stream processing system consists
of tagged data items with a dependency relation over tags that captures
the logical ordering constraints over data items. While a system processes
the input data one item at a time, incrementally producing output data
items, its semantics is a function from input data traces to output data
traces, where a data trace is an equivalence class of sequences of data
items induced by the dependency relation. This data-trace transduction
model generalizes both acyclic Kahn process networks and relational
query processors, and can specify computations over data streams with
a rich variety of ordering and synchronization characteristics. To form
complex systems from simpler ones, we define sequential composition
and parallel composition operations over data-trace transductions, and
show how to define commonly used idioms in stream processing such as
sliding windows, key-based partitioning, and map-reduce.

1 Introduction

The last few years have witnessed an explosion of IoT systems in a diverse range
of applications such as smart buildings, wearable devices, and healthcare. A
key component of an effective IoT system is the ability to continuously process
incoming data streams and make decisions in response in a timely manner. Sys-
tems such as Apache Storm (see storm.apache.org) and Twitter Heron [12]
provide the necessary infrastructure to implement distributed stream processing
systems with the focus mainly on high performance and fault tolerance. What’s
less developed though is the support for high-level programming abstractions for
such systems so that correctness with respect to formal requirements and pre-
dictable performance can be assured at design time. The goal of this paper is to
provide a logical foundation for modeling distributed stream processing systems.

An essential step towards developing the desired formal computational model
for stream processing systems is to understand the interface, that is, the types of
input, the types of output, and the logical computations such systems perform.
(See [3] for the role of interfaces in system design.) As a starting point, we can
view the input to be a sequence of data items that the system consumes one
item at a time in a streaming fashion. Assuming a strict linear order over input
c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 38–60, 2018.
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items is however not the ideal abstraction for two reasons. First, in an actual
implementation, the input data items may arrive at multiple physical locations
and there may be no meaningful logical way to impose an ordering among items
arriving at different locations. Second, for the computation to be performed on
the input data items, it may suffice to view the data as a relation, that is, a
bag of items without any ordering. Such lack of ordering also has computational
benefits since it can be exploited for parallelization of the implementation. Par-
tially ordered multisets (pomsets), a structure studied extensively in concurrency
theory [20], generalize both sequences and bags, and thus, assuming the input
of a stream processing system to be a pomset seems general enough.

While the input logically consists of partially ordered data items, a stream
processing system consumes it one item at a time, and we need a representation
that is suitable for such a streaming model of computation. Inspired by the
definition of Mazurkiewicz traces in concurrency theory [18], we model the input
as a data trace. We assume that each data item consists of a tag and a value
of a basic data type associated with this tag. The ordering of items is specified
by a (symmetric) dependency relation over the set of tags. Two sequences of
data items are considered equivalent if one can be obtained from the other by
repeatedly commuting two adjacent items with independent tags, and a data
trace is an equivalence class of such sequences. For instance, when all the tags
are mutually dependent, a sequence of items represents only itself, and when
all the tags are mutually independent, a sequence of items represents the bag of
items it contains. A suitable choice of tags along with the associated dependency
relation, allows us to model input streams with a rich variety of ordering and
synchronization characteristics.

As the system processes each input item in a streaming manner, it responds
by producing output data items. Even though the cumulative output items pro-
duced in a response to an input sequence is linearly ordered based on the order
in which the input gets processed, we need the flexibility to view output items as
only partially ordered. For instance, consider a system that implements key-based
partitioning by mapping a linearly ordered input sequence to a set of linearly
ordered sub-streams, one per key. To model such a system the output items
corresponding to distinct keys should be unordered. For this purpose, we allow
the output items to have their own tags along with a dependency relation over
these tags, and a sequence of outputs produced by the system is interpreted as
the corresponding data trace.

While a system processes the input in a specific order by consuming items
one by one in a streaming manner, it is required to interpret the input sequence
as a data trace, that is, outputs produced while processing two equivalent input
sequences should be equivalent. Formally, this means that a stream processor
defines a function from input data traces to output data traces. Such a data-trace
transduction is the proposed interface model for distributed stream processing
systems. We define this model in Sect. 2, and illustrate it using a variety of
examples and relating it to existing models in literature such as Kahn process
networks [11,14] and streaming extensions of database query languages [6,15].
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In Sect. 3, we define two basic operations on data-trace transductions that
can be used to construct complex systems from simpler ones. Given two data-
trace transductions f and g, the sequential composition f � g feeds the output
data trace produced by f as input to g, and is defined when the output type
of f coincides with the input type of g, while the parallel composition f ‖ g
executes the two in parallel, and is defined when there are no common tags in
the outputs of f and g (that is, the output data items produced by the two
components are independent). We illustrate how these two operations can be
used to define common computing idioms in stream processing systems such as
sliding windows and map reduce.

2 Data-Trace Transductions

In order to describe the behavior of a distributed stream processing system
we must specify its interface, that is: the type of the input stream, the type
of the output stream, and the input/output transformation that the system
performs. This section contains formal descriptions of three key concepts: (1)
data traces for describing finite collections of partially ordered data items, (2)
data-trace transductions for modeling the input/output behavior of a stream
processing system, and (3) data-string transductions for specifying the behavior
of sequential implementations of such systems.

2.1 Data Traces

We use data traces to model streams in which the data items are partially
ordered. Data traces generalize sequences (data items are linearly ordered), rela-
tions (data items are unordered), and independent stream channels (data items
are organized as a collection of linearly ordered subsets). The concatenation
operation, the prefix order, and the residuation operation on sequences can be
generalized naturally to the setting of data traces.

Definition 1 (Data Type). A data type A = (Σ, (Tσ)σ∈Σ) consists of a poten-
tially infinite tag alphabet Σ and a value type Tσ for every tag σ ∈ Σ. The set
of elements of type A is equal to {(σ, d) | σ ∈ Σ and d ∈ Tσ}, which we will also
denote by A. The set of sequences over A is denoted as A∗. ��

Example 2. Suppose we want to process a stream that consists of sensor mea-
surements and special symbols that indicate the end of a one-second interval.
The data type for this input stream involves the tags Σ = {M, #}, where M is
meant to indicate a sensor measurement and # is an end-of-second marker. The
value sets for these tags are TM = N (natural numbers), and T# = U is the unit
type (singleton). So, the data type A = (Σ,TM, T#) contains measurements (M, d),
where d is a natural number, and the end-of-second symbol #. ��
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Definition 3 (Dependence Relation and Induced Congruence). A
dependence relation on a tag alphabet Σ is a symmetric binary relation on
Σ. We say that the tags σ, τ are independent (w.r.t. a dependence relation
D) if (σ, τ) /∈ D. For a data type A = (Σ, (Tσ)σ∈Σ) and a dependence rela-
tion D on Σ, we define the dependence relation that is induced on A by D
as {((σ, d), (σ′, d′)) ∈ A × A | (σ, σ′) ∈ D}, which we will also denote by D.
Define ≡D to be the smallest congruence (w.r.t. sequence concatenation) on A∗

containing {(ab, ba) ∈ A∗ × A∗ | (a, b) /∈ D}. ��

According to the definition of the relation ≡D above, two sequences are
equivalent if one can be obtained from the other by performing commutations
of adjacent items with independent tags.

Example 4 (Dependence Relation). For the data type of Example 2, we
consider the dependence relation D = {(M, #), (#, M), (#, #)}. The dependence
relation can be visualized as an undirected graph:

# M

This means that the tag M is independent of itself, and therefore consecutive
M-tagged items are considered unordered. For example, the sequences

(M, 5) (M, 8) (M, 5) # (M, 9) (M, 5) (M, 5) (M, 8) # (M, 9) (M, 8) (M, 5) (M, 5) # (M, 9)

are all equivalent w.r.t. ≡D. ��

Definition 5 (Data Traces, Concatenation, Prefix Relation). A data-
trace type is a pair X = (A,D), where A = (Σ, (Tσ)σ∈Σ) is a data type and
D is a dependence relation on the tag alphabet Σ. A data trace of type X is
a congruence class of the relation ≡D. We also write X to denote the set of
data traces of type X. Since the equivalence ≡D is a congruence w.r.t. sequence
concatenation, the operation of concatenation is also well-defined on data traces:
[u] · [v] = [uv] for sequences u and v, where [u] is the congruence class of u. We
define the relation ≤ on the data traces of X as a generalization of the prefix
partial order on sequences: for data traces u and v of type X, u ≤ v iff there
are sequences u ∈ u and v ∈ v such that u ≤ v (i.e., u is a prefix of v). ��

The relation ≤ on data traces of a fixed type is easily checked to be a partial
order. Since it generalizes the prefix order on sequences (when the congruence
classes of ≡D are singleton sets), we will call ≤ the prefix order on data traces.

Example 6 (Data Traces). Consider the data-trace type X = (A,D), where
A is the data type of Example 2 and D is the dependence relation of Exam-
ple 4. A data trace of X can be represented as a sequence of multisets (bags) of
natural numbers and visualized as a pomset. For example, the data trace that
corresponds to the sequence (M, 5) (M, 7) # (M, 9) (M, 8) (M, 9) # (M, 6) can be visu-
alized as the following labeled partial order (pomset)
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(M, 5)
(M, 7)

# (M, 8)
(M, 9)

(M, 9)
# (M, 6)

where a line from left to right indicates that the item on the right must occur
after the item on the left. The end-of-second markers # separate multisets of
natural numbers. So, the set of data traces of X has an isomorphic representa-
tion as the set Bag(N)+ of nonempty sequences of multisets of natural numbers.
In particular, the empty sequence ε is represented as ∅ and the single-element
sequence # is represented as ∅ ∅. ��

Let us observe that a singleton tag alphabet can be used to model sequences
or multisets over a basic type of values. For the data type given by Σ = {σ}
and Tσ = T there are two possible dependence relations for Σ, namely ∅ and
{(σ, σ)}. The data traces of (Σ,T, ∅) are multisets over T , which we denote as
Bag(T ), and the data traces of (Σ,T, {(σ, σ)}) are sequences over T .

Let us consider the slightly more complicated case of a tag alphabet Σ =
{σ, τ} consisting of two elements (together with data values sets Tσ and Tτ ).
The two tags can be used to describe more complex sets of data traces:

1. Dependence relation D = {(σ, σ), (σ, τ), (τ, σ), (τ, τ)}: The set of data traces
is (up to a bijection) (Tσ ⊕ Tτ )∗, where ⊕ is the disjoint union operation.

2. D = {(σ, σ), (τ, τ)}: The set of data traces is T ∗
σ × T ∗

τ .
3. D = {(σ, σ), (σ, τ), (τ, σ)}: In a data trace the items tagged with σ separate

(possibly empty) multisets of items tagged with τ . For example:

σ σ
τ
τ

σ σ τ
τ

τ
σ τ

So, the set of data traces is Bag(Tτ ) · (Tσ · Bag(Tτ ))∗, where · is the concate-

nation operation for sequences.
4. D = {(σ, σ)}: The set of data traces is T ∗

σ × Bag(Tτ ).
5. D = {(σ, τ), (τ, σ)}: A data trace is an alternating sequence of σ-multisets

(multisets with data items tagged with σ) and τ -multisets. More formally,
the set of data traces is

{ε} ∪ Bag1(Tσ) · (Bag1(Tτ ) · Bag1(Tσ))∗ · Bag(Tτ )
∪ Bag1(Tτ ) · (Bag1(Tσ) · Bag1(Tτ ))∗ · Bag(Tσ),

where Bag1(T ) is the set of nonempty multisets over T .
6. D = ∅: The set of data traces is Bag(Tσ ⊕ Tτ ), which is isomorphic to

Bag(Tσ) × Bag(Tτ ).

The cases that have been omitted are symmetric to the ones presented above.

Example 7 (Multiple Input and Output Channels). Suppose we want
to model a streaming system with multiple independent input and output
channels, where the items within each channel are linearly ordered but the
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≡

I1

I2

I1 I2

Fig. 1. Multiple channels I1 and I2, displayed on the left graphically, and on the right
as the single trace type which actually defines them.

channels are completely independent. These assumptions are appropriate for
distributed streaming systems, where the channels are implemented as net-
work connections. This is the setting of (acyclic) Kahn Process Networks [11]
and the more restricted synchronous dataflow models [14]. We introduce tags
ΣI = {I1, . . . , Im} for m input channels, and tags ΣO = {O1, . . . , On} for n out-
put channels. The dependence relation for the input consists of all pairs (Ii, Ii)
with i = 1, . . . ,m. This means that for all indexes i �= j the tags Ii and Ij are
independent (Fig. 1). Similarly, the dependence relation for the output consists
of all pairs (Oi, Oi) with i = 1, . . . , n. Assume that the value types associated with
the input tags are T1, . . . , Tm, and the value types associated with the output
tags are U1, . . . , Un. As we will show later in Proposition 10, the sets of input
and output data traces are (up to a bijection) T ∗

1 × · · · × T ∗
m and U∗

1 × · · · × U∗
m

respectively. ��

Definition 8 (Residuals). Let u and v be sequences over a set A. If u is a
prefix of v, then we define the residual of v by u, denoted u−1v, to be the unique
sequence w such that v = uw.

Let X be a data-trace type. Suppose u and v are of type X with u ≤ v.
Choose any representatives u and v of the traces u and v respectively such that
u ≤ v. Then, define the residual of v by u to be u−1v = [u−1v]. ��

The left cancellation property of Lemma 9 below is needed for establishing
that the residuation operation of Definition 8 is well-defined on traces, i.e. the
trace [u−1v] does not depend on the choice of representatives u and v. It follows
for traces u, v with u ≤ v that u−1v is the unique trace w s.t. v = u · w.

Lemma 9 (Left and Right Cancellation). Let X = (A,D) be a data-trace
type. The following properties hold for all sequences u, u′, v, v′ ∈ A∗:

1. Left cancellation: If u ≡D u′ and uv ≡D u′v′ then v ≡D v′.
2. Right cancellation: If v ≡D v′ and uv ≡D u′v′ then u ≡D u′. ��

Proposition 10 (Independent Ordered Channels). Let A be the data
type with tag alphabet consisting of C1, . . . , Cn, and with respective value types
T1, . . . , Tn. Define the data-trace type X = (A,D), where D = {(Ci, Ci) | i =
1, . . . , n} is the dependence relation. The set of data traces X is isomorphic to
Y = T ∗

1 × · · · × T ∗
n , where the concatenation operation on the elements of Y is

defined componentwise.
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Proposition 10 establishes a bijection between Y = T ∗
1 × · · · × T ∗

n and a set
of appropriately defined data traces X. The bijection involves the concatenation
operation. This implies that the prefix order and the residuation operation can
be defined on Y so that they agree with the corresponding structure on the data
traces. Since · on Y is componentwise concatenation, the order ≤ on Y is the
componentwise prefix order. Finally, residuals are also defined componentwise
on Y . So, the expanded structures (Y, ·,≤,−1 ) and (X, ·,≤,−1 ) are isomorphic.

Proposition 11 (Independent Unordered Channels). Let A be the data-
trace type with tag alphabet consisting of C1, . . . , Cn, and with respective value
types T1, . . . , Tn. Define the data-trace type X = (A,D), where D = ∅ is the
dependence relation. The set of data traces X is isomorphic to Y = Bag(T1) ×
· · · × Bag(Tn), where the concatenation operation on the elements of Y is com-
ponentwise multiset union. ��

Given the isomorphism between Y = Bag(T1) × · · · ×Bag(Tn) and the set of
data traces described in Proposition 11, we define the prefix relation and residu-
ation on Y that are induced by · on Y as follows: ≤ is defined as componentwise
multiset containment, and (P1, . . . , Pn)−1(Q1, . . . , Qn) = (Q1 \ P1, . . . , Qn \ Pn)
where \ is the multiset difference operation. It follows that this additional struc-
ture on Y agrees with the corresponding structure on the traces.

2.2 Data-Trace Transductions

Data-trace transductions formalize the notion of an interface for stream process-
ing systems. Consider the analogy with a functional model of computation: the
interface of a program consists of the input type, the output type, and a mapping
that describes the input/output behavior of the program. Correspondingly, the
interface for a stream processing systems consists of: (1) the type X of input
data traces, (2) the type Y of output data traces, and (3) a monotone mapping
β : X → Y that specifies the cumulative output after having consumed a prefix
of the input stream. The monotonicity requirement captures the idea that output
items cannot be retracted after they have been emitted. Since a transduction is
a function from trace histories, it allows the modeling of systems that maintain
state, where the output that is emitted at every step depends potentially on the
entire input history.

Definition 12 (Data-Trace Transductions). Let X = (A,D) and Y =
(B,E) be data-trace types. A data-trace transduction with input type X and
output type Y is a function β : X → Y that is monotone w.r.t. the prefix order
on data traces: u ≤ v implies that β(u) ≤ β(v) for all traces u,v ∈ X. We write
T (X,Y ) to denote the set of all data-trace transductions from X to Y . ��

Figure 2 visualizes a data-trace transduction β : X → Y as a block diagram
element, where the input wire is annotated with the input type X and the output
wire is annotated with the output type Y .
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β
# M

T# = U, TM = N

M

TM = N

Fig. 2. A stream processing interface (data-trace transduction), consisting of (1) the
input trace type, (2) the output trace type, and (3) the monotone map β.

Example 13. Suppose the input is a sequence of natural numbers, and we want
to define the data-trace transduction that outputs the current data item if it is
strictly larger than all data items seen so far. This is described by the trace
transduction β : N∗ → N

∗, given by β(ε) = ε and

β(a1 . . . an−1an) =

{
β(a1 . . . an−1) an, if an > ai for all i = 1, . . . , n − 1;
β(a1 . . . an−1), otherwise.

In particular, the definition implies that β(a1) = a1. The table

Current item Input history β output
ε ε

3 3 3
1 3 1 3
5 3 1 5 3 5
2 3 1 5 2 3 5

gives the values of the transduction β for all prefixes of the stream 3 1 5 2. ��

2.3 Data-String Transductions

In the previous section we defined the notion of a data-trace transduction, which
describes abstractly the behavior of a distributed stream processing system using
a monotone function from input data traces to output data traces. In a sequen-
tial implementation of a stream processor the input is consumed in a sequential
fashion, i.e. one item at a time, and the output items are produced in a spe-
cific linear order. Such sequential implementations are formally represented as
data-string transductions. We establish in this section a precise correspondence
between string transductions and trace transductions. We identify a consistency
property that characterizes when a string transduction implements a trace trans-
duction of a given input/output type. Moreover, we show how to obtain from a
given trace transduction the set of all its possible sequential implementations.

Definition 14 (Data-String Transductions). Let A and B be data types.
A data-string transduction with input type A and output type B is a function
f : A∗ → B∗. Let S(A,B) be the set of string transductions from A to B. ��

A data-string transduction f : A∗ → B∗ describes a streaming computation
where the input items arrive in a linear order. For an input sequence u ∈ A∗
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the value f(u) gives the output items that are emitted right after consuming the
sequence u. In other words, f(u) is the output that is triggered by the arrival of
the last data item of u. We say that f is a one-step description of the computation
because it gives the output increment that is emitted at every step.

Let A be an arbitrary set, Y be a data-trace type, and f : A∗ → Y . We
define the lifting of f to be the function f : A∗ → Y that maps a sequence
a1a2 . . . an ∈ A∗ to f(a1a2 . . . an) = f(ε) · f(a1) · f(a1a2) · · · f(a1a2 . . . an). In
particular, the definition implies that f(ε) = f(ε). That is, f accumulates the
outputs of f for all prefixes of the input. Notice that f is monotone w.r.t. the
prefix order: u ≤ v implies that f(u) ≤ f(v) for all u, v ∈ A∗. Suppose now
that ϕ : A∗ → Y is a monotone function. The derivative ∂ϕ : A∗ → Y of ϕ is
defined as follows: (∂ϕ)(ε) = ϕ(ε) and (∂ϕ)(ua) = ϕ(u)−1ϕ(ua) for all u ∈ A∗

and a ∈ A. Notice that in the definition of ∂ we use the residuation operation
of Definition 8. The lifting and derivative operators witness a bijection between
the class of functions from A∗ to Y and the monotone subset of this class. That
is, ∂f = f for every f : A∗ → Y and ∂ϕ = ϕ for every monotone ϕ : A∗ → Y .

Definition 15 (The Implementation Relation). Let X = (A,D) and
Y = (B,E) be data-trace types. We say that a string transduction f : A∗ → B∗

implements a trace transduction β : X → Y (or that f is a sequential imple-
mentation of β) if β([u]) = [f(u)] for all u ∈ A∗. ��

An implementation f of a trace transduction β is meant to give the output
increment that is emitted at every step of the streaming computation, assuming
the input is presented as a totally ordered sequence. That is, for input u the
value f(u) gives some arbitrarily chosen linearization of the output items that
are emitted after consuming u. The lifting f gives the cumulative output that
has been emitted after consuming a prefix of the input stream.

Example 16. The trace transduction β of Example 13 can be implemented as
a string transduction f : N∗ → N

∗, given by f(ε) = ε and

f(a1 . . . an−1an) =

{
an, if an > ai for all i = 1, . . . , n − 1;
ε, otherwise.

The following table gives the values of the implementation f on input prefixes:

Current item Input history f output β output
ε ε ε

3 3 3 3
1 3 1 ε 3
5 3 1 5 5 3 5
2 3 1 5 2 ε 3 5

Notice in the table that β(3 1 5 2) = f(ε) · f(3) · f(3 1) · f(3 1 5) · f(3 1 5 2). ��

Definition 17 (Consistency). Let X = (A,D) and Y = (B,E) be data-trace
types. A data-string transduction f ∈ S(A,B) is (X,Y )-consistent if u ≡D v
implies f(u) ≡E f(v) for all u, v ∈ A∗. ��
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Definition 17 essentially says that a string transduction f is consistent when
it gives equivalent cumulative outputs for equivalent input sequences. The def-
inition of the consistency property is given in terms of the lifting f̄ of f . An
equivalent formulation of this property, which is expressed directly in terms of
f , is given in Theorem 18 below.

Theorem 18 (Characterization of Consistency). Let X = (A,D) and Y =
(B,E) be data-trace types, and f ∈ S(A,B). The function f is (X,Y )-consistent
if and only if the following two conditions hold:

(1) For all u ∈ A∗ and a, b ∈ A, (a, b) /∈ D implies f(ua)f(uab) ≡E

f(ub)f(uba).
(2) For all u, v ∈ A∗ and a ∈ A, u ≡D v implies that f(ua) ≡E f(va). ��

The following theorem establishes a correspondence between string and trace
transductions. The consistent string transductions are exactly the ones that
implement trace transductions. Moreover, the set of all implementations of a
trace transduction can be given as a dependent function space by ranging over all
possible linearizations of output increments. In other words, an implementation
results from a trace transduction by choosing output increment linearizations.

Theorem 19 (Trace Transductions & Implementations). Let X = (A,D)
and Y = (B,E) be data-trace types. The following hold:

(1) A data-string transduction f of S(A,B) implements some trace transduction
of T (X,Y ) iff f is (X,Y )-consistent.

(2) The set of all implementations of a data-trace transduction β ∈ T (X,Y ) is
the dependent function space

∏
u∈A∗(∂γ)(u), where the function γ : A∗ → Y

is given by γ(u) = β([u]) for all u ∈ A∗. ��
Part (2) of Theorem19 defines the monotone function γ : A∗ → Y in terms

of the trace transduction β. Intuitively, γ gives the cumulative output trace for
every possible linearization of the input trace. It follows that ∂γ : A∗ → Y gives
the output increment, which is a trace, for every possible input sequence. So,
the lifting of ∂γ is equal to γ. Finally, an implementation of β can be obtained
by choosing for every input sequence u ∈ A∗ some linearization of the output
increment (∂γ)(u) ∈ Y . In other words, any implementation of a data-trace
transduction is specified uniquely by a linearization choice function for all pos-
sible output increments. For the special case where the function [·] : B∗ → Y is
injective, i.e. every trace of Y has one linearization, there is exactly one imple-
mentation for a given trace transduction. We will describe later in Example 21
a trace transduction that has several different sequential implementations.

2.4 Examples of Data-Trace Transductions

In this section we present examples that illustrate the concept of a data-trace
transduction and its implementations for several streaming computations on
streams of partially ordered elements. We start by considering examples that fit
into the model of process networks [11,14], where the inputs and outputs are
organized in collections of independent linearly ordered channels.
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merge
σ τ

Tσ = Tτ = T

o

To = T
copy

σ

Tσ = T

σ τ

Tσ = Tτ = T

Fig. 3. Stream processing interfaces for merge (Example 20) and copy (Example 21).

Example 20 (Deterministic Merge). Consider the streaming computation
where two linearly ordered input channels are merged into one. More specifically,
this transformation reads cyclically items from the two input channels and passes
them unchanged to the output channel. As described in Example 7, the input
type is specified by the tag alphabet Σ = {σ, τ} with data values T for each
tag, and the dependence relation D = {(σ, σ), (τ, τ)}. So, an input data trace
is essentially an element of T ∗ × T ∗. The output type is specified by the tag
alphabet {o}, the value type To = T , and the dependence relation {(o, o)}. So,
the set of output data traces is essentially T ∗. See the left diagram in Fig. 3. The
trace transduction merge : T ∗ × T ∗ → T ∗ is given as follows:

merge(x1 . . . xm, y1 . . . yn) =

{
x1 y1 . . . xm ym, if m ≤ n;
x1 y1 . . . xn yn, if m > n.

The sequential implementation of merge can be represented as a function f :
A∗ → T ∗ with A = ({σ} × T ) ∪ ({τ} × T ), where f(ε) = ε and

f(w(σ, x)) =

{
x ym+1, if length(w|σ) = m,w|τ = y1 . . . yn and m < n

ε, otherwise

f(w (τ, y)) =

{
xn+1 y, if w|σ = x1 . . . xm, length(w|τ ) = n and n < m

ε, otherwise

for all w ∈ A∗. For an input tag, σ w|σ is the subsequence obtained from w by
keeping only the values of the σ-tagged items. ��

Example 21 (Copy). The copy transformation creates two copies of the input
stream by reading each item from the input channel and copying it to two output
channels. An input data trace is an element of T ∗, and an output data trace is
an element of T ∗ × T ∗. See the right diagram in Fig. 3. The trace transduction
for this computation is given by copy(u) = (u, u) for all u ∈ T ∗. A possible
implementation of copy can be given as f : T ∗ → B∗, where B = ({σ} × T ) ∪
({τ} × T ). We put f(ε) = ε and f(ua) = (σ, a) (τ, a) for all u ∈ A∗. Notice that
the implementation makes the arbitrary choice to emit (σ, a) before (τ, a), but
it is also possible to emit the items in reverse order. ��

Example 22 (Key-based Partitioning). Consider the computation that
maps a linearly ordered input sequence of data items of type T (each of which
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contains a key), to a set of linearly ordered sub-streams, one per key. The function
key : T → K extracts the key from each input value. The input type is specified
by a singleton tag alphabet {σ}, the data value set T , and the dependence rela-
tion {(σ, σ)}. The output type is specified by the tag alphabet K, value types
Tk = T for every key k ∈ K, and the dependence relation {(k, k) | k ∈ K}. So, an
input trace is represented as an element of T ∗, and an output trace can is repre-
sented as a K-indexed tuple, that is, a function K → T ∗. The trace transduction
partitionkey : T ∗ → (K → T ∗) describes the partitioning of the input stream into
sub-streams according to the key extraction map key: partitionkey(u)(k) = u|k
for all u ∈ T ∗ and k ∈ K, where u|k denotes the subsequence of u that consists
of all items whose key is equal to k. The unique implementation of this trans-
duction can be represented as a function f : T ∗ → (K × T )∗ given by f(ε) = ε
and f(wx) = (key(x), x) for all w ∈ T ∗ and x ∈ T . ��

Proposition 10 states that a set T ∗
1 × · · · × T ∗

m can be isomorphically repre-
sented as a set of data traces, and also that the prefix relation on the traces corre-
sponds via the isomorphism to the componentwise prefix order on T ∗

1 ×· · ·×T ∗
m.

Theorem 23 then follows immediately.

Theorem 23. Every monotone function F : T ∗
1 ×· · ·×T ∗

m → U∗
1 ×· · ·×U∗

n can
be represented as a data-trace transduction.

Another important case is when the input stream is considered to be
unordered, therefore any finite prefix should be viewed as a multiset (relation)
of data items. In this case, any reasonable definition of a streaming transduction
should encompass the monotone operations on relations. Monotonicity implies
that as the input relations get gradually extended with more tuples, the output
relations can also be incrementally extended with more tuples. This computation
is consistent with the streaming model, and it fits naturally in our framework.

Example 24 (Operations of Relational Algebra). First, we consider the
relation-to-relation operations map and filter that are generalizations of the
operations project and select from relational algebra. Suppose that the sets of
input and output data traces are (up to a bijection) Bag(T ). Given a function
op : T → T and a predicate φ ⊆ T , the trace transductions mapop : Bag(T ) →
Bag(T ) and filterφ : Bag(T ) → Bag(T ) are defined by:

mapop(M) = {op(a) | a ∈ M} filterφ(M) = {a ∈ M | a ∈ φ}

for every multiset M over T . The respective sequential implementations mapop :
T ∗ → T ∗ and filterφ : T ∗ → T ∗ are defined as follows:

mapop(ε) = ε filterφ(ε) = ε

mapop(wa) = op(a) filterφ(wa) = a, if a ∈ φ filterφ(wa) = ε, if a /∈ φ

for all w ∈ T ∗ and a ∈ T .
Consider now the relational join operation for relations over T w.r.t. the

binary predicate θ ⊆ T ×T . An input data trace can be viewed as an element of
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Bag(T ) × Bag(T ), and an output trace as an element of Bag(T × T ). The trace
transduction joinθ : Bag(T ) × Bag(T ) → Bag(T × T ) is given by

joinθ(M,N) = {(a, b) ∈ M × N | (a, b) ∈ θ} for multisets M,N over T.

Suppose the names of the input relations are Q and R respectively. An implemen-
tation of θ-join can be represented as a function joinθ : {(Q, d), (R, d) | d ∈ T}∗

→ (T × T )∗, given by joinθ(ε) = ε and

joinθ(w(Q, d)) = filterθ((d, d1) (d, d2) . . . (d, dn)),

where (R, d1), (R, d2), . . . , (R, dn) are the R-tagged elements that appear in the
sequence w (from left to right). The function joinθ is defined symmetrically
when the input ends with a R-tagged element.

The relational operation that removes duplicates from a relation has a sequen-
tial implementation that can be represented as a function distinct : T ∗ → T ∗,
given by distinct(ε) = ε and

distinct(wa) =

{
a, if a does not appear in w

ε, if a appears in w

for all w ∈ T ∗ and a ∈ T . ��

Example 24 lists several commonly used relational operations that can be
represented as data-trace transductions. In fact, every monotone relational oper-
ation is representable, as stated in Theorem25 below. The result follows imme-
diately from Proposition 11.

Theorem 25. Every monotone operator F : Bag(T1)×· · ·×Bag(Tn) → Bag(T )
can be represented as a data-trace transduction.

Consider now the important case of computing an aggregate (such as sum,
max, and min) on an unordered input. This computation is meaningful for a
static input relation, but becomes meaningless in the streaming setting. Any
partial results depend on a particular linear order for the input tuples, which
is inconsistent with the notion of an unordered input. So, for a computation
of relational aggregates in the streaming setting we must assume that the input
contains linearly ordered punctuation markers that trigger the emission of output
(see [15] for a generalization of this idea). The input can then be viewed as an
ordered sequence of relations (each relation is delineated by markers), and it is
meaningful to compute at every marker occurrence an aggregate over all tuples
seen so far. Our formal definition of data-trace transductions captures these
subtle aspects of streaming computation with relational data.

Example 26 (Streaming Maximum). Suppose the input stream consists of
unordered natural numbers and special symbols # that are linearly ordered. We
will specify the computation that emits at every # occurrence the maximum of
all numbers seen so far. More specifically, the input type is given by Σ = {σ, τ},
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Tσ = N, Tτ = U (unit type), and D = {(σ, τ), (τ, σ), (τ, τ)}. So, an input data
trace is essentially a nonempty sequence of multisets of numbers, i.e. an element
of Bag(N)+. The correspondence between traces and elements of Bag(N)+ is
illustrated by the following examples:

ε �→ ∅ 1 2 �→ {1, 2} 1 2 # 3 �→ {1, 2} {3}
1 �→ {1} 1 2 # �→ {1, 2} ∅ 1 2 # 3 # �→ {1, 2} {3} ∅

The streaming maximum computation is described (Fig. 4) by the trace trans-
duction smax : Bag(N)+ → N

∗, given as: smax(R) = ε, smax(R1R2) = max(R1),
and

smax(R1 . . . Rn) = max(R1) max(R1 ∪ R2) · · · max(R1 ∪ R2 ∪ · · · ∪ Rn−1).

smax
# σ

T# = U, Tσ = N

σ

Tσ = N

Fig. 4. Stream processing interface for streaming maximum (Example 26).

Notice that the last relation Rn of the input sequence is the collection of
elements after the last occurrence of a # symbol, and therefore they are not
included in any maximum calculation above. The sequential implementation of
smax can be represented as a function f : (N ∪ {#})∗ → N

∗, which outputs at
every # occurrence the maximum number seen so far. That is, f(ε) = ε and

f(a1a2 . . . an) =

{
ε, if an ∈ N;
max of {a1, a2, . . . , an} \ {#}, if an = #.

for all sequences a1a2 . . . an ∈ (N ∪ {#})∗. ��

3 Operations on Data-Trace Transductions

In many distributed stream processing algorithms, the desired computation is
passed through nodes which are composed in parallel and in sequence. Both
composition operations can be implemented concurrently with potential time
savings, and the decomposition makes this concurrency visible and exploitable.
Crucial to the usefulness of an interface model, therefore, is that these composi-
tion operations correspond to semantic composition operations on the interfaces.
In turn, given an interface for the overall computation, we may reason that only
some distributed decompositions are possible.
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split

smax1

smax2

max-merge
# σ

T# = U

Tσ = N

#1 σ1

#2 σ2

σ1

σ2

σ

Tσ = N

Fig. 5. Distributed evaluation of smax (Example 27).

In this section we define the sequential composition of two data-trace trans-
ductions, and the parallel composition of a (possibly infinite) family of data-trace
transductions. We then define the implementation of both of these operations
as operations on string transductions. A general block diagram, without feed-
back, can be obtained by the combination of (string or trace) transductions in
sequence and in parallel.

Example 27 (Distributed evaluation of smax). For example, consider the
problem of computing the maximum (smax), as in Example 26. We notice that
the σ-tagged natural numbers are independent, forming a multiset, so the multi-
set could be split into multiple smaller sets and handled by separate components.
To do so, we first have a component which copies the synchronization tags #
into #1 and #2, and alternates sending σ tags to σ1 and σ2. This split compo-
nent breaks the input stream into two independent streams. Next, components
smax1 and smax2, which are instances of smax, handle each of the two input
streams {σ1, #1} and {σ2, #2} separately, producing output tagged σ1 and σ2.
Finally, a variant of Example 20, max-merge, can be constructed which takes one
σ1 and one σ2 output and, rather than just producing both, maximizes the two
arguments to produce a single σ tag. Altogether, the resulting block diagram of
Fig. 5 computes smax. We write:

smax = split � (smax1‖smax2)� max-merge,

which is an important sense in which computations like Streaming Maximum
can be parallelized. ��

Definition 28 (Sequential Composition). Let X,Y, and Z be data-trace
types, and let α ∈ T (X,Y ) and β ∈ T (Y,Z) be data-trace transductions.
The sequential composition of α and β, denoted γ = α � β, is the data-trace
transduction in T (X,Z) defined by γ(u) = β(α(u)) for all u ∈ X. ��

Definition 29 (Parallel Composition). Let I be any index set. For each
i ∈ I, let Xi = (Ai,Di) and Yi = (Bi, Ei) be trace types, and let αi ∈ T (Xi, Yi).
We require that for all i �= j, Ai is disjoint from Aj and Bi is disjoint from Bj .
Additionally, we require that αi(ε) = ε for all but finitely many i.
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Let A =
⋃

i∈I Ai, B =
⋃

i∈I Bi, D =
⋃

i∈I Di, and E =
⋃

i∈I Ei. Let X =
(A,D) and Y = (B,E). The parallel composition of all αi, denoted α =

∥∥
i∈I

αi,
is the data-trace transduction in T (X,Y ) defined by α(u)|Yi

= αi(u|Xi
), for all

u ∈ X and for all i ∈ I. Here |Yi
means the projection of a trace to Yi. ��

Definition 28 gives a well-defined trace transduction because the composition
of monotone functions is monotone. In Definition 29, we have defined the value
of α(u) by specifying the component of the output in each of the independent
output streams Yi. Specifically, a trace in Y is given uniquely by a trace in Yi

for each i, and the only restriction is that finitely many of the traces Yi must be
non-empty. Since each character in u only projects to one Xi and since αi(ε) = ε
for all but finitely many i, we satisfy this restriction, and parallel composition
is well-defined. For only two (or a finite number) of channels, we can use the
notation f1‖f2 instead of

∥∥
i∈I

fi.

Proposition 30 (Basic Properties). Whenever binary operations � and ‖
are defined, � is associative and ‖ is associative and commutative.

Definition 31 (Implementation of Sequential Composition). Let A,B,
and C be data types. Let f ∈ S(A,B) and g ∈ S(B,C) be data-string transduc-
tions. The sequential composition of f and g, written h = f � g, is the unique
data-string transduction in S(A,C) satisfying h = g ◦ f . I.e., h(u) = ∂(g ◦ f). ��

On input an item a ∈ A, we pass it to f , collect any result, and pass the
result of that to g (if any). Because there may be multiple intermediate outputs
from f , or none at all, this is most succinctly expressed by ∂(g ◦ f).

Lemma 32. Let X = (A,D), Y = (B,E), Z = (C,F ) be data-trace types,
α ∈ T (X,Y ), and β ∈ T (Y,Z). If f ∈ S(A,B) implements α and g ∈ S(B,C)
implements β, then f � g implements α �β.

Definition 33 (Implementation of Parallel Composition). Let (I,<) be
an ordered index set. For each i, let Ai, Bi be data types and let fi ∈ S(Ai, Bi)
be a data-string transduction. As in Definition 29, we require that for all i �=
j, Ai is disjoint from Aj and Bi is disjoint from Bj ; Also as in Definition 29,
assume that fi(ε) = ε for all but finitely many i, say i1 < i2 < · · · < im.
Define A =

⋃
i Ai and B =

⋃
i Bi. The parallel composition of all fi, written

f =
∥∥

i∈(I,<)
fi, is the data-string transduction in S(A,B) defined as follows.

First, f(ε) = fi1(ε)fi2(ε) · · · fim(ε). Second, for all i, for all ai ∈ Ai, and for all
u ∈ A∗, f(uai) = fi(u|Ai

ai), where u|Ai
is the projection of u to Ai. ��

We initially output fi(ε) for any i for which that is nonempty. Then, on input
an item ai ∈ Ai, we pass it to fi, collect any result, and output that result (if
any). Thus, while the definition allows an infinite family of string transductions,
on a finite input stream only a finite number will need to be used.

The index set must be ordered for the reason that, on input ε, we need
to produce the outputs fi(ε) in some order. By Theorem 19, any data-trace
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transduction can be implemented by some data-string transduction, and this
construction picks just one possible implementation. Other than on input ε, the
order does not matter. Regardless of the order, the following lemma states that
we implement the desired data-trace transduction.

Lemma 34. Let I be an (unordered) index set. Let Xi = (Ai,Di), Yi = (Bi, Ei),
and αi ∈ T (Xi, Yi), such that the parallel composition α =

∥∥
i∈I

αi is defined.
If fi ∈ S(Ai, Bi) implements αi for all i, then for any ordering (I,<) of I,
f =

∥∥
i∈(I,<)

fi implements α.

We now illustrate various examples of how these composition operations on
trace transductions, which can be implemented as string transductions, can be
used.

Example 35 (Partition by key, Reduce & Collect). Consider an input
data stream of credit card transactions. For simplicity, we assume that each
data item is simply a key-value pair (k, v), where k is a key that identifies
uniquely a credit card account and v is the monetary value of a purchase. We
write K to denote the set of keys, and V for the set of values. Suppose that
the input stream contains additionally end-of-minute markers #, which indicate
the end of each one-minute interval and are used to trigger output. We want to
perform the following computation: “find at the end of each minute the maximum
total purchases associated with a credit card account”. This computation can
be structured into a pipeline of three stages:

1. Stage partition: Split the input stream into a set of sub-streams, one for each
key. The marker items # are propagated to every sub-stream.

input type : tags K ∪ {#},

values Tk = V for every k ∈ K and T# = U,

full dependence relation (K ∪ {#}) × (K ∪ {#})
output type : tags K ∪ {#k | k ∈ K},

values T ′
k = V and T ′

#k
= U for every k ∈ K,

dependencies
⋃

k∈K
({k, #k} × {k, #k})

The definition of the data-trace transduction is similar to the one in Exam-
ple 22, with the difference that # markers have to be propagated to every
output channel.

2. For each key k ∈ K perform a reduce operation, denoted reducek, that outputs
at every occurrence of a # symbol the total of the values over the entire history
of the k-th sub-stream. For reducek we have:

input : tags {k, #k}, values V and U, dependencies {k, #k} × {k, #k}
output : tags {k}, values V, dependencies {k} × {k}

The overall reduce stage is the parallel composition ‖k∈K reducek.
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3. The outputs of all the reduce operations (one for each key, triggered by the
same occurrence of #) are aggregated using a collect operation, which outputs
the maximum of the intermediate results.

input : tags K, values V for each k ∈ K, dependencies {(k, k) | k ∈ K}
output : tags {o}, values V, dependencies {(o, o)}

The overall streaming map-reduce computation is given by a sequential compo-
sition with three stages: partition � (‖k∈K reducek) � collect (Fig. 6).

partition

reduce1

reduce2

collect

#

k1 k2

T# = U

Tk1 = Tk2 = V

#1 k1

#2 k2

k1

k2

o

To = V

Fig. 6. Partition by key, reduce, and collect with two keys (Example 35).

Example 36 (Streaming Variant of Map-Reduce [9]). Suppose the input
data stream contains key-value pairs, where the input keys K are partition iden-
tifiers and the values V are fragments of text files. The intermediate keys K ′ are
words, and the corresponding values V ′ are natural numbers. The input stream
contains additionally special markers # that are used to trigger output. The
overall computation is the following: “output at every # occurrence the word
frequency count for every word that appeared since the previous # occurrence”.
So, this is a tumbling window version of a map-reduce operation on a static data
set [9]. The computation can be expressed as a pipeline of five stages:
1. Stage partition: Split the stream into a set of sub-streams, one for each input

key. The marker items # are propagated to every sub-stream. This stage is
similar to the one described in Example 35.

2. Stage map: Apply a function map : K × V → (K ′ × V ′)∗ function to each
key-value pair of the input stream. This function scans the text fragment and
outputs a pair (w, 1) for every word w that it encounters. The marker items
# are propagated to every sub-stream. This stage is expressed as the parallel
composition of transductions {mapk | k ∈ K} with input/output types:

input type : tags {k, #k},

values V for the tag k, and U for the tag #k,

dependence relation {k, #k} × {k, #k}
output type : tags {k, #k},

values K ′ × V ′ for the tag k, and U for the tag #k,

dependence relation {k, #k} × {k, #k}
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3. Stage reshuffle: The outputs from all mapk, k ∈ K, transductions between
consecutive # occurrences are collected and reorganized on the basis of the
intermediate keys.

input type : tags K ∪ {#k | k ∈ K},

values K ′ × V ′ for the every tag k ∈ K, and U for every tag #k,

dependence relation
⋃

k∈K
({k, #k} × {k, #k})

output type : tags K ′ ∪ {#k′ | k′ ∈ K ′},

values V ′ for the every tag k′ ∈ K ′, and U for every tag #k′ ,

dependencies
⋃

k′∈K′{(k′, #k′), (#k′ , k′), (#k′ , #k′)}

4. Stage reduce: For each intermediate key k′ ∈ K ′ perform a reduce operation,
denoted reducek′ , that outputs at every occurrence of a # the total frequency
count for the word k′ since the previous occurrence of a # symbol. The data-
trace types for reducek we have:

input type : tags {k′, #k′},

values V ′ for the tag k′, and U for the tag #k′ ,

dependencies {(k′, #k′), (#k′ , k′), (#k′ , #k′)}
output type : tags {k′, #k′},

values V ′ for the tag k′, and U for the tag #k′ ,

dependencies {(k′, #k′), (#k′ , k′), (#k′ , #k′)}

The overall reduce stage is the parallel composition reducek′
1

‖ · · · ‖ reducek′
n
,

where k′
1, . . . , k

′
n is an enumeration of the intermediate keys.

5. Stage collect: The outputs of all the reduce operations (one for each key,
triggered by the same occurrence of #) are collected into a single multiset.

input type : tags K ′ ∪ {#k′ | k′ ∈ K ′},

values V ′ for the every tag k′ ∈ K ′, and U for every tag #k′ ,

dependencies
⋃

k′∈K′{(k′, #k′), (#k′ , k′), (#k′ , #k′)}

output type : tags {o, #},

values K ′ × V ′ for the tag o, and U for every tag #,

dependencies {(o, #), (#, o), (#, #)}

The overall streaming map-reduce computation is given by a sequential compo-
sition with five stages:

partition � (‖k∈K mapk) � reshuffle � (‖k′∈K′ reducek′) � collect.

Example 37 (Time-Based Sliding Window). Suppose that the input is a
sequence of items of the form (v, t), where v is a value and t is a timestamp.
We assume additionally that the items arrive in increasing order of timestamps,
that is, in an input sequence (v1, t1) · · · (vn, tn) it holds that t1 ≤ · · · ≤ tn.
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We want to compute a so-called moving aggregate: “compute every second the
sum of the values over the last 10 s”. This sliding-window computation can be
set up as a pipeline of three stages:

1. Stage mark: Insert at the end of every second an end-of-second marker #.
2. Stage unit: Compute at every occurrence of a # marker the sum of the values

over the last second. The output of this state is a sequence of partial sums,
i.e. one value for each one-second interval.

3. Stage window: Compute with every new item the sum of the last 10 items.

The overall sliding window computation is expressed as: mark � unit � window
(Fig. 7).

mark unit window
σ

Tσ = V × T

σ #

Tσ = V
T# = U

σ

Tσ = V

σ

Tσ = V

Fig. 7. Sliding window computation (Example 37).

4 Related Work

Synchronous Computation Models: The data-trace transduction model is a syn-
chronous model of computation as it implicitly relies on the synchrony hypothe-
sis: the time needed to process a single input item by the system is sufficiently
small so that it can respond by producing outputs before the next input item
arrives [7]. Data-trace transductions are a generalization of what is considered
by acyclic Kahn process networks [11], where the interface consists of a finite
number of input and output channels. A process network consists of a collection
of processes, where each process is a sequential program that can read from the
input channels and write to the output channels. The input/output channels
are modeled as first-in first-out queues. A specialization of process networks is
the model of Synchronous Dataflow [14], where each process reads a fixed finite
number of items from the input queues and also emits a fixed finite number
of items as output. We accommodate a finite number of independent input or
output streams, but also allow more complicated independence relations on the
input and output, and in particular, viewing the input or output stream as a bag
of events is not possible in Kahn process networks. We do not consider any par-
ticular implementation for data-trace transductions in this paper, but dataflow
networks could be considered as a particular implementation for a subclass of
our interfaces.
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Merging of Multiple Input and Output Channels: In our model, even stream pro-
cessing components with multiple input channels receive the items merged into a
linear order. Traditionally, this merging of two streams into one linearly ordered
stream has been considered a nondeterministic operation, and there is a body of
work investigating the semantics and properties of dataflow systems built from
such nondeterministic nodes. Brock and Ackerman [8] show that the relation
from inputs to possible outputs is not compositional, i.e. it is not an adequate
semantics for these systems. Panangaden and Shanbhogue [19] consider variants
of nondeterministic merge and their expressive power. Because we disallow these
inherently nondeterministic merge operations, our semantics is simple and com-
positional. In particular the function from input histories to output histories is
deterministic, and the nondeterminism of merge is hidden by expressing it only
in the types, in the independence relation. We also have not considered feedback
in a network defined by operations.

Partial Order Semantics for Concurrency: The traditional model for asyn-
chronous systems is based on interleaving the steps of concurrent processes,
and the observational semantics of an asynchronous system consists of a set of
behaviors, where a behavior is a (linear) sequence of interspersed input and out-
put events (see, for instance, the model of I/O automata [16]). Such a semantics
does not capture the distinction between coincidental ordering of observed events
versus causality between them (see [13] for a discussion of causality in concurrent
systems). This motivated the development of a variety of models with partial
order semantics such as pomsets [20] and Mazurkiewicz traces [18]. We build
upon the ideas in this line of research though our context, namely, synchronous,
deterministic, streaming processors, is quite different.

Streaming Extensions of Database Query Languages: There is a large body of
work on streaming query languages and database systems such as Aurora [2],
Borealis [1], STREAM [6], and StreamInsight [4]. The query language supported
by these systems (for example, CQL [6]) is typically a version of SQL with
additional constructs for sliding windows over data streams. This allows for rich
relational queries, including set-aggregations (e.g. sum, maximum, minimum,
average, count) and joins over multiple data streams. A precise semantics for
how to merge events from different streams has been defined using the notion
of synchronization markers [15]. The pomset view central to the formalism of
data-trace transductions is strictly more general, and gives the ability to view
the stream in many different ways, for example: as a linearly ordered sequence,
as a relation, or even as a sequence of relations. This is useful for describing
streaming computations that combine relational operations with sequence-aware
operations. Extending relational query languages to pomsets has been studied
in [10], though not in the context of streaming.
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5 Conclusion

We have proposed data-trace transductions as a mathematical model for spec-
ifying the observable behavior of a stream processing system. This allows con-
sumption of inputs and production of outputs in an incremental manner that is
suitable for streaming computation, while retaining the ability to view input and
output streams as partially ordered multisets. The basic operations of sequen-
tial composition and parallel composition can be defined naturally on data-trace
transductions. The examples illustrate that the flexibility of our model is useful
to specify the desired behavior of a wide variety of commonly used components
in stream processing systems.

Defining the interface model is only the first step towards a programming
system and supporting analysis tools that can help designers build stream pro-
cessing systems with formal guarantees of correctness and performance. An
immediate next step is to formalize a transducer model to define the compu-
tations of data-trace transductions with a type system that enforces the consis-
tency requirement of Definition 17. Future directions include defining a declara-
tive query language to specify data-trace transductions (see [10] for operations
over pomsets and [5,17] for specifying quantitative properties of linearly ordered
streams), efficient implementation of data-trace transductions on existing high-
performance architectures for stream processing (such as Apache Storm), and
techniques for verifying correctness and performance properties of data-trace
transductions.
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Abstract. A shortcoming of existing reachability approaches for non-
linear systems is the poor scalability with the number of continuous
state variables. To mitigate this problem we present a simulation-based
approach where we first sample a number of trajectories of the system
and next establish bounds on the convergence or divergence between
the samples and neighboring trajectories that are not explicitly simu-
lated. We compute these bounds using contraction theory and reduce
the conservatism by partitioning the state vector into several compo-
nents and analyzing contraction properties separately in each direction.
Among other benefits this allows us to analyze the effect of constant but
uncertain parameters by treating them as state variables and partitioning
them into a separate direction. We next present a numerical procedure to
search for weighted norms that yield a prescribed contraction rate, which
can be incorporated in the reachability algorithm to adjust the weights
to minimize the growth of the reachable set. The proposed reachabil-
ity method is illustrated with examples, including a magnetic resonance
imaging application.

1 Introduction

Reachability analysis is critical for testing and verification of control systems [1],
and for formal methods-based control synthesis where reachability dictates the
transitions in a discrete-state abstraction of a system with continuous dynam-
ics [2]. Existing reachability approaches for nonlinear systems include level set
methods [3], linear or piecewise linear approximations of nonlinear models fol-
lowed by linear reachability techniques [4,5], interval Taylor series methods [6,7],
and differential inequality methods [8,9]. However, these results typically scale
poorly with the number of continuous state variables, limiting their applicability
in practice.

On the other hand trajectory-based approaches [10–12] scale well with the
state dimension, as they take advantage of inexpensive numerical simulations
and are naturally parallelizable. In [13] we leveraged concepts from contraction
theory [14,15] to develop a new trajectory-based approach where we first sample a
number of trajectories of the system and next establish bounds on the divergence
c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 61–76, 2018.
https://doi.org/10.1007/978-3-319-95246-8_4
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between the samples and neighboring trajectories. We then use these bounds to
provide a guaranteed over-approximation of the reachable set. Unlike [11] that
uses Lipschitz constants to bound the divergence between trajectories we use
matrix measures that can take negative values, thus allowing for convergence of
trajectories and reducing the conservatism in the over-approximation. Another
related reference, [10], uses sensitivity equations to track the convergence or
divergence properties along simulated trajectories; however, this approach does
not guarantee that the computed approximation contains the true reachable set.

In this note we generalize [13] by partitioning the state vector into several
components and analyzing the growth or contraction properties in the direction
defined by each component. Unlike [13] which searches for a single growth or con-
traction rate to cover every direction of the state space, the new approach takes
advantage of directions that offer more favorable rates. With this generalization
we can now analyze the effect of constant but uncertain parameters by treating
them as state variables and partitioning them into a separate direction along
which no growth occurs. A related approach is employed in [16] where every
state variable defines a separate direction; however, this may lead to overly con-
servative results since the dynamics associated with multiple state variables may
possess a more favorable rate than the individual state variables in isolation.

In Sect. 2 we present the main contraction result and a corollary that serves
as the starting point for the reachability algorithm. In Sect. 3 we detail the algo-
rithm and demonstrate with an example that it can significantly reduce the
conservatism in [13,16]. In Sect. 4 we present an application to magnetic reso-
nance imaging. Next, in Sect. 5 we derive a numerical procedure to search for
weighted norms that yield a prescribed contraction rate, which can be incorpo-
rated in the reachability algorithm to adjust the weights to minimize the growth
of the reachable set as it propagates through time. Finally, in Sect. 6 we prove
the componentwise contraction result presented in Sect. 2.

In the sequel we make use of matrix measures, as defined in [17]. Let | · | be
a norm on R

n and let ‖ · ‖ denote the induced matrix norm. The measure μ(A)
of a matrix A ∈ R

n×n is the upper right-hand derivative of ‖ · ‖ at I ∈ R
n×n in

the direction of A:

μ(A) � lim
h→0+

‖I + hA‖ − 1
h

. (1)

Unlike a norm the matrix measure can take negative values, as evident in the
table below.

2 Componentwise Contraction

Consider the nonlinear dynamical system

ẋ(t) = f(t, x(t)), x(t) ∈ R
n, (2)

where f : [0,∞) ×R
n �→ R

n is continuous in t and continuously differentiable in
x. We partition the state vector x into k components, x = [xT

1 · · · xT
k ]T , where
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Table 1. Commonly used vector norms and their corresponding matrix norms and
measures.

Vector norm Induced matrix norm Induced matrix measure

|x|1 =
∑

j |xj | ‖A‖1 = maxj

∑
i |aij | μ1(A) = maxj

(
ajj +

∑
i�=j |aij |

)

|x|2 =
√∑

j x2
j ‖A‖2 =

√
maxj λj(AT A) μ2(A) = maxj

1
2

(
λj(A + AT )

)

|x|∞ = maxj |xj | ‖A‖∞ = maxi

∑
j |aij | μ∞(A) = maxi

(
aii +

∑
j �=i |aij |

)

xi ∈ R
ni , i = 1, . . . , k, and n1 + · · · + nk = n. Likewise we decompose the n × n

Jacobian matrix J(t, x) = (∂f/∂x)(t, x) into conformal blocks

Jij(t, x) ∈ R
ni×nj , i, j = 1, . . . , k.

The following proposition gives a growth bound between two trajectories of
the system (2). Variants of this proposition appear in [18–20]; we provide an
independent proof in Sect. 6.

Proposition 1. Let C ∈ R
k×k be a constant matrix such that

Cij ≥
{

μ(Jii(t, x)) i = j
‖Jij(t, x)‖ i �= j

(3)

for all (t, x) ∈ [0, T ] × D on some domain D ⊂ R
n. If x(·) and z(·) are two

trajectories of (2) such that every trajectory starting on the line segment {sx(0) +
(1 − s)z(0) : s ∈ [0, 1]} remains in D until time T , then⎡

⎢⎣
|x1(t) − z1(t)|

...
|xk(t) − zk(t)|

⎤
⎥⎦ ≤ exp(Ct)

⎡
⎢⎣

|x1(0) − z1(0)|
...

|xk(0) − zk(0)|

⎤
⎥⎦ ∀t ∈ [0, T ], (4)

where ≤ denotes element-wise inequality. �

We can use a different vector norm for each component in (4), say | · |pi
for

xi(t) − zi(t), provided that we interpret (3) as

Cij ≥
{

μpi
(Jii(t, x)) i = j

‖Jij(t, x)‖pi,pj
i �= j,

(5)

where μpi
(·) is the matrix measure for | · |pi

, and ‖ · ‖pi,pj
is the mixed norm

defined as

‖A‖pi,pj
= max

|x|pj
=1

|Ax|pi
.

We next derive a corollary to Proposition 1 that is useful for reachability
analysis. Let ξ(t, x0) denote the solution of (2) starting from x0 at t = 0, and
define the reachable set at time t from initial set Z as

Reacht(Z) � {ξ(t, z) : z ∈ Z}.
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Likewise define the reachable set over the time interval [0, T ] as

Reach[0,T ](Z) � ∪t∈[0,T ]Reacht(Z).

Corollary 1. Let x(·) be a trajectory of (2) and define the norm ball of initial
conditions

B(ε1,··· ,εk)(x(0)) � {z : |x1(0) − z1| ≤ ε1, · · · , |xk(0) − zk| ≤ εk},

centered at x(0). Suppose a coarse over-approximating set D ⊂ R
n is available

such that
Reach[0,T ](B(ε1,··· ,εk)(x(0))) ⊂ D (6)

and C ∈ R
k×k satisfies (3) for all (t, x) ∈ [0, T ] × D. Then,

ReachT (B(ε1,··· ,εk)(x(0))) ⊂ B(δ1,··· ,δk)(x(T )) (7)

where ⎡
⎢⎣

δ1
...
δk

⎤
⎥⎦ = exp(CT )

⎡
⎢⎣

ε1
...
εk

⎤
⎥⎦ . (8)

�
Corollary 1 relies on a coarse over-approximation D of the reachable set in

(6) to find a constant matrix C satisfying (3). It then uses this C in (7)–(8) to
find a more accurate over-approximation of the reachable set at the end of the
time interval. One can choose D to be a bounded invariant set for the system (2),
or the entire state space if a global upper bound exists on the right-hand side of
(3). For a less conservative estimate one can find a bound on each component of
the vector field f on an invariant set of interest,

|fi(t, x)| ≤ Mi, i = 1, . . . , k, (9)

and let
D = B(ε1+M1T,··· ,εk+MkT )(x(0)), (10)

which gives a tighter bound when the interval length T is smaller.

3 Simulation-Based Reachability Algorithm

Given a sequence of simulation points x[l] � x(tl), l = 0, 1, . . . , L, Algorithm
1 below tracks the evolution of the initial norm ball along this trajectory by
applying Corollary 1 along with the bound (10) to each interval [tl, tl+1], l =
0, 1, . . . , L − 1.

A similar approach to reachability was pursued in [13], using the special case
of Proposition 1 for k = 1. The choice k = 1 amounts to looking for a single
growth or contraction rate to cover every direction of the state space, which is
conservative when some directions offer more favorable rates than others. The
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Algorithm 1. Algorithm for bounding reachable tube along a sample trajec-
tory
Require: Vector ε = [ε1, · · · , εk]T for the initial ball size, sequence of simulation points

x[l] � x(tl), l = 0, 1, . . . , L, and bounds M1, · · · , Mk as in (9)
1: Set δ[0] = ε
2: for l from 0 to L − 1 do
3: Compute matrix Cl that satisfies (3) for
4: tl ≤ t ≤ tl+1 and x ∈ B(δ1[l]+M1(tl+1−tl),··· ,δk[l]+Mk(tl+1−tl))(x[l]).
5: Set δ[l + 1] = exp(Cl(tl+1 − tl))δ[l]
6: end for
7: return Bδ1[l],··· ,δk[l](x[l]), l = 1, . . . , L

other extreme, k = n, used in [16] can also lead to overly conservative results,
since the dynamics associated with multiple state variables may possess a more
favorable rate than the individual state variables in isolation. The following
example illustrates that intermediate choices of k may give tighter bounds than
the extremes k = 1 and k = n.

Example 1. We consider the harmonic oscillator

ṗ(t) = ωq(t) (11)
q̇(t) = −ωp(t) (12)

and treat the constant frequency ω as a state variable satisfying

ω̇(t) = 0, (13)

so that we can view different values of ω as variations of the initial condition
ω(0). Thus, the state vector is x = [p q ω]T and the Jacobian matrix for (11)–(13)
is

J(x) =

⎡
⎣ 0 ω q

−ω 0 −p
0 0 0

⎤
⎦ . (14)

If we partition x into k = 2 components as x1 = [p q]T and x2 = ω, then

J11(x) =
[

0 ω
−ω 0

]
J12(x) =

[
q

−p

]
J21(x) =

[
0 0

]
J22(x) = 0, (15)

and the matrix measures and norms induced by the Euclidean norm are

μ(J11(x)) = 0, ‖J12(x)‖ = r �
√

p2 + q2, ‖J21(x)‖ = 0, μ(J22(x)) = 0.

Thus,

C =
[
0 r̄
0 0

]
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satisfies (3) on the invariant set r ≤ r̄, and it follows from Corollary 1 that the
initial norm ball

{(p, q, ω) : (p − p(0))2 + (q − q(0))2 ≤ ε21, |ω − ω(0)| ≤ ε2} (16)

evolves to

{(p, q, ω) : (p − p(T ))2 + (q − q(T ))2 ≤ δ21 , |ω − ω(T )| ≤ δ2}, (17)

where ω(T ) = ω(0) is the nominal frequency with which the sample trajectory
is obtained, and

δ1 = ε1 + r̄ε2T, δ2 = ε2 (18)

from (8). Note that (18) correctly predicts the absence of growth in the ω direc-
tion, while accounting for the effect of frequency variation on (p, q) by enlarging
the radius of the corresponding ball to δ1 = ε1 + r̄ε2T . Algorithm 1 gives a
tighter estimate of δ1 by applying Corollary 1 along with the bound (10) in
every interval [tl, tl+1], l = 0, 1, . . . , L−1, of the simulated trajectory. A result of
this algorithm is shown in Fig. 1 (left) when w = 1 and ε2 = 0.02, that is when
a ±2% uncertainty is allowed around the nominal frequency. The right panel
shows the result with ε2 = 0, in which case there is no uncertainty in frequency
and the radius of the norm ball remains constant.

In this example we applied Proposition 1 by partitioning the state into k = 2
components. The alternative choice k = 1 (no partition) amounts to searching
for a single growth rate in each direction and fails to identify the lack of change
in the ω direction. Indeed the matrix measure of (14) is positive for any choice
of the norm and, thus, the norm ball grows in every direction. The choice k = 3
is also overly conservative because it misses the non-expansion property of the
combined (p, q) dynamics (11)–(12), instead applying (8) with a matrix of the
form

C =

⎡
⎣0 ω̄ r̄

ω̄ 0 r̄
0 0 0

⎤
⎦ ,

which falsely predicts a rapid growth of the norm ball in the (p, q) direction even
when no uncertainty is present in the frequency.

4 Application: Reachable Sets in MRI

In magnetic resonance imaging (MRI) excitation pulse sequences often assume
that the magnetization vector describing the system’s state begins at the equi-
librium [23]. To improve the quality of reconstructed images, such sequences are
often used repeatedly and the resulting images averaged to obtain a high-quality
image [24]. Achieving this requires a significant amount of time between pulses
to ensure that spins in diverse states and with diverse tissue properties all return
to the equilibrium before the next excitation pulse can be applied. This can lead
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Fig. 1. Algorithm 1 applied to a sample trajectory of (11)–(13) with ω = 1. The initial
norm ball is as in (16) with ε1 = 0.1. The plot on the left takes ε2 = 0.02, which means
a ±2% uncertainty around the nominal frequency ω = 1. This uncertainty leads to
a growth of the radius of the norm ball in the (p, q) direction. The plot on the right
takes ε2 = 0 and, since there is no uncertainty in the frequency, the radius of the norm
ball in the (p, q) direction remains constant. The bound M1 used in the algorithm is
calculated on the invariant set

√
p2 + q2 ≤ 2.

to long acquisitions that could be expedited if we could prove that all states
have reached a neighborhood of the equilibrium after a certain time interval has
elapsed.

We consider a model that describes the evolution of the magnetic moment
of a collection of spins, evolving according to the Bloch Equation for spins in a
constant B0 field:

d

dt

⎡
⎣Mx

My

Mz

⎤
⎦ =

⎡
⎣ − 1

T2
γB0 0

−γB0 − 1
T2

0
0 0 − 1

T1

⎤
⎦

⎡
⎣Mx

My

Mz

⎤
⎦ +

⎡
⎣ 0

0
M0
T1

⎤
⎦

Introducing the vector of states x = [Mx,My,Mz,
1
T1

, 1
T2

]T , which include the
uncertain relaxation constants 1/T1 and 1/T2, and defining the known parame-
ters θ1 = γB0, θ2 = M0, we write these equations as

ẋ =

⎡
⎢⎢⎢⎢⎣

−x1x5 + θ1x2

−θ1x1 − x2x5

−x4x3 + θ2x4

0
0

⎤
⎥⎥⎥⎥⎦ , (19)

and the Jacobian of this system as

J(t, x) =

⎡
⎢⎢⎢⎢⎣

−x5 θ1 0 0 −x1

−θ1 −x5 0 0 −x2

0 0 −x4 (θ2 − x3) 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .
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Note that for any 0 < r1 < R1 and 0 < r2 < R2 the set

D = {x ∈ R
5 : x2

1 + x2
2 ≤ θ22, x

2
3 ≤ θ22, r1 ≤ x4 ≤ R1, r2 ≤ x5 ≤ R2}

is forward invariant and a norm ball of the form described in Corollary 1. Par-
titioning the state space into blocks as (x1, x2), (x3), (x4), (x5), and using the
Euclidean norm we see that

μ(J11(t, x)) = max
j

1
2
λj(

[−x5 θ1
−θ1 −x5

]T

+
[−x5 θ1
−θ1 −x5

]
) = max

j
λj

[−x5 0
0 −x5

]

= −x5 ≤ −r2

μ(J22(t, x)) = −x4 ≤ −r1

‖J14(t, x)‖ =
√

(−x1)2 + (−x2)2 ≤ θ2

‖J23(t, x)‖ = |θ2 − x3| ≤ 2θ2

and all others are zero. Thus we can set

C =

⎡
⎢⎢⎣

−r2 0 0 θ2
0 −r1 2θ2 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

We simulate ball widths for three groupings of states: a single group (k = 1)
with all five states, k = 5 independent groups of 1 state and the partition of
k = 4 blocks of states described above. In Fig. 2 we see that while the single
group and independent groups both lead to the exponential expansion of the
ball radii, by grouping states in an appropriate manner we can achieve stable
ball radius dynamics. Additional details on simulation parameters, and source
code to reproduce the results in Fig. 2 can be found at https://github.com/
maidens/Edward-A-Lee-Festschrift-2017.

5 Automatic Selection of Weighted Norms

In [13] we demonstrated that using weighted 1-, 2- or ∞-norms, where the weights
are adjusted along the simulated trajectory, can significantly tighten the over-
approximation of the reachable tube. In particular we showed that bounding
the matrix measure induced by weighted 1-, 2- or ∞-norms can be expressed
as constraints that are convex functions of the weights, and used this fact to
develop a heuristic for minimizing the growth of the reachable set. The authors
of [21] use the linear matrix inequality (LMI) constraint corresponding to the
weighted 2-norm together with interval bounds on the Jacobian to argue that
optimal bounds on the Jacobian matrix measure can be computed automatically
by solving a sequence of semidefinite programs (SDPs).

We now extend this SDP approach to componentwise contraction and present
a procedure to search for weighted norms that yield a prescribed contraction

https://github.com/maidens/Edward-A-Lee-Festschrift-2017
https://github.com/maidens/Edward-A-Lee-Festschrift-2017


Simulation-Based Reachability Analysis for Nonlinear Systems 69

Fig. 2. Simulated ball radii using three state groupings. Top, left: a single group (k = 1)
with all five states; top, right: k = 5 independent groups of 1 state; bottom: the partition
of k = 4 blocks of states described above.

rate. To this end, in Proposition 2 we show that for a fixed matrix C the set of
weight matrices for which a weighted 2-norm version of (3) holds is a convex set
that can be expressed as the conjunction of an infinite number of LMIs. Then in
Proposition 3 we show how polytopic bounds on the Jacobian can be exploited to
compute an inner approximation of the set of feasible weight matrices, enabling
weight matrices to be selected automatically using a standard numerical SDP
solver.

We begin with two Lemmas that demonstrate how weighted matrix measure
and norm bounds can be expressed as LMIs. Here the inequality symbol A � B
means that B − A is a positive semidefinite matrix.

Lemma 1 (Lemma 2 of [22]). If

ΓA + AT Γ � 2cΓ

where Γ is a positive definite matrix then μ(A) ≤ c in the norm x → |Px|2 where
P = Γ 1/2 � 0.

Lemma 2. If

AT ΓiA � c2Γj
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where Γi and Γj are positive definite matrices and c ≥ 0 then ‖A‖ ≤ c where
‖ · ‖ denotes the mixed norm

‖A‖ = max
|Pjx|2=1

|PiAx|2

where Pi = Γ
1/2
i and Pj = Γ

1/2
j .

Proof. AT ΓiA � c2Γj implies that for all x

|PiAx|22 = xT AT ΓiAx ≤ c2xT Γjx = c2|Pjx|22.

Thus

‖A‖2 = max
|Pjx|2=1

|PiAx|22 ≤ c2,

or equivalently ‖A‖ ≤ c. �
Combining Lemmas 1 and 2 along with the reasoning used to derive Eq. (5),

we arrive at the following result:

Proposition 2. Given a matrix C ∈ R
k×k, the search for weighted Euclidean

norms xi �→ |Pixi| for i = 1, . . . , k in which (3) is satisfied can be formulated as
a semidefinite program:

find Γ1, . . . , Γk

subject to Γi � 0, ∀i = 1, . . . , k

ΓiJii(t, x) + Jii(t, x)T Γi � 2ciiΓi, ∀(t, x) ∈ [0, T ] × D, ∀i = 1, . . . , k

Jij(t, x)T ΓiJij(t, x) � c2ijΓj ∀(t, x) ∈ [0, T ] × D, ∀j �= i, i = 1, . . . , k

(20)

where Γi = PT
i Pi.

Note that (20) contains an infinite number of LMI constraints and therefore
cannot be solved numerically using a standard SDP solver. To address this we
show how a conservative inner approximation of the feasible set can be defined
in terms of a finite conjunction of LMIs. Before stating this result, we prove
the following lemma which shows how an infinite family of LMIs can be conser-
vatively approximated by a finite family of LMIs by assuming the existence of
polytopic bounds on the coefficient matrices.

Lemma 3. For all i = 0, . . . , n let Fi(z) be a family of symmetric matrices
parameterized by z ∈ Z. Assume that there exist a finite set of matrices {Fiki

:
ki = 1, . . . , Ni; i = 0, . . . , n} such that for each i the family Fi(z) is bounded by
the matrix polytope with vertices Fiki

:

{Fi(z) : z ∈ Z} ⊆ Conv({Fiki
: ki = 1, . . . , Ni}) (21)
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where Conv denotes the convex hull. Then

F0k0 + x1F1k1 + . . . xnFnkn
� 0 ∀(k0, . . . kn) ∈ [N0] × · · · × [Nn],

where [Ni] := {1, . . . , Ni}, implies

F0(z) + x1F1(z) + · · · + xnFn(z) � 0 ∀z ∈ Z.

Proof. Let z ∈ Z. Using the assumption (21) we know that for each i there exist
nonnegative weights λiki

with
∑

ki
λiki

= 1 such that Fi(z) =
∑

ki
λiki

Fiki
.

Therefore

F0(z) + x1F1(z) + · · · + xnFn(z)

=
∑

k0

λ0k0F0k0 + x1

∑

k1

λ1k1F1k1 + · · · + xn

∑

kn

λnknFnkn

=
∏

j �=0

⎛

⎝
∑

kj

λjkj

⎞

⎠

⎛

⎝
∑

k0

λ0k0F0k0

⎞

⎠ + · · · + xn

∏

j �=n

⎛

⎝
∑

kj

λjkj

⎞

⎠

(
∑

kn

λnknFnkn

)

=
∑

k0

· · ·
∑

kn

(λ0k0 . . . λnkn)(F0k0 + x1F1k1 + . . . xnFnkn)

� 0. �
We now state a result that allows us to find a set of weights satisfying (3) by

solving only a finite set of LMIs.

Proposition 3. For each i let {Ei�i
: �i = 1, . . . , ni(ni + 1)/2} be a basis for

the space of ni × ni symmetric matrices. Suppose that there exist matrices such
that

{Ei�i
Jii(t, x) + Jii(t, x)T Ei�i

: (t, x) ∈ [0, T ] × D}
⊆ Conv({Fi�iki�i

: ki�i
∈ [Ni�i

]})

{Jij(t, x)T Ei�i
Jij(t, x) : (t, x) ∈ [0, T ] × D}

⊆ Conv({F̃ij�ikij�i
: kij�i

∈ [Nij�i
]}).

Then any solution to the SDP

find xi�i
∀i ∈ [k] ∀�i ∈ [ni(ni + 1)/2]

subject to
∑
�i

xi�i
Ei�i

� 0, ∀i ∈ [k]

∑
�i

xi�i
Fi�iki�i

� 2cii

∑
�i

xi�i
Ei�i

, ∀i ∈ [k]

∀(ki1, . . . , ki,ni(ni+1)/2) ∈ [Ni1] × · · · × [Ni,ni(ni+1)/2]∑
�i

xi�i
F̃ij�ikij�i

� c2ij
∑
�j

xj�j
Ejkj

∀i ∈ [k] ∀j ∈ [k] \ {i}

∀(kij1, . . . , kij,ni(ni+1)/2) ∈ [Nij1] × · · · × [Nij,ni(ni+1)/2]
(22)

yields a solution Γi =
∑

�i
xi�i

Ei�i
to (20).
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The proof follows in a straightforward manner from (20) by expanding the
decision variables as Γi =

∑
�i

xi�i
Ei�i

then applying Lemma 3. Note that if
D is compact and (t, x) �→ J(t, x) is continuous, it is always possible to find a
collection of such matrices F and F̃ .

6 Proof of Proposition 1

Let ψ(t, s) denote the solution of (2) with initial condition sx(0) + (1 − s)z(0);
that is,

∂ψ(t, s)
∂t

= f(t, ψ(t, s)) (23)

ψ(0, s) = sx(0) + (1 − s)z(0). (24)

In particular,
ψ(t, 1) = x(t) and ψ(t, 0) = z(t). (25)

Taking the derivative of both sides of (23) with respect to s we get

∂2ψ(t, s)
∂t∂s

=
∂f(t, ψ(t, s))

∂s
= J(t, ψ(t, s))

∂ψ(t, s)
∂s

,

which means that the variable

w(t, s) � ∂ψ(t, s)
∂s

(26)

satisfies
∂w(t, s)

∂t
= J(t, ψ(t, s))w(t, s). (27)

We then conclude from Lemma 4 below that

D+|wi(t, s)| ≤ μ(Jii(t, ψ(t, s)))|wi(t, s)| +
∑
j �=i

‖Jij(t, ψ(t, s))‖|wj(t, s)|, (28)

where D+ denotes the upper right-hand derivative with respect to t. Since
ψ(t, s) ∈ D for t ∈ [0, T ] and (3) holds for all (t, x) ∈ [0, T ] × D, we conclude

D+|wi(t, s)| ≤ Cii|wi(t, s)| +
∑
j �=i

Cij |wj(t, s)|. (29)

This means that

D+

⎡
⎢⎣

|w1(t, s)|
...

|wk(t, s)|

⎤
⎥⎦ ≤ C

⎡
⎢⎣

|w1(t, s)|
...

|wk(t, s)|

⎤
⎥⎦ (30)

and, since the matrix C is Metzler (Cij ≥ 0 when i �= j), it follows from standard
comparison theorems for positive systems that⎡

⎢⎣
|w1(t, s)|

...
|wk(t, s)|

⎤
⎥⎦ ≤ exp(Ct)

⎡
⎢⎣

|w1(0, s)|
...

|wk(0, s)|

⎤
⎥⎦ . (31)
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Note from (26) and (24) that

w(0, s) =
∂ψ(0, s)

∂s
= x(0) − z(0) (32)

and, thus, ⎡
⎢⎣

|w1(0, s)|
...

|wk(0, s)|

⎤
⎥⎦ =

⎡
⎢⎣

|x1(0) − z1(0)|
...

|xk(0) − zk(0)|

⎤
⎥⎦ . (33)

Substituting (33) in (31) we get
⎡
⎢⎣

|w1(t, s)|
...

|wk(t, s)|

⎤
⎥⎦ ≤ exp(Ct)

⎡
⎢⎣

|x1(0) − z1(0)|
...

|xk(0) − zk(0)|

⎤
⎥⎦ . (34)

Next, note from (25) that

x(t) − z(t) = ψ(t, 1) − ψ(t, 0) =
∫ 1

0

∂ψ(t, s)
∂s

ds =
∫ 1

0

w(t, s)ds, (35)

which implies ⎡
⎢⎣

|x1(t) − z1(t)|
...

|xk(t) − zk(t)|

⎤
⎥⎦ ≤

⎡
⎢⎣

∫ 1

0
|w1(t, s)|ds

...∫ 1

0
|wk(t, s)|ds

⎤
⎥⎦ . (36)

Noting from (34) that

⎡
⎢⎣

∫ 1

0
|w1(t, s)|ds

...∫ 1

0
|wk(t, s)|ds

⎤
⎥⎦ ≤ exp(Ct)

⎡
⎢⎣

|x1(0) − z1(0)|
...

|xk(0) − zk(0)|

⎤
⎥⎦ (37)

and combining with (36) we obtain (4). �

Lemma 4. Consider the linear time-varying system

ẇ(t) = A(t)w(t), w(t) ∈ R
n, (38)

where A(·) is continuous. Suppose we decompose A(t) ∈ R
n×n into blocks

Aij(t) ∈ R
ni×nj , i, j = 1, . . . , k such that n1 + · · · + nk = n, and let wi(t) ∈ R

ni ,
i = 1, . . . , k, constitute a conformal partition of w(t) ∈ R

n. Then

D+|wi(t)| � lim
h→0+

|wi(t + h)| − |wi(t)|
h

≤ μ(Aii(t))|wi(t)| +
∑
j �=i

‖Aij(t)‖|wj(t)|.
(39)
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Proof of Lemma 4. Note that

lim
h→0+

|wi(t + h)| − |wi(t)|
h

= lim
h→0+

|wi(t) + hẇi(t)| − |wi(t)|
h

= lim
h→0+

|wi(t) + hAii(t)wi(t) + h
∑

j �=i Aij(t)wj(t)| − |wi(t)|
h

≤ lim
h→0+

|wi(t) + hAii(t)wi(t)| − |wi(t)|
h

+ |
∑
j �=i

Aij(t)wj(t)|

≤ lim
h→0+

‖I + hAii(t)‖ − 1
h

|wi(t)| +
∑
j �=i

‖Aij(t)‖ |wj(t)|.

Then (39) follows from the definition of the matrix norm, (1). �

7 Conclusions

In this note we continued the development of reachable tube estimates around
simulated trajectories of a nonlinear dynamical system. We followed the contrac-
tion approach of [13], which establishes bounds on the convergence or divergence
between the samples and neighboring trajectories that are not explicitly simu-
lated. Unlike [13], however, we pursued a componentwise contraction analysis
where we partition the state vector into several components and analyze con-
traction properties separately in each direction. Such partitioning offers new
degrees of flexibility in our algorithms to tighten the reachable tube estimates.
For example, we can now analyze the effect of constant but uncertain parame-
ters by treating them as state variables and partitioning them into a separate
direction.

An important question that must be further studied is how to select the num-
ber of components k and how to partition the state vector into k components.
Although the examples gave some intuition about the choice of partitioning, the
most favorable choice remains problem-specific and further tools are needed to
select from among possible partitions. One possibility is to explore using the
sparsity structure of the Jacobian J(t, x) and graph cut criteria to automati-
cally generate partition candidates. Once a pool of candidates are identified the
reachability algorithm can be performed in parallel for each partition to select
for more favorable estimates.

References

1. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based
approaches for verification of embedded control systems: an overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Syst.
36(6), 45–64 (2016)

2. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-4419-0224-5

https://doi.org/10.1007/978-1-4419-0224-5


Simulation-Based Reachability Analysis for Nonlinear Systems 75

3. Mitchell, I., Bayen, A., Tomlin, C.: A time-dependent Hamilton-Jacobi formulation
of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control
50(7), 947–957 (2005)

4. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems
with uncertain parameters using conservative linearization. In: IEEE Conference
Decision Control, pp. 4042–4048 (2008)

5. Chutinan, A., Krogh, B.: Computational techniques for hybrid system verification.
IEEE Trans. Autom. Control 48(1), 64–75 (2003)

6. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for paramet-
ric ODEs. Appl. Numer. Math. 57(10), 1145–1162 (2007)

7. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of
ODEs. SIAM J. Numer. Anal. 45, 236–262 (2007)

8. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities, vol. 1. Aca-
demic Press, New York (1969)

9. Scott, J.K., Barton, P.I.: Bounds on the reachable sets of nonlinear control systems.
Automatica 49(1), 93–100 (2013)
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Abstract. Timing predictability is an explicit requirement for many
safety-critical real-time systems. In building such systems, this require-
ment is typically met by establishing, to an appropriate level of assur-
ance, that salient run-time temporal properties of the system being
designed can be accurately predicted prior to run-time. But what of
real-time systems supporting multiple functionalities that are not all
equally critical? In such systems, it may suffice to establish the timing
predictability of less critical functionalities to lower levels of assurance
than is needed for highly critical functionalities. We examine the implica-
tions of this fact on the deterministic modeling of real-time systems, and
explore means for exploiting it in order to achieve more resource-efficient
implementations of mixed-criticality real-time systems.

1 Introduction

Many cyber-physical systems (CPSs) are responsible for highly safety-critical
functionalities. Since incorrect run-time behavior by such systems may have
potentially disastrous consequences, it is typically required that these sys-
tems have their correctness validated prior to deployment; in some application
domains such as avionics, such validation is mandated by statutory certification
authorities. A rigorous approach towards performing such validation would have
us (i) construct formal models of the run-time behavior of the system, and make
an authoritative and persuasive argument that these models do indeed represent
the actual behavior that the system will exhibit during run-time; and (ii) prove
properties of these models that establish the correctness of the run-time behavior
of the system that is modeled.

Such an approach to validating correctness is applicable only if the run-
time behavior of the system can be reliably predicted based upon pre-run-time
analysis of the model; indeed, such predictability has long been considered one
of the cornerstone requirements for safety-critical systems [19]. We illustrate
the role of predictability in the validation of safety-critical system correctness
by considering a (very small) part of the requirement specifications for airbags
installed in cars: it is required that the “airbag deploys [only] upon collisions
equivalent to hitting a static barrier at speeds 8 mph or higher, within 70 ms
c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 77–87, 2018.
https://doi.org/10.1007/978-3-319-95246-8_5
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of impact” [12]. Observe that these specifications impose at least two forms of
predictability requirements upon the system:

1. Functional predictability requirements: the airbag must predictably be shown
to inflate upon the occurrence of specified events.

2. Timing predictability requirements: the airbag must predictably be shown to
inflate within the specified maximum duration of time after the occurrence
of a triggering event.

Both predictability requirements, functional and timing, are equally central to
establishing correctness; however, most computing devices (processors, network-
ing elements, etc.) are built to ensure functional correctness rather than timing
predictability.1 This is by design: these computing devices are built to implement
formalisms such as Turing machines that abstract away notions of time and other
physical factors in axiomatizing, and thereby obtaining a formalization of, the
process of computation. Thus, this aspect of focusing on functional, rather than
timing, properties, is a feature of these devices and not a bug; however, it is
an aspect we must explicitly consider as we seek to achieve both functional and
timing predictability in our CPSs.

2 Current Approaches to Achieving Timing Predictability

In discussing the behavior of a CPS, it is often convenient to consider the CPS
as comprising three constituent components:

1. The programs that we write in order to achieve the functionality that we
desire of our CPS;

2. The platform upon which these programs execute during run-time; and
3. The environment with which the implementation (i.e., the programs execut-

ing upon the platform) interacts through the use of sensors and actuators.

The run-time behavior is defined by this interaction of the implementation
with the environment. As discussed above, such behavior may be required to
be predictable with regards to both functional and timing properties. Current
approaches to obtaining safety-critical systems that possess predictable proper-
ties are often centered on the principle of correctness by construction: synthesize
the systems using a disciplined approach, based upon following well-established
guidelines and methodologies, which ensures that the constructed system pos-
sesses the desired predictability properties. But any uncertainty in the precise
characterization of the run-time timing behavior of one or more of the three
components of a CPS makes it difficult to achieve timing predictability in this
manner. As we will see, some timing uncertainty tends to be present in all but
1 We point out that there are some exceptions to this general rule, in the form of efforts

at developing time-deterministic hardware—a particularly noteworthy example is the
Precision Timed Machine project [9,11]. See [4] for a survey of research efforts at
building predictable systems using current hardware.
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the simplest CPS; most current approaches to building safety-critical systems
deal with such uncertainty by (i) enforcing deterministic timing behavior upon
the computational components that are used to build the system; and (ii) rep-
resenting the interaction between the implementation and the environment by
deterministic models. Let us now separately review how determinism is used in
this manner to facilitate timing predictability from the perspectives of each of
the three constituent components of a CPS: the programs, the platforms, and
the operating environment.

§1. Programs. There appears to be widespread agreement within the safety-
critical systems community that the cause of predictability is best served by
requiring that programs exhibit deterministic behavior during run-time. This
edict argues against the use of general-purpose programming languages in safety-
critical systems implementation, instead favoring the use of special-purpose lan-
guages that guarantee deterministic behavior. These include languages such as
Lustre [13], Esterel [7], and Signal [17] that are based upon the synchronous-
reactive (SR) paradigm of computing [6]. The principles of SR programming
also underlie the semantics of the coordination language Ptolemy II [10], and
the widely-used modeling frameworks Statecharts [15] and Statemate [14]. The
SR paradigm of computing makes the same abstraction for programming as the
clock does in digital circuit design, by introducing the notion of a logical clock
“tick”: time is modeled as advancing in discrete steps, each represented by one
such tick. A synchronous program interacts with its environment at the begin-
ning of each tick, and computations are structured as an ordering of actions. Each
action is assumed to execute atomically, and execution of all the actions assigned
to a clock tick are required to converge to a unique fixed point by the end of the
tick. In this manner, the (functional) non-determinism that may result from the
interleaving of concurrent behaviors is eliminated, and deterministic functional
semantics enforced.

§2. Platforms. Safety-critical real-time systems were initially implemented
upon custom-built hardware that was explicitly designed to provide timing as
well as functional determinism. As these systems became more computation-
ally demanding, however, it became economically infeasible to continue to cus-
tom build powerful enough platforms; today safety-critical systems are increas-
ingly implemented upon platforms comprising commercial off-the-shelf (COTS)
computing components. Such COTS components are typically developed with
an objective of providing improved average-case performance rather than good
guaranteed worst-case bounds with regards to extra-functional properties such
as timing behavior. Hence they come equipped with advanced features (such as
multiple cores on a single CPU, complex networks on chip, cache memory, etc.)
that speed up average-case performance but may exhibit unpredictable timing
behavior during run-time. In order to enforce deterministic timing behavior upon
platforms comprising such components, current practice is to explicitly or implic-
itly disable those advanced features that compromise determinism. For instance,
it is considered good practice in some safety-critical application domains to stat-
ically partition (or in some extreme cases, entirely disable) cache memories prior
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to implementation, the motivation for doing so being that one is willing to forgo
the improved average-case performance offered by caches in order to not have to
deal with the inherent unpredictability in run-time timing behavior that typi-
cally accompanies such performance improvements. Another more extreme illus-
tration of this performance-predictability tradeoff is to be found in the CAST
32 [2] recommendations of the Certification Authorities Software Team that all
computing cores except one be disabled upon multicore processors hosting highly
safety-critical software.2

§3. The Environment. As we have seen above, it is possible to enforce deter-
ministic run-time behavior upon the implementation of a CPS – the programs,
and the platforms upon which these programs execute. Let us now turn our
attention to the third constituent component of the CPS – the physical environ-
ment within which the CPS implementation operates, and with which it interacts
through the use of sensors and actuators. Is a similar strategy applicable here?

Here, it should be observed that since the physical environment is exter-
nal to the system under development and hence typically not under the control
of the system developer, it is not really feasible to enforce determinism upon
the environment – the environment is part of the physical world (the “P” in
“CPS”). So the more germane question to ask is: Is the physical world deter-
ministic? The answer, in brief, is that we do not know: this question lies at
the heart of some of the deepest and most fundamental issues in disciplines as
diverse as physics, philosophy, and religion. However, we believe that the answer
to this question is not very relevant to us in our quest for timing predictability:
regardless of whether the physical world is deterministic or not, the fact of the
matter is that the interaction of any non-trivial CPS with the physical world
is likely to be very complex, and is governed by laws that are tremendously
complex and chaotic, and often extremely sensitive to initial conditions. Hence,
even if such interaction were in fact completely deterministic, we cannot hope to
represent it exactly for the purposes of analysis—doing so would yield analysis
problems that are computationally hopelessly intractable. Instead, we represent
this interaction using models that highlight the relevant aspects of the inter-
action while abstracting away the less relevant ones. Such models necessarily
approximate; for safety-critical CPSs, the approximations must err on the side
of caution and incorporate safety margins. In order to facilitate the goal of ensur-
ing timing predictability, current practice is to ensure that over-approximations
in these models along the timing dimension are deterministic. As we continue to
become more ambitious regarding the functionality we desire of our CPSs, their
interaction with the physical world continues to increase in complexity and our
simplified models of such interaction necessarily incorporate increasingly larger
safety margins.

2 The more recent CAST-32A recommendations are somewhat more liberal and allow
for exceptions to this under carefully controlled circumstances.
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3 The Cost of Achieving Predictability via Determinism

While enforcing determinism as discussed above has proved an effective app-
roach for achieving predictability (in the sense that several large complex CPSs
have been successfully developed and deployed), such an approach comes at con-
siderable cost with regards to the run-time resource efficiency of the resulting
implementation. We will show below how imposing deterministic timing behavior
on hardware components, and modeling the interaction of the implementation
and the environment in a deterministic manner, has the potential to yield system
implementations that severely under-utilize platform resources during run-time.

Platforms. A series of significant advances in computer architecture and in
chip-manufacturing technologies has led to a tremendous increase in the compu-
tational capabilities of COTS platforms. However, this has had a significant side-
effect—many of the features that have enabled this increase in computational
capabilities have also resulted in platforms that exhibit great unpredictability
and variation in run-time behavior with regards to extra-functional properties.
Of particular relevance to us in our quest to achieve timing predictability is vari-
ations and unpredictability in the execution time of pieces of code upon COTS
platforms. It is widely recognized (see, e.g., [21]) that the true worst-case execu-
tion time (WCET) of some pieces of code upon some advanced modern COTS
platforms may be several orders of magnitude greater than their average exe-
cution times, but are extremely unlikely to occur in practice—their occurrence
follows from the concurrent happening (a “perfect storm”) of a large number of
unlikely events. Two strategies are commonly used to achieve timing predictabil-
ity in the face of this fact:

1. As stated in Sect. 2 above, one approach is by restricting or disabling advanced
platform features such as cache, thereby driving up average-case execution
times but reducing WCETs.

2. Another approach is to over-approximate the run-time timing behavior and
perform pre-runtime analysis under the assumption that actual run-time will
be very close to the pre-determined WCET, even though this is very unlikely
to happen in practice. (Under such an approach, care must be taken to ensure
that sustainable [5] techniques are used to perform the pre-runtime analysis.)

It is evident that either strategy leads to inefficient utilization of platform com-
puting capabilities during run-time.

Modeling of Implementation-Environment Interaction. As safety-critical
real-time systems continue their trend towards becoming ubiquitous (think self-
driving cars, for example), the likelihood of the occurrence of some failure
increases; as these systems come to be networked together, the effect of any
such failure may be magnified as it cascades rapidly across multiple systems. It
therefore becomes increasingly important that we avoid failures; in order to do so,
the conservatism we build into our models—the degree of over-approximation—
needs to be very large. Such severe over-approximation, too, will result in inef-
ficient implementations of the systems.
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How Much Inefficiency?

Both in enforcing deterministic behavior upon platforms and in modeling
implementation-environment interaction deterministically, the system designers’
choices are determined, in large part, by the criticality of the system being
designed and the consequences of its failure: the more critical the system (and
the more severe the consequences if it fails), the more conservative its design
and analysis, and the greater the degree of inefficiency in the resulting imple-
mentation. For instance, the determination as to which features of a hardware
platform are to be disabled in order to reduce run-time timing unpredictabil-
ity is driven by consideration of the criticality of the application system being
implemented; indeed, the CAST 32 documentation [2] explicitly states that the
recommendations there are only meant to guide the implementation of safety-
critical software of the three highest DALs (Design Assurance Levels) A, B,
and C. With regards to over-approximating the execution time of code, different
WCET-estimation tools for doing this have been developed that typically use
very different methodologies to make their WCET estimates, and thereby pro-
vide estimated upper bounds that may be trusted to different levels of assurance:

– A very conservative WCET estimation tool may be based upon safe static
analysis of the code (by safe analysis we mean that whenever there are uncer-
tainties regarding run-time behavior such a tool always makes assumptions
that are guaranteed to dominate the actual behavior).

– Less conservative tools may be measurement based, repeatedly executing the
code and taking measurements of the actual run-time, and then applying sta-
tistical methods upon these observed run-times to estimate upper bounds on
the maximum possible run-time. Different tools may use different statistical
methods that make different assumptions about the distributions of the run-
times, and yield WCET bounds that should be trusted to different levels of
assurance.

Which WCET-estimation tool is most appropriate to use for the analysis of a
particular application depends, once again, upon the criticality of the application
– the more critical the application, the more conservative the tool (and conse-
quently, the larger or more pessimistic the WCET estimate). Particular tools
may be pre-approved for use in certifying the correctness of systems at certain
criticality levels, or at least provide assistance in achieving such certification.3

The bottom line is that when system developers appeal to determinism during
implementation and analysis in order to achieve run-time timing predictability,
the resulting implementation is likely to make poor use of platform computing
resources during run-time. The degree of such inefficiency that a system devel-
oper is willing to tolerate depends upon the criticality of the application system

3 As an example from the avionics certification domain, the RapiTime Aero
tool (https://www.rapitasystems.com/products/rapitime/aero) offers documenta-
tion and tests to support the qualification of tools and processes that seek to achieve
DO-17B qualification.

https://www.rapitasystems.com/products/rapitime/aero
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under consideration: the more critical the system the greater the need for timing
predictability and the greater the inefficiency that is considered tolerable. This
observation—that more critical systems need timing predictability that is more
“trusted”—may be exploited in mixed-criticality systems to achieve implemen-
tations that make more efficient use of platform resources during run-time; this
is discussed in the next section.

4 Mixed-Criticality Systems

A typical CPS application comprises multiple sub-systems. Due to considera-
tions of cost, size, energy-efficiency, thermal dissipation, etc., in implementing
such applications there is an increasing trend away from federated architec-
tures, in which each sub-system is implemented upon its own hardware plat-
form; instead, integrated architectures are preferred, with multiple sub-systems
being implemented upon a single shared platform. Example efforts at formalizing
and standardizing such integrated architectures include the Integrated Modular
Avionics (IMA) [18] effort in the aerospace industry, and Autosar [1] in the
automotive domain. Even in highly safety-critical application domains such as
aerospace and automotive, typically only a relatively small fraction of the overall
system is actually of very high criticality; the remainder of the system consists
of less critical code that enhances the overall performance of the application
system, but has a lesser effect (or none) upon safety. Hence in an integrated
architecture a single platform is supporting different functionalities that are of
different criticalities. Such mixed criticality systems are increasingly commonly
found in embedded computing.

Achieving time-predictability in mixed-criticality systems offers novel chal-
lenges and opportunities. As seen in Sect. 3 above, inefficient implementations
are the price we pay for using determinism to achieve time-predictability; the
degree of conservatism we choose to incorporate into our deterministic designs
and analyses (and hence, the degree of inefficiency that we tolerate) is dictated by
the criticality of the system being developed. When applied to mixed-criticality
systems, such an approach currently mandates that the criticality of the most
critical sub-system determines this choice. Indeed, most safety standards (includ-
ing the generic IEC 61508 [16] functional safety standard) require that the entire
system be designed according to the highest level of criticality involved, unless
“sufficient independence” can be demonstrated amongst functionalities of differ-
ent criticalities.

Efficient Implementations of Mixed-Criticality Systems

In the context of implementing mixed-criticality systems upon integrated archi-
tectures, “sufficient independence” amongst functionalities of different critical-
ities is currently achieved via resource partitioning along both the spatial and
timing dimensions; see, for instance, the ARINC 653 software specification [3]
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for space and time partitioning in safety-critical avionics real-time operating sys-
tems. In such partitioning approaches, both the physical resources (processors,
memory, buses, etc.) and the time-line are partitioned, with separations amongst
the partitions enforced as part of the platform infrastructure and validated at
a level of assurance consistent with the highest criticality level that is to be
supported upon the platform. Sub-systems of different criticalities are allocated
different partitions for their exclusive use, and the run-time (timing and other)
correctness of each application is validated when executing upon its allocated
partitions by enforcing a level of determinism that is consistent with the criti-
cality of that particular application. We illustrate by a very simple, contrived,
example.

Example. Consider a system comprising two jobs J1 and J2, both arriving at
time-instant 0 and sharing a common deadline at time-instant 10, that are to
execute upon a single shared preemptive processor. Job J1 is of greater criticality
than J2. Suppose that J1’s WCET, determined using tools and methodologies
that are consistent with its criticality, is determined to be equal to 6; J2’s WCET,
determined using tools and methodologies that are consistent with its criticality
(which is lower than J1’s criticality), is determined to be equal to 5. A time-
partitioning scheduler would seek to partition the time-interval [0, 10] into two
parts of duration 6 and 5, to be assigned to J1 and J2 respectively. But since
6 + 5 = 11 > 10, such a schedule cannot be constructed.

Now suppose that the WCET of the higher-criticality job J1 is also deter-
mined using the tools and methodologies that are consistent with the lower
criticality (i.e., J2’s criticality), and the value so determined is equal to 4. Con-
sider a run-time priority-based scheduling algorithm that executes J1 first with
greater priority, and only executes J2 once J1 has completed execution. Let us
seek to validate the correctness of the run-time behaviors that will be expressed
by jobs J1 and J2 when scheduled by this priority-based algorithm.

– In validating the correctness of job J1 at a level of assurance consistent with
its own criticality level, it is determined that J1 starts executing at time-
instant 0 and executes for at most 6 time units, thereby completing prior to
its deadline at time-instant 10.

– In validating the correctness of job J2 at a level of assurance consistent with
its own criticality level, it is determined that the higher-priority job J1 starts
executing at time-instant 0 and executes for at most 4 time units (rather
than 6—this is because we may use the WCET-analysis of J1 that returns an
estimate at a level of assurance consistent with J2’s criticality level). Once
J1 completes execution (at or before time-instant 4), job J2 executes for at
most 5 time units and therefore also completes prior to its deadline at time-
instant 10.

We thus see that each job is validated correct at a level of assurance consistent
with its own criticality level, despite our earlier observation that no correct time-
partitioning schedule can be constructed for this instance. �
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The example above illustrates the main intuition underlying mixed-criticality
scheduling theory , an approach to the run-time scheduling and pre-run-time
schedulability analysis of mixed-criticality systems—see [8] for a survey. This
theory builds upon an approach to the pre-run-time verification of such systems
that was proposed in a paper by Vestal [20]. In general terms,

1. The approach recognizes that not all predictability properties of a mixed-
criticality system are equally critical: some are of greater criticality than
others, and must be validated correct to higher levels of assurance.

2. It therefore advocates against imposing determinism (and thereby paying the
price in terms of less efficient implementations) upon the system; instead,
the run-time behavior of a mixed-criticality system is not required to be
deterministic.

3. Prior to run-time, predictability properties are established by performing mul-
tiple analyses of the mixed-criticality system, each such analysis having the
objective of establishing the correctness of those sub-systems that are of a
particular criticality.

4. In performing these analyses, assumptions are made about the behavior that
is actually expressed by the non-deterministic system. The severity or con-
servatism/pessimism of the assumptions that are made is consistent with the
criticality level being validated: the greater this criticality level, the more
severe the assumptions.

In this manner, each sub-system has its desired predictability properties estab-
lished at an appropriate level of assurance, rather than at a higher level. The
resource over-allocation that results from over-validation is therefore avoided;
more resource-efficient implementations are the result.

Let us examine how the example introduced earlier in this section fits in with
this general approach.

Example. In our example, the criticality of job J1 is greater than that of J2;
hence, J1 should have its correctness validated to a greater level of assurance.
Therefore, a more conservative WCET-estimation tool is used to determine
WCETs for validating J1’s correctness—this tool estimates that J1 may exe-
cute for up to 6 time units. For validating J2’s correctness, a less conservative
WCET-estimation tool is used to estimate the WCETs of both J1 and J2; accord-
ing to this tool J1 will execute for at most 4 time units, and J2 will execute for
at most 5 time units.

We note that the run-time behavior of the system when scheduled using
the priority-driven scheduler is less predictable than when scheduled using a
time-partitioning scheduler (which is, in our example, effectively a lookup table
denoting the intervals when each job is to execute). For instance, consider a
time-partitioning scheduler that schedules J1 during the interval [0, 6] and J2
during [6, 11]; for this scheduler4, we can predict prior to run-time that J2 will
begin to execute at time-instant 6. With respect to the priority-driven scheduler

4 Which, of course, is unable to guarantee that J2 completes by its deadline.
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that prioritizes J1 over J2, however, the start-time of J2’s execution depends
upon the actual execution time of J1, which may not be known prior to run-
time (and may vary during different runs of the system). However, this loss of
predictability does not compromise correctness, since all that is asked of J2 is
that it complete by time-instant 10. �

5 Summary

In order to be able to validate the correctness of safety-critical systems prior to
their deployment and use, it is necessary that their run-time behavior be pre-
dictable prior to run-time. Stankovic and Ramamritham [19] have articulated
this desired attribute in the following manner: “[Predictability] means that it
should be possible to show, demonstrate, or prove that requirements are met sub-
ject to any assumptions made, e.g., concerning failures and workloads” (emphasis
added). Such assumptions are generally necessary in the validation of non-trivial
CPSs, since there is likely to be considerable uncertainty with regards to their
precise run-time behavior.

Most current approaches to achieving predictability enforce and assume
deterministic run-time timing behavior, but such determinism may result in
implementations that are unable to make full use of platform resources dur-
ing run-time. The mixed-criticality scheduling theory approach to validating the
correctness of mixed-criticality systems is predicated upon the thesis that uncer-
tainty inherent in CPSs can be dealt with, and predictability can be achieved, in
real-time safety-critical systems without enforcing deterministic timing behav-
ior upon the hardware and software components from which the system is con-
structed, and/or modeling the interaction between a system implementation and
its operating environment in a time-deterministic manner. Achieving predictabil-
ity without enforcing determinism allows for more resource-efficient implemen-
tations.
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Abstract. Dataflow is widely used as a model of computation in many
application domains, especially domains within the broad area of signal
and information processing. The most common uses of dataflow tech-
niques in these domains are in the modeling of application behavior and
the design of specialized architectures. In this chapter, we discuss a dif-
ferent use of dataflow that involves its application as a formal model for
scheduling applications onto architectures. Scheduling is a critical aspect
of dataflow-based system design that impacts key metrics, including
latency, throughput, buffer memory requirements, and energy efficiency.
Deriving efficient and reliable schedules is an important and challenging
problem that must be addressed in dataflow-based design flows. The con-
cepts and methods reviewed in this chapter help to address this problem
through model-based representations of schedules. These representations
build on the separation of concerns between functional specification and
scheduling in dataflow, and provide a useful new class of abstractions for
designing dataflow graph schedules, as well as for managing, analyzing,
and manipulating schedules within design tools.

Keywords: Dataflow · Model-based design · Signal processing
Scheduling

1 Introduction

This chapter is concerned with model-based schedule representations for imple-
mentation of behavioral dataflow models. Dataflow has been studied extensively
for modeling application functionality, especially in the domain of signal process-
ing, as well as for designing efficient architectures. In this chapter, we discuss use
of dataflow formalisms as an intermediate representation—between application
and architecture—in the system design process. Specifically, we review the use
of dataflow as a model for representing schedules of dataflow-based application
models.
c© Springer International Publishing AG, part of Springer Nature 2018
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The derivation of a schedule for a dataflow graph is an important part in the
process of deriving an implementation for the graph. The schedule determines on
which processor each firing of the dataflow graph will execute (assignment), the
relative ordering among firings that are assigned to the same processor (order-
ing), and the time at which each firing will begin its execution (timing) [12]. Lee
and Ha proposed a taxonomy for scheduling strategies based on which of these
tasks—assignment, ordering, and timing—are performed at compile time versus
at run time [12].

Scheduling has significant impact on most key implementation metrics,
including throughput, latency, memory requirements, and metrics related to
energy efficiency. Thus, it plays a central role in dataflow-based design flows,
and a wide variety of scheduling techniques have been developed for differ-
ent types of architectures (e.g., see [2,11]). Well-designed scheduling tech-
niques for dataflow graphs utilize application structure that is exposed in the
graphs to optimize the metrics that are most relevant for the targeted class of
implementations.

In contrast to the vast literature on scheduling techniques, there has been
relatively little work on systematic methods for representing, analyzing, and
manipulating schedules that are derived from these techniques. We argue that
such methods are highly desirable to enhance the reliability, retargetability, and
interoperability of dataflow-based design tools, and that model-based sched-
ule representations provide a valuable foundation for the development of such
methods.

With this motivation, we review in this chapter several state of the art
approaches for representing dataflow schedules. We focus specifically in this
chapter on model based schedule representations that are based on dataflow
principles—that is, on dataflow-based schedule representations.

Figure 1 illustrates some ways in which dataflow-based schedule representa-
tions can be used in hardware/software design processes. The dashed edges in the
figure illustrate interactions between different phases of the design and imple-
mentation process that are enabled or strengthened by such representations.
For example, the use of a formal schedule representation provides the poten-
tial for schedulers or designers to iteratively optimize scheduling results while
working at a higher level of abstraction than the implementation target code.
Such representations also enable formal analysis techniques to verify properties
of the constructed schedules or to identify minimal parts of the schedules that
need run-time logic for error detection. Another use of such representations is in
streamlining processes for retargeting design flows to different target platforms
and implementation languages.

The remainder of this chapter is organized as follows. Section 2 through
Sect. 5 review a number of different model-based representations for dataflow
schedules. These sections are arranged chronologically. Section 6 covers program-
matic schedule representations that are not model-based in and of themselves,
but that introduce structured methods for representing schedules that can be
useful as an intermediate layer of abstraction between model-based representa-
tions and implementation target code. Section 7 summarizes the discussion of
the chapter and points to useful directions for further investigation.
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Fig. 1. An illustration of how dataflow-based schedule representations can be used in
hardware/software design processes.

2 Synchronization Graphs

The synchronization graph provides a model for analyzing, implementing and
optimizing self-timed schedules of homogeneous synchronous dataflow (HSDF)
graphs. HSDF is a specialized form of dataflow in which each actor produces and
consumes exactly one token on each input/output port on each firing. HSDF is
a special case of synchronous dataflow (SDF), where the numbers of tokens
produced and consumed on actor ports must be constant (but not necessarily
equal to one). Lee and Messerschmitt have developed algorithms for converting
SDF graphs to equivalent HSDF graphs [13]. Through the application of these
techniques, the synchronization graph model discussed in this section can be
applied to general SDF graphs.

Self-timed schedules form one of the four major classes of schedules in Lee
and Ha’s scheduling taxonomy, which was introduced in Sect. 1. Given a dataflow
graph G, a self-timed schedule for G consists of an assignment of the application
tasks (graph vertices) in G to a set of processors (such as embedded micropro-
cessors, graphics processing units, or digital signal processors), and an ordering
of the subset of tasks that is mapped onto each processor [12]. To enhance pre-
dictability and optimization potential, the assignment and ordering of actors is
fixed by a self-timed schedule at compile time, while the actual time at which
tasks execute is determined at run-time. The run-time dispatching of tasks is
performed using synchronization primitives as needed for coordination between
processors [12,21].

Given a self-timed schedule for an HSDF-based model of an application,
execution of the schedule can be modeled with a form of HSDF graph that is
called a synchronization graph [3]. The example in Figs. 2 and 3 illustrates the
concept of synchronization graphs. In particular, Fig. 3 shows a synchronization
graph that corresponds to the application model in Fig. 2 together with the
self-timed schedule given by:

α1 = (A1 ,A2 ,B1 ,C1 ,D1 ,E1 ,F1 ,F2 ), α2 = (A3 ,A4 ,B2 ,E2 ,F3 ,F4 ), (1)
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where the sequences α1 and α2 specify the assignment and ordering of tasks on
distinct processors in a two-processor multiprocessor system. Figure 2, adapted
from [3], shows a dataflow model of a quadrature mirror filter bank application.
The “D” markings on selected edges in Figs. 2 and 3 denote nonzero delays
associated with the edges.

A1

B1

B2
A2

A3

D
A4

D

C1
E1

nD

E2
nD

(n+1)D

nD

D1

F1

F2

F3

F4

Fig. 2. An HSDF representation of a multiresolution quadrature mirror filter bank.

In general, the edges E in a synchronization graph can be decomposed into
disjoint sets Ei, Ec, Es, where Ei contains edges that model intraprocessor com-
munication between tasks, Ec contains edges that model interprocessor commu-
nication, and Es contains edges that model synchronization [3]. Conventionally,
the edges in Es are placed parallel to the edges in Ei (i.e., connected between
the same source and sink vertices). This is the case, for example, in Fig. 3.

When synchronization and interprocessor communication are co-located in
this way, the resulting self-timed schedule implementation can be modeled using
a data structure called the interprocessor communication graph [22]. The syn-
chronization graph generalizes interprocessor communication graph modeling
and analysis techniques by decoupling the roles of synchronization and interpro-
cessor communication.

In particular, the synchronization edges can be decoupled from the interpro-
cessor communication edges subject to certain constraints. Such decoupling can
be used, for example, to minimize the amount of synchronization operations that
are executed, and control complex trade-offs between latency and throughput
during dataflow graph execution [21].

Each synchronization edge e = (x, y) in a synchronization graph represents
the following run-time constraint:

start(F (y, i)) ≥ start(F (x, i − delay(e))) + t(x) for all i. (2)

Here, F (z, k) represents the kth invocation (firing) of task z, start(f) repre-
sents the time at which firing f begins execution, delay(e) represents the delay
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Fig. 3. A synchronization graph that corresponds to the application model in Fig. 2
together with the self-timed schedule shown in Eq. 1.

(number of initial data values) on edge e, and t(z) represents the execution time
for a single firing of actor z.

By applying fundamental results from flowgraph analysis [19,20], the
throughput of the multiprocessor system that is represented by a synchronization
graph Γ can be estimated as

τ(Γ ) = min
cycle C in Γ

Delay(C)
∑

v∈C t(v)
, (3)

where Delay(C) represents the sum of the edge delays over all edges in the
cycle C.

The reciprocal of the maximum given in Eq. 3 is called the maximum cycle
mean, and can be viewed as an estimate of the average time required to execute a
single iteration of the given dataflow graph. Equation 3 can be computed using a
low complexity algorithm, which makes it very useful as an alternative to conven-
tional simulation-based performance measurement in the analysis, optimization,
and design space exploration of signal and information processing systems.

For more details on synchronization graphs and related models and meth-
ods for analysis and implementation of self-timed HSDF schedules, we refer the
reader to [1,3,21,22].

3 Dataflow Schedule Graphs

Like synchronization graphs and related models for self-timed HSDF schedules,
the dataflow schedule graph (DSG) models schedules in terms of dataflow seman-
tics, and separates the model of a schedule (schedule graph) from that of the
application (application graph). However, the DSG goes significantly beyond
HSDF-oriented schedule representations in that it can be used to represent
dynamic schedules (schedules where the actor assignment or ordering changes at
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run-time), as well as schedules for application graphs that are based on dynamic
dataflow semantics [24].

The DSG model is defined with the assumption that the given application
graphs conform to core functional dataflow (CFDF) semantics [16]. CFDF is a
highly expressive dataflow model in which each actor A is defined with a set of
modes M(A) such each firing of A has a corresponding m ∈ M(A) associated
with it, and also, a side effect of each firing is to determine the mode m′ that
will correspond to the next firing of A. For a given mode of A, the number of
tokens produced and consumed on each port of A must be constant. However,
the numbers of tokens produced and consumed can vary across different modes
of the same actor. Thus, there is significant flexibility to design actors whose
production and consumption vary dynamically.

CFDF subsumes as special cases a number of other well-known dataflow mod-
els [17], including cyclo-static dataflow, SDF, and Boolean dataflow (BDF) [5,
7,13]. Thus, DSGs can be used to represent a broad class of static and dynamic
schedules for application graphs that are specified in any of these models. For
further details on CFDF semantics, we refer the reader to [15,16].

A DSG that is used to represent a schedule for a single processor is called
a sequential DSG (SDSG). Multiple SDSGs can be integrated to represent a
multiprocessor schedule by using a concurrent DSG (CDSG).

An important property of SDSGs, called the global token population property,
is that the total number of tokens that reside on the non-self-loop (NSL) edges
in an SDSG equals at most one throughout execution. By a self-loop edge, we
mean an edge whose source and sink vertices are identical. Such edges are used
to model state in dataflow graphs.

When an NSL SDSG edge contains a token, the token is referred to as
the DSG token associated with the current state of the SDSG. Synchroniza-
tion graphs and interprocessor communication graphs have a similar property
that holds for subgraphs that correspond to individual processors in the target
architecture [21]. The global token population property is ensured in SDSGs by
the design rules for constructing DSG actors. Intuitively, when an SDSG edge
contains a single token, the actor at the sink of the edge is the next DSG actor
that is to be fired. Technically, since there may be a delay between the time
when the single token is consumed by an actor and when the actor produces a
new DSG token, there may be times when the SDSG contains no tokens.

In addition to indicating the part of the enclosing schedule that is currently
active, SDSG tokens may carry values that are read or written by actors in
the SDSG. Such values can be used to achieve various forms of control in the
schedule that depend on run-time values of input data or graph parameters.

The actors in an SDSG can be decomposed into two types—reference actors
(RAs) and schedule control actors (SCAs). An RA is an HSDF actor that has a
single input port and a single output port. An RA also has a single application
graph actor associated with it as the referenced actor of the RA. It is possible for
multiple RAs to have the same referenced actor. The referenced actor associated
with an RA R is denoted by ref (R).
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Intuitively, the firing of an RA R in a DSG corresponds to a guarded or
unconditional execution of the application graph actor ref (R). In this way, fir-
ings in a DSG result in firings in the corresponding application graph. Here, by
a guarded execution of a CFDF actor A, we mean a firing of A, based on its
current CFDF mode, that is conditioned on having sufficient data available on
the application graph input edges of A along with sufficient empty space avail-
able on the output edges of A. The notions of sufficiency here are determined
unambiguously by the requirement in CFDF that each mode defines a constant
production and consumption rate for the ports of the associated actor.

In addition to being configured as a guarded or unconditional execution, an
RA R can also be configured with two optional functions pre(R) and post(R),
which can be used, for example, to operate on the DSG token value that is input
to R or produce the DSG token value that is output from R. As their names
suggest, pre and post are, respectively, called before and after the guarded or
unconditional firing of ref (R) during the associated firing of R.

Whether or not to configure an RA using a guarded or unconditional execu-
tion of the referenced actor is a design decision as part of the construction of the
overall SDSG. If by static analysis, one can guarantee that the referenced actor
will always have sufficient input data and empty space when the RA fires, then
the overhead of guarded execution can be avoided, and the referenced actor can
be executed unconditionally.

While RAs serve primarily as wrappers for firing application graph actors,
SCAs are used to route the SDSG token through the enclosing DSGs. SCAs can
therefore be used to achieve dynamic control over the sequences of RAs that
are executed. Designers of DSGs or of tools that automatically construct DSGs
have significant freedom in formulating SCAs. An SCA can have any number of
inputs and any number of inputs. The primary design rule that it must satisfy is
referred to as lumped HSDF semantics across the inputs and outputs. Specifically,
on each firing of an SCA, the total number of tokens consumed across all NSL
input edges must equal one, and similarly, exactly one token must be produced
across all of the NSL output edges. The actual ports on which the tokens are
produced and consumed can vary dynamically as long as there is exactly one
consuming port and one producing port on each firing.

Figure 5 illustrates an SDSG representation of one possible schedule for the
application graph represented in Fig. 4. In Fig. 4, actors A,B,C,E,F are HSDF
actors; actor SW is a BDF switch actor; actor SE is a BDF select actor; and
actor D is an SDF actor that consumes one token and produces two tokens on
each firing. Actor E produces pairs of identical control token values that are
consumed by both the switch and select actors. Recall that BDF actors can be
modeled using CFDF semantics so DSG representations can be constructed for
BDF schedules.

The SDSG in Fig. 5 includes SCAs of three types—if, fi (endif), and loop.
For details on the semantics of these SCAs, we refer the reader to [24]. The loop
actor is used in Fig. 5 to iterate actor F two times for each firing of actor D. This
iteration is needed because, as described above, D produces two tokens on each
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Fig. 4. A BDF application graph that is used to help illustrate SDSGs.

ref(A)

ref(E)

ref(B)

fiif ref(C) ref(D)

loopD ref(F)

Fig. 5. An SDSG model of a schedule for the BDF application graph of Fig. 4.

firing while F (an HSDF actor) consumes only one token. The delay on the edge
(loop, ref (A)) indicates that execution of the SDSG begins with ref (A), which in
turn triggers a firing of application graph actor A. The edge (loop, ref (A)) also
models the passage of control from the end of one iteration of the SDSG to the
beginning of the next iteration. The post function is used by ref (E) to produce
a DSG token that encapsulates the value that is produced by the corresponding
firing of E in the application graph. This token value is then used by the if actor
to determine which port it produces data onto.

While both Figs. 4 and 5 depict dataflow graphs that include actors with
dynamically varying dataflow rates, a significant difference between the graphs
in the context of our discussion is that only one of them satisfies the global token
population property. Also, note that the SDSG in Fig. 5 is not deadlocked even
though there is a delay-free cycle (involving actors loop and F). This is due to
the lumped HSDF semantics of the loop actor.

For further details on DSGs, including construction rules and applications of
concurrent DSGs, we refer the reader to [24].

4 Decision State Modeling

Damavandpeyma et al. introduce a method called decision state modeling (DSM)
for modeling self-timed schedules for SDF graphs [9]. We refer to schedule models
that are derived using this method as DSM graphs. Unlike the synchronization
graph and interprocessor communication graph models discussed in Sect. 2, DSM
graphs are formulated directly on SDF graphs, without requiring the conversion
to an equivalent HSDF graph as a preprocessing step.
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The DSM approach assumes that all firings of an actor are assigned to exe-
cute on the same processor, which is not a restriction in the modeling tech-
niques discussed in Sect. 2. For the class of self-times schedules that conform to
this restriction, the DSM approach provides the potential for significantly more
compact representations (fewer vertices and edges) compared to synchronization
graph and interprocessor communication graph modeling.

Furthermore, the technique enables the use of efficient methods for buffer
analysis and exploration of trade-offs between buffer sizes and throughput that
operate directly on SDF representations (e.g., see [23]). These methods are more
effective at deriving buffer sizes (tighter buffer size bounds) because unlike the
representations studied in Sect. 2, they preserve the structure of the SDF appli-
cation graph—in particular, they do not separate individual application graph
edges into multiple edges in the schedule graph.

A key concept that is introduced in the DSM graph model is that of decision
states of the schedule that is being modeled. A decision state of a schedule is a
state in which more than one actor can be enabled on a given processor. Such
states need special care to adhere to the constraint that each processor can
execute at most one actor at a given time.

Associated with each decision state sd is a set opp(sd) of actors that are
enabled (have sufficient data to fire) in sd. The elements of opp(sd) are referred
to as the opponent actors of the associated decision state. Among the opponent
actors, only one actor should be executed in the decision state. This actor is
referred to as the actor of choice of sd, which we denote as choice(sd).

To model the selection of choice(sd) in the decision state over the other actors
in opp(sd), an actor δ(sd) is inserted into the DSM graph. We refer to such an
actor as a decision state actor. Additionally, an edge directed from choice(sd) to
δ(sd) is inserted, as well as edges directed from δ(sd) to all opponent actors other
than choice(sd). Production rates, consumption rates, and delays are calculated
for all of these inserted edges based on properties of the schedule that is being
modeled.

An approach, called decision state folding, can be applied to merge deci-
sion states that have similar behavior, thereby reducing the number of distinct
states that need to be considered. For further details on the construction and
application of DSM graphs, we refer the reader to [9].

Figure 6, adapted from an example in [9], shows a DSM graph that is con-
structed from the SDF application graph shown in Fig. 6 and the two-processor
schedule that consists of the schedule (wy2) on one processor and the schedule
x5z3xz3 on the other. In this schedule notation, an expression of the form Xn

represents n successive firings of the actor X. Thus, for example, the schedule
for the first processor corresponds to the firing sequence (w, y, y). This sequence
is assumed to be executed repeatedly in a self-timed manner, as with the firing
sequence that is assigned to the second processor. Production and consumption
rates are annotated in Fig. 6 next to ports on which the rates are not equal to
one.
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Fig. 6. An application graph example that is used to help illustrate DSM graph mod-
eling.
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Fig. 7. An illustration of a DSM graph for the application graph shown in Fig. 6.

As in Sect. 2, the “D” markings on selected edges in Fig. 7 denote nonzero
delays associated with the edges. For example, the edge (d2, x) has 5 units of
delay associated with it. The actors d1 and d2 are decision state actors. The
actors i1 and i2 are used in the DSM approach to ensure that each schedule
iteration on a given processor completes before firings from the next iteration
are allowed to execute. The self-loop edges on actors w, x, y, and z are used to
ensure that the firings of a given actor execute sequentially on the processor to
which the actor is assigned.

For more details on DSM graphs and SDF-based buffer analysis and through-
put optimization techniques that are relevant for this class of graphs, we refer
the reader to [9,23].

5 Partial-Order Transition Schedules

In this section we review a schedule representation proposed by [25] that estab-
lishes a partial order (PO) structure on schedule fragments. This PO structure
guarantees that each of the schedule fragments can be executed atomically, while
the scheduling of the fragments is driven by a hierarchical state machine.

In [25], Zebelein et al. introduce the approach in the context of a very powerful
and expressive formalism. Here we try to describe the main idea of the approach
using a slightly simplified analysis of the running example from Fig. 1 in [25].

In practice, execution of a self-timed schedule implies that actors need to
implement an enabledness test, and each processing element needs to run a
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round-robin scheduler that checks the actors for enabledness. This obviously
causes overhead. Being able to atomically execute sequences of actors makes
them amenable for optimizations like actor merging [6], or more complex memory
optimizations of the buffers [10].

App

CPU1

t1 t2

CPU2

t3 t4 t5

a1 a2c3

a6

c1

a3c4 a4c5

t1=<a1,a2,a3>

t2=<a4>

a5 c6 a7c7

c2

a8c8 t3=<a5> t4=<a6>

t5=<a7,a8>

Fig. 8. The partial order schedule from [25].

In Fig. 8 we present the basic structure of the running example from [25].
The approach uses a hierarchy of dataflow networks, where the execution of the
transitions is controlled by a state machine.

This example consists of 4 actors a1, a2, a3, a4 mapped onto processing ele-
ment PE1, 4 other actors a5, a6, a7, a8 mapped onto processing element PE2,
and channels c1 and c2 that synchronize the behavior between the processing
elements. Ignore the dotted boxes t1, t2, t3 and t4 for the moment. Our goal is
to be able to cyclically execute the system. A self-timed execution will obviously
work (i.e. each actor is executed when it has enough tokens), and the synchro-
nization over the channels c1 and c2 will be handled thought the self-timed exe-
cution. However if we now require that the sequences a1 ≺ a2 ≺ a3 ≺ a4, and
a5 ≺ a6 ≺ a7 ≺ a8, be executed atomically, the execution will obviously dead-
lock because of the dependency over the channels c1, and c2, between a1 ≺ a6
and a7 ≺ a4. We thus need to split the partial orders. An initial solution to
this through a Quasi-Static Schedule, where the dotted boxes t1, t2, t3 and t4 in
Fig. 8 now represent the static schedules that can be executed as specified by
the finite state machines, and the execution time of the transitions is decided
at execution time. The problem with this approach is that we still need to do
check for token and space availability on the channels prior to the execution.
E.g. before executing t1 we need to check that c1 is empty, e.g. that t4 has been
executed in the previous cycle. Furthermore this schedule does not allow for all
parallelism inherent in the system.

However by further analyzing the dependencies we can construct a more
refined partial order where we don not token and space availability checks prior



Model-Based Representations for Dataflow Schedules 99

a1

a2 a6

a3 a7

a4

a5

a8

Fig. 9. The basic partial order structure of the example in Fig. 8.

to execution. We give a simple construction that creates a new partition of
the partial order, that can be translated into the hierarchical state-machine
representation from [25]. Figure 9 shows the dependencies between the actors.
The idea is to find paths that start from a processing element, and then traverse
other processing elements until they return to the starting processing element.

Such a path above is given by ps = {a1 ≺ a6 ≺ a7 ≺ a4}. We can now
define a partition of the sequences a1 ≺ a2 ≺ a3 ≺ a4 and a5 ≺ a6 ≺ a7 ≺ a8
from above such that each of the sequences is split into subsequences so that
actors in ps are in different subsets. E.g., we obtain the following partitions:
p1 = {a1 ≺ {a2, a3} ≺ a4}, and p2 = {a5 ≺ {a6, a7} ≺ a8}. This new partition
is then represented in Fig. 10.
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t2t3
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c8c8
t4

t5 t6

Fig. 10. Dynamic partial order schedule.

The state machines on the right will drive the execution of the partial orders:
t1 : {a1}, t2 : {a2 ≺ a3}, t3 : {a4}, and t4 : {a8 ≺ a4}, t5 : {a6}, t6 : {a7}.
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This execution does not need run-time checks for token and space availability
on the channels communication channels c1 and c2.

The construction can be generalized to more complex partial order structures.

6 Programmatic Schedule Representations

The dataflow representations in Sects. 3–5, allow for many different analyses to
be applied, however they leave a few steps to the translation and implementation
phase, that are still intrinsically part of the dataflow description:

1. resolution of quasi-static schedules, and
2. synchronization of actors with non-deterministic run-times.

The CANALS language [8] is an attempt to provide an approach that fits the
middle ground between the high-level models, and raw code, e.g. between the
“Dataflow-based schedule representation” and “translation” boxes in Fig. 1. An
empirical analysis of a number of dataflow applications that do not fit the SDF
paradigm (the MPEG4 decoder being the canonical example) reveals that often
the scheduling decisions left to the run-time are dependent on the structure of
the tokens, and that if this structure were available in a more high-level repre-
sentation1, it would still be amenable to analysis and optimization algorithms.
To this end CANALS introduces:

1. A rich data language to model the structure of the tokens and the data stream.
2. Schedules as first-class objects, making synchronization of non-deterministic

actors explicit.
3. The ability to describe just-in-time (JIT) scheduling, making design of quasi-

static schedules explicit and analyzable.
4. A separate mapping stage that allows mapping to a specific architectures, in

particular heterogeneous architectures.

CANALS was originally aimed as a research tool in the theory of models-
of-computation, reimplementing some of the insights from the Rialto language
[14], and later on as an alternative to RVC-CAL [4], the language used to specify
the video codes in the Reconfigurable Video Codec standard. Therefore the best
way to describe the features and motivations of CANALS is through the MPEG4
decoder example. Figure 11 gives the definition of the Macroblock decoder stage
in CANALS. The structure follows the high-level description of the standard, but
makes some features more explicit. A CANALS network has a very particular
structure. Each actor (a kernel in CANALS parlance) can only have one input
channel2. The network is executed left-right, and starts by reading a Macroblock
(MB) from the input buffer. To enable parallel and concurrent execution of
actors, CANALS introduced a fork-join construction (called Scatter and Gather).
The first scatter is actually a choice that checks the macroblock-type and type

1 As compared to being hidden in the C-code of the implementation.
2 This is done so as to ensure that the scheduling network can be calculated easily.
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Fig. 11. The macroblock decoder.

Fig. 12. The macroblock decoder scheduler.

of macroblock and then feeds it to either the motion compensation block, or the
full-picture decoding sub-network. At the top level the execution of a CANALS
network follows a simple cycle:

1. read the required number of tokes from the input channel
2. decode the tokens
3. calculate the schedule by executing the scheduler
4. send the schedule to the run-time system for execution
5. wait for the execution to terminate
6. goto step 1.

When a token is available it is guaranteed to be of the right type through
type-checking and we only need to check for the right number of tokens. Contrary
to RVC-CAL this makes the test for enabledness of an actor very simple.

CANALS follows Ptolemy [18] in the hierarchical delineation of scheduling.
CANALS allows hierarchical networks, and for each level in the hierarchy a
separate scheduler needs to be defined, the default scheduler being a round-robin
scheduler. A CANALS scheduler is also a dataflow network, and this feature
would in principle allow “schedulers to schedule schedules”, but the implications
of this were never properly worked out, since all schedules in the examples were
represented through a single kernel. Exploiting this feature therefore remains an
interesting topic for future work.

The CANALS network for the Macroblock decoding schedule is shown in
Fig. 12, and a fragment of the job-shop scheduler is given in Fig. 13. The scheduler
is specified as having an input output behavior of get 0 put 1 look 4. This means
that it will check for 4 macroblocks in the input buffer, and then calculate 1
schedule as a result, while leaving the input buffer untouched. Notice that there
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Fig. 13. A fragment of the jobshop scheduler code.

is a slight discrepancy in the amount of input tokens for the scheduler for the
decoder (it requires 4 tokens) and the macro-block decoder itself which only reads
one token. This is one of the central features of CANALS, since the scheduler can
specify the joint run-time behavior of several instances of a CANALS network.

Thus the scheduler code fragment in Fig. 13 shows how the scheduler will
implement a JIT scheduler by constructing a schedule based on the combined
macro-block types. This schedule is eventually fed to the dispatcher which will
then execute the schedule, and trigger the kernels in the Macroblock Decoder in
the calculated order.

The mapping stage follows a similar design, where different concerns are sep-
arated into particular sublanguages. In particular CANALS supports: 1. sepa-
ration of run-time kernel encapsulation mechanisms (e.g., task, thread, openCL
kernel etc.) from specific hardware mapping, and 2. abstraction of the com-
munication mechanism between the scheduler and run-time, which enables the
scheduler to insert synchronization abstractions that preserve the schedule cor-
rectness, while leaving the specific implementation mechanisms to the back-end
of the design process.

7 Conclusions

In this chapter we have presented proposals for formalizing the schedule of a
dataflow network. The novelty of these approaches lies in how they lift the
schedule up to the level of object of study, contrary to previous work where
the schedule is seen as part of the implementation task.

Each of the approaches focuses on different aspects, and thus enables different
sets of optimizations and analyses, some of which are particularly relevant when
mapping to multiprocessor platforms.

1. Synchronization Graphs enable analysis of timing properties from the sched-
ule, which can be used to optimize the throughput and synchronization struc-
ture of the implementation.
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2. Dataflow Schedule Graphs represent schedules as dataflow graphs that make
choices, and iterations in the schedule explicit, and among other things enable
the distribution of the schedule, through the use of concurrent dataflow sched-
ule graphs.

3. The Decision State Modeling approach applies to schedules of general SDF
graphs, and provides compact graphical representations for this class of sched-
ules. The approach enables the application of efficient buffer analysis and
throughput optimization techniques that operate on SDF representations.

4. Partial-Ordered Transition schedules split the schedule fragments that can
be executed in a self-timed manner. Although formally very different from
Synchronization Graphs and Dataflow Schedule Graphs, the approach enables
similar analyses of the schedule, and also a more distributed implementation
of the schedule.

5. The final approach that we discuss, CANALS, is not really a model-based
approach per-se, since it is a programming language. However it provides an
intermediate step in the implementation process, between the dataflow models
and the concrete code, and provides an intermediate level of abstraction to
design JIT schedulers, and synchronization structures.

The overview of the approaches clearly points to the potential of model-based
schedule representation, and also shows that a lot of work remains to be done.
Some questions that could be asked are:

1. Is there a meta-modeling framework, that would make it possible to provide
a common formalization of schedules that would make each of the presented
approaches instances of a generic approach?

2. Since schedules in the various model-based representations discussed in this
chapter are also dataflow graphs, one could study the properties of such sched-
ule representations. Then interesting questions that could be explored include
the scheduling of such graphs, and optimizing transformations that may be
applied to such graphs.
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Abstract. Physical systems can be naturally modeled by combining
continuous and discrete models. Such hybrid models may simplify the
modeling task of complex system, as well as increase simulation perfor-
mance. Moreover, modern simulation engines can often efficiently gener-
ate simulation traces, but how do we know that the simulation results
are correct? If we detect an error, is the error in the model or in the
simulation itself? This paper discusses the problem of simulation safety,
with the focus on hybrid modeling and simulation. In particular, two key
aspects are studied: safe zero-crossing detection and deterministic hybrid
event handling. The problems and solutions are discussed and partially
implemented in Modelica and Ptolemy II.

Keywords: Modeling · Simulation · Hybrid semantics
Zero-crossing detector

1 Introduction

Modeling is a core activity both within science and engineering. In various
domains, there are different kinds of models, such as dynamic models, prob-
abilistic models, software models, and business models. In general, a model is
an abstraction of something, for instance a process, a system, a behavior, or
another model.

Both scientists and engineers make extensive use of models, but for different
reasons. As Lee [13] points out, scientists construct models to understand the
thing being modeled, whereas engineers use models to construct what is being
modeled. In both cases, the abstraction (the model) contains fewer details than
the thing being modeled, which enables the possibility to analyze the model.
Such analysis can include formal verification, statistical analysis, or simulation.

The latter, simulation of models, is the main topic of this paper. Simulation
can be seen as a way to perform experiments on a model, instead of experi-
menting directly on the system or process being modeled [7]. There are many
reasons for using modeling and simulation. It can be too dangerous to perform
experiments on real systems. It can be cheaper to perform simulations, or the
system being modeled might not yet exist.

Regardless of the reason for doing modeling and simulation, it is vital to
trust the simulation result to some degree. We say that the fidelity of the model
c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 106–121, 2018.
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is to what extent the model correctly represents the system or processing being
modeled. Lee [12,13] often stresses the distinction between the model and what
is being modeled, by giving the famous quote by Golomb [10]: “you will never
strike oil by drilling through the map”. High model fidelity is necessary, but not
sufficient to enable trust of simulation results. To trust the map, as an example
of a model, we also need to interpret the map safely. For instance, if an English
speaking engineer is using a Russian map to find oil, even a map of high fidelity
can lead to incorrect conclusions. Misinterpretations of the map (the model) can
result in false positives (drilling through an oil pipe instead of an oil field) or true
negatives (drilling through a mine field instead of an oil field). As a consequence,
to trust the use of models, not only high model fidelity is needed, but also safe
interpretation of the model.

If we make the analogy between a model and a computer program, we can
distinguish between two kinds of errors [6]: (i) untrapped errors that can go
unnoticed and then later result in arbitrary incorrect behavior, and (ii) trapped
errors that are handled directly or before they occur. For a computer program
written in the C programming language, an array out-of-bound error can lead
to memory corruption, where the actual problem can first go unnoticed, and
then crashes the system at a later point in time. This is an example of an
untrapped error. By contrast, an array out-of-bound error in Java results in a
Java exception, which happens directly when it occurs, and makes it possible for
the program itself to handle the error. This latter case is an example of a trapped
error. A program language where all errors are trapped errors, either detected
at compile time using a type system, or at runtime using runtime checks, is said
to be a safe language.

This paper introduces the idea of making a distinction between safe and
unsafe simulations. A simulation is said to be safe if no untrapped simulation
errors occur. A simulation environment is said to be safe if no untrapped simu-
lation errors can occur in any simulation. As a consequence, a natural question
is then what we mean by simulation error. This paper focuses on two kinds
of simulation errors that can occur in hybrid modeling languages [2,5,14–16]
and cosimulation environments [4,8]. More specifically, this work concerns both
error classification and solution methods. It presents the following main contri-
butions1:

– The paper describes two kinds of simulation errors that have traditionally
been seen as modeling errors and not as untrapped simulation errors. More
specifically, the errors concern (i) unsafe zero-crossing detection, and (ii)
unsafe accidental determinism (Sect. 2).

– It describes an approach to make these untrapped simulation errors trapped,
by introducing the concept of a limbo state. A simulation enters the limbo
state when a simulation error is detected. The modeler has the choice of
defining the behavior to leave the limbo state in a safe way and continue the
simulation, or to terminate the simulation and report the error as a trapped
error (Sect. 3).

1 All examples in the paper are available here: http://www.modelyze.org/limbo.

http://www.modelyze.org/limbo
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2 Hybrid Simulation Safety Problems

This section describes two problems with hybrid simulation safety. First, it
discusses the infamous bouncing-ball problem, where the numerical accuracies
of standard zero-crossing detectors make a bouncing ball tunnel through the
ground. Second, the section discusses the relations between accidental and inten-
tional nondeterminism, and the safety problem resulting from accidental deter-
minism. The latter problem is illustrated by simultaneous elastic collisions of
frictionless balls.

2.1 Unsafe Zero-Crossing Detection

One classic simple example for demonstrating hybrid modeling and simulation is
the bouncing ball model. The model demonstrates how a ball is falling towards
the ground, and bounces with an inelastic collision, thus bouncing with decreased
height. This model can be expressed in any modeling language that supports (i)
a continuous domain for expressing velocity and acceleration, (ii) a construct to
numerically detect the collision, and (iii) an action statement that changes the
sign and magnitude of the velocity of the ball. The following model is a straight
forward implementation in the Modelica language:

1 model BouncingBall
2 Real h,v;
3 parameter Real c = 0.7;
4 initial equation
5 h = 3.0;
6 equation
7 der(h) = v;
8 der(v) = -9.81;
9 when h <= 0 then

10 reinit(v, -c*pre(v));
11 end when;
12 end BouncingBall;

The model is divided into three sections. The first section (lines 2–3) defines
the two state variables (h for the height of the ball and v for the velocity),
and one parameter c that states the fraction of the momentum that remains
after a collision with the ground. The second section (line 5) states an initial
equation. In this case, the height of the ball is initiated to value 3. Note that a
Modelica tool will implicitly initialize the other variables to zero, in this case the
velocity v. The third section (lines 7–11) declaratively states the equations that
holds during the whole simulation. The der operator denotes the derivative of a
variable. For instance, der(h) is the derivative of the height. Lines 9–11 lists a
when equation, which is activated when the guard h <= 0 becomes true. That
is, when the ball touches the ground (h becomes approximately 0) the reinit
statement is activated. The reinit statement reinitializes state variable v to
the value of expression -c*pre(v), where pre(v) is the left limit value of v,
before the guard becomes true. Note how the -c coefficient both changes the
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magnitude and the direction of the velocity. Although the bouncing ball example
is often used as a “hello world” model for hybrid modeling, it also demonstrates
two surprising effects.

Figure 1(a) shows the simulation result, plotting the height of the ball. As
expected, the ball bounces with decreased height until it visually appears to sit
still, but then suddenly tunnels through the ground. The model demonstrates
two phenomena. First, it shows an example of Zeno behavior, where infinite
number of events (triggering the when construct in this case) in finite amount
of time. The ball continuous to bounce with lower and lower bounces. Second,
the simulation trace shows a tunneling effect, where the ball falls through the
ground. Figure 1(b) shows the last bounces before the tunneling effect. Note how
the height of the last bounce is less than 10−9 units.

Note, however, that the tunneling effect is not a consequence of the Zeno
condition, but of a numerical effect of how traditional zero-crossing detectors
detect and handle zero crossings. As can be seen in Fig. 1(b), a zero-crossing
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Fig. 1. A bouncing ball that is incorrectly tunneling through the ground. (a) Shows the
height of the ball during the whole simulation, whereas the two bottom figures zoom
in to the tunneling effect, showing the height (b) and the velocity (c). The simulation
was performed using OpenModelica v1.11. (Color figure online)
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detector typically overshoots the crossing slightly, before the action is applied.
To be able to detect a crossing, the bounce needs to get over a certain tolerance
threshold, for the crossing to be detected. Figure 1(c) shows the velocity for the
last three bounces. The red crosses mark where zero crossings take place, and
where the velocity is changed from positive to negative in the same time instance.
At the last instance (marked with a green star) a zero crossing should have been
detected, but the bounce has not reached over the tolerance level above zero.
Hence, no zero crossing occurs, and the ball tunnels through the ground.

It is important to stress that the Zeno behavior of the model and the numer-
ical tunneling problem are two different things. The former is a property of the
model, whereas the latter is a simulation error due to numerical imprecision in a
specific simulation tool. The Zeno effect has been extensively studied in the area
of hybrid automata, where regularization techniques are used to solve the prob-
lem by creating a new model [11]. Traditionally, also the tunneling effect has been
seen as a model problem. However, this paper argues the opposite. The tunnel-
ing problem is a consequence of an untrapped simulation error. A safe simulation
environment should handle such problems as trapped errors, either by generating
an exception state that can be handled within the model, or by terminating the
simulation and report an error, before the tunneling effect occurs. A potential
solution is discussed in Sect. 3.

2.2 Unsafe Accidental Determinism

The second problem has been extensively discussed in two recent papers by
Lee [12,13]. In these papers, Lee discusses the problem of deterministic behavior
of simultaneous events, and illustrates the problem using an example with three
colliding balls. This section discusses the problem with the same example, but
using Modelica instead of Ptolemy II. The key insight in this section is not the
difference in modeling environment, but to view the problem as a simulation
safety problem, rather than a modeling problem.

Consider the example in Fig. 2 where ball 1 and ball 3 are moving towards
ball 2, which is sitting still. In the example, we assume a frictionless surface and
perfectly elastic collision, that is, no energy is lost when the balls collide.

Fig. 2. Illustration of the example with three colliding balls. The balls roll without
any friction. Ball 1 and ball 3 move with the same constant speed in opposite direc-
tions, where as ball 2 is sitting still before the impact. Note that the problem is
a 1-dimensional problem: the balls can only move horizontally, and not in vertical
directions.
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The following Modelica model defines the dynamics of a frictionless elastic ball,
with two state variables: x for the horizontal position, and v for the velocity.

1 model Ball
2 Real x; // Position state
3 Real v; // Velocity state
4 parameter Real x0; // Initial position
5 parameter Real v0; // Initial velocity
6 parameter Real m; // Mass of the ball
7 parameter Real r; // Radius
8 initial equation
9 x = x0;

10 v = v0;
11 equation
12 der(x) = v; // Relation between position and speed
13 der(v) = 0; // Constant speed, no acceleration
14 end Ball;

For an elastic collision, the momentum and the kinetic energy are preserved.

m1v1 + m2v2 = m1v
′
1 + m2v

′
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2
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Variables v1 and v2 represent the velocity before the collision for ball 1 and ball
2, respectively. The velocity after collision is given by v′

1 and v′
2. We then have

v′
1 =

2m2v2 + m1v1 − m2v1
m1 + m2

, v′
2 =

2m1v1 + m2v2 − m1v2
m1 + m2

(2)

in the case where m1 �= 0 and m2 �= 0. By instantiating the Ball model into
three components b1, b2, and b3, we get the following model:

1 model ThreeBalls
2 Ball b1(x0=-5, v0= 1, r=0.5, m=1);
3 Ball b2(x0= 0, v0= 0, r=1.0, m=2);
4 Ball b3(x0= 5, v0=-1, r=0.5, m=1);
5 equation
6 //Detecting collision between ball 1 and ball 2
7 when b2.x - b1.x <= b1.r + b2.r then
8 reinit(b1.v, (2*b2.m*pre(b2.v) + b1.m*pre(b1.v) -
9 b2.m*pre(b1.v))/(b1.m + b2.m));

10 reinit(b2.v, (2*b1.m*pre(b1.v) + b2.m*pre(b2.v) -
11 b1.m*pre(b2.v))/(b1.m + b2.m));
12 end when;
13 //Detecting collision between ball 2 and ball 3
14 when b3.x - b2.x <= b2.r + b3.r then
15 reinit(b2.v, (2*b3.m*pre(b3.v) + b2.m*pre(b2.v) -
16 b3.m*pre(b2.v))/(b2.m + b3.m));
17 reinit(b3.v, (2*b2.m*pre(b2.v) + b3.m*pre(b3.v) -
18 b2.m*pre(b3.v))/(b2.m + b3.m));
19 end when;
20 end ThreeBalls;
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Note that components b1 (ball 1) and b3 (ball 3) have the same mass m=1 and
radius r=0.5, whereas b2 (ball 2) has m=2 and r=1.0. The start positions are
−5, 0, and 5, for balls 1, 2, and 3, respectively.

The changes in velocity, according to Eq. (2), are encoded as two when equa-
tions, each detecting either the collision between ball 1 and 2, or between ball 2
and 3. What is then the expected simulation trace for this model? One expected
output might be the plot in Fig. 3(a). That is, a simultaneous collision occurs,
ball 2 does not move, and the other two balls bounce back with the same veloc-
ity. This is actually not what happens when simulating the model. Let us take
a step back and study the behavior of this model in more detail.

Consider Fig. 3(b) and (c). These two simulation traces show the same exam-
ple as above, with the difference that in Fig. 3(b), ball 1 starts a bit closer to
the middle ball, whereas in Fig. 3(c) ball 3 starts a bit closer. As expected, in
the first case, ball 1 hits ball 2 first, that makes ball 1 bounce back (it is the
lighter of the two) and ball 2 starts to move towards ball 3. Then ball 2 hits ball
3, which bounces back and ball 2 changes direction again. In the first case, ball
3 bounces back at a higher speed because the middle ball’s energy from the first
hit gives ball 3 the extra speed. As expected, Fig. 3(c) shows the reverse, when
ball 3 hits ball 2 first.

Now, imagine that the distances between ball 1 and the middle ball, and ball
3 and the middle ball get closer and closer to equal. As long as one of the balls
hits first, this will affect the other ball. Hence, the limit for the two cases are not
the same. As Lee [13] points out, the model may be seen as nondeterministic in
the case when both the balls collide simultaneously. In that case, either ball 1
or ball 3 hits the middle ball first, but nothing in the model indicates the order.
Again, the model is nondeterministic in this specific point.

In the previous two plots, the distances between the balls were not the same.
Figure 3(d) shows the actual simulation result when simulating ThreeBalls
where the distances between the balls are equal. We get a simulation trace, but
is it the correct one? Obviously no. We can notice two things. First, even if ball
1 and ball 3 arrive at the same speed from the same distances to the middle ball,
ball 2 moves to the left after impact. Why is the ball moving in that direction
and not the opposite direction? Second, note how ball 1 and 2 tunnel through
each other, and are at the same position at time 8 (which should be physically
impossible). The reason ball 2 moves to the left is that both when equations are
activated simultaneously and that the code within the two when blocks (lines 8–
11 and lines 15–18) are executed in the order that they are stated in the model.
Hence, the velocity for ball 2 is initialized twice (lines 10 and 15), where the last
one (line 15) gives the final result.

To make the situation even worse, assume that we switch the order of the
two when equations in model ThreeBalls, that is, the when equation for
detecting collisions between ball 2 and 3 comes before the when equation for
detecting collisions between ball 1 and 2. Modelica is a declarative language,
where the order of equations should not matter. Hence, we might expect to get
the same incorrect result. Unfortunately, this is not the case. The simulation
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Fig. 3. Simulation cases for the ThreeBalls model. (a) Shows an ideal result when the
balls have the same initial distances. (b) and (c) Show simulation traces, where initial
distances between the balls are not equal. (d) and (e) Show unexpected simulation
results, where the initial distances between the balls are the same, but where the when
blocks have different order.
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result for the new model, where the when equations have switched order, is
shown in Fig. 3(e). Note how ball 2 moves in the opposite direction after impact
because the order of the impact from ball 1 and 3 has changed.

Lee [13, p. 3:24] argues, based on a similar example, as follows: “It would
probably be wise to assume that determinism is incomplete for any modeling
framework that is rich enough to help design an understand CPS, where dis-
crete and continuous behaviors inevitably mix”. If the order of the evaluation of
when equations matter and the order is left unspecified, the model is indeed non-
deterministic: there are two possible interpretations. However, this paper argues
that it is important to not mix the two separate issues of the determinism of the
model, and the determinism of the simulation.

Figure 4 shows a matrix, where we introduce the concepts of intensional deter-
minism/nondeterminism, and accidental determinism/nondeterminism. Inten-
sional determinism (ID) for a modeling and simulation environment is typically
what is intended in many simulation environments for cyber-physical systems
(CPS). ID means that the simulation of deterministic models yields determin-
istic simulation results. The same model simulated with the same input always
results in the same simulation result. Intensional nondeterminism (IND) means
that the model itself is nondeterministic, and that the simulator may use random
samples to generate the simulation result. Monte Carlo methods fall within this
category. Many useful formalisms, languages, and environments fall within the
categories of ID and IND.

The accidental categories are more problematic. Accidental nondeterminism
(AND) is when a simulator for a deterministic model generates different simu-
lation traces, even if the same model with the same input is used. If a simulator
behaves within the AND-category, it typically means that there is an error in
the simulator. For instance, if a simulator is incorrectly using a multithreaded
execution environment, where the simulation result depends on the thread inter-
leaving, the simulator might give different results for different executions.

The last category, accidental determinism (AD) is the one that is partic-
ular interesting in this example. In this case, a nondeterministic model always

Fig. 4. A matrix that shows the relationship between intensional determinism/nonde-
terminism and accidental determinism/nondeterminism.
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yields the same simulation result. This is exactly what happens in our simulation
example of the ThreeBalls model. From Fig. 3(b) and (c) we know that the
order in which balls 1 and 3 hit ball 2 has a direct implication on the simulation
result. When the distance between the balls is the same, both when equations
are activated simultaneously. The Modelica tool then decides on an evaluation
order for the equations. If the reinit statements were independent of each
other, the order would not matter. However, in this case, the order matters. As
it turns out, the simulator (OpenModelica v1.11 [9]) executes the constructs in
linear order, which is the reason for the different simulation traces for Fig. 3(d)
and (e). We have an accidental deterministic behavior, where the original model
was nondeterministic, but where the simulation result is deterministic. Recall
that the actual activation choice is made on the order the when equations are
defined in the file. Accidental determinism is an example of unsafe simulation:
the error is untrapped, that is, we get a simulation result without warnings, even
though the result itself is not deterministic.

3 Safe Simulations Using the Limbo State

The previous section showed two examples of unsafe simulation behavior. In both
cases, the simulation continued and produced a result, without giving any errors
or warnings. These are examples of untrapped simulation errors. Although an
error occurs at a specific point in time (the tunneling effect or incorrect collision),
the simulator still produces a simulation result. The purpose of this section is to
illustrate the idea of how to make the untrapped errors trapped, thus enabling
safe simulations.

3.1 The Limbo State

The key idea is to introduce three conceptual states in a simulator: (i) the safe
state, (ii) the limbo state, and (iii) the unsafe state. During simulation, the
simulator is in one of these three states. Note that these are states of the sim-
ulator itself, and not modes in a specific model. The idea of the limbo state is
first described abstractly, followed by a concrete discussion in the context of the
previous two problem examples.

safestart limbo unsafe

a

b

d

c

Fig. 5. A finite state machine diagram that includes the limbo state.
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Figure 5 depicts a finite state diagram with the three states. A simulation
starts in the safe state. If no errors occur, the simulator stays in the safe state. If
a potential error occurs, transition b is taken to the limbo state. The limbo state
means that the simulator is in between a safe and an unsafe state. The error
can potentially happen, but has not yet taken place. From the limbo state, either
the simulation is safely terminated with an error message (a trapped error), or
transition c is taken back to the safe state. It is the modeler’s responsibility to
augment the model, such that transition c can be taken. If the error occurs in
the limbo state, transition d is taken. If the simulator is safe, transition d should
happen when the error occurs, that is, it should terminate the simulation at the
simulation time of the error. Thus, transition d should generate a trapped error,
indicating that the simulation reached an unsafe state at a specific point in time.

The reader might now ask why we see the described problems as simulation
errors, when the user still can modify the model to avoid the error? Is it not a
modeling error then? The point is, again, that the errors which appear during
simulation must be trapped. However, the same model can still be valid for
different simulation input. For instance, the bouncing ball model in Fig. 1(a) is
valid before time 4, since the simulation error happens sometime between time
4 and 5. Let us now consider the two problems in Sect. 2 in turn.

3.2 Safe Zero-Crossing Detector

The tunneling problem described in Sect. 2.1 can easily be detected using mul-
tiple levels of zero-crossings [17]. The problem with traditional zero-crossing
detectors, such as the when equations in Modelica and level-crossing detector
actors in Ptolemy II, is that they can easily be used in an unsafe way. The key
idea is instead that a modeling language should only provide safe zero-crossing
detectors, where the tunneling effect cannot occur.

Figure 6 depicts the structure of a safe zero-crossing detector. A safe zero-
crossing detector has a safe region, a limbo region, and an unsafe region. The
detector consists of three levels of detection mechanisms: (i) zero level that
detects the actual zero crossing, (ii) limbo level that detects when the limbo
region is entered, and (iii) the unsafe level, which detects that the model did not
leave the limbo state correctly.

Fig. 6. The three different crossing detection levels and regions.
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Returning to the state machine in Fig. 5. Transition a is taken each time
the zero level is crossed. That is, the simulation is still safe, even if the zero
level is crossed. In the bouncing ball example, this happens every time the ball
bounces correctly (see the example trajectory line in Fig. 6). Transition b is taken
if the variable value crosses the limbo level. In the bouncing ball example, this
occurs when the ball is starting to tunnel through the ground. Note that this
does not have to be an error. If the modeler detects the tunneling effect, and
then changes the mode of the ball to stay still (no acceleration or velocity), the
simulation changes state to be safe again (transition c), or stays in the limbo
region (see again the example trajectory line in Fig. 6). However, if the model is
incorrectly implemented, as in the example in Sect. 2.1, the unsafe level will be
crossed. In such a case, the simulation environment should generate a trapped
error, by terminating the simulation and by reporting the simulation time of the
error. A safe modeling and simulation language should only include safe zero-
crossing detectors as primitives, making it impossible to use unsafe zero-crossing
detection. Consider now the following Modelica model.

1 model SafeBouncingBallFinal
2 Real h,v;
3 discrete Real a(start = -9.81);
4 parameter Real c = 0.7;
5 parameter Real epsilon = 1e-8;
6 Boolean limbo;
7 initial equation
8 h = 3.0;
9 v = 0;

10 limbo = false;
11 equation
12 der(h) = v;
13 der(v) = a;
14 when h <= 0 then
15 reinit(v, -c*pre(v));
16 end when;
17
18 //Limbo state action
19 when limbo then
20 reinit(v,0);
21 a = 0;
22 end when;
23 // Detecting limbo level
24 when h <= -epsilon then
25 limbo = true;
26 end when;
27 // Detecting unsafe level
28 when h <= -2*epsilon then
29 terminate("Unsafe Zero Crossing");
30 end when;
31 end SafeBouncingBallFinal;
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Fig. 7. A safe bouncing ball that stays on the ground. Note how the acceleration a of
the ball transitions from −9.81 to 0 when the ball comes to rest.

Figure 7 shows the simulation trace of simulating the model. A few remarks
are worth making. We can see that the when equation for detecting the zero
crossing is unchanged compared to the previous section. What has been added
are two more when equations that detect the limbo level (line 24), and the
unsafe level (line 28). If the limbo region is entered (line 24) a boolean variable
is updated, which triggers the limbo action (lines 19–22), where the ball is put
to rest. Note that if we reach the unsafe region (line 29), the simulation is ter-
minated. In this case, this is done explicitly in the model, but an ideal modeling
language should include such detection automatically. It is not obvious how to
extend Modelica in this way, but an interesting direction is to be able to specify
invariants of safe states, as done with invariants in hybrid automata [1].

A zero-crossing detector can be generalized into a directional level-crossing
detector, that can detect arbitrary level in one direction. Figure 8 shows a simple
safe level-crossing detector that is implemented as an actor in Ptolemy II. The
main model called Bouncing Ball is a modified version of the bouncing ball
example from [12]. Two changes have been made: (i) the Ball model has been
replaced with a ModalBallModel, and (ii) the original level-crossing detector
has been replaced with a new safe level-crossing detector. Note that the safe
level-crossing detector actor has approximately the same interface as the level-
crossing detector in the Ptolemy II standard library, with the main difference
that it also has an output port called limbo. The safe level-crossing detector
outputs a discrete event on the limbo port if it detects a limbo state. When
it is used in the bouncing ball example, it means that the ball is just about
to start to tunnel. In the example model, the limbo port is connected to the
ModalBallModel actor’s stop port. The modal model has two modes, (i) the
ball is falling, and (ii) the ball is sitting still. If the modeler forgets to
connect the limbo port, the safe level-crossing detector reports a trapped error.
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Fig. 8. An implementation of a safe level-crossing detector in Ptolemy II. The original
open source model, before extending it with the safe level-crossing detector, is available
here: http://ptolemy.org/constructive/models

http://ptolemy.org/constructive/models
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3.3 Safe Deterministic Event Handling

In the colliding ball example in Sect. 2.2, the root of the accidental deterministic
behavior was simultaneous events. It is extremely hard (if not impossible) to
guarantee that events cannot happen simultaneously. Numerical imprecision,
both due to round-off errors and integration errors, makes it hard to give any
guarantees. A naive solution would be to always enforce that no events occur
simultaneously by arbitrarily selecting an order. However, this will lead to the
problem of accidental determinism. If the order actually matters, such arbitrary
deterministic choice would result in an unsafe behavior.

Instead, our proposal is to again make use of the limbo state diagram, as
shown in Fig. 5. The transition b should be activated when two events are suffi-
ciently close to each other. The exact meaning of sufficiently close to each other
can be configured using a numerical tolerance level. This means that a model
will transition into the limbo state when simultaneous events occur. This does
not have to be an error. If the modeler knows how to handle the specific case,
he/she can express this in the model (assuming that the modeling language is
expressive enough) and then make a transition back to the safe state. If no such
case for simultaneous event is implemented, the simulation tool must report a
trapped error. In Modelica, elsewhen constructs can be used to implement
such special cases. This is indeed what was done to create the simulation plot in
Fig. 3(a). Note that a nondeterministic model with missing cases can be seen as
an underspecified model. By adding all missing cases and completely specifying
the model, we convert a nondeterministic model into a deterministic model.

4 Conclusions

This paper presents and discusses the idea of safe simulation. In particular,
it makes a distinction between trapped and untrapped errors. As part of the
solution, the notion of a limbo state is introduced. The preliminary work is illus-
trated using small examples in Modelica and Ptolemy II. However, to make the
approach useful in practice, the safety concepts need to be integrated as explicit
parts of a modeling language and a simulation environment. An interesting direc-
tion for future work is to investigate if type systems in modeling languages [2,3]
can be used to statically detect and eliminate untrapped errors.
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Abstract. The Ptolemy-HLA distributed co-simulation framework
leverages two open source tools, Ptolemy II and HLA/CERTI, for the
simulation of Cyber-Physical Systems (CPS). This framework enables
dealing with three important issues: (1) Distribution of a simulation,
allowing to scale up models and performance; (2) Interoperability of
tools, allowing reusability and interfacing with other simulators or real
devices/systems; (3) Heterogeneous simulations (discrete events, contin-
uous time).

The framework extends Ptolemy both, by coordinating the time
advance of various Ptolemy instances, and by allowing data communica-
tion between them with the help of HLA management services.

These additions enable the creation of HLA federates (i.e., simulators)
in a Federation (i.e., a distributed simulation) in an easy way, since the
user does not need to be an HLA specialist in order to design a Feder-
ate. The paper presents the new components added to Ptolemy, some
semantic issues, an application example and performance analysis.

Keywords: Distributed simulation · HLA · Cyber-physical systems

1 Introduction

There are many advantages to a distributed simulation. A first aspect comes from
the nature of the systems to be simulated, which are nowadays more and more
distributed and complex. It can be more appropriate to build a distributed simu-
lation of a distributed system, as, for example, a fleet of drones, than a monolithic
simulation. The distributed simulation is more representative and it mimics the
real system without simplifications better. The second aspect is the complexity
of the system that is translated in an integration of complex and heterogeneous
models. Distributed simulation is often associated with the notion of simulation
interoperability offering the possibility of integrating different simulators, such
as specific domain simulators. The reuse of a simulator can offer a significant
reduction of design and development time as well as improve quality of the simu-
lation. Distributed simulation is also relevant for non-functional requirements. It
can reduce the simulation time (parallelization speedup) or enable larger simula-
tions (scalability) [1]. Finally, models can be treated as black-boxes or executed
on remote processors, and we can deal with IP issues [2]. For all these reasons,
c© Springer International Publishing AG, part of Springer Nature 2018
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distributed simulations are adapted for the challenging study of Cyber-Physical
Systems, that are complex, heterogeneous and distributed. But performing dis-
tributed simulations is difficult, and we propose in this paper a principled and
friendly way to build these simulations.

Ptolemy is an open source modeling and simulation tool for heterogeneous
systems, developed at the University of California Berkeley. This tool is well
suited for modeling CPS [9] by providing different models of computation (MoC),
such as continuous time for describing physical systems or discrete event for
describing software and control.

The IEEE High-Level Architecture (HLA) standard [15] targets distributed
simulation. A CPS can be seen as a federation grouping several federates which
communicate via publish/subscribe patterns. This decomposition into federates
allows to combine different types of components such as simulation models, exe-
cutable code (in C++, Java, etc.), and hardware equipment. The key benefits
of HLA are interoperability and reuse.

PTIDES [26], a framework implemented in Ptolemy, is used to design event-
triggered, distributed, real-time systems. It leverages network time synchroniza-
tion to provide a coherent global meaning for timestamps in distributed systems.
Moreover, it has the nice characteristic that it carefully relates multiple time-
lines (physical time, logical time, oracle time). However, even if it allows the
simulation and execution of a distributed system, the entire system is modeled
in only one model.

The Functional Mock-up Interface (FMI) standard for co-simulation allows
the exchange and interoperation of model components or subsystems designed
with different modeling tools. However, it is up to the user to guarantee a coher-
ent time representation when the simulation is distributed. There are works
proposing an integration of HLA and FMI [13,23,24]. An HLA-FMI wrapper
that turns a FMU into a full featured HLA federate exists [14], but it seems
to deal only with data. FIDE, which stands for FMI Integrated Development
Environment [8], is an IDE for building applications using Functional Mock-up
Units (FMUs) that implement the FMI standard in the Ptolemy framework.
Their work focuses on a master algorithm that deterministically combines dis-
crete and continuous-time dynamics. However, it does not deal with distributed
simulation. A detailed analysis of the time representation in the FMI frame-
work is done in [7]. It proposes the superdense model of time using integers
(implemented by the class Time in Ptolemy) for solving many problems of time
representation. In particular their paper discusses the choice of resolution to be
used when the FMUs (components of a co-simulation) have different resolutions.
The coordination of different notions of time is an issue that also comes up in
cyber-physical systems [29].

FORWARDSIM [10] is a proprietary software toolbox that allows for dis-
tributed simulation using the HLA standard. It provides the HLA Blockset for
Simulink and the HLA Toolbox for Matlab. The user must know the entire stan-
dard well and it is up to the user to call each service by adding the corresponding
block to the model.
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In this paper, we will present a framework called Ptolemy-HLA: it brings
together the heterogeneity provided by Ptolemy (i.e. the possibility to mix con-
tinuous, discrete or other MoCs) and interoperability provided by HLA (i.e. the
possibility to mix simulation models, pieces of code and physical equipment).
We consider that, in relation to ForwardSim, our framework provides a friendly,
open-source interface to the user which requires minimal knowledge of the HLA
standard. Similar to PTIDES, we carefully tackle time coordination between
HLA and Ptolemy timelines. Our approach allows the distributed simulation of
models over a network. As of this moment, the Ptolemy-HLA framework does
not allow to build applications using FMUs as per the FMI standard.

HLA users can benefit from already existing Ptolemy models that can be eas-
ily translated into the Ptolemy-HLA framework. For Ptolemy users, the Ptolemy-
HLA framework can be useful if a large model already exists. Splitting the com-
ponents of such a model into distributed models, running on a same computer or
different computers, allows the user to use a good granularity of the model. This
can improve handling and may be more representative, since each (distributed)
model can be more detailed or extended, for example, modeling two aircraft
engines separately and/or using a more complex model for the engine. From a
single model, e.g., a quad-rotor model, a model of a fleet of quad-rotors can be
easily obtained. The interoperability of the HLA standard allows to use models
or code, as well as real devices with an interface compliant with this standard.

This paper is organized as follows. An overview of HLA and Ptolemy is
presented in Sect. 2. Section 3 describes the co-simulation framework: how time
is advanced and how data is exchanged considering the rules of both, Ptolemy
and HLA. Section 4 illustrates the results of our approach applied to a concrete
case-study: a flight control system of a F14 aircraft. Finally, Sect. 5 presents
concluding remarks and our future work.

2 Tools for Distributed Simulation and Heterogenous
Simulation

The simulation of Cyber-Physical systems needs to deal with both, heterogene-
ity and distribution of simulators. We choose two open source tools for taking
advantage of each one of these needs: Ptolemy II and HLA/CERTI.

2.1 Ptolemy

Quoting [26] “Ptolemy II is an open-source simulation and modeling tool
intended for experimenting with system design techniques, particularly those that
involve combinations of different types of models”. Being interested in cyber-
physical system (CPS) modeling and simulation, Ptolemy’s ability to represent
heterogeneous system, offered by its different Models of Computations (MoC), is
a very important feature. A MoC is specified by a component called a Director,
represented by a green block as shown in Fig. 1. In this paper, we will deal with
two directors: Discrete Event (DE) and Continuous (CT). They will be used for
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modeling the cyber and physical part of a CPS. For the sake of simplicity, a
model with a DE director will be called a DE model. The same is done for the
CT director.

Another important feature in Ptolemy is its model time known as superdense
time, which allows two distinct ordered events to occur in the same signal without
time elapsing between them [7]. A superdense time value can be represented as
a pair (t, n), called a timestamp, where t is the model time and n is a microstep
(also called an index). The model time represents the time at which an event
occurs, and the microstep represents the sequencing of events that occur at the
same model time [26]. The initial (default) value for the microstep is 1 when
using a DE director in a model and 0 when using a CT director. In this paper,
for the sake of simplicity, a timestamp (t, 1) for DE and (t, 0) for CT will be
represented only by t. The time t is represented as mr, where m is an integer
and time resolution r is a double-precision floating point number. Therefore,
the (model) time resolution is the same throughout its execution [26] which is
not the case when IEEE-754 double is used. The Ptolemy time representation is
implemented by a Java class called Time.

Time Advance in Ptolemy [4,26]. Every director in Ptolemy has a local
clock. If the director is at the top level of the model, i.e., if there is no enclosing
director, then the advance of the clock is entirely controlled by this director. An
event in the Ptolemy calendar queue is represented as e(v, (t, n), Aj), where Aj

is the jth input port of destination actor A. All events are generated locally, and
the director will always advance time to the smallest timestamp of unprocessed
events. In a DE model, this timestamp is that of a given event and only the
destination actor of this event is executed. In a CT model, the timestamp is
computed by a solver, and all actors are executed. If there is more than one
event with the same timestamp, the destination actors are fired in the order
given by a topological sort of the actors, which is a list of the actors in data-
precedence order. This behavior ensures determinism.

Ptolemy also provides a so-called TimeRegulator interface with a
proposeTime method. This interface is implemented by attributes that wish
to be consulted when a director advances time. The director will call the
proposedTime method, passing it a proposed time to advance to, and the method
will return either the same proposed time or a smaller time. This method has a
key role in the Ptolemy-HLA framework.

Data Exchange in Ptolemy. Actors in Ptolemy have input and/or output
ports. Actors with only input ports are called sink actors (e.g., a TimeDisplay

as in Fig. 4c) and actors with only output ports are called source actors (e.g.,
a DiscreteClock as in Fig. 4c). A token is the unit of data (with a type), such
as the numerical value of an aircraft vertical speed. It is communicated between
two actors via ports: created by one actor A1, sent through an output port i,
and received by (the input port j) of a destination actor A2, as represented in
Fig. 1. This token can be received by several actors.
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Link Between Time Advance and Data in Ptolemy. There is a production-
consumption phase related to the time advance (if the models are timed). A sim-
plified view is the following: When a token is produced by A1 (as in Fig. 1) at
output port A1i at current time t, an event e(v, (t′, n′), A2j ), t′ ≥ t, n′ ≥ n, is put
in the calendar queue. When this event is the earliest one in the calendar queue,
the DE director will advance its (current) time to (t′, n′), fire (or execute) A2

and consume the token in the input port A2j . Most actors, such as AddSubtract,
CurrentTime, Integrator, have t′ = t and n = n′. Some actors provide mech-
anisms for delaying events, e.g., TimeDelay (t′ > t, n′ = 1) or MicrostepDelay

(t′ = t, n′ = n+1) [26]. A token will be referred to as an event e, e(t), or e(t, n).

2.2 High Level Architecture (HLA) Standard

The High-Level Architecture (HLA) [15,16] is a standard for distributed discrete-
event simulations, generally used to support analysis, engineering and training.
The approach promotes reusability and interoperability. A simulation entity per-
forming a sequence of computations is called a federate, and the set of federates
simulating the entire system is called a federation. Federates are connected via
the Run-Time Infrastructure (RTI), the underlying middleware functioning as
the simulation kernel. The lollipop architecture of an HLA federation is depicted
in Fig. 2.

Fig. 1. Ptolemy model. Fig. 2. HLA architecture.

The HLA standard defines a set of rules describing the responsibilities of
federations and the federates, e.g., all data exchange among federates shall occur
via the RTI. Among the rules, an important one concerns the time advance: A
federate delegates its time advance to the RTI. Another one concerns the sending
of data: A federate cannot send an event earlier than t+lah, where t is its current
logical time and lah its the lookahead [15].

The standard also defines an interface specification for a set of services
required to manage the federates and their interactions. In this paper, we will
present the services related to Time Management and Data Management.

Data Exchange in HLA. For each federation, a Federation Object Model
(FOM) describes the shared objects, interaction classes and their attributes.
The object management services allow message exchange between federates. Let
us consider two federates F1 and F2: F1 sends the signal aircraft vertical speed
to F2. In HLA terms, F1 publishes the class Aircraft speed and F2 subscribes
to attribute v speed of this class. The HLA services used are, respectively,
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publishObjectClass and subscribeObjectClassAttributes. There are two steps
concerning the object management:

(1) When federate F1 is launched, it registers an object instance of
Aircraft speed class (service registerObjectInstance). When federate F2

is launched, it discovers object instances Aircraft speed related to the
attribute v speed it subscribed (callback discoverObjectInstance);

(2) During the simulation, F1 sends through the RTI a new value of
Aircraft speed.v speed using the service updateAttributeValues (UAV). The
RTI sends this value to F2 using the callback reflectAttributeValues (RAV).

Time Advance in HLA. HLA time management services enable deterministic
and reproducible distributed simulations [5]. Each federate manages its own
logical time and communicates this time to the RTI that ensures that federates
observe events in the same order [12].

The time advance phase in HLA is a two-step process: (1) a federate sends
a time advance request service, and (2) waits for the time to be granted, pro-
vided by timeAdvanceGrant (TAG) service. There are two services for a time
advance request: the timeAdvanceRequest service (TAR), used to implement
time-stepped federates; and the nextEventRequest service (NER), used to
implement event-based federates. The time step between successive TAR ser-
vice calls can change during a simulation, but it is frequently chosen as a fixed
time step TS. There is a trade-off between the performance and the precision
of the simulation according to the time step used. The user needs to carefully
make this choice. Such a choice is not required for NER, since the time advance
request has the timestamp of the next event. According to the HLA standard,
a federate can switch from TAR to NER and NER to TAR during a simulation.
However, in our framework, a federate can use one of these services but the
user must make the choice before the simulation. The HLA standard does not
impose a time representation. In general, the HLA standard proposes IEEE-754
double-precision floating point numbers.

Is There a Link Between Data Exchange and Time Management?
By default, the RAV callbacks are received during the time advance phases
and they are delivered in the order messages are received. This is the one and
only link between data exchange and time advance for so-called HLA real time
simulations. For the sake of repeatability and determinism, the data exchanges
are in timestamp order. This order can also reflect causality relations.

When dealing with timed systems as CPS, the messages must be timestamped
and the federates are time-constrained and time-regulating1. Besides the value

1 A federate can only advance its time if it is granted by the RTI. When this feder-
ate is time-constrained, this grant is computed by the RTI with knowledge of the
time advancements of the time-regulating federates, so that the conservative prop-
erty of the distributed simulation is guaranteed between regulating and constrained
federates.
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of the attribute of a class instance, the UAV service has a timestamp. When
the simulator is at current date t, it computes a new value of the attribute
for a date t∗ in the future, t < t∗ ≤ t+ lookahead. This lookahead (a value
associated with a federate) establishes a lower bound on the timestamps that
can be sent. In a distributed simulation, strictly positive lookahead values allow
the use of well known, deterministic and efficient distributed algorithms for the
time management in the RTI. The lookahead can be equal to zero, and in this
case may cause a deadlock. A first alternative is to rely on new algorithms in
the RTI, for example the use of the Null Message Prime protocol [6] or the
computation of a distributed snapshot [19]. A second alternative is that the user
resolves the (possible) deadlock by using the TARA and NERA services2 instead
of sending a message with a zero lookahead [11].

Besides the attribute value of a class instance, the RAV service has a times-
tamp. The delivery of these callbacks is done in chronological order of the
timestamp values. At current time t, during the time advance phase starting
by TAR(t′) and ending by TAG(t′), all RAV callbacks have a timestamp t′′

that respects t < t′′ ≤ t′. These callbacks can concern the same instances of
a class or different instances (of the same class or of different classes). For a
time advance phase starting with NER(t′), if any callback with timestamp t′′

is received, this phase will end with a TAG(t′′). If there are any RAV callbacks
with timestamps within t′′ and t′, they will be delivered during the following
time advance phase(s). This is the main difference between TAR and NER con-
cerning the way time is advanced. Section 4 shows that the execution time of a
federation is also different between TAR and NER. We could have an equality
between the timestamps of two RAVs of different object instances. HLA does
not allow to specify an order in this case (FIFO order between messages com-
ing from different federates). For the sake of determinism, the user code must
produce the same result for the different execution cases. This is not difficult
because, generally, the new state computation (and, in general, the sending of a
data) in a simulation follows the time advance phase when all the required data
is received.

3 Putting Ptolemy and HLA Together

The distributed co-simulation framework must comply with both, HLA and
Ptolemy rules, in particular concerning data exchange and time advance ones.
As of now, only NER and TAR are implemented in the framework and the
lookahead cannot be zero. The way the coupling is designed is discussed next.

2 NERA stands for Next Event Request Available and TARA for Time Advance
Request Available. A TARA(t) (respectively, NERA(t)) that ends with a TAG(t)
can be followed with the production and the reception of new events timestamped
with t. If federates exchange data at the same time in a loop, the loop must be
broken by calling TAR(t) (respectively, NER(t)). Then no additional event will be
delivered to the federate with timestamp t and time can be advanced.
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For the sake of simplicity, a time-stepped federate will be called a TAR
federate, and an event-based federate will be called a NER federate. In this
work, the RTI compliant with HLA is CERTI, an open source RTI written in
C++ [25]. However, another RTI could be used.

3.1 How Time Is Advanced in the Ptolemy-HLA Framework

The first thing to point out is the existence of two timelines in a federate: the
Ptolemy timeline t and the HLA timeline h. Both timelines use the same global
unit (e.g., second or millisecond). Ptolemy (local) logical time t must be com-
pliant with HLA logical time h. It means that the time must be advanced
using HLA services NER or TAR, and a new interface called HlaManager was
designed. Concerning the time, it has a method called proposeTime implement-
ing a TimeRegulator interface (presented in Sect. 2.1). When Ptolemy wants to
advance to the timestamp t′ of the earliest event in its calendar queue, the DE
director will check if this is possible with the proposeTime method. In this section,
it is considered that no data exchange exists in the federation, in order to focus
on time advance. According to the federate time management NER or TAR, the
time will be advanced by calling Algorithms 1 or 2.

As time representation in CERTI and Ptolemy are different, a conversion is
needed in both algorithms: f converts double to Time, and g converts Time to
double [18,21]. To minimize the comparisons, the time step TS (see Sect. 2.2) in
Algorithm 2 is represented as double in Ptolemy model.

An important difference can be noticed between Algorithms 1 and 2 when
Ptolemy wants to advance to t′, the timestamp of the earliest event in its queue:

– at least one NER(g(t′)) is called in Algorithm 1, but more NER(g(t′)) can
be called according to the number of TAG messages received. Each time a
TAG(h′′ < g(t′)) is received, Ptolemy advances to f(h′′). When TAG(h′′ =
g(t′)) is received, Ptolemy advances to t′;

– k TARs will be called in Algorithm 2, k ≥ 0, with

k = (�g(t′) − h)/TS� − 1). (1)

When the last TAG is received, Ptolemy advances to t′, with the guarantee
that k ∗ TS < g(t′) < (k + 1) ∗ TS.

It is worth mentioning that, after asking to advance to t′, Ptolemy time
eventually advances to t′ and has the same time history, independent of the
time management (NER or TAR) used. But HLA time can have a different
time history according to the time management, as presented in Fig. 3 and some
examples shown next. For the sake of readability, time conversions f and g are
not represented in Fig. 3.
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Algorithm 1. NER ProposeTime(t′)
1: NER(g(t′))
2: while not granted do
3: tick() � Wait TAG(g(t′))
4: end while
5: h ← g(t′) � Update HLA time
6: return t′ � Update PtII time

Algorithm 2. TAR ProposeTime(t′)
1: while g(t′) > h + TS do
2: TAR(h + TS)
3: while not granted do
4: tick() � Wait TAG(h + TS)
5: end while
6: h ← h + TS � Update HLA time
7: end while
8: return t′ � Update Ptolemy time

Fig. 3. Time advance using TAR or NER without consider time conversion.

Let us consider federations Fa = {f1}, Fb = {f1,f2} and Fc = {f1,f3}; feder-
ates f1, f2 and f3 are depicted in Fig. 4a and b and c. Each federation is used
to explain a particular point in the time advance. No federate sends any data
through the RTI. To keep track of the time representation in Ptolemy and HLA,
an index will be added to the time value v in each timeline: vT and vd for Time
and double.

Federation Fa: A unique federate advances its time with the RTI.
The f1 model has a (current) Ptolemy start time t = 0T and HLA start time

h = 0d. The unique next event e in the f1 calendar queue is the stop time event
e(t′ = 4T ). Table 1 depicts the services called and its callbacks in this federation,
as well the final Ptolemy and HLA time when using NER or TAR (with time
step TSf1 = 1d) time management. As discussed above in the presentation of
proposeTime Algorithms 1 and 2, the Ptolemy final time is the same using NER
or TAR as well its time history: {0, 4T }. But the HLA time history is different:
{0, g(4T )} when using NER, and {0d, 1d, 2d, 3d, 4d} when using TAR.

Table 1. Time advance of f1 using NER or TAR.

Type Service call Callback Final h Final t

NER NER (g(4T )) TAG(g(4T )) g(4T ) 4T

TAR TAR(1d), TAR(2d), . . . TAR(4d) TAG(1d), TAG(2d), . . . TAR(4d) 4d 4T
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Fig. 4. Federates used in Fa = {f1}, Fb = {f1,f2} and Fc = {f1,f3}.

Federation Fb: Two federates advance their time in coordination with the RTI.
Federates f1 and f2 have the same parameters except that f2 has (HLA) time
step TSf2 = 2d (needed when TAR is used) and stop time is 5T . Whatever f1

uses NER or TAR, its results (final time and time history) are the same, as
depicted in Table 1. For f2, its final Ptolemy time is tf2 = 5T and Ptolemy time
history is {0, 5T }. The f2 HLA final time 4d and its time history is {0d, 2d, 4d},
since g(5T ) �> 4d + 2d and so noTAR(6d) is executed (Algorithm 2, line 1).

Federation Fc: Time coordination with a federate that produces internal events.
Federate f3 has two internal events, e(1T ) and e(3T ), produced by DiscreteClock,
and has stop time e(4T ). Its (HLA) time step is TSf3 = 2 (needed when TAR
is used). Now, besides the event stop time, its internal events will be added to
the calendar queue. The rule is the same: the Ptolemy model needs to check
with HLA if it can advance to the time of the event. The Ptolemy time history
of f3 is the same using NER or TAR: {0T , 1T , 3T , 4T }. Concerning HLA time
history, it is {0d, g(1T ), g(3T ), g(4T )} when using NER, and {0d, 2d, 4d} when
using TAR. Ptolemy and HLA time stories of f1 are the same as the ones in
federation Fa.

The distribution of a simulation is necessary and/or appropriate, but it comes
at a price. Beside the complexity of the implementation, the timestamp of a
message can change according to the simulator tool, as presented in [21]. A
federate may have two kinds of events: (i) events that are only internal to the
model (as f3 participating in Federation Fc above); (ii) events that are sent and
received through the RTI. The latter will be discussed in the following.

3.2 How Data Is Exchanged in the Ptolemy-HLA Framework

The unit of data in Ptolemy is a token, and in HLA it is the attribute of an object
class described by the FOM. As seen in Sects. 2.1 and 2.2: (i) both are times-
tamped and have a value with a type; (ii) both have a production-consumtion
behavior. The user gives – in a (classical) Ptolemy model or in an HLA federate
– the (static) information about who produces and who consumes. In a Ptolemy
model, the communication via ports is represented by a link between two actors
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A1 and A2 (Fig. 1): The A1 output port sends the data and the A2 input port
receives the data. In an HLA federation, a federate F1 (as in Fig. 2) must indicate
that it publishes an attribute of a class and federate F2 must indicate it sub-
scribes to this attribute. Besides this static information, let us recall that an
HLA federate has two more steps: (a) After launching, each object instance is
registered once by the producer and discovered by the consumer; (b) During the
simulation, the attribute of an object instance is updated by the producer and
reflected by the consumer; this step occurs each time there is a new sent value.
These steps are provided by the Ptolemy-HLA framework – and hidden from
the user – making it easier for the user to distribute a simulation.

To establish a relationship between a token and an object class attribute,
two new actors, HlaPublisher and HlaSubscriber, are added to the Ptolemy-HLA
framework. They are depicted in Fig. 5a and b with parameters Class (Signal)
and Attribute (val) according to the FOM (.fed file in Fig. 5c). The type of the
ports corresponds to the type of the attribute. As events have a timestamp, time
is involved and so the HlaManager interface needs to interact with them. Each
actor has two roles: The HlaPublisher registers the object instance and sends
the data through the RTI; The HlaSubscriber discovers the object instance and
receives the data from the RTI. This is transparent to the user, that must connect
the input port of an actor (receiving data from the RTI) to an HlaSubscriber

actor, and connect the output port of an actor (sending data through the RTI)
to an HlaPublisher actor (see federation F14 in Fig. 8).

Fig. 5. HlaPublisher and HlaSubscriber icons in accordance with a FOM.

Data Sent by Ptolemy Through the RTI: When the earliest event e(t)
in the Ptolemy queue is the input of an HlaPublisher actor, the DE director
first advances its time to t (as explained in Sect. 3.1), and then executes the
HlaPublisher actor. Its execution consists of sending an update to the federation
at t or as soon as possible, by calling the HLA service UAV. It means that the
HlaPublisher actor provides a mechanism for (possibly) delaying an event (as,
e.g., TimeDelay does) when necessary. But when is this necessary? Remember that
a federate with lookahead lah and current time t cannot send any message before
t+lah, which delimits a forbidden zone (see Sect. 2.2). So, if an HlaPublisher actor
is fired at current time t, if t < f(h + lah) (inside the forbidden zone), it will
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send a UAV(g(t) + lah); otherwise, it will send a UAV(t). It is worth mentioning
the values of the Ptolemy and HLA timelines (t, h) can be different during a
simulation, as seen in Sect. 3.1. This can happen in particular at the firing of an
HlaPublisher at t, and depends on the time management used:
– TAR: they can be different as represented in Fig. 3a: (t, h = n ∗ TS ≤ g(t)),
n = 1..k, k given by Eq. 1, with UAV given by Eq. (3) in Table 2;
– NER: they are the same, modulo the time conversion, as represented in Fig. 3b:
(t, h = g(t)) if no RAV is received or (t = f(h), h) otherwise, with UAV given by
Eq. (2) in Table 2.

Table 2. UAV sent by an HlaPublisher.

NER UAV (g(t) + lah) (2)

TAR
UAV (g(t) + lah) if g(t) < h + lah
UAV (g(t)) otherwise

(3)

Table 3. Event received by
an HlaSubscriber.

NER e(f(h′′)) (4)

TAR e(f(h + TS)) (5)

Data Received by Ptolemy from the RTI: The data reception is started
by the arrival of an RAV callback during the advance time phase (see Sect. 2.2).
Algorithms 1 and 2 are extended to the Algorithms 3 and 4 to take into account
the data arrival.

In the Ptolemy-HLA framework, the activation of an HlaSubscriber actor at
t follows the reception of a RAV(h′′) event received from the RTI (correspond-
ing to a UAV(h′′) sent by another federate). The HlaSubscriber activation date
depends on the time management used: Eqs. 4 and 5 in Table 3 describe how an
HlaSubscriber adds an event from an RAV callback when using NER or TAR
respectively.

There is no delay added in the reception in a NER federate (Algorithm 3), but
a delay up to an HLA time step can be added in a TAR federate (Algorithm4),
as can be seen in Federation Fd in the sequel. Why is, in a TAR federate, an
RAV(h′′) callback not translated into an event in the calendar queue at time f(h′′)
by an HLASubscriber actor, as in a NER federate? The reason is the following:
an RAV(h′′), h′′ ≤ h + TS, is received, when a TAR federate is waiting for
a TAG(h + TS) (after it asked to advance its time with TAR(h + TS)). So,
at the RAV(h′′) reception, the federate is still at h. But if an event e(f(h′′),
HlaSubs) is put in the queue, and if this actor is directly or indirectly connected
to an HLAPublisher, an UAV(g(f(h′′)) would be sent through the RTI. This breaks
another HLA rule, saying that a federate that did a TAR(h∗) cannot send any
UAV message before h∗ + TS. This is why, in our framework, an RAV(h′′) is
translated into an event timestamped e(f(h + TS), HlaSubscriber).
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Algorithm 3. NER proposeTime(t′)
taking RAVs into account
1: if g(t′) > h then

2: NER(g(t′))
3: while not granted do

4: tick() � Wait TAG(h′′)
5: end while

6: h ← h′′ � Update HLA time
7: if receivedRAV then

8: t′′ ← f(h′′)
9: if t′′ > t then � General case

10: t′ ← t′′
11: else
12: t′ ← t + r
13: end if

14: putRAVonHlaSubs(t′)
15: end if
16: end if
17: return t′ � Update PtII time

Algorithm 4. TAR proposeTime(t′)
taking RAVs into account
1: while g(t′) > h + TS do

2: TAR(h + TS)

3: while not granted do

4: tick() � Wait TAG
5: end while

6: h ← h + TS � Update HLA time
7: if receivedRAV then

8: t′′ ← f(h)

9: if t′′ < t′ then

10: t′ ← t′′
11: end if
12: putRAVonHlaSubs(t′)
13: return t′ � Update PtII time

14: end if

15: end while
16: return t′ � Update to asked PtII t′

Assume there is a Federation Fd with two federates cons1 and prod1, as
depicted in Fig. 6a and b respectively. Their HLA time steps are different
(TScons1 = 8 and TSprod1 = 7) and so are their end of simulation times
(20.0 for cons1 and 13.0 for prod1). Both have t0 = 0T and h0 = 0d and
the same lookahed lah = 0.1. Federate prod1 publishes val: the input of
HlaPublisher(Signal.val) is connected to the Ramp actor that produces events
e(t) with timestamps 3T , 6T , 9T , 12T depicted in Fig. 6b. As seen in Sect. 3.2,
the timestamp of the UAV sent to the RTI depends on the time manage-
ment. Federate cons1 subscribes to attribute val of class Signal using the
HlaSubscriber(Signal.val) actor. Figures 6c–f show the plotter in the cons1
federate when the federates use different combinations of time management.
• Both prod1 and cons1 use TAR (the result is depicted in Fig. 6c)

The earliest event of cons1 is e(20T ), the end of simulation; from Algorithm3,
a TAR(8) is called, since g(20T ) > h + 8d. The earliest event of prod1 is e(0; 3T );
from Algorithm 3, no TAR is called and its time is advanced to t = 3T , since
g(3T ) < h + 7d. The HlaPublisher is executed, and according to Eq. (3) in
Table 2, a UAV(0, g(3T )) is sent.

The same behavior appears for the next event in prod1, e(1; 6T ), and
UAV(0, g(6T )) is sent. But a TAR(7d) will be called for event e(2, 9T ) and
UAV(0, g(9T )) is sent. When prod1 reaches the end of simulation, cons1 is the
only federate and the RTI sends a TAG(8d). As indicated in Eq. 5 in Table 3,
the RAV(0, g(3T )) and RAV(1, g(6T )) are then put in the queue as events
e(0, (f(8d), 1), HlaSubscriber) and e(1, (f(8d), 2), HlaSubscriber). Notice that
they have the same timestamp f(8d) and different microsteps. After TAR(16d),
prod1 will receive RAV(2, g(9T )) and RAV(3, g(12T )), the events e(2, (f(16d), 1),
HlaSubs) and e(3, (f(16d), 2), HlaSubsc) are generated. The entire exchange is
presented in Fig. 7. This figure can be compared to Fig. 3. Notice that the left
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Fig. 6. Federation Fd (a,b); plotter at cons1 (c to f).

side of Fig. 7 is similar to Fig. 3a, because prod1 has internal events and Ptolemy
wants to advance its time to values others than k ∗ TS.
• prod1=TAR and cons1=NER (the result is depicted in Fig. 6d)

The behavior of prod1 is the same as above. At cons1, according to Eq. 4
in Table 3, no delay is added to the received RAVs and the translated Ptolemy
events are: e(0, g(3T )), e(1, g(6T )), e(2, g(9T )) and e(3, g(12T )).
• prod1=NER and cons1=TAR (the result is depicted in Fig. 6e)

When prod1 advances to t=3T , a UAV(0, g(3T )+lah) = UAV(0, g(3.1T )) is
sent according to Eq. (2) in Table 2 (lah =0.1). As cons1 uses TAR, the corre-
sponding RAV(0, g(3T + lah)) generates an event e(0, (f(8d), 1), HlaSubscriber),
since g(3T ) + lah < TS = 8d. As g(6T ) + lah < TS = 8d, RAV(1, g(6T )+ lah)
generates e(1, (f(8T ), 2), HlaSubscriber). Notice that Fig. 6e and c are the same.
• Both prod1 and cons1 use NER (the result is depicted in Fig. 6f)

According to Eq. 4 in Table 3, no delay is added in the received RAV; prod1
sent a UAV(0, 3.1), and cons1 will receive a RAV(0, 3.1) that is translated to
e(0, f(g(3.1))) as can be seen in Fig. 6f. The other events are e(1, f(g(6.1))),
e(2, f(g(9.1))) and e(3, f(g(12.1))).

These examples point out that the user needs to carefully analyze the seman-
tics of the models. This will be discussed in the following.

3.3 Zooming in on the Boundaries

During the waiting phase of a TAG, many RAVs can be received by a federate
(see Algorithms 3 and 4, lines 3–5). These RAVs are memorized in a FIFO.
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Fig. 7. Fd: cons1/TAR (TS = 8) + prod1/TAR (TS = 7).

After the while loop, a unique Ptolemy time t′ is calculated for the firing of the
corresponding HLASubscriber actor. The function putRAVonHlaSubscribers(t′)
empties this FIFO and adds event ej(t′, HlaSubs) to the Ptolemy calendar queue.

How many RAVs can be received? Without lack of generality, let us consider
the RAVs from the same instance of a class.

In a TAR federate, k RAVs can be received with different timestamps h′′, all
h′′ ≤ h + TS, and all will be translated to events ej(f(h + TS), nj), HlaSubs),
j = 1..k, with increasing microsteps. The order in which the RAVs are received is
maintained using microsteps. This occurs, for example, in Federation Fd, Fig. 6c
and e. This can happen when the federates have different rhythms in the data
exchanges: different HLA time steps when using only TAR, or a NER federate
sending data to a TAR federate.

Let us consider, for example, the reception of different values from the same
sensor. In this case, the freshest value is more useful, and the solution could be
to insert only one event e(f(h + TS, 1), HlaSubs) corresponding to the freshest
kth RAV. Moreover, the calculation of a new state and, in general, a new output
(e.g., the control of an actuator in a CPS) can be meaningful for just one value
at a time t.

However, when designing a model, there are always elements where the user
should use good software design patterns to ensure the model has the right
semantics. One way to tackle the reception of k RAVs(h′′) is to add a clock to
the federate (subscribing to these attributes) that will dictate the wanted rhythm
for the calculation [20]. Another way to tackle the RAV reception is to focus on
the sending of the UAV. From the HLA point of view, it is not relevant to send
several UAVs for the same object instance at the same date h. For example,
before sending a UAV of an attribute that is subscribed to by an actuator, a
MostRecent actor can be inserted in the input of the HlaPublisher such that only
the freshest event will be sent.
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Some tests have been added to Algorithms 3 and 4 for taking into account
that the time representation of Ptolemy (t) and HLA (h) are different.

The first one is in Algorithm 3 of proposeTime, line 12 (NER federates):
Because of the needed conversions, it can happen that f(h′′) = t, e.g.,
f(10d + ε) = 10T . In this case, inserting a new event at e(t,HlaSubs) can be
a problem to the director, since all existing events e(t,HlaSubs) have already
been executed. Our choice was, in this particular case, to add the time resolu-
tion r to t, since it is the shortest value that we can add for advancing the time
beyond t. Let us point out that the microstep is used and correctly taken into
account in the other cases as depicted in Fig. 6c and e.

The second one is in Algorithm 4 proposeTime (TAR federates), and makes the
algorithm robust when dealing with a very particular case. This case can happen
when t′ and f(h + TS) have the same (mathematical) values, e.g., t′ = 10T and
h+TS = 10d, but f(h+TS) > t′. Let us recall two points: (1) The proposeTime

method in the TimeRegulator interface of a Ptolemy model must return the
same proposed time or a smaller time; (2) HLA guarantees that the timestamp
of an RAV will never be smaller than the current time h (or larger than h+TS).
So, if f(h + TS) is bigger than the initial t′, caused by the conversion, then the
returned time must be t′. Otherwise, the Ptolemy time would advance to a time
larger than timestamp t′, when there is still an event e(t′) in the queue, and this
event would be in the past.

Another issue is the following: Is it possible to produce an internal event
in a Ptolemy federate f with the same timestamp as an RAV-event received
from another federate? Let us consider two federates f1 and f2 sending a data
update: except for cases where these federates have exactly the same code (and
same time representation), their UAVs rarely have the same timestamp, because
hf1 can be different from hf2. In the general case where Ptolemy federates can
interoperate with, e.g., C++ federates, this can be very difficult or even impos-
sible to achieve, because of the different time representations. But even in a
pure Ptolemy federation, because of the RTI time representation, it can still be
impossible to have an internal event tf1 = f(hf1).

Ptolemy can be downloaded from website [27]. The Ptolemy-HLA framework
can be found at $PTII/org/hlacerti. The F14 demo presented in the sequel and
others demos are provided, as well as a user guide. Some practical information
can be found in the wiki [28].

4 Case Study: F14

Simulation is a very powerful way to perform validation, but one needs confi-
dence in the results. The Ptolemy-HLA framework provides useful information,
allowing for performance measures and simulation validation: simulation data
(parameters of the federate e.g., name and time management); simulation results
(e.g., events in the Ptolemy calendar queue and events coming from the RTI);
and simulation statistics (e.g., number of TARs/NERs and number of TAGs,



138 J. Cardoso and P. Siron

simulation execution time, execution time between services calls). This informa-
tion appears in .csv text files generated during the simulation (if the user chooses
this option) [3].

Fig. 8. The F14 federation of a centralized model.

An aircraft is a very good example of a CPS. Figure 8a depicts a Ptolemy
model of a F14 aircraft derived from a Simulink demo: PilotStick and Aircraft

have a Continuous director and AutoPilot uses a DE MoC [17]. Both continuous
models have a Sampler actor with sampling time 10ms, that provides the input
for AutoPilot, and Aircraft has a ZeroOrderHold actor in its input. This model
was split up into the three federates represented in Fig. 8b, c and d. Taking
advantage of the interoperability of HLA, the pilot stick simulated in Fig. 8c
was later successfully replaced with a real pilot stick. The results presented in
this section are for the federation with the simulated pilot stick. The first step
is checking the simulation results of the distributed model against those of the
centralized model. Figure 9a shows the simulation results for federate AutoPilot
and attribute elevCom, comparing the centralized and the distributed simulation
results of the F14 Federation depicted in Fig. 8. The results were obtained using
NER and TAR (with HLA time step TS = 0.010) and two values of the lookahead
(0.005 and 0.010). The error is almost zero in steady state and smaller than 17%
using TAR or NER with the smaller lookahead (0.005).

Concerning the performance related to the time management used by the
federates: Fig. 10 shows the number of time advancement requests in the federate
Aircraft using TAR and NER as a function of the HLA time step TS. As expected,
NER is constant, since it does not depend on the HLA time step. Concerning
TAR, the number of time advance requests is the same as NER when the HLA
time step TS is equal to the sampling time of Sampler actor (10 ms). For values
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Fig. 9. Relative difference between centralized and distributed simulation.

Fig. 10. Time advance requests in the federate Aircraft using TAR and NER.

of TS <10 ms, the performance of the TAR simulation is worse than in the NER
case, but the accuracy of the simulation is better. The opposite occurs when TS
>10 ms: better performance for TAR as opposed to NER, but worst accuracy,
as expected.

5 Conclusion

In this paper, we present Ptolemy-HLA, a distributed simulation framework
for complex and heterogeneous systems such as encountered in CPS. We have
combined Ptolemy – which allows for heterogeneous systems simulation with a
clean time representation – and the use of the HLA standard – which allows for
Distributed Discrete Event Simulation (DDES) and interoperability of simula-
tions. We hope this framework gathers the benefits of both. Moreover, Ptolemy
and CERTI, an HLA-compliant RTI, are open-source, and so is Ptolemy-HLA.
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A key feature in Ptolemy-HLA is that it can be easily installed and experimented
with, without requiring in depth knowledge of HLA or the (quite complex) DDES
domain. Collaborative contributions by other researches would be welcome.

Topics addressed in this work deal mainly with the existence of different
timelines across distributed components and their coordination. The way time is
advanced in the framework is carefully discussed and algorithms are presented:
first, without data exchange, and then, the more general case that includes data
exchange. We also present the way Ptolemy tokens and HLA attributes are trans-
lated into one another, taking into account the time advance and the conversion
between the two timelines. Other features are implemented in the framework
but are not discussed in this paper, such as the use of an initial synchronization
point that makes it easier to launch the federation, and the ability to manage
several instances of a class (e.g., several f14 aircrafts flying in formation).

The framework presented here allows Ptolemy to be compliant with the HLA
standard. Moreover, we think the issues discussed can be re-used for other soft-
ware needing to be compliant with this standard. We have applied this framework
to the study of some CPS. In this paper, we have presented the F14 distributed
simulation and some results. We also implemented a federation simulating a fleet
of quad-rotors using Ptolemy and MORSE [22], a generic simulator for academic
robotics.

Future work include new applications and extensions to this framework.
Section 3.3 discusses issues related to data exchange. The last version of HLA
provides services for negotiating the rhythm of data exchange between feder-
ates. This could be implemented and may simplify the work for the user as well
as optimize the performance. Other HLA features not yet used, are the notion
of interactions, the ownership management of objects, and the optimized data
distributed management (with the introduction of subscribing and publishing
regions).

We hope that this research, finalized with a tool, will be useful to tackle
the problem of coupling different simulations, and the problem of coupling and
distributing real systems. HLA-FMI is a very promising coupling technology.
FIDE, a Ptolemy-FMI framework [8] could be combined with the Ptolemy-HLA
framework and provide an HLA-FMI coupling.
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tive list: Vandita Banka, Christopher Brooks, Tarciana Cabral de Brito Guerra,
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23. Nägele, T., Hooman, J.: Co-simulation of cyber-physical systems using HLA. In:

2017 IEEE 7th Annual Computing and Communication Workshop and Conference
(CCWC), pp. 1–6, January 2017

24. Neema, H., Gohl, J., Lattmann, Z., Sztipanovits, J., Karsai, G., Neema, S., Bapty,
T., Batteh, J., Tummescheit, H., Sureshkumar, C.: Model-based integration plat-
form for FMI co-simulation and heterogeneous simulations of cyber-physical sys-
tems. In: Proceedings of the 10th International Modelica Conference, pp. 235–
245, March 2014. https://modelica.org/events/modelica2014/proceedings/html/
ProceedingsOfThe10thModelicaConference.pdf

25. Noulard, E., Rousselot, J.Y., Siron, P.: CERTI: an open source RTI, why and how.
In: Spring Simulation Interoperability Workshop, March 2009

26. Cardoso, J., Derler, P., Eidson, J.C., Lee, E.A., Matic, S., Zhao, Y., Zou, J.: Mod-
eling timed systems. In: Ptolemaeus, C. (ed.) System Design, Modeling, and Sim-
ulation Using Ptolemy II. Ptolemy.org (2014). http://ptolemy.eecs.berkeley.edu/
books/Systems/chapters/Dataflow.pdf

27. Ptolemy source. http://ptolemy.eecs.berkeley.edu/ptolemyII/
28. Ptolemy-HLA. https://www.icyphy.org/hla/wiki/Main/PtII-hlacerti
29. Shrivastava, A., Derler, P., Baboudr, Y.S.L., Stanton, K., Khayatian, M., Andrade,

H.A., Weiss, M., Eidson, J., Chandhoke, S.: Time in cyber-physical systems. In:
2016 International Conference on Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS), pp. 1–10, October 2016

https://www.openrobots.org/morse/doc/latest/morse.html
https://modelica.org/events/modelica2014/proceedings/html/ProceedingsOfThe10thModelicaConference.pdf
https://modelica.org/events/modelica2014/proceedings/html/ProceedingsOfThe10thModelicaConference.pdf
http://ptolemy.eecs.berkeley.edu/books/Systems/chapters/Dataflow.pdf
http://ptolemy.eecs.berkeley.edu/books/Systems/chapters/Dataflow.pdf
http://ptolemy.eecs.berkeley.edu/ptolemyII/
https://www.icyphy.org/hla/wiki/Main/PtII-hlacerti


Computing Average Response Time

Krishnendu Chatterjee1, Thomas A. Henzinger1(B), and Jan Otop2

1 IST Austria, Klosterneuburg, Austria
{krishnendu.chatterjee,tah}@ist.ac.at
2 University of Wroc�law, Wroc�law, Poland

jotop@cs.uni.wroc.pl

Abstract. Responsiveness—the requirement that every request to a
system be eventually handled—is one of the fundamental liveness prop-
erties of a reactive system. Average response time is a quantitative mea-
sure for the responsiveness requirement used commonly in performance
evaluation. We show how average response time can be computed on
state-transition graphs, on Markov chains, and on game graphs. In all
three cases, we give polynomial-time algorithms.

1 Introduction

Graphs and their generalizations provide the mathematical framework for mod-
eling the behavior of reactive systems. The vertices of the graph represent states
of the system, the edges represent transitions, and paths of the graph repre-
sent traces of the system. The two classical extensions of the graph model for
reactive systems are with (i) probabilities and (ii) interaction with an adver-
sary. In the presence of stochasticity in the system, from every vertex there is a
probability distribution of transitions to the next vertex, and this gives rise to
a Markov chain. In the presence of an adversary, the vertices of the graph are
partitioned into vertices that are controlled by the proponent and vertices that
are controlled by the opponent, and the choice of outgoing transition from a
vertex is decided, respectively, by the proponent or the opponent. This gives rise
to two player games on graphs. While graphs represent closed systems, games
on graphs represent systems that interact with an adversarial environment, and
Markov chains represent probabilistic systems. Thus, graphs, games on graphs,
and Markov chains are fundamental models for the behavior of reactive systems.

One of the fundamental liveness properties in system analysis is the respon-
siveness property, which requires that every request of a system component is
eventually granted. The responsiveness property is a qualitative property that
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classifies every trace of the system as correct or incorrect. In contrast to qual-
itative properties, the performance evaluation of systems requires quantitative
measures on traces. A quantitative property assigns a real number to every trace,
in contrast to the Boolean values (“correct” vs. “incorrect”) assigned by qual-
itative properties. A basic quantitative property is the mean-payoff property,
where every transition of the system is assigned a cost. The mean payoff of a
trace is the limit (inferior) of the sequence of average costs cn (i.e., the “long-
run average”), where for every n > 0, the average cost cn is computed over the
finite prefix of length n of the trace. Building upon the mean-payoff property,
we consider a quantitative version of the responsiveness property, the average
response time (ART), defined as follows: for every request, the response time for
the request is the number of steps to the next grant, and the ART of a trace is
the long-run average of all response times of the trace. If there are only finitely
many request-grant pairs, than the ART of the trace is a finite average. If there
is a request without a subsequent grant, or if an infinite sequence of response
times has no upper bound, then the ART is infinite. In this way, the ART prop-
erty differs from the mean-payoff property, because the mean payoff of a trace
is always bounded by the maximum cost of a transition.

The ART of a trace is a natural quantitative measure of the responsiveness,
and thus a basic system property for performance evaluation [15]. For graphs, we
are interested in the minimal and maximal ART over all traces (i.e., all infinite
paths of the graph). For Markov chains, we are interested in the expected value
of the ART. For games on graphs, we are interested in the optimal strategy of
a system to make the ART as small or as large as possible, no matter how the
environment behaves. The ART that is achieved by an optimal strategy of a
proponent who tries to make the ART as small as possible (the “minimizer”)
against an optimal strategy of an opponent who tries to make the ART as large
as possible (the “maximizer”) is called the ART value of the game.

p0 p1 p2 p3 p4
r # # r

g

g

G

p0 p1 p2 p3 p4
r # # r, 1

2

g

g, 1
2

M

p0 p1 p2 p3 p4
r # # r

g

g
G

Fig. 1. Three models of a reactive system: the graph G, the Markov chain M, and the
game graph G. Transitions in the Markov chain M are labeled with probabilities; we
omit the probability 1 on the unique outgoing transitions from the vertexes p0, p1, p2,
and p4. In the game graph G, circled positions belong to the minimizing proponent,
whereas the squared position p3 belongs to the maximizing opponent.
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Example 1. Figure 1 presents the three models G, M, and G with transitions
labeled by the following actions: requests r, grants g, and other instructions
#. The graph G has two simple cycles: C1 = p0p1p2p3 and C2 = p0p1p2p3p4.
The cycles C1, C2 yield respectively the sequences of actions r##g and r##rg.
Thus, the ART of C1 is 3 and the ART of C2 is 4+1

2 . Any infinite path can be
partitioned into cycles C1 and C2, and hence the minimal ART of G is 5

2 and
the maximal ART of G is 3.

The Markov chain M results from the graph G and hence we observe that
both cycles C1 and C2 occur with equal probability 1

2 . Therefore, the expected
ART of M is ( 12 · 5

2 ) + (12 · 3) = 11
4 .

Finally, the game arena G results from G by assigning p3 to the player that
attempts to maximize the ART. Thus, the ART value of G is 3, as the maximizer
can always pick the move from p3 to p0. Interestingly, to maximize the ART,
the opponent does not postpone the grant by moving from p3 to p4, but rather
issues immediately a grant, which prevents the emission of a promptly satisfied
request at (p3, p4). Such a promptly satisfied request would decrease the ART
and thus the maximizing opponent is better off by issuing the grant quickly.

In summary, the minimal and maximal ART are easily and naturally defined
numerical values of a labeled graph, the expected ART is the corresponding value
of a labeled Markov chain, and the ART value is the corresponding quantity for a
labeled 2-player game graph. In this paper, we present algorithms for computing
these four values.

Automata provide a natural framework for specifying qualitative proper-
ties. Their extension, weighted automata, provide a framework for expressing
quantitative properties [2,9]. While weighted finite automata with mean-payoff
measure [2] cannot express the ART property [6], extensions of weighted finite
automata with nesting have been proposed in [5–8] as a quantitative specification
framework that can express the ART property. These works focus on solving the
quantitative emptiness and universality questions for entire classes of weighted
finite automata [5–7], as well as on the evaluation of such automata classes with
respect to probability distributions over words [8]. However, the solution and
complexity of computing the specific ART property for graphs (minimal and
maximal ART), games on graphs (ART value), and Markov chains (expected
ART) has not been studied before.

In this work we consider the specific problem of computing the ART prop-
erty for graphs, game graphs, and Markov chains. Our main result is that for all
three models the ART property can be computed in polynomial time. The pre-
cise computational complexities differ for the various models (see Theorems 3,
4, and 5). If we compare our results to previous results for the class of nested
weighted finite automata that can express the ART property, we see the follow-
ing: (a) while solving automaton emptiness is similar in flavor to computing ART
on graphs, for general nested weighted automata the resulting complexities are
PSPACE and higher, whereas we present polynomial-time algorithms; (b) for
Markov chains our results are easily derived from results of [8]; and (c) to the
best of our knowledge, the problem of computing ART for games on graphs has
not been studied before.
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2 Preliminaries

We present notions and notations used throughout the paper. We begin with
models of reactive systems: graphs, games and Markov chains (Sect. 2.1). Then,
we present basic objectives studied with these models (Sect. 2.2), which lead to
computational questions (Sect. 2.3). Finally, we recall previous results on com-
putational questions for mean-payoff objectives (Sect. 2.4).

2.1 Models

Game Arena. A game arena G is a tuple (V, V1, V2, E) where (V,E) is a finite
graph, (V1, V2) is a partition of V into positions of Player 1 and Player 2, respec-
tively. To present results in a uniform way, we consider graphs as arenas with all
positions belonging to one player, i.e., we identify (V, V, ∅, E) (resp., (V, V, ∅, E))
with (V,E). We assume (for technical convenience) that for every position v ∈ V
there is at least one outgoing edge.

Game Plays. A game on an arena G is played as follows: a token is placed
at a starting position, and whenever the token is at a Player-1 position, then
Player 1 chooses an outgoing edge to move the token, and when the token is at
a Player-2 position, then Player 2 does likewise. As a consequence we obtain an
infinite sequence of positions, which is called a play, and strategies are recipes
to extend finite prefix of plays (i.e., the recipes to describe how to move tokens).
We formally define them below.

Strategies and Plays. Given a game arena G, a function σ1 : V ∗ · V1 �→ V
(resp., σ2 : V ∗ · V2 �→ V ) is a strategy for Player 1 (resp., Player 2) on G iff
σj(v0v1 . . . vk) = v implies (vk, v) ∈ E. In other words, given a finite sequence
of positions that ends at a Player-1 position (representing the history of inter-
actions), a strategy for Player 1 chooses the next position respecting the edge
relationship (to move the token). We denote the set of all strategies for Player 1
(resp., Player 2) on G by S1[G] (resp., S2[G]). A strategy σi has finite mem-
ory if there exist a finite set M, m0 ∈ M, and functions f : M × V → M
and g : M × Vi → V such that for all v = v0v1 . . . vk with vi ∈ V , we have
σi(v) = g(f(. . . (f(f(m0, v0), v1) . . . , vk−1), vk). The memory of σi is said to be
|M|, while if |M| = 1, then σi is called memoryless. Informally, a memory-
less strategy does not depend on the history, but only on the current position.
A pair of strategies σ1, σ2 on G, along with a starting position v, defines a
play π(σ1, σ2, v), which is a word over V . The play π(σ1, σ2, v) = v0v1 . . . is
defined inductively as follows: (a) v0 = v; (b) vi+1 = σ1(v0 . . . vi) if vi ∈ V1; and
(c) vi+1 = σ2(v0 . . . vi) if vi ∈ V2. We define Π(G) as the set of all plays on G.
Since every position has at least one outgoing edge, every play is indeed infinite.
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Labeled Markov Chains. A (labeled) Markov chain is a tuple 〈Σ,S, s0, E〉,
where Σ is the alphabet of letters, S is a finite set of states, s0 is an initial state,
E : S × Σ × S �→ [0, 1] is the edge probability function, which for every s ∈ S
satisfies that

∑
a∈Σ,s′∈S E(s, a, s′) = 1.

Distributions Given by Markov Chains. Consider a Markov chain M. For
every finite word u, the probability of u, denoted PM(u), w.r.t. the Markov chain
M is the sum of probabilities of paths labeled by u, where the probability of a
path is the product of probabilities of its edges. For basic open sets u·Σω = {uw :
w ∈ Σω}, we have PM(u · Σω) = PM(u), and then the probability measure over
infinite words defined by M is the unique extension of the above measure (by
Carathéodory’s extension theorem [11]). We will denote the unique probability
measure defined by M as PM.

2.2 Objectives

We consider two types of objectives: quantitative and Boolean. In the following
definitions, we consider a game arena G = (V, V1, V2, E).

Quantitative Objectives. A quantitative objective in general is a Borel mea-
surable function f : Π(G) �→ R ∪ {−∞,∞}. Player 1 (called also Minimizer)
plays in a way to construct a play π of a possibly small value f(π), whereas
Player 2 (called also Maximizer) attempts to maximize f(π). The minimal value
of the game which Player 1 can ensure (called the lower value) is defined as
val(f, v) = infσ1∈S1[G] supσ2∈S2[G] f(π(σ1, σ2, v)). Player 2 on the other hand
can ensure that the value of the game is at least the upper value, denoted as
val(f, v) = supσ2∈S2[G] infσ1∈S1[G] f(π(σ1, σ2, v)). By Borel determinacy [14], the
upper and lower values coincide with respect to f , hence we call their value, the
value of the game, and denote it by val(f, v).

Optimal Strategies. Consider a quantitative objective f . A strategy σ for
Player 1 (resp., Player 2) is called optimal for a position v if and only if we have
supσ2∈S2[G] f(π(σ, σ2, v)) = val(f, v) (resp., infσ1∈S1[G] f(π(σ1, σ, v)) = val(f, v)).

Mean-Payoff Objectives. The mean payoff objective is defined by a labeling
wt : E �→ Z of edges E on G with integers. Given a labeling wt and a play
π = v0v1 . . . on G we define LimAvgInfwt(π) = lim infk→∞ 1

k

∑k
i=1 wt(vi−1, vi).

We skip the superscript wt, if it is clear from the context.

Average Response Time Objectives. We define the average response time
(ART) objective based on an action labeling act : E → {r, g,#} that assigns
actions to moves. Given a play π on G, we define rti[π] as the number of positions
between the i-th edge labeled with a request and the first following edge labeled
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with a grant; if there are no grants past the i-th request, we put rti[π] = ∞. For
a play π with infinite number of requests and grants, we define the quantitative
objective ART(π) = lim infk→∞ 1

k

∑k
i=1 rti[π]. Finally, we put restrictions on

the game arena, discussed below, to avoid plays with finitely many requests.

The G-R Condition. Observe that the value of a play with infinitely many
requests and finitely many grants is infinite, i.e., if Player 1 cannot enforce
infinitely many grants, he looses. For plays with finitely many requests, there
are several ways to define the value of the play: the average over finitely many
requests, or Player 1 (resp., Player 2) wins unconditionally. As we are interested
in plays with infinitely many requests, we assume the grant-request condition
(G-R) on games arenas stating that: every grant is followed by a request in
the next step. Then, a sequence with infinitely many grants has infinitely many
requests, and if there are finitely many requests, then the last request is never
granted and the ART is infinite.

The G-R condition eliminates corner cases, and allows us to focus on the
core of the problem. Still, our construction can be adapted to work without this
condition (Remark 1).

Quantitative Objectives as Random Variables. The quantitative objec-
tives are measurable functions mapping paths to reals, and thus can be inter-
preted as random variables w.r.t. the probabilistic space we consider. Given a
Markov chain M and a value function f , we consider the following fundamental
quantities:

1. Expected value: Ef (M) is the expected value of the random variable
defined by the quantitative objective f w.r.t. the probability measure defined
by the Markov chain M.

2. (Cumulative) distribution: DM,f (λ) = PM({π : f(π) ≤ λ}) is the cumu-
lative distribution function of the random variable defined by f w.r.t. the
probability measure defined by the Markov chain M.

Boolean Objectives. A Boolean objective is a function Φ : Π(G) �→ {0, 1}. We
consider two types of Boolean objectives: Büchi and threshold. Büchi objectives
ΦB are defined by a subset F of the positions of the arena. Then, ΦB(π) =
1 iff some position from F occurs infinitely often in π. Threshold objectives
are defined by imposing a threshold on a quantitative objective, i.e., given a
quantitative objective f and a threshold θ, we consider the set of winning plays
to be {π ∈ Π(G) : f(π) ≤ θ}, all plays π whose value does not exceed θ. We
define the threshold variants of the quantitative objectives LimAvgInf,ART as
LimAvgInf≤λ = {π | LimAvgInf(π) ≤ λ}, and ART≤λ = {π | ART(π) ≤ λ}.

Winning Strategies. A strategy σ1 (resp., σ2) is winning for Player 1 (resp.,
Player 2) from a position v iff for all strategies σ2 for Player 2 (resp., all strategies
σ1 for Player 1), the play π defined by σ1, σ2 given v satisfies Φ(π) = 1 (resp.,
Φ(π) = 0).
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2.3 Computational Questions

We present questions, which we study in this paper.

Computational Questions for Games. Given a Boolean objective Φ (resp.,
quantitative objective f), a game arena G and a starting position s0, we consider
the following basic computational questions:

– The game question asks to determine the player that has the winning strategy
for Φ starting from position s0.

– The value question asks to compute val(f, s0).

Computational Questions for Markov Chains. Given a quantitative objec-
tive f and a Markov chain M, we consider the following basic computational
questions:

– The expected question asks to compute Ef (M).
– The distribution question asks, given a threshold λ, to compute DM,f (λ).

2.4 Previous Results

We present existing results on the computational questions for two-player games
and Markov chains with mean-payoff objectives. The computational questions
for ART objectives have not been studied before; we study ART objectives in
the following section.

Mean-payoff games admit pseudo-polynomial algorithms for solving games
and computing the value of the game [1,16]. The complexity is given w.r.t. the
set of positions V , the set of moves E and the maximal absolute value W of the
labeling wt.

Theorem 1 ([1,10,16]). The following assertions hold:

– The game question for mean-payoff games can be solved in O(|V | · |E| · W )
time. The winner has a memoryless winning strategy.

– The value of a mean-payoff game can be computed in O(|V |2 · |E| ·W · log(W ·
V )) time. Both players admit optimal memoryless strategies.

For Markov chains with mean-payoff objectives, basic computational ques-
tions can be solved in polynomial time. These questions are solved by reductions
to linear programming (LP), and hence the exact complexity depends on the
exact complexity of LP. To avoid the discussion on the wide-range of methods
to solve LP, we only give the size of the LP instance produced by the reductions.

Theorem 2 ([12]). For M = (Σ,S, s0, E), the expected question and the dis-
tribution question can be computed in polynomial time, by reduction to linear
programming with |S| variables and |S| + |E| + 1 constraints.
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3 Games and Graphs with ART Objectives

In this section we study one- and two-player games with the average response
time (ART) objective. We establish polynomial-time algorithms to determine the
winner in these games as well as polynomial time algorithms for computing the
value of the game. We begin with examples showing that both players require
memory to play optimally. Then, we establish polynomial-time complexity of
two-player games with ART objectives (Sect. 3.2). Finally, we discuss one-player
games with ART objectives (Sect. 3.3), which inherit a polynomial-time algo-
rithm from the two-player case. We, however, establish better bounds both on
the complexity and the memory required to play optimally.

3.1 Memory Requirement for ART Objectives

We begin with an example showing that Player 1 needs memory to win even in
a one-player game with an ART objective.

Example 2. Consider a game arena G1 depicted in Fig. 2. Player 1 has two mem-
oryless strategies. In the first, he stays forever in pt, which results in the infinite
average response time. In the second, in pt he always moves to ps. Observe that
this case the average response time is k + 1.

Consider a finite-memory strategy, in which, each time Player 1 moves from
pk to pt, he loops n times in position pt, and then moves to ps. This strategy
gives a play, which repeats infinitely a cycle of length k + n + 1, with n + 1
requests and response times k + n + 1 for the request issued in (ps, p1), and
n, n − 1, . . . , 1 for requests issued in the loop (pt, pt). The ART in this case is
k+n+1+0.5·n·(n+1)

n+1 , which attains the minimum when n + 1 is approximately√
2k. In such a case, the ART is approximately

√
2k +0.5, which is smaller than

k + 1.

ps p1 . . . pk pt

G1

r # # #

g

r

ps p1 . . . pk pt s1 s2

G2

r # # #
r

r r

g

g

Fig. 2. Examples of games arenas: G1 where Player 1 requires finite memory to play
optimally, and G2 where Player 2 requires finite memory as well. Circle positions are
owned by Player 1 and square ones are owned by Player 2.
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Based on Example 2, we can show that Player 2 also requires memory to win
against Player 1.

Example 3. Consider a game arena G2 from Fig. 2, which extends G1 from Exam-
ple 2. Recall that Player 1 to play optimally has to loop

√
2k+1 times at position

pt in G1. Therefore, if Player 1 loops less than
√

2k times at pt in G2, then Player 2
maximizes the average response time by going immediately for a grant, i.e., mov-
ing from s1 to ps. However, if Player 1 loops more than

√
2k times at pt, then

Player 2 is better off by delaying a grant even trough issuing a request, i.e.,
moving from s1 to s2 and then to ps. To play such a strategy, Player 2 requires
approximately

√
2k memory.

3.2 Two-Player Games with ART Objectives

We present the main result of this section.

Theorem 3. The following assertions hold:

(1) Let λ = p
q with p, q ∈ Z. The two-player game question with the ART≤λ

objective can be solved in O(|V |7 · |E| · min(|q|, |V |3)) time. The winner has
a winning strategy with memory bounded by 2|V |2.

(2) The value of two-player games with quantitative ART objectives can be com-
puted in O(|V |10 · |E| · log(|V |)) time. Both players admit optimal strategies
with memory bounded by 2|V |2.
In the remaining part of this section, we prove Theorem 3.

Key Ideas. We prove Theorem 3 by reduction to mean-payoff games. We high-
light some key ideas of the proof.

1. First, note that for mean-payoff games memoryless strategies are sufficient
(see Theorem 1), and, in contrast, memory is required for both players for
ART objectives (see Examples 2 and 3). We present a reduction of games
with ART objectives to mean-payoff games that involves a polynomial blow-
up, and a blow-up is unavoidable due to the memory requirement.

2. As illustrated in Example 3, both players use memory to track the number
of pending requests, i.e., the number of requests since the last grant. In the
reduction, we encode the number of pending requests in the game arena GN

(Definition 1). We show that it suffices to count up to 2|V |2 pending requests
(Lemma 4), which yields 2|V |2 upper bound on the required memory to play
optimally.

3. The general algorithms for mean-payoff games are pseudo-polynomial. In our
reduction, the weights in the game arena GN correspond to the number of
pending requests, and hence they are bounded by 2|V |2. Thus for our reduc-
tion the weights are polynomial, and the existing algorithms for mean-payoff
games [1,16] work in polynomial time when applied to our reduction.
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Simple Case: Thresholds λ > |V |. We proceed with the proof of Theorem 3.
First, we observe that games with ART≤λ objectives can be solved easily if
the threshold λ is greater than the number of the positions |V |. In such a case
Player 1 plays Büchi game to reach grant infinitely often. If Player 1 can win
in the Büchi game, he has a memoryless strategy that ensures that ART does
not exceed |V |. Otherwise, if he fails, Player 2 can force ART to be infinite with
a memoryless strategy. Büchi games can be solved in O(|V |2) time [3,4], and
hence:

Lemma 1. Let G = (V, V1, V2, E) be a game arena, act be an action labeling,
λ ∈ Q. If λ > |V |, then the game with the objective ART≤λ can be solved in
O(|V |2) time and the winner has a memoryless winning strategy.

In the following we consider thresholds λ bounded by |V |.
Consider a play π. We define the number of pending requests at position

i, denoted by pri[π], as the number of edges labeled with a request since the
last edge labeled with a grant. Observe that, if j is a position of a grant and
there are k requests up to position i, then

∑k
i=1 rti[π] =

∑j
i=1 pri[π]. Using this

observation, we reduce games with the average response time objective to games
with the mean-payoff of pending requests. We encode the number of pending
requests in the game. To ensure that the game arena is finite, we compute pend-
ing requests up to some bound N . The average of (bounded to N) pending
requests underapproximates the average response time (Lemma 2). Later on, we
show that for N big enough, both values coincide.

Definition 1 (Arenas GN). Consider a game arena G = (V, V1, V2, E), an
action labeling act : E → {r, g,#}, and N > 0 . We define a game arena GN

and a weight labeling wtλ such that GN = (V N , V N
1 , V N

2 , EN ) and

(VN,VN
1 ,VN

2 ): V N = V × {0, . . . , N}, V N
1 = V1 × {0, . . . , N}, and V N

2 =
V2 × {0, . . . , N},
(EN): for all v1, v2 ∈ V , x, y ∈ {0, . . . , N} we have (〈v1, x〉, 〈v2, y〉) ∈ EN iff
(v1, v2) ∈ E and either

• act(v1, v2) = r and y = min(x + 1, N), or
• act(v1, v2) = g and y = 0, or
• act(v1, v2) = # and x = y.

(wtλ): for all (〈v1, x〉, 〈v2, y〉) ∈ EN , we define
• wtλ(〈v1, x〉, 〈v2, y〉) = x if act(v1, v2) = r, and
• wtλ(〈v1, x〉, 〈v2, y〉) = x + λ if act(v1, v2) ∈ {g,#}.

Key Ideas. Observe that for every play π on an arena G there exists a unique
corresponding play π′ in the arena GN and vice versa. Indeed, given a play
π = v0v1v2 on G, we transform it into the play π′ on GN by annotating positions
of π′ with the number of pending requests bounded to N , i.e., the play π′ =
(v0, 0)(v1,min(pr1[π], N))(v2,min(pr2[π], N)) . . .. To transform a play π′ on GN

to the corresponding play on G we project out the second component in each
position of π′. Finally, we observe that if a play π′ is eventually contained in



Computing Average Response Time 153

V × {0, . . . , N − 1}, then it records actual numbers of pending requests, not
restricted by N , and hence ART(π) ≤ λ if and only if LimAvgInfwtλ(π′) ≤ λ.

Lemma 2. Let G be a game arena and act be an action labeling. For every play
π on G and the corresponding play π′ on GN , we have

1. ART(π) ≤ λ implies LimAvgInfwtλ(π′) ≤ λ, and
2. if π′ eventually stays in V × {0, . . . , N − 1}, then ART(π) ≤ λ if and only if

LimAvgInfwtλ(π′) ≤ λ.

Proof. Consider k > 0 and ε ≥ 0. Let gk be the position of the first grant
following the k-th request. We show that (*) 1

k

∑k
i=1 rti[π] ≤ λ + ε implies

1
gk

∑gk

i=1 wtλ(π′)[i] ≤ λ + ε.

Assume that 1
k

∑k
i=1 rti[π] ≤ λ + ε, then by simple transformation we get

(
∑k

i=1 rti[π]) + (gk − k) · (λ + ε) ≤ gk(λ + ε). Now observe that at the posi-
tion corresponding to a grant the sum of response times is equal to the sum
of pending requests over all positions, i.e.,

∑k
i=1 rti[π] =

∑gk

i=1 pri[π]. Recall
that wtλ(π′)[i] = min(N, pri[π]) + λ if act(vi−1, vi) = r, and wtλ(π′)[i] =
min(N, pri[π]) otherwise. Therefore,

k∑

i=1

rti[π] + (gk − k)(λ + ε) ≥
gk∑

i=1

wtλ(π′)[i] + (gk − k)ε ≥
gk∑

i=1

wtλ(π′)[i]

Finally, 1
gk

∑gk

i=1 wtλ(π′)[i] ≤ λ + ε.
If ART(π) ≤ λ, then there exists a sequence p[1], p[2], . . . such that for every

n > 0 we have 1
p[n]

∑p[n]
i=1 rti[π] ≤ λ+ 1

n . Observe that due to (*) for all n > 0 we

have 1
gp[n]

∑gp[n]
i=1 wtλ(π′)[i] ≤ λ + 1

n , and hence LimAvgInfwt
λ (π′) ≤ λ.

Now, assume that (**) past position K, the play π′ is contained in V ×
{0, . . . , N − 1}. We first assume that K = 1. Consider k and ε ≥ 0 such that
1
gk

∑gk

i=1 wtλ(π′)[i] ≤ λ + ε. Then,
∑gk

i=1 wtλ(π′)[i] − gk(λ + ε) ≤ 0. Again,
∑k

i=1 rti[π] =
∑gk

i=1 pri[π]. However, condition (**) implies that for i ≥ K = 1 we
have wtλ(π′)[i] = pri[π]+λ if act(vi−1, vi) = r, and wtλ(π′)[i] = pri[π] otherwise.
Therefore,

∑gk

i=1 wtλ(π′)[i] =
∑k

i=1 rti[π] + (gk − k)λ. Finally, 1
k

∑k
i=1 rti[π] ≤

λ + gk

k ε.
Now, if LimAvgInfwt

λ (π′) ≤ λ, then there exists a sequence p[1], p[2], . . .
such that for all n > 0 we have 1

gp[n]

∑gp[n]
i=1 wtλ(π′)[i] ≤ λ + 1

n . It follows that

for all n > 0 we have 1
p[n]

∑p[n]
i=1 rti[π] ≤ λ+ gp[n]

p[n]
1
n . We claim that gk

k is bounded
by a constant independent of n, and hence ART(π) ≤ λ. To show that gp[n]

p[n] is
bounded by a constant, consider mr,mg,m# denoting the number of respectively
requests, grants and null instructions up to position gp[n]. Observe that gp[n] =
mr +mg +m# and mr = p[n]. Condition (G-R), i.e., every grant is immediately
followed by a request, implies that mg ≤ mr. Again, by condition (G-R) all
moves labeled with # follow some pending request and hence the weight of
such moves is at least λ + 1. Therefore, to have 1

gp[n]

∑gp[n]
i=1 wtλ(π′)[i] ≤ λ + 0.5
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(for n > 2), the following inequality must hold m# < (4λ + 2) · p[n]. Thus,
gp[n]

p[n] ≤ m#+2p[n]
p[n] ≤ 4(λ + 1), i.e., gk

k is bounded.
Finally, note that even if K > 0, a finite prefix does not affect the limit of

1
p[n]

∑p[n]
i=1 rti[π]. ��

Lemma 2 implies that winning with the ART≤λ objective on G implies win-
ning with the objective LimAvgInf≤λ on GN for every N . Next, we prove a
cutoff result saying that for N ≥ 2|V |2, winning on GN with the objective
LimAvgInf≤λ is equivalent to winning with the ART≤λ objective on G.

Key Ideas. To prove the cutoff result, we consider a winning strategy for
Player 1 on GN with the objective LimAvgInf≤λ. Without loss of generality, we
can assume that this strategy is memoryless [10]. We show that every for N >
2|G|2, every memoryless winning strategy on GN that wins for LimAvgInf≤λ

must ensure that each play eventually stays in V × {0, . . . , N − 1}. Therefore,
such a strategy is also winning for ART≤λ on G (Lemma 2).

Lemma 3. Let G = (V, V1, V2, E) be a game arena, act be an action labeling, λ ∈
Q and let N ≥ 2|V |λ. If Player 1 wins on GN with the objective LimAvgInf≤λ,
then he has a memoryless winning strategy that ensures that each play eventually
stays in V × {0, . . . , N − 1}.
Proof. If Player 1 wins on GN with the objective LimAvgInf≤λ, then he has
a memoryless winning strategy σ1 [10]. Assume towards contradiction that for
some play π consistent with σ1 some position from G×{N} is reachable infinitely
often. Consider a graph GN [σ1] obtained from arena GN by fixing edges of Player
1 according to strategy σ. The nodes of GN [σ1] are all positions of GN . We observe
that GN [σ1] has a cycle C that contains a position from G × {N} and its length
is bounded by the number of nodes of GN [σ1], i.e., |C| ≤ |V | · N .

If cycle C does not contain grants, then C is contained in G×{N}, and hence
the average weight in C is at least N > λ. Thus, σ1 is not winning. Therefore,
C contains grants and hence it visits nodes from G × {0}. Thus, it contains at
least one node from each set G × {i} for i = 0, 1, . . . , N . This gives us that C
contains N transitions with weights 0, 1, . . . , N . The remaining transitions have
the weight at least 0. It follows that the average weight of the cycle C is at least

1
|C| (

N · (N + 1)
2

) =
N + 1
2|V | ≥ 2|V |λ + 1

2|V | > λ

Thus, σ1 is not winning. A contradiction. ��
We are ready to prove Theorem 3.

Proof (of Theorem 3). Let G = (V, V1, V2, E). If λ > |V |, then by Lemma 1, we
can decide in O(|V |2) time whether Player 1 has a winning strategy, and if he
does he has a memoryless winning strategy.

Assume that λ ≤ |V | and let N = 2|V |2. Lemmas 2 and 3 imply the following
condition (***):
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(***) Player 1 wins on G with the objective ART≤λ if and only if Player 1 wins
on GN with the objective LimAvgInf≤λ.

For the implication from left to right, consider a winning strategy σ on G with
the objective ART≤λ. Player 1 can use the strategy σ to play on GN with the
objective LimAvgInf≤λ. Indeed, consider a play π on G consistent with σ such
that ART(π) ≤ λ. Then, Lemma 2 states that for the corresponding play π′ on
GN we have LimAvgInfwtλ(π′) ≤ λ. Now, to show the implication from right to
left we consider a winning strategy σ on GN . By Lemma 3, we can assume that
σ is memoryless and each play eventually stays in V × {0, . . . , N − 1}. Let σ′ be
a projection of σ on the first component V , i.e., σ′ is a strategy on G. Observe
that (2) of Lemma 2 implies that each play consistent with σ′ is winning for
ART≤λ and hence σ′ is a winning strategy on G with the objective ART≤λ.
Since σ is memoryless, the memory of σ′ is N = 2|V |2.

Condition (***) implies that, if any player can win with the ART≤λ objec-
tive, then the memory necessary to win is bounded by 2|V |2. In particular, for
the minimal threshold λ0, for which Player 1 has a winning strategy, he has a
winning strategy with memory bounded by 2|V |2. This strategy is the optimal
strategy for the quantitative ART objective on G, and hence Player 1 admits
optimal strategies with memory bounded by 2|V |2. Similarly, for any n > 0
and the objective ART≤λ0− 1

n , Player 2 has a winning strategy with memory
bounded by 2|V |2. There are finitely many such strategies and some strategy
σo occurs infinitely often. This strategy σo is optimal for Player 2 and it has
memory bounded by 2|V |2.

We now discuss the value of the minimal threshold, for which Player 1 has
a winning strategy, which is the value of the game. Consider a strategy σ for
Player 1 with memory bounded by 2|V |2. We construct a graph G for Player 2
resulting from fixing in G all choices of Player 1 according to σ and storing
its memory. Such a graph has 2|V |3 vertexes and no cycles without a grant,
as otherwise Player 2 wins for every λ > 0. Now, the ART in that graph can
be computed as follows. We examine all simple cycles in G that begin with a
move labeled with a grant, compute the maximal ART over all such cycles, and
denote it by T . Observe that the maximal ART over all paths in G equals T .
Indeed, we can construct a path of the ART equal T , and conversely any (finite)
path can be split into simple cycles that begin with a move labeled with a grant.
Therefore, ART over finite prefixes of any infinite paths does not exceed T . Now,
observe that simple cycles in G have length bounded by 2|V |3 and hence T is
a rational number of the form p

q , where q ≤ 2|V |3. Now, the value of the ART
game on G is the minimum over values of ART on graphs resulting from fixing
a strategy σ with memory 2|V |2 for Player 1. Therefore, the value of ART game
on G is a rational number of the form p

q , where q ≤ 2|V |3 and p < 2|V |4.
The game on GN with the objective LimAvgInf≤λ can be solved in time

O(nmM), where n (resp., m) is the number of positions (resp., moves) of GN

and M is the bound on the absolute values of weights in GN [1]. Recall that
n = |V |N , m = |E|N . Theorem 1 assumes integer weights, and hence for λ = p

q ,
we need to multiply all weights by q. However, if q > 2|V 3|, the above discussion
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implies that we can approximate λ by the greatest fraction p
2|V |3 and hence

M = N · min(q, 2|V 3|). Thus, the game can be solved in O((|V |N) · (|E|N) · N ·
min(q, 2|V 3|)) = O(|V |7 · |E| · min(q, |V 3|)). Finally, using the binary search on
the possible values of λ and ART≤λ objective we can find the value of the ART
game on G in O(|V |10|E| log(|V |)). ��

3.3 Graphs with ART Objectives

In the previous section, we established a polynomial-time algorithm for two-
player games with ART objectives. However, if we restrict games to a single
player case, we can improve the polynomial bounds.

1. First, the blow-up in the reduction to mean-payoff games is only quadratic
in the one-player case.

2. Second, one-player mean-payoff games can be solved in O(|V ||E|) time, which
is better than pseudo-polynomial bound O(|V ||E|W ) for two-player mean-
payoff games.

3. Third, in one-player case, we establish linear bounds on memory necessary to
play optimally (resp., win) with ART objectives (resp., ART≤λ objectives),
which is better than the quadratic bound in the two-player case.

Theorem 4. The following assertions hold:

(1) The one-player game question for games (V, V, ∅, E) (resp., (V, ∅, V, E)) with
ART≤λ objective can be solved in O(|V |3|E|) time. Player 1 (resp., Player 2)
has a winning strategy with memory bounded by 2|V | (resp., |V |).

(2) The value of one-player games (graphs) with quantitative ART objective can
be computed in O(|V |3|E| log(|V |)) time. Player 1 (resp., Player 2) admits
optimal strategies with memory bounded by 2|V | (resp., |V |).
The main improvement is the cutoff result for the one-player case (Lemma 4),

which is a counterpart of Lemma 3. We prove this result by a pumping argument.
Having Lemma 4, we establish the complexity of one-player games with the
ART≤λ objective.

Lemma 4. Let G = (V,E) an a one-player game arena, act be an action label-
ing, λ ∈ Q and let N > |V | + λ. If there exists a play π on GN satisfying
the objective LimAvgInf≤λ, then there exists a memoryless play satisfying the
objective LimAvgInf≤λ that stays in V × {0, . . . , N − 1}.
Proof. Let π be a play such that LimAvgInf(π) ≤ λ. Observe that when the
number of pending requests exceeds λ, then the weight of every move until the
following grant exceeds λ. Therefore, shortening the blocks of π in which the
number of pending requests exceeds λ decreases all the partial averages. More
precisely, let i be a position at which the number of pending requests exceeds λ
and j > i be the position of the following grant. Assume that j − i > |V |. Then,
we can project π[i, j] onto its first component (positions of G), remove all the
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cycles, and lift the resulting path to the path of GN starting in π[i]. We call this
final path ρ and we observe that |ρ| ≤ |V | and π′ = π[1, i − i]ρπ[j + 1,∞] is a
play on GN such that all the partial averages are bounded by the partial averages
of π. Finally, the number of pending grants between i and i + |ρ| is bounded
by λ + |V |. We list all the positions i, where the number of pending requests
exceeds λ, and we iteratively apply the above procedure to all these positions.
In the result we obtain a play πF that satisfies the objective LimAvgInf≤λ and
the number of pending requests is always bounded by |V | + λ, i.e., πF stays in
V × {0, . . . , N − 1}. ��

We are ready to prove Theorem 4.

Proof (of Theorem 4). (1): Let G = (V,E) as all positions belong to one player.
If λ > |V |, then by Lemma 1, we can decide in O(|V |2) the game question, and
if the player has a winning strategy, then he has a memoryless winning strategy.

Assume that λ ≤ |V | and let N = 2|V |. First, we consider the case of
all positions belonging to Player 1. Lemmas 2 and 4 imply that, in one-player
games, winning on G with the objective ART≤λ is equivalent to winning on
GN with the objective LimAvgInf≤λ. Moreover, the winning strategy for G
can be obtained from the winning strategy on GN by projecting out the second
component. Since LimAvgInf≤λ admits memoryless winning strategies, to win
on G with the objective ART≤λ it suffices to consider strategies with memory
bounded by N = 2|V |. To decide whether Player 1 wins we prune GN to positions
reachable from the given initial position, which takes O(|V |N + |E|N) time, and
we compute the minimal mean cycle [13] in time O(|V |N · |E|N) = O(|V |3|E|).

Now, consider the case of all positions belonging to Player 2. If there exists a
cycle in G that does not contain grants, then Player 2 can win against ART≤λ

objective for any λ. We can check the existence of such a cycle in O(|V | + |E|)
and Player 2 has a memoryless winning strategy in that case. Otherwise, if every
cycle contains at least one grant, the number of pending requests is bounded by
|V |, and hence Player 2 requires |V | memory. Thus, for N = |V | + 1, all plays
are contained in V × {0, . . . , N − 1} and Lemma 2 implies that Player 2 wins
against ART≤λ objective if and only if she wins on GN against the objective
LimAvgInf≤λ. Now, we prune GN to positions reachable from a given initial
position, which takes O(|V |N + |E|N) time, and we compute the maximal mean
cycle [13] in time O(|V |N · |E|N) = O(|V |3|E|). This maximal cycle has the
average grater than λ if and only if Player 2 wins on GN against LimAvgInf≤λ.
The latter is equivalent to Player 2 winning on G against ART≤λ objective.
(2): We present the argument for Player 1, as the reasoning for Player 2 is
virtually the same. For every λ > 0, if Player 1 has a winning strategy with
ART≤λ, then he has a winning strategy with memory 2|V |. There are finitely
many such strategies and one of them achieves the value of the game. A one-
player strategy amounts to a single play, which is a lasso of length bounded by
2|V |2. Therefore, the minimal threshold λ0 such that Player 1 has a winning
strategy with ART≤λ0 belongs to a finite set of rationals {p

q | p, q ∈ N, q ≤
2|V |2, p ≤ 2|V |3}. Therefore, using the binary search and the decision procedure
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from (1), we can find the minimal λ0, which is the value of the ART game in
O(|V |3|E| log(|V |)). Finally, observe that the strategy for Player 1 for ART≤λ0

is the optimal strategy for him. Thus, Player 1 admits optimal strategies with
memory bounded by 2|V |. ��

3.4 Discussion

We discuss the applicability and significance of the results on ART objective.

Remark 1 (Discussion on the G-R condition). We have introduced the G-R con-
dition for technical simplicity. We can, however, eliminate it. Observe that the
G-R condition has been used only in Lemma 2, which relates plays with ART
objectives on G = (V, V1, V2, E) and plays with mean-payoff objectives on GN .

First, without the G-R condition, there can be plays, in which eventually
there are no pending requests. Assume that such plays are winning for Player 1.
Then, we proceed as follows:

– We show that (*) if Player 2 has a winning, strategy she has a winning
strategy such that length of blocks (of positions) with no pending requests
are bounded by |V |.

– We redefine GN such that after |G| steps with no pending requests Player 1
wins. The size of such modified arena is |V | · N + |V |2.

– We prove the analogue of Lemma 2 for the modified GN . Observe that the cur-
rent proof of Lemma 2 works even if we only assume that blocks (of positions)
with no pending requests are bounded by |G|.
The above construction also works if Player 2 wins on plays, in which even-

tually there are no pending requests.

Remark 2 (Discussion on complexity). In this work, our goal is to establish the
first polynomial-time algorithms computing the ART property for game graphs
and graphs. The complexities of the polynomial upper bounds we establish are
quite high (Õ(|V |10 · |E|) for game graphs, Õ(|V |3 · |E|) for graphs), and likely
to be non-optimal. Our algorithms for games are based on reductions to mean-
payoff games, where memoryless strategies are sufficient. We show that quadratic
size memory is sufficient for ART objectives. Hence a reduction to mean-payoff
games, which encodes memory in the state space, gives rise to a game with |V |3
vertices, |V |2 · |E| edges, and W = |V |2, and then applying the best-known
algorithms for mean-payoff games already gives a high polynomial complex-
ity. Obtaining algorithms with better theoretical bounds as well as practical
approaches are interesting directions for future work.

4 Markov Chains

In this section, we discuss Markov chains with ART objectives. We establish
polynomial-time algorithms for both the expected value and the distribution
questions.
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Polynomial-time algorithms for Markov chains with objectives given by
nested weighted automata (which can express the ART property) has been
established in [8]. Hence, below we present the key ideas to obtain a simple
algorithm for ART properties. We omit formal and detailed proofs, which are
consequences of the results established in [8].

Key Ideas. We present the key ideas for both cases.

1. The expected question. Consider a labeled Markov chain M = 〈Σ,S, s0, E〉,
where Σ = {r, g,#}. To compute the expected value EART(M), we first
compute the labeling of transitions wt of M such that for all s1, s2 ∈ S, we
put wt((s1, g, s2)) = wt((s1,#, s2)) = ⊥, i.e., no weight, and wt((s1, r, s2)) is
the expected number of steps to reach a grant. This labelling can be computed
in polynomial time in |M|, by reduction to linear programming with |S|
variables and |S| + |E| + 1 constraints [12]. Then, we compute the expected
value of the mean-payoff objective LimAvgInfwt on M, i.e., ELimAvgInf(M).
The value ELimAvgInf(M) can be computed in polynomial time. Again, it is
computed by reduction to linear programming with |S| variables and |S| +
|E| + 1 constraints [12]. Finally, we return ELimAvgInf(M) as EART(M). The
key aspect of the correctness proof is that the values ELimAvgInf(M) and
EART(M) are equal, which follows from [8, Lemma 26].

2. The distribution question. To compute the distribution question, we first dis-
cuss the case of Markov chains M consisting of a single recurrent set, i.e.,
almost all paths visit all states infinitely often. In such a case, the Boolean
objective ART≤λ is a tail event [11] and its probability is either 0 or 1,
i.e., for every λ almost all plays satisfy ART≤λ or almost all plays violate
it. Therefore, almost all plays have the same value, which is EART(M). In
the general case, we can find in M subsets R1, . . . , Rk, which are recur-
rent sets, i.e., among paths that enter Ri, almost all paths visit all states
of Ri infinitely often. We compute all recurrent sets R1, . . . , Rk of M in
O(|S| + |E|) time. Then, we compute (in polynomial time) the probabili-
ties p1, . . . , pk of reaching each of these sets from s0, and expected values
EART(R1), . . . ,EART(Rk), where EART(Ri) is the expected average response
time of the Markov chain (Σ,Ri, s

i
0, E ∩ Ri × Ri) with some si

0 ∈ Ri. Proba-
bilities p1, . . . , pk can be computed using linear programming as well. Finally,
DM,ART(λ), the probability of the set of plays below threshold λ, is the sum of
probabilities of reaching the recurrent sets with expected values below λ, i.e.,
DM,ART(λ) =

∑{pi | EART(Ri) ≤ λ}. The correctness proof follows from [8,
Lemma 27].

Theorem 5. Consider a Markov chain M = 〈Σ,S, s0, E〉 and λ ∈ Q.

– The expected value EART(M) for the ART objective can be computed in poly-
nomial time, by a reduction that takes O(|S| + |E|) time and produces two
instances of linear programming each with |S| variables and |S| + |E| + 1
constraints.
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– The cumulative distribution DM,ART(λ) for the ART objective can be com-
puted in polynomial time, by a reduction that takes O(|S| + |E|) time and
produces three instances of linear programming each with |S| variables and
|S| + |E| + 1 constraints.

5 Conclusions

Average response time (ART) is a fundamental quantitative property of reac-
tive systems. We presented the first algorithms that are designed specifically
for computing ART values on graphs, game graphs, and Markov chains. All
our algorithms are polynomial time. There are several interesting directions for
future work. First, while our main objective was to establish polynomial-time
upper bounds, algorithms of better complexity may be possible (Remark 2).
Second, the problems of computing ART values for more general graph mod-
els such as Markov decision processes (i.e., graphs with both probabilistic and
nonprobabilistic vertices) and stochastic games (i.e., graphs with probabilistic
vertices, Player-1 vertices, and Player-2 vertices) are still open. Finally, the value
computation problems remain open for interesting generalizations of the ART
property such as the more general ART property which counts the number of tick
events between request and grant events, rather than counting the number of all
transitions between requests and subsequent grants. While these generalizations
of the ART property and of the underlying graph models appear modest, the
algorithms presented in this paper cannot be generalized directly to these cases.
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Abstract. As the world around us gets equipped with widespread sens-
ing, computing, communication, and actuation capabilities, opportuni-
ties to improve the quality of life arise. Smart infrastructures promise to
dramatically increase safety and efficiency. While data abounds, the mod-
eling and understanding of large-scale complex systems, such as energy
distribution, transportation, or communication networks, water manage-
ment systems, and buildings, presents several challenges. Deriving mod-
els from first principles via white or gray box modeling is infeasible.
Classical black-box modeling is also not practical as model selection is
hard, interactions change over time, and evolution can be observed pas-
sively without the chance to conduct experiments through data injection
or manipulation of the system. Moreover, the causality structure of such
systems is largely unknown.

We contend that determining data-driven, minimalistic models, capa-
ble of explaining dynamical phenomena and tracking their validity over
time, is an essential step toward building dependable systems. In this
work we will outline challenges, review existing work, and propose future
research directions.

1 Introduction

Many dynamical systems are made up of complex interactions between smaller
subsystems. The number of these small subsystems can be staggering, and the
advent of IoT and smart infrastructure has given us a magnifying glass with
which to observe systems far too complex to model without the volume of data
we now have available.

Power systems, for example, are networks of generators and loads; loads are
networks of factories and households which in turn are networks of machines
controlled by networks of people who are networks of proteins and neurons.
There is uncertainty in the decisions of people at the light switch; uncertainty
in the availability of green resources; uncertainty in the weather affecting HVAC
demand. Some of these interactions are easy to model (e.g., Ohm’s Law); some
(such as social behavior or weather) are more complicated.

The number of potential interactions is even more problematic. Can we prove
faults always remain localized? We know the load will be greater on a hot day,
but can the transformer at the street corner handle the extra load when the
museum puts on a special exhibit? If not, how much of the city will go dark?
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Thousands of people analyze situations like this every day in an attempt to
keep the grid up and running. Yet, every few years another power catastrophe
makes headlines. When so much data is available—indeed, when the system is
so complex as to produce so much data—it is impossible to deduce through first
principles what effect every variable has on every other.

What further complicates things is that we do not always have control access
to the system. Sometimes access is prohibited by cost or safety standards; inject-
ing billions of dollars into the stock market to see the effect on prices would cost
not only the researcher, but the other investors who are unwitting participants
in the experiment. Other times we are prohibited by nature from injecting con-
trol signals; we cannot, for instance, control the weather to observe its effect on
traffic.

The grid is but one example of such a complicated system. In fact, in the
era of smart infrastructure, this complicated system is but one component of
infrastructure as a whole. There are countless systems in which all we have
access to is a collection of node processes generating time series data, and no
indication of which processes are inputs to which other processes.

1.1 The Era of Big Data

Classical identification techniques rely on large amounts of data to improve the
model estimate. The era of big data, in that respect, should be a boon for model
identification. Contrary to the days when experiments could take years to yield
usable data, today, small and cheap sensors can be deployed and data gathered
in a matter of weeks or days.

Yet our knowledge of complex systems has not scaled proportionally to the
amount of usable data available. As the number of measurements we can take
increases, the number of things we are measuring has increased by at least as
much—and it is becoming clear that a robust model for a complex system must
take all of these things into account.

Typical black box modelling fails us here, because the interactions between
variables in a complex system grows much faster than the number of variables
present, and the weaker the assumptions we make, the more data (and more
importantly, processing power) we need to pare down the vast array of candidate
models available to us.

1.2 Causal Influence Structure as First Step

It is often assumed that the goal of system identification is to obtain a full
model of the entire system. In many applications, however, this lofty goal is
unnecessarily high. A good model ought to tell us what processes are interacting
in a system, and the exact nature of those interactions. But even just the former
piece of information, the structure, is valuable to the engineer.

In a system that is a collection of subsystems, one might want to know, if
one of these subsystems goes unstable, which others are immediately at risk?
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How do we prevent this instability from infecting the rest of the system? This
is the theme of a paper [1] that analyzes the cascading effect of defaults in
financial networks. Their analysis focuses on network structure—the links in this
case representing interbank liabilities—and relates the magnitude of cascading
defaults to the maximum out-degree of the random graph.

In the realm of control engineering, we may be observing a system with
dynamics too complex to model. In such cases, a “data-driven” control scheme
(even one as simple as Ziegler-Nichols) may be used, which does not require
knowledge of the system parameters. Designing a distributed control architecture
[23] requires knowledge of which processes in the system are coupled, but if the
controller itself is data-driven, this is all that is required.

Structural knowledge may provide sufficient understanding of a complex sys-
tem to facilitate our engineering objectives. In particular, predicting and possibly
preventing the propagation of certain signals through the system, deciding on
a decentralized or hierarchical control topology, and even detecting and local-
izing faults, attacks, or link degradations can be accomplished using only the
knowledge of which processes causally influence each other.

We consider the scenario in which we are given a collection of time series,
each representing the evolution of some variable over time. The system can be
thought of as a “network” of these variables (which we may call “nodes”), each
evolving semi-autonomously, but under the “influence” of a few others. Often,
these systems, even those with many variables, are “sparse” in the sense that
most variables are directly causally influenced by only a few others.

Moreover, even when the full model is desired, knowing the structure can
simplify the identification process, as it rules out potentially many possible inter-
actions between the variables considered. Hence, we argue that causal influence
modeling is beneficial in a wide variety of situations.

1.3 Challenge: No Control Access

A common technique in identification is to perturb various control inputs in
the network and observe the effects of this perturbation and how they propagate
through the system. We can sequentially design experiments [4] in order to obtain
more information about the system.

In his work on causality, Pearl [18] discusses “interventions,” wherein the
value of a certain value is fixed, and the effect on the rest of the network is
observed. This is why randomized controlled trials are the gold standard in
medicine; ideally, the subjects are a representative sample of the population
and are split into two groups, where the only difference between these groups is
whether or not they receive medicine (not even whether they think they are.)

However, in many large scale systems, intervention, either through perturb-
ing control signals or through modifying the system itself, may be impractical,
unethical, or infeasible. Hence, we need to infer causality based on passive obser-
vations.

While we’d like to ask the question: “what would Y become if we changed
X’?”, we must instead ask: “does knowing X help us better predict Y ?”. Often,
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the latter question serves as a decent proxy for the former; however, this comes
with a number of caveats. Multiple factors can confuse the connection, such as
whether there is enough of a time delay in the system to discern between cause
and effect, whether all common causes have been measured and conditioned on,
and whether the forces driving the joint evolution of the system are independent.

A collection of observations does not necessarily result from a unique causal
structure. One counterexample is presented in the statement of Simpson’s Para-
dox [19], in which two scenarios with the same statistics are presented, but
with different conclusions. In both scenarios, the (linear) correlation between
A and B is negative, and the partial correlation between A and B given C
is positive. However, in one scenario, increasing A results in an increase in B,
whereas the opposite is true in the other scenario. In this case, the causal model
is required to make conclusions about the data (and, consequently, cannot be
uniquely obtained from data). However, this is not an exhaustive characteri-
zation of all cases in which the causal structure is ambiguous; in particular,
examples of Simpson’s Paradox typically involve three static variables with a
three-variate joint probability distribution, rather than three time series related
by dynamic processes.

1.4 Other Challenges and Open Questions

Real systems are vulnerable to failures and attacks, which would render the
current model invalid. If the system’s dynamics are known, a chi-squared detector
[27] can be used to signal that an abnormality has occurred. Other conditions
on discernibility of networks are given in [3]. However, as we have argued, there
are cases in which knowing the full system model is infeasible and unnecessary
to accomplish control objectives. Hence, detecting and localizing these faults
without knowing the full system model (or at least requiring as little information
about it as possible) is of interest.

Another question of interest is the handling of unobserved variables. These
can confound causal inference; when a node is unobserved, all of its children
become fully connected, since they will share trends that are only explained
by the common parent. We cannot just look at all of the complete subgraphs
and infer that they have an unobserved common parent, because that does not
cover all cases. It also requires solving an NP-hard problem that is hard to
approximate. Dealing with unobserved nodes in trees has been studied [14].

Causal loops, typical of systems with feedback controllers, still can present
a problem in causal structure identification. The final result in [12] states (in
the linear, time invariant case) that, when every directed cycle contains at least
one positive time delay, the skeleton of the graph can be obtained by finding
“Wiener-Hopf” separations [11] (a slight variant of Wiener separation, discussed
in Sect. 4.1) in the data. Properly identifying directed cycles with no time delay
is still an open problem, although it is debatable whether these are physically
possible. Granger [8] claims that instantaneous causality is only possible in the
first place when the time series represent discrete observations of continuous
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phenomena, but this presents other problems [6] which hampers our ability to
determine the structure (by existing means) altogether.

Organization. In this chapter we address the issues discussed above, as they
relate to the modeling of such large-scale, highly-distributed, highly-coupled,
dynamical systems. We focus on uncovering the information most relevant to
the objectives of the highest-level observers. Section 2 formalizes the characteris-
tics of the problem, and how it differs from modeling classical systems. Section 3
introduces a few relevant notions from the theory of causation. It begins by
motivating the acceptance of disturbances as necessary for exciting the system
and making sense of causal cycles. Keeping in mind the objectives of inferred
causation—namely, the ability to answer certain questions—we present three
general causal models, each built off of (and capable of answering a broader class
of questions than) the previous one. We review the Inductive Causation algo-
rithm, which reconstructs causal models. Finally, we present a dynamic causal
influence model and show how the properties of functional causal models trans-
late. Section 4 shows how prior work has applied these notions to specific models,
under varied assumptions.

2 Problem Characteristics

Modeling large scale systems presents some unique challenges not present in
smaller scale systems.

Unknown Relational Structure. Large numbers of variables result in more
complex systems, which require more data to learn. However, such systems are
often “sparse” in that most variables depend on few others in the system.

With no a priori knowledge of the relational structure, the modeler must
assume that each variable takes all other variables as an input. This means that
more data and computing power are required to learn parameters whose ultimate
values are zero. On the other hand, if we could identify the relational structure
first, then we can significantly reduce the class of candidate models.

When many variables share similar trends, it is difficult to distinguish cause
from effect. Often two variables may have a similar trend although neither one
causes the other; when causation does exist, it is not always apparent which
is the cause and which is the effect. False findings of causality are problematic
because they can lead to poor decision making that results in suboptimal control
of the system.

A robust causal structure identification scheme must take into account the
difference between direct causation and causation by way of an intermediary,
and must also distinguish between variables that are causally linked and those
which merely have a common cause.
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Known and Unknown Forcing Inputs. The variables we observe often inter-
act in a complex way (or else the system could simply be decoupled.) These
variables show up as inputs in the dynamics of other variables in the system;
such as ẋi = fi(. . . , xj , . . . ). However, there are also hidden environmental or
user factors that drive the evolution of the system.

The inability to observe all of the inputs to a dynamical system makes iden-
tification more difficult. Typical workarounds are to assume that the unobserved
input is additive and wide-sense stationary [13] (or cyclostationary [25]), in which
case the maximum likelihood estimator is the least-squares estimator.

Control Access Limited or Unavailable. The ability to inject a signal into
part of the network and observe its effects on other parts of the network is
valuable to identification [4]. However, injecting signals into an unknown system
can cause undesirable behavior, and is often infeasible.

3 Stochastic Models and Causality

3.1 How Disturbances are Useful

Pearl begins his book on causality [18] with probability theory. He acknowledges
the reader’s trepidations; causality conveying certainty and probability convey-
ing the lack of certainty. He then justifies this approach by providing a number
of reasons why probability theory should be a prerequisite for the study causal-
ity. In particular, causal statements in natural language are often applied to the
“average” case, or are subject to a multitude of exceptions and conditions too
numerous to casually list.

For the control engineer, there is another reason randomness is integral to
causal modeling, or at least the brand of causality that is useful to us. Suppose
you have a voltage source and a static load. You measure the voltage and current.
Is the current caused by the voltage, or the other way around? You cannot
change one without altering the other, so one might say there is a paradoxical
“bidirectional” causality at play. A better question is what one would do with
such information. In particular, if the resistance is known, the voltage and current
are essentially two different measurements of the same phenomenon. To ask
which causes the other is beyond what many applications care about.

On the other hand, if you have a varying voltage source and a varying resis-
tor, each with a random actor choosing the voltage or resistance, then now the
question of causality makes sense. For instance, if the current drops, but the volt-
age does not, one can say the current dropped because the resistance increased.
If we were simply observing three time series with no knowledge of how they
were generated, we could still determine that two of them evolve independently,
and that the third is causally influenced by both of them.

Notice the second scenario is identical to the first, except that the model
incorporates unknown system inputs, which we model as a random disturbance.
The implication is two-fold. For starters, randomness allows us to model external
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intervention, and while we may not have control over that intervention, if we
can (even indirectly) observe it, then we can draw conclusions about the system
based on its effects. It also describes an arguably more useful system; that varying
“resistor” may actually be a factory whose demand for power is a function of
resource availability, time of day, product demand, etc. Realistic systems interact
with the world, turning one type of energy into other types of energy, and rarely
do they do so in a vaccuum.

Often modelers include disturbances begrudgingly, but we argue that a sys-
tem without disturbances, being deterministic, does not admit any meaningful
discussion of causality. If X was predetermined to happen, and Y happened
because of X, then we could just as easily say Y was predetermined to happen
and skip the intermediary. Hence, from a system-wide perspective, disturbances
are absolutely necessary for a proper discussion of how the network interacts
with the world.

3.2 Causality

The definition of causality is contentious among philosophers, but engineers care
about it primarily for the following reasons:

– When we observe a phenomenon, we’d like to predict what other phenomena
will occur (Prediction).

– When we want the system to do something, we’d like to know where and how
to intervene to affect that outcome (Intervention).

– We’d like to explain phenomena that have happened in the past, in par-
ticular, infer what might have happened had we done something differently
(Counterfactual).

Bayesian Networks. Given a set of random variables V with a joint probability
distribution P (v) and a directed acyclic graph G with vertex set V , P is said to
be Markov relative to G if

P (V = (v1, v2, · · · vn)) =
n∏

i=1

P (vi | pai) (1)

where pai is the set of parents of vertex vi in G. If it is also true that no proper
subset of pai satisfies (1), then G is called a Bayesian network for V .

The problem of inference (of which prediction is a special case) is simply that
of calculating, P (Y | X), where Y is a set of unobserved variables to be inferred
or predicted, and X is a set of observed variables to be used in prediction. In
general, this quantity is computed

P (y | x) =
∑

s P (y, x, s)∑
y′,s P (y′, x, s)

,

which can be computed from the graph G and conditional probabilities P (xi |
pai).
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Causal Bayesian Networks. Purely stochastic models such as Bayesian Net-
works, although they are quite sufficient in answering the first question, do not
allow for a formal study of intervention. The factorization of a joint probability
into products of conditional probabilities is not unique, in general; the Pearl-
Verma theorem [18, Theorem 1.2.8] only guaranteeing that all directed graphs
admitting such a factorization have the same skeleton and open colliders. For
example, given the evidence that a patient is receiving chemotherapy, one can
more accurately conclude that the patient has cancer; however to decide that we
should outlaw chemotherapy to reduce the risk of cancer is absurd.

On the other hand, causal Bayesian networks moreover require the specifi-
cation of interventional distributions; that is, all distributions Px(v) resulting
from applying the intervention do(X = x) for all X ⊆ V and all realizations
x of X. The power of causal Bayesian networks is that, while it may seem as
though specifying a new distribution for each subset of variables is combinatorial
in space, a lot of this information is redundant. To wit, for these distributions to
be meaningful as “interventional” distributions, they must satisfy certain prop-
erties (for instance, if nothing causes X, then its effect on the network should
be the same whether we do(X = x) or observe X = x.) The properties are as
follows [18]:

– Px(v) is Markov relative to G (intervening does not destroy any conditional
independence relationships);

– Px(vi) = 1 for any Vi ∈ X consistent with X = x (applying the intervention
do(X = x) guarantees x happens);

– Px(vi | pai) = P (vi | pai) for all Vi �∈ X whenever pai is consistent with
X = x.

These conditions are sufficiently restrictive that, given a DAG G and a distribu-
tion P which is Markov relative to G, all interventional distributions are uniquely
determined and can be found by truncated factorization,

Px(v) =
∏

i:Vi �∈X

P (vi | pai)

for all v consistent with X = x (and 0 for v not consistent). Note that this differs
from the factorization of P (v) in that we have removed all arrows entering those
nodes in X and instead fixed their values. We denote the effect of intervention as
P (Y | do(X = x)) = Px(Y ), and say that X is causing Y if P (Y | do(X = x)) �=
P (Y | do(X = x′)) for some x �= x′.

Note that if G is a causal Bayesian network for P (V ) then it is also a Bayesian
network; hence an informal but more intuitive definition of a causal Bayesian
network is as follows: among all observationally equivalent Bayesian networks,
the causal Bayesian network is the one where the arrows point in the direction
of causation.

Beyond Causal Bayesian Networks. While causal Bayesian networks are
capable of answering interventional questions, they still provide no insight to
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questions of the third type, called counterfactuals. Consider the following sce-
nario with two variables, “treatment” and “recovery.” The interventional prob-
abilities are as follows:

– Those treated will recover with 75% probability;
– Those not treated will recover with 25% probability.

One may ask, given that a patient was not treated and yet still recovered, would
that patient have still recovered if he had been treated? One may be tempted
to say, since treatment only increases one’s probability of recovery, that yes, he
would have still recovered. Indeed, that is one possibility. However, there are a
number of generative models consistent with these probabilities, and some lead
to the opposite conclusion.

Barring quantum effects, it is reasonable to assume that there is some side
information which is unobserved, but by which a patient’s recovery is entirely
determined given whether or not they were treated. Let us call this side infor-
mation U . For formality’s sake we will also denote whether or not the patient
was treated as T ∈ {0, 1} and recovery as R ∈ {0, 1}. If we know both U and T ,
then R is entirely determined; however, how nature makes this determination
has a profound effect on the correct answer to the counterfactual question.

One possibility is that the treatment only has an effect on those who would
not have recovered without the treatment. We can think of U as a proxy for the
“severity” of the case; say U ∈ {−1, 0, 1} and R = 1{U + T > 0}. If the natural
distribution of U is such that U = 0 in 50% of cases and −1 or 1 respectively
in 25% of cases, then the corresponding distributions P (R | do(T )) do indeed
correspond to the interventional distributions defined above. Moreover, the näıve
conclusion is correct; since the patient was not treated (T = 0) and yet still
recovered (U + T > 0), we must have U = 1. Since U + 1 > 0 still holds, the
patient would have still recovered if treated.

On the other hand, it may also be the case that, unbeknownst to the medical
community, there are two different diseases which are yet indistinguishable. The
first disease (U = 0) both requires treatment T for recovery, but the treatment
is 100% effective. The second disease (U = 1) is always recoverable without
intervention, but is exacerbated by treatment T . In this case we have U ∈ {0, 1}
and R = U ⊕ T . With U ∼ Ber(0.25) we again obtain the same interventional
distributions mentioned earlier; however, the conclusion is different; the patient
recovered (U ⊕ T = 1) without treatment T = 0, so he must have had disease
U = 1 and hence would have been harmed by the treatment.

Of course, the likelihood of either scenario is up for debate, but more impor-
tantly one cannot distinguish between the two using statistics alone. This is
because the variable U does not explicitly appear in stochastic models. These
two scenarios are examples of functional causal models, in general consisting of
a directed graph G with vertex set V , and a set of equations of the form

xi = fi(pai, ui) (2)
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Table 1. Hierarchy of causal models and the questions they can answer.

Prediction Intervention Counterfactual

BN YES NO NO

CBN YES YES NO

FCM YES YES YES

for each xi ∈ V , where again pai are the parents of xi in G. The random variables
Ui represent disturbances due to unmodeled factors [18], such as those discussed
in Sect. 3.1.

The usefulness of these three models has been covered extensively in litera-
ture, but recovering them (especially the more powerful ones) from data is still
a topic of continuing research. As one might imagine, the more powerful models
entail greater difficulty in learning. While it is relatively straightforward to learn
a Bayesian network, at least in theory, making the jump to causal Bayesian
networks without allowing experimentation is difficult. In essence, we desire a
model that can answer questions we are not allowed to even ask of the real
system (Table 1).

In particular, since we cannot intervene on the system, we cannot observe its
interventional probabilities. Through observation alone, we can only observe the
joint probability P (V ) and recover a class of observationally equivalent DAG
structures G′ consistent with the data.

Hence, additional assumptions need to be made about the true causal model,
either in the form of fixing the orientations of certain arrows or constraining the
class of permissible functions fi. These are referred to as causal assumptions.
Among causal assumptions, we further distinguish between two special types:

– Structural assumptions; i.e., restrictions on the directions of some of the
arrows in G; and

– Dynamical assumptions; restrictions on the class of functions a particular fi

may come from.

For instance, if the data has a temporal component, it is clearly appropriate
to assume that no arrow between nodes may point backward in time. While this
may not be enough information to orient all of the arrows in the causal structure,
it is sufficient in many cases, such as when the dynamics are strictly causal (as
we define later).

Other structural constraints might include identifying variables that can have
no cause, such as solar activity in weather prediction, or race or gender in the
social sciences. Such structural assumptions stem from having some semantic
information provided with the data, and at least some intuition behind the
mechanism being observed.

At the other extreme, consider a causal model with only two variables, a and
b. If our aim is to identify the causal structure G, then we clearly are not in a
position to make any informed structural assumption; such assumption would
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automatically be so strong as to completely determine the model, even in the
absence of data. On the other hand, without any causal assumptions at all, it
is impossible to distinguish between a → b and b → a without interventions; we
only observe P (a, b) which can always be factored into both P (a | b)P (b) and
P (b | a)P (a).

In this case, assumptions on the type of functions fi can be useful. For
example, [17] provides two methods of breaking the symmetry, each valid under
certain assumptions, and both taking advantage of nonlinearities.

3.3 Inductive Causation

The Inductive Causation algorithm was introduced by Verma and Pearl in 1990
[26] and takes as input a probability distribution P̂ (ostensibly learned by, for
instance, performing density estimation on a large number of i.i.d samples) and
returns a pattern representing the equivalence class of the DAG which generated
the data. As noted, two DAGs are equivalent if they have the same skeleton (i.e.,
undirected version) and same “open colliders”; structures of the form a → c ← b
where neither a → b nor b → a are in the graph.

The first step recovers the skeleton:

For each pair a, b ∈ V , find a set Sab such that a and b are conditionally
independent in P̂ given Sab. If no such set can be found, add an edge
between a and b in Ĝ.

The second step identifies open colliders:

For each pair of non-adjacent variables a and b with a common neighbor
c, check if c ∈ Sab. If not, a → c ← b is in the pattern.

Explanation: Among all structures with skeleton a–c–b, only when a → c ← b
does conditioning on c actually introduce a dependence between a and b.

In principle, the open collider is the only structure that can be directly deter-
mined from the data. However, even after the second step we may be left with
undirected edges whose orientations are restricted:

Orient any arrows for which either: (1) an alternative orientation would
introduce an open collider, or (2) an alternative orientation would intro-
duce a directed cycle.

3.4 Static versus Dynamic Settings

A typical way one would learn a Bayesian network is by observing multiple inde-
pendent samples from the network and performing some sort of density estima-
tion to obtain P̂ , an estimate of the joint probability of V . One can then use the
Inductive Causation algorithm to determine the pattern of G; a partially directed
graph with all open V-structures oriented. We call this the “static” case; while
there may be a temporal component to the data, it is characterized by having
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multiple independent trials, each happening on a relatively short time scale (if
any), and where variables are typically measured only once per experiment.

In the smart infrastructure scenario, we do not have multiple independent
realizations of the world; instead we have only one realization that evolves in
time. While we could envision that we have multiple realizations (each a snap-
shot in time) of a collection of sensor measurements, these realizations are not
independent; they are taken across time, and physical processes typically have
a strong dependence on the past evolution of the system.

Hence, the “correct” graphical model is one in which there is a node for each
variable and at each time. In this case, we only have one instance of each node.
However, in many systems, the dynamics do not change over time; this implies
that whenever there is an arrow from xi[t − τ ] to xj [t], the associated dynamics
are the same regardless of t. Moreover, physics tells us we must have τ ≥ 0.

Incorporating these ideas, we find a common theme:

– We have a collection of time series {(xi[t])∞
t=0 | i = 1, 2, . . . , N} which we

observe
– A vector-valued stochastic process e[t] ∈ R

N , pairwise uncorrelated, and
unobserved, represents “random actors” in the network

– There is a system of equations governing the evolution of the {xi}, such that

xi[t] = fi (xi[0 : t − 1], ei[t], ui[t], x1[0 : t], x2[0 : t], . . . , xN [0 : t]) (3)

– There is an unknown directed graph G = (V,A) such that for all i, j ∈ V, we
have

(j, i) ∈ A ⇐⇒ ∃xj , x
′
j : fi(· · · , xj , · · · ) �≡ fi(· · · , x′

j , · · · ). (4)

This model is referred to as a Dynamic Influence Model. This particular formu-
lation allows the present value of each sequence to depend on the present value
of potentially every other sequence. This allows us to model phenomena in which
an event instantaneously causes another event, but also requires some notion of
“well posedness” (we will later define one in particular, in the linear case) so
that the equations are consistent.

Moreover, the ei are assumed to be uncorrelated. This is because the ei

represent the autonomous behavior of xi [16]; any correlation of these behaviors
would necessarily be the result of some dynamics linking them together (which
is what we are trying to model). This is not terribly restrictive, but can result
in having to rephrase the problem. For instance, the temperatures at different
locations may be statistically dependent if they are spatially close; the ei could
instead represent local, random fluctuations in temperature.

Understanding Cyclic Causality. Cyclic causality is often not allowed, par-
ticularly in the static case. Bayesian networks are likewise required to be directed
acyclic graphs, because a cyclic conditional probability structure is generally
ambiguous.
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H21(z)

H22(z)

x1[t]

x2[t]

Fig. 1. Feedback model with no external inputs

e1[t] + H21(z)

H22(z) + e2[t]

x1[t]

x2[t]

Fig. 2. Feedback model with external inputs

Yet the existence of feedback loops, fundamental to control systems, neces-
sitate the need to consider causal loops. With the addition of a temporal com-
ponent, causal loops not only make sense, but are often necessary. Models with
cyclic causality have been studied, for instance in [9] and [11].

We again stress that disturbances are key to a meaningful discussion of
causality. Consider the system with block diagram shown in Fig. 1; a rather
familiar looking block diagram, reminiscent of the basic feedback controller stud-
ied at the most fundamental levels of control theory, except with no inputs or
disturbances.

One might ask, is x2 causing x1, or the other way around? Clearly, both are
true; a change in one will induce a change in the other, and vice versa. Since
this is a physical system, both G(z) and H(z) must be causal. However, if we fit
a linear model taking x1 as input and x2 as output, we will find that the best
linear model is not causal at all. This is because the future of x2 carries some
information about the present value of x1, since the present value of x1 caused
a change in the future values of x2. Hence, temporal reasoning tells us that both
x1 and x2 cause each other.

Statistical independence tells us the opposite. Since the evolution of x1 and
x2 is deterministic, and the probability of a deterministic event is 1 regardless
of what we condition on. Hence, P (x1 | x2) = 1 = P (x1) and likewise for x2.
Statistical independence tells us neither x1 nor x2 cause each other.

Since temporal reasoning and statistical dependence both fail us, it is difficult
to meaningfully discuss causality. But should we? Consider how x1 and x2 evolve.
If initial conditions are zero, then both x1 and x2 are zero. Neither one caused
that, it’s just their equilibrium state. If the initial conditions are nonzero, then
what exactly happens depends on the stability of the system, but the response
is clearly only caused by the initial state of x1 and x2. We contend that this, at
the very least, makes for a boring system, as an entire infinite-length waveform
can be condensed into a few real numbers, and no amount of data collected over
time will provide any new information.
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On the other hand, consider the same model augmented with a disturbance
model, as in Fig. 2. In this case, it is clear that e1 directly causally influences
x1, and that it causally influences x2 through x1. The reverse is true for e2. As
before, the initial state of x1 and x2 have an effect on their joint evolution, but
this effect is diluted as e1 and e2 inject new information into the system. Now,
x1 and x2 have a non-trivial joint probability structure (provided e1 and e2 do),
and moreover this model allows intervention (by choosing ei).

3.5 When Correlation Implies Causation

Even in a sparse network, when one variable is perturbed, the effect is felt far
and wide across the entire system. A minimal causal structure should not include
direct causal links between two variables when all of their common variance is
explained by other paths in the network, or perhaps a common cause.

The assumption that the future cannot cause the past, together with the
Pearl-Verma theorem, justifies the use of “predictive causality” to infer true
causality; namely, if the past values of X can help predict (and are hence not
independent of) the present value of Y , conditioned on all common causes of
both, then there is a directed path between the past of X and the future of Y .
Such a path cannot go backward in time; hence X is causing Y and not the
other way around.

Since causal networks are also Bayesian networks, if X causes Y , then it
will also be true that X and Y are not independent; i.e., Pr (Y | X) �= Pr (Y ).
This is a symmetric condition, however; the direction of causality cannot be
determined from this information alone. In a dynamic setting, however, since
the future cannot cause the past, we can discuss a stronger statistical condition,
which in this paper we will call predictive causality. Given a set of random
sequences S = {Z1[0 : t], · · · , Zk[0 : t]}, we say that X[t] causally predicts Y [t]
given S if

Pr

(
Y [t]

∣∣∣∣∣ Y [0 : t − 1],
⋃

Z∈S

Z[0 : t − 1],X[0 : t − 1]

)

�= Pr

(
Y [t] | Y [0 : t − 1],

⋃

Z∈S

Z[0 : t − 1]

)
,

(5)

where the Z are the time series in S. This test is the general version of Granger
causality [8], and the difference in these probabilities’ respective entropies is
called transfer entropy [24].

Just as correlation does not imply causation, however, “predictive causality”
still does not imply true causality. Two variables may very well share similar
trends but not be causally related. Hence, using predictive causality to infer
causation must be handled with care. That said, the conclusion “X is a direct
cause of Y ” is typically made when it has been determined that for any set S
with X �∈ S, X causally predicts Y given S. Equivalently, if every predictive
model for Y can be improved by including X as a predictor, then we conclude
that X is a direct cause of Y .
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This notion of causality has been controversial in the information sciences,
but was later justified by the Causal Markov Condition [18, Theorem 1.4.1]:
any distribution consistent with a Markovian causal model must satisfy that
every node is independent of its nondescendents, given its parents. Since our
observations arrive with known time stamps, we know that nothing of the form
Z[t − k] for k > 0 can be a descendent of Y [t] in the causal model, as this would
imply that the present caused the past.

Linear Models and Granger Causality. Predictive causality has its roots
in Granger causality [8], which is equivalent to predictive causality when all
variables are Gaussian and linearly related. Rather than learn P (y[0 : t], x[0 : t])
(or its various relevant factorizations) over all possible probability distributions,
the linear and Gaussian assumption implies that we need only consider the best
linear predictor.

With Z a collection of time series, define

σ2(y | Z) = minEt

⎡

⎢⎣

⎛

⎝y[t] −
∑

q∈Z

∞∑

τ=1

hyq[τ ]q[t − τ ]

⎞

⎠
2
⎤

⎥⎦ .

Let U be the set containing all time series, including y itself. Then, if σ2(y |
U) < σ2(y | U \ {x[0 : t]}), we say that x is causing y.

Suppose the true model is:

x[t + 1] =
∞∑

τ=1

gτx[t − τ ] + ε1[t]

y[t + 1] =
∞∑

τ=1

hτy[t − τ ] +
∞∑

τ=1

fτx[t − τ ] + ε2[t].

In this case, where the model incorporates a positive time delay (that is, yt does
not depend on xt), then since y0:t−1 are simply noisy functions of x0:t−2, it is
true that

P (xt | x0:t−1, y0:t−1) = P (xt | x0:t−1) , (6)

and hence we would correctly conclude that y does not cause x.
Recall that Bayesian networks are not unique; provided all inverted forks

are preserved, reversing the orientation of an arrow produces an observation-
ally equivalent Bayesian network. When the temporal component is added to
consideration this ambiguity disappears.

4 Existing Results

With a general theory of inferred causation outlined above, this section discusses
specific applications to particular models. We begin with the simplest models:
linear dynamics with wide-sense stationary input, and work up to more general
cases.
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4.1 Inferring Topology of Linear Systems

A linear dynamic graph (LDG) [11] is a pair (H(z), e), where e is a vector of n
rationally related, wide-sense stationary random processes with Φe(z) diagonal,
and H(z) ∈ Fn×n with Hjj(z) = 0 for j = 1, . . . , n.

The output processes {xj} are defined

x[t] = e[t] + H(z)x[t]. (7)

The associated directed graph G is the directed graph on vertices {x1, . . . , xn}
with an arc from xi to xj if Hji(z) �= 0.

The following results are presented in [11].

1. Let (H(z), e) be a well-posed, topologically identifiable LDG with output x.
Then the solution to the non-causal Wiener filter problem:

arg min
x̂j∈tf-span{xi}i�=j

‖xj − x̂j‖2 (8)

is unique, and satisfies
x̂j =

∑

i�=j

Wji(z)xi, (9)

where Wji(z) �= 0 implies {i, j} ∈ kin(G).
2. If (H(z), e) satisfies the above and is additionally causal, then the solution to

the causal Wiener filter problem:

arg min
x̂j∈ctf-span{xi}i�=j

‖xj − x̂j‖2 (10)

exists, is unique, and
x̂j =

∑

i�=j

WC
ji (z)xi, (11)

where WC
ji (z) �= 0 implies {i, j} ∈ kin(G).

3. If H(z) is additionally strictly causal, then the solution to the Granger filter
problem:

arg min
x̂j∈ctf-span{x1,...,xn}

‖zxj − x̂j‖2 (12)

exists, is unique, and
x̂j =

∑

i�=j

Gji(z)xi, (13)

where Gji(z) �= 0 implies i = j or i is a parent of j in G.

In the third case, we recover exactly the structure of G, whereas in the first two
cases, all that is recovered is the “kin graph,” which differs from G in that it is
undirected, contains the undirected version of every arc in G, and also contains
an edge between every pair of nodes with a common child in G, called “spouses.”
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Links between spouses are spurious, but remain local in the sense that only nodes
separated by two hops can be spuriously linked in the reconstructed graph.

If the associated graph is a directed acyclic graph (DAG), and xi and xj do
not have an arc between them, we can find a set S that “Wiener separates”[15]
xi and xj ; that is, a set S such that

arg min
x̂j∈tf-span(S∪{xj})

‖xj − x̂j‖2

does not depend on xj . Since this is not true if xi and xj have an arc between
them in the LDG, we can infer that xi and xj are not connected by an arc in
the LDG. If a spurious link was found in the Wiener projection (11), then we
can conclude that they are spouses. Moreover, for any common neighbor xk of
xi and xj such that S ∪ {xk} does not Wiener separate xi and xj , we infer that
the inverted fork xi → xk ← xj must be in G, in a process called Inductive
Causation [20].

In this general setting, we recover the “pattern” of G; that is, its undirected
version along with all open inverted forks. This may leave several links for which
we cannot determine the direction of causality. If those links’ transfer functions
are strictly causal, then we can find the direction using the Granger filter instead.

4.2 Extensions and Nonlinear Models

Cyclostationary Environment. The results of [11] apply to wide-sense sta-
tionary processes; for cyclostationary processes, [25] shows similar results by
applying a transformation which renders the system multivariate stationary.

Nonlinear Dynamics and Directed Information. In LDGs for which all
transfer functions are strictly causal, meaning there is a positive time delay in
every link, the causal structure can always be uniquely identified by finding the
least squares “Granger filter” [11] estimating each node from each other node.
Causally projecting each node onto the space spanned by all other nodes disre-
gards spurious causality relations such as “cascade” and “common cause” rela-
tionships, because it discovers that the most recent ancestor effectively explains
all variation attributed to a more distant ancestor or sibling.

Granger causality [8] was developed as a method of deciding, between two
processes x and y, whether the data better fit the best strictly causal linear model
accepting x as an input and producing y as an output, or the best strictly causal
linear model accepting y as an input and producing x as an output. The implicit
assumption made is that exactly one of these two models must be valid. This
neglects cases in which the correct model is not strictly causal. This may be the
case when feedback is present, or when the temporal resolution of measurement
is smaller than any physical time delay in the system.

It also neglects the subject of this section, namely, that the process connect-
ing x and y is not linear. James Massey [10] defined a different quality called
“directed information”:
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I(X[0 : T ] → Y [0 : T ]) =

T∑

t=1

I(X[0 : t];Y [t] | Y [0 : t − 1])

=

T∑

t=1

(h (Y [t] | Y [0 : t − 1]) − h (Y [t] | Y [0 : t − 1], X[0 : t])) ,

(14)

defined for any pair of time series with a joint probability distribution. It has been
shown [2] that, when applied to linear Gaussian models, directed information is
equivalent to Granger causality.

Intuitively, directed information is a measure of how much better process Y
can be predicted if we use the information in the past of X and Y , rather than
the past of Y alone.

Just as directed information is a generalization of Granger causality to non-
linear, non-Gaussian systems, Directed Information Graphs (DIG) [7,21] are a
generalization of Linear Dynamic Graphs to the same, under the condition that
all dynamics are strictly causal.

Link Failures and Time Variant Systems. Many physical systems change
over time. The “amount of change” to a system can be quantified in many
different ways, and certainly there is a point at which a system’s dynamics and
structure change so much that the old model no longer provides meaningful
information about the system. However, when smaller changes occur (such as
when the number of alternative models is finite and small), falsifying the current
model in favor of an alternative should be at least as easy as learning a new model
from scratch.

A body of work in particular studies the detection and isolation of failures
and faults in single links within the network. An eigenspace characterization of
network discernibility is presented in [3]. An approach to isolating faulty links,
requiring minimal dynamics knowledge, is discussed in the continuous case in
[22] by tracking jump discontinuities through the network. In directed acyclic
networks, another [5] identifies corrupted links by monitoring for changes in the
cross power spectral densities between output nodes in the network.

5 Conclusions

We have motivated the need for causal structure identification in large dynamical
systems and argued that the era of big data has made this necessary, as we now
have the ability to measure more variables than ever before. We can determine
the temperature, pressure, occupancy, traffic density, etc., in any location within
the system that we wish; and in complex systems, many variables can have a
significant and widespread impact.

We instead look at these complex systems as networks of these variables,
similar to how we might look at complex systems as networks of less complex
subsystems. By networking at the variable level, we mitigate the need for first
principles modeling of any simple subsystems, and avoid overlooking interactions
between variables that are not obvious from first principles.
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Causal modeling is also simpler than full black box modeling, as we do not
necessarily need to fully model the dynamics linking two variables in order to
conclude that they interact. If a full model is desired, restricting analysis to those
models obeying a particular causal structure reduces the number of parameters
to learn, in turn reducing computational complexity and increasing data effi-
ciency.

We have discussed what causality means to the engineer, and how it can be
inferred from passive observations. We have explained how spurious interactions
can appear in data, and how inferring causality when it does not actually exists
can be avoided.

Finally, we have discussed a few generative models and results pertaining to
the reconstruction, at least partially, of the causal structure. If the dynamics
in the network are strictly causal, then the causal structure can be identified
exactly; otherwise, the kin-graph is identified. While this leaves us uncertain of
the direction of causality, we are typically left with fewer candidate links than
when we started.

Many areas of research are ongoing. One such area is tracking the causal
structure over time. Many networks change gradually over time, and making
slight changes to the causal model as the network evolves should be at least
as easy as learning the causal structure from ground zero. Another area is in
the proper handling of unobserved nodes, which as we saw can be problematic
if these nodes influence multiple child nodes. Moreover, causal modeling opens
opportunities for decentralized controller design. Results such as the “revolving
door criterion” in [16] allow control engineers to predict the effect of adding
closed-loop controllers in interconnected systems.
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Abstract. This paper paves the way for a future scenario catalog-based
approach to acceptance testing for highly autonomous vehicles by pro-
viding a rigorous formal semantics for a visual specification language of
traffic sequence charts to be used for building the scenario catalog. It
builds on our previous work on Live Sequence Charts [2] that defines a
semantics sufficiently rich to cover both the requirement analysis phase
and the specification phase for highly autonomous vehicles. This formal
semantics provides the basis for tool support, in particular supporting
the future V&V environment for autonomously driving cars under devel-
opment by the German automotive industry.

1 Introduction

It is well known that traditional approaches to homologation (i.e., certification
that a product meets a set of regulatory, technical, or safety requirements) fail
for highly autonomous vehicles due to the impossibility of covering sufficiently
many kilometers in field testing to achieve a statistically valid basis for building
safety cases. Extreme variability of environmental contexts results in tremen-
dous complexity in the perception- and trajectory planning systems of highly
autonomous vehicles. The approach taken by the German automotive industry
is to build scenario catalogs that capture, for all conceivable traffic situations,
requirements on such systems to jointly ensure global safety objectives. Test
drives are to be replaced, to a significant extent, by placing the vehicle under
test in test environments, exposing the vehicle to traffic situations that cover
all scenarios in the catalog, and monitoring compliance of the vehicle’s reaction
to these scenarios. Such test environments will allow testing separate from one
another the perception components (along all stages, covering preprocessed sen-
sor data, sensor fusion, and object identification algorithms) and the trajectory
planning component (which involves exploring possible future evolutions of the
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currently perceived traffic situation to decide on the planned maneuver). Projects
already running and pushing this approach are the Pegasus project1 funded by
the German Federal Ministry for Economic Affairs and Energy, involving all
major German OEMs and Tier 1 companies, and the ENABLE-S3 project2

funded by the Joint Undertaking ECSEL, including both German and French
automotive companies. These projects also cover other domains for building test
environments for autonomous systems, such as maritime and rail. OFFIS partic-
ipates in both these projects and is involved in the planning of follow-up projects
pushing a fast implementation of this approach.

There are several challenges which must be addressed to make this approach
viable:

(C1) Given the ill-structuredness of the space of real world traffic situations, how
can we achieve completeness of scenario catalogs, i.e., demonstrate with
high confidence that all relevant real-world situations have been captured?

(C2) Given the remaining likelihood of experiencing failures in perception and
interpretation after deployment, how can we establish a process that learns
from field incidents and accidents and updates the scenario catalog to avoid
such events from reoccuring in the field?

(C3) Given the complexity of real-world traffic situations, how can one at all
achieve sufficiently concise specifications to make construction of scenario
catalogs feasible?

(C4) How can we assure that the interpretation of scenarios, and thus interpre-
tation of test results, is unambiguous across all test platforms?

All these challenges can only be addressed using a language for capturing
scenarios that is intuitively easy to understand, and, most importantly, equipped
with a formal (declarative) semantics.

Challenge C1 will be addressed by generalizing from databases of observed
traffic flows. A minimal requirement for completeness of a scenario catalog w.r.t.
a database of observations is to ensure that a particular observed traffic behav-
ior is already covered by at least one scenario of the catalog. To this end, we
define a notion of formal satisfaction, formalizing whether a particular behav-
ior satisfies a scenario specification or not. Although the issue of completeness
of the set observations remains, approaches like [1] may guide the design of an
ontology to classify observations and index gaps in observed behaviors. More-
over, as experienced in the play-out approach for Live Sequence Charts (LSCs)
[11], a formal semantics provides a basis for playing out the current scenario
catalog, thus generating traffic flows which in an expert can judge for unrealistic
or missing real-life traffic flows.

Challenge C2 requires a formal semantics to identify the gaps between the
space of possible worlds described in the scenario catalog, and the concrete
in-field incident or accident. Specifically, forthcoming regulations will require
autonomously driving cars to record all those perceived environmental artifacts

1 www.pegasusprojekt.de.
2 www.enable-s3.eu.

www.pegasusprojekt.de
www.enable-s3.eu
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relevant to trajectory planning as well as the car’s trajectory control for a suf-
ficiently long time period. A formal semantics allows to check the failed sce-
nario(s), offering a basis for refining the scenario specifications to cope with the
observed failure in perception or interpretation of the real world.

Challenge C3 demands the use of a declarative specification language, where
one single scenario specification stands for a possibly extremely large set of real
world traffic situations, defined unambiguously through the satisfaction relation.
Also, declarative specification languages allow for separation of concerns, such
as focusing on particular kinds of critical situations in isolation, knowing that
the car can only pass the test if all scenarios are passed.

Finally, Challenge C4 can be addressed by automatically synthesizing moni-
tors for compliance testing, using the standardized formal semantics.

This paper provides a formal semantics for the declarative visual specifica-
tion language of traffic sequence charts (henceforth called TSCs), and thus meets
a key industrial need. Not surprisingly, this comes with a number of scientific
challenges outlined below, which we address by building on a number of pre-
vious publications, notably our previous work on introducing LSCs [2], and on
automatic synthesis of driving strategies for autonomous vehicles [6].

Much as Message Sequence Charts [15] were lacking expressiveness and for-
mal semantics, motivating the extension to Live Sequence Charts, the ongoing
industrial pre-standardization effort for capturing scenarios, called OpenSCE-
NARIO [22], falls significantly short in being able to address the above chal-
lenges. OpenSCENARIO allows describing what we call existential LSCs, i.e.,
to give examples of desired behaviors, rather than being able to specify require-
ments on all possible behaviors, such as in what we call universal LSCs. TSCs
“inherit” from LSCs the concepts related to distinguishing between possible and
mandatory behaviors, the concepts of pre-charts which is key for characterizing
those situations from when on all behaviors must comply to universal charts,
and cold and hot conditions for distinguishing case-distinctions from failures.
TSCs go beyond LSCs in the sense that they:

• provide a visual specification language for describing first-order predicates on
traffic situations;

• introduce a concept we call oracle that reflects the need to make current
moves dependent on expected future evolutions of traffic flows;

• must cope with a priori unbounded numbers of traffic participants, such as
[7];

• must cope with dynamic evolutions of traffic scenarios governed by complex
vehicle dynamic models of the car under design, which depend on road surface
conditions, and thus generally require the expressivity of non-linear hybrid
automata; and

• must include dynamic models of other traffic participants, reflecting observed
behaviors in real traffic situations, such as those which can be expressed by
probabilistic hybrid automata.
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The challenge in providing a formal semantics thus rests in unifying concepts
sufficiently expressive to specify requirements on flows of unbounded parallel
compositions of (probabilistic) non-linear hybrid automata.

In this paper, we factor out perception failures and assume TSCs with per-
fect information, thus talking about ground truth in say the position, relative
distance, and acceleration of cars. Therefore, we neglect probabilism. Also, we
factor out the topic of cooperative driving strategies, and focus on specifying
requirements to be achieved by a single car, in the remainder of this paper
called ego, without further assistance from cooperating vehicles. Neither do we
specify communications within TSC for now. Here we represent all traffic par-
ticipants (including ego) by non-deterministic non-linear hybrid automata and
omit means to specify communication. Both these restrictions will be dropped
in future work. To deal with perception failures and uncertainties we plan to
use probabilistic non-linear hybrid automata. LSCs will be integrated into the
TSC formalism to model communication. In this paper we consider only TSCs
that consist of so-called snapshot charts. Illustrations of industrial applications
of TSCs can be found in [5].

Outline. In the next section we present basic notions. We give an introductory
example in Sect. 2. In Sect. 3 we introduce formal notions. An overview of the
elements in a single snapshot is given in Sect. 4. Then we show how a snapshot
is translated into a multi-sorted first-order formula. Snapshots are combined to
build snapshot graphs. Snapshot Charts (SCs) are annotated snapshots graphs.
We introduce snapshot graphs and SCs in Sect. 4.4 and then explain how a
corresponding real-time formula is derived by composing the snapshot formulas.
Before drawing our conclusions, we survey related work in Sect. 5.

2 Example

To give an impression of a TSC specification, we sketch the development of a
collision avoidance maneuver as presented in [5]. We consider two adjacent, same-
direction freeway lanes, car objects, and obstacle objects (i.e., objects of low or
zero velocity, e.g., a construction site or a slow moving vehicle). We examine the
scenarios that may arise when a car that drives in the right lane and approaches
an obstacle.

qnt.m= exists

act.m= initial

≤ 2m

≥ 100km/h

Fig. 1. Car collides with
obstacle.

qnt.m= exists

act.m= inital

≤ d1 ≥d2 d3

Fig. 2. Car avoids collision with obstacle.

We first structure the space of possible scenarios that could unfold in that
situation. There are two basic scenarios: either the car stays in the right lane and
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collides with the obstacle, or it changes lane and avoids the collision. Figure 1
shows a TSC that models a collision scenario. TSCs are to be read from left
to right. So, Fig. 1 consists of a header followed by three snapshots (sns). Sn1

(black frame with gray hatching) is the empty snapshot and specifies that we
allow anything to happen before sn2. Sn2 specifies our initial situation: The car is
in the right lane, distance ≤ d1 away from the obstacle (the black rectangle). The
distance arrow is used to specify bounds on distances between objects. The
third snapshot describes a collision between the car and the obstacle. The hatch-
ing on the lanes denotes that—for now—we do not constrain whether there are
other objects (“don’t care”). Figure 2 specifies the collision-avoidance scenario.
Again, the sequence of sn1, sn2 expresses that eventually sn2 is reached—the
car is ≤ d1 away from the obstacle. Before the car gets closer to the obstacle
than d2, it starts changing lane (cf. sn3). The dashed somewhere-box surround-
ing the car indicates that the car may be anywhere within the box. The whole
process of changing onto the left lane is hence covered by sn3. Sn4 describes
that the car has moved into the left lane and drives past the obstacle. Finally,
the last snapshot describes that the car has passed the obstacle. Note that we
require snapshots (of a sequence) to contiguously hold during a trajectory. Hence,
the somewhere-boxes at sn3 and sn4 are an important mean to write succinct
specifications.

The headers in Figs. 1 and 2 declare that both TSCs are to be understood
existentially (quantification mode = exists). That is, we specify that the scenarios
of these figures exist. Existential TSCs allow cataloging observations of the real
world. In contrast, the TSC of Fig. 3 specifies behavior of ego, the car under
design, at a collision avoidance maneuver. It specifies that if ego gets into the
situation of sn1—ego is closer than d1 to an obstacle—and if the left lane will
be free for a time duration greater than t (cf. sn2), then ego changes to the left
lane and drives past the obstacle. The TSC of Fig. 3 uses a premise-consequence
chart to express “if ego [. . . ], then ego changes lane [. . . ].” The dashed hexagon
contains the premise. Right of it follows the consequence. Our premise consists
of two parts: It specifies the initial situation via sn1 (so the premise expresses
“if ego is closer than d1 to the obstacle”) and via sn2 the future (which adds to
the premise: “and if there will be no car at the left lane within a distance of d4

behind ego up to d5 in front of ego”). We use the nowhere-box, a black frame
with diagonal lines, to denote that we rule out the presence of cars within the
box. The dimensions of the nowhere-box are specified via the distance arrows
anchored at the borders of ego’s somewhere-box. The hour glass on top of sn2

specifies that the left lane will be clear for a time duration greater than or
equal to t. The consequence (sn3 to sn5) is like sn3 to sn5 of Fig. 2, but with
the additional annotation of a bar above it. This annotation specifies how
consequence (sn3 to sn5) and the future (sn2 abbreviated by ) synchronize;
ego has to perform the lane change while the left lane is guaranteed to be clear.
Thus, future snapshot sn2 is concurrent to sn3 and ends some time during sn4.

As the activation mode of the TSC of Fig. 3 is always and the quantification
mode is all, all trajectories have to satisfy the TSC and if at any time the
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qnt.m= all

act.m= always
≤ d1 ≥d4 ≥d5

δ δ≥t

≥d2 d3

Fig. 3. Rule: change lane to avoid collision, if next lane is clear.

premise matches (“ego is close to an obstacle and the left lane will be clear”),
the consequence is implied: (“ego changes to the left lane”). The TSC of Fig. 3
specifies a very abstract lane change rule—chosen here for simplicity and ease of
the example. A TSC for a concrete implementation will rephrase the future part
of the premise of Fig. 3 (“the left lane will be clear”) in terms of sensor readings
and on-board prediction so that a sufficiently free corridor is guaranteed.

3 Preliminaries

A TSC specification is a set of TSCs together with a world model over which
the TSCs are interpreted. In this paper, a TSC consists of an SC only. The
formal semantics of TSCs is given by a translation into a multi-sorted temporal
formula of a logic L. In the following we introduce the logic L and the formalism
we consider in this paper to specify the world model.

A Multi-sorted Real Time Logic. We consider a multi-sorted first-order real-
time logic, which we simply call L from here on. We consider a signature Σ =
(Var,Π,Υ,Γ, σ) to be given that comprises a set of variable symbols Var and a
set of predicate symbols Π, a set of function symbols Υ, a set of type symbols
Γ and a function σ that assigns types (sorts) to variable, predicate and function
symbols. We denote the set of type respecting ground terms as T T

Σ.
Since TSCs formalize objects and their attributes at a certain time, we intro-

duce the following distinction of variables: Var = VarObj ∪̇VarT , where VarT is
a finite set of so-called time variables that take on values in Time:=R≥0 and
VarObj is a finite or infinite set of so-called object variables oi.

The formulas of L are inductively defined by the grammar ϕ := True |
q(o1, . . . , on) | ∃w ϕ(w) | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[t1,t2]ϕ2 | τ1 �� τ2 where q ∈ Π is a
predicate of arity greater than or equal to zero, oi are object variables, w is an
object or time variable, t1, t2 are time variables, τ1, τ2 ∈ T T

Σ, σ(τ1) = σ(τ2), and
��∈ {<,≤,=,≥, >}.

We assume now a structure M = (U , I) of Σ to be given where the universe
U is a non-empty set of concrete values and I is an interpretation of the symbols
in Π, Υ, Γ that respect the typing. We consider only valuations μ that respect the
variable types. Further, we assume that the local state of each object is made up
of its identity and list of attributes A(o) = {a1, . . . , an} with a fixed but arbitrary
order of ai’s. So σ assigns to each object variable o ∈ VarObj a type T ∈ Γ, such
that a state of on object of type T is a value in σ(id)×σ(a1)× . . .×σ(an). Given



188 W. Damm et al.

an object variable o, we denote o.id to refer to the object’s identity and we use
o.ai to refer to the object’s attribute ai.

The semantics of L is defined at the end of this section, after the introduction
of the semantic model over which we will interpret L’s formulas.

World Model. The TSC semantics is given in terms of formulas of L, that are
interpreted on a world model WM. In this paper we assume that WM is given via
the parallel composition of (finitely or infinitely many) hybrid automata Hi, that
are instances of finitely many automaton classes Cj , where an automata class is
defined by the same dynamics laws and list of variables. Intuitively, the automata
instances represent objects within the world model. In the next paragraph we
present a notion of hybrid automata apt to be used as a formal basis for our
world model.

The type, σ(o), of an object variable o gets interpreted as an automaton
class Ci

3. The valuation μ(o.aj) at time t of attribute o.aj is then the value of
the variable aj of Hi at time t. So, for simplicity we do not distinguish between
object attributes and variables of Hi.

As minimal requirement on WM we require a global coordinate system in
R × R where each object of WM has at least a defined reference position, pos.

Although we allow infinitely many objects in the world model, we require
that only finitely many are alive at any given time. To this end, we require
that a TSC signature has a unary predicate alive and there be an appropriate
interpretation of alive(o) to distinguish whether or not o is currently alive
in WM. As in [6] the process of becoming alive or non-alive is assumed to be
governed by rules that reflect plausibilities of the world model.

The requirements on WM so far are very general in order to impose minimal
restrictions. As a WM-instance for traffic scenarios, we have a model in mind,
where we distinguish the environment from the objects within the environment.
Further, we assume that automata instances of one dedicated class correspond
to the type of the car under design, which we call ego, so that we can specify
requirements on ego. Objects of WM have sensors to perceive their surround-
ings (cf. Fig. 4). A sensor of a car is modeled via an input variable of the hybrid
automaton Hcar. Further, Hcar controls its acceleration; the acceleration is an
output of Hcar and determines the evolution of the car’s position within the envi-
ronment. To model sensors that observe the object within a sensor orientation
(e.g. up to 50 m in front), we postulate that an object has sensor input variables.
A topology automaton similar to [3] observes all objects and the environment,
and writes as output these sensor variables. It updates these variables so that
the front sensor of an object is determined by the position of the object that is
currently in front of it. We refer within TSC to objects and the environment,
but not to the topology automaton.

3 More generally, a type t is a pair (U , Idx) where U is a |Varσ(o)| dimensional subspace
of WM’s state space. Idx specifies the dimensions of WM that belong to objects of
t. Given a state X of WM, (xid1 . . . xidn)T gives the state of an object of t, where
(id1, . . . , idn) ∈ Idx.
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Fig. 4. Sketch of a world model as parallel composition of hybrid automata.

Hybrid Automata and their Runs. In this section we introduce an automata
model that is apt to formalize world models. To this end, we consider hybrid I/O
automata (HIOA) that distinguish between input, output, and local variables.

An HIOA H is a tuple (M,Varloc,Varin,Varout, Rdscr, Rcnt,Φinit,Θinv)4 where

• M is a finite set of modes;
• Varloc,Varin and Varout are disjoint sets of local, input and output variables

over R. We denote Varloc ∪Varin ∪Varout as Var and Varloc ∪Varout as VarC ,
the set of controlled variables. X ∈ R

|Var| denotes a state of H, where we
assume a fixed but arbitrary order of v ∈ Var. Also we denote as xi the i-th
coefficient of X;

• Φinit is a predicate over Var and a mode variable vM which describes all
combinations of initial states and modes;

• Θinv associates with each mode m ∈ M a local invariant formula Θinv(m);
• Rdscr is the discrete transition relation with elements (m,G,A,m′) where

m,m′ ∈ M, G is a first-order predicate over Var, and A is a first-order
predicate over Var∪VarC+

, where VarC+
holds decorated variants of variables

in VarC and represents the value after the discrete update. Rdscr consists of
disjoint sets Rdscr

U , the urgent transitions, and Rdscr
L , the lazy transitions; and

• Rcnt defines the continuous evolutions at each mode m via the function
Rcnt(m) that maps each X ∈ R

|Var| onto a closed subset of R|VarC |, which is
taken as the right-hand side of a differential inclusion.

Let (τi) be a time sequence, i.e., a sequence of monotonically increasing values
of Time with τ0 = 0. A trajectory (πi) with switching times (τi) is a sequence
of continuously differentiable functions πi : [τi, τi+1) → R>0. (πi)t denotes the
trajectory (πi) shifted by time t so that (πi)t(t′) = (πi)(t′ + t) and τ t(0) = 0,
and with j the smallest index with τj > t, ∀i > 0 : τ t

i = τj+i − t. We define

4 HIOAs were introduced by Lynch et al. in [18]. The original definition additionally
defines local, input, and output actions. These are omitted here since we do not yet
specify communication. However, we plan to integrate LSCs to specify communica-
tions.
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π(t) as the πi(t), such that ∀j > i : τj > t, i.e., π(t) is the system state after all
(possibly super-dense) switches that occur at time t.

A sequence (ρi) is a run of H with switching times (τi), where ρi =

[Mi,XT
i ]T , Xi =

[
XC

i

XI
i

]
, Mi : [τi, τi+1] → M, XC

i : [τi, τi+1] → R
|VarC |, and

XI
i : [τi, τi+1] → R

|Varin| are continuously differentiable functions, and when it
satisfies:

• (ρi) starts at an initial state, ρ0(0) |= Φinit;
• mode changes at switching times only, ∀i ∈ N ∀t ∈ [τi, τi+1) : Mi(t) = M(τi);
• the continuous evolution is governed by Rcnt, ∀i ∈ N

∀t ∈ (τi, τi+1) : (dXC
i /dt(t),Xi(t)) |= Rcnt(Mi(τi));

• invariants hold, ∀i ∈ N ∀t ∈ [τi, τi+1) : Xi(t) |= Θinv(Mi(t));
• urgent discrete transitions are immediately executed, ∀i ∈ N

∀t ∈ [τi, τi+1) ∀(Mi(t), φ,A,m′) ∈ Rdscr
U we have that Xi(t) 
|= φ; and

• at switching times either new values are assigned according to Rdscr or input
changes or the hybrid state is unchanged (stuttering), i.e.

∀i ∈ N : (Mi(τi+1) = Mi+1(τi+1) ∧ XC
i (τi+1) = XC

i+1(τi+1))

∨(∃(m,φ,A,m′) ∈ Rdscr : Mi(τi+1) = m ∧ Mi+1(τi+1) = m′

∧Xi+1(τi+1) |= A[VarC/XC
i (τi+1)] ∧ XI

i (τi+1) = XI
i+1(τi+1)).

So the evolution of VarC is determined by H itself, while values of Varin are
assumed to be determined by the environment such that Varin is unconstrained
(by H). The projection of a run of H onto R

|Var| is called a trajectory of H.
In case two HIOA Hi, i ∈ {1, 2}, share only input variables or read the other’s

output variables, we define the composition of the two. The parallel composition
of H1 and H2, H1‖H2 = H, is given by

• M = M1 × M2;
• Varout = Varout1 ∪̇Varout2 , Varin = (Varin1 ∪ Varin2 ) − Varout and Varloc =

Varloc1 ∪̇Varloc2 ;
• Rcnt((m1,m2)) = Rcnt

1 (m1) ∧ Rcnt
2 (m2);

• Rdscr
U that consists of transitions:

(a) ((m1,m2),Φ1,A1, (m′
1,m2)) for each (m1,Φ1,A1,m

′
1) ∈ Rdscr

1,U ; and
(b) transitions of the form (a) with the role of H1 and H2 interchanged,

• Rdscr
L that is defined analogously to Rdscr

U ; and
• Φinit = Φinit

1 ∧ Φinit
2 and Θ((m1,m2)) = Θ1(m1) ∧ Θ2(m2).

Note that input variables of Hi become local variables, if they are driven by
outputs of Hj , while output variables stay outputs. We denote the composition
of infinitely many hybrid automata Hi, (. . . ((H1‖H2)‖H3)‖ . . .), as ‖∞Hi.
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Semantics of L. The |= relation is defined inductively over the structure of the
formula. To this end, we consider (i) a structure M of Σ that interprets Σ’s
symbols on WM; (ii) an infinite trajectory, (πi), of WM; and (iii) a valuation μ
to be given that assigns values to the free variables of a formula ϕ. We write
{o → (πi)|VarHi

} to denote that the value of o at time t is determined by the
value of (πi)(t)|VarHi

. Since the valuation of object variables is time dependent,
the values assigned for object variables need to be time shifted analogously to
the trajectory at the definition of the temporal operator U.

For ϕ = True | q(v1, . . . , vn) | t1 �� t2 | ¬ϕ′ | ϕ1 ∧ϕ2 the |= relation is defined
as usual.

(πi), μ |= ∃t ϕ(t) iff for some val ∈ Time it holds that (πi), μ′ |= ϕ with
μ′ := μ ∪ {t → val},

(πi), μ |= ∃o ϕ(o) iff for some Hi of automaton class C holds that (πi), μ′ |= ϕ
with μ′ := μ ∪ {o → (πi)|VarHi

} and I(σ(o)) = C.
(πi), μ |= ϕ1U[t1,t2]ϕ2 iff for some τ ∈ [μ(t1), μ(t2)], (πi)τ , μτ |= ϕ2 and

(πi)u, μu |= ϕ1 for all u ∈ (0, τ).
The order of precedence is {¬}, {�,♦}, {∧}, {∨,→,↔}, {U}.

Let ϕ be a closed formula of L and WM be a HIOA that is interpreted as parallel
composition of (possibly infinitely many) hybrid automata. WM |= Aϕ iff all runs
of WM satisfy ϕ and WM |= Eϕ iff some run of WM satisfies ϕ.

4 Compositional Semantics

In this section we present a formal semantics for TSCs that is based on SCs
only. The integration of LSCs is future work. Due to lack of space we consider
only two headers (A) act.m= initial and qnt.m=exist or (B) act.m=always and
qnt.m=all. We start with an overview of snapshots and their semantics, then we
introduce snapshot graphs and the more general SCs and their semantics.

4.1 A TSC Specification

A TSC specification is a set of TSCs together with a world model WM about
which the TSC formulas are interpreted.

4.2 Snapshots in the Spatial View

In the following we give an overview of snapshots at the spatial view. Their formal
semantics will be given in Sect. 4.3 by a translation into a first-order formula. In
the spatial view, the placement of symbols specifies the relative positioning of
the respective objects. The spatial view certainly represents an important aspect
of traffic maneuvers. Properties like collision freedom, distances within a platoon
or successful parking maneuvers require reasoning about the spatial dimension.
Other views are likely to be helpful as well and nicely combinable within TSCs,
but these have not been designed yet.
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Fig. 5. Presence: there is a car. Other
objects may be there.

Fig. 6. Absence: there is an area of
0.5 km × 1 km where nowhere is a car.

Fig. 7. Relative placement of objects.
Constraints on the x- and y- positions
of all objects are implied.

Fig. 8. Constraints that relate the
positions of the s-box to (i) objects
at the bottom and (ii) the upper car
are implied. No constraints relate the
upper car and the bottom objects.

Firstly, a snapshot collects constraints that hold conjunctively. Hence, the
empty snapshot denotes True. To fill a snapshot with life, we place visual symbols
inside a snapshot frame. The following list gives an overview on the snapshot
syntax.

1. Placing a symbol within a snapshot frame means we require such an object
to be present. The nowhere-box (n-box) allows us to rule out that certain
objects are present. At default, we assume that everything is possible, i.e.,
presence or absence of any object of the world. Figures 5 and 6 illustrate how
presence and absence can be expressed.

2. We annotate that objects are in a certain state (have certain attribute val-
ues), either by using an appropriately modified object symbol (a car with
highlighted indicators) or by labeling it with an appropriate predicate.

3. We specify the placement of objects.
(a) If we place an object symbol within a snapshot next to another symbol, we

specify the relative placement of the respective objects. E.g., we specify
in Fig. 7 that, from left to right, first there is the bottom car, then the
upper car and then a bike. Any symbol represents at least a distinguished
position of its represented object, an anchor. A symbol may also represent
other anchors, such as its minimal and maximal values along the x- and
y-axis, x, x, y and y. The relative placement of symbol(anchor)s yields
constraints for on the respective objects.

(b) If we place an object symbol within a somewhere-box (s-box), it means
that the represented object may be anywhere within the box. Likewise,
an n-box means that the object may not be anywhere within the n-box.
That way, the spatial order among objects within the snapshot does not
need to be total. An illustrating example is given in Fig. 8, where the top
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car is within the s-box, allowing it, e.g., to share the same x-position with
the other car or with the bike.

(c) We may define distances between objects via distance lines (cf. Fig. 10).
These can be considered as special case of predicate arrows (cf. below).

4. We annotate that objects have relations with each other via predicate arrows.
Therefore, we connect the related object symbols via an arrow and label it
with a predicate of our signature Σ (cf. Fig. 9).

5. We may negate a snapshot by crossing it out (inscribing dashed diagonals).

Fig. 9. The leader-follower relation. Fig. 10. A car ≥100 m behind a bike.

4.3 Snapshot Semantics

In the following, we will explain how visual elements in snapshots can be trans-
lated into first-order logic formulas referring to the world model. We first sketch
the basic translation scheme and give an illustrative example (cf. Fig. 12). We
distinguish between symbols 𝓈 and symbol occurrences s. A symbol like
can occur in the same snapshot several times (three times in Fig. 9). During the
translation process, object symbol occurrences get associated to object variables,
and constraints on these variables are derived that encode the visual snapshot.
An object symbol 𝓈 usually encodes constraints on the object type and state of
the represented object. An occurrence s of 𝓈 additionally has a position within a
snapshot from which we derive constraints on the relative placement of objects.

For the translation, we assume a so-called symbol dictionary (s-dictionary)
to be given. The s-dictionary defines the interpretation of visual symbols in
terms of the signature Σ and formulas of L. (i) For an object symbol 𝓈, the
s-dictionary specifies typesdict(𝓈), a type T ∈ Γ. Occurrences s of 𝓈 get translated
to object variables os.id of type T; (ii) For all modifications 𝓈′ of an object
symbol 𝓈 (cf. item 2), it specifies a unary predicate O𝓈′(os.id) of L, that encodes
the constraints visualized via the modification of 𝓈; and (iii) The s-dictionary
specifies spatial characteristics. For the spatial view we require that each symbol
𝓈 has an anchor position 𝓈.pos, which is a dedicated position within the symbol
or it has to have anchors 𝓈.x, 𝓈.x, 𝓈.y, 𝓈.y. A symbol’s anchors are declared
at the s-dictionary as, e.g., shown in Fig. 11. By default, s.𝓈.w is translated to
os.id.w where w ∈ {pos, x, x, y, y}. The anchors x, x, y, y represent a bounding
box by being interpreted as minimal and maximal positions in two dimensions.

To deal with (s- and n-)boxes in our translation, we introduce the notion of
frames. Boxes can be nested; if, for instance, we place at a snapshot an s-box
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Fig. 11. Excerpt of a symbol dictionary.

and within this s-box a bike symbol and in front of it an n-box symbol within
which we place a car symbol, as at the top of Fig. 12 (1), we specify “somewhere
is a bike and in front of it nowhere is a car”). So the meaning of the symbol
occurrences also depends on their container, their frame. A snapshot sn spans
a frame, fsn. Also each box symbol occurrence b spans a frame, fb. Further, we
define that a symbol occurrence s belongs to frame f , if s is within the symbol
occurrence b spanning f , fb = f , and if there is another symbol b′ spanning fb′

that contains s then it also contains b, i.e., s is directly placed in f . In our above
example, the s-box belongs to the snapshot’s frame while the bike and the n-box
belong to the s-box’s frame. The car belongs to the n-box’s frame.

For the translation, we consider the set Sf of occurrences of object and box
symbols that belong to frame f . We assume that each symbol occurrence s ∈ Sf

has an identity and a position in R × R for each of its anchors. We write s.𝓈
to denote the occurring symbol. Further, we consider the set Af of occurrences
of predicate arrows (cf. item 4) that connect a symbol occurrence s ∈ Sf to a
symbol occurrence s′ at a frame (transitively) containing f . Also, a ∈ Af has an
identity and we denote its source symbol occurrence as a.s and its target symbol
occurrence as a.s′.

To translate a snapshot (cf. Algorithm 1) we recursively translate the snap-
shot frame. To translate a frame f we (i) derive constraints that capture the
meaning of the (object) symbols 𝓈 with occurrence s at f , s ∈ Sf . If s.𝓈 is a
box, we use as constraint the formula of the content of s here; (ii) We reflect the
relative placement of symbols of f ; (iii) encode that the symbols of f are within
f ; and (iv) reflect predicate arrows a ∈ Af between (a) symbols of f and (b)
symbols at f or at frames containing f .

For an example, let us consider the first snapshot at Fig. 12. We highlight
the currently translated elements by a white background and grey out its sur-
roundings.

(1) of Fig. 12 shows the initial snapshot. (2) The top-level frame gets trans-
lated to “There are three lanes next to each other. In the top lane is a s-box swb
and within it, ϕswb holds. In the middle lane is a car. In the bottom lane is a
n-box nwb and within it ¬ϕnwb holds. On the x-axis, first comes the n-box’s rear,
then the s-box’s rear, then the car’s rear, then the car’s front, then the s-box’s
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Fig. 12. Steps of snapshot translation

front, then the n-box’s front.” (3) The s-box swb is translated to ϕswb =“There
is a bike and directly in front of it is a n-box within which ¬ϕ′

nwb holds.” (4) The
n-box at the top lane is translated to ϕ′

nwb =“There is a car faster than the car
at the middle lane.”. (5) The content of the bottom n-box gets ϕnwb :=“There
is a bike, and in front of it a car.”. Put together: There are three lanes next to
each other. In the top lane, somewhere within area A1, is a bike and directly in
front of it is no car faster than the car in the middle lane. In the middle lane
is a car. In the bottom lane nowhere is first a bike and then a car. We also
derive the following order of anchors on the x-axis: Area A1 is included by the
x-positions of area A3, the bottom n-box. The x-position of the car is included in
the x-positions of A1.

To track an object along a snapshot sequence, we introduce in the next
section the bulletin board, which is a visual means to assign to all occurrences of
a symbol the same identity across all snapshots of an SC. Symbols with identities
have a global scope. Hence the translation procedure of Algorithm1 takes a set
𝒮B containing symbols with a unique identifier as its input. We use Sf , Af as
before. Additionally, we denote by SNB

f the set of n-box occurrences at frame f ,
SSB

f denotes the set of s-box occurrences at f , and SO
f is the set Sf \ (SNB

f ∪ SSB
f ).

At line 3 a quantifier opens a local scope for each symbol occurrence s ∈ Sf \𝒮B
5

and binds an object variable os.id. Predicates on these object variables are added
at lines 4 to 9 where the local scope ends. We do not quantify an object variable
o𝓈.id if 𝓈 ∈ 𝒮B as these variables will be globally quantified (cf. Sect. 4.7). At line
4, we require an object os.id is alive (cf. Sect. 3), when s is placed at a frame. The
predicate Os.𝓈(os.id) at line 5 encodes constraints encoding the features visualized
by s.𝓈 (cf. item 2). These constraints are defined in the s-dictionary. At line 6,
we capture the placement of symbol occurrences s of frame f , Sf , relative to (i)
symbol occurrences in the same frame s′ ∈ Sf ; and (ii) the symbol occurrence
that spans the frame, Sspans(f). Sspans(f) contains either the box symbol that
spans f or is empty if f is the top most frame. Ts,s′(os.id, os′.id) translates the
relative placement of symbols to constraints on the placement of objects. That
is, if s.pos �� s′.pos, then basically Ts,s′(os.id, os′.id) = os.id.pos �� os′.id.pos with
��∈ {<,≤,=,≥, >}. For the sake of brevity, we refrain from giving a detailed
definition of Ts,s′ , which takes the sets of anchors into account that are defined for
s.𝓈 and s’.𝓈. At line 7 the predicates at arrows between two symbols s and s’ get
translated to predicates on os.id and os′.id. Lines 8 and 9 fill in the content of box
symbols, where an n-box’s content formula gets negated. We slightly simplified
the algorithm by treating boxes simply as objects, which we interpret to trivially

5 In abuse of notation Sf \ 𝒮B denotes {s ∈ Sf | ∀𝓈 ∈ 𝒮B : 𝓈 �= s.𝓈}.
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be alive and have y, y, x, and x. To summarize, Algorithm 1 translates a given
snapshot sn, considered as the outer most frame, and a set of symbols 𝒮B , into
a multi-sorted first-order formula ϕsn with free variables o𝓈.id for each 𝓈 ∈ 𝒮B .

Algorithm 1. Translation of a Frame of the Spatial View
1 Function translateFrame

2 input : frame f , set of of bound symbols 𝒮B output: first-order formula ϕf

3 ϕf ← ∧
s∈Sf\𝒮B

∃os.id ∈ typesdict(s.𝓈): //object variable os for symbol
occurrence s

4
∧

s∈Sf
alive(os.id) //os is required to be alive

5 ∧ ∧
s∈SO

f
Os.𝓈(os.id) //features of s.𝓈

6 ∧ ∧
s,s′∈Sf×(Sf∪Sspans(f))

Ts,s′(os.id, os′.id) //relative placement

7 ∧ ∧
l∈Af P(o(l.s).id, o(l.s′).id) //arrow predicates

8 ∧ ∧
s∈SSB

f
translateFrame(s) //nested somewhere-box constraints

9 ∧ ∧
s∈SNB

f
¬translateFrame(s) //nested nowhere-box constraints

10 if f is negated then return ¬ϕf ; else return ϕf ;

4.4 Snapshot Charts and Their Visualization

Now we show how snapshots are used within snapshot charts (SC s) to describe
an evolution over time. SCs are annotated snapshot graphs, that are directed
graphs with snapshots as nodes. Within an SC, a snapshot describes (invariant)
properties that hold for a while, i.e., a time span greater zero. Like the pages
of a flip book, a sequence of snapshots then describes a story that evolves over
time. Contiguously one snapshot holds until the next. At SCs we have a new
dimension that was missing at snapshots, namely time. Hence, an SC translates
to a temporal logic formula. Next, we give an overview of the visual syntax
elements of SCs.

4.5 Overview on Syntactical Elements in SCs

1. SCs provide visualizations for snapshot graphs. The simplest snapshot graph
is a snapshot node, i.e., a node that represents a single snapshot. Snapshot
graphs can be composed via sequential or parallel composition, choice, and
negation. Figure 13 illustrates for two snapshots how the resulting snapshot
graphs are visualized. Snapshots are connected via arrows to avoid ambigui-
ties. But we may omit the arrows, if this is unambiguous.

2. An SC can specify an implication. Therefore, we provide a dedicated visualiza-
tion called the premise-consequence chart. Their most general form provides
the pattern “the past and the future imply a future consequence”. This pat-
tern basically allows to express that the future is implied by what happened
before, and also by what will happen. So, roughly, “If I have felt sick and still
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feel sick, and if I will sneeze, then I will get a tissue.” matches this pattern.
The visualization of this pattern is illustrated in Fig. 14. Roughly, the SC
expresses “If first (A and next B) happened and now B holds, and if next (C
and next D) will happen, then (E and next F) will happen”.

3. Snapshot graphs can be annotated with timing constraints. The hour glass
allows to denote durations for snapshot (sub)sequences and time pins provide
a means to synchronize concurrent developments. Figure 15 shows an example
SC with an hour glass that takes the time of the second snapshot. So we can
express that the car indicates for less then 2 s, and then drives across the lane
separator. Figure 16 shows an example SC where a time pin is used to denote
that the two concurrent developments (one at the top, one at the bottom)
synchronize. The time pin declares the switching time between sn1.1 and sn1.2

at the top as sync1 (snapshots at the top are sn1.1 and sn1.2, at the bottom
are sn2.1 to sn2.3). The dotted line with label sync1 at the bottom snapshot
sequence on top of sn2.3 denotes that sn2.3 happens during a time interval
that includes sync1.

4. In order to track an object along a snapshot sequence, object symbols can be
fixed to represent the same object identity along an evolution. To this end,
we provide two syntactical means. We allow labeling objects with identifiers
as, e.g., in Fig. 17. We also use a bulletin board (b-board) to declare that a
symbol represents the same object along the subsequent path of an SC (cf.
Fig. 18).

Fig. 13. Sequence, choice, parallel
composition, and negation of two snap-
shots.

Fig. 14. An SC specifying a “past and
future imply future consequence” pat-
tern.

Fig. 15. The hour glass specifies a
dwell time.

Fig. 16. Two concurrent snapshot
sequences with time pin and hour glass.
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Fig. 17. An SC with identifiers. Fig. 18. An SC and its bulletin board

4.6 Snapshot Charts Semantics

Via Algorithm 2 we define how SCs can be translated to a multi-sorted first-order
real-time formula. The algorithm distinguishes the following elements.

Snapshot Graphs. Algorithm 2 inductively translates an annotated snapshot
graph SGid into a formula ϕid by composing node formulas following the graph’s
structure. A snapshot graph of just one node, SGo, gets translated to a node
formula of the form ϕo = �[bo,eo)ϕsno

∧ bo < eo ∧ ψ, where ϕo is generated by
Algorithm 1 for sno, and ψ encodes the annotated timing constraints as explained
in the following. ϕo expresses that the constrains encoded by sno invariantly hold
from time bo up to eo. The node formulas are composed so that they contigu-
ously hold along a graph’s path. This is realized by substituting the end time
variable e1 and the start time variable b2 of concatenated subgraphs SG1;SG2 to
the same time variable. Therefore, we assume that each (sub)graph has a unique
id. Algorithm 2 constructs a formula ϕid = translateSG(SGid) where the start
and end time variables are uniquely referable as bid and eid. More precisely,
Algorithm 2 builds a list of variable substitutions ξid along with the formula ϕid,
that rename the start and end time variables appropriately. For a formula ϕ, a
substitution list ξ�

1 ξ2 means that first ξ1 is applied and on its result ξ2.
Figure 19 illustrates the translation process on an exemplary snapshot graph,

which is shown in Fig. 19(a). We assume that snapshots sni have already been
translated to formulas ϕi by Algorithm 1. As a short hand, we write in the
following �[b<e)ϕ for �[b,e)ϕ ∧ b < e. Figure 19(b): The graph is considered
as sequence of subgraphs A,B, which are translated to ϕA, ϕB . ϕSG gets
∃tSG ∈ Time : ϕA ∧ ϕB with ξSG = [eA\tSG, bB\tSG]. Figure 19(c): A is
the choice of snapshots sn1 and sn2, hence ϕA = �[b1<e1)ϕ1 ∨ �[b2<e2)ϕ2

with ξA = [b1\bA, e1\eA, b2\bA, e2\eA]�ξSG. B is the concurrency of sn5

with subgraph C. So Algorithm 2 sets ϕB = �[b5<e5)ϕ5 ∧ ϕC with ξB =
[b5\bB , e5\eB , bC\bB , eC\eB ]�ξSG. Figure 19(d): Since C is the sequence of
sn3 and sn4, ϕC gets ∃tC ∈ Time : �[b3<e3)ϕ3 ∧ �[b4<e4)ϕ4 with ξC =
[b3\bC , e3\tC , b4\tC , e4\eC ]�ξB . To sum up, according to Algorithm2 ϕSG

translates to ∃tSG : (�[bSG<tSG)ϕ1 ∨ �[bSG<tSG)ϕ2) ∧ (�[tSG<eSG)ϕ5 ∧ (∃tC :
(�[tSG<tC)ϕ3 ∧ �[tC<eSG)ϕ4)).

Timing Constraints. A timer can be started when a snapshot is entered, and
stopped at the end of a snapshot—these need not necessarily be the same snap-
shot. The start and stop of a timer is denoted via and . At the start hour
glass a name for the timer is specified, say δ, and at the end hour glass a con-
straint on δ is specified, say ψ. Let the timer be started at snapshot snm and
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Fig. 19. Steps of snapshot graph translation

stopped at a snapshot snn. To translate the timer constraint into the formula
ϕSG, we insert the constraint on the respective time variables at an appropriate
position within ϕSG. Algorithm 2 introduces variables for the start and end time
of δ (which is also the start of snm and the end of snn), say bm and en. We
replace δ in ψ by en − bm, ψ′ := ψ[δ\en − bm], and ψ′ gets a conjunct of the
node formula of snn, �[bn,en)ϕn ∧ ψ′.

A time pin can be placed at the start of a snapshot node snm and be labeled
with an identifier, say π. At a concurrent snapshot (sub)graph we can synchronize
(1) the switching time of a snapshot snn with π. This is annotated by placing a
dotted vertical line labeled with π at snn’s start. We can also synchronize (2) snn

to be active at least at time π. This is annotated by placing the synchronization
bar (dotted horizontal bar) labeled π above snn. (1) means that the start time
of snm, bm equals the start time of snn, bn, so ψ := (bn = bm) gets a conjunct of
the node formula of snn. (2) means that the time π is somewhere between the
start time of snn, bn, and end time of snn, en. So, ψ := (bn < bm < en)) gets a
conjunct of the node formula of snn, �[bn,en)ϕsnn

∧ ψ.

Object Identities. Identities introduced via b-board or id-labels are translated
along the same lines. Hence, we only discuss the b-board here. Let 𝒮B be the
set of symbols at the b-board, each having a unique identifier 𝓈.id. A symbol
𝓈 ∈ 𝒮B is required to be visually unique, also under all modifications according
to Item 2 in Sect. 4.2. Occurrences of a particular symbol 𝓈 (e.g., a car symbol)
refer to a particular object across different snapshots in which 𝓈 occurs.

Upon the translation into a formula, we globally bind an object variable via
quantification for each symbol 𝓈 of the b-board. Therefore, if 𝓈 (modified or non-
modified) occurs in a snapshot sn at a frame f , then each symbol occurrence
s ∈ Sf with s.𝓈 = 𝓈 gets the same id as 𝓈 ∈ 𝒮B , s.id = 𝓈.id. That way, Algo-
rithm1 generates snapshot formulas that all refer to the same object variable,
o𝓈.id, for a symbol occurrence s with s.𝓈 = 𝓈. Further, the translation of snap-
shots via Algorithm 1 gets as input 𝒮B , so that object variables o𝓈.id do not get
quantified locally within a snapshot formula. These free variables are globally
bound by existential/universal quantifiers according to the header information
(cf. Sect. 4.7).

Translation Scheme. To keep it short, we consider any SC in the sequel as
a special case of a premise-consequence chart. The translation first deter-
mines the constituent annotated snapshot graphs and, if the SC is not a
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full “past and future imply a future consequence” pattern, sets omitted parts
to be True. Next, these snapshot graphs are translated according to Algo-
rithm2. Time annotations and identities are considered when translating a snap-
shot node. The method translateAnnotatedSN(sn, ·) returns basically ϕid :=
�[bid,eid)translateFrame(sn,𝒮B) ∧ bid < eid but, additionally, annotations are
encoded according to the paragraphs on timing constraints and object identities.

Given that we have already translated • SGpast to ϕpast and • SGfut. to ϕfut.

and • SGcons. to ϕcons.. We compose these sub-formulas into the formula ϕSC

with free variables bSC , tSC , eSC , which, respectively, represent the start time,
switching time between past and future/consequence, and the end time.

ϕSC = ϕpast ∧ ϕfut. ⇒ ϕfut. ∧ ϕcons.with
ξ = [bpast\bSC , epast\tSC , bfut.\tSC , efut.\eSC , bcons.\tSC , econs.\eSC ].

So ϕSC means that, for a switching time tSC , if first ϕpast holds up to tSC and
from tSC ϕfut. holds, then also ϕcons. holds from tSC . Since in snapshot graphs
with synchronization between future and consequence, the SGfut. is repeated as
being concurrent to SGcons. (cf. Fig. 13), ϕfut. has also two occurrences of ϕcons.

(in order to closely resemble the graph).

Algorithm 2. Translation of an Annotated Snapshot Graph
1 Function translateSG

input : Annotated snapshotgraph SGid0 with id id0, Substitution ξ
output: temporal first-order formula

2 if SGid0 = SGid1 ; . . . ; SGidn ∧ n > 1 then //SGid0 describes sequence
3 Let tid0 be an unused time variable name.
4 Let ξ′ be [eid1\tid0 , bid2\tid0 ]

�ξ.
5 return ∃tid0 : translateSG(SGid1 , ξ′)∧ translateSG(SGid2 ; . . . ; SGidn , ξ′) ;

6 if SGid0 = SGid1 ||SGid2 then //SGid0 describes choice
7 Let ξ′ be [bid1\bid0 , bid2\bid0 , eid1\eid0 , eid2\bid0 ]

�ξ.
8 return (translateSG(SGid1 , ξ′) ∨ translateSG(SGid2 , ξ′));

9 if SGid0 = SGid1&SGid2 then //SGid0 describes concurrency
10 Let ξ′ be [bid1\bid0 , bid2\bid0 , eid1\eid0 , eid2\bid0 ]

�ξ.
11 return (translateSG(SGid1 , ξ′) ∧ translateSG(SGid2 , ξ′));

12 if SGid0 = ¬SGid1 then //SGid0 describes negation
13 Let ξ′ be [bid1\bid0 , eid1\eid0 ]

�ξ.
14 return ¬translateSG(SGid1 , ξ′);

15 return translateAnnotatedSN(SGid0 , ξ); //SGid0 is a (time annotated)
snapshot node

4.7 TSCs, Satisfaction

As we consider—in this paper—TSCs without an LSC part, an SC together with
a header constitutes a complete TSC. Also, we discuss here only the two headers
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used in the example that are of type (A) act.m=always and qnt.m=all and (B)
act.m= initial and qnt.m=exists. The translation of other headers can be found
in [4].

A TSC of type (A) means that always the SC has to hold (activation mode
always) and all trajectories and objects have to satisfy the SC (quantifica-
tion mode all). A TSC of type (A) is hence translated to ϕTSC = A∀oid1 ∈
T1 . . . ∀oidn

∈ Tn : �∀eTSC, tSC ∈ Time : ϕSC [bSC\0, eSC\eTSC ], where 𝒮B =
{𝓈1, . . . , 𝓈n} is the set of symbols of the TSC’s bulletin board, Ti = typesdict(𝓈i)
and idi = 𝓈i.id.

So, all trajectories and all objects that could match the referred
object(symbol)s with identities have to satisfy the SC at all times. As ϕSC has
the form ϕpast ∧ ϕfut. ⇒ ϕfut. ∧ ϕcons., the universal quantification of (i) eTSC ,
the end time, and (ii) tSC , the switching time between past and future, means
that whenever the premise of ϕpast∧ϕfut. is satisfied for a pair of tSC , eTSC , then
also the consequence has to hold between tSC and eTSC . We used a universal
TSC in Sect. 2, page 5, to describe a lane change rule.

A TSC of type (B) means that the SC has to bear right from the start (acti-
vation mode initial) and there is at least one trajectory with objects that satisfy
the SC (quantification mode exists). A TSC of type (B) is hence translated to
ϕTSC = E∃oid1 : T1 . . . ∃oidn

∈ Tn : ∃eTSC, tSC ∈ Time : ϕSC [bSC\0, eSC\eTSC ].
At Sect. 2 we used existential TSCs of the form ϕSC = ϕcons. to describe
scenarios—there ϕpast and ϕfut. were both omitted (True).

Let a specification Spec be given in form of a set of TSCs, TSCS , together
with a world model WM. For this paper, we consider specifications where the
behavior of an autonomous car, called ego, is specified. The world WM, given
as the parallel composition of hybrid automaton instances Hi, has a distinct
Hj that represents ego. In the specification Hego, reflects the physical laws of
a mechanical car but leaves the controller open. So Hego neither controls safety
distances nor obeys traffic rules. An implementing system I specifies a controller
for ego. So I equals WM except for Hego, which is replaced by an automaton
HI

ego whose controller is implemented. The controller has the task to ensure that
ego obeys the TSC specification. We say I implements a TSC specification Spec,
iff I |=

∧
TSC∈TSCS

ϕTSC.

5 Related Work

Live Sequence Charts (LSCs) are a visual specification language for the descrip-
tion of system traces and communication [2]. The key elements are instances and
messages sent between them. Indeed, TSCs have been developed with LSCs in
mind. We plan to integrate LSCs into TSCs in order to specify communications,
such that TSCs extend the LSC formalism by providing a visualisation of the
continuous evolution via sequences of snapshot invariants.

Multi-Lane Spatial Logic is a spatial interval logic based on the view of each
car. It was introduced in [13] to simplify reasoning about safety of road traffic
by abstracting from the car dynamics. MLSL has been shown to be undecidable
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in various relaxations and restrictions. Nevertheless, sound proof systems for
reasoning about safety of traffic situations have been presented [14,17,19]. In
[9] it has been shown that it is decidable whether truth of an arbitrary MLSL
formula can be safely determined for a given sample size under a reasonable
model of technical observation of the traffic situation. In contrast to MLSL,
TSCs do not determine the level of abstraction, but leave open the specification
of the world model. The efficient analysis of TSC specifications is future work
though. In particular, it seems promising to develop approaches that exploit the
results of MLSL for TSCs.

OpenSCENARIO [22] together with OpenDRIVE [20] and OpenCRG [21] forms
a set of exchange formats tailored for describing traffic scenarios. These formats
aim at becoming a standard and serve as a means to imperatively describe
the behavior of the environment and, optionally, of the ego vehicle. The static
road networks are basically described as graphs of lanes labeled with geometric
shapes. Dynamic content is described as a storyboard with trigger-action pairs.
OpenSCENARIO corresponds to existential TSCs (quantification mode= exists)
and, hence, are not suitable for the specification phase. Even the specification
of existential scenarios is limited in comparison to TSCs. In the current state—
to the best of the authors’ knowledge—OpenSCENARIO lacks elements to (1)
distinguish between possible (existential) and expected (universal) behavior; (2)
distinguish between past and future behavior, and consequences; (3) express
“don’t cares,” “somewhere,” or “nowhere”; and (4) explicitly express alternative
and concurrent behavior.

Realizability of cooperative driving tasks has been addressed in [6]. In particular,
a formal approach has been developed for the verification of time probabilistic
requirements (such as collision freedom) of given maneuvering and communi-
cation capabilities of the car based on a formal specification. Future work will
investigate algorithms for deciding consistency and realizability of TSC speci-
fications under robustness assumptions. While we do not believe that formally
synthesized controllers for the ego vehicle will be used for implementation pur-
poses, they can be used in the concept analysis phase of autonomous vehicles
expected to master additional traffic scenarios.

(Probabilistic) Timed Property Sequence Charts (PTPSCs) extend Property
Sequence Charts. Both are a scenario-based notation to represent temporal prop-
erties of concurrent systems that aims to balance expressive power and simplicity
of use [23]. PTPSCs provide pre-charts, borrowed from LSCs, clock resets and
clock constraints. Additionally, (sets of) messages can be assigned probabili-
ties which impact the reception of the messages. TPSCs can be automatically
translated into timed-Büchi automata and, hence, are suitable for runtime ver-
ification. Hypothesis testing can be used to also check the probabilistic part
[24] by inspecting several sample runs. However, PTPSCs provide no means to
graphically describe spatial constraints, branching, or concurrency, so that the
planned addition of probabilities to TSCs is a worthwhile contribution.
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Visual Logic (VL) was developed by Kemper and Etzien to specify sequences
of traffic situations on the highway, aiming to bridge the gap between engineers,
psychologists, and scientists [16]. Like TSCs, VL aims to provide an intuitive
visual formalism with a formal semantics. VL combines LSCs and a visual for-
malism via which spatial relations of traffic scenarios are captured. Kemper and
Etzien define the semantics of VL via a translation into timed automata. Con-
ceptually, TSCs can be considered a extension of VL: TSCs share the motivation
and borrow from the visual formalism of VL, and we plan to integrate LSCs as
well. While VL allows sequences of snapshots only, TSCs allow SCs with a com-
plex graph structure. Our visual formalism generalizes distance arrows of VL to
predicate arrows. The concept of nowhere- and somewhere-boxes is new, as well
as the possibility to define anchors. Further, TSCs allow time annotations and
identity labels. The “past and presence implies a future consequence” pattern is
new.

6 Conclusion and Future Work

This paper is a first stepping stone in a concerted effort of providing a design flow
for highly autonomous vehicles supporting concept development, specification,
and verification and validation. The way towards achieving this goal involves
both foundational challenges and industrial acceptance.

On the foundation side, we have to extend TSCs to deal with cooperation
and imperfect perception; the problem of partial information requires one to
differentiate between the ego car’s beliefs about its environment, including the
intentions of other traffic participants, and ground truth. Conceptually, TSCs
allow rich specifications at the level of SCs and the world model (and hence are
generally undecidable [12]). When used as specification formalism throughout
the design process, appropriate restrictions can be imposed when necessary. In
the future we will also look into efficient methods for generating simulation
runs to cover TSCs, as well as automatic methods for checking consistency and
completeness relative to a given world model, building in particular on the results
of [8,10] on decidability for robust satisfaction. On the industrial side, we will
work with traffic psychologists to revisit the language design, while we continue
to test the approach on non-trivial sample use cases, and participate actively in
the ongoing standardization activities for OpenSCENARIO.

We hope that this line of research will ultimately contribute to making highly
autonomous driving safe and enjoyable.
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Abstract. Model-Based Design plays an important role in the devel-
opment of embedded software. Automatic code generation from models
is needed to minimize the possibility of introducing errors by manual
coding, thereby preserving the validation and verification done on the
model. Automatic code generation also eases traceability back to the
model as required in most certification processes. The generated code
must preserve the model semantics (or at least its properties of interest)
and use the platform resources in the most efficient (or cost-effective)
way. Achieving correctness and efficiency becomes harder in new multi-
core platforms. Commercially available multitask code generators from
Simulink introduce variations to the model semantics that are depen-
dent on the deployment option and the generated code is specific to a
given platform configuration (hardware and OS), which makes reuse and
portability more difficult. In this paper, we report on the early stages of
a project that will improve on the portability of currently available code
generation options from Simulink.

1 Introduction

Model-Based Design (MBD) is today widely used in the embedded systems
industry throughout the development cycle; from design, to analysis, to imple-
mentation. Among the tools supporting MBD, Simulink by the MathWorks (in
its corrent 2017a version) allows the definition of models using a graphical editor,
their analysis by simulation or model-checking, and the automatic generation of
a code implementation on selected platform options, including programmable
HW and multicores.

Automatic code generation is a key requirement for any formal MBD pro-
cess. There are many benefits from code generation, but first and foremost, it
enables consistency and traceability between the model and the executable code.
Consistency in the sense that it preserves the semantics of the model reducing
the risk of introducing unwanted errors, otherwise any verification and valida-
tion done on the model would be lost. Automatically generated code is today
very efficient in terms of speed and size. Analysis by Thales and Visteon show
how the generated code can be both faster [20] and smaller in size [13] than
hand-written code.
c© Springer International Publishing AG, part of Springer Nature 2018
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The necessary move from single-core to multicore platforms brings new chal-
lenges to the task of providing semantics-preserving and efficient code implemen-
tations of Simulink models. With respect to semantics preservation, the objective
is to preserve the block rate activation specifications, the partial order of exe-
cution of blocks (which implies flow preservation) and to guarantee the code
execution within the deadlines imposed by the preservation of the synchronous
assumption or the flow of communication data. Commercial Simulink generators
for multicore platforms do not account for the enforcement of the order of exe-
cution constraints. When a Simulink model is defined as mapped for execution
on a multicore platform, the model semantics (at simulation time) changes in an
attempt at matching the semantics of the generated code, which consists of a set
periodic and asynchronous task executions on the cores. The tasks are executing
the subsystems in the model according to the mapping directives provided by
the user. Furthermore, the Rate Transition communication mechanism that is
used in single core platforms to guarantee preservation of data flows (at least
in selected conditions [31]) does not provide the same guarantees when code is
executed in multicores and therefore needs to be extended [31].

With respect to efficiency, in a multicore implementation the generated code
should allow for a bounded worst case execution time and effective memory
placement; and use at best the system resources and the API provided by the
platform (OS and drivers). With respect to this last objective, another limita-
tion of current commercial code generators is that the available code generation
options target individual platform configurations (HW/OS) making portabil-
ity and extensibility challenging, especially for new platforms and/or unsup-
ported operating systems. Currently, multicore generation from Simulink is at
its early developments and only the Windows API is fully supported (Linux and
VXWorks are not officially supported but custom code generators are available
from third party open projects).

Finally, commercial OS mostly support a partitioned scheduling model (as
opposed to global scheduling). While this seems a sensible choice as supported
by recent comparisons between the two scheduling models [6], it also places high
relevance into the design stage in which the partitioning of functions into cores
and the design of tasks are defined.

In this work, we describe the development of a new multicore code generation
facility for Simulink that is meant to preserve the order of execution of blocks
and data flows as defined for a “purely functional” (that is, without any platform
mapping) model, and is more easily retargetable to a wide selection of platform
configurations. The latter objective is obtained by providing an abstract OS-
level API that is tailored for the synchronous-reactive model of execution of
Simulink. The abstract API consists of a limited subset of functions, rich enough
to fulfill its purpose and yet simple enough to be easily remapped to a set of
OS of practical use. With our API, the code generation process will produce
code that is independent of the operating system and can later re-target any
preferred choice. We provided examples of retargeting for Windows, Linux and
PikeOS [26] and are in the process of extending our examples to other standards
such as AUTOSAR (formerly OSEK). While clearly not fully comprehensive,
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this list provides sufficient coverage of today’s available commercial options and
confidence that the approach can be further extended to other platforms.

2 Related Work

In the early 90s, the first synchronous languages, Esterel [5], Lustre [14] and
Signal [17] were developed. These languages are based on a formal semantics
and introduced into software development a programming paradigm based on a
timely ordered execution of event-driven (possibly periodic) processing steps.
The synchronous languages find today a commercial implementation in the
SCADE (Safety Critical Application Development Environment) tool (now at
Suite 6 [4]), which provides certified code generation; a simulator; and verifica-
tion through plug-ins.

In parallel, the development of controls has been strongly influenced by the
Simulink/Stateflow [27] tool, widely used for the modeling and simulation of
control systems. Even though the SCADE semantics is formally documented
whereas Simulink only provides a set of execution rules through its user manual,
it is possible to define a suitable restriction of Simulink that can adhere to a syn-
chronous formal semantics and be even formally translated into SCADE/Lustre
was created [7,24,28].

Code generation from synchronous languages has been extensively stud-
ied for the case of a single cyclic executable implementing the model [15].
The issue of preserving the semantics when implementing synchronous pro-
grams on single-core platforms is further discussed in [8], where they present
a semantic-preserving inter-task communication protocol. Further optimization
of flow preservation techniques is discussed in [10,29,30]. The complexity of
flow-preservation increases when moving from single- to multi-core platforms, as
discussed in [31]. The general issue of the composition of possibly heterogeneous
models with the need to preserve determinism in the execution on actual plat-
forms is discussed at lenght in [11] and solutions for the case of discrete event
systems are proposed in the PTIDES project [33].

In the context of concurrent implementation of models, prior research has
been dedicated to find an optimal assignment of model blocks to threads, and
later threads to cores. The mapping of functional blocks into threads is discussed
in [10] where an MILP optimization framework is used. Further, [3,32] discusses
approaches to find the best possible mapping of threads to cores. Also, the
optimal placement of memory in multi-core platforms has been discussed in
[23,25].

The generation of code from models for multicore platforms is the subject of
the case study on the Rosace architecture [22]. However, in this case the Simulink
model is translated manually in a Prelude program, which is finally executed
onto a Tilera multicore (a system based on a NoC). The paper presents a very
interesting case study but does not provide details into the problem of preserving
the original Simulink semantics.

In general Simulink could benefit from a more formal treatment of several
semantics issues (including those related to platform mapping), that have been
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carefully examined and discussed in the context of the Ptolemy [11] and Metropo-
lis [12] projects. Since the user base of Simulink is extremely large and includes
control designers and developers in several industries, we believe a discussion on
the issue of portability and semantics preservation for multicore implementation
is potentially very fruitful.

Our work also builds on the very general concept of abstraction layers and
abstract operating systems. There has been a very large amount of work done to
make applications portable across operating systems. Among the most popular
efforts is the POSIX standard [2] which provides portability between Unix bases
systems. Posix compliance is often achieved by OS vendors by simply implement-
ing the Posix API by an abstraction layer. OSEK [21] and later AUTOSAR [1]
are other standards, which provides an OS abstraction for the automotive indus-
try. However, to the best of our knowledge, there has been no API explicitly
designed for the needs of a synchronous reactive model implementation.

3 System Model

In this work, we discuss a framework for the generation of portable code for mul-
ticore platforms from Simulink models. Currently, the semantics of a Simulink
model depends on the implementation assumptions (as explained later) and the
generated code makes use of OS-specific primitives. In our work, we propose an
implementation that abstracts from both dependencies. In the next section we
discuss the execution semantics of a Simulink model that is amenable for code
generation when no platform mapping is defined (the model is simulated as a
purely functional model). Following, we discuss the semantics changes that apply
when a multicore mapping is defined and our proposal for an implementation
generation that restores the execution semantics of the purely functional model
(independent from the selected platform and the implementation choices, such
as the task model and the task allocation on the cores).

3.1 Simulink Model and Platform-Independent Execution
Semantics

A Simulink system consists of a network of blocks. A block bj can be abstracted
as a function operating on a set of (continuous time) input signals and produc-
ing a set of output signals. We denote inputs of block bj by ij,p (ij as vector)
and outputs by oj,q (oj). Each blocks may also have a state Sj . Simulink pro-
vides three types of blocks: continuous, discrete and triggered. Discrete blocks
are activated periodically with a period Ti. Continuous blocks process signals
in continuous time, but for control systems that require code generation, they
actually evaluated at the system base rate TB , which is an integer divisor of any
system period. Triggered blocks are activated by a function or signal transition.
Each time a block is activated, a new set for its output signal values and a new
state are computed, based on the input values and the block state.

(oj , SNew
j ) = fs(ij , Sj). (1)
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A block for which the output values are directly dependent on the input is
called direct feedthrough. These blocks may not execute before their input is
available. This implies a constraint on the order of execution of blocks. The set
of topological dependencies implied by the direct feedthrough defines a partial
order of execution among blocks. The partial order must be accounted for in the
simulation and in the run-time execution of the model. If two blocks bi and bj
are in an input-output feedthrough relationship (the output of bj depends on
its input coming from one of the outputs of bi, and bj is of type feedthrough),
we denote bi → bj . Let bi(k) represent the k-th occurrence of block bi, and a
sequence of activation times ai(k) is associated to bi. Given t ≥ 0, we define
ni(t) to be the number of times that bi has been activated before or at t.

In case bi → bj , if ij(k) denotes the input of the k-th occurrence of bj ,
then the SR semantics specify that this input is equal to the output of the last
occurrence of bi that is no later than the k-th occurrence of bj , that is,

ij(k) = oi(m), where m = ni(aj(k)). (2)

This constraint is called flow preservation. Any code implementation that is
flow preserving ensures that the produced values are the same as they appear at
simulation time (even if the time at which they are produced in the actual code
implementation may be different).

The Simulink code generation can target single- or multi-task. When target-
ing multi-task, each rate within the model will be mapped into tasks, which will
be executed by a real-time operating system under fixed-priority scheduling.

Semantics Preservation Constraints. The model of execution of Simulink
dictates the constraints on the code generation for a given platform (in our
case of interest for a multicore platform). Code generating targeting multi-task
needs to consider properties such as preemption and scheduling. In our work we
only target periodic Simulink systems (an extension to triggered subsystems is
possible, but not discussed here).

– Task model. Periodic subsystems must be executed by tasks so that their
activation rate is preserved.

– Order of execution. The order of execution of subsystems must be pre-
served, according to the partial order dictated by the feedthrough semantics.

– Communication and flow preservation. The correspondence of values
defined in Eq. (2) must be preserved.

When a model has loops, code generation is possible on condition that each
loop includes at least one block for which the output values do not depend on
the inputs (a Moore type machine). In this case, this block is executed first, and
then the other blocks in the loop are executed in order following the feedthrough
dependencies.

For example, in the sample system of Fig. 1 with two subsystems S1 and
S2, the order of execution of the blocks would be b2 first (a delay block, non-
feedthrough), then b3, then all the blocks in the subsystem S1, then b1, in order.
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Fig. 1. Execution order in case of loops with non-feedthrough blocks (b2, b3, S1, b1).

Please note that this prevents a “modular” code generation in which the sub-
systems are the atomic units for generation and a single function is associated
to each of them. Clearly, the correct order of execution cannot be enforced if all
the blocks in S1 are implemented as a single code function, and all the blocks
in S2 as another function (the situation is not too different from the problem
highlighted in [18]).

3.2 Code Generation Facility in Simulink

The code generation process from Simulink models is summarized in Fig. 2. The
model is first compiled. As a result of this process, all blocks are assigned a
periodic execution rate, and an order of execution is defined using the set of
partial orders from the feedthrough dependencies. The results are saved in a file
with extesion .rtw that defines the serialization of the compiled model as a set
of nested text records.

Fig. 2. AOS mapping

The information in the .rtw file is then processed by the Target Language
Compiler (TLC): a template based model-to-text transformation tool that pro-
duces the executable code based on a set of templates in the TLC template
language.
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Code can be generated at the system level or for each subsystem individually.
In case of a system-level generation, the code can include a main program and the
multithreaded implementation of the model. In this case (of interest for us), the
fundamental structure of the generated code is the following. One file is generated
as the main file, containing the thread structure and all the scheduling-related
code. In addition, there will be one file containing all the application code. In
this file, each subsystem can be implemented as inlined code or as a separate
function. In the end, all the computations being performed at the same rate on
one of the cores (and invoked as the body of one of the threads) are available as
a single Step function.

3.3 Simulation of Multicore Models

Since its version 2014b, Simulink allows the definition of the mapping of subsys-
tems in a model to the cores of a multicore execution platform. Each subsystem
is executed as one or more (periodic) tasks (a single task if the subsystem is
single rate, each task for each subsystem rate if it is multirate). Figure 3 shows
a sample model (from The Mathworks Simulink set of Examples) with three
subsystems implemented as four tasks on two cores.

If a multicore mapping is implemented, the simulation tries to keep into
account the task model and the simulation results are different from those
obtained simulating the model without mapping information. This is potentially
a problem, because it makes the simulation semantics dependent on the task
and platform implementation. On the other hand, a simulation that considers
the implementation details could help move the system analysis closer to the
actual execution code behavior.

4 Current Multicore Code Generation and Simulation
Semantics

Currently, the code generator produces a multithreaded/multitask implementa-
tion in which each task is activated by a core-level dispatcher. Each core dis-
patcher is periodically triggered by a timer event at the greatest common divisor
of the task periods under its control. According to a simple period multiplica-
tion, the core dispatcher activates its core tasks using synchronization events
(Fig. 4).

If a model is mapped for implementation on a multicore as a set of periodic
tasks (as in Fig. 3), the model execution semantics is changed in an attempt to
match the deployment information, the parallel execution on the cores and the
asynchronous execution of the periodic functions implementing the subsystems.
The order of execution among blocks defined by the feedthrough dependencies
for the functional model is changed. This is necessary also because of the modular
code generation. Consider the example model of Fig. 3. The model has a loop that
includes a delay block, as shown in Fig. 5. The delay block should be executed
before the subsystem labeled as Fcn3, and, in turn, this subsystem should be
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Fig. 3. Model with subsystems mapped as tasks executing on the cores

Fig. 4. Runtime activation of threads as generated by Simulink for multicore platforms

executed before the Subtract block inside Fcn2. However, since in the generated
multicore code each subsystem is implemented by a single function and task, it
is clearly impossible to enforce such order of execution.

The situation is made even worse because the simulated execution cannot pre-
dict the actual code execution times and the scheduling delays, and, as a result,
it cannot predict the order of execution of the (now) periodic asynchronous
tasks on different cores. Hence, the values obtained at simulation time do not
match the corresponding values produced by the generated code when executed
on the host. Furthermore, multiple runs of the same code may easily produce
different results. This is acknowledged as part of the code generation options for
multicore models (time determinism and therefore flow preservation cannot be
guaranteed).

Figure 6 shows how the set of values that are obtained from the same func-
tional model for two outputs (the output of the adder port of the subsystem
Fcn1 on the top left of the Figure, and the output of the subsystem Fcn3 that
is fed back into the input port U2 of Fcn1) are different when the model is
first simulated as a purely functional model (on the left) and when the model is
simulated after the subsystems are mapped onto tasks and the tasks on the two
cores (on the right).
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Fig. 5. The details of the example multicore model with the delay block in the cycle

Fig. 6. Simulation results with and without multicore mapping

Unfortunately, two runs of the code implementation of the model can also
result in different sets of values, as shown by the graphs of Fig. 7.

There are several reasons for this. The first is dropping the order of exe-
cution constraints of the blocks inside the subsystems in favor of a concurrent
asynchronous execution model. The second reason (directly connected with the
first) is the modular code generation that requires that one function and one
task is generated for each mapped subsystem.

In Sect. 6, we show how these restrictions are the consequence of a choice
made by the developers of the current code generators, and can be removed. We
show how it is possible to modify the code generation options and to enforce an
order of execution among tasks in such a way that the generated code behaves
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Fig. 7. The execution of the generated code is not deterministic and does not match
the simulation values

in the value domain as the functional model (without any platform mapping)
restoring time determinism and flow preservation. In addition, our customized
code generation makes use of a generic API that enables retargetability to a num-
ber of possible operating system, easing portability. The produced code contains
function calls for task creation, priority setting, timer and dispatcher events plus
a set of additional service operations.

5 Abstract Operating System

Our objective is to improve the code generation for multicore platforms by mak-
ing the generated code independent from the platform specifics (OS and HW
architecture), and correct with respect to the semantics preservation require-
ments presented in the previous section. This requires two main intermediate
results:

– Design an abstract OS API that provides the main concepts for concur-
rency, communication and synchronization that are needed for the semantics-
preserving implementation of Simulink models on multicores.

– Define a code generation pattern that is semantics preserving and write a set
of Target Language Compiler (TLC) files for it.

The advantages of our proposed approach are the following. Every time a
new platform is introduced, meaning a new hardware configuration, or a new
operating system, or even a new subsystem to task mapping definition, the user
can trust that the model execution behavior will be unchanged. In addition, if
a new operating system is introduced, the user does not have to wait for a new
code generator to be available, nor it has to write its own generation templates
using the (not widely known) TLC language. To port the generated code to a
new OS, the designer only needs to port the functions of the abstract API to
the selected OS. This porting is usually very simple and consists of writing a
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few lines of code (or even a macro translation) for each function. We show data
about the complexity of the porting of the abstract API to Windows and Linux
at the end of this section.

5.1 OS Abstraction

The three main concepts needed for the abstract OS API are the following:

– Support for thread creation and management
– Support for synchronization based on events. Two types of events are required

• Timer Events: for periodic activations
• Condition Event: for the enforcement of the order of execution (activa-

tion) of the tasks by the dispatcher
– Communication mechanisms that can enforce data consistency and flow

preservation (see [31]).

File Structure. The extensions provided are summarized in Fig. 8, where the
(darker and lighter) gray boxes illustrate our contribution. The abstract OS API
is defined in a generic header file AOS.h. Another header file AOS cfg.h provides
the other declarations and macros that are needed for mapping the abstract API
onto the target OS functions. The actual definition of the abstract OS functions
in terms of the concrete OS functions (besides the macros), is implemented in
the file AOS cfg.c. The additional implementation is a custom TLC file that
produces the code implementation of the system using the AOS functions. In
the following, we outline the abstract API.

Thread Management. A thread is defined by a set of attributes stored in a
thread description structure (of type AOSThreadInfoType). Among them are:
the thread priority, affinity, and the thread handle (or entry point). Some of these
attributes are OS-dependent and will be themselves represented by an abstract
type (to be redefined in the OS-specific files).

The main functions for thread management are summarized in the following
list. All the API functions start with AOS which is an abbreviation of Abstract
Operating System.

Thread functions
AOSStatusType AOSCreateThread( AOSThreadInfoType *threadInfo );
AOSThreadType AOSGetCurrentThread ();
AOSThreadMaskType AOSGetCoreAffinityMask(int *coreAffinity ,

int thread_index ,
int nbrOfCoresPerThread );

AOSStatusType AOSSetThreadPriority(AOSThreadType thread ,
AOSThreadPriorityType prio);

void AOSThreadTerminate ();
AOSStatusType AOSDeleteThread( AOSThreadInfoType *thread);
AOSStatusType AOSWaitForThreadToTerminate(AOSThreadInfoType

*threadInfo );
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Fig. 8. AOS mapping

The meaning of the functions can be easily derived from the signature. They
are used for thread creation, setting the priority and the affinity of the thread, to
signal the thread termination or to delete it and, finally, for waiting for a thread
to terminate.

Each thread, is scheduled by the core dispatchers. To enable event signaling
from the system to its subsystem, two conditional events are associated to each
thread. The first event is used to send a start event from the dispatcher to the
thread. The second event is used to signal the thread termination from the thread
to the dispatcher to check for time overruns.

Events. As for the task management, the meaning of most functions is intuitive
and can easily be derived from the signature. Events can be timer or condition
events. An abstract type AOSEventType is defined for them. A timer event is
used to trigger the periodic execution of the core dispatchers. Condition events
are used for starting threads and signaling their completion and to enforce an
order of execution among threads. The events management API is summarized
in the following.

Event functions

AOSStatusType AOSWaitEvent(AOSEventType *event );

AOSStatusType AOSPeekEvent(AOSEventType *event );

AOSStatusType AOSDeleteEvent(AOSEventType *event);

Generic event functions are used to wait for a (timer or condition) event, to
check for its being set and to delete an event object.

Timer functions

AOSStatusType AOSCreateTimer(AOSEventType *event);

AOSStatusType AOSSetTimer(AOSEventType *event ,

int sec ,

int nsec ,

boolean_T periodic );

AOSStatusType AOSSendSignalTimer(AOSEventType *event );

Timer functions allow to create a timer object, set to expire (as one shot or
periodic) at future times and also to explicitly send a timer event signal.
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Condition functions

AOSStatusType AOSCreateCondition(AOSEventType *event ,

boolean_T initialState );

AOSStatusType AOSSetCondition(AOSEventType *event );

Similarly, two functions can be used to create a condition object and to set
its corresponding condition event. Finally, an additional set of API functions is
available for monitoring, error management and system termination cleanup.

We wrote a TLC program (TLC code is used to customize code generation in
Simulink) to generate code from a Simulink model that makes use of our abstract
API. The TLC code was developed using as a template similar template files that
are used to generate code for Linux, Windows and VxWorks.

In addition, we implemented the mapping between the abstract operating
system API and three operating systems: PikeOS [26], Linux and Windows.

As outlined in Fig. 8, the mapping consist of a header and a source file. For
these three OS mappings, the header file required between 100 and 150 lines and
the source file between 120 and 350 lines, including comments and empty lines.
The longest mapping function is the function for creating a thread, which is 57
lines long in the case of a PikeOS mapping. Even in this case, creating a thread
and providing the correct attributes does not require special skills and can be
easily performed. Other functions require just a single line (or macro), as for the
mapping of the function AOSGetCurrentThread.

/∗ Mapping to Windows ∗/
#de f i n e AOSGetCurrentThread ( ) GetCurrentThread ( )

/∗ Mapping to PikeOS ∗/
#de f i n e AOSGetCurrentThread ( ) p4 my thread ( )

/∗ Mapping to Linux ∗/
#de f i n e AOSGetCurrentThread ( ) p t h r e a d s e l f ( )

The extension was compared to the standard code generation for the Win-
dows OS. The speed overhead was measured using the Measure-Command, where
the results showed that the implementation using the AOS API had no signifi-
cant overhead. The overhead in terms of size is shown in Table 1.

Table 1. Section sizes of object files

Default AOS API

.text 74699 76155

.rdata 28888 29010

.data 4096 4096

Our abstract OS generation process and the remapping code have been tried
on one of the example models provided by The MathWorks in the Simulink
release for the assignment of task to cores for multi-core programming [16].
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We generated code for Linux and Windows. The result of the execution of the
generated code was always the same as the execution of the code generated
for the model without any platform mapping. In addition, we compared the
execution time of the Windows version with and without out abstract API and
remapping layer. The overhead of the mapping layer seems to be negligible for
the example model we tried. The largest time difference in our runs was in
the order of less than 2 ∗ 10−5 as a fraction of the total model execution time.
Considering that the model performs an extremely limited set of computations
(and therefore the impact of the OS calls is significant), and that is several runs
our AOS implementation actually performed better than the native Windows
API code, we may conclude that the approach is at the very least feasible.

The entire implementation is now available as open source on the Matlab
Central repository 1.

6 Flow Preserving Implementation

Finally, we outline the actions that are required to generate code that preserves
the causality order of blocks and the execution semantics of a purely functional
(that is, without platform mapping) model. The approach is applicable to any
mapping of subsystems into tasks and then cores.

The first step consists in analyzing the model to find loops among subsystems
that go across the core boundary.

For each such loop, the subsystems in it are examined to find at least one
subsystem that has a non-feedthrough dependency between the input and output
ports that are part of the loop. Such subsystem must always exist because the
model is guaranteed to have no algebraic loops (code generation is otherwise not
allowed). For this subsystem, all the internal (to the subsystem) paths between
the input and output port contain at least one block of type non-feedthrough,
that is, that there exists a cut, consisting only of non-feedthrough blocks in the
signal graph between the input and output port.

Assume the subsystem is denoted as Si (as shown in the figure), and let the
input and output ports that are part of the loop be labeled as ii and oi.

Assume all the blocks that are in the loop from oi back to ii belonging
to outer subsystems are ordered for execution (according to the partial order
defined by their feedthrough dependencies) as in bp, . . . , bq. Consider the graph
of all the data dependencies that go from the input port to the output port. This
graph must have at least one cut consisting of non-feedthrough blocks (such as
bi,j , bi,k and bi,z in the figure). Let bi,n be the writer block for the output port
in the loop.

Denote as Ba an execution order for all the blocks in the dependency graph
between bi,1 and the blocks in the cut (excluded) that is consistent with their
partial execution order. Also, denote as Bb an execution order for all the blocks
in the cut and the following blocks in the graph until bi,n, that is consistent with
their partial execution order.
1 https://it.mathworks.com/matlabcentral/fileexchange/65247-aos-api.

https://it.mathworks.com/matlabcentral/fileexchange/65247-aos-api
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Fig. 9. Splitting subsystems in tasks

An execution order for the block output update functions that is consistent
with the set of all the partial orders on the blocks executions is

[Bb → bi,n] → [bp → . . . → bq] → [bi,1 → Ba]

Hence, a possible task model for the implementation of this system consists
of splitting the blocks of Si in two tasks, one τi,1 implementing the blocks in
[Bb → bi,n], the other τi,2 implementing the blocks in [bi,1 → Bb].

Splitting the subsystem requires navigating the graph of signals from the
output port to the first set of non-feedthrough blocks realizing a cut in the
graph of the paths to the input port in the loop. For details on how to possibly
partition subsystems, please refer to [9,19] discussing similar problems in the
context of modular code generation. In the simple system of Fig. 9, the loop in
the bottom part of the figure can be broken by partitioning the subsystem Sub2
in such a way that all the delay block on the bottom right is split and associated
to a separate subsystem.

After the subsystems are partitioned, the new set of subsystems is now free
from cyclic dependencies. A new set of tasks can be generated from them and
allocated to cores. In the new set, the feedthrough dependencies among subsys-
tems are a directed graph and they can be preserved in the generated code by
using the event signaling mechanism of our abstract API to enforce the correct
task execution order (as also recommended in [31]).

7 Conclusion and Future Work

In this paper, we presented an implementation for generating code from Simulink
to an abstract operating system. The generated code can be remapped to the
preferred operating system by simply rewriting a thin layer of code for API trans-
lation. We also extended the API with mechanisms to guarantee data consistency
and flow preservation when executing on multi-core platforms as well as support
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for inter-core communication. Enforcing the order of execution that guaran-
tees causality in multicores requires changing the code generation paradigm and
changing the model to split subsystems breaking the feedthrough dependencies.
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Abstract. Hybrid systems are a powerful formalism for modeling cyber-
physical systems. Reachability analysis is a general method for check-
ing safety properties, especially in the presence of uncertainty and non-
determinism. Rigorous simulation is a convenient tool for reachability
analysis of hybrid systems. However, to serve as proof tool, a rigorous
simulator must be correct w.r.t. a clearly defined notion of reachability,
which captures what is intuitively reachable in finite time.

As a step towards addressing this challenge, this paper presents a
rigorous simulator in the form of an operational semantics and a spec-
ification in the form of a denotational semantics. We show that, under
certain conditions about the representation of enclosures, the rigorous
simulator is correct. We also show that finding a representation satisfy-
ing these assumptions is non-trivial.

Keywords: Reachability analysis · Correctness
Programming languages

1 Introduction

The crux of the intellectual problem with Cyber-Physical Systems (CPS)
is that, for the models that we use for the physical world, such as ODEs
or DAEs, there is a huge body of knowledge that has built up since the
19th century on how to model physical systems using these abstractions.
In the computing world, we also developed a lot of abstractions over a
much shorter history, from the 1930s or so, to talk about computing. And
those two classes of abstractions don’t play together. Generally, one has
a notion of time, the other doesn’t. How do you make these systems play
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together? This is a big intellectual challenge. We are basically trying to
take two fabulously developed sets of theories that have diverged, and bring
them back together.—Edward A. Lee, 2012.1

No sooner had the term CPS been coined by Helen Gill in 2006 [17] that Lee
began, with such characteristic eloquence, to tirelessly inspire multitudes of
researchers, including the authors, to address the challenges of modeling Cyber-
Physical Systems. For us, the following issues are of particular interest:

1. A mathematics that can cope with both continuous and discrete changes.
2. The possibility of extending to an heterogeneous setting modeling methods

and practices developed only for the continuous or the discrete setting.
3. Software tools that can support modeling in an heterogeneous setting.

Hybrid automata [4,12] and the more general hybrid systems [11] appear to
address the first issue. Reachability analysis is an important tool to address safety
in both the continuous and discrete setting, and its extension to a broader setting
is highly desirable. Other features make reachability analysis attractive. First,
it can incorporate both symbolic and numerical methods for solving continuous
dynamics, allowing a trade-off between speed and generality. Second, given the
broad applicability of the notions of “safe sets” and “bad sets”, reachability can
be used to analyze the designs of a wide range of cyber-physical systems. Third,
because of its similarity to numerical simulation, it has an intuitive appeal for a
broad audience and a more gradual learning curve than other formal methods.

Motivated by these observations, the Acumen modeling language [1,10,22,
24,25,28] allows users to describe hybrid systems that can then be simulated
either “traditionally” or “rigorously”.

Rigorous simulation [8] uses a time-bounded reachability algorithm that pro-
ceeds in fixed size time steps, scanning the time domain from zero to a user-
specified end time, and at each step computes an over-approximation of the
states reachable in that time interval. In [10] rigorous simulation has been used
to analyze early-stage designs of Advanced Driver Assistance Systems (ADAS).

1.1 Problem

Validated numerics, including directed rounding and other rigorous methods for
programming with floating point numbers, address the question of correctness of
numerical methods, and show how interval methods can be used to overcome this
problem [21,23]. However, two other steps are needed to establish correctness of
a rigorous simulator (or some other tool for reachability analysis).

– to give a mathematical definition of the set of reachable states, and
– to prove that the tool computes an over-approximation of this set.

1 Edward A. Lee, First Halmstad Colloquium, Halmstad Univ., February 10th, 2012.
Minutes 1:17-1:20 in video http://bit.ly/HC-EAL, paraphrased slightly for clarity.

http://bit.ly/HC-EAL
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For a discrete system reachability is given by the reflexive and transitive closure
→∗ of the transition relation → describing how the state of the system changes
at each tick of the clock. What is needed is a generalization, that copes with real
time and continuous state spaces.

The category Top of topological spaces and continuous maps is an obvious
choice, in fact: a set amounts to a discrete space, an Euclidean space (more
generally a metric space) comes with the topology generated by its open balls, a
complete lattice can be equipped with Alexandrov topology or Scott topology.

1.2 Contributions and Organization of This Paper

The main contributions of this paper are the denotational semantics used as
a reference to define correctness criteria, the definition of a rigorous simulator
in the form of an operational semantics parameterized wrt an abstract data-
type of timed enclosures, a modular strategy for proving the correctness of an
operational semantics with respect to the denotational semantics. The strategy
captures our intuitive understanding of how implementation and specification
should relate. At the same time, this approach places demands on the abstract
data-type of timed enclosures. The rest of the paper is organized as follows:

– Section 2 gives an overview, driven by examples, of rigorous simulation.
– Section 3 gives the denotational semantics of a minimal modeling language,

where a model is interpreted by a hybrid system [11]. We endorse hybrid
systems for their simplicity and generality, in particular they fully support
non-determinism, which is essential to model known unknowns and don’t care.
Then, we define (time-bounded) reachability in the form of a monotonic map
induced by a (timed) transition relation.

– Section 4 describes a rigorous simulator as a small-step operational semantics
manipulating timed enclosure. We make few connections with Sect. 3, in order
to exemplify a possible interpretation of timed enclosure.

– Section 5 gives an interpretation for all entities used by the operational seman-
tics and proves correctness in the form of an assume-guarantee result.

2 Hybrid Systems and Rigorous Simulation

In a modeling language hybrid systems can be described as collections of guarded
jumps and guarded flows. To use a programming language metaphor, they are
if-statements saying when the system should change discretely or continuously.
Without going into syntactic details, we can illustrate some key concepts of
rigorous simulation with two examples:

1. Saw Tooth: This is a system that climbs continuously at speed a per sec-
ond until it reaches the height of b, at which point it resets to zero, from
where it can resume its continuous climbing behavior. As defaults we will
take parameters a = 1 and b = 1; and as initial value for height x0(0) = 0.
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2. Bouncing Ball: This is a system that starts at a certain height and a certain
speed and it is subject to a downwards acceleration g until it hits the ground
at height zero, at which point it loses energy and bounces with a speed equal
to a fraction c of its speed. As defaults we will take parameters g = 1 and
c = 0.5; and as initial values for height x0(0) = 1 and for speed x1(0) = 0.

2.1 Basic Concepts

Rigorous simulation proceeds through time by discrete steps. An key concept
in rigorous simulation (or reachability analysis) is that of an enclosure, i.e., a
machine-representable entity that over-approximates the set of states reached
within a time interval [0, h] by the system being simulated (or analyzed).
Whereas traditional simulation (assumes that the system is deterministic and)
produces a point approximation for the state reached at the end of a time step,
Acumen’s rigorous simulation produces a set of triples.

The first plot in Fig. 1 illustrates the results for the first two time steps
in a simulation of the saw tooth example. To make the visual representation
easy to read, we start the system with an initial value that is not a point but a
set of possible values, namely, the interval [0, 0.1]. Each triple consists of three
intervals: the first (black box) over-approximates the set of values at the start,
the second (pink box) over-approximates the set of values taken by x0 during
the entire time step, and the third (black box) over-approximates the set of
values at the end, or equivalently at the start of the next time step. This plot
displays two triples that over-approximate the trajectory x0(t) = t with t < b.
The second interval in a triple always contains the other two, which give more
precise bounds for the start and the end, and help main precision across steps.

A powerful feature of rigorous simulation is the ability to start, work, and
compute with sets values. We started with a set of initial values because it
is easier to see on the visualization. One can also start with a single initial
value, but this exact value can be harder to see. The second plot in Fig. 1 is
produced when we start with the value zero. Visualizing triples in this manner
allows us to distinguish between uncertainty due to the size of the time step
and uncertainty in the set of values being passed from one step to the next.
Visualizing triples enables the user to pinpoint the sources of uncertainty in
results, be it uncertainty about inputs, due to underlying numerics, or due to
the fact that an algorithm is stepping discretely through time. For example, if
we allow the Saw Tooth system start from a single initial value and run longer,
we can observe some important artifacts of how rigorous simulation deals with
discrete events.

In general, the exact time when an event occurs in a continuous system may
not be representable nor computable. This means that a rigorous simulation algo-
rithm must reason about what happens when an event occurs at some unknown
time within the time step. The third plot in Fig. 1 runs the simulation longer
and shows the results after the first jump in the saw tooth system. The results
give a hint of how events are handled. In essence, we consider all values taken by
x0(t) from the start to the end of the time step. Then, we compute the result of
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Fig. 1. Simulation steps, triples, flows, and jumps (Color figure online)

Fig. 2. Jumps, uncertainty, and simulation step size

the jump from that set. The only question that remains is how long the system
can evolve after that point and until the end of the time step. We must work
with the worst case, i.e., it can evolve for anywhere between zero and the length
of the time step. The result is that the final value at the end of the time step is
often “blurred” with uncertainty.

The reader may be alarmed that this means that uncertainty can quickly
accumulate due to simulation. This is only half true. Errors can also decrease
during a simulation. The two plots in Fig. 2 give the simulation of the saw tooth
system for ten seconds, one with step size 0.1, the other with step size 0.01. The
plots show that a smaller step size can slow the rate at which error is added, but
it is unlikely to stop it. There are two features of rigorous simulation that can
stop and even reduce error. The first is explicit constraints. For example, in the
saw tooth example, even though the each event adds uncertainty, the value of
x0 remains bounded between 0 and 1. This is due to exploiting the information
present in the guards to the events using, for examples, the contractor techniques
advocated by Jaulin [6,13]. The second is that when the system being studied
has stable dynamics, this dynamics can be used to absorb the uncertainties due
to simulation, and the error can eventually become smaller. This means that,
as long we are designing stable systems, accurate rigorous simulation should be
possible for good designs [9].

2.2 Zeno Behavior

More challenging problems for rigorous simulation arise from the interaction
between continuous and discrete dynamics, including Zeno [14,15,26,27] and
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Fig. 3. Rigorous simulation past Zeno point. Two valid but divergent simulations.
(Color figure online)

chattering behavior [2,3,18,19]. In these behaviors there is an infinite number
of discrete events (jumps) in a finite amount of time, thus the simulator has to
handle an unknown number of jumps within a single time step. Previous work
involving some of the authors [15,16] showed how such systems can nevertheless
be rigorously simulated using enclosures, i.e., by demonstrating that “no tran-
sition can take the system outside a given enclosure”. The bouncing ball is a
classic example of a system that can exhibit Zeno behavior.

The plots on the left of Fig. 3 display the height x0 and the speed x1

of the ball for the first simulation. Triples generated during a simulation step
can overlap, which leads to a red (darker pink) color. In general, a simulation
step can generate many triples, due to a wide range of uncertainties, including
whether or not a guard is true. For example, the third “falling band” for speed
starts before the end of the second falling band. This is because in some of the
possible trajectories the ball has already bounced twice, while in some others
not. Such uncertainty is natural in the presence of discrete events, and increases
close to Zeno points. This increase is captured by the increased intensity of the
red color. In this example, the maximum height that the ball reaches after each
bounce forms a geometric series. The Zeno point for this example is reached
before t = 7. Thus, this simulation successfully goes beyond the Zeno point.
What is not achieved, however, is to stop the increase of uncertainty. Increasing
uncertainty is confirmed by the (slowly) increasing size of the enclosure for both
variables as we get closer to t = 7. The plots on the right of Fig. 3 confirm
this divergence. They show the simulation results for the same system with the
same initial conditions but with a bigger time step. Because this system is self-
similar as we approach the Zeno point, using a proportionally larger time step is
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Fig. 4. Rigorous simulation past Zeno point - valid and convergent enclosures

equivalent to zooming in around the Zeno point. The second diagram confirms
that the overall size of the enclosures is increasing.

The plots in Fig. 4 show how adding an extra variable x2 for the (kinetic plus
potential) energy of the system (which changes at bounces and stays constant
otherwise) allows to achieve contracting enclosures for the system. To illustrate
the robustness of this phenomena, the plots on the right show a simulation for the
system but with larger time steps and much larger uncertainty about the initial
value of the height and speed at the start of simulation. As the graph shows, the
enclosures still converge. This is confirmed by the falling energy levels, which
strongly limit the set of possible values for height and speed.

3 Denotational Semantics

We define the criteria that a simulator for hybrid systems on an Euclidean space
S

�= R
n must satisfy to be considered rigorous, namely it must over-approximate

the safe evolution map Eh (see Definition 3) of the system over an initial segment
[0, h] of the continuous time-line T

�= {d : R|d ≥ 0}.
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In this section we use the cartesian closed category Po of complete lattices
and monotonic maps, in particular Eh is such a map. Po is also the natural
setting for defining and comparing abstract interpretations [7]. We assume famil-
iarity with the category Top of topological spaces and continuous maps, some
topological notions (such as open, close and compact subset) and the definition
of derivative (in the context of Euclidean spaces).

In the rest of the paper, we write x : X for membership x ∈ X, P(X) for the
set of subsets of X, Pf(X) for the set of finite subsets of X, and make limited
use of the category Setp of sets and partial maps.

Definition 1 (HS [11]). A Hybrid System (HS for short) is a pair (F,G) of
binary relations on S, respectively called flow and jump relation, its support

is given by S(F,G) �= {s|∃s′.s F s′ ∨ sG s′ ∨ s′ Gs}. Finally, H(S) �= P(S2)2

denotes the complete lattice of HS on S ordered by component-wise inclusion.

As customary in mathematical logic, we must interpret syntactic entities by
mathematical entities. This semantic link is essential to relate the transforma-
tions implemented by a computer program (like a simulator) to some mathe-
matical function.

For our purposes it is useful to split the syntax in two layers:

– The upper layer considers modes q as primitive entities, and it suffices to
define our denotational and operational semantics and to prove correctness

– The lower layer gives the concrete syntax for modes, which usually depends
on the expressions handled by the libraries used, while the cardinality of X
determines the Euclidean space R

n used by the denotational semantics.

mode q ∈ Q ::= . . .
model m ∈ M ::= q | m1,m2

variable x ∈ X finite set
real exp e ::= x | f(ei|i : #f)
bool exp b ::= p(ei|i : #p) | b1 ∧ b2 | b1 ∨ b2
mode q ∈ Q ::= if b flow (x′ = ex|x : X) | if b jump (x+ = ex|x : X)

More generally, flows and jumps could be boolean expressions (with variables
X, Ẋ and X,X+ respectively) denoting binary relations on R

n.
We interpret a mode q : Q by a HS [[q]] : H(S), and extend the interpretation

to models m and sets Q of modes by taking component-wise union, e.g.

[[m1,m2]]
�= [[m1]] ∪ [[m2]] = (F1 ∪ F2, G1 ∪ G2) when [[mi]] = (Fi, Gi) : H(S)

Example 1. We describe a simple system with a parameter b : [0, 1], namely a
timer v with a timeout u, that exhibits a Zeno behaviour when b : (0, 1). Its
description as a model mT is q0, q1, q2, where

q0 = if 0 < v < u flow v′ = 1, u′ = 0 timer increases as time flows
q1 = if 0 < v = u jump v+ = 0, u+ = bu timer reset to 0 and timeout updated
q2 = if v = u = 0 jump v+ = 0, u+ = 1 timeout reset to 1
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Its description as a HS HT = (F,G) = [[mT ]] on R
2 is

F = {((v, u), (1, 0))|0 < v < u} G = {((u, u)(0, bu))|0 < u} 	 {((0, 0), (0, 1))}

For cardinality reasons it is impossible to have finitary representations for all
elements of an Euclidean space S. In a complete lattice, like P(S), the order
allows us to tell when (the interpretation of) a representation approximates an
element. Similar considerations motivate the use of interval arithmetic.

Definition 2 (TR). The transition relation
(F,G)

� : P(S × T × S) of a HS

is s
d

(F,G)
� s′ �⇐⇒ d = 0 ∧ sG s′ or d > 0 ∧ ∃f : Top([0, d], S) such that

– the derivative ḟ of f is defined and continuous in (0, d)
– s = f(0), s′ = f(d) and ∀t : (0, d).f(t)F ḟ(t).

In the later case we say that f realizes the transition.

The transition relation allows to define the safe evolution map, which computes
an over-approximation of the states reachable at a given time by a HS, even
when the HS has Zeno behaviors.

Definition 3 (Safe evolution). Let C(S) be the complete lattice of closed sub-
sets of a topological space S (ordered by inclusion). The time-bounded transi-
tion map Th : Po(H(S) × P([0], h] × S),P([0, h] × S)) and safe evolution map
Eh : Po(H(S) × P([0, h] × S),C([0, h] × S)) are given by

– Th(H, I) �= {(t + d, s′)|∃s : S.(t, s) : I ∧ s
d

H
� s′ ∧ t + d ≤ h}

– Eh(H, I) �= the smallest E : C([0, h] × S) such that I ∪ Th(H,E) ⊆ E.

Remark 1. The map Th(H,−) corresponds to the binary relation RH on [0, h]×S

st (t, s)RH(t′, s′) �⇐⇒ (0 ≤ t ≤ t′ ≤ h) ∧ s
t′−t

H
� s′. In fact Th(H, I) = RH(I).

R∗
H(I), where R∗

H is the reflexive and transitive closure of RH, captures only what
is reachable from I in finitely many transitions, but may fail to capture what is
reachable in finite time. The safe evolution map Eh(H, I) avoids this pitfall by
requiring E to be a closed subset (see [20]). An equivalent definition of Eh(H, I)
in terms of RH is the smallest E : P([0, h] × S) such that I ∪ RH(E) ∪ E ⊆ E,
and E is closed because E ⊆ E is always true.

In a metric space there is another reason to use C(S) instead of P(S). If the
accuracy to discriminate among points in S is δ, then a subset S : P(S) cannot
be distinguished from the open subset B(S, δ) �= {s′|∃s : S.dS(s, s′) < δ}. But
S ⊆ S ⊆ B(S, δ), where S is the closure of S, i.e., the smallest S′ : C(S)
containing S. Therefore, one cannot distinguish two subsets of S with the same
closure, no matter how small δ is.
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Example 2. Let H be HT in Example 1, then

– The transition relation H
� is (v, u)

d� (v+d, u) when 0 ≤ v < v+d ≤ u,

(u, u)
0� (0, bu) when 0 < u, and (0, 0)

0� (0, 1); in particular, one has
(0, u)

u� (u, u)
0� (0, bu) when 0 < u.

– The relation RH, which determines the map Th(H,−), is

{((t, v, u), (t + d, v + d, u))|0 ≤ t < t + d ≤ h ∧ 0 ≤ v < v + d ≤ u}	
{((t, u, u), (t, 0, bu))|0 ≤ t ≤ h ∧ 0 < u} 	 {((t, 0, 0), (t, 0, 1))|0 ≤ t ≤ h}

thus s0R
∗
Hsn

�= (tn, 0, bnu) when 0 < b, u and tn =
∑

i:n biu ≤ h, but the
Zeno point sω = (tω, 0, 0) is not reachable, even when tω =

∑
i:ω biu ≤ h.

– The set E = Eh(H, I) includes R∗
H(I), sω : E when ∀n : ω.sn : E, because

sω is the limit of a sequence (sn|n : ω) in E, and R∗
H(sω) ⊆ E when sω : E.

However, if H is modified so that the (0, 0)
0� (0, 1) is removed or replaced

by (0, 0)
0� (0, 0), then the system cannot progress, i.e., R∗

H(sω) = {sω}.

A minimal requirement for a simulator used for safety analysis should be partial
correctness wrt Eh. Namely, given a symbolic description m of a HS and a
representation over-approximating a set I : P(S) of initial states the simulator
should either fail or compute an over-approximation of Eh([[m]], [0]×I), or of the
bigger set Eh([[m]], [0]× I) (see the above considerations on indistinguishability).

The following result is relevant to prove correctness in Sect. 5.

Lemma 1. Let Fi and Gj denote the HS (Fi, ∅) and (∅, Gj) on S, then

1.
Fi∪Gj

� =
Fi

� ∪
Gj

�

2.
G0∪G1

� =
G0

� ∪
G1

�

3.
F0∪F1

� =
F0

� ∪
F1

� , if S(F0) and S(F1) are disjoint subsets of S

where S is the closure of S : P(S), i.e., the smallest S′ : C(S) such that S ⊆ S′.

Proof. We prove only the last claim. If f : Top([0, d], S) realizes s
d

F0∪F1

� s′,

then the image of f is a subset of S(F0 ∪ F1) = S(F0) 	 S(F1). By taking the
inverse image of the two disjoint closed subsets we get a partitioning of [0, d] in
two disjoint closed subsets, but [0, d] is connected, so one of them is empty. ��
Remark 2. The lemma says that the transition relation of the union of two HS
H0 and H1 (on the same state space) is the union of their transition relations
only if the flow relations of the two HS are apart, i.e., S(F0) and S(F1) are
disjoint.

If s
d

F
� s′, then s and s′ belong to the same connected component of S(F ).

Given a flow relation F and a connected component C of S(F ), let FC be the
restriction of F to C. By definition the flow relations FC are pairwise apart and
F =

⋃
C FC , thus

F
� =

⋃
C FC

� . Therefore, the connected components of

S(F ) could be viewed as the control modes of a hybrid automaton [5].
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4 Operational Semantics

The operational semantics uses some auxiliary domains and maps, which form an
abstract data-type (ADT). To establish correctness of the operational semantics
this ADT must satisfy certain properties. Here we give properties of the ADT
that do not refer directly to the denotational semantics, in Sect. 5 we give more
properties that make direct reference to the denotational semantics.

Enclosures. D is a countable set of enclosures d interpreted as closed subsets
[[d]] : C(S). We assume that D is closed wrt binary intersection d1∩d2, contains the
empty enclosure ∅, and the cover relation d ≤D [di|i : n] �⇐⇒ [[d]] ⊆ ⋃

i:n[[di]]
is decidable (we drop the subscript when it is clear from the context). The
inclusion relation on D is definable as d′ ⊆ d

�⇐⇒ d′ ≤ [d] and ≤ extends to a
pre-order on D∗, namely D′ ≤ D

�⇐⇒ ∀d′ : D′.d′ ≤ D.
A possible choice for D is the set of P -boxes in R

n, i.e., cartesian products
of n closed intervals [x, y], whose endpoints are in a countable subset P of R, eg
the subset of rational numbers or the finite subset of floating point numbers.

Timed Enclosures. The operational semantics uses only an ADT Z of timed
enclosures, representing over-approximations for closed subsets of T × S. An
Acumen-like implementation is Z ⊂ D×D×D containing initial e(z) = b(z) = ∅

and proper i(z), e(z) ⊆ b(z) triples, where i(z), b(z) and e(z) denotes the three
components of a z : Z. The interpretation [[z]]h : P(C([0, h] × S)) is given by

C : [[z]]h
�⇐⇒ C(0) ⊆ [[i(z)]] ∧ (∀t : (0, h).C(t) ⊆ [[b(z)]]) ∧ C(h) ⊆ [[e(z)]]

where C(t) �= {s|(t, s) : C} when C : C([0, h] × S).
Z inherits from D intersection, defined component-wise, and the cover rela-

tion z ≤Z [zi|i : n] �⇐⇒ ∀C : [[z]]h.∃C ′ :
∏

i:n[[zi]]h.C =
⋃

i:n C ′
i (the derived

notions of inclusion and the pre-order ≤ on Z∗ are defined as in the case of D).

Theorem 1. The following decision procedure ≤′ is sound for the cover relation
on Z, i.e., z ≤′ Z =⇒ z ≤Z Z, and the converse holds when ∀d : D.[[d]] is convex

z ≤′ Z
�⇐⇒ if b(z) = ∅ (i.e., z is initial) then i(z) ≤D [i(z′)|z′ : Z]

else b(z) ≤D [b(z′)|z′ : Z ∧ b(z′) ∩ i(z) ⊆ i(z′)] and
b(z) ≤D [b(z′)|z′ : Z ∧ b(z′) ∩ e(z) ⊆ e(z′)]

Proof. Soundness means C : [[z]]h∧z≤ ′[zi|i : n] =⇒ ∃C ′ :
∏

i:n[[zi]]h.C =
⋃

i:n C ′
i.

The case “z initial” is trivial, otherwise fix 0 < 0′ < h′ < h and let C ′
i

�= C∩⋃
({[0, h′] × b(zi)|b(zi)∩i(z) ≤ i(zi)} ∪ {[0′, h] × b(zi)|b(zi) ∩ e(z) ≤ e(zi)}). ��

Remark 3. In general [[z]]h is downward closed and closed wrt finite unions, but
may not have a biggest element, except when z is (d, ∅, ∅) or (d, d, d).
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Jumping. Jump:Setp(Q × D,D) interprets jumps. Jump(q, d) ↑ when it cannot
compute an enclosure of the states reachable by jumping with q from d. We
assume the following properties.

O.J Jump is strict, i.e., Jump(q, ∅) = ∅, and
monotonic in d, i.e., d′ ⊆ d ∧ Jump(q, d) ↓ =⇒ Jump(q, d′) ⊆ Jump(q, d).

Flowing. Flowh:Setp(Q × D,Z) interprets flows for time step h. Flowh(q, d) ↑
when it cannot compute a timed enclosure of the states reachable by flowing
with q from d. We assume the following properties.

O.F Flowh is strict, monotonic in d, and
the flow starts from d, i.e., z = Flowh(q, d) =⇒ z = Flowh(q, d ∩ i(z)).

Jump and Flowh are extended from D to Z as follows (and the extensions inherit
the properties assumed for the original maps, like strictness and monotonicity).

– Jump(q, z) = z′ �⇐⇒ z′ = (Jump(q, i(z)), Jump(q, b(z)), Jump(q, e(z)))
– Flowh(q, z) = z′ �⇐⇒ if b(z) = ∅ then z′ = z′

i else z′ = (i(z′
i), d

′
b, d

′
b) where

z′
i

�= Flowh(q, i(z)) and d′
b

�= b(Flowh(q, b(z))).

Operational Rules. Fix a finite set Q : Pf(Q) of modes.
A Q-set is a sequence W : (Z × Pf(Q) × Pf(Q) × Pf(Q))∗ such that

∀(z,Qa, Qd, Qc) : W.∅ ⊂ z ∧ Qa 	 Qd 	 Qc ⊆ Q

– W is initial �⇐⇒ ∀(z,Qa, Qd, Qc) : W.Qa = Q.
– W is terminal �⇐⇒ ∀(z,Qa, Qd, Qc) : W.Qa = ∅.

For defining the operational semantics we make the following assumptions

O.# ∀q : Q.(∀z : Z.Jump(q, z) = ∅) ∨ (∀z : Z.Flowh(q, z) = ∅), thus Q is
partitioned in flows QF (i.e., modes that cannot jump) and the rest QJ

(that cannot flow)
O.Q ∀q, q′ : Q.∀z, z′ : Z.z′ = Flowh(q, z) ∧ q �= q′ =⇒ Flowh(q′, z′) = ∅,

this says at the level of timed enclosures that flows in Q are apart (see
Remark 2).

The binary relation
Q
� on Q-sets is defined by the following rules

jump W, (z,Qa 	q,Qd, Qc),W ′
Q
� W, (z,Qa, q 	Qd, Qc),W ′, (z′, Q−q, ∅, ∅)

if ∅ ⊂ Jump(q, z) = z′

flow W, (z,Qa 	q,Qd, Qc),W ′
Q
� W, (z,Qa, q 	Qd, Qc),W ′, (z′, Q−q, ∅, ∅)

if ∅ ⊂ Flowh(q, z) = z′

done W, (z,Qa 	 q,Qd, Qc),W ′
Q
� W, (z,Qa, q 	 Qd, Qc),W ′

if Flowh(q, z) = Jump(q, z) = ∅
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cover W, (z,Qa 	 q,Qd, Qc),W ′
Q
� W, (z,Qa, Qd, q 	 Qc),W ′

if z ≤ [z′|(z′, Q′
a, Q′

d, Q
′
c) : W,W ′ ∧ q ∈ Q′

d].

Remark 4. The side conditions of (jump), (flow) and (done) are mutually exclu-
sive by (O.#). The following rule is derivable by exploiting (O.#) and (O.Q)

flow* W, (z,Qa	q,Qd, Qc),W ′
Q
� W, (z,Qa, q	Qd, Qc),W ′, (z′, QJ , QF −q, ∅)

if ∅⊂Flowh(q, z)=z′, where QJ and QF are defined in assumption (O.#).

The assumptions (O.#) and (O.Q) can be recast in terms of D

O.#* ∀q : Q.(∀d : D.Jump(q, d) = ∅) ∨ (∀d : D.Flowh(q, d) = ∅)
O.Q* ∀q, q′ : Q.∀d : D.∀z′ : Z.z′ = Flowh(q, d)∧ q �= q′ =⇒ Flowh(q′, b(z′)) = ∅

but the operational rules (and the proof of correctness) treat Z as an ADT, thus
one can adopt a different implementation of Z without invalidating correctness,
provided all assumptions are cast in terms of Z.

5 Correctness

The operational semantics is defined on top of the ADT Z for timed enclosures,
thus its correctness is an assume-guarantee result of the form “if the ADT Z
satisfies certain properties, then the operational semantics is correct”.

Assumptions. We fix Q : Pf(Q), define (Fq, Gq) = [[q]] : H(S) (see Sect. 3), and
make the following assumptions, in addition to (O,#) and (O.Q) of Sect. 4.

A.Z ∀z : Z.[[z]]h ⊆ C([0, h] × S) is downward closed and has a top element C(z)
A.# ∀q : Q.Fq = ∅ ∨ Gq = ∅, i.e., [[q]] is either a jump or a flow
A.Q ∀q, q′ : Q.q �= q′ =⇒ S(Fq) ∩ S(Fq′) = ∅, i.e., [[Q]] is a hybrid automaton

(see Remark 2), since S(F ) = S(F )
A.J ∀q : Q.∀z, z′ : Z.Jump(q, z) = z′ ∧ C : [[z]]h =⇒ Eh(Gq,Th(Gq, C)) : [[z′]]h
A.F ∀q : Q.∀z, z′ : Z.Flowh(q, z) = z′ ∧ C : [[z]]h =⇒ Eh(Fq,Th(Fq, C)) : [[z′]]h.

In the sequel we write q(C) for Th([[q]], C) and q+(C) for Eh([[q]], q(C)), where
q : Q and C : C([0, h]×S). By Lemma 1 the assumptions (A.#) and (A.Q) imply

[[Q′]]
� =

⋃
q:Q′

[[q]]

� , or equivalently Th([[Q′]], C) =
⋃

q:Q′ q(C), when Q′ ⊆ Q.

Remark 5. The assumptions (A.J) and (A.F) refer to the extensions of Jump and
Flowh to Z. Section 4 implements Z using a simpler ADT D, but the operational
rules refer only to Z, thus correctness holds, as far as the assumptions on Z
hold. Warning: the simple implementation of Z in terms of D defined in Sect. 4
satisfies a weaker property than (A.Z), see Remark 3, thus we cannot claim
correctness for an operational semantics using that implementation.

To state correctness we have to define the semantics of Q-sets W , this is done
coherently with the semantics of timed enclosures z : Z.

Definition 4. The semantics [[W ]]h : P(C([0, h] × S)) for a Q-set W is
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– [[(z,Qa, Qd, Qc)]]h
�= [[z]]h : P(C([0, h] × S))

– [[W ]]h
�= {⋃

i:n Ci|C :
∏

i:n[[W (i)]]h}, with n = |W | and W (i) i-th item in W .

Correctness says that the operational semantics computes over-approximations
of the safe evolution map. However, the computation may fail to terminate,
there is no bound on the accuracy of the over-approximations, termination and
accuracy may depend on the order in which the operational rules are applied.

Theorem 2 (Correctness). If W
∗
Q
� W ′ with W initial and W ′ terminal,

then ∀C : [[W ]]h.Eh([[Q]], C) : [[W ′]]h.

Correctness relies on a lemma saying that
Q
� preserves well-formed Q-sets.

Definition 5. For i : n = |W | let (z(i), Qa(i), Qd(i), Qc(i))=W (i) and
Q(i)= Qa(i)	Qd(i)	Qc(i), then W is a well-formed Q-set �⇐⇒ ∃p : n ⇀
n × Q such that

1. p(i) = (j, q) =⇒ j < i, i.e., n forms a forest with arcs j
q� i

2. p(i) = p(j) =⇒ i = j
3. i : n ∧ p(i) ↑ =⇒ Q(i) = Q
4. p(i) = (j, q) ∧ q : QJ =⇒ q : Qd(j) ∧ Jump(q, z(j)) = z(i) ∧ Q(i) = Q − q
5. p(i) = (j, q) ∧ q : QF =⇒ q : Qd(j) ∧ Flowh(q, z(j)) = z(i) ∧ Q(i) = Q − q
6. q : Qd(j) =⇒ Jump(q, z(j)) = Flowh(q, z(j)) = ∅ ∨ ∃i : n.p(i) = (j, q)
7. q : Qc(j) =⇒ z(j) ≤ [z(i)|i : n ∧ q : Qd(i)].

In particular, an initial W is well-formed by taking p such that ∀i : n.p(i) ↑.
The partial map p : n ⇀ n × Q records how items were added to W , i.e.,
p(i) = (j, q) means that W (i) was added by applying (flow) or (jump) to remove
q from Qa(j).

Lemma 2. If W is well-formed and W
Q
� W ′, then W ′ is well-formed.

Proof. By case analysis on the operational rule used to derive W
Q
� W ′. The

proof relies on the assumption (O.#) and the side-conditions of the operational
rules. In particular, the witness p′ that W ′ is well-formed is given by the witness
p for W in the cases (done) and (cover), while it is an extension of p in the cases
(jump) and (flow). ��
Lemma 3. If W is well-formed and terminal, then Eh([[Q]],D) : [[W ]]h, where
D =

⋃{C(z(i))|i : n∧p(i) ↑} with n = |W | and p witness that W is well-formed.

Proof. Define C ′ : [[W ]]h such that D ⊆ C ′ and Th([[Q]], C ′) =
⋃

q:Q q(C ′) ⊆ C ′,
therefore Eh([[Q]],D) ⊆ C ′ belongs to [[W ]]h, because [[W ]]h is downward closed.

For i : n let ∅ ⊂ Ci
�= C(z(i)) the top element in [[W (i)]]h by (A.Z),

C
�=

⋃
i:n Ci the top element in [[W ]]h, C ′

i
�= Ci when p(i) ↑, C ′

i
�= q+(Cj)

when p(i) = (j, q), and C ′ �=
⋃

i:n C ′
i, then the following properties hold



A Semantic Account of Rigorous Simulation 237

1. D ⊆ C ′, by definition of D and C ′

2. C ′ ⊆ C, because W is well-formed and C ′
i = q+(Cj) ⊆ Ci when p(i) = (j, q),

by (A.#), (A.J), (A.F) and definition of Ci

3. ∀j : n.∀q : Qd(j).q+(Cj) ⊆ C ′, because W is well-formed and q+(Cj) = ∅ or
∃i : n.p(i) = (j, q) ∧ q+(Cj) = C ′

i

4. ∀i : n.∀q : Qc(i).q+(Ci) ⊆ C ′, because Ci ⊆ ⋃{Cj |j : n ∧ q : Qd(j)} by W
well-formed, and q+(Ci) =

⋃{q+(Cj)|j : n ∧ q : Qd(j)} ⊆ C ′ by point 3
5. ∀i : n.∀q : Q(i).q(Ci) ⊆ C ′, by the points 3 and 4, because q(Ci) ⊆ q+(Ci)

and Q(i) = Qd(i) 	 Qc(i) by W terminal
6. ∀q : Q.q(C ′) ⊆ C ′. We prove ∀i : n.∀q : Q.q(C ′

i) ⊆ C ′ by case analysis on
i : n:

– if p(i) ↑, then Q(i) = Q and C ′
i = Ci, thus ∀q : Q.q(C ′

i) ⊆ C ′ by point 5
– p(i) = (j, q), then Q(i) = Q − q and C ′

i = q+(Cj), thus q(C ′
i) ⊆ C ′

i ⊆ C ′

by definition of C ′
i, and ∀q′ : Q − q.q′(C ′

i) ⊆ C ′ by point 5. ��

6 Conclusions and Future Work

The main contribution of the paper is an assume-guarantee proof of correctness
(see Sect. 5) for the rigorous simulator defined in Sect. 4, where the assumptions
concern an ADT Z of timed enclosures. The proof may serve as a blueprint
for similar results. For instance, one could replace safe evolution with a variant
which is robust wrt arbitrary small over-approximations of the hybrid system
and the set of initial states (see [20]), or strengthen the correctness guarantees
by specifying the accuracy of the over-approximation computed by the rigorous
simulator (this means that accuracy becomes a parameter for the simulator, the
auxiliary maps Jump and Flowh, and the statement of correctness).

We showed that a simple implementation of Z, defined in terms of an ADT
D (see Sect. 4), does not satisfy the assumption that the interpretation [[z]]h has
a top element, or more precisely that [[z]]h is a principal ideal in C([0, h] × S)
ordered by inclusion. Thus, an important next step will be to determine whether
there can be an implementation of Z satisfying all assumptions. It will also be
interesting to see if there is an alternative proof of correctness that rely on the
weaker assumption that [[z]]h is only an ideal.

We sketch an implementation of Z satisfying all assumptions required by the
proof of correctness, in particular for each z : Z the ideal [[z]]h has a top element
E(z) and [[z]]h = {C : C([0, h] × S)|C ⊆ E(z)}. The basic idea is that E(z)
is a convex bounded polytope P in T × R

n such that P (t) is a box in R
n for

each t : T. More formally, we take as z : Z sequences of inequalities of the form
a ≤ t ≤ b (where 0 ≤ a, b ≤ h) or a + a′t ≤ xi ≤ b + b′t with rational coefficients
and involving n+1 variables, namely t for time and xi for the i-th state variable.

A sequence z of inequalities defines a closed convex subset E(z) of C([0, h]×S)
consisting of the points satisfying all inequalities (thus E(z) is a polytope), and it
is bounded when z includes an inequality a ≤ t ≤ b and at least one inequality for
each xi. Finally, the inclusion and cover relation for convex polytopes described
by conjunctions of linear inequalities with rational coefficients are decidable,
because they are Turing-reducible to linear programming.
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Abstract. The notion of deterministic execution of concurrent systems
has appeared in many guises throughout Edward A. Lee’s œuvre, but
few really grasp how powerful, important, subtle, and flexible the concept
really is. Determinism can be thought of as an abstraction boundary that
delineates where control is passed from a system designer to the imple-
mentation. This paper surveys some of the many forms of determinism
available in the models of computation Lee and others have proposed.

1 Introduction

Edward Lee and I have been chasing determinism for much of our careers, but
the term means different things to different people. The dictionary definition
of “determinism” is roughly the doctrine that nobody has free will, but our
definition is more subtle. First, we concern ourselves with engineered systems
instead of human beings1. Second, and more importantly, our notion of determin-
ism actually permits a limited amount of free will—a system may make choices
(both when it is implemented or when it is running) provided those choices do
not affect the system’s observed outputs. For example, we consider a combina-
tional digital logic circuit to be deterministic even though the delays of its gates,
and hence its detailed temporal behavior, may vary. The system specification
only constrains the Boolean input/output relationship of the network; the phys-
ical behavior of an implementation of the network may vary provided the I/O
relationship is respected.

In an attempt to more precisely characterize the notion of determinism, con-
sider a quasi-formalism:2 let M = (S, I,O,C,E,B, p) be a model of computation
(MoC) where S is the set of all legal system specifications (i.e., supplied by a
designer), C be the set of all legal choices that can be made in implementing any
system, I and O be the sets of inputs and outputs accounted for by the model
of computation, E and B be the sets of environmental inputs and behaviors not
accounted for by the model of computation, and p : S×C → (I×E → O×B) be

1 At least I do; ignoring people is more-or-less why I entered engineering. That hasn’t
worked out too well.

2 A quasi-formalism because the notions of these sets are far too abstract to be a
proper formalism. In particular, the sets E and B are difficult to define because they
are meant to represent “everything else,” but this requires a careful definition of the
universal set, which is not obvious.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 240–253, 2018.
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the system implementation function for the model of computation, which takes
a system specification and implementation choices and returns a system that
transforms known and unaccounted-for inputs into known and unaccounted-for
outputs. A model of computation M is deterministic if for all s ∈ S, c ∈ C,
i ∈ I, and e ∈ E, there is some function d : S × I → O such that

p(s, c)(i, e) =
(
d(s, i), b

)
. (1)

In other words, the outputs that the model of computation accounts for only
depend on the system specification and the inputs accounted for by the model
of computation. Implementation choices and the environment may only affect
the behavior of the system outside of these outputs.

By design, the above takes a very abstract view of what inputs and out-
puts, environmental or otherwise, may be. For example, inputs and outputs may
be vectors of Boolean values, sequences of Boolean vectors over time, events
tagged with timestamps [37], continuous-valued signals [38], and many more.
In fact, a crucial choice in the design of a model of computation is whether
such physical properties such as time, space, and voltage are considered part of
a system’s inputs and outputs versus being relegated to the environment. For
example, in most classical models of computation in computer science (e.g., Tur-
ing machines), physical time is ignored; termination or the lack thereof was the
only real concern. While such a view brings many theoretical benefits, it hinders
the control of physical systems, which invariably depend strongly on time.

Example 1. Consider the model of computation embodied in an and/inverter

graph (aig), a streamlined, abstract model of combinational Boolean logic net-
works proposed by Kuehlmann et al. [31] and used, for example, in Brayton and
Mishchenko’s ABC tool [10] to verify and synthesize digital logic circuits.

An aig is a directed acyclic graph with three types of vertices: a vertex with
two incoming arcs represents a logical and gate; a primary input (i.e., from the
environment) is modeled as a vertex with zero incoming arcs; and one particular
vertex with no incoming arcs represents the constant “0.” Vertices with a single
or more than 2 incoming arcs are not allowed, but there is no constraint on
the number of outgoing arcs from a vertex. Certain vertices are also considered
outputs. Each arc has a Boolean inversion attribute that indicates whether the
value flowing through it is to be complemented. For a particular assignment of
input values to input vertices, the output from the network is an assignment of
Boolean values to the output vertices that comes from an assignment of Boolean
values to every and vertex that satisfies all of them, i.e., each vertex takes on
the logical and of the values of the vertices along its incoming arcs, inverted
according to the attribute on each arc.

It is easy to see such the output of such a network is deterministic. Since the
graph is directed and acyclic, its vertices can be topologically ordered starting
from the primary inputs, and the value of each vertex can be established in that
order. The invariant is that a vertex’s value is evaluated after its two fan-in
vertices have been evaluated.
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In this MoC, S is the set of all aigs; I is an assignment of a Boolean value
to each primary input vertex, and O is the assignment of Boolean values to
each output vertex that is consistent with the inputs and the network. Choices
C that can be made during the implementation of the system include which
logic gates to use, their speed, and how they are connected. Any circuit that
ultimately gives the same input-output relationship is considered correct; its
structure in not limited by the structure of the aig. Environmental inputs might
include fluctuations in supply voltage that could affect the delays of certain
gates and noise coupled into the circuit from outside. The behavior B may
describe the voltages on each of the wires in the circuit as a function of time, or
approximations to this, such as times at which the signals change.

The aig MoC is deterministic in the sense of (1). An underlying assumption
is that the choices C are correct (i.e., produce a working circuit) and that the
environmental inputs E ultimately do not affect the output O.

Example 2. Consider the model of computation represented by the C program-
ming language. In this MoC, S is the set of all legal C programs; C is the set
of all choices a compiler may make during the compilation process, e.g., which
instructions to choose, which registers to use, etc.

Defining I and O, the inputs specified by the model of computation, is a
little subtle. I includes command-line arguments, environment variables, the
standard input stream, files in the filesystem, etc. O includes the return value,
the standard output stream, files the program writes to the filesystem, etc.

Defining E and B are more subtle still. E can include things such as the type
and speed of the processor in which the C program is being run, the time of day
at which the program is run, and load and scheduling policy of the operating
system under which it is run. B includes things such as the time it takes to
execute the program, the amount of power consumed by the computer while the
program is running, and many others.

While programmers traditionally think of C as being deterministic, and most
C programs behave deterministically once compiled, certain C constructs have
unspecified behavior, meaning the C standard defines multiple possible behav-
iors but does not specify which must be chosen. Constructs may also have unde-
fined behavior, meaning the standard imposes no requirements whatsoever, and
implementation-defined behavior.

For example, C’s argument evaluation order is unspecified. This readily leads
to nondeterministic behavior when argument evaluation has interacting side-
effects, such as in the (nonsensical) function call foo(a=1, a=2). When the
function foo() executes, the variable a will be either 1 or 2, but the C standard
does not prescribe which (i.e., it is an implementation choice).

The C standard (e.g., ISO/IEC 9899:2011) attempts to legislate away the
problems of nondeterminism by restricting the set of legal C programs S to
those that are strictly conforming : i.e., programs that do not produce output
that depends on unspecified, undefined, or implementation-defined behavior.

Understandably, C programmers are taught to eschew unspecified, unde-
fined, and implementation-defined behavior, but this approach is only partially
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effective. Although good C programmers are aware of and avoid such issues, in
reality programmers rely on the C compiler at their disposal to test the legality
of a program and under this definition, the legality of a C program is technically
undecidable. For example, while I was pleased to discover the version of gcc on
my desktop machine (5.4) will produce a warning for the foo(a=1, a=2) exam-
ple given the -Wsequence-point option, gcc failed to warn when the effects
were moved to functions, i.e., foo(one(), two()).

Time is another thorny issue. The C standard provides the standard library
function time() that returns the current calendar time. If programs that can
call time() are part of S, the C MoC is deterministic only if I includes the
current time and fine details about the execution rate of the program.

A central tenet of determinism is that there are choices (c) to be made in
the implementation of a system (s) that may affect its behavior (b), but they do
not affect the output characterized by the model of computation.

I know of only a few mathematical approaches to determinism. Although
there may be others, the deterministic MoCs I know of all use these. Below, I
discuss these approaches and the models that use them.

2 The Banach Fixed-Point Theorem

Of the various fixed-point theorems at the root of deterministic MoCs, the
Banach Fixed-Point Theorem is the easiest to state and understand. We start
with a set (space) X for which there is a metric d : X × X → R that represents
a distance between two points x, y ∈ X, i.e., d(x, x) = 0, d(x, y) > 0 if x �= y,
d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality).

Theorem 1 (Banach [1]). If X is a space with metric d and f : X → X is a
contraction mapping on X, i.e., there exists a Lipschitz constant K < 1 such that
d
(
f(x), f(y)

) ≤ Kd(x, y), then there is a unique fixed-point x∗, i.e., f(x∗) = x∗,
where x∗ = limn→∞ fn(x) for any x ∈ X.

Two amazing things are happening here: that two points, after being mapped,
come closer together is enough to ensure a unique fixed point, and that this fixed
point can be found by starting anywhere and simply iterating. Intuitively, the
Lipschitz constant K provides a bound on how iterations of f must behave, in
particular telling us that they must grow closer.

In the MoC setting, the space X is typically the output from the system, the
mapping f corresponds to taking some small step in running the system (e.g.,
evaluating a single logic gate), and the fixed point x∗ corresponds to a “stable”
state of the system in which nothing more can or will be done to evaluate it.
Determinism corresponds exactly to the fixed point being unique.

Lee et al. use Theorem 1 to show how discrete-event simulation models could
be made deterministic. In such a model, a signal (i.e., communication history
between processes) is modeled as a set of events—value-time pairs. The central
challenge is choosing a suitable metric for what is otherwise a rather unwieldy
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space of possible behaviors X. Lee’s earlier work [33] uses the Cantor metric
d(x, y) = 1/2t, where the time of each event is represented by a real number and
t is the earliest time at which events in the two signals x and y differ. Later,
Lee et al. [15,16] adopt superdense time, in which each event is tagged by a real
number-natural number pair to more delicately model simultaneous events. This
complicates the metric, but Lee et al. show Theorem 1 can still be applied to
establish determinism.

3 The Kleene/Knaster-Tarski Fixed-Point Theorem

The Banach Fixed-Point theorem relies on a metric that assigns real numbers
to every pair of points in a space, which may be awkward in certain settings.
Fortunately, another fixed-point theorem demands far less structure, making it
easier to apply to MoCs. I state the theorem first then explain its details and
implications.

Theorem 2 (Kleene/Knaster-Tarski). Let (X,�) be a complete partial order
with minimum element ⊥ ∈ X and f : X → X a continuous function. f has a
unique least fixed point

⊔ {
fn(⊥) | n ∈ {1, 2, . . .}}.

Theorem 2, apparently a “folk theorem” variously attributed to Kleene and
Knaster-Tarski [32,53], instead of a metric, relies on a partial order relation,
written � and sometimes pronounced “approximates,” that is reflexive (x � x),
antisymmetric (if x � y and y � x, then x = y), and transitive (if x � y and
y � z, x � z). The relation is partial because it may be the case that neither
x � y nor y � x, i.e., x and y may be incomparable. The usual subset relation
⊆ is one such partial order. This mathematical machinery has been published
in many places; Winskel [56] is my favorite; see also Scott [47] and Davey and
Priestley [21].

Theorem 2 further requires the partial order to be complete: any (increasing)
chain C = {c1, c2, . . .} (where c1 � c2 � · · · ) must have a least upper bound⊔

C ∈ D satisfying ck � ⊔
C (i.e.,

⊔
C is an upper bound) and

⊔
C � b for

any b such that ck � b (i.e.,
⊔

C is the least such bound). Intuitively, increasing
sequences in the space can not increase forever.

Finally, Theorem 2 requires a continuous function (sometimes termed “Scott
continuous” after Dana Scott [46], who pioneered their use for modeling recursion
in denotational semantics). Continuity is analogous to the usual definition for
real-valued functions: the limit of the function is the function at the limit, i.e.,
for all chains C,

⊔{f(c) | c ∈ C} = f(
⊔

C). Informally, nothing strange happens
when you actually reach a limit. Moreover, continuity implies monotonicity, i.e.,
x � y implies f(x) � f(y).

The sketch of the proof of Theorem 2 is quick and illuminating. Montonicity
implies ⊥ � f(⊥) � f2(⊥) � · · · is a chain. Because � is complete, this chain
C has a unique least upper bound

⊔
C. Finally, because f is continuous,

⊔
C is

a fixed point because f(
⊔

C) =
⊔{f(c) | c ∈ C} =

⊔
C.

Put another way, iterating f produces a nondecreasing sequence that
approaches a unique least upper bound, which happens to be the least fixed
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point. Theorem 2 only guarantees a unique least fixed point; f may have other,
greater fixed points.

Perhaps most famously, Kahn [30] uses Theorem 2 to show his process net-
works are deterministic. Kahn networks consist of sequential processes that com-
municate through unbounded FIFO channels. Each process may compute, emit
a token to an output channel, or wait for the next token on an input chan-
nel. Kahn models the contents of each channel as Dω: the set of finite and
infinite sequences over the set of tokens D, and the domain X is a vector of
channels. Kahn shows that each process behaves as a continuous function under
his restrictions, e.g., monotonicity follows from blocking reads: additional input
tokens can never make a process “unemit” tokens or “change its mind” about a
token emitted earlier; continuity follows because a process can’t “wait forever”
before generating an output. Kahn defines the behavior of his networks as the
least fixed point of the function composed from the functions of all the processes,
which is therefore unique. Furthermore, the proof of Theorem 2 tells us that this
fixed-point may be reached (or at least approximated) by simply running the
processes.

In the vocabulary of (1), Kahn networks have S as the Kahn network, I and
O are the sequences of tokens on the channels, C and E include implementation
choices, e.g., with respect to scheduling the execution of the processes, and B
includes the timing of the tokens on the channels.

Kahn’s networks and its underlying mathematics have spawned a host of
variants. Lee’s Synchronous Dataflow (sdf) [35] is a restriction of Kahn net-
works to regular, statically known communication patterns, thus piggybacks on
Kahn’s result to guarantee determinism. Many slight variants have been pro-
posed, including cyclo-static dataflow [8] and Boolean dataflow [14]. Lee and
Parks [36] discuss many of these models. Lee and Matsikoudis [34] show how
dataflow actors with firing rules behave like Kahn processes (i.e., continuous
functions over streams). My own shim formalism [22,24] falls somewhere between
the rigid, predictable communication patterns of Lee’s sdf and Kahn’s Turing-
complete process networks by restricting processes communicate via rendezvous
to bound buffer sizes. Lately, I have devised yet another deterministic dataflow
formalism derived from Kahn, this time synthesizing deterministic hardware
from bounded-buffer dataflow networks [25].

Kahn relies on the ability of Theorem 2 to cope with infinite domains, but
finite domains often suffice.

For example, Theorem 2 also provides determinism to cyclic combinational
logic circuits and related block diagram languages. In classical three-valued cir-
cuit simulation, the domain X is a finite vector of finite elements: three-valued
wire values where the unknown value (usually written “X” in the engineering
literature) is the least element ⊥ and ⊥ � 0 and ⊥ � 1 where 0 and 1 are
incomparable.

Three-valued digital logic simulation has been around since at least the
1950 s. Muller [43] was one of the earliest to consider it in light of the works
of Kleene and others. Eichelberger [26] showed how to use it to detect switch-
ing hazards in circuits. Bryant [11] used this logic to simulate switching
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networks built from mos transistors that could include such oddities as pass
gates and dynamic logic families. Later, researchers including Brzozowski and
Seger [12,13], Malik [40] and Shiple and Berry [48] connected three-valued sim-
ulation to the analysis of logic circuits with loops and time models, ultimately
showing it is a precise abstraction of logic gate networks with unknown tim-
ing [42].

Berry [5] adopted what is essentially three-valued logic simulation seman-
tics for later versions of his Esterel language [6] to resolve some longstanding
questions about which programs were self-contradictory. He also noted the con-
nection between three-valued simulation, Theorem 2, and constructive logic,
dubbing this treatment the constructive semantics of Esterel [4].

My own thesis work, which Lee oversaw, produced a block-diagram lan-
guage [23] whose deterministic semantics amounted to three-valued simulation
abstracted further to allow general monotonic functions to operate on arbitrary
data, not just Boolean. August and his group at Princeton used this approach
in their Liberty processor simulation environment [44]. More recently, Lee and
Zheng [39] sewed this model together with discrete-event simulation.

Theorem 2 is often applied in a setting where the behavior and/or imple-
mentation of a system may be one of a family of functions f that arise from
evaluating parts of a system at different rates. For example, implementing an
sdf graph usually involves scheduling the rates and execution order of the pro-
cesses, which generally affects the function f [7]. Fortunately, it turns out that
such restructuring does not affect the fixed point. Bekić [3] shows, for example,
that a system may be split apart and the parts run asynchronously but their
results ultimately merged without affecting the fixed point. See also Winskel [56,
Chap. 10].

Such an asynchronous approach to computing a function is usually termed
“chaotic iteration,” and is a common way to compute large functions on parallel
hardware. Cousot and Cousot [20] and Wei [55] observe the connection between
this approach and Theorem 2. Bourdoncle [9] shows how wisely partitioning
the graph of a system can reduce the amount of effort involved in evaluating it
without affecting the result.

4 Church-Rosser, Confluence, and the Lambda Calculus

Church’s lambda calculus [2,17,18] is a remarkable piece of mathematics in that
it is deceptively simple yet somehow all-encompassing. The basis of functional
programming including McCarthy’s lisp [41], Sussman and Steele’s Scheme [50],
Milner’s ml [27], and Haskell [28], it reduces computation to little more than
substituting arguments for variables in functions, which, amazingly, is enough
to make it as powerful as Turing machines [54]. Expositions of the lambda cal-
culus abound. Berendregt [2] is the all-inclusive reference, but I much prefer
Peyton Jones [29, Chap. 2] as a place to start. Stoy [49] also provides a readable
treatment.

Unlike Theorems 1 and 2, the lambda calculus only guarantees that a fixed
point is unique if it exists. This is a side-effect of the “batch mode” bias in the
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lambda calculus: it was intended to model computation that produces a result
only when it terminates.

Another big difference of the lambda calculus compared to Theorems 1 and 2
is its explicit use of choice in the evaluation “function.” The lambda calculus
proceeds not by applying a particular function f , but by applying a rewriting
procedure that may make choices that produce different (intermediate) results.

A lambda expression is either x (a variable), (λx.M) (a lambda abstraction—
a model of a function), or (M N) (application of the expression M to argument
N), where M , N , . . . are lambda expression and x, y, . . . are variables.

For example, (λx.x) represents the identity function; (λx.(λy.x)) is a function
that takes an argument x and returns a function that takes an argument y,
ignores it, and returns x, which can be used to represent the Boolean “true.” To
improve the readability of lambda expressions, parentheses are dropped where
ambiguity can be resolved by taking the body of a lambda abstraction to extend
as far to the right as possible and taking juxtaposition as associating left-to-right,
e.g., (λx.x y z)w means ((λx.((x y) z)))w).

A reducible expression or redex is a lambda expression of the form
((λx.M)N), i.e., where a lambda abstraction is being applied and thus compu-
tation is to be performed. For example, (λz.z) y is a redex in which the identity
function is being applied to y, but (λx.x), x y, and x (λx.x) are not redexes.

The one interesting computational step in the lambda calculus is β-reduction,
in which a redex is replaced with a version of the body of the lambda abstraction
in which every instance of the variable is replaced with the argument:

((λx.M)N) →β M [x := N ] (β)

where M [x := N ] means a copy of M in which all free3 instances of x have been
replaced with the argument N . So for example, (λx.λy.x) (λz.z) →β λy.λz.z.

In general, β-reduction can be applied anywhere in a lambda expression, not
just at the top level as prescribed by the (β) rule. To do this, the →β rule is
extended with three others that allow β-reduction to be performed inside the
body of a lambda abstraction, or on either the left or right side of an application:

M →β M ′
(body)

(λx.M) →β (λx.M ′)
M →β M ′

(left)
(M N) →β (M ′ N)

N →β N ′
(right)

(M N) →β (M N ′)

In general, the (β), (left), and (right) rules may each apply to a
lambda expression, which introduces choice. For example, applying (β) to
(λx.λy.y) ((λw.w w) (λz.z z)) produces λy.y since x does not appear in the body
of the λx expression. However, the (right) rule also applies to this expression,

3 I am sidestepping all the fussy bookkeeping necessary to deal with reused variable
names because it is ultimately bland, mathematically speaking. See, e.g., Peyton
Jones [29, Chap. 2].
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which allows the argument to the λx expression to be reduced before it is sub-
stituted, giving

(λw.w w) (λz.z z) →β (λz.z z) (λz.z z)
(λx.λy.y) ((λw.w w) (λz.z z)) →β (λx.λy.y) ((λz.z z) (λz.z z)) .

A model of computation in which a choice may be taken is at the heart
of nondeterminism. Superficially, it would seem that allowing a model to take
different steps that produces different results (as the above example illustrated)
would produce a nondeterministic model, but this turns out not to be the case
for the lambda calculus, as Church and Rosser originally showed.

As defined above, determinism constrains the relationship between the inputs
and outputs of a model of computation, but not choices and behavior of how
the system implements the I/O relationship. In the lambda calculus, a redex
represents work yet to be done, i.e., a function that can still be evaluated; any
expression that contains a redex is not (yet) at the point where it will generate
an output.

A lambda expression is in normal form if it contains no redex, i.e., if β-
reduction cannot be applied. “Execution” of a lambda expression amounts to
applying β-reduction (i.e., →β) until the expression reaches normal form, which
is considered the “output” of a lambda expression.

It turns out the lambda calculus is deterministic due to a remarkable result
by Church-Rosser: if a lambda expression can be β-reduced into normal form,
there is only one such normal form. In other words, making choices about
which redex to reduce cannot affect the ultimate result. There are lambda
expressions that do not have a normal form, perhaps the simplest of which
is (λx.x x) (λy.y y) (β-reduction can be applied indefinitely yet the expression
does not effectively change). These are analogous to non-terminating programs
on, say, Turing machines.

The proof of determinism works in two steps. First, β-reduction is confluent :

Theorem 3 (Church-Rosser [19]). Let →β∗ represent one or more applications
of the →β relation. If M →β∗ N1 and M →β∗ N2, then there exists an M ′ such
that N1 →β∗ M ′ and N2 →β∗ M ′.

The second, easier step observes confluence implies an expression’s normal
form, if any, is unique:

Corollary 1. No lambda expression can be β-reduced to two different normal
forms.

Proof. Suppose M →β∗ N1, M →β∗ N2, and both N1 and N2 are in normal
form. By Theorem 3, this means there exists M ′ such that N1 →β∗ M ′ and
N2 →β∗ M ′. However, since both N1 and N2 are in normal form, they contain
no redexes, so it must be that N1 = N2.

The proof of Theorem 3 is not obvious because β-reduction can substantially
restructure an expression. Reducing a redex may make others disappear, e.g.,
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since (λx.y) M →β y, any redex in M goes away. Reducing a redex may also
make copies of a redex, e.g., since (λx.x x x) M →β M M M , any redex in M
is copied three times. “Reducing” the lambda expression (λx.x x x) (λy.y y y)
actually makes it increase without bound. In general, this makes β-reduction
non-monotonic, precluding a proof like that for Theorem 2.

The usual proof of Theorem 3 demonstrates confluence by showing it is pos-
sible, after any single β-reduction of a redex, to reach the configuration obtained
by reducing all redexes “in parallel.” Induction on this step completes the proof,
which Tait and Martin-Löf developed in the early 1970 s but did not publish.
Barendregt [2] recites this proof and others, but I prefer Pollack’s [45] treatment
of Takahashi’s presentation [51,52].

The rules for maximal parallel β-reduction are deterministic:

x ⇒ x (p-var)
M ⇒ M ′ N ⇒ N ′

(p-β)
(λx.M) N ⇒ M ′[x := N ′]

M ⇒ M ′
(p-λ)

λx.M ⇒ λx.M ′
M ⇒ M ′ N ⇒ N ′ M is not a lambda

(p-app)
M N ⇒ M ′ N ′

The (p-var) rule is the base case, which leaves unbound variables unchanged.
The (p-λ) rule handles a lambda term by rewriting its body. Finally, (p-β) and
(p-app) handle applications. The (p-β) rule performs the usual β-reduction on
redexes, but only after reducing all redexes in the body M and the argument
N . The (p-app) rule applies to every other application term (e.g., when M is an
application or a variable) and reduces all redexes in both of its sub-expressions.

However, reducing all redexes according to these deterministic, maximally
parallel rules does not necessarily produce a normal form; reductions may expose
new ones that were not initially “visible” to the parallel β-reduction rules. For
example, reducing ((λw.λx.w) y) z to normal form takes two steps. The first:

w ⇒ w
(p-λ)

λx.w ⇒ λx.w y ⇒ y
(p-β)

(λw.(λx.w)) y ⇒ λx.y z ⇒ z
(p-app)

((λw.(λx.w)) y) z ⇒ (λx.y) z

Determinism in the lambda calculus, therefore, has parallels with acyclic dig-
ital electronic logic circuits: the implementation may choose to do more work
than necessary, but the outcome of needless work does not affect the ultimate
result. In a lambda expression, “more work” would be performing β-reductions
on terms that are eventually ignored. Similarly, a circuit may “glitch” and tran-
sition more than necessary because of multiple paths with different delays to a
particular logic gate. However, because an acyclic circuit is finite and contains
finitely many paths, glitching always converges, whereas it impossible in general
to guarantee β-reduction will converge because the model is Turing-complete.

For practical reasons, most functional languages (e.g., lisp, Scheme, and ml)
have adopted the applicative execution policy familiar to most programmers, i.e.,
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function arguments are evaluated before the function is invoked. In the lambda
calculus, this corresponds to reducing the argument to a lambda term to normal
form before performing β-reduction. However, other languages, notably Haskell,
adopts a more lazy strategy in which evaluation is deferred. The result is that
certain programs coded in Haskell (e.g., those that manipulate infinite lists)
will terminate while the same programs in other functional languages do not.
However, if a Haskell program is coded in an applicative function language and
still terminates, Church-Rosser ensures the result is the same.

5 Conclusion

I presented a very abstract model of models of computation that gives us a start-
ing point for speaking about the determinism of MoCs, provided some examples
and their relationship to the model, and discussed three well-known theorems
that provide determinism to many models of computation.

The goal of determinism is to provide implementation flexibility (e.g., to
optimize metrics such as speed or cost) without these choices affecting how a
designer understands the behavior of the system. Technically speaking, I define
a deterministic model of computation as one in which the relationship between
the defined inputs and outputs of the system is a function that is unaffected by
choices made during its implementation or operation.

The Banach Fixed-point Theorem (Theorem 1) shows a contracting function
in a metric space converges to a fixed point. Lee et al. used this for arguing the
determinism of certain discrete-event models.

The Kleene-Knaster-Tarski Theorem (Theorem 2) relies on a partial order
with well-defined limits and a continuous function, which also happens to be
monotonic. In this setting, iterations starting from the least defined element ⊥
in the space converge to a unique least fixed point. Kahn [30] used this to show
his process networks were deterministic and many variants since then, including
Lee’s sdf [35], have also relied on this result to ensure a parallel, asynchronous
implementation of a system remains deterministic.

The lambda calculus has the Church-Rosser Theorem (Theorem 3), which
states the ultimate result of computation (the normal form of a lambda expres-
sion) is unique if it exists. Reducing an expression to normal form involves mak-
ing choices (either statically, as part of the implementation choices, or dynam-
ically), but Church-Rosser says these choices only affect performance, not the
ultimate result. This theorem provides determinism guarantees to many func-
tional languages and can also be used in a parallel setting.

It is my hope that this survey has clarified your understanding of the meaning
and utility of determinism in MoCs, perhaps providing inspiration of how to
ensure determinism in the next MoC you devise.
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Abstract. In this paper, we take into account lossy channels
and retransmission protocols in dataflow models of computation
(MoCs).Traditional dataflow MoCs cannot easily cope with lossy chan-
nels, due to the strict notion of iteration that does not allow the re-
emission of lost or damaged tokens. A general dataflow graph with sev-
eral lossy channels will indeed require several phases, each of them corre-
sponding to a portion of the initial graph’s schedule. Correctly identifying
and sequencing these phases is a challenge. We present a translation of a
dataflow graph, written in the well-known Synchronous DataFlow (SDF)
MoC of Lee and Messerschmitt, but where some channels may be lossy,
into the Boolean Parametric DataFlow (BPDF) MoC.

1 Introduction

The Internet of Things (IoT) has led to the deployment of billions of small devices
that are interconnected mainly by wireless communication protocols. A lot of IoT
applications use a form of dataflow communication between the nodes, so it seems
a good idea to use a dataflow Model of Computation (MoC) to program such
applications. One great advantage is the possibility to perform formal reasoning
at compile time, ensuring bounded memory, absence of deadlock, schedulability,
and performance properties. The problem is that IoT applications are subject to
communication losses, which can arise for various reasons: e.g., electromagnetic
interferences, low bandwidth, power shortage (frequent in tiny devices which are
typical of the IoT). There are many communication protocols, such as Automatic
Repeat Request (ARQ) protocols, to deal with lossy channels and to achieve
reliable transmission. These techniques are all based on retransmissions.

Traditional dataflow MoCs cannot easily cope with lossy channels, due to
the strict notion of iteration that does not allow the retransmission of lost or
damaged tokens. Consider a simple dataflow graph of the form

X →Y �Z →T
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where� denotes a lossy channel. Executing such a graph consists in executing
X, Y , Z, and T consecutively. But if Z reads corrupted data it has to produce
immediately data which most probably depends on its input. Furthermore, if
Z then asks for a retransmission, then executing Y again would entail reading
new data from X. The partial re-executions asked by ARQ protocols do not fit
within the standard dataflow model.

In this paper, we propose to use the Boolean Parametric DataFlow (BPDF)
MoC [2] to deal with lossy channels and the necessary retransmissions when
tokens are damaged or lost. BPDF extends the classical Synchronous DataFlow
(SDF) MoC of Lee and Messerschmitt [6] with Boolean parameters on the
dataflow edges, which permits to disable and enable edges. By carefully con-
trolling the Boolean conditions, we can model the execution phases of dataflow
graphs with lossy channels.

Section 2 presents the necessary background, namely the SDF and BPDF
MoCs. SDF with lossy channels and its translation into BPDF are described in
Sect. 3. Section 4 suggests several future work directions. Finally, Sect. 5 summa-
rizes our contributions and concludes.

2 Background

Since our goal is to extend SDF with a notion of lossy channel and to show how
to translate this model into BPDF, we present these two MoCs in turn.

2.1 Synchronous DataFlow (SDF)

Formally, an SDF graph G = 〈V, E , ι, ρ〉 consists of:

– a finite set of actors (computation nodes) V;
– a finite set of edges E ⊆ V×V; edges can be seen as unbounded FIFO channels;
if e = (X,Y ), also written XY , is an edge, then e is an outgoing edge of X,
and an incoming edge of Y .

– a function ι : E →N that returns, for each edge, its number of initial tokens
(possibly zero);

– a function ρ : E →N>0 × N>0 that returns, for each edge a tuple containing
the production rate of its source actor and the consumption rate of its sink
actor.

The execution of an actor (called firing) first consumes data tokens from all
its incoming edges (its inputs), then computes, and finishes by producing data
tokens to all its outgoing edges (its outputs). The number of tokens consumed
(resp. produced) at a given incoming (resp. outgoing) edge at each firing is called
its consumption (resp. production) rate and is specified by function ρ. An actor
can fire only when all its incoming edges have enough tokens, i.e., at least the
number specified by the corresponding rate (edges may have a non-null number
of initial tokens, defined by function ι). For instance, Fig. 1 shows a simple SDF
graph G with three actors A,B,C.
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A B C
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actor
edge

port rate

initial tokens

Fig. 1. A simple SDF graph with 3 actors and 3 edges.

Each edge carries zero or more tokens at any moment. The state of a dataflow
graph is the vector of the number of tokens present at each edge. The initial state
of a graph is defined as the vector of the number of initial tokens on its edges.
For instance, the initial state of the graph of Fig. 1 is the vector [0; 0; 2].

Because all rates in SDF are fixed values, a static schedule can be produced
and a number of analyses can be performed at compile time (e.g., boundedness,
liveness, throughput, latency, . . . ).

An iteration of an SDF graph is a non empty sequence of firings that returns
the graph to its initial state1. For the SDF graph in Fig. 1, firing actor A twice
(consuming 2 tokens and producing 6 tokens), actor B thrice (consuming 6
tokens and producing 3 tokens), and finally actor C once (consuming 3 tokens
and producing 2 tokens) forms an iteration. We write #X the number of firings
of actor X in the iteration.

The basic repetition vector Z = [#A = 2,#B = 3,#C = 1] indicates
the number of firings of actors per (minimal) iteration, and the iteration is
noted (A2, B3, C). The repetition vector is obtained by solving the system of

balance equations: each edge X
p q

Y is associated with the balance equation
#X.p = #Y.q, which states that all produced tokens during an iteration must
be consumed within the same iteration. If non-null solutions exist, the graph is
said to be consistent [6], and the smallest solution defines the basic repetition
vector. Consistency ensures that the graph can be executed infinitely in bounded
memory.

Deadlock analysis must check that the graph G admits a schedule that is
always live, called an admissible schedule. A simple algorithm to find such a
schedule performs a symbolic execution of the SDF graph [6]. Among the admis-
sible schedules, we distinguish flat single appearance schedules [4] (FSAS) where,
once factorized (i.e., any sequence A; . . . ;A of n firings of A is replaced by An),
each actor appears exactly once. The SDF graph G of Fig. 1 admits only one
FSAS: {A2;B3;C}. An acyclic SDF graph always admits a FSAS, while a cyclic
SDF graph admits a FSAS if and only if each cycle includes at least one satu-
rated edge, that is, an edge XY that contains enough initial tokens to fire Y at
least #Y times.

1 We only consider here the minimal iteration. Any multiple of the minimal iteration
is also a valid iteration.
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2.2 Boolean Parametric DataFlow (BPDF)

The Boolean Parametric DataFlow (BPDF) MoC [2,5] extends SDF with two
features: integer parameters for rates, similar to [3], and Boolean parameters
annotating edges. Only the second feature is of interest for the present paper,
so we focus on it.

The general idea is that any edge of a BPDF graph can be labeled with a
Boolean expression built from the following grammar:

B ::= tt | ff | b | ¬B | B1 ∧ B2 | B1 ∨ B2 (1)

where tt is true, ff is false and b denotes Boolean parameters. Each Boolean
parameter b is modified by a single actor called its modifier. Each modifier has
annotations of the form “b@πw” where b is the Boolean parameter to be set and
πw is the period of the Boolean parameter, that is, the exact number of firings
of its modifier between two successive assignments2.

Formally, a BPDF graph is a tuple G = 〈V, E , ι, ρ, Pb, β,M, πw〉 (for the sake
of simplicity, integer parameters are omitted here) where:

– V (actors), E (edges), ι (initial tokens), and ρ (rates) are defined as in SDF
graphs (see Sect. 2.1);

– Pb is the set of Boolean parameters;
– β : E →B returns, for each edge, its Boolean expression;
– M : Pb →V returns, for each Boolean parameter, its modifier;
– πw : Pb →N>0 returns, for each Boolean parameter, its writing period.

In general, a Boolean parameter can take several values during an iteration of
a BPDF graph. However, in the context of this paper, Boolean parameters take
only one value per iteration. In other words, ∀b ∈ Pb, πw(b) = #M(b). Figure 2
shows a BPDF graph with three actors and two Boolean parameters.

An edge labeled by a Boolean expression is disabled whenever its expression
evaluates to false and enabled otherwise. An edge not labeled by a Boolean
expression is seen as labeled by tt and thus behaves exactly as in SDF. When an
edge XY is disabled, X fires but does not emit any token to Y (but emits tokens
on its enabled outgoing edges) and Y fires but does not read any token from X
(but reads tokens from all its enabled incoming edges). When an actor X is such
that all its edges are disabled, it still fires; such firings are referred as dummy.
However, a modifier of one or more Boolean parameters may still update their
value during a dummy firing.

A user of a Boolean parameter b is an actor with one of its edge labeled by a
Boolean expression that depends on b. Formally, the set of users of b is defined
as:

Users(b) = {X ∈ V | ∃Y ∈ V : b ∈ β(XY ) ∨ b ∈ β(Y X)}

Once a new value for b is produced, it is propagated to all users of b.

2 Obviously, an assignment does not necessarily change the value.
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A B C
b b ∧ b′

[b@2] [b′@3]

3 2 1 3

boolean expressionsmodifier of b period of b

Fig. 2. A simple BPDF graph.

Whenever it fires, a BPDF actor X performs the following steps:

1. Read the value of each Boolean parameter b for which X ∈ Users(b) (only at
its first firing in the iteration);

2. Consume tokens on the enabled incoming edges, which must have enough
tokens (otherwise the actor is blocked);

3. Compute its new internal state and outputs;
4. Produce tokens on the enabled outgoing edges;
5. If X is the modifier of a Boolean parameter b and the current firing corre-

sponds to its period (πw(b)), then the value of b is propagated to all its users
(Users(b)). In this paper, πw(b) is restricted to be equal to #M(b) so such
propagations take place only during the last firing of each modifier in the
iteration.

In constrast, an SDF actor only performs steps 2, 3, and 4, and of course all
its edges are always enabled.

Consistency analysis in BPDF requires to check, as in SDF, rate consistency.
We ignore the Boolean expressions and solve the system of balance equations to
check that there exists a non-null solution. In general, a second condition called
period safety, should be checked (see [2]). However, in this paper, since Booleans
parameters are changed at most once by iteration the second condition is trivially
true. Liveness has also to be checked using a refinement of the algorithm used
in SDF (see [2]). It is easy to check that the BPDF graph of Fig. 2 is consistent,
live, and that its iteration is (A2, B3, C).

In general, integer parameters prevent the generation of static schedules for
BPDF graphs [1]. In the context of this paper, we do not consider integer param-
eters and we are able to generate static schedules. For instance, the only FSAS
of the BPDF graph of Fig. 2 is {A2;B3;C}. Note that A and B are the modifiers
of b and b′ respectively, whereas A is a user of b, and B and C are users of b
and b′. Therefore, the first firing of A reads the value of b produced in the previ-
ous iteration, whereas the second (and last) firing produces the value of b that
will be used in the next iteration. Similarly, the first firing of B reads the values
of b and b′ produced in the previous iteration, while the third (and last) firing
of B produces the value of b′ that will be read in the next iteration. Finally, the
first (and only) firing of C reads the values of b and b′ produced in the previous
iteration.
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3 From Lossy SDF to BPDF

We call lossy SDF the SDF model enriched with the information on whether
edges are lossy or not. Informally a lossy SDF graph should behave exactly
as if all its channels were non lossy. Its high-level semantics is therefore given
by the SDF semantics. One assumption needs to be formulated though: on each
lossy channel, tokens are eventually transmitted correctly. If this cannot be guar-
anteed, a maximum number of retransmissions can be specified for each lossy
channel, with a default token value (and, in that case, the semantics departs
from SDF’s).

We show in this section how a lossy SDF graph can be translated automati-
cally into a BPDF graph with an equivalent semantics.

The intuitive semantics of lossy SDF can be implemented based on selective
retransmissions. Consider the same simple dataflow graph as in the introduction

X →Y �Z →T

where� denotes a lossy channel. We saw that the standard dataflow execution
does not suit potential re-executions. Our solution is to divide the execution of
this graph in three phases: first the X-Y part where X fires and Y only reads
(called the upstream phase), then the Y -Z part where Y only writes and Z only
reads (called the lossy phase), and finally the Z-T part where Z only writes
and T fires (called the downstream phase). This division allows re-executions
of Y -Z until the token sent by Y is correctly received by Z. Of course when
there are multiple lossy channels or cycles in the graph, many phases should be
considered and combined. We present how to implement such phases in BPDF
using Boolean conditions to enable/disable individual edges.

3.1 Translation of a Simple SDF Graph with One Lossy Channel

Consider the SDF graph of Fig. 3, where the edge BC is lossy, indicated by a curly
arrow. Its iteration is (A2, B3, C3,D3) and its only FSAS is {A2;B3;C3;D3}.

A B C D
3 2 1 1 1 1

Fig. 3. A simple SDF graph with one lossy channel BC.

To account for the lossy channel BC, this graph is executed into three con-
secutive phases:

1. Upstream phase: First {A2;B3} where B reads the tokens produced by A
but does not send any token to C;

2. Lossy phase: Then {B3;C3} which may be repeated until all tokens sent by
B are correctly received by C; in this phase, B does not read any token on
channel AB;

3. Downstream phase: Finally {C3;D3} where C does not read tokens from
the edge BC and sends the tokens to D.
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The BPDF graph implementing these three phases is shown in Fig. 4. Its
FSAS is {A2;B3;C3;D3}. The first phase is when b = tt ∧ b′ = tt . The Boolean
expressions of both edges BC and CD evaluate to ff . The actor B fires three
times and reads its incoming tokens from A but does not send any. Since both
C and D are disconnected their three firings are dummy. The second phase
corresponds to b = ff ∧ b′ = tt . Now the firings of A and D are dummy, B does
not read any tokens from A, and C does not write any token to D. The only
exchange of tokens takes place between B and C. This phase can be repeated
as long as b = ff ∧ b′ = tt . The third phase is when b = ff ∧ b′ = ff , yielding
the iteration {A2;B3;C3;D3} where the firings of A and B are dummy firings,
and the only exchange of tokens takes place between C and D. This three phase
cycle can now be repeated by returning to b = tt ∧ b′ = tt .

A B C D
3 2 1 1 1 1

[b@3] [b′@3]
b ∧ b′ b ∧ b′ b ∧ b′

Fig. 4. The translation into BPDF of the graph of Fig. 3.

The Boolean parameter b could be set by any actor in the graph. Here we
have chosen B to set b, thereby controlling the end of the first phase which
always occurs after one iteration. In contrast, the Boolean parameter b′ must
mandatorily be set by actor C, because C is the only actor capable of asserting
when the tokens produced by B have been received correctly. We assume that
the communication system layer provides information about token corruption
and/or loss. This can be performed by using error-detecting codes and/or time
out mechanisms. For instance, one of the Automatic Repeat-Request (ARQ)
protocols, e.g., Stop-and-Wait ARQ, Go-Back-N ARQ, or Selective Repeat ARQ,
can be used [10]. In general, the SDF graph will include several lossy channels,
yielding more than three phases and requiring more Boolean parameters, as we
see in the next section.

3.2 General Translation Algorithm

In this section, we propose a general translation from a lossy SDF graph into
an equivalent BPDF graph. By “equivalent”, we mean that the semantics of the
resulting BPDF graph must coincide with the semantics of the original lossy
SDF graph.

Let G = 〈V, E , ι, ρ〉 be the initial SDF graph and let L ⊆ E be the subset
of lossy channels. We assume that G admits a sequential FSAS denoted by SG.
The translation from G into a semantically equivalent BPDF graph proceeds as
follows:

1. We number the actors from 1 to n (n = |V |) according to their order of
appearance in SG. They are now uniquely identified as V1, V2, . . .Vn.
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2. SG also induces a total order on the edges of E . An edge AB occurs before
another XY , if A occurs before X in the FSAS SG and AB occurs before AC
if B occurs before C in SG. Formally,

∀(ViVj), (VkV�) ∈ E , (ViVj) < (VkV�) ⇔ (i < k) ∨ (i = k ∧ j < �)

We number all edges from 1 to p (p = |E|) which are now uniquely identified
as E1, E2, . . . , Ep.

3. The total order on V can be projected onto L, yielding a total order on L, so
we can number lossy channels from 1 to |L| = q. All lossy channels in L are
now uniquely identified as L1, L2, . . .Lq. Moreover, for each j ∈ [1, q], there
exists a unique i ∈ [1, p] such that Lj = Ei. We denote this index i = ϕ(j).

4. Then, G is translated into the BPDF graph G′ = 〈V, E , ι, ρ, Pb, β,M, πw〉 such
that:
– Actors V, edges E , production/consumption rates ρ, and number of initial

tokens ι remain the same as in G.
– For each lossy channel Li, we introduce two Boolean parameters bi and

b′
i. The resulting set of Boolean parameters is defined as: Pb = {bi, b

′
i|1 ≤

i ≤ q}.
– For all 1 ≤ i ≤ p, we set β(Ei) = bc1 ∧ bc2 ∧ bc3 with:

• bc1 accounts for all lossy channels that are after Ei in SG: bc1 =∧q
j=u(bj ∧ b′

j) with u = min{j ∈ [1, q] |ϕ(j) > i}.
• bc2 accounts for the fact that Ei may be itself a lossy channel: if

∃j ∈ [1, q] such that Ei = Lj , then bc2 = bj ∧ b′
j else bc2 = tt .

• bc3 accounts for all lossy channels that are before Ei in SG: bc3 =∧�
j=1(bj ∧ b′

j) with � = max{j ∈ [1, q] |ϕ(j) < i}.
– For all 1 ≤ i ≤ q and Li = SiRi, we set M(bi) = Si and M(b′

i) = Ri with
πw(bi) = #M(bi) and πw(b′

i) = #M(b′
i).

The BPDF actors connected by a lossy channel S �R must also be instru-
mented. The receiver R needs to detect when the received tokens are correct so
that it can change the phase by propagating a new Boolean value. As already
mentioned, we assume that the communication system marks tokens as correct
or incorrect. The sender S needs to keep a copy of its transferred tokens in order
to resend them when necessary. It knows not to resend tokens when the phase
changes.

3.3 Sequencing the Phases

The BPDF graph of Fig. 4 runs according to three phases. These three phases
are summarized in the following table on the left (dummy firings are omitted):

Phase Partial schedule b1 b′
1

1 (upstream) {A2;B3} tt tt
2 (lossy) {B3;C3}∗ ff tt
3 (downstream) {C3;D3} ff ff

tt ∧ tt

ff ∧ tt

ff ∧ ff

b1 = ff;

b′
1 = ff;

b1 = tt;

b′
1 = tt;
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On the right we have shown the labeled transition system (LTS) of the three
phases. We adopt the convention that all the Boolean parameters are initially
equal to tt , so its initial state is phase 1, corresponding to tt ∧ tt . To implement
these three phases, the modifiers of the two Boolean parameters must implement
the following pseudo-code:

Actor B Actor C

if (phase==1) then b1=ff; if (phase==2) then b′
1=ff;

if (phase==3) then b1=tt; if (phase==3) then b′
1=tt;

Note that an actor can easily determine the current phase by looking at the
current values of the Boolean parameters.

We now address the general case. A BPDF graph with q lossy channels has
at most 2q+1 phases, because we totally order the edges according to its FSAS.
We have chosen to implement these 2q + 1 phases with 2q Boolean parameters
(the bis and b′

is), although one may think that log2(2q+1)� Booleans would be
enough. Yet, there is a restriction that, for each lossy channel Li = SiRi, only
Ri can control the end of the lossy phase of Li, because only Ri can tell whether
or not the tokens sent by Si have been received correctly. It follows that at least
q Boolean parameters are required for this, one for each lossy channel (the b′

is).
Yet, the remaining q Booleans could be optimized (the bis). This could be the
topic of future work.

The sequencing of the phases for a general graph can be represented by a
similar LTS as the one shown above for the graph of Fig. 4. To implement such an
LTS, we must provide the pseudo-code for each actor that modifies one (or more)
Boolean parameter(s). For each lossy channel Li = SiRi, recall that we have two
Boolean parameters, bi and b′

i, respectively modified by Si and Ri, such that Si

controls the switching from phase 2i − 1 to 2i while Ri controls the switching
from phase 2i to 2i + 1. After the last phase, each modifier must also reset its
Boolean parameters to tt to return to the initial phase. As a consequence, Si

and Ri must implement the following pseudo-code:

Si Ri

if (phase==2*i-1) then bi=ff; if (phase==2*i) then b′
i=ff;

if (phase==last) then bi=tt; if (phase==last) then b′
i=tt;

As we have said, the maximum number of phases with q lossy channels is
2q+1. Yet, there are several cases when this number can be reduced. For instance
when there are two lossy channels in sequence, say XY and Y Z, then Y will
update both the Boolean b′

i corresponding to XY and the Boolean bi+1 corre-
sponding to Y Z. As a consequence, there is one phase less because two Booleans
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are set to ff at the same firing of Y . Another typical case is when there is a
fork of two lossy channels, say XY and XZ. As in the previous case, X sets two
Booleans to ff during its firing, so there is one less phase. It follows that the
precise number of phases must be computed prior to obtain the value of last
used in the above table.

Finally, a particular case occurs when the first lossy channel L1 is also the
first edge E1. In this case, there is no real first phase, because when all the
Boolean parameters are equal to tt and all the edges of the BPDF graph are
disabled, so each actor performs a dummy firing. A similar case occurs when the
last lossy channel Lq is also the last edge Ep. In this case there is no real last
phase since all the actors perform only a dummy firing. Of course, these special
situations could be optimized out.

3.4 Cyclic Graphs

Cyclic lossy SDF graphs pose a problem because the backward edges appear
both in the upstream phases so that the destination actor can consume the initial
tokens, and in the downstream phase so that the source actors can produce the
initial tokens for the next iteration of the graph.

Recall that we have assumed that each cycle contains at least one saturated
edge (see Sect. 2.1).

A B C D E
1 1 1 1 1 1 1 1

11

Fig. 5. An SDF graph with a cycle and a lossy channel.

Consider the example of Fig. 5. For the sake of simplicity, all the production
and consumption rates are equal to 1. Assuming the FSAS {A;B;C;D;E}, its
translation into BPDF is shown in Fig. 6.

A B C D E
1 1 1 1 1 1 1 1

11

[b@1] [b′@1]
b ∧ b′ b ∧ b′ b ∧ b′ b ∧ b′

b ∧ b′

Fig. 6. The BPDF graph obtained by translating the SDF graph of Fig. 5.

As we can see, the backward edge DB (which is saturated thanks to the
initial token) belongs only to the downstream phase, hence it is not executed
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during the upstream phase. It follows that, when B fires during the upstream
phase, it cannot read any initial token from the backward edge DB because this
edge is disabled. To solve this issue, we consider that all initial tokens are in
fact stored directly in the internal memory of the destination actor of the edge
to which they belong. In the case of Fig. 6, this means that the initial token
of the backward edge DB is stored in the internal memory of actor B. As a
consequence, during the upstream phase, B reads the token sent by A and the
initial token stored in its internal memory, and sends a token to C. During the
lossy phase D reads the token sent by C until this token is correctly received.
Finally, during the downstream phase D sends a token to E and a token to B on
the backward edge, this last token being in fact directly written in the internal
memory of B.

4 Future Work

This work is still in progress and we present in this section a number of issues
that remain open.

Influence of the Chosen FSAS. The translation algorithm is based on an
arbitrary FSAS of the considered graph G. An interesting question is what is
the influence of this choice whenever G admits several FSASs.

Let us first remark that the choice of the FSAS can change the number
of phases. Consider for instance the SDF graph G of Fig. 7(a) with one lossy
channel, with its translation into BPDF G′ shown in Fig. 7(b).

A B C

D

1 1 1 1

1

1

(a)

A B C

D

1 1 1 1

1

1

[b@1] [b′@1]
b ∧ b′ b ∧ b′

?

(b)

Fig. 7. (a) A graph G that admits two FSASs. (b) Its translation G′.

The Boolean expression attached to BD is marked with a ‘?’ because it
depends on the FSAS of G. Indeed, G admits two FSASs: {A;B;C;D} and
{A;B;D;C}. With the first FSAS, BD belongs to the downstream phase,
thereby getting the Boolean expression b∧b′. With the second FSAS, BD belongs
to the upstream phase, thereby getting b ∧ b′. The second FSAS results in two
phases against three phases for the first FSAS. A follow up question is the impact
of the reduction of the number of phases. More generally, we should strive to
choose a FSAS that optimizes performance criteria.
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Parallel Schedules. Another topic of future work is how to consider parallel
schedules. So far, we start from a sequential FSAS to sequence the phases. This is
adequate when the SDF graph is sequential, but not when it is parallel. An idea
to preserve the parallelism in phases would be to identify, for each lossy channel
Lj , its upstream cone UC(Lj) and its downstream cone DC(Lj). Intuitively,
the upstream cone of XY is the set of all predecessor edges of X. This is a
classical graph traversal problem. Each edge Ei in the resulting BPDF graph
will therefore get the Boolean expression β(Ei) = bc1 ∧ bc2 ∧ bc3 where:

– bc1 accounts for all the lossy channels Lj such that Ei belongs to UC(Lj);
– bc2 accounts for the fact that Ei may be itself a lossy channel;
– bc3 accounts for all the lossy channels Lj such that Ei belongs to DC(Lj).

This would result in a BPDF graph with more parallelism than with the
algorithm proposed in Sect. 3.2, because the phases would not be totally ordered
as in Sect. 3.3. This would allow the generation of parallel code (for which there
is a huge literature, e.g., [7] to cite just one).

A related topic is to handle joins of lossy channels in parallel instead of
sequentially. Consider, for instance, a set of lossy channels {X1Y, . . . XnY }. The
phases of the lossy channels XiY can actually be run in parallel: Y would handle
all the Boolean parameters b′

i, setting them from tt to ff as soon as the tokens
from the corresponding actors Xi are received correctly, and moving to the next
phase only when the predicate

∧n
i=i b′

i becomes tt .

Optimization and Performance Evaluation. When the initial graph con-
tains q lossy channels, we use 2 ∗ q Boolean parameters to make up the phases
in the BPDF graph. As explained in Sect. 3.3, this could be optimized.

The general topic of the performance evaluation of the BPDF graphs raises
many issues because the number of token retransmissions necessary for each lossy
channel cannot be known in advance. Therefore, the exact worst case response
time cannot be computed. Instead, we may compute the expected worst case
response time, based on the probability distribution of the damaged/lost tokens
on each lossy channel.

5 Conclusion

Modeling lossy channels in a dataflow MoC is relevant for the future IoT appli-
cations where mobile devices communicate through wireless channels that are
subject to packet loss or damage. In order to model dataflow applications with
unreliable communications, we have presented a translation from an SDF graph
with lossy channels into the Boolean Parametric DataFlow (BPDF) MoC. This
translation isolates the necessary phases of execution of the graph to cope with
the retransmissions caused by lost or damaged tokens transmitted over the lossy
communication links, and to sequence correctly those phases.

There are a few dataflow MoCs that could express such phases. For instance,
we could adopt the Scenario Aware DataFlow MoC (SADF) [9] or its FSM
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extension [8]. However, this has the inconvenient that all phases must be made
explicit, resulting in a potential state space explosion if many lossy channels must
be modeled. For this reason, we have chosen BPDF [2,5], which uses Boolean
parameters to encode the phases and to keep them implicit.

A final issue is the interaction between actors and the system in charge
of detecting the lost and/or damaged tokens sent over the lossy channels. We
have assumed a communication system layer that implements the error-detecting
code (in charge of detecting damaged tokens), a timeout mechanism (in charge
of detecting lost tokens) and some ARQ protocol in charge of propagating the
Boolean parameters from their modifier to all their users. These hypotheses
should be validated by an actual implementation.
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Abstract. Model-based design methods have become common practice
for the design, analysis, and synthesis of embedded and cyber-physical
systems. Different models of computation are used (for example state-
based models, dataflow models, differential equations, hybrid-models).
In real-time and cyber-physical systems it is common to incorporate in
such models some representation of time, physical, logical or otherwise.
We are used to time progressing in forward direction. This assumption
is built into the very definition of many of our favorite models of compu-
tation. Execution times or delays are usually non-negative. Time stamps
usually increase monotonically. Tasks can depend on past activations of
other tasks, but not on future activations. Tasks are temporally causal.
In this paper we explore the possibilities and the potential benefits of
liberating our models from these assumptions, allowing time go back-
ward in our models. We will use the dataflow model of computation for
our exploration and show that there are potential benefits to negative
execution times, negative delays on channels, and non-monotone events
in event traces.

1 Introduction

This Festschrift marks an excellent opportunity to reflect on the passing of wall-
clock time and on the events that have happened, what happened before, what
came after and what are the causal and temporal relationships between those
events. We make model abstractions with which we describe, analyze, and sim-
ulate real-life systems or according to which we synthesize physical system real-
izations. The models serve as mathematical abstractions of real-world artifacts.
When we define such models we are inclined to incorporate properties that we
believe to be true in the physical world and to forbid behaviors that seem unnatu-
ral. We argue in this paper that such behaviors can sometimes be very convenient
assets in a model and may lead to cleaner and simpler models for relevant real-
world systems. We will discuss such models and their semantics and analysis in
the context of the timed data flow framework, the synchronous data flow (SDF)
model of [1], extended with time [2] and several forms of dynamic behavior [3–5].
For brevity, we refer to timed synchronous data flow as SDF in the remainder
c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 267–286, 2018.
https://doi.org/10.1007/978-3-319-95246-8_16
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of the paper. SDF has an intuitive graphical representation and is expressive
enough for the use case in this paper. We do not argue that the model is better
than other models. The concepts we discuss may also apply to other models of
computation.

Many different timed models of computation, such as timed SDF, time Petri
nets [6], and timed automata [7], describe activities with quantified durations.
Such durations are sometimes allowed to be zero, but not negative. Physical
activities are causal, effects cannot occur earlier than their causes. In Sect. 3 we
show that actors in SDF need not always represent physical activities and neg-
ative durations, and non-causal actors can be very convenient modeling assets.

Besides temporal dependencies, many models also capture ordering relations
between events. In SDF, executions of an actor have a logical order, and, sim-
ilarly, the data items communicated on channels have a fixed logical order; for
instance, for samples of a signal, the order in which they were sampled. Causal-
ity is often also assumed on the logical order of events. Events can depend on
logically earlier events, but not on future events. A bare channel in SDF denotes
a dependency on the same logical data item, while the addition of initial tokens
(also called delays) on the edges modifies the dependency to logically earlier
data items. There is no possibility in SDF to represent dependencies on logically
future data items. In pipelined systems, for instance, logically future events may
be processed temporally simultaneously, or even earlier, when they occur in
earlier pipeline stages. In Sect. 4 we show that it may be useful to have the
possibility in SDF to represent dependencies on logically future data items by
means of anti-tokens.

Many models that have both logical ordering and temporal ordering among
events do not allow for both orderings to be inconsistent. The operational seman-
tics of SDF [8] does not allow the temporal ordering of actor firings to deviate
from their logical order. This would not be compatible, for instance, with the
FIFO semantics usually given to the channels. In that case logically later tokens
will ‘overtake’ earlier tokens and the functionality of the application will be
broken. This struggle is observed in some of the more dynamic dataflow models,
such as CSDF [9], where actor execution times vary. We see such restrictions also
in other models [6,10], especially when they aim to address also the synthesis of
implementations, for instance Ptides [11]. In Sect. 5 we explore the possibilities
to allow non-monotone event orderings. We see that for timed dataflow mod-
els this allows us to strengthen their natural relation to classical linear systems
analysis techniques.

Models that violate such rudimentary causality assumptions seem unnatural
at first, to the extent that we feel the need to a priori exclude them, forbid the
user to even express them. We explore what happens if we resist those urges,
and find that it may turn out to be useful and beneficial, because they lead to
models that make accurate predictions about real-life systems.
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SW1

SW2

P&P

TRNREL

IT

(a) (b)

Fig. 1. A simple cyber-physical system (Color figure online)

2 Preliminaries

This section introduces preliminaries needed for the paper, in particular on the
use case, on the timed data flow model and its semantics, and on max-plus linear
systems.

2.1 A Cyber-Physical Use Case

As a use case we study the simple cyber-physical system shown in Fig. 1(a); a
small product assembly line inspired by the experimental setup in our lab [12],
shown in Fig. 1(b). From the top-left side in the diagram, different pieces enter
the system. We consider three different types of pieces: bottom pieces (shown
in gray), red top pieces (red) and black top pieces (black). Bottom pieces need
to be combined with a top piece in the assembly line. Bottom pieces will be
released (REL) into the machine and advance on a conveyor belt, passing the
turner (TRN) unchanged and move on to the switch (SW1) that pushes them
onto the indexing table (IT). On the indexing table, a bottom piece rotates once
clock-wise to the second position where the pick and place unit (P&P) assembles
it with a top part. Then the indexing table rotates again and a switch (SW2)
pushes the bottom piece onto the conveyor belt and the assembled product is
unloaded at the bottom left of the machine. Top pieces are released from the
same place (REL), but pass the switch SW1 to advance to the pick and place
unit that will assemble them with a bottom piece. Finally, we assume that black
tops will pass the turner untouched, but red tops need to be turned around by
the turner, which takes some additional amount of time.

Using the system, the following constraints need to be respected. The periph-
erals (REL, TRN, SW1, P&P, SW2) can only handle one piece at a time. (The con-
veyor belt can transport multiple pieces simultaneously.) Moreover, we assume
that the indexing table shall always fill all index slots with bottom pieces and
does not leave index positions open.
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2.2 Synchronous Data Flow

We use timed synchronous data flow (SDF) [1,2] as the model of computation
for this paper. Figure 2 shows an example of an SDF model. The details of the
particular model are discussed in the next section. The circles are actors. The
directed edges between actors are channels. From an operational point of view,
channels carry tokens from one actor to another in the direction of the edge and
the tokens represent the actor’s enabling conditions. Actors fire or execute only
when their firing conditions are met, i.e., when there is a token on each of its input
edges, for instance, each of the white actors in Fig. 2 are enabled. An actor firing
takes a fixed amount of time, after which it produces new tokens on its outgoing
edges, thus enabling new actors to fire. In this paper we consider SDF models
with open input and output edges, for instance, the red actor labeled Rel and
the blue actor labelled Load. Tokens on these edges are provided, respectively,
by or to the environment.

The SDF model has several very attractive properties. SDF models are deter-
ministic; their behavior is easy to analyze compared to non-deterministic mod-
els. Their behavior repeats in periodic patterns. They are also monotone. This
excludes timing anomalies and allows performance analysis based on worst-case
identification and SDF models with constant (hence deterministic) execution
times can serve as proven conservative abstractions of dataflow behavior with
non-deterministically varying execution times [10]. Stronger than being mono-
tonic, they are, in fact, linear systems, so they enjoy the nice properties of linear
systems, such as homogeneity and the superposition principle (discussed in the
next section).

We often think of actors from an operational point of view as producers and
consumers of tokens. We can similarly describe the dependency as an equation.
Let Rel [k] denote the start time of the k’th firing of actor REL and similarly
Belt1 [k] for actor Belt1, then the edge from actor REL to Belt1 represents the
following constraint.

Belt1 [k] ≥ Rel [k] + e(Rel) for all k ∈ N

where e(Rel) is the execution time of actor REL. In general we write e(A) to
denote the execution time of an actor A. Initial tokens on edges can be used
to create dependencies on earlier firings of some actor. For instance, an edge
from some actor A to an actor B with m initial tokens expresses the following
constraint.

B [k] ≥ A[k − m] + e(A) for all k ∈ N

with the convention that A[k − m] = 0 if k − m < 0. (Or similarly, sometimes,
as we will see, A[k − m] = −∞ if k − m < 0).

In general there can be many solutions to these equations that are all valid
executions. There is however a unique ‘fastest’ execution in which all actors
fire as soon as they are enabled. This execution is usually called a self-timed
execution.
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2.3 Max-Plus Linear Systems

An important property of timed data flow models is that they are linear sys-
tems, although not in the classical linear algebra, but in a linear algebra that is
called max-plus algebra [13]. It uses the set R of real numbers, extended with
the value −∞. It uses two operators ⊕ and ⊗ that take the roles of addition
and multiplication in traditional linear algebra, respectively, with the following
definitions.

x ⊕ y = max(x, y)
x ⊗ y = x + y

for the additional element −∞ the operators are, naturally, defined as follows.

−∞ ⊕ x = x ⊕ −∞ = x

−∞ ⊗ x = x ⊗ −∞ = −∞
Self-timed firing times of dataflow actors can be described in max-plus-linear

equations. The firing time is determined by the maximum (max-plus sum ⊕)
of all its dependencies and its completion time is computed from its firing time
by max-plus multiplication, ⊗ (addition) of its execution time. As such, timed
data flow models are max-plus-linear systems and enjoy many of the special
properties of regular linear systems, such as the aforementioned homogeneity
and superposition. Homogeneity means that if some input signal x leads to an
output signal y, then the same input multiplied by a scalar constant c, c ⊗ x
leads to an output that is also scaled with the same constant: c ⊗ y. Since the
⊗ operator is addition this means that if the input signal is delayed in time
then the output is delayed by the same amount of time. The second property is
superposition, which states that if input x1 gives output y1 and input x2 gives
output y2, then input x1 ⊕ x2 gives output y1 ⊕ y2. Recall that the operator ⊕
amounts to taking the maximal of the two signals. Note that superposition can
also be exploited to determine the response to multiple external input signals
individually. We will see in Sect. 5 how we can also use the classical concept of
impulse response for time-invariant systems.

3 Negative Execution Times

Actors in dataflow models traditionally, and generally often, represent operations
or computations, and the execution times of the actors typically represent the
time that these operations take, or upper bounds thereof. Hence, they are usually
assumed to be positive numbers. The same can be observed in other timed models
such as timed automata [7] or Time Petri Nets [6]. In more abstract models
actors can be used to represent different kinds of constraints on the occurrence
of events, for instance, a reconfiguration time or set up time. Those constraints
are still often positive. It may, however, be beneficial to not a priori, in the
definition of the model of computation, exclude the possibility of negative time
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Load
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Fig. 2. Dataflow model of a conveyor belt (Color figure online)

Fig. 3. Gantt chart of the conveyor belt model and a critical path (Color figure online)

constraints or actor firings with negative delays. We argue that these degrees of
freedom are very useful, and in fact even necessary, to make a faithful model of
the assembly line use case.

We first concentrate on modeling the initial part of the assembly line (Fig. 1),
up to switch SW1. We extend the scope of the model later. The SDF model of this
part is shown in Fig. 2. Most of the model is rather straightforward. We assume
that pieces arrive from the environment through the open input dependency to
the actor Rel, that models the release component. The release takes one time
unit, represented by the firing duration of the actor (we write the firing duration
inside the actor in the figures). After the release, the piece is transported by
the conveyor belt for two time units. This is represented by the yellow actor
Belt1. There is a dependency from Rel to Belt1 to model the transfer. Similarly,
it continues with the Turner, Belt2, and Load actors representing all the stages
that the piece passes. An interesting and challenging dependency that needs to
be modeled is the constraint to not release a new piece too soon so as to not
interfere with the operation of turner TRN on the previous piece. We can model
this, as usual, with a dependency from the turner operation represented by actor
Turner, to the release operation, actor Rel with a single initial token to indicate
that the dependency is to the previous piece. This would enforce the following
constraint.

Rel [k] ≥ Turner [k − 1] + e(Turner) for all k ∈ N

This is safe. The next piece is released only after the turner is done with the
previous piece. However, it is too pessimistic to release the new piece only when
the turner is ready (i.e., when the Turner actor produces a token) since the piece
will spend some time on the conveyor belt before it actually reaches the turner.
Once a piece is released onto the conveyor belt, it moves for two time units until
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reaching the turning actuator. The constraint on the starting of the release that
accurately captures the requirement is the following.

Rel [k] ≥ Turner [k − 1] + e(Turner) − e(Rel) − e(Belt1 ) for all k ∈ N

This equation can be realized by adding an extra actor with an execution
time totaling −e(Rel)−e(Belt1 ), which is −3, in between the actors. This is the
inserted white actor in Fig. 2. The two equations for the two edges we now have
are (with D[k] the firing times of the negative delay actor):

Rel [k] ≥ D [k] − 3
D [k] ≥ Turner [k − 1] + e(Turner)

Together they establish the required equation:

Rel [k] ≥ Turner [k − 1] + e(Turner) − 3

In exactly the same way, constraints are added to ensure that the turner does
not turn too early for the Load actor with a delay of −6 and that the Rel actor
is not too early for Load with a delay of −9. Leading to two additional feedback
paths. For usability it could be interesting to add syntax to directly express the
constraint between actors, eliminating an additional consistency check. However,
the solution with negative execution times requires fewer modification of the
model of computation.

The operational semantics of such an actor with a negative delay is non-
causal: it produces its output before consuming the input token that causes that
output. Luckily, we do not need to implement this actor. We observe only that it
accurately represents the desired constraint, and that, as we will see, (most of)
the existing analysis techniques still work and deliver results that are meaningful
for the physical system. The schedule we obtain is valid and optimal.

Figure 3 shows a Gantt chart of the execution of the model. The arrivals of
pieces as inputs to the model are shown by black dots in the first row. Products
3–5 arrive too quickly to be immediately released onto the conveyor belt as they
would collide in the turner. Including an actor with a delay of −3 between the
turner and the release holds off the release just enough for the piece to arrive
just in time at the turner. The red arrows show the critical path that determines
the start time of the release of the last product. It fires at time 19 although the
product was available from time 13. The critical dependency is on the firing of
Turner for the previous product, which completed at time 22. Then it follows the
dependencies from the self-loop of the Turner, and finally, the Belt1, Rel, and the
arrival of the second product.

The maximal throughput that the model can sustain is determined by its
critical cycle. One of the critical cycles in the model is the cycle through Release,
Belt1, Turner, and the −3-delay. This cycle has a cycle ratio (total execution
time by number of tokens) of 4, which is the maximum cycle ratio in the graph.
It limits the throughput to 1

4 , when the turner is continuously busy.



274 M. Geilen

A B

Fig. 4. A typical dataflow model of a bounded FIFO buffer

The classical performance analysis methods based on cycle-mean or cycle-
ratio analysis [2], or on max-plus spectral analysis [14] need no modifications to
incorporate negative execution times. Operational semantics based analysis [8]
would require some modifications, since a normal discrete-event simulation does
not handle non-causal behavior. Note that dependency related properties, such
as deadlock freedom or consistency are independent of actor execution times and
hence are not affected.

4 Anti-tokens

4.1 Motivation

Initial tokens in dataflow models can be used to shift dependencies between
actor firings. In particular, this is needed to model cyclic dependencies between
actors without creating deadlocks, for example, when a computation depends
on internal state left by the previous computation, or when computations on
previous data items need to complete to free up buffer space to write to. Figure 4,
for instance, shows a typical way to model a FIFO communication buffer of size
N . The two edges capture the two relevant constraints. The first, from A to B,
due to data dependence:

B [k] ≥ A[k] + e(A)

and the second, due to the buffer capacity constraint (to not overrun the buffer).

A[k] ≥ B [k − N ] + e(B)

Firings of actor A become dependent on firings of B on previous data items.
Sometimes systems exhibit constraints in which task executions for a given

data item k depend on the availability of future data items. An example is a data-
driven, asynchronous, pipelined data path in an FPGA accelerator as shown in
Fig. 5(a). In order for a data item k to progress through the data path, future
data items need to be ready to occupy the earlier pipeline stages. For actor D
these dependencies have the following form.

D [k] ≥ A[k + 1] + e(A) D [k] ≥ x [k + 2]
D [k] ≥ B [k + 1] + e(B) D [k] ≥ y [k + 2]

If having N initial tokens leads to a dependency of item k on item k − N ,
then perhaps this can be modeled by −1 or −2 initial tokens on such channels?
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(b) Dataflow model of a pipeline

Fig. 5. A pipeline structure and its dataflow model
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Fig. 6. Dataflow model of an indexing table

Fig. 7. Gantt chart of the indexing table model

Indeed, it can. We say that there are, respectively, one and two anti-tokens on
the channel. Converting the equations into a dataflow graph, we arrive at the
graph shown in Fig. 5(b). The anti-tokens in the model are depicted by the ‘×’
symbol. The small white actors have an execution time of 0, and are merely used
to copy the input tokens onto multiple edges, because edges can only connect
two actors in SDF. Negative token counts in dataflow graphs have been used
before, for instance, in [15,16] to create conservative abstractions of multi-rate
behavior or of out-of-order computation of data items, where the negative token
counts are arrived at from conservative equations. In work on retiming, negative
token counts also appear at intermediate stages as invalid retimings [17,18].

4.2 Modelling the Indexing Table

A situation similar to the pipeline occurs in the indexing table of the assembly
line of Fig. 1. We assume that all positions on the indexing table need to be
filled with bottom pieces. We make a simple model of a bottom piece passing
switch SW1, then passing two rotation operations (skipping the assembly at
the pick-and-place unit for the moment) and being unloaded from the indexing
table by switch SW2. The model is shown in Fig. 6. As we can see from the
model, there are a number of additional dependencies that need to be modeled.
(Note that some redundant dependencies have been removed from the model
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for clarity, such as self-edges on all the actors.) SW1 can only activate when
there is an input piece and the rotations of previous pieces have finished: the
first-stage rotation of the previous piece and the second stage rotation of the
piece before that one. The first-stage rotation requires the switch to be done
with loading the piece, but also needs the unloading of the before-previous piece
to be completed. (Note that it also needs the first-stage rotation of the previous
piece to be complete, but that dependency is redundant because the loading
of the pieces already depended on it.) The second stage rotation of the piece
depends on the completion of the unload of the previous piece. It additionally
depends on the loading of the next piece. The last one is a dependency we cannot
naturally model with a dataflow graph until we allow the use of anti-tokens. Note
how the model uses an anti-token on the edge from the loading to the second
rotation to express this dependency.

Figure 7 shows an example Gantt chart for the model in which we observe a
manifestation of this dependency. The fifth piece arrived at time 13, was loaded
at time 21, and started its first rotation on the table at time 23. After that
rotation (26), however, it had to wait in the indexing table, because the next
piece had not yet arrived. The next piece arrives only at time 28, after which it
is loaded, and only then the second rotation of piece five starts.

Such a forward dependency cannot be directly expressed without the use of
anti-tokens. By absence of anti-tokens, this problem is often circumvented by
modeling the system in an ongoing pipelined execution, i.e. starting with some
initial piece inside the indexing table, or with data in the pipeline for the pipeline
model. This is undesirable, however, since the first output no longer corresponds
to the first input of the system, but to some ‘dummy’ data that needs to be
disregarded. We can indeed get rid of the anti-token in the model by firing actor
Load, or both Load and Rot1. This is usually called retiming of the model [17,18].
However, then there is a piece in the model initially, and the first piece to leave
the table is not the first piece that enters the model.

The operational semantics of a dataflow model with anti-tokens is similar
to the original operational semantics. Actors fire when the firing condition is
met (with regular tokens). Tokens and anti-tokens annihilate each other when
they meet, i.e., when an actor produces tokens onto a channel that contains
anti-tokens. One may assume that anti-tokens do not move and channels cannot
contain both tokens and anti-tokens.

Analysis of data flow graphs with anti-tokens is not substantially different
from the analysis of traditional graphs. Deadlock or liveness [19,20] analysis
on single-rate graphs, for instance, is done by checking for cycles in the graph
without tokens. Now we need to check that the net number of tokens minus the
number of anti-tokens is positive1.

1 Interestingly, if there are only cycles with negative token counts the equations also
permit a solution in which all actors fire in reverse logical order, but the operational
semantics does not allow such behavior to get started.
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Proposition 1. A single rate dataflow graph with anti-tokens is live if and only
if on every cycle the total number of tokens minus the total number of anti-tokens
is positive.

Proof. The proof is similar to the classical case [19,21]. We first observe that
the token count of all cycles remain invariant when actors fire. If there is a cycle
with a non-positive net token count, then the graph is not live, because in an
infinite execution in which all actors on the cycle fire infinitely often the tokens
meet the anti-tokens, and since there are at least as many anti-tokens as tokens,
all tokens will disappear from the cycle and the actors on the cycle can no longer
fire. Conversely, if the graph is not live, then a state can be reached in which a
set of actors are in a cyclic dependency, i.e., none of the edges on the cycle have
any tokens. Hence, the cycle token count cannot be positive to start with.

For multi-rate dataflow graphs the PASS analysis of [2,21] can be used to
establish deadlock freedom or liveness. Consistency analysis does not consider
any initial tokens, and, consequently, it does not change for graphs with anti-
tokens. Another common analysis is throughput analysis. We have argued in
Sect. 3 that negative execution times do not pose a particular problem for the
cycle ratio approach to throughput analysis. Also, anti-tokens do not pose any
problem.

Proposition 2. Any live SDF graph with anti-tokens can be converted to a
graph without anti-tokens, with the same throughput through retiming.

Proof. Since the graph is live, we can fire any actor an arbitrary number of
times. For every edge with n anti-tokens, after firing the actor that produces
onto that edge at lease n times, all anti-tokens have disappeared. If this is done
for all edges with anti-tokens, the resulting graph is a graph free of anti-tokens,
obtained from the original graph through retiming.

Proposition 3. Maximal throughput for single rate SDF graphs with negative
execution times and anti-tokens, is the reciprocal of the Maximum Cycle Ratio
of the graph considering the ratio of execution time over number of tokens.

Proof. Since cycle ratios are invariant under retiming, we can use retiming to
obtain a graph without anti-tokens and identical cycle ratios to the original
graph. The throughput computation can be reduced to cycle time computation
of a max-plus matrix [13,14]. The cycle time computation applies equally to
matrices with negative elements.

We have shown that the existing analysis algorithms for single rate dataflow
graphs are straightforwardly adapted for negative execution times and anti-
tokens. Analysis algorithms for multi-rate graphs are mostly (either implicitly
or explicitly) based on a transformation into an equivalent single-rate graph.
Because of this also multi-rate graph with negative execution times and anti-
tokens can mostly be analyzed with the traditional methods.



278 M. Geilen

IT
Rot1

3

P&P
Assemb

4

IT
Rot2

3

SW2
Unload

1

SW1
Load

2

Belt3
Top

5

SW1
Pass

1

Turner
Pass

1

Belt1
Bo�om

2

Turner
Turn

4

Belt1
Top

2

Belt2
Bo�om

2

Belt2
Top

2

Rel
Bo�om

1

Rel
Top

1

-3

-3 -6

-3

-9

-6

Fig. 8. Dataflow model of a static assembly line (Color figure online)

Fig. 9. Gantt chart of the assembly line model (Color figure online)

4.3 A Complete Model: Static Assembly Line

We can integrate the partial models discussed before into a complete model of the
assembly line, shown in Fig. 8. It alternatingly handles red top pieces and bottom
pieces to assemble them. It is straightforwardly constructed from the conceptual
solutions discussed separately before. Note that it includes both anti-tokens and
actors with negative execution times. The Gantt chart of its operation is shown
in Fig. 9. The darker shaded bars of the same color represent operations on the
red top pieces. The lighter shaded ones on the bottom pieces. The operation
starts upon the arrival of the first top piece at time 2. Initially the turner is
fully loaded, but eventually the critical cycle of the alternation of pick and place
assembly and rotation of the indexing table slows the process done. We can see
that the releases of the parts are adjusted accordingly: not immediately when
the piece arrives, but as early as possible not causing any conflicts.

4.4 A Dynamic Assembly Line

In this section we complete our model of the assembly line as a dynamic dataflow
model. We relax the static order of top and bottom pieces. We could further
imagine that besides the red top pieces also black top pieces may arrive that do
not need to be turned around. Such a non-deterministic sequence of operations
can be modeled with a dynamic timed dataflow model such as the scenario-aware
dataflow (SADF) model of computation [5,22] or mode-controlled dataflow [23].

SADF models pieces of dataflow behavior that can occur in non-deterministic
orders by separate dataflow graphs. These pieces of dataflow behavior are called
scenarios. The internal behavior of scenarios is still entirely deterministic and
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follows familiar dataflow semantics. Dependencies between subsequent scenar-
ios are expressed through dataflow tokens that are produced in one scenario
and consumed in another scenario. The possible orders in which scenarios can
occur are separately specified with a finite state machine. The separation in
non-deterministic sequences of deterministic scenarios makes that the model
can be analyzed efficiently compared to entirely non-deterministic models such
as timed automata that will suffer more from the state-space explosion effect.
The pieces of dataflow behavior of subsequent scenarios can be active concur-
rently, typically in a pipelined way. With the generalization to anti-tokens in this
paper, dependencies can be specified even from future scenarios to past scenar-
ios. Where traditional dataflow models are linear systems in max-plus algebra,
SADF graphs are comparable to switched linear systems in traditional system
theory.

The SADF model of the dynamic assembly line is shown in Fig. 10. It has
three different scenarios, the bottom scenario (Bot, Fig. 10(a)), which represents
the bottom part being assembled into a complete product; the red top scenario
(Red, Fig. 10(b)), describing the red top part progressing up to the assembly,
and the black top scenario (Blck, Fig. 10(c)), which is the same as the red top
scenario except it describes the trajectory of black pieces.

In each scenario dataflow graph, the horizontal pipelines follow the main flow
of the product. The vertical edges represent the various dependencies that gov-
ern the execution of the scenario. The dependencies relate the execution of the

Table 1. Scenario dependencies

Input dependencies

Nr. From To Dist. Prod. scen Cons. scen

i TRN REL 1 {Bot,Red,Blck} {Bot,Red,Blck}
ii SW1 REL 1 {Bot,Red,Blck} {Bot,Red,Blck}

SW1 TRN 1 {Bot,Red,Blck} {Bot,Red,Blck}
iii SW1 IT −1 {Bot} {Bot}
iv IT SW1 1 {Bot} {Bot}
v P&P IT 1 {Bot} {Bot}
vi IT P&P 1 {Bot} {Bot}

IT SW1 2 {Bot} {Bot}
vii SW2 IT 1 {Bot} {Bot}

SW2 IT 2 {Bot} {Bot}
viii Belt3 P&P 0 {Red,Blck} {Bot}
ix REL REL 1 {Bot,Red,Blck} {Bot,Red,Blck}
x TRN TRN 1 {Bot,Red,Blck} {Bot,Red,Blck}
xi SW1 SW1 1 {Bot,Red,Blck} {Bot,Red,Blck}
xii SW2 SW2 1 {Bot,Red,Blck} {Bot,Red,Blck}
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scenario to previous or future scenarios. The dependencies have been labelled
i–viii. Dependency i, for instance, represents the dependency from the turner to
the release, as discussed in Sect. 3. Table 1 summarizes all dependencies, the sce-
narios that produce the tokens, the scenarios that consume the tokens, and the
dependency distance (the number of initial tokens). There are four dependencies
(ix–xii) that are not visualized in Fig. 10 for clarity. They are dependencies on
single actors (REL, TRN, SW1 and SW2) to prevent them from firing multiple
times simultaneously (autoconcurrency). The possible scenario sequences are
specified by the automaton in Fig. 10(d). It defines a non-deterministic alter-
nation between bottom pieces and arbitrary top pieces. The model works for
arbitrary sequences, although some (for instance three bottom pieces in a row)
will deadlock.

Note the anti-token on the dependency iii from SW1 to IT among Bot scenar-
ios. SW1 consumes the token that is produced in the Bot scenario that follows
it. As in the static model, this dependency on future scenarios does not lead to
a deadlock. We have seen earlier that we can get rid of anti-tokens by retiming.
A similar approach can be applied here to arrive at a model in which depen-
dencies only exist from past to future scenarios. To achieve this we need to
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Fig. 10. Scenario-aware data flow model of a dynamic assembly line (Color figure
online)



If We Could Go Back in Time. . . 281

Fig. 11. Gantt chart of the SADF model of the dynamic assembly line (Color figure
online)

split the scenario Bot into the two parts enclosed by dashed boxes in Fig. 10(a),
Bota and Botb. Then a retiming of the model is possible, leading to the sce-
nario FSM shown in Fig. 10(e). The second execution of the Bota scenario is
now executed before the first execution of the Botb scenario and therefore the
producing scenario comes before the consuming scenario, and the model does
not need anti-tokens.

Figure 11 shows a Gantt chart of one particular scenario sequence of the
model (Bot,Red,Bot,Blck,Bot,Red,Bot,Blck). Different shades are used to dis-
tinguish firings of the same actor in different scenarios. Darker shades are again
the top pieces and the darkest shade represents the black top pieces.

Similar to the static dataflow case, the classical throughput analysis tech-
nique [14] handles negative execution times without modification. With such
a model we can, for instance, find the most productive sequence of operations
that produces equal amounts of red and black products [24] via a combination of
model-checking and performance analysis that avoids the state-space explosion
one would suffer with, for instance, analyses based on timed automata.

5 Non-monotone Event Sequences

The input pieces to the assembly model arrive at certain moments in time. The
actors in the model fire at specific points in time that satisfy all the timing con-
straints, and the tokens exchanged between actors are produced and consumed
at certain points in time. In dataflow, and in many other models, such sequences
of events are modeled as a sequence of timestamps or dater functions [10,11,25].
Many of these models implicitly or explicitly adopt the requirement that the
ordering of events is identical to, or for partial orders, consistent with, the order-
ing of the timestamps. Sometimes, ‘exotic’ time domains, such as super-dense
time are used [26,27] for this purpose. We usually do this because it seems nat-
ural, but we will discuss the possible benefits of resisting this constraint and we
will see that there are important advantages to this.

One of the most widely used models for sequences of events is the tagged
signal model [25]. It represents signals as a mapping from some time or other
(possibly partially) ordered domain of choice to the co-domain of signal values.
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Fig. 12. Impulse response of the static assembly line model

In that model, events have no other ordering than inherited from the tags. We
can think of our event sequences as having a logical ordering that is separate from
the ordering derived from the timestamps. [15] introduces a model where events
are explicitly labeled with both a logically and a temporally ordered tag in order
to apply the abstraction-refinement theory of [10] to realizations that compute
tokens out of logical order. The logical order could also have been obtained from
the ordering of events in the event sequence without an additional tag.

Ptides [11] considers synthesis of systems from timed models in which events
are also labelled with time stamps. Temporal causality information is exploited
for distributed execution without synchronization through empty messages. The
execution strategy allows independent events to be processed out of timestamp
order, although actors must process their own event in timestamp order.

5.1 Impulse Response Analysis

Linear time-invariant (LTI) systems are fully characterized by their impulse
responses. This principle also applies to dataflow models. For max-plus linear
systems, the impulse function δ takes the value −∞ for all k, except δ[0] = 0
(−∞ and 0 being, respectively, the zero and unit element of the algebra). The
response of the system to an impulse input signal exposes all dependencies on
that particular, single, input token δ[0], since all other tokens (before, but also
after) are available since time −∞. Figure 12 shows the impulse response hbot

of the static assembly line of Fig. 8 to a bottom input. Only one input is visi-
ble. All other inputs occur at time −∞. Looking at the output event sequence,
we have the sequence hbot = [. . . ,−∞, 12, 19, 26, 33, . . .]. Note that the impulse
response is not logically causal, hbot [−1] = 12 already depends on input 0 (but it
is temporally causal; an input at time 0 leads to an output 12 time units later).

As in traditional LTI systems, any input event sequence can be described
as a linear combination of scaled and shifted impulse functions. We then know
that the output of the system is the same linear combination of shifted impulse
response functions and can be computed from a convolution of the input event
sequence and the system’s impulse response. Moreover, when there are two
inputs, we know from the superposition principle that the response is the (max-
plus) sum of the responses to the separate input sequences. Without further
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analysis or simulation, we directly conclude that if the impulse responses for
tops and bottoms are htop [k] and hbot [k], respectively, (they can be determined
independently from the input sequence and independently from each other), and
t[k] and b[k] are the arrival sequences of the tops and bottoms, then the outputs
will be produced at the times given by the function

o = (t ⊗ htop) ⊕ (b ⊗ hbot)

Note that single-rate dataflow systems (like the example in this paper) are time-
invariant systems. Multi-rate dataflow models may not be time-invariant, but
their responses are periodic with an iteration of the graph and similar techniques
can be applied.

The impulse response analysis focuses on the arrival times of tokens and
assumes infinite sequences of tokens, both into the future and into the past. If
we consider finite sequences, we additionally need to consider how many output
tokens can be produced from the provided inputs. We have already seen that
output tokens depend on the current and all previous bottom inputs, but also
on one future bottom input. Therefore, when m bottom pieces are offered at the
input, at most m − 1 outputs can be produced. This can be observed from the
dataflow graph in Fig. 8 by a path from the bottoms input to the output with a
single anti-token on it. The same holds for the tops input.

5.2 Generalizing Dataflow Semantics

A second reason to embrace the non-monotonic event sequences is that it can
solve or circumvent some of the recurring difficulties in the semantics of dataflow
models with autoconcurrency (the ability of actors to fire multiple times con-
currently), especially in combination with varying execution times, such as in
CSDF, or in an interpretation of timed SDF with non-deterministic execution
times. In essence the problem is the following. It is possible for two concurrent
firings of the same actor that the firing that started last will complete first. Com-
munication between actors is traditionally modeled as a FIFO channel. If this
situation happens, then one data item has ‘overtaken’ another data item, the
logical ordering has changed, and the functional correctness of the application
may be compromised.

Various measures are taken in different dataflow models to escape from this
problem. CSDF, for instance, forbids autoconcurrency of its actors altogether [9].
Other models restrict the possible behaviors to those in which no overtaking
occurs [28], assume that execution times are constant, as most works do, or add
indices to firings [15]. All such problems disappear from the semantics when
we decouple the logical ordering of tokens (the order in which they appear in
the event sequence) from the ordering in time in which they are produced or
consumed. Functional correctness is guaranteed as long as the logical ordering is
preserved by the semantics. Also the implementation then needs to support out-
of-order production and consumption. A very common implementation of FIFO
communication through a cyclic buffer is compatible with this generalization if



284 M. Geilen

it allows random access to the reading and writing intervals [29]. If adaptation
is not possible or too expensive, additional constraints can be introduced that
guarantee in-order production and consumption, although this may come at a
cost of performance.

6 Conclusion

We have seen that it may be worthwhile to extend the dataflow model of com-
putation and its semantic framework with some constructs that initially seem
unnatural and therefore useless and undesirable, but that upon closer inspec-
tion can be very useful, enable more elegant models and allow the application
of linear system theory. Moreover, the additions do not significantly complicate
the prevalent semantics and analysis techniques. There may be some implemen-
tation challenges however, in particular, to maintain a correct logical ordering
of data when executions are out of order, for instance, in the realization of
data dependencies between actors. The use of anti-tokens may require additional
administration of validity of data.
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Abstract. We overview the main results in Compressed Sensing and
Social Networks, and discuss the impact they have on Cyber Physical
Social Systems (CPSS), which are currently emerging on top of the Inter-
net of Things. Moreover, inspired by randomized Gossip Protocols, we
introduce TopGossip, a new compressed-sensing algorithm for the pre-
diction of the top-k most influential nodes in a social network. TopGos-
sip is able to make this prediction by sampling only a relatively small
portion of the social network, and without having any prior knowledge
of the network structure itself, except for its set of nodes. Our experi-
mental results on three well-known benchmarks, Facebook, Twitter, and
Barabási, demonstrate both the efficiency and the accuracy of the Top-
Gossip algorithm.

1 Introduction

Looking back at the time Bill Gates was one of his brilliant students, Christos
Papadimitriou concluded that one of the greatest challenges of the academic
community is to recognizing when an IT revolution is on its way. He did not
see the PC revolution coming, but his student did. Since then several other
revolutions happened, such as the Internet and the Mobiles revolutions. Another
imminent revolution is now in the making: The CPSS/IoT revolution.

The worldwide academic institutions have a responsibility to ask the following
important questions: Are we prepared for the CPSS/IoT revolution? Do we have
the proper modeling, analysis, and control techniques? Do we have adequate
infrastructure, software tools, and courses? The answer is unfortunately “No,
and we have to act now.” Two of the initiatives in this direction are the Terra
Swarm Research Center at UC Berkeley, and the CPSS/IoT Ecosystem Project
at TU Wien.

Cyber Physical Social Systems (CPSS) are spatially-distributed, time-
sensitive multi-scale, networked embedded systems, connecting the physical
world to the cyber and social worlds through sensors and actuators. The Inter-
net of Things (IoT) is the backbone of CPSS. It connects the (terra) swarm of
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Sensors and Actuators to the nearby Gateways through various protocols, and
the Gateways to the Fog and the Cloud. The Swarm resembles the billions of
human skin and muscle cells, providing real-time information about the physical
environment and acting upon it. The Fog resembles the human spine, providing
fast and adequate response to imminent situations. The Cloud resembles the
human brain, providing large storage and analytic/decision capabilities.

CPS research is strongly anchored within the academia. There are many
important CPS conferences around the world, with CPS Week as their flagship.
Social networks (SN) are a relatively new field, and CPSS is currently emerging.
IoT however, went pretty much under the radar of academia. This was not the
case in industry. With a $15 trillion business forecast for the next 20 years, 50
billion devices connected by 2020, and 50 terabytes of data per day from the
avionics industry alone, all big IT and industrial players are dedicating immense
resources to IoT. It is more than telling that the IoT World Congress in 2016,
had talks by CEOs, but almost no talk of any academic researcher. This is now
changing. For example, CPS Week 2017 included an IoT conference, too.

What drives this excitement and sense of urgency within the industry? Four
pillars: connectivity, monitoring, prediction, and optimization. Connectivity has
already been enabled by the technological developments over the past years.
The next step, which is expected to radically change every aspect of our society,
is monitoring, prediction, and optimization. The huge number of sensors to be
deployed in areas such as manufacturing, transportation, energy and utilities,
buildings and urban planning, health care, environment, or jointly in smart cities,
will allow the collection of terabytes of information (Big-Data), which can be
processed for predictive purposes. Moreover, the huge number of actuators will
enable the optimal control of these areas and drive market advantages.

For example, the predictive maintenance of assets is expected to save up to
12% in scheduled repairs, reducing maintenance costs up to 30%, and eliminating
breakdowns up to 70%, according to a GE survey [1]. According to the same
survey, 73% of companies are already investing more than 20% of their overall
technology budget in big-data analytics, and more than two in 10 are investing
more than 30%. Moreover, three-fourths of executives expect that spending level
to increase just in the next year. Across the industries surveyed, 80% to 90%
of companies indicated that big-data analytics is either the top priority for the
company or in the top three. A staggering 89% say that companies not adopting
big-data analytics in the next year risk losing market share and momentum.

While the industrial excitement is a very important technological driver for
the development of CPSS/IoT, it is important to mention that monitoring, pre-
diction, and optimization in CPSS/IoT, are all Grand Challenges of the twenty
first century. Research and breakthroughs in all these areas are necessary, in
order to make the expectations a reality. One such breakthroughs is compressed
sensing (CS) [9,14], which allows monitoring at sub-Shannon/Nyquist rates. This
has the potential to make the state-estimation aspect in CPSS/IoT tractable.

Compressed sensing was originally introduced in signal processing. It was
long observed that signals used in everyday applications are sparse in some
basis. For example, photographs or radiology images are sparse in the Fourier or
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the wavelet domain. As a consequence, one can compress a signal at the source
of a transmission, and decompress it at the destination. Compressed sensing
simplifies this process, by directly taking compressed photographs or radiology
images, and recovering them at the destination with optimization techniques
that take advantage of the signal’s sparsity. If a signal was sampled before at the
Shannon/Nyquist rate, in compressed sensing such a signal can be undersampled
(in a random fashion though), orders of magnitudes below this rate.

From a CPS perspective one can therefore undersample signals transmitted
by temperature, CO2, etc., sensors, in time, and of video-camera sensors, both
in time and space. This dramatically increases monitoring performance for a
single sensor. But what about the Terra-swarm of sensors? Can we apply the
same techniques? Unfortunately, many sensor networks are not deployed on a
regular grid, but rather on an arbitrary graph. As a consequence, compressed
sensing had to be extended to this more general setting. This uses combinatorial
(graph-based), instead of geometric (lattice-based) techniques [19,36,42].

Interestingly enough, the combinatorial approach found its application in
SN, too [27,41]. In this context, a main challenge is to determine the top-k most
influential nodes in an SN. For quantifying influence various centrality metrics
have been proposed. Among them the most popular is arguably the betweenness
centrality CB [11,40]. Given an arbitrary node u and two nodes v, w, distinct
from each other and from u, the betweenness centrality of u with respect to v
and w, CB,v,w(u), is the number of geodesics (shortest paths) between v and w
that pass through u, divided by the total number of geodesics between v and w.
Now CB(u) is the sum of all CB,v,w(u), for all pairs of nodes v and w in the SN.

Computing the k maximal-CB nodes under the full knowledge of the ver-
tices V and edges E of an unweighted SN, was shown to have O(|V | |E|) time
complexity in [8]. For the huge SNs that occur in practice, this is intractable.
Moreover, for privacy reasons, it is not realistic to assume that, say an adver-
tising company (AC), has the full knowledge of an SN. As a consequence, one
would like to employ techniques that both scale up and maintain privacy.

In order to address these two important problems, we propose in this paper a
new technique for computing the k nodes with largest CB . We call it TopGossip,
because it was inspired by the randomized gossip protocols. TopGossip addresses
scalability issues by employing a local betweenness-centrality measure, called ego
betweenness centrality eCB . This applies CB,v,w(u) only for nodes v, w that are
immediate neighbors of u. It has been shown in [15], that ego-betweenness eCB

is in practice very strongly correlated with betweenness centrality CB .
TopGossip addresses privacy concerns, by requiring that each node u, woken

up by the AC, computes is own eCB , adds it to a token it got from one of its
neighbors, and passes it either to another neighbor, chosen in a random fashion,
or to the AC. The AC then sums up the tokens it got, and creates this way a
compressed-sensing measurement. By employing thereafter sparse optimization
techniques, the AC is able to recover the top-k most influential nodes.

In summary, the AC only needs to know the set of nodes V of the SN, and
the nodes have to know their neighbors and the AC. Like in randomized gossip
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protocols, the nodes can work in a distributed fashion. The computation time
of TopGossip is O(m |V |), where m is proportional to k.

Our experimental results on three well-known SN benchmarks, Facebook,
Twitter, and a synthetic Barabási-Albert network, demonstrate that TopGossip
is more accurate than the best previous work we are aware of.

The rest of the paper is organized as follows. In Sect. 2 we overview CS,
given its importance in CPSS/IoT, and its use in TopGossip. In Sect. 3 we then
discuss SN and our main problem, computing the top-k most influential nodes
in an SN. In Sect. 4 we introduce TopGossip, our novel CS algorithm for solving
this problem. This uses a small number of measurements, and operates with local
knowledge of the SN structure, only. In Sect. 5 we evaluate the performance of
our algorithm, and in Sect. 6 we present our conclusions.

2 Compressed Sensing

The swarm of a CPSS/IoT, such as in smart farming or smart city, will
generate/consume terabytes of information. This information will have to be
sensed/actuated in real time, in order to control the CPSS, by estimating its
state, and issuing (optimal) control actions. But how will this be possible?

The answer lies in a dramatic sub-Shannon/Nyquist sensing and actuation
rate of the swarm signals, in both time and space. This is always sound, provided
the signals are sparse in some basis. Now, if only a few signals were sparse,
this would not be such great news. However, the opposite is true. Most natural
signals are indeed sparse, as their structure lets one predict their values from
only a few samples. The least sparse signals are, quite counter-intuitively, the
random signals, because it is very hard to predict their values.

A hint that such an approach was possible came early on from various areas,
such as geophysics, signal processing, and group testing [13]. For example, in
their hunt for oil reserves, seismologists were able to acquire much better images
of the underground layers, than the Shannon/Nyquist sampling theorem would
have predicted. Moreover, they developed a very successful greedy algorithm,
called Orthogonal Matching Pursuit (OMP) with time-frequency dictionaries
for this purpose [31]. Variants of this algorithm are still in use nowadays.

Very intuitive depictions of the sparse-recovery phenomenon were presented
in [20,25]. We reproduce in Fig. 1, one from [25]. Let x denote the discrete
frequency-domain signal shown in Fig. 1(a). Assume x is properly sampled
(according to Shannon/Nyquist), with say n frequencies, i.e., x is a vector of
dimension n. Signal x is 3-sparse, with 3 � n, as it only contains three fre-
quencies, with amplitude different from zero. By applying the inverse Fourier
transform to x we obtain the discrete time-domain signal y shown in Fig. 1(b):

y(t) = F−1(x)(t) =
1
n

n∑

ν=1

ei2πνt/nx(ν) (1)

where the dimension of y is chosen to be the same as the one of x. The
inverse Fourier transform can be represented as a square matrix F , with
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Fig. 1. (a) A sparse signal in the frequency domain. (b) Under-sampling its time
domain representation, with a rate that is eight times lower than the Shannon/Nyquist
rate, either equally spaced (red), or random (blue). (c) If the sample is equally spaced,
then the Fourier transform introduces aliases, which are indistinguishable from the real
frequencies. (d) If the sample is random, then the main frequencies can be recovered.
Note that the recovery of the least-amplitude frequency, requires noise removal first [25]
(Color figure online)

Ft,ν = ei2πνt/n/n. One can then write that y =Fx. Let T be one of the time
under-samplings in Fig. 1(b), with |T |= m� n, and let A = FT and ŷ = yT be
the restrictions of F and y to T , respectively. Then one can write that ŷ = Ax,
where A is called the measurements matrix, and (ŷi,Ai) a linear measurement.

Recovering x from ŷ =Ax is hopeless, as there are fewer constraints than
indeterminates. As a consequence, the system has infinitely many solutions. How-
ever, if one looks for the sparsest solution, that is, for the one that has the least
number of nonzero elements, then this equation has a unique solution. This is
true also for the more realistic case, where the signal x or the measurements ŷ
are noisy, with noise of magnitude no larger than say ε.

Definition 1 (Sparse approximation problem [14]). Let �0 be the pseudo-
norm counting the number of nonzero elements, and �2 be the Euclidean norm.
Then the sparse approximation problem can be formulated as follows:

argmin
x

‖ x ‖0 subject to ‖ ŷ − Ax ‖2 ≤ ε (2)

Unfortunately, solving (2) is NP hard, as there is no known efficient way
of traversing the space of sparse vectors. Fortunately however, there are two
approaches which make the search tractable: a geometric approach and a com-
binatorial approach. We discuss them both below.

Geometric Approach. In the geometric approach, the underlying Shan-
non/Nyquist structure of a signal is assumed to be a regular grid. For example,
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in Fig. 1(a) and (b), the underlying signals x and y are defined on equally spaced
frequency and time values, respectively. In image processing, one also considers
2D or 3D images, defined over equally spaced spatial grids.

Moreover, in the geometric context, one assumes that the measurement
matrix A is essentially not increasing the �2 norm of the vector x, that is, A is
in some sense an isometric transformation. More formally:

Definition 2 (Restricted Isometry Property (RIP) [9]). An m× n mea-
surement matrix A with unit norm, i.e.,

∑n
j=1 Ai,j = 1 for i= 1, . . .,m, is said

to satisfy the restricted isometry property (RIPk,δ) of order k, whenever:

(1 − δ)
m

n
‖ x ‖22 ≤ ‖ Ax ‖22 ≤ (1 + δ)

m

n
‖ x ‖22 (3)

holds simultaneously for all k-sparse vectors x∈R
n, for a sufficiently small δ.

The RIPk,δ property is sometimes also called the uniform uncertainty prin-
ciple. Measurement matrices A satisfying RIPk,δ are injective, that is, they do
not map distinct k-sparse signals x and x′ to the same measurement ŷ. The unit
norm restriction is motivated by physical characteristics of real sensing systems,
which limit the amount of energy allocated to each linear measurement.

Under the RIPk,δ assumption, the �0 norm in the sparse approximation prob-
lem, can be safely replaced with the �1 norm. This reduces the NP-Hardness of
the reconstruction problem to a tractable, linear programming problem, with
O(n3) complexity. One talks in this case about compressed sensing [9,14].

Definition 3 (Compressed sensing problem [9]). Let �1 be the absolute
value norm, i.e., ‖ x ‖1 =

∑n
i=1 |xi|, �2 be the Euclidean norm, and A be as in

Definition 3. Then the compressed sensing problem can be formulated as follows:

argmin
x

‖ x ‖1 subject to ‖ ŷ − Ax ‖2 ≤ ε (4)

The explicit construction of the measurement matrix requires that A is
dense and stochastic. In general, the entries of A are assumed to be identi-
cally distributed realizations of certain zero-mean random variables (e.g., uni-
form, normal) with variance 1/n, and where (m≥ c k log n) for some constant
c. In Fig. 1(d), A is a stochastic Fourier matrix, whose rows T were uniformly
sampled.

Since O(n3) might be intractable for very large signals, various greedy algo-
rithms were developed, to efficiently solve the linear-program problem. One algo-
rithm was already mentioned, the orthogonal matching pursuit, but many other
variations have been developed in the meantime [13].

Combinatorial Approach. In the combinatorial approach, the underlying
Shannon/Nyquist structure of a signal is assumed to be a graph. This extension
is motivated in the IoT setting by the modern sensors/actuators networks being
deployed, for example, in traffic-management or in environmental applications.
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A graph-based underlying structure was also traditionally assumed in the
more theoretical work on group testing. In contrast to the IoT setting, where the
signals of interest have a very rich co-domain, such as speed, temperature, or
pressure, in group testing the signals are Boolean, and represent the adjacency
matrix, or some other property, of the graph. The same is true in SN, where one
is interested in finding out the top-k influencers of the SN. As a consequence,
different methods were developed in each case, which we discuss below.

Graph-Based Transforms. Discrete signal processing on graphs, in particular the
graph-Fourier and graph-Wavelet transforms, are mainly addressed within what
is called algebraic signal processing [34]. We shortly discuss them below.

Consider a signal x : V →R defined on a graph G= (V,E), with V being
the set of vertices, and E the set of edges. Graph G may be either directed
or undirected. In latter case, the adjacency matrix Adj corresponding to E is
symmetric.

The graph-Fourier basis of x on G, is defined in [36] as F =U−1, where U
is the generalized-eigenvectors basis of Adj, under the Jordan decomposition
Adj =U J U−1. The block-diagonal matrix J , is the Jordan normal form of Adj.
In case Adj is symmetric, J is diagonal, as all eigenvalues of Adj are distinct
and real. The graph-Fourier transform of x is then y =F x.

Earlier definitions of the graph-Fourier transform, consider U as the eigenvec-
tors basis of the Laplacian matrix L= D −Adj, where D is the degree diagonal
matrix, with Di,i, representing the degree of vertex i in Adj [42].

It is worth noting that the graph Laplacian is a second-order operator for
signals on graphs, quantifying correlations, whereas the Adjacency matrix trans-
form represents power spectral densities. Moreover, the Laplacian-based defini-
tion is not applicable to directed graphs or graphs with negative weights.

Both graph-Fourier transforms are useful for signals x : V →R, where x has
interesting R structure, and y = Fx is sparse. However, the eigenvalues J , and
the eigenvectors U themselves, are not related to the particular vertices in the
graph anymore, but rather quantify the cycles properties of Adj. A transform
that is defined with respect to the ring-like neighborhood of the vertices i∈ V
(all vertices between k-hops and l-hops away from vertex i), is the graph-Wavelet
transform. For space reasons, we refer the interested reader to [12,19].

Once the transform matrix F is defined, one can construct stochastic mea-
surement matrices, by uniformly choosing a graph under-sampling T and restrict-
ing F and y to T , as discussed at the beginning of this section.

Expander-Graphs Transforms. Work on expander-graph transforms was origi-
nally developed within group-testing [10] and coding theory [38]. Group-testing
however, was mainly restricted to the Boolean domain, and to Boolean opera-
tions. This work was extended in [41] to CS over graphs [27,28], where the signal
values of x were allowed to range over R. The same is true for the proposed app-
roach in the next section for identifying top-k influencers in an SN.

The three main ideas in the expander-graph (EG) approach are as follows.
First, the measurement matrix A is considered to be Boolean. Second, A has to
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Fig. 2. (a) Measurements m1, m2, and m3, as random walks in graph G. (b) The
measurements represented as a bipartite graph B = (V, M, E), with V the vertices in
G, M the random walks in G, and Em,v the membership of vertex v to the walk m.

be consistent with the underlying graph structure G of the signal x. Third, the
signal x quantifies in most cases some global property of interest of G.

The EG approach in [41] to creating a measurement matrix A for a graph G,
that is consistent with G, is shown in Fig. 2. The main idea is to define a linear
measurement mi, as a random walk through G. In Fig. 2(a) we show three such
walks, and in Fig. 2(b) the same information as a bipartite graph, where edges
represent the membership of vertices to walks.

Definition 4 (Bipartite graph). A bipartite graph B = (V,M,E) is a graph
whose vertices are partitioned into V and M , and whose edges E only connect
V to M . This graph is called left-regular of degree d, if each vertex in V has
degree d. One writes for such graphs B = (V,M,E, d).

The 3× 7 bi-adjacency matrix of the bipartite graph in Fig. 2(b) is shown
below. It represents a consistent measurement matrix A.

A =

⎛

⎝

v1 v2 v3 v4 v5 v6 v7

m1 1 1 0 1 0 1 0
m2 1 0 1 0 1 1 1
m3 0 1 1 1 1 0 1

⎞

⎠ (5)

In order for A to be useful in compressed sensing, one needs to impose addi-
tional constraints on A that are in some sense similar to the RIPk,δ used in the
geometric approach. Such properties are called RIPp,k,δ properties.

Definition 5 (p-Restricted Isometry Property [4]). An m× n matrix A
satisfies the p-restricted isometry property of order k (RIPp,k,δ), whenever:

(1 − δ)‖ x ‖p ≤ ‖ Ax ‖p ≤ (1 + δ)‖ x ‖p (6)

holds simultaneously for all k-sparse vectors x∈R
n, in an �p norm with p satis-

fying p∈ [1, 1+O(1)/log n], for a sufficiently small δ.
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This property holds for particular kinds of left-regular bipartite graphs of
degree d, called bipartite expander graphs. Their definition is given below.
The main intuition of why such graphs would satisfy the RIPp,k,δ prop-
erty, is that any vertex subset S ⊆V of such graphs participates in sufficient
measurements.

Definition 6 (Unbalanced Expander Graph). Let B = (V,M,E, d) be a
left-regular bipartite graph of degree d. If for some small ε and any S ⊆V of
size |S| ≤ k, the neighborhood N(S) of S satisfies |N(S)| ≥ (1− ε) d |S|, then B
is called a (k, d, ε)-unbalanced bipartite expander graph of degree d.

In constructing an unbalanced bipartite expander graph, the goal is to make
|M |, d and ε as small as possible, while making k as close to |M | as possible.

Theorem 1 (RIPp,k,δ and (k, d, ε)-expanders [4]). Consider an m× n matrix
A that is the bi-adjacency matrix of a (k, d, ε)-unbalanced bipartite expander
graph B = (V,M,E, d), with |V |= n, |M |= m, left degree d, such that 1/ε and
and d are smaller than n. Then the scaled matrix A/d1/p satisfies the RIPp,k,δ,
for p∈ [1, 1+1/log n] and δ =C ε, for some constant C > 1.

3 Social Networks

In cyber-physical systems, the cyber part is often partitioned between regular
components (the computers) and super components (the humans). For example,
in smart mobility, the physical components are the cars, the regular cyber com-
ponents are the traffic controllers, and the super components are the drivers,
with their own GPS preferences. The drivers themselves form a social network
which has a considerable impact on the smart-mobility system. To account for
the role of humans, one speaks about cyber-physical-social systems.

Online social networks have hundreds of millions of users nowadays. For
example, Facebook alone has more than 1.59 billion active users per month [16].
As a consequence, Facebook users have a tremendous power to influence the
opinions of other users, with respect to what they read, watch, or buy, or even
for whom they vote. But do all users have the same power? The answer is no.
There is usually a very small set of most influential users, and these are typically
targeted by advertising agencies. But how can they find out who are these users;
by searching the huge underlying network graph?

Social network (SN) analysis addresses exactly this problem [11,29,30,40].
In order to quantify the notion of influence (or centrality), researchers have
proposed various measures, reflecting different points of view [2,5,6,11,17,21,
24,32,35]. Some of them, such as degree centrality (CD), where CD(u) is simply
the degree of node u, focus on the local properties of an SN, while others, such
as betweenness centrality (CB), consider the global properties of an SN.

Betweenness centrality is arguably the most popular, and will be the focus of
this paper, too. For every SN node u, and nodes v, w, distinct from each other
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Fig. 3. An SN with 7 nodes and 12 links, and its adjacency matrix. Adj may be viewed
as a two dimensional Boolean signal, e.g., an image with only black and white pixels

and from u, the betweenness centrality of u with respect to v and w, CB,v,w(u),
is the number geodesics (shortest paths) between v and w that pass through u,
divided by the total number of geodesics between v and w. Now CB(u) is the
sum of all CB,v,w(u), for all pairs of nodes v and w in the SN.

Definition 7 (Betweenness centrality [11]). Let G = (V,E) be the underly-
ing graph of an SN, with V its set of nodes, and E its set of (undirected) edges.
Then the betweenness centrality CB(u) of a node u ∈ V is defined as follows:

CB(u) =
∑

v,w∈V,v �=w

σvw(u)
σvw

(7)

where σvw is the total number of geodesics (shortest paths) between nodes
v, w ∈V , u 	= v 	= w, and σvw(u) is the number of such geodesics that pass through
node u.

The fastest known exact algorithm for computing CB for all nodes in an
unwweighted and undirected SN, under the full knowledge of its vertices V
and edges E, requires O(|V |+ |E|) space, and an asymptotic run time of
O(|V | |E|) [8]. For the huge SNs that occur in practice, this is intractable. More-
over, for privacy reasons, it is not realistic to assume that, say an advertising
company (AC), has the full knowledge of an SN. As a consequence, one would
like to employ techniques that both scale up and maintain privacy.

In order to address these two important problems, we propose in this paper a
new technique for computing the k nodes with largest CB . We call it TopGossip,
because it was inspired by the randomized gossip protocols.

TopGossip addresses scalability issues by employing a local centrality mea-
sure, called an ego betweenness centrality measure eCB . This centrality measure
applies CB,v,w(u) only for the nodes v, w that are immediate neighbors of u. It
has been shown in [15], that the ego-betweenness centrality measure eCB is in
practice very strongly correlated with the betweenness centrality CB .
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Definition 8 (Ego betweenness centrality [15]). Let G = (V,E) be the
underlying graph of an undirected SN, with vertices V and edges E. Then the
ego betweenness centrality eCB(u) of a node u ∈ V is defined as follows:

eCB(u) =
∑

v,w∈E(u),v �=w

σvw(u)
σvw

(8)

where σvw is the total number of geodesics (shortest paths) between v, w ∈ V ,
u 	= v 	= w, and σvw(u) is the number of such geodesics that pass through node u.

For example, consider the SN and its adjacency matrix in Fig. 3. The CD,
eCB and CB for all nodes are given in Table 1. The table shows that nodes v3
and v4 have the largest centrality. Hence, one may safely conclude that these
nodes are the most important in the SN. Note also that eCB/CB are better
measures than CD, as CD(v1)= CD(v2)= 3, but their eCB/CB value is 0.

Table 1. Centrality measures for the sample network in Fig. 3

Centrality v1 v2 v3 v4 v5 v6 v7

Degree CD 3 3 5 5 2 3 3

eBetweenness eCB 0 0 5 3.5 1.0 2.0 0.5

Betweenness CB 0 0 4 3.3 0.3 1 0.3

Let us now discuss how to efficiently compute eCB . We use node v4 in Fig. 3
as a running example. The adjacency matrix Adjv4 of v4 (also called its ego)
is shown in Fig. 4. It contains all the nodes of Adj except for node v5 which is
not a neighbor of v4. The neighbors of v4 which are directly connected to each
other have a geodesic (shortest path) of length 1. As a consequence, there is no
geodesic between them that also passes through v4, as this would have length 2.
The other pairs are not directly connected, so they are candidates for eCB(v4).
We obtain these candidates in matrix (1− Adjv4), above its main diagonal (since
the matrix is symmetric, we disregard entries below the diagonal).

Matrix (1− Adjv4) serves as a mask, used to get rid of the uninteresting
entries in matrix Adj2v4

. Note that an entry (Adj2v4
)ij contains the number of

paths of length two between nodes vi and vj . The masking operation is achieved
through the Hadamard (point wise) product Adj2v4

◦ (1− Adjv4). Since there is
only one path through v4 for each pair of distinct neighbors, one has now to add
the inverses of the non-zero entries above the diagonal in the product matrix,
to get eCB(v4) = 1 + 1 + 1/2 + 1/2 + 1/2 = 3.5. The complexity of this operation
for node v4 is O(m3) where m = CD(v4)+ 1. For all nodes in V the complexity
is going to be dominated by the nodes with largest degree CD.

Most companies are interested in the k nodes with largest CB , for small k,
only. This is reasonable, since a node with large CB is more influential than one
with low CB . For example, Samsung was willing to give free Galaxy mobiles
to a few influencers, dissatisfied with their iPhones. Similarly, travel agencies
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v1 v2 v3 v4 v6 v7
v1 [ 0 1 1 1 0 0 ]
v2 [ 1 0 1 1 0 0 ]
v3 [ 1 1 0 1 0 1 ]
v4 [ 1 1 1 0 1 1 ]
v6 [ 0 0 0 1 0 1 ]
v7 [ 0 0 1 1 1 0 ]

Adjv4

v1 v2 v3 v4 v6 v7
v1 [ 1 0 0 0 1 1 ]
v2 [ 0 1 0 0 1 1 ]
v3 [ 0 0 1 0 1 0 ]
v4 [ 0 0 0 1 0 0 ]
v6 [ 1 1 1 0 1 0 ]
v7 [ 1 1 0 0 0 1 ]

1−Adjv4

v1 v2 v3 v4 v6 v7
v1 [ 3 2 2 2 1 2 ]
v2 [ 2 3 2 2 1 2 ]
v3 [ 2 2 4 3 2 1 ]
v4 [ 2 2 3 5 1 2 ]
v6 [ 1 1 2 1 2 1 ]
v7 [ 2 2 1 2 1 3 ]

Adj2v4

v1 v2 v3 v4 v6 v7
v1 [ 3 0 0 0 1 2 ]
v2 [ 0 3 0 0 1 2 ]
v3 [ 0 0 4 0 2 0 ]
v4 [ 0 0 0 5 0 0 ]
v6 [ 1 1 2 0 2 0 ]
v7 [ 2 2 0 0 0 3 ]

Adj2v4 ◦ (1−Adjv4)

Fig. 4. Given the SN in Fig. 3, the matrix Adjv4 is the projection of the SN to the
immediate neighborhood of v4. The matrix 1 − Adjv4 sets to 0 all the direct connections
between nodes (with geodesic 1), and sets to 1 the others (with geodesic 2). The matrix
Adj2v4 contains for every entry, the number of paths of length 2 (geodesics) between
every pair of nodes. The Hadamard (pointwise) product Adj2v4 ◦ (1 − Adjv4), zeroes out
all the noninteresting entries above and below the diagonal of Adj2v4 . Since the matrix
is symmetric, one only has to consider the entries above the diagonal. Moreover, since
there is at most one geodesic of length 2 passing through v4 for each pair of nodes, one
has to add the inverses of the entries. Hence eCB(v4) = 1 + 1 + 1/2 + 1/2+1/2 = 3.5.

and hotels give free vacations to the topmost influencers, to boost their ratings,
and so do fashion companies with their products. Transportation/IT companies
are interested in locating the most important bottle-necked junctions/routers in
their transportation/data networks. Finally, community-detection applications
use the nodes with highest CB in order to detect communities [22,23,37].

Since CB and eCB are strongly correlated in practical applications, one may
approximately determine the k users with largest CB , by determining the k users
with largest eCB . If every user u would send its eCB(u) to the AC, this could
efficiently sort the eCBs in time O(|V | log |V |), and take the top-k users. This
approach scales up, but it may jam the AC when all V users simultaneously send
their eCB to the AC. The approach also addresses part of the privacy concerns
in an SN, as the AC only gets eCB(u), and not the actual friends of user u.

TopGossip addresses the potential jamming of the AC, and introduces addi-
tional privacy-preserving measures, by using compressed sensing. This works
intuitively as follows. Each user u is woken up by the AC, computes its own
eCB(u), adds it to a token it got from one of its neighbors v, and passes it
either to another neighbor w, chosen in a random fashion, or to the AC. The
AC then sums up the tokens it got, and creates this way a compressed-sensing
measurement. Note that a user u does not directly reveal its eCB(u) to the AC
or its neighbor w, and these are not supposed to know it either. However, by
employing sparse optimization techniques, the AC is still able to recover the
top-k most influential users. More details are discussed in the next section.

4 Gossip-Inspired Compressed Sensing

We now discuss TopGossip, our new approach for determining the top-
k influencers within a social network (SN), in detail. TopGossip uses the
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expander-graph transform approach to compressed sensing, as in Sect. 2. Top-
Gossip is also inspired by the randomized gossip protocols analyzed in [7].

Intuitively, TopGossip helps the AC to construct a (k, d, ε)-expander matrix
A of size m× n and a measurement vector y of size n, where d < m, m∝ k log |V |,
and n= |V |, in a distributed fashion. For this purpose, each user u maintains a
sparse copy Âu and ŷu. Its goal is to set precisely d = |I| entries Âu

i,u to one, and
to sum up its eCB(u) to the corresponding entries in ŷu

i , for all i∈ I.
A user u is woken up either by one of its neighbors v in a measurement i, or

by the AC. If u is woken up by v, it first checks if Âu
∗,u already has d ones, or if

Âu
i,u = 1. If this is the case, it ignores v. Otherwise, u receives from v a row Âv

i,∗
and ŷv

i . It then adds Âu
i,∗ to Âv

i,∗, sets Âu
i,u to 1, and adds ŷu

i to ŷv
i + eCB(u).

The AC wakes up the users uniformly at random, and without replacement,
every time a clock with a Poisson distribution ticks. When u is woken up by
the AC, it may have already participated in I = {i | Âu

i,u = 1} measurements.
To reduce the communication overhead with the AC, it aims to prolong these
measurements. For each i∈ I, it first computes the set R = N − U where N is
the set of its neighbors, and U is the set of users that already participated in
measurement i. Then it repeatedly samples uniformly at random one neighbor
w from R and attempts to communicates with it. If R is empty or it had no
success communicating with a neighbor, it adds i to the set O.

Once it has finished with I, it samples uniformly at random and without
replacement d − |I| measurements from the set I = {i | Âu

i,u = 0}. For each mea-
surement i it first sets Âu

i,u to 1, and ŷu
i to eCB(u). It then repeatedly tries

to communicate with one of its neighbors, uniformly at random. If it does not
succeed, it adds i to the set O. After it has finished the two iteration loops, it
sends to the AC the rows Âu

i,∗ and measurements ŷu
i , for all i∈ O.

The longer the measurements in Âu
i,∗, are, the less are the users commu-

nicating with the AC, and the more are they communicating with each other.
However, the precise communication pattern depends on the structure of the
SN.

After the AC has awoken all users in V , it may safely conclude that it has
now received sufficient information to construct A and y. Note that in practice,
each user and the AC may have its own clock with a Poisson distribution, so
that the AC will not necessarily have to awake each user. The AC only needs
to robustly determine when all users have taken their own round. At this point,
the AC adds all rows Âu

i,∗ and all measurements ŷu
i together, and assembles

them into the matrix A and the vector y. It then uses sparse optimization to
approximately recover the sparse vector x from the linear measurement y =A x.

The corresponding pseudo-code is shown in Algorithm 1. For readability, we
use a global array of measurement matrices Â and a global array of measurement
vectors ŷ, where each element of the arrays represent a private copy of a user.
We also replace the communication actions with updates in these arrays. One
can easily infer how this code can be changed to include communications. We
also provide the edges E in addition to V as an input, but E is used only locally
by each user, who is supposed anyway to know his contacts.
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Algorithm 1. TopGossip Algorithm for Compressed Sensing in SN

Input: V, E, k, m, d, ε Output: x

1: Ân×m×n = 0n×m×n; Measurement matrices, one for each user
2: ŷn×m = 0n×m; Measurement vectors, one for each user
3: Om×n = 0m×n; Output matrix, one column for each user

4: function free(w,m) {return (Âw
m,w = 0} ∧ |{i | Âw

i,w = 1}| < d};

5: forall (u ∈ 1 : n : unifAtRandom) { Awake each user u

6: I = {i | Âu
i,u = 1}; I = {i | Âu

i,u = 0};

7: forall (m ∈ I : unifAtRandom) { Old communications
8: neigh = E(u) − {v | Âu

m,v = 1}; w = 0;
9: forall (x ∈ neigh : unifAtRandom) if (free(x, m)) {w = x; break}; Try

10: if (neigh = ∅ ∨ w = 0) Om,u = 1; Failure
11: else { Âw

m,∗ += Âu
m,∗; Âw

m,w = 1; ŷw
m += ŷu

m + eCB(w)}}; Success

12: forall (m ∈ I : unifAtRandom : d − |I| times) { New communications
13: neigh = E(u); w = 0; Âu

m,u = 1; ŷu
m = eCB(u);

14: forall (x ∈ neigh : unifAtRandom) if (free(x, m)) {w = x; break}; Try
15: if (neigh = ∅ ∨ w = 0) Om,u = 1; Failure
16: else { Âw

m,∗ += Âu
m,∗; Âw

m,w = 1; ŷw
m += ŷu

m + eCB(w)}}}; Success

17: Am×n = 0m×n; Measurement matrix of the AC
18: ym×1 = 0m×1; Measurement vector of the AC

19: forall (m ∈ 1 : m) { out= {i | Om,i = 1};
20: forall (u ∈ out) { Am,∗ += Âu

m,∗; ym += ŷu
m }} Update A and y

21: argmin
x

‖ x ‖1 subject to ‖ y − Ax ‖2
2 ≤ ε Top-k eCB recovered in x

The matrix O remembers the “communications” with the AC, and it is used
to construct the measurement matrix A and the measurement vector y. The AC
uses sparse optimization at the end to approximately recover x, with the LASSO
objective function ‖A x− y‖22 ≤ ε [39]. LASSO is very popular because it works
even in the presence of noise or truncated values in A and y.

Algorithm 1 has the following important properties. First, it results in the bi-
adjacency matrix A of a left-regular bipartite graph B = (V,M,E, d) of degree
d. This cannot be guaranteed in [41], for example, as a vertex v might not be
visited by any of the m random walks, and this would violate d regularity.

Theorem 2 (Regular bipartite graph). Matrix A, constructed by Algo-
rithm1, is the bi-adjacency matrix of a left-regular bipartite graph B =
(V,M,E, d) of degree d, with V as the vertices in G, and M as the set of mea-
surements.

Proof. By construction, each vertex v ∈V is selected in exactly d measurements.

Second, our measurement matrix A is consistent with the SN graph structure,
because for each user, we select only its neighbors.
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Theorem 3 (Consistency of the graph). Matrix A, constructed by Algo-
rithm1, is consistent with the structure of the underlying graph G of the SN.

Proof. A vertex changes the entries of neighboring vertices, only. Hence, a row of
A may contain several disconnected random walks. This could be problematic in
a directed graph. However, it is not in an undirected connected graph, because
the ends of the disconnected walks are, in fact, connected in the graph. It is just
that a particular measurement misses the connecting pieces (paths).

Third, matrix A is not only a d-regular bipartite graph, but it is, in fact, an
expander graph for appropriately chosen k and ε.

Theorem 4 (Expander property). Matrix A, constructed by Algorithm1, is
the bi-adjacency matrix of a (k, d, ε)-unbalanced bipartite expander graph.

Proof. Given the sparsity factor k of the vector x to be approximated, we can
choose m proportional to k log n, and ε as discussed in Sect. 2.

Fourth, from the expansion property of A we can immediately prove that A
satisfies the p-restricted isometry property.

Theorem 5 (RIP property). The measurement matrix A, constructed by
Algorithm1, satisfies the p-restricted isometry property RIPp,k,δ.

Proof. A corresponds to a (k, d, ε)-unbalanced bipartite expander graph. Hence
Theorem 1 holds, and therefore A satisfies the RIPp,k,δ, for a small δ.

Fifth, since RIPp,k,δ holds, sparse approximation can be reduced to com-
pressed sensing, which can be solved by linear programming, or by any associated
greedy algorithm, such as the LASSO algorithm [39] we are using.

Theorem 6 (Compressed sensing). The measurement matrix A, constructed
by Algorithm1, reduces sparse approximation to compressed sensing.

Proof. Since the measurement matrix A satisfies RIPp,k,δ, the sparse approxi-
mation problem 1 can be solved by compressed sensing as in (4).

Sixth, the time complexity of constructing A by Algorithm 1 is O(d2 |V |). As
a consequence, we are able to compute the top-k CB-influencers in a much shorter
time than O(|E| |V |), which is required by the exact algorithm of Brandes.

Theorem 7 (Approximate betweenness). The complexity of TopGossip,
our gossip-inspired compressed-sensing algorithm for identifying the top-k influ-
encers in a social network with n users is O(d2n) time, where d � n.

Proof. The most time consuming part of TopGossip is in constructing A. As
one can see in Algorithm 1, the outer while loop repeats at most n times, and
the inner while loop repeats at most d times. There is also a for loop over the
selected neighbors, which has at most d members. Overall, the time complexity
of constructing the measurement matrix A is O(d2n), where d � n.
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5 Experimental Results

We evaluate the performance of TopGossip in determining the top-k influ-
encers experimentally, on one synthetic and two real-world networks, respec-
tively. Although we use the local ego-betweenness centrality eCB , our results are
compared to the global betweenness centrality CB . As we will see, we obtain
very good results, which confirms on our examples the correlation between eCB

and CB .

Synthetic Network. The synthetic network we use is: (1) A scale-free network
(power-law graph) based on the model in [3], with 500 nodes, 2979 links, average
degree of 11.916, and modularity of 0.243, where each node created six links.

Real-World Networks. The real-world networks we use are: (2) A Facebook-
like social network [33] from an online community for students at the UC Irvine.
This network contains 1899 users that sent and received at least one message,
and the total number of 59835 messages passed over 20296 links among the users.
(3) A part of the twitter network [18], with 3656 nodes and 188712 links.

Precision = TruePositives/(TruePositives + FalsePositives)
Recall = TruePositives/(TruePositives + FalseNegatives)

F -measure = 2 × (Precision × Recall)/(Precision + Recall)

Evaluation Method. We use precision and recall to evaluate the accuracy of
TopGossip. Intuitively, precision is the number of correctly identified influencers
divided by the number of identified influencers either correctly or incorrectly.
Similarly, recall the number of correctly identified influencers divided by the
number of true influencers either identified or overlooked. We incorporate both
metrics by using the F-measure. Formally, these are defined as follows:

Compared Methods. We compare TopGossip with two methods: (1) RW, a
combinatorial, graph-based approach for compressed sensing, recovering k-sparse
graph signals, where each measurement is a random walk in a given graph [41].
(2) CS-TopCent, a combinatorial, graph-based, compressed-sampling approach
for SN, detecting the top-k influencers without prior knowledge of the SN’s
topological structure, and by using indirect measurements, only [26].

Results. Figure 5 depicts the accuracy (in terms of the F-measure) of Top-
Gossip, RW, and CS-TopCent, in identifying the top-k influencers in an SN.
The horizontal axis shows the sparsity level k, and the vertical axis shows the
F-measure of each method for a certain sparsity. As one can see from Fig. 5,
TopGossip performs better than RW and TopCent, by having higher F-measure
in all tests. We can also observe that TopGossip works well even on very low
sparsity levels. The results demonstrate the close correlation between the top-k
influencers lists identified by TopGossip and the global betweenness centrality.
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Fig. 5. Accuracy of TopGossip (in blue), RW (in green), and CS-TopCent (in red), in
terms of their F-measure, for varying percentage of sparsity, in three different networks:
(left) Facebook, (middle) Twitter, and (right) Barabási-Albert synthetic, scale-free
(Color figure online)

6 Conclusions and Outlook

In this paper we have reviewed the recent developments in compressed sensing
and in social networks, and discussed their impact on the cyber physical social
systems, which currently emerge on top of the Internet of things.

We have also introduced TopGossip, a new, on-the-fly, compressed sensing
algorithm, that extracts the top-k influencers in an SN. TopGossip only uses
local information and only has complexity O(d2n), where n is the number of
nodes in the SN, d < m corresponds to the sparsity k, and m�n is the number
measurements. We demonstrated the accuracy of TopGossip on three classic
examples from the SN community: Facebook, Twitter, and Barabási-Albert.

In future work we would like the apply the compressed sensing approach to
both the social and cyber-physical parts of a cyber physical social system and
exploit the synergies between the two. A cyber-physical-social-systems applica-
tion that looks very promising in this respect is smart mobility.
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Abstract. The current practice of embedded software design resorts to
test or simulation to verify the correctness of the design, which is very
time-consuming and incapable of covering all cases. Existent software
engineering techniques are not concerned about real-time performance
and resource requirements that embedded systems should satisfy for cor-
rect operation. In this work, we propose a new methodology to design
dependable software for embedded systems. The key idea of the pro-
posed methodology is to define a universal execution model (UEM) of
heterogeneous multiprocessor embedded systems and to design the soft-
ware based on the UEM that hides the underlying system architecture
from the programmer. UEM puts restrictions on how to communicate
and synchronize tasks that conventional operating systems deal with.
We define the UEM by extending well-known formal models such as
Synchronous Dataflow (SDF) and finite state machine (FSM). There are
several benefits to use formal models for software design. First, we can
detect critical design errors such as deadlock and buffer overflow by static
analysis of formal models. Second, we can estimate the resource require-
ment and real-time performance at compile time. Last, not the least, we
can synthesize the target code from the UEM automatically minimizing
the manual coding efforts. By preserving the semantics of the UEM, the
synthesized code will be correct by construction. The key challenge lies in
the expression capability of the proposed UEM. Preliminary experiments
with several non-trivial applications prove the viability of the proposed
methodology.

Keywords: SW design methodology · Universal execution model
SDF

1 Introduction

The application domain of embedded computers as special purpose computers
is steadily increasing as virtually all things are becoming smart or intelligent.
The complexity of embedded computers is also incessantly increasing as can be
observed in automotive electronic systems, intelligent robots, medical devices, as
well as mobile devices. Since everyday life will depend on embedded computers
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extensively in the future, it is crucial to make them dependable to avoid serious
damages caused by an error or failure of the. For instance, in 2013, the US
Department of Justice issued a ruling that imposed a fine of 12 billion dollars to
a car manufacturer for sudden acceleration incident that was caused by a software
defect in the electronic control unit. Thus it is needless to say how significant
is to increase the dependability of embedded computer systems, particularly
dependability of the software.

The user of an embedded computer system anticipates that the system works
correctly any time, even with the non-zero possibility of hardware component
failure. Above all, the correctness of the software should be ensured under the
normal operating condition. Unfortunately, it is a well-known fact that it is
not possible to detect all errors of a sequential program even though extensive
research efforts have been made to develop static analysis techniques to solve
this problem. Ensuring functional correctness of parallel programs is much more
difficult since the program may have non-deterministic behavior at run-time
due to unpredictable access order to shared resources. To make matters worse,
embedded systems impose extra constraints on memory space, energy budget,
real-time performance, and so on. For real-time applications, we need to guar-
antee that the real-time constraints are satisfied under the worst-case scenario
of the system behavior.

The current practice of software design resorts to test or simulation to ver-
ify the functional correctness. To improve the functional safety of automotive
electronics systems, for instance, the ISO26262 standard defines how to perform
unit test and integration test. However, verification by test or simulation is very
time consuming and incapable of covering all possible behaviors. Thus there is
non-zero possibility to face an unexpected software behavior at run-time that
has not been visited in the test or simulation phase.

There have been various methodologies proposed in software engineering to
increase the design productivity and maintainability of software, including struc-
tural programming, object-oriented programming, model-driven development,
component-based development, and so on. Each methodology has its advantages
and disadvantages depending on the application area and the hardware platform.
Most of those approaches use a test-based or a simulation-based method to verify
the correctness. Nay more, they do not consider the memory space constraints,
energy budget, and real-time performance requirements that should be satisfied
in the embedded system. It is the designer’s responsibility to meet those con-
straints. A common way to satisfy the real-time performance is to over-design
the system with a significant safety margin (at least 50% for instance) over the
worst-case values measured in the test phase.

In short, how to verify the correctness of embedded software is still an open
problem, a stronghold that could not be conquered by existent methodologies.
In this work, we propose a new methodology to make an embedded software
correct by construction by designing embedded applications with formal models
of computation at the OS level. It is motivated by the observation that a parallel
application consists of a set of tasks, or threads, at the operating system (OS)
level regardless of the initial specification. A task, or thread, is a unit of mapping
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and scheduling and there are various ways of communication and synchroniza-
tion between tasks. In the proposed methodology, we define a set of rules on
task synchronization and communication that tasks are enforced to follow. To
be concrete, we make computation tasks follow a dataflow model where tasks
communicate with each other through channels, disallowing implicit communi-
cation through shared variables. By using a restricted form of dataflow model
such as Synchronous Data Flow (SDF) [1] for application specification, we can
perform static analysis to check the possibility of deadlock or channel buffer
overflow. Moreover, we can estimate the worst-case performance and resource
requirement at compile-time.

The proposed methodology separates design and implementation of embed-
ded software. The designed software based on formal models of computation
is mostly independent of the hardware platform, except for a minimal set of
platform-dependent tasks Parallelizing an application is easily performed by
mapping tasks onto processors, and inter-processor interface code is automat-
ically synthesized in the proposed methodology. By keeping the semantics of
formal models, the implemented software is free from a class of errors that can
be detected by static analysis performed at compile time. It is distinguished from
the current practice of embedded software development that is tightly coupled
with a given hardware platform. Parallelizing an application is performed manu-
ally considering the features of the given hardware platform. Since an embedded
application is tailored to a specific platform, it is not easy to port an application
to a different hardware platform.

The proposed methodology concerns about the execution of tasks at the OS
level and above, assuming that each task is already verified and its execution
profile is given a priori. It is complementary to the existing methodologies in
that test-based verification or formal verification should be used to verify each
task. Defining a set of rules on task synchronization and communication can be
understood as defining a universal execution model1 (UEM) for multi-processor
embedded systems. Even though we aim to make the proposed execution model
be universal, because the baseline model is a data flow model, it fits better for
computation-oriented applications than database-oriented applications.

Figure 1 shows the vertical software structure based on the UEM. The UEM
is positioned on top of the OS layer, hiding the low-level details of the architec-
ture from the application programmers. The UEM layer consists of three layers
internally. The UEM execution engine serves the role of middleware that exe-
cutes the UEM tasks on the target architecture, which is platform-dependent.
To the application programmer, the UEM layer provides a set of APIs (appli-
cation programming interface) for communication and synchronization between
tasks. Thus, the application programmer can design an embedded software on
top of the UEM without knowing the actual hardware platform on which the pro-
gram runs. In the middle, a set of UEM tasks is generated from the application

1 The term universal is not based on any formal proof but on our goal to make the
model independent of underlying hardware platforms.
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Fig. 1. Vertical software structure based on the UEM (universal execution model)

program. The UEM execution engine customized to a specific architecture aims
to emulate the UEM efficiently.

The key challenge of the proposed methodology lies in the expression capa-
bility of the proposed UEM. Since the existent formal models of computation
exhibit limitation on expression capabilities, several extensions have been made
to the existent models in UEM. Preliminary experiments with several non-trivial
applications prove the viability of the proposed methodology.

2 Dataflow Specification of an Application

In the proposed UEM, an application is specified by an extended synchronous
dataflow (SDF) model. We first review the baseline SDF model and explain how
the SDF model is extended.

2.1 Synchronous Data Flow

In the SDF model [1], an application is specified with a dataflow graph, G(V,E),
where V is a set of nodes and E is a set of arcs. A node v ∈ V represents
a function module, or a task, and an arc e ∈ E is a FIFO channel between
two tasks. Communication between two tasks is performed by explicit message
passing via a FIFO channel. Figure 2(a) shows an example SDF graph where
the number annotated on the arc indicates the number of data samples, called a
sample rate, to produce or consume per task execution. If unspecified, the sample
rate is 1 by default. The input sample rate and the output sample rate on an
arc are represented as cons(e) and prod(e), respectively. In the SDF model, a
task becomes executable only when all input arcs have no fewer samples than
the specified sample rate in the associated arcs.

By comparing the input and the output sample rates on each arc, e, we
can determine the relative execution rates between the source task, denoted by
src(e), and the destination task, denoted by dest(e). For instance, the execution
rate of task C should be twice higher than that of task A in Fig. 2(a), in order
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Fig. 2. (a) An example SDF graph with annotated sample rates on the arcs, (b) an
inconsistent SDF graph that has a buffer overflow error, and (c) a mapping and schedul-
ing result of the SDF graph onto two processing elements

to make the number of samples produced from the source task the same as the
number of samples consumed by the destination task. This constraint can be
formulated as the following equation, called balance equation: prod(e)×R(src(e))
= cons(e)×R(dest(e)) where R(v) indicates the repetition counts of task v. An
SDF graph is said to be consistent if we can find the repetition counts of all
tasks to satisfy the balance equations of all arcs. Otherwise, the graph is called
sample rate inconsistent, shortly inconsistent. The SDF graph shown in Fig. 2(b)
is inconsistent, which may incur a buffer overflow error on arc AC. An iteration
of an SDF graph is defined by the set of task executions with minimum repetition
counts. The minimum repetition counts of tasks in the SDF graph of Fig. 2(a)
are R(A) = R(B) = 1 and R(C) = R(D) = 2.

Since we can compute the minimum repetition counts of all tasks and the
graph shows the dependency relationship between tasks, we can perform task
scheduling at compile time, which is to determine where and in what order
tasks will be executed on a given hardware platform. By constructing a static
schedule of tasks at compile time, we can detect the critical software faults such
as buffer overflow and deadlock. Figure 2(c) illustrates a parallel scheduling result
by mapping tasks onto two processing elements. From the parallel scheduling
result, we can estimate the buffer size and the real-time performance of the graph
if the execution time of each task is bounded. Note that even though there may
exist numerous schedules for a given application, determinism of the execution
behavior is guaranteed, meaning that the execution result is independent of the
schedule.

In summary, by using the SDF model, we can verify the satisfaction of real-
time requirement and resource constraints with static scheduling. Moreover, we
can detect buffer overflow and deadlock errors at compile time. While the SDF
model has the aforementioned benefits from its static analyzability, it has a
severe limitation to be used as a general model for behavior specification. It is
not possible to specify the dynamic behavior of an application since the sample
rate may not change dynamically. To overcome this limitation while preserving
the static analyzability of the SDF model, several extensions have been proposed,
including CSDF (cyclo-static dataflow) [2], SADF (scenario-aware dataflow) [3],
and PSDF (parameterized SDF) [4]. In the proposed methodology, we use the
FSM model in combination with the SDF model to express the dynamic behavior
of an application at the task level.
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2.2 Dynamic Behavior Specification

In case an application has a finite number of different behaviors, called modes of
operation, the behavior of each mode is expressed by an SDF graph, and mode
transitions are specified by a tabular specification of an FSM, called Mode Tran-
sition Machine (MTM) [5]. It is similar to FSM-SADF [3]. An MTM describes
the mode transition rules for the SDF graph, defined as a tuple {Modes, Vari-
ables, Transitions} where Modes and Variables represent a set of modes and a set
of mode variables respectively, and Transitions is a set of transitions that con-
sists of the current mode, a Boolean function of conditions, and the next mode.
A Boolean function of the transition condition is defined by a simple comparison
operation between a mode variable and a value.

An example of MTM-SDF specification is shown in Fig. 3 in which an appli-
cation has two modes of operation, S1 and S2. The input and output sample
rates of a task may vary, depending on the mode. In this example, the MTM
is quite simple since it needs to distinguish two modes of operation by a single
mode variable. Since the granularity of a task is large and the dynamic behavior
inside a task is not visible in the UEM, an MTM is not complex in general. At
compile time, the SDF graph is scheduled separately for each mode of opera-
tion. We assume that all modes share the same initial buffer states. Then, mode
change can be made at the iteration boundary safely without any inconsistency
of buffer states between modes.

Fig. 3. Extended SDF graph with an MTM with 2 modes

Mode transition is enabled by setting the mode variable. There are two ways
of setting the mode variable. It can be set by a hidden supervisor, which will be
explained in the next section. Alternatively, it can be set by a designated task.
A stream-based application usually starts with parsing a header information
that determines the mode of operation, followed by processing a stream of data.
In this case, the SDF task that parses the header information is designated as a
special task that may change the mode variable. In the example of Fig. 3, task
A can be designated as the special task that determines the mode of operation.

When mode transition occurs, the SDF schedule is changed accordingly. If the
mode change is enabled by the hidden supervisor, it is activated at the iteration
boundary of the SDF graph. If it is enabled by a designated task, mode change
occurs right after the task finishes its execution. For consistency of operation, in
this case, the schedules of all modes should have the same task schedule before
the designated task. In case the designated task is the first task in the SDF
schedule, this restriction is satisfied easily.
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2.3 Library Task

In the dataflow specification, use of shared variables among tasks is not allowed
since the access order to a shared variable may vary depending on the execution
order of tasks and the application behavior will be non-deterministic. In many
embedded applications, however, it is popular to use a global data structure
that is shared among tasks. In the UEM, another extension is made to the SDF
graph by introducing a special type of task, called library task, to allow the use
of shared resources in the SDF model [6].

A library task is a mappable object that defines a set of service functions to a
shared resource among tasks. Figure 4 shows an SDF graph that consists of three
normal SDF tasks (T1 - T3) and two library tasks (L1 - L2). For connection with
a library task, we introduce new types of ports, library master port and library
slave port that are represented by a red circle and a blue square, respectively
in the figure. An arc between a library master port and a library slave port is
not a data channel, but represents a client-server relation. A library task plays
the role of a server with a single slave port that can be connected to multiple
masters that request the predefined services of the library task. Unlike a normal
SDF task, a library task is not invoked by input data but by a function call
inside an SDF task; it is a passive object.

T1

T2

T3

L1

L2

Fig. 4. Extended SDF graph with library tasks (Color figure online)

There are several use cases of library task depending on the kind of a shared
resource. A library task can be used as a monitor that handles the access conflict
to the shared variables at a high level. If a shared resource is a hardware device,
the library task is a thread-safe device driver that provides a set of Application
Programming Interfaces (APIs) to access the device. In a server-client applica-
tion, the server task can be specified by a library task that may be shared by
multiple clients. Another use case of a library task is to make a vertically lay-
ered software structure by providing a set of APIs of the software layer below
the application layer. Figure 4 depicts three layers of software structure.

In case multiple masters access a shared variable that a library task manages,
it is unavoidable that the return value of a library function depends on the
execution order of the master tasks, which is anathema to any deterministic
model. By the use of a library task, however, we explicitly specify the possibility
of such non-determinism. In case the library task has no state or returns the
same value to the master tasks regardless of the calling order, the library task
is classified as deterministic. Otherwise, the developer should be aware that the
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library task does not guarantee deterministic behavior in the sense that the
return value to a master task depends on the scheduling order of master tasks.
Nonetheless, the same behavior can be repeated if the same scheduling order is
followed since the SDF model allows us to construct a static schedule of tasks.
Then the application behavior becomes deterministic if the static schedule of
tasks is followed at run-time.

2.4 Loop Structure (SDF/L)

A compute-intensive application usually spends most of its execution time in loop
structures and how to parallelize them is the main challenge for accelerating the
application. Even though dataflow models, including the SDF model, are good at
exploiting the task-level parallelism of an application, it is difficult to exploit the
parallelism of loop structures since they are not explicitly specified in existent
dataflow models. In SDF, a loop structure is implicitly expressed by sample rate
changes as illustrated in Fig. 2(a). Among many possible schedules, a looped
schedule AB2(CD) can be constructed. In case 2 executions of (CD) can be
parallelized with 2 output samples from A and B, a user may want to construct
a parallel schedule as illustrated in Fig. 5(b). However, identifying such a loop
structure and parallelizing it is not easy because existent parallel scheduling
techniques usually aim to exploit task-level parallelism only.

Fig. 5. SDF graph with a loop structure

Recently, we proposed a novel extension to specify a loop structure as a
super node to make the SDF graph hierarchical [7]. The extended SDF graph
with loop structures is called an SDF/L graph. Figure 5(a) is the SDF/L graph
representation of the application of Fig. 2(a).

In the SDF/L model, two types of loop structures are distinguished, data loop
(D-type) and convergent loop (C-type), and two types of input ports, distributing
port and broadcasting port. In a D-type loop (data loop), each iteration of the
loop consumes new input data from each distributing input port. The number
of iterations is determined by the sample rate change of the associated input
channel. The loop structure of Fig. 5(a) is a D-type loop.

On the other hand, Fig. 6 shows an SDF graph that has a C-type loop. For a
C-type loop. The C-type loop has two attributes, loop count and exit flag. The
former is the maximum iteration count and the second is set by a designated
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Fig. 6. SDF graph with a C-type loop structure

task, task C in this figure. The number of iteration is dynamically decided by
the result of computation that will set the exit flag. All input ports of a C-type
loop should be broadcasting ports from which input samples are reused in all
iterations of the loop; the sample rate of the output connection is equal to the
sample rate of the input connection.

In summary, in UEM the SDF model is extended to express dynamic behav-
ior with an MTM, to allow the use of shared resources with a library task, and
to explicitly specify the loop structures hierarchically. Refer to the correspond-
ing references for more detailed explanation of each extension. Note that these
extensions preserve the static analyzability of the SDF model. We perform static
scheduling for each mode of operation. In the SDF/L model, static scheduling
can be performed hierarchically from the bottom layer. A loop structure is encap-
sulated as a regular SDF task at the upper layer.

3 Universal Execution Model (UEM)

Figure 7 shows the overall software architecture of the UEM that is layered hier-
archically. Each application that is specified by an aforementioned extended SDF
model is encapsulated as a dataflow process at the upper layer. We can group
a set of dataflow processes in case whose execution states are inter-related. For
each application group, a control process is defined in the dynamic behavior of
an application group is specified formally by an FSM (finite state machine).

Figure 8(a) represents a multi-mode multimedia terminal (MMMT) applica-
tion group that contains 8 dataflow processes and 1 control process. Among 8
dataflow processes, 4 processes with pink color have internal dataflow graphs
while the other 4 processes with yellow color are single sequential tasks. This
application group has the following 4 different modes of operation: Menu, Video
player, MP3 player, and Video phone. The UserInput task receives a user input
to select a mode of operation and sends it to the control process. Based on
the selected model, the control process enables a set of applications that run
concurrently to serve the mode of operation.

Figure 8(b) shows the FSM specified inside the control process The FSM
consists of 4 states that correspond to the modes of operation. In the Video play
mode, it enables 2 dataflow processes, H264 decoder and MP3 player. During
execution, the mode transition may occur from the Video play mode to Video
phone mode if a call is received from the Interrupt task. Then, the control process



Embedded Software Design Methodology Based on Formal Models 315

Fig. 7. Software architecture of the UEM

Fig. 8. A multi-mode multimedia terminal application group (a) specification, and (b)
the control task specification (Color figure online)

suspends the dataflow tasks of the Video play mode and enables 4 dataflow
processes, H264 decoder, x264 encoder, G723 Decoder, and G723 Encoder. After
the call is completed, it resumes the suspended dataflow processes of the Video
play mode. We can perform model checking to verify the behavior of the control
task satisfies the specification at compile time.

In case there are multiple application groups, we can add another layer as
shown in Fig. 7. At the top level, each application group is represented by an
extended KPN. A process in the KPN (Kahn process network) [8] model allows
only blocking read, which makes the KPN determinate, meaning that the exe-
cution result is independent of the execution order of processes. To allow shared
resources among KPN processes, we extend the KPN with library processes,
similarly to the extended SDF model with library tasks.
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3.1 Dataflow Task Code Template

In the proposed methodology, a programmer is supposed to specify the system
behavior following the software architecture of Fig. 7, starting from dataflow
specification of tasks at the bottom layer. As a unit of mapping and scheduling,
a dataflow task is a sequential program that should be written with the UEM
APIs, based on the coding guidelines defined in the UEM. Figure 9 shows the
task code template that consists of three sections, TASK INIT, TASK GO, and
TASK WRAPUP. In the current implementation, it is assumed that the task
is written in C programming language that is most popular for embedded SW
design.

TASK_INIT {/* task initialization code */  
 port_in = PORT_INITIALIZE(TASK_ID, “in”);  

   port_out = PORT_INITIALIZE(TASK_ID, “out”);} 
TASK_GO { 
   MQ_RECEIVE(port_in, …)
   /* main body of the task */ 
 MQ_SEND(port_out, …) }
TASK_WRAPUP {  /* task wrapup code */  } 

Fig. 9. A code template of a dataflow task that uses generic APIs for communication

The TASK INIT section contains the code that will be executed in the ini-
tialization stage of the task such as initialization of internal variables and data
structures associated with ports. The TASK GO section is the main body of
the task that will be executed repeatedly when it is scheduled by the operat-
ing system. The TASK WRAPUP section is executed just before the task is
terminated.

In the TASK GO section, the task reads the input data from its input ports,
perform computation, and sends the output data to the output ports. To make
it independent of the hardware architecture and FIFO channel implementation,
generic APIs are defined for communication via ports and port initialization as
shown in Table 1.

The UEM assumes that there is a hidden supervisor that manages the tasks.
We define a set of services that a task can request to the supervisor using a
special API, SYS REQ. The first argument of this API is the service name.
Remind that a task may vary its internal behavior depending on the mode of
operation in the extended SDF model as explained in the previous section. To
change its internal definition, a task can ask the supervisor of what is the current
mode; Mode = SYS REQ(GET CURRENT MODE NAME). A designated task
can set the mode by using the following API; SYS REQ(SET MTM PARAM,
task name, var name, value).
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Table 1. UEM application programming interfaces

Task type API Description

Common PORT INITIALIZE(task id,
port name)

Initialize a port

MQ RECEIVE(channel id, buffer,
buffer length)

Read data from the FIFO-type channel

MQ SEND(channel id, buffer,
data length)

Write data to the FIFO-type channel

MQ AVAILABLE(channel id) Check if there is data in the input FIFO

BUF RECEIVE(channel id, buffer,
buffer length)

Read data from the buffer-type channel

BUF SEND(channel id, buffer,
data length)

Write data to the buffer-type channel

SYS REQ(service name, arguments) Request a service to the hidden
supervisor. The first argument of the
API designates the service name

Dataflow LIBCALL(master port,
function name, function arguments)

Call a library function from the library
task connected through the library
master port

Library LIBFUNC(return type,
function name, function arguments)

Define a library function

3.2 Control Task Code Template

A control task is supposed to specify its internal behavior with an FSM. The
FSM code template is defined as shown in Fig. 10, which can be automatically
generated from the graphic FSM editor in our design environment. In each state,
the programmer may use SYS REQ API to define the control action, which is
similar to action scripts of the statechart in STATEMATE [9].

The control services that a control task can request to the supervisor are listed
in Fig. 11. The first category is to control the execution status of an application

while(1){ 
    MQ_AVAILABLE(all_ports);                                          // 1-1. Check the existence of a new event 
    SYS_REQ(CHECK_TASK_STATE, “task_name”, …); // 1-2. Check the termination of a task 
    if(available) MQ_RECEIVE(selected port);                   // 2. read the new event 
    if(some event or task state is triggered)    break;          // 3. Break a loop to make transition
} 
switch( current_state ) { 
    case ID_STATE_S1: 
        if(selected port==1 && input data==2) {                    // 4. check the transition condition
            current_state = ID_STATE_S2; 
            SYS_REQ(SET_PARAM_INT, “task_name", “param_name", data, 0, 0); 
        }                                                                 // 5. send the control message through the system port
        break; 
    case ID_STATE_S2: { } 
    case ID_STATE_S3: { }  
     ….
} 

Fig. 10. An example code template of a control task in UEM
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and the second category is to change or monitor a specific parameter of an
application. The third category is defined to specify the timing requirements of
the system explicitly.

Category APIs Description

Execution 
Status  
Control

SYS_REQ(RUN_TASK, task_name); Run the task 
SYS_REQ(STOP_TASK, task_name); Terminate the task 
SYS_REQ(SUSPEND_TASK, task_name); Suspend the task 
SYS_REQ(RESUME_TASK, task_name); Resume the task
status=SYS_REQ(CHECK_TASK_STATE, task_name); Get the current state of the task

Parameter 
Control

p_value = SYS_REQ(GET_PARAM_INT/FLOAT, task_name, param_name); Get the value of a task parameter 
SYS_REQ(SET_PARAM_INT/FLOAT, task_name, param_name); Change a value of a task parameter 

Timing  
Control

SYS_REQ(SET_THROUGHPUT, task_name, thr_val); Set throughput requirement 

SYS_REQ(SET_DEADLINE, src_task, dst_task, lat_val); Set deadline requirement to the task 
chain (src_task to dst_task)

Fig. 11. Control actions that a control task can request to the supervisor

3.3 Library Task Code Template

Figure 12 illustrates code templates associated with a library task. A library
task has two separate files associated: a library header file and a library code
file. The library header file declares the library functions, while the library code
file defines the function bodies. The prototype of a library function is defined by
a directive, LIBFUNC(), that will be translated into a regular function definition
automatically by the CIC translator.

T1

T2

L1

extern LIBFUNC(void, init, void); 
extern LIBFUNC(void, wrapup, void); 

extern LIBFUNC(int, getValue, void); 
extern LIBFUNC(void, setValue, int value); 

static int my_value; 

LIBFUNC(void, init, void) { .. } 
LIBFUNC(void, wrapup, void) { .. } 
LIBFUNC(int, getValue, void) { 

return my_value; 
} 
LIBFUNC(void, setValue, int value) { 

my_value = value; 
} 

CIC Library Header File (.cicl.h)

CIC Library Code File (.cicl)

TASK_GO { /*T2 task code */ 
: 
val = LIBCALL(MP1, getValue);
LIBCALL(MP1, setValue, newVal);
: 

} 

MP1

Fig. 12. Code templates associated with a library task

A library task defines init and wrapup functions like a normal SDF task for
initialization and finalization of the library task. A caller task uses LIBCALL
directive to call a library function as shown in Fig. 12. The first parameter of
LIBCALL() is the name of the library master port, the second is the function
name, and the others are the arguments. If the function has a return value, it
can be taken from the LIBCALL invocation. Note that pointers may not be used
for arguments and return values to make the SDF graph portable to a variety
of target architectures. For shared address space architectures, however, the
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developer may use pointers for efficient implementation, giving up portability.
A library task may have a persistent internal state, simply called a state. Then
the access to the state should be protected by synchronization primitives, Lock()
and Unlock() to avoid data race problems.

4 Automatic Code Generation

Based on the mapping and the scheduling result, we can generate the target
code automatically from the UEM assuming that the task code inside each node
of a SDF graph and the control task is given and correct. It remains as a future
work to check the correctness of each task.

We can synthesize the communication and interface code between tasks as
well as the scheduling code automatically. Since the HW/SW interface code and
the task synchronization code are particularly error-prone, automatic synthesis
of those codes will alleviate the burden of the programmer significantly. More-
over, by keeping the SDF semantics, the synthesized code is guaranteed to be free
of buffer overflow and deadlock error. Then, functional verification of embedded
software can be performed by verifying the functional correctness of each task
only. Since each task is a sequential code, we can use the state-of-the-art verifi-
cation techniques of a sequential code, which is complementary to the proposed
methodology.

Another benefit of automatic code generation from the UEM is that we can
add extra software modules to enhance the reliability or the safety of the soft-
ware. Even though the software is designed based on the UEM without consid-
eration of any possibility of hardware failure, we apply fault-tolerant techniques
to insert extra codes to the generated target code, while satisfying the real-time
requirements and the resource constraints.

If the efficiency of the automatically generated code is much worse than the
manually optimized code, people may prefer manual coding even with the higher
risk of error to automatic code synthesis because embedded systems are usually
cost-sensitive. Since the internal code of each task is assumed to be optimized, the
overhead will be associated with inter-task communication if exists. For efficient
code generation, we may use several techniques that have been developed to
minimize the buffer size when constructing a static schedule of an SDF graph
[10,11].

Note that code generation is specific to the system architecture that runs the
application. Then a key challenge in the proposed methodology is how difficult
is to make the UEM compiler to synthesize the software automatically for a
given architecture. If the difficulty of making the UEM compiler is higher than
that of developing the software manually for a given architecture, the proposed
technique will be of no use. For UEM compilation, following the well-established
procedure of traditional compilation, we separate the platform-independent part
and the platform-dependent part of UEM compilation. By pre-defining the HW-
specific interface as software component libraries, we simplify the platform-
dependent part maximally. From our experience, we expect that it will take
less than a month to make a UEM compiler for a new hardware platform.
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5 Preliminary Experiments

The proposed methodology has been applied to the development of a paral-
lel embedded software design framework, called HOPES [12]. Specification and
parallel scheduling of the MMMT application group in Fig. 8(a) can be found
in [12]. The reference also presents the scheduling and mapping result of a lane
detection algorithm for a CPU-GPU heterogeneous system. In this section, we
present two more examples that use library tasks.

5.1 A Cryptographic System

Figure 13 shows the captured screen of HOPES that specifies a cryptographic
system following the UEM software architecture. The pink task represents two
dataflow processes that have an extended SDF graph inside as displayed in the
figure. Two tasks, Encryption and Decryption, call library functions inside to
request the service of a library task, CrytographyLibrary that provides a set of
service functions for cryptography. The Control task activates the Sender task
if it receives a user input and the Sender task packs the input data, encrypts
the packed message, and transfers the encrypted message. If the control task is
triggered by an incoming message, it decrypts, unpacks and displays it.

Fig. 13. A cryptographic system example (Color figure online)

5.2 Cooperating Robots

Figure 14 specifies a multi-robot system where multiple robots accomplish a mis-
sion, sharing the information. The mission in this experiment is to find all color
papers scattered on the floor whose boundary is marked by black tapes. While
each robot searches color papers in the region independently, the found papers
are reported to the library task to avoid the redundant labor of robots. When all
papers are found, the robots go back to the initial position. Each robot performs
a group of applications that are depicted in the figure. An application group
consists of 8 tasks: 3 sensor tasks, 4 actuator tasks, and 1 control task.
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Robot #1

Robot #2

Robot #3

Fig. 14. A cooperative robots example (Color figure online)

In this experiment, three different types of robots used: TI Evalbot, NXT
LEGO, and iRobot Create. The robots have different hardware platforms and
operating systems as shown in Fig. 15. The library task is mapped to iRobot
Create that is most powerful. The figure also shows the distribution of code size.
In addition to the task code given by the user, the scheduler code, data structure,
and communication codes are automatically generated. In this example, the task
code takes about 21.9% of the total code size on average. Since the coding error
probability is known to be dependent on the code size in general, it can be said
that automatic code synthesis increases the design productivity of this control
oriented application.

TI Evalbot NXT LEGO IRobot Create

OS uC-OS III NXT-OSEK Linux (Ubuntu)

Proc. LM3S9B92 (80MHz) Atmel® 32-bit ARM (48MHz) Intel i3-4000M (2.4GHz)

Mem. 96KB 64KB 4GB

Total code size 2721 3301 2996

Given task code 580 604 787

Scheduler code 1171 928 931
Other code 970 1,769 1,278

Fig. 15. Robot hardware specs and synthesized code size
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6 Related Work

Defining a universal execution model is not a unique idea of the proposed
methodology. Several executions models have been proposed in various appli-
cation domains, to make the software independent of the hardware platform
and so portable to different types of architecture easily. A good example is
the AUTOSAR (AUTomotive Open Software Architecture) methodology that
defines the open and standardized software architecture for automotive electronic
control units [13]. AUTOSAR defines a set of APIs assuming that the software
components communicate with each other through virtual sockets. Thus, soft-
ware developer can design software using the APIs, without knowledge of the
underlying hardware platform, which is the same as the proposed technique
that provides the UEM APIs to the programmer. After mapping of software
components onto the ECUs is determined, the runtime environment supervises
the execution of software components and communication between them. Since
the AUTOSAR is not based on formal models of computation, however, this
methodology resorts to test-based methods for software verification.

The proposed methodology has been evolved from a hardware/software code-
sign methodology where the behavior specification of a system is made separately
from architecture specification. In this codesign methodology, formal models of
computations are widely for behavior specification since they make it easy to
explore the wide design space of architecture configuration and mapping of the
application to the processing elements. In case the hardware platform is given,
the design space is reduced to find an optimal mapping of the application and
the software code for each processing element is automatically generated based
on the mapping and scheduling decision. In other words, the HW/SW codesign
methodology becomes an embedded SW design methodology if the hardware
platform is fixed.

Nonetheless, the proposed methodology differs from conventional model-
based codesign environments such as Daedalus [14] and DAL [15]. While they
use the KPN model for behavior specification, the UEM model is defined as the
execution model at the operating system level, combining three different models
of computation. Its model composition rule is different from that of Ptolemy [16]
which allows hierarchical composition of models without limitation on the depth
of hierarchy and the kinds of models. Last, not the least, a major difference
between the codesign methodology and the software design methodology is the
granularity of the atomic actor. The atomic actor is as large as a function module
that can be implemented as a hardware component in the codesign methodology,
while it is larger in the software design methodology as a sequential task that is
a unit of mapping and scheduling at the operating system level.

7 Conclusion

For the design of embedded software, we have to ensure not only the functional
correctness but also satisfaction of several constraints on real time performance
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and resource limitation. In this work, a novel methodology to make an embedded
software correct by construction is proposed by designing embedded applications
with formal models of computation. Unlike the conventional model-based design,
formal models of computation are applied to the software architecture of tasks
that are mapped and scheduled by the operating systems. Thus, the proposed
software architecture can be understood as a universal execution model (UEM)
of underlying hardware platforms. We define the UEM by extending well-known
formal models, Synchronous Dataflow (SDF) for the computation parts of the
system and finite state machine (FSM) for the control structure of the system.
At the top level, an extended KPN (Kahn process network) is used to define the
interaction between applications. To be concrete, the SDF model is extended
to specify dynamic behavior by combining a FSM model, called MTM (mode
transition machine), to allow the use of shared resources by defining a new type
of task, called library tasks, and to express loop structures explicitly by defining
a loop super node to make the SDF model hierarchical.

There are several benefits to use formal models for software design. First, we
can detect critical design errors such as deadlock and buffer overflow by static
analysis of formal models. Second, we can estimate the resource requirement and
real-time performance at compile time. Last, not the least, we can synthesize the
target code from the UEM automatically minimizing the manual coding efforts.
By preserving the semantics of the UEM, the synthesized code will be correct by
construction. The key challenge lies in the expression capability of the proposed
UEM. Preliminary experiments with several non-trivial applications prove the
viability of the proposed methodology.

8 Epilogue

I am very grateful that I was involved in the development of Ptolemy [16] from
its birth during my doctoral study. Under the supervision of Prof. E.A. Lee, I
developed and implemented several models of computations and their hierarchi-
cal structure. Naturally, I became an advocate of formal models of computa-
tion and their mixture for system specification and simulation. After joining the
faculty of SNU (Seoul National University, Korea), I switched my gear to the
HW/SW codesign of embedded systems and had developed a HW/SW codesign
environment, called PeaCE (Ptolemy extension as a Codesign Environment) [17]
for the first 12 years. As the name implies, the baseline of the environment is
Ptolemy classic. Since our aim was to synthesize the system automatically from
the behavior specification, we had to restrict the use of formal models and their
composition. Our choice was to use SDF and FSM models since they offer good
static analyzability and the refinement path from specification to implementa-
tion is well established. To overcome the limitation of expression capability, we
have proposed several extensions to those models. The viability of the proposed
approach was proven with a design of a simple smartphone application.

As the number of processors integrated into a chip increases and platform
based design becomes popular, parallelizing software becomes more challenging
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than partitioning an application into hardware and software. Since the PeaCE
environment was not well engineered from the start, graduate students had dif-
ficulty of maintaining the environment. So we decided to develop a new design
environment, HOPES [18], from scratch, focusing on the development of paral-
lel embedded software based on the formal models of computation, keeping the
spirit of Ptolemy and PeaCE. Since a hardware component can be regarded as a
special processing element that can perform a designated task only, the HOPES
environment can be used as a HW/SW codesign environment. By increasing the
granularity of a task, it is easier to use formal models for behavior specification.
Another 12 years have passed. We are now renovating the HOPES environment.
Our goal is to make the HOPES environment as a software engineering tool that
can be adopted in the industries.

Acknowledgments. This research was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-
2016R1A2B3012662). The ICT at Seoul National University provided research facilities
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Abstract. The deterministic temporal behavior of a time-triggered computer
platform provides an ideal base for the implementation of a real-time control
system. The temporal predictability requires that the durations of the time-slots
for the execution of the control algorithms can be specified a priori at design
time. Since the indeterminism of state of the art hardware makes it difficult to
arrive at a tight worst-case-execution-time (WCET) bound for the execution of a
conventional control algorithm we propose to use anytime algorithms in a
time-triggered control systems. An anytime algorithm trades precision for exe-
cution time. In a real-time control system we would like to have both, good
algorithmic precision and a low response time—but these are conflicting goals.
In this paper we propose a novel method for the design of the slot length for the
execution of an anytime algorithm in a time-triggered control that on the one
side is sufficient to achieve the required precision and on the other side will not
introduce an extensive latency that has a detrimental effect on the quality and
stability of a closed-loop control system.

Keywords: Control systems � Time-triggered systems � Anytime algorithms

1 Introduction

In a cyber-physical control system, a cyber-system interacts periodically with a con-
trolled object in the physical world in order to realize the desired behavior of the
controlled object. These periodic interactions occur at two different periodic instants:
(i) the point of observation (or sampling point) where the cyber system observes the
state of the controlled object, and (ii) the point of actuation, where the cyber-system
sets the state of controlled variables in actuators that act in the physical world in order
to influence the future physical behavior of the controlled object.

In most cases, the cyber-physical control system is realized by a distributed com-
puter system consisting of node-computers with sensors, node-computers that execute
control algorithms, and node-computers with actuators. The node-computers exchange
messages using a real-time communication system. In a time-triggered (TT) control
system, where a global notion of time is available at all node-computers, it is assumed
that the periodic sampling instants, the periodic actuation instants and the periodic
instants when messages are sent and received by the TT communication system are
specified a priori on the global time-line. In most cases, the temporal distance, i.e., the
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duration, between two successive sampling and two successive actuation points (also
called the sampling time) is assumed to be constant in a given mode of operation.

We call the sequence of all computational and communication actions between a
sampling point and the corresponding actuation point a frame. In a frame, RT
(real-time)-transactions [1, p. 24] have to be executed. The constant duration between
the end points of a RT transaction (i.e. the sampling instant and the actuation instant) is
called the response time of a RT-transaction.

In a distributed real-time system, a RT-transaction consists of a sequence of
computational actions and communication actions. The a priori specification of the
behavior of the time-triggered communication system provides the start instant and the
termination instant for every communication action. It follows that a computational
action within a node computer must deliver a result within an a priori specified global
time interval, the time-slot for a TT computation action. It is a challenge in the design
of a hard real-time system to develop algorithms that meet this temporal requirement.
These algorithms must compute the best answers they can provide in the restricted time
that is available.

There are two possible approaches to tackle this challenge: the use of WCET
(worst-case-execution-time) algorithms or the use of any-time algorithms.

Many algorithms are required to run to completion before they deliver a useful
result. We call these algorithms WCET (worst case execution time) algorithms. In the
WCET approach algorithms are developed where the worst-case execution time
(WCET) bound for the algorithm execution on the given hardware base can be
established a priori (at design time) for all data points of the input domain. This
produces a conservative design, because the WCET approach has to fight two enemies,
an enemy from below and an enemy from above. The enemy from below refers to
temporal indeterminism that is inherent in modern hardware architectures [2]. The
enemy from above refers to algorithmic issues, e.g., the complexity of a computa-
tionally expensive algorithm that makes it hard or even impossible to establish a WCET
bound for all data points of the given input domain.

In the anytime approach [3], the algorithm must guarantee to provide a satisficing
result before the deadline and will continually improve this result until the deadline is
reached. A result is a satisficing result [4] if it is adequate (but not necessarily optimal)
in the particular situation and meets all safety assertions. An anytime algorithm consists
of a core segment followed by an enhancing segment. The execution of the core
segment is guaranteed to provide a first satisficing result quickly. Continuous
improvements of the satisficing result are provided by the repeated execution of the
enhancing segment until the deadline is reached.

In the anytime approach, a WCET bound for the core segment must be established.
As a consequence, the core segment must deploy algorithms that are amenable to
WCET analysis [5]. The size of the time-interval between the average execution time of
the core segment and the WCET of the core segment is used to improve the quality of
the result. The WCET bound for the core segment can be derived either from an
analytical analysis of the core-segment code [2] of the algorithm or from experimental
observations of the execution times of the algorithm in the given application context (or
from both). In a safety critical system a violation of this WCET bound is tantamount to
a serious failure that must be masked by a redundant mechanism.
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In real-time control systems, there is a tradeoff between the precision of an algo-
rithm and the response time (latency) of the control system. It is the purpose of this
paper to present a method for the design of the durations of the time-slots for any-time
algorithms in distributed time-triggered real-time control systems that optimizes this
tradeoff. The paper starts with a short introduction of time-triggered control systems
and model-based control in Sects. 2 and 3. In Sect. 4, we discuss anytime algorithms
and introduce the concept of the precision profile of an anytime algorithm. Section 5
presents a method for finding the optimal duration of the time-slots in a time-triggered
control system. The paper closes with a conclusion in Sect. 6.

2 Time-Triggered Systems

2.1 Basic Concepts

A computer system is time-triggered (TT) if the periodic signals for starting a compu-
tational action or a communication action are derived from the progression of the global
physical time. TT systems require the availability of a—preferably fault-tolerant—
global time base of specified precision. In a frame-based sampled system, the duration of
the RT transactions corresponds to the duration of a frame. An a priori supplied time
schedule that is contained in the TT operating system of every node specifies at which
periodically recurring instants within a frame the trigger signals for the start of com-
munication and computational actions within a RT transaction have to be generated by
the operating system of the node.

In a TT communication system, data is exchanged according to state semantics
(i.e., similar to the semantics of a variable in a programming language). In state
semantics outgoing data is not consumed on reading and a new version of incoming
data overwrites the old version. Since there is no message queue if the communication
is based on state semantics, the duration of a TT communication action is constant and
known a priori. Examples for TT communication protocols are the time-triggered
protocol (TTP) or TTEthernet [1, p. 183].

The advantages of TT real-time systems are the guaranteed response time of all
real-time transactions and the support of composition in multi-criticality systems. In a
TT system, any indirect temporal interference of functionally independent RT tasks of a
multi-criticality system is avoided by design. The indirect temporal interference
between RT tasks in a priority driven event triggered system has a significant impact on
the performance of all but the highest priority task and thus prevents the smooth
temporal composition of the tasks.

The time-schedule of a TT system must specify the durations of the time-slots for
the communication and computational actions. If the size of the messages and the
bandwidth of the communication system are known, it is straightforward to calculate
the length of the time slot for a communication action. The determination of the length
of the time slot for the computational actions is more involved and is discussed in this
paper.
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2.2 An Example

Consider the example of a driver assistance system depicted in Fig. 1. At a periodic
instant derived from the progression of the global time (the start of a new frame), the
laser node, the camera node and the radar node observe the environment simultane-
ously. After preprocessing of the acquired raw data in the sensor nodes, the prepro-
cessed data is sent to a sensor fusion and trajectory-planning node to calculate
setpoints for the engine controller, the steering controller and the brake controller in
order that the planned trajectory is carried out in the near future. A monitor node
accepts the acquired data and the proposed trajectory to check whether all safety
assertions are satisfied. The time-triggered temporal control structure of this data flow
graph is developed at design time and is encoded in the time-schedule that is stored in
the operating system of every node of this TT distributed system.

The accuracy of the scene analysis of a vision system depends on the available time
budget for processing the raw data [6]. The longer the time-slots allocated to the
computational actions in the three sensor nodes, the better the analysis accuracy.
However, in a highly dynamic environment, such as in this example of a driver
assistance system, a long duration of the time-slots reduces the accuracy of the model
predictions, since the world may have changed since the last sampling point. These
conflicting requirements on the length of the time slot are investigated in the following
section.

3 Model-Based Control

3.1 Basic Concepts

A control system consists of a controlled object (often called the plant) and a controller
that observes the controlled object at the beginning of every periodic frame and outputs
controller outputs (e.g., the set points for the actuators) to the controlled objects at the

Fig. 1. Example of a driver assistance system
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end of a frame. In a model-based control system (MBC), the controller contains an
approximate model of the behavior of the controlled object in its open environment.
This model is used for calculating the controller outputs during each frame.

The state-space of the model in the controller encompasses four types of variables

• Independent variables of the control system that are set by the operator. The values
of these variables specify the objectives and constraints of the control system and
are thus determined by an authority outside the control system.

• Independent variables of the controlled object that are set by the controller (i.e. the
controller outputs or setpoints for the actuators). The model in the controller cal-
culates new values of these variables during each frame.

• Observable state variables—observable variables denoting the state of the con-
trolled object and the state of the environment at the instant of observation. i.e. the
start of a frame.

• Hidden state variables that are part of the model in the controller. The hidden state
variables are of eminent importance, since they carry the knowledge acquired in one
frame to the following frame.

At the instant beginning of a frame, let us say framek, of a periodic frame-based control
system, the observable state variables are observed by the controller. During a frame,
new values for the independent variables of the controlled object (the setpoints) and
predicted (anticipated) values of the observable and the hidden state variables are
calculated by the model in the controller for the instant end of framek (that is also the
beginning of framek+1). The difference between the predicted value of an observable
state variable at the end of framek and the observed value of this variable at the end of
framek, the model error, is an important input to the model for the calculations of the
controller outputs in the following frame. After every frame, the prediction horizon is
shifted one frame further into the future. For this reason model-based control is
sometimes called receding horizon control.

3.2 An Example

The following simple example of an open system, the temperature control of the liquid
in a reservoir for water purification, is introduced in order to clarify the preceding
concepts. The temperature of the liquid in the reservoir can be raised by setting the
actuator valve that controls the flow of hot water through a pipe system that is con-
tained in the reservoir. Environmental dynamics, e.g., wind or rain, lower the tem-
perature of the liquid. It is the objective of the control system to keep the variable
temperature of the liquid in the reservoir at a preset value.

In the model of this control system, the single physical quantity temperature of the
liquid is thus represented by three different variables:

tsk: the desired (but in some operational situations not achievable) value of the
independent variable temperature submitted by the operator for the instant
beginning of frame k.
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tok: the value of the variable temperature observed at the instant beginning of
frame k.

tpk: the anticipated value of the controlled variable temperature predicted by the
model for the instant beginning of frame k (which is also the end of frame k−1).

We call the difference

mek ¼ =tpk � tok=

the model error mek at the instant beginning of frame k.

3.3 Model Error

The model error is caused by two different phenomena:

(i) Reality has changed since the last instant of observation. The impact of uniden-
tified or unanticipated processes in the environment (environmental dynamics) of
an open system increases with the length of a frame (and the timeslots allocated to
a computational action).

(ii) Imperfections of the model: The model is not a true image for the behavior of
reality. For example, nonlinearities that exist in reality have not been properly
modeled.

The predictive power of the model can be improved if sensors for the observation
of additional state variables in the environment are installed. If, in the above example, a
temperature sensor for the outside air and a rain-sensor are provided, some effects of
the environmental dynamics can be considered in the model. If the model were perfect
in anticipating the future behavior of the controlled object—i.e. a true image of the
behavior of the controlled object in the given open environment—then the model error
would disappear. However, a perfect model of an open system is unattainable [7, 8].

The model error will increase if we move further away from the instant where the
observable state variables of the system have been observed. Figure 2 depicts a
qualitative model error profile, i.e. the dependence of the standard deviation of the
model error as a function of the duration of a frame.

Fig. 2. Model error profile as a function of frame duration.
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4 Anytime Algorithms

4.1 Basic Concepts

The execution time slot given to a WCET algorithm must be large enough to allow the
algorithm to run to completion for all data points of its input domain on the available
hardware base, otherwise a timing error may occur occasionally. Since, in most cases,
the (data dependent) difference between the WCET and the average execution time is
considerable [2], the WCET approach results in a conservative design with long frame
durations. During the long frame duration, the size of the model error can become
significant.

In 1991 Liu et al. [9] introduced the concept of imprecise computations in real-time
systems in order to avoid the excessive frame durations required until a precise (final)
result of a WCET algorithm is available. In some real-time scenarios it is preferable to
provide algorithms that generate an imprecise result that is available at an earlier instant.

An anytime algorithm is an algorithm that returns an imprecise, but still useful
result whenever it is interrupted after a mandatory minimal duration. The precision of
the result depends on the amount of computation the algorithm is able to perform in the
available time-slot until interruption. Dean and Boddy [10] introduced the term anytime
algorithm in 1988 in the context of their work on time-dependent planning in the area
of Artificial Intelligence.

A good example for an anytime algorithm is Newton’s method for finding suc-
cessively better approximations for the roots of an equation. Anytime algorithms are
widely used in search problems or scene analysis problems where the determination of
a WCET is infeasible.

There have been a number of proposals [11–14] to deploy anytime algorithms
instead of WCET algorithms in the domain of real-time control. Proposals for the
design of anytime algorithms in control systems can be found in this literature.

4.2 Precision Profile

Characteristic for an anytime algorithm is the precision error of the result at the instant
of interruption. In a simple system the precise result is the single numerical value that
is provided if the algorithm runs to completion. The precision error (PE) is then the
difference between the result provided at the instant of interruption and the precise
result. The precision profile of an anytime algorithm depicts the dependence of the
precision error on the provided computational resources. In most cases, the precision
error is significantly reduced in the first few iterations of an anytime algorithm.

In a complex system, where the result is a data structure comprising many vari-
ables, the concept of precision error is more involved. It requires a careful analysis of
the utility of the result in the context of the given application to arrive at a reasonable
definition of the precision error.

The performance of the available computer hardware determines the mapping of
the computational resources to the domain of real-time. If the performance of the
hardware platform for the execution of the anytime algorithms is known, then the
precision profile can be presented as a function of real-time, as shown in Fig. 3.
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5 Design Method

In this final Section we propose a method for the determination of the duration of the
time slot for a computational action in a time-triggered control system.

5.1 Precision Profile and Model Error Profile

After an anytime algorithm for a control system has been developed, the first step is
concerned with the determination of the precision profile of the anytime algorithm on
the provided execution platform and the error profile of the model in the given
application context. These profiles must be established experimentally by executing the
algorithm repeatedly with different input data for different slot durations.

At the beginning of each slot, the values of all input-data elements of the model
must be collected and stored by the monitor system of Fig. 1 for later off-line analysis.
Furthermore, the monitor system collects the predicted and the observed values of the
model variables at the end of each slot.

The collected data is then analyzed off-line as follows: The collected input data set
of the model at the beginning of a slot is used to calculate off-line (without real-time
constraints) the precise result of the anytime algorithm for the prediction of the values
of the model variables. The precise result is a result where the anytime algorithm has
run to completion or an a priori specified small precision bound of the result has been
verified.

The difference between this precise result of the anytime algorithm and the result
delivered by the anytime algorithm at the point of interruption (at the end of the given
slot) yields to the precision error of the anytime algorithm for this input data set.

The difference between this precise result for the predicted value of a variable at the
end of a slot and the observed value of this variable at the end of a slot yields the model
error. By probing a large number of points of the input domain of the algorithm in the
given application a slot error set of the precision error and model error can be
experimentally established for the given slot duration.

Fig. 3. Precision profile of an anytime algorithm as a function of slot duration for a
computational action.
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This procedure is repeated for different slot durations in order to determine the slot
error sets for a plurality of slot durations. We call the totality of all slot error sets the
precision error set of the anytime algorithm in the given application context.

5.2 Optimal Slot Duration

If we extend the slot duration, on the one side, the precision error is expected to be
reduced, but, on the other side, the model error is expected to be increased. There must
be an optimal slot duration that minimizes the total error, i.e. the sum of the precision
error of the anytime algorithm and the model error in the given application context. To
find the optimal slot duration where the total error is minimized we analyze the
precision error set by statistical techniques.

In a simple control system, such as the example of the water purification system of
Sect. 3.2, the application of standard statistical techniques may suffice for the analysis
of the experimentally collected precision error set. If the standard deviation r of the
precision error of an anytime algorithm follows the form

r tð Þ ¼ A exp ð�B tÞ

where t represents the slot duration of the enhancing segment of the anytime algorithm,
then the parameters A and B can be chosen to find the best fit to the experimental data.

In a complex control system, such as the driver assistance system of Fig. 1, at first
an application specific measure for the control quality of a trajectory has to be estab-
lished. This measure will be a function of a number of application specific parameters,
such as safe distance from obstacles, speed of traversal, etc., that characterize the
optimal trajectory. The analysis of the precision error set will require advanced sta-
tistical data analysis techniques that take account of all these parameters in order to find
the optimal slot duration (Fig. 4).

Fig. 4. Optimal slot duration
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6 Conclusion

In a time-triggered control system the durations of the time-slots for the computational
actions must be specified a priori. There are two contradicting requirements that must
be considered when devising these durations: on the one side, the durations should be
small in order to minimize the model error, on the other side, the duration should be
large enough in order that a satisficing result can be provided for all data points of the
input domain. The concept of an anytime algorithm, that is guaranteed to provide a first
satisficing result for all data points of the input domain and improves this result
iteratively until the deadline arrives is ideally suited for the application in
time-triggered control systems. This paper presented a method for the selection of the
slot durations in time-triggered control systems.
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Abstract. Retail is one of the largest economic sectors, accounting for
almost $5 trillion in sales in the US alone. With the proliferation of
e-commerce, mobile devices, and digitally engaging shopping journeys,
retail is going through profound transformations that will change every-
one’s life. The future of retail will inevitably integrate online and in-
store shopping, and promises to enhance customers’ shopping experience.
Physical stores, which still account for 85% of retail sales, and 95% of
grocery sales, must be repositioned to coexist with online and mobile
shopping channels.

Autonomous retailing is a retail process where a physical store is
aware of all elements involved—products, people, and activities—without
explicit help from human workers. Autonomous stores allow shoppers to
pick up products and walk out of the store, without going through a
checkout lane. Although the concept is more than a decade old, Amazon
Go, a recent effort to realize frictionless checkout, brings it a huge step
closer to reality. Autonomous stores are an example of cyber-physical-
human systems that incorporate advanced artificial intelligence (AI)
through abound embedded sensors and computation. Natural human
activities bring significant challenges to system provisioning, sensing, and
inference, but also provide input for the system to learn from and adapt
to. In this article, we discuss the design space and technical challenges of
autonomous retailing and motive it as a frontier of cyber-physical-human
system research.

1 Introduction

In 1916, Piggly Wiggly opened the first self-serving supermarket in Memphis,
TN. Shoppers no longer needed to ask store workers behind the counters to
retrieve every product for purchasing. Friction in the shopping process, caused
by factors such as delays and psychological barriers due to the inability to exam-
ine and compare products, were greatly reduced. Merchants could offer greater
product selection and manage larger store footprints with less workers. In the
next 100 years, various technologies, such as shopping carts, Universal Product
Code (UPC) bar codes, credit cards, self-checkout counters, and mobile pay-
ment, were invented and adopted to further reduce shopping friction and store
efficiency. But, the final bottleneck of checking out at the end of shopping trips
remained.
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In 2018, Amazon opened its Amazon Go store in Seattle WA. In Amazon
Go, all activities of shoppers are monitored by the store. Whenever a product is
picked up from the shelf, the store knows what exactly it is and who picks it, a
change of ownership is logged right away. At the end of the trip, no store worker
tallies the amount or checks the basket. Shoppers simply walk out of the store
with a mobile payment confirmation on the phone. “No lines, no checkout...”

We call this shopping experience where sales no longer require the involve-
ment of sales staff Autonomous Retailing. Autonomous retailing is not a new
concept. For example, Metro AG tested a RFID-enabled autonomous checkout
store in 2003 [16]. IBM illustrated a similar experience in a RFID commercial
in 2006. However, Amazon Go is the first known attempt to bring the concept
to reality at scale. Since then, several retailers and technology providers, such
as BingoBox,1 Alibaba Tao Cafe,2 and Standard Cognition,3 have demonstrated
similar proofs of concept. As e-commerce continues to disrupt brick-and-mortar
stores with convenience, choice, and savings, the latter must reinvent themselves
through digital transformations. In other words, a brick-and-mortar store must
focus on reducing friction and offer a superb experience to its shoppers, through
sensing, intelligence, and actuation. Future stores will become cyber-physical
environments for human users.

Due to physical constraints and human behavior dynamics, autonomous
stores must employ a large number of sensing and processing units. It faces
all challenges that are intrinsic to TerraSwarm-like systems [2]. Furthermore,
the level of correctness required by retail transactions, together with the possi-
bilities of human exploitation of potential vulnerabilities, make them a pinnacle
of Cyber-Physical-Human system ambitions, as much as autonomous vehicles.

In this article, we discuss autonomous retailing from shopper and technol-
ogy perspectives, such as different levels of autonomy, core design space, and
critical technology enablers. Although full autonomy is still hard to achieve at
scale with its current cost structure, we believe subsets of those technologies
can already help brick-and-mortar retailers reduce operation cost and improve
shopper experiences.

2 Levels of Autonomy

Retailing is about a single relationship change, which we call Transfer Of Owner-
ship (TrOO) – the ownership of a product changing from the store to a shopper
and, occasionally, in the reverse order, if the shopper changes her mind. Cur-
rently, TrOO only happens at the checkout counter, assisted by store workers.
This creates the main bottleneck in physical shopping, and is the top complaint
in shopping experience surveys.

1 “In China, Amazon’s ‘store of the future’ is already open,” (https://www.techinasia.
com/china-version-amazon-go-bingobox-funding).

2 “Alibaba’s self-service Tao Cafe takes e-shopping offline,” (http://news.xinhuanet.
com/english/2017-07/11/c 136434967.htm).

3 https://www.standardcognition.com/.

https://www.techinasia.com/china-version-amazon-go-bingobox-funding
https://www.techinasia.com/china-version-amazon-go-bingobox-funding
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There are many ways to mitigate and ultimately remove this bottleneck,
and give shoppers increasing freedom in the stores. Just like self-driving cars,
autonomous retailing is not an “all-or-nothing” concept. Depending on how much
cognitive load, deliberate shopper involvements and shopper-staff interaction
take place, there is a spectrum of experiences and solutions. We classify them
into six Levels of Autonomy, as shown in Table 1.

L0 [Monitored Autonomy]: Self-checkout stations are common in stores
today. They facilitate the same scan and pay process, conducted by store work-
ers in the past, but now by shoppers themselves. Typically, there is still a store
worker that oversees 4 to 6 self-checkout stations to make sure all items are
scanned, to check for age-limited items, and to provide any necessary help. Dur-
ing busy times, shoppers still need to wait in lines for an available station, espe-
cially since shoppers are much less efficient at using these stations than store
workers using regular checkout machines are.

L1 [Deliberate Autonomy]: Instead of lining up at a checkout station at
the end of a trip, shoppers scan products in aisles while purchase decisions are
made. This is sometimes called scan and go. In typical cases, the scanner can be
a dedicated store device or consumers’ own mobile phones. Whether a shopper
indeed scanned every purchased product is not known automatically. At the end
of the trip, store workers will by default check baskets before shoppers leave the
store to ensure correctness. This checking can be a full audit or on a random
subset of the products. The store environment by itself, cannot differentiate who
scanned every product and who, intentionally or unintentionally, forgot some.

Although bar code scanning is the predominate form in scan-and-go imple-
mentation today, the notion of scanning can be generalized to include any delib-
erate showing of a product to a device. Products can be identified, through
optical tags, such as bar code, QR code, or invisible watermarks (DW Code) [8],
through RF tags such as RFID or NFC, or directly through the shape and look
of the packaging by computer vision.

L2 [Assisted Autonomy]: At this level, the store can recognize certain human
activities automatically. Although shoppers still need to scan every product they
wish to purchase, the store can detect unscanned items in shopping baskets and
remind shoppers accordingly. At the end of a trip, if the store believes that
all products have been scanned properly, the shopper can walk out without
being checked. Otherwise, the shopper will be routed to a store worker. With
the reminders assisted by the stores, the cognitive load of remembering to scan
every product is reduced.

L3 [Partial Autonomy]: When the store gets smarter, it can recognize and
track certain products and their belongings throughout the store. Shoppers’
deliberation of showing products to devices is reduced. As long as a shopper
only visits certain part of the store, or uses certain shopping devices (like smart
shopping carts), no worker auditing is necessary at the exit.

L4 [Conditional Autonomy]: At this level, the shopping and checkout pro-
cesses are fully automated, as long as shoppers do not intentionally cheat the
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Table 1. Levels of autonomous retailing

Level Description TrOO Characteristics

L0 Monitored
Autonomy

Scanning under
worker
monitoring

Current self-checkout requires
shoppers to go to the checkout
counters and scan each product
under the monitoring of store
workers

L1 Deliberate
Autonomy

Unmonitored,
deliberate
scanning

Shoppers are equipped with
scanning devices, such as
hand-held bar code scanners or
consumer phones, and are
expected to deliberately scan
each product before putting
them into baskets. Their baskets
are checked before leaving the
store for confirmation

L2 Assisted
Autonomy

Getting
reminded if not
scanned

While scanning every product is
still required for correct
checkout, the store system
assists the shoppers by
reminding them if any product
is not scanned

L3 Partial
Autonomy

Certain TrOO
automated

The store is partially equipped
with technology capable of
recognizing products
automatically without shoppers
having to manually scan them.
As long as shoppers only pick
up items from a particular
subset of products and/or from
particular areas within the
store, the checkout is automatic
without auditing

L4 Conditional
Autonomy

All TrOO
automated
under
conditions

Shoppers enjoy autonomous
checkout in ordinary situations
where shoppers do not
intentionally trick or cheat the
system. Examples of conditions:
limitations on the number of
concurrent shoppers, on product
selections or packaging, etcetera

L5 Full Autonomy All TrOO
automated
always

The store charges shoppers
correctly under all conditions,
even when shoppers conduct
malicious exploitations

system. The correctness of checkout may still depend on whether or not shoppers
are honest, and the automated checkout process may impose limitations on the
range of available products. No stop-and-check at the exit by store workers is
necessary in most cases. Shopping will feel like picking up items from one’s own
pantry room.
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L5 [Full Autonomy]: This is the ultimate autonomous retail capability where
shop lifting is virtually impossible. All ownership changes are understood and
reflected in the transactions.

Remarks:

– This classification is abstract by design, irrespective of implementation
details. For example, difficulties vary greatly depending on whether prod-
ucts are tagged with unique identifiers or whether users are assisted with
additional devices.

– Although it may be easiest to think in terms of a grocery store example with
shelved products, shopping carts, and baskets, the same key elements are
present in most types of open retail spaces.

– Levels of autonomy tie closely to the type of products that the store sells. For
example, computer vision is not good at differentiating different instances of
clothes with high accuracy yet. Achieving L3 and above at apparel stores can
be very different from how this may be achieved at convenience stores.

– There are two major quantum leaps in this classification. One is to reduce and
remove product scanning, between L2 and L3; and the other is to increase the
tolerance of malicious behavior, between L4 and L5. Amazon Go appears to
be at L4 and is approaching L5, considering its limited store size and product
selection.

– Scanning serves two purposes: one is to identify the product, and the other
is to associate a product instance with the customer who intends to buy it.
By eliminating the scanning step, the store must identify and track shoppers
during their entire visit, and any shopping activity that is related to the
handling of products must be understood.

3 Cyber-Physical Intelligence

Autonomous retailing at L2 and beyond are clearly cyber-physical environments
that need sophisticated sensing and processing capabilities to function correctly.
In this section, we discuss the key tasks that must be performed by autonomous
stores, and the technologies that enable them. We use grocery shopping as an
example scenario throughout, but the tasks and technologies apply to other types
of retailing as well.

Retailing is concerned with three key pieces of information, as shown in
Fig. 1: the identity of a shopper (and ultimately her payment account), the type
or model of a product (thus its price), and the possession/ownership relationship
between customer and product. Where and how these three pieces of information
are established, and how accurate they are, reflect the intelligence level of the
store and shoppers’ experience in it.

Recent advances in autonomous retailing are, to a great extent, empowered by
advances in deep learning [5] and computer vision. It is possible for deep neural-
networks (DNN) to classify and recognize faces, objects, and human activities
at high accuracy and speed [3,10]. However, computer vision has its limitations
in the real world, due to occlusion, variability in lighting conditions, sizes and
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shopper product

Payment card

Loyalty/Membership

Mobile device

Biometrics

UPC barcode

Packaging/labels 

Look/weight/size

RF tags

Transfer of Ownership

payment

Pick up from shelf

Put in a basket/cart

Keep with shopper

Put back

Fig. 1. Key entities and relationship in the retail process.

forms of objects, and the complexity of sensing and processing. These challenges
put high demands on deployment density, computing power, and network per-
formance, and leave many corner cases unsolved.

3.1 Core Sensing and Inference Requirements

Shopper Identification. A shopper’s identity is typically established through
linkage with an identifier in the digital domain, such as a credit card number,
a loyalty ID, or a GUID in a mobile phone app. Thus identifying shoppers may
require them to present, and sometimes to prove the legitimacy of, their digital
representation.

Biometric identification methods, such as face, iris, and fingerprint recog-
nition, are becoming mature technologies thanks to advances in deep learning.
There are two ways of using biometric identification in autonomous retailing:

– Verification. The verification problem [4] is to test if a biometric measurement
is indeed from a given customer. The algorithm only gives yes-no answers with
an associated confidence level. Biometric verification is a mature technology.
It is widely used in device authentication such as Touch ID on iOS devices
and Windows Hello on PCs.

– Recognition. The recognition problem is to identify a person within a poten-
tial set of candidates, or return “unrecognized” if the person is not in the set.
With a dataset smaller than a few thousand, the recognition correctness, mea-
sured by the true identity being within a top 5 returned results, is beyond
99%. The recognition problem is considerably harder and time consuming
than the verification problem, especially with large datasets.
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Collecting and managing biometrics at the scale of potential customers cre-
ates a legal and operational burden for retailers. One simplification is to only
identify in-store shoppers by assigning them unique but anonymous IDs when
they enter the store, and only keep the ID persistent through the trip. This
requires the recognition system to quickly enroll new faces and retrain the rec-
ognizer in real time.

Product Recognition. At L3+, an intelligent store must recognize some to
all products in it to facilitate transactions. Although UPC bar codes uniquely
represent a product, they cannot be reliably read without deliberate scanning.

Recently, computer vision technologies made huge advances in image recog-
nition [7,9]. However, to obtain transaction-level accuracy on the handling of
arbitrary products poses many challenges, such as (1) near-identical packaging
with only textual differences; (2) very small objects that can easily be occluded
by hands or other objects; (3) very large objects that can only be partially cap-
tured by a camera; (4) unpackaged goods such as product, fruits, and meat where
certain types are almost identical by look, and (5) bulk items.

In addition, as stores introduce new or seasonal products, product recognition
models must be updated, and sometimes completely re-trained.

Like people recognition, identifying products from a large set of candidates
is less accurate and slower than from a small set of candidates. Product layout,
shopper location, and even past purchases can be used to reduce the search space
and improve accuracy.

Tagging is a way to compensate the inaccuracy of product recognition from
computer vision alone. Retail industry has explored various tagging technologies
from RF to invisible patterns:

– UHF RFID. Ultra High Frequency RFID (UHF RFID) operates in the
860 MHz to 960 MHz band. UHF RFID uses RF waves to communicate
between the RFID reader and tags. They have been used extensively in retail
environments and warehouses. While the RF waves have a relatively large
range (several meters), the UHF RFID systems have fundamental weaknesses
in product tracking. First, RF signal propagation is heavily affected by envi-
ronmental factors such as the presence of human bodies, water, and metal.
Secondly, it is hard to confine RF signals to a well-defined space. The most
successful use case of RFID is in apparel retail stores and pallet-level inventory
control. These products have RF-friendly-built materials that are ill-suited for
other recognition methods.

– HF RFID (NFC). High Frequency RF ID (HF RFID) operates at
13.56 MHz and uses inductive coupling (magnetic field) to communicate
between readers and tags. Inductive-coupling-based communication has sev-
eral important features when used for product tracking. The HF RFID detec-
tion range is relatively short (a few inches) and is well defined. This short
range enables accurate tracking of the product locations. In addition, mag-
netic fields can easily penetrate different materials such as the human body,
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liquid, and even some types of metal. This makes product tracking immune
against environmental changes, packaging, and the product itself.

– DW Codes. Digital Watermark (DW) Codes [8] are image-based encodings
that are invisible to the human eye, yet can be detected and interpreted by
post processing of images captured with a camera. They are commercialized
by Digimarc Inc., and has recently become a GS1 standard4 for product iden-
tification, just like UPC bar codes. Under good lighting conditions and with
sufficient image resolution, they can be decoded like bar codes. Since they are
invisible to the human eye, they can be replicated throughout product packag-
ing for easy identification. The standardization of DW Codes happened only
recently, and their adoption by the product manufacturers has been relatively
slow. Once they are proven to substantially reduce the cost of autonomous
retailing, retailers may have more incentive to adopt them.

It is worth pointing out that recognizing products, tagged or not, is much
easier when the products are displayed on shelves or racks, rather than being han-
dled by a person. The human body—hands in particular—are likely to obstruct
light and RF propagation.

Product Ownership. Beyond identifying shoppers and products, the store
must also establish relationships between them. Due to the elimination of the
checkout process at the end of a shopping trip, the semantics of TrOO may be
different in an autonomous store than in a regular store. In most stores today, a
shopper does not own a product, until she checks out at the exit, since there is
simply no visibility into how the product is handled before the shopper checks
out.

In L3+ autonomous retailing, when product scanning is removed from shop-
ping process, the TrOO can not be viewed as an atomic action any more. It
is better understood as an transaction process. When the product is picked up
from the shelf by a shopper, a transaction concerning that particular product
is initiated. It may take multiple cameras and sensors (spread across multiple
locations) a period of time to confirm which product it is. In that process, if
the shopper changes her mind and puts the product back, then the associated
transaction is canceled. When, at the end of the trip, the shopper decides to pay
for all products, all transactions in the trip are committed.

With the transactional model in mind, key activities to be sensed and inferred
in the store are product pickups and returns. One possible way is to track shop-
pers’ hands and their movements. Alternatively, if we can continuously track
the accurate location of each person and each product, and infer that certain
products consistently move with a certain person until she exits, we can infer
that the products are bought by that person.

Neither precise hand motion tracking and accurate location tracking is easy
in real retail environment without very dense sensor instrumentation. TrOO
represents the hardest technical problem in this cyber-physical environment.

4 GS1 is the standard body for managing retail bar codes. https://www.gs1.org/.

https://www.gs1.org/
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3.2 Critical Spots and Moments

There are a few particular locations in the store where, and moments in the
shopping process during which, the state of transactions can change. The instru-
mentation in these spots and the timing of information extraction and processing
is worth careful examination. These design choices also induce the following pos-
sible subsystems in autonomous stores.

– Store entrance. This is the spot to best identify shoppers and assign them an
ID as they walk into the store. Shoppers may also be most open to engage-
ment if there is any need for setting up, for example, by launching a store
app, confirming loyalty/club membership, or possibly choosing a preferred
payment method for this shopping session. One can employ biometric sens-
ing or deliberate shopper log in (e.g., using a mobile app) at the entrance to
establish the identity of the shopper.

– Shelf edge. Most transaction states change at the shelf edge when shoppers
pick up products, or put products back on the shelves. Crowed shelf edges
are challenging to the task of assigning ownership; a customer may reach in
front of another to pick up a product. Similarly, counting exactly how many
products are picked up at one time is difficult to achieve using computer
vision alone. One way to complement cameras and computer vision at shelf
edges is to incorporate weight sensors, which can tell if, and how many, items
are removed from or added to the shelf.

– Shopping carts. For stores that provide them, shopping carts are natural
association points between shoppers and their potential purchases. Socially,
it is widely accepted that products in a shopping cart belong to the shopper
who uses it. If a shopping cart can register every product that is put in or
removed from it, it is an ideal place for L3+ autonomy.

– Store exit. This is the spot that all transactions are closed and payments are
processed. When the system has any unresolved uncertainty, it is also the last
chance for a store worker to help or to intervene.

4 Human Factors

An autonomous store is not just a physical environment in isolation. Both store
workers and shoppers add significant complexity and are a source of dynamism.
Human activities are the most complex to recognize, even in this constrained
context. But both shopper activities and worker assistance also let the store
system to continuously learn and improve its intelligence levels.

4.1 Human Challenges

The thesis of autonomous retailing is to minimize shopping friction. However,
human shoppers themselves can be a source of friction when no single, automated
process can cover all corner cases.
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Signal Obstruction. Human bodies are terrible media for most sensing signals,
such as RF, sound, and light. They can wear, carry, or hold additional objects,
and form groups to block signals from arbitrary angles. As they move around in
the space, it is hard to provision a sensing system that can handle all possible
corner cases. The system must be able to tolerate and track uncertainty over
space and time and resolve them opportunistically or intentionally later.

Groups and Accounts. In most retail environments, it is fairly common for
a family to shop together. Members of a group may part ways within the store
and reconvene later, carrying different items. In this scenario, not all persons,
especially kids, are expected or able to pay. So the group may use a single
payment account. However, checking whether everyone entering the store has
payment authority, or people who entered separately belong to the same group,
brings friction to the shopping experience. Handling group shoppers correctly
may require defining an alternative shopper experience, and educating shoppers.

Vulnerability Exploitation. Another unique complexity in retail stores is the
potential dishonesty of shoppers. The average shrinkage in the retail industry
is about 1.45% [1]. That means 1.45% of transaction amounts are not paid for.
However, this statistic is based on stores with human attendance and regular
checkout counters. For autonomous stores, if a vulnerability is discovered, for
example, certain human gestures are not recognized correctly, then malicious
shoppers can actively exploit it for personal gains. For this reason, the barrier
from L4 to L5 is very high. There must be a safety net that bounds the store’s
losses under all corner cases, even unforeseen attacks.

4.2 Human Assistance

While humans bring challenges to autonomous retailing, they also provide hope
for progressive store intelligence. Human intelligence compliments store intelli-
gence in several ways. Store workers can catch potential errors the automated
system makes, and correct them before a customer checks out. For example, the
levels of autonomy directly map to the degree of effort from store workers is
necessary to assure checkout correctness, ranging from full auditing (in theory)
in L0 to L2, partial auditing in L3 and L4, and, finally, completely human free
in L5.

In addition to assistance at the end of a trip, humans can also help complex
sensing and inference tasks in the inference loop. For example, in the shelf-edge
disambiguation case illustrated in Fig. 2, by looking from the top, it is hard to
correctly infer which customer picked up what product from computer vision
alone. To involve human assistance, the store system can stream the video to
back-end human monitors who can point out which case it is. Machine intelli-
gence can then integrate human input into further inference.

A key requirement for an autonomous store is to understand its own intel-
ligence boundaries. That is, how confident it is about inference results, what it
needs to do in order to reduce uncertainty, and what raw data or evidence is
relevant to present to human assistants [15].
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shelf

monitored region

(a) (b)

Fig. 2. Ambiguity illustrated by two shoppers at the shelf edge. Without fine grained
joint skeletal tracking, it is difficult to tell who picked up what product.

Human labels, through verified checkout, barcode scanning, or behind-the-
scene disambiguation, offer ground truths for autonomous stores to learn and
improve their intelligence. Modern AI are primarily data driven. Increasing lev-
els of autonomy guide a progressive process of gradually improving a system’s
capacity to handle complex corner cases.

5 TerraSwarm Thinking

A mass-market retail store can have tens of thousands of types of products, hun-
dreds of thousands of individual items, and hundreds of shoppers at peak time.
Shoppers, products, and store layout change over time. Even putting the cap-
ital cost consideration aside, such a system must coordinate a large number of
distributed sensors with different modalities, orchestrate local and central deci-
sions, and react at different time scales. To some extent, these challenges present
themselves in any TerraSwarm-style systems (consider smart grids, smart cities,
and health care applications), but the transaction-level correctness required for
retailing, the large scale of deployment, and trickiness of tracking the physical
maneuvers of humans, make this problem unique.

Let us take the shelf-edge inference pipeline (Fig. 3) as an example. In order
to correctly recognize the product, the count, and the picking up/placing back
action, one may turn the shelf into a smart shelf with pressure sensors on each
layer and with cameras pointing to the shelves to identify and count products. If
the products are small and hard to be recognized by computer vision alone, one
may add an NFC reader on the shelves and label the bottom of each product
with NFC tags. In order to infer product ownership changes (like disambiguating
between the two situations illustrated in Fig. 2), one may use depth sensors (like
Kinect) to track the arm movements for people within certain range of the shelf.
Whenever a product leaves the shelf, the sensor identifies the hand and traces
along the arm to the human body. The smart shelf system needs to further
interact with a shopper identification system that may use face detection and
recognition [10]. Now imagine scaling this design up to over 1000 shelves in a
typical grocery store.

From system design point of view, autonomous retailing also offer many
research challenges.
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Fig. 3. Example of sensors and fusion at shelf edges for TrOO inference.

5.1 Uncertainty as a First Class Citizen

As discussed in previous sections, natural conditions (e.g. lighting and RF back-
ground noise) and human activities make sensor data noisy and unreliable.
Machine learning based inference results themselves have to be probability dis-
tributions. For example, face recognition algorithms are typically evaluated in
terms of the correctness of the top-5 outputs. These uncertainties need to be
carried over space and time. Opportunistically or intentionally, additional sen-
sor observations may be used to help resolve uncertainty. The decisions at the
end of each shopping trip, which determine the amounts charged to customers,
have to be deterministic.

Introducing uncertainty as a first-class citizen requires probabilistic models
of computation. For example, a particle filter provides a way to represent and
process non-parametric, uncertain information with deterministic calculations.
Each data object in the system is represented by a set of particles distributed
over possible values. These particles can go through different processing paths
based on their values. In any probabilistic model, prior knowledge is key to set
up an initial probability distribution. Fortunately, human activity and shopping
behaviors are habitual. A person may be left-handed or right-handed, which is
a useful prior for tracking product picking. A person may have developed strong
preferences for particular categories of groceries [17], which can serve as a useful
prior for predicting their shopping paths and product selection.

5.2 Belief Fusion

Several inference tasks in autonomous stores involve large amount of data (like
streaming video feeds), large models (like deep neural-nets), and heavy compu-
tation. While distilling high-level information from raw sensor data, the system
architecture, i.e., where and when inference is done requires careful thinking.
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There is a spectrum of architecture designs. At one end of the spectrum, all
data are streamed to the cloud for processing. The benefit is that the cloud is not
resource constrained, and it now has a global view of measurements. Model and
algorithm updates are also easy since nothing needs to be pushed back to the
nodes. Indeed, for many low data rate Internet of Things solutions, this is the
default cloud + IoT architecture [11,12]. We call this approach (global) sensor
fusion.

On the other end of the spectrum, each node or subsystem makes a decision,
which is a deterministic event assertion, locally. For example, a camera will assert
the identity of a person in its field of view from face or gait recognition. Upper
level aggregation and inference assumes that the assertions are right. We call
this approach Decision Fusion. The benefit of decision fusion is that the raw
data are distilled into high level information as soon as possible, so the data
that needs to be communicated among different tiers of the system is minimal.
However, by doing so, important hypothesis and probabilities may be discarded
too early and cause irreversible wrong decisions.

A trade-off in between is belief fusion or belief propagation [14], where uncer-
tainty is carried with data until a decision has to be made. Sensors and interme-
diate inference may deliver incomplete or inconsistent partial results. Hypotheses
are validated over space, time, and sensing modality to refine and revise beliefs.
Updates are then diffused to correct other derived hypotheses. This approach is
more resource efficient than sensor fusion, and more flexible and reliable than
decision fusion. The challenge is to potentially maintain a large set of hypothesis
and inference and to expand and trim them as new evidence come in.

Embedded ML. Clearly, the more we can push inference towards the source
of the information, the more likely we can create strong beliefs of reality and
maintain fewer hypotheses. Modern inference is primarily data driven and uses
big models. For example, a generic object recognition network like a 50-layer
ResNet [7] has 25.5M wights and 3.9G multipliers and accumulators. Their
resource requirements are beyond most embedded systems.

Embedded machine learning is to trade off accuracy with resource require-
ments. For example, by using fixed-point multipliers and adders, and trimming
down the connections between layers of neural-networks, one can compress full
blown DNN by up to 50X without loss of accuracy [6]. These are promising tech-
niques on bringing intelligence into the real world through embedded platforms.

Security and Data Integrity. An autonomous store has a large attack sur-
face, from both the digital side and the physical side. It is also a public space.
Breaching such system give attackers physical material gains. Among possible
attacks, data integrity attacks, which try to fool the sensors so that the system
will make seemingly correct but wrong decisions, is uniquely damaging and hard
to discover. Researchers have shown that simple eye wear can mislead facial
recognition software [13], while hijacking and replaying camera feeds can cover
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up traces of human activity. These challenges call for new security and data
integrity research to be done for cyber-physical-human systems.

6 Conclusions

Over the past 50 years, embedded computing systems have moved from a
marginal research topic to an interdisciplinary research area that impacts almost
every aspects of human life. First, with sensors and actuators, embedded sys-
tems motivated real-time computing for mission-critical tasks. Next, connectiv-
ity and networking give embedded systems the scale of Internet of Things and
cyber-physical systems, and thus give rise to TerraSwarm-type challenges. In this
third wave of AI and data, we believe intelligent embedded systems will make
our physical environment smarter. Autonomous retailing is an iconic challeng-
ing scenario for the next wave of cyber-physical-human systems. While there are
several attempts to showcase proofs of concept, we believe that, to achieve fully
autonomous environments at acceptable cost, years of fundamental and applied
research are required still.
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Abstract. Relativistic kinematics and its impact on timekeeping in dis-
tributed systems design and operation is emerging as a sub-discipline as
bandwidths and clock rates increase and timing accuracy requirements
grow more stringent. In a recent tutorial paper [3] we have proposed a
new terminology for some of the concepts of relativistic kinematics, along
with some new formulations of the theory that better fit the distributed
systems application. We describe our motivations, justifications, and phi-
losophy in defining a terminology that is self-consistent and meaningful in
this new system context, even as it breaks with a century of scientific lit-
erature. We argue that this unusual attempt at terminological innovation
is practical in the case of a design paradigm that is only emerging, and
justified by the contextual needs and pedagogical opportunities. Only
time will tell whether this new terminology becomes established and
entrenched.

1 Introduction

Human knowledge expands exponentially, and one pragmatic response is to find
simpler and more effective ways of explaining existing concepts to each new
cohort of students and practitioners. Another response is increasing specializa-
tion, so that for example design disciplines often apply domain-specific abstrac-
tions and simplifications rather than rely literally on related and foundational
disciplines.

We encountered this opportunity in our recent research into relativistic mod-
eling in the design of distributed systems [3]. Engineering design of distributed
systems overwhelmingly neglects relativistic effects. Even though such effects are
omnipresent, they are often sufficiently small to be safely neglected. However, as
bandwidths and clock rates inevitably increase, and as system requirements on
timing precision inevitably become more stringent, it eventually becomes neces-
sary to take into account relativistic effects. Beginning notably with the Global
Positioning System (GPS), within a growing number of system applications the
relativistic influences of gravity and motion on timekeeping increasingly can no
longer be neglected.
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1.1 Terminology of Relativity

We therefore undertook the challenge of developing a foundation for the emerging
discipline of relativistic timekeeping in a distributed system context. One aspect
of this is the terminology used to describe the modeling variables of interest. As
defined by Wikipedia:

Terminology is the study of terms and their use. Terms are words and
compound words or multi-word expressions that in specific contexts are
given specific meanings – these may deviate from the meanings the same
words have in other contexts and in everyday language.

Since relativistic effects are just emerging in the practice and literature of a
distributed system context, there would be an opportunity to remake the ter-
minology of relativity for this context. Unfortunately this means a break with
some century-old terminology in the scientific literature, which we will call the
legacy terminology. Arguably this break is both justifiable and not too disruptive
for a new and emerging sub-discipline. We decided to undertake this. Here we
outline the rationale for this rather unusual step, and also consider some obvious
disadvantages.

2 What Makes a Good Terminology

The following are some of the considerations we addressed in developing a ter-
minology.

Alignment with the Literature. The default is clearly to make use of termi-
nology already appearing in the literature, making it straightforward to explore
more deeply. For this reason the use of terminology inconsistent with the litera-
ture should clearly be avoided unless there is compelling justification.

Meaningful in Context. As relativistic modeling becomes more the norm in
system design, it is appropriate to consider a terminology that aligns with the
special considerations of that application domain. As there is relatively little
design-based literature to establish a tradition, there is an opportunity to define
a new domain-specific terminology.

The physics domain in which the legacy terminology arose is experimental
and observational science, where the observer is typically considered (or approx-
imated) to be inertial (not accelerated), and the phenomenon being observed
(like particles in a collider or astronomical bodies) do not possess the ability to
observe time or position (although some of their physical interactions are gov-
erned by an externally observable time or position). A system design context
differs markedly in that typically there are no inertial observers, but rather the
system nodes are manufactured (as opposed to natural) and specifically endowed
with observational capability (such as time and position) and the ability to share
those observations with other nodes through an endowed communications capa-
bility.
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Internal Consistency. The legacy terminology that has arisen since Einstein’s
original paper in 1905 has been incrementally appended by a number of authors.
As a result we claim that the legacy terminology of relativity is not globally
thought out, particularly with respect to internal consistency of the terminolog-
ical conventions that have evolved.

Metaphorical. An approach that has proven valuable for ease and depth of
understanding is to relate domain-specific concepts back to some situation that
is familiar in everyday circumstances. This is the metaphor as a design descrip-
tion, a familiar example of which is the “desktop” metaphor that inspired the
windowed computer user interface [2]. Research in linguistics and psychology
suggest that the metaphor can be a significant aid to easy and in-depth under-
standing of a new concept:

. . . conceptual metaphor theories suggest that cognition is dominated by
metaphor-based thinking, whereby the structure and logical protocols
of one or more domains, combined in various ways, guide or structure
thinking in another. . . . The theory has been widely discussed and tested,
and enjoys a raft of supporting evidence in linguistics and cognitive
psychology [1].

Cognitive science has a related model of brain structure called neural reuse:

An emerging class of theories concerning the functional structure of the
brain takes the reuse of neural circuitry for various cognitive purposes
to be a central organizational principle. According to these theories, it
is quite common for neural circuits established for one purpose to be
exapted (exploited, recycled, redeployed) during evolution or normal devel-
opment, and be put to different uses, often without losing their original
functions [1].

These theories suggest an opportunity to make use of concepts ingrained in
everyday experience to more readily absorb a new set of concepts (like rela-
tivity) that are outside of everyday experience, even to the extent of possibly
repurposing some neural circuitry.

The legacy terminology has avoided any opportunity to be metaphorical.
Rather, it evolved during the early theoretical development of the field where
applications (and even experimentation or observation) were not yet prominent.
The mathematical constructs employed were the primary inspiration for a ter-
minology which has survived to this day.

3 Relativistic Kinematics

As an illustration we now summarize the new terminology of relativity [3]. The
scope is specifically kinematics, which is the study of motion and the relevant
variables of motion. The context is the design of distributed systems where nodes
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experience relative motion, and observations of time and position are affected by
that motion. The models of interest in this circumstance come from relativistic
kinematics. Gravity is not subsumed by kinematics, but we have simplified the
effect of gravity on clocks by modeling gravity in the absence of motion. This
avoids the greater sophistication (and mathematical baggage) of the general
theory of relativity, but also neglects any interaction between motion and gravity.

We now briefly describe some of the new terminology we have designed
according to the principles of Sect. 2. Then we relate that terminology to overlap-
ping terminology widely employed in the scientific literature, and in the process
make the case for why the unusual step of defining a new terminology was jus-
tified.

3.1 A Traveler-Map-Denizen Metaphor

We have chosen to relate the terminology of relativistic kinematics to the every-
day experience of navigating (following or determining position vs time) using a
map and available instrumentation, such as a clock and an accelerometer (which
relies on that clock).

A map is a 3-D coordinate system that allows a node to position itself, either
passively (“what is my current position?”) or actively (“at what position do I
want to arrive, and how do I get there?”). Technically a map is an inertial frame,
implying that any observer at a fixed position on the map (said to be at rest)
does not experience acceleration.1

A clock is a technological construct that measures time (typically based on a
harmonic oscillator). There are two distinct types of observers, who are assumed
to carry two distinct types of clocks. A denizen, who carries along a denizen’s
clock, is at rest at some position on the map. All denizens’ clocks (which mea-
sure time t) run at the same clock-rate, although there is an issue of consistent
initialization, which is the issue of clock synchronization. Denizens’ clocks are
said to be synchronized when they can cooperatively and correctly measure the
speed of light by observing and comparing the times of photon emission and
detection based on the knowledge of the distance that photon had to travel.

A traveler and a traveler’s clock are allowed to change position on the map
with time. This may mean that a traveler is experiencing acceleration, or it
may mean that the traveler is moving with a fixed velocity. A clock carried by
the traveler measures time τ , which is called the traveler’s time. Two traveler’s
clocks will experience different clock rates (except when the two travelers have
no relative velocity) and a traveler’s clock will experience a different clock rate
from the denizens clocks (except when the traveler is temporarily at rest relative
to the map).

1 The development of special relativity in introductory texts focuses on the trans-
formation between two inertial frames in relative motion. Generally this is not of
concern or interest in a distributed system, so we limit attention to a single (but
arbitrary) inertial frame.
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Fig. 1. An illustration of the trajectory of a traveler (adopted from [3]), which is a
curve in the spatial coordinate system parameterized by time. Each map-position r
along the trajectory is associated with two times τ and t.

3.2 The Trajectory

Typically a quantification of the changing position of a traveler is of interest,
both for purposes of navigation and for purposes of characterizing the effect of
that changing position on the clock-rate of the traveler’s clock. The changing
position is embodied in a traveler’s trajectory, which is illustrated by plotting it
on a map (as illustrated in Fig. 1). The trajectory is a continuous curve that
captures all the map-positions that the traveler visits.

For purposes of capturing motion variables such as velocity and acceleration,
it is convenient to parameterize the map-position by the time at which the
traveler visits that position. However, there are two candidates for that time. The
traveler’s time τ at a map-position r on the trajectory is that time measured by
a traveler’s clock as the traveler passes that position. The denizen’s time t at a
map-position r is the time measured by a denizen’s clock presumed to be at rest
at that position at the instant the traveler passes by. Such a denizen’s clock is
notional, meaning that it is unlikely to exist as a physical entity but nevertheless
we can predict theoretically what time it would measure if it were to exist. To
get a consistent picture of the trajectory from the denizens’ perspective, all such
notional denizens’ clocks along the trajectory are presumed to be synchronized.

Both time parameterizations of the trajectory are useful for distributed-
system design. The traveler’s time τ is that measured by clocks that are typically
carried by system nodes. The denizens’ time t is not normally measured during a
system operation, but it is essential for characterizing the times of emission and
detection of photons that pass between system nodes in the course of navigation
and communication. This is because we rely on a postulate of special relativity
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that the speed of light (as measured by synchronized denizens’ clocks) is a fixed
value c irrespective of the choice of a map-frame.

Having a trajectory parameterized by two clocks is awkward, so we choose
the traveler’s clock as the single time parameterization. This choice makes sense
since a clock carried by the traveler is oblivious to what map we have chosen, and
is thus independent of that choice (such is not the case of the denizens’ clocks). In
this view, both the map-position r and the denizens’ time t at which the traveler
passes that position are parameterized by the traveler’s time τ . Mathematically
the trajectory consists of the 4-D description {t(τ), r(τ)}, where both time and
position are parameterized by traveler’s time τ . This description of the trajectory
is called a worldline.

3.3 Motion Variables

There is a basic ambiguity in the measurement and instrumentation of motion
variables like velocity and acceleration, because there are two different time bases
by which we could measure those motion variables. Two different sets of motion
variables are listed in Table 1, one based on the traveler’s clock and the other on
the totality of denizens’ clocks.2

Table 1. Motion vectors and their magnitudes [3]

Motion variable Traveler’s Denizens’

Time τ t

Time-speed γ = dt/dτ γ = dt/dτ

Map-position r r

Map-velocity w =
dr

dτ
u =

dr

dt
Map-speed w = ‖w‖ u = ‖u‖
Map-acceleration b =

dw

dτ
a =

du

dt
Map-acceleration magnitude b = ‖b‖ a = ‖a‖
Self-acceleration α

Self-acceleration magnitude α

Denizens’ Perspective. The scientific literature consistently and almost uni-
versally adopts the denizens’ perspective on motion, measuring velocity and
acceleration using the notional denizens’ clocks as the time base for measuring
these quantities. This choice has its origins in the mathematical development in
the field, and follows a tradition established by Einstein from the beginning. It is
also a sensible choice for laboratory and observational science, where physically
2 In this table and throughout [3] we follow the common convention that motion

variables like t and r are implicitly parameterized by τ .



The Relativity Example: Is Terminological Innovation a Good Idea? 357

realized clocks are typically inertial and the objects of study (natural entities
like particles and astronomical bodies) are associated with notional (but not
physical) clocks.

Traveler’s Perspective. However, for distributed system design, where the
nodes are manufactured entities, the situation reverses. The physically realized
clocks are carried by travelers, and denizens’ clocks are often notional constructs
required for the limited purpose of predicting photon trajectory timing. For this
reason in [3] we developed an alternative treatment of relativistic kinematics
based on the traveler’s perspective, always retaining the tools for an optional
conversion to the denizens’ perspective where needed.

The traveler’s perspective also has the significant advantage that it is much
simpler, easier to understand, and more intuitive. In particular, in the denizens’
perspective relativistic effects (deviations from classical mechanics) are ubiqui-
tous, and are often somewhat confounding and difficult to justify and explain.
This is because motion variables are based on a frame-dependent measure of
time, the denizen’s time t. A notable example of such a relativistic effect is
the well-known “light-speed limit”, in which denizen’s map-speed (magnitude of
velocity) must be strictly less than the speed of light.

From the traveler’s perspective (where traveler’s time is used as the basis of
measurements) relativistic effects are largely absent (except in the obvious case
where a conversion to the denizens’ perspective is undertaken). For example, the
traveler’s map-speed (magnitude of map-velocity) has no upper limit (although
it has to be finite). This alignment with classical kinematics is good justification,
in our opinion, to adopt the traveler’s perspective in all introductory treatments
of special relativity, including in the sciences as well as engineering.

There is one (and only one) instance of relativistic effects entering the trav-
eler’s perspective. In Table 1 we have listed a self-acceleration vector α, which
is the acceleration measured by the traveler using an instrument (an accelerom-
eter) carried by the traveler. Such an instrument can be based, for example, on
releasing a small weight and observing whether it remains stationary relative
to the traveler (zero acceleration), falls behind the traveler (positive traveler’s
self-acceleration), or moves out ahead of the traveler (negative traveler’s self-
acceleration).

In the traveler’s perspective, the traveler’s map-acceleration magnitude b
(which is the acceleration observed when the traveler follows map-position and
uses its own traveler’s clock as a reference) is always greater than the traveler’s
self-acceleration magnitude α (which is measured by an accelerometer carried
along with the traveler). This acceleration boost is one of nature’s gifts to a
relativistic traveler, because it indicates that progress toward a destination map-
position is much more rapid (when measured by the traveler’s clock) than would
be expected classically.3

3 Due to the light-speed limit, from the denizens’ perspective progress toward the
destination is slower than the classical prediction. The difference in perspective is
attributable to using different clocks.
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3.4 Justification for a New Terminology

In introducing the new traveler’s perspective, while not entirely abandoning the
denizens’ perspective, we faced the challenge of naming the added motion vari-
ables, and distinguishing those names from the legacy denizens’ motion variables.
Thus it was inevitable that we needed to introduce some new terms. Was this
best accomplished with some “extension” to the legacy terminology, or a new
terminology based on the map-traveler-denizen metaphor?

The terminology we adopted is listed in Table 2. This terminology clearly
differentiates between motion variables instrumented using the traveler’s clock
(traveler’s velocity and acceleration) and the denizens’ clocks (denizens’ velocity
and acceleration). It also differentiates between accelerations measured relative
to map-coordinates (map-acceleration) and that measured by an accelerome-
ter without reference to a map (self-acceleration). The terminology is admit-
tedly somewhat cumbersome, involving three-word phrases, but that is arguably
inevitable with so many distinct (and meaningful) motion variables in this more
complete relativistic model.

Table 2. Terminology comparison [3]

Traveler-map-denizen Conventional

τ = Traveler’s time Proper time

t = Denizens’ time Coordinate time

γ = Time-speed Lorentz factor

w = Traveler’s map-velocity Proper velocity

α = Traveler’s self-acceleration Proper acceleration

b = Traveler’s map-acceleration Not considered

u = Denizens’ map-velocity Coordinate velocity

a = Denizens’ map-acceleration Coordinate acceleration

We also adopted a consistent usage of the term speed, which we apply to the
derivative of any scalar variable (or vector magnitude) with respect to traveler’s
time τ . Instances of this in Tables 1 and 2 are time-speed and map-speed. Other
instances of speeds occur in [3], such as image-speed and gravity-speed.

Disadvantages of the Legacy Terminology. We have outlined two justifica-
tions for our terminological innovation: The challenges associated with integrat-
ing a novel traveler’s perspective, and the cognitive benefits of a metaphorical
approach.
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There are some additional disadvantages we can ascribe to the legacy termi-
nology, which is listed in the second column of Table 2 for comparison.4 One is the
disconnect between the terms (like “proper” and “coordinate” and “Lorentz”)
and any physical or logical or familiar construct in the context of the design of
distributed systems. Another is the inconsistencies that arise in a terminology
arising over a number of decades with contributions from a number of authors.
This is most evident in the usage of the term “proper”:

– Generally this is taken to mean a “measurement made by an instrument
carried along with the observer”, which is the case with “proper time” and
“proper acceleration”. In the case of “proper velocity” such a measurement
requires the observation of map-position, which requires more instrumenta-
tion and infrastructure than can be carried with the observer alone.

– The “proper acceleration” is not directly related to the derivative of the
“proper velocity” as one would expect.

4 Conclusion

Are the advantages of a remaking of terminology for an emerging design disci-
pline sufficiently compelling to overcome the disconnect from the legacy terminol-
ogy? Clearly this could only be considered in the context of a body of knowledge
that is early undergoing a transition from scientific endeavor to design practice.
It is left to the reader to decide if this was a step forward or a step backward.
The true test, however, will be whether this (or similarly unconventional) ter-
minology becomes established in design practice, or alternatively the weight of
scientific precedence is too difficult to overcome.
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Abstract. We propose the notions of heterogeneous refinement and ver-
tical contracts as additions for any contract framework to provide full
methodological support for multi-view and multi-layer system design
with heterogeneous models. We rethink the relation of contract refine-
ment in the context of layered design and discuss how it can be extended,
via heterogeneous refinement and vertical contracts, to deal with hierar-
chies of models that present heterogeneous architectures as well as behav-
iors expressed by heterogeneous formalisms. We then show via design
examples that such an extension can, indeed, encompass a richer set of
design refinement relations, including support for synthesis methods and
optimized mappings of specifications into implementations.
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1 Preamble

It is both a pleasure and an honor to dedicate this paper to Edward A. Lee, a
friend and colleague over many years. During his entire academic career, Edward
has been a staunch evangelist for system level design based on rigorous method-
ologies and for tools that could be proven correct. His work on models of com-
putation and on Ptolemy is an epitome of this approach. Our work on contracts
was inspired by his views. We are very pleased that he picked this notion to carry
it to new heights with his elegant application of vertical contracts to component-
based software design for the Internet of Things [27]. For this reason, we chose
vertical contracts as the focus of this work. We count on working with Edward
for many, many years to come and discover new research directions together.
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2 Introduction

Methodologies such as component-based design [2] and contract-based design [48]
have emerged as unifying formal compositional paradigms for the design of
complex systems. Contracts are mathematical objects that model the interface
between components and levels of abstraction in a design, and establish the
foundations for assume-guarantee reasoning about composability and abstrac-
tion/refinement relationships between subsystems. Contracts enable modular
and hierarchical verification of global properties of a system, whose satisfaction
can be proven based on the satisfaction of local properties of the components.
Contracts support stepwise refinement, where hierarchical specifications can be
used to reason about component decompositions, even if the component imple-
mentations are not yet available. Contracts facilitate component reuse, as any
components satisfying a contract directly inherit its guarantees.

Overall, contracts have shown to be effective for specifying and reasoning
about components and their aggregations, especially when component models
belong to the same level of abstraction (e.g., algorithm, software, architecture)
or adopt the same formalism. However, there is no universal modeling formalism
that can capture every aspect of complex, heterogeneous systems, such as cyber-
physical systems (CPSs), and guarantee, at the same time, tractable analysis.
Designers usually “decompose” a system into different semantic domains, by
adopting the most convenient formalisms to represent different portions of the
design or different viewpoints [8,46] (e.g., system function, safety, timing, energy)
at different abstraction levels. They then leverage the most suitable tools to
analyze and synthesize these models separately. A set of challenges remain for
contract-based design when system models are to be formulated and manipulated
along the design flow and across different abstraction levels. For example, in
control applications, control laws are typically derived and initially evaluated
using control-oriented models, in which details of the implementation and the
physical dynamics are simplified or neglected. These details are usually modeled
and evaluated using other formalisms and tools. Each model represents some
aspect of system design and occludes others, by making simplifying assumptions
that are often undocumented or informally captured at best. The heterogeneity
of these models poses challenges when assessing the performance and correctness
of the entire system.

While contract theories promise to encompass any kind of formalism and
decomposition, it is not always clear how they can effectively support the cor-
rect transition between heterogeneous abstraction levels. In fact, the notions
of contract abstraction and refinement are traditionally defined in the context
of a single formalism, e.g., using language inclusion or simulation relations. In
system design, abstractions should, instead, be able to bridge heterogeneous
formalisms (i.e., semantically heterogeneous models), and heterogeneous decom-
position architectures (i.e., structurally heterogeneous models), to make system
analysis and synthesis tractable, by consistently combining different verifica-
tion and synthesis results. These difficulties are exacerbated by the fact that
different formal theories of components and contracts have been proposed in
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the literature, for example, interface theories [1,2,49] and assume-guarantee
(A/G) contracts [7], and research efforts toward understanding the relationships
between them have only started to appear [8,32].

This paper investigates a path toward a comprehensive contract framework
for multi-view, multi-layer design. We propose the notions of heterogeneous
refinement and vertical contracts as additions for any contract framework to
provide full methodological support for hierarchies of models exposing both
structural and semantic heterogeneity. Heterogeneous refinement extends the
classical relation of contract refinement to contracts expressed using different
formalisms. However, being exclusively based on behavior mappings, heteroge-
neous refinement does not subsume any notion of architectural decomposition,
and cannot express per se refinements between specifications and implementa-
tions of systems presenting heterogeneous modeling architectures and structures.
This motivates the introduction of vertical contracts, which can relate a contract
and its vertical heterogeneous refinement, including different viewpoints, inde-
pendently of their structures. Vertical contracts subsume heterogeneous refine-
ments and help formalize a richer set of design refinement relations, including
support for synthesis methods and optimized mappings of specifications into
implementations.

Some of the results of this paper appeared in previous publications in the
context of CPSs [8,36,41,48] as well as analog and mixed-signal systems [33,39].
In this paper, we expand on our previous formulations and show via examples
how the proposed extensions can be used to represent any logical decomposition
of complex system verification and synthesis problems into arbitrary conjunctive
and disjunctive combinations of smaller sub-problems. While our results apply
to any design methodology and contract theory, for simplicity, we choose two
exemplar multi-layer design and contract frameworks, namely, Platform-Based
Design (PBD) [47] and A/G contracts, respectively, to illustrate them. We then
start by providing an overview of these frameworks below.

3 Preliminaries

3.1 Platform-Based Design

Platform-Based Design (PBD) was introduced in the late 1980s as a rigorous
framework to reason about system design that could be shared across indus-
trial domain boundaries [47] and support multi-layer optimization and multiple
viewpoints. PBD concepts have been, indeed, applied to a variety of very differ-
ent domains, from automotive to System-on-Chip, from building automation to
synthetic biology.

In PBD, the design process is articulated as a sequence of steps. At each
step, top-down refinements of high-level specifications are mapped into bottom-up
abstractions and characterizations of potential implementations. Each abstrac-
tion layer is defined by a design platform, which is the set of all architectures that
can be built out of a library (collection) of components according to composition
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rules. The bottom-up phase of the design flow consists in building the compo-
nent library. In the top-down phase, high-level requirements are formalized and a
design refinement step called mapping is performed, where the requirements are
mapped to the implementation library components. Mapping is the mechanism
that allows moving from a level of abstraction to a lower one using the avail-
able components within the library. For example, mapping may be cast as an
optimization problem where a set of performance metrics and quality factors are
optimized over a space constrained by both system requirements and component
feasibility constraints. The different viewpoints of the system and of the compo-
nents, such as the functional viewpoint as well as the extra-functional viewpoints
(e.g., safety, timing, energy) can all be considered in the mapping phase. When
some constraint cannot be satisfied using the available library components or the
mapping result is not satisfactory for the designer, additional elements can be
designed and inserted into the library. After each mapping step, the current rep-
resentation of the design platform serves as a specification for the next mapping
step, until the final implementation is reached.

In such a layered design methodology, providing formal guarantees about the
correctness of each design refinement step is crucial to improve on both design
quality and productivity, by decreasing the overall verification and testing effort
and the number of design iterations. In this respect, contract frameworks can
play a key role [41].

3.2 Assume-Guarantee Contracts

The notion of contracts originates in the context of compositional assume-
guarantee reasoning [12]. In a contract framework, design and verification com-
plexity is reduced by decomposing system-level tasks into more manageable
sub-problems at the component level, under a set of assumptions. Contract
frameworks were widely developed in the context of software engineering and
object oriented programming [30]. More recently, they have been extended to
reactive systems, i.e., systems that maintain an ongoing interaction with their
environment, and cyber-physical systems (CPSs) [8,26,35,37,41,48], i.e., sys-
tems in which computation, communication, and control are tightly connected
in feedback loops with physical processes. We use the design of reactive and
cyber-physical systems as the motivation for the examples in this paper, since it
typically requires a richer set of modeling formalisms and architectures [38,40].
We further choose the A/G contract framework [7,8] to illustrate our approach,
since it is centered around a generic notion of behaviors which can encompass all
kinds of models encountered in CPS design, from hardware and software models
to representations of physical phenomena. We start our overview of A/G con-
tracts with a simple, generic representation of a component and we associate to
it a set of properties that the component satisfies expressed with contracts. The
contracts will be used to verify the correctness of the compositions and of the
refinements.
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We call a component an element of a design, characterized by a set of vari-
ables and a set of behaviors over its variables.1 Components can be connected
together under constraints on the values of certain variables. We use [[M ]] to
denote the set of behaviors of component M . A system can then be assem-
bled by composition and interconnection of components, where the behaviors of
the composition is described as the intersection of the behaviors of its compo-
nents, i.e., [[M1 × M2]] = [[M1]] ∩ [[M2]]. A contract C for a component M is a
triple (V,A,G), where V is the set of component variables, and A and G are
sets of behaviors over V . A represents the assumptions that M makes on its
environment, and G represents the guarantees provided by M under the envi-
ronment assumptions. A component M satisfies a contract C whenever M and
C are defined over the same set of variables, and all the behaviors of M are
contained in the guarantees of C once they are composed (i.e., intersected) with
the assumptions, i.e., when [[M ]] ∩ A ⊆ G or, equivalently, when [[M ]] ⊆ G ∪ A,
A being the complement of A. We denote this satisfaction relation by writing
M |= C, and we say that M is a (legal) implementation of C. However, a compo-
nent E can also be associated with a contract C as an environment. We say that
E is a (legal) environment of C, and write E |=E C, whenever E and C have the
same variables and [[E]] ⊆ A. Further, we say that a contract is consistent when
it is feasible to develop implementations for it, i.e., when G ∪ A �= ∅, where ∅ is
the empty set. A contract is compatible if there exists a legal environment E for
its implementations, i.e., if and only if A �= ∅.

Contract saturation is used to compute operations and relations between
contracts. A contract C = (V,A,G) is saturated if the union of its guarantees G
and the complement of its assumptions A is coincident with G, i.e., G = G ∪ A.
Any contract C can be turned into a saturated form C′ by taking A′ = A and
G′ = G∪A. C and C′ have identical variables, identical assumptions, and possess
identical sets of environments and implementations. Such two contracts C and
C′ are then equivalent. To capture a notion of replaceability, contracts can be
ordered by establishing a refinement relation. Given two saturated contracts C
and C′, we say that C refines C′, written C � C′, if and only if A ⊇ A′ and G ⊆
G′. Refinement amounts to relaxing assumptions and reinforcing guarantees,
therefore “strengthening” the contract. Since C admits fewer implementations
than C′ but more environments than C′, we can replace C′ with C. Moreover, we
can compute the conjunction of C1 and C2, written C1∧C2, by taking their greatest
lower bound (GLB) with respect to the refinement relation; that is, C1∧C2 is the
“weakest” contract that refines both C1 and C2. For saturated contracts on the
same variable set V , we have C1 ∧ C2 = (V,A1 ∪ A2, G1 ∩ G2). The conjunction
of contracts can be defined to compose multiple viewpoint specifications for the
same component that need to be satisfied simultaneously.

Finally, similar to composition of components, composition of contracts can
be used to construct composite contracts out of simpler ones. Then, the contract

1 A more general definition of component distinguishes between variables and
ports [36]. For simplicity, in this paper, we use the same term variables to denote
both component variables and ports.
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composition C1 ⊗ C2 is defined as the minimum of the set of all contracts C such
that, if M1 |= C1, M2 |= C2, and E |=E C, then M1 ×M2 |= C and E ×M1(2) |=E

C2(1), i.e., any legal environment E for C provides a legal environment for both C2,
when composed with M1, and C1, when composed with M2. For C1 = (V,A1, G1)
and C2 = (V,A2, G2) saturated contracts over the same set of variables, C1 ⊗ C2

can be computed as (V,A,G) where A = (A1 ∩ A2) ∪ (G1 ∩ G2) and G = G1 ∩
G2. Importantly, contract refinement is preserved by composition, which is a
desirable property to insure that subsystems can be independently implemented
(refined), while guaranteeing that they are compatible for subsequent integration
and satisfy the requirements.

3.3 Proposed Approach and Related Work

We would like to use contracts to formalize and reason about refinement relations
between designs at different abstraction levels in a layered process, as in PBD,
to fully support multi-level and multi-view design in a compositional way. To
do so, we first observe that the definitions summarized above can be effectively
used to compute operations and relations between contracts if all the assump-
tions and the guarantees are expressed using the same formalism. Since this is
not always the case in layered design, we extend the contract framework with
relations and operations that support abstraction and refinement between pairs
of heterogeneous formalisms or modeling architectures. In model-based verifi-
cation, heterogeneous abstractions have been used in the past for specific pairs
of formalisms, such as hybrid abstractions of nonlinear systems [14,20], linear
hybrid automata abstractions of linear hybrid systems [17], discrete abstrac-
tions of hybrid systems [3,4,11]. By embedding heterogeneous refinement within
a generic A/G contract framework, our work aims to provide a compositional
formulation that virtually applies to any pair of formalisms.

Heterogeneous reactive systems can be compared and composed using the
tagged-signal semantics [24]. This approach uses system traces or behaviors as a
mathematical framework for creating relations between the semantics of different
modeling formalisms. A formal framework that addresses the semantic hetero-
geneity of CPS by relating the semantics of different models using behaviors and
their mappings has also been developed recently by Rajhans et al. [45]. In a
similar spirit, we use mathematical functions between behavior domains as the
semantic mappings between heterogeneous behaviors and contracts. However, in
addition to supporting system analysis, our intent is to also support different
forms of design refinement, such as refinement by synthesis and optimized map-
ping. Further, we aim to provide a formulation that can incorporate the concept
of orthogonalization of concerns, such as the separation of communication vs.
computation, function vs. architecture, and behavior vs. performance [22].

At some point in the design flow, specifications must be realized by using
resources, including, e.g., computing units or communication media (networks,
buses, and protocols). When deploying an application over a computing platform,
in addition to the functional viewpoint, non-functional viewpoints (e.g., safety,
timing, energy) are of importance as well. While it is still convenient to keep
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the separation between the specification layer used for initial prototyping and
the supporting execution layer for deployment, the actual satisfaction of design
requirements will heavily depend on the execution platform. It is often the case
that the two layers have distinct structural decompositions. Moreover, combining
different viewpoints of the lower-level platform (e.g., timing and functional) may
be necessary to effectively prove the correctness of the refinement of a single
viewpoint (e.g., functional) of the higher-level platform. We introduce vertical
contracts to capture notions of design refinement that depend on the mapping
of the application into the execution platform. We refer to this type of contracts,
bridging distinct abstraction levels, as vertical contracts, and distinguish them
from horizontal contracts, traditionally employed to specify and reason about
design elements at the same abstraction level.

Finally, ontologies have been used in the past as a knowledge-management
approach to combine verification or analysis results across heterogeneous models
in a consistent way. For instance, lattice-based ontologies can be used to infer
semantic relationships between elements of heterogeneous models [25]. Rather
than treating verification activities as knowledge to be combined, our work aims
to use logical combinations of verification and synthesis tasks, mediated by con-
tracts, to develop complex hierarchies. In a similar spirit, the temporal logic
of actions proof system deploys a proof manager that breaks down a complex
verification task logically into proof obligations that are proved using theorem
provers and satisfiability modulo theory solvers [10]. However, this framework
is primarily aimed towards software systems, whereas our objective is to rather
develop a “design manager,” supporting more general (e.g., continuous, hybrid)
dynamics and non-deductive analysis techniques as well as synthesis and opti-
mization methods.

4 Heterogeneous Refinement

We rely on the fact that A/G contracts are defined out of sets of behaviors to
develop a formal framework that can work with every formalism, while being
at the same time independent of the specifics of any of them. Therefore, as a
first step, we use behavior mappings to introduce a new relation, heterogeneous
refinement, which extends the classical relation of contract refinement to con-
tracts expressed using different formalisms.

The notion of contract refinement introduced in Sect. 3 can be generalized to
the case of two contracts, C1 and C2, expressed by different formalisms. In this
case, before a refinement relation can be defined, we need to map the behaviors
expressed by one of the contracts to the domain of the other contract via a
transformation M. Let B1 and B2 be two sets of behaviors, possibly defined
in the different formalisms B1 and B2, respectively. Behavior formalisms may
include, for instance, event traces, continuous signals, or hybrid trajectories.
We define mappings between different behavior domains in terms of abstraction
functions as follows.
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Definition 1 (Behavior Abstraction Function). Given two behavior
domains B1 and B2 in possibly different behavior formalisms B1 and B2, a behav-
ior abstraction function is a function M : B1 → B2 that associates each behavior
β1 ∈ B1 with one and only one behavior β2 = M(β1) ∈ B2.

Because multiple behaviors in B1 can be associated with the same behavior in
B2, an abstraction function is not an isomorphism, in general; in fact, it results
in loss of information when mapping sets of behaviors from the concrete domain
B1 to the abstract domain B2. Abstraction functions are often problem-specific
and they are usually assumed informally any time two different models M1 and
M2 of the same system are created using different formalisms; we aim to facilitate
the explicit and rigorous definition of these abstraction functions.

Let us assume that behaviors in B1 and B2 are defined, respectively, over the
sets of variables V1 and V2. Then, while mapping behaviors in B1 to behaviors
in B2, M will also establish a mapping between the variable sets V1 and V2; this
mapping will be, in general, a relation RM ⊆ V1×V2. In the following, we use the
notation M(B′

1) to denote the image of a behavior set B′
1 ⊆ B1 via the mapping

M, i.e., M(B′
1) = {b2|b2 = M(b1),∀b1 ∈ B′

1}. Furthermore, for a subset of
variables V ′

1 ⊆ V1, we use the notation RM(V ′
1) to denote the subset of variables

in V2 associated with the variables in V ′
1 , i.e., RM(V ′

1) = {v2 ∈ V2|∃v1 ∈ V ′
1 :

(v1, v2) ∈ RM}. Similarly, we denote the inverse image of a behavior set B′
2 ⊆ B2

via the mapping M as M−1(B′
2), i.e., M−1(B′

2) = {b1|M(b1) ∈ B′
2}, and the

subset of variables in V1 associated with the set of variables V ′
2 ⊆ V2 as R−1

M (V ′
2),

i.e., R−1
M (V ′

2) = {v1 ∈ V1|∃v2 ∈ V ′
2 : (v1, v2) ∈ RM}. Based on these definitions,

we introduce the notion of heterogeneous refinement as follows.

Definition 2 (Heterogeneous Refinement). Let B1 and B2 be two behavior
domains, including, respectively, behaviors over the variable sets V1 and V2, and
possibly expressed using different formalisms B1 and B2; let M be a behavior
abstraction function from B1 to B2. Given contracts C1 = (V1, A1, G1) and C2 =
(V2, A2, G2), both in saturated form, and such that A1, G1 ⊆ B1, A2, G2 ⊆ B2,
and V1 = R−1

M (V2), we say that C1 refines C2 via M, written C1 �M C2, if and
only if A1 ⊇ M−1(A2) and G1 ⊆ M−1(G2).

Example 1. Let Cdis = ({powered}, T,♦[0,3)powered) be the contract specifying
the dynamics of a load in an electrical system, which is powered at startup.
Cdis offers a discrete-time discrete-state abstraction of the dynamics, prescrib-
ing that, in all contexts, the Boolean variable powered must be asserted, i.e.,
evaluates to true, within three time units. Assumptions and guarantees are cap-
tured by formulas in Metric Temporal Logic (MTL) [23], where T stands for the
Boolean value true, and ♦ for the temporal operator eventually. On the other
hand, let Ccon(τ, vf ) = ({v},R, v(t) = vf (1 − e− t

τ ), t ∈ R, t ≥ 0) be the contract
describing the voltage level of the electrical load as a continuous function of time
t, parameterized by the time constant τ ∈ R

+ and steady-state voltage vf ∈ R
+.

The load responds as a first-order dynamical system with time constant τ and
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Fig. 1. Specification and implementation platform examples used to illustrate hetero-
geneous refinement (a) and vertical contracts (b).

steady-state voltage vf . Then, given a time step T , we can reason about refine-
ment between Ccon and Cdis using the transformation M, mapping continuous
time and voltage levels into discrete ones:

M :
{

powered :=
(
v ≥ 2

3vf

)
k :=

⌊
t
T

⌋ . (1)

The variable powered is asserted if and only if the voltage is greater than or
equal to two thirds of the steady-state value, while the discrete time index k is
obtained by discretizing t according to the quantization step T . Resting on this
mapping, we can then conclude that Ccon �M Cdis if and only if v(3T ) > 2

3vf ,
i.e., if and only if the system time constant satisfies τ < 3T

ln 3 . This condition
is illustrated in Fig. 1a, where v2(t) (in green) satisfies the constraint on τ and
refines the guarantees of Cdis, whereas v1(t) (in blue) does not, since it reaches
the desired value 2

3vf exactly at time t = 3T (k = 3), while the interval in the
guarantees of Cdis is right-open.

As shown in Example 1, heterogeneous refinement allows reasoning about
replaceability between contracts in different formalisms. Moreover, similarly to
homogeneous refinement, it is also preserved by composition, as stated by the
following proposition.

Proposition 1 (Compositional Heterogeneous Refinement). Let B and
B′ be behavior domains over the variable sets V and V ′, expressed in formalisms
B and B′, respectively; let M : B → B′ be a behavior abstraction function, with
B′ = M(B) and V = R−1

M (V ′). Let C1, C2 be A/G contracts defined in the
behavior domain B, and C′

1, C′
2 be A/G contracts defined in the domain B′, all

in saturated form. If C1 �M C′
1, C2 �M C′

2, and C′
1 is compatible with C′

2, then
C1 is also compatible with C2 and C1 ⊗ C2 �M C′

1 ⊗ C′
2.
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Proof. Let C′
1 = (V ′, A′

1, G
′
1) and C′

2 = (V ′, A′
2, G

′
2), with A′

1, G
′
1, A

′
2, G

′
2 ⊆ B′,

and C1 = (V,A1, G1) and C2 = (V,A2, G2), with A1, G1, A2, G2 ⊆ B. By hypoth-
esis, we have G1 ⊆ M−1(G′

1), G2 ⊆ M−1(G′
2), A1 ⊇ M−1(A′

1), A2 ⊇ M−1(A′
2).

Therefore, for the guarantees of C1 ⊗ C2 we obtain

G12 = G1 ∩ G2 ⊆ M−1(G′
1) ∩ M−1(G′

2) = M−1(G′
1 ∩ G′

2) = M−1(G′
12). (2)

On the other hand, for the assumptions of C′
1 ⊗ C′

2 we obtain

M−1(A′
12) = M−1

(
(A′

1 ∩ A′
2) ∪ G′

1 ∩ G′
2

)

=
(M−1(A′

1) ∩ M−1(A′
2)

) ∪ M−1(G′
1 ∩ G′

2)

=
(M−1(A′

1) ∩ M−1(A′
2)

) ∪ M−1(G′
1 ∩ G′

2)

⊆ (A1 ∩ A2) ∪ G1 ∩ G2 = A12, (3)

where we use (2) in the last step of (3).2 By definition of heterogeneous refine-
ment, (2) and (3) allow us to conclude C1 ⊗ C2 �M C′

1 ⊗ C′
2. Moreover, by

compatibility of C′
1 and C′

2, and by B′ being the image of B under M, we have
that M−1 (A′

12) is not empty, hence A12 is not empty, which means that C1 is
also compatible with C2. ��

By the proposition above, compatible contracts can be independently refined,
which is key to enable top-down incremental design with heterogeneous for-
malisms, by iteratively decomposing a system-level contract C in formalism B′

into sub-system contracts Ci in formalisms B for further development and sub-
sequent integration.

Heterogeneous Refinement and Galois Connections. An alternative for-
malization of heterogeneous refinement can also consider abstractions whose
structure is more complex than that of the functions in Definition 1, such as
abstractions based on Galois connections or conservative approximations [42].
A Galois connection (α, γ) can relate concrete and abstract representations of
a system via an abstraction function α and a concretization function γ, such
that γ is the closest possible approximation of an inverse for α. Galois connec-
tions are central to the theory of abstract interpretation proposed by Cousot
and Cousot [13]. Moreover, they can be seen as related, but complementary, to
conservative approximations [42]. We plan to further investigate effective embed-
dings of these kinds of abstractions into our framework.

In this respect, Benveniste et al. [9] show that an abstraction α on contracts
can be systematically derived from a Galois connection (α, γ) on components.
There are, however, obstructions in building a corresponding concretization map
to directly lift Galois connections on components to Galois connections on con-
tracts [9]. Nonetheless, the proposed abstraction α has already many desirable

2 We also use the fact that M−1(A′) = M−1(A′) for any subset A′ of the universal
set B′. In fact, we have B = M−1(B′) = M−1(A′ ∪A′) = M−1(A′)∪M−1(A′), ∅ =
M−1(A′ ∩ A′) = M−1(A′) ∩ M−1(A′), which jointly lead to M−1(A′) = M−1(A′).
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properties. It is monotonic with respect to the refinement orders and allows
proving contract consistency and compatibility entirely in the abstract, usually
simpler, domain. α is also compositional with respect to contract conjunction,
i.e., α(C1 ∧ C2) = α(C1) ∧ α(C2). Under appropriate conditions, α is also compo-
sitional with respect to contract composition, i.e., α(C1 ⊗ C2) � α(C1) ⊗ α(C2).
Consistency checking on abstracted contracts can then be performed in a mod-
ular way with respect to both conjunction and composition. On the other hand,
compatibility checking is only proven to be modular with respect to conjunction.

The approach in this paper is different from the above effort. The above
work targets compositional verification of contract compatibility and consistency
entirely based on abstractions. We aim, instead, to extend contract refinement
to allow preserving key properties of interest when passing from an abstract
domain to a concrete domain. Our contract refinements are compositional, in
that composition is monotonic with respect to the refinements (see, e.g., Propo-
sition 1). When applied to A/G contracts, the abstraction α [9] abstracts both
assumptions and guarantees via the map α, i.e., α(A,G) = (α(A), α(G ∪ A)).
Conversely, heterogeneous refinement operates on assumptions and guarantees
in a covariant-contravariant fashion, by widening the assumptions and tighten-
ing the guarantees as we transition from the abstract to the concrete domain
(see, e.g., Definition 2). In our framework, complex verification and synthesis
tasks need not be performed, compositionally, entirely in the abstract domain;
heterogeneous refinements would rather bridge and combine, in a consistent way,
proofs and proof techniques that are effective in different domains.

5 Vertical Contracts

Since it is based on behavior mappings, heterogeneous refinement does not sub-
sume any notion of architectural decomposition; therefore, it is not enough to
express refinement between the specification contracts and the implementation
contracts of systems when they relate to heterogeneous modeling architectures
and present heterogeneous structures. As a second step, we then equip our frame-
work with a new notion of contract composition that can relate a contract and its
vertical heterogeneous refinement, including different viewpoints, independently
of their modeling structures. Compatibility and consistency of the resulting ver-
tical contract will then be checked to assess design correctness.

Consider the problem of mapping a specification platform of a system at level
l+1 into an implementation platform at level l in PBD. In general, the specifica-
tion platform architecture (i.e., interconnection of components) may be defined
in an independent way, and may not directly match the implementation platform
architecture. Such a heterogeneous architectural decomposition will also reflect
on the contracts associated with the components and their aggregations. For
instance, the contract describing the specification platform C may be defined as
the conjunction of K different viewpoints, each characterized by its own archi-
tectural decomposition into Ik contracts, i.e., C =

∧
k∈K

(⊗
i∈Ik

Cik

)
. On the

other hand, the contract describing the implementation platform M may be
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better represented as a composition of J contracts, each defined out of a con-
junction of its different viewpoints, i.e., M =

⊗
j∈J

(∧
n∈Nj

Mjn

)
. We denote

by C = {Cik|k ∈ K, i ∈ Ik} and M = {Mjn|j ∈ J, n ∈ Nj}, respectively, the
architectural decompositions of C and M, i.e., the set of all the contracts and
viewpoints that are used to describe them.

Because there may not be, in general, a direct matching between contracts
and viewpoints of M and C, checking that M � C in a compositional way, by
reasoning on the elements of M and C independently, as discussed in Sect. 3
(for classical refinement) and Sect. 4 (for heterogeneous refinement), may not be
effective or even possible. However, we would still like to capture the fact that the
actual satisfaction of all the design requirements and viewpoints by a deploy-
ment depends on the supporting execution platform, the underlying physical
system, and on the way in which system functionalities are mapped into them.
To formalize this mapping of system functionalities into architecture primitives,
we first introduce the compact notation Ag(C) or, equivalently, Ag(C1, . . . , Cn)
to represent a generic aggregation of contracts and viewpoints C1, . . . , Cn from
a set C = {C1, . . . , Cn} via composition or conjunction operations. For example,
Ag1(C1, . . . , C4) := (C1⊗C2)∧(C3⊗C4) and Ag2(C1, . . . , C4) := C1∧((C2∧C3)⊗C4)
define two different aggregation operators on C1, . . . , C4. We then introduce the
notion of architecture mapping as follows.

Definition 3 (Architecture Mapping). Let C1 and C2 be two contracts with
architectural decompositions C1 and C2, respectively. An architecture mapping
between C1 and C2 is a relation V ⊆ 2C1 × 2C2 such that (V1,V2) ∈ V if and
only if there exist aggregation operators Ag1 and Ag2 and a behavior abstraction
function A such that Ag1(V1) �A Ag2(V2).

The intent of architecture mapping is to associate heterogeneous aggrega-
tions of contracts and viewpoints in an implementation contract C1 with their
specification counterparts C2 and vice versa, where C1 and C2 may be expressed
in different formalisms. We can then reason about refinement between an imple-
mentation contract M and a specification contract C by resorting to a contract
which specifies the composition of a model and its vertical refinement, even
though they are not directly connected, by connecting them indirectly through
an architecture mapping V. For example, V can be implemented by synchroniz-
ing pairs of events, as if co-simulating a model and its refinement, or by a set of
constraints over the variables of M and C. We can then model the interaction
between the specification and the implementation platforms using a conjunction
operation, as defined below.

Definition 4 (Vertical Contract). Let C and M be two contracts, possibly
describing the specification and implementation platforms of a system, and let V
be an architecture mapping between M and C. We call vertical contract under
V the composite contract C ∧V M, i.e., the conjunction of C and M subject to
the mapping constraints established by V.
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Assumptions and guarantees in C ∧V M combine as defined in Sect. 3, and
C ∧V M is assured to refine C by construction. We can then replace C with
C ∧V M. However, being a conjunction, it can still be a source of inconsistencies.
Therefore, to guarantee that the design can be implemented, the consistency of
C ∧V M must be checked or enforced by the designer. Checking consistency on
the composite contract can be, however, easier than checking M � C, since some
of the assumptions made by the specification platform on the implementation
platform can be discharged by the guarantees of the implementation platform,
and vice versa, when computing C ∧V M subject to the mapping constraints
defined by V. We exemplify the use of vertical contracts by referring to the
model of a simple system in Fig. 1b.

Example 2. The specification platform architecture at the top of Fig. 1b consists
of two interconnected components. At startup, the Controller interacts with an
external subsystem through its in and out ports to perform some high-priority
task. Then, it switches on a safety-critical electric power system EPS, by assert-
ing its output on, and makes sure that the system is actually powered, i.e., the
signal powered is asserted, by the deadline td.

At the application level, to conveniently explore different control strategies,
the designer abstracts the physical system EPS using a simple delay block, which
propagates the value of its input on to its output powered with a delay Δ. We
therefore obtain tpow−ton = Δ, where tpow and ton are, respectively, the times at
which powered and on are asserted, and Δ is selected to accommodate the delay
of the physical platform. Then, the designer implements the required function-
ality by allocating the Controller to its higher priority task, while guaranteeing
a worst case switch-on time tmax

on = td − Δ to meet the deadline on the powered
signal.

While the functional platform described above is very convenient to explore
different control strategies, it is not sufficient to determine the correctness of the
final design. In fact, the satisfaction of the timing viewpoints heavily relies on the
assumptions on the delay of the physical system, which can only be discharged by
the implementation platform. The architecture of the implementation platform
is shown at the bottom of Fig. 1b. The functionality of the Controller is mapped
to a hardware execution platform HW, while the EPS is modeled by a cascade of
a first-order filter with time constant τ , represented in the figure as an electrical
network, and an ideal Comparator block, with reference voltage vref . In this
case, the filter and Comparator blocks (and their contracts) are associated with
the EPS block (and its contract) via an architecture mapping V. If the filter
output voltage v is larger than vref , the Comparator asserts its output powered.
The reference vref corresponds to 90% of the final value vf reached by v at
steady state.

To show that the implementation platform refines the specification platform,
hence satisfies the system requirements, we formalize the interaction between
the two levels in terms of the vertical contract C̃t ∧V M̃t between the following
timing contracts under the constraints established by V:
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– C̃t = ({ton, tpow}, ton ≤ (td − Δ), tpow ≤ td), the specification contract, states
that the requirement on tpow is satisfied if on is asserted by at least an interval
Δ before the deadline td.

– M̃t = ({ton, tpow}, T, tpow = ton + τ ln 10), the implementation contract,
exposes the timing behavior of the powered signal. M̃t states that, when-
ever on is asserted, powered will be asserted with a delay τ ln 10, due to the
physical system (a first-order filter).

Assumptions and guarantees are expressed using predicates on real variables.
Then, to check the correctness of the refinement, a binding mechanism between
the two contracts, each linked to its own platform, can now be provided by the
conjunction of M̃t and C̃t and the architecture mapping between them. Proving
the consistency of this conjunction is instrumental to prove the correctness of the
overall system. C̃t ∧V M̃t ensures that both contracts are jointly satisfied, and
refines C̃t by construction. Therefore, all we need to check is that M̃t does not
create inconsistencies in C̃t ∧V M̃t, in the sense that (∀ton : ∃tpow : GM̃t ∩ GC̃t)
is true,3 where GM̃t and GC̃t are the guarantees of the two contracts in saturated
form. In our case,

∀ton : ∃tpow : (tpow = ton + τ ln 10) ∧ ((ton > td − Δ) ∨ (tpow ≤ td))
= ∀ton : (∃tpow : tpow = ton + τ ln 10) ∧ (ton > td − Δ) ∨ (ton ≤ td − τ ln 10)
= ∀ton : (ton > td − Δ) ∨ (ton ≤ td − τ ln 10)

leads to the condition τ ln 10 ≤ Δ. Intuitively, this amounts to requiring that, if
ton and tpow have to synchronize so that M̃t refines C̃t and the overall system
satisfies the timing requirement on tpow, then the delay implemented by the
physical system in M̃t must be smaller than or equal to the one defined by
the application platform in C̃t. This inequality can be used at design time, as a
practical guideline to dimension either the specification platform, by increasing
its margin Δ, or the implementation platform, by decreasing its time constant
τ , to deploy a correct design.

The approach illustrated above was previously used to formalize mechanisms
for mapping a specification over an execution platform in the design of analog and
mixed-signal integrated circuits [33,39] and in the Metropolis [5] framework
and its successors [6,19]. In the context of analog and mixed-signal integrated
circuits, we leveraged effective approximations of implementation constraints
to formulate vertical contracts representing different viewpoints (e.g., timing,
energy, noise), and then checking their compatibility or consistency during design
space exploration. More recently, a similar approach has also been advocated in
the context of Autosar [8].
3 We are actually interested in checking consistency ∀ton : ton ≤ (td −Δ), which is the

set of legal environments for C̃t. In fact, we want to show that, for each ton satisfying
the assumptions of the specification contract C̃t, there exists an implementable tpow,
according to the implementation contract M̃t, which also satisfies the deadline td,
as required by C̃t. When ton > (td − Δ), C̃t ∧ M̃t is trivially consistent, since the
guarantees of C̃t are vacuously true.
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Alternatively, when vertical contract assumptions and guarantees cannot be
effectively expressed by compact models, compatibility and consistency of verti-
cal contracts can be checked by co-simulation of the application and implementa-
tion platforms under a mapping mechanisms, such as the one in the Metronomy

framework [19], in which tuples of signals in the two platforms are synchronized.
In the context of Example 2, this technique can be applied by unifying both
occurrences and values of the on and powered signals, as shown in red in Fig. 1b,
and then checking that the synchronized models satisfy the requirements. In
the following, we further illustrate the usage of vertical contracts in combina-
tion with heterogeneous refinement in PBD. More application examples will be
discussed in Sect. 7.

6 Vertical Contracts in Platform-Based Design

In PBD, horizontal contracts are used to formalize the conditions for correctness
of element integration at the same level of abstraction, while vertical contracts
formalize the conditions for lower levels of abstraction to be consistent with the
higher ones, and for abstractions of available components to be faithful repre-
sentations of the actual parts. If vertical contracts are satisfied, the mapping
mechanism of PBD can be used to produce design refinements that are cor-
rect by construction. Informally, vertical contracts are often decomposed into
bottom-up and top-down contracts [33,48]. For instance, when analyzing the
behavior of complex CPSs, simplified macro-models are typically used to cap-
ture the relevant behaviors of the components at higher levels of abstraction.
Therefore, guarantees should be provided on the accuracy of the macro-models
with respect to models at lower levels of abstraction. These guarantees can be
captured via bottom-up vertical contracts. On the other hand, in a top-down
design approach, top-down vertical contracts can be used to encode top-level
requirements that system architects introduce to craft the behavior of a chosen
architecture according to the desired functionality. In the following, we show how
these concepts can be formalized using the notions of heterogeneous refinement
and vertical contracts introduced in Sects. 4 and 5.

For reasoning about a system M at level l + 1, let Cl+1
B be a bottom-up

vertical contract used to capture what is expected to be offered by possible
implementations of M at level l, so as to be able for M to perform its intended
function at level l + 1, as expressed by a top-down vertical contract Cl+1

T . The
correctness of the design using M at level l+1 will then depend on the existence
of an implementation of M meeting this bottom-up vertical contract. Moreover,
Cl+1

B adds to the horizontal contract Cl+1
H , which is also attached to M , to capture

the conditions imposed on its context at level l+1 for its correct integration. Such
a breakdown into Cl+1

H , Cl+1
B , and Cl+1

T can be used to enforce orthogonalization
of concerns, by separating function (Cl+1

T ) from communication (Cl+1
H ) and from

implementation (Cl+1
B ). In this setup, Cl+1

T captures the top-level requirements
on M , while Cl+1

H and Cl+1
B can be regarded as two different viewpoints, used to
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specify the conditions imposed, respectively, on the integration environment at
level l + 1 and the implementation platform at level l.

We now assume that the system M at level l + 1 is to be implemented by
an aggregation of subsystems M1, . . . ,Mn at level l, and show how the afore-
mentioned structural decomposition can be leveraged to generate a hierarchy of
verification (or synthesis) tasks during the design flow.

Top-Down Design Step. When using budgeting in a top-down approach, the
designer assigns responsibilities to the subsystems implementing M , by deriving
top-down contracts Cl

T1, . . . , Cl
Tn, al level l, for each of them. These contracts

must jointly establish M ’s bottom-up vertical contract Cl+1
B by construction, and

can be derived, for instance, by using synthesis methods. In this example, we
assume that levels l and l+1 may use, in general, different behavior formalisms,
which are related by a mapping M. We can then formalize the condition stated
above as follows:

n⊗
i=1

Cl
Hi

∧ n⊗
i=1

Cl
T i �M Cl+1

B , (4)

where we highlight the fact that the execution of this cross-layer design step
must assume that the integration of the different subsystems is successful, as
prescribed by the horizontal contracts.4

Bottom-Up Design Step. Alternatively, when using a bottom-up approach, the
top-down vertical contracts of M1, . . . ,Mn at level l are given, and we need to
establish that the bottom-up contract of M at level l + 1 is satisfied by check-
ing (4). Horizontal contracts can also be used this time as additional premise in
the verification of refinement. The verification step in (4) can be performed in
different ways. In particular, a convenient way could be to resort to a vertical
contract, in the sense of Sect. 5, and prove that it is consistent. Given Cl+1

B =
(V l+1

B , Al+1
B , Gl+1

B ), and M−1(Cl+1
B ) := (R−1

M (V l+1
B ),M−1(Al+1

B ),M−1(Gl+1
B )),

such a vertical contract can be defined as follows:

M−1(Cl+1
B ) ∧

n⊗
i=1

Cl
Hi

∧ n⊗
i=1

Cl
T i,

which refines Cl+1
B by construction.

In both the top-down and bottom-up approaches, the design finally proceeds
with the additional verification steps required for each component Mi to demon-
strate that, based on the expected capabilities of its realization, as expressed by
its bottom-up vertical contract, the functionality of the component as expressed
by its top-down vertical contract can be achieved, i.e.,

∀i ∈ {1, . . . , n} : Cl+1
Bi ∧ Cl+1

Hi � Cl+1
Ti . (5)

4 We observe that the structural decomposition adopted in (4) is just an example.
Another alternative could be to represent the left-hand side contract as

⊗n
i=1(Cl

Hi ∧
Cl
T i).
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Fig. 2. Role of horizontal and vertical contracts in system design (a) and mapping flow
for automatic generation of model predictive control schemes (b).

Again, as shown in (5), these proofs can take the horizontal contracts of the
components as additional supportive argument. Moreover, they can be performed
by leveraging the vertical contracts Cl+1

Ti ∧ Cl+1
Bi ∧ Cl+1

Hi , for each component Mi,
and proving their consistency.

7 Application Examples

Vertical contracts can be applied to reason about hierarchical design of embedded
controllers, in that they can formalize the agreement between control, software,
and hardware engineers when specifying both system functionality and timing
requirements [15,41,48]. In PBD, such an agreement is encoded in terms of
top-down and bottom-up vertical assumptions and guarantees. In a typical sce-
nario, as represented in Fig. 2a, a controller takes as assumptions several aspects
that include the timing behavior of the control tasks and of the communication
between tasks, e.g., delay, jitter, as well as the accuracy and resolution of the
computation (vertical assumptions in C). On the other hand, the controller pro-
vides guarantees in terms of the amount of requested computation, activation
times, and data dependencies (vertical assumptions in M). Several controller
design guidelines previously proposed in the literature can then be derived by
formulating and requiring consistency of vertical contracts across the hardware,
software, and control layers, as done in Example 2. In the following, we dis-
cuss how vertical contracts can be used to formalize the hierarchical design of
embedded controllers combining synthesis and optimization methods.

7.1 Contract-Based Design of Hierarchical Controllers

Embedded controllers in complex, safety-critical CPSs, such as large power dis-
tribution networks or robotic systems, often rely on hierarchical architectures.
The high-level controller, e.g., a task planner or supervisory controller, is in
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charge of high-level decisions and can benefit from discrete abstractions and syn-
thesis techniques, such as reactive synthesis from linear temporal logic [43,44]
(LTL) specifications, to provide a high degree of assurance on the system func-
tionality [34,35]. However, several real-time performance requirements (e.g., tim-
ing constraints), mostly related to the dynamics of the physical plant and the
hardware implementation of the controller, cannot be effectively captured by
discrete models. A low-level controller, e.g., a trajectory planner, is usually in
charge of satisfying these requirements, and leverages virtual prototyping tech-
niques based on the analysis of simulation traces in the absence of tractable
algorithmic synthesis methods. In this scenario, vertical contracts can be used
to formalize and orchestrate the hierarchical design process.

As an example, let contract CC express the controller requirements, where
the assumptions AC encode the allowable behaviors of the environment (includ-
ing aspects of the physical plant) and the guarantees GC encode the desired
behaviors of the controller in closed-loop with its plant. We assume that CC can
be expressed as the conjunction between a contract Csyn, for which a synthesis
method can be effectively applied to generate high-level controller implemen-
tations, and a contract Cver, which can only be checked by a verification or
simulation routine, which we call an oracle. We refer the reader to our previous
work [31,35] for an instance of this design problem, where Csyn is expressed using
LTL, Cver is expressed using signal temporal logic (STL) [29], and the oracle is
a contract monitoring routine operating on simulation traces. Csyn ∧Cver is then
a vertical contract for the controller, where Csyn and Cver refer to different con-
troller representations, possibly involving different viewpoints (e.g., functional
and timing).5 To guarantee the consistency of Csyn ∧ Cver and refine it towards
an implementation, the design process can be decomposed in the following steps.

As a first step, Csyn can be used together with discrete models of the plant and
the environment (which can also be captured, for instance, by LTL formulas) to
synthesize a reactive control strategy in the form of one (or more) state machines
using algorithmic synthesis techniques. The resulting high-level controller will
satisfy Csyn by construction. As a second step, the synthesized state machine
is embedded into a high-fidelity hybrid model of the system. The entire system
is simulated and the satisfaction of Cver is assessed by monitoring simulation
traces, while possibly optimizing a set of system parameters and costs. In this
step, a mapping methodology can be used to perform joint design exploration
of the high-level and low-level controllers together with the execution platform,
while guaranteeing that their specifications, captured by the vertical contract,
are consistent and the architecture mapping constraints are satisfied. The low-
level controller is then refined in this step and the resulting optimal hierarchical
architecture is returned as the final design.

For instance, let Cver = (S, φe, φe → φs) be a vertical contract that must
be checked by simulation, where φe and φs are temporal logic formulas. Then,
given an array of costs C, the mapping problem can be cast as a multi-objective

5 For simplicity, we drop the symbol of the architecture mapping V from the expres-
sions of the vertical contracts in this section and in the following ones.
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robust optimization problem, to find a set of configuration parameter vectors κ∗

that are Pareto optimal with respect to the objectives in C, while guaranteeing
that the system satisfies φs for all possible traces s satisfying the environment
assumptions φe. More formally,

min
κ∈K,π∈Π

C(κ, π)

s.t.

⎧⎨
⎩

F(s, κ) = 0

s |= φs(π) ∀ s s.t. s |= φe(π)
(6)

where π is a set of parameters that can be used to capture degrees of freedom
that are available in the system specifications, and whose final value can also
be determined as a result of the optimization process. For a given parameter
value κ′, s′ is the set of system traces that are obtained by simulating the hybrid
dynamical model F(.) of the system. A multi-objective optimization algorithm
with simulation in the loop can then be implemented to find the Pareto opti-
mal solutions κ∗. While this may be expensive in general, it becomes the only
affordable approach in many practical cases. Finn et al. [16] propose a mixed
discrete-continuous optimization scheme to solve an instance of problem (6),
and apply it to the design space exploration of an aircraft environmental control
system.

In this hierarchical control design methodology, guaranteeing that several
functional, safety, and reliability requirements are already satisfied by construc-
tion after the synthesis step helps decrease the execution time. Finally, the joint
execution of the controller with the plant in the mapping step effectively imple-
ments the synchronization mechanism introduced in Sect. 5, which is instrumen-
tal in: (i) checking the consistency of the vertical contract, (ii) discharging the
timing discretization assumptions made during the synthesis steps, and (iii) ulti-
mately verifying the satisfaction of both the functional and timing viewpoints.

7.2 Generation of Model Predictive Control Schemes

By using a formalization of the design requirements and the plant dynamics
in terms of constraints over real numbers, it is possible to formulate the con-
trol problem as an optimization problem that is solved using a receding horizon
approach to determine a correct control strategy that can also optimize some
performance metrics. In this scenario, vertical contracts can support the auto-
matic generation of model predictive control schemes [18].

A representation of the design flow following a PBD approach is shown in
Fig. 2b. Both the plant P and the controller C can be specified by an aggrega-
tion of contracts from a library L. We denote the composition of the plant and
controller contracts under feedback interconnection as CP ⊗ CC . The top-level
requirements are instead specified by a system-level application contract CRH .
The refinement (mapping) between CRH and CP ⊗CC is then modeled as the ver-
tical contract CRH ∧ (CP ⊗ CC) given by the conjunction of the architecture and
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application contracts under the architecture mapping constraints. We are inter-
ested in an optimal control law subject to the constraint that CRH ∧ (CP ⊗ CC)
is consistent, i.e., there exists an implementation satisfying both the guarantees
of CRH and CP ⊗ CC in the context of their assumptions. To this aim, an opti-
mal control problem can be formulated as an optimized mapping problem, an
instance of (6), over a time horizon H.

If a discrete-time abstraction of the hybrid system dynamics is available, e.g.,
relying on linear difference equations over the components’ variables and parame-
ters (e.g., for time-varying properties), or linear constraints on real variables that
must hold at each time step or at steady state (e.g., for time-invariant proper-
ties), then it is possible to express behaviors, assumptions, and guarantees, and
implement the algebra of contracts using conjunctive or disjunctive combina-
tions of linear constraints over the reals. The control law will be a discrete-time
continuous-valued trace and the formulation in (6), which is returned as the final
design, translates into a mixed integer linear (or quadratic) program that can
be effectively solved by state-of-the-art optimization algorithms. This approach
has been effective for generating model predictive control schemes for integrated
energy management in smart grids [21,28] as well as aircraft power distribution
networks [26].

8 Conclusions

The design of complex engineering systems requires reasoning about hierarchies
of models characterized by both semantic and structural heterogeneity. Heteroge-
neous refinement and vertical contracts provide a viable foundation to effectively
reason about the relationships between these models for multi-view and multi-
layer design. They have been demonstrated on examples form hierarchical con-
troller design and the generation of model predictive control schemes. Both the
formalization and concretization of these concepts are, however, in their infancy.
Future work includes, for example, the investigation of links between vertical
contracts and alternative notions of abstraction based on approximations or the
theory of abstract interpretation. We believe that novel and effective formaliza-
tion efforts and applications will emerge as we strive to embed more and more
cognitive capabilities in our design tools.
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Abstract. Model-driven development of cyber-physical systems (CPS)
requires modeling techniques based on a well-founded theory that sup-
ports addressing development techniques, such as decomposition, refine-
ment and the different notions of time required by its components. Based
on an elaborated theory for the modeling of underspecification with
respect to nondeterminism, hierarchical composition, refinement that is
compatible with composition, and finally proven correct evolution pat-
terns, we discuss how such a theory can be practically applied for the
development of CPS. Through an orchestrated efficient simulation, we
can identify potential bottlenecks, function failures, hardware risks, etc.
early. All models as well as the simulation take advantage of the compo-
sitionality and the timing refinement properties of the theory. In sum-
mary, we discuss how the elaborated theory shapes the simulation and
the results.

1 Motivation

Rigorous model-driven development requires a well-defined set of integrated
modeling notations that allows to define a set of possible implementations as
well as a well-founded theory that is able to capture important aspects of the
system while at the same time. It should (a) be as abstract as possible, (b) allow
to specify known properties and to leave unknown properties unspecified, and
(c) assist the core techniques in a development process.

A typical development process today has to provide various forms of under-
specification to allow describing known properties and open issues, to support
refinement along the development process from abstract requirements to very
fine-grained technical specifications, and to compose specifications. It is not the
composition itself, that is of prime importance, but the ability to decompose the
problem, solve the smaller problems independently through a chain of refine-
ments, and ultimately compose the solutions. This in particular implies that
decomposition and refinement must be compatible. This full compatibility of
the composition and refinement is important, because only then a decomposi-
tion of the problem leads to component specifications that can be independently

c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 383–406, 2018.
https://doi.org/10.1007/978-3-319-95246-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95246-8_23&domain=pdf


384 B. Rumpe and A. Wortmann

developed and refined. Ultimately, their implementations can be composed being
sure that the properties specified originally still hold.

There are not many theories that can serve as the foundation for the develop-
ment of systems, which potentially consist of a physical and a software part, are
inherently distributed, and need to cope with a dynamically changing context,
while having to fulfill tasks under given time constraints. Much has been said
and written about cyber-physical systems (CPS) [33,34] and how those systems
can be described and developed [13,16,30]. Only few theories, such as Focus
[8] and consideration of superdense time [36,39], can actually serve the chal-
lenges discussed above. The more development techniques a theory assists, the
more complex it necessarily has to be. Many earlier theories, such as CSP [25],
CCS [43], Petri Nets [50], or the π-calculus [44] yield specific advantages, but
unfortunately yield shortcomings in other techniques. Especially the existence of
techniques for decomposition and refinement as well as their compatibility are
crucial.

In this article, we summarize stream based theory, that emerges from Focus
[5,8,31,53] and has been elaborated by Manfred Broy and his group over sev-
eral decades in a larger set of publications. Model-driven development [15,65]
can facilitate engineering of CPS [29], but requires implementing the underlying
theory properly. Consequently, we also present how the theory is implemented
in a tool suite called MontiArc [9,18,20], that allows to model various aspects
of CPS and to simulate CPS with a focus on the interactions within and to the
systems context. We briefly discuss, how this theory and its techniques for time
and time refinement are realized and we sketch, how MontiArc models are used
for example in robotic applications [24,52]. The key idea of the orchestrated
efficient simulation that MontiArc provides, is to early identify potential bottle-
necks, function failures, hardware risks, etc. All models as well as the simulation
take advantage of the compositionality and the timing refinement properties of
the theory.

In the following, Sect. 2 summarizes parts of the Focus theory, before Sect. 3
presents the MontiArc tool suite with its architecture description language and
simulation framework. Afterwards, Sect. 4 discuss the benefits of this approach
and Sect. 5 highlights related work. Section 6 concludes.

2 Theory of Streams

This section contains a condensed form of stream theory. Literature, such as
[7,8,53] gives more detailed motivation and discussion of the properties. Ulti-
mately, employing stream theory as the foundation for model-driven develop-
ment enables modeling architectures for software-intensive CPS as depicted
in Fig. 1 under consideration of time as required by its different components.

2.1 Streams and Stream Processing Functions

We consider components that only interact through explicit, directed, and typed
communication ports. Such a component can be atomic or decomposed into
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sub-components. When composing components, ports are connected through
directed channels.

A channel observation is modeled as stream Mω of finite or infinitely mes-
sages over a message alphabet M . Progress of time is modeled by an explicit �
(called “tick”) message assuming that each occurrence of the message denotes
the start of the next time slice. Thus Mω

� describes a timed observation of a
certain time interval (count the ticks!). A complete observation therefore has to
contain infinitely many ticks. Within a time slice any finite sequence of messages
including the empty sequence may occur. This models the order of messages, but
abstracts away from the concrete time. Time synchronous systems are modeled
as N → M , which is the core embedding in the AutoFocus tool suite [2,3,6,26–
28]. If messages are optional, N → M ∪ {⊥} is used and ⊥ is a pseudo message
describing the absence of a real message.

There are various forms of mappings of one timing domain into the other
as well as many operations on streams [53]. It is possible to choose the form
of streams that fit the modeling interests best, but we mostly use Mω in the
following. In [53], we also embed dense time [39] and Edward Lee’s superdense
streams [35,36] into the framework.

Ticks partition time into slices, each with a finite sequence of events. The
semantics of integrated behavior thus follows the concept of superdense time [35,
39], which, distinguishes between a discrete “time continuum” (the global Focus
time) and “untimed causally-related actions” (a behavior model’s actions within
the time slice of a component).

One stream describes one behavior observation. A specification of allowed
behaviors is therefore described by a set of streams in ℘(Mω). It is a general

Fig. 1. A MontiArc software architecture of a mobile robot. The composed component
BumperBot contains four sub-components of different types to read sensor data, inter-
pret it, and actuate two motors. The robot explores uncharted territory and avoids
obstacles in the process.
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principle to use sets as a mechanism for specification and especially underspec-
ification, because using a set we can precisely define the allowed properties.
Furthermore, consistency of a specification corresponds to non-emptiness of a
set and refinement of a specification corresponds to set inclusion. A set A refines
another set B exactly, if A ⊆ B. Refinement thus is transitive and reflects that
the more information we have the less (mis-)behaviors are possible.

It is not the channel that is of primary interest, but the component and its
behavior. The signature of a component is a pair (I,O) of port names from
P describing the input and the output. Each port p ∈ P is typed by the set
of messages Mp. An observation set of channels I ⊂ P then is described by a
type-preserving mapping of each i ∈ I to Mω

i . In short, this mapping is called
−→
I .

The behavior of a component can then be modeled as a mathematical object
of sort

−→
I → −→

O that maps input behaviors to output behaviors. Please note, that
this function completely embeds temporal behavior, because the mapping does
not map a single message but has the full observation on its inputs available to
determine the full observation on the outputs. However, to be implementable a
component may not predict the future, i.e., the output in one time slice may not
depend on the input of a later time slice. In the untimed case, monotonicity and
continuity, and in the timed case, weak and strong causality, are mathematically
precise constraints that describe if a function is realizable. Fortunately, the forms
of streams defined above each form a well-founded CPO (complete partial order)
based on prefix ordering that allows defining these constraints.

A realizable function of sort
−→
I → −→

O describes exactly one possible imple-
mentation of the component. We call those stream processing functions. Again,
we generalize to specifications by using the power set construction, regarding
each component specification as element of ℘(

−→
I → −→

O ). Refinement again is
defined as subset.

2.2 Composition

Several techniques for modification for components exist, such as renaming ports
or hiding output ports, but of particular interest is composing two component
specifications, denoted with ⊗. Specification composition is defined by point-
wise specification of functions and two functions f, g are connected through the
channels with same names (and inverted directions). f ⊗ g basically is func-
tion composition and thus very well understood. Its new output signature is
O = Of ∪ Og and input I = (If ∪ Ig) \ O and thus does not hide connected
channels.

Other forms of composition include explicitly named pairs of channels that
shall be connected, automatic hiding of connected channels, as well as special-
ized variants, such as parallel and sequential composition or feedback. All are
grounded on the same composition principle. As composition is associative and
commutative, it can be generalized to composing any forms of architectures.
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Fig. 2. General form of composition.

Composition is well defined in each of the individual streams’ domains. And
because it is defined pointwise for specifications, properties of the resulting com-
posed specification can be inferred from properties of the individual specifica-
tions. For example, the composition is a consistent specification exactly when
both components have a consistent specification (Fig. 2).

But most importantly, composition and refinement are compatible, i.e., given
three specifications S, S′, T , where S′ is a refinement of S, then

S′ ⊆ S −→ S′ ⊗ T ⊆ S ⊗ T.

Therefore, refinement of any decomposed component leads to a refinement of
the overall composition. Refinement means that details on the implementation
are decided and more information added and thus less behavior possible. The
compatibility of refinement with composition means that once the system is
decomposed, each component can be developed and refined independently.

Because decomposition can be applied hierarchically, a complex CPS can be
decomposed into individual, atomic, and manageable components.

2.3 Description Styles for Components

A mathematical theory such as streams for describing CPS needs to be backed up
by more pragmatic styles of denoting specifications. The stream theory does not
directly qualify as a specification technique, but serves as a semantic domain [23]
for an appropriate set of concrete modeling notations.

Neither infinite streams, nor stream processing functions, nor sets over both
should directly be used in mathematical definitions. Instead a structural model-
ing technique should be available to define the internal decomposition of compo-
nents. A hierarchy of such structural decompositions finally leads to an architec-
ture comprising ports, channels, components and their composition. MontiArc’s
main modeling sublanguage allows to describe system architectures based on
streams. Message types and potentially other, internally used, forms of types
must be defined using an appropriate data structure language, e.g., UML class
diagrams [17,60]. Behavior of components can be defined in a relational form,
using for example the assumption/guarantee style composed of two logic specifi-
cations [8], where the assumption restricts the allowed input and the guarantee
relates input to output.
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Fig. 3. State machine describing the behavior of the BumpControl component of the
BumperBot software architecture (cf. Fig. 1).

State Machines. Today, state machines are used in various forms, which
include Statecharts [21,22], finite or infinite automata, Büchi automata [64],
I/O-automata [1,37], or I/Oω-automata [53,58,59] allow to describe behavior in
a stepwise manner, based on an internal state. Dependent on the form of the
state machine, different specific properties, such as liveness or completeness, can
potentially be described. The important concept of underspecification, which we
above realize through power sets, can partially be used within the automaton
language directly, using alternate transitions. Indeed is nondeterminism in the
state machine specification technique perfectly corresponding to underspecifica-
tion in the development process and if the developer does not decide, which of
the alternatives to be taken, actually the implementation may choose nondeter-
ministically.

Figure 3 depicts a state machine leveraging nondeterminism to specify the
behavior of the component BumpControl of the BumperBot software architec-
ture illustrated in Fig. 1: based on stimuli received through input dist, it
describes how the systems explores an area until finding an obstacle (states
Exploring and Avoiding). Afterwards it can drive backward, turn left, or turn
right (states Avoiding, Turning Left, and Turning Right) until it selects to
continue exploring. All decisions following entering state Avoiding are based
on nondeterministic choice, which is suitable to underspecify CPS properties in
different design stages.

I/Oω automata are still not a concrete modeling language, but are concep-
tually rather close. Such an automaton is a tuple (S,Min,Mout, δ, I) with a
potentially infinite set of states S, input and output alphabet Min and Mout, a
state transition function δ ⊆ S × Min × S × Mω

out and initial state and output
pairs I ⊆ S×Mω

out. An I/Oω automaton can easily be mapped to a set of stream
processing functions [58].
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If the automaton is total, then the component specification is consistent (i.e.,
a nonempty set of functions). If the automaton is deterministic, then exactly one
function is in the semantics. If the automaton is not total, then several choices,
such as error completion, full underspecification or ignoring input messages that
cannot be handled are available. This all holds for the untimed and timed cases.

Furthermore, there are a larger set of modifications on automata available,
such as removing one of several alternate transitions or splitting states, that by
application are correct refinements [53,59]. These modifications allow an evolu-
tionary development of atomic component specifications. One of the advantages
of state machines is that they can always be directly interpreted as implemen-
tation (with more or less choices) and thus used in simulations.

Architectures. The composition operation ⊗ allows to build hierarchically
composed systems. To explicitly understand the architecture, it can be modeled
explicitly. A static architecture is minimally modeled by (A, sub, σ, β), where A
denotes the set of components (respectively component identifiers), sub : A →
℘(A) the hierarchy of compositions, for a ∈ A, σ(a) = (Ia, Oa) is the signature
of the component and β(a) denotes a behavioral specification of the component
in form of a set of stream processing functions ℘(

−→
Ia → −→

Oa). Signatures as well as
behavior can now be derived bottom-up through the composition operator as well
as specified top-down using for example functional or state based specifications.

It is possible, to use several specification techniques describing different
aspects of the same component. Dependent on the form of development process,
it may make sense to start with an incomplete assumption/guarantee specifica-
tion, complete it into a state machine and then hierarchically refine the structure
and decompose the overall behavior into a number of interacting components.
Semantically, we always know, whether the development steps have been cor-
rect, because either they are refinements or we can compare the semantics of a
composed architecture and the semantics of a state machine on the basis of the
sets of stream processing functions that they define.

2.4 Refinement

It is worth to have a deeper look at refinement. Refinement is defined as relation
between mathematical models that exhibits useful properties. Model B gener-
ally is a refinement of A, when implementations allowed by B are all correct
implementations of A. In its simplest form, A and B are sets of implementa-
tions themselves and refinement is realized by the subset equation. This holds
for stream specifications as well as for specification of components, which are
sets of stream processing functions.

The notion of refinement can be extended in two ways: (1) instead of using
a pure semantic relation, constructive transformation techniques are defined,
and (2) if the signature of the components changes then signature mappings for
abstraction and refinement need to be added.
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Constructive transformations T can be used instead of using a pure semantic
relation R(., .). They by definition lead to the appropriate refinement. That
means for all models A we have R(A, T (A)). A sequence of transformations
always leads to a refinement of the system. As a consequence, refinement needs to
be transitive. The refinement techniques need to be chosen and defined according
to the methodical steps that the developer needs. While the refinement relation
is defined in a general form concrete transformation steps should be handy,
simple and understandable and thus many kinds of small transformation steps
are useful.

Refinement of State Machines Through Transformation. We demon-
strate the general principle of constructive transformations for refinement on
the already mentioned refinement concept for state machines as defined in [59].
We repeat the list of concrete refinement steps from [53] in Table 1.

Table 1. Refinement transformations preserving or refining semantics of automata
models A = (S, Min, Mout, δ, Init) to T (A) = (S′, M ′

in, M ′
out, δ

′, Init′)

Transformation Condition and Description

Init′ ⊆ Init Removing initial non-determinism

δ′ ⊆ δ Removing non-deterministic transitions (with same input in
same state); constraint: only for reduction of nondeterminism

δ′ ⊇ δ Add transitions: removing partiality of accepted input;
constraint: not allowed to introduce alternatives to existing
transitions

S′ ⊆ S, δ′ ⊆ δ Removing states not reachable with any finite or infinite
transition sequence

S′ ⊇ S Adding states

S � S′ S replaced by S′ with a total, surjective relation that respects δ′

from S to S′ (adapting δ′ and Init′)

Init � Init′ Changing initial state where initial output is infinite

δ � δ′ Changing destination state where output is infinite

Min ⊆ M ′
in Extending input alphabet: semantics preserved for inputs of Mω

in

that do not contain any of the new messages

S′ = S⊥, δ ⊆ δ′ Chaos complete: adding error state ⊥, making transition relation
total using target state ⊥, and allowing any output

δ ⊇ δ′ Compactify: transforming transitions with infinite output to
self-loops

In each case T (A) is a refinement of the original state machine A, if we ensure
that the context conditions (i.e., well-formedness rules and the application rules
for the transformation) are met. Refinement here means, that the semantics
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�A� and �T (A)�, which of both sets of stream processing functions, are in the
appropriate relation: �A� ⊇ �T (A)�.

As discussed, (S,Min,Mout, δ, Init) is still not a concrete modeling syntax,
but it exhibits many more concepts of a concrete modeling language. It will
therefore be easier to map a concrete state machine modeling language to these
concepts and then understand, what the appropriate evolution steps on state
machines are to ensure refinement.

Refinement of Architectures. There also is an evolutionary calculus avail-
able that allows to modify the given structure of a decomposed component in a
controlled way, such that the overall behavior defined by the outside specification
is not altered or only refined, when modifying the component internally [48,49].
We call this glass-box refinement. This contrasts both, the black-box refinement,
where only specifications are considered, as well as the decomposition refine-
ment, where a black-box is decomposed into an architecture of communicating
components using a composition operator.

A decomposition refinement actually is a modification of the architecture
(A, sub, σ, β) in such a way that a so far atomic component a ∈ A becomes
decomposed by a set of new components. Glass-box refinement allows to modify
components and their interconnections and thus leads to calculus like the one
presented in Table 2, taken from [48,49], where also the context conditions are
precisely defined.

In addition, the papers [40,41,51,56] also have explored to use architecture
definitions as incomplete views. That means while syntactically equivalent to an
architectural definition, the view only depicts certain components, omits unin-
teresting channels and also boundaries, how these components are embedded
into an architecture. A view based specification therefore corresponds well to
the independent modeling of a feature in a high-level form independent of any
technical architecture. And those features can in the development process be
merged into a complete architecture allowing, e.g., an efficient form of variant
management. Again a variety of refinement techniques are possible on views.

Refinement of Component Signatures Using Mappings. If the signature
of the discussed components change or the set of messages in a set of streams
changes, then the specifications are not directly comparable. This happens at
many architectural modifications, e.g., if new inputs or outputs are added or
a port is renamed. In this case an abstraction mapping and a representation
mapping—we call them α and ρ—are necessary to relate the two specifications
respectively their semantics. Details of these mappings differ depending on the
form of refinement. Again it is mandatory that signature refinements are tran-
sitive, which is achieved through function composition on chains of refinement
and abstraction mappings.

As simple refinement for two sets of messages M , N is defined using an
injective ρ : M → N and α(ρ(m)) = m for m ∈ M . Then ρ is an encoding
of the old messages into a potentially more technical representation and α is
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Table 2. Refinement transformations preserving or refining semantics of architecture
models S = (A, sub, σ, β) to T (S) = (A′, sub′, σ′, β′)

Transformation Condition and Description

β′(a) ⊆ β(a) Behavioral refinement of the specification for component
a ∈ A, usually under an invariant Φ that is valid on any
system execution that has this architecture

A′ = A ∪ N Architectural decomposition of an atomic component a ∈ A,
i.e., sub(a) = ∅, by a set of new components N �∈ A, where
sub′(a) = N , sub′(N) = ∅ and sub′ = sub otherwise

σ′
o(a) = σo(a) ∪ {c} Adding output channel to a component that has previously

been hidden internally i.e., c ∈ σo(sub(a))

σ′
o(a) = σo(a) \ {c} Removing an output channel that is not used by sibling

components, nor further exported, i.e., for parent p with
a ∈ sub(p): c �∈ σi(sub(p)) and c �∈ σo(p)

σ′
i(a) = σi(a) ∪ {c} Adding input channel that is now available, but unused

σ′
i(a) = σi(a) \ {c} Removing an input channel of a component. This is only

allowed, when the component does not rely on the input
channel under an invariant Φ. This can either be checked
syntactically (absence of use of c) or needs a proof

A′ = A ∪ {a} Adding a component a is always uncritical. The component
may be added at any level of the hierarchy and read all
available channels. It’s output isn’t used (yet) and thus the
modification is uncritical. (sub′ includes a, β′ extended on a
as well)

A′ = A \ {a} Removal of a component a is allowed, when the component
has no impact, i.e., doesn’t emit any channel – σo(a) = ∅ – or
it’s channels are not used anymore (see removing output
channels)

A′ = A \ {a} Expanding component structure of a ∈ A, where
sub′(p) = sub(p) \ {a} ∪ sub(a), leading to an expansion of the
internal structure of a into it’s father component p

A′ = A ∪ {a} Folding a sub-component structure by introducing new
component a ∈ A and embedding a subset C ⊆ sub(p) in
component a, for instance, sub′(p) = sub(p) ∪ {a} \ C and
sub(a) = C

the corresponding abstraction. All messages in N\ρ(M) are not needed and
should therefore not occur in system executions. However, components may react
robustly on those messages, for example by ignoring them.

Components a using M as input on a port p may be refined accordingly.
With ρc(a) and αc(a), we denote the specifications resulting from the signature
change of component a induced by ρ and α. Because specifications are sets of
stream processing functions, ρc and αc are mappings between sets, resulting
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in αc(ρc(a)) = a. The latter equality ensures the faithfulness of the encoding
representation.

There are many possible forms to extend encodings. We, for example, can
use a surjective, but not necessarily injective abstraction α, allowing that many
messages in N represent the same abstract message in M . Then ρ is a relation,
but still (α ⊗ ρ)(m).

We could represent an abstract message in M by a sequence of messages
in N . This can be described by ρ : Mω → Nω and again α(ρ(s)) = s for
s ∈ Mω. Again, the encoding does not discuss, what happens with illegitimate
sequences of messages, i.e., s 
∈ ρ(Mω), which gives additional freedom when
further refining the resulting specification. However, illegitimate sequences of
messages should not even occur in a system execution, because through proper
refinement of an architecture, the emitting component obeys the same encodings
as the receiving component.

If the encoding covers even several channels, e.g., when mapping an 32-bit
integer into 32 separate binary channels, then ρ and α will be applied on sets of
channels.

Through these various generalizations and the possibility to build chains of
encodings ρ1(ρ2(. . .)), we finally are able to map abstractly defined components
to concrete components and relate their specifications in form of an U-simulation
(see [4]). U-simulation uses the idea that the input is mapped down via ρ to a
concrete representation and the output is mapped back via α: The refinement
of component a is therefore ρc(a) = α ◦ a ◦ ρ. This technique is useful, when a
single component is to be refined and shall be used in the original, unchanged
context.

If a complete architecture is to be refined, then it is sufficient to define repre-
sentation mappings for all channels using ρ and apply the representation map-
ping to all components in an architecture. However, ρ also needs to have an
inverse relation with certain properties, to ensure that an encoding is complete
and faithful. [4] calls this refinement under the representation specification ρ or
downward simulation. In that article, upward simulation and U−1-simulation are
defined also.

Relatively simple forms of refinement, namely the renaming of a channel
or the replacement of a set of messages by an equivalent one are easily sub-
sumed under these forms of interaction refinement. Several of the above dis-
cussed glass-box modifications for a given architecture can also be derived by
applying abstraction and representation mappings on the architectures.

Refinement of Time. Time is a very special concept. It is worth to take a
deeper look at the possibilities of modifying specifications, that incorporate time.
Above we introduced the tick � to model the progress of time. Precisely, in a
stream two consecutive ticks represent the beginning and end of a time slice. All
time slices in a stream are of equal length, although we do not necessarily need
to know the length explicitly. Furthermore, in all streams on all channels ticks
model the same progress of time.
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Initially, the tick was introduced mainly to model delay. With the tick it
became possible to describe, for example, the merge function inductively, which
previously was not possible. When real-time functions became more important
e.g., in the domain of CPS, the tick was also used to represent equidistant
progress of time. Formally, the tick is handled like any other message in a stream,
which means that stream processing functions may react on progress of time.
In particular, we may model timeouts by counting the ticks, which implements
clocks.

Timed streams, therefore, have a very similar power of description compared
to the concept of superdense event structures [35,36]. All messages within a time
slice are known to consecutively follow each other, but nothing is said about the
actual progress of time between them. While in the superdense event structure
[36], each event has a precise time stamp, in streams only the time slice (and the
relative order of events) are known. If real-time comes into play, but the exact
timing is not necessary, it should be possible to define time slices small enough
to accommodate timed behavior specifications. This abstraction might be useful
in specifications especially for underspecification.

Assuming, that a given specification uses a time slice of size t. When refining
the specification to be able to more precisely describe expected behavior, we
might be interested in refining time as well, splitting each time slot into n sub-
slots. Formally, such a refinement is defined by an abstraction mapping α :
Mω

� → Mω
� that filters each consecutive n − 1 ticks, while emitting each n-th

tick. The representation ρ is therefore a relation allowing many different forms
of splits for the time slice, i.e., injecting ticks at different places in a stream.
Time refinement can also be chained, allowing a hierarchy of time slices.

For simulation purposes, it is interesting to relax the constraint that all ticks
model the same time slices. First, we may use channels, where the observed
behavior differs from channel to channel. We may even allow timed and untimed
channels within the same architecture, which allows us to model system struc-
tures and component behaviors as abstract as desired. Formally, we assume a
minimal and potentially very small time slice t that is available in the whole
system. Each channel is then accompanied with a natural number n (or ∞)
describing the size of its time slice as multiple n ∗ t. For a simple mathematical
description, we may use �n to denote ticks on a channel with multiplicity n.

A component can then accept a variety of timed channels, allowing to be
internally decomposed into sub-components of different (synchronous) clocks as
well as introducing specification components the main purpose of describing how
timing behavior is handled.

There is a lot more theory available, e.g., there are interesting techniques
to refine time in a state based specification, where each transition describes an
event (including timing events) or describes a time slice [4,58].

Equipped with the above summarized theory, we are in the following looking
at the simulation environment provided by MontiArc and how several of the
above described techniques are practically realized.
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3 Architecture Models in MontiArc

MontiArc [9,18,20] is an extensible component & connector ADL [42] allowing
to describe the architecture of hierarchically composed components. MontiArc,
furthermore, comprises languages for definition of data types and the behavior or
of components. MontiArc’s components realize stream processing functions that
can implement the above discussed timing paradigms. All MontiArc languages
are realized as textual modeling languages with the MontiCore [32] language
workbench, which supports MontiArc’s language extension mechanisms [9]. Mon-
tiArc and its variants have been applied to the software engineering of automo-
tive software [19], cloud systems [45], and robotics applications [52] in indus-
trial [24] and academic contexts [54,55].

Fig. 4. Textual representation of the component BumpControl controlling the behav-
ior of the BumperBot architecture using an embedded I/Oω automaton emulating the
behavior depicted in Fig. 3.

Components, such as BumperBot of Fig. 4 directly correspond to sets of
stream processing functions. MontiArc architectures support refinement and
composition. The outermost component BumperBot defines the system bound-
ary and through instantiation relations and establishment of connectors between
its subcomponents defines a software architecture in the sense of (A, sub, σ, β)
(cf. Sect. 2.3). With MontiArc, A is the set of components transitively used by
the outermost component, sub is characterized by the instantiation relation of
the contained components, σ is defined by their incoming and outgoing ports,
and β is defined by the behavior models employed by the instantiated com-
ponents. To this end, MontiArc components yield interfaces of typed, directed
input and output ports through which they receive and emit streams of messages
to from and to the environment (ll. 2–6). Components also are either composed
or atomic: composed components comprise connectors that realize aforemen-
tioned communication channels (cf. Sect. 2.1) and through which they define
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Fig. 5. Quintessential interfaces of MontiArc’s run-time environment and how they are
related to the generated implementation of component BumpControl of Fig. 1.

their sub-components’ composition (cf. Sect. 2.2). Atomic components feature
local variables and an I/Oω automaton describing component behavior (ll. 8–
13). An I/Oω automaton comprises a finite set of states (ll. 9–10), initial variable
values, a set of initial states with optional outputs (l. 9), and a set of transitions
(ll. 11 ff). Every transition has a source state, a pattern of values read on input
ports (inputs) and local variables, a target state, values written to output ports
(outputs), and values assigned to local variables (assignments). Inputs, outputs,
and assignments may refer to values read from input ports and to values of
variables. Embedding other behavior modeling languages is possible [52]. For
detailed definitions and well-formedness rules see [20,57].

3.1 Transforming MontiArc Models to Executable Java

MontiArc leverages MontiCore’s template-based code generation framework [61]
to translate component models into executable Java artifacts. To this end, Mon-
tiArc parses textual models into abstract syntax trees (ASTs), checks their well-
formedness, and applies FreeMarker [63] templates to transform ASTs into Java
classes that are compatible to a run-time environment featuring component sim-
ulation. This section illustrates this transformation and the next section presents
how the Java classes are employed for simulation.

The code generator of MontiArc aims to minimize memory footprint of archi-
tectures and operates in the context of a run-time environment (RTE) that
provides functionality required by every generated architecture. To this end, it
provides various interfaces that generated component code as well as parts of the
RTE rely upon. Its quintessential interfaces for describing component structure
are IComponent and IPort, which are implemented by generated component
implementations and their ports as depicted in Fig. 5.

Components interact with their environment through sets of incoming and
outgoing ports only and can comprise sub-components (composed components
only) or behavior implementations (atomic components only) that realize, for
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instance, the embedded automata. Each emitting port is connected to a set of
receiving ports. This conforms to the Focus property that a sender can transmit
data to multiple receivers. As sending ports are directly connected to receiving
ports, MontiArc does not require to reify connectors (channels) as Java classes.
This reduces the number of required objects at runtime and increases schedul-
ing flexibility. Component implementations take care of creating and initializing
their sub-components hierarchically according to the corresponding architecture
model.

At the core of MontiArc’s simulation capabilities is its scheduling infras-
tructure, which enables simulation of hierarchical architectures of components
following different timing paradigms. Each component may carry its own sched-
uler. Default schedulers are provided, which interact in such a way, that time
progress is ensured and all messages are scheduled in their time slot.

Figure 6 depicts its infrastructure but omits the associations already depicted
in Fig. 5. Aside from IComponent and IPort, the schedulers use the following
classes and interfaces:

– Interfaces IOutPort and IInPort: Both interfaces implement IPort and
enable component developers to send and receive messages respectively.

– Interface ISimComponent provides two methods to the scheduler to acti-
vate components. Via method handleMessage(port, message), the sched-
uler invokes processing the passed data message on port port. The method
handleTick() to make a component increase its internal clock and emit √
messages on each outgoing port.

– Abstract class AComponent serves a common superclass for generated compo-
nent classes (such as BumpControl) and comprises the component name as
well as an error handler.

– Interface IOutSimPort provides methods to register receivers (i.e., establish
connectors).

– Interface IInSimPort enables to setup the containing component and related
scheduler to outgoing port instances.

– Additional scheduling-related methods to manipulate the state of ports are
provided but omitted in the Figure (e.g., put to sleep, wake up, etc.).

– Interface IScheduler features the setupPort(inPort) method to set up a
concrete scheduler and the registerPort(inPort, msg) method to trigger
scheduling of a certain port and message.

– Interface IPort unifies the use of incoming and outgoing ports throughout
the generated architecture.

– Interface IForwardPort defines incoming ports for decomposed components
and forwards messages to the connected incoming ports of the corresponding
sub-components.

– Class Port is the default port implementation for simulation. To conserve
memory, Port instances are created for incoming ports of atomic components
only. Through IPort, instances of the connected incoming ports can be used
as outgoing ports and dedicated objects for outgoing port are unnecessary.
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Fig. 6. Quintessential classes and interfaces of MontiArc’s simulation run-time envi-
ronment as presented in [18].

Leveraging interfaces to describe MontiArc’s scheduling facilitates extending
its simulator for different scheduling purposes and timing paradigms. The next
section describes how this infrastructure is employed to realize various timing
paradigms with MontiArc.

The default scheduling can be individually replaced by specific schedulers,
that either know more about the implementation and the order of how mes-
sages are processed, or can for example in the simulation be used to experiment
with different possible orders to understand how parallel processing respectively
interleaving affects the overall outcome. Default scheduling is underspecified in
the order of executing the messages (within a given time frame).

The default scheduling is also able to manage cycles of communicating com-
ponents. Such a cycle needs to be broken up in order to allow progress. In
accordance to the theory of Sect. 2, we break each cycle at components that
are strongly causal. Strong causality means that the output of a time slice is
determined by the inputs of the previous time slice, which means that the com-
ponent introduces delay, and the calculation of the following components can
start already based on the predetermined result of the strongly causal compo-
nent. If there is a cycle where no component is a strongly causal, the feedback
composition will not be well-defined and the simulation would correspondingly
get stuck (respectively issues a halting error).

The scheduling order of messages introduces certain form of nondeterminism
that may for example occur, if several messages in different channels arrive in the
same time slot and are individually processed based on a potentially changed
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internal state. Introducing our own schedulers allows to control this form of
nondeterminism. Furthermore, for an intensive set of tests of the component
interaction, different schedules should be experimented with.

The very same challenge occurs, if the component itself is underspecified,
allowing different potential implementations. This is for example the case for
nondeterministic state machines, where alternative transitions can be taken with
different reactions and different target states. For an extensive simulation, this
form of nondeterminism is also to be controlled and scheduled using different
alternatives. A typically possible way to control these forms of nondeterminism
is to externalize the choice. I.e. instead of nondeterminism, the choice can be con-
trolled by an additional external oracle, which may for example be a stream of
binary suggestions. I.e. mathematically, we replace and set of stream processing
functions ℘(

−→
I → −→

O ) by a single deterministic function with an additional input
channel

−→
B ×−→

I → −→
O ). The binary decisions B can be extended to finite or even

unbounded choice if necessary. A given architecture can be adapted accordingly,
such that each underspecified component and each scheduler receive appropri-
ate oracles. The adapted architecture can be well used for extensive tests in
simulations.

3.2 Simulating Time in MontiArc Architectures

Simulating time of logically distributed and concurrent components in a single
thread requires explicit scheduling, where the schedulers are responsible for mes-
sage processing and the simulation of time. As discussed above, each component
can yield an individual scheduler and a larger variety of scheduling schemes is
possible. Each scheduler decides which sub-component executes next and the
schedulers synchronize incoming data and ticks received on the incoming ports
of components. One strategy is to merge incoming events to a simulated timed
input trace. This trace is then propagated to scheduled components, which inter-
nally process each event and also process timing progress through �-events.

As different applications favor different communication timing strategies –
embedded applications might favor global clocks whereas cloud systems might
benefit from event-driven communication – MontiArc supports all paradigms
of time described in Sect. 2. As complex architectures can be composed from
components realizing different time paradigms, MontiArc supports registering
different schedulers for each composed component. It also provides a default
scheduler supporting all three timing paradigms through temporal unification.
This is presented in the following.

The foundation of MontiArc simulations are the timed streams discussed in
Sect. 2. The timing paradigm of a component determines how the tick messages
and data messages of those streams are translated to events, which are propa-
gated to the component implementation. For composed components comprising
sub-components of different timing paradigms, the distinct timing behavior is
unified to the underlying timed stream paradigm automatically. This entails
not forwarding time events to untimed components and forwarding only a single
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message per time interval to time-synchronous components. Where special trans-
lations between different timing paradigms of sub-components are required, the
models have to be adapted to enable proper interaction. This can be achieved
by introducing upscaling and downscaling sub-components [8] that translate
between different timings in terms of a behavior refinement and serve as adapters
between sub-components with different time paradigms.

Fig. 7. Unification of time-synchronous streams, timed streams, and untimed streams
into timed input traces.

MontiArc’s default scheduler unifies time in composed components as
depicted in Fig. 7: upon receiving a bundle of streams of the component to be
scheduled, the scheduler synchronizes these streams into a timed input trace. For
each completed time interval in all received input streams, a time event (√) is
present in the produced input trace produced by the scheduler. All data events
are propagated to the components input trace in order of their occurrence also.
The scheduler then uses the timed input trace to trigger the scheduled compo-
nent. Time events are raised at the component using its handleTick() method,
data events are raised using its handleMessage() method. The Specific Event
Creation part of a component then creates timing paradigm specific events that
are passed to the concrete implementation of a component.

Unless modeled differently, MontiArc components communicate in a timed
fashion. Timed components react to the progress of time as well as data messages
on each incoming port. Hence, timed components can produce arbitrary many
output messages in a single time slice. Their output is produced in the same time
interval in which the triggering input occurred. The Specific Event Creation
of timed components forwards the received timed input trace from the scheduler
to the component implementation. Hence, the timing domain specific event trace
directly corresponds to the timed input trace.

Time-synchronous components process up to one input event per time slice
and also send up to one message per outgoing port as a reaction to the received
input event. Input events of time-synchronous components are tuples holding
exactly one message (which may be the empty message ⊥) per input channel.
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The propagation of messages from timed input streams to time-synchronous
event traces defines the semantics of time-synchronous components operating
over timed streams. The Specific Event Creation takes care of creating cor-
responding tuples to liberate component developers from addressing synchro-
nization.

Untimed components are unaware of timing events, but react to data events
only. To this end, the Specific Event Creation filters the tick (√) messages
produced by the scheduler as part of the timed input event trace and forwards
the result to untimed components accordingly.

Components receiving streams of any timing paradigm can refine the time
indicated by these streams as required through decomposing time slices into
smaller slices processed by their subcomponents as presented in Sect. 2.4.
This corresponds to subcomponents operating in a superdense time where the
time continuum can be decomposed until (through architecture decomposition)
atomic component perform multiple untimed causally-related actions in a single
time slice. Details on realizing the different timing paradigms in MontiArc [18,20]
as well as its implementation and tutorials1 are available.

One of the big advantages of �s in the simulation are that the modeled time in
the simulation becomes explicit and thus is decoupled from the time necessary to
execute the simulation. The simulation can therefore run much larger time frames
than it needs to execute the simulation, e.g. necessary for climatic simulations,
or vice versa can simulate very tiny timeslots, such as typical for physical atomic
processes. Furthermore, when distributing the simulation to many computational
cores, then individual cores can run different time frames and can even partially
look far into the future, as long as they don’t rely on other older parts of the
simulation from other cores.

With code generation, hierarchical component instantiation, and extensi-
ble scheduling for different timing paradigms in place, MontiArc is suitable to
address many challenges arising from engineering software-intensive CPS.

4 Discussion

MontiArc supports simulating logically distributed systems of stream processing
functions according to different timing paradigms. This enables exploring and
validating MontiArc architecture in an agile way. Together with its extensible
ADL MontiArc is suitable for rapidly prototyping system models.

The MontiArc simulation realizes the Focus architecture and communica-
tion model. Outgoing ports directly transmit messages to connected incoming
ports and records of these transmissions correspond to Focus streams that
describe the timed communication between sender and receiver. As the MontiArc
simulation aims to minimize the memory footprint of architectures at runtime
and streams are rarely needed during the execution of a simulation, streams are,
by default, not recorded to reduce the amount of allocated memory. However,

1 See http://www.monticore.de/languages/montiarc/.

http://www.monticore.de/languages/montiarc/
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for analysis and testing, the relevant ports can be flexibly replaced with test
ports that explicitly record transmitted messages in a stream data structure for
analysis during or after the simulation execution.

Despite the simulation being executed in a single thread with synchronous
blocking method calls, atomic components can be implemented in an event-
based fashion. To this end, the MontiArc runtime system prescribes interacting
interfaces for components and ports that enable its schedulers to stimulate com-
ponents with incoming events. Although the message transmission and event
propagation by the scheduler require some real time, no simulation time has
passed when the control flow returns to a component. Consequently, MontiArc’s
simulation is logically asynchronous and event-based, which is suitable to a wide
range of software-intensive CPS.

5 Related Work

A study on architecture description languages discovered over 120 different lan-
guages for different kinds of systems operating in different domains [38]. Of
these, various languages serve modeling the structure and behavior of software-
intensive CPS, including automotive systems [12], avionics [14], consumer elec-
tronics [46], and robotics [62]. The languages focus on different aspects and
challenges of architecture engineering from academic and industrial perspectives.
Overall, architecture description languages rarely are grounded in a well-defined
theory. Many prominent ADLs rely on theories realized implicitly through their
tooling.

In contrast, AutoFOCUS 3 [26] is a tool suite for developing reactive embed-
ded systems that also bases its semantics on Focus [8]. In contrast to MontiArc,
AutoFOCUS 3 cannot leverage the language composition of an underlying lan-
guage workbench and, hence, does not feature MontiArc’s powerful language
embedding mechanisms [9]. Further prominent examples of ADLs with well-
founded semantics are the π-ADL [47], LEDA [10], and PiLar [11], all of which
rest on the π-calculus [44], which lacks the powerful properties of Focus regard-
ing composition of refined components.

6 Conclusion

We have presented how the Focus theory of stream processing functions can be
leveraged to facilitate the model-driven development of cyber-physical systems
through early simulation under consideration of different timing paradigms. To
this end, we summarized refinement and composition in Focus and showed how
automata can employ underspecification to support model-driven specification
in early design stages. Based on this theory, we presented the MontiArc archi-
tecture modeling tool suite and explained how its code generation and simula-
tion capabilities support engineering software-intensive cyber-physical systems
with underspecification and different timing requirements through simulation.
We believe that this combination of well-founded theory and practical modeling
technique facilitates software engineering of cyber-physical systems.
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process” approach to algebraic dynamic architecture description. J. Log. Algebraic
Program. 63, 177–214 (2005)

12. Debruyne, V., Simonot-Lion, F., Trinquet, Y.: EAST-ADL—an architecture
description language. In: Dissaux, P., Filali-Amine, M., Michel, P., Vernadat, F.
(eds.) Architecture Description Languages. ITIFIP, vol. 176, pp. 181–195. Springer,
Boston, MA (2005). https://doi.org/10.1007/0-387-24590-1 12

13. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. Proc.
IEEE 100(1), 13–28 (2012)

14. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston
(2012)

15. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: Future of Software Engineering (FOSE 2007), pp. 37–54, May 2007

16. Giese, H., Rumpe, B., Schätz, B., Sztipanovits, J.: Science and engineering of cyber-
physical systems (Dagstuhl seminar 11441). Dagstuhl Rep. 1(11), 1–22 (2012)

https://doi.org/10.1007/978-3-662-02880-3_5
https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-1-4613-0091-5
https://doi.org/10.1007/978-3-319-61482-3_4
https://doi.org/10.1007/978-3-319-61482-3_4
https://doi.org/10.1007/978-0-387-35563-4_7
https://doi.org/10.1007/978-0-387-35563-4_7
https://doi.org/10.1007/0-387-24590-1_12


404 B. Rumpe and A. Wortmann

17. OM Group: OMG Unified Modeling Language (OMG UML), Infrastructure version
2.3 (10-05-03) (2010)

18. Haber, A.: MontiArc - Architectural Modeling and Simulation of Interactive Dis-
tributed Systems. Aachener Informatik-Berichte, Software Engineering, Band, vol.
24. Shaker Verlag, September 2016

19. Haber, A., Rendel, H., Rumpe, B., Schaefer, I.: Evolving delta-oriented software
product line architectures. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop
2012. LNCS, vol. 7539, pp. 183–208. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34059-8 10

20. Haber, A., Ringert, J.O., Rumpe, B.: Montiarc - architectural modeling of interac-
tive distributed and cyber-physical systems. Technical report AIB-2012-03, RWTH
Aachen University, February 2012

21. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8, 231–274 (1987)

22. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.)
Logics and Models of Concurrent Systems. NATO ASI F, vol. 13, pp. 477–498.
Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-82453-1 17

23. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of “semantics”?
IEEE Comput. 37(10), 64–72 (2004)

24. Heim, R., Mir Seyed Nazari, P., Ringert, J.O., Rumpe, B., Wortmann, A.: Modeling
robot and world interfaces for reusable tasks. In: Intelligent Robots and Systems
Conference (IROS 2015), pp. 1793–1798. IEEE (2015)

25. Hoare, C.A.R.: Communicating sequential processes. In: Hansen, P.B. (ed.) The
Origin of Concurrent Programming, pp. 413–443. Springer, New York (1978).
https://doi.org/10.1007/978-1-4757-3472-0 16

26. Hölzl, F., Feilkas, M.: 13 AutoFocus 3 - a scientific tool prototype for model-
based development of component-based, reactive, distributed systems. In: Giese,
H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) MBEERTS 2007. LNCS,
vol. 6100, pp. 317–322. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16277-0 13

27. Huber, F., Schätz, B.: Rapid prototyping with AutoFocus. In: Wolisz, A., Schiefer-
decker, I., Rennoch, A. (eds.) Formale Beschreibungstechniken für verteilte Sys-
teme, GI/ITG Fachgespräch, pp. 343–352. GMD Verlag, St. Augustin (1997)

28. Huber, F., Schätz, B., Schmidt, A., Spies, K.: AutoFocus—a tool for distributed
systems specification. In: Jonsson, B., Parrow, J. (eds.) FTRTFT 1996. LNCS,
vol. 1135, pp. 467–470. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61648-9 58

29. Jensen, J.C., Chang, D.H., Lee, E.A.: A model-based design methodology for
cyber-physical systems. In: 2011 7th International on Wireless Communications
and Mobile Computing Conference (IWCMC), pp. 1666–1671. IEEE (2011)

30. Karsai, G., Sztipanovits, J.: Model-integrated development of cyber-physical sys-
tems. Softw. Technol. Embed. Ubiquit. Syst. 5287, 46–54 (2008)

31. Klein, C., Rumpe, B., Broy, M.: A stream-based mathematical model for dis-
tributed information processing systems - SysLab system model. In: Workshop
on Formal Methods for Open Object-based Distributed Systems. IFIP Advances
in Information and Communication Technology, pp. 323–338. Chapmann & Hall
(1996)

32. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional devel-
opment of domain specific languages. Int. J. Softw. Tools Technol. Transf. (STTT)
12(5), 353–372 (2010)

https://doi.org/10.1007/978-3-642-34059-8_10
https://doi.org/10.1007/978-3-642-34059-8_10
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-1-4757-3472-0_16
https://doi.org/10.1007/978-3-642-16277-0_13
https://doi.org/10.1007/978-3-642-16277-0_13
https://doi.org/10.1007/3-540-61648-9_58
https://doi.org/10.1007/3-540-61648-9_58


Abstraction and Refinement in Hierarchically Decomposable 405

33. Lee, E.A.: Cyber-physical systems-are computing foundations adequate. In: Posi-
tion Paper for NSF Workshop On Cyber-Physical Systems: Research Motivation,
Techniques and Roadmap, vol. 2 (2006)

34. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), pp. 363–369. IEEE (2008)

35. Lee, E.A.: CPS foundations. In: 2010 47th ACM/IEEE Design Automation Con-
ference (DAC), pp. 737–742. IEEE (2010)

36. Lee, E.A.: Constructive models of discrete and continuous physical phenomena.
IEEE Access 2, 1–25 (2014)

37. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q.
2, 219–246 (1989)

38. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: a survey. IEEE Trans. Softw. Eng. 39(6), 869–891
(2013)

39. Manna, Z., Pnueli, A.: Verifying hybrid systems. In: Grossman, R.L., Nerode, A.,
Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 4–35. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6 22

40. Maoz, S., Ringert, J.O., Rumpe, B.: Synthesis of component and connector models
from crosscutting structural views. In: Meyer, B., Baresi, L., Mezini, M. (eds.)
Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE
2013), pp. 444–454. ACM, New York (2013)

41. Maoz, S., Ringert, J.O., Rumpe, B.: Verifying component and connector models
against crosscutting structural views. In: Software Engineering Conference (ICSE
2014), pp. 95–105. ACM (2014)

42. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26, 70–93 (2000)

43. Milner, R.: Communication and Concurrency, vol. 84. Prentice Hall, Upper Saddle
River (1989)

44. Milner, R.: Communicating and Mobile Systems: the π Calculus. Cambridge Uni-
versity Press, Cambridge (1999)
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Abstract. The field of cyber-physical systems (CPS), as a well-defined
intellectual discipline, is entering its second decade. The past decade
has seen several explorations in CPS education, accompanied by related
research projects and technologies. This article reviews some of these
explorations that the author has been involved with, and tries to extrap-
olate these to “dreams” for what the future may bring.

1 Prologue

In 2006, the term “cyber-physical systems” was coined by Helen Gill at the U.S.
National Science Foundation to capture an emerging discipline concerned with
the integrations of computation with physical processes. A nascent research com-
munity started to emerge, building on the momentum cutting across fields such
as embedded systems, real-time systems, hybrid systems, control theory, sensor
networks, and formal methods. Discussions began about developing curricula
for training students interested in working in the broad area of cyber-physical
systems.

During the 2006–2007 academic year, a small group of UC Berkeley fac-
ulty in the Electrical Engineering and Computer Sciences (EECS) Department,
including Edward Lee, Claire Tomlin, and myself, met to discuss the creation of
an undergraduate curriculum in CPS. Berkeley had already been a pioneer in
research and graduate education in CPS for several years, but there were still
no undergraduate courses focusing on CPS. A major challenge was the breadth
of topics needed to cover the area. A further challenge was to achieve a balance
between theoretical content and practical, lab-based coursework. From the dis-
cussion, the basic contours of an undergraduate course emerged, and over the
next decade it developed into a broader “expedition” in CPS education.

A major expedition to explore the unknown is best undertaken by a team.
This has been true of some of the major expeditions in history, such as the Lewis
and Clark expedition, and it is true of expeditions in research and teaching. In my
case, I have been fortunate to undertake this expedition in CPS education with
Edward Lee and several others. It has comprised several smaller explorations
along “trails” in CPS education. This article is my attempt to report on these
explorations, the results they obtained, and what we learned from them, and to
extrapolate them to “dreams” for the future of CPS education.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 407–422, 2018.
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2 Trail I: EECS 149

During the Spring 2008 semester, Edward Lee and I co-taught the first offering of
Introduction to Embedded Systems, the undergraduate course in CPS we created
at Berkeley [14].1 I will refer to this course by its number in the Berkeley course
catalog, EECS 149. We limited enrollment and advertised the class as being for
“advanced and adventurous” undergraduates. A small class of about 20 students
showed up. Over the course of the next 13 weeks, we explored a selection of
topics in CPS together, blending theoretical topics with experimental work. It
was a rewarding experience in many ways—perhaps most satisfyingly, two of the
students in that class, Jeff Jensen and Trung Tran, went on to work closely with
us on further developing the laboratory and online content for the course.

There were a few key decisions we faced in designing a new undergraduate
course in CPS. At the time, we ended up making choices that just seemed natural
to us. Ten years on, I believe these choices have proved crucial in developing a
durable and unique CPS curriculum at Berkeley, one which is also starting to
have a promising impact at institutions around the world.

Diversity of Topics and Backgrounds: The field of CPS draws from several
areas in computer science, electrical engineering, and other engineering disci-
plines, including computer architecture, embedded systems programming lan-
guages, software engineering, real-time systems, operating systems and network-
ing, formal methods, algorithms, theory of computation, control theory, signal
processing, robotics, sensors and actuators, and computer security. How do we
integrate this bewildering diversity of areas into a coherent whole?

One approach would be not to attempt such an integration. Instead, one could
have a collection of courses that together cover all the key areas in CPS. However,
we felt that this approach would have two major shortcomings. First, the reader
can observe that the collection of areas could essentially end up covering a whole
undergraduate program in electrical engineering and computer science! Second,
in CPS there is a pressing need for people who understand the intersection
between the various areas. We believed that the treatment of the subject of
CPS would be best achieved by carefully selecting a collection of topics from the
various areas and then presenting a unified treatment that emphasizes how they
interact in the modeling, design, and analysis of CPS.

A related challenge was to deal with the diversity of backgrounds students
bring to a course in CPS. Over the years, we have had students from com-
puter science, electrical and computer engineering, mechanical engineering, civil
engineering, and even bioengineering. Presenting a unified treatment of the var-
ious topics in CPS helps mitigate this challenge somewhat, by reducing the
dependence on any specific collection of topics one might encounter in a specific
engineering program.

1 At the time, the term “cyber-physical systems” was still in its infancy, so we decided
to use “embedded systems” instead since, at least at Berkeley, we believed that they
were essentially equivalent—two names for the same class of systems.
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Balancing Theory and Practice: Many courses on embedded systems focus
on the collection of technologies needed to get computers to interact properly
with the physical world, including sensor calibration, interfacing with sensors
and other input/output devices, programming in assembly or low-level lan-
guages, etc. Others focus more on applications, such as building a robotic system
such as an autonomous vehicle or an Internet-of-Things (IoT) application. Still
others focus entirely on theoretical topics, such as models of computation for
CPS, or formal modeling and verification. With EECS 149, we decided very
early on to blend theoretical topics with practical, lab-based work. Further we
decided to build some flexibility into the lab work, splitting it into a 6-week
structured lab sequence followed by a capstone design project whose topic stu-
dents could choose for themselves. In particular, from the very beginning, a
programmable, somewhat-customizable mobile robotic platform called the Cal
Climber (see Fig. 1)2 was chosen for the structured lab sequence, with the fol-
lowing assignment:

Design a controller to drive the Cal Climber. On level ground, your robot
should drive straight. When an obstacle is encountered, such as a cliff or
an object, your robot should navigate around the object and continue in
its original orientation. On an incline, your robot should navigate uphill,
while still avoiding obstacles. Use the accelerometer to detect an incline
and as input to a control algorithm that maintains uphill orientation.

Fig. 1. Cal Climber laboratory platform (early prototype)

This simple assignment allowed us to interleave basic conceptual and theo-
retical topics with the lab sequence: for example, students learned about mod-
eling and interfacing with sensors and actuators in class as they interfaced to
an accelerometer in the lab; they learned about programming with interrupts
in class as they worked with an interrupt-driven controller in the lab, and they
learned about modeling with state machines, composition, and hierarchy in class
as they programmed their controller with StateCharts in the lab. We have found
this interleaved presentation to help students gain an appreciation for theory

2 In the initial years, this platform was the iRobot Create, the programmable version
of the Roomba vacuum cleaner. Later, we moved to the very similar Kobuki platform.
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in lab work and for motivating theoretical topics in class. We have seen stu-
dents continue making these connections in their capstone projects, with very
satisfactory learning outcomes.

A further aspect of balancing theory with practice is the emphasis in the
course on formal methods and model-based design. Formal methods is a field
of computer science and engineering concerned with the rigorous mathemati-
cal specification, design, and verification of computational systems [1,33]. We
decided early on to make formal methods and model-based design a key compo-
nent of the course. In part, this is due to our research backgrounds involv-
ing extensive work on these topics. However, we took this step with some
trepidation—after all, it is known from earlier experiments in undergraduate
education that an emphasis on formal modeling and proof can be a bit “dry”
and difficult for students. However, our overall experience has been very promis-
ing. Students realized the value of formal modeling, e.g., in reducing the number
of design iterations needed to succeed in their capstone projects. This positive
experience has extended beyond the community of Berkeley students to include
students in the online course we offered a few years ago (see Sect. 4). Similarly,
the integration of formal methods with practical lab work forced us to prune
down the subject to a core set of formal methods topics that we found to be
most relevant to an introductory course in CPS.

A more detailed discussion of the philosophy underlying the course, espe-
cially on the lab component and its integration with theoretical content, appears
in [4,19].

3 Trail II: The Lee and Seshia Textbook

By the fall of 2009, we had offered EECS 149 twice already. The course, as noted
earlier, was unique in its coverage of a broad set of topics and its integration of
theory and practical content. Edward Lee and I could not find a single book that
could cover all the content we wanted to teach. Therefore, we started to develop
our own course notes. Gradually the notes grew into something more coherent,
and we decided to put them together as a textbook. In 2010–2011, this effort
culminated in the publication of the first edition of Introduction to Embedded
Systems: A Cyber-Physical Systems Approach [16].

In earlier articles and the book’s preface [15–17,19], we have discussed at
length the various design decisions made in writing the textbook, and how this
book differs from other CPS textbooks. Therefore, we discuss here aspects that
have not been covered in depth elsewhere.

Definition of CPS: A textbook on cyber-physical systems must define what
that class of systems is. CPS have been informally described as integrations of
computation with physical processes. Some definitions emphasize the networked
aspect of these systems. Still others make distinctions between CPS and other
terms such as the Internet of Things (IoT), embedded systems, the Industrial
Internet, Industry 4.0, etc.
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We chose an inclusive approach, formulating the following definition:

A cyber-physical system (CPS) is an integration of computation with phys-
ical processes whose behavior is defined by both cyber and physical parts
of the system.

This definition defines CPS as being about the intersection, not the union, of the
physical and the cyber. It is not sufficient to separately understand the physical
components and the computational components; we must instead understand
their interaction. Note that we do not define the CPS as being networked or
having other specific characteristics. We believe that the terms CPS, embedded
systems, IoT, Industry 4.0, etc. are essentially equivalent, describing the same
class of systems while emphasizing different characteristics of those systems.

Emphasis on Models and Software: Mirroring the EECS 149 course, we
decided to focus the book on the interplay of software and hardware with the
physical processes with which they interact. Most specifically, we chose not to
focus on the design of hardware components of CPS. These aspects are clearly
important in any actual CPS design. However, with increasing commoditization
of hardware, including processors, sensors, and actuators, we believe that the
major intellectual challenge in CPS lies in how we can most effectively design
algorithms, models and software to harness a combination of hardware, sen-
sors, actuators, and networking components to achieve a design objective. More-
over, industry trends (e.g., in automotive systems) clearly indicate an explosive
growth in the software in CPS – both in terms of opportunities and complexity.
For these reasons, our textbook places an emphasis on rigorous mathematical
models coupled with software design and implementation for the design of CPS.
Such modeling and programming must be informed by hardware, no doubt. To
that end, we present ways to effectively model relevant properties of hardware
components so as to use those properties in making higher-level design choices.

Organization: We made two key decisions in the organization of course content
in the textbook. First, we decided to split the book into three parts, focusing
respectively on Modeling, Design, and Analysis. Figure 2 gives the organization of
the current edition with the dependencies between chapters. The three parts are
relatively independent of each other and are meant to be read concurrently. For
example, in EECS 149, we interleave a discussion of programming with inter-
rupts and threads (Part II on Design) with one on modeling with interacting
state machines (Part I on Modeling). This enables students to see the connec-
tions between the more theoretical content on modeling with the more applied
content on design and implementation. Moreover, it has enabled others to use
the textbook for their own customized purposes—we are aware of more applied
classes focusing mainly on Part II, whereas more theoretical classes on formal
methods use portions of Parts I and III. Finally, we decided not to include details
of laboratory exercises in this textbook. A separate lab book, co-authored with
Jensen and in collaboration with National Instruments, was published online [5].
One reason for this separation is the difficulty in replicating a lab setup across
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Fig. 2. Organization of the Lee and Seshia textbook (2nd edition)

institutions. We have found a far greater number of institutions using our text-
book as compared to the lab book, and this is in part due to the various hard-
ware and space dependencies, as well as support systems required to successfully
replicate the lab content.

Publishing: We decided to try a publishing experiment with the first edition
of this book. Rather than going with a traditional, established publisher, we
decided to use a “print-on-demand” online publisher. This allowed us, amongst
other things, to keep a free PDF version online while also providing readers with
the option of purchasing a paper copy. Moreover, the paper copy was able to be
sold at a much lower price that we believed would be the case with traditional
publishers. Six years on, we believe this experiment made the right choices. As of
this writing, our textbook has been adopted at around 300 institutions in over
50 countries—some of these, we are fairly sure, would not have been possible
without the free PDF version being available online. Additionally, we found that
many readers do purchase a paper copy even though a free PDF is available. Our
most recent (second) edition is now published by MIT Press at what appears to
be an affordable price and with a PDF available online for free. Having the PDF
available online also made it easier for us to use the book in the online version
of EECS 149 on edX, since enrollees around the world could consult the version
they could most easily get their hands on.
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4 Trail III: MOOCs and Exercise Generation

The advent of massive open online courses (MOOCs) [23] has promised to bring
world-class education to anyone with Internet access. Additionally, it has placed
a renewed focus on the development and use of computational aids for teaching
and learning. MOOCs present a range of problems to which the field of formal
methods has much to contribute. These include automatic grading, automated
exercise generation, and virtual laboratory environments. In automatic grading,
a computer program verifies that a candidate solution provided by a student
is “correct”, i.e., that it meets certain instructor-specified criteria (the specifi-
cation). In addition, and particularly when the solution is incorrect, the auto-
matic grader (henceforth, auto-grader) should provide feedback to the student
as to where he/she went wrong. Automatic exercise generation is the process
of synthesizing problems (with associated solutions) that test students’ under-
standing of course material, often starting from instructor-provided sample prob-
lems. Finally, for courses involving laboratory assignments, a virtual laboratory
(henceforth, lab) seeks to provide the remote student with an experience similar
to that provided in a real, on-campus lab.

In 2011–2012, we started to brainstorm about an online version of EECS
149, and what technologies we could develop to aid in creating such an online
course. We first looked at the task of automatic exercise generation. The term
“automatic” may seem to indicate a goal of completely automating the process of
creating problems and solutions. However, we felt that it would be unrealistic and
also somewhat undesirable to completely remove the instructor from the problem
generation process, since this is a creative process that requires the instructor’s
input to emphasize the right concepts. Automation is best employed in those
aspects of problem generation that are tedious for an instructor. Additionally, in
the MOOC setting, generating customized problems for students is impossible
without some degree of automation. Finally, creating many different versions of
a problem can help to reduce cheating by blind copying of solutions.

Examining problems from all three parts of the Lee and Seshia textbook [16],
Sadigh et al. [26] take a template-based approach to automatic problem genera-
tion. Specifically, several existing exercises in the book are shown to conform to
a template. The template identifies common elements of these problems while
representing the differentiating elements as parameters or “holes”. In order to
create a new problem, the template essentially must be instantiated with new
parameter values. However, it is often useful to create new problems that are
“similar” in difficulty to existing hand-crafted problems. To facilitate this, new
problems are generated using a bounded number of mutations to an existing
problem, under suitable constraints and pruning to ensure well-defined results.
An instructor can then select results that look reasonable to him or her.

For brevity, we outline some of the main insights reported in [26] as they relate
to the application of formal methods. The first insight relates to the structure of
exercises After investigating the exercises from certain relevant chapters (Chaps.
3, 4, 9, 12, 13) of Lee and Seshia [16], we found that more than 60% of problems
fit into the model-based category, where the problem tests concepts involving
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relationships between models, properties and traces. Figure 3 is an illustration
of the three entities, and their characteristics. At any point, given one or two of
these entities, we can ask about instances of the unknown entity. Table 1 groups
exercises into different classes based on what is given and what is to be found.
Each group represents an interaction between models, properties and traces. The
first column shows the given entity, and the second column is the unknown entity.
The third column shows some of the variations of the same class of problem.

Table 2 states a solution technique for each problem category listed in Table 1.
Note that major topics investigated in formal methods such as model checking,
specification mining, and synthesis can be applied to various tasks in exercise
generation. Moreover, since textbook problems are typically smaller than those
arising in industrial use, their size is within the capacity of existing tools for
synthesis and verification.

5 Trail IV: EECS 149.1x and CPSGrader

During 2012–2013, we began a concerted effort to develop a MOOC version of
EECS 149. Berkeley had joined edX as a university partner, and a large campus
effort was underway to engage with the emerging landscape on large-scale online
education. However, taking EECS 149 online was not going to be easy.

Fig. 3. Models, properties and traces: entities in exercises in Lee and Seshia text-
book [16] (reproduced from [26])

One the one hand, with the growing interest in CPS from academia and
industry, there was a clear demand for making educational resources in CPS
more widely accessible. Having materials from EECS 149 and the Lee-Seshia
textbook available freely online made it easier to offer a free MOOC to the
broader community. On the other hand, a major challenge was posed by the
lab component of the course. Lab-based courses that are not software-only, such
as EECS 149, pose a particular technical challenge for MOOCs. A key compo-
nent of learning in lab-based courses is working with hardware, getting “one’s
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Table 1. Classification of model-based problems in Lee and Seshia [16], first edition,
version 1.06 (reproduced from [26])

Given Find Variations Exercise #

〈φ〉 〈M〉 (i) φ ∈ English or LTL 3.1, 3.2, 3.3, 4.1, 4.2, 4.3,
4.4, 4.5, 4.6, 4.8, 9.4, 9.6,
13.2, 13.3

(ii) Use hybrid systems for M

(iii) Modify pre-existing M

〈M〉 〈ψ〉 (i) Reachable trace 3.3, 3.5, 4.2

(ii) Describe output

〈M〉 〈φ〉 Models can be given in code or
formal description

3.2, 12.3

〈M〉 & 〈ψ〉 〈ψ〉 Given input trace → find output
trace

9.5

〈M〉 & 〈φ〉 〈ψ〉 Find counterexample or witness
trace

3.4, 4.3, 12.1

Table 2. Techniques to find solutions for model-based problems (reproduced from [26])

Given Find Solution technique

〈φ〉 〈M〉 Constrained synthesis or repair

〈M〉 〈ψ〉 Simulation of model

〈M〉 〈φ〉 Specification mining

〈M〉 & 〈ψ〉 〈ψ〉 Simulation with guidance

〈M〉 & 〈φ〉 〈ψ〉 Model checking

hands dirty”. It appears extremely difficult, if not impossible, to provide that
experience online. And yet, it is undeniably useful to provide a learning expe-
rience that approximates the real lab as well as possible. Indeed, in industrial
design one often prototypes a design in a simulated environment before building
the real artifact. Thus, we decided to build a virtual laboratory environment for
EECS 149, and blend that with suitable theoretical content to create the MOOC
version.

Working with Lee and Jensen, and a team at National Instruments, my
research group and I developed courseware and technologies for an online course
in CPS. In Spring 2013, we presented a paper sketching out our main ideas for
a virtual lab in CPS [6]. In 2013–2014, we began an effort that culminated in
two key contributions: EECS 149.1x [18], the online version of EECS 149 offered
on edX in 2014, and CPSGrader, an automatic grading and feedback system
for virtual laboratory environments [9]. We describe both these efforts in more
detail below.
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5.1 CPSGrader

In an ideal world, we would provide an infrastructure where students can log in
remotely to a computer which has been preconfigured with all development tools
and laboratory exercises and gives the students a view into how their solution is
executing in the real lab setting; in fact, pilot projects exploring this approach
have already been undertaken (e.g., see [22]). However, in the MOOC setting,
the large numbers of students makes such a remotely-accessible physical lab
expensive and impractical. A virtual lab environment, driven by simulation of
real-world environments, appears to be the only solution at present.

To this end, we developed CPSGrader, which combines virtual lab software
with automatic grading and feedback for courses in the areas of cyber-physical
systems and robotics [8–10]. CPSGrader has been successfully used in both the
on-campus Introduction to Embedded Systems at UC Berkeley [14] and its online
counterpart on edX [18]. Recall that in the lab component of this course, stu-
dents program the Cal Climber [5] robot (see Fig. 1) to perform certain navi-
gation tasks like obstacle avoidance and hill climbing. Students can prototype
their controller to work within a simulated environment based on the LabVIEW
Robotics Environment Simulator by National Instruments (see Figs. 4 and 5).

Fig. 4. Cal Climber in the LabVIEW robotics environment simulator

The virtual lab dynamical model is a complex, physics-based one, which,
due to its complexity and dependence on third party components, we decided to
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treat as a black box. CPSGrader employs simulation-based verification, arguably
the main scalable formal approach in this setting. Correctness and the presence
of certain classes of mistakes are both checked using test benches formalized in
Signal Temporal Logic (STL) [21]. However, coming up with these STL proper-
ties can be tedious and error-prone, even for instructors well-versed in formal
methods. Therefore, in Juniwal et al. [10], we showed how these temporal logic
testers can be synthesized from examples. Our approach can be viewed as an
instance of machine learning from student solutions that have the fault (posi-
tive examples) and those that do not (negative examples). An active learning
framework has also been developed to ease the burden of labeling solutions as
positive or negative [8]. In machine learning terminology, this can be thought
of as the training phase. The resulting test bench then becomes the classifier
that determines whether a student solution is correct, and, if not, which fault is
present. CPSGrader was used successfully in the edX course EECS149.1x offered
in May–June 2014 [18], an experiment we describe in more detail in Sect. 5.2.

Fig. 5. Simulator with auto-grading functionality used in EECS 149.1x

There are several interesting directions for future work, including developing
quantitative methods for assigning partial credit, mining temporal logic testers
to capture new classes of student mistakes, and online monitoring of these testers
to improve responsiveness.

5.2 EECS 149.1x

Over a 7-week period in May-June 2014, we offered EECS 149.1x: Cyber-Physical
Systems free to the public on the edX platform. To our knowledge, this was the
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first MOOC covering a breadth of topics in CPS offered on any of the major plat-
forms. We simplified some of the course content from the material in EECS 149,
since we could not rely on students in the MOOC having the same pre-requisite
background that UC Berkeley students possess. The course included 49 lectures
comprising nearly 11 h of video content. It also included 6 weekly lab assignments
that somewhat mirrored the 6-week structured lab sequence in EECS 149. The
Cal Climber lab was turned into an entirely online lab to be performed using the
virtual lab software we created—CyberSim and CPSGrader—described in the
preceding section. In addition, we had an optional “hardware track” for those
students who were open to purchasing and assembling the hardware components
themselves. The theoretical course topics covered in the lectures included inline
quizzes but no separate homework assignments—the lab sequence was integrated
with the theoretical course content. We organized the lectures into the following
ten modules: Introduction to CPS; Memory Architectures; Interrupts; Model-
ing Continuous Dynamics; Sensors and Actuators; Modeling Discrete Dynamics;
Extended and Hybrid Automata; Composition of State Machines; Hierarchical
State Machines, and Specification & Temporal Logic.

The impact in MOOCs can be difficult to quantify, but here are some numbers
from EECS149.1x. The course attracted a peak enrollment of 8767, of which
2213 ended up submitting at least one lab assignment. Of these, the number
who passed the course was 342 (4% of peak enrollment). Around the 6th week of
the course, we conducted an anonymized survey of the students still engaged in
the MOOC. This produced some very interesting and encouraging data, which
I summarize here:

• We seemed to attract a population of students who had already taken other
MOOCs – 54% of those who stayed until the 6th week had taken 3 or more
MOOCs.

• Of those who had taken at least one other MOOC, over 80% of the students
rated our course as good or better than the one(s) they had previously taken.

• A majority of the students were new to model-based design with a language
like LabVIEW, but even so, 73% found it to be a useful experience to do the
lab assignment in two different languages, C and LabVIEW.

• 86% of the students rated CPSGrader as being useful in their lab assignments
– an encouraging sign for the use of such tools for personalized education.

• A small fraction of students did the optional hardware track. Of these, over
90% found that if their solution passed CPSGrader in the virtual lab, it
worked on the real hardware! This statistic was a really encouraging piece
of data for the CPSGrader project. We had been using CyberSim in the on-
campus lab for a couple of years, but saw no such correlation. However, using
CPSGrader seems to have pushed students to debug the corner cases that
also improved the reliability of their solution on the real hardware.

• We polled the students on the lecture modules they liked most, both from the
viewpoint of relevance to lab assignments and from a theoretical standpoint.
This poll was motivated in part for us to learn whether a general, non-Berkeley
student population, including several students working in industry, would be
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receptive to the large formal methods content in the MOOC. To our pleas-
ant surprise, we found that the modules on Hierarchical State Machines and
Composition of State Machines were in the top three topics found relevant to
the lab, while the module on Formal Specification and Temporal Logic ranked
in the top three theoretical topics. This provides some real-world validation
that relevance of and receptiveness to formal methods in a general student
population.

In summary, creating the online version of EECS 149 was a lot of fun, and a
tremendously rewarding experience. It is a first step towards creating a strong
learning experience for “lab-based MOOCs” in science and engineering. The
CPSGrader software is available open source and is architected to work with
any simulator. Moreover, its success points the way to a broader application of
formal methods for enhancing science and engineering education.

6 Dreams for the Future

As I think about the future of CPS education, and of engineering education in
general, two sets of articles come to mind. The first is a pair of thought-provoking
articles written by Lee and Messerschmitt as the twentieth century drew to a
close. One article discussed the future of engineering education, focusing, in par-
ticular, on electrical and computer engineering [12]. The other article presented
an innovative viewpoint on what higher education might look like in the year
2049 [13]. The other set of articles has to do with the recent studies and opin-
ions about the impact of automation and information technology (IT) on jobs
(e.g., [2,31,32]).

A few threads emerge. First, with rapid technological change, and increasing
automation, the need for lifelong learning becomes ever more important. Second,
humans will increasingly need to collaborate with intelligent machines in their
jobs. How should we design engineering and CPS education for such a future?

I will approach this question from the viewpoint of leveraging the work
described in the preceding four sections.

The landscape for CPS education in the near future looks very exciting, with
opportunities for further innovation. For inspiration, we can look to the emerg-
ing areas for research and industrial practice in CPS. There are at least three
such areas that are not adequately covered by EECS 149 and the textbook: (i)
networking and distributed CPS; (ii) human-CPS (CPS that work in concert
with humans), and (iii) CPS that make extensive use of machine learning. All
three are active areas of research by the CPS community, and are finding broad
applications in the real world. For example, the TerraSwarm research center has
developed a number of innovations in the area of networked, distributed CPS
(see, e.g., [3,11,28]), and some of these ideas have had a direct impact on the
material in EECS 149. Similarly, the CPS community is starting to bring the
strong formal approach to modeling, design and analysis that underlies EECS
149 to the design of human-CPS, including modeling human cognition, percep-
tion, situational awareness, and action (see, e.g., [20,24,25,28,29]). Additionally,
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even as machine learning becomes more pervasive in CPS, recent advances in
formal design and analysis of learning-based CPS (e.g., [7,27,30]) point the way
to teaching a principled approach to designing such systems to students and
practitioners. Currently, in EECS 149, we cover these topics mainly through the
capstone design projects. Over the next decade, we see them making their way
into the core curriculum, although much research remains to be done.

Some institutions around the world are seeing rapid growth in the number
of students who want to take classes and major in computer science and related
areas. CPS/IoT is already starting to be one of these areas. These institutions
are seeing pressure on campus teaching resources due to burgeoning enrollments.
Technologies for personalized education can play a role in reducing this pressure
while ensuring that instructor attention is used more effectively. They can also
play a role in broadening access to CPS education.

It is much harder to predict what role CPS education can play to mitigate
the impact of automation and IT on jobs. It is clear that technology is only part
of the solution (e.g., see [2,32]). Even so, technologies for personalized education,
such as CPSGrader, can help by providing students with personalized feedback
on their work, even in online courses. Virtual lab technologies can enable stu-
dents to build up expertise in a vocational topic which can then make them
more attractive to prospective employers. However, the experience with several
MOOCs so far has shown that the students who benefit the most are the ones
who were most motivated and best prepared in the first place. How can one
ensure that students who need more help can benefit as well? For this, we need
more work to develop structures such as the virtual “village” discussed by Lee
and Messerschmitt [13], where technologies like CPSGrader are integrated with
a community of mentors and peers forming a support system for the students.
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Abstract. Expressive power of a language is generally defined as the
breadth of ideas that can be represented and communicated in a lan-
guage. For formal languages, the expressive power has been evaluated by
checking its Turing completeness. In a modeling process, apart from the
modeling language, we have two other counterparts: the system being
modeled and the modeler. I argue that faithfulness to the system being
modeled and usability for the modeler are at least as important as the
expressive power of the modeling language, specially because most of the
modeling languages used today are highly expressive. I call faithfulness
and usability together “friendliness”. I show how we used the actor-based
language Rebeca in modeling different applications, where it is friendly,
and where it is not. I discuss how the friendliness of Rebeca may help
in the analysis of models and allows for system synthesis on the basis of
models.

Foreword

People have different ways of thinking. What seems simple, clear, and under-
standable to me may seem highly complicated and convoluted to others. When
we tell a story in our words we make a different model of the same concept,
and this new model may give a better insight to certain audiences. That is why
people talk about the same concept again and again in different ways. I see three
counterparts involved when you tell a story: the audience, the way you tell the
story, and the story itself. I got to learn that all three can be equally important.
Edward has a wealth of knowledge and a wide range of expertise. One of his
several qualities is the way he tells stories; he says what I want to say in a much
better way! This gives me more courage to write, even if others have already
told my story. After all, I may say it in a better way, at least for a certain
audience.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 423–448, 2018.
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1 Introduction

Why yet another modeling language? I’ve seen this question on so many occa-
sions, especially asked by people in the formal methods community. The main
reason that this question is asked is because the tradition in theoretical computer
science is to compare two languages based on their expressive power. Expres-
sive power is generally defined as the breadth of ideas that can be represented
and communicated in a language. One way that has been used for evaluating
the expressive power of a language is checking for Turing completeness. Turing
completeness was not enough and the community moved towards other ways of
comparing expressiveness, mostly based on mutually encoding the formalisms
into each other. But most of the modeling languages we work with are highly
expressive, and may have equivalent expressive powers. So, why yet another
modeling language?

Turing completeness and most of the other ways of comparing languages
check computability, and nowadays, interaction; the focus here is on the machine
world. I can see two other major counterparts in modeling, the system that
is modeled and the modeler. A modeling language has to be evaluated by its
faithfulness to the system it is modeling, and usability for the modeler. I call
usability and faithfulness together friendliness, friendliness to the system and
friendliness to the modeler. What theoretical computer scientists are missing is
the friendliness of the languages.

Since the main complexity of the modeling job is the computation part, it
is natural to focus on that part. Moreover, people tend to focus on parts that
they understand better and are more familiar with. When we are working with
more and more complicated applications with heterogeneous components and
different technologies, then I believe friendliness of our modeling languages will
become at least as important as their expressive power.

We also have to remember that the goal of building a model is usually anal-
ysis and/or building or synthesizing the system based on the model. Therefore,
analyzability is crucial. Expressive power and friendliness both affect analyzabil-
ity and synthesizability. Sometimes faithfulness criteria may guide us to a less
expressive language, and that may help in improving the analyzability (similar
to domain-specific languages). Moreover, friendliness can give us a good trace-
ability, from the model to the system. If we find a problem in the model, then we
can trace it back into the system more easily. Thus, apart from expressiveness,
friendliness can be a criterion for choosing the modeling language we want to
use.

I have to add that there are different communities that consider modeling
in all its aspects. For example, modeling is an important part in software engi-
neering. The object-oriented paradigm came with the winning slogan of decreas-
ing the semantic gap between the real world and the program, i.e., increasing
faithfulness. If we focus on expressive power we would be still programming in
assembly languages.
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Faithfulness and Usability. Faithfulness is about the similarity of the model
and the system. In most places it is defined as the degree of detail incorporated
in the model [21]. What I mean in this paper by faithfulness of a modeling lan-
guage is whether and how the structures and features that are supported by the
modeling language match the needs of the domain of the system being modeled,
and how much this helps in having a more natural mapping between the model
and the system. More precisely, we can define faithfulness based on the definition
of model of computation. A collection of rules that govern the execution of the
(concurrent) components and the communication between components is called
a model of computation (MoC) [23]. We say a modeling language is faithful to
a system if the model of computation supported by the language matches the
model of computation of (the features of interest of) the system. Faithfulness
can be seen as the key motivation behind domain-specific languages.

Sometimes I use the term “model” when you expect to see “modeling lan-
guage”. This is where I mean the model of computation. The structures, features,
and flow of control provided and imposed by your modeling language can shape
your model. As they say, language can shape your thoughts.

In synthesis, we make a model, prior to building the system itself, to help
us build the system. In the model we incorporate all the properties of interest.
Faithfulness then is defined as how faithful the system is to the model. This
is what is common in engineering domains. In analysis, if the system already
exists, we make an (abstract) model of the system to help us perform different
kinds of analysis. This is the type of modeling that scientists are more familiar
with. We can look at faithfulness in both directions: faithfulness of the system
towards the model, and the model towards the system.

In ISO 9241 [16], usability is defined as the extent to which a product can be
used by specified users to achieve specified goals with effectiveness, efficiency and
satisfaction, in a specified context of use. Effectiveness is accuracy and complete-
ness with which users achieve specified goals. Efficiency is resources expended
in relation to the accuracy and completeness with which users achieve goals.
Satisfaction is freedom from discomfort and positive attitudes towards the use
of the product. In this paper, I do not discuss usability in an extensive manner.
I can only explain my experience through the years, as we have not yet run any
scientific experiment that evaluates the usability of different modeling languages.

Edward and Modeling. The first time that I have seen a truly convincing
answer to the question “why yet another modeling language?”, was a text by
Edward in the Ptolemy book [23] “An important part of a science, quite com-
plementary to the scientific method, is the construction of models. Models are
abstractions of the physical reality, and the ability of a model to lend insight
and predict behavior may form the centerpiece of a hypothesis that is to be val-
idated (or invalidated) by experiment. The construction of models is itself more
an engineering discipline than a science. It is not, fundamentally, the study of
a system that preexists in nature; it is instead the human-driven construction
of an artifact that did not previously exist. A model itself must be engineered.
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Good models can even reduce the need for measurement, and therefore reduce
the dependence on the scientific method.” The keywords for me were “engineer-
ing” and “human-driven construction,” which bring in the modeler and show
its importance, and “the ability of a model to lend insight” which, I think, can
depend on the faithfulness as much as the expressiveness of the modeling lan-
guage.

Actors and Friendliness. In this paper, I will explain how the actor-based [2]
language Rebeca [30–33] is used for modeling and analysis of different domains of
applications, and where and how it has been more faithful and usable, and where
it has multiple shortcomings. I will not cover a comparison between modeling
each of the applications using Rebeca versus modeling the same application
using other modeling languages. The interested reader can find the comparisons
in corresponding papers published on each application. For each application
domain I will explain the mapping between the entities and concepts in the
real world, and the ones in the Rebeca model. The interesting and important
properties that have to be verified or analyzed in each domain is not always
trivial. For each application, I will explain the property that is checked and the
analysis that is done.

In the next section there is a short description of Rebeca and Timed Rebeca.
In Sect. 3, I will explain how we used Timed Rebeca in modeling sensor networks
and check the schedulability [18,19]. In Sect. 4, I will describe how extensions
of Rebeca are used for analyzing different network protocols [36,37]. In Sect. 5,
I view Network on Chip (NoC) as an example of track-based traffic systems
and show how we used Timed Rebeca in evaluating different routing algorithms
[26–28]. In Sect. 6, I will give a short overview of friendliness, analyzability and
other features of Rebeca.

The goal of this paper is not to present a novel technique or a new model,
it is to tell an already-told story in a different way. The message is where and
how friendliness of a language can help in modeling and analysis, and the target
audience are mainly those who are looking for a modeling language for analyzing
their application.

Disclaimer: Most of the technical material in this paper is taken from published
or draft papers. In some places the sentences are copied without using quotation
marks.

2 The Actor-Based Language, Rebeca

Rebeca (Reactive Object Language) [30,32] is an actor-based language based
on Hewitt and Agha’s actors [2,13]. Actors are units of concurrency, with no
shared variables, communicating via asynchronous messages. There is no explicit
receive statement, and send statements are non-blocking. Rebeca is an impera-
tive language, with Java-like syntax. In each actor there is only a single thread
of execution and one message queue. The actor takes a message from the top
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of its message queue, and executes the corresponding method (called message
server) non-preemptively. If you see messages as events, then a Rebeca model
can be seen as an event-driven model. The execution of message servers is also
similar to atomic asynchronous call-backs in the context of JavaScript.

In Timed Rebeca (the real-time extension of Rebeca) [1,25,33], we have a
message bag instead of a message queue, where messages are tagged with their
time-stamps (sometimes I use message buffer as a more general term instead of
message queue or bag). We consider synchronized local clocks throughout the
model for all the actors (you can read it as a global time). The sender tags a
message with its own local time, at the time of sending. This can be seen as
model time in Ptolemy.

A Rebeca model consists of a number of reactive classes, each describing the
type of a certain number of actors (called rebecs, we use both terms, rebec and
actor, interchangeably in the Rebeca context). Each reactive class declares the
size of its message buffer, a set of state variables, and the messages to which
it can respond. The local state of each actor is defined by the values of its
state variables and the contents of its message buffer. Each actor has a set of
known rebecs to which it can send messages. Reactive classes have constructors,
with the same name as their reactive class. They are responsible for initializing
the actor’s state variables and putting initially-needed messages in the message
buffer of that actor. See Fig. 1 for an abstract syntax of Timed Rebeca.

Model ::= Class∗ Main

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class ::= reactiveclass className { KnownRebecs V ars MsgSrv∗ }
KnownRebecs ::= knownrebecs { V arDcl∗ }

V ars ::= statevars { V arDcl∗ }
V arDcl ::= type 〈v〉+;
MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }

Stmt ::= v = e; |v =?(e, 〈e〉+); |Call; |delay(t); |if(e){Stmt∗}[else{Stmt∗}]
Call ::= rebecName.methodName(〈e〉∗) [after(t)] [deadline(t)]

Fig. 1. Abstract syntax of Timed Rebeca (from [20]). Angled brackets 〈...〉 are used as
meta parenthesis, superscript + for repetition at least once, superscript ∗ for repeti-
tion zero or more times, whereas using 〈...〉 with repetition denotes a comma separated
list. Brackets [...] indicates that the text within the brackets is optional. Identifiers
className, rebecName, methodName, v, literal, and type denote class name, rebec
name, method name, variable, literal, and type, respectively; and e denotes an (arith-
metic, boolean or nondeterministic choice) expression.

The way an actor responds to a message is specified in a message server.
The state of an actor can change during the executing of its message servers
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through assignment statements. An actor makes decisions through conditional
statements, communicates with other actors by sending messages, and performs
periodic behavior by sending messages to itself. Since communication is asyn-
chronous, each actor has a message buffer from which it takes the next incoming
message. An actor takes the first message from its message buffer, executes its
corresponding message server in an isolated environment, takes the next message
(or waits for the next message to arrive), and so on. A message server may have
a nondeterministic assignment statement which is used to model the nondeter-
minism in the behavior of a message server. Finally, the main block is used to
instantiate the actors of the model. Note that Rebeca does not support dynamic
actor creation, and all the actors of a model must be defined in the main block.

Timed Rebeca adds three primitives to Rebeca to address timing issues:
delay, deadline and after. A delay statement models the passage of time for an
actor during execution of a message server. Note that all other statements of
Timed Rebeca are assumed to execute instantaneously. The keywords after and
deadline are used in conjunction with a method call. The term after(n) indicates
that it takes n units of time for a message to be delivered to its receiver. The
term deadline(n) expresses that if the message is not taken in n units of time,
it will be purged from the receiver’s message bag automatically.

Actors in Ptolemy and Rebeca. Actors in Ptolemy are more like components
in software engineering terminology. In Ptolemy, actors have ports, they read and
write to and from their ports, while in Rebeca actors send messages to each other
knowing each others names (like objects in object-oriented languages). Ptolemy
actors may have more than one port, while in Rebeca there is only one message
buffer.

Note that in Ptolemy you have directors that coordinate the behavior of
actors. Through that coordination you are able to impose an order on the exe-
cution of actors and make the model deterministic. You can also make different
models of computation. Rebeca and Timed Rebeca can be seen as specific models
of computation in Ptolemy.

Rebeca is initially designed for analysis, and hence supports features for
making a model of an existing system. The language allows non-deterministic
assignments, and the model checking tools consider non-deterministic order of
execution (or an interleaved model of concurrency). Ptolemy is initially designed
for synthesis, and hence there are powerful techniques to avoid non-determinism.
When synthesizing, you desire, and you do your best to make your model function
deterministically, no matter how the environment (and the underlying technology
on which your system will be built) is non-deterministic.

Both languages can be used in different ways, you are able to make a deter-
ministic model in Rebeca, and a non-deterministic one in Ptolemy. Rebeca mod-
els can be used for synthesizing (after analyzing your abstract designs), and
Ptolemy models are analyzed (before synthesizing your system).
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3 Wireless Sensor Network Applications and
Schedulability

Wireless sensor and actuator networks (WSANs) are built from a collection
of nodes that gather data from their surroundings to achieve specific applica-
tion objectives. A WSAN application is a distributed system where multiple
nodes are used to monitor properties like temperature, humidity, pressure, or
position, and perform various tasks like anomaly detection and target tracking.
WSANs can provide low-cost continuous monitoring. However, building WSAN-
applications is particularly challenging because of the complexity of concurrent
and distributed programming, networking, real-time requirements, and power
constraints. It can be hard to find a configuration that satisfies these constraints
while optimizing resource use [18]. WSAN applications are sensitive to timing,
with soft deadlines at each step of the process that are required to ensure correct
and efficient operation.

Several software platforms have been developed specifically for WSANs [3].
Among these, the most accepted platform is the TinyOS [34], which is an open-
source operating system designed for wireless embedded sensor networks. TinyOs
is based on an event-driven execution model that enables fine-grained power
management strategies.

A sensor node is a node in a wireless sensor network that is capable of
performing some processing, gathering sensory information and communicating
with other connected nodes in the network. Each sensor node consists of inde-
pendent concurrent entities, including CPU, sensor, and radio systems. These
sensor nodes are connected via a wireless communication device which uses a
transmission control protocol. Interactions between entities, both within a node
and across nodes, are concurrent and asynchronous.

Modeling Sensor Nodes and Communication Medium in Rebeca.1 We
consider sensor nodes in WSAN applications, and we also model the network
between these nodes. A sensor node is responsible for monitoring; it collects data,
performs necessary processing, and then sends the data to another node via the
network. A sender node has concurrent components performing the sensing, data
processing, and data transmission. In addition to processing the data provided by
the sensor component, there are also miscellaneous tasks that the processing unit
in a node has to handle. So, we have four actors (concurrent and asynchronously
executing objects) which all are located in a sensor node (see Fig. 2 for a visual
mapping of real-world entities to actors in the Rebeca model, and see Fig. 3 for
the Rebeca code):

– Sensor actor for sensing,
– CPU actor for processing,
– Communication Device actor for transmission (CD), and
– Misc actor for performing miscellaneous tasks.

1 In some places I say Rebeca when I mean Timed Rebeca.
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In some applications a sensor node works as a router and passes the data that
it has received, this is done by the Communication Device.

Fig. 2. Modeling the behavior of a WSAN application in its real-world installation in
the actor model (from [18])

We have a fifth actor named Wireless Medium that models the communica-
tion medium. Wireless Medium informs the Communication Device of the status
of the network and performs broadcasting of the data. Each of these two tasks
are modeled as a message server (i.e. event handler) in Rebeca. The details
of the communication protocol, like the implementation of the Media Access
Control (MAC) level, is modeled in the Communication Device actor. Differ-
ent protocols that are modeled in the Communication Device actor trigger two
events in the Wireless Medium: one requesting the status of the network, and
another requesting the data be broadcast. As a result, different implementations
of communication protocols can be replaced without significantly impacting the
remainder of the model. During the application design phase, different com-
ponents, services, and protocols may be considered. For example, TDMA [10]
as a MAC-level communication protocol may be replaced by B-MAC [22] with
minimal changes.

Timed Rebeca Code. Figure 3 shows an abstract version of the Timed Rebeca
code of the WSAN application. The main activity of this model is started by
executing sensorLoop (line 16) of the Sensor actor (line 10). In this loop, based
on the specified sampling rate, data is acquired by Sensor and it is sent to CPU
(line 18). There is the same behavior in Misc (line 21). These two actors send
messages to CPU (line 22). The actor CPU handles the messages received from
Sensor and Misc by the sensorEvent and miscEvent message servers respec-
tively (lines 28 and 40). The message server sensorEvent starts the processing
of the acquired data by sending a sensorTask message (line 29). In sensorTask
(line 31), the schedulability of processing of acquired data is checked, it is packed
into one packet, and the packed data is sent by the communication device of this
node if it reaches the limit which is specified by bufferSize (lines 36–37).
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1 env int samplingRate = 25;

2 env int numberOfNodes = 6;

3 env int bufferSize = 2;

4 env int sensorTaskDelay = 2;

5 env int OnePacketTransmissionTime = 7;

6 env int miscTaskDelay = 10;

7 env int tmdaSlotSize = 10;

8 env int miscPeriod = 120;

9 env int packetMaximumSize = 112;

10 reactiveclass Sensor(10) {

11 knownrebecs { CPU cpu; }

12 Sensor() { self.sensorFirst(); }

13 msgsrv sensorFirst() {

14 self.sensorLoop() after(?(10,

20, 30));

15 }

16 msgsrv sensorLoop() {

17 int period = 1000 /

samplingRate;

18 cpu.sensorEvent(period);

19 self.sensorLoop()

after(period);

20 } }

21 reactiveclass Misc(10) { ... }

22 reactiveclass CPU(10) {

23 knownrebecs {

24 CommunicationDevice senderDev,

receiverDev;

25 Sensor sensor;}

26 statevars { int

collectedSamplesCounter; }

27 CPU() { collectedSamplesCounter =

0; }

28 msgsrv sensorEvent(int period) {

29 self.sensorTask(period,

currentMessageWaitingTime);

30 }

31 msgsrv sensorTask(int period, int

lag) {

32 int tmp = period - lag -

currentMessageWaitingTime;

33 assertion(tmp >= 0);

34 delay(sensorTaskDelay);

35 collectedSamplesCounter += 1;

36 if (collectedSamplesCounter ==

bufferSize){

37 senderDev.send(receiverDev,

0, 1);

38 collectedSamplesCounter =

0;

39 } }

40 msgsrv miscEvent() {

delay(miscTaskDelay); }

41 reactiveclass CommunicationDevice

(10) {

42 knownrebecs { WirelessMedium

medium; }

43 statevars {

44 byte id;

45 int sendingData;

46 int sendingPacketsNumber;

47 CommunicationDevice

receiverDev;}

48 CommunicationDevice(byte myId) {

49 id = myId;

50 sendingData = 0;

51 sendingPacketsNumber = 0;

52 receiverDev = null;}

53 msgsrv send(CommunicationDevice

receiver, int data, int

packetsNumber) {

54 assertion(receiverDev == null);

55 sendingPacketsNumber =

packetsNumber;

56 receiverDev = receiver;

57 sendingData = data;

58 medium.getStatus();}

59 msgsrv receiveStatus(boolean

result) { ... }

60 msgsrv receiveResult(boolean

result) { ... }

61 msgsrv

receiveData(CommunicationDevice

receiver, int data, int

receivingPacketsNumber) { ...

}

62 reactiveclass WirelessMedium(5) {

63 statevars {

64 CommunicationDevice senderDev;

65 CommunicationDevice

receiverDev;

66 int maxTraffic;}

67 WirelessMedium() {

68 senderDev = null;

69 receiverDev = null;

70 maxTraffic = (125 * 1024) / 8;

71 }

72 msgsrv getStatus() { ... }

73 msgsrv

broadcast(CommunicationDevice

receiver, int data, int

packetsNumber){ ... }

74 msgsrv broadcastingIsCompleted() {

75 senderDev = null;

76 receiverDev = null;

77 } }

78 main {

79 WirelessMedium medium():();

80 CPU cpu (sensorNodeSenderDevice,

receiver, sensor):();

81 Sensor sensor(cpu):();

82 Misc misc(cpu):();

83 CommunicationDevice

sensorNodeSenderDevice(medium):

((byte)1);

84 CommunicationDevice

receiver(medium):((byte)0);}

Fig. 3. The Rebeca model of a WSAN application (based on the code in [17])
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The communication protocol between nodes is implemented in the actor
CommunicationDevice (line 41). The Rebeca model for TDMA and B-MAC
communication protocols can be found in [18]. In the current implementation
shown in Fig. 3, before sending data, the availability of the communication device
is checked, then the needed messages are scheduled for sending data.

The effect of the wireless communication and transmission conflict is modeled
by the actor WirelessMedium (line 62). Communication devices send broadcast
messages (line 73) to the wireless medium to send data to other communication
devices, and the receivers of broadcast data send broadcastingIsCompleted
(line 74) to signal successful reception of the data.

Faithfulness. In the WSAN example, all the counterparts that are running
concurrently in the system are modeled as actors: sensor, CPU, communica-
tion device, Misc, and wireless medium. The focus is on the schedulability of
tasks. Each actor asks the CPU for execution of some tasks and the question is
whether or not the CPU can handle all the tasks without missing any deadlines.
So, what has been modeled accurately are different services that are requested
to run on the CPU, and their timing. We also had to model the communication
medium as an actor because the status of the network affects the overall behav-
ior. TinyOS and Rebeca match perfectly in their MoC. There are no “wait” or
“receive” statements, event-handlers are executed non-preemptively, and there
are no priority queues.

Usability. As for usability of Rebeca in modeling WSAN applications, we can
claim effectiveness, efficiency, and satisfaction. Users can achieve their goal of
schedulability analysis in a complete and accurate way (effectiveness). The model
can capture all the necessary details, and the model checking tool provides nec-
essary information more accurately than alternative techniques of simulation or
mathematical analysis. Efficiency relates to the time that the modeler needs to
achieve her goals. For a software engineer or a computer scientist, writing Java
or C-like code is simpler and takes less time compared to writing mathematical
formulas. Also, comparing to simulation tools, by using Rebeca we build more
abstract models, and hence we spend less time. Based on our experience, the
majority of software engineers and computer scientists prefer program-like syn-
tax, and hence Rebeca stimulates a positive attitude and satisfaction. Moreover,
Faithfulness fosters usability. A natural, and in most cases one-to-one mapping of
the constructs in WSAN applications into the Rebeca model makes the process
effective, efficient, and with minimal hassle.

Reusability, and Modeling Different Protocols. For modeling different
protocols, we only need to change the code of the Communication Device actor.
By using Rebeca, we preserve the modular design of the protocol, so, we improve
reusability. When we use other paradigms for modeling network protocols, like
process algebra or automata, we usually need to spread out the functionality of
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one module of the system throughout different modules of the model. This will
jeopardize reusability.

The TDMA protocol defines a cycle, over which each node in the network has
one or more chances to transmit a packet or a series of packets. If a node has data
available to transmit during its allotted time slot, it may be sent immediately.
Otherwise, packet sending is delayed until its next transmission slot.

The periodic behavior of a TDMA slot is handled by a message server which
sets and unsets a flag to show whether the node is in its allotted time slot or
not. Upon entering into its slot, a device checks for pending data to send and
schedules a message to be sent at the end of the time slot. On the other hand,
when CPU sends a packet (message) to a Communication Device, the message is
added to the other pending packets which are waiting for the next allotted time
slot.

In contrast to TDMA, in B-MAC, RCD tries to detect free channel status
and send data upon receiving a request from CPU. In the case of detecting
a free channel, the data is sent immediately. This way, collisions may occur;
Communication Device has to wait for some amount of time and resend data. B-
MAC protocol does not need complicated and expensive synchronization meth-
ods. It also avoids data fragmentation. It would be more complicated to coor-
dinate long messages and B-MAC expects short messages, which is common for
information of WSAN nodes.

Schedulability Analysis. In the application we require that all the periodic
tasks (sample acquisition, data processing, and radio packet transmission) are
completed before the next iteration starts. This defines the deadline for each
task. The goal is to have a higher sampling rate or a larger number of nodes
without violating schedulability constraints.

The configuration of this model is specified by the values of the environment
variables (lines 1 to 7 in Fig. 3). Based on these values, there are six nodes in
the environment (line 2) and the sampling rate of the nodes is 25 samples per
1000 units of time (line 1). Each node packs two acquired data elements in one
packet (line 3). The time spent for the internal activities of a node is specified
in lines 4 to 6.

The Afra model checking tool verifies whether the schedulability properties
hold in all reachable states of the system. If there are any deadline violations, a
counterexample will be produced. A counterexample shows the sequence of states
from an initial configuration that results in the violation. This information can
be used to change the system parameters in order to avoid such situations, for
example, by increasing the TDMA time slot length or reducing the sampling
rate.

TCTL model checking can be used to check the utilization of resources. For
example, we can check the utilization of the communication medium.

Scalability Challenges. One way of modeling WSAN using actor model is to
instantiate actors for each node in the network. That may cause state explosion
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when doing the model checking. A main challenge is to find an effective and
correct abstraction technique. In TDMA, the packet transmission of one sensor
node does not interfere with the other sensor nodes. Having more sensor nodes
only results in having shorter time slots, so the presence of sensor nodes can be
abstracted and modeled by making time slots shorter. Using this abstraction, we
only have to model one node which is in communication with the central node.
Verification of WSAN applications against schedulability and deadlock-freedom
properties then become feasible for networks in any size [19].

In B-MAC, the presence of sensor nodes can be abstracted and modeled
as the possible number of collisions before a data communication is performed
successfully [19]. Using this abstraction, only one sensor node which is in com-
munication with the central node has to be considered for networks in any size.
Any data transmission of this sensor node may encounter a collision. The maxi-
mum number of the collisions is the number of sensor nodes in the model. In the
Rebeca code for Communication Device, for each data transmission we have a
non-deterministic choice between a successful transmission or a collision. During
model checking, in the case of collision, data transmission with zero, one, ...,
up to n collisions are considered where n is the number of sensor nodes.

4 Mobile Ad-Hoc Network Protocols and Finding
Possible Faults

A Mobile Ad-hoc Network (MANET) is a wireless network consisting of mobile
routers (and associated hosts) connected by wireless links, the union of which
forms an arbitrary topology. The routers are free to move randomly and organize
themselves arbitrarily, so, the network’s wireless topology may change rapidly
and unpredictably.

MANETs have different applications from military to managing disastrous
situations where there is no network infrastructure and nodes can freely change
their locations. Mobility is the main feature of MANETs which makes them
powerful and at the same time error-prone in practice. The process of protocol
design is not straightforward. Since there is no base station or fixed network
infrastructure, every node acts as a router and keeps the track of the previously
seen packets to efficiently forward the received messages to desired destinations.
In essence, MANETs need routing protocols in order to provide a way of commu-
nication between two indirectly-connected nodes. In the protocol, there has to
be an algorithm for each node to continuously maintain the information required
to properly route traffic.

MANETs are wireless sensor networks; but the differences between WSANs,
discussed in Sect. 3, and MANETs are that in WSANs there is usually one sink
(or base station) which collects the data, and there are fixed routes in the network
(except when we have failures of nodes). In MANETs, nodes are continuously
moving in any direction, and there is no fixed route between two nodes.

Routing protocols for MANETs are devised in a completely distributed man-
ner and adaptive to topology changes, so, building reliable and efficient routing
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protocols is complicated and also crucial. The Ad-hoc On Demand Distance Vec-
tor (AODV) protocol is one of the most prominent routing protocol in MANETs.
The AODV protocol has evolved as new failure scenarios were experienced or
errors were found in the protocol design.

Modeling MANETs in Rebeca. One of the challenges in modeling MANETs
is representing the connectivity of pairs of nodes in the network. Two nodes are
connected if they are within the wireless communication range. As the nodes
are moving the network topology is changing all the time. Rebeca is extended in
[37] to wRebeca, to address local broadcast and dynamically changing topology.
In order to abstract the data link layer services, the wireless communications in
the framework, namely local broadcast, multicast, and unicast, are considered to
be reliable. Therefore, a node can broadcast/multicast/unicast a message suc-
cessfully to the nodes within its communication range, and the message delivery
is guaranteed for the connected nodes to the sender. In the case of unicast,
if the sender is located in the receiver communication range, it will be noti-
fied, otherwise it assumes that the transmission was unsuccessful so it can react
appropriately.

Each node in the network is modeled as an actor, and the routing protocol
is represented through the message servers of the actor. The network topology
and its mobility are captured while analyzing the model, and are not explicitly
modeled in the Rebeca code.

Rebeca Code. The wRebeca model of an abstract version of AODV is given in
Fig. 4. There is one reactive class, Node, representing the nodes in the network.
In this protocol, routes are built upon route discovery requests and maintained
in nodes routing tables for further use. In message server rec-newpkt (line 14),
whenever a node intends to send a data packet, it looks in its routing table to
see if it has a valid route to the intended destination. In case it finds a route, it
sends the data packet through the next-hop specified in that route (line 16–17).
Otherwise, it starts a route discovery by broadcasting a route request, rec-rreq,
after increasing its sequence number (line 18–21).

In message server rec-rreq (line 23), whenever a node receives a new routing
packet, it updates its routing table with new information. The forward messages
contain the route back to the source, while the backward messages carry the
route information towards a destination. While the forward packet proceeds
towards the destination, a backward path, a path to source from destination,
is constructed. In message server rec-rreq, every node, upon receiving a packet,
looks up the destination in its routing table, and if it has a route available, replies
by sending a rec-rrep message (line 31). Otherwise, it continues route discovery
by re-sending the rec-rreq message, after increasing the hop-count. There is an
upper limit for the hop-count, after which the algorithm gives up on that route.
The unicast message (line 31) will be delivered successfully (succ in line 32) if
the receiver node is in the access range, or the delivery can fail (unsucc in line
36) if the receiver node is not in the access range.
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1 reactiveclass Node()

2 {

3 statevars

4 {

5 int sn, ip;

6 int[] dip, dsn, route_state,

hops, nhops,

7 }

8 Node(int i, boolean starter)

9 {

10 /* initializing the route table

variables*/

11 if(starter==true) {

12 unicast(self,rec-newpkt(7,2));

13 } }

14 msgsrv rec-newpkt(int data ,int

dip_)

15 {

16 if(route_state[dip_]==1) {

17 /* valid route to dip forward

packet */

18 } else {

19 /* no valid route to dip send a

new rout discovery request

*/

20 sn++;

21 rec-rreq(0, dip_, dsn[dip_],

self, sn, self, 5);

22 } }

23 msgsrv rec-rreq (int hops_, int

dip_ , int dsn_ , int oip_ ,

int osn_ , int sip_, int

maxHop)

24 {

25 boolean gen_msg = false;

26 /* evaluate and update the routing

table, decide whether a new

rreq should be generated */

27 if (gen_msg == true) {

28 if (ip == dip_) {

29 sn = sn+1;

30 /* unicast the RREP towards

oip of the RREQ */

31 unicast(nhop[oip_],rec-rrep(0

, dip_ , sn , oip_ ,

self))

32 succ:

33 {

34 route_state[oip_] = 1; break;

35 }

36 unsucc:

37 {

38 if(route_state[oip_] == 1) {

39 /* error recovery procedure

*/

40 }

41 route_state[oip_] = 2;

42 }

43 } else {

44 hops_ = hops_ + 1;

45 if(hops_<maxHop) {

46 rec-rreq(hops_, dip_, dsn_,

oip_, osn_, self,

maxHop);

47 } } }}

48 msgsrv rec-rrep(int hops_ ,int dip_

,int dsn_ ,int oip_ ,int sip_)

49 {

50 boolean gen_msg = false;

51 /* evaluate and update the routing

table, decide whether a new

rreq should be generated */

52 if(gen_msg == true)

53 { if(ip == oip_ )

54 { /* this node is the originator

of the corresponding RREQ,

a data packet may now be

sent */ }

55 else {

56 hops_= hops_+1;

57 unicast(nhop[oip_],

rec-rrep(hops_, dip_,

dsn_, oip_, self))

58 succ:

59 {

60 route_state[oip_]=1;

61 break;

62 }

63 unsucc:

64 {

65 if(route_state[oip_] == 1) {

66 /* error recovery procedure

*/

67 }

68 route_state[oip_] = 2;

69 } } } }

70 msgsrv rec-rerr(int source_ ,int

sip_, int[] rip_rsn)

71 {

72 /* regenerate rrer for invalidated

routes */

73 } }

74 main

75 {

76 Node node0(node1,node3):(0,true);

77 Node node1(node0,node3):(1,false);

78 Node node2(node3):(2,false);

79 Node node3(node2,node0,node1):

(3,false);

80 constraints

81 { and(con(node0,node1),

con(node2,node3)) }

82 }

Fig. 4. The AODV specification given in wRebeca (based on the code in [35])
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In message server rec-rrep (line 48), whenever a node receives a message it
updates its routing table accordingly to construct the backward path. When it
reaches the source, a bidirectional route has been formed and the data packet
can be sent towards the destination through the next-hops in the routing tables.
In addition to the above message servers, there is message server rec-rerr (line
70) that is called whenever a node fails to send a packet through a valid route,
in order to inform other interested nodes in the broken route about the failure.
Due to the mobility of the nodes this may happen often.

Faithfulness. For MANETs, we modeled the network nodes as actors. Nodes
send asynchronous messages to each other, and the protocol is modeled by mes-
sage servers. The MoCs match perfectly, except that Rebeca in its core form
does not support broadcast or multicast. But broadcast and multicast are both
asynchronous and non-blocking from the sender side, and we do not need any
explicit receive statement in the receiver side. The crucial rules of the MoC stay
unchanged, i.e., the main transition rule, which takes a message and triggers
the message server, is not changed. Moreover, mobility of the nodes is captured
at the level of the state transition system at the time of analysis. This keeps
the model simple. Different properties of the protocols can be checked using the
model checking tool.

Usability. Usability of Rebeca in modeling network protocols depends on the
goal. The modeling process can be performed efficiently and with satisfaction.
Each node is running concurrently and, generally, there is asynchronous com-
munication. Each node can be mapped to an actor. Communication protocols
are usually written as algorithms or pseudo-code in an imperative form and
can be naturally mapped to message servers in Rebeca. The effectiveness of the
modeling depends on the goal: what kind of analysis has to be done and what
properties must be checked. Based on the properties we need to check, we have
to model different features of the system. We need reduction techniques to tackle
state space explosion in the analysis phase. Compared to alternative modeling
paradigms, faithfulness of the model brings in usability.

Reusability and Modeling Different Network Protocols. Different ver-
sions of the AODV are modeled in wRebeca. For each version, the parts of the
message servers related to updating the routing table are revised. The local data
in the routing table must be adjusted based on the information that should be
maintained for each version. Most of the code can remain unchanged.

Analyzing Wireless Ad-Hoc Networks Protocols. The goal in [37] is to
find the conceptual mistakes in the protocol design rather than problems caused
by an unreliable communication. A customized model checking tool is devel-
oped [11] and the loop-freedom property is checked while generating the state
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space. The reason for violating the property was to maintain multiple uncon-
firmed next hops for a route without checking them to be loop-free. Furthermore,
the monotonic increase of sequence numbers and packet delivery properties are
checked via model checking. The wRebeca team found a loop creation scenario
in AODVv2 protocol (version 11) in 2016, and reported it to the AODV group.
The AODV group confirmed the possibility of loop creation and released a new
revised version of the protocol and the authors are acknowledged2. Henceforth,
new versions of the protocol are verified using wRebeca.

Scalability Challenges. While building the state space for analyzing a
MANET protocol a few abstraction techniques are used. The first technique
considers the network with a fixed topology, ignoring the mobility of nodes.
Then the actors that have the same neighbors and local states are considered
identical. This way many states can be merged as the actors are no longer dis-
tinguished by their identifiers. It is shown in [37] that the reduced transition
system is strongly bisimilar to the original one, and the state space reduction is
considerable. This technique is beneficial for finding an error during the design
of a new version of a protocol. If we know that a certain topology leads to mal-
functioning of a previous version of the protocol, we can check the new version
of the protocol using that certain topology.

The above technique ignores the mobility of nodes and will not work if we
have a dynamic topology. As an example of an effective design decision, in [37],
changes in the topology are not captured at the level of the wRebeca model.
Instead, for analyzing the protocols, arbitrary changes in the underlying topology
are considered while generating the state space. These random changes make the
state space grow exponentially. To tackle the state space explosion, the states
which are only different in their topologies are combined, and the topology-
sensitive behaviors are captured by adding appropriate labels on the transitions.
It is proved in [37] that the reduced transition system is branching bisimilar
to the original one, and consequently a set of properties such as ACTL-X is
preserved. Another way used to restrict the random changes in the topology, is
to allow the modeler to specify constraints over the topology in the model.

5 Network on Chips and Routing

System-on-chip (SoC) designs provide integrated solutions to challenging design
problems in the telecommunications, multimedia, and home electronics domains
[5]. An SoC can be viewed as a micronetwork of components. The network is the
abstraction of the communication among components and must satisfy quality-
of-service requirements - such as reliability, performance, and energy bounds.
Network on Chip (NoC) (an SoC paradigm) is a network of computational,
storage and I/O resources, interconnected by a network of switches. Computing
resources communicate with each other using addressed data packets routed to

2 The acknowledgment is at https://tools.ietf.org/html/draft-ietf-manet-aodvv2-16.

https://tools.ietf.org/html/draft-ietf-manet-aodvv2-16
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their destination [12]. In NoC designs, functional verification and performance
evaluation in the early stages of the design process are suggested as ways to
reduce the fabrication cost.

Fig. 5. A 2D mesh NoC (on the left), and a router in ASPIN [29] (on the right)

Modeling NoC in Rebeca. As an example of a NoC, we modeled and analyzed
ASPIN (Asynchronous Scalable Packet switching Integrated Network), which is
a fully asynchronous two-dimensional NoC design [29]. In an ASPIN design,
each core is placed in a two-dimensional mesh and has (at most) four adjacent
cores and four internal buffers for storing the incoming packets (one for each
direction). Figure 5 shows the 2D mesh consisting of nine clusters (on the left),
and a zoom-in picture of each cluster (on the right). The four (pairs of input
and output) internal buffers are shown in the figure.

Different routing algorithms have been proposed for the two-dimensional NoC
design. Here, we consider the XY-routing algorithm. Using the XY-routing algo-
rithm, packets are moving along the X direction first, and then along the Y
direction to reach their destination cores. In ASPIN, packets are transferred
through channels, using a four-phase handshake communication protocol. The
protocol uses two signals, namely Req and Ack, to implement this four-phase
handshaking protocol. This way, to transfer a packet, first the sender sends a
request by raising the Req signal along with the data and waits for an acknowl-
edgment, which is the raising of the Ack signal by the receiver. In the third
phase, when the sender gets the Ack from the receiver it will lower the Req sig-
nal. Finally, in the fourth phase. when the receiver notices that the Req signal
is lowered it will lower the Ack signal. After successful communication all of the
signals return to zero.
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1 env byte inBufSize = 2;

2 env byte writeT = 2;

3 env byte readT = 6;

4 env byte flitNum = 2;

5 ...

6 reactiveclass Manager(60){

7 knownrebecs{

8 Router r00, r10, r01, r11;

9 }

10 statevars{}

11 Manager(){testScenario(); }

12 void testScenario(){

13 r00.inReq(4,1,1,1) after (184);

14 r00.inReq(4,1,1,1) after (274);

15 r01.inReq(4,1,1,2) after (18);

16 r01.inReq(4,1,1,2) after (110);

17 }

18 }

19 reactiveclass Router(60) {

20 knownrebecs {

21 Router N, E, S, W;

22 }

23 statevars {

24 byte Xid, Yid, received;

25 boolean[5] inBufFull,

outBufFull;

26 }

27 //---Comunication---

28 msgsrv inReq (byte inPort, byte

Xtarget, byte Ytarget, byte

id){

29 if (inBufFull[inPort] == false ){

30 sendInAck((byte)(inPort + 2)%4,

inAD);

31 self.process(inPort, Xtarget,

Ytarget,id, false,

false)after((writeD *

inBufSizeTest)+ readD);

32 ...

33 } else { ... }

34 }

35 msgsrv process(byte inPort, byte

Xtarget, byte Ytarget,byte id,

boolean isPushed, boolean

justPush) { ...}

36 ...

37 //---Routing Algorithm---

38 byte XYrouting(byte Xtarget, byte

Ytarget){

39 if (Xtarget > Xid) //East

40 else if (Xtarget < Xid) //west

41 else if (Ytarget > Yid) //South

42 else if (Ytarget < Yid) //North

43 else outPort = 4; //the local

buffer, arrived at destination

44 return outPort;

45 }

46 //---Scheduling Algorithm---

47 byte RRSched(byte outPort){

48 byte[5] priorities = {4, 3, 1, 0,

2};

49 //turn = Number of the last input

port which was its turn

50 //passedFlit = Number of passed

flits which was sent from

"turn" to outPort

51 if(BufFull[outPort]) return;

52 if (passedFlit == 0){ // this

flit is the header

53 for(byte i=0 ; i<5 ; i++){

54 //turn= according to priorities,

choose next input port

which is waiting for outPort

55 outReqEnable[turn] = false;

56 //Save turn for outPort

57 passedFlit ++;

58 if(passedFlit == flitNum){

59 passedFlit = 0;

60 }

61 //save passedFlit for outPort

62 }

63 }else{// body of the packet

64 outReqEnable[turn] = false;

65 passedFlit ++;

66 if(passedFlit == flitNum){

67 passedFlit = 0;

68 }

69 //save passedFlit for outPort

70 }

71 }

72 -------------------------------------

73 //Other auxiliary Functions &

Message Servers

74 }

75 main {

76 Manager m(r00,r01,r10,r11):();

77 Router

r00(m,r01,r10,r01,r10):(0,0);

78 Router

r10(m,r11,r00,r11,r00):(1,0);

79 Router

r01(m,r00,r11,r00,r11):(0,1);

80 Router

r11(m,r10,r01,r10,r01):(1,1);

81 }

Fig. 6. The Rebeca model of an ASPIN NoC (based on the code in [27])
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Timed Rebeca Code. The simplified version of the Timed Rebeca model of
ASPIN is shown in Fig. 6, which contains two different reactive classes: Manager
and Router. The Manager (line 11) does not exist in real NoC systems, it is
used here to model different scenarios of packet generation. In Fig. 6, in function
testScenario, two packets are generated, each contains two flits (lines 13–14 and
15–16). One packet is sent from the r00 router to r11 at the time 184 (the first
flit), and 274 (the second flit), and the other packet is sent from r01 router to
r11 at the time 18 (the first flit), and 110 (the second flit).

Each Router has four known rebecs which are its four neighbors (line 21). Its
state variables include a composite id which is its X-Y position, buffer variables
which show that the buffers are enabled or full, and a counter for the number
of received packets (lines 24–25). Packets move through channels according to
the four-phase handshake communication protocol. The delivery of a packet is
attempted by sending an inReq message to a router. The receiver router accepts
the packet if its input buffer is free. Upon accepting a packet, an acknowledgment
is sent to its sender and an internal message is scheduled to process this packet.
The time needed to do some of the processing or routing is modeled using delay
or after constructs in the code. The processing of a packet takes place in message
server process (line 35). If there is a packet ready for processing, based on the
routing algorithm, one of the outPorts is selected to send the packet to the
appropriate neighbor. Routing is based on the XY-algorithm, and the output
port for routing a packet is computed by the function XYrouting (line 38). The
scheduling algorithm is implemented in the function RRSched (line 47). The 2D-
mesh of this model is formed in the main block of the model by setting known
rebecs based on the locations of the routers (lines 77–80).

Faithfulness. ASPIN is a GALS NoC design, with synchronous behavior within
each node and asynchronous message passing between nodes. So, we model each
node (router and the core) as an actor, and the MoCs of ASPIN and Rebeca
match, and a faithful model of NoC can be built. One can observe that within
a router different ports can be running concurrently, but we did not model each
port as an actor to avoid state space explosion. Reading from each input port
and putting the packet into the correct output port is done using a round-robin
scheduling policy which is modeled in the code. We do not lose any interesting
property with this abstraction.

Usability. In a high level of abstraction NoC can be mapped to Rebeca effi-
ciently. We showed that despite the high level of abstraction the results are
consistent with hardware simulation results in the literature, so, the approach
is effective. In the NoC project, extended versions of the model including the
communication protocol and more detailed versions of the scheduling algorithm
are developed in later phases. Adding more details (like buffer length, packet
length and flit number, packet generation delay, more precise communication
protocol) results in more precise measurements, showing effectiveness. Natu-
rally, debugging the Rebeca code becomes more difficult when the code becomes
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more detailed. On the positive side, more details can be added to the model
in an iterative and incremental way which is not a capability supported by all
available hardware simulation tools. Our analysis technique is based on model-
checking, it captures the simultaneity of the events (which is modeled using
interleaving), while hardware simulation tools are not capable of that. As for
satisfaction, a hardware designer may not be comfortable with programming in
a C- or Java-like language.

Reusability and Modeling Different Routing Algorithms. Modeling dif-
ferent routing algorithms in Rebeca can be done efficiently; we have to change
the routing function in the code. The rest of the code can be reused. Routing
algorithms can be classified into deterministic and adaptive routings. In a deter-
ministic routing there can only be one path between a source and a destination,
whereas in an adaptive routing more than one possible path may exist and the
algorithm considers the conditions of the dynamic network to decide in which
direction a packet should be transferred. The XY algorithm is a deterministic
algorithm, Odd-Even routing is an adaptive one, and DyAD routing chooses
dynamically between a deterministic or an adaptive algorithm, based on the
different network congestion conditions.

Odd-Even routing algorithm is based on Odd-Even turn model [9]. According
to Odd-Even turn model north-to-west and south-to-west turns are prohibited in
routers located in an odd column and east-to-south and east-to-north turns are
prohibited in routers located in an even column. The restrictions are enforced
to ensure deadlock freedom. For routing a packet, each router decides between
two legitimate downstream neighbors based on the number of the empty slots in
their input buffer. The neighbor with more empty slots will be selected. In this
algorithm, each router keeps track of the number of packets in input buffer of
each of its neighbors. In the Rebeca model [28], whenever the size of an input
buffer of a router changes, it informs its corresponding upstream neighbor by
sending a message.

In DyAD routing, each router monitors the occupation ratio of its input
buffers (except for the local buffer). Whenever one of the buffers reaches a pre-
defined congestion threshold a mode flag is set to inform the corresponding
neighboring about the congestion. On the other hand, each router periodically
checks mode flag of its neighbors to decide whether to work with deterministic
or adaptive routing. According to [15], if at least one of the neighboring routers
were congested the router would decide to work with adaptive routing; otherwise
it would work with deterministic routing. To model a DyAD router in Rebeca
we add a mode flag to our model [28]. The mode flag becomes true if the size of
the corresponding input buffer reaches the congestion threshold.

Analyzing NoC Design, and Evaluating Different Routing Algorithms.
Timing analysis of NoCs is required to discover possible deadline misses for pack-
ets traveling through the network. Based on the results of such analysis, suitable
design decisions can be made. In asynchronous systems, lack of a reference clock
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leads to an interleaved execution of processes. Therefore, in GALS NoCs, a sent
packet might be delayed by different numbers of disrupting packets and may
have various end-to-end latencies. For analysis of such systems, it is essential to
consider all possible behaviors of the system rather than specific traces.

The timed version of ASPIN is modeled and analyzed in [26] using simulation
and model checking. Afra toolset was used for checking deadlock freedom, and
message arrival, and for estimating the maximum end-to-end packet latency in
the model. In the Rebeca model, we considered hardware features like switching
strategy, communication protocols, and buffer and link delays. Packet latencies
are computed with different design parameters, specially buffer sizes. Different
routing algorithms are analyzed and compared.

The model is validated through comparing the extracted results to that of
HSPICE [14], under both manual and real traffic [26]. Note that in HSPICE
simulator, the lowest level of simulation in hardware domain is performed, and
all the details of transistors and wires are considered.

Scalability Challenges. Clearly we cannot generate all the possible scenarios
of packet injection in the network. We use PARSEC benchmarks [6] for choosing
our scenarios. PARSEC is a well-known set of scenarios for packet generation in
network on chip. For performance estimation, the Black-Scholes scenario from
this benchmark has been selected.

For estimating maximum end-to-end packet latency, in order to analyze
large NoCs, a scalable approach is proposed based on compositional verification
[26]. The compositional approach is specific for the XY-routing algorithm. The
method computes the maximum end-to-end latency in GALS NoCs with XY-
routing algorithm in two steps. It breaks the path of a packet to its destination
into horizontal and vertical sub-paths and then performs latency estimation in
each sub-path separately. At the end, the results for each sub-path are combined
to get latency estimation of the whole path. To do so, possible paths for each
packet should be investigated precisely to find out which packets may make dis-
ruption for the transferring packet. To check the correctness of the method, these
disruptions are considered in the scenarios and then the results are compared to
that of HSPICE.

6 Discussion

Here we discuss the points raised in the introduction section, mainly faithfulness,
usability, and analyzability.

Faithfulness. When we make a Rebeca model of a given system (or based on a
given specification), first we want to know the set of actors that build the model.
We start by finding the modules that are running concurrently in the system and
communicate asynchronously via message passing. Each of these modules will
be represented by an actor in the model. Each actor may represent a module
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that may contain different sub-modules that are not executed concurrently, or
are communicating synchronously (like in Globally Asynchronous, Locally Syn-
chronous systems). Networks of nodes which communicate through asynchronous
messages build systems with a model of computation perfectly matching Rebeca.
This is the case for all the three examples provided in Sects. 3 to 5.

The level of abstraction in modeling depends on the properties of the model
we are interested in. For different aspects to be checked we have to model different
features of the system.

Usability. As for usability, we focused on effectiveness, efficiency, and satisfac-
tion. Rebeca is usable for software engineers and programmers. They are familiar
with the Java-like syntax of Rebeca and with the object-oriented style of pro-
gramming. For concurrent programming, programmers are mostly using thread-
based programming, and the event-based model of computation may not be as
widely used by all the programmers. Usually it would be enough to tell them
that each actor is one thread of execution and message servers run atomically
with no preemption. To be completely fair, it is worth mentioning that design-
ing the code with an event-driven style may not be straightforward for all the
programmers, but it is learned fairly quickly. Hardware and electrical engineers
are more familiar with event-driven computation. But based on our observation,
electrical engineers prefer a component-based system, like what they get with
Simulink.

Reusability and Design Patterns. In Sects. 3, 4, and 5 we have subsections
on how the Rebeca code can be reused or extended for similar applications in
the same domain. Based on our experience on the NoC design, we proposed a
generic pattern for track-based traffic control systems and used it for building
a coordinated actor model for adaptive air traffic control systems [4]. We used
Timed Rebeca in modeling mobile agents, using this pattern, but different in
the analysis part. We came up with a light-weight approach in planning using
this model [8].

Analyzability and Synthesis. Based on the asynchrony and isolation of
actors, we designed specialized reduction techniques in model checking Rebeca
and Timed Rebeca. In some cases, like for analyzing SystemC codes, we needed
to extend Rebeca to have wait statements and global variables [24]. In these
cases the MoC is no longer the same and most of our reduction techniques will
no longer work.

So far, synthesis has not been the focus of our research. But in the cases that
Rebeca models represent the network protocol, then the implementation of the
protocol can be just a refinement of the Rebeca code.

Traceability and Compositionality. Isolated units of concurrency make the
model modular. Also, effective compositional verification techniques are intro-
duced. But there are no compositional semantics for Rebeca, mainly because
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of the message buffers. Traceability is high between the model and the system.
But at the level of semantics and transition systems, we are dealing with similar
problems like for other modeling languages.

Expressiveness and Rebeca Extensions. The discussion in this paper is
based on the assumption that we have a language that is expressive enough for
the domain of our interest. We had to extend Rebeca to increase its expres-
siveness where necessary. Timed and probabilistic extensions of Rebeca were
introduced because the expressive power of Rebeca was not enough to capture
the notions of time and probability. An ongoing project is extending Rebeca
to model cyber-physical systems by supporting actors with continuous behav-
ior, and for that we need the capability of defining linear differential equations.
Different extensions of Rebeca build an actor family of languages [7].

Future Trends. Modeling cyber-physical systems using an extension of Rebeca
and building analysis techniques for this domain is a current ongoing project.
Rebeca supports dynamic creation and topology in theory, but in none of the
techniques have we carefully considered this dynamicity. Recently, the possibil-
ity of passing rebec names and hence having dynamic topology is added to the
Rebeca tools. This is mostly necessary for modeling and analyzing autonomous
and self-adaptive systems which are another domain of interest. For the tech-
niques, in the future, we plan to focus more on synthesis, and also testing.
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Abstract. We study abstract, compositional and executable represen-
tations of synchronous models in general and hierarchical synchronous
block diagrams in particular. Our work is motivated by the problem of
modular code generation, where sequential code (in, say, C or Java) must
be generated for a given block independently of its context, that is, inde-
pendently of the diagrams in which this block may be embedded.

We propose non-monolithic interfaces called profiles as a representa-
tion of blocks. A profile contains a set of interface functions that imple-
ment the semantics of the block, and a set of dependencies between
these functions. Profiles are executable through the implementation of
their interface functions. Profiles are compositional in the sense that a
diagram of profiles can be represented as a single profile without loss of
important information, such as input-output dependencies. This is con-
trary to traditional methods which use monolithic interfaces that contain
a fixed number of interface functions, usually just one or two. Monolithic
interfaces generally result in loss of input-output dependency informa-
tion and are non-compositional. Profiles are abstract in the sense that
they hide most of the internal details of a diagram (e.g., functionality).

We provide methods for profile synthesis and modular code genera-
tion: to automatically produce profiles and profile implementations of
composite blocks, given profiles of their sub-blocks. Our work reveals
fundamental trade-offs between the size and reusability of a profile, as
well as between characteristics of the generated code and complexity
of the synthesis algorithms. We discuss various algorithms that explore
these trade-offs, among which algorithms that achieve maximal reusabil-
ity with optimal profile size.
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1 Introduction

What is the parallel composition of two Mealy machines, or even two stateless
functions? Consider, for instance, the block diagram shown to the left of Fig. 1.
Blocks A and B represent two stateless functions (over some input and output
domains). Block P is a composite block formed by encapsulating A and B: P
represents the parallel composition of A and B. It is tempting to view P as a new
stateless function whose input and output domains are the cartesian products
of the input and output domains of A and B, respectively. This is problematic,
however, as we then lose the information that the output of A does not depend
on the input of B, and vice versa. Such information turns out to be critical
when using P in certain contexts. For instance, if we connect P in a feedback
configuration, as shown in the middle of Fig. 1, we obtain a diagram with a cyclic
dependency: the input of P depends on its output. Although some methods
exist to deal with such dependencies, they are expensive or even undecidable in
general (see discussion below). Moreover, using such methods is sometimes an
overkill. In our example, for instance, the situation is really simple: there is no
real dependency cycle in the feedback configuration, as revealed by flattening P
(right of Fig. 1).

y2

A

B

P

A

P
B

x1

x2

y1

Fig. 1. A hierarchical block diagram (left), a possible way to connect macro block P
(middle) and the same connection after flattening P (right).

The problem really lies in the fact that representing the parallel composition
of functions A and B as a new function P loses the dependency information
between inputs and outputs. In this paper we present a systematic method to
represent, maintain and efficiently compute such information. Before further
discussing our method and its benefits over alternatives, let us place our work
in context.

This work is motivated by the need to develop reliable and efficient methods
for the design and implementation of embedded systems [25]. Current practice
can be qualified as being mostly about low-level design: build a prototype system,
test it, discover problems, fix them and repeat the process. This is costly both
in terms of money and time, and also offers few guarantees of producing reliable
systems. So-called model-based design (MBD) has been proposed as an alterna-
tive. The MBD paradigm is based on the premise of using models for high-level
design. Models can be analyzed in more exhaustive and less costly ways than
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prototype systems. MBD relies on powerful implementation techniques to derive
executable systems from models. These techniques need to be as automatic as
possible, in order to produce implementations efficiently. They also need to pre-
serve as many of the properties of the high-level model as possible. This allows to
produce implementations that are, as much as possible, correct by construction,
which reduces the effort of testing at the implementation level.

In the field of embedded systems, like in many other fields, specialized (some-
times called “domain-specific”) languages are used. These languages include
features such as concurrency, time and system dynamics, which are integral
parts of embedded system design. In this paper, we are particularly interested
in synchronous models, whose execution proceeds by an infinite sequence of syn-
chronous rounds. The synchronous model of computation (MoC) is a funda-
mental one, especially relevant in the context of embedded systems, since it is
prevalent in many application domains, from control software to synchronous
hardware.

Examples of synchronous models coming from the academia are the so-called
synchronous languages [3], such as Lustre [14], Esterel [6,34] or Signal [20,27],
or the synchronous-reactive domain of Ptolemy [19]. Simulink from The Math-
Works1 and SCADE from Esterel Technologies2 are two commercial products,
especially widespread in the automotive and avionics domains. SCADE has its
foundations on Lustre and uses a purely synchronous MoC. Simulink contains
both a continuous-time and a discrete-time part: the latter follows essentially
the synchronous MoC.

The tools associated with languages such as the above include graphical
model editors, simulators and code generators.3 Automatic generation of code
that implements the semantics of a model is useful in different contexts: the
code can be used for simulation; but it can also be embedded in a real-time
digital control system (X-by-wire). In fact, uses of the latter type are increasingly
being adopted by the industry. Thus, these tools can be seen as programming
languages, debuggers and compilers for the embedded system domain.

In this paper, we use synchronous block diagrams (SBDs) [19,32] as a formal
model that captures the synchronous MoC. A fundamental concept in our ver-
sion of SBDs, directly inspired by Simulink, SCADE and Ptolemy, is hierarchy:
a set of blocks can be connected to form a diagram, which may be encapsulated
in a composite, or macro, block. The latter can be itself further connected and
encapsulated. Hierarchies of arbitrary depth can be formed in this way. Hierar-
chy is essential in graphical formalisms since it allows to master complexity by
building designs in a modular manner. Hierarchy facilitates the reuse of high-
level components, both during model construction and code generation.

Our work has been motivated by the problem of modular code generation
from synchronous models such as SBDs. We already explained the importance

1 See http://www.mathworks.com/products/simulink/.
2 See http://www.esterel-technologies.com/products/scade-suite/.
3 Primarily software code generators, since software is becoming predominant in

embedded systems, but also hardware code generators in some cases.

http://www.mathworks.com/products/simulink/
http://www.esterel-technologies.com/products/scade-suite/
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of code generation in the discussion above. Modular code generation consists
in generating code from pieces of a model independently from other pieces. In
the context of SBDs, modular code generation consists in generating code from
a given block P independently from its context, that is, independently from
the diagrams that P is or will be connected to. Just as separate compilation of
different files of a large piece of software written in C++ or Java is essential,
so is modular code generation from hierarchical models such as SBDs. It allows
incremental compilation and scalability of the code generation process. It also
allows building reusable model libraries. Finally, it allows to treat blocks as
“black boxes” as much as possible. This is important in an industrial context,
where intellectual property (IP) of models is a primary concern.

Most existing approaches to code generation from synchronous models are
monolithic: they consist in generating, for a given block, a single step function
that computes all block outputs given all its inputs. This is problematic because
it loses input-output dependency information, as illustrated above. If the block
has state, often two functions are generated, an output function to compute the
outputs from the inputs and current state, and an update function to update the
state, as in a Mealy machine. This does not solve the problem either, however,
since inputs and outputs are still treated in a monolithic way in the output
function.

One way to deal with this problem is to follow the approach proposed
in [5,19,33] and used in Ptolemy [29]. This approach consists in generating two
functions per block, an output and an update function as above (in Ptolemy
these are called fire and postfire, respectively) but with the addition that
these functions can operate over a special unknown value, corresponding to the
bottom element of a complete partial order. At run-time, at every synchronous
round, the output functions of all blocks are executed repeatedly until a fix-
point is computed. The fixpoint may contain unknown values, in which case the
diagram is not well-defined and execution stops. Otherwise, execution proceeds
to the next round where a new fixpoint is computed.

One problem with this approach is that it cannot guarantee statically (i.e., at
compile-time) that no unknown values will be produced at run-time. Therefore,
the approach is mostly suited for simulation, and cannot be used to produce code
for safety-critical applications. One way to guarantee statically that the diagram
is well-defined is to prove that the model is constructive in the sense of Berry [5].
Unfortunately, proving constructiveness is generally undecidable for models with
infinite domains, and is expensive even for models with finite domains. Moreover,
this approach requires semantic knowledge about each block, namely, what is the
function that the block computes. Having such semantic knowledge is contrary
to the goal of treating blocks as black boxes, that we pursue in this paper.

Our approach allows to make static guarantees. The key idea is to gener-
ate for a given block a non-monolithic interface, also called profile. The latter
consists of a not a-priori fixed number of interface functions, plus a set of depen-
dencies between these functions. Each function computes some outputs from
some inputs. The dependencies capture the IO dependencies of the block. As an
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Fig. 2. Two possible profiles for block P of Fig. 1: the left one is monolithic; the right
one is not.

example, two possible profiles for block P of Fig. 1 are shown in Fig. 2. The left-
most profile is monolithic, and corresponds to the standard approach of treating
P as simply a new function from both inputs to both outputs. The rightmost
profile is non-monolithic, and corresponds to what one of our methods automat-
ically generates.

The profile can be seen as an abstraction of the information contained in
the block (i.e., in its internal hierarchy, which is not exposed in the profile).
We present profile synthesis methods that allow to generate profiles automati-
cally, and moreover, to explore different trade-offs during the generation of such
profiles. In particular, trade-offs between the size of the generated profile and
its accuracy. The smaller the size the better, for scalability and IP reasons. On
the other hand, a profile that is too small may lose IO dependency information.
This in turn results in a profile that is less reusable, that is, that cannot be
used in some contexts. Apart from profile size vs. reusability trade-offs, we also
study other trade-offs, such as between the quality of the resulting code and the
complexity of computing the profile.

Contributions: This paper unifies and extends the work presented in [30–32].
This work provides a general and automatic solution to the problem of modular
code generation from synchronous models, with static guarantees. Compared to
the fixpoint-based approaches discussed above, ours can handle a smaller class
of models, namely, those that exhibit no dependency cycles once the hierar-
chy is flattened (dependency cycles are allowed at higher levels, however, as
in the example of Fig. 1). On the other hand, our approach can provide static
(compile-time) guarantees, which cannot be generally provided by fixpoint-based
approaches, as discussed above. With our method, diagrams (and the corre-
sponding generated code) are guaranteed to have well-defined semantics (no
unknown values) at compile-time. Moreover, interface functions are called at
most once per round, in a statically determined order. Compared to fixpoint-
based methods, where more than one iterations may be required to reach a
fixpoint, static execution order has the benefits of smaller run-time overhead,
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better performance, and better predictability of the execution time of the gen-
erated code. All are crucial properties in an embedded system setting.

Organization: The rest of this paper is organized as follows. In Sect. 2 we discuss
other related work. In Sect. 3 we explain the syntax and semantics of hierarchi-
cal SBDs. In Sect. 4 we present profiles. In Sect. 5 we describe our method for
automatically synthesizing profiles and generating code that implements those
profiles. Section 6 concludes this paper.

2 Other Related Work

Compositionality of synchronous models, and in particular the problem of cyclic
dependencies, has been the topic of extensive study, and a variety of solutions
have been proposed (e.g., see [3,15] for overviews). The most general is probably
the one used in Esterel [5], however, it is often infeasible as discussed above.
Simulink and Lustre compilers both rely of statically detecting cyclic dependen-
cies and rejecting the model if one is found. In order to do this they flatten the
model, however, which is not modular. SCADE does not flatten the model, but
requires absence of cyclic dependencies at every level of the hierarchy, which is
quite restrictive.

Equipping models with input-output dependency information has been pro-
posed in [2] and also in [48]. These works use such information mainly for analysis
(e.g., distinguish between true and false dependencies). Our goals are also syn-
thesis and code generation. We also study trade-offs such as between profile size
vs. reusability, which are not studied in these works.

Code generation for synchronous models and languages has been extensively
studied, however, modular code generation has received less attention: in 2003,
[3] stated that “a unified treatment [of this problem] remains a research topic”.
In fact, separate compilation (essentially the same problem) for synchronous
languages has been identified as synonymous with monolithic compilation, and
as such deemed to be generally infeasible [23,35]. Our non-monolithic framework
provides the unified treatment that has been missing.

Although not identified explicitly as such, non-monolithic approaches have
been described previously, for instance, in [4,21,24,38]. These works are, how-
ever, focusing on different problems, such as static scheduling and code distribu-
tion, and as such provide incomplete solutions to the modular code generation
problem. In particular, they do not deal with hierarchies of arbitrary depth, they
do not identify code generation trade-offs and they do not address the problems
of optimizing metrics such as profile size or reusability.

[47] study partial evaluation in Esterel: generating code that computes out-
puts even in the presence of unknown inputs. Modular compilation for Quartz
(a variant of Esterel) is studied in [10,39]. Their work focuses more on problems
such as so-called schizophrenia which are specific to imperative synchronous
languages like Esterel, and less on causality problems which is our main focus.
Causality problems are also outside the focus of work on composable code gen-
eration from languages like Giotto where by definition all outputs are produced



Modular Code Generation from Synchronous Block Diagrams 455

with a unit delay [26]. The focus there is on compositionality of timing and
scheduling, as is the case with work on compositional real-time scheduling [40].

Profiles are rich interfaces. Interfaces are a key mechanism for abstraction,
modularity, compositionality, and many other important properties of software
and systems. Interfaces have appeared in the literature in many different settings
and communities, such as software engineering and programming languages (e.g.,
Typestate [41]), or formal methods (e.g., interface automata [1], relational inter-
faces [45], and timed actor interfaces [22]). Particularly close to our work here
is the theory of relational interfaces which have synchronous semantics similar
to SBDs [45]. This work has since been extended into a powerful compositional
framework called refinement calculus of reactive systems (RCRS) [37]. RCRS
includes methods and tools to translate hierarchical SBDs into a formal algebra
of contracts which can be manipulated formally (e.g., using a theorem prover)
and symbolically [18]. RCRS also includes a formal notion of refinement which
allows to specify a system at different levels of abstraction, and also to speak
formally about substitutability (when can a component replace another one) [45].

Interfaces are key for simulation environments like Ptolemy. Most modern
simulators are built in a modular fashion, where the simulation engine is sep-
arated from the simulated models. This allows the same engine to be used for
a large variety of models, and also allows the addition of new models, model
components, model libraries, etc. To achieve this modularity in the implementa-
tion, a clear API (application program interface) is used. This API is typically
implemented by the model components (e.g., “blocks” in Simulink, “actors” in
Ptolemy) and called by the simulation engine (although call-backs are also some-
times used, e.g., the fireAt method in Ptolemy). A formalization of (part of)
Ptolemy’s actor interface is provided in [46], as part of an attempt to give formal
semantics to the language.

Different simulators typically use different APIs, which hinders the shar-
ing and exchange of models, if these models are written in different languages.
The FMI standard [7,8] aims to remedy this by providing standard APIs for
model exchange and co-simulation. The development of FMI has received great
attention recently as it raises several interesting questions, such as what prop-
erties should a “good” co-simulation algorithm have [11,12,16], how to bridge
the semantic gap between heterogeneous modeling formalisms and the standard
API [9,43], how to integrate FMI in existing simulation tools [17], etc.

The ideas presented in this paper are not limited to models with synchronous
semantics. They have indeed inspired us to explore modular code generation and
compositionality in other contexts, such as dataflow [28]. Our study revealed that
hierarchical SDF graphs used in tools such as Ptolemy are non-compositional in
the sense that a composite SDF actor cannot always be replaced by an atomic
one [42], a problem reminiscent of the limitations of monolithic interfaces in the
case of SBDs. A compositional alternative inspired from the concept of non-
monolithic interfaces is proposed in [28].

A broader discussion about the role of compositionality in the science of
system design can be found in [44].
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3 Synchronous Block Diagrams

3.1 Hierarchical Block Diagrams

We consider a notation based on a set of blocks that can be connected to form
diagrams (see Fig. 3). Each block has a number of input ports (possibly zero) and
a number of output ports (possibly zero). Diagrams are formed by connecting
some output port of a block A to some input port of a block B (B can be the
same as A). We assume that a port can only be connected to a single other port:
fan-out can be explicitly modeled using blocks that replicate their input to their
outputs. We also assume that every output port in a diagram is connected: again,
this is without loss of generality, since outputs can be connected to “dummy”
blocks that do nothing. Each port has a given data type (integer, boolean, ...)
and connections can only be done among ports with compatible data types, as
in a standard typed programming language. We will not worry about data types
in this paper as these can be handled using standard type-theoretic methods.

Blocks are either atomic or macro. A macro (i.e., composite) block encapsu-
lates a block diagram into a block. The blocks forming the diagram are called
the internal blocks of the macro block, or (synonymously) its sub-blocks. In the
example shown to the left of Fig. 3, block Q is a macro block and A,B,C are its
sub-blocks. The connections between blocks (“wires”) are called signals. Upon
encapsulation, each input port of the macro block is connected to one or more
inputs of its internal blocks, or to an output port of the macro block; and each
output port of the macro block is connected to exactly one port, either an output
port of an internal block, or an input of the macro block. Signals inherit the data
types of their source ports.

In the context of a modular and hierarchical notation such as the block
diagrams we consider in this paper, it is useful to distinguish between block
types and block instances. Indeed, a block, whether atomic or composite, can
be used in a given diagram multiple times. For example, a block of type Adder,
that computes the arithmetic sum of its inputs, can be used multiple times in a
given diagram. In this case, we say that the block of type Adder is instantiated
multiple times. Each “copy” of the block is called an instance. In the rest of the
paper, we omit to distinguish between type and instance when the distinction is
clear from context.

Q

C

B
A

y1

y2

x1

x2

y2

A

C DB

initial:v

T

x1

x2

y1

Fig. 3. Left: a hierarchical block diagram consisting of macro block Q with sub-blocks
A,B,C. Right: a diagram with a triggered block C.
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3.2 Triggers

In a diagram, any (atomic or macro) block may be triggered by a Boolean signal
x: the intention is that the triggered block is to “fire” only when x is true. If
x is false, then the outputs of the triggered block retain their value (i.e., the
value that they had in the previous synchronous round). The signal x is called
the trigger of the triggered block. A block can have at most one trigger. The
diagram shown to the left of Fig. 3 has no triggers. An example of a diagram
with triggers is shown to the right of Fig. 3: block A produces a (Boolean) signal
that triggers block C.

When a block is triggered, the user specifies initial values for each output
of that block. These determine the values of the outputs during the initial time
interval (possibly empty) until the block is triggered for the first time. We call
such a value a trigger-initial value. In the example shown to the right of Fig. 3,
a trigger-initial value v is specified for the (single) output of triggered block C.
Note that if a block has many outputs, a potentially different trigger-initial value
can be specified for each output.4

[31] show that triggers do not add to the expressiveness of synchronous block
diagrams and can be eliminated by a structural transformation, which essentially
transforms triggers into inputs. This transformation is not modular, however,
because it propagates in a top-down manner throughout the entire hierarchy, all
the way to the atomic blocks. This contradicts our requirement that blocks be
seen as “black boxes”. To achieve modularity, we provide methods that handle
triggers directly, without eliminating them.

Our motivation for studying triggers is to capture Simulink’s triggered sub-
systems. Triggers are a simpler and more restricted concept than the con-
cept of clocks, used in synchronous languages and more generally in syn-
chronous dataflow [13]. Indeed, signals in a synchronous block diagram are always
“present”, that is, they have a well-defined value at every synchronous round.
This includes signals that are outputs of triggered blocks. For this reason, a
sophisticated type-checking mechanism such as a clock calculus [13] is not needed
in our case.

3.3 Combinational, Sequential, and Moore Blocks

Blocks (more precisely, block types) can be either combinational (i.e., stateless)
or sequential (i.e., stateful, that is, having internal state). Atomic blocks are pre-
classified as either combinational or sequential. A macro block is combinational

4 A Reviewer of an earlier version of this article correctly pointed out that there may
be potential problems with the specification of trigger-initial values. In particular,
complications may arise if downstream models are only valid for certain inputs: what
happens if a trigger-initial value is not a legal input for the downstream model?
While we agree that this is a problem, we feel that it is not confined to the use of
triggers. The same problem might arise in a diagram without triggers. In general,
the problem arises from non-input-receptive components. For a thorough study of
such components, we refer the reader to [36,45].
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iff all its sub-blocks are combinational; otherwise it is sequential. Some sequential
blocks are Moore (from Moore machines). All outputs of a Moore block only
depend on the current state of the block, but not on the inputs. See also Sect. 3.4.

3.4 Semantics

As we shall see in Sect. 4, each block in our framework is represented by a set of
interface functions and a directed acyclic graph whose nodes are these functions.
Let f be such an interface function with inputs x1, . . . , xn and outputs y1, . . . , ym,
where m,n ∈ N and N = {0, 1, 2, 3, . . .}. Implicitly, f is also associated with a
state variable s (possibly a vector). Denote by Dv the domain of variable v.
Then, semantically f is a function

f : Dx1 × · · · × Dxn
× Ds → Dy1 × · · · × Dym

× Ds (1)

Such a function f then defines the behavior of a SBD as a dynamical system in
time. In particular, each signal x is interpreted semantically as a total function
x : N → Dx, where x(k) denotes the value of x at synchronous round k. Suppose,
for the moment, that f belongs to a non-triggered block in the diagram (the case
of triggered blocks is examined below). Then, if x is an input to f then x(k) is
determined by the environment (which can be another function in the diagram),
otherwise it is determined by f as follows:

(
y1(k), . . . , ym(k), s(k + 1)

)
= f

(
x1(k), . . . , xn(k), s(k)

)
(2)

That is, f takes as input the current values of all its input ports and the current
value of the state, and produces as output the current values of all its output
ports and the next value of the state.

For example, if f+ is the (unique) interface function for an Adder block that
has two inputs x1, x2, one output y, and no internal state, then semantically f+
is defined by

f+(vx1 , vx2 , vs) = (vx1 + vx2 , vs) (3)

which defines the dynamical system

y(k) = x1(k) + x2(k) (4)

As can be seen in this example, stateless blocks can be formalized as blocks with
a single, “dummy” state vs that never changes.

As another example, consider the unit-delay block, also denoted 1
z . This is a

stateful block with a single input port x and a single output port y. As we shall
see in Sect. 4 the profile of 1

z contains two interface functions, one that computes
the output from the current state and one that updates the state based on the
input. Both are semantically the identity function, and define the dynamical
system

(
y(k), s(k + 1)

)
=

(
s(k), x(k)

)
(5)
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The behavior of the unit-delay block is illustrated in Fig. 4. The value of the
input signal x at round k is x(k). The value of the state at round 0, i.e., s(0), is
denoted sinit.

y

y:
s:
x:

sinit

0

x(0)
sinit

1 3 5

...
x(1) x(3) x(5)
x(0)

2

x(2)
x(1)

4

x(4)
x(3)x(2) x(4)

rounds
x(0) x(1) x(2) x(3) x(4)

1
z

x

Fig. 4. A unit-delay block (left) and its semantics (right).

We now turn to the case of triggered blocks. Suppose f is an interface function
of some block A which is triggered, in the diagram in question, by some signal t.
Notice that the semantics of f remain the same, since f is defined independently
from context. However, the semantics of the output signals of f change, because
of the fact that A is triggered. In particular, let y ∈ {y1, . . . , ym} be an output
of f . Then, Eq. (2) generalizes to

y(k) =

⎧
⎨

⎩

fy(x1(k), . . . , xn(k), s(k)), if t(k) = true
y(k − 1), if t(k) = false and k > 0
vy, if t(k) = false and k = 0

(6)

s(k + 1) =
{
fs(x1(k), . . . , xn(k), s(k)), if t(k) = true
s(k), if t(k) = false (7)

where fy, fs are projections of f to variables y and s, respectively, and vy is the
trigger-initial value specified in the diagram for y.

An example that illustrates the semantics of triggered blocks is given in Fig. 5:
t is the triggering signal, “T” and “F” denote true and false, respectively, and v
is the trigger-initial value for y.

y

x(0) x(1) x(3) x(5)x(2) x(4)

y:
s:

v

0

sinit

1 3 5

...
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x(1)
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x(1)x(1) x(4)

rounds
x(1) x(4)

1
z

t
t: F T F TF T

v

sinit

sinit

sinit sinit

x

x:

Fig. 5. A triggered unit-delay block (left) and its semantics (right).

Now, consider a given composite block P so that the profiles of all its sub-
blocks are known. That is, the interface functions of the sub-blocks of P are
semantically defined. The internal diagram of P defines a set of dependencies
between these interface functions, corresponding to the scheduling dependency
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graph, described in Sect. 5.1. If this graph contains a cycle, then the semantics of
P is undefined. Otherwise, the semantics is defined in terms of a new function fP
of the same form as in (1). fP is obtained by function composition of the interface
functions of the sub-blocks of P . Acyclicity of the scheduling dependency graph
guarantees that the composition is well-defined.

4 Profiles: An Abstract, Compositional and Executable
Representation of Synchronous Block Diagrams

4.1 Profiles

A profile can be seen as an interface or a summary of a block type. All blocks,
atomic or composite, have profiles. A block may have multiple profiles, each
suited for different purposes. This will become clear when we discuss tradeoffs
in Sect. 4.3.

The profile of a block contains:

– A list of interface functions and their signatures. Each such function takes as
input a set of values corresponding to some of the input ports of the block,
and returns as output a set of values corresponding to some of the output
ports of the block. The signature specifies which ports the arguments of the
function correspond to, their data types, and so on.5

– A profile dependency graph (PDG). The PDG is a directed, acyclic graph
(DAG), the nodes of which are the interface functions listed in the profile.
The PDG specifies the correct order in which these functions are to be called
at every synchronous round. If f → g is an edge in the PDG, then function
f must be called before function g.

Profile of Adder:

1
z

Interface functions Profile dependency graphs

Profile of 1
z
:

(combinational) A.step(x1, x2) returns y1;

U.get() returns y2;

U.step(x3) returns void;
U.stepU.get

A.stepAdder

(Moore)

x1

x2

y1

y2x3

y1

y2 x3

x1

x2

Fig. 6. Profiles for Adder and Unit-Delay blocks.

For example, Fig. 6 shows the profiles of an Adder block and a Unit-Delay
block. Data types are omitted from the signatures of the profiles. The inputs and
5 For sequential blocks (i.e., blocks with internal state) profiles contain a special init

function that initializes the state. In our framework, init functions of macro blocks
are synthesized from init functions of their sub-blocks. This is a simple procedure
whose details are omitted.
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Fig. 7. Three possible profiles for block Q of Fig. 3.

outputs of the interface functions are also shown on the nodes of the PDG: note
that this information can be derived from the signatures of the interface func-
tions. Figure 2 shows two possible profiles for macro block P of Fig. 1. Figure 7
shows three possible profiles for macro block Q of Fig. 3. As these examples
illustrate, a given block can have more than one profile. Indeed, different profiles
realize different trade-offs and thus are more or less suited in different situa-
tions, as discussed in Sect. 4.3. Also note that different blocks can have identical
profiles, as illustrated by Figs. 2 and 7.

Profiles that contain a single interface function are called monolithic. The
profile of the Adder in Fig. 6 is monolithic, whereas the profile of 1

z is not.
Profile 1 in Figs. 2 and 7 is monolithic, whereas the other profiles shown in these
figures are non-monolithic.

Let P be a macro block and consider a profile of P . The PDG of the profile
induces a set of dependencies between inputs and outputs of the block. In par-
ticular, output y depends on input x if the PDG has a directed path from x to
y. On the other hand, the internal diagram of P , together with the profiles of all
sub-blocks of P , also induce a set of dependencies between inputs and outputs.
These dependencies are captured in the scheduling dependency graph, formalized
in Sect. 5.1. Here we discuss them informally, through examples. For instance,
from the internal diagram of block P of Fig. 1 we can deduce that y1 does not
depend on x2. Now, y1 may or may not depend on x1, depending on the profile
of A. If A has a monolithic profile, then its output depends on its input, thus,
y1 depends on x1. If A has a profile like the one of the Moore block 1

z then y1
does not depend on x1.

We require that all input-output dependencies that are induced by the inter-
nal graph of a block P and the profiles of its sub-blocks are also induced by the
PDG of the profile of P . We then say that the profile of P is sound. The profile
synthesis methods presented in Sect. 5 guarantee that the generated profiles are
sound.

Note that the profile of a block is independent of whether the block is trig-
gered or not. Indeed, whether the block is triggered is not a property of the
block, it is a property of its context: the same block (type) may be triggered in
some diagrams and not triggered in other diagrams. The same profile for this
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block can be used in both cases. Triggering will affect how the profile is used,
however, as explained in Sect. 5.

4.2 Profile Implementations

The profile contains a list of interface functions. These functions are implemented
in a given programming language, e.g., C++ or Java. The implementations of
these functions are part of the profile implementation. The latter also includes
state and other internal variables, encapsulated in some form, depending on
the mechanisms that the programming language provides (e.g., a C++ or Java
class).

For example, the profile implementations of the Adder and Unit-Delay blocks
(Fig. 6) are given below in object-oriented pseudo-code:

class Adder {

Adder.step( x1, x2 )

returns y1

{

return (x1 + x2);

}

}

class UnitDelay {

private state;

UnitDelay.init() { state := ... }

UnitDelay.get() returns y2 {

return state;

}

UnitDelay.step( x3 ) {

state := x3;

}

}

The implementations of the two profiles of P shown in Fig. 2 are as follows:

Monolithic profile:

P.step(x1, x2) returns (y1, y2)

{

return (A.step(x1), B.step(x2));

}

Non-monolithic profile:

P.get1(x1) returns y1 {

return A.step(x1);

}

P.get2(x2) returns y2 {

return B.step(x2);

}

In the above example we have assumed monolithic profiles for sub-blocks A
and B of P , with functions A.step and B.step, respectively. Unless otherwise
stated, we assume monolithic profiles for sub-blocks in all examples that follow.

The implementation of Profile 3 of block Q, shown in Fig. 7, is as follows:

Q.get1(x1) returns y1 {

(z1,z2) := A.step(x1);

y1 := B.step(z1);

return y1;

}

Q.get2(x2) returns y2 {

y2 := C.step(z2,x2);

return y2;

}

More examples of profile implementations are given in the sequel.
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4.3 Trade-Offs

As can be seen from the examples above, the same block can have multiple dif-
ferent profiles. These accomplish different trade-offs, some of which are discussed
below.

Modularity vs. Reusability. This is probably the most important tradeoff.
We define reusability in terms of the set of contexts (i.e., diagrams) that the pro-
file can be used in: the larger this set, the more reusable the profile is (note that
this is a partial order). It follows that monolithic profiles are no more reusable
than non-monolithic ones. Often they are strictly less reusable (e.g., examples
of Figs. 2 and 7). Reusability is directly related to the set of IO dependencies
defined by the PDG of a profile. The larger the set of IO dependencies, the less
reusable the profile. A monolithic profile is the least reusable, as it contains all
possible IO dependencies. A profile is maximally reusable if it contains exactly
those IO dependencies contained in the internal diagram of the corresponding
macro block. (A profile cannot contain less dependencies, otherwise it would
not be sound.) The non-monolithic profiles of Figs. 2 and 7 are both maximally
reusable.

Modularity, in our framework, is a quantitative notion: it is measured in terms
of the size of the profile, for instance, the number of interface functions, or the
size of the PDG. The smaller the profile, the more modular it is. In that sense,
the most modular profile is the monolithic profile. This definition is justified by
a number of considerations. First, scalability: the complexity of profile synthesis
algorithms is a direct function of the size of the profiles, thus, the smaller the
profiles, the better the algorithms scale. A second consideration has to do with
IP concerns: the smaller the profile, the less details it reveals about the internals
of the block, therefore, the more the block appears as a “black box” to its user.

From the above definitions, it follows that modularity and reusability are in
conflict. To optimize modularity we are led towards monolithic profiles, but we
may have to pay a price in terms of reusability. Both examples in Figs. 2 and 7
illustrate this trade-off.

Modularity vs. Code Size and Other Metrics. An interesting set of trade-
offs arise between modularity and various metrics of the profile implementation,

Profile 2
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C
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y2

R
x1

x2

x3 R.get2

R.get1x1

x2

x3
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y1
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R.get1
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y1

y2
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x3
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Fig. 8. A macro block R (left) and two possible profiles for R (middle and right).
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such as size of the code that implements the interface functions, run-time perfor-
mance (e.g., worst-case execution time), and so on. We illustrate such trade-offs
here through an example. More details can be found in [30].

Figure 8 shows a macro block R and two maximally-reusable profiles for R.
Profile 1 is smaller, since it contains only 2 functions, whereas Profile 2 contains
3. The implementation of Profile 1 is as follows:

R.get1(x1,x2) returns y1 {

if ( c = 0 ) {

(z1, z2) := A.step(x2);

}

c := (c + 1) modulo 2;

return B.step( x1, z1 );

}

R.get2(x2,x3) returns y2 {

if ( c = 0 ) {

(z1, z2) := A.step(x2);

}

c := (c + 1) modulo 2;

return C.step( z2, x3 );

}

It can be seen that the first three lines of code in P.get1 and P.get2 are
identical. These lines serve to guard execution of A.step, which should only be
called once per synchronous round. Since the order of calling P.get1 and P.get2
depends on the context of R, it is not known at compile-time which function will
first call A.step, and the choice is made at run-time.

The implementation of Profile 2 of Fig. 8 is as follows:

R.put(x2) {

(z1,z2) :=

A.step(x2);

}

R.get1(x2) returns y1 {

return B.step(x1,z1);

}

R.get2(x3) returns y2 {

return C.step(z2,x3);

}

This implementation has better characteristics than the previous one: it con-
tains no conditionals and no code replication. Thus, the code is both smaller in
size and also executes faster. Such differences may seem small in this example,
but they can be critical in the context of a real embedded application, where
memory and execution time are often scarce resources.

Algorithmic Complexity Trade-Offs. Another set of trade-offs concerns the
complexity, in theory or in practice, of the algorithms involved in profile synthe-
sis, against other metrics such as modularity, reusability, or code characteristics.
For example, producing a monolithic profile is trivial and inexpensive. Synthe-
sizing non-monolithic profiles involves more sophisticated algorithms such as
clustering. Many of these algorithms have polynomial worst-case complexity,
but may result in profiles that are non-optimal in terms of modularity, or that
cannot be implemented without conditional code, as with Profile 2 of Fig. 7, or
Profile 1 of Fig. 8. These issues are discussed in more detail in Sect. 5.

4.4 Abstraction, Compositionality and Executability

In summary, profiles in general, and non-monolithic profiles in particular, form
a modular, compositional and executable representation of hierarchical SBDs.
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They are executable in the sense that every interface function comes with a piece
of executable code: by calling these functions in an order that respects the depen-
dencies prescribed in the PDG, we have an implementation of the semantics of
the model. This is in contrast, for instance, to non-executable representations
that simply maintain input-output dependencies, as in the works of [2,48]. Pro-
files are compositional in the sense that a diagram of profiles can be abstracted
into a single profile without any loss of information, that is, preserving exactly
the same set of input-output dependencies. Finally, profiles are abstract in the
sense that they allow many of the internal details of composite blocks to be
omitted (e.g., as in Fig. 7) which results in a more compact and thus less costly
representation.

5 Profile Synthesis and Code Generation

In this section we describe how profiles and their implementations can be gen-
erated automatically. In summary, our method takes as inputs:

1. a macro block M with its internal block diagram;
2. a profile for each type of sub-block of M ; and
3. a set of user constraints or goals;

and automatically generates as outputs:

1. a profile for M (this part of the process is called profile synthesis);
2. the implementation of the profile in a certain programming language such as

C++ or Java.

User constraints and goals include any sort of information that the user
may provide to influence the profile and code that is generated. This includes
modularity vs. reusability preferences, desired code characteristics, and so on. In
practice, this type of information is given as options and inputs to the algorithms
involved in the different steps of the process, discussed below.

It is worth noting that although the profiles of the sub-blocks of M are
required in the profile synthesis and code generation process, the implementation
of the interface functions of these profiles is not required. The implementation of
the sub-blocks of M is only required for model execution. This is another aspect
of modularity in our approach, and a desirable feature especially for IP reasons,
or treating blocks as “black boxes”. In particular, only executable code (e.g.,
object files) need to be made available to the user, and not source code.

Profile synthesis can be applied to SBDs of arbitrary hierarchy depths, in a
bottom-up manner. Starting with macro blocks that contain only atomic blocks,
synthesizing a profile for the former, and then moving up the hierarchy. Profiles
of atomic blocks are inputs to this process. They can be produced “manually”,
or automatically, for instance, by some method that automatically extracts sum-
maries from the implementation of blocks. How to do this is beyond the scope of
this paper. Note that once a profile has been synthesized for a macro block, the
latter can be viewed as an atomic block, since no information about its inter-
nals (e.g., its internal diagram) is any longer necessary. Thus, apart from the
information contained in the profile, the block is a “black box”.
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5.1 Profile Synthesis

Profile synthesis consists in synthesizing a profile for a macro block M given
the internal diagram of M and profiles for all sub-blocks of M . Profile synthesis
involves a number of sub-steps, described below:

Building the Scheduling Dependency Graph (SDG). The SDG is a
directed graph obtained by connecting the PDGs of the profiles of all sub-blocks
of M . The connections are made according to the internal diagram of M , that
is, by inserting an edge f → g if an output of function f is connected in the
diagram to an input of function g.

Consider the example of Fig. 9. At the top left of the figure is shown a macro
block M and its internal diagram. At the top right of the figure are shown
the profiles of all sub-blocks of M . Sub-blocks A and C have a single interface
function each, which takes the input and returns the output of these blocks.
Block U has two interface functions: U.step and U.get. U.get takes no input
and returns the output of U . U.step takes the input of U and returns no output.
U is a Moore-sequential block: its get method returns the outputs and its step
method updates the state, given the inputs. The PDG of U shown in the figure
states that U.get must be called before U.step, at every synchronous round.

Profile dependency graphs
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M.getM.step

U.getU.step

A.step
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Profile of U :
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(combinational)
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Fig. 9. Example of profile synthesis.

The SDG of block M is shown at the bottom left of Fig. 9. The SDG of M has
been produced by connecting the PDGs of sub-blocks C,U and A. For instance,
the output port of C is connected to the input port of U . This results in adding
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Fig. 10. Left: clustered SDG of macro block T of Fig. 3. Right: profile for T .

a directed edge from C.step (which produces the output of C) to U.step (which
consumes the input of U) to the SDG of M . Similarly with the rest of the edges
added to the SDG of M .

When the internal diagram of M contains triggers, these are handled by
adding directed edges from the interface function that produces the trigger to
all interface functions of the triggered sub-block of M . For example, the SDG of
macro block T of Fig. 3 is shown in Fig. 10.

Dependency Analysis. Once the SDG of M is built, it is checked to see
whether it contains a directed cycle. If it does, then this implies a cyclic depen-
dency that cannot be resolved, either because the original diagram has a true
such dependency, or because the profiles of the sub-blocks of M are too coarse
(i.e., not reusable in the context of M). A cycle in the SDG results in rejecting
the diagram and stopping the profile synthesis process. If the SDG is acyclic, we
proceed to the clustering step.

Clustering. Clustering consists in grouping the nodes of the SDG G of M into a
set of clusters. Every node of G must be included in at least one cluster, however,
the clusters need not be disjoint, i.e., some nodes may belong to more than one
clusters. Each cluster can also be seen as a sub-graph of G that contains all the
nodes in the cluster along with all dependencies between any two such nodes.
For purposes of clustering, input and output ports of M are also considered to
be nodes of the SDG, called input and output nodes, respectively. For example,
x1, x2 are input nodes in the SDG of T shown in Fig. 10 and y1, y2 are output
nodes. Nodes that have no outputs (and therefore no outgoing edges either) are
called terminal nodes. For example, node U.step in the SDG of M shown in
Fig. 9 is a terminal node.

Once clustering is fixed, each cluster is mapped into an interface function
for M . Therefore, the number of clusters is equal to the number of interface
functions contained in the synthesized profile of M .

Dependencies between nodes of G that belong to different clusters induce
dependencies between those clusters. In the case of disjoint clusters, these depen-
dencies are defined as follows. Let C1, C2 be two clusters and let f1, f2 be two
nodes of G such that f1 ∈ C1 and f2 ∈ C2. (Notice that, since clustering is
assumed to be disjoint, f1 �∈ C2 and f2 �∈ C1.) A dependency f1 → f2 in G
induces a dependency C1 → C2 between the two clusters. In the case of over-
lapping (i.e., non-disjoint) clusters, how the dependencies between clusters are
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defined generally depends on the clustering algorithm. An example is the O2C
algorithm, explained in Sect. 5.1 below.

Once the dependencies between clusters are fixed, they define a directed
graph GM whose nodes are clusters. Since every cluster corresponds to an inter-
face function for M , GM is also a graph whose nodes are interface functions of M .
Therefore, GM is the PDG of M . GM needs to be acyclic, therefore, care must
be taken so that clustering results in no cyclic dependencies between clusters.
The clustering algorithms that we discuss below all have this property. Moreover,
the profile of M must be sound, which means that all input-output dependencies
included in G, the SDG of M , must also be included in GM , the PDG of M .
This always holds in the case of disjoint clusterings, as follows from the defini-
tion of GM given above. For overlapping algorithms, care must be taken so that
the definition of inter-cluster dependencies results in a PDG that is sound. In
Sect. 5.1 we show that this is the case for the O2C algorithm.

From the above discussion, it follows that clustering completely determines
the profile of M . This is why clustering is the most important step in profile syn-
thesis. It is also a step where different choices can be made, that lead to different
trade-offs. For instance, a coarse-grain clustering results in a more modular pro-
file than a fine-grain clustering. In particular, grouping all nodes of the SDG
into a single cluster results in a monolithic profile. A clustering that introduces
false input-output dependencies, that is, input-output dependencies not exist-
ing in the SDG, results in a non-maximally-reusable profile. A clustering with
disjoint clusters (i.e., clusters that do not share nodes) results in code without
conditionals or replication. Let us illustrate these points through examples.

In Fig. 9, the SDG of M is clustered in two sub-graphs, resulting in a two-
function profile for M , shown to the bottom-right of the figure. Observe that
the profile of M is identical to the profile of the unit-delay block 1

z (Fig. 6). This
is not a coincidence, since this is a maximally-reusable and optimal in terms of
modularity profile for all Moore blocks. The example of Fig. 9 also illustrates a
simple case of reduction in size, where a macro block with three sub-blocks has
the same profile as one of its sub-blocks.

Other examples of clustering are the following:

– The non-monolithic profile of P shown in Fig. 2 is produced by grouping all
nodes in the PDG of A in one cluster (corresponding to P.get1) and all nodes
in the PDG of B in a second cluster (corresponding to P.get2).

– The non-monolithic profile of Q shown in the middle of Fig. 7 is produced
by grouping nodes of A and B in one cluster (corresponding to Q.get1) and
nodes of A and C in a second cluster (corresponding to Q.get2). In this case
the clusters overlap (i.e., are not disjoint). A similar clustering produces the
profile shown in the middle of Fig. 8.

– The non-monolithic profile of Q shown to the right of Fig. 7 is produced by
grouping nodes of A and B in one cluster (corresponding to Q.get1) and
nodes of C in a second cluster (corresponding to Q.get2). In this case the
clusters are disjoint.
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– The profile of R shown to the right of Fig. 8 is produced by grouping nodes
of A in one cluster (corresponding to R.put), nodes of B in a second cluster
(corresponding to R.get1), and nodes of C in a third cluster (corresponding
to R.get2).

We now briefly describe some clustering algorithms.

Step-Get Clustering (SGC). The SGC algorithm, proposed in [32], generates at
most two interface functions for a given macro block M . In particular, if M is
Moore, then SGC generates two interface functions for M : an M.get function that
computes the outputs of M and an M.step function that updates the state of M .
This is an optimal, in terms of modularity, and maximally-reusable profile for all
Moore blocks. If M is not Moore, then SGC generates a single interface function
for M , that is, a monolithic profile. In this case the profile is not maximally
reusable, in general.

The SGC algorithm is simple. It starts by analyzing the SDG of M , checking
whether there exists some output of M that depends on some input. If this is
the case, then M is not Moore, and SGC produces a single cluster containing all
nodes in the SDG. Otherwise, the SDG can be partitioned into two sub-graphs,
a “right” sub-graph that contains all nodes that have a path to some output, and
a “left” sub-graph that contains all the remaining nodes. The “right” and “left”
sub-graphs correspond to M.get and M.step, respectively. SGC has polynomial
worst-case complexity.

The SGC algorithm produces the clustering of Fig. 9 where block M is Moore.
For all other examples given in the paper, SGC produces a monolithic profile.

Optimal Overlapping Clustering (O2C). The O2C algorithm is an improved vari-
ant of the dynamic clustering algorithm proposed in [32]. O2C achieves maximal
reusability and optimal modularity, that is, a minimal number of clusters (sub-
ject to the maximal reusability constraint). Moreover, O2C is guaranteed to
generate no more than n+1 clusters in the worst case, where n is the number of
outputs of macro block M , and no more than n clusters if M is combinational.
O2C has polynomial worst-case complexity. The only drawback of O2C is that
it may result in overlapping clusters, therefore, in profile implementations that
require conditionals.

O2C executes the following procedure:

for each output node or terminal node f do {

create a cluster C := { f };

while there exist nodes g in C and h not in C s.t. h -> g do

add h to C;

}

merge clusters containing exactly the same sets of input nodes;

for each terminal cluster C do

if there exists cluster C’ s.t. inputs(C) is a subset of

inputs(C’) then merge C with C’;

merge all remaining terminal clusters (if any) into a single

cluster;
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where a terminal cluster is a cluster containing a terminal node, and inputs(C)
denotes the set of input nodes contained in cluster C.

O2C starts by creating a cluster for every output node and every terminal
node in the SDG of M . Then the backward closure of each of these clusters is
computed, by adding all predecessor nodes, i.e., all nodes that have a directed
edge to some node already in the cluster, until no new nodes can be added. If
at this point two clusters C1 and C2 contain the same sets of input nodes, i.e.,
inputs(C1) = inputs(C2), then these clusters are merged into a single cluster
C1 ∪ C2, and this is repeated until no more clusters can be merged in this
way. Then, for each terminal cluster C for which there exists cluster C ′ such
that inputs(C) ⊆ inputs(C ′), C and C ′ are merged into C ∪ C ′, and again the
process is repeated until no terminal clusters can be merged in this way. Finally,
all remaining terminal clusters (if any) are merged into a single cluster named
M.step. The rest of the clusters are named M.get1, M.get2, and so on.

The inter-cluster dependencies defined by O2C are as follows: all clusters of
type M.geti are independent from each other; if there is a cluster M.step, then
there is a dependency M.geti → M.step, for every cluster of type M.geti. In
other words, interface function M.step must be called after all interface functions
M.geti are called, and the latter can be called in any order.

Examples of profiles produced by O2C are: Profile 2 of block P in Fig. 2;
Profile 2 of block Q in Fig. 7; Profile 1 of block R in Fig. 8; and the profile of
block M in Fig. 9.

O2C has the following properties:
First, if M has n output ports, and therefore the SDG of M has n output

nodes, O2C will generate at most n + 1 clusters. This is because there can be
at most one cluster per output node, plus at most one terminal cluster, M.step,
when O2C terminates. It can be also shown that for combinational blocks, i.e.,
blocks without internal state, there can be at most n clusters.

Second, O2C produces a sound and acyclic PDG. Acyclicity follows from
the fact that the only edges in the PDG of M are from some node M.geti to
M.step, if it exists, and the latter has no outgoing edge. To see why the PDG
is also sound, consider a path x → f1 → · · · → fn → y in the SDG of M , from
some input node x to some output node y. Let C be the cluster that contains y.
C is closed by predecessors, therefore, all nodes in the above path from x to y are
contained in C. Thus, the dependency x → y is maintained in the PDG of M .

Third, O2C achieves maximal reusability, that is, every IO dependency x → y
in the PDG of M is a true IO dependency. Consider such a dependency. By
definition of the PDG, there exists a cluster C such that both x and y are in
C. Since y is in C, C cannot be a terminal cluster. C is generally the result
of merging clusters C1, . . . , Ck produced in the first for each loop of O2C,
for k ≥ 1. By definition, the set inputs(Ci) is the same for all i = 1, . . . , k.
Therefore, there exists Ci such that both x and y are in Ci, and Ci was obtained
by computing the backward closure of y. Thus, there is a path from x to y in
the SDG of M , and x → y is a true dependency.

Fourth, O2C is optimal, that is, there exists no clustering with fewer clusters
that achieves maximal reusability. Suppose such a clustering C∗ exists. C∗ must
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merge in one cluster at least two nodes f1, f2 that the clustering C produced by
O2C separates in two different clusters, f1 ∈ C1 and f2 ∈ C2. Suppose, first,
that both C1, C2 are of type M.geti. Then inputs(C1) �= inputs(C2), otherwise
C1 and C2 would have been merged by O2C. Let, without loss of generality,
x ∈ inputs(C2) \ inputs(C1). Let y be an output node in C1 (C1 is not terminal,
so it must contain at least one output node). Then merging f1 and f2 introduces
false IO dependency x → y, thus, C∗ cannot be maximally reusable. Now suppose
C1 is of type M.geti and C2 is M.step. Then inputs(C2) �⊆ inputs(C1), otherwise
terminal cluster C2 would have been merged with C1. Thus, we can find again
x ∈ inputs(C2) \ inputs(C1) and y ∈ C1 and repeat the last argument.

Note that O2C may unnecessarily produce an overlapping clustering. This
means that there exists a disjoint clustering with the same number of clusters
that is also maximally reusable. For example, for the SDG shown in Fig. 10,
O2C would produce an overlapping clustering where A.step is shared between
two clusters, whereas a disjoint clustering of two clusters exists, as shown in the
figure.

Optimal Disjoint Clustering (ODC). The ODC algorithm, proposed in [30], guar-
antees, like O2C, maximal reusability. Unlike O2C, ODC always produces disjoint
clusters. Finally, ODC generates a minimal number of clusters, subject to the
maximal reusability and disjointness constraints. Unfortunately, the problem of
partitioning a DAG into a minimal number of disjoint clusters without introduc-
ing false input-output dependencies is NP-complete [30]. Thus, the worst-case
complexity of ODC is exponential. Nevertheless, ODC uses powerful SAT solvers
and performs well in practice, as the experimental results reported in [30] show.

We will only sketch the main ideas behind ODC, and refer the reader to [30]
for the details, which are involved. ODC executes the following procedure:

partition output nodes according to input dependencies;

let k be the number of output partitions;

i := k;

repeat

build a boolean formula stating that a solution

with i clusters exists;

call a SAT solver to check whether the formula is satisfiable;

if formula is satisfiable then solution found

else i := i+1;

until solution found;

The first step consists in partitioning the outputs of M into a set of disjoint
partitions such that in every partition, all output nodes depend on exactly the
same set of input nodes. If k partitions are found then there can be no less
than k clusters required to achieve maximal reusability. Indeed, it can be seen
that O2C produces at least k clusters in this case, and since O2C is optimal,
at least k disjoint clusters are needed to achieve maximal reusability. Therefore,
we start the iteration by setting i to k. For each i, we build a boolean formula
that encodes the existence of a solution with i clusters. A “solution” means a
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disjoint clustering that introduces no false input-output dependencies. A SAT
solver is used to check satisfiability of the formula (and also produce a solution).
If the formula is satisfiable we have found a solution, otherwise, no solution with
i clusters exists, and we increment i. The procedure is guaranteed to terminate
when i reaches the number of nodes in the SDG of M : indeed, clustering every
node separately is obviously a valid disjoint clustering.

Examples of profiles produced by ODC are: Profile 3 of block Q in Fig. 7;
Profile 2 of block R in Fig. 8; and the profile of block T in Fig. 10.

Disjoint Clustering Heuristics. A number of heuristics can be used to produce
disjoint clusterings that are maximally-reusable, albeit not always optimal in
terms of modularity. A simple heuristic is to use O2C and check whether the
clustering it produces is disjoint: if it is we are done, otherwise, we turn it into
a disjoint clustering by somehow separating shared nodes (a trivial method is
to cluster every such node separately). Other, more sophisticated heuristics,
are proposed in [42]. More experimental work is needed to evaluate how these
algorithms compare in practice, both in terms of execution time, as well as in
terms of the optimality of results produced. Such experiments are beyond the
scope of this paper.

Non-Maximally-Reusable Clusterings. All algorithms discussed above, with the
exception of SGC, are guaranteed to introduce no false input-output dependen-
cies, thus producing maximally-reusable profiles. In SGC, on the other hand, the
user has no way of “controlling” the reusability of the produced profile. In some
cases, it may be desirable to relax the requirement on maximal reusability, for
instance, in order to gain in modularity. This may be the case, for example, if it
is known that a given block will never be connected in a context with feedback.
Then, a monolithic profile suffices. More generally, it may be known that, even
though a certain output y of the block does not depend on a certain input x, it is
“safe” to introduce a false dependency x → y. That is, such a false dependency
is known not to result in serious restrictions in the set of contexts that the block
can be used in. The above algorithms can be modified so as to allow the user
to provide this type of information, thus being able to control the reusability
of the produced profile. For instance, in ODC, the encoding of the formula can
be modified so that it selectively allows some false IO dependencies, whereas it
forbids the rest.

5.2 Code Generation

Profile synthesis determines the profile of macro block M given as input. In
the code generation step, code that implements each interface function in the
profile of M is generated in a language such as C++ or Java. Any internal state
variables, or other persistent variables needed to communicate data between
different calls of the interface functions are generated as well. Together with an
init function, these functions and data can be encapsulated in a class or other
object-oriented mechanism that the target language may provide. In Java, for
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instance, the code is encapsulated in a Java class, the interface functions become
public methods of this class, and the variables become private variables of the
class.

The principle of generating code implementing the interface functions is the
following. Every interface function fi corresponds to a sub-graph Gi of the SDG,
produced in the clustering step. To generate code for fi, the nodes of Gi are
ordered in a total order that respects the dependencies of Gi: the SDG of M is
acyclic, therefore Gi is also acyclic and such a total order always exists. Now,
every node of Gi corresponds to an interface function of some sub-block of M .
The code of fi then consists in calling these functions in the order specified
above.

Interface functions generally need to communicate data to one another. This
arises when an output y of a sub-block A of M is connected to an input x of
another sub-block B, and the interface functions producing y and consuming x
belong to different clusters. If f and g are two such functions, then a persistent
variable z is created, to store the value of y. z is persistent in the sense that it
maintains its value across calls to f and g. It can be implemented, for instance,
as a private variable in the class generated for M .6 Whenever f is called, it
writes to z and whenever g is called, it can read from z.

Following the above principles, we can generate code for all interface functions
without conditionals given in our examples so far. For the additional example of
block M of Fig. 9, the implementation of the interface functions is shown below:

M.get( ) returns out {

return A.step( U.get() );

}

M.step( in ) {

U.step( C.step(in) );

}

Slight complications arise in two cases: first, in the case of overlapping clus-
ters; second, in the case of diagrams with triggers. Both cases require code with
conditionals.

In the case of overlapping clusters, the objective is to generate code that
ensures that, despite overlapping, every interface function of every sub-block of
M is called only once at every synchronous round. Notice that calling an interface
function more than once is generally incorrect, since the function may modify
some state variables. Even when a function does not update state variables,
calling it more than once in a round is wasteful, thus we want to avoid it.

To do this, we use a counting scheme that keeps track of how many times a
function has been called so far in the synchronous round. In particular, for each
interface function f of a sub-block of M , let Nf be the number of clusters that
f is included in. If Nf > 1 (i.e., f is shared among multiple clusters) then we
create a modulo-Nf counter for f , denoted cf : the counter is initialized to 0 and
“wraps” again to 0 when its value reaches Nf . Each such counter is part of the
persistent internal variables of the class of M . Counter cf indicates whether f
has already been called in the current round: f has been called iff cf > 0. Every

6 If f and g belong to the same cluster, a local variable in the corresponding interface
function of M can be used to store the value of y.
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call to a function f that has Nf > 1 is guarded by the condition cf = 0. The
counter is incremented by 1, independently of whether the condition is true or
false. An example of using this technique is the implementation of the profile
shown in the middle of Fig. 8.

We now turn to the case of diagrams with triggers. First, we identify all sub-
blocks of M that are triggered. To do this, we use the internal diagram of M .7

Let A be a triggered sub-block of M . For every output port y of A, a persistent
variable zy is generated in the profile implementation of M . This variable is
initialized to the trigger-initial value for y specified in the diagram. It is updated
every time A is triggered, and maintains its previous value in other rounds. Let
f be an interface function of A. Let t be the signal that triggers A: t is either
an input of M , or is produced by some other sub-block of M .8 When generating
code for M , every call to f is embedded in a conditional, guarded by t: if t is
true then f is called, otherwise it is not.

For example, consider macro block T of Fig. 3 and suppose its SDG is clus-
tered in two clusters, as shown in Fig. 10. The synthesized profile for T is then
as shown to the right of Fig. 10 and the implementation of the two interface
functions is as follows:

T.get1( x1 ) returns y1 {

z1 := A.step(x1);

return z1;

}

T.get2( x2 ) returns y2 {

local tmp := B.step(x2);

if (z1) {

z2 := C.step(tmp);

}

return D.step(z2);

}

Persistent variables z1 and z2 have been added for communication between
the two interface functions and for the output of triggered sub-block C, respec-
tively. Note that, even when z1 is false, z2 has a well-defined value because it is
initialized to the trigger-initial value specified for C.

6 Conclusions and Perspectives

We have proposed non-monolithic profiles as an abstract, compositional and
executable representation of hierarchical synchronous block diagrams. Our work
offers the unified treatment of the problem of modular code generation from
synchronous models which has been lacking so far. A prototype implementation
of our methods exists and experimental results reported in [30] encourage us to
believe that the approach is also feasible and relevant in practice.

A number of issues remain open. Clustering is of course a topic in itself,
as mentioned above. Apart from devising new or evaluating new and existing

7 Note that information about triggers is lost in the SDG of M : indeed, in the SDG,
dependencies arising due to triggers and those arising due to port connections are
indistinguishable.

8 t cannot be produced by A, as this would result in a cycle in the SDG of M .
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clustering algorithms, another aspect of particular interest is integrating user
controls in the algorithms. For example, the user could specify which input-
output dependencies can be relaxed, i.e., which false input-output dependencies
can be admitted in order to obtain better clusterings.

Enriching profiles with additional information is another interesting direc-
tion. It has been partly explored in [31] in the case of timed diagrams, a subclass
of triggered diagrams where triggers are known at compile time (e.g., they are
periodic). In that paper, it is shown how profiles can be enriched with finite-
state automata representing the set of rounds when a given block is triggered.
This allows to avoid redundant function calls in the generated code, and also to
identify false IO dependencies during profile synthesis.
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20. Gamatié, A.: Designing Embedded Systems with the SIGNAL Programming Lan-
guage. Springer, New York (2009). https://doi.org/10.1007/978-1-4419-0941-1

21. Gautier, T., Le Guernic, P.: Code generation in the SACRES project. In: Redmill,
F., Anderson, T. (eds.) SSS 1999, pp. 127–149. Springer, London (1999). https://
doi.org/10.1007/978-1-4471-0823-8 9

22. Geilen, M., Tripakis, S., Wiggers, M.: The earlier the better: a theory of timed
actor interfaces. In: 14th International Conference Hybrid Systems: Computation
and Control (HSCC 2011). ACM (2011)

23. Girault, A.: A survey of automatic distribution method for synchronous programs.
In: International Workshop on Synchronous Languages, Applications and Pro-
grams, SLAP 2005. ENTCS, Elsevier, Edinburgh, April 2005. ftp://ftp.inrialpes.
fr/pub/bip/pub/girault/Publications/Slap05/main.pdf

24. Hainque, O., Pautet, L., Le Biannic, Y., Nassor, É.: Cronos: a separate compilation
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Abstract. In embarking towards Cyber-Physical Systems (CPS) with
unprecedented capabilities it becomes essential to improve our understanding of
CPS complexity and how we can deal with it. We investigate facets of CPS
complexity and the limitations of Collaborating Information Processing Systems
(CIPS) in dealing with those facets. By CIPS we refer to teams of humans and
computer-aided engineering systems that are used to develop CPS. Furthermore,
we specifically analyze characteristic differences among software and physical
parts within CPS. The analysis indicates that it will no longer be possible to rely
only on architectures and skilled people, or process and model/tool centered
approaches. The tight integration of heterogeneous physical, cyber, CPS com-
ponents, aspects and systems, results in a situation with interfaces and interre-
lations everywhere, each requiring explicit consideration. The role of model-
based and computer aided engineering will become even more essential, and
design methodologies will need to deeply consider interwoven systems and
software aspects, including the hidden costs of software.

Keywords: Cyber-Physical Systems � Complex systems � Complexity
Complexity management � Systems engineering � Software engineering

1 Introduction

The concept of Cyber-Physical Systems (CPS) was introduced 2006 in the US to
represent the Integration of computation, networking and physical processes where
CPS range from minuscule (pace makers) to large-scale (e.g. national power-grid),
(Cyphers 2013). Many definitions have followed, often emphasizing the large scale
nature and CPS as networks of physical and computational components, (NIST 2017).
The mainstream interpretation of the term “cyber” refers to the use of computers or
computer networks, see e.g. (M-W 2017). However, the term actually originates from
Norbert Wiener who coined cybernetics from the Greek “kybernetike”, meaning
“governance”, referring to feedback systems. Today, both interpretations are relevant
for CPS.

A key aspect of CPS is the potential for integrating information technologies,
operational technologies in terms of embedded systems and control systems, and
physical systems, to form new or improved functionalities. Common trends for CPS
also include increasing levels of automation and integration across the design-operation
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time continuum, so called DevOps. This positioning of CPS provides unprecedented
opportunities for innovation, within and across existing domains. However, at the same
time it is commonly understood that we are already stretching the limits with existing
systems in terms of development of cost-efficient and trustworthy systems. Consider,
for example, the roadmaps surveyed by the project Platforms4CPS (2017) and thrusts
towards new systems and software engineering methods to deal with future CPS,
(Jacobson and Lawson 2015). National Academies (2016) states the following: “to-
day’s practice of CPS system design and implementation is often ad hoc,… and unable
to support the level of complexity, scalability, security, safety, interoperability, and
flexible design and operation that will be required to meet future needs”.

Since future CPS are likely to be unprecedented in their complexity, it becomes
essential to understand what characterizes such systems and how we can best deal with
them. The line of argument of this paper is to investigate the nature of complexity of
CPS through the following perspectives:

• Cyber-Physical Systems and environment, i.e. including other systems with which
the CPS interacts, as well as the organizations developing the CPS.

• Limitations of Collaborating Information Processing Systems (CIPS) in dealing
with complexity in developing CPS. We use the term CIPS to refer to humans and
Computer Aided Engineering (CAE) systems that develop CPS.

• What current methodologies have to offer and what is lacking.
• Proposing ways forward to meet identified limitations and gaps.

In our work, we draw upon state of the art, discussions with industrial experts and
our own experiences. Complexity issues relating to CPS is a daunting topic. During our
work, we synthesized a CPS complexity view that brings together the above listed
perspectives. We present this view in Sect. 2, since the synthesis serves well to
introduce the topic, the concepts and the structure of the paper. The state of the art is
assessed in Sect. 3, and Sect. 4 analyzes, in more detail, some of the identified facets of
CPS complexity. Finally, in Sect. 5, we discuss our findings and draw conclusions.

Of the many types of CPS, see e.g. (Schätz et al. 2015) and (CPS 2016), we focus
mainly on mechatronics and robotics applications, i.e. where the physical systems are
synergistic configurations of mechanical, electrical and electronics technologies. We
include humans as an integral part of developing CPS but do not, in detail, treat the role
of humans as part of an operational CPS.

2 A View of CPS Complexity and Contributions

Our overall approach and view on CPS complexity is illustrated in Fig. 1. CPS are
designed and realized by Collaborative Information Processing Systems (CIPS) – i.e.
by human developers supported by CAE systems and available information and
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knowledge. CPS operate within an environment1 which may include other CPS,
humans and other types of systems (nature made, social systems, etc., see Checkland
2000)2.

In our view, we associate various characteristics – or complexity facets - with
systems. As illustrated in Fig. 1, “system” may refer to a CPS itself, to the corre-
sponding CIPS, as well as to the environment. The complexity facets have conse-
quences (see bottom middle box in Fig. 1) for the abilities of humans and projects to
deal with the CPS; that is to say, the facets will closely relate to the limitations of CIPS.
To deal with these consequences, we thus need to provide adequate methods, theory
and tools that address CPS complexity, aiming to bridge the gap with respect to
limitations of CIPS; we refer to these as bridging measures (see middle box in Fig. 1).

Accordingly, a first contribution of the paper is to structure the various state of the
art perspectives. A second contribution concerns a more detailed analysis of (i) rela-
tionships between various parts and aspects of a CPS and with its environment, and
(ii) characteristic differences among software and physical systems in order to better
understand barriers to their integration and some of the origins of complexity. As a final
contribution, we identify key bridging measures. The paper structure as outlined in
Sect. 1 relates closely to Fig. 1, with corresponding sections indicated.

CPS 
complexity

facets

CIPS 
limitations

Heterogeneity/diversity
Size and computability
Uncertainty and change
Dynamics and/or Structure
Incidental/essential
Unintended/accidental

Consequences of complexity
(on humans and projects):
Difficulty to understand
Difficulty to predict and trade-off 
Emergence
Project overruns (cost and time)
Requirements not met
Resources & competences needed

Bridging measures:
- Process & 

organizational
- MBE incl. CAE
- Design & 

architectingFacets causing humans to
perceive complexity

Human memory capacity
Bounded rationality&biases
Communication barriers
Information capture OH
Information management
Interoperability barriers

Environment

characteristics characteristics

CPS CIPS

- Software as enabler
- Interface & Inter-

relations management
- Education and life-

long learning

(3.3) (3.1)(3.2 & 4)

(3.4 & 5)

Fig. 1. A view of CPS complexity. The corresponding paper sections are shown in parenthesis.

1 Other terms for “environment” include, for example, “wider system of interest”, see e.g. Lawson
(2015), or domain specific terms such as operational design domain, J3016 (2016).

2 The context further includes other organizations and stakeholders, e.g. related to insurances,
certification, legislation and standards; this context is only indirectly considered in the paper.
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3 Engineering Practices Related to CPS Complexity

Related to Fig. 1, we provide perspectives from state of the art including CIPS limi-
tations (Sect. 3.1), engineering views on complexity (Sect. 3.2), consequences of
complexity (Sect. 3.3) and finally CPS engineering approaches to deal with complexity
(Sect. 3.4).

3.1 CIPS Limitations in Dealing with Complexity

In this section, we study first humans and teams of humans, and then turn to CAE
systems – all through the lens of limitations.

Limitations of CIPS Focusing on Humans: Examples of human limitations in
dealing with information and (complex) systems can be found in studies in psychology
and economy, see e.g. Simon (1996) and Kahneman (2012):

• Capacity of the short term memory; the short term memory is limited to holding and
processing in the order of 7–10 “chunks” of information, where a chunk refers to
one concept, which may be at different levels of abstraction and may refer to a more
elaborate structure held in long term memory.

• Capacity of the long term memory; while having impressive storage capability with
elaborate association mechanisms, the long term memory takes time to train and is
not altogether reliable (see next point). As CPS requires deep knowledge in many
areas, and as it takes substantial time for a person to become a deep domain expert, it
follows that CPS development will have to involve many people. From our expe-
rience we note that it is very rare for a single person to be skilled in physics, logic and
spatial concepts, all of which required for a holistic understanding of a CPS.

• Bounded rationality and biases; we humans are not as rational as we commonly
think. There is, for example, a difference in what we experience and what we
remember. Our brains, while mostly operating well, are prone to biases including
overconfidence and a tendency to ignore or overemphasize the importance of small
risks. Remembering is subject to neglect of duration and the “peak-end” rule,
meaning that we give more weight to recent events. Furthermore, we are prone to
search for, and to remember, pieces of information that confirm our current belief,
which has a significant filtering and thus biasing effect.

• Span of attention of the “slow” system; the activation of what Kahneman refers to
as the “slow system” of the brain, corresponds to what we could consider as “active
thinking efforts”. There is a resistance in activating the slow system since it requires
considerable energy. Activating the slow system is beneficial when humans have to
deal with novel considerations beyond their previous experience, where the “fast
system” may not be able to come up with reasonable answers.

Organizations can overcome many of the limitations of a single brain by imposing
processes involving, for example, reviews, checklists, detailed system analysis, and by
supporting appropriate organizational cultures in the line of continuous improvement
and constant quality control, (Kahneman 2012). These measures are closely in line with
the best practices of systems engineering (INCOSE 2015).
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However, additional challenges arise when dealing with advanced CPS, either in
the form of very complex machines, such as a modern car, or in terms of a dynamically
forming system of systems (SoS), for example in terms of a swarm of drones that
together with infrastructure and other machines perform collaborative tasks.

A key aspect of these challenges refers to how to appropriately arrange commu-
nication among people, teams, organizations and CAE-systems, and how to organize
them as well as the associated information. The design of an advanced CPS such as an
aircraft or a car will require the collaboration of thousands of engineers. Communi-
cation among engineers in such settings is often seen as the key system development
challenge, see e.g. (Andersson 2017). Organizing development will have to take into
account the multitude of aspects and engineering phases of a CPS, while still facili-
tating proper interactions. Disciplinary experts are moreover schooled into various
communities, theories and traditions, which introduces gaps in understanding among
the experts, see e.g. Horváth et al. (2017) and Törngren et al. (2014).

For Cyber-Physical Systems of Systems (CPSoS), the challenge further relates to
defining goals, policies and mechanisms for interactions among constituent CPS. As a
key characteristic, a CPSoS involves CPS developed by multiple organizations where
there is no clear responsibility for systems integration, see e.g. CPSoS agenda (2015).
The intentions of the interactions within a CPSoS may be incompletely defined,
misunderstood or interpreted differently by the involved organizations and experts.

Limitations of CIPS Focusing on CAE Systems: We now turn to limitations of CAE
systems as part of CIPS. These include the following:

• Dealing with tacit and implicit information, including context and meaning of
concepts. CAE systems require explicit formalization of information to be able to
reason about CPS. For this time and resources have to be spent - when systems
evolve, the information/models also have to be updated and kept consistent In the
absence of fully collaborative CAE tools, development engineers use a large
number of social communications tools, such as email and messaging. At present,
there are very limited possibilities with current CAE tools to record communication
interactions and histories into the CAE applications and then associate decision
histories (and decisions) with the current design model (s) (Red et al. 2013).

• Challenges in formalizing, managing and evolving the huge amounts of information
and relationships required for CPS engineering. Information management becomes
difficult when considering different versions of components and assumptions and
decisions made in developing artefacts such as models. Extra information is
required to describe this context, further growing the amount of information. This is
a significant challenge in multi-user development, see e.g. Red et al. (2013).

• Limitations in interoperability and exchange among existing CAE systems. CAE
systems already hold a lot of useful information and models, albeit fragmented into
different aspects or parts of a CPS, e.g. into software, electronics, and mechanics.
Improved support for interoperability and exchange across CAE systems has the
potential to drastically improve CPS management. While there are promising
standards available, such as STEP and linked data, overall these have limited
adoption so far, see e.g. Törngren et al. (2014), and El-khoury et al. (2016).
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For the CAE system, the amount of information is, in itself, not a problem, but that
information has to be made explicit. To support humans in development this extends to
knowledge management, requiring access to appropriate up-to-date meta-data, clari-
fying the limitations and validity of the information. Such support will also require
efficient interoperability among systems.

3.2 Engineering Views on Facets of Complexity

There are many interpretations and studies of “complexity” encompassing technical
systems and humans, extending all the way to socio-political systems. There are also
many propositions for metrics, definitions and facets of complexity. However, few
metrics appear to be adopted into actual engineering practice. Definitions tend to focus
on certain facets (see e.g. Sheard 2015). Frequently discussed facets of complexity
include:

• heterogeneity of parts and interactions: CPS are strongly characterized by hetero-
geneity in several dimensions, with artefacts all the way from requirements, func-
tions and technology to stakeholders. CPS represent hybrid, distributed, closed-loop
as well as real-time systems, thus requiring developers to deal with a multitude of
properties, behaviors and performance targets, see e.g. Derler et al. (2012) and
Horváth (2017). As a result of their heterogeneity, CPS will typically be represented
using multiple interdependent views, captured with different formalisms and tools,
see e.g. Törngren et al. (2014).

• size and computability related: Large scale CPS will involve many things in terms
of e.g. number of units, connectors, logical interactions, lines-of-code, requirements
and stakeholders. Size related facets can also be seen to encompass the amount of
information needed to describe an object (Shannon and Weaver 1949), the amount
of resources needed to manufacture a product, (Suh 1990), or the computational
complexity. The latter refers to the number of operations for solving an algorithm
and how they relate to the size of the problem. Several CPS related design topics,
such as assignment in space and time, belong to the class of NP-complete problems
for which no polynomial time algorithms are known, see e.g. Blondel and Tsitsiklis
(2000),

• uncertainty and change: Uncertainty can be used to refer to all kinds of unknowns
in the context of system development. Uncertainty relates to complexity and risk by
increasing the design space and potential for wrong decisions, and by complicating
change management, Axelsson (2011). Typical examples include changing and
conflicting requirements, unknown properties of technologies and impacts of design
decisions. It can also refer to uncertainty of environment perception of a CPS see
e.g. ESD (2003) and Sheard (2015),

• dynamics or structure: These complexity facets refer to either aspects of behavior that
are difficult to predict, e.g. due to highly non-linear and coupled dynamics, or
structural aspects such as dependencies among parts and properties. CPS typically
represent tightly integrated and coupled systems where the change of one parameter
in the design is likely to influence many other parameters. The behaviors and struc-
tures may also change dynamically such as in self-learning systems and in CPSoS.
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A CPS typically also requires consideration of dynamics and structure at multiple
levels or scales, e.g. from unit and subsystem to system level, and with different time
horizons, see e.g. Sheard (2015) and Horváth (2017). Parallelism in terms of con-
current cyber and physical parts, and resource sharing in the computer systems further
contribute to complexity, see e.g. Derler et al. (2012).

• incidental vs. essential: This facet refers to whether complexity arises from a par-
ticular way in which a system is designed (for example, due to the use of legacy
components), as opposed to being inherent in the problem to be solved, (Brooks
1987). A key example of incidental complexity is that of improper design, or
improper design assumptions that leave certain aspects of CPS design undefined,
implying that side-effects may occur and/or that behaviors will emerge from the
implementation rather than being designed. Examples of this include the lack of
time abstractions and practices of hardware design, implying that timing behavior
will emerge, see e.g. Lee (2009),

• unintended and accidental behavior: These behaviors refer to (known) side-effects
or design faults, Qian and Gero (1996). For physical systems, unintended behavior
represents a side-effect that may require additional sub-functions for dealing with
(e.g. reducing) the undesired side-effect. The side effects are often of the same order
of magnitude as the intended behavior and are typically caused by component
interactions through their interfaces, e.g., friction-induced thermal effects between
surfaces in contact (Whitney 1996). An accidental behavior is an unintended
behavior that is caused by an accidental relationship or interaction between product
features (e.g., a cable placed too close to a hot engine block). An accidental
behavior is likely caused by a design error, Qian and Gero (1996). For cyber-
systems, an example of a class of accidental behaviors is given by undesirable
feature interactions not considered during design, see e.g. Broy (2010).

• goals and socio-technical context. This facet refers to the essential complexity of
the goals in terms of their feasibility, see e.g. (Suh 1999; Maier 2007), and
human/organizational aspects such as competition, conflicts, policies and man-
agement (Sheard 2015).

As noted by several authors, various facets of complexity can relate to different
types of systems, including the CPS, the environment, and the organizations devel-
oping it (compare with Fig. 1), see e.g. Kaushik (2014) and Sheard (2015).

Some of the proposed facets can, at least in principle, be formulated in terms of
absolute metrics (e.g. size related). Another type of metric is instead relative, for
example in relation to what we try to accomplish or want to know, i.e. as a measure of
the uncertainty of fulfilling the specified functional requirements (Suh 1999).

The evolution of CPS, towards more advanced functionality and operation in more
open environments has implications for the complexity facets simply by providing
“more of everything” including in terms of new or changed risks. As one key aspect,
the increasing openness and large scale provide new attack surfaces that need attention
to avoid increasing security risks. It will no longer be possible to a priori foresee all
scenarios and what might go wrong so dynamic risk management may be necessary
(see e.g. Boyes 2013). However, adding more protection mechanisms may further
increase system complexity. Uncertainty needs to be considered, for example in
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sensing, see e.g. Sadigh and Kapoor 2016. While the introduction of AI in terms of
machine learning into CPS provides new capabilities, it also increases complexity. The
robustness aspects of machine learning systems are currently not well understood, with
implications for robustness and safety, see, for example, Wagner and Koopman (2015).

The design space of CPS illustrates several of the complexity facets (including e.g.
heterogeneity, size and computability, and uncertainty), with a potentially very large
number of design choices and dependencies among desired properties related to design
decisions, which, in turn, requires trade-offs to be made (see e.g. Maier and Rechtin
2002). In early development stages, designers have considerable freedom with respect
to design decisions, but no full insight into the implications of those decisions. Later in
the development process, when they have acquired more knowledge, by experimenting
with various models and physical prototypes, they will have less degrees of freedom,
because of the decisions made upstream in the process. This dilemma is sometimes
referred to as “the cone of uncertainty”, e.g. (McConnell 1997) as represented in the
right portion of Fig. 2. The cone of uncertainty also emphasizes the view that com-
plexity, as a measure of uncertainty (Suh 1999), is reduced as we learn when we
proceed with the development.

We conclude that the interaction and co-existence of the cyber- and physical parts,
as well as their development context, give rise to all of the described facets of com-
plexity. This will be further highlighted in Sect. 4.

3.3 Consequences of Complexity

Complexity can be viewed in terms of what Sillitto (2009) referred to as “objective
complexity”, referring to technical or engineering characteristics, or in terms of
“subjective complexity”, relating to how humans perceive the systems, see e.g. Sheard
(2015). An example of the former would be metrics of the inherent problem size and
algorithmic complexity involved in optimizing a CPS. Perceived difficulty of under-
standing the behavior of a CPS would be an example of the latter. Sheard (2015) makes

100%

0% Lifecycle
(time)

Design knowledge

Design degrees
of freedom

Fig. 2. The cone of uncertainty
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the interesting observation that while objective complexity is always growing (we build
more and more sophisticated systems), the subjective complexity may, in fact, reduce
over time once new systems become accepted and better understood.

As depicted in Fig. 1, in this paper we take the approach to try to make these ends
meet by contrasting limitations of CIPS (including humans) with various characteri-
zations – facets - of complexity. We believe this is one fruitful way forward since the
CIPS will have to deal with the CPS.

Recalling Sect. 3.1, it is not strange that even a moderate CPS poses challenges for
humans, who may find even the single facets of CPS complexity difficult to deal with.
Combining multiple facets of complexity implies that it becomes non-trivial to predict
the behavior of the system, and to understand the impact when making changes in the
system. This also implies that trade-offs become more challenging and potentially more
subjective.

The concept of emergence is often used when discussing complexity; it is a term
that has been given several interpretations. We here use the following one, closely
related to the difficulty in predicting system behavior: “The whole is more than the sum
of the parts, in the sense that given the properties of the parts and the laws of their
interactions, it is not a trivial matter to infer the properties of the whole“, (Simon 1996).
Emergence stems from difficulties in understanding the effects of interactions among
parts and can have positive or negative consequences (recall unintended and accidental
behaviors, described in Sect. 3.2).

It is interesting to research the impact of complexity on projects. Sheard (2015)
investigated how a number of complexity-related variables (or metrics) contributed to
project cost overrun, project schedule delay, and system performance shortfalls.
39 variables in 75 development projects were investigated through a retrospective
survey with senior system engineers and project managers. The following three com-
plexity variables were found to correlate positively with problematic outcomes in all
three aspects (cost, schedule and performance): (i) number of hard-to-meet, and fre-
quently also conflicting, requirements, (ii) degree of cognitive fog3, and (iii) stability of
stakeholder relationships.

3.4 How is Complexity Dealt with in CPS Engineering

A multitude of approaches, methods and tools have been developed over the years to
deal with CPS complexity. In this survey we focus on the following:

(i) process, (ii) model-based and computer aided engineering, (iii) design and
architecting, and (iv) people/organizational. These approaches are complementary and
partly overlapping. There is no silver bullet for dealing with complexity, as phrased by
Brooks (1987). Many of them involve ways to divide and conquer a system (in terms of
the CPS, the development teams, models etc.) into separate parts to facilitate their
management. Despite the importance of so-called front-loaded development, where
design decisions and means to improve the management of uncertainty and risk are key

3 With (ii), the question posed was as follows: “The project frequently found itself in a fog of
conflicting data and cognitive overload - Do you agree with this statement?”.
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elements, such practices are still often weak. Integration is generally identified as a
(time and cost consuming) challenge, see e.g. INCOSE (2015). Simmons (2005)
reports that only a very small amount of the total development efforts is spent on
systems architecting, despite the crucial decisions taken in that phase.

Process Approaches: Systems engineering methodologies describe a number of
recommended processes, from technical to management, see e.g. INCOSE (2015).
Figure 3 illustrates an elaborated V-model for mechatronic systems – focusing on the
technical process, where development is divided into stages and into engineering
disciplines, VDI 2206 (2004). The decomposition approach is accompanied by pro-
viding guidance for risk management (project and product risk), and for step-wise
integration of the decomposed entities. The conventional use of rapid prototyping, code
generation and various X-in-the loop simulation schemes (e.g. software- and hardware-
in the loop) provide examples of this. Software engineering methodologies emphasize
agile approaches involving close collaboration within teams, frequent releases and
close interactions with stakeholders, see e.g. INCOSE (2015), which helps to reduce
development uncertainty and risk. We note that agility is one means to deal with
uncertainty (one identified complexity facet) and risk. Nevertheless there are challenges
in reconciling agile approaches with safety critical systems development, see e.g.
Axelsson et al. (2015). Most disciplinary CPS development today involves frequent
iterations and developments in smaller steps, whilst also requiring explicit considera-
tions of the synchronization between software and hardware parts throughout the
development and production phases, see e.g. Jacobson and Lawson (2015).

Model-Based and Computer Aided Engineering Approaches (MBE): With MBE
we refer to approaches that make systematic use of abstractions and of computer
engineering tools, i.e. including CAE, to deal with CPS complexity. Abstractions
provide the means to focus work on particular aspects, while neglecting other aspects
that have less influence on the issues at hand. To deal with the “Cone of uncertainty”
(recall Fig. 2), models and their analysis e.g. through simulation offer ways to increase
problem understanding, explore uncertainty and the solution space. Synthesis based on
models help to improve efficiency of development by automating certain design steps,
thereby removing certain sources of faults, see e.g. Törngren et al. (2008).

Many CPS constitute closed loop systems, implying that MBE approaches are
necessary for efficiency; for example, without a model of a controlled system, control
development cannot start until the physical system is developed. The closed-loop
aspect has also led to a widely accepted use of models in verification; the system
behavior arises through the closed loop interactions between the cyber and physical
parts. A further key aspect of MBE is that of model verification and validation,
ensuring that models are as simple as possible yet adequate for the intended purpose.

The success and increasing use of models has led to a need to emphasize their
composition and management. Models become systems in their own right, with
assumptions, interfaces, versions and variants relying on modeling environments.
Model management is a research area with a surprisingly large number of still open
challenges. Efforts in this area stem from a variety of directions including product-life
cycle management (mechanical engineering) and application life-cycle management
(software engineering), see e.g. Törngren et al. (2008), towards CPS life-cycle
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management. Correct composition and usage of different types of models can be
supported by the use of contracts and explicit dependency models, (see e.g. Westman
2016; Qamar 2013) and references therein, and through uncertainty management, (see
e.g. Mohan et al. 2017). Correct composition of simulation models reflecting different
types of behaviors and concurrency is essential for CPS (see e.g. Derler et al. 2012).
Divide and conquer approaches are also applied to models, through multi-view models
and multi-view frameworks. An example of this the CPS architectural framework
initiated by NIST, which provides common viewpoints such as functions and inter-
faces, as well CPS specific aspects such as trustworthiness and timing (NIST 2017).

Design and Architecting Approaches: In this category we include principles,
methods, and techniques that aim to reduce the incidental complexity or better manage
the inherent complexity of a CPS. Examples of such approaches include (i) the use of
deterministic execution platforms to reduce side-effects, facilitating understanding,
integration and verification, (Kopetz 2011), and (ii) modularization techniques that use
metrics for establishing “low coupling” and well defined interactions at interfaces
between modules, see e.g. Börjesson (2014). Lee (2016) recommends the use of
deterministic design models as far as possible, since it facilitates the design of complex
systems by enabling definitive analysis. It should be noted that deterministic models
can efficiently be utilized in probabilistic analyses, e.g. based on Monte-Carlo simu-
lations, to provide knowledge on the effects from known or speculated variations in
CPS design, environment and/or operation. An important and complementary approach
to reduce incidental complexity is, of course, to reduce some of the essential com-
plexity if that is possible, by relaxing some of the requirements of a system.

Because of the large number of involved stakeholders (including multiple organi-
zations) it is important to realize that it will rarely be possible to optimize a large scale

Fig. 3. Design methodology for mechatronic systems development, VDI 2206 (2004).
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CPS. Rather it is important to try to find solutions which are satisfactory to the involved
stakeholders, (Simon 1996) and (Kahneman 2012).

People and Organizational Approaches: Skills of people and organizational designs
are clearly imperative in dealing with CPS complexity. Organizational integration
mechanisms including organizational structure, work procedures, training, social sys-
tems, and CAE have been shown to be important for improving organizational per-
formance, (Adamsson 2007). Coordination among CAE systems is consequently also
essential. Referring to Fig. 3, an organizational structure - such as dividing into
mechanical, electronics, software, etc. - will also often imply a division of information
and CAE systems along the same structure, leading to potential problems in managing
interactions among teams as well as between CAE systems, see e.g. Malvius (2009).

One further important aspect of organizational design is that of “intelligent infor-
mation filtering”, providing people with adequate information that suits their purposes
as part of the development whilst avoiding information overflow, (Simon 1996).

4 Analysis of CPS Complexity Facets

In this section we further investigate specific CPS facets of complexity that, to our
understanding, are important, but have not received the attention they deserve. These
facets include interrelations related to CPS (Sect. 4.1) and characteristic differences
among software and physical systems (Sect. 4.2).

4.1 CPS Component Interrelations and Their Implications

We first turn to a CPS component perspective to analyze interrelations. A first relevant
question to ask is: what constitutes a CPS component? CPS exist in the small and in the
large. Compare, for example, a modern milling machine within a production cell with a
manufacturing system that incorporates multiple production cells and their coordina-
tion, forming a distributed computer control system. In a CPS that involves humans,
e.g. as operators, humans also become “components” within the CPS. The assignment
and division of responsibilities among humans and other components is important
(although out of the scope of this paper).

Figure 4 illustrates two CPS components of a mechatronics machine: the compo-
nents are interconnected physically (illustrated in the middle of the figure), and through
a communication network (illustrated through the horizontal line labelled “Commu-
nication network”, connecting the communication subsystem of each component). This
illustration would be relevant for vehicles (e.g. cars and airplanes) and production
machines, where each component (e.g. brake, engine, transmission, etc.) incorporates
mechanical parts and computing. As apparent from Fig. 4, there will be many inter-
actions between the various parts, including between the cyber and physical parts. The
direct interfaces between the computer system and the mechanical parts, through
sensors and actuators, are of course crucial. However, beyond this, the mechatronic
components interact physically with each-other and with the mechanical frame on
which they are mounted. The components further interact through information
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exchange and through the energy subsystem, and they will also have interactions with
the environment, e.g. through heat, noise and electromagnetic radiation.

This increasing connectivity enables direct collaboration among machines with
external resources such as edge or cloud computing resources. Considering a larger
scale CPS, its subsystems and components may thus also include machine external
computing and communication resources. We note that such computing and commu-
nication resources, while normally considered to be part of the cyber-side of a CPS,
indeed also constitute cyber-physical systems in their own right, since they are com-
posed of software, analog and digital electronics, power supplies, cooling and
mechanical parts. Design of such CPS will necessarily have to consider and thoroughly
manage interactions and integration among these cyber and physical parts.

Now consider again mechatronic components and the example of interactions
between the major components of a car. Figure 5 provides a Design Structure Matrix
(DSM) representation of a pre-1970 car (left), vs. an early 21st century car (right).
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Fig. 4. Illustration of (two) mechatronic components and their various interactions with other
components and the environment. Each component may have internal and external sensors. Note
that “driver” refers to electronics for the actuators.
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Fig. 5. DSM representation of a pre-1970 (left) vs. a modern car (right), illustrated through two
types of interactions between major car components: X – physical connection and force
interaction; P – Programmable relations.
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A component-DSM may be used to illustrate different relationships (such as energy,
mass, information flow and spatial interactions) between components in a system, e.g.
(Steward 1981; Eppinger and Browning 2012). In the left part of Fig. 5, this is illus-
trated with mainly mechanical interactions, without distinction of the type(s). We note
that the DSM-model displays symmetry that is typical for a mechanical system with
bidirectional Newtonian interactions. In a modern vehicle, all major components will
also have integrated embedded systems, and there is thus an opportunity for infor-
mation interaction and additional collaboration between components. As an example of
this, consider the connections between the steering and the wheels of the car. Apart
from a traditional mechanical connection, the steering of a modern car may today also
be controlled by a “vehicle stability controller”, able to apply individual wheel braking
in order to deal with unintended car yaw. This explains the “X” connecting “Steer”
with “Brake” in Fig. 5. The control system is able to act much faster than a human
driver, and can thus avoid many accidents (subject to key constraints such as the
condition of the tires and the road surface condition).

The DSM to the right in Fig. 5 illustrates the large potential in introducing novel
functionalities to improve performance. These interactions also clearly illustrate the
growing complexity, in terms of heterogeneous components and multiple interactions,
with difficulty in predicting and verifying the final behavior. This setting also clearly
leads to organizational challenges in setting up clear responsibilities to deal with the
interactions/relationships among functions, components, properties, teams and activi-
ties. Considering versions of software and variants (e.g. in terms of features in a car due
to customer choices or market requirements) further complicates the scene. The car
example concerns a tightly coupled dynamical system that strongly incentivizes adding
additional cyber-connections (thus increasing complexity). We believe that such
interactions will similarly be driven also for less tightly coupled systems as cost-
efficiency improves and opportunities for new services arise.

For large scale CPS, e.g. in terms of cloud connected and collaborating vehicles
forming a CPSoS, we can clearly envision a DSM representation that expands with
more components and interactions.

Beyond direct interactions as so far discussed - for example, between software
components, and between sensors and the vehicle environment - a CPS will also
importantly feature several types of indirect relations, see Fig. 6.

In particular, most components will be inter-related through assumptions made
during design. For example, the software and the algorithms it embodies (e.g. for
control and signal processing) are developed based on assumptions of the properties of
the mechanical system. Similarly, the software components may incorporate assump-
tions about the electronics hardware, and the mechanical components may have
assumptions w.r.t. the electronics hardware (e.g. size and weight). We note that the case
of assumptions is generally valid for both cyber and physical parts, and that these
assumptions create dependencies that need to be understood and managed.

To conclude this analysis, we would like to tie the discussion back to Fig. 1, which
at the top illustrates relationships between the CPS, the environment and the CIPS. As
stated by Simon (1996), a system will be “molded” by purposes related to its envi-
ronment. In other words, it can be expected that a CPS will have an essential complexity
that somehow corresponds to the complexity of the environment with which it interacts.
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Consider, for example, the design of a highly automated vehicle (our CPS of
concern). To develop this CPS we have to consider its operational context in terms of a
multitude of relevant driving scenarios including static and dynamic objects that we
may encounter; this emphasizes a number of complexity facets such as heterogeneity,
size, dynamics and uncertainty. The complexity of the environment and the required
functionality thus requires a lot from the CPS, driving its complexity. Similarly, in
designing an organization to develop CPS, the complexity of the CPS will require a lot
from the CIPS, thus driving their complexity. The relationships as shown in Fig. 1 are
bidirectional in the sense that the systems (CPS, environment, CIPS) are influencing
each other.

Finally, for organizations to be effective, investigations have indicated that the
DSM product structure should be closely mirrored by corresponding organizational
DSMs (i.e. relationships among teams) and processes (relationships among
activities/steps)4, Eppinger and Salminen (2001). In times of technology change it
becomes especially important to keep these various “architectures” in sync. CPS
embraces a paradigm shift with drastically new functionalities and components con-
tinuously being added to the technical architectures, which themselves must evolve.
Thus the organizations and the processes need a corresponding evolution.
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Fig. 6. Direct and indirect relations among CPS parts. Direct information and force interactions
take place between parts. Indirect interactions refer to assumptions made in designing a part (the
direction of the arrow indicates for which part the assumptions were made).

4 Such DSMs are often referred to as team-based and activity-based, e.g. (Eppinger and Browning
2012).
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4.2 Analysis of Distinguishing Characteristics: Physical vs. Software
Systems

Dealing with the physical vs. cyber side represents specific challenges, since each side
comes with very different traditions and expected properties, for example, from very
fast turn-around, open and security aware systems to safety-critical real-time closed
systems. We will here focus on software within the cyber-part, since we believe this
pinpoints the essential differences. Table 1 summarizes distinguishing characteristics
among physical and software systems, elaborated as follows.

Phenomena and Dependencies: A key concern of physical systems is their multitude
of aspects encompassing structure, material properties and various types of dynamics in
terms of e.g. stresses, heat, motion, vibrations and wear. As discussed in Sect. 3, side
effects are often of the same order of magnitude as the intended behavior. Wear, tear
and imperfect production imply that parameters will differ from nominal specifications
(albeit within tolerances), i.e. they have distributions, and that they will change over
time. The natural variation of the physical parameters, such as dimensions and material
properties, make the behavior - and thus performance - probabilistic, requiring prob-
abilistic analyses.

In contrast to physical systems, there is an apparent ease with which functions are
realized in software systems. This ease relies upon abstraction hierarchies, a multitude
of tools and existing software components that enable a direct path from software
programs to their execution by microprocessors. Software is an abstraction notion that
provides powerful and flexible constructs for describing information, logic and algo-
rithms, without direct physical constraints. This enables us to build systems of
unprecedented size, to the point where an incredible state-space complexity is created.
This evolution has led to modern cars being fitted with tens of millions of lines of code
and large parameter sets, see e.g. Broy et al. (2007).

Table 1. Contrasting characteristics of physical vs. software systems.

Physical systems Software

Phenomena &
dependencies

Multiple coupled physical
phenomena (materials, wear, fatigue,
heat, …) Local direct effect

State space size; bugs;
connectivity; variability Local and
global direct effects

Dev. Time &
iterations

Long (manufacturing)/few iterations Short/long; large amount of
iterations

Abstractions,
synthesis, and
platforms

Approximations; continuous time
and value; No single platform -
multiple realization technologies;
Behavioral model sim.; Geometry
based synthesis (CAD/CAM/); Form
as a component or structure property

Digital abstractions; discrete time
and value/strong platform
foundations; Property preserving
model transformations (code
synthesis)

Extra-functional
(EF) properties
including cost

Trade-offs among EF properties;
Established cost models

Dependencies create additional
relations between EF properties;
Difficult to estimate life-cycle cost
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A direct consequence of the abstract nature of software is that it only has design
faults. Physical systems are, on the other hand, characterized by design faults, random
hardware failures and wear-out faults, i.e. faults caused by frequent operations/usage.
A consequence of the inherent complexity of software systems, in particular at large
scale (see e.g. Brooks 1987), is that design faults are much more predominant in the
cyber-side. 10 bugs per 1000 lines of code is commonly estimated for commercial
software, with in the order of one bug per 1000 lines for safety critical code, McDermid
and Kelly (2006)5.

Further distinguishing characteristics w.r.t. phenomena and dependencies are that
physical systems have strong interactions locally, with weaker remote effects (Simon
1996). These effects can, in many cases, be seen as piece-wise linear. In software and
digital systems, potentially any bit-flip or bug may break the system. Cyber-systems
are, in this sense, highly non-linear, (Henzinger and Sifakis 2006). Since software
systems (executing on hardware) in principle can be provided with very high con-
nectivity, any change or fault or just nominal communication has the potential to have a
large impact globally, unless the design explicitly takes this into account. The resulting
systems may then come to violate the natural “architecture of complexity” (Simon
1996). Such systems - without barriers, where everything is interrelated - are likely to
be brittle and unmanageable.

Development Time and Iterations: In a CPS project of any size, there is a substantial
difference in the number of iterations used and time duration for the development of the
software, electronics vs. physical parts. As an example, the duration of a project
designing a new industrial computer could be in the order of 1-1.5 years. During this
period, 2-3 mechanical prototypes, 3 iterations of electronics, and 100 iterations of
software might be provided. For mechanical products, design and manufacturing take a
considerable amount of time and effort. For electronics, dealing with heat, isolation,
ruggedness etc. requires extra consideration and time.

While software does not need the same type of production effort as physical systems,
it nevertheless heavily relies on a host of previous developments – a “software infras-
tructure” - including tools, operating systems, middleware, libraries, and existing
application components. This infrastructure is growing over time, and increasingly
includes, for example, capabilities to upgrade software and to gather data from running
systems. The time to develop software will therefore be strongly dependent on the
availability of a proper software infrastructure. There is a tendency that too little emphasis
is placed on the software platform (Ericson 2017). According to industrial developers,
software development never ends, and is never ready when the product is delivered. The
software complexity also gives rise to concerns for effective verification and validation.

Abstractions, Synthesis and Platforms: Digital hardware platforms enable abstrac-
tions (programs, code) to be converted into executable/interpretable code. This relies on
abstractions of services at different levels, e.g. processor instruction sets and pro-
gramming instructions to higher-level services that define the basis for even more
services. These abstractions of services are often referred to as platforms for digital

5 The number of bugs is only used here to illustrate the complexity; not all bugs are equally important.
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systems. This notion is captured by so called Platform-based design (PBD), stemming
from the field of Electronics Design Automation. Defining and constraining the set of
platforms has the effect of reducing the design space, increasing reuse, and speeding up
development, while allowing focus on application development and its mapping (and
tailoring) of the platform, see e.g. Sangiovanni-Vincentelli (2002).

The powerful foundation of abstractions and digital platforms have proven very
successful for general computing but become a problem for cyber-physical systems,
since they do not cover physical effects such as timing and energy consumption, see
e.g. Henzinger and Sifakis (2006), and Lee (2009).

For physical systems, we first note that the term platform is used differently, to refer
to the “common necessary modules” of a product, Blackenfelt (2001). Compared to
software, physical systems have no corresponding general realization platform. Instead,
there are multiple candidate technologies, for example for actuation in terms of elec-
trical, hydraulic, or combustion engine technologies. Functional and behavioral
descriptions provide goals that will be approximated by the realization technology
(good enough) but also leading to side effects as discussed previously.

A second somewhat subtle difference between software and physical systems refers to
abstractions and their relationship to synthesis. For software systems, behavior abstrac-
tions are synthesized (refined) into executable code. Behavioral models are also common
to support physical systems design and analysis, e.g. used for evaluation by simulation.
However, synthesis in the form of manufacturing relies on geometry rather than behavior
models. Synthesis is thus based on geometrical descriptions (CAD) that can be transferred
to computer aided manufacturing systems. It is not a given that the geometrical repre-
sentation adequately represents behavioral models. As an additional aspect of relevance,
the geometrical form is an important attribute of physical systems (and thus of CPS). The
form may correspond to a structural property or be realized through specific physical
components. New manufacturing paradigms, such as additive manufacturing, expand
design freedom by removing manufacturing constraints on shape, material combination
and product structure imposed by traditional machining operations.

A third difference refers to the view on time and values, with continuous abstractions
dominating at the macro-level in the physical world, and with discrete representations in
the software (and digital world), leading to quantization and discretization concerns
when integrated into CPS.

Extra-Functional (EF) Properties Including Cost: Many physical related EF
properties, such as reliability and safety, only become concrete for software when
considered in the context of processing hardware together with software. Alternatively
properties such as reliability are considered as controversial when applied to software
only. The nature of software leads to special considerations for flexibility-related EF
properties such as upgradeability and maintainability.

A specific concern for software systems is that they will - for cost and interaction
reasons - be sharing various resources such as computing and communication elements
as well as data and algorithms. This has the implication that many extra-functional
properties will be highly dependent on shared elements and design parameters (e.g. the
speed of a network and policies of a server). Unless care is taken in design, the sharing
may contribute to complexity by introducing design faults, such as undesirable feature
interactions mentioned in Sect. 3.1.
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Cost models appear to constitute an industrial challenge especially for software.
While hardware costs are relatively well understood, software costs are more difficult to
model and predict due to the described characteristics, e.g. accounting for the costs of
the software platform, verification, and maintenance. A typical implication of this lack
of awareness is that emphasis is often placed on reducing hardware costs, while
software costs are disregarded. An example of this would be the introduction of two
hardware platforms (of different costs), suited to different customer segments, even
though this causes the software complexity (and therefore cost) to increase in order to
deal with two variants. Another example relates back to resource sharing, where the
drive to reduce hardware costs results in additional engineering effort to ensure that
algorithms, computing platforms and available memory together meet the requirements
e.g.in terms of accuracy, speed and predictability.

5 Discussion and Concluding Summary of Bridging
Measures

5.1 Discussion

Reconsidering Fig. 1, the development of CPS has to consider its physical and cyber
parts, the CIPS, and the environment. Facets of complexity appear in each of these
“systems” and can moreover be considered for different aspects of these systems,
including their behavior, structure, requirements, and relations among those and with
external system aspects.

Figure 7 provides a corresponding elaboration of complexity facets applied to
different types of systems and aspects of those systems. Fig 7 draws inspiration from
Sheard (2015) in the distinction between the top and lower level. The complexity facets
(right bottom box in Fig. 7) are the results of the analysis in this paper. The system
aspects (left bottom box in Fig. 7) roughly correspond to key systems engineering
development steps, see e.g. Oliver et al. (1996).

Individual system and SoS
aspects:
Behaviour/Dynamics
Structure (explicit/implicit)
Requirements

/constraints
Mappings and interfaces

Complexity facets:
Heterogeneity
Interrelations
Uncertainty and change
Behavior
Size and computability
Incidental/essential

Things/systems
that can be complex

System aspects and
what makes them
complex

Environment

CPS CIPS

Fig. 7. Complexity facets applied to different types of systems and aspects of those systems.
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Our review of the state of the art and our analysis reveals that all aspects of
complexity discussed in this paper are relevant for developing future CPS. The anal-
ysis, however, reveals that the facets identified in Fig. 7 are of particular importance.

In particular, the tight integration of physical and software parts, and CPS com-
ponents, results in a situation with interfaces and interrelations everywhere (compare
with Figs. 4, 5 and 6). The properties of the complete product appear as a result of the
component, software and physical system properties and their interactions. Intricate
relationships between components will contribute to a number of properties such as
functionality, performance, safety, security, flexibility and interoperability. Changes in
some component properties or interrelations may affect multiple properties, in essence
leading to tensions that will require these interrelations to be understood and that
appropriate trade-offs are made. It thus becomes central to manage both explicit and
implicit interrelations, including uncertainty in information. This is of relevance for all
the types of systems depicted in Fig. 7, i.e. the CPS, the environment and CIPS.

Development of CPS, moreover, has to face the combined consideration of physical
and software facets of complexity, including those described in Table 1. One important
aspect of this is the need to enhance a mutual understanding across cyber- and physical
(related) disciplines, posing an educational challenge.

The significantly increasing system complexity for CPS, compared to traditional
systems, has the effect to increase the uncertainty that remains when a new system is
launched to the market as well as the amount of information (models, data, etc.)
required to describe the CPS. Recalling the “cone of uncertainty” in Fig. 2, this cor-
responds to a widening of the cone – see Fig. 8; the more complex a system is, the
more uncertainties will remain even after the system has been deployed.

Such a situation may require development to be extended to the usage life-cycle
phase, with diagnosis, condition monitoring and proper management of service and
maintenance information to guide a process aimed at refining the CPS with continuous
uncertainty reduction.
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Fig. 8. MBE may enable early knowledge capture and deferred decisions
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CPS development provides more options and thus more degrees of freedom
(DOF’s) in design compared to traditional systems, consequently requiring more
knowledge to manage uncertainty and risks. The role of model-based engineering
(MBE) is indicated in Fig. 8. MBE has a potential to create design knowledge at a
significantly faster pace than design by physical prototyping, and also enables decisions
to be delayed, i.e. keeping the design degrees of freedom for a longer time, see e.g.
Sellgren 1999. There is consequently a very strong need to systematically implement
methodologies that are model-based and where a reduction of the knowledge gap is
driven by model-based analysis.

5.2 Bridging Measures Concluded

In the state of the art (Sect. 3.4), we described four approaches for dealing with CPS
complexity. We believe that these approaches are very valid but will not be enough for
future CPS. Trends towards connectivity, new services, automation, smartness, etc.
imply that we are embarking towards both CPS and CPSoS of unprecedented com-
plexity. Such systems will, in turn, be developed by large-scale CIPS. These trends
unfortunately place further stress on the described limitations of CIPS. It thus becomes
even more important to emphasize bridging measures.

The analysis indicates that it will no longer be possible to rely only on a subset of
the approaches covered in Sect. 3.4. That is, approaches that we have encountered in
industry for dealing with complexity, for example, placing specific emphasis on
architectures and skilled people, or process and model/tool centered approaches, will
most likely not suffice for the CPS of tomorrow. Instead, there will be a need for a
broader set of tools – “bridging measures” to deal with future complexity. In the
following we briefly summarize such bridging measures. These include the four
approaches from Sect. 3.4, here grouped into three “reinforced” measures. To these we
add measures to deal with software, including its hidden costs and as part of integrated
design methodologies for CPS, interrelation management (drawing upon Sect. 4.1),
and finally, education, ending up with the following six measures:

• Processes and organizations for CPS. Processes and organizations for CPS need to
be able to explicitly address synchronization and integration among the diverse
aspects and parts of a CPS, and consider integrated life-cycle engineering. The
difference in speed of development of software and hardware needs explicit
attention (synchronized processes, version and variant management, agile vs. safety
practices), supported by architectures, and verification and validation methods. Key
aspects for the successful development of CPS include insightful leadership and the
use of integration mechanisms among teams for large scale CIPS.

• MBE including CAE systems and frameworks for data management as design
assistants. Humans and organizations will need much better support for dealing
with future CPS. Considering large scale CIPS (and CPS), means to support effi-
cient and effective communication among people/teams will become even more
important. Examples of areas with strong potential for dealing with the conse-
quences of complexity (recall Fig. 1) include visualization, augmented/virtual
reality, traceability and change management (e.g. managing interrelations), data
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analytics, automation, and improved support for large-scale concurrent engineering.
Advances in CAE capabilities with respect to semantic and contextual under-
standing and in dealing with large amounts of data will be necessary. Progress in AI
is likely to provide entirely new capabilities to deal with many of those issues,
including data analytics, model synthesis, and in providing decision support.
Considering DevOps, CAE systems and underlying theories, concepts and strate-
gies need to be developed for information and knowledge management that
encompasses the entire life-cycle. A better understanding is also needed for how to
balance static analysis, simulation, and physical tests, and how they can comple-
ment each-other.

• Design and architecting. New architectures and architectural representations are
needed to support safety, security and availability, while managing evolution
including software upgrades. Principles, interaction protocols, and architectures are
also needed to support scalability, robustness and avoidance of side effects among
interacting CPS parts of a CPSoS. Further, new methods and models are needed that
explicitly manage relationships between extra-functional properties, incorporate
uncertainty and concepts of dynamic risk management, attempting to mitigate risk
even in the face of the unknown.

• Software as enabler: Software comes along with hidden costs and relies on
extensive software assets that deserve attention because of their critical impact on
end system properties. Better insights and cost models are needed to improve
awareness. Software systems form an essential and growing part of CPS. Devel-
opment methodologies need to incorporate core aspects of both systems and soft-
ware engineering. The software communities need to embrace and explicitly
consider the various direct and indirect physical effects of software.

• Interfaces and interrelations management. CPS will have interfaces and interrela-
tions everywhere, across systems, components, data, models, tools and people.
System level methodologies need to deal much more explicitly with these, including
their design, analysis and management.

• Education and life-long learning. There is also an urgent need to address these new
challenges with a reshaped undergraduate education, and to implement a system for
continuous professional competence training. Foundations and the T-shaping of
engineers are becoming more important. Engineers increasingly need to be able to
work efficiently in teams and to obtain a broader understanding than what is pro-
vided by a traditional disciplinary education (e.g. in computer science or mechanical
engineering). Establishing such a broader level of understanding corresponds to the
horizontal upper part of the T, see e.g. Törngren et al. (2016). Considering the speed
of technology evolution, there are also strong needs to develop and adopt
approaches for life-long learning, see e.g. Törngren et al. (2015), i.e. to continu-
ously deepen and broaden the domain expert knowledge.

We emphasize that these bridging measures need to be considered in conjunction.
In this sense, individual bridging measures can be seen to provide specific viewpoints
for CPS development.
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Relating these measures to a number of roadmaps/agendas in the area, see e.g.
Platforms4CPS (2017), we find that design and architecting and MBE receive a lot of
attention, while the others sometimes are not covered or covered indirectly.

This work has been motivated by the increasing complexity of CPS, and also by the
desire to bridge the gap between the cyber and physical dimensions. One direction of
future work is to fully expand the role of humans as part of CPS. We hope that this
review of various facets of complexity of CPS will contribute to invigorate a multi-
disciplinary debate on how to deal with the CPS of tomorrow!
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Abstract. Numerous modeling languages have adapted a graphical syn-
tax that emphasizes control flow or state rather than data flow. We here
refer to these as state diagrams, which include classic control flow dia-
grams as well as for example Statecharts. State diagrams are usually con-
sidered to be fairly easy to comprehend and to facilitate the understand-
ing of the general system behavior. However, finding data dependencies
between concurrent activities can be difficult as these dependencies must
be deduced by matching textual variable references.

We here investigate how to extract data flow information from state
diagrams and how to make that information more accessible to the mod-
eler. A key enabler is automatic layout, which allows to automatically
create dynamic, customized views from a given model. To set the stage,
we propose a taxonomy of state and data-flow based modeling and view-
ing approaches. We then compare traditional, static view approaches
with dynamic views. We present implementation results based on the
open-source Ptolemy and KIELER frameworks and the Eclipse Layout
Kernel.

1 Introduction

In model-driven engineering (MDE), instead of directly programming a certain
behavior, the developer creates a model, specifying the behavior of the system
in a more abstract form. The model is then usually used to generate specific
code for the target system or to simulate the behavior beforehand. One feature
often found in modeling languages is a graphical diagram of the model, be it
as the primary input like in Scade1, Simulink2, LabView3, or Ptolemy4 [20] or
generated from a textual model like in SCCharts5 [12].

The graphical diagrams can be grouped in two major styles, control flow
diagrams, which include state diagrams, and data flow diagrams. Both of these
styles have their own benefits and drawbacks in practical application.
1 http://www.esterel-technologies.com/products/scade-suite.
2 https://de.mathworks.com/products/simulink.
3 https://www.ni.com/labview.
4 https://ptolemy.eecs.berkeley.edu/ptolemyII.
5 https://rtsys.informatik.uni-kiel.de/kieler.
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Fig. 1. State and data flow diagrams

State diagrams are usually composed of states and transitions. States are
places the execution of the program rests in, while transitions control the change
from one state to another. A basic example of a state diagram can be seen in
Fig. 1a. The initial state Init is highlighted by a bold outline. The outgoing
transition from Init is guarded by the trigger true, meaning it is always taken.
As soon as the transition is taken the Output action comes into effect, in this
case setting the Cyel output to 1 and other outputs to 0. The control flow then
reaches the state YellowOn. From this point on, the control alternates between
the states YellowOn and YellowOff each time the input Sec is present. Every time
the state is changed, the output Cyel is turned to either 0 or 1.

Most languages expand this basic form of state diagrams by adding more
features such as, for example, concurrent control flows or hierarchical composi-
tion of state diagrams. One benefit of state diagrams is that the model is usually
close to the natural description of the behavior and to the developer’s mental
model. However, as noted before [2], some model aspects are rather difficult to
infer from state diagrams. For example, if the model employs concurrency and
shared data, the exact nature of data sharing is not graphically visualized, but
requires the modeler to scan the textual transition labels and look for common
variable names.

More insight in the usage of shared data is presented in data flow diagrams.
The nodes in a data flow diagram represent actors that are all executed con-
currently [17]. Two actors are connected if they share data. A simple example
is shown in Fig. 1b. The input signal Sec is passed to the CarLightNormal and
PedestrianLightNormal actors, which communicate through Pgo and Pstop and
produce the outputs Pred, Pgrn and so forth.

Motivation. One way to overcome the shortcomings of a specific diagram style
(state or data flow) is the combination of the different aspects. This approach
is known as multimodeling. Here multiple different kinds of diagrams can be
combined to form the complete model. This approach has been used in Ptolemy
II [20] by embedding modal models, which contain some form of extended state
machine, into normal data flow models and allowing refinements of states in
state machines to contain data flow models. Multimodelling is now well under-
stood from a semantic level. However, as we argue here, there is still room for
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improvement concerning the pragmatics of multimodelling [8], that is, how to
support the user in applying multimodeling in a productive manner. Specifi-
cally, the traditional modeling approach of having the modeler produce the one
and only static view of a model, which we here refer to as a static view, limits
productivity and hampers human model analysis and understanding.

Contributions/Outline. We first propose a taxonomy of modeling and viewing
alternatives, see Sect. 2. In Sect. 3, we survey traditional approaches based on
static views in more detail. The main contribution follows in Sect. 4, where we
present how to automatically derive hybrid state/data dynamic views from state
models. We also investigate how dynamic views can help model analysis, in par-
ticular concerning schedulability and synthesizability. Related work is discussed
in Sect. 5. We conclude in Sect. 6.

2 State and Data—A Taxonomy of Models and Views

In the domain of software engineering, the distinction of models, views and
controllers is common place, not the least because of the MVC pattern [21], the
perhaps most widely employed software design pattern [9]. However, in the MDE
community this distinction seems less common, even though it can (and as we
argue should) be employed there as well.

2.1 Models vs. Views

State and data diagrams adhere to some concrete, visual syntax, which, for
example, entails that edges (representing for example state transitions) must
have some source and sink nodes (representing a states). We say that such a
diagram is a view of some underlying model, which comes with a certain seman-
tics. The work flow of today’s modeling tools typically prescribes that the model
developer directly works on such graphical views, as shown in Fig. 1, using some
WYSIWYG graphical editor. This is so common that modelers typically regard
the view they draw as “the model,” even though the modeling tool first has to
translate that view into a model. However, as argued elsewhere, this unification
of view and model has some drawbacks [8]. To just name a few, modelers often
spend an inordinate amount of time with drawing activities [16]; comparison and
version management of visual models is difficult; there is just one and only view
for a model. In particular this last issue is central to the work presented in this
paper, as we wish to argue that especially when working on applications that
have both a state and a data aspect, one would like to have flexible, dynamic
views available.

As a general remark, in our experience this unfortunate unification of models
and views in MDE is mainly due to two factors: (1) the automatic synthesis of
a view from a model requires automatic graph drawing capabilities, which most
tools lack, (2) users want to keep control of the views and are skeptical that
an automatic drawing algorithm can do a good job, just as the first high-level
language compilers at the day were not necessarily welcomed by experienced
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assembler programmers. However, our experience also indicates that when (1)
users get to work with a modeling tool that makes high-quality, state-of-the-
art automatic graph drawing a priority, and (2) users employ automatic view
synthesis from the beginning instead of first drawing model views manually,
they do appreciate the ability of focusing on a model and getting automatically
created, well-readable, customizable views for free. We thus in the following build
on the premise that models and views can and should be treated separately.

In the remainder of this section we present an overview classification of dif-
ferent modeling and view options. The subsequent sections will explore these in
more detail.

2.2 Modeling Options

We first consider the different options of what is modeled explicitly by a human
developer. This is not always clear cut, but we identify broadly the following
categories:

State Model (M1). This is the traditional state-based modeling approach,
using implicit data flow through signal scopes and name matching. This
modeling style is supported by various Statecharts tools.

Data-Flow Model (M2). This uses only data flow diagrams. This is typically
used for models that do not really have a notion of state. This is provided,
for example, by Simulink (without Stateflow).

Multimodel (M3). This uses state diagrams as well as data flow diagrams,
explicitly modeled by the user. This is supported, e. g., by Ptolemy, SCADE,
or Simulink with Stateflow.

Again, this classification concerns what is modeled, not how it is modeled.
Concerning the latter, this could be either done the traditional way, using some
WYSIWYG graphical editor, or it could also be done for example by providing
a textual description of the model.

2.3 Viewing Options

As mentioned in the introduction, we distinguish between static views, which
are directly created by a human modeler (with a varying degree of layout sup-
port from the modeling tool) and from which a model is derived, and dynamic
views, which are synthesized automatically from a model. Orthogonal to the
static/dynamic distinction, we here propose the following classification:

State View (V1). This is the traditional view for state-based modeling lan-
guages, showing only the state diagram without visual indication of shared
data or data flow. Statechart tools traditionally offer static state views, an
example is shown in Sect. 3.1.

Data-Flow View (V2). Analogously, this consists of data flow diagrams only,
as in a typical Simulink diagram.
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Multimodel View (V3). This shows data flow as well as state diagrams, using
separate diagrams for each purpose. This is what is provided by Ptolemy (see
Sect. 3.3), SCADE, or Simulink with Stateflow.

Hybrid View (V4). This uses a single diagram for data flow as well as state,
combining the different layers of hierarchy. Static V4 is offered by SCADE
(see Sect. 3.4), dynamic V4 is provided by the Ptolemy Browser (Sect. 4.1)
and the KIELER SCCharts tool (Sect. 4.4).

Data Overlay View (V5). This is an enriched version of V1, with added
indication for access to shared data. This is also offered by the KIELER
SCCharts tool (Sect. 4.3).

Naturally, both V1 and V2 can be seen as special cases of V3, V4 and V5.
Thus, tools that support V3–V5 also support V1 and V2.

3 Static Views

As explained before, the traditional modeling approach entails that the modeler
creates one static view of the model. In this section we review the different
options that have emerged so far, following the model/view taxonomy presented
in Sect. 2. We also introduce a canonical example, a simple traffic light controller,
that we will use throughout the paper.

3.1 State Modeling (M1) and Viewing (V1)

Figure 2 shows the traffic light controller modeled with a state diagram. The
example has been presented in previous work on multimodeling [2] as a Sync-
Charts model [1] and has subsequently adapted to different modeling languages.
The diagram in Fig. 2 is SCChart [12], which can be viewed as a conservative
extension of SyncCharts, which in turn can be viewed as a synchronous version
of Harel’s Statecharts [13]. However, for the purpose of this paper, the specifics
of SCCharts are not relevant. We can thus see SCCharts as a generic place holder
for a state-oriented modeling language. Furthermore, the diagram in Fig. 2 hap-
pens to be automatically synthesized from a textual model that the modeler has
written in the SCCharts Textual (SCT) language6, and is thus is, technically, a
dynamic view. However, the same type of diagram is also used for static, user-
created diagrams in traditional Statechart tools, hence we show it in this section
that focusses on existing modeling approaches.

The idea of the traffic light controller is that there is a street with a pedestrian
crossing controlled by one traffic light each for the pedestrians and the cars (and
any other street traffic). There are three lights for cars, Cgrn, Cyel and Cred,
as well as two lights for the pedestrians, Pgrn and Pred. In normal operation,
the traffic light should alternate between cars and pedestrians passing, with the
green lights active for a few seconds in each cycle. In case of an error, the lights

6 http://www.sccharts.com.

http://www.sccharts.com
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Fig. 2. Simple traffic light controller created as state model (M1), shown in state view
(V1)

for pedestrians should be turned off completely and the cars should be alerted
by a blinking yellow light.

The model has a main state TrafficLight which consists of two hierarchical
states. The state on the left, Normal, manages the normal operation of the traffic
light, while the state on the right is activated in the case of an error. The Normal
state is marked as initial, shown by the thicker outline. There are signals, Error
and Ok, generated by the environment, that guard the transitions between the
two states. If Error is signaled, the normal operation is aborted and the control
changes from Normal to Error. If OK is signaled, the control switches back, leaves
the Error state and restarts normal operation.

Both states in the main module are hierarchical and employ two concurrent
regions each. In both states, the left region controls the lights for the pedestrians
and the right region controls lights for the cars.

This state model/view nicely expresses the behavior of the application, how-
ever, the data handling is not obvious, in particular concerning the potential
interactions between concurrent regions, as detailed next.
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3.2 Data Flow Questions

There exist many semantic variations of data flow languages [14]. A prominent
example are Kahn process networks (KPNs) [15], where concurrent actors com-
municate by producing and consuming tokens, and data flow edges represent
unbounded FIFO queues. In the data-flow examples we present here, as far as
it matters for the subject of this paper, we assume a synchronous setting with
a clocking regime [3], and communication through shared variables.

One typical question, regarding the semantical validity of a model, is whether
there is any feedback, that is, a mutual inter-dependence of concurrent regions
(region A writes some x that concurrent region B reads, and B writes some y
that A reads). Some modeling languages (including Ptolemy, or SCADE with
“black-box scheduling”) forbid such feedback outright, unless delays (registers)
break the cycle, while others (such as SCCharts, or SCADE with “white-box
scheduling”) only allow it under certain circumstances [12].

Another typical question is whether there may be conflicting writes (concur-
rent regions A and B both write x). Again, some modeling languages always for-
bid it (Ptolemy, SCADE), others allow it under certain circumstances. For exam-
ple, some synchronous languages, including SyncCharts and SCCharts, have the
notion of combination functions, which can be used to combine concurrent writes
in a deterministic manner, similar to resolution functions used in hardware design
for signals that have multiple drivers. For example, a commutative, associative
function such as addition is a valid combination function, and for a shared inte-
ger x, two concurrent writes x += 2 and x += 3, if executed atomically, do not
impose a race condition; no matter how they are scheduled, their effect will be
x += 5. More generally, a valid combination function f on x, y must fulfill that
for all x, y1, y2, f(f(x, y1), y2) = f(f(x, y2), y1) holds. For example, “minus” is a
valid combination function, even though it is not commutative.

In SCCharts, we say that assignments of the form x = f(x, e) are relative
writes, provided that f is a valid combination function and e is an expression
that does not depend on x and whose evaluation does not have side effects. To
clearly delineate relative writes for the compiler (and the modeler), we use the
convention that relative writes must be written as compound assignments, such
as x += 2 instead of x = x + 2. All relative writes of the same type are confluent,
meaning they can be scheduled in any order. Absolute writes are those that are
not relative, meaning they do not use a combination function, and absolute
writes may also be confluent if they write the same value and do not have side
effects. All told, the SCCharts scheduling regime permits concurrent writes to
some variable x as long as, within a reaction (logical tick), all absolute writes to
x are confluent and are scheduled before all relative writes to x, and all relative
writes are of the same type [12]. Furthermore, writes must precede reads, which
corresponds to the KPN scheduling constraint that tokens must be produced
before they can be consumed.

Again, these questions are rather difficult to answer with the state view, more
helpful here are Data-Flow modeling/viewing (M2/V2), or the multimodeling
approach (M3/V3) described next.
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TrafficLight

Normal
Error

Error.CarLight

Error.PedestrianLight

Normal.CarLight

Normal.PedestrianLight

Fig. 3. Traffic light controller in Ptolemy II [2], illustrating multimodeling (M3) and
multimodel view (V3) (Color figure online)

3.3 Multimodeling (M3) and Multimodel View (V3)

In multimodeling tools, like Ptolemy II, the developer is not restricted to a
single type of model. Instead the model can be composed of different types of
actors. In Ptolemy II, main building blocks are Modal Models, which are used to
define finite state machines [7], and Composite Actors, which can model different
kinds of data flow models. Each of these types can be used in different levels of
hierarchy.

Figure 3 shows the traffic light controller introduced in Sect. 3.1, modeled as
a hierarchical model with separate data flow and state machines [2]. Each of
the boxes shows one part of the hierarchy, gray lines show the relation between
actors and the contained model.

The highest level of hierarchy is the state diagram TrafficLight in the top-
left corner. It is equivalent to the first hierarchy level of the model described in
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Sect. 3.1. The two states are marked green to indicate the presence of a refine-
ment, a child hierarchy, inside the state. The refinement of the normal state is
shown at the center left. This refinement is the data flow model already shown
in Fig. 1b. Unlike in the state view shown in Fig. 2, the connection via Pgo and
Pstop between the two controlling regions and the absence of feedback is imme-
diately visible.

Note that to be precise, Fig. 3 is an enhanced version of what the modeler
usually sees and works with. The different state/data flow diagrams are arranged
carefully not to hide any information, and gray lines are added manually to
show the inter-relationships. In practice, when working with a modeling tool,
the modeler will have OS-managed windows for each data flow or state diagram.
When exploring a complex model, this routinely requires re-organization of the
windows on the screen. It may also pose a mental burden on the modeler to
remember which part of the model is where on the screen, as some parts may
become completely hidden behind other parts.

One approach that avoids the problem of overlapping parts of the view is
presented next.

Fig. 4. Railway model in SCADE, illustrating multimodeling (M3) and static hybrid
view (V4) and the fact that this can become rather unwieldy (from [24])
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Fig. 5. Partial Ptolemy model, shown in KIELER Ptolemy Browser [25], illustrating
multimodeling (M3) and dynamic hybrid view (V4)

3.4 Multimodeling (M3) and Static Hybrid View (V4)

Some modeling tools allow to mix data flow and state in the same diagram.
Figure 4 shows a railway controller modeled with SCADE. At the top level,
there is a state machine, each state is refined with a data flow sub-model. This
view exposes the whole model in one diagram, thus there are no overlap issues as
in the multimodel view (V3). However, as this example illustrates, there are two
issues with this: (1) a high manual effort in producing the drawing (this example
has consumed 50+ hours of mere drawing time), (2) details are not legible when
viewed as a whole, as is the case in this paper with Fig. 4, unless the viewing
area is very large, e. g., if the paper happens to be printed on A0.

4 Dynamic Views

To avoid the burden of manually creating a view while modeling, dynamic views
provide automatic representations of the model. Consequently, additional or
derived information can be displayed to the user without interfering in the actual
creation of the model.

4.1 Multimodeling (M3) and Dynamic Hybrid View (V4)

Figure 5 shows a partial view of the same model as Fig. 3. The view has been gen-
erated, based on the original Ptolemy model, by the KIELER Ptolemy Browser,
using automated view synthesis as well as automated layout algorithms, in this
case provided by the Eclipse Layout Kernel (ELK)7.

The view allows the user to expand or collapse any hierarchical actor as
needed by clicking on it. In Fig. 5 the error state and the embedded modal model
7 https://www.eclipse.org/elk.

https://www.eclipse.org/elk
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CarLightNormal are collapsed, while PedestrianLightNormal has been expanded.
The hierarchy depth is visualized by a background gradient getting darker on
deeper levels.

The Ptolemy Browser also supports different ways to filter diagram elements.
In Fig. 5 port labels are only shown for PedestrianLightNormal. Additionally the
directors, visible in Fig. 3, are currently hidden.

4.2 Inferring Data Flow

Before showing the enriched viewing options V5 and V4 for state models (M1),
we briefly describe the way the data flow is extracted from the source model. This
approach is not specific to a certain modeling language but should be adaptable
to any state-based language using concurrent regions.

The data flow analysis is performed in a postfix depth-first traversal order of
the model hierarchy. This allows us to first analyze the usage of data in all child
states of a region and to immediately use the data to visualize the data flow.

For each state, multiple sets of valued objects, meaning variables, signals or
other kinds of data used in the model, are gathered. The objects are placed in
different sets, to separate objects used locally in the state from objects used in
a nested hierarchy and to separate read objects from written objects.

For each region, the sets corresponding to the child states are collected and
combined with the objects used on the transitions inside the region. These aggre-
gated data then contain all the valued objects, used in the region directly or in
some nested hierarchy within the region.

To compute the resulting data flow, the sets of each region are compared to
the concurrent regions in the state. Any valued object read in one region and
written in a different region results in data flow. Additionally, reading valued
objects that are marked as model inputs, or writing valued objects marked as
outputs, should be regarded as data flow. These set intersections are used to
create the inferred data flow visualizations presented in Sects. 4.3 and 4.4.

When the data flow between the regions is found, the sets of the regions are
combined and propagated upwards to the parent state. This analysis can gather
all data flow information in a single pass over the model.

4.3 State Modeling (M1) and Data Overlay Viewing (V5)

Using the information gathered in the data flow analysis, we can show the data
flow as an overlay on the original state diagram as shown in Fig. 6. Every data
flow between concurrent regions is shown as a direct connection from the writer
to the reader of the data.

In the example, we can see dependencies in the Normal state, from the write
accesses to Pgo and Pstop in the CarLight region to the read accesses in the Pedes-
trianLight region. These are the connections that have been manually modeled in
the Ptolemy model. One benefit of this approach is the stability of the diagram.
The original diagram of the model is not changed, but only enhanced with new
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Fig. 6. SCCharts traffic light controller with dependency overlay (green dashed
arrows), illustrating state modeling (M1) and data overlay viewing (V5) (Color figure
online)

information. The mental map of the developer is preserved [19]. However, com-
pared to the Ptolemy model, this view lacks information about the inputs and
outputs of the model regions. In particular, potential conflicting writes to the
same output are not directly visible.

The overlay shows the connections between concurrent regions in as much
detail as possible. Every relevant connection is individually drawn. In more com-
plex diagrams, this may be more information than can reasonably be displayed
visually, as illustrated in Fig. 7, which is part of another railway controller model.
The data flow indications overlap each other and create a diagram that is rather
unreadable. This problem can partially be addressed through proper filtering,
i.e. only showing the dependencies for a selected element. Still, for models of this
complexity, the data overlay viewing seems inappropriate to answer, e. g., the
questions concerning possible feedback and write conflicts formulated before.

Looking at diagrams as the one in Fig. 7, one may wonder whether visual rep-
resentations are appropriate for models of this complexity in the first place. In
fact, past experience of working with complex models in a tool that offers textual
modeling suggests that users are quick to dismiss the automatic graphical views
altogether and just stick to the textual models. However, with dynamic, cus-
tomizable views, graphics may become usable and valuable again. For example,
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Fig. 7. Railway model, illustrating the limits of data overlay viewing (V5)

Fig. 8. Screen shot of the railway model with selective region expansion and selected
transition label in the KIELER SCCharts tool (Color figure online)
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consider Fig. 8 for an the alternative view of the same railway model. The two
regions that due to their size caused trouble in Fig. 7 are collapsed, and the
remaining three regions are small enough to be viewed at once.

Figure 8 also illustrates another feature of view management, namely the use
of an abstract, summary graphical representation together with a detailed tex-
tual representation. The top part of the screen shot contains the textual SCChart
description as written by the user. The lower part contains a state view of the
model, where some transitions are labeled with a more compact summarizing
text instead of the concrete trigger and action. One such transition is labelled
Segment reached (see added green oval); when clicking on the transition, the part
of the textual source that describes the details of the transition trigger/action
is automatically scrolled to and highlighted. Finally, the screen shot also illus-
trates how comments (the “post-it” notes) can be shown in the dynamic view,
constructed from semantic comments in the textual model.

4.4 State Modeling (M1) and Dynamic Hybrid View (V4)

An alternative view, that aims to avoid the potential cluttering issues of the data
overlay view (V5) that was illustrated in Fig. 7, is the dynamic hybrid view (V4)
again. In Sect. 4.1, the dynamic V4 was synthesized from a multimodel, which
already had explicitly modeled the data flow. We now synthesize dynamic V4
from a state model.

The main idea behind this visualization is to use the previously “unused”
hierarchy layer between regions to show the data flow. In normal Statecharts
there are no connecting edges between regions and the placement of the regions
next to each other usually carries no semantic meaning except concurrency.
To enrich the diagram, we leverage this hierarchy level and add the data flow
between the regions.

The Traffic Light Example. Figure 9 shows the inferred data flow with local
inputs and outputs, automatically created from the very same SCCharts model
from which the state view of Fig. 2 was synthesized. Local inputs and outputs
are the valued objects that are used on the same hierarchy level as the input or
output. Alternatively, all inputs and outputs, including usages in nested hier-
archy levels, could be shown, or all input and output nodes could be hidden,
leaving only the concurrent data flow between neighboring regions. Inside every
hierarchical state, each shared valued object is represented by one (hyper)edge.
All writers of the valued objects are sources of the edge and all readers are sinks.

On the top hierarchy level, input nodes for Error and Ok are added because
these signals govern the transition between the two top-level states. Inside the
Normal state, the local data flow between CarLight and PedestrianLight, the read-
ing of the Sec input, as well as the written outputs have been added. In terms
of visualized information, the resulting diagram is similar to the correspond-
ing Ptolemy diagram in Fig. 5. One deviation occurs in Normal.PedestrianLight,
which in the manually specified data flow part of the Ptolemy model defines
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Fig. 9. SCCharts traffic light controller with inferred data flow, illustrating state mod-
eling (M1) with a dynamic hybrid view (V4)

Sec as an input, even though Sec is actually not read in PedestrianLight. This
“modeling glitch,” manifested also in Normal, is probably not on purpose, as
for example the Sec input is (correctly) omitted for Error.PedestrianLight. This
glitch in such a small, well-studied example indicates that dynamically created
data flow visualizations not only offer the convenience of not having to explic-
itly re-model information that is already present in the state part; dynamic,
automatically inferred views also help to keep state and data flow consistent, in
particular as models become more complex.

Another noteworthy detail is the order of the regions CarLight and Pedes-
trianLight inside the Normal state. Compared to the original diagram in Fig. 2,
these two regions switched their place in the diagram. This is done by the auto-
matic layout algorithm, to always draw the data flow edges from left to right if
possible. If the data flow edges create a cycle, one of the edges has to be reversed
and will be drawn as a feedback edge from right to left, thus making potential
feedback obvious to the modeler.

Compared to the overlay presented in Sect. 4.3, the precision of this approach
is a bit reduced. The usages of the objects are not indicated directly, but only on a
per-region granularity. On the other hand, this approach always produces a clean
diagram without edges potentially overlapping relevant parts of the diagram.
Additionally, this approach can show the data flow between regions, even when
the regions itself are collapsed and the child states are not currently visible.

The Railway Example. Dynamic hybrid views also let us draw the railway
example, shown before in the rather inaccessible Fig. 7, in a cleaner and more
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readable way. By collapsing all regions and configuring some label management
we can create the diagram shown in Fig. 10.

Fig. 10. Railway model with data flow, illustrating multimodeling (M3) and dynamic
hybrid view (V4) for a complex model, with absolute/relative writes (black/green
edges) and mouse-over annotation of data flow edges. (Color figure online)

The view exhibits feedback, visible in the edges routed around the outside
of the diagram. In this case, all feedback edges end in a register. These registers
are automatically created, both in the code synthesis and in the inferred data
flow view, if the value is not used directly but instead read in a pre operator.
In SCCharts, as in other synchronous languages, the pre operator accesses the
value a variable had at the end of the previous reaction. This is similar to a delay
actor in Ptolemy.

As can be seen in Fig. 10, the automatic layout of the SCCharts editor tends
to place registers at the left of the diagram. Specifically, when the layout algo-
rithm encounters a cycle in the graph that makes it impossible to draw all edges
in the same direction, it tries to break the cycle by reversing edges that enter
a register. This is another convention that helps the modeler to quickly grasp
whether feedback is broken by a register or not.

Another feature in Fig. 10 can be seen on the hyperedge from two writ-
ers, moving and position updating, to the reader station update. As explained in
Sect. 3.2, multiple writers may indicate a problem in a model. However, the write
performed by position updating is a relative write (see again Sect. 3.2), indicated
by a green edge segment. A closer inspection of Fig. 8, where the textual SCCha-
rts description shows the relative write access moving &= false, confirms that
this is a relative write of type conjunction. Thus, it can be safely combined with
the absolute write (black) from station update. A similar situation is present
in the model with an absolute write from station update and the relative write
from segment scheduler. These two writes are combined and fed back to the cor-
responding register. There is another concurrent write, where position updating
and station update perform absolute writes to the same value, but these happen
to be confluent because they write the same value. As a possible extension to the
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current tooling, this fact could be fed back visually in the diagram as well, e. g.,
by showing some kind of error marker in case there are non-confluent absolute
writes.

As a last detail, for compactness the dynamic view from Fig. 10 has been
configured to not show any data flow labels. However, a mouse-over on an edge,
such as the aforementioned hyperedge, shows the shared variable in question, in
this case moving.

5 Related Work

Beyond the work on multimodeling mentioned in the introduction [2], there are
several proposals on combining different model types [4,10,26]. However, there
appears to be little comparable work that focusses on modeling pragmatics the
way we do here, compared to the large body of work on semantic and synthesis
issues. There are some works, such as by Petre [18], which compare the utility
of graphical and textual views.

Human-centered software engineering aims to improve usability in software
development, but not with a focus on modeling [22]. Another related community
focuses on software visualization [6]. Smyth et al. have presented an approach
to extract SCCharts from legacy C code [23]. Together with the work presented
here, this now allows a data flow view of C programs.

The synthesis of diagrams advocated here builds on automatic layout, for
which the graph drawing community has developed a large variety of approaches,
as for example surveyed by Di Battista et al. [5].

6 Conclusions and Outlook

We have illustrated that data flow views do not necessarily have to be created
manually by a modeller, as is long-standing tradition, but can be inferred auto-
matically, in our case from state models. More generally speaking, we made the
argument that views can and should be separated from models. Designers should
be able to concentrate on creating and maintaining models, in whatever formal-
ism is most convenient, and a modeling tool should infer different, customizable
views according to the task at hand. This not only saves valuable developer time,
but can also help to avoid model inconsistencies.

Even though we did not question the difference between state models and
data flow models here, the fact that a data flow view can be just synthesized
from a state model begs the question of how fundamental that difference really
is. For example, going in the other direction, ongoing work indicates that it is
not too difficult to synthesize fairly concise SCCharts from Lustre [11], which is
generally viewed as a data flow language.

There are numerous directions to go from here. For example, we have focussed
on showing data flow relations between concurrent regions/actors, implying that
this is what the modeler is most interested in. However, data flow languages are
also used to express sequential computations, and one might extend the work
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here to infer data flow for sequential computations as well. For example, referring
back to the existing work on the model extraction from legacy C code [23], it
might be interesting to infer the data flow from a C program that performs
some complex signal processing using various components. Conceptually, these
components can be seen as actors and could be visualized as such, even if the
actors may not be concurrent anymore but typically are already sequentialized
in the C program.

Another, largely open question is how to give good visual feedback on more
complex causality questions. As briefly alluded to, feedback may be permitted in
some cases, such as when back-and-forth scheduling between concurrent actors
is permitted within a reaction. This is a powerful language feature, but may lead
to models that are hard to debug in case they are not schedulable.

Finally, as the concept of dynamic views hinges on the capability to auto-
matically draw well-readable diagrams, the area of automatic graph drawing is
called upon. We believe that auto-layout is already good enough to be usable in
practice, with open source libraries that make state-of-the-art algorithms freely
available and have stable interfaces. Thus auto-layout should become a standard
feature in today’s modeling tools, as is, for example, already the case in Ptolemy
(which uses ELK). However, further improvements are still possible. One detail
is the handling of hyper edges, which sometimes is still unsatisfactory. A broader
issue is that of “interactive” layout, where the modeler can influence the model
drawing without having to fall back to manual layout.
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Abstract. This is a somewhat unusual contribution to a Festschrift. I
had a long email conversation with Edward, and when the invitation
to contribute to his Festschrift reached me I proposed to the editors to
include this email exchange. They reacted positively, and also Edward
felt that this was a nice idea.

An email conversation is seldom sequential. The possibility to include
answers in the text of a received message disturbs the sequential flow
and instead introduces some hierarchy in the text. I have therefore care-
fully selected excerpts from our e-mail exchange and serialized them so
that the discussion is easier to follow. I only deleted unnecessary text,
corrected spelling, and added references to the articles we discussed.

Our conversation centers around three different topics. The first topic
is real-time computing. In Sect. 1 we discuss the extent to which tim-
ing properties can be predicted or verified, whether or not predictable
timing necessarily comes at the cost of performance overhead, and how
timing is affected by threads and interrupts. The second topic, discussed
in Sect. 2, is the semantics of time in distributed systems. Finally, in
Sect. 3, we exchange thoughts about the principles behind modeling and
abstraction that underpin the ideas discussed in Sects. 1 and 2.

1 Precision Timed (PRET) Machines

Our discussion started after Edward sent Jan Reineke and me a draft of a planned
submission titled What is Real Time Computing [8]. One of Edward’s claims was
that traditional use of interrupts rendered timing verification impossible.

1.1 Timing Verification

Reinhard: I don’t share your view of interrupt handling in real-time systems:
Temporarily disabling interrupts and using delayed preemption allows timing
verification [10].

Edward: (...) I think I can defend better my view on interrupt handling in
real-time systems. Disabling interrupts for a block of code helps some, in that
it prevents disruption of the assumptions on machine state that are used in
c© Springer International Publishing AG, part of Springer Nature 2018
M. Lohstroh et al. (Eds.): Lee Festschrift, LNCS 10760, pp. 524–537, 2018.
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worst-case execution time (WCET) analysis. But it doesn’t help enough. Con-
sider a block of code that must be executed by some deadline. Suppose this block
of code disables interrupts. Consider now that an interrupt may be asserted just
before or just after we disable interrupts. Suppose that in the first case, the
pause time of the interrupt makes it impossible to meet the deadline, and in
the second case, the deadline is met. Then in this case, no matter how good our
WCET analysis, we cannot guarantee that the deadline will be met.

And in any case, timing is nondeterministic, because we can’t control when
the interrupt will be asserted. It could be asserted before or after interrupts get
disabled. And presumably, we don’t disable interrupts until we know that we
need to execute some critical code, but then it might be too late, because an
interrupt may have already been asserted.

Reinhard: This block of code, having an associated deadline, would usually be
considered a task or job and would be subject to a conventional WCET analysis.
Your situation, potential interrupt before or after the execution of this task/job,
would be subject to a schedulability analysis, which may indeed produce the
answer “No.” The delayed preemption I proposed would be used for preemptions
within tasks to keep the WCET-analysis problem feasible.

1.2 Performance Overhead

Edward: In FlexPRET [12], an interrupt has exactly zero (zero!) effect on hard-
real-time threads. Moreover, it has a bounded effect on soft-real-time threads (it
imposes a percentage slowdown rather than an unbounded pause time). This
really is fundamentally different, because we can have interrupts enabled all the
time (guaranteeing low-latency responses) and still guarantee deterministic tim-
ing for tasks that are running when the interrupt is asserted. Here, determinism
is as good as the logic determinism of programs (i.e., up to hardware failure and
soft errors).

Consider for example a scenario where two devices can assert interrupts at
arbitrary times, and in response to each interrupt, we have to compute some
reaction within, say, 50µs. In FlexPRET, we can guarantee these responses
with timing jitter as low as one clock cycle, regardless of how the actual interrupt
assertions align. That is not possible with a conventional processor. And we can
make this guarantee up to the point where the pipeline and memory system are
fully utilized, where every clock cycle is busy. No headroom is needed.

Reinhard: I don’t buy your argument that there is no loss of performance;
you statically reduce performance by reserving resources, i.e. cores/threads, for
interrupt handling. These resources could have been used for other hard real-
time threads, whereby the system would have exhibited a higher performance.
In the extreme, i.e., when no interrupts occur, these cores/threads are idle.
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Edward: Your reading of FlexPRET is not correct. Interrupts consume zero
resources when not active. Interrupts are handled in soft-real-time threads,
which are scheduled opportunistically in cycles not being used by hard-real-time
threads.

You are right that if the hard-real-time threads require 100% of the cycles,
then interrupts (and all other soft-real-time tasks) cannot be handled without
violating real-time constraints. But isn’t this true of any processor? FlexPRET
cannot perform magic. If your hard-real-time tasks require 100% of the machine,
then nothing else can be done without violating their constraints.

On the first point, delayed preemption (and in fact any scheduling decision)
cannot be performed without a preemption occurring. The OS scheduler is a
task like any other. No scheduling decision can be made without executing this
task. My basic points in this analysis and the example are twofold:

1. FlexPRET can deliver precise timing with jitter as low as a clock cycle,
repeatably and predictability. No conventional interrupt-driven mechanism
can do that. This is about determinism and repeatability. It delivers timing
determinism at the same level as the logic determinism of a processor.

2. For WCET analysis to be valid, extreme care is required if interrupts are
used at all. First, as we agree, interrupts must be disabled during execution
of any code for which we depend on the WCET analysis. This introduces
timing jitter at the granularity of task sizes, much larger than a clock cycle.
Second, the decision to execute a code block on whose WCET we rely must be
made atomically w.r.t. interrupts, or else the WCET analysis is invalid. This
is very difficult to do. It requires that all interrupt service routines that may
result in a scheduling decision immediately and atomically disable interrupts,
something that only a few processors do (and it must be done in hardware, in
theory). And then it requires extremely careful coding. I suspect most RTOSs
don’t get it right...

The way to prove these points is to use an example like the one I tried to illus-
trate in the last part, where there are two independent external events that
require a response within a fixed latency. With FlexPRET, if the real-time con-
straints are feasible, then they can be handled, and the jitter in handling them
is less than a clock cycle. The deadlines are feasible if and only if both events
can be handled simultaneously within their deadlines at ≤100% utilization. I’ve
attached a picture of a sketch of this proof (see Fig. 1).

Admittedly, my proof makes some approximations. Specifically, I assume
that a hard-real-time thread can be scheduled so that it uses any real-valued
percentage of the processor between 0 and 100%. In practice, these percentages
will be quantized. But in principle, we can make the quantization as fine as we
like, at the cost of hardware.

Try the same example with conventional interrupts. Even with the most
careful possible coding, the timing jitter will be at least equal to the execution
time of the tasks, so the WCET estimate for task 1 is invalid: You must add to it
the WCET estimate of task 2 to get a real deadline. Specifically, WCET1 is not a
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bound on the response time to event 1. The only bound you can give is WCET1+
WCET2, which will be ≥ the bound given by FlexPRET (since in FlexPRET,
the two tasks execute simultaneously). However, FlexPRET delivers the results
with deterministic timing (up to a clock cycle). Conventional interrupts do not.

Fig. 1. Assume there are two hard-real-time tasks, where t1 is the start time of the
first task and t2 the start time of the second. Without loss of generality, assume that
t1 ≤ t2. Let L1 and L2 denote the maximum latency of the respective tasks, and p1, p2
denote the percentage of CPU utilization required to meet the deadlines t1 + L1 and
t2 +L2. Observe that the schedule is infeasible if at any given time the sum of required
CPU time is greater than 100%. When utilization is less than 100% there are cycles
available for soft-real-time threads, which, among other things, can handle interrupts.

1.3 Interrupts and Threads

Reinhard: Aren’t you changing the semantics of interrupts? In my intuition
they have higher priority than the tasks they should interrupt. In FlexPRET they
have lower priority than all hard real-time tasks and may encounter (predictably)
long delays. Which kind of interrupts are you thinking of? Are they all insensitive
against such delays?

Edward: Actually, in FlexPRET, interrupt service routines begin executing
immediately (within four clock cycles in our latest FlexPRET) regardless of
what the hard-real-time tasks are doing. So actually, they have higher priority
in FlexPRET than in a conventional approach, where the hard-real-time code
has to disable interrupts, thereby introducing uncontrollable delays to handling
interrupts.

FlexPRET uses hyperthreading, where there are several register sets, and
for each register set there is one hardware thread. Some of the threads are
hard-real-time threads. Those are scheduled in the pipeline according to a fixed
deterministic schedule (determined by a memory-mapped register). Assuming
that those don’t use 100% of the cycles (a necessary assumption for feasibility
even in a conventional processor), then the remaining cycles are used for soft-
real-time threads.

In FlexPRET, if there are, say, three hard-real-time threads and one soft-
real-time thread, then the soft-real-time thread (typically) gets at least one of
every four clock cycles to launch an instruction. The exact pattern depends on
what is written in the memory-mapped register, but a typical pattern would
make such a guarantee. The soft-real-time thread may get more than one cycle
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of every four because whenever a hard-real-time thread stalls (its work is done
for now), its cycles are made available to the soft-real-time threads. Hence the
maximum four cycle latency to start executing an ISR the soft-real-time thread.

In principle, one could mess up this strategy by scheduling too many cycles to
the hard-real-time threads. But this is not a good idea regardless of whether there
are interrupts or soft-real-time tasks because it introduces pipeline bubbles and
variable memory latency, making WCET analysis much more difficult. Hence, a
typical hard-real-time thread will use no more than one cycle of every four, and
by this mechanism, it achieves rock-solid, perfectly deterministic timing.

Again, I emphasize that the primary goal is determinism...
A side effect of this approach is that if there is enough concurrency (enough

threads with work to do), then aggregate performance is better than a conven-
tional processor because there are no pipeline bubbles and no stalls due to DRAM
accesses. Every clock cycle does useful work... Moreover, the nondeterministic
timing that soft-real-time threads experience is because they opportunistically
use cycles that become available. Hence, exact WCET bounds are also achievable
for the soft-real-time threads, but unlike the hard-real-time threads, they may
do better than these bounds. For the hard-real-time threads, the only timing
variability is due to paths through program (data-dependent programs), never
due to interactions with other threads or interrupts.

As you can see, I feel pretty strongly that we have solved the real-time prob-
lem at the microarchitecture level. The challenge is convincing people, and then
building the software stack that can make use of it. This is why I really don’t
want to write a paper that does not talk about PRET. It wouldn’t be telling the
world what I know.

Reinhard: Hyperthreading indeed changes the scheduling setting. I didn’t see
that before. I was assuming traditional scheduling. However, you still reserve HW
resources, namely at least a register set for soft real-time tasks, right? There are
a limited number of register sets, and you could use this register set for another
HW thread.

I am still looking for the magic or the shortcomings in PRET. My long life
has told me that miracles are rare.

Edward: It’s not a miracle, it’s a paradigm shift. To accept the paradigm shift,
you have to believe in the value of determinism. Most people are only very weakly
committed to determinism, if at all...

A register set is cheap in hardware. It’s a tiny fraction of the chip area.
The reason that register sets aren’t bigger than they are (more registers) is not
because of the cost of the register set memory. It’s because of the number of bits
required in an instruction to address a register.

And anyway, we expect that just about every application will have need for
at least one soft-real-time thread (e.g., for a UI, a network stack, or an OS).
That thread can always be used to handle interrupts. You don’t need another
register set for just interrupts.
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Reinhard: Well, let me tell you how I see the traditional approach and the
PRET approach: In the traditional approach, one is able to safely exploit the
capacity of a given architecture up to the limits of the WCET bounds and
the schedulability algorithms, which, however, use (safe, but possibly crude)
approximations. In the PRET approach, one is inherently limited by architec-
tural parameters, e.g. the maximum number of threads that can be executed
in an interleaved fashion. Although register sets are cheap, there will be fixed
number of them in a PRET architecture.

Actually, my PROMPT [11] approach, where architecture would follow appli-
cations, which I never really worked out, was much more radical and would
require a different system-development process: First design, analyze, and imple-
ment your set of applications and then design the architecture. This would free
you from the limitations due to architectural parameters mentioned above.

Edward: If the number of hardware threads is a limitation, then it’s a more
serious limitation with a conventional processor, which has only one. In Flex-
PRET, you can set the control registers to use only one register set, and then
you have a conventional RISC-V.

Maybe one point that isn’t clear is that a soft-real-time thread in PRET is
an ordinary instruction stream. It can run an OS kernel supporting interrupts,
multithreading, and a file system, for example. The fact that it shares hardware
resources with hard-real-time threads does not change any of this. You can think
of the hard-real-time threads as stealing cycles from a conventional machine. And
the cost of providing this capability is very modest... Michael Zimmer’s design
shows that its effect on the hardware complexity is negligible.

By the way, I don’t think PRET solves all problems. It in fact creates many
new problems (very interesting ones) at the software level. There is no point in
solving these problems, however, if we don’t have the hardware.

So the real statement is that I believe PRET solves the real-time problem at
the microarchitecture level. And it makes WCET analysis much easier. And it
makes disabling interrupts obsolete.

Reinhard: My question is whether the paper will report success or failure. You
will probably say, failure for commercial off-the-shelf (COTS) architectures and
success for PRET.

We had a talk from another group here yesterday who declared success by
exploiting the concept of single-core equivalence. The holes in the approach were
visible.

Edward: (...) at best this makes the multicore problem no worse than the single
core problem. But the single core problem is still unsolvable.

Reinhard: I thought we had pretty much solved it [5].
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Edward: The root of the problem: COTS approaches fail to separate the map
from the territory.

Reinhard: I don’t understand this metaphor. Do you mean that a WCET tool
has to be newly instantiated for every new processor? In this respect I agree
with you.

Edward: Consider an analogy. Suppose that the x86 instruction set did not
define the number of bits in each register. Then every program would have to
be verified for each and every particular implementation of x86.

This is what we do with timing properties of architectures.
PRET solves that problem (...) not in exactly the same way as the x86

analogy, which wouldn’t work very well... That is, it does not define the actual
execution time of each instruction. What it does is that it parameterizes the
implementation so that the execution time is easily determined, and MTFD
instructions can be included to guarantee timing properties (...) see this paper
for MTFD [2] (...) (that paper is about an earlier version of PRET, which has a
fixed number of hardware threads). MTFD works fine with FlexPRET as well,
where the number of hardware threads can vary from just one (conventional
pipelined processor) to some fixed number N.

So yes, COTS has failed and will continue to fail. We have to separate the
map from the territory.

Reinhard: I am still puzzled.

Edward: The metaphor is explained in this paper [7].

1.4 Conclusions (Part 1)

There is a competition between more or less traditional architectures, made
more predictable by means proposed (partly by us) in the literature [1], in com-
bination with sound and precise, but sophisticated WCET-analysis techniques
and with state-of-the-art preemptive scheduling methods including methods to
determine preemption costs on the one side, and PRET architectures using
thread-scheduling and simple, but precise WCET-analysis techniques, and soft-
ware based on Edward’s concept of determinism and maybe repeatability on the
other side.

At this point in the conversation I had not yet seen a proof of the no-loss-of-
performance claim, but our exchance lead to a paper [9] that provides a formal
proof. I still think that a comparison with preemptive scheduling needs to be
done. I have my doubts about an easy match between requirements of a set
of applications to a given PRET architecture due to limitations resulting from
its fixed hardware parameters. Then, thread scheduling reduces program local-
ity, which will have an effect on the performance at the interface to memory.
Therefore, our discussion still leaves me somewhat mystified.
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2 A Programming Model for Distributed Real-Time
Embedded Systems (PTIDES)

We then started a discussion about the possibility of having a global time. The
reader will notice quite a bit of confusion; about physical time, about time
stamping as an approximation to a global physical time, about synchroniza-
tion protocols and their error margins, and what faithfulness to physical time
meant. My point was that causality should be preserved under all circumstances.
Edward’s notion of determinism was not always clear to me: Did it mean seman-
tical determinism or timing determinism? Edward would argue that the former
should include the latter.

Reinhard: I went through the paper [8] and am puzzled. My view of the world
was that relativity effects in distributed systems prevented one from having a
global time, and that only a partial order on events was possible, and that
Lamport’s vector time was the basis for ensuring the preservation of causality,
and that GALS (globally asynchronous, locally synchronous) [6] were the way
to go, at least my friends in ARTIST and ARTIST DESIGN had convinced me
of that.

Now, you confront me with tons of new developments that seem to make
global time again a viable concept. I still don’t get the full picture. However, I
have the following bad feeling: You can make the time error/deviation as small
as you can afford, but there is still the possibility that two causally related events
happen within the remaining error interval such that causality is lost. True? In
that case you would have sacrificed semantics determinism an the altar of time
determinism.

Edward: I’m guessing you are referring now to PTIDES [4] rather than PRET.
I think you are confusing the map with the territory. Time stamps are num-

bers. What PTIDES does is to ensure events are processed in time-stamp order.
If this assumption is met, then the model is deterministic.

EVERY deterministic model of computation makes assumptions that, when
violated, lead to nondeterminism. A single-threaded imperative program will not
behave correctly if the chip is melting. A synchronous circuit will not behave
correctly if it is clocked too fast.

Processing events in time-stamp order is clearly physically possible. It has
been done since the 1970s in distributed discrete-event simulation. Nothing about
relativity makes this impossible.

The only remaining question is whether it can be made efficient and robust
to failures. PTIDES does both of these by leveraging synchronized clocks. Clocks
are never perfectly synchronized. Not even in a synchronous circuit on a chip
nor in a synchronous program. You just have to assume bounded margins of
error. Lamport used synchronized clocks way back in the 1980s to achieve fault
tolerance.
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PTIDES goes a step further and associates time stamps with real-time clocks
at sensors and actuators. And we show that not only can we make the distributed
execution deterministic (events are processed in time-stamp order), but under
certain assumptions (including bounded execution time), we can ensure that
events are delivered to actuators on time.

PTIDES makes explicit the assumptions. If you can bound the communi-
cation latency, the clock synchronization error, and the execution time, then
you get deterministic execution and on-time delivery of events to actuators in a
distributed real-time system.

Are these too many assumptions? Only if they are costly to realize. But they
aren’t. Synchronizing clocks has become easy (to precisions of nanoseconds with
IEEE 1588 and 802.1AS). Bounding communication latency is routine in real-
time networks (TTEthernet, FlexRay, and forthcoming TSN networks). And
PRET makes bounding execution time practical.

Your skepticism, unfortunately, is extremely common. I really must be doing
something wrong in writing about these results because the reality is that nobody
believes me. Maybe it’s something about my writing style... I should switch
careers and start writing fiction. :-)

Processing events in time-stamp order is clearly physically possible. It has
been done since the 1970s in distributed discrete-event simulation. Nothing about
relativity makes this impossible.

Reinhard: I remember a dissertation at INRIA proving that relativistic effects
prevented one from having a global time, but can’t find the reference. Doesn’t
a global time-stamping system need a global time? You need all components of
the distributed system.

Edward: The physical idea of global time is a Newtonian fiction, yes. But this
doesn’t mean you can’t have a semantic notion of global time. Time stamps are
numbers in a number system that is totally ordered. Hence, the mathematics of
a total order gives us a global temporal semantics.

I think what bothers you is perhaps related to how time stamps are assigned.
In PTIDES, when a sensor takes a measurement, we use the local clock to assign
a time stamp to that measurement. That measurement can then be sent out on
a network (together with its time stamp). When another processor receives the
message, it’s job is to merge that message into its own local notion of time. It
needs to respect the remotely assigned time stamp and process all messages,
wherever they originated, in time-stamp order.

One way to achieve this is an old technique called the Chandy and Misra
approach. This approach assumes that messages are sent in streams with reliable
delivery that preserves order. That is, the order in which messages are received
is the same as the order in which they are sent. This is achievable with TCP/IP.
In the Chandy and Misra approach, a processor waits until it has received a
message from every remote source of messages. It can then safely process the
one with the lowest time stamp, preserving the global semantics of time. No
problems with relativity.
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The Chandy and Misra approach, however, has two key drawbacks. First, if
a source of messages fails, everything stops. Second, every source of messages
needs to keep sending messages even if it has nothing to say. Chandy and Misra
called these “null messages”.

PTIDES solves these two problems by assuming synchronized clocks and
bounded communication latencies. Under these two assumptions, if a processor
has NOT received a message by a certain time (per the local clock), the processor
can locally calculate a lower bound on the time stamp of all future messages.
That’s all it needs to proceed with processing time-stamped events. I.e., because
clocks are synchronized, the LACK of a message conveys information.

An interesting thing about this model is that when you simulate a system,
you need multiple time lines that progress at different rates. We call this “mul-
tiform time”. Ptolemy II supports multiform time and can simulate PTIDES
models with arbitrarily good or bad clock synchronization. You can even simu-
late relativistic effects using this mechanism... The resulting models can be very
confusing because we don’t have natural language constructs that talk about
multiple time lines simultaneously.

Reinhard: Now, having a semantic notion of global time means that all events
in the system happen at some point in this time. In order to work with this
semantic notion of global time one needs an implementation, and this imple-
mentation is the time-stamping mechanism. This implementation mechanism
should be truthful to the semantics. That’s where my troubles are! Synchroniza-
tion does not deliver a truthful implementation of semantical global time. It is
not perfect. If event A happens very briefly before event B then synchronization
may produce both sequences AB and BA after time stamping, right? This may
induce non-determinism in the interaction with the environment, I think.

I know how Lamport’s vector time merges the state of local clocks upon
communication. I don’t actually see how this merging happens in Ptides.

Edward: If you have two sensors making measurements, and sensor A reports
a reading of 9.1 while sensor B reports a reading of 8.9, but in actuality in the
physical world, the phenomenon being read by B is larger than that being read
by A, then does this mean that your program that operates on these sensor
readings is nondeterministic?

If so, then you are right. PTIDES is nondeterministic. So is EVERY possible
reaction to any physical phenomenon. The mere fact of having inputs from the
physical world makes the system nondeterministic. E.g., if a synchronous pro-
gram takes inputs from the outside world, it too is nondeterministic, because an
event that it reacts to could be seen in tick n or in tick n+1. There is no physics
that can prevent this ambiguity.

Determinism is a sufficiently contentious concept that you could defensively
take this position. But I believe that a more useful notion of determinism sep-
arates inputs from reactions. In my definition, if there is exactly one reaction
allowed to a given set of inputs (in a given state), then the system is deterministic.
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In your definition, a system is deterministic only if there is exactly one react to
a PHYSICAL REALITY (vs. inputs).

This latter definition is unfortunate. Physical reality cannot be measured
perfectly and isn’t even well understood. This latter definition simply eliminates
determinism as a tool for engineers.

I don’t feel that we are converging. The conversation has convinced me more
than ever that both PRET and PTIDES are paradigm shifts, in the sense of
Kuhn. Kuhn cites Max Planck in saying that paradigm shifts don’t get accepted
through convincing people. They get accepted when a new generation starts
using them. I am convinced that will happen. But probably not by you or me.

Reinhard: You (and Jan) have convinced me more than you seem to feel. Still,
it is hard to fully switch to your view of the world.

Thanks for your patience!

3 Models and Abstraction

After reading a new draft of Edward’s planned submission What is Real Time
Computing? I commented this draft. Issues were what a model is, because this
notion played a major role in the draft, how abstraction relates to determinism,
and what it means that a model is faithful to a system.

Reinhard: A few philosophical remarks and some minor quibblings:
Your introduction of model by way of many examples in the first paragraph

of Sect. D suffers from the 7 examples admitting at least 8 different notions of
what a model is. I complain about this because the notion of model is central in
this paper, and your notion is very fuzzy. Sometimes, e.g. in the case of physics,
model means abstraction. You have the world and you are looking for the laws.
Sometimes, e.g. in the case of digital circuits, you look for implementations. And
two other examples, ISAs and program, match neither of these two notions.

Patrick Cousot has developed a beautiful theory of abstraction [3]. He has
an abstraction operator and a concretization operator, and in some cases both
are related by a Galois connection. A local correctness condition describes what
you probably mean as being faithful. You essentially have a commuting diagram.
This way he can prove the correctness of an abstraction. In this theory, one may
abstract a program to the set of its traces, you may say executions. Unfortunately
for your argumentation, his abstractions often *introduce* non-determinism in
order to go from undecidable or complex systems to decidable or efficiently
decidable abstractions. What should concern you is that the analyzability of
models—which you require—is obtained this way.

Your is–faithful–to relation sometimes goes one way, sometimes the other.
I wonder whether it really is symmetric. Also sometimes it smells like a bisim-
ulation. But overall it remains fuzzy. For instance, when you require that a
computer program should be faithful to the behavior of a modern silicon micro-
processor chip, the reader has to invest a lot of time in defining behavior to
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accept this statement. The relation between a program and the behavior of a
modern silicon microprocessor chip too complex to be easily subsumed under
Faithfulness. Think of compiled and interpreting implementations, of in-order
and out-of-order pipelines.

As for timing (second page of Sect. D):
You completely conceal the existence of timing requirements and where they

come from. Even traditional approaches start with timing requirements. Admit-
tedly, timing verification is based on timing properties for a particular imple-
mentation. However, assuming that several PRET architectures are possible,
wouldn’t you in the end have to verify that the selected one fulfills the assump-
tions made for the real-time software?

In Sect. C, first page: Is it really physically impossible for these actions to be
simultaneous, or is it impossible to decide whether they are simultaneous?

Further down you say, “Note that this requirement is independent of timing
precision”.

Whose timing precision do you refer to? Do the events A and B and the
observer necessarily have the same timing precision?

I find the definition of sporadic stream rather loose.
Hope my comments help!

Edward: Thanks very much! These are very helpful comments.
Cousot’s notion of abstraction is actually a relation between models.

Reinhard: Yes, in your sense.

Edward: What I’m talking about is more the relationship between a model and
Kant’s das Ding an sich. I don’t think Cousot’s view can really say anything at
all about that relationship...

Reinhard: That raises an interesting point. The Ding an sich is an intellectual
construct. The philosophical question is whether you can think about it without
words or terms. As soon as you have the necessary terms and if they have a
semantics then you could use Cousot’s abstraction. However, you would claim
that one has constructed a model using these terms.

So, I should probably declare defeat.

Edward: I will work on trying to refine the ideas, and I will acknowledge you
(thanks!).

3.1 Conclusions (Part 2)

The comments above will leave the reader puzzled because he lacks the context
if he is not familiar with this paper. However, the final version of Edward’s
paper shows at least some impact of my comments, not as much as I had hoped,
though.
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As I said in one of my contributions, the European embedded-systems com-
munity, led by the synchronous-languages colleagues, has arrived at globally
asynchronous, locally synchronous systems as the most promising metaphor. It
is supposed to combine the success of synchronous languages for non-distributed
systems with the asynchronous behavior of distributed systems. It would be
interesting to see how this metaphor fares in comparison with Edward’s globally
timed, deterministic systems concept.

What would be my overall conclusion? It definitely was an interesting dis-
cussion. Edward can argue very convincingly. He definitely caught me on the
wrong foot several times.

Acknowledgements. My thanks go to Jan Reineke, who explained many details
about Edward’s approach to me, Marjan Sirjani for asking the right questions and
giving good comments, to the reviewers for the comments and suggestions, and last
but not least to Edward for patiently discussing so many issues in our email exchange.
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