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Chapter 10
Genebank Conservation of Germplasm
Collected from Wild Species

Christina Walters, Christopher M. Richards, and Gayle M. Volk

Abstract Crop genebanks are tasked with maintaining genetic resources that
support agriculture. They must keep a diverse array of samples alive for decades to
centuries. Controlled conditions within the genebank are necessary to maintain qual-
ity and ensure consistency of the sample through time. Challenges for providing qual-
ity and consistency increase with samples that are mostly unstudied and highly
heterogeneous and respond in unpredicted ways, as is the case for samples collected
from the wild. The task of genebanking will be facilitated by better definitions of the
“conservation target,” meaning the level of diversity that the sample is intended to
represent. With that definition, collectors will have better knowledge of what and
where to collect — and when to stop — and “fit-for-purpose” samples will be preserved.
Major uncertainties persist about the life expectancy of the sample and whether gene-
banking imposes genetic shifts. Standards have been recommended by the interna-
tional community to ensure lasting quality of samples despite a large number of
unknowns. We believe some of these standards will be counter-productive or unob-
tainable for wild-collected samples, and we have offered alternatives that stress docu-
mentation so future genebank users can predict whether a sample will suit their needs.

Keywords Conservation target - Cryopreservation - Germplasm - Longevity -
Preservation - Propagule - Sampling - Storage - Ex situ conservation - Genebank

10.1 The Challenge of Ex Situ Collections: Maintaining
Wildness in Captivity

North America’s rich flora has the potential to contribute genes to make our crops
more resilient to disease, pests, and weather extremes. The unique features of many
North American taxa also offer the opportunity to find sources for new products and
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better nutrition or healthier, more sustainable landscapes. Many of the plants
described in this book are congeneric with plants commonly used in agriculture. For
these, breeders will select the genes of interest from the wild relative and assimilate
them into modern cultivars, leaving behind undesirable genes that contribute to a
weedy phenotype. The breeder’s job is facilitated by low barriers to interspecific
hybridization incumbent with wild species that are closely related to domesticated
species (i.e., crop wild relatives, CWR). Similar concepts apply to other wild spe-
cies that may offer new products or have greater resilience in a changing land-
scape (Urban, 2015). In these cases, modern-day domestication efforts may be
invoked and provide an important reminder of the reservoir of services that wild
plants provide, bringing new opportunities for economic growth, ecological sustain-
ability, or aesthetic sensibility.

It makes sense to collect North American genetic resources in genebanks and
make them available to agriculture, conservation, engineering, and scientific
disciplines that explore biological diversity and the environment. We envision
collections of genetic resources as an inventory of “nature’s solutions” to tough
environmental problems. Genebank users will sift through these collections for
patterns of diversity or traits of interest. Therefore, genebanks must be careful not
to “edit” nature’s work in case it masks or removes the very trait that was sought.
This creates a real challenge because the highly controlled conditions that genebanks
must use can create strong pressure for plastic living systems to adapt and become
domesticated. The signature of domestication is particularly recognizable in seed
traits (Fig. 10.1) (Schoen and Brown 2001; Meyer et al. 2012). In essence, the crop
genebank mission is to maintain “wildness” of the stored germplasm so that
genebank users have full responsibility for domestication efforts.

Fig. 10.1 Seed of wild
progenitors (left) and crops
(right) showing
domestication traits of
lighter color and larger
seeds. Top to bottom are
Pistacia, Coffea, Glycine,
Hordeum, Zizania, and
Sorghum. Photo taken by
LM Hill
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Table 10.1 Requirements to ensure scientific collections are fit-for-purpose in studies of biological
diversity

1 | Maintain samples that are structurally intact (i.e., lack signs of physical damage) and are
genetically representative of the source material (i.e., the conservation target)

2 | Ensure samples are accompanied by data that describe the sample and the population from
which it came

3 | Authenticate data using accepted calibrations and standardized measurements

4 | Allow access to samples and data

5% | Keep samples healthy and able to be regenerated

A special requirement for germplasm banks

The purpose of this chapter is to describe some of the challenges one might expe-
rience when capturing and maintaining diversity inherent in collections of CWR —
whether originating in North America or elsewhere. While we appreciate that plant
(and animal) genebanks are often rationalized in an ethical context of conserving
natural diversity (e.g., Soulé 1991; Guerrant et al. 2004, 2014), our premise in this
chapter is that all the goals for genebanks — economic sustainability, environmental
services, ethical considerations, opportunity for new applications, and aesthetic
potential — are realized through scientific approaches. Hence, we view plant gene-
banks as scientific collections and that the scientists who use these collections need
access to well-characterized, high-quality materials that are quality-assured so that
the genebanking experience doesn’t affect experimental outcomes (ISBER 2012;
Walters et al. 2008; Guerrant et al. 2004, 2014). Overall requirements to gather and
document materials that are fit-for-purpose for studies of biological diversity are
summarized in Table 10.1.

Elements in Table 10.1 interact to contribute to the success (or failure) of gene-
banks in delivering samples of interest to users. Our focus in this chapter is element
one and its interaction with element five. Providing viable samples (i.e., germplasm)
differentiates a genebank from other types of plant collections such as DNA banks
or herbaria. Arguably, ensuring viability while preventing genetic change is one of
the greatest challenges facing genebanks today. Tools to validate how well a sample
represents the source population and how it is maintained through time in the gene-
bank are rapidly developing (Kilian and Graner 2012).

Plant genebanks can serve as an important tool for conservation. Ex situ conser-
vation, made possible by genebanks, can complement in situ strategies that operate
at habitat and landscape levels (Soulé 1991). Safely preserved at locations protected
from social pressures or environmental disasters, genebanks can amass significant
genetic diversity from a great range of taxa in a relatively small volume. Numerous
land managers and conservation groups within the USA incorporate seed banking to
forestall attrition of plant genetic diversity and ensure excellent sources of germ-
plasm for land restoration (Guerrant et al. 2004; Hay and Probert 2013; Haidet and
Olwell 2015; PCA 2015). Collections of plants of conservation concern (sensu
USFES  https://www.fs.usda.gov/Internet/FSE_ DOCUMENTS/stelprd3848211.pdf
(visited October 3, 2017)) exist already. These can be especially valuable as a source
of agronomic traits (Khoury et al. 2013). For example, the highly endangered plant
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Zizania texana Hitchc., which grows in a 7 km stretch of the San Marcos River near
San Antonio, TX, has a desired perennial growth habit and produces seeds with
exceptionally high lysine (Kahler et al. 2014).

Germplasm may be maintained in genebanks as samples actively growing, under
field greenhouse or tissue culture conditions, or as alive-but-not-growing samples
maintained by highly controlled conditions. Collections of the former are often
referred to as living, and the latter can be referred to as stored, suspended (for
suspended animation), or preserved. Often stored germplasm and seed banks are
synonymous, although technologies have rapidly advanced to preserve many other
germplasm forms in addition to seeds (see next section). Living collections allow
curators to observe traits and regenerate samples, but they also increase the risk of
losing samples to inclement weather, pests, pathogens, social unrest, and old age.
Genetic erosion through drift, inadvertent selection, or introgression with
neighboring related plants can also occur while growing or regenerating a sample.
And, regeneration is especially expensive in terms of land and labor for large plants
that may take years to sexually mature. Risks to field collections can be partially
mitigated by maintaining plants in vitro, but labor and suitable space to maintain
these collections can be cost-prohibitive (Pence 2011). Preserved collections are
less expensive and more space efficient, carry lower risk from natural or
anthropogenic disasters, and make genetic resources readily available regardless of
season, year, or location (Li and Pritchard 2009; Volk et al. 2009; Pence 2011).
Moreover, risks of genetic erosion during regeneration are mitigated when storage
conditions are exceptional and maintain high viability with no mortality over
extended periods (Richards et al. 2010; Walters et al. 2015a).

Plant genebanks are proliferating worldwide, and currently, about 1750 exist to
serve agriculture, conservation, and studies of ecology, evolution, and diversity
(Hay and Probert 2013; FAO 2014). These germplasm collections focus on a wide
array of plant genetic resources and usually invoke a combination of living and
stored approaches to maintain and evaluate samples. Major questions challenging
genebank operations include forms of germplasm that can be preserved, propagated,
and utilized, indicators for when a collection is “complete,” life expectancy during
storage, and assessment of genetic quality and potential uses of genebanked samples.

10.2 The “Conservation Target,” Germplasm that Is “Fit-
For-Purpose,” and Genebank Management Plan

Germplasm samples must align with genebank mission, which is defined by the
genebank’s specific objectives or rationale. For example, the purpose of the USDA
National Plant Germplasm System (NPGS) is to provide diversity that benefits
research and education about agriculture. For this reason, NPGS collections focus
on the subset of the world’s approximately 300,000 plant species that have economic
potential. Currently the NPGS collection contains only about 16,000 species, but
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this is represented by nearly 600,000 accessions (an accession is a sample with
unique identifying information, such as taxon, location, and harvest details (this
information is also called passport data)) —one of the world’s largest plant germplasm
collections globally (https:/npgsweb.ars-grin.gov/gringlobal/query/summary.aspx
visited October 3, 2017). NPGS accessions are roughly divided into named cultivars
(50%), genetic stocks (20%), and wild relatives or landraces of crops (30%). About
250,000 accessions are distributed each year to users. This strongly suggests that
interest in genebank collections among the scientific community resides in questions
at the sub-taxonomic level.

Twenty five years ago, conservation targets for genebanks hovered at the taxo-
nomic level (Soulé 1991). For example, botanical gardens used the living genebank
strategy and broadly collected species but just had a few exemplars for each. This
strategy provides support for phylogenetic distinctions but is unlikely to reveal
variation within a species (Marshall and Brown 1975; Hokanson et al. 1998;
Lawrence et al. 1995). Proliferation of genebanks that take advantage of advancing
storage technologies and data management offer the opportunity for collections to
explore a finer scale of genetic variation (Charlesworth et al. 2001; Lockwood et al.
2007a, b; Franks et al. 2008; Walters et al. 2008; Engelmann 2011). Conservation
targets at these finer scales include populations, ecotypes, families (e.g., maternal
lines), and individuals with exceptional characteristics, traits, or even particular
gene expression patterns (Khoury et al. (2015). At the writing of this chapter, we
feel that the conservation target(s) for CWR is/are mostly undefined for most crop
collections. Conservation targets might range from samples that provide phyloge-
netic representation to samples that confer particular traits or ecotypes (e.g., drought
tolerance). In many instances, collections of CWR are sought to provide a general
representation of population diversity of the species, as a contingency against out-
break of disease or pests. When the conservation target is defined below the taxo-
nomic level, stringency for maintaining genetic identity of the sample tightens
(Table 10.1, element 1) and requires metrics to demonstrate the proficiency by
which a genebank delivers samples that reflect the finer-scaled conservation target
(Van de Wouw et al. 2010).

10.2.1 Germplasm

What part of the plant should be sampled for genebanking purposes? For DNA
analyses, a fresh leaf or other non-senescent tissue is usually sufficient (Walters and
Hanner 2006). However, for genebanks with the additional responsibility of
providing live material (Table 10.1, element 5), the choice of propagule is a critical
decision (Volk and Walters 2004). Within the genebank, ability to provide samples
of high structural integrity that faithfully represent the conservation target usually
rests on whether the material can be stored and easily distributed. Costs of processing
and storage should figure significantly into the genebank’s business model to
determine the volume of material that can be managed effectively. Additional
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criteria for the collector might be timing of the collection trip in relation to plant
phenology, remoteness of populations, permitting allowances, amenability to
harvest, impact to the population and site, and potential for opportunistic collection
of other species. Users may have additional preferences for the ease and required
time for growing or propagating the material as well as the immediate availability
of germplasm. Luckily, many plants are fairly plastic in their reproductive behavior
and offer numerous propagule types to meet a range of requirements, preferences,
and constraints (Table 10.2). Genebanks frequently distinguish between propagules
that are sexually-derived (i.e., seeds and pollen) and those that arise from vegetative
cuttings (i.e., clonally propagated). In agriculture, this distinction usually occurs
because the conservation target is a specific genotype and the plant is highly
heterozygous and outcrossing, for example, fruit crops (Volk and Walters 2004).
Clonal propagation may be necessary for plants of conservation concern if there is
reproductive failure in the wild (e.g., inbreeding, no pollinators) or if population
sizes are inviable (Pence 2013). Since the conservation target of CWR is usually at
either the population or gene level, stringent control of the genotype may be
unnecessary and may actually impede broader representation of diversity within the
population or incorporation of useful genes into a cultivar (Volk and Walters 2004).
Seeds are the most commonly used propagule for plant genebanks. Usually com-
pact, plentiful, storable, growable, and representative of maternal and pollen-donor
lines, seeds might just be the ideal medium for plant genebanking. Indeed, over 95%
of the USDA National Plant Germplasm System collection uses seeds as the propa-
gule form of choice. Seed-related traits such as fertility, fecundity, uniformity, ger-
mination speed, harvesting ability, and longevity — traits that facilitate
genebanking — reflect traits selected during domestication (Meyer et al. 2012)
(Fig. 10.1). We should expect disparities in these seed traits between untamed wild
progenitors and their derivative modern cultivars. Consequently, we should also
expect contrasting response to genebanking from domesticated and wild-collected
germplasm. Moreover, we can expect wild-collected germplasm to be more prone
to genetic erosion arising from the highly artificial conditions implicit within a
genebank. Anecdotal accounts of greater difficulties genebanking seeds from the
wild are increasing (Hay and Probert 2013; Walters 2015a). Despite these challenges,
conservation groups and land managers have demonstrated the feasibility of
genebanking wild seeds and the utility of this germplasm in restoration work
(Maschinski and Haskins 2012; Guerrant et al. 2004; Haidet and Olwell 2015). As
collaborators in these efforts, we have gained experience working with the seeds of
truly wild species and can describe some of the pitfalls we’ve encountered that
reduced the efficiency and accountability of genebanking efforts. These are not
insurmountable problems; they simply indicate the need for adjustments in
procedures, expectations, and anticipated costs for properly genebanking populations
from natural populations compared to established methods using crop seeds.
Depending on several factors, seeds may be a less preferred germplasm form for
sampling CWR in natural populations. Some plant species produce seeds that are
less suited for genebanking because viability is lost quickly when standard
genebanking conditions (sensu FAO 2014) are used. Seeds exhibiting low survival



Table 10.2 Some common propagules used in plant genebanks

Propagule Advantages Disadvantages Exceptions
Seeds: Conservation | Compact Heterogeneous traits in | Non-orthodox seeds
target at population | High fecundity of wild populations require cryogenic

and/gene level

some plants make it
possible to collect
many individuals
Highly developed,
low-cost, storage
technology for
orthodox seeds
Efficient for
propagation and
regeneration and
distribution
Represents progeny
of extant population
(can capture many
genotypes and many
genes)

May present barrier
to some diseases
Demonstrated ability
to efficiently capture
diversity

multiple harvest times
needed, and timing can
be unpredictable
Asynchronous
germination can lead to
poor stand
establishment and drift
Long time to sexual
maturity in perennials
Potentially unknown
pollen source

Mating systems may
preclude maintaining
desired maternal traits

storage

Possible low seed
production in wild due
to reproductive failure
(endangered species),
drought, late frost,
non-mast year,
herbivory

Pollen: Conservation
target at gene level

Very compact
Available for
immediate use in
breeding programs
Available during
flowering

Amenable to storage
Captures diverse
genes

Maybe the fastest,
least labor-intensive
way to achieve some
form of back-up

A gamete, not an
individual

Ephemeral

Difficult to harvest
Must make crosses to
regenerate populations
Must be genebanked
immediately after
collection (short
processing timeline)

Shoot tips:
Conservation target
at individual level

Compact

Captures specific
genotype, OK as an
exemplar of species
Amenable to in vitro
culture

Preservation
technologies rapidly
developing

Clonal propagation
reduces concern
about genetic drift

Requires large amounts
of quality source
materials at correct
phenological stage
Unexplained variation
in response to growth
medium among
genotypes

Processing and growth
are labor intensive
Many individuals
needed to capture
diversity of a
heterogeneous
population

(continued)
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Propagule

Advantages

Disadvantages

Exceptions

Dormant buds or
overwintering
vegetative structures:
Conservation target
at individual level

Compact

Captures specific
genotype, OK as an
exemplar of species
Does not require

in vitro culture (less
labor than shoot tips)

Plants must be
winter-adapted and in
acclimated state
Recovered by grafting
Many individuals
needed to capture
diversity of a

Variable responses
within and among
species result from
complex bud structures

Preservation heterogeneous
technologies are population
advancing

Clonal propagation
reduces concern
about genetic drift

Somatic embryos and | Compact Successful propagation
cell cultures: Captures specific is highly genotype-
Conservation target | genotype; specific, tends to

at individual level May be more narrow captured

amenable to diversity
preservation than High risk of somaclonal
non-orthodox seed | variation

Labor intensive for
establishing and
processing

Can generate huge
numbers of
individuals

See also Havens et al. (2004) for complementary information

under standard genebanking conditions are nominally classified as “recalcitrant” or
“intermediate” (and collectively as “non-orthodox”) compared to counterparts that
are considered “orthodox™ (Walters 2015b; RBG 2017). In interspecies hybridiza-
tion zones, cuttings may provide more certain taxonomic identification than prog-
eny from uncertain pollen sources. At sites where there are few individuals or low
fecundity, cuttings may provide a means to collect germplasm with lower potential
impact to the natural population; these can then be grown-out in field collections to
facilitate characterization and regeneration through seeds. Pollen is under-
appreciated as a germplasm form in plants, which contrasts with animal genebanks
in which semen, the counterpart to pollen, is the most commonly used germplasm
form (Mazur et al. 2008). Pollen might be an effective alternative germplasm form
that can capture genes of interest and deliver them to a breeding population when
seeds are unavailable or have poor storage characteristics or when maintaining
cuttings is cost-prohibitive. For example, pollen from oak trees is desiccation
tolerant, while oak seeds tend to be recalcitrant (Franchi et al. 2011). Pollen is
storable (Hoekstra 1995; Volk 2011), but it lacks the longevity traits exhibited in
seeds of the most common agronomic species (Dafni and Firmage 2000). The
requirement for rapid processing of pollen samples makes it a less-ideal germplasm
form when collecting from remote natural populations.
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Quality of seed set and phenology are also important factors; a plant collector
should sample seeds in the fruiting period, vegetative tissues when plants show
active growth flushes or cold-adapted twigs are available, and pollen if plants are
flowering. Alternative germplasm forms, such as pollen or cuttings, may augment
genetic diversity lost by high mortality during banking of non-orthodox seeds.

10.2.2 Sampling Strategies and Management Plans.

In addition to the type of germplasm collected, the conservation target also defines
the sampling strategy (Guerrant et al. 2014; Hoban et al. Chap. 8, this volume) as
well as the genebank management plan. For germplasm banks, management plans
must be suitable to deliver viable germplasm (Table 10.1, element 5); however
management plans can vary depending on the conservation target. When the conser-
vation target is an exemplar of phylogenetic representation, sampling probably
occurred at one or a few convenient locations, and there probably wasn’t great effort
expended to get an accurate genetic representation of the species or particular popu-
lations. In this case, management at the genebank should complement the sampling
effort to ensure sufficient viability for representatives of the taxon. Conservation
targets for agricultural-based genebanks are usually at the sub-taxonomic level, for
example, diversity is sought for a specific trait (e.g., aluminum tolerance, salt toler-
ance, and disease resistance) or for broad population representation needed for con-
tingencies in the future. For conservation targets at trait or population levels,
sampling usually occurred across diverse locations, and the sites and number of
sites were selected carefully to maximize the sought diversity with fewest possible
samples (so as to not overwhelm genebanking operations). Stringent genebank
management plans are needed to ensure that the sample remains genetically repre-
sentative of the source population. These are discussed further in Sect. 10.4
(Standards and Best Practices).

An important question arises about collection completeness, “completeness”
being defined as how well the samples in the collection represent the diversity
within the conservation target. There are few specific metrics to determine
completeness (though see Hoban et al. Chap. 8, this volume for fuller discussion).
It is important to note that metrics will differ among collections that are focused on
different conservation targets such as a species representative, a specific trait or a
contingency collection. International policy and legislation (e.g., International
Treaty on Plant Genetic Resources for Food and Agriculture ITPGRFA-FAO 2001),
the Convention on Biological Diversity Strategic Plan (SCBD 2010), and the Global
Strategy for Plant Conservation (SCBD 2014)) encourage strategies for ex situ
conservation of CWR but provide few recommendations for the conservation target
or metrics for effectiveness of sampling or management plans. Using species
distribution models along with validating genetic data (Hoban et al. Chap. 8, this
volume) may provide collectors more sophisticated tools to locate and monitor
genetic variation and estimate uncertainty about collection “completeness.”
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10.3 Genebanking Wild-Collected Germplasm

Maintaining germplasm collections within allotted resources is a top priority for
most genebanks. As mentioned earlier, living genebanks are limited in the amount
of genetic diversity they can represent, and living germplasm is more vulnerable to
stressful conditions. Preserved germplasm is maintained under highly controlled
conditions. There is an expectation that it will remain viable into the future, but that
duration is usually poorly defined. Often genebanking duration is defined as short-,
medium-, or long-term, which most commonly define the storage conditions
(ambient, refrigerated, and freezer, respectively) (FAO 2014), rather than the needed
longevity, such as over a breeder’s career, until an imminent restoration project is
implemented, or forever. At NLGRP, we target a 100-year lifespan for most of our
seed accessions (Walters et al. 2004).

The apparent stasis imposed by preserving germplasm often lures the naive into
a perception of simplicity; however the complexity of the effort is revealed by
considering the timescale in which genebanks operate — usually decades. It is not
generally appreciated that the impacts of seemingly minor deviations today won’t
be evident until sometime in the future; hence, an unsuspecting genebank manager
may inherit a “ticking time-bomb.” Genebank failures can go unexplained without
standardized methods or stringent documentation. Herein lies a paradox: how do
genebanks use standardized treatments for diverse materials and not encounter
highly variable responses? And, do the variable responses impact how well the
sample can represent the conservation target? A better understanding of time-scales
is required to address these questions.

10.3.1 Stopping the Clock: A Primer in Preservation
Technologies.

Understanding how to stabilize biological materials and predict the effects of time
is a highly practical science needed for everyday problems. The food industry needs
to provide expiration dates for product quality. Effectiveness of drugs and dosage
response must consider the variable conditions that occur in household medicine
cabinets. Plastic products, coverings, and packaging lose form and function over
time. Everyone experiences the yellowing of old paper, the brittleness of aged
rubber bands, and the failure of worn tape to hold documents together. Like all
materials, the fundamental process for structural stability (i.e., preservation) is
solidification (Menard 2008; Walters et al. 2010) — in the case of germplasm, this
involves solidifying, or vitrifying, cytoplasm (i.e., forming a “glass”) without too
much disruption to the cell structure.

Most cytoplasm vitrifies at room temperature when samples dry to between 30%
and 50% RH. If this level of drying can be accomplished without too much cell
shrinkage, the cell survives; loss of more than 50% cell volume is considered lethal
(Walters 2015b). During embryogenesis, food reserves (starch, protein, or lipid) are
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deposited into cells, displacing water which consumed as much as 80-90% of the
cell volume in an immature embryo and 60-80% of cell volume in a mature
recalcitrant (i.e., desiccation-sensitive) seed. The cell volume of a mature orthodox
seed changes very little during desiccation (less than 30%), and we believe this
explains their extreme tolerance to desiccation as well as subsequent longevity
(Walters 2015b). The process of drying without dying makes desiccation tolerant
organisms, including orthodox seeds, the original material engineers. This process
is highly regulated during embryogenesis (Righetti et al. 2015), and incompletion or
disruption of the established program, like any material, can have dire consequences
to the functionality and stability of the end product — in this case, seed survival
through time (Walters et al. 2010; Walters 2015b).

Once cells are in the glassy state (at temperatures below the glass transition tem-
perature or Tg), they are relatively stable, meaning that change occurs, but over a
much longer time scale than reactions occurring in fluid systems. In other words,
preservation doesn’t stop the clock, it just slows it down. In solids, such as vitrified
cytoplasm, structure and mobility become two sides of the same coin. The “structure”
is defined by how the compressed molecules impede movement of neighboring
molecules. Pores formed during glass formation and molecules in the glass now
shift to fill those pores and pack more efficiently. This rearrangement defines the
“mobility” as well as the rate of change within the glass (Menard 2008). The
movement brings molecules slowly into closer proximity, where they interact and
oxidize; the material becomes brittle. The time scale is often experimentally
intractable, which is one of the reasons why seed longevity is difficult to predict or
measure. Water is a “plasticizer” of biological glasses, meaning it promotes larger
pore space, hence greater mobility and faster aging. If seeds are not sufficiently
dried, molecules in the cytoplasm move faster, causing more rapid deterioration.
Anti-plasticizers (e.g., cryoprotectants) stabilize structure by a number of
mechanisms. There is some speculation that anti-plasticizers of unknown identity
accumulate in long-lived seeds (Walters 2015b).

A glass is stabilized by lowering the temperature. For orthodox seeds, which
formed glasses during drying at ambient temperatures, molecular rearrangements to
form lethal ice crystals at sub-zero (°C) temperatures are improbable, and so longev-
ity increases progressively with lower temperature (to a point) (Walters, 2004).
Most genebanks use freezers at —18 °C for conventional storage, because it is highly
accessible technology, being easily achieved using a single-stage compressor.
Freezer storage of plant germplasm began in the 1970s, and there was strong debate
about its benefits until the early 2000s (Zheng et al. 1998; Walters 1998).

Cryogenic storage for plant germplasm became accepted in the mid-1980s and
routine in the mid-1990s. Cryogenic storage may occur through a number of plat-
forms, and the appropriate treatment and storage temperature for plant germplasm
relies on the vitrification temperature, Tg. Technically, all storage below 0 °C is
cryogenic; however, here, we consider it as storage below temperatures achieved by
conventional freezers. Mechanical freezers with a dual-stage compressor cool to
—80 °C and may be effective for germplasm with a relatively low Tg or unstable
glass or when lipid transitions are important to survival. Most frequently, cryogenic
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storage is associated with the use of Dewar flasks or cryovats that are cooled by
liquid nitrogen. Germplasm is either immersed into the fluid and stored at —196 °C
or stored in the vapor above liquid nitrogen (between —150 and —190 °C, depending
on distance from fluid surface and convection within the tank). A few status reports
on longevity of cryopreserved germplasm are available (Towill et al. 2004; Walters
et al. 2004; Volk et al. 2008; Ballesteros and Pence 2017; Pence et al. 2017).

Many plant propagules do not survive the desiccation stress required to form
glasses at ambient temperatures (e.g., vegetative propagules and some non-orthodox
seeds) (Table 10.2). Lowering the temperature of these non-vitrified systems poses
high risk of lethal ice formation, which can only be avoided by forming a glass
during the cooling process and maintaining it below Tg so that glasses don’t melt
and ice doesn’t form during storage. Inhibiting ice formation at sub-zero (°C)
temperatures, while maintaining cell viability, requires optimization of interacting
treatments for moisture adjustments, additions of cryoprotectants and rapid cooling
(Walters et al. 2013; Wesley-Smith et al. 2014).

10.3.2 Conservation Targets, Sample Quality, and Preservation
Success

We preface this section by the infamous story of the Para rubber tree, Hevea brasil-
iensis (Willd. ex A. Juss.) Miill. Arg., which produces a non-orthodox seed. Mostly
told for political intrigue, the story describes how less than 1% of over 50,000 seeds
survived to domesticate the species and initiate rubber industries in Malaysia and
Singapore (Brockway 1979). Here, the conservation target for H. brasiliensis was
primarily its rubber-producing trait, a species characteristic that can be captured by
exemplars. Thus, loss of 99% of the collected seeds, as a result of poor shelf-life,
was considered acceptable. We would likely find those losses unacceptable by
today’s standards because our conservation targets tend to be at finer scales: genetic
diversity representative for the whole species or for key populations or individuals.
The salient point, for the context of this chapter, is that preservation success is
defined by whether loss of genetic diversity during genebanking is acceptable,
which is largely dependent on the stated conservation target.

The Hevea brasiliensis story also illustrates that it is possible to genebank even
when seeds are not orthodox. Usually a species producing non-orthodox seeds will
be harvested as a cutting or fresh seed and immediately grown out to form a living
collection. As described in the previous section, it is now possible to preserve non-
orthodox seeds and other germplasm forms that do not survive cytoplasmic
solidification at ambient temperatures. However, this effort requires exacting
coordination between collector and curator.

An initiative to bank wild species requires background information on how prop-
agules respond in storage. To that end, we cross-referenced prioritized CWR from
the USA (Khoury et al. 2013) with information available from Royal Botanic Kew’s
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Seed Information Database (SID) (RBG 2017) (Table 10.3). A limited number of
US species were included in the SID, emphasizing the lack of information available
for storage behavior of germplasm from CWR native to the USA. Extrapolating
from the genus level, we believe that 75% of the 179 genera from the Inventory will
produce orthodox seeds and that at least 8% will not produce orthodox seeds. High
variability in seed storage response is exhibited in about 8% of congeners, and no
records are given for 8% of the genera.

Even orthodox seeds present challenges for storage, especially with conservation
targets at the population level, which is where most agronomic- and conservation-
based collections are poised. The increasing number of anecdotal accounts that
seeds collected from the wild are harder to store are not surprising (Hay and Probert
2013; Walters 2015a; Balleseros and Pence 2017). We know that embryo
development is critical to longevity, and metabolic pathways expressed during
embryogenesis are keys (Righetti et al. 2015; Walters 2015b). Seed quality is
dependent on processes that are uncontrolled in the wild during the growing season,
such as moisture availability, nutrition, competition, and pathogens, and it will
decline if developmental programs are not completed (Probert et al. 2007) or
extended toward germination (Tarquis and Bradford 1992). Seed quality is also
under genetic control (Clerkx et al. 2004; Schwember and Bradford 2010; Nagel
et al. 2011; Righetti et al. 2015), with ecotypes within a species having contrasting
storage behavior (Tweddle et al. 2003; Clerkx et al. 2004; Daws et al. 2004; Walters
et al. 2005; Probert et al. 2009; Kochanek et al. 2009; Mondoni et al. 2014).
Phenology, fecundity, carbon partitioning, composition, seed coverings, resistance
to pests, and drought tolerance are all inherited traits that affect seed longevity.
These traits are more uniform in domesticated plants but vary considerably in seeds
from natural populations; hence, an accession of seeds collected from the wild will
be heterogeneous, and this will result in differences on how individual seeds within
the sample respond to genebanking conditions.

Genebanking wild-collected seeds carries inherent risks for genetic erosion:
when the shorter-lived seeds in an accession die, seed traits will tend toward greater
uniformity, and when seeds are regenerated, germination, flowering, and maturity
are likely to become more synchronized. Unless extraordinary measures prevent
these tendencies, genebanking seeds collected from the wild can be an exercise in
domestication as a result of inadvertent selection of traits controlling preservability,
growth habit, morphology/physiology, and reproductive capacity (e.g., Burton and
Burton 2002; Gilligan and Frankham 2003; Harding 2004; Aubry et al. 2005; Falk
et al. 2006). Even though sample quality may remain high during genebanking,
there may be an attrition of sought-after genetic diversity and an increasing tendency
for genetic representation of the sample to veer away from the source population
(Table 10.1, element 1).
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Table 10.3 Probable seed storage behavior for taxa native to the USA

domesticated species

C. Walters et al.

that are congeneric to

# priority taxa

# of species within

# accessions | for priority Predicted genus with reported
Genus with a 1A, 1B, |in NPGS for | collection in the |response to | constants for Seed
or 2 priority ranking® | genus® USA®* storage© Viability model?
Abutilon Mill. 0 8 O 0
Acer L. 0 6 OtoR 1
Actaea L. 47 1 O 0
Aegilops L. 0 5 O 0
Agave L. 20 4 (6] 0
Agropyron Gaertn. 0 2 No data
Agrostis L. 0 15 O 0
Allium L. 0 47 (0] 1
Alopecurus L. 0 4 (0] 0
Amaranthus L. 3353 40 (0] 0
Andropogon L. 0 13 (6] 0
Annona L. 48 1 OtoU
Apios Fabr. 0 1 No data
Apium L. 0 1 (6] 0
Arbutus L. 0 3 (6] 0
Armoracia G. Gaertn. 0 1 (0] 0
Aronia Medik. 0 3 No data
Arrhenatherum 0 2 (0] 0
P. Beauv.
Artemisia L. 0 50 (0] 0
Artocarpus J.R. Forst. 0 1 R
and G. Forst.
Asimina Adans. 1024 9 U
Asparagus L. 0 3 O 0
Atriplex L. 0 37 (6] 0
Avena L. 0 3 (0] 0
Bassia All. 0 1 (0] 0
Beta L. 0 4 O 1
Boehmeria Jacq. 0 1 (0] 0
Brassica L. 0 5 (0] 2
Bromus L. 0 35 O 0
Camelina Crantz. 0 1 (6] 0
Canavalia Adans. 0 6 (0] 0
Capparis L. 0 2 OtoR
Capsicum L. 5084 2 O 0
Carica L. 53 1 I
Carthamus L. 0 1 O 0
Carya Nutt. 4078 13 U
Castanea Mill. 15 5 R

(continued)
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# priority taxa

# of species within

# accessions | for priority Predicted genus with reported
Genus with a 1A, 1B, |in NPGS for | collection in the |response to | constants for Seed
or 2 priority ranking® | genus® USA? storage® Viability model?
Chenopodium L. 386 51 (6] 0
Chrysanthemum L. 0 1 O 0
Chrysophyllum L. 0 2 R
Cinnamomum 0 1 R
Schaeff.
Cochlearia L. 0 1 O 0
Cocos L. 0 1 R
Coix L. 0 1 O 0
Colocasia Schott. 0 1 U
Corchorus L. 0 2 (0] 0
Coreopsis L. 0 8 (0] 0
Corylus L. 803 3 1
Crataegus L. 0 70 (0] 0
Crotalaria L. 0 6 (6] 0
Croton L. 0 15 (0] 0
Cucumis L. 0 4 (0] 1
Cucurbita L. 3392 8 (0] 1
Cuphea P. Browne 0 5 Otol
Cynara L. 0 3 (0] 0
Cyperus L. 0 48 (@) 0
Dactylis L. 0 1 (@) 0
Daucus L. 1578 2 (0] 0
Digitaria Haller 0 20 (0] 0
Dioscorea L. 0 3 (0] 0
Diospyros L. 0 7 OtoR
Diplotaxis DC. 0 2 (0] 0
Echinacea Moench. 0 13 (0] 0
Echinochloa P. Beauv. 0 15 (0] 0
Elymus L. 0 43 (0] 0
Eragrostis Wolf 0 27 (0] 0
Eruca Mill. 0 2 (0] 0
Eugenia L. 0 3 R
Fagus L. 0 2 Otol
Festuca L. 0 36 (6] 0
Ficus L. 0 4 (0] 0
Foeniculum Mill. 0 1 (0] 0
Fragaria L. 1907 21 O 0
Gaylussacia Kunth. 0 8 O 0
Glycyrrhiza L. 0 1 (6] 0

(continued)
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# priority taxa

# of species within

# accessions | for priority Predicted genus with reported
Genus with a 1A, 1B, |in NPGS for | collection in the |response to | constants for Seed
or 2 priority ranking® | genus® USA? storage® Viability model?
Gossypium L. 10,582 3 O 1
Hedysarum L. 0 7 O 0
Helianthus L. 5158 72 O 1
Hibiscus L. 0 18 O 0
Hordeum L. 0 18 O 1
Humulus L. 626 6 O 0
Hydprastis J. Ellis 0 1 No data
Hypericum L. 0 1 O 0
Ilex L. 0 21 U
Hllicium L. 0 1 R
Ipomoea L. 1251 40 O 0
Jatropha L. 0 4 O 0
Juglans L. 702 9 U
Lactuca L. 2943 11 (0] 1
Lathyrus L. 0 31 (0] 0
Lepidium L. 0 37 O 0
Lespedeza Michx. 0 11 (0] 0
Leymus Hochst. 0 17 (0] 0
Licania Aubl. 0 1 No data
Lilium L. 0 5 (0] 0
Limnanthes R. Br. 82 (0] 0
Linum L. 0 21 (6] 0
Lolium L. 0 3 (0] 0
Lotus L. 0 77 (0] 0
Lupinus L. 0 95 (6] 0
Malus Mill. 6203 4 ¢} 1
Manihot Mill. 21 4 (0] 1
Manilkara Adans. 55 1 ItoR
Medicago L. 0 10 (6] 0
Melilotus Mill. 0 3 (0] 0
Mentha L. 0 4 (0] 0
Mespilus L. 0 1 No data
Morus L. 0 2 (0] 0
Nasturtium 0 4 (0] 0
W.T. Aiton
Nicotiana L. 2342 9 (0] 0
Olea L. 0 1 o 0
Oplopanax (Torr. and 0 1 (0] 0
A.Gray) Migq.
Opuntia Mill. 286 31 (0] 0

(continued)
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# priority taxa

# of species within

# accessions | for priority Predicted genus with reported
Genus with a 1A, 1B, |in NPGS for | collection in the |response to | constants for Seed
or 2 priority ranking® | genus® USA? storage® Viability model?
Oxalis L. 0 8 O 0
Pachyrhizus Rich. Ed 11 0 O 0
DC
Panax L. 0 1 No data
Panicum L. 1731 37 O 0
Papaver L. 0 14 O 0
Parthenium L. 151 7 O 0
Paspalum L. 0 42 O 0
Fassiflora L. 0 13 Otol
Pastinaca L. 0 1 O 0
Pennisetum Rich. 0 10 O 1
Penstemon Schmidel 0 39 O 0
Persea Mill. 173 3 R
Phalaris L. 0 6 (6] 0
Phaseolus L. 17,856 17 (0] 1
Phleum L. 0 2 (0] 0
Phlox L. 479 9 (0} 0
Physalis L. 0 13 (0] 0
Physaria (Nutt. ex 237 4 (0] 0
Torr. and A. Gray)
A. Gay
Pinus L. 0 4 (6] 0
Piper L. 0 1 Otol
Pistacia L. 356 1 (0] 0
Poa L. 0 42 (0] 0
Portulaca L. 0 10 (0] 0
Pouteria Aubl. 85 0 R
Prosopis L. 0 9 (0] 0
Prunus L. 2970 30 O 0
Psathyrostachys 0 2 No data
Nevski
Pseudoroggneria 0 1 No data
(Nevski) A. Love
Psidium L. 67 2 (0] 0
Pueraria DC. 0 3 O 0
Pyrus L. 0 1 (6] 0
Raphanus L. 0 1 (0] 0
Rhododendron L. 0 30 (0] 0
Ribes L. 1273 65 O 0
Rorippa Scop. 0 9 OtoU

(continued)
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# priority taxa

# of species within

# accessions | for priority Predicted genus with reported
Genus with a 1A, 1B, |in NPGS for | collection in the |response to | constants for Seed
or 2 priority ranking® | genus® USA®? storage® Viability model?
Rosa L. 0 27 O 0
Rubus L. 2109 67 (6] 0
Rudbeckia L. 0 11 O 0
Ruellia L. 0 2 O 0
Rumex L. 0 19 O 0
Saccharum L. 0 9 O 0
Salsola L. 0 4 O 0
Sambucus L. 0 11 O 0
Satureja L. 0 1 O 0
Scorzonera L. 0 1 O 0
Setaria P. Beauv. 1081 27 O 0
Simmondsia Nutt. 324 1 (0] 0
Solanum L. 18,016 39 (0] 0
Sorbus L. 0 11 (0] 0
Sorghum Moench. 0 4 (0] 1
Stillingia Garden 0 2 No data
Syzygium R.Br. ex 0 2 R
Gaertn.
Theobroma L. 271 0 R
Thinopyrum A. Love 0 2 No data
Thlaspi L. 0 1 (0] 0
Tragopogon L. 0 4 (0] 0
Triadica Lour. 0 1 OtoR
Trifolium L. 0 96 (0] 0
Tripsacum L. 294 4 No data
Vaccinium L. 1786 39 (0] 0
Vanilla Mill. 0 2 No data
Vernicia Lour. 0 1 No data
Vicia L. 0 14 (0] 0
Vigna Savi 0 2 (0] 2
Vitis L. 5028 29 (0] 0
Zizania L. 0 6 I

Genera are from supplemental material supplied by Khoury et al. (2013). Information about seed
responses to storage are from congeners listed in Kew’s SID (http://data.kew.org/sid/sidsearch.
html accessed 14 Feb 2017). Information on constants for the Viability Equation model come from
a different page on the SID website (http://data.kew.org/sid/viability/ accessed October 3, 2017)
and represent the number of species within the listed genus with reported constants (no data were
available for specific taxa listed the Inventory)
“Definitions of priority rankings for collection (1A, 1B, and 2) were taken from Khoury et al. 2013,
and associated taxa were retrieved from the Inventory provided at http://www.ars-grin.gov/misc/
tax/ (accessed 6 Feb 2017)

(continued)
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Table 10.3 (continued)

"Presence of accessions for genera within NPGS collections were retrieved from GRIN (site)
(Courtesy of C.K. Khoury)

‘Seed storage behavior was taken from Kew’s SID and reflect behaviors listed for the majority of
congeners with reported data (no data were available for specific taxa listed in the Inventory)
(http://data.kew.org/sid/sidsearch.html accessed October 3, 2017), O, orthodox; I, intermediate; R,
recalcitrant; U, unclear

dCongeners with Viability Equation information come from a different page on the SID website
(http://data.kew.org/sid/viability/ accessed October 3, 2017) (no data were available for specific
taxa listed the Inventory). Zero indicates no information listed for that genus; blanks indicate seeds
with probable non-orthodox storage behavior

10.3.3 Predicting Longevity and Detecting Aging

The intention to use genebanking to conserve genetic diversity extant in the wild
underpins genebanking practices designed to prolong seed shelf-life. Storage
treatments, viability monitoring frequencies, and regeneration are all based on
assumptions about longevity. However, longevity varies tremendously among seed
lots within a species due to uncontrolled and unknown factors of seed quality.
Therefore, the actual longevity of a seed lot is only known after-the-fact. Genebanks
need reliable assessments of longevity before and during storage.

Longevity might be predicted using an empirical model that is parameterized by
constants for moisture and temperature effects for different species. The Seed
Viability Equations (Ellis and Roberts 1980) [http://data.kew.org/sid/viability/
(visited October 3, 2017)] provide “ball-park” estimates of survival with time when
conditions are not-too-cold or not-too-dry; this model becomes unreliable beyond
the limits of inference of the data used to parameterize it (Walters 1998; Walters
et al. 2004). Since freezer storage is a relatively new practice (it was first used
routinely at NLGRP in 1978), there are few data sets that actually demonstrate
longevity in the freezer, let alone predict it reliably.

Models such as the Viability Equations allow us to “standardize” different labo-
ratory experimental conditions, so diverse species can be ranked for longevity in a
similar context (Hay et al. 2003). Not surprisingly, information for CWR species
from the USA (Khoury et al. 2013) are not available. The information might be
gleaned from behavior of congeners, but only 15 of the 135 genera believed to be
orthodox had species coefficients listed in the SID (Table 10.3). More extensive
comparisons of seed longevity within the genebank, and estimates of within-species
variation for some CWR, come from early genebank results of seeds stored initially
at 5 °C (Walters et al. 2005; Nagel and Borner 2010). Additional insights come from
seed aging experiments conducted at warmer temperatures under high humidity
challenges (Probert et al. 2009) or drier conditions (e.g., Fig. 10.2). There is general
agreement that seeds from Apiaceae tend to be short-lived and seeds from
Chenopodiaceae tend to be long-lived. Seeds from Asteraceae and Poaceae exhibit
a wide range of longevities. In the future, we hope to adjust species-level information
with data about habitat, location, and weather data associated with the sample.
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Fig. 10.2 Survival of a seed sample of Malus sieversii, progenitor species of domesticated apple.
Seed moisture was adjusted at 25 °C at indicated relative humidity for a 3-week period; seeds were
then sealed in foil laminate packages and placed at 35 °C for indicated time and then germinated.
The increasing longevity with decreasing moisture treatment (75-13% RH) is indicative of
orthodox behavior, and the faster aging at very low RH (1%) demonstrates a limited benefit of
drying. This seed lot survived for about 3 years (+1000 days) at 35 °C. Extrapolating longevity to
—15 °C using a general rule for temperature effects (doubling for every 10 °C; Q10 = 2), we can
predict this seed lot would survive for about 100 years in a genebank (original data)

Wide variation of longevity within a species makes it difficult to accurately pre-
dict how a particular sample will behave in the genebank (e.g., Walters et al. 2005).
These differences are accommodated in the Viability Equations using an initial
quality factor, which is dependent on a highly accurate measure of initial germina-
tion as well as an assumed high correlation between initial germination and longev-
ity. Despite model predictions, there is a poor correlation between initial germination
and longevity (Walters et al. 2005; Nagel and Borner 2010; Ballesteros and Pence
2017), which we attribute to quality factors that have initial but not long-term effects
(Mead and Gray 1999) and factors that have long-term but not initial effects (Hay
and Probert 1995; Tarquis and Bradford 1992; Walters et al. 2004).

Monitoring viability is currently the genebank’s only tool for assessing whether
quality is maintained. For seeds, this involves a germination assay which, like the
initial test, is a snapshot having little predictive power of future change. Statistical
considerations related to sample size also influence how well change can be detected
(Guerrant and Fiedler 2004; Richards et al. 2010). Accumulation of deaths in time,
marked by changes in germination potential, is a poignant demonstration that
responses of individuals within a sample vary during storage.

Genebanks must monitor seed viability, but without a priori information on lon-
gevity and germination, there is no guidance for monitoring interval or seed counts.
When a priori knowledge is insufficient, frequent viability monitoring is recom-
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mended (FAO 2014); this demands extensive resources and can quickly deplete the
sample, rendering the entire exercise useless. Better processing and storage condi-
tions to prolong longevity, better methods to relate aging at higher temperatures to
freezer conditions, and new tools to monitor nondestructively (Colville et al. 2012;
Mira et al. 2016; Fleming et al. 2017) will aid the genebanking operation.

10.4 Standards and Best Practices

Standards or best practices communicate how state-of-art science should be imple-
mented in order to maintain quality samples for a desired timeframe (ISBER 2012).
They also communicate to future users how samples were treated (ISBER 2012).
Intentions of standards are quality control, predictability, and metrics for how the
genebanking experience affected the sample relative to its conservation target. This
is particularly important if methods to accomplish bio-banking goals (sensu
Table 10.1) are not yet established. Future users deserve to know the history of the
sample and how protocols might affect the sample’s usefulness to them. Therefore,
best practices and standard operating procedures (SOPs) must convey information
to users so that they can access whether the sample is fit for their purpose.

Standards and best practices for genebanking must align with the sampling strat-
egy, which ultimately must align with the stated conservation target. In our opinion,
the conservation target is often not sufficiently defined for samples collected from
wild populations, and this can cause a mismatch between sampling and genebank-
ing protocols. In the example of Hevea brasiliensis, ability to produce latex for
rubber is expressed at the species level, which meant collectors needn’t search for
this useful trait among certain ecotypes or individuals. Collectors harvested an
excessively large number of seeds because they had prior failures due to the difficult
physiology — not because they wanted to capture genetic diversity (Brockway 1979).
In other words, the primary conservation target was a few specimens of the species,
and extraordinary measures to keep all 50,000 of the harvested seeds alive would
have been initially unappreciated. Therefore, in this context, stringent management
of the collection wasn’t that necessary. Eventually, though, the new rubber indus-
tries learned that greater genetic diversity from higher seed survival would have
been beneficial, and collections for genetic diversity within the species would have
required more stringent genebanking protocols. Linking this analogy to the case of
CWR within the USA, we need to know whether the agronomic traits we seek (e.g.,
Khoury et al. 2013) are expressed by all individuals of a species, by specific eco-
types, or by some rare individuals. We believe the answer to this question can help
to define the conservation target as well as the technical investment required to
maintain US collections.

Developing a set of agreed-upon standards or “best practices” (sensu ISBER
2012) for collecting and maintaining diversity invariably develops into discussions
of practicalities, impossibilities, and available resources. Experienced genebanks
know that working with wild-collected materials usually involves choosing among
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less-than-optimum options. Often, quality control of samples coming into the gene-
bank is limited by the biology of the organism. Standards, such as FAO’s Genebank
Standards (FAO 2014), can guide genebanks established for agricultural purposes
(domesticated plants and CWR), and modifications for wild plant species collected
for conservation purposes have been suggested (Hay and Probert 2013). Currently
genebanking standards for samples collected in the wild require initially high viabil-
ity and frequent viability monitoring as well as management decisions to regenerate
or recollect when viability degrades to 85% of initial viability (FAO 2014, Seed
Conservation Standards for “MSB Partnership Collections” at http://www.kew.org/
sites/default/files/MSBP%20Seed%20Conservation%20Standards_Final%20
05-02-15.pdf (visited on October 3, 2017)). These stringent guidelines are to ensure
the sample remains genetically representative of the wild population from which it
is harvested (Table 10.1, element 1) (FAO 2014). If the conservation target is not
specific to a population, is it necessary to follow these technically stringent stan-
dards? If the conservation target is specific to a population, does stringency of SOPs
increase risks of genetic erosion by premature consumption of the sample through
too much testing or too frequent or infrequent regeneration (Richards et al. 2010)?

FAO'’s standards for orthodox seeds (Chap. 4 in FAO 2014) serve as the founda-
tion for many national and international seed banks around the globe, including the
USA. These standards were developed about 7 years ago through consensus of a
large group of experts having different opinions on the intent of standards and even
the interpretation of existing storage data to guide standards. Remaining ambigui-
ties and inaccuracies were place-marked for future research and understanding, and
sufficient scientific knowledge has accumulated to call for an update, or at least
modification, to meet the needs of seed banks. Improved methods are especially
needed to address uncertainty associated with genebanking seeds when there is little
knowledge about the species or contingencies when samples are heterogeneous and
prone to genetic erosion. Current standards may also be too stringent for some con-
servation targets. Therefore, we take this opportunity to examine these standards for
orthodox seeds and suggest areas for better alignment with conservation targets for
germplasm collected from wild populations. To encourage conversation among
genebanks, we have listed some standards we feel need adjustment and have pro-
vided alternative language (Table 10.4). Standards for non-orthodox seeds in Chap.
6 of the Genebanking Standards (FAO 2014) can also be modified to reflect rapidly
developing technologies.

10.5 Sample Regeneration and the Nexus of Different
Genebanking Strategies

Genebanking seeds collected from wild populations will likely impose genetic bot-
tlenecks (Falk et al. 2006) that can be minimized by careful collection (Hoban and
Schlarbaum 2014) and curation (Richards et al. 2010) as well as large enough sam-
ple sizes and treatments informed by the biology of the sample (Hay and Probert
2013). The extent and direction of genetic shifts can have large impact on the
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usefulness of the sample, especially if the conservation target is a rare allele or an
accounting of the population at a particular site and time (e.g., Franks et al. 2008).
Plant genebanks can invoke certain activities to forestall, or at least understand, the
extent of genetic erosion in curated samples.

10.5.1 Recollect from the Same Wild Population Over Time

Complementation of in situ reserves and ex situ collections provides a reservoir for
replenishing genetic resources from wild populations (Maschinski and Haskins
2012; Guerrant et al. 2004; PCA 2015) as well as an opportunity for identifying
traits of interest and how they are distributed in a natural population (e.g., Franks
et al. 2008). Probabilities of mutation and fixation through drift are predicted to be
lower in natural populations, compared to preserved samples, according to theoreti-
cal models (Schoen and Brown 2001). Resampling natural populations also provides
the opportunity to measure the extent of genetic changes that have occurred through
natural forces and those imposed by the genebank (Thormann et al. 2016; Greene
et al. 2014). Programs to collect and resample after 15 years have been recently
instituted and include species that are widely distributed in North America (Franks
et al. 2008), some of which are priority species according to Khoury et al. (2013).

10.5.2 Regenerate Collected Seeds During Early Phases
of Genebanking

Major limitations of seed accessions collected directly from wild populations are
low seed number and poor seed quality. As the few available seeds age quickly,
situations arise where a sample is regenerated from fewer than ten individuals,
resulting in a significant bottleneck. An alternative management practice might be
to immediately regenerate a newly collected sample. This would maximize the
number of parents contributing to the regenerated sample as well as provide more
seeds from a better growth environment and so presumably longer-lived. Studies are
underway, using wild-collected germplasm of Limnanthes, Humulus, and Artemisia,
to test this hypothesis and gain greater understanding of the interaction between
storage time, seed degradation, and shifts in allelic richness for original and off-
spring populations created before storage and after notable degradation (unpub-
lished; Walters, Richards, Hill, Jenderek).

Sometimes there are simply too few individuals to regenerate a population from
seed. Under these circumstances, increasing sample size through clonal propagation
can be effective (Pence 2013). When possible, it is important to identify the absolute
number of propagules used during regeneration, as well as the number of founders
from which they came: 100 individual seeds from a single maternal plant will provide
a different regenerated population than one seed each from 100 different plants.
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10.5.3 Use Seeds and Pollen to Back Up Wild-Collected
Germplasm of Clonally Propagated Crops.

We estimate that over 30,000 accessions are maintained in living collections of the
NPGS, collectively called clonal repositories. These field collections are expensive
and vulnerable (Volk et al. 2015). Approximately one third of NPGS clonal acces-
sions are CWR (Volk and Walters 2004). With current cryopreservation technolo-
gies and resources, we estimate that it will take 50-100 years to backup these
accessions in preserved collections, which might not even begin until the higher
priority cultivars are backed up — some 100 to 200 years from now. Clearly rapid
and effective strategies to preserve these vulnerable collections are needed.

The conservation targets of CWR may be exemplars of species, snapshots of
populations, or particular genes for crop improvement, but usually not the specific
genotype of the collected plant. In most respects, CWR of clonal crops can be
treated analogously to CWR of crops in general. Backing up these collections can
be accomplished if there are seeds remaining from wild plant explorations that fit
standards for quantity and quality (FAO 2014, Chap. 4 with adjustments as sug-
gested in Table 10.4). When there are not adequate quantities of viable original seed
available, trees planted in the field can serve as parents for regenerated populations.
The diversity extant in these field collections can be captured through appropriate
parental combinations. Feasibility of maximizing diversity with fewest crossing
parents using a maximization algorithm was demonstrated (Richards et al. 2004,
2007; Volk et al. 2005), and a detailed genetic analysis shows high efficiency in
capturing alleles with only minor introgression from neighboring pollen (Volk et al.
2016). Storing pollen may also be a promising method to capture and backup
genetic diversity within collections (Hoekstra 1995; Volk 2011). Some CWR pro-
duce seeds that are not as amenable to conventional genebank storage conditions
(i.e., they are not orthodox seeds) (Table 10.3). Methods to preserve these materials
are available (Walters et al. 2013) but usually labor intensive and associated with
some mortality (Wesley-Smith et al. 2014). No shifts in genetic composition were
measured in recovering embryos of a high-priority CWR, Zizania texana, after
cryoexposure (Richards et al. 2004).

10.6 Summary

Genebanks are tasked with ensuring safe preservation of genetic resources so they
are available for future use. It is often difficult to predict the eventual use or the
timeline for use. The challenge for plant genebanks is to provide viable germplasm
that is unaffected by the genebanking experience (i.e., no genetic erosion). This
mandate is harder to achieve for natural populations collected from the wild. Some
wild-collected materials are likely to resist the extremely controlled conditions of
the genebank and will die. Others might adapt and through drift or inadvertent
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selection become more domesticated. By first identifying the causes for changes in
quality of germplasm in preserved collections and then offering strategies to slow
down, or at least quantify, the effects of the genebanking experience, wild-collected
germplasm can successfully be conserved in genebanks.
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