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Abstract. Data preprocessing is an important stage in machine learning. The use
of qualitatively prepared data increases the accuracy of predictions, even with
simple models. The algorithm has been developed and implemented in the pro-
gram code for converting the output data of a numerical model to a format suitable
for subsequent processing. Detailed algorithm is presented for data pre-processing
for selecting the most representative cloud parameters (features). As a result, six
optimal parameters: vertical component of speed; temperature deviation from
ambient temperature; relative humidity (above the water surface); the mixing ratio
of water vapour; total droplet mixing ratio; vertical height of the cloud has been
chosen as indicators for forecasting of dangerous convective phenomena (thun-
derstorm, heavy rain, hail). Feature selection has been provided by using recursive
feature elimination algorithm with automatic tuning of the number of features
selected with cross-validation. Cloud parameters have been fixed at mature stage
of cloud development. Future work will be connected with identification of the
influence of the nature of the evolution of the cloud parameters from initial stage to
dissipation stage on the probability of a dangerous phenomenon.
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1 Introduction

Global warming produced by permanent anthropogenic influence on the atmosphere
leads to an increase in the intensity of convective processes. The increase in temper-
ature and the increase in air humidity are two facts that together lead to an intensifi-
cation of active convection in the atmosphere, which in turn entails an increase in the
number of heavy rains, an increase in thunderstorm activity, an increase in the number
of tornadoes and an increase of other dangerous convective phenomena that have a
tremendous destructive effect. Therefore, the problem of operational forecast of dan-
gerous convective phenomena (thunderstorm, heavy rain, hail) is one of the most
relevant and practically significant.

© Springer International Publishing AG, part of Springer Nature 2018
O. Gervasi et al. (Eds.): ICCSA 2018, LNCS 10963, pp. 149–159, 2018.
https://doi.org/10.1007/978-3-319-95171-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95171-3_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95171-3_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95171-3_13&amp;domain=pdf


Variable specificity of convective clouds, caused by large vertical velocities within
the cloud and its environment, and also the impossibility of carrying out control
experiments lead to the fact that the greatest success can be achieved by computer
research, which allows, without resorting to costly field experiments, to carry out an
analysis of the development of the cloud. Forecast of dangerous convective phenomena
is based upon the results of such an analysis.

Computer researches are based on numerical modeling. The construction of a
numerical model consists of two stages: the first is the creation of a qualitative model,
the second is the creation of a quantitative model. Creation of a qualitative cloud model
implies formalization of the physical processes taking place in it and allows to reveal
significant properties. As a result of the construction of a quantitative model, mea-
surement scales and standards are established for each of these properties, which makes
it possible to characterize the properties numerically.

Computer simulation provides a set of the output data that must be analyzed in
order to build a forecast of dangerous convective phenomenon caused by the devel-
opment of the cloud with such properties.

Methods of machine learning allow to automate the process of forecasting. The
application of machine learning methods consists in carrying out a series of compu-
tational experiments, with the purpose of analyzing, interpreting and comparing the
simulation results with the actual behavior of the object under study and, if necessary,
the subsequent refinement of the input parameters.

Methods of machine learning implement the concept of data mining. This concept
consists in processing large amounts of data and identifying on their basis various
relationships and patterns. However, the data may be inaccurate, heterogeneous,
inconsistent, contain omissions, which leads to incorrect forecasting. Therefore, an
important step is feature selection, that is identification the most significant features
among the data obtained.

The present paper is concerned mainly with the description of this important step of
machine learning in case of preprocessing data for analyses of the results of numerical
modeling of convective cloud.

2 Data Formation for the Research

As it is well known, the tasks of machine learning are reduced to the problem of finding
an unknown relationship between a known set of objects and a set of answers [1, 2].
So, it is necessary to construct a function that would approximate sufficiently accurately
the values of the set of responses at the points of the set of objects and on the rest of the
space.

Everything can be considered as objects: web pages, countries, people, products,
businesses, that is everything that carries any information (has a set of features).
Features are understood as methods for measuring the characteristics of objects in the
space under study.
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Depending on the answers (values of the target variable), the tasks of machine
learning are divided into types. The main types of machine learning tasks are:

• classification tasks;
• regression problems;
• ranking tasks.

Our task relates to the problems of regression.
The model of relationship between a known set of objects and a set of answers is

called model of algorithms. The problem of finding the dependency model is reduced to
constructing an algorithm that would equally accurately approximate the unknown
target dependence, both on the sample elements and on the entire object space. This
task was called the training with the teacher (supervised learning).

At the training stage, a training sample is used to identify the dependency, and
optimization of the parameters is performed using it.

In our case training sample represents a set of radiosonde soundings obtained at a
place and on a time when the dangerous convective phenomena take place. Radiosonde
soundings were used as input data for one and a half convective cloud model [3–7].
Our training set consists of numerical parameters simulated by a numerical cloud
model for each sounding, and is manually marked, that is, for each sounding from our
set we know whether any dangerous convective phenomenon has been observed or not.

So the fact of dangerous phenomenon occurrence can be considered as an answer,
and the results of numerical modeling, using as an input the corresponding radiosonde
sounding, can be considered as an object.

The numerical parameters of the simulated clouds were chosen as an object fea-
tures. There is a problem that should be discussed concerned with the time and height
when and where the features are to be fixed. In the previous our works [8, 9] it was
decided to fix the numerical parameters at the moment of maximum cloud development
and at the height, where the maximum ratio of water droplets was observed. These time
moment and height correspond to the mature stage of cloud development. But there are
three stages in cloud evolution: stage of development, mature stage and dissipation
stage. And it would be interesting to identify the influence of the nature of the evolution
of the cloud parameters from stage to stage on the probability of a dangerous phe-
nomenon with the help of machine learning methods. But at present there are no
appropriate algorithms. So the only way out is to fix the cloud parameters not only at
mature stage, but at the stages of development and dissipation also. Data preprocessing
and subsequent analyses should be provided for the three sets of features and the best
set from the point of the most accurate forecast should be chosen.

Training sample represents a set of radiosonde soundings obtained at a place and on
a time when the dangerous convective phenomena take place were obtained with the
help of integrated information system [10–15], which allow to integrate information
about the dates and types of different convective phenomena and about vertical dis-
tributions of temperature and relative humidity observed on these dates and places.
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3 Data Preprocessing

Data preprocessing is an important stage in machine learning. The use of qualitatively
prepared data increases the accuracy of predictions, even with simple models.

At the first stage of preparation, it is necessary to transform data specific for the
subject domain into understandable vectors for the model. For these purposes, an
algorithm was developed and implemented in the program code for converting the
output data of a numerical model to a format suitable for subsequent processing (the
columns correspond to the characteristics, each line to a sounding uniquely determined
by the values of the signs of time and height).

The next stage of data preprocessing is the adaptation of the data set to the
requirements of the algorithm. The data has been subjected to normalization in view of
the fact that most of the gradient methods that underlie almost all the algorithms of
machine learning are highly sensitive to data scaling.

As a result of preprocessing, the data were brought to a form convenient for further
work with machine learning methods.

The main statistical characteristics of the numerical data (the number of unallocated
values, mean, standard deviation, range, median, 0.25 and 0.75 quartiles) are shown in
Fig. 1. Analyzing these data, we can conclude that we have a complete set of data (the
number of records is the same for each column, which indicates the absence of
omissions in the data, their completeness).

The mean values of numerical features in the data with and without the phe-
nomenon are presented in Table 1.

From the Table 1 we can conclude that such features as temperature and pressure
play a weak role in predicting the phenomenon.

Grouping of data depending on the target variable and output of statistical data
allows displaying the number of unset values, average value, standard deviation, range
and median separately for the sets of soundings with and without phenomena.
A fragment of the statistical data grouped by the value of the target variable is pre-
sented in Table 2.

Fig. 1. Main statistical characteristics
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Figure 2 shows the graphs of the dependencies of various characteristics from each
other (boxplot), the histograms of the distribution are on the diagonal.

A more detailed display of the relationship between two features: the deviation of
temperature from the ambient temperature and the vertical component of wind speed is
shown in the Fig. 3.

The matrix of correlation of numerical features is the form of the data matrix, which
includes correlation coefficients for all pairs of analyzed variables. The correlation
matrix is the basis for factor analysis, canonical correlation, and other statistical

Table 1. Mean values of numerical features

Without phenomenon With phenomenon

Table 2. A fragment of the statistical data grouped by the value of the target variable
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techniques that reproduce the structure of the relationship between variables. A visual
display of the correlation matrix of the characteristics used for the prediction of dan-
gerous convective phenomena is given in Fig. 4.

When studying the features in a large group, different values of this characteristic
are observed and occur unevenly a number of times: some more often, others less often.
The distribution of the features from the minimum to the maximum is carried out,
ordered when broken down into classes, that is, a variation series is constructed. The
variation series are a double series of numbers consisting of the designation of classes
and the corresponding frequencies.

Fig. 2. Diagram of the range of feature values (boxplot)

Fig. 3. The relationship between the feature of temperature excess from ambient temperature
and the vertical component of velocity
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The variation series includes all the primary material for the measurement of the
feature in all representatives of the group. This material in the variation series is
brought in a certain order, which makes it possible to characterize the sign, both at the
average level of development, and on various details of diversity with an approxi-
mation that is quite sufficient for the first acquaintance with the feature.

For more detailed familiarization with the alignment of the characteristic, a vari-
ation curve is plotted graphically in the form of a curve whose ordinates are propor-
tional to the frequencies of the variation series. The distribution of features can serve to
identify a certain pattern. The norm of mass random manifestation of features,
according to this, is called the normal distribution, which is usually hidden under the
random form of its manifestation. The distributions of the characteristics are presented
in the Fig. 2. A diagram of the scale (boxplot) is widely used to display the connection
of characteristics with the target variable.

The boxplot is a limited area in the form of a rectangle (box), lines and points. The
area bounded by the rectangle shows the inter quantile range of the distribution, that is,
respectively 25% (Q1) and 75% (Q3) percentiles. The bar inside the rectangle indicates
the median of the distribution. The lines that extend from the rectangle represent the
entire scatter of points except the ejections, that is, the minimum and maximum values
that fall within the gap.

ðQ1� 1.5 * IQR, Q3 + 1.5 * IQRÞ; ð3:1Þ

where IQR = Q3–Q1 is an inter quantile range.
Points on the graph indicate emissions, that represent those values that do not fit

into the range of values specified by the lines of the graph. An example of a boxplot is
shown in Fig. 5.

Fig. 4. Matrix of correlation of numerical features
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The result of plotting the boxplot for the features used in this paper is given in the
Fig. 2. This kind of diagram in a convenient form shows the median, the lower and
upper quartiles, the minimum and maximum value of the sample, and the outliers.
Several such diagrams, constructed on the same plane, allow one to visually compare
one distribution with another. Distances between different parts of the box allow you to
determine the degree of dispersion (dispersion) and data asymmetry and to identify
emissions.

Based on the results obtained, it can be concluded that the most interesting
parameters are the vertical component of velocity, pressure, temperature deviation from
ambient temperature, relative humidity.

One of the most important stages in the preparation of data is the selection of the
most significant features. The reduction in the number of features (the rejection of
features that are weakly correlated with the target variable) not only increases the
accuracy of the prediction, but also lowers the requirements for the computing
resources used.

There are various methods for feature selection, they can be divided into three
groups:

• methods of filtration;
• methods for selecting the best subset;
• built-in methods.

The filtration methods are based on a statistical approach and consider the effect of
each feature on the prediction error independently.

The Information gain method is one of the filtering methods. The IG (Information
gain) parameter indicates the degree of correlation between the characteristic and the
target variable. Thus, the method allows you to rank the characteristics by significance,
degree of correlation with the target variable.

The degree of correlation of features with the target variable was represented using
the matrix in the Fig. 4. According to this matrix, we can conclude that the most
significant features are:

Fig. 5. Example of a boxplot
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• vertical component of speed;
• temperature deviation from ambient temperature;
• relative humidity (above the water surface);
• the mixing ratio of water vapour;
• total droplet mixing ratio.

Filtering methods have low computational costs and work reliably on training sets,
where the number of features exceeds the number of examples - these characteristics
are advantages of this group of methods. However, an essential drawback is to work
with each feature independently, because such an approach does not allow us to
determine a subset on which the prediction accuracy will be the highest.

Methods for determining the best subset of characteristics consist in starting the
classifier on different subsets and selecting a subset with the best parameters on the
training sample. In turn, the methods of this group can be divided into inclusion
methods and methods of exclusion. In the first case, the method starts with an empty
subset, then at each step the optimal attribute is selected, in the second case, the initial
subset is equal to the original set of characteristics. The work of the method consists in
excluding the feature at each step with the reclassification of the classifier.

Recursive Feature Elimination method from the library scikit-learn is an example of
methods for the gradual elimination of features [16]. To use this method, the support
vector method was chosen as the classifier. As a result, the following six parameters
appeared to be optimal for using as forecasting indicators:

• vertical component of speed;
• temperature deviation from ambient temperature;
• relative humidity (above the water surface);
• the mixing ratio of water vapour;
• total droplet mixing ratio;
• vertical height of the cloud.

4 Conclusions

Detailed algorithm is presented for data pre-processing for selecting the most repre-
sentative cloud parameters (features). As a result, six optimal parameters: vertical
component of speed; temperature deviation from ambient temperature; relative
humidity (above the water surface); the mixing ratio of water vapour; total droplet
mixing ratio; vertical height of the cloud has been chosen as indicators for forecasting
of dangerous convective phenomena (thunderstorm, heavy rain, hail). Feature selection
has been provided by using recursive feature elimination algorithm with automatic
tuning of the number of features selected with cross-validation. Cloud parameters have
been fixed at mature stage of cloud development.

Future work will be connected with identification of the influence of the nature of
the evolution of the cloud parameters from initial stage to dissipation stage on the
probability of a dangerous phenomenon. All the collected data should be integrated to
the previously developed integrated information system [10–15]. In future the system
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should become a consistent part of the Virtual private supercomputer [17, 18] and will
be organized similar to the systems presented in [19, 20], that will enable users to
provide forecasts of the dangerous convective phenomena by themselves.
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