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Abstract. Nowadays cloud computing technology is used for a variety of
services, such as the internet of things and artificial intelligence. However, as
more data is being processed in the cloud, there is growing concern about
security issues in the cloud computing environment. To solve this concern,
many studies have been conducted to ensure the integrity of virtual machines in
a cloud computing environment. However, in the case of the control-flow
integrity for the virtual machine, existing studies are not only necessary to
modify the kernel code, but also cannot protect it efficiently. In this paper, we
propose VM-CFI which efficiently protects the control-flow integrity of VM
kernel without modification of VM kernel in cloud computing environment. For
this purpose, VM-CFI utilizes Processor Trace (PT), a hardware feature that is
recently supported by Intel architecture. According to the experimental results,
VM-CFI incurs on average 4.2% overhead.
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1 Introduction

Today, through cloud computing environments, many services are being offered to
people from artificial intelligence services such as speech recognition technology to
internet of things services such as a smart home. As the number of such services
increases, much sensitive information is processed in the cloud environment, which is
causing concern about security problems in the cloud computing environment [1].
Therefore, as a way to enhance security in cloud computing environment, a cloud
administrator has to ensure the integrity of the kernel of a VM in which individual
cloud users execute her application. To verify memory integrity of the kernel, previous
studies have examined either the hardware events occurring in the VM through vir-
tualization, or the information which extracted when kernel executes instrumented code
[2, 3].

However, existing works do not guarantee Control-Flow Integrity (CFI) of the
guest OS efficiently. CFI is to check whether the target program is executed as a
legitimate control-flow. CFI studies [4–6] for kernels have modified the kernel code or
binary to verify the control-flow of the kernel. However, there are two reasons why this
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approach is difficult to use in a cloud environment. First, there is a problem that it is
difficult to apply to all types of guest OS supported in a cloud environment. In the cloud
computing environment, cloud administrators support a variety of vendors’ kernels,
and even multiple versions of each kernel. Therefore, the approach based on kernel
modifications is not practical because it requires the cloud administrator to modify the
kernel code or binary each time a new kernel is introduced or the kernel is patched.
Next, it may also be a problem in terms of Quality of Service (QoS) guarantee of cloud
users. Cloud users contract with the cloud administrator to determine the hardware
resources used in the virtual machine. And while the cloud user is using it, the cloud
administrator must provide a certain QoS to the cloud user according to the contract.
However, if the kernel code is modified for CFI, this can cause unpredictable perfor-
mance overhead and it would be difficult to guarantee QoS.

In this paper, we propose VM-CFI which protects the control-flow integrity for
existing guest OS efficiently, without modification of guest OS. For this purpose,
VM-CFI use a Processor Trace (PT) provided by Intel architecture. PT provides the
control-flow information of the currently executed processor as a stream of the packet
through the hardware, so that VM-CFI can obtain the control-flow information without
modifying the kernel code of a virtual machine. In addition, since the CFI verification
of VM-CFI is independently operated with the monitored virtual machine, VM-CFI
imposes small performance overhead on the monitored virtual machine.

VM-CFI makes the following contributions:

(1) No kernel modification. We enforce control-flow integrity on guest OS without
guest OS modification, so user don’t need to rewrite the source code of kernel to
update it.

(2) Low overhead. We implement VM-CFI which has low overhead by using
hardware features in the Intel processor called Intel PT.

2 Background

2.1 Intel Processor Trace

Intel PT is a hardware feature provided to enable the extraction of performance flow
information of Intel processors with low overhead. Intel PT stores control-flow infor-
mation in amemory buffer in the form of several packets. Table 1 summarizes the packets
to be used for analyzing the control-flow of the virtual machine among these packets.
Intel PT also provides packet-related settings and filter-related functions depending on
the purpose of use. The details of this are described in the related manual [7].

2.2 Privilege Levels on Intel Architecture

Intel architecture has a privilege level called Ring. Ring 0 is the kernel privilege and
Ring 3 is the privilege that the user application is running on. Ring 0 has higher
privilege than Ring 3, so the various system configuration registers can be changed
only in Ring 0.
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In addition to these ring-based privileges, the virtualization extension VT-x, which
is provided by Intel architecture, has a separate CPU operating mode called
root/non-root. Therefore, the application of the virtual machine (Ring 3) and the kernel
of the virtual machine (Ring 0) is executed in the non-root mode, and the host
application (Ring 3) and the host kernel including the virtual machine manager
(VMM) (Ring 0) are executed in the root mode. Switching between these root and
non-root modes will result in VM entry and VM exit events. Figure 1 is an abstracted
figure summarizing these terms.

3 Threat Model

In this paper, we assume that a remote attacker who attacks the victim’s guest OS
through a network connection, or a malicious user who attacks the guest OS to attack
the cloud computing environment. Such an attacker does not have the right to modify
the guest OS, but can perform a control-flow hijacking attack using a vulnerability
existing in the guest OS.

VM-CFI, on the other hand, does not consider internal attacks which caused by a
malicious cloud provider. Also, in order to protect the code integrity of existing guest
OS, it is assumed that existing solutions are already adopted in the cloud environment
[8], and VM-CFI only is designed to ensure CFI of the guest OS.

Table 1. Intel PT packets analyzed by VM-CFI

Packet name Packet description

Paging Information
Packet (PIP)

This is a packet that occurs whenever there is a change in the CR3
register that contains the current paging information. In particular,
it includes non-root (NR) bits that distinguish between execution of
the guest OS and execution of the host kernel

Target IP Packet (TIP) It is a packet that records the destination address when indirect
branch, exceptions, and interrupts occur

Flow Update Packets
(FUP)

It is a packet that records the source address when an interrupt and
exception occurs

Fig. 1. Privilege levels on Intel architecture
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4 Design

4.1 Design Principles

(P1) Minimize Modification to Existing Software. A cloud provider supports various
versions of the kernel for users in the cloud environment. If she need to modify the
kernel to guarantee CFI, she have to revise it every time the kernel version is updated,
which will result in less practicality of VM-CFI.

(P2) Minimize the Performance Overhead of Monitored Virtual Machines. Cloud
users must be assured of the QoS they have contracted with the cloud provider.
Therefore, if substantial performance overhead occurs in a cloud user’s virtual machine
to guarantee CFI, this may cause problems in terms of the QoS.

4.2 Design Overview

As shown in Fig. 2, the overall operation of VM-CFI can be divided into (1) offline
binary analysis and (2) runtime integrity enforcement. In the offline binary analysis, the
binary analyzer analyzes the guest kernel binary to generate the control-flow metadata
to be used for the integrity verification before the monitored VM runs. In this
control-flow metadata, information for each basic blocks existing in the guest kernel
code is stored. At this time, as a binary of the guest OS is not modified, we can satisfy
P1. Then, while the monitored VM is running, VM-CFI uses Intel PT to extract the
control-flow trace of the system. During a packet decoding, only the trace corre-
sponding to the guest kernel of the monitored VM is extracted and transmitted to the
integrity checker. The integrity checker verifies CFI based on the received trace using
control-flow metadata. Since this series of integrity verification process works as a
process of the host kernel which is independent of the performance of the monitored
VM, P2 can be satisfied.

4.3 Control-Flow Integrity Policy

In the case of a control-flow hijacking attack, the attacker tampers the control-flow and
attempts to execute the malicious code. To do this, the attacker have to use a control
transfer instruction. The control transfer instruction can be divided into two types. First,
the direct control transfer instruction is an instruction in which the control transfer
target address is stored in the code. So to exploit this instruction, an attacker should
modify code memory region. However, it is well known that this code manipulating
behavior can be easily defended through the existing W^X policy [8]. On the other
hand, in the case of an indirect control transfer instruction, the control transfer target
address is determined by the general purpose registers. Therefore, an attacker can
manipulate the control-flow without modifying the code. To protect this, in VM-CFI, it
is always enforced to jump to the basic block entry for the indirect control transfer
instruction executed by the guest kernel.
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Since VM-CFI monitors CFI of the guest OS, in addition to branch behavior of
such indirect control transfer instructions, branch behavior caused by interrupt and
exception should be handled. This is because the control-flow is changed due to these
events during the kernel execution, and the attacker can manipulate the control-flow in
the guest OS by using this system events. For this purpose, we also have verified the
return address of a handler code in hypervisor.

4.4 Offline Binary Analysis

In order to guarantee the CFI policy described above, it is necessary to know infor-
mation about the start address of basic blocks existing in the guest OS code. Offline
binary analysis is the process for doing this. We use objdump tool to disassemble the
guest OS binary first, then extract the start addresses of all basic blocks in the binary.
As shown in Fig. 3, we generate a valid target map that shows the valid indirect branch
target address as 1 bit for each byte address of each code.

4.5 Runtime Integrity Enforcement

In VM-CFI, we used Intel PT to extract the indirect branch target address that occurred
during execution of the guest kernel for integrity verification. At this time, we
implemented a packet decoder to extract and analyze only the packets required for
integrity verification among various kinds of packets coming from Intel PT. And the
integrity checker verifies the integrity with the indirect branch target address extracted
by the packet decoder.

Fig. 2. System overview of VM-CFI. Modules marked with gray boxes correspond to VM-CFI,
and red arrows indicate the operation of offline binary analysis. A blue arrow indicates the
runtime integrity enforcement process. (Color figure online)
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Packet Decoder. The packet decoder uses a privilege-level filter among the various
filter functions provided by Intel PT. In VM-CFI, packets of guest or host user
applications (programs executed in Ring 3) can be excluded. In addition, timing
information and power events, which are not related to integrity verification, are set so
that packets are not generated.

For the extracted packets, the packet decoder implements two functions to select
only the information needed for integrity verification. First, the packet decoder dis-
tinguishes packets for the host kernel and the guest kernel. Fortunately, Intel PT knows
the root/non-root mode through the PIP packet at the VM-entry/VM-exit, so that the
packet decoder can distinguish it. Besides this method, there is a alternative method to
enable trace packet generation in virtual machine only by using MSR load list in VM
entry and VM exit respectively. However, VM-CFI does not use this method because it
can only use Intel PT in non-root mode. Therefore, in VM-CFI, we design the packet
decoder to identify the packet of the guest kernel. Next, in the packet decoder, only the
TIP packet containing the target address information of the indirect branch among the
control-flow related packets and the FUP containing the source address information are
extracted and hand over to the integrity checker.

Integrity Checker. The Integrity Checker verified the integrity through the control
information delivered by the packet decoder as shown in Fig. 4. We want VM-CFI to
check two things: whether (1) the target address is in the valid target map (2) the address
which the interrupt handler jumps from is the same as the address returned from interrupt
hadler. First, if the packet transmitted by the packet decoder is a FUP packet (not a TIP
packet), the corresponding source address is pushed onto the async-event stack, and the
next packet is processed. If the packet is a TIP packet, check the corresponding bit of the
valid target map for the target address to determine whether or not the base address of
the basic block is valid. If the bit value is 1, the next packet is processed since it is a
branch of the normal control-flow. If the bit value is 0, it confirms whether the
control-flow branch is caused by the asynchronous event. That is, compare the top
element of the async-event stack with the target address. To deal with the case where the
target address points to the next instruction of the address indicated by the top element,
the case is treated as a normal case when the difference is within 0xf, and then the
corresponding value is popped on the stack before the next packet is processed. If it does
not correspond to the top element, it is regarded as an attack.

Fig. 3. Offline binary analysis
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5 Evaluation

In this chapter, we will evaluate performance overhead due to VM-CFI and whether it
can detect control-flow hijacking attacks targeting guest OS.

5.1 Experiment Environment

We have implemented a prototype of VM-CFI in real physical machine. The used
machine has specifications of 4 Intel Core i5-6600 CPU @ 3.30 GHz and 4 GB RAM,
and both the host kernel and the guest kernel use version 4.8.0 of linux. We used KVM
as the hypervisor.

5.2 Prototype Implementation

As previously mentioned in the design, VM-CFI is implemented in the host kernel
application without modifying the kernel. The binary analyzer is implemented by
parsing the output file obtained by dumping the kernel binary with objdump, and
implemented with 98 SLoC. The packet decoder and integrity checker are implemented
by modifying the perf tool, which is provided for performance measurement and

Fig. 4. Work flow of integrity checker
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debugging in linux, and the number of modified lines is 244 SLoC. As such, VM-CFI
guarantees virtual machine integrity by only writing a small amount of code in the user
application without modification of the host and guest kernels.

5.3 Performance Evaluation

In order to measure the performance overhead of VM-CFI, we conducted two exper-
iments. First, we measured the execution time of VM-CFI to analyze the control-flow
of the virtual machine and to verify the integrity. Next we conduct an application
benchmark experiment to conform that there is no performance overhead of the virtual
machine despite the operation of VM-CFI.

Micro-benchmarks. In order to measure the time taken for VM-CFI to analyze the
control-flow information and verify the integrity of the virtual machine during the
execution of the virtual machine, we conducted a performance measurement experi-
ment for the following cases.

• async-event-only: Validate only the async-event through the virtual machine’s
control-flow packet

• decode-only: Parse the control-flow packets of the virtual machine in VM-CFI
• vm-cfi: Parse the control-flow packet of the virtual machine through VM-CFI and

verify integrity.

In the experiment, the virtual machine executes a user application that calls various
system calls, and analyzes the resulting packets. As a result, it is confirmed that it takes
about 10 s to process the packet of 20 MB in Fig. 5.

Application-Benchmarks. The following experiment was designed to measure the
performance overhead on the virtual machine by VM-CFI. First, the virtual machine to
be monitored is executed in core 0, and VM-CFI is executed in core 1. (This
assumption is identical to the one used in previous Intel PT-based studies [9, 10].)
Table 2 compares the performance of VM-CFI with the performance of Unixbench in
the virtual machine, and summarizes the performance overhead. The result was an
average performance overhead of 4.2%. This overhead is caused by memory virtual-
ization during VM-CFI operation because memory is a computing resource used by
VM-CFI and virtual machine simultaneously.

5.4 Security Evaluation

VM-CFI is designed to guarantee CFI of the guest OS. In this chapter, we have actually
launched a rootkit attack which manipulate control-flow of guest OS. The rootkit attack
modifies the data structure related to the virtual file system (VFS) managed by the guest
OS. Specifically it modifies the function pointer associated with the file operation of the
specific file. When the function pointer used later, the attack code injected by the
attacker is executed instead of the normal file operation function. As a result, VM-CFI
analyzes the indirect call packet generated at the moment when the attack code is
executed by referring the manipulated function pointer, and confirms that it is not in the
valid target map.
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6 Related Work

6.1 Virtual Machine Introspection

VMI researches have been examined to verify the state of each virtual machine in the
cloud environment [2, 3]. These studies basically use virtualization technology or
binary modification technology to monitor the hardware resources used by the virtual
machine, or extract information about various events that occur when the virtual
machine is running. However, there are no studies to efficiently extract the control-flow
information of the guest OS. VM-CFI efficiently extracts and processes this informa-
tion using Intel PT to ensure CFI for the guest OS.

Fig. 5. Micro-benchmark experimental results. The horizontal axis indicates the amount of
packets to be processed, and the vertical axis indicates the execution time (s).

Table 2. Unixbench performance overhead of virtual machines

Benchmark Performance overhead

hanoi 2.5%
arith 2.5%
int 2.7%
syscall 7.8%
dhry 5.8%
context1 2.6%
spawn 5.4%
average 4.2%
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6.2 Control-Flow Integrity Using Intel PT

Recently, Intel PT has been able to efficiently extract new execution flow information,
and studies have been made to maintain execution flow integrity by using it [9–11].
However, all of these studies are different from run-time integrity studies for user
applications, in that VM-CFI targets guest OS in the cloud environment. Specifically,
there is a difference in processing Intel PT packets due to asynchronous events.

6.3 Kernel Control-Flow Integrity

KCoFI [4] compiles the kernel into a virtual instruction in a virtualized environment
called Secure Virtual Architecture, and then verifies CFI in the process of converting
the virtual command to the actual command in the virtual machine manager during
kernel operation. Ge et al. [5] is implemented by inserting code that verifies CFI of each
branch instruction of the kernel. At this time, kernel code modification is also imple-
mented to protect the table storing the legitimate destination address from the attacker.
On the other hand, krx [6] blocked the kernel code from being readable and defended
against the Just-In-Time Code Reuse Attack for the kernel by arbitrarily randomizing
the addresses of the codes. There is also a study to verify CFI of the guest OS in units
of memory pages [12]. Although the previous technique has something in common in
that it verifies CFI for the kernel, there is a limitation in practically applying all of the
kernel code to recompile or modify a lot of parts. However, VM-CFI ensures CFI for
the guest OS without these modifications.

7 Future Work

Our concern about VM-CFI is that the packet buffer could become full before integrity
checks executed by VM-CFI are done. In this case, VM-CFI can only either protect
guest OS in real time, or check all the packets generated by Intel PT. Even though this
case did not occur in our experiment, the possibility still remains. We expect this
problem to be solved by using multi-processor or GPU in decoding packets and
integrity check, and it remains as the future work.

8 Conclusion

VM-CFI is a Control-Flow Integrity study for guest OS. Compared to kernel CFI
studies with modifications to existing kernel code, VM-CFI uses hardware features
called Intel PT to verify CFI of the virtual machine with a 4.2% lower overhead without
modifying kernel code.
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