
Chapter 3
Rigid Bodies

Another interesting application of the Lagrangian formalism is found in the motion
of a rigid body. A rigid body can be defined as a collection of point particles such
that the distances between them are constant. Even though, in essence, this example
is similar to those already considered, the expression of the kinetic energy of a rigid
body involves a more elaborate process and the definition of a new object (the inertia
tensor).

This chapter differs from the other chapters of this book by the extensive use of
objects with indices. A more elementary approach is based on the use of the vector
algebra. The treatment given here highlights the use of the Lagrangian formalism.

3.1 The Configuration Space of a Rigid Body
with a Fixed Point

We shall restrict ourselves to the study of the motion of a rigid body assuming that
there exists a fixed point (with respect, of course, to some inertial frame). We shall
also assume that the particles forming the rigid body are not all collinear (this means
that there are at least three particles). Under these conditions, the system has three
degrees of freedom (see below).

In order to study the motion of a rigid body with a fixed point, following a
standard approach, we consider two sets of Cartesian axes, the first one, with
coordinates x, y, z, assumed inertial, and the second one, with coordinates x ′, y ′, z′,
fixed in the rigid body. The origins of both sets of Cartesian axes coincide with
the fixed point of the body (see Figure 3.1). It is convenient to denote x, y, z as
x1, x2, x3, and, similarly, x ′, y ′, z′ as x1′, x2′, x3′ . Then, any point of the rigid body
has a position vector

r = x1′e1′ + x2′e2′ + x3′e3′,
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where the unit vectors ei′ (i ′ = 1′, 2′, 3′) form an orthonormal basis fixed in the
body, and, at the same time,

r = x1e1 + x2e2 + x3e3,

where the unit vectors ei (i = 1, 2, 3) form an orthonormal basis associated with
the inertial frame.

Fig. 3.1 The Cartesian axes
with coordinates x′, y′, z′ are
fixed in the body and rotate
about the origin of the
Cartesian axes with
coordinates x, y, z, which
belong to an inertial frame.
Both sets of axes are
right-handed

x

y

z

x

yz

Since the vectors ei form a basis, there exist nine real numbers, aij ′ , which may
depend on the time only, such that

ei′ = aji′ej (3.1)

(note the position of the indices, the order is purely conventional). With these
numbers we can form a 3 × 3 matrix, A = (aij ′), in the usual manner, using the
first subscript to label rows and the second subscript to label columns, that is

A =
⎛
⎝

a11′ a12′ a13′
a21′ a22′ a23′
a31′ a32′ a33′

⎞
⎠ ,

so that the i-th column of this matrix contains the components of the vector ei′ with
respect to the basis formed by the vectors ej . For instance, if the vectors ei′ are
obtained from the vectors ei by means of a rotation through an angle φ about the
z-axis, then the matrix A is (see Figure 3.2)

A =
⎛
⎝

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎞
⎠ . (3.2)

Using the fact that both bases are orthonormal we have

δi′j ′ = ei′ · ej ′ = aki′ek · alj ′el = aki′alj ′δkl = aki′akj ′ ,
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Fig. 3.2 The vectors ei ′ are
obtained from the vectors ei

by a rotation through an angle
φ about the z-axis. The figure
shows that
e1′ = cos φ e1 + sin φ e2,
e2′ = − sin φ e1 + cos φ e2,
e3′ = e3, which leads to the
matrix (3.2) x

y

xy

e1

e1
e2e2

i.e.,

δi′j ′ = aki′akj ′ . (3.3)

These conditions mean that the matrix (aij ′) is orthogonal (AtA = I , where At is the
transpose of A, and I is the unit matrix), that is, its inverse is equal to its transpose
and, since any matrix commutes with its inverse, Equation (3.3) is equivalent to

δij = aik′ajk′ . (3.4)

Once we have chosen the basis vectors ei and ei′ , the matrix A = (aij ′ )
determines the configuration of the rigid body and, therefore, for a rigid body
with a fixed point, the configuration space can be identified with the set of all the
real 3 × 3 orthogonal matrices with positive determinant (so that the orientation,
or handedness, of the basis vectors is not inverted). This set of matrices is, in
fact, a group, which is denoted by SO(3). The set of equations (3.3) constitute
six algebraically independent conditions on the nine entries of A (since both sides
of the equation are symmetric in the indices i ′, j ′); hence, the 3 × 3 orthogonal
matrices can be parameterized by three coordinates (for instance, the three Euler
angles presented in Section 3.3, below).

Usually, in the so-called tensor notation, the indices labeling the components of
an object (e.g., a vector or a tensor) determine the way in which these components
transform under a change of the basis vectors. For that reason, here we need two
different kinds of indices: the unprimed and the primed ones, because we can
perform two different kinds of changes of bases. We can replace the orthonormal
basis ei by another orthonormal basis (related to the first one by means of a
constant orthogonal matrix) and, independently, we can replace the orthonormal
basis ei′ by another orthonormal basis, also fixed in the rigid body (and the two
orthonormal bases fixed with respect to the body are also related by some constant
orthogonal matrix, see, e.g., Equation (3.19), below). The equations developed here
must maintain their form under the independent changes of the two bases.

It may be remarked that in all the other examples in this book, we start by
choosing some coordinates to represent the configuration of the mechanical system
(which, in some cases, are replaced afterwards). By contrast, in the case of the
motion of a rigid body we can postpone this choice and establish several results
without having to write down the explicit expression of the Lagrangian in terms of
coordinates.
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3.2 The Instantaneous Angular Velocity and the Inertia
Tensor

Assuming that the rigid body is made out of N point particles with position vectors
rα (α = 1, 2, . . . , N), each of these vectors is represented by three real numbers,
x

(α)
i (i = 1, 2, 3), with respect to the inertial frame defined by the basis vectors ei ,

and by three real numbers, x
(α)

i′ (i ′ = 1′, 2′, 3′), with respect to the frame fixed in
the body, defined by the basis vectors ei′ , that is,

rα = x
(α)
i ei = x

(α)

i′ ei′ .

According to Equation (3.1), using the fact that the inverse of the matrix (aij ′) is its
transpose, these sets of coordinates are related by

x
(α)
i = aij ′x(α)

j ′ , x
(α)

i′ = aji′x
(α)
j , (3.5)

with the same matrix (aij ′) for all the particles of the body (that is, Equations (3.5)
hold for α = 1, 2, . . . , N). (Note that the components of any vector with respect to
the bases formed by the vectors ei and ei′ are related in this form.)

Since the basis vectors ei′ are fixed with respect to the body, the coordinates x
(α)

i′
cannot vary with the time. On the other hand, the coordinates x

(α)
i will vary with

the time as a consequence of the rotation of the body, hence, making use of the first
equation in (3.5),

ṙα = ẋ
(α)
j ej = ȧj i′x

(α)

i′ ej

and, therefore, the kinetic energy of the body (with respect to the inertial frame) is

T =
N∑

α=1

1

2
mα ṙα · ṙα

=
N∑

α=1

1

2
mα(ȧji′x

(α)

i′ )(ȧjk′x(α)

k′ )

= ȧj i′ ȧjk′
N∑

α=1

1

2
mαx

(α)

i′ x
(α)

k′ . (3.6)

In this manner, the kinetic energy is expressed in terms of the time derivative of
the matrix (aij ′), which depends on how the body moves, and of the nine constant

real numbers
∑N

α=1
1
2mαx

(α)

i′ x
(α)

k′ , (i ′, k′ = 1′, 2′, 3′) which are determined by the
positions and masses of the particles forming the rigid body. As we shall see, the
product of time derivatives ȧj i′ ȧjk′ , appearing in (3.6), can be written in terms of a
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single vector, which corresponds to the body’s angular velocity and, instead of the
sums

∑N
α=1

1
2mαx

(α)

i′ x
(α)

k′ , it will be more convenient to use the components of the
inertia tensor, to be defined below.

Differentiating both sides of Equation (3.3) with respect to the time we obtain

0 = aki′ ȧkj ′ + ȧki′akj ′ .

Since the factors appearing in the last equation are real-valued functions, we have
aki′ ȧkj ′ = ȧkj ′aki′ and, therefore,

ȧki′akj ′ = −ȧkj ′aki′

which shows that the product ȧki′akj ′ is antisymmetric in the indices i ′ and j ′. This
is equivalent to say that there exist three real-valued functions of the time, ωi′ , such
that

ȧki′akj ′ = εi′j ′s ′ωs ′, (3.7)

where εi′j ′k′ is the Levi-Civita symbol, defined by

εi′j ′k′ =
⎧⎨
⎩

1 if i ′j ′k′ is an even permutation of 1′2′3′
−1 if i ′j ′k′ is an odd permutation of 1′2′3′

0 otherwise.
(3.8)

The ωi′ are the components of the angular velocity of the rigid body in the basis ei′ .
In terms of the matrix notation, Equation (3.7) is equivalent to

ȦtA =
⎛
⎝

0 ω3′ −ω2′
−ω3′ 0 ω1′
ω2′ −ω1′ 0

⎞
⎠ . (3.9)

For instance, in the case of the matrix (3.2) we find that the product ȦtA is

φ̇

⎛
⎝

− sin φ cos φ 0
− cos φ − sin φ 0

0 0 0

⎞
⎠

⎛
⎝

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎞
⎠ = φ̇

⎛
⎝

0 1 0
−1 0 0

0 0 0

⎞
⎠ ,

which shows that the only nonzero component ωi′ is ω3′ = φ̇, as one would expect.
The Levi-Civita symbol (3.8) is invariant under cyclic permutations of the

indices, that is,

εi′j ′k′ = εj ′k′i′ = εk′i′j ′ (3.10)

and satisfies the relation

εi′j ′k′εi′l′m′ = δj ′l′δk′m′ − δj ′m′δk′l′ . (3.11)



86 3 Rigid Bodies

The Levi-Civita symbol is very useful owing to its relationship with the determinant.
If B = (bij ) is a 3 × 3 matrix, then from the definition (3.8) it follows that

εijkbipbjqbkr = (det B)εpqr . (3.12)

A related result is that the components of the vector product of two vectors can be
conveniently expressed with the aid of the Levi-Civita symbol. If ai and bi are the
components of two vectors, a and b, respectively, with respect to some right-handed
orthonormal basis, then the components of the vector product c = a×b with respect
to this basis are given by

ci = εijkajbk. (3.13)

Making use of Equations (3.4), from (3.7) we have

εi′j ′s ′ωs ′arj ′ = ȧki′akj ′arj ′ = ȧki′δkr = ȧri′ , (3.14)

hence, with the aid of (3.3)

ȧj i′ ȧjk′ = εi′l′s ′ωs ′ajl′εk′n′r ′ωr ′ajn′ = εi′l′s ′ωs ′εk′n′r ′ωr ′δl′n′ = εi′l′s ′ωs ′εk′l′r ′ωr ′

= εl′s ′i′ωs ′εl′r ′k′ωr ′ = (δs ′r ′δi′k′ − δs ′k′δi′r ′) ωs ′ωr ′ .

Substituting this expression into (3.6) we find that the kinetic energy of the rigid
body can also be written in the form

T = (δs ′r ′δi′k′ − δs ′k′δi′r ′) ωs ′ωr ′
N∑

α=1

1

2
mαx

(α)

i′ x
(α)

k′

= 1

2
ωs ′ωr ′

N∑
α=1

mα(δs ′r ′δi′k′ − δs ′k′δi′r ′) x
(α)

i′ x
(α)

k′

= 1

2
ωs ′ωr ′

N∑
α=1

mα

(
δs ′r ′rα

2 − x
(α)

s ′ x
(α)

r ′
)
.

The nine real numbers

Ij ′k′ ≡
N∑

α=1

mα

(
δj ′k′rα

2 − x
(α)

j ′ x
(α)

k′
)

(3.15)

are the components of the inertia tensor of the rigid body (with respect to the basis
vectors ei′ ) so that the kinetic energy of the rigid body is expressed as

T = 1
2 Ij ′k′ωj ′ωk′ . (3.16)

If we consider a continuous distribution of matter, with a mass density ρ, the
components of the inertia tensor are given by
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Ij ′k′ ≡
∫

ρ(r)(δj ′k′r2 − xj ′xk′) dv′, (3.17)

with r = xi′ei′ and dv′ = dx1′dx2′dx3′ . The definitions (3.15) and (3.17) show that
the inertia tensor is symmetric, Ii′j ′ = Ij ′i′ , and therefore it has six independent
components only.

Expression (3.16) can also be obtained in a more elementary manner. However,
the procedure followed above yields a useful expression for the angular velocity of
the rigid body in terms of the matrix (aji′) [Equation (3.7)].

Example 3.1 (Inertia tensor of a homogeneous cylinder). We shall calculate the
inertia tensor of a homogeneous right circular cylinder. The height of the cylinder
will be denoted by h, its radius by a, and its mass by M . Then its density, assumed
constant, is ρ = M/(πa2h). We take the fixed point, O, at the center of the
cylinder and the x3′-axis will coincide with the axis of the cylinder (see Figure 3.3).
From Equation (3.17) we have, making use of cylindrical coordinates (that is,
x1′ = ρ cos φ, x2′ = ρ sin φ, x3′ = z),

I1′1′ = M

πa2h

∫ a

0
dρ

∫ h/2

−h/2
dz

∫ 2π

0
ρdφ(x2′2 + x3′2)

= M

πa2h

∫ a

0
dρ

∫ h/2

−h/2
dz

∫ 2π

0
ρdφ(ρ2 sin2 φ + z2)

= M

πa2h

∫ a

0
dρ

∫ h/2

−h/2
dz

(
πρ3 + 2πρz2)

= M

a2h

∫ a

0
dρ

(
ρ3h + 1

6
ρh3

)

= M

(
a2

4
+ h2

12

)
.

Similarly we find that

I2′2′ = M

πa2h

∫ a

0
dρ

∫ h/2

−h/2
dz

∫ 2π

0
ρdφ (x1′2 + x3′2) = M

(
a2

4
+ h2

12

)
,

and

I3′3′ = M

πa2h

∫ a

0
dρ

∫ h/2

−h/2
dz

∫ 2π

0
ρdφ (x1′2 + x2′2) = Ma2

2
.

Making use of the parity of the integrands one finds that I1′2′ , I1′3′ , and I2′3′ are
equal to zero. Hence,

(Ii′j ′) = M

12

⎛
⎝

3a2 + h2 0 0
0 3a2 + h2 0
0 0 6a2

⎞
⎠ . (3.18)
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Fig. 3.3 The mass density of
the cylinder is uniform. The
origin is placed at the
geometric center of the
cylinder, which coincides
with the center of mass. The
x3′ -axis coincides with the
axis of the cylinder

x2

x3

x1

O

Principal Moments of Inertia
The components of the inertia tensor depend on the mass distribution of the body,
but also on the choice of the coordinate axes fixed in the body. If we replace the
orthonormal basis ei′ by another orthonormal basis ẽj ′ also fixed in the body, then
there exists a (time-independent) orthogonal matrix, B = (bj ′k′), such that

ẽj ′ = bk′j ′ek′ (3.19)

(again, note the position of the indices). According to this definition, the columns of
the orthogonal matrix

B =
⎛
⎝

b1′1′ b1′2′ b1′3′
b2′1′ b2′2′ b2′3′
b3′1′ b3′2′ b3′3′

⎞
⎠

are the components of the vectors ẽi′ with respect to the basis formed by the vectors
ej ′ . Then, the Cartesian coordinates of the α-th particle with respect to the new axes

fixed in the body are x̃
(α)

k′ = bj ′k′x(α)

j ′ and, therefore, with respect to these new axes,
the components of the inertia tensor are [see (3.15)]

Ĩi′j ′ = br ′i′bs ′j ′Ir ′s ′ . (3.20)

In terms of matrices, this last equation amounts to

Ĩ = B tIB,

where Ĩ ≡ (Ĩi′j ′), I ≡ (Ii′j ′), and B is the orthogonal matrix defined above.
If the columns of the matrix B are three mutually orthogonal unit eigenvectors

of the matrix (Ii′j ′), then (Ĩi′j ′) is diagonal (see below).
Since the matrix (Ir ′s ′) is real and symmetric, we can always find three mutually

orthogonal eigenvectors of (Ir ′s ′). Recall that vs ′ is an eigenvector of (Ir ′s ′), with
eigenvalue λ, if
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⎛
⎝

I1′1′ I1′2′ I1′3′
I2′1′ I2′2′ I2′3′
I3′1′ I3′2′ I3′3′

⎞
⎠

⎛
⎝

v1′
v2′
v3′

⎞
⎠ = λ

⎛
⎝

v1′
v2′
v3′

⎞
⎠ (3.21)

or, equivalently,

Ir ′s ′vs ′ = λvr ′ . (3.22)

The eigenvalue λ is a root of the characteristic polynomial of (Ir ′s ′), that is,
det(Ir ′s ′ − λδr ′s ′) = 0. Since the components Ir ′s ′ are real, (3.22) is equivalent to

Ir ′s ′vs ′ = λvr ′ , (3.23)

where the bar denotes complex conjugation. By combining Equations (3.22) and
(3.23), using the symmetry of Ir ′s ′ , we obtain

Ii′j ′vj ′vi′ = λvi′vi′

and

Ii′j ′vj ′vi′ = vj ′Ij ′i′vi′ = vj ′λvj ′ = λvi′vi′ ,

thus, (λ − λ)vi′vi′ = 0, which means that λ is real (vi′vi′ is equal to zero only if
vi′ = 0, which is excluded from the definition of eigenvector). Furthermore, the
eigenvectors corresponding to different eigenvalues are orthogonal to each other: if
wi′ is an eigenvector of Ii′j ′ with eigenvalue μ, Ii′j ′wj ′ = μwi′ , then, proceeding
as above,

Ii′j ′vi′wj ′ = vi′μwi′ ,

and

Ii′j ′vi′wj ′ = wj ′Ij ′i′vi′ = wj ′λvj ,

which leads to (λ − μ)vi′wi′ = 0, showing that if λ �= μ then vi′wi′ = 0, i.e.,
the vectors vi′ and wi′ are orthogonal to each other. Thus, if the three eigenvalues
of (Ii′j ′) are distinct, then the corresponding unit eigenvectors form an orthonormal
basis.

When only two eigenvalues of (Ir ′s ′) coincide, the corresponding eigenvectors
form a two-dimensional plane, and any pair of orthogonal unit vectors of this plane
will be part of an orthonormal basis formed by eigenvectors of (Ir ′s ′). When the
three eigenvalues of (Ir ′s ′) coincide, then (Ir ′s ′) is a multiple of the identity matrix
and any orthonormal basis is formed by eigenvectors of (Ir ′s ′).

In conclusion, in all cases we can find an orthonormal basis formed by eigenvec-
tors of (Ir ′s ′), and from (3.22) it follows that if the columns of the matrix B are three
mutually orthogonal unit eigenvectors of the matrix (Ii′j ′), then (Ĩi′j ′) is diagonal.
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If the matrix (Ĩi′j ′) is diagonal, the directions defined by the basis vectors ẽi′

are called principal axes at O and the entries of (Ĩi′j ′) along the diagonal are
called principal moments of inertia [hence, the principal moments of inertia are
the eigenvalues of (Ii′j ′)].

In Example 3.1 the matrix (Ir ′s ′) is already diagonal, which means that the basis
vectors ei′ point along the principal axes. The entries along the diagonal of (Ir ′s ′)
are the principal moments of inertia and, therefore, at least two principal moments
of inertia coincide (the three principal moments of inertia coincide when h = √

3 a).
On the other hand, if we place the origin at the base of the cylinder, with the axes

as shown in Figure 3.4, the matrix (Ii′j ′) is given by (see Equation (3.28), below)

(Ii′j ′) = M

12

⎛
⎝

3a2 + 4h2 0 −6ah

0 15a2 + 4h2 0
−6ah 0 18a2

⎞
⎠ .

The eigenvalues of (Ii′j ′) (and, hence, the principal moments of inertia) are the roots
of the polynomial

∣∣∣∣∣∣∣

M
12 (3a2 + 4h2) − λ 0 −M

2 ah

0 M
12 (15a2 + 4h2) − λ 0

−M
2 ah 0 3M

2 a2 − λ

∣∣∣∣∣∣∣
= 0,

thus, the principal moments of inertia are

M

12
(15a2 + 4h2),

M

24

(
21a2 + 4h2 ±

√
225a4 + 24a2h2 + 16h4

)
.

Fig. 3.4 The fixed point, O,
is at the edge of the base of
the cylinder. The x1′ -axis
passes through the center of
the base. The vector R goes
from the origin to the center
of mass

x2

x3

x1

O
R

In order to simplify the expressions below, we shall consider the specific case
where h = √

3 a, then, the principal moments of inertia are

9Ma2

4
,

9Ma2

4
,

Ma2

2
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and the matrix (Ii′j ′) becomes

(Ii′j ′) = Ma2

4

⎛
⎝

5 0 −2
√

3
0 9 0

−2
√

3 0 6

⎞
⎠ .

The eigenvectors of this matrix corresponding to the (repeated) eigenvalue 9Ma2/4
are determined by the homogeneous system of linear equations [see (3.21)]

Ma2

4

⎛
⎝

5 0 −2
√

3
0 9 0

−2
√

3 0 6

⎞
⎠

⎛
⎝

v1′
v2′
v3′

⎞
⎠ = 9Ma2

4

⎛
⎝

v1′
v2′
v3′

⎞
⎠ ,

which gives 2v1′ + √
3 v3′ = 0, with v2′ arbitrary. These conditions define a two-

dimensional plane, and two solutions of these conditions are v1′ = −√
3/7, v2′ =

0, v3′ = 2/
√

7, and v1′ = 0, v2′ = 1, v3′ = 0, which correspond to two mutually
orthogonal unit vectors. Hence, the two unit vectors

ẽ2′ ≡ e2′, ẽ3′ ≡ −
√

3

7
e1′ + 2√

7
e3′

point along principal axes (the labeling of the vectors ẽi′ is completely arbitrary).
According to the discussion above, the eigenvectors corresponding to the third

eigenvalue, which is different from the first two, must be orthogonal to ẽ2′ and ẽ3′ .
Thus, we can find the third principal axis by means of the cross product ẽ2′ × ẽ3′ .
Letting ẽ1′ ≡ ẽ2′ × ẽ3′ we obtain the missing element of a positively oriented
orthonormal basis such that the vectors ẽi′ point along principal axes. We find

ẽ1′ = 2√
7

e1′ +
√

3

7
e3′ .

(One can readily verify that the vector given by v1′ = 2/
√

7, v2′ = 0, v3′ = √
3/7

is indeed an eigenvector of (Ii′j ′) with eigenvalue Ma2/2.)

Exercise 3.2. Four particles of mass m are at the points (a, 0, 0), (0, a, 0), (a, a, 0),
and (0, 0, 0), with respect to the Cartesian axes xi′ , where a is a positive constant.
Find the principal axes and the principal moments of inertia.

Angular Momentum
From the elementary definition of the angular momentum of a particle (L = r×mṙ)
it follows that the Cartesian components of the angular momentum of the rigid body
(with respect to the inertial frame) are given by

Li =
N∑

α=1

mαεijkx
(α)
j ẋ

(α)
k .



92 3 Rigid Bodies

According to (3.5) and (3.14), we have

ẋ
(α)
k = ȧki′x

(α)

i′ = εi′j ′s ′ωs ′akj ′x(α)

i′ ,

hence,

Li =
N∑

α=1

mαεijkx
(α)
j εi′j ′s ′ωs ′akj ′x(α)

i′

=
N∑

α=1

mαεijkajq ′x(α)

q ′ εi′j ′s ′ωs ′akj ′x(α)

i′ .

Noting that, owing to (3.4) and (3.12),

εijkajq ′akj ′ = δipεpjkajq ′akj ′

= air ′apr ′εpjkajq ′akj ′

= air ′εr ′q ′j ′ , (3.24)

where we have used that the determinant of an orthogonal matrix that does not
invert the orientation is equal to +1 (which follows from 1 = det I = det(AtA) =
det At det A = (det A)2), with the aid of (3.10) and (3.11), we have

Li =
N∑

α=1

mαair ′εr ′q ′j ′εi′j ′s ′ωs ′x(α)

q ′ x
(α)

i′

= air ′
N∑

α=1

mα(δr ′s ′δq ′i′ − δr ′i′δq ′s ′)ωs ′x(α)

q ′ x
(α)

i′

= air ′
N∑

α=1

mα(δr ′s ′rα
2 − x

(α)

r ′ x
(α)

s ′ ) ωs ′

= air ′Ir ′s ′ωs ′ .

This means that Ir ′s ′ωs ′ is the r-th Cartesian component of the angular momentum
of the body with respect to the basis vectors ei′ ,

Lr ′ = Ir ′s ′ωs ′ . (3.25)

Among other things, Equation (3.25) means that the angular velocity and the
angular momentum may not be collinear, but when ωs ′ is an eigenvector of the
matrix (Ir ′s ′) then the angular momentum and the angular velocity are collinear.
Thus, the principal axes are the directions where the angular momentum and the
angular velocity are collinear.
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Exercise 3.3. Show that

AȦt =
⎛
⎝

0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞
⎠ ,

where the ωi are the components of the angular velocity with respect to the basis
vectors ei (the inertial frame), that is,

ais ′ ȧjs ′ = εijkωk

[cf. Equation (3.7)].

Parallel Axes Theorem
Now we shall study the behavior of the inertia tensor under a parallel translation
of the axes fixed in the body. To this end, it is convenient to consider two parallel
sets of Cartesian axes fixed in the body, xi′ and yi′ (see Figure 3.5), defined in the
following way. The origin of the axes xi′ is located at an arbitrary point of the body,
while the origin of the axes yi′ is at the center of mass of the rigid body, this means
that

N∑
α=1

mαy
(α)

i′ = 0, i ′ = 1′, 2′, 3′, (3.26)

where (y
(α)

1′ , y
(α)

2′ , y
(α)

3′ ) are the Cartesian coordinates of the α-th particle of the body
with respect to the axes with origin at the center of mass.

Fig. 3.5 The Cartesian axes
xi ′ have their origin at an
arbitrary point fixed in the
body, and the origin of the
Cartesian axes yi ′ is at the
center of mass. The vector R
is the position vector of the
center of mass with respect to
the axes xi ′ . The axes yi ′ are
parallel to the axes xi ′

R

m

x1

x2

x3

y1

y2

y3

If (R1′, R2′ , R3′) are the coordinates of the center of mass with respect to the axes
xi′ , we have (see Figure 3.5)

x
(α)

i′ = Ri′ + y
(α)

i′ , α = 1, 2, . . . , N; i ′ = 1′, 2′, 3′.
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Hence, making use of the definition of the (components of the) inertia tensor (3.15)
and Equation (3.26), we have

Ij ′k′ =
N∑

α=1

mα

(
δj ′k′x(α)

i′ x
(α)

i′ − x
(α)

j ′ x
(α)

k′
)

=
N∑

α=1

mα

[
δj ′k′(Ri′ + y

(α)

i′ )(Ri′ + y
(α)

i′ ) − (Rj ′ + y
(α)

j ′ )(Rk′ + y
(α)

k′ )
]

= (Ri′Ri′δj ′k′ − Rj ′Rk′)
N∑

α=1

mα +
N∑

α=1

mα

(
δj ′k′y(α)

i′ y
(α)

i′ − y
(α)

j ′ y
(α)

k′
)

= M(R2δj ′k′ − Rj ′Rk′) + ICM
j ′k′ , (3.27)

where M is the total mass of the body, R2 = Ri′Ri′ is the square of the norm of the
vector (R1′, R2′ , R3′), and the ICM

j ′k′ are the components of the inertia tensor, taking
the center of mass as the fixed point of the rigid body. This result is known as the
parallel axes theorem.

For instance, considering again the homogeneous circular cylinder of Exam-
ple 3.1, with the aid of Equation (3.27) we can readily obtain the components of
the inertia tensor taking one point at the edge of the base of the cylinder as the fixed
point (see Figure 3.4). If the x1′-axis lies along a diameter of the base of the cylinder,
then (R1′, R2′ , R3′) = (a, 0, h/2) and from Equations (3.27) and (3.18) we find

(Ii′j ′) = M

4

⎛
⎝

h2 0 −2ah

0 4a2 + h2 0
−2ah 0 4a2

⎞
⎠ + M

12

⎛
⎝

3a2 + h2 0 0
0 3a2 + h2 0
0 0 6a2

⎞
⎠

= M

12

⎛
⎝

3a2 + 4h2 0 −6ah

0 15a2 + 4h2 0
−6ah 0 18a2

⎞
⎠ . (3.28)

Exercise 3.4. Show that if the line joining O and the center of mass is parallel to
one of the principal axes at the center of mass, then this line is also parallel to a
principal axis at O. Furthermore, any principal axis at the center of mass orthogonal
to the line is parallel to a principal axis at O.

Coordinate-Free Expression of the Lagrange Equations. The Euler Equations
So far, we have not required the introduction of coordinates to parameterize the
configuration of the rigid body, and as we shall see below and in Section 4.2, there
are some results that can be obtained without giving an explicit expression for the
matrix elements aij ′ in terms of coordinates.

Assuming that the aij ′ are parameterized by some coordinates qs , from (3.7) and
the chain rule we have
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∂aki′

∂qr

q̇rakj ′ = εi′j ′s ′ωs ′,

then, making use of (3.11),

ωs ′ = 1

2
εi′j ′s ′

∂aki′

∂qr
q̇rakj ′ = Ms ′r q̇r , (3.29)

where we have introduced the functions

Ms ′r ≡ 1

2
εi′j ′s ′

∂aki′

∂qr

akj ′, (3.30)

which depend on the coordinates qs only, and relate the angular velocity with the
generalized velocities q̇i . The last equation is equivalent to the relation

∂aki′

∂qr

= akj ′εi′j ′s ′Ms ′r . (3.31)

According to Equations (3.31), (3.10), and (3.11) the second partial derivatives of
aki′ are given by

∂2aki′

∂qm∂qr

= ∂akj ′

∂qm

εi′j ′s ′Ms ′r + akj ′εi′j ′s ′
∂Ms ′r
∂qm

= akp′εj ′p′n′Mn′mεi′j ′s ′Ms ′r + akj ′εi′j ′s ′
∂Ms ′r
∂qm

= (δp′s ′δn′i′ − δp′i′δn′s ′)akp′Mn′mMs ′r + akj ′εi′j ′s ′
∂Ms ′r
∂qm

= aks ′Mi′mMs ′r − aki′Ms ′mMs ′r + akj ′εi′j ′s ′
∂Ms ′r
∂qm

.

Then, the commutativity of the partial derivatives of aki′ is equivalent to

akj ′εi′j ′s ′
(

∂Ms ′r
∂qm

− ∂Ms ′m
∂qr

)
= aks ′(Mi′rMs ′m − Mi′mMs ′r )

= akj ′(Mi′rMj ′m − Mi′mMj ′r ),

hence,

εi′j ′s ′
(

∂Ms ′r
∂qm

− ∂Ms ′m
∂qr

)
= Mi′rMj ′m − Mi′mMj ′r .

With the aid of (3.11) one finds that the last equation is equivalent to
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∂Ms ′r
∂qm

− ∂Ms ′m
∂qr

= εi′j ′s ′Mi′rMj ′m. (3.32)

Note that these equations must hold for any choice of the coordinates qi . (It turns
out that Equations (3.32) are related to the structure of the rotation group itself.)

Assuming that the applied forces on the body are derivable from a potential
V (qi), the equations of motion of the rigid body can be obtained substituting the
Lagrangian [see Equation (3.16)]

L = 1
2 Ij ′k′ωj ′ωk′ − V (3.33)

into the Lagrange equations. Making use of the symmetry of Ij ′k′ , (3.25), (3.29),
and (3.32), we obtain

0 = d

dt

∂

∂q̇i

(
1
2Ij ′k′ωj ′ωk′

)
− ∂

∂qi

(
1
2Ij ′k′ωj ′ωk′ − V

)

= d

dt

(
Ij ′k′ωk′

∂ωj ′

∂q̇i

)
− Ij ′k′ωk′

∂ωj ′

∂qi

+ ∂V

∂qi

= d

dt

(
Lj ′Mj ′i

) − Lj ′
∂Mj ′k
∂qi

q̇k + ∂V

∂qi

= Mj ′i
dLj ′

dt
+ Lj ′

∂Mj ′i
∂qk

q̇k − Lj ′
∂Mj ′k
∂qi

q̇k + ∂V

∂qi

= Mj ′i
dLj ′

dt
+ Lj ′

(
∂Mj ′i
∂qk

− ∂Mj ′k
∂qi

)
q̇k + ∂V

∂qi

= Mj ′i
dLj ′

dt
+ Lj ′εr ′s ′j ′Mr ′iMs ′kq̇k + ∂V

∂qi

= Mr ′i

(
dLr ′

dt
+ εr ′s ′j ′ωs ′Lj ′

)
+ ∂V

∂qi
,

that is,

dLr ′

dt
+ εr ′s ′j ′ωs ′Lj ′ = −(M−1)ir ′

∂V

∂qi
, (3.34)

where the (M−1)ir ′ are the entries of the inverse of the matrix (Mr ′i ). The right-
hand side of (3.34) is the r-th component of the torque on the rigid body, τr ′ , with
respect to the basis fixed in the body. In fact, with the aid of Equations (3.14) and
(3.10) we find that
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dLi

dt
= d(air ′Lr ′)

dt

= air ′
dLr ′

dt
+ εr ′k′s ′ωs ′aik′Lr ′

= air ′
(

dLr ′

dt
+ εr ′s ′k′ωs ′Lk′

)
,

which shows that, indeed, the left-hand side of (3.34) is the r-th component of the
torque on the rigid body with respect to the basis fixed in the body. Equations (3.34),
written in the form

dLr ′

dt
+ εr ′s ′j ′ωs ′Lj ′ = τr ′,

are known as the Euler equations for a rigid body with a fixed point. As we have
shown, these equations are equivalent to the Lagrange equations for the Lagrangian
(3.33).

A particular case corresponds to the motion of the rigid body with the torque
equal to zero. Then, the Euler equations reduce to

dLr ′

dt
+ εr ′s ′j ′ωs ′Lj ′ = 0.

If the matrix (Ii′j ′) is diagonal, these equations expressed in terms of the compo-
nents of the angular velocity ωi′ take the form [see (3.25)]

I1
dω1′

dt
+ (I3 − I2)ω2′ω3′ = 0,

I2
dω2′

dt
+ (I1 − I3)ω3′ω1′ = 0, (3.35)

I3
dω3′

dt
+ (I2 − I1)ω1′ω2′ = 0,

where the Ii are the principal moments of inertia (I1 ≡ I1′1′, I2 ≡ I2′2′, I3 ≡ I3′3′).

Exercise 3.5. A rigid body is symmetric if two of its principal moments of
inertia coincide. Solve Equations (3.35) for a symmetric rigid body. Note that this
solution only gives the angular velocity as a function of time; in order to find the
configuration of the body we would still have to solve another system of ODEs [e.g.,
(3.14) or (3.38)].

Exercise 3.6. Making use of the Euler equations (3.35), show that the kinetic
energy and the total angular momentum of the rigid body are constants of motion,
that is,

1
2 (I1ω1′ 2 + I2ω2′ 2 + I3ω3′2) and I1

2ω1′2 + I2
2ω2′2 + I3

2ω3′ 2
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are conserved [see (3.16) and (3.25)]. (With the aid of these two constants of motion,
Equations (3.35) can be reduced to a single first-order ODE whose solution, in
general, involves elliptic functions.)

3.3 The Euler Angles

A usual and convenient set of generalized coordinates for a rigid body with a fixed
point is given by the so-called Euler angles. The matrix A = (aij ′), representing the
configuration of a rigid body, is expressed in the form

A = Rz(φ)Rx(θ)Rz(ψ), (3.36)

where Rz(φ) is the 3 × 3 orthogonal matrix (3.2), corresponding to a rotation about
the z-axis through an angle φ and, similarly,

Rx(θ) ≡
⎛
⎝

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠

corresponds to a rotation about the x-axis through an angle θ . The angles φ, θ, φ

are called Euler angles and are restricted by 0 � φ � 2π , 0 � θ � π , 0 � ψ � 2π .
(A slightly different definition, which is especially convenient in the study of the
rotation group in quantum mechanics, is given by A = Rz(φ)Ry(θ)Rz(ψ), where
Ry(θ) corresponds to a rotation about the y-axis through an angle θ .)

According to Equation (3.16), in order to write the kinetic energy in terms of
the Euler angles and their time derivatives, we need the explicit expression of
the components of the angular velocity, ωi′ , in terms of those variables. These
expressions can be readily obtained with the aid of Equation (3.9) by calculating the
product ȦtA (without having to resort to a geometrical image or to the consideration
of “infinitesimal rotations”). Using the fact that (AB)t = B tAt and that each matrix
appearing in (3.36) is orthogonal, we find

ȦtA = [
Ṙz(φ)Rx(θ)Rz(ψ) + Rz(φ)Ṙx(θ)Rz(ψ) + Rz(φ)Rx(θ)Ṙz(ψ)

]t

× Rz(φ)Rx(θ)Rz(ψ)

= Rz(ψ)tRx(θ)tṘz(φ)tRz(φ)Rx(θ)Rz(ψ) + Rz(ψ)tṘx(θ)tRx(θ)Rz(ψ)

+ Ṙz(ψ)tRz(ψ). (3.37)

The last term in Equation (3.37) was already calculated in Section 3.2; the
result is

Ṙz(ψ)tRz(ψ) = ψ̇

⎛
⎝

0 1 0
−1 0 0

0 0 0

⎞
⎠ .



3.3 The Euler Angles 99

A similar computation gives

Ṙx(θ)tRx(θ) = θ̇

⎛
⎝

0 0 0
0 0 1
0 −1 0

⎞
⎠

and, therefore,

Rz(ψ)tṘx(θ)tRx(θ)Rz(ψ) = θ̇

⎛
⎝

0 0 sin ψ

0 0 cos ψ

− sin ψ − cos ψ 0

⎞
⎠ .

A more lengthy computation gives

Rz(ψ)tRx(θ)tṘz(φ)tRz(φ)Rx(θ)Rz(ψ)

= φ̇

⎛
⎝

0 cos θ − sin θ cos ψ

− cos θ 0 sin θ sin ψ

sin θ cos ψ − sin θ sin ψ 0

⎞
⎠ .

Adding these expressions and comparing the result with (3.9) we conclude that the
components of the angular velocity of the body, with respect to the axes fixed in the
body, are

ω1′ = φ̇ sin θ sin ψ + θ̇ cos ψ,

ω2′ = φ̇ sin θ cos ψ − θ̇ sin ψ, (3.38)

ω3′ = φ̇ cos θ + ψ̇.

Thus, assuming that the matrix (Ii′j ′) is diagonal, from (3.16) and (3.38) we have
the expression for the kinetic energy in terms of the Euler angles

T = 1
2 [I1(φ̇ sin θ sin ψ + θ̇ cos ψ)2 + I2(φ̇ sin θ cos ψ − θ̇ sin ψ)2

+ I3(φ̇ cos θ + ψ̇)2]. (3.39)

When two principal moments of inertia coincide, it is convenient to select the axes
in such a way that I1 = I2 because then (3.39) reduces to

T = 1
2 [I1(φ̇

2 sin2 θ + θ̇2) + I3(φ̇ cos θ + ψ̇)2]. (3.40)

Example 3.7 (Symmetric top in a uniform gravitational field). A commonly studied
example is that of a symmetric top in a uniform gravitational field. This problem
consists of an axially symmetric top with a fixed point, in a uniform gravitational
field. Assuming that the x3-axis points upwards and taking the x3′-axis as the
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symmetry axis of the top, we have I1 = I2. Then, making use of (3.40) we find
that the standard Lagrangian is

L = 1
2 [I1(φ̇

2 sin2 θ + θ̇2) + I3(φ̇ cos θ + ψ̇)2] − Mgl cos θ, (3.41)

where M is the mass of the top and l is the distance between the fixed point of the
body (which is placed at the origin) and the center of mass. (The product l cos θ is
the height of the center of mass with respect to the origin since, according to (3.1),
the components of the vector e3′ with respect to the basis formed by the vectors ei

appear in the third column of the matrix A [see (3.36)], which is given by

Rz(φ)Rx(θ)Rz(ψ)

⎛
⎝

0
0
1

⎞
⎠ = Rz(φ)Rx(θ)

⎛
⎝

0
0
1

⎞
⎠ = Rz(φ)

⎛
⎝

0
− sin θ

cos θ

⎞
⎠

=
⎛
⎝

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎞
⎠

⎛
⎝

0
− sin θ

cos θ

⎞
⎠ =

⎛
⎝

sin θ sin φ

− sin θ cos φ

cos θ

⎞
⎠

and the position vector of the center of mass is le3′ .)
As in previous examples, it is not convenient to obtain the equations of motion

by substituting the Lagrangian (3.41) into the Lagrange equations and then try to
solve them. It is preferable to use the fact that the coordinates φ and ψ are ignorable
and that the Lagrangian does not depend on t; this implies that

∂L

∂φ̇
= I1φ̇ sin2 θ + I3 cos θ(φ̇ cos θ + ψ̇),

∂L

∂ψ̇
= I3(φ̇ cos θ + ψ̇)

as well as

1
2 [I1(φ̇

2 sin2 θ + θ̇2) + I3(φ̇ cos θ + ψ̇)2] + Mgl cos θ

are constants of motion. Denoting as a, b, and E, respectively, the values of these
constants of motion, the combination of the foregoing expressions leads to the first-
order ODE

E = 1

2

[
I1θ̇

2 + (a − b cos θ)2

I1 sin2 θ
+ b2

I3

]
+ Mgl cos θ,

which determines θ as a function of the time [cf. Equation (2.32)]. The substitution
u = cos θ yields the equivalent equation

1

2
I1u̇

2 + (a − bu)2

2I1
+

(
b2

2I3
− E

)
(1 − u2) + Mglu(1 − u2) = 0. (3.42)
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Since the “effective potential,”

(a − bu)2

2I1
+

(
b2

2I3
− E

)
(1 − u2) + Mglu(1 − u2),

is a third-degree polynomial in u, the solution of (3.42) involves elliptic functions.
Alternatively, one can find the qualitative behavior of the solutions with the aid of
the graph of the effective potential.
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