
Chapter 5
Determination of Constitutive Parameters in Inverse Problem
Using Thermoelastic Data

Abdullah A. Alshaya and John M. Considine

Abstract A new inverse problem formulation for identification of constitutive parameters in orthotropic materials from
load-induced thermal information is developed using Levenberg-Marquardt Algorithm and Airy stress function. Inverse
methods were used to determine the constitutive properties as well as the thermoelastic calibration factors of a loaded
perforated graphite/epoxy laminated composite by processing noisy simulated thermoelastic data with an Airy stress function
in complex variables. Equilibrium, compatibility, and traction-free condition on the boundary of the circular hole are satisfied
using complex-variable formulation, conformal mapping and analytic continuation. The primary advantage of this new
formulation is the direct use of load-induced thermal data to determine the constitutive parameters, separate the stresses,
i.e., evaluate the individual stress components, including on the edge of the hole, and smooth the measured data, all from a
single test. The inverse method algorithm determined the constitutive properties with errors less than 10%.
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5.1 Introduction

The Airy stress function in complex variables was used extensively in determining stresses from measured data [1–6].
The Airy stress function can be processed with measured data using thermoelasticity (thermoelastic stress analysis, TSA)
[1, 2], photoelasticity [3], digital image correlation [4], moiré [5] or strain gages [6]. These hybrid methods do not necessitate
knowing the applied loads or external geometry. In addition, the proposed hybrid methods smooth the measured data and
determine the individual stresses throughout, including on the edge of the hole. All of the prior applications of the mapping
technique evaluated the stresses using the constitutive properties and TSA calibration factors found experimentally from
standard tensile tests whereas the present approach only evaluated these parameters using the thermoelastic data.

In general, identification of a material constitutive parameters requires the use of inverse methods (IM). Avril and Pierron
[7] reviewed several IM approaches and showed their general equivalency. Alshaya et al. [8] determined the constitutive
properties of a symmetrically sided notched graphite/epoxy composite using recorded DIC displacement data and Airy stress
function. Inverse method (IM) can be generally described as the iterative adjustments of parameters (constitutive properties)
in a numerical model (in this case, an Airy stress function scheme) to minimize the difference between an experimentally
measured quantity (thermoelastic data) and the numerically calculated quantity. In 2-D models, the degree of freedom is
(number of nodes) × 2 – (number of constitutive parameters) – 1. For homogeneous, isotropic materials, the number of
constitutive properties is two (E, ν); for homogeneous, orthotropic materials, the number of constitutive parameters are four
(E11, E22, G12, ν12). For either case, the number of degrees of freedom is large and the problem is solved by minimizing least
squares of the chosen cost function. The goal of this work is to evaluate the constitutive properties of a composite plate as
well as the thermomechanical calibration factors of TSA using IM and Airy stress function scheme. The primary difference
IM technique described here is that the specimen geometry is chosen so that an Airy stress function is known a priori
and, therefore, the problem is statically determinant. The authors are unaware of prior utilization of mapping and complex
variables to determine the constitutive properties in composites from thermoelastic data as well as the TSA calibration
factors.
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5.2 Thermoelastic Stress Analysis

Thermoelastic stress analysis (TSA) is a non-contacting, non-destructive experimental method for determining the full-field
stresses in loaded members. By cyclically loading the structure to satisfy adiabatic reversible conditions, the stresses at a
location are related to the stress-induced thermal information at that position. Under orthotropy, the thermoelastic system
signal, S∗ , is proportional to the following change in the linear combination of the normal stresses, σ 1 and σ 2, in the
directions of material symmetry

S∗ = �(K1σ1 + K2σ2) (5.1)

where K1 and K2 are the orthotropic thermomechanical coefficients and can be determined experimentally.

5.3 Relevant Equations

5.3.1 Basic Equations

For plane problems having rectilinear orthotropy and no body forces, the Airy stress function, F , can be expressed as a
summation of two arbitrary analytical functions, F1(z1) and F2(z2), of the complex variables, z1 and z2, as [9]

F = 2Re [F1 (z1) + F2 (z2)] (5.2)

such that zj = x + μjy for j = 1, 2 and Re denotes the ‘real part’ of a complex number. The complex material properties μ1
and μ2 are two distinct roots of the following characteristic equation associated with the compatibility equation

μ4 +
(

E11

G12
− 2ν12

)
μ2 + E11

E22
= 0 (5.3)

The 1- and 2-orientations are the directions of orthotropic material symmetry. The stresses in rectangular coordinates (x, y)
of the physical z (=x + iy) plane can be expressed in terms of the stress functions. By introducing the new stress functions

�(z1) = dF1 (z1)

dz1
, and � (z2) = dF2 (z2)

dz2
(5.4)

one can write the stresses as

σxx = 2Re
[
μ2

1�
′ (z1) + μ2

2�
′ (z2)

]
(5.5)

σyy = 2Re
[
�′ (z1) + � ′ (z2)

]
(5.6)

σxy = −2Re
[
μ1�

′ (z1) + μ2�
′ (z2)

]
(5.7)

where primes denote differentiation with respect to the argument. Plane problems of elasticity classically involve determining
the stress functions, �(z1) and �(z2), throughout a component and subject to the boundary conditions around its entire edge.
For a region of a component adjacent to a traction free-edge, �(z1) and �(z2) can be related to each other by the conformal
mapping and analytic continuation techniques. The stresses can then be expressed in terms of the single stress function,
�(z1). Moreover, �(z1) will be represented by a truncated power-series expansion whose unknown complex coefficients
are determined experimentally. Once �(z1) and �(z2) are fully evaluated, the individual stresses are known from Eqs. (5.5)
through (5.7). For a significantly large region of interest in a finite structure, it may also be necessary to satisfy other boundary
conditions at discrete locations.
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5.3.2 Conformal Mapping

Conformal mapping is introduced to simplify the plane problem by mapping the region Rz of a complicated physical
z = x + iy plane of a loaded structure into a region Rζ of a simpler shape in the ζ = ξ + iη plane, the latter being a
unit circle if one represents the stress function as a Laurent series, Fig. 5.1 [9–11]. The new coordinate system (and resulting
geometry) is usually chosen to aid in solving the equations and the obtained solution from this simplified domain can then
be mapped back to the original physical geometry for a valid solution.

Assume that a mapping function of the form z = ω(ζ ) exists and which maps Rζ of the simpler plane into Rz of the more
complicated physical plane. For orthotropy, auxiliary planes and their induced mapping functions are defined in terms of
ζ j = ξ + μjη, therefore zj = ωj(ζ j), for j = 1, 2. The induced conformal mapping functions are one-to-one and invertible.
The stress functions �(z1) and �(z2) can be expressed as the following analytic functions of ζ 1 and ζ 2.

�(z1) = � [ω1 (ζ1)] ≡ �(ζ1) and � (z2) = � [ω2 (ζ2)] ≡ � (ζ2) (5.8)

The derivatives of the stress functions with respect to their argument are

�′ (z1) = �′ (ζ1)
dζ1

dz1
= �′ (ζ1)

ω′
1 (ζ1)

and � ′ (z2) = � ′ (ζ2)

ω′
2 (ζ2)

(5.9)

The analyticity of the mapping functions satisfies the equilibrium and compatibility throughout region Rz of the physical
plane.

5.3.3 Traction–Free Boundaries

Using the concept of analytic continuation, the stress functions for a region Rζ adjacent to a traction-free boundary of the
unit circle of an orthotropic material are related by [12]

� (ζ2) = B�
(
1/ζ 2

) + C�(ζ2) (5.10)

where constants B and C are the following complex material properties

B = μ2 − μ1

μ2 − μ2
, C = μ2 − μ1

μ2 − μ2
(5.11)

Equation (5.10) enable the elastic state of the structure to be expressed in terms of a single stress function, �(ζ 1), the
latter which can be represented by a Laurent series expansion. Equation (5.10) assumes ability to map the physical boundary
of interest into the unit circle in the mapped plane. Reference [13] contains a more thorough derivation of Eq. (5.10).
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Fig. 5.2 Flow chart of the inverse problem procedure for orthotropic material characterization using Airy stress function scheme

5.3.4 Mapping Formulation

The objective here is to apply the approach to a region Rz adjacent to a traction-free boundary of a physical member provided
an appropriate mapping function is available to map the region Rζ into region Rz, where 
ζ , the exterior of a unit circle in
the ζ -plane, goes to the physical traction-free boundary, 
. For a region adjacent the circular notch of radius R, the following
function

zj = ωj
(
ζj

) = R

2

[(
1 − iμj

)
ζj + 1 + iμj

ζj

]
, j = 1, 2 (5.12)

maps the region of the exterior of a unit circle, Rζ , of the ζ -plane into the region Rz of the z-physical plane, Fig. 5.2. The
inverse of the induced mapping function is

ζj = ω−1
j

(
zj

) =
zj ±

√
z2
j − R2

(
1 + μ2

j

)

R
(
1 − iμj

) , j = 1, 2 (5.13)

The branch of the square root in Eq. (5.13) is chosen such that |ζ j|≥ 1 for j = 1, 2.
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5.3.5 Mapping Collocation

The single stress function can be expresses as the following finite Laurent series

�(ζ1) =
N∑

j = −N

j �= 0

Ajζ
j

1 (5.14)

where Aj = aj + ibj are the unknown complex coefficients (aj and bj are both real numbers). The j = 0 term contributes to
rigid-body motion and can be omitted. Substituting Eq. (5.14) into (5.10) yields

� (ζ2) =
N∑

j = −N

j �= 0

(
AjBζ

−j

2 + AjCζ
j

2

)
(5.15)

where Aj is the complex conjugate of Aj. For a finite, simply connected region Rζ , �(ζ 1) is a single-valued analytic function.
Orthotropic composite complex parameters are purely imaginary when the directions of material symmetry are parallel and
perpendicular to the applied load and require that only odd terms be retained in the Laurent expansions. From Eqs. (5.5)
through (5.8), the stresses can be written as

σxx = 2
N∑

j = −N,−N + 2, . . .

j �= 0

Re

{
j

[
μ2

1ζ1
j−1

ω′
1 (ζ1)

+ Cμ2
2ζ2

j−1

ω′
2 (ζ2)

]
Aj − jμ2

2B

[
ζ2

−j−1

ω′
2 (ζ2)

]
Aj

}
(5.16)

σyy = 2
N∑

j = −N,−N + 2, . . .

j �= 0

Re

{
j

[
ζ1

j−1

ω′
1 (ζ1)

+ Cζ2
j−1

ω′
2 (ζ2)

]
Aj − jB

[
ζ2

−j−1

ω′
2 (ζ2)

]
Aj

}
(5.17)

σxy = −2
N∑

j = −N,−N + 2, . . .

j �= 0

Re

{
j

[
μ1ζ1

j−1

ω′
1 (ζ1)

+ Cμ2ζ2
j−1

ω′
2 (ζ2)

]
Aj − jμ2B

[
ζ2

−j−1

ω′
2 (ζ2)

]
Aj

}
(5.18)

The only unknowns in these expressions for the stresses are the complex coefficients, Aj. The latter can be determined from
thermoelastic data. Choosing the x-axis parallel to the stiffest orientation of the composite, i.e., 1-direction of an orthotropic
composite material, the TSA signal S∗ , Eq. (5.1), can be expressed as

S∗ = K1σxx + K2σyy = 2
N∑

j = −N,−N + 2, . . .

j �= 0

Re

{[
j

(
K1μ

2
1 + K2

)
ω′

1 (ζ1)
ζ1

j−1 + j
(
K1μ

2
2 + K2

)
C

ω′
2 (ζ2)

ζ2
j−1

]
Aj

−
[

j
(
K1μ

2
2 + K2

)
B

ω′
2 (ζ2)

ζ2
−j−1

]
Aj

}
(5.19)

The only unknowns in these expressions for the stresses are the complex coefficients Aj = aj + ibj, the other quantities
involve geometry (location) or material properties. Because the summation in Eqs. (5.16) through (5.18) involves only the
odd values of N, the number of complex coefficients, Aj, is N + 1 and the number of real coefficients, aj and bj, is 2(N + 1).
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These coefficients can be determined from thermoelastic data, S∗ . It should be noted that by using conformal mapping and
analytic continuation techniques, Eqs. (5.16) through (5.18) imply that the induced stresses satisfy equilibrium and traction-
free conditions in the adjacent portion of the entire boundary. However, unlike a classical boundary-value problem where one
would typically evaluate the unknown coefficients, Aj, by satisfying the boundary and loading conditions around the entire
shape, one can use a combination of the measured stresses and/or displacements from within region Rz to determine these
unknown complex coefficients, Aj. Additional known boundary conditions may also be imposed at discrete locations. The
concept of collecting measured data in a region R∗ adjacent to an edge 
, mapping Rz into Rζ such that 
 of the physical
z-plane is mapped into the unit circle in the ζ -plane whereby the traction-free conditions on 
 are satisfied continuously,
relating the two complex stress functions to each other, plus satisfying other loading conditions discretely on the boundary
of the component beyond 
 will be referred to as the mapping-collocation technique.

The interior load induced thermal information S∗ at m different locations within region R∗ are employed. A system
of simultaneous linear equations [S]m × 2(N + 1){c}2(N + 1) × 1 = {S∗}m × 1, is formed whose matrix [S] consists of analytical
expressions of TSA signals S∗ , Eq. (5.19), vector {c} = {a−N , b−N , a−N + 2, b−N + 2, . . . , aN − 2, bN − 2, aN , bN} has 2(N + 1)
unknown real coefficients, and vector {S∗} includes the m measured TSA signal values of S∗ such that m � 2(N + 1). The
best values of the coefficients Aj, in a least-squares numerical sense, are then be determined. The variables ζ j = ξ + μjη are
related to the physical locations z = x + iy through the inverse mapping function zj = ωj(ζ j) of Eqs. (5.12) through (5.13).

5.4 Inverse Method Procedure

The particular inverse method used here is combining TSA signal produced from Airy stress function scheme with load
induced thermal information measured by means of TSA. Through an iterative process that determines new constitutive
parameters, the difference between measured TSA signals and the ones produced from Airy stress function is minimized.
The function to be minimized is

f
(
ŜAiry, P

) = ‖r‖ , where r = ŜT SA − ŜAiry (5.20)

where ŜAiry and ŜT SA are vector containing thermoelastic signals data determined by Airy stress function scheme and TSA
respectively. P is a vector containing the constitutive parameters, E1, E2, ν12, G12, K1, K2 and ‖r‖ is the norm of r. Because
Eq. (5.20) is nonlinear with respect to P, iterative procedures are appropriate methods for minimizing of f

(̂
vAiry, P

)
and

determination of P. LMA (Levenberg-Marquardt Algorithm) is commonly used because it combines the benefits of Steepest
Descent Method and Gauss-Newton Method. The LMA has the form [14]

Pi+1 = Pi −
(
J T J + λ· diag

(
J T J

))−1
J T r (5.21)

where i is iteration number, J and JT are Jacobian and Jacobian transpose, determined by backward difference, Jm,n = ∂rm
∂Pn

;
m is number of nodal displacements and n is number of constitutive parameters (6 in this work), and λ is non-negative
damping factor, adjusted each iteration step, adjusts between Steepest Descent Method and Gauss-Newton Method.

The primary disadvantage of LMA is the need for matrix inversion during each iteration. In most applications, reduced
iterations compensate for the matrix inversion. After calculating a new Pi + 1. The constitutive parameters are checked for
validity, i.e., a positive-definite stiffness matrix, and are adjusted if not valid. The validated Pi + 1 are inputs to a new analysis
and the resulting nodal displacements are used to determine fi + 1. If fi + 1 < fi, the constitutive parameters are updated,
Pi + 1 → Pi, λ is reduced by a factor of 10, and the next iterations begins. If fi + 1 > fi, then λ is incrased by a factor of 10
and Pi is not updated. As λ → 0, LMA becomes exactly the Gauss-Newton Method.

5.5 Numerical Experiment

The developed inverse hybrid-TSA approach is utilized to analyze a finite-width tensile [013/905/013] graphite/epoxy
orthotropic plate (E1 = 101 GPa, E2 = 24.9 GPa, G12 = 2.88 GPA, ν12 = 0.152 similar to the one used in Ref. [15])
with circular hole of radius R = 6.35 mm. The plate was loaded in the stiffest material direction (1-, x-direction), Fig. 5.3.
Over-all laminate dimensions are 381 mm long and 38.1 mm wide. The coordinate origin is at the center of the plate and the
response is symmetric about x- and y-axes. The thermoelastic coefficients K1 and K2 were evaluated from uniaxial tensile
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Fig. 5.3 Schematic of symmetrically-loaded finite Gr/E [013/905/013] composite plate with central circular hole

Fig. 5.4 Locations of m = 1326
data points used in the numerical
experiment
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coupons loaded in the stiff and compliant laminate orientations of the orthotropic [013/905/013] composite plate. The values
of the thermomechanical coefficients were determined to be K1 = 1.8 mU/MPa (12.38 U/psi) and K2 = 14.7 mU/MPa
(101.25 U/psi). The unit U is used to signify the raw TSA output, in uncalibrated signal units [15].

Using simulated data as input is not a representation of the real situation when employing measured data and therefore
not a sufficiently severe test of the present scheme. Pseudo-experimental errors were therefore imposed on the simulated
input according to the following equation in order to simulate the scatter and/or error typically associated with measured
information

S∗
i = (1 + ERS) S∗

i,s

where S∗
i are simulated measured-input TSA signals at location i, E is the maximum absolute random error (user specified),

RS are independent random numbers (−1 ≤ RS ≤ 1) and S∗
i,s are ‘error-free’ values of the simulated TSA signals at

the position i. The random errors of these TSA signals were independently generated at each input location. This was
accomplished by evaluating RS using a random number generation program. The maximum absolute error E at a location i
is a controlled percentage of the simulated TSA signals S∗

i,s at that location. For this numerical experiment, an absolute error
of E = 20% was used. Using these ‘noisy’ input values at the 1326 locations of Fig. 5.4, the constitutive properties were
determined and compared with the values used for the simulated measured-input displacement.

5.6 Results

5.6.1 Evaluating Constitutive Properties

The results of this numerical experiment, based on 1326 input values of S∗ distributed as shown in Fig. 5.4, were used to
evaluate 2 complex coefficients, Ak, (4 real coefficients). Table 5.1 shows the predicted constitutive properties using different
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Table 5.1 Identified constitutive parameters of orthotropic material using inverse method and Airy stress function scheme

Initial guesses Identified parameters
E1 (GPa) E2 (GPa) G12 (GPa) ν12 K1 K1 E1 (GPa) E2 (GPa) G12 (GPa) ν12 K1 K2

Case (a) 171.7 39.84 1.728 0.182 18.57 91.125 105.8 25.91 2.802 0.154 12.71 100.7
70% 60% 40% 20% 50% 10% 4.75% 4.07% 2.71% 1.36% 2.74% 0.55%

Case (b) 90.9 17.43 1.728 0.167 18.57 111.38 98.84 23.30 2.63 0.155 13.71 103.4
10% 30% 40% 10% 50% 10% 2.14% 6.43% 8.58% 2.14% 10.7% 2.14%

Case (c) 80.8 27.39 3.74 0.122 13.62 21.5 105.8 24.3 2.68 0.159 12.1 96.5
20% 10% 30% 20% 10% 20% 4.72% 2.36% 7.08% 4.72% 2.36% 4.72%

Case (d) 181.8 2.49 2.02 0.274 16.09 121.5 108.9 22.72 2.80 0.164 12.74 1.95
80 90 30 80 30 20 7.78% 8.76% 2.92% 7.78% 2.92% 1.96%

Target values of elastic constants are E1 = 101 GPa, E2 = 24.9 GPa, G12 = 2.88 GPa, ν12 = 0.152, K1 = 12.38 U/psi, K2 = 101.25 U/psi [15]

Fig. 5.5 The convergence of the
proposed inverse method for case
(a)
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2 . Regardless of the initial guesses and the noisy implemented data, the method
converges to the true value within 20 iterations. All the constitutive properties similarly converged as shown in Fig. 5.5.

5.6.2 Evaluating Stresses

Contour plots of the normalized longitudinal, transverse, and shear stresses in the region adjacent to the circular hole are
shown in Fig. 5.6. The results shown in Fig. 5.6 demonstrate an excellent agreement with the simulated data. The results
of this numerical experiment based on the discrete input values of S∗ agree virtually exactly with the FE-simulated values
throughout region Rz. The maximum error of the predicted maximum values of σ xx agrees within 1% of the maximum FE-
predicted value. The results for σ yy and σ xy are similarly excellent. The u-displacement in Fig. 5.6a is also excellent even
though it was derived from Airy stress scheme. These results illustrate the ability of the present hybrid inverse method to
provide reliable stresses even with such bad or noisy input data and without the knowledge of the constitutive properties
and TSA calibration factors. Such numerical experiments employing simulated test data from FE solution help verifying that
there are no algebraic errors and substantiate that the system is numerically robust.

5.7 Summary, Discussion and Conclusions

Stress analysis of materials can be accomplished by the determination of stress concentrations within structures. Deter-
mination such factors necessitates the need of using experimental techniques and knowing the constitutive properties of
the structure material and TSA calibration factors. Stress analysis of any structure using only TSA signal data cannot be
accomplished without prior knowledge of the constitutive properties of the within material and TSA calibration coefficients,
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Fig. 5.6 Contour plot of (a) u-displacement, (b) σ xx/σ 0, (c) σ yy/σ 0, and (d) σ xy/σ 0 from hybrid scheme (left) and ANSYS (right)

so long as an Airy Stress Function exists to describe the geometry and load configuration. A new inverse hybrid method which
processes the load-induced TSA signals with a stress function in complex variables, together with conformal mapping and
analytic continuation concepts, provides the constitutive parameters, including TSA calibration factors, and the individual
stresses on and in the neighborhood of a circular hole in a finite orthotropic composite plate, all from a single test. The
new inverse problem formulation is developed using the Airy stress function, Levenberg-Marquardt Algorithm, and TSA
signal data to determine the constitutive properties of a graphite/epoxy composite loaded in the strong/stiff direction. The
primary advantage of this new formulation is the direct use of TSA signals data to determine constitutive properties as
well as separating the stresses into three individual components. The inverse method algorithm determined the constitutive
properties with errors less than 10%.
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