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Abstract. Cloud computing became a routine tool for scientists in
many domains. In order to speed up an achievement of scientific results
a cloud service for execution of distributed applications was developed.
It obliviates users from manually creating virtual cluster environment or
using batch scheduler and allows them only to specify input parameters
to perform their computations. This service, in turn, deploys virtual clus-
ter, executes supplied job and uploads its results to user’s cloud storage.
It consists of several components and implements flexible and modular
architecture which allows to add on one side more applications and on
another side various types of resources as a computational backends as
well as to increase a utilization of cloud idle resources.
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1 Introduction

At the moment a great number of large scale data processing centers are cre-
ated worldwide including different scientific and commercial organizations. The
majority of them deploy their own private cloud environments for hosting ser-
vices and performing computations. The advantages of using cloud computing
has been discussed many times, for example, paper [1] gives a good survey on
this topic. From our point of view, the main benefit of using cloud comput-
ing is its flexible architecture and the ability to reduce the maintenance cost of
computational infrastructure.

The growth of cloud computing has also led to the changes in scientific
computations: it enabled scientists and researchers to launch high-performance
applications without having computing infrastructure at their disposal. One of
key factors in this case may be cloud computing pay-as-you-go financial model,
when the user pays only for the resources he uses. Through the use of this model,
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renting virtual cloud resources only to execute a specific application is often more
beneficial than to purchase, maintain and upgrade hardware at site. In addition
to lower cost, clouds provide flexibility to choose both hardware and software
components, which is not usually the case for traditional physical infrastructures
where horizontal and vertical scaling are done by upgrading the hardware. So,
the main advantages of using cloud infrastructure for scientific computing are
flexibility, low cost of maintenance, and scalability.

Distributed computing paradigms can be characterized into high-
performance computing (HPC), high-throughput computing (HTC) and many-
task computing (MTC) which are usually distinguishes by the measure of
computational tasks interconnect and task execution time [2]. In HPC applica-
tions the tasks are tightly-coupled and require large amount of computing power
over a short period of time (hours or days). On contrary, HTC targets long
running applications (for month or years) consisting of loosely-coupled tasks.
MTC paradigm bridges gap between HTC and HPC. MTC applications can be
distinguished by a very large number of tasks with relatively short per task exe-
cution time and they usually rely on disk I/O throughput rather than network
throughput.

In previous research [3,4] we examined how flexible configuration of virtual-
ized computing and networking resources can influence application performance
and enable multi-tenancy with minimal mutual impact of simultaneously run-
ning parallel applications; in [5] we focused on Hadoop deployment and execution
in virtual container-based clusters and investigated the dependency of Hadoop
benchmarking suite performance on resource restrictions and other simultane-
ously running applications.

In this paper we are focusing on HPC applications for scientific computations
where the most common workflow consists of the following stages. At first, a
group of scientists needs to perform computations, for example, to do modelling,
then the application for this purpose is being developed by their own effort or
by separate team of developers, then this application is being ported to and
executed in cluster environment. The same version of a application is usually
executed many times with different input parameters or input datasets. When
operating in a cloud environment, for each user or an application a new virtual
cluster has to be created and configured either by users themself or by system
administrators. In both cases it leads to delays in the achievement of scientific
results and unnecessary complications.

What makes matter worse, is the problem that these scientists do not have
and shouldn’t have enough experience or knowledge on how to prepare their task
for execution, how to operate cluster schedulers using command line interface
and especially on how to configure a virtual cluster. Instead of all these concerns,
they would prefer to focus on the problems in their scientific field and leave these
that to system administrators.

To solve these problems a cloud service denoted as IdleUtilizer for helping
users to perform HPC computations in a cloud environment was created. It pro-
vides users with a web interface that allows them to specify input parameters
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of their application, submit it for execution and receive its output when it’s
finished. When an application is submitted, this service will deploy a new vir-
tual cluster in a cloud, configure it, prepare and execute user’s application and
then upload its results to user shared cloud data storage. The details of cluster
configuration, its deployment and bootstrapping process are all hidden from the
user. System administrator help is only may be required to add a new application
to the system and for service maintenance.

Because of service’s flexible architecture, IdleUtilizer provides users with a
common interface for executing their job on different computational backends.
Among them are different cloud providers (e.g. OpenNebula and OpenStack)
and batch schedulers (e.g. Slurm) of a physical cluster.

2 Related Works

There are several works attempting to create web interfaces for batch sched-
ulers, for example, there are implementations for HTCondor scheduler [6] or
PBS scheduler [7]. The key difference is that our approach can be described as a
common denominator across different schedulers where the user has ability only
to specify input parameters of his application and where to perform computa-
tions, while scheduler-specific parameters, such as job file or input and output
paths, are hidden from the user.

There are also systems for managing virtual clusters. “Virtual Cluster as a
Service” [8] allows users to create a virtual cluster in OpenNebula cloud with
preconfigured images, and to submit their jobs to this cluster. When user job
is completed he or she may restart it with other input parameters or delete the
cluster. “Dynamic Virtual Cluster” [9] is a similar system that allows to create
a virtual cluster and then submit users jobs, but instead of accessing a cloud
provides, it uses Xen hypervisor directly and deploys Moab scheduler for launch-
ing user jobs. In “Virtual Organization Cluster” [10] the system automatically
creates a virtual cluster exclusively to execute the jobs coming from the grid.
Similar to these approaches, we also create a virtual cluster for executing user
jobs, but we also offer some flexibility in turns of choosing computational back-
ends. Users can decide where to execute their tasks, he or she can choose different
cloud providers or to execute the job in a physical scheduler. Related issues of
adaptation and deployment of a task management system for a private cloud
infrastructure and modelling of message passing middleware in cloud computing
environments is considered in [11,12].

There are also works with similar goals as ours. HPCaa$ [13] and Uncinus [14]
allow users to run their applications in a cloud based on SaaS model. While the
purpose is the same, its implementation differs. In these works, users must create
virtual machine image for each application which would be used for deploying a
cluster. This would not work in our approach as we are using physical clusters
along with virtual and rely on batch schedulers to distribute users jobs. Besides
that we could not find any similar systems available for deployment.
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3 Design and Implementation

Figure 1 shows high level overview of Idle-Utilizer service architecture. It consists
of three main components. At first, there is a web interface that is used by end-
users for configuring and submitting jobs and monitoring their statuses. Web
interface communicates only with the seconds component, idle-utilizer service.
The main responsibilities of this service are to configure computational backend
environment, to prepare, execute and monitor user’s job, and to send the results
back to the user. The third component is computational backed. In case the users
prefers to do computation in a cloud, the cloud provider is accessed for deploying
virtual cluster specifically for executing his job, and in case of the batch scheduler
backend, the job would be created and submitted to the scheduler.

User Web-interface
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Fig. 1. Idle-Utilizer high-level architecture.

The web interface component and users scenarios are covered in [15]. From
IdleUtilizer point of view, the interactions are done through the request pro-
tocol defined over XML-RPC (remote procedure calls). Among the supported
procedures are mainly the ones for submitting a new request, obtaining its state
and deleting it. When submitted, request specifies such parameters as user job
resources demand (number of nodes, CPUs, memory and time), task template
and job input parameters, it also specifies which computational backend to use
and where and how to upload job results. As request processing advances, addi-
tional information such as cluster configuration and batch scheduler status are
stored in the request and is available for RPC client.

The Idle-Utilizer service is a core component as it is responsible for handling
RPC request, orchestrating virtual cluster environment, submitting and moni-
toring jobs statuses in batch scheduler and uploading their results to user shared
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directory. This service has its own database for holding active requests. With a
specific interval (2s) it updates each request by changing its state as depicted in
Fig. 2 In case an error occurs in any of the transitions between states, its mes-
sage is stored in the database and can be reported to the user. Before and after
each stage and on error custom scripts (so called hooks) can be executed e.g.
for benchmarking, creating job-specific files or error reporting, but they usually
hidden from end-users.

New
Request

A request
is queued

Job is finished,

Pending Baich Scheduler Submitting Jobis batch scheduler m
Backend created backend

A

i

Cloud Backend Job is finished,
cloud backend

Booting
VMs are Virtual cluster
ready is terminated

Virtual cluster
is ready

i

Bootstrapping

}

Fig. 2. Request states transitions.

As soon as the request is received it starts transitioning from pending to
done (Fig.2). In pending state virtual machines are requested to spawn, or in
case of physical cluster backend, it transitions to submitting state. When virtual
machines have started (booting stage), they autostart HTCondor software and
add themselves into HTCondor pool (bootstrapping stage). During submitting
stage (Fig.3), job file is created and submitted to the scheduler. When the job
is finished (after executing stage), virtual cluster is terminated and the request
is considered to be done.

The computational backend is specified in users’ request. Right now
OpenNebula cloud and Slurm batch scheduler are supported. If batch scheduler
backend is specified, request handling process is straightforward as IdleUtilizer
mainly serves as an interface for a scheduler.

In case of a cloud backend, a new virtual cluster is deployed for executing user
job. Each node of a virtual cluster is created from the same template and the
same image, they only may differ by the amount of memory and the number of
CPU cores. HTCondor scheduler software is installed in virtutal machine image
and it is configured to automatically register itself in the pool of HTCondor
scheduler. HTCondor scheduler is only used for assigning jobs for execution
to a virtual cluster. Although the architecture can be simplified by omitting
HTCondor scheduler, we decided to keep it for its simplicity of managing user
jobs compared to manual approach and for consistency with physical cluster
environment,.
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{

’status’: ’submitting’,
’status_updated_at’: 1512462493,
’resources’: {

’nodes’: 2, ’memory’: 4096, ’cpu’: 4, ’time’: 100},
’scheduler’: {

’name’: ’htcondor’,

’hosts’: [ ’host-100’, ’host-101’ ]},
’backend’: {

’name’: ’opennebula’,

‘owner’: {’gid’: 1, ’uid’: 196},

’hosts’: [

{ ’id’: 100, ’ip’: ’10.10.0.100’ },
{ ’id’: 101, ’ip’: ’10.10.0.101’ }1},

’template’: ’....°,
’user_data’: {

’keyl’: ’valuel’,

# Job parametres
},

}

Fig. 3. An example of request fields at submitting stage.

Similar to physical cluster environment, the nodes of virtual cluster have
shared file system mounted for executing distributed applications and exchanging
job input and output files.

Before the job is executed, user’s custom scripts in scheduler manager node
can be executed for obtaining input files either by generating them from job
request value or by downloading them from remote location. When the job is
finished its output is uploaded to user’s cloud storage directory.

4 Experiments

In our experiment we used NAS Parallel Benchmarks (NPB) which consists
of several widely used set of programs designed to evaluate the performance
of HPC systems. The benchmarks is a set of five kernels program and three
pseudo-applications that mimic scientific computations. Problem sizes in NPB
are predefined and indicated as different classes. We used MG, FT, CG and IS
kernels of A, B and C classes:

— IS (Integer Sort): sorts small integers using the bucket sort. This test is CPU
and Memory intensive but with low inter-node communications.

— CG (Conjugate Gradient): calculates conjugate gradient method. This test is
both memory- and communication-intensive.
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— MG (Multi-Grid): solves discrete Poisson equation using multi-grid method.
This test is both memory- and communication-intensive.

— FT (Fourier Transform): solves three-dimensional partial differential equation
using the fast Fourier transform. This benchmarks tests inter-node all-to-all
communications.

For a testbed we used OpenNebula cloud with KVM hypervisor provided by
JINR [16].

Experiments showcasing low overhead of virtualization for HPC applications
have been done many times by different authors [8,17]. Instead, in experiments,
we tried to justify the need for automatic virtual cluster configuration depend-
ing on job input parameters. There are two values that should be minimized:
the size of virtual cluster (the number of virtual machines and their memory
requirements) and job execution time. Figure4 shows that for each benchmark
the minimal amount of memory can be set without sacrificing the performance.
Also Fig. 5 shows that by increasing the number of virtual machines from 4 to 8 in
some cases (especially in cg and mg) yields the performance increase significantly
less in comparison with 2 to 4. In other experiments (Fig.6) we have throttled
network bandwidth to show that in some hardware configurations there may
be peaks of performance at the certain number of nodes, and when this num-
ber increases further, job performance degrade drastically. This can be noticed
with network bandwidth of 50 Mbits/s, when the optimal number of nudes
is 2 or 4.
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5 Conclusion and Future Works

We have created a software-as-a-service system for launching HPC applications.
IdleUtilizer service allows users to execute their jobs by only specifying input
parameters via web interface and then to obtain the results via their cloud
storage. To achieve this, IdleUtilizer service creates a virtual cluster in a cloud,
creates and submits the job for execution on this cluster and, when it’s done,
transfers results to user. Besides the cloud environment, user jobs can also be
submitted for execution to the scheduler of physical HPC cluster.
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The primary goal of this service is to simplify the workflow of HPC
application execution for scientists. IdleUtilizer service has already been
deployed in JINR cloud [16] and used with long Josephson junction modelling
application [18].

In the current version, users still have to make decision on a cluster config-
uration, i.e. he or she needs to know job resource requirements to specify the
number of nodes, the amount of memory and CPUs per node. Finding these val-
ues for each set of application parametres sometimes may be rather tedious. But,
as our experiments have shown, it may help to reduce not only the job execution
time, but also job unused resources. To simplify this process we are planning to
extend the functionality of IdleUtilizer service so that before every execution, it
will analyze the information about previous job executions and then hint user
an optimal cluster configuration.
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