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Chapter 10
Genebank Conservation of Germplasm 
Collected from Wild Species

Christina Walters, Christopher M. Richards, and Gayle M. Volk

Abstract Crop genebanks are tasked with maintaining genetic resources that 
 support agriculture. They must keep a diverse array of samples alive for decades to 
centuries. Controlled conditions within the genebank are necessary to maintain qual-
ity and ensure consistency of the sample through time. Challenges for providing qual-
ity and consistency increase with samples that are mostly unstudied and highly 
heterogeneous and respond in unpredicted ways, as is the case for samples collected 
from the wild. The task of genebanking will be facilitated by better definitions of the 
“conservation target,” meaning the level of diversity that the sample is intended to 
represent. With that definition, collectors will have better knowledge of what and 
where to collect – and when to stop – and “fit-for-purpose” samples will be preserved. 
Major uncertainties persist about the life expectancy of the sample and whether gene-
banking imposes genetic shifts. Standards have been recommended by the interna-
tional community to ensure lasting quality of samples despite a large number of 
unknowns. We believe some of these standards will be counter-productive or unob-
tainable for wild-collected samples, and we have offered alternatives that stress docu-
mentation so future genebank users can predict whether a sample will suit their needs.
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10.1  The Challenge of Ex Situ Collections: Maintaining 
Wildness in Captivity

North America’s rich flora has the potential to contribute genes to make our crops 
more resilient to disease, pests, and weather extremes. The unique features of many 
North American taxa also offer the opportunity to find sources for new products and 
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better nutrition or healthier, more sustainable landscapes. Many of the plants 
described in this book are congeneric with plants commonly used in agriculture. For 
these, breeders will select the genes of interest from the wild relative and assimilate 
them into modern cultivars, leaving behind undesirable genes that contribute to a 
weedy phenotype. The breeder’s job is facilitated by low barriers to interspecific 
hybridization incumbent with wild species that are closely related to domesticated 
species (i.e., crop wild relatives, CWR). Similar concepts apply to other wild spe-
cies that may offer new products or have greater resilience in a changing land-
scape  (Urban, 2015). In these cases, modern-day domestication efforts may be 
invoked and provide an important reminder of the reservoir of services that wild 
plants provide, bringing new opportunities for economic growth, ecological sustain-
ability, or aesthetic sensibility.

It makes sense to collect North American genetic resources in genebanks and 
make them available to agriculture, conservation, engineering, and scientific 
disciplines that explore biological diversity and the environment. We envision 
collections of genetic resources as an inventory of “nature’s solutions” to tough 
environmental problems. Genebank users will sift through these collections for 
patterns of diversity or traits of interest. Therefore, genebanks must be careful not 
to “edit” nature’s work in case it masks or removes the very trait that was sought. 
This creates a real challenge because the highly controlled conditions that genebanks 
must use can create strong pressure for plastic living systems to adapt and become 
domesticated. The signature of domestication is particularly recognizable in seed 
traits (Fig. 10.1) (Schoen and Brown 2001; Meyer et al. 2012). In essence, the crop 
genebank mission is to maintain “wildness” of the stored germplasm so that 
genebank users have full responsibility for domestication efforts.

Fig. 10.1 Seed of wild 
progenitors (left) and crops 
(right) showing 
domestication traits of 
lighter color and larger 
seeds. Top to bottom are 
Pistacia, Coffea, Glycine, 
Hordeum, Zizania, and 
Sorghum. Photo taken by 
LM Hill
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The purpose of this chapter is to describe some of the challenges one might expe-
rience when capturing and maintaining diversity inherent in collections of CWR – 
whether originating in North America or elsewhere. While we appreciate that plant 
(and animal) genebanks are often rationalized in an ethical context of conserving 
natural diversity (e.g., Soulé 1991; Guerrant et al. 2004, 2014), our premise in this 
chapter is that all the goals for genebanks – economic sustainability, environmental 
services, ethical considerations, opportunity for new applications, and aesthetic 
potential – are realized through scientific approaches. Hence, we view plant gene-
banks as scientific collections and that the scientists who use these collections need 
access to well-characterized, high-quality materials that are quality-assured so that 
the genebanking experience doesn’t affect experimental outcomes (ISBER 2012; 
Walters et al. 2008; Guerrant et al. 2004, 2014). Overall requirements to gather and 
document materials that are fit-for-purpose for studies of biological diversity are 
summarized in Table 10.1.

Elements in Table 10.1 interact to contribute to the success (or failure) of gene-
banks in delivering samples of interest to users. Our focus in this chapter is element 
one and its interaction with element five. Providing viable samples (i.e., germplasm) 
differentiates a genebank from other types of plant collections such as DNA banks 
or herbaria. Arguably, ensuring viability while preventing genetic change is one of 
the greatest challenges facing genebanks today. Tools to validate how well a sample 
represents the source population and how it is maintained through time in the gene-
bank are rapidly developing (Kilian and Graner 2012).

Plant genebanks can serve as an important tool for conservation. Ex situ conser-
vation, made possible by genebanks, can complement in situ strategies that operate 
at habitat and landscape levels (Soulé 1991). Safely preserved at locations protected 
from social pressures or environmental disasters, genebanks can amass significant 
genetic diversity from a great range of taxa in a relatively small volume. Numerous 
land managers and conservation groups within the USA incorporate seed banking to 
forestall attrition of plant genetic diversity and ensure excellent sources of germ-
plasm for land restoration (Guerrant et al. 2004; Hay and Probert 2013; Haidet and 
Olwell 2015; PCA 2015). Collections of plants of conservation concern (sensu 
USFS https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprd3848211.pdf 
(visited October 3, 2017)) exist already. These can be especially valuable as a source 
of agronomic traits (Khoury et al. 2013). For example, the highly endangered plant 

Table 10.1 Requirements to ensure scientific collections are fit-for-purpose in studies of biological 
diversity

1 Maintain samples that are structurally intact (i.e., lack signs of physical damage) and are 
genetically representative of the source material (i.e., the conservation target)

2 Ensure samples are accompanied by data that describe the sample and the population from 
which it came

3 Authenticate data using accepted calibrations and standardized measurements
4 Allow access to samples and data
5a Keep samples healthy and able to be regenerated

aA special requirement for germplasm banks
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Zizania texana Hitchc., which grows in a 7 km stretch of the San Marcos River near 
San Antonio, TX, has a desired perennial growth habit and produces seeds with 
exceptionally high lysine (Kahler et al. 2014).

Germplasm may be maintained in genebanks as samples actively growing, under 
field greenhouse or tissue culture conditions, or as alive-but-not-growing samples 
maintained by highly controlled conditions. Collections of the former are often 
referred to as living, and the latter can be referred to as stored, suspended (for 
suspended animation), or preserved. Often stored germplasm and seed banks are 
synonymous, although technologies have rapidly advanced to preserve many other 
germplasm forms in addition to seeds (see next section). Living collections allow 
curators to observe traits and regenerate samples, but they also increase the risk of 
losing samples to inclement weather, pests, pathogens, social unrest, and old age. 
Genetic erosion through drift, inadvertent selection, or introgression with 
neighboring related plants can also occur while growing or regenerating a sample. 
And, regeneration is especially expensive in terms of land and labor for large plants 
that may take years to sexually mature. Risks to field collections can be partially 
mitigated by maintaining plants in vitro, but labor and suitable space to maintain 
these collections can be cost-prohibitive (Pence 2011). Preserved collections are 
less expensive and more space efficient, carry lower risk from natural or 
anthropogenic disasters, and make genetic resources readily available regardless of 
season, year, or location (Li and Pritchard 2009; Volk et  al. 2009; Pence 2011). 
Moreover, risks of genetic erosion during regeneration are mitigated when storage 
conditions are exceptional and maintain high viability with no mortality over 
extended periods (Richards et al. 2010; Walters et al. 2015a).

Plant genebanks are proliferating worldwide, and currently, about 1750 exist to 
serve agriculture, conservation, and studies of ecology, evolution, and diversity 
(Hay and Probert 2013; FAO 2014). These germplasm collections focus on a wide 
array of plant genetic resources and usually invoke a combination of living and 
stored approaches to maintain and evaluate samples. Major questions challenging 
genebank operations include forms of germplasm that can be preserved, propagated, 
and utilized, indicators for when a collection is “complete,” life expectancy during 
storage, and assessment of genetic quality and potential uses of genebanked samples.

10.2  The “Conservation Target,” Germplasm that Is “Fit- 
For- Purpose,” and Genebank Management Plan

Germplasm samples must align with genebank mission, which is defined by the 
genebank’s specific objectives or rationale. For example, the purpose of the USDA 
National Plant Germplasm System (NPGS) is to provide diversity that benefits 
research and education about agriculture. For this reason, NPGS collections focus 
on the subset of the world’s approximately 300,000 plant species that have economic 
potential. Currently the NPGS collection contains only about 16,000 species, but 
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this is represented by nearly 600,000 accessions (an accession is a sample with 
unique identifying information, such as taxon, location, and harvest details (this 
information is also called passport data)) – one of the world’s largest plant germplasm 
collections globally (https://npgsweb.ars-grin.gov/gringlobal/query/summary.aspx 
visited October 3, 2017). NPGS accessions are roughly divided into named cultivars 
(50%), genetic stocks (20%), and wild relatives or landraces of crops (30%). About 
250,000 accessions are distributed each year to users. This strongly suggests that 
interest in genebank collections among the scientific community resides in questions 
at the sub-taxonomic level.

Twenty five years ago, conservation targets for genebanks hovered at the taxo-
nomic level (Soulé 1991). For example, botanical gardens used the living genebank 
strategy and broadly collected species but just had a few exemplars for each. This 
strategy provides support for phylogenetic distinctions but is unlikely to reveal 
variation within a species (Marshall and Brown 1975; Hokanson et  al. 1998; 
Lawrence et al. 1995). Proliferation of genebanks that take advantage of advancing 
storage technologies and data management offer the opportunity for collections to 
explore a finer scale of genetic variation (Charlesworth et al. 2001; Lockwood et al. 
2007a, b; Franks et al. 2008; Walters et al. 2008; Engelmann 2011). Conservation 
targets at these finer scales include populations, ecotypes, families (e.g., maternal 
lines), and individuals with exceptional characteristics, traits, or even particular 
gene expression patterns (Khoury et al. (2015). At the writing of this chapter, we 
feel that the conservation target(s) for CWR is/are mostly undefined for most crop 
collections. Conservation targets might range from samples that provide phyloge-
netic representation to samples that confer particular traits or ecotypes (e.g., drought 
tolerance). In many instances, collections of CWR are sought to provide a general 
representation of population diversity of the species, as a contingency against out-
break of disease or pests. When the conservation target is defined below the taxo-
nomic level, stringency for maintaining genetic identity of the sample tightens 
(Table  10.1, element 1) and requires metrics to demonstrate the proficiency by 
which a genebank delivers samples that reflect the finer-scaled conservation target 
(Van de Wouw et al. 2010).

10.2.1  Germplasm

What part of the plant should be sampled for genebanking purposes? For DNA 
analyses, a fresh leaf or other non-senescent tissue is usually sufficient (Walters and 
Hanner 2006). However, for genebanks with the additional responsibility of 
providing live material (Table 10.1, element 5), the choice of propagule is a critical 
decision (Volk and Walters 2004). Within the genebank, ability to provide samples 
of high structural integrity that faithfully represent the conservation target usually 
rests on whether the material can be stored and easily distributed. Costs of processing 
and storage should figure significantly into the genebank’s business model to 
determine the volume of material that can be managed effectively. Additional 
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criteria for the collector might be timing of the collection trip in relation to plant 
phenology, remoteness of populations, permitting allowances, amenability to 
harvest, impact to the population and site, and potential for opportunistic collection 
of other species. Users may have additional preferences for the ease and required 
time for growing or propagating the material as well as the immediate availability 
of germplasm. Luckily, many plants are fairly plastic in their reproductive behavior 
and offer numerous propagule types to meet a range of requirements, preferences, 
and constraints (Table 10.2). Genebanks frequently distinguish between propagules 
that are sexually-derived (i.e., seeds and pollen) and those that arise from vegetative 
cuttings (i.e., clonally propagated). In agriculture, this distinction usually occurs 
because the conservation target is a specific genotype and the plant is highly 
heterozygous and outcrossing, for example, fruit crops (Volk and Walters 2004). 
Clonal propagation may be necessary for plants of conservation concern if there is 
reproductive failure in the wild (e.g., inbreeding, no pollinators) or if population 
sizes are inviable (Pence 2013). Since the conservation target of CWR is usually at 
either the population or gene level, stringent control of the genotype may be 
unnecessary and may actually impede broader representation of diversity within the 
population or incorporation of useful genes into a cultivar (Volk and Walters 2004).

Seeds are the most commonly used propagule for plant genebanks. Usually com-
pact, plentiful, storable, growable, and representative of maternal and pollen- donor 
lines, seeds might just be the ideal medium for plant genebanking. Indeed, over 95% 
of the USDA National Plant Germplasm System collection uses seeds as the propa-
gule form of choice. Seed-related traits such as fertility, fecundity, uniformity, ger-
mination speed, harvesting ability, and longevity  – traits that facilitate 
genebanking  – reflect traits selected during domestication (Meyer et  al. 2012) 
(Fig. 10.1). We should expect disparities in these seed traits between untamed wild 
progenitors and their derivative modern cultivars. Consequently, we should also 
expect contrasting response to genebanking from domesticated and wild-collected 
germplasm. Moreover, we can expect wild-collected germplasm to be more prone 
to genetic erosion arising from the highly artificial conditions implicit within a 
genebank. Anecdotal accounts of greater difficulties genebanking seeds from the 
wild are increasing (Hay and Probert 2013; Walters 2015a). Despite these challenges, 
conservation groups and land managers have demonstrated the feasibility of 
genebanking wild seeds and the utility of this germplasm in restoration work 
(Maschinski and Haskins 2012; Guerrant et al. 2004; Haidet and Olwell 2015). As 
collaborators in these efforts, we have gained experience working with the seeds of 
truly wild species and can describe some of the pitfalls we’ve encountered that 
reduced the efficiency and accountability of genebanking efforts. These are not 
insurmountable problems; they simply indicate the need for adjustments in 
procedures, expectations, and anticipated costs for properly genebanking populations 
from natural populations compared to established methods using crop seeds.

Depending on several factors, seeds may be a less preferred germplasm form for 
sampling CWR in natural populations. Some plant species produce seeds that are 
less suited for genebanking because viability is lost quickly when standard 
genebanking conditions (sensu FAO 2014) are used. Seeds exhibiting low survival 
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Table 10.2 Some common propagules used in plant genebanks

Propagule Advantages Disadvantages Exceptions

Seeds: Conservation 
target at population 
and/gene level

Compact
High fecundity of 
some plants make it 
possible to collect 
many individuals
Highly developed, 
low-cost, storage 
technology for 
orthodox seeds
Efficient for 
propagation and 
regeneration and 
distribution
Represents progeny 
of extant population 
(can capture many 
genotypes and many 
genes)
May present barrier 
to some diseases
Demonstrated ability 
to efficiently capture 
diversity

Heterogeneous traits in 
wild populations 
multiple harvest times 
needed, and timing can 
be unpredictable
Asynchronous 
germination can lead to 
poor stand 
establishment and drift
Long time to sexual 
maturity in perennials
Potentially unknown 
pollen source
Mating systems may 
preclude maintaining 
desired maternal traits

Non-orthodox seeds 
require cryogenic 
storage
Possible low seed 
production in wild due 
to reproductive failure 
(endangered species), 
drought, late frost, 
non-mast year, 
herbivory

Pollen: Conservation 
target at gene level

Very compact
Available for 
immediate use in 
breeding programs
Available during 
flowering
Amenable to storage
Captures diverse 
genes
Maybe the fastest, 
least labor-intensive 
way to achieve some 
form of back-up

A gamete, not an 
individual
Ephemeral
Difficult to harvest
Must make crosses to 
regenerate populations
Must be genebanked 
immediately after 
collection (short 
processing timeline)

Shoot tips: 
Conservation target 
at individual level

Compact
Captures specific 
genotype, OK as an 
exemplar of species
Amenable to in vitro 
culture
Preservation 
technologies rapidly 
developing
Clonal propagation 
reduces concern 
about genetic drift

Requires large amounts 
of quality source 
materials at correct 
phenological stage
Unexplained variation 
in response to growth 
medium among 
genotypes
Processing and growth 
are labor intensive
Many individuals 
needed to capture 
diversity of a 
heterogeneous 
population

(continued)
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under standard genebanking conditions are nominally classified as “recalcitrant” or 
“intermediate” (and collectively as “non-orthodox”) compared to counterparts that 
are considered “orthodox” (Walters 2015b; RBG 2017). In interspecies hybridiza-
tion zones, cuttings may provide more certain taxonomic identification than prog-
eny from uncertain pollen sources. At sites where there are few individuals or low 
fecundity, cuttings may provide a means to collect germplasm with lower potential 
impact to the natural population; these can then be grown-out in field collections to 
facilitate characterization and regeneration through seeds. Pollen is under- 
appreciated as a germplasm form in plants, which contrasts with animal genebanks 
in which semen, the counterpart to pollen, is the most commonly used germplasm 
form (Mazur et al. 2008). Pollen might be an effective alternative germplasm form 
that can capture genes of interest and deliver them to a breeding population when 
seeds are unavailable or have poor storage characteristics or when maintaining 
cuttings is cost-prohibitive. For example, pollen from oak trees is desiccation 
tolerant, while oak seeds tend to be recalcitrant (Franchi et  al. 2011). Pollen is 
storable (Hoekstra 1995; Volk 2011), but it lacks the longevity traits exhibited in 
seeds of the most common agronomic species (Dafni and Firmage 2000). The 
requirement for rapid processing of pollen samples makes it a less-ideal germplasm 
form when collecting from remote natural populations.

Table 10.2 (continued)

Propagule Advantages Disadvantages Exceptions

Dormant buds or 
overwintering 
vegetative structures: 
Conservation target 
at individual level

Compact
Captures specific 
genotype, OK as an 
exemplar of species
Does not require 
in vitro culture (less 
labor than shoot tips)
Preservation 
technologies are 
advancing
Clonal propagation 
reduces concern 
about genetic drift

Plants must be 
winter-adapted and in 
acclimated state
Recovered by grafting
Many individuals 
needed to capture 
diversity of a 
heterogeneous 
population

Variable responses 
within and among 
species result from 
complex bud structures

Somatic embryos and 
cell cultures: 
Conservation target 
at individual level

Compact
Captures specific 
genotype;
May be more 
amenable to 
preservation than 
non-orthodox seed
Can generate huge 
numbers of 
individuals

Successful propagation 
is highly genotype- 
specific, tends to 
narrow captured 
diversity
High risk of somaclonal 
variation
Labor intensive for 
establishing and 
processing

See also Havens et al. (2004) for complementary information
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Quality of seed set and phenology are also important factors; a plant collector 
should sample seeds in the fruiting period, vegetative tissues when plants show 
active growth flushes or cold-adapted twigs are available, and pollen if plants are 
flowering. Alternative germplasm forms, such as pollen or cuttings, may augment 
genetic diversity lost by high mortality during banking of non-orthodox seeds.

10.2.2  Sampling Strategies and Management Plans.

In addition to the type of germplasm collected, the conservation target also defines 
the sampling strategy (Guerrant et al. 2014; Hoban et al. Chap. 8, this volume) as 
well as the genebank management plan. For germplasm banks, management plans 
must be suitable to deliver viable germplasm (Table  10.1, element 5); however 
management plans can vary depending on the conservation target. When the conser-
vation target is an exemplar of phylogenetic representation, sampling probably 
occurred at one or a few convenient locations, and there probably wasn’t great effort 
expended to get an accurate genetic representation of the species or particular popu-
lations. In this case, management at the genebank should complement the sampling 
effort to ensure sufficient viability for representatives of the taxon. Conservation 
targets for agricultural-based genebanks are usually at the sub- taxonomic level, for 
example, diversity is sought for a specific trait (e.g., aluminum tolerance, salt toler-
ance, and disease resistance) or for broad population representation needed for con-
tingencies in the future. For conservation targets at trait or population levels, 
sampling usually occurred across diverse locations, and the sites and number of 
sites were selected carefully to maximize the sought diversity with fewest possible 
samples (so as to not overwhelm genebanking operations). Stringent genebank 
management plans are needed to ensure that the sample remains genetically repre-
sentative of the source population. These are discussed further in Sect. 10.4 
(Standards and Best Practices).

An important question arises about collection completeness, “completeness” 
being defined as how well the samples in the collection represent the diversity 
within the conservation target. There are few specific metrics to determine 
completeness (though see Hoban et al. Chap. 8, this volume for fuller discussion). 
It is important to note that metrics will differ among collections that are focused on 
different conservation targets such as a species representative, a specific trait or a 
contingency collection. International policy and legislation (e.g., International 
Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA-FAO 2001), 
the Convention on Biological Diversity Strategic Plan (SCBD 2010), and the Global 
Strategy for Plant Conservation (SCBD 2014)) encourage strategies for ex situ 
conservation of CWR but provide few recommendations for the conservation target 
or metrics for effectiveness of sampling or management plans. Using species 
distribution models along with validating genetic data (Hoban et al. Chap. 8, this 
volume) may provide collectors more sophisticated tools to locate and monitor 
genetic variation and estimate uncertainty about collection “completeness.”
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10.3  Genebanking Wild-Collected Germplasm

Maintaining germplasm collections within allotted resources is a top priority for 
most genebanks. As mentioned earlier, living genebanks are limited in the amount 
of genetic diversity they can represent, and living germplasm is more vulnerable to 
stressful conditions. Preserved germplasm is maintained under highly controlled 
conditions. There is an expectation that it will remain viable into the future, but that 
duration is usually poorly defined. Often genebanking duration is defined as short-, 
medium-, or long-term, which most commonly define the storage conditions 
(ambient, refrigerated, and freezer, respectively) (FAO 2014), rather than the needed 
longevity, such as over a breeder’s career, until an imminent restoration project is 
implemented, or forever. At NLGRP, we target a 100-year lifespan for most of our 
seed accessions (Walters et al. 2004).

The apparent stasis imposed by preserving germplasm often lures the naïve into 
a perception of simplicity; however the complexity of the effort is revealed by 
considering the timescale in which genebanks operate – usually decades. It is not 
generally appreciated that the impacts of seemingly minor deviations today won’t 
be evident until sometime in the future; hence, an unsuspecting genebank manager 
may inherit a “ticking time-bomb.” Genebank failures can go unexplained without 
standardized methods or stringent documentation. Herein lies a paradox: how do 
genebanks use standardized treatments for diverse materials and not encounter 
highly variable responses? And, do the variable responses impact how well the 
sample can represent the conservation target? A better understanding of time-scales 
is required to address these questions.

10.3.1  Stopping the Clock: A Primer in Preservation 
Technologies.

Understanding how to stabilize biological materials and predict the effects of time 
is a highly practical science needed for everyday problems. The food industry needs 
to provide expiration dates for product quality. Effectiveness of drugs and dosage 
response must consider the variable conditions that occur in household medicine 
cabinets. Plastic products, coverings, and packaging lose form and function over 
time. Everyone experiences the yellowing of old paper, the brittleness of aged 
rubber bands, and the failure of worn tape to hold documents together. Like all 
materials, the fundamental process for structural stability (i.e., preservation) is 
solidification (Menard 2008; Walters et al. 2010) – in the case of germplasm, this 
involves solidifying, or vitrifying, cytoplasm (i.e., forming a “glass”) without too 
much disruption to the cell structure.

Most cytoplasm vitrifies at room temperature when samples dry to between 30% 
and 50% RH.  If this level of drying can be accomplished without too much cell 
shrinkage, the cell survives; loss of more than 50% cell volume is considered lethal 
(Walters 2015b). During embryogenesis, food reserves (starch, protein, or lipid) are 
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deposited into cells, displacing water which consumed as much as 80–90% of the 
cell volume in an immature embryo and 60–80% of cell volume in a mature 
recalcitrant (i.e., desiccation-sensitive) seed. The cell volume of a mature orthodox 
seed changes very little during desiccation (less than 30%), and we believe this 
explains their extreme tolerance to desiccation as well as subsequent longevity 
(Walters 2015b). The process of drying without dying makes desiccation tolerant 
organisms, including orthodox seeds, the original material engineers. This process 
is highly regulated during embryogenesis (Righetti et al. 2015), and incompletion or 
disruption of the established program, like any material, can have dire consequences 
to the functionality and stability of the end product – in this case, seed survival 
through time (Walters et al. 2010; Walters 2015b).

Once cells are in the glassy state (at temperatures below the glass transition tem-
perature or Tg), they are relatively stable, meaning that change occurs, but over a 
much longer time scale than reactions occurring in fluid systems. In other words, 
preservation doesn’t stop the clock, it just slows it down. In solids, such as vitrified 
cytoplasm, structure and mobility become two sides of the same coin. The “structure” 
is defined by how the compressed molecules impede movement of neighboring 
molecules. Pores formed during glass formation and molecules in the glass now 
shift to fill those pores and pack more efficiently. This rearrangement defines the 
“mobility” as well as the rate of change within the glass (Menard 2008). The 
movement brings molecules slowly into closer proximity, where they interact and 
oxidize; the material becomes brittle. The time scale is often experimentally 
intractable, which is one of the reasons why seed longevity is difficult to predict or 
measure. Water is a “plasticizer” of biological glasses, meaning it promotes larger 
pore space, hence greater mobility and faster aging. If seeds are not sufficiently 
dried, molecules in the cytoplasm move faster, causing more rapid deterioration. 
Anti-plasticizers (e.g., cryoprotectants) stabilize structure by a number of 
mechanisms. There is some speculation that anti-plasticizers of unknown identity 
accumulate in long-lived seeds (Walters 2015b).

A glass is stabilized by lowering the temperature. For orthodox seeds, which 
formed glasses during drying at ambient temperatures, molecular rearrangements to 
form lethal ice crystals at sub-zero (°C) temperatures are improbable, and so longev-
ity increases progressively with lower temperature (to a point) (Walters, 2004). 
Most genebanks use freezers at −18 °C for conventional storage, because it is highly 
accessible technology, being easily achieved using a single-stage compressor. 
Freezer storage of plant germplasm began in the 1970s, and there was strong debate 
about its benefits until the early 2000s (Zheng et al. 1998; Walters 1998).

Cryogenic storage for plant germplasm became accepted in the mid-1980s and 
routine in the mid-1990s. Cryogenic storage may occur through a number of plat-
forms, and the appropriate treatment and storage temperature for plant germplasm 
relies on the vitrification temperature, Tg. Technically, all storage below 0  °C is 
cryogenic; however, here, we consider it as storage below temperatures achieved by 
conventional freezers. Mechanical freezers with a dual-stage compressor cool to 
−80 °C and may be effective for germplasm with a relatively low Tg or unstable 
glass or when lipid transitions are important to survival. Most frequently, cryogenic 
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storage is associated with the use of Dewar flasks or cryovats that are cooled by 
liquid nitrogen. Germplasm is either immersed into the fluid and stored at −196 °C 
or stored in the vapor above liquid nitrogen (between −150 and −190 °C, depending 
on distance from fluid surface and convection within the tank). A few status reports 
on longevity of cryopreserved germplasm are available (Towill et al. 2004; Walters 
et al. 2004; Volk et al. 2008; Ballesteros and Pence 2017; Pence et al. 2017).

Many plant propagules do not survive the desiccation stress required to form 
glasses at ambient temperatures (e.g., vegetative propagules and some non-orthodox 
seeds) (Table 10.2). Lowering the temperature of these non-vitrified systems poses 
high risk of lethal ice formation, which can only be avoided by forming a glass 
during the cooling process and maintaining it below Tg so that glasses don’t melt 
and ice doesn’t form during storage. Inhibiting ice formation at sub-zero (°C) 
temperatures, while maintaining cell viability, requires optimization of interacting 
treatments for moisture adjustments, additions of cryoprotectants and rapid cooling 
(Walters et al. 2013; Wesley-Smith et al. 2014).

10.3.2  Conservation Targets, Sample Quality, and Preservation 
Success

We preface this section by the infamous story of the Pará rubber tree, Hevea brasil-
iensis (Willd. ex A. Juss.) Müll. Arg., which produces a non-orthodox seed. Mostly 
told for political intrigue, the story describes how less than 1% of over 50,000 seeds 
survived to domesticate the species and initiate rubber industries in Malaysia and 
Singapore (Brockway 1979). Here, the conservation target for H. brasiliensis was 
primarily its rubber-producing trait, a species characteristic that can be captured by 
exemplars. Thus, loss of 99% of the collected seeds, as a result of poor shelf-life, 
was considered acceptable. We would likely find those losses unacceptable by 
today’s standards because our conservation targets tend to be at finer scales: genetic 
diversity representative for the whole species or for key populations or individuals. 
The salient point, for the context of this chapter, is that preservation success is 
defined by whether loss of genetic diversity during genebanking is acceptable, 
which is largely dependent on the stated conservation target.

The Hevea brasiliensis story also illustrates that it is possible to genebank even 
when seeds are not orthodox. Usually a species producing non-orthodox seeds will 
be harvested as a cutting or fresh seed and immediately grown out to form a living 
collection. As described in the previous section, it is now possible to preserve non- 
orthodox seeds and other germplasm forms that do not survive cytoplasmic 
solidification at ambient temperatures. However, this effort requires exacting 
coordination between collector and curator.

An initiative to bank wild species requires background information on how prop-
agules respond in storage. To that end, we cross-referenced prioritized CWR from 
the USA (Khoury et al. 2013) with information available from Royal Botanic Kew’s 
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Seed Information Database (SID) (RBG 2017) (Table 10.3). A limited number of 
US species were included in the SID, emphasizing the lack of information available 
for storage behavior of germplasm from CWR native to the USA. Extrapolating 
from the genus level, we believe that 75% of the 179 genera from the Inventory will 
produce orthodox seeds and that at least 8% will not produce orthodox seeds. High 
variability in seed storage response is exhibited in about 8% of congeners, and no 
records are given for 8% of the genera.

Even orthodox seeds present challenges for storage, especially with conservation 
targets at the population level, which is where most agronomic- and conservation- 
based collections are poised. The increasing number of anecdotal accounts that 
seeds collected from the wild are harder to store are not surprising (Hay and Probert 
2013; Walters 2015a; Balleseros and Pence 2017). We know that embryo 
development is critical to longevity, and metabolic pathways expressed during 
embryogenesis are keys (Righetti et  al. 2015; Walters 2015b). Seed quality is 
dependent on processes that are uncontrolled in the wild during the growing season, 
such as moisture availability, nutrition, competition, and pathogens, and it will 
decline if developmental programs are not completed (Probert et  al. 2007) or 
extended toward germination (Tarquis and Bradford 1992). Seed quality is also 
under genetic control (Clerkx et al. 2004; Schwember and Bradford 2010; Nagel 
et al. 2011; Righetti et al. 2015), with ecotypes within a species having contrasting 
storage behavior (Tweddle et al. 2003; Clerkx et al. 2004; Daws et al. 2004; Walters 
et  al. 2005; Probert et  al. 2009; Kochanek et  al. 2009; Mondoni et  al. 2014). 
Phenology, fecundity, carbon partitioning, composition, seed coverings, resistance 
to pests, and drought tolerance are all inherited traits that affect seed longevity. 
These traits are more uniform in domesticated plants but vary considerably in seeds 
from natural populations; hence, an accession of seeds collected from the wild will 
be heterogeneous, and this will result in differences on how individual seeds within 
the sample respond to genebanking conditions.

Genebanking wild-collected seeds carries inherent risks for genetic erosion: 
when the shorter-lived seeds in an accession die, seed traits will tend toward greater 
uniformity, and when seeds are regenerated, germination, flowering, and maturity 
are likely to become more synchronized. Unless extraordinary measures prevent 
these tendencies, genebanking seeds collected from the wild can be an exercise in 
domestication as a result of inadvertent selection of traits controlling preservability, 
growth habit, morphology/physiology, and reproductive capacity (e.g., Burton and 
Burton 2002; Gilligan and Frankham 2003; Harding 2004; Aubry et al. 2005; Falk 
et  al. 2006). Even though sample quality may remain high during genebanking, 
there may be an attrition of sought-after genetic diversity and an increasing tendency 
for genetic representation of the sample to veer away from the source population 
(Table 10.1, element 1).
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Table 10.3 Probable seed storage behavior for taxa native to the USA that are congeneric to 
domesticated species

Genus with a 1A, 1B, 
or 2 priority rankinga

# accessions 
in NPGS for 
genusb

# priority taxa 
for priority 
collection in the 
USAa

Predicted 
response to 
storagec

# of species within 
genus with reported 
constants for Seed 
Viability modeld

Abutilon Mill. 0 8 O 0
Acer L. 0 6 O to R 1
Actaea L. 47 1 O 0
Aegilops L. 0 5 O 0
Agave L. 20 4 O 0
Agropyron Gaertn. 0 2 No data
Agrostis L. 0 15 O 0
Allium L. 0 47 O 1
Alopecurus L. 0 4 O 0
Amaranthus L. 3353 40 O 0
Andropogon L. 0 13 O 0
Annona L. 48 1 O to U
Apios Fabr. 0 1 No data
Apium L. 0 1 O 0
Arbutus L. 0 3 O 0
Armoracia G. Gaertn. 0 1 O 0
Aronia Medik. 0 3 No data
Arrhenatherum 
P. Beauv.

0 2 O 0

Artemisia L. 0 50 O 0
Artocarpus J.R. Forst. 
and G. Forst.

0 1 R

Asimina Adans. 1024 9 U
Asparagus L. 0 3 O 0
Atriplex L. 0 37 O 0
Avena L. 0 3 O 0
Bassia All. 0 1 O 0
Beta L. 0 4 O 1
Boehmeria Jacq. 0 1 O 0
Brassica L. 0 5 O 2
Bromus L. 0 35 O 0
Camelina Crantz. 0 1 O 0
Canavalia Adans. 0 6 O 0
Capparis L. 0 2 O to R
Capsicum L. 5084 2 O 0
Carica L. 53 1 I
Carthamus L. 0 1 O 0
Carya Nutt. 4078 13 U
Castanea Mill. 15 5 R

(continued)
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Table 10.3 (continued)

Genus with a 1A, 1B, 
or 2 priority rankinga

# accessions 
in NPGS for 
genusb

# priority taxa 
for priority 
collection in the 
USAa

Predicted 
response to 
storagec

# of species within 
genus with reported 
constants for Seed 
Viability modeld

Chenopodium L. 386 51 O 0
Chrysanthemum L. 0 1 O 0
Chrysophyllum L. 0 2 R
Cinnamomum 
Schaeff.

0 1 R

Cochlearia L. 0 1 O 0
Cocos L. 0 1 R
Coix L. 0 1 O 0
Colocasia Schott. 0 1 U
Corchorus L. 0 2 O 0
Coreopsis L. 0 8 O 0
Corylus L. 803 3 I
Crataegus L. 0 70 O 0
Crotalaria L. 0 6 O 0
Croton L. 0 15 O 0
Cucumis L. 0 4 O 1
Cucurbita L. 3392 8 O 1
Cuphea P. Browne 0 5 O to I
Cynara L. 0 3 O 0
Cyperus L. 0 48 O 0
Dactylis L. 0 1 O 0
Daucus L. 1578 2 O 0
Digitaria Haller 0 20 O 0
Dioscorea L. 0 3 O 0
Diospyros L. 0 7 O to R
Diplotaxis DC. 0 2 O 0
Echinacea Moench. 0 13 O 0
Echinochloa P. Beauv. 0 15 O 0
Elymus L. 0 43 O 0
Eragrostis Wolf 0 27 O 0
Eruca Mill. 0 2 O 0
Eugenia L. 0 3 R
Fagus L. 0 2 O to I
Festuca L. 0 36 O 0
Ficus L. 0 4 O 0
Foeniculum Mill. 0 1 O 0
Fragaria L. 1907 21 O 0
Gaylussacia Kunth. 0 8 O 0
Glycyrrhiza L. 0 1 O 0

(continued)
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Table 10.3 (continued)

Genus with a 1A, 1B, 
or 2 priority rankinga

# accessions 
in NPGS for 
genusb

# priority taxa 
for priority 
collection in the 
USAa

Predicted 
response to 
storagec

# of species within 
genus with reported 
constants for Seed 
Viability modeld

Gossypium L. 10,582 3 O 1
Hedysarum L. 0 7 O 0
Helianthus L. 5158 72 O 1
Hibiscus L. 0 18 O 0
Hordeum L. 0 18 O 1
Humulus L. 626 6 O 0
Hydrastis J. Ellis 0 1 No data
Hypericum L. 0 1 O 0
Ilex L. 0 21 U
Illicium L. 0 1 R
Ipomoea L. 1251 40 O 0
Jatropha L. 0 4 O 0
Juglans L. 702 9 U
Lactuca L. 2943 11 O 1
Lathyrus L. 0 31 O 0
Lepidium L. 0 37 O 0
Lespedeza Michx. 0 11 O 0
Leymus Hochst. 0 17 O 0
Licania Aubl. 0 1 No data
Lilium L. 0 5 O 0
Limnanthes R. Br. 82 1 O 0
Linum L. 0 21 O 0
Lolium L. 0 3 O 0
Lotus L. 0 77 O 0
Lupinus L. 0 95 O 0
Malus Mill. 6203 4 O 1
Manihot Mill. 21 4 O 1
Manilkara Adans. 55 1 I to R
Medicago L. 0 10 O 0
Melilotus Mill. 0 3 O 0
Mentha L. 0 4 O 0
Mespilus L. 0 1 No data
Morus L. 0 2 O 0
Nasturtium 
W.T. Aiton

0 4 O 0

Nicotiana L. 2342 9 O 0
Olea L. 0 1 O 0
Oplopanax (Torr. and 
A.Gray) Miq.

0 1 O 0

Opuntia Mill. 286 31 O 0

(continued)
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Table 10.3 (continued)

Genus with a 1A, 1B, 
or 2 priority rankinga

# accessions 
in NPGS for 
genusb

# priority taxa 
for priority 
collection in the 
USAa

Predicted 
response to 
storagec

# of species within 
genus with reported 
constants for Seed 
Viability modeld

Oxalis L. 0 8 O 0
Pachyrhizus Rich. Ed 
DC

11 0 O 0

Panax L. 0 1 No data
Panicum L. 1731 37 O 0
Papaver L. 0 14 O 0
Parthenium L. 151 7 O 0
Paspalum L. 0 42 O 0
Passiflora L. 0 13 O to I
Pastinaca L. 0 1 O 0
Pennisetum Rich. 0 10 O 1
Penstemon Schmidel 0 39 O 0
Persea Mill. 173 3 R
Phalaris L. 0 6 O 0
Phaseolus L. 17,856 17 O 1
Phleum L. 0 2 O 0
Phlox L. 479 9 O 0
Physalis L. 0 13 O 0
Physaria (Nutt. ex 
Torr. and A. Gray) 
A. Gay

237 4 O 0

Pinus L. 0 4 O 0
Piper L. 0 1 O to I
Pistacia L. 356 1 O 0
Poa L. 0 42 O 0
Portulaca L. 0 10 O 0
Pouteria Aubl. 85 0 R
Prosopis L. 0 9 O 0
Prunus L. 2970 30 O 0
Psathyrostachys 
Nevski

0 2 No data

Pseudoroegneria 
(Nevski) Á. Löve

0 1 No data

Psidium L. 67 2 O 0
Pueraria DC. 0 3 O 0
Pyrus L. 0 1 O 0
Raphanus L. 0 1 O 0
Rhododendron L. 0 30 O 0
Ribes L. 1273 65 O 0
Rorippa Scop. 0 9 O to U

(continued)
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Table 10.3 (continued)

Genus with a 1A, 1B, 
or 2 priority rankinga

# accessions 
in NPGS for 
genusb

# priority taxa 
for priority 
collection in the 
USAa

Predicted 
response to 
storagec

# of species within 
genus with reported 
constants for Seed 
Viability modeld

Rosa L. 0 27 O 0
Rubus L. 2109 67 O 0
Rudbeckia L. 0 11 O 0
Ruellia L. 0 2 O 0
Rumex L. 0 19 O 0
Saccharum L. 0 9 O 0
Salsola L. 0 4 O 0
Sambucus L. 0 11 O 0
Satureja L. 0 1 O 0
Scorzonera L. 0 1 O 0
Setaria P. Beauv. 1081 27 O 0
Simmondsia Nutt. 324 1 O 0
Solanum L. 18,016 39 O 0
Sorbus L. 0 11 O 0
Sorghum Moench. 0 4 O 1
Stillingia Garden 0 2 No data
Syzygium R.Br. ex 
Gaertn.

0 2 R

Theobroma L. 271 0 R
Thinopyrum Á. Löve 0 2 No data
Thlaspi L. 0 1 O 0
Tragopogon L. 0 4 O 0
Triadica Lour. 0 1 O to R
Trifolium L. 0 96 O 0
Tripsacum L. 294 4 No data
Vaccinium L. 1786 39 O 0
Vanilla Mill. 0 2 No data
Vernicia Lour. 0 1 No data
Vicia L. 0 14 O 0
Vigna Savi 0 2 O 2
Vitis L. 5028 29 O 0
Zizania L. 0 6 I

Genera are from supplemental material supplied by Khoury et al. (2013). Information about seed 
responses to storage are from congeners listed in Kew’s SID (http://data.kew.org/sid/sidsearch.
html accessed 14 Feb 2017). Information on constants for the Viability Equation model come from 
a different page on the SID website (http://data.kew.org/sid/viability/ accessed October 3, 2017) 
and represent the number of species within the listed genus with reported constants (no data were 
available for specific taxa listed the Inventory)
aDefinitions of priority rankings for collection (1A, 1B, and 2) were taken from Khoury et al. 2013, 
and associated taxa were retrieved from the Inventory provided at http://www.ars-grin.gov/misc/
tax/ (accessed 6 Feb 2017)

(continued)
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10.3.3  Predicting Longevity and Detecting Aging

The intention to use genebanking to conserve genetic diversity extant in the wild 
underpins genebanking practices designed to prolong seed shelf-life. Storage 
treatments, viability monitoring frequencies, and regeneration are all based on 
assumptions about longevity. However, longevity varies tremendously among seed 
lots within a species due to uncontrolled and unknown factors of seed quality. 
Therefore, the actual longevity of a seed lot is only known after-the-fact. Genebanks 
need reliable assessments of longevity before and during storage.

Longevity might be predicted using an empirical model that is parameterized by 
constants for moisture and temperature effects for different species. The Seed 
Viability Equations (Ellis and Roberts 1980) [http://data.kew.org/sid/viability/ 
(visited October 3, 2017)] provide “ball-park” estimates of survival with time when 
conditions are not-too-cold or not-too-dry; this model becomes unreliable beyond 
the limits of inference of the data used to parameterize it (Walters 1998; Walters 
et  al. 2004). Since freezer storage is a relatively new practice (it was first used 
routinely at NLGRP in 1978), there are few data sets that actually demonstrate 
longevity in the freezer, let alone predict it reliably.

Models such as the Viability Equations allow us to “standardize” different labo-
ratory experimental conditions, so diverse species can be ranked for longevity in a 
similar context (Hay et al. 2003). Not surprisingly, information for CWR species 
from the USA (Khoury et  al. 2013) are not available. The information might be 
gleaned from behavior of congeners, but only 15 of the 135 genera believed to be 
orthodox had species coefficients listed in the SID (Table 10.3). More extensive 
comparisons of seed longevity within the genebank, and estimates of within-species 
variation for some CWR, come from early genebank results of seeds stored initially 
at 5 °C (Walters et al. 2005; Nagel and Börner 2010). Additional insights come from 
seed aging experiments conducted at warmer temperatures under high humidity 
challenges (Probert et al. 2009) or drier conditions (e.g., Fig. 10.2). There is general 
agreement that seeds from Apiaceae tend to be short-lived and seeds from 
Chenopodiaceae tend to be long-lived. Seeds from Asteraceae and Poaceae exhibit 
a wide range of longevities. In the future, we hope to adjust species-level information 
with data about habitat, location, and weather data associated with the sample.

Table 10.3 (continued)

bPresence of accessions for genera within NPGS collections were retrieved from GRIN (site) 
(Courtesy of C.K. Khoury)
cSeed storage behavior was taken from Kew’s SID and reflect behaviors listed for the majority of 
congeners with reported data (no data were available for specific taxa listed in the Inventory) 
(http://data.kew.org/sid/sidsearch.html accessed October 3, 2017), O, orthodox; I, intermediate; R, 
recalcitrant; U, unclear
dCongeners with Viability Equation information come from a different page on the SID website 
(http://data.kew.org/sid/viability/ accessed October 3, 2017) (no data were available for specific 
taxa listed the Inventory). Zero indicates no information listed for that genus; blanks indicate seeds 
with probable non-orthodox storage behavior
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Wide variation of longevity within a species makes it difficult to accurately pre-
dict how a particular sample will behave in the genebank (e.g., Walters et al. 2005). 
These differences are accommodated in the Viability Equations using an initial 
quality factor, which is dependent on a highly accurate measure of initial germina-
tion as well as an assumed high correlation between initial germination and longev-
ity. Despite model predictions, there is a poor correlation between initial germination 
and longevity (Walters et al. 2005; Nagel and Börner 2010; Ballesteros and Pence 
2017), which we attribute to quality factors that have initial but not long- term effects 
(Mead and Gray 1999) and factors that have long-term but not initial effects (Hay 
and Probert 1995; Tarquis and Bradford 1992; Walters et al. 2004).

Monitoring viability is currently the genebank’s only tool for assessing whether 
quality is maintained. For seeds, this involves a germination assay which, like the 
initial test, is a snapshot having little predictive power of future change. Statistical 
considerations related to sample size also influence how well change can be detected 
(Guerrant and Fiedler 2004; Richards et al. 2010). Accumulation of deaths in time, 
marked by changes in germination potential, is a poignant demonstration that 
responses of individuals within a sample vary during storage.

Genebanks must monitor seed viability, but without a priori information on lon-
gevity and germination, there is no guidance for monitoring interval or seed counts. 
When a priori knowledge is insufficient, frequent viability monitoring is recom-
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Fig. 10.2 Survival of a seed sample of Malus sieversii, progenitor species of domesticated apple. 
Seed moisture was adjusted at 25 °C at indicated relative humidity for a 3-week period; seeds were 
then sealed in foil laminate packages and placed at 35 °C for indicated time and then germinated. 
The increasing longevity with decreasing moisture treatment (75–13% RH) is indicative of 
orthodox behavior, and the faster aging at very low RH (1%) demonstrates a limited benefit of 
drying. This seed lot survived for about 3 years (+1000 days) at 35 °C. Extrapolating longevity to 
−15 °C using a general rule for temperature effects (doubling for every 10 °C; Q10 = 2), we can 
predict this seed lot would survive for about 100 years in a genebank (original data)
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mended (FAO 2014); this demands extensive resources and can quickly deplete the 
sample, rendering the entire exercise useless. Better processing and storage condi-
tions to prolong longevity, better methods to relate aging at higher temperatures to 
freezer conditions, and new tools to monitor nondestructively (Colville et al. 2012; 
Mira et al. 2016; Fleming et al. 2017) will aid the genebanking operation.

10.4  Standards and Best Practices

Standards or best practices communicate how state-of-art science should be imple-
mented in order to maintain quality samples for a desired timeframe (ISBER 2012). 
They also communicate to future users how samples were treated (ISBER 2012). 
Intentions of standards are quality control, predictability, and metrics for how the 
genebanking experience affected the sample relative to its conservation target. This 
is particularly important if methods to accomplish bio-banking goals (sensu 
Table 10.1) are not yet established. Future users deserve to know the history of the 
sample and how protocols might affect the sample’s usefulness to them. Therefore, 
best practices and standard operating procedures (SOPs) must convey information 
to users so that they can access whether the sample is fit for their purpose.

Standards and best practices for genebanking must align with the sampling strat-
egy, which ultimately must align with the stated conservation target. In our opinion, 
the conservation target is often not sufficiently defined for samples collected from 
wild populations, and this can cause a mismatch between sampling and genebank-
ing protocols. In the example of Hevea brasiliensis, ability to produce latex for 
rubber is expressed at the species level, which meant collectors needn’t search for 
this useful trait among certain ecotypes or individuals. Collectors harvested an 
excessively large number of seeds because they had prior failures due to the difficult 
physiology – not because they wanted to capture genetic diversity (Brockway 1979). 
In other words, the primary conservation target was a few specimens of the species, 
and extraordinary measures to keep all 50,000 of the harvested seeds alive would 
have been initially unappreciated. Therefore, in this context, stringent management 
of the collection wasn’t that necessary. Eventually, though, the new rubber indus-
tries learned that greater genetic diversity from higher seed survival would have 
been beneficial, and collections for genetic diversity within the species would have 
required more stringent genebanking protocols. Linking this analogy to the case of 
CWR within the USA, we need to know whether the agronomic traits we seek (e.g., 
Khoury et al. 2013) are expressed by all individuals of a species, by specific eco-
types, or by some rare individuals. We believe the answer to this question can help 
to define the conservation target as well as the technical investment required to 
maintain US collections.

Developing a set of agreed-upon standards or “best practices” (sensu ISBER 
2012) for collecting and maintaining diversity invariably develops into discussions 
of practicalities, impossibilities, and available resources. Experienced genebanks 
know that working with wild-collected materials usually involves choosing among 
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less-than-optimum options. Often, quality control of samples coming into the gene-
bank is limited by the biology of the organism. Standards, such as FAO’s Genebank 
Standards (FAO 2014), can guide genebanks established for agricultural purposes 
(domesticated plants and CWR), and modifications for wild plant species collected 
for conservation purposes have been suggested (Hay and Probert 2013). Currently 
genebanking standards for samples collected in the wild require initially high viabil-
ity and frequent viability monitoring as well as management decisions to regenerate 
or recollect when viability degrades to 85% of initial viability (FAO 2014, Seed 
Conservation Standards for “MSB Partnership Collections” at http://www.kew.org/
sites/default/files/MSBP%20Seed%20Conservation%20Standards_Final%20
05-02-15.pdf (visited on October 3, 2017)). These stringent guidelines are to ensure 
the sample remains genetically representative of the wild population from which it 
is harvested (Table 10.1, element 1) (FAO 2014). If the conservation target is not 
specific to a population, is it necessary to follow these technically stringent stan-
dards? If the conservation target is specific to a population, does stringency of SOPs 
increase risks of genetic erosion by premature consumption of the sample through 
too much testing or too frequent or infrequent regeneration (Richards et al. 2010)?

FAO’s standards for orthodox seeds (Chap. 4 in FAO 2014) serve as the founda-
tion for many national and international seed banks around the globe, including the 
USA. These standards were developed about 7 years ago through consensus of a 
large group of experts having different opinions on the intent of standards and even 
the interpretation of existing storage data to guide standards. Remaining ambigui-
ties and inaccuracies were place-marked for future research and understanding, and 
sufficient scientific knowledge has accumulated to call for an update, or at least 
modification, to meet the needs of seed banks. Improved methods are especially 
needed to address uncertainty associated with genebanking seeds when there is little 
knowledge about the species or contingencies when samples are heterogeneous and 
prone to genetic erosion. Current standards may also be too stringent for some con-
servation targets. Therefore, we take this opportunity to examine these standards for 
orthodox seeds and suggest areas for better alignment with conservation targets for 
germplasm collected from wild populations. To encourage conversation among 
genebanks, we have listed some standards we feel need adjustment and have pro-
vided alternative language (Table 10.4). Standards for non-orthodox seeds in Chap. 
6 of the Genebanking Standards (FAO 2014) can also be modified to reflect rapidly 
developing technologies.

10.5  Sample Regeneration and the Nexus of Different 
Genebanking Strategies

Genebanking seeds collected from wild populations will likely impose genetic bot-
tlenecks (Falk et al. 2006) that can be minimized by careful collection (Hoban and 
Schlarbaum 2014) and curation (Richards et al. 2010) as well as large enough sam-
ple sizes and treatments informed by the biology of the sample (Hay and Probert 
2013). The extent and direction of genetic shifts can have large impact on the 
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usefulness of the sample, especially if the conservation target is a rare allele or an 
accounting of the population at a particular site and time (e.g., Franks et al. 2008). 
Plant genebanks can invoke certain activities to forestall, or at least understand, the 
extent of genetic erosion in curated samples.

10.5.1  Recollect from the Same Wild Population Over Time

Complementation of in situ reserves and ex situ collections provides a reservoir for 
replenishing genetic resources from wild populations (Maschinski and Haskins 
2012; Guerrant et al. 2004; PCA 2015) as well as an opportunity for identifying 
traits of interest and how they are distributed in a natural population (e.g., Franks 
et al. 2008). Probabilities of mutation and fixation through drift are predicted to be 
lower in natural populations, compared to preserved samples, according to theoreti-
cal models (Schoen and Brown 2001). Resampling natural populations also provides 
the opportunity to measure the extent of genetic changes that have occurred through 
natural forces and those imposed by the genebank (Thormann et al. 2016; Greene 
et  al. 2014). Programs to collect and resample after 15 years have been recently 
instituted and include species that are widely distributed in North America (Franks 
et al. 2008), some of which are priority species according to Khoury et al. (2013).

10.5.2  Regenerate Collected Seeds During Early Phases 
of Genebanking

Major limitations of seed accessions collected directly from wild populations are 
low seed number and poor seed quality. As the few available seeds age quickly, 
situations arise where a sample is regenerated from fewer than ten individuals, 
resulting in a significant bottleneck. An alternative management practice might be 
to immediately regenerate a newly collected sample. This would maximize the 
number of parents contributing to the regenerated sample as well as provide more 
seeds from a better growth environment and so presumably longer-lived. Studies are 
underway, using wild-collected germplasm of Limnanthes, Humulus, and Artemisia, 
to test this hypothesis and gain greater understanding of the interaction between 
storage time, seed degradation, and shifts in allelic richness for original and off-
spring populations created before storage and after notable degradation (unpub-
lished; Walters, Richards, Hill, Jenderek).

Sometimes there are simply too few individuals to regenerate a population from 
seed. Under these circumstances, increasing sample size through clonal propagation 
can be effective (Pence 2013). When possible, it is important to identify the absolute 
number of propagules used during regeneration, as well as the number of founders 
from which they came: 100 individual seeds from a single maternal plant will provide 
a different regenerated population than one seed each from 100 different plants.
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10.5.3  Use Seeds and Pollen to Back Up Wild-Collected 
Germplasm of Clonally Propagated Crops.

We estimate that over 30,000 accessions are maintained in living collections of the 
NPGS, collectively called clonal repositories. These field collections are expensive 
and vulnerable (Volk et al. 2015). Approximately one third of NPGS clonal acces-
sions are CWR (Volk and Walters 2004). With current cryopreservation technolo-
gies and resources, we estimate that it will take 50–100  years to backup these 
accessions in preserved collections, which might not even begin until the higher 
priority cultivars are backed up – some 100 to 200 years from now. Clearly rapid 
and effective strategies to preserve these vulnerable collections are needed.

The conservation targets of CWR may be exemplars of species, snapshots of 
populations, or particular genes for crop improvement, but usually not the specific 
genotype of the collected plant. In most respects, CWR of clonal crops can be 
treated analogously to CWR of crops in general. Backing up these collections can 
be accomplished if there are seeds remaining from wild plant explorations that fit 
standards for quantity and quality (FAO 2014, Chap. 4 with adjustments as sug-
gested in Table 10.4). When there are not adequate quantities of viable original seed 
available, trees planted in the field can serve as parents for regenerated populations. 
The diversity extant in these field collections can be captured through appropriate 
parental combinations. Feasibility of maximizing diversity with fewest crossing 
parents using a maximization algorithm was demonstrated (Richards et al. 2004, 
2007; Volk et al. 2005), and a detailed genetic analysis shows high efficiency in 
capturing alleles with only minor introgression from neighboring pollen (Volk et al. 
2016). Storing pollen may also be a promising method to capture and backup 
genetic diversity within collections (Hoekstra 1995; Volk 2011). Some CWR pro-
duce seeds that are not as amenable to conventional genebank storage conditions 
(i.e., they are not orthodox seeds) (Table 10.3). Methods to preserve these materials 
are available (Walters et al. 2013) but usually labor intensive and associated with 
some mortality (Wesley-Smith et al. 2014). No shifts in genetic composition were 
measured in recovering embryos of a high-priority CWR, Zizania texana, after 
cryoexposure (Richards et al. 2004).

10.6  Summary

Genebanks are tasked with ensuring safe preservation of genetic resources so they 
are available for future use. It is often difficult to predict the eventual use or the 
timeline for use. The challenge for plant genebanks is to provide viable germplasm 
that is unaffected by the genebanking experience (i.e., no genetic erosion). This 
mandate is harder to achieve for natural populations collected from the wild. Some 
wild-collected materials are likely to resist the extremely controlled conditions of 
the genebank and will die. Others might adapt and through drift or inadvertent 

10 Genebank Conservation of Germplasm Collected from Wild Species



276

selection become more domesticated. By first identifying the causes for changes in 
quality of germplasm in preserved collections and then offering strategies to slow 
down, or at least quantify, the effects of the genebanking experience, wild-collected 
germplasm can successfully be conserved in genebanks.
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