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Abstract. Knowing the transcription factor binding sites (TFBSs) is essential
for modeling the underlying binding mechanisms and follow-up cellular func-
tions. Convolutional neural networks (CNNs) have outperformed methods in
predicting TFBSs from the primary DNA sequence. In addition to DNA
sequences, histone modifications and chromatin accessibility are also important
factors influencing their activity. They have been explored to predict TFBSs
recently. However, current methods rarely take into account histone modifica-
tions and chromatin accessibility using CNN in an integrative framework. To
this end, we developed a general CNN model to integrate these data for pre-
dicting TFBSs. We systematically benchmarked a series of architecture variants
by changing network structure in terms of width and depth, and explored the
effects of sample length at flanking regions. We evaluated the performance of
the three types of data and their combinations using 256 ChIP-seq experiments
and also compared it with competing machine learning methods. We find that
contributions from these three types of data are complementary to each other.
Moreover, the integrative CNN framework is superior to traditional machine
learning methods with significant improvements.
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1 Introduction

It has been well known that transcription factors (TFs) are key proteins decoding the
information in the genome to express a precise and unique set of proteins and RNAs in
each cell type in the cellular system [1]. How TFs bind to specific DNA-regulatory
sequences (known as TF binding site, or TFBS for short) to cooperatively modulate the
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gene transcription and protein synthesis is an essential procedure, which plays key roles
in many biological processes [2, 3]. Moreover, it has been reported that some genomic
variants in such TFBSs are associated with serious diseases including cancer and so on
[4]. In the past decade, large amount of immunoprecipitation followed by high
throughput sequencing (ChIP-seq) data have been generated and profiled to study the
mechanisms behind these regulatory processes [5]. However, the ChIP-seq experiment
can only profile one TF binding map in a given cell type one time [6, 7]. Hence it is not
possible to profile every TF binding maps in all cell types due to the large number of
TF-cell combinations and the high experimental cost [6, 7]. Thus, accurate computa-
tional methods are desired to decode the underlying binding rules under different
circumstances. Naturally, how to predict TFBSs in DNA sequences is a basic problem
in bioinformatics.

In this background, using primary DNA sequences to predict the TFBSs has
become a direct and promising paradigm. At first position weight matrices (PWMs)
based methods achieved great success in modeling the DNA binding protein process
[8]. Later, gkm-SVM (i.e., gapped k-mers along with support vector machine) shows
great superiority over the PWM-based methods [9]. More recently, convolutional
neural networks [10], coupled with the one-hot coding format of DNA sequences [11–
20], attracted great interest in predicting TFBSs. However, prediction or imputation of
TFBSs using solely primary DNA sequences lacks the ability of dealing with cell type-
specific binding events.

As a result, more and more methods turn to using cell type-specific information for
addressing this issue. In addition to primary DNA sequences, other local chromatin
information such as chromatin accessibility and histone modifications also have great
impact to the binding of TFs to their target sites [21]. Their analysis suggested models
learned from one TF was transferable across diverse TFs. Xin and Rohs [22] built a L2-
regularized multiple linear regression (MLR) model to analyze histone modification
patterns associated with TFBSs and showed that histone modification patterns con-
tribute to TF binding specificities. Their results suggested that adding histone modi-
fication or chromatin accessibility information could increase the prediction
performance of a classifier. However, there still exist limitations to be addressed when
integrating data from different sources.

In the last few years, the fast development of deep learning or deep neural networks
such as the convolutional neural networks (CNNs) attracts great attentions for the
predicting of TFBSs. First, the convolution filters fitting in well with the one-hot
coding format of DNA sequence can mimic the characteristics of DNA motifs [12–15,
23, 24]. Meanwhile, the learning procedure of CNN automatically extract features,
which may overcome the information loss of handcrafted features. Second, the deep
learning framework is flexible enough to integrate different sources of data. In addition
to DNA sequence data, other data sources can be put as inputs using a computational
graph, which is a directed acyclic graph representing the arbitrary information flow
[25]. Third, the use of graphics processing unit (GPU) makes the training process of
deep learning and especially CNNs extremely faster than before. This enables the CNN
models to be applicable to deal with large amount of biological samples. However, all
the existing CNN based models use solely primary DNA sequence to predict TFBSs.

242 F. Jing et al.



Currently, it is not clear how to effectively integrate DNA sequence information with
other local chromatin information (e.g., DNase and histone modification) using CNN.

To this end, we disentangled the contributions of DNA sequence and DNase I
hypersensitivity (DHS for short) and histone modifications (HMS for short) in dis-
tinguishing TFBSs from background based on a CNN model (Fig. 1). To explore how
to use DHS and HMS to train the neural networks, we first benchmarked a series of
architecture variants by changing network structure in terms of width and depth. We
also explored the effects of sample length at flanking regions 5’ and 3’ of the motif
binding sites ranging from 5 to 101 bp of DHS and HMS data. Based on detailed
experimental setup, we evaluated the performance of the three types of data and their
combinations using 256 ChIP-seq experiments [15]. We find that contributions from
these three types of data are complementary to each other. Moreover, the results show
distinct superiority of the integrative framework over traditional machine learning
methods. We expect to see wide applications of integrating multiple types of data with
deep learning methods not only for TFBSs prediction, but also for other genomic
studies in near future.

2 Materials and Methods

2.1 Datasets

We downloaded 256 TF ChIP-seq experiments for 15 cell types from [15]. Each
experiment includes training and testing datasets in fastq format. In the datasets, DNA
sequences and its location in the reference genome (hg19) and labels are given.

Fig. 1. Overview of the unified framework for predicting TFBSs using CNN.
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The positive and negative samples have matched GC-content and sequence length
(101 bp). Then we downloaded normalized DNase-seq (DHS) and five core histone
modifications (HMS) ChIP-seq data (H3K4me3, H3K4me1, H3K36me3, H3K9me3,
H3K27me3) for the 15 cell types from the REMC database [26]. The DHS and HMS
data are genome-wide –log10 (p-value) signal coverage tracks in bigwig format.

According to the location of the sample in the sequence datasets, we extracted the
signal values of the corresponding positions from the DHS and HMS signal coverage
tracks. The DNase-seq or each histone modification data was represented in a feature
vector (where each nucleotide position has a value). Thus, TFBSs and non-TFBSs were
described as three types of features: (1) a one-hot vector for a DNA sequence; (2) a
vector for DHS at each nucleotide position; (3) a vector for each HMS at each
nucleotide position. For each dataset, we used 70% samples for training, 10% samples
for validating and 20% for testing.

2.2 Neural Network Setup

For a DNA sequence, TFBSs and non-TFBSs were described as one dimensional
image with four channels. Each base pair (A, C, T, G) was denoted as a one-hot vector
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] respectively. For DNase-seq data and
each histone modification data, TFBSs and non-TFBSs were described as one channel
vector at each nucleotide position, For HMS, existing methods calculated the statistical
values (such average reads number in each base pair) within the range of hundreds or
thousands nucleotide. However, such a simplistic approach may not fully use the
information in HMS data. So we used histone modification data of single base reso-
lution in our study. HMS and DHS are contiguous attributes describing surrounding
epigenetic marks and chromatin accessibility that may be related to the binding of
specific TFs [27].

From the viewpoint of data, to examine how these models perform quantitatively in
terms of the length of flanking regions used in calculating DHS and HMS, we tried
different length scales ranging from 5 to 101 bp centered on the motif binding sites. For
example, if we used DNase-seq data with 101 bp, the vector was of size 1 � 101 for a
sample; if we used five histone modifications data with 71 bp, the dimension of a
vector was of size 1 � 71, and they were combined as matrix with size of 5 � 71 for a
sample.

For the purpose of combining DHS, HMS and sequence in the unified deep
learning framework, after collecting DNA sequence, HMS, DHS, labels data and
encoding features for each sample, we first implemented five different models:
sequence CNN model, using DNA sequence as features; DHS CNN model, using DHS
as features; DHS Deep Neural Networks (DNN) model, using DHS as features;
HMS CNN model, using HMS as features; HMS DNN model, using HMS as features.
We used CNN and DNN models to compare which one was more suitable for DHS and
HMS data. The CNN consists of a convolutional layer, a max-pooling layer, a fully
connected layer, a dropout layer [28] and an output layer. DNN consists of one or two
full connection layers, a dropout layer after each full connection layer and an output
layer. For CNN models, we vary the number of kernels, the size of kernel window, and
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the number of neurons in the full connection layer. For DNN models, we vary the
number of layers, and the number of neural in each full connection layer.

After determining an appropriate model, hyper-parameters and sample length for
each data, we then studied the combinations performances of two types of data
implementing three different models: sequence + HMS model, using a combination of
DNA sequence and HMS as features, sequence + DHS model, using a combination of
DNA sequence and DHS as features, DHS + HMS model, using a combination of
DHS and HMS as features. We suggest an integrative model combing all three types of
data (sequence + HMS + DHS model) as features at last.

For training, we used the cross-entropy as the loss function. Given this loss function
and different hyper-parameters (see below), the models were trained using the standard
error back-propagation algorithm and AdaDetla method [29]. Passing all the training
data through the model once is an epoch. We set each model for 100 epochs and 128
mini-batch size and validated the model after each epoch. Then the early-stop trick was
used to stop training as the error on validation set is higher than the last four epochs.
The best model was chosen according to the accuracy on the validation set.

2.3 Leave-One-Feature-Out of the HMS Model

To determine the importance of each histone modification feature in the classification
models by combining five core histone modification features, we implemented CNN
models where we left out one of the features at a time. We recorded the AUC for each
model compared to the model that used all five histone modification features.

2.4 Comparison with Conventional Learning Methods with HMS
and DHS Data

We evaluated whether conventional learning methods can get comparable predictions
compared with CNN. We predicted the TFBSs using k-Nearest Neighbor (kNN),
Logistic Regression (LR), Random Forest (RF) classifiers. For KNN, LR, RF, we
implemented these baselines using the python based scikit-learn package.

For the kNN classifier implementation, this model was trained on varying hyper-
parameter values of n_neighbors: 1, 3, or 5, weights: ‘uniform’, or ‘distance’, the
algorithm was ‘auto’. The n_neighbors parameter defines the number of neighbors to
be used for prediction. The weights define weight function used in prediction. Uniform
means all points in each neighborhood are weighted equally. Distance means weight
points by the inverse of their distance. In this case, closer neighbors of a query point
will have a greater influence than neighbors which are a little far away.

For the LR classifier implementation, the model was trained on varying hyper-
parameter values of penalty: ‘l1’ or ‘l2’, C: 0.1, 1, or 10. The penalty is used to specify
the norm used in the penalization. C is the inverse of regularization strength, smaller
values specify stronger regularization.

For the RF Classifier implementation, we varied the number of trees in the forest,
n_estimators: 10, 20, 30, …, 100, 200, 300, used to train each model.
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All the above models were trained on the training set, and evaluated on the cor-
responding testing set. For kNN, we selected n_neighbors = 5, weights = ‘distance’.
For RF, we selected n_estimators = 100. For LR, we selected penalty = l2, C = 1.

2.5 Implementation

We used python and Keras framework to train neural networks. We used python and
skcikit-learn to train conventional machine learning methods [30]. All the source codes
are available at http://page.amss.ac.cn/shihua.zhang/.

3 Results

3.1 Long Sample Length and CNN Architecture Improve TFBSs
Prediction Based on Histone Modification Profiles

For predicting TFBSs, we considered several practical aspects to make full use of HMS
data. We first tested the effects of using different sample lengths. We used different
sample lengths to train the CNN models and different hyper-parameters for each length.
For each length, we selected the results of best hyper-parameters. As expected, the
longer the sequence length was, the better the model performs (Fig. 2A). The
improvement may come from the extra context information contained in the longer
samples.

Fig. 2. Performance evaluation of CNN with respect to sample length and model structure using
HMS data in terms of the distribution of AUCs across 256 experiments. (A) The effect of
sequence length. (B) The effect of kernel number. (C) The effect of neuron number. (D) The
effect of kernel window size. (E) The effect of sample length and DNN model structure. (F) The
performance comparison of DNN versus CNN.
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In addition to different sequence lengths, proper model architecture was also nee-
ded. First, more convolutional kernels could also improve the prediction performance
(Fig. 2B). This observation shows additional kernels add power in extracting features.
However, when more than 64 kernels were used, the improvement seemed to be
saturated for the 256 experiments (Fig. 2B). Second, more neurons in the full con-
nection layer of CNN could improve the prediction performance (Fig. 2C). And adding
more neurons could improve the results. We observe that small kernel window size
achieves better performance than using large ones (Fig. 2D) while big kernel window
size usually used in sequence-based CNN models. This suggests that HMS features is
different from sequence, and big window size may lose some information. Since the
small window size is good, we are wondering how DNN performs. For comparison, we
trained DNN with HMS data. We find that deeper neural networks and longer sample
length work better too for DNN (Fig. 2E). As model with more neurons and layers
could represent more abstract features, this observation emphasizes sufficient neurons
and layers are needed to extract abstract features. However, the performance of DNN is
still slightly worse than that of CNN, indicating the importance of combining convo-
lution operation with HMS data (Fig. 2F).

3.2 Different Histone Modification Features Contribute Diversely

How each individual histone modification feature contribute relative to all five features
together? We conducted leave-one-feature-out feature selection experiments to train the
CNN models by using merely four histone modifications data with the same hyper-
parameters in previous section. Our results suggest that H3K4me3 mark is the most
important mark and H3K4me1 is the second most important one (Fig. 3). We also
known that H3K4me3 denotes a specific chemical modification of proteins used to
package DNA in eukaryotic cells, which is commonly associated with active tran-
scription of nearby genes [26]. While H3K4me1 has been shown distinct enrichment at
active and primed enhancers, indicating its underlying strong connections with
enhancer activity and function. However, the remaining three marks H3K27me3,
H3K36me3, H3K9me3 play limited impacts on the prediction performance. This is
very consistent with their well-known characteristics that H3K27me3, H3K36me3,
H3K9me3 are found in facultatively repressed genes, actively transcribed gene bodies,
and constitutively repressed genes respectively. Thus, this is reasonable that H3K9me3
shows the worst prediction ability to TFBSs. In summary, the histone modification
importance observations are in consistent with their general functions and might pro-
vide further insights into the importance of different types of data in a similar way.

3.3 TFBSs Prediction Results Based on DNase-seq Profiles

Similar to HMS data, we also considered several practical aspects to make full use of
DNase-seq data. We first tested the effects of using different sample lengths. As
expected, the longer the sequence length is, the better the model performs (Fig. 4A).
This indicates that the improvement may also come from the extra context information
contained in the longer samples. For model architectures, more convolutional kernels
could also improve the prediction performance (Fig. 4B). Thus, no matter what the data
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type is, the additional kernels are beneficial to enhance power in extracting features and
improve model performance. By changing the number of neurons in the last dense layer
of CNN, we can see that models with more hidden neurons achieve better performance
(Fig. 4C). This observation was similar with that of HMS data. We also see that CNN
models with small and large kernel window sizes (4 and 24) achieve almost the same
performance for different sample lengths (Fig. 4D). This suggests that kernel window
sizes (4 and 24) could not distinctly influence DHS data information. For comparison
with CNN, we also trained DNN using different sequence lengths and hyper-parameters
for the DHS data. Similarly, the deeper neural networks and longer sample length also
work better based on DHS data (Fig. 4E). Moreover, the performance of DNN is
slightly worse than that of CNN, indicating the importance of combining convolution
operation with DHS data (Fig. 4F).

3.4 Comparison of CNN with Conventional Learning Methods with HMS
and DHS Data

We have shown that CNN models with HMS and DHS data could make very
promising predictions for diverse TFs. In this section, we evaluated whether conven-
tional learning methods can get such predictions compared to CNN. As we showed that
for DHS and HMS, the longer the sequence length was, the better the model performed.
Here all sample lengths used were set as 101 bp. We adopted the popular k-Nearest
Neighbor (kNN), Logistic Regression (LR) and Random Forest (RF) for this task. The

Fig. 3. Performance comparison of different HMS combinations in terms of distribution of
AUCs across 256 experiments. HMS means using all five histone modification marks. HMS-
H3K4me3 means using other four histone modification marks except H3K4me3.
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Fig. 4. Performance evaluation of CNN with respect to sample length and model structure using
DHS data in terms of the distribution of AUCs across 256 experiments. (A) The effect of
sequence length. (B) The effect of kernel number. (C) The effect of neuron number. (D) The
effect of kernel window size. (E) The effect of sample length and DNN model structure. (F) The
performance comparison of DNN versus CNN.

Fig. 5. Comparison of CNN with conventional learning methods in terms of the distribution of
AUCs across 256 experiments. KNN: k-Nearest Neighbor; LR: Logistic Regression; RF:
Random Forest.
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best hyper-parameters of these methods were also chosen according to the performance
on testing set (Methods and Supplementary Information). In both HMS and DHS cases,
CNN perform significantly better than conventional classifiers in term of the distri-
bution of AUCs across 256 experiments (Fig. 5). This was not surprisingly, as deep
learning models could automatically extract high-level features in the DHS or HMS
data due to its elaborate architectures. We note that most conventional learning
methods are shallow models, which limited their performance. Taken together, our
study suggests that CNN model is a more reliable tool for predicting the TFBSs by
integrating these three types of data.

4 Conclusion and Discussion

In this work, we systematically explored the effects of epigenomic information from the
chromatin accessibility and histone modifications data on the basis of a series of CNN
architectures. We suggest an integrative CNN framework to combine primary DNA
sequence, DHS and HMS data to predict cell type-specific TFBSs. Thorough evalua-
tion demonstrate that the integrative framework show much better performance than
using primary DNA sequence data only.

Chromatin accessibility and histone modifications are critical factors enabling the
binding of TFs to their target genes. Chromatin accessibility has been widely used in
conventional methods. But conventional methods required a lot of time for large input
data and they used low resolution canonical features. Thus, we expect to improve
discrimination ability through deep learning approach by automatically extracting
efficient features. Histone modifications data is less used in TFBSs prediction than
chromatin accessibility. The reason is that DNase-seq can give base pair resolution
whereas DNA sequence was nicked, histone modification ChIP-seq gives a region
where protein interacting with DNA sequence, so it only gives low resolution infor-
mation compared to DNase-seq data. Besides DNA sequence and DHS data, we
suggest that the HMS data can also provide extra context information despite of the low
experimental resolution. In short, our work suggests combining more data in deep
learning model may be beneficial.
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