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Preface

The aim of this book is to present in an elementary manner the fundamentals
of the Hamiltonian formulation of classical mechanics, making use of a basic
knowledge of linear algebra (matrices, properties of the determinant and the trace),
differential calculus in several variables (the differential of a function of several
variables, the chain rule, and the inverse function theorem), analytic geometry, and
ordinary differential equations. Even though the main purpose of this book is the
exposition of the Hamiltonian formalism of classical mechanics, the first chapters
are devoted to the Lagrangian formalism and, for a reader not familiarized with the
Lagrange equations, these introductory chapters should suffice to understand the
basic elements of analytical mechanics.

This book is intended for advanced undergraduate or graduate students in physics
or applied mathematics and for researchers working in related subjects. It is assumed
that the reader has some familiarity with some elementary notions about classical
mechanics, such as the inertial reference frames and Newton’s second law. This
book has been written having in mind readers trying to learn the subject by
themselves, including detailed examples and exercises with complete solutions, but
it can also be used as a class text.

This book does not attempt to be an exhaustive treatment of analytical mechanics
or even of the Hamiltonian formulation of classical mechanics. Deliberately, some
subjects are not treated in this book; the subjects not included here have been omitted
for at least one of the following reasons: they are not essential to understand the
basic formalism, or there exist books or articles containing a good discussion of the
subject that would be difficult to improve.

Some of the subjects not treated here are dissipative systems, nonholonomic
constraints, adiabatic invariants, action-angle variables for systems with more than
one degree of freedom, perturbation theory, continuous systems, normal modes of
vibration, integral invariants, relativistic mechanics, singular Lagrangians, KAM
theory, and chaos.
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Throughout the book I have avoided the use of terms like “small parameter,”
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“small variation,” “infinitesimal parameter,” “infinitesimal transformation,” and a

diversity of variations denoted by symbols like A, §, d, 5 , 5 , and so on. Apart from
this, the notation employed throughout the book coincides with that found in the
traditional books on analytical mechanics.

While there seems to exist a consensus about the importance of the Hamiltonian
formalism, in the standard textbooks on analytical mechanics one finds a variety
of opinions about the Hamilton—Jacobi equation, ranging from the conviction that
the Hamilton—Jacobi formalism is the most powerful tool of analytical mechanics
to the claim that the Hamilton—Jacobi equation has no practical value and that it is
only interesting because of its relation with the Schrodinger equation. The point of
view adopted here is that, apart from its deep and useful connections with quantum
mechanics, the Hamilton—Jacobi formalism is interesting and useful by itself, as I
have tried to illustrate in Chapter 6.

Among the differences between this book and the existing textbooks on the
subject are the presence of:

* Application of the various formulations to equations not related to classical
mechanics.

* Systematic use of equivalent Hamiltonians, which allows us to relate different
problems and to find constants of motion without integrating the equations of
motion.

* Detailed derivations of the canonical transformations, emphasizing the distinc-
tion between what is a generating function and what is not.

* Study of the continuous groups of canonical transformations, avoiding the use of
“infinitesimals.”

* Precise definition and examples of the symmetries of a Hamiltonian, including
the case of transformations that involve the time explicitly.

* Emphasis on the fact that, in the Hamiltonian formalism, there are infinitely many
generating functions of translations and rotations (and, therefore, that, e.g., the
linear momentum cannot be defined as the generating function of translations).

* Study of the canonoid transformations and the associated constants of motion.

* Definition and examples of R-separable solutions of the Hamilton—Jacobi equa-
tion.

* General statement, simplified proof, and detailed examples of the Liouville
theorem on solutions of the Hamilton—Jacobi equation.

» Discussion and examples of the mapping of solutions of the Hamilton—Jacobi
equation under canonical transformations.

* Discussion of the Hamilton—Jacobi equation as an evolution equation for the
principal function.

* Presentation of geometrical optics as an application of the Hamiltonian formal-
ism.

» Detailed solution of all the exercises.
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Many textbooks on analytical mechanics written in the last few decades make
use of the language of modern differential geometry (manifolds, vector fields,
differential forms), which is particularly useful and elegant when the Hamiltonian
does not depend on the time. In fact, in classical mechanics one has one of the
nicest applications of this formalism. One of the aims of this book is to show that it
is possible to obtain many interesting results making use of elementary mathematics
only.

Throughout the book, there is a collection of examples worked out in detail,
which form an essential part of the book, and a set of exercises is also given. It is
advisable that the reader attempts to solve them all and to fill in the details of the
computations presented in the book. The detailed solutions of all the exercises
are collected at the end of the book, but the reader is encouraged to try to
find the solutions before seeing the answers. Some sections go beyond the basic
level and can be skipped; these sections are Section 2.5 (Variational Symmetries),
Section 4.3.1 (The Kepler Problem Revisited), Section 5.5 (Canonoid Transforma-
tions), Section 6.3 (Mapping of Solutions of the Hamilton—Jacobi Equation Under
Canonical Transformations), Section 6.4 (Transformation of the Hamilton—Jacobi
Equation Under Arbitrary Point Transformations), and Section 6.5 (Geometrical
Optics).

Throughout the book, references are given to some books or papers when the
subject is not commonly treated in the standard textbooks.

Some words about the notation: I have avoided the use of superscripts to label
coordinates or components, considering that they are not indispensable at this level
and, sometimes, its use can complicate the expressions. The sign = indicates a
definition and in all cases it should be clear which side of the sign contains the
object being defined.

I would like to thank Dr. Irais Rubalcava-Garcia for her help with the figures and
the reviewers for their helpful comments. I would also like to thank Samuel DiBella
at Springer Nature for his valuable support.

Puebla, Puebla, Mexico Gerardo F. Torres del Castillo
May 2018
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Chapter 1 )
The Lagrangian Formalism Shethie

In this chapter we show that the equations of motion of certain mechanical systems,
obtained from Newton’s second law, can be expressed in a convenient manner in
terms of a single real-valued function. In Section 1.1 we analyze some simple
mechanical systems, which serve to introduce various concepts and to formulate
the d’Alembert principle; then, following a standard procedure, assuming that
the applied forces are derivable from a potential, in Section 1.2 we obtain the
Lagrange equations. Several examples of the application of the Lagrange equations
are presented.

1.1 Introductory Examples. The D’Alembert Principle

In what follows we assume that the reader is familiarized with the basic notions
of classical mechanics, such as the concept of inertial reference frame, the Newton
laws of motion, and the definitions of kinetic and potential energy.

We begin by analyzing some simple mechanical systems, which will allow us to
introduce several concepts that will be useful later. Most of the examples considered
in this section will be treated in Section 1.2, making use of the Lagrangian
formalism.

Example 1.1. We consider the system formed by a wedge of mass m which can
move on a frictionless horizontal surface along a straight line, which we take as the
x-axis (see Figure 1.1), and a block of mass m, which moves on the wedge, without
friction. The position vectors rj and rp, shown in Figure 1.1, can be parameterized
in the form

r =xi, r; = (x +ycotby)i+ yj, (1.1)
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but there are infinitely many alternative parameterizations, e.g.,
r; = xi, r; = xi+ s(cosbpi+ sinbyj) (1.2)

(see Figure 1.2). The parameters employed to express the position vectors need not
be lengths or angles; the only requisites are that these parameters be independent
and determine the configuration of the system. For instance, looking at Figure 1.1
one can convince oneself that the value of x does not determine the value of y or
vice versa, whereas Equations (1.1) show that x and y completely determine the
position vectors ry and rz, which, in turn, define the configuration of the system.

0. ]
X

Fig. 1.1 The block can slide, without friction, on the wedge-shaped block, which can move freely
on a horizontal surface. The configuration of the system can be specified giving the values of x and
v, which determine the position vectors r; and r;

Fig. 1.2 The position vectors
r; and r, can be expressed in
terms of the lengths x and s
shown

The forces acting on the wedge are an upward vertical force N j, produced by the
horizontal surface on which the wedge lies, a force N, (sin 6y i — cos 6 j), produced
by the block, and the weight —m 1 g j. Then, assuming that the coordinate axes define
an inertial reference frame, according to Newton’s second law we have

mir¥y = N1 j+ Na(sinfpi— cos6pj) —migj. (1.3)
Similarly, the forces acting on the block are —N(sinfpi — cos6fpj), due to
the contact with the wedge (taking into account Newton’s third law) and the

gravitational force —m2g j. Hence,

moty = —Na(sinfpi— cosbyj) —magj. (1.4)
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Substituting the expressions (1.1) into the left-hand sides of (1.3) and (1.4) we obtain
the system of ordinary differential equations (ODEs)

m1Xi= Nyj-+ No(sinfyi— cosbyj) —migj, s
mal(§ + 5 cotfp)i+ ¥ jl = —Na(sinpi — cos b j) — mag j, '

which amounts to four scalar equations that determine the values of Nj, N, X,
and y.

Note that we only know the direction of the normal forces, Njj and
N, (sinfpi — cos by j); their magnitudes, N1 and N,, must have the exact values
necessary to maintain the two bodies in contact, and the wedge in contact with
the horizontal surface, without deformations. These forces are known as constraint
forces and, as we shall see now, there is a simple way to eliminate them from the
equations of motion.

We consider the sums

2 2

ar onstr) 0T,

2 :F&constr) . 8; and § :Fglconstr) . a; , (1.6)
a=1

a=1

where F&C‘)“S‘r) is the sum of the constraint forces acting on the «-th body, and

x,y are the only two parameters appearing in (1.1). In this case, F(lcons")

N1 j+ Na(sinfpi — cosépj), and Fgconm) = —N,(sinfpi — cos by j). Making use
of Equations (1.1) we find that

2
onerry 0
Z Fgonstr) . al;x = [N1j~|—N2(Sin 6y i— cos 90j)] ~i—|—[ — N> (sin 0y i— cos on)] -
a=1
=0

and

2
or,
Z F((xconstr) . 8; = [N1j + N (sinfpi — cos 90j)] -0
a=1

+ [ — N2(sin6pi— cos 6o j)] - (cotpi+ j) = 0.

That is, both sums in (1.6) are equal to zero. In what follows it will be convenient to
write Equations (1.6) in the unified form

2

> FLom. e _, (1.7)
3gi

a=1

where, e.g2., g1 = x and g» = y.
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Writing Equations (1.3) and (1.4) in the form

Mg iy = F((xappl) + F((Xconstr)’

where ¢ = 1,2, and foappl) is the sum of the forces acting on the «-th body
that are not constraint forces, which are often called the “applied forces,” from
Equations (1.7) we obtain the two scalar equations

2
> o — ) - 01 o (18)
]

a=1

where i = 1, 2. These equations do not contain the constraint forces.

Exercise 1.2. Show that Equations (1.8) amount to the explicit expressions

mix +mo(X + y cotby) = 0,
my(X + y cotfy) cotfy + may + mog =0

and find the values of X and y.

In the case of the parametrization (1.1), each pair of real numbers (x, y), with
x € R, y € (0, b), where b is the maximum value of y for which the block still rests
on the wedge (its value depends on the height of the wedge, the length of the block,
and the location of its center of mass), represents a configuration of this system.
The set of all configurations is the configuration space; the variables x, y form a
coordinate system of the configuration space. (Roughly speaking, a configuration is
a snapshot of the mechanical system and, in order to distinguish one snapshot from
another, we only have to know the values of the parameters x, y.)

The possibility of expressing the position vectors as in Equations (1.1) and (1.2),
in terms of two parameters only, is equivalent to the existence of some equations
linking the position vectors. Such equations are called constraint equations. One
can readily verify that Equations (1.1) [or (1.2)] represent the general solution of
the constraint equations

r;-j=0, (r2 —rp) - (sinfpi — cosHpj) =0 (1.9

(assuming that r; and r; lie on the xy-plane). Any expression for the general
solution of the constraint equations amounts to a parametrization of the position
vectors. When the configuration of the system is restricted by equations that involve
the position vectors and the time only [such as Equations (1.9)], we say that the
system has holonomic constraints or that the system is holonomic.

Example 1.3. A block of mass m can slide freely on a wedge that is moving in
a specified manner on a horizontal surface; that is, the coordinate X shown in
Figure 1.3 is assumed to be a given function of the time. The position vector r,
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which determines the position of the block, can be expressed in the form
r = Xi+ s(cosfpi+ sinbyj) (1.10)

in terms of a single parameter s [cf. (1.2)]. In this case, by contrast with Example 1.1,
there is only one body of interest and only one parameter. The constraint force on
the block is the normal force F(O™") = N(—sinfyi + cosfyj), exerted by the
wedge on the block, and the constraint equation is

(r — Xi) - (—sinfpi+ cosbyj) = 0.

Note that we do not have to specify the mass of the wedge because it moves in a
given manner. The configuration of this mechanical system is determined by a single
parameter [e.g., the coordinate s in (1.10)] since the position of the wedge at any
instant is assumed known.

Fig. 1.3 The position of the
wedge is determined by a
given function of time, X (7).

The block can slide freely on
the wedge under the influence r
of a uniform gravitational S

field

The analog of the sum on the left-hand side of (1.7) is

or
as

Fleonstd . "% — N(—sin6i+ cosfpj) - (cosbyi+ sin by j)

and is equal to zero. The applied force is the weight of the block, —mgj, and from
Newton’s second law we have

or
as

= {m[Xi+ §(cos i+ sin o j)] + mgj} - (cosfo i+ sin b j)

0= (m'l; _ F(appl)) .

=m(X cosby + 5§ + g sinfp).

Thus, in terms of the parameter s, the equation of motion is given by the second-
order ODE

§=-X cos 6y — g sin 6.
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The solution of this equation is s = —X cos 6y — ;g sinfg 12 + ¢t + ¢, where ¢
and c; are constants (as usual, determined by the initial conditions).

Example 1.4. As a third example we shall consider a bead of mass m that can slide
along a rod which rotates about a vertical axis with constant angular velocity w. The
rod makes a constant angle 6y with the vertical axis (see Figure 1.4). The position
vector of the bead can be parameterized in the form

r = r (sin 6y cos wt i + sin Oy sin wt j + cos Oy K), (1.11)

in terms of a single parameter, r. (Note that, by contrast with Equations (1.1) and
(1.2),1in (1.10) and (1.11) there is an explicit dependence on the time.) The relevant
derivatives of r with respect to the time are

I = 7 (sin 6y cos wt i + sin Oy sin wt j + cos 6y k)
~+ wr sin Oy (— sin wt i + cos wt j), (1.12)
I = 7 (sin 6y cos wt i + sin Oy sin wt j + cos Oy k)

~+ 27 sin 6y (— sin wt i + cos wt j) — w?r sin B (cos wt i + sin wtj). (1.13)

Fig. 1.4 The bead can slide )
freely along the rod, which

rotates with a constant - g? -
angular velocity o, forming a ¢
constant angle 6y with the

vertical. The distance r from 6y
the bead to the origin can be
used as the only coordinate
necessary to define the
configuration

In the present example, the expression (1.11) is the general solution of the
constraint equations

r-(—sinwti4coswt j) =0, r- (cos 6y cos wt i+cos by sin wt j—sin g k) = 0,

which involve the time explicitly (the vectors inside the parentheses are two linearly
independent vectors orthogonal to the rod).

The forces acting on the bead are its weight (the applied force, F@PD = —mgk)
and, assuming that there is no friction, a force normal to the rod (the constraint
force). Taking into account that, in this case, there is only one position vector, r,
which depends on one parameter only, the analog of the sums (1.6) is [making use
of (1.11)]
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or — p(constr) | r =0, (1.14)
or r

F(constr) .

where the last equality follows from the fact that F(©°™" is normal to the rod and,
therefore, perpendicular to the position vector r.

Assuming that r is the position vector of the bead with respect to an inertial
frame, from Newton’s second law and (1.14) we have

9
(mit = FOr) . ¥ — 0 (1.15)
r

which, with the aid of (1.13) and the relation dr/dr = r/r, reduces to

2 sin® 6p) 4+ mg cos By = 0. (1.16)

m@F —w
This is the equation of motion for this system, expressed in terms of the parameter
r. It is a second-order ODE that can be readily solved because it is linear and the
coefficients are constant. However, we can reduce its order as a first step making use
of the following standard trick. Multiplying both sides of (1.16) by 7 we find that
the result is equivalent to

d
dt (émi’2 — éma)zr2 sin? 0o + mgr cos 9()) =0,

which means that the expression inside the parenthesis is a constant of motion
(that is, a function of the parameters, their first time derivatives, and possibly of
the time whose value does not change with the time if the equations of motion
are satisfied; the constants of motion are also called first integrals or conserved
quantities). Hence,

Ami? — Jmaw?r* sin® 6y + mgr cos 6y = E, (1.17)

where E’ is a constant (whose value depends on the initial conditions). (E’ has
dimensions of energy, but it is not the total energy, which is given by [see (1.12)]

E = %mi‘2 + mgrcosfy = %mif2 + éma)zr2 sin® 6y + mgr cos 6y

and, by contrast with (1.17), it is not conserved.)

Equation (1.17) is a first-order ODE that can be readily solved separating
variables; however, it is convenient to note that, depending on the value of the
constant E’, Equation (1.17) represents a hyperbola, or a straight line in the r7-
plane. In fact, writing Equation (1.17) in the form

1 g cosfy )2 _ mg? cot® Oy

1
mit — _ma? sin’ G| r —
2 202

? sin?
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one concludes that, for E’ # mg? cot’ y/2w?, the so-called phase curves in the

ri-plane are hyperbolas with center (5;2?;2920 ,0), while for E' = mg? cot? 6y /20,

the phase curves are straight lines with slopes = sin 6y passing through the point

(af;“s‘:;f g ,0) (see Figure 1.5). Actually, each of these straight lines contain three
0
L. . . g cos b __ gcosBy
< = >
disjoint solution curves corresponding to r sy’ o2 sin? 6 and r

g cosby
2 sin2 6
an unstable equilibrium point. (The crossing of two phase curves would mean that
for the initial conditions represented by the intersection point, the solution of the
equations of motion is not unique.) Each point of the r7-plane (or phase plane),
with r > 0, corresponds to an initial condition for the ODE (1.17) and there is only
one solution of this equation passing through that point.

The set of phase curves (called phase portrait) is very useful even if we have
the explicit solution of the equations of motion; with the aid of the phase portrait
one can readily see the qualitative behavior of the motion. For instance, Figure 1.5
shows that for E/ < mg? cot? 6y /2w, there exist turning points where the sign of
the radial velocity is inverted, passing through zero; for E’ > mg? cot? 6y/2w?, the
sign of the radial velocity does not change, either the bead is getting away from the
origin all the time, or is approaching the origin all the time.

. The single point (af;“s‘:;f g ,0) is by itself a solution curve, representing
0

>

)

Fig. 1.5 For each value of the constant E’, Equation (1.17) defines a curve (a phase curve) in the

ri-plane (the phase plane), which is a hyperbola centered at ( afzi‘l’if 20 ,0)if E' # mg? cot? 6y /2w?,

or part of a straight line with slope +wsin 6 passing through the point (;’zi(l’if go ,0) if E/ =
mg? cot? 6 /2> Each point of the half-plane » > 0 corresponds to a possible initial condition
and the phase curve passing though this point gives the subsequent states of the bead. The point
(wﬁ C:;f go , 0) is a state of unstable equilibrium. The arrows indicate the sense of the time evolution:
for points in the upper half-plane 7 is positive, which means that r is an increasing function of
time; while for the points in the lower half-plane 7 is negative, which means that r is a decreasing
function of time
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As pointed out above, the equation of motion (1.16) can be readily solved. Since
g cos by /co2 sin? 69 is a constant, Equation (1.16) is equivalent to

d? geosby \ 5 . 24 g cosby
2\ 5 = sin"fp(r— ° ,
dr w? sin” Oy ? sin” Oy

and by inspection one finds that its general solution can be written as

g cos by . e
r— 5 — clea)lSIIlQ() + e (A)I‘SIHQ(), (1.18)
? sin” 6

where ¢, ¢y are constants, which can be related to the initial values of » and 7. In
fact, the derivative of Equation (1.18) with respect to the time gives
’:.

wt sinfy __

=cle cre~ @ sinto, (1.19)

wsinfy

Setting + = 0 in Equations (1.18) and (1.19) we see that

1 gcosby n ) 1 gcosby 70
Cl1 = ro — 9 2= ro — - H ’
! 2 0 w? sin? 6y wsinby 2 2 0 w? sin? gy wsinby
where rg and 7 are the values of r and 7 at r = 0, respectively.
On the other hand, solving (1.18) and (1.19) for ¢ and ¢, we obtain

¢ = 1e—a>t sinfp (. _ 8 C(.)Sfo + r ’

2 w?sin?6y wsinby (1.20)
o= 1 corsingo (8 cosbp F '

2 w?sin?0y wsinby )’

The expressions on the right-hand sides of (1.20) (which depend on r, 7, and ¢)
are constants of motion, as one can readily verify by calculating their derivatives
with respect to the time, making use of (1.16). Furthermore, these two constants of
motion are functionally independent (that is, one of them cannot be expressed as a
function of the other) and any constant of motion for this system must be a function
of these two constants. For instance, we know that E’ is a constant of motion [see
(1.17)] and one can verify that

mg? cot® O

E' = —2m?* sin® 6pcica + 5
2w

The solutions with ¢; or ¢y equal to zero correspond to the straight lines of the
phase portrait. When ¢; = ¢, = 0 we have the equilibrium point (aic:i)sf o+ 0) of
the phase plane. (Equation (1.18) shows that the straight lines of the phase portrait
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approaching the equilibrium point do not reach that point for finite values of the
time and, in fact, the phase curves do not intersect one another.)

This example illustrates an important fact: if the equations of motion are given
by n second order ODEs, then there exist 2n functionally independent constants
of motion. Solving the equations of motion is equivalent to finding 2n functionally
independent constants of motion.

Example 1.5 (The simple pendulum). A very common example is the simple
pendulum which consists of a particle of mass m attached at one end of a massless
rigid rod of length /. The rod can only rotate in a fixed vertical plane, with the
other end of the rod fixed at a point which is taken as the origin (this point is
fixed with respect to some inertial frame). The position vector of the particle can
be parameterized as

r =I[(sinfi—cosbj), (1.21)

where 0 is the angle formed by the rod with the downward vertical (see Figure 1.6),
then

I =16(cos0i+ sinéj) (1.22)
and
¥ =16(cos@ i+ sind j) + 16>(—sinOi+ cosb j). (1.23)

Equation (1.21) expresses the general solution of the constraint equation |r| = /.

Fig. 1.6 The angle 6 0
between the rod and the
downward vertical is used as
a coordinate specifying the
configuration of the
pendulum. It is assumed that
the coordinate axes belong to
an inertial frame

The forces acting on the pendulum bob are its weight, —mg j, and a constraint
force, produced by the rod, which maintains the particle on a circle of radius /; this
force is directed along the rod and, therefore, we have F°™" —= T(—sinfi +
cos @ j), where |T'| is the magnitude of the tension of the rod. Here again we have
only one particle and only one parameter, or coordinate, 6. Hence, the analog of the
sums (1.6) is
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ar

F(constr) 90 = T(—sinBi—+cosfj)-Il(cosfi+sindj) =0. (1.24)
(Alternatively we can make use of the fact that the constraint force is collinear with
the position vector, F(°"" = —(T/[) r and, therefore
p(consto) | ar =—Tr- ar =_T a r-r:—T a 2=0)
a0 [ 90 21 96 21 96

Taking into account Equation (1.24), from Newton’s second law we get

0= (mr _ F(aPPI)) . 2;

= (m¥ 4 mgj) - [(cos 0 + sin6 j)
= ml(0 + gsin6). (1.25)

Thus, in this case, the equation of motion is
é:-fsine (1.26)

but, by contrast with (1.16), this ODE is nonlinear (because of the presence of the
function sin ). However, as in the case of Equation (1.16), the order of the equation
of motion (1.26) can be reduced: multiplying Equation (1.25) by 6, the result is
equivalent to

d .

o (3m10% —mgicos0) =0,
which means that
ymlI*6% — mgl cos 6 (1.27)
is a constant of motion (in this case, the total energy). Some of the phase curves,
defined by émlzéz —mglcosf = E, are shown in Figure 1.7.

Equation (1.27) is a first-order ODE that can be reduced to quadrature. In fact,
we obtain

do —:i:\/zE + 28 cos @
dr mi2 1 ’

which leads to the elliptic integral of the first kind

g do do
+ ! dt = — )
J2E 420050 2 /e —sin0)2)
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Fig. 1.7 For each value of the constant £, Equation (1.27) defines a phase curve in the 66-plane.
The curves with E = mgl, called separatrices, are the boundaries between the closed curves
encircling the origin and the curves for which the sign of the velocity does not change. The
arrows indicate the sense of the time evolution. The point (0, 0) is a point of stable equilibrium
and is the phase curve with £ = —mgl, while the points (£, 0) correspond to a single point of
unstable equilibrium. These points also belong to the set E = mgl, but are disconnected from the
separatrices

where k% = (E 4 mgl)/2mgl. (The separatrices in Figure 1.7 correspond to k = 1.
The time required to go from 0 = —mw to 6 = 7, or from 0 = mw to § = —m,
along the separatrix is infinite and the phase curves do not intersect at the unstable
equilibrium points.) With the change of variable u = (1/k) sin(6/2) one gets the

standard form
:i:/g/dtzf du .
! VA = k)1~ u?)

The nonlinear equation of motion (1.26) can be replaced by the linearized
equation

0, (1.28)

which is obtained from (1.26) substituting the right-hand side of the equation by its
Taylor expansion about the equilibrium point = 0, § = 0, keeping only the linear
terms in 6 and 6. By contrast with (1.26), the solution of the linear equation (1.28)
can be expressed in terms of elementary functions: 6 = ¢ cos wt + ¢ sin wt, with
® = +/g/1. This is a periodic function of the time with period 277 1/1/g.
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Exercise 1.6. A simple pendulum of mass m7 hangs from a block of mass m; which
is attached to a spring of stiffness k. The block lies on a horizontal surface without
friction. Express the position vectors r; and r, shown in Figure 1.8 in terms of
the parameters x and 6, and give the constraint equations. Show that the constraint
forces satisfy Equation (1.7), with g1 = x, go = 6, and use this result to show that
the equations of motion are

miX + kx +ma(X + 16 cosd — 162 sinh) = 0,
X cosf +l§~|—gsin9 =0,

(1.29)

assuming that the spring obeys Hooke’s law.

Fig. 1.8 The origin coincides
with the suspension point of
the pendulum when the
spring is relaxed. x is the
coordinate of the suspension
point of the rod and 6 is the
angle between the rod and the
downward vertical

The equations of motion (1.29) constitute a system of two coupled second-order
nonlinear ODEs. For some purposes, it is enough to find its approximate solutions
in the vicinity of the stable equilibrium point x = 0, & = 0. The system of equations
(1.29) linearized about x = 0,60 =0,x =0, 6= 0, 1s

mi¥ + kx +mo(X +16) =0,

RN (1.30)

X+10+ g0 =0.
By construction, this is a linear system of ODEs with constant coefficients, which
can be solved exactly in various ways. An elementary method of solution consists
in looking for solutions of the form

x = A cos(wt + §), 6 = B cos(wt + 9), (1.31)
where A, B, w, and § are constants, that is, x and 6 have the same time-dependence

given by a sinusoidal function with an unknown frequency w. Substituting (1.31)
into (1.30) one obtains the homogeneous system of equations for A and B
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[ — (m + mz)a)2 + k]A — my@?*lB =0,

—w*A+ (—w?l +g)B =0. (132)
This system has a nontrivial solution if and only if the determinant
—(m + mz)a)2 +k —maaw?l
‘ —w? —w?’l+g
is equal to zero. This condition leads to the quadratic equation
milw* — [kl + (m; + mz)g]a)2 +gk=0
for w?. Thus,
o kl + (my +mp)g £ \/kzlz + (my + m2)2g% + 2(my — my) gkl (133

2ml

The radicand can be written as [kl + (my — ml)g]2 + 4mmog?, which cannot be
negative. In fact, one can readily see that (1.33) gives two distinct positive values
for w?. Substituting any of these values of w? into (1.32), one of these equations is a
multiple of the other and, therefore, from (1.32) one only obtains a relation between
the amplitudes A and B of the oscillatory motions of the block and the pendulum.

The solutions of the form (1.31), where all the bodies of the system move with
the same frequency, are called normal modes of oscillation, and the corresponding
frequencies are called normal frequencies. The general solution of (1.30) is a
superposition of normal modes of oscillation (see below).

In order to illustrate these concepts, it will be convenient to consider the special
case with m; = my and kI = mg, where m is the common value of the masses m
and my. Then Equation (1.33) reduces to

,  3+453
w = .
2 1

Substituting this expression into the second equation of (1.32), one gets
~(B3£V5A=01%V5IB.
Thus, one of the normal modes of oscillation, is

3+\/5A1

x = Ajcos(wit +61), 0 =—
1+4/5 1

cos(wit + 81), (1.34)
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where A1 and §; are arbitrary constants, with

, 3+4/5¢
w] = .
2 1
The second normal mode is given by
3—-V54,
x = Apcos(wat + 87), 0 = cos(wat + 82), (1.35)
Vi—-11
where A; and §; are arbitrary constants, and
, 3-45g
wy = .
2 1

Owing to the linearity of the system (1.30), its general solution is the sum (or
superposition) of the solutions (1.34) and (1.35), e.g., for the coordinate x we have
x = Ajcos(wit + 81) + Az cos(wat + 82). Note that this general solution contains
four arbitrary constants, as would be expected for a system of two second-order
ODEs.

Example 1.7. We now consider two particles of masses m and m joined by a
rod of length /. The position vector of the first particle can be parameterized by its
Cartesian coordinates,

r=xi+yj+zKk, (1.36)

and with the aid of two additional parameters, 0, ¢, we can express the position
vector of the second particle in the form (see Figure 1.9)

r) =r] +[(sinf cos¢i+ sinf sin¢ j + cos 6 k). (1.37)

Hence, we need a total of five independent parameters to express the position vectors
of the two particles and, therefore, we shall say that this system possesses five
degrees of freedom. (Again, there are an infinite number of alternative parameteriza-
tions, but the number of independent parameters is fixed by the mechanical system.)

The rod can only exert a force (a tension) on the particles, of some unknown
magnitude, T, which must be directed along the rod itself. This tension will have
the exact magnitude and sense required to maintain the two particles separated by
the fixed distance /. If the vector T denotes the tension acting on m1, then —T is

the tension on my (that is, Fgconm) = T and F(ZCOHS") = —T). Thus, denoting by
q1, - - ., qs the five parameters appearing in Equations (1.36)—(1.37) (or any other

set of variables employed to parameterize r; and ry),
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Fig. 1.9 The two particles A
are held together by a rod of '
constant length /
0
SZWA!
r &y --------- >
=
2 ar. or or () — 1)
DL Y R G G R
ot 9qi 9q; g 9q;

Since T is parallel to r{ — rp and / is the magnitude of r; — rp, we can write
T = (T/1)(r1 —r2), where |T| is the magnitude of the tension, hence,

dry —ry) T dr —r) T 9 T 9
T =  (rj—rp)- = (ri—r2)-(ri—rz) = ?=
aq,’ l aq,' 21 aq,- 21 aq,'

Thus,
2
ZF(constr) X orgy -0
(o2 .
a=1 aql

for all the values of the index i. (Note that the explicit parametrization of the position
vectors, (1.36), (1.37), was not required.)

Exercise 1.8. A bead of mass m can slide freely along a hoop of radius a. The
hoop rotates with constant angular velocity @ about a fixed point of the hoop on a
horizontal plane (see Figure 1.10). Show that the constraint forces satisfy (1.7) and
use this fact to obtain the equations of motion using as generalized coordinate the
angle, ¢, between the diameter of the hoop passing through the fixed point and the
radius passing through the bead.

Exercise 1.9. A block of mass m is tied to a wall by means of a rope that passes
over a pulley attached to a wedge of mass m1. The block lies on the wedge, which
is free to move on a horizontal surface (see Figure 1.11). Neglect the masses of the
rope and the pulley, and the friction forces, show that Equation (1.38) holds, find the
equation of motion, and the phase portrait.

Summarizing, in all the examples presented above, we have considered mechan-
ical systems formed by N bodies or particles, whose positions with respect to an
inertial frame are determined by N position vectors ry, rp, ..., ry, which can be
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Fig. 1.10 The hoop rotates y
about the origin with constant
angular velocity w. The hoop

is maintained in contact with

the horizontal plane z = 0

ot

Fig. 1.11 The configuration
of this mechanical system can
be specified by a single
parameter, such as the
distance between the wall and
the wedge

expressed in terms of a set of independent parameters (or generalized coordinates),

41,92, - - -, qn, and possibly of the time, and in all cases we found that the constraint
forces are such that, fori =1,2,...,n,
al 9
ot “ 9gi '

and, therefore, from Newton’s second law it follows that

N 1 ar
3 (maia — FG™) - 7 =0, (1.39)
a=1 aql
fori = 1,2,...,n. Usually (as in all the foregoing examples), Equations (1.39)
amount to a system of n second-order ODEs for the coordinates ¢; as functions
of the time. The solution of this system determines all the possible motions of the
mechanical system. (Once we have the solution of the equations of motion, the
constraint forces can be calculated using again Newton’s second law: FCO™" —
Mgty — FEPPD )
The number of independent parameters necessary to express the position vectors
ro is the number of degrees of freedom of the system. In what follows we
shall assume that the constraint forces satisfy (1.38). Equations (1.38) constitute
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the d’Alembert principle. In the standard approach, the d’Alembert principle is
formulated making use of the concepts of virtual work, virtual displacement
and, especially, infinitesimal virtual displacement. By formulating the d’ Alembert
principle in the form (1.38), one avoids the use of all such concepts.

As pointed out at the beginning of this section, there are an infinite number of
alternative parameterizations of the position vectors but we can readily see that
Equations (1.38) do not depend on the coordinates being employed. In fact, if g/
is a second set of generalized coordinates, it must be possible to express the ¢/ in
terms of the g; (and possibly of the time) and vice versa. Then, by virtue of the
chain rule, if Equations (1.38) hold, we have

N N
Z F(constr) ory _ Z lconstr) | ory \ 9q; -0
a=1 ) aq’{ a=1 ‘ aqj aq’{

where, as in what follows, a repeated lowercase Latin index, i, j, k, ..., implies
sum over all values of the index.

1.2 The Lagrange Equations

Equations (1.39) follow from Newton’s second law, d’Alembert’s principle, and
the assumption that the position vectors of the bodies forming the system can be
written in terms of a set of n independent parameters ¢, g2, . . ., g, and, possibly,
of the time

ry =re(q1, 92, ..., qn, 1), a=12,...,N. (1.40)

As pointed out above, this last condition is equivalent to say that the position
vectors I, satisfy certain constraint equations or that the constraints are holonomic.
(Observe that the expressions (1.1), (1.2), (1.10), (1.11), (1.21), (1.36), and (1.37),
have the form (1.40).)

In order to simplify the writing, in what follows, a function of the coordinates and
the time, f(q1,92,...,4qn,t), Will be expressed in the abbreviated form f(g;,t),
where the subscript i indicates the existence of several variables. In this sense, it
is equivalent to write f(g;,?), f(q;, 1), or f(q,t). (Other convenient equivalent
notations are f(q, t) and f (g, t).) Thus, the right-hand side of Equation (1.40) will
be written as ry(g;, t).

As we have seen in the preceding examples, Equations (1.39) are useful as
they stand because they do not contain the constraint forces. However, there is a
convenient way of expressing the left-hand side of these equations (which avoids
the direct calculation of the second derivatives ¥y ).

First, by virtue of the chain rule, from (1.40) we have

. ory . or,
fo=_ g+ .

. 1.41
aqi ot ( )
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An essential point of the Lagrangian formalism, to be developed in this section, is
that, in spite of the way in which we obtained the expression on the right-hand side
of (1.41), the 2n + 1 variables q1, g2, ..., qn, 41,42, -- -, qn, ! appearing in it are
going to be treated as independent. For instance, in Equation (1.12) it makes sense
to give values to r, 7, and ¢, in an arbitrary manner; that is, any combination of
values of r, 7, and ¢ (with r > 0) yields a possible velocity vector r. Following this
rule, from (1.41) we obtain
Jry ory

¥ = , (1.42)
9q;  9q;

fore = 1,2,...,N,and j = 1,2,...,n. In a similar way we have, again by
the chain rule, assuming, as in everything that follows, that the partial derivatives
commute,

dor, 9%r, . N 9%r, 9 <8ra, 8ra) Oty
= q =
dr dq;  dqjqi ' 0tdq;  0g;

i = , 1.43
ag; q;+ a1 dqi ( )

thus, considering the first term in (1.39), making use of the Leibniz rule, (1.42) and
(1.43),

. ar(x d ( . Bra) . d Bra
Mgty - = Mgly - — Mgy -

dg;  dt 9gi dr 9q;
d . aro[ . 81:0(
= Mgy - — Mg¥y -
dr o agi o aqi

d o (1 P a (1 P
= m . — m . .
dr 9g: \2 ala Lo 9gi \2 ala " Ty

Hence, Equations (1.39) can be written in the equivalent form

d oT oT
.= = 0, (1.44)
drdg; dg;
where
N
T = Zl 5 Mafa - Fa (1.45)
o=

is the kinetic energy of the system and

N
9
0 =Y E. a:; (1.46)
a=1 !
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(i = 1,2,...,n) are usually called generalized forces. (Since the coordinates g;
may not have dimensions of length, the generalized forces may not have dimensions
of force.) (In the foregoing section, T stood for a tension but, in the rest of this
chapter, T will denote kinetic energy; there is no risk of confusion because we will
not deal with constraint forces henceforth.)

Note that the value of the kinetic energy, T, does not depend on the coordinates
being employed [in fact, the coordinates ¢; do not appear in the right-hand side of
(1.45)], but it does depend on the inertial frame with respect to which the velocities
Iy are defined. On the other hand, the Q; do depend on the coordinates chosen. With
the aid of the chain rule, from (1.46), one finds that if the coordinates g; are replaced
by another set of coordinates ¢, then the new generalized forces are given by

0, =

0;. (1.47)
Note also that the generalized forces can depend on the time even if the applied
forces do not, since the position vectors r,, appearing in (1.46) may depend explicitly
on the time.

In the examples usually considered, the generalized forces are derivable from a
potential, that is, there exists a function V (g;, t) such that

A%
0i=—-"". (1.48)
aqi

The validity of (1.48) is highly convenient because instead of the n functions Q;
of the coordinates and the time, it is enough to know the potential V, from which
all the generalized forces can be calculated. The existence of the potential V does
not depend on the coordinates being employed, and it is therefore a property of the

mechanical system under consideration. If the coordinates g; are replaced by other
coordinates ql.’ = ql.’(qj, t), then from (1.47), (1.48), and the chain rule we have

,__9q;0V _ 9V
dq; 9q; dq;

1

Note that if a potential exists, it is defined up to an additive function of ¢ only.
Substituting (1.48) into (1.44), we obtain

daT AT -V) _

. 0.
dr 9g; 9gi

Taking into account that V is a function of ¢; and ¢ only, the last equation can be
written as

daT—v) aT-Vv)

. 0
dr 9g; 9gi
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or, equivalently,

d oL oL
- =0, (1.49)
dr 9g; 9qi
where
L=T-V (1.50)

is the Lagrangian of the system, and Equations (1.49) are known as the Lagrange
equations. As we shall see later, there exists an infinite number of functions, L, such
that, when substituted into the Lagrange equations lead to the equations of motion
of the system being considered (see Proposition 1.25 and Sections 2.3 and 2.4). The
expression (1.50) will be called the natural Lagrangian or the standard Lagrangian.

In order to emphasize the fact that the g;, ¢;, and ¢ appearing in a Lagrangian
are independent variables, the Lagrange equations (1.49) can be written in the more
explicit form

9L N I’L - 0°L . AL _ (L51)
orogi  0q;0a Y " 9g;04, 7 " aq '
which shows that if
92L
det( i ,)750 (1.52)
999qi

then Equations (1.51) constitute a set of 2n second-order ODEs for the ¢;. (If
the condition (1.52) holds, then Equations (1.51) can be inverted to express ¢; as
functions of ¢;, g; and t.) When condition (1.52) is satisfied, which happens in
most examples of elementary mechanics, we say that the Lagrangian is regular or
non-singular. Otherwise, L is a singular Lagrangian.

If the applied forces are conservative, which means that there exists a function
Ep(ry, ra, ..., ry) (the potential energy of the system) such that F(()[ap Ph —V.Ep,
where V,, denotes the gradient with respect to r,, then from (1.46) and the chain rule
we find that

N

ar, d

0 =— ZVaEp - == Ep(ri(gi, 1), 12(gi, 1), ..., TN (gi, 1)),
ot dqi g

which is of the form (1.48), with

V(gi,t) = Ep(ri(qi, 1), r2(qi, 1), ..., xN(gi, 1). (1.53)
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Thus, when the applied forces are conservative, the generalized forces are derivable
from a potential, which can be chosen according to (1.53).

Example 1.10. We shall consider again the system studied in Example 1.4, with
the parametrization defined by Equation (1.11). From (1.12), using the fact that
the vectors sin 8y cos wt i + sinfp sinwt j + cosfp Kk, and — sinwr i + cos wt j are
orthogonal to each other and have norm equal to 1, we find that the kinetic energy
of the particle is given by

2

T = 'mr

ymi? = Im(i* + o’r* sin® 6p).

On the other hand, from (1.46) and (1.11) we find that the only generalized force is
(appl) or . . . .
QO=F "3 = —mgK- (sin Oy cos wt i+ sin Oy sin wt j+cos Oy k) = —mg cos by
r

and is derivable from the potential V = mgr cos 6y [see (1.48)]. (In this case the
applied force is the weight of the particle, —mgk, which, as is well known, is
conservative; in fact, —mgk = —V(mgk - r), that is, the potential energy can be
chosen as Ep(r) = mgk - r, so that, according to (1.11), Ep(x(r, t)) = mgr cos 6,
in agreement with (1.53).)

Thus, the standard Lagrangian is [see (1.50)]

L(r, 7. 1) = ym(* + w?r? sin® 6g) — mgr cosfy (1.54)

and substituting this expression into (1.49) [or (1.51)] we obtain the single equation

doL 0L _d e o)
= - = - sin“ 0y — mg cos
dr o7 97 dtmr maw-r S1 0 mg 0

2

= mi’ — ma?r sin? 6o + mg cos 6,

which coincides with Equation (1.16).

The generalized forces are derivable from a potential also in some cases where
the applied forces are not conservative. For example, a force field of the form F(r) =
k x r = —yi+x jisnot conservative (if Ep is a function such thatk xr = —VEp,
then, using Cartesian coordinates, we would have 0 Ep/dx = y, 0Ep/dy = —x,
dEp/dz = 0, but then 32Ep/dydx = 1 and 9>Ep/dxdy = —1). However, for
a particle restricted to move on the plane x = a, where a is some constant, the
position vector can be parameterized in the form

r=ai+yj+zKk,
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and (identifying g1 = y, g2 = z) we have [see (1.46)]

or . o . 0
01=F- =(—yi+ta}))-j=a, 0, =F-

r
=(—yi+aj) k=0,
dy

0z
which can be written in the form (1.48) with, e.g., V = —ay.
If the generalized forces Q;(g;, t) are derivable from a potential, then

00i 00Q;

(1.55)
9q; 9q;

fori, j =1,2,...,n. Indeed, if Q; = —3V/dq;, then
Qi 9?v PV 00

dq; _361j361i B _3611'3%‘ g

The converse is locally true, that is, if the conditions (1.55) are satisfied, then, for
each point, P, in the domain of the functions Q;, there exists a function V defined
in some neighborhood of P, such that Q; = —dV /d¢g;. The proof of this assertion is
given in any standard textbook on advanced calculus in several variables. Condition
(1.55) is the well-known criterion for the exactness of the differential form Q1dq; +
02dq2 + - - - + Q,dg, encountered, e.g., in the theory of differential equations.

An example usually employed to show that condition (1.55) only guarantees the
local existence of a potential is given by the functions

q2 q1

01 =— , 0 = ,
q1> + q2? q1> + q2?

which are defined (and differentiable) in the open set D = R2\ {(0, 0)}. One readily
verifies that

301 qP—qi* 00
32 (@1 + @22 ¢

s

however, there does not exist a function V, defined on all of D, such that Q; =
—AdV/0dq;, as can be seen by evaluating the line integral

I = 7§C(Q1dm + QO2dqg2)

on a closed curve, C, enclosing the point (0, 0). For instance, if C is the curve given
by (q1(2), q2(t)) = (cost, sint) with t € [0, 2x] (that is, C is a circle of radius 1
centered at the origin in the g1g2-plane), one readily finds that

7= 7§ —q2dqi + q1dg _

2
2 5 / [—sin?(—sinz df) + cost(cost dr)] = 2.
91+ q2 0
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On the other hand, the existence of a function V such that Q; = —dV /dg; would
imply that
2 :
d[v t, t
I = —yg dv = —/ Vicost.sinOl g 1y 1,0y vi1, 00 =0,
C 0 dr

which contradicts the previous result. It may be noticed that the function V =
arctan(qz/q1), which is well defined for g1 > 0, satisfies the conditions

A% _ q2 A% _ q1
dq1 12 + q2%’ a2 q1* + %’

but arctan(gz/q1) is not a single-valued, continuous function defined in all the
region D.

When n = 1 the conditions (1.55) are trivially satisfied, regardless of the form
of the applied forces. That is, for any system with one degree of freedom, the
generalized force is always derivable from a potential (provided that it is a function
of g and ¢ only).

Example 1.11. We shall consider the problem treated in Example 1.1, this time
employing the Lagrangian formalism. In order to facilitate the comparison with the
results of Example 1.1, we shall make use of the parametrization (1.1). We find that
the kinetic energy of the bodies of the system is given by

1

T = 2m11"12 + émzl"zz

= Jm (& D)% + ymo[(& + ¥ cotb)i+ jjI*
= Im1i? 4+ Ymol (G + 3 cotbo)® + ¥

= [(my + m2)x* + 2m3 cot iy + mo csc? Oy’

(a homogeneous function of the ¢; of degree two).
On the other hand, according to the definition of the generalized forces (1.46),
with g1 = x, g2 = y, we have

2
ar, o . o s
Q1= F™ ¥ = (mmig)) i+ (~mag)) i =0,

a=1

and

2

1 81’ . N . .

0= FSP. ay“ = (—m1gj) - 0 4 (—magj) - (cotboi + j) = —mag,
a=1

showing that these forces are derivable from the potential V. = m;gy. Hence, the
standard Lagrangian for this problem, in these coordinates, is
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L = 3[(my + m2)&? + 2my cotBox § + my csc? 69 3] — mogy. (1.56)

(Alternatively, taking into account that the applied forces are gravitational and
that the potential energy is given by Ep(ry,r2) = migj - r1 + magj - ra, from
Equations (1.53) and (1.1) we obtain V (x, y) = mgj-x i+mogj-[(x+y cotfp) i+
yil=magy.)

The Lagrange equations give the equations of motion

_daL 8L_d[( +ma)i + Boi] = (my + ma)E + o
T dr 9% ax  dr myp + m2)x +mpCotboy| = (my + ma)x + mjzCcotbpy
and

doL 0L

d
= — = cot px csc? 0oy
dr oy ay di [m2 X + mo oyl +mag

= my cotfpX + my csc? 6oy + mag,
which are equivalent to the results given in Exercise 1.2.

Exercise 1.12. Find the equation of motion for the system considered in Exer-
cise 1.6, making use of the Lagrange formalism.

Exercise 1.13. Solve Exercise 1.8 making use of the Lagrange equations.

Exercise 1.14. Find the standard Lagrangian for the system considered in Exer-
cise 1.9 and use it to obtain the equation of motion.

Exercise 1.15. A right circular cylinder of uniform density, with mass m and radius
a, rolls without slipping inside a hollow cylinder of radius b, under the influence
of a uniform gravitational field (see Figure 1.12). Find the period of the small
oscillations. (From elementary mechanics, it is known that the kinetic energy of
a rigid body rotating about a fixed axis is equal to él w?, where I is the moment
of inertia of the body about that axis and w is the angular velocity. Keep in mind
that “fixed axis” means fixed with respect to an inertial frame and that the angular
velocity must be measured with respect to an inertial frame.)

Fig. 1.12 The cylinder, of
radius a, rolls without

slipping inside the cylindrical 9

surface of radius b. The A \
points A and A’ coincide ‘
when the cylinder is at the

equilibrium position
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Example 1.16 (One-dimensional harmonic oscillator). A very simple but impor-
tant example, which we will encounter many times in the following chapters, is that
of the one-dimensional harmonic oscillator. This system consists of a body of mass
m that can move along a straight line, subject to a force directed to a point, O, fixed
with respect to an inertial frame. The magnitude of the force is proportional to the
distance between the body and O. Hence, if ¢ is a Cartesian coordinate along the line
of the motion, with the origin at O, the force has the form —kg, where k is a positive
constant, and this force is derivable from the potential V = 1kq2 [see (1.48)]. It
is customary to express the constant k as mw?, so that the standard Lagrangian is
given by

L= )mg* - Jma’q”. (1.57)

Then from (1.49) we obtain the only equation

d oL 0L d ma) + ) o 2
= — = m mw-qg=m mw-q,

dtag  ag dr 1=mq 1
whose solution is g = ¢] cos wt + ¢ sin wt, where ¢] and ¢; are arbitrary constants
[cf. Equation (1.28)]. This shows that the constant w introduced above represents
the angular frequency of the motion.

Generalized Potentials. The Electromagnetic Force

Going back to the equations of motion of a holonomic system that obeys the
d’ Alembert principle expressed in the form (1.44), we see that these equations can
be written in the form (1.49), with L = T — V, if and only if the generalized forces
can be expressed as

aVv d oV
P = — , 1.58
07 " + dr 3 (1.58)
fori = 1,2,...,n, in terms of some function V, which we will assume that is a

function of ¢;, ¢; and ¢ only [cf. Equation (1.48)]. When V depends on the ¢;, it is
said that V is a generalized potential or a velocity-dependent potential (the last name
seems more convenient in view of the proliferation of the adjective “generalized”).

The total derivative d/d¢ appearing in (1.58) is just an abbreviation. We have to
keep in mind that here the variables ¢;, ¢; and ¢ are independent. Writing (1.58)
explicitly we have

v 8%y v . 92V

Qi = + .+ .4+ .. .4 (1.59)
! dg;  0tdq;  dq;aq; 7 8¢;9q;

If, additionally, we assume that the components Q; are functions of (g}, g, t) only,
then the second partial derivatives of V with respect to the g; must be equal to zero,
and this means that V must be of the form

V = org + B, (1.60)
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where the o and 8 are n 4 1 functions of the coordinates ¢; and ¢ only. Substituting
(1.60) into (1.59) we obtain

daj aB do;  Oda

Qi = ~ dg; A 9gi o T 3f1jqj
do; oo d do;

:< . a/)q‘j— Pyt (1.61)
aqj aqi aqi at

that is, the generalized forces must be functions of the first degree in the velocities.

Exercise 1.17. Show that, given a set of functions Q;(qj,q;,t), there exist
(locally) functions «;(q;,t) and B(g;,t) such that Equations (1.61) hold if and
only if the functions Q; satisfy the conditions

0°0; _, 00 _ 90
3G;0qx g, agi
82 X 82 i 32
A L
dqrdq;  0q;dqr  03q;0q;
00; 9Q; _ 9%0i 90 i
dq;  dqi  dtdq;  dqkdq;

(1.62)

Surprisingly, there exists a force satisfying conditions (1.62), with n = 3. The
force on a charged particle, with electric charge e, in an electromagnetic field (using
Gaussian cgs units) is given by

F=cE+ xB), (1.63)
C

where v is the velocity of the particle (as usual, with respect to some inertial
frame) and c is the speed of light in vacuum. One can verify using, e.g., Cartesian
coordinates that the components of the force (1.63) satisfy conditions (1.62) if and
only if

V-B=0, VXE=-— . (1.64)
c ot

These equations are two of the Maxwell equations and, in classical electrodynamics,
it is assumed that they hold everywhere (in the absence of magnetic monopoles).
Hence, the force (1.63), known as the Lorentz force, can be expressed in terms of a
generalized potential. In fact, Equations (1.64) are locally equivalent to the existence
of the electromagnetic potentials, ¢ and A, such that

1 0A

E=-Ve c ot’

B=VxA. (1.65)
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(It should be kept in mind that, for given electromagnetic fields E and B, the
potentials ¢ and A are not unique. Given E and B, the potentials are defined up
to a gauge transformation:

1o (1.66)

A~ A+ Vg, O @—
c ot

where £ is an arbitrary function.) Substituting Equations (1.65) into (1.63) and
comparing the Cartesian components of F with (1.61), one finds that one can take

o :—iA,-, B = eo, (1.67)

i =1, 2,3, where the A; are the Cartesian components of A, and, therefore,
e . e
V=— Aigit+tep=— A-v+egp. (1.68)
c c

Thus, the equations of motion for a charged particle of mass m and electric charge
e, in an electromagnetic field described by the electromagnetic potentials ¢, A, can
be obtained from the Lagrangian

I 5, e
L= _mvi+ A.v—ep. (1.69)
2 c

As we shall see in the next paragraphs, even though the expression (1.68) was
derived making use of the Cartesian coordinates, Equations (1.68) and (1.69) are
valid in any coordinate system.

It may be pointed out that, in the preceding pages, the Lagrange equations were
introduced as a convenient way for obtaining the equations of motion, but in the case
of a charged particle in a given electromagnetic field we already know the equations
of motion and, therefore, it might seem pointless to look for the Lagrangian in this
case; however, as we shall see in the next few pages, the Lagrangian itself helps to
find the solution of the equations of motion, after all, in most cases one may be more
interested in the solution of the equations of motion than in the equations of motion
themselves.

Coordinate Transformations. Covariance of the Lagrange Equations
Sometimes, after having obtained the expression of the Lagrangian using a set of
coordinates ¢;, we may want to use another coordinate system, g/ = ¢;(q;, t). For
instance, in many cases, the Lagrangian is known in Cartesian coordinates, and it
may seem more convenient to employ another set of generalized coordinates (see,
e.g., Examples 1.18 and 1.21, below). As we shall see, a Lagrangian adequate for
the new coordinates is given by the original Lagrangian with the coordinates and
velocities, ¢; and ¢;, replaced by their equivalent expressions in terms of ¢; and ¢;.

More precisely, we shall demonstrate that if we have a system of ODEs for the
variables ¢g; as functions of 7, given by
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doL oL
. =0, (1.70)
dr 9g;  9g;
where L is a given function of (g;, ¢;, t), and we consider a new set of coordinates
g/ which are functions of the ¢; and 7, then the ODEs (1.70) expressed in terms of
the ¢/ are equivalent to the Lagrange equations

doL oL
., — ., =0, (1.71)
dr dg; 0q;
where L is the Lagrangian appearing in (1.70) written in terms of (¢/, ¢/, 7).
Indeed, assuming that the new coordinates are given by some expressions of the
form ¢/ = g/(q;, 1), the chain rule gives

. dq; . 9q]

/ ; 1.72
4 aqjqf+at (1.72)

and from this last equation (taking into account that the partial derivatives dq;/dq;
are functions of the g; and 7 only) we obtain

ag! g’
G _ i (1.73)
0qk  Oqk
Similarly, the chain rule and (1.72) yield
d 99" 3’q, 3%q’; a (dq.  9q’ ag’,
T= L = Tt )= (1.74)
dr dgi  9qk9q; dtdq;  9q; \ Igx ot dq;

where we treat g;, ¢; and ¢ as independent variables [cf. Equations (1.41)—(1.43)].
Then, making use repeatedly of the chain rule, (1.73), (1.74), and the Leibniz rule
we obtain the identity (valid for any function L, regardless of its meaning)

daL 9L d (oL 9] dL 94; 9L 9q;
drdg;  9g;  dr \3q 3G 39} 9gi 94’ dgi

d (9L 94;\ 9L ddq; BL 9q;
dr aq; aqi aq; dr 9g; aq} aqi

_ 94 (daL AL 10.75)
"~ dgi drag;  dq; )’ ‘
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Since the matrix (aq} /9q;) must be invertible, it follows that Equations (1.70)
hold if and only if Equations (1.71) do. Another proof of the equivalence of
Equations (1.70) and (1.71) will be given in Section 2.4.

Example 1.18 (Charged particle in a uniform magnetic field). Making use of the
preceding results, we can study the motion of a charged particle of mass m and
electric charge e in a uniform magnetic field. Choosing a set of Cartesian axes in
such a way that the z-axis coincides with the direction of the magnetic field, the
magnetic field is given by B = Bgk, where By is a constant. One can verify that a
vector potential for this magnetic field is A = ! Bo(—y i+ xj). Hence, according to
(1.69), the standard Lagrangian for this particle, written in Cartesian coordinates, is

m ., %) ) eBy . .
L= 2(x +y +20)+ 2e (xy — yx). (1.76)

Besides the Cartesian coordinates, the circular cylindrical coordinates, (o, ¢, z),
are also convenient to solve this problem. Making use of the standard formulas

relating the cylindrical coordinates with the Cartesian ones,

X = pcosg, y = psing, z

Il
N

one finds that
X=cospp—psingp,  y=singp+pcospp, =2z,
and substituting these expressions into (1.76) we obtain

eBy

.
a2 (1.77)

L=, " +p"" +29) +
Substituting this Lagrangian into the Lagrange equations we can obtain the equa-
tions of motion expressed in terms of the cylindrical coordinates of the particle.
However, as will be shown in Exercise 1.23, below, it is neither necessary nor
convenient to do such a substitution.

As we shall see in Section 2.4, the Lagrange equations also maintain their form if
the coordinates and the time are simultaneously transformed [that is, the coordinates
gi and 1 are replaced by new variables ¢/ = ¢/(g;,1),t" = t'(g;,1)], provided that
the Lagrangian is suitably transformed too.

Ignorable Coordinates. Invariance of the Lagrangian

One of the advantages of expressing a set of ODEs in the form of the Lagrange
equations (1.49) is that with the aid of the Lagrangian, in some cases, one can solve
these equations partially or totally more easily than with a direct approach. Some of
such simplifications occur when the Lagrangian of interest does not contain one of
the coordinates g;, or the time.
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If L(gi, gi,t) does not depend on one of the generalized coordinates, gi, say,
then from the Lagrange equations (1.49) we see that the generalized momentum
conjugate to gk,

JdL
=, (1.78)
Gk

is a constant of motion:

dpr d oL oL 0
dt dtoge g
When L(g;, gi, t) does not contain the coordinate g it is said that gy is an ignorable,
or cyclic, coordinate.
For instance, the Lagrangian (1.56) does not contain the coordinate x and,
therefore, the generalized momentum conjugate to x,

px = 25 = (m1 + m2)x + ma cotbpy,
is a constant of motion. In this case, p, is the x-component of the usual linear
momentum of the entire system.
It may be noticed that a Lagrangian can have more than one ignorable coordinate;
the ultimate example is that of a free particle in Cartesian coordinates, for which the
standard Lagrangian is

L= ”21(;&2 + 92 + 3. (1.79)

All the coordinates are ignorable and their conjugate momenta (mx, my, and mz) are
constants of motion. It should be stressed that the existence of ignorable coordinates
depends not only on the mechanical system under consideration, but also on the
coordinates being employed. For instance, the Lagrangian (1.79), expressed in
spherical coordinates, (r, 6, ¢), has the form

L= (7 + r262 + r?sin 66?), (1.80)
and only the coordinate ¢ is ignorable.
The existence of an ignorable coordinate, gy, is equivalent to the invariance of
the Lagrangian under the coordinate transformation

qr = qr + s, and ¢/ =gq;, fori#k, (1.81)

where s is a parameter that does not depend on the coordinates or the time, so that
all the generalized velocities, g;, are left unchanged by the transformation (1.81).
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More specifically, this invariance of the Lagrangian means that its value does not
change when we perform the coordinate transformation (1.81), that is,

L(q1s - s Q1> Gks Qit1s -+ GnsGist) = L(q1s oo s k=1, Gk + S, k15 - -+ Gns Gis 1),
(1.82)

for all values of s in some neighborhood of 0. (We have already found examples
where the coordinates cannot take all real values, e.g., in (1.54), the coordinate r
has to be greater than zero.) In fact, recalling the definition of the partial derivative
of a function, (1.82) implies that L /dg; = 0 and, conversely, if dL/dqr = 0, then
L(gi, gi,t) does not depend on g; and, therefore, Equation (1.82) holds.

For instance, the Lagrangian (1.56) is invariant under the translation defined by
x’ = x +s,y =y, which geometrically amounts to the displacement of the
origin by a distance s to the left. This invariance corresponds to the fact that we
can choose the origin at any point of the x-axis, and this choice does not affect the
expression (1.56). Here we are considering the translation x’ = x + s as a passive
transformation, that is, we are translating the coordinate system by displacing the
origin, leaving the mechanical system untouched. An active translation would mean
that the coordinate system is left invariant, while the mechanical system is translated
as a whole. (The concept of invariance is treated in more detail in Section 2.5.)

Actually, we can obtain a constant of motion under a weaker condition. If there
exists a function G (g;, t) such that

JdL G ., G
= qi + (1.83)
dqr  9q; at

(with implicit sum over the repeated index i), then py — G is a constant of motion.
Indeed, making use of the Lagrange equations (1.49), the chain rule, and (1.83), we
have

d d oL dG 9L 9G ., G
(pe=Gy= 0= =g = =0,
dt dr 9gx dt aqr  9qi dt
A first simple example is given again by the Lagrangian (1.56); the coordinate y
is not ignorable but 0L /9y = —myg, which has the form (1.83) with G = —mgt,
hence py + m,gt is a constant of motion.

Example 1.19 (Charged particle in a uniform magnetic field). As shown in Exam-
ple 1.18, the standard Lagrangian for a charged particle of mass m and electric
charge e in a uniform magnetic field B = Bgk, in Cartesian coordinates, can be
taken as

m ., %) .2 eBy . .
L= 2(x +y +29)+ 2e (xy — yx). (1.84)

Clearly, z is an ignorable coordinate and therefore its conjugate momentum is a
constant of motion
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oL .
p:= . =mz (1.85)
0z
(the z-component of the usual linear momentum of the particle). On the other hand,
dL/dx # 0O (that is, x is not ignorable), but

oL eBy .
= y’

ax 2c
which is of the form (1.83) with G = eByy/2c. Hence, p, — eByy/2c is conserved,
that is,

mx — y (1.86)

is also a constant of motion. Similarly, y is not ignorable, but

oL eBy .
= — _x’

ay 2¢

which is also of the form (1.83) with G = —eBox /2c¢ and, therefore, py +eBox /2c
is conserved, that is,

my+  x (1.87)

is a constant of motion.

As pointed out above, for a system with n degrees of freedom and a regular
Lagrangian [such as (1.84)], the solution of the equations of motion is equivalent to
finding 2n functionally independent constants of motion. In the present example, we
have already identified three (functionally independent) constants of motion, which
are useful to obtain the general solution of the equations of motion (which we have
not written down, and we will not require). The conservation of the functions (1.86)
and (1.87) can be expressed in the form

. eBy . eBy
mx = (y — o), my=-—_ (x = xo0),

where x¢ and yp are two constants, respectively, or, equivalently,
d d
dt(x—XO)=wc(y—yo), dt(y—yo) = —w:(x — xo),

with w. = eBy/mc. The solution of this linear system of first-order ODEs is readily
found to be

X — X0 = €] COSw¢t + ¢ sinwet, Yy — Yo = —c1 Sinw,t + ¢3 coS w,t,
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where ¢1 and ¢, are two additional constants. These last two equations show that
in the xy-plane, the particle describes a circle centered at (xo, yp) with radius
\/ 12 + 32, and angular velocity w.. (The angular frequency w, is known as the
cyclotron frequency.)

The motion along the z-axis (the direction of the magnetic field) is rectilinear and
uniform: from (1.85), using the fact that p; is constant, we find that z = p,¢/m + zo,
where 7o is another constant (making a total of six independent constants, namely
Pz, X0, Y0, €1, 2, and 2p).

It may be remarked that the magnetic field B = Bk can also be obtained from
the vector potentials A = —Byy i, or A = Byx j (among an infinite number of other
possibilities); with the first of these, x is ignorable and with the second one, y is
ignorable, but there is no choice of the vector potential for which all the coordinates
are ignorable.

Note also that the original purpose for finding the Lagrangian was to use it
to obtain the equations of motion, by substituting the Lagrangian (1.84) into the
Lagrange equations (which would lead to a system of three second-order ODEs).
Fortunately, in this example, it was not necessary to write down the Lagrange
equations because from the Lagrangian we were able to find three constants of
motion, which constitute a system of three first-order ODEs, and by solving this
system, we found the general solution of the equations of motion.

It should be pointed out that in few cases we are able to find n, or more, constants
of motion, with n being the number of degrees of freedom of the system.

Exercise 1.20. Find the natural Lagrangian of a particle of mass m in a uniform
gravitational field in Cartesian coordinates. Show that even though not all of the
coordinates are ignorable, there exists a constant of motion associated with each
coordinate.

Example 1.21 (Angular momentum of a charged particle in an axially symmetric
magnetic field). The Lagrangian (1.69) for a charged particle in a static magnetic
field (not necessarily uniform), expressed in circular cylindrical coordinates, is

m . e .
L= 2(p2+p2¢2+22>+ LA1p+ Asf + Asd), (1.88)

where the functions A; are defined by A; = A - (dr/dq;) (among other things, this
implies that the dimensions of the A; need not coincide with those of A). Assuming
that the magnetic field is invariant under rotations about the z-axis, we want to find
a constant of motion associated with this symmetry.

As shown above, we will have a constant of motion associated with the rotations
about the z-axis if the coordinate ¢ is ignorable or if there exists a function G(g;, t)
such that

OL 3G, 3G
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[see (1.83)]. Making use of (1.88) we see that this last condition takes the explicit
form

e(BAl. d0A; . 3A3.>_3G. G . 0G, 0G

8¢,o—|—a¢<zﬁ—l-a¢z o+ ¢+ Z+ ,

c ap a¢ 9z at

where (p, ¢, z, 0, <Z'5, z, t) are independent variables (that is, we are not imposing yet
the equations of motion). Hence, owing to this independence (functional, not linear,
independence), the total differential of G must be given by

e (0A A2 0A3
dG = d d dz ). 1.89
. < 8 o+ 26 ¢+ 26 z) (1.39)

On the other hand, the existence of a function G (p, ¢, z) satisfying (1.89) implies
the conservation of [see (1.88)]

oL 2: e
. —G=mp°p+ Ar—G. (1.90)
d¢p c

Thus, we consider the differential of the combination G — eA»/c, which according

to (1.89) must be
0A] 0A3 0A3 043
— d - d
[(M ap)”+<a¢ az)z}

(pBpdz — pBdp), (1.91)

d(G - iAz) -

a O 8

where B, By, B, are the components of the magnetic field corresponding to the

vector potential A, with respect to the orthonormal basis (p, ¢3, Z) defined by
the circular cylindrical coordinates. Thus, the existence of G is equivalent to the
exactness of the differential form pB,dz — pB,dp.

Making use of the standard criterion for the exactness of a differential form, one
finds the conditions

d(pBp) _ _3(pB:) ApBp) _ d(pB2) _

07
ap 9z a¢ ¢

and with the aid of the expression for the divergence of B,

_ 10(0B,)  10By 9B

V-B ,
p 0p p 0¢ 0z

and the fact that V - B = 0, it follows that pB,dz — pB;dp is an exact differential
if and only if all the components B,,, By, B; are functions of p and z only.
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In conclusion, for a charged particle in an axially symmetric magnetic field
(which means that if the z-axis is the axis of symmetry, the components By, By, B,
do not depend on ¢), mp2¢ + eAs/c — G is a constant of motion, with the function
G — eAj/c determined by the (gauge-independent) expression (1.91).

For instance, in the case of the uniform field considered in Example 1.19, the
only cylindrical component of B different from zero is B, = By and the constant
of motion (1.90) is mpzq.ﬁ + eByp?/2c. (Note that this is the conserved momentum
conjugate to the ignorable coordinate ¢ in the Lagrangian (1.77).) Other examples
of axially symmetric magnetic fields are those corresponding to linear magnetic
multipoles.

Exercise 1.22 (Linear momentum of a charged particle in a magnetic field
invariant under translations). Show that the Lagrangian (1.88) possesses a
constant of motion associated with the invariance under translations along the z-
axis, given by mz +eAsz/c — G, where d(G — eA3z/c) = (e/c)(Bypdp — pB,dep), if
and only if the cylindrical components of the magnetic field do not depend on z.

When a Lagrangian does not contain the variable ¢ there is also an associated
constant of motion. Making use of the Leibniz rule and the chain rule we obtain the
identity

d(,aL L)_dq,-aL .daL AL . 9Ld¢ oL

ar \Tog =5) = arog T laroq 0 0g ar o
_/daL AL\ oL
N e T (1.92)
dr 9g; 0dq; at

Hence, if L does not depend explicitly on ¢ (i.e., dL/dt = 0), then

JL
J=alt L (1.93)
a4qi

(with implicit sum over the repeated index i) is a constant of motion, that is, its time
derivative is equal to zero as a consequence of the equations of motion (1.49) (this
constant is known as the Jacobi integral). When L has the standard form L =T -V,
the Jacobi integral corresponds frequently, but not always, to the total energy 7+ V
(see below).

For instance, the Lagrangian (1.54) does not depend explicitly on the time and
substituting it into Equation (1.93) one finds that in this case the Jacobi integral is

0L
r . —L
or

2

F(mr) — ém(r'2 + w?r?sin® 6p) + mgr cos by

= émi’2 — éma)zr2 sin® 6o + mgr cos 6y,

which coincides with (1.17) (and is not the total energy).
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Similarly, the Lagrangian (1.84) does not depend explicitly on the time and,
correspondingly, Equation (1.93) is a constant of motion. A direct substitution of
(1.84) into (1.93) gives

.{ . eBo . . eBo ... m 5 .5 ., eBy . .
x| mx— _“y|+y|my+ | x)+z(mz)—  xT+y +277) — (xy — yx)
2c 2c 2 2¢

= 2(x2+y2+z2),

which is the kinetic energy of the particle (not 7 + V).

Exercise 1.23. Find three constants of motion from the Lagrangian (1.77) and use
them to obtain the solution of the equations of motion for a charged particle in a
uniform magnetic field.

We also get a constant of motion if there exists a function G(g;, t) such that

JL G . G
=T+ (1.94)

[cf. (1.83)]. In fact, with the aid of (1.92), (1.94), and the Lagrange equations we

obtain
d 7i oL L+G)=0
dr \ " g, -

A (somewhat artificial) example is given by a charged particle in a static, uniform,
electric field E = Egk, where E is a constant. Such a field is usually expressed
making use of an electrostatic potential ¢ = —Epz [see Equations (1.65)], but we
can also represent this field making use of the potentials ¢ = 0 and A = —Epctk
(note that B = V x A = 0). Then, from (1.69) we find that, in Cartesian coordinates,
the standard Lagrangian is

L= ) (2 + y2 + 7%) — eEotz,

and, in this manner, L depends on the time (in spite of the fact that the field is static),
however,
oL

= —¢Eyz,
Jt eroz

which has the form (1.94) with G = —e Eqz, therefore, we conclude that
oL

qi

m .o .2, .2
. —L+G= _(x"+y"+27°)—eEoz
aqi 2

is a constant of motion.
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In the case of an ordinary potential, V(g;, t), the ambiguity in its definition is
somewhat trivial: if V(gq;, ) and V'(q;, t) are two potentials for the generalized
forces Q;, then from the definition (1.48) we have

v v
dgi g

3

which is equivalent to the existence of a function, f (¢), such that V' = V + f(¢). By
contrast, the ambiguity in the definition of a velocity-dependent potential involves a
function of the n + 1 variables g; and ¢.

Proposition 1.24. The velocity-dependent potentials V (q;, §i, t) and V'(qi, i, t)
lead to the same generalized forces, that is

v, dav av’ dav’

= , 1.95
og T arog T " og T dr gy (19
fori = 1,2,...,n [see Equations (1.58)], if and only if there exists a function
F(qi,t) such that
/ . . IF oF
Vigi, qi.t) =V(gi.qi. )+, g+ , . (1.96)
aq; at

(Usually, the last two terms of the previous equation are written as dF/df, which
is not appropriate because in Equation (1.96) the variables g;, ¢;, ¢ are independent
and this point is crucial in the proof of this proposition.)

Proof. Letting A = V' — V, Equations (1.95) amount to

d oA 0A —0
dr 9g; aqi o
or, equivalently,
%A A A . dA

.+ Lqit+ . L4 — = 0. (L.97)
91dg; - 9q;d¢;i T 8G;9q; T dqi

Since A is a function of (g;, ¢;, t) only, Equations (1.97) are identically satisfied
only if the coefficients of the second derivatives g; vanish, that s, 92A/0Gi9g =0,
fori, j =1,2,...,n, which imply that A must be of the form

A=pgj+v. (1.98)

where the u; and v are functions of (g;, t) only. Substituting this expression into
(1.97) we have
Opi | Opi, O, Qv

or Tag; VT
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Now, since 1; and v are functions of (g, ¢) only, the last equations are identically
satisfied only if the coefficients of the ¢; vanish. This leads to the conditions

Oui _ I (1.99)
dqj  9qi
and
9
Hi 9V . (1.100)
at aqi

Equations (1.99) imply the local existence of a function F (gi, t) such that [cf.

(1.55)]
u=F (1.101)
aqi

and substituting this expression into (1.100) we obtain

3 [dF 0
— vV =0,
aqi ot
which means that v = aF /9t + f(t), where f(¢) is a function of # only. Hence,
letting F' = F + x(¢), where x () is an anti-derivative of f(¢), we have

oF
VvV =
Jat
and, from (1.101),
o oF
= dqi

oF . OF
aqi ot

Conversely, if V' =V + (dF/dq;)q; + dF/dt, for some F(q;, 1), then

_av’Jr dav’ =—<8V+ d’F P 32F) d (av BF)
dgi ~ dr 3g; dqi  Bqidq; ’  dqidt)  dr \dq¢i g
vV dF ?F doav  9*F . 32F
= Toa  9aiog; U T aqior T drag og0a Y T arag;
A4 N dav
dq; dr 9qg;
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As shown above, if the generalized forces Q; are functions of (g;, g, t) only,
then V = «;q; + B [see (1.60)]. Hence, from Proposition 1.24 we conclude that
the functions ¢; and § are not uniquely defined. The sets of functions (¢;, ) and
(af, B) correspond to the same velocity-dependent potential if and only if there
exists a function F(g;, t) such that

oF oF

[cf. Equations (1.66) and (1.67)].
The proof given of Proposition 1.24 shows that the following Proposition also
holds.

Proposition 1.25. Two functions, L(q;, q;,t) and L'(q;, gi, 1), lead to the same
Lagrange equations, in the sense that

doL’ 9L  d L dL

- = ) 1.102
dr 86},’ aq; dr 86},’ aq; ( )
fori =1,2,...,n, if and only if there exists a function F(q;, t) such that
/ . . oF . oF
L'(gi,qgi,t) = L(gi,qi, )+ . ¢+ _ . (1.103)
aq,' Jat

This does not mean that two Lagrangians must be related in the form (1.103) in
order to lead to the same set of equations of motion. A simple example is provided
by the Lagrangians

_m_ .5 ) ;..
L—2(x + y7) —mgy, L =mxy —mgx.

Substituting these functions into the Lagrange equations one readily finds that both
Lagrangians lead to mX = 0 and my + mg = 0, but the difference L’ — L is not a
linear function of x and y as required by (1.103). (See also Section 2.3.)

Summarizing, we have seen in this chapter that if we consider a holonomic
mechanical system and we assume that the constraint forces satisfy d’Alembert’s
principle, then Newton’s second law gives

N
ar
> (ot — FS™) - ) “=0 (1.104)
ot qi
(i =1,2,...,n), where the constraint forces do not appear. The ¢; are generalized

coordinates employed to parameterize the position vectors, r, of the particles of the
system (with respect to some inertial frame). The number of equations in (1.104) is
equal to the number of degrees of freedom of the system. When, additionally, the
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generalized forces (1.46) are derivable from a potential [Equation (1.58)], the left-
hand side of Equations (1.104) can be written in the abbreviated form

ory _d L OL

N
w _ plapphy _ _
2 (mafe —F"7) dqi  drdg  dqi

a=1

with L =T — V, T is the kinetic energy of the system and V is the potential.

The position vectors ry have to be defined with respect to an inertial frame, but
the generalized coordinates may be defined in relation to a non-inertial frame (see,
e.g., Examples 1.3 and 2.4)



Chapter 2 )
Some Applications of the Lagrangian Shethie
Formalism

As we have seen in the preceding chapter, the equations of motion of a mechanical
system subject to holonomic constraints, with forces derivable from a potential, can
be expressed in terms of a single function. The fact that a single function determines
the whole set of equations of motion is very useful, as we have seen in Section 1.2.
In this chapter we shall consider several additional examples of mechanical systems
whose equations of motion are derived with the aid of the Lagrangian formalism. We
also show that in the case of an arbitrary second-order ODE, there exist an infinite
number of Lagrangians that reproduce the given equation, regardless of the meaning
of the equation and of the variables appearing in it.

In Section 2.4 we briefly discuss the relationship between the Lagrange equations
and some problems of the calculus of variations, and in Section 2.5 we show that
there is a general procedure to find constants of motion associated with certain
symmetries of the Lagrangian.

2.1 Central Forces

An important and relatively simple example of a mechanical system in classical
mechanics corresponds to a particle subject to a central force. This problem can
be defined in the following manner: there is fixed point (with respect to an inertial
frame), called the center of force, such that, placing the origin at the center of force,
the force on a particle in this field is of the form

r
VAN
r
where r is the magnitude of the position vector r and f(r) is a real-valued function

of r only.

© Springer Nature Switzerland AG 2018 43
G. F. Torres del Castillo, An Introduction to Hamiltonian Mechanics, Birkhiduser
Advanced Texts Basler Lehrbiicher, https://doi.org/10.1007/978-3-319-95225-3_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95225-3_2&domain=pdf
https://doi.org/10.1007/978-3-319-95225-3_2

44 2 Some Applications of the Lagrangian Formalism

A central force is always derivable from a potential, which is a function of r only.
In fact, from the definition of the generalized forces, Equation (1.46), we have

r or (r)193(r-r) (r) 1 9r? ar
0i=rmn" =7 _/ e
r 0qi r 2 dq; r 20dq; 0qi
If the function V () is defined by the condition
dV(r)
o —f(r) (2.1)
r

(that is, V is an indefinite integral of — f), then, by the chain rule,

dv or av

i__dr aq,-_ aq,"

which shows that, in effect, any central force is derivable from a potential, which is
defined, up to a constant term, by Equation (2.1). (Note that it was not necessary to
specify which set of coordinates g; is used.)

The standard Lagrangian for a particle in a central field, expressed in spherical
coordinates (r, 8, @), is, therefore [see Equation (1.80)],

L= "0+ 107 +rsin 04%) — V(). 2.2)

Two of the corresponding Lagrange equations can be written down and partially
solved, even if the potential V (r) has not been specified. These are

doaL oL d . .
0= . — = (mr*6) — mr’sin6 cos6¢?,
dr 96 90  dt 53
doL oL d_ 5 , . 2:3)
= . — = _ (mr-sin”0¢).
dt a¢ d¢  dr

The last of these equations expresses the conservation of mr? sin? ¢, which is the
z-component of the angular momentum of the particle about the center of force,
L =r x p, where p is the linear momentum mr,

L3 = m(xy — yx) = mr*sin® 0. (2.4)
Restricting ourselves to the case where L3 # 0, by virtue of (2.4) we can replace the

derivatives with respect to the time by derivatives with respect to ¢. For instance,
the first equation in (2.3) takes the form

L3 d , L3 de ) . L3 2
0= . 5 mr . 5 — mr<sinf cos 6 . 5 ,
mrZ?sin” 6 d¢ mr2sin” 0 d¢ mr?sin” 6
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which reduces to

d2
cotd = —cotf.
dg?

The general solution of this equation is
cotd = Acos¢ + Bsing, 2.5)

where A and B are constants. Recalling the relation between the spherical coordi-
nates and the Cartesian ones, the last equation amounts to z = Ax + By, which
corresponds to a plane passing through the origin (with normal —Ai — Bj + k). In
the case L3 = 0, ¢ is a constant, which corresponds to some plane passing through
the origin and containing the z-axis. Thus, we conclude that the motion of a particle
subject to a central force lies on a plane passing through the center of force.

Since the Lagrangian (2.2) does not depend on ¢, there exists another constant of
motion, which is given by [see (1.93)]

9L .9L .dL m ) )
P40 L 4+é . —L=_(F+r**+r’sin?0¢) + V(r). 2.6
97 96 ¢a¢ 2( o) (r) (2.6)

This constant of motion corresponds to the total energy and will be denoted as E in
what follows.

As is well known, the three Cartesian components of L are conserved, which can
be readily demonstrated with the aid of the vector formalism and the direct use of
the Newton’s second law. For our purposes, it will be convenient to prove that the
norm of L is conserved making use of the Lagrange equations (2.3). As a first step
we note that LZ = (r x p)? = r?p? — (r - p)? (which follows from the Lagrange
identity, (@ x b) - (e xd) = (a-¢)(b-d) — (a-d)(b - ¢), or from the fact that
[r x p| = |r||p| sin and r - p = |r||p| cos«, where « is the angle between r and p).
Noting that

dr_md(r-r) _mdr

r-p=r-m_ =
dt 2 dt 2 dr

we have
L? = r2(mf)? — (mri)?> = m*r*(#> — %) = m*>r* (6% + sin” 6°). 2.7)

On the other hand, differentiating Equation (2.5) with respect to the time and
making use of Equation (2.4) we get

Lycsc? o

—050299=—(Asind)—Bcosq&)d'):—(Asind)—Bcosd)) )

mr
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therefore, using again (2.4) and (2.5),
m?r* (6% + sin® 0¢%) = L3*(Asing — B cos )* + L3% csc? 6
= L32[(A sin¢g — Bcos¢)2 + 1+ cot? 9]
= L32[(A sin¢g — Bcos¢)2 +1+(Acos¢p + B sin¢)2]
= L32(A2+ B>+ 1).

Thus, L? is a constant of motion [and has the value L32(A2 + B2+ 1)] and, from
(2.6), we obtain the ODE
e Ve —E 2.8
2 +2mr2+ )= £, 28)
which determines r as a function of 7.

In order to take advantage of the fact that the motion of a particle in a central field
of force lies on a plane passing through the center of force, it is customary to select
the Cartesian axes in such a way that the xy-plane coincides with the plane of the
orbit. In this manner, the problem can be treated as the movement of a particle on
the Euclidean plane. Then, making use of the polar coordinates, (r, 6), the standard
Lagrangian is given by

L= "21(r'2 + 7202 — V), (2.9)

Since 6 and ¢ do not appear in the Lagrangian, we immediately have the constants
of motion

aL

l .
a6

= mr?0, (2.10)

that represents the angular momentum of the particle about the origin [cf. Equa-
tion (2.4)], and the Jacobi integral
oL

E =g —L—m ) 242
=q;,. = _(F+ro)+ V), (2.11)
86],’ 2

corresponding to the total energy. (As a consequence of the fact that the vectors r
and r lie on the xy-plane, the x- and y-components of the angular momentum are
identically equal to zero. The only nonvanishing Cartesian component of the angular
momentum is denoted here as /.) From Equation (2.10) we have

. l

0= (2.12)

)
mr2

which, substituted into Equation (2.11), yields the first-order ODE

i + a +V@)=E (2.13)
r) = .
2 2mr?
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[which is equivalent to (2.8)]. The solution of (2.13) is given by

:i:/dt —f\/ dr . (2.14)

2 E—V) 2
m[ B r_2mr2:|

Note that in order to obtain Equations (2.12) and (2.13) it was not necessary to write
down the Lagrange equations corresponding to the Lagrangian (2.9) explicitly, and
that the problem has been reduced to finding two indefinite integrals [the constants
of motion/ and E are one half of the constants necessary to have the general solution
of the equations of motion, the other two constants of motion correspond to the
integration constants arising from (2.14) and (2.12)]; if one is able to find r as a
function of ¢ by means of (2.14), then that expression can be substituted into (2.12)
to find 6 as a function of #. Unfortunately, in most cases, this is not possible in terms
of elementary functions.

Making use of the chain rule, the combination of Equations (2.12) and (2.14)
gives a first-order ODE for r as a function of 6, which leads to the equation of the
orbit, provided that [ # 0. One finds

1 e —vey - "
o~ " YT omr2 |

which leads to

ldr

j:/de =/ . (2.15)
rz\/Z !

2
m [E - V@) — 2mr2i|

This equation shows that, for a given potential, the properties of the orbit (e.g.,
shape, size) depend on the values of E and / (see the examples below). The solution
of (2.15) adds an integration constant, which defines the orientation of the orbit in
the plane. The arbitrariness of this integration constant is related to the rotational
invariance of the problem.

Equation (2.12) shows that when I = 0, the orbit is part of a straight line passing
through the center of force, & = const. (Note that (2.15) also makes sense if [ = 0
and gives 6 = const.)

The product érzé is the area swept by the line joining the origin with the particle
per unit of time, therefore, the conservation of the angular momentum (2.10) means
that the line joining the center of force with the particle sweeps area at a constant
rate. This behavior was discovered by Kepler in the case of the planetary motion and
is known as Kepler’s second law. As we have seen, this result holds for any central
force field.
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The Kepler Problem

It is not an exaggeration to say that the most important example of the central forces
is defined by the potential V (r) = —k/r, where k is a constant, which defines the so-
called Kepler problem. According to Newton’s law of gravitation, the gravitational
force produced by a static mass located at the origin corresponds to a potential of this
form. The orbit of a particle in this field of force is obtained from Equation (2.15),
assuming that / # 0, with the aid of the changes of variable,

1 k 1 22
u= . and u— 72 = l\/ZmE—i— mlz cos 3, (2.16)
we get
L9 — 6 ldu
—6p) = —
\/ZmE + 2mku — 12u?
. / [du
B 2 9.0
2 mk m-k
\/2mE—l (u—lz) + 2
= B, (2.17)

where 6y is an integration constant. Hence, substituting (2.17) into Equations (2.16),
we find that the equation of the orbit is

1 mk 2E[?
1+,/1+ cos(6 — 6p)
mk?

r 2
mk
= ) [14 ecos(® — 6p)]. (2.18)
where
2EI?
=./1 . 2.19
e \/ o (2.19)

Equation (2.18) corresponds to a conic with one of its foci at the origin and
eccentricity e. If E = 0, the eccentricity is equal to 1, and the orbit (2.18) is a
parabola; if E > 0, the eccentricity is greater than 1, and the orbit is a hyperbola;
finally, if £ < 0, the eccentricity is less than 1, and the orbit is an ellipse (in
particular, when £ = —mk? /2[2, we have ¢ = 0, which means that the orbit is
a circle).

The phase portrait representing the behavior of r as a function of ¢ is given by
the graph of [see Equation (2.13)]

mf’2+ 2 k
2 2mr?  r
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or, equivalently,
mi? _ o omk P mk 2 520
2 TF T op 2m<r 12> (2:20)
By contrast with the phase curves considered in the previous chapter, in the present
case each phase curve is characterized by two parameters, E and /, determined by
the initial conditions. Each phase curve in Figure 2.1 corresponds to a different value
of E, but all of them have a common nonzero value of /.

Restricting the attention to the case where the orbit is an ellipse (that is, e < 1
or, equivalently, £ < 0), the minimum value of r is equal to (1 — e)a, where a is
the major semiaxis of the ellipse (see Figure 2.2), which is attained at 8 = 6 [see
Equation (2.18)] hence (2.18) gives

mk
(1 —e)a e (I +e),

thatis, 1 — 2 = 12/(mka) or, making use of (2.19),

a=—__. 2.21)

~.

SN ,
S

Fig. 2.1 Phase portrait for the radial coordinate in the Kepler problem with a fixed nonzero value
of the angular momentum. There is a stable equilibrium point at (/2/mk, 0) with E = —mk? /21>
[see Equation (2.20)], which corresponds to a circular orbit. The closed phase curves correspond
to negative values of E and to motions where r is a periodic function of ¢. In fact, for £ < 0, r and
6 are periodic functions of ¢ with the same period (except in the case of circular orbits) and for that
reason the orbits are closed

Thus, while the eccentricity is determined by the values of E and ! [see Equa-
tion (2.19)], the major semiaxis of the ellipse is a function of E only.
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Fig. 2.2 In the case of the A
central potential V = —k/r,
when E < 0 the orbit is an
ellipse with the center of
force at one of its foci. The _ -
distance from the center of
the ellipse to a focus is ea,
where e is the eccentricity

and a is the major semiaxis of
the ellipse

\4

Equation (2.14), with V (r) = —k/r, can be rewritten as

mdr
=)= dmk 12
\/ZmE—l— me_ 5
r r

mr dr

B \/2}71Er2—|—2mkr—l2

/ mr dr
omi (4 2 mk? 1+2E12
"E\T T 2k 2E mk2
where 7y is an integration constant. Then, with the aid of (2.19) and (2.21), the

“mechanical” constants E and / can be eliminated from the last integral in favor of
the “geometrical” constants a and e,

n _\/ma rdr
=)= k f\/cﬂez—(r—a)2

and, with the change of variable »r — a = —ae cos ¥, we obtain

ma3
t—t():\/ p /(1 —ecosy)dy.

(Whereas the sign of dr/dt changes from negative to positive when the particle
passes through the pericenter —the point of the orbit closest to the center of force—
the sign of di/dr is always positive.)

Measuring the time in such a way that# = 0 when r passes through one minimum
value, we obtain the relation
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ma3 .
t:Jk(W—me. (2.22)

Since r = a(l — e cos ¥), the particle completes a revolution when ¥ is increased
by 27 and, therefore, from (2.22) it follows that the period, T, is given by

ma3
T:h/ (2.23)

and Equation (2.22) can be rewritten as

?izw—wmw (2.24)

Equation (2.23), relating the period with the semiaxis of the ellipse, is Kepler’s
third law while (2.24), relating the time with the so-called eccentric anomaly, V, is
Kepler’s equation.

The geometrical meaning of the eccentric anomaly will be presented in Sec-
tion 4.3.1, where the Kepler problem is studied again, making use of another
approach.

It would be desirable to invert (2.24), in order to find ¥ as a function of ¢, which
would allow us to express r as a function of ¢; however, if the eccentricity is different
from zero, finding v in terms of 7 is a highly complicated problem.

Exercise 2.1. When E = 0, the orbit is a parabola with its focus at the center of
force, but the angular momentum, /, can take any value. Show that the value of [ is
related to the minimum distance from the orbit to the center of force by

l2
’min =

2mk

and that the dependence of r on the time is given implicitly by

2 Im
+(t —19) = 3\/2k (r+27min)\/r_rmins

so that r = rpjp whent = 1.

Exercise 2.2. Analyze the case of hyperbolic orbits in the Kepler problem (that is
e > 1 or, equivalently, E > 0) and obtain the analog of the Kepler equation. (In
this case, the minimum value of r is (e — 1)a, where a is the major semiaxis of the
hyperbola.)

The Isotropic Harmonic Oscillator

Another important and well-known example of the central forces is that of the

isotropic harmonic oscillator, for which V(r) = éma)zrz, where  is a constant.
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(It turns out that the isotropic harmonic oscillator is deeply related to the Kepler
problem, in classical mechanics and in quantum mechanics; see, e.g., Section 4.3.1.)
As in the previous example, making use of Equation (2.13) we find the phase portrait
representing the behavior of r as a function of ¢, for a fixed nonzero value of / (see
Figure 2.3). The phase curves are the graphs in the r7-plane of

mr? N 2 N 1 5, E 2.25)
mwr-=E, .
2 2mr? 2
or, equivalently, of
mi? 2 /(1 mor\®
=F —|llo— - . (2.26)
2 2m \r |1

Assuming that [ # 0, the introduction of the variables v and yx given by

1 d / mE m2E? 5 5
vV = an v — = — m-w= COS X,
r2 l 2 X

allows us to rewrite the integral (2.15) as

r

12
m2w2 —

ld
+(0 — 6o) =/
3\/ZmE
r _
r2

4

SN :
N

Fig. 2.3 Phase portrait of the radial coordinate of the isotropic harmonic oscillator, for a fixed
nonzero value of the angular momentum. There is a stable equilibrium point at (4/|I|/mw, 0) with
E = |l|w [see Equation (2.26)], which corresponds to a circular orbit. All the phase curves are
closed and r is a periodic function of 7. All the orbits are ellipses centered at the origin and, for
that reason, if the orbit is not a circle, in each period r completes two cycles
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_ / ldv
2V2mEv — m2w? — 202

_ l/ dv
2 m2E? 2 2 / mE\?>
—mw” — |lv—
2 l
_ X
27
hence
1 mE lo\?
r2= 2 14+,/1— £ cos2(6 —6p) |, 2.27)

which is the equation of an ellipse centered at the origin. This equation shows that
the orbit is a circle if and only if E = |/|w.
In order to find the dependence of » on 7, with the aid of the changes of variable

) ; E 2R
u=r an u— = - cos B,
m2ot  m2e?

dr
Tt —1) =
2E L, 2
\/m T T 2
_ / rdr
2Er? 2
w r
mw? m2w?
_ 1 / du
20 E? 2 E \?
m2ot  m2e? \" T me?
_ B
20’

where 1y is an integration constant, hence
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E %
P= 1+\/1—<2’) cos 20(t — 1) | , (2.28)

maw

which shows that r is a periodic function of the time with period 7 /w. Taking into
account that in each period the value of r passes through its maximum and minimum
values twice, the period of the motion is 27 /w. By contrast with the Kepler problem,
where the period depends on the length of the major semiaxis of the ellipse (when
e < 1), in this case the period is constant.

The equations of motion of an isotropic harmonic oscillator can be readily solved
in Cartesian coordinates. Indeed, in these coordinates the standard Lagrangian is
given by

L= m@G*+ %) — tmo? (x> + y?) (2.29)
and the Lagrange equations yield ¥ = —w?x and j = —w?y. The general solution
of these equations is

X = c] coswt + ¢ sin wt, y = c¢3coswt + ¢4 sin wt,

where c1, ¢, ¢3, ¢4 are arbitrary constants, which is the composition of two simple
harmonic motions with period 27 /w. One can verify directly, by eliminating ¢ from
these two equations, that the orbit is an ellipse centered at the origin.

The Lagrangian

L=} mG?+ 3% = m(o’x* + wy?),

with w; # w> corresponds to an anisotropic harmonic oscillator; the solution of the
equations of motion is

X =cjcoswit + ¢y sinwit, Y = €30S wat + ¢4 Sin wyt,

where c1, ¢2, ¢3, ¢4 are arbitrary constants. Only when w; /w, is a rational number,
the orbit is closed and is a Lissajous figure.

The Repulsive Isotropic Harmonic Oscillator

Another simple example, closely related to the isotropic harmonic oscillator, is the
so-called “repulsive isotropic harmonic oscillator,” which corresponds to a particle
subject to a radial repulsive force whose magnitude is proportional to the distance
to the center of force. Hence, this example is defined by a potential of the form
Vi) =— émw2r2, where o is a real constant. Assuming that/ # 0, making use of
Equation (2.15) and the changes of variable

1 d / mE m2E? 4 m2e?
v = an v — = m=w= cos ¥,
r2 l 2 X
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we find that the orbits are given

ldr
:E(9—90)=/
r3\/2mE PR 2
}’2 }’4
_ / ldv
2V2mEv + m2w? — 202
_ l/ dv
2 m2E? 2 2 mE\?>
2 +m-w-—(lv— /
_ X
27
hence
1 mE lo\?
2= p 14,1+ E cos2(6 —0o) |, (2.30)

which is the equation of a hyperbola centered at the origin [cf. Equation (2.27)].

2.2 Further Examples

In this section we shall consider some few additional examples of the application of
the Lagrangian formulation to classical mechanics.

Example 2.3 (The spherical pendulum). Another common example is that of a
spherical pendulum. This mechanical system consists of a point mass, m, attached to
a weightless rod of constant length, /, which hangs from a fixed point (with respect
to an inertial frame) in a uniform gravitational field (see Figure 2.4). It is assumed
that the rod can rotate in all directions and therefore the system has two degrees of
freedom. The configuration can be specified by the spherical coordinates, 8, ¢ (see
Figure 2.4) and from (1.80) we find that the standard Lagrangian is given by

L= "2112((9'2 + sin? 6¢2) — mgl cos . 2.31)

Since L does not depend on ¢ and ¢, we have the constants of motion

oL 220
= . =ml°sin“0
D¢ 26 ¢
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(the z-component of the angular momentum) and the Jacobi integral
5 12(6? + sin’ 0(;52) + mgl cos 6

(the total energy). Denoting by L3 and E, respectively, the values of these constants
of motion, we obtain the first-order ODE

E="1 <é2 + Ls? ) + mgl cos 6 (2.32)
= m . .
2 m214 sin? 6 &

which gives 6 as a function of 7. The change of variable u = cos 6 leads to

du

1
— 2 2 2
& = :I:mlz\/Zml (E —mglu)(1 —u=) — L3-.

Thus, the solution can be expressed in terms of elliptic functions.

Fig. 2.4 One end of the rod
is attached to the point with
coordinates (0, 0, [), where [
is the length of the rod. At the
other end there is a particle of (0,0,1) ¢ 0
mass m subject to a uniform i
gravitational field directed
along the negative z-axis

<
.,
’,
b= = = = = = = == -

In this example it is also interesting to find the Lagrangian in terms of another
set of coordinates. If the motion of the pendulum bob is restricted to the lower
hemisphere, the Cartesian coordinates, x, y, of the bob can be used as generalized
coordinates (see Figure 2.4). From x> + y> + (z — )> = [*>, we have 7 = [ —
V12 — x2 — y2 and, therefore, the standard Lagrangian takes the form

om[, o a4y’ \/2 )
L_2|:x +y +l2—x2—y2 —mg(l — /1> = x2 — y?),
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which is not simpler than the expression in spherical coordinates. However, if we
consider small oscillations about the stable equilibrium position x = y = X =
y =0,

m . X m
L= G457 - Zf @2 +y2), (2.33)

which is the Lagrangian of a two-dimensional isotropic harmonic oscillator [cf.
(2.29)]. Hence, for small oscillations, the projection on the xy-plane of the motion
of the pendulum’s bob is an ellipse with center at the origin (or a segment of a
straight line).

Example 2.4 (The Foucault pendulum). This example is closely related to the
previous one, but this time we shall consider a spherical pendulum hanging from
a fixed point relative to the earth, assuming that the earth is rotating with constant
angular velocity, w, about a fixed axis with respect to an inertial frame whose origin
is at the center of the earth. Making use of a set of Cartesian axes for this frame
such that the z-axis is the axis of the earth’s rotation, the position vector of a point
P, fixed with respect to the earth surface, can be expressed in the form

rp = R(sin 6y cos wti + sin Oy sin wtj + cos Gpk),

where R is the distance from the earth center to P and 6y is the (constant) angle
between the z-axis and the line going from the origin to P (see Figure 2.5). At =0,
the point P crosses the xz-plane. The unit vectors

6 = cos Op cos wti + cos B sin wrj — sin Gk, q§ = — sin wti 4 cos wtj

are tangent to the earth’s surface at P (both are orthogonal to rp, 6 is tangent to
the meridian passing through P, and ¢ is tangent to the parallel passing through P).
These two vectors together with

F = sin 6y cos wti + sin Oy sin wtj + cos ok

form an orthonormal basis.

Now we consider a spherical pendulum hanging from a point a distance # above
the point P. If / is the length of the pendulum, the position vector of the bob (with
respect to the inertial frame mentioned above) can be expressed in the form

r:(R+h—\/lz—x2—y2)f + x0 + vé. (2.34)

In this manner, x and y are Cartesian coordinates of the projection of the position
vector r on the tangent plane to the earth at P (see Figure 2.6). From the definitions
of the unit vectors 7, 6, and ¢ one readily obtains
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Fig. 2.5 The point P is fixed z
on the earth surface. We
assume that the earth is
rotating with a constant
angular velocity @ with
respect to the inertial frame
with axes x, y, z. The vectors
9, é, and 7 form an
orthonormal basis at the point
P on the surface of the earth.
The unit vectors § and q} are

tangent to the surface of the >y
earth; 6 points to the south
and ¢ points eastward ' ,
\ '
1
\ !
A} ’
AY ’
A} ’
X N .
7 in 6 O ¢ in 67 006
= wsin 6y, = wcos by, = —wsinfyr — w cos Hyb.
dr dr dr
(2.35)

Hence, the velocity of the pendulum bob (with respect to the inertial frame,
expressed in terms of the orthonormal basis formed by 6, ¢, and 7) is

F= (X — wycosby)d + |:(R+h - \/12 —x2 - y2)wsin00+)'1+a)x00390:|¢3

XX+ yy

—wysinfy | 7.
\/12 —x2—y2

Fig. 2.6 The unit vectors 9,
<13, and 7 form an orthonormal 4
basis at the point P of the

earth surface. The pendulum

is hanging from a point at a

height i above P "

>

6

In order to simplify the calculations and the analysis of the solution of the
equations of motion, we shall consider small oscillations (i.e., |x|, |y| <« ) and
we shall keep only the terms at most of first degree in w, taking into account that the
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period of rotation of the earth is relatively long in comparison with the oscillation
period of the pendulum. In this manner one obtains the approximate expression for
the kinetic energy of the pendulum bob

T:Z[#+y2+hmm%uy—ﬁo+ﬂR+h—mmm%ﬂ
One can readily verify that the last term, being a constant factor times y, does not
contribute in the Lagrange equations and we can omit it (see Proposition 1.25).

The potential is that of a particle of mass m in a uniform gravitational field,
V =mg(h — /I — x> — y2), which, for small oscillations, is given approximately
by

1x2 4 y? mg 5, 2
V:mg[h—l(l—2 2 ):|=21(x +y°) +mg(h —1).

The last term, which is a constant, can also be omitted. Thus, with the approxima-
tions already indicated,

mir.n %) . . mg 2 2
L ~ 5 [x +y ~|—2wcos€o(xy—yx)]— 21 x4+ y9) (2.36)
[note that, when @ = 0, this expression duly reduces to (2.33)]. Then, the Lagrange

equations yield

. 8y

. . 8X .
X =2wcosfyy — y = —2wcosfy x — ;-

. (2.37)

This is a system of two homogeneous, second-order linear ODEs, with constant
coefficients and, therefore, can be easily solved. However, as we shall show, the
equations of motion and their solution are more easily identified finding their
expressions in a reference frame that rotates about 7. The coordinates x’, y’
measured with respect to Cartesian axes that rotate in the plane spanned by 6,
with a constant angular velocity 2 are related to the coordinates x, y by means of

x = x’cos 2t — y' sin 21, y = x"sin 21 + y cos 21.
Thus,

X = x'cos 2t — y'sin 2t — 2 (x' sin 2t + y’ cos 21),
y = x’sin 2t + ' cos 2t + £2(x" cos 2t — y'sin 21).

Substituting these expressions into (2.36) we find
b= ’721 [)&’2 +37% 422G — Vi) + 2267 + yP) + 20 c0s 60 (' — y/)%/)]

—Zf@a+y%. (2.38)
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Choosing
2 = —wcos by, (2.39)

the linear terms in the velocities appearing in (2.38) are eliminated and, consistently
with the approximations made above, we must neglect the term proportional to §22.
In this way we obtain

m./. . mg . n ”n

L ~ (x/Z /2) _ X ,

) + oy &Y
which is the Lagrangian for a spherical pendulum in the approximation of small
oscillations [cf. Equation (2.33)]. This means that if the pendulum is released at rest
off the vertical position with respect to the x’y’-frame, it will oscillate in a vertical
plane in this frame, but the plane of the oscillations will rotate with respect to the

xy-frame with the angular velocity (2.39). In this way, the Foucault pendulum gives
an experimental manner of demonstrating the rotation of the earth.

Exercise 2.5. Find the trajectory of a freely falling particle with respect to the
Cartesian axes defined by 0, ¢, 7, assuming that it is released from a height & above
the surface of the earth, neglecting the terms of degree two and higher in w.

2.3 The Lagrangians Corresponding to a Second-Order
Ordinary Differential Equation

As we shall show in this section, for any given second-order ODE there exists an
infinite number of Lagrangians that lead to that equation. We assume that

Gg=1r(q,q.1) (2.40)

is a given a second-order ODE, which may correspond to a mechanical system or
may have some other origin (the independent variable ¢ does not have to be the
time), and we want to find some function, L(q, ¢, t), such that

2L . 3L . 9*L oL

_ % _o 2.41
oo T Tagog Tlag2 T ag 24D

be equivalent to Equation (2.40) [see Equation (1.51)]. This means that we are
looking for a function L(g, g, t) that satisfies the second-order partial differential
equation (PDE)

2L oL
q*  9q

2L . 9%L 9
+4q .Jrf(q,q,t)8

. =0 (2.42)
atdq g dq

(recall that ¢, ¢, and ¢ are here independent variables).
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In order to solve (2.42), we take the partial derivative with respect to ¢ on both
sides of Equation (2.42). Letting

0L
M=, (2.43)
3g2
we have
oM oM . 0M af
,q,t) . =—M ", 2.44
o +qaq+f(qq )8q Y (2.44)

which is a first-order linear PDE for M (q, g, t). Equation (2.44) can be solved using
Lagrange’s method of characteristics (see, e.g., Sneddon [14, Sect. 2.4]) but, in some
simple cases, one can find a nontrivial solution by inspection. (Note that M = 0 is
a solution of Equation (2.44), but this trivial solution is not useful because, when
M = 0, Equation (2.41) is not a second-order ODE for ¢ ().)

Making use of (2.40), Equation (2.44) can also be written as

dM d
=-M f . (2.45)
dr g

From Equation (2.45) one readily sees that M is defined up to a multiplicative
constant of motion; that is, if M| and M, are two solutions of Equation (2.45), then
d(M1/M>)/dt = 0, which means that there are an infinite number of Lagrangians
for Equation (2.40) since M1/M; can be a trivial constant (i.e., a real number) or a
constant of motion (see Example 2.11, below).

Once we have a solution of Equation (2.44), from Equation (2.43) we can
find an expression for L, containing two indeterminate functions of g and ¢ only.
Substituting the expression for L thus obtained into Equation (2.42), the Lagrangian
is determined up to an arbitrary function of ¢ and ¢ only (see the examples below).

Example 2.6 (A damped harmonic oscillator). A first example is given by the
equation of motion

§+2yq+aw’q=0, (2.46)

which corresponds to a damped harmonic oscillator (here y and w are constants). In
this case, Equation (2.44) takes the form

aM oM (ri+ o )BM 5
— w = ,
o 94y vatea),, yM

and one can readily see that a solution of this equation is given by M = me*?,

where m 1s a constant, which is introduced in order to recover the standard
Lagrangian of a harmonic oscillator when y = 0. Then, using the definition of
M [Equation (2.43)] we obtain
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m
L=, 4% + g(q, 0§ + h(g, 1), (2.47)

where g(q, t) and h(q, t) are functions of ¢ and ¢ only. Substituting the expression
(2.47)into (2.42), with f(q,§,t) = —2y§ — w*q, we find that

0 oh
§_ —ma?qe?' =0
Jat  dq
or, equivalently,
ag ad

12202
atzaq(h+2queyt)’

which implies the existence of a function F (g, ¢) such that

IF 1 IF
_ ’ h 2 22yt _ .
£= ayg tymenate ot
Thus,
m 9F . OF
L(g,q,1) = e (g% — w?q? ; , 2.48
(g.4.0 = e (g wq)+aqq+at (2.48)

where F(q,t) is an arbitrary function, which can be taken equal to zero. (The last
two terms in (2.48) correspond to the ambiguity found in Proposition 1.25.) Note
that this Lagrangian does not have the standard form 7' — V.

Exercise 2.7. Show that the velocity-dependent force —2my ¢ — mw?q, considered
in Example 2.6, cannot be derived from a generalized potential.

Example 2.8 (The Emden—Fowler equation). The Emden—Fowler equation

L2 g
9+ da+4q =0, (2.49)

where k is a constant, arises in the study of the spherically symmetric equilibrium
configurations of a self-gravitating polytropic fluid; ¢ is proportional to the radial
distance and ¢ is related to the density of the fluid (this equation is also known as
the Lane—-Emden equation). In this case Equation (2.45) takes the form

dMm

2
=M,
dt t

hence, we can choose M = 12, i.e., 82L/8q'2 = ¢2, and therefore

L =3¢ +g(q. 0 +h(g. 1), (2.50)
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where g and & are some functions of two variables. Substituting this expression for
Land f(q,§,t) = —2§/t — q* into Equation (2.42) we obtain
0 oh
8 _ g2 ="
at aq

which can be written as

9 9 k+1t2
8 (h +1 ) .

ar g k41
Thus,
IF(q.1) g"t't>  9F(q.1)
g = s h + - 3
dq k+1 ot

where F(q,t) is an arbitrary function of two variables and, substituting into
Equation (2.50), we find the Lagrangian

L_t2q2 t2qk+1+aF‘+aF
T2 T kw1 Tag?T ar

Choosing F = 0, we have

2:2 2 k+1
t t

L="9_*7T 2.51)
2 k41

Exercise 2.9. Find a Lagrangian for the Poisson—Boltzmann equation

k
éj:_tq_aeqv

where k and a are constants restricted by the conditions k # O and a € {—1, 1}.

Exercise 2.10. Find a Lagrangian for the nonlinear equation

4G 4 91¢°% = 0.
(It may be noticed that this equation does not contain g and, therefore, it can be
readily transformed into a first-order ODE that can be easily solved.)

Example 2.11. We consider the simple problem of a particle subject to a frictional
force proportional to the velocity,

q=-2vq. (2.52)
where y is a constant [cf. Equation (2.46)]. Solving this linear equation one finds

that two functionally independent constants of motion are ge?”’ and ¢ + 2yq. (In
fact, the general solution of (2.52) is of the form g (¢) = ¢1 + cre" 2! where ¢; and
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¢ are two arbitrary constants, hence, ¢(t) = —2ycze’2V’. Expressing ¢ and ¢; in
terms of ¢ and ¢, one identifies the two constants of motion previously indicated.)
In this case, Equation (2.45) takes the form

dM

=2yM
dt 4

and a particular solution of this equation is M = me?"’. The general solution is

M = me*’'F(ge*”', g + 2yq), where F is an arbitrary function of two variables.
Choosing F(ge®!, ¢ 4+ 2yq) = 1/(¢e*’"), we obtain M = m/§ which leads to

L=m(gIng —q)+glg,t)g +h(q.1),

where g and & are some functions of two variables. Proceeding as in the previous
examples we find that the functions g and 4 can be chosen as g = 0 and h(q, t) =
—2myq. Thus,

L=m(GIng —q) —2myq. (2.53)

Exercise 2.12. Find the Lagrangians corresponding to the solution M = me*!
obtained in Example 2.11.

Example 2.13 (Rocket motion). In the study of systems of variable mass in ele-
mentary mechanics one finds that the equation of motion of a rocket in a uniform
gravitational field is given by

dinm
, 2.54
dr (2.54)

g=—g—u
where g is the gravity acceleration, m(¢) is the mass of the rocket at time ¢, and u is
the speed of the exhaust gases with respect to the rocket. Since the right-hand side
of (2.54) is a function of # only, Equation (2.45) is satisfied if M is a trivial constant,
e.g., M = 1. Then, from Equation (2.43) we see that L = éq'z +b(g,t)g+h(q,1),

where b(q, t) and h(q, t) are some functions of g and ¢ only.
dInm

Substituting the expression of L into (2.42), with f(g,q,1) = —g —u" ;" , we
obtain
ab dlnm  oh
—g—u — =0.
ot dr aq
A simple solution of this equation is given by b = O and h = —(g + udld“tm )g,

which leads to the Lagrangian

L 1., n dInm
= - u .
261 8 d q
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Taking into account that a second-order ODE requires the specification of a real-
valued function of three variables [the function f(q, ¢, t) appearing in (2.40)], it
is not surprising that any such equation can be expressed in terms of a Lagrangian,
which is also a real-valued function of three variables. (This is related to the fact
that when n = 1, any generalized force is derivable from a potential.) By contrast,
giving a system of n second-order ODEs, with n > 1, requires the specification of n
real-valued functions of 2n + 1 variables, while a Lagrangian is a single real-valued
function of 2n + 1 variables, and therefore we can see that a system of ODEs has to
be highly special in order to be expressible in terms a Lagrangian. Thus, for systems
of two or more second-order ODEs, a Lagrangian may not exist.

2.4 Hamilton’s Principle

As we shall show in this section, one finds systems of equations expressed in the
form of the Lagrange equations in a wide class of problems where one is looking
for curves that minimize certain integrals.

As we have shown in Chapter 1, for a mechanical system with holonomic
constraints, each set of generalized coordinates, (g1, g2, ...,qn), constitutes a
coordinate system of the configuration space of the mechanical system. Adding the
time, 7, to the set of coordinates (g1, g2, - . ., gn), we obtain a system of coordinates
(q1,92, - -, qn, t) of the so-called extended configuration space. Each particular
solution of the equations of motion is given by a curve in the extended configuration
space. For instance, in the Kepler problem, discussed in Section 2.1, the solution of
the equations of motion with E < 0, was found to be

cosy —e ma3 )
r=a(l—ecosy), 6= 0p+arccos , t= (Y —esin ),
1 —ecosy k

parameterized by the eccentric anomaly ¥. In most cases, the time itself is used as
the parameter of the curve; for instance, in the case of the two-dimensional isotropic
harmonic oscillator, each solution of the equations of motion has the form

X = c] coswt + ¢p sin wt, y = c3coswt + ¢4 sinwt, t=t.

The Hamilton principle establishes that the curves described by a mechanical
system in the extended configuration space are distinguished by the fact that the
integral

141
f L(gi,qi,t)dt
0]

has a minimum (or stationary) value on the curve described by the system, compared
with the curves in the extended configuration space with the same endpoints.

Let L(gi,qi,t), i = 1,2,...,n, be a given real-valued function of 2n + 1
variables (which does not need to be related to a mechanical system, as in some



66 2 Some Applications of the Lagrangian Formalism

of the examples considered in the preceding section), and let C be a curve, given
by C(t) = (qi(t), t), where the g; (¢) are real-valued functions of 7, defined in some
interval [#o, #1]. Starting from C, we define a second curve,

C(r) = (qi(1), dgi(t)/dt, 1), (2.55)
so that the line integral
t
I1(C) = / Ldt = / l L(qi(t),dq;(z)/dt, t)dt
C In)

is some real number that depends on L and on the curve C. If ¢ is expressed as a
function of some parameter, 7, t = #(7), then the line integral / (C) is given by

(o dai@yde Y di(o)
1(C) _/TO L(q,(t), dr (2)/de ,l‘(l’)) dr dr, (2.56)

where 19 and 77 are defined by 7o = #(tp) and t1 = #(71).

An illustrative example is given by L(gq,q,t) = \/ 1+ ¢2. In this case, the
integral (2.56) is

dq/dt T A\ (dg\?
1(C) = f\/1+ dt/d drdt_/m \/<dr> +<dr) dr  (2.57)

and represents the (Euclidean) length of the curve C(r) = (q(1), (7)) in the
qt-plane, between the points Pp = (g(79), t(10)) and P; = (g(t1),t(71)) (see

Py P

Fig. 2.7 The length of a curve C(t) = (q(7), (7)) in the g¢-plane is given by the integral (2.57).
The entire curve shown cannot be parameterized by g or by ¢ because there exist values of ¢ for
which there are two different values of ¢, and vice versa (in other words, the curve shown here is
not the graph of a function ¢ = ¢ (), nor the graph of a function r = (g))
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Figure 2.7). If the curve can be parameterized by ¢ or ¢, the integral (2.57) reduces
to the well-known formulas

f dg 2 q1 dr\?2
/ 14+ ( ) dt or / 1+ ( ) dqg,
0 dr 0 dg
respectively, with 1, t1, qo, and g1 defined by Py = (qo, o) and P1 = (q1, #1).
The use of a parameter 7 in place of ¢ is especially important when we want to

consider simultaneously several curves whose projections on the 7-axis are not the
same interval (see Figure 2.8).

Fig. 2.8 The figure shows t
several curves belonging to a
one-parameter family of
curves. The projections of
these curves on the 7-axis
need not be a single interval,
but these curves can be
parameterized by a parameter,
7, that in all cases takes
values in the same interval

[0, 1]

For reasons that will become clear later, now we shall consider not a single curve
but a one-parameter family of curves, labeled by a real parameter s, which can take
values in some neighborhood of zero,

COw) = ¢, 1.

The domain of these curves need not be the same interval, as shown in Figure 2.8;
however, we can make use of a parameter 7 such that all the curves C®) correspond
to the same interval [7p, 71]. In this way we are able to calculate the derivative with
respect to s, at s = 0, of the real-valued function 7 (C®)). Employing the chain rule,
(2.56), and the definitions

9g;"”(¥) b= 10O
s ’ T 3s ’
s=0 s=0

ni(r) = (2.58)
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we obtain
d
1(c®)
ds s=0
()
d (o ‘ dg¥(v)/dz dr®
=4 / L{¢® ), q;v)( 9T 00 dr
s Jg dr®)(r)/dr dr o

A dn;  dg” de

:/Tl L i+ 0L dr dr  dr dr , oL, | di© —i—Ldé dr

0 agi ' 04 (dt© /dr)? at dr dr ’
_/fl aL dr© oL dn,-_dqfo)/dr de\ oL dt<°>§+Lds d. (2.59)
- w© |9gi dt i 9g; \dr dt©@/dr dr ot dr dr T

with L and its partial derivatives being evaluated on the curve C(®. Integrating by
parts the terms containing derivatives of £ and n;, we obtain the basic formula

/fl L dt©®  d oL dg” /dfg ;
= — L T
5=0 v \9qi dt dr 9¢g; i dr© /dc
I KL 2 dg” jdv : i
3G " 3G i /de

As a first application of Equation (2.60) we shall assume that the integral I (C)
has an extreme value (a maximum or a minimum) at the curve C(?, compared with
all the curves with the same endpoints (see Figure 2.9). From the definitions (2.58)
we see that if all the curves C'*) have the same endpoints then

0 =&(w0) = ni(r0) = &(1) = ni(71). (2.61)

d
1(C®
ds (Cc*)

(2.60)

70

Hence, from (2.60) we have

0= /TI oL _doL) () d%(o)/d’g dr
) \og ar " drag J\T T ar©)ac :
Since, apart from the conditions (2.61), the functions & and n; are arbitrary, it
follows that

d oL 9L dt©
dr 8¢, dq; dr

(i = 1,2,...,n) on the curve C ©. In particular, if the curve C © can be
parameterized by ¢, the last equations reduce to
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doL 9L
. — =0, (2.62)

dr 9g;  9g;

which have the form of the Lagrange equations (1.49). In this context, not

necessarily related to classical mechanics, Equations (2.62) are known as the Euler—

Lagrange equations. Another application of (2.60) will be given in Section 2.5.

Fig. 2.9 The curves C /
have the same endpoints for

all values of s. The integral

I1(C) has an extreme value on

the curve C©

The derivative d/ (C®))/ds|s—¢ may be equal to zero even if 1(C®)) does not
have an extreme value at s = 0. We say that [ (C®) has a stationary value at
s = 0if dI(C%)/ds|s—o = 0. Thus, we conclude that /(C*)) has a stationary
value at s = 0 if and only if the curve C© satisfies the Euler—Lagrange equations.
In particular, given two points of the extended configuration space, the solution of
the Lagrange equations (1.49) passing through these points is the curve for which
the integral /(C) has a stationary value, compared with the curves passing through
the given points. This result is known as Hamilton’s principle.

Example 2.14 (Geodesic curves). A typical example of the application of the
Euler-Lagrange equations arises in the search of the shortest curve joining two given
points. Such curves are known as geodesics. The length of a curve in a surface of
the Euclidean space or, more generally, in a Riemannian manifold, is locally given

by an integral of the form
dg; dg; iq
t, 2.63
/ \/ 87 4r dr (2.63)

where ¢; (tp) and g;(#1) are the coordinates of the endpoints of the curve, the g;;
are some real-valued functions of the coordinates g; (with expressions that depend
on the surface or manifold of interest and on the coordinates), with g;; = g;; and
det(g;j) # O [see, e.g., Equation (2.57)].

According to the results derived above, the geodesics are determined by the
Euler-Lagrange equations for
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dg; dg;
L= / gij d‘i’ dtf . (2.64)

Substituting this function into the Euler-Lagrange equations (2.62), making use
of the symmetry of g;; in its two indices (changing the names of the indices as
necessary, in order to avoid that a summation index appears more than twice in a
term) we obtain

d

1 17298k . .
T 44k

0 I:(grsq.rqv)fl/2gijq/'] — 2(grsq.rq‘?) 34;

1 . . \=3/2 L. 08kl . . . .
= —_ (grs4rds) / 2gkiqkgr + 8 dmqkq1 ) 8ijq;
2 aCIm

.12 . o 9gij. . 1ogj. .
$Grds i P — j 2.65
+ (8rsGrds) (gqu g K4 g g 4 (2.65)
(i = 1,2,...,n). The n ODEs (2.65) are not independent since multiplying the
right-hand side of (2.65) by g; we obtain

1 . —1)2 L. 08k . ..
— _(8rsdras) / <2gkzq1<qz~l- 8 quIk%)
2 qm

.o N—1)2 T 10gjk. . .
+ (grsdrgs) " <gijc1iqj+ aql;: Gidrdj = aqj,» QiCIjCIk),

which is identically equal to zero. This result is related to the fact that the integral
(2.63) is invariant under changes of parameter (as it should, since the length of a
curve must not depend on the choice of the parametrization of the curve). In order
to avoid this inconvenience, it is customary to impose the condition

dg; dg;

8ij 4 dr = const. (2.66)

on the parameter of the geodesics. Then, Equations (2.65) reduce to

. 0gij. . 10gj. .
iidj P — iqr = 0. 2.67
8ijqj + oy K90 ™ 5 g, 119k (2.67)
The constant on the right-hand side of (2.66) is equal to 1 if and only if 7 is the
arclength of the curve.
We can readily verify that the so-called geodesic equations, (2.67), follow from
any Lagrangian of the form

L = 5(gijdid;)", (2.68)
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where p is a real constant different from O and 1/2 (the constant factor 1/2 is
introduced on the right-hand side of (2.68) for convenience). Indeed, following the
same steps as in the case of the Lagrangian (2.64), we obtain

N ) e 08kl . . . .
0= p(p — (grsGrgs)” (23k1qqu + % Qkaq1> 8ijqj
m

N . 0gij. . 10gjk . .

) ) e A . 2.69

+ p(8rsdrds) <guq] T ag 9 T gy I (2.69)
(i =1,2,...,n). Multiplying both sides of Equations (2.69) by ¢; we have

0= p(p = D(grsdrds)"" (2gk,q'kq'l + gfl“ q'mq'kq'z) :
m

Since we are assuming that p is different from O and 1/2, it follows that the
expression inside the last parenthesis must be equal to zero, which is equivalent to
Equation (2.66). Hence, Equations (2.69) reduce to the geodesic equations (2.67).

Summarizing, if one uses the Lagrangian (2.64), then it is convenient to impose
the condition (2.66) on the parameter of the geodesics and these curves are
determined by the system of ODEs (2.67). However, if one employs the Lagrangian
(2.68), with p # é, the Euler-Lagrange equations lead directly to (2.66) and (2.67).

Exercise 2.15. Show that Equation (2.66) follows from (2.67) and that Equa-
tion (2.66) expresses the conservation of the Jacobi integral for the Lagrangian
(2.68).

Example 2.16 (Geodesics of the Poincaré half-plane). An example frequently con-
sidered in differential geometry is that of the so-called Poincaré half-plane, which is
interesting because it provides a model of a non-Euclidean geometry. We start with
the set of points of the Cartesian plane with y > 0, defining the length of a curve by

means of
3] v2 o2
/ \/x +2y dr.
) y

(Thatis, g11 = g»» = y‘z, g12 = g21 = 0.) According to the discussion above, the
geodesics corresponding to this definition of length can be obtained, e.g., from the
Euler-Lagrange equations applied to the Lagrangian

1'2 «2
L= %1
2 y2

Since this Lagrangian does not depend on x, the momentum conjugate to x,

AL %
— (2.70)
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is conserved. Denoting by b the value of this constant, Equation (2.70) shows that
if b # 0, then x can be used as a parameter of the curve, in place of ¢, and, by the
chain rule,

. dydx ,dy
= =b .
YT avdr 77 dx
Furthermore,
1 xZ + )')2
2 y2

is also a conserved quantity (see Equation (2.66) and Exercise 2.15). Denoting by
E the value of this constant, we have

d 2
26y = i 452 = (b)) + (byzdi}) :

which leads to
d
+ / dx = / 2y Y
\/hg - y2

and, therefore, (x —a)2 + y2 =2E/ b2, where a is an integration constant. In the case
where b = 0, x is a constant. Thus, we conclude that the geodesics of the Poincaré
half-plane are semicircles centered at points of the x-axis and lines parallel to the y-
axis. (Note that it was not necessary to write down, and integrate, the second-order
equations (2.67).)

As we shall see in Section 4.3, the orbits of certain mechanical systems are the
geodesics of the configuration space, if the length of a curve is appropriately defined.

Exercise 2.17. Show that the geodesics of a sphere are arcs of great circles, that is,
intersections of the sphere with planes passing through the center of the sphere.

Covariance of the Lagrange Equations Under Coordinate Transformations in
the Extended Configuration Space

As an application of the Hamilton principle, we shall show that an arbitrary
coordinate transformation in the extended configuration space, ¢; = ¢/(q;,1),
t" =1'(q;, 1), leaves the form of the Lagrange equations invariant, provided that the
Lagrangian is appropriately transformed. Indeed, under such a coordinate change,
the integral I (C) takes the form

1 dgi(q’;, 1) /dr’ dr
1(C) = Llqgi(q:, 1), J Jt(ghf dr’, 2.71
©) /to (q,(q, ) dr (g, 1)/ (g5, 1) dr’ (2.71)

where

dg;  9q; 9q; 49 d ot 9t dq’
qi — qi T Qi . = + 7 I 2.72)
e~ ot dq) dt’ de' ot ag) dr’
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Since the value of the integral I (C) expressed in the form (2.71) is the same as that
given by (2.56), the Euler—Lagrange equations (2.62) are equivalent to

d a dt 0 dt
L\ L -, \L =0, (2.73)
dr 9g; \ dv dg; \ dr

where it is understood that the Lagrangian, L, is expressed in terms of qi’ , q'l.’ and
t" as in Equation (2.71). In particular, if ¢ = r, we recover the result proved in
Section 1.2 [see Equation (1.75)].

This means that if we write the ODEs obtained from the Lagrangian L(g;, ¢;, t)
in terms of a new set of variables, qlf , 1’ (with the only condition that the trans-
formation g/ = ¢/(q;,1), t'" = t'(q;, 1), be invertible and differentiable), then the
resulting equations are equivalent to the Euler—Lagrange equations corresponding
to the Lagrangian L(dr/dt’), expressed in terms of ¢/, dg//dt’,t'. As in the case
of a change of variable in an integral, what is desirable is to find a coordinate
transformation leading to a simpler problem (see Example 2.18, below).

Example 2.18. A Lagrangian for the Poisson—-Boltzmann equation (see Exer-
cise 2.9), with k = 1, is given by

L= ;qz —aref.
We shall study the effect on this Lagrangian of the coordinate transformation
/=129, g =Int,
or, equivalently,
t=el g=Int —2q.

From the last equations we find

dg d(Int' —2q") _ dr'/t’ —2dq’ 1= 2¢'dq’ /dt’

dr ded’ e?'dg’ ted'dq’/dr’
and
dt q/ dq/
= s
dr dr

hence, the Lagrangian for the new variables is

2 t/2e2‘1’(dq’/dt/)2 a e2q

dr |:eq’ (1 —2t'dq’/dt')> s j|e‘1/ d¢/ 11— 2t’dq//dt’)2_ ,dq’
dr’ ' B

- ' ~ 2 2dgryde U ar

which is a function of ¢’ and dg’/d¢’ only (that is, ¢’ is ignorable).
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2.5 Variational Symmetries

One of the advantages of expressing a system of ODEs in the form of the Lagrange
equations is that the Lagrangian contains all the information that characterizes the
system from the dynamical point of view. As we have seen in the foregoing sections,
with the aid of the Lagrangian, in some cases, one can find constants of motion,
which are very useful in the solution of the equations of motion.

Some constants of motion can be obtained by inspection when the Lagrangian
does not depend on the time or has an ignorable coordinate. However, as we have
seen in Section 1.2, the existence of an ignorable coordinate is not a property of
the mechanical system alone, but it strongly depends on the coordinate system
employed [compare, e.g., (1.79) with (1.80) or see Example 2.18]. As we shall see
in this section, one can find certain constants of motion looking for one-parameter
families of coordinate transformations that leave invariant the Lagrangian, in a sense
to be defined below. One advantage of this approach is that the existence of these
symmetries does not depend on the coordinate system chosen, but it is a property
of the Lagrangian.

A first, natural, definition of invariance is this: we say that a one-parameter family
of coordinate transformations (g;, t) (qi(s), 1)y leaves (strictly) invariant the
Lagrangian L if 1(C) does not depend on s. Then dI(C*®)/ds = 0 and, in
particular, d7(C®))/ds|y—o = 0, so that, from Equation (2.60) we find that, if the
curve C(© satisfies the Euler—Lagrange equations, then

L aL dg©/dr
i+ (L — .. ‘110 / &
94gi 9g; dr©/dr
for all values of 79 and 71, which means that

aL (L aL dq{o)/dz)

71

=0,

70

ag; " T 3¢; dt© /de
is a constant of motion, with L and its partial derivatives evaluated as in (2.59).

Howeyver, it is convenient to consider a less restrictive definition of invariance.
A one-parameter family of coordinate transformations (g;, t) +— (ql.(s), @) is a
variational symmetry of L if there exists a function G(g;, t) such that
71

=G

s=0

d
1(CY) (2.74)
ds

70

Then, from (2.60), we find that

0)
aL oL dg. ' /dt
~ L - y -G 2.75
.'n,+( 8cjidt(0)/dr>$ 2.75)



2.5 Variational Symmetries 75

is a constant of motion. The functions 7; and £ are determined by the condition

. _ L =% e
dg; dt G 9g; \ dr  dt©®/dr dr S+ dr (2.76)

aL dr© oL (dy  dg”/drde\ AL dt© ¢ dG
ot drt dr

which follows from (2.59) and (2.74) written in the form

ndG
= / dr.
s=0 70 dr

When ¢ is used as the parameter, it follows from (2.75) (suppressing the superscript
(0) from ql.(o) and 1) that

d
4 1€

JdL oL .
mi+(L— ¢ )E-G 2.77)
0qi 0qi

is a constant of motion, with the functions n; and & determined by [see (2.76)]

oL oL (dn; . dg\ 9L_ d& dG
: s L% =Y, 2.78
0q: " T 9 ( @ Na )Tt T e T (2.78)

The n+1 functions, n; and &, of the n+1 variables g; and ¢, are determined by the
single PDE (2.76) (or Equation (2.78), if the curve is parameterized by ¢). The fact
that this equation must hold for all values of ¢;, ¢;, and ¢, and that its dependence
on the ¢g; is given explicitly once a Lagrangian is chosen, leads to a set of PDEs that
allows us to find n; and & (see Examples 2.19 and 2.20, below). It may be remarked
that in order to find the constants of motion associated with a variational symmetry
we only have to know the functions & and 5; [see Equation (2.77)].

In most textbooks and articles, when the relationship between constants of
motion and symmetries is presented, only “infinitesimal transformations” are
considered as if they were the only ones that there exist, or that are relevant (an
infinitesimal transformation is a transformation that “infinitesimally” differs from
the identity). Actually, a transformation can be a symmetry even if it is not “close”
to the identity (see, e.g., Example 2.19, below). Another common feature of the
standard textbooks is that the examples given there are limited to translations,
rotations, and Galilean transformations, when the symmetries are usually much
more involved and interesting (see, e.g., Equations (2.84), below).

The “infinitesimal transformations” are equivalent to the functions n; and &,
which determine the constants of motion associated with the symmetry and, for
this reason, it is enough to find the “infinitesimal transformations.”

We can readily see that the results of this section reduce to those presented
in Section 1.2. For instance, when the coordinate g; (for a particular value k) is
ignorable, then Equation (2.78) is satisfied with ny = 1, & = 0, n; = 0 for all
i # k,and G = 0. According to (2.77), the conserved quantity associated with this
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symmetry is dL/dq; (the momentum conjugate to gy ). Similarly, Equation (2.78)
reduces to Equation (1.83) if ny = 1, & = 0, n; = 0 for all i # k, and (2.77) shows
that the corresponding conserved quantity is px — G, as concluded in Section 1.2.

If 9L/dt = 0, then Equation (2.78) is satisfied with n; = 0,& =1 and G = 0.
Equation (2.77) shows that L — (dL/dq;)q; is conserved, and this is, except for a
minus sign, the Jacobi integral found in Equation (1.93).

Example 2.19 (Variational symmetries of a Lagrangian of the Poisson—Boltzmann
equation). The Poisson—Boltzmann equation

k
i N el
q 44
where k and a are constants (with k # 0), can be obtained from the Lagrangian

L= Lihq? — arkes
(see Exercise 2.9). In order to find the variational symmetries of this Lagrangian,
we substitute it into Equation (2.78), which gives

.({on .dn .0& ,0&
k.g k 2
<3f dq ot dq

] _ . d .0 G .0G
(1 ka4 (k- arten) (0 a0 ) = 0T a0

Since the unknown functions, 1, £, and G, depend on ¢g and ¢ only, the last equation
is identically satisfied if and only if the corresponding coefficients of the powers of
q on both sides of the equation coincide. This leads to the system of equations

1,0
—zkgzo, (2.79)
2 9q
on  tFoE k.
k k—1
t — t =0, 2.80
g 2 Tol 8 (2.80)
g _ 96 2.81)
ot aq
9 9G
—ﬂﬁ&n—kmk4&g—aﬁ&8§= 2 (2.82)

Equation (2.79) implies that £ = A(¢), where A is a real-valued function of a
single variable. Substituting this result into Equation (2.80) we obtain

1dA kA
]7:

- B(
2 dr 2t>Q+ ®.
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where B is another real-valued function of one variable. Then, from Equa-
tions (2.81) and (2.82) we find

’

3G 1, (d>A kdA kA ,dB
= 1 — + t
dg 2 2 rdt f2 dr

oG ket 1dA kA +B+dA+kA
= — c — .
ot a 2 dt 2t q dt t

Making use of these equations we calculate the mixed second partial derivatives
of G

G 4 (tdA ksz+de+k2A A d tkdB
tdg 248 2 de Trar 22 "2)9T g dr

and

3’G fotgr [(14A KA o 30dA kA
=—a - .
g0t 2dt 2 )9 T2 T 2

Since these functions must coincide for all values of g, we obtain the conditions

tdA kA 3tdA kA d /,dB
— =0, + +1tB =0, t =0,
2 dt 2 2 dt 2 dr dr
among others. The first two of these equations give A = ¢j¥, where ¢ is an
arbitrary constant, and B = —2¢1kt*=!, which substituted into the third equation

leads to k = 1 (excluding the trivial solution ¢; = 0). This means that, for k # 1,
the Lagrangian under consideration does not possess variational symmetries.

Thus, in the case k = 1, A(t) = cit, B(t) = —2c1, and no further conditions
are obtained from the equality of the mixed partial derivatives of G. In fact, we find
that G is a trivial constant, which can be chosen equal to zero. Hence, the functions
& and n are given by

& =cit, n = —2ci, (2.83)

and substituting these expressions and that of the Lagrangian into Equation (2.77),
we find that the constant of motion associated with the variational symmetry is

1G(=2cy) + (1% — ate? —1gq)cit = —c1 (2t + at’e? + 112G7).

On the other hand, the knowledge of the functions £ and 5 allows us, in principle
at least, to find a family of coordinate transformations that constitute a variational

symmetry of the Lagrangian. Noting first that from the definitions (2.58) and
Equations (2.83) we have
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9t ®

dq
ds ’

= Clt(s)
5s=0 as

s=0

= _2615

s=0

we impose the condition that these equations hold for all s, i.e., we assume that

ar®) , dqg®
= Clt(é) a

) = _2617
as as

then, the solution of these equations is the one-parameter family of coordinate
transformations

t(k&) — eclst(o), q(‘&) — q 2C1S (284)

which is defined for all s € R. In fact, a direct substitution shows that 7 (C*)) =
1(CD), for all s € R. (That is, we have a strict symmetry.)

As we have seen in Example 2.19, there exist Lagrangians that do not possess
(nontrivial) variational symmetries (note that Equations (2.76) and (2.78) always
have the trivial solution ; = 0, £ = 0). On the other hand, finding the variational
symmetries of a Lagrangian with two or more degrees of freedom can become very
cumbersome, since the number of equations to solve grows rapidly as the number
of degrees of freedom increases.

Two different Lagrangians leading to a system of ODEs need not have the
same variational symmetries (or even the same number of variational symmetries).
However, if two Lagrangians are related as in Equation (1.103), then they possess
the same variational symmetries.

Example 2.20 (Damped harmonic oscillator). As we have seen in Example 2.6, the

Lagrangian

L — ”2162;/;(42 _wzqz)

leads to the equation of motion of a damped harmonic oscillator. Substituting the
Lagrangian into Equation (2.78) one obtains the PDE

an .dn . 9E ., 0%
me2V! o2 _ _ 52
w’qn +me <8t T, Ty T Ty,
96 9E\ G . 3G
+mye?! (G — )5+ zyt(‘lz_")zqz)<8t +q8q) ot +q8q'

Equating the coefficients of the various powers of ¢ on both sides of the last equation
the following set of equations is obtained
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_ meZyt 0& _

0, 2.85
2 aq ( )
an  10¢
2t - =0 2.86
me <8q zat—l—)fé) , (2.86)
2
me2vt (01 _ @7 208 _ 96 (2.87)
dt 27 dq aq
2
oy 2 22 w” ,0§ =8G 288
me (qu—l—ywqé—i—zqat) ot " (2.88)

Equation (2.85) implies that £ = A(t), where A(¢) is a function of ¢ only and
Equation (2.86) gives

— (1A + B(1)

where B(t) is a function of ¢ only. Hence, from Equations (2.87) and (2.88) it
follows that

G 5 1d?2A  dA dB G dA
= vt — J— 2yt 2 2 B
dq e [<2dt2 J/dt>q+dt}’ ot me e (q a T4 )

and the equality of the mixed second partial derivatives of G leads to the condition

5,204 o dB+1d3A +d23 02094 g
— = 2w — 0B,
Va4 T2an 1T T ar
which has to be satisfied for all values of g. Hence,
d3A+4( 2% B 0B e o
- =0, o°B =0.
dr3 " ar dr? Y ar

The general solutions of these equations contain three arbitrary constants in the case
of A(r) and two constants in the case of B(¢), which means that this Lagrangian
possesses five one-parameter families of variational symmetries. The form of these
general solutions depends on the value of the difference w”> — y2. However, a
particular nontrivial solution is given by A(¢) = 1, B(t) = 0. Then § = 1,
n = —yq, and G is a constant that can be taken equal to zero. Substituting these
expressions into (2.77) one finds the constant of motion

mezy’q(—yq)Jr[ ezy’(qz—wzqz)—mezy’qq] =—e?! (2

5 622+’121w2612+myq51)-
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As in Example 2.19, with the aid of the functions £ and n we can find a one-
parameter family of variational symmetries of the Lagrangian. Substituting £ = 1
and n = —yq into (2.58) we obtain

BTASY
as

ag®
as

L ®
va 5=0"

s=0 s=0

and we impose the condition that these equations hold for all s, that is

9t®) _ aq(S) _ ©)
as s Ya-,
with the solution
(O =10 4 g = @S

Exercise 2.21. Find the variational symmetries of the Lagrangian

9 15 9
L= g3 t
24t 1

and find the associated constants of motion. Are they functionally independent?
(This Lagrangian leads to the ODE considered in Exercise 2.10.)

Exercise 2.22. Find the variational symmetries of the Lagrangian
L = %m(r'2 + w?r? sin’ 0) — mgr cosb,

where m, w, g, and 6 are constants [see Equation (1.54)]. Show that there are
two one-parameter families of variational symmetries with & = 0 and that the
corresponding constants of motion are those given by Equation (1.20).

It can be shown that for a given Lagrangian, the existence of a variational
symmetry is equivalent to the existence of coordinates in the extended configuration
space such that one of the coordinates is ignorable [in the sense of Equation (1.83)]
[20].



Chapter 3 )
Rigid Bodies Shethie

Another interesting application of the Lagrangian formalism is found in the motion
of a rigid body. A rigid body can be defined as a collection of point particles such
that the distances between them are constant. Even though, in essence, this example
is similar to those already considered, the expression of the kinetic energy of a rigid
body involves a more elaborate process and the definition of a new object (the inertia
tensor).

This chapter differs from the other chapters of this book by the extensive use of
objects with indices. A more elementary approach is based on the use of the vector
algebra. The treatment given here highlights the use of the Lagrangian formalism.

3.1 The Configuration Space of a Rigid Body
with a Fixed Point

We shall restrict ourselves to the study of the motion of a rigid body assuming that
there exists a fixed point (with respect, of course, to some inertial frame). We shall
also assume that the particles forming the rigid body are not all collinear (this means
that there are at least three particles). Under these conditions, the system has three
degrees of freedom (see below).

In order to study the motion of a rigid body with a fixed point, following a
standard approach, we consider two sets of Cartesian axes, the first one, with
coordinates x, y, z, assumed inertial, and the second one, with coordinates x’, y’, z/,
fixed in the rigid body. The origins of both sets of Cartesian axes coincide with
the fixed point of the body (see Figure 3.1). It is convenient to denote x, y, z as
X1, X2, x3, and, similarly, x’, y’, 7’ as xy/, xp, x3. Then, any point of the rigid body
has a position vector

r = xyey + xyey + xyey,
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where the unit vectors e;s (i’ = 1/,2/,3’) form an orthonormal basis fixed in the
body, and, at the same time,

r = xie; + xze2 + x3es,

where the unit vectors e; (i = 1, 2, 3) form an orthonormal basis associated with
the inertial frame.

Fig. 3.1 The Cartesian axes z
with coordinates x’, y’, 7’ are
fixed in the body and rotate Z LY
about the origin of the M ,”
Cartesian axes with b '
coordinates x, y, z, which o
belong to an inertial frame. -
Both sets of axes are > y
right-handed

Since the vectors e; form a basis, there exist nine real numbers, g;;/, which may
depend on the time only, such that

€;/ :aji/ej (31)

(note the position of the indices, the order is purely conventional). With these
numbers we can form a 3 x 3 matrix, A = (g;;r), in the usual manner, using the
first subscript to label rows and the second subscript to label columns, that is

ayy ayy ay
A=\ ay ayy ary |,
asy azy asy

so that the i-th column of this matrix contains the components of the vector e;; with
respect to the basis formed by the vectors e;. For instance, if the vectors e;: are
obtained from the vectors e; by means of a rotation through an angle ¢ about the
z-axis, then the matrix A is (see Figure 3.2)

cos¢ —sing 0
A= sing cos¢ 0 |. (3.2)
0 0 1

Using the fact that both bases are orthonormal we have

Sirjr = ey -ej = agie - ajje] = axyayj Sk = ki’ Ak
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Fig. 3.2 The vectors e; are y
obtained from the vectors e;
by a rotation through an angle y ¥
¢ about the z-axis. The figure LN 7
shows that AN e
. \ 7/
ey = cos.d) e] + sing ey, N Ae X
ey = —sin¢g e + cos ¢ ey, £ 71/ ¢
ey = e3, which leads to the S ey
matrix (3.2) / S X
7/ N T d
d \ €]
7 AN
i.e.,
Sirjr = akirag;- (3.3)

These conditions mean that the matrix (a;;/) is orthogonal (A'A = I, where A'is the
transpose of A, and [ is the unit matrix), that is, its inverse is equal to its transpose
and, since any matrix commutes with its inverse, Equation (3.3) is equivalent to

8,'/' =aipajy - (34)

Once we have chosen the basis vectors €; and e, the matrix A = (a;j)
determines the configuration of the rigid body and, therefore, for a rigid body
with a fixed point, the configuration space can be identified with the set of all the
real 3 x 3 orthogonal matrices with positive determinant (so that the orientation,
or handedness, of the basis vectors is not inverted). This set of matrices is, in
fact, a group, which is denoted by SO(3). The set of equations (3.3) constitute
six algebraically independent conditions on the nine entries of A (since both sides
of the equation are symmetric in the indices i/, j’); hence, the 3 x 3 orthogonal
matrices can be parameterized by three coordinates (for instance, the three Euler
angles presented in Section 3.3, below).

Usually, in the so-called tensor notation, the indices labeling the components of
an object (e.g., a vector or a tensor) determine the way in which these components
transform under a change of the basis vectors. For that reason, here we need two
different kinds of indices: the unprimed and the primed ones, because we can
perform two different kinds of changes of bases. We can replace the orthonormal
basis e; by another orthonormal basis (related to the first one by means of a
constant orthogonal matrix) and, independently, we can replace the orthonormal
basis e;; by another orthonormal basis, also fixed in the rigid body (and the two
orthonormal bases fixed with respect to the body are also related by some constant
orthogonal matrix, see, e.g., Equation (3.19), below). The equations developed here
must maintain their form under the independent changes of the two bases.

It may be remarked that in all the other examples in this book, we start by
choosing some coordinates to represent the configuration of the mechanical system
(which, in some cases, are replaced afterwards). By contrast, in the case of the
motion of a rigid body we can postpone this choice and establish several results
without having to write down the explicit expression of the Lagrangian in terms of
coordinates.
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3.2 The Instantaneous Angular Velocity and the Inertia
Tensor

Assuming that the rigid body is made out of N point particles with position vectors
ro (@ = 1,2,..., N), each of these vectors is represented by three real numbers,
xi(a) (i = 1,2,3), with respect to the inertial frame defined by the basis vectors e;,

and by three real numbers, xl.(,a ) (i’ = 1,2/, 3"), with respect to the frame fixed in
the body, defined by the basis vectors e;’, that is,

l'(a)ei = xl.(,a)

e =X €.
According to Equation (3.1), using the fact that the inverse of the matrix (a;;/) is its
transpose, these sets of coordinates are related by

X = aij’x;(/x), x = aji’x/(-a), (3.5)
with the same matrix (a;;’) for all the particles of the body (that is, Equations (3.5)
hold fore =1, 2, ..., N). (Note that the components of any vector with respect to

the bases formed by the vectors e; and e;s are related in this form.)
()

Since the basis vectors e;s are fixed with respect to the body, the coordinates x;,

cannot vary with the time. On the other hand, the coordinates xl.(“) will vary with

the time as a consequence of the rotation of the body, hence, making use of the first
equation in (3.5),

ty = &'

e =aixPe;
j &= ajiXy €

and, therefore, the kinetic energy of the body (with respect to the inertial frame) is
Ay
T = Iy - T
(; 2moz a T

N
=Y zma(aj,»,x,.(,‘"))(a',-k,x,ﬁ?‘))

a=1
N
= ajpaje Y 2maxl.<,‘">x,§‘,">. (3.6)
a=1

In this manner, the kinetic energy is expressed in terms of the time derivative of
the matrix (a;;-), which depends on how the body moves, and of the nine constant
real numbers fov=1 émaxi(,“)xlg?), (i’, k' = 1’,2',3") which are determined by the
positions and masses of the particles forming the rigid body. As we shall see, the
product of time derivatives aj;:a j;/, appearing in (3.6), can be written in terms of a
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single vector, which corresponds to the body’s angular velocity and, instead of the
sums Z(vazl émaxl.(,a )xlg‘,x), it will be more convenient to use the components of the
inertia tensor, to be defined below.

Differentiating both sides of Equation (3.3) with respect to the time we obtain

0 = apirayjr + axiragjr-

Since the factors appearing in the last equation are real-valued functions, we have
agiragjr = agjray; and, therefore,

QpirQxjr = —Qyjragjr

which shows that the product dy;ra; is antisymmetric in the indices i" and j’. This
is equivalent to say that there exist three real-valued functions of the time, w;’, such
that

AkirAkjr = €t jrs/ Oy 5 (3.7
where ¢;/ 1/ is the Levi-Civita symbol, defined by

1 if i’ j’k’ is an even permutation of 123’
girjr = | —1 if i’ j’k" is an odd permutation of 12’3’ (3.8)
0 otherwise.

The w;s are the components of the angular velocity of the rigid body in the basis e;:.
In terms of the matrix notation, Equation (3.7) is equivalent to

0 w3y —wy
AtA = —wy 0 w1/ . (39)

wy —wy 0

For instance, in the case of the matrix (3.2) we find that the product A'A is

—sing cos¢ O cos¢ —sing 0 010
¢ | —cos¢p —sing 0 sing cosp 0] =¢| —-100],
0 0 O 0 0 1 000

which shows that the only nonzero component w;’ is wy = ¢, as one would expect.
The Levi-Civita symbol (3.8) is invariant under cyclic permutations of the
indices, that is,

gi/j/k/ = Sj/k/i/ = Sk/i/j/ (310)
and satisfies the relation

gl-/j/klgl-/l/m/ = (Sj/l/gk'm’ —_ Sj/m/(sk/l/_ (311)
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The Levi-Civita symbol is very useful owing to its relationship with the determinant.
If B = (b;j) is a 3 x 3 matrix, then from the definition (3.8) it follows that
8,’jkb,'pqubkr = (det B)Spqr. (3.12)
A related result is that the components of the vector product of two vectors can be
conveniently expressed with the aid of the Levi-Civita symbol. If a; and b; are the
components of two vectors, a and b, respectively, with respect to some right-handed

orthonormal basis, then the components of the vector product ¢ = a x b with respect
to this basis are given by

¢i = &jjkajby. (3.13)
Making use of Equations (3.4), from (3.7) we have
8i/j/s/a)s/arj/ = dki/akjra,jr = dkifakr = dri’v (314)
hence, with the aid of (3.3)
dji’djk’ = gi’l’s’ws’ajl’sk’n’r’wr’ajn’ = gi’l’s’ws’sk’n’r’wr’Sl’n’ = &/ 5! Wy ER'] ! Wy!
= EUgi! Ws/ E | Wy = (5s’r’8i’k’ - Ss’k’Si’r’) Wy Wy .
Substituting this expression into (3.6) we find that the kinetic energy of the rigid

body can also be written in the form

1

N
1
T = (8gp8irk — S50 Siryr) gty Z zmax.(/a)xlgx)
a=1

N
1
zws’wr’ Z My (as’r’Si’k’ - 6s’k’ai’r’) x,'(/a)xlg‘fx)

a=1

N
1 3 2 L@ @
= zws’wr’ 1ma(83’r’ra — XX )
o=

The nine real numbers

N
e =Y ma(8jra® — xx() (3.15)
a=1

are the components of the inertia tensor of the rigid body (with respect to the basis
vectors e;/) so that the kinetic energy of the rigid body is expressed as

T = élj/k/a)j/a)k/. (316)

If we consider a continuous distribution of matter, with a mass density p, the
components of the inertia tensor are given by
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I E/,o(r)(Sj/k/rz—xj/xk/)dv/, (3.17)

with r = x;e; and dv’ = dxy-dxydxz. The definitions (3.15) and (3.17) show that
the inertia tensor is symmetric, Iy = I/, and therefore it has six independent
components only.

Expression (3.16) can also be obtained in a more elementary manner. However,
the procedure followed above yields a useful expression for the angular velocity of
the rigid body in terms of the matrix (a ;") [Equation (3.7)].

Example 3.1 (Inertia tensor of a homogeneous cylinder). We shall calculate the
inertia tensor of a homogeneous right circular cylinder. The height of the cylinder
will be denoted by #, its radius by a, and its mass by M. Then its density, assumed
constant, is p = M/ (na2h). We take the fixed point, O, at the center of the
cylinder and the x3/-axis will coincide with the axis of the cylinder (see Figure 3.3).
From Equation (3.17) we have, making use of cylindrical coordinates (that is,

X171 = pcoso, xy = psing, xy = z),

h/2 27
=y [ [ a [ paotnt 4 ad
ma-h n/2 0

M a h/2 27
= / dp / dz / pdd (p* sin® ¢ + 2°)
wash Jo —ni2 Jo

h/2
/ / 71,0 + 2mpz )

h/2
= d o h+ 1,0h3

a’h 6

Similarly we find that

h/2 2 ) ) Cl2 h2
I//: d d ’ /! :M 3
22 2h/ /h/z Z/o pde (x1” + x37) <4+12>

and

h/2 27 Ma?
Iyy = zh/ dpf dZ/O pdep (x1% + x2%) = 5

h/2

Making use of the parity of the integrands one finds that 11/, I1/3/, and I3 are
equal to zero. Hence,

3a’+h* 0 0
U=, 0 3a®>+h* 0 |. (3.18)
0 0  6a®
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Fig. 3.3 The mass density of Xy
the cylinder is uniform. The
origin is placed at the
geometric center of the C_\
cylinder, which coincides I
with the center of mass. The

O

X3 -axis coincides with the
axis of the cylinder

Xor

Xy | e -

Principal Moments of Inertia

The components of the inertia tensor depend on the mass distribution of the body,
but also on the choice of the coordinate axes fixed in the body. If we replace the
orthonormal basis e;» by another orthonormal basis €,/ also fixed in the body, then
there exists a (time-independent) orthogonal matrix, B = (b /), such that

éj/ = bk/j/ek/ (319)

(again, note the position of the indices). According to this definition, the columns of
the orthogonal matrix

by byy bry
B = b2/1/ b2/2/ b2/3/
b3/1/ b3/2/ b3/3/

are the components of the vectors €;; with respect to the basis formed by the vectors
e /. Then, the Cartesian coordinates of the a-th particle with respect to the new axes

fixed in the body are )Z,E(,x) =b j/k/x;?l) and, therefore, with respect to these new axes,
the components of the inertia tensor are [see (3.15)]

Iy = bpiby ji L. (3.20)

In terms of matrices, this last equation amounts to
4 = B'.7B,

where . = (ii/jr), # = (1), and B is the orthogonal matrix defined above.

If the columns of the matrix B are three mutually orthogonal unit eigenvectors
of the matrix (/;;/), then Iy ;) is diagonal (see below).

Since the matrix (/,vy) is real and symmetric, we can always find three mutually
orthogonal eigenvectors of (/,/,/). Recall that vy is an eigenvector of (I,/y), with
eigenvalue A, if
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Iy Ty Iy vy vy
12/1/ 12/2/ 12/3/ vy = A vy (321)
Iy Iypr Iy vy vy
or, equivalently,
Ir/s/vs/ = )\,vr/. (322)

The eigenvalue A is a root of the characteristic polynomial of (/,/y), that is,
det(l,7yy — Ad,s/) = 0. Since the components I,+¢ are real, (3.22) is equivalent to

Ir’s’vs’ = )\,Ur/’ (323)

where the bar denotes complex conjugation. By combining Equations (3.22) and
(3.23), using the symmetry of I,-;/, we obtain

Il'/j/vj/vl'/ = )\.U[/U[/

and

Ii/j/vj/vi/ = Uj/Ij/i/Ui/ = Uj’)hvj’ = )\,Ul-/vi/,
thus, (A — A)vyvyy = 0, which means that A is real (v; v;s is equal to zero only if
vis = 0, which is excluded from the definition of eigenvector). Furthermore, the

eigenvectors corresponding to different eigenvalues are orthogonal to each other: if
w;s is an eigenvector of [;7;» with eigenvalue w, Iy yw ;7 = pwy, then, proceeding
as above,

Ii/j/vl-/wj/ = Ui/lu,wi/,
and
Ii/j/vi/wj/ = u)j/Ij/i/Ui/ = wj/)\‘vjf

which leads to (A — w)vyw; = 0, showing that if A # p then vywy = 0, ie.,
the vectors v;s and w;s are orthogonal to each other. Thus, if the three eigenvalues
of (I;j+) are distinct, then the corresponding unit eigenvectors form an orthonormal
basis.

When only two eigenvalues of (I,+y/) coincide, the corresponding eigenvectors
form a two-dimensional plane, and any pair of orthogonal unit vectors of this plane
will be part of an orthonormal basis formed by eigenvectors of (/7). When the
three eigenvalues of (I,¢/) coincide, then (/,75/) is a multiple of the identity matrix
and any orthonormal basis is formed by eigenvectors of (1,74/).

In conclusion, in all cases we can find an orthonormal basis formed by eigenvec-
tors of (1,/5), and from (3.22) it follows that if the columns of the matrix B are three
mutually orthogonal unit eigenvectors of the matrix (I /), then (ii/ j/) is diagonal.



90 3 Rigid Bodies

If the matrix (fi/ j/) is diagonal, the directions defined by the basis vectors €

are called principal axes at O and the entries of Iy j7) along the diagonal are
called principal moments of inertia [hence, the principal moments of inertia are
the eigenvalues of (/7 )].

In Example 3.1 the matrix (/,75) is already diagonal, which means that the basis
vectors e;s point along the principal axes. The entries along the diagonal of (/)
are the principal moments of inertia and, therefore, at least two principal moments
of inertia coincide (the three principal moments of inertia coincide when & = v/3 a).

On the other hand, if we place the origin at the base of the cylinder, with the axes
as shown in Figure 3.4, the matrix (/) is given by (see Equation (3.28), below)

3a* + 4h? 0 —6ah
yj) = 2 0 1542+ 4h%* 0
—6ah 0 18a?

The eigenvalues of (/7 ;) (and, hence, the principal moments of inertia) are the roots
of the polynomial

15 (3a? +4n?) — 1 0 —an
0 M(15a>+4n*) -2 0 =0,
—lzwah 0 3%”612—)»

thus, the principal moments of inertia are

M M
12(15a2 + 4h?), 04 (21a* + 4h* £ V22504 4 24a2h? + 16h%).
Fig. 3.4 The fixed point, O, X3

is at the edge of the base of
the cylinder. The x;/-axis

passes through the center of C
the base. The vector R goes

from the origin to the center
of mass

\/

Xy

In order to simplify the expressions below, we shall consider the specific case
where i = +/3 a, then, the principal moments of inertia are
IMa? 9Ma? Ma?
4 4 2



3.2 The Instantaneous Angular Velocity and the Inertia Tensor 91

and the matrix (/;/j») becomes

M 5 0 =23
) =", 0 9 0
-2J30 6

The eigenvectors of this matrix corresponding to the (repeated) eigenvalue 9Ma?/4
are determined by the homogeneous system of linear equations [see (3.21)]

5 0 =23 vy

Ma? 0 9 o oMa? [V
v2/ = v2/ ,
Y \2v30 6 vy 4 vy

which gives 2vyr + V3 vy = 0, with vy arbitrary. These conditions define a two-
dimensional plane, and two solutions of these conditions are v;y = —+/3/7, vy =
0, vy = 2/«/7, and vy = 0, vy = 1, vy = 0, which correspond to two mutually
orthogonal unit vectors. Hence, the two unit vectors

2
V7

point along principal axes (the labeling of the vectors €;s is completely arbitrary).
According to the discussion above, the eigenvectors corresponding to the third
eigenvalue, which is different from the first two, must be orthogonal to €, and ej3'.
Thus, we can find the third principal axis by means of the cross product €y x €3.
Letting €y = €y x €y we obtain the missing element of a positively oriented
orthonormal basis such that the vectors €;/ point along principal axes. We find

- 2 3
ey = «/7 ey + 7 ey.

(One can readily verify that the vector given by vy = 2/+/7, vy = 0, vy = +/3/7
is indeed an eigenvector of (/) with eigenvalue M a?/2.)

. . 3
€y = ey, ey = —\/7 ey + €3

Exercise 3.2. Four particles of mass m are at the points (a, 0, 0), (0, a, 0), (a, a, 0),
and (0, 0, 0), with respect to the Cartesian axes x;;, where a is a positive constant.
Find the principal axes and the principal moments of inertia.

Angular Momentum

From the elementary definition of the angular momentum of a particle (L. = r x mr)
it follows that the Cartesian components of the angular momentum of the rigid body
(with respect to the inertial frame) are given by

N
Ll‘ = Z maé‘,’jkx;a))'clga).
a=1
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According to (3.5) and (3.14), we have

- ()

xk = ézk,vx (@)

() o
= Sl-/j/s/a)s/akj/xi/ s

l'/
hence,
N
o o
L= E masijkx; )Si’j’s’ws’akj’xi(/ )

a=1

N
= g @ (@
= maeljka]qrxq, Sl’j’s’ws’ak]’-xi/ .

a=1

Noting that, owing to (3.4) and (3.12),

EijkAjq'akj’ = Sip€pjkdjq arj
= Qjr'Apy € pjkd jq'akj!

= al-r/gr/q/j/, (324)

where we have used that the determinant of an orthogonal matrix that does not
invert the orientation is equal to +1 (which follows from 1 = det/ = det(A'A) =
det A' det A = (det A)?), with the aid of (3.10) and (3.11), we have

N
MayQiv’E1 4 i1 E51 /D /x(oz)x(oz)
E allir'erlqj el j's'@s' A g Ay

a=1

L;
N
(o) (o)
= ajy’ Zma(&”s’aq’i’ - Sr’i’aq’s’)ws’xq/ x,’/
a=1

N
2 o) (a
= djy’ § Mo (8750 — xr(’ )xs(’ ))ws/
a=1
= air’Ir’s’ws’-

This means that /7y wy is the r-th Cartesian component of the angular momentum
of the body with respect to the basis vectors e;r,

Lr/ = Irls/a)s/, (325)

Among other things, Equation (3.25) means that the angular velocity and the
angular momentum may not be collinear, but when wy is an eigenvector of the
matrix (/,/g) then the angular momentum and the angular velocity are collinear.
Thus, the principal axes are the directions where the angular momentum and the
angular velocity are collinear.
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Exercise 3.3. Show that

0 w3 —wn
AA'=| —w3 0 )
wy —w; 0

where the w; are the components of the angular velocity with respect to the basis
vectors e; (the inertial frame), that is,

Qis'Qjg = E;jkW

[cf. Equation (3.7)].

Parallel Axes Theorem

Now we shall study the behavior of the inertia tensor under a parallel translation
of the axes fixed in the body. To this end, it is convenient to consider two parallel
sets of Cartesian axes fixed in the body, x;» and y;» (see Figure 3.5), defined in the
following way. The origin of the axes x; is located at an arbitrary point of the body,
while the origin of the axes y; is at the center of mass of the rigid body, this means
that

Zmay("‘) 0, i'=1,2.3, (3.26)

where (yf‘,x), yé‘,x), A2y )) are the Cartesian coordinates of the a-th particle of the body

with respect to the axes with origin at the center of mass.

Fig. 3.5 The Cartesian axes
x;» have their origin at an
arbitrary point fixed in the
body, and the origin of the
Cartesian axes y;/ is at the
center of mass. The vector R
is the position vector of the
center of mass with respect to
the axes x;/. The axes y;s are
parallel to the axes x;/ X

V3

Y2

Xy i

If (Ry, Ry, Ry/) are the coordinates of the center of mass with respect to the axes
x;7, we have (see Figure 3.5)

=Ry, a=1,2,...,N;i'=1,2.3
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Hence, making use of the definition of the (components of the) inertia tensor (3.15)
and Equation (3.26), we have

N
_ 2 : Loy@ (@) (@) (@)
Ij/k/ = ma(aj’k’xi/ xi/ _xj/ xk/ )
a=1

N
= ma[8jw (R + 3Ry + 5 = Ry + Y (Rer + 3]
a=1

N N
= (Ri/Rl-/Sj/k/ —_ Rj/Rk/) Zma —|— Z ma (8]/k/yl(,a)yl(,a) _ )’;?l)ylgfl))
a=1 a=1
= MR*S; — Rj'Ry) + Iko (3.27)

where M is the total mass of the body, R?> = R;/R;: is the square of the norm of the
vector (Ry/, Ry, Ry), and the [ C,kN,[ are the components of the inertia tensor, taking
the center of mass as the fixed point of the rigid body. This result is known as the
parallel axes theorem.

For instance, considering again the homogeneous circular cylinder of Exam-
ple 3.1, with the aid of Equation (3.27) we can readily obtain the components of
the inertia tensor taking one point at the edge of the base of the cylinder as the fixed
point (see Figure 3.4). If the x/-axis lies along a diameter of the base of the cylinder,
then (Ry/, Ry, Ry) = (a, 0, h/2) and from Equations (3.27) and (3.18) we find

h? 0 —2ah 3a24+h12 0 0
M 2 ) M 2 2
(Iyj) = A 0 4a’>+Hh* 0 + 1, 0 3a2+h% 0
—2ah 0 4q* 0 0  6a2
3a? + 4h? 0 —6ah
M 2 2
= 15 0 15¢2+ 40 0 ) (3.28)
—6ah 0 18a?

Exercise 3.4. Show that if the line joining O and the center of mass is parallel to
one of the principal axes at the center of mass, then this line is also parallel to a
principal axis at O. Furthermore, any principal axis at the center of mass orthogonal
to the line is parallel to a principal axis at O.

Coordinate-Free Expression of the Lagrange Equations. The Euler Equations
So far, we have not required the introduction of coordinates to parameterize the
configuration of the rigid body, and as we shall see below and in Section 4.2, there
are some results that can be obtained without giving an explicit expression for the
matrix elements g;;/ in terms of coordinates.

Assuming that the a;;: are parameterized by some coordinates gy, from (3.7) and
the chain rule we have
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dagi
34, qrakj = &' js'Ws'
then, making use of (3.11),
1 dag )
Wy = 28i’j’s’ aqr qragjr = Ms’r‘]rs (329)

where we have introduced the functions

1 8ak»/
Mslr = 28i/j/sl aq: akj/v (330)

which depend on the coordinates g, only, and relate the angular velocity with the
generalized velocities g;. The last equation is equivalent to the relation

day;

aqr = akj/gl-/j/erS/r, (331)

According to Equations (3.31), (3.10), and (3.11) the second partial derivatives of
ay;’ are given by

2ay dayjr M
! = J Si’j/S,MS/V +akj’€i’j’s’ sr
0qmoqr 0qm oGm
IMy,
= akplsj/p/n/ n/mgi/j/S/MS/r —|— akj/gl-/jrsr
m

oMy
= (Sp’s’sn’i’ - 8p’i’8n"v’)akp’Mn’mMs’r +akj’<9i’j’s’ 3 o
m

oMy,
= aps Mym M1y — agyr Mgy Mgy + QagjrEirj's’ 3 .
m

Then, the commutativity of the partial derivatives of ay;s is equivalent to

IMy oM
akj'€i' j's' ( aqsr - aq€m> = agsy (M1, My — Mty Myry)
m r

= axj (M Mjm — MymM ),
hence,

aMs’r aMs’m
&t jis! dqm  dq, =M Mjm — My My

With the aid of (3.11) one finds that the last equation is equivalent to
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IMy,  OMyy,

=ciiaMir,Mir,. 332
aqm aqr gl ]S vr J'm ( )

Note that these equations must hold for any choice of the coordinates g;. (It turns
out that Equations (3.32) are related to the structure of the rotation group itself.)

Assuming that the applied forces on the body are derivable from a potential
V(gi), the equations of motion of the rigid body can be obtained substituting the
Lagrangian [see Equation (3.16)]

L= Ijpwjop—V (3.33)

into the Lagrange equations. Making use of the symmetry of /;x/, (3.25), (3.29),
and (3.32), we obtain

= QD G QD bl Q) T —
dr 8g; \2 J'k L)k agi \2 J' @) Pk

d / dwj / dwj + av
= QD —_ 1 QD
Jj'k' Wk aq Jj'k' Wk 9

dr i gi  9qi
d oM . A%
— LM:+)—1L U
dt( iMji) 7 ag; Qk+8qi
y dLj/—i—L oM . L oM . +8V
T A T g BT g BT ag,
dL oMy  OMy )\ . oV
=M’ Lj’( - )cIk+
dr dqxk 9qi aqi
dLj . oV
= Mj,; a T LjepyjMyiMgrqr + b
M dL, N L)+ A%
= 17 Eplgl 1MW i’ ,
ri dt rsj S J aql
that is,
dL, _1. 9V
dt —|— srls/j’wS/Lj’ = —(M )ir’ aql . (334)

where the (M ~1);, are the entries of the inverse of the matrix (M,/;). The right-
hand side of (3.34) is the r-th component of the torque on the rigid body, 7,7, with
respect to the basis fixed in the body. In fact, with the aid of Equations (3.14) and
(3.10) we find that
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dL; d(a;y L)

dr dr
dL,
= dajy’ + Sr’k’s’ws’aik’Lr’
dr
dL,
= air’ dt —|— Erlslk/a)S/Lk/ .

which shows that, indeed, the left-hand side of (3.34) is the r-th component of the
torque on the rigid body with respect to the basis fixed in the body. Equations (3.34),
written in the form

dL,

dt ~|—$r/s/j/a)s/Lj/ = ‘[r/’

are known as the Euler equations for a rigid body with a fixed point. As we have
shown, these equations are equivalent to the Lagrange equations for the Lagrangian
(3.33).

A particular case corresponds to the motion of the rigid body with the torque
equal to zero. Then, the Euler equations reduce to

dL,

dt —+ gr/s/j/a)S/Lj/ = 0

If the matrix (/;j/) is diagonal, these equations expressed in terms of the compo-
nents of the angular velocity w;’ take the form [see (3.25)]

do

1/
1 I3 — I ’ — 0’
Uy + (I3 — Qh)wyw;
da)z/
143 dr + (Il — B)wywy =0, (3.35)
dws
I3 d: + (I — Hoywy =0,

where the /; are the principal moments of inertia (/1 = Iy, I = Lyy, I3 = I33).

Exercise 3.5. A rigid body is symmetric if two of its principal moments of
inertia coincide. Solve Equations (3.35) for a symmetric rigid body. Note that this
solution only gives the angular velocity as a function of time; in order to find the
configuration of the body we would still have to solve another system of ODEs [e.g.,
(3.14) or (3.38)].

Exercise 3.6. Making use of the Euler equations (3.35), show that the kinetic
energy and the total angular momentum of the rigid body are constants of motion,
that is,

;(Ilwl’z + hay? + Bwy?) and IPwor? + L2y + Bloy?
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are conserved [see (3.16) and (3.25)]. (With the aid of these two constants of motion,
Equations (3.35) can be reduced to a single first-order ODE whose solution, in
general, involves elliptic functions.)

3.3 The Euler Angles

A usual and convenient set of generalized coordinates for a rigid body with a fixed
point is given by the so-called Euler angles. The matrix A = (a;;/), representing the
configuration of a rigid body, is expressed in the form

A = R(P)R:(O)R:(V), (3.36)

where R;(¢) is the 3 x 3 orthogonal matrix (3.2), corresponding to a rotation about
the z-axis through an angle ¢ and, similarly,

1 0 0
R, (0) =] 0cosf® —sinb
0 sinf cosH

corresponds to a rotation about the x-axis through an angle 6. The angles ¢, 6, ¢
are called Euler angles and are restricted by 0 < ¢ < 27,0 <0 < 7,0 < ¥ < 2.
(A slightly different definition, which is especially convenient in the study of the
rotation group in quantum mechanics, is given by A = R (¢) Ry (0) R, (), where
Ry (0) corresponds to a rotation about the y-axis through an angle 6.)

According to Equation (3.16), in order to write the kinetic energy in terms of
the Euler angles and their time derivatives, we need the explicit expression of
the components of the angular velocity, w;/, in terms of those variables. These
expressions can be readily obtained with the aid of Equation (3.9) by calculating the
product A'A (without having to resort to a geometrical image or to the consideration
of “infinitesimal rotations”). Using the fact that (A B)' = B'A" and that each matrix
appearing in (3.36) is orthogonal, we find

A'A = [RA()Rc(O)R-(V) + R(§) Re (O)R-(¥) + R($) R (O) R (¥)]'
x R:(¢)Rc(0) R ()
= R.(Y)'Re(0)'R:($)' R-($) Ry (O)R- (V) + R (¥) Rc (0)' Ry (O)R. ()
+ R.(Y)'R. (). (3.37)

The last term in Equation (3.37) was already calculated in Section 3.2; the
result is

_ [ 010
R R(Yy) =9 | —100
000
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A similar computation gives

000
Rc(®)'R:(6)=60[0 0 1
0-10
and, therefore,
0O o0 sin Y
R (¥)'Rc(0)' R (O)R, () = 6 0 0 cosy

—siny —cosyr 0
A more lengthy computation gives

R (¥)' Re () Ry (9)' Ro (9) Re (O) R ()

0 cos 6 —sinf cos ¥
=¢ —cos6 0 sin 6 sin ¥
sinf cos ¢ — sin 6 sin i 0

Adding these expressions and comparing the result with (3.9) we conclude that the
components of the angular velocity of the body, with respect to the axes fixed in the
body, are

wy = ¢ sinf siny + 6 cos ¥,
wy = ¢ sinf cos Y — 6 sin ¥, (3.38)
wy = ¢cosd + .

Thus, assuming that the matrix (/;;/) is diagonal, from (3.16) and (3.38) we have
the expression for the kinetic energy in terms of the Euler angles

T = é[ll(é sin@ sin ¥ + 6 cos w)z + I (¢ sin@ cos ¥ — O sin w)z
+ I3(¢ cos 6 + ). (3.39)

When two principal moments of inertia coincide, it is convenient to select the axes
in such a way that /1 = I, because then (3.39) reduces to

T = J[11(¢*sin® 0 + 6%) + I3(¢ cos O + )] (3.40)

Example 3.7 (Symmetric top in a uniform gravitational field). A commonly studied
example is that of a symmetric top in a uniform gravitational field. This problem
consists of an axially symmetric top with a fixed point, in a uniform gravitational
field. Assuming that the x3-axis points upwards and taking the x3-axis as the



100 3 Rigid Bodies

symmetry axis of the top, we have I; = I». Then, making use of (3.40) we find
that the standard Lagrangian is

L = L [11(¢?sin® 0 + 62) + I3(d cos b + 4)*] — Mgl cos b, (3.41)

where M is the mass of the top and / is the distance between the fixed point of the
body (which is placed at the origin) and the center of mass. (The product / cos @ is
the height of the center of mass with respect to the origin since, according to (3.1),
the components of the vector ey with respect to the basis formed by the vectors e;
appear in the third column of the matrix A [see (3.36)], which is given by

0 0 0
R(P)Rc(O)R:(¥) | O | = R:(9)Rx(0) | O | = R:(¢) | —sin®
1 1 cosf
cos¢ —sing 0 0 sin @ sin ¢
= | sing cos¢ 0O —sinf | = | —sinfcos¢
0 0 1 cosf cos 6

and the position vector of the center of mass is /es.)

As in previous examples, it is not convenient to obtain the equations of motion
by substituting the Lagrangian (3.41) into the Lagrange equations and then try to
solve them. It is preferable to use the fact that the coordinates ¢ and i are ignorable
and that the Lagrangian does not depend on ¢; this implies that

L., . , IL , .
. = I1¢psin“ 0 + I3 cos (¢ cosh + ), . = I3(¢pcost + )
3¢ 3
as well as

M1 ($?sin® 0 + 62) + I3($ cos O + yr)*] + Mgl cos b

are constants of motion. Denoting as a, b, and E, respectively, the values of these
constants of motion, the combination of the foregoing expressions leads to the first-
order ODE

Ee 1 [119.2+ (a —bcosO)?  b?

+ + Mgl cos@,
2 I, sin® 6 13} ¢

which determines 6 as a function of the time [cf. Equation (2.32)]. The substitution
u = cos 6 yields the equivalent equation

Vit (a = bu)? + ¥ g (1 — u?) + Mglu(l — u?) =0 (3.42)
u — —Uu u —Uu = U. .
o1 21 215 8
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Since the “effective potential,”

@b (2 e) iy 4 Mgttt — )

— —u u(l —u”),
21 213 §
is a third-degree polynomial in u, the solution of (3.42) involves elliptic functions.
Alternatively, one can find the qualitative behavior of the solutions with the aid of
the graph of the effective potential.



Chapter 4 )
The Hamiltonian Formalism Chack for

In this chapter it is shown that, for a regular Lagrangian, the Lagrange equations can
be translated into a set of first-order ODEs, known as the Hamilton, or canonical,
equations, which turn out to be more useful than the Lagrange equations, as we shall
see in this chapter and in the following ones. In the same manner as the Lagrange
equations are defined by a single function (the Lagrangian), the Hamilton equations
are defined by a single function, known as the Hamiltonian.

In Section 4.1 we derive the Hamilton equations and we give some few
examples of their application. In Section 4.2 we start presenting the advantages
of the Hamiltonian formalism, introducing the Poisson bracket and, in Section 4.3,
showing that, for certain systems, the use of an appropriate parameter, in place of
the time, allows us to simplify the integration of the equations of motion.

4.1 The Hamilton Equations

As we have seen in the preceding chapters, various systems of second-order ODEs,
especially the equations of motion of holonomic conservative mechanical systems,
can be expressed in the form of the Lagrange equations for some Lagrangian.

On the other hand, any system of n second-order ODEs can be transformed into
a system of 2n first-order ODEs, in infinitely many different ways, by introducing n
auxiliary variables. For example, by defining

yi = %, .1

any given system of n second-order ODEs, X; = f;(x;, X}, t), can be written in the
equivalent form

Xi = yi, yi = filxj,yj, 0. 4.2)
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In the specific case of the Emden—Fowler equation (see Example 2.8)

. 2L

X+ tx +x" =0,

letting y = x, we have the equivalent system of two first-order ODEs

. 2
x=y, y=—ty—x", (4.3)

while the definition z = ¢2, leads to the system

i= ;, FR— (4.4)
(Note that the first equation in (4.2), (4.3), and (4.4) comes from the definition of
the new auxiliary variable.)

As we shall show in this section, if we have a system of second-order ODEs
obtained from a regular Lagrangian, then the Lagrangian itself gives us a systematic
way of arriving at a system of first-order ODEs (known as the Hamilton equations),
which has several useful properties.

Generalized Momentum

The basic ingredient of the Hamiltonian formalism is the definition of the general-
ized momenta. Recall that given a Lagrangian, L(g;, ¢g;, t), the generalized momenta
are defined by

oL
pi= . 4.5)
9gi
(i=1,2,...,n)[cf. Equation (1.78)] and p; is called the momentum conjugate (or
canonically conjugate) to g;. Each p; thus defined is some function of ¢}, g, and ¢,
and the purpose is to replace the ¢; by the p;.

Example 4.1. The equations of motion of a particle of mass m moving in the plane,
subject to forces derivable from a potential V, in polar coordinates, are
v
ar

.. . A%
, mr20 + 2mrif = — 20 (4.6)

mi —mré? =

and these equations can be obtained from the standard Lagrangian
L= "21(#2 +r26%) — V. “.7)

The definition (4.5) yields the canonical momenta

oL . oL .
pr = o7 = mr, Po = 90 = mr29, 4.8)
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and, making use of these variables, the system (4.6) can be rewritten as the following
system of four first-order ODEs

Do . po? v

av
2° p}’: -

e 4.9)

mr3 ar’ po=
The first two of these equations amount to the definition of the canonical
momenta (4.8), while the last two equations come from (4.6), eliminating 7 and 6
in favor of p, and pg. Equations (4.9) give the derivative with respect to the time of
r, 6, pr, and pg as functions of themselves.

The relevant feature of the system of equations (4.9) is that the right-hand sides
are the partial derivatives of the function

pr2 T P02

%4
2m 2mr? +

with respect to p,, pg, —r and —6, respectively, as one can verify. As we shall
see now, a similar result applies to any system of equations given by a regular
Lagrangian.

We start from a Lagrangian L(q;, g;,t) (i = 1,2,...,n). Taking into account
the definition (4.5), the total differential of L is given by
oL . oL
dL = _ dgi + pidg; +  dt,
aq; ot

hence, expressing the term p;dg; in the equivalent form d(p;g;) — ¢;dp;, we have

. oL . oL
d(pigi — L) = —, " dgi +gidp; —  dr.
l

aq at
Thus, defining the Hamiltonian function
H=pigi — L, (4.10)
we have
oL . oL
dH = — dg; + qidp; — dr. (4.11)
aq; at

This equation shows that H can be expressed as a function of (g;, p;, ) and that if
the set (g;, pi, t) is functionally independent [which amounts to say that the g; can
be expressed as functions of (g}, p;, t)], then we have the identities

o), =G ) )= (), == (50)
= - ) =4di, = - .
34i ) g.ps 04i /) 4,41 i ) g.ps l i /g p 1/ 4.4

4.12)
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The subscripts in the parentheses above indicate which variables are kept fixed in the
partial differentiation. This notation may be unnecessary when one is using a single
set of coordinates, but in this case, as well as in the discussion in Chapter 5, we
are making use simultaneously of more than one set of coordinates and, in order to
avoid errors, it is convenient to indicate explicitly the coordinates being employed.
(Note that, without this clarification, from the first and the last equation in (4.12) one
might conclude that H 4 L is always independent of the g; and ¢.) This notation may
be familiar from Thermodynamics, where one employs various sets of variables as
coordinates. The relationship (4.10), between L and H, is an example of a Legendre
transformation.

Making use of the Lagrange equations (1.49) and of the definition (4.5), we see
that the first equation in (4.12) amounts to

<8H> d (8L> )
— . = —p-,
aqi q.p.t dr 361; q,q.t '

so that the Lagrange equations are equivalent to the system of 2n first-order ODEs

. oH . JH
i = L pi=-— (4.13)
api q,p.t aCIi q,pt

(i = 1,2,...,n), which are known as the Hamilton equations (or Hamilton’s
canonical equations). The variables g; together with their conjugate momenta, p;,
are called canonical coordinates.

In many textbooks it is asserted that the Hamiltonian must be expressed as a
function of (g;, pi,t) and that an expression for H involving the ¢; is wrong.
Actually, these claims are incorrect; with the aid of the chain rule we could calculate
the partial derivatives appearing in (4.13), making use of the expression for H in
terms of any set of variables. It is convenient to express H in terms of (g;, pi,t)
because, in that way, the partial derivatives involved in Hamilton’s equations can be
directly calculated and yield a system of ODEs that determine the time derivatives
of the coordinates ¢; and p; in terms of (g;, p;, t). In what follows the parentheses
and the subscripts in (4.13) will be suppressed unless some confusion might arise.

Equations (4.13) were obtained assuming that Equations (4.5) can be inverted to
find the g; in terms of (¢}, pj, t). According to the inverse function theorem, this is
locally possible if

9%L
det Lo # 0,
0g;0q;

that is, if L is a regular Lagrangian (see Section 1.2). Thus, we conclude that if the
Lagrange equations obtained from a Lagrangian L amount to an authentic system
of n second-order ODEs, §; = fi(q;j,q;,t), then this system is equivalent to the
Hamilton equations (4.13).
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When the set (g;, pi, t) is not functionally independent, the expression of H
as a function of ¢;, p;, and ¢ need not be unique (see Example 4.2, below), and
Equations (4.13) make no sense.

Example 4.2. The function
L = jaq* +bq1g2 — ¢1°q2.

where a and b are constants, is a singular Lagrangian. The definition (4.5) gives the
relations

P1 = aqi, p2 = bqi

which show that, in effect, it is impossible to express the ¢; as functions of
(gj, pj, 1) or, equivalently, that the set (g;, p;, t) is not functionally independent
(e.g., p2 can be expressed as a function of g1).

Nevertheless, we can apply the definition of the Hamiltonian, which gives

H = jaqi* + g1’ q.

As shown above, this function must be expressible in terms of (g, p;, t). In fact,
there are an infinite number of expressions of H in terms of (g, p;,t), some of
them are

1
H=_ p’+a’e=
2a

1, pig I 5 qqp
20wPU T Tt

and one can readily verify that in each case Equation (4.11) duly holds.

Another example of a singular Lagrangian is

dg; dg;
L= \/gij dr dr’

which leads to the equations for the geodesic curves [see (2.64)]. In fact, a
straightforward computation gives

L (8imd1Gm)8ij — 8i1Gi1gjmdm
aéian (grsC}VQS)3/2
and using this expression one verifies that

2L |
... 4 =0
04i0q
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identically. This, in turn, implies that det (82L /0Gidq j) = 0. Furthermore, the
definition (4.10) gives H = 0. (This fact does not contradict Equations (4.13),
because these equations are not applicable in this case.)

Fortunately, the Lagrangians found in almost all examples considered in classical
mechanics are regular. In what follows we shall consider only systems defined by
regular Lagrangians.

Example 4.3 (Hamiltonian for a charged particle in an electromagnetic field). The
standard Lagrangian for a charged particle in an electromagnetic field, in Cartesian
coordinates, is

_m_ .5 ) e . . N
L= 2(x +y +z)+C(A1x+A2y+A3z) ep,

where Aj, As,, Az are the Cartesian components of the vector potential, A
[see (1.69)]. According to the definition (4.5), the momenta conjugate to x, y, z
are

. e . e . e
p1=mx-l-cA1, p2=my+cAz, p3=mz+CA3,

respectively, and these equations can be inverted to express X, y, z in terms of the
canonical momenta,

. 1 e . 1 e . 1 e
x= (p1— A, y= (p2— Az, 7= (p3— Aj3).
m C m [ m [
Then, the definition of the Hamiltonian gives
. . . m ., %) ) € . . .
H = pix + p2y + p3z — 2()6 +y 4z — C(A1X+A2y+A3z)+e<p
e . e . e . om 5 5
=(p1— CA1)X+(pz— CAz)er(ps - CAz)z - 2(x +y +2) tep
=, +3+ ) tep
1 e 2 e 2 e 2
= (P1 - Al) + (pz - Az) + (p3 - A3) + eg. 4.14)
2m c c c
Exercise 4.4. Find the Hamiltonian corresponding to the Lagrangian

L=m(glng —q) —2myq,

where m and y are constants [see (2.53)]. Write down the Hamilton equations and
solve them. (This is a rather unusual example where the Hamilton equations can be
solved without raising the order of the equations.)
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In many examples, the Lagrangian is the sum of a homogeneous function
of the ¢; of degree two and a function of the ¢; only [see, e.g., Equa-
tions (1.54), (1.56), (2.2), (2.9), and (2.51)]. In order to simplify the computation of
the corresponding Hamiltonian, it is convenient to establish a formula applicable to
such cases.

Proposition 4.5. For a Lagrangian of the form
L= laijGiq; — Ulgi, 1),

where the a;j are functions of (qk,t) only, with a;; = aj; and det(a;j) # O, the
Hamiltonian is given by

H= ébijpipj +U(qi, 1),

where (b;}) is the inverse of the matrix (a;;). (The matrix (b;;), being the inverse of
a symmetric matrix, is also symmetric.)

The function U need not be the potential [see, e.g., Equation (1.54)].

Proof. From the definition of the generalized momenta (4.5) and the symmetry of
the matrix (a;;) we have

d r .. 1 . . .
Dk = D (201'/(1['61/') = 2aij(5ik61/ +djkqi) = arjq;,

hence,
gi = bijpj.
Then, making use of the definition of the Hamiltonian (4.10), we obtain
H = pigi —[3aijgid; — U(gi, 1)]
= pigi — [5pidi — U(gi. D]
= ) pigi + Ulgi, D)

=, bijpir; + U(gi. 1).

Example 4.6. In Example 1.11 we obtained the Lagrangian

L= ;[(ml + mz))&z + 2my cotBpxy + mo csc? 9())')2] —magy
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[see Equation (1.56)], which has the form considered in Proposition 4.5. In order to
identify the matrix (a;;) we note that the term 2m; cot6yx y, inside the brackets, is
equal to my cotBpxy + my cotfpyx and, therefore, with g1 = x and g2 = y,

m1 +moy mycotby
(aij) = .

my cotly my csc? 6o

Then, we find that

bii) =
(bij) ma(my csc? 0y + m»)

1 my csc? 6o —mo cotfy
—mycotfy my+mo

and, according to Proposition 4.5, the Hamiltonian is given by

1

2 2 2
= csc” 6 —2m> cot b, ) y .
2y (my csc2 6 + ma) [le opx~—2my opx Py+(mi1+m2)py ]+m28y
Substituting H into the Hamilton equations (4.13) we obtain a system of four first-
order ODEs equivalent (by construction) to the equations of motion given by the
Lagrangian L.

Two additional examples of the application of Proposition 4.5 are given by
the Lagrangians (1.57) and (2.29), corresponding to the one-dimensional harmonic
oscillator and the two-dimensional isotropic harmonic oscillator, respectively. In the
first case we obtain

SN B
H = , 4.15
m + Mg (4.15)
and in the second case
2 2
1
H=P" TP 20, (4.16)
2m 2

The fact that the Hamilton equations are of first order usually does not signify a
simplification of the solution of the equations of motion, because several canonical
coordinates may be mixed in each equation. For instance, in the case of the
Lagrangian (1.54),

L = %m(r'2 + w’r?sin® 6p) — mgr cos 6,
making use of Proposition 4.5 we find that the Hamiltonian is

2
m
H= pre_ ?r? sin? 6o + mgr cos 6y,
2m 2
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where we have denoted by p, the momentum conjugate to r. From the Hamilton
equations we obtain the system of coupled equations

2y sin® 6o — mg cos 6,

’; = 9 l.)}" =mw
and in order to solve it we combine these equations to obtain a second-order ODE
containing only one of the unknowns,

2y sin® 6o — g cosbp.

Dr = »? Dr sin’ 6o or F=w
The last of these equations is precisely the one that we obtained directly from the
Lagrange formalism.

Taking into account the fact that in order to write down the Hamilton equations
we have to find the Lagrangian as a first step, at this point the use of the Hamilton
equations may not seem advantageous; however, in the rest of this book we shall be
able to appreciate the many benefits of the Hamiltonian formalism.

As we have seen in Section 1.2, if we have obtained the expression for the
Lagrangian in some set of generalized coordinates, g;, we can find its expression
in another set of generalized coordinates, g/ = ¢;(g;,t), by simply substituting
the variables g; and ¢;, appearing in the original Lagrangian, by their expressions
in terms of ¢; and ¢;. A similar result holds in the case of the Hamiltonian,
provided that we limit ourselves to coordinate transformations that do not involve
the time, g/ = ¢/(q;). (More general coordinate transformations will be considered
in Chapter 5.)

Indeed, making use of the chain rule and (1.73) we have

oL  OL 0q; 0q;
== = (4.17)
dq;  9dq; 9q; aq;

hence

) aq; . )
pigi—L=pj, G —L=pjg—L
ag;

which means that, in order to find the Hamiltonian in terms of ¢ l’ , pl’., we only have to
replace the coordinates g;, p; appearing in H by their expressions in terms of ¢/, p/,
with the new and the old canonical momenta related by (4.17) or, equivalently, by

_ %4

Pi 3q;

p; . (4.18)
Ignorable Coordinates

In Chapter 1, we defined a (nontrivial) constant of motion as a function of (g;, ¢;, t)
whose total derivative with respect to time is equal to zero as a consequence of the
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equations of motion. Since we have replaced the variables ¢; by the generalized
momenta, in the Hamiltonian formalism, a constant of motion will be a function
of (gi, pi,t) whose total derivative with respect to time is equal to zero as a
consequence of the equations of motion. (A trivial constant of motion is a function
that does not depend on any of the variables (g;, p;, t) and, therefore, its total
derivative with respect to the time is trivially equal to zero, without having to use
the equations of motion.)

As in the case of the Lagrangian formalism, the absence of a coordinate g;, or of
t,in H(gi, pi,t) allows us to identify immediately a constant of motion. In effect,
if the generalized coordinate, g, does not appear in H(q;, pi, t), then from (4.13)
we have

) oH 0

Pk Iq )
which means that the momentum conjugate to gy is a constant of motion. According
to (4.12), gx does not appear in H(g;, p;,t) if and only if it does not appear in
L(gi, gi,t). Thatis, g is an ignorable coordinate for H if and only if it is ignorable
(or cyclic) for L, and in both cases one finds that the momentum conjugate to
the ignorable coordinate is conserved. (The only difference is that the conserved
momentum, pi, can be substituted by a constant in the Hamiltonian and, in that
manner, the Hamiltonian depends on the remaining n — 1 coordinates and their
conjugate momenta only.)

Similarly, when the function H (g;, p;, t) does not contain #, making use of the

chain rule and the Hamilton equations one finds that the total time derivative of
H(qi, pi, t) is equal to zero

dH 0H . oH oH O0HOH 0HOH
= qi + pi + = — =0, (4.19)

dr aqi ot aq; Ipi ap; 9q;
which means that H is a constant of motion. Equation (4.12) shows that H (g;, pi, t)
does not depend on ¢ if and only if L(qg;, gi, t) does not depend on ¢, and we know
that when L(qg;, gi, t) does not depend on ¢, the Jacobi integral (1.93) is a constant of
motion, but, by comparing Equations (1.93) and (4.10) we see that these functions
are equivalent to each other. Thus, also in this case, through the Lagrangian or the
Hamiltonian we obtain the same constant of motion.

In some cases the following result is useful to discover constants of motion not
related to ignorable coordinates.

Proposition 4.7. If the Hamiltonian is a sum of the form

H(g, pi»t) =h1(q1,.--, 9k, P1, -+, Pk) + Mo (Grs1s - - Gns Pkt1s -+ -5 P> 1),

for some k, with 1 < k < n, then h1 is a constant of motion.



4.1 The Hamilton Equations 113

Note that we are only assuming that z; does not depend on 7.

Proof. The chain rule and the Hamilton equations give
dhy _i(ahlaH ahlaH)_Zk:<8h18h1 ohy 8h1)_0
dt — 2 \og; opi  9pi 9qi) = \dqi dpi  Opi dqi)

A simple example is given by

2 2
H— Px”+ Dy + mgy,
2m
which is the sum of
2 2
h = b and  ha= 1D +mgy
2m 2m

and, according to Proposition 4.7, k1 and h; are constants of motion. The conserva-
tion of & also follows from the fact that H does not depend on x and, therefore, p,
is conserved, and, since H is conserved (because it does not depend on ¢), /2, being
equal to H — h1, must be also conserved.

However, if we perform the coordinate transformation

X=u-+v, y=u-—uv,

according to (4.18) we have p, = %(pu + po), Py = ;(pu — py) and, in the new
coordinates, H has the expression

2 2
H:pu + Dv + mg(u —v),
4m
which is the sum of
2 2
h = Pu + mgu and hy = Pve_ mgu.
4m 4m

Now, Proposition 4.7 implies that H, h1, and h; are constants of motion, but only

two of them are functionally independent. Going back to the original coordinates,

making use of the relations p, = px + py, pv = px — py, we have
+ 2 X - 2 X —

_ (px py) + mg +y hy = (px py) _mg y‘

h 9
! 4m 2 4m
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In particular, the difference

hi—ho = PP L ngx (4.20)
m

is a constant of motion, which does not follow from the existence of ignorable
coordinates.

Exercise 4.8. Show that if the Hamiltonian has the form H(g;, pi,t) =
f@®)P(qi, pi), then @ is a constant of motion. (Applications of this result are
given, e.g., in Examples 5.17 and 5.18.)

4.2 The Poisson Bracket

In the same way as a set of generalized coordinates, g;, serves to parameterize the
configurations of a mechanical system (Section 1.1), a set of canonical coordinates,
qi, pi parameterizes the states of the system (since the values of ¢; and p; at some
initial time uniquely define the solution of the Hamilton equations) and, in the same
way as the generalized coordinates ¢; are coordinates of a certain space, called
the configuration space, the canonical coordinates g;, p; are coordinates of the so-
called phase space, and the 2n + 1 variables ¢;, p;, and ¢ are coordinates of the
extended phase space. (The term “extended phase space” is also employed with
other meanings in the literature.)

One of the advantages of the Hamilton equations over the Lagrange equations is
that the former give directly the time derivatives of the variables ¢g;, p; in terms
of gi, pi, and ¢, which, among other things, facilitates the identification of the
constants of motion. (The Lagrange equations contain the second derivatives of
the ¢; with respect to the time through the combinations (32L/8¢;d¢ ;. see
Equations (1.51).)

If f(qi, pi,t) is a real-valued function defined on the extended phase space,
according to the Hamilton equations, its total derivative with respect to the time
is given by

af _of af . of o _0f of 9H _of oH
dt 9t dg; ' dpi- At 0qi dp;  Opi dqi

Introducing the Poisson bracket of f and g, defined by
af 9g  df dg

{f.gt= , 4.21)
)g dq; Opi  dp; 9q;
we can write
df af
= H). 422
A +{f, H} (4.22)
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Thus, f(qgi, pi,t) is a constant of motion if

af
o T HY=0. (4.23)

(The Poisson bracket is also denoted by [ f, g] and the notation (f, g) is sometimes
employed. Moreover, the definition given by some authors amounts to the negative
of the one used here.)

The definition (4.21) implies that this operation is antisymmetric,

{f.¢t=—{g. f}
bilinear,
{f,ag +bh} = a{f, g} + b{f, h}, {laf +bg, h} = a{f, h} + b{g, h},

where a, b are real numbers, and a derivation on each argument, which means that,

{f. gh} = g{f. h} + {f. g}h. {fg.h} = flg.h} +{f hlg.

Another important property of the Poisson bracket is the Jacobi identity.

Proposition 4.9 (The Jacobi identity). For any three functions f(qi, pi,t),
8(qi, pi, 1), and h(qi, pi, 1),

{{f. b ny + g, h}, fY 4 {{h, f}. 8} =0. (4.24)
Proof. We shall give a direct proof of this proposition, which will give us the oppor-

tunity of introducing some notation that will be useful later. First, the canonical
coordinates, g;, p;, will be denoted by a single symbol, x4 (¢ = 1,2, ..., 2n), with

X1y ooy Xy XLy oo -5 X20) = (q1s oo o5 Gns Pl +++» Pn) (4.25)

and introducing the constant, antisymmetric, 2n x 2n block matrix

0 I
= 4.2
(€ap) <_1 O) (4.26)
(o, B=1,2,...,2n), where [ is the n X n unit matrix (note that only one entry on

each row, or column, is different from zero), that is

gij =0, €in+j = ijs Enti,j = —0ij, Entintj =0 (4.27)
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(i,j=1,2,...,n), the Poisson bracket can be written as
af dg
g} = 4.28
{fs 8} = ¢cap D4 Dxs (4.28)

(with sum over repeated indices).
Making use of (4.28) and the Leibniz rule we have

0 af o oh
(f )b} = e, (s / g)

vé dxy x5 ) dxg

af 0%g  oh 32f g dh

= Eupys + €apéys

dxy 0xq0x5 0xp dxq0xy dx5 dxg’

hence,

{{f. g} hy + g 1}, fY + {{h. [} g}

e af d%g ok e 9%f dg oh
— faptys 0xy, 0xy0x5 dxp aBEys 0xq0xy, x5 0xg
%h 9 9%g oh 9
+ €apéys 4 + €upeys 8 /

0xy 0xq0x5 0xg

g g
oh 9% f B %h  df O
+ €aplys

0x40x, 0x5 0xg

EapE .
+ Eapys 0x40x, 0x5 0xg

0xy 0xq0x5 0xg
Replacing the indices appearing in the first term on the right-hand side of the last
equation according to @ — y,8 — 8,y — B,6 — «, we have the equivalent
expression

af d%g oh af 9%g oh

EaBlys = €y5EBa

0xy, 0xydx5 dxp 0xg 0xy 0xq 0X5

af 9%g oh
= —&y,8¢& s
votap 0xp 0xq0xy 0xs

where, in the last step, we made use of the antisymmetry of g4g (i.€., €4 = —£8q)
and the commutativity of the second partial derivatives. Therefore, the terms with
second partial derivatives of g cancel. In a similar manner we conclude that the
terms containing second partial derivatives of f and /& cancel, thus proving the
Proposition. O

The Poisson brackets can be computed using directly the definition, but very
often the computation can be abbreviated making use of the properties presented
above and the formulas



4.2 The Poisson Bracket 117

(@i, f} = gf L ==Y

, (4.29)
Di 0gi

which follow from the definition (4.21) and are applicable to any function f. In
particular, we have

{gi.q;} =0, {gi, pj} = dij, {pi,p;j}=0. (4.30)

Note also that the Poisson bracket of two functions of the ¢; only is equal to zero.

Exercise 4.10. When a charged particle interacts with an electromagnetic field, it is
convenient to distinguish between the components of its kinematic momentum, mr,
and its canonical momenta p;. In terms of the Cartesian coordinates of the particle,
the standard Lagrangian is given by

_m_ .5 ) e . . N
L= 2(x +y +z)+C(A1x+A2y+A3z) ep,

where e is the electric charge of the particle, the A; are the Cartesian components
of the vector potential, A, and ¢ is the scalar potential [see Equation (1.69)]. Hence,
the Cartesian components of the kinematic momentum, 7; = mgq;, are related to the
canonical momenta, p;, by

e
pi =7 + CAi~ (4.31)

(Since the vector potential is defined up to a gauge transformation, the canonical
momenta are gauge-dependent.) Show that the Poisson brackets of the Cartesian
components of the kinematic momentum of a charged particle in an electromagnetic
field are given by

e e e
{1, w2} = CB3, {mo, m3} = CBl, {3, m1} = CBz, (4.32)

where the functions B; are the Cartesian components of the magnetic field (i.e.,
B=VxA).

Example 4.11 (Poisson brackets between the Cartesian components of the angular
momentum). A standard example related to the computation of Poisson brackets
corresponds to the Poisson brackets between the Cartesian components of the usual
angular momentum of a particle, L = r x mr. If the Lagrangian of the particle has
the usual form

L= 2(x2+y2+22)—V(x,y,z),
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then the conjugate momenta to the coordinates x, y, z are
Dx = mX, py:m)"v Dz =mz,

respectively, and the Cartesian components of the angular momentum in terms of
these canonical variables are given by

Ly = yp; — zpy, Ly = zpy — xpy, L3z = xpy — ypx. (4.33)

(Note that it is necessary to specify the form of the Lagrangian in order to determine
the expression of the angular momentum in terms of the canonical momenta. Cf.
Equation (4.31).) Then, making use of the properties of the Poisson bracket we
have, for instance,

{L1, L2} = {yp; — 2Py, 2Px — Xpz}
= {ypz 2px} — {ypz, xp:} — {zpy, zpx} + {zpy, xp2}
= y{pz, 2} px + pylz, pix

= —ypx +xpy
and, by cyclic permutation of the indices we obtain, {L, L3} = Lj and {L3, L1} =

L. With the aid of the Levi-Civita symbol (3.8), these relations can be expressed in
the abbreviated form

{Li,L;} =¢ijkLy. (4.34)
In a similar manner, with the aid of (4.29), one finds that

(L1, x> 4+ y* + 2%} = 2x{Ly, x} + 2y{L1, y} + 2z{L1, 2}

JL oL JL
D PR Pt

Bpx apy apz
= —2y(—z) — 2zy

=0,
and

(L1, pi® + py? + p-2} = 2poLy, px} +2py{L1, py} +2pAL1, p2)
JL dL

0x 9z

=2pyp; +2p;(—py).

=0,

1 oLy
= 2px +2py +2p;
dy
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It should be clear that similar results are obtained considering L, and L3 in place of
L. Then, using the chain rule, one concludes that {L;, f(r)} = 0, where f(r) is an
arbitrary function of r = \/ x2 + y2 + 72, and that {L;, f(p)} = 0, for any function

of p= \/I’xz + I’y2 + p22 only.
In particular, in the case of a particle in a central field of force, the Hamiltonian
can be taken as

_ 1 2 2 2

H= 5 (px"+py" +pH)+ V),
m

and {L;, H} = 0, which shows that each Cartesian component of the angular

momentum is a constant of motion.

Poisson Brackets of the Components of the Angular Momentum of a Rigid
Body

In the case of a rigid body, it is possible to compute the Poisson brackets between
the Cartesian components of the angular momentum without specifying a system of
generalized coordinates.

The components of the angular momentum of a rigid body with a fixed point,
with respect to Cartesian axes fixed in the body, L;, are related to the components of
the angular velocity by means of L,» = I,»y @, where the I,/ are the components
of the inertia tensor [see (3.25)]. The components of the angular velocity, in turn, are
related to the generalized velocities by means of wy = My,.q, [see (3.29)], where
the My, are functions of the g; only, defined by Equation (3.30). Assuming that
the generalized forces on the rigid body are derivable from a potential V (g;, t), the
canonical momenta are given by [see (3.16)]

oT _ a (1, ; dow _
— = QD 3 D! = S Q 7 = / 15,
pi 3q'i 3q'i 2 Jk'@ Pk Jk'Wj aqi k' VL i
Hence,

Ly = (M Y pi, (4.35)

where the (M 1), are the entries of the inverse of the matrix (My;) and they are
functions of the g; only [if the coordinates g; are the standard Euler angles, the
entries My/; can be read from (3.38)]. Thus,

oLy 9oLy 0Ly dLy

{Li/, Ly} = -
e aqr Opk aqr Opk
AM 1y, _ MY, _
= (M — o (M N
0qk 0qk
AM 1y, _ IM=Yy, _
= " Ly My (M) — Ly My (M.

gk dqk
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Noting that
MYy, MMy, (MYl My aMy
( )rl Ms’r — [ K r( )rl ] _ s'r (M_l)ri’ - _ s'r (M_l)ri’a
gk gk Gk Gk

with the aid of (3.32), we obtain

{Li, Ljr}

. My _ L My _
—(M™ Y, aq;’Lsf(M Djr + MY, 5 q;’LS/(M Dir

B Mk B 3 oM. B
—(M Yy a; LM+ MY, aq; "Ly (M
r

oM oM
(M~ (M), Ly ( = ”‘)
aqk BQr

= (M~ (MY je L&y My My
= Sm/i/al/j/gl/m/S/le
= _Si’j’s’Ls’, (4.36)

which are similar to Equations (4.34). The additional minus sign appearing in (4.36)
comes from the fact that in this last equation we are dealing with components of the
angular momentum with respect to axes fixed in the body. With the aid of (4.36) we
can prove that

{Li, L;}=¢ijxLg and  {L;, Ly} =0, (4.37)
where the L; are the components of the angular momentum with respect to the
inertial frame.

Exercise 4.12. Show that Equations (4.37) indeed hold.

Proposition 4.13 (Poisson’s Theorem). If f and g are two differentiable functions
defined on the extended phase space, then

d{g’tg} — (f, dg/dr} + {df/dt, g). (4.38)

Hence, if f and g are constants of motion (that may depend explicitly on the time),
then { f, g} is also a constant of motion.

Proof. According to (4.22), the definition of the Poisson bracket, the Jacobi identity,
the antisymmetry, and the bilinearity of the Poisson bracket, we have
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dif.g} _ 9lf. g}
dr ot

0 <8f dg  Of og
0t \dq; dpi  Ip; dg;

+{{f. ¢}, H}

_af g af d%g  9°f oag  91f dg
T 9q; 0tdp;  Op; dtdq;  d1dg; dp;  1p; dg
+{f.Ag, HY} + {f. H). g)

{f.8g/01) + {af/ot, g} + {f. g, HY) + {{f. H), g}

= {f,dg/dt} + {df/dt, g}.

O

Unfortunately, the Poisson bracket of two nontrivial constants of motion may
be a trivial constant of motion, or may be a function of the initial constants of
motion. For instance, in the case of a particle in a uniform gravitational field, with
the Hamiltonian

_ e+ py?
2m

H +mgy,

px and pypy/m + mgx are constants of motion [see (4.20)], but their Poisson
bracket is a trivial constant [see (4.29)].

A similar result, applicable in the case where H does not depend explicitly on
the time, is that if f is a constant of motion, then df/d¢ is also a constant of motion,
as can be readily seen by calculating the partial derivative with respect to the time
of both sides of (4.23). Also in this case, the resulting constant of motion may be
trivial or a function of the constants of motion already known.

Exercise 4.14. Consider a charged particle in a magnetic field whose Cartesian
components, By, B>, B3, are functions of z only (this means that the magnetic field
is invariant under translations parallel to the xy-plane). Then, the condition V-B = 0
implies that B3 is constant. Show that the functions

e e
Pr=m+ . /(Bzdz — Bzdy), Py =m+ . /(B3dx — Bdz),

are well defined (that is, the integrands are exact differentials) and are constants of
motion. Find their Poisson bracket. Is it a nontrivial constant of motion?
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4.2.1 Hamilton’s Principle in the Phase Space

In the same manner as the Lagrange equations determine the stationary values of
certain integral (see Section 2.4), the Hamilton equations determine the stationary
values of the line integral

1
1(C) E/C(pidqi—Hdt)=/ [pz(t) dai(@) H(qi(t),pi(t),t)} dr, (4.39)
I

0

in the space of curves in the extended phase space that share the same endpoints with
C. In order to prove this assertion it is enough to consider one-parameter families of
curves in the extended phase space of the form

cOw) = ¢, p @), 1),

where s is a real parameter that takes values in some neighborhood of zero. That
is, all the curves C) are parameterized by 7, which takes values in some interval
[t0, 11].

Making use of the definitions

A0
as

op (1)

ni(t) = 95

) (1) =

s=0

s=0

and the chain rule we obtain

d o dg® L
~d / [ O () (q,-()(t),pf)(t),t)} dr
s Ji

n d4q©@ dg;  9H aH
/ [Ei i +p? e ni — & |dt
0]

dI(C®)
ds

s=0

dt Loodr 0qi api

. - + dr,
/t;) |:é;-l ( 3p,' i dt aqi

where, in the last equality, we have integrated by parts. The integrand in the last
integral is evaluated on the curve C(©,

If we now assume that all the curves C®) have the same endpoints in the extended
phase space, then the functions 7;(¢) and &; (¢) are equal to zero at t = fp and ¢ = 11,
and if the integral (4.39) has a stationary value on the curve C¥), compared with the
curves in the extended phase space that have the same endpoints as C?, from the
last equation we have

f dg"”  oH dp®  9H
& - —ni + dt =0,
0 dr ap; dr aq;

0
= p,( )771
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for all functions »;(#) and &; (t) whose value is zero at t = 9 and ¢t = t1, which
implies that qi(o) and pl.(o) satisfy the Hamilton equations.

It may be noticed that it is not necessary to assume that the functions §&;(¢)
be equal to zero at t = f9 and ¢+ = #1. This means that the Hamilton equations
determine the stationary values of the integral (4.39) in the space of curves in the
extended phase space that have the same coordinates g; att = fp and ¢ = 1 (without
restriction on the coordinates p;).

4.3 Equivalent Hamiltonians

In this section we shall show that, apart from the fact that the form of the Hamilto-
nian can be modified by means of a change of coordinates, a given time-independent
Hamiltonian can be replaced by other functions, at the expense of replacing the
time by another independent variable. We shall begin by applying this procedure
to the Kepler problem in two dimensions, and then we will state the general result
(Proposition 4.16, below). (A similar method, though more restricted, is employed
in Pars [11, Sects. 17.3, 18.1, 18.3, and 26.7], and in Perelomov [13, Sect. 2.3].
Equivalent results are obtained by means of the Hamilton—Jacobi equation, see,
e.g., Example 6.4.) As we shall see, in some cases, this method also allows us to
find constants of motion (not related to ignorable coordinates), without having to
solve the equations of motion, and to reduce the solution of the equations of motion
to quadratures.
The parabolic coordinates in the Euclidean plane, u, v, can be defined by

X = é(u2 — vz), y = uv, (4.40)

in terms of the Cartesian coordinates, x, y. Hence, the distance, r, from a point of
the plane to the origin can be expressed as

r=4x2+y2= é(u2 +v?). (4.41)

With the aid of these expressions one finds that the standard Lagrangian for the
Kepler problem in two dimensions,

L="@G2+3)+ ,
2 Vx4 y?

takes the form

L= ’Z(uz + )@+ %) + (4.42)

u? + v2

and, therefore (see Proposition 4.5),
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1 p®+p? 2k
H=_ PP (4.43)
2m wuc+v us+v
Even though, at first sight, this expression may not seem more convenient than the
Hamiltonian in Cartesian coordinates,

. sz +py2 k

(4.44)

as we shall see, with the introduction of an auxiliary parameter, (4.43) leads to
simple equations of motion. To this end we start by pointing out that, since H does
not depend explicitly on the time, H is a constant of motion and that if k > 0, H
can take any real value E (by contrast, if k < 0, corresponding to a repulsive force,
the Hamiltonian H takes positive values only). Noting that the equation

1 p2+ p? 2k

_ —E
2m u? 4 v? u? + 0?2
amounts to
2 2
PP p? ) = 2,
2m

we introduce the auxiliary function

2 2
he =P TP pat a2, (4.45)
2m
so that the hypersurface of the phase space H = E is equivalently given by hg =
2k. From (4.43) and (4.45) we see that the functions H and h g are related by

hg — 2k
H—E=©

22 (4.46)

and, as we shall prove now, A is, in a sense to be specified below, a Hamiltonian
equivalent to H.

In fact, if w denotes any of the parabolic coordinates, u, v, or their conjugate
momenta, p,, py, making use of (4.46) and the Leibniz rule, we have

9 (hp—2k
hp—k 0w \u? +02

Thus, introducing the auxiliary parameter T by means of

oH
ow

__0H
H=E Jw

_ 1 ohg
hp=ak WP EVE QW [ g

dr

dr =
u? +v?

(4.47)
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we find that, on the hypersurface H = E,

= = = 4.48
dr (u +U)dt (u +v)apu o (4.43)
and, similarly,
d oh d oh d oh
Pu_ _ONE e Pv_ _NE (4.49)
dr u dr apy dr ov

That is, the equations of motion can be written in the form of the Hamilton equations
with the function & g as the Hamiltonian and the parameter t in place of the time.

Note that the right-hand side of (4.47) is not an exact differential and, therefore,
T is not a function defined on the extended phase space; when u and v are given as
functions of ¢, or 7, then (4.47) allows us to find a relationship between ¢ and 7 (see
the examples below). Equation (4.47) is analogous to the well-known expression
for the arclength of a curve in the Euclidean plane ds = \/ 1 + (dy/dx)? dx. (The
parameter T is sometimes called fictitious time or local time.)

The function /g, being a polynomial of second degree in the canonical coordi-
nates [see (4.45)], seems more convenient than the Hamiltonian (4.43) and leads to a
linear system of first-order ODEs. We postpone the solution of this system to the end
of this chapter. Right now, we note that the function 4 g, defined by Equation (4.45),
is the sum of the two functions

2
h) = — Eu? and hzzpv — Ev2.

2m 2m

h1 depends on u and p,,, while h; is a function of v and p, only. Hence, according
to Proposition 4.7, on the hypersurface H = E, h1, and h; are constants of motion
(but they are not independent because h; + hy = hg = 2k on the hypersurface
H = E). Thus,

2 2
Po _pi=k-p, P

— EvV =k+ D, 4.50
2m 2m v + ( )

where D is a constant of motion. (Cf. Perelomov [13, Sect. 2.3].) Since p, =
mdu/dt [see Equation (4.48)] and, similarly, p, = mdv/dr, Equations (4.50) are
equivalent to the independent first-order ODEs

du\? dv\?
") —Er=k-b, "(%) -E®=k+D,
2 \drt 2 \drt

which can be readily solved. (The explicit form of the solution depends on whether
E is positive, negative, or equal to zero.)
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In order to eliminate E from the expression for the constant of motion D, we
multiply Equations (4.50) by v? and u2, respectively, and subtracting the results, we
obtain

Uzpu2 - M2Pu2

=k(? —u®) — V> +u?)D,

2m
which gives an expression for D in terms of the coordinates u#, v and their conjugate
momenta. In order to facilitate the identification of this constant, it is convenient to
express it in terms of the Cartesian coordinates of the particle and their conjugate
momenta. We will make use of the relations

Pu = upy + vpy, Pv = —Upx +upy, 4.51)

which follow from (4.17), and (4.40). For instance,

0x

dy
Pu = Pu Ju + py Ju = pxU + pyv.

Then, with the aid of Equations (4.40), (4.41), and (4.51), we see that

B M2Pv2 _ U2pu2 'U2 _ Lt2
2m(u? + v?2) u? 4 2
20 2.2 2
_u (—vpx +Mpy) v (upy +Upy) —kx
B 2m(u? + v?) r
_ Py = ypepy X
m r
L y
= Pt
m r

where L3 is the z-component of the angular momentum of the particle about the
origin [see (4.33)]. A straightforward computation shows that, except for a constant
factor 1/m, D is the x-component of the Laplace—Runge—Lenz vector (also known
as Runge—Lenz vector), defined by

A=pxL-— mrkr, (4.52)
identifying a vector (aj, az) in the plane with the vector (aj, a2,0), and L =
0,0, L3).

It should be remarked that in spite of the fact that initially we considered a
hypersurface H = E, the expression for the constant of motion, D, derived above is
applicable in all the phase space since all reference to the value of E was removed.
In fact, a direct computation shows that D is conserved, regardless of the value of
the energy (see Exercise 4.34, below).
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Owing to the rotational symmetry of the potential, we may expect that also the
y-component of the Laplace—Runge—-Lenz vector be conserved (see Exercise 4.15).

Exercise 4.15. Find the Poisson bracket between the constants of motion L3 and D
which, according to Poisson’s theorem (Proposition 4.13), must be also a constant
of motion. Is it directly related to the Laplace-Runge-Lenz vector?

Now we shall establish the general results, considering an arbitrary Hamiltonian,
H, that does not depend explicitly on the time, so that H(g;, p;) is a constant of
motion [see Equation (4.19)], which means that, for any initial condition, the curve
(gi(®), pi (1)), representing the evolution of the system, is contained in one of the
level surfaces H (g;, p;) = const. (see Figure 4.1).

Fig. 4.1 The level surfaces

of the Hamiltonian H (¢;, p;),

which are defined by

H(q;, pi) = const., are

hypersurfaces in the phase

space (provided that dH is /‘\/
different from zero at the
points of H(g;, p;) = const.).
The conservation of H means | v
that, for any initial condition,

the curve (g; (¢), pi (¢)) lies on

the hypersurface

H(q;, pi) = const.

containing the initial

condition

We are going to prove that, on each hypersurface H = E, where E is a possible
value of H, the Hamiltonian H can be replaced by any real-valued function defined
on the phase space, h g, provided that the level surface H = E coincides with some
level surface hp = ¢, where ¢ is a constant. In a more precise sense, we have the
following Proposition.

Proposition 4.16. Let H(q;, pi) be a given time-independent Hamiltonian and let
E be a possible value of H, if there exist a nonvanishing real-valued function
f(qi, pi) and a one-to-one function g : R — R such that

H — E = f(qi, p)lg(he — &) —g(0)], (4.53)

so that the level surface H = E coincides with the level surface hg = ¢, then, on
the hypersurface H = E, the equations of motion are given by

dg; 0h dpi oh
qi _ E ’ Pi __ E ’ (4.54)
dr opi dr 0qi
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with the parameter t defined by

dt = £(qi. p)lny=e &'(0)dr. (4.55)

Proof. Taking the partial derivatives of both sides of Equation (4.53) with respect
to p;, at the points of the hypersurface h g = €, we obtain

oH
api

ohg

= f(qis Pi)|hE:£ g/(o) 9D
Di

hg=¢

3

hg=¢

hence, making use of the Hamilton equations and (4.55),

ohg
opi

1 dg; dg;

hpme S @i P)lhy—e (0) At dT’

In a similar manner, taking the partial derivative of both sides of Equation (4.53)
with respect to g;, at the points of the hypersurface hg = ¢, we have

oH ohg
= [ i P)lpy=e & 0) ,
9qi hg=¢ 9qi hg=¢
hence, by virtue of the Hamilton equations and (4.55),
ohEg _ 1 dpi _dpi
i lppme  fGir P)lppee ' 0) dr  dr’

O

As one may guess, even though we can replace a given Hamiltonian, H, by other
functions, h g, as indicated, not every function 4 g will lead to simpler equations of
motion than those obtained from H.

Example 4.17 (Particle in a central potential). The standard Hamiltonian for a
particle of mass m in a central potential V (r), in spherical coordinates, is given by

1 Po? Ppg*
H= 2 1%
om (pr + 2 + 2 Sin2 0 + V()

(see Equation (2.2) and Proposition 4.5). Since this expression does not contain ¢
ort, ps and H are two constants of motion. The number of degrees of freedom is
three and therefore, in order to find the general solution of the equations of motion,
we require six (functionally independent) constants of motion.

The equation H = E is equivalent to g = 0, where

1 2
=, (el el D)o - B2
2m sin” 0
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which is the sum of the two functions

2.2 2
1
h = T Pr + r2V (r) — Er? and hy = p92 + .p¢ .
2m 2m sin2

h1 is a function of r and p, only, and % is a function of the angles 6, ¢ and their
conjugate momenta. Hence, &1 and &y are constants of motion (with k1 + hy =
hg = 0 on the hypersurface H = E) (see Proposition 4.7).

Taking into account that

2
p?+ M =12, (4.56)
sin” 6
where L is the angular momentum of the particle about the origin [see (2.7)], it
follows that the square of the angular momentum is conserved. In fact, not only the
magnitude of L is a constant of motion, the three Cartesian components of L are
constants of motion (see Section 4.2). The function %, has the form of the standard
Hamiltonian of a free particle in a sphere of radius 1 (a spherical pendulum without
the gravitational field). Hence, the intersection of the position vector of the particle
with the unit sphere is a circle centered at the origin, which is traversed with a
constant speed according to the parameter 7.
On the other hand,

dr oh r2p,

dr  9p» m

Hence, using the fact that /1 is conserved and its value is equal to —L?/2m, we have

r2 (mdr\? 5 2 L2
+r°V(r)—Er-=—_,

2m \r2dr 2m
hence,
dr
:l:df == k)
, [2E L2 2V(n)
r _ _
m m2r2 m

which is equivalent to the equation for the orbit (2.15).

Exercise 4.18 (Plane motion of a particle attracted by two fixed centers). The
potential energy of a particle of mass m moving on the plane under the gravitational
attraction produced by two fixed centers at the points (c, 0) and (—c, 0), has the
form
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where k; and k; are constants, and r; = /(x — )2+ y2, 12 = /(x +¢)% + y2.
In this case it is convenient to employ the elliptic coordinates (also called confocal
coordinates), u, v, defined by

x = c¢ coshu cosv, y = ¢ sinhu sinv,

because the distances from an arbitrary point of the plane to the points (c, 0) and
(—c, 0) are given by r; = ¢ (coshu—cosv) and rp = ¢ (cosh u+cos v), respectively
(see Figure 4.2). Hence, the standard Lagrangian is given by

2
k k
L= me (cosh® u — cos® v) (1> + v°) + ! + :
2 c(coshu —cosv)  c¢(coshu + cosv)

2 ki +k h ki —k
me (cosh® u — cos? v) (i + %) + (i o) cos 2u a —ha)cosy
2 ¢ (cosh” u — cos? v)

’

and the Hamiltonian is (see Proposition 4.5)

Put + po? B (k1 + ko) coshu + (k1 — ko) cosv

= 4.57
2mc2(cosh? u — cos? v) ¢ (cosh? u — cos? v) (37

y

Fig. 4.2 The distances from an arbitrary point of the Euclidean plane with elliptic coordinates
u, v to (c,0) and (—c, 0) are r; = c(coshu — cosv) and r, = c(coshu + cosv), respectively,
hence r{ + rp = 2¢ coshu, and r, — ri = 2c¢ cos v, which show that the curves u = const. are
ellipses with foci (£c, 0) and eccentricity 1/ cosh u, while the curves v = const. are branches of
hyperbolas with foci (£c, 0) and eccentricity 1/| cos v|

Find an equivalent Hamiltonian for this problem, 4 g, such that the equations of
motion for # and p, in terms of T are independent of the equations of motion for v
and p,, and vice versa, identify a constant of motion in addition to H, and reduce
to quadratures the problem of finding # and v in terms of 7 (cf. Example 4.17).
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Exercise 4.19 (Two-dimensional isotropic harmonic oscillator in confocal coor-
dinates). Show that the standard Hamiltonian for the two-dimensional isotropic
harmonic oscillator in confocal coordinates, defined in Exercise 4.18, is given by

2 2 2.2
H— Pu” =+ Po 4 mee (cosh?u + cos® v — 1). (4.58)

" 2mc2(cosh? u — cos? v) 2

Show that we can define an equivalent Hamiltonian, & g, such that the equations of
motion for u and p,, in terms of the parameter t are independent of the equations of
motion for v and p, and vice versa. Reduce the solution of the equations of motion
to quadratures.

Exercise 4.20. Show that if the Hamiltonian has the form

B 1pr2+pr2+ E+n

H 9
2 X+Y X+Y

(4.59)

where P, X, & are functions of x only, and Q, Y, n are functions of y only, then
by defining a suitable equivalent Hamiltonian, A g, the equations of motion for x
and p, in terms of 7 are independent of the equations of motion for y and p,,
and vice versa, and identify a constant of motion in addition to H. Note that the
Hamiltonians (4.43), (4.57), and (4.58) are of the form (4.59).

Exercise 4.21 (Liouville’s system). As an extension of the problem treated in
Exercise 4.20, we consider the Hamiltonian

L Pp P+ Ppt A+ Paph® | EHE A+t

H 9
2 Xi+Xo+--+ X, Xi+Xo+---+ X,

where P;, X;, and §; are functions of ¢; only (see, e.g., Pars [11, Sect. 18.1]). By
defining a suitable equivalent Hamiltonian, &g, show that, for each value of the
index i, the equations of motion for ¢; and p; in terms of 7 are independent of the
remaining coordinates ¢; and p;, and identify n — 1 constants of motion in addition
to H.

Exercise 4.22 (Charged particle in the field of a point electric dipole). The
standard Hamiltonian of a charged particle in the field of a point electric dipole
placed at the origin, in spherical coordinates (r, 6, ¢), is

1 pe® p¢2 kcos6
H= 2 ,
2m (Pr T T agng) T

where k is a constant. Find a convenient equivalent Hamiltonian for this problem
such that the equations of motion for r and p,, expressed in terms of a parameter 7,
are independent of those for the angular variables. Find r in terms of T and show that
there exists solutions of the equations of motion with constant r. Identify a constant
of motion, in addition to py and H.
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Exercise 4.23. The standard Hamiltonian of a charged particle in the field of a point

charge placed at the origin, and a constant field in the z-direction, expressed in

parabolic coordinates (u, v, ¢) [defined by x = uvcos¢,y = uvsing, z = ;(u2 —
2 .

v9)], is

1 (p+p® | ps? 2k V.2 o
H = _ _ _ .
2m ( u? 4+ v? +u2v2 u? + 0?2 Z(M v%)

where k and y are constants. Find a convenient equivalent Hamiltonian and use it to
deduce that A3+ ém y (x2+ y2) is a constant of motion, where A3 is the z-component
of the Laplace—Runge—Lenz vector (4.52).

Example 4.24 (The Morse potential). In the preceding examples and exercises of
this section we have considered systems with two or more degrees of freedom only.
In this example we shall consider the one-dimensional motion of a particle in the
Morse potential. This system can be defined by the Lagrangian

L = mi? — Vo(1 —e )2,

where m, Vj, and « are positive constants. First, we replace the coordinate x by

g = efozx/Z

(thatis, x = —(2/@) Ing), so that the Lagrangian takes the form

m 2 2
L= ( ) g — Vo(1 — ¢%?
2 \ag

and the corresponding Hamiltonian is
L ragy2 , 2,2
= V 1 - .

2m ( 2 ) pr+ Vo =a9

The Hamiltonian H is conserved and one readily finds that the equation H = E
can be rewritten as

p?  AVo—E)  4Vog® 8V

_ 8" 4.60
2m alq? a? a? (4.60)

which suggests the definition

p? LAV —B) 4Voq?

he = !

2m a?q? o

Then, a straightforward computation gives
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which is of the form (4.53) with f(q, p) = a?q*/4, g(x) = x, and ¢ = 8Vp/a’.
Hence on the curve H = E of the phase space, the time evolution is given by the
Hamilton equations (4.54) with dt = (a?¢?/4) dr [see (4.55)].

Using the fact that

dg dhg _p

dr ap m

I

from (4.60) we obtain the first-order ODE

m (dq)2 4Vo—E) | 4Vog®  8Vp

2 \dr a?q? o2 a2’

which allows us to find ¢ as a function of 7 [cf. Equation (2.25)].

Exercise 4.25. Making use of the equations derived in Example 4.24, find g as a
function of 7, and the relation between t and ¢ in the case where E = Vj.

Example 4.26. Given a time-independent Hamiltonian, H (g;, p;), the equations of
motion can be written in the form (4.54) with the parameter T being one of the
coordinates g;, provided that its conjugate momentum, p;, appears in H.

Indeed, assuming that the equation H (g;, p;) = E can be solved for pj, say, we
would obtain p1 = F(q1, ..., 4n, P2, ---, Pn, E), then letting

hEEpl_F(qla-'-aqn7p27-'-7pnaE)a

the hypersurface H = FE is also given by hg = 0 and, on this hypersurface
[see (4.54)],

dq1 _ ohg _1

dr ap1

which shows that we can take 7 = ¢;.
For instance, if

1 2
H= (pr2+”92)+V(r>,
2m r

which corresponds to a particle in a central force field in polar coordinates
[see (2.9)], from H = E we obtain pg = :I:r\/2m[E — V(r)] — p,2, hence, on
the hypersurface H = E, the equations of motion can be obtained making use of

hg = pg — r\/2m[E — V()] — p2,

using 6 in place of the time. Thus,

d Y 2 2 2

T _ 9 _ "Pr =rpr:r\/2m[E—V(r)]—p62.

&  opr  J2m[E—-V(r)]—p2 Do po r
(4.61)
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On the other hand,

dpo 3hE_0
o~ a0 7

that is, pg is a constant of motion, and from (4.61) we obtain the equation of the
orbit

d
do = Do ar

2
r2\/2m[E - V)] - P02
-

[cf. Equation (2.15)].

Jacobi’s Principle
As another application of Proposition 4.16, we consider a Hamiltonian of the form

H = bijpip; + V(). (4.62)

where the b;; and V are functions of the coordinates g; only (i, j = 1,2, ..., n).
One readily sees that H = E is equivalentto hg = 1, if we let

bijpipj
hg = . 4.63
ET2E-Wv) (*03)
In fact,
H-—E=(E-vVv)| PP _qf
2E-V)
which is of the form (4.53), with f = E — V and g(x) = x.
The Hamiltonian (4.62) corresponds to the Lagrangian

L = 5aij4igj — V(@) (4.64)

where the matrix (a;;) is the inverse of (b;;) (see Proposition 4.5) and, in a similar
manner, the Hamiltonian (4.63) corresponds to the Lagrangian

Lg = }(E — V) aijqiq’,

where ¢/ = dg;/dt. According to the results of Example 2.14, the last Lagrangian
leads to the geodesics of the configuration space, if the length of a curve is defined by

T
f \/(E ~ V) aijqlq) dr. (4.65)
70
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Thus, the orbits in the configuration space defined by the Hamiltonian (4.62) [or,
equivalently, by the Lagrangian (4.64)] are the geodesics of the configuration space
with the length of a curve defined by (4.65). This result is known as Jacobi’s
principle.

Exercise 4.27. Show that by direct substitution of the metric tensor g;; = (E —
V)a;; into the geodesic equations

agi/ 1agjk /o

/
- — iq, =0
ag V" 2 ag, U

gijCI;'/ +

[see Equation (2.67)], where ¢; = dg; /dt, one obtains equations equivalent to those
given by the Lagrangian (4.64).

Further applications of Proposition 4.16 are given in Section 5.2 (see Exam-
ples 5.38 and 5.39).

4.3.1 The Kepler Problem Revisited

In this last subsection of this chapter we shall make use of the equivalent Hamil-
tonian (4.45) to study in some detail the Kepler problem, which was already
considered in Section 2.1. We will analyze separately the cases where E is zero,
negative, or positive.

In the case where E = 0, we have

2 2
hp= Pu TP (4.66)
2m
(which has the form of the standard Hamiltonian of a free particle in Cartesian
coordinates). Therefore [from Equations (4.48)—(4.49)], p, and p, are constant,
and

w=P"rvuy,  v=P"r 40, (4.67)
m m

where u and vy are constants. These are parametric equations of a straight line in
the uv-plane passing through (ug, vp), in the direction (p,, p,). Alternatively, by
eliminating the parameter t from these equations we find that the equation of the
orbit in the parabolic coordinates is p,u — p,v = const. (which is the equation of
a straight line in the uv-plane). The meaning of this constant can be found making
use of the relations (4.51). We find

polt — puv = 2(xpy — ypx) = 2L3, (4.68)
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where L3 is the z-component of the angular momentum about the origin. (We
already knew that L3 is conserved because the potential is central.) As we shall
see now, this means that the orbit (in the xy-plane) is a parabola with its focus at the
origin, since [see Equations (4.40) and (4.41)]

L3% = L(pou — puv)?

A
d[P 4 x) = 2pupyy + pu’(r — x)]
Hpd? + podr = (pu® = poHx —2pupy y]- (4.69)

The last two terms correspond to the dot product of the position vector r = (x, y)
with the constant vector

A=-1(p = P2 2pupy), (4.70)

whose norm is given by |A| = Alt(pu2 + pvz) = mk [see Equation (4.43)].
Hence, (4.69) amounts to

L3> =|Alr+A-r. 4.71)

This is the equation of a parabola with its focus at the origin; the constant vector A
defines the axis of the parabola and L3%/|A| is the distance between the focus and
the directrix of the parabola (see Figure 4.3). (If 0 is the angle between A and r,
Equation (4.71) is equivalent to L3? = |A|r(1 + cos 8), which is the equation of a
conic with eccentricity equal to 1, cf. Equation (2.18).)

The shortest distance from the orbit to the center of force (located at the origin)
occurs when r is parallel to A and has the value

L32 L32
Fmin = = .
TT2Al T 2mk

(See also Exercise 4.29, below.)

Fig. 4.3 A parabola can be y
defined with the aid of a point
of the plane (the focus of the
parabola) and a straight line
that does not contain the
focus (the directrix). A point
of the plane belongs to the
parabola if its distance to the
focus is equal to its distance
to the directrix
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Exercise 4.28. Show that a rotation in the uv-plane by an angle 6 produces a
rotation by an angle 26 in the xy-plane. (A simple procedure consists in noting that
the definition of the parabolic coordinates (4.40) amounts to x + iy = ;(u + iv)?
and that a (passive) rotation in the uv-plane,

u' =ucosf 4+ vsinb
(4.72)

v/ = —usinf 4+ vcosb

is equivalent to u’ + iv' = e % (u + iv).)

Exercise 4.29. By means of a rotation in the uv-plane (which, according to
Exercise 4.28, corresponds to a rotation in the xy-plane), we can make p, = O.
Show that the orbit is then given by the parametric equations

L2 2kt? 2037
X = — s y = .
2mk m m

(Thus, T is proportional to the distance from the axis of the parabola to the particle.)

From Equations (4.47) and (4.67), we find that the time, ¢, is related to the
parameter T by

2 2
dr = (W +v?) dr = [(”“r+uo) +<pvr~|—v0) :|dr, (4.73)
m m
where ug, vo are the parabolic coordinates of the particle at T = 0. Thus, choosing
(uo, vo) as the closest point of the orbit to the origin (see Figure 4.4), we have
Putto + pyvo =0

and from (4.73) we obtain

2+ po? 4k
dr = (p” TRt ey voz) dr = ( 24 2rmm> dr, (4.74)

T
m? m

hence, we can take

4k
t= _ T4 2rminT (4.75)
3m

(sothatt = 0 and T = 0 when r = rp;jp).

Exercise 4.30. Show that the time is related to the distance to the origin by

2 Im
+r = 3\/2/( (r+2”min)\/r_rmin~

(Cf. Exercise 2.1.)
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Fig. 4.4 When E = 0, the v
orbit in the uv-plane is a
straight line with direction
vector (py, py) [see
Equations (4.67)]. The point
(1, vo) is chosen as the point
of the straight line closest to
the origin

Exercise 4.31. Show that the vector A, defined in (4.70), can also be expressed as

k
A:pr—mr, 4.76)
r

identifying a vector (aj, az) in the plane with the vector (aj, a2,0), and L =
(0, 0, L3). The vector A is the Laplace—Runge—Lenz vector or Runge—Lenz vector.

Exercise 4.32. Making use of the solution of the equations of motion in terms of
the coordinates u, v, py,, py, given by (4.67), with the aid of (4.51) one can find the
trajectory followed by the linear momentum of the particle, (px, py), as a function
of t. Substituting (4.67) into (4.51) and eliminating the parameter t, show that the
curve described by the momentum (called the hodograph) is an arc of the circle
passing through the origin given by

Ar\? A\ A2+ A2 mk\?
, — = = 4.77
(Px * L3) * (p) L3) L3? L3 7D

(provided that L3 # 0; when L3 = 0, the hodograph is part of a straight line passing
through the origin).

The center of the circle (4.77) is located at the point (—A2/L3, A1/L3), which
can be expressed in the form

LxA

12 (4.78)

This constant vector is known as Hamilton’s vector. (Here, again, L. = (0, 0, L3),
and a vector (ay, az) in the plane is identified with the vector (a1, a2, 0).)

In the case where E < 0, hg has the form of the Hamiltonian of a two-
dimensional isotropic harmonic oscillator with angular frequency

= \/ 2k (4.79)

m
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[compare Equations (4.16) and (4.45)]. Hence, in the uv-plane, the orbit is an ellipse
centered at the origin (see Section 2.1) and, by rotating the axes u and v, if necessary,
we can assume that the solution of the equations of motion is given by

u = Bcoswr, vV = «a sinwrt, (4.80)

where o and B8 are two real numbers with || > || (|o| and |B| are the semiaxes
of the ellipse, see Figure 4.5). (It is convenient to allow for negative values of o
and B; the sign of af determines the sense in which the orbit is traversed.) Then,
from (4.48) and (4.49),

pu = —mwp sinwrt, Py = MWK COS WT (4.81)

and [see Equations (4.40)]
x = ,[B*— o + (@® + B?) cos 2wt ], y = yapsin2wr, (4.82)

which are parametric equations of an ellipse in the xy-plane, with semiaxes a and
|b|, where

a=l@*+pH, b=lap, (4.83)

centered at the point ((,B2 — az) /4, 0). Hence, the distance from the center of the
ellipse to the foci is ¢ = va2 — b%> = (a® — p2)/4, which means that one of the
foci of the ellipse coincides with the origin (see Figure 4.5). Equations (4.82) show
that the sign of b determines the sense in which the ellipse is traversed. See also
Equation (4.85).
Since h g has the value 2k, substituting (4.80) and (4.81) into (4.45), we find that
o + B2 k k

4 mw?  2E’

Y

> X

N
P

Fig. 4.5 Equations (4.80) are parametric equations of an ellipse centered at the origin in the uv-
plane, with semiaxes || and |B|. Equations (4.82) correspond to an ellipse with one of its foci at
the origin in the xy-plane
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that is,

E=—_, 4.84
2 (4.34)

which shows that the energy E is a function of the major semiaxis of the orbit only
[cf. (2.21)]. Similarly, from (4.68) we obtain 2L3 = mwaf, which amounts to

L3 L3

b= = .
mo  /-2mE

(4.85)

According to Equations (4.47), (4.80), and (4.83), the time is related to the
parameter T by

dt = (u® +v?)dr
= (,32 cos® wt + a? sin® wt)dt =2(a — ¢ cos2wt) dt
= 2a(l — e cos2wrt) dr,
where e = c/a is the eccentricity of the ellipse. Hence, we can take

¢ =2at — % sin 2wt (4.86)
w

(so that t = 0 when T = 0). From (4.82) we see that, in a complete period, t is
increased by 7 /w and from (4.86) it follows that the period of the motion, T, is

T = .
w

With the aid of this expression [and Equations (4.79) and (4.84)] we can readily
obtain Kepler’s third law,

47242 47242 47%a’m 47%m 3
= — = a”.

T? = = -
w? —2E/m —k/a k
In place of the parameter t, it is convenient to use the dimensionless variable

¥ = 2o, (4.87)

then

2
X =a(cosy —e),  y=bhsiny, ;t=1p—esin¢. (4.88)

The last equation in (4.88), which relates the time with the auxiliary parameter ,
is known as Kepler’s equation [cf. Equation (2.24)]. In order to find the coordinates
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x and y in terms of 7, one would have to solve Kepler’s equation for ¢ as a function
of ¢, which is not a simple task when e # 0 (the interested reader may consult
Fasano and Marmi [8, Sects. 5.4-5.5], Bowman [1, §109] and, for a more detailed
discussion, Colwell [3]). The geometrical meaning of i can be seen in Figure 4.6.

Fig. 4.6 The vertical line
passing through the point P
= (acos ¥ —ae, bsiny) of
the orbit intersects the circle Q
of radius a and center
(—ae, 0) at the point Q P
= (acosy —ae,asiny). v
Hence, the eccentric anomaly,
Y, is the angle between the
x-axis and the radius of the
circle passing through Q

=

A similar treatment of the Kepler problem with negative energy, making use of
the Lagrangian formalism, can be found in Pars [11, Sect. 26.10].

Exercise 4.33. Consider the Hamiltonian (4.45) with E > 0. Show that the
corresponding equations of motion have solutions of the form u = g coshwr,
v = a sinh wt, where o and B are real constants, with |a| > || and @ = +/2E/m.
Show that, in the xy-plane, the orbit is a branch of a hyperbola with semiaxes a and
|b], with a = }1(052 - B, b = éaﬂ. Show that also in this case the energy is a
function of the major semiaxis only and obtain the analog of the Kepler equation.

Exercise 4.34. Making use of vector calculus show that in the case of the Kepler
problem, characterized by the equations of motion

dp  kr
a3’
where k is a constant and r = |r|, the Laplace-Runge-Lenz vector (4.76) is

conserved, for any value of the energy, E. Show that, for any value of E, the
hodograph is a circle, or part of a circle, centered at L x A/L?, of radius

mk
R = .
[L|

(Cf. Equations (4.78) and (4.77).)
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Canonical Transformations Check for

One of the main reasons why the Hamiltonian formalism is more powerful than
the Lagrangian formalism is that the set of coordinate transformations that leave
invariant the form of the Hamilton equations is much broader than the set of
coordinate transformations that leave invariant the form of the Lagrange equations.
As we have seen, any transformation of coordinates, qlf = qi’ (gj, 1), preserves
the form of the Lagrange equations (in fact, as shown in Section 2.4, the form
of the Lagrange equations is invariant also under the coordinate transformations
g, =4q/(qj,1), 1 =1t'(g;, 1), if the Lagrangian is suitably transformed).

As we shall see, not every coordinate transformation in the extended phase space
preserves the form of the Hamilton equations; however, there exists a wide class
of coordinate transformations, called canonical transformations, which maintain the
form of the Hamilton equations for any Hamiltonian function. Furthermore, any
canonical transformation can be obtained from a single real-valued function of 2n +
1 variables, where n is the number of degrees of freedom of the system, which is
therefore a generating function of the transformation.

In Sections 5.1 and 5.2 the canonical transformations are defined and the
existence of generating functions is proved. The proof of the existence of a
generating function for each canonical transformation given below is direct and
elementary, and, by contrast with the standard approach, it is not based on the
calculus of variations.

In order to present the ideas and results in a simple way, we consider first
the case where there is only one degree of freedom. In Section 5.3 we study the
one-parameter families of canonical transformations, and in Section 5.4, we show
that any constant of motion (that may depend explicitly on the time) is associated
with a one-parameter group of canonical transformations that leave invariant the
Hamiltonian.

In Section 5.5 we discuss the coordinate transformations that preserve the form
of the Hamilton equations for a given Hamiltonian, but are not canonical. We show
that each of these transformations leads to a set of constants of motion.
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5.1 Systems with One Degree of Freedom

We consider a system with one degree of freedom, described by a Hamiltonian
function H (g, p, t). This means that the equations of motion of the system are given
by the Hamilton equations

d
7 _ o= =, (5.1)
dr ap

We want to find other coordinate systems, (Q, P, t), of the extended phase space
such that the equations of motion also have the form of the Hamilton equations; that
is, we look for the coordinate transformations, Q = Q(q, p,t), P = P(q, p, 1),
such that Equations (5.1) are equivalent to

-k 5.2

do 9K dp
dr ~ 9P’ dr

where K is some function.

Assuming that the transformation Q = Q(q, p,t), P = P(q, p,t) is differ-
entiable (as well as invertible), making use repeatedly of the chain rule, and of
Equations (5.1) and (5.2) we find that the function K would have to satisfy

0K 0K0Q A 0K 9P
dg 9Q dqg IP dgq
_dPOQ  dQoP
~dt 3¢  dt dq
_ <8P n oPdg o0Pdp\oQ n <8Q 00 dg n 8de) oP
N at  dg dt  dp dr ) g at g dt  dp dt ) dq
. BP_I_BPBH oPoH 3Q+ 8Q+8Q3H dQ 0H\ oP
N at 8q ap  dp dq ) dq 9t  dq dp dp dq ) dq
8Q oP  9PIQ
={0, P} . (5.3)
Bt Bq at dq
where we have made use of the definition of the Poisson bracket (4.21)
af 9g  9f dg
{f.¢}= — . (5.4)
dg dp  9p dq
In a similar way, we obtain
oK oH 0QoJdP 0dPOQ
={Q, P} - . (5.5)
ap ap at dap at dap
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Thus, given H, Q, and P in terms of g, p, and ¢, Equations (5.3) and (5.5)
determine the partial derivatives of K with respect to ¢ and p, but these two expres-
sions might be incompatible; the (local) existence of a function K satisfying (5.3)
and (5.5) is equivalent to the fulfillment of the integrability condition

90K 90K
~dqdp  0pag’

that is, assuming that the partial derivatives of P, Q, and H commute,

I 9H 209P dPIQ] 9H 9Q9P P3O
= 0 [{Q’P} op ot op o0 ap]_ap [{Q’P} sg " or 0g  ar aq}
{0, P
=tie. P+ 10

which means that {Q, P} is a constant of motion [cf. Equation (4.23)]. Thus we
have proved the following result.

Proposition 5.1. The coordinate transformation Q = Q(q, p,t), P = P(q, p,t)
preserves the form of the Hamilton equations if and only if {Q, P} is a constant of
motion.

Example 5.2 (One-dimensional harmonic oscillator). In the case of the transforma-
tion

Q = arctan m;)q, P = \/pz + m2w?q2, (5.6)

the Poisson bracket {Q, P} is equal to me (p>+m?w?q*)~ '/, which is a constant of
motion if the Hamiltonian is, for instance, H = 2; (p* + m*w*q?) (corresponding
to a one-dimensional harmonic oscillator). The Hamilton equations (5.1) yield
dg/dt = p/m, and dp/dt = —mw?q and, therefore,

do dp 0 5.7)
= w, =0V, .
dr dr
which can be expressed as the Hamilton equations (5.2) with, e.g., K = wP.

(Alternatively, from Equations (5.3) and (5.5) we have

K

2 2\—1/2
9g q) ',

K
= wp(p® + m*w
ap

— m2w3q(p2 + m2a)2q2)71/2’
which lead to K = w(p?+m?w*q?)'/? = w P, up to an additive function of 7 only.)

The solution of the equations of motion (5.7)is P = Py and Q = wt + Qy,
where Py and Q¢ are constants. Then, inverting the relations (5.6), we obtain the
solution of the equations of motion in terms of the original coordinates: mwqg =

Py sin(wt + Qp), p = Pocos(wt + Qo).



146 5 Canonical Transformations

Of course, if we already have the equations of motion (5.7), which are easily
integrated, it might seem of little interest to see if they can be expressed in the
form of the Hamilton equations or not. However, as we have confirmed in the
preceding chapter, and as we shall continue verifying in what follows, there are
many advantages in expressing a system of equations in the Hamiltonian form. On
the other hand, by contrast with (5.7), in most cases, we will not find directly the
equations of motion in terms of the new variables. It is simpler to find the new
Hamiltonian, which determines the entire new system of equations.

Exercise 5.3. Show that if
Q=,mg*—qpt,  P=p,

and the Hamiltonian is that of a free particle,

H =

’

2m

then {Q, P} is a (nontrivial) constant of motion. Find a Hamiltonian K for the new
coordinates.

Now, a function of (g, p,t) is a constant of motion or not, depending on the
equations of motion, that is, depending on H. Thus, if we look for a coordinate
transformation that preserves the form of the Hamilton equations regardless of the
form of H, the Poisson bracket {Q, P} must be a constant of motion regardless of
the form of H, and this means that {Q, P} has to be a trivial constant (i.e., a function
that does not depend on ¢, p, or ¢). Since a nonzero constant factor can be absorbed
in the definition of the coordinates, it is enough to consider transformations such
that

{0, P} =1. (5.8)

(If{Q, P} = 0, then (Q, P, t) is not functionally independent and cannot be used
as a coordinate system.) The coordinate transformations satisfying Equation (5.8)
are called canonical transformations, and the coordinate transformations such
that {Q, P} is a nontrivial constant of motion are sometimes called canonoid
transformations. In what follows we shall consider almost exclusively canonical
transformations. (The canonoid transformations will be treated in some detail in
Section 5.5.)

There are several additional reasons to consider canonical transformations only;
one of them is that if (g;(¢), p;(¢)) is the solution of the Hamilton equations, for
a given Hamiltonian, then the relation between (g;(to), pi(to)) and (g;(t), pi (1)),
for any #p and ¢, is a canonical transformation (see pp. 186—190, below). Another
reason is that the Poisson brackets (5.4) are invariant under these transformations,
in the sense that
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af og df dg _ af ag  df 0g
dgdp dpdg dQIP APIQ’

for any pair of functions f, g, defined on the extended phase space, if and only if
Equation (5.8) holds. In fact, making use of the chain rule, one can readily show that

daf dg  af dg

(5.9)
dgdp 0pdq

of 9g  af 9
:{Q’P}<f g _of g).

3QIP dPIQ
It may be noticed that this equation is equivalent to the relation between Jacobians

a(f.g) _ 9(Q,P) 9(f, )

= , (5.10)
d(g,p)  9(g,p) 9(Q, P)
and that Equation (5.8) amounts to
9(0. P) =1 (5.11)
a(q, p)

The above calculation shows that, conversely, the coordinate transformations
that leave the Poisson bracket invariant are the canonical transformations (see also
Proposition 5.44, below).

The canonical transformations also arise in a natural way when one performs
an arbitrary coordinate transformation Q = Q(q, ) in the extended configuration
space. According to (4.17), a change of the coordinate in the extended configuration
space, O = Q(q, t), leads to a new canonical momentum, P, given by

dg
P =paQ.

Then, using the definition of the Poisson bracket and that d 0 /0p = 0, we have

_9Q0P 30 dq _

te. = dg dp g 9Q

Another reason to restrict the discussion to canonical coordinates is that any
constant of motion can be associated with a one-parameter group of canonical
transformations that leaves the Hamiltonian invariant (see Section 5.4, below).

Thus, restricting ourselves to canonical transformations, Equations (5.3)
and (5.5) reduce to

0K —H) _9Q03P 9PIQ dK —H) _9Q03P 9PIQ

= , = . (5.12)
aq at ag dt 9dq ap at dp dt Jp

These equations show that, given a canonical transformation (so that the right-hand
sides of Equations (5.12) can be calculated), the difference K — H is determined up
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to an additive function of t only. In particular, if the new coordinates do not depend
on t, we can take K = H. It may be noticed that the expressions on the right-hand

; ; ; (0, P) (0, P)
sides of Equations (5.12) are the Jacobians 3(.q) and Bt p) -

Example 5.4. The coordinate transformation

2 p
Q=1q 214 (5.13)
is canonical since
dQdoP 9QoP 1
(o.py= 2Q0F 9QP_, 1 o(L P )2
dg dp  Op dgq 2tqg 2tq?
(Except at tq = 0, where the transformation is not defined.) According to
Equations (5.12),
a(K—-H) p d(K—-H) g¢q
aq 2 ap 2

hence, K = H + pq/2t + f(t) = H+ PQ/t + f(t), where f(¢) is a function of
t only, which can be taken equal to zero without affecting Equations (5.2).

Exercise 5.5. Show that the coordinate transformation
Q=gq+,8t°. P=p+mgt,

where m and g are constants, is canonical and find the expression for K in terms
of H.

Exercise 5.6. Show that the coordinate transformation

0 = g(coswt + wt sinwt) + P (wt cos wt — sinwt),
mw (5.14)

P = mwgq sinwt + p coswt,

where m and w are constants, is canonical. Show that if

then, up to an additive function of ¢ only,

P2
K = .
2m
Therefore, under the coordinate transformation (5.14) the equations of motion of
a one-dimensional harmonic oscillator are converted into those of a free particle.
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(It may be noticed that in the limit as @ goes to zero, the coordinate transformation
(5.14) reduces to the identity and H becomes the standard Hamiltonian of a free
particle.)

It should be remarked that even though the canonical transformations are defined
taking into account the form of the equations of motion, a canonical transformation,
such as (5.14), is a coordinate transformation in the extended phase space and,
among other things, the coordinates, g, p, and ¢ are independent variables (this
point is essential in what follows).

One can convince oneself (for example, looking for explicit examples) that it is
not easy to find canonical transformations, guided solely by the definition (5.8), and
that it is even more difficult to find a canonical transformation useful to simplify the
Hamilton equations for a given Hamiltonian. As we shall see in the next paragraphs,
at least the first of these difficulties can be easily surmounted. We will be able
to construct plenty of canonical transformations very easily with the aid of the
generating functions defined below.

Generating Functions

Another reason for centering the attention to the canonical transformations is that

any of these transformations is determined by a single real-valued function.
Equations (5.8) and (5.12) are necessary and sufficient conditions for the local

existence of a function, Fj, defined on some open region of the extended phase

space, such that

pdg — Hdt — (PdQ — Kdr) =dF,; (5.15)

(that is, the function F7 may not be defined in all the extended phase space, we
can only assure its existence in some neighborhood of each point of the extended
phase space where the left-hand side of (5.15) is defined). In fact, writing the left-
hand side of (5.15) in terms of the single set of coordinates (g, p, t) of the extended
phase space,

(p— P8Q>dq - Panp—l— (K — H - P8Q>dt,

aq ap at
and applying the standard criterion for a linear (or Pfaffian) differential form to
be exact, one finds that the left-hand side of (5.15) is locally exact if and only if
Equations (5.8) and (5.12) are satisfied. For instance, by considering the crossed
partial derivatives of the coefficients of dg and d¢, we obtain

0

; <K_H_P8Q> 3 ( _P8Q>:8(K—H)_8P8Q+8P8Q

at ) ot dq g dg ot 9t dq’

which is equal to zero if and only if (5.12) holds.
If (g, Q,t) is functionally independent (which amounts to say that p can
be expressed as a function of ¢, Q,t), then the function F; appearing in
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Equation (5.15) can be expressed in terms of g, Q, and ¢ (in a unique way),
and from Equation (5.15) it follows that

IF IF IF
p=< 1) , P=—< 1) , K—H:( 1) . (5.16)
aq 0.1 3Q q.1 at q,Q

and, necessarily, 32 F} /dgdQ # 0 (otherwise ¢ and p would not be independent).
Conversely, given a function Fj(g, Q,t) such that 92F 1/0g0Q # 0, Equa-
tion (5.16) can be locally inverted to find Q and P in terms of g, p, and ¢. In this
way, F1 is a generating function of a canonical transformation. Thus, we can easily
construct canonical transformations; we only have to choose a function Fj(q, Q, 1)
such that 32 F; /g3 Q # 0. What is desirable is to find a canonical transformation
that simplifies a given problem or that relates two problems of interest.

Example 5.7. From Equations (5.14) we see that, except at the points where
tanwt = wt, (q, Q, t) is functionally independent (for instance, Q cannot be written
as a function of g and ¢ only), and that p and P are given by

_ mo[Q — g(coswt + wit sinwt)] p_ mw(Q coswt — q)

wt cos wt — sin wt ’ wt cos wt — sin wt

in terms of (g, Q, t). Substituting these expressions into the left-hand sides of the
first two equations (5.16) we find that

_ mo 12 1.2 :
F = . [qQ —, 07 coswt — ,q~(cos wt + wt sma)t)] + f(),
wt cos wt — sin wt

where f(¢) is a function of # only. Then, the last equation in (5.16) gives
K H— _ma)2 ( QO sinwt — qwt

2
5 ) + ()

wt cos wt — sin wt

and with the aid of this expression we can find the new Hamiltonian, K, for any
given Hamiltonian H. (The term f’(¢) has no effect on the Hamilton equations and
can be dropped.)

Example 5.8. The function
q
F1 =—Qcot
1 Q )

satisfies the condition 92F;/dgdQ # 0. According to Equations (5.16), the
canonical transformation generated by Fj is such that p = ;chc2 ;q and
P = cot éq, hence, Q = 2p sin? éq, P = cot éq. Furthermore, K = H. (Note
that in this case we assume a priori that (g, Q, t) is functionally independent.)
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On the other hand, if (g, O, t) is functionally dependent (that is, Q can be
expressed as a function of g and ¢ only, as in Example 5.4), the function Fj
appearing in Equation (5.15) can be written in infinitely many ways in terms of
q, Q, and ¢, and the first two equations in (5.16) make no sense (since, e.g., keeping
g and t constant in the partial differentiation with respect to Q, would make Q
also constant). In such a case, the set of variables (g, P, t) [as well as (p, Q, 1)]
is necessarily functionally independent (otherwise (Q, P, t) or (g, p,t) would be
functionally dependent). Using the fact that PdQ = d(P Q) — QdP, we can write
Equation (5.15) in the equivalent form

pdg — Hdt + QdP + Kdt = dF>, (5.17)

where F»> = F; + P Q. Then, the function F» can be expressed in a unique way as a
function of g, P, and ¢, and from (5.17) it follows that the canonical transformation
is determined by

0 F 0F 0F
p=( 2) : Q=< 2) , K—Hz( 2) . (5.18)
g ) p, P ),, or ), p

with 82F,/dgdP # 0. F is then a generating function of the canonical trans-
formation. It should be noted that Equations (5.18) are applicable if (g, P, ) is
functionally independent, regardless of whether (g, Q, ¢) is functionally indepen-
dent or not (see Example 5.9, below). Conversely, any function F>(q, P,t) such
that 9%>F>/dgdP # 0 defines a canonical transformation by means of the first
two equations in (5.18). The relation between F; and F, is another example of a
Legendre transformation (compare the relation F», = —Q(9F;1/00Q) + F with the
definition of the Hamiltonian, H = ¢; (0L /dq;) — L).

Example 5.9. In the case of the coordinate transformation (5.14), except for some
values of 7, the sets (¢, O, t) and (g, P, t) can be used as coordinates of the extended
phase space. For instance, from (5.14) we have

P — mwq sin wt q P (wt cos wt — sin wt)
p= ) 0= + )
cos wt cos wt ma cos wt
which explicitly show that when coswt # 0, (¢, P, t) can be used as coordinates
of the extended phase space (since (g, p, t) can be expressed in terms of (g, P, t)).
Substituting these expressions on the left-hand sides of the first two equations (5.18)
one finds that

1 ma)q2 . P2 .
h = qP — sin wt + (wt coswt — sinwt) | + f(1),
cos wt 2 2mw

where f(¢) is a function of ¢ only.
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In a similar way, if (p, Q, t) is functionally independent, one can make use of a
generating function F3 = F; — pgq. In that case, F3 can be expressed in a unique
way in terms of (p, Q, t), and from (5.15) we have

—gdp — Hdt — (PdQ — Kdt) = dF3,

which implies that

<8F3> P <8F3> K—H <8F3>
q = — , = — B —_ =
P ) o a0 ot at 2.0

and, when (p, P, t) is functionally independent, defining F4 = F| — pq + P Q, one
obtains

—qdp — Hdt + QdP + Kdt =dFy

therefore

IF oF OF
1=~ ), =), x=(),,
op ) p, 0P ), ot ), p

Example 5.10. We shall consider the coordinate transformation (5.13) again,

2 p
=142, p=_".
Q=tq 21q

Substituting these expressions into the left-hand side of (5.15) we obtain

pdqg — Hdr — (PdQ — Kdr) = pdq — Hdr — 2': d(1q?) + Kdr
q

—(k—H-P")a,
( o)

which is an exact differential if and only if K — H — pgq/2t is a function of ¢
only. (Applying again the criterion of the equality of the crossed partial derivatives,
it follows that the differential form A df 4+ 0dg + 0dp is exactif and only if Ais a
function of ¢ only.) Choosing K = H + pq/2t, we obtain dF; = O (thatis, F} is a
trivial constant).

In the present case (g, Q, t) is not functionally independent but since g and p
can be written in terms of (g, P, t), these last variables can be used as coordinates
in the extended phase space, and the canonical transformation can be expressed
in terms of a generating function of the type F». Choosing F; = 0, we obtain
F, = PQ = Ptq? and it can be readily verified that Equations (5.18) reproduce the
formulas (5.13).

Alternatively, expressing p and Q in terms of (¢, P, t), we have

p =2tPq, 0 =tq2,
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and comparing with the first two equations in (5.18) we find that F> = Ptg> + (1),
where ¢ (¢) is a function of ¢ only. Then, from the last equation in (5.18) we obtain
K = H + Pg*> + ¢/'(t) = H + pq/2t + ¢'(t), which is equivalent to the previous
result.

Note that, in the present example, the sets (¢, P, 1), (p, Q,t), and (p, P,t)
are functionally independent and, therefore, the transformation can be obtained by
means of generating functions of type F», F3, and Fjy.

Exercise 5.11. Find a generating function of type F for the canonical transforma-
tion considered in Exercise 5.5. Is it possible to find generating functions of types
F, F3, or Fy for this transformation?

Exercise 5.12. Does the function
F1 =q(kint —1In Q),

where k is a constant, define a canonical transformation? If it does, find Q and P in
terms of (g, p, t) and K in terms of H.

Example 5.13 (Damped harmonic oscillator). The Hamiltonian

2 2
—2yt P 2yt MW= 9
H=¢e V7 4% ,
2m 2 4

where y is a positive constant, corresponds to a damped harmonic oscillator (see
Example 2.6). With the aid of (5.15) one verifies that the coordinate transformation

0=e""q, P=eV'ptmyeq

is canonical and that the new Hamiltonian can be chosen as K = H + ypq, with
F| = —my e*’'¢?/2, thus

_ 72ytp2 2yr’"‘02 2 _ P> m@ —y?)
K= +e7' ¢ rypg=, + ) o,
which has the form of the standard Hamiltonian of a harmonic oscillator of
frequency \/ w? — y2. Hence, if > — y? > 0, the solution of the Hamilton equations
is givenby Q0 = A cos(\/a)2 — y2t + 8), where A and § are some constants and,
therefore, ¢ = Ae™" cos(y/w? — y2 1 +8).

(Note that the explicit expression of the function F; given above was not
employed. In order to verify that the coordinate transformation is canonical and
to find K — H it is only necessary to show the existence of Fj. In this example the
set (g, O, t) is not independent and therefore F; cannot be a generating function of
the transformation. Note also that the new Hamiltonian, K, being independent of ¢,
is conserved. This constant of motion was already found in Example 2.20.)
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Example 5.14 (Galilean transformations in one dimension). The Cartesian
coordinate g, of a particle of mass m, measured in an inertial reference frame
S, is related to the Cartesian coordinate Q of the same particle, measured in a frame
S’ moving with respect to S with (constant) velocity v, by means of

Q=qg—ut (5.19)

if the origins coincide at ¢ = 0. Then, the usual linear momenta of the particle, p
and P, measured in S and S, respectively, are related by

P =p—mo. (5.20)

Equations (5.19) and (5.20) define a canonical transformation since {Q, P} = 1 and
with the aid of Equations (5.12) we can find K — H (up to an additive function of ¢
only). Alternatively, we compute the differential form on the left-hand side of (5.15)

pdg — Hdt — (PdQ — Kdr) = pdg — (p — mv)(dg — vdt) + (K — H)dt
= vpdr + mvdg — mv?dr + (K — H)dt
= d(mvg — ymv*t)+(K — H + vp—ymv¥)dr. (5.21)

By comparing this last expression with Equation (5.15) we conclude that the
coordinate transformation given by (5.19) and (5.20) is canonical, and also that the
new Hamiltonian must be given by

K=H—vp+imv*+ f(1), (5.22)

where f(¢) is an arbitrary function of ¢ only. If we choose f = 0, then by
comparing (5.21) and (5.15) we see that (up to an additive constant) 1 = mvg —
Tmv2t,

It may be noticed that the last line of (5.21) can also be written as d(mvg —
mv3t) + (K — H + vp)dt, in which case the constant term émv2 would be absent
from (5.22).

In this example (g, O, t) is not functionally independent (since Q = g — vt) and
therefore F cannot be used as a generating function; however, (g, P, t) [as well as
(p, O, t)] can be used as coordinates in the extended phase space and the function
F>(gq, P,t) = F1 + PQ = mvqg + P(q — vt) generates the transformation (5.19)—
(5.20), by means of (5.18). (Note that the function F| can be expressed in terms of
q, O, and ¢ in infinitely many ways, some of them are mvg — %mvzt, mV(Q+vt)—

émvzt, and émv(q + Q +vt) — émvzt.)

It may be remarked that it is not entirely a matter of choice which variables are
used as coordinates in the extended phase space. It is the coordinate transformation
what determines which combinations of old and new coordinates are functionally
independent. Given a canonical transformation, the functions Fi, F», F3, and Fy4
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always exist, at least locally, but they can be called generating functions only if the
appropriate sets of variables are functionally independent. Note also that, in some
cases, one of these functions can be equal to zero (see, e.g., Examples 5.10, 5.17,
and 5.18).

The following example may help to understand what is happening here. The sets
{i, j} and {2i, 1 + j} are bases of R2; however, if we consider a set of two vectors
formed by one vector from the first set and one vector from the second set, we may
obtain a basis of R? or not. In fact, {i, i + j}, {j, 2i}, and {j, i + j} are bases of R,
but {i, 2i} is not. In a similar way, in the case of a canonical transformation, we have
two sets of coordinates of the phase space, (¢, p) and (Q, P), but when we take one
coordinate of the first set and one coordinate from the second set, not necessarily
we will get a coordinate system of the phase space.

Exercise 5.15. Consider the canonical transformation found in Example 5.8. Is it
possible to find generating functions of types F», F3, or Fy4 for this transformation?

Exercise 5.16. Is it possible to have a canonical transformation that can be obtained
by means of a type F] generating function as well as by generating functions of
types F2, F3, and F4? (Note that, since the functions Fy, F», F3, and F4 always
exist, at least locally, the question is equivalent to ask if is it possible to have
a canonical transformation such that the sets (¢, O, 1), (¢, P,t), (p, O, 1), and
(p, P, t) are all functionally independent.)

Example 5.17 (The Emden—Fowler equation). The Hamiltonian

2 2
p 1=q
H=

2t2jL k+1

k+1

leads to the Emden—Fowler equation for ¢ [see Equations (2.49) and (2.51)]. The
coordinate transformation Q = t'/2g, P = t~'/?p is canonical and the new

Hamiltonian can be taken as K = H + ét‘l pq. In fact,

pdg—Hdt—(PdQ—Kdt) = pdg—t~'?p (t"/2dg+ )1 qdt)+(K — H)dt
= (K — H - éflpq)dt
=0
(so that Equation (5.15) holds, with F; = 0). Thus,

P2 k+1 P
k=""4 ¢ ot @
2t (k+Dt*=3/2 0 2t

In the special case where k = 5, the new Hamiltonian is given by

P2 6 p
k=""49 .79

2
2t 6t 2t (5.23)



156 5 Canonical Transformations

which implies that the function
@ =3P>+Q%+3PQ (5.24)

is a constant of motion (see Exercise 4.8).

The constant of motion (5.24) can be employed to solve the Hamilton equations.
Indeed, making use of one of the Hamilton equations and eliminating P with the
aid of (5.24), we obtain

d K P
0 3 Lo,

_ 1\/Q2 4Q6_|_4q)
de ~ aP ¢t 2 2t 3 37

which is a separable equation, viz.,

dr 2d
+ = Q

; .
Jor-105+ 1o
In terms of the original coordinates, the constant of motion (5.24) is given by

3 2
I; +t3q6 +3pgq.

® =
Example 5.18 (The Poisson—Boltzmann equation). The Poisson-Boltzmann equa-
tion

k
éj:_tq_aeqv

where k and a are constants such that k % 0 and a € {—1, 1} can be obtained
from the Lagrangian L = ét"cf — arke? (see Exercise 2.9) and the corresponding
Hamiltonian is given by

»?

H=
2tk

+ atel.

The transformation Q = 129, P =t 2e 4 p is canonical. In fact,
pdg — Hdt — (PdQ — Kdt) = pdg —t e p(t*e?dq + 2te’dt) + (K — H)dt
= (K —H—-2""p)ds
and, therefore, we can take F; = 0 and

2p  P?Q*  aQ  2PQ

K=H =
+ t 2tk 12—k t
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Thus, in the case where k = 1,

_ P LaQ 2P0
2t t t

K

s

which implies that, in this particular case, tK (that is, tH + 2p) is a constant of
motion (see Exercise 4.8). With the aid of this constant of motion we can find a
separable first-order ODE for Q as a function of 7.

Exercise 5.19. Consider the Hamiltonian

where m and k are constants. Show that the coordinate transformation Q = ¢~1/2¢,
P = t'/2p is canonical, and find the new Hamiltonian, K . By analyzing the form of
K, find a constant of motion and use it, together with H (which is also conserved),
to find the solution of the equations of motion without solving any differential
equation.

Exercise 5.20. The possibility of finding by inspection a constant of motion, as
in Examples 5.17 and 5.18, is present in some second-order ODESs invariant under
scaling transformations. For instance, the nonlinear ODE

is invariant under the substitution ¢ — Ag, ¢ +— Af, where A is any nonzero real
constant. Following the standard procedure one obtains the Lagrangian

-2 3
q q
L=
2t + 34
(see Section 2.3) and the Hamiltonian
2 3
t
g _a
2 3t

for this equation. Show that for any value of the real parameter s, the transformation
Q = t*q, P = t7%p is canonical and find the new Hamiltonian. Determine a
convenient value of s for which one can readily identify a constant of motion from
K. (Thus, despite the fact that in a canonical transformation the coordinate ¢ is
not transformed, we can make use of symmetry transformations that also affect the
time.) With the aid of this constant of motion, reduce the solution of the equations
of motion to quadrature.
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Example 5.21. A more elaborate example, involving the simple Hamiltonian

2

H = p + mggq,
2m

is given by the coordinate transformation

Q:t_l/zq—l— égt3/2, P=t1/2p~|—mgt3/2.

Making use of these definitions we calculate the differential form
pdg — Hdt — (PdQ — Kdr)
= pdg—(t'? p+mgt*/?)(t71/2dg -1t 72qdi+3 gt'/2dr) +(K — H)dt
pqg 3 3 3 22
=d(—mgt — gt — t*+ K — H)dt,
(—mg 61)+<2t L8P+ mgq —  mg " +

thus showing that the transformation is canonical and that the new Hamiltonian must
be given by

3 3 3
K=H— Pq + gtp— _mgq+ 4mg21‘2~|—f(z‘),

2t 4 2
where f(¢) is a function of ¢ only. Substituting the expression for H (which has
not been employed so far) and expressing the result in terms of the new canonical
coordinates one finds the simple expression

P2 PO 1 ,,
K = — t r).
omt o T MET IO
Hence, it is convenient to choose f(t) = — émg2t2, so that

1/P* P
K = _re .
t \2m 2
By contrast with the original Hamiltonian, which is a constant of motion, K
depends explicitly on the time and is not conserved, but the product 7K is a constant

of motion (see Exercise 4.8). In terms of the original coordinates, the product K is
given by

2
tp 1 1 3, |
— tqg — t t.
om o8 T 4P + 48P + 48
Constructing Canonical Transformations
We can construct a canonical transformation starting from a single expression of the
form P = P(q, p,t), assuming that this relation can be inverted to obtain p as a
function of (g, P, t) (thatis, p = p(q, P, t)). This condition implies that the desired
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canonical transformation can be defined by a type F> generating function. The first
equation in (5.18) gives p = (dF»/3q)p, which, by virtue of the fundamental
theorem of calculus, is satisfied if we take

q
Fx(q, P, 1) = / p(q’, P,t)dq’, (5.25)

where, in order to avoid confusion, we have used the symbol ¢’ for the integration
variable and ¢ for the limit of the integral. (Of course, this equation defines F»
up to an arbitrary additive function of P and ¢ only and, therefore, the canonical
transformation is not unique.) The missing part of the canonical transformation is

then obtained from

oF 99p(q’, P, ¢t

o=(°") = / PPy g (5.26)
P 0.t P

Example 5.22. If we take P = mwq sinwt + p coswt, as in (5.14), from Equa-
tion (5.25) we get

a 1
F = / (P — mwq’sinwt) dg’
CcoSs wt
1
= (Pq — ymwg*sinot) + f(P, 1), (5.27)
CcoSs wt

where f (P, t) is an arbitrary function of two variables. Then, according to (5.26),

af (P,
o= 1 f( t).

= (5.28)
cos wt 0P

(Note that with

P2 ( tanwt)
f(P,t): r—
2m

w

the first equation in (5.14) is recovered.)

It should be remarked that we can start with almost any function P = P(q, p, ),
which will be one of the new canonical coordinates; the only requisite is that p may
be expressed as a function of ¢, P, and 7.

Using a Constant of Motion to Find the Solution of the Hamilton Equations

In the examples presented above, the coordinate transformations were given without
a motivation and in some cases we were able to see their usefulness only after
finding the new Hamiltonian in terms of the new coordinates. As we shall see now,
when we have a constant of motion, we can find a canonical transformation leading
to a new set of coordinates, (Q, P), which are constants of motion.
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We shall assume that P(q, p,t) is a constant of motion such that p can be
expressed as a function of (g, P, t), as above. Then

0 dp 0K
Cdr 30
which means that the new Hamiltonian must be a function of P and ¢ only. On the
other hand, from (5.18) we have K = H + 0F,/0dt and, as we have seen, this last
expression must be a function of P and ¢ only, but we also know that the generating
function F> given by (5.25) is determined up to an arbitrary additive function of P
and ¢; by suitably choosing this additive function we can make K = 0 and then Q
is also a constant of motion (see Example 5.23, below). This result is essentially the
Liouville theorem, which will be presented in a more general setting in Section 6.2.

Example 5.23 (Harmonic oscillator). The function P = mwq sinwt + p cos wt,
considered in the previous example, is a constant of motion if the Hamiltonian is
given by

where m and w are constants. From (5.18) and (5.27) we have

0F>
K =H +
at
. 2

 sin wt i me of (P, 1)

=H Pg— ! Zsinwt) — 2
+ cosza)t( 17 mee w?) 2 4 + ot

_ P> wPgsinot  motq*sin’wt  f (P, 1)
T 2m cos2 wt 2 cos? wt ot
_ P af (P, 1)
" 2m cos? wt ot

(which is, indeed, a function of P and ¢ only). Choosing

P2 tan wt
2mw

[P =- ;
we have K = 0, and, according to (5.28), O = ¢ sec wt — P tan wt/mw, which has
to be a constant of motion. This last expression gives ¢ in terms of the constants of
motion P and Q.

It may be noticed that if we already have a constant of motion, the solution
of the equations of motion can be obtained in an elementary manner by solving
a first-order ODE (of course, this is true only when there is one degree of freedom).
In the present case, from the Hamilton equations we have p = mgq and, therefore,
P = mwq sinwt + m(dg/dt) coswt, which is a linear equation for g that can
be readily solved. However, here we want to emphasize the applications of the
canonical transformations.
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Exercise 5.24. The function p 4+ mgt is a constant of motion if the Hamiltonian is
given by

[72

H = + mgq.
2m
Making use of this constant of motion find a canonical transformation such that the
new Hamiltonian, K, is equal to zero and with the aid of this transformation find the
solution of the equations of motion.

Action-Angle Variables

The main limitation for the application of the procedure presented above is that we
have to know a constant of motion in order to construct a canonical transformation
such that K = 0. In the cases where there exist periodic solutions, a convenient
constant of motion can be readily obtained.

We consider a system with a time-independent Hamiltonian such that, at least
in some region of the phase space, the level curves H (g, p) = const. are closed.
This means that, in this region, the motion is periodic and that p cannot be given
by a single-valued function of ¢ and H (see Figure 5.1). We take a point (qo, po)
belonging to this region and we define a new coordinate, P, by

1
P(qo, po) = ot ygc pdq, (5.29)
0

where Cy is the level curve of H passing through (qo, po), traversed in the sense
of the time evolution (see Figure 5.1). Then, the value of P is the same at all the
points of Cy and, therefore, Cy is also a level curve of P, which implies that H is
a function of P only (and that P is a function of H only). Making use of Green’s
theorem one can see that, apart from the factor 1/2mx, which is introduced for later
convenience, the integral (5.29) is the area enclosed by the curve Cy (taking dg dp
as the area element in the phase space).

Fig. 5.1 If the level curves p
H(q, p) = const. are closed,
then the motion is periodic.

Each point of the phase (40, Po)
space, (qo, po), belongs to
one of these level curves, G

which we call Cy. The value

of the so-called action

variable, P, at (qo, po) is the q
area enclosed by Cy divided \\/

by 27 and, therefore, P has

the same value at all the
points of Cg
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Since P is a function of ¢ and p only [see (5.29)], we can choose F» in such a
way that it is a function of ¢ and P only [see (5.25)] and, in that way, K = H. Then,
taking into account that K is a function of P only, the Hamilton equations give

0K 0K

=% p=_"_o.
aP 30

0

The derivative d K /9 P must be a function of P only and, defining

oK
P) = , 5.30
w(P) 9p (5.30)
the solution of the equations of motion in the coordinates (Q, P) is
P =P, 0 =w(Py)t+ Qo, (5.31)

where Py and Qg are the values of P and Q at ¢ = 0, respectively.

The coordinates P and Q defined in this way are called action-angle variables.
Usually these variables are introduced starting from the Hamilton—Jacobi equation
(which is presented in Chapter 6), and some special symbols are employed to denote
them, such as I and J for the action variable (5.29), and 6, ¢, and w, for the angle
variable (5.26).

The curve Cyp (which is a closed curve in the gp-plane) corresponds to a straight
line in the Q P-plane (given by P = Py, see Figure 5.2). Since the Jacobian of
a canonical transformation is equal to 1 [see (5.11)], according to the formula for
the change of variables in a multiple integral, the area of the region enclosed by
the curve Cy in the gp-plane (i.e., 2w Pp) must be equal to the area of its image
in the Q P-plane under the canonical transformation (¢, p) — (Q, P), which is a
rectangle bounded by the straight lines P = Py, P = 0, Q = Q;,and O = Oy,

p P
N N
Py

Co

\ 4
<

Oy

~—"

Fig. 5.2 Owing to the definition of the action variable, P, the closed curve Cy in the gp-plane
corresponds to a straight line, P = Py, in the QP-plane. Since the Jacobian of a canonical
transformation is equal to 1, the area under the line P = Py, between the vertical lines Q = Q;
and Q = Qy, where Q; and Q are the initial and final values of Q in the closed curve Co,
respectively, must be equal to the area enclosed by Cy, that is, 27t Py, which means that Q must
increase by 27 in each cycle
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where Q; and Q are, respectively, the initial and final values of Q in a cycle.
Hence, when the state of the system returns to the original point, the value of Q
has to be increased by 2 (thatis, Oy — Q; = 2m). This means that w(FPp) is the
angular frequency of the motion [see Equation (5.31)]. Note that the Hamiltonian
need not have the simple form p?/2m + V.

Example 5.25 (Action-angle variables for the one-dimensional harmonic oscil-
lator). One of the simplest examples, which is commonly considered in the
textbooks, is that of a one-dimensional harmonic oscillator. If

where m and wy are constants, the level curves H (g, p) = const. in the phase space
are ellipses centered at the origin. The level curve of H passing through (g, po) is
an ellipse with semiaxes

2 H (qo,
\/ (g0 2po) and  /2mH (qo, po)

mawg

and, therefore, the area of this ellipse is equal to 27 H (g9, po)/wo (recalling that the
area enclosed by an ellipse with semiaxes a and b is wab). From Equation (5.29) we
obtain P = H /wy (so that, in effect, P is a function of H only), and Equation (5.30)
gives w(P) = wo (a constant, as expected).

We can also obtain the solution of the equations of motion in terms of the original
coordinates with the aid of (5.26). We have

mawodq’

7 9
0= / \/Zma)oP —m2wyq”? dg’ = )
ap \/Zma)oP — m2wp2q’?

Making use of the change of variable mwoq’ = +/2mwoP cosa we find

Q = —arccos (\/n;c;o q) + const.,

thus, using the solution of the equations of motion in terms of the action-angle
variables, (5.31),

2P
q= cos(wot + Qo).
mawo
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Example 5.26. Another commonly encountered example is given by the Hamilto-
nian

»?
2m

T
H = +V0tan2<2q), —a <q <a,
a

where Vj and a are positive constants. As in the case of the harmonic oscillator, all
the level curves of this function H (g, p) are closed. According to (5.29) we have

dm
P(qo, po) = / \/Zm H(qo po) — Vo tan?(mq’ /2a)] dq’,
where ¢, € [0, a) is such that

H(qo, po) — Vo tan® (”q’”) —0.
2a

One can verify that

bt bt
/\/a — btan? x dx=\/a~|—b arctan ( Vat+b tanx ) —\/b arctan( \/ anx ),

Va—btan? x Va—btan? x

hence,

2a
p=" [V2m(H + Vo) — /2mVy |
and, therefore, inverting this last relation,

7% p? N 7 Py/2mV;

8ma? 2ma

H =
which leads to the angular frequency

7P N n\/ZmVo H+Vy
4ma? 2ma a 2m

w =

(The higher the value of H, the smallest the period of the motion.)
In order to find the solution of the equations of motion in terms of the original
canonical coordinates, it is convenient to write Equation (5.26) in the form

0= /q ap(q’, H)de ' q mwdq’
V2mH — 2mVytan®(rq’/2a)
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Then, with the aid of the formula

dx 1 . a+b .
= arcsin sinx |, (5.32)
Va—btan2x  Ja+b a

one obtains

. H+Vy . (7mq
Q = arcsin [\/ g S ( o ):| + const.,

2a . H in(wt + o)
= arcsin sim(w .
4 T H+ VW 0

Further examples can be found, e.g., in Percival and Richards [12, Chap. 7].

It may be pointed out that if we have a system with a time-independent Hamilto-
nian, then the fact that H is conserved allows us to reduce the equations of motion
to a single first-order ODE, without having to perform a coordinate transformation.
For instance, in the case of the Hamiltonian considered in Example 5.26, denoting
by E the constant value of H, we have E = ;mq'2 + Vo tan?(rq /2a), which leads

to the first-order ODE
dg \/2 nq
2 o (3]
dr m ofan 2a

then, making use of (5.32), one obtains

2a . E |l JE+ Wy
g == arcsin sin (t —19)
b4 E+V a 2m

which, among other things, gives us the angular frequency of the motion.

However, the action-angle variables are interesting for two reasons at least. One
of them is that the action variables are “adiabatic invariants” (see, e.g., Fasano
and Marmi [8, Sect. 12.7] and Wells and Siklos [21]). Another reason is that the
action-angle variables are useful in the study of perturbations (see, e.g., Fasano and
Marmi [8, Sect. 12.7]).

so that

Exercise 5.27. Consider a Hamiltonian of the form

p2

H= + Vig),
2m
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where V(q) is a function with a single minimum in a certain domain such that,
for each value E of H, the motion is limited to an interval g_(E) < g < g+(E)
(see Figure 5.3). By adding a suitable constant term to V(g) we can assume that
the minimum value of V(gq) is zero (note that the Hamiltonians considered in
Examples 5.25 and 5.26 satisfy these conditions). Show that the action variable,
P, can be expressed as

U m [P [ga(E) — g ()]
pay=! [ (533)

where ¢4 (E) and g_ (E) are the turning points corresponding to the energy E, that
is, the solutions of the equation V(q) = E, with ¢ (E) > q—(E) (see Figure 5.3).

1\ /

N

|
|
|
|
|
q (E) Gmin q+ (E)

Fig. 5.3 Graph of the function V (¢). We assume that for each real number, E > 0, there exist two
values of ¢, denoted as g+ (E) and g_ (E), where the value of V (¢) coincides with E. The potential
has a minimum value equal to zero at some point gmis. The function w(E) = g4+ (E) — g—(E)
measures the width of the graph of V (¢) at the height £

The result of this exercise shows that, in the cases satisfying the imposed
conditions, the dependence of the action variable (and that of the angular frequency)
on the Hamiltonian is determined by the function w(E) = ¢+(E) — qg—(E)
(see Figure 5.3). The function w(E) does not define the potential V uniquely,
in fact, there are an infinite number of potentials with the same function w(E).
For instance, in the case of the harmonic oscillator (considered in Example 5.25),
w(E) = 2\/ 2E/mao?, and this function leads to a constant angular frequency.
Another well-known potential that also leads to a constant angular frequency is
given by

b? b\?
Vig) =a’q> + , —2ab = (aq— ) ,
q q
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where a, b are positive constants. One obtains w(E) = +/E/a, which is also
proportional to the square root of E and therefore also produces a constant angular
frequency.

Equation (5.33) amounts to say that P(E) is, up to a constant factor, the Abel
transform of w(E). This relation can be inverted and one can show that

_ |2 [EdP(Ey) dEo
w(E)_\/m/O dEg \/E—E()’

which means that the dependence of the action variable on H only depends on the
function w(E) and conversely.

5.2 Systems with an Arbitrary Number of Degrees
of Freedom

When the number of degrees of freedom is greater than 1, the canonical transfor-
mations are defined in a similar manner to that given in the case where there is
one degree of freedom, and the existence of a generating function for any canonical
transformation can be demonstrated following essentially the same steps as in the
preceding section. We start assuming that the set of Hamilton equations

dg; oH dp; oH
qi _ ’ Di _ _ (5.34)
dr api dr aqg;
(i=1,2,...,n),is equivalent to the set
dQ; 0K dp; 0K
Ql = ) ' = - ) (5'35)
dt P dr 00;

where the new coordinates Q; and P; can be expressed as functions of ¢;, p;, and
possibly also of the time, and K is some function. Then, by virtue of the chain rule
and Equations (5.34) and (5.35) we find that the partial derivatives of K with respect
to the original coordinates must be given by

9K 9K 0Q; 9K OP;
9g;  9Q; dqi  3P; dqi
dP;9Q; dQ; dP;
dr dq; dr dq;
OP; OP;j9H 0PjdH)\ dQ;
_< at ' dqr dpr  Opx qu> g
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n <8Qj n 00; 0H _ 00; 8H> oP;
ot dqk dpx  Opk dqk ) 9qi
00Q; 0P; oP;0Q;\ 0H 00Q; 0P; oP;0Q;\ 0H
N ( dqi dpx  dai 3pk> dqr ( dqi dqi  dqi 8qk> P
9Q; 9P, 9P;9Q;

. (5.36)
at 0gq; at 0dq;

In order to write the last expression in a compact form, it is convenient to
introduce the Lagrange bracket

00 0P; B oP; 00;

, V| = , 5.37
[ v] du dv du ov ( )

where u and v are any two variables belonging to the set ¢g;, p;, t. It may be noticed
that, in the special case where n = 1, the Lagrange bracket [g, p], defined above, is
just the Poisson bracket { O, P}. (Sometimes, in order to specify which variables are
being differentiated, the expression (5.37) is denoted as [u, v]g, p.) Note also that
the Lagrange bracket is antisymmetric, [u, v] = —[v, u].

Then, Equation (5.36) can be written as

0K oH oH
=lgi,pl,  —lgi,q], +11, 4l (5.38)
9gi 9qk Opk
In a similar way one finds that
0K oP; oH
= [pi, pl —lpi,qel,,  +1t, pil (5.39)
api APk gk
[cf. Equations (5.3) and (5.5)].
Exercise 5.28. Show that
" wlgr+ | lwulgr+ | luvlgp =0 (5.40)
v, w w, u u,v =0, .
du 2P 9y R T

where u, v, w are any three variables belonging to the set g;, p;, t.

The equality of the (2n)(2n — 1)/2 mixed partial derivatives of K obtainable
from (5.38) and (5.39) gives necessary and sufficient conditions for the (local)
existence of K. (These conditions are analyzed in Section 5.5, at the end of this
chapter.) As in the case of systems with one degree of freedom, we will be mainly
interested in canonical transformations, which are defined here by the conditions

[gi, qx] =0, lgi, px] = dix, [pi, k] =0 (5.41)
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[cf. Equation (5.8)]. Note that these equations do not contain the function H or
K, which means that in order to verify that a given coordinate transformation is
canonical it is not necessary to specify the original or the new Hamiltonian. Then,
Equations (5.38) and (5.39) reduce to

(K —H) _ (K — H)

= [t,qg;], = |t, pi 5.42
b [7, gil op; [7, pil (5.42)

[cf. Equations (5.12)]. (In Section 5.5 it is shown that Equations (5.41) are necessary
conditions for the existence of a new Hamiltonian, K, for any Hamiltonian, H.)

As we shall show now, for any canonical transformation, there exists (at least
locally) a function K that satisfies Equations (5.42). For this purpose it is convenient
to note that the 2n equations in (5.42) can be expressed in the common form

(K — H)
= [tv-x()l]
00Xy
(a=1,2,...,2n), where
(-xla '-'7-xn7-xn+17 ---ax2n) = (qla -'-aqna pla '-'7pn)' (543)

Then, making use of (5.40),

9%2(K — H) B (K —H)

axaaxﬂ axﬂaxa 9 [xq, xﬂ],

0 [7, xpl 0 [7, xol
, X - , X =
Xo p dxg ¢ at

which is equal to zero by virtue of (5.41). Thus, for a given canonical transformation,
Equations (5.42) determine K — H up to an additive function of # only, which can be
arbitrarily chosen because its presence does not affect the right-hand sides of (5.35).

In the case of a canonical transformation that does not involve the time, that is,
Qi = Qi(gj,pj), P, = Pi(q;, pj), according to (5.42), K can be taken equal to H.

Example 5.29 (Uniformly rotating frame in the three-dimensional Euclidean space).
The coordinate transformation

Q1 =qicoswt +qasinwt, Q2 = —qisinwyt +gacoswrt, 03 = g3,
P1 = p1cosw,t + pasinwyt, P» = —pjsinw,t + prcoswyt, P3 = p3,
(5.44)

where w, is a constant, gives the relation between the Cartesian coordinates and
momenta of a particle viewed from two reference frames; the frame with coordi-
nates (Q1, Q2, O3) rotates with respect to the reference frame with coordinates
(91, q2, g3) in the positive sense about the third axis with angular velocity w,.

Note that, as in all the previous examples, the transformation (5.44) is passive,
that is, Equations (5.44) give the relation between the coordinates of a point with
respect to two different frames. This is the standard point of view when we talk about
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coordinate transformations. For instance, in the formulas x = r cos6, y=rsin0,
relating the polar and the Cartesian coordinates of the Euclidean plane, the variables
x,y,r and 6 correspond to a single point of the plane. The Galilean and the
Lorentz transformations are usually viewed in this way. Equations (5.44) can also
be interpreted as defining an active transformation; in that case, the ¢; are the
coordinates of a point before the rotation and the Q; are the coordinates of the
rotated point, all referred to a single frame.

We can readily see that the coordinate transformation (5.44) is canonical. Since
0P;j/dqr = 0 = 9Q;/0pk, the first and third set of equations of (5.41) are
automatically satisfied, and by means of a straightforward computation one can
verify that the second set of equations of (5.41) also hold. For instance, we have

0Q;0P; 0P;0Q; 0Q;0P;
dq1 dp1  9q1 Ipi dq1 Ap1
= coSw,t cosSw,t + (— sin w,t)(— sin w, 1)

= 1.
On the other hand, from Equations (5.42), we have, for instance,

8(K—H)_3Qj oP; 0P;0Q; 0P; 00;

a1 ot oqi ot oqi ot aq | rP*
Continuing in this manner one finds that
K —H = —wr(q1p2 —q2p1) + f (D), (5.45)

where f(¢) is a function of ¢ only.
Equations (5.41) and (5.42) are necessary and sufficient conditions for the local
existence of a function F; defined on the extended phase space such that

pidg; — Hdt — (P,dQ; — Kdt) = dF, (5.46)

as can be readily verified writing the left-hand side of the last equation in terms of
the original variables

00 90; 0;
i — P; dg;, — P; dp; K —H— P; dt
<pl J 3q; ) qi J ap; pi + I 5

and applying again the standard criterion for the local exactness of a linear differen-
tial form. Note that the function F; can be equal to zero (see, e.g., Example 5.36).

Example 5.30 (Charged particle in a uniform magnetic field). Consider the (linear)
coordinate transformation
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1 1
a+  p2, 03 =gs,
"

1 1
0= 2611—Mp2, 0r = )

(5.47)
% %
Py =p1+ 592 Py = p1 — 592 P3 = p3,

where p is a constant different from zero. It can be readily verified that this
transformation is canonical by computing the Lagrange brackets (5.41) (15 in total);
however, it is more convenient to construct the differential form of the left-hand side
of (5.46). Since the transformation (5.47) does not involve the time, we can take
K = H, and, therefore

w 1 1
pidgi—Hdt—(P;dQ;—Kdt) = p1dgi+p2dgr— <p1+ 2612) <2dq1 - Mdp2>

7 1 1
— — d d
(Pl 2612) (2 q1+u pz)
= d(p292),

which shows that the transformation (5.47) is canonical.

Note that a coordinate transformation, such as (5.47), is canonical regardless of
the meaning of the coordinates and of the range of values they can take.

The canonical transformation (5.47) is useful in connection with the Hamiltonian

H— 1 n eBy 2 n eBy 2 452 (5.48)
Tom [\ P g Py= o0 7* Pz '

which corresponds to a charged particle of mass m and electric charge e in a uniform
magnetic field B = Bgk (in cgs, or Gaussian, units), where ¢ is the speed of
light in vacuum, if the vector potential is chosen as A = ;B X r [see (4.14)]. If
we set i = eBy/c, identifying the Cartesian coordinates x, y, z, px, Py, p; with
q1, 92,93, P1, P2, p3, respectively, we find that

1 Bo\?
K = |:P12 + (e O) 01>+ P32] , (5.49)
2m c

which is the sum of the standard Hamiltonian of a one-dimensional harmonic
oscillator of angular frequency e By/mc, and that of a free particle in one dimension.
Among other things, we can take advantage of the fact that P>, O, and Q3 do not
appear in the expression for K and, correspondingly, Q», P>, and Ps, are constants
of motion, which, in terms of the original coordinates, are

¢ eBy eBy
- . P=p,— N 5.50
0> ¢ By (py + 2e X> 2=PxT o, Y 3 = p; (5.50)
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The solution of the Hamilton equations corresponding to the Hamiltonian (5.49)
is readily found to be

c . 1
01 = (Q1)ocosw.t + eBO(P1)o sinwct, Q2 = (Q2)o, O3 = m(P3)ol + (93)o,
eBy .
Py = (P)pcoswct — . (Qu)osinwet, P, = (P2)o, P3 = (P3)o,

where the (Q;)o and (P;)g are constants that denote the values of Q; and P; att = 0,
respectively, and w. = eBy/mc (the cyclotron frequency). Thus, from (5.47) (with
W = eBp/c) we obtain, e.g.,

Cc .
x = (02)0 + (Q1)ocoswct + (P1)o sinwet,
eBy
Cc . Cc
y=- (P2)o — (Q1)osinw.t + (P1)o cos wct, (5.5D)
eBy eBy

1
z=(03)0+ (P3)ot,
m

which corresponds to the well-known result that the orbit in the configuration space
is a circle (if (P3)o = 0) or a helix (if (P3)g # 0). The constants of motion QO and
P, are related to the coordinates of the center of the circle described on the xy-plane
(cf. Example 1.19).

The momenta py, py, p;, as functions of the time, can be obtained from (5.47),
in the same manner as we obtained Equations (5.51), or by differentiating Equa-
tions (5.51) with respect to the time and comparing the result with the Hamilton
equations, e.g., X = 0H /dpx = ;l (px +eBoy/2c).

Example 5.31 (Charged particle in a uniform magnetic field). Another useful
canonical transformation for the problem of a charged particle in a uniform magnetic
field is the one given in Example 5.29. Indeed, from Equations (5.45) and (5.48) we
find that the new Hamiltonian is given by

1 eBy eBy 2
K= Pl Pyt pt = (xpy—ypo) + % +y?)
2m c 2¢

—wr(xpy — ypx) + (1),

hence, choosing w, = —eBy/2mc and f(¢) = 0, we obtain

2 2 2 2
B
K_px +py"+ D2 m(e 0) (x2+y2)

2m + 2 \2mc

P2+ P2+ P2 m[eBy\?
+ (012 + 027,
2m 2

2mc
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which is the sum of the standard Hamiltonian for a two-dimensional isotropic
harmonic oscillator (of frequency eBy/2mc) and that of a free particle in one
dimension [cf. (5.49)].

Making use of the solution of the equations of motion of a two-dimensional
isotropic harmonic oscillator, namely

wet 2 . wet
01 = (Q1)ocos . + (P)osin |,
2 mow. 2
t t
Py = (P)ocos ¢ — " (01)gsin
22 2 (5.52)
wet 2 . wet
0> = (Q2)o cos + (P2)osin
2 mow. 2
t t
Py = (Pygcos ¢ — " (0y)0sin
2 2 2

where the constants (Q1)o, (Q2)0, (P1)o, (P2)o are the values of Q1, Q2, P1, P2,
respectively, at t = 0, and w, = eBy/mc (see Section 2.1), from Equations (5.44),
with w, = —w,/2 (the Larmor frequency), we obtain

r= @o | (Po [(Ql)o B (Pz)o} coswt + [(Qz)o 4 (Po

Sin wet,
2 mawe 2 mawe 2 mawe

2 mwe 2 mwe 2 mwe

y= (Q2)0  (P)o |:(Q1)0 3 (P2)0:| Sin ot + [(Qz)o L (Po

:| coS wet,

corresponding to a circular motion with constant angular velocity .. It is interesting
to note that with respect to the rotating axes, (Q1, Q2), the particle describes an
ellipse centered at the origin [see (5.52)], while in the x y-plane the particle describes
a circle whose center may be any point of this plane.

Generating Functions

If (gi, Qi,t) is functionally independent, then the function Fj, appearing on the
right-hand side of Equation (5.46), can be expressed as a function of g;, Q;, and ¢,
in a unique way, and Equation (5.46) implies that

0F 0F aF
pi = , P =— , K —H= .
94i ) q;.0,.1 00i/4;.011 0 /g0,

(5.53)

The independence of the 2n variables ¢;, p; requires that det(d>F; /dq;0 Q i) #0.
Conversely, given a function F1(g;, Q;, t) satisfying this condition, according to the
implicit function theorem, Equations (5.53) define a local canonical transformation.

The coordinates ¢;, Q; are not always functionally independent; for instance,
in Example 5.30 we have the relation g1 = Q1 + Q2 [see Equations (5.47)] and
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therefore, in this case, (g;, Q;i,t) cannot be used as coordinates in the extended
phase space [see also Equations (5.44)].

For the canonical transformations such that the set (g;, Q;, t) is functionally
dependent, one can employ generating functions that depend on other combinations
of n old and n new variables, and #; some or all of the g; can be replaced by their
conjugate momenta p; and, similarly, some or all of the Q; can be replaced by their
conjugate momenta P;, giving a total of 22" possibilities (see, e.g., Exercise 5.32,
below). For instance, expressing (5.46) in the form

pidgi — Hdt + Q;dP; + Kdt = dF>, (5.54)

where F», = F; + Q;FP;, it follows that if the set (g;, P;,t) is functionally
independent, then

0F> 0F F
49i / g;,Pj.t 1/q;j,Pj.t q;:Pj

(5.55)

Similarly, if (p;, Q;, t) is functionally independent, writing (5.46) in the equiva-
lent form

—qidp; — Hdt — (P;,dQ; — Kdr) = dF3,

where F3 = F| — p;q;, we see that the canonical transformation is determined by
dF oF oF

) (), (),
Ipi Pj,Qj.t 90i Pj,Qj.t ot Pj,Qj

When (p;, P;, t) is functionally independent, we can make use of the generating
function F4 = F1 — piqi + P; Q;. Then

—qidp; — Hdt + Q;dP; + Kdt = dFa,

which implies that

dFy d0Fy dFy
a%i==\, , 0=\ . p N :
Pi/ pj.pj.t 1/ pj Pyt B/ pip;

(5.57)

Exercise 5.32. Show that, in the case of the canonical transformation given
by (5.47), the set (q1, g2, g3, P1, Q2, P3) is functionally independent and find
a generating function F(qi, q2,q3, P1, Q2, P3) for this transformation. Is it



5.2 Systems with an Arbitrary Number of Degrees of Freedom 175

possible to find generating functions of types Fi, F», F3, or Fy4 for this canonical
transformation?

Example 5.33. The function
F,=a()q P, (5.58)

where a(f) is an arbitrary nonvanishing function of ¢ only, satisfies the condition
det(d? F»/ 0q;0P;) # 0 and according to (5.55) generates the canonical transforma-
tion given by p; = a(t) P;, Q; = a(t) g;, thatis

1

Qi =a(t)qi, P = a(t)Pi

(a possibly time-dependent change of scale) and K = H + a'(t) Q; Pi/a(¢).
Similarly,

Fr=a(1)qiQi
generates the canonical transformation given by p; = a(t) Q;, P, = —a(t)q;
[see (5.53)], that is
1
Qi = a(n) Di Pi=—a(t)qi

(an exchange of the coordinates and momenta with a possible change of scale) and
K=H-—d ) QiP/a@).

Exercise 5.34. Find a generating function for the canonical transformations con-
sidered in Example 5.29.

Example 5.35 (Particle in a uniform gravitational field). The function

p1’p2

Fy(p1.p2. Q1. 02.0) = —p1Q1 — ppQa+ ' 17, (5.59)
2m-g

where m and g are constants, satisfies the condition det(32F3/dp;dQ i) # 0
everywhere (note that here it is assumed that the p; and Q; are functionally
independent). Indeed

0F3 P1p2 k3 pi’
and
J0F3 0F3
= _pla = _[72’
001 00>
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and therefore det(d%F3/dp;dQ j) = 1. Comparing with (5.56) we conclude
that (5.59) generates the coordinate transformation
pip2 pi
= + s = + 9
Qu=ait b, Q=at, o (5.60)
P = p1, Py = p,

which, by construction, is canonical.
This transformation can be applied to the Hamiltonian

2 2
p1-+ p2
H = + mgq,
2m
which corresponds to a particle of mass m in a uniform gravitational field. Since the
coordinate transformation does not involve the time, we can take K = H, hence

P>?
K = +mgQs,
2m
which has the form of the standard Hamiltonian for a particle in one dimension
in a uniform gravitational field. As a consequence of the fact that Q; and P
do not appear in K, P; and Q, respectively, are constants of motion, that is
[see Equations (5.60)]

pip2
D1, i+ 5
meg
are constants of motion (as well as H). The conservation of p; also follows from the
fact that ¢ is an ignorable coordinate in H. It should be clear that the equations of
motion (and their solution) given the Hamiltonian H are equivalent to those given
by K.

As shown above, for any canonical transformation, the function F; always exists
(at least locally), but in order for F; to be useful as a generating function it is
necessary that (g;, Q;, t) be functionally independent. Note that the function Fj (as
well as F», F3, and F4) can always be expressed in terms of ¢;, p;, and ¢, or of Q;,
P;, and 1 (since any of these sets are coordinates on the extended phase space), and
can be equal to zero (see, e.g., Example 5.36, below). The canonical transformations
with F1 = 0 are sometimes called homogeneous canonical transformations.

Example 5.36. In some cases we start with one half of the expressions that define a
coordinate transformation in the extended phase space and we want to find the other
half, in such a way that the transformation is canonical. For instance, we can have
an arbitrary coordinate transformation in the configuration space

0i =Qi(gj,1) (5.61)
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(as usual, with the only condition that the transformation be invertible), and
we want to find the expressions for the new momenta, P;, in such a way that
the resulting coordinate transformation in the extended phase space is canonical.
Substituting (5.61) into the left-hand side of (5.46) we find that the new momenta
P; must be such that

20, o)
(pi _p aQJ)d%,Jr (K_H_ P Q’)dt =dF, (5.62)
qi ot

for some function Fj.

The left-hand side of (5.62) is trivially an exact differential if the coefficients of
the dg; and dr are all identically equal to zero; then the P; are implicitly given by
pi = P; 90 /dq;, which amounts to

9gi
P = p; 5.63
k Di an ( )

(making use of the fact that (0 Q;/9g;)(9q; /9 Qk) = ), and

_ (9Qi
K—H—G—P,( 9 )q.. (5.64)

For instance, the parabolic coordinates, u, v, can be defined in terms of the Cartesian
coordinates of the plane by means of

x:é(uz—vz), Yy =uv

[note that the relation is two-to-one; (u, v) and (—u, —v) correspond to the same
point (x, y)]. Equations (5.63) yield

ox ay ox ay
S ~|—pyau = pxU + pyv, pvszav —I—pyav = —pxV + pyu

Pu = Px
[cf. Equation (4.51)] and, from (5.64), K = H.
Going back to (5.62), we find that the most general expression for the P;
accompanying (5.61) is implicitly given by

00 d0F;

: (5.65)
dg;  0g;

pi = P;j

where F7 is an arbitrary function of ¢; and ¢ only, and

00; 0F
K=H-+ P 5.66
LRV Y (5.66)
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(cf. Equation (5.53), note that in this case Fj is not a generating function since,
owing to (5.61), the set (g;, Q;, t) is not independent). In conclusion, given an
arbitrary coordinate transformation in the configuration space (5.61), the new
conjugate momenta are not defined in a unique way; they are given by (5.65) with
F1 being an arbitrary function of ¢; and ¢.

In particular, if Q; = g;, from the last two equations we obtain

dF dF
P=pi—" "' k=H+"" (5.67)
9qi ot

where, as stated above, F7 is an arbitrary function of ¢; and ¢ only. For instance, in
the case of the Hamiltonian

2 2
+ y
H = P Py 4+ mgy, (5.68)
2m
where m and g are constants, we can eliminate the last term choosing 1 = —mgyt.

Then, from Equations (5.67) we obtain Py = py, P, = py + mgt, and the new
Hamiltonian is

_ PP+ (Pr—mgn)?

K = , 5.69
- (5.69)

which does not contain Q1 and Q, and, therefore, P; and P, are constants of
motion. (Note that, by contrast with H, K depends on the time and, therefore, it
is not conserved.)

Exercise 5.37. Assuming that

01 =qi1cosqa, 02 =q1sinqa,

find the most general form of P; and P, as functions of (¢1, ¢2, p1, p2, t) in order
to have a canonical transformation.

Interaction with an Electromagnetic Field. Gauge Transformations
An important example of canonical transformations that do not change the coordi-
nates in the configuration space (i.e., Q; = ¢;) are those associated with the gauge
transformations.

The standard Lagrangian for a particle in a conservative field of force with
potential V (r) is given by

L= ymv—V(r),
where m is the mass of the particle and v is its velocity (with respect to some inertial

frame). The addition of the interaction with an electromagnetic field, E, B, is taken
into account (in cgs units) by adding the terms (e/c)A - v — eg to the Lagrangian L,
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where e is the electric charge of the particle and ¢, A are potentials for the fields E
and B [see Equation (1.68)]. Thus, the complete Lagrangian is

I=L+°A-v—ecp. (5.70)
C

If we denote by 7; the original canonical momenta (without the interaction with
the electromagnetic field),

oL
Ti= .,
0gi

then, in the presence of the electromagnetic field, the canonical momenta are

oL

e
pi=,. =7+ A 5.71)
ag; c
where [see Equation (1.42)]
ad Rl
A=AV =A " (5.72)
9qi 9gi

(Note that the g; are arbitrary coordinates, not necessarily Cartesian or orthogonal.)
As pointed out in Section 1.2, the electromagnetic potentials are not unique: if

A and ¢ are potentials for E and B, then, for any well-behaved function &(r, ¢),

A+ V&, and ¢ — (1/c)0& /0t are also potentials for E and B. The transformation

10
A— A+ VE, Q> Q- 5 (5.73)
c 0t
is called a gauge transformation and from Equations (5.70) and (5.73) we see that,
under a gauge transformation, the Lagrangian L transforms according to
~ - 0 d
[ (eS/C)q.l_ n (e§/c)
aqi at

[cf. (1.103)]. Thus, under the gauge transformation (5.73), the canonical momenta
transform according to

n 3(65/6)’

s
pi Pi 3q;
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which is of the form (5.67), and, if H denotes the Hamiltonian corresponding to the
complete Lagrangian L, making use of the last two equations we have

d(e&/c)
ar

Hw H—

which is of the form (5.67).

In conclusion, in the presence of an electromagnetic field, the canonical momenta
are gauge-dependent, but a gauge transformation corresponds to a canonical trans-
formation that leaves the coordinates ¢; unchanged. As we shall prove below, the
Poisson bracket is invariant under canonical transformations [see Equation (5.112)],
therefore, even though the canonical momenta are gauge-dependent, the Poisson
bracket does not depend on the choice of the electromagnetic potentials.

Example 5.38 (Kepler problem in two dimensions with energy equal to zero). Apart
from the canonical transformations arising from coordinate transformations in the
configuration space, considered in Example 5.36, in some cases we may start with
relations between the old canonical momenta, p;, and the new coordinates, Q;.
For instance, considering again the Kepler problem in two dimensions with energy
equal to zero (cf. Section 4.3), the Cartesian components of the linear momentum
(px, py), appearing in (4.44), will be expressed in terms of new coordinates
(Q1, O2) by means of the inversion in a circle of unit radius

(an py)
(01,02 = . (5.74)
01, 02 P2+ py?
Thus,
1
01’ + 02* = T (5.75)
and, therefore,
(01, 02)
(px, py) = Q12+ Q22 (5.76)

[cf. Equation (5.74)].

According to (5.76), the set (x, y, Q1, Q2, t) is functionally independent and,
therefore, the desired canonical transformation can be obtained by means of a type
F1 generating function. Since p; = (8F1/8q,-)qj,QjJ [see (5.53)], we can take

_ O1x + Qoy
T 0124022
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and from P; = —(0F1/0Qi)g;.0,.t We obtain

_ x(017 — 025 +2y0102

(@22 - 01H+2x0102
(012 + 02%)? B '

P
' (012 + 022)?

, P

(5.77)
Furthermore, we can take K = H.
From Equations (5.77) we obtain

2., .2
X<+

PP+ P?= y22

(012 + 02?)

and, therefore, the new Hamiltonian is given by [see Equation (4.44)]

K= 1 ] 2mk
2m(Q1% + 02?) VP24 p2)
Introducing

P2+ Py’

h , 5.78
om (5.78)

which has the form of the standard Hamiltonian of a free particle in Cartesian

coordinates, we see that

1 2mk

K = . (1 - ) (5.79)
2m(Q1* + 02%) V2mh

and that the hypersurface K = 0 is also defined by & = 2mk?.
Equation (5.79) is of the form (4.53), with

1 2mk

i, P) = , =1-
@ ) 2m(Q1% + 02?) 8() \/me + 4m2k2

and, therefore, making use of the parameter t defined by

dt

T = Sm22(01% + 0r2) (5.80)

[see Equation (4.55)], on the hypersurface K = 0, the equations of motion can be
written in the form of the Hamilton equations

do;  ah dP; ah

dr ~ 00;°

dr JdP;

’
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By virtue of the form of the Hamiltonian (5.78), one concludes that the solution of
these last equations is given by

(Pi)o
P; = (P;)o, 0= m T + (Qi)o, (5.81)

where the (P;)o and (Q;)o are constants. Thus, the orbit in the Q1 Q>-plane is a
straight line. (As we shall show now, owing to (5.76), this straight line corresponds
to a circle in the p, py-plane.)

Making use of Equations (5.76) and (5.77), we can find the solution of the
equations of motion in the original Cartesian coordinates, albeit parameterized by
7. Instead of following this direct approach, it is convenient to take advantage of
the fact that (as corresponds to a free particle) P; and P, are conserved as well as
Q1 P, — Q7 Py [as can be seen from (5.81)] and with the aid of (5.77) and (5.76) we
find that its value is

017y — 0,7y = 21D(@27 = 01D +260102] = 0o[x(01 ~ 027) +27 01 0]
(012 + 02%)?

_x02—y0i

0124 022

= XPy — YDx

=L
(the angular momentum of the particle about the origin). On the other hand,
from (5.74), we also have

Px P2 — py Py
Q1P — QP ="""7 """

Px“ + py
Hence, combining the two previous expressions, if L3 # 0, we obtain

pxPr—py Py
plapt="00
3

(which relates p., py with the constants Py, P, and L3) or, equivalently,

P\’ P\ P24 PR [(mk\?
— = = , 5.82
(r=ar) + (o) =" = (0 05
which is the equation of a circle in the p, py-plane of radius mk/|L3| passing

through the origin (though actually the point (py, py) never reaches the origin, as
can be seen taking into account that in the present case the total energy is equal
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to zero and therefore p,” + py2 = 2mk/r; a closed curve would correspond to a
periodic motion) [cf. Equation (4.77)]. Thus, we obtain, in the first place, not the
orbit in the configuration space, but the hodograph.

By combining (5.77), (5.74), and (4.44), we find that on the hypersurface K = 0,

Pi = x(px® — py?) +2ypxpy
= x(pe? + py? = 2py%) + 2y py

= (px2 + Pyz)x - 217y(x[7y - ypx)
2mk

= —2pyL
rx PyL3

and in a similar way we find that

2mk
P, = - y+2pxLsi.

Thus, the constants of motion —éPl and —éPz are the x- and y-components,
respectively, of the Laplace—Runge—Lenz vector

k
A=pxL-— " T,
r
if, as in Exercise 4.31, we identify a vector (a1, az) in the plane with the vector
(a1,a2,0),and L = (0,0, L3).
Substituting Equation (5.75) into (5.80) we see that, on the hypersurface K = 0,

dr (px? + py?) dt dr
dT = = — ,
8m2k%(Q1% + 02%) 8m2k? dmk/x2 + y2
which shows that the parameter T employed here is, apart from the constant factor
1/2mk, the auxiliary parameter introduced in Section 4.3 [see Equations (4.47)
and (4.41)].

In the following example we show that a similar treatment can be given in the
case where E < 0, with the aid of an appropriate mapping. (The case with E > 0
can be found in, e.g., Torres del Castillo [16].)

Example 5.39 (Kepler problem in two dimensions with negative energy). In the
case where E < 0, it is convenient to parameterize the Cartesian components of the
momentum of the particle in terms of the standard coordinates, 6, ¢, of a sphere of
radius

po=~-2mE (5.83)
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according to (see Figure 5.4)

Po

(Px. py) = 1 —cos

0
p (sin 6 cos ¢, sin B sin ¢) = pg cot ) (cos ¢, sin @), (5.84)
where 0 < 6 < 7,0 < ¢ < 27. Then,
2 2 2 20
Px"+ py” = po”cot” (5.85)
and
0 .
pxdx + pydy = pg cot 5 (cos¢ dx + sing dy)
0 .
=d |:p() cot 5 (xcosgp +y smqﬁ):|
Y. . o,
~|—2p0 csc ) (x cos ¢+y sin ¢)d9~|—p0 cot ) (x sin ¢p—y cos ¢)d¢.

The last expression shows that 8, ¢, and

1 , 0 : 0, .
po =, pocsc 2(xcos¢+ysm¢), Py = pocotz(x sing — y cos )

(5.86)
are canonical coordinates and from Equations (5.86) it follows that
x2+y? = 4 sin* 0 o’ + Py’ ) (5.87)
po® 2 sin 6
(0,0, po)

(posin®cos ¢, posinB sin ¢, pycos6)

Py
(Px:PwO)

Pe - : '

Fig. 5.4 By means of the stereographic projection, the Cartesian components of the momentum,
Px» Dy, are parameterized by the spherical coordinates 6, ¢ of a sphere of radius pg = V—2mE.
The point (pg sin 6 cos ¢, po sinf sin @, pg cos 0) is the intersection of this sphere with the straight
line joining the points (0, 0, pp) and (py, py, 0)
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(Alternatively, we can see that (5.84) can be obtained by means of the generating
function F; = pg cot g (xcos¢g + ysing).)

Since the canonical transformation given by (5.84) and (5.86) does not involve
the time explicitly, we can choose K = H, hence, making use of (5.85), (5.87),
and (5.83),

2
0 k
K = ]2)0 cot? )T Po
m 25in2(6/2)\/ pe? + py?/ sin’ 6
k 0 1
=F+ Po csc? (po — ) , (5.88)
2 o k™ omng

where we have introduced the auxiliary function

1 Ppg*
hg = 2 , 5.89
E 2m (1’0 + sin29) ( )

which has the form of the standard Hamiltonian of a free particle on a sphere
of radius 1 (a spherical pendulum without the gravitational field), in spherical
coordinates [see Equation (2.31)].

Equation (5.88) is of the form (4.53) with

kpo 0
FO.6.p0,0p) =", csc? )

g(x) = - P
V2mpo2x 4+ m2k?

Hence, on the hypersurface K = E (or, equivalently, i = mk? /2p02), the

equations of motion are also given by the equivalent Hamiltonian g with the

parameter t being related to the time by [see Equation (4.55)]

4
0
dr = po cse?  dr.
2m2k? 2
Making use of (5.85) and (5.83) we find that, on the hypersurface H = E, we have
the equivalent expressions

2F dt

4 2
Po 2 0 po 2 2 2
dr = 1+ cot dr = dt = — ,
2m2k2< + 2) o2 (PO P+ 2y kx4 2
which show that the parameter 7 is, apart from the constant factor —4E/k, the
auxiliary parameter introduced in Section 4.3 [Equation (4.47)].
Since h g has the form of the Hamiltonian of a free particle in a sphere, the three

Cartesian components of the angular momentum,

Iy = —singpy — cotB cosppy, [ =cosgpy —cotfsingpy, I3 = py
(5.90)
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are constants of motion, but they are not independent. In fact, making use of (5.90)
and (5.89) one readily verifies that

2 2
mk
W24+02 412 =p?+ 70 = omhyg =< ) : (5.91)

Making use of the explicit expressions (5.90) one obtains
[y sinfcos¢ + lrsinf sing + I3 cosf =0,

which is the equation of a plane passing through the origin with normal vector
(l1,12,13) and shows that the orbit in the sphere is a great circle (that is, the
intersection of the sphere with a plane passing through its center). Making use
of (5.84) we can eliminate cos ¢ and sin ¢ in favor of p, and py, which yields

Px . Py

[{sin@ [ 0
e cot@72) T pocot9/2)

+l3cosf =0,

and with the aid of (5.85) we obtain
2poli px +1apy) +13(p” + py* — po’) =0,
so that if I3 # 0,

_I_Poll 2+ _I_Polz Z_Poz(lz_l_lz_l_lz)_ mk\*
Dx Is Dy I = 2 1 2 37) = Is

[see (5.91)]. This last equation shows that the hodograph is a circle enclosing the
origin.

Time Evolution

As pointed out in Section 5.1, if g;(¢), p; (¢) represent the solution of the Hamilton
equations, then the relation between g; (o), p;(fo) and g;(¢), p;(¢) is a canonical
transformation, for any values of 7y and 7. More precisely, if

qi = qi(Qj, Pj, 1), pi = pi(Qj, Pj, 1), (5.92)

is the solution of the Hamilton equations, where Q; and P; are the values of g; and
pi att = ty, respectively, that is

qi(Qj, Pj, o) = O, pi(Qj, Pj, 10) = P, (5.93)

then (5.92) is a canonical transformation.



5.2 Systems with an Arbitrary Number of Degrees of Freedom 187

Example 5.40. The solution of the Hamilton equations corresponding to the Hamil-
tonian

2
p
H= — ktq,
2m i
where k is some constant, is given by
Pt ki3 kt?
q=0+ + , p=P+ _, (5.94)
m  6m 2

where Q and P are the values of ¢ and p, respectively, at + = 0. With the aid of
the Poisson bracket, one can readily verify that (5.94) is a canonical transformation
(thatis, 3(q, p)/3(Q, P) = 1).

In order to prove that (5.92) is always a canonical transformation it suffices to
show that the Lagrange brackets [Q;, O lq.p, [Qi, Pjlq,p, and [P;, Pj]4 p do not
depend on the time (see Equations (5.37); note that here we are taking Q; and P;
as the “old” coordinates and g; and p; as the new ones). Making use of (5.40), the
definition of the Lagrange brackets, the fact that, by hypothesis,

0g:i(Qj. Pjo1) _0H  Opi(Qy Py _OH 595)
at ap; at aqi ’ '

3

and the chain rule, we have, for instance,

a a

aat[Qi, Oilg.p = _aQi[ijt]q,p_ 20, [z, Qilg,p
= 10— L 10y
90 790 ’
_ 3 (361k apk  dpk 361k)_ d <8qk pe A 8qk>
3Q; \ dt 3Q; 9t 3Q; d30; \ ar 90; 3t 3Q;
0 (0H opx | OH dqi d (0H dpr  0H dqi
_aQi<3Pk3Qj a‘Ikan>_3Qj<aPk3Qi aqkaQi)
_ 0°H 9*H
T 90i00;, 00,00
=0, (5.96)

and in a similar way one finds that [Q;, Pjlq,p, and [P;, Pj]4, p do not depend
on the time. According to (5.93), at t = 1, the Lagrange brackets [Q;, O l4.p.
[Qi. Pily,p, and [P;, P;l, p have the values 0, §;;, and 0O, respectively, and,
therefore, these values are maintained all the time, thus showing that the transfor-
mation (5.92) is canonical.
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Of course, if Equations (5.92) do correspond to a canonical transformation, a
relation of the form (5.46) must be satisfied. In fact, we have the following simple
and very useful result.

Proposition 5.41. If the equations q; = qi(Qj, Pj. 1), pi = pi(Qj, Pj, ) express
the solution of the Hamilton equations, where Q; and P; are the values of q; and
pi, respectively, at some time t = to, then

pidg; — Hdt — P;dQ; = dF, (5.97)

for some locally defined function F.
Proof. Writing the left-hand side of (5.97) in the form

0q; 9q, 9q;
) P )dQi + pj ) dP; ) H)dr
(p/an_ z) Q1+P/api i + | Pj 3¢

and using the fact that (5.92) is a canonical transformation (i.e., Equations (5.41)
hold), we only have to verify that

0 0q; ad 0qj ad 0q; ad 0qj
pi,,. —P)= pj . —H), Py )= pj . —HJ,
at 310 00, at at dP; JIP; at
using Q;, P;, and ¢ as the independent variables. We have, for instance, by virtue
of (5.95) and the chain rule,

9 dg d 3q;
. - : - H
ar (pfaQi ) 90 <pf ar

apj dq; 39%q; dpj dq; 9q; OH
+pj —0- —Dj +
ar 90:  TataQ: - 0Q; ot 909t ' 30;
9H 9q; _ 0p; 0H | oH
dq; 00Q; 0Q;dp; 90Q;
=0,

and in a similar manner one readily finds that the remaining conditions are satisfied,
showing that the left-hand side of (5.97) is locally exact. O

Comparing (5.97) with (5.46) we see that the Hamiltonian corresponding to the
coordinates Q;, P; can be taken as K = 0, which is consistent with the fact that Q;
and P;, being initial values, are constants of motion. The function F appearing on
the right-hand side of Equation (5.97) is called Hamilton’s principal function.
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For instance, substituting the relation (5.94) into the left-hand side of (5.97) one
finds that

dg— Hd— pdg = a4 REQ om0 K (5.98)
peq =9 3 6 o 90m |’ :

which is indeed of the form (5.97). For ¢ # 0, the function inside the brackets on
the right-hand side of the last equation is a generating function of the canonical
transformation (5.94), which gives the time evolution of the system considered.
(However, g, P, and ¢ are functionally independent everywhere and, therefore, a
generating function of type F> will reproduce the transformation (5.94) without
restrictions.)

If Q,-, f’i are canonical coordinates and, at the same time, constants of motion,
then they must be functions of the initial conditions, Q;, P;, only, and there must
exist a time-independent canonical transformation relating these sets of canonical
coordinates, that is,

PidQ; — PdQ; =dZ, (5.99)
for some function Z. Thus, from (5.97) and (5.99) it follows that
pidgi — Hdt — P,dQ; = d(F + Z)
and, therefore, dropping the tildes and renaming F + Z as F, we have the following

result.

Proposition 5.42. If the equations q; = qi(Qj, Pj, 1), pi = pi(Qj, Pj,t) express
the solution of the Hamilton equations in terms of a set of canonical coordinates,
Qi, P;, which are constants of motion, then

pidqi — Hdt — P,dQ; = dF, (5.100)

for some locally defined function F.

By abuse, the function F appearing on the right-hand side of Equation (5.100) is
also called Hamilton’s principal function.

Example 5.43. The functions

2

0="" 4mg, P=" 41, (5.101)
2m
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where g is a constant, are canonical coordinates (that is, { @, P} = 1) and constants
of motion if the Hamiltonian is given by

[72

H = .
m +mgq
(Note that by simply setting t = 0 in Equations (5.101) one finds the relation
between Q and P and the initial values of ¢ and p, and that Q and P are not
the initial values of ¢ and p, respectively.) By inverting the expressions for Q and
P one finds that

g = o i(P — 1), p=mg(P —1), (5.102)

mg

which give the solution of the Hamilton equations, and, making use of these explicit
expressions, one obtains

1 2 \3)2
pdg — Hdt — PdQ =d | -0t F 32 (2mQ —2m*gq)”"|. (5.103)

Since (g, Q, t) is functionally independent, the function inside the brackets in the
last equation is a generating function of the canonical transformation (5.101), which
represents the time evolution of the system.

Propositions 5.41 and 5.42 contain a remarkable result: for any Hamiltonian,
with any number of degrees of freedom, the entire solution of the corresponding
Hamilton equations is given by some generating function. In the two preceding
examples, that generating function has been obtained from the explicit expression of
the solution of the Hamilton equations. However, as we shall see in the next chapter,
the generating function of the time evolution can be obtained directly if one is able
to solve certain PDE satisfied by the generating function.

Characterization of the Canonical Transformations by Means of the Poisson
Brackets

The definition of the canonical transformations given above is expressed in terms
of Lagrange brackets [see Equations (5.41)] and, as we have shown, leads directly
to the existence of the generating functions. As we shall show now, the canonical
transformations can also be defined making use of the Poisson bracket. (Recall that
when the number of degrees of freedom is equal to 1, the Lagrange bracket [¢, p]
coincides with the Poisson bracket {Q, P}.)

Proposition 5.44. Equation (5.41) is equivalent to
{Qi, Ok} =0, {Pi, P} =0, {Qi, P} = dix. (5.104)

In other words, a transformation is canonical if and only if Equations (5.104) hold.
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Proof. In order to prove this Proposition it is convenient to employ the notation

X1y e e s Xy X s oo X20) = (G1s - -5 Gns Pls -+« Pn)

[see Equation (4.25)] and, similarly,

(yl,---,yna}’n—i-la---ayZn)E(Qla---aQn,Pl,---,Pn)-

Then, making use of the 2n x 2n block matrix

01
= 1
(€ap) (—I 0) (5.105)
(a, B=1,2,...,2n), where [ is the n x n unit matrix, we have
af dg
» 81 = , 5.106
{/. 8} Swaaﬂhﬁ ( )

with sum over repeated indices [see Equation (4.28)]. In a similar manner, the
Lagrange bracket (5.37) can be written as

0yq dyp

. 5.107
du v ( )

[u,v]lp, P = cup

Thus, according to the definition (5.41), the transformation Q;=0Q;(q;, p;, 1),
Pi=P;(qj, pj,t) is canonical if

dya 0yp
= &uv, 5.108
Eap 0xy, 0xy Euv ( )
while Equations (5.104) are equivalent to
Iye 0yp
= 5.109
Euv 0xy 0xy Eap ( )

and we want to prove that (5.108) is equivalent to (5.109).
Multiplying both sides of Equation (5.108) by dx, /9y, , using the fact that, as a
consequence of the chain rule, (dyg/dx,)(0x,/dy,) = dg, we obtain

Yy 0xy
Eay ax =&uv ayy .
m
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Now, multiplying both sides of the last equation by &4, , using the fact that ey, €8, =
3, which follows from (5.105), we have

ayg 0xy
= . 5.110
0xy By Env dyy ( )

Making use of (5.110), the antisymmetry of the matrix (g4g), the relations
employed above, and the chain rule we have (changing the names of the indices
as necessary, in order to avoid that a summation index appears more than twice in a
term)

Oya Oyp _  Oya ( ~ 0Xp
" 9x, 9xy " ax, preve ayy

Yy 0xp
= —Euv€py&pv 9x, Dy
w9y

0yq 0xp

= —8,p¢
upéBy a‘xu ayy

0yq 0xy
Epy 9x. 8
X 0Yy

= —&pyday

= 80{/37

thus showing that (5.109) follows from (5.108). In a similar way, starting
from (5.109) one obtains (5.110), which, in turn, leads to (5.108). |

Note that Equations (5.110) amount to the more explicit expressions

0Qi _ dp; 00; __8qj oP; __3pj ap;  9q;
dq;  oP’ ap; ap;’ dq; 00;’ dpj  0Q;’
(5.111)

The properties of the Poisson bracket given in Section 4.2 make it more
convenient than the Lagrange bracket to determine if a given transformation is
canonical or not. For instance, in the case of the coordinate transformation (5.47),
making use of the bilinearity of the Poisson bracket and the fact that the only
nonzero Poisson brackets between the coordinates g;, p; are those containing one
coordinate and its conjugate momentum [see (4.30)] one readily finds that the
brackets {Q;, O} and {P;, P;} are all equal to zero and

{Q1, P3s} ={02, P3} = {03, P1} ={03, P,} =0.
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On the other hand
0P =t ar— prpi+ e = Mo = Mprean) = 1
1 1 m 1 1
3 P = - 3 - = 3 3 :O’
{01, P2} {2611 Mpz P1 2Q2} 2{611 pi}+ 2{172 q2}
1 1 m 1 1
{02, Pt} ={_q1+ p2.,p1+ _q2} = _{q1. p1} + _{p2, 92} =0,
21T, 2 2 2
1 1 m 1 1
{(Q2, Py ={_q1+ p2.p1— q}= _{qi, p1} — {p2,q2} =1,
21T 2 2 2

thus showing that the transformation is canonical.

Example 5.45. Making use of Proposition 5.44 and the properties of the Poisson
bracket established in Section 4.2, we can readily verify that the coordinate
transformation

0 c n eBy ; eBy . ;
= CoOSw I — — X ) sin w, .
1 ¢Bo Px 2¢ y c Py 2¢ c

c eBy
O = py + x|,

eBy 2c
eBy eBy .
P =|py— 2e x Jcoswct + | px + e y | sin w.t,
eBy
Py = py — 2e

where w, = eBy/mc, is canonical. Indeed, letting

eBy eBy eBy eBo

s T=py— X, 0] = px— s o) = py+ X,
2cy 2=Py 1 = Dx 2cy 2 = Py

TI=pat 2c 2c

we find that (see Exercises 4.10 and 4.14)

eBy eBy
{1, mo}= o {o1,02}=— e {mi, 0;}=0.

Then, making use again of the bilinearity and skewsymmetry of the Poisson bracket,
we have, for instance,

c . . c
{01, P1}= {1 cos w.t—my Sin wet, 7 COS Wt 47T Sin wet}= {1, mp}=1,
eBy eBy



194 5 Canonical Transformations
and
C
{02, P2} = {o2,01} =1,
eBy
and so on, thus proving that the coordinate transformation is canonical.

Since Q1, Q2, P1, P> are canonical coordinates, the equations of motion must be
expressible in the form (5.35), for some function K. If we take

I 1 n eBy 2 n eBy 2
= y — X .
2m bx 2¢ Y Py 2c

which corresponds to a charged particle of mass m and electric charge e in a uniform
magnetic field By, then Q1, Q2, P;, and P, are constants of motion. In fact,

1
H = (1% + m2?)
2m

and, for instance,

001
H
9 T {01, H}
ad t— i t 1
= ¢ (1 cos o 72 Sineet) + {1 cosw .t — mp sin wt, 7112 + 7122}
eBy dt 2m
c . 1
= [—wc(m sinw.t + mp coswet) +  {my, ma}ma cos wt
eBy m
1 .
—  {mp, w1}y Sin wet
m
=0.

In a similar manner one can show that Q», Pi, and P> are constants of motion and,
therefore, we can choose K = 0.

Exercise 5.46. Show that for any coordinate transformation Q; = Q;(g;, pj,t), Pi =
Pi(gj, pj, 1) (thatis, not necessarily canonical),

[xa, xglo, P {xy, X8} 0,P = Say-

Invariance of the Poisson Bracket Under Canonical Transformations

As in the case where the number of degrees of freedom is 1, for an arbitrary number
of degrees of freedom, the canonical transformations leave invariant the Poisson
bracket in the sense that, for an arbitrary pair of differentiable functions, f, g,
defined on the extended phase space,
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af dg df dg _ df d9g of 0g 5.112)
dqi dpi  Opi 0qi  9Q; 0P 9P, 0Q; '

In order to demonstrate the validity of (5.112), making use of the definition of the
Poisson bracket and the chain rule, we obtain the identity

T o R BN

dqi \3Q; ap;  dP; Ip; Opi \0Q; dgqi ~ 9P; dg;
dg g
={f0; . Pj , 5.113
{f Q/}an +{f /}8Pj ( )

hence, making use of the antisymmetry of the Poisson bracket and (5.113) again,

_ 08 p 08
{f,g}——{Q,,f}an—{ ”f}an

- ({Qj, Qk}aagk 2. Pk}aagk) aaéj
- (‘{Pjs Qk}aagk +1{P;, P"}aa;:) aalé:/
= {Ox. Qj}aaék aanj +{Pe. Qj}aa;:k 885/
+ (00 P) aaéfk aaij +{Px, Pj) aaik aafé"/' (5.114)

Therefore, if Q;, P; are related to g;, p;, and ¢ by means of a canonical transforma-
tion (that is, Equations (5.104) hold), from (5.114) we see that

(/g = of og _ af odg
f’g_anan 9P; 90,

as was to be shown.
Conversely, if (5.112) holds for any pair of differentiable functions, f, g, then,
in particular,

' _00;00r 0Q;00k _
{QjﬂQk}—aQi 8Pl 8P, BQ,-_O’

and, in a similar way, one obtains {P;, Pt} = 0, {Q;, Pk} = §jk, which, according
to Proposition 5.44, means that Q; and P; are given in terms of g;, p;, and possibly
of ¢, by a canonical transformation.

Hence, the canonical transformations can be defined as the coordinate transfor-
mations in the extended phase space that preserve the Poisson bracket.
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The Liouville Theorem on the Invariance of the Volume Element of the Phase
Space

The volume element of the phase space, dgi - - - dg,dp; - - - dpy, is invariant under
canonical transformations, which amounts to say that the Jacobian of a canonical
transformation is equal to 1

(0, P) _1
9(gi, pi)

(this fact was already established in (5.11), when the number of degrees of freedom
is 1). This result is usually known as the Liouville theorem. (There is another, lesser-
known, Liouville theorem related to the Hamilton—Jacobi equation, which will be
considered in Section 6.2.)

In order to demonstrate this theorem for an arbitrary value of n, we shall assume
that the canonical transformation is such that g;, P;, and ¢ are functionally indepen-
dent (other cases are treated in a similar way) and, therefore, the transformation can
be expressed in terms of a generating function F»(g;, P;, t) by Equations (5.55), and
the three sets (g;, pi,t), (Qi, P;,t), and (g;, P;, t), can be used as coordinates of
the extended phase space. Then, by virtue of the chain rule, we have

9(Qi, Pi) _ 9(Qi, Pi) 3(qi, Fi)
9(qi, pi) d(qi, P;) 9(qi, pi)

(note that this is a relation between 2n x 2n determinants, the subscripts in the
coordinates only indicate that there are n variables of each type) and, similarly,

d(qi, P;) 9(qi, pi) _
a(gi, pi) 9(qi, P;)

9

hence,

- . N B
a(Q,,m_a(Ql,P»[a(wz)} . (5.115)

i, p) g, P (g, P)

Then, making use of the definition of the Jacobian and Equations (5.55), we have

0(Qi, Pi) _ 3(Q1,---, Qn) :det( 0% F> )
9(qi, Pr) (g1, -+, qn) 9qid P;

and

¥gis pi) _ 3(p1se--s pu) =det( 92F, )

Substituting these last two expressions into (5.115) one concludes that the Jacobian
of a canonical transformation is equal to 1.
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It may be remarked that when the number of degrees of freedom is equal to 1,
a coordinate transformation Q = Q(q, p,t), P = P(q, p,t) is canonical if and
only if the Jacobian d(Q, P)/d(g, p) is equal to 1. However, when the number
of degrees of freedom is greater than 1, there is no such equivalence; there exist
coordinate transformations with Jacobian equal to 1 that are not canonical.

Exercise 5.47. Find an example of a noncanonical coordinate transformation with
Jacobian equal to 1.

Comparison with the Standard Approach
As shown in Section 4.2.1, the curve C(t) = (g;(¢), pi(t), t) in the extended phase
space is a solution of the Hamilton equations if and only if the integral

131 d i
1(C) = / (pidg; — Hdt) = / |:I7i(t) qd(t) — H(g;i(t), pi (@), t):| dr
C In) !

has a stationary value on this curve, in the space of curves in the extended phase
space that share the same endpoints with C. If Q;, P;, t is another coordinate system
of the extended phase space such that the Hamilton equations (5.35) are equivalent
to (5.34), then the functional

1) = / (PidQ; — Kdr) = /“ I:Pi(t)in(t) — K(Qi (), P;(t),t)} dr
c 10 dr

must possess the same stationary points as I (C). An error present in many textbooks
on analytical mechanics is the conclusion that the integrands of 7 (C) and I(C) must
differ at most by a constant factor and an exact differential, that is,

pidgi — Hdt = A(P;dQ; — Kdt) + dF, (5.116)

where A is a constant and F is a real-valued function defined on the extended phase
space. In order to show that this conclusion is wrong, it is enough to consider
Example 5.2. A straightforward computation gives

mw(pdq —qdp —2Hdt)  2mow(pdg — Hdt) — d(mwpq)

PdQ — Kdt = =
VP2 + m2w?q? VP2 + m2w?q?

’

which is not of the form (5.116). In fact, if the claim was true, the canonoid
transformations would not exist.

Another counterexample is given by a particle in a uniform gravitational field.
The standard Hamiltonian in Cartesian coordinates is

_ P2+ py?
2m

H +mgy
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and, therefore,

2 2
+
pidg; — Hdt = p,dx + Pydy _ (px zmpy —|—ng) dr.
On the other hand, in terms of the coordinates
01 =x, 0=y, Pi = py, P, = py,

the equations of motion also have the form of the Hamilton equations with

PP
K = +mgQ
m

so that
Px Py
P;dQ; — Kdt = pydx + pydy — ( + mgx) dr
m

and we can see that p;dg; — Hdt and P;dQ; — K dr are not related as in (5.116).

As shown above, the converse is true, that is, if Equation (5.116) holds then the
Hamilton equations (5.35) are equivalent to (5.34).

This is analogous to the fact that the point x = 0 is a minimum of the functions
f(x) = x*and g(x) = cosh x, but these functions are not the same nor are linked by
a relation of the form f(x) = Ag(x) + u, where A and p are constants. Of course,
if f(x) = Ag(x) + w, with X and p constant, then the critical points of f and g
coincide.

5.3 One-Parameter Groups of Canonical Transformations

In this section we shall consider one-parameter families of canonical transforma-
tions, that is, canonical transformations of the form

Qi = Qi(qj, pj,t,9), P; = Pi(qj, pj.t, ), (5.117)

where s is a real parameter that can take values in some open interval containing 0
(in many cases s can take all real values) and we shall assume that for s = 0 the
transformation (5.117) reduces to the identity, that is,

0i(gj, pj.1,0) =gq;, Pi(qj, pj.t,0) = p;. (5.118)
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As we shall see in the following section, the one-parameter families of canonical
transformations are especially important, among other reasons, because of their
relation with the constants of motion.

Example 5.48. Let us consider the one-parameter family of transformations
given by

(e —e™), P = pe”*, (5.119)

where m is a constant and s is a parameter that can take any real value. We can
readily verify that when s = 0, the right-hand sides of Equations (5.119) reduce
to g and p, respectively, and that, for each fixed value of s, this transformation is
canonical, in fact, one readily sees that {Q, P} = 1, or that

pdg — Hdt — (PdQ — Kdt)

t
— pdg—pe™* [equ— @ —e)dp—" (es—e—f)dt} +(Ky—H)dt
m m
t 2 2
—d|P a—e | 4|k, —H+ P d—e2) |,
2m 2m

which shows that the transformation is canonical, and that the new Hamiltonian
must be given by

2
p

(1 —e 2+ f(1,5), (5.120)
2m

Ky, =H —
where f(z,s) is an arbitrary function of # and s only, and we have written Kj
instead of K in order to emphasize the dependence of the new Hamiltonian on the
parameter s.

In most textbooks, the one-parameter families of canonical transformations are
given in “infinitesimal form,” by expressing the transformations (5.117) to first order
in 5. For that reason, such transformations are usually called infinitesimal canonical
transformations. For example, the transformations (5.119) would be expressed as

2tps
O=qg+gqgs— m P =p—ps.

(Note that, in this case, {Q, P} =1 — 52, which is equal to 1 “to first order in 5.”)
A more precise expression would be

2tp

S
Q=q+gs—" + 0(s?), P=p—ps+ 0,
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but it is seldom used. We shall avoid the use of infinitesimal canonical transforma-
tions, considering strict canonical transformations only.

As we shall show now, a one-parameter family of canonical transformations
possesses a generating function.

Proposition 5.49. If O, = Qi(qgj, pj.t.8), P, = Pi(qj, pj.t.8), is a one-
parameter family of canonical transformations then there exists locally a function
G(qi, pi,t) (defined up to an additive function of t only) such that

90, G dP; G
Qi =, ' =— . (5.121)
s |s—p api

s |,—g aqi

Proof. As we have seen in the preceding sections, if, for each value of s, Q; =
Qi(gj, pj.t,s), Pi = Pi(qj, pj,t,s), is a canonical transformation, then there
exists (locally) a function Fj, which may depend parametrically on s, such that
[see Equation (5.46)]

pidqi — Hdt — (P;dQ; — K dt) = dF;.

Taking the partial derivative with respect to s (with ¢;, p; and ¢ fixed), at s = 0, of
both sides of the last equation we obtain

JdP; a0; K oF
. i dCIi_pid< 07 )+ s dt:d( 1 )
ds 5s=0 ds 5s=0 ds s=0 ds 5s=0
or, equivalently,
aP; a0; K dF 200;
_ i dCIi + Ql dpi K df = d( 1 i Qz > )
as s=0 ds s=0 ds s=0 ds s=0 ds s=0
Letting
JIF a0,
=M L, 0 (5.122)
as s=0 os s=
we obtain Equations (5.121) and, in addition,
K G
y = . (5.123)
s |—g Of
O

As we know, for a given canonical transformation, the difference K — H is
determined up to an additive function of 7 (and s, in the case of a one-parameter
family of canonical transformations); the choice of this function affects F; and G
(see the examples below).
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For instance, in the case of the one-parameter family of canonical transformations
given in Example 5.48, directly from Equations (5.119) we obtain

9 2t P
Y B = —p, (5.124)
9s |40 m 9s |40

which can be written in the form (5.121) with

tp?
G=Pq—n1+xUL (5.125)

where x (¢) is a function of ¢ only, which can be determined by means of (5.123) [or
from (5.122)] if the new Hamiltonian has been specified. In fact, substituting (5.120)
and (5.125) into (5.123) one obtains

af /
%sﬂ—xax
which shows that for a choice of f (¢, s) in (5.120), x is determined up to an additive
trivial constant, which can be taken equal to zero.

The family of canonical transformations (5.119) is a one-parameter group of
transformations in the following sense: if, for each s € R, we define the map ¢ :
R? - R3 by

t
p(eS _ e—S)’ pe—S’ t)
m

¢S(q7 P, t) = (qes -
then, by means of a straightforward but somewhat lengthy computation, one verifies
that

¢S’ o ¢S = ¢s’+s (5126)

for all s, s € R, and ¢y is the identity map of R3. The validity of (5.126) is a
consequence of the fact that if the partial derivatives with respectto s of Q(q, p, t, s)
and P(q, p,t,s) are written in terms of Q, P, ¢, and s, the resulting expressions
do not contain s; in other words, Q(q, p,t,s) and P(q, p,t,s), considered as
functions of s only, satisfy an autonomous system of first-order ODEs. Indeed, from
Equations (5.119), we obtain

d t 2tP
ques_p(es_'_e—S):Q_ ,
as m m
dP S _p

= —pe " = —r.
as p

(Cf. Equations (5.124).)
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As a converse of Proposition 5.49, any differentiable function, G(qg;, p;,t),
defines a (possibly local, see below) one-parameter group of canonical transfor-
mations, in such a way that Equations (5.121) hold, in the following manner.
Equation (5.121) can be written as

dQ; _ 0G(Q;j, Pj,1)

o,
as s=0 3P, ’

5s=0 ds

_9G(Q;. Py
s=0 an s=0
(5.127)

and, in order to have a well-defined rule to construct a family of coordinate
transformations, we demand that Equations (5.127) hold for all values of s (not
only for s = 0), that is

90; _9G(Q; Pi.1) O 3G(Qj. Pj.1)

o s 90;

5.128
as o P; ( )

3

In this way, Equations (5.128) constitute an autonomous system of 2n ODEs for Q;
and P; as functions of s, with the initial conditions (5.118).

Denoting by Qi(q;, pj,t,s), Pi(gj, pj,t,s), the solution of the system (5.128)
such that

Qi(CIjst»taO)=C]i» P,'(q]-,pj,t,O)zp,',

and following a procedure analogous to that employed in (5.96), one finds that the
Lagrange brackets [g;, g;1, [gi, pj], and [p;, p;] do not depend on s and, since for
s = 0 these brackets have the values 0, §;;, and 0, respectively, one concludes that
the transformation is canonical for all values of s.

As a consequence of the uniqueness of the solutions of the system of equa-
tions (5.128), the solutions of the system (5.128) correspond to a, possibly local,
one-parameter group of canonical transformations (see, e.g., Crampin and Pirani [5,
Chap. 3]).

Example 5.50. In order to find the one-parameter group of canonical transforma-
tions generated by the function

tp2

3 P
G(q,p.t) =qp— _gt’p — .

+ mgtq — 1mg2t3, (5.129)
2 2

where m and g are constants, we substitute this expression into Equations (5.128),
which yields the autonomous system of ODEs

do 3, 2tP

=0 —  ot° — , 5.130
ds 0 2g m ( )
dP

= —P — mgt, (5.131)

ds
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where we have written the derivatives with respect to s as ordinary derivatives, for
convenience, taking into account that g, p, and ¢ enter in (5.128) as parameters only,
which specify the initial conditions. (Note that the last term in (5.129) is a function
of ¢ only, which does not appear in Equations (5.130) and (5.131).)

Equation (5.131) is a separable equation, and one readily obtains the solution

P = (p+mgt)e ™ —mgt, (5.132)

so that, for s = 0, P = p. Substituting this result into (5.130) one obtains the linear
first-order ODE

d 1 t )
Q—Q: ) p—l—gt2 e ’,
ds 2 m

whose solution is

1 t ' 1 t !
Q=—2gt2+< p+gt2)e5+<q— gt? — p)eb. (5.133)
m 2 m

Alternatively, the expression for Q can be readily obtained from that for P using
the fact that, in all cases,

G(gis pi1) = G(Qi(qj. pj,1,5), Pi(q), pj. 1, 9), 1), (5.134)

for all s, since, by virtue of Equations (5.128), the right-hand side of (5.134) does
not depend on s.

As we have seen in the preceding sections, for a given canonical transformation
the difference Ky — H is determined up to an additive function of 7 only. In the
present case, substituting (5.132) and (5.133) into Equations (5.12) we obtain
»?

K, —H=
2m

€ — 1) +mgq(e —D+gipe™ —e)+ f(1.5), (5135
where now f(z, s) is a function of ¢ and s only. Since in this example G is given
from the start, the function f(z, s) is not completely arbitrary; in order to satisfy
Equation (5.123), f (¢, s) must be such that

0 3
f _ mgztz’
9s |40 2

but, clearly, this condition does not determine the function f(z, s). (See, however,
Exercise 5.73.)
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Exercise 5.51. Show the validity of (5.134).

Example 5.52 (A local one-parameter group of canonical transformations). In all
the examples presented so far, the parameter s can take all real values, but this is not
always the case. If we consider the generating function

G(q.p.1) =q"p.
the corresponding system of equations is [see Equations (5.128)]

o
ds

dpP

02, 4 = 20P,

and the family of canonical transformations generated by G is given by

q

= , P=(1—sq)2p,
1—sq

0

which, if g # 0, are defined only for s # 1/q. Thus, we obtain a local one-parameter
group of transformations, which means that ¢ (g, p,t) = (1:1sq’ (1 - sq)zp, t) is
not defined for all values of the parameter s, but satisfies Equation (5.126) whenever
both sides of the equation are defined. Note that, in accordance with (5.134), ¢?p =

Q*P.
It should be clear that in many cases the solution of the system of equa-

tions (5.128) may be quite difficult. However, for some purposes, the knowledge
of the derivatives d Q; /ds, d P; /ds is enough.

Example 5.53 (Passive rotations in the three-dimensional Euclidean space). Let us
assume that the Cartesian coordinates and momenta of a particle moving in the
three-dimensional Euclidean space transform according to

Q1 =qicoss +qgysins, Qr = —qpsins + gacoss, Q3 = g3,
q q q q q (5.136)

P; = picoss + ppsins, P, = —pysins + pycoss, P3 = p3,

if the Cartesian axes (Q1, Q2, 03) are obtained from the Cartesian axes (g1, g2, g3)
by means of a rotation through an angle s, about the g3-axis. Computing the partial
derivatives

901 9002 903
=4q2, = _qla = 07
ds s=0 ds s=0 ds s=0
P oP aP;
= 2 = _pla —_ 07
ds s=0 ds s=0 ds s=0
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and comparing with Equations (5.121) we find that the generating function of these
rotations is

G =—qip2+qp1 + x@),

where x (¢) is some function of ¢ only, which is not determined by the coordinate
transformation (see also Example 5.56). The function x (#) need not be equal to
zero, and different expressions for x (¢) will produce different generating functions
of rotations. (See Exercise 5.61.)

Equation (5.128) is somewhat similar to the Hamilton equations and, for that
reason, it is usually stated that the Hamiltonian is the generating function of the
time evolution (with the parameter s of the transformations being the time). There
are some differences, however; in the derivation of (5.121) it was assumed that the
parameter s is not related to the coordinates or the time and a generating function G
does not depend on the parameter s, while a Hamiltonian may depend on the time.

We end this section remarking that a given one-parameter family of canonical
transformations defines its generating function up to an additive function of ¢ only,
but a real-valued function, G, defined on the extended phase space completely
determines a, possibly local, one-parameter group of canonical transformations.

5.4 Symmetries of the Hamiltonian and Constants of Motion

As we have seen in Sections 5.1 and 5.2, given a canonical transformation, the
new Hamiltonian, K, is defined up to an additive function of ¢ only [cf. also
Equation (5.120)]. We shall say that a Hamiltonian H (g;, p;, t) is invariant under a
canonical transformation Q; = Q;(g;, pj,t), P = Pi(qj, pj,t) (which may also
depend on some parameters) if the new Hamiltonian K can be chosen in such a way
that

K(qi, pi,t) = H(Qi(qj, pj, 1), Pi(q), pj. 1), 1). (5.137)

This amounts to say that the Hamiltonian H (qg;, p;,t) is invariant under the
canonical transformation Q; = Q;(qj, p;,t), P; = Pi(qj, pj,t) if the equations of
motion expressed in terms of Q; and P; have exactly the same form as the equations
of motion written in terms of ¢; and p;. (Note that we restrict ourselves to canonical
transformations.)

The invariance condition (5.137) can be expressed in a more precise manner
making use of the mapping ¢ : R>*t1 — R?"*!1 defined by

¢(q1"“’qn’p1"“’pn’t)E(Qla-'-’Qnapla'-'apnat)a
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so that Equation (5.137) is equivalent to

K =Ho¢. (5.138)
For instance, the Hamiltonian
2 2
p mw- ,
H =
m T o2 1

is invariant under the canonical transformation

0= P , P = —muwq, (5.139)
maw
since
. oH p . oH )
g = =", p=-— = —mw-q (5.140)
ap m aq

and, therefore, combining (5.139) and (5.140),

. p P R . 2
0= =—wqg= |, P =—-mwg=—-wp =—mwQ,
mw m

which are of the same form as Equations (5.140). Alternatively, since the transfor-
mation (5.139) does not involve the time, K — H = f(¢), where f(¢) is a function
of ¢ only. Hence,

2

p mw? 2
K(q,p,t)=2m+ , 4 + f(0)

2 2 2
_ (mwQ) +ma) (_ P) o
2m 2 mw
2 mw? 2
=y QS
=H(Q, P, t) + f(1).

Choosing f () = 0, we see that condition (5.137) is indeed satisfied.

Example 5.54. Let us consider the standard Hamiltonian for a free particle

p

H = .
2m

The corresponding Hamilton equations are
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d d
1_P P _o. (5.141)
dr m dr

The form of the second of these equations does not change under the scaling
transformation

P = p,

for any nonzero constant A. Then, the first equation in (5.141) maintains its form if
we take Q = Ag, but this is not a canonical transformation if A # +1 ({Q, P} =
{rAg, Ap} = A?). However, we have a canonical transformation if

Q=z+nnm

where F(p, t) is an arbitrary function of p and ¢ only, which can be chosen in such a
way that the form of the first equation in (5.141) is invariant, thatis,dQ /dt = P/m.
In fact, this last condition amounts to

ldg A dFdp A dF Ap
rde apde At m

’

which, with the aid of the original equations of motion (5.141), is equivalent to

Lp O9F Ap
Am a m’

Thus, choosing

_ 1\ tp
F(p,t)_<)\—)\> "

we conclude that the Hamiltonian H(q, p,t) = p?/2m is invariant under the
canonical transformation

q L\ tp
- A— . P=ip,
Q A+< A)m P

for any nonzero value of A. (These are precisely the transformations (5.119), if we
express the parameter A as e™".)

We shall say that a given Hamiltonian, H, is invariant under a one-parameter
family of canonical transformations, ¢, if H is invariant under ¢ for each value
of s.

As we shall show, the invariance of a Hamiltonian under a one-parameter family
of canonical transformations implies the existence of a constant of motion, and any
constant of motion is the generating function of a, possibly local, one-parameter
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group of canonical transformations that leave the Hamiltonian invariant. As we
shall see in Section 5.5 there are also constants of motion associated with discrete
canonoid transformations, but these can be trivial.

Proposition 5.55. [f the Hamiltonian H is invariant under a one-parameter family
of canonical transformations, then its generating function, G, is a constant of
motion.

Proof. Considering a one-parameter family of canonical transformations with
generating function G, making use of Equations (5.123) and (5.121), and the chain
rule we get

G + G 0H G 0H
ot  0dq; dp;  9dp; 3q;

_ 0K P oH 00 oH
A |,mg S |0 Opi 95 |4—q 99i
d
= s [Ks — H(Qi(gi. pi.t,5), Pi(gi, pi.t,9).1)]| (5.142)
s=0

which is equal to zero if H is invariant under these transformations [see (5.137)],
thus showing that G is a constant of motion. O

Example 5.56 (A group of active translations). It can be readily seen that
0=q+ts, P =p, (5.143)

is a one-parameter family of canonical transformations (in fact, a one-parameter
group of canonical transformations). Making use of Equations (5.121) one finds
that the generating function of this group is of the form

G=p+x@),

where x (¢) is a function of ¢ only. Since the transformation (5.143) does not involve
the time,

Ky =H+ f(t,9), (5.144)

where f (¢, s) is a function of 7 and s only [see Equations (5.12)].
The Hamiltonian

2
H(g,p,t) = om + mgq

is invariant under the group of canonical transformations (5.143) since, from (5.143)
and (5.144), we have
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2
Ks(q,p,t) = gm +mgq + f(t,s)

P2
+mgQ —mgs + f(t,s)
2m

= H(Q, P,t) —mgs + f(t,s)

and, therefore, in order to satisfy the invariance condition (5.137), f(z, s) must be
chosen as mgs. Then, from (5.123) and the expressions derived above we have

3G 3K,
ar ~ ds

_

= mg
s=0 ds

s=0

and therefore G = p 4+ mgt, which is, indeed, a constant of motion.

It may be remarked that it is usually stated (in the context of classical mechanics
and in the context of quantum mechanics) that the canonical momentum, p, is the
generating function (or the “infinitesimal generator,” as is usually called) of the
active translations; however, as we have shown, there are an infinite number of
different generating functions of the translations (5.143), depending on the choice
of the function x (#). (For the passive translations defined by Q = g — s, P = p,
the generating function is of the form G = —p + x(¢).) (See also Exercise 5.58.)

Since in this example we are considering a particle in a uniform gravitational
field, it is to be expected that its Hamiltonian be invariant under translations.

Exercise 5.57. Show that the Hamiltonian
2

p
2m

H = — F(t)q,
where F(¢) is a function of ¢ only, is invariant under the group of translations (5.143)
and find the constant of motion associated with this invariance.

Exercise 5.58 (Passive translations in a uniform magnetic field). Show that the
Hamiltonian (5.48), for a charged particle in a uniform magnetic field, is invariant
under (passive) translations in an arbitrary direction (ay, az, a3), defined by

Q1 =x —say, 0r =y —say, 03 =z —sas,

eBo eBo (5.145)
Py = py + say, Py = py— say, P3 = p;

2¢ 2¢

(see Example 5.36), and find the three constants of motion associated with these
symmetries. (Cf. Equations (5.50).) (The vector (say, saz, sa3) is the position vector
of the origin of the Cartesian coordinates (Q1, Q2, Q3) with respect to the origin of
the Cartesian coordinates (x, y, z).) (Cf. also Example 1.19.)
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(It should be kept in mind that when there is a magnetic field present, the
canonical momenta, p;, are gauge dependent [see (5.71)]. The Hamilton equations
applied to the Hamiltonian (5.48) yield

eBy eBy

) m. = - X, mi: )
2 y Y = Dy Pz

mi = px+ 2c

and one can verify that the right-hand sides of these last equations are invariant
under the transformations (5.145), as one would expect in the case of a passive
translation.)

Example 5.59 (Passive rotations in the field of a magnetic monopole). Under a
passive rotation about the z-axis through an angle s, the Cartesian coordinates,
(g1, 92, g3) = (x, y, 2), of a particle transform as [cf. (5.136)]

Q1 =qicoss—+qosins, 02 = —q1sins+gacoss, 03=¢q3 (5.146)

and, in a similar way, if there is a magnetic field present, the Cartesian components
of its kinematic momentum transform as

e e e .
Py — A1(Q1, 02, 03) = (171 - A1> coss + (Pz - Az) sins,
Cc c Cc
e e . e
Pr = A2(01. 02,09 = = (p1 = S A1) sins + (p2 = £ Az) coss. (5.147)
e e
Py — A3(Q1, @2, 03) = p3— As,

where e is the electric charge of the particle, and the A; are the Cartesian compo-
nents of a vector potential for the magnetic field [recall that canonical momenta are
related to the kinematic momenta by means of (4.31)]. From Equations (5.146) it
follows that

901 _ 902

— 903

=0,
s=0 ds

s=0

and using these expressions and the chain rule, from Equations (5.147) one finds
that

0P, e e 0A1 0Aq
=p—- A+ | —q1 .
9s |- c c aq1 g2
P e e A2 A2
=-p+ A1+ | —q1 )
05 |4—0 c c g1 aq2
o0P3 e ( 0A3 8A3)
= q92 —q1 .
08 |;—g ¢ g1 g2
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As shown in Proposition 5.49, if, for each value of s, the coordinate transformation
given by Equations (5.146) and (5.147) is canonical, there must exist a function, G,
such that [see Equations (5.121)]

G 0G 0G
= ¢, = —q1, =0, (5.148)
ap1

and
0G e e A1 0Aq
=-p+ A— | —q1 ,
0q1 c c 9q1 9g2

G e e 0A> d0A>
=p1— Ar— |q —qi ,
0g2 c ¢ 9q1 9g2

0G e ( 3A3 8A3)
= - 2 —q1 .
g3 c\? 9q1 1 992

(5.149)

However, these equations for G are not always integrable. From the equality of the
mixed second partial derivatives of G, one obtains the conditions

0B1 0B1 B> B> 0B3 0B3
—q = —By, q1 —q = By, q1
g2 0g2

q1
9q1 9q1

which mean that the magnetic field has to be invariant under the rotations about the
z-axis. (Cf. Example 1.21.)

Thus, the rotations defined by Equations (5.146) and (5.147) are canonical
transformations if and only if the magnetic field is invariant under the rotations
about the z-axis. (Examples of such a field are a uniform magnetic field along the
z-axis, and the field of a magnetic dipole aligned with the z-axis.)

On the other hand, the standard Hamiltonian in Cartesian coordinates for a
charged particle of mass m and electric charge e in a magnetic field is [see (4.14)]

1 e 2 e 2 e 2
H = <P1 - Al) + (pz - Az) + (p3 - A3) ,
2m c c c

where the A; are the Cartesian components of a vector potential for the magnetic
field present. Since the transformation (5.146)—(5.147) does not involve the time,
Ks = H + f(t,s), where f(z, s) is a function of ¢ and s only and one can readily
see that, choosing f(¢,s) = 0, H is invariant under the rotations (5.146)—(5.147)
(even if the magnetic field is not invariant under these rotations!).

Hence, if the magnetic field is invariant under rotations about the z-axis, the
one-parameter group of rotations (5.146)—(5.147) is formed by canonical transfor-
mations that leave H invariant and, therefore, its generating function, G, determined
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by Equations (5.148)—(5.149), and G /dt = O [see Equation (5.123)] is a constant
of motion. It should be clear that analogous results hold for rotations about the other
coordinate axes.

The only magnetic field invariant under rotations about the three coordinate axes
(and, therefore, about any axis passing through the origin) is of the form

B=g '.. (5.150)
Ir[?

where g is a constant. This field would be produced by a magnetic monopole placed

at the origin. Since V - B is different from zero at the origin, there does not exist a

well-behaved vector potential for this field defined everywhere. However, one can

readily verify that

_ gz(yi—x}j)
@2+ y)Va2 32+ 22

is a vector potential for the field (5.150), which is not defined on the points of the
z-axis. (This vector potential is invariant under rotations about the z-axis, but other
equivalent vector potentials may not have this symmetry.)

Substituting this vector potential into the right-hand sides of Equations (5.149)
one finds that the solution of Equations (5.148)—(5.149) and 0G /9t = 0is G =
—xpy + ypx, which is a constant of motion, as one can directly verify. Expressing
the canonical momentum in terms of the kinematic momentum, p; = mq;+(e/c)A;,
one obtains the equivalent expression

G = —(xmy — ymi) + E %,
Ccr

(5.151)

In this case we have two additional constants of motion, associated with the rotations
about the x- and y-axes. With all these constants of motion we can form the
conserved vector

egr

r x mr — (5.152)

)
CcCr

which reduces to the elementary definition of the angular momentum when g = 0.
(Cf. Example 5.53.)

Exercise 5.60. The most general vector potential corresponding to the field (5.150)
is of the form

gz(yi—xj)

= + V&,
@2+ y)a2 4y + 22

where & is some function of the coordinates x, y, z, only. Show explicitly that the
generating function G of the rotations (5.146)—(5.147), expressed in terms of the
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kinematic momentum, is given by (5.151) and, therefore, it does not depend on
the function £. (This behavior is to be expected since a constant of motion must
not depend on the choice of the vector potential. Recall that, by contrast with the
canonical momentum, which is gauge-dependent, the kinematic momentum does
not depend on the gauge.)

Exercise 5.61. Show that the function G defined by Equations (5.148)—(5.149) is
given by

e e e
G=q ([71 - CA1>—Q1 (pz - CAz)-I-C /(thl+quz)d613—B3(611dq1+q2dqz)-

(The integrand is the z-component of the vector field r x (dr x B).) Note that
the differences p; — (e/c)A; are the components of the kinematic momentum and
are, therefore, gauge-independent. In the case of the magnetic field (5.150), this
expression reduces to (5.151).

Exercise 5.62 (Passive translations in a magnetic field). Consider a charged
particle in a (not necessarily uniform) static magnetic field. Under a passive
translation by a distance s along the z-axis, the Cartesian coordinates of the particle
transform according to

01 =qi, 07 = q2, 03 =q3—>5.

Assuming that the canonical momenta transform in such a way that

e e
P; — CAi(Ql, 02,03) =pi — CAi(QI7QZ7Q3)

(i = 1,2, 3) (that is, the Cartesian components of the kinematic momentum do not
vary), show that these transformations are canonical if and only if the magnetic field
is invariant under the translations (that is, the Cartesian components of the magnetic
field are functions of g1 and g> only) and that the generating function of this group is

e e
G=-— (P3 — CA3) + . /(Bzdfh — Bidqg2)

(cf. Exercise 4.14).

Example 5.63 (Galilean transformations in one dimension). As shown in Exam-
ple 5.14, the coordinate transformations

0=q—ut, P =p—my, (5.153)
which depend on the parameter v, are canonical and the new Hamiltonian is given by

Ky=H —vp+ imv* + f(t,v),
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where f (¢, v) is a function of 7 and v only. Hence, taking H as in Example 5.56,

[72
H(g,p,t) = m + mgq,

we have

2
p 1
K@, p,n) =, +mgq—uvp+ 2mv2 + f(t,v)

2

P
= +mgQ + mgut + f(,v)
2m

= H(Q, P,t) + mgut + f(t,v).

Thus, H is invariant under the one-parameter group of canonical transforma-
tions (5.153) if we take f(¢,v) = —mgvt and, with this choice, the right-hand
side of (5.21) is the differential of the function

Fi =mvg — émvzt - émgvt2

(which, again, is not a generating function because the set (¢, Q, t) is not function-
ally independent). Finally, substituting this last expression into (5.122) (with the
parameter v in place of s), we find that

G =mq — émgt2 — pt,

which, as one can readily verify, is a constant of motion. (G can also be obtained
from Equations (5.121) and (5.123).)
Assuming that H has the usual form
2
H="" 4v.nm,
2m
where V (g, t) is a function of ¢ and ¢ only, we can find the most general form of the

potential V (g, t) such that H is invariant under the Galilean transformations. The
invariance condition (5.137) reduces to

V(Q+vt,t) =V(Q,t) — f(t,v), (5.154)

which must be valid for all values of v. Hence, taking the derivative with respect to
v, at v = 0, of both sides of the last equation we obtain

AV af@)

=—-F(1),
dq v |y—o ®
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where F(¢) is a function of 7 only. Hence, up to an irrelevant additive function of ¢
only,

Vig.1) = —Ft(t)q, (5.155)

which corresponds to a possibly time-dependent uniform field, and, from (5.154), it
follows that f (¢, v) = F(t) v. Then, making use of Equations (5.121) and (5.123),
we find that the associated constant of motion is

G:mq—pt+/F(t)dt.

An important conclusion from the examples above is that there is no unique
conserved generating function associated with a one-parameter group of canonical
transformations. A similar result holds in the framework of quantum mechanics (see,
e.g., Torres del Castillo and Herrera Flores [18]).

Exercise 5.64. According to Equations (5.121), the generating function of the
Galilean transformations (5.153) is of the form G = mqg — pt + x(t), where
x (t) is a function of ¢ only. Assuming that the Hamiltonian has the form H =
p?/2m + V(q, 1), show that (5.155) is the most general potential for which G is
conserved.

Exercise 5.65. Show that the Hamiltonian

2 2

1 2
H=Pr 2y Vg2 — q1),

2my  2myp

corresponding to a system of two particles of masses m1 and m; interacting through
a potential, V, that only depends on their separation, is invariant under the Galilean
transformations,

01 =q1 — v, Py = p1 —mpv,
02 = q> — v, Py = p» —mav.

Find the generating function G(g;, p;,t) of this group of transformations and
identify its physical meaning.

Exercise 5.66 (A nonstandard Hamiltonian). Consider the Hamiltonian

H = pPip2
m

+me’qiqn,
where m and w are constants. Find the equations of motion for ¢g; and ¢>. What is

the mechanical system they correspond to? Now, consider the one-parameter family
of coordinate transformations

01 =¢'q, 0r=e¢" ¢, P =¢"’py, P, =¢'p.
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Show that this is a family of canonical transformations that leave invariant H. Find
the associated constant of motion and its physical meaning.

It may be remarked that, apart from simple cases (e.g., Hamiltonians with
ignorable coordinates), it is usually difficult to identify the symmetries of a given
Hamiltonian (that is, the one-parameter groups of canonical transformations that
leave H invariant) and, therefore, the constants of motion obtained with the aid of
Proposition 5.55 are relatively few. More often, the constants of motion are found
by the direct integration of the equations of motion, making use of some ansatz
(see, e.g., Perelomov [13, Sect. 2.8]), the application of the Poisson Theorem, the
method of equivalent Hamiltonians presented in Section 4.3, by inspection (see,
e.g., Examples 5.17 and 5.18), or the solution of the Hamilton—Jacobi equation (to
be considered in Chapter 6).

The Symmetries of the Hamiltonian Generated by a Constant of Motion

As pointed out above, the converse of Proposition 5.55 is also true: any constant
of motion, G, is the generating function of a (possibly local) one-parameter group
of canonical transformations that leave H invariant (see Proposition 5.74, below).
Among other things, this result implies that any Hamiltonian possesses an infinite
number of one-parameter symmetry groups, since there are an infinite number
of constants of motion (but only 2n can be functionally independent). We start
presenting some examples and exercises where this fact is illustrated, postponing
the proof to the end of this section.

Example 5.67. One can readily verify that the function

is a constant of motion if the Hamiltonian is

p
2m

H=" —lq. (5.156)

Making use of (5.128) one finds that the one-parameter group of canonical
transformations generated by G is given by

t
O0=gq-'", P=p-s (5.157)
m

Then, from Equations (5.12) one finds that the new Hamiltonian is

ps
KSZH_ +f(t7s)
m
’ ps
= — ktq — + f(t,s),
2m m

where f (¢, s) is a function of 7 and s only.
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On the other hand, from (5.156) and (5.157),

2
H(Q(qv pvtss)v P(qv pvtss)vt) = (pzmS) _kt (q - ts) ’

m
which coincides with the expression of K obtained above if

52 kt?s
fas)=_+ ;
2m m
thus showing that H is invariant under the group of canonical transformations
generated by the constant of motion G.

Exercise 5.68. Show by direct substitution that the form of the equations of motion
in terms of the canonical coordinates Q and P given by (5.157) is the same as the
form of the equations of motion in terms of ¢ and p, if the Hamiltonian is given
by (5.156).

Example 5.69. The function
G = pxpy +m?gx (5.158)

is a constant of motion if the Hamiltonian is the standard one for a particle of mass
m in a uniform gravitational field

_ P2+ py?
2m

H + mgy (5.159)

(see, e.g., Example 5.35). The one-parameter group of canonical transformations
generated by G is determined by the system of equations [see Equations (5.128)]

dQ; d0» dpP; 5 dpP,
= P s = P , = — N = 0
ds 2 ds ! ds me ds

with the initial conditions Q1(0) = x, 02(0) =y, P1(0) = px, P»(0) = py. The
last two equations are readily integrated, giving

Py =py — ngs, Py = py. (5.160)
Then, substituting these expressions into the first pair, we obtain
Qr=x+pys.  Qr=y+pes— ymigs’. (5.161)

Since the canonical transformation (5.160)—(5.161) does not involve the time,
Ky = H + f(t,s), where f(¢, s) is a function of ¢ and s only. Hence,
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2 2
Px”+ py
K=" o Yot mgy+ f(t.s)

1

=, [(P1 +m?gs)? + P)*] + mg(Q2 — Pys — éngsz) + f(t,5)
Pi? 4+ Py? I 355 I 35,

= m + mgs Py + 2m g s +mgQr —mgPys — 2m g+ f(t,s)
P2+ Py?

= o +mgQo+ f(t,s)

H(Qi(qj, pj): Pi(qj, pj)) + f(t,5).
Hence, choosing f(¢,s) = 0, we see that the invariance condition [Equa-
tion (5.137)] is satisfied.

Exercise 5.70. Show explicitly that the Hamiltonian (5.48) is invariant under the
canonical transformations generated by the constant of motion

G * ¢ t Y + ¢ i t
= — cos w.t — sin w1,
2 eB()py ¢ 2 eB()px ¢

where w, = eBo/mc. (In terms of the kinematic momentum of the particle, G is
given by the gauge-invariant expression G = — (3 cos w.t + 7y sinw.t)/eBy.)

Example 5.71. The function
G = —xpy + ypx —mgtx + égt2px (5.162)

is a constant of motion if the Hamiltonian is given by (5.159). Solving Equa-
tions (5.128) one finds that the one-parameter group of canonical transformations
generated by G is given by

Q1 =xcoss + (y+ égtz) sins, Q)= —égt2 —xsins + (y + égt2)coss,

Py = pycoss + (py +mgt)sins, P, = —mgt — p,sins + (py + mgt) coss.
(5.163)
Instead of showing that the Hamiltonian is invariant under these transformations,
it is simpler to show that the form of the equations of motion is invariant
under (5.163). In fact, the Hamilton equations given by the Hamiltonian (5.159)
are

x= ", y="7, px =0, py = —mg. (5.164)
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Then, making use of these equations and (5.163) we have

. P
Q1=XCoss+()'7+gt)sins=px coss—l—(py—i-gt) sins = 1,
m m m

. P

Q) = —gt —xsins + (y + gt)coss = — t—px sins + py—i— t)coss = 2,
8 yrT8 8 8

m m m

Pi = pycoss + (py + mg)sins =0,
Py = —mg — pysins + (py +mg)coss = —mg,

which have the same form as Equations (5.164).
Exercise 5.72. The function

G =L (p 4 p )t Gpetypy =" @4~ eyt ey~ L
om NG 27 72 8

is a constant of motion if the Hamiltonian is the standard one of a particle of

mass m in a uniform gravitational field (5.159). Find the one-parameter group of

canonical transformations generated by G and show explicitly that the equations of

motion (5.164) maintain their form under these transformations.

Exercise 5.73. Show explicitly that the Hamiltonian

2
H=""tmgq
2m
is invariant under the one-parameter group of canonical transformations generated
by the function (5.129). (Cf. also Example 5.21.)

The invariance of the Hamiltonian under the transformations generated by a
constant of motion is equivalent to the invariance of the form of the equations of
motion under these transformations. In the following proposition we shall prove
that if the equations of motion are given by

- l(qjv p]st)s (5165)

dg;
' =Xi(gj. pj. 1), dt

dr

where X; and Y; are convenient ways of denoting the partial derivatives of the
Hamiltonian,

X, = , Yi=— , (5.166)
api
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then

do; dp;
=X;(Qj, Pj,t
dt l(Qja J )7 d[

= Yi(Qj, Pj, 1), (5.167)
where Q; = Q;(gj, pj.t,s) and P; = P;(gj, pj, t, s) represent the one-parameter
group of canonical transformations generated by a constant of motion G, according
to Equations (5.128).

Proposition 5.74. If G is a constant of motion, then the Hamilton equations
are form-invariant under the one-parameter group of canonical transformations
generated by G.

Proof. Making use of the chain rule, the Hamilton equations, and Equations (5.128)
we obtain

3 (in> _ 0 <3Qi , 00idgj 90 de)
s=0 s=0

as \ dr Cas\ dt  dg; dr  dp; dt
0 00 a 00; oH 0 00; oH
ot 0ds |j_g 0q; 0ds |_gdp; 9pj 93S |_o dq;

88G+<88G>8H <88G>8H
01 dp; dq; dpi ) dp; dpj dpi ) 9q;

a 3G+< ad 8G>8H_< ad BG)aH
dpi ot dpi 9q; /) Op; dpi dpj ) 9q;
_ a <3G+3G8H_8G3H>

ap; \ ot dqj op; 0dp; 0q;

8G<8 8H>+8G<8 8H>

dq; \dpi dp; )~ dp; \9pi dq; )"

Thus, making use of the hypothesis, Equations (5.128), the definitions (5.166), and
the chain rule we finally have

a0 (dQ; _0P; aX; 00; X
as \ dr /o T Bs s=0 9D 0s |s—o 0q;
_ Xi(Qj. Pj, 1)
- as ] J J —o
The remaining relations in (5.167) are proved in an analogous way. O

It may be noticed that following the steps above, if we assume that the form of the
Hamilton equations is left invariant under the canonical transformations generated
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by a function G, then it follows that dG /dt is a function of ¢ only. Hence, by adding
to G an appropriate function of ¢ only, we could make dG/dt equal to zero, without
altering the transformations generated by G. (Cf. Proposition 5.55.)

5.5 Canonoid Transformations

As in the case of systems with one degree of freedom considered in Section 5.1,
when the number of degrees of freedom is greater than 1, for each Hamiltonian,
there exist coordinate transformations (known as canonoid transformations) that
are not canonical but maintain the form of the Hamilton equations. In this section
we shall extend the results established in Section 5.1, showing that each of these
transformations leads to a set of constants of motion (which can be trivial).

A simple example of a canonoid transformation is provided by the Hamiltonian

2

2
P DY | ey, (5.168)

2m

H =

which corresponds to a particle in a uniform gravitational field, in terms of Cartesian
coordinates. The coordinate transformation

01 =x, 0=y, P = py, P> = p,, (5.169)

is not canonical (e.g., {Q1, P1} = {x, py} = 0) and the time derivatives of the new
coordinates are given by

0= ", Or= Py = —mg, P, =0.

Then, one can readily verify that these equations can be written in the form of the
Hamilton equations with Hamiltonian K = P; P,/m +mg Q1. Thus, the coordinate
transformation (5.169) is canonoid for the Hamiltonian (5.168).

We are going to establish necessary and sufficient conditions for a coordinate
transformation to be a canonoid transformation for a given Hamiltonian.

As shown at the beginning of Section 5.2, if the coordinates g;, p; satisfy the
Hamilton equations

dg;  oH dp;  oH
% _ 0% pi_ _ (5.170)
dr api dr aq;

(i =1,2,...,n), then the new coordinates Q; = Q;(q;, pj,t), P, = Pi(qj, pj. 1)
satisfy the equations
dg; 9K dp; 0K

= = 5.171
dt d0P; dr dQ; ( )
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(i=1,2,...,n), for some function K, if and only if the equations
0K oH oH
= [gi, p] — [gi» qx] + [z, qil,
0gi gk Opk 5172
0K oH oH (.172)
= [pi, pk] = [pis gl + [z, pil
opi gk Opk

hold. Making use of the notation employed in the proofs of Propositions 4.9
and 5.44, we can write Equations (5.172) in the compact form

0K 0H 0H
= [xa, Pi] — [xes gil + [, xq]
X dqk 9Pk
0H
= S[LU[-xC{a xy] + [, xa] (5.173)
0xy,
(¢ =1,2,...,2n). (Note that when the transformation is canonical, £, [Xq, Xy] =

8> and (5.173) reduces to (5.42).)
As usual, the local existence of a function K satisfying a system of first-order
PDE:s of the form (5.173) follows from the integrability conditions 3% K / 0xg0xy =

32K [dxy dxg. Making use of the antisymmetry of the Lagrange brackets and the
identities (5.40) we find that

3’K 3’K
0xgdxy  O0xqdxg
A[xq, xv] 8H+ [ 1 3’H a[t, xq]
=& EpvlXa, X
- dxg  dxy o Vax/gaxﬂ oxg
kgl 0H L. 1] O*H 9, xp]
e 0xq  Oxy polEps v 0xq0xy, 00Xy
dlxp, xo] OH 3’H 2H  d[xp, x4l
R S r T M e P MO

Thus, if the equations of motion (5.170) can also be expressed in the form (5.171),
then the Lagrange brackets [xg, x] satisfy the system of linear PDEs

olvp. xal Olvg.xal OH ’H 3’H

) - ) = Os
T gx, ax, Tomle el Tewliendy

(5.174)
and K is determined by Equations (5.173), up to an arbitrary additive function of ¢
only.
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For the readers familiarized with the formalism of differential forms (also called
exterior calculus), it may be pointed out that the Lagrange brackets can be readily
calculated making use of the fact that

dQ; AdP; = ;[xa, xpgldxq Adxg + [t, xo] df A dxg.

Constants of Motion Associated with a Canonoid Transformation
Now, it is convenient to define the two 2n x 2n matrices, M = (Myg) and @ =
(Dop), with entries

92H

Mypg = eaylxpg, xy ], Dyp = €ay ox (5.175)
14

3)6/3.

(Note that M is the unit matrix if and only if [xg, x,] = &g,, which means that
the coordinates Q;, P; are related to g;, p; by means of a canonical transformation.)
Then, multiplying both sides of (5.174) by &4, using the antisymmetry of ¢, and
of [x¢, xg], we find that Equations (5.174) can be written in the equivalent form

dM, g

g T My ®@up— PyuMyp =0,

assuming that the coordinates xo satisfy the equations of motion, i.e., Equa-
tions (5.170) are satisfied. This last equation amounts to the matrix equation

dm
Gy =M - Mo (5.176)

and from Equation (5.176) one readily finds that, for k = +1, £2, ...,

dm*

i = oM — M*o (5.177)

(the matrix M must be invertible as a consequence of the invertibility of the
coordinate transformation). Taking the trace on both sides of (5.177) it follows that
the trace of any integral power of M is a constant of motion

d(r M%)
dar

0.

Of course, these constants of motion cannot be all functionally independent, and
may be trivial constants [as in the case of the transformation (5.169)]. Since the
determinant of a matrix is a polynomial of the traces of its integral powers, the
determinant of M is also a constant of motion. (See also Exercise 5.76, below.)

Exercise 5.75. Show directly from (5.176) that det M is a constant of motion.
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When n = 1 (the case already considered in Section 5.1), the antisymmetry of
gqp and of [xy, xg] under the interchange of the indices « and 8 imply that M is a
multiple of the 2 x 2 identity matrix. In fact, from (5.105) and (5.175) we have

MZ([M,Xz] 0 )=<[6]1,P1] 0 )
0 [x1,x2] 0 [q1.p,m1)"

Since a multiple of the identity matrix commutes with any matrix, from (5.176)
we only obtain the condition that [x1, x2] (i.e., [g, p], or {Q, P}) is a constant of
motion, which is just Proposition 5.1.

In a similar way, from Equations (5.105) and (5.175), making use of the
antisymmetry of the Lagrange brackets, one finds that when n = 2, M is the 4 x 4
matrix

lg1, p1] [g2, p1] O —[p1, p2]
, , , 0
M- lg1, p2] g2, p2] [p1, p2] . (5.178)
0 (91, g2] (g1, p1] [q1, p2]

—lgi,q21 0 g2, p1] g2, p2l

Exercise 5.76. Evidently, when n = 1, the matrix M has only one repeated
eigenvalue (equal to [g1, p1]). Show that, similarly, when n = 2, each eigenvalue of
the matrix M has even multiplicity. Show that the eigenvalues of M are constants of
motion. (As a consequence of the antisymmetry of [xy, xg] and g4, for an arbitrary
number, n, of degrees of freedom, the characteristic polynomial of M is the square
of a polynomial of degree n (see, e.g., Eves [7, Sect. 3.6A]) and, therefore, each
eigenvalue of M has even multiplicity.)

Now we can readily demonstrate that, as claimed at the beginning of Section 5.2,
the only coordinate transformations Q; = Q;(q;, pj,t), P, = P;(q;, pj,t) that
preserve the form of the Hamilton equations, for any Hamiltonian, are essentially
the canonical transformations. Indeed, from Equations (5.174) one concludes that
there exists a new Hamiltonian K for any function H if and only if the terms with
the first and second partial derivatives of H separately vanish. Since the matrix ()
is non-singular, this amounts to say that all the Lagrange brackets [xg, x,] must be
(trivial) constants, and that the entries of the (constant) matrix M must satisfy

H 9*H
M dxpdx, " o xadx,

for any function H. This last condition holds if and only if M is a multiple of the
unit matrix and, therefore (see (5.175) and recall that gy = 84y ),

['xC{a xﬂ] = )"S(Xﬂa
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where A is a nonzero constant. By rescaling the new coordinates we can eliminate A
from the last equation and in that way we recover Equations (5.41), which was the
definition of a canonical transformation.

Canonoid Transformations and Alternative Poisson Brackets
As we have seen, given a set of first-order ODEs expressed in the form of the
Hamilton equations in terms of coordinates (g;, p;i, t), it is possible to find other
coordinate systems, (Q;, P;, t), not related to (g;, p;, t) by canonical transforma-
tions, in terms of which the given set of equations can also be written in the form of
the Hamilton equations and, in the same way as the canonical transformations can be
used to simplify one of such sets, or to relate two different problems, the canonoid
transformations can be employed to convert a system with a given Hamiltonian into
another with a new Hamiltonian.

If the coordinate systems (g;, p;, t) and (Q;, P;, t) are not related by a canonical
transformation, then the Poisson brackets

af dg  of g af dg  df og

{fv g}l = aql apl apl aqiv {fs g}2 -

T 9Qi 9P 0P 90;

do not coincide. Thus, with a canonoid transformation we obtain a new Poisson
bracket (with all the usual properties of a Poisson bracket). The Poisson bracket
{, }o is, in turn, invariant under the canonical transformations that lead from
(Qi, P;, t) to another coordinate system of the extended phase space.

Given a Hamiltonian, H, in terms of some coordinate system (g;, pi, t), each
canonoid transformation admitted by H corresponds to a nontrivial solution of
the system of equations (5.174) (that is, [x4, Xg] # Aeqg, With a constant factor
A, and det([xq, xg]) # O) that satisfies the conditions (5.40). Conversely, given
a set of functions, [xq, xg] = —[xg, x4], [x«, ], satisfying the conditions (5.40),
det([xq, xg]) # 0, and (5.174), then, by virtue of the Darboux theorem (see, e.g.,
Crampin and Pirani [5]), there exist local coordinates (Q;, P;,t) such that the
Lagrange brackets [xq, xglp p and [x4, t]g,p coincide with the given functions
and the transformation (g;, p;,t) — (Q;, P;, t) preserves the form of the Hamilton
equations; an example of this fact is given in Example 5.78, below.

Exercise 5.77. Show that, in terms of the coordinates (g;, pi,t), the Poisson
bracket {, }, is given by

_ of dg
g =M Ny ,
{f g}Z ( )ay yB axa axﬂ
where (M _l)ay are the entries of the inverse of the matrix M (that is,
(M~ Vay Myp = Sap).

A locally equivalent approach to the subject of this section is presented in
Das [6], but only for the restricted case where the Hamiltonians do not depend
explicitly on the time and the coordinate transformations do not involve the time.
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Instead of considering canonoid transformations explicitly, in Das [6] it is assumed
that a given autonomous system of 2n first-order ODEs can be written in the
form of the Hamilton equations, making use of two different Poisson brackets and
two (possibly different) time-independent Hamiltonians, making use of a single
coordinate system. (Equation (5.174) reduces to Equation (9.41) of Das [6] in the
time-independent case.)

Example 5.78 (Some canonoid transformations for the two-dimensional isotropic
harmonic oscillator). We consider the Hamiltonian

2 2 2
+ py maw
= PRy x4y,
2m 2

H

corresponding to a two-dimensional isotropic harmonic oscillator. Instead of
attempting to find the general solution of the system of PDEs (5.174), we restrict
ourselves to coordinate transformations such that the Lagrange brackets [x, xg]
are all constant and [¢, xo] = O, then the conditions (5.40) are trivially satisfied,
the matrix M is constant [see (5.175)] and from Equation (5.176) it follows that M
must commute with the matrix @, which is given by

0 0 1/m 0
0 0 0 1/m
@ = 5.179
—mw? 0 0 0 ( )
0 —-mw? 0 0

[see (5.175)]. This condition, together with the fact that M must be of the
form (5.178), imply that

a b 0—-d
b ¢cd 0
M = , 5.180
0 e a b ( )
—e 0 b ¢
with e = m2w?d. The four constants a, b, ¢, and d are only restricted by the

condition det M = (b — ac + ed)* # 0.
Making use of the assumption that [#, x,] = 0, from Equations (5.173) we obtain
the expression for the new Hamiltonian in terms of the original coordinates

2 2 2 2
K =g Dx n mo 2 b (Px[?y + mwzxy) +e Py n mw y2
2m 2 m 2m 2

— dma*(xpy — ypx). (5.181)

Since K does not depend on the time explicitly, it is a constant of motion for all
values of a, b, ¢, and d, which are arbitrary (except for the condition b2 —ac +
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ed # 0), hence each expression inside the parentheses in (5.181) is a constant of
motion. (However, only three of them are functionally independent.) Thus, even
though the determinant and the trace of all powers of M are trivial constants, the
new Hamiltonian leads to three constants of motion.

It only remains to find the coordinate transformation explicitly. Taking, for
instance, a = b = ¢ = 0,d = 1 (and, hence, ¢ = mza)z), the only Lagrange
brackets different from zero are [py, py] = 1 and [x, y] = m2w?. Up to a canonical
transformation, these conditions give

01 = mowx, 07 = px, P = mwy, P, = py.

Then, making use of (5.181), one readily finds that K = —w(Q1P> — Q2 P1).

Exercise 5.79. Find the Hamiltonians, K, that lead to the same equations of motion
as

2

2
+ VA
PR gy,

2m

H =

assuming that the entries of the matrix M are trivial constants and that the Lagrange
brackets [, xo] are equal to zero. What are the constants of motion that can be
identified in this manner?

Exercise 5.80 (Two-dimensional isotropic harmonic oscillator). Verify that, for
any value of the constant X, the matrix

0 YDPx 0 pxpy/,B

M=1+5| 7P O —ppy/B 0 , (5.182)
0 —Bxy 0 —XPpy
Bxy 0 YPx 0

where I is the 4 x 4 unit matrix and 8 = m2w?, has the form (5.178), satisfies
Equations (5.176), with @ given by (5.179), and conditions (5.40), assuming that
the coordinate transformation does not involve ¢. Find the expression for the new
Hamiltonian, K, in terms of the original coordinates.

Example 5.81 (A canonoid transformation for the Toda lattice). A more involved
example is the so-called Toda lattice, which in its simplest nontrivial case (n = 2)
is defined by the system of ODEs

41 = p1, 42 = p2, p1 = —ell" py =ell ™92, (5.183)
One can readily verify that these equations are the Hamilton equations for

H=1(p>+p?) +e™e, (5.184)
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A straightforward computation shows that the matrix

P1 0 0 1
0 p2 —1 0
0 —eN=% p 0
=32 () 0 m

M = (5.185)

which is of the form (5.178), satisfies Equation (5.176) as a consequence of (5.183).
(Making use of (5.184) and (5.175) one finds that, in this case

0 0 1

0 0 0
—ed1—02 ed1—92 ()
edl—42 _ed1—q2 ()

b =

S O = O

On the other hand, one readily verifies that the Lagrange brackets given by (5.185)
satisfy (5.40), which guarantees the existence of coordinates (Q;, P;) such that the
Lagrange brackets [xy, xg] coincide with the expressions determined by (5.185).

Assuming, as in Example 5.78, that the coordinate transformation does not
involve ¢, making use of (5.173) we find that the new Hamiltonian is (in terms of
the original coordinates)

K = 1(p1® + p2®) + (p1 + p2) e 702,

A simple computation shows that tr M = 2(p1+ p2) and det M = (p1 po —e?1 92)2,
which are constants of motion. (The conservation of p; + py follows directly
from (5.183) or (5.184).) Since H and K do not depend on ¢, they are also
constants of motion, but one can readily see that they are functions of p; + p2
and pypr —e?' 792, (As we shall see in Section 6.2, these two constants of motion
are sufficient to obtain a complementary pair of constants of motion and, therefore,
to find the solution of the equations of motion.)

A more advanced and detailed study of this important system, with an arbitrary
number of degrees of freedom, can be found, e.g., in Das [6, Chap. 10] and
Perelomov [13, Chap. 4].



Chapter 6 )
The Hamilton-Jacobi Formalism Check or

In the preceding chapters we have studied convenient forms of expressing some
systems of ordinary differential equations, most of them related to mechanical
systems. In this chapter we shall see that each of these systems of equations can be
translated into a single partial differential equation, known as the Hamilton—Jacobi
equation, which is constructed out of the Hamiltonian. A complete solution of this
equation is the generating function of a canonical transformation that relates the
coordinates being employed with another set of canonical coordinates which are all
constants of motion.

As we have seen in the preceding chapter, the canonical transformations can be
employed to simplify the solution of the Hamilton equations. However, we do not
have a systematic method to find a convenient canonical transformation for any
given Hamiltonian. As we shall show in this chapter, by finding a complete solution
of a certain first-order partial differential equation (the Hamilton—Jacobi equation,
or HJ equation, for short) one obtains the generating function of a local canonical
transformation such that the new Hamiltonian is equal to zero.

In Section 6.1 we present the HJ equation and we give several standard examples
of its application, finding complete solutions of the HJ equation by means of
the method of separation of variables. In Section 6.1.1 we study the relationship
between different complete solutions of the HJ equation. In Section 6.1.2, we
consider alternative expressions for the HJ equation, which are useful in some cases,
but not usually discussed in the standard textbooks. In Section 6.1.3 we show that in
some problems where the method of separation of variables is not applicable, it may
be possible to obtain R-separable solutions, which are sums of a fixed function that
may depend on all the variables, and separated one-variable functions. In Section 6.2
we give a simple proof and several applications of the Liouville theorem, which
enables us to find complete solutions of the HJ equation, making use of an adequate
set of constants of motion.
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In Section 6.3 we show how to map the solutions of the HJ equation corre-
sponding to a Hamiltonian H into solutions of the HJ equation corresponding to the
new Hamiltonian K obtained by a canonical transformation. This mapping is then
applied in Section 6.3.1 to find the solutions of the HJ equation with a specified
initial condition. In Section 6.4 we show that with any point transformation in
the extended configuration space, in which the time may be also transformed, and
any Hamiltonian, we can obtain new Hamiltonians such that the solutions of the
corresponding HJ equations are related in a simple way.

In Section 6.5 we apply the Lagrangian and the Hamiltonian formalisms to the
study of geometrical optics and we show that the HJ equation leads to the eikonal
equation.

6.1 The Hamilton-Jacobi Equation

As we have seen in Section 5.2, any real-valued function of 2n 4 1 variables,
F>(qgi, P;, 1), such that

92 F:
det 2 ) zo, 6.1)
0q;0P;

defines a canonical transformation, Q; = Q;(q;, pj.t), P; = P;(qj, pj, ), given
implicitly by

F 0F
;= , ;= . 6.2
pi 3q; o P, (6.2)
Then, the Hamilton equations
oH oH
7 = , y; = — , 6.3
qi pi Di 3q; (6.3)

for an arbitrary Hamiltonian, H, are equivalent to

. 0K . K
Qi = , P =— , (6.4)
P 00,
where
0F
K=H , 6.5
+ o (6.5)

but Equations (6.4) need not be simpler than (6.3).
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However, if we find a generating function F> such that the new Hamiltonian,
K, is equal to zero, then the equations of motion (6.4) are trivially integrated,
yielding Q; = const., P, = const. (that is, the new canonical coordinates, Q;,
P;, are 2n, locally defined, constants of motion) (cf. Proposition 5.42). In that case,
by combining (6.5) with the first equations in (6.2), and denoting the generating
function F; by S, one obtains

0S 0S
H | g, Jt =0. 6.6
(% 3q; ) + 9t (6.6)
Equation (6.6) is a first-order partial differential equation (PDE) for S(q;, P;, t),
known as the Hamilton—Jacobi (HJ) equation, and the function S will be called
Hamilton’s principal function. It should be noted that this equation does not contain
the variables P; explicitly, so that, in order to satisfy the condition

928
det 0 6.7
© <8q,-an> * ©7

[see Equation (6.1)], the function S must contain the n variables P; as parameters.
Any solution of the HJ equation satisfying (6.7) is called a complete solution.
(A first-order linear PDE possesses a general solution that contains an arbitrary
function. See, e.g., Example 6.29.)

Since the HJ equation does not contain S explicitly, but only its partial deriva-
tives, given a solution, S, of the HJ equation, if ¢ is an arbitrary constant, then S+-c is
also a solution of the same equation. However, such a trivial constant cannot be one
of the n parameters P; contained in a complete solution because it would produce
an entire row or column of zeroes in the matrix (6.7).

As we have seen in Proposition 5.42, making use of the explicit form of the
solution of the Hamilton equations, one can find the generating function of a
canonical transformation such that the new Hamiltonian is equal to zero (that
is, a complete solution of the HJ equation) (see Examples 5.40 and 5.43). What
is desirable is to find complete solutions of the HJ equation without knowing
beforehand the solution of the Hamilton equations. Unfortunately, we do not have
an alternative method to solve the HJ equation in general.

Once we have a complete solution, S(g;, P;, t), of the HJ equation, we substitute
it into the equations

aS as

ba; (6.8)

pi =

[see Equation (6.2)] in order to obtain the canonical transformation generated by
S. If we make use of these equations to find Q; and P; in terms of (g}, pj, t), we
obtain 2n (functionally independent) constants of motion, and if we use them to
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express ¢g; and p; in terms of (Q;, Pj, t), we obtain the solution of the Hamilton
equations (6.3), using the fact that the solution of the Hamilton equations (6.4), with
K being equal to zero, is Q; (t) = const., P;(t) = const.

Example 6.1 (One-dimensional harmonic oscillator). By means of a direct substi-
tution one can readily verify that

P2 mw® ,)\ tanot
S(g, P,t) = — 2m+ ) q » + Pg sec wt

is a solution of the HJ equation
N 2+ma)22+8S_0 6.9)
2m \ 3g 2 T Ty T '

which corresponds to the standard Hamiltonian of a one-dimensional harmonic
oscillator

[cf. Equation (6.6)]. (This solution of Equation (6.9) will be obtained in Exam-
ple 6.18, below.) Then, Equations (6.8) yield

P
p = —mwq tanwt + P sec wt, 0=- tan wt + g sec wt
maw

and, therefore, the canonical transformation generated by S is given by

0 =gqgcoswt — P sin wt, P = mwq sin wt + p cos wt, (6.10)
mo
or
P .
q = Qcoswt + sin wt, p=—mwQsinwt + P coswt. (6.11)
mo

According to the discussion above, Equations (6.10) give two constants of
motion, while Equations (6.11) give the solution of the Hamilton equations (in this
example, O and P happen to be the values of g and p at t = 0, respectively). It
may be noticed that, by virtue of the Hamilton equations, p = mq and, therefore,
the second equation in (6.11) can be obtained by differentiating the first one with
respect to the time, but this is not necessary (though not wrong, either); the canonical
transformation generated by any complete solution of the HJ equation yields the
entire solution of the Hamilton equations.
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Separation of Variables

The method regularly employed to find complete solutions of the HJ equation (and
in most textbooks the only one mentioned) is the method of separation of variables.
In this method one looks for solutions of Equation (6.6) that can be written as the
sum of n 4+ 1 one-variable functions, S = S;(g1) + S2(g2) + - - - + Sn(gn) + Su+1 ().
When the method is applicable, one obtains n+-1 first-order ODEs (for the functions
S1, 82, ..., Sp+1), and in the process of separating the variables one has to introduce
n constants of separation, which can be taken as the parameters P; (see the examples
below).

Example 6.2 (Particle in a uniform gravitational field). A very simple, but illustra-

tive, example is given by the Hamiltonian

Px2 + py2
2m

H = + mgy, (6.12)

corresponding to a particle of mass m in a uniform gravitational field. The HJ
equation is given by

1 s\  [8S\? BN
-0 6.13
2m |:<8x) +<8y> :|—|—mgy—|—at ( )

and we look for a separable solution of (6.13), that is, a solution of the form
S=Ax)+ B@y)+C@), (6.14)

where A, B, and C are real-valued functions of a single variable. Substituting (6.14)
into (6.13) we obtain, after rearrangement of the terms,

1 | /dA\? N dB\? N dc
mgy =-— .,
2m |\ dx dy ST
which must hold for all values of x, y, and 7, in some open subset of R3. The left-
hand side of this last equation does not depend on ¢, while the right-hand side does
not depend on x and y; hence, the two sides of the equation do not depend on x, y, or

t, and therefore must be equal to some constant, P, say. Hence, up to an irrelevant
constant term,

C(t) =—"Pit (6.15)

1| [daA 2+ dB\’ ey = P
2m | \ dx dy mey =

and
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Rewriting the last equation in the form

dAa\? s dB\?
=2mP) —2m°gy — ,
dx dy

we obtain an equation such that the left-hand side does not depend on y, and the
right-hand side does not depend on x, thus, each side must be a constant. Hence,

A(x) = Pax, (6.16)

where P, is a constant, and

dB
= :I:\/ZmPl — P2 —2m2gy.
dy

(In what follows there is no need to consider the two signs in the square root, since
we only require one complete solution of the HJ equation.) In this manner, we have
obtained a solution of the HJ equation (6.13),

S(x,y, P1, P2, t) = Pax + / \/ZmP1 — P2 —2m2gy dy — Pit, (6.17)

that contains two parameters (the constants of separation Py and P,) which have
been identified with the new momenta, in order to emphasize the role of S as the
(type F>) generating function of a canonical transformation.

Making use of Equations (6.8) we have

Px = P, py=\/2mP1—P22—2m2gy,

and

m dy

Ql = —1 + =
\/ZmPl — P2 —2m2gy

1
—t — \/ZmPl — P2 —2m2gy,
mg
Py dy

Q2:x—/ =x+ P \/2mP1—P22—2m2gy
5 .
V2mP; — P2 — 2m2gy mg

By combining these last expressions, we obtain the coordinate transformation

2 2

p PxP Px” + Dy
Q1= _t_m;’ Q2 =x+ n):2;’ Pr=" 2m ) +mgy, Py = px,
(6.18)



6.1 The Hamilton—Jacobi Equation 235

and its inverse

Pyt + 01) P Py’ g 2
= Ly = — — 2t ,
r=02F Y mg 2m?g 2( + Q0 (6.19)
px = P, py = —mg(t + 01).

Since the new Hamiltonian is equal to zero, Equations (6.18) give four constants of
motion, while Equations (6.19) give the solution of the Hamilton equations in the
original variables. (In this example not all of the Q; and P; coincide with the initial
values of ¢; and p;; however, the constants of motion Q; and P; can be expressed in
terms of the initial values of g; and p; by simply setting + = 0, or any other initial
value of 7, in Equations (6.18).)

For future convenience, it is useful to note that the functions A(x) and C(t),
which depend on the variables that do not appear in the Hamiltonian (6.12), are
linear functions [see Equations (6.15) and (6.16)]. One can convince oneself that
this is a general rule: if a coordinate gg does not appear in the Hamiltonian (but its
conjugate momentum, pg, does appear in H), then, in a separable solution of the
HIJ equation, the function depending on gx must be a linear function. Similarly, if ¢
does not appear in the Hamiltonian, then, in a separable solution of the HJ equation,
the function depending on ¢ must be a linear function of 7.

Example 6.3 (Particle in a central field of force). One of the standard examples of
the application of the HJ equation is that of a particle in a central field of force. Using
the fact that the orbit must lie on a plane passing through the center of force, we
consider a particle moving on the Euclidean plane under the influence of a potential
V (r), hence

1 2
H= (pr2 + 7 ) F V), (6.20)
2m r

in terms of the polar coordinates (r, 8) [see (4.7)]. Thus, the HJ equation is given by

1|88\ 1 [3s\° S
Vv =0 6.21
2m [(ar) +r2<89):|+ "+ 5 ©:21)
and, taking into account that 8 and ¢ do not appear in the Hamiltonian (or in the HJ
equation), we look for a separable solution of (6.21) of the form

S =A(r)+ P60 — Pit, (6.22)

where A is a real-valued function of a single variable, and P;, P, are separation
constants. Substituting (6.22) into (6.21) we obtain
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A _ L | e — v p?
dr o 4 2mr? |

Thus, we have a solution of the HJ equation (6.21),

P2
S(r,@,P1,P2,t)=/ | P =V = 2 |dr+ PO — P (623)
2mr?

that contains two parameters (P; and P,), identified with the new momenta.
The canonical transformation generated by § is implicitly given by [see Equa-
tions (6.8)]

a5 P2 0S5
— = 2m| P - V&) — , = =P 6.24
pr= \/ m [ 1 (r) 2mr2:| po= g, 2 (6.24)
and
a5 d
0= = —t+/ mer , (6.25)
8P1 P22
2m |:P1 — V) — 2mr2:|
aS P, dr
0 = ? (6.26)

-

= =0 —
8P2 / P22 r
2m | P1 — V() —
2mr?

From Equations (6.24) we see that the new momenta are related to the original
coordinates by

1 Po*
P = (pr2+ L J+ve).  Pr=pe.
2m r

that is, P; and P, are the Hamiltonian and the angular momentum about the origin,
respectively. (We already knew that these two quantities are conserved because the
Hamiltonian does not depend on ¢ or 8.) Equation (6.26) yields the equation of the
orbit.

Equations (6.25) and (6.26) are essentially Equations (2.14) and (2.15), respec-
tively.

Example 6.4 (Kepler problem in parabolic coordinates). The Hamiltonian for the
two-dimensional Kepler problem, expressed in parabolic coordinates, is given by
[see Equation (4.43)]
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. 1 p+ po? 2k
T 2m u? 402 u? + 02’

Hence, the corresponding HJ equation is

1 38 2+ 95\ % 0S5 _ 627
2m@u? +v?) | \ du v w402 9 '

A separable solution of this equation has the form
S =A()+ B(v) — Pit,
where A and B are functions of one variable, and P; is a separation constant. Sub-

stituting this last expression into the HJ equation (6.27), after some rearrangement
we obtain

dA\? dB\?
<d ) —2mk—2mP1u2=—<d ) + 2mk + 2m Pyv?.
u v

Since the left-hand side does not depend on v and the right-hand side does not
depend on u, both sides must be equal to some constant, P,, say. Hence,

S = /\/Pz + 2mk + 2m Pyu? du + / V= P> 4+ 2mk + 2m Pyv? dv — Pit,
is a separable solution of the HJ equation which leads to the expressions
Du = /Py + 2mk + 2m Pu2, p,,:\/—P2+2mk+2mP1v2.
By combining these two equations one readily finds that Py = H and that
v p = u?p,? = @+ v7) Py + 2mk(? — u?),
hence, making use of (4.40), (4.41), and (4.51),

Py — Uzpuz - ”2171)2 + ka(uz - Uz)
2= U 4 2
Uz(”px + Upy)2 - M2(—pr + Mpy)2 4

X
2mk
u? + 2 " r

x
= —2xpy2 +2ypypy + 2mk e

i.e., the constant of motion P, is equal to —2A, where A is the x-component of
the Laplace—Runge-Lenz vector (4.52).
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The equation of the orbit is obtained from

0 N / du / dv
2= = - ,
Py 2/ P + 2mk + 2m Piu? 2y/= Py + 2mk + 2m P v?
(6.28)
using the fact that Q> is a constant of motion, and the dependence of the coordinates
on the time is determined by

0 a5 mu> dv _,
1= = )
P \/P2—|—2mk—|—2mP1u \/—P2—|—2mk—|—2mP1v2
(6.29)

using the fact that Q1 is a constant of motion.

In order to obtain the solution of the equations of motion, it is convenient to
introduce an auxiliary parameter, t, in the following way. Since Q> is a constant of
motion, Equation (6.28) is equivalent to the ODE

du _ dv
VP4 2mk +2mPu? /=Py + 2mk + 2mPyv?

Introducing the parameter T by means of

dr _ du dv

- - , (6.30)
m /Py +2mk+2mPiu2 /=P + 2mk + 2m P12

where the constant factor 1/m is included in order to get agreement with the
definition given in Section 4.3, from (6.29) we have

mu?du mvtdv 2 2
dr = + = (u” 4+ v9)dr,
VP +2mk +2mPiu2 /=P + 2mk + 2m P1v?
(6.31)

which coincides with Equation (4.47).

From Equations (6.30) one can readily get ¥ and v as functions of t and
substituting the expressions thus obtained into (6.31) one obtains the relation
between ¢ and t (see Section 4.3.1).

When the Hamiltonian does not depend explicitly on the time, the HJ equa-
tion (6.6) admits partially separable solutions of the form

S(gi. 1) = W(qi) — Et,

where E is a separation constant and W (g;) obeys the equation

ow
H qi, 1) =FE.
agi
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The function W is known as Hamilton’s characteristic function and the equation
satisfied by W is usually called time-independent Hamilton—Jacobi equation.

Example 6.5 (Charged particle in the field of a point electric dipole). Another well-
known example of a Hamiltonian that leads to a separable HJ equation is the one
corresponding to a charged particle in the field of a point electric dipole, expressed
in spherical coordinates (r, 8, ¢),

1 pe® p¢2 kcos6
H= 2 ,
2m (Pr T T agng) T

where k is a constant. The HJ equation is

1 as2+1 asz+ 1 8S2+kcose+8S_0 632
2m | \ or r2 \ 90 r2sin26 \ 8¢ r2 ar '
and, taking into account that ¢ and ¢ do not appear explicitly in H [but the partial
derivatives of S with respect to ¢ and ¢ do appear in (6.32)], we look for a separable
solution of this equation of the form

S =A(r)+ B) + P,¢p — Pit,

where P; and P, are separation constants. Substituting this expression into (6.32)
and multiplying by 2mr? we obtain

, (dAN?  [dB\? P2 5
r + + + 2mkcosf — 2mPir= = 0.
s

dr do in2 6

Hence,

B 2+ Py + 2mkcos6 = P (6.33)

mkcosf = .

do sinZ 0 ’
and

2 (dA 2 2

r d —2mPr° = —Pj3, (6.34)

r

where P3 is a third separation constant. Thus, the HJ equation admits separable
solutions given by

P3 Py?
S = 2m P — ) dr + P — ) — 2mkcosf db + P»¢ — Pit,
r sin“ 6
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and the canonical transformation generated by S is implicitly given by

\/2 p - P 2 mkcoso P
= m —_ s = — — MK COSU, = s
(6.35)
and
d
S / e (6.36)
\/ZmPl
P> do
0r=¢- / 2 6.37)
sinzé\/P3 P2 2mkcos€

dr do
05 = — + (639
22 fomp =T ) 2P B amkcoso

From Equations (6.35) we find that the new momenta, P;, are the constants of
motion

s

P =H, P, = py, Py=po’+ | 5+ 2mkcosé.
sin“ 0

The conservation of P; and P, are related to the obvious symmetries of the
Hamiltonian (i.e., t and ¢ do not appear in the Hamiltonian), while the conservation
of P3 is related to a “hidden” symmetry of H (cf. Exercise 4.22).

With Equations (6.36)—(6.38) the solution of the equations of motion has been
reduced to quadratures. It should be kept in mind that Equations (6.35)—(6.38) only
give a coordinate transformation, and that the equations of motion are Q; = 0 =
Thus, for example, Equation (6.36) amounts to the equation of motion

dr \/Zmpl — fg
o m

which makes sense also in the case where the constants of motion P; (the total
energy) and P3 are equal to zero.

Exercise 6.6. As shown in Exercise 4.18, the Hamiltonian for a particle of mass m
moving on the Euclidean plane subject to the gravitational attraction of two fixed
centers separated by a distance 2¢ can be written as [see Equation (4.57)]

Put + po? 3 (k1 + ko) coshu + (k1 — ko) cosv

= 6.39
2mc2(cosh? u — cos? v) ¢ (cosh? u — cos? v) (6-39)
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Show that the HJ equation admits separable solutions in these coordinates, find
the explicit expressions of two constants of motion and reduce to quadratures the
equation of the orbit.

Exercise 6.7. Show that the HJ equation for a two-dimensional isotropic harmonic
oscillator can be solved by separation of variables in elliptic (or confocal) coordi-
nates (see Exercise 4.18) and identify the constants of motion Py, P».

Exercise 6.8. Show that the HJ equation for the Hamiltonian

2 6
p CI+PCI

K =
2t +6t 2t

’

which is related to the Emden—Fowler equation (see Example 5.17), can be solved
by separation of variables and reduce the solution of the Hamilton equations to
quadratures. (See also Example 5.18.)

Exercise 6.9. Show that the HJ equation for a Hamiltonian of the form

_1Ppl+2p7 k4

H b
2 X+Y X+Y

where &, X, & are functions of x only, and 2, Y, n are functions of y only, can be
solved by separation of variables.

A Multiplicatively Separable Solution
In some exceptional cases, the HJ equation admits multiplicatively separable
complete solutions. A simple example of this is provided by the HJ equation

1 /3S\> oS
+ 7 =0, (6.40)
2m \ dq at

which corresponds to a free particle. Looking for a solution of the form S(q, ) =
A(q)B(t) we obtain
1 (dA\*  1dB
2mA\dq)  B?dr

and, in the usual manner, we conclude that both sides of the last equation must be
equal to some constant, a, say. Solving the resulting ODEs, we readily obtain

ma 5 1
S(g,t) = ) (g +b) gt 4c’
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where b and ¢ are integration constants. However, rewriting the solution thus
obtained in the equivalent form

2
S 1) = m(q + b)

C2(t+c/a)’ (6.41)

we see that it only depends on two arbitrary constants (b and c/a).

Setting c/a = 0 or b = 0 (but not both) in (6.41) we obtain a complete solution
of the HJ equation (6.40). This shows that the frequently found assertion that any
additional constant in a complete solution of the HJ equation must be an additive
constant is wrong. (See also Example 6.10, below.)

6.1.1 Relation Between Complete Solutions of the HJ] Equation

The HJ equation for a given Hamiltonian, as any other first-order PDE, possesses
an infinite number of complete solutions. As we shall show now, any two complete
solutions of the HJ equation are related by means of a time-independent canonical
transformation [cf. Equation (5.99)]. Indeed, if S(g;, P;, t) is a complete solution of
the HJ equation corresponding to a Hamiltonian H (g;, p;, t), we have

pidg; — Hdt + Q;dP; =dS

[see Equation (5.54)]. Similarly, if S(¢;, P;, 1) is any other complete solution of the
same equation (in the same coordinates g; ), then

pidg; — Hdt + Q;dP; = dS,
hence,
QidP; — Q;dP; = dF, (6.42)
where

F

s—38. (6.43)

Equation (6.42) explicitly shows that (Q;, P;) and (Qi, P;) are related by means
of a time-independent canonical transformation [cf. Equation (5.46)]. If the set
(P, P;) is functionally independent, then the function F defined in (6.43) is a
generating function of this canonical transformation.
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Since p; = 9S/dq; and, also, p; = 85’/861,-, we have

IS—9)

0. (6.44
0gi )

Making use of these n conditions one can eliminate the ¢; from the right-hand side
of (6.43) (the dependence on ¢ automatically disappears as a consequence of (6.44);
no additional conditions come from 3 (S — §)/d = 0 since, by hypothesis, S and S
satisfy the same HJ equation).

Similarly, given a complete solution, S(g;, P;, t), of the HJ equation for some
Hamiltonian, and a function F (P;, 13,-) that defines a canonical transformation,

S(qi, i, 1) = S(qi, Pi,t) — F(Pi, Py), (6.45)

is also a complete solution of the same HJ equation. The dependence on the
parameters P; is eliminated from the expression on the right-hand side of (6.45)
with the aid of the n conditions

0S=F) _ (6.46)
JP;

(Cf. Calkin [2, pp. 148-150].)

Example 6.10. As pointed out in Example 6.1, the function

P2 mow® ,)\ tanot
+ Pg sec wt

S(quvt)=_<2m+ 2 q

is a complete solution of the HJ equation in the case of the standard Hamiltonian of
a one-dimensional harmonic oscillator. With the aid of the function

2

- P -
F(P,P)= tan P,
2mw

we can obtain another complete solution of the same HJ equation. Indeed, the
condition (6.46) reads

S —F) P P ~
0= = - tan wt + g sec wt — tan P,

JP mw mw
that is,
mawq sec wt

P = -
tan wt + tan P
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and, therefore,

2
medq cot(wt + P)

S=S—-F=
is also a complete solution of the HJ equation for the standard Hamiltonian of a one-
dimensional harmonic oscillator. (It may be noticed that this solution is the product
of separated functions of ¢ and ¢.)

Exercise 6.11. Find a generating function of the canonical transformation that
leads from the complete, separable, solution of the HJ equation

P+ Py
Sx,y, P, Po,t) = Pix + Py — ) t
m

to the non-separable complete solution
~ ~ ~ m ~ ~
SCey, Py Po,ty = [ = PP+ (5 = P)?].

What is the Hamiltonian?

Since any complete solution of the HJ equation leads to the solution of the
Hamilton equations, it is not necessary to find a second complete solution of the HJ
equation. In the context of classical mechanics, we make use of a complete solution
of the HJ equation only as a means to find the solution of the Hamilton equations.
However, in geometrical optics the function S is interesting in itself and it is highly
relevant to find different solutions of the appropriate version of the HJ equation,
which correspond to different trains of wavefronts (see Section 6.5, below).

Other Special Generating Functions

In the same manner as we can look for a canonical transformation that produces a
new Hamiltonian equal to zero, we can also look for canonical transformations that
take, locally, a given Hamiltonian H into any other specified Hamiltonian K (the
only restriction is that the number of degrees of freedom in both Hamiltonians be
the same). Making use again of Equations (6.2) we find that the required generating
function must satisfy the PDE

k(P2 p)=m (g 202 )+ 00 (6.47)
aPla 1 - qla aqla 8[ .

and the condition (6.1). For instance, in the case of the Hamiltonians

p2 P2
H(q,p,t)=2m-l-mgq, K(Q, P,t)=2m,
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where g is a constant, one can verify that the function

L, m ;.3
F(q, P, 1) =(P—mgt)q+2gt P — 6% r

satisfies (6.47) and (6.1). In fact, substituting this expression into (6.2) one finds that
F> generates the canonical transformation

g=0-1gt*,  p=P—mgt, (6.48)

and that H and K are related by (6.5). Hence, the coordinate transformation (6.48)
maps the phase space trajectories of a free particle into those of a particle in free
fall. Cf. Exercise 5.6. It may be noticed that, when g = 0, the transformation (6.48)
reduces to the identity. (The coordinate transformation (6.48) gives the relation
between two reference frames, one of which has an acceleration equal to g with
respect to the other.)

These transformations can be constructed by finding separately solutions of the
HJ equations for H and K, and combining them or composing the coordinate
transformations generated by them (see also Section 6.3).

6.1.2 Alternative Expressions of the HJ] Equation

It should be clear that, in order to find new canonical coordinates with a Hamiltonian
equal to zero, instead of a (type F>) generating function S(g;, P;, t), that depends
on the n original coordinates g;, we can also look for generating functions that
depend on other combinations of the original variables, replacing one or several
coordinates g; by its conjugate momentum p;, which gives a total of 2" different
possibilities. Some of these alternatives are sometimes mentioned [e.g., Corben
and Stehle ([4], Sect. 61), Greenwood [9, Sect. 6-1]], without actually using them,
claiming that they are of little interest. However, in some cases, the dependence of
H on the coordinates may be simpler than that on the momenta.

Example 6.12 (Particle in a uniform gravitational field). Let us consider again the

simple case corresponding to the Hamiltonian

_ Px2 + py2
2m

H +mgy,

where m and g are constants. We look for a type F4 generating function (which we
shall denote also by §) such that K = 0. According to Equations (5.57), S must be
a complete solution of

2 2
0S a5
pPx"+ Py _ mg +

=0, (6.49)
2m opy ot
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and the canonical transformation is implicitly given by

S aS aS

- _ , —— , — . 6.50
X y apy Qi P, ( )

Since H does not depend on ¢, we look for a solution of (6.49) of the form
S = W(p)(a py) - Plta

where P is a separation constant. Then, the “characteristic function,” W, has to
satisfy
W P p+py?
= — + 5 .
opy mg 2m=g

The general solution of this PDE is readily found:

py3

_ Plpy + szpy
6m?g

W =
mg 2m?g

+ + f(px),

where f(py) is an arbitrary function of p, only. Choosing f(py) = P>p., where
P, is a constant, we obtain

Pipy n pxzpy py3

+ Papx — Prt.
mg 2m?g  6m’g 2Px !

S(pJC7 pyv Pls szt) = -

It may be noticed that this solution of the HJ equation (6.49) is not the sum of
separate functions of p,, py and ¢. (This is an example of an R-separable solution,
to be discussed in Section 6.1.3.) According to (6.50), S generates the canonical
transformation given by

2 2
Dx Dy PL pxm+p Dy
X = — x2)_P27 y = — 2y1 le_ )_tv Q2:pX7
m-g mg 2m*g mg
i.e.,
Py Px2+[7y2 Px Py
Qr=—"—t Qx=py, P = +mgy, Pr=—, 0 —x,
mg 2m m=g

which are the constants of motion obtained in Example 6.2. (See also Exam-
ple 6.24.) The solution of the Hamilton equations in the original variables is obtained
writing x, y, px, py in terms of Q;, P;.
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6.1.3 R-Separable Solutions of the HJ Equation

As pointed out above, the method commonly employed to solve the HJ equation
is the method of separation of variables, but, in many cases, this method may not
work. For example, in the case of the Hamiltonian

p2
2m

H=" —kq, 6.51)

which corresponds to a particle of mass m subjected to a variable force kt, where k
is some constant, the HJ equation

1 /3S\? N
—kt =0 6.52
2m <8q> 1+ ot ( )

does not admit separable solutions owing to the presence of the term k7g. However,
noting that the last two terms on the left-hand side of this equation can be written as

ka4 05 _ 2 kt2q+S
T7 9 T o 2 ’

we introduce S = § — kt%q /2, and we find that (6.52) amounts to
L (a5, ke 2+a§_0
2m \dq 2 or

By contrast with (6.52), this last equation admits separable solutions, and since g
does not appear explicitly in the equation, its separable solutions are of the form
S = Pq + F(t), where P is a separation constant, with

Up o, K 2+dF_0
2m 2 dt

Thus,

kt’q
2

§= v pg— (P ek g i 6.53
= 9=, t+ Pk + t (6.53)

20
is a (complete) solution of (6.52). This solution is the sum of a function of ¢ and ¢

(the term kt2q /2), that does not contain the separation constant P, and one-variable
functions. Such solutions are called R-separable solutions.
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Thus, we have the generating function of a canonical transformation implicitly
given by [see Equations (6.8)],

N Pt k3 S k2
- -~ p=, =, tP

Q=8P= m  6m aq 2

The original variables are given by

kt? Pt ki3

:P 5 =
p +2 a Q+m+6m

Since Q and P are constants of motion, these expressions constitute the solution of
the Hamilton equations. From these expressions we see that Q and P correspond to
the values of ¢ and p at r = 0, respectively. (Cf. Example 5.40.)

Example 6.13 (Charged particle in a uniform magnetic field). The Hamiltonian

1 eBoy 2 eByx 2 5
H = — , 6.54
m [(prr e ) +<py e ) + P (6.54)

corresponds to a charged particle of mass m and electric charge e in a uniform
magnetic field B = Bk, if the vector potential is chosen according to the rule
A= éB x r, which is applicable for a uniform magnetic field B [see (4.14)]. The
resulting HJ equation

1 | /88 eByy\> [3S eBox\> [3S\*| oS
- =0 6.55
2m |:<8x + 2c ) + (By 2c ) * 0z + ot (6.53)

does not admit separable solutions but, letting S=§ + eBpxy/2c, we obtain

1 [ (85 2+ 5 eBox 2+ a5\’ L8 656)
2m | \ 9x dy c 9z ar '
Since y, z, and ¢ do not appear explicitly in this equation, it admits separable

solutions of the form § = F (x) + Pby + P3z — Pit, where Pj, P>, and Pz are
constants, and F satisfies the separated equation

1| (dF\? eBox\*
+ P — + Py | = Py.
2m dx c

B
S = _¢ 20xy + Py + Pz — Plt—l—/\/ZmPl — P32 — (P2 —eB()x/C)de
C
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and making use of Equations (6.8) we obtain

eBy 2
Py = — ZCy+\/2mP1—P32—(P2—€BOX/C) o Py=
and
d
Q1 =—t +/ e
\/ZmPl — P2 — (P — ech/C)2
Qz—y—/ (P, —eBox/c)dx
\/ZmPl — P32 — (Pz - EBOX/C)Z
o P3 dx
3 =2

eBox
2c

+ P,

s

s

/ \/Zmpl — P32 — (P2 — eB()x/C)Z.

By combining these equations one obtains the constants of motion

P —H P+ eBox P 0 c
1= ’ 2—py 2C’ 3—]71» 2 = eB()
With the aid of the change of variable
B
Py — 7% = ampy — P32 coso,
from the first two equations in (6.57) we obtain
chP c
X = — V2mP) — P32 cosw.(t + 01),
eBy eBy

where w, = eBy/mc (the cyclotron frequency), and

C .
y=00+ V2mP; — P32 sinw.(t + Q1),
0

249

pZ:P37

(6.57)

eByy
Px 2w )

respectively. These last expressions show that the projection of the orbit on the xy-
plane is a circle whose center and radius are given in terms of the constants of

motion Q; and P; (cf. Example 1.19).

The vector potential A’ = Byx j also yields the uniform magnetic field B = By k,
and leads to a separable HJ equation. (In fact, the difference A’ — A = Boxj —
;Bo(—yi +xj) = 1Bo(yi + x j), which is the gradient of ;Boxy.) (See also the

discussion at the end of this section.)



250 6 The Hamilton—Jacobi Formalism

Exercise 6.14. Show that the HJ equation for a charged particle in a uniform
magnetic field, with A = !B x r, can be solved by separation of variables in circular
cylindrical coordinates and identify the new momenta.

Example 6.15. We consider the HJ equation

1 as\? [8S\? 39S
-0, 6.58
2m |:<8x) +<8y> :|~|—mgy+ ot ( )

which does admit separable solutions as a consequence of the fact that x and ¢ do
not appear explicitly in the equation (see Example 6.2). Noting that

oS
mgy +

5
= 1+ 9),
or — ar "8V

we introduce § = § + mgyt, and we have

1 N N N
— mgt =0. 6.59
2m |:<8x> +<8y mg) :|+ at (6.59)

This equation admits separable solutions as a consequence of the fact that x and y
do not appear explicitly in it. Indeed, looking for solutions of the form

S=Pix+Py+F@),

where P; and P, are constants, we obtain

! [P+ p t)2]~|—dF 0
—m = U.
om L) 2 ms dr
Hence,
1 1
F(t) = — (P12 + P2t — Pomgt® + _m2g*t
2m 3

and, therefore,

1
S =—mgyt+ Pix+ Pyy— |:(P12 + P22)t — Pymgt* + 3m2g21‘3:| (6.60)

2m
is a complete R-separable solution of (6.58). Thus, the HJ equation (6.58) admits

both separable and R-separable solutions in the Cartesian coordinates (x, y).
Substitution of (6.60) into Equations (6.8) yields the canonical transformation

05 P 05 t+ P
= = s = = —m )
Px ax 1 Py 3y 8 2
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and

N Pyt N Pt 1 5

Ql:aplz m Top m

That is, we have four constants of motion

tp tpy 1
O1=x— mx, Or=y-— m) —zgtz, P1 = px, P, = py +mgt,

and the solution of the Hamilton equations

tPy tP r,
x=01+ , y=02+ - 8, px = P1, py = P, —mgt.
m m 2
The constants of motion Q1, Q2, P;, and P, correspond to the values at t = 0 of
X, Y, Px, and py, respectively.

It may be noticed that finding R-separable solutions of the HJ equation for a
Hamiltonian H is equivalent to finding separable solutions of the HJ equation for
another Hamiltonian, H', obtained from H by means of a canonical transformation
of the form

, , dR
q; = i pi=pit., (6.61)
9gi
where R is a function of ¢g; and ¢ only [see (5.67)]. For instance, Equation (6.59)
is the HJ equation corresponding to the Hamiltonian (5.69), which is obtained
from (5.68) by means of the canonical transformation (6.61) with R = mgyt.

Exercise 6.16. Show that if the Hamiltonian has the form

2
H=] -,
m
where ¢ (¢) is a given function of ¢ only, then the corresponding HJ equation admits
R-separable complete solutions. This result is applicable to the problem of a rocket
in a uniform gravitational field, for which the Hamiltonian can be taken as

2

H P + dlnm 4
= u ,
2 a &)

where m () is the mass of the rocket at time ¢ and u is the speed of the exhaust gases
with respect to the rocket (see Example 2.13).
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6.2 The Liouville Theorem on Solutions of the HJ Equation

Apart from the method of separation of variables, there exist some other methods
for solving first-order PDEs (see, e.g., Sneddon [14]). In one of these lesser-
known methods, when applied to the HJ equation, one has to express the canonical
momenta in terms of the coordinates and n constants of motion; a complete solution,
S, of the HJ equation can then be obtained from dS = p;dg; — Hdr. However, it
turns out that p;dg; — Hdt is an exact differential if and only if the constants of
motion employed in this process are in involution, that is, their Poisson brackets are
all equal to zero, and this result is known as Liouville’s Theorem. In the case where
there is only one degree of freedom, the Liouville Theorem can be applied making
use of a single arbitrary constant of motion, since the Poisson bracket of a function
with itself is trivially equal to zero.

The application of the Liouville theorem requires the knowledge of n constants
of motion in involution, but is not linked to some specific coordinate system; the
complete solutions of the HJ equation obtained in this manner need not be separable
or R-separable.

Proposition 6.17 (Liouville’s Theorem). If P, = P;(qj, pj,t), i = 1,2,...,n,
are n functionally independent constants of motion in involution such that the
momenta p; can be written in terms of q;, Pj, and t, then, locally, there exists a
function S(q;, t), depending parametrically on the P;, such that

pi(qj, Pj,1)dg; — H(qi, pi(qj, Pj,1),1)dr =dS (6.62)

and § is a complete solution of the HJ equation.

Note that if the momenta p; can be written in terms of ¢;, P;, and ¢, then the
constants of motion P; = P;(q;, pj,t), i = 1,2,...,n, have to be functionally
independent.

Proof. According to the hypotheses, from the expressions P; = P;(q;, pj.t), we
can find the p; as functions of ¢, P;, and ¢, hence

P
det( ) £0. (6.63)
apj
Substituting
Opk Opk Opk
dpr = " dg; dpP; dr
PE=ag, 9 T ap, ST gy
into
P AP AP
dP; = _"'dgj+ _ 'dp; + atldt

g apj
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one obtains

P opP; (o d 0 P
dp, = tdgi+ 0 (PRag + PR ap; + pkdt>~|— "
9q, dpk \9q; aP; ot ot
which implies the identities
P ap; 0 P ap; 0
i _ o4 Pk’ i _ o4 Pk (6.64)
0q; opr 9q; at dpr ot
and
apP; o
LOPK 5. (6.65)
opix 0P;

(Note that in the partial derivatives of the P;, P; is a function of ¢, p;, and ¢, thatis

oP; _ <8P,'> op; _ <8P,')
agj \ogj),,, i \9pj/,,.
while in the partial derivatives of the p;, p; is a function of g, P}, and ¢,
opi <3Pi ) opi <8Pi>
op;  \oPi ), p,  daj \34j/,p,

Equations (6.64) and (6.65) can also be derived with the aid of the chain rule.)
Making use of the first equation in (6.64) we find that

dP dP; AP; AP,
dqk dpk  dqr Apx
dP; dpwm OP;  OP; dpw OP;
" Opm dqk dpx | Opm dqk Apk
P, dpm 0P; OP; dpx AP
~ Opm dqk dpx | Pk Oqm Opm
0P OPj (Opr  Opm
~ Opm Opk ( - )

{Pi, Pj} =

gm gk

Thus, taking into account (6.63), it follows that { P;, P;} = 0 if and only if

apk _ 3Pm (6.66)
gm gk

On the other hand, making use of the fact that each P; is a constant of motion, and
of (6.64) and (6.66),
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_ 9P | 0P OH 9H 3P
~ 9t dqj0p;  9q;0p;
aP; dpr 0P dpx 0H OH 9P,
Copr 0t Oprdqjop; g, Op;
aP; (dpr Opi 9H OH
ok ( ot dg;j dp; aqk>
_ oP; (dprx Odpj 0H oH
T ( a9t 9qk dpj 3%) '

0

As a consequence of (6.63) and the chain rule, this amounts to

pk 0H 0Hdp; Gl
— — J = — H(QJ,pj(qupkvt)vt)7
at dqr  Ipj 0qx dqk

and these conditions together with (6.66) imply that the left-hand side of (6.62) is
locally exact.

Finally, from (6.62) it follows that S is a solution of the HJ equation, which is
complete by virtue of (6.63), in fact,

928 ap; aP 1"
det = det = | det #0.
8P,»8qj 8P,» 3pj

In some textbooks this result is called Liouville’s integrability theorem.

Example 6.18. One can readily verify that the function P = mwq sin wt + p cos wt
is a constant of motion for the one-dimensional harmonic oscillator, that is, if

Since, p = P sec wt — mwq tan wt, expressing pdg — Hdt in terms of g, P, t, and
treating P as a parameter, we obtain

pdg — Hdt

P secwt — tan wr)? 2
( wt — mwq tan wt) +ma) q2:| dt

= (P sec wt — mwq tan a)t)dq - [ ) )
m

1 1
=d (Pq sec wt — 2ma)qz tan wt) —wPgq sec wt tan wrdt+ 2mw2q2 sec? wrdt
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B |:(P sec wt — mwq tan wt)? + mw2q2i| dt

2m 2

1, p?
=d| Pgsecwt — mwq” tanwt — tanwt | .
2 2mw

According to Proposition 6.17, the expression inside the parenthesis must be a
complete solution of the HJ equation for the Hamiltonian H and, following the
standard procedure, it can be used to find the solution of the equations of motion.

Example 6.19. The HJ equation for the Kepler problem in two dimensions, which
corresponds to the Hamiltonian

H— Px2 + py2 _ k
2m Vx2 4y
expressed in Cartesian coordinates x, y, where m is the mass of the particle and k is a
positive constant, is separable in polar and parabolic coordinates (see Examples 6.3
and 6.4, respectively) but is not separable in Cartesian coordinates.
Since H is time-independent and invariant under rotations about the origin,

Pi=H, Py = xpy — ypx

(the total energy and the angular momentum about the origin) are constants of
motion, which are in involution (as can be seen from the fact that the angular
momentum is a constant of motion). Inverting these expressions one finds

—Pyy & x/2m P{r2+2mkr— P2 Pyx £ yy/2m Pir2+2mkr— Py?
px = 2 ’ py = 2 9
r r
where the signs in front of the square roots have to be chosen both plus or both minus
and 2 = x% + y?, which give the p; in terms of g j and P;. Thus, the left-hand side
of Equation (6.62) becomes

—vyd d 2mPir? 4 2mkr — P52
p, Y xjx y)iJm 1" +2m "7 (edx 4 ydy) — Pudr
r r

or, equivalently,

2mk P2

P d (arctan y) + \/ZmP1 + - 5 dr— P
X r r

This last expression is indeed, locally, the differential of a function, which must be
a complete solution of the HJ equation. It may be noticed that this function turns out
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to be the sum of separate functions of the polar coordinates 6, r, though we started
with the Hamiltonian in Cartesian coordinates.

Example 6.20. Another simple example is given by the Hamiltonian

_ Px2 + py2
2m

H +mgy, (6.67)

for which all constants of motion are readily obtained (here m and g are constants).
In fact, the HJ equation is separable in the coordinates (x, y) of the configuration
space, and the separation constants are the values of H and p,, which are constants
of motion as a consequence of the fact that # and x do not appear in the Hamiltonian
(see Example 6.2).

Another constant of motion (which is related to a “hidden” symmetry of the
Hamiltonian) is

PxPy + mgx (6.68)
m

(see, e.g., Example 5.35), therefore, H and ;1 Px Py + mgx are in involution and
can be taken as P and P,, respectively. A straightforward computation leads to the
expressions

Px + py = £/2m(Pi + P) — 2m2g (x + ),

(6.69)
Px = Py = £v/2m(Pi = P2) +2m2g (x — ),
where the signs in front of the square roots have to be chosen both plus or both
minus. Hence, by writing Equation (6.62) in the form

Y(px 4 py) d(x +3) + S (px — py) d(x — y) — Pdt =dS, (6.70)

and taking into account that p, & p, is a function of x & y only, we see that
the function S is the sum of three one-variable functions that depend on x + y,
x — y,and ¢ (with P; and P, being treated as parameters). In other words, the HJ
equation corresponding to the Hamiltonian (6.67) admits separable solutions in the
coordinates (u, v) defined by

u=x-+y, V=X —Y,

and the separation constants are the values of H and ;1 DxDy +mgx.

Exercise 6.21. Find a complete solution of the HJ equation corresponding to the
Hamiltonian (6.67) making use of the constants of motion in involution P; = p,
and P, = py +mgt.
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Exercise 6.22. Making use of the fact that the coordinates P; and P> defined in
Example 5.45 are constants of motion in involution, find a complete solution of the
HIJ equation for a charged particle in a uniform magnetic field and use it to find a
second pair of constants of motion.

Exercise 6.23 (Toda lattice). In Example 5.81 the system with Hamiltonian
H =, (p* + p2?) +el 7%,
was considered and it was shown that the functions
Py = p1+ pa, Py=pipy—e?™®

are constants of motion. Prove that these two functions are in involution, find a
complete solution of the HJ equation and use it to solve the equations of motion.

Example 6.24. 1t should be clear that in order to find a complete solution of the HJ
equation starting from n functionally independent constants of motion in involution,
Pi, P, ..., Py, it is not indispensable to solve the equations P; = P;(q;, pj,t)
for pi, p2,..., pn; instead of p; we can employ the corresponding conjugate
coordinate ¢; (that is, in place of, say, ps5, we can make use of gs, and so on). For
instance, in the case of the Hamiltonian (6.67), the functions

Py = py +mgt, P

= PPy 4 ox (6.71)
m

are two functionally independent constants of motion in involution. Even though we
can solve (6.71) for p, and py, we shall make use of x instead of p,. From (6.71)
we obtain

Py (P1—mgt)p,
X = - 2 ) py = Pl _mgt
mg m-g

and instead of (6.62), we have
—xdpy + pydy — Hdt =dS,

with x and p, expressed in terms of y, py, P1, P>, and . Hence,

pszr(Pl—mgt)2
2m 2m
=d|:—P2px + Plpx2 tpxz (P —mgt)3:|

— Py —mgt
mg 2m?g  2m + Ay - mety + 6mg

P P t
dS:—( 2 1px+px

mg ng m ) dpx+(Pl_mgt)dy_ |:

~|—mgy:| dr
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and we can take

P Pips? iy’ Pi — met)3
S, pas Py Payty = — 2P 1P + Py — mgty + zg).
mg 2m-g 2m 6m2g

Note that the function S thus obtained is R-separable and is a complete solution

of the HJ equation
1 2+aS2 et 25 0
m =0,
2m bx ay 8y at

which does not contain the partial derivative of S with respect to p,.

Exercise 6.25. Show that, in the case of the constants of motion considered in
Example 6.20, the coordinates x and y can be expressed in terms of py, py, P,
P>, and ¢, and use those expressions to find a (type Fs) complete solution of the
appropriate HJ equation.
Exercise 6.26. Show that

r k3
P +
m 3m

0=q-—

is a constant of motion if the Hamiltonian is given by

[72

2m

H = —ktq.

Use the expression for g in terms of p and Q to find a (type F3) complete solution,
S(p, O, 1), of the HJ equation

w(=2% ,0)+% 20
ap D a

and use it to find a second constant of motion.

Exercise 6.27. Show that

t
P=P—/¢WMM
is a constant of motion if the Hamiltonian is given by

2
H=] -,
m
where ¢ (¢) is a given function of ¢ only, and use it to find a complete solution of the
HIJ equation (cf. Exercise 6.16).
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6.3 Mapping of Solutions of the HJ Equation Under
Canonical Transformations

The form of the Hamiltonian of a given system can be modified by a canonical
transformation and, therefore, the expression of the HJ equation and its solutions
can also be modified by these transformations. As we shall see now, there is a simple
way of relating a solution of the HJ equation corresponding to a Hamiltonian H
with a solution of the HJ equation corresponding to the Hamiltonian K, obtained by
means of a canonical transformation. We begin by pointing out a relation between
solutions of the HJ equation and certain subsets of the extended phase space [10, 17].

Proposition 6.28. Any solution, S(g;,t), of the HJ equation defines a surface (a
submanifold), N, of the extended phase space, given by the n equations

a0S
pi = 6.72)

9qi
(i=1,2,...,n), onwhich the linear differential form p;dq; — Hdt is exact; in fact,
pidg; — Hdt = dS, on N. (6.73)

Conversely, an (n+1)-dimensional submanifold, N, of the extended phase space, on
which the differential form p;dq; — Hdt is exact, defines (up to an additive constant)
a solution of the HJ equation. (The solution in question is the function S determined
by Equation (6.73).)

The function S appearing in Equations (6.72) and (6.73) may contain some
parameters (as in the case of a complete solution), but this is not essential at this
point. For example, if the Hamiltonian is taken as

p2 mw2q2

H = , 6.74
om T o (6.74)

then, on the two-dimensional submanifold of the extended phase space defined by
p = —mwq tan wt,

we have
2.2 2 2.2
[0 tan“ wt mw
U + 1 )dt

m2
pdg — Hdt = —mwq tan wt dg —
2m 2

2 2
= —mowtanwt d (612 ) - m;o q2 sec? wt dt

=d(— Jmwq* tanwt).
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Hence, the function

S=- ;ma)q2 tan wt
is a solution of the HJ equation corresponding to the Hamiltonian (6.74), which does
not contain arbitrary parameters.

However, for each value of the parameter P, the equation

p = —mowqgtanw(t + P) (6.75)

defines a two-dimensional submanifold of the extended phase space, on which the
differential form pdg — Hdr is exact. In fact, one finds that [on the surface defined
by (6.75)]

pdg — Hdt = d[ — Jmowg” tanw(t + P)]
and this time we have a complete solution of the HJ equation
S(g, P,t) = — mwg* tanw(t + P), (6.76)

which is not (additively) separable. The completeness of the solution (6.76) is
related to the fact that the family of submanifolds defined by (6.75) fills the extended
phase space.

Returning to the problem of finding the effect of a canonical transformation on
the solutions of the HJ equation, we recall that if the coordinate transformation

Qi = 0i(gj, pj, 1), P = Pi(qj, pj, 1), (6.77)
is canonical, then
pidg; — Hdt — (P;dQ; — Kdt) = dFy,

for some real-valued function F; defined in a [(2n + 1)-dimensional] region of
the extended phase space [see Equation (5.46)]. By contrast with the differential
form p;dq; — Hdt (and, similarly, P;dQ; — Kdt), which is exact only on some
submanifolds of the extended phase space, the combination p;dg; — Hdt — (P;dQ; —
Kdt) is exact everywhere (or in some open neighborhood of each point of the
extended phase space). Hence, if p;dg; — Hdr is an exact differential on some
submanifold of the extended phase space, then P;dQ; — Kdr is also exact on that
submanifold.
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Thus, if S(g;, t) is a solution of the HJ equation, then, on the submanifold N
defined by (6.72),
P;dQ; — Kdt = pidqi — Hdt —dF;
=d(S - F),

which means that
S=S—F (6.78)

is a solution of the HJ equation corresponding to K, provided that it is expressed in
terms of Q; and ¢, making use of Equations (6.72) and (6.77). (Cf. Equations (6.45)—
(6.46).) By construction, the solution of the Hamilton equations obtained from S’ is
the image under the canonical transformation (6.77) of the solution of the Hamilton
equations obtained from S.

Example 6.29. A simple and illustrative example is given by the standard Hamilto-
nian of a one-dimensional harmonic oscillator

2 2.2
p mw~q
H =
2m + 2
The coordinate transformation
1 /2
q= \/ ¢ coswP, p=+2mQ sinwP, (6.79)
w m

is canonical and we can take K = H. In fact,

coswP

2
pdg — PAQ = \/2mQ sinwP —/ Q Gnwpdp +
m w~/2mQ

dQ) — PdQ
.2 I
= —-20sin“wPdP + sinwP coswPdQ — PdQ
w
_ 0.
=d|{—-PQO+ " sinwP coswP |,
w

hence, up to an additive trivial constant, /1 = —PQ + (Q/w) sinwP coswP.
Since K = H = Q [see (6.79)], the HJ equation for K is given by

98
0+ o =0, (6.80)
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whose general solution is S’ = —Qt + f(Q), where f(Q) is an arbitrary function
of O only. In order to simplify the computations below, we choose f(Q) = #Q,
where t( is a constant; thus

§'=—-0(@ —1),

which constitutes a complete solution of the HJ equation (6.80). Then, from
Equation (6.78), taking into account that P = 3S5'/dQ = 1y — t, with the aid of
the first equation in (6.79) we obtain

S=S/+F1

=—-Q0@(—-1)—PQO+ 0 sinwP coswP
w

= 0 sinwP coswP

w
= —lmo 2tana)(t —19)
- 2 q O £

which is, therefore, the complete solution of the HJ equation corresponding to H
[cf. Equation (6.76)].

Example 6.30 (Damped harmonic oscillator). The Hamiltonian

2
mw 2

p2
H=e 10 42! q°,

2m 2

where y is a positive constant, corresponds to a damped harmonic oscillator (see
Example 2.6). Making use of (5.15) one finds that the coordinate transformation

0=¢'q, P=c7'p
is canonical (cf. Example 5.33) and that the new Hamiltonian can be taken as

P2 ma? 9
K = + O +yPO,
2m 2

with F; = 0. By contrast with H, the Hamiltonian K does not depend explicitly on
t and therefore the HJ equation for K admits separable solutions of the form

§'=—Pt+ £(Q).
where P is a separation constant and f satisfies

df

a0 = —myQ + \/Zmﬁ —m2(w? — y2)Q2.
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Thus,

~ Q ~
S:-Jn—émyQ?+/ VQmP—nﬂwﬂ—y%Mdu

is a complete solution of the HJ equation for K and, according to Equation (6.78),
the function

S(qg, P,t) = —Pt — %myezyt 2+/ \/ZmP m?(w? — y2)u? du

is the corresponding solution of the HJ equation for H. It may be noticed that
this function is neither separable nor R-separable. (Note that in this example we
are considering two canonical transformations; the first one relates the original
coordinates, ¢, p, with a second set of canonical coordinates, Q, P. A second
canonical transformation is generated by §’, leading to a third set of canonical
coordinates, Q, 15, which are constants of motion.)

Hence,

p=—my ezytq +ey’\/2m15 —m2(w? —y?)e2riq?,

and from this equation we can obtain the constant of motion P in terms of (¢, p, 1),

2 2
~ i D mo
P=e 2V’2m+e2V’ ) 7> +ypq

(which coincides with the Hamiltonian K). The second constant of motion,

m du

/ \/ZmP m2(w? — )/z)u2

0= _=—t+

gives g as a function of the time (and the constants of motion P and Q). For instance,
in the case where y < w (the so-called underdamped motion), one readily finds

2 _ 4,2 ~
q :eyf\/m(wzﬁ Y )COS\/wz_yz(t+ Q)

(cf. Example 5.13).

Exercise 6.31. The canonical transformation

Q=q+38t>, P=p+mg
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relates the Hamiltonians

p2 P2
H = + mgq and K=
2m 2m

[cf. Equations (6.48)]. Using the fact that
m
S = —a)?,
(@ —a)

where a is a constant, is a (complete) solution of the HJ equation for K, find the
corresponding solution for the HJ equation for H.

Exercise 6.32. The canonical transformation
. )4 .
0 = g(coswt + wt sinwt) + (wt coswt — sinwt),
mw
P = mwq sinwt + p cos wt

relates the Hamiltonians

2 2 p2
H = + q and K =
2m

(see Exercise 5.6). Making use of the fact that
m
S = _ 2’
2 (Q —a)
where a is a constant, is a solution of the HJ equation for K (corresponding to a

free particle), find the corresponding solution of the HJ equation for H. (Hint: the
results of Example 5.7 may be useful.)

Exercise 6.33. Consider the canonical transformation
0 =q —t, P=p—mv,

where v is a constant and m is the mass of a particle. Assuming that the new
Hamiltonian is given by

K=H-vp+ ;mv2
(cf. Example 5.63), show that if S(g, ) is a solution of the HJ equation for H, then

§'(Q.1) = S(Q +vt, 1) —mvQ — ymvt
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is the corresponding solution of the HJ equation for K. (This relationship has an
analog in quantum mechanics in the transformation of a wavefunction under a
Galilean transformation, see, e.g., Torres del Castillo and Néjera Salazar [19].)

Exercise 6.34. Show that in the case of a (passive) translation, Q = g —s, P = p,
assuming that K = H, we have §'(Q,t) = S(Q + s, r). Similarly, show that for a
translation in the momentum, Q = g, P = p — s, choosing K = H, it follows that
S'(Q,1) = S(Q, 1) — sQ. (Note that the assumption K = H is consistent with the
fact that the transformations considered here do not involve the time. Note also that
H need not be invariant under these translations.)

Exercise 6.35 (Transformation of the principal function under gauge transfor-
mations). As shown in Section 5.2, a gauge transformation

1 9¢

A A+ VE, o @—
c ot

’

where £ is some function of the coordinates and the time, corresponds to a canonical
transformation given by

d(e€/c)
Qi =qi, P = pi + /),
dqi
Show that if K = H — d(e&/c)/dt, then §' = S + e&/c. (This result also has a
well-known analog in quantum mechanics.)

Covariance of the HJ Equation
The HJ equation is a partial differential equation somewhat similar to other scalar
PDEs of mathematical physics, such as the Laplace equation for the electrostatic
potential, or the wave equation for the fractional change of the density of the air, in
the case of the sound waves. However, apart from the fact that the HJ equation
is of first order and not necessarily linear, an important difference between the
HJ equation and the other equations just mentioned is that, under a change of
coordinates of the configuration space, the solutions of the HJ equation may require
an additional term [see Equation (6.78)].

However, according to the discussion presented in Example 5.36, a time-inde-
pendent coordinate transformation in the configuration space,

Qi = Qi(g)),

together with the implicit relation

(6.81)
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constitute a canonical transformation. If we choose K = H, i.e.,

a .
K(Qi, Pi,1) = H(qi(Q)), pi(Qj, Pj),1) = H(CI[(Q/), P; 8%[)

then the function Fj can be taken equal to zero and, according to (6.78),

§'(Qi, 1) = S(qi(Q)), 1) (6.82)

is the solution of the HJ equation for the Hamiltonian K corresponding to a solution,
S(gi, t), of the HJ equation for H.

Thus, if we have a (not necessarily complete) solution of the HJ equation, in
terms of some coordinates, S(g;, t), by simply substituting the coordinates g; by
any other set of coordinates of the configuration space, g; = ¢;(Q ), we obtain a
solution of the HJ equation for the same Hamiltonian, provided that the momenta are
related by (6.81). This means that the HJ equation is covariant under this restricted
class of coordinate transformations. (See also Section 6.4.)

6.3.1 The HJ Equation as an Evolution Equation

The HJ equation can be seen as an evolution equation, which determines the
function S(g;, t) that reduces to a given function, f(g;), for t = 0 (or any other
initial value, f¢, of ). According to the results of the previous section, if we have
the solution of the Hamilton equations, we can find the solution of the HJ equation
satisfying any initial condition, S(g;, fo) = f(gi), making use of the fact that the
time evolution from ¢ = f#( to an arbitrary value of ¢ is a canonical transformation,
with the Hamiltonian corresponding to the initial coordinates equal to zero [see
Equation (5.97)]. The initial condition f(g;) can be chosen arbitrarily because any
function, f(q;), that does not depend on ¢, is trivially a solution of the HJ equation
if the Hamiltonian is equal to zero.

In the following examples, we obtain the function F; appearing in Equa-
tion (6.78), corresponding to the time evolution, making use of the explicit solution
of the Hamilton equations, while the function S’ is the initial condition. If the
function f(g;) contains arbitrary parameters, then the solution S(g;, ) of the HJ
equation will also contain those parameters.

A different approach to the problem of finding the solution of a PDE passing
through a given curve or surface can be found, e.g., in Sneddon [14, Sect. 12]; one
advantage of the method presented there is that the initial condition need not be the
value of S at some particular value of 7.

Example 6.36. In the case of the Hamiltonian

Px2 + py2
2m

H = +mgy, (6.83)
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where m and g are constants, the solution of the corresponding Hamilton equations
can be readily obtained and is given by

|t Pyt gt?

P
x—Q1+m, y—Q2+m—2, 6.84)
Px = Py, Py=P2—mgl,

where Q1, O3, Py, and P; are the values of x, y, pyx, and py, respectively, at t = 0.
As the initial condition we choose

S(x,y,0) =a1x + a2y, (6.85)

where o, ap are two arbitrary constants, that is, as the initial function in terms of
the initial coordinates, we take

S'"(Q1, 02,0) = 1 Q1 + 22 0. (6.86)

Note that, as pointed out above, S’ is a solution of the HJ equation for K = 0.
Making use of the expressions (6.84) we obtain

px’ +py2 mg2t3)

pidg; — Hdt — P,dQ; =d t —mgty + gt>py +
2m 3

while from (6.86) it follows that dS’ = a;dQ; + axdQ», that is, P; = «aj, P, =
a2. Then, from Equations (6.78) and (6.84), expressing all coordinates in terms of
X, y, a1, 0, and ¢, we have

S=5+ Fi
2 2 2.3
+ mg-t
=061Q1+062Q2+px by t —mgty + g’ py + §
2m 3
2 2 2
ot ant t a1+ (o —mgt
=o|x — +o2 |y — +g + ( g)t—mgty
m m 2 2m
2.3
mg-t
+ e —mgn+ "0
i.e.,
2 3 3
t — 1)’ —
Sy, 1) = arx +any — mgry — % ¢4 @2 T80 — (6.87)
2m 6m-g

[cf. Equation (6.60)]. The expression (6.87) is a (complete, R-separable) solution of
the HJ equation that reduces to the specified function (6.85) for tr = 0.
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Exercise 6.37. Find the solution of the Hamilton equations for the time-dependent
Hamiltonian

»?
2m

H=" —lugq, (6.88)

where m and k are constants, and use it to find the solution of the corresponding the
HIJ equation such that S(g, 0) = aq, where a is an arbitrary constant. Compare the
result with (6.53).

We might consider expressions for S(g;, 0) more complicated than (6.86) and
the one given in Exercise 6.37, but these simple expressions are enough to obtain
complete solutions of the HJ equation and to illustrate the procedure.

Example 6.38. We shall consider again the HJ equation

! 95)* + 95)’ + + 95 0 (6.89)
m = .
2m ox ay 8y ot

corresponding to the Hamiltonian (6.83) but, instead of (6.85), we take as the initial
condition

S(x, y,0) = k[(x —a)? + (v — a2)?], (6.90)

where k is a constant with the appropriate dimensions, and o, a2 are two arbitrary
parameters. Thus,

S'(Q1, 02.0) = k[(Q1 — @1)* + (Q2 — a2)?] (6.91)
and, therefore,
dS" = 2k[(Q1 — 1) dQ1 + (Q2 — @2) d Q2]

ie, P = 2k(Q1 — «1) and P, = 2k(Q; — a2). Proceeding as above,
from (6.78), (6.84), and (6.91) we have

S=5+ I
2 2 2.3
—+ mg-t
= k[(Q1 —an? + (@2 —a]+ 7 Pt —mgty+ g py + .
k(m + 2kt) mg2t3
= [(Q1 — @) + (02 — @2)?] — mgty — gé

Hence, after the elimination of the Q; we find that the solution of the HJ equation
that reduces to (6.90) at r = 0, is given by
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km[(x — a1)? + (v — a2 + g1%/2)? mg’r’
S, y,t) = [ m 4 2kt ] —mgty — 6 (6.92)

Exercise 6.39. Show that the solution of the HJ equation corresponding to the
standard Hamiltonian of a one-dimensional harmonic oscillator

that satisfies the initial condition S(g, 0) = ag, where « is an arbitrary constant, is
given by

2

o ma? 2\ tanwt
S(g,1) =— 2m+ 5 4 " + g sec wt.

Of course, if we already have the solution of the Hamilton equations, it does
not seem necessary to find a complete solution of the HJ equation. However, the
construction presented in this section explicitly shows that given the solution of the
Hamilton equations, one can find any complete solution of the HJ equation, and that
the general solution of the HJ equation involves an arbitrary function of n variables.
On the other hand, in geometrical optics, each solution (complete or not) of the
eikonal equation corresponds to a wavefront train and the procedure developed in
this section allows us to find the evolution of a given wavefront (see Section 6.5,
below).

6.4 Transformation of the HJ Equation Under Arbitrary
Point Transformations

With the aid of Proposition 6.28 we can see that under an arbitrary point
transformation,

gl =aiaj.0, =10, (6.93)

the HJ equation for a Hamiltonian H (g;, p;, t) is transformed into the HJ equation
for a Hamiltonian H’, possibly different from H. (These transformations differ from
those considered in Section 6.3, because in the latter the time is not transformed.)
Indeed, S(g;,t) is a solution of the HJ equation for H (containing arbitrary
parameters or not) if and only if

dS = p;dg; — Hdt
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on the submanifold of the extended phase space defined by p; = 3.5/9¢g;. Inverting
the formulas (6.93) we obtain ¢; and 7 as functions of the ¢/ and #’, then if Fj is any
function of ¢/ and ¢" only (or, equivalently, of ¢; and  only), defining

S=S—F (6.94)
we have
aq; aqi at ot dF oF
ds’ = p; dq’, dt' | - H dq’, dr' | — dq’, — dt’
pi (aq; GF o 8q," " tor dq) " ar

daq; Jat oF Jat daq; oF
= = - Y ag — (=T 0T )y
qu qu qu J at’ at’ at’

Making use again of Proposition 6.28, the last equation shows that S’ is a solution
of the HJ equation for the Hamiltonian

ot dgi aF
H = H- , 6.95
' ar PP oy (6.95)
with
g ot aF
Py= g P H= o (6.96)
9j 9j q;

[cf. Equations (5.65) and (5.66)]. In conclusion, given a Hamiltonian H and an
arbitrary function, F1(g;, t), any coordinate transformation (6.93), in which the time
may be also transformed, leads to a new Hamiltonian (6.95) in such a way that any
solution, S, of the HJ equation for H produces a solution, S’, of the HJ equation for
H' given by (6.94). If S contains arbitrary parameters, so will do §’.

Example 6.40. We shall consider the point transformation

, , tan wt’
q = q secwt’, t = (6.97)
1)

where w is a constant. Then, from Equation (6.96), we obtain

dF

’_ o
p' = psecowt s

which substituted into (6.95) gives

dF
H' = H sec’ wt’ — pq'wsec i’ tan wt’ + at’l
dF dF
= H sec’ wt’ — wq'tanowt’ | p’ + ! '
ag' ) " ar
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Hence, taking H = p?/2m, and expressing the result in terms of the primed
variables
2
oF oF
H =" sec?wr - wq' tanowt’ [ p' + ! !
2m aq’ at’
1/, AR\’ , L, OF dF
= - tan wt
2m (p + Bq’) @4 wr\pt aq’ + at’
2 ’ 2
)4 dF| , NP 1 [0F , ,0F] JdF
= - tan wt — tan wt .
2m + <8q/ med @ m + 2m \ 9q’ @4 @ aq’ + atr’

In order to eliminate the term linear in p’ we take

d0F , ,
= mwq tanwt,

oq’
which implies that F} = éma)q/ Ztanwt’ + f(¢'), where f(¢') is some function of
¢’ only. In this manner, H' reduces to

2 2
ps, mw” 5 df
H = .
om 29 Tar
Thus, choosing f = 0 it follows that if S is a solution for the HJ equation
corresponding to the standard Hamiltonian of a free particle, then

§'=S—F =8~ mog?tanot’ (6.98)

is a solution of the HJ equation corresponding to the standard Hamiltonian of a
harmonic oscillator.
For instance,

m(qg — a)?

S = ,
2t

where a is a constant, is a solution of the HJ equation for a free particle, which
substituted into (6.98) yields

¢ mwl(g’* + a®) coswt’ — 2aq’']
o 2 sin ot ’

Exercise 6.41. Apply the transformation

q/ — qes + éth(es _ 643)’ { = teZS’
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where g and s are constants, to the Hamiltonian

2
H = P + mgq.
2m
Show that by suitably choosing the function F; appearing in Equations (6.94)—

(6.96) one obtains

2
H/ — p _"_ mgq/
2m
(that is, the Hamiltonian is form-invariant). This means that, except for the
substitution of the coordinates (g, 7) by (¢’, '), the HJ equation for H' is the same
as that for H and, therefore, by means of (6.94), from a given solution of the HJ
equation for H we obtain a possibly different solution of the same equation.

6.5 Geometrical Optics

The Hamiltonian formulation of classical mechanics arose from the study of
geometrical optics (see, e.g., Whittaker [22, Chap. XI]) and, as we shall see in this
section, it is very instructive to apply the formalism developed in this chapter to
geometrical optics.

Fermat’s Principle. The Ray Equation

In geometrical optics it is assumed that the light propagates along curves, which are
called light rays. The basic equations of geometrical optics can be obtained from
the Fermat principle of least time, which can be formulated in the following way.
The speed of light in an isotropic medium, with refractive index n, is ¢/n, where ¢
is the speed of light in vacuum; therefore, given two points of the three-dimensional
Euclidean space, A and B, the time required for the light to go from A to B along a
curve C is given by the integral

1
/ nds, (6.99)
C

Cc

where ds is the arclength element (see below). Of course, there are an infinite
number of curves joining A and B; the Fermat principle states that the path actually
followed by the light is the one that minimizes the integral (6.99). Since c is a
constant, finding the curve corresponding to the least time is equivalent to finding
the curve with the minimum opftical length (or optical path length), defined as

/ nds. (6.100)
C
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If we consider curves that can be parameterized by one of the Cartesian
coordinates, z say, the integral (6.100) can be expressed as

2 21/2
2 dx dy
n(x,y,z)| 1+ d + dz, (6.101)
20 z dz

where z( and z; are the values of the coordinate z at the points A and B, respectively
(see Figure 6.1). Hence, the light rays are determined by the Euler-Lagrange
equations for the Lagrangian

Lx,y,x',y,2) =n(x,y,z)\/l+x’2+y/2, (6.102)

where x’ = dx/dz and yY = dy/dz. However, instead of writing down these
equations and attempting to solve them, we shall be mainly interested in the
Hamiltonian description.

Exercise 6.42. Making use of the fact that ds = /1 + x'2 + y'2 dz, show that the
Euler-Lagrange equations for the Lagrangian (6.102) amount to

d dx\ 9n d dy\ on
as \"ds ) T ax ds " ds Ty’

and that, making use of the identity (1.92), one obtains the equation

d dz on
n = .
ds ds 0z

Y

Fig. 6.1 The curves shown join the points A and B. In order to use z as a parameter for these
curves, any plane z = const must intersect each curve at most at one point
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The last three equations are equivalent to the vector equation

d dr
n = Vn,
ds ds

where r = (x, y, z) is the position vector of a point of the ray. This equation is
known as the ray equation.

Exercise 6.43 (Spherically symmetric media). Show that if the refractive index
is a function of the distance, r, to a fixed point (taken as the origin), n = n(r), then

dr
rxn
ds

is constant along each ray and show that this implies that each ray lies on a plane
passing through the origin.
The optical system defined by the spherically symmetric refractive index

a

= , 6.103
b+r? ( )

n

where a and b are real constants, with a > 0, is known as Maxwell’s fish eye.
Several properties of this system can be derived from its relationship with the Kepler
problem. Show that, in this case,

dr adr
rx|rxn +
ds 2ds
is also constant along each ray and deduce from this that the rays are (arcs of) circles
(just like the hodographs of the Kepler problem). (See also Exercise 6.45, below.)

The Eikonal Equation
The canonical momenta conjugate to x and y are
oL nx’ oL ny’
= = 5 )y — - N 6104
Px ox’ \/1 + x/2 + y/2 Py 8)}/ \/1 + x/2 + y/2 ( )
respectively, and from these equations we obtain
n
\/nz —p2—pl=
x ) \/1 +x2 4 y/2
and
x = Px Ly = Py (6.105)

\/nz — 2 — py? \/nz — 2= p2
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Thus, in this approach, we have a system with two degrees of freedom, with
the coordinate z as the independent variable, and a Hamiltonian given by [see
Equation (4.10)]

H= —\/n2 — st = py2 (6.106)

(hence, e.g., dp,/dz = —30 H/dx). Therefore, the corresponding HJ equation is

. fas\? e\ s
. _< ) _< ) L o (6.107)
ox ay 0z

which implies that
as\* [as\* [aS\*
=n 6.108
<BX> +<3y) +<BZ) " ( )

This last equation is known as the eikonal equation and, in this context, S is called
the eikonal (or eikonal function). The eikonal equation can also be derived from
the Huygens principle (see, e.g., Synge [15, Sect. 22]). Any complete solution
of Equation (6.107) or (6.108) allows us to find all the light rays in the medium
characterized by the refractive index n (that is, the solutions of the ray equation).
Note that in the eikonal equation, the three coordinates (x, y, z) appear on an equal
footing and it is optional which of them is taken as the independent variable.

For instance, if the refractive index is constant, Equation (6.107) admits separa-
ble solutions of the form

S(x,y, P1, Pr,z) = Pix + Poy + /n2 — P2 — P2 z, (6.109)

where Py, P, are constants such that P;2 + P»2 < n?. Making use of the standard
formulas (6.8) we obtain the canonical transformation generated by (6.109) (treating
again z as the independent variable)

Pz Pz
, Or=y— .
Vn2—Pi2— Py Vn2 = P2 — P2
(6.110)
The last two equations in (6.110) show that in this case the light rays are straight
lines, as expected. In fact, in terms of the usual vector notation, we have

px:Plv py:P27 le-x_

2(P1, P2, {/n% — P\2 — P»?)

(x,y,2) =(Q1, 02,0) + Jn2 = P2 — P2

Thus, the constants P, P, determine the direction of the light ray, and (Q1, Q2, 0)
are the Cartesian coordinates of the intersection of the ray with the plane z = 0
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(o

(01,02,0)
X

Fig. 6.2 Any light ray in a homogeneous isotropic medium is a straight line. With the exception
of the light rays parallel to the xy-plane, any light ray can be specified by the four real numbers
(Q1, Q2, Py, Py); P; and P, determine the direction of the ray, and (Q1, O3, 0) are the Cartesian
coordinates of the intersection of the ray with the plane z = 0. The planes orthogonal to this
straight line are the wavefronts defined by (6.109)

(see Figure 6.2). (Note also that the two last equations in (6.110) are obtained
regardless of which of the coordinates (x, y, z) is taken as the independent variable.)

Exercise 6.44. In terms of the spherical coordinates (r,6,¢), the optical
length (6.100) is given by

r
/ n(r,0, ¢) \/1 + 1202 + r2sin’ 0¢2 dr,
;

1

with 8’ = d0/dr, ¢’ = d¢/dr, assuming that the curve C can be parameterized by
r [cf. Equation (6.101)]. Starting from the Fermat principle, using this expression,
show that the corresponding HJ equation leads to the equation

3S 2+1 3 2+ 1 s\, 611D
=n .
ar r2 \ 90 r2sin2 @ d¢p

which is just the eikonal equation (6.108) expressed in spherical coordinates. Even
though we might expect this result, taking into account the meaning of the eikonal
function, it does not follow from the discussion presented in the preceding sections
(e.g., Section 6.3) because in the present case we are also changing the parameter of
the light rays z in Equation (6.101), by r.

Exercise 6.45. Solving the eikonal equation, show that in the case of the Maxwell
fish eye, the light rays are (arcs of) circles. (It is convenient to make use of the fact
that each ray lies on a plane passing through the origin—see Exercise 6.43.)
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Going back to the general case, where n is an arbitrary function, from Equa-
tions (6.105) and (6.107) we find that the vector with Cartesian components
(dx/dz,dy/dz, dz/dz), which is tangent to the light ray, is proportional to the
gradient of S,

<dx dy dz)_ (P Pys 02 = 22 = ) o (as aS as>
dz’ dz’ dz \/nz—pxz—pyz 3S/3z \dx 9y 0z

which means that the light rays intersect orthogonally the level surfaces S(x, y, z) =
const. (see Figure 6.3). The surfaces S = const. constitute the wavefronts.

Fig. 6.3 The level surfaces

of a solution S(x, y, z) of the ‘
eikonal equation constitute a
family of two-dimensional
surfaces that fill the
n
/

three-dimensional space. The

curves orthogonal to these

surfaces correspond to some

of the possible rays of light in — >
the medium \ g

In the example (6.109), the wavefronts are the planes normal to the vector with
Cartesian components (Py, Py, \/n2 — P12 — P,2) (see Figure 6.2).

Exercise 6.46. Show that if S(x, y, z) is a solution of the eikonal equation, which
may not contain arbitrary parameters, then the curves orthogonal to the level
surfaces § = const. correspond to possible light rays. (Hint: if x;(s) are the
Cartesian coordinates of a curve parameterized by its arclength, then the norm of
its tangent vector, (dx/ds, dy/ds, dz/ds), is equal to 1. On the other hand, if this
curve is orthogonal to the level surfaces of S, then its tangent vector is proportional
to VS, whose norm is equal to n.)

Exercise 6.47. Find the light rays determined by the eikonal function in two
dimensions

S(x,y, P) = ja[(x* — y*) cos P + 2xysin P],

where a and P are constants. What is the refractive index?

Each solution, S(x, y, z), of the eikonal equation defines a family of surfaces (its
level surfaces) in such a way that if a; and a, are two real constants (such that the
sets {(x,y,z) € R¥|S(x,y,2) = ar} and {(x,y,2) € R¥| S(x,y,z) = a»} are
nonempty), the wavefront S = a5 is obtained from S = a; by the propagation of
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the light by a time (a2 — ay)/c (see Figure 6.4). In fact, if we consider a light ray, C,
connecting a point belonging to the surface S(x, y, z) = a; with a point belonging
to S(x, y, z) = ap, assuming that this curve can be parameterized by z, we have [see
Equations (6.107) and (6.104)]

2798 , 9S8 N
a—ay = | dS = X+ v+ dz
C Z1 dx dy 0z

22 2y (x/2+y/2 4 1)
:/ (pxx/—i-pyy’—i— nz—px2—py2) dz= ) ) dz
21 71 \/1+X/ +y
=/nds.
C

Thus, the set of level surfaces S = const. represent the evolution of one of them (see
Figure 6.4).

Fig. 6.4 Each level surface
of S(x, y, z) represents the T
wavefront at some particular

time. The level surface

S = aj evolves into the level

surface S = a, after a time

(ap — ay)/c. The set of all the

level surfaces of S represents S—uq
the time evolution of anyone | \ g = !

of them /

Generation of Complete Solutions of the Eikonal Equation from a given
Complete Solution

As shown in Section 6.1.1, from a given complete solution of the HJ equation one
can obtain any other complete solution of the same equation. For instance, making
use of the complete solution (6.109), and choosing the time-independent generating
function F (P;, P) =P P1 + P P2, according to Equations (6.46) we have

/S:a2

oS —F P ~
0= ( )=x— 1z — Pr,
aP \/n2_P12_P22

hence,

(x = P)yn? — P2 — P2
Z 9

P =
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with a similar expression for P,. Then, from the expressions thus obtained, we find

that
P, — n(x—ﬁl)~  p n(y—152)~ ‘
V= B2t (= B2 22 Ja— B2 by g2

With the aid of these formulas we can eliminate the parameters P; appearing in the
right-hand side of (6.45) and in this manner we find a second complete solution of
the eikonal equation

S(x.y. P, Pp.2) = n\/<x — P2+ (y— P2+ 22, (6.112)

131~, }3% € (—o00,00). The wavefronts S = const. are spheres [centered at
(P1, P2, 0)].
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Exercises of Chapter 1

1.2 From Equations (1.1) we have

Fi=Fi, 2= (4§ cote)i+ i)

and
ar ar ar ar
Loy o, 2 o, 2 — cotfoi +j.
ax ay ax dy
On the other hand, F(lappl) = —mgj and Féappl) = —mygj. Hence, substituting into

Equations (1.8) we obtain

(miXi+mgj) - i+ {mo[(X +y cotbp)i+ yjl+mogj}-i=0,
(m1xi+mygj) -0+ {ma[(¥ + § cotbp) i+ ¥ jl + magj} - (cotboi+ j) = 0,

which, using the fact that i and j are orthonormal vectors, reduce to

miX +my(X + ¥ cotfy) = 0,
ma (X 4+ y cot6p) cotfy + may + mog = 0.

The solution of this system of algebraic equations is readily found to be

_ magcotby . —(mi+m2)g
_mz—l—mlCSCon’ y_m2~|—m1050290'
© Springer Nature Switzerland AG 2018 281
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1.6 With the aid of Figure 1.8, we find that
r; = xi, ry = xi+ [(sin 0i — cos 6j),

where [ is the length of the pendulum. Eliminating the parameters x and 6, or from
Figure 1.8, one finds that these expressions represent the general solutions of the
constraint equations

r - j=0, rp —ri| =1

The constraint forces are given by F\“™") = Nj+ T (sin 6i — cos 6j) and FS*™" =
—T (sin#i — cos8j), where N is the magnitude of the normal force on the block and
T is the tension of the rod. Hence,

2

Z F‘gconstr) ) aara _ Fgconstr) i+ F;constr) A=Nj-i=0
X

a=1
and
2 ar
E F(:C"“S“) Y= Fgconm) -(lcosPi+Isinfj) =0

a=1

which implies that the equations of motion can be obtained from Equations (1.8).

Taking into account Hooke’s law, the applied forces are Fiappl) = —kxi—mgj
and Féappl) = —m2gj, and Equations (1.8) give

mii+kxi+migj -i
+ {ma[ (X + 16 cos 0 — 167 sin 0)i + (16 sin 6 + 162 cos 0)j] + magj} -i =0,

and

{ma[ (X + 16 cos 6 — 167 sin 0)i
+ (16 sin 0 + 16? cos 0)j] + magj} - (I cosBi+ sinbj) = 0,

which reduce to the second-order ODEs
miX + kx +mo(¥ + 16 cos — 167 sin0) = 0, ¥cos@ + 10 + gsind = 0.

1.8 According to the definition of the angle ¢, the position vector of the bead can
be expressed in the form

r = a(cos wti 4 sin wtj) + a[cos(wt + )i + sin(wt + P)j].



Solutions 283

The only constraint force on the bead is a normal force produced by the hoop, hence

ar
¢

lconstn) | = FCOY 41— sin(wt + ¢)i + cos(wr + ¢)jl,

which is equal to zero because the vector dr/d¢ is tangent to the hoop.
The applied force is F@PD = —mgk and from Newton’s second law we obtain

ar
¢
=m{ - w?a(coswti + sinwrj) + pal— sin(wr + ¢)i + cos(wt + ¢)j]

0= (mi‘ _ F(appl)) .

—(w+<z3)2a[cos(wt+¢)i+ sin(wt—i—qﬁ)j]} - a[— sin(wt+¢@)i+ cos(wt+¢)j]
= maz(éﬂ + w? sin b),
that is,
¢+ w? singg =0
[cf. Equation (1.25)].
1.9 The position vectors shown in Figure 1.11 are given by
r; = xi, r; = hj+ xi+ (I — x)(cosbpi — sin 6pj),
and also with the aid of Figure 1.11 one finds that the constraint forces are

F{™" = Nyj — Na(sin 6i + cos 6j) — Ti + T (cos 6o — sin 6j),
FO"™" = N, (sin 6oi + cos 6oj) — T (cos Boi — sin 6oj),
where N is the magnitude of the normal force exerted by the horizontal surface on

the wedge, N, is the normal force applied by the block above on the wedge, and T
is the tension of the rope. Hence, combining these expressions one finds

2
Z F(constr) i al'a
¢ 0x

a=1
= F{" i 4 B (i — (cos 6o — sin 6j)]
= (F{™ L B i — FEO L (cos fpi — sin b))
(N1j—T1) - i—[Na(sin Ogi+ cos 6pj)—T (cos Bpi— sinbpj)] - (cos Bpi— sin Opj)
=-T+T
=0.
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(app) __ (appl) __
F = F, =

The applied forces are the weights of the blocks: —m1gj,
—m»gj, hence, the equation of motion for this system can be obtained from

2
.. 1 or,
0= 3 ek, )
a=1
= (mixXxi+mgj)-i
4 {my[Xi — X (cos Opi — sin Opj)] + magj} - [i — (cosGpi — sin Opj)]

=m1X + 2mpX(1 — cos6y) + myg sin Oy,

ie.,

mag sin 9()

T my 4 2ma(1 — cos @)
Multiplying this equation by x we find that
%[m1 + 2my(1 — cos 90)]562 + mog sin Opx

is a constant of motion, which is the total energy. Thus, the phase curves in the
xx-plane are parabolas (see Figure S.1).

Fig. S.1 The phase curves
are parabolas. The are no
equilibrium points in the
domain x > 0

1.12 Making use of the expressions for the position vectors
r; = xi, ry = xi+ [(sin 0i — cos 6j),
employed in the solution of Exercise 1.6, we have

¥ = xi, > = xi+ [6(cos 0i + sin 6j).
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Thus, the kinetic energy is given by
T = Ymix* + Yma(&> + 1767 + 2140 cos 0).

The applied forces were also given in the solution of Exercise 1.6, they are

Fgap P _kxi— m1gj and F;ap Ph —m>gj. Therefore, the generalized forces
are
2 1 ar,
01 =Y F&. T — (hxi—migf) i+ (—magj) i = —kx
ox
a=1
and
2 or,
0, = ZF&appD . 89& = (—kxi—migj) -0+ (—m2gj) - I(cosOi + sin 0j)
a=1
= —moglsing.

These generalized forces are derivable from the potential V = ékx2 —maglcos6
[cf. Equation (1.48)]. (The term ékx2 can be recognized as the potential energy of
a spring with stiffness k, while the second term, —mgl cos 8, has the well-known
form mgh of the gravitational potential energy of a body of mass m in a uniform
gravitational field with acceleration g, and height 4 measured from an arbitrarily
selected level.)

Hence, the standard Lagrangian is

L = M[(my +m2)i* + mp(1%6% + 2156 cos0)] — L kx? + magl cos ),
which, substituted into the Lagrange equations, yields

_diL L d

T drox ox :dt[

= (my 4+ m2)¥ 4+ molf cos 6 — myl6% sin6 + kx,

0 doL oL d[ (129+l'0059)]+ 1x6 sin6 + Isin@
drog 90 dit’ ’ b

= ma(I%6 + 15 cos 0) + magl sin 6.

(m1 4+ m2)% + mol6 cos 0] + kx

These equations coincide with the equations of motion obtained in Exercise 1.6.

1.13 Making use of the parametrization of the position vector of the bead given in
the solution of Exercise 1.8 we find that the velocity of the bead is given by

I = aw(— sinwti + cos wtj) + a(w + ¢)[— sin(wt + ¢)i + cos(wt + ¢)j]
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and, therefore, the kinetic energy is
m . .
T = 5 [a*w? + 2a2a)(a) + ¢)cosp + a2(w + ¢)2].

On the other hand, the only applied force is —mgk (assuming that the z-axis
points upwards) and the generalized force is

or . . .
0 = (—mgk) - 26 = (—mgk) - a[— sin(wt + ¢)i + cos(wt + ¢)j] = 0.
Thus, we can chose V = 0 and the standard Lagrangian is given by
m . .
L= 5 [a*w? + 2a2a)(w + ¢)cosp + a2(w + ¢)2].

Substituting this Lagrangian in the Lagrange equations we obtain

_doL oL
~dtadp ¢

d . .
= 4 [ma*wcos ¢ + ma*(w + ¢)] + ma*w(w + ¢) sin ¢
= —maza)q'ﬁ sin¢ + mazéé + maza)(a) + qS) sin ¢
= maz(cﬁ' + w” sin b),
which is the equation of motion found in the solution of Exercise 1.8.

1.14 Making use of the parametrization of the position vectors employed in the
solution of Exercise 1.9,

r; = xi, r; = hj+ xi+ (I — x)(cosbpi — sin bpj),
we find that the kinetic energy of the system is
T = émll"lz + émzl"zz = émp'cz + émz[)'ci — x(cosfpi — Sin@oj)]2

= 1[m1 + 2ma(1 — cosfp) 2.

The generalized force is

2

or,

Q0= ZFéappD- “ = —mgj-i—magj-[i— (cosbpi—sinboj)] = —myg sin by,
— 0x
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which is derivable from the potential V = mjgxsinfy. Hence, the standard
Lagrangian is

L = L{my + 2ma(1 — cos 6p) 15 — magx sin 6y,

and the corresponding Lagrange equation yields the equation of motion

d
0= dr {[m1—|—2m2(1—00590)])'c}+m2g9() = [m1—|—2m2(1—00590)]5c'—|—m2g sin 6,

in agreement with the result in the solution of Exercise 1.9.

1.15 The angles 6 and ¢, defined in Figure 1.12, are related by b8 = a¢, and
the angle rotated by the cylinder (with respect to the coordinate axes), from the
equilibrium position, is ¢ — 6 = (b/a — 1)6. On the other hand, the tangential
velocity of the center of mass of the cylinder is (b — a)6. Hence, recalling that
the kinetic energy of the cylinder is equal to the sum of the kinetic energy of the
translation of the center of mass plus the kinetic energy of rotation about the axis
passing through the center of mass, we have

_1 _ 12 1 b_ '2_3 _N\2592
T—zm[(b a)f] +21|:<a 1)9:| —4m(b a)“6-,

where we have used the fact that the moment of inertia of a cylinder of mass m and
radius a about its axis is ma?/2. Thus, the standard Lagrangian is

3 .
L= 4m(b —a)*6 + mg(b — a) cosH.
From this Lagrangian we obtain the equation of motion
3 . )
0= 2m(b —a)0+mg(b—a)sinb,

which has the form of the equation of motion of a simple pendulum [cf. Equa-
tion (1.25)]. Hence, the period of the small oscillations is

3(b—a)
271\/ 2

1.17 Substituting Equations (1.61) into Equations (1.62) one readily verifies
that these conditions are identically satisfied assuming, as usual, that the partial
derivatives commute.
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Conversely, if conditions (1.62) hold, letting

00;

M,'j aq'
J

’

from the first two equations in (1.62) it follows that the M;; are functions of (g, t)
only, with M;; = —M ;. Then, the second line of (1.62) reads

IM;; n oM i n oMy

=0,
Gk 0g; g

which is equivalent to the local existence of functions «; (¢}, t) such that

o oo
M,'j = - .
dgj  9gi
Thus,
. oo dorg \ .
Qi = Mirqr + ni = - qk + Mi, S.1
dgk  9qi

where the p; are functions of (g, t) only. Substituting (S.1) into the last line of
conditions (1.62) one obtains

d ' do; _3 _ daj
ag; \" T ar ) T o\ T e )

which is equivalent to the existence of a function B(q;, t) such that

0B
M=o 7 oqr

Substituting this last expression into (S.1) one obtains (1.61).

1.20 Making use of a set of Cartesian axes such that the gravitational acceleration
is directed along the negative z-axis, the natural Lagrangian is given by

L= 2(x2—|—y2—|—z2)—mgz,

where g is the acceleration of gravity. The coordinates x and y are ignorable and
therefore, their conjugate momenta, p, = mxX and p, = my, are constants of
motion. The coordinate z is not ignorable, but

oL

= —m .
0z &
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which is of the form (1.83) with G = —mgt, hence p, — G = mz + mgt is also a
constant of motion.

1.22 The Lagrangian (1.88) admits a constant of motion associated with the
translations along the z-axis if the coordinate z is ignorable or if there exists a
function G(p, ¢, z, t) such that

cdAi. 9G.  9G
caqu_aqi ot

The validity of this equation for all values of (g;, ¢, t) is equivalent to the condition

e 0A; e (0A] 04> 043
dG = ; = d d dz ),
c 9z (az PE 5 90t Z)
which amounts to
e e 0A 0A 0A 0A
d(G— A3)= ( P9 a4 (O - 3)d¢
c c 0z ap 90z ¢
e
= C(B¢dp — pBpde),

where, as in Example 1.21, B,, By, B, are the components of the magnetic field
with respect to the orthonormal basis (0, cj;, Z) defined by the circular cylindrical
coordinates.

Thus, the existence of G is equivalent to the exactness of Bydp — p B,d¢. Making
use of the fact that the divergence of B must be equal to zero (see Example 1.21),
one finds that the exactness of Bydp — pB,d¢ is equivalent to the condition that
the components B, By, B, be independent of z. The corresponding constant of
motion is

oL . e
. —G=mz+ A3z-—G.
9z c
An example of a magnetic field invariant under translations along the z-axis is
that of a straight wire along the z-axis, carrying a current /. Making use, e.g., of
Ampere’s law, one finds that the only nonzero cylindrical component of this field is
By =21 /cp. Thus,

2el d
d(G—eA3)=eB¢dp= o,
c c ¢ p
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and the constant of motion is mz — (2el/ 62) In(p/po), where pg is a constant. (Note
that it was not necessary to specify a vector potential.)

1.23 The Lagrangian (1.77) does not contain the variables ¢, z, and ¢; therefore we
immediately have three constants of motion,

= . =m , = ,. =mgz,
Py 9 P 20 p y254 93 z

which correspond to the z-component of the angular momentum and the z-
component of the linear momentum, respectively, and [see Equation (1.93)]

. 0L m . . .
Gi . —L= (" +p*¢ +2%)
aqi 2
which is the particle’s kinetic energy, 7. By combining these equations one gets
27 2 eBop\*
e =p2+<p¢ - p) (S2)
m m mp 2mc

and with the aid of this equation we can find ¢ as a function of p.
Alternatively, we can obtain first the orbit, eliminating the time by means of the
chain rule

dpo dpde dp ( P eBo). (S.3)

dt — dpdr dp \mp?  2me

Substituting (S.3) into (S.2) we obtain
2T p2 _ (dp\* ([ ps By 2+ Py eBop)’
m m? do mp?  2mc mp 2me )
which leads to
eBop?
Po— 5. dp
o= 2
2\ 2 eBop?
p\@mT = p2)p? =Py =,
eBop?
/ Pe— 5. dp
2e B eBop? 2
e ) )

2c
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and with the change of variable

eBop?

Pet

cosf = ¢ (S.4)
2eBopy
py)2mT — p? +
C
it follows that

eBop?

Po— 5. dp

sin 8dp =

2¢eB
pz\/ZmT _ply e Coqu
and, therefore,

+(¢ — o) = B,
where ¢ is an integration constant. Inserting this expression into (S.4) we obtain

2c 2c
p2+ Py _

2eB
\/ZmT - pl2+ P9 p cos(ep — o),
eBy eBy c

which is the equation of a circular cylinder of radius

\/2mT — p.2,

C
eBy

whose axis is at a distance

from the z-axis.

The coordinate z of the particle is given by z = zo + p;t/m, where zo is a
constant. Hence, depending on the value of the constant p,, the orbit may be a
circle (if p, = 0) or a helix (if p; # 0).

Exercises of Chapter 2

2.1 From Equation (2.18) it follows that  has its minimum value when cos(6 — 6)
has its maximum value, which is equal to 1; hence, with e = 1, we have 1/rpin, =
2mk /12, that is,
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12
2mk’

Fmin =

On the other hand, when E = 0, Equation (2.14), with V (r) = —k/r, reduces to

L 10) = / mdr \/ / rdr
0 \/2mk 2k J /T — Fmin

and with the change of variable w = r — rpj, we obtain

m (W + rmin) dw 2 3/2 /2
t—19) = = 2
¢ =) \/Zk/ Juw \/2k<3 2T
2 |Im
= 3\/2/( (r + 2rmin) «/" — I'min-

2.2 In the case of a hyperbolic orbit, the minimum value of r is (¢ — 1)a and from
Equation (2.18) we obtain

l2
—1=

Combining this relation with (2.19) we find that 2F = k/a. Then, from Equa-
tion (2.14), eliminating £ and [ with the aid of the foregoing equations, we find
that

i — ) = ma rdr
t-w= k') o +a)?—a2e?

where #( is an integration constant. With the change of variable r + a = ae cosh i,
we obtain the analog of Kepler’s equation (2.22)

ma3 |
t—to =\/ r (e sinhyr — ).

2.5 Making use of the definitions given in Example 2.4, the position vector of the
freely falling particle can be expressed in the form

r=RF +x0 + yd + 27

[cf. Equation (2.34)] and with the aid of Equations (2.35) we find that the velocity
of the particle with respect to the inertial frame is

F= (X — wycosbp)f + [ + wx cos 6y + w(R + z) sin Go]fl; + (Z — wy sin By)F.
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Thus, neglecting the quadratic terms in o, the Lagrangian of the particle is
approximately given by

m. . 2 . . 2. . 2
L~ 5 {(Gi—wy cos ) *+[ y+wx cos g+ (R+z) sin by +(z—wy sin 6p)*}
—mgz

and the Lagrange equations give

X =2wcosbpy, ¥ = —2wcospx — 2w sin Hpz, 7 =2wsinfyy — g.
(8.5)
These equations can be partially integrated to give
X =2wcosbyy, y = —2wcos Gpx —2w sin Oy (z —h), 7 =2wsinHyy —gt,
(S.6)

where we have taken into account the fact that, at ¢+ = 0, the particle was at rest at
the pointx =0,y =0,z = h.

In order to solve the set of first-order equations (S.6) we decouple them by
calculating the third derivative of, e.g., z with respect to the time. By combining
Equations (S.5)—(S.6) we obtain the inhomogeneous, linear, third-order ODE

7 = 2wsinByy = 2w sin By (—2w cos fpx — 2w sin Hpz)
= —4w? sin 6 cos g (2w cos By y) — 4w’ sin® Opz
= —4w? cos® Oy + gt) — 4w sin” Gy

= —4w?; — 4w’ cos? Gpgt.

One readily finds that the general solution of this equation has the form z =

—; cos? Gogt2 + c¢1 cos2wt + ¢ sin 2wt + ¢3, where ¢y, ¢3, and c3 are constants.

Since z = h att = 0, we have c; + ¢3 = h, which implies that
z=h— ; cos’ 90gt2 + c1(cos2wt — 1) + ¢ sin2wt.
Then, the third equation in (S.6) gives

Z+ gt _ sin? Oogt — 2wcy sin 2wt + 2wcey cos 2wt

Y= 2wsinfy 2w sin By

and from the conditions y = O and y = 0 at ¢+ = 0 we find that c = 0 and
c1 = g sin® 0y /4w?, respectively. Thus,

2 . .
0 sin O, sin O,
O(cosZa)t—l), y= Ogt—g % sin2et.

1 g sin
=h— _ cos®Gogt?
‘ 2 081"+ 2w 42

402
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Finally, from the second equation in (S.6) we obtain

g sin By cos Hy

do? (cos2wt — 1).
W

1
x = 5 sin 6y cos Gogt2 +

In the limit where wt < 1, the expressions obtained above reduce to

w8 sin Gpt3 8 sin 6y cos Gpw?1*
I - 6

2.7 Substituting Q(q, ¢, 1) = —2my{§ — mw?q into the second equation in (1.62)
one obtains y = 0.

2.9 In the case of the Poisson—Boltzmann equation, § = —kqg/t — ae?, Equa-
tion (2.44) takes the form
oM n oM n k. g\ M Mk
— g —ae = .
at 1 ag tq ] t

A particular solution of this equationis M = tk, which, substituted into (2.43), gives
L=} +g(g.¢ + h(g.1),

where g(g,t) and h(gq,t) are functions of g and ¢ only. Substituting this last
expression into (2.42), with f(q, q,t) = —kq/t — ae, we find

0 oh
§_ aeltk — =0,

at aq
which, rewritten in the form

dg _ d(h+aelth)
ar dg ’

amounts to the existence of a function F(q, ) such that g = 9 F/dq and h+ae’t* =
dF/0q and, therefore,

1o, 4. 0F. OF
L= _1"q°—are! + + ..
e ag " o

The function F is arbitrary and can be taken equal to zero.

2.10 Substituting the function f (g, ¢,1) = — Z t¢°/3 into Equation (2.44) we obtain
the equation
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oM oM 9 oM 15
g, = =M g
ot daqg 4 aq

for the function M defined in (2.43). By inspection, we find that a solution of this
equation is

M=—g—5

(the minus sign is introduced for convenience). Hence

9. .
L= 4" +g(q,04+hig,0,
where g(q, t) and h(q, t) are functions of ¢ and ¢ only. Substituting this expression
into the Lagrange equation (2.42) we have

9 ag 0dh
t - =0
4 + at  dq

or, equivalently,

0 d 9
& _ h— 1tq],
at  dq 4
which amounts to the existence of a function F (g, t) such that g = dF/dg and
h — tq = dF/dt. Thus,

9t +3F_+3F
q q 9t

9
L=_¢""+ 3

2 4

Since the function F is arbitrary, we can take it equal to zero.

2.12 Starting from M = me®’" we obtain L = %mezy’cjz +g(g,.t)g + h(q,1),
where g and & are functions of ¢ and ¢ only. Substituting this expression into the
Lagrange equation, with § = —2y¢ [see (2.52)], we get

dg  0h

at  dq

which implies the existence of a function F(q, t) such thatg = dF/dq, h = dF/dt
and, therefore,

1, OF . OF
L= vig? j :
PMETAT G 1Ty,

Again, the function F is arbitrary and can be taken equal to zero.
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2.15 In order to prove that Equations (2.66) are a consequence of Equations (2.67),
we multiply both sides of (2.67) by ¢; obtaining

T 1ogjk . . .
0 = gijdidj; Gdj — i
8ijqiq; + g qiqkqj 2 9g; qiqjqk
..o Logi, ..
= 8ijqiqj + 5 aql; qkqiqj

1d ..
= odr (8ijqiq;),

which means that g;;¢;q; is a constant.
On the other hand, since the Lagrangian L = é (gijgiq;)? does not contain #, the
Jacobi integral (1.93) is a constant of motion, which is given by

i [ P @rsdrd)" ™" 155 ] = Seisdid )’ = (b = H8igdid)"-

Thus, for p # é, the conservation of the Jacobi integral is equivalent to Equa-
tion (2.66).

2.17 The equations for the geodesics of the sphere are given by the Euler-Lagrange
equation for the Lagrangian

2
L= “2 (62 + sin? 6¢2), (8.7)

where a is the radius of the sphere and 6, ¢ are the standard spherical coordinates.
One can take advantage of the conservation of the momentum conjugate to ¢ and
of L, which leads to a single first-order ODE for 6 as a function of ¢, following the
steps in Example 2.16.

A simpler procedure consists in substituting the Lagrangian (S.7) into the Euler—
Lagrange equations, which yields

doL oL d 5. ) . i9
= dr 90 ~ 59 = dt(a ) —a“sinf cosH¢p~,
doL 9dL d( 2 in? 0 (5:8)
= . — = sin
dr o op  dr
[cf. Equations (2.3)]. The second equation implies that
L3 = a’sin’ 0¢ (S.9)

is conserved. If L3 = 0, then ¢ is a constant, which corresponds to some plane
passing through the origin and containing the z-axis. When L3z # 0, by virtue
of (5.9) we can replace the derivatives with respect to the time by derivatives with
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respect to ¢. Then, the first equation in (S.8) takes the form

Ly d Ly do L 2
0= 3 <a2 3 )—a%in@cos@( 3 ) ,
a?sin? 9 d¢ a?sin? 9 d¢ a?sin? 0

which reduces to

d2
d¢2 cotfd = —cotd.

The general solution of this equation is

cotd = Acos¢ + Bsing,

297

where A and B are constants. Making use of the relation between the spherical

coordinates and the Cartesian ones, the last equation amounts to z =
which corresponds to a plane passing through the origin.

2.21 Substituting the Lagrangian
9.1 9
L= _¢"P+ "¢
21 Ty
into Equation (2.78) we obtain the PDE

. on ,dn 0§ ., 08
2/3 _ 2
g <8t Ty, Tl T Ty,

ar ' Tag at

dq

3

2

9 9 9 i) i) 3G .G
+4q.§+<2c}1/3+4zq>< g E)= +q., .

Ax + By,

Equating the coefficients of the various powers of ¢ on both sides of the equation

we obtain the system of equations

0
3 é:O,
dq
9 0¢ oG
tq = s
4 7 9q aq
30n d&
3 =0,
28q+ ot
30n
=0,
2 ot
9t +9 §+9t & 0G
a4y T

(S.10)

(S.11)

(S.12)

(S.13)

(S.14)
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From Equations (S.10) and (S.11) we find that £ = A(#), where A is a function of
one variable, and G = G(¢). Then, Equation (S.12) gives

=2 dA+B(t)
n_ th ’

where B is another function of one variable. Substituting this expression into (S.13)
we get A = c1t and B = ¢, where ¢ and ¢ are two arbitrary constants. Thus,

n=-—-2cq+c
and from (S.14) we obtain
G 9
= o©ot,
ot 4

ie., G = gcztz, up to an irrelevant additive constant.
Hence, from Equation (2.77), it follows that

3c1( = qq 2 +1G"P +312q) + 3ea@g73 36

is a constant of motion. Since ¢ and c¢; are arbitrary, each of the expressions inside
the parentheses is a constant of motion. Noting that the first one depends on ¢,
while the second one does not, one concludes that they are functionally independent.
In fact, eliminating g from these two constants of motion one can find an expression
for g as a function of # and the two constants of motion, which is the general solution
of the original equation.

2.22 Substituting the Lagrangian (1.54) into Equation (2.78) one obtains the basic

equation

2 2 2
9 - 9 - -
(ma) rSim- oo mg CcoS 0)77 —+ mr < 9t +r 97 r ¢ r 97

9 d G G
+ (’;,;24_ ’721a)2r2 sin® 0y —mgrcos@o) (85 —i—iaf) = + 7 "

which has to be satisfied for all values of r, 7, and 7. Equating the coefficients of the
various powers of 7 on each side of this equation we obtain the four equations

0
MmO o (s.15)

2 or

d 0
moT M (s16)

or 2 ot

d 0 G

m Bit? + (’;la)zr2 sin? 0p — mgr cos@o) 85 = 9 (S.17)

0 0G
(mcozr sin” Gg—mg cos 60)n+ (1’!21 ?r? sin” Gg—mgr cos 90) 8(3 =, (S.18)
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Equations (S.15) and (S.16) imply that £ = A(r), where A(¢) is a function of ¢
only and

_rdA LB
T= 0 ar :

where B() is a function of # only. Then, from Equations (S.17) and (S.18) we obtain

G <rd%4 dB)
=m + )

or 2 dr? dr
G dA
2 = (ma)zr sin” 6y — mg cos 6o) (; dr + B) (S5.19)

W r~ sSIn — mgr COS .
2 0 8 0 dr

The equality of the mixed partial derivatives of G leads to the ODEs

A 5 . o dA B, ., 3 dA
i3 = 4w” sin” O dr dr2 — w” sin 00B=—2g00390 dr
The general solution of these equations contains five arbitrary constants and
therefore the Lagrangian under consideration possesses five one-parameter families
of variational symmetries.

Restricting ourselves to the variational symmetries with £ = 0, we have A = 0
and B(1) = aje® "% 4 gre~® 5% where a; and a; are two arbitrary constants.
Thus, from Equations (S.19) we find, up to an irrelevant constant term,

mg cos By

G = <mwr sin 6y — ) (alewtsmGo _ azefwt smeo).

w sin By

Substituting this expression and 7 = aje® "% 4 gye =@ 5% into (2.77) we obtain
the constant of motion

. . . . mg cos 0y
min — G = a;e” "% ( mi — mor sin 6y + & i
w sin 6y
—owtsi . . mg cos 6y
+ are @S [ 1 4+ meor sin 6y — § ; .
w sin 6y

Since aj and ap are arbitrary, we actually have two constants of motion which
are functionally independent and, except for constant factors, coincide with the
constants of motion given by Equations (1.20).
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Finally, we can find one-parameter families of variational symmetries proceeding
as in Examples 2.19 and 2.20. If ¢ = 0 and 5 = a1e® "% q,e @' $% from (2.58)
we propose

ot 9g®
-0 q
as as

(8) o — oot ® &
ewt sin By + are wt sm@o‘

3

The solution of these equations is readily found and is given by

t®) = O g® =q© + apse® ' sinfo | g ce—er @ sinto.

Exercises of Chapter 3

3.2 Making use of the definition (3.15) of the components of the inertia tensor, we
have

Ly =m i:(xé?)xé‘,x) + xé‘,x)xy )) = 2ma

Iy = —m ngx)xgx) = maz,

Iyy = —m Zﬂ?‘)xg‘f‘) =

Ly =m Z(xfg)x{‘,x) (a) (a)) = 2ma>,

Lyy = —m Zx(a) @ _ .

Iyy =m Z(XSX)X{?) 2‘,1))6;‘,1)) = 4ma?,
that is,

Ijr) = ma* | —

S = N
S N =
A~ O O
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The principal moments of inertia are the eigenvalues of (/; ;) and, therefore, they
are the roots of the polynomial

2ma? — )  —ma® 0
0=| —ma? 2ma*®—x 0 = (4ma® — N)(A* = 4ma®» + 3m*a*).
0 0  4ma®—x

Thus, the principal moments of inertia are

maz, 3ma2, dma®.

Substituting these eigenvalues into Equation (3.21) one obtains the unit eigenvectors

N X
V2 \, V2 |

respectively, which define the principal axes.

3.3 Making use of Equations (3.14) and (3.24) we have
ais’djs’ = Ajg Egkly Wp' A ji = EjjmAmy' Dp! = EjjmWm-

The last equality follows from the fact that the components of any vector transform
as in (3.5).

3.4 According to the hypothesis, the vector (Ry/, Ry, R3), which joins O and the
center of mass, lies along one principal axis at the center of mass, that is,

CM
ISYRj = ARy,

where XA is one of the principal moments of inertia at the center of mass. Then,
making use of (3.27) we have
IyjRjr = MR8y jr — R Rjr) + 151 1R
= M(R*R; — R*R;") + ARy
= ARj.
Thus, not only (/;/;/) and (Il.(,:j.\fl) share one principal axis, they also share the
principal moment of inertia in this direction.

If vy corresponds to a principal axis at the center of mass, orthogonal to that
defined by R;/, we have Il.(,:jl.\,’lvjr = uv;r and R;rvy = 0 and, therefore,
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I,-/j/vj/ = [M(R28,~/j/ — R,'/Rj/) + Ii(;?//l]vj/
= MRZU,'/ + nvy
= (MR® + vy,

showing that v;s also defines a principal axis at O.

3.5 According to the hypothesis, two of the principal moments of inertia coincide.
As it is customary, we shall assume that /7 is equal to I5. Then, from the last equation
in (3.35) it follows that w3 is constant. Denoting by a this constant value, the first
two equations in (3.35) take the form

dwy (I1 — R)a
= w

dr I 2
dawy (I — B)a
= — wi1’.
dr 5

The solution of this system is given by wyr = (w1/)g cos £2¢ + (w2/)p Sin 2t, wy =
(wp)o cos 2t — (wy/)o sin §2¢, where 2 = (I} — I3)a /11, and (wy1/)9g, (wr)o are the
values of wy/, wy at ¢t = 0. This means that the angular velocity rotates about e3
with angular velocity £2.

3.6 Multiplying Equations (3.35) by wy/, wy, w3, respectively and adding the
results one obtains

I da)l/ + I da)zl + I da)3/ 0
w1y’ wy/ w3/ =0,
rhe g 22 334

which means that é(llwyz + hwy? + Iwy?) is a constant of motion. In a
similar manner, multiplying Equations (3.35) by Loy, hwy, lws, respectively
and adding the results one gets

dwy dw» dw~
! + Lwy 2 + LKlwy 3 =0,

112601/ 37 W3
dr dt dt

which means that Ilza)yz + 122w2/2 + 132a)3/2 is also conserved.

Exercises of Chapter 4

4.4 According to the definition (4.5), the momentum conjugate to ¢ is p = mIng
and, therefore, the Hamiltonian is given by

H=mlng)q—m@Glng —q)+2myq = mg +2myq = me?’™ + 2myq.
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The Hamilton equations give

oH

. OH
=,

=eP/m, p=— = —2my.
dgq

The first of these equations is equivalent to the expression for the generalized
momentum obtained above and the second one can be immediately integrated giving
p = po — 2myt, where pg is an integration constant that represents the value of p
at + = 0. With this expression at hand, the equation for g can be readily integrated,
and we obtain

ePO/m

9=, (1 —e 2" + qo,

where the constant g is the value of g at = 0.

4.8 Taking into account Equation (4.23), we compute d® /9t + {@, H}, using that
H(gi, pi, 1) = f()P(qi, pi), we have

]
g TI®H}=0+{P. f(OP} = f){P, P} =0,

which shows that, indeed, @ is a constant of motion.
4.10 Making use of the bilinearity of the Poisson bracket and (4.29) we have, e.g.,

e e e e e (0Ay 0A
{1, m} ={p1— A1, p2— A2} =— {p1,A2}— {A1, p2}= -
c c c c c \ 0x ay

e
= Bj.
c

The other relations can be derived from this one by cyclic permutations of the
indices 1, 2, 3.

4.12 Making use of the properties of the Poisson bracket and Equations (4.36) we
have

{Li, L;j} ={aix L, ajm Ly}
= ajpajm{Li, Ly} + aiw Liw{L' s @jm} + @jne Lo @it , L'}
= —&um'r'Aik' Ajm' Ly —ai L {@ jm s Ly Y0 Lir{aip L} (S.20)

On the other hand, according to (3.31) and (4.35), using the fact that the a,, are
functions of the g; only,

3 0Ly

{ajm, L} =
" dqs Ops
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-1
= djrEm'r'i’ irs (M~ )srr
= ajrlgm/r/i/(si/k/

= ajr/gmrr/k/. (S2l)
Substituting this result, together with (3.24), into (S.20) we obtain

{L,’, Lj} = _gk’m’r’aik’ajm’Lr’ - aik’Lm’ajr’sm’r’k’ + ajm’Lk’ais’gk’s’m’
= _Sr’k’m’aik’ajm’Lr’ - Sm’r’k’ajr’aik’Lm’ + gk’s’m’ais’ajm’Lk’
= —asp€ijsLy — Asm€jisLyy + arpr€ijr Liy

= &jjkLk.
Similarly, making use of the properties of the Poisson bracket, (4.36) and (S.21),

{Li, Lj1} = {ajp Ly, Lj}
=ajyp{Ly, Ly} +{ajp, Lj} Ly
= —ajpep jim' Ly + aig s j Liy
= —ajpep jim' Ly + ajg & jriy Liy
=0.
4.14 The differential form Bdz — Bzdy, appearing in the definition of &2}, is

(locally) exact. In fact, computing the crossed partial derivatives (taking into account
that the coefficient of dx is equal to zero) we have the conditions

0B JB B 0B
0= 3’ 0= 2 2 3
ax 0x

ay 0z

9 3

which, according to the hypothesis, reduces to dB3/dz = 0, but this is precisely
what one obtains from the fact that the divergence of B must be equal to zero. In a
similar manner one concludes that B3dx — Bdz is locally exact, thus showing that
1 and &, are well-defined functions (even though each of them is defined up to a
constant term, arising from the integration).

In order to prove that &?; and &2, are constants of motion, taking into account
that they do not depend explicitly on the time, we only have to show that their
Poisson brackets with the Hamiltonian are equal to zero. The Hamiltonian is given
by (see Example 4.3)

1
H= m (7112 +m’ + 7T32)
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and, therefore, for example,
1 1 1
(21, Hy = (2, m}m+ {(Z1.mlm+ (P, n3)ms.
m m m

Then, making use of (4.32) and (4.29), we find that each term of the last expression
separately vanishes,

e e d
(21} = e + ¢ /(Bzdz ~Byp.m) = /(Bzdz — Bdy) =0,
e e e 0
(P, m} = {m + /(Bzdz — B3dy), m} = B3+ /(Bzdz — B3dy) =0,
c c cady
e e e 0
(P, 13} = {711+C /(Bzdz—33dy), m3)=— CBz~I-C 9z /(Bzdz — B3dy)=0.

Finally, the Poisson bracket between &?| and &; is

(P, P} = {m1, ma} + {m1, i /(B3dx — Bid2)} + {i /(Bzdz — Bsdy), m}

e e 0 e d
= B3-— (B3dx — B1dz) + (Badz — B3dy)
c cdx cdy

e
== - B3a
c
which is a trivial constant since, as pointed out above, B3 is a constant. It may be

remarked that H, &1, and &, are gauge-independent.

4.15 Making use of the expression of D in terms of L3 and the Cartesian coordinates
and momenta, with the aid of (4.29) and the fact that {L3, f(r)} = O for any function
of r, we have

1 X
{L3, D} = {L3, mL3Py -k}

~

k 1
L3{Ls, py} — r{L3,x} — kx{Ls, r}

0L3 koLs
3 +
ay r Opx

I -~ 3 =3 =
~

k
L3(—py) + . (=y)

1 y
= - L3px_k ,
m r
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which is the y-component of the Laplace—Runge—Lenz vector (4.52) and, by virtue
of the Poisson theorem, is also a constant of motion.

4.18 Expression (4.57) suggests the definition
pu2 + pv2

hg = ) — c(k1 + kp) coshu — c(k; — ko) cosv — Ecz(cosh2 u — cos’ V)
m

so that we have the identity

1

H—-F =
c2(cosh? u — cos? v)

(he —0),

which is of the form (4.53), with

1

= , gx) =x.

c2(cosh® u — cos? v)
Therefore, on the hypersurface H = E (which amounts to hg = 0), the equations
of motion can be expressed as the Hamilton equations for 4 g with t as the evolution
parameter, and

dr = cz(cosh2 u — cos? v)dr.
Noting that i g is the sum of a function of # and p, only, and another function of

v and p, only, we conclude that each of these functions is a constant of motion (see
Proposition 4.7), that is,

2
’27 W _ e(ky + ko) coshu — Ec?cosh®u = —D, (5.22)
m
p 2
2” —c(ky — kp) cosv + Ec*cos’v = D, (S.23)
m

where D is a constant of motion. Since

du ohg Pu

dr opu m

I

eliminating p, from (S.22) we obtain

m (du\? 5 2
o \de) ~ c(ky + ky) coshu — Ec”cosh“u = —D, (S.24)
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hence

m du
drt =+
2 \JEc2cosh?u + c(kj + k) coshu — D

and, in a similar manner, from (S.23) it follows that

m dv
/d‘IZ::l:/ .
2/~ Ec2cos?v+clky — ka)cosv + D

In order to find an expression for D in terms of u, v, p,, p, only, we multiply
Equations (S.22) and (S.23) by cos®>v and cosh?u, respectively, and add the
resulting equations. In this way we obtain

cos? v pu2 + cosh? u pv2 kic coshucosv  krc coshucosv
T 2m (cosh? u — cos? v) coshu — cosv coshu + cosv

Making use of the relations [see (4.17)]

Pu = Ppx ¢ sinhu cosv + py ¢ coshusinv,
o ’ (S.25)
Dy = —px ¢ coshusinv + py ¢ sinhu cosv,

we find the equivalent expression
2.2 2
D P + (xpy — ypx) +oex (kz B k1)‘
2m 1) ri
A fairly complete discussion of this problem can be found in Pars [11, Sects.
17.10-17.13].

4.19 Making use of the expressions given in Exercise 4.18 one finds that the
standard Lagrangian for a two-dimensional isotropic harmonic oscillator in the
confocal coordinates introduced in Exercise 4.18 is [see (2.29)]

2.2

2
L= m2c (cosh2 u — cos’ v)(L't2 + 1')2) — ma)2 ¢ (cosh2 U+ cos>v — 1).

Hence, the Hamiltonian is given by (see Proposition 4.5)

P+ py? ma?c?

= cosh?u + cos?v — 1 ,
2mc2(cosh? u — cos? v) 2 ( )
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and we find that H = E is equivalent to hg = 0 where

2 2 2.4
hEEp” + P ~|—me (cosh4u—cos
2m 2

— c2E(cosh2 u — cos? v).

* v — cosh? u + cos? V)

Since hg is the sum of a function of u and p, only plus a function of v and p,
only, it follows that each of these functions is a constant of motion, that is,

2 2.4
127” T ma)z ¢ (cosh* u — cosh? u) — ¢?E cosh®>u = —D, (5.26)
m
2 2 4
127” - ma)2 ¢ (cos* v — cos® v) + ¢?E cos’ v = D, (8.27)
m

where D is a constant of motion. Combining (S.26) and (S.27) to eliminate E we
find

cos>v p,2 4 cosh’u p,> 1 2

2
+ 2ma)

5 c* cosh? u cos? v.
2m(cosh® u — cos? v)

With the aid of (S.25) we obtain the expression of D in terms of the Cartesian
coordinates and their conjugate momenta

2

C
D= m(m2 +m*w’x?) +

1 2
) " (xpy — ypx)~.

2

Since c is an arbitrary constant, it follows that px2 + m2w?

separately conserved.
Finally, making use of the relation

x2 and (xpy — ypy)? are

du ohg Du

dr opu m

in (S.26), it follows that

m (du\?> maw?ct 4 5 2 5
+ (cosh™ u — cosh“u) — ¢“E cosh“u = —D,
2 \dr 2

which gives a direct relation between u and 7. In a similar way one obtains the
relation

m (dv\?> maw?ct 4 9 2 2
— (cos"v —cos“v) +c“Ecos“v =D,
2 \dr 2

which relates v and 7.
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4.20 The equation

1Pp2+0Qpy?  E+n

= (S.28)
2 X+4+Y X+Y
is equivalent to
'Ppl+E—EX+ ) 0p2+n—EY =0
24 Px 2&Py T :
Hence, letting
— 1 2 1 2
hg = ,Ppy"+& - EX+ ,0py"+n— EY,
we have
H—-E= hg —0
x4y "0
[cf. Equation (4.53)]. The form of the Hamiltonian % g implies that
‘Ppl+E—EX=-D, \Op,>+n-EY=D, (S.29)

where D is a constant of motion. Eliminating E from these last two equations (or,
equivalently, substituting (S.28) in one of them) one obtains

b T2V PR = X0 X — &Y
N X+Y '

Since A g is the sum of a function of x and p, only, and a function of y and p,
only, from Equations (4.54) it follows that the equations of motion for x and p, in
terms of 7 are independent of the equations of motion for y and py, and vice versa.
According to (4.55), the parameter t is related to the time by

dt = (X + Y)dr.

The complete solution of the equations of motion can be obtained making use of
[see Equations (4.54)]

dx  dhg dy ohg
= = pr’ = = pr,
dr opx dr opy

which, together with (S.29), lead to

dx dy

V2P(EX —£—D) *+dr, V20(EY —n+ D) +dr.
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4.21 In this case the equation H = E amounts to
2 (PP +Papa® 4 Pap®) H51 52+ — EX+ X+ Xn) =0,

which suggests the definition of the equivalent Hamiltonian i = h1+ho+- - -+hy,
where, fori =1,2,...,n,

hi = éPi p,-2 + & — EX; (without summation on i)

is a function of ¢; and p; only.

Each h; is a constant of motion, but they are related by the condition A1 +
hy +---+ h,, = 0. Therefore, H, h1, hy, ..., h,_1, are n functionally independent
constants of motion, and the solution of the equations of motion is obtained using
the equations

dgi  dhg

= P;ip; (without summation on i)
dr 8pi

and the fact that 4; is conserved. In this way we obtain

dg;

= &4dr.
V2P, (EX; — & + h;)

(This solution is obtained making use of the Lagrangian formalism in Pars [11, Sect.
26.9] and Greenwood ([9], Sect. 2-3.)

4.22 1t is convenient to define

1 2
hg = r2p,2+p92+ p¢; +kcos@—Er2,
2m sin” 6

so that H = E is equivalent to hg = 0. In fact,
1
H—-E = 5 (hg —0)
r

and, therefore, the parameter 7 is related to the time by dr = dt/ r2,
The Hamiltonian 4 g can be written as the sum A + Ay, where

2.2 2

repr 5 1 2 Do

h = — Er”, hy) = + + k cos@.
! 2m g 2= om (pe sin? )
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Since hy does not contain r and p,, it follows that /11 and &, are separately conserved
(see Proposition 4.7), but their values are related by the condition 21 +hy = hg = 0.
Thus

2
M = pg* + P¢; + 2mk cos 6
sin“ 6
is a constant of motion, and
rzpr2 —2mEr* = —M. (S.30)

Taking into account the relation (4.56), it follows that M = L? + 2mk cos @, where
L? is the square of the angular momentum of the particle about the origin. It may
be noticed that 4, has the form of the Hamiltonian of a spherical pendulum (of unit
length) in a uniform gravitational field [cf. (2.31)].

The Hamilton equations for » and p,, as functions of t, are

dr _ ohg _ r2Pr7 dpr _ _ Ohg :_Vpr2 oy
dr opr m dr or m

Eliminating p, from the first of these equations with the aid of (S.30), we find that

dr

=+ V2mEr - M.
dr m

These equations show that there exist solutions with » = const. if and only if £ = 0

and M = 0. In this particular case, the particle will behave exactly as a spherical
pendulum.

4.23 Letting

1 Po(u* +v?)
hE = |:pu2 + [71)2 + ¢ 2

u2v?

} VWt vt — E@? 407,
2m

we find that H = E amounts to ig = 2k. The Hamiltonian /g is equal to the sum
hi + hyp, where

2 2 2 2
Pu Py Y 4 2 Pv Py Y 4 2
hy = — — Eu”, hy) = vt — Eve,
"= om +2mu2 2" " 2T om +2mv2+ 2

and A and h; are separately conserved (note that py is a constant of motion). Thus,
taking into account that 1 + hy = 2k,

2 2 2 2
Puzy Po VA B2 —k—D, + + vt~ Ev’ =k +D,
2m  2mu? 2

(8.31)
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where D is a constant of motion. In order to identify D, we multiply these equations
by v? and u?, respectively, and subtract the resulting equations, which yields

. W2p,2 — v2p,2 s P u? — 12 . yu2v2_ku2_v2
2m(u? 4 v?) 2m  ulv? 2 u? 402’

Making use of the relations

Pu = PxVCOS¢P + pyvsing + pu,
Dy = pxU oS¢ + pyusing — p,v,
Dy = —Ppxuvsing + pyuv cos @,
which follow from the definition of the parabolic coordinates (i, v, ¢) in terms of

the Cartesian ones and (4.17), one finds that, in terms of the Cartesian coordinates
and their conjugate momenta,

kz
D= (ps*+2py? —xpap: — ypyp:) + 4y (X2 + 35 — )

kz

[Py (zpx — xp2) — py(ypz — zpy)] + Sy (2 +y%) — .

[A3 + Jmy (x> + yD)],

I ~,3I =3 =

where A3 is the z-component of the Laplace-Runge-Lenz vector (4.52).
Making use of the fact that

du ohg Pu

dr opu m

I

from (S.31) it follows that

du\? 2
S +p¢ Yt El=k-D
2 \dr 2mu? 2

and, similarly,

2 2
m (dv P Y 4 2
— Ev*=k+D.
2<dr) Fompe TV TRV T

4.25 When E = Vj the last equation in Example 4.24 reduces to

dg \/SVO
==+ 2 — g?).
dr maz( )
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With the change of variable g = V2 cos 6, we obtain

/d / B / V/2 sin6 do
t= svo o 16Vo o2
02 —q?) o2 SN0

hence, choosing the integration constants conveniently

8V
q = /2 cos <\/ (;‘C).
mao

Then, substituting into the relation dr = (oezq2 /4) dt, found in Example 4.24,
we have

4d 8V 8V
/d_/ ! / secz\/ Or dr = m tan\/ 01’
ma? 2 Vo2 ma?
_ m 2
o 2Voa? q2

and, therefore

2 _ 2

22 (t — 19)?’
. oo (t — 1p)

m

where 1y is an integration constant.

4.27 According to the chain rule, we have

dgj dtdg; 1
dr dtr &t  E-V aj

[see (4.55)] and, similarly,

d2qj=d 1 i Zdtd 1 i 1 éj + qgjgx 0V

de2 “de \E-v? ) Tdrar \E-v¥ ) TE_V (E—V)2 dgx
Substituting these expressions together with g;; = (E — V)a;; into the geodesic
equations

agij , , 10gjk , ,

gijq;'/‘f‘ dan Uqj~ 5 dq; q;q, =0
1
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we obtain
i aijqjqx OV . . daij  aijqjqe OV 1. . dajk
T g _yoag T %eq T E—voag 29 b
1 1 A
%qiq =0. S.32
+2E—Va’kqjqk8q,~ (8.32)

On the other hand, the condition 4 = 1 amounts to Lr = 1, that is

aijqiq;

P I
=B Vaiaa; =, p_y

which implies that (S.32) reduces to

aa,’j 1. . aajk A%

= ,4jqx +, =0
dgr 277" dgi - dgi

aijqj +q;jqx
and it can be readily verified that these are the Lagrange equations for the
Lagrangian (4.64).

4.28 The result can be obtained by a straightforward computation. Under a passive
rotation by an angle 6 in the uv-plane, the coordinates u, v transform according to
Equations (4.72), hence,

=1 =)
= é[(u cos O + vsinf)? — (—u sin6 + v cos 9)2]
= é[(u2 — vz)(cos 6 — sin 9) + 4uv sin 0 cos 9]
= x cos20 + y sin 26
and
y/ — u/v/

= (ucosf + vsinf)(—usinb + vcosH)
= —(u2 — vz) sinf cos O + uv(cos2 0 — sin? 0)

= —x sin26 4 y cos 20,

which correspond to a rotation by an angle 26 in the xy-plane.

A shorter proof is given using the fact that the definition of the parabolic
coordinates employed here is equivalent to x + iy = %(u + iv)? and that the
rotation (4.72) amounts to the complex equation u’ + v’ = e % (u + iv). Hence,
X iy =+ 1) = e+ i) = Je 0w + iv)? = e 0 (x +iy),
which corresponds to a rotation through 26.
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4.29 If p, = 0, Equations (4.67) give u = uo and, choosing vp = 0, for
convenience, v = p, 7/m. These expressions substituted into (4.40) give

1 ( 5 pv212> 1o P
X = uo~ — , s y = T.
m m

On the other hand, (4.68) shows that 2L3 = p,uo, and using the fact that 4mk =
pu* + pu? = pu? we finally obtain the parametric equations of the orbit

L2 2kt? 2037
X = — s y = .
2mk m m

4.30 By comparing Equations (4.73) and (4.74) we have

, 4k

ur +v? = 2 4 2rmin

T
m

and Equation (4.41) gives u®> + v> = 2r. Hence, the parameter T is related to the
distance from the origin to the particle by

m
T = i\/Zk(r — T'min)

and, making use of (4.75),

PR e —12\/’"(+ ) N — T
=71 3mt Tmin | = 3V 2% '+ I'min ' — Fmin-

4.31 Making use of Equations (4.51) and (4.40) we can rewrite the components of
the constant vector A [defined by (4.70)] in terms of the Cartesian coordinates of
the particle and of their conjugate momenta

= pu? = poH = =L wps +vpy)* — (—vps + upy)?]

= —H@? = v®)(ps® — py?) + 4uvp, py ]

= x(pe* = pyD) — ypapy
2 2 2
= xpy> — x(px” + py?) — YPapy

sz + [)y2

= X — — mx
Py(xXpy — Ypx) -

k
= pyL3 —mx ,
’
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where we have taken into account that £ = 0 [see Equation (4.44)]. In a similar
manner, we have

_épupv = upy + UPy)(—UPx + Mpy)

—5
= [uv(py® = p®) + W? = v papy]
=3 [y(py? = pe®) + 2xpa py]

= yps? = Ly (p + pyD) — xpapy

_ Px2+[7y2
= px(ypx — xpy) —my )
m

k
= —pxL3 —my
r
On the other hand, a direct calculation shows that

me | VB R . Comk .
pxL-— . T=[Px Py 0 |- . (xi+ yj) = pyLsi — pxL3j — . (xi+ yj)
0 0 Lj

mk '\ . mk '\ .
=|pyLs— x )i+ | —pcLlz — vl
r r
which reproduces the expressions for the components of A obtained above.

4.32 Substituting Equations (4.67) into (4.51) we have

PupPx + Pvp —puDx + Pupy
pu="" xm Yrtuopytvopy,  pe= " xm YT —vopx +uopy

and eliminating the parameter T from these equations we obtain
(Pu = uopx — vopy)(=puPx + PuPy) = (Pv + Vopx — uoPy) (PuPx + PvPy).
which amounts to
(wopy = vopu) (P + py?) = 2pupupx + (pu® = pu)py = 0.

The coefficients in this polynomial in p, and p, can be identified with the aid of
Equations (4.68) and (4.70), which leads to

L3(px2 + I’yz) +2A2px —2A1py =0.
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If the angular momentum about the origin, L3, is different from zero, this equation
represents a circle passing through the origin in the py py-plane and, when L3 = 0,
this is the equation of a straight line in the p, p,-plane passing through the origin.

4.33 The Hamiltonian

2 2
e =P TP EGR p?)
2m

leads to the equations of motion

d d d d
”:pu, pu:2Eu, U:Pv’ pv=2Ev,
dr m dr dr m dr

from which one obtains the decoupled equations

2 2
du_2 dv_2

, = ou, , = 0,
dr dr

where w? = 2E /m. Hence, u and v are linear combinations of cosh wt and sinh wt.
The orbit in the uv-plane is a hyperbola centered at the origin (see the repulsive
isotropic harmonic oscillator in Section 2.1) and by rotating the axes in the uv-
plane, if necessary, we can make u = f coshwt, v = « sinh wt, where « and g are
real constants, with |a| > |B| (see Equation (S.33) below).

Then, according to (4.40), in Cartesian coordinates the orbit is given by

x = 3(B*cosh® wr — & sinh’ wr) = | [0 + % — (¢ — B?) cosh2w7]
and
y = af sinhwt coshwt = %aﬁ sinh 2wrt,

which are parametric equations of one branch of a hyperbola with semiaxes a =
le(oz2 — B%), and |b|, with b = %aﬂ, and one of its foci at the origin.

Since p, = mdu/dt = mwp sinhwr, and p, = mdv/dt = mowa coshwt, the
value of hf is related to the constants ¢ and g through

21 [(mwp sinh wt)? + (mwa coshwt)?] — E[(B coshwt)? + (o sinhw1)?]
m
= E(a® — B%) = 4Ea. (S.33)

hg =

On the other hand, A = 2k, hence,

k
E =
2a

[cf. Equation (4.84)]. That is, the energy is a function of the major semiaxis only.
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Finally, from (4.47) and the expressions above we have

dr = [(Bcoshwr)? + (asinhwr)?]de
= 1 [B*(1 + cosh2wt) + a* (cosh 2wt — 1)]dz
= 2a(ecosh2wt — 1) drt,

where e is the eccentricity of the hyperbola. Thus, we obtain Kepler’s equation for
the hyperbolic orbits

wt .
= esinh Y — Y,
a

where ¢ = 2wt [cf. Equation (4.88)].

4.34 As in the case of any central force, the angular momentum about the center of
force is a constant of motion, for

dL

d( ) dp+dr kr 4 P
= Ir X =TI X X =T X — Ir X r=V.
a <P ar " ar <P 3 "

The Laplace—Runge—Lenz vector (4.76) is also conserved. In fact,

d L mk dp L+mk. mk . kr L+mk. mk .
x L — r|= X Fr— r=\|- X Fr— I,
dt P r dr r2 r r3 r2 r

but, by virtue of the well-known formula for the triple vector product,a x (b x ¢) =
(a-¢)b —(a-b)c,

kr k k 2 mk . 2.
— .3 ><L=—r3r><(rxp):—r3[(r-p)r—r p]:—r3 [(r-p)r—r°r]

and

1d _1d

e YT

r?) = rr.

In order to prove that the hodograph is a circle, or part of a circle, we note that
the Hamilton vector can also be written as

LxA_ 1. [ mk
| Rl L

mk
= |:L2p—(L-p)L— . Lxr:|
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Hence, using the fact that L is orthogonal to r,

LxA
L2

mk

‘:L2r|Lxr|: L’

b
which shows that the hodograph is (part of) a circle of radius R = mk/|L| centered
atL x A/L2.

Using the property of the triple scalar product,a-b xc=c-axb=Db.c x a,
we find that the distance from the center of the hodograph to the origin is

P— Lxr

LxA
L2

‘ mk

2k2
\/pz L2 p L><r+z4 2L2r2
r

m2k?2
2
\/p L rxp+ 12
\/pZ 2k2
L2

m2k?
=.[2mE + 12

= /2mE + R2,

which shows that for E < 0, the hodograph encloses the origin; for £ = 0, the
hodograph passes through the origin; if £ > 0, the hodograph does not enclose the
origin. (Only when E < 0, the hodograph is a closed curve.)

Exercises of Chapter 5

5.3 From the definition of the Poisson bracket we see that {Q, P} = mq — pt,
which is a constant of motion since

d(mg — pt 2

(mq p)+{mq_pt’ p

p
= — =0.
Jt 2m} p+mm

Then, Equations (5.3) and (5.5) give

K _ oK 1p?
ag ap  m’
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respectively. Hence, we can take

3 3
t tP
k== __""
3m 3m

5.5 Making use of the definition of the Poisson bracket, we immediately see that
{Q, P} = 1. Then, from Equations (5.12) we obtain

(K — H) (K — H)
= —m =
dq ’ ap

9

which implies that K = H —mgq + gtp + f(t), where f(¢) is a function of 7 only.

5.6 Making use of the definition of the Poisson bracket, we have

. 1 . .
{Q, P} = (cos wt + wt sin wt) cos wt — (wt coswt — sinwt) mwsinwt = 1,
maw

which shows that the coordinate transformation is canonical. Computing the right-
hand sides of Equations (5.12) we have

(K — H) 2 5 .
9q = —mw~q coS” wt + wp Sin wt cos wt
and
(K —H
( ) = wq sin wt cos wt — P sin® wt,
ap m

therefore, up to an additive function of ¢ only,

2 ma)Z

P sin® wt — ) q2 cos® wt + wpq sin wt cos wt

2m

K—-—H=-

and, making use of the given expressions, we obtain

2 maw?
sin? wt — 2 .2 :
wt ) g~ cos” wt + wpq sin wt Cos wt

P2 ma? 2 maw?

= + q2 _r sin” wr — q2 cos® ot + wpq sin wt cos wt
2m 2 2m 2

z 2 ma? 2 .2 .
cos” wt + g~ sin” wt + wpq sin wt Cos wt

| (peoser +mag sinor)’
= P Cos wt + mwq sin w
2m

P2

2m’
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5.11 Since we are looking for a type F» generating function, we consider from
the start the left-hand side of (5.17), and write the resulting expressions in terms of

(g, P, 1),

pdq + QAP + (K — H)dt = (P —mgt)dq + (¢ + ,1°)dP + (K — H)dr
—d(Pq—mgtq+)gr* P)+mgqdi—gt Pdi+(K —H)di
=d(Pg—mgtq+)gt* P)+(K —H+mgq—gt P)dr.

This last equation shows that the coordinate transformation is canonical, that K
must be given by

K=H—mgqg+gtP+ f(1),

where f(¢) is a function of ¢ only, and that

1
F, = Pg —mgtq + égtzP ~|—/ f(u)du.

The sets (g, O, t) and (p, P, t) are not functionally independent (because Q =
q+ é gt? and P = p+ mgt) and, therefore, this canonical transformation cannot be
obtained by means of a type Fi, or a type F4, generating function. However, the set
(p, O, 1) is functionally independent and there exists a type F3 generating function,

F3=F—pg— PO

t
= ymg’’ + f f@)ydu—pQ + jgt’p —mgiQ.
5.12 A straightforward computation gives

9%F, 9 1
208g = 8Q(klnt —InQ) = 0

which is different from zero and, therefore, F; defines a canonical transformation
which is given implicitly by [see Equations (5.16)]

IF IF
p:( 1) —klnt—1nQ, P=—< 1) =1,
99 ) g 00 /)40 @

Hence, the coordinate transformation generated by the function Fj given in this
exercise is

0 =rke?, P =gt %e?,

and the new Hamiltonian is related to the old one by K — H = kq/t.
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5.15 The canonical transformation found in Example 5.8 is given by QO =
2p sin? %q, P = cot éq; hence, (g, P, t) is functionally dependent and therefore
this canonical transformation cannot be generated by F>. By contrast, apart from
(g, O, 1), the sets (p, Q,t) and (p, P,t) are functionally independent and this
canonical transformation can also be generated by F3 and Fj.

5.16 The answer is yes and it suffices to give an explicit example of such a canonical
transformation. A simple example is provided by the linear transformation

1

1
.,  P=
0 \/2(q+p)

Jz(p —q).

One can readily verify that {Q, P} = %{q +p, p—q} = 1 and that the sets (¢, Q, 1),
(g, P,t), (p, Q,1), and (p, P, t) are all functionally independent.

5.19 By means of a straightforward computation we see that

pdq — Hdt — (PdQ — Kdt) = pdg —t'%p (17'/2dg — J+7*/%qdt) + (K — H)dt

= (K — H+ ét_lpq)dt,

which shows that the transformation is canonical and we can take K = H — %t‘l rq,
that is,

X P? k  PQ
C2mt Q% 2

and, therefore, 1K (or, equivalently, tH — ; pq) is a constant of motion (see
Exercise 4.8).

On the other hand, H is also a constant of motion and, therefore, we have two
functionally independent constants of motion (provided that the value of H is not
zero, see below) that can be used to find the solution of the equations of motion
without having to solve differential equations. In fact, from the algebraic expressions

p? k tp>  kt  pg _
2m g2 2m g2 2

where E and C are constants (the values of H and tH — é pq, respectively), one
finds

2= 2(C Et)? k
= wE E
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5.20 Substituting the expressions given in this exercise one finds that
pdq — Hdt — (PdQ — Kdr) = pdg —t™* p (r*dg + st*'qdt) + (K — H)dt
= (K — H - st_lpq)dt,

hence, the coordinate transformation is canonical and the new Hamiltonian can be
chosen as

spq _tp* _¢>  spq _tPHP2 Q7 sPQ

K=H = — = _
+ t 2 34 + ! 2 3p3s+4 + !
The last expression shows that it is convenient to take s = —1, so that,
P Q3 P
ko PP_0 PO
2t 3t t

and we conclude that @ = rK (or, equivalently, tH — pgq) is a constant of motion
(see Exercise 4.8).

Making use of the Hamilton equations, and expressing P in terms of Q and the
conserved quantity @, we have

dQ 9K P Q_i\/Q2+§Q3+2‘D
d 8P ¢t t t ’

5.24 Letting
P = p+mgt,

which is a constant of motion, we find the expression for p as a function of (g, P, 1),
p =P —mgt,

which, substituted into Equation (5.25), leads to the generating function

q
Fr(q, P, 1) = / (P —mgt)dq' = Pq —mgtq + f(P,1),

where f (P, t) is an arbitrary function of P and ¢.
Then, the new Hamiltonian is given by

IF, (P —mgt)? af  P? 1 af

K=H - = —gtP 242 )
+ ot 2m tmgq mgq+8t 2m & ~|—2mg +8t
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Thus, choosing

tP2 1 5, 1 5,
=— PP — 3,
F==om 128 6"

we have K = 0. The new coordinate Q is given by

0F tP 1
Pog- 4+ e

0= 4p = m 2

which is a constant of motion because K = 0. This last expression gives g as a
function of ¢.

5.27 According to the hypotheses, for each positive value of Ey, the level curve
H(q,p) = p*/2m + V(q) = Ey is a simple closed curve in the gp-plane (the
phase space). Since H is an even function of p, these closed curves are symmetric
under the reflection on the g-axis and the integral (5.29) along the curve H = Ej
can be written as

1 q+(Ep)
P(Eo) = f V2m[Eg — V(g)1dg,
T Jg_(Eo)

where g_(E) and g+ (E) are the points where the value of V (g) coincides with E
(see Figure 5.3). If gmin denotes the value of ¢ where V(g) attains its minimum
value (which is equal to zero), we have

2 gmin q+(Eo)
P(Eq) = */nm [ VEo— V(g)dg +/ JEo— V(q)dq} :

q*(EO) dmin

In the intervals [¢—(Eo), gmin] and [gmin, g+ (Eo)], the function V (g) is injective
and has a unique inverse function, which we will denote as g_(V) and g (V),
respectively (see Figure S.2). Hence, using V' as the integration variable, we have

_ V2m 0 dg— Eo dg+
P(Eo) ="~ UEO VEo—V(q) i dv +/0 VEo—V(q) i dV} )

Integrating by parts and using the fact that g_(0) = g+ (0) = gmin We obtain

0
0 +/ g_(V)dv
0

P(Eo) = 4-(V)VE = V| o 2JEo—V

V2m [

E Eo V)dv
+ g+ (V)VEo — V‘OO +/O 2‘];;0)_ V} .

L m R g (V) —g-(V)]
N 71\/2 /0 VEy -V av.



Solutions 325

Fig. S.2 The portion of the q
graph above [resp. below] the
point (0, gmin) is the graph of
the function g4 (V) [resp.
4-(V]

(0,¢min)

which shows that the function P(H) is determined by the width w(E) = g4+ (E) —
q-(E).

5.28 From the definition of the Lagrange brackets (5.37), we have

aau [v, wlg,p + aav [w,ulp.p+ ai} [u,v]lp, P
_ d <3Qj P; B oP; 8Qj>+ d <8Qj oP; B P; 3Qj>
du \ dv Jw v Jdw dv \ dw du ow Jdu
0 (0Q;j0P; 0P;dQ;
+8w<8u v du av)‘

Making use of the Leibniz rule and assuming that the partial derivatives commute
one readily sees that all terms cancel out.

5.32 The set of variables (g1, g2, g3, P1, Q2, P3) is functionally independent since
the Jacobian

a(q1, 92, g3, P1, Q2, P3)
9(q1, 92, 43, P1, P2, P3)

is different from zero (specifically, its value is 1/u). Alternatively, the functional
independence of (g1, q2, g3, P1, Q2, P3) follows from the fact that g1, q2, g3, p1,
P2, and p3 can be written in terms of (g1, g2, g3, P1, Q2, P3), Viz.,

2 2

q1=4q1, @2=¢q2, 93 =43, p1 =P — ,d2 P2 = nQa — , 1. Py = Ps.
These expressions are also useful in the computation of the left-hand side of the
differential form p1dq; + padgs + p3dgsz + Q1dPy — P,dQ2 + O3dP3; = d(F1 +
P1 01 + P303), which gives, using again Equations (5.47),
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p1dg1 + p2dqs + p3dgs + Q1dPy — P,dQs + Q3dPs
w w
= <P1— ) Q2) dg1+ (MQz— 2611) dg>+P3dg3+(q1—Q02)d P
— (P — ng2)d Qs + g3d P3

7
=d (qul — 1192+ POy +613P3> :
The function inside the last parenthesis is a generating function of the
transformation.

On the other hand, a straightforward computation shows that the Jacobians

9(q1, 92, g3, Q1, Q2, Q3) (g1, q2, q3, P1, P>, P3)
d(q1. 92, 93, p1, P2, p3) d(q1, 92, 93, p1, p2, p3)’

a(p1, p2, p3, O1, @2, 03) a(p1, p2, p3, P1, P2, P3)
a(q1. 92, 93, p1, P2, P3) a(q1. 92, 93, p1, P2, p3)

are all equal to zero and, therefore, there do not exist generating functions of type
Fy, F,, F3, or Fy.

5.34 A straightforward computation, making use of the expressions (5.44), yields

pidg; — Hdt — (P;dQ; — Kdt) = [K — H + w,(q1p2 — q2p1)] dt,

which shows that the new Hamiltonian has to be given by K — H = —w,(q1p2 —
q2p1) + f(t), where f(¢) is a function of ¢ only [cf. (5.45)], and F; = ft f(u)du.
The sets (g;, Q;, t) and (p;, P;, t) are functionally dependent and, therefore, there
do not exist generating functions of type F; or F4. However, (g;, P;, t) [as well as
(pi, Qi, )] is functionally independent, and the type F> generating function is

F,=F+QiP

t
= / f(u) du+(q1 cos w,t+q3 sin w,t) P1+(—q1 sin w,t+q2 cos wyt) P +q3 Ps.

5.37 Substituting the expressions for the Q; in terms of ¢; into Equation (5.65) and
solving for P; and P, one readily obtains

OF 0F\ sing
Py=|p— cosqy — | p2 — ,
9q1 2] q1
oF\ . dF\ cosqr
P = <P1 - )SIHQ2 + <p2 — > ,
9q1 9q2 q1

where F7 is an arbitrary function of q1, g2, and .
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5.46 Making use of the expressions (5.106), (5.107), and the relation €,,651 = 8,
we have

Xy X Xy, X =¢
[Xa, xglo, P {Xy, X}, P " 9x dxp r CAPRA

Ay dxy

= Euvépo vo

0xy 0yp
_ o Oy dxy
e 0xg 0Yp

= Say-
5.47 A simple example is given by the coordinate transformation

Q1=q1, 02 = q2, Py = pa, Py = —pi.
One can readily verify that the Jacobian of this transformation is equal to 1, but this
coordinate transformation is not canonical, e.g., {Q1, P1} = {q1, p2} = 0.

5.51 Making use of the chain rule and Equations (5.128) we have

0 G(Qi(qj, pj.t,9), Pi(qj, pj,1,5),1) = 0G 00i + 0GB
ds Jr B B S B T 90; ds 9P s

3G G 3G 9G
30, 9P, 3P 30;
=0,

which means that G(Qi (gj,pj.t.s), Pi(gj, pj.t,s), t) does not depend on s, and
since Q;(gj, pj.t,0) = g; and P;(q;, pj,t,0) = p;, it follows that

G(Qi(qj, pj.t,9), Pi(qj, pj.t.5),t) = G(gi, pi, 1).

5.57 Since the transformations (5.143) do not involve the time, Ky = H +
f(t,s), where f(¢,s) is some function of ¢ and s only. Then, making use of the

formulas (5.143), we find that

P2 p2
—F1Q = —F@)(g+s)=H(q,p,t)— F()s

2m 2m

Ks(q, p,t) = f(t,5) = F(0)s.

H(Q,P,t)
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Hence, choosing f(z,s) = —F(t)s, we see that the given Hamiltonian is invariant
under the translations (5.143). Furthermore, from Equations (5.121) and (5.123)
we find that, up to an additive trivial constant, the generating function of these
transformations is

t
G:p—/ F(u)du.

5.58 Since the given transformations do not involve the time, Ky = H + f(t, s),
where f(t, s) is some function of ¢ and s only. On the other hand, substituting the
expressions for the new coordinates into the Hamiltonian (5.48) we obtain

1 By By 2
H(Qi(qj. pj. 1), Pi(qj, pj.1),1) = o || x5, sa2 (= sa2)

2c 2c

1 L ¢Bo 2 N eBo 2+ 5
= — X
2m Px 2c Y Py 2c Pz

= H(qgi, pi, 1).

eBy eBy 2
+ [py— sayp — (x—sal)} +pz2}

Thus, choosing f (¢, s) = 0, we see that the Hamiltonian (5.48) is invariant under
the transformations being considered. Making use of Equations (5.121) and (5.123)
we find that the generating function of these translations is

eBy eBy
G=—a|px— e V) @ Py + 9e ¥ ) T @3P2

which must be a constant of motion. Since the three constants, ai, az, az are
arbitrary, the functions accompanying them are separately constants of motion. (The
conservation of p, also follows from the fact that z is an ignorable coordinate in H.)

5.60 Substituting the Cartesian components of the vector potential

gz(yi—xj)

= +V$7
@2+ y)a2 4y + 22

into the right-hand sides of Equations (5.149) one obtains

ax =_py_cax yax xay

3G ed (0 0
= bl — X .
ay P c dy yax ay

0G ea<ag_a§)
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0G e 0 0& 0&
= — y —X .
9z c0z \" ox ay

The solution of these equations, together with Equations (5.148) and 0G /9t = O is,
up to an additive trivial constant,

e d& d&
G=-— — — .
Pyt VPx c (y 0x x 8y>

In the present case, owing to the vector potential chosen, the canonical momentum
is related to the kinematical momentum by (see Example 4.3)

e gzy 9§
Px—mx+c<(x2+y2)r+ax),
. —gzx 0§
= m ,
Premrm o N a2 yr Ty

eo
pZZmZ+ gv
c 0z

hence,

e
G = —xmy+ ymx + gZ,
cr

which does not contain the arbitrary function £, and coincides with (5.151).
5.61 Making use of Equations (5.148)—(5.149) we find that the total differential of
Gis

e e A1 0Aq
dG = qdp1 —qidp2 + | —p2 + Az — (qz —q1 ) dqi
c c g1 g2

e e d0A> d0A> e 0A3 0A3
+ |:I71 - A - <Q2 —q1 ):| dgs — <Q2 —q1 ) dgs,
¢ ¢ aq1 g2 c aq1 g2

which, by virtue of the relation B = V x A, can be rewritten as

e e e
dG =d [qz (Pl - CA1> —q1 (pz - CA2>] + C[(f1131 + g2B2) dg3
— B3(q1dq1 + q2dq)].,

which is the desired result.
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5.62 According to Equations (5.121), if the given transformations are canonical,
then the total differential of their generating function must be given by

e dA;
dG = —dp3 + dg;.
c 9g3

The right-hand side of this equation is an exact differential if and only if

d 0A; _ d 0A;
3q; 3¢z 3qi g3

@i, j, =1, 2, 3), which is equivalent to the condition

5 <8A,- 8Aj>_0
dg3 \dq; 09qi )

Recalling that B = V x A, we see that the Cartesian components of B must be
functions of g1 and g, only. Then, considering the gauge-independent combination

p3 — (e/c)As, we have
A 0A3 04> 0A3
[( - ) dqi + ( - ) dq2:|
dgz  Iq g3 9q2

A3) +
A3> + (Bydg1 — Bidg).

dG = —d (p3 -

(SIS
a8 O 8

=—d (P3 -

5.64 The direct computation of 0G/dt + {G, H}, with G = mq — pt + x(¢) and
H = p*/2m + V(q, 1), gives

0G d
), F{GHY=—p+ o {mq = pt + . p2/2m + V(. 1))
= o+ ¥ pa
- P dr P aq
d A%
= X +t 3
dr aq

hence, G is a constant of the motion if and only if

oV 1dy
dg  tdr’
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The right-hand side of the last equation is a function of # only and, therefore, up to
an irrelevant constant term,

_qdx

Vig.n=—_

’

which is of the form (5.155), with x () arbitrary.
5.65 We start by calculating H(Qi (gj,pj.t,v), Pi(qj, pj,t,v), t), which gives

P12 P22
H(Q;, Pi, 1) = +

oy T 2my + V(02— 01l)

_(p1 —mv)? + (p2 — mav)?

2t omy T V(l(g2 — vt) = (g1 — v1)])

2 2
P1 p2 mi
= + 2+V(IQ2—611|)—UP1—UP2+

2
2m;  2m vt

2 2
— . 12 1. 2
= H(gi. pi,1) — vp1 — vp2 + ymiv” + ymav”.

On the other hand, from Equations (5.42) one finds that K, — H = —vp; —
vpa+ f(t, v), where f (¢, v) is a function of ¢ and v only. Hence, choosing f (¢, v) =
émlvz + ém2v2, we have H(Q;, P;,t) = Ky(qi, pi, t) and

Ky

v |,y = —P1— D2

Then, from Equations (5.121) and (5.123), we find that, up to an additive trivial
constant,

G =m1q1 +maq2 — (p1 + pa)t.

The value of G is the initial value (at ¢t = 0) of the coordinate of the center of mass
of the system multiplied by the total mass. The conservation of G means that the
center of mass moves at a constant velocity.

5.66 The Hamilton equations corresponding to the Hamiltonian

p1

2
H = P —I—mw2q1q2
m

. D2 . P1 . 2 . 2
q1 ) q2 ) p1 = —mw~q3, P2 = —mwqi.
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Eliminating the generalized momenta from these equations we find

. IaZ _ 2 [ ['71 _ 2
q1 = = —w{qi, q2 = = —wq2,
m m
which are the equations of motion of a two-dimensional isotropic harmonic
oscillator if g1, g2 are taken as the Cartesian coordinates of the particle.
Now, we consider the one-parameter family of coordinate transformations given
in this exercise:

01 =¢'q1, 02 =¢"qa, Py =¢e"p1, P, =¢'pa.
Computing the differential form p;dg; — Hdt + (P;,dQ; — Kdt) we find that
pidg; — Hdt 4+ (P;dQ; — Kdt) = (K — H)dt,

which is an exact differential if and only if K = H + f(¢), where f (¢) is a function
of ¢ only. Thus, the coordinate transformations are canonical and the Hamiltonians
have to be related as shown. Choosing f(f) = 0 we see that the condition (5.137) is
satisfied, that is, the Hamiltonian is invariant under the given one-parameter group of
canonical transformations. According to Equations (5.121), the generating function
of this one-parameter group of canonical transformations is foundto be G = g1 p; —
q2p2 = q1mqz — qamqi, which corresponds to the angular momentum about the
origin and is indeed a constant of motion. (Usually, the angular momentum is related
to a group of rotations but in this example it generates changes of scale.)

5.68 The equations of motion derived from the Hamiltonian

p2

2m

H = — ktq

are

which are of the same form as the equations of motion written in terms of the
original variables ¢, p.

5.70 Making use of Equations (5.128) one finds that G generates the one-parameter
group of canonical transformations
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s . s
O1=x— sin w1, Or=y— cos w.t,
mawe mawe
s s .
P = px — ) coS w.t, Py = py+ ) sin wt.

With these expressions we can now compute p;dg; — Hdt — (P;,dQ; — Kdt), and
we obtain

pidgi — Hdi — (P,dQ; — Kdt) = d [;(x COS et — y sin a)ct)]

52 S COS wet eBy s sin w.t eBy
+|Ks—H—_ + 2 T py— x| |dt,
2 m m

m 2c mc

which implies that

S S COS wet eBy s sin w.t eBy
Ks —H = - px + y)+ py— X + f@,s),

2c m

where f (¢, s) is some function of # and s only. (Alternatively, the dependence of
Ky — H onx,y, px, py can be obtained from Equations (5.42).)

On the other hand, substituting the expressions for the Q; and P; obtained above
into (5.48) we obtain

H(Qi(qj, pj,1), Pi(qj, pj,1),1)

1 2 eBy . eBy
=H(q;, pi, )+ s“—2scoswct | px+ y ) +2ssinwct | py— X
2m 2¢ mc

and, therefore, the invariance condition (5.137) is satisfied if f (¢, s) = 0.

5.72 Substituting the function
s 2 2 m, o, 5 1 3 m o, 15y
G= —2m(px +py°)+t(xpx+ypy) — 5 (x“+y )—28t Pyt 817y = mg’t

into Equations (5.128) one obtains the set of ODEs

do; 2P dp

1
=— 101, = —tP ,
ds " +10; ds 1 +mQ;
d 2P 1 dp 1
Q_ P 0, e P L p im0y — gt
ds m 2 ds 2

Combining these equations one finds that the second derivatives with respect to the
parameter s of the Q; and P; are equal to zero. Hence, they are linear functions of s
and imposing the initial conditions we find
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t2p

m
tzpy L 5 1 2
Or=y— " s+tys—2gt s, Pzzpy—tpys—i—mys—zmgt s.

O1=x—

s+ txs, P1 = px —tpys +mxs,

Then, making use of the equations of motion (5.164) we obtain

. 2t t P
lepx_ pxs+xs+ PxS: 1,
m m m m
. 2t t 3 P
szpy - pys+t2gs+ pys—i—ys— gtls = °,
m m m 2 m

P =0— pxs+ pxs =0,
Pz = —mg — pys +tmgs + pys —mgts = —mg,

which have the same form as (5.164).

5.73 As shown in Example 5.50, the function

tp?

3 14 1
G, p.1) = qp — 2gt2p — +mglg — 21%1;2t3

generates the one-parameter group of canonical transformations given by

1 t 1
0=-— gt2~|—< P +gt2) e_s—|—<q —
2 m

t
gt? — p) e’, P = (p+mgt)e”*—mgt,
2 m

and the new Hamiltonian is

2

Ky =H+ fm @2 — 1) +mgqe’ — 1) + gtp(e™> — ") + (¢, 5)
p? p?
=" 4+mgg+ " (€% —1)+mgqe’ —1)+gtpe™™ —e) + f(t,s)
2m 2m

2
p o .
= (2m +gtp) e ¥ + (mgq — gtp)e’ + f(1,9),

where f (¢, s) is some function of ¢ and s only.
On the other hand,

2

P + mgr)2e™2s 1 t
H(Q,P,t) = +mgQ=(p #) +mglq— gt* — 7Y es.
2m 2m 2
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Therefore, the invariance condition H(Q(q, p,t,s), P(q. p.t,5),1) = Ks(q, p, 1)
is satisfied if

f,9)==img’r* @ —e™™)
(cf. Example 5.50). Hence,

0K,
as

2
2m

2 3
= _r +mgqg — 3gtp — mgztz,
m 2

p? 3

2
= —2< +gtp) +mgq —gtp — ,mg’t
s=0

which coincides with the partial derivative of G with respect to the time, as required
by Equation (5.123).

5.75 With the aid of Jacobi’s formula

din|detA| _;dA
=tr (A ,
de dr

making use of Equation (5.176) and the properties of the trace we have

dIn|det M|

= [M—l@M - M(D)] —u(M~'OM) -t d =0,
which shows that det M is a constant of motion.

5.76 A direct computation shows that if M is given by (5.178), then

det(M — A1) = {(lg1. p11—2)(lg2. p21—2) —[q1. p21lg2. p11—I[q1. @21l p1. Pz]}z-

Therefore, each root of the quadratic polynomial inside the braces is an eigenvalue
of M of multiplicity two.

According to the expression above, the eigenvalues of M are the roots of the
polynomial

)»2—([111, pil+lq2. p21)A+lq1. pillga. p21—lq1. p2llg2. pil—lq1. q21[p1. p2] = 0.

If 11 and X, are the roots of this polynomial, then tr M = 2(A; + A2) and det M =
X12222. Since tr M and det M are constants of motion, the eigenvalues of M are also
constants of motion.
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5.77 Making use of (5.114), with the roles of (g;, p;,t) and (Q;, P;,t) inter-
changed, we have

af og

{f, &)z = {xa, Xﬁ}zaxa oxs

On the other hand, using the result of Exercise 5.46 and the definition of the matrix
M, we have

805;/ = [xq, xg] {xy, xg}2 = Mp,olsll.ﬂ{x)/a xg}2s

which means that fﬂﬂ {xy,xg}2 = (M_l)w, where M~ is the inverse of M. Hence,
{xXa, xglo = (M~ )aygyﬂ and

Jadf o
{f.gh= (Mil)aygyﬁaf &

X Bx,g'

5.79 For the Hamiltonian given in this case, the matrix @ is

001/m 0
100 0 1/m
*=100 0 o

00 0 0

and the constant matrices of the form (5.178) that commute with @ are

S O & Q
S o o &
N B SIS )
a o X

Since det M = (ac — b*)?, the only condition on the constants appearing in M is
ac — b # 0. With [¢, x,] = 0, Equations (5.173) imply that, up to a trivial additive
constant,

pi?

2m

K=a

(PP
m

2
+ mgx) +c (127;1 + mgy) + dmgpy.

In view of the fact that K does not depend on ¢, it is conserved and since, apart
from the condition ac — b2 = 0, the constants a, b, c, d are arbitrary, the functions
multiplying these constants must be separately conserved. (The example given at
the beginning of Section 5.5 corresponds to » = 1 and all the other coefficients
equal to zero.)
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5.80 By inspection one finds that (5.182) has the structure of the matrix (5.178) and
by means of a straightforward computation, making use of the equations of motion
of the harmonic oscillator, one obtains

0 Pxpy — Bxy 0 —XPy — YPx
dM _ A | —pxpy + Bxy 0 xpy + ypx 0
dt m 0 —B(xpy + ypx) 0 —pxpy + Bxy
B(xpy + ypx) 0 PxPy — Bxy 0

which coincides with the commutator ® M — M @. In a similar way, one verifies that
the entries of (5.182) satisfy the conditions (5.40). For instance,

0 9 0 _ 9(Aypx) n (=1 n I(=ABxy) _

ax[ys px]+ ay[pxax]+ apx [)C, y]_ ax ay apx

Finally, with [#, x,] = 0, substituting the expressions for H and M in the right-hand
side of (5.173), one finds the terms proportional to A cancel and, therefore, K can
be chosen equal to H.

Exercises of Chapter 6

6.6 The HJ equation corresponding to the Hamiltonian (6.39) is

as 2+ 35\?
ou ov (k1 + kp) coshu + (k1 — kp) cosv+8S

=0 S.34

2mc2(cosh? u — cos? v) ¢ (cosh? u — cos? v) ot 5.3
and a separable solution of this equation has the form

S = A(u)+ B(v) — Pit, (8.35)

where A and B are functions of one variable and Pj; is a separation constant.
Substituting (S.35) into (S.34) one finds that the functions A and B must satisfy
the separated equations

1 (dA? ,
om \du — c(k1 + kp) coshu — Pic“cosh“u = — P,

1 (dB\’ s
om \ do —c(k1 — kp)cosv + Pic“cos”v = Ps,
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where P» is a second separation constant. Thus,
S = /\/Zm[Plcz cosh? u + c(ky + k») coshu — P> ] du
+ / \/Zm[ — PicZcos?v + c(ky — kp) cosv + Pz] dv — Pit

is a complete solution of the HJ equation.
The orbit can be obtained from

0 0S \/m/ du
2 = = —
P 2J /Pic2cosh® u + c(ky + ko) coshu — Ps

\/m / dv
+ 9
2J = Pic2cos? v+ clky — ky) cosv + P>

using the fact that Q> is a constant of motion, while the dependence of the
coordinates of the particle on the time is given by

0 aS \/m/ c2 cosh? u du
1 = =
P 2 \/Plc2 cosh?u + c(k; + k2) coshu — P>

m cZcos? vdv
— —t, (5.36)
2 \/— Pic?cos? v+ c(ky —ky)cosv+ P

using the fact that Q1 is a constant of motion.
The fact that Q> is a constant of motion is equivalent to the ODE

\/m du
2 /Pic2cosh?u + c(ky + ka) coshu — P

_\/m dv
2 /= Pic2cos? v + ek — ka) cos v + P,

Hence, defining the auxiliary variable t by

\/m du
dr =
2 /P2 cosh®u + c(ky + kp) coshu — Py

_ \/m dv
2/ — Pic2cos? v + c(ky — ka) cos v + P2’
Equation (S.36) amounts to

dr = cz(cosh2 u — cos’ v)dr
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(compare with the solution of Exercise 4.18). The last three equations determine u,

v, and ¢ as functions of the parameter 7.

6.7 The natural Hamiltonian for a two-dimensional isotropic harmonic oscillator in
the elliptic coordinates introduced in Exercise 4.18 is [see (4.58)]
P+ po? ma?c?

= coshzu—i—coszv—l ,
2mc2(cosh? u — cos? v) 2 ( )

and the corresponding HJ equation is
as

as\? [as\?
ou + av mao?c?
+ (cosh2 u+cos’>v — 1)+ =0.

2mc2(cosh? u — cos? v) 2 ot

Taking into account that ¢ does not appear in H, we look for a separable solution
S = A(u) + B(v) — Pit. Substituting this function into the HJ equation we obtain
the separated equations

da\?
(d ) — 2mc? Py cosh? u 4+ m*w?*c* cosh? u (cosh®> u — 1) = — P,
u

dB\?
<d ) + 2mczP1 cos? v 4+ m?w?c* cos® v (1- cos? v) = P,
v

where P; is a second separation constant. Thus,
S = /\/ch2P1 cosh? u — m2w?c* cosh? u (cosh®>u — 1) — P du
+ / V=2mc2 Py cos? v — m2w2c* cos? v (1 — cos? v) + Py dv — Pyt

is a complete solution of the HJ equation.
In order to identify the new momenta we calculate

0S5
Pu = oy = \/chzPl cosh? u — m2w?c* cosh® u (cosh>u — 1) — P,
u

and

S

0 = V=2mc2 Py cos? v — m2w2c* cos? v (1 — cos2 v) + P.
v

Pv =
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Combining these expressions we find that Py = H and

cos? v p, > + cosh? u p,?
2 —

2 2

+ m2w?c* cosh? u cos? v.

cosh? u — cos2 v

With the aid of (S.25) we obtain the equivalent expression in terms of the Cartesian
coordinates

P, = cz(sz + m2w2x2) + (xpy — )’Px)z-

The equation of the orbit is given by

aS du
02 = - 2 2 2
P, 23/2mc2 Py cosh? u — m2w2c4 cosh? u (cosh®u — 1) — P,

dv
+ / .
2\/ —2mc2 Py cos?2 v — m2w?ct cos? v (1 —cos?v) + P>

As in the solution of Exercise 6.6 given above, taking into account that Q5 is a
constant of motion, this last equation is equivalent to the existence of an auxiliary
parameter, 7, such that

_ m du
V2me2 Py cosh? u — m2w2c* cosh? u (cosh®u — 1) — Ps
mdv

\/ —2mc2Pycos?v —m2w?ct cos? v (1 — cos2v) + P

dr
(8.37)

On the other hand, the dependence of the coordinates on the time is given by

0 aS / mc? cosh? u du
1 = =
P V2me? Py cosh? u — m2w2c cosh? u (cosh? u — 1) — P,

mc? cos? v dv

— — 1.
/ \/ — 2mc2 Py cos?2 v — m2w?c* cos? v (1 —cosZv) + P,

Taking the differential of this equation and using Equations (S.37) one obtains the
relation between t and ¢, namely

dr = cz(cosh2 u — cos’ v)dr.
6.8 The HJ equation is given by

1(35)2 ¢° ¢ aS 05 _

2t \ ag 6r ' 2tdq ot
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Looking for solutions of the form § = A(q) + B(t), we obtain

3 (4 2+ 01300 = 698
dg) T Ty T

and we conclude that each side of the last equation must be a constant, P, say.
Hence,

S Plt q2+1/¢1\/2 46—|-4Pd
= — nrt — u- — u u
6 4 2 3 3

and, therefore,

s ¢ 1\/2 4 4
= = — - P.
P= g = "otV T3

From this last expression we find that the constant of motion P is given by
P=3p*+¢°+3pq
[cf. Equation (5.24)]. The dependence of ¢ on the time is determined by

N

0 1lt~|—1/q du
= = — n )
P 6 3 \/u2_§u6+é3lp

using the fact that Q and P are constants of motion (cf. Example 5.17).
6.9 The HJ equation corresponding to the Hamiltonian
o LZPH2p? | Edn
2 X+Y X+Y
where &, X, & are functions of x only, and 2, Y, n are functions of y only, is
38\? 38\?
& + 2
1 ox ay n E+n n s 0
2 X+Y X+Yy o

A separable solution of this equation must have the form § = A(x) + B(y) — Pit,
where P is a constant and A, B are functions of a single variable. Substituting the
proposed expression for S into the HJ equation we obtain

dA\? dB\?
9( ) +2§—2P1X=—Q( ) —2n+2PY.
dx dy



342 Solutions

Each side of this last equation must be a constant, which we shall denote as —2 P»,
and in this way we find the separated equations

dA _i\/Z(PlX—g —Py) dB _i\/Z(PlY—nJer)
dx P ’ dy 2 .

Thus

SZ_Plth/\/Z(PlX—QS—P2)dx+/\/2(P1Y:@n+P2)dy

is a complete solution of the HJ equation.
The dependence of the coordinates x and y on the time is then given implicitly
by the equations

01 =—t+ Xdx + v (.38)
' NPPX—5-P) ] J22PY —n+ Py '
and
2T aepx—g—p) ] J22PY —n+ Py’ '

using the fact that Q1 and O, must be constants. Hence, Equation (S.39) is
equivalent to the ODE

dx _ dy
V2P (PIX —E—P)  J22(PiY —n+ Py

Defining the auxiliary parameter t by

dx

W= popx—c—py

we have

dy
T = .
V22(P1Y —n+ Po)

Making use of these last two equations we find that (S.38) is equivalent to
dt=(X+Y)dr

(compare with the solution of Exercise 4.20).
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6.11 Substituting

P2+ Pzzt

S(xayaP17P27t)=Pl-x+P2y_ 2}’}’[

and
~ ~ ~ m ~ ~
S(x,y, P, P, 1) = 2t[(x - P2+ (y — P,

into Equations (6.44) we obtain

s —39) m - s —29) m -
O - =P — — P . 0 = = — — P R
9 = (x 1) 9y . O —P)
hence,
~ tPy ~ tP
x=P+ . y=h+ "
m m

Then, eliminating x and y from the difference S — S s
F=S—§=Plﬁ1—|—P2ﬁ2.

It may be noticed that, as remarked in Section 6.1.1, ¢ automatically disappears
when one eliminates the coordinates g; in S — S.

In order to find the Hamiltonian, we compute the partial derivatives of, e.g., S
with respect to the coordinates and the time

aS m( 15) aS m( 15) aS m [( 15)2+( ﬁ)2]
= X— B = - ) = - X— - .
t ! dy t Yo ot 2¢2 ! Yo

Taking into account that the HJ equation should not contain S nor the parameters

P;, we combine the partial derivatives of S with respect to x, y, and  in such a way
that the parameters P; are eliminated. In this manner, we obtain

“\ 2 -\ 2 ~
1 as n as n as 0
2m | \ ax dy ar
which is the HJ equation corresponding to the standard Hamiltonian of a free
particle.
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6.14 The Hamiltonian corresponding to the Lagrangian (1.77) is

2
1 1 eBop? )
H= 2 -
m [pp + 2 <P¢ 2 + Pz

and therefore the HJ equation is given by

1 (as)2+ 1 (aS eBop2>2+ 35\2 LS
2m | \ 9p 02 \ 3¢ 2c 9z ar
Since ¢, ¢, and z do not appear explicitly in H, the HJ equation admits separable

solutions of the form S = — Pt + P>»¢ + P3z + F(p), where P1, P>, and Ps are
separation constants and the function F satisfies the equation

dF\? 1 eBop®\"
P — P2 = 2mpP,.
(dp> +p2(2 20>+3 "

Hence,

P, eBop\’
S:—P1t+P2¢+P3Z+/\/2mP1—P32—( — 620p> dp,
0 c

is a complete solution of the HJ equation, which yields

S

P % _p 05 lampy—py2
= = = = = m —_ —
9z 3, D¢ ¢ 2,  Pp ap 1—P3

P, eByp 2
pPz= -

0 2c

and, therefore, P = H. Thus, the new momenta are the conserved quantities that
follow from the fact that the Lagrangian and the Hamiltonian do not depend on 7, ¢,
and z.

On the other hand,
BN (eBop?/2¢c — Py)dp
0=, =¢+ f /
: o @mPy — P2)p2 — (P — eBop? /207
eByp?/2¢c — Py)d
:¢+f (eBop~/ »)dp

P\/(Zmpl — P32 4 2eBoP2/c)p? — (P2 + eBop?/2c)?
Introducing the variable o by means of

P Byp?/2
cosa = 2> +eBop”/2c (S.40)
py/2mP; — P32 4+ 2¢ByPs/c
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we have

(eBop?/2c — P2)dp

—sinada =
p2\/2m Py — P32 4 2eBy Py /c

hence,
D=¢Fa
Substituting @« = £(¢p — Q) into (5.40) we obtain

2¢ P
PPt =

2c
_ 2 _
¢ By ¢ By \/ZmPl P3* +2eByP>/c pcos(p — Q»),

which is the equation of a circular cylinder of radius

R= Vamp, — P;2.

e

c
0

6.16 The standard HJ equation corresponding to the Hamiltonian

[72

H = m —¢(1)q,

is given by

1 [(3s\’ o0a+ 25 =0
2m \ dq i ar

By inspection one finds it convenient to define
~ t
SES—q/ ¢ (u) du,
so that
1 (as [ L85
m <8q +/ ¢(u)du) + ot =0.

This last equation does not contain g explicitly and, therefore, admits separable
solutions of the form S = Pq + F(¢), where P is a constant. Then, one obtains

dF _ 1 Y
dt__2m< +/¢(”) ”)
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and, returning to the original principal function,

t t w 2
S=Q/¢Wﬁm+Pq—;m/<P+/ me)dw

6.21 Making use of the given expressions, P| = py and P> = py 4+ mgt, we have
(treating P and P, as parameters)

P12 + (P, — mgt)?

pidgq; — Hdt = Pidx + (P> — mgt)dy — [ )
m

+ mgy:| dr
Pt (Py—mgt)?

—d|Pix+ Py —mgty — | +( ? ch) .
2m 6m-g

The expression inside the brackets must be a solution of the HJ equation, which is

essentially the R-separable solution found in Example 6.15.

6.22 From the definition of the functions P; and P, given in Example 5.45 (p. 193)
we obtain

By eBy

e
= P N =
Px 2+ y Py 2

eBy
X+ Pisecw.t — | P+ y | tan w.t,
2c c

hence,
1 By \?
H = |:<P2 + ¢ Oy) sec? wet + P12 sec? wct
2m c

eBy
— 2P| P+ y | sec .t tan w.t
C

and, with the aid of these expressions, one finds that

eBy P12 tan wct
pxdx + pydy — Hdt =d | Pox + Xy —
2c 2mw,

1 eBy \? 1 eBy
— P, + y ] tanow.t + P P+ y)secwet | .
2mw, c mow. c

The expression inside the brackets must be a solution, S(x, y, Py, P>, t), of the HJ
equation, which is neither separable nor R-separable.

The principal function thus obtained allows us to find a second pair of constants
of motion, Q1, O, given by
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0S5 Py tan wt 1 eBy

Ql = = — + P2+ y | sec wet,
P mawe mawe c
0S 1 eBy P

0) = =x— P+ y | tan .t + sec w.t.
P mawe c mow.

Thus, making use of the expressions for P; and P,, we obtain

0 c n eBy . eBy . .
= coS wet — — x |sinw.t |,
! eBy Px 2c Y ¢ Py 2c ¢

0 c n eBy
= X .
2 eBy Py 2c

which coincide with the second pair of constants of motion given in Example 5.45.

6.23 From the definitions

Pi = pi + p2, Py = pipy — ™%,
one verifies that P; and P» are in involution, and one obtains the local expressions
pr=3PL+VP2— 4Py —deti—e),  py= (Pl — VP2~ 4P, — denim)

(note that pq and pj are not defined uniquely by P; and P;) and H = §P12 — P
Hence,

p1dg1 + padgr — Hdt

q1—92

:d[;Pl(ql+q2)—(;P12—P2)t+; VP2 — 4P, — den dui|.

Making use of the generating function thus obtained, we have

0 N l( tar) — Pyt Py /ql—qz du
1= = (@1 +q)—P ;
P 2 2 \/P12—4P2—4e“

Y q1—q92 du
Q2 = =1t — / s
AP, VP2 — 4P, — det

and combining these equations we find

q91—92 du
g1+ 2= P+ 02) +20. / — (-0
\/Plz — 4Py — 4et
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These last expressions implicitly give the remaining part of the solution of the
Hamilton equations, taking into account that the Q; and P; are constants of motion.

6.25 From

2

2
+ y
P = Px Py + mgy, Py = Px Py + mgx,
2m
we readily obtain
Py ppy P p+py?
= T 2 Y= e 2
mg  mg mg 2meg

hence,

P P 2 2
_xdpx—ydpy—Hdt:_< 2_I7xl7y)d x_( 1 Px +py

mg m2g mg 2m?2g

P 2 P 3
—df- 2Px + Px 2py _ 1Py + py2 — P,
mg 2m=g mg 6m-g

) dpy—Pdt

which means that

Pap pi*py  Pipy n py’

— Pit
mg 2m2g mg 6m2g !

S(pX1py1P17P21t) = -

is a (type F4, R-separable) complete solution of the HJ equation.

6.26 Making use of the explicit expressions

t ke 2
Q =q — P + s H = P - qu,
m  3m 2m
a straightforward computation gives
a0 Q0 0Q0H 0Q0J0H
at at agq Jp ap dq

p k> p  kt?

which shows that Q is a constant of motion. Since

ki3

t
g=0+" -
m 3m

’
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we see that, treating Q as a parameter,

pt k3 p? ki?p  kPr*
—qdp—Hdt=—|Q0+ " - dp — —ktQ — + dr
m  3m 2m m 3m

kBdp  ki*Q k2t5)

- P=om™ 3m 2 15m

The expression inside the parenthesis is a (type F3) generating function, S, that leads

to a new Hamiltonian equal to zero. Hence, a second constant of motion is given by

EXY k2

p=_2" =, "
30 P72

6.27 From
t
P=p —/ ¢(u)du

we have p = P + ft ¢ (u) du and, therefore,

2
pdg — Hdt = (P—l—/t(j)(u)du) dg — |:2:n (P—l—/t(j)(u)du) —¢(t)q:| dr
|: t 1 t w 2
=d|Pata [ o au- /<P+f ¢(u)du> dw].
2m

The expression inside the brackets is an R-separable complete solution of the HJ
equation.

6.31 Making use of the given expressions, we have

pdg — PdQ + (K — H)dt = pdg — (p + mgt)(dg + gtdt) + (K — H)dt
= —mgtdg + (K —H —gtp — mgztz)dt
= d(-mgtq) + (K — H — gtp — mg*1> + mgq)dt
= d(—mgtq) — émgztzdt
=d (—mgtq — émg2t3) .
Hence, according to (6.78),

S=58 —mgtqg — émgzt3
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m 2 I 53
= — —mgtq — t
2t(Q a)- —mgtq ¢"8

m 1 2 2 1 2.3
= + gt® — —mgtqg — mg°t
2t (q 2g a) &td 6 &

== "Tgqra)- ]
T 2 81 218"

Note that, in order to identify the function Fi, the Hamiltonians H and K have to
be specified in advance.

6.32 From Example 5.7 we have that for the canonical transformation under
consideration,

_ mw 12 1.2 :
Fi = . [a0—50%coswr — Jg*(coswt + wt sinwt)] + f(1),
wt coS wt — SIn wt

where f(¢) is a function of ¢ only, which has to be chosen with the aid of the relation

K—-—H=-

2

mw? Qsinwt — qowt
wt cos wt — sin wt

2
) + f'(@).

Expressing the difference K — H in terms of (¢, Q, t) one finds that f'(r) = 0 and
we take f = 0. Then, from Equation (6.78) we have

mw|2 — 0% coswt — g%(cos wr + wt sin wr
S—S+F="(0—al+ 290 -0 a( )]
2t 2(wt cos wt — sin wt)

In order to eliminate Q from this last expression we calculate its partial derivative
with respect to Q and equate it to zero. This gives

qgwt — a(wt cos wt — sin wt)

0

sin wt

Substituting this expression into that for S, a somewhat lengthy computation gives

g_ ma)[(q2 + a?) coswt — 2aq]
- 2 sin wt '

(Cf. Example 6.40.)
6.33 Making use of the results of Example 5.14, we have [see Equation (5.21)]

pdgq — Hdt — (PdQ — Kdt) = d(mvq — Jmv*r),
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hence, from Equation (6.78) we obtain,
S =85—-F =S—qu+;mv2t
that is, eliminating ¢,
S'(Q,1) = S(Q +vt, 1) —mvQ — Jmv’t.

6.34 Substitution of the expressions Q = g — s, P = p, K = H, into the left-hand
side of Equation (5.15) gives

pdg — Hdt — (PdQ — Kdt) =0
hence, we can take F; = 0 and, therefore, S’ = S, i.e., $(Q, 1) = S(Q + s, 1) [cf.
Equation (6.82)].
In a similar manner, substituting Q = g, P = p — s, K = H, into the left-hand
side of (5.15) we obtain
pdg — Hdt — (PdQ — Kdt) = sdq.

Taking F; = sq, wehave 8’ = S —sqg = S —sQ, thatis, §'(Q,t) = S(Q,1) —sQ.

6.35 Substituting the expressions Q; = ¢qi, P = p; + 9(e€/c)/dqi, and K =
H —9d(e&/c)/at into p;dq; — Hdt — (P;dQ; — Kdt) we obtain

pidg; — Hdt — (P;dQ; — Kdr) = (p; — P))dg; + (K — H)dr = —d(e§/c),

which shows that F} can be taken as —e& /c and then Equation (6.78) gives S =
S+e&/c.

6.37 In this case the Hamilton equations give
dg 90H p dp oH

, =- = kt.
dr ap m dr aq

The solution of the last equationis p = ékl2 + P, where P is an integration constant
that represents the value of p at r = 0. Then, from the first equation we obtain

k3 Pt
q = + +0,
6m m

where Q is the value of g at + = 0. Hence,
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and

dg— Hdr — pdg —d (K4 LW _KOp KT
peq N2 Tom T o2m Tiom )

which allows us to identify the function F appearing in Equation (6.78).
The initial condition is §’(Q, 0) = aQ, hence P = a, and, eliminating Q and p,
we obtain
kg tp*  kiPp KO

S=S+F =
thR=a0+ = o T iom

B t +kt2 +kt3 JrktzqJr t Jrkt2 2
AT\ 3m 2 Tom\4T 2
k3 +kt2 +k2t5
wm \* T 2 10m
a’t  akt®  kt*q  k*P
— +

YT om T em T 2 4om’
which coincides with the R-separable solution (6.53).

6.39 Solving directly the Hamilton equations one obtains
p . .
Q0 =gqgcoswt — sin wt, P = mwq sinwt + p cos wt,
mo

where Q and P are the values of ¢ and p at + = O, respectively. Then, a
straightforward computation gives

2 2
pdg — Hdt — PdQ =d|:pq sin® wt + < P maz)q )sina)tcoswt}.

2mw

The initial condition is $'(Q,0) = aQ, hence P = «, and, eliminating Q and p
with the aid of the relations

P
0=- tan wt + g sec wt, p = —mwq tanwt + P sec wt,
mw

which follow from the equations above, we obtain

p2

ma)q2 .
— sin wt cos wt
2mw 2

S=S/—|—F1=on~|—pqsin2a)t~|—<

(04 .
=« (— tan wt + g sec wt) + (—mwq tan wt + o sec wt)q sin® wt
mo
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sin wt cos wt 2 2 2

[(—ma)q tan wt + o sec a)t)2 —m wq ]
2mw

012 ma)2 2\ tan wt
=— + q + g sec wt.
2m 2 w

6.41 The coordinate transformation given in this exercise amounts to

/!

g=q e 4+ %gt/z(e_s _ e—4S)’ t = t/e—2s.
Making use of Equations (6.96) and (6.95) we have

P e p— IF
aq’
and

I

H =e¢%H—gi'e™ —e *)p+ o °

Hence, combining these expressions and the one given for the Hamiltonian, we
obtain

; . . aF aF
H —e 2y _ ot' (e —6745)63 (P/“r 1) + 1

og') " or

= (;; + mgq) —gt'(l—e™) (p’ + 22) + aa?

— o (7 381;})2 e g~ - (4 )+ O

- 2}11 [p c 2833 P+ (%Z} )2] +mge™> [q’e_s + ;gt’z(e‘s - e“”)}
—gl(1—e ) (p/ + 881;1) o

The terms linear in p’ are eliminated choosing Fj in such a way that dF/dq’ =
mgt' (1 —e™3%), that is,

Fi =mgt'q’ (1 —e ) + f(1),
where f(¢) is a function of ¢’ only. Thus,

2
P ;M2 0 3 —6s df

H = - gHPBeF —1-2
2m+mgq )8 (e e )+dt,
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354
and choosing f = —lmg?3(3e™ — 1 —2¢7%), e,
F1 = mgt/q/(l _ e—3S) + éngtB(l _ 3e_3s + 26_6s),
we get
2
H =" +mgq,
2m

which has the same form as the original Hamiltonian.

6.42 Substituting the Lagrangian
L(x,y,x",y",2) = n(x, y, z)\/l +x24y2

into the Euler—Lagrange equations we obtain, for instance,

0— d oL oL
T dz ox’ 0x
d nx’ B 8}1\/1 +x/2+y/2,
0x

g dZ \/1 + x/2 + y/2
hence, by virtue of the relation ds = /1 + x’2 + y’2 dz, we have
an 1 d n dx d dx
= = n ,
0x \/1+x/2+y/2 dz \/1+x/2_|_y/2 dz ds ds

with a similar formula for dn/dy.
Now, with the aid of (1.92), assuming that the Euler—Lagrange equations hold,

d [ ,0L ,0L aL
X +y —L)=—-_,
dz ox’ ay’ 0z

which amounts to

/

d < , nx’ ny _n\/1+x/2_|_y/2)

X +y
dz \/1+x/2+y/2 \/1+x/2+y/2

=—an\/1—|—x’2+y’2,
0z
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that is,
d dz on
n = .
ds \ ds 0z
6.43 Making use of the Leibniz rule and the ray equation, we obtain

d dr dr dr d dr
rxn = X n +r X n =r x Vn,
ds ds ds ds ds ds

which is equal to zero since, with n being a function of r only, Vn is proportional to
r. Taking into account that r is orthogonal to the constant vector L = r x ndr/ds,
the vector r lies on a plane passing through the origin, and therefore each ray lies on
a plane passing through the origin.

In order to prove that the vector

A L+ dr
=r X ,
2 ds

where L = r x n dr/ds is also constant along each ray we make use of the fact that
L is conserved, the ray equation, the vector identity a x (b x ¢) = (a-¢)b—(a-b)c,
the chain rule, the fact that the norm of dr/ds is equal to 1, the fact that the refractive
index (6.103) satisfies the equation

dn 2ar 2n?r

dr — (b+r)?2 " 4

and the identity r - dr/ds = 1d(r-r)/ds = 1d(r?)/ds = r dr/ds,

d (L ppadr _erL+ad2r
ds 2ds/) " ds 2 ds?

dr dr a dn dr
= X |rxn + Vn —
ds ds 2n ds ds
dr dr dr\ dr a dn dr dr
=n_ - r—|(r- n. 4+ Vr —
ds ds ds ds 2n dr ds ds

dr dr r drdr
=nr—|r n. —nr —

ds ds r dsds
=0.

Now we shall prove that the ray is (an arc of) a circle centered at L x A/L2,
where A =r x L + (a/2) dr/ds [cf. Equation (4.78)]. To this end, we calculate the
norm of the vector r — L x A/L2. As a first step, we note that (cf. the solution of
Exercise 4.34)
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LxA 1 a dr
L2 :LZLX<rXL+2ds)

- oL+ < O
= r—(L-r X
12 2% ds

n a L dr
=r X .
212 ds
Hence,
LxA a dr a a
r- = x = C L=
L2 21.2 ds 21.2 2|L|

which shows that the ray is (part of) a circle of radius R = a/2|L|.
The distance from the origin to the center of the circle is

LxA n a L dr
=r X
L2 212 ds
a dr 42
I ) 2
_\/r +L2r~Lxds+4L4L
24 aL dr 4 a?
= . X
L2 ds 41.2
5 a L2+ a?
= r- —
L2 n 41.2
2 2 a’
=,/T —(b~|-r)+4L2

=V-b+R?,

which shows that for » > 0, the circle encloses the origin; for b = 0, the circle
passes through the origin; if » < 0, the circle does not enclose the origin.

6.44 Starting from the Lagrangian

LO,$.0".¢".r) =n(r.0,9) \/1 + 72072 4 r25in’ 0 ¢2,
where 8’ = d9/dr, ¢’ = d¢/dr, we obtain the canonical momenta

AL nrle AL nrisin6¢’

9"~ dsjdr PP T e T ’

Po= ¢/ ds/dr



Solutions 357
where we have made use of the abbreviation

d
ds = \/1 + 7202 4 25in% 0 ¢,
.

Hence,
H = peg/ + p¢¢/ — L
nr?0’? + nrsin’0 ¢'? — n(1+ r20'% + 2 sin29¢/2)

N ds/dr

_ n

T ds/dr’
On the other hand,

Y) =420 2sin209? =14 ) (0 P ),
dr drnr dr nrsin6

that is,

ds)? 1_1792_ Py’ -
dr n2r2  p2y24in2 0

and, therefore,

2

2
Pe Do
H==+n2-P" _ .
\/ r2 r2sin’g

The HJ equation corresponding to this Hamiltonian is

1 /352 1 as\> s
+ [n2 = - =0,
\/" r2 (ae) 2 sin? 9 <a¢) toar

which implies that S satisfies the equation

asz+1asz+ 1 s\,
=n.
ar r2 \ 96 r2sin2 6 ¢
Recalling the expression for the gradient of a function in spherical coordinates,

we see that the last equation amounts to (VS)2 = n2, which coincides with
Equation (6.108).
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6.45 Since the refractive index is a function of r only, each light ray lies on a plane
passing through the origin. Hence, in order to find the light rays we can consider the
two-dimensional eikonal equation

as\? 1 [as\*
or) Tr2\ae) T (54D

making use of polar coordinates. We look for complete solutions of the form
S=A(@r)+ PO, (5.42)

where P is a constant. Substituting (S.42) into (S.41) we obtain

2 _
A(r) = f n? — P dr = / \/a2r2 P2(b + r2)2dr,
r2 r(b+r?)

that is,

2,2 _ p2(p 4 r2)2
S(r,e,m:/ﬂ” GFr 4 + po.

r(b+r?)

The light rays are determined by (note that we do not have to specify which variable,
r or 6, is taken as the independent one)

Qzasze_/ P(b+r?)dr

rya’r? — P2(b + r2)2
_ / P(b+r?)dr
ry/(@® — 4bP2)r2 — P2(b — r2)?

The change of variable
PG —b) = a2 —4bP2rcosa
leads to Q = 0 + « and, therefore, the light rays are given by
P(r2 = b) = /a? — 4bP2r cos(6 — Q).

which is the equation of a circle of radius R = a/2|P|, with its center at a distance
V' R2 — b from the origin (cf. the solution of Exercise 6.14).

646 If x = x(s),y = y(s),z = z(s) are the Cartesian coordinates of
a curve parameterized by its arclength, then the norm of the tangent vector
(dx/ds, dy/ds, dz/ds) is equal to 1. On the other hand, if the curve is orthogonal to
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the level surfaces of S(x, y, z), then its tangent vector must be proportional to the
gradient of S, whose norm is equal to the refractive index n, according to the eikonal
equation. Hence,

dx; 198
=4
ds n ox;

and, making use of the chain rule and the eikonal equation, we see that

d(ndx,-)zid<8S>=ide 9*S 105 oS

ds ds ds \ 0x; ds 0x;ox; ) 0xj 0x;0x;
1 9 aS oS 1 9 5 on
= = n- = .
2n dx; \ 0x; 0x; 2n dx; 0x;

which is the ray equation (see Exercise 6.42), thus showing that the curves
orthogonal to the surfaces S = const. are possible light rays.

6.47 The light rays are obtained from

aS
0= ap = za[— (x* — y»)sin P + 2xycos P,
using the fact that QO and P are constants of motion. The curves given by
this equation are hyperbolas. The “wavefronts,” given by S = const., are also
hyperbolas.

A straightforward computation gives

8\*  (95\? : 2 : 2 202, .2
5 + 5 = (ax cos P+ay sin P)“+(—aycos P+ax sin P)” = a“(x“+y~).
x y

Comparing with Equation (6.108) we find that S is a solution of the two-dimensional
eikonal equation with a refractive index n = a/x2 + y2.
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action-angle variables, 162 constraint
action variable, 161 equations, 4
active transformation, 32, 170 forces, 3
adiabatic invariants, 165 coordinates
Ampere’s law, 289 canonical, 106
angular momentum, 34,44, 117,212, 332 circular cylindrical, 30, 34, 250
of a rigid body, 91, 119 confocal, 130, 131, 241
angular velocity, 85 cyclic, 31, 112
anisotropic harmonic oscillator, 54 elliptic, 130,241
applied forces, 4 ignorable, 31, 112
arclength, 70 parabolic, 123, 132, 177, 236
covariance
of the HJ equation, 266
C of the Lagrange equations, 30, 72
canonical coordinates, 106 cyclic coordinates, 31, 112
canonical transformations, 143, 146, 168 cyclotron frequency, 34, 172, 249

generating function, 150, 173
homogeneous, 176
infinitesimal, 199 D
one-parameter groups of, 198
canonoid transformations, 146, 221, 225
center of mass, 93, 331
central
field of force, 43, 119, 128, 235
potential, 128
circular cylindrical coordinates, 30, 34, 250
configuration, 4
space, 4, 83
confocal coordinates, 130, 131, 241
conjugate momentum, 31, 104

d’Alembert principle, 18
damped harmonic oscillator, 61, 78, 153, 262
Darboux’s theorem, 225
degrees of freedom, 15, 17
dipole
electric, 131, 239
magnetic, 211
divergence, 35

constants E '
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eikonal, 275

equation, 275,276
electric dipole, 131,239
electromagnetic

field, 27, 108, 178

potentials, 27, 179
elliptic

coordinates, 130, 241

integral, 11
Emden—Fowler equation, 62, 104, 155, 241
energy

kinetic, 19

potential, 21
equivalent Hamiltonian, 124
Euler angles, 98
Euler equations, 97
Euler—Lagrange equations, 69
extended configuration space, 65
extended phase space, 114

F
Fermat’s principle, 272
fictitious time, 125
forces
applied, 4
constraint, 3
Foucault’s pendulum, 57
free particle, 146, 148, 171, 173, 185, 206
free particle in a sphere, 129

G
Galilean transformations, 154, 170, 213, 215,
265
gauge transformations, 28, 178, 179, 265
generalized
forces, 20

momentum, 31, 104
potential, 26
generating function, 143, 150, 151, 155, 173,
200
geodesics, 69, 107, 134
geodesic equations, 70
geometrical optics, 272
Hamiltonian, 275
Lagrangian, 273

H

Hamilton’s
characteristic function, 239
principal function, 188, 189, 231
vector, 138
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Hamilton equations, 106
Hamilton-Jacobi equation, 231
complete solutions, 231
covariance, 266
multiplicatively separable solutions, 241
R-separable solutions, 247
separable solutions, 233
time-independent, 239
Hamiltonian, 105
equivalent, 124
symmetry of a, 205
Hamilton’s principle, 65, 69
in the phase space, 122
harmonic oscillator, 148, 171
damped, 61, 153, 262
two-dimensional isotropic, 173, 226, 241
hidden symmetry, 240, 256
hodograph, 138, 183, 186
holonomic
constraints, 4
system, 4
homogeneous canonical transformations, 176
Huygens’ principle, 275

I
ignorable coordinates, 31,75, 112
inertia tensor, 85, 86
infinitesimal canonical transformations, 199
invariance
of a Hamiltonian, 205
of a Lagrangian, 31, 74
inversion in a circle, 180
involution, 252
isotropic harmonic oscillator, 51, 110, 173,
226,241

J
Jacobi’s
formula, 335
integral, 36
principle, 135
Jacobian, 147, 196
Jacobi identity, 115

K
Kepler’s
equation, 51, 140, 141,292,318
second law, 47
third law, 51, 140
Kepler problem, 48, 123, 180, 183, 236, 255,
274
hodograph, 138, 183, 186
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kinematic momentum, 117,210, 212
kinetic energy, 19
of a rigid body, 25, 86

L
Lagrange
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Lagrangian, 21
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regular, 21, 106
singular, 21
Lane-Emden equation, 62
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Legendre transformation, 106, 151
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linearized equations, 12
linear momentum, 36
Liouville’s integrability theorem, 254
Liouville’s system, 131
Liouville’s theorem
on solutions of the HJ equation, 252
on the invariance of the volume element of
the phase space, 147, 196
local one-parameter group of transformations,
204
local time, 125
Lorentz force, 27

M
magnetic
dipole, 211
field, 30, 32, 34, 36, 37, 171, 172, 194, 209,
210, 248,250
monopole, 27,212
Maxwell equations, 27
Maxwell’s fish eye, 274, 276
moment of inertia, 25
momentum
angular, 34,44,91, 212
generalized, 104
kinematic, 117,210,212
Morse potential, 132

N
natural Lagrangian, 21
Newton’s law of gravitation, 48
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Newton’s second law, 2, 17
non-inertial frame, 41

normal modes of oscillation, 14
number of degrees of freedom, 15, 17

(0]

one-dimensional harmonic oscillator, 26, 110,
145,163

one-parameter groups of canonical
transformations, 198

one-parameter group of transformations, 201,
202

optical length, 272

optical path length, 272

|
parabolic coordinates, 123, 132, 177, 236
parallel axes theorem, 94
passive transformation, 32, 169
pendulum
Foucault’s, 57
simple, 10
spherical, 129, 311
pericenter, 50
Pfaffian, 149
phase
curve, 8
plane, 8
portrait, 8
phase space, 114
volume element, 196
Poincaré half-plane, 71
Poisson—Boltzmann equation, 63, 73, 76, 156,
294
Poisson bracket, 114, 144, 190
alternative, 225
gauge-invariance, 180
invariance under canonical transformations,
146, 194
Poisson’s Theorem, 120
potential, 20
energy, 21
generalized, 26
principal axes, 90, 92
principal function, 188, 189, 231
principal moments of inertia, 90

R

ray equation, 274, 359
refractive index, 272
regular Lagrangian, 21, 106
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repulsive isotropic harmonic oscillator, 54
rigid body, 81
angular momentum, 91, 119
angular velocity, 85
configuration space, 83
kinetic energy, 86
rocket, 64, 251
rotating frame, 169
rotations, 169, 204, 210
R-separable solutions, 247
Runge-Lenz vector, 126, 132, 138, 141, 183,
237,318

S
scaling transformations, 157
separation

constants, 234

of variables, 233
separatrix, 12
simple pendulum, 10
singular Lagrangian, 21
SO(@3), 83
spherical pendulum, 55, 129, 311
standard Lagrangian, 21
stereographic projection, 184
symmetric top, 99
symmetry

hidden, 240, 256

of a Hamiltonian, 205

Index

T

time-independent Hamilton—Jacobi equation,
239

time evolution, 186

Toda lattice, 227, 257

torque, 96, 97

translations, 208, 209, 213

trivial constant, 112, 146

two-dimensional isotropic harmonic oscillator,
51,110, 131, 173, 226, 241, 307, 332,
339

U
uniform gravitational field, 175, 176, 197, 221

\'%

variable mass, 64

variational symmetry, 74

vector potential, 171, 210, 248, 249
velocity-dependent potential, 26, 38
virtual displacement, 18

volume element, 196

w
wavefronts, 277
wavefunction, 265
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