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Abstract. An important problem in the Systems Biology field is the
reverse engineering of gene regulatory networks from gene expression
data. In this work, we addressed this problem using a probabilistic graph-
ical model known as Dynamic Bayesian Network to model the regulatory
relations among the genes. We also used a Boolean formalism, assum-
ing that each gene can take on two possible values: 0 (not expressed)
and 1 (expressed). To learn the Dynamic Bayesian Network from time-
series gene expression data we search for the network structure that best
matches the data using the Bayesian Information Criterion score and the
BDe score and compared them. Besides that, we used a source of prior
biological knowledge from a database named STRING, unlike most of
the reverse engineering algorithms that does not take into account any
source of additional information. The results show that this approach
can improve the quality of the inferred networks, and we also showed
that the Dynamic Bayesian Network performs better than its standard
version, Bayesian Network.

Keywords: Gene regulatory network - Dynamic Bayesian Network
Reverse engineering

1 Introduction

The reverse engineering of Gene Regulatory Networks (GRN) is an important
problem studied in the Systems Biology and Bioinformatics field. The impor-
tance of dealing with this problem is that it can help us to understand the
regulatory mechanisms of a biological phenomenon under study. For instance,
researchers have studied GRN in the context of cell cycle [15], circadian cycle
of plants [18], and more important, diseases such as cancer [9,19]. Given the
importance of this problem, several models of GRN along with algorithms for
the inference of GRN have been proposed over the years. Generally, these algo-
rithms receive a dataset of gene expression as input and outputs a regulatory
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network represented by a specific model. The input data are those provided by
technologies such as DNA microarrays [22] and, more recently, RNA-Seq [27].

Among the proposed mathematical models of GRN are the Boolean net-
works [12], Bayesian networks [4], models based on ordinary differential equa-
tions [6], to name a few of them. To review a set of models of GRN we suggest
the papers [7,11,17]. Algorithms for the reverse engineering of GRN are based
on mathematical models and each one has its own characteristics besides advan-
tages/advantages. We can not say that there is an algorithm that outperforms
the others in every situation. For instance, some algorithms are specific to work
with time-series data while some others work with steady-state data. It is worth
mentioning that the reverse engineering of GRN is an ill-posed problem, i.e.,
given a set of gene expression data, there could be several consistent solutions
(networks) with these data. This fact makes the problem a very difficult one.

In this work, we modeled the gene expression in a Boolean fashion where a
gene can take on two possible values: 0 (not expressed) and 1 (expressed). We also
used a probabilistic graphical model known as Dynamic Bayesian Network, which
is commonly used to represent complex stochastic processes. It differs from the
standard Bayesian Network in the sense that it models the stochastic evolution
of a set of variables over time. Both models are defined by a graphical structure
and a set of parameters, which together specify a joint distribution over the
random variables. Algorithms for learning the parameters and the structure of
such networks have been developed [14,21]. In this paper, to learn the structure of
Dynamic Bayesian Networks from time-series gene expression data we search for
the network structure that best matches the data using the Bayesian Information
Criterion score [23] and the BDe score [8].

Most of the reverse engineering algorithms of gene regulatory networks do
not take into account any sources of prior biological knowledge. The approach
of using additional biological information in this problem has shown interest-
ing results, as can be seen in [5,26,29]. The source of prior knowledge used in
this work is a database called STRING [20,25], which covers more than 2000
organisms in its latest version (10.0). In [13] a similar approach was performed
using the Boolean network model and a feature selection algorithm. Here, we use
a different model and approach do infer the model, but using the same source
of prior biological knowledge. Because we are facing an ill-posed problem, this
approach aims to improve the inference of gene interactions, once we take into
account some interactions already supported by the literature.

To validate the methodology we used data from the DREAM challenge [2].
We also applied the methodology in a dataset of yeast (Saccharomyces cerevisiae)
cell-cycle gene expression [24] and compared the results against the literature
through the KEGG (Kyoto Encyclopedia of Genes and Genomes) database [10].

In the next section, we present the methodology, beginning with the intro-
duction of the Dynamic Bayesian Networks, followed by the definitions of the
score functions used in the learning process. We also explain how the prior bio-
logical knowledge database was used in the process. In Sect.3 we discuss the
results, followed by our conclusions, in Sect. 4.
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2 Methodology

In this section we present the mathematical model of GRN used in our method-
ology along with the methodology to learn the model from the data. We also
present the source of prior biological knowledge used and how it is used in the
process of reverse engineering a GRN. In the final part of the section we discuss
how the methodology is validated.

2.1 Dynamic Bayesian Networks

A Dynamic Bayesian Network (DBN) is a probabilistic graphical model defined
by a network structure and a set of parameters to specify the joint probability
of random variables. Let X = {X;,X5,..., X, } be a set of random variables
where each variable X, can assume values in the finite set Val(X;). In DBN,
unlike standard Bayesian networks, the time is taken into account such that
X;[t] is the value of X; at time ¢t. Thus, X[t] is the set of all random variables
at time ¢.

To represent the beliefs about the process, a probability distribution over the
variables X'[0] U X[1] U X[2] U --- is necessary. We assume that the process is
Markovian in the sense that P(X[t 4+ 1]| X[0],..., X[t]) = P(X[t+ 1] | X[t]). The
probability P(X[t 4 1] | X[t]) is time independent.

A DBN representing the joint distribution over all possible trajectories of
a process is composed of: (i) a prior network By specifying a distribution over
X[0]; (¢9) a transition network B_, over X[0] U X[1] that is taken to specify
P(X[t + 1] | X[t]) for all ¢t. In Fig. 1(a) and (b) we can see a simple example.

The transition probability of this network is given by

Pp_ (X[1]| X[0]) = HPB_> (Xi[1] [ Pa(X;[1])), (1)

where Pa(X;) is the parents of X;. Thus, the structure of a DBN is defined by
a pair (By, B_.) corresponding to a network over the variables X[0],..., X[oo].
In practice, we reason only about the finite interval O,...,7T. To this end, we
“unroll” the DBN structure into a Bayesian Network over X'[0], ..., X[T]. In slice
0, the parents of X;[0] are specified in By. In slice ¢t 4 1, the parents of X;[t + 1]
are nodes in slices ¢ and ¢ + 1 corresponding to the parents of X;[1] in B_.. In
Fig. 1(c) we can see the result of unrolling the network for 3 time slices. Given
a DBN, the joint distribution over X[0],..., X'[T] is

P(X[O],.... X[T]) = Py (X[0]) [] P (X[t +1]| X[t]). @
t=0

2.2 Learning DBN from Complete Data

In this work, the reverse engineering of gene networks is treated as a prob-
lem of learning a DBN from complete data. The data in question is a time-
series gene expression dataset D consisting of K complete observation sequences
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Fig. 1. (a) A prior network By and (b) a transition network B_, for three variables. In
(c) is the corresponding “unrolled” network. Figure adapted from [4].
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Dy, Ds, ..., Dg. Each sequence Dy has length N, and specifies values for the vari-
ables x‘[0], x‘[1], ..., x*[N¢]. Thus, we have K initial instances of initial slices to
learn By and N = )", Ny instances of transitions to learn B_,.

Formally, the reverse engineering problem is stated as follows. Given a dataset
D of instances of X, find a DBN B with structure G = (B, B—,) and its param-
eters © that best matches D. We use a scoring function to measure how a DBN
matches the data. The score combines the likelihood of the data according to the
network, L(B : D) = log P(D| B), with some penalty according to the complexity
of the network.

BIC Score. We define the Bayesian Information Criterion score and the BDe
score according to [3]. First, let us define

09 o = P(Xil0] = k; | Pa(X,[0]) = j) 3)
and similarly
91—,;“’% = P(XZ [O] =k | Pa(Xl[O]) = ]z) (4)

for t =1,...,T. The notation for the sufficient statistics is given by

N = S I 0] = K, Pa(X,[0]) = ji:x) (5)
DRME Z

and

Nk = 3.3 I(X[0] = ki, Pa(X;[t]) = ji; x°) (6)
l t

where I(-;x") is an indicator function which takes on value 1 if the event - occurs
in x’, and 0 otherwise.
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Using Eq. 2 and rearranging the terms, the likelihood function is decomposed
according to the DBN structure:

N©
P(D|G,Og) HHH 00 ) ”’“XHHH o) Ve (7)
and the log-likelihood is given by

D)= ZZZN;ZE/@; log@foj)/ K + ZZZNw g log 0,5 .o (8)
gk / ’

This decomposition facilitates the computation of the BIC and BDe scores.
Using the standard maximum likelihood estimate for multinomial distribu-
tions, we get the following expression for ®g:

" N.((;.), v
90— Wit 9)
1,5 kg VO

Zki Nl;j;7k;

and similarly for the transition case. Thus, the BIC score is given by
BIC(G : D) = BIC, + BIC_,, (10)

where

BIC, = ZZZN(O) 10g9 logK 28R 4G (11)

and

BIC_, ZZZ N log 6 logQN#Gﬁ, (12)

where #Gy and #G_, are the number of parameters in By and B_,, respectively.

BDe Score. The BDe score is computed by evaluating the following integral:
P(D|9) = [ P(D]0.00)P(O5|G) dE. (13)

Using Eq. 7 and assuming Dirichlet priors we can obtain a closed form. A Dirich-
let prior for a variable X is specified by a set o hyperparameters {N. : x €
Val(X)}:

P(®x) = Dirichlet(N/ : x € Val(X)) o HeN’ - (14)
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The hyperparameters can be interpreted as pseudo counts. Assuming that for
each structure G we have hyperparameters N. '©  and NI~ i ik, We can rewrite

,Jl’ i

P(D|G) as a product of two terms

/) /(0) )
re; ;N,J,, k/) I'(N, ok, +NJ,JQ) .
HHFZ NO —I—N’H )XH 1(0) ) ( )
7 ,j,:,k‘/ 4,5 ki k: F(N i 7k/)

and similar for the transition case where I'(z) = fooo t*~le=tdt is the Gamma
function satisfying I'(1) = 1 and I'(x + 1) = zI'(z). Following [8], we assign the
Dirichlet hyperparameters as

N'©) = NO x Py (X[0] = k;|Pa(X,[0]) = j;) and (16)

,045F;

Nijx, = N7 x Py (Xi[l] = ki Pa(Xi[1]) = j), (17)

4,045

given two equivalent sample sizes N© and N—.

2.3 Prior Biological Knowledge

The source of prior biological knowledge used is the STRING database (Search
Tool for the Retrieval of Interacting Genes/Proteins) [25]. This database aims
to provide a critical assessment and integration of protein-protein interactions,
including direct (physical) as well as indirect (functional) associations. The cur-
rent version of STRING is v10 and it covers more than 2000 organisms. Besides
that, an API interface for the R computing environment is available, allowing
us to easily retrieve the information about gene interactions.

The interactions are derived from multiple sources: (i) known experimental
interactions are imported from primary databases, (ii) pathway knowledge is
parsed from manually curated databases, (iii) automated text-mining is applied
to uncover statistical and/or semantic links between proteins, based on Medline
abstracts and a large collection of full-text articles, (iv) interactions are predicted
de novo by a number of algorithms using genomic information as well as by
co-expression analysis and (v) interactions that are observed in one organism
are systematically transferred to other organisms, via pre-computed orthology
relations [25].

For each pair of genes of a given organism, the STRING database provides a
set of scores based on association evidence type: conserved neighborhood, gene
fusions, phylogenetic co-occurrence, co-expression, database imports, large-scale
experiments and literature co-occurrence. There is also a combined score express-
ing confidence when an association is supported by several types of evidence. For
details see reference [20].

Let s(X;,X;) be the combined score for a pair of genes obtained from
STRING. First, we normalize the scores so that 0 < s(X;, X;) < 1. Given
that, the biological score is defined as the mean
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B(Xi, Pa(X;)) = mx.ePZMX»)S(XhXj)- (18)

The decomposition in Eq.8 facilitates the computation of the BIC and BDe
scores. Notice that the likelihood is expressed as a sum of terms, where each term
depends only on the conditional probability of a variable X; given its parents
Pa(X;). Thus, when computing the BIC or BDe score, we add the term w -
B(X;,Pa(X;)), where w € R is the weight given to the prior biological knowledge.
Obviously, w = 0 means that we are not taking into account the biological
knowledge.

2.4 Validation

To validate and analyze the methodology, assume that G* is the gold standard
network and G is the output network. Then, it is possible to fill the entries
of a confusion matriz [28] according to Table1. According to this table, if an
edge/connection is present in the gold standard and it is correctly inferred, then
it counts as a true positive (TP).

Table 1. Confusion matrix. TP = true positive; FP = false positive; FN = false
negative; TN = true negative.

Edge Inferred in G | Not inferred in G
Present in G* | TP FN
Absent in G* | FP TN

To quantify the quality of the output network, we used a similarity [1] mea-
sure defined as

Similarity(G*,G) = \/PPV x Specificity, (19)

where

TP TN

PPV =—1—— d ificity = ————.
A% TP+ TP and Specificity TN £ P

(20)

2.5 Implementation

The methodology was implemented by extending an open source package named
Pgmpy (http://pgmpy.org), which is a Python library for working with prob-
abilistic graphical models. This is an ongoing project and for DBN only the
parameters inference was implemented. We extended the library by implement-
ing the learning of DBN structure given a gene expression dataset and a source
of prior biological knowledge provided by the STRING database.
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3 Results and Discussion

In order to apply the proposed methodology, we performed experiments using
data from the DREAM4 Challenge (Dialogue for Reverse Engineering Assess-
ments and Methods) [2] and a yeast (Saccharomyces cerevisiae) cell cycle
study [24]. All datasets used were discretized using an algorithm called Bik-
means [16].

3.1 DREAMA4 Data Results

The DREAMA4 in silico challenge data consists of a time series generated from
networks of 10 and 100 genes. There are 5 networks of size 10 and for each of
them there are 5 datasets of 21 time points. For the network of size 100 the
number of networks is also 5, but there are 10 datasets of 21 time points each.
This experiment validates the methodology without the use of prior biological
knowledge, once it consists of synthetic data.

In Fig.2 we compare the standard Bayesian Network (BN), the Bayesian
Network considering the time factor (BN with time), and Dynamic Bayesian
Network (DBN) by using the BIC score. The BN with time simply means that,
when estimating the conditional probabilities for a gene X;[t], the values of its
parents in the samples are taken at time t+1. Networks from 1 to 5 are composed
by 10 genes and from 6 to 10 by 100 genes. We can observe that DBN performs
better in most cases. In Fig.3 we performed the same comparison, but using
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Fig. 2. Comparison between the standard Bayesian Network and the Dynamic Bayesian
Network, using the BIC score.
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Fig. 3. Comparison between the standard Bayesian Network and the Dynamic Bayesian
Network, using the BDe score.

the BDe score. In some cases DBN presented better results, but in others the
BN with time was better.

We also compared the true positive rate between BIC and BDe scores. In
Fig. 4 we can observe that the BDe score performs slightly better in most exper-
iments. From 1 to 10 we used BN with time, where from 1 to 5 are the networks
of size 10 genes and, from 6 to 10 are networks of size 100. From 11 to 20 we
used DBN, where from 11 to 15 are networks of size 10 and, from 16 to 20 of
size 100.

3.2 Yeast Cell Cycle Data Results

We tested the methodology using a dataset of yeast cell cycle gene expression
provided by [24]. This dataset was obtained from six experiments, named cln3 (2
time points), clb2 (2), alpha (18), cdcl5 (24), cdc28 (17) and elutriation (14). In
this experiment, we selected 11 genes considered to be key regulators of the cell
cycle process according to [15]. The gold standard network was obtained from
the KEGG database.

In Fig.5 we show the similarities values when using the BIC score and the
prior biological knowledge for w = 1,2,4. The completeData bars was generated
using all six experiments together. Because the experiments cln3 and clb2 are
composed by only 2 samples each we did not use them individually. We can
observe that the biological knowledge improves the quality of the output network
specially in the cdc28 and alpha experiments.
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Fig. 4. Comparing the true positive rates obtained when using BIC and BDe score for
the DREAM4 data.
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Fig. 5. Similarity of the yeast cell cycle network using BIC score and considering
biological knowledge with w = 1,2, 4.

In Fig. 6 the show the results when using the same data, but with the BDe
score. We can observe that the similarity values are slightly worst when compared
to the BIC score experiment. It is also possible to notice a soft improvement of
the quality when considering the biological knowledge.
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Fig. 6. Similarity of the yeast cell cycle network using BDe score and considering
biological knowledge with w = 1,2, 4.
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Fig. 7. Comparing the true positive rates obtained when using BIC and BDe score for
the yeast cell cycle data.

Comparing the true positive rates between BIC and BDe scores shows that
BDe performs better in most of our experiments, as we can observe in Fig.7.
In experiments 1 to 4 we used the completeData with biological knowledge plus
w = 0,1,2,4, respectively. In experiments 5 to 8 the alpha dataset was used,
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following the same pattern of w. Experiments 9 to 12 correspond to the cdclb
dataset, 13 to 16 correspond to the cdc28 dataset, and from 17 to 20 to the
elutriation dataset.

4 Conclusion

In this work, we proposed a methodology for the reverse engineering of gene reg-
ulatory networks from time series gene expression using dynamic bayesian net-
works as well. We also proposed the use of a source of prior biological knowledge,
known as STRING, to improve the quality of the inferred networks. The method-
ology was tested on two datasets: artificial dataset provided by the DREAM4 in
silico challenge and a biological dataset from a yeast cell cycle study.

To learn the structure of the DBN we search for the network that best
matches the data, based on a score function. We used two types of functions, BIC
and BDe scores, and compared them. The results show that BDe score performs
better in most of the experiments.

We also compared the standard Bayesian Network model against the
Dynamic Bayesian Network, showing that the DBN provides better results than
its standard version. One important point to highlight is that our methodology
considers a source of prior biological knowledge, when available, unlike most
of the reverse engineering algorithms. We showed through our experiments that
this approach can improve the quality of the inferred networks. As a future work,
we can explore how to use various sources of biological knowledge instead of only
one.
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