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 Introduction

Clinical research studies involving human 
patients or participants generally have two main 
variables of interest: participant exposure and 
participant outcome. In the context of biomarker 
studies in cancer research, the exposure would be 
the biomarker value for a patient, and the out-
come might be survival. The distinguishing fea-
ture between a retrospective study and prospective 
study is what is known about the patient exposure 
and patient outcome at the time the study is 
designed. For a retrospective study, investigators 
look back into time to ascertain patient exposures 
(e.g., the biomarker value) and the patient out-
come of interest (e.g., cancer survival). For a pro-
spective study, the patient exposure of interest is 
known at the time the patient is included in the 
study (e.g., baseline biomarker value), and the 
patient is followed into the future to ascertain the 
outcome of interest (e.g., survival). As depicted 
in Fig. 2.1, in a retrospective study, the biomarker 
value and outcome for a patient are known by the 
start of the study.

In contrast, in a prospective study the outcome 
of interest has not yet occurred at the start of the 
study, and patients are followed into the future 

until the end of the study to determine their 
outcome.

Retrospective studies are limited by various 
confounding factors that introduce biases. In can-
cer biomarker studies, they are useful for the dis-
covery of potential biomarkers to be explored in 
future studies but generally are not sufficient for 
biomarker validation. More definitive biomarker 
studies are based on data from prospective stud-
ies. For the purpose of establishing a treatment 
benefit of a predictive biomarker, the prospective 
study requires (1) a patient group that spans the 
biomarker outcomes (for a dichotomous marker, 
the study needs biomarker-positive and biomarker- 
negative patients; for a continuous marker, the 
study needs a group of patients that have bio-
marker values that represent the range of possible 
values), and across the biomarker values, it needs 
(2) patients treated with the treatment of interest 
and patient not treated with the treatment of inter-
est (likely treated with a different treatment). The 
strongest design is one in which patients are ran-
domized to the treatments as is done in a clinical 
trial. If patients are not randomized to treatment, 
the study will likely suffer from patient selection 
bias, similar to a retrospective study. The remain-
der of this chapter focuses on predictive bio-
marker studies in cancer that are based on clinical 
trial data. Sometimes, the biomarker study is 
 conducted well after the clinical trial has been 
completed, but this still qualifies as a prospective 
study because at the time the patients were 
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enrolled on the trial, their baseline biomarker sta-
tus was fixed (although it might not have been 
measured until much later), and patients were fol-
lowed forward into the future for their outcomes.

A brief overview of the different phases of 
clinical trials is presented in section “An 
Overview of Oncology Clinical Trial Designs.” 
Section “Analysis of Clinical Trial Data” pro-
vides a general description of clinical trial data 
analysis methods. The definition and characteris-
tics of prognostic and predictive biomarkers are 
presented in section “Biomarkers in Clinical 
Trials.” The interplay of biomarkers and clinical 
trial design is explored in section “Use of Forest 
Plots.” Concluding remarks are made in section 
“Biomarker Clinical Trial Designs.”

 An Overview of Oncology Clinical 
Trial Designs

Oncology clinical trials are performed in differ-
ent settings and by different groups. Some trials 

are initiated and led by an investigator that is a 
member of a cancer center within an academic 
medical center. These trials may be funded by a 
pharmaceutical company, the academic medical 
center, philanthropic funds, or a grant from the 
government (e.g., the National Cancer Institute, 
Department of Defense) or a nonprofit organiza-
tion (e.g., Stand Up to Cancer). It is often the case 
that the funding comes from one or more of these 
sources. The principal investigator has control 
over the data, the data analyses, and the publica-
tion of results in investigator-initiated trials.

Pharmaceutical companies also conduct clini-
cal trials. These trials are led and funded solely 
by the pharmaceutical company, and the com-
pany performs the data analysis and disseminates 
the trial results via publications. The National 
Cancer Institute (NCI) conducts the majority of 
government-funded trials, which includes inter-
nal trials as well as trials done by other institu-
tions that are funded by NCI grants and contracts. 
Other government agencies that conduct or spon-
sor oncology clinical trials include the Department 
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Fig. 2.1 Prospective studies identify patients, determine 
or assign their exposure, and then follow patients forward 
from that time until they have an event of interest or the 
end of the study. Retrospective studies enroll patients and 

then look backward in time from that point to ascertain 
their exposure status and whether they had the event of 
interest or not
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of Defense and the Department of Veteran’s 
Affairs. Finally, the NCI also funds and supports 
the National Clinical Trial Network (NCTN) that 
includes four groups that conduct trials for adult 
cancer patients (Alliance for Clinical Trials in 
Oncology, ECOG-ACRIN Cancer Research 
Group, NRG Oncology, and SWOG) and one 
group that conducts trials for pediatric cancer 
patients (Children’s Oncology Group). About 
half of all patients who participate in a cancer 
clinical trial in a given year do so in a NCTN-led 
trial. Trials conducted by the NCI NCTN often 
receive additional support from pharmaceutical 
companies and/or nonprofit organizations. 
However, the data analyses leading to publica-
tions are conducted independently of the other 
funding sponsors. Data from any trial funded by 
a government agency is required to be deposited 
in a public repository.

There are four general types of clinical trial 
phases used for drug development in oncology. A 
drug development plan usually starts with a phase 
I trial and proceeds through the other phases in a 
sequential manner if the previous phase is deemed 
to be a positive trial. A phase I trial is the first 
time the drug regimen (e.g., a single drug or a 
new combination of drugs) is being used in 
humans. These trials are generally small and are 
designed to find a safe dose to be used in a phase 
II trial. Typically, sample sizes for a phase I trial 
are between 10 and 80 patients. The number of 
patients depends on the number of dose levels to 
be tested. A positive phase I trial establishes a 
dose level that is tolerable (has limited adverse 
events) and thought likely to be active.

Phase II trials generally enroll on the order of 
50–150 patients. The sample size is primarily 
driven by the number of treatment arms included 
in the trial. The purpose of a phase II trial is to 
further evaluate the safety of the drug regimen 
and to evaluate whether it has potential activity or 
efficacy. The decision rule is cast as a go/no-go 
decision. Specifically, if the clinical activity of 
the drug appears unpromising and/or the drug 
appears to be too toxic, the decision will be not to 
perform future trials with the regimen. On the 
other hand, if the activity level appears promising 
and the regimen appears to be relatively tolera-
ble, the drug will likely be tested in a phase III 

trial. Measures of clinical activity depend on the 
patient population and the postulated mechanism 
of action of the drug regimen. Some examples 
include tumor shrinkage, often measured as the 
tumor response rate, or a decrease in an estab-
lished biomarker such as PSA for prostate cancer. 
Phase II trials can be single-arm trials where all 
patients receive the drug regimen, or they can be 
multi-armed where patients are randomized to 
the arms. Examples of multi-armed trials are a 
comparison among several different new regi-
ments to select the best one to test in a phase III 
trial, a comparison of the new regimen to a con-
trol arm or a comparison of several different dos-
ing regimens in order to optimize the regimen 
delivery for a phase III trial.

The sample size for a phase III trial is gener-
ally in the range of a few hundred patients to a 
few thousand patients. The goal is to evaluate the 
efficacy of the drug regimen. In a phase III trial, 
patients are randomized to a new regimen or to a 
control group. Depending on the disease, the 
control group could be treated with a placebo, if 
the disease is not life threatening or if there are no 
approved treatments available for the patient 
population, or standard of care, in the case of life- 
threatening disease for which there is an estab-
lished treatment available. A phase III trial could 
test several different interventions but always has 
a control arm. Phase III trials are generally con-
sidered to be definitive trials. A positive phase III 
trial shows that a new regimen has a beneficial 
effect compared to the current standard of care, 
i.e., the control arm. If a phase III trial is positive, 
it usually changes the standard of care and could 
be the basis for FDA approval of the drug for use 
in the patient population in which the trial was 
conducted.

Phase IV studies are conducted after a drug 
regimen has been marketed and typically involves 
several thousand patients. The focus of these stud-
ies is to monitor the effectiveness of the drug regi-
men in the general population. It also collects 
information regarding adverse effects. Phase IV 
studies have uncovered adverse events that where 
not observed in previous clinical trials that are due 
to patient comorbidities or drug-drug interactions.

Within the phase I–IV paradigm of drug 
development, biomarker discovery may start in 
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phase I trials but is often limited to preliminary 
exploration or proof-of-concept because of the 
small sample sizes. Phase II studies are generally 
the platform for initial biomarker discovery stud-
ies and identify markers to be evaluated further in 
phase III trials. The most informative biomarker 
studies are part of phase III trials because their 
larger sample sizes afford more power and 
because they randomize patients to the drug regi-
men of interest and a control arm. A phase III 
study could be used for biomarker discovery, it 
could be used to validate a proposed biomarker, 
or the biomarker could be used to determine 
patient treatment. Figure  2.2 summarizes the 
roles of the different stages of clinical trial design 
and biomarker development.

 Analysis of Clinical Trial Data

The statistical method to be used in evaluating 
data from a clinical trial depends on the outcome 
of interest. For the sake of brevity, it is assumed 
the outcome of interest is a time-to-event mea-
sure such as overall survival (OS), disease-free 

survival (DFS), or progression-free survival 
(PFS). From this point the outcome will be 
described generically as survival but could be any 
measure that involves time from study start for a 
patient to an event where some patients are cen-
sored (i.e., they did not have the event by the end 
of the follow-up period). For a single-arm trial or 
the analysis of a single group, the survival time is 
summarized with a Kaplan-Meier (KM) curve. A 
KM curve estimates the proportion of patients 
who have survived as a function of time since 
treatment initiation (see Fig.  2.3). The median 
survival is often reported and represents the time 
point at which 50% of the patients have not sur-
vived (or had the event), implying that 50% have 
survived (or are event-free).

KM curves can be used to compare survival 
times of two or more groups when they are plot-
ted on the graph. For example, Fig. 2.4 compares 
the survival times between patients randomized 
to a new experimental treatment (T) and patients 
randomized to a control group (C). It is clear that 
the T group has better survival in general than the 
C group. This is also demonstrated by comparing 
the estimated median survival times: 45.1 months 
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Kaplan-Meier curve plot for a 
group of patients that have a 
median survival of 
20.1  months. The median is 
the value for which 50% of the 
patients are still alive (equiva-
lent to 50% have died)
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Fig. 2.4 A display of two Kaplan-Meier curves for sur-
vival with one corresponding to patients in the treatment 
group (solid gray line) and one corresponding to patients 

in the control group (dashed maroon line). The median 
survival for the treatment group is 49.2 months, and the 
median survival for the control group is 22.7 months

for group T compared to 26.3 months for group 
C. A log-rank test is used to determine whether 
the observed difference in the KM curves is likely 
due to chance alone (p-value ≥ 0.05) or is deemed 
statistical significant (p-value  <  0.05), which 
implies there is a treatment effect. The log-rank 

p-value = 0.0035 for the curves in Fig. 2.4 shows 
that the patients in the treatment group appear to 
have a significantly better survival than patients 
in the control group. The log-rank test can also be 
used to evaluate whether there are differences in 
survival times among any number of groups.
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Biomarker classification can also be used to 
define the patient groups to be compared. Suppose 
that a biomarker classifies patients into marker-
positive (BM+) and marker-negative (BM−) 
groups. From Fig.  2.5 it appears as though the 
BM+ group has (very) slightly better survival 
compared to the BM- group; however, this differ-
ence is not statistically significant (p-value = 0.33). 
The conclusion in this case would be that the bio-
marker does not appear to be significantly associ-
ated with survival. An example of a biomarker 
that is not significantly associated with overall 
survival is PD-L1 protein expression in early-
stage non-small cell lung cancer (NSCLC) [1] 
patients.

A question of interest might be whether there 
is an association of the biomarker and survival 
when adjusting for treatment group. Note that the 
biomarker analysis in Fig.  2.5 includes pooled 
patients across treatment groups meaning that the 
BM+ group contains patients in the treatment 
group as well patients in the control group and 
the BM− group contains patients in the treatment 
group as well as the control group. In the PD-L1 
study referenced above, the BM+ group are all 
patients who are PD-L1 positive pooling across 
those who were and were not treated with adju-
vant chemotherapy, and the BM- group are 
patients who are PD-L1 negative regardless of 
treatment. When the evaluation of the association 
with survival involves more than one variable, 

such as treatment group and biomarker status, 
statistical modeling is used, which in this case 
would be a Cox proportional hazards model. The 
relationship of each explanatory variable in the 
model and survival (the outcome variable) is 
summarized with a hazard ratio (HR), which is 
the ratio of the hazard of dying at a point in time 
for each group. The proportional hazard compo-
nent of the model assumes that this ratio remains 
constant over all time points. A HR of 1.0 indi-
cates there is no association between the variable 
and survival. Table 2.1 contains the univariable 
HRs for treatment group and biomarkers status.

The HR comparing the survival of the treat-
ment group to the control group is HR  =  0.62, 
which is less than one, and it is statistically sig-
nificant (p-value  =  0.0038). This means that 
patients in the treatment group are less likely to 
die than patients in the control group. (If the HR 
were greater than 1, this means that patients in 
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Table 2.1 Univariable estimates of the hazard ratio (HR) 
for treatment group and biomarker status group with 95% 
confidence intervals (CIs) and p-values

Variable HR (95% CI) p-value
Treatment group 0.0038
  Control 1.00 (reference)
  Treatment 0.62 (0.45, 0.86)
BM status 0.33
  BM− 1.00 (reference)
  BM+ 0.85 (0.61, 1.18)
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the treatment group are more likely to die than 
patients in the control group.) The best estimate 
of the treatment HR is 0.62, but there is uncer-
tainty associated with the estimate. Confidence 
intervals (CIs) are used to convey the precision of 
the estimate, and 95% CIs are the most com-
monly used. This is an interval for which there is 
a 95% probability that it contains the true 
HR. The 95% CI for the HR = 0.62 is 0.45–0.86. 
This interval does not contain one, which is con-
sistent with the conclusion that the association of 
treatment with survival is statistically significant. 
The conclusion of the univariable analysis of the 
treatment variable is that it appears that the treat-
ment is associated with longer survival compared 
to standard of care (control arm).

The univariable HR for the biomarker is 
HR = 0.85 (95% CI, 0.61–1.18) with a p-value of 
0.33. The 95% confidence interval contains 1 and 
the p-value is not statistically significant. It 
appears as though the biomarker is not associated 
with survival. Note that the conclusions based on 
the univariable Cox models are consistent with 
those from the KM analysis with the log-rank 
test, which is almost always the case.

A multivariable Cox model is used to evaluate 
the association of the biomarker with survival 
while adjusting for the treatment to which the 
patient was randomized. The multivariable model 
has both the treatment group and biomarker 
group as explanatory variables. Table  2.2 con-
tains the adjusted HRs for the variables in the 
multivariable Cox model.

The multivariable HR for the biomarker clas-
sification is HR = 0.85 (95% CI: 61–1.19), and its 

p-value is 0.35. The estimate of the association 
between the biomarker and survival did not 
change (only the upper value of the 95% CI 
changed slightly) when adjusting for treatment 
assignment, and the p-value did change slightly 
but is still not significant. The conclusion would 
be that the biomarker does not appear to be 
 associated with survival when adjusting for the 
treatment to a patient received. The lack of 
change between the univariable and multivari-
able HR estimates indicates that the effects of 
treatment and biomarker are not related. 
Returning to the PD-L1 and NSCLC example, 
the univariable HR for the BM+ patients (PD-L1 
positive) compared to BM− patients is HR = 0.91 
(95% CI, 0.75–1.30; p-value = 0.91). When the 
model includes treatment, the adjusted HR for 
PD-L1-positive versus PD-L1-negative patients, 
adjusting for adjuvant treatment (chemotherapy 
versus none), is HR = 1.01 (95% CI, 0.76–1.35; 
p-value 0 0.93) [1]. The conclusion would be that 
PD-L1 status (positive versus negative) is not 
associated with overall survival in early-stage 
NSCLC patients because there is no significant 
association between PD-L1 status and overall 
survival, even after adjusting for treatment.

 Biomarkers in Clinical Trials

A biomarker refers to a measurable indicator of a 
biological state. In cancer this includes indicators 
of cancer presence, of prognosis for patients with 
cancer, and of disease response to a specific treat-
ment. A biomarker can be a single measurement 

Table 2.2 Univariable and multivariable estimates of the HRs (with 95% CIs) and p-values for treatment group and 
biomarker status group. The univariable values are the same as in Table 2.1 and are the estimate of the HR for models 
that only have the indicated variable. The multivariable estimates come from a model that contains both variables at the 
same time

Univariable models Multivariable model
Variable HR (95% CI) p-value HR (95% CI) p-value
Treatment group 0.0038 0.0039
  Control 1.00 (reference) 1.00 (reference)
  Treatment 0.62 (0.45, 0.86) 0.62 (0.45, 0.86)
BM status 0.33 0.35
  BM− 1.00 (reference) 1.00 (reference)
  BM+ 0.85 (0.61, 1.18) 0.85 (0.61, 1.19)
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(e.g., PSA level for men), or it can be computed 
form numerous measurements (e.g., Oncotype 
Dx for women with early-stage breast cancer 
which is based on 21 genes). The two types of 
biomarkers commonly used in cancer clinical tri-
als are prognostic and predictive biomarkers.

A prognostic biomarker informs about a likely 
cancer outcome regardless of what treatment a 
patient receives (including no treatment); it is 
thought to reflect the natural history of the dis-
ease. In other words, a prognostic biomarker is 
significantly associated with survival when 
adjusting for treatment a patient received. In 
Fig. 2.6b it can be seen that the biomarker is asso-
ciated with survival for patients in the treatment 
group and for patients in the control group 
(Table 2.3).

The magnitudes of the association of the bio-
marker and survival are the same for both groups. 

In Fig. 2.6d, it also can be seen that there is an 
association between the biomarker and survival 
for both groups. The difference between the 
 scenarios depicted in Fig. 2.6d and that in 2.6b is 
that the magnitude of the association between the 
biomarker and survival depends on the treatment 
a patient received. For patients in the treatment 
arm, the magnitude of the biomarker association 
with survival is larger than for patients in the con-
trol group. In summary, if a biomarker is prog-
nostic, there will be an association of the 
biomarker and survival regardless of treatment. If 
the magnitude of the association is the same in 
the groups, the biomarker is purely prognostic. If 
the magnitude differs between groups, the bio-
marker is both prognostic and predictive.

A biomarker is predictive when the treatment 
effect differs for BM+ patients and BM− 
patients. Figure  2.6c shows an association 
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Fig. 2.6 Kaplan-Meier curves for different groups of 
patients where the color of the line denotes the biomarker 
group (BM+ is gray and BM− is maroon) and the line 
type denotes the treatment group (solid is the treatment 
group and dashed is the control group). (a) Illustrates the 
situation where the biomarker is neither prognostic nor 

predictive. (b) Illustrates the situation where the bio-
marker is prognostic but not predictive. (c) Illustrates the 
situation where the biomarker is predictive but not prog-
nostic. (d) Illustrates the situation where the biomarker is 
both prognostic and predictive
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Table 2.3 Definitions of different types of biomarkers with published examples of each

Biomarker Definition Example Reference
Prognostic A prognostic biomarker informs 

about a likely cancer outcome 
regardless of what treatment a 
patient receives (including no 
treatment)

Evaluation of PIK3CA mutation 
status for women with HER2- 
positive metastatic breast cancer

Baselga et al. [2]

Predictive A biomarker is predictive when 
the treatment effect differs for 
biomarker- positive patients 
(BM+) and biomarker- negative 
(BM−) patients

RAS mutational status for 
treatment of metastatic colorectal 
cancer with an anti-EGFR antibody 
(cetuximab)

Van Cutsem et al. [3]

Prognostic 
and 
predictive

There is an association between 
the biomarker and survival for 
patients in the treatment and 
control groups

EGFR mutation status in NSCLC 
patients

Brugger et al. [4]

Neither 
prognostic 
nor 
predictive

Treatment is associated with 
survival, but within each 
treatment group, there is no 
association of the biomarker with 
survival

PD-L1 in early-stage NSCLC study Tsao et al. [1]

between treatment and survival for BM+ 
patients; it appears as though patients in the 
treatment group have longer survival than 
patients in the control group. However, for BM− 
patients there is no association between treat-
ment and survival. The same is true for Fig. 2.6d, 
where there appears to be a treatment benefit for 
BM+ patients but no treatment benefit for BM− 
patients. The difference between Fig. 2.6c, d is 
that the biomarker is purely predictive (and not 
prognostic) in Fig. 2.6c: there is no association 
between the  biomarker and survival for patients 
in the control group. In Fig. 2.6d there is an asso-
ciation between the biomarker and survival for 
patients in the treatment and control groups indi-
cating the biomarker is both predictive and prog-
nostic. Figure  2.6a shows a case where the 
biomarker is neither predictive nor prognostic. 
Clearly, treatment is associated with survival, 
but within each treatment group, there is no 
association of the biomarker with survival.

In the era of precision medicine or individual-
ized treatment, predictive biomarkers are more 
useful than prognostic biomarkers because they 
can be used to determine which patient will 
derive benefit from a treatment (say BM+ 
patients) and which will not (say BM− patients). 
In this case, a BM+ patient would receive the 

treatment because he/she would likely garner 
benefit, and a BM− patient would not be treated 
because he/she would potentially experience 
adverse events with no benefit. The goal is to 
 discover and validate more predictive biomarkers 
so that patients are treated with regimens from 
which they benefit and spared those form which 
they will not benefit and may only be harmed.

KM curves such as those in Fig.  2.6 can be 
used to gain a preliminary indication of whether 
a biomarker is potentially predictive. To be able 
to evaluate if a biomarker is predictive, all four 
groups of patients are necessary: BM+ treated 
with drug of interest, BM- patients treated with 
drug of interest, BM+ patients treated with con-
trol, and BM− patients treated with control. A 
biomarker is potentially predictive if the treat-
ment is associated with survival in one biomarker 
group (e.g., BM+) and not the other (e.g., BM−). 
However, this is not sufficient. There needs to be 
a formal test of whether the treatment effect dif-
fers between the different biomarker groups. 
Such a test is performed with a statistical model, 
such as the Cox model for a survival outcome. 
The model contains the explanatory variables of 
treatment group and biomarker status with the 
addition of a variable for the interaction between 
the treatment and biomarker, the treatment by 
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biomarker interaction variable. To determine 
whether a biomarker is predictive, the treatment- 
by- biomarker interaction term in the Cox model 
needs to be statistically significant (e.g., 
p-value  <  0.05). A significant treatment-by- 
biomarker interaction term indicates that the 
treatment effect differs by the biomarker group.

A Cox model that tests for an interaction 
between treatment groups by biomarker status 
will have three variables: treatment group, bio-
marker status, and the treatment-by-biomarker 
interaction. It is difficult to interpret and visual-
ize the impact of the biomarker, treatment, and 
interaction based on the Cox model alone. In par-
ticular, the crude HRs that is produced by the 
software does not correspond to any of the four 
biomarker- by- treatment groups; the HRs for 
each of the four groups (one of which will be the 
reference group) are functions of the HRs of the 
model variables. KM curves can aid in under-
standing the relationship. Figure 2.7 contains the 
KM curves that  correspond to a study of biomark-
ers and treatment. It appears as though BM+ 
patients drive benefit from treatment but BM− 
patients do not. The interaction term from the 
corresponding Cox model is statistically signifi-
cant, p-value = 0.0049, indicating the biomarker 
is predictive.

If the treatment-by-biomarker interaction term 
is not statistically significant, then there is no evi-
dence that the biomarker is predictive, even if it is 
the case that the log-rank test for treatment ben-
efit is statistically significant in the BM+ group 
and not statistically significant in the BM− group. 
Often, investigators only analyze patients who 
were all treated with the drug of interest and con-
clude a biomarker is predictive if there is an asso-
ciation between the biomarker and survival. This 
is an inappropriate conclusion. Note that in 
Fig.  2.6b, for patients in the treatment group, 
there is an association between the biomarker and 
survival, BUT this is a purely prognostic bio-
marker because there is also an association 
between the biomarker and survival in the control 
group. Using only patients treated with the treat-
ment of interest, it cannot be determined whether 
the situation is that in Fig. 2.6b (purely prognos-
tic), Fig.  2.6c (purely predictive), or Fig.  2.6d 
(both prognostic and predictive).

 The Use of Forest Plots

Often meta-analysis studies of predictive or 
prognostic biomarkers are conducted in order to 
garner more power, especially for testing for a 
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Fig. 2.7 A Kaplan-Meier plot summarizing the survival 
results for the four different biomarker and treatment 
group combinations. This plot suggests that the biomarker 
is predictive because BM+ patients derive benefit from 

treatment and BM− patients do not. The predictive nature 
of the biomarker is confirmed with a statistically signifi-
cant biomarker-by-treatment interaction term in the Cox 
model (p-value for interaction = 0.0049)
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biomarker status by treatment interaction that is 
required to establish a biomarker is predictive. A 
forest plot is a graphical display of estimated 
results from randomized trials that investigate the 
same question. A forest plot typically lists the 
names of the included trials on the left-hand side. 
The content of the plot is the measure of the 
effect, which for overall survival is the HR, for 
each of the studies. The confidence intervals for 
the effect estimate is represented by horizontal 
lines and is often the numerical values for the 
effect estimate and confidence interval boundar-
ies are provided on the right-hand side of the 
graphic. The graph may be plotted on the loga-
rithmic scale when using a HR so that the 
 confidence intervals are symmetric around the 
estimated effect. Each square is centered on the 
effect size, and the area of the square is propor-
tional to the size of the study, which dictates the 
study’s weight or influence in the analysis. The 
overall meta-analysis estimate of effect is repre-
sented by a diamond, with the width of the dia-
mond corresponding to the confidence interval. A 

vertical line corresponding to no effect (e.g., 
HR = 1) is often plotted.

Figure 2.8 is a forest plot taken from a study 
performed by Rowland et al. [5]. The authors per-
formed a meta-analysis of randomized clinical 
trials that evaluated the effect of BRAF V600E 
mutation status, mutated (MT) versus wild type 
(WT), and benefit from anti-EGFR monoclonal 
antibody treatment (anti-EGFR mAB)  in patients 
with metastatic colorectal cancer that was RAS 
wild type. From the figure, it can be seen that 
within these studies, patients with BRAF WT 
tumors obtained benefit from anti-EGFR mAB 
treatment, with a few studies yielding statistically 
significant results. On the other hand, it appears 
as though patient with BRAF MT tumors did not 
garner benefit from anti-EGFR mAb treatment 
with none of the studies having statistically sig-
nificant results in this group. The meta-analysis 
estimate of anti-EGFR mAb benefit in patients 
with BRAF WT tumors is 0.81 (95% CI, 0.70–
0.95; p-value = 0.009) and in patients with BRAF 
MT tumors is 0.97 (95% CI, 0.67–1.41; 
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Fig. 2.8 A forest plot taken from Rowland et al. [5]. Note that there is an error in this plot in that the bottom portion is 
for RAS WT/BRAF MT patients. (Reprinted from Rowland et al. [5]. With permission from Nature Publishing Group)
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p-value = 0.88). Although there appears to be dif-
ferential treatment effects in the two biomarker 
groups, the test for interaction between BRAF 
status (WT versus MT) and treatment (anti- 
EGFR mAb treatment versus no anti-EGFR mAb 
treatment) was not statistically significant, 
p-value = 0.43. Hence, there is no evidence from 
this study that BRAF mutation status is a predic-
tive biomarker for benefit from anti-EGFR mAb 
in patients with RAS WT metastatic colorectal 
cancer.

 Biomarker Clinical Trial Designs

There are numerous clinical trial designs that 
incorporate biomarkers, validate biomarkers, and 
discover biomarkers. The enrichment design is 
used when there is compelling evidence that 
treatment benefit (if any) will be restricted to a 
subgroup of patients who do (or do not) have a 
particular biomarker. In this design, all patients 
are screened for the biomarker, and only those in 
the subgroup of interest (either have or do not 

have the biomarker) are enrolled on the trial (see 
Fig. 2.9).

This trial design cannot validate whether the 
biomarker is predictive for the treatment benefit 
since all patients are in the same biomarker sub-
group. It can only provide evidence whether there 
is a treatment benefit in the selected biomarker 
subgroup. If there is benefit, it is unknown 
whether patients in the nonselected biomarker 
group may also have derived treatment benefit. 
Such a design should only be used in cases where 
there is persuasive evidence that the biomarker is 
predictive. A successful example of the use of 
this design was the trials for trastuzumab in 
patients with HER2+ breast cancer: the National 
Surgical Adjuvant Breast and Bowel Project 
(NSABP) B-31 and the North Central Cancer 
Treatment Group (NCCTG) N9831 trials [6]. 
These trials only included women with tumors 
that were found to be HER2 positive. There were 
strong preclinical data to indicate that only these 
patients would derive benefit from trastuzumab. 
The trials were successful and led to FDA 
approval for the use of trastuzumab to treat 

Test sample
for biomarker 

Biomarker
present 

Biomarker
absent

Off-study

Register
patient

Targeted
treatment

Control
treatment

Randomize

Fig. 2.9 A diagram of the schema for an enrichment trial 
design. Patients are registered (and consented) prior to 
their sample being tested for the biomarker. If the bio-
marker is “present” (either deemed positive or negative), 

the patient is then enrolled and randomized to the targeted 
treatment or the control treatment (usually standard of 
care). If the biomarker is “absent,” the patient goes off- 
study and is no longer followed
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HER2-positive breast cancer in the adjuvant set-
ting. The question of whether patients with 
HER2-negative tumors would benefit from 
trastuzumab is currently being investigated.

Two different enrichment designs have 
recently gained popularity: the umbrella trial and 
the basket (or bucket trial). The umbrella design 
tests the treatment benefit of multiple drugs on 
different mutations in a single tumor type or his-
tology (see Fig. 2.10).

It provides a common infrastructure to facili-
tate patient screening and accrual. Patients are 
assigned or randomized to treatment arms based 
on their biomarker status. The intent of the trial is 
to evaluate the benefit of different drugs matched 
to their mutation in a single type of cancer. The 
biomarker testing is usually done at a central 
location prior to patient enrollment and random-
ization. Examples of recent umbrella trials 
include I-SPY2 [7, 8], BATTLE [9, 10], and 
Lung-MAP [11]. A basket or bucket trial includes 
cancers of different types that each has the same 
biomarker of interest (see Fig. 2.11).

This trial design tests the benefit of a treatment 
for which the biomarker is thought to be predic-
tive. The design includes many different cancer 
types that belong to the same biomarker subgroup, 
and one targeted treatment (usually) is tested. 

Patients are tested for the biomarker prior to enroll-
ment to the trial since the biomarker subgroup is an 
eligibility criterion. Examples of basket trials are 
MPACT [12], MATCH [13], and a vemurafenib 
trial for cancers with BRAF V600 mutations [14]. 
These are versions of enrichment trials and are 
designed to realize benefits of efficiency of using a 
single platform (umbrella trial) or to increase the 
number of patients eligible for treatment with a 
particular biomarker and to determine if the benefit 
is similar across tumor types (basket).

The all-comer (or unselected) design tests all 
patients for their biomarker status and enrolls all 
patients regardless of biomarker status. An 
 eligibility criterion for this trial is adequate speci-
men availability and quality to perform the bio-
marker assay. The patients are randomized to the 
same set of treatment arms, for all the biomarker 
groups (see Fig. 2.12). The SATURN (sequential 
Tarceva in unresectable non-small lung cancer) 
trial [15] is an example of an all-comer trial. In 
this trial, all eligible NSCLC patients were ran-
domly assigned to erlotinib or placebo plus stan-
dard of care, regardless of the EGFR status of 
their tumor. The trial was designed to evaluate the 
efficacy of erlotinib in all randomized patients as 
well as in the subgroup of patients that had 
EGFR-positive tumors.

Particular tumor histology

Common biomarker profiling platform 

R

Biomarker 1

Targeted
treatment 1

Control
treatment

R

Biomarker 2

Targeted
treatment 2

Control
treatment

R

Biomarker 3

Targeted
treatment 3

Control
treatment

R

... No biomarker

Experimental
treatment 1

Control
treatment

Fig. 2.10 A diagram for an umbrella trial. Tumor of a 
specific histologic type is tested for a panel of biomarkers 
on a common testing platform. Tumors that have 
 biomarkers of interest are then randomized to a treatment 

that targets the biomarker or to a control treatment. If 
tumors have none of the biomarkers of interest, they either 
are off-study or are randomized between control and 
another (untargeted) experimental treatment
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Randomize
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Fig. 2.11 A diagram for a basket trial. All types of tumors 
are tested for a specific biomarker. If they have the bio-
marker of interest, they are randomized to a targeted treat-

ment or to a control treatment. If they do not have the 
biomarker of interest, they are not registered to the trial

Targeted
treatment

Targeted
treatment

Register
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for biomarker*

Control
treatment

Randomize
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Control
treatment
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*Can be tested at any point prior to analysis

Fig. 2.12 A diagram of the schema for an all-comers trial 
design. Patients are registered and entered onto the trial 
regardless of their biomarker status. In the diagram, they 
are tested prior to randomization, but this does not have to 

be the case; the biomarker status only needs to be known 
prior to the analysis of the trial data. Both types of patients, 
those with the biomarker present or absent, are random-
ized to targeted treatment or to control treatment
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The test for the biomarker can be performed 
before or after randomization. If the biomarker is 
a stratification variable, then to ensure the same 
distribution of biomarker subgroups among the 
treatment arms, it needs to be performed prior to 
patient randomization. If it is not used as a strati-
fication factor, it can be performed at any time 
prior to the pre-planned trial analyses. There are 
several different ways the trial data could be ana-
lyzed, but the analysis method must be pre- 
specified at the time of trial design. If the primary 
interest is to validate that the biomarker is predic-
tive, a biomarker by treatment interaction analy-
sis will be the primary analysis. This formally 
tests for a biomarker by treatment interaction 
term in a Cox model as described above.

Another type of analyses determines which 
patient subgroups defined by the biomarker 
benefit from treatment, if any, by performing 
sequential analyses. One approach is to test for 
a treatment effect in the entire trial cohort 
(ignoring biomarker group). If this is not sig-
nificant, then a test of treatment benefit will be 
done in a planned biomarker subset, which is 
the subset thought to be the most likely to derive 
benefit a priori. Another approach is to first test 
for treatment benefit in a biomarker subset (the 
one with the strongest a priori evidence it would 
benefit), and if this is statistically significant, 
perform a test of treatment benefit in the entire 
clinical trial cohort. The type of analysis plan 
that will be done is pre-specified during the trial 
planning stage, and the level of significance 
used for the planned sequential analyses are set 
to ensure the overall trial type I error is main-
tained at 0.05.

It is best to use the marker-by-treatment inter-
action analysis when there is uncertainty whether 
the biomarker is predictive or not. However, this 
analysis requires the largest sample size. The 
sequential testing approaches are also relevant 
for situations where there is uncertainty of 
whether the biomarker is predictive or not, but 
they are not powered to detect a biomarker by 
treatment interaction. The intent for the latter two 
approaches is to find subgroup(s) that benefit 
from treatment without formally establishing 
whether the biomarker is predictive. These trials 
are generally a bit smaller than what is needed for 
the maker-by-treatment interaction analysis.

Finally, there are refinements to the designs 
discussed above that incorporate a Bayesian 
aspect to perform exploratory analyses meant to 
discover biomarkers as the trial proceeds. These 
designs are sometimes called exploratory plat-
form designs and usually are early phase (I or II) 
trials. Such designs are useful when there is 
uncertainty regarding the best biomarkers for the 
treatments under study. In this design, drug arms 
are pre-specified, and patients are initially 
 randomized equally across the arms, regardless of 
the biomarker status of their tumor. Biomarker 
testing is performed on a tumor biopsy prior to 
randomized, and pre-specified biomarker cohorts 
are stratified evenly across treatment arms. After a 
sufficient number of patients have been assigned 
to each arm, the efficacy for each biomarker- 
treatment combination is evaluated, and the ran-
domization is adapted so that future patients have 
a higher probability of being assigned to a treat-
ment group that appears favorable for the bio-
marker in their tumor. Drugs that do not appear to 
be beneficial for any biomarker group are dropped. 
Biomarker-treatment combinations that surpass a 
pre-defined threshold of efficacy are brought for-
ward in a larger enrichment trial (e.g., phase II or 
III). In these trials, only patients with tumors that 
have the identified biomarker are enrolled, and the 
patients are randomized to the experimental treat-
ment or standard of care. Examples of exploratory 
platform trials with Bayesian adaptive randomiza-
tion are BATTLE [16], for patients with previ-
ously treated lung cancer, and I-SPY2 [17], a 
neoadjuvant trial for breast cancer patients.

 Concluding Remarks

For cancer treatments to be more individualized 
to patient and/or disease characteristics, it is nec-
essary to develop predictive biomarkers. 
However, the success rate for finding predictive 
biomarkers has been disappointing. To increase 
the success rate, it is important to understand the 
evidence that is needed to determine whether a 
biomarker is predictive of treatment benefit. It is 
also important to understand the different roles of 
biomarkers in clinical trials and the implications 
of the different clinical trial designs for the evalu-
ation of biomarkers.
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Glossary

Adjusted (or multivariable hazards ratio 
(HR) A multivariable Cox model allows 
the evaluation of the association of multiple 
variables on the outcome (e.g., survival). This 
allows a more accurate assessment of the rela-
tionship of a variable of interest to overall 
survival by accounting for other variables that 
may be associated with survival. For example, 
when evaluating the association of a bio-
marker with survival, a treatment variable may 
be added to the model. This would allow the 
evaluation of the association of the biomarker 
with survival after accounting for the associa-
tion of treatment with survival. The hazard 
ratio for a variable from a multivariable Cox 
model is referred to as a multivariable HR or 
an adjusted HR.

Continuous (bio)marker A continuous bio-
marker is one that has an infinite number of 
possibilities; in other words, it can take on any 
value between its minimum and maximum 
value if it could be measured to any desired 
degree of precision. An example of a continu-
ous biomarker is PSA level for prostate can-
cer. The minimum value is 0 and there is no 
absolute maximum. If PSA could be measured 
to any desired degree of precision, all nonneg-
ative values are possible.

Cox proportional hazards model A Cox pro-
portional hazards model is a regression tech-
nique for time-to-event data (e.g., survival) 
where there is censoring (when some patients 
are alive at the time of analysis). It is a way to 
evaluate the association of a variable with the 
time-to-event outcome such as survival. The 
method is semi-parametric; that is, it does not 
assume a model for t survival but does assume 
that the effect of a variable on survival is con-
stant over time. The association is measured 
by a hazard ratio (HR) where HR = 1 means 
no association, a HR <1 means increasing 
values of the variable reduces the chance of 
death, and HR >1 means that increasing value 
of the variable increases the chance of death.

Dichotomous (bio)marker A dichotomous bio-
marker is one that takes one of two possible 
values. It is used to split patient cohorts into 
two categories or groups. An example of a 

dichotomous biomarker is estrogen receptor 
(ER) status for women with breast cancer: ER 
positive versus ER negative.

Log-rank test A log-rank test is used to com-
pare the survival distributions of two or more 
groups. The null hypothesis is that there is no 
difference among the groups. If the p-value 
is significant (e.g., less than 0.05), this is evi-
dence that the groups have different survival 
experiences. Note this is only a test for a dif-
ference among the survival experiences and 
does not provide an estimate regarding the size 
of the differences between any two groups.

Meta-analysis A meta-analysis encompasses 
techniques for combining data from mul-
tiple studies. An underlying assumption is 
that the treatment effect is consistent across 
studies and combining results across studies 
yields increased power. Most meta-analysis 
approaches essentially compute a weighted 
average from the results of the individual stud-
ies, and larger studies tend to be given more 
weight.

Randomization or random assignment In ran-
domized trials, the participants are assigned 
by chance to the treatment groups (arms) 
rather than by choice. Randomization serves 
to make the groups similar with respect to 
variables (e.g., patient characteristics, tumor 
traits) other than the treatment. This means if 
differences are observed for the outcome vari-
able (primary endpoint), it can be attributable 
to the treatment since the groups balanced for 
the other variables. Randomization is accom-
plished with a chance procedure (e.g., flipping 
a coin) or a random number generator.

Stratification variable A stratification vari-
able in a clinical trial is a variable that is used 
to group patients into strata corresponding to 
the values of the variable. Randomization 
is performed separately within each stra-
tum. An example of a stratification variable 
is whether a patient has disease in his/her 
lymph nodes or not (e.g., lymph node sta-
tus with values of lymph node positive and 
lymph node negative). Variables selected for 
stratification are those where it is important 
there is no imbalance between the treatment 
arms because they are highly prognostic of 
outcome.
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Type I error Type I error is the error that occurs 
when the null hypothesis is rejected although 
it is true. It is a false-positive result. For exam-
ple, suppose in reality there is no difference 
between the experimental treatment and stan-
dard of care with respect to overall survival. 
However, a clinical trial is performed, and it 
is found that the treatment arm had superior 
survival compared to the standard of care arm 
with a p-value of 0.03. The investigators con-
clude that the experimental treatment is better 
than the standard of care. In reality, this is an 
incorrect conclusion and an example of a type 
I error. (Note that the investigators would not 
know that their conclusion is incorrect.)

Univariable hazards ratio (HR) A univariable 
hazard ratio is the ratio of hazard rates for an 
event (e.g., death) corresponding to the dif-
ferent values of one variable of interest. For 
example, in a Cox model that contains only a 
treatment variable (experimental versus con-
trol), a HR = 0.50 for survival indicates that 
patients in the treatment group die at half the 
rate per unit of time as patients in the control 
group.
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