
GPGPU for Problem-Solving
Environment in Accelerator Physics

Nataliia Kulabukhova(B)

Saint-Petersburg State University, Saint Petersburg, Russia
n.kulabukhova@spbu.ru

Abstract. The paper contains the survey of benefits of using graphi-
cal processors for general purpose computations as a part of problem-
solving environment in the beam physics studies. The comparison of
testing numerical element-to-element modelling on CPU and the long-
turn symbolic simulation with the general purpose GPUs in the working
prototype is made. With the help of the graphical processors from both
sides - the general purpose computations and the graphical units itself -
the analysis of beam behaviour under the influence of the space charge
is done.

1 Introduction

The use of graphical processors in the case of simulation of beam dynamics is
widely spread through particle accelerator scientists [1–6] today as, without a
doubt, a very popular approach, though it is not quite a new one in other areas
of science. But in accelerator physics there are some problems with porting the
earlier realised program components to the hybrid architecture. We will speak
about it below.

Last year we present the idea of using graphical processors for simulation
and visualization in the terms of constructing Virtual Accelerator Laboratory
(VAL) [7]. In the work we described how to develop a model of real machine and
test the behaviour of the beam inside the virtual system of control elements, such
as dipoles, quadrupoles, sextupoles and drifts. As far as VAL is a problem-solving
environment, it is divided in to special blocks of components.

In this paper we will involve only this set of components:

The block of control elements: with the help of it the user can construct the
main view of the future accelerator (for example, Fig. 1).

The block of particle distribution: which forms the initial particle distribu-
tion coming from the source.

The block of data: the data base with all calculated results.
The block of GPU vizualization: the result of calculations presented in a

3D graphical form.

The work is supported by RFBR 16-07-01113A.

c© Springer International Publishing AG, part of Springer Nature 2018
O. Gervasi et al. (Eds.): ICCSA 2018, LNCS 10963, pp. 51–60, 2018.
https://doi.org/10.1007/978-3-319-95171-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95171-3_5&domain=pdf
http://orcid.org/0000-0002-5380-2096


52 N. Kulabukhova

Fig. 1. Schematic view of accelerator ring for modelling the long-turn evolution

2 The Idea of the Matrix Form of the ODE

The main idea of the concept is to describe the behaviour of some dynamic
system with the set of ordinary differential equations presented in the matrix
form. Let us have a system:

dX

dt
= F (X, t), (1)

where F (X, t) - arbitrary, analytic in the neighborhood X = 0,X ∈ Rn and
measurable t ∈ [t0, ts] ∈ Rn function.

According to [8], Eq. (1) can be written:

dX

dt
=

k∑

i=0

P
1i(t)X [i], (2)

where P
1i matrix with symbolic coefficients obtained from the original ODE.

This matrix has the form:

P
11 =

⎛

⎜⎜⎜⎜⎜⎜⎝

P
11

P
12 . . . P1k . . .

O P
22 . . . P2k . . .

...
...

. . .
...

. . .
O O . . . Pjk . . .
...

...
. . .

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
,

Dimensions of control matrices depend on the length of the vector X and the
order of nonlinearity necessary for the experiment.



GPGPU for Problem-Solving Environment in Accelerator Physics 53

In the course of symbolic computation elements of final matrix P can be
calculated by series expansion:

{
P
1k(t)

}
ij

=
1

k1! . . . kn!
∂kFi(Xj , t)

∂xk1
1 . . . ∂xkn

n

∣∣∣∣∣
x1=···=xn=1

Depending on the problem Eq. 1 can be represented in numerical form:

X =
k∑

i=0

R
1i(t)X [i]

0 , (3)

where R
1i – matrix with numerical coefficients.

Initial vector X = {x, y, x′, y′, s, . . . }T can also be written as a matrix con-
sisting of vectors:

X0 =

⎛

⎜⎜⎜⎜⎜⎝

x1 x2 · · · xn

y1 y2 · · · yn
x′

1 x′
2 · · · x′

n

y′
1 y′

2 · · · y′
n

...
...

. . .
...

⎞

⎟⎟⎟⎟⎟⎠

Thus, during calculations is the multiplication of the matrix by the matrix:

Xs =
k∑

i=0

R
1i(t)X[i]

j , (4)

3 The Space Charge Example

The these part describes how it works on the example of the influence of space
charge on the dynamics of the beam.

The equations of the cross-section motion in the beam without bunches can
be written in the following form:

x′′ =
q

p

√
1 + x′2 + y′2(y′Bs − (1 + x′2)By + x′y′Bx +

√
1 + x′2 + y′2 Ex

cβγ
),

y′′ = −q

p

√
1 + x′2 + y′2(x′Bs − (1 + y′2)Bx + x′y′By +

√
1 + x′2 + y′2 Ey

cβγ
) (5)

In the linear case for example for quadrupole they will look as shown below

x′′ +
qBxy

m0cβγ
x − q

ε0m0c2β2γ3
EL

x = 0,

y′′ − qByx

m0cβγ
y − q

ε0m0c2β2γ3
EL

y = 0 (6)

According to the matrix form the influence of the space charge will modify
the Eq. (2) this way:

dX

dt
=

k∑

i=0

(Pext1i(s) + Pself
1i(s))X [i], (7)



54 N. Kulabukhova

Now we have the part, which respond to the external field and the part of the
self space charge forces. The external field describes by the components of the
vector of magnetic induction. And for the space charge responds the intensity
vector.

Matrices Pext
11(s) + Pself

11(s) in linear case will be:

Pext =

⎛

⎜⎜⎝

0 1 0 0
−kx 0 0 0
0 0 0 1
0 0 −ky 0

⎞

⎟⎟⎠ (8) Pself =

⎛

⎜⎜⎝

0 0 0 0
−ηx 0 0 0
0 0 0 0
0 0 −ηy 0

⎞

⎟⎟⎠ (9)

For non-linear case the Eq. (5) will be

x′′ + (Kx − Lx)x = axx
3 + bxxx′2 + cxy2 + (Kx)′xyy′ + dxxy′2 + Kxx′yy′,

y′′ + (Ky − Ly)y = ayy
3 + byyy′2 + cyx2 + (Ky)′yxx′ + dyyx′2 + Kyy

′xx′ (10)

where
Kx =

qBxy

m0cβγ
,

Ky =
qByx

m0cβγ
,

Lx = α
qI

πε0m0c3β3γ3rx(rx + ry)
,

Ly = α
qI

πε0m0c3β3γ3ry(rx + ry)
.

Therefore the external and self matrices will take the following form

P
11 =

(
P
11

x 0
0 P

11
y

)

P
13

x =
(
P
11

x O P
13

x O

0 P
22

x O P
24

x

)

The idea of the matrix form of the ordinary differential equations is not new
[9]. But with the help of evolution of the graphical processors these form of the
equations get a new life. And next the usage of these method will be presented.

4 Linear Cases on CPU

The workflow of the environment is shown on the scheme on Fig. 2. The initial dis-
tribution of the particles and the structure of the machine is set to the database to
begin working with. The user can choose the style of the machine: linear or cyclic.
Then the mode of the simulation can be defined: element-to-element or long-turn
evolution. By element-to-element we mean the test of the system, when the visu-
alization of particle distribution is made after each element.

The results of computations in linear case for different distributions are shown
on the pictures below. The system in this example consists of several drifts and
quadrupoles under the FODO concept



GPGPU for Problem-Solving Environment in Accelerator Physics 55

drift FQ drift DQ ... drift FQ drift DQ drift

where DQ - defocusing quadrupole, FQ - focus quadrupole.
The studies show that the algorithm works with commonly used distribu-

tions - Gauss (Fig. 3) and uniform (Fig. 4). On Fig. 5 new Gauss distribution
of 10000 particles on CPU is shown. And on Fig. 6 new uniform distribution of
10000 particles on CPU is shown.

Fig. 2. General scheme of the workflow of the PSE



56 N. Kulabukhova

Fig. 3. Initial Gauss distribution,
N=10000 particles

Fig. 4. Initial Uniform distribution,
N=10000 particles

Fig. 5. New Gauss distribution of 10000 particles on CPU in (X, Y), (X, Px), (Y, Py),
(Px, Py)



GPGPU for Problem-Solving Environment in Accelerator Physics 57

5 Long-Turn Evolution of the Beam on GPU

When we speak about the linear machine with some meters lengthwise, the per-
sonal computer will solve our problems. But in the case of the storage ring with
the long-turn evolution of the beam, we need the machine like the accelerator
itself to get the result in suitable time. As the result of transformation of the
ODE we get matrices in the sparse form. The problem is how to compute them
on the GPU in the most effective way. The advantage of using sparse matrices on
GPU is that we have a lot of zero elements, which can be empty components to
be loading from the CPU memory to the memory of the GPU. But the fact that
we get the partial result from every element the memory exchanges will outweigh
the advantages of the sparse matrices. For that reason we compute the part of
accelerator (rather the quarter of it) in the symbolic way to get the total matrix
of this part to load it on the device. As the whole machine consists of symmet-
ric sections, with some corrections these matrix can be used for modelling the
long-turn evolution of the beam with minimum (in some way) computational
resources. The schematic view of such system is shown on the Fig. 1.

Fig. 6. New uniform distribution of 10000 particles on CPU in (X, Y), (X, Px),
(Y, Py), (Px, Py)



58 N. Kulabukhova

Computations were made on GeForce GTX 1060 6 GB with compute capabil-
ity 6.1. The whole environment is developed on Python 3.6 libraries. Obviously,
Python is not a quick tool for computations, but it is used as background of all
important components. Python plays a role of something like glue, it links every-
thing in one working system. The main computational blocks are constructed
with the following modules:

NumPy – scientific computations on CPU [10];
pyCUDA – general purpose computations on GPU [11];
SymPy – symbolic calculations of control elements for sending on GPU [12];
TkInter – graphical user interface [13];
Seaborn – visualization of obtained results [14];

Furthermore, there are some libraries, which are going to used for future work
with machine learning and neural networks, such as Scikit-learn [15] and Ten-
sorFlow [16]. The results of computations of new Gauss distribution of 1000000
particles on GPU are shown on Fig. 7.

Fig. 7. New Gauss distribution of 1000000 particles on GPU in (X, Y), (X, Px),
(Y, Py), (Px, Py)



GPGPU for Problem-Solving Environment in Accelerator Physics 59

6 Discussion

In works [17–19] the concurrency is made for a simple part of the large particle
physics simulation toolkits, such as Geant4 and Elegant. The difficulty is that
these toolkits were developed for CPU only systems. And they cannot be easily
ported for general purpose GPU computations. On the contrary, the method of
matrix form of ODE has parallel principle inside. Besides, we constructing the
problem-solving environment as a toolkit based on the idea of matrix represen-
tation of ODE, but not in reverse. In this case, there is no such a problem of
adapting, because we develop a parallel system originally.

The main difficulty in GPGPU development for the matrix algorithm is the
amount of data sent on device. It is a bottleneck of practically every GPU pro-
gram. As every non-zero P ij matrices can be calculated separately and all zero
elements are not needed for computations and not sent on device, save resources
for the set of particles.

7 Conclusion

The idea of the problem-solving environment is to provide the scientist with a
clear and easy environment to simulate and predict the behaviour of the beam.
The result of the simulation should be shown in numerical and graphical ways.

In this work the long-turn simulation of the beam with the help of the graph-
ical processors is made. The future work will be dedicated to visualization of the
received results. Besides, the KV-distribution is under testing, and the results
of simulation using this distribution can be compared with other works.

Another idea is to use the machine learning algorithms to analyse the numer-
ical data and the neural networks, especially the deep learning approach to pro-
cess visual data of the experiment.

Acknowledgments. The author would like to express gratitude to Vladimir Korkhov
for valuable help. The work was sponsored by the Russian Foundation for Basic
Research under the project: 16-07-01113 “Virtual supercomputer as a tool for solving
complex problems” and the SPbSU equipment project: 9.40.1615.2017 “Deployment of
experimental high-performance computing infrastructure to support scientific research
of the Department of computer modelling and multiprocessor systems”.

References

1. Kulabukhova, N., Andrianov, S.N., Bogdanov, A., Degtyarev, A.: Simulation of
space charge dynamics in high intensive beams on hybrid systems. In: Gervasi, O.,
et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 284–295. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42085-1 22

2. Kulabukhova, N.: Software for virtual accelerator environment. In: RuPAC 2012
Contributions to the Proceedings. JACOW (2012)

3. Petrov, D.A., Stankova, E.N.: Use of consolidation technology for meteorological
data processing. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp.
440–451. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09144-0 30

https://doi.org/10.1007/978-3-319-42085-1_22
https://doi.org/10.1007/978-3-319-09144-0_30


60 N. Kulabukhova

4. Stankova, E.N., Balakshiy, A.V., Petrov, D.A., Shorov, A.V., Korkhov, V.V.: Using
technologies of OLAP and machine learning for validation of the numerical models
of convective clouds. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp.
463–472. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42111-7 36

5. Bogdanov, A., Degtyarev, A., Korkhov, V., Gaiduchok, V., Gankevich, I.: Virtual
supercomputer as basis of scientific computing. In: Horizons in Computer Science
Research, vol. 11. Nova Science Publishers (2015)

6. Korkhov, V., Kukla, T., Krefting, D., Terstyanszky, G.Z., Caan, M., Olabarriaga,
S.D.: Exploring workflow interoperability tools for neuroimaging data analysis. In:
Proceedings of the 6th Workshop on Workflows in Support of Large-Scale Science
(2011)

7. Kulabukhova, N., Bogdanov, A., Degtyarev, A.: Problem-solving environment for
beam dynamics analysis in particle accelerators. In: Gervasi, O., et al. (eds.) ICCSA
2017. LNCS, vol. 10408, pp. 473–482. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-62404-4 35

8. Andrianov, S.N.: Dynamical Modeling of Control Systems for Particle Beams. Saint
Petersburg State University, Saint Petersburg (2004)

9. Miklos, S.: Electron and Ion Optics. Mir, Moscow (1990). (in Russian)
10. NumPy: the fundamental package for scientific computing with Python. http://

www.numpy.org/
11. pyCUDA: Nvidia’s CUDA parallel computation API for Python. https://documen.

tician.de/pycuda/
12. SymPy: a Python library for symbolic mathematics. http://www.sympy.org/en/

index.html
13. TkInter: Pythons de-facto standard GUI package. https://wiki.python.org/moin/

TkInter
14. Seaborn: Python visualization library based on matplotlib. http://seaborn.pydata.

org/index.html
15. Scikit-learn: tools for data mining and data analysis. http://scikit-learn.org/

stable/
16. TensorFlow: an open source machine learning framework
17. Seiskari, O., Kommeri, J., Niemi, T.: GPU in Physics Computation: Case Geant4

Navigation (2011). https://arxiv.org/pdf/1209.5235.pdf
18. Amyx, K., Balasalle, J., King, J., Pogorelov, V., Borland, M., Soliday, R.: Beam

dynamics simulations with a GPU-accelerated version of elegant. JACOW (2013)
19. King, J.R., Pogorelov, I.V., Amyx, K.M., Borland, M., Soliday, R.: GPU accelera-

tion and performance of the particle-beam-dynamics code Elegant (2011). https://
arxiv.org/pdf/1710.07350.pdf

https://doi.org/10.1007/978-3-319-42111-7_36
https://doi.org/10.1007/978-3-319-62404-4_35
https://doi.org/10.1007/978-3-319-62404-4_35
http://www.numpy.org/
http://www.numpy.org/
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
http://www.sympy.org/en/index.html
http://www.sympy.org/en/index.html
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
http://seaborn.pydata.org/index.html
http://seaborn.pydata.org/index.html
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://arxiv.org/pdf/1209.5235.pdf
https://arxiv.org/pdf/1710.07350.pdf
https://arxiv.org/pdf/1710.07350.pdf

	GPGPU for Problem-Solving Environment in Accelerator Physics
	1 Introduction
	2 The Idea of the Matrix Form of the ODE
	3 The Space Charge Example
	4 Linear Cases on CPU
	5 Long-Turn Evolution of the Beam on GPU
	6 Discussion
	7 Conclusion
	References




