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Abstract. We present a message-passing based parallel algorithm for
mining Correlated Heavy Hitters from a two-dimensional data stream.
To the best of our knowledge, this is the first parallel algorithm solving
the problem. We show, through experimental results, that our algorithm
provides very good scalability, whilst retaining the accuracy of its sequen-
tial counterpart.
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1 Introduction

Mining of Correlated Heavy Hitters (CHH) is a problem which has been recently
proposed by [22]. Determining CHHs is a data mining task which commonly
arises in the context of network monitoring and management, as well as anomaly
and intrusion detection.

When considering the stream of pairs (source address, destination address)
consisting of IP packets passing through a router, it is useful and important
being able to identify the nodes responsible for the majority of the traffic passing
through that router (i.e., the frequent items over a single dimension); however,
for each given frequent source, we are also interested to discover the target
destinations receiving the majority of connections by the same source.

Therefore, the mining process works as follows: initially the most important
sources are detected as frequent items over the first dimension, then we mine the
frequent destinations in the context of each identified source, i.e., the stream’s
correlated heavy hitters. We recall here preliminary notations and definitions,
that shall be used in order to formally state the problem we solve in this paper
through a message-passing based parallel algorithm. Let σ be a stream of tuples
(x, y) of length n: σ =< (x1, y1), (x2, y2), . . . , (xn, yn) >. The frequency fxy of
the tuple (x, y) is defined as follows.

Definition 1. The frequency fxy of the tuple (x, y) in the stream σ is given by
fxy = |{i : (x = xi) ∧ (y = yi)}|.
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If we consider the sub-stream induced by the projection of the tuples of the
stream σ on its first dimension, also referred to as the primary dimension, we
can define the frequency fx of an item appearing as first element in a tuple (x, y).

Definition 2. The frequency fx of an item x which appears as first element in
a tuple (x, y) in the stream σ is given by fx = |{i : (x = xi)}|.

The items x appearing in the primary dimension of the stream σ are referred
to as primary items. Similarly, the items y appearing in the secondary dimension
are referred to as secondary items or as correlated items.

The Exact Correlated Heavy Hitters problem can not be solved using limited
space and only one pass through the input stream, hence the Approximate Cor-
related Heavy Hitters problem (ACHH) is introduced [22]. We state the problem
as follows.

Problem 1. Approximate Correlated Heavy Hitters problem (ACHH problem).
Given a data stream σ of length n consisting of (x, y) tuples in which the

item x is drawn from a universe set U1 = {1, . . . , m1} and the item y is drawn
from a universe set U2 = {1, . . . ,m2}, two user-defined thresholds φ1 and φ2

such that 0 < φ1 < 1 and 0 < φ2 < 1 and two error bounds ε1 and ε2 such
that 0 < ε1 < φ1 and 0 < ε2 < φ2, the Approximate Correlated Heavy Hitters
(ACHH) problem requires determining all of the primary items x such that

fx > φ1n (1)

and no items with
fx ≤ (φ1 − ε1)n (2)

should be reported; moreover, we are required to determine for each frequent
primary candidate x, all of the tuples (x, y) such that

fxy > φ2fx (3)

and no tuple (x, y) such that

fxy ≤ (φ2 − ε2)fx (4)

should be reported.

In this paper, we propose a parallel algorithm for solving the Approximate
Correlated Heavy Hitters problem. The paper is organized as follows. In Sect. 2
we recall related work. We present our parallel algorithm in Sect. 3, and thor-
oughly analyze it in Sect. 4. Extensive experimental results are provided in
Sect. 5. Finally, we draw our conclusions in Sect. 6.
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2 Related Work

Mining frequent items is one of the most important topics in data mining. As
such, it has attracted a number of researchers, who have published extensively
on this subject. Here, we recall the most important work.

Misra and Gries [25] generalized the seminal work of Boyer and Moore [1,2]
(the so called MJRTY algorithm). Their algorithm behaves exactly as MJRTY,
but uses multiple counters, i.e. pairs (item, frequency), to keep track of the fre-
quent items in the input stream. Interestingly, this algorithm, has been forgotten
for about twenty years, and later rediscovered and slightly improved with regard
to speed (by using a clever summary data structure) by Demaine et al. [16] (the
so-called Frequent algorithm) and Karp et al. [21].

Counters are also used in many other algorithms, including Sticky Sampling,
Lossy Counting [23], and Space Saving [24]. It is worth noting here that Space
Saving is still the most accurate algorithm for mining frequent items.

A different class of algorithms is based on the use of a sketch data structure,
which is usually a bi-dimensional array of counters. Items are mapped, through
a set of hash functions (one for each row of the sketch), to corresponding sketch
cells. Each cell holds a counter, whose values is then updated as required by the
algorithm. Sketch–based algorithms include CountSketch [11], Group Test [14],
Count-Min [13] and hCount [20].

Parallel algorithms for frequent items include message-passing, shared-
memory and accelerators based algorithms. Almost all of the proposed algo-
rithms are parallel versions of Frequent and Space Saving. Among message-
passing algorithms, we recall here [9,10] (slightly improved in [5]). With regard
to shared-memory architectures, it is worth citing [15,26,29,30]. Recently, [27]
proposed novel shared-memory algorithms. Accelerator based algorithms for fre-
quent items exploiting a GPU (Graphics Processing Unit) or the Intel Phi pro-
cessor include [3,8,18,19].

Mining time faded frequent items has been investigated in [4,7,12,28]. A
parallel message-passing based algorithm has been recently proposed in [6].

Regarding CHHs, an algorithm based on the nested application of Frequent
has been recently presented in [22]. The outermost application mines the primary
dimension, whilst the innermost one mines correlated secondary items. The main
drawbacks of this algorithm, being based on Frequent, are the accuracy (which
is very low), the huge amount of space required and the rather slow speed (owing
to the nested summaries).

In [17], we proposed a fast and accurate algorithm for mining CHHs. Our
Cascading Space Saving Correlated Heavy Hitters (CSSCHH) algorithm exploits
the basic ideas of Space Saving, combining two summaries for tracking the pri-
mary item frequencies and the tuple frequencies. We refer to our algorithm as
Cascading Space Saving since it is based on the use of two distinct and indepen-
dent applications of Space Saving.

A stream summary S with k counters is the data structure used by Space
Saving in order to monitor up to k distinct items. Space Saving processes one
item at a time. When the item is already monitored by a counter, its estimated



630 M. Pulimeno et al.

frequency is incremented by one. When it is not monitored, there are two pos-
sibilities. If a counter is available, it will be in charge of monitoring the item
and its estimated frequency is set to one. Otherwise, if all of the counters are
already occupied (their frequencies are different from zero), the counter storing
the item with minimum frequency is incremented by one, then the monitored
item is replaced by the new item. It can be proved that Space Saving correctly
reports in its summary all of the φ-frequent items of the processed input stream
with φ > 1

k [24].
Therefore, we use two independent Space Saving stream summaries as data

structures. The first, denoted by Sp, and referred to as the primary stream sum-
mary, monitors a subset of primary items which appears in the stream through
the use of k1 distinct counters. The second, denoted by St, includes k2 counters
and monitors a subset of the tuples which appear in the stream.

We proved that CSSCHH is correct and outperforms the algorithm proposed
in [22] with regard to speed, accuracy and space required; we also showed how
to select the values of k1 and k2 in order to minimize the space required. Full
details can be found in [17]. In this work we design a parallel version of CSSCHH
which we call PCSSCHH. To the best of our knowledge, this is the first parallel
algorithm for message-passing architectures solving the ACHH problem.

3 A Parallel Algorithm for the ACHH Problem

In this paper we assume an offline setting, in which the stream tuples have been
stored as a static dataset. This is not restrictive, since we shall show that our
algorithm can also work in the streaming (online) setting as well. In the offline
setting, we partition the input dataset by using a simple 1D block-based domain
decomposition among the available p processes; then, in parallel, each process
updates its local summaries with the items belonging to its own block. Once the
blocks have been processed, one of the processes is in charge of determining the
CHHs. The processes engage in a parallel reduction in which their summaries
are merged into global summaries preserving all of the information stored in the
original local summaries. These summaries can then be queried to return the
CHHs.

The streaming (online) setting is related to a distributed scenario in which
there are p distributed sites, each handling a different stream σi, i = 1, . . . , p. One
of the p sites may act as a centralized coordinator, or there can be another dif-
ferent site taking this responsibility. The coordinator broadcasts, when required,
a “query” message to the p sites, which then temporarily stop processing their
sub-streams, and engage in the merge procedure. The distributed sites can be
thought as being multi-threaded processes, in which one thread processing the
stream temporarily stops when a query message is received from the coordina-
tor, creates a copy of its local summaries and then resumes stream processing
whilst another thread engages in the distributed merging using the copies of the
summaries.
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Our PCSSCHH algorithm starts by initializing the Sp primary stream sum-
mary data structure allocating k1 counters and the correlated St stream sum-
mary allocating k2 counters. Algorithm 1 presents the pseudocode related to the
initialization phase of PCSSCHH.

Algorithm 1. PCSSCHH Init
Require: Threshold for primary items φ1; threshold for correlated items φ2; tolerance

for primary items ε1; tolerance for correlated items ε2.
Ensure: Properly initialized Sp and St stream summaries
1: procedure PCSSCHH-Init(φ1, φ2, ε1, ε2)
2: β ← 1

ε2φ1

3: γ ← ε2+φ2
ε2φ1

4: k1 ← max
{

1
ε1

, γ +
√

βγ
}

5: k2 ← β k1
k1−γ

6: Allocate k1 counters for Sp

7: Allocate k2 counters for St

8: return Sp and St

9: end procedure

Once a processor has initialized its summaries, it can begin processing the
stream’s tuples. The n tuples of the stream σ are distributed, through domain
decomposition, to the p processors so that each one is responsible for either
�n/p� or �n/p� tuples; let left and right be respectively the indices of the first
and last tuple handled by the process with rank id (ranks are numbered from 0
to p − 1), then:

left = �(id − 1) n/p� ; (5)

right = �id n/p� − 1. (6)

PCSSCHH is presented in pseudocode as Algorithms 2 and 3. Each processor
starts processing its own substream, which consists of all of the tuples from left
to right. In particular, items belonging to the primary dimension are mined using
the Sp summary, whilst tuples are mined using the St summary. Next, parallel
reductions based on the COMBINE user’s defined reduction operator provide

Algorithm 2. PCSSCHH
Require: σ: a stream consisting of tuples (x, y); Sp and St: stream summaries;
Ensure: Sp

g and St
g stream summaries.

1: procedure PCSSCHH-Update(Sp, St, σ)
2: SpaceSaving(Sp, left, right)
3: SpaceSaving(St, left, right)
4: Sp

g ← ParallelReduction(Sp, k1, COMBINE)
5: St

g ← ParallelReduction(St, k2, COMBINE)
6: end procedure
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Algorithm 3. COMBINE
Require: S1, S2: summaries ordered by counters’ frequency; k, number of counters in

each summary
Ensure: the combined summary SC

1: procedure combine(S1, S2, k)
2: m1 ← S1[0].f̂ � minimum of all of the frequencies in S1

3: m2 ← S2[0].f̂ � minimum of all of the frequencies in S2

4: let SC be an empty summary
5: for each counter S1[j] in S1 do
6: new counter.i ← S1[j].i
7: counterS2 ← S2.Find(S1[j].i)
8: if counterS2 then
9: new counter.f̂ ← S1[j].f̂ + counterS2 .f̂

10: S2.Remove(counterS2)
11: else
12: new counter.f̂ ← S1[j].f̂ + m2

13: end if
14: SC .Put(new counter)
15: end for
16: for each counter S2[j] in S2 do
17: new counter.i ← S2[j].i
18: new counter.f̂ ← S2[j].f̂ + m1

19: SC .Put(new counter)
20: end for
21: SC .Prune(k) � Select k counters with the greatest frequencies and delete the

others
22: return SC

23: end procedure

the final Sp
g and St

g summaries (the subscript g stands for “global”), that can be
used for answering queries related to CHHs.

The parallel reduction operator (COMBINE) works as follows. We denote
by S[j].i and S[j].f̂ respectively the item monitored by the jth counter of a
summary S and its corresponding estimated frequency. Let S1 and S2 be the two
summaries to be merged and k their number of counters. We begin determining
m1 and m2, the minimum frequencies respectively in the input summary S1 and
S2. After initializing an empty summary SC , we scan the counters of S1. For each
counter monitoring an item, we search S2 for a corresponding counter monitoring
the same item. If we find it, we initialize a new counter with this item setting as
frequency of the item the sum of the frequencies in the corresponding counters
of S1 and S2 and delete the counter in S2. Otherwise, we let the frequency be
the sum of the frequency of the item in S1 and m2. The new counter is then
inserted in SC . Next, we scan the remaining counters in S2. Since the counters
in S2 corresponding to items in S1 have been deleted, for each counter in S2 we
prepare a new counter monitoring that item and set its frequency to the sum
of the item’s frequency in S2 and m1. Finally, if the SC summary holds more
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than k counters, we retain the first k counters with the greatest frequencies and
delete the others.

We have proved in [9] that the above reduction correctly merges two Space
Saving summaries, and that the resulting SC merged summary is affected by an
error which is within the error bound of the original input summaries S1 and S2.

The final Sp
g and St

g stream summaries can be queried for CHHs as fol-
lows. The query procedure internally uses two lists, F and C. The former stores
primary items and their estimated frequencies (r, f̂r). The latter stores CHHs
(r, s, f̂rs) in which r is a primary frequent item candidate, s the correlated fre-
quent item candidate and f̂rs the estimated frequency of the tuple (r, s).

The query algorithm inspects all of the k1 counters in the Sp
g stream sum-

mary. If the frequency of the jth monitored item is greater than the selection
criterion (i.e., Sp

g [j].f̂ > φ1n), then we add the monitored item r = Sp
g [j].i and

its estimated frequency f̂r = Sp
g [j].f̂ to F .

The algorithm inspects now all of the k2 counters of the St
g stream summary.

The monitored items in St
g are the tuples (r, s). We check if the primary item r

is a primary frequent item candidate (i.e., if r ∈ F ); if this condition is true and
the estimated frequency of the jth tuple is greater than the selection criterion
(i.e., St

g[j].f̂ > φ2(f̂r − n
k1

)), then the triplet (r, s, f̂rs) is added to C.
Taking into account the result in [9] related to the correctness of the merge

procedure, it still holds what we proved in [17] and restated in Theorems (1)
and (2) with reference to PCSSCHH. Thus the reported sets F and C correctly
solve the ACHH problem.

Theorem 1. The PCSSCHH algorithm reports in the outputted set F all of the
primary items x whose exact frequency fx is greater than the threshold, i.e.,
fx > φ1N and no items whose exact frequency is such that fx ≤ (φ1 − 1

k1
)N .

Theorem 2. All of the tuples (x, y) with the item x reported as primary frequent
candidate and with exact frequency fxy greater than the threshold (fxy > φ2fx)
are reported in the outputted set C as correlated heavy hitter candidates. No
tuple with a primary item x reported as frequent primary candidate and with
exact frequency less than fxy ≤ (φ2 − k2φ2+k1

k2(k1φ1−1) )fx is reported as correlated
heavy hitter candidate.

The Query procedure is presented as Algorithm 4.

4 Analysis

Regarding the parallel complexity of the algorithm, its worst case complexity is
analyzed as follows. The initialization done in Algorithm1 requires O(1) constant
time. Determining the initial domain decomposition requires O(1) time as well.
Algorithm 2 requires O(n/p) time to process, using Space Saving, the tuples in
the input block (the primary dimension with the Sp summary, and tuples with
the St summary). Indeed, a block consists of O(n/p) tuples, and Space Saving
complexity is linear in the length of the input.
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Algorithm 4. PCSSCHH Query
Require: Sp

g and St
g stream summaries.

Ensure: Set of correlated frequent items C
1: procedure PCSSCHH-Query(Sp

g , St
g)

2: F ← ∅
3: for each counter Sp

g [j] in Sp
g do

4: r ← Sp
g [j].i; f̂r ← Sp

g [j].f̂

5: if f̂r > φ1n then
6: F ← F ∪ {(r, f̂r)}
7: end if
8: end for
9: for each St

g[j] ∈ St
g do

10: (r, s) ← St
g[j].i; f̂rs ← St

g[j].f̂

11: if r ∈ F ∧ (f̂rs > φ2(f̂r − n
k1

)) then

12: C ← C ∪ {(r, s, f̂rs)}
13: end if
14: end for
15: return C
16: end procedure

Finally, two parallel reductions determine the output. These two reductions
require O((k1+k2) log p) time, since the user’s defined reduction operator COM-
BINE (Algorithm 3) requires O(k log p) time to merge two summaries of k coun-
ters. Indeed, the input summaries can be combined in O(k) time, by using the
hash tables in the implementation of the summaries.

For each item in S1, a corresponding item in S2 can be found in O(1) time.
The entry for the item can be inserted in SC in O(1) time and, if the item has
been found in the other summary, the corresponding entry can be deleted from
S2 again in O(1) time. Since there are at most k entries in a summary, scanning
and processing the first summary requires O(k).

Next, the entries in S2 are scanned (note that there can be at most k entries
in S2: this may happen only when the items in the two summaries are all dis-
tinct, otherwise there will be less than k entries because corresponding items are
removed from S2 each time a match is found). For each entry in S2, the corre-
sponding item is inserted in SC in O(1) time. Therefore, processing S2 requires
in the worst case O(k) time.

The combined summary SC is returned as is if its total number of entries
is less than or equal to k, otherwise only the last k entries (i.e., those entries
corresponding to the items with greatest frequencies) are returned. The time
required is O(k).

Therefore, at most O(k) work is done in each step of the parallel reduction,
and there are O(log p) such steps. It follows that a parallel reduction can be
done in O(k log p) time in the worst case.
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The parallel complexity of our algorithm is therefore

Tp = O(n/p + (k1 + k2) log p) (7)

in the worst case. Finally, the complexity of a query (Algorithm 4) is simply
O(k1 + k2), owing to the fact that we simply need to perform a linear scan of
both summaries, and the work done processing each entry is O(1) in the worst
case.

We now analyze, from a theoretical perspective, our algorithm. Since the
sequential algorithm requires T1 = O(n) time in the worst case [17], the parallel
overhead is To = pTp − T1 = p(k1 + k2) log p. The isoefficiency is then given by

n ≥ Cp(k1 + k2) log p (8)

where C is a constant. If we consider k1 and k2 to be constants as well, then
the isoefficiency function is given by p log p. Even though the algorithm is not
perfectly scalable, it is only a small factor (log p) away from optimality.

5 Experimental Results

In order to evaluate the parallel algorithm for mining CHHs, we have imple-
mented PCSSCHH in C++. The source code has been compiled using the Intel
C++ compiler v15.0.3 and the Intel MPI library v5.0.3 on Linux CentOS distri-
bution with the following flags: -O3 -xHost -std=c++11. The tests have been car-
ried out on “Athena” parallel cluster kindly provided by the Euro-Mediterranean
Center on Climate Changes, Foundation (CMCC) in Italy. The cluster is made of
482 computational nodes, each one equipped with 64 GB of RAM and two Intel
2.60 GHz octa-core Xeon E5-2670 processors. The source code is freely available
for inspection and for reproducibility of results contacting the authors by email.

The synthetic datasets used in our experiments are distributed according to
the Zipf distribution. In each one of the experiments, the execution has been
repeated 5 times using a different seed for the pseudo-random number generator
used for creating the input data stream. For each input distribution generated,
the results have been averaged over all of the runs. The input items are tuples
of two 32 bits unsigned integers.

The experiments are aimed at evaluating the parallel algorithm behavior in
terms of performance and accuracy. We used the parallel speedup, efficiency and
scaled speedup metrics to measure the computational performance and the pre-
cision and recall to evaluate the impact of the parallelization on the algorithm’s
accuracy. In the experiments, we vary the following input parameters: length of
the data stream (ni), skewness of the zipfian distribution (ρ), number of counters
(k1, k2) used in the primary and secondary summaries and the number of pro-
cesses (p). For the scaled speedup measurement we used three different values of
grain size, i.e., the number of tuples assigned to a process; in the scaled speedup
analysis (also known as weak scalability) the grain size is kept constant while
the number of processes increases.



636 M. Pulimeno et al.

Table 1. Experiments carried out.

Parameter Values Default

Stream size (ni, billions) 1, 3, 6 1

Skew (ρ) 1.0, 1.4, 1.8 1.4

Counters (k1, k2) k1 = 833, k2 = 2633 k1 = 3050, k2 = 12450

k1 = 1033, k2 = 3500

k1 = 1673, k2 = 6323

k1 = 3050, k2 = 12450

Grain Size (ni, millions) 100, 500, 750 -

Num. Procs. (p) 1, 16, 32, 64, 128, 256, 512 -

Table 1 reports all of the parameters used in our experiments.
We begin our analysis discussing the computational performance of the algo-

rithm. Figures 1 and 2 show the parallel speedup and efficiency measured varying
respectively the stream size and the skew of the input distribution, while Fig. 3
shows the corresponding elapsed times (the plots of Figs. 1a, 2a, 3a and b use a
log-log scale, whilst Figs. 1b and 2b use a log scale on the x axis, related to the
number of processes).

According to the Amdahl’s law, when the problem size increases, the parallel
algorithm performs better (the so-called Amdahl’s effect), and shows very good
scalability up to 64 processes. In order to use a greater number of processes,
owing to the isoefficiency analysis reported in the previous Section, we need to
increase the problem size.

For low skew values, the time required to update a summary increases owing
to the higher number of cache misses due to a greater number of distinct items,
which also increases the hash table’s access time. Since the update time increases
but the communication time remains the same, the speedup improves.

In Fig. 4 the scaled speedup is reported, using a log-log scale. The results
clearly show that the algorithm performs well when the grain size is increased.

Regarding the accuracy of the algorithm, we measured recall and precision.
The recall is the total number of true frequent items reported over the number
of frequent items given by an exact algorithm. Therefore, an algorithm is correct
iff its recall is equal to one. Since in all of the experiments we used a number of
counters k1, k2 that guarantees the correctness of the algorithm, we observed a
recall equal to one in each experiment. For this reason, the corresponding plots
have not been reported.

Since precision is defined as the total number of true frequent items reported
over the total number of items reported, this metric quantifies the number of
false positives outputted by an algorithm. The accuracy of the sequential algo-
rithm has been already well analyzed in [17]; here, the goal is to prove that the
parallelization does not impact on the accuracy. Figure 5 reports, using a log
scale for the x axis, the precision obtained varying the number of counters. As
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Fig. 1. Speedup and efficiency varying the input stream size.

Fig. 2. Speedup and efficiency varying the skew of the distribution.

expected, when we use a few counters the algorithm is less accurate. The results
also show that the parallelization, and in particular the reduction in which we
merge the summaries, does not introduce any significant estimation error, indeed
the precision does not change varying the number of processes.
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Fig. 3. Elapsed time varying the stream size and the skew of the distribution.

Fig. 4. Scaled speedup varying the grain size.
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Fig. 5. Precision varying the number of processes and the number of counters in the
primary and secondary stream summaries.

6 Conclusions

In this paper we have presented a message-passing based parallel algorithm for
mining Correlated Heavy Hitters from a two-dimensional data stream. We have
shown, through extensive experimental results, that our algorithm solves the
ACHH problem and provides very good scalability, whilst retaining the accuracy
of its sequential counterpart. To the best of our knowledge, this is the first parallel
algorithm solving the problem.
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