
Chapter 6
The Hamilton–Jacobi Formalism

In the preceding chapters we have studied convenient forms of expressing some
systems of ordinary differential equations, most of them related to mechanical
systems. In this chapter we shall see that each of these systems of equations can be
translated into a single partial differential equation, known as the Hamilton–Jacobi
equation, which is constructed out of the Hamiltonian. A complete solution of this
equation is the generating function of a canonical transformation that relates the
coordinates being employed with another set of canonical coordinates which are all
constants of motion.

As we have seen in the preceding chapter, the canonical transformations can be
employed to simplify the solution of the Hamilton equations. However, we do not
have a systematic method to find a convenient canonical transformation for any
given Hamiltonian. As we shall show in this chapter, by finding a complete solution
of a certain first-order partial differential equation (the Hamilton–Jacobi equation,
or HJ equation, for short) one obtains the generating function of a local canonical
transformation such that the new Hamiltonian is equal to zero.

In Section 6.1 we present the HJ equation and we give several standard examples
of its application, finding complete solutions of the HJ equation by means of
the method of separation of variables. In Section 6.1.1 we study the relationship
between different complete solutions of the HJ equation. In Section 6.1.2, we
consider alternative expressions for the HJ equation, which are useful in some cases,
but not usually discussed in the standard textbooks. In Section 6.1.3 we show that in
some problems where the method of separation of variables is not applicable, it may
be possible to obtain R-separable solutions, which are sums of a fixed function that
may depend on all the variables, and separated one-variable functions. In Section 6.2
we give a simple proof and several applications of the Liouville theorem, which
enables us to find complete solutions of the HJ equation, making use of an adequate
set of constants of motion.
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In Section 6.3 we show how to map the solutions of the HJ equation corre-
sponding to a Hamiltonian H into solutions of the HJ equation corresponding to the
new Hamiltonian K obtained by a canonical transformation. This mapping is then
applied in Section 6.3.1 to find the solutions of the HJ equation with a specified
initial condition. In Section 6.4 we show that with any point transformation in
the extended configuration space, in which the time may be also transformed, and
any Hamiltonian, we can obtain new Hamiltonians such that the solutions of the
corresponding HJ equations are related in a simple way.

In Section 6.5 we apply the Lagrangian and the Hamiltonian formalisms to the
study of geometrical optics and we show that the HJ equation leads to the eikonal
equation.

6.1 The Hamilton–Jacobi Equation

As we have seen in Section 5.2, any real-valued function of 2n + 1 variables,
F2(qi, Pi, t), such that

det

(
∂2F2

∂qi∂Pj

)
�= 0, (6.1)

defines a canonical transformation, Qi = Qi(qj , pj , t), Pi = Pi(qj , pj , t), given
implicitly by

pi = ∂F2

∂qi

, Qi = ∂F2

∂Pi

. (6.2)

Then, the Hamilton equations

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi

, (6.3)

for an arbitrary Hamiltonian, H , are equivalent to

Q̇i = ∂K

∂Pi

, Ṗi = − ∂K

∂Qi

, (6.4)

where

K = H + ∂F2

∂t
, (6.5)

but Equations (6.4) need not be simpler than (6.3).
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However, if we find a generating function F2 such that the new Hamiltonian,
K , is equal to zero, then the equations of motion (6.4) are trivially integrated,
yielding Qi = const., Pi = const. (that is, the new canonical coordinates, Qi ,
Pi , are 2n, locally defined, constants of motion) (cf. Proposition 5.42). In that case,
by combining (6.5) with the first equations in (6.2), and denoting the generating
function F2 by S, one obtains

H

(
qi,

∂S

∂qi

, t

)
+ ∂S

∂t
= 0. (6.6)

Equation (6.6) is a first-order partial differential equation (PDE) for S(qi, Pi, t),
known as the Hamilton–Jacobi (HJ) equation, and the function S will be called
Hamilton’s principal function. It should be noted that this equation does not contain
the variables Pi explicitly, so that, in order to satisfy the condition

det

(
∂2S

∂qi∂Pj

)
�= 0 (6.7)

[see Equation (6.1)], the function S must contain the n variables Pi as parameters.
Any solution of the HJ equation satisfying (6.7) is called a complete solution.
(A first-order linear PDE possesses a general solution that contains an arbitrary
function. See, e.g., Example 6.29.)

Since the HJ equation does not contain S explicitly, but only its partial deriva-
tives, given a solution, S, of the HJ equation, if c is an arbitrary constant, then S+c is
also a solution of the same equation. However, such a trivial constant cannot be one
of the n parameters Pi contained in a complete solution because it would produce
an entire row or column of zeroes in the matrix (6.7).

As we have seen in Proposition 5.42, making use of the explicit form of the
solution of the Hamilton equations, one can find the generating function of a
canonical transformation such that the new Hamiltonian is equal to zero (that
is, a complete solution of the HJ equation) (see Examples 5.40 and 5.43). What
is desirable is to find complete solutions of the HJ equation without knowing
beforehand the solution of the Hamilton equations. Unfortunately, we do not have
an alternative method to solve the HJ equation in general.

Once we have a complete solution, S(qi, Pi, t), of the HJ equation, we substitute
it into the equations

pi = ∂S

∂qi

, Qi = ∂S

∂Pi

(6.8)

[see Equation (6.2)] in order to obtain the canonical transformation generated by
S. If we make use of these equations to find Qi and Pi in terms of (qj , pj , t), we
obtain 2n (functionally independent) constants of motion, and if we use them to
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express qi and pi in terms of (Qj , Pj , t), we obtain the solution of the Hamilton
equations (6.3), using the fact that the solution of the Hamilton equations (6.4), with
K being equal to zero, is Qi(t) = const., Pi(t) = const.

Example 6.1 (One-dimensional harmonic oscillator). By means of a direct substi-
tution one can readily verify that

S(q, P, t) = −
(

P 2

2m
+ mω2

2
q2

)
tan ωt

ω
+ Pq sec ωt

is a solution of the HJ equation

1

2m

(
∂S

∂q

)2

+ mω2

2
q2 + ∂S

∂t
= 0, (6.9)

which corresponds to the standard Hamiltonian of a one-dimensional harmonic
oscillator

H = p2

2m
+ mω2

2
q2

[cf. Equation (6.6)]. (This solution of Equation (6.9) will be obtained in Exam-
ple 6.18, below.) Then, Equations (6.8) yield

p = −mωq tan ωt + P sec ωt, Q = − P

mω
tan ωt + q sec ωt

and, therefore, the canonical transformation generated by S is given by

Q = q cos ωt − p

mω
sin ωt, P = mωq sin ωt + p cos ωt, (6.10)

or

q = Q cos ωt + P

mω
sin ωt, p = −mωQ sin ωt + P cos ωt. (6.11)

According to the discussion above, Equations (6.10) give two constants of
motion, while Equations (6.11) give the solution of the Hamilton equations (in this
example, Q and P happen to be the values of q and p at t = 0, respectively). It
may be noticed that, by virtue of the Hamilton equations, p = mq̇ and, therefore,
the second equation in (6.11) can be obtained by differentiating the first one with
respect to the time, but this is not necessary (though not wrong, either); the canonical
transformation generated by any complete solution of the HJ equation yields the
entire solution of the Hamilton equations.
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Separation of Variables
The method regularly employed to find complete solutions of the HJ equation (and
in most textbooks the only one mentioned) is the method of separation of variables.
In this method one looks for solutions of Equation (6.6) that can be written as the
sum of n+1 one-variable functions, S = S1(q1)+S2(q2)+· · ·+Sn(qn)+Sn+1(t).
When the method is applicable, one obtains n+1 first-order ODEs (for the functions
S1, S2, . . . , Sn+1), and in the process of separating the variables one has to introduce
n constants of separation, which can be taken as the parameters Pi (see the examples
below).

Example 6.2 (Particle in a uniform gravitational field). A very simple, but illus-
trative, example is given by the Hamiltonian

H = px
2 + py

2

2m
+ mgy, (6.12)

corresponding to a particle of mass m in a uniform gravitational field. The HJ
equation is given by

1

2m

[(
∂S

∂x

)2

+
(

∂S

∂y

)2
]

+ mgy + ∂S

∂t
= 0 (6.13)

and we look for a separable solution of (6.13), that is, a solution of the form

S = A(x) + B(y) + C(t), (6.14)

where A, B, and C are real-valued functions of a single variable. Substituting (6.14)
into (6.13) we obtain, after rearrangement of the terms,

1

2m

[(
dA

dx

)2

+
(

dB

dy

)2
]

+ mgy = −dC

dt
,

which must hold for all values of x, y, and t , in some open subset of R3. The left-
hand side of this last equation does not depend on t , while the right-hand side does
not depend on x and y; hence, the two sides of the equation do not depend on x, y, or
t , and therefore must be equal to some constant, P1, say. Hence, up to an irrelevant
constant term,

C(t) = −P1t (6.15)

and

1

2m

[(
dA

dx

)2

+
(

dB

dy

)2
]

+ mgy = P1.
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Rewriting the last equation in the form

(
dA

dx

)2

= 2mP1 − 2m2gy −
(

dB

dy

)2

,

we obtain an equation such that the left-hand side does not depend on y, and the
right-hand side does not depend on x, thus, each side must be a constant. Hence,

A(x) = P2x, (6.16)

where P2 is a constant, and

dB

dy
= ±

√
2mP1 − P2

2 − 2m2gy.

(In what follows there is no need to consider the two signs in the square root, since
we only require one complete solution of the HJ equation.) In this manner, we have
obtained a solution of the HJ equation (6.13),

S(x, y, P1, P2, t) = P2x +
∫ √

2mP1 − P2
2 − 2m2gy dy − P1t, (6.17)

that contains two parameters (the constants of separation P1 and P2) which have
been identified with the new momenta, in order to emphasize the role of S as the
(type F2) generating function of a canonical transformation.

Making use of Equations (6.8) we have

px = P2, py =
√

2mP1 − P2
2 − 2m2gy,

and

Q1 = −t +
∫

m dy√
2mP1 − P2

2 − 2m2gy
= −t − 1

mg

√
2mP1 − P2

2 − 2m2gy,

Q2 = x −
∫

P2 dy√
2mP1 − P2

2 − 2m2gy
= x + P2

m2g

√
2mP1 − P2

2 − 2m2gy.

By combining these last expressions, we obtain the coordinate transformation

Q1 = −t− py

mg
, Q2 = x+pxpy

m2g
, P1 = px

2 + py
2

2m
+mgy, P2 = px,

(6.18)
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and its inverse

x = Q2 + P2(t + Q1)

m
, y = P1

mg
− P2

2

2m2g
− g

2
(t + Q1)

2,

px = P2, py = −mg(t + Q1).

(6.19)

Since the new Hamiltonian is equal to zero, Equations (6.18) give four constants of
motion, while Equations (6.19) give the solution of the Hamilton equations in the
original variables. (In this example not all of the Qi and Pi coincide with the initial
values of qi and pi ; however, the constants of motion Qi and Pi can be expressed in
terms of the initial values of qi and pi by simply setting t = 0, or any other initial
value of t , in Equations (6.18).)

For future convenience, it is useful to note that the functions A(x) and C(t),
which depend on the variables that do not appear in the Hamiltonian (6.12), are
linear functions [see Equations (6.15) and (6.16)]. One can convince oneself that
this is a general rule: if a coordinate qK does not appear in the Hamiltonian (but its
conjugate momentum, pK , does appear in H ), then, in a separable solution of the
HJ equation, the function depending on qK must be a linear function. Similarly, if t

does not appear in the Hamiltonian, then, in a separable solution of the HJ equation,
the function depending on t must be a linear function of t .

Example 6.3 (Particle in a central field of force). One of the standard examples of
the application of the HJ equation is that of a particle in a central field of force. Using
the fact that the orbit must lie on a plane passing through the center of force, we
consider a particle moving on the Euclidean plane under the influence of a potential
V (r), hence

H = 1

2m

(
pr

2 + pθ
2

r2

)
+ V (r), (6.20)

in terms of the polar coordinates (r, θ) [see (4.7)]. Thus, the HJ equation is given by

1

2m

[(
∂S

∂r

)2

+ 1

r2

(
∂S

∂θ

)2
]

+ V (r) + ∂S

∂t
= 0 (6.21)

and, taking into account that θ and t do not appear in the Hamiltonian (or in the HJ
equation), we look for a separable solution of (6.21) of the form

S = A(r) + P2θ − P1t, (6.22)

where A is a real-valued function of a single variable, and P1, P2 are separation
constants. Substituting (6.22) into (6.21) we obtain
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dA

dr
= ±

√
2m

[
P1 − V (r) − P2

2

2mr2

]
.

Thus, we have a solution of the HJ equation (6.21),

S(r, θ, P1, P2, t) =
∫ √

2m

[
P1 − V (r) − P2

2

2mr2

]
dr + P2θ − P1t. (6.23)

that contains two parameters (P1 and P2), identified with the new momenta.
The canonical transformation generated by S is implicitly given by [see Equa-

tions (6.8)]

pr = ∂S

∂r
=

√
2m

[
P1 − V (r) − P2

2

2mr2

]
, pθ = ∂S

∂θ
= P2 (6.24)

and

Q1 = ∂S

∂P1
= −t +

∫
mdr√

2m

[
P1 − V (r) − P2

2

2mr2

] , (6.25)

Q2 = ∂S

∂P2
= θ −

∫
P2√

2m

[
P1 − V (r) − P2

2

2mr2

] dr

r2
. (6.26)

From Equations (6.24) we see that the new momenta are related to the original
coordinates by

P1 = 1

2m

(
pr

2 + pθ
2

r2

)
+ V (r), P2 = pθ ,

that is, P1 and P2 are the Hamiltonian and the angular momentum about the origin,
respectively. (We already knew that these two quantities are conserved because the
Hamiltonian does not depend on t or θ .) Equation (6.26) yields the equation of the
orbit.

Equations (6.25) and (6.26) are essentially Equations (2.14) and (2.15), respec-
tively.

Example 6.4 (Kepler problem in parabolic coordinates). The Hamiltonian for the
two-dimensional Kepler problem, expressed in parabolic coordinates, is given by
[see Equation (4.43)]
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H = 1

2m

pu
2 + pv

2

u2 + v2
− 2k

u2 + v2
.

Hence, the corresponding HJ equation is

1

2m(u2 + v2)

[(
∂S

∂u

)2

+
(

∂S

∂v

)2
]

− 2k

u2 + v2
+ ∂S

∂t
= 0. (6.27)

A separable solution of this equation has the form

S = A(u) + B(v) − P1t,

where A and B are functions of one variable, and P1 is a separation constant. Sub-
stituting this last expression into the HJ equation (6.27), after some rearrangement
we obtain

(
dA

du

)2

− 2mk − 2mP1u
2 = −

(
dB

dv

)2

+ 2mk + 2mP1v
2.

Since the left-hand side does not depend on v and the right-hand side does not
depend on u, both sides must be equal to some constant, P2, say. Hence,

S =
∫ √

P2 + 2mk + 2mP1u2 du +
∫ √

−P2 + 2mk + 2mP1v2 dv − P1t,

is a separable solution of the HJ equation which leads to the expressions

pu =
√

P2 + 2mk + 2mP1u2, pv =
√

−P2 + 2mk + 2mP1v2.

By combining these two equations one readily finds that P1 = H and that

v2pu
2 − u2pv

2 = (u2 + v2)P2 + 2mk(v2 − u2),

hence, making use of (4.40), (4.41), and (4.51),

P2 = v2pu
2 − u2pv

2 + 2mk(u2 − v2)

u2 + v2

= v2(upx + vpy)
2 − u2(−vpx + upy)

2

u2 + v2 + 2mk
x

r

= −2xpy
2 + 2ypxpy + 2mk

x

r
,

i.e., the constant of motion P2 is equal to −2A1, where A1 is the x-component of
the Laplace–Runge–Lenz vector (4.52).
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The equation of the orbit is obtained from

Q2 = ∂S

∂P2
=

∫
du

2
√

P2 + 2mk + 2mP1u2
−

∫
dv

2
√

−P2 + 2mk + 2mP1v2
,

(6.28)
using the fact that Q2 is a constant of motion, and the dependence of the coordinates
on the time is determined by

Q1 = ∂S

∂P1
=

∫
mu2du√

P2 + 2mk + 2mP1u2
+

∫
mv2dv√

−P2 + 2mk + 2mP1v2
− t,

(6.29)
using the fact that Q1 is a constant of motion.

In order to obtain the solution of the equations of motion, it is convenient to
introduce an auxiliary parameter, τ , in the following way. Since Q2 is a constant of
motion, Equation (6.28) is equivalent to the ODE

du√
P2 + 2mk + 2mP1u2

= dv√
−P2 + 2mk + 2mP1v2

.

Introducing the parameter τ by means of

dτ

m
= du√

P2 + 2mk + 2mP1u2
= dv√

−P2 + 2mk + 2mP1v2
, (6.30)

where the constant factor 1/m is included in order to get agreement with the
definition given in Section 4.3, from (6.29) we have

dt = mu2du√
P2 + 2mk + 2mP1u2

+ mv2dv√
−P2 + 2mk + 2mP1v2

= (u2 + v2) dτ,

(6.31)
which coincides with Equation (4.47).

From Equations (6.30) one can readily get u and v as functions of τ and
substituting the expressions thus obtained into (6.31) one obtains the relation
between t and τ (see Section 4.3.1).

When the Hamiltonian does not depend explicitly on the time, the HJ equa-
tion (6.6) admits partially separable solutions of the form

S(qi, t) = W(qi) − Et,

where E is a separation constant and W(qi) obeys the equation

H

(
qi,

∂W

∂qi

, t

)
= E.
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The function W is known as Hamilton’s characteristic function and the equation
satisfied by W is usually called time-independent Hamilton–Jacobi equation.

Example 6.5 (Charged particle in the field of a point electric dipole). Another
well-known example of a Hamiltonian that leads to a separable HJ equation is
the one corresponding to a charged particle in the field of a point electric dipole,
expressed in spherical coordinates (r, θ, φ),

H = 1

2m

(
pr

2 + pθ
2

r2 + pφ
2

r2 sin2 θ

)
+ k cos θ

r2 ,

where k is a constant. The HJ equation is

1

2m

[(
∂S

∂r

)2

+ 1

r2

(
∂S

∂θ

)2

+ 1

r2 sin2 θ

(
∂S

∂φ

)2
]

+ k cos θ

r2 + ∂S

∂t
= 0 (6.32)

and, taking into account that φ and t do not appear explicitly in H [but the partial
derivatives of S with respect to φ and t do appear in (6.32)], we look for a separable
solution of this equation of the form

S = A(r) + B(θ) + P2φ − P1t,

where P1 and P2 are separation constants. Substituting this expression into (6.32)
and multiplying by 2mr2 we obtain

r2
(

dA

dr

)2

+
(

dB

dθ

)2

+ P2
2

sin2 θ
+ 2mk cos θ − 2mP1r

2 = 0.

Hence,

(
dB

dθ

)2

+ P2
2

sin2 θ
+ 2mk cos θ = P3 (6.33)

and

r2
(

dA

dr

)2

− 2mP1r
2 = −P3, (6.34)

where P3 is a third separation constant. Thus, the HJ equation admits separable
solutions given by

S =
∫ √

2mP1 − P3

r2
dr +

∫ √
P3 − P2

2

sin2 θ
− 2mk cos θ dθ + P2φ − P1t,
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and the canonical transformation generated by S is implicitly given by

pr =
√

2mP1 − P3

r2
, pθ =

√
P3 − P2

2

sin2 θ
− 2mk cos θ, pφ = P2,

(6.35)
and

Q1 = −t +
∫

m dr√
2mP1 − P3

r2

, (6.36)

Q2 = φ −
∫

P2 dθ

sin2 θ

√
P3 − P2

2

sin2 θ
− 2mk cos θ

, (6.37)

Q3 = −
∫

dr

2r2
√

2mP1 − P3
r2

+
∫

dθ

2
√

P3 − P2
2

sin2 θ
− 2mk cos θ

. (6.38)

From Equations (6.35) we find that the new momenta, Pi , are the constants of
motion

P1 = H, P2 = pφ, P3 = pθ
2 + pφ

2

sin2 θ
+ 2mk cos θ.

The conservation of P1 and P2 are related to the obvious symmetries of the
Hamiltonian (i.e., t and φ do not appear in the Hamiltonian), while the conservation
of P3 is related to a “hidden” symmetry of H (cf. Exercise 4.22).

With Equations (6.36)–(6.38) the solution of the equations of motion has been
reduced to quadratures. It should be kept in mind that Equations (6.35)–(6.38) only
give a coordinate transformation, and that the equations of motion are Q̇i = 0 = Ṗi .
Thus, for example, Equation (6.36) amounts to the equation of motion

dr

dt
=

√
2mP1 − P3

r2

m
,

which makes sense also in the case where the constants of motion P1 (the total
energy) and P3 are equal to zero.

Exercise 6.6. As shown in Exercise 4.18, the Hamiltonian for a particle of mass m

moving on the Euclidean plane subject to the gravitational attraction of two fixed
centers separated by a distance 2c can be written as [see Equation (4.57)]

H = pu
2 + pv

2

2mc2(cosh2 u − cos2 v)
− (k1 + k2) cosh u + (k1 − k2) cos v

c (cosh2 u − cos2 v)
. (6.39)
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Show that the HJ equation admits separable solutions in these coordinates, find
the explicit expressions of two constants of motion and reduce to quadratures the
equation of the orbit.

Exercise 6.7. Show that the HJ equation for a two-dimensional isotropic harmonic
oscillator can be solved by separation of variables in elliptic (or confocal) coordi-
nates (see Exercise 4.18) and identify the constants of motion P1, P2.

Exercise 6.8. Show that the HJ equation for the Hamiltonian

K = p2

2t
+ q6

6t
+ pq

2t
,

which is related to the Emden–Fowler equation (see Example 5.17), can be solved
by separation of variables and reduce the solution of the Hamilton equations to
quadratures. (See also Example 5.18.)

Exercise 6.9. Show that the HJ equation for a Hamiltonian of the form

H = 1

2

Ppx
2 + Qpy

2

X + Y
+ ξ + η

X + Y
,

where P, X, ξ are functions of x only, and Q, Y, η are functions of y only, can be
solved by separation of variables.

A Multiplicatively Separable Solution
In some exceptional cases, the HJ equation admits multiplicatively separable
complete solutions. A simple example of this is provided by the HJ equation

1

2m

(
∂S

∂q

)2

+ ∂S

∂t
= 0, (6.40)

which corresponds to a free particle. Looking for a solution of the form S(q, t) =
A(q)B(t) we obtain

1

2mA

(
dA

dq

)2

= − 1

B2

dB

dt

and, in the usual manner, we conclude that both sides of the last equation must be
equal to some constant, a, say. Solving the resulting ODEs, we readily obtain

S(q, t) = ma

2
(q + b)2 1

at + c
,
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where b and c are integration constants. However, rewriting the solution thus
obtained in the equivalent form

S(q, t) = m(q + b)2

2(t + c/a)
, (6.41)

we see that it only depends on two arbitrary constants (b and c/a).
Setting c/a = 0 or b = 0 (but not both) in (6.41) we obtain a complete solution

of the HJ equation (6.40). This shows that the frequently found assertion that any
additional constant in a complete solution of the HJ equation must be an additive
constant is wrong. (See also Example 6.10, below.)

6.1.1 Relation Between Complete Solutions of the HJ Equation

The HJ equation for a given Hamiltonian, as any other first-order PDE, possesses
an infinite number of complete solutions. As we shall show now, any two complete
solutions of the HJ equation are related by means of a time-independent canonical
transformation [cf. Equation (5.99)]. Indeed, if S(qi, Pi, t) is a complete solution of
the HJ equation corresponding to a Hamiltonian H(qi, pi, t), we have

pidqi − Hdt + QidPi = dS

[see Equation (5.54)]. Similarly, if S̃(qi, P̃i , t) is any other complete solution of the
same equation (in the same coordinates qi), then

pidqi − Hdt + Q̃idP̃i = dS̃,

hence,

QidPi − Q̃idP̃i = dF, (6.42)

where

F ≡ S − S̃. (6.43)

Equation (6.42) explicitly shows that (Qi, Pi) and (Q̃i, P̃i) are related by means
of a time-independent canonical transformation [cf. Equation (5.46)]. If the set
(Pi, P̃i) is functionally independent, then the function F defined in (6.43) is a
generating function of this canonical transformation.
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Since pi = ∂S/∂qi and, also, pi = ∂S̃/∂qi , we have

∂(S − S̃)

∂qi

= 0. (6.44)

Making use of these n conditions one can eliminate the qi from the right-hand side
of (6.43) (the dependence on t automatically disappears as a consequence of (6.44);
no additional conditions come from ∂(S − S̃)/∂t = 0 since, by hypothesis, S and S̃

satisfy the same HJ equation).
Similarly, given a complete solution, S(qi, Pi, t), of the HJ equation for some

Hamiltonian, and a function F(Pi, P̃i) that defines a canonical transformation,

S̃(qi, P̃i , t) = S(qi, Pi, t) − F(Pi, P̃i), (6.45)

is also a complete solution of the same HJ equation. The dependence on the
parameters Pi is eliminated from the expression on the right-hand side of (6.45)
with the aid of the n conditions

∂(S − F)

∂Pi

= 0. (6.46)

(Cf. Calkin [2, pp. 148–150].)

Example 6.10. As pointed out in Example 6.1, the function

S(q, P, t) = −
(

P 2

2m
+ mω2

2
q2

)
tan ωt

ω
+ Pq sec ωt

is a complete solution of the HJ equation in the case of the standard Hamiltonian of
a one-dimensional harmonic oscillator. With the aid of the function

F(P, P̃ ) = P 2

2mω
tan P̃ ,

we can obtain another complete solution of the same HJ equation. Indeed, the
condition (6.46) reads

0 = ∂(S − F)

∂P
= − P

mω
tan ωt + q sec ωt − P

mω
tan P̃ ,

that is,

P = mωq sec ωt

tan ωt + tan P̃
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and, therefore,

S̃ = S − F = mωq2

2
cot(ωt + P̃ )

is also a complete solution of the HJ equation for the standard Hamiltonian of a one-
dimensional harmonic oscillator. (It may be noticed that this solution is the product
of separated functions of q and t .)

Exercise 6.11. Find a generating function of the canonical transformation that
leads from the complete, separable, solution of the HJ equation

S(x, y, P1, P2, t) = P1x + P2y − P1
2 + P2

2

2m
t

to the non-separable complete solution

S̃(x, y, P̃1, P̃2, t) = m

2t

[
(x − P̃1)

2 + (y − P̃2)
2].

What is the Hamiltonian?

Since any complete solution of the HJ equation leads to the solution of the
Hamilton equations, it is not necessary to find a second complete solution of the HJ
equation. In the context of classical mechanics, we make use of a complete solution
of the HJ equation only as a means to find the solution of the Hamilton equations.
However, in geometrical optics the function S is interesting in itself and it is highly
relevant to find different solutions of the appropriate version of the HJ equation,
which correspond to different trains of wavefronts (see Section 6.5, below).

Other Special Generating Functions
In the same manner as we can look for a canonical transformation that produces a
new Hamiltonian equal to zero, we can also look for canonical transformations that
take, locally, a given Hamiltonian H into any other specified Hamiltonian K (the
only restriction is that the number of degrees of freedom in both Hamiltonians be
the same). Making use again of Equations (6.2) we find that the required generating
function must satisfy the PDE

K

(
∂F2

∂Pi

, Pi, t

)
= H

(
qi,

∂F2

∂qi

, t

)
+ ∂F2

∂t
(6.47)

and the condition (6.1). For instance, in the case of the Hamiltonians

H(q, p, t) = p2

2m
+ mgq, K(Q,P, t) = P 2

2m
,
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where g is a constant, one can verify that the function

F2(q, P, t) = (P − mgt)q + 1

2
gt2P − m

6
g2t3

satisfies (6.47) and (6.1). In fact, substituting this expression into (6.2) one finds that
F2 generates the canonical transformation

q = Q − 1
2gt2, p = P − mgt, (6.48)

and that H and K are related by (6.5). Hence, the coordinate transformation (6.48)
maps the phase space trajectories of a free particle into those of a particle in free
fall. Cf. Exercise 5.6. It may be noticed that, when g = 0, the transformation (6.48)
reduces to the identity. (The coordinate transformation (6.48) gives the relation
between two reference frames, one of which has an acceleration equal to g with
respect to the other.)

These transformations can be constructed by finding separately solutions of the
HJ equations for H and K , and combining them or composing the coordinate
transformations generated by them (see also Section 6.3).

6.1.2 Alternative Expressions of the HJ Equation

It should be clear that, in order to find new canonical coordinates with a Hamiltonian
equal to zero, instead of a (type F2) generating function S(qi, Pi, t), that depends
on the n original coordinates qi , we can also look for generating functions that
depend on other combinations of the original variables, replacing one or several
coordinates qi by its conjugate momentum pi , which gives a total of 2n different
possibilities. Some of these alternatives are sometimes mentioned [e.g., Corben
and Stehle ([4], Sect. 61), Greenwood [9, Sect. 6–1]], without actually using them,
claiming that they are of little interest. However, in some cases, the dependence of
H on the coordinates may be simpler than that on the momenta.

Example 6.12 (Particle in a uniform gravitational field). Let us consider again the
simple case corresponding to the Hamiltonian

H = px
2 + py

2

2m
+ mgy,

where m and g are constants. We look for a type F4 generating function (which we
shall denote also by S) such that K = 0. According to Equations (5.57), S must be
a complete solution of

px
2 + py

2

2m
− mg

∂S

∂py

+ ∂S

∂t
= 0, (6.49)
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and the canonical transformation is implicitly given by

x = − ∂S

∂px

, y = − ∂S

∂py

, Qi = ∂S

∂Pi

. (6.50)

Since H does not depend on t , we look for a solution of (6.49) of the form

S = W(px, py) − P1t,

where P1 is a separation constant. Then, the “characteristic function,” W , has to
satisfy

∂W

∂py

= − P1

mg
+ px

2 + py
2

2m2g
.

The general solution of this PDE is readily found:

W = −P1py

mg
+ px

2py

2m2g
+ py

3

6m2g
+ f (px),

where f (px) is an arbitrary function of px only. Choosing f (px) = P2px , where
P2 is a constant, we obtain

S(px, py, P1, P2, t) = −P1py

mg
+ px

2py

2m2g
+ py

3

6m2g
+ P2px − P1t.

It may be noticed that this solution of the HJ equation (6.49) is not the sum of
separate functions of px, py and t . (This is an example of an R-separable solution,
to be discussed in Section 6.1.3.) According to (6.50), S generates the canonical
transformation given by

x = −pxpy

m2g
−P2, y = P1

mg
−px

2 + py
2

2m2g
, Q1 = − py

mg
−t, Q2 = px,

i.e.,

Q1 = − py

mg
− t, Q2 = px, P1 = px

2 + py
2

2m
+ mgy, P2 = −pxpy

m2g
− x,

which are the constants of motion obtained in Example 6.2. (See also Exam-
ple 6.24.) The solution of the Hamilton equations in the original variables is obtained
writing x, y, px, py in terms of Qi, Pi .
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6.1.3 R-Separable Solutions of the HJ Equation

As pointed out above, the method commonly employed to solve the HJ equation
is the method of separation of variables, but, in many cases, this method may not
work. For example, in the case of the Hamiltonian

H = p2

2m
− ktq, (6.51)

which corresponds to a particle of mass m subjected to a variable force kt , where k

is some constant, the HJ equation

1

2m

(
∂S

∂q

)2

− ktq + ∂S

∂t
= 0 (6.52)

does not admit separable solutions owing to the presence of the term ktq. However,
noting that the last two terms on the left-hand side of this equation can be written as

−ktq + ∂S

∂t
= ∂

∂t

(
−kt2q

2
+ S

)
,

we introduce S̃ ≡ S − kt2q/2, and we find that (6.52) amounts to

1

2m

(
∂S̃

∂q
+ kt2

2

)2

+ ∂S̃

∂t
= 0.

By contrast with (6.52), this last equation admits separable solutions, and since q

does not appear explicitly in the equation, its separable solutions are of the form
S̃ = Pq + F(t), where P is a separation constant, with

1

2m

(
P + kt2

2

)2

+ dF

dt
= 0.

Thus,

S = kt2q

2
+ Pq − 1

2m

(
P 2t + 1

3
Pkt3 + 1

20
k2t5

)
(6.53)

is a (complete) solution of (6.52). This solution is the sum of a function of q and t

(the term kt2q/2), that does not contain the separation constant P , and one-variable
functions. Such solutions are called R-separable solutions.
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Thus, we have the generating function of a canonical transformation implicitly
given by [see Equations (6.8)],

Q = ∂S

∂P
= q − P t

m
− kt3

6m
, p = ∂S

∂q
= kt2

2
+ P.

The original variables are given by

p = P + kt2

2
, q = Q + P t

m
+ kt3

6m
.

Since Q and P are constants of motion, these expressions constitute the solution of
the Hamilton equations. From these expressions we see that Q and P correspond to
the values of q and p at t = 0, respectively. (Cf. Example 5.40.)

Example 6.13 (Charged particle in a uniform magnetic field). The Hamiltonian

H = 1

2m

[(
px + eB0y

2c

)2

+
(

py − eB0x

2c

)2

+ pz
2

]
, (6.54)

corresponds to a charged particle of mass m and electric charge e in a uniform
magnetic field B = B0k, if the vector potential is chosen according to the rule
A = 1

2 B × r, which is applicable for a uniform magnetic field B [see (4.14)]. The
resulting HJ equation

1

2m

[(
∂S

∂x
+ eB0y

2c

)2

+
(

∂S

∂y
− eB0x

2c

)2

+
(

∂S

∂z

)2
]

+ ∂S

∂t
= 0 (6.55)

does not admit separable solutions but, letting S̃ ≡ S + eB0xy/2c, we obtain

1

2m

[(
∂S̃

∂x

)2

+
(

∂S̃

∂y
− eB0x

c

)2

+
(

∂S̃

∂z

)2
]

+ ∂S̃

∂t
= 0. (6.56)

Since y, z, and t do not appear explicitly in this equation, it admits separable
solutions of the form S̃ = F(x) + P2y + P3z − P1t , where P1, P2, and P3 are
constants, and F satisfies the separated equation

1

2m

[(
dF

dx

)2

+
(

P2 − eB0x

c

)2

+ P3
2

]
= P1.

Thus,

S = −eB0xy

2c
+ P2y + P3z − P1t +

∫ √
2mP1 − P3

2 − (
P2 − eB0x/c

)2 dx
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and making use of Equations (6.8) we obtain

px = −eB0y

2c
+

√
2mP1−P3

2−(
P2−eB0x/c

)2
, py=−eB0x

2c
+P2, pz = P3,

and

Q1 = −t +
∫

m dx√
2mP1 − P3

2 − (
P2 − eB0x/c

)2
,

Q2 = y −
∫

(P2 − eB0x/c) dx√
2mP1 − P3

2 − (
P2 − eB0x/c

)2
, (6.57)

Q3 = z −
∫

P3 dx√
2mP1 − P3

2 − (
P2 − eB0x/c

)2
.

By combining these equations one obtains the constants of motion

P1 = H, P2 = py + eB0x

2c
, P3 = pz, Q2 = − c

eB0

(
px − eB0y

2c

)
.

With the aid of the change of variable

P2 − eB0x

c
=

√
2mP1 − P3

2 cos θ,

from the first two equations in (6.57) we obtain

x = cP2

eB0
− c

eB0

√
2mP1 − P3

2 cos ωc(t + Q1),

where ωc ≡ eB0/mc (the cyclotron frequency), and

y = Q2 + c

eB0

√
2mP1 − P3

2 sin ωc(t + Q1),

respectively. These last expressions show that the projection of the orbit on the xy-
plane is a circle whose center and radius are given in terms of the constants of
motion Qi and Pi (cf. Example 1.19).

The vector potential A′ = B0x j also yields the uniform magnetic field B = B0 k,
and leads to a separable HJ equation. (In fact, the difference A′ − A = B0x j −
1
2B0(−y i + x j) = 1

2B0(y i + x j), which is the gradient of 1
2B0xy.) (See also the

discussion at the end of this section.)
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Exercise 6.14. Show that the HJ equation for a charged particle in a uniform
magnetic field, with A = 1

2 B×r, can be solved by separation of variables in circular
cylindrical coordinates and identify the new momenta.

Example 6.15. We consider the HJ equation

1

2m

[(
∂S

∂x

)2

+
(

∂S

∂y

)2
]

+ mgy + ∂S

∂t
= 0, (6.58)

which does admit separable solutions as a consequence of the fact that x and t do
not appear explicitly in the equation (see Example 6.2). Noting that

mgy + ∂S

∂t
= ∂

∂t
(mgyt + S),

we introduce S̃ ≡ S + mgyt , and we have

1

2m

[(
∂S̃

∂x

)2

+
(

∂S̃

∂y
− mgt

)2
]

+ ∂S̃

∂t
= 0. (6.59)

This equation admits separable solutions as a consequence of the fact that x and y

do not appear explicitly in it. Indeed, looking for solutions of the form

S̃ = P1x + P2y + F(t),

where P1 and P2 are constants, we obtain

1

2m

[
P1

2 + (P2 − mgt)2
]

+ dF

dt
= 0.

Hence,

F(t) = − 1

2m

[
(P1

2 + P2
2)t − P2mgt2 + 1

3
m2g2t3

]

and, therefore,

S = −mgyt +P1x +P2y − 1

2m

[(
P1

2 + P2
2)t − P2mgt2 + 1

3
m2g2t3

]
(6.60)

is a complete R-separable solution of (6.58). Thus, the HJ equation (6.58) admits
both separable and R-separable solutions in the Cartesian coordinates (x, y).

Substitution of (6.60) into Equations (6.8) yields the canonical transformation

px = ∂S

∂x
= P1, py = ∂S

∂y
= −mgt + P2,
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and

Q1 = ∂S

∂P1
= x − P1t

m
, Q2 = ∂S

∂P2
= y − P2t

m
+ 1

2
gt2.

That is, we have four constants of motion

Q1 = x − tpx

m
, Q2 = y − tpy

m
− 1

2
gt2, P1 = px, P2 = py + mgt,

and the solution of the Hamilton equations

x = Q1 + tP1

m
, y = Q2 + tP2

m
− 1

2
gt2, px = P1, py = P2 − mgt.

The constants of motion Q1,Q2, P1, and P2 correspond to the values at t = 0 of
x, y, px , and py , respectively.

It may be noticed that finding R-separable solutions of the HJ equation for a
Hamiltonian H is equivalent to finding separable solutions of the HJ equation for
another Hamiltonian, H ′, obtained from H by means of a canonical transformation
of the form

q ′
i = qi, p′

i = pi + ∂R

∂qi

, (6.61)

where R is a function of qi and t only [see (5.67)]. For instance, Equation (6.59)
is the HJ equation corresponding to the Hamiltonian (5.69), which is obtained
from (5.68) by means of the canonical transformation (6.61) with R = mgyt .

Exercise 6.16. Show that if the Hamiltonian has the form

H = p2

2m
− φ(t)q,

where φ(t) is a given function of t only, then the corresponding HJ equation admits
R-separable complete solutions. This result is applicable to the problem of a rocket
in a uniform gravitational field, for which the Hamiltonian can be taken as

H = p2

2
+

(
u

d ln m

dt
+ g

)
q,

where m(t) is the mass of the rocket at time t and u is the speed of the exhaust gases
with respect to the rocket (see Example 2.13).
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6.2 The Liouville Theorem on Solutions of the HJ Equation

Apart from the method of separation of variables, there exist some other methods
for solving first-order PDEs (see, e.g., Sneddon [14]). In one of these lesser-
known methods, when applied to the HJ equation, one has to express the canonical
momenta in terms of the coordinates and n constants of motion; a complete solution,
S, of the HJ equation can then be obtained from dS = pidqi − Hdt . However, it
turns out that pidqi − Hdt is an exact differential if and only if the constants of
motion employed in this process are in involution, that is, their Poisson brackets are
all equal to zero, and this result is known as Liouville’s Theorem. In the case where
there is only one degree of freedom, the Liouville Theorem can be applied making
use of a single arbitrary constant of motion, since the Poisson bracket of a function
with itself is trivially equal to zero.

The application of the Liouville theorem requires the knowledge of n constants
of motion in involution, but is not linked to some specific coordinate system; the
complete solutions of the HJ equation obtained in this manner need not be separable
or R-separable.

Proposition 6.17 (Liouville’s Theorem). If Pi = Pi(qj , pj , t), i = 1, 2, . . . , n,
are n functionally independent constants of motion in involution such that the
momenta pi can be written in terms of qj , Pj , and t , then, locally, there exists a
function S(qi, t), depending parametrically on the Pi , such that

pi(qj , Pj , t) dqi − H
(
qi, pi(qj , Pj , t), t

)
dt = dS (6.62)

and S is a complete solution of the HJ equation.

Note that if the momenta pi can be written in terms of qj , Pj , and t , then the
constants of motion Pi = Pi(qj , pj , t), i = 1, 2, . . . , n, have to be functionally
independent.

Proof. According to the hypotheses, from the expressions Pi = Pi(qj , pj , t), we
can find the pi as functions of qj , Pj , and t , hence

det

(
∂Pi

∂pj

)
�= 0. (6.63)

Substituting

dpk = ∂pk

∂qj

dqj + ∂pk

∂Pj

dPj + ∂pk

∂t
dt

into

dPi = ∂Pi

∂qj

dqj + ∂Pi

∂pj

dpj + ∂Pi

∂t
dt
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one obtains

dPi = ∂Pi

∂qj

dqj + ∂Pi

∂pk

(
∂pk

∂qj

dqj + ∂pk

∂Pj

dPj + ∂pk

∂t
dt

)
+ ∂Pi

∂t
dt

which implies the identities

∂Pi

∂qj

= −∂Pi

∂pk

∂pk

∂qj

,
∂Pi

∂t
= −∂Pi

∂pk

∂pk

∂t
(6.64)

and

∂Pi

∂pk

∂pk

∂Pj

= δij . (6.65)

(Note that in the partial derivatives of the Pi , Pi is a function of qj , pj , and t , that is

∂Pi

∂qj

=
(

∂Pi

∂qj

)
q,p,t

,
∂Pi

∂pj

=
(

∂Pi

∂pj

)
q,p,t

,

while in the partial derivatives of the pi , pi is a function of qj , Pj , and t ,

∂pi

∂Pj

=
(

∂pi

∂Pj

)
q,P,t

,
∂pi

∂qj

=
(

∂pi

∂qj

)
q,P,t

.

Equations (6.64) and (6.65) can also be derived with the aid of the chain rule.)
Making use of the first equation in (6.64) we find that

{Pi, Pj } = ∂Pi

∂qk

∂Pj

∂pk

− ∂Pj

∂qk

∂Pi

∂pk

= − ∂Pi

∂pm

∂pm

∂qk

∂Pj

∂pk

+ ∂Pj

∂pm

∂pm

∂qk

∂Pi

∂pk

= − ∂Pi

∂pm

∂pm

∂qk

∂Pj

∂pk

+ ∂Pj

∂pk

∂pk

∂qm

∂Pi

∂pm

= ∂Pi

∂pm

∂Pj

∂pk

(
∂pk

∂qm

− ∂pm

∂qk

)
.

Thus, taking into account (6.63), it follows that {Pi, Pj } = 0 if and only if

∂pk

∂qm

= ∂pm

∂qk

. (6.66)

On the other hand, making use of the fact that each Pi is a constant of motion, and
of (6.64) and (6.66),
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0 = ∂Pi

∂t
+ ∂Pi

∂qj

∂H

∂pj

− ∂H

∂qj

∂Pi

∂pj

= −∂Pi

∂pk

∂pk

∂t
− ∂Pi

∂pk

∂pk

∂qj

∂H

∂pj

− ∂H

∂qj

∂Pi

∂pj

= −∂Pi

∂pk

(
∂pk

∂t
+ ∂pk

∂qj

∂H

∂pj

+ ∂H

∂qk

)

= −∂Pi

∂pk

(
∂pk

∂t
+ ∂pj

∂qk

∂H

∂pj

+ ∂H

∂qk

)
.

As a consequence of (6.63) and the chain rule, this amounts to

∂pk

∂t
= −∂H

∂qk

− ∂H

∂pj

∂pj

∂qk

= − ∂

∂qk

H
(
qj , pj (qk, Pk, t), t

)
,

and these conditions together with (6.66) imply that the left-hand side of (6.62) is
locally exact.

Finally, from (6.62) it follows that S is a solution of the HJ equation, which is
complete by virtue of (6.63), in fact,

det

(
∂2S

∂Pi∂qj

)
= det

(
∂pj

∂Pi

)
=

[
det

(
∂Pi

∂pj

)]−1

�= 0.

��
In some textbooks this result is called Liouville’s integrability theorem.

Example 6.18. One can readily verify that the function P = mωq sin ωt +p cos ωt

is a constant of motion for the one-dimensional harmonic oscillator, that is, if

H = p2

2m
+ mω2

2
q2.

Since, p = P sec ωt − mωq tan ωt , expressing pdq − Hdt in terms of q, P, t , and
treating P as a parameter, we obtain

pdq − Hdt

= (
P sec ωt − mωq tan ωt

)
dq −

[
(P sec ωt − mωq tan ωt)2

2m
+ mω2

2
q2

]
dt

= d

(
Pq sec ωt−1

2
mωq2 tan ωt

)
−ωPq sec ωt tan ωtdt+1

2
mω2q2 sec2 ωtdt
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−
[
(P sec ωt − mωq tan ωt)2

2m
+ mω2

2
q2

]
dt

= d

(
Pq sec ωt − 1

2
mωq2 tan ωt − P 2

2mω
tan ωt

)
.

According to Proposition 6.17, the expression inside the parenthesis must be a
complete solution of the HJ equation for the Hamiltonian H and, following the
standard procedure, it can be used to find the solution of the equations of motion.

Example 6.19. The HJ equation for the Kepler problem in two dimensions, which
corresponds to the Hamiltonian

H = px
2 + py

2

2m
− k√

x2 + y2
,

expressed in Cartesian coordinates x, y, where m is the mass of the particle and k is a
positive constant, is separable in polar and parabolic coordinates (see Examples 6.3
and 6.4, respectively) but is not separable in Cartesian coordinates.

Since H is time-independent and invariant under rotations about the origin,

P1 ≡ H, P2 ≡ xpy − ypx

(the total energy and the angular momentum about the origin) are constants of
motion, which are in involution (as can be seen from the fact that the angular
momentum is a constant of motion). Inverting these expressions one finds

px=−P2y ± x
√

2mP1r2+2mkr−P2
2

r2
, py=P2x ± y

√
2mP1r2+2mkr−P2

2

r2
,

where the signs in front of the square roots have to be chosen both plus or both minus
and r2 ≡ x2 + y2, which give the pi in terms of qj and Pj . Thus, the left-hand side
of Equation (6.62) becomes

P2
(−ydx + xdy)

r2
±

√
2mP1r2 + 2mkr − P2

2

r2
(xdx + ydy) − P1dt

or, equivalently,

P2 d
(

arctan
y

x

)
±

√
2mP1 + 2mk

r
− P2

2

r2 dr − P1dt.

This last expression is indeed, locally, the differential of a function, which must be
a complete solution of the HJ equation. It may be noticed that this function turns out



256 6 The Hamilton–Jacobi Formalism

to be the sum of separate functions of the polar coordinates θ, r , though we started
with the Hamiltonian in Cartesian coordinates.

Example 6.20. Another simple example is given by the Hamiltonian

H = px
2 + py

2

2m
+ mgy, (6.67)

for which all constants of motion are readily obtained (here m and g are constants).
In fact, the HJ equation is separable in the coordinates (x, y) of the configuration
space, and the separation constants are the values of H and px , which are constants
of motion as a consequence of the fact that t and x do not appear in the Hamiltonian
(see Example 6.2).

Another constant of motion (which is related to a “hidden” symmetry of the
Hamiltonian) is

pxpy

m
+ mgx (6.68)

(see, e.g., Example 5.35), therefore, H and 1
m

pxpy + mgx are in involution and
can be taken as P1 and P2, respectively. A straightforward computation leads to the
expressions

px + py = ±√
2m(P1 + P2) − 2m2g (x + y),

px − py = ±√
2m(P1 − P2) + 2m2g (x − y),

(6.69)

where the signs in front of the square roots have to be chosen both plus or both
minus. Hence, by writing Equation (6.62) in the form

1
2 (px + py) d(x + y) + 1

2 (px − py) d(x − y) − P1dt = dS, (6.70)

and taking into account that px ± py is a function of x ± y only, we see that
the function S is the sum of three one-variable functions that depend on x + y,
x − y, and t (with P1 and P2 being treated as parameters). In other words, the HJ
equation corresponding to the Hamiltonian (6.67) admits separable solutions in the
coordinates (u, v) defined by

u ≡ x + y, v ≡ x − y,

and the separation constants are the values of H and 1
m

pxpy + mgx.

Exercise 6.21. Find a complete solution of the HJ equation corresponding to the
Hamiltonian (6.67) making use of the constants of motion in involution P1 = px

and P2 = py + mgt .
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Exercise 6.22. Making use of the fact that the coordinates P1 and P2 defined in
Example 5.45 are constants of motion in involution, find a complete solution of the
HJ equation for a charged particle in a uniform magnetic field and use it to find a
second pair of constants of motion.

Exercise 6.23 (Toda lattice). In Example 5.81 the system with Hamiltonian

H = 1
2 (p1

2 + p2
2) + eq1−q2,

was considered and it was shown that the functions

P1 ≡ p1 + p2, P2 ≡ p1p2 − eq1−q2

are constants of motion. Prove that these two functions are in involution, find a
complete solution of the HJ equation and use it to solve the equations of motion.

Example 6.24. It should be clear that in order to find a complete solution of the HJ
equation starting from n functionally independent constants of motion in involution,
P1, P2, . . . , Pn, it is not indispensable to solve the equations Pi = Pi(qj , pj , t)

for p1, p2, . . . , pn; instead of pi we can employ the corresponding conjugate
coordinate qi (that is, in place of, say, p5, we can make use of q5, and so on). For
instance, in the case of the Hamiltonian (6.67), the functions

P1 = py + mgt, P2 = pxpy

m
+ mgx (6.71)

are two functionally independent constants of motion in involution. Even though we
can solve (6.71) for px and py , we shall make use of x instead of px . From (6.71)
we obtain

x = P2

mg
− (P1 − mgt)px

m2g
, py = P1 − mgt

and instead of (6.62), we have

−x dpx + pydy − Hdt = dS,

with x and py expressed in terms of y, px , P1, P2, and t . Hence,

dS = −
(

P2

mg
−P1px

m2g
+ tpx

m

)
dpx+

(
P1−mgt

)
dy−

[
px

2

2m
+ (P1−mgt)2

2m
+mgy

]
dt

= d

[
−P2px

mg
+ P1px

2

2m2g
− tpx

2

2m
+ P1y − mgty + (P1 − mgt)3

6m2g

]
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and we can take

S(y, px, P1, P2, t) = −P2px

mg
+ P1px

2

2m2g
− tpx

2

2m
+ P1y − mgty + (P1 − mgt)3

6m2g
.

Note that the function S thus obtained is R-separable and is a complete solution
of the HJ equation

1

2m

[
px

2 +
(

∂S

∂y

)2
]

+ mgy + ∂S

∂t
= 0,

which does not contain the partial derivative of S with respect to px .

Exercise 6.25. Show that, in the case of the constants of motion considered in
Example 6.20, the coordinates x and y can be expressed in terms of px , py , P1,
P2, and t , and use those expressions to find a (type F4) complete solution of the
appropriate HJ equation.

Exercise 6.26. Show that

Q = q − pt

m
+ kt3

3m

is a constant of motion if the Hamiltonian is given by

H = p2

2m
− ktq.

Use the expression for q in terms of p and Q to find a (type F3) complete solution,
S(p,Q, t), of the HJ equation

H

(
−∂S

∂p
, p, t

)
+ ∂S

∂t
= 0

and use it to find a second constant of motion.

Exercise 6.27. Show that

P = p −
∫ t

φ(u) du

is a constant of motion if the Hamiltonian is given by

H = p2

2m
− φ(t)q,

where φ(t) is a given function of t only, and use it to find a complete solution of the
HJ equation (cf. Exercise 6.16).
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6.3 Mapping of Solutions of the HJ Equation Under
Canonical Transformations

The form of the Hamiltonian of a given system can be modified by a canonical
transformation and, therefore, the expression of the HJ equation and its solutions
can also be modified by these transformations. As we shall see now, there is a simple
way of relating a solution of the HJ equation corresponding to a Hamiltonian H

with a solution of the HJ equation corresponding to the Hamiltonian K , obtained by
means of a canonical transformation. We begin by pointing out a relation between
solutions of the HJ equation and certain subsets of the extended phase space [10, 17].

Proposition 6.28. Any solution, S(qi, t), of the HJ equation defines a surface (a
submanifold), N , of the extended phase space, given by the n equations

pi = ∂S

∂qi

(6.72)

(i = 1, 2, . . . , n), on which the linear differential form pidqi −Hdt is exact; in fact,

pidqi − Hdt = dS, on N. (6.73)

Conversely, an (n+1)-dimensional submanifold, N , of the extended phase space, on
which the differential form pidqi −Hdt is exact, defines (up to an additive constant)
a solution of the HJ equation. (The solution in question is the function S determined
by Equation (6.73).)

The function S appearing in Equations (6.72) and (6.73) may contain some
parameters (as in the case of a complete solution), but this is not essential at this
point. For example, if the Hamiltonian is taken as

H = p2

2m
+ mω2q2

2
, (6.74)

then, on the two-dimensional submanifold of the extended phase space defined by

p = −mωq tan ωt,

we have

pdq − Hdt = −mωq tan ωt dq −
(

m2ω2q2 tan2 ωt

2m
+ mω2q2

2

)
dt

= −mω tan ωt d

(
q2

2

)
− mω2

2
q2 sec2 ωt dt

= d
( − 1

2mωq2 tan ωt
)
.
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Hence, the function

S = − 1
2mωq2 tan ωt

is a solution of the HJ equation corresponding to the Hamiltonian (6.74), which does
not contain arbitrary parameters.

However, for each value of the parameter P , the equation

p = −mωq tan ω(t + P) (6.75)

defines a two-dimensional submanifold of the extended phase space, on which the
differential form pdq − Hdt is exact. In fact, one finds that [on the surface defined
by (6.75)]

pdq − Hdt = d
[ − 1

2mωq2 tan ω(t + P)
]

and this time we have a complete solution of the HJ equation

S(q, P, t) = − 1
2mωq2 tan ω(t + P), (6.76)

which is not (additively) separable. The completeness of the solution (6.76) is
related to the fact that the family of submanifolds defined by (6.75) fills the extended
phase space.

Returning to the problem of finding the effect of a canonical transformation on
the solutions of the HJ equation, we recall that if the coordinate transformation

Qi = Qi(qj , pj , t), Pi = Pi(qj , pj , t), (6.77)

is canonical, then

pidqi − Hdt − (PidQi − Kdt) = dF1,

for some real-valued function F1 defined in a [(2n + 1)-dimensional] region of
the extended phase space [see Equation (5.46)]. By contrast with the differential
form pidqi − Hdt (and, similarly, PidQi − Kdt), which is exact only on some
submanifolds of the extended phase space, the combination pidqi−Hdt−(PidQi−
Kdt) is exact everywhere (or in some open neighborhood of each point of the
extended phase space). Hence, if pidqi − Hdt is an exact differential on some
submanifold of the extended phase space, then PidQi − Kdt is also exact on that
submanifold.
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Thus, if S(qi, t) is a solution of the HJ equation, then, on the submanifold N

defined by (6.72),

PidQi − Kdt = pidqi − Hdt − dF1

= d(S − F1),

which means that

S′ = S − F1 (6.78)

is a solution of the HJ equation corresponding to K , provided that it is expressed in
terms of Qi and t , making use of Equations (6.72) and (6.77). (Cf. Equations (6.45)–
(6.46).) By construction, the solution of the Hamilton equations obtained from S′ is
the image under the canonical transformation (6.77) of the solution of the Hamilton
equations obtained from S.

Example 6.29. A simple and illustrative example is given by the standard Hamilto-
nian of a one-dimensional harmonic oscillator

H = p2

2m
+ mω2q2

2
.

The coordinate transformation

q = 1

ω

√
2Q

m
cos ωP, p = √

2mQ sin ωP, (6.79)

is canonical and we can take K = H . In fact,

pdq − P dQ = √
2mQ sin ωP

(
−

√
2Q

m
sin ωP dP + cos ωP

ω
√

2mQ
dQ

)
− P dQ

= −2Q sin2 ωP dP + 1

ω
sin ωP cos ωP dQ − P dQ

= d

(
−PQ + Q

ω
sin ωP cos ωP

)
,

hence, up to an additive trivial constant, F1 = −PQ + (Q/ω) sin ωP cos ωP .
Since K = H = Q [see (6.79)], the HJ equation for K is given by

Q + ∂S′

∂t
= 0, (6.80)
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whose general solution is S′ = −Qt + f (Q), where f (Q) is an arbitrary function
of Q only. In order to simplify the computations below, we choose f (Q) = t0Q,
where t0 is a constant; thus

S′ = −Q(t − t0),

which constitutes a complete solution of the HJ equation (6.80). Then, from
Equation (6.78), taking into account that P = ∂S′/∂Q = t0 − t , with the aid of
the first equation in (6.79) we obtain

S = S′ + F1

= −Q(t − t0) − PQ + Q

ω
sin ωP cos ωP

= Q

ω
sin ωP cos ωP

= − 1
2mωq2 tan ω(t − t0),

which is, therefore, the complete solution of the HJ equation corresponding to H

[cf. Equation (6.76)].

Example 6.30 (Damped harmonic oscillator). The Hamiltonian

H = e−2γ t p2

2m
+ e2γ t mω2

2
q2,

where γ is a positive constant, corresponds to a damped harmonic oscillator (see
Example 2.6). Making use of (5.15) one finds that the coordinate transformation

Q = eγ tq, P = e−γ tp

is canonical (cf. Example 5.33) and that the new Hamiltonian can be taken as

K = P 2

2m
+ mω2

2
Q2 + γPQ,

with F1 = 0. By contrast with H , the Hamiltonian K does not depend explicitly on
t and therefore the HJ equation for K admits separable solutions of the form

S′ = −P̃ t + f (Q),

where P̃ is a separation constant and f satisfies

df

dQ
= −mγQ ±

√
2mP̃ − m2(ω2 − γ 2)Q2.
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Thus,

S′ = −P̃ t − 1
2mγQ2 +

∫ Q √
2mP̃ − m2(ω2 − γ 2)u2 du

is a complete solution of the HJ equation for K and, according to Equation (6.78),
the function

S(q, P̃ , t) = −P̃ t − 1
2mγ e2γ tq2 +

∫ eγ t q √
2mP̃ − m2(ω2 − γ 2)u2 du

is the corresponding solution of the HJ equation for H . It may be noticed that
this function is neither separable nor R-separable. (Note that in this example we
are considering two canonical transformations; the first one relates the original
coordinates, q, p, with a second set of canonical coordinates, Q,P . A second
canonical transformation is generated by S′, leading to a third set of canonical
coordinates, Q̃, P̃ , which are constants of motion.)

Hence,

p = −mγ e2γ tq + eγ t

√
2mP̃ − m2(ω2 − γ 2) e2γ tq2,

and from this equation we can obtain the constant of motion P̃ in terms of (q, p, t),

P̃ = e−2γ t p2

2m
+ e2γ t mω2

2
q2 + γpq

(which coincides with the Hamiltonian K). The second constant of motion,

Q̃ = ∂S

∂P̃
= −t +

∫ eγ t q m du√
2mP̃ − m2(ω2 − γ 2)u2

,

gives q as a function of the time (and the constants of motion P̃ and Q̃). For instance,
in the case where γ < ω (the so-called underdamped motion), one readily finds

q = e−γ t

√
m(ω2 − γ 2)

2P̃
cos

√
ω2 − γ 2

(
t + Q̃

)

(cf. Example 5.13).

Exercise 6.31. The canonical transformation

Q = q + 1
2gt2, P = p + mgt
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relates the Hamiltonians

H = p2

2m
+ mgq and K = P 2

2m

[cf. Equations (6.48)]. Using the fact that

S′ = m

2t
(Q − a)2,

where a is a constant, is a (complete) solution of the HJ equation for K , find the
corresponding solution for the HJ equation for H .

Exercise 6.32. The canonical transformation

Q = q(cos ωt + ωt sin ωt) + p

mω
(ωt cos ωt − sin ωt),

P = mωq sin ωt + p cos ωt

relates the Hamiltonians

H = p2

2m
+ mω2

2
q2 and K = P 2

2m

(see Exercise 5.6). Making use of the fact that

S′ = m

2t
(Q − a)2,

where a is a constant, is a solution of the HJ equation for K (corresponding to a
free particle), find the corresponding solution of the HJ equation for H . (Hint: the
results of Example 5.7 may be useful.)

Exercise 6.33. Consider the canonical transformation

Q = q − vt, P = p − mv,

where v is a constant and m is the mass of a particle. Assuming that the new
Hamiltonian is given by

K = H − vp + 1
2mv2

(cf. Example 5.63), show that if S(q, t) is a solution of the HJ equation for H , then

S′(Q, t) = S(Q + vt, t) − mvQ − 1
2mv2t
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is the corresponding solution of the HJ equation for K . (This relationship has an
analog in quantum mechanics in the transformation of a wavefunction under a
Galilean transformation, see, e.g., Torres del Castillo and Nájera Salazar [19].)

Exercise 6.34. Show that in the case of a (passive) translation, Q = q − s, P = p,
assuming that K = H , we have S′(Q, t) = S(Q + s, t). Similarly, show that for a
translation in the momentum, Q = q, P = p − s, choosing K = H , it follows that
S′(Q, t) = S(Q, t) − sQ. (Note that the assumption K = H is consistent with the
fact that the transformations considered here do not involve the time. Note also that
H need not be invariant under these translations.)

Exercise 6.35 (Transformation of the principal function under gauge transfor-
mations). As shown in Section 5.2, a gauge transformation

A �→ A + ∇ξ, ϕ �→ ϕ − 1

c

∂ξ

∂t
,

where ξ is some function of the coordinates and the time, corresponds to a canonical
transformation given by

Qi = qi, Pi = pi + ∂(eξ/c)

∂qi

.

Show that if K = H − ∂(eξ/c)/∂t , then S′ = S + eξ/c. (This result also has a
well-known analog in quantum mechanics.)

Covariance of the HJ Equation
The HJ equation is a partial differential equation somewhat similar to other scalar
PDEs of mathematical physics, such as the Laplace equation for the electrostatic
potential, or the wave equation for the fractional change of the density of the air, in
the case of the sound waves. However, apart from the fact that the HJ equation
is of first order and not necessarily linear, an important difference between the
HJ equation and the other equations just mentioned is that, under a change of
coordinates of the configuration space, the solutions of the HJ equation may require
an additional term [see Equation (6.78)].

However, according to the discussion presented in Example 5.36, a time-inde-
pendent coordinate transformation in the configuration space,

Qi = Qi(qj ),

together with the implicit relation

pi = Pj

∂Qj

∂qi

, (6.81)
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constitute a canonical transformation. If we choose K = H , i.e.,

K(Qi, Pi, t) = H
(
qi(Qj ), pi(Qj , Pj ), t

) = H
(
qi(Qj ), Pj

∂Qj

∂qi

, t
)
,

then the function F1 can be taken equal to zero and, according to (6.78),

S′(Qi, t) = S(qi(Qj ), t) (6.82)

is the solution of the HJ equation for the Hamiltonian K corresponding to a solution,
S(qi, t), of the HJ equation for H .

Thus, if we have a (not necessarily complete) solution of the HJ equation, in
terms of some coordinates, S(qi, t), by simply substituting the coordinates qi by
any other set of coordinates of the configuration space, qi = qi(Qj ), we obtain a
solution of the HJ equation for the same Hamiltonian, provided that the momenta are
related by (6.81). This means that the HJ equation is covariant under this restricted
class of coordinate transformations. (See also Section 6.4.)

6.3.1 The HJ Equation as an Evolution Equation

The HJ equation can be seen as an evolution equation, which determines the
function S(qi, t) that reduces to a given function, f (qi), for t = 0 (or any other
initial value, t0, of t). According to the results of the previous section, if we have
the solution of the Hamilton equations, we can find the solution of the HJ equation
satisfying any initial condition, S(qi, t0) = f (qi), making use of the fact that the
time evolution from t = t0 to an arbitrary value of t is a canonical transformation,
with the Hamiltonian corresponding to the initial coordinates equal to zero [see
Equation (5.97)]. The initial condition f (qi) can be chosen arbitrarily because any
function, f (qi), that does not depend on t , is trivially a solution of the HJ equation
if the Hamiltonian is equal to zero.

In the following examples, we obtain the function F1 appearing in Equa-
tion (6.78), corresponding to the time evolution, making use of the explicit solution
of the Hamilton equations, while the function S′ is the initial condition. If the
function f (qi) contains arbitrary parameters, then the solution S(qi, t) of the HJ
equation will also contain those parameters.

A different approach to the problem of finding the solution of a PDE passing
through a given curve or surface can be found, e.g., in Sneddon [14, Sect. 12]; one
advantage of the method presented there is that the initial condition need not be the
value of S at some particular value of t .

Example 6.36. In the case of the Hamiltonian

H = px
2 + py

2

2m
+ mgy, (6.83)
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where m and g are constants, the solution of the corresponding Hamilton equations
can be readily obtained and is given by

x = Q1 + P1t

m
, y = Q2 + P2t

m
− gt2

2
,

px = P1, py = P2 − mgt,

(6.84)

where Q1, Q2, P1, and P2 are the values of x, y, px , and py , respectively, at t = 0.
As the initial condition we choose

S(x, y, 0) = α1x + α2y, (6.85)

where α1, α2 are two arbitrary constants, that is, as the initial function in terms of
the initial coordinates, we take

S′(Q1,Q2, 0) = α1Q1 + α2Q2. (6.86)

Note that, as pointed out above, S′ is a solution of the HJ equation for K = 0.
Making use of the expressions (6.84) we obtain

pidqi − Hdt − PidQi = d

(
px

2 + py
2

2m
t − mgty + gt2py + mg2t3

3

)
,

while from (6.86) it follows that dS′ = α1dQ1 + α2dQ2, that is, P1 = α1, P2 =
α2. Then, from Equations (6.78) and (6.84), expressing all coordinates in terms of
x, y, α1, α2, and t , we have

S = S′ + F1

= α1Q1 + α2Q2 + px
2 + py

2

2m
t − mgty + gt2py + mg2t3

3

= α1

(
x − α1t

m

)
+ α2

(
y − α2t

m
+ gt2

2

)
+ α1

2 + (α2 − mgt)2

2m
t − mgty

+ gt2(α2 − mgt) + mg2t3

3
,

i.e.,

S(x, y, t) = α1x + α2y − mgty − α1
2t

2m
+ (α2 − mgt)3 − α2

3

6m2g
(6.87)

[cf. Equation (6.60)]. The expression (6.87) is a (complete, R-separable) solution of
the HJ equation that reduces to the specified function (6.85) for t = 0.
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Exercise 6.37. Find the solution of the Hamilton equations for the time-dependent
Hamiltonian

H = p2

2m
− ktq, (6.88)

where m and k are constants, and use it to find the solution of the corresponding the
HJ equation such that S(q, 0) = aq, where a is an arbitrary constant. Compare the
result with (6.53).

We might consider expressions for S(qi, 0) more complicated than (6.86) and
the one given in Exercise 6.37, but these simple expressions are enough to obtain
complete solutions of the HJ equation and to illustrate the procedure.

Example 6.38. We shall consider again the HJ equation

1

2m

[(
∂S

∂x

)2

+
(

∂S

∂y

)2
]

+ mgy + ∂S

∂t
= 0 (6.89)

corresponding to the Hamiltonian (6.83) but, instead of (6.85), we take as the initial
condition

S(x, y, 0) = k
[
(x − α1)

2 + (y − α2)
2], (6.90)

where k is a constant with the appropriate dimensions, and α1, α2 are two arbitrary
parameters. Thus,

S′(Q1,Q2, 0) = k
[
(Q1 − α1)

2 + (Q2 − α2)
2] (6.91)

and, therefore,

dS′ = 2k
[
(Q1 − α1) dQ1 + (Q2 − α2) dQ2

]

i.e., P1 = 2k(Q1 − α1) and P2 = 2k(Q2 − α2). Proceeding as above,
from (6.78), (6.84), and (6.91) we have

S = S′ + F1

= k
[
(Q1 − α1)

2 + (Q2 − α2)
2] + px

2 + py
2

2m
t − mgty + gt2py + mg2t3

3

= k(m + 2kt)

m

[
(Q1 − α1)

2 + (Q2 − α2)
2] − mgty − mg2t3

6
.

Hence, after the elimination of the Qi we find that the solution of the HJ equation
that reduces to (6.90) at t = 0, is given by
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S(x, y, t) = km
[
(x − α1)

2 + (y − α2 + gt2/2)2
]

m + 2kt
− mgty − mg2t3

6
. (6.92)

Exercise 6.39. Show that the solution of the HJ equation corresponding to the
standard Hamiltonian of a one-dimensional harmonic oscillator

H = p2

2m
+ mω2

2
q2

that satisfies the initial condition S(q, 0) = αq, where α is an arbitrary constant, is
given by

S(q, t) = −
(

α2

2m
+ mω2

2
q2

)
tan ωt

ω
+ αq sec ωt.

Of course, if we already have the solution of the Hamilton equations, it does
not seem necessary to find a complete solution of the HJ equation. However, the
construction presented in this section explicitly shows that given the solution of the
Hamilton equations, one can find any complete solution of the HJ equation, and that
the general solution of the HJ equation involves an arbitrary function of n variables.
On the other hand, in geometrical optics, each solution (complete or not) of the
eikonal equation corresponds to a wavefront train and the procedure developed in
this section allows us to find the evolution of a given wavefront (see Section 6.5,
below).

6.4 Transformation of the HJ Equation Under Arbitrary
Point Transformations

With the aid of Proposition 6.28 we can see that under an arbitrary point
transformation,

q ′
i = q ′

i (qj , t), t ′ = t ′(qj , t), (6.93)

the HJ equation for a Hamiltonian H(qi, pi, t) is transformed into the HJ equation
for a Hamiltonian H ′, possibly different from H . (These transformations differ from
those considered in Section 6.3, because in the latter the time is not transformed.)
Indeed, S(qi, t) is a solution of the HJ equation for H (containing arbitrary
parameters or not) if and only if

dS = pidqi − Hdt
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on the submanifold of the extended phase space defined by pi = ∂S/∂qi . Inverting
the formulas (6.93) we obtain qi and t as functions of the q ′

i and t ′, then if F1 is any
function of q ′

i and t ′ only (or, equivalently, of qi and t only), defining

S′ ≡ S − F1 (6.94)

we have

dS′ = pi

(
∂qi

∂q ′
j

dq ′
j + ∂qi

∂t ′
dt ′

)
− H

(
∂t

∂q ′
j

dq ′
j + ∂t

∂t ′
dt ′

)
− ∂F1

∂q ′
j

dq ′
j − ∂F1

∂t ′
dt ′

=
(

∂qi

∂q ′
j

pi − ∂t

∂q ′
j

H − ∂F1

∂q ′
j

)
dq ′

j −
(

∂t

∂t ′
H − ∂qi

∂t ′
pi + ∂F1

∂t ′

)
dt ′.

Making use again of Proposition 6.28, the last equation shows that S′ is a solution
of the HJ equation for the Hamiltonian

H ′ = ∂t

∂t ′
H − ∂qi

∂t ′
pi + ∂F1

∂t ′
(6.95)

with

p′
j = ∂qi

∂q ′
j

pi − ∂t

∂q ′
j

H − ∂F1

∂q ′
j

(6.96)

[cf. Equations (5.65) and (5.66)]. In conclusion, given a Hamiltonian H and an
arbitrary function, F1(qi, t), any coordinate transformation (6.93), in which the time
may be also transformed, leads to a new Hamiltonian (6.95) in such a way that any
solution, S, of the HJ equation for H produces a solution, S′, of the HJ equation for
H ′ given by (6.94). If S contains arbitrary parameters, so will do S′.

Example 6.40. We shall consider the point transformation

q = q ′ sec ωt ′, t = tan ωt ′

ω
(6.97)

where ω is a constant. Then, from Equation (6.96), we obtain

p′ = p sec ωt ′ − ∂F1

∂q ′ ,

which substituted into (6.95) gives

H ′ = H sec2 ωt ′ − pq ′ω sec ωt ′ tan ωt ′ + ∂F1

∂t ′

= H sec2 ωt ′ − ωq ′ tan ωt ′
(

p′ + ∂F1

∂q ′

)
+ ∂F1

∂t ′
.
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Hence, taking H = p2/2m, and expressing the result in terms of the primed
variables

H ′ = p2

2m
sec2 ωt ′ − ωq ′ tan ωt ′

(
p′ + ∂F1

∂q ′

)
+ ∂F1

∂t ′

= 1

2m

(
p′ + ∂F1

∂q ′

)2

− ωq ′ tan ωt ′
(

p′ + ∂F1

∂q ′

)
+ ∂F1

∂t ′

= p′2

2m
+

(
∂F1

∂q ′ − mωq ′ tan ωt ′
)

p′

m
+ 1

2m

(
∂F1

∂q ′

)2

− ωq ′ tan ωt ′ ∂F1

∂q ′ + ∂F1

∂t ′
.

In order to eliminate the term linear in p′ we take

∂F1

∂q ′ = mωq ′ tan ωt ′,

which implies that F1 = 1
2mωq ′2 tan ωt ′ + f (t ′), where f (t ′) is some function of

t ′ only. In this manner, H ′ reduces to

H ′ = p′2

2m
+ mω2

2
q ′2 + df

dt ′
.

Thus, choosing f = 0 it follows that if S is a solution for the HJ equation
corresponding to the standard Hamiltonian of a free particle, then

S′ = S − F1 = S − 1
2mωq ′2 tan ωt ′ (6.98)

is a solution of the HJ equation corresponding to the standard Hamiltonian of a
harmonic oscillator.

For instance,

S = m(q − a)2

2t
,

where a is a constant, is a solution of the HJ equation for a free particle, which
substituted into (6.98) yields

S′ = mω[(q ′2 + a2) cos ωt ′ − 2aq ′]
2 sin ωt ′

.

Exercise 6.41. Apply the transformation

q ′ = qes + 1
2gt2(es − e4s), t ′ = te2s ,
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where g and s are constants, to the Hamiltonian

H = p2

2m
+ mgq.

Show that by suitably choosing the function F1 appearing in Equations (6.94)–
(6.96) one obtains

H ′ = p′2

2m
+ mgq ′

(that is, the Hamiltonian is form-invariant). This means that, except for the
substitution of the coordinates (q, t) by (q ′, t ′), the HJ equation for H ′ is the same
as that for H and, therefore, by means of (6.94), from a given solution of the HJ
equation for H we obtain a possibly different solution of the same equation.

6.5 Geometrical Optics

The Hamiltonian formulation of classical mechanics arose from the study of
geometrical optics (see, e.g., Whittaker [22, Chap. XI]) and, as we shall see in this
section, it is very instructive to apply the formalism developed in this chapter to
geometrical optics.

Fermat’s Principle. The Ray Equation
In geometrical optics it is assumed that the light propagates along curves, which are
called light rays. The basic equations of geometrical optics can be obtained from
the Fermat principle of least time, which can be formulated in the following way.
The speed of light in an isotropic medium, with refractive index n, is c/n, where c

is the speed of light in vacuum; therefore, given two points of the three-dimensional
Euclidean space, A and B, the time required for the light to go from A to B along a
curve C is given by the integral

1

c

∫
C

n ds, (6.99)

where ds is the arclength element (see below). Of course, there are an infinite
number of curves joining A and B; the Fermat principle states that the path actually
followed by the light is the one that minimizes the integral (6.99). Since c is a
constant, finding the curve corresponding to the least time is equivalent to finding
the curve with the minimum optical length (or optical path length), defined as

∫
C

n ds. (6.100)
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If we consider curves that can be parameterized by one of the Cartesian
coordinates, z say, the integral (6.100) can be expressed as

∫ z1

z0

n(x, y, z)

[
1 +

(
dx

dz

)2

+
(

dy

dz

)2
]1/2

dz, (6.101)

where z0 and z1 are the values of the coordinate z at the points A and B, respectively
(see Figure 6.1). Hence, the light rays are determined by the Euler–Lagrange
equations for the Lagrangian

L(x, y, x′, y′, z) = n(x, y, z)

√
1 + x′2 + y′2, (6.102)

where x′ ≡ dx/dz and y′ ≡ dy/dz. However, instead of writing down these
equations and attempting to solve them, we shall be mainly interested in the
Hamiltonian description.

Exercise 6.42. Making use of the fact that ds = √
1 + x′2 + y′2 dz, show that the

Euler–Lagrange equations for the Lagrangian (6.102) amount to

d

ds

(
n

dx

ds

)
= ∂n

∂x
,

d

ds

(
n

dy

ds

)
= ∂n

∂y
,

and that, making use of the identity (1.92), one obtains the equation

d

ds

(
n

dz

ds

)
= ∂n

∂z
.

A

B

z

x

y

Fig. 6.1 The curves shown join the points A and B. In order to use z as a parameter for these
curves, any plane z = const must intersect each curve at most at one point
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The last three equations are equivalent to the vector equation

d

ds

(
n

dr
ds

)
= ∇n,

where r = (x, y, z) is the position vector of a point of the ray. This equation is
known as the ray equation.

Exercise 6.43 (Spherically symmetric media). Show that if the refractive index
is a function of the distance, r , to a fixed point (taken as the origin), n = n(r), then

r × n
dr
ds

is constant along each ray and show that this implies that each ray lies on a plane
passing through the origin.

The optical system defined by the spherically symmetric refractive index

n = a

b + r2
, (6.103)

where a and b are real constants, with a > 0, is known as Maxwell’s fish eye.
Several properties of this system can be derived from its relationship with the Kepler
problem. Show that, in this case,

r ×
(

r × n
dr
ds

)
+ a

2

dr
ds

is also constant along each ray and deduce from this that the rays are (arcs of) circles
(just like the hodographs of the Kepler problem). (See also Exercise 6.45, below.)

The Eikonal Equation
The canonical momenta conjugate to x and y are

px = ∂L

∂x′ = nx′√
1 + x′2 + y′2 , py = ∂L

∂y′ = ny′√
1 + x′2 + y′2 , (6.104)

respectively, and from these equations we obtain

√
n2 − px

2 − py
2 = n√

1 + x′2 + y′2

and

x′ = px√
n2 − px

2 − py
2
, y′ = py√

n2 − px
2 − py

2
. (6.105)
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Thus, in this approach, we have a system with two degrees of freedom, with
the coordinate z as the independent variable, and a Hamiltonian given by [see
Equation (4.10)]

H = −
√

n2 − px
2 − py

2 (6.106)

(hence, e.g., dpx/dz = −∂H/∂x). Therefore, the corresponding HJ equation is

−
[
n2 −

(
∂S

∂x

)2

−
(

∂S

∂y

)2
]1/2

+ ∂S

∂z
= 0, (6.107)

which implies that

(
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2

= n2. (6.108)

This last equation is known as the eikonal equation and, in this context, S is called
the eikonal (or eikonal function). The eikonal equation can also be derived from
the Huygens principle (see, e.g., Synge [15, Sect. 22]). Any complete solution
of Equation (6.107) or (6.108) allows us to find all the light rays in the medium
characterized by the refractive index n (that is, the solutions of the ray equation).
Note that in the eikonal equation, the three coordinates (x, y, z) appear on an equal
footing and it is optional which of them is taken as the independent variable.

For instance, if the refractive index is constant, Equation (6.107) admits separa-
ble solutions of the form

S(x, y, P1, P2, z) = P1x + P2y +
√

n2 − P1
2 − P2

2 z, (6.109)

where P1, P2 are constants such that P1
2 + P2

2 � n2. Making use of the standard
formulas (6.8) we obtain the canonical transformation generated by (6.109) (treating
again z as the independent variable)

px=P1, py=P2, Q1=x− P1z√
n2−P1

2−P2
2
, Q2=y− P2z√

n2 − P1
2 − P2

2
.

(6.110)
The last two equations in (6.110) show that in this case the light rays are straight
lines, as expected. In fact, in terms of the usual vector notation, we have

(x, y, z) = (Q1,Q2, 0) + z (P1, P2,
√

n2 − P1
2 − P2

2)√
n2 − P1

2 − P2
2

.

Thus, the constants P1, P2 determine the direction of the light ray, and (Q1,Q2, 0)

are the Cartesian coordinates of the intersection of the ray with the plane z = 0
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x

y

z

(Q1,Q2,0)

Fig. 6.2 Any light ray in a homogeneous isotropic medium is a straight line. With the exception
of the light rays parallel to the xy-plane, any light ray can be specified by the four real numbers
(Q1,Q2, P1, P2); P1 and P2 determine the direction of the ray, and (Q1,Q2, 0) are the Cartesian
coordinates of the intersection of the ray with the plane z = 0. The planes orthogonal to this
straight line are the wavefronts defined by (6.109)

(see Figure 6.2). (Note also that the two last equations in (6.110) are obtained
regardless of which of the coordinates (x, y, z) is taken as the independent variable.)

Exercise 6.44. In terms of the spherical coordinates (r, θ, φ), the optical
length (6.100) is given by

∫ r2

r1

n(r, θ, φ)

√
1 + r2θ ′2 + r2 sin2 θφ′2 dr,

with θ ′ ≡ dθ/dr , φ′ ≡ dφ/dr , assuming that the curve C can be parameterized by
r [cf. Equation (6.101)]. Starting from the Fermat principle, using this expression,
show that the corresponding HJ equation leads to the equation

(
∂S

∂r

)2

+ 1

r2

(
∂S

∂θ

)2

+ 1

r2 sin2 θ

(
∂S

∂φ

)2

= n2 (6.111)

which is just the eikonal equation (6.108) expressed in spherical coordinates. Even
though we might expect this result, taking into account the meaning of the eikonal
function, it does not follow from the discussion presented in the preceding sections
(e.g., Section 6.3) because in the present case we are also changing the parameter of
the light rays z in Equation (6.101), by r .

Exercise 6.45. Solving the eikonal equation, show that in the case of the Maxwell
fish eye, the light rays are (arcs of) circles. (It is convenient to make use of the fact
that each ray lies on a plane passing through the origin—see Exercise 6.43.)
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Going back to the general case, where n is an arbitrary function, from Equa-
tions (6.105) and (6.107) we find that the vector with Cartesian components
(dx/dz, dy/dz, dz/dz), which is tangent to the light ray, is proportional to the
gradient of S,

(
dx

dz
,

dy

dz
,

dz

dz

)
=

(px, py,

√
n2 − px

2 − py
2)√

n2 − px
2 − py

2
= 1

∂S/∂z

(
∂S

∂x
,
∂S

∂y
,
∂S

∂z

)
,

which means that the light rays intersect orthogonally the level surfaces S(x, y, z) =
const. (see Figure 6.3). The surfaces S = const. constitute the wavefronts.

Fig. 6.3 The level surfaces
of a solution S(x, y, z) of the
eikonal equation constitute a
family of two-dimensional
surfaces that fill the
three-dimensional space. The
curves orthogonal to these
surfaces correspond to some
of the possible rays of light in
the medium

In the example (6.109), the wavefronts are the planes normal to the vector with
Cartesian components (P1, P2,

√
n2 − P1

2 − P2
2) (see Figure 6.2).

Exercise 6.46. Show that if S(x, y, z) is a solution of the eikonal equation, which
may not contain arbitrary parameters, then the curves orthogonal to the level
surfaces S = const. correspond to possible light rays. (Hint: if xi(s) are the
Cartesian coordinates of a curve parameterized by its arclength, then the norm of
its tangent vector, (dx/ds, dy/ds, dz/ds), is equal to 1. On the other hand, if this
curve is orthogonal to the level surfaces of S, then its tangent vector is proportional
to ∇S, whose norm is equal to n.)

Exercise 6.47. Find the light rays determined by the eikonal function in two
dimensions

S(x, y, P ) = 1
2a

[
(x2 − y2) cos P + 2xy sin P

]
,

where a and P are constants. What is the refractive index?

Each solution, S(x, y, z), of the eikonal equation defines a family of surfaces (its
level surfaces) in such a way that if a1 and a2 are two real constants (such that the
sets {(x, y, z) ∈ R

3 | S(x, y, z) = a1} and {(x, y, z) ∈ R
3 | S(x, y, z) = a2} are

nonempty), the wavefront S = a2 is obtained from S = a1 by the propagation of
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the light by a time (a2 −a1)/c (see Figure 6.4). In fact, if we consider a light ray, C,
connecting a point belonging to the surface S(x, y, z) = a1 with a point belonging
to S(x, y, z) = a2, assuming that this curve can be parameterized by z, we have [see
Equations (6.107) and (6.104)]

a2 − a1 =
∫

C

dS =
∫ z2

z1

(
∂S

∂x
x′ + ∂S

∂y
y′ + ∂S

∂z

)
dz

=
∫ z2

z1

(
pxx

′+pyy
′+

√
n2−px

2−py
2

)
dz=

∫ z2

z1

n (x′2 + y′2 + 1)√
1 + x′2 + y′2 dz

=
∫

C

n ds.

Thus, the set of level surfaces S = const. represent the evolution of one of them (see
Figure 6.4).

Fig. 6.4 Each level surface
of S(x, y, z) represents the
wavefront at some particular
time. The level surface
S = a1 evolves into the level
surface S = a2 after a time
(a2 − a1)/c. The set of all the
level surfaces of S represents
the time evolution of anyone
of them

S= a2

S= a1

Generation of Complete Solutions of the Eikonal Equation from a given
Complete Solution
As shown in Section 6.1.1, from a given complete solution of the HJ equation one
can obtain any other complete solution of the same equation. For instance, making
use of the complete solution (6.109), and choosing the time-independent generating
function F(Pi, P̃i) = P1P̃1 + P2P̃2, according to Equations (6.46) we have

0 = ∂(S − F)

∂P1
= x − P1z√

n2 − P1
2 − P2

2
− P̃1,

hence,

P1 = (x − P̃1)
√

n2 − P1
2 − P2

2

z
,
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with a similar expression for P2. Then, from the expressions thus obtained, we find
that

P1 = n (x − P̃1)√
(x − P̃1)2 + (y − P̃2)2 + z2

, P2 = n (y − P̃2)√
(x − P̃1)2 + (y − P̃2)2 + z2

.

With the aid of these formulas we can eliminate the parameters Pi appearing in the
right-hand side of (6.45) and in this manner we find a second complete solution of
the eikonal equation

S̃(x, y, P̃1, P̃2, z) = n

√
(x − P̃1)2 + (y − P̃2)2 + z2, (6.112)

P̃1, P̃2 ∈ (−∞,∞). The wavefronts S̃ = const. are spheres [centered at
(P̃1, P̃2, 0)].
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