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Abstract. The Keller-Segel system is a linear parabolic-elliptic sys-
tem, which describes the aggregation of slime molds resulting from their
chemotactic features. By chemotaxis we understand the movement of an
organism (like bacteria) in response to chemical stimulus, for example
attraction by certain chemicals in the environment.

In this paper, we use the results of a paper by Zhou and Saito to
validate our finite volume method with respect to blow-up analysis and
equilibrium solutions. Based on these results, we study model variations
and their blow-up behavior numerically.

We will discuss the question whether or not conservative numerical
methods are able to model a blow-up behavior in the case of non-global
existence of solutions.
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1 Introduction

In this paper, we will study models for chemotaxis, commonly known as the
Keller-Segel system.

It describes the movement of cells, specifically the Dictyostelium discöıdeum,
which is a species of soil-living amoeba, often referred to as slime mold. The
Keller-Segel system, named after the American physicist Evelyn Fox Keller and
the American mathematician Lee Aaron Segel, consists of an elliptic and a
parabolic partial differential equation coupled with initial and homogeneous Neu-
mann boundary conditions [10,11]. The Neumann boundary conditions imply
that there is no flow through the boundary of the domain, meaning that there
are no cells leaving or entering the system. Both boundary and initial conditions
are needed in order to find a solution to the Keller-Segel system. The mere ques-
tion of the solvability of such a system in general is very challenging and stands
in focus of current research [3]. Additionally, it is difficult to state an universal
method to solve partial differential equations. The finite volume method is used
because of its conservation properties [1,5].
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If a solution of a system of partial differential equations becomes pointwise
larger and larger until it eventually becomes infinite in finite time, we speak
of numerical blow-up. The cell aggregation of the system is counterbalanced by
diffusion, but if the cell density is sufficiently large, the chemical interaction
dominates diffusion and may lead to finite-time blow-up of the cell density [13].
This behavior is often referred to as the most interesting feature of the Keller-
Segel equations [8,9].

2 Chemotaxis and Keller-Segel System

For a wide description of the Chemotaxis/Keller-Segel model and extensive
explanations and derivations of the models, we refer to the thesis [16] and the
review paper [7].

In its original form, the Keller-Segel system consists of four coupled reaction-
advection-diffusion equations [11]. These can be reduced under quasi-steady-
state assumptions to a model for two unknown functions u and v which will
form the basis for our study. With an appropriate non-dimensionalisation and
some very natural assumptions starting from the original Keller-Segel system,
we get the following systems of partial differential equations:

ut = ∇ · (D∇u − χu∇v)
0 = ∇2v + u − v (1)

and

ut = ∇ · (D∇u − χu∇v)
vt = ∇2v + u − v. (2)

(1) and (2) are the so-called minimal models with the density of the cellular
slime molds u, the concentration of the chemical substance/attractant v and the
diffusion coefficient of cell D.

The important term in the equation for u,

Φchemo = χu∇v,

is the chemotactic flux (see Müller et al. [12]) where χ, the chemotactic sensi-
tivity, depends on the density of the attractant.

Both (1) and (2) are considered in a bounded domain Ω ∈ R
d, d = 1, 2, 3. The

mathematical models are closed by zero flux boundary conditions (homogeneous
Neumann) on Γ = ∂Ω and initial conditions u(x, 0) = u0(x) and v0(x, 0) = v0(x)
(only necessary for (2)).

The first substantial mathematical analysis of the Keller-Segel model was
performed by Gajewski and Zacharias [6] introducing a Lyapunov function for
the system (2). All other mathematical investigations of Keller-Segel systems
followed the ideas of [6]. As a result of the analysis, global existence of solutions
in the sub-critical case were shown.
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Extensive mathematical and numerical analysis of the minimal Keller-Segel
system (1) can be found in the paper of Zhou and Saito [17].

The Keller-Segel system admits several a priori estimates which reflects
the basic modeling assumptions that have been mentioned above: the solution
remains positive

u(t, x) > 0 (3)

and the total mass is conserved∫
Ω

u(t, x)dx =
∫

Ω

u0(x)dx =: m0, (4)

which imply the conservation of the L1 norm:

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω), t ∈ [0, T ].

2.1 Variations of the Minimal Keller-Segel System

From the view of mathematical biology, it is interesting to consider modifications
of the standard Keller-Segel system. Roughly, the mathematical meaning of the
modifications is a regularisation. This leads to different behavior of the solutions
and in some cases blow-up effects can be suppressed.

In this paper, we will discuss and numerically analyse the following models.
Signal-dependent sensitivity models
Consideration of signal-dependent sensitivity leads to the receptor model

ut = ∇ · (D∇u − χu

(1 + αv)2
∇v)

vt = ∇2v + u − v, (5)

and the logistic model

ut = ∇ · (D∇u − χu
1 + β

v + β
∇v)

vt = ∇2v + u − v. (6)

For α → 0, model (5) tends to the minimal model (2), and for β → ∞, the
model (6) approaches the minimal model.
Density-dependent sensitivity models
For the volume-filling model

ut = ∇ · (D∇u − χu(1 − u

γ
)∇v)

vt = ∇2v + u − v, (7)

we get the minimal model by γ → ∞. Another type of a density-dependent
sensitivity model is given by

ut = ∇ · (D∇u − χu
1

1 + εu
∇v)

vt = ∇2v + u − v, (8)
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where ε → 0 leads to the minimal model.
Signal and cell kinetics models
The nonlinear signal kinetics model reads as

ut = ∇ · (D∇u − χu∇v)

vt = ∇2v +
u

1 + Ψu
− v (9)

and approximates the minimal model for Ψ → 0. The cell kinetics model is of
the form

ut = ∇ · (D∇u − χu∇v) + ru(1 − u)
vt = ∇2v + u − v (10)

and in the limit of zero growth r → 0, it leads to the minimal model.

3 Finite Volume Scheme

We will next determine the terms which are necessary for the construction of
the finite volume method. We will then present a linear finite volume scheme
and take a look at the conservation laws.

We will follow the notation described in [17] and [5]. Let Ω be a convex
polygonal domain in R. First, we will define a very important notion following
Eymard et al. [5]:

Definition 1 (Admissible mesh). Let Ω be an open bounded polygonal subset
of R, d = 2 or d = 3. An admissible finite volume mesh of Ω, denoted by T ,
is given by a family of control volumes, which are open polygonal convex subsets
of Ω, a family of subsets of Ω contained in hyperplanes of R

d, denoted by E
(these are edges (two-dimensional) or sides (three-dimensional) of the control
volumes), with strictly positive (d − 1)-dimensional measure, and a family of
points of Ω denoted by P satisfying the following properties (in fact, we shall
denote, somewhat incorrectly, by T the family of control volumes):

(i) The closure of the union of all the control volumes is Ω, Ω =
⋃

K∈T
K.

(ii) For any K ∈ T , there exists a subset EK of E such that ∂K = K\K =⋃
σ∈EK

σ. Furthermore, E =
⋃

K∈T
EK .

(iii) For any (K,L) ∈ T 2 with K �= L, either the (d − 1)-dimensional Lebesgue
measure of K ∩ L is 0 or K ∩ L = σ for some σ ∈ E, which will then be
denoted by K|L.

(iv) The family P = (xK)K∈T is such that xK ∈ K (for all K ∈ T ) and, if
σ = K|L, it is assumed that xk �= xL, and that the straight line DK,L going
through xK and xL is orthogonal to K|L.

(v) For any σ ∈ E such that σ ⊂ ∂Ω, let K be the control volume such that σ ∈
EK . If xK /∈ σ, let DK,σ be the straight line going through xK and orthogonal
to σ, then the condition DK,σ ∩ σ �= ∅ is assumed; let yσ = DK,σ ∩ σ.
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Let T be an admissible mesh. As defined above, an element K ∈ T is called
control volume. We introduce the neigborhood of K ∈ T :

NK := {L ∈ T |L ∩ K �= ∅}.

Let K|L (or σK,L) denote the common edge L ∩ K of control volumes K and L.
We introduce the set of interior (resp. boundary) edges inside Ω (resp. on Γ ):

Eint = {K|L | ∀K ∈ T ,∀L ∈ NK},

Eext = E \ Eint.

For every control volume K, let PK (or denoted by xK) be the control point.
And the segment PKPL is perpendicular to K|L for all K ∈ T , L ∈ NK .

Set

dK,L := dist(PK , PL), τK,L := m(K|L)
dK,L

, K, L ∈ T ,

dK,σ := dist(PK , σK,Γ ), τK,σ := m(σK,Γ )
dK,σ

, τK,σ ∈ Eext.

Here, m(O) = md−1(O) denotes the (d − 1)-dimensional Lebesgue measure
of O ⊂ R

d−1.
Note that

τK,L = τL,K ,

which means that it does not make any difference whether we consider the neigh-
bor L of control volume K or the neighbor K of control volume L.

We will now introduce a linear finite volume scheme in order to discretise the
Keller-Segel system.

3.1 Linear Finite Volume Scheme

An important issue of the discretisation of the Keller-Segel system is the handling
of the convective terms. Upon computing a convection-diffusion problem, there
often occur problems when the convective term gets by far bigger than the
diffusion term. In our example, when the cell density is very large, the cell
aggregation outbalances diffusion. To handle this, an upwind scheme is used
[15]. The error of the upwind scheme is of order O(h), however, the physics of
the system is better reproduced than by use of the central difference quotient.
Especially in convection dominated cases like drift diffusion, instead of simple
upwind schemes, Scharfetter-Gummel approximations are used. They control
the order of approximation between one and two, depending on the convection
velocity.

We set the function space Xh for the discrete solution (uh, vh):

Xh = span{φK | K ∈ T },

where φK is the characteristic (or indicator) function of K (φK = 1 in K, φ = 0
otherwise). With the assumptions on the mesh from above, we define the discrete
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W 1,p semi-norm for uh ∈ Xh:

|uh|p1,p,T =
∑

K|L∈Eint

τK,Ld2−p
K,L |uK − uL|p , for p ∈ [1,∞), (11)

|uh|1,∞,T = max
K|L∈Eint

|uK − uL|
dK,L

. (12)

We further set the discrete W 1,p norm for Xh: For any uh ∈ Xh,

‖uh‖1,p,T := |uh|1,p,T + ‖uh‖p.

For uh ∈ Xh and K ∈ T , we set uK = uh(PK). Given the initial condition

u0
h ∈ Xh, u0

h ≥ 0,∫
Ω

u0
hdx =

∑
K∈T

m(K)u0
K ≡ θ > 0, (13)

we state the finite volume scheme for the Keller-Segel system (1):
Find (un

h, vn
h) ∈ Xh × Xh for n ∈ N+, such that:

∑
L∈NK

τK,L(vn−1
K − vn−1

L ) + m(K)vn−1
K = m(K)un−1

K

⇔
∑

L∈NK

m(K|L)
dK,L

(vn−1
K − vn−1

L ) + m(K)vn−1
K = m(K)un−1

K , (14)

which is the discrete to the elliptic equation

−Δv + v = u,

and

m(K)∂τn
un

K +
∑

L∈Nk

τK,L(un
K − un

L)

+
∑

L∈Nk

τK,L

[
(Dvn−1

K,L )+un
K − (Dvn−1

K,L )−un
L

]
= 0

⇔ m(K)
un

K − un−1
K

τn
+

∑
L∈Nk

m(K|L)
dK,L

(un
K − un

L)

+
∑

L∈Nk

m(K|L)
dK,L

[
max (vn−1

L − vn−1
K , 0)un

K − max (−(vn−1
L − vn−1

K ), 0)un
L

]
= 0,

(15)

which is the discrete to the parabolic equation

ut = Δu − ∇ · (u∇v),
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using implicit Euler for the time discretisation. For the parabolic v-equation
of (2), we also use the implicit Euler method, as in the case of the parabolic
u-equation.

Here, w+ = max(w, 0), w− = max(−w, 0), hence following the technique of
an upwind approximation, and

DvK,L = vL − vK for vh ∈ Xh, DvK,σ = 0 for σ ∈ Eext.

In the scheme, τ > 0 is the time-step increment, tn = τ1 + · · · τn, and ∂τn
un

K

is the backward Euler difference quotient approximating to ∂tu(tn), which is
defined by

∂τn
un

K =
un

K − un−1
K

τn
.

For the modified models (5)−(10), we have the more general equations

ut = ∇ · (D∇u − ϕ(u, v)u∇v) and vt = Δv + ψ(u)u − v. (16)

Finally, for (16), we have to modify the discretisation (15) by inserting a factor
ϕ(un−1

L , vn−1
L ). In other words, we perform a linearisation.

3.2 Conservation Laws

We consider the Keller-Segel system (1). The solution (u, v) satisfies the conser-
vation of positivity

u(x, t) > 0, (x, t) ∈ Ω̄ × [0, T ], (17)

and the conservation of total mass∫
Ω

u(x, t)dx =
∫

Ω

u0(x)dx, t ∈ [0, T ], (18)

which imply the conservation of the L1 norm.

Remark 1. The value of ‖u0‖L1(Ω) plays a crucial role in the blow-up behavior
and global existence of solutions, as we will see in Theorem 3.

The conservation properties (17) and (18) are essential requirements and it is
desirable that numerical solutions preserve them when we solve the Keller-Segel
system by numerical methods.

In the following, we will state some important theorems when working with
conservation laws. For the proofs, we refer to the paper [17] and the thesis [16].

Theorem 1 (Conservation of total mass). Let {(un
h, vn

h)}n≥0 ⊂ Xh be the
solution of the finite volume scheme (14−15). Then we have

(vn
h , 1) = (un

h, 1) = (u0
h, 1), ∀n ≥ 0. (19)

Theorem 2 (Well-posedness and conservation of positivity). Let u0
h ≥ 0,

uh �≡ 0. Then (14)−(15) admits a unique solution {(un
h, vn

h)}n≥0 ⊂ Xh × Xh,
such that un

h > 0 for n ≥ 1 and vn
h > 0 for n ≥ 0.
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3.3 Discrete Free Energy

As mentioned before, the L1 conservation (which follows from the conservation
of positivity and the conservation of total mass) is an important feature of the
Keller-Segel system. Another important feature of the Keller-Segel system is the
existence of free energy. By free energy we understand the energy in a physical
system that can be converted to do work. It is desirable that the numerical
solution preserves both these properties.

For the free energy

W (u(t), v(t)) =
∫

Ω

(u log u − u)dx − 1
2

∫
Ω

uvdx, (20)

one can show the important energy inequality. The free energy is expressed as

d

dt
W (u(t), v(t)) ≤ 0, t ∈ [0, T ].

In the following, we will discuss a discrete version of the energy equality (20).
For the solution {(un

h, vn
h)}n≥0 of the finite volume scheme (14)−(15), we set

Hn
h :=

∑
K∈T

m(K)(un
K log un

K − un
K). (21)

For any internal edge K|L ∈ Eint, we set

ũn
K,L =

un
K − un

L

log un
K − log un

L

, for un
K �= un

L. (22)

Let ũn
K,L = un

K , if un
K = un

L. Then there exists sn
K,L ∈ [0, 1] such that

ũn
K,L = sn

K,Lun
K + (1 − sn

K,L)un
L. (23)

Analogous to the energy function W (u, v), we define the discrete energy
function

Wn
h = Hn

h − 1
2

∑
K∈T

m(K)un
Kvn

K .

However, we can not obtain the inequality ∂τn
Wn

h ≤ 0. Instead of that, we
have the following estimate on ∂τn

Wn
h . For the discrete energy Wn

h , we have the
inequality

∂τn
Wn

h ≤ −
∑

K|L∈Eint

τK,L

∣∣∣∣∣
Dun

K,L√
ũn

K,L

− Dvn−1
K,L

√
ũn

K,L

∣∣∣∣∣
2

− τn

2

⎡
⎣ ∑

K∈T
|∂τn

vn
K |2 +

∑
K|L∈Eint

τK,L

∣∣∂τn
(Dvn

K,L)
∣∣2

⎤
⎦ + Ch(un

h, vn
h),
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where Ch(un
h, vn

h) is defined by

Ch(un
h, vn

h) :=

−
∑

K|L∈Eint

τK,L

[
(Dvn−1

K,L )2+(1 − sn
K,L)(un

K − un
L) + (Dvn−1

K,L )2−sK,L(un
L − un

K)
]
,

and it admits the estimate:

|Ch(un
h, vn

h)| ≤ Ch |un
h|1,∞,T |vn

h |1,2,T .

Here, sn
K,L satisfies (23) and | · |1,p,T is defined by (11) and (12).

Thus, the finite volume scheme conserves the energy inequality in the above
noted sense.

4 Numerical Blow-Up

When organisms, such as the amoeba Dictyostelium discöıdeum, secrete an
attracting chemical and move towards areas of higher chemical concentration,
this leads to aggregation of organisms. The cell aggregation is counterbalanced
by diffusion, in particular by the use of the upwind type approximation. How-
ever, if the cell density is sufficiently large, the chemical interaction dominates
the diffusion and this may lead to finite-time blow-up of the cell density.

This blow-up phenomenon, or chemotactic collapse, can never occur in one
dimension, which was shown in [17]. In two dimensions, it can occur if a total
cell number on Ω is larger than a critical number but it can never occur for the
total cell number on Ω less than the critical number [2,4]. We will focus on the
two-dimensional case, shortly discuss some important properties of the system
before turning to the finite volume scheme. Throughout this section, we will
distinguish between the conservative and non-conservative system and derive
the finite volume scheme for both, using Cartesian coordinates.

4.1 Two-Dimensional System

We consider the finite volume scheme with mesh T :

−L = x 1
2

< x1+ 1
2

< · · · < xN+ 1
2

= L,

where 0 < N ∈ N is the number of control volumes, h = 2L
N is the uniform mesh

size in both directions. We set

u0
i,j = u0(xi, yj), i = 1, . . . , N, j = 1, . . . , M.

Let (un
i,j , v

n
i,j) be the approximation of (u(tn, xi, yj), v(tn, xi, yj)). With the obvi-

ous notations for the forward and backward difference quotients

∇xun =
un

i+1,j − un
i,j

h
, ∇x̄un =

un
i,j − un

i−1,j

h
,



12 G. Bärwolff and D. Walentiny

we formulate the finite volume scheme for the minimal Keller-Segel system. It is
to find

un = (un
i,j)

N,M
i,j=1, vn = (vn

i,j)
N,M
i,j=1

for n = 1, 2, ..., J , such that

−∇x∇x̄vn
i,j − ∇y∇ȳvn

i,j + vn
i,j = un−1

i,j ,

∂τun
i,j − ∇x∇x̄un

i,j − ∇y∇ȳun
i,j +

χ

h
convup(∇v, u) = 0 ,

vn
0,j = vn

1,j , vn
i,0 = vn

i,1, vn
0,N = vn

0,N+1, vn
N,0 = vn

N+1,0,

un
0,j = un

1,j , un
i,0 = un

i,1, un
0,N = un

0,N+1, un
N,0 = un

N+1,0.

with the upwind-discretisation

convup(∇v, u) = [max(∇xvn, 0) + max(−∇x̄vn, 0)]un
i,j

+[max(∇yvn, 0) + max(−∇ȳvn, 0)]un
i,j

−max(−∇xvn, 0)un
i+1,j − max(∇x̄vn, 0)un

i−1,j

−max(−∇yvn, 0)un
i,j+1 − max(∇ȳvn, 0)un

i,j−1

where τ > 0 is the time-step increment and {u0
ij}

N,M
i,j=1 ≥ 0 and not identically

zero.

Blow-Up Behavior

Theorem 3 (2D Blow-Up). In R
2, assume

∫
R2 |x|2u0(x)dx < ∞.

(i) (Blow-up) When the initial mass satisfies

m0 :=
∫
R2

u0(x)dx > mcrit := 8π

then any solution to the Keller-Segel system (1) becomes a singular measure
in finite time.

(ii) When the initial data satisfies∫
R2

u0|log(u0(x))|dx < ∞ and m0 :=
∫
R2

u0(x)dx < mcrit := 8π,

there are weak solutions to the Keller-Segel system (1) satisfying the a priori
estimates∫

R2
u

[
|ln(u(t))| + |x|2

]
dx ≤ C(t), ‖u(t)‖Lp(R2) ≤ C(p, t, u0)

for ‖u0‖Lp(R2) < ∞, 1 < p < ∞.

The mathematical interest here is to prove existence with an energy method
rather than direct estimates based on Sobolev inequalities. For the proof, we
refer to [14] or [16].

Remark 2. In general bounded domains, with no-flux boundary conditions, the
critical mass is 8π because blow-up may occur on the boundary which intuitively
acts as a reflection wall.
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Properties of the System. In order to consider the blow-up solution, the
moment is introduced:

M2(t) =
∫

Ω

u(x, t)|x|2dx = 2π

∫ L

0

u(r, t)r3dr, (24)

which, with θ =
∫

Ω
u0dx, satisfies

d

dt
M2(t) ≤ 4θ − 1

2π
θ2 +

1
πL2

θM2(t) +
1

2eπ
θ

3
2 M2(t)

1
2 . (25)

This implies that if θ > 8π and M2(0) is sufficiently small, we then have

d

dt
M2(t) < 0, t > 0, (26)

which means that M2(t) → 0 at some time t = tb. Since u > 0 and
∫

Ω
u(x, t) = θ,

the function u actually blows up in finite time tb. We call tb the blow-up time.
We aim to show the discrete version of inequality (25). For n = 1, . . . , J , we

have

Mn
2 − Mn−1

2

τ
≤ 4θ

2π
−

(
θ

2π

)2

+ C1θM
n−1
2 + C2θ

3
2

√
Mn−1

2 + C3hθ2, (27)

where C1, C2, C3 are independent of h, θ and Mn−1
2 .

We should mention that (27) is not satisfied for the conservative scheme
introduced above.

4.2 Non-conservative Finite Volume Scheme

We will now consider the numerical scheme without conservation of positivity but
satisfying (27). With the above defined notations, we obtain this so-called non-
conservative scheme by replacing the conservative discretised parabolic equa-
tion by

∂τun
i,j − ∇x∇x̄un−1

i,j − ∇y∇ȳun−1
i,j

+
χ

h
(∇xvn−1

i,j un
i,j + ∇yvn−1

i,j un
i,j + ∇x̄vn−1

i,j un
i−1,j + ∇ȳvn−1

i,j un
i,j−1) = 0.

(28)

We will now state that (27) is satisfied for the non-negative solution of the non-
conservative scheme. In view of (27), for θ > 8π and sufficiently small M0

2 , Mn
2

decreases by n. When Mn
2 approaches 0, we have

Mn
2 − Mn−1

2

τ
≈ 4θ

2π
− (

θ

2π
)2.

Theorem 4. For the non-conservative scheme introduced above, let J be the
largest time step such that (un

h, vn
h) ≥ 0, for any 1 ≤ n ≤ J . Then we have the

moment inequality

Mn
2 − Mn−1

2

τ
≤ 4θ

2π
−

(
θ

2π

)2

+ C1θM
n−1
2 + C2θ

3
2

√
Mn−1

2 + C3hθ2,

where C1, C2, C3 are independent of h, θ and Mn−1
2 .
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5 Numerical Examples

In order to verify the theoretical results, we conducted various numerical sim-
ulations. We implemented the presented finite volume schemes using Python.
The model and used parameters can be found in the figure captions. For the
simulations, we used the conservative scheme.

We consider Ω = (0, 1)2 and use a direction equidistant discretisation with
1 < N ∈ N, h = 1

N−1 and τ = τn = 0.2h, N = 41 and N = 61. As initial
conditions, we use

u = 1, v = 1 + 0.1 exp(−10((x − 1)2 + (y − 1)2))

on Ω. In all examples, we reached the steady state (global existence of the
solution), as can be seen in Figs. 1, 2 and 3. The solutions were grid-independent.

Fig. 1. Cell density (left) and cell density peak evolution (right) for problem (7), using
D = 0.1, χ = 5.0, γ = 3.0 (steady state)

Fig. 2. Cell density (left) and cell density peak evolution (right) for problem (8), using
D = 0.1, χ = 5.0, ε = 1.0 (steady state)
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Fig. 3. Cell density (left) and cell density peak evolution (right) for problem (10), using
D = 0.1, χ = 5.0, r = 0.25 (steady state)

With the same setting, we define the function

W(x0,y0) =
M

2πθ
exp

(
− (x − x0)2 + (y − y0)2

2θ

)
,

where (x0, y0) ∈ (0, 1)2, M = 6π, θ = 1
500 and choose the initial function

u0 = W( 1
3 , 13 )

+ W( 1
3 , 23 )

+ W( 2
3 , 13 )

+ W( 2
3 , 23 )

. (29)

We also consider a non-symmetric situation given by the initial function

u0 =
1
3
W( 1

3 , 23 )
+

1
2
W( 1

3 , 13 )
+ W( 2

3 , 23 )
. (30)

The initial mass is 24π > 8π and 11π > 8π, respectively and thus, we expect
the solutions to blow up in finite time.

Fig. 4. Cell density (left) and cell density peak evolution (right) for problem (1) with
initial data (29), using parameters D = 0.1, χ = 1 (approximation of blow-up)
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Fig. 5. Cell density (left) and cell density peak evolution (right) for problem (1) with
initial data (30), using parameters D = 1, χ = 1, (approximation of blow-up)

Let then Ω = (−0.5, 0.5)2. We consider the initial value

u0 = 40 exp
(
−10(x2 + y2)

)
+ 10, (31)

where ‖u0‖1 ≈ 21.93 < 8π. Therefore the solution will not blow up. With the
same setting but the initial data

u0 =100 exp
(

−x2 + y2

0.04

)
+ 60 exp

(
− (x − 0.2)2 + y2

0.05

)

+ 30 exp
(

−x2 + (y − 0.02)2

0.05

)
,

(32)

where ‖u0‖1 ≈ 26.26 > 8π.

Remark 3. Note that it is only possible to approximate the blow-up behavior
with the finite volume scheme. Due to the conservation of mass, the solution will

Fig. 6. Cell density (left) and cell density peak evolution (right) for problem (1) with
initial data (31), using parameters D = 0.1, χ = 1 (steady state)
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Fig. 7. Cell density (left) and cell density peak evolution (right) for problem (1) with
initial data (32), using parameters D = 0.1, χ = 1 (approximation of blow-up)

never become infinite in time. The possible maximum of the cell density depends
on the used discretisation. Thus, with a very fine discretisation near the corner
(x, y) = (1, 1) a good approximation of the blow-up behavior is possible, as can
bee seen in Figs. 4, 5 and 7.
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5. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of
numerical analysis, Vol. 7: Solution of equations in R

n (Part 3). Techniques of
scientific computing, pp. 713–1020. Elsevier, Amsterdam (2000)

6. Gajewski, H., Zacharias, K.: Global behaviour of a reaction-diffusion system mod-
elling chemotaxis. Math. Nachr. 195, 77–114 (1998)

7. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math.
Biol. 58(1–2), 183–217 (2009)

8. Horstmann, D.: Aspekte positiver Chemotaxis. Univ. Köln, Köln (1999)
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