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Abstract. Performing large scale numerical simulations is essential to
understand the explosion mechanism of core-collapse supernovae. It
is mandatory to solve a multi-physics system described by coupled
equations of hydrodynamics and neutrino-radiation transfer in multi-
dimensions. Since the neutrino transfer is in principle governed by the
Boltzmann equation in six-dimensional space, numerical simulations
require large computational resources. Having the final goal to realize
acceleration of such simulations, we study the numerical computations of
neutrino-radiation hydrodynamics under spherical symmetry by exploit-
ing GPU devices, which has become a powerful equipment in scientific
high performance computing. As the first step, we focus on the most
time consuming part: a linear equation solver for a block tridiagonal
matrix which appears in a spherically symmetric simulation. To offload
this part to the GPU devices, we employ OpenACC as a framework of
implementation as well as make use of cuBLAS library that is available
on NVIDIA’s CUDA environment. Practical performance is examined on
two systems with the Kepler and Pascal generations of NVIDIA’s GPU
architecture.

1 Introduction

Supernova explosions are spectacular displays in the Universe and the dynami-
cal phenomena at the end of stellar life [1,2]. Gravitational collapse of the mas-
sive stars with more than 10 times the solar mass leads to the compression of
Fe core and the following core bounce, which launches the shock wave toward
the explosion. Despite the long history of investigations based on this general
idea, the detailed mechanism of the core-collapse supernova explosion is still elu-
sive, because only prohibitively large scale numerical simulations can explore the
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multi-dimensional mechanism with multi-physics in multi-scale. Precise under-
standing of the supernova explosion is one of the essential issues in astrophysics
in order to reveal the origin of heavy elements, the formation of compact objects
(neutron stars or black holes), and observation of neutrino bursts and gravita-
tional waves.

Study of the explosion mechanism of core-collapse supernovae is challeng-
ing since all the four fundamental interactions play important roles as physical
processes. The strong and electromagnetic interactions govern the properties of
dense matter in the stellar dynamics under the gravitational influence in general
relativity. The weak interaction is essential to describe the production, extinc-
tion and scattering of neutrinos as one of essential composition in dense matter.
The neutrinos are agents of reservoir and transport of energy in the supernova
core and play a crucial role in the explosion mechanism. During gravitational
collapse, the stellar core becomes opaque to neutrinos due to high densities. Neu-
trinos are once trapped in the central dense object and later gradually emitted
and contribute to the revival of stalled shock wave by heating due to the absorp-
tion of material. This transport of neutrinos in stellar dynamics is non-trivial
and is governed by coupled equations of radiation transfer and hydrodynamics.
Neutrino-radiation hydrodynamics is commonly known as a difficult problem
similar to the radiation hydrodynamics in physics and engineering with high
performance computing.

So far most of large scale simulations have been performed on massively par-
allel clusters, such as the K computer. The Intel Xeon Phi is also included in
this kind of architecture. Recently another type of architecture, which makes
use of arithmetic accelerators such as GPU, has become popular in high per-
formance computing. Although the accelerator device has an advantage in cost
performance, the code implementation becomes much more involved to achieve
desired performance. Furthermore, whether accelerators work efficiently depends
strongly on the structure of numerical algorithms.

In this work, we apply the accelerator architecture to the supernova simu-
lations. As the first step in this direction, we consider a spherically symmetric
system, namely spatially one-dimensional simulations. This is because precise
numerical simulations under the spherical symmetry, albeit it shows no explo-
sion, are important as the basis of multi-dimensional simulations. First principle
calculations under the spherical symmetry are strongly demanded to provide
the reliable data of neutrino emission for observations as well as for formation of
compact objects. The spherical modeling is also used as initial models for multi-
dimensional simulations and for proto-neutron star cooling. Systematic survey
of gravitational collapse of massive stars with various modeling of stellar evo-
lution, examination of nuclear physics and neutrino physics are often done by
the spherical simulations. Therefore acceleration of the spherical simulations is
in general beneficial to produce many models for supernova studies.

The dynamics of neutrinos and dense matter are described by the Boltz-
mann equation and hydrodynamic equations, respectively, that are coupled to
each other. The implicit scheme is adopted for stiff equations of time evolution
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with largely different time scales. In the current study, we focus on the linear
equation to update the variables which appears in every step of the time evolu-
tion in the implicit scheme. This part is chosen as the first target of offloading to
GPU since a large portion of computing time is consumed by an iterative solver
for this linear equation. We apply OpenACC after changing the data layout and
loop structure in an alternative code to the original one. We measure the perfor-
mance of the code on two GPU systems at several system sizes. Our study is a
step toward the goal to realize multi-dimensional simulations by extending our
approach in one-dimension since the computational loads have similar patterns.

This paper is organized as follows. Next section summarizes the formulation
to investigate the supernova explosion. After summarizing the numerical simula-
tion scheme of supernovae adopted in this work, we describe the linear equation
that is to be solved on accelerator devices. In Sect. 3 we describe our implemen-
tation of the code for GPU computation and show the result of performance in
Sect. 4. Section 5 is devoted to our conclusion and future prospects.

2 Formulation

2.1 Overview of Supernova Simulations

The numerical study of core-collapse supernovae has long history over half-
century [1]. The system of equations for hydrodynamics with gravitational force
and neutrino transfer must be solved to follow the time evolution of dynamics of
stellar matter, compositional change and neutrino distributions. Data of physics
processes such as sets of equation of state and reaction rates for neutrinos are
implemented in the numerical simulations. It is mandatory to treat the system
under the general relativistic description. Among the difficulties of solving the
system, the neutrino transfer is the most problematic and remains challenging
in terms of high performance computing. Since the basic equation of neutrino
transport is the Boltzmann equation, one has to solve the time evolution of
neutrino distribution function in six dimensions (three dimensions in space and
three dimensions in neutrino momentum space) [3]. It is to be noted that angle
and energy distributions of neutrinos are essential since the neutrino distribu-
tions evolve under non-equilibrium conditions in largely different time scales
from hydrodynamics with angle and energy-dependent reaction rates. Full treat-
ment of the 6D neutrino transport and 3D Hydrodynamics is in principle ideal
to reveal the explosion dynamics in 3D. However, necessary computing resources
are prohibitive and its realization demands large-scale numerical costs that have
been not practical even on recent supercomputers. A study of neutrino transfer
in 3D has been made for stationary situation of supernova cores [3].

For this reason, numerical studies of supernovae have remarkable progress
along with the rapid growth of supercomputing power. In its infancy of numerical
studies, simple approximations and/or assumptions were used to model the sys-
tem. Approximate methods such as diffusion approximations have been improved
or removed in the progress of later researches. Only recently in the last decade,
the first principle calculation under the spherical symmetry is achieved [4,5].



Simulation of Supernova Explosion Accelerated on GPU 443

The assumption of spherical symmetry in space reduces the number of degrees
of freedom of the Boltzmann equation to three (radial coordinate and neu-
trino energy and angle). Numerical simulations of general relativistic neutrino-
radiation hydrodynamics became possible and have been performed to explore
the spherical dynamics of core-collapse supernovae. Such studies have been uti-
lized to demonstrate that no explosion generally occurs under the spherical geom-
etry, under which the shock wave stalls after the launch due to the energy loss
except for particular circumstances.

Multi-dimensional dynamics in combination with neutrino heating, therefore,
is believed to be essential to achieve successful supernova explosions. In numerical
simulations in two and three dimensions, certain approximations are made to
perform many models for systematic studies. Although numerical simulations
by directly solving the Boltzmann equation have been achieved recently, it costs
computational resources of multi-million node-hour on the K computer for the
limited set of models still in two dimensions [6]. Therefore, it is indispensable to
drastically accelerate the computation to perform systematic modeling and to
extend them to modeling in three dimensions.

In the following subsections, we briefly summarize the formulations and cor-
responding computations in this work. We assume the geometry under spherical
symmetry in the current study and describe some equations in a simplified form
to explain the ingredients.

2.2 Basic Equations

Hydrodynamics. The basic equations consist of the Einstein equations

Gμν = 8πTμν , (1)

and the Euler equation for the comoving fluid element

∇νTμν = 0, (2)

with the baryon number conservation equation

∇ν(ρbu
ν) = 0, (3)

under a certain metric of spacetime gμν in general relativity [7]. The energy-
momentum tensor for an ideal fluid is

Tμν = [ρb(1 + ε) + p]uμuν − pgμν + Tμν
ν , (4)

where ρb is baryon mass density, uμ is the four-velocity of the matter, ε and p are
respectively the specific internal energy and pressure, and Tμν

ν is the neutrino
component of energy-momentum tensor. Gμν is the Einstein tensor.

These equations correspond to the formulation for the time evolution of the
fluid dynamics with exchange of energy-momentum due to neutrinos, the baryon
conservation and the compositional change. There are additional basic equations
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for metric components for the general relativistic description. The equation of
thermodynamics is solved simultaneously to follow the time evolution of entropy
for handling the equation of state. Thus dynamical variables of fluid elements for
general relativistic hydrodynamics in the Lagrangian scheme are the following:
radial position, radial velocity, density, internal energy, specific enthalpy, entropy,
electron fraction, gravitational mass, and three general relativistic variables.

Boltzmann Equation. The evolution of neutrino distribution is described by
the general relativistic Boltzmann equation

dxμ

dτ

∂fν

∂xμ
+

dpi

dτ

∂fν

dpi
=

(
δfν

δτ

)
coll

(5)

for the neutrino distribution in fν in space coordinate xμ and momentum space
coordinate pi (See [8] for further references). It describes the change in the
neutrino distribution along a trajectory with an affine parameter, τ . The right
hand side expresses the collision term due to neutrino-matter interactions.

In order to explain the computational structure of neutrino transfer, we
write down below the Boltzmann equation in flat space-time under spherical
symmetry [3]. The neutrino radiation is represented by a distribution function
fν(t, r, Eν , μ = cos θ), where Eν is the neutrino energy and θ the angle of neu-
trino momentum with respect to the radial coordinate. The time evolution of fν

obeys the Boltzmann equation,

∂fν

∂t
+ μ

∂fν

∂r
+

(1 − μ2)
r

∂fν

∂μ
=

(
δfν

δt

)
coll

. (6)

The collision term contributes to the change of neutrino number, angle and
energy (μ, Eν) by creation, extinction and scattering by the weak interaction
with matter. It is important to note that the collision term largely depends on
neutrino angle and energy and contains the integral of neutrino distributions
by angle and energy variables for scattering processes. It also has contribu-
tions from the pair-processes with the distribution functions of neutrinos and
anti-neutrinos. The Boltzmann equation, therefore, is an integro-differential and
non-linear equation. This fact makes the numerical solution of the Boltzmann
equation further computationally demanding.

Equation of State. The equation of state for hot and dense matter is used
to provide thermodynamical quantities such as pressure and chemical potentials
for hydrodynamics and weak reaction rates. The data table is implemented in
the numerical code to cover the wide variety of conditions in supernovae.

2.3 Numerical Scheme

A finite difference form of the set of equations for hydrodynamics and neu-
trino transfer is solved in our numerical code [7,9]. The discrete ordinate (SN )
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method is adopted to solve the Boltzmann equation through finite differencing
the radial and angular advection terms. We solve the Boltzmann equation by the
multi-energy group treatment due to the energy dependence of neutrino mat-
ter interactions. Since the collision term contains coupling in energy, it is not
possible to parallelize in terms of energy.

A fully implicit differencing is adopted for time advance since the equation
is stiff with largely different time scales due to the energy dependence. This is
advantageous to increase time step, which is constrained by the Courant number
in the explicit differencing, to follow the time evolution in a long time scale.
However, it is expensive to solve a linear system with large sparse matrix at each
step for time advancing. In order to solve the non-linear equations of neutrino-
radiation hydrodynamics, the Newton-Raphson iteration is applied to linearize
the equations. Therefore, the solution of the linear equations is the most time
consuming part of our numerical simulations.

We set the radial coordinate with Nr grid points and angle and energy coor-
dinates of neutrinos with Nang and NEν

grid points. At each radial point, there
are Nhyd = 11 hydrodynamical quantities and NEν

· Nang · Nν neutrino degrees
of freedom, where Nν is the number of neutrino species. A typical size of spher-
ical simulations at the current supercomputers is O(100) for Nr and O(10) for
Nang and NEν

. Increasing the number of grids to O(1000) for Nr is preferable to
obtain necessary resolution of accreting or exploding material on the compact
object. Adopting O(100) for Nang and NEν

is advisable to describe the forward
peak in angle at large distance from the center and the sharp drop in energy at
the Fermi energy for the neutrino distributions.

2.4 Linear Equation Solver

We focus on the linear equation solver that is called in every step of the time evo-
lution. The linearized equation in the numerical scheme described above results
in a block tridiagonal matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B1 C1 0 . . .
A2 B2 C2 0
0 A3 B3 C3

...
. . . . . . . . . 0
0 An−1 Bn−1 Cn−1

0 . . . 0 An Bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where n = Nr is the number of radial points. The block matrices Ai, Bi, and
Ci at each radial point are dense matrices of rank Nmax = NEν

NangNν + Nhyd.
This kind of pattern of block matrices often appears in radiation transfer [10]
and is similar to the one appears in the multi-dimensional neutrino transfer [3].

We apply an iterative solver algorithm based on the Krylov subspace method.
We adopt the BiCGStab algorithm improved by a weighted Jacobi-type precon-
ditioner [11]. As the preconditioning, the following Jacobi iteration is applied
as
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xk+1 = ω[−M−1
D (ML + MU )xk + M−1

D b] + (1 − ω)xk

= xk + ωM−1
D (b − Axk), (8)

where ω is the weight parameter, MD, ML, MU respectively represent the block
diagonal, lower, and upper parts of M , Eq. (7).

As the preconditioner, slightly modified operation suffices:

xk+1 = xk + ωD−1(b − M̃xk), (9)

where D and M̃ resembles MD and M , respectively. Choice of D and M̃ may
reduce the arithmetic cost while keeping preconditioning efficient. In this work,
however, we set D = MD and M̃ = M for simplicity of implementation. We note
that D−1 can be determined as an additional block diagonal matrix before the
solver iteration starts. The weight parameter ω is determined as in Ref. [11]. As a
preconditioner, the Jacobi iteration (8) is repeatedly applied NJacobi times before
the multiplication of M in the solver algorithm. The value of NJacobi is tuned
by observing the convergence of the solver. In present case, we find NJacobi = 25
being an efficient choice.

For systematic survey of stellar models, it is necessary to keep elapsed time for
each time step of evolution within 10 s. Increasing the number of grid points, this
condition becomes increasingly hard to satisfy. On massively parallel clusters,
this might be achieved by increasing the computing nodes. However, for the
spherically symmetric case, such parallelization is inefficient for typical values of
Nr unless the degrees of freedom at each radial point, Nang · NEν

· Nν , are also
distributed over several nodes, in addition to Nr that the original code does. It
would make implementation involved due to the existence of the hydrodynamic
degrees of freedom, Nhyd. An advantage of using GPUs is that one can parallelize
the code in units of several radial points while acquiring sufficient computational
performance, due to the block structure of M in Eq. (7). In practice, one needs to
adjust such parallelization parameters in addition to the numbers of grid points
so that the simulation time is kept reasonably short.

3 Implementation

3.1 Offloading Scheme

In this paper, we focus on the iterative linear equation solver as a target of
offloading to GPU devices. Our original code is written in Fortran and paral-
lelized in the radial coordinate with standard MPI. As an offloading procedure,
we employ OpenACC that is based on the directive-based programming model.
One inserts directives in the code to specify the tasks to be executed on devices,
and a compiler generates corresponding modules. OpenACC has several attrac-
tive features; it does not depend on specific architecture, enables incremental
code development for offloading, and can be processed by several compilers that
are rapidly increasing efficiency. Since we would need to offload not only the
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linear solver but also other parts of the simulation code, the simpler in imple-
mentation is the better. OpenACC is realized to fulfills this requirement, while
OpenMP after version 4.0 may become an alternative. We restrict our imple-
mentation in the double precision, which is adopted in the original code.

For offloading the linear equation solver, we first translate the target part of
the code to a code in the C language, and then insert the OpenACC directives
to the latter. This is partially for future convenience toward employing CUDA
or OpenCL as well as application to other architectures. As another reason,
we apply a prescription that is effective in the development of a lattice QCD
simulation code on GPUs [12]. At the call of the C code, the data layouts of
matrices and vectors are changed if necessary. Simultaneously, the arrays of
matrices and vectors are extended with zero padding, so that their sizes fit the
number of cores in the hardware unit.

In the original code, the radial coordinate is divided into several domains
each assigned to a MPI process, and the boundary data are transferred by mes-
sage passing. In a multiple-GPU case, one GPU device is assigned to one MPI
process. The boundary data on the device memory are copied to the host mem-
ory, transferred by message passing (while the implementation of MPI may use
memory copy), and copied to the device memory. Although this may generally
become a bottleneck of computation, in the present case the communication
overhead becomes less important as the block matrix size increases, since the
transferred data are proportional to Nmax while the arithmetic operations are
N2

max × (Nr/NP ), where NP is the number of MPI processes.
On the GPU environment provided by NVIDIA, one can employ CUDA and

high performance scientific libraries which are cooperative with OpenACC. We
make use of the cuBLAS library, that is a BLAS (Basic Linear Algebra Subpro-
grams) library working on GPUs. This is an alternative to the code implemented
by ourselves with OpenACC which is called the ‘native’ code hereafter. In the
following, the performance of these two implementations are compared.

3.2 Implementation Details

In this subsection, our implementation is described in more detail. The version
of the OpenACC standard is assumed to be 2.0 or later, to which some of the
following prescriptions are only applicable.

Memory Allocation. Since the sizes of matrices and vectors are unchanged
during simulation, their areas on the global device memory are allocated at the
beginning of execution. Just after the C code allocates the host memory by
calling malloc function, the corresponding device memory area is allocated by
the enter data create OpenACC directive. For example, for a global variable
*p d of the double type that represents a vector, it leads to

p_d = (double*)malloc(Nvec*sizeof(double));
#pragma acc enter data create(p_d[0:Nvec])
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where Nvec is the size of vector. Hereafter the device memory area is linked to
the pointer p d and can be referred by p d. At the end of the execution, the
device memory area is freed by the exit data delete directive just before the
host memory is freed by calling the free function. While the unified memory is
available after CUDA 6 on the NVIDIA architecture, our implementation does
not adopt it and is based on the standard use of the device memory as above.

Data Transfer. The data transfer between the host and device is managed by
the update directive in OpenACC. For example,

#pragma acc update device(p_d[0:Nvec])

transfer the data on the host memory referred by p d to the corresponding
area on the device memory. For data locality, the data transfer between the
host and device is done only when necessary. This implies that the clause of the
OpenACC data construct before the parallel region is in general present except
for variables of small sizes.

Parallel Region. There are two kinds of accelerator compute construct:
kernels and parallel. The former directive entrust the parallelization to the
compiler, while the latter is used for manual parallelization. We adopt the latter.
In a typical case, a task executed on GPU device is a loop, which is processed
with the loop construct. We unify the loops that are independently executed by
threads by hand before applying the OpenACC directives so that a single loop
is divided into thread tasks. All the three levels of the OpenACC model, gang,
worker, and vector are thus assigned to a single loop.

Asynchronous Operation. Some of the above operations can be asyn-
chronously performed. For example, bulk part of the matrix-vector multipli-
cation can be performed in parallel with the transfer of the boundary data of
the vector. Each directive may have async clause with a positive integer id that
specify the unit of asynchronous operations. The operations specified by id are
ensured to be finished at the point of the wait directive or clause.

Native Code. As a reference, we implement the ‘native’ code that offloads the
matrix-vector multiplication to the device by only using the OpenACC direc-
tives. In this implementation, for y = Ax, where A is one of M , M −MD, and
M−1

D , each component of the vector y is computed by a single thread. This means
that each thread executes a loop of size Nmax.

As an example, let us consider the NVIDIA’s GPU that is employed in this
paper. Execution of threads are done in units of ‘warp’ that concurrently access
the global device memory. This leads to the so-called ‘coalesced access’, a fun-
damental technique in device code tuning, that achieves efficient memory access
by storing the data in units of Nwarp. We store the components of each block
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matrix Aab, where A is one of Ai, Bi, Ci, and B−1
i , as an array of size N2

max

with a serialized index

index(a, b) = (a%Nwarp) + Nwarp · (b + Nmax · [a/Nwarp]) (10)

where a%Nwarp represents a modulo and [a/Nwarp] an integer quotient.
Since the above implementation is rather simple and there would be more

sophisticated tuning such as loop tiling. At this stage of development, however,
we leave further involved tuning for later and incorporate the cuBLAS library
as an alternative solution.

Code with cuBLAS. For a dense matrix, a well-tuned library cuBLAS is avail-
able on the NVIDIA’s environment. We make use of the cublasDgemv function
that corresponds to Dgemv in the original BLAS library. Since originally BLAS
has been developed as a Fortran code, the matrix format is column major, i.e.
column components are continuously stored on the memory. Thus when cuBLAS
is employed the matrix data Aab are stored with a serialized index a + Nmax · b.

Since each block matrix is not enough large to exhaust the cores of GPU
device, parallel application of matrix-vector multiplication is essential. This is
done by exploiting the CUDA stream that enables asynchronous execution of the
operations distributed to the streams. One first setup a cublasHandle t object,
a handle of cuBLAS events, through the cublasCreate function. The CUDA
streams are represented by an array of cudaStream t object which is setup
through the cudaStreamCreate function. By assigning the cuBLAS handle to
one of the CUDA streams, successive cuBLAS functions are executed in that
stream.

3.3 Related Works

Although the simulations of core-collapse supernovae are computationally
demanding, use of GPUs has been progressed mainly for application to the
hydrodynamics. As for the simulation code including the neutrino transport,
the VERTEX code was ported to GPUs by employing CUDA of NVIDIA [13].
Since the VERTEX code employs the explicit scheme for the hydrodynamics and
Boltzmann equation, its most time consuming part is calculation of the collision
term of the Boltzmann equation. One reaction term exhausts almost half the
simulation time and thus offloaded to GPUs. On the Kepler architecture, the
target kernel is accelerated by factor of 54 which results in 1.8 times acceler-
ation of the whole simulation time compared to that of execution on the host
processors.

4 Results

4.1 Numerical Setup

Performance of our code is examined on the following two systems. Both the
systems are composed of host processors and NVIDIA’s GPUs, as summarized
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Table 1. Machines used for performance measurement

Machine-1 Machine-2

Host processor Intel Xeon E52643v3 x2 IBM Power8 x2

Host cores 12 20

Peak performance (double) 44.8 GFlops/core 22.9 GFlops/core

Host memory [GB] 64 512

Host-device connection PCI-E 3.0 x16 NVLink

GPU NVIDIA Tesla K40 x2 NVIDIA Tesla P100 x4

FP64/FP32 CUDA cores/GPU 960/2880 1792/3584

Peak GFlops (double/float) 1430/4290 4700/9300

Memory size [GB] 12 16

Memory B/W [GB/s] 288 720

Table 2. Parameter sets for measurement. The value of memory requirement is for the
matrices and determined as Nr ·N2

max · 4 · 8 Byte.

Set-1 Set-2 Set-3 Set-4

Nr 256 256 256 256

NEν 14 16 24 32

Nang 6 8 12 16

Nν 4 4 4 4

Nmax 347 523 1163 2059

Memory requirement [GB] 1 2 9.3 32

in Table 1. The machine-1 is composed of two Intel Xeon processors and two
K40 GPUs (Kepler architecture) connected with PCIe Gen3 of 16 lanes. The
machine-2 is composed of two POWER 8 processors with four P100 GPUs (Pas-
cal architecture) connected by NVLink. On both the systems, we use the PGI
compiler with OpenMPI. Since currently popular large scale systems including
GPUs typically adopt similar structure as a node, we consider they provide
typical examples of practical environment.

The size of block matrices Ai, Bi, and Ci are determined by the choice of
NEν

and Nang. The parameter Nν is the number of neutrino species and fixed
to 4 (electron-type neutrino, muon-type neutrino, and their antiparticles). The
rank of block matrices is Nmax = NEν

· Nang · Nν + Hhyd. Since they are dense
matrices, the required memory size is proportional to N2

max. The total size of
required memory space is also proportional to Nr. In Table 2, we display the sets
of parameters examined in this work. The value of memory requirement for the
matrices (including M−1

D ) is determined as Nr ·N2
max ·4·8 Byte. Set-1 corresponds

to the parameters currently employed in practice. From Set-1 to Set-4, the rank
of the block matrices are gradually increased. Set-4 is already too large for single
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GPU or two GPUs to allocate the device memory space, so that it is measured
only on the machine-2 with 4 GPU devices.

4.2 Performance Results

We first examine the performance of matrix-vector multiplication. As explained
in the description of solver, three matrices are applied to vectors: the full block
tridiagonal matrix M , the subdiagonal matrix M −MD = ML +MU , and the
inverse of block diagonal matrix M−1

D . Note that the block matrices of M−1
D are

determined on the host processor before offloading to the devices. To single out
the matrix multiplication performance, we start with examination of M−1

D , since
it includes no inter-device communication.
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Fig. 1. The performance of the multiplication of M−1
D . The left and right panels show

the results on the machine-1 (with K40) and 2 (P100), respectively. On each machine,
the native and cuBLAS codes are executed using single and multiple GPU devices.

The performance is measured on the machine-1 and 2, which are respectively
denoted by K40 and P100 in the figures. On each system, the performance is
measured with single GPU (if possible) and multiple GPUs using the native
code and the code with cuBLAS library. For the latter, the number of CUDA
stream, Nstream, is a tunable parameter. At each combination of the parameter
set, the machine, and the number of devices, we observe the dependence of
performance on Nstream and adopt the value that provides the best performance
for M−MD multiplication, since it is frequently called during the Jacobi iteration
and costs more than M−1

D . We measure the elapsed time for 200 times of matrix-
vector multiplication and obtain the sustained performance based on the count
of floating point operations in the code.

Multiplication of M−1
D . Figure 1 displays the performance of M−1

D multiplica-
tions against the rank of the block matrices. The left and right panels show the
results on machine-1 and 2, respectively. For the Set-4 parameter set, due to the
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memory restriction, only the multi-device results on the machine-2 are available.
Both the performances of the native and cuBLAS codes increase as Nmax and
seem to saturate at Nmax = 1163. In the case of native code, the performance of
the multi-device is worse, in particular for small Nmax region. A reason is con-
sidered that the number of threads is not sufficiently large to exhaust the large
number of cores. While the cuBLAS code shows lower or similar performance to
that of the native code at Nmax = 347, it quickly conquers for larger Nmax. This
is an appearance of more sophisticated use of cores in the cuBLAS library for a
sufficiently large matrix.
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Fig. 2. The performance of the multiplication of M −MD. The condition of measure-
ment is the same as in Fig. 1.

Multiplication of M − MD and M . We next examine the performance of
matrices that require the inter-device communication. Figures 2 and 3 display
the performance of multiplications of M −MD and M to vectors, respectively. As
a general tendency, native code shows better performance than those for M−1

D .
This is explained by that the two or three block matrices are simultaneously
multiplied to a vector in each thread. In contrast the cuBLAS code exhibits
similar performance as the M−1

D case, since the cuBLAS functions are called in
units of block matrices. In both the cases, the overhead of the boundary copy is
small, in particular for larger Nmax region. Indeed, performance of a code with
synchronous boundary data copy is almost the same as that of the asynchronous
code which provided the results in the figures.

Scaling with Nr . Finally we examine the scaling with Nr. To achieve our
preferable resolution, it is mandatory to increase the value of Nr up to Nr =
1024. Considering the computational resource and balance of Nr and Mmax,
practical choice of parameters is NEν

= 24 and Nang = 12. We thus observe Nr

dependence of the performance on the machine-2 with four GPU devices. The
result at Nr = 1024 is almost consistent with the results of the same Nmax and
Nr = 256 (i.e. Set-2) on the single device. This indicates that the present code
shows good weak scaling behavior in Nr at least within the node.
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Fig. 3. The performance of the multiplication of M . The condition of measurement is
the same as in Fig. 1.

Impact on Simulation Time. Before considering further elaborated tuning,
let us examine the impact of the above offloading code on the whole numerical
simulation. At run time, the code first read several files to set the initial condition
of degrees of freedom together with the table data of the equation of state, and
then the time evolution step begins. At each step of time evolution, the contri-
butions of hydrodynamics, collision term, and advection terms to the evolution
matrix (7) are computed in order. Among them, calculation of the collision term
is the most time consuming part. Other parts are almost negligible compared
to the linear solver and the collision term. In solving the linear equation, first
the weight parameter of the Jacobi iteration and M−1

D are determined (denoted
by “setup”), before the application of an iterative solver algorithm. Only the
iterative solver is offloaded in the present paper.

Table 3 shows the elapsed time of each ingredient in one Newton-Raphson
update that is repeated a few times during each evolution time step. The data on
GPU devices are measured with the code with cuBLAS library. To examine the
scaling behavior of the non-offloading code against the number of MPI processes
Np on the host processors, we also measure the cases with Np larger than the
number of GPU devices. Within our computational resources, the code shows
good scaling behavior for the MPI parallelization. Although the code for the
host processors has not been well optimized for the current architectures, it
seems difficult to achieve the elapsed time less than 10 s unless the number
of MPI processes is substantially increased. On the other hand, the results of
the offloaded iterative solver displays illustrative speedup toward the desired
elapsed time. It implies the possibility to keep the elapsed time for each time
step within several seconds if other parts, the computation of collision term and
the setup of linear solver, are also accelerated. Thus offloading these calculation
to GPU devices would be an urgent subject rather than further optimization of
the iterative solver.
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Table 3. Impact of offloading the iterative solver on the simulation time. The data on
GPU devices are measured with the code with cuBLAS library.

# process Collision [sec] Matrix inversion

Setup [sec] Solver [sec]

Set-1, machine-1 8 5.0 5.1 110.9

Set-1, machine-1 1 40.4 40.4 865.6

(with GPU) 5.3

Set-2, machine-2 16 8.6 11.8 170.4

Set-2, machine-2 4 35.0 44.9 627.0

(with GPU) 0.73

5 Conclusion

In this work, we examined feasibility of the architectures possessing GPU devices
for numerical simulations of core-collapse supernovae. The most time consuming
part of the implicit scheme is a linear equation solver so that its acceleration
is essential for this type of simulation. We develop a code to offload this part
to GPUs using OpenACC as well as the cuBLAS library provided by NVIDIA.
While there is a room to improve the performance, the elapsed time for the
linear equation solver is sufficiently reduced so that it is no longer a bottleneck.
The result is encouraging to extend the offloading to other time consuming
parts of the simulation. Since the OpenACC is also applicable to a Fortran code,
acceleration of other parts would be possible in a similar manner. An encouraging
result for the VERTEX code was reported for computation of the collision term
of the Boltzmann equation in Ref. [13].

Toward multi-dimensional simulations of core-collapse supernovae, there are
several practical issues to be examined. As the dimension increases, the prob-
lem size drastically increases and a large scale system is inevitably required.
In such a system, the inter-node communication becomes increasingly impor-
tant. More elaborated management of arithmetic operations and boundary data
transfer would be required. Extending our implementation to multi-dimensional
simulation code is now underway.
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