
Community Graph Elicitation from Students’
Interactions in Virtual Learning Environments

Paolo Mengoni1(&), Alfredo Milani2,3, and Yuanxi Li3

1 Department of Mathematics and Computer Science,
University of Florence, Florence, Italy

paolo.mengoni@unifi.it
2 Department of Mathematics and Computer Science,

University of Perugia, Perugia, Italy
milani@unipg.it

3 Department of Computer Science,
Hong Kong Baptist University, Kowloon Tong, Hong Kong

csyxli@hkbu.edu.hk

Abstract. In this work we introduce a novel graph-based approach to elicit
students’ communities. Teaching, in the blended learning environment, is
delivered as a mixture of online and offline activities. While the online activities
can be tracked and analysed in the Virtual Learning Environment, the offline
activities fall out of the educators’ control scope. In this educational setting,
communications take place using side channels, such as the instant messaging
applications and social network platform. Using our approach, the students’
groupings and social interactions can be elicited by analysing the student-system
interactions. The co-occurrence of interactions among the students give infor-
mation about their social connections. This conveys information useful to elicit
the students’ interaction graph and the student communities contained in it.
Students’ leader-follower community structure can be elicited starting from the
interaction network. This can empower teachers to plan and revise their
Learning Designs as well as to identify situations that need teacher’s inter-
vention, e.g. students at risk of failing the exam and/or dropping the studies.

Keywords: Community detection � Student interactions � Graph analysis
Modularity maximization

1 Introduction

The use of Virtual Learning Environments (VLE) give teachers the ability to track and
analyse the students’ activities that take place online. Teaching, in the online scenario,
can be delivered to learners with different mixtures of online and offline activities.

Finding the interactions between the students can empower educators to plan and
revise their Learning Designs (LD) as well as to identify situations that need teacher’s
intervention, e.g. students at risk of failing the exam and/or dropping the studies. This is
a difficult task in the blended learning environment. When teaching and learning take
place exclusively online, like in MOOC, even the communications among the students
can be tracked and analysed. In the blended learning scenario, online and offline
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activities take place to in different environments. The result is that not all the students’
communications can be tracked by the educator. In fact, in addition to the online tools
provided by the VLE, students interact directly in class as well as using social network
platforms and instant messaging. The side channel communications are out of teachers’
control scope and don’t leave traces to analyse.

We hereby introduce an innovative approach to discover and analyse latent stu-
dents’ interaction network. This approach use data about the students’ interactions with
the VLE. The co-occurrence of interaction with the system give information about the
social interactions of the students. This conveys information useful to elicit students’
interaction graph and the student communities contained in it.

This paper is organized as follows. In Sect. 2 we review the related work in
Community Detection in networks. In Sect. 3 we introduce the framework to discover
students’ communities in Virtual Learning Environments. Section 4 presents the
experimental setting and methodology. In Sect. 5 we discuss the experimental results.
Finally, in Sect. 6 we draw conclusion e present future works.

2 Related Work

Communities in networks are groups of elements that share similar characteristics. The
community structure within a network can be elicited from the connections among the
elements. Given an element of the graph, the community search class of algorithms
deal with identifying in which community the element can be included. Another cat-
egory of algorithms has been developed to solve the community detection problems
that, given a graph, identify all the communities in the network.

Existing community eliciting strategies use one or more of the following methods
to evolve starting partitions: merge two communities, split a community into two, or
move elements between two distinct communities. A comprehensive review of the state
of the art in community detection can be found in Fortunato work “Community
detection in graphs” [1]. Different algorithms have been developed that exploit different
characteristics of the graphs and their elements. Approximate solutions are often found
as the problem is complex and general polynomial time algorithms cannot be found.

Traditional methods for community detection include graph partitioning and
clustering. The former requires to specify the number of partitions to find and exploit
the network edges features to find the communities [2]. Most variants are NP-Hard
even if good approximations have been found [3]. Clustering algorithms use distance
measures to pack the elements of a graph in different groups. Widely used in other
research fields, such as emotion recognition [4–9], hierarchical [10], partitional [11]
and spectral [12] methodologies can be applied to discover the different communities
within the graphs. Divisive algorithms, like Girvan-Newman [13], detect the edges that
connect elements of different communities and remove them, so that the groups get
disconnected from each other.

The modularity value, introduced as stopping criterion for Girvan-Newman divisive
algorithm, is a quality assessment of the communities. This parameter has been used in
many other works, as distinctive element to identify communities in networks. Greedy
[14], simulated annealing [15], evolutionary computation [16, 17] and other heuristic
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methods [18] have been used to solve the modularity maximization optimization
problem. Statistical inference generative algorithms try to find a model that can fit the
graph structure and its communities [19]. Block modelling is based on grouping ver-
tices with common features [20].

Students’ interactions with the VLE and their social interactions have been studied
in various works. Monitoring tools have been developed to understand the evolution of
participant relationships within discussions forums. For instance, SNAPP tool [21, 22]
uses MOOC’s discussion forum threads to extract the students’ social network and give
educators’ insights about students’ interactions and groupings. An early study of stu-
dents’ interactions with the VLEs has been conducted to understand the opportunities
and impact of the new teaching environment for educators [23]. The timing of
engagement with the learning objects [24, 25] in online courses has been examined in
recent papers to understand the links with students’ final learning outcome [26] and to
discover the students’ study patterns [27]. Clustering methods have been used to
understand, in a flipped classroom environment, the connections between students’
engagement with the VLE and their outcome as well as to discover the grouping of
students with similar outcome and study behaviour [28].

3 Methodology

In this work a novel approach to discover the communities of students is introduced.
The approach is based on interactions of students with the Virtual Learning Environ-
ment. The proposed methodology is based on the co-occurrence of students’ interac-
tions in the VLE to elicit the underlying social relations among the students.

When a student accesses the course material, his actions are logged by the
eLearning system. The basic information that is recorded comprises the course that the
student accessed, the starting time of interaction, the action (read announcements and
forum posts, views and downloads of resources, submission of assignments, etc.) and
the objects he interacted with.

The focus of the approach is on students’ activities in the VLE as it checks the
presence of interactions and their timings. Using this information, we can model the
students’ behaviour by analysing their interactions with the VLE and use it as the
foundation for eliciting the students’ connections, social activities and study behaviour.

The purpose of the proposed approach is to provide teachers and academic man-
agers insights from static and dynamic points of view. The static point of view gives
insight on community information related to each student at various levels of time and
activity granularity, e.g. one or more courses in a time interval that can span from a few
weeks to the complete academic career. The dynamic point of view helps to track
students social interactions’ evolution over time. Educators can get insights on the
stability or the evolution of students’ communities over the time.

The framework use information from the students’ interactions with the system.
Various approaches to the analysis of student-system interaction histories can be used
in our framework. Clustering, time series analysis, events cascades and graph analysis
are approaches for analysis of histories. A different modelling and pre-processing of the
information allow to use the various approaches.
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The graph approach here introduced use information from the students’ interactions
with the system. The co-occurrence of student-system interactions is used to build the
student-student interaction network. The information conveyed by the interaction graph
can help educators to determine students’ connections as well as to identify the
communities of students.

Moreover, this approach has several additional advantages that come from the
ability to inspect the network structure. The members of the communities can be
differentiated basing on their positioning in the network and their neighbourhood
connections. As an example, using the information from centrality measures together
with the timing of interactions, community leaders and followers can be identified.

3.1 Graph Analysis

The information about student-system interactions is used to build the students’
interaction graph. This approach has its foundation on multigraph analysis. In fact, each
node is connected to the others by multiple edges. The proposed method proceeds by
first creating the interactions’ graph between the students using the co-occurrence of
interactions in the VLE and proceeds to detect communities in the students’ interac-
tions graph.

Students Interactions Graph. The student-system interaction information is used to
model the students’ interactions graph. The data needed by our approach comprises
only information about the student that interact with the system and the timestamp of
the interaction.

In this graph the nodes represent the students while the edges represent the inter-
actions between each student pair. Edges are created when the interactions’ timestamp
delta of the students’ actions is below a pre-set granularity. On each edge is recorded
the information about the start and end time of interaction.

The graph obtained is a multigraph. In fact, recurring interactions can be recorded
between each student pair.

Community Detection. Given the students interactions graph, the goal is to detect all
the groups of students in it. Our approach is general as it can use various techniques to
elicit the students’ communities. The community detection problem has been solved
using various algorithms with different characteristics. The following are some of the
most frequently used:

Minimum Cut. This method finds a predetermined number of communities in a net-
work. It works by grouping the nodes in such a way the number of connections
between the communities is minimized. The partitions found by the algorithm are
balanced in number of nodes. This algorithm work well for load balancing in networks
and parallel computing environments.

Girvan-Newman. The top-down hierarchical algorithm, introduced in “Community
structure in social and biological networks” [13], works by removing the
communities-connecting edges. The edges are selected by calculating their between-
ness centrality at each step and the highest ranked is removed from the network. The
algorithm has high complexity that makes it slow for big networks.

Community Graph Elicitation from Students’ Interactions in VLE 417



Clique Detection. Cliques are groups of two or more individuals who share similar
characteristics and are connected one to each other forming a network. Cliques can
overlap each other which is a desirable characteristic for many social network tasks.
Detection methods can find cliques of fixed size or with the maximal number of
elements. The former can use percolation methods to determine the node cliques, while
the classical algorithm for the latter is the Bron–Kerbosch algorithm [29].

Statistical Inference. Methods using statistical inference try to generate the network
structure using a model that exploits the features of the input data. The general
approach is to use a stochastic blockmodel [30] and its variants to produce graphs that
contain communities of nodes. Edges within the communities are more dense than the
edges connecting one community to the other. Other approaches use belief propagation
[31] and Monte Carlo [32] heuristic methods.

Modularity Maximization. Modularity is value that measures the strength of division of
a network into modules. Having high modularity groupings in a network is represented
by having dense connections among the nodes within modules and sparse connections
between nodes in different modules. Modularity maximization methods try to find the
grouping that has the highest modularity within a network. The naïve method is to start
with one node and proceed by adding a connected node to the group until the mod-
ularity score increases. This problem has been proved to be NP-Hard [33] but heuristic
algorithms have been developed.

Each of the listed solutions work best on a defined set of problems that differ on the
network structure. For social networks, statistical inference and modularity maxi-
mization, with various approaches and approximations, are widely used.

4 Experiments

4.1 Dataset

For this study a new dataset has been created using the students’ interaction logs with
the University of Perugia Moodle eLearning system. Data has been extracted from the
course “Ingegneria del Software” (Software Engineering) held in the Academic Year
2016/2017. The course has been taught in blended mode using online and offline
activities. The online activities include the weekly release of course material, project
submissions and assessment quiz, while the offline part includes face-to-face lessons,
group project development and final examination. The group project was finally sub-
mitted to the teacher through the online platform for assessment. The dataset is com-
posed of all the interactions of the students with the teaching material, forum, quiz and
assessment submission boxes.

Data Anonymization. In order to fulfil privacy requirements, the dataset has been
anonymized before processing. Student name, ID, email and all the personal infor-
mation has been removed to guarantee that the students cannot be identified.

Data Cleaning. Interactions of teachers and teaching assistants have been removed
from the pool of data to be analysed as not needed for the purpose of this work.
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Ground Truth. To evaluate and analyse the results of the group detection algorithms,
the ground truth of the students’ grouping has been collected.

Group project is one of the continuous assessment in this course. The students
enrolled in this course form groups by themselves, and submit the group member list to
the online learning platform. The scope of the group project covers multiple topics
taught during the course. Hence, the students are required to have an overall view on all
the course content. This submitted group member list is the ground truth, to be com-
pared with the group information we predicted by our method.

Without losing generality, and for the scope of the assigned group projects, we can
assume that students work together in groups to complete the assignment for all the
tasks required during the course.

4.2 Preliminary Data Assessment

A preliminary analysis has been conducted to determine if the landscape of the gath-
ered data can convey useful information for our task.

Figure 1 shows the students’ interactions distribution during the course, grouped by
hour. As can be seen, the interactions of the students are mainly gathered around the
lesson days, to retrieve the lesson materials, and at the end of the course, to revise the
course content before the exam. The most interesting information found in this figure is
that the students use the eLearning system almost continuously during the course
enactment. Their access the system, alone or in small groups, in offload moments can
convey interesting information about their teamwork.

Figure 2 represents, for each student, the total number of interactions with the VLE.
As shown all the students interacted with the eLearning environment, except one. The
average of about 53 access for each student, with some peaks over 100. This means that
each student, considering that the examined course lasted for 90 days, had one access
every two days.
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Fig. 1. Interactions distribution during course (1 h timeslots)
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4.3 Graph Analysis

Experiments have been held using the dataset described in Sect. 4.1, extracting from it
information about students’ time of interaction and anonymized student IDs. The static
point of view of the framework has been tested by analysing a single course. Students’
co-occurrence of interactions is extracted using the granularity of 3600 s (1 h). The
information about student-student interactions is analysed to elicit the communities of
students using the modularity maximization algorithm described in next section. The
weight on the edges is considered constant.

To compare with the ground truth, the parameters of the modularity maximization
algorithm have been adjusted to retrieve the same number of communities as the
number of students’ groups submitted to the teacher.

4.4 Modularity Maximization

To discover the students groups in the interaction graph, we used the “Louvain
method” described by Blondel et al. in “Fast unfolding of communities in large net-
works” [14]. This algorithm is particularly efficient even for very large size networks,
with nodes in the order of hundreds of millions.

The method examines a weighted graph. At start each node is assigned to a different
community. In first phase a community aggregation takes place. For each node, the
considered node will join one of its neighbours’ community if there is a gain in
modularity. This procedure is repeated until there is no gain in modularity. The second
phase consist in building a new graph composed of super-nodes that are the commu-
nities found in the first phase. The edges between super-nodes are weighted as sum of
the weight of the links between nodes in the corresponding two communities. The
process is repeated until there are no changes in the network structure and the maxi-
mum modularity is achieved. In Fig. 3. One step of modularity maximization algo-
rithm. Figure 3 is shown one step of the modularity maximization algorithm. The final
modularity class assignment obtained from this algorithm is considered as the com-
munity assignment of each student.
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Fig. 2. Number of accesses by user during course
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4.5 Evaluation Criteria

Modularity class assignments in graphs are the equivalent of cluster labelling assign-
ments for clustering algorithms [34]. To evaluate the quality of the assignment, when
using clustering methods, different measures can be used to highlight different qualities
of the detected clusters. The same measures can be used for modularity class assign-
ment by comparing the resulting classes with the ground truth assignments as defined
in Sect. 4.1.

Homogeneity. Measures the quality of the modularity class label assignment by
checking if the modularity class contain only elements of a single class in the ground
truth assignment.

Completeness. Measures the quality of the modularity class label by checking if all the
elements of a single class are assigned to the same modularity class.

V-measure. Measures how successfully the criteria of homogeneity and completeness
have been satisfied [35]. It is computed as the harmonic mean of distinct homogeneity
and completeness scores, like precision and recall are combined to compute the
F-measure score [36].

5 Discussion

After retrieving the students’ interaction graph from the VLE logs, we analysed the
network to retrieve the students’ communities.

The modularity class assignment has been evaluated using the criteria and the
measures described in Sect. 4.5. The scores of the retrieved communities achieved
0.53518214 for homogeneity, 0.557139949 for completeness and 0.545940347 for
V-measure respectively. In general, the class assignment produced assignments that put
most of the students belonging to a single ground truth group together, even if they are
aggregated with some members of other groups. In Table 1, the most exemplificative

Fig. 3. One step of modularity maximization algorithm.
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modularity class assignments are shown. Compared with the ground truth we can find
that 3 elements of the original groups are assigned to the same community.

Table 1. Example of modularity class assignments with high completeness score.

Modularity class assignment Ground truth group assignment

8 7

14 7

14 7

14 7

2 10

2 10

2 10

11 10

12 10

4 18

11 18

11 18

11 18

14 18

Fig. 4. Co-occurrence network.
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Figure 4 shows the co-occurrence network resulting from the elaboration of our
dataset. The graph is extremely dense as it is composed of over 2 million edges
connecting 89 nodes. In the figure, the node colours represent the modularity class
assignments and the node size represents its betweenness centrality measure. Basing on
this measure, bigger nodes can be identified as leaders in the groups while smaller ones
are followers. The visual representation is made by aggregating the followers of each
community close to their leaders.

6 Conclusions and Future Work

To the best of our knowledge, this is the first time the graph-based student community
elicitation is introduced in the VLEs.

The graph approach introduced in our work is able to identify the communities of
students starting from co-occurrence of interactions in Virtual Learning Environments.
The experiment results show that the students’ groupings are close to the ground truth
groupings in terms of homogeneity, completeness and V-measure.

Moreover, using our methodology, it’s possible to distinguish between leaders and
followers in students’ groups.

Future works will include the implementation of a weight function for the edges of
the graph that takes in account the length of interaction between students, the refine-
ment of the leader-follower elicitation using time of interaction, and the study of
grouping dynamics.
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