
An Improved Particle Swarm Optimization
with Dynamic Scale-Free Network
for Detecting Multi-omics Features

Huiyu Li1, Sheng-Jun Li1(&), Junliang Shang1,2(&), Jin-Xing Liu1,
and Chun-Hou Zheng3

1 School of Information Science and Engineering, Qufu Normal University,
Rizhao 276826, China

lihuiyu20@163.com, qfnulsj@163.com,

shangjunliang110@163.com, sdcavell@126.com
2 School of Statistics, Qufu Normal University, Qufu 273165, China

3 School of Computer Science and Technology,
Anhui University, Hefei 230601, China

zhengch99@126.com

Abstract. Along with the rapid development of high-throughput sequencing
technology, a large amount of multi-omics data sets are generated, which pro-
vide more opportunities to understand the mechanism of complex diseases. In
this study, an improved particle swarm optimization with dynamic scale-free
network, named DSFPSO, is proposed for detecting multi-omics features. The
highlights of DSFPSO are the introduced scale-free network and velocity
updating strategies. The scale-free network is employed to DSFPSO as its
population structure, which can dynamically adjust the iteration processes.
Three types of velocity updating strategies are used in DSFPSO for fully con-
sidering the heterogeneity of particles and their neighbors. Both gene function
analysis and pathway analysis on colorectal cancer (CRC) data show that
DSFPSO can detect CRC-associated features effectively.
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1 Introduction

With the development of high-throughput sequencing technology, a vast amount of
biological data of different categories have been generated by The Cancer Genome
Atlas (TCGA). They provide us more opportunities to learn the biological mechanism
of complex diseases [1].

Detecting features from biological data is an effective way to illuminate the
underlying mechanism of diseases. A variety of feature extraction methods have been
widely used to analyze the gene expression data. For instance, least absolute shrinkage
and selection operator (LASSO), penalized matrix decomposition (PMD) and sparse
principal component analysis (SPCA) are commonly used methods of feature extrac-
tion. Roth V. used the generalized LASSO method to feature selection problems for
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microarray data [2]. Liu carried differential expression analysis on RNA-seq count data
based on PMD [3]. Lass et al. applied SPCA to clustering and feature selection
problems [4]. Although LASSO, PMD and SPCA have achieved satisfactory perfor-
mance on explaining the gene expression, they still have some defects in multi-omics
feature extraction. These conventional feature extraction methods which can only
identify genomic feature from single type of genomic feature cannot handle the inte-
grated TCGA datasets.

Recently, many particle swarm optimization (PSO) based methods have been
proposed for determining SNP-SNP interactions [5], gene features selection [6], and
cancer classifications [7]. PSO is a population-based search algorithm of adaptive
evolution, which proposed by Kennedy and Eberhart in 1995 [8]. Owing to its simple
structure and fast convergence, PSO has become an important evolutionary algorithm.
In recent years, numerous studies have been carried out to improve the performance of
PSO. Kennedy and Mendes have conducted a deep research on population structure
and particle behavior, founding that topology has a profound impact on particle
behavior [9]. Liu et al. proposed SFPSO (Scale-Free PSO) [10]. Gao proposed SIPSO
(Selectively-informed Particle Swarm Optimization), which employed scale-free net-
work to simulate the population structure and greatly improved the optimization pro-
cess [11]. The DMSPSO proposed by Zhao, used random dynamic changed population
structure which greatly improved the ability of local search [12].

However, conventional improvement on PSO algorithm suffers from the limited
particle population structure. For example, SFPSO and SIPSO generate the population
structure before experiments which cannot embody the dynamic changes in the process
of iteration. DMSPSO achieves the dynamic changes in population structure to a
certain extent, but the population structure building becomes a completely random
process which is unable to fit in with the actual optimization problems.

In this paper, we propose an improved PSO-based algorithm with dynamic scale-
free network, named DSFPSO, to detect multi-omics features. The innovations of
DSFPSO are the introduction of scale-free network and velocity updating strategies.
We employ scale-free network as its population structure which can be dynamically
adjusted in the process of iteration. Three types of velocity updating strategies are used
in DSFPSO for fully considering the heterogeneity of particles and the connecting
between neighbors. Specifically, to utilize the difference of gene expression based on
different levels of multi-omics data, we employ the ranking function to extract the most
effective gene features. To evaluate the validity of DSFPSO, experiments applied on
CRC are handled by DSFPSO and other compared methods. The identified genes are
appraised by gene function analysis and pathway analysis. Results show that the novel
method can identify CRC-associated features effectively.

2 Methods

2.1 Standard PSO Algorithm

PSO is similar to other evolutionary algorithms which use the concepts of “groups” and
“evolution” [13]. The speed of each particle can be dynamically adjusted according to
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the particle itself and its peers’ experience based on the fitness value. Based on the
fitness of the position, each particle will move to a better place and obtain the optimal
solution of optimization problems.

Standard PSO algorithm can be illustrated as follows.

Step1: Initialize the particle velocity and position;
Step2: Evaluate the fitness of each particle;
Step3: Decide whether to update personal and group best positions by comparing

the fitness;
Step4: Update the position and speed of the particles;
Step5: If not meet the ending condition, then return to Step2.

2.2 DSFPSO on Multi-omics Data

The flowchart of the proposed method is shown in Fig. 1. We will describe DSFPSO in
details on six aspects.

2.2.1 Initializing Particles with Multi-omics Data
According to the characteristics of the omics data, we integrate the data as genomics
and clinical information matrices. The whole genome matrix is the search space of
particles while the clinical information matrix is used for the test of particle fitness.

Based on the above mapping of multi-omics data, the position of particle i at
iteration t can be illustrated as

PositiontðiÞ ¼ ðxti1; � � � ; xtik; � � � ; xtiKÞ
i 2 f1; 2; � � � ; Ig
k 2 f1; 2; � � � ;Kg
t 2 f1; 2; � � � ; Tg
xtik 2 f1; 2; � � � ;Mg

ð1Þ

where I;K; T;M represents the number of particles, combination dimension of geno-
mic features, iteration, and gene features in the genome datasets, respectively. xtik is the
selected genomic feature of particle i at iteration t in k dimensional space.

The speed of particle i at iteration t can be defined as

VelocitytðiÞ ¼ ðvti1; � � � ; vtik; � � � ; vtiKÞ
vtik 2 ½1�M;M � 1� ð2Þ

where vtik is the speed of xtik.
Similarly, before the first iteration, PositiontðiÞ, VelocitytðiÞ, PbesttðiÞ, NeibesttðiÞ,

GbesttðiÞ are assigned a random value in their domain respectively.
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Fig. 1. The flowchart of DSFPSO.
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2.2.2 Analysis of the Fitness Function
Since mutual information does not need to assume the distribution of genomics data
and can effectively measure the nonlinear relationship between genetic characteristics
[14], we employ it as fitness function, which can be formulated as

MIðX; YÞ ¼ HðXÞþHðYÞ � HðX; YÞ ð3Þ

Therefore, higher mutual information value denotes strong association between the
genetic characteristic combination and the clinical information.

2.2.3 Updating the Dynamic Scale-Free Network
In order to fully utilize the properties of particles and experimental data, we have
adopted a new strategy of link growth and selecting.

In one iteration, we make the out of network particles in fitness descending order
and select new particles with higher fitness from these particles to join the network.
Then these new particles will choose excellent neighbors from the network particles
with the same sort processing.

In the dynamic process of scale-free network building, the particles position and
population structure will be dynamically updated with the join of new particles in the
solution space. Furthermore, we select the excellent new particles according to fitness
value instead of the basic scale-free network adding new points without selection,
which greatly improve the reliability of particles information exchange.

2.2.4 Updating the Particle Speed
In DSFPSO, the scale-free network building is synchronized with the solving iteration.
Accordingly, particles have the difference of “in” and “out” of the network in the
process of scale-free network building, so the two kinds of particles should be treated
differently using different velocity updating strategies. The velocity updating equations
can be formulated as

vtþ 1
ik ¼

g � ðvtik þ 1
ki

P
j2NðiÞ

randð0;/Þ � ðpbxtjk � xtpkÞÞ; 00in00

wt
ik � vtik þ randð0; c1Þ � ðpbxtik � xtikÞþ randð0; c2Þ � ðgbxtik � xtikÞ; 00out00

8<
:

vtþ 1
ik ¼ vtþ 1

ik vtþ 1
ik 2 ½1�M;M � 1�

randð1�M;M � 1Þ vtþ 1
ik 62 ½1�M;M � 1�

(

g ¼ 2

2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 � 4/

p��� ���
/ ¼ c1 þ c2 [ 4

wt
ik ¼ b� iter � ðb� aÞ=n

ð4Þ

where g is learning rate, c1 and c2 are acceleration coefficients. wt
ik is dynamic inertia

weight balancing the capability between global and local search, randða; bÞ is random
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number between a and b, NðiÞ denotes the neighbors of the particle i, Ki is the number
of neighbors for particle i.

Based on the speed updating of particles, the position updating equation can be
formulated as

xtþ 1
ik ¼ xtik þ vtþ 1

ik

xtþ 1
ik ¼ xtþ 1

ik xtþ 1
ik 2 ½1;M�

intðrandð1;MÞÞ xtþ 1
ik 62 ½1;M�

(
ð5Þ

2.2.5 Updating Personal Best Position, Neighbor Best Position and Group
Best Position
In DSFPSO, particle’s personal best position will be updated by the position with the
maximum mutual information. The specific equations can be formulated as

Pbesttþ 1 ¼
PositiontðiÞ MIðPositiontðiÞ; YÞ ¼ Val

PbesttðiÞ MIðPbesttðiÞ; YÞ ¼ Val

�

Val ¼ maxðMIðPositiontðiÞ; YÞ; MIðPbesttðiÞ; YÞÞ
ð6Þ

Similarly, the group best position updating equations can be written as

Gbesttþ 1 ¼
Pbesttþ 1ðiÞ MIðPbesttþ 1ðiÞ; YÞ ¼ Val

GbesttðiÞ MIðGbesttðiÞ; YÞ ¼ Val

�

Val ¼ maxðPbesttþ 1ðiÞ; YÞ; MIðGbesttðiÞ; YÞÞ
ð7Þ

And the neighbor best position updating equations can be written as

Neibesttþ 1 ¼
PositiontðjÞ MIðPositiontðjÞ; YÞ ¼ Val

NeibesttðiÞ MIðNeibestt; YÞ ¼ Val

�

Val ¼ maxðMIðPositiontðjÞ; YÞ; MIðNeibesttðiÞ; YÞÞ
j 2 NðiÞ

ð8Þ

2.2.6 Finding Final Results
In genomics data, each gene may have several genetic characteristics due to the dif-
ferences of gene expression. In the results of DSFPSO, a gene may have a variety of
genomic characteristics or may not. In this paper, we resort scoring strategies to extract
gene features based on the score of gene expression [15]. The scoring function can be
described as

Score1ðiÞ ¼ rankðiÞ � ðn� iþ 1Þ
Score2ðjÞ ¼

X
i2G

Score1ðiÞ ð9Þ
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where rankðiÞ represents the rank value of genomic features i, n is the total order value
of all the gene characteristics,G is the expression set of each gene.

3 Results

3.1 TCGA CRC Data

TCGA CRC data can be obtained from its web portal (https://tcga-data.nci.nih.gov/docs/
publications/tcga/). Data used in this paper is the integrated data which has been prepro-
cessed by Lee [16] (http://genomeportal.stanford.edu/tcga-crc/pages/datainformation).
Considering the experiment needs, we carry discretization on somatic mutations and
methylation data,which greatly improved the stability of the experiment.

The CRC data of TCGA used in this paper from 197 samples contains 5,188
genomic features of 1325 genes, including copy number variation, somatic mutations,
methylation data and gene expression data (Fig. 2).

3.2 Gene Enrichment Analysis

ToppGene is a one-stop portal for gene list enrichment analysis and candidate gene
prioritization based on functional annotations and protein interactions network.

To show the effectiveness of DSFPSO, we carry out GO enrichment analysis using
ToppGene (https://toppgene.cchmc.org/enrichment.jsp) and compare the results on the
same data set, including PSO,SIPSO, LASSO, PMD and SPCA. We input the top 500
genes identified by these methods into the ToppGene Suite, respectively, whose
threshold value of the p-value is set to 0.001 and other parameters are set as default.
Table 1 lists the top 10 closely related GO terms found by ToppGene. From this table,
we can see that the term of “positive regulation of gene expression” has the lowest P-
Value (9.38E-19), so it is considered as the most probable enrichment item. Further-
more, we notice that in the term of “regulation of multicellular organismal develop-
ment” PSO outperforms DSFPSO and in the term of “regulation of transcription by

Fig. 2. The CRC data of TCGA.
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RNA polymerase II” PMD outperforms DSFPSO. In general, DSFPSO shows better
performance than SIPSO, PSO, LASSO, PMD and SPCA in majority results.

3.3 KEGG Pathway Analysis

KEGG (Kyoto Encyclopedia of Genes andGenomes) is a database which systematacially
analyzes the function of gene to reveal the genetic and chemical blueprint of life [17].

In this study, we use DAVID (https://David-d.ncifcrf.gov/) on KEGG pathway to
analyze the results. The top 10 CRC-associated pathways are shown in Table 2.
Among them, Pathways in cancer and Colorectal cancer are obviously correlated with
cancers. [18] indicates that PI3 K-Akt signaling pathway play an important role in
inflammation-induced colorectal carcinogenesis. PI3 K-Akt signaling pathway links
intimately with cellular metabolism and has great influence on cancer biological
behavior [19]. The FoxO signaling pathway plays a central role in diverse physio-
logical processes including cellular energy storage, growth and survival, among others
[20]. [21] suggests that FOXO3a is a relevant mediator of the cytotoxic effects of
cisplatin in colon cancer cells. Adherens junction pathway plays a critical role in
cellular adhesion, glandular differentiation, and cellular proliferation. The function of
this pathway correlated proteins is compromised in a number of intestinal diseases,
including ulcerative colitis that has an increased incidence for colorectal cancer [22].

Table 1. The closely related GO terms found by toppgene.

GO terms P-Value
DSFPSO SIPSO PSO LASSO PMD SPCA

GO:0010628 9.38E-19 3.45E-16 1.13E-13 7.59E-8 8.64E-15 3.83E-15
GO:0045595 4.43E-18 8.10E-14 3.18E-17 / 1.26E-11 8.01E-11
GO:2000026 2.35E-17 1.14E-13 2.04E-17 / / 7.88E-11
GO:0051254 2.42E-16 4.92E-13 2.36E-13 3.64E-8 6.51E-15 5.43E-14
GO:1902680 2.75E-16 2.24E-13 4.02E-14 2.52E-8 2.78E-15 2.41E-14
GO:1903508 3.69E-16 1.13E-13 5.39E-14 3.64E-8 1.33E-15 1.19E-14
GO:0045893 3.69E-16 1.13E-13 5.39E-14 3.64E-8 1.33E-15 1.19E-14
GO:0006357 4.30E-16 1.59E-14 1.09E-13 2.49E-7 9.90E-19 3.35E-18
GO:0045935 9.39E-16 5.37E-13 8.58E-12 9.38E-8 1.03E-15 8.47E-15
GO:0051172 1.65E-15 / 1.95E-13 / 1.48E-10 2.93E-11

GO:0010628: positive regulation of gene expression; GO:0045595: regulation of
cell differentiation; GO:2000026: regulation of multicellular organismal
development; GO:0051254: positive regulation of RNA metabolic process;
GO:1902680: positive regulation of RNA biosynthetic process; GO:1903508:
positive regulation of nucleic acid-templated transcription; GO:0045893: positive
regulation of transcription, DNA-templated; GO:0006357: regulation of
transcription by RNA polymerase II; GO:0045935: positive regulation of
nucleobase-containing compound metabolic process; GO:0051172: negative
regulation of nitrogen compound metabolic process.
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3.4 Analysis of Gene Function

In order to evaluate the algorithm’s performance and explore the correlation between
genes and the pathogenesis of colorectal cancer, we carry out detailed analysis on 10
CRC-related genes among top identified 50 genes. The gene function descriptions are
shown in Table 3.

CSMD1 alterations can correlate with earlier clinical presentation in colorectal
tumors, thus further implicating CSMD1 as a tumor suppressor gene [23]. Loss of
CSMD1 may contribute to the poor prognosis of colorectal cancer patients [24]. [25]
indicates that KBTBD11 influences colorectal cancer risk, especially in interaction with
an MYC-regulated SNP rs6983267. WRN promoter methylation connects mucinous

Table 2. The top 10 CRC-associated pathways.

Rank Pathway Count P-Value

1 Pathways in cancer 46 1.1E-13
2 Colorectal cancer 12 5.2E-6
3 PI3 K-Akt signaling pathway 27 7.6E-5
4 Viral carcinogenesis 19 1.6E-4
5 MicroRNAs in cancer 22 5.2E-4
6 Cell cycle 13 8.5E-4
7 Focal adhesion 17 1.4E-3
8 Hepatitis B 13 3.3E-3
9 FoxO signaling pathway 12 5.1E-3
10 Adherens junction 7 3.1E-2

Table 3. The function of genes identified by DSFPSO.

Rank Gene Gene function

1 CSMD1 CSMD1 alterations can correlate with earlier clinical presentation in
colorectal tumors

2 KBTBD11 KBTBD11 significantly associated with CRC susceptibility
3 WRN WRN promoter methylation is common in colorectal cancer with the

CpG island methylator phenotype (CIMP)
4 SUZ12 SUZ12 mRNA expression in the CRC tissues was significantly

increased than in the non-cancerous tissue
5 CDX2 CDX2 is mutated in a colorectal cancer with normal APC/b-catenin

signaling
6 NRIP2 NRIP2 in colorectal cancer initiating cells modulates the Wnt pathway
7 CUX1 CUX1 could represent an important regulator of colonic epithelium

homeostasis
8 ASB4 ASB4 was higher expressed in CRC tissue than corresponding normal

tissue
9 CDK6 CDK6 plays a key role in the cycle of colorectal cancer cells
10 PDK4 PDK4 are highly expressed in human CRC cells
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differentiation, microsatellite instability and CpG island methylator phenotype in col-
orectal cancer [26]. SUZ12 mRNA expression in the CRC tissues is significantly
increased than in the non-cancerous tissue. Increased SUZ12 mRNA expression is
directly correlated with primary tumor size, regional lymph node metastases, distant
metastasis and AJCC stage. Furthermore, CRC patients with higher level of SUZ12
showed a worse disease-free survival (DFS) [27]. CDX2 is mutated in a colorectal
cancer with normal APC/b-catenin signaling [28, 29] shows that CDX2 specifies
intestinal development and homeostasis and is considered a tumor suppressor in col-
orectal carcinogenesis.

4 Conclusions

Considering traditional PSO algorithms usually take equal treatment of all particles and
ignore the disadvantages related to the heterogeneity of population structure, we pro-
pose an improved PSO algorithm named as DSFPSO to identify gene features of
complex diseases. This algorithm dynamically adjusts population structure according to
the particles status in the process of iteration.

With fitness of particles as a standard for preferred link selection, DSFPSO realizes
the true meaning of PSO for dynamic scale-free network. Moreover,this is the first time
for PSO algorithm introduced into multi-omics data analysis with CRC data provided
by TCGA as the experiment data and filtering results through scoring strategies.
Experimental results show that DSFPSO can be convergent to global optimization
quickly and find CRC-associated genes, which will provide valid references for early
diagnosis, effective treatment and prognostic guidance of colorectal cancer. To explore
correlations among differentially expressed genes is left as our future work.
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