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Abstract. Previous publications analyzed a large number of heuristics
for bandwidth and profile reductions, and 14 heuristics were selected
as promising low-cost heuristics for these problems. Based on exten-
sive numerical experiments, this paper evaluates these heuristics when
applied to matrices contained in systems of linear equations arising
from computational fluid dynamics problems and the most promising
heuristics are identified when reducing the zero-fill incomplete Cholesky-
preconditioned conjugate gradient method.
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1 Introduction

An essential task in several scientific and engineering applications is the solution
of systems of linear equations in the form Ax = b, where A is an n X n large-
scale sparse matrix, = is the unknown n-vector solution which is sough, and b is
a known n-vector. It is generally a part of the simulation that demands a high
processing time [1].

Modern hierarchical memory architecture and paging policies favor programs
that take locality of reference into consideration [1,2]. Thus, spatial locality (a
sequence of recent memory references is clustered locally rather than randomly
in the memory address space) is relevant when designing an algorithm in this
context.

For the low-cost solution of large and sparse linear systems, an appropriate
vertex labeling in a graph is desirable to ensure that the corresponding coefficient
matrix A will have narrow bandwidth and small profile. Specifically, heuristics
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for bandwidth or profile reductions return a sequence of graph vertices with
spatial locality. Thus, these heuristics are used to reach low computational costs
when solving large sparse systems of linear equations [1,2].

The bandwidth reduction problem consists of labeling the vertices of a graph
with positive integer labels aiming at minimizing the maximum absolute dif-
ference between labels of adjacent vertices. It is isomorphic to the problem of
reordering the rows and columns of a symmetric matrix so that the objective
is to locate non-null coefficients as close as possible along the main diagonal
[3]. Let A = [a;;] be an n X n symmetric matrix associated with a connected
undirected graph G = (V| E) composed of a set of vertices V and a set of edges

E. The bandwidth of row i is 3;(A) =i — 13112[] :a;; # 0], for a;; # 0. Band-
<gsi

width B(A) is the largest distance between the non-null coefficient of the lower
triangular matrix and the main diagonal considering all rows of the matrix, that

is, B(A) = max [B:(A)]. Equivalently, the bandwidth of G for a vertex labeling
S = {s(v1), s(va),- - ,8(vjy))} (i-e., a bijective mapping s : V' — {1,2,--- ,|V[})

is B(G) = Igleag[({v,u} € E) |s(v) — s(u)|], where s(v) and s(u) are labels of

vertices v and u, respectively. The profile of A can be defined as profile(A) =
o, Bi(A), or equivalently, profile(G) = Y. max [|s(v) — s(u)|]. The band-
vev {vuleE
width and profile minimization problems are NP-hard [4,5] and, since the mid-
1960s, several heuristics have been proposed to solve the bandwidth and pro-
file reduction problems [2,6-8] due to the existence of extensive connections
between these problems and a large number of other scientific and engineering
problems [1].

A prominent method for solving large sparse systems of linear equations is the
preconditioned conjugate gradient method (CGM) when the matrix contained
in them are symmetric and positive definite. The number of iterations of the
CG method depends on the structure of the matrix A, its condition number,
the accuracy to be achieved, and the preconditioner used [1]. Thus, the most
important result of a reordering algorithm in conjunction with the preconditioner
is to return a matrix A with a reduced condition number (or equivalently better
cluster of eigenvalues). The reordering algorithm should provide spatial locality.
Moreover, the application should use a data structure that depends neither on
the bandwidth nor the profile of the matrix A, as is the case in the experiments
presented in this paper. Consequently, the resulting linear system is much easier
to solve than the original linear system, even when the linear system is composed
of multiple right-hand side vectors [1].

A specific preconditioner is applied to speed up the conjugate gradient
method depending on the problem in context. Among various precondition-
ers proposed (e.g., see [9]) for the conjugate gradient method, the incomplete
Cholesky (IC) factorization is especially useful [1]. The IC(!) preconditioner with
I > 0 will obtain a better approximation to A than IC(0) at the cost of increased
memory requirements and processing times. Thus, we used the IC(0) precon-
ditioner. The zero-fill incomplete Cholesky-preconditioned conjugate gradient
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method (ICCGM) has been employed promisingly in the solution of various
problems (see [1] and references therein).

One can reduce computational costs using the conjugate gradient method by
applying an adequate ordering of the vertices of the corresponding graph of A
to improve cache hit rates. Such ordering can be reached using a heuristic for
bandwidth reduction (see [1] and references therein).

Systematic reviews [2,6-8] identified almost 140 heuristics for bandwidth and
profile reductions. This number is increasing each year [1,10,11]. Therefore, an
important decision in this context is to choose the best reordering algorithm
among several alternatives for the problem at hand. Furthermore, in previ-
ous publications [10-13], various heuristics for bandwidth and profile reductions
were evaluated with the intention of reducing the execution cost of the Jacobi-
preconditioned conjugate gradient method. Additionally, in a recent publication
[1], several heuristics for bandwidth and profile reductions were evaluated. This
publication [1] also identified the most promising heuristics for several applica-
tion areas when reducing the computational cost of the ICCG method. Among
55 instances (arising from several application areas) used in this publication [1],
it evaluated the heuristics for bandwidth and profile reductions when applied to
only three linear systems originating from computational fluid dynamic (CFD)
problems. Thus, this present work aims to evaluate the same 14 heuristics for
bandwidth and profile reductions to speed up the ICCG method when applied to
several instances that arise from this application area. To provide more specific
details, systematic reviews [1,2,6-8] reported 14 promising low-cost heuristics for
bandwidth (Burgess-Lai [14], FNCHC [15], GGPS [16], VNS-band [17], KP-band
[3], CSS-band [18], and RBFS-GL [1]) and profile (Snay [19], Sloan [20], MPG
[21], NSloan [22], and Sloan-MGPS [23]) reductions. Additionally, this paper
[1] evaluated the reverse Cuthill-McKee method with pseudo-peripheral vertex
given by the George-Liu algorithm (RCM-GL) [24] and GPS algorithm [25] in
both contexts of bandwidth and profile reductions. Therefore, 14 heuristics were
evaluated in this work. Thus, our work provides an extensive computational
experiment employing heuristics for bandwidth and profile reductions aiming at
reducing the computational time of the ICCG method applied to 23 instances
originating from CFD problems. To be more precise, the main contribution of
our work is the comparison of results obtained when using 14 heuristics for band-
width and profile reductions to symmetric matrices contained in linear systems
(with sizes nearly 300,000 unknowns) arising from CFD problems solved by the
ICCG method.

The remainder of this manuscript is organized as follows. Section 2 describes
how this paper conducted the simulations in this computational experi-
ment. Section 3 presents and analyzes the results. Finally, Sect.4 provides the
conclusions.
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2 Description of the Tests

This computational experiment uses a 64-bit executable program of the VINS-
band heuristic. One of the heuristics’ authors kindly provided this program.
Additionally, a heuristics’ author kindly provided the C programming language
source code of the FNCHC heuristic. Then, we converted this source code to the
C++ programming language. The 12 other heuristics were also implemented
in the C++ programming language to compare the computational costs of the
heuristics. Furthermore, we used a data structure based on the Compress Row
Storage, Compress Column Storage, and Skyline Storage Scheme data structures
to implement the ICCG method. Previous publications described details of our
implementations, testing, and calibration of the heuristics [1,2].

The three datasets (composed of real symmetric instances) that are part of
the simulations carried out on each machine are (Intel® Core™): (i) systems of
linear equations (ranging from 7,332 to 277,118 unknowns) arising from finite-
volume discretizations of the Laplace equation [26], originally using a random
order, with executions performed on a workstation that contains an i3-2120 CPU
3.30 GHz, 3 MB of cache, 8 GB DDR3 1.333 GHz of main memory, Linux kernel
3.13.0-39-generic; (4i) linear systems (ranging from 4,846 to 232,052 unknowns)
originating from finite-volume discretizations of the heat conduction equation
with meshes generated using Voronoi diagrams (and Delaunay triangulations)
[27], with executions performed on a workstation that contains an i3-550 CPU
3.20 GHz, 4 MB cache, 16 GB DDR3 1.333 GHz of main memory, Linux kernel
3.13.0-39-generic; (éii) 11 instances (ranging from 1,733 to 81,920 unknowns)
contained in the SuiteSparse matrix (SSM) collection [28], with executions per-
formed on a workstation that contains an i7-4790K CPU 4.00 GHz, 8 MB cache,
12GB DDR3 1.6 GHz of main memory, Linux kernel 3.19.0-31-generic (Intel;
Santa Clara, CA, United States). The Ubuntu 14.04 LTS 64-bit operating sys-
tem was used in the simulations. A dataset used in each machine was chosen
arbitrarily.

The convergence criterion used in the ICCG method was a reduction of the
computed residual |Azx = b| (i.e., a final backward error) to less than 10716.
Thus, the final attainable accuracy in our numerical experiments is related to this
precision. Three sequential runs were performed for each instance with both a
reordering algorithm and with the ICCG method. This present work employs the
GNU Multiple Precision Floating-point Computations with Correct-Rounding
library to make it possible to obtain high precision in the computations.

3 Results and Analysis

This section presents and analyzes the results obtained in simulations using the
ICCG method computed after executing heuristics for bandwidth and profile
reductions. Sections 3.1 and 3.2 show the results obtained from the solutions of
linear systems arising from finite-volume discretizations of the heat conduction
(with instances ranging from 4,846 to 232,052 unknowns) and Laplace equa-
tions (with instances ranging from 7,322 to 277,188 unknowns), respectively.
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Section 3.3 shows the results obtained from the solutions of 11 systems of linear
equations (ranging from 1,733 to 81,920 unknowns) contained in the SuiteSparse
matrix collection [28].

Tables contained in this section show the number of unknowns (n), the name
of the reordering algorithm applied, the bandwidth and profile results, the results
of the heuristics in relation to the computational times, in seconds (s), and the
memory requirements, in mebibytes (MiB). These tables provide the compu-
tational times of the IC(0) preconditioner and the conjugate gradient method
separately. It was decided to distinguish these costs because the renumbering
produced using the reordering algorithms also affects the computational cost of
the IC(0) preconditioner. These tables also present the number of iterations and
the total computational times, in seconds, of the ICCG method. Moreover, in
spite of the small number of executions for each heuristic in each instance, these
tables provide the standard deviation o and coefficient of variation C, = o/u
(where p is the mean of the results analyzed), referring to the total execution cost
of the ICCG method. Additionally, the first line of each instance presented in
these tables shows results for systems of linear equations solved using the ICCG
method without applying a reordering algorithm. These lines are indicated as
“—" in these tables. With this result, one can check the speed-up (or speed-
down) of the ICCG method provided by employing a reordering algorithm (i.e.,
the time of the ICCG method without applying a reordering algorithm divided
by the time of the ICCG method executed in conjunction with a reordering
algorithm), which is exhibited in the last columns of the tables below. Numbers
in boldface are the best results. In addition, several figures in this section are
presented as line charts for clarity.

3.1 Instances Arising from Finite-Volume Discretizations of the
Heat Conduction Equation

Tables 1, 2 and Fig. 1, developed from an ample collection of heuristics for band-
width and profile reductions that compose this work, show the average results
obtained from the use of the ICCG method applied to instances derived from
finite-volume discretizations of the heat conduction equation. These instances
arise from the use of meshes generated by employing Voronoi diagrams (and
Delaunay triangulations) [27].

Increasing the runtime of the VNS-band heuristic does not reduce the total
cost of the whole simulation [10,11]. Table 2 and Fig. 1b show that several heuris-
tics increased the processing time of the ICCG method or the speed-up is
marginal when applied to various instances contained in this dataset (e.g., see
the results related to the linear system composed of 50,592 unknowns in Table 2).
Moreover, although Sloan’s heuristic [20] reached the best results when applied
to the smallest instances contained in this dataset (see Table1), the RCM-GL
method [24] yielded similar results to Sloan’s [20] heuristic in these instances,
and the RCM-GL method [24] obtained, in general, the best results in the largest
linear system (see Table 2). Therefore, this method achieved on average the best
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Table 1. Results from the solution of systems of linear equations (up to 23,367
unknowns and derived from finite-volume discretizations of the heat conduction equa-
tion [27]) using the ICCG method and vertices labeled by heuristics for bandwidth and
profile reductions (continued on Table 2).

n Heuristic B Profile Heuristic IC(0) |CGM |ICCGM o C, | Speed-
t(s) | t(s) (%) |up
t(s) | m.(MiB) iter. | t(s)

4846 | — 4769 9116750 — — 2 6 144 8 10.02|0.26 | —
Sloan 882 297009 | 0.006 0.2 3 3 85 7 10.02/0.29|1.26
Sloan-MGPS 809 299210 0.025 0.0| 3 3 86 7 10.02|0.37|1.24
MPG 1084 305791 | 0.006 0.2 3 3 91 7 10.02/0.36|1.21
Snay 1108 360746 0.285 0.1| 3 3 84 6 |0.02|/0.35|1.21
RCM-GL 152 425223 | 0.005 0.0 3 4 92 7 10.02]0.34|1.20
GPS 140 406081 0.166 0.3| 3 4 94 7 10.01]0.21|1.16
RBFS-GL 165 448906 | 0.002 0.0 3 4 95 7 10.06/0.80|1.16
GGPS 136 409134 0.397 0.6| 3 4 94 7 10.01/0.07|1.11
KP-band 152 471590 | 0.006 0.0 3 4 106 7 10.01/0.19|1.10
NSloan 554 448633 0.004 0.0| 3 4 106 7 10.03/0.35|1.10
Burgess-Lai 233 417653 | 0.533 0.0 3 4 100 7 10.07/1.10|1.05
VNS-band 154 499797 1.054 44.5| 3 4 97 7 10.01/0.091.02
CSS-band 4709 8470608 | 0.588 19.6| 3 6 132 8 |0.04/0.61|0.94
FNCHC 126 460851 2.297 2.2| 3 4 98 7 10.04|0.62|0.87

10728 | — 10626 45314579 — — |12 21 206 32 /0.27/0.82 | —
Sloan 1415 1041059 0.020 0.3 |16 11 124 27 10.28|1.03|1.22
Sloan-MGPS| 1521 1056012 0.100 0.3]16 11 124 27 10.160.60 | 1.21
Snay 1418 1087614 0.880 0.3|16 10 121 26 (0.12/0.44|1.19
MPG 2087 1099888 | 0.020 0.2|16 11 133 | 27 |/0.12/0.43/1.18
RBFS-GL 241 1455453 | 0.007 0.0|16 12 137 28 /0.11]0.42|1.17
RCM-GL 242 1504910 0.014 0.0|17 11 133 28 [ 0.281.01|1.16
KP-band 249 1645616 0.015 0.0|15 13 152 28 /0.10]0.34 | 1.15
GGPS 230 1540354 1.122 2.6|16 12 135 28 [0.26/0.96 | 1.13
GPS 207 1358676 0.658 1.5|17 11 133 28 /0.11]0.38|1.13
NSloan 1191 1525236 0.010 0.2]17 13 150 30 [0.11]0.36|1.10
VNS-band 552 1746660 1.148 135.6 | 17 12 145 29 /0.51|1.75|1.07
Burgess-Lai 398 1365197 | 5.895 0.0|16 12 141 | 28 |0.060.22|0.96
FNCHC 211 1646613 5.968 2.5|16 12 144 28 |0.06|0.220.95
CSS-band 10602 | 42658429 | 5.030 83.4 (12 20 192 | 32 |0.441.39/0.89

23367 | — 23167 | 216212086 — — |71 71 302 | 142 [ 2.211.56 | —
Sloan 2973 3578074 0.080 0.6 |95 33 177 |129 |1.60|1.25|1.10
Sloan-MGPS | 2713 3565599 0.334 0.3 |96 33 178 | 129 |0.90(0.70|1.09
RCM-GL 367 4913698 0.050 0.0|94 37 192 | 130 1 0.45/0.35|1.09
Snay 1823 3413219 2.942 0.7]95 33 176 127 0.76|0.60|1.09
RBFS-GL 355 4786316 | 0.020 0.0 |93 38 198 | 132 1 0.73/0.56|1.08
MPG 3060 3493791 0.059 0.3 |96 36 193 | 132 | 0.56/0.43|1.08
KP-band 376 5521227 0.050 0.0]91 42 219 132 0.29/0.22|1.07
GPS 293 4221479 3.650 3.3|93 37 194 | 131 | 0.45/0.35|1.06
GGPS 317 5194437 | 5.220 3.5/93 39 202 | 132 |0.11/0.08|1.04
VNS-band 1564 8889127 1.500 371.1|94 43 223 | 137 | 0.580.42|1.02
NSloan 1590 5012507 | 0.035 0.3 |97 41 217 | 139 |0.37/0.27|1.02
FNCHC 309 5319151 |15.320 3.0|93 40 208 | 133 |0.97/0.73|0.96
Burgess-Lai 465 4296542 | 11.190 0.0|96 42 213 | 137 | 0.69|0.51|0.96
CSS-band 23127 | 203145287 |38.630 549.1 |70 67 276 | 137 |2.80|2.05|0.81
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Table 2. Results from the solution of systems of linear equations (ranging from 50,592
to 232,052 unknowns and derived from finite-volume discretizations of the heat conduc-
tion equation) using the ICCG method and vertices labeled by heuristics for bandwidth
and profile reductions (continued from Table1).

n Heuristic B Profile Heuristic IC(0) |CGM |ICCGM o Cy |Speed-
t(s)  |t(s) (%) |up
t(s) m.(MiB) iter. t(s)

50592 |— 50461 | 1020411959 — —| 384 | 220 |431 604 | 0.8 |0.14 |—
RCM-GL 553 16182346 0.1 0.0| 479 | 116 |278 595 | 4.0 |0.67 |1.02
Snay 2928 10727635 9.4 1.4 482 | 103 |257 585 | 1.0 |0.17|1.02
Sloan 4590 11711775 0.2 1.1 489 | 104 |258 593 | 1.1 |0.18|1.02
RBFS-GL 541 16420191 0.1 0.0 478 | 118 |283 597 | 3.0 |0.50|1.01
KP-band 547 18159371 0.1 0.0 471 | 128 |314 600 | 0.2 |0.03|1.01
Sloan-MGPS 5150 11866029 1.2 1.1 490 | 105 |255 594 | 2.8 |0.48|1.01
MPG 6604 11565237 0.1 1.1 492 | 111 |275 603 | 2.4 |0.391.00
GPS 466 14149442 24.2 5.5 480 | 116 |276 596 | 4.2 |0.71|0.97
VNS-band 7377 47268027 2.9 967.1| 490 | 130 309 621 | 0.7 |0.11|0.97
NSloan 2568 16461468 0.1 1.1 499 | 132 |316 631 | 3.2 |0.50|0.96
FNCHC 507 18166254 42.5 5.6| 479 | 122 |299 601 | 2.9 |0.49|0.94
GGPS 497 16985652 48.5 7.7 479 | 120 |289 599 | 3.0 |0.50/0.93
CSS-band 50349 953617481 391.6 270.1 401 | 217 |398 618 | 4.4 |0.710.60
Burgess-Lai 961 14447154 493.2 0.0 495 | 125 |291 619 | 2.2 |0.35|0.54

108683 |— 108216 | 4725435534 — —|1963 | 702 (627 2665 | 3.6 |0.13 |—
RBFS-GL 907 55649180 0.1 0.0| 2166 | 357 |408 2524 | 2.0 |0.08|1.06
RCM-GL 911 55350648 0.3 0.0 2185 | 352 [400 2536 | 7.0 |0.27|1.05
KP-band 885 59355159 0.3 0.0 2177 | 400 |452 2577 | 3.4 |0.13|1.03
Snay 3887 33205366 28.6 2.9| 2248 | 318 |369 2566 [10.9 |0.42|1.03
VNS-band 16676 157588720 8.7 2293.7| 2203 | 395 |442 2599 | 4.2 |0.16|1.02
Sloan 8243 36198196 0.7 2.8/ 2306 | 321 |370 2627 | 9.7 |0.371.01
MPG 14267 36552907 0.3 2.8| 2298 | 344 |396 2642 |11.2 |0.42{1.01
Sloan-MGPS| 7700 36496358 4.0 2.8/ 2309 | 328 |371 2637 |17.2 |0.65|1.01
FNCHC 756 59671449 116.2 11.6| 2164 | 377 |430 2541 | 7.3 |0.29|1.00
GPS 642 48744729 139.0 12.6| 2167 | 355 |402 2522 | 4.3 |0.17{1.00
NSloan 8680 52203136 0.2 2.8| 2322 | 408 |453 2730 |21.8 |0.80/0.98
GGPS 743 54261170 226.5 23.3| 2152 | 363 |416 | 2515 | 2.1 |0.08/0.97
Burgess-Lai 1262 45836037 609.5 0.0| 2259 | 389 |428 2647 |16.3 |0.61|0.82
CSS-band 108332 110396292 471.5 596.5| 2179 | 700 |575 2879 |12.8 |0.44/0.80

232052 |— 231672 |21652820640 — — 9339 |2167 |908 | 11506 [19.1 |0.17 |—
RCM-GL 1231 168178362 0.6 0.0/ 9726 (1081 |573 10807 |21.1 |0.20|1.07
RBFS-GL 1275 167101014 0.3 0.0/ 9731 [1126 |595 | 10857 | 8.9 |0.08|1.06
KP-band 1228 180118365 0.6 0.0/ 9811 1240 |654 | 11050 | 3.7 |0.03 |1.04
Snay 5818 99995456 92.3 6.3/10023 | 986 [533 | 11009 [36.1 |0.33|1.04
FNCHC 1148 185662203 286.3 22.4| 9729 |1171 |618 | 10899 [19.9 |0.18 |1.03
VNS-band 17036 313594920 33.4 5048.3| 9942 [1221 636 | 11163 [17.8 |0.16 |1.03
Sloan 26898 121163861 2.6 5.2/10258 | 996 |[534 | 11254 |23.3 |0.21|1.02
MPG 25623 117501685 0.8 5.2|10279 |1070 |574 | 11349 |10.5 |0.09|1.01
Sloan-MGPS| 26456 122023395 14.8 5.1/10424 |1014 |534 | 11438 |50.5 |0.44|1.01
GPS 1104 148697458 584.6 25.4| 9757 |1108 |580 | 10866 |13.7 |0.13|1.01
NSloan 12010 166693574 0.5 5.2/10396 |1275 |657 | 11671 |61.8 |0.53|0.99
GGPS 1190 172865013 | 1297.7 43.8| 9694 |1122 595 | 10816 |11.5 |0.11|0.95
CSS-band 231315 | 2916471097 | 4486.6 841.4/11254 (2207 830 | 13471 |29.5 |0.22|0.64
Burgess-Lai 2048 153659093 |47698.4 0.0/10287 (1219 |621 | 11472 | 6.5 |0.06 |0.19
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Fig. 1. Speed-ups/downs of the ICCG method obtained when using 14 heuristics for
bandwidth and profile reductions applied to matrices contained in systems of linear
equations derived from finite-volume discretizations of the heat conduction equation
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results in reducing the computational time of the ICCG method when applied
to systems of linear equations contained in this dataset.

Figure 2 shows memory requirements of 10 heuristics for bandwidth and pro-
file reductions. The RCM-GL [24], Burgess-Lai [14], KP-band [3], and RBFS-GL
[1] heuristics are in-place algorithms (if one implements the label as an attribute
of a vertex).

3.2 Instances Originating from Finite-Volume Discretizations of the
Laplace Equation

This section shows simulations using seven linear systems ranging from 7,322
to 277,118 unknowns. In particular, these instances (arising from finite-volume
discretizations of the Laplace equation) were ordered randomly because irregular
triangulations were employed to generate them [26].

Tables 3, 4 and Fig.3 show that the RCM-GL method [24] dominated the
other heuristics when considering the speedup of the ICCG method applied to
these instances. In particular, Fig.3 does not show the results obtained from
the use of the CSS-band and Burgess-Lai heuristics because these two heuristics
performed less favorably than the other heuristics applied to the instances con-
tained in this dataset (see Tables3 and 4). Snay’s heuristic [19] was dominated
by other heuristics so that we did not apply this algorithm to instances larger
than 34,238 unknowns contained in this dataset.

Figure4 shows memory requirements of eight heuristics for bandwidth and
profile reductions applied to matrices contained in linear systems arising from
finite-volume discretizations of the Laplace equation. This figure does not show
the results from the use of the VNS-band and CSS-band heuristics because these
two heuristics showed larger storage costs than the other heuristics when applied
to instances contained in this dataset (see Tables 3 and 4).

3 -=-RCM-GL
E ——RBFS-GL
E KP-band
8 —&— VNS-band
Q —»— FNCHC
£ GPS
k<] = Sloan
s GGPS
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Number of unknowns

Fig. 3. Speed-ups/downs of the ICCG method obtained when applying 12 heuristics
for bandwidth and profile reductions (see Tables3 and 4) to matrices contained in
linear systems with random order originating from finite-volume discretizations of the
Laplace equation.
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Table 3. Results from the solution of systems of linear equations (up to 34,238
unknowns, derived from finite-volume discretizations of the Laplace equation and com-
posed of matrices with random order) using the ICCG method and vertices labeled by
heuristics for bandwidth and profile reductions (continued on Table4).

n Heuristic B Profile Heuristic IC(0) | CGM |ICCGM o Cy | Speed-
t(s) | t(s) (%) |up
t(s) mem. iter. |t(s)

7322 | — 7248 16083808 — — 3 8 271 11 |0.01|0.05 | —
RCM-GL 80 397878 | 0.005 0.0 4 5 201 9 (0.01/0.12 |1.18
RBFS-GL 80 398377 | 0.003 0.0 4 6 202 10 |0.01|0.06 |1.13
KP-band 80 406461 0.006 0.0 4 5 208 10 [0.02/0.24 |1.15
Burgess-Lai 152 407458 0.151 0.0 4 6 201 10 |0.01|0.11 |1.12
GPS 78 404414 0.362 0.2 4 5 203 10 |0.11|1.12 |1.10
GGPS 80 403391 0.323 1.3 4 6 204 10 |0.02|0.27 |1.09
VNS-band 1599 966638 | 1.061| 75.9 4 6 214 | 10 |0.070.67 |1.02
Sloan-MGPS 296 374434 0.031 0.2 5 7 197 | 12 [0.080.71 |0.96
Sloan 407 377055 | 0.010 0.2 5 7 199 | 12 |0.02|0.19 |0.95
NSloan 178 425289 0.004 0.2 5 7 204 12 |0.01|0.12 |0.93
CSS-band 7185 15979344 0.870| 40.9 3 8 271 11 [0.10|0.87 | 0.92
Snay 1853 448728 0.240 0.3 5 7 199 12 /0.28|2.39 | 0.92
FNCHC 71 423722 2.222 0.5 4 6 205 10 [ 0.02/0.18 | 0.92
MPG 846 610304 0.010 0.2 4 8 228 13 |0.09|0.75 | 0.88

15944 | — 15902 76482022 — —| 19 26 396 45 10.08|0.17 | —
RCM-GL 120 1149124 0.020 0.0 24 17 290 41 [0.04/0.11 |1.10
KP-band 121 1219929 0.020 0.0 24 17 304 41 |0.07{0.16 | 1.09
RBFS-GL 124 1148009 | 0.010 0.0| 25 18 291 42 10.04|0.09 |1.06
Burgess-Lai 212 1144254 1.090 0.0| 25 18 291 43 10.14|0.33 | 1.03
VNS-band 3916 5108940 1.180 | 196.7| 25 19 319 43 10.28 |0.64 |1.02
GGPS 117 1210422 1.790 2.8| 25 19 302 43 10.21{0.48 | 1.00
GPS 118 1154030 3.610 0.5 25 17 290 42 10.59|1.40 |0.99
Sloan 477 982724 0.026 0.3| 24 22 286 46 |0.24|0.53 | 0.99
Sloan-MGPS 473 1003462 0.097 0.3 24 22 284 46 |0.11/0.23 |0.99
Snay 5862 1586436 1.027 0.4| 23 22 281 | 45 |0.24|0.52 |0.98
NSloan 218 1222337 0.014 0.3 24 23 298 47 10.15/0.31 |0.96
MPG 1222 1587797 | 0.028 0.3| 23 25 323 | 49 |0.37/0.76 | 0.93
FNCHC 113 1315311 5.730 1.3| 25 18 301 43 10.13/0.31 |0.93
CSS-band 15724 | 76687757 | 8.060 | 192.7| 19 26 395 | 44 | 0.56|1.26 | 0.86

34238 | — 34609 | 357518296 — — | 108 82 565 | 190 |0.60|0.32 | —
RCM-GL 192 3413888 0.040 0.0 126 50 411 |176 |0.47|0.27 |1.08
RBFS-GL 191 3416318 | 0.002 0.0| 127 52 412 | 179 |0.75|0.42 | 1.06
KP-band 193 3756415 0.040 0.0 125 53 434 | 178 |0.03|0.02 |1.06
VNS-band 2726 6767128 1.670 | 490.5 | 127 55 444 | 182 |0.31/0.17 |1.03
Burgess-Lai 334 3282297 4.300 0.0 130 54 419 | 184 |0.01|0.09 |1.01
GPS 191 3545656 9.610 1.6|127 53 418 | 179 |0.80|0.45 | 1.00
Sloan 917 | 2578022 | 0.060 0.8 129 68 395 | 196 |0.94|0.48 | 0.96
Sloan-MGPS 845 2672048 0.299 0.9]129 67 388 | 196 |1.24|0.63 | 0.96
FNCHC 170 3910584 |15.030 4.0|126 55 436 | 182 |0.76 |0.42 | 0.96
GGPS 192 3415253 | 19.630 5.2 126 52 411 | 178 |0.36|0.21 | 0.96
Snay 21625 5150148 | 5.496 1.0|128 67 391 195 |1.36|0.70 | 0.95
NSloan 366 3608451 | 0.033 0.9]128 73 419 |201 |0.70|0.35 | 0.94
MPG 2111 3965061 | 0.059 0.9]129 77 448 | 207 |0.42{0.20 | 0.92
CSS-band 33953 | 359290792 | 68.630| 910.7 |107 81 562 | 189 |2.80|1.48 |0.74
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Table 4. Results from the solution of systems of linear equations (ranging from 75,542
to 277,118 unknowns, derived from finite-volume discretizations of the Laplace equation
and composed of matrices with random order) using the ICCG method and vertices
labeled by heuristics for bandwidth and profile reductions (continued from Table 3).

n Heuristic B Profile Heuristic I1C(0)|CGM|ICCGM o Cy (%)|Speed-
t(s) |t(s) up
t(s) | m.(MiB) iter. |t(s)

75542 |— 75490 | 1744941733 — —| 591 | 268 | 815 | 859 | 1.2/0.13 —
RCM-GL 275 12096902 0.1 0.0| 622 | 164 | 607 | 786 | 0.7/0.08 1.09
RBFS-GL 275 12128940 0.1 0.0/ 624 | 169 | 616 | 793 | 1.4|0.18 1.08
KP-band 277 13793938 0.1 0.0| 625 | 179 | 663 | 804 | 0.1]0.02 1.07
VNS-band 21310 42564399 3.7 1198.1| 637 | 176 | 642 | 813 | 2.2/0.26 1.05
GPS 272 12086603 41.4 3.6/ 624 | 166 | 607 | 790 | 0.4|0.05 1.03
FNCHC 266 13848181 41.5 7.2] 630 | 177 | 644 | 806 | 2.7/0.33 1.01
Burgess-Lai 460 11175444 42.8 0.0| 642 | 171 | 612 | 814 | 0.8|0.10 1.00
Sloan 1521 8981209 0.2 1.1| 647 | 214 | 572 | 861 | 5.5/0.63 1.00
Sloan-MGPS 1236 9245713 1.1 1.1 646 | 215 | 568 | 861 | 2.0/0.23 1.00
GGPS 271 12405895 86.2 10.3| 625 | 166 | 604 | 792 | 1.5/0.18 0.98
NSloan 533 12805775 0.7 1.1 646 | 250 | 628 | 886 | 2.4|0.27 0.97
MPG 4020 14107424 0.2 1.1| 645 | 247 | 653 | 897 | 5.4/0.60 0.96
CSS-band 75031 | 1747217131 692 3819.2| 591 | 269 | 819 | 859 | 7.6/0.88 0.55

101780|— 101583 | 3169282786 — —|1094 | 405 | 907 [1499 | 0.1/0.01 —
RCM-GL 407 21336387 0.1 0.0/1126 | 249 | 670 1375 | 0.6/0.05 1.09
RBFS-GL 406 21346316 0.1 0.0/1127 | 254 | 676 |1381 | 0.7|0.05 1.09
KP-band 408 23967214 0.1 0.0/1124 | 265 | 716 1389 | 1.8[0.13 1.08
VNS-band 5207 25033097 5.6 1638.4|1140 | 256 | 686 |1395 | 0.7/0.05 1.07
GPS 405 21399542 73.4 4.9/1125 | 250 | 668 1374 | 3.5/0.25 1.04
FNCHC 399 25629738 59.9 9.8/1133 | 265 | 705 |1398 | 1.0/0.07 1.03
Sloan 8624 15003839 0.3 2.6(1177 | 322 | 640 [1498 | 0.1]0.01 1.00
Sloan-MGPS 8420 15400014 2.0 2.6/1180 | 323 | 635 |1503 | 7.4|0.49 1.00
NSloan 7730 21163363 0.1 2.6/1165 | 352 | 685 1517 | 8.3|0.54 0.99
GGPS 402 21624122 | 152.7 15.5(1128 | 251 | 665 (1379 | 2.7/0.19 0.98
MPG 10570 24189624 0.2 2.6/1185 | 368 | 723 1553 | 0.6/0.04 0.97
CSS-band 101300 | 3161769330 | 227.1 611.41093 | 405 | 906 1498 | 9.2|0.61 0.87
Burgess-Lai 745 19394495 |4383.7 0.0/1152 | 262 | 683 |1414 | 4.3|0.31 0.26

192056 |— 191738 |11329772559 — — (4115 1045 |1215 |5160 |11.0|0.21 —
RCM-GL 360 42577946 0.2 0.04030 | 642 | 909 4671 | 3.9/0.08 1.11
RBFS-GL 360 42627911 0.1 0.0/4037 | 659 | 927 4696 | 4.2/0.09 1.10
KP-band 364 48325681 0.3 0.0/4057 | 704 [1000 |4761 | 4.0/0.08 1.08
VNS-band 11142 99018771 16.6 3195.0/4056 | 705 | 992 |4761 | 8.2|0.17 1.08
FNCHC 344 48743268 | 115.2 21.0/4056 | 700 | 982 |4756 | 7.5/0.16 1.06
GPS 371 41541059 | 257.4 10.1{4048 | 649 | 911 |4696 | 7.8/0.17 1.04
Sloan 1963 30916661 0.8 4.6/4219 | 840 | 866 |5059 [18.9/0.37 1.02
Sloan-MGPS 1733 31860210 4.3 4.6|4249 | 842 | 857 |5091 |33.2/0.65 1.01
NSloan 753 44591269 0.2 4.6(4223 | 925 | 932 |5148 | 8.2/0.16 1.00
Burgess-Lai 621 40149530 | 349.5 0.0/4142 | 682 | 934 |4824 |17.2|0.36 1.00
MPG 5366 47979879 0.5 4.6/4240 | 953 | 971 |5193 |29.0/0.56 0.99
GGPS 363 42925208 | 530.0 27.8/4040 | 645 | 904 |4685 | 1.5/0.03 0.99
CSS-band 191322 | 2731669814 |1345.0 1124.9(4101 1047 |1211 5148 |15.0|0.29 0.80

(continued)
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Table 4. (continued)

n Heuristic 8 Profile Heuristic IC(0)|CGM|ICCGM o Cy (%)|Speed-
t(s) |t(s) up
t(s) |m.(MiB) iter. |t(s)

277118 |— 277019 |23512579029 — — /8563 |1766 (1430 [10329 | 3.2|0.03 —
RCM-GL 420 74697812 0.3 0.08371 |1076 |1066 | 9447 | 7.0/0.07 1.09
RBFS-GL 419 74759303 0.2 0.0/8387 |1096 [1078 | 9483 | 2.2|0.02 1.09
KP-band 425 84682829 0.4 0.0{8416 [1178 |1168 | 9593 | 5.4/0.06 1.08
VNS-band 12132 97666318 32.3| 4618.2/8430 (1149 |1134 | 9579 |11.6/0.12 1.08
FNCHC 412 85849403 | 182.4 26.7/8419 |1161 1144 | 9580 | 8.7/0.09 1.06
GPS 399 72378558 | 511.5 16.4|8395 |1087 |1070 | 9483 [23.4|0.25 1.03
Burgess-Lai 793 66880423 | 397.9 0.0{8640 [1138 |1093 | 9778 | 2.9/0.03 1.02
Sloan 2243 55586225 1.2 5.6/9070 [1392 1012 [10463 |14.9|0.14 0.99
GGPS 422 75150257 |1051.7 20.7/8412 1069 1047 | 9480 | 6.1/0.06 0.98
NSloan 908 77425832 0.3 5.6/9055 |1535 |1086 10590 [66.4|0.63 0.98
Sloan-MGPS 2094 57033429 7.4 5.6/9206 [1399 1001 [10605 |68.3|0.64 0.97
MPG 6920 89231836 0.8 5.6/9113 |1576 1128 10689 |44.0/0.41 0.97
CSS-band 276240 | 2054061697 |3994.8 1679.6|8579 |1765 |1421 10344 |46.6/0.45 0.72
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Fig. 4. Memory requirements of eight reordering algorithms applied to matrices con-
tained in systems of linear equations with a random order (see Tables3 and 4) origi-
nating from finite-volume discretizations of the Laplace equation.

3.3 Experiments Using Instances Contained in the SSM Collection

Tables 1, 2, 3, 4 and Figs. 1, 2, 3, 4 show that several heuristics dominated Snay’s
[19], NSloan [22], and CSS-band [18] heuristics. Moreover, these tables and fig-
ures show that the GPS [25], Burgess-Lai [14], FNCHC [15], GGPS [16], and
VNS-band [17] algorithms were dominated by the RCM-GL [24], KP-band [3],
and RBFS-GL [1] orderings. Hence, we applied six heuristics for bandwidth and
profile reductions to a dataset composed of 11 systems of linear equations con-
tained in the SSM collection: the RCM-GL [24], Sloan’s [20], MPG [21], Sloan-
MGPS [23], KP-band [3], and RBFS-GL [1] heuristics.

Tables5 and 6 show the instance’s name and density (d.). Moreover, these
tables and Fig. 5 show the average results obtained by the ICCG method applied
to 11 systems of linear equations contained in the SSM collection [28]. Tables 5
and 6 show the 2-norm (a 1-norm) condition number (estimation) x(A) of the
instances. Specifically, Tables 5 and 6 show that the ICCG method converges in n
iterations, where n is the size of the linear system when applied to ill-conditioned
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Fig. 5. Speedups of the ICCG method and memory usage obtained when using heuris-
tics for bandwidth and profile reductions (see Tables 5 and 6) applied to 11 systems of
linear equations arising from computational fluid dynamics problems contained in the
SSM collection [28].

Table 5. Results from the solution of eight systems of linear equations (arising from
CFD problems) contained in the SuiteSparse matrix collection [28] employing the zero-
fill incomplete Cholesky-preconditioned conjugate gradient method and vertices labeled
using reordering algorithms (continued on Table6).

LS n d. Heuristic B Profile |(2-norm) |Heuristic |CGM [IC(0)ICCGM |Speed-
k(A) t(s) t(s) up/down
t(s) |mem. t(s) |iter.

ex33 1733(0.74%|— 157 | 125884 |7.0e+12 — — 18.18 | 0.4| 19 (1733 |—
MPG 977 | 232924 [3.1e+11 0.002 |0.0 15.81| 0.4| 16 (1733 [1.14
RBFS-GL 97 | 71487 |3.1le+11 0.001/0.0 17.28 | 0.4| 18 (1733 [1.05
Sloan-MGPS| 569 | 57790 |3.7e+11 0.002 0.0 17.67| 0.5| 18 (1733 [1.02
RCM-GL 97 | 70259 |3.1le+11 0.002 0.0 17.76 | 0.4| 18 (1733 [1.02
Sloan 506 | 55817 |3.7e+11 0.001/0.0 17.70 | 0.5| 18 (1733 |1.02
KP-band 96 | 76081 [2.3e+11 |0.001 |0.0 17.78 | 0.4| 18 (1733 [1.02

besstk13(2003(2.09% | — 1250 | 434798 |1.1e+10 — — 64.12 1.8| 66 2003 |—
RBFS-GL 521 | 524853 |2.2e4-07 0.001/0.0 64.08 1.5/ 66 2003 (1.00
KP-band 537 | 644513 |1.8e+4-07 |0.005 |0.0 66.50 1.6 68 2003 |0.97
Sloan-MGPS| 1699 | 522268 |1.9e4-07 0.022 |0.0 66.20 1.9 67 2003 |0.97
Sloan 1790 (512622 |2.5e+08 0.009 |0.0 66.72 1.9 69 2003 |0.96
RCM-GL 502 | 519475 |1.1e408 0.006 |0.0 67.19 1.5/ 69 2003 |0.96
MPG 1454 | 729001 |1.5e+408 0.012 |0.0 67.59 1.9 70 2003 |0.95

exl0 2410/0.94%|— 113 | 170956 |9.1e+11 — — 55.41 1.3| 57 (2410 |—
MPG 1310 | 437834 [2.7e+12 0.004 |0.0 48.62| 1.4| 50 (2410 (1.13
RBFS-GL 112 72752 |1.5e4+11 0.001|0.0 53.82 1.5| 552410 |1.03
KP-band 105 | 132506 |1.2e+11 0.003 |0.0 54.24 1.3| 56 (2410 |1.02
RCM-GL 509 | 247099 (2.0e+11 0.002 |0.0 54.40 1.4| 56 2410 |1.02
Sloan 215 | 70891 |1.9e+11 0.004 |0.0 54.32 1.5| 56 (2410 |1.02
Sloan-MGPS| 174 71513 |9.5e+10 |0.003 |0.0 54.47 1.5| 56 |2410 |1.01

ex10hs |2548/0.88% — 117 | 150904 |5.5e+11 — — 61.63 | 1.5 632548 |—
MPG 1236 | 460152 |7.0e+12 0.006 |0.2 54.20, 1.4| 56 |2548 |1.14
RBFS-GL 109 78699 |2.1e+411 0.001/0.0 59.86 1.5| 61 2548 |1.03
KP-band 105 | 141132 |4.5e+11 0.005 |0.0 60.21 1.4 62 2548 |1.02
Sloan 199 77868 |1.4e+11 |0.003 |0.2 60.33 1.3| 62 2548 |1.02
RCM-GL 105 | 77226 |5.2¢+11 0.005 |0.0 60.44 1.3| 62 2548 |1.02
Sloan-MGPS| 176 78605 |1.6e+11 0.004 |0.2 60.93 1.3| 62 2548 |1.01

(continued)
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Table 5. (continued)

LS n d. Heuristic B Profile (2-norm) [Heuristic |[CGM [C(0) ICCGM |Speed-
K(A) t(s) t(s) up/down
t(s) |mem. t(s) fiter.

exl3 2568 [1.15%— 165 127134 [1.2e+15 |— — 77.48 1.9] 79 2568 —
KP-band 167 | 231828 [1.5e+414 |0.004 0.0 76.61| 1.9| 79 2568 [1.02
RBFS-GL 185 125553 [1.5e+14 |0.0010.0 76.94 1.9] 792568 1.01
Sloan 652 | 125050 [1.5e+14 [0.003 (0.0 78.11| 1.9| 792568 [1.00
Sloan-MGPS 546 | 122369 |1.5e4+14 |0.003 0.2 77.20 1.9| 79 2568 |1.00
RCM-GL 182 125123 |1.5e+14 (0.005 /0.0 78.11| 1.9| 802568 (0.99
MPG 1906 | 1061077 1.5e+14 (0.010 0.1 78.60 1.9| 802568 |0.99

ex9 3363 0.88%— 85| 156224 [1.2¢e+13 | — — 148.30 3.3 1523363 |—
KP-band 148 288037 [2.4e+12 [0.005(0.0 [133.51 3.3 (1373363 [1.11
Sloan 604 158613 [2.4e+412 |0.003|0.2 [133.65 3.3 1373363 |1.11
RBFS-GL 153 159760 [2.4e4+12 |0.0020.0 |133.71 4.0|138 3363 |1.10
Sloan-MGPS| 406 162327 [2.4e412 |0.004 0.0 [134.02 3.3 1373363 |1.10
RCM-GL 147 157476 |6.1e4+12 0.006 0.0 |135.60 3.3 1393363 |1.09
MPG 2296 | 1744453 2.4e+12 |0.015|0.0 [137.55 3.3 (141 3363 |1.08

exl5 6867 0.21%— 67| 450556 8.6e+12 | — —  [326.82| 7.0(334 /6867 —
MPG 1338 | 1320684 |1.7e+413 0.029 0.1 |293.21| 6.6300 6867 [1.11
RBFS-GL 83| 262534 |4.6e+13 |0.001/0.0 [321.70 | 6.8(328 6867 1.02
Sloan 139 | 250857 2.0e+13 [0.005(0.1 |321.55 6.2/328 6867 |1.02
Sloan-MGPS| 146 251009 6.4e+13 (0.008 0.1 323.40 6.2|330 /6867 |1.01
KP-band 84 267003 2.6e+14 (0.006 0.0 [323.54 6.8 1330 /6867 |1.01
RCM-GL 83 261901 [3.2e+13 [0.005 (0.0 324.18 6.8 3316867 |1.01

Pres_Poisson(148220.33%— 12583 | 9789525 [2.0e4-06 — — 77.40 [107.8 |186 | 269 |—
KP-band 364 | 3130744 |3.5e4-05 |0.046 (0.0 37.82|107.5145| 133 |1.28
RBFS-GL 331 | 3024736 |1.1e4-06 |0.0190.0 38.66 |106.9 146 | 137 |1.27
RCM-GL 346 | 3051085 |3.0e4-06 |0.048 0.0 37.52(108.6 146 | 132 |1.27
Sloan-MGPS| 640 | 2832467 [2.7e4+06 [0.114 (0.1 39.15 |107.6 147 | 138 [1.26
Sloan 548 2830658 (3.2e-+05 0.049 0.2 39.25 |107.8 147 | 138 |1.26
MPG 14168 [26556694 |7.Te+05 [2.399 (0.2 64.05 |104.8169 | 220 |1.08

instances (i.e., with large condition numbers). Among the information presented
in Table 5, in particular, this table shows a small number of iterations for the
ICCG method when applied to the Pres_Poisson instance, whose condition num-
ber is smaller than the other seven linear systems contained in this table. Fur-
thermore, Table 6 shows that the execution times of the ICCG method to solve
the shallow_water! and shallow-water2 instances (composed of 81,920 unknowns
and with small condition numbers) are approximately four times lower than the
execution times to compute the c¢fd! instance (composed of 70,656 unknowns
and with a large condition number).

The MPG [21] (KP-band [3]) heuristic obtained the best results when applied
to the ex33, ex10, ex10hs, and ex15 (ex9 and Pres_Poisson) instances. The KP-
band [3] (Sloan [20]) heuristic obtained the best results when applied to the
ex13 and shallow_water! (cfdl and shallow_water?2) instances, but these gains
are marginal.

When setting the same precision in exploratory investigations using standard
double-precision floating-point format, the ICCG method converged in a similar
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Table 6. Results from the solution of three systems of linear equations (arising from
CFD problems) contained in the SSM collection [28] employing the ICCG method and
vertices labeled using reordering algorithms (continued from Table 5).

LS n d. Heuristic €] Profile |(1-norm) Heuristic CGMIC(0) ICCGM Speed-
k(A) est. t(s) t(s) up/down
t(s) mem. t(s) liter.

cfd1 70656/0.04%— 6229 [1.04-08 |1.3e+06 — 443 | 1441 | 1884 | 542 | —
Sloan 19834 6.0e4-07 [1.8e+06 |1.0 0.7 413 | 1449 1862|499 [1.01
KP-band 3322 [1.3e408 4.1e+06 [0.2 0.0 443 | 1423 | 1866 | 539 [1.01
Sloan-MGPS[19186 5.7e+4073.6e+06 [4.1 0.7 416 | 1453 | 1869 | 501 |1.01
RBFS-GL 3289 [1.2e+408 [1.3e+06 |0.1 (0.0 428 | 1448 | 1876 | 524 [1.00
RCM-GL 3182 1.1e4-08 [3.5e+06 [0.2 0.0 450 | 1459 | 1909 | 542 (0.99
MPG 56114 4.7e+08 [2.8e4+06 |17.9]1.0 576 1408 | 1984 | 682 /0.94

shallow_water1/81920(0.01%|— 40959 |3.5e+07/3.6 — 20| 470| 473 7=
KP-band 1029 6.8e+07 (1.3 0.2 0.0 2| 456 | 458 6|1.03
MPG 3619 [7.0e4-07 1.3 0.8 3.1 2| 456 | 458 7/1.03
RCM-GL 966 6.6e+07 (1.5 0.2 0.0 2 460 | 462 6(1.02
Sloan 3070 [6.8e+4-07 [1.3 0.7 3.1 2 460 462 6/1.02
Sloan-MGPS| 2578 [6.6e+07 [1.3 4.0 3.1 2 459 | 460 6(1.02
RBFS-GL 322 2.2e4-07 2.2 0.1 0.0 2 713 715 6 10.66

shallow-water2(819200.01%— 40959 3.5e+-07 [11.3 — 3 464 | 467 10 —
Sloan 1225 2.2e+07 [1.6 0.2 1.0 3| 447 | 450 10 1.04
MPG 1226 2.4e4-07 (1.6 0.3 1.0 3 449 452 10{1.03
RCM-GL 329 2.2e4-07 4.2 0.1 /0.0 3 458 | 461 10 1.01
KP-band 327 [2.2e4-07 1.6 0.1 /0.0 3 458 461 10|1.01
Sloan-MGPS| 896 2.3e+07 [1.6 1.4 1.0 3 462 465 10 1.00
RBFS-GL 337 3.3e4-07 4.2 0.1 0.0 3 714 717 9 10.65

number of iterations to using high-precision floating-point arithmetic. Thus, in
these experiments, we observed that high-precision floating-point arithmetic does
not minimize delay in the convergence of the ICCG method. Figure 5 also shows
the memory usage obtained when using three heuristics for bandwidth and profile
reductions applied to 11 instances arising from computational fluid dynamics
problems contained in the SSM collection [28].

4 Conclusions

Systematic reviews [1,2,6-8] reported the most promising low-cost heuristics for
bandwidth and profile reductions. Thus, our computational experiment com-
pared the results of the implementations of 14 heuristics for bandwidth and
profile reductions when applied to 23 instances arising from CFD problems.
Table 5 shows six promising heuristics for bandwidth and profile reductions to
reduce computational times of the ICCG method. In particular, in experiments
using instances (with sizes to almost 300,000 unknowns) from three datasets,
three out of 14 heuristics for bandwidth and profile reductions evaluated in this
computational experiment showed the best overall results in reducing the pro-
cessing cost of the ICCG method. Specifically, the RCM-GL [24], MPG [21], and
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KP-band [3] obtained the most promising results when used to reduce the pro-
cessing cost of the ICCG method when applied to instances arising from compu-
tational fluid dynamics problems. Future studies will reveal whether this may be
extended to any preconditioned conjugate gradient method or even to other pre-
conditioned iterative solvers. In particular, the RCM-GL method [24] achieved
the best results when applied to instances arising from finite-volume discretiza-
tions of the heat conduction and Laplace equations [26,27] (see Tables2, 3, 4
and Figs. la and 3). Thus, the in-place low-cost RCM-GL method [24] remains
in the state of the practice in bandwidth reduction when applied to instances
originating from CFD problems. On the other hand, the MPG [21] (in four
linear systems) and KP-band [3] (in two linear systems) heuristics reached the
largest number of best results in simulations with 11 instances contained in the
SuiteSparse matrix collection [28].

As a continuation of this work, we intend to implement and evaluate
other preconditioners in conjunction with the conjugate gradient method. We
also plan to implement parallel approaches of the above algorithms in future
investigations.
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