
Chapter 4
Towards Quantum Theory

Abstract The point of departure is that of an inaccessible conceptual variable;
several examples are given, both macroscopic and microscopic. One focuses on a
certain e-variable, a function the inaccessible conceptual variable. Some questions
on the foundation of quantum theory are briefly addressed. Next, a maximal
symmetric setting is defined, where certain symmetry assumptions are introduced.
Spekkens’ toy model is discussed and is related to this setting. A concrete Hilbert
space is defined, and it is shown that under a certain technical condition question-
and answer pairs concerning e-variables are in one-to-one correspondence with
unit vectors of this Hilbert space. Finally, a more general symmetric setting,
corresponding to degenerate eigenvalues of the relevant operator, is discussed.

4.1 Inaccessible Conceptual Variables and Quantum Theory

The statistical literature is full of discussions on how to do inference, but contains
very little on the choice of question to do inference on in some given situation.
These different questions may be conflicting, even complementary. In the following
sections I will start by formalizing a way in which the discussion of such
complementary questions may be addressed in the extreme case where it is only
possible to raise one out of many different possible questions at a time. Each such
question will be an epistemic question ‘What is θ?’ for some e-variable θ , and I will
assume that the epistemic process ends by giving some information about θ , in the
simplest case a complete specification: θ = uk .

The concept of an epistemic process is taken to be very wide in this book. In
addition to statistical questions concerning a parameter θ , we can think of questions
like: How many sun hours will there be here tomorrow? At the outset, to address
this epistemic question will involve meteorological expertise and a lot of data from
similar situations, but tomorrow the question can be answered by just counting the
number of sun hours. Both these processes will be seen as epistemic processes.

However, when it comes to the parameters/e-variables of the epistemic processes,
I will often make more specific assumptions. I will then take generalized experi-
ments as point of departure, that is, I assume that there in each setting exist data z

and a context τ such that the assumptions (1) and (2) of Sect. 3.2 are satisfied. For
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the most part, z and τ will be implicit in the discussion, but they will be there. The
e-variables are also assumed to be associated with some actor (observer) or with a
group of communicating actors.

So far I have assumed that each conceptual variable relevant to an epistemic
process is accessible, that is, it can be estimated or given a value with arbitrary
accuracy by any experiment. In Helland (2006, 2008, 2010) several situations
with inaccessible conceptual variables were described (see also below), and it was
indicated that such situations in special cases could form a link to important parts of
quantum theory. I consider this way of thinking to be essential as a step towards
obtaining a unification of epistemic science, and also as an attempt to give an
alternative background for the—from a statistical point of view and also from the
layman’s point of view—very formal language that one finds in textbooks and
in scientific publications, both within quantum physics and in the mathematical
traditions developed from this. In the following sections a less formal approach
will be presented. Compared to my earlier publications, the discussion here will
hopefully give both a simpler and a more complete treatment of my approach
towards quantum mechanics.

In statistics, the parameter concept is connected to a hypothetical population of
items. My e-variables are intended also for situations where we have a single item or
a few items, and a human subject or a group of subjects use these variables in making
statements about the item(s). This is crucial for my epistemic interpretation of
quantummechanics, an interpretationwhich I also share with the Bayesian quantum
foundation school (QBism); see below.

The concept of e-variable will be very important in this book. Recall that it is any
conceptual variable used in the epistemic process. In the same way as a parameter
in statistics is any property for an hypothetical population, an e-variable can in
principle be any property of a population, a single unit or a group of units. Like
a parameter, it is a theoretical variable before the epistemic process, but after the
process the observer or the set of communicating observers in question have some
information about the value of the e-variable. An e-variable is a property of a unit or
a set of units. A modern view of quantum theory and particle physics, see Kuhlmann
(2013), reduces everything to properties and relations.

Quantum theory has a long history starting with the work of several eminent
physicists in the beginning of the previous century, via the formalization made by
von Neumann (1932) to the rather intense debate on quantum foundation that we see
today. Several good books on quantum theory exist, for instance Ballentine (1998).
Interpretations of the theory have been given by many authors, but it has also been
argued that no interpretation is needed; see Fuchs and Peres (2000). Several authors
have derived quantum theory from a few explicit or implicit physical assumptions;
see Hardy (2001), Chiribella et al. (2010), Masanes (2010), Fields (2011), Fivel
(2012) and Casinelli and Lahti (2016). There is also a group of quantum foundation
researchers working towards a link with Bayesian inference; see Caves et al. (2002),
Schack (2006), Timpson (2008), Fuchs (2010), Fuchs and Schack (2011) and Fuchs
et al. (2013). The use of quantum information theory in the exploration of the
foundation has also recently proved to be very useful, see Fuchs (2002). The present
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work has much in common with these schools, but I find it fruitful to maintain a
broader link to statistics, in particular to allow a broader view on statistical inference
than just the Bayesian view. In this way I will argue for a foundation which is
purely epistemological: A general approach for going from experienced data to
information about the nature behind these data. I will discuss connections to the
quantum Bayesian interpretation later; see also Chap. 1.

One very obvious case of an inaccessible conceptual variable is in connection to
counterfactual reasoning. Assume a single medical patient and let the doctors have
the choice between two mutually exclusive treatments. Let θ i be the time for this
patient until recoverywhen treatment i is used (i = 1, 2), and let φ = (θ1, θ2). Then
θ1 or θ2 can be predicted before the treatment is applied, and each of them can be
determined precisely after some time period, but φ is inaccessible, that is, there is
no procedure by which φ can be given a value with arbitrary accuracy at any time
for a single patient by any medical doctor, by any scientist or by any observer. This
can be amended by instead of one patient considering large homogeneous groups
of patients, which is done in standard statistical texts, but in practice there is a
limitation on how homogeneous a group of patients can be. And concepts may be
of interest for one single patient, too.

Here are two other examples of inaccessible conceptual variables:

• We want to measure some quantity θ1 with a very accurate apparatus which is so
fragile that it is destroyed after a single measurement. There is another quantity
θ2 which can only be found by dismantling the apparatus, and then it can not be
repaired. The vector φ = (θ1, θ2) is again inaccessible.

• Assume that two questions are to be asked to a single individual at some given
moment, and that we know that the answer will depend on the order in which
the questions are posed. Let the e-variable (θ1, θ2) be the answers when the
questions are posed in one order, and let the answers be (θ3, θ4) when the
questions are posed in the opposite order. Then the vector φ = (θ1, θ2, θ3, θ4) is
inaccessible.

Now go to the quantum mechanical situation. It is well known that the position
θ1 of a particle can be measured accurately in some experiments and its momentum
θ2 can be measured accurately in other experiments, but that the vector φ = (θ1, θ2)

is inaccessible. Similarly, the spin vector φ of a particle is inaccessible, but its
component θa in some fixed, determined direction a is possible to measure in a
suitable experiment.

In general, let φ = (θ1, θ2) be inaccessible. Then different experimental settings
are needed to measure θ1 and θ2. In the words of Niels Bohr, the variables θ1 and
θ2, which I call e-variables, are complementary. The concept of complementarity
was crucial to Bohr, and it has been crucial to the foundation of quantummechanics
even before its formal apparatus was developed. In the same way, the concept of an
inaccessible conceptual variable will be crucial in the further development of this
book.

From a statistical point of view: Inaccessible parameters also occur in linear
models of non-full rank, often used in the case of unbalanced data, cp. Searle
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(1971), and in the analysis of designed experiments where only some contrasts can
be estimated. Also, in regression models where the number of variables by necessity
is larger than the number of observations, the regression parameter is an inaccessible
parameter. In my opinion a more complete theory of statistical inference is definitely
obtained if we allow for inaccessible conceptual variables.

It is a crucial fact that the inaccessible conceptual variables φ are abstract
variables in some mathematical space and that operations such as group actions
may be made on this space. This is the case with the counterfactual example above,
where a group action such as a change of time scale can be made. See the summary
of group theory in Appendix B. In general, let φ vary in a set �. Then the group
of endomorphisms on � is the group of all possible transformations of elements
of �. This group always exists from a mathematical point of view. In my later
approach towards quantum mechanics, I will choose a fixed subgroup G of the
group of endomorphisms acting on the space� of inaccessible conceptual variables.
Important subgroups of G again, are the groups Ga , where Ga corresponds to all
transformations of the values of θa = θa(φ) in the space �a .

What is important to note, however, is that I will not regard the inaccessible
conceptual variables as physical variables, and they do not take concrete values,
so I am not developing a hidden variable theory of the kind that has been much
debated in the physical literature over the years. Also, the e-variables/ parameters
are not hidden variables, but closely connected to the epistemic process. Note that
the parameters of statistics exist only in our minds.

Historically, an example of a hidden variable theory is David Bohm’s dual wave-
particle theory, and John Bell (see Bell 1987) proved that this theory is non-local.
In fact, Bell proved much more. His famous theorem states that any realistic theory
consistent with quantum mechanics must be non-local. This result has been very
important in discussions among physicists in recent years. Bell’s theorem is proved
using what is called the Einstein-Podolski-Rosen experiment and Bell’s inequality,
concepts which will be discussed later in this book. One point for me here is that
I do not want to develop a non-local theory, that is, a theory where communication
is made by signals traveling faster than the light speed. Then I am instead forced to
take a closer look upon the concept of realism. This has also been done recently in
a very convincing way by Nisticò and Sestito (2011). In that paper they take as a
point of departure the criterion of reality as formulated be Einstein et al. (1935):

Criterion of Reality If, without in any way disturbing a system, we can predict
the value of a physical quantity, then there exists an element of physical reality
corresponding to this physical quantity.

Following arguments from Bohr’s discussion of Einstein et al. (1935) they make
the case for a strict interpretation of this criterion:

Strict Interpretation To ascribe reality to P , the measurement of an observable
whose outcome would allow for the prediction of P , must actually be performed.

Nisticò and Sestito (2011) go on and formulate an extension of quantum
correlationwhich is consistent with the strict interpretation, and using this they show
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that Bell’s argument and several related arguments in the literature fail when realism
is interpreted in this strict way. Thus the possibility turns out to be open to interpret
the non-locality theorems in the physical literature as arguments supporting the strict
criterion of reality, rather than as a violation of locality.

Since the present book is theoretical and not experimental, I will have to modify
Nisticò and Sestito’s requirement of strict interpretation slightly: ‘. . . a description
of how the measurement can be actually performed, must be given.’ It is important
that my conceptual variables are thought of as defined by one person or a group of
persons and to the experimental data that he/she/they are able to obtain.

In other papers, Bell’s theorem is interpreted as saying that quantum physics must
necessarily violate either the principle of locality or counterfactual definiteness.
Counterfactual definiteness is defined as the ability to speak with meaning of
definiteness of results of measurements that have not been performed (i.e., the ability
to assure the existence of objects, and properties of objects, even when they have
not been measured.) In this book it is crucial that I do not assume counterfactual
definiteness. All my conceptual variables are assumed to be defined by some
person(s), and these conceptual variables will not necessarily be such that results
of measurements not performed will have meaning. Here is a simple example: By
first sight, one of the statements ‘I have something on my lap’ and ‘I do not have
anything on my lap’ must be true. But if I am standing, neither of these statements
are true. The logical status of statements must depend on the context.

In my formulation, I will look upon the accessible e-variables as variables
connected with experiment which actually can be imagined to be performed by
some person. This personwill have a certain context for his experiment. It is possible
that another person, who has no communication with the first one, has a different
context and uses different e-variables to formulate his observations, therefore getting
seemingly conflicting predictions. But as soon as communication is restored, there
must be no conflict any more. To make this precise: The two persons must then
make non-conflicting predictions if they agree on a common context, and they must
agree on observed results as long as they both have observed results.

In this chapter I will assume ideal experiments, where I will not distinguish
between data and corresponding e-variables. I will come back to more realistic
experiments with data in the next chapter.

4.2 The Maximal Symmetrical Epistemic Setting

I proceed to discuss a setting from which I will show that essential parts of the
formalism of quantummechanics can be derived under certain technical conditions.
From my point of view this is nothing but a special situation with an inaccessible
conceptual variable, where I focus upon accessible sub conceptual variables and
where symmetry is introduced by natural group actions. The purpose at this
particular point is not to derive all aspects of quantum mechanics, only as much
that we see that the e-variable concept is useful also in this connection, so that we
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can obtain an interpretation where there is a link to the ordinary statistical theory of
estimation. The rest of this chapter will involve some technical discussions, and can
only be skimmed in the first reading of the book. The results of these discussions are
crucial, however: To which extent can the Hilbert space formalism be derived from
simple assumptions in the epistemic process setting? The next chapter will begin by
simply assuming this formalism.

Let in general φ be an inaccessible conceptual variable taking values in some
topological space �, and let λa = λa(φ) be accessible functions for a belonging to
some index set A. I will repeat that a conceptual variable is accessible if it in the
given context can be estimated with arbitrary accuracy by some experiment. In other
words, the λa’s are e-variables. Technically I will without further mention assume
that all functions defined on � are Borel-measurable. To begin with, I will assume
that the functions λa are maximal, and also that there is an one-to-one functional
relation between them. This is made precise below. In general, transformations of
� by group elements g may be defined.

Assumption 4.1

a) Consider the partial ordering defined by α ≤ β iff α = f (β) for some function
f . Under this partial ordering each λa(φ) is maximally accessible, that is, (1)
λa(φ) is accessible, an e-variable; (2) if λa(φ) = f (μ(φ)) for a non-invertible
function f , then μ(φ) is inaccessible.

b) For a �= b there is an invertible transformation gab such that λb(φ) =
λa(gab(φ)).

Note that the partial ordering in a) is consistent with accessibility: If β is
accessible and α = f (β), then α is accessible. Also, φ is an upper bound under this
partial ordering. The existence of maximal accessible conceptual variables follows
then from Zorn’s lemma.

To be clear, no summation convention is used in b). This assumption induces an
one-to-one functional relation between λa and λb.

In this abstract setting, the inaccessible variable φ and the accessible variables
λa(φ) can be anything. However, to begin with it might be useful to have the
following physical example in mind: Let φ be the spin or angular momentum vector
for a particle, then focus upon some direction a in space, and let λa(φ) be the spin
or angular momentum component in that direction. Let the group elements g consist
of rotations of φ in space. It is useful to think through what Assumption 4.1 means
in this setting. An important point of departure is that φ only exists in our minds. A
closer discussion of this example will be given below.

Consider in general the situation where the vector φ = (λ1, λ2) is inaccessible.
Then the statement that λ1 and λ2 are maximally accessible is equivalent to the
statement that they are complementary in Niels Bohr’s sense. The concept of
complementarity is extremely important in quantum mechanics. In Sect. 6.3 I will
discuss the concept in other contexts as well.

Below, I will often single out a particular index 0 ∈ A. Then (a), given (b), can
be formally weakened to the assumption that λ0(φ) is maximally accessible, and b)
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can be weakened to the existence for all a of an invertible transformation g0a such
that λa(φ) = λ0(g0a(φ)). Take gab = g−1

0a g0b.
In the example above with counterfactual medical treatments, we can take λa =

θ1, λb = θ2, φ = (λa, λb) and gab((λ
a, λb)) = (λb, λa). In general, when the

transformation of Assumption 4.1b) exists, it is usually easy to see how it can be
chosen.

Even though φ is inaccessible, it is possible to operate on φ with functions, in
particular group actions. The group of endomorphisms on �, all transformations of
elements φ always exists from a mathematical point of view, and one can imagine
many subgroups of this group. Some of these will now be defined.

Definition 4.8 For each a, let G̃a be the group of endomorphisms on 
a , the space
upon which λa varies. For g̃a ∈ G̃a let ga be any transformation on � for which
g̃aλa(φ) = λa(gaφ).

Note that this makes sense in the spin/ angular momentum case: For some
fixed integer or half integer number j , the possible values of λa(φ) are −j,−j +
1, . . . , j − 1, j . Start with some vector φ, and fix a plane through this vector. Then
by suitable rotations in this plane, λa(φ) will change from one of these values to
another arbitrary value. λa(φ) is fixed when this plane is rotated with fixed φ.

It is easily verified in general that

1. For fixed g̃a the transformations ga form a group.
2. For fixed a the transformations ga form a group Ga .

In simpler terms, the group Ga is the group transforming values of λa into the
same or other values of this e-variable, and the corresponding group G̃a is the group
of all transformations of these values.

The group Ga can be characterized as follows. Let a function η on � be called
permissible (Helland 2010) with respect to a group H if η(φ1) = η(φ2) implies
η(hφ1) = η(hφ2) for all h ∈ H . Then Ga is the maximal group under which λa is
permissible.

Obvious consequences of Definition 4.8 are that G̃a is transitive over
a and that
Ga is transitive over �.

Now single out a fixed index 0 ∈ A.

Definition 4.9 Let G be the group of transformations generated by G0 and the
transformations g0a , a ∈ A.

It is easily verified that Ga = g−1
0a G0g0a. Together with gab = g−1

0a g0b this
implies that G also is the group generated by Ga , a ∈ A and gab, a, b ∈ A.

Now I want to introduce the further

Assumption 4.2

a) The group G is a locally compact topological group, and satisfies weak
assumptions such that an invariant measure on � exists. (see Appendix B).

b) The group generated by products of elements of Ga,Gb, . . .; a, b, . . . ∈ A is
equal to G.
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Assumption 4.2a) is a technical one, needed in the next section. Note that
G is defined in terms of transformations upon �, so that the topology must be
introduced in terms of these transformations. Technically this can be achieved
by assuming � to be a metric space with metric d , and letting gn → g for
instance if supφd(gn(φ), g(φ)) → 0. Concerning Assumption 4.2b), it follows

from gagb . . . = g−1
0a g0g0ag

−1
0′bg

0′
g0′b, . . ., where ga ∈ Ga, gb ∈ Gb, . . . and

g0, g0
′
, . . . ∈ G0, that the group of products is contained in G. That it is equal

to G, is an assumption on the richness of the index set A or the richness of G0.
The setting described here, where Assumptions 4.1 and 4.2 are satisfied,

includes many quantummechanical situations including spins and systems of spins.
I will call it the maximal symmetrical epistemic setting. Later I will also sketch
a macroscopical situation where the assumptions of the maximal symmetrical
epistemic setting are satisfied. However, the focus in the present book will be
quantum-mechanical.

An important special case is when each 
a is discrete. Then G̃a is the group
of permutations of elements of 
a , and Ga is the group of all transformations
on � which induce permutation of 
a . In this situation I will later define a state
of the system as a focused question: “What is the value of λa?” together with a
definite answer: “λa = uk”. Under an additional technical assumption on the group
structure, I will prove that this leads to a link to the ordinary Hilbert space formalism
of quantum mechanics.

Example 4.15 Model the spin vector of a particle such as the electron by a vector
φ, an inaccessible conceptual variable. More generally, we can let φ denote the total
spin/angular momentum vector for any particle or system of particles. Let � be the
sphere corresponding to a fixed norm ‖φ‖. Let G be the group of rotations of this
vector.

Next, choose a direction a in space, and focus upon the spin component in this
direction:

ζ a = ‖φ‖cos(φ, a).

Associate ζ a(φ) with the group Fa of rigid rotations around a together with a
reflection in a plane through the origin perpendicular to a. This is the largest
subgroup of G with respect to which ζ a is a permissible subvariable. (For a
closer discussion of the concept of permissible subparameter; see Helland 2010,
Chapter 3.) The actions of the group F̃ a on ζ a are just a change of sign together
with the identity.

Finally, introduce model reduction of the kind discussed in Sect. 2.2: The orbits
of F̃ a as acting on ζ a are given as two-point sets {±c} together with the single point
0. A maximal model reduction is to one such orbit. Later I will give arguments to
the effect that we want to reduce to the a set of orbits indexed by an integer or
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half-integer j , and that we will let this reduced set of orbits be

−j,−j + 1, . . . , j − 1, j,

this together with ‖φ‖2 = j (j + 1).
Now fix j and let λa be the conceptual variable ζ a reduced to this set of

orbits of F̃ a . This is assumed to be the maximal accessible e-variable. Define
the transformations gab, and define the groups G̃a , Ga and G as in the maximal
epistemic setting. It is easy to see that the group G is as before. The group G̃a is
the group of permutations of values of λa . The group elements ga can be seen as
products of two kinds of elements. The first kinds are rotations around a. The second
kinds are suitable rotations of each φ in a plane through a and φ.

We can prove that the general assumptions of this section are satisfied. In the
case j = 0, where we must define G = G0 to be the trivial group. Otherwise
G is the group of all rotations of vectors φ, is obviously compact and satisfying
Assumption 4.2a). Here an argument leading to the proof of Assumption 4.2b):
Given a and b, a transformation gab sending λa(φ) onto λb(φ) can be obtained by
a reflection in a plane P perpendicular to a plane containing the two vectors a and
b, where P contains the mid-line between a and b. More precisely: Let d be the
orthogonal to the midline between a and b in the plane containing the two vectors,
let λd be the spin component along d and let gd be the group element changing sign
of λd . Then gab = gd .

The case with one orbit and c = 1/2 corresponds to electrons and other spin 1/2
particles. The direction defined by a = 0 is some arbitrary fixed direction.

In general, the assumptions of this section may be motivated in a similar manner:
First, a conceptual variable ζ a = ζ a(φ) is introduced for each a through a chosen
focusing, and a suitable group acting on ζ a is defined. Then λa is defined as a
reduction of ζ a to a set of orbits of this group. The essence of Assumption 4.1 is
that it is this λa which is maximally accessible. This may be regarded as the quantum
hypothesis.

This reasoning works for variables like spin and angular momentum, in general
for many discrete e-variables. For theoretical position ξ and theoretical momentum
π of a particle, let φ = (ξ, π). Then one can again introduce groups and group
elements, and the assumptions of this section are except Assumption 4.2b) are
satisfied for this case. A special discussion of continuous e-variables is carried out
in Sect. 5.2 below.

4.3 The Toy Model of Spekkens

Nearly since its introduction in the beginning of the last century, discussions of
the interpretation of quantum mechanics have taken place. In particular, researchers
have disagreed on how the quantum state should be interpreted. Should it be seen
as a real state of nature (the ontic view) or does it only represent our knowledge of
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some focused aspect of nature (the epistemic view)? In my opinion, some synthesis
here should be sought, but one should start with an observer and the epistemic
process connected to this observer in his particular context. This will give an easy
interpretation of the collapse of the wave packet during measurement, and it will
also solve paradoxes like that of Schrödinger’s cat and that of Wigner’s friend.
These aspects will be further discussed later in the book after Born’s formula and the
Schrödinger equation have been introduced and motivated from my point of view.
The ontic interpretation arises in my world view from a hypothetical situation where
all potential observers communicate and arrive at a common context.

As it stands now, however, the quantum community is divided. Recently there
has appeared in the literature certain no-go theorems which seem to support
the ontic view. All these theorems are deeply founded, but they rely on certain
assumptions. Under these assumptions they show that a pure epistemic view leads to
inconsistencies. In particular Pusey et al. (2012) take as a point of departure a certain
assumption of separability. This is weakened by Hall (2011) to an assumption of
compatibility. Hardy (2012) introduced a different assumption of ontic indifference.
The common denominator of these papers is that they show that under the specific
assumptions the probability distribution over the ontic states corresponding to
different quantum states cannot overlap. See also my discussion of the PBR theorem
in Sect. 1.4. A crucial assumption is that the properties of the system can be defined
by some state concept.

The toy model of Spekkens (2007) is based on a principle that restricts the
amount of knowledge an observer can have about reality. A wide variety of quantum
phenomena were found to have analogues within this toy theory, and this can be
taken as an argument in favour of the epistemic view of quantum states.

In the simplest version of the toy model, we have one elementary system. This
system can be in one of the four ontic states 1, 2, 3 or 4, but our knowledge of this is
in principle restricted. We can only know one of the following six epistemic states:
(a) The ontic state is 1 or 2; (b) it is 3 or 4; (c) it is 1 or 3; (d) it is 2 or 4; (e) it is 1
or 4; or (f) it is 2 or 3. These are the epistemic states of maximal knowledge.

The ontic base of the state (a) is {1, 2} etc.. If the intersection of the ontic bases
of a pair of epistemic is empty, then those states are said to be disjoint. Thus (a)
and (b) are disjoint, (c) and (d) are disjoint, and (e) and (f) are disjoint. There is a
correspondence with certain basis vectors of the two-dimensional complex Hilbert
space, where disjointness corresponds to orthogonality in the Hilbert space. For
those who knows the Bloch sphere representation of that Hilbert space, the pairs
of disjoint epistemic states can be pictured on the intersections of three orthogonal
axes with that sphere.

Transformations of the epistemic states correspond to permutations of the
ontic state. Thus the underlying group is the permutation group of four symbols,
which has 24 elements. Each permutation induces a map between the epistemic
states. In the Hilbert space correspondence, the even permutations correspond
to unitary transformations, and the odd permutations correspond to anti-unitary
transformations.
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In my terminology, the system can be described by an inaccessible conceptual
variable φ which is a vector whose three components are accessible e-variables:

φ = (λa, λc, λe).

Here λi is the indicator of the event that the epistemic state is i. Each λi takes the
value 1 or 0. If λa = 1, say, the ontic state is either 1 or 2; if λa = 0, it is either 3 or
4. A complete knowledge of φ is equivalent to a knowledge of the ontic state, which
is impossible in the Spekkens toy model.

Each λi is a maximal accessible e-variable. The event λa = 1 is taken into the
event λa = 0 by the even permutation ga = (13)(24), written in cycle notation.
This together with the identity generates the group Ga . Similarly Gc and Ge are
generated. The e-variable λc is taken into the e-variable λa by the even permutation
gca = (123)(4). This permutation can also be written as gaf = gbe = gdb = gf c =
ged if obvious new e-variables are introduced. Similarly, the group elements gac,
gae, gea , gce and gec are even permutations. The group G is the group of all even
permutations. All assumptions of the maximal symmetrical epistemic setting are
satisfied except Assumption 4.2b). Thus the Spekkens toy model can not be seen as
a special case of the maximal symmetrical epistemic setting, but the simplest case
of the toy model is closely related to this.

The next simplest case of the Spekkens toy model consists of two elementary
systems. The main requirement from one system carries over: If one has maximal
knowledge, then for every system, at every time, the amount of knowledge one
possesses about the ontic state of the system at that time must equal the amount
of knowledge one lacks. The following discussion is very brief and presupposes a
knowledge of Spekkens (2007). There are sixteen ontic states: 1 · 1, 1 · 2, . . . , 4 · 4.
It turns out that the valid epistemic states are of two types: The uncorrelated states
exemplified by (a) 1 · 1, 1 · 2, 2 · 1 or 2 · 2, and the correlated states exemplified by
(e) 1 · 1, 2 · 2, 3 · 3 or 4 · 4.

Turning to my terminology, the state (a) can be represented by the event λa = 1,
where λa is the indicator of the epistemic state (a), an e-variable. The event λa =
0 does not represent an epistemic state of maximal knowledge, however, so the
following trick is called for: Let λ1 = (λa, λb, λc, λd), where λa is the indicator of
the epistemic state (a), λb is the indicator of the epistemic state (b): 3 · 1, 4 · 1, 3 · 2
or 4 ·2, λc is the indicator of the epistemic state 1 ·3, 1 ·4, 2 ·3 or 2 ·4, and λd is the
indicator of the epistemic state 3 · 3, 3 · 4, 4 · 3 or 4 · 4. Allow λ1 to take the values
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) or (0, 0, 0, 1). Then λ1 is a maximal e-variable,
and the events λ1 = uk are all valid epistemic states in the Spekkens toy model. A
similar trick can be made for the correlated epistemic states.

In Spekkens (2007) transformations between the epistemic states are discussed
in terms of permutations between the ontic states. It turns out that there are
permutations that take each of λa, λb, λc, λd and λe (with an obvious definition
of the last one) into each single other of this set. The transformations taking λ1

into similar other maximal e-variable are transformations of four-vectors whose
components are transformed by permutations. The transformations g1 etc. can be
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written in a similar form, though they at the outset only are given by permutations
of the components of the four-vector. Thus the groupG is a subgroup of the group of
transformations of four-vectorswhose components are transformed by permutations
of 16 elements, that is, a finite group. The assumptions of the maximal symmetrical
epistemic setting are satisfied except Assumption 4.2b).

The fact that the Spekkens toy model has a valid epistemic interpretation and
is strongly related to many phenomena of quantum mechanics, together with the
fact that there is a link between this model and a modification of the maximal
symmetrical epistemic setting, gives a strong indication that eventual logical
difficulties in the interpretation of the maximal symmetrical epistemic setting and
relating it to quantum mechanics, can be overcome. In the next section the formal
apparatus of quantum mechanics will be reproduced from the maximal symmetrical
epistemic setting under a certain technical condition.

4.4 The Hilbert Space Formulation

Take again as a point of departure the maximal symmetrical epistemic setting. The
crucial step now towards the formalism of quantum mechanics is to define a Hilbert
space, that is, a complete inner product space which serves as a state space in
the formalism (see Appendix B). In ordinary quantum mechanics all observables
are identified with operators on such a Hilbert space and every state is identified
with a unit vector in the Hilbert space or more generally with a ray proportional
to a unit vector. There is a large abstract general theory on this, well known to
physicists, but largely unknown to statisticians and many other professionals. My
goal here is to rederive this theory from the assumptions of the maximal symmetrical
epistemic setting and possibly further assumptions. This may serve as introducing
other scientists to the theory. The section is somewhat technical. It can be skimmed
at the first reading, but it is in some sense essential for what I feel should be a way
to understand ordinary quantum theory. However, it must only be seen as one out
of several possible approaches towards the Hilbert space formalism. Several deep
theories with a similar purpose exist; see references in Sect. 4.1.

4.4.1 Quantum Reconstruction

Fix 0 ∈ A, and let H be the Hilbert space

H = {f ∈ L2(�, ρ) : f (φ) = f̃ (λ0(φ)) for some f̃ }.

Here L2(�, ρ) is the set of all complex functions f on � such that
∫
�

|f (φ)|2dρ <

∞. Two functions f1 and f2 are identified if
∫
� |f1(φ) − f2(φ)|2dρ = 0. From

now on I will assume that the λa’s are discrete. Then H is separable. If the λa’s
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take d different values, H is d-dimensional. Since all separable Hilbert spaces are
isomorphic, it is enough to arrive at the quantum formulation on this H .

Lemma 4.1 The values ua
k of λa can always be arranged such that ua

k = uk is the
same for each a (k = 1, 2, . . .).

Proof By Assumption 4.1

{φ : λb = ub
k} = {φ : λa(gabφ) = ub

k} = gba({φ : λa(φ) = ub
k}).

The sets in brackets on the lefthand side here are disjoint with union�. But then the
sets in brackets on the righthand side are disjoint with union gab(�) = �, and this
implies that {ub

k} gives all possible values of λa .

Now I am able to formulate the main result of this section. In the next subsection,
I will prove this result under an additional technical assumption. An open question
is to find exactly the conditions under which this theorem is valid.

Theorem 4.1

a) For every a, uk and associated with every indicator function I (λa(φ) = uk)

there is a vector |a; k〉 ∈ H . The mapping I (λa(φ) = uk) → |a; k〉 is invertible
in the sense that |a; k〉 �= |b; j 〉 for all a, b, j, k except in the trivial case a =
b, j = k. This inequality is interpreted to mean that there is no phase factor eiγ

such that |a; k〉 = eiγ |b; j 〉.
b) For each a the vectors |a; k〉 form an orthonormal basis for H .

This gives us the possibility to interpret the vectors |a; k〉, corresponding to the
indicators I (λa(φ) = uk), as follows:

(1) The question ‘What is the value of λa?’ has been focused on.
(2) Through an epistemic process we have obtained the answer ‘λa = uk’.

When a ket vector is defined, a corresponding bra vector can be defined. The
operator corresponding to λa can be defined as

Aa =
∑

k

uk|a; k〉〈a; k|.

In the maximal setting this has non-degenerate eigenvalues.

4.4.2 Proof Under an Extra Assumption

Let U be the left regular representation of G on L2(�, ρ): U(g)f (φ) = f (g−1φ).
It is well known that this is a unitary representation. We will seek a corresponding
representation of G on the smaller space H .
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In the following, recall that upper indices as in ga indicate variables related to a
particular λa , here a group element of Ga . Also recall that 0 is a fixed index in A.
Lower indices as in gab has to do with the relation between two different λa and λb .

Proposition 4.2

a) A (multivalued) representation V of G on the Hilbert space H can always be
found.

b) There is an extended group G′ such that V is a univalued representation of G′
on H .

c) There is a homomorphism G′ → G0 such that V (g′) = U(g0). If g′ �= e′ in G′,
then g0 �= e in G0.

Proof
a) For each a and for ga ∈ Ga define V (ga) = U(g0a)U(ga)U(ga0). Then

V (ga) is an operator on H , since it is equal to U(g0ag
aga0), and g0ag

aga0 ∈ G0 =
g0aG

aga0. For a product gagbgc with ga ∈ Ga , gb ∈ Gb and gc ∈ Gc we define
V (gagbgc) = V (ga)V (gb)V (gc), and similarly for all elements of G that can be
written as a finite product of elements from different subgroups.

Let now g and h be any two elements in G such that g can be written as a product
of elements from Ga,Gb and Gc, and similarly h (the proof is similar for other
cases.) It follows that V (gh) = V (g)V (h) on these elements, since the last factor
of g and the first factor of h either must belong to the same subgroup or to different
subgroups; in both cases the product can be defined by the definition of the previous
paragraph. In this way we see that V is a representation on the set of finite products,
and since these generate G by Assumption 4.2b) it is a representation of G.

Since different representations of g as a product may give different solutions, we
have to include the possibility that V may be multivalued.

b) Assume as in (a) that we have a multivalued representation V of G. Define
a larger group G′ as follows: If gagbgc = gdgegf , say, with gk ∈ Gk for
all k, we define g′

1 = gagbgc and g′
2 = gdgegf . Let G′ be the collection

of all such new elements that can be written as a formal product of elements
gk ∈ Gk . The product is defined in the natural way, and the inverse by for example
(gagbgc)−1 = (gc)−1(gb)−1(ga)−1. By Assumption 4.2b), the group G′ generated
by this construction must be at least as large as G. It is clear from the proof of
a) that V also is a representation of the larger group G′ on H , now a one-valued
representation.

c) Consider the case where g′ = gagbgc with gk ∈ Gk. Then by the proof of a):

V (g′) = U(g0a)U(ga)U(ga0)U(g0b)U(gb)U(gb0)U(g0c)U(gc)U(gc0)

= U(g0ag
aga0g0bg

bgb0g0cg
cgc0) = U(g0),

where g0 ∈ G0. The group element g0 is unique since the decomposition g′ =
gagbgc is unique for g′ ∈ G′. The proof is similar for other decompositions. By the
construction, the mapping g′ → g0 is a homomorphism.
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Assume now that g0 = e and g′ �= e′. Since U(g0)f̃ (λ0(φ)) =
f̃ (λ0((g0)−1(φ))), it follows from g0 = e that U(g0) = I on H . But then from
what has been just proved, V (g′) = I , and since V is a univariate representation, it
follows that g′ = e′, contrary to the assumption.

Assumption 4.3

a) U is an irreducible representation of every cyclic subgroup of the group G̃0 on
H other than the trivial group, and the dimension d of H is larger or equal to 2.

b) The representation V of the whole group G is really multivalued on the elements
gab.

c) When finding this basis, one can choose f̃k and f̃j in such a way that there exists
a λ1 such that f̃k(g̃

0λ1) �= f̃j (λ1) for all g̃0εG̃0 in the sense that the two sides
can not be made equal by introducing a phase factor.

Now choose an orthonormal basis for H : f1, . . . , fd where fk(φ) = f̃k(λ
0(φ)),

and where the interpretation of fk is that λ0 = uk . Write |0; k〉 = fk(φ).

Lemma 4.2 For every k and every g0 ∈ G0, g0 �= e, we have U(g0)fk �= fk in
the sense that the two functions can not be made equal by multiplying with a phase
factor.

Proof Let d ≥ 2. Assume that there exist γ , k and g0 �= e such that U(g0)fk =
eiγ fk . Then eiγ /2fk span a one-dimensional subspace of H which is invariant under
the cyclic group generated by g0, contrary to the assumption of irreducibility.

Introduce now the assumption that the representation V really is multivalued. Let
g′
0a1 and g′

0a2 be two different elements of the group G′, both corresponding to g0a

of G. Define g′
a = (g′

0a1)
−1g′

0a2. Then g′
a �= e′ in G′. By the homomorphism of

Proposition 4.2c), let g′
a → g0a . Then g0a �= e in G0. Now define

|a; k〉 = f̃k(λ
0(g0aφ)) = U((g0a)−1)|0; k〉.

Proof of Theorem 4.1 Under Assumption 4.3 By Lemma 4.2, |a; k〉 �= |0; k〉. Here
and below, inequality of state vectors is interpreted to mean that they can not be
made equal by introducing a phase factor.

Next let j �= k. I will prove that the basis functions f1, . . . , fd can be chosen so
that |a; k〉 �= |0; j 〉 for all a. To this end, choose f̃j and f̃k in such a way that there

exists an λ
j
0 such that f̃k(g̃

0λ
j
0) �= f̃j (λ

j
0) for all g̃0εG̃0. Then for any fixed g, f̃kg

defined by f̃kg(λ0(φ)) = f̃k(λ
0(gφ)) is different from f̃j , and |a; k〉 �= |0; j 〉 for

all a.
The proof that |a; k〉 �= |b; j 〉 (except in the trivial case a = b, k = j ) holds

under Assumption 4.3, is a straightforward extension.
The vectors |0; k〉 are chosen to be an orthonormal basis for H . Since |a; k〉 =

U |0; k〉 for some unitary U , it follows that the vectors |a; k〉 form an orthonormal
basis.
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Several authors have approached the foundation of quantum mechanics through
group representation theory, one example being Mirman (1995), another Smilga
(2017).

Assumption 4.3 is not satisfied for the spin/ angular momentum case. For this
case the group G̃0 is too small to generate all states |a; k〉 from |0; k〉. I will show
directly in the next chapter that Theorem 4.1 holds in general for the case of spin/
angular momentum (Corollary 5.1 of Sect. 5.2). But this also means that it must be
possible to weaken Assumption 4.3) in some way.

Theorem 4.1, saying that the question-and-answer pairs can be put in one-to-one
correspondence with some states in a concrete Hilbert space, must hold under a set
of assumptions including the spin/ angular momentum case.

In the qubit case (Hilbert space dimension 2; answers to questions: −1 and +1),
the question-and-answer pairs can be put in one-to-one correspondencewith all state
vectors in the Hilbert space. (Sect. 5.1.1 and Proposition 5.4 of Sect. 5.2.)

4.4.3 The Interpretation Argument

In the previous subsections I started with a setting where questions-and-answers
could be defined, and arrived at Hilbert space unit vectors. Now start by assuming
the Hilbert space formulation, and let |ψ〉 be an arbitrary unit vector in the Hilbert
space H . This vector is of course the eigenvector of many operators in H . Assume
that one can find such an operator A such that

1. A is physically meaningful, i.e., can be associated by an e-variable λ.
2. |ψ〉 is an eigenvector corresponding to a non-degenerate eigenvalue u of A.

Then |ψ〉 can be interpreted as a question ‘What is the value of λ?’ together with
a definite answer ‘λ = u’. The non-degenerate eigenvalue case corresponds to the
maximal epistemic setting.

4.5 The General Symmetrical Epistemic Setting

Go back to the definition of the maximal symmetrical epistemic setting. Let again
φ be the inaccessible conceptual variable and let λa = λa(φ) for a ∈ A be
the maximal accessible conceptual variables satisfying Assumption 4.1. Let the
corresponding induced groups Ga and G satisfy Assumptions 4.2 and 4.3 (or some
weaker assumption which can replace Assumption 4.3). Finally, let ta for each a be
an arbitrary function on the range of λa , and assume that we instead of focusing on
λa , focus on θa = ta(λa) for each a ∈ A. I will call this the symmetrical epistemic
setting; the e-variables θa are no longer maximal.

Let the Hilbert space be as in Sect. 4.4.1 with an orthonormal basis redefined to
be {|a′; j 〉} for each a. Let {uj } be the values of λa , and let ua

k be the values of
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θa = ta(λa). Define Ca
k = {j : ta(uj ) = ua

k}, let V a
k be the space spanned by

{|a′; j 〉; j ∈ Ca
k } and let �a

k be the projection upon V a
k . Finally, let |a; k〉 be any

unit vector in V a
k .

Interpretation of the State Vector |a; k〉 (1) The question: ‘What is the value of
θa?’ has been posed. (2) We have obtained the answer θa = ua

k . Both the question
and the answer are contained in the state vector.

From this we may define the operator connected to the e-variable θa:

Aa =
∑

k

ua
kΠ

a
k =

∑

j

ta(uj )|a′; j 〉〈a′; j |. (4.1)

Then Aa is no longer necessarily an operator with distinct eigenvalues, but Aa is
still Hermitian: Aa† = Aa .

Interpretation of the Operator Aa This gives all possible states and all possible
values corresponding to the accessible e-variable θa .

The general decomposition Aa = ∑
k ua

k�
a
k will be important in Sect. 5.4 and

Sect. 5.7, and will be further discussed there.
The projectors |a; k〉〈a; k| and hence the ket vectors |a; k〉 are no longer uniquely

determined by Aa: They can be transformed arbitrarily by unitary transformations
in each space corresponding to one eigenvalue. As long as the focus is only on θa ,
or Aa , I will redefine |a; k〉 by allowing it to be subject to such transformations.
These transformed eigenvectors all still correspond to the same eigenvalue, that is,
the same observed value of θa and they give the same operators Aa . In particular,
in the maximal symmetric epistemic setting I will allow an arbitrary constant phase
factor in the definition of the |a; k〉’s.

A more precise state interpretation is then to let the whole vector space of such
transformed vectors |a; k〉 represent a question-and-answer pair. This will be gone
more thoroughly into in Sect. 5.7.3.

As an example of the general construction, assume that λa is a vector: λa =
(θa1, . . . , θam). The different θ ’s may be connected to different subsystems. This
example is highly relevant when considering several observers. One single observer
may have access to just a few subsystems. In addition he has his own context. From
this context he may define his accessible and inaccessible conceptual variables.
In the same way a group of observers may through verbal communication arrive
at a common context, and from this context one may define their accessible and
inaccessible conceptual variables. Assume that these observers together observe a
particular physical system.

Assumption 4.4 For a given physical system at some particular time one can imag-
ine an observer or a group of communicating observers for which the assumptions of
the symmetrical epistemic setting are satisfied. In some cases all possible observers
agree on the physical observations, and these then describe an objective property of
the system.
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So far I have kept the same groupsGa andGwhen going from λa to θa = ta(λa),
that is from the maximal symmetrical epistemic setting to the general symmetrical
epistemic setting. This implies that the (large) Hilbert space will be the same. A
special case occurs if ta is a reduction to an orbit of Ga . This is the kind of model
reduction discussed in Sect. 2.2. Then the construction of the previous sections can
also be carried with a smaller group action acting just upon an orbit, resulting then
in a smaller Hilbert space. In the example λa = (θa1, . . . , θam). it may be relevant
to consider one Hilbert space for each subsystem. Then one can write a state vectors
corresponding to λa as

|a; k〉 = |a1; k1〉 ⊗ . . . ⊗ |am; km〉

in an obvious notation, where a = (a1, . . . , am) and k = (k1, . . . , km). The
large Hilbert space is however the correct space to use when the whole system is
considered. In this Hilbert space the subsystem ket vectors will have degenerate
eigenvalues and correspond to the general symmetrical epistemic setting.

At any time we can also imagine non-communicating observers. Then for each
particular observers the assumptions of the general symmetrical setting may be
assumed to apply. Particular state vectors in each observer’s Hilbert space may be
linear combinations of primitive state vectors in the form of a tensor product. These
are called entangled states when they can not be reduced to a primitive form, and
play an important role in many areas of quantum physics.

Assumption 4.4 is assumed for a large class of physical systems. Through the
imagined observers the constructions of this chapter may be carried out, and for
each case a Hilbert space may e constructed.

This is the connection between my theory and the formal quantum theory defined
in textbooks. I will claim that the theory defined by having the maximal symmetrical
epistemic setting as a point of departure is from one point of viewmore intuitive than
the ordinary formal theory.

References

Ballentine, L. E. (1998). Quantum mechanics. A modern development. Singapore: World Scientific.
Bell, J. S. (1987). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge

University Press.
Casinelli, G., & Lahti, P. (2016). An axiomatic basis for quantum mechanics. Foundations of

Physics, 46, 1341–1373.
Caves, C. M., Fuchs, C. A., Schack, R. (2002). Quantum probabilities as Bayesian probabilities.

Physical Review, A65, 022305.
Chiribella, G., D’Ariano, G. M., Perinotti, P. (2010). Informational derivation of quantum theory.

arXiv: 1011.6451 [quant-ph].
Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical

reality be considered complete? Physical Review, 47, 777–780.
Fields, C. (2011). Quantum mechanics from five physical assumptions. arXiv: 1102.0740 [quant-

ph].



References 75

Fivel, D. I. (2012). Derivation of the rules of quantum mechanics from information-theoretic
axioms. Foundations of Physics, 42, 291–318.

Fuchs, C. A. (2002). Quantum mechanics as quantum information (and only a little more). In A.
Khrennikov (Ed.), Quantum theory: Reconsideration of foundations. Växjö: Växjö University
Press.

Fuchs, C. A. (2010). QBism, the Perimeter of Quantum Bayesianism. arXiv: 1003.5209v1 [quant-
ph].

Fuchs, C. A., & Peres, A. (2000). Quantum theory needs no interpretation. Physics Today, S-0031-
9228-0003-230-0; Discussion Physics Today, S-0031-9228-0009-220-6.

Fuchs, C. A., Mermin, N. D., & Schack, R. (2013). An introduction to QBism with an application
to the locality of quantum mechanics. arXiv: 1311.5253v1 [quant-ph].

Fuchs, C. A., & Schack, R. (2011). A quantum-Bayesian route to quantum-state space. Founda-
tions of Physics, 41, 345–356.

Hall, M. J. W. (2011). Generalizations of the recent Pusey-Barrett-Rudolph theorem for statistical
models of quantum phenomena. arXiv: 1111.6304 [quant-ph].

Hardy, L. (2001). Quantum theory from five reasonable axioms. arXiv: 0101012v4.[quant-ph].
Hardy, L. (2012). Are quantum states real? arXiv: 1205.1439 [quant-ph].
Helland, I. S. (2006). Extended statistical modeling under symmetry; the link toward quantum

mechanics. Annals of Statistics, 34, 42–77.
Helland, I. S. (2008). Quantum mechanics from focusing and symmetry. Foundations of Physics,

38, 818–842.
Helland, I. S. (2010). Steps towards a unified basis for scientific models and methods. Singapore:

World Scientific.
Kuhlmann, M. (2013). What is real? Scientific American, 309(2), 32–39.
Masanes, L. (2010). Quantum theory from four requirements. arXiv: 1004.1483 [quant-ph].
Mirman, R. (1995). Group theoretical foundations of quantum mechanics. Lincoln, NE: iUniverse.
Nisticò, G., & Sestito, A. (2011). Quantum mechanics, can it be consistent with locality?

Foundations of Physics, 41, 1263–1278.
Pusey, M. F., Barrett, J., & Rudolph, T. (2012). On the reality of quantum states. Nature Physics,

8, 475–478.
Schack, R. (2006). Bayesian probability in quantum mechanics. In Proceedings of Valencia/ ISBA

World Meeting on Bayesian Statistics.
Searle, S. R. (1971). Linear models. New York: Wiley.
Smilga, W. (2017). Towards a constructive foundation of quantum mechanics. Foundations of

Physics, 47, 149–159.
Spekkens, R. W. (2007). In defense of the epistemic view of quantum states: A toy theory. Physical

Review A, 75, 032110.
Timpson, C. G. (2008). Quantum Bayesianism: A study. Studies in history an philosophy of modern

physics, 39, 579–609.
von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.


	4 Towards Quantum Theory
	4.1 Inaccessible Conceptual Variables and Quantum Theory
	4.2 The Maximal Symmetrical Epistemic Setting
	4.3 The Toy Model of Spekkens
	4.4 The Hilbert Space Formulation
	4.4.1 Quantum Reconstruction
	4.4.2 Proof Under an Extra Assumption
	4.4.3 The Interpretation Argument

	4.5 The General Symmetrical Epistemic Setting
	References


