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Preface

On behalf of the Program Committee, we would like to welcome you to the pro-
ceedings of the 14th edition of the International Symposium on Bioinformatics
Research and Applications (ISBRA 2018), held in Beijing, China, June 8–11, 2018.
The symposium provides a forum for the exchange of ideas and results among
researchers, developers, and practitioners working on all aspects of bioinformatics and
computational biology and their applications.

This year we received 138 submissions in response to the call for extended abstracts.
The Program Committee decided to accept 24 of them for full publication in the
proceedings and oral presentation at the symposium. We also accepted 30 for oral
presentation; a list of these contributions can be found in this front matter. Furthermore,
we received ten submissions in response to the call for short abstracts. The technical
program also featured two keynote and two invited talks by four distinguished
speakers: Prof. Ying Xu from the University of Georgia presented on mining omic data
of large numbers of cancer tissue samples; Prof. Xuegong Zhang from Tsinghua
University gave a primary view on single-cell bioinformatics; Prof. Xin Gao from King
Abdullah University of Science and Technology introduced a graph-based biclustering
method for mining phenotype data; Prof. Min Li from Central South University spoke
on de novo genome assembly by using statistical characteristics of paired-end reads.

We would like to thank the Program Committee members and the additional
reviewers for volunteering their time to review and discuss symposium papers. We
would like to extend special thanks to the steering and general chairs of the symposium
for their leadership, and to the finance, publicity, workshops, local organization, and
publications chairs for their hard work in making ISBRA 2018 a successful event. Last
but not least, we would like to thank all authors for presenting their work at the
symposium.

April 2018 Fa Zhang
Min Li

Xiaohua Wan
Zhipeng Cai
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A Primary View on Single-Cell Bioinformatics

Xuegong Zhang

School of Life Sciences and School of Medicine, Tsinghua University, Beijing
100084, China

zhangxg@tsinghua.edu.cn

Abstract. Cells are not created equal. The Human Cell Atlas (HCA) project
aims to build the atlas of all human cell types and cell states with their molecular
signatures. Single-cell sequencing especially single-cell RNA-sequencing
(scRNA-seq) is the key technology for obtaining the molecular signatures of
a large amount of single cells at the whole transcriptome scale. It is a funda-
mental step toward the complete understanding of the human body, a super
complex system composed of tens of trillions of cells that are all developed from
a single cell. This opens the new broad field of single-cell biology. Single-cell
biology converts each cell to a mathematical vector in the high-dimensional
spaces of the expression of all genes and other molecular features. Therefore,
single-cell bioinformatics, or the computational analyses of single-cell data,
become the key component of all single-cell biology studies. This talk will give
an overview of some key bioinformatics tasks in single-cell bioinformatics, and
present examples of our on-going work on new methods for differential
expression analysis and dimension reduction.



Searching for Roots of Cancer Development
through Mining Large Scale Cancer Tissue

Data and Modeling the Chemistry of Cellular
Base-Acid Homeostasis

Ying Xu

Department of Biochemistry and Molecular Biology, University of Georgia,
Athens, GA, USA
xyn@uga.edu

Abstract. Over one million research articles have been published about cancer,
but yet our understanding about cancer is undeniably little. We are yet to
understand some of the most basic questions such as: (1) why some cancers such
as pancreatic or liver cancers are so deadly while other cancers such as basal cell
carcinoma are rarely life-threatening? or (2) why some cancers are highly drug
resistant while other cancers are not? In this talk I will present some of our
recent discoveries made through mining omic data of large numbers of cancer
tissue samples. Our analyses strongly suggest that all cancer tissue cells have
high levels of Fenton reactions, due to increased iron accumulation and H2O2
concentration at the disease sites, both being the result of persistent immune
responses. A key consequence of the reaction is: it continuously produces OH-,
to which the affected cells respond fiercely to maintain the pH homeostasis as
changes in the intracellular pH would have profound impacts to the viability
of the cells. We will demonstrate that cancer cells immobilize a wide range of
metabolic activities through metabolic reprogramming, to keep the intracellular
pH stable, including inhibition of the urea cycle, nucleotide synthesis, glycolytic
ATP generation (Warburg effect) and even selection of mutations in specific
amino acids. Some of the long-standing open questions can be answered nat-
urally using our new model.



Gracob: A Graph-Based Constant-Column
Biclustering Method for Mining Growth

Phenotype Data

Xin Gao

Computational Bioscience Research Center, King Abdullah University
of Science and Technology, Thuwal, Saudi Arabia

xin.gao@kaust.edu.sa

Abstract. Growth phenotype profiling of genome-wide gene-deletion strains
over stress conditions can offer a clear picture that the essentiality of genes
depends on environmental conditions. Systematically identifying groups of
genes from such high-throughput data that share similar patterns of conditional
essentiality and dispensability under various environmental conditions can
elucidate how genetic interactions of the growth phenotype are regulated in
response to the environment. In this talk, I will first demonstrate that detecting
such “co-fit” gene groups can be cast as a less well-studied problem in
biclustering, i.e., constant-column biclustering. Despite significant advances in
biclustering techniques, very few were designed for mining in growth phenotype
data. I will then propose Gracob, a novel, efficient graph-based method that casts
and solves the constant-column biclustering problem as a maximal clique
finding problem in a multipartite graph. We compared Gracob with a large
collection of widely used biclustering methods that cover different types of
algorithms designed to detect different types of biclusters. Gracob showed
superior performance on finding co-fit genes over all the existing methods on
both a variety of synthetic data sets with a wide range of settings, and three real
growth phenotype data sets for E. coli, proteobacteria, and yeast.



De novo Genome Assembly by Using Statistical
Characteristics of Paired-end Reads

Min Li

School of Information Science and Engineering, Central South University,
Changsha, China

limin@mail.csu.edu.cn

Abstract. DNA sequence is the carrier of genetic information, which guides the
development of biological and functions of life. De novo genome assembly is
aimed at acquiring a complete and accurate genome sequence, so it has become
one of the fundamental issues in genome research for understanding the orga-
nization and process of life activities. However, de novo genome assembly still
faces the challenges of repetitive regions in genome, sequencing errors, and
uneven sequencing depth. In this talk, I will present our recent work as follows:
(1) a sequence assembler based on the distributions of insert size and read, called
EPGA. Through assessing the variation of the distribution of insert size, EPGA
can solve problems introduced by some complex repetitive regions. And an
improved assembler EPGA2 adopts error corrections and memory-efficient DSK
to count k-mers; (2) a scaffolding method based on iterative strategy and linear
programming to detect spurious edges, called BOSS. And scaffolding algorithm
SCOP, which is the first method to classify the contigs and utilize the vertices
and edges to optimize the scaffold graph; (3) a gap filling method called
GapReduce, which aligns the paired-end reads to the scaffolds. For each gap,
GapReduce determines two read sets, and then constructs De Bruijn graphs.
GapReduce extracts paths from De Bruijn graphs to cover the gaps by using the
characteristics of insert size and k-mer frequencies based on the partitioned read
sets. Finally, the future development and challenges of de novo genome
assembly will also be discussed.
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Prediction of Drug Response with a Topology
Based Dual-Layer Network Model

Suyun Huang1 and Xing-Ming Zhao2(&)

1 Department of Computer Science, Tongji University, Shanghai 201804, China
zero_hsy@hotmail.com

2 Institute of Science and Technology for Brain-Inspired Intelligence,
Fudan University, Shanghai 200433, China

xmzhao@fudan.edu.cn

Abstract. Identifying the response of a cancer patient to a particular therapeutic
agent is critical in drug discovery and will significantly facilitate the develop-
ment of personalized medicine. The publicly available drug response profiles
across cell lines provide an alternative way for predicting the response of cancer
drugs. In this work, we propose a topology based dual-layer network (TDLN)
model to predict drug response based on large-scale cell line experiments. With
the Cancer Cell Line Encyclopedia (CCLE), Genomics of Drug Sensitivity in
Cancer (GDSC) and Cancer Therapeutic Response Portal (CTRP) datasets as
benchmark datasets, our proposed topology based dual-layer network model
outperforms other existing popular approaches and identify some novel indi-
cations of known drugs for cancer.

Keywords: Drug responses � Large-scale data � Dual-layer network model
Novel indications

1 Introduction

With the accumulation of omics data thanks to the advance of high-throughput tech-
nologies, it is becoming possible to implement precision medicine in clinic [1–4] and
design personalized therapy for patients [5, 6]. Therefore, it is much necessary to
predict the response of patients to drugs in advance based on their molecular profiles.
However, it is expensive to generate molecular profiles for patients and it is not feasible
to test drugs in patients, which makes it difficult to define the molecular signatures for
drug response and hinders the progress of precision medicine.

Recently, the emerging drug response profiles across cell line makes it possible to
predict drug response in vitro experiments, where gene expression profiles will be
generated with or without drug treatment. Specifically, several large-scale datasets have
been generated by monitoring the sensitivity of cancer cell lines to various drugs along
with genomics and transcriptomics profiles of cancer cell lines, such as the Cancer Cell
Line Encyclopedia (CCLE) [7], the Genomics of Drug Sensitivity in Cancer (GDSC)
[8] and the Cancer Therapeutic Response Portal (CTRP) [9]. With these valuable data,
some computational approaches, e.g. elastic net and random forest, have been devel-
oped to drug responses [1, 6, 10–14] with the assumption that genetically similar cell
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lines will respond to the same drug in a similar way or structurally similar drugs will
affect the same cell line with similar response. In particular, with the gene expression
profiles of cells treated without drugs, a dual-layer drug-cell line network (DLDCN)
model have been proposed to predict drug response [15], where two networks were
respectively constructed based on drug-drug and cell line-cell line similarities. How-
ever, only the local neighborhood was explored in the dual-layer drug-cell line network
model, while the global network topological information was not considered.

In this work, we present a topology based dual-layer network (TDLN) model
constructed with gene expression profiles of cells treated without drugs to predict the
response of cells to novel drugs. Compared with dual-layer drug-cell line network
model (DLDCN), our approach is novel in the following parts. First, we define a new
weight accompanying the edge in the dual-layer network by taking into account the
topological structures of networks; Second, our proposed approach predicts drug
response by integrating both the local neighborhood of the node of interest and the
global network topological structure. Benchmarking on CCLE, GDSC and CTRP
datasets, our approach significantly outperforms other popular approach, where the
global topology information contributes a lot to the improvement of our approach. In
addition, we predict some responses of cell line to novel drugs, some of which can be
validated with evidence from literature. For example, we predict that EWS-FLI1-muted
cell lines are sensitive to PARP inhibitors.

2 Materials and Methods

2.1 Data Sources

The cancer genomic and drug response profiles in this study are available from the
Cancer Cell Line Encyclopedia (CCLE), Genomics of Drug Sensitivity in Cancer
(GDSC) and Cancer Therapeutic Response Portal (CTRP).

For the CCLE data set, cancer cell line gene expression, copy number, and
mutation profiles along with drug sensitivity data were downloaded from the Cancer
Cell Line Encyclopedia (CCLE) website (http://www.broadinstitute.org/ccle/data/
browseData). Pharmacological profiles of 24 small molecules and gene expression
data for common 491 cancer cell lines were used in our analysis. For the GDSC data
set, gene expression profiles and drug sensitivity measurements for the common 985
cancer cell lines and 265 drugs were downloaded from GDSC (http://www.
cancerrxgene.org/downloads) and used to generate the performance. We also
obtained drug sensitivity data and gene expression profiles from the CTRP website
(www.broadinstitute.org/ctrp), which included common data for 481 drugs and 823 cell
lines.

The chemical structural information for each drug was obtained from PubChem
[16], a data base of chemical molecules and their activities in different biological
assays. It contained validated chemical depiction information for 19 million unique
compounds contributed from over 70 depositing organizations. We downloaded raw
chemical property profiles (SDF files) for 23 drugs in the CCLE study, 179 drugs in the
GDSC study and 431 drugs in the CTRP study from the PubChem website. The 1-D
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and 2-D chemical structural features of each drug were retrieved using the PaDEL [17]
software program (v2.11, downloaded from the project website http://padel.nus.edu.sg/
software/padeldescriptor/) with default settings.

2.2 Identification of Local-Based Weight, Global-Based Weight
and Combined-Based Weight

In order to construct topology based dual layer network model (TDLN), it is essential
to define the combined-based weight consisting of the local-based weight and
global-based weight.

Local-Based Weight. For the purpose to examine the similarity between different cell
lines or between drugs, the local-based weight parameter should be an increase func-
tion with their correlation using gene expression profiles or chemical structural data.
The formula:

wC
localðC; CiÞ ¼ e�

1�q C;Cið Þ½ �2
2r2

wD
localðD; DjÞ ¼ e�

1�q D;Djð Þ½ �2
2s2

ð1Þ

It could be seen that q C; Cið Þ is the gene expression correlation between cell line C
and Ci and q D; Dj

� �
is the correlation between the chemical structural feature of drug

D and Dj. r and s are determined as the bandwidth parameters. It means that if
q C; Cið Þ is close to 1, WC

localðc; ciÞ will also be close to 1, implying that these two cell
lines share high concordance. On the contrary, if q C; Cið Þ is small (e.g. close to 0),
WC

localðc; ciÞ will be relatively small too. It is the same with the drugs.

Global-Based Weight. The DLDCN model only focuses on the local-based weight
ignoring the sensitive information between the drug and cell lines. Based on the
assumption that if drug A and drug B share many same sensitive cell lines, they would
be highly similar, implying thatWD

globalðD; DjÞ is equally high. For the cell line C that is
being investigated, neighboring cell lines which get high similarity with C should
respond to a large number of same sensitive drugs [18]. In the literature [18], it was
found that the global topological structure can help improve prediction accuracy.
According to this hypothesis, we propose the calculation formula of global-based
weight as follows:

wC
globalðC; CiÞ ¼ 1

maxðkc; kciÞ
X

Dl

ADlCADlCi

kDl

Kc ¼
X

Dl

ADlC

KDl ¼
X

Cu

ADlCu

ð2Þ

Prediction of Drug Response with a TDLN Model 5

http://padel.nus.edu.sg/software/padeldescriptor/
http://padel.nus.edu.sg/software/padeldescriptor/


where ADC is bipartite network and can be presented as an adjacent matrix where
aji ¼ 1 if Ci is sensitive to Dj, otherwise aji ¼ 0.

wD
globalðD; DjÞ ¼ 1

maxðkD; kDjÞ
X

Cl

ADClADjCl

kCl

KD ¼
X

Cl

ADCl

KCl ¼
X

Du

ADuCl

ð3Þ

Combined-Based Weight. After acquiring the formula of the local-based weight and
global-based weight, it is vital to combine them together using the following formula:

wD
combined D; Dj

� � ¼ bdrugw
D
global D; Dj

� � þ 1 � bdrug
� �

wD
local D; Dj

� �

wC
combined C; Cið Þ ¼ bcellw

C
global C; Cið Þ þ 1 � bcellð ÞwC

local C; Cið Þ ð4Þ

By combining the local-based weight and global-based weight together, we could
guarantee that in most conditions, we could get the similarity of two drugs or two cell
lines since if there is a lack of one weight (e.g. global-based weight), exists the other
one, making DLDCN model more robust.

2.3 Prediction of Drug Response to a New Drug or New Cell Line Based
on the Similarity Network

In order to predict the response of a new drug D to a known cell line C, we take full use
of the combined-based weight defined in the previous section in the drug similarity
network (DSN). Based on the assumption that drugs with the high combined-based
weight will respond similarly to the cell line, we develop a linear weighted model to
calculate the sensitivity of the drug D to cell line C as follows:

ŜensDSN D; Cð Þ ¼ cdrug
X

Dj 6¼D

wD
combined D; Dj

� �

kDj

� SensðDj; CÞ ð5Þ

where SensðDj; CÞ is the sensitivity data of the drug Dj against cell line C and
ŜensDSNðD; CÞ is the predicted value using the drug similarity network. It could be
observed that if wD

combined D;Dj
� �

is relatively high and the ratio the weight occupied of
out degrees called as kDj is large, the corresponding drug will have a strong contri-
bution to the predicted value of the unknown drug.

In the cell line similarity network (CSN), we could develop a similar model to
predict the response of a known drug to a new cell line as follows:
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ŜensCSN D; Cð Þ ¼ ccell
X

Ci 6¼C

wC
combined C; Cið Þ

kCi

� Sens D; Cið Þ ð6Þ

2.4 Drug Response Prediction Based on the Network Model

In the above section, we propose the two separate models for predicting the response of
a cell line to a drug based on the cell line similarity network (CSN) and the drug
similarity network (DSN). To take the advantage of the two models, the integrated
network is produced using the following formula:

ŜensðD; CÞ ¼ kŜensDSN D; Cð Þþ 1� kð ÞŜensCSN D; Cð Þ ð7Þ

where k is the combination weight to determine the weight of the DSN and CSN and it
could be optimized by the leave-one-out cross validation. ŜensDSNðD; CÞ is the pre-
dicted value using the drug similarity network and ŜensCSNðD; CÞ is the predicted
value using the cell line similarity network.

2.5 Leave-One-Out Cross-Validation

To determine the parameters and test the performance, we consider the leave-one-out
cross validation method. It means that each possible drug-cell line pair would be left as
the test data set while the remaining data are trained. Firstly, we obtain local-based
weight parameters r and s using the CSN and DSN separately. Then the
combined-based weight parameters bdrug and bcell are also fixed for all drugs and cell
lines in CSN and DSN separately. After integrating the CSN and DSN, the parameter k
should be defined by individual drug, considering that different drugs have different
relative proportion of two layers.

In general, all the parameters are optimized by minimizing the sum of squared
errors. Take the optimized parameter r for example, the overall error function is
defined as:

J rð Þ ¼
X

D;C

SensðD; CÞ � Ŝens D; Cð Þ� �2 ð8Þ

where SensðD; CÞ is the observed sensitivity value of cell line C to drug D, and
ŜensðD; CÞ is the predicted value using all other drug-cell lines as training set. Thus the
best parameter could be obtained by minimizing the sum of the squared errors.

After achieving the parameters, the prediction performance of the models is eval-
uated by the Pearson correlation coefficient between predicted and observed responses
in every drug. A higher correlation coefficient shows a better performance of a model.
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3 Results

3.1 Prediction of Drug Response on Benchmark Datasets

In order to evaluate the performance of TDLN model, it was applied to three bench-
mark datasets, i.e. CCLE, GDSC and CTRP, and all these three datasets contain gene
expression profiles generated from cells treated without drugs. We also compared
TDLN model with existing popular approaches, including random forest, elastic net
regression, where the leave-one-out cross-validations were performed for each
approach. For each computational approach, it will predict drug response values. To
see the performance of those computational approaches, the Pearson correlation
coefficients will be calculated between their predicted values and observed drug
responses, where the higher the correlation coefficient is the better the performance will
be. Figure 1 shows the results obtained by TDLN model, random forest and elastic net
on the three benchmark datasets.

For both random forest and elastic net model, the gene expression profiles were
used to predict drug response. From the prediction results, we can see that our TDLN
model significantly outperforms the other two approaches on all three datasets, where
the elastic net model performs the second best. The good performance of TDLN model
on all three benchmark datasets demonstrates the predictive power of our proposed
approach.

In particular, we compared TDLN model with previously proposed DLDCN model,
which is also a dual-layer network model [15]. Figure 2 shows the results on three
benchmark datasets, where the Pearson correlation coefficients between predicted and
observed responses were used to evaluate the performance of the two approaches.
Since the activity area (abbreviated as AArea hereafter) was used for quantifying drug
response in some datasets while the IC50 was used in other datasets, we compared
TDLN against DLDCN with respect to either AArea or IC50 depending on the dataset
of interest. From Fig. 2, we can see that our proposed TDLN significantly outperforms
DLDCN according to AArea on all three benchmark datasets. We take the top left
picture for example, the activity area data is used to predict the drug responses in CCLE
datasets using leave-one-out cross validation. For each drug, we could get the Pearson
correlation coefficient between predicted and observed responses. Since there are 23
drugs, it means there are 23 values and we use a box plot to describe the result. We
could find the TDLN model achieves a correlation coefficient of 0.75 on average and
improves about 10% over the DLDCN model. The good performance of TDLN is
attributed to the weights we defined for the links in the network.

For both CCLE and GDSC datasets, there are also IC50 values for drug responses.
From Fig. 2, our TDLN outperforms DLDCN model on both CCLE and GDSC
datasets. The comparison of TDLN and DLDCN with either AArea or IC50 demon-
strates that our proposed TDLN model is indeed effective to predict drug responses,
especially where more cell lines were tested for a certain drug.
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3.2 Global Topological Information Boosts the Prediction Performance

Compared with DLDCN, our proposed TDLN utilized both the local and global
topological information of the heterogeneous drug-cell line network, whereas the
DLDCN model considers only the local neighborhood information. In TDLN, the
global and local information were balanced with two weights, i.e. bdrug and c. The two

Fig. 1. Comparison of prediction performance of TDLN against RF, EN using activity area data,
where the p-values were determined with t-test based on the distribution of correlation
coefficients. RF denotes random forest and EN denotes elastic net while TDLN denotes topology
based dual-layer network.

Fig. 2. Comparison of prediction performance between TDLN and DLDCN on the three
datasets based on the correlation coefficients between predicted and observed drug responses on
three datasets, where p-values were calculated with t-test. Here, “AArea” denotes “activity area”.
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parameters were optimized during leave-one-out cross-validations. To see the contri-
butions of the global topological information to the prediction performance of TDLN,
we investigated the weight of beta across the three datasets. Figure 3 shows the weights
optimized for TDLN over the three datasets. It could be clearly seen that the weight of
beta for global information is larger than 0.5 on most of the datasets considered here,
suggesting that the global topological information contribute more to the prediction
performance. For example, in the activity area data in the CCLE dataset, we could see
bcell is 0.7 and bdrug is 0.8 meaning the weight of the global topological information is
greater than the local neighborhood whether in the cell line similarity network or drug
similarity network. That is also the reason that TDLN outperforms DLDCN which
exploits only local neighborhood information of the network.

3.3 Prediction of Novel Drug Responses

In the datasets, there are some missing drug response values between certain drugs and
some cell lines. Here, we applied our TDLN model to predict drug responses for those
missing values in the GDSC dataset.

For the GDSC dataset, we focused on the PRAP inhibitors, AG-014699 and Ola-
parib, for which the response values are missing in a number of cell lines. Especially,
we predicted the responses of the two inhibitors in the EWS-FLI1-muted cell lines,
where the IC50 values were predicted. As a result, we predicted five cell lines that are
sensitive to both AG-014699 and Olaparib. Figure 4 shows the distribution of the IC50
values predicted by TDLN in both EWS-FLI1-muted cell lines and other cell lines.
From the distribution profiles, we can see that the EWS-FLI1-muted cell lines show an
increased sensitivity to PARP inhibitors, which is in agreement with previous findings
[8], implying the effectiveness of TDLN in predicting drug responses.

Fig. 3. The optimized weight parameters of bdrug and bcell that are determined in the CCLE,
GDSC and CTRP datasets. Here, “AArea” denotes “activity area”.
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4 Conclusions

In this work, we have proposed a topology based dual-layer network model (TDLN) to
predict drug response based on a drug-cell line heterogeneous network. In particular,
we defined the weights for the links within and between networks based on both local
neighborhood and global topological information of the networks. Benchmarking on
three datasets, our TDLN significantly outperforms other popular computational
approaches and we find that global topological information boosts the prediction
performance. In particular, we predicted that the EWS-FLI1-muted cell lines are sen-
sitive to PARP inhibitors. The finding has been validated by evidences from literature,
indicating the predictive power of our proposed TDLN model in predicting drug
response.
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Abstract. Computational drug repositioning helps to decipher the complex
relations among drugs, targets, and diseases at a system level. However, most
existing computational methods are biased towards known drugs-disease asso-
ciations already verified by biological experiments. It is difficult to achieve
excellent performance with sparse known drug-disease associations. In this
article, we present a graph regularized transductive regression method (GRTR)
to predict novel drug-disease associations. The proposed method first constructs
a heterogeneous graph consisting of three interlinked sub-graphs including
drugs, diseases and targets from multiple sources and adopts preliminary esti-
mation of drug-related disease to initial unknown drug-disease associations for
unlabeled drugs. Since the known drug-disease associations are sparse, graph
regularized transductive regression is used to score and rank drug-disease
associations iteratively. In the computational experiments, the proposed method
achieves better performance than others in terms of AUC and AUPR. Moreover,
the varying of parameters is shown to verify the importance of preliminary
estimation in GRTR. Case studies on several selected drugs further confirm the
practicality of our method in discovering potential indications for drugs.

Keywords: Transductive regression � Drug repositioning
Drug-disease association � Graph regularization � Heterogeneous network

1 Introduction

Traditional drug development faces difficulties relating to the expensive, time con-
suming and high risk of failure. Studies have demonstrated that drug repositioning,
which aims to discovery new indications for existing drugs, offers a promising alter-
native to drug development. Some successful repositioned drugs (e.g. Sildenafil,
thalidomide, raloxifene) have historically generated high revenues for their patent
holders or companies [1]. Compared to in vivo experimental methods for drug repo-
sitioning, in silico approaches are efficient at identifying potential drug-disease asso-
ciation, and thus significantly reduce research costs. Therefore, it is necessary to
develop a computational method for identifying drug-disease associations.
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To date, much effort has been allocated to developing computational approaches for
predicting drug-disease associations. Conventional computational methods mainly
depend on two strategies, the network-based method and feature-based method. A key
idea behind network-based algorithms is the construction of complex biological net-
works with large-scale biological data. Wang et al. [2] proposed a drug-disease
heterogeneous network model termed Heterogeneous Graph Based Inference (HGBI)
and extended the algorithm to a three-layer network (HL_HGBI), adding a new layer of
the target information [3]. However, the assumption was that drugs should have diverse
indications and diseases should have diverse treatments. Martínez et al. [4] constructed
a complex network which included drugs, diseases and proteins. Protein interactions
were used as a bridge to perform DrugNet, a general network-based prioritization based
on a propagation flow algorithm. Luo et al. [5] exploited known drug-disease associ-
ations to devise the drug-drug and disease-disease similarity measures, then building a
drug-disease heterogeneous network, on which a bi-random walk algorithm was
adopted to predict novel potential associations between drugs and diseases.

Much attention has also been devoted to introducing feature-based methods.
Bleakley et al. provided a supervised learning approach [i.e. support vector machine
(SVM)] on a bipartite local model (BLM) from chemical and genomic data [6]. Mei
et al. [7] proposed BLM-NII, combining BLM with a neighbor-based
interaction-profile inferring(NII) procedure. Gottlieb et al. [8] conducted multiple
drug-drug and disease-disease similarity measures as classification features, imple-
menting a classification algorithm named PREDICT to infer potential drug indications.
Yang et al. [9] calculated relevance scores between drugs and diseases from a
drug-target-pathway-gene-disease network and learnt a probabilistic matrix factoriza-
tion model (PMF) based on known drug-disease associations to classify drug-disease
associations. However, most of these approaches rely on the known association
information and directly set the weight of unknown disease-drug associations to zero.
This is perhaps the major reason that existing methods can’t obtain a satisfactory
performance based on sparse known associations validated by biological experiments.

In this article, we propose a graph regularized transductive regression (GRTR)
method to deal with the problem of the sparse known associations for drug-disease
association prediction. A three-layer heterogeneous network composed of drugs, dis-
eases and targets is constructed from multiple datasets. Then we approximately cal-
culate drug related diseases from local neighborhood information and adjust the weight
of links with diseases based on it. Through a transductive regression model with graph
regularization, the relevance score for potential drug-disease associations will be iter-
atively updated and all drugs ranked by their scores and judged whether they are related
to a disease. Compared to the previous nine advanced prediction methods, GRTR
performs better in terms of AUC and AUPR. Furthermore, the effect of varying
weighted parameters and the effect of preliminarily estimating drug-related disease are
analyzed. Case studies on the selected drugs and targets further exhibit the predictive
ability of drug-disease association.
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2 Methods

The overall process of predicting new drug-disease associations by GRTR is displayed
in Fig. 1. GRTR first constructs a three-layer heterogeneous network composed of
drugs, diseases and targets. Next, local information is obtained based on preliminary
estimates for drug-related disease from the distribution of diseases associated with
neighbor nodes in the heterogeneous network. Finally, using the heterogeneous net-
work, the known relationships with diseases and preliminary estimation results as
inputs, GRTR adopt graph regularization transductive regression to score and rank
drug-disease associations iteratively.
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Fig. 1. GRTR workflow. Given the inputs of the heterogeneous network matrix S and the matrix
of known association yL, we first obtain preliminary estimates for drug related diseases yu using
neighbor distribution information. We then score and rank drug-disease associations iteratively
based on graph regularization transductive regression. The top rank drugs for each disease in the
predicted association matrix f are treated as the candidate drugs for those diseases for further
experimental investigation.
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2.1 Heterogeneous Network Construction

The three-layer heterogeneous network consists of three nodes types: drug nodes,
disease nodes and target nodes. Suppose that m, n and k are the number of drugs,

diseases and targets, respectively. S11 ¼ S11i;j
n om;m

i¼1;j¼1
is an adjacency matrix of the

drugs similarity network, S22 ¼ S22i;j
n ok;k

i¼1;j¼1
is an adjacency matrix of the protein

interaction network and S33 ¼ S33i;j
n on;n

i¼1;j¼1
is an adjacency matrix of the disease

similarity network. Drug similarities can be calculated based on their chemical struc-
tures. Disease similarities and protein-protein interactions can be obtained from online
datasets. We connect the above three subnetworks using experimentally verified

drug-disease associations (S13 ¼ S13i;j
n om;n

i¼1;j¼1
), target-disease associations (S23 ¼

S23i;j
n ok;n

i¼1;j¼1
) and drug-target associations (S12 ¼ S12i;j

n om;k

i¼1;j¼1
) to form a heteroge-

neous network. The adjacency matrix of the heterogeneous network can be represented
as follows:

S ¼
S11 S12 S13

S12ð ÞT S22 S23

S13ð ÞT S23ð ÞT S33

0
@

1
A

where �ð ÞT represents the transpose of a matrix.

2.2 Preliminary Estimation of Drug Related Disease

In our research, the node with no known associations with a disease is unlabeled while
other nodes are labeled. Preliminary estimation for the related diseases for an unlabeled
drug is a local estimation. According to the assumption that drugs which are ‘close
together’ will have associations with the same disease [10], we will consider neigh-
borhood information based on the equal combination of diseases which have associ-
ation with neighbor nodes in the heterogeneous network. Firstly, the neighbors of a
drug i can be defined by the nearest labeled nodes N in the heterogeneous network.

NðiÞ ¼ j j Sij [ r; 1� i�mþ nþ k; 1� j�mþ nþ k
� � ð1Þ

where r is a threshold and in this paper r ¼ 0:5. Then we use the mean distribution of
the neighbor’s disease to describe the biological network’s local information and obtain
preliminary estimations for the related diseases (~y).

~yi ¼

P
j2NðiÞ

Si;jyj
P

j2NðiÞ
Si;j

ð2Þ
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where yj denotes the known associations between nodes j and diseases. Here, diseases
can be understood as discrete variables. Hence, the variance of a neighbor’s disease
distribution (r2~y) can be obtained as follows:

r2~yi ¼

P
j2Nðlþ iÞ

Si;jðyj � ~yiÞ2
P

j2NðiÞ
Si;j

ð3Þ

2.3 Graph Regularized Transductive Regression

The main idea of our prediction method is based on transductive regression which is
one of the most popular methods for imbalanced (sparse) data analysis, because pre-
diction though transductive regression can lead to good knowledge extraction of the
hidden network structure [11]. Wan et al. [12] presented a graph regularization-based
transductive regression (Grempt) method using a symmetry meta-path to deal with
label prediction on heterogeneous information networks, which have performed sat-
isfactorily. In order to address the limitations of the symmetry meta-path, we revise the
objective function’s first term to directly consider different links classes in the
heterogeneous network. The revised objective function is defined as follows:

Jðf Þ ¼
XAj j

p;q¼1

wp;q

Xvp
i¼1

Xvq
j¼1

Sp;qi;j
f piffiffiffiffiffiffiffiffi
Dpq

ii

p � f qjffiffiffiffiffiffiffiffi
Dpq

jj

q
�������

�������

2

þ a1
XLj j

i

fi � yik k2

þ a2
XUj j

i

fi � ~yik k2
r2~yi

ð4Þ

where a1 and a2 are two regularization coefficients which balance the different com-
ponents of the model. A ¼ drug; disease; targetf g is the network nodes category, wp;q

is the correlation between categories Ap and Aq p; q 2 1; 2; . . .; Aj jf gð Þ, vp is the
number of nodes which belong to category Ap, S

pq
i;j is the relevance between object

i 2 Ap and object j 2 Aq in the network, fi and f pi are the prediction results of node i
where p denotes i 2 Ap, D

pq
ii is the sum of the i-th row in Spq, L is the labeled nodes set
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which has an association with disease and U is the unlabeled node set. The model
consists of 3 functions and each one corresponds to different meaning:

• The first part of the objective function is the global smoothness item, which for-
mulates that similar nodes are likely to be associated with similar diseases.

• The second term of the objective function minimizes the difference between the
predicted results and the known association.

• The last term formulates a regularization item to minimize the difference between
the predicted results and the preliminary estimation from local characteristics.

The global minimum is calculated by differentiating (4) with respect to f pL and f pU
respectively, which gives:

@Jðf Þ
@f pL

¼
XAj j

p;q;p6¼q

2wp;q f pL � Rpq
LLf

q
L � Rpq

LUf
q
Uð Þ

þ 4wp;p f pL � Rpp
LLf

p
L � Rpp

LUf
p
Uð Þþ 2a1 f pL � ypLð Þ

ð5Þ

@Jðf Þ
@f pU

¼
XAj j

p;q;p 6¼q

2wp;q f pU � Rpq
ULf

q
L � Rpq

UUf
q
Uð Þ

þ 4wp;p f pU � Rpp
ULf

p
L � Rpp

UUf
p
Uð Þþ 2

a1
r2~yp

f pL � ~ypð Þ
ð6Þ

where fpL denotes the prediction result of labeled nodes belonging to Ap and fpU denotes

the prediction result of unlabeled nodes belonging to Ap. Rpq ¼ Dpqð Þ�1
2Spq Dqpð Þ�1

2 is
the integration of the whole heterogeneous network, which can be rearranged based on
labeled and unlabeled objectives.

Rpq ¼ Rpq
LL

Rpq
LU

Rpq
UL

Rpq
UU

� �
� p; q 2 1; 2; . . .; Aj jf g

Suggested that @J fð Þ
@f pL

¼ 0 and @J fð Þ
@f pU

¼ 0, the closed-form solution is obtained.

However, the iterative solution is sometimes preferable [13]. The detail steps of GRTR
to predict potential associations are described in Algorithm 1.
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3 Experiment and Results

3.1 Dataset

Experimentally confirmed drug-disease associations and drug–target associations are
both downloaded from the supplementary material of [8]. Gottlieb et al. have collected
1933 known drug-disease associations involving 593 drugs registered in DrugBank
[14] and 313 diseases listed in the Online Mendelian Inheritance in Man (OMIM)
database [15]. At last, we get 2814 known drug–target associations between 593 drugs
and 777 proteins.

The interactions between diseases and proteins are obtained from DisGeNET [16],
for a total of 10010 relationships between 3221 proteins and 313 diseases.

The disease–disease similarity network is downloaded from Online Mendelian
Inheritance in Man Mining Tool (MimMiner) [17]. According to the MimMiner
database, disease–disease similarities have already been normalized to the range [0, 1].

The protein–protein interaction network is built using 37039 binary interactions
among 9465 genes in the Human Protein Reference Database (HPRD) [18].
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The drug–drug similarities are calculated based on their chemical structures. First,
the chemical structures of all drug compounds in the Canonical Simplified Molecular
Input Line-Entry System (SMILES) format [19] are downloaded from DrugBank.
Then, the Chemical Development Kit [20] is used to calculate a binary fingerprint for
each drug. Finally, Tanimoto score [21] of two drugs was calculated based on their
fingerprints, which was in the range of [0, 1].

3.2 Parameters Selection and the Effect of Preliminary Estimation
for Drug-Related Disease

There are three parameters w, a1 and a2 in our prediction. w controls the importance of
different network. a1 and a2 control the contribution of known labeled objects and
preliminary estimation, respectively. We set w ¼ 1 for easy. To determine the optimal
configuration of a1 and a2, we firstly let both increase from 0 to 1 in increments of 0.05
and record the change in AUC. The results can be seen in Fig. 2(a), in which AUC value
increases rapidly as both a1 and a2 increase, and then became steadily reaching the
maximum AUC value. However, in order to determine the general future trend as a1 and
a2 become larger, we also vary them from 1 to 200, as demonstrated in Fig. 2(b). AUC
value rapidly decreases in the range 0 � a1 � 10 and then remains almost constant in
the range 10\ a1 � 200 which shows the result is not improved for these regions. But,
there is an opposite trend for a2, which first rises rapidly in the range of 0 � a2 � 10
and after keeping a short constant, it decreases in the range 30 � a2 � 200. Finally, we
select a1 = 1 and a2 = 20 for getting a better prediction result. Although a2 is much
larger than a1, it fits with the reality that preliminary estimation for drug-related disease
information is more important than it is for predicting new relations.

If we don’t use the preliminary estimation for drug-related disease (a2 = 0, a1 6¼ 0Þ,
the largest AUC is 0.9139. As a2 gets larger, AUC turns to be larger until reaches the
best value. To a certain extent, preliminary estimation for drug-related disease is sig-
nificant, and can improve predictive ability.
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Fig. 2. The influence of different a1 and a2 values on AUC. (a): 0–1 in 0.05 increments. (b): 0–
200 in 10 increments.
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3.3 Compared with Existing Methods

Systematic experiments are performed to evaluate the performance of the presented
approach with nine other methods: Weighted Nearest Neighbor-Gaussian Interaction
Profile(WNN-GIP) [22], Collaborative Matrix Factorization(CMF) [23], Kernelized
Bayesian matrix factorization(KBMF) [24], Neighborhood Regularized Logistic Matrix
Factorization(NRLMF) [25], a bipartite local model (BLM) [12], BLM with
neighbor-based interaction profile inferring (BLM-NII) [7], comprehensive similarity
measures and Bi-Random Walk algorithm (MBiRW) [5], standard LapRLS improved
by incorporating a new kernel (NetLapRLS) [26]. We use 10-fold validation to com-
pare GRTR performance. The area under the receiver operating characteristic
(ROC) curve (AUC) [27] and the area under the precision recall (PR) curve (AUPR)
are used to measure the quality of the predicted drugs for diseases. Figure 3 shows the
ROC and PR curves of the 10-fold validation experiments. Table 1 gives the AUC and
AUPR values. As expected, the GRTR’s AUC value is 0.9668, which outperforms all
other competitive methods significantly. GRTR is 2.10% better than the second-best
method, NRLMF, which also achieved an impressive result of 0.9465. For AUPR, we
observe that the values are lower than those in the original papers. The main reason for
this is that the data we used is larger and comparatively sparser. But GRTR also
performs well, obtaining the second best in the dataset with the AUPR value of 0.5925.
Though GRTR is slightly lower than NRLMF, it is still very competitive among the
methods.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-specificty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Se
ns

iti
vi
ty

ROC

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io
n

PR

GRTR

BLM
BLM-NII

MBiRW
NetLapRLS
WNN-GIP

CMF
KBMF

NRLMF

Fig. 3. The ROC and PR curves of GRTR and nine existing methods.

Table 1. AUC and AUPR values of GRTR and nine existing method.

Metric GRTR BLM BLM-NII MBiRW NetLapRLS WNN-GIP CMF KBMF NRLMF

AUC 0. 9668 0. 8719 0.9442 0. 9179 0.9444 0. 8584 0.9309 0.8713 0. 9465
AUPR 0.5925 0.3256 0.4075 0.0469 0.5750 0.205 0.3455 0.3463 0.6790
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3.4 Case Study

Here, the capability of our method in predicting novel drug-disease associations is
further examined here. One well-known biological database CTD [30] and some ref-
erences are used to verify the predicted novel drug-disease associations. For each
disease, the candidate drugs are ranked based on the prediction scores and the top-10
predicted drugs as prediction results are collected. For instance, 8 of the top 10
potentially related drugs have been directly shown to be linked with Diabetes Mellitus
type II (see Table 2), a endocrine system disease and metabolic disease. Lovastatin
(DrugBank: DB00227) is predicted to treat it and has been recorded in CTD. Figure 4
presents lovastatin’s neighbor drugs and the diseases they can treat. Vitamin
d-dependent rickets, osteoporosis and hyperlipoproteinemia are metabolic disease. And
barakat syndrome is an endocrine system disease. In addition, we also find many
associated genes between those that lovastatin can interact with to treat diabetes
mellitus and the neighbors can act on to treat corresponding disease, e.g. there are 1307
genes shared with the pravastatin treating hyperlipoproteinemia, 1460 genes shared
with the calcitriol treating vitamin d-dependent Rickets and 762 genes shared with the
Ergocalciferol treating barakat syndrome, etc.

Table 2. The top 10 predicted results for diabetes mellitus associated drugs.

Rank Drug Evidence

1 Guanfacine Literature [28]
2 Nalbuphine
3 Lovastatin CTD
4 Tamoxifen CTD
5 Bicalutamide
6 Promethazine CTD
7 Risperidone CTD
8 Dinoprostone CTD
9 Spironolactone CTD
10 Carvedilol Literature [29]

Fig. 4. Lovastatin (DB00227)’s neighbors and diseases can be treated. The yellow circle is the
predicted drug, the red circles are the neighbor drugs of the predicted drug and the green circles
are the diseases its neighbor can treated. (Color figure online)
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4 Conclusions

Identifying drug-disease associations is helpful in reducing the difficulty of drug
development and contributing to improved understanding of the underlying complex
relations among drugs, targets and diseases. In this work, we systematically studied the
problem of predicting drug-disease associations. Conventional methods for
drug-disease association prediction mainly achieved unsatisfactory performance for the
sparse known associations. However, the number of drug-disease associations verified
by biological experiments is far less than that of the potential drug-disease associations.
Therefore, GRTR based on graph regularized transductive regression was developed to
predict potential drug-disease associations. At first a three-layer heterogeneous network
consisting of drugs, diseases and targets was constructed. Afterwards, preliminary
estimation for drug-related diseases was conceived from neighbor information. Ulti-
mately, transductive regression strategy was adopted a to predict drug-disease asso-
ciations on the heterogeneous network. The superior performance of GRTR was
validated by cross validation and the top-ranked predictions. Experiment results indi-
cate that our method can predict better than nine other approaches. Furthermore, case
studies on several drugs indicated that potential drug-disease association predicted by
GRTR could assist in the biomedical research.

Despite the efficiency of GRTR, there are still some limitations which require
further optimization. Firstly, our method involved multiple parameters and the estab-
lishment of the optimal parameter values is still a challenging problem. Secondly, more
biological information can be used to improve predictions. Finally, although higher
reliability has been achieved, the current capability of GRTR remains unsatisfactory
and necessitates further improvement.
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Abstract. Along with the rapid development of high-throughput sequencing
technology, a large amount of multi-omics data sets are generated, which pro-
vide more opportunities to understand the mechanism of complex diseases. In
this study, an improved particle swarm optimization with dynamic scale-free
network, named DSFPSO, is proposed for detecting multi-omics features. The
highlights of DSFPSO are the introduced scale-free network and velocity
updating strategies. The scale-free network is employed to DSFPSO as its
population structure, which can dynamically adjust the iteration processes.
Three types of velocity updating strategies are used in DSFPSO for fully con-
sidering the heterogeneity of particles and their neighbors. Both gene function
analysis and pathway analysis on colorectal cancer (CRC) data show that
DSFPSO can detect CRC-associated features effectively.

Keywords: Particle swarm optimization � Dynamic scale-free network
Colorectal cancer � Multi-omics � Mutual information

1 Introduction

With the development of high-throughput sequencing technology, a vast amount of
biological data of different categories have been generated by The Cancer Genome
Atlas (TCGA). They provide us more opportunities to learn the biological mechanism
of complex diseases [1].

Detecting features from biological data is an effective way to illuminate the
underlying mechanism of diseases. A variety of feature extraction methods have been
widely used to analyze the gene expression data. For instance, least absolute shrinkage
and selection operator (LASSO), penalized matrix decomposition (PMD) and sparse
principal component analysis (SPCA) are commonly used methods of feature extrac-
tion. Roth V. used the generalized LASSO method to feature selection problems for
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microarray data [2]. Liu carried differential expression analysis on RNA-seq count data
based on PMD [3]. Lass et al. applied SPCA to clustering and feature selection
problems [4]. Although LASSO, PMD and SPCA have achieved satisfactory perfor-
mance on explaining the gene expression, they still have some defects in multi-omics
feature extraction. These conventional feature extraction methods which can only
identify genomic feature from single type of genomic feature cannot handle the inte-
grated TCGA datasets.

Recently, many particle swarm optimization (PSO) based methods have been
proposed for determining SNP-SNP interactions [5], gene features selection [6], and
cancer classifications [7]. PSO is a population-based search algorithm of adaptive
evolution, which proposed by Kennedy and Eberhart in 1995 [8]. Owing to its simple
structure and fast convergence, PSO has become an important evolutionary algorithm.
In recent years, numerous studies have been carried out to improve the performance of
PSO. Kennedy and Mendes have conducted a deep research on population structure
and particle behavior, founding that topology has a profound impact on particle
behavior [9]. Liu et al. proposed SFPSO (Scale-Free PSO) [10]. Gao proposed SIPSO
(Selectively-informed Particle Swarm Optimization), which employed scale-free net-
work to simulate the population structure and greatly improved the optimization pro-
cess [11]. The DMSPSO proposed by Zhao, used random dynamic changed population
structure which greatly improved the ability of local search [12].

However, conventional improvement on PSO algorithm suffers from the limited
particle population structure. For example, SFPSO and SIPSO generate the population
structure before experiments which cannot embody the dynamic changes in the process
of iteration. DMSPSO achieves the dynamic changes in population structure to a
certain extent, but the population structure building becomes a completely random
process which is unable to fit in with the actual optimization problems.

In this paper, we propose an improved PSO-based algorithm with dynamic scale-
free network, named DSFPSO, to detect multi-omics features. The innovations of
DSFPSO are the introduction of scale-free network and velocity updating strategies.
We employ scale-free network as its population structure which can be dynamically
adjusted in the process of iteration. Three types of velocity updating strategies are used
in DSFPSO for fully considering the heterogeneity of particles and the connecting
between neighbors. Specifically, to utilize the difference of gene expression based on
different levels of multi-omics data, we employ the ranking function to extract the most
effective gene features. To evaluate the validity of DSFPSO, experiments applied on
CRC are handled by DSFPSO and other compared methods. The identified genes are
appraised by gene function analysis and pathway analysis. Results show that the novel
method can identify CRC-associated features effectively.

2 Methods

2.1 Standard PSO Algorithm

PSO is similar to other evolutionary algorithms which use the concepts of “groups” and
“evolution” [13]. The speed of each particle can be dynamically adjusted according to
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the particle itself and its peers’ experience based on the fitness value. Based on the
fitness of the position, each particle will move to a better place and obtain the optimal
solution of optimization problems.

Standard PSO algorithm can be illustrated as follows.

Step1: Initialize the particle velocity and position;
Step2: Evaluate the fitness of each particle;
Step3: Decide whether to update personal and group best positions by comparing

the fitness;
Step4: Update the position and speed of the particles;
Step5: If not meet the ending condition, then return to Step2.

2.2 DSFPSO on Multi-omics Data

The flowchart of the proposed method is shown in Fig. 1. We will describe DSFPSO in
details on six aspects.

2.2.1 Initializing Particles with Multi-omics Data
According to the characteristics of the omics data, we integrate the data as genomics
and clinical information matrices. The whole genome matrix is the search space of
particles while the clinical information matrix is used for the test of particle fitness.

Based on the above mapping of multi-omics data, the position of particle i at
iteration t can be illustrated as

PositiontðiÞ ¼ ðxti1; � � � ; xtik; � � � ; xtiKÞ
i 2 f1; 2; � � � ; Ig
k 2 f1; 2; � � � ;Kg
t 2 f1; 2; � � � ; Tg
xtik 2 f1; 2; � � � ;Mg

ð1Þ

where I;K; T;M represents the number of particles, combination dimension of geno-
mic features, iteration, and gene features in the genome datasets, respectively. xtik is the
selected genomic feature of particle i at iteration t in k dimensional space.

The speed of particle i at iteration t can be defined as

VelocitytðiÞ ¼ ðvti1; � � � ; vtik; � � � ; vtiKÞ
vtik 2 ½1�M;M � 1� ð2Þ

where vtik is the speed of xtik.
Similarly, before the first iteration, PositiontðiÞ, VelocitytðiÞ, PbesttðiÞ, NeibesttðiÞ,

GbesttðiÞ are assigned a random value in their domain respectively.
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Select 2*nbr particles from [1:t-1]

Select nbr particles from [t:P]

Updating Position and Velocity

Finding final results from Pbest

t=t+1

Fig. 1. The flowchart of DSFPSO.
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2.2.2 Analysis of the Fitness Function
Since mutual information does not need to assume the distribution of genomics data
and can effectively measure the nonlinear relationship between genetic characteristics
[14], we employ it as fitness function, which can be formulated as

MIðX; YÞ ¼ HðXÞþHðYÞ � HðX; YÞ ð3Þ

Therefore, higher mutual information value denotes strong association between the
genetic characteristic combination and the clinical information.

2.2.3 Updating the Dynamic Scale-Free Network
In order to fully utilize the properties of particles and experimental data, we have
adopted a new strategy of link growth and selecting.

In one iteration, we make the out of network particles in fitness descending order
and select new particles with higher fitness from these particles to join the network.
Then these new particles will choose excellent neighbors from the network particles
with the same sort processing.

In the dynamic process of scale-free network building, the particles position and
population structure will be dynamically updated with the join of new particles in the
solution space. Furthermore, we select the excellent new particles according to fitness
value instead of the basic scale-free network adding new points without selection,
which greatly improve the reliability of particles information exchange.

2.2.4 Updating the Particle Speed
In DSFPSO, the scale-free network building is synchronized with the solving iteration.
Accordingly, particles have the difference of “in” and “out” of the network in the
process of scale-free network building, so the two kinds of particles should be treated
differently using different velocity updating strategies. The velocity updating equations
can be formulated as

vtþ 1
ik ¼

g � ðvtik þ 1
ki

P
j2NðiÞ

randð0;/Þ � ðpbxtjk � xtpkÞÞ; 00in00

wt
ik � vtik þ randð0; c1Þ � ðpbxtik � xtikÞþ randð0; c2Þ � ðgbxtik � xtikÞ; 00out00

8<
:

vtþ 1
ik ¼ vtþ 1

ik vtþ 1
ik 2 ½1�M;M � 1�

randð1�M;M � 1Þ vtþ 1
ik 62 ½1�M;M � 1�

(

g ¼ 2

2� /�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2 � 4/

p��� ���
/ ¼ c1 þ c2 [ 4

wt
ik ¼ b� iter � ðb� aÞ=n

ð4Þ

where g is learning rate, c1 and c2 are acceleration coefficients. wt
ik is dynamic inertia

weight balancing the capability between global and local search, randða; bÞ is random
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number between a and b, NðiÞ denotes the neighbors of the particle i, Ki is the number
of neighbors for particle i.

Based on the speed updating of particles, the position updating equation can be
formulated as

xtþ 1
ik ¼ xtik þ vtþ 1

ik

xtþ 1
ik ¼ xtþ 1

ik xtþ 1
ik 2 ½1;M�

intðrandð1;MÞÞ xtþ 1
ik 62 ½1;M�

(
ð5Þ

2.2.5 Updating Personal Best Position, Neighbor Best Position and Group
Best Position
In DSFPSO, particle’s personal best position will be updated by the position with the
maximum mutual information. The specific equations can be formulated as

Pbesttþ 1 ¼
PositiontðiÞ MIðPositiontðiÞ; YÞ ¼ Val

PbesttðiÞ MIðPbesttðiÞ; YÞ ¼ Val

�

Val ¼ maxðMIðPositiontðiÞ; YÞ; MIðPbesttðiÞ; YÞÞ
ð6Þ

Similarly, the group best position updating equations can be written as

Gbesttþ 1 ¼
Pbesttþ 1ðiÞ MIðPbesttþ 1ðiÞ; YÞ ¼ Val

GbesttðiÞ MIðGbesttðiÞ; YÞ ¼ Val

�

Val ¼ maxðPbesttþ 1ðiÞ; YÞ; MIðGbesttðiÞ; YÞÞ
ð7Þ

And the neighbor best position updating equations can be written as

Neibesttþ 1 ¼
PositiontðjÞ MIðPositiontðjÞ; YÞ ¼ Val

NeibesttðiÞ MIðNeibestt; YÞ ¼ Val

�

Val ¼ maxðMIðPositiontðjÞ; YÞ; MIðNeibesttðiÞ; YÞÞ
j 2 NðiÞ

ð8Þ

2.2.6 Finding Final Results
In genomics data, each gene may have several genetic characteristics due to the dif-
ferences of gene expression. In the results of DSFPSO, a gene may have a variety of
genomic characteristics or may not. In this paper, we resort scoring strategies to extract
gene features based on the score of gene expression [15]. The scoring function can be
described as

Score1ðiÞ ¼ rankðiÞ � ðn� iþ 1Þ
Score2ðjÞ ¼

X
i2G

Score1ðiÞ ð9Þ
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where rankðiÞ represents the rank value of genomic features i, n is the total order value
of all the gene characteristics,G is the expression set of each gene.

3 Results

3.1 TCGA CRC Data

TCGA CRC data can be obtained from its web portal (https://tcga-data.nci.nih.gov/docs/
publications/tcga/). Data used in this paper is the integrated data which has been prepro-
cessed by Lee [16] (http://genomeportal.stanford.edu/tcga-crc/pages/datainformation).
Considering the experiment needs, we carry discretization on somatic mutations and
methylation data,which greatly improved the stability of the experiment.

The CRC data of TCGA used in this paper from 197 samples contains 5,188
genomic features of 1325 genes, including copy number variation, somatic mutations,
methylation data and gene expression data (Fig. 2).

3.2 Gene Enrichment Analysis

ToppGene is a one-stop portal for gene list enrichment analysis and candidate gene
prioritization based on functional annotations and protein interactions network.

To show the effectiveness of DSFPSO, we carry out GO enrichment analysis using
ToppGene (https://toppgene.cchmc.org/enrichment.jsp) and compare the results on the
same data set, including PSO,SIPSO, LASSO, PMD and SPCA. We input the top 500
genes identified by these methods into the ToppGene Suite, respectively, whose
threshold value of the p-value is set to 0.001 and other parameters are set as default.
Table 1 lists the top 10 closely related GO terms found by ToppGene. From this table,
we can see that the term of “positive regulation of gene expression” has the lowest P-
Value (9.38E-19), so it is considered as the most probable enrichment item. Further-
more, we notice that in the term of “regulation of multicellular organismal develop-
ment” PSO outperforms DSFPSO and in the term of “regulation of transcription by

Fig. 2. The CRC data of TCGA.
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RNA polymerase II” PMD outperforms DSFPSO. In general, DSFPSO shows better
performance than SIPSO, PSO, LASSO, PMD and SPCA in majority results.

3.3 KEGG Pathway Analysis

KEGG (Kyoto Encyclopedia of Genes andGenomes) is a database which systematacially
analyzes the function of gene to reveal the genetic and chemical blueprint of life [17].

In this study, we use DAVID (https://David-d.ncifcrf.gov/) on KEGG pathway to
analyze the results. The top 10 CRC-associated pathways are shown in Table 2.
Among them, Pathways in cancer and Colorectal cancer are obviously correlated with
cancers. [18] indicates that PI3 K-Akt signaling pathway play an important role in
inflammation-induced colorectal carcinogenesis. PI3 K-Akt signaling pathway links
intimately with cellular metabolism and has great influence on cancer biological
behavior [19]. The FoxO signaling pathway plays a central role in diverse physio-
logical processes including cellular energy storage, growth and survival, among others
[20]. [21] suggests that FOXO3a is a relevant mediator of the cytotoxic effects of
cisplatin in colon cancer cells. Adherens junction pathway plays a critical role in
cellular adhesion, glandular differentiation, and cellular proliferation. The function of
this pathway correlated proteins is compromised in a number of intestinal diseases,
including ulcerative colitis that has an increased incidence for colorectal cancer [22].

Table 1. The closely related GO terms found by toppgene.

GO terms P-Value
DSFPSO SIPSO PSO LASSO PMD SPCA

GO:0010628 9.38E-19 3.45E-16 1.13E-13 7.59E-8 8.64E-15 3.83E-15
GO:0045595 4.43E-18 8.10E-14 3.18E-17 / 1.26E-11 8.01E-11
GO:2000026 2.35E-17 1.14E-13 2.04E-17 / / 7.88E-11
GO:0051254 2.42E-16 4.92E-13 2.36E-13 3.64E-8 6.51E-15 5.43E-14
GO:1902680 2.75E-16 2.24E-13 4.02E-14 2.52E-8 2.78E-15 2.41E-14
GO:1903508 3.69E-16 1.13E-13 5.39E-14 3.64E-8 1.33E-15 1.19E-14
GO:0045893 3.69E-16 1.13E-13 5.39E-14 3.64E-8 1.33E-15 1.19E-14
GO:0006357 4.30E-16 1.59E-14 1.09E-13 2.49E-7 9.90E-19 3.35E-18
GO:0045935 9.39E-16 5.37E-13 8.58E-12 9.38E-8 1.03E-15 8.47E-15
GO:0051172 1.65E-15 / 1.95E-13 / 1.48E-10 2.93E-11

GO:0010628: positive regulation of gene expression; GO:0045595: regulation of
cell differentiation; GO:2000026: regulation of multicellular organismal
development; GO:0051254: positive regulation of RNA metabolic process;
GO:1902680: positive regulation of RNA biosynthetic process; GO:1903508:
positive regulation of nucleic acid-templated transcription; GO:0045893: positive
regulation of transcription, DNA-templated; GO:0006357: regulation of
transcription by RNA polymerase II; GO:0045935: positive regulation of
nucleobase-containing compound metabolic process; GO:0051172: negative
regulation of nitrogen compound metabolic process.
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3.4 Analysis of Gene Function

In order to evaluate the algorithm’s performance and explore the correlation between
genes and the pathogenesis of colorectal cancer, we carry out detailed analysis on 10
CRC-related genes among top identified 50 genes. The gene function descriptions are
shown in Table 3.

CSMD1 alterations can correlate with earlier clinical presentation in colorectal
tumors, thus further implicating CSMD1 as a tumor suppressor gene [23]. Loss of
CSMD1 may contribute to the poor prognosis of colorectal cancer patients [24]. [25]
indicates that KBTBD11 influences colorectal cancer risk, especially in interaction with
an MYC-regulated SNP rs6983267. WRN promoter methylation connects mucinous

Table 2. The top 10 CRC-associated pathways.

Rank Pathway Count P-Value

1 Pathways in cancer 46 1.1E-13
2 Colorectal cancer 12 5.2E-6
3 PI3 K-Akt signaling pathway 27 7.6E-5
4 Viral carcinogenesis 19 1.6E-4
5 MicroRNAs in cancer 22 5.2E-4
6 Cell cycle 13 8.5E-4
7 Focal adhesion 17 1.4E-3
8 Hepatitis B 13 3.3E-3
9 FoxO signaling pathway 12 5.1E-3
10 Adherens junction 7 3.1E-2

Table 3. The function of genes identified by DSFPSO.

Rank Gene Gene function

1 CSMD1 CSMD1 alterations can correlate with earlier clinical presentation in
colorectal tumors

2 KBTBD11 KBTBD11 significantly associated with CRC susceptibility
3 WRN WRN promoter methylation is common in colorectal cancer with the

CpG island methylator phenotype (CIMP)
4 SUZ12 SUZ12 mRNA expression in the CRC tissues was significantly

increased than in the non-cancerous tissue
5 CDX2 CDX2 is mutated in a colorectal cancer with normal APC/b-catenin

signaling
6 NRIP2 NRIP2 in colorectal cancer initiating cells modulates the Wnt pathway
7 CUX1 CUX1 could represent an important regulator of colonic epithelium

homeostasis
8 ASB4 ASB4 was higher expressed in CRC tissue than corresponding normal

tissue
9 CDK6 CDK6 plays a key role in the cycle of colorectal cancer cells
10 PDK4 PDK4 are highly expressed in human CRC cells
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differentiation, microsatellite instability and CpG island methylator phenotype in col-
orectal cancer [26]. SUZ12 mRNA expression in the CRC tissues is significantly
increased than in the non-cancerous tissue. Increased SUZ12 mRNA expression is
directly correlated with primary tumor size, regional lymph node metastases, distant
metastasis and AJCC stage. Furthermore, CRC patients with higher level of SUZ12
showed a worse disease-free survival (DFS) [27]. CDX2 is mutated in a colorectal
cancer with normal APC/b-catenin signaling [28, 29] shows that CDX2 specifies
intestinal development and homeostasis and is considered a tumor suppressor in col-
orectal carcinogenesis.

4 Conclusions

Considering traditional PSO algorithms usually take equal treatment of all particles and
ignore the disadvantages related to the heterogeneity of population structure, we pro-
pose an improved PSO algorithm named as DSFPSO to identify gene features of
complex diseases. This algorithm dynamically adjusts population structure according to
the particles status in the process of iteration.

With fitness of particles as a standard for preferred link selection, DSFPSO realizes
the true meaning of PSO for dynamic scale-free network. Moreover,this is the first time
for PSO algorithm introduced into multi-omics data analysis with CRC data provided
by TCGA as the experiment data and filtering results through scoring strategies.
Experimental results show that DSFPSO can be convergent to global optimization
quickly and find CRC-associated genes, which will provide valid references for early
diagnosis, effective treatment and prognostic guidance of colorectal cancer. To explore
correlations among differentially expressed genes is left as our future work.
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Abstract. Gene Regulatory Network (GRN) is a directed graph which
describes the regulations between genes. The problem of reconstructing
GRNs has been studied for decades. Most of existing methods infer the
GRNs from gene expression data. Previous studies use random forest,
partial least squares or other feature selection techniques to solve it.
In this paper, we propose a Multivariate Adaptive Regression Splines
(MARS) based method to estimate the feature importance and recon-
struct the GRNs. MARS can catch the nonlinear relationships between
genes. To avoid the overfitting and make the estimation robust, we apply
an ensemble model of MARS based on bootstrap and weighted features
by PMI (Part mutual information), called PBMarsNet. The results show
that PBMarsNet performs better than the state-of-the-art methods.

Keywords: Gene Regulatory Network · Gene expression · MARS
PCA-PMI

1 Introduction

Gene Regulatory Network (GRN) is one of the most essential biological net-
works to expose the mechanism of gene expression. The reconstruction of GRNs
is significant to the research of cell differentiation, body development and patho-
genesis of disease. However, the biological techniques such as ChIP [1], RIP [2]
are time-consuming and expensive to discover gene regulations. The computa-
tional methods have been proposed and applied in the problem.

Mutual information (MI) is a typical correlation analysis method to catch
nonlinear regulations between pairs of genes [3,4]. Although the pairwise mutual
information is flexible, it can’t distinguish the indirect regulations. The following
MI based methods focus on filtering the indirect regulations by considering data
processing inequality or information redundancy [5,6]. Recently, Zhang et al. [7]
c© Springer International Publishing AG, part of Springer Nature 2018
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propose PCA-CMI, which infers the GRNs by conditional mutual information
(CMI) and path consistency algorithm. PCA-CMI applies conditional depen-
dency test to detect the indirect regulations. Several modified methods [8,9] also
have been proposed based on PCA-CMI. These methods overcome the problems
of underestimation in PCA-CMI, which further improve the precision of infer-
ring GRNs. Due to the symmetry of mutual information, the mutual information
based methods are generally used to infer the indirected structure of GRNs.

Bayesian Networks (BNs) is another popular method to reconstruct GRNs.
BNs is a directed acyclic graph, which quantifies the regulations by probabilis-
tic conditional dependency [10,11]. With the development of time-series gene
expression data, a series of adaptive models for time-series data are proposed,
called Dynamic Bayesian Networks (DBNs) [12,13]. One of the major problems
in BNs and DBNs is to learn the optimal structure of networks. The biolog-
ical information can reduce the learning time efficiently [14]. Besides, Liu et
al. [15] present Local Bayesian Network (LBN) to handle large-scale networks.
LBN divides the whole gene set into several subsets by clustering which based
on mutual information, then applies BNs in each subset of genes.

In addition to mutual information and BNs, regression methods with fea-
ture importance estimation are emerging recently. Regression models divide the
problem of reconstructing GRNs into multiple independent regressions. In each
regression, the expression of a specific gene is modeled by the effect of other
regulatory genes expression. Then, feature selection methods are applied to esti-
mate the importance of the candidate regulatory genes. The regression meth-
ods include two main types: the model-based and the model-free. Model-based
methods generally present a specific form of the regression, mainly generaliz-
ing the linear model. There are various effective feature selection techniques,
such as lasso [16], least angle regression [17,18] and partial least squares [19].
These methods also modify the traditional models to be applicable in real bio-
logical data [20,21]. Model-free methods avoid the predefinition of the model.
The most typical model-free method is GENIE3 [22], which is based on ran-
dom forest. Although the model-free methods are flexible and effective, it is
difficult to interpret the details of model and the mechanism of regulations.
Furthermore, NIMEFI [23] combines both model-based and model-free feature
selection methods. Huynh-Thu and Sanguinetti [24] propose Jump3 to bridge
the gap between model-based and model-free methods by combining tree-based
and dynamical systems.

In this paper, we introduce a novel ensemble method, called PBMarsNet. The
method is based on multivariate adaptive regression splines (MARS), which is
more effectively to model continuous data and estimate the feature importance
compared with random forest. We apply the bootstrap with MARS to obtain
the ensemble result, which is similar with GENIE3. To avoid overfitting, in each
bootstrap run, PBMarsNet only selects one subset of candidate regulatory genes.
The probability of genes to be selected as candidate regulators are pre-calculated
by PCA-PMI. Comparing with other state-of-the-art methods on DREAM
(Dialogue for Reverse Engineering Assessments and Methods) [25,26] datasets,
the results show that PBMarsNet could get better performance.
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2 Materials and Methods

2.1 Data

DREAM4 [25] (Dialogue for Reverse Engineering Assessments and Methods) is
one of the common datasets used to evaluate the performance of GRNs recon-
struction. DREAM4 provides simulated mRNA expression data and gold stan-
dard networks generated by GeneNetWeaver [27]. GeneNetWeaver generates the
networks based on GRNs pattern of E.coli and S.cerevisiae. The dataset contains
different type of biological data, including wild type, time series, multifactorial,
etc. In this paper, we focus on inferring the GRNs from multifactorial gene
expression data. DREAM4 provides five multifactorial gene expression datasets
(Table 1) with different gold standard networks. Each dataset contains 100 genes
and 100 samples. The samples simulate gene expressions under different pertur-
bation experiments. In the result section, we compare PBMarsNet with other
state-of-the-art methods on the five datasets.

To further verify the effectiveness of PBMarsNet on large scale of GRNs, we
select another in silico benchmark from DREAM5 [26]. The dataset contains 1643
genes, 805 samples under perturbation, and the gold standard network has 4012
edges. Moreover, the dataset also provides 195 genes as candidate regulatory
genes, which is more similar to the real biological data. The details of all the
datasets are shown in Table 1.

Table 1. The details of datasets

Networks Genes Regulatory genes Samples Edges

DREAM4 multifactorial network 1 100 100 100 176

DREAM4 multifactorial network 2 100 100 100 249

DREAM4 multifactorial network 3 100 100 100 195

DREAM4 multifactorial network 4 100 100 100 211

DREAM4 multifactorial network 5 100 100 100 193

DREAM5 in-silico 1643 195 805 4012

2.2 Overview of Methodology

The workflow of PBMarsNet is summarized comprehensively in Fig. 1. The pro-
posed method can be mainly divided into three parts: the pre-weighted process-
ing of candidate transcription factors by PCA-PMI, the multivariate adaptive
regression splines based ensemble methods and the importance evaluation for
candidate transcription factors. The details of each part will be described in the
following subsections.
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Fig. 1. The workflow of PBMarsNet

Problem Definition. Generally, Gene Regulatory Network is a directed graph
where the nodes denote genes and edges denote the regulatory relationships
between them. The problem of reconstructing GRNs has been studied for
decades. Most of existing methods infer the GRNs from gene expression data,
including multifactorial, knock-out, knock-down or time-series gene expression
data. In this paper, we focus on inferring the GRNs from multifactorial gene
expression data. The expression level of multifactorial data are obtained under
different conditions simultaneously. The gene expression data G with N genes
M samples is defined as follow:

G =

⎡
⎢⎢⎢⎣

x11 x21 · · · xN1

x12 x22 · · · xN2

...
...

. . .
...

x1M x2M · · · xNM

⎤
⎥⎥⎥⎦ (1)

where xij is expression level of gene Xi at sample j. Reconstruction of GRNs is to
infer the direct effects and their direction between genes. Recently, some meth-
ods, such as GENIE3, TIGRESS and PLSNET, have formalized the problem
of reconstructing GRNs into N independent feature selection problems. These
methods recursively select a gene as target gene and other genes as candidate
regulatory genes. For a specific target gene Xi, its expression level can be defined
by other genes as follow:

Xi = f(X−
i ) + ε (2)

where f denotes a regression function, X−
i = {X1,X2, · · · ,Xi − 1,Xi +

1, · · · ,XN} and ε is a random noise. The essential problem is to estimate the
importance of genes based on the regression function. Previous studies use tree-
based method, partial least squares or other feature selection techniques to solve
it. The feature importance Imp(Xj) for target gene Xi is used to indicate the
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weight of directed regulatory link from gene Xj to gene Xi, then rank all the
links globally. In this paper, we apply MARS to estimate the feature importance.

Multivariate Adaptive Regression Splines. The Multivariate Adaptive
Regression Splines (MARS) is a no-linear regression model introduced by Fried-
man firstly [28]. The previous studies [28–30] have shown MARS and their mod-
ified versions are flexible and powerful to solve regression problems. MARS takes
the general form as follow [31]:

f(X) =
K∑

k=1

βkhk(X) (3)

where K is the number of basis function selected in final model, βm is the
coefficient for each basis function. hk(X) denotes the basis function, which is a
key part in MARS. The basis function hk(X) includes three types: a constant
1, a hinge function and the product of two or more hinge functions. The form of
hinge function is as follow [31]:

(x)+ =

{
x − t if x

0 otherwise
or (x)− =

{
t − x if x < t
0 otherwise

(4)

where t is a constant, called knot. For a variable X, it has a pair of hinge function,
and both of them are piecewise linear functions. For a dataset with N variables
and M samples, if all the variables’ values are distinct, there are 2NM candidate
hinge functions altogether.

The strategy of model building contains forward pass and backward pass,
which is similar with stepwise linear regression. In forward pass, the model selects
hinge functions of a variable leading to maximum reduction of residual sum of
squares (RSS) in each step and repeats the process until convergence. According
to Eq. (3), we use H = {hk(X)} to denote the set of basis functions which are
selected in the model, and C = {(xk)+, (xk)−} to denote the candidate set of
hinge functions. The model starts with a constant H0 = {1}. In iteration i, the
set Hi−1 contains the basis functions in previous i−1 iterations. Then the model
considers to select a pair of hinge functions (xj)+, (xj)− from C and to add terms
hk(X)(xj)+,hk(X)(xj)− that maximizing the reduction of RSS to the model and
updating Hi−1 by including these terms, where hk(X) ∈ Hi−1. The coefficients
{βk} are estimated by a least squares fit. The degree of MARS is determined by
the maximum number of distinct hinge functions in basis functions. Specially, if
the degree is set to 1, that means the model is restricted to be additive.

As the forward pass building the model greedily, which typically leads to a
large model and overfitting, the backward pass is applied to avoid the problem. In
backward pass, the term which contributes least to reduction of RSS is removed
in each iteration. The backward pass of MARS uses generalized cross validation
(GCV) to control the balance between number of terms in model and the RSS
of model. The GCV is defined as follow:

GCV =
RSS

(1 − E/M)2
and E = r + cK (5)
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where E denotes the effective number of parameters in the model, and M is
the number of samples. The value of E includes the number of terms r and the
number of knots K with a penalty c. In addition, the importance of each variable
can also be estimated by the reduction of GCV [28].

The MARS models can catch the nonlinear relationships by hinge functions
and their products. The strategies of MARS and Recursive Partitioning methods
(such as decision tree) are similar. Previous studies have shown that MARS tends
to achieve better performance than Recursive Partitioning methods on numeric
and continuous data [28,32,33]. Several modified versions of MARS are proposed
to accelerate calculating speed or improve the accuracy of results [30,34].

Ensemble MARS for GRNs Reconstruction. As described above, recon-
struction of GRNs can be decomposed into several independent feature selection
problems. In this paper, we also apply MARS to address each feature selection
problem. However, previous studies have stated some difficulties in reconstruct-
ing GRNs, such as the sufficient number of candidate regulatory genes to a
good model for target gene and the noise of gene expression data [18,19]. Moti-
vated by existing ensemble methods (e.g.,GENIE3 and PLSNET), we propose
the ensemble MARS by applying weighted bootstrapping.

Bootstrap is a method to estimate parameters or models by random sampling
with replacement. The procedure of bootstrap contains generating multiple sam-
ple sets from gene expression data by resampling, then, applying MARS upon
each sample set to estimate the importance of each candidate regulatory gene.
Generally, the result based on bootstrapping becomes more stable and robust.
For the purpose of determining number of candidate regulatory genes and con-
trolling the complexity of MARS model, we also select a subset of all regulatory
genes in each bootstrap group. However, selecting genes randomly will need more
time to ensure the stability of the result. One of the solution is to weight the
candidate regulatory genes and generate the subset by weight. Previous studies
have applied correlation based and mutual information (MI) based methods to
undirect GRNs reconstruction successfully [7,9,35]. In this paper, we use PCA-
PMI to weight the candidate regulatory genes. Given a pair of genes X,Y with
conditional gene Z, the definition of PMI is as follow:

PMI(X;Y |Z) =
∑
x,y,z

p(x, y, z)log
p(x, y|z)

p∗(x|z)p∗(y|z)
(6)

where p∗(x|z) =
∑

y p(x|z, y)p(y) and p∗(y|z) =
∑

x p(y|z, x)p(x), If Z contains
two or more genes, the equation could estimate high order PMI. The proposal of
PMI is used to solve the underestimation problem caused by conditional mutual
information (CMI) [9].

PCA-PMI combines PMI with path consistency algorithm (PCA). PCA is
used to remove the indirect regulatory links recursively. The schema of PCA-
PMI is as follow. First, calculate the pairwise mutual information of all genes as
the confidence of regulatory links and filter the links with lower confidence by a
threshold. Next, for a pair of genes x, y select their common adjacent gene z and
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calculate first order PMI(x, y|z) and filter the links with low confidence. Then,
calculate higher order PMI and do the filter until no links deletion.

In summary, for a specific target gene, the framework of Ensemble MARS is
as follow:

Step 1. Use PCA-PMI to estimate the weight of pairwise genes.
Step 2. Generate multi subgroups, which are sampled by bootstrap and selecting

subsets from weighted candidate regulatory genes. Genes with higher
weight will be selected more frequently.

Step 3. Apply MARS on each subgroup.
Step 4. Estimate the feature importance V IM of candidate regulatory genes.

The definition of V IM is as follow:

V IM(x) =

∑
allgroup Imp(x)∑
allsubgroup I(x)

(7)

where Imp(x) is the feature importance gotten by MARS. I(x) is a
indicator function, when x in subgroup, I(x) = 1, otherwise 0

3 Result

We compare PBMarsNet with six state-of-the-art GRNs inference methods.
The GENIE3 [22] is the winner in DREAM4 challenge [25]. TIGRESS [17],
PLSNET [19] and NIMEFI [23] are ensemble algorithms based on different
feature selection techniques, while CLR [4] and ARACNE [36] are mutual
information-based methods. The above methods are used widely in the liter-
atures. Moreover, we also present the result of PBMarsNet without PCA-PMI,
called BMaresNet to verify the effectiveness of the feature weights.

To compare with these methods, AUROC (Area under the receiver operating
characteristic curve) and AUPR (Area under the precision-recall curve) are used
to evaluate performance of the methods. The AUROC is calculated by plotting
pairs of true positive rate (TPR) and false positive rate (FPR), and the AUPR
is based on pairs of precision and recall. The definitions of TPR, FPR, precision
and recall are as follows:

TPR = TP/(TP + FN) (8)

FPR = FP/(FP + TN) (9)

Precision = TP/(TP + FP ) (10)

Recall = TP/(TP + FN) (11)

where TP is the number of true positive, FP is the number of the false positive,
TN is the number of true negative and FN is the number of false negative.
As the structures of GRNs are generally sparse, the value of AUPR is more
meaningful than AUROC.
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In experiment, we set the penalty, max terms, bootstrap number of
PBMarsNet to 10, 5 and 1000, respectively. Other methods use the default
parameters. The results of these methods on DREAM4 dataset are shown in
Table 2. From the results, BMarsNet and PBMarsNet gets the comparative
results on AUROC and AUPR, especially AURP. BMarsNet and PBMarsNet
get the best AUPRs on the five networks except Network 2. And comparing with
BMarsNet, PBMarsNet achieves better AUPRs, which means selecting from pre-
weighted regulatory genes is better than from random. Average of AUPR on five
networks are improved 0.03 by PBMarsNet than the second best method.

AUROC and AUPR values obtained for on DREAM5 in-silico dataset are
shown in Table 3. In the case, both AUROC and AUPR are improved signifi-
cantly by PBMarsNet. The result further verifies the effectiveness of PBMarsNet
on inferring large scale networks.

Table 2. The result of different methods on the DREAM4 size 100 multifactorial
networks

Method Network 1 Network 2 Network 3 Network 4 Network 5

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

GENIE3 0.161 0.750 0.154 0.734 0.234 0.776 0.211 0.800 0.200 0.795

TIGRESS 0.158 0.747 0.161 0.703 0.233 0.761 0.225 0.774 0.233 0.754

CLR 0.143 0.701 0.117 0.695 0.174 0.744 0.181 0.753 0.175 0.723

ARACNE 0.122 0.605 0.102 0.603 0.201 0.691 0159 0.713 0.167 0.661

NIMEFI 0.157 0.758 0.157 0.731 0.248 0.776 0.225 0.806 0.241 0.801

PLSNET 0.118 0.713 0.290 0.828 0.202 0.794 0.228 0.819 0.206 0.786

BMarsNet 0.174 0.722 0.161 0.719 0.265 0.765 0.253 0.766 0.255 0.789

PBMarsNet 0.192 0.734 0.162 0.717 0.287 0.754 0.263 0.776 0.283 0.778

Table 3. The result of different methods on the DREAM5 in-silico dataset

GENIE3 TIGRESS CLR ARACNE NIMEFI PLSNET BMarsNet PBMarsNet

AUPR 0.291 0.302 0.254 0.187 0.298 0.270 0.317 0.382

AUROC 0.814 0.783 0.771 0.763 0.817 0.862 0.827 0.829

4 Conclusion

Reconstruction of GRNs is an essential problem in system biology. In this paper,
we propose a multivariate adaptive regression splines based method, called
PBMarsNet. The method divides the problem of reconstructing GRNs into mul-
tiple feature selection problems. The feature importance is estimated by mul-
tivariate adaptive regression splines. Moreover, we also apply bootstrap frame-
work to get more robust results. To avoid overfitting in multivariate adaptive
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regression splines, we select a small subset of candidate genes in each bootstrap
run. The probabilities of genes are pre-calculated by PCA-PMI. We evaluate
PBMarsNet on the DREAM4 multifactorial benchmarks and DREAM5 in-silico
dataset. The results show the better performance than other state-of-the-art
methods on different scales of network.

Fund Sponsored. This work was supported in part by the National Natural Science
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Abstract. Several works have pointed out that the tight correlation
between genes’ evolutionary rate is better explained by a model denoted
as the Universal Pacemaker (UPM) rather than by a simple rate con-
stancy as manifested by the classical hypothesis of Molecular Clock
(MC). Under UPM, the relative evolutionary rates of all genes remain
nearly constant whereas the absolute rates can change arbitrarily accord-
ing to the pacemaker ticks. This evolutionary framework was recently
adapted to model epigenetic aging where methylated sites are the analogs
of evolving genes.

A consequent question to the above finding is the determination of
the number of such pacemakers and which gene adheres to which pace-
maker. This however turns to be a non trivial task and is affected by the
number of variables, their random noise, and the amount of available
information. To this end, a clustering heuristic was devised exploiting
the correlation between corresponding edge lengths across thousands of
gene trees. Nevertheless, no theoretical study linking the relationship
between the affecting parameters was done.

We here study this question by providing theoretical bounds,
expressed by the system parameters, on probabilities for positive and
negative results. We corroborate these results by a simulation study that
reveals the critical role of the variances.

Keywords: Phylogenetics · Universal Pacemaker · Gene partitioning
Probabilistic geometrical clustering

1 Introduction

The Molecular Clock (MC) [13,22] model is among the most fundamental con-
cepts of molecular evolution. Under MC genes evolve at roughly constant, albeit
different from one another (i.e. gene-specific), rates along all lineages of the tree of
life. The above implies constancy of gene-specific relative (WRT some reference
gene) evolutionary rates as was observed in several studies [5,9,20]. However,
other studies have demonstrated striking differences between fast-evolving and
slow-evolving organismal lineages, primarily different groups of mammals [1,2].
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For example, a genome-wide comparison of the evolutionary rates in the pri-
mate vs. rodent lineages shows that the number of fixed mutations per unit
time in rodents is about twice that in primates, implying that a lineage-specific,
genome-wide change of evolutionary rate occurred after the separation of these
lineages [3]. These findings suggest that the MC, if exists, is substantially overdis-
persed.

Alternatively, a different, more relaxed model, that is compatible with both
constant relative evolutionary rates and gene specific rate heterogeneity, has been
proposed [15]. Under this model deviations of the gene-specific evolutionary rates
from the clock can be arbitrarily large (no MC) but, if these changes occur to all
genes in the genome to the same degree, the relative evolutionary rates would
remain approximately the same. Thus, the conservation of the evolutionary rate
distribution follows from a model of evolution that is more general and less
constrained than the MC. It was also shown, through several data sets, that
the model is more adequate to real data by providing a better explanation to
thousands of gene trees spanning almost all history of life on Earth, i.e the
entire tree of life and across 3 billion years [15,19,21]. The model, denoted as
the Universal Pacemaker (UPM), is thus universal in two respects: first, it applies
to all genes in a genome; second, it applies to all branches of the tree of life.

Recently, the evolutionary framework of the UPM was adapted to epigenetic
aging [12] where methylated sites in a genome correspond to evolving genes.
According to this model methylation rate changes affect simultaneously and
proportionally all individual’s methylated sites [17,18].

An imperative question implied by the UPM model is the following: while
it makes sense that genes vary their evolutionary rate, it is expected that genes
of different roles are associated with different pacemakers (PMs1). Therefore, a
subsequent task to the MC/UPM adequacy question, is the determination of
the number of PMs and which genes are associated with what PM. Several first
attempts towards this goal were done [6,7,16]. These were based either on the
level of evolutionary rate or rate correlation. Gene partitioning is a desirable task
in general. Researchers have sought to partition genes based on several criteria
such as magnitude of evolutionary rate or the model of evolution [8,11,14]. Such
partitioning can shed light on questions of co-functionality and alike.

In this work we focus on multiple pacemakers for gene partitioning [6,16].
In [16] a first step in this direction was done. A heuristic approach exploiting gene
pairwise correlation served to collocate correlated genes in Euclidean space. Cor-
relation between gene pairs was inferred by means of the Deming regression [4],
and a standard geometrical clustering tool (e.g. kmeans [10]) was employed sub-
sequently. Although this later work laid the groundwork for this approach, no
theoretical analysis has been done regarding its capabilities. In this work we pro-
vide such analysis and we focus only at the aspect of sufficient stochastic signal
provided by the random variables. We analyse the extreme case of perfect recon-
struction in which all genes are correctly identified, i.e. associated to their PMs.

1 We use the acronym “UPM” to refer to the model and “PM” to the pacemaker as
a natural/combinatorial object.
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Therefore, this contribution is divided into four main results: We first give lower
bound on the probability for perfect reconstruction as a function of the number
of genes, PMs, their corresponding variances, and the number of samples (evolu-
tionary periods along the tree). We make use of the fact that genes tend to evolve
according to log normal distribution [20] and assume similarly regarding PMs.
The latter implies a chi square distribution on the distances between the objects
under investigation and therefore, to allow bounded amount of samples, we use
bounds on such distribution to bound the probabilities of genes falling too far
from their center (PM) and PMs falling too close to each other. Next, we also
give bound, in the same parameters as above, for improbable perfect reconstruc-
tion, or more accurately, when a gene falls closer to another PM than to its own
one. Then, we show by simulation that the ratio of gene/PM variance is indeed
a key feature, as is reflected in our analysis. Finally, we tackle a subsequent,
related, problem, of assessing the quality of PM reconstruction in simulation
(the partition distance problem). We show that under the model studied here,
the deterministic heuristic algorithm used in [16] returns the correct result.

Comment: Due to space considerations, several proofs and auxiliary figures are
deferred to the journal version.

2 The Evolutionary Model

An evolutionary tree is a tree T = (V,E) where the set of species are mapped
to the leaves of T and the edges represent ancestry relationships. Each edge j is
associated with a time period {tj} that indicates the time between ancestor to
the respected descendant (see Fig. 1(a)). All genes evolve along T by acquiring
mutations proportionally to the time along the various edges. As all genes evolve
on T in an identical manner, and since we are concerned only in the actual
time periods, henceforth we will identify these time periods with tree edges and
completely ignore the topological information of T .

A gene gi tends to evolve at an intrinsic rate ri that is constant along time
but deviates randomly along the time periods. Let ri,j be the actual (or observed)
rate of gene i at period j. Then ri,j = rie

αi,j where αi,j ∈ R and 0 < eαi,j is
a multiplicative error factor. The number of mutations in gene gi along period
j is hence �i,j = ri,jtj , commonly denoted as the branch length of gene gi at
period j. Therefore gene i, gi, is a set [gi]j indicating the branch lengths (i.e
number of mutations) for every time period j (we stress that in reality, these
times j correspond to edges in the tree and therefore need not be disjoint, i.e.
overlapping time periods). Throughout the text, we will reserve the letters i and
j (and their derivatives) to index genes and periods respectively (eg. gi and tj).

We now extend this model to include a pacemaker that accelerates or decel-
erates a gene gi, relative to its intrinsic rate ri. Formally, a pacemaker (or simply
PM) Pk is a set of τ paces βk,j , 1 ≤ j ≤ τ where βk,j ∈ R is the relative
pace of PM Pk during time period j. We reserve k to index PMs. Under the
UPM model, a gene gi that is associated with PM Pk has actual rate at period
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Fig. 1. (a) A phylogenetic (evolutionary) tree over the species {A,B,C,D}. (b) A
scheme of a spatial representation of three pacemakers (red big balls) and their asso-
ciated genes (small blue balls) centered around them. (Color figure online)

j: ri,j = rie
αi,j eβk,j . We assume that every gene is associated with some PM and

let PM(gi) be the PM of gene gi. Then the latter defines a partition over the set
of genes G, where genes gi and gi′ are in the same part if PM(gi) = PM(gi′)
(see Fig. 1(b) for illustration). It is important to note that gene rates, as well
as pacemakers’ paces, are hidden and that we only see for each gene gi, its set
of edge lengths �i,j . Additionally, the presence of two genes in the same part
(PM) does not imply anything about their magnitude of rates, rather on their
unison of rate divergence. The above gives rise to the PM Partition identification
Problem:

Problem 1 (Pacemaker Partition Identification). Given a set of n genes gi, each
with τ branch lengths {�i,j}, find for each gene gi, its pacemaker PM(gi). We
denote this as the PMPI problem.

We say the a gene is identified if its PM is (correctly) found. In particular, we are
concerned with a particular case of the PMPI problem, the perfect reconstruction
in which all genes are identified. We first observe the following:

Observation 1. Assume gene gi has error factor αi,j = 0 for all time periods
j, 1 ≤ j ≤ τ and let Pk = PM(gi) be the pacemaker of gene gi with relative
paces eβk,j . Then at all periods j, ri,j = rie

βk,j .

Literally, Observation 1 states that if the error factor α equals zero, then the rate
of gene gi at all periods is exactly a multiplication of its intrinsic, constant. Rate
ri times the pace of its pacemaker at each specific period, eβk,j . Observation 1
implies that if genes gi and gi′ belong to the same pacemaker, and both genes
have error factor equals zero at all periods, then at all periods, the ratio between
the edge lengths at each period is constant and equals to ri/ri′ . Indeed, such
a strong signal can suffice to classify all genes correctly by simply observing
between which pairs that constant ratio holds along all periods. This however is
not necessarily true if one of the error factor is not zero or genes gi and gi′ do
not belong to the same pacemaker.
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For our purpose, we exploit some statistical random structure on the given
setting that was observed in nature [20]. This randomness will provide us with
signal to distinguish between the objects. Specifically, the goal is to assume that
the error factor of each gene is small enough at every period (cf. Observation 1),
so that all genes belonging to the same PM, change their actual rate in unison.
Similarly, we assume that [βk]j , the paces of a given PM Pk, vary so that genes
from different PMs (parts) can be distinguished (otherwise, no difference except
their random error factor exists). By [20] we say that for all genes gi and for
all PMs Pk, at all periods j, αi,j and βk,j distribute normally around zero with
variances σ2

P and σ2
P respectively. Formally, αi,j ∼ N(0, σ2

G), βk,j ∼ N(0, σ2
P ).

3 Sufficient Conditions for Perfect Reconstruction

We here provide a positive result on our capability to obtain perfect reconstruc-
tion. The result concerns the amount of information required given the system
parameters. Precisely, we give a lower bound on the probability that all genes
concentrate around their (unseen) PM in non-intersecting spheres. This forms a
sufficient condition for perfect reconstruction. As we operate via expected val-
ues as opposed to the probability distributions themselves, the requirement of
disjoint spheres poses the restriction σ2

P > σ2
G.

Theorem 1. Assume σ2
P > σ2

G. Then, given n genes, each with rate error from
N(0, σ2

G), and m PMs each with variability N(0, σ2
P ). Then if all genes evolve

at least τ periods, then the perfect reconstruction is obtained with probability at
least 1 − ε where

ε ≤
(

m2

2
+ n

)
e

− 1
2 τ

(
σ2

P −σ2
G

σ2
G

+σ2
P

)2

(1)

The proof revolves around the attempt to give bounds on the probability that a
gene is too “far” from its PM. The notion “far” will be defined in terms of the
expected distance between the PMs. The latter will also be bounded, however,
from below. Combining all these bounds together, yields the desired result.

Proof. Our model contains the objects of genes and PMs and our sample space
is the values of these objects during the τ periods. For an object o, let v(o)
be a point (vector) in the τ -dimensional space where each coordinate j in v(o)
holds the value of o in period j. Henceforth, an object o will be identified with its
corresponding vector in the space. We now can apply geometric tools to measure
distances between the objects. Moreover, we are concerned only in the random
components of these values. The constant parameters will be ignored as if these
are known parameters (in reality these can be inferred given enough samples
that is independent of the investigated variables). We work in the logarithmic
space, i.e. the log of the values. Hence, for a gene gi associated with PM Pk, at
period j of length tj , we have

log(�i,j) = log(tj) + log(ri) + log eαi,j + log eβk,j
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and since log(tj), log(ri) are constant, we look only at αi,j +βk,j . Henceforth we
will interchangeably refer by gi either to the gene object itself or to the vector
related to that gene. Therefore we denote by gi = [αi+βk]j . Specifically, the j-th
coordinate in the vector corresponding to gene gi will hold the value αi,j + βk,j .
Similarly, for a PM Pk we consider only the values βk,j (and the j-th coordinate
in the vector βk corresponding to the paces of PM Pk). By this definition, the
random variable holding the difference between a gene and its PM is the gene
error factor αi,j .

Therefore, the (squared) Euclidean distance, denoted d(.), of a gene gi from
its PM is

d2(gi − PM(gi)) =
∑

1≤j≤τ

(gi,j − PM(gi)j)2 =
∑

1≤j≤τ

(αi,j)2. (2)

As the random variable d2(gi − PM(gi)) distributes identically for all genes i,
we simply denote it as distg. In the sequel, we will make use of versions of the
chi square distribution. The following two lemmas are simple extension of the
Chernoff bound to handle chi square random variables.

Lemma 1 (Upper Tail, Linear Bound). Let Y =
∑

1≤i≤n X2
i such that all

Xi and Xi′ are independent for every i �= i′, and Xi ∼ N(0, σ2) for every i.
Then: Pr(Y > (1 + ε)E [Y ]) ≤ e− 1

8nε2
.

Lemma 2 (Lower Tail, Linear Bound). Let Y =
∑

1≤i≤n X2
i such that all

Xi and Xi′ are independent for every i �= i′, and Xi ∼ N(0, σ2) for every i.
Then: Pr(Y < (1 − ε)E [Y ]) ≤ e− 1

4nε2
.

Now gi,j − PM(gi)j = αi,j and since αi,j ∼ N(0, σ2
G), it follows that distg

distributes as non standard chi square.
Our proof hinges around the expected values of the defined distances.

Observation 2
E [distg] = τσ2

G (3)

Once we set the expected distance of a gene from its PM, we want to control
the probability of exceeding this distance and by how much. As this distance
distributes as non central chi square RV, we use bounds for deviations from
expected values for this type of distribution. Since we are interested in bounding
the probability of deviating from the expected value from above (i.e. a gene
stays close to its PM), we use a one sided bound for this as is shown below. The
following lemma follows directly from Lemma 1 and Observation 2.

Lemma 3. Set δG ≥ 0. Then, for a gene g evolving through τ time periods and
distg as defined above,

Pr(distg > (1 + δG)E [distg]) ≤ e− 1
8 δ2

Gτ (4)
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The other distance playing a role in our setting is the distance between the
two PMs. Naturally we want this distance to be as large as possible (relative to
distg). This is determined by σ2

P . For two PMs PMk and PMk′ , let distP (k, k′)
be defined as

distP (k, k′) =
∑

1≤j≤τ

(βk,j − βk′,j)2. (5)

As distP (k, k′) behaves identically for all pairs of PMs, we simply denote it as
distP .

We now establish E [distP (k, k′)] that will be useful for bounding the proba-
bility of going under that value.

Observation 3
E [distP ] = 2τσ2

P (6)

We can now formulate our second central lemma about deviation from the
expected distance of two PMs. Recall that we want our PMs to be as far as
possible from each other. That means, we are concerned about falling short of
their expected distance. Note that we cannot use Lemma 1 since we are bounding
the lower tail. Hence, using Lemma 2 and Observation 3 we obtain the following
lemma:

Lemma 4. Set 0 ≤ δP ≤ 1. Then, for a pair of PMs Pk and Pk′ evolving
through τ time periods and distP as defined above,

Pr(distP < (1 − δP )E [distp]) ≤ e− 1
2 δ2

P τ . (7)

Now that we obtained upper bounds on probabilities of PMs being too close to
one another, and genes too far from their PMs, we can formulate our sufficient
condition for PM identification for a single gene:

Observation 4. Let gi be a gene and Pk = PM(gi). Then gi is identified if
dist(gi, Pk) < 1

2dist(Pk, Pk′) for every Pk �= Pk′ .

A special case of the event described in Observation 4 is when the following
condition occurs:

Condition 1

1. For some δG ≥ 0

dist(gi, PM(gi)) < (1 + δG)E [distg], (8)

2. And, for some 0 ≤ δP ≤ 1 and every PM Pk′ , s.t. Pk′ �= Pk,

dist(Pk, Pk′) ≥ (1 − δP )E [distP ], (9)

3. And
1
2
(1 − δP )E [distP ] ≥ (1 + δG)E [distg]. (10)
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In Lemma 3 we bounded the probability of violating Condition 1.1. Let εG

be that probability. Recall however that we have n genes (with a PM for each
such gene). We want to bound the probability that any such event occurs (a
gene exceeding (1+δG)E [distg]). Let ε̂G be that probability. Then, by the union
bound

ε̂G ≤ nεG ≤ ne− 3
4 δ2

Gτ . (11)
Similarly, we can use Lemma 4 to bound the probability that Condition 1.2 is
violated. Lemma 4 bounds the probability that a single pair of PMs falls short of
(1 − δP )E [distP ]. Let εP be that probability. Here however, we have

(
m
2

)
pairs

of PMs, so again by the union bound we can bound the probability ε̂P that any
pair of PMs falls short of this distance:

ε̂P ≤
(

m

2

)
εP ≤ m2

2
e− 1

2 δ2
P τ . (12)

Finally, Condition 1.3 guarantees that the spheres around any PM do not inter-
sect. That is achieved by requiring that the minimum distance between the PMs,
(1 − δP )E [distP ] is at least twice the sphere of radius (1 + δG)E [distg] around
every PM. Now since the larger δG the tighter the bound (small violation proba-
bility) in Lemma 3, we simply require Condition 1.3 to hold in equality. The latter
implies an exact relationship between δG to δP . We start from Condition 1.3 but
in equality:

1
2
(1 − δP )E [distP ] = (1 + δG)E [distg]

which implies:

δG =
1
2

E [distp]
E [distg]

(1 − δP ) − 1 = ((1 − δP )σ2
P − σ2

G)/σ2
G, (13)

where the last equality stems from Observations 2 and 3.
Now, Condition 1.1 and 1.2 yielded bounds on probabilities that any gene

exceeds a specified distance from its PM and any pair of PMs falls too close to
one another. We want to guarantee non of these bad events occurs and let ε be
this probability, i.e. ε is the probability that either some gene is far from its PM,
or some PM pair is close to one another.

ε = Pr [for some gene gi, d(gi, PM(gi)) ≥ (1 + dG)E [distg]⋃
for some PM pair PMi, PMj , d(PMi, PMj) ≤ (1 − dP )E [distP ]]

Again we can bound ε by using the union bound over ε̂G and ε̂P yielding

ε ≤ ε̂G + ε̂P

≤ ne− 3
4 δ2

Gτ +
m2

2
e− 1

2 δ2
P τ

= ne
− 3

4

[
((1−δP )σ2

P −σ2
G)

σ2
G

]2

τ
+

m2

2
e− 1

2 δ2
P τ (14)

where the last equality holds by plugging in the value of δG as implied by (13).
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Now, every choice of 0 ≤ δP ≤ 1 plugged into (14) leads to a valid bound
on the probability to fail in perfect identification. One such particular bound is
when δP = δG. Then by (13) we obtain that

δP = ((1 − δP )σ2
P − σ2

G)/σ2
G

⇓
δP =

σ2
P − σ2

G

σ2
G + σ2

P

. (15)

Plugging the latter into (14) yields (1) as requested.

Corollary 1. If σ2
G and σ2

P are held constant, then the probability of identifying
the PM partition, 1−ε, decreases linearly in the number of genes, quadratically in
the number of PMs but grows exponentially in the number of tree edges (periods).

Corollary 2. If τ ≤ 2 log
(

m2

2 + n
)
then the condition (1) of Theorem1 yields

ε > 1 and hence is irrelevant.

We conclude this section by noting that the above result only provide us with
a guarantee that if the conditions of Eq. (1) hold, we should have enough infor-
mation to reconstruct the original partition. It does not however provide us
with tools for this. It also does not imply impossibility conditions for perfect
reconstructions if these conditions are not met.

4 Cases of Improbable Perfect Reconstruction

We now analyze the case where perfect reconstruction is improbable. Specifically,
we provide a lower bound on the probability that a gene is closer to a PM
that is not its own PM. We note that this does not preclude the possibility of
reconstruction as the probability of all genes associated with a given PM cluster
near another PM still exists. This probability however is negligible and we don’t
analyze it here. As opposed to the previous section, we do not work through
expected values rather by combinatorial arguments and the probability function
itself. For sake of clarity, we assume that the gene variance is at least that of the
PM’s, σ2

G ≥ σ2
P . This assumption can be relaxed using a more involved technique

that we defer for the journal version. Therefore, the main result of this part is
as follows:

Theorem 2. Assume σ2
G ≥ σ2

P . Then some gene falls closer to another PM
than its own with probability at least

(
1
e

1
m + 1

)τ (
1 − e−(m−1)n/2τ

)
. (16)



60 S. Snir

The proof is fairly lengthy and is deferred to the fuller version. We only provide
here a very brief intuition. The proof follows by analyzing two independent
events: (a) that a gene always (at all periods) falls to the “same side” of some
PM, and (b) that the gene always falls far enough from its PM. By analyzing
the appropriate probabilities and over the relevant objects (genes, PMs), the
theorem follows.

5 Practical Study

In order to study the validity of our bounds we performed a simulation study
similar to [16] where we simulated a system of PMs and associated genes (only
that here we embedded the values obtained instead of working through gene
pairs). Numbers of genes n and PMs m were held constant per experiment. We
ran four experiments where n was set to 100 in all experiments and m was set
to 2, 4, 6, 8. Number of samples (edges) τ was set to 25 in all experiments. Each
gene i was associated randomly with some intrinsic rate ri. A very influential
factor in our system is the ratio between the two variances: σG and σP . Therefore
we set σP = 1 along the whole experiment and varied σG, 0.01 ≤ σG ≤ 100.
Every PM Pi was associated with an intrinsic variance σ2

P that sets its relative
pace to eβi,j where βi,j ∼ N(0, σ2

P ). Similarly, every gene sets its rate at period
j to ri,j = rie

αi,j eβi,j where αi,j ∼ N(0, σ2
G).

Every gene was associated with a PM, same number of genes for each PM.
Number of PMs varied from 2 to 8 (i.e. 12 to 50 genes per PM). We also checked
in Corollary 2 that the necessary conditions for reconstruction hold (this does
not imply reconstruction yet) and we find that indeed τ = 25 > 2 log(2+100) =
2 log(m2/2 + n). We mapped our genes (i.e. gis) to the τ -dimension space and
applied standard kmeans [10] to it. The inferred partition was compared to the
original partition by the greedy algorithm that we used in [16]. The measured
quantity is the partition distance where zero signifies perfect reconstruction. As
our theoretical analyses suggest we used as the independent variable the ratio
between σG and σP . Indeed our results demonstrate that for two and four PMs,
for any ratio of σG/σP ≤ 1 a quite accurate reconstruction was achieved and
so as to six clusters but for ratio a little less than 1. This is in accordance with
our analytic results presented above where for σG/σP < 1 with logarithmic (in
n) number of samples a perfect reconstruction is obtained with high probability.
The prominent and interesting result stemming from this study is that for all
numbers of PMs, the point σG/σP = 1 is a critical point, as alluded by our
analysis, and after this point, i.e. σG/σP > 1, quality of reconstruction drops
sharply and rapidly reaches saturation that tends to the random similarity of 1

m .

6 Concluding Remarks and Further Research

The pacemaker paradigm was proved useful in both sequence evolution and
epigenetic aging as it accounts for correlation among changing objects (genes,
methylation sites) and reducing the overall variance. According to the paradigm,
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each object adheres to a single pacemaker. This axiom induces a partition over
the set of evolving objects - the pacemaker partition. Due to its complexity,
until now, all practical works were done assuming a single pacemaker, i.e. the
trivial partition. In this work we have provided the first analytical study of the
pacemaker partition identification problem. Although the origin of the problem
comes from evolutionary biology, it provides challenging statistical problems that
may be of separate, independent, interest. Our analysis relies on the randomness
of the variables and makes use of it in order to distinguish between them. There
is a contrast between the pacemaker’s variance and the gene’s variance in which
the first facilitates identification while the latter blurs the signal. Our analytic
results are reinforced by our simulation study and in particular, the existence
of the critical point of σG/σP = 1 that appears to be independent of the other
system parameters. A positive, but perhaps unsurprising, conclusion, is that
both the probabilities for possibility and impossibility of perfect reconstruction
(see Eqs. (1, 16)), are affected exponentially, however in opposite direction, by
the number of samples.

The natural and immediate next objective to tackle is the extension to imper-
fect reconstruction in which some genes are incorrectly identified. Here, we would
like to give bounds, again in the system parameters, on the number of genes
identified/misidentified. These will provide more realistic results and allow the
relaxation of the constraints on the variances.
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Abstract. It is currently impossible to get complete de novo assem-
bly of segmentally duplicated genome regions using genome-wide short-
read datasets. Here, we devise a new computational method called
Regional Extension of Assemblies Using Linked-Reads (REXTAL) for
improved region-specific assembly of segmental duplication-containing
DNA, leveraging genomic short-read datasets generated from large DNA
molecules partitioned and barcoded using the Gel Bead in Emulsion
(GEM) microfluidic method [1]. We show that using REXTAL, it is
possible to extend assembly of single-copy diploid DNA into adjacent,
otherwise inaccessible subtelomere segmental duplication regions and
other subtelomeric gap regions. Moreover, REXTAL is computationally
more efficient for the directed assembly of such regions from multiple
genomes (e.g., for the comparison of structural variation) than genome-
wide assembly approaches.

Keywords: 10X sequencing · Linked-read sequencing · Subtelomere
Assembly · Segmental duplication · Structural variation · Genome gaps

1 Introduction

Massively parallel short-read DNA sequencing has dramatically reduced the cost
and increased the throughput of DNA sequence acquisition; it is now cheap and
straightforward to do a variety of whole- genome analyses by comparing datasets
of newly sequenced genomes with the human reference sequence. However, even
with the use of paired-end read approaches using input molecules of various
lengths, de novo assembly of human genomes has remained problematic because
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of abundant interspersed repeats. A recently developed approach pioneered by
10X Genomics generates short-read datasets from large genomic DNA molecules
first partitioned and barcoded using the Gel Bead in Emulsion (GEM) microflu-
idic method [1]. The bioinformatic pipeline for assembly of these reads (Super-
nova; [2]) takes advantage of the very large number of sets of linked reads. Each
set of linked reads is comprised of low-read coverage of a small number of large
genomic DNA molecules (roughly 10) and is associated with a unique barcode.
This approach enables efficient de novo assembly of much of the human genome,
with large segments separable into haplotypes [2]. However, even with these new
methods, evolutionarily recent segmentally duplicated DNA such as that found
in subtelomere regions remain inaccessible to de novo assembly due to the long
stretches of highly similar (>95% identity) DNA. The problem for subtelomere
DNA analysis is amplified by the relative lack of high-quality reference assemblies
and abundance of structural variation in these regions. To address this problem
and attempt to better assemble human subtelomere regions, we have developed
a computational approach designed to leverage linked-reads from genomic GEM
datasets to extend de novo assemblies from subtelomeric 1-copy DNA regions
into adjacent segmentally duplicated and gap regions of human subtelomeres.

Conceptually, what the Gel Bead in Emulsion (GEM) [1] microfluidic method
enables us to do is illustrated in Fig. 1. There are approximately one million
partitions, each with a unique barcode. Each partition receives approximately 10
molecules of length approximately 50 kb-100 kb. Short reads of length 150 bases
are obtained from these molecules with the barcode for the partition attached
at the beginning of the first read in a pair [2]. Sets of these read pairs having
same barcodes attached to them are called linked-reads.

Supernova assembly [2] takes advantage of linked reads to separate haplo-
types over long distances, and these separated haplotypes are represented as
megabubbles in the assembly. The chain of megabubbles generates scaffolds [2].
Supernova uses the barcode information after initial whole-genome assembly for
bridging long gaps. It finds all the reads of corresponding barcodes that are
present in sequence adjacent to the left and right sides of the assembly gap.
Then it assembles this set of reads and tries to fill the gap [2]. We refer to this
method as genome-wide assembly method. As in all genome-wide assemblies,
reads from evolutionarily recent segmental duplications such as those near sub-
telomeres are collapsed into artifactual DNA segment assemblies; these assembly
artifacts are typically either located at a single genomic locus or excluded entirely
from the initially assembled genome [3]. REXTAL differs from the genome-wide
assembly method in that we use the barcode information for selection of reads
from anticipated segmental duplication or gap regions adjacent to a specified 1-
copy DNA segment before doing the assembly. We initially find reads matching
the 1-copy DNA segment (bait DNA segment) based upon the reference human
genome (HG38), then select all reads for barcodes represented in these initial
matching reads. This set of reads should represent a very limited subset of all
genomic reads, and approximately 10% of the barcode-selected reads should be
derived specifically from the selected 1-copy DNA and 50 kb-100 kb segments of
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Fig. 1. Conceptual description of GEM microfluidic method. Circle (blue, magenta)
represents gel beads. Each bead contains many copies of a 16-base barcode (Rectan-
gles inside the circle) unique to that bead. Each partition gets one gel bead. The 10
curve lines inside the large square (represents partition) represent molecules of length
approximately 50 kb-100 kb. The green and orange ovals represent short reads of length
150 bases which are obtained from these molecules (curve lines). (Color figure online)

flanking DNA. We show here that this is indeed the case, enabling the extension
of existing assemblies into adjacent segmental duplication and gap regions.

While the primary motivation of our work is to improve the assembly of
subtelomeric gap regions and extend the assembly to inaccessible subtelomere
segmental duplication regions of genomes of human individuals from their 10X
genomic data, REXTAL can be applied more generally for enriching region-
specific linked reads and improving the assembly of any specified 1-copy genome
region of an individual from any species for which a reference genome exists. For
targeted region-specific assemblies from many individuals for which 10X datasets
are available (e.g., analysis of structural variation at specific loci), REXTAL is
faster and more accurate than genome-wide assembly method. In this scenario,
for genome-wide assembly, we need to assemble the whole genome of the indi-
viduals and then extract the assembled portion of the specific region. But in our
case, we first extract the specific region from the 10X dataset by aligning with a
1-copy segment of the reference genome and then use our bioinformatic pipeline
to do the assembly.
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2 Method

In Subsect. 2.1, we present the input data description. Subsection 2.2 presents
processing of raw data to get our key input data. In Subsects. 2.3, 2.4 and 2.5 we
show our assembly pipeline step by step. Subsection 2.6 shows further analysis
after assembly.

2.1 Data

The key input data is 10X Genomics linked-reads from individual human
genomes, in our case from the genome of a publically available cell line GM19440.
Our dataset has approximately 1.49 billion 10X Genomics linked-reads in paired-
end format, with each read about 150 bp. The Supernova whole genome assembly
using these data had an overall coverage of 103 and a Supernova N50 scaffold
of 19.1 Mb. The loupe file shows a mean depth coverage of 67.4. Human refer-
ence genome assembly HG38 was used to select test subtelomere regions for the
targeted assemblies.

2.2 Data Processing

We processed the raw 10X Genomics data using Long Ranger Basic software
developed by 10X Genomics (and freely available to any researcher) to generate
barcode-filtered 10XG linked-reads. The Long Ranger basic pipe-line performs
basic read and barcode processing including read trimming, barcode error correc-
tion, barcode whitelisting, and attaching barcodes to reads. We used the UCSC
browser [4] to access HG38 and selected subtelomere DNA segments for analysis.

2.3 Alignment of Subtelomeric Region with Linked-Reads

Masking Out Repeats. We used RepeatMasker [5] and Tandem Repeats
Finder [6] to screen bait DNA segment sequences for interspersed repeats, low
complexity DNA sequences, and tandem repeats in order to minimize the possi-
bility of false-positive contaminant read identification in the initial selection of
reads matching specified 1-copy DNA segments.

Alignment Using BLAT. We used BLAT (BLAST-like alignment tool) [7]
with default parameter to do the alignment of the masked subtelomeric region
with genome-wide reads from GM19440.

Reads Selection. The output of BLAT gives reads which have a good match
with a given subtelomeric bait region. However, it is possible that many reads
that would have originated within this given subtelomeric region could have been
missed because of masking out repeat regions done previously. More impor-
tantly, we were especially interested in capturing reads from the large source
DNA molecules extending from the flanks of the targeted 1-copy bait segment.
We therefore initially collected all reads that shared a barcode with any read
matching the 1-copy segment.
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2.4 Barcode Frequency Range and Clustering Pattern Selection

We further reduced this subset of selected reads based on the frequency of occur-
rence and the clustering pattern of reads from each barcode identified as match-
ing within the specified 1-copy segment. We estimated that each barcode should
have approximately 800 reads based on the following calculation: we assumed
there are 1 million partitions in the genome with each partition containing 10
molecules of 50 kb each [2]. With the length of each read 150 bp and 0.25X cover-
age of each single molecule in the partition, we should have approximately (0.25
x 500000 bp)/150 = 833 reads with each barcode. For each barcode, approxi-
mately 1/10 of these reads (about 80) should originate from a single locus, and
since about 50% of the bait locus (the specified 1-copy region used for BLAT) is
masked, about 40 reads/partition should be matched if the entire 50 kb is within
the bait locus. If the source DNA molecule partially overlaps the bait locus and
extends into the adjacent region, then this number would be smaller and depen-
dent on the extent of the overlap. So, a key challenge was to identify the range of
matching reads for each barcode that would minimize inclusion of false positive
barcodes while maximizing inclusion of true positive barcodes that would permit
extension of the assembly into adjacent DNA. Histogram analysis to check the
frequency of the occurrence of each barcode revealed vast over-representation
of barcodes with one or two reads, so we required a minimum of three reads
per barcode in order to include that barcode for read selection. In addition, we
required all matching reads from a single barcode to originate within less than
the estimated maximum input molecule size of 100 kb within a given bait region
in order to qualify for inclusion. We then empirically tested a variety of barcode
frequency ranges meeting both of the above requirements for final read selection,
using the ability of the selected reads to assemble the original bait region and
extend into flanking DNA as the metric for optimization as described below.

2.5 Assembly of Subset of Reads

To get the assembly of the selected paired-end barcode reads Supernova [2] was
used. It can generate assembled scaffolds in four styles named: raw, megabubbles,
pseudohap, and pseudohap2. We used pseudohap2 style here. An overview of our
assembly strategy is shown in Fig. 2.

2.6 Alignment of Assembled Scaffolds with Reference

To measure the quality of the assembly, we aligned specified subtelomeric regions
of the HG38 reference sequence corresponding to our unmasked single-copy bait
segments along with their flanking reference DNA segments as query with our
generated assembled scaffolds as subject using NCBI BLAST [8], requiring high
identity matches (≥98%) for retention of each local alignment. The resulting
output hit table of these local alignments lists the sequence identifier, the start
and stop points for each local stretch of sequence similarity, and the percent iden-
tity of the match. From this information one can map high-similarity alignments
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Fig. 2. A: Flowchart of REXTAL. B: Details of Reads Selection algorithm is shown
inside dotted box.

of our regional assembly (prepared using barcode-selected linked reads) across
the query reference sequence and, by merging the high-quality local alignments,
evaluate assembly coverage relative to regions of the reference sequence using a
parameter we define as the Lengthwise Assembled Fraction (LAF; see Fig. 5).
Intuitively, LAF is defined as the fraction of a targeted reference sequence that
is accurately assembled by the regional sequence assembly. Regions of the ref-
erence query sequence with highest LAF have the best coverage of assembled
sequence, and the limit of assembly extension regions corresponding to flanking
reference sequence can be ascertained by a sudden decrease in LAF. Details of
LAF calculation are presented in 3.4.

3 Results and Discussions

We tested our read selection and regional assembly strategy (Fig. 2) on four
human subtelomere regions with representative patterns of sequence organization
(base pair coordinates listed are from HG38; Fig. 3). The 2p subtelomere is a
500 kb sized segment of 1-copy DNA (10,001 to 500,000); 19p subtelomere has
a very large segmental duplication region next to the telomere (10,001–259,447)
followed by a 300 Kb-sized 1-copy region (259,448–559,447), 10p has a smaller
segmental duplication region near the telomere (10,001–88,570) followed by a
300 kb 1-copy region (88,571–388,571); 5p has multiple segmental duplication
regions (10,001–49,495 and 210,596–305,378) separated and flanked by two 1-
copy regions (49,496–210,595 and 305,379–510,000).

We processed the raw input data from GM19440 as described in Subsect. 2.2.
Table 1 presents some characteristics of the output obtained after processing
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Fig. 3. Four different chromosomes with different characteristics. The blue rectangle
represents single copy region and the magenta rectangle represents segmental duplica-
tion region. (Color figure online)

the raw data with Long Ranger Basic software. Interspersed repeats and tan-
dem repeats from the 1-copy regions of these subtelomeres were masked and
used as bait segments to select matching reads from the GM19440 linked-read
dataset using BLAT. Barcodes for matching reads were identified and charac-
terized according to occurrence frequency and clustering within the bait DNA
segments.

Table 1. Some characteristics of the obtained data.

Number of reads 1.49 * 109 Number of reads
without barcode

9.8 * 107

Number of paired-end reads 0.75 * 109 Barcode whitelist 0.933959

Number of barcoded reads 1.39 * 109 Barcode diversity 743369.62

3.1 Barcode Range and Clustering Analysis

We tested a wide variety of Barcode ranges empirically for their ability to select
read sets capable of generating high-quality regional assemblies corresponding
to the bait segment itself (Fig. 4) as well as extending assemblies of the bait
segment into adjacent DNA (Fig. 6). In all cases, a secondary filter was applied
requiring that barcodes used for reads selection contained only reads mapping to
a single 100 kb segment of the bait DNA (cluster) as anticipated from linked-read
library preparation (Table 2). Initial experiments with 2p focused on selection
of reads from barcode ranges that produced high-quality assemblies of the 500
kb bait segment, and follow-up work with all four subtelomeres fine-tuned these
parameters to optimize both high-quality assembly of bait segments as well as
maximal extension into adjacent segmental duplication regions and single-copy
regions. Table 2 shows the selected number of barcodes and number of reads
after thresholding for 2p and 19p 1-copy region for our chosen ranges.

3.2 Generation of Assembled Scaffolds

After pulling out reads according to our selected range and clustering parameters,
we used Supernova assembler for the assembly of the collected paired-end reads.
We analyzed assembled scaffolds in pseudohap2 style and calculated the length
of each assembled scaffolds.
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Fig. 4. A: Alignment of 2p 500 kb as query with assembled scaffolds of 2p for range 10–
60 as subject in BLAST. B: Alignment of 19p 1-copy 300 kb as query with assembled
scaffolds of 19p 1-copy for range 3–70 as subject in BLAST. C: Alignment of 10p 1-copy
300 kb as query with assembled scaffolds of 10p 1-copy for range 3–70 as subject in
BLAST. D: Alignments of two 1-copy regions of 5p as query with assembled scaffolds
of 5p 1-copy regions for range 3–70 as subject in BLAST.
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Table 2. Results after range selection and clustering step

chra freqb bcc bcd reade chra freqb bcc bcd reade

2p 10–50 1639 1223 2074096 19p 3–70 1493 1378 2482446

10–60 1726 1281 2177142 5–70 1142 1026 1870206

10–70 1807 1330 2265538 10–70 770 662 1265324

a: Chromosomal region.
b: Barcode frequency ranges.
c: Number of selected barcode after range selection.
d: Number of selected barcode after clustering.
e: Number of collected reads of corresponding barcodes.

3.3 Alignment of the Scaffolds with Reference

We aligned the 2p 1-copy region, 19p 1-copy region, 10p 1-copy region and 5p
1-copy regions as the query with corresponding generated assembled scaffolds
of 2p, 19p, 10p and 5p as the subject using BLAST with default parameters
and retaining only local alignments with ≥98% identity. Figure 4 shows a graph-
ical representation (using the NCBI BLAST output visualization tool) of these
BLAST alignments with near-optimal barcode frequencies for retention of linked-
reads prior to assembly. While the respective assemblies cover most of each of
the 1-copy bait regions, the extent of coverage as well as the number of scaf-
folds contributing substantially to coverage vary according to subtelomere. We,
therefore, developed a more quantitative metric for assembly coverage in order
to better quantify the assembly quality and compare them with the assemblies
generated de novo from the whole-genome dataset using Supernova.

3.4 Assembly Quality Measurement

Standard assembly quality measurements (QUAST [9]) are not suitable to our
case as we are doing region specific assemblies rather than genome-wide assem-
blies. We are focused on coverage and accuracy of our assembly over the tar-
geted region and have developed a metric called Length-wise Assembled Frac-
tion (LAF) for quality measurement of our regional assemblies. As mentioned
previously, LAF measures the fraction of a targeted reference sequence that is
accurately assembled by the regional sequence assembly.

Quality in Single Copy Region. We extracted reference sequences of 2p, 19p,
10p, and 5p from HG38 and then aligned them with corresponding assembled
scaffolds using BLAST, requiring ≥98% of identity for retention of each local
alignment. This generates positions of each local alignment including query start
positions and query end positions. The starting positions of the query were
sorted in increasing order. Local alignments were merged by (1) deleting local
alignments located entirely within other higher-quality alignments; and (2) Local
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alignments with partial overlap, the overlap regions were merged by selecting the
alignment with equivalent or higher % identity in the overlap region. The regions
of the query sequence not aligned with sequences in the assembly scaffold are
designated as gaps.

For LAF calculation, we considered a number of subsequences of the assem-
bly. More precisely we considered subsequences of the assembly whose end points
are start and end positions of n contigs (Fig. 5).

Fig. 5. Top magenta rectangle represents the query sequence. A: Partially overlapped
local alignment regions and gaps in coverage of the query sequence. B: Considering
partially overlapped local alignment regions as sequence contigs and each sequence
contig region (C) is followed by one sequence gap (G). Dotted blue lines represent
starting position and ending position of gap. (Color figure online)

We present an algorithm (Algorithm 1) to compute the LAF of given contig
and gap lengths. The input to the algorithm are two arrays C and G each of size
n. C[i] is the length of i th contig and G[i] is the length of gap before the i th contig.
The algorithm computes LAF and outputs an array S of size 2n. The values in
this S array correspond to LAF for 2n different subsequences of the assembled
sequence, all starting at the reference start position and ending at the end of
each contig and gap. To see the accuracy of REXTAL in subtelomeric region,
we calculated the LAF with regular intervals. For example: for all ranges of 2p,
we took the intervals as the distance from coordinate 1 of the reference query
sequence to the starting positions of the 1st gap after 200 kb, 300 kb, 400 kb, and

Algorithm 1. CALCULATE LAF (C, G)
1: construct C′, C′ ← [C1, C1 + C2, ......, (C1 + C2 + ..... + Cn)]
2: construct G′, G′ ← [G1, G1 + G2, ......, (G1 + G2 + ..... + Gn)]
3: S[1] ← 0
4: S[2] ← C′[1]/(C′[1] + G′[1])
5: for i = 1 to n − 1 do
6: S[2i + 1] ← C′[i]/(C′[i] + G′[i + 1])
7: S[2i + 2] ← C′[i + 1]/(C′[i + 1] + G′[i + 1])

8: return S
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500 kb respectively. For range 10–60 of 2p subtelomeric region we achieve good
LAF (Table 3).

For the calculation of LAF, for all ranges of 19p 1-copy, we calculated the LAF
from coordinate 1 of the reference query sequence up to the starting positions of
1stt gap after 50 kb, 100 kb, 150 kb, 200 kb, 250 kb, and 300 kb respectively. We
achieve good LAF for range 3–70 of 19p 1-copy (Table 3). We fixed the range
3–70 for 10p and 5p. Table 3 shows the LAF of 10p 1-copy with same intervals
taken for 19p 1-copy.

The 5p has multiple segmental duplication regions as well as multiple sin-
gle copy regions. 1st segmental duplication region is 10,001–49,495 bp, 1st 1-
copy region is 49,496–210,595 bp, 2nd segmental duplication region is 210,596-
305,378 bp, and 2nd 1-copy region is 305,379–677,959 bp. We applied our assem-
bly pipeline both for 1st 1-copy and 2nd 1-copy (305,379–510,000 bp) region.
Because of the length variation of 1-copy region we chose different set of inter-
vals for 1st 1-copy and 2nd 1-copy. We calculated the LAF from coordinate 1 of
the reference query sequence up to the starting positions of 1st gap after 30 kb,
60 kb, 90 kb, 120 kb, and 150 kb respectively for 1st 1-copy region and for the
2nd 1-copy region we chose the intervals from coordinate 1 of the reference query
sequence to the starting position of 1st gap after 30 kb, 60 kb, 90 kb, 120 kb,
150 kb, 180 kb, and 210 kb (Table 3).

Quality in Extended Region. We can extend our assembly of single-copy
diploid DNA into adjacent and other subtelomeric gap regions. To see the exten-
sion of our assembly to extended single copy region, we extracted the reference 2p
(10,001–700,000 bp) with length 700 kb, 19p (259,448–759,447 bp) with length
500 kb, 10p (88,571–588,571 bp) with length 500 kb, and 5p 2nd 1-copy (305,379–
677,959 bp) with length 372,580 bp from HG38. Following BLAST analysis using
the extended reference sequence as the query and the assembled scaffolds as sub-
ject, we used Algorithm 1 to measure the LAF only for the extended region i.e.
>500k for 2p, >300k for 19p and 10p 1-copy, >204,621 bp for 5p 2nd 1-copy.

We calculated the LAF with regular intervals only from the edge of the bait
segment into the extended region. We took the intervals as from the end of the
bait segment to the starting positions of 1st gap after 10 kb, 20 kb, 30 kb, 40 kb,
and 50 kb respectively. To decide the cut-off point for the extended region, we
checked all LAFs of the extended region and we stopped where we noticed a
sharp drop of the LAF. The reason for this sharp drop is after this contig there
is a big gap and after that, there is no significant length of assembled contig to
increase the LAF (Table 4).

Quality in Segmental Duplication Region. As segmental duplication region
contains segments of DNA with near-identical duplicated subtelomere sequence,
this region is hard to assemble de novo with whole genome reads. We can extend
our assembly into subtelomere segmental duplication regions. Following BLAST
analysis using the HG38 reference subtelomere assembly including the segmental
duplication region along with the adjacent bait region, we used Algorithm 1, to
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Table 3. Quality comparison for 1-copy region

Chromosomal
region

Interval
sizea

LAFb LAFc Chromosomal
region

Interval
sizea

LAFb LAFc

19p 50 kb 0.9 0.91 5p (1st 1-copy) 30 kb 0.97 0.98

100 kb 0.91 0.91 60 kb 0.94 0.9

150 kb 0.89 0.87 90 kb 0.94 0.91

200 kb 0.88 0.86 120 kb 0.94 0.92

250 kb 0.88 0.86 150 kb 0.95 0.93

300 kb 0.89 0.87

10p 50 kb 0.99 0.99 5p (2nd 1-copy) 30 kb 0.99 0.99

100 kb 0.99 0.99 60 kb 0.96 0.96

150 kb 0.99 0.99 90 kb 0.93 0.96

200 kb 0.99 0.99 120 kb 0.92 0.95

250 kb 0.98 0.97 150 kb 0.93 0.95

300 kb 0.97 0.68 180 kb 0.93 0.94

210 kb 0.93 0.93

2p 200 kb 0.99 0.98

300 kb 0.98 0.98

400 kb 0.97 0.97

500 kb 0.97 0.97

a: Starting position of 1st gap after the given interval size.
b: LAF for REXTAL. For 2p the range is 10–60 and for 19p, 10, 5p the range is 3–70.
c: LAF for genome-wide assembly method.

measure the LAF only for the segmental duplication region of 19p, 10p, and
5p and then chose the cut-off point. Table 5 shows the analysis of segmental
duplication region with extension length as well as LAF.

3.5 Comparison with Genome-Wide Assembly

For a fair comparison with genome-wide assembly method, we need to extract
all contigs in the genome-wide assembly that overlap (including potential exten-
sions into flanking DNA) with the reference sequence. To do so we use BWA
index [10] of the reference genome (hg38). We have the genome-wide assembly
of our input data using Supernova. For alignment using BWA-MEM [10], we
aligned the genome-wide assembled reads against the indexed reference genome
and generated a .sam file. Using SAMtools [11] we converted the .sam file into
a .bam file, sort, and index the results. We extracted specific region of spe-
cific chromosomes (here 2p, 19p, 10p, and 5p) from that indexed results using
SAMtools and aligned them with the same reference queries used for analysis of
the barcode-selected read assemblies using BLAST with ≥98% of identity (see
Fig. 6B, D, F and H).
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Fig. 6. A: Alignment of 2p with assembled scaffolds of 2p for range 10–60 of REXTAL.
B: Alignment of 2p as query with assembled scaffolds of 2p extracted from genome-
wide assembly. C: Alignment of 19p with assembled scaffolds of 19p 1-copy for range
3–70 of REXTAL. D: Alignment of 19p with assembled scaffolds of 19p 1-copy region
extracted from genome-wide assembly. E: Alignment of 10p with assembled scaffolds of
10p 1-copy for range 3–70 of REXTAL. F: Alignment of 10p with assembled scaffolds
of 10p 1-copy region extracted from genome-wide assembly. G: Alignment of 5p with
assembled scaffolds of 5p 1-copy regions for range 3–70 of REXTAL. H: Alignment of
5p with assembled scaffolds of 5p 1-copy regions extracted from genome-wide assembly.

Comparison in Single Copy Region. To measure the quality of subtelom-
eric region assembly of extracted 2p, 19p, 10p, and 5p 1-copy region from the
genome-wide assembly, we followed the same steps that mentioned previously for
REXTAL to measure quality in the 1-copy region (see 3.4). We calculated the
LAF with regular intervals using Algorithm 1. Table 3 shows the comparison of
LAF between REXTAL and genome-wide assembly method. For 2p and 5p 2nd

1-copy we get similar LAF with genome-wide method (Table 3). We get better
LAF using REXTAL for 19p, 10p 1-copy, and 5p 1st 1-copy than genome-wide
method (Table 3).

Comparison in Extended Region. To show the extension of single copy
region in genome-wide assembly method, we followed the same steps that we
discussed for REXTAL to measure quality in the extended 1-copy region. We cal-
culated the LAF using Algorithm 1. Then we decided the cut-off point. We com-
pared our result for the extended 1-copy region with the genome-wide method
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in Table 4. It is easy to observe that the results obtained by REXTAL are sig-
nificantly better than the genome-wide method for these four loci.

Table 4. Quality comparison for extended 1-copy region

chra (EL, LAF)b (EL, LAF)c chra (EL, LAF)b (EL, LAF)c

2p (33798, 0.99) (16954, 1.00) 10p (52022, 0.93) (12437, 1.00)

19p (43666, 0.93) (6738, 0.99) 5p (2nd 1-copy) (42326, 0.98) (22485, 0.97)

a: Chromosomal region.
b: Extension length (in bases) and LAF for REXTAL. For 19p, 10p, and 5p 1-copy
region the range is 3–70.
c: Extension length (in bases) and LAF for genome-wide assembly method.

Comparison in Segmental Duplication Region. We used Algorithm 1 to
calculate the LAF for segmental duplication region that we got from genome-
wide assembly method and compared the extension achieved by REXTAL with
the extension achieved by genome-wide assembly method. Table 5 shows the
comparison of REXTAL result for the segmental duplication region with the
genome-wide method. Once again note that for segmental duplication region the
results obtained by REXTAL are notably superior to the genome-wide method
for all loci that have been tested. In particular, extensions from the 5p 1st 1-copy
and the 2nd 1-copy region together (94,950 bp) cover the entire 2nd segmental
duplication region (Table 5).

Table 5. Quality comparison for segmental duplication region

Chromosomal region SD La (EL, LAF)b (EL, LAF)c

19p 249446 (67099, 0.98) (5549, 1.00)

10p 78569 (40089, 0.98) (4606, 1.00)

5p (1st 1-copy extends to 1st SD) 39495 (36477, 0.98) (23129, 0.99)

5p (1st 1-copy extends to 2nd SD) 94782 (51860, 0.96) (65, 1.00)

5p (2nd 1-copy extends to 2nd SD) 94782 (43090, 0.92) (1307, 1.00)

a: Length of segmental duplication region (in bases) of corresponding chro-
mosomal region.
b: Extension length (in bases) and LAF of 19p, 10p, and 5p for REXTAL.
c: Extension length (in bases) and LAF for genome-wide assembly method.

Figure 7 shows the comparison of extended segmental duplication region for
19p and 10p using REXTAL and genome-wide assembly method.
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Fig. 7. A: Alignment of 19p segmental duplication region with assembled scaffolds
of 19p 1-copy for range 3–70 of REXTAL. B: Alignment of 19p segmental duplica-
tion region with assembled scaffolds of 19p 1-copy region extracted from genome-wide
assembly. C: Alignment of 10p segmental duplication region with assembled scaffolds
of 10p 1-copy for range 3–70 of REXTAL. D: Alignment of 10p segmental duplica-
tion region with assembled scaffolds of 10p 1-copy region extracted from genome-wide
assembly.

3.6 Efficiency Considerations

For targeted region-specific assemblies from multiple individuals for which 10X
datasets are available, REXTAL is faster and more accurate than genome-wide
assembly method. For genome-wide assembly, we need to assemble the whole
genome of the individuals first and then extract the assembled portion of the
specific region. To do whole genome assembly using Supernova takes approx-
imately 36–48 h [2]. Before extraction of the specific region, we need to align
the genome-wide assembled reads against the indexed reference genome (hg38)
using BWA-MEM. This takes approximately 25 h. Then we can extract the spe-
cific region of the specific chromosome. For multiple individuals, although we
want to do region-specific assembly, the genome-wide assembly method assem-
bles the whole genome for each individual first and does the alignment – these
two steps are time-consuming.

In contrast, REXTAL extracts the reads relevant for assembling the targeted
region from the 10X dataset by aligning the targeted region with a 1-copy seg-
ment of the reference genome (hg38) using BLAT. This step takes 2–5 h. Reads
selection step mentioned in 3rd paragraph of Subsect. 2.3 and Barcode frequency
range and clustering pattern selection step described in Subsect. 2.4 together take
around 2–3 h. Assembly of the subset of selected reads using Supernova takes
approximately 5–15 min. So in total, the region-specific assembly using REX-
TAL takes approximately 4–8 h. In case of targeted region-specific assembly for
multiple individuals, our method REXTAL is approximately 9 times faster than
genome-wide assembly method. The configuration of the machine where we ran
REXTAL is CPU: 32 cores (2, 16 core processors → Intel(R) Xeon(R) CPU
E5-2683 v4/Broadwell @ 2.10 GHz), Memory: 128 GB RAM, Network: FDR IB
(56 Gbps fabric).
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4 Conclusion

We successfully used a new computational method called Regional Extension of
Assemblies Using Linked-Reads (REXTAL) for improved region-specific assem-
bly of segmental duplication-containing DNA, leveraging genomic short-read
datasets generated from large DNA molecules partitioned and barcoded using the
Gel Bead in Emulsion (GEM) microfluidic method [1]. We showed that using
REXTAL, it is possible to extend assembly of single-copy diploid DNA into
adjacent, otherwise inaccessible subtelomere segmental duplication regions. In
future experiments, using larger source DNA molecules for barcode sequencing
approaches could further extend assemblies into and through segmental dupli-
cations, and optical maps of large single molecules extending from the 1-copy
regions through segmental duplications and gaps could be used to optimally
guide and validate these assemblies.

Acknowledgement. The work in this paper is supported in part by NIH
R21CA177395 (HR and MX), and Modeling and Simulation Scholarship (to TI) from
Old Dominion University.
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Abstract. Metagenomics studies microbial genomes in an ecosystem
such as the gastrointestinal tract of a human through sequencing thou-
sands of organism in parallel. The sheer number of genomic fragments are
challenging for current metagenomic binning software to process. Here we
present a scalable reference-free metagenomic binning pipeline designed
to handle large scale metagenomic data. It allows users to input sev-
eral tera base pairs (TB) of reads and produces highly accurate binning
results, even at a species level. The pipeline outputs all binned species in
multiple metagenomic samples and their estimated relative abundance.
We integrate the pipeline into an open-source software, MetaMat, which
is freely available at: https://github.com/BioAlgs/MetaMat.

Keywords: Metagenomic binning · Parallel computing
Disease diagnosis

1 Introduction

Extensive evidence suggests that microbial ecosystems especially the gut ecosys-
tem plays a crucial role in human health. A disruption of these ecosystems can
cause some perplexing diseases such as autism, diabetes, and coronary heart
disease. Thus, our understanding of the biodiversity and composition of these
ecosystems is crucial in developing potential diagnostic methods for diseases.

A recent development in next generation sequencing technology (NGS) allows
us to sequence mass genomes extracted directly from the environment. NGS tech-
nology allows us to bypass several difficulties in the study of microbial ecosys-
tems, such as a need for highly trained personnel and a need for high cost high
maintenance equipment. This type of research is referred to as a metagenomic
study. Due to technological limitations, NGS cannot sequence the entire genome
and can only sequence short fragments of these genomes. After sequencing, the
sequenced fragmented genomes must be reassembled back into whole genomes.
The process of reassembly is known as metagenomic binning.

Several current binning methods include reference-based binning methods
such as MAGEN [1], MetaPhyler [2], Kraken [3] and CLARK [4] that require us
c© Springer International Publishing AG, part of Springer Nature 2018
F. Zhang et al. (Eds.): ISBRA 2018, LNBI 10847, pp. 79–83, 2018.
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to know the reference genomes, which can be a serious limitation since a very
limited number of existing genomes have references. In contrast, the k-mer or
the oligonucleotide-frequency based methods [5] are reference-free. However, the
binning accuracy of k-mer based methods can be significantly compromised for
short contigs (e.g., <10kb) or genetically similar species. An improvement of
k-mer based methods, coverage-based methods such as CONCOCT [6], MaxBin
[7], MetaBAT [8], Groopm [9] and VizBin [10] have higher accuracy but have
a high computational cost involved in the binning and feature extraction steps,
impeding these binning methods in processing large metagenomic data sets. All
of these methods also fail in generating an accurate estimate of the relative
abundance of the species which can hinder identification of the pathogen and
diagnosis for those affected.

The pipeline that we propose here integrates pooled genome assembly, fast
binning algorithm, and disease-microbial species association studies. A novel and
fast computational method of which a linear computational cost is achieved is
proposed for large scale metagenomic datasets that has hundreds of samples and
thousands of giga base pairs of reads. In addition, parallel computing is used on
multiple metagenomic samples which can bin millions of contigs in a couple of
hours, a speed that cannot be achieved by other existing methods. Furthermore,
MetaMat pipeline not only outputs the binning results but also outputs the
relative abundance as an input for downstream biological analysis such as disease
classification and disease-microbial species association. In summary, MetaMat
can greatly benefit the biologists’ study of microbial-environment.

2 The MetaMat Pipeline

MetaMat is developed using shell script, C++, and R programing languages. To
ease the usage of the software, we integrate the whole pipeline into one command
with arguments to allow users to customize the parameters. We release the source
code of the software on the public repository. The release of the source code
allows users to add features and extend the functionality of the code which makes
it more versatile for advanced users. We test the software on tens of simulated and
real metagenomic data sets. For the simulated data, we consider the different
sequence depths, number of samples and number of species. MetaMat shows
robust performance under these different conditions. We also test MetaMat on
real datasets with hundreds of metagenomic samples including several tera base
pairs (TB) of reads. For real data sets, we verify the binning results by comparing
our bins with the ones obtained from BLAST search. MetaMat can achieve a
very high accuracy when compared with existing methods.

MetaMat targets on large scale biomedical studies where species in each
biomedical sample or human subject have different distributions. This assump-
tion can be satisfied in most of scientific studies. For example, we can safely
assume that the microbial distributions in human gut are different for different
subjects. Under this assumption, we can further assume that the cross-sample
relative abundance of one species is different from that of another given species.



A Scalable Reference-Free Metagenomic Binning Pipeline 81

Sequences
input

Ray assembler or 
MEGAHIT Con gs

Mapped Reads 
Counts Matrix

Bow e 
and 

Samtools

Scalable Binning

Output: Bins 
and Rela ve 
abundances

Input step Feature extrac on

Downstream Analysis

Binning and output

Predict the disease status by the 
penalized logis c regression

Test whether rela ve abundances of each 
bin are the same in case and control 

groups by Wilcoxon rank sum test

Fig. 1. Software architecture of the MetaMat system.

Because the relative abundance of a contig equals the relative abundance of
the species that contains it, we can make use of the relative abundance of each
species across samples to sort contigs based on the fact that contigs from different
species have different relative abundances across samples.

MetaMat accepts sequenced reads outputted from the sequencing machine
as an input. We require that the reads are in FASTA or FASTQ format and are
stored in different files for different subjects. If the input files are FASTQ files, a
quality control will automatically be applied. In the MetaMat pipeline, we mainly
have three steps as shown in Fig. 1. The first step is to specify the input data
which includes multiple FASTA or FASTQ files. The customized parameters
inputed, such as the number of CPU cores is used to run the pipeline. The
second step aims at extracting useful features used for binning. Particularly, we
use overlap information to assemble the short reads into longer sequences which
are called contigs. Several well developed open source software are used such as
Ray assembler [11] and MEGAHIT assembler [12]. Next, the sequenced reads are
aligned to the assembled contigs by Bowtie 2 [13] and the counts of the mapped
reads from different samples on each contig are extracted. The assembled contigs
and extracted mapped reads counts matrix are passed to the third step in which
we apply a scalable binning algorithm based on searching for the matched angle
among the mapped read counts vector of contigs. The computational complexity
is of the order O(NKP ). The computational complexity of our algorithm is linear
and much faster than any other available software, thus, it is able to bin millions
of contigs within several hours. In addition, we implement silhouette statistics
[14] to estimate the number of species. We define the silhouette statistics as
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C(K) =
1
n

n∑

i=1

bi(K) − ai(K)
max(ai(K), bi(K))

, (1)

where ai(K) = 1
nk

∑
i′∈Sk

dii′ , bi(K) = mink′ �=k
1

nk′

∑
i′∈§k′ dii′ , and dii′ is the

angular distance between the mapped reads counts vectors of the ith and i′th
contig. We choose Kopt = arg max1≤K≤D C(K) as our estimated number of
species. We test this criteria on several simulated metagenomic data sets with
varying sequence depths, number of samples and number of species. This criteria
can accurately select the number of species with error less than 5%.

The MetaMat output consists of two files. One of the files contains the binning
information i.e. the bin id for each contig, while the other file contains the
Kopt × P matrix in which each entry is the relative abundance of each bin
in each sample.

MetaMat can be applied to case-control metagenomic studies where the out-
putted relative abundance can be used in identifying the species causing the
disease and diagnosing patients. In our online instruction, we include two down-
stream pipelines for predicting the disease status using penalized logistic regres-
sion [15], and for identifying the species with significantly different relative abun-
dances between the case and control groups by using the Wilcoxon rank sum
test [16].

3 Implementation

MetaMat is an integrated pipeline utilizing a parallel computing architecture to
divide computational resources among multicore computers or computer clusters
with multiple nodes. The shell script is used to combine the power of different
software. In the feature extraction steps, we use GNU parallel [17] to process
multiple samples at the same time. In the binning step, we use the R packages
‘doParallel’ [18] and ‘foreach’ [19] to simultaneously run the scalable binning
algorithm with different candidate number of bins K.

As a demonstration, we applied MetaMat on three simulated data sets and
ran the pipeline on a computer server with 12 CPU cores. The binning accuracy
and performance of the silhouette statistic are reported in the Github repository.

4 Discussion

In this paper, we present a pipeline that addresses some emerging issues in
metagenomic research based on high-throughput sequencing technologies. The
proposed pipeline integrates parallel feature extraction, scalable binning, and
downstream analysis, which will lead to a deeper understanding of how micro-
bial ecosystems affect our health and help design new probiotics for disease
prevention and intervention.

Acknowledgement. This research was supported in part by the National Institutes
of Health grant R01 GM113242-01 and the National Science Foundation grants DMS-
1440038 and DMS-1440037.
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Abstract. Since biomedical signals are high dimensional data sets with a lot of
noise signal, the results processed by the classical signal processing method are
subjected to the impact of the noise and interference. Entropy as a measure of
disorder or uncertainty in the data has been applied in signal processing research
areas. This review is to introduce the application of entropy in the analysis of
biomedical signals and discuss the advantages and shortcomings of various
entropies. Especially, the utilization and application of entropy concept in cancer
research are highlighted.

Keywords: Shannon entropy � Biomedical signal � Cancer research
Approximate entropy � Correntropy

1 Introduction

Biomedical signals are the concentrated expression of human life information and also
the window to peep into the phenomenon of life [1]. Biomedical signals play an
important role in life science research, health care, disease prevention and treatment.
Therefore, the research on the detection, treatment and application of biomedical sig-
nals will not only help us to understand the law of life activities, but also to explore the
methods of disease prevention and treatment, and the development of the medical
equipment [2, 3].

The term ‘Entropy’ may be appreciated both from the viewpoint of thermody-
namics and from the information theory as a display of system uncertainty or disorder
or heterogeneity. The concept of “information entropy” is proposed by C. E. Shannon,
who is the father of information theory in 1948 [4]. Currently, the applications of
entropy in biomedical signals have received extensive research attentions [5–7]. For
example, Pincus [8] proposed the concept of approximate entropy to investigate the
changes of heart rate for infantile sudden illness. Approximate entropy is good at
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solving the problem of common signal with short noise in biomedical signals. Based on
the previous research [9–11], Richman and Moorman [12] developed the sample
entropy. Sample entropy, compared with approximate entropy, does not count self-
matches and shows better relative consistency and less dependence on data length [12,
13]. Based on the correntropy function definition, Liu et al. [14] developed a gener-
alized correlation function as correntropy, which extends the definition to the general
case of two arbitrary random variables and provides its probabilistic and geometric
meaning. This theoretical framework will help us understand and apply correntropy
judiciously to the nonlinear, non-Gaussian signal processing [14]. Correntropy has
received increasing attention in domains of machine learning and signal processing
[15]. Therefore, it is necessary for this study to review the current entropy studies in
biomedical signals research area.

2 Entropy Methods

The notion of entropy is introduced by Rudolph Clausius in the context of thermo-
dynamics [16]. It abides by the second law of thermodynamics, which states that the
change of the entropy in the volume element is equal to the ratio of the heat state
changes in temperature [17]. Boltzmann [18] explores the entropy from the perspective
of molecular motion theory. The relationship that between the entropy change at the
macroscopic level and the heat absorbed by the system is extended to a certain rela-
tionship between the entropy and the distribution of subsystems at the microscopic
level of the system. The statistical interpretation of thermodynamic entropy [19] is
described by Eq. 1.

S ¼ k lnW ð1Þ

Here, S is entropy, k ¼ 1:38� 10�23J=K is Boltzmann’s constant, and W is
probability, determined by the configurationally properties of a statistical system.

The microscopic interpretation of entropy by the Boltzmann formula not only
creates an opportunity for the generalization of entropy concept, but also supports and
favors the use of entropy in biomedical signal analysis. Then, current entropy(Kol-
mogorov entropy, approximate entropy [8], dynamic approximation entropy, sample
entropy, mode entropy, multi-scale entropy [20], basic scale entropy, joint entropy
[21], fuzzy approximation entropy and fuzzy measure entropy Algorithm [22, 23])
greatly enhance the level of biomedical signal analysis. Thus, this study not only
reviews the role of entropy in biomedical signal study from the four major entropy
research fields (Fig. 1), but also discusses their advantages and shortcomings.

2.1 Shannon Entropy

Shannon [24–26] propose the Shannon entropy as Eq. 2.
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HðXÞ ¼ �
Xn

i¼1
ðPðxiÞ loga PðxiÞÞ ð2Þ

Here a is the base of the logarithm used [27]. HðXÞ indicates the information
entropy of a random variable X. X ¼ ½x1; x2; . . .; xn� indicates n possible independent
events in a message. P ¼ ½P1;P2; . . .;Pn� indicates the probability of occurrence of
these n events, which satisfies

Pn
i¼1

pi ¼ 1. The index i is from 1 to n.

The uncertainty of the signal source at different ratios is shown in the Fig. 2.
If X can assume values 0 and 1, entropy of X is defined as HðXÞ ¼

�Pðxi ¼ 0Þlog2 Pðxi ¼ 0Þ � Pðxi ¼ 1Þlog2 Pðxi ¼ 1Þ. It has value if Pðxi ¼ 0Þ ¼ 1 or
Pðxi ¼ 1Þ ¼ 1. The entropy reaches maximum when Pðxi ¼ 0Þ ¼ Pðxi ¼ 1Þ ¼ 1=2
(the value of entropy is then 1).

Shannon entropy is characterized by a degree of uncertainty associated with the
occurrence of the result [17]. The greater value of the entropy, the more uncertain the
results are. In addition, the Shannon entropy also reflects the average uncertainty of
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Fig. 1. Major entropy research fields

Fig. 2. Shannon entropy with different probabilities
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information sources. The more uncertain the information source is, the more disordered
the information source is [25].

Since Shannon entropy is better adapted to the normal distributions [28, 29], it is
wildly used for biomedical research. For example, indicated by Bruhn et al. [30],
Shannon entropy is calculated directly from the digitized voltage signal, without any
data transformation when it is applied to the measurement of the electroencephalo-
graphic effects of desflurane. Also, Stefanie Fuhrman et al. [31] consider that Shannon
entropy, unlike these traditional measures, quantifies the information content of gene
expression patterns over entire time courses or anatomical areas, which provides a more
complete measure of each gene’s participation in a disease process, and permits a rank
ordering by physiological relevance. Moreover, De Araujo et al. [32] considers that
Shannon entropy is particularly useful for the location of the indicative patterns of
event-related fMRI signals. In addition, typical applications for the Shannon entropy
include estimating potency and relative potency of drugs and their combinations [30].
For example, Fuhrman et al. [31] propose that the use of Shannon entropy as a method
for selecting the most likely drug target candidates from among thousands of genes
assayed in parallel. However, Shannon’s entropy also does have several shortcomings
[29], which are (i) the possibility of losing more information due to aggregation; (ii) the
possibility of over-estimation of entropy level if too many zones are used [33], and
(iii) this method fails to explain temporal relationships between different values
extracted from a time series signal [34].

2.2 Approximate Entropy

Nonlinear dynamical analysis is a powerful approach to understanding biological
systems. The calculations, however, usually require very long data sets that can be
difficult or impossible to obtain [12]. In order to analyze the short and noisy clinical
time series data, Pincus et al. [8, 12, 35] develop the approximate entropy for a measure
of regularity closely related to the Kolmogorov entropy, the rate of generation of new
information.

This family of statistics, named approximate entropy (ApEn), is rooted in the work
of Grassberger and Procaccia [10] and Eckmann and Ruelle [36]. And has been widely
applied in clinical cardiovascular studies, [37–53]). Mathematically, ApEn is calculated
by

ApEn ¼ ln
CmðrÞ

Cmþ 1ðrÞ
� �

ð3Þ

Here ApEn is the Approximate Entropy, r is the similarity coefficient of the samples
and CmðrÞ is the pattern mean of length m and Cmþ 1ðrÞ is the pattern mean of length
mþ 1. The pattern mean is calculated by computing the count of similar patterns of
length, m and length, mþ 1 [29].

The advantages of this entropy are: (i) it can be calculated for a relatively short
series of noisy data [54]; (ii) it can potentially differentiate a variety of systems such as
periodic and multiple periodic systems, chaotic systems, and stochastic systems [8];
and (iii) it can have statistically accurate results compared to the Kolmogorov–Sinai
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entropy [8, 29]. The drawbacks of approximate entropy are described as following [29]:
(i) ApEn is heavily dependent on the record length and is uniformly lower than
expected for short records [12]; (ii) significant noise compromises meaningful inter-
pretation of this entropy [29, 54]; (iii) this entropy is a biased statistic as it depends on
length of the time series, and counts self-matches [35]; and (iv) it lacks relative
consistency.

Approximate entropy has been successfully applied to the analysis of physiological
time-series. For example, Akareddy and Kulkarni [55] improve approximate entropy
by employing it in EEG signal classification for epileptic seizure detection. Their
results show that the accuracy of the proposed method is better than the existing
method for epileptic seizure identification [55]. In addition, ApEn also has been applied
to the analysis of the heart rate signal [12], blood pressure signal [56], male sex
hormone secretion curve [57] and other time-series [20] in the complexity of the study.

2.3 Fuzzy Entropy

Fuzzy entropy, a measure of time series regularity, is proposed by Chen et al. [22].
Compared with approximate entropy, it is insensitive to noise and is highly sensitive to
changes in the information content [58]. The main limitation is that Fuzzy entropy
(FuzzyEn) only focuses on the local similarity of the signal vector and ignores the
global similarity, so it is not sensitive to the small change of signal complexity.

Therefore, Liu and Zhao [23] introduce a new entropy measure - Fuzzy Measure
Entropy (FuzzyMEn), which utilizes the fuzzy local and fuzzy global measure entropy
to reflect the whole complexity implied in physiological signals and improves the
limitation of FuzzyEn, which only focus on the local complexity.

The recently introduced Fuzzy entropy has been successfully used to process
biological signal. For example, Ahmed et al. [59] propose the multivariate multiscale
fuzzy entropy (MMFE) algorithm and demonstrate its superiority over the multivariate
multiscale entropy (MMSE) on both synthetic and real-world uterine electromyography
(EMG) short duration signals. A Q-based multivariate sub-band fuzzy entropy has been
proposed by Bhattacharyya et al. [60]. It not only analyses the complexity of multi-
variate electroencephalogram (EEG) signals in different frequency scales, but also
proposes such a multivariate sub-band fuzzy entropy that can measure the complexity
of the multivariate biomedical signals [60].

2.4 Other Entropies

The previous three type of entropies discussed in Sects. 2.1–2.3 is a form of conditional
probability. Here, we introduce another type of entropy measure, which does not use
the conditional probability form [61, 62], such as permutation entropy [63] and Cor-
rentropy [14].

2.4.1 Permutation Entropy
In order to quantify the complexity of time series by using symbolic dynamics, the
permutation entropy(PE) is proposed by Bandt and Pompe [63] to map a continuous
time series onto a symbolic sequence [17]. PE is given by
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PE ¼ �
Xn
j¼1

pj log2 pj ð4Þ

where j ¼ 1; 2; . . .; n, pj represents relative frequencies of the possible sequence pat-
terns and n implies permutation order [29].

The advantages of this entropy are [29]: (i) it is simplicity, robustness and low
computational complexity [64, 65], (ii) it is applicable to real and noisy data, (iii) it
does not require any model assumption and is suitable for the analysis of nonlinear
processes [66], and (iv) it is useful to analyze huge data sets and requires less pre-
processing time and fine-tuning of parameters [66]. However, the main limitation is
unable to distinguish well defined patterns of a particular design [67].

2.4.2 Correntropy
Kolmogorov et al. [68] further refine the concept of the Shannon entropy [69] by
proposing the concept of Kolmogorov entropy to measure the random or disorder of the
system movement. Because Kolmogorov entropy costs a lot of computing resource
[70], Crassbreger and Procaccia [10] develop the concept of correlation dimensions and
employ the correntropy to approximate Kolmogorov entropy. In recent years, corren-
tropy [14, 71, 72] has been successfully applied in non-Gaussian signal processing [73–
77]. In particular, the correntropy function is a generalized correlation that quantifies
sums of higher order moments of the signal, which opens the door for new spectral
definitions that quantify more precisely the signal structure.

According to Santamaria et al. [71], correntropy is a generalized similarity measure
between two random variables x and y, described by Eq. 5.

Vrðx; yÞ ¼ E½krð x� yÞ� ð5Þ

Here krð�Þ denotes a positive definite kernel. Vrðx; yÞ denotes the correntropy. E½��
denotes the expectation operator. The most widely used kernel is the Gaussian kernel
(Eq. 6).

krð x� yÞ ¼ exp � e2

2r2

� �
ð6Þ

where e ¼ x� y, and r[ 0 denotes the kernel width [6]. Another interesting property
of the correntropy function is its robustness against impulsive noise. This additional
advantage is due to the fact that when an outlier is present, the inner product in the
feature space is computed via the Gaussian kernel tends to be zero [71]. In other words,
the Gaussian kernel is robust to impulsive noises since it approaches zero when the
error is very large. It increases as the error decreases especially when the error is
closing to the origin, and reaches its maximum at the origin [6, 71].

The advantages of correntropy are illustrated as following. First, the kernel size
controls all its properties. Due to the close relationship between m-estimation and
methods of information theoretic learning (ITL), choosing an appropriate kernel size
[14] in the correntropy criterion becomes practical. Second, the correntropy measure has
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good property of outlier rejection. Correntropy has been successfully employed to
construct different cost functions for biomedical signal processing and machine learn-
ing. The major drawback of correntropy is the limitation of its kernel function (Gaussian
kernel [14]). For this reason, it is hot for entropy scientists to [5, 6, 73, 77, 78] develop
the new Gaussian function for different application scenarios’ requirements.

3 The Application of Entropy in Bioinformatics Research

3.1 Cardiovascular Research

Entropy has already been wildly used in cardiovascular related signal analysis [15, 73,
78–81]. For example, Wang et al. [82] investigate that the pulses’ approximate
entropies of patients with cardiovascular disease preferred to smaller value and less
irregularity by applying the approximate entropy. Christopher et al. [83] illustrate the
influence of parameter selection on entropy measures’ potential for cardiovascular risk
stratification and support the potential use of entropy measures in future studies. In
addition, Chicote et al. [84] introduce, adapt and fully characterize six entropy indices
for VF shock outcome prediction, based on the classical definitions of entropy to
measure the regularity and predictability of a time series. Indicated by Hagmair et al.
[85] the potential of entropy measures for cardiovascular risk stratification in cohorts
the parameters were not optimized for, and it provides additional insights into the
parameter choice.

Ferlazzo et al. [86] use permutation entropy (PE) to disclose abnormalities of
cerebral activity in patients with typical absences (TAs). And PE seems to be a useful
tool to disclose abnormalities of cerebral electric activity not revealed by conventional
EEG recordings, opening interesting prospective for future studies. In addition, Li et al.
[87] propose to use permutation entropy to explore whether the changes in elec-
troencephalogram (EEG) data can effectively distinguish different phases in human
absence epilepsy, i.e., the seizure-free, the pre-seizure and seizure phases. The
experimental results show the mean value of PE gradually decreases from the seizure-
free to the seizure phase and provides evidence that these three different seizure phases
in absence epilepsy can be effectively distinguished. Indicated by Melia et al. [88], a
novel approach to this issue based on correntropy function analysis of EEG signals was
proposed in order to detect patients suffering from Excessive daytime sleepiness(EDS).

3.2 Cancer Research

Information dynamics are tightly associated with tumorigenesis and cancer progres-
sion. Chromosomal aberrations, genomic mutations and epigenetic perturbations are
common occurrences during cancer development [76]. These genomic, genetic and
epigenetic events decrease the information content by producing the disorder and
increasing the entropy inside the cells [89]. The concept of entropy has been applied to
diverse subjects in cancer research [90]. Shannon entropy is often used for computing
the signaling entropy and structural entropy in cancer. Signaling entropy, a measure of
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signaling promiscuity or degree of uncertainty, increases in cancer as a result of
increased signaling disorder from clonal evolution and clonal diversity of cancer cells
and has a negative impact on patient outcomes [91]. Computation of single-cell sig-
naling entropy based on a cell’s transcriptome has been used to estimate the differ-
entiation potency and plasticity of a single normal stem cell and to identify cancer stem
cell populations in diverse cancer types such as acute myeloid leukemia (AML) and
melanoma [92]. Shannon entropy has also been successfully employed for cancer
biomarker discovery based on data from high-throughput technologies such as RNA-
seq in both prostate cancer and melanoma [93]. Based on the metastatic tumor dis-
tribution data from autopsy of 3827 untreated cadavers collected in New England from
1914 to 1943, one research team categorized 12 common cancer types into high
entropy (skin cancer, breast cancer, kidney and lung cancer), medium-level entropy
(stomach cancer, uterine cancer, pancreatic and ovarian cancer), and low entropy
cancers (colorectal cancer, cervical cancer, bladder cancer, and prostate cancers). The
rank of entropy values correlates well with the complexity and metastatic potential of
each cancer type [94]. Structural entropy is especially useful in the pathological study
of cancers by describing entropy information from tissue sections, nuclear texture and
karyotypes etc. [95] Castro et al. applied Shannon’s entropy to quantify the karyotypic
diversity of 14 epithelial tumor types (n = 1232) with scores of their aneuploidy status
[96]. Nielsen et al. reported that entropy based nuclear texture features could be
independent prognostic markers in cancer [97]. Entropy concept has been used to
evaluate results from laboratory tests such as serum biomarker tests, histological and
cytological images for grading and diagnosis purposes respectively [98]. Judging from
the recent progress, we may witness a dramatic increase in entropy based research and
applications in biological sciences and medicine in the next decade as more and more
data become available.

4 Conclusions

This comprehensive review presents the characteristics of major entropies and their
applications in biomedical signal research, and briefly illustrates the development trend
and existing problems of entropy theory in recent years.

Recently, entropy has been used in analyzing short, sparse, and noisy medical time
series data. Furthermore, it is widely employed in the multi-variety and multi-scale
medical systems [99]. Especially, more and more analytical methods and indicators for
entropy research have been applied to clinical research especially cancer research with
encouraging results. Here, we summarize the past research and looking forward to the
future of entropy research trend. The following aspects will be of far-reaching
significance:

(i) Integrating more clinical diagnosis results into biomedical signal research, it
could improve the performance of entropy algorithm. For example, Liu et al.
[100] show that Entropy-based Consensus Clustering (ECC) displays superior
performance on the pan-omics data by integrating clinical data, such as somatic
mutations and DNA methylations in cancer samples.
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(ii) It could be another future research direction to develop such a novel entropy
measure algorithms that are suitable for short-term data analysis with less
computation. For example, Huang et al. [101] propose that correlation dimen-
sion and second-order entropy at the minimum embedding dimension could not
only analyze pathologic human voices, but also remarkably decrease computa-
tion time for the clinical applications.

(iii) It will be the research hotspots to improve the sensitivity and specificity of the
measure index of entropy in biomedical research. For example, Ma et al. [102]
propose that Poincaré SD2 analysis [103] and complexity index (derived from
multiscale entropy) are more sensitive in distinguishing the alterations caused by
Metabolic syndrome (MetS) [104]. So large-scale screening to detect early stage
cardiac dysfunction may help to prevent or alleviate various late cardiovascular
complications.

We already introduce that entropy measures have been used to analyze short,
sparse, and noisy medical time series, but they still have many limitations. For
example, how to use entropy measures for the classification of pathological and non-
pathological data [17] is still unsolved. At present, there is little knowledge concerning
how to solve the problems of classification and to select appropriate data ranges to use.
Therefore, more work is needed to overcome these shortcomings in the distant future.
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Abstract. The rapid accumulation of multi-omics cancer data has cre-
ated the opportunity for biological discovery and biomedical applica-
tions. In this study, we propose an approach that integrates multi-omics
data to identify dysregulated pathways driving cancer subtypes, which
simultaneously considers DNA methylation, DNA copy number, somatic
mutation and gene expression profiles. After applying it to Breast Inva-
sive Carcinoma (BRCA) in TCGA, we identify distinct top 30 dysregu-
lated pathways for each breast cancer subtypes. The result suggests that
dysregulated pathways of different subtypes display common and specific
patterns. Furthermore, 44 differentially expressed genes with correspond-
ing genetic and epigenetic dysregulation are retrieved from the subtype-
specific pathways. Literature validation and functional enrichment anal-
ysis indicate that these genes are function associated with BRCA. Our
method provides a new insight for identifying the driver of cancer sub-
types through multi-omics data integration.

Keywords: Dysregulated pathways · BRCA · Data integration
Maximum relevance minimum redundancy · Disease gene

1 Introduction

In the last few years, the rapid accumulation of multi-omics cancer data has
created the opportunity for biological discovery and biomedical applications. It
is a known fact that carcinogenesis is associated with multiple levels. Genetic and
epigenetic mechanisms affect the gene expression signatures. So, different scale
data pose a new challenge: how to integrate them and improve the understanding
of disease mechanism and pathology.
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In cancer genomics, a key problem is to identify “driver genes” or “driver
pathways”, which is causally implicated in oncogenesis [6,7,32]. During the
last years, a lot of methods mainly focus on deriving dysregulated genes from
gene expression data. Recently, the network or pathway-based methods are fur-
ther considered to identify robust biomarkers [8,14,16,20,22]. The “pathway
driven”analysis has achieved more robust biomarkers to the disease of interest.
Some of them regarded inferring dysregulated pathways as a feature selection
problem. Lee et al. [20] used a gene subset of the pathway to infer the pathway
activity. Han et al. [14] used Gaussian Bayesian networks to create individual-
ized features that reflect pathway activity, they incorporated gene interactions
using probabilistic graphical models to more accurately represent the underlying
biology and achieve better performance. Furthermore, some methods considered
the structure information of the network to infer more active pathways [16,22].
Hung et al. [16] weighted genes based on the neighbor genes to improve the path-
way enrichment analysis. Liu et al. [22] used directed random walk to identify
disease genes and nominated active pathways by mining the structure informa-
tion of pathway. But relatively few methods utilize different scale information to
infer the driver of cancer subtypes.

Here, we shift the focus to infer dysregulated pathways that drive cancer
subtypes and propose an approach for integrating DNA methylation, DNA copy
number, somatic mutation and gene expression data in the context of pathway
information. Because of the cross-talk among various biological pathways con-
tributes to the complexity and redundancy of molecular mechanisms [23,31].
Inferring dysregulated pathways is translated to an optimization problem that
how to infer the most relevance pathways to disease, at the same time, with the
least redundancy among each other.

Breast cancer is a complex disease that it is not only diverse with many
subtypes, but also widely multi-level dysregulated [5,9,25]. By application of our
method to BRCA dataset from TCGA, we identify subtype-specific dysregulated
pathways by investigating the disease driver factors on four functional levels. The
further analysis reveals common and specific patterns among these pathways.
Our results verify the previous suggestion that distinct biological pathways drive
the pathobiology of different breast cancer subtypes [2,4].

2 Materials and Methods

2.1 Resources and Datasets

Our method integrating multi-omic data requires gene expression, DNA copy
number, somatic mutation and DNA methylation data from the same breast
cancer subtypes. All the BRCA associated datasets are downloaded during April
2016 in TCGA by an R/Bioconductor package TCGAbiolinks. For our multiple
level analysis, BRCA datasets include DNA copy number level 3 data(Affymetrix
SNP 6.0 platform), DNA methylation level 3 data(Illumina HumanMethyla-
tion27), gene expression data(AgilentG4502A 07 3), and somatic mutation level
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2 data. We focus on the intrinsic molecular subtypes of breast tumors: lumi-
nal A (LumA), luminal B (LumB), human epidermal growth factor receptor 2
(HER2)-enriched, and Basal-like. More details of samples are shown in Table 1.

Table 1. TCGA breast cancer datasets with normal and tumor samples

Subtypes Type of
samples

Data categories

DNA copy
number data

DNA methylation
data

Gene expression
data

Basal-like Normal 133 27 63

Tumor 96 58 96

HER2-enriched Normal 133 27 63

Tumor 56 44 58

Luminal A Normal 133 27 63

Tumor 228 119 231

Luminal B Normal 133 27 63

Tumor 127 80 127

All of the raw data are dealt with the instruction of TCGAbiolinks. For
DNA copy number data, segmentation data is processed and transformed into a
gene-level matrix based on genomic location of genes by Bioconductor package
“CNTools”.

The pathway information is obtained from the KEGG database by an
R/Bioconductor package KEGGgraph. After removing the disease pathways,
276 pathways are analyzed in our research.

2.2 Method for Inferring Dysregulated Pathways

The key idea of our method is to model the disease on the pathway level. In
our method, we formalize it as a multi-objective optimization problem to infer
dysregulated pathways with maximum relevance and minimum redundancy. Our
method involves two steps: seed genes selection and dysregulated pathways infer-
ence. The framework of our method is shown in Fig. 1.

Seed Genes Selection. The first step of our method is to identify aberrant
genes regarded as seed genes at multi-level events. For methylation analysis, dif-
ferentially methylated CpG sits are searched using beta-values by comparing con-
trol and disease samples. Then, genes with differential methylation (hypomethy-
lation and hypermethylation) are identified in disease group compared to normal
group (p − values < 0.01,diffmean < 0.25). In DNA copy number analysis,
we use t statistic test (FDR < 0.001) to identify altered genes with genomic
amplification or deletion. As for somatic mutation data, single nucleotide vari-
ants (SNVs) and small insertions and deletions (Indels) are considered. For gene
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Fig. 1. Schematic flowchart of data integration and dysregulated pathways identifica-
tion. Step 1: seed genes selection. Genes with differential expression and corresponding
differential methylation, or differential copy number alteration or somatic mutation are
selected. Step 2: dysregulated pathways inference. A feature matrix is constructed based
on pathway level and the optimal approach is applied to screen dysregulated pathways
with maximum relevance and minimum redundancy. Finally, the dysregulated path-
ways are performed the literature validation and functional enrichment analysis.

expression data, differentially expressed genes (DEGs) are nominated between
two groups(FDR < 0.001). Furthermore, genes with significantly altered on
three levels (DNA copy number, DNA methylation, somatic mutation) are inter-
sected with the differential expression genes, separately. Finally, the seed genes
are extracted by merging the genes of the following three groups:

(i) genes with differential expression and corresponding differential methyla-
tion;

(ii) genes with differential expression and corresponding differential copy num-
ber alteration;

(iii) genes with differential expression and corresponding somatic mutation.

Dysregulated Pathways Inference. Recently, incorporating pathway infor-
mation into the disease dysfunciton analysis has been paid more attentions.
Motivated by Lee et al. [20], we propose a new definition of dysfunctional path-
ways to precisely formulate disease system. In our definition, the activity of a
dysfunctional pathway is represented by seed genes rather than the entire sig-
naling pathway. First, for each gene i in sample j, the expression value gij is
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normalized to z -transformed score zij = gij−μi

δi
with μi = 0 and δi = 1 over

all samples. For pathway j composed of k seed genes, pj = {g1, g2, ..., gk}, the
activity of pathway j on sample s is designated a combined z -score representing
the averaged normalized score in the seed gene set.

asj =
k∑

i=1

zij√
k

, s = 1, 2, . . . ,m (1)

Finally, after differential analysis (p − value < 0.01), the feature matrix A with
differential pathways is constructed for next analysis. There are a lot of modeling
methods to analyze disease, but understanding disease remains a challenge. The
key of our method is to model the disease state based on the pathway with two
aspects. On the one hand, the pathways need to be highly related with disease;
at the same time, there is the least redundancy among them. Inspired by [29], we
formalize it as a multi-objective optimization problem with maximum relevance
and minimum redundancy for pathways (mRMR P). The final-selected pathways
are regarded as the core features to screen disease genes.

In our work, mutual information is used as the measure of the pathway
relevance. If a pathway is significant dysregulation in different classes, it should
has larger mutual information. The mutual information is defined as below:

I(x, y) =
∑

i,j

p(xi, yj)log
p(xi, yj)

p(xi)p(yj)
, (2)

where x and y are two variables, p(x, y) is their join probabilistic distribution,
and p(x) and p(y) are the marginal probabilities, respectively. Further, Ω is
defined as the whole pathway set (|Ω| = n), S is as the selected pathway set
(|S| = m) and ΩR is as the remaining pathway set (ΩR = Ω −S). The relevance
D between the pathway pi in ΩR and the target class (disease state) c is defined
as:

D = I(c, pi), (3)

The redundancy R between the pathway pi in ΩR and all the pathways in S is
defined as:

R =
1
m

∑

pj∈S

I(pj , pi), (4)

The mRMR P is defined as a combination criteria optimizing the minimum
redundancy (Eq. 3) and the maximum relevance (Eq. 4) simultaneously.

max
pi∈ΩR

[I(c, pi) − 1
m

∑

pj∈S

I(pj , pi)], (5)

To resolve the optimization problem, a heuristic algorithm based on incremental
way is adopted to rank pathways. After N(= n + m) rounds evaluations, the
final pathway set W can be written as

W = {p′
1, p

′
2, . . . , p

′
h, . . . , p′

N} (6)

In Eq. 6, the smaller the index value, the more significant the pathway will be.
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3 Results

3.1 Screening Significan Seed Genes

For each breast cancer PAM50 subtype, we respectively identify 5667, 4742,
3903 and 4857 seed gene set in the step 1. Genes in each seed gene set are
differential expression, and aggregating the other three differential components:
methylation, copy number and mutation.

3.2 Inferring Dysregulated Pathways

Then, genes from seed gene set are mapped into 276 non-disease KEGG path-
ways. After differential analysis, we retrieve 205, 185, 200 and 194 significant
pathways with t statistic test for Basal-like, HER2-enriched, Luminal A and
Luminal B, respectively. Based on these significant pathways, a feature matrix
is constructed following Eq. 1 as the input of mRMR P. After performing the
mRMR P, we get a top 30 pathways list (Supplement table S1) which repre-
sent that the dysregulated pathways with the maximum relevance and minimum
redundancy according to the subtype. The venn diagram (Fig. 2) shows the num-
ber of common and specific dysregulated pathways in the subtypes. The Fig. 3
shows the heat map of top 30 dysregulated pathways for each subtype of breast
cancer. The result indicates that the screened pathways can significantly discrim-
inate disease and normal samples, especially in Basal-like and HER2-enriched
subtypes. In other word, these dysregulated pathways are highly associated with
the target disease subtype.

13

6

12

1

3

1

0

5

16

3
0 1

5

13

5

Basal−like HER2−enriched

Luminal A Luminal B

Fig. 2. The venn graph of dysregulated pathways for each subtype of breast cancer

3.3 Extracting Common Dysregulation Genes from the Top
Pathways

44 common dysregulated genes are extracted from the top 30 pathways for four
subtypes of breast cancer (Table 2). Among those dysregulated genes, PIK3CA,
FGFR1, YWHAZ and CCND2 are considered as known cancer genes from the
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(d) Luminal B

Fig. 3. Active levels of the highest ranking pathways. (a-c) The top 30 dysregulated
pathways of each breast cancer subtype samples are clustered by complete linkage
hierarchical clustering

Cancer Gene Census(CCG)[12]. They show different dysregulated patterns in
the four subtypes. Some of the rest genes show overexpression such as FGF2,
LAMB3, CCNE2, and so on. In addition, literature validation shows that the
rest genes present highly association with breast cancer.

Table 2. 44 common dysregulated genes of four subtypes on top 30 pathways

FGFR1* LAMB3 IRS1 EFNA3 C4BPA IGF1 JAM3 CRTC2

FGF2 LAMC1 PCK1 EFNA4 ITGAX ANGPT1 ADRA1A CCNE2

HSPA8 PTK2 AP2M1 EPHA2 MYL9 EFNA1 SERPING1 EIF4E2

PLA2G4A RELN ARF1 FLT4 MYLK2 YWHAZ* F11R CCND2*

PIK3CA* ATP6V0B PIP5K1A RILP NPR1 LEP MYLK PPP1R12B

PIK3R3 ATP6V0D2 ADCY4 DYNC2H1

3.4 Exploring Subtype-Common and Specific Pattern of Pathways

Breast cancer is one of the most common types of cancer in women, and it is
comprised of distinct subtypes. This means that it may respond differently to
drug and pathways targeted therapies.

(1) Analysis of subtype-common dysregulated pathways
Supplement table S2 shows the common pathways among the subtypes. Our

result displays an interest phenomenon that all subtypes involve the PI3K-Akt
signaling pathway. The common dysregulated genes for subtypes in this pathway
are shown on Fig. 4. These dysfunction genes mainly focus on the upstream of
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this pathway. The PI3K-Akt signaling pathway plays a central role in cellular pro-
cesses, responsible for cell survival, growth, division and motility [11]. Our result
further confirms that PI3K-Akt signaling pathway may be related with multi-
ple breast cancer subtypes [1,5]. Furthermore, we find that all subtypes exhibit
dysregulated on PIK3CA, and PTEN is dysregulated except in HER2-enriched
subtype. They are very important genes for breast cancer. PIK3CA is discovered
as a viral oncogene and mutated in a large fraction of breast tumors [17]. PTEN
as a tumor suppressor is the most direct negative regulator of PI3K-Akt signal-
ing pathway [1]. The mutation or epigenetic suppression causes the inactivation
of PTEN. The mutation in PTEN contributes to PTEN hamartoma tumor syn-
dromes (PHTS ) which is a high incidence of breast cancer [15]. In addition,
there are specifically distinctions between the major molecular subtypes in the
PI3K-Akt signaling pathway. For all subtypes, this pathway is divided into two
or three modules (Fig. 5). In Basal-like subtype, the dysregulated genes con-
stitute two modules. The small dysregulted module is consist of IL2, IL2RB,
IL2RA, IL3, CSF3 and GH2. The bigger module involves core genes such as
EGFR, PIK3CA, PIK3CB, PIK3R1, PIK3R3, PIK3AP1 and as on. In HER2-
enriched subtype, one of module is consist of EPO, GH2, Il2, IL3, Il7, GHR
and PRLR. At the same time, it includes a new module in which AKT3 as the
central node. This module also appears in Luminal A and Luminal B subtypes,
but the upstream and downstream genes of AKT3 are different. AKT3 is one of
the AKT kinase, which is responsible to metabolism, proliferation, cell survival,
growth and angiogenesis. The mutations in AKT kinase are frequently observed
in breast tumors [30].

Fig. 4. The common dysregulated genes of the four breast cancer subtypes in PI3K-Akt
signaling pathway

(2) Analysis of subtype-specific dysregulated pathways
Supplement table S3 shows the subtype-specific dysregualted pathways. For

Basal-like subtype, there are 16 unique dysregulated pathways. The number of
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(a) Basal-like (b) HER2-enriched

(c) Luminal A (d) Luminal B

Fig. 5. The different modules of seed genes in PI3K pathway for breast cancer subtypes

subtype-specific dysregulated pathways for Basal-like is the largest in the four
subtypes. The MAPK signaling pathway is the highest relevance pathway in the
Basal-like subtype. Researches support that the MAPK signaling pathway plays
an important role in Basal-like breast cancer [3]. DUDP4 regulates the MAP-
ERK kinase(MEK) and c-jun-NH2-kinase(JNK), and the loss of DUSP4 actives
the MAPK signaling pathways [3]. We find that Epstein-Barr virus infection is
the second relevance pathway with this subtype. However, there is a controversy
about the association of EBV with breast cancer [24]. Some researches supported
the presence of EBV in breast cancer [19], other groups reported negative results
[13]. This pathway also is the third relevance pathway in Luminal B subtype.
Our interesting result indicates that the Epstein-Barr virus, commonly known
as the kissing disease, may raise the risk of breast cancer.

For HER2-enriched subtype, we find that it shares 7, 7 and 6 pathways
with Basal-like, Luminal A and Luminal B subtypes, respectively. Excepted the
PI3K-Akt signaling pathway, the Ras signaling pathway is shared by the Basal-
like, HER2-enriched and Luminal A subtypes, especially Basal-like and HER2-
enriched: ranked on the top relevance pathway list. It is considered deregulated
in breast cancer, many of components of which control cell growth and differ-
entiation. The dysfunction of any one component of this pathway may trigger
the same events as the dysfunction of ras itself, and considering the aberra-
tions of upstream or downstream of the pathway is important to provide addi-
tional targets for drug design [10]. More important is that RASAL2 shows low
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expression, which is reported that it plays a causal role in breast cancer devel-
opment and metastasis, especially Luminal B subtype [26]. Another 5 path-
ways which HER2-enriched shared with Luminal A subtype include “Vascular
smooth muscle contraction”, “Jak-STAT signaling pathway”, “Phospholipase D
signaling pathway”, “Ovarian steroidogenesis” and “Vibrio cholerae infection”.
These pathways are different with the pathways which HER2-enriched shared
with Luminal B, including “AMPK signaling pathway”, “p53 signaling path-
way”, “Phagosome”, “Hematopoietic cell lineage”, and “Porphyrin and chloro-
phyll metabolism”. Most of them are associated with two genes: HER2 and
TP53 genes. AMP-activated protein kinase (AMPK ) is an important mediator
in maintaining cellular energy homeostasis. AMPK regulates activity of HER2
and EGFR in breast cancer [18].

13 and 12 exclusive pathways have been identified respectively in the Lumi-
nal A, Luminal B subtypes. For Luminal A subtype, the unique pathways are
“ErbB signaling pathway”, “Influenza A”, “Glycerophospholipid metabolism”,
“Bacterial invasion of epithelial cells” and so on. For Luminal B subtype, the
unique pathways are “Rap1 signaling pathway”, “Purine metabolism”, “FoxO
signaling pathway”and so on. In addition to the common pathway “PI3K-Akt
signaling pathway” that is present in all subtypes, there are 9 pathways shared
by Luminal A and Luminal B, including Cell adhesion molecules (CAMs), Endo-
cytosis, Inflammatory mediator regulation of TRP channels, Regulation of actin
cytoskeleton, Toxoplasmosis, HIF-1 signaling pathway and so on. Cell adhe-
sion molecules (CAMs) are known as membrane receptors that mediate cell-cell
and cell-matrix interactions, and are essential for breast cancer metastasis [21].
Defective endocytosis contributes multiple oncogenic alterations, such as altered
ubiquitylation, altered cytoskeletal interactions and alterations to Rab family
members [27]. Researches demonstrated that the activity of the transient recep-
tor potential (TRP) channels are altered in breast cancer and they may be new
marker [28].

4 Discussion

In this work, we try to model the disease state on the pathway level. An opti-
mal strategy algorithm is applied to the subtypes of breast cancer, considering
somatic mutation, copy number, methylation and gene expression data. The
result shows that the top 30 key pathways of different subtypes display common
and differ dysregulation patterns. 44 differentially expressed genes with corre-
sponding genetic and epigenetic dysregulation are retrieved from the subtype-
specific pathways. Literature validation shows that these dysregulated pathways
and genes have significant function associated with BRCA. Our method provides
a new strategy for the identification of dysregulated pathways and disease genes.
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Abstract. Recent breakthroughs in cancer research have happened via
the up-and-coming field of pathway analysis. By applying statistical
methods to previously known gene and protein regulatory information,
pathway analysis provides a meaningful way to interpret genomic data.
In this paper we propose systematic methodology framework for study-
ing biological pathways; one that cross-analyzes mutation information,
transcriptome and proteomics data. Each pathway route is encoded as
a bayesian network which is initialized with a sequence of conditional
probabilities specifically designed to encode directionality of regulatory
relationships defined by the pathways. Proteomics regulations, such as
phosphorylation, is modeled by dynamically generated bayesian network
through combining certain type of proteomics data to the regulated tar-
get. The entire pipeline is automated in R. The effectiveness of our model
is demonstrated through its ability to distinguish real pathways from
decoy pathways on TCGA mRNA-seq, mutation, copy number varia-
tion and phosphorylation data for both breast cancer and ovarian cancer
study.

Keywords: Pathway analysis · Bayesian network · Data integration

1 Introduction

Pathway analysis has been a crucial player in recent cancer research. By com-
bining previously defined gene and protein regulatory information with com-
putational methods, large sets of genomic data can be interpreted. Ample
gene/protein regulatory relationships are summarized in the literature that is
organized into various forms of gene/protein regulatory networks and path-
ways. However, pathway analysis research is still a novel area, particularly when
it comes to practical problems. Therefore, developing a more comprehensive
way to analyze pathways by combining multiple genomic data sets, which are
now readily available through various high-throughput sequencing technologies
c© Springer International Publishing AG, part of Springer Nature 2018
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(e.g., RNA-Seq, DNA-Seq, ChIP-Seq), is of great significance. [1,2] proposed
an approach by modeling the pathway route as an analysis unit. The goal of
this paper is to extend that pathway analysis framework to give it the ability
to include proteomics and CNV data along with the specific types of regula-
tion mentioned above. Together with existing transcriptome and mutation data,
we aim to pinpoint precise pathway routes perturbed. This analysis approach
tends to provide deeper insight of biological mechanisms behind cancer devel-
opment. The rest of the paper is outlined as follows: Sect. 2 reviews existing
pathway analysis methods, Sect. 3 describes the model settings and assumptions
in detail, Sect. 4 presents a significance study similar to that of [3] using TCGA
Breast Cancer (BRCA) and Ovarian Cancer data (OV). Finally we conclude
with Sect. 5.

2 Related Work

Great efforts have been made to incorporate pathway information into genomic
data analysis. One of the first popular methods of analyzing genome-wide exper-
imental data was using gene set enrichment analysis methods [4]. [5] encoded
the pathway network into a penalty function and performed model selection by
optimizing the function to pick meaningful genes and subnetworks. [6] proposed
SPIA which measures pathway significance by statistical testing against random
permutation. [3] presented PARADIGM, a novel method modeling the pathway
as a factor graph to do patient specific inference. [7] introduce a computational
framework for de novo identification of subnetworks in a large gene interaction
network that are mutated in a significant number of patients. [8] ranked the
pathways by p-value obtained from encoding pathway logic into a global net-
work. The p-value was calculated based on a hypothesis test where the null
hypothesis was that the pathway is picked randomly. [9,10] encoded the path-
way as a Bayesian network. After removing cycles in the graph, they trained
the model with expression data. [1] dynamically encoded pathway routes as a
Bayesian network by incorporating expression and mutation data to perform the
pathway analysis.

3 Methods

3.1 Model and Terms

Figure 1(a) illustrates the pipeline of this approach. Figure 1(a.A) shows an
example pathway, ErbB, which has been adapted from the KEGG pathway
database [11]. A pathway is a graph with biological molecules as nodes and
regulation interactions as edges. The edges in the pathway can be catego-
rized as two subtypes: Protein activation and inhibition or gene activation
and inhibition which are defined as expression and repression in KEGG path-
way database. The framework for KEGG pathway database can be general-
ized to other pathway databases, (Reactome, for instance) since the category of
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(a) Conversion Pipeline. Part of the ErbB
pathway shown in part A. The pathway is
simplified by keeping only specific interac-
tions and genes, resulting in a gene regu-
lation network GB in Part B. A route G∗

shown in part C, starting from ERBB2 to
BAD, is extracted from GB and converted
to a Bayesian Network G in part D.

Table.1

Table.2
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G*

Corresponding Bayesian 
Network Model G

Gene1
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GeneK-1
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Genej+1
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Table.3

Table.4

Mj Rj

RMj+1

MK-1 RK-1
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(b) Converting the route in the pathway to
Bayesian Network. The pathway route G∗

on the left is converted to Bayesian Net-
work G on the right. Especially, for Genej
activating Genej+1, the RMj+1 has an ex-
tra parent RMj . This illustrates the special
case when Genej−1 is activating or inhibit-
ing Genej .

Fig. 1. Bayesian network construction

pathway edges still holds. The former type of edges do not affect the expres-
sion level of the target gene, however, they can affect the corresponding pro-
tein product structure and function. Thus we may define them as (Protein)
Functional Interactions. Moreover, these edges have the following subtypes,
namely, phosphorylation(+p), ubiquitination(+u), glycosylation(+g), methyla-
tion(+m), dephosphorylation(−p), deubiquitination(−u), deglycosylation(−g),
or demethylation(−m), where tags in the parentheses represent this information
in the KEGG database as shown in Fig. 1(a.A). Those tags may be defined as
Evidence Tag for unambiguousness because they determine the type of data
that will be associated with the interactions in this approach.

On the other hand, the Expression and Repression subtype edges, only affect
the expression level of its target gene, while the protein function is unaffected.
Thus, we categorize these two types of interactions as Expression Interac-
tions. Functional Interactions and Expression Interactions will be handled in
distinct ways in the model.

The pipeline is initialized with the simplification of the pathway.
Figure 1(a.B) presents the result of this process: a gene regulation network GB .
Unlike most existing approaches that merely keep activation and inhibition inter-
actions after the simplification, the Evidence Tag can be furthermore kept in GB .
The next step is to identify all possible “routes” available from the given GB . As
an example, Fig. 1(a.C) shows a route, G∗, which starts from ERBB2 and ends
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at BAD. The selected route is then converted into a discrete Bayesian Network,
G, shown by Fig. 1(a.D). The Bayesian Network encoding the biological logic in
pathway route G∗ is integrated with its corresponding omics data to measure
the perturbance of G∗.

Before proceeding to introduce the measure integrating G and omics data,
it is necessary to describe the conversion process from a pathway route G∗ to a
Bayesian network G in detail. As illustrated in Fig. 1(b), for a gene regulation
network GB , a path G∗ is simply a subgraph of GB , G∗ ⊆ GB , G∗ = (V ∗, E∗)
where V ∗ = {g1, . . . , gkG∗ }, gi represents the ith gene and kG∗ is the number of
genes contained in path G∗, E∗ = {eij |1 ≤ i < kG∗ and j = i + 1}. For each
edge in G∗, ei−1,i, 1 < i ≤ kG∗ , if i < kG∗ and ei−1,i is one of the Functional
Interactions in G∗, three nodes are created in the corresponding Bayesian Net-
work G: Ri, Mi and RMi for gi. On the other hand, if i < kG∗ and ei−1,i is
one of the Expression Interactions, only two nodes Ri and Mi will be created.
The first gene, g1 will always have two nodes created R1 and M1 while gkG∗
will only have one node, either RkG∗ (if ekG∗ −1,kG∗ is Expression Interaction) or
RMkG∗ (if ekG∗ −1,kG∗ is Functional Interaction). In this way, there will usually
be three nodes for target genes of Functional interactions and two nodes for that
of Expression interactions.

After creating nodes for each gene in the path G∗, the edges in the Bayesian
network G will be added dynamically according to the edges in pathway route
G∗. For gi ∈ V ∗, 1 < i ≤ kG∗ , if ei−1,i ∈ E∗ is one of the Functional Interactions,
edges will be created pointing from all the nodes for parent gene gi−1 to the RM
node for the child gene gi. Namely, we will add edges from Ri−1,Mi−1, (RMi−1),
to RMi. On the other hand if ei−1,i is an Expression Interaction, edges from
the nodes of gi−1 (Ri−1,Mi−1, (RMi−1)) to Ri will be created instead. The
conditional probability table corresponding to edges in Bayesian Network G is
determined by the type of the edge in G∗ as shown in details from Tables 1,
2, 3 and 4. The assumption is that, given the edge ei−1,i, the expression level
(Ri) (or functional status RMi), of the gene gi is affected by its parent’s expres-
sion status Ri−1, the DNA functional status Mi−1 (and the Protein functional
status RMi−1 if exists). After conversion, the resulting Bayesian Network G
is formally defined as follows: G = (V,E), where V = RR

⋃
MM

⋃
RMS,

RR = {Ri, i ∈ {1, . . . , kG∗}} where Ri is a random variable representing expres-
sion level status on gene gi. MM = {Mi, i ∈ {1, . . . , kG∗ − 1}} where Mi is
a random variable representing DNA functional status on gene gi. RMS =
{RMi, i ∈ {j : ej−1,j is one of Functional Interactions in G∗}} where RMi is a
random variable representing protein functional status on gene gi. This setting
is motivated from central dogma shown in Fig. 2(a). Mi, Ri and RMi are now
defined in detail. Since the DNA information is not affected by any interactions
in the pathway route and Mi doesn’t have a parent node in G, the random vari-
able Mi follows a Bernoulli distribution as shown in (1). The Bernoulli random
variable Mi has two possible values: +1 represents that gi functions normally
on DNA level, and −1 represents function loss, i.e. gi’s DNA original biological
function is disrupted. The probability distribution indicates the prior has no
specific preference on these two levels:
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Fig. 2. Linking data with bayesian network nodes based on central dogma (Color figure
online)

Mi =

{
+1 p = 0.5
−1 p = 0.5

(1)

Random variable Ri follows a different probability distribution based on the
location of gene gi in path G∗: Suppose gi is the starting node in G∗, Ri’s
distribution is shown in (2).

Ri =

⎧
⎪⎨

⎪⎩

+1 p = 1/3
0 p = 1/3
−1 p = 1/3

(2)

where +1 represents gene gi is not down regulated in expression level, −1 repre-
sents gene gi is down regulated in test cases and Ri = 0 for missing values. For
cancer research, test case is equivalent to the tumor cell. On the other hand, if gi
(i > 1) has a parent, gene gi−1 in G∗, Ri will follow the conditional probability
table in Table 1 (Table 2) if ei−1,i is expression (repression) in G∗. In order to
illustrate our model more clearly, we define the following operator &, which is
really similar to the AND operator, in (3).

A1&A2&, . . . , An−1&An =

{
−1 ∃i ∈ [1, n] s.t. Ai = −1
+1 otherwise

(3)

Next we show the biological logic behind the conditional probability table
for Ri. Here we focus on the expression table (Table 1); the repression table
(Table 2) is built in a similar way. If the parent gene of gi, gi−1, has no function
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loss in DNA, overexpression and the functional status of gi−1’s protein is fully
activated, namely Mi−1&Ri−1&RMi−1 = +1, then the target gi will also be
highly likely to overexpress, i.e. Ri = +1, given the edge between them in G∗

is ‘expression’. If there is no Functional Interaction ei−2,i−1 targeting at gi−1,
there will be just Ri−1 and Mi−1 in the conditional table. As a result,

P (Ri = +1|Mi−1&Ri−1(&RMi−1) = +1) = 1 − ε1 − ε2

while

P (Ri = −1|Mi−1&Ri−1(&RMi−1) = +1) = ε1

where ε1 and ε2 are respectively the probability of observing Ri = −1 and Ri = 0
given Mi−1&Ri−1(&RMi−1) = +1. 1− ε1 − ε2 should be close to 1. Here ε1 < ε2
indicating that we penalize the inconsistency more than the uncertainty. Sim-
ilarly, if the parent gene of gi has DNA function loss, caused by mutation for
instance, or its expression level is down-regulated in test case, or the protein of
gi−1 is not activated successfully (Mi−1&Ri−1&RMi−1 = −1), then the down-
stream regulation process towards gi is likely not to be functioning. Therefore, gi
would tend to be down-regulated, namely Ri = −1, and hence the corresponding
probability would be flipped.

Similar to Ri, Random variable RMi has three possible values: {+1, 0,−1},
where +1 represents gene gi has its protein activated by its parent gene gi−1

through ei−1,i, −1 represents gene gi is inhibited and otherwise RMi = 0. Recall
that RMi will be attached only when interaction ei−1,i in G∗ is Functional
Interaction, gi will always have a parent, gene gi−1 in G∗. RMi will follow the
conditional probability table from Tables 3 and 4.

The biological logic behind the conditional probability table for RMi is built
based on the central dogma, as shown in Fig. 2(a). Here we focus on the functional
activation table (Table 3); the functional inhibition table (Table 4) is built in a
similar way. If the parent gene of gi, gi−1, has no function loss in DNA, it
is overexpressed and gi−1’s protein is successfully activated (if RMi−1 exists)
(Mi−1&Ri−1&RMi−1 = +1), then interaction ei−1,i will take effect, thus the
target gi protein will also be highly likely to be regulated successfully, namely,
RMi = +1 given the edge between them in G∗ is functional activation. As a
result,

P (RMi = +1|Mi−1&Ri−1&RMi−1 = +1) = 1 − ε1 − ε2

while

P (RMi = −1|Mi−1&Ri−1&RMi−1 = +1) = ε1

where ε1 and ε2 are respectively the probability of observing RMi = −1 and
RMi = 0. Similarly, if the parent gene of gi has DNA function loss, caused by
mutation for instance, or its expression level is down-regulated, or the protein of
gi−1 is not activated successfully (Mi−1&Ri−1&RMi−1 = −1), then the down-
stream regulation process towards gi is likely not to be functioning. Therefore, gi
would tend to be not activated, namely RMi = −1, and hence the corresponding
probability would be flipped.
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Table 1. The regulation process ei−1,i in G∗ is expression

(RMi−1&)Mi−1&Ri−1 Ri = +1 Ri = 0 Ri = −1

+1 1 − ε1 − ε2 ε2 ε1

−1 ε1 ε2 1 − ε1 − ε2
*0 < ε1 < ε2 << 1 − ε1 − ε2

Table 2. The regulation process ei−1,i in G∗ is repression

(RMi−1&)Mi−1&Ri−1 Ri = +1 Ri = 0 Ri = −1

+1 ε1 ε2 1 − ε1 − ε2

−1 1 − ε1 − ε2 ε2 ε1

Table 3. The regulation process ei−1,i in G∗ is functional activation

(RMi−1&)Mi−1&Ri−1 RMi = +1 RMi = 0 RMi = −1

+1 1 − ε1 − ε2 ε2 ε1

−1 ε1 ε2 1 − ε1 − ε2

Table 4. The regulation process ei−1,i in G∗ is functional inhibition

(RMi−1&)Mi−1&Ri−1 RMi = +1 RMi = 0 RMi = −1

+1 ε1 ε2 1 − ε1 − ε2

−1 1 − ε1 − ε2 ε2 ε1

3.2 Ranking the Route

A Score Based on Conditional Probability. Given (r,m, rm), a set of
data observations of the random variables in Bayesian Network G from a spe-
cific patient s, we could rank the path G∗ with the probability of observing
r, m and rm conditioning on the Bayesian network model G, P (R = r,M =
m,RM = rm|G). The larger the probability, the more likely the pathway route
is perturbed since the observation is highly consistent with the biological logic
from G∗ encoded in G. One problem of using this probability as a measure, is
that the probability will be higher if fewer data are observed. Thus the score dis-
played in (4) given in [12], will be used instead, where the conditional probability
is normalized by P (R,M ,RM are consistent|G).
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Scores(G∗, r,m, rm) =
P (R = r,M = m,RM = rm | G)
P (R,M ,RM are consistent | G)

P (R = r,M = m,RM = rm | G) =
∑

R=r ,M=m ,RM=rm

P (R,M ,RM)

=
∑

R=r ,M=m ,RM=rm

∏

PaG(Ri)=∅
P (Ri)

∏

1≤i<kG∗

P (Mi)

∏

PaG(Ri) �=∅
P (Ri | PaG(Ri))

∏

PaG(RMi) �=∅
P (RMi | PaG(RMi))

(4)

where PaG(X) is the set containing parent nodes of node X in Bayesian Network
G. P (R,M ,RM are consistent|G) is the probability that the random variables
with observations are fully consistent with the biological logic encoded in the
pathway route given R1 = +1,M1 = +1.

P (R,M ,RM are consistent | G)
= P (R1 = +1,M1 = +1, RM2 = +1 | G)

(5)

(since g2 is the last node in the route and the interaction e12 is phosphorylation,
then R2 and M2 are not included in the model).

A high score means that the path G∗ is highly likely to be perturbed based on
the data we observe. A path G∗ could only get a high score if the observations,
the changes in tumor cells for each gene, are highly consistent with pathway
information contained in the Bayesian Network G. Inconsistency between data
and the model would lower the score greatly since the conditional probability
will be ε1 instead of 1 − ε1 − ε2 during the calculation of the score. Advantages
of this measure are

– the analysis could be done across pathways, i.e. after merging pathways in
a biologically meaningful way, this measure could recognize a significantly
meaningful route across different pathways.

– By decomposing the pathway graph as routes, the conflict that people
encounter when treating a pathway as graph is eliminated. And more com-
plicated directional regulations like phosphorylation can be handled.

– even though some observation values are flipped due to random errors from
the genomic data (it is observed to be −1 when it is actually +1), the
whole path would still have a high score if the other genes have consistent
observations.

The data here comes from one patient, s, indicating that the score is specifically
tailored to the patient s.

Finally we propose the measure for a whole pathway based on the route score.
The pathway score for pathway GB based on data from a group of subjects S,
pScoreS(GB), is displayed in (6):

pScoreS(GB) =
1

|GB |
∑

G∗∈GB

I

(
1

|S|
∑

s∈S

Scores(G∗) > β

)

(6)
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The above equation is formulated because of following reasons. The pathway
could be partitioned to be several routes. We then simply measure the signifi-
cance of this pathway, GB , using the proportion of routes that have an average
of all the patients’ scores, calculated by (4), that is larger than threshold β.

3.3 Data Integration

The observations for each variable in the Bayesian Network G will come from
multiple types of data, as shown in Fig. 2(b). The gene expression variable Ri

value can be measured by many types of gene expression data, for instance,
microarray, mRNA-seq, reverse phase protein array (RPPA), among others. Here
mRNA-seq is chosen. Ri’s observation ri is generated with log2 ratio of mRNA-
seq RPKM using (9). The threshold is set to be 0.5 to tolerate the random error
resulting from sequence processing. If both protein data and mRNA-seq data
are available for the same gene of the same patient and these two data have
conflicting observations, then we use the protein data observation to overwrite
the one from mRNA-seq data. (mRNAs may be degraded while proteins are
present for longer half-lives, thus protein data is much more reliable).

The data observed for random variable Mi, mi, is the congenital functional
status for gene gi. Observation mi = −1 if it can be observed from mutation or
CNV data that gi’s DNA causes function loss for the original biological process.

When it comes to the observation of RMi, rmi, the data source becomes
more complex. The data source will be determined by the specific subtype of
Functional Interaction ei−1,i, namely by the Evidence Tag. The general
logic is summarized by the following equation in (7).

rmi = Typei−1,i ∗ Tagi−1,i ∗ RawV aluei (7)

where Typei−1,i = +1 if ei−1,i is activation (arrow) edge and Typei−1,i = −1
if ei−1,i is inhibition; Tagi−1,i = +1 if ei−1,i has a Evidence Tag sign of (+),
i.e. +p,+m,+u or +g while Tagi−1,i = −1 if ei−1,i is with a Evidence Tag
of (−) sign, i.e. −p,−m,−u or −g. RawV aluei = +1 if the database shows
that the gene is Phosphorylated, Methylated, Ubiquitinated or Glycosylated
and RawV aluei = −1 if the database shows that the gene is Dephosphory-
lated, Demethylated, Deubiquitinated or Deglycosylated. For the Functional
Interactions with no Evidence tag, we assume the edge is always working with
ri−1 = +1, mi−1 = +1 and use the formula in (8) instead.

rmi = Typei−1,i ∗ min(ri−1,mi−1) (8)

The formula indicates that given no function loss observation in Mi−1 and no
low expression observation in Ri−1, ei−1,i works and determines rmi.

4 Preliminary Result

The bioinformatics field frequently uses TCGA Breast invasive carcinoma
(BRCA) data to test newly developed analysis models. We choose the same
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TCGA cancer data set to validate our model. Another cancer data set, Ovarian
serous cystadenocarcinoma (OV), is also analyzed with the same methodology
for generality. Four types of data sets are used: mRNA-seq, mutation, Copy
Number Variation were downloaded from https://gdac.broadinstitute.org/ for
both cancer studies and phosphorylation data were extracted from recent work
[13] and [14] respectively.

The mRNA-seq data is processed as follows to obtain ri, the observation for
Ri. The cancer vs. normal paired ratios of RPKM are converted to the expression
observation with (9). OV mRNA-seq data has no paired normal samples, thus
0 counts observation is encoded as −1. The value for each item is mapped to a
node in pathway by official gene symbol.

ri =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1 log2

(
TumorRPKMi

NormalRPKMi

)
> 0.5

−1 log2

(
TumorRPKMi

NormalRPKMi

)
< −0.5

0 otherwise

(9)

The mutation information is extracted from mutation accessor study [15].
The mutation with a ‘medium’ or ‘high’ impact factor is encoded as function loss
mutation. Other mutation observations are encoded as no function loss mutation
in the data. The value for each item is mapped to a node in pathway by NCBI-
protein ID. Copy Number Variation (CNV) data is imported from GISTIC2
study [16], where the copy number variation is quantified by integers varying
from −2 to +2 and negative values are considered as copy number loss. CNV
information determines the observation for M node, m, along with mutation
information as we discussed in Sect. 3.3. The value for each item is mapped to a
node in pathway by its official gene symbol.

In the end, phosphorylation data is processed. RawV aluei(phosphorylation)
= +1 if the same patient’s phosphosite iTRAQ log2 ratio is positive for gi and
otherwise RawV aluei(phosphorylation) = −1. Missing values are encoded as 0.
The value for each item is mapped to a node in pathway by NCBI-protein ID.
However, one challenge one may encounter is that values for different residues
within the same protein may be inconsistent, and KEGG pathway fails to provide
sufficient information on the specific residue involved for each phosphorylation.
As a result, only the consistent signal is considered in the experiment.

All KEGG Homo sapien pathways are used in this study, and the whole
pipeline is automated and implemented in R using R package “KEGGgraph”
[17] and “gRain” [18]. Next we do a significance analysis similar to that of
PARADIGM [3]. We will produce decoy pathways by permuting the genes in
the pathway while keeping the interactions. We generate one decoy pathway for
each of 308 KEGG pathways. For each pathway, we extract all possible routes
in it. Then for each route, we calculate the score for each pathway by (6). We go
on to rank the significant real pathways and their corresponding decoy pathway.
A threshold is set to do prediction, i.e. the cases with a score higher than the
threshold is predicted to be a real pathway.

https://gdac.broadinstitute.org/
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Fig. 3. Preliminary result on BRCA and OV study (Color figure online)

After obtaining False positive rate and True positive rate with various thresh-
olds, the resulting ROC (Receiver operating characteristic) curve can be seen in
Fig. 3(a) and (b). The Area Under the Curve (AUC) gets to 0.63(0.74) when
taking the threshold β = 0.52(1.00) for BRCA (OV). The AUC is reasonable
since many real pathways are not differentially regulated for cancer data thus
may not be “recognized” from decoy pathways. Similar AUC was reported for
SPIA and PARADIGM [3].

5 Discussion

We have further extended the existing deep pathway analysis approach by intro-
ducing more detailed information about the pathways. Unlike existing methods,
this model has the ability to handle different types of protein functional interac-
tions as well as multiple types of data including expression, mutation, CNV and
phosphorylation data. We demonstrated the performance of the model through a
significance study with real cancer data. The entire process is automated with R
language. Theoretically this framework is capable of handling any omics data as
long as the data can be mapped to one of the three steps in the central dogma in
Fig. 2(a). When other types of data, namely, ubiquitination, glycosylation, and
methylation data are available, the framework will be greatly strengthened. This
approach integrates more types of directional regulations and their correspond-
ing data types than existing pathway analysis tools thus it should be useful for
cancer community.
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Abstract. Recent breakthroughs in biologic sequencing technologies have
cost-effectively yielded diverse types of observations. Integrative analysis of
multiple platform cancer data, which is capable of revealing intrinsic charac-
teristics of a biological process, has become an attractive research route on
cancer subtypes discovery. Most machine learning based methods need repre-
sent each input data in unified space, losing certain important features or
resulting in various noises in some data types. Furthermore, many network
based data integration methods treat each type data independently, leading to a
lot of inconsistent conclusions. Subsequently, similarity network fusion
(SNF) was developed to deal with such questions. However, Euclidean distance
metrics employed in SNF suffers curse of dimensionality and thus gives rise to
poor results.
To this end, we propose a new integrated method, dubbed hierarchical sim-

ilarity network (HSNF), to learn a fused discriminating patient similarity net-
work. HSNF randomly samples sub-features from different input data to
construct multiple input similarity matrixes used as a basic of fusion so that
diverse similarity matrixes are generated by multiple random sampling. Then we
design a hierarchical fusion framework to make full use of the complemen-
tariness of diverse similarity networks from different feature modalities. Finally,
based on the final fused similarity matrix, spectral clustering was used to dis-
cover cancer subtypes. Experimental results on five public cancer datasets
manifest that HSNF can discover significantly different subtypes and can con-
sistently outperform the-state-of-the-art in terms of silhouette, and p-value of
survival analysis.

Keywords: Hierarchical similarity network fusion �Multi-platform cancer data
Cancer subtypes discovery � Data integration

1 Introduction

Cancer patients with the same tissue lesions often have the different clinical charac-
teristics and the different response to the same treatment [1]. Many researches show the
heterogeneous pathogenesis in the same tissue cancer [1–7]. Specifically, the abnormal
gene expression of patients with the same cancer are caused by different mutations of
genomic data [3, 7, 8]. Thus, according to precision medicine, we should treat these
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cancer patients in different therapy strategies [9, 10]. Discovering cancer subtypes can
provide new insights for new therapeutic treatments and is a useful way to achieve this
goal. Recently, breakthroughs in high-through sequencing technologies have generated
the diverse types of biological data, such as, genome data (miRNA expression and
DNA methylation) and transcriptome data(mRNA expression), used to address bio-
logical questions [4, 6, 8, 11]. Particularly, The Cancer Genome Atlas (TCGA) [8, 12,
13] has made large-scale efforts and provided abundant high quality data generated by
cross-platforms for discovering complex pathogenesis of human cancers. The
multi-platform data integration analysis can explore the pathogenic factors from dif-
ferent data sources to capture the heterogeneity of disease pathogenesis, which has
become a critical research direction on the cancer subtypes discovery [12, 14, 15], and
is a useful way to achieve precision medicine. Cancer subtypes discovery is a task to
cluster patients into meaningful subtypes so that the patients with similar pathogenesis
are clustered into the same subtypes while the patients with dissimilar pathogenesis are
clustered into the different clusters [1, 4, 5, 12, 14–16]. And subtype information
provides useful insights for new therapeutic treatments of cancer patients.

To effectively integrate the biological data from diverse platforms, many data-
integrative algorithms have been proposed [6, 8, 12, 16–19]. And data-integration
based cancer subtypes discovery methods were presented among these methods. Shen
et al. [16] developed a joint latent variable model (iclustering) by incorporating the
associations between different data types and the variance-covariance structure within
data types. Liang et al. [8] proposed multimodal deep belief network method (DBN) to
cluster cancer patients into different subtypes from multi-platform data. Speicher et al.
[18] added regularization term on multiple kernel learning (MKL) to avoid overfitting
and used several kernels per data type to alleviate choosing the best kernel functions
and kernel parameters. Wang et al. [6] proposed a multiplex network-based approach
for integrative analysis of heterogeneous omics data. Le Van et al. [19] used rank
matrix factorization to identify subtypes based on transformation mutational and gene
expression features into ranked data. Xu et al. proposed [17] weighted similarity net-
work fusion method by using the information in the complex miRNA-TF-mRNA
regulatory network built by the interactions between features of miRNA, TF and
mRNA. Based on the patient similarity networks constructed by each available data
type, Wang et al. [12] fused multiple similarity networks into one network that rep-
resents the full spectrum of underlying data. However, the above methods either
produce inconsistent conclusions because of the independent input data, or suffer from
noise due to Euclidean distance. In addition, iclustering needs to preselect genes rather
than the full available measurements leading the results sensitive to the step.

Despite powerful of the existing data integration based cancer subtypes discovery
algorithms, there are some challenges. The machine learning methods need to represent
each data type with a unified form, which will increase information redundancies
between data types and dilute the signal-to-noise ratio in some data type [15, 20]. In
addition, some network-based methods treated each data type independently, making
inconsistent conclusions difficult to integrate. Similarity network fusion [12] (SNF) is a
promising method that can ease such problems by integrating patient similarity net-
works into a fused similarity network. However, SNF calculates patient similarity
matrix for each data type using Euclidean distance which leads to poor results in high
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dimensional biological data [21]. That is, the discrimination of patient similarity net-
works become blurring. Furthermore, as the sequencing platform differs for different
data type available, the different in scales and noise exist in each type of data. Hence,
we use random sampling strategy to remove the effect of the noise in each data type,
which roots in the ideas of bootstrapping [22] and random forest [23].

In this paper, we propose hierarchical similarity network fusion (HSNF) method,
which could benefit from the complementariness of multiple feature modalities [14] by
randomly sampling strategy and our proposed hierarchical framework for integrating
the numerous similarity networks. Specifically, given the multi-dimensional input data,
HSNF can learn a fused similarity network with explicit subtype structure by selecting
the appropriate parameters, that is, we should fix the optimal values of sampled features
number and random sampling times. Meanwhile, the hierarchical fusion framework is
designed by considering the convergence property and parameter settings of SNF
method. In particularly, the number of input data types are the number of the similarity
matrixes fused by SNF with the default parameters value in [12]. With the selected
parameters, the resulting model can effectively learn a fused similarity network. Based
on the final fused similarity network, cancer subtypes are identified by spectral clus-
tering. The performance of HSNF on discovering cancer subtypes is examined on five
public cancer datasets. Experimental results illustrate that HSNF method discovers
significantly different subtypes in survival time and consistently outperforms the state
of the art methods in terms of the p-value and silhouette value.

Our contributions are two-fold as follows:

(1) We propose a method, dubbed HSNF, by randomly sampling sub-features from
each input data type and then designing hierarchical fusion framework to fuse the
multiple similarity matrixes into one discriminative similarity matrix.

(2) HSNF provides a promising route of combing machine learning based technology
and network based technology. This route proves to be much effective for dis-
covering cancer subtypes.

The rest of paper is organized as follows. Section 2 describes hierarchical similarity
network fusion method and five kinds of cancer datasets. Section 3 presents parameters
selection of HSNF method, compares HSNF with the state of the art and examine the
stability and expandability of HSNF method. We conclude paper in Sect. 4.

2 Methods

Hierarchical similarity network fusion (HSNF) method is proposed by applying and
extending SNF method, which can be regarded as ensemble SNF. In this section, we
depict HSNF for discovering cancer subtypes based on multi-dimensional input data.
The workflow of HSNF is shown in Fig. 1. First, we introduce how to produce
numerous similarity matrixes on r input data types. The produced similarity matrixes in
initialization layer are delivered to hierarchical fusion layer. Second, we describe how
to fuse the similarity matrixes from initialization layer into one fused similarity matrix.
In this step, the hierarchical fusion framework is designed and used to fuse the
numerous similarity matrixes into one discriminative similarity matrix and there are
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ðnþ 1Þ layers for randomly selecting rn times. Finally, cancer subtypes are discovered
by spectral clustering based on the final fused similarity matrix.

2.1 Initialization Layer

We use random sampling strategies to ease noise effect from different biological data
types. Meanwhile, HSNF can benefit from these numerous and diverse similarity
matrixes produced by random sampling strategies. Specifically, given r input data
types, HSNF randomly selects sub-features of size pi � did eði ¼ 1; 2; � � � ; rÞ each time
on each data type. di denotes the feature number of data type i. pi is the ratio of the
selected sub-features number to all the feature number of data type i. Each time, we
respectively select sub-features from all the r type data [12, 14]; calculate similarity
matrixes of each selected sub-features by Eq. (1); fuse these r similarity matrixes by
SNF.

Mði; jÞ ¼ f ðhðxi; xjÞ
2

ld2
Þ ð1Þ

where f ðxÞ ¼ expð�xÞ. hðxi; xjÞ calculates distance between patient xi and xj. l is set to
0.5 and d is learned by the average distance to k-nearest neighborhoods [12, 14].
Function hð�Þ denotes Euclidean distance. For each sampling, r similarity matrixes
from these r data types are fused into one similarity matrix by SNF and we deliver it to
hierarchical fusion layer. We repeat rn times random samplings and rn similarity
matrixes are produced in total. Then we deliver them to hierarchical fusion layer.

2.2 Hierarchical Fusion Layer

For fusing these rn similarity matrixes from initialization layer, we proposed a hier-
archical fusion framework which includes ðnþ 1Þ layers. In this section, we divide the
ðnþ 1Þ layers into three steps, that is, input step, fusion step and output step respec-
tively. Specifically, input step is corresponding to layer 1 and there are r variables.

Fig. 1. Workflow of hierarchical similarity network fusion (HSNF).

128 S. Liu and X. Shang



When r similarity matrixes are delivered from initialization layer, the input step fuses
them into one similarity matrix and delivers it to layer 2. For fusion step, there are
ðn�1Þ layer from layer 2 to layer n and each layer in fusion step has the same
processing procedure. When r similarity matrixes are delivered from the former layer,
the current layer will fuse them into one similarity matrix and deliver it to the next
layer. The fusion process will stops if there is no similarity matrix is delivered. That is,
r similarity matrixes are exactly inputted to layer n. Then, layer n fuses these r simi-
larity matrix into one final similarity matrix and delivers it to output step. For output
step, there is only one layer, that is, layer ðnþ 1Þ and just one variable which is used to
save the final similarity matrix delivered by layer n. The fused similarity is in the layer
ðnþ 1Þ and used to discover cancer subtypes.

2.3 Clustering Layer

For the clustering layer, we cluster patients into different groups on the final fused
similarity network by spectral clustering [12, 21] and each patient is only in one
group. Patients in the same group are supposed in the same subtype.

We give the detailed description of HSNF in Algorithm 1. IMiði ¼ 1; 2; � � � ; rÞ
denotes the variable in the initialization layer and is used to save the similarity matrix
produced by data type i. Mk;s; 1� k� n; 1� s� r is the s-th variable of layer k in
hierarchical fusion layer and is used to save the similarity matrix delivered by the
former layer. FM is the variable in the layer ðnþ 1Þ of output step and is used to save
the final fused similarity matrix. ci ði ¼ 1; � � � ; nÞ is the counter used to calculate the
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index of variables so that the similarity matrix can be saved quickly in layer i of
hierarchical fusion layer. t counts the iterations. For initialization layer, the similarity
matrix with valuable information can be easily produced by fusing these similarity
matrixes calculated from different input data types respectively. For hierarchical fusion
layer, as the delivered similarity matrixes of the initialization layer are produced from
different features modalities by randomly sampling strategy, the fusion process can
benefit from the complementariness of these similarity matrixes. The final fused sim-
ilarity matrix is generated and saved in the output step of hierarchical fusion layer. In
this paper, r is simply set based on the number of input data types. For selecting the
optimal values of parameters piði ¼ 1; 2; � � � ; rÞ and n in HSNF, we use grid search.
Specifically, we traverse pi from 0.01 to 1 with the step of 0.01 and traverse n from 1 to
7 with the step of 1. The optimal pi and n are selected by considering both p-value and
silhouette value simultaneously.

2.4 Materials

In this paper, we downloaded five cancer datasets including multi-platform genomic
data that are respectively mRNA expression, DNA methylation and miRNA expression
collected and processed by Wang et al. [12]. And the corresponding clinical data were
also downloaded to evaluate the performance of cancer subtype identification methods.
The five cancer types are respectively breast invasive cancer (BIC), glioblastoma
multiforme (GBM), kidney renal clear cell carcinoma (KRCCC), colon adenocarci-
noma (COAD) and Lung squamous cellcarcinoma (LSCC). Table 1 lists the detailed
statistics information of the five cancer datasets on each type input data.

3 Results and Discussion

In this section, we firstly discuss the parameters selection of HSNF on GBM dataset.
Secondly, based on the selected parameters of HSNF, we compare HSNF with three
existing methods in terms of p-value and silhouette. Then, we validate stability of
HSNF on all of the five datasets. Finally, we validate expandability of HSNF on GBM
dataset.

Table 1. Statistics information of five cancer datasets.

Cancer
types

The number of
mRNA

The number of
methylation

The number of
miRNA

The number of
patients

GBM 12042 1305 534 215
BIC 17814 23094 354 105
KRCCC 17899 24960 329 122
LSCC 12042 23074 352 106
COAD 17814 23088 312 92

130 S. Liu and X. Shang



3.1 Parameters Selection of HSNF

The parameters of HSNF are pi ði ¼ 1; 2; � � � ; rÞ, r and n respectively and the appro-
priate parameter values can contribute to the robust HSNF. GBM dataset was used to
introduce the parameters selection of HSNF. As GBM dataset includes three data types
(mRNA expression, DNA methylation and miRNA expression), r is set to 3. Specif-
ically, each time, three similarity matrixes are fused into one by SNF. Thus, for the
parameters in SNF, we follow the experimental parameters setup described in SNF
closely (that is, l ¼ 0:5 and k ¼ 20). It is reasonable to select different feature ratio
piði ¼ 1; 2; . . .rÞ for different data type. However, complexity of selecting optimal
parameter values will increase. For simplicity, we don’t distinct pi ði ¼ 1; 2; � � � ; rÞ
instead of setting p1 ¼ � � � ¼ pr, which are uniformly denoted by p. Therefore, two
parameters (p and n) need to be set, and grid search is used to select the optimal
parameter values. We set parameter p ranging from 0.01 to 1 with the step of 0.01 and
set parameter n ranging from 1 to 7 with the step of 1. The maximum of n is set to 7
because the sampling time 37 = 2187 is large enough to produce numerous similarity
matrixes and lead to the stable results. Moreover, the larger n, the higher complexity of
HSNF.

The parameters p and n are simultaneously selected by considering p-value and
silhouette. In particular, p-value is to estimate the significant difference between the
subtypes and is calculated by survival analysis of the identified subtypes. The silhouette
value [24] is to measure of how similar one patient is to patients in its own subtypes,
when compared to patients in other subtypes. Figure 2(A) shows −log10(p-value)
varies with the different p and n on GBM dataset. Figure 2(B) shows silhouette varies
with the different p and n on GBM dataset. The range spectrums of p-value are smaller

Fig. 2. P-value and silhouette of HSNF respectively vary with parameter p from 0.01 to 1 and
with parameter n from 1 to 7 on GBM dataset. (A) −log10(p-value) is reaped by survival analysis
of the identified subtypes, (B) silhouette is reaped by analyzing clustering performance.
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with n from 5 to 7 than other n from 1 to 4. And p-value fluctuation is larger of n from 5
to 7 than n from 1 to 4. Generally, the identified subtypes are significant if cox log-rank
test p-value of subtypes in survival analysis is less than 0.05. As is well known, the
smaller p-value, the more significant the results. And the larger the silhouette, the better
the clustering performance. The larger −log10(p-value) is produced with larger p and n
from 5 to 7. The smallest p-value is produced by n = 6. However, most large –

log10(p-value) is corresponding to small silhouette value for n = 6 shown in Fig. 2.
Interestingly, the largest −log10(p-value) is produced by p = 0.09 and n = 6 meanwhile
the silhouette value is the largest with the same values of p and n. Thus, we select
p = 0.09 and n = 6 on GBM dataset, and p-value is 9.1e−6 and silhouette value is
0.6620. As shown in Fig. 2, most parameter values in our model deliverer the sig-
nificant results illustrating the feasibility of HSNF.

3.2 Performance Analysis of HSNF

Comparison with the State of the Art. The number of cancer subtypes of the five
public cancer datasets are listed in the parentheses in Table 2 chosen by [12], which is
denoted by S. In addition, for HSNF method, the selected values of parameters p and
n on five cancer datasets are also listed in the parentheses. We compare HSNF with
three existing methods in term of p-value and silhouette on five cancer datasets.
Specifically, we focus on comparing HSNF with SNF, ConsensusCluster (CC) and
SNF.CC methods which are implemented using R packages CancerSubtypes [25]. The
comparison results are presented in Table 2. In general, less p-value and higher sil-
houette value mean high performance. In terms of silhouette value, HSNF consistently
outperforms SNF. Cox log-rank p-value of HSNF is significant on all the five datasets
and consistently outperforms than the other three methods. It illustrates that HSNF is
effective and robust to discover cancer subtypes based on multiple platform input data.

Reasonable explanation for such high performance of HSNF method is that HSNF
not only benefits from the multiple platform data, but also benefits from the different
feature modalities produced by sampling sub-features randomly. Diverse similarity

Table 2. Comparison HSNF with the existing data integrative methods for identifying cancer
subtypes on five cancer types in term of silhouette and p-value. The values in the parenthesis
respectively denote the number of subtypes of each cancer (S), the values of parameter p and n.

Cancer types Silhouette
values

Cox log-rank p-value

HSNF SNF HSNF SNF CC SNF.CC

GBM (S = 3, p = 0.09, n = 6) 0.662 0.349 9.10e−6 3.87e−4 7.49e−1 8.72e−4
BIC (S = 5, p = 0.32, n = 7) 0.561 0.227 3.35e−9 1.35e−3 2.81e−5 5.18e−4
KRCCC (S = 3, p = 0.19, n = 6) 0.591 0.390 1.80e−2 3.15e−2 9.30e−1 2.12e−1
LSCC (S = 4, p = 0.04, n = 5) 0.510 0.430 1.20e−2 2.09e−2 1.03e−2 1.64e−2
COAD (S = 3, p = 0.76, n = 6) 0.280 0.086 9.26e−3 3.60e−2 3.72e−2 3.80e−2
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matrixes are generated by sampling sub-features randomly and the proposed hierar-
chical fusion framework makes full use of complementarity of these similarity
matrixes.

The Stability. To validate stability of HSNF, we repeat experiments 50 times with the
selected parameters in Table 2 on the five datasets. To observe distribution of the 50
p-value, we plot boxplots. The boxplots of five cancer datasets are shown in Fig. 3.
Specifically, each boxplot in Fig. 3 shows values range of the 50 p-value. As shown in
Fig. 3, all the boxplots range in the small interval. Especially for Fig. 3(E) COAD, it is
interesting that the 50 times repeat experiments output the same p-value. Thus, Fig. 3
shows that the HSNF is stable with the selected parameters. The reason may be that
with the numerous sampling times, the probability of the selected features increases and
the heterogeneity of the similarity networks becomes small.

The Expandability. For evaluating expandability of HSNF, we add cosine similarity
metric to test the expandability of HSNF. Specifically, the extended HSNF distin-
guishes from original HSNF with two steps. First, we calculate similarity matrixes by
both Euclidean distance metric and cosine metric after randomly sampling features and
then fuse the similarity matrixes from identical metric. Thus, two fused similarity
matrixes are produced from different similarity metrics. Second, we fuse the two
produced similarity matrixes into one fused matrix and deliver it to hierarchical fusion
layer. The remaining process of the extended HSNF is the same with the original
HSNF. We conduct experiment on GBM dataset, which have the largest patient
number of the five cancer datasets. The number of subtypes is 3, which is agreement
with Wang et al. [12]

We compare the extended HSNF with the original HSNF of p-value by Survival
analysis, which shows the significant difference between subtypes in survival profiles.
Figure 4 shows survival analysis of the original HSNF and extended HSNF respec-
tively. The survival curves in Fig. 4 manifest that the subtypes identified by the
extended HSNF is more significant than the original HSNF, which indicates that HSNF
can be well extended. Thus, the fusion process of HSNF can benefit from the com-
plementary information not only generated by the different feature modalities but also
produced by the two different similarity metrics.

Fig. 3. Boxplot of 50 p-value produced by 50 times repeat experiments of HSNF on (A) GBM
dataset. (B) BIC dataset. (C) KRCCC dataset. (D) LSCC dataset. (E) COAD dataset.
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4 Discussion and Conclusion

It well known that cancer subtypes discovery can provide useful information for
revealing pathogenic mechanism. Although data integration based methods have some
advances, some technology issues still need to improve. In this paper, we present a new
data integration method, called HSNF, which can be treated as an ensemble SNF. It
learns a discriminative similarity network and clusters patients into different subtypes by
spectral clustering. We evaluate HSNF on five cancer datasets including GBM, BIC,
KRCCC, LUNG, COAD. Each dataset consists of three input data types which are
respectively mRNA expression, miRNA expression and DNA methylation. HSNF was
validated in the following aspects. First, we discuss the process of selecting the advisable
parameters of HSNF based on which desirable p-value and silhouette can be reaped by
traversing the preset values. The experimental results show the parameters selection have
large effect on HSNF performance. Second, we compare HSNF with the state of the art
based on the selected parameters. HSNF consistently outperforms other methods in
terms of p-value and silhouette value. In addition, we evaluate the stability of HSNF via
observing p-value distribution with 50 times repeated experiments. Finally, HSNF is
expanded by adding cosine metric into the original HSNF. Abundant experimental
results illustrate HSNF is feasible and reasonable for discovering cancer subtypes.

In fact, we should tune (r + 2) parameters included in HSNF method, that is, r, n
and p1; � � � ; pr. However, the optimal parameters are difficult to choose. In this paper,
three data types are used and parameter r is set to 3 by empirical analysis. In addition,
for simplicity, parameters p1, p2 and p3 are set to equal value. As the appropriate
parameters are critical for HSNF performance, we will explore how to select the
optimal parameters in the future work. Furthermore, more similarity metrics can be
discussed for extending HSNF and low-rank representation (LRR) [26] is considered to
construct patient similarity networks in our future work.

Fig. 4. Kaplan Meier survival curves for analyzing three GBM subtypes identified by (A) The
original HSNF method, (B) The extended HSNF method.
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Abstract. Since humans are diploid organisms, homozygous and heterozygous
deletions are ubiquitous in the human genome. How to distinguish homozygous
and heterozygous deletions is an important issue for current structural variation
detection tools. Additionally, due to the problems of sequencing errors,
micro-homologies and micro-insertions, breakpoint locations identified with
common alignment tools which use greedy strategy may not be the true deletion
locations, and usually lead to false structural variation detections. In this paper,
we propose a deletion detection method called Sprites2. Comparing with
Sprites, Sprites2 adds the following novel function modules: (1) Sprites2 takes
advantage of the variance of insert size distribution to determine the type of
deletions which can enhance the accuracy of deletion calls; (2) Sprites2 uses a
novel alignment strategy based on AGE (one algorithm aligning 5’ and 3’ ends
between two sequences simultaneously) to locate breakpoints which can solve
the problems introduced by sequencing errors, micro-homologies and
micro-insertions. For testing the performance of Sprites2, simulated and real
datasets are used in our experiments, and some popular structural variation
detection tools are compared with Sprites2. The experimental results show that
Sprites2 can improve deletion detection performance. Sprites2 is publicly
available at https://github.com/zhangzhen/sprites2.

Keywords: Structural variation � Deletion detection � Alignment strategy
Sequence analysis

1 Introduction

Structural variations (SVs), refer to the DNA sequence of more than 50 base pairs in
the donor genome, which are inserted, deleted, inverted or duplicated, comparing with
the reference genome. Deletions are very common in the human genome which are the
removal of segments from the donor genome. Deletions can bring about variable
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phenotypes and diseases [1]. For example, Smith-Magenis syndrome (SMS) is linked
to deletions at p11.2 region on chromosome 17, leading to mental deficits, facial
expression abnormalities, sleep disorders and behavioral problems. Deletions at p11.23
region on chromosome 7 cause Williams-Beuren syndrome (WBS) which is manifested
by congenital heart disease, mild mental retardation, hypertension disease [2]. If
deletion callers can accurately locate disease-associated deletions and precisely screen
candidate genes related to diseases, they have a great value in helping doctors to
correctly diagnose and treat human diseases [3].

Currently, several different deletion detection methods have been presented. Pindel
[4] deals with paired-end reads that have only one end mapped. By taking the pattern
growth approach, Pindel splits the unmapped reads, i.e. one form of split reads, into
two segments and maps the two segments separately to determine exact positions of
breakpoints with the help of its mapping tool. Delly [5] uses paired-end reads clustering
to identify breakpoint-containing reference regions. Within the regions, it searches for
putative split reads, i.e. unmapped ends of the paired-end reads. A fast k-mer-based
filtering technique is used to choose candidate split reads. From these candidate split
reads, a split read consensus is then built. Breakpoints are determined by aligning the
consensus sequence to the breakpoint-containing reference region. SVseq2 [6] begins
with extracting soft-clipped reads from the input BAM file. For each soft-clipped read,
it takes advantage of paired-end reads that span the soft-clipped point of the read to
identify the reference region that covers the other breakpoint. The other breakpoint is
pinpointed by re-aligning the soft-clipped segment of the read to the
breakpoint-containing reference region, i.e. the target region. Sprites [7] takes an
approach similar to that of SVseq2 for deletion detection. It starts by dealing with
soft-clipped reads, and then uses spanning paired-end reads to identify target sequen-
ces, i.e. the reference fragment that covers the other breakpoint of a deletion. Rather
than the re-aligning soft-clipped segment strategy, re-aligning the whole read is con-
ducted in determining the location of the breakpoint. This enables Sprites to detect
deletions with a micro-homology and deletions with a micro-insertion more accurately
than SVseq2.

At present, existing methods have partly solved the problem of locating break-
points, but for the purposing of accurately locating breakpoints, there are still the
following challenges. (1) The sequencing errors cause alignment tools improperly
locating breakpoints. It tends to make alignments stop at a sequencing error position.
Specifically, for the forward 5’-end soft-clipping reads, the soft-clipped positions given
by the alignment tool are shifted to the right relative to true breakpoint locations by a
number of base pairs, and for the reverse 5’-end soft-clipping reads, the positions are
shifted to the left relative to true locations. (2) Deletions with a micro-homology and
deletions with a micro-insertion make it more difficult to exactly determine where
soft-clipped points are located, especially for alignment tools based on remapping
soft-clipped parts. (3) The features of target sequences have a significant impact on
re-alignments. If a target sequence contains tandem duplications, it is very difficult for
any kind of alignment algorithm, without the help of additional biological information,
to determine breakpoint locations. (4) The greedy strategy used by alignment tools
makes locations of soft-clipped points beyond true locations. If the sequence near a true
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breakpoint is relatively similar to the corresponding soft-clipped read, alignment tools
prefer to give a high mapping quality score but a wrong match.

Meanwhile, humans are diploid organisms because all body cells have 23 chro-
mosome pairs. Therefore, there are homozygous and heterozygous structural variations
in the human genome.

Sprites uses BWA [8] to re-align soft-clipped reads to target sequences, in order to
find the longest prefix or suffix of the read that has a match in the target sequence and
further determine the other breakpoint. Although Sprites has partly solved the problem
of deletions with a microhomology and deletions with a micro-insertion, it can’t
eliminate the problem of inaccurate soft-clipped points. AGE [9] is an algorithm for
alignment with Gap Excision. It is accurate in general when using AGE to locate
deletion breakpoints for two sequences: a target sequence without a deletion and a
soft-clipped read containing a deletion. The performance of AGE is affected by the
features of target sequences. The target sequence as input can be divided into two
cases. In the first case, it is extracted directly from the cluster of overlapping discordant
paired-end reads. Regardless of the sizes of deletions, it always contains the whole
sequences of deletions. When the deletion size is large, the corresponding target
sequence is much longer than reads, making AGE low computational efficiency. In the
second case, it is extracted by the cluster of paired-end reads spanning a soft-clipped
point. When the deletion size is large, the target sequence does not totally contain the
deleted sequence, which makes AGE at a disadvantage, causing that the algorithm can’t
accurately find the positions of two breakpoints.

In this study, we present a new method, called Sprites2 for detecting deletions,
Sprites2 attempts to build two clusters of paired-end reads spanning a soft-clipped point
according to their insert sizes, and then uses ANOVA to test whether the clustering is
reliable. If the clustering is reliable, it means that the corresponding deletion is
heterozygous, else the deletion is homozygous. Then, a new alignment strategy is
employed for finding and revising breakpoints. Sprites2 first complements target
sequences by adding base pairs to heads or tails, while avoiding introducing problems
of micro-homologies. Subsequently it uses AGE for performing precise alignments on
soft-clipped reads and complemented target sequences regardless of the sizes of
deletions, contributing to reducing run-time and memory consumption effectively.
Then, it uses the 1 bp fault-tolerant amplification method to eliminate fake
micro-insertions introduced by sequencing errors based on alignment results. Finally,
two identical sub-sequences are searched in regions near breakpoints on target
sequences based on alignment results to determine whether there is a micro-homology.
If there is a micro-homology, the micro-homology sequence is extracted from target
sequences.

2 Method

The pipeline of Sprites2 for detecting deletion breakpoints which takes advantage of
the alignment tool AGE is outlined as follows.
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2.1 Preprocessing

A soft-clipped read has the following characteristics: (1) it has the soft-clipping sig-
nature; (2) it is one end of a paired-end read; (3) its partner is uniquely mapped. We
search for such reads in the input BAM file. Here, we deal with two types of
soft-clipped reads: forward 5’-end soft-clipped reads and reverse 5’-end soft-clipped
reads. Forward 5’-end soft-clipped reads mean that the 5’-end of the reads cannot be
mapped, and the 3’-end is mapped to the forward strand of the reference. Similarly,
reverse 5’-end soft-clipped reads imply that the 5’-end of the reads cannot be mapped,
and the 3’-end is mapped to the reverse strand of the reference. Unless otherwise stated,
soft-clipped reads refer to 5’-end soft-clipped reads.

The CIGAR string of a soft-clipped read contains an ‘S’ at the beginning or end.
The number before the ‘S’ represents the length of the read’s soft-clipped segment.
Sprites2 scans the BAM file only once to choose out reads that have at least 12 (set by
default) base pairs soft-clipped, based on their CIGAR string. For each soft-clipped
read, the coordinate of the soft-clipped point, its mapping orientation (forward or
reverse) and the length of the soft-clipped segment, i.e. the number of soft-clipped base
pairs, are saved for the subsequent steps.

The soft-clipped reads whose soft-clipped points have the same coordinate on the
reference genome are grouped together. If both forward and reverse soft-clipped reads
are placed in the same group, the two deletions supported by forward and reverse
soft-clipped reads cannot co-exist. The conflict in the group prevents the group’s reads
from being further processed and therefore the group needs to be deleted. The previous
step outputs groups of forward or reverse soft-clipped reads. These groups are arranged
via the soft-clipping position. Given a soft-clipping position of forward soft-clipped
reads, paired-end reads that meets the following conditions are selected: (1) one end s1
is forwardly mapped in the upstream of the soft-clipped position; (2) the other end s2 is
reversely mapped in the downstream of the soft-clipped position, and is required to be
mapped within the region [loc, loc + l + 3 * r − len(s2)], where loc stands for the
coordinate of the soft-clipped point, and len(s2) stands for the length of s2, and l and r
stand for the mean and standard deviation of insert size, respectively.

Similarly, given a soft-clipping position of reverse 5’-end soft-clipped reads,
paired-end reads that meet the following conditions are selected: (1) one end s2 is
reversely mapped in the downstream of the soft-clipped point; (2) the other end s1 is
forwardly mapped in the upstream of the soft-clipped point, and is required to be
mapped within the region [loc − l − 3 * r + len(s1), loc]. The corresponding target
sequence is a fragment of length of l + 3 * r ending at len(s2) + pos(s2).

2.2 Genotyping Deletions to Be Called

At the end of the previous step, a collection of spanning paired-end reads is obtained
for each soft-clipping position. The distance between two mapped ends of each
paired-end read is extracted and used to construct a list of insert sizes. Then, the
algorithm described below is adopted to split the list into two smaller lists.

First, the list is sorted in ascending order. Second, differences between consecutive
elements in the list are calculated. Third, the max difference is found. Last, the elements
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left and right to the max difference are grouped as the first and second smaller list,
respectively.

If the soft-clipping position implies a homozygous deletion, then the insert sizes in
the original list are drawn from a single distribution and the mean of the distribution
l(i) is greater than the library mean lL, where i denotes the i-th soft-clipping position.
If the soft-clipping position implies a heterozygous deletion, insert sizes in its original
list are drawn from two distributions. The mean of one distribution l1(i) is roughly
equal to the library mean lL, and the mean of the other distribution l2(i) is larger than
the library mean lL.

Based on the fact described above, the analysis of variance is used to test whether
this partition is reasonable. Specifically speaking, it is determined whether the averages
x1; x2 of the two smaller lists are equal. The test hypothesis is established.

H0: Two averages x1; x2 are equal;
H1: Two averages x1; x2 are not equal.
In addition, we define a significance level a of 0.05 for the hypothesis test. If the

p-value is less than a, we reject the null hypothesis H0. This indicates that the partition
is reasonable. If the p-value is larger than a, we fail to reject the null hypothesis H0.
This indicates that the partition is not reasonable.

The reasonable partition is indicative of a heterozygous deletion. The smaller list
which has the larger average is selected. The non-reasonable partition implies a
homozygous deletion. In such case, the original list is selected. According to the
resulting list, the corresponding paired-end reads are extracted for using in the next
step.

2.3 Target Sequences Completion

For each soft-clipping position of forward 5’-end soft-clipped reads, spanning
paired-end reads along with the coordinates of its far end are saved. For the above
spanning pair (s1, s2) in extracting initial target sequence, a fragment of length
l + 3 * r starting at pos(s1) is taken on the reference. In fact, a soft-clipping position
always corresponds to more than one target sequence which is needed to be sorted by
ending location and be merged until nothing is left to merge. Similarly, given a
soft-clipping position of reverse 5’-end soft-clipped reads, the corresponding target
sequence is a fragment of length of l + 3 * r ending at len(s2) + pos(s2).

According to the number of breakpoints contained in target sequences, we divide
target sequences into two categories. In the first category, target sequences totally
contain deletions, so the number of breakpoints contained is 2. In the second category,
target sequences partly contain deletions and one breakpoint because deletions are too
large. Target sequences which don’t contain any breakpoints will not be considered,
since it is assumed that target sequences contain at least one breakpoint.

For target sequences in the first category which contain two breakpoints, the left
part of the first breakpoint can be matched with the left segment corresponding to the
soft-clipped read, and at the same time. At the right part of the second breakpoint can
be matched with the right segment of the soft-clipped read. AGE can be used directly
on the first category of target sequences, and it is not necessary to process completion.
For target sequences in the second category which contain only one breakpoint of
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deletions, AGE always can not give accurate alignment results. Hence target sequence
completion must be done.

For a forward soft-clipped read, the beginning location and the ending location of
its mapped part are c0 and c1 respectively, and thus the soft-clipped position is c0. The
length of the unmapped part is l. The ending location of the target sequence is t1. The
sequence that needs to be added to the tail of the target sequence is calculated by the
Eq. (1).

ExtSeqðS; t1; cx; c1Þ ¼
S½cx; c1�; t1\c1

S½t1 þ 1; c1�; cx � t1\c1ð1Þ
/; t1 � c1

8
<

:
ð1Þ

Where S is the reference sequence, cx is the ideal beginning location of the
soft-clipped read (assuming the whole soft-clipped read is mapped) which is equal to
the difference subtracted l from c0, / is empty string. As shown in Eq. (1), for a
forward soft-clipped read, there are three cases to add sequence to the tail of target
sequence. The first case is the end location t1 of target sequence at the left of cx,
indicating that the deletion is too large. The number of base pairs added at this time is
c1 − cx+ 1. When the deletion size is larger than a certain value, the number of added
base pairs is no longer associated with the deletion size, but a fixed value which is
approximately equal to the read length.

The second case is that t1 falls between cx and c1, the sequence added is from t1 + 1
to c1 to avoid introducing fake tandem duplications which increases the error proba-
bility of AGE algorithm, thus impeding locating breakpoints. The third case is that t1 is
on the right of c1, that is, the deletion size is small and the target sequence completely
contains the deletion without needing to add any base pairs at this time.

It is important to emphasize that a reference segment is added to the end of the
target sequence, rather than adding the mapped segment of soft-clipped read. Some
base pairs after the soft-clipped point in the initial target sequence are likely to coincide
with several base pairs at the left of the mapped part of the soft-clipped read. If the
mapped segment is added to the tail of the target sequence, a fake micro-homology is
introduced, which increases the complexity of locating breakpoints. The completed
target sequence’s effects are similar to the reference totally contains deletions simul-
taneously reducing run time and memory overhead.

Given a reverse soft-clipped read, c0 and c1 are the beginning and ending locations
of the mapped segment, c1 is the soft-clipped position, l is the length of the soft-clipped
segment, and t0 is the beginning location of the target sequence. The sequence that
needs to be added to the head of the target sequence is calculated by the Eq. (2).

ExtSeqðS; t1; cx; c1Þ ¼
S½cx; c1�; t1\cx

S½t1 þ 1; c1�; cx � t1\c1ð1Þ
/; t1 � c1

8
<

:
ð2Þ

Where S is the reference sequence, cx is the ideal ending location of soft-clipped
read, which is equal to a sum of c1 plus l, / is the empty string. As shown in Eq. (2),
for a reverse soft-clipped read, the sequence that needs to be added to the head of the
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target sequence is also divided into three cases. (1) When t0 is on the right of cx, the
segment added is the reference sequence from c0 to cx, since there are indels, the length
is approximately equal to the read length. (2) When t0 is between c0 and cx, the added
segment is the reference sequence between c0 and t0, (3) When t0 is on the left of c0,
there is no need to add any base pairs at this time because the target sequence contains
two breakpoints.

2.4 Applying AGE for Realignment

We have preliminarily determined one breakpoint of deletions according to soft-clipped
point information, employing AGE which inputs complemented target sequences and
corresponding soft-clipped reads to amend the breakpoint we’ve got and locate the
other breakpoint. AGE aligns the left and right of two given sequences at the same
time, and outputs breakpoint coordinates of aligned regions for two best alignments
which are two intervals actually. The endpoint coordinates of intervals are relative, so it
is necessary to convert them to absolute coordinates when calculating breakpoint
coordinates.

For a forward soft-clipped read, the coordinate of left breakpoint is equal to the sum
that end position of the first mapped segment in target sequence (relative coordinate)
plus start position of the target sequence obtained by AGE (absolute coordinate). The
coordinate of the right breakpoint is equal to the sum of that soft-clipped position and
the difference between the length of mapped part of soft-clipped read and the length of
the second mapped segment of soft-clipped read obtained by AGE. For a reverse
soft-clipped read, the coordinate of left breakpoint is equal to the difference subtracted
the difference between the length of the mapped part of soft-clipped read and the length
of first mapped segment of soft-clipped read obtained by AGE from soft-clipped
position. The coordinate of right breakpoint is equal to the sum of that start position of
the second mapped segment in target sequence obtained by AGE (relative coordinate)
and start position of the target sequence (absolute coordinate).

2.5 Correct Coordinates of Breakpoints

Given a target sequence v and a soft-clipped read w, the alignment results of AGE are
analyzed. It is divided into two cases if the middle part of w has unmatched base pairs.
The first case shows unmatched base pairs produced by true micro-insertions, the
second case indicates unmatched base pairs caused by sequencing errors, which mis-
takenly considered to be micro-insertions by AGE. It is necessary to identify and
eliminate the second case. Firstly, we extract the unmatched base pairs of w, and the
sequence is denoted by w’ with length represented by l(w’), and then extract a sequence
with a length of l(w’) from v next to the end of the first mapped segment, which is
represented by v01. Let n1 be the number of mismatched base pairs between v01 and w’.
Subsequently a sequence with a length of l(w’) before the start of the second mapped
segment of v is extracted, which is represented by v02. Let n2 be the number of mis-
matched base pairs between v02 and w’. (1) If both n1 and n2 are greater than 1, it is
shown that the unmatched sequence in the middle of w is a micro-insertion, which
belongs to the first case where breakpoint coordinates do not need to be corrected. (2) If
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n1 is not greater than 1 and n2 is greater than 1, indicating that some sequencing errors
exist and affect the determination of the coordinate of left breakpoint. (3) If n1 is greater
than 1 and n2 is not greater than 1, indicating that sequencing error exists and affects the
determination of the coordinate of right breakpoint. (4) If neither n1 nor n2 is greater
than 1, manifesting there are sequencing errors, but it is not possible to determine
which breakpoint, left or right, is affected by sequencing errors.

The last three conditions belong to the second case, we develops a slightly different
strategy for amending breakpoint coordinates based on two different soft-clipped reads.
For a forward soft-clipped read, under the condition of (2), the coordinate of the right
breakpoint should be shifted to the left by l(w’), and under the condition of (3), the
coordinate of the left breakpoint should be shifted by l(w’) to the right. Under the
condition of (4), the coordinate of the right breakpoint should be shifted to the left by l
(w’). Likewise for a reverse soft-clipped read, under the condition of (2), the coordinate
of the left breakpoint should be shifted to the right by l(w’), and under the condition of
(3), the coordinate of the right breakpoint should be shifted by l(w’) to the left. Under
the condition of (4), the coordinate of the left breakpoint should be shifted to the right
by l(w’).

2.6 Finding Deletion Calls

The target sequence covers two breakpoints and contains the sequences on both sides
of breakpoints, and there is no need to re-read the reference sequence from reference
genome FASTA file. Given a target sequence ts with a length of l, and the coordinates
of the left breakpoint and the right breakpoint on the target sequence ts are bl and br
(relative coordinates, starting from 0), respectively. ll indicates the length of the
sequence on the left of bl including bl, whose value is equal to bl. lm represents the
length of sequence between bl and br, and its value is equal to br − bl − 1. lr indicates
the length of the sequence on the right of br including br, whose value is equal to l − br.

Firstly, we get the longest common suffix LCS(sl, sm) of the substring sl with a
length of min(lm, ll) and the substring sm with the same length as sl. The right endpoints
of sm and sl are br and the previous base pair to bl respectively. Then, we calculate the
longest common prefix LCS s0m; sr

� �
of the substring s0m with a length of min(lm, lr) and

the substring sr with the same length as s0m. The left endpoints of s0m and sr are br and
the next base to bl, respectively. Finally, we can obtain micro-homology sequence
connecting LCS(sl, sm) and LCS s0m; sr

� �
. The confidence interval of the left breakpoint

is set to [Bl − LCS(sl, sm), Bl], and the confidence interval of the right breakpoint is set
to Br; LCS s0m; sr

� �þBr
� �

. Bl and Br are initially predicted locations of the left
breakpoint and the right breakpoint, respectively.

3 Experiments

We use 17 simulated data sets and 5 real data sets to evaluate the deletions detected by
Sprites2, comparing with Sprites, SVseq2, Lumpy, Delly and Pindel. The 17 simulated
data sets consist of 5 simulated WGS data sets of a synthetic sample containing
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homozygous deletions and 12 simulated WGS data sets of a synthetic sample con-
taining heterozygous deletions. The 5 real data sets consist of chromosome 20 data sets
of NA19311, NA19312, NA19313, NA19316 and NA19317.

We use double interval overlap to evaluate the breakpoint results detected. One
deletion detected is represented by two intervals A and B, and its corresponding real
breakpoint position is represented by two intervals A’ and B’. When A is overlapped
with A’, at the same time, B is overlapped with B’, the detected deletion refers to a true
positive deletion, represented by TP, and otherwise, represented by FP. If a known
deletion is failed to report by tools, it is a false negative deletion, represented by FN.

3.1 Results on Simulated Homozygous Deletions

Table 1 shows that Sprites2 has the highest sensitivity (61%, 93.6%, and 98.24%) of
simulated homozygous data with 2x, 5x and 10x coverage. It is worth noting that the
sensitivity of Sprites2 is higher than Sprites for every sequencing coverage. Sprites2
does not use read depth information when detecting deletions. Thus, the sensitivity of
Sprites2 is not the highest at the sequencing depth of 20x and 50x, but only a difference
of 0.5% with the highest value (99.4% and 99.52% for Pindel). With 2x and 5x
coverage, Lumpy has the lowest FDR (0% and 0.05%).With 10x, 20x and 50x, SVseq2
has the lowest FDR (0.27%, 0.25%, and 0.4%). Although the FDR of Sprites2
increases relative to Sprites and Sprites2, in general, its FDR keeps at a low level.
Sprites2 achieves the highest F-scores (0.7572, 0.9636 and 0.9868) at the coverage of
2x, 5x and 10x, while the F-score of Sprites2 at coverage of 20x and 50x is second only
to Sprites. The F-score of Sprites2 first raises and then keeps at a high level when the
sequencing depth is from low to high, and Delly’s F-score first raises and reaches the
highest value at 10x coverage, and then significantly falls down.

3.2 Results on Simulated Heterzygous Deletions

Table 2 shows that Sprites2 has the highest sensitivity for 9 data sets of simulated
heterozygous deletion, the sensitivity of Sprites2 is second to the highest value of Delly
in the remaining three data sets. In addition, Sprites2 is more sensitive than Sprites in
all cases. Table 3 shows that the FDR of Sprites2 is the lowest (0.39%) with 20x
coverage and 0.5 SV allele frequency. In most cases, the FDR of Sprites2 is higher than

Table 1. Sensitivity (S) and FDR comparison of simulated homozygous deletions

Tool 2x 5X 10X 20X 50X
S FDR S FDR S FDR S FDR S FDR

Sprites2 61.00 0.20 93.6 0.72 98.24 0.88 98.88 1.13 99.00 1.91
Sprites 59.32 0.07 92.08 0.26 97.60 0.28 98.48 0.36 98.52 0.88
SVseq2 44.80 0.09 65.08 0.18 73.00 0.27 80.36 0.25 89.64 0.40
Lumpy 33.56 0.00 86.20 0.05 96.76 0.33 97.8 1.45 98.08 3.92
Pindel 21.72 0.18 71.88 0.44 96.44 1.07 99.4 4.23 99.52 18.77
Delly 44.72 0.45 82.96 2.58 91.84 7.34 90.96 21.73 88.72 59.58

Sprites2: Detection of Deletions Based on an Accurate Alignment Strategy 147



that of Sprites, but the difference between Sprites2 and Sprites is generally below 0.3%.
Consistently, SVseq2 has the lowest FDR. The F-score of Sprites2 is the highest in all
12 data sets, indicating that it sacrifices the FDR in exchange for higher sensitivity, and
the overall performance of the detection is improved.

3.3 Deletion Detection Results on Chromosome 20 of 5 Individuals

Table 4 shows that the detection results of Sprites2 are more sensitive than Sprites, in
turn, Sprites2 has slightly higher FDR than Sprites. Overall, Sprites2 preforms well
from the perspective of F-score. It is worth mentioning that SVseq2 has the highest
F-score in NA19311, NA19312 and NA19317.

Table 2. Sensitivity comparison of simulated heterozygous deletions

Coverage AF Sprites2 Sprites SVseq2 Lumpy Pindel Delly

10X 0.05 9.99 8.39 7.47 0.47 0.73 6.38
0.10 27.59 24.33 18.91 5.49 3.72 19.62
0.20 58.28 50.73 40.10 29.08 17.26 48.06
0.50 90.97 79.15 62.18 84.63 67.17 89.16

20X 0.05 28.06 24.31 19.83 5.20 3.25 18.80
0.10 58.45 50.87 39.2 28.64 17.64 46.63
0.20 86.71 75.45 58.88 74.75 54.33 81.80
0.50 96.79 84.97 68.24 96.27 93.4 98.19

40X 0.05 58.5 50.33 39.23 28.35 17.39 47.19
0.10 86.44 76.02 57.87 73.89 53.19 82.20
0.20 95.78 83.76 67.49 95.52 73.69 97.44
0.50 98.21 86.97 75.76 96.66 97.63 98.37

Table 3. FDR comparison of simulated heterozygous deletions

Coverage AF Sprites2 Sprites SVseq2 Lumpy Pindel Delly

10X 0.05 1.43 0.00 0.00 3.70 16.67 26.97
0.1 0.85 0.37 0.19 0.33 6.39 9.76
0.2 0.40 0.32 0.18 0.74 1.04 4.78
0.5 0.77 0.50 0.20 1.39 0.48 2.61

20X 0.05 0.39 0.45 0.45 0.69 27.53 32.79
0.1 0.58 0.39 0.14 0.69 5.99 15.51
0.2 0.60 0.29 0.34 1.17 1.90 10.01
0.5 1.33 0.57 0.24 2.50 1.25 8.87

40X 0.05 0.58 0.39 0.28 0.70 26.85 44.02
0.1 0.72 0.35 0.22 1.16 10.28 31.37
0.2 0.87 0.64 0.32 1.77 6.12 27.11
0.5 1.88 1.05 0.5 6.26 4.01 27.39
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4 Conclusion

The factors including diploid organisms, sequencing errors, mapping errors,
micro-homology, micro-insertion, tandem repeats, and greedy strategies employed by
alignment tools all increase the difficulty in locating breakpoints accurately when
detecting deletions. Sprites2 takes advantage of the variance of insert size distribution
to determine the type of deletions. When determining breakpoints, Sprites2 firstly
completes the target sequence by adding base pairs to the head or tail of the target
sequence. Then Sprites2 uses AGE to perform the aligning between the soft-clipped
reads and the corresponding target sequences, the running time and the required
memory has absolutely no relation to the length of deletions.

According to the comparison results, Sprites2 eliminates fake micro-insertions
introduced by sequencing errors through the 1 bp fault-tolerant amplification. In
addition, the micro-homology is determined by searching for two identical sequences
on the target sequence near breakpoint coordinates.

Based on data sets of simulated homozygous deletions and heterozygous deletions,
Sprites2 is found to be better than those based on single-end alignment tools. With the
use of AGE to re-align the whole soft-clipped read in simulated data sets and real data
sets, experiments illustrate that detection performance has been improved. As good as
Sprites, Sprites2 shows excellent performances at data sets with the low coverage,
indicating good detection results can be obtained on low sequencing cost condition.

Acknowledgments. This work was supported in part by the National Natural Science Foun-
dation of China under Grant No. 61732009, No. 61622213, No. 61728211, No. 61772552,
No. 61772557 and No. 61602156.

Table 4. Performance comparison of chromosome 20 of 5 individuals

Sprites2 Sprites SVseq2 Lumpy Pindel Delly

NA19311 S 21.00 19.90 19.90 8.80 5.50 20.40
FDR 43.50 39.70 27.10 59.00 23.10 82.40
F-score 0.31 0.30 0.31 0.15 0.10 0.19

NA19312 S 12.20 11.60 11.60 3.30 5.50 14.90
FDR 64.50 58.80 56.20 88.30 33.30 84.70
F-score 0.18 0.18 0.18 0.05 0.10 0.15

NA19313 S 11.10 9.90 8.80 2.20 2.80 16.60
FDR 68.50 67.30 77.10 94.00 70.60 87.80
F-score 0.17 0.15 0.13 0.032 0.05 0.14

NA19316 S 6.10 6.10 6.10 0.00 6.60 3.90
FDR 31.30 31.20 35.30 90.00 25.00 95.40
F-score 0.11 0.11 0.11 0.00 0.12 0.04

NA19317 S 5.50 5.50 6.10 0.60 5.50 3.90
FDR 60.00 58.30 64.30 84.60 44.40 93.50
F-score 0.10 0.10 0.10 0.01 0.10 0.05
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Abstract. Protein phosphorylation is an important chemical modifica-
tion in the organism that regulates many cellular processes. In recent
years, many algorithms for predicting kinase-substrate interactions have
been proposed. However, most of those methods are mainly focused
on utilizing protein sequence information. In this paper, we propose a
computational framework, KSIBW, to predict kinase-substrate interac-
tions based on bi-random walk. Unlike traditional methods, the protein-
protein interaction (PPI) information are used to measure the similari-
ties of kinase-kinase and substrate-substrate, respectively. Then, the bi-
random walk is employed to identify potential kinase-substrate interac-
tions. The experiment results show that our method outperforms other
state-of-the-art algorithms in performance.

Keywords: Protein phosphorylation · Kinase-substrate interactions
Bi-random walk · Protein-protein interaction network

1 Introduction

The post-translation modifications (PTMs) of protein, including phosphoryla-
tion, glycosylation, ubiquitination, methylation, acetylation and other chemi-
cal modifications, etc., are common biological mechanism for protein function
regulation [1]. Protein phosphorylation is one of the most basic, universal and
important way of regulation in living organisms. It refers to the process of trans-
ferring ATP phosphate groups to the amino acid sequence of the substrate by
serine (S), tyrosine (Y) and threonine (T) sites under the catalysis of protein
kinase. It plays many key roles in cell metabolism, gene expression, and cel-
lular signal transduction, etc. The abnormal of intracellular phosphorylation
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process may cause some serious diseases [2], such as rheumatoid arthritis [3] and
diabetes [4].

Considering the important roles of protein phosphorylation in human organ-
isms, several biological methods have been developed to identify phosphorylation
sites. It can be classified into two categories: P32 isotope tracer [5] and mass
spectrometry [6]. A large number of phosphorylated proteins and their modified
sites have been experimentally identified. Several comprehensive databases have
been established to store these protein phosphorylation data. Phospho.ELM [7]
is a comprehensive knowledgebase that contains eukaryotic cell protein phospho-
rylation data. It contains 8718 substrate proteins from different species. Phos-
phoSitePlus [8] is an online resource providing comprehensive information for
the study of protein post-translational modifications. It includes 415446 non-
redundant PTMs and 20279 proteins. PhosphoNET (http://www.phosphonet.
ca/) is a popular kinase-substrate interaction database. It contains over 950000
known and putative phosphorylation sites in over 20000 human proteins that
collected from scientific literatures.

A large number of protein phosphorylation data provide a reliable data source
for predicting unknown phosphorylation sites by using computational methods
[9]. In recent years, many computational methods have been developed for pre-
dicting kinase-substrate interactions. Linding et al. [10] proposed an approach
(NetworKIN) that augments motif-based predictions with the network context
of kinases and phosphoproteins to predict site-specific kinase-substrate interac-
tions. Dang et al. [11] developed a new method to predict phosphorylation sites
by using the protein sequence and conditional random fields. Zhou et al. [12]
presented a computational method, named GPS, to predict phosphorylation site
based on the substitution matrix and Markov Cluster Algorithm. Song et al.
[13] extended GPS by integrating PPI information to identify kinase-substrate
interactions. Zou et al. [14] proposed a computational framework to identify
protein kinase by incorporating support vector machines and the composition of
monomer spectrum encoding strategy. Patrick et al. [15] developed a Bayesian
network model that integrate cellular context to predict kinase-substrate inter-
actions. Fan et al. [16] proposed a method for kinase-specific phosphorylation
sites prediction by using functional information and random forest. Damle et al.
[17] proposed a computational method, PhosNetConstruct, to decipher kinase-
substrate relationships by analyzing domain-specific phosphorylation network. Li
et al. [18] proposed a kernel-based method called SLapRLS, to address the kinase
identification problem by using Supervised Laplacian Regularized Least Squares.
Song et al. [19] presented a bioinformatics tool to predict kinase-specific sub-
strates and their associated phosphorylation sites by combining protein sequence
and functional features. Li et al. [20] proposed a network based method for pre-
dicting kinase-substrate interactions based on sequence similarity. Qin et al. [21]
presented a computational method for inferring the interactions between kinases
and substrates based on protein domains. Existing computational methods for
identifying kinase-substrate interactions have achieved great successes. However,

http://www.phosphonet.ca/
http://www.phosphonet.ca/
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These methods require a large amount of negative samples which are unable to
obtain in data [22–24]. Besides, some methods only use local information instead
of global information, which may produce more false positives.

In this paper, we propose a computational framework to infer the relation-
ships between kinases and substrates. Firstly, the similarities of kinase-kinase
and substrate-substrate are calculated by using short path method based on PPI
network, respectively. Then, the bi-random walk algorithm is used to predict
potential kinase-substrate interactions. The experimental results demonstrate
that our method can effectively predict kinase-substrate interactions.

2 Materials and Methods

2.1 Data Resources

We obtain human phosphorylation data from the Phospho.ELM 9.0 [7]. After
removing the redundant data, 216 kinases, 724 substrates and 1256 kinase-
substrate interactions are collected in final. The human PPI data are obtained
from InWeb IM [25], it contains 14684 human proteins and 625641 interactions.

2.2 Kinase-Kinase and Substrate-Substrate Similarity Measure

In InWeb IM, each protein interaction is given a confidence score which is calcu-
lated based on the reproducibility of the interaction data between different pub-
lications. The PPI network can be described as an undirected graph G(V,E,W ),
each node v ∈ V denotes a protein, and each edge (u, v) ∈ E denotes the interac-
tion between nodes u and v. W denotes the confidence score of the interactions.
In order to calculate the similarity between two proteins, we find the shortest
path between the two proteins. Then the similarity is calculated as follows:

sim(u, v) =
∏

(i,j)∈SPuv

W (i, j) (1)

where SPuv represents the set of edges on the shortest path between u and v,
and (i, j) represents the edge between two adjacent nodes on the shortest path.
Since both kinases and substrates are proteins, we used the same procedure to
calculate kinase similarity and substrate similarity, respectively.

2.3 Construction of Kinase and Substrate Heterogeneous Network

Based on these two similarity matrices, a kinase similarity network and a sub-
strate similarity network are constructed, respectively. For kinase similarity net-
work K, let ki and kj represent two different kinases. If the similarity between
ki and kj is 0, then there is no edge between this two kinases. Otherwise, there
is an edge connection between these two kinases, and the weight of the edge is
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Fig. 1. Illustration of the kinase-substrate heterogeneous network. The triangle and
the circle represent the substrate and the kinase, respectively. The solid line shows
the similarity between the two proteins, The dotted line shows the kinase-substrate
interactions. This two similarity networks are linked by known kinase-substrate inter-
actions.

the similarity value of the two kinases. For substrate similarity network S, If the
similarity between substrate si and sj is 0, then there is no edge between this two
substrates. Otherwise, there is an edge connection between these two substrates,
and the weight of the edge is the similarity value of the two substrates.

Let I denotes the kinase-substrate association network, eij denotes the edge
of I. The initial value of eij is set to 1 if there is a known interaction between
kinase ki and substrate sj , otherwise it is set to 0. Based on the association
network, we can construct the kinase-substrate heterogeneous network by con-
joining kinase similarity network and substrate similarity network. An example
of kinase-substrate heterogeneous network is shown in Fig. 1.

2.4 Predicting Kinase-Substrate Interactions Based on Bi-random
Walk

Bi-random walk is an extension of the random walk, which is widely used in
drug repositioning [26] and miRNA-disease interaction identification [27,28].

We normalize the kinase similarity matrix and the substrate similarity matrix
by using Laplace normalization, respectively. For example, we normalize sub-
strate similarity matrix as follows:

Sn = D
−1
2

s × S × D
−1
2

s (2)
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where Ds represents the diagonal matrix of the substrate similarity matrix S
and Ds(i, i) is the sum of the i-th row of S. The kinase-normalized similarity
matrix Kn can be obtained in the same way.

Different from the previous normalize procedure, the normalization matrix
In of kinase-substrate interactions matrix I is defined as follows:

RW (0) = In = I(i, j)/sum(I) (3)

where sum(I) denotes the sum of all the elements of I.
After getting normalized matrix Sn, Kn and In, we employ bi-random walk

to identify kinase-substrate interactions by walking on the kinase similarity net-
work and substrate similarity network simultaneously. Considering that different
networks may have different topology structures, the optimal number of steps to
walk randomly between these two networks may be inconsistent. Thus, we limit
the number of walking steps on two different networks by setting two parameters
l and r, where l and r represent the maximum number of random walks on the
substrate network and kinase network, respectively. Finally, the bi-random walk
procedure is formalized as follows:

Left walk in the substrate similarity network:

RWL(t) = β × Sn × RW (t − 1) + (1 − β)In (4)

Right walk in the kinase similarity network:

RWR(t) = β × RW (t − 1) × Kn + (1 − β)In (5)

We integrate the left and the right predicted result to acquire the final output:

RW (t) =
RWL(t) + RWR(t)

2
(6)

Where RWL(t) and RWR(t) represent the predicted score of kinase-substrate
interactions based on walking on the substrate similarity network and kinase
similarity network at the step t, respectively. RW (t) denotes the final predicted
result matrix at the step t. The elements of RW (t) represent the probability of
the kinase-substrate interactions. The larger the value of RW (i, j) is, the more
likely that the substrate sj is phosphorylated by the kinase ki. The parameters
l, r and β are set to 2, 2 and 0.3 in our experiment, respectively. The flow chart
of the bi-random walk algorithm for predicting kinase-substrate interactions is
shown in Fig. 2, the pseudocode is outlined in Algorithm 1.
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Algorithm 1. Algorithm for predicting kinase-substrate inter-
actions based on bi-random walk.
Input: Kinase similarity matrix K, substrate similarity matrix S,

kinase-substrate interaction matix I, parameter β, iteration steps
l and r.

Output: Predicted score matrix RW .
1: Normalize K, S, and I to Kn, Sn and In
2: for t = 1 to max(l, r) do
3: if t <= l then
4: RWL(t) = β × Sn × RW (t − 1) + (1 − β)In
5: else if t <= r then
6: RWR(t) = β × RW (t − 1) × Kn + (1 − β)In
7: end if
8: RW (t) = RWL(t)+RWR(t)

2

9: end for
10: return RW

3 Experiments and Results

3.1 Evaluation Metrics

In this paper, we use ten fold cross-validation and de novo test to evaluate
the performance of different algorithms. In the ten-fold cross-validation process,
known kinase-substrate interactions are randomly divided into ten subsets. In
each cross validation trial, nine subsets are used as the training set and the
remaining one subset is treated as the test set. After completing the test on the
dataset, a predicted scoring matrix is generated. Then we rank the unknown
kinase-substrate interactions and test set based on predicted score. For each
threshold, the corresponding predicted result of test set is considered true pos-
itive (TP) if the predicted score is greater than the threshold. Otherwise, it is
considered as false negative (FN). For the unknown kinase-substrate interaction,
it is treated as false positive (FP) if its predicted score is greater than the thresh-
old and as true negative (TN) if the predicted value is less than the threshold. By
choosing various thresholds, we can calculate different true positive rate (TPR)
and false positive rate (FPR). The TPR and the FPR are calculated as follows:

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

Finally, the ROC curve is drawed based on the previously calculated TPR and
FPR. Then the AUC (Area Under Curve) is calculated to evaluate the perfor-
mance of different algorithms.
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Fig. 2. The flow chart of potential kinase-substrate interactions identification by using
bi-random walk.

3.2 Comparison with Network-Based Method

To evaluate the performance of our proposed algorithm, we compare KSIBW
with the network-based prediction method (Hetesim-SEQ) [20]. The experimen-
tal results of KSIBW and Hetesim-SEQ is showed in Fig. 3. KSIBW achieves
the AUC value of 0.836, which is higher than Hetesim-SEQ (AUC = 0.802). It
shows that KSIBW performs better than Hetesim-SEQ.

3.3 Comparison with Different Predicted Methods Using De Novo
Test

In order to evaluate the power of our method for predicting new kinase-substrate
interactions, we perform de novo test experiments. In the de novo test, we delete
all known kinase-substrate interactions of kinase i each time. The rest of kinase-
substrate interactions are treated as training set. We compare KSIBW with four
popular predicted methods of kinase-substrate interactions, including GPS [12],
iGPS [13], NetworKIN [10] and PhosphoPICK [15]. Since these methods only
provide web server, we submit the dataset to the corresponding web server for
testing. We take six kinase group including Atypical, CAMK, CMGC, Other,
STE and TK as examples to illustrate the predictive performance of different
methods. The ROC curves for different methods in different kinase groups are
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Fig. 3. The ROC curves for predicting kinase-substrate interactions with different
methods.

plotted as performance comparisons and displayed in Fig. 4. As shown in Fig. 4,
our algorithm performs better than the other four algorithms on different kinase
groups.

Fig. 4. The ROC curves for kinase group Atypical, CAMK, CMGC, Other, STE and
TK with different methods.

3.4 Case Studies

To further validate the ability to predict unknown kinase-substrate interactions,
the case study is conducted in here. All known kinase-substrate interactions
are used as a training set and the unknown kinase-substrate interactions are
used as the test set. We employ KSIBW to predict potential kinase-substrate
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interactions and acquire the prediction score of all kinase-substrate pair in the
test set.

We select the top-20 predicted results which are list in Table 1. By check-
ing the PhosphoNET database, we found that five of the prediction results are
recorded by PhosphoNET. For example, the serine site in position 315 of sub-
strate TP53 is catalyzed by kinase CDK2, ATR phosphorylates TP53 at serine
site in position 37. The tyrosine site in position 182 of substrate CSNK2A1 is
catalyzed by kinase CK2a1. PLCB3 interacts with kinase PRKG1 through ser-
ine site in position 26. The tyrosine site in position Y420 of substrate TXK is
phosphorylated by the kinases FYN. In addition, although some of the predicted
kinase-substrate interactions are not present in PhosphoNET, we validate them
based on the recent published literature. For example, TP53 has been found to
be regulated by FLT3 [29]. ATR associates with the regulatory protein ATRIP
[30]. Polo-like kinase 1 (Plk1) has been verified that physically binds to the tumor
suppressor p53 in mammalian cultured cells [31].

In addition, some new interesting kinase-substrate interactions are also dis-
covered from the experimental results. It deserves for biologists to validate by
using biological experiments.

Table 1. Top-20 predicted results of unknown kinase-substrate interactions.

Top Substrate Prediction kinase Evidence

1 NEK6 CDK1 PMID:22064517

2 NR4A2 MAPK3

3 MAP2K1 SRC

4 ATRIP ATR PMID:15743907

5 TP53 CDK2 PhosphoNET

6 TP53 FLT3 PMID:17105820

7 ICAM3 PRKCA

8 RPS6KB2 PRKCH

9 TP53 PLK1 PMID:15024021

10 RELA FGFR4

11 RRN3 MAPK1

12 CSNK2A1 CK2a1 PhosphoNET

13 PPP1R14A GSK3B

14 MAPK12 ABL1

15 TEC LCK PMID:8636141

16 TP53 NEK2 PMID:24163369

17 PLCB3 PRKG1 PhosphoNET

18 TP53 TGFBR2

19 TXK FYN PhosphoNET

20 TP53 ATR PhosphoNET
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4 Conclusion

Protein phosphorylation plays important regulatory roles in the organism. More
and more researchers use computational method to identify kinase substrate
interactions. In this article, we proposed a computational framework to pre-
dict kinase-substrate interactions based on bi-random walk. The PPI informa-
tion is used to measure the similarity of pairwise of kinases and substrates,
respectively. Then, the bi-random walk method is employed to identify poten-
tial kinase-substrate interactions. We evaluate our method in term of ten-fold
cross validation and de novo prediction. The experimental results demonstrate
that our algorithm achieves higher AUC than other state-of-the-art algorithms.
Moreover, the case studies has proved the effectiveness of KSIBW in predicting
potential kinase-substrate interactions.
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Abstract. A variety of studies have shown that protein-RNA interac-
tions play a vital role in many fundamental cellular processes, such as
protein synthesis, mRNA processing, mRNA assembly, ribosome func-
tion and eukaryotic spliceosomes. Identification of RNA-binding residues
(RBR) in proteins is an key step to understand the mutual recogni-
tion mechanism underlying the protein-RNA interactions. In this paper,
we proposed a novel method, XPredRBR, to predict the RNA bind-
ing residues in proteins, by exploiting the eXtreme Gradient Boosting
(XGBoost) algorithm. Two types of new predictive features derived from
residue interaction network and solvent exposures are combined with
conventional sequence features and structural neighborhood features to
predict RBR. We carried out empirical experiments on two datasets to
demonstrate the performance of the proposed method. By 10-fold cross-
validations, our method achieved the accuracy of 0.861, sensitivity of
0.872, MCC of 0.584 and AUC of 0.941 on the RBP170 dataset. On
another independent test set RBP101, XPredRBR outperformed three
traditional classifiers and seven existing RNA-binding residue methods.
A case study on the chain E of 3PLA protein illustrated XPredRBR effec-
tively identified most RNA-binding and non RNA-binding sites. Further-
more, XPredRBR is much faster than our previous method PredRBR.
These experimental results show that our proposed method achieves
state-of-the-art performance in predicting RNA-binding residues in
proteins.
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1 Introduction

Protein-RNA interactions play an essential role in a wide variety of fundamental
cellular processes, such as transcription, replication, protein synthesis, regula-
tion of gene expression and posttranscriptional modifications [1,2]. Locating the
functional residues in proteins interacting with RNA molecules, referred to as
RNA-binding residues (RBR), is an key step to understand the detailed recogni-
tion mechanism function of various biological activities relevant to protein-RNA
interactions. Therefore, there is a pressing need to identify the RNA-binding
residues in proteins by an unbiased and systematic manner.

The structure-based methods utilize information derive from the structure,
typically based on shape and biophysical characteristics of the protein surface [3].
Chen and Lim [4] proposed a computational method based on structure infor-
mation including electrostatics, evolution and geometry, which are derived from
the protein structure and homologous sequences. Maetschke and Yuan [5] have
demonstrated that different geometrical and network topological properties of
protein structures, such as retention coefficient, betweenness-centrality, accessi-
ble surface area and PSI-BLAST profile, can effectively improve the prediction
accuracy of protein-RNA interactions.

Although computational prediction of RNA-binding residues is an established
field, the question is far from being well solved. The problem is complicated by
the massive diversity in protein recognition folds as well as in RNA conforma-
tional states [6]. Besides, the imbalanced problem [7] exists widely in protein-
RNA binding sites prediction because the number of interaction residues is usu-
ally much smaller than that of non binding sites in proteins. Improvement in
addressing imbalance problem should also enhance the performance of RNA-
binding sites prediction.

In this paper, we proposed a hybrid approach, referred as to XPredRBR,
to predict RNA binding residues in proteins. Our method differs from previous
methods by taking advantage of new features and powerful prediction model.
Specifically, two types of new features derived from residue interaction network
and solvent exposure are exploited to enrich the conventional sequence- and
structural features. The eXtreme Gradient Boosting algorithm (XGBoost) [8],
the winner of several machine learning competitions [9] in recent years, is used
to build the prediction model. We conducted performance evaluation on the
training dataset RBP170 and an independent test set RBP101. The empiri-
cal experiments show that our proposed method outperformed four classical
classifiers.

2 Results

2.1 Performance Evaluation Metrics

To make objective and comprehensive evaluation, we employ different per-
formance measures, including sensitivity (SEN), specificality (SPE), preci-
sion (PRE), accuracy (ACC), F1-Score and Matthews Correlation Coefficient
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(MCC) score, to assess the prediction results. As SEN and SPE can be used
to plot the receiver operating characteristic (ROC) curves and the area under
curve (AUC) is also a widely used performance measure, the AUC measure is
also used in our evaluation experiments. F1-Score is the harmonic mean of SEN
and SPE, and the best F1-Score point is usually chosen as the cutoff for SEN
and SPE in ROC curve. MCC value ranges from −1 (none prediction is correct)
to +1 (all predictions are correct).

2.2 Comparison with Classical Algorithms

To justify the performance of XPredRBR, we conducted comparison experiments
with three traditional classifiers, including Support Vector Machine (SVM) [10],
Random Forest (RF) [11], Adaboost [12]. Note that the tested methods utilize
all 204 features included in the training dataset (RBP170) and the performance
measures are obtained by 10-fold cross-validation. We list in Table 1 the experi-
mental results of five tested methods. It can be found that XPredRBR achieved
accuracy 0.861, sensitivity 0.872 and MCC 0.584. The results imply that our
proposed method significantly boost the performance in predicting RNA-binding
residues in proteins.

Table 1. Performance comparison of various prediction approaches using 10-fold cross-
validation on the training set.

Method ACC SEN SPE PRE F1-Score MCC AUC

Adaboost 0.811 0.730 0.825 0.406 0.514 0.431 0.852

SVM 0.820 0.802 0.838 0.419 0.535 0.476 0.865

Random forest 0.823 0.814 0.845 0.437 0.566 0.517 0.891

XPredRBR 0.861 0.872 0.858 0.512 0.619 0.584 0.941

2.3 Evaluation on the Independent Testing Set

We also evaluated the proposed XPredRBR on an independent test dataset. Due
to the imbalance between positive samples and negative samples, the receiver
operating characteristic (ROC) curve and AUC value are rather appropriate to
evaluate the overall performance. Figure 1 shows the ROC curves and AUC scores
of tested methods on the RBP101 dataset. XPredRBR, SVM, Adaboost and
Random Forest achieve AUC values 0.835, 0.801 and 0.776, 0.765, respectively.
The results show that XPredRBR improved AUC values by 2%–6%, compared
to three traditional classifiers.

2.4 Time Overhead

We further compared the time overhead of XPredRBR with other methods three
classical classifiers and our previous method PredRBR [13].
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Fig. 1. The ROC curves of XPredRBR and three traditional classifiers on the inde-
pendent test set sRBP101 dataset.

Fig. 2. Comparison of time overhead for training and test of XPredRBR and four
counterparts.

The computer configuration is Dell K40 with 2.0 GHZ CPU and 2G memory.
We recorded the running time for training on 46,638 samples add test on 32,577
samples of each method, as shown in Fig. 2. It can be seen that XPredRBR is ten
times faster than SVM, and 12 times faster than GBT. Although XPredRBR
runs at approximately equal speed with Adaboost or a little slower than random
forest, its performance is significantly superior than the latter two methods, as
shown in Fig. 1.

3 Discussion

Protein-RNA interactions are of great importance in many fundamental cellu-
lar processes. As experimental method is time- and cost-consuming for iden-
tify RNA-binding residues, quite a number of computational methods have been
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developed to predict the potential RBRs in proteins. However, the problem is far
from being well settled. An effective approach to improve the prediction accuracy
is develop new predictive features, in addition to conventional sequence-based
and structure-based features [14,15]. In this paper, we proposed two types of
new features derived from residue interaction network and solvent exposures.
Our empirical experiments on the RBP170 dataset have demonstrated that these
new features effectively improve the prediction performance.

Another technical way to promote the performance of computational meth-
ods is to make advantage of more powerful predictive models [16]. We adopted
the efficient and scalable variant of the Gradient Boosting eXtreme gradient
boosting algorithm (XGBoost) [8], to built the prediction model, as XGBoost
possess the ability to handle the highly diverse and complex features and pro-
duces comparable or even better predictive accuracy. Our performance compar-
ison showed that our method acquire remarkable improvement in both accuracy
and efficiency, compared to our previous methods [13] and other counterparts.

Furthermore, a few studies seek to identify Protein-nucleic acid (NA) inter-
actions by combining RNA- and DNA- binding residues into one problem [15],
which are always treated as different problems or trained with different datasets
within the same framework.

4 Materials and Methods

4.1 Datasets

Two data sets built in our previous studies [13], RBP170 and RBP101, are used
to compare the performance of XPredRBR and other methods. PISCES server
was used to create RBP170, by extracting protein sequences with ≤30% sequence
identity and at least resolution of 3.5 Å from all protein-RNA complexes in the
PDB [17] (May 2010 release). For inclusion in RBP170, each protein is required
to be longer than ≥40 amino acids and include more than 3 RNA-binding amino
acids. Meanwhile, the RNA molecule in the protein-RNA complex must be longer
than 5 nucleotides. Table 2 shows summary statistics of the two data sets.

Table 2. Number of the positive samples and negative samples of the two datasets.

RBP170 RBP101

Number of PDB files 124 90

Number of protein chains 170 101

Binding site 6 750 2 886

Non-binding site 39 888 29 691

Besides, BPP101 is an independent dataset that consists of 101 RNA inter-
acting chains extracted from 90 RNA-binding proteins. BPP101 was created
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Fig. 3. The flowchart of building training set and testing set. The primary RBPs
collection of 214 reviewed RBPs was obtained from Protein Data Bank (PDB).

by selecting the proteins with ≤30% sequence identity and 3.5 Åor higher X-
ray crystallography resolution from all protein-RNA complexes deposited in the
Protein Data Bank (PDB). Figure 3 shows the flowchart of the construction of
the training and testing datasets.

4.2 Features Extraction

In addition to the sequence and structural features used in our previous work [13],
two types of novel features are derived from residue interaction network infor-
mation and solvent exposures. In total, 204 features came from four categories
are included. The detailed procedures of the feature extraction are described as
below:

Residue Interaction Network Features. Two residues in a structure are
defined as physical interaction if the distance between their centers is within
6.5 Å. Residue interaction network (RIN) has been proved to be useful in quite
a few bioinformatics applications [16]. In this study, we use NAPS [18] to com-
pute in total 7 topological features that describe the local environment of the
target residues in the network, including betweenness, closeness, degree, cluster-
ing coefficient, eigenvector centrality, eccentricity and average nearest neighbor
degree.



XPredRBR: Accurate and Fast Prediction of RNA-Binding Residues 169

Solvent Exposure Features. Half-sphere exposure (HSE) is predictive in pro-
tein stability, conservation among different folds, computational speed and pre-
dictability. HSE separates a residue sphere into two half spheres: HSE-up cor-
responds to the upper sphere in the direction of the chain side of the residue,
while HSE-down points to the lower sphere in the direction of the opposite
side. HSEpred [19] is used to compute the features of HSEup, HSE-down and
CN (coordination number). Based on structure, we use hsexpo to calculate the
exposure features such as HSEAU (number of Cα atoms in the upper sphere),
HSEAD (number of Cα atoms in the lower sphere), HSEBU (the number of Cβ

atoms in the upper sphere), HSEBD (the number of Cβ atoms in the lower half
sphere), CN (coordination number).

4.3 eXtreme Gradient Boosting Algorithm

The eXtreme gradient boosting algorithm (XGBoost) [20] is an ensemble of
K Classification and Regression Trees (CART) T1(x, y) . . . ..TK(x, y), where
x = {x1, x2, . . . , xn} (i = 1..n) is the features in the training set associated with
a potential RNA-binding residue and its true class label y = {y1, y2, . . . , yn}
with yi ∈ {−1,+1} (i = 1..n) where “−1” represents non-binding site and “+1”
denotes RNA-binding residue. The purpose of the gradient tree boosting algo-
rithm is to build an effective classifier to predict protein-RNA binding residues.
Given that each CART assigns a real score to each leaves (outcome or target),
the prediction scores if individual CART are summed up to get the final score
and evaluated through K additive functions, as shown in Eq. (1):

ŷi =
K

∑

i=1

fk(xi), fk ∈ F (1)

where fk represents an independent tree structure with leaf scores and F is the
space of all CART. The regularized objective function to be optimized is as
below:

Obj(Θ) =
n

∑

i

l(yi, ŷi) +
K

∑

k

Ω(fk) (2)

The first term l(yi, ŷi) is a differentiable loss function, which measures the dif-
ference between the predicted ŷi and the true class label yi. The second is a
regularization term Ω(fk) which penalizes the complexity of the model so as to
avoid overfitting. It is formulated as Ω(f) = λT + 1

2λ
∑T

j=1 w2
j , where T and

wj are the number of leaves and the score of j-th leaf, respectively. γ and λ are
two constants used to leverage the degree of penalty. Apart from the use of reg-
ularization, shrinkage and descriptor subsampling are two additional techniques
used to prevent overfitting [20].

The training procedure in XGBoost is summarized as follows:

1. For each feature sort the numbers and scan the best splitting point (lowest
gain).

2. Choose the descriptor with the best splitting point that optimizes the training
objective.
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3. Continue splitting (as in (I) and (II)) until the specified maximum tree depth
is reached.

4. Assign prediction score to the leaves and prune all negative nodes (nodes with
negative gains) in a bottom-up order.

5. Repeat the above steps in an additive manner until the specified number of
rounds (trees K) is reached.

Since additive training is used, the prediction ŷi
(t) at step t is expressed as

ŷi
(t) =

K
∑

k=1

fk(xi) = ŷi
(t−1) + ft(xi), (3)

and thus Eq. (4) can be written as

Obj(Θ)(t) =
n

∑

i

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft). (4)

By taking the Taylors expansion of the loss function to the second order, we
have

Obj(Θ)(t) =
n

∑

i

[

l(yi, ŷi
(t−1)) + gift(xi) +

1
2
hift

2(xi)
]

+ Ω(ft) (5)

where gi = ∂ŷi
(t−1) l(yi, ŷi

(t−1)) and hi = ∂2
ŷi

(t−1) l(yi, ŷi
(t−1)) are respectively

first and second order terms of the loss function. A simplified objective function
without the constant term at step t is as follows:

Obj(Θ)(t) =
n

∑

i

[

gift(xi) +
1
2
hift

2(xi)
]

+ Ω(ft) (6)

The objective function can be written by expanding the regularization term as:

Obj(Θ)(t) =
n

∑

i

[

gift(xi) +
1
2
hift

2(xi)
]

+ γT +
1
2
λ

T
∑

j=1

w2
j

=
T

∑

j=1

⎡

⎣

⎛

⎝

∑

i∈Ij

gi

⎞

⎠ wj +
1
2

⎛

⎝

∑

i∈Ij

hi + λ

⎞

⎠ w2
j

⎤

⎦ + γT

(7)

where Ij = {i|q(xi) = j} is the instance set of leaf j, for a given structure q(x)
the optimal leaf weight, w∗

j , and the optimal objective function which measure
how good the structure is are given by Eqs. (8) and (9) respectively.

w∗
j = − Gi

Hi + λ
(8)

Obj∗ = −1
2

T
∑

j=1

G2
j

Hj + λ
+ λT (9)

where Gj =
∑

i∈Ij
gj , Hj =

∑

i∈Ij
hj .
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Equation (10) is used to score a leaf node during splitting. The first, second
and third term of the equation stands for the score on the left, right and the
original leaf respectively. Moreover, the final term, γ is regularization on the
additional leaf.

Gain =
1
2

[

G2
L

HL + λ
+

G2
R

HR + λ
+

(GL + GR)2

HL + HR + λ

]

− λ (10)

4.4 The XPredRBR Framework

Figure 4 shows the flowchart of the proposed method experiment. The individual
features are extracted from protein-RNA complexes, including sequence features,
structural neighborhood features, residue interaction network features and sol-
vent exposure features.

In our experiment, the number of non-binding residues is about six times
as much as the number of binding residues on the training dataset RBP170.
To deal with the imbalance problem, we use random under-sampling approach

Fig. 4. The flowchart of XPredRBR learning framework.
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to create new balanced dataset. Therefore, at each 10-fold cross-validation step,
nine subsets are merged as one and then random sub-sampling is run to generate
a balanced training dataset, and the remaining subset is used as test set to
evaluate the performance of the classifier trained by XGBoost algorithm. Finally,
we utilize the independent test dataset (RBP101) to compare the performance
of our proposed method with the previous studies.
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Abstract. The RNAmute and MultiRNAmute interactive java programs were
developed to predict deleterious point mutations in RNA sequences, which
intently cause a global conformational rearrangement of the secondary structure
of the functional RNA molecules and thereby disrupt their function. RNAmute
was designed to deal with only single point mutations in a brute force manner,
while the MultiRNAmute tool uses an efficient approach to deal with multiple
point mutations. The approach used in MultiRNAmute is based on the stabi-
lization of the suboptimal RNA folding solutions and/or destabilization of the
optimal MFE structure of the wild type RNA molecule. Both programs utilize
the Vienna RNA package to find the optimal and suboptimal (in case of Mul-
tiRNAmute) RNA secondary structures. The main limitation of both programs is
their ability to predict only substitution mutations and these programs were not
designed to work with deletion or insertion mutations. Herein we develop an
efficient approach, based on suboptimal folding solutions, to predict multiple
point mutations consisting of deletions, insertions and substitution mutations.
All RNAmute algorithms were validated on the TPP-riboswitch and some other
functional RNAs.

Keywords: Multiple point mutations � RNA folding predictions
Suboptimal structure � RNA dot plot

1 Introduction

The RNA deleterious mutation prediction problem is a sub-problem of the RNA
folding prediction problem, which is fundamental in RNA bioinformatics. Thus, all
tools for deleterious mutations analysis utilize methods developed for the RNA folding
problem. The most accurate methods for RNA folding prediction are energy mini-
mization methods that use dynamic programming, which are the mfold server [1],
RNAstructure [2] and the Vienna RNA package and server [3, 4]. First publicly
available methods for the analysis of deleterious mutations in RNAs were the
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RNAmute java tool [5] and a web server called RDMAS [6]. Both these methods
utilize the Vienna RNA package for RNA folding prediction and are able to analyze
only single point mutations in RNA sequences. To deal with multiple point deleterious
mutation, the MultiRNAmute [7] program was developed, which uses an efficient
method to find multiple point mutations using suboptimal folding solutions of RNA
sequence. A major limitation of the above described methods is that these methods deal
only with substitution mutations, but not with insertions or deletions. In this paper, we
suggest an extension to our efficient method MultiRNAmute to be able to analyze
multiple point deleterious mutations, including deletions, insertions and substitutions.

2 Method

The algorithm consists of four stages. These include the calculations of optimal and
suboptimal secondary structure solutions using RNAfold [4], filtering number of
suboptimal solutions to reduce computational complexity, finding the stems for optimal
and each suboptimal solution and finally gathering all destructive mutations as output.
General flowchart of the algorithm is shown in Fig. 1.

Fig. 1. General flowchart of the algorithm.
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2.1 Calculation of Optimal and Suboptimal Solutions

Given the input RNA sequence, the first stage of the algorithm is to find its optimal
secondary structure (using RNAfold [4]) and many suboptimal solutions (using
RNAsubopt [4]). Both optimal and suboptimal solutions are compactly stored in the
dot-bracket notation.

2.2 Filtering

The number of suboptimal solutions collected in previous stage may be huge, thus
some filtering is needed. The filtering stage consists of dropping suboptimal solutions
that are close to the optimal, unstable solutions that are unlikely to be stabilized by
mutations and also solutions that are similar to each other. All distance calculations are
based on the base pair distance or tree edit distance (determined by the user) between
dot-bracket representations of the secondary structures of two RNA sequences.

2.3 Stems Generation

The next step is to find all stems for the optimal solution and each one of the sub-
optimal solutions that passed the filtering stage. Each stem is represented by its start
and end positions in the secondary structure. Both start and end positions are repre-
sented by pair of indexes of nucleotides in RNA sequence, forming the first and the last
base-pair in the stem.

2.4 Mutations Analysis

The main idea of our efficient approach is to find deletions, insertions and substitution
mutations that stabilize one of the suboptimal folding solutions and/or destabilize the
optimal solution in such a way that the suboptimal solution with mutations will become
more stable than the optimal solution of the wild type.

Substitutions. Stabilizing mutations in such a case are substitutions that elongate
stems of the suboptimal solution, and destabilizing mutations are substitutions that
break some of the base-pairs in the middle of the stems of optimal solutions. The best
substitution mutations that we search for are mutations that elongate stems in the
suboptimal solutions and break stems in the optimal solutions at the same time.

Example of a Stabilizing Substitution: Given a wild type sequence: CCACCAAAA
GGCGG and its structure: “((.((….)).))”. The structure has two stems with stem loop
between the stems. The substitution “A3G” generates a new sequence CCGCCAAAA
GGCGG with more stable structure “(((((….)))))”, containing one stable stem. Another
mutation “C12U” will generate the same secondary structure.

Example of a Destabilizing Substitution: Given a wild type sequence: CGCGCAAAA
GCGCG and its structure: “(((((….)))))”. The structure has one long and stable stem.
The substitution “C3A” generates a new sequence CGAGCAAAAGCGCG with less
stable structure “((.((….)).))”, containing a stem loop between two short stems.

More examples of stabilizing and destabilizing substitutions are available in [7].
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Deletions. Stabilizing deletions are deletions of nucleotides between two stems in the
suboptimal solutions such that two stems become connected and form one single stem,
or deletions that make a stem-loop between two stems to be more stable. Destabilizing
deletions are deletions of nucleotides that shorten some stems in the optimal solutions
or generate stem loops inside some stems of the optimal solutions.

Example of a Stabilizing Deletion: Given a wild type sequence: CCCCAAAAGGCGG
and its structure: “((((….)).))”. The structure has two stems with a stem loop between
the stems. The deletion “C11” generates a new sequence CCCCAAAAGGGG with
more stable structure “((((….))))”, containing one stable stem.

Example of a Destabilizing Deletion: Given a wild type sequence: CCAC-
CAAAAGGUGG and its structure: “(((((….)))))”. The structure has one long and stable
stem. The deletion “A3” generates a new sequence CCCCAAAAGGUGG with less
stable structure “((((….)).))”, containing a stem loop between two short stems.

Insertions. Stabilizing insertions are insertions of nucleotides that elongate some of
the stems in the suboptimal solutions or connect two stems to one more stable stem.
Destabilizing insertions are insertions of nucleotides that shorten or break long stems to
two shorter stems in the optimal solutions.

Example of a Stabilizing Insertion: Given a wild type sequence: CCCCAAAA
GGCGG and its structure: “((((….)).))”. The insertion “3G” generates a new sequence
CCGCCAAAAGGCGG with more stable structure “(((((….)))))”, containing one long
stable stem instead of two shorter stems.

Example of a Destabilizing Insertion: Given a wild type sequence: CCCCAAAA
GGGG and its structure: “((((….))))”. The insertion “3G” generates a new sequence
CCGCCAAAAGGGG with less stable structure “((.((….))))”, containing a stem loop
between two short stems.

Finally, the algorithm uses different permutations of deletion, insertion and sub-
stitution mutations listed above to generate deleterious multiple point mutations. The
percentage of deletions, insertions and substitutions may be determined by the user,
thus lowering the number of possible multiple point mutations in the output. Also, it is
possible to limit the algorithm with maximal desired number of deleterious multiple
point mutations, and the algorithm will stop when it reaches this number. Before
accepting any of the multiple point mutations to the outputs, the algorithm checks if
this mutation indeed deleterious by using RNAfold [4] and calculation of distance
between the mutant MFE secondary structure and the wild type. If the limit for
maximum number of output mutations is specified, the algorithm will prefer the
mutations that at the same time stabilize the suboptimal solution and destabilize the
optimal one. The extension is biologically important as it offers many more possibilities
for the prediction of deleterious mutations that were not considered by neither RNA-
Mute [5] nor MultiRNAMute [7].
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Abstract. Colorectal cancer (CRC) is the second most death-leading cancer in
the world. The development of CRC is closely related to the hedgehog signaling
pathway. The abnormal activation of the pathway will initiate the binding of
Sonic Hedgehog (Shh) to Ptch1 that can trigger the growth of abnormal cells
that cause CRC. Traditional Chinese Medicine (TCM) compounds were used to
inhibit Shh through structure-based pharmacophore design. This research was
started by finding the pharmacophore feature of Shh, continued with docking
simulation of Shh with TCM compounds. The best three TCM compounds,
which are TCM-8941, TCM-28794 and TCM-32808, give the best ligand
interaction and have the lowest Gibbs free binding energy. They also have good
pharmacological properties that have been analyzed by using Toxtree v2.6.13,
SwissADME and admetSAR. For further research, these TCM compounds may
be used as drug candidates in colorectal cancer.

Keywords: Sonic hedgehog � Colorectal cancer
Traditional Chinese Medicine � Structure-Based pharmacophore design

1 Introduction

Colorectal cancer (CRC) is one of the most common cancer and become the second-
most cancer that leading cause of death in the world [1]. The development of CRC is
closely related to the hedgehog signaling pathway. In mammals, hedgehog ligands
include Sonic hedgehog (Shh), Indian hedgehog (Ihh) and Desert hedgehog (Dhh) [2].
Shh is widely overexpressed in colorectal cancer [3]. The binding of Shh ligand to
Ptch1 relieves the repression of Smoothened (Smo) protein, leading to the activation of
Gli transcription factors and increased transcription of Gli target genes, including Gli1
and Ptch1 [4]. Traditional Chinese Medicine (TCM) as one of the oldest traditional
medication from China has been adopted worldwide. Nowadays, TCM has increasingly
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become popular over the world including in cancer patients, because it has important
function in minimizing disability, protecting cancer patient against suffering from
complications, and helping patients to live well [5].

2 Research Methodology

2.1 Preparation of the Traditional Chinese Medicine and Shh Protein

There were 30,620 Traditional Chinese Medicine compounds which were collected
from TCM database (http://tcm.cmu.edu.tw/) [6]. Then, all TCM compounds were
further analyzed based on druglikeness and toxicity properties by using the
DataWarrior v4.6.1 software [7]. All ligands were optimized using MMFF94x (mod-
ified) force field with root mean square (RMS) gradient of 0.001. The optimized TCM
ligands were later stored in .mdb database format. This research used the 3D structure
of the Shh-Hhip complex taken from RCSB PDB (PDB ID: 3HO5) [8]. The protein
optimization process used Amber10:EHT forcefield in ‘Gas Phase’ solvation in the
potential setup. Protein optimization used LigX parameters, such as protonation of the
protein, energy minimization for geometry optimization, and using the RMS gradient
of 0.05 kcal/mol Å. Then, the optimized Shh protein was saved in .moe format.

2.2 Pharmacophore Generation

The starting point for generating pharmacophore was done by docking simulation of
Shh to robotnikinin as standard ligands. This simulation was begun with determining of
potential sites for ligand binding by using ‘SiteFinder’ feature in MOE 2014.09 soft-
ware [9]. The pharmacophore features can be determined by using Pharmacophore
Query Editor based on the binding of robotnikinin with Shh protein. Later, this
pharmacophore feature was saved in .ph4 file, which was used for docking simulation.

2.3 Pharmacophore-Based Molecular Docking Simulation

Pharmacophore-based molecular docking simulations were carried out using MOE
2014.09 with Amber10:EHT forcefield in ‘Gas Phase’ solvation. The molecular
docking simulation was conducted twice by using ‘Rigid Receptor’ and continued with
‘Induced Fit’ protocol. All docking simulations must be in pharmacophore editor and
placement.

2.4 Pharmacological Properties, ADME and Toxicity Prediction

The three best ligands that obtained through this simulation underwent computational
pharmacological properties screening by using Toxtree v2.6.13 to predict their
carcinogenicity/mutagenicity properties. Furthermore, SwissADME [10] and admet-
SAR [11] software were used as well to predict the bioavailability and pharmacokinetic
properties of the three best ligands obtained.
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3 Results and Discussions

3.1 Preparation of the Standard Ligand and the Traditional Chinese
Medicine

There were 30,620 compounds that obtained from TCM database. First, all TCM
compounds must be screened for druglikeness and toxicity properties by using
DataWarrior v4.6.1. Throughout this screening process, about 6,341 TCM compounds
were retrieved that will be further optimized. Three-dimensional structure of Shh
protein was obtained from Research Collaboratory for Structural Bioinformatics in the
Protein Data Bank (RCSB-PDB) with PDB ID: 3HO5. The structure from PDB data
were imported into MOE 2014.09 software. The protein optimization process was used
Amber10:EHT forcefield in gas phase solvation as potential setup. These parameters
were chosen because it is suitable for proteins and nucleic acids. Solvation model
which used for protein optimization was ‘Gas Phase’. Both ‘Fix Hydrogens’ and ‘Fix
Charges’ must be done in this optimization in order to add the missing hydrogen atoms
and to rectify the charge in the protein system, respectively. The last step of protein
optimization used LigX parameters. In this research, the strength value choosen was
100,000. The greater the strength the less atom will deviate from its initial coordinates.
Root mean square (RMS) gradient was using 0.05 kcal/mol.Å. The RMS value is a
standard choice which appropriates for the protein and related to the energy mini-
mization of the protein optimization.

3.2 Structure-Based Pharmacophore Generation

The pharmacophore generated by MOE 2014.09 using the protein structure obtained
from molecular docking simulation of Shh protein with robotnikinin as a standard. The
docking simulation was performed with Amber10:EHT force field in gas phase sol-
vation. The determination of Shh binding site was done by ‘Site Finder’ feature. By
using this feature, it was determined that the binding site of this protein consists of 13
amino acid residues and one cofactor (Glu53, His133, His134, Ser135, Ser138,
Leu139, His140, Asp147, Trp172, Tyr174, Glu176, His180, His182, Zn400). The
selected residues were used for molecular docking simulation with induced fit docking
protocols. Further, the structure-based pharmacophore models were generated using the
interaction of robotnikinin to Shh protein from previous molecular docking simulation.
Two acceptor (Acc) features were generated based on the interaction points available
from the active site. The first Acc feature was interacted to Zn400 and the second Acc
feature was interacted to Ser138. The pharmacophore generation and validation pro-
cesses were done by using robotnikinin as the standard. After two features generated
from ‘Pharmacophore Editor’, those were two Acc features, then continued by creating
excluded volumes around pocket atoms. The pharmacophore features in this research
were validated because robotnikinin molecules fit in all features generated. Then,
database searching was done with 6,341 TCM compounds and obtained 4,474 com-
pounds that hits to the pharmacophore features.
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3.3 Pharmacophore-Based Molecular Docking Simulation

There are 4,474 TCM compounds obtained from pharmacophore search as ligand
database. In the beginning of molecular docking simulation, these ligands are used for
virtual screening simulation. From this simulation, 2,722 ligands were picked out based
on the Gibbs free binding energy (ΔGbinding) value lower than robotnikinin as a stan-
dard. The most negative ΔGbinding result indicates that the ligand conformation is the
most stable. Furthermore, 2,722 ligands were used in molecular docking simulation by
using ‘Rigid Receptor’ and continued with ‘Induced Fit’ protocol with. This led three
best ligands that have the lowest ΔGbinding among others and have Root Mean Square
Deviation (RMSD) value that lower than 2. The docking simulation result of three best
ligands is shown in Table 1.

Besides Gibbs free binding energy and RMSD value, the molecular interaction of
Shh protein and ligand must be observed. This molecular interaction includes hydrogen
bond and Van der Waals interaction between amino acid residu in Shh protein with
each ligand. The molecular interaction between Shh protein and the three best ligands
of TCM, as well as the standard ligands, is shown in Table 2.

Table 1. ΔGbinding and RMSD value from the docking simulation

Ligand ΔGbinding (kcal/mol) RMSD

TCM-8941 −14.920 1.874
TCM-28794 −11.520 0.755
TCM-32808 −8.952 1.222
Robotnikinina −7.344 1.603
aStandard ligand

Table 2. Ligand interaction of Shh protein binding site with TCM compounds

Ligand Interaction Site

TCM-8941 Glu89, Lys87, Glu126, Thr125, His180, Ala179, His133, His134, Ser177, 
Asp147, Ser138, His140, Ser135, His182, Glu176, Zn400, Ca401

TCM-28794 
Arg155, Arg153, His180, Glu176, Trp172. Arg123, Tyr158, Thr149, 
Ala179, Lys87, Glu89, His133, His134, Thr125, Asp147, His140, Tyr174, 
His182, Ser135, Glu126, Ser138, Glu53, Leu139, Glu137, Zn400, Ca401

TCM-32808 Glu176, His180, Lys87, Glu89, His133, Ser138, His182, His140, Thr125, 
Asp147, Ser135, His134, Glu126, Zn400, Ca401

Red color indicates the active site of Shh protein contact. 
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3.4 Pharmacological Properties, ADME and Toxicity Prediction

In this study, all three ligands were going through some pharmacological and toxicity
prediction by using Toxtree for carcinogenicity and mutagenicity prediction; Swis-
sADME for pharmacokinetics prediction and admetSAR for toxicity prediction. All
these pharmacological prediction are shown in Tables 3, 4, and 5.

4 Conclusion

In this research, pharmacophore generated based on the structure-based approaches.
There are two pharmacophore features generated from the binding site of Shh protein
with robotnikinin by molecular docking simulation. All pharmacophore features were
fit into robotnikinin and used for database screening using TCM compounds. There are
4,474 TCM compounds as a result of hits from the pharmacophore database screening.

Table 3. Carcinogenicity and mutagenicity prediction by Toxtree

Parameters TCM-8941 TCM-28794 TCM-32808

Negative for genotoxic carcinogenicity No No No
Negative for nongenotoxic carcinogenicity No No No
Potential salmonella typhimurium TA100
mutagen based on QSAR

No No No

Potential carcinogen based on QSAR No No No

Table 4. Pharmacokinetics prediction by SwissADME

Ligand 
Pharmacokinetics 

1 2 3 4 5 6 7
TCM-8941 Low No No No No No No

TCM-28794 Low Yes No No No No No
TCM-32808 Low No No No No No No

1 = GI Absorption; 2 = P-gp substrate; 3 = CYP1A2 inhibitor; 4 = CYP2C19 inhibitor; 
5 = CYP2C9 inhibitor; 6 = CYP2D6 inhibitor; 7 = CYP3A4

Table 5. Toxicity prediction by admetSAR

Ligands 
Toxicity

AMES Toxicity Carcinogens Biodegradation Acute Oral Toxicity
TCM-8941 Non toxic Non Carc. Ready III
TCM-28794 Non toxic Non Carc. Not ready III
TCM-32808 Non toxic Non Carc. Ready III
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These compounds were further analyzed to select the best three ligands that can be used
to inhibit Shh protein through molecular docking simulation series. The docking
simulation were consist of rigid receptor docking protocols and induced fit docking
protocol. Finally, three best ligand obtained, there are TCM-8941, TCM-28794 and
TCM-32808, with the lowest Gibbs free binding energy and also have the best
molecular interaction with Shh protein. The three ligands, analyzed with Toxtree,
SwissADME, and admetSAR, have non toxic, non carcinogenic, non mutagenic, and
also have a good drug metabolism to human body.
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Abstract. The hallmark genetic abnormality of CML is named Philadelphia
chromosome. Philadelphia chromosome occurs as a result of recombination of
two genes, namely the cellular ABL gene on chromosome 9 and BCR gene
located on chromosome 22. The Philadelphia chromosomal translocation is
responsible for the ABL and BCR fusion. The ABL and BCR proteins play a
central role in the pathogenesis of CML. The malignant transformation by BCR-
ABL is critically dependent on its protein tyrosine kinase activity. It makes ABL
kinase is an attractive target for therapeutic intervention. In this research, about
653,214 leadlike compounds were obtained from MOE database. The com-
pounds were screened using Data Warrior v.4.6.1 and also docked to predict
their binding affinity to BCR-ABL1 tyrosine kinase protein using MOE 2014.09
software. Fragment-based drug design was applied to find a new drug candidate.
Finally, five new compounds were generated from this method. The compound
LUT-1 has the highest potential due to the low DG binding score, acceptable
RMSD score, and ADME-Tox result.

Keyword: CML � BCR-ABL1 � Docking � Fragment-based

1 Introduction

Chronic myeloid leukemia (CML) is associated with a cytogenetic abnormality which
is known as Philadelphia (Ph) chromosome [1]. Philadelphia chromosome firstly
described by Nowell and Hungerford in 1960. In 1973, Rowley reported that Ph
chromosome is generated from a balanced reciprocal translocation involving chro-
mosomes 9 and 22 [2]. The study of the t(9;22) translocation associated with CML led
to the discovery of BCR-ABL, the first gene of protein tyrosine kinase fusion more
than 25 years ago [3].

BCR-ABL tyrosine kinase is a proven target for drug development of CML disease
[4]. Targeting the tyrosine kinase activity of BCR-ABL exhibits a very promising
therapeutic strategy in CML [5]. The BCR-ABL kinase domain mutations may cause
resistance to tyrosine kinase inhibitors (TKIs) patients. Imatinib, nilotinib, and dasa-
tinib as TKIs are approved for the treatment of diagnosed CML patients. Nilotinib and
dasatinib as the second generation of TKIs were developed to overcome imatinib
resistance [6]. The third generation ABL1 TKI, ponatinib, is still vulnerable to certain
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BCR-ABL1 compound mutants. An experiment done by Pemovska et al. found that
axitinib effectively inhibited BCR-ABL1 (T315I) with a distinct binding conformation
[7]. Fragment-based drug discovery (FBDD) has become a tool for discovering drug
leads. The approach first identifies fragments, tiny molecules, which are about half size
of common drugs. The fragments are then linked together to generate drug leads [8].

2 Materials and Method

The 3D structure of the protein was downloaded from RCSB protein data bank with
PDB ID 3QRJ and only chain A was used for the next process [9]. The best protein
model result was optimized through protonation and minimization process in Molec-
ular Operating Environment (MOE) 2014.09 software [10]. The binding site of the
protein had been known through the original ligand binding site in the protein.

The leadlike compounds were collected from MOE database. All the compounds
were screened using OSIRIS Data Warrior v4.6.1with the rule of three parameters [11].
The parameters comprise several requirements such as (1) Molecular weight of the
compounds should be � 300 daltons. (2) The clogP score ranges from −0.5 until 3.
(3) Hydrogen bond acceptors should be � 3. (4) Hydrogen bond donors should be
� 3. (5) Topological polar surface area should be � 60 2. (6) Rotatable bond should
be � 3. (7) Druglikeness of the compounds should be in a positive score.

All the selected fragments were optimized using an MMFF94x force field. Standard
molecules such as imatinib, dasatinib, nilotinib, axitinib and DCC-2036 were also
prepared in the same steps with the fragments [9].

Molecular docking simulations of leadlike fragments were conducted using virtual
screening docking, rigid receptor docking with retaining pose of 30 and 100. These
simulations were performed using Triangle Matcher placement and London dG
rescoring methods with the Generalized Born Solvation Model/Weighted Surface Area
(GBVI/WSA) force field parameter.

In the linking fragment process, two fragments were linked using MOE 2014.09
software to generate the new ligands. The fragments that were used to link did not
overlap each other. The linkers were obtained from MOE linker database. After that,
molecular docking simulations were conducted. The simulations were conducted using
rigid receptor docking with retaining pose of 30 and 100 and induced fit docking with
retaining pose of 100. The linked compounds which had been docked from this step
were screened once again with Lipinski rule of five parameters [12].

All the linked compounds were tested with the rule of five parameters. These
parameters set requirements such as (1) Molecular weight of the compounds should be
� 500 daltons. (2) The clogP score ranges from −0.5 to 5.6. (3) Hydrogen bond
acceptors should be � 10. (4) Hydrogen bond donors should be � 5. The Veber rule
was also applied, such as (1) Topological polar surface area of the compounds should
be � 140 2. (2) Rotatable bond should be � 10. The druglikeness of the compounds
should be in a positive score [13]. Linked compounds which had nasty functions were
also eliminated.

At last, five best-linked compounds were selected to be analyzed for toxicity.
Toxtree v2.6.13 software was used to predict structural alert for genotoxic carcino-
genicity, structural alert for nongenotoxic carcinogenicity, potential S. typhimurium
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TA100 mutagen based on QSAR and potential carcinogen based on QSAR. VEGA
v1.1.4 software was used to predict the developmental/reproductive toxicity of the
compounds. The ADME analysis was done by using the SwissADME software. The
default parameters such as mutagenic, tumorigenic, reproductive effective and irritant
of the compounds were predicted using Data Warrior v4.6.1.

3 Results and Discussion

According to Chan et al., the key binding interaction of BCR-ABL1 tyrosine kinase
involved Lys271, Glu282, Glu286, Met290, Met318, His361, Arg362, Phe382,
Arg386, Tyr393 [9].

About 653,214 leadlike compounds were collected from MOE database. From the
rule of three screening step, 647,354 compounds were eliminated. Some 5,860 leadlike
fragments were retrieved to be used in molecular docking simulations. From virtual
screening docking, 5,075 fragments were eliminated based on the ΔG binding score of
standard molecules. After that, the 785 leadlike fragments underwent rigid receptor
docking simulations. Only 765 leadlike fragments were retrieved that could be used in
the linking fragments process. Linked compound molecular weights should be lower
than 500 daltons. A total of 57 linked compounds were developed.

There were 57 linked compounds which underwent molecular docking simulations
with retaining pose of 30 and 100. A total of 53 compounds were obtained from these
simulations. The further simulation was induced fit docking with retaining pose of 100.
Only 19 compounds were retrieved from this simulation. Finally, five best-linked com-
pounds were selected to be lead inhibitors for a BCR-ABL1 tyrosine kinase. All the five
compounds met the rule of five requirements. The linked compounds are shown below.

Note: Blue colors show the fragments while red colors show the linkers.

LUT-1 LAM-2

LSA-3 LHP-4

LCH-5
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The LUT-1, LAM-2, LSA-3, LHP-4, and LCH-5 compounds were analyzed for the
toxicities. The results are shown in the tables below (Table 1).

From the toxicity test, three compounds had a structural alert for genotoxic car-
cinogenicity. Those compounds were LAM-2, LSA-3, and LCH-5. After the toxicity
test, ADME test was conducted using the online SwissADME software (Table 2).

Table 1. Toxicity of linked compounds and standard molecules.

Name M T RE I DRT SAGC SANC PSTA PC

LUT-1 N N N N NT No No No No
LAM-2 N N N N NT Yes No No No
LSA-3 N N N N NT Yes No No No
LHP-4 N N N N NT No No No No
LCH-5 N N N N NT Yes No No No
DCC-2036 H N N N NT No No No No
Imatinib N N N N NT No No No No
Nilotinib N N N N NT No No No No
Axitinib N N N N NT No No No No
Dasatinib N N H H NT No No No No

Note:M = mutagenic, T = tumorigenic, RE = reproductive effec-
tive, I = irritant, DRT = developmental/reproductive toxicity, SA
GC = structural alert for genotoxic carcinogenicity, SANC = struc-
tural alert for nongenotoxic carcinogenicity, PSTA = potential S
typhimurium TA100 mutagen based on QSAR, PC = potential
carcinogen based on QSAR, N = none, H = high, NT = non
toxicant.

Table 2. ADME test result.

Name GI
abs.

BBB
perm.

P-gp
subs.

CYP1A2
inb.

CYP2C19
inb.

CYP2C9
inb.

CYP2O6
inb.

CYP3A4
inb.

LUT-1 High No Yes Yes No No No No
LAM-2 High Yes Yes No Yes No No No
LSA-3 High No Yes No No No No No
LHP-4 High Yes Yes Yes Yes No No No
LCH-5 High Yes Yes No Yes No No Yes
DCC-2036 Low No No No Yes Yes No Yes
Imatinib High No Yes Yes Yes No No No
Nilotinib Low No No No Yes Yes Yes Yes
Axitinib High No No Yes Yes Yes Yes Yes
Dasatinib High No No No No Yes No Yes

Note: GI abs. = gastrointestinal absorption, BBB perm. = blood-brain barrier permeation,
P-gp = permeability glycoprotein., CYP1A2 inb. = CYP1A2 inhibitor.
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Predictions of passive human gastrointestinal absorption (GI abs.), blood-brain
barrier permeation (BBB perm.) and skin permeation (skin perm.) indicate the human
body ability to absorb the compounds. The result showed that all of our novel com-
pounds predicted would be absorbed by human gastrointestinal highly. Compound
LAM-2, LHP-4, and LCH-5 had blood-brain barrier permeability. The less skin per-
meant was compound LUT-1 with log Kp −6.82 cm/s while the highest skin permeant
was compound LCH-5.

The knowledge about compounds being substrate or non-substrate of the perme-
ability glycoprotein (P-gp) is vital to appraise active efflux through biological mem-
branes [14]. Compounds which are substrates of permeability glycoprotein will be
transported to another side of the body. All of our novel compounds were predicted as
substrates of the permeability glycoprotein.

Also essential is the knowledge about molecules interaction with cytochromes P450
(CYP). There are five major isoforms of the enzyme namely CYP1A2, CYP2C19,
CYP2C9, CYP2D6, CYP3A4 [14]. Inhibition of these enzymes is leading to toxic or
other unwanted adverse effects. Compound LSA-3 has no propensity to inhibit cyto-
chromes P450 (CYP) while compound LUT-1 and LAM-2 tend to inhibit an isoform of
the enzyme. Furthermore, compound LHP-4 and LCH-5 inhibit two isoforms of the
enzyme.

The best compound was selected to become drug candidates. The compound was
LUT-1. There were 25 amino acid residues involved in the interaction between LUT-1
and protein 3QRJ.A. They were Leu 248, Gly 249,Tyr 253, Val 256, Ala 269, Lys 271,
Glu 286, Val 289, Met 290, Leu 298, Val 299, Ile 315, Glu 316, Phe 317, Met 318,
Gly 321, Asn 322, Leu 354, Phe 359, Ile 360, His 361, Leu 370, Ala 380, Asp 381, and
Phe 382. Four amino acid residues, which were Tyr253, Glu286, Met290, and Asp381,
interacted with LUT-1 through hydrogen bonds.

4 Conclusion

In this study, 653,214 leadlike compounds were collected from MOE database. They
were subjected to in silico method to find a potential inhibitor of BCR-ABL1 tyrosine
kinase. After the rule of three screening, first molecular docking simulations, linking
process, second molecular docking simulations, the rule of five screening and ADME-
Tox test, five compounds which were potential to become drug candidates for Leu-
kemia targeting BCR-ABL1 tyrosine kinase were obtained. Compound LUT-1 had the
highest potential due to the low ΔG binding score, acceptable RMSD score, and
ADME-Tox result. A further in silico experiment is urgently needed to validate their
stability in BCR-ABL1 tyrosine kinase protein through molecular dynamics
simulations.
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Abstract. k-mismatch shortest unique substring (SUS) queries have
been proposed and studied very recently due to its useful applications in
the subfield of computational biology. The k-mismatch SUS query over
one given position of a string asks for a shortest substring that covers
the given position and does not have a duplicate (within a Hamming
distance of k) elsewhere in the string. The challenge in SUS query is to
collectively find the SUS for every position of a massively long string in a
both time- and space-efficient manner. All known efforts and results have
been focused on improving and optimizing the time and space efficiency
of SUS computation in the sequential CPU model. In this work, we pro-
pose the first parallel approach for k-mismatch SUS queries, particularly
leveraging on the massive multi-threading architecture of the graphic
processing unit (GPU) technology. Experimental study performed on a
mid-end GPU using real-world biological data shows that our proposal
is consistently faster than the fastest CPU solution by a factor of at
least 6 for exact SUS queries (k = 0) and at least 23 for approximate
SUS queries over DNA sequences (k > 0), while maintaining nearly the
same peak memory usage as the most memory-efficient sequential CPU
proposal. Our work provides practitioners a faster tool for SUS finding
on massively long strings, and indeed provides the first practical tool for
approximate SUS computation, because the any-case quadratical time
cost of the state-of-the-art sequential CPU method for approximate SUS
queries does not scale well even to modestly long strings.

Keywords: String · Shortest unique substring · Parallel computing
GPU · CUDA

1 Introduction

k-mismatch shortest unique substring queries search for the shortest substring(s)
that covers a particular string position and does not have a duplicate (within
a Hamming distance of k) elsewhere in the string. It has a breadth of practi-
cal applications in subfield of computational biology. As discussed in [4], short-
est unique substrings are used to facilitate gene sequence comparison without
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having to align the sequences. In molecular biology, shortest unique substrings
found in DNA sequences can be used to aid the design of polymer chain reac-
tion (PCR) [9]. Shortest unique substrings can also be used to compare closely
related organisms and identify unique patterns. One of the primary ways that
researchers work to identify a specific gene’s function is to study the genomes of
closely related organisms. The SUS for specific segments and regions are distinct
from organism to organism. Similar organisms are compared for the subtle dif-
ferences that define the distinct features that make the organisms unique. When
comparing sequences, the shortest unique segments are sought. This compara-
tive study allows scientists to theorize the functions of specific genome regions,
potentially aiding research to find a specific gene that causes a disease.

When comparing distinct organisms, the usefulness of exact comparisons
is limited. If researchers compared organisms only using exact shortest unique
substrings, possible patterns could be omitted. Expanding the search area and
using the approximate SUS could lead to more interesting pattern discovery. The
notation of k-mismatch SUS provides a more general sense of unique substring
for biological sequences that allow mutations to be considered in the SUS search.

1.1 Prior Work

The work of Haubold et al. [4] uses suffix tree and a hashing technique to find
the exact SUS for any string in linear time, where their focus is to find the global
SUS of the entire string without considering the coverage of any particular string
positions. The SUS finding in their work is mainly used for research of comparing
genome segments without alignment. This research is written for biologists and
thus lacks rigorous algorithmic analysis.

Pei et al. [9] proposed and studied exact shortest unique substring queries
for specific string positions, where mismatches are not allowed. They proposed
a series of algorithms for finding exact shortest unique substrings using suffix
tree. For a string of size n, their work can answer any shortest unique substring
query covering a particular string position using O(n) time. Their work can also
be further extended to finding the SUS query answer for every of the n string
positions using a total of O(h · n) time, where h = O(n). Although they show
that in practice h is much smaller than n and can be treated as a constant, the
theoretical time complexity of their work is O(n2). The work by Pei et al. is
later improved by [7,11], two independent studies that reduced the worst-case
time complexity to be O(n), using suffix array rather than the more space-
consuming suffix tree data structure. Hu et al. [6] studied a generalized version
of SUS query that asks for a SUS covering a string position interval rather
than a single position. They presented algorithms that preprocess any string of
size n using O(n) time and space, and then can answer any position interval-
based SUS query in O(1) time. The idea of their work is to reduce the position
interval-based SUS query problem to the well-known range minimum queries
from computational geometry. Hon et al. [5] presented a new approach that
allows in-place computation of k-mismatch SUS—a new type of SUS queries
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they proposed. Their in-place algorithms still keep the O(n) time cost for exact
SUS queries (k = 0), while having to spend O(n2) time cost for approximate
SUS queries where mismatches are considered.

1.2 Our Contribution

All prior efforts on SUS computation have been focused on improving and opti-
mizing the computation in the sequential CPU model. In this work, we proposed
the first parallel method for SUS queries in the shared-memory model, particu-
larly leveraging on the massive multi-threading GPU technology. Our work offers
practitioners with a faster tool for SUS finding, which becomes essential when
massively long strings such as genomic sequences are involved.

– Experimental study performed on a mid-end GPU using real-world biology
data shows that our proposal is consistently faster than the fastest CPU
solution by a factor of at least 6 for exact SUS queries (k = 0), and at
least 23 for approximate SUS queries (k > 0) over DNA sequences, while
maintaining nearly the same peak memory usage as is needed by the most
memory-efficient sequential CPU method.

– The speedup of our proposal for approximate SUS queries even becomes
increasingly significant as the string size increases, due to a smaller time
cost growth rate of our proposal than the existing CPU method.

– Our proposal indeed provides the first useful tool in practice for approximate
SUS finding over long strings such as those from biology study. The state-of-
the-art sequential CPU solution for approximate SUS query has a quadratic
time complexity in any case and for any value k > 0, and can take months to
process a string whose size is only around 100 MB.

2 Problem Formulation

We consider a string S[1..n], where each character S[i] is drawn from an alpha-
bet Σ = {1, 2, . . . , σ}. We say the character S[i] occupies the string position
i. A substring S[i..j] of S represents S[i]S[i + 1] . . . S[j] if 1 ≤ i ≤ j ≤ n, and
is an empty string if i > j. We call i the start position and j the ending
position of S[i..j]. We say the substring S[i..j] covers the kth position of S,
if i ≤ k ≤ j. String S[i′..j′] is a proper substring of another string S[i..j] if
i ≤ i′ ≤ j′ ≤ j and j′ − i′ < j − i. The length of a non-empty substring S[i..j],
denoted as |S[i..j]|, is j − i + 1. We define the length of an empty string as zero.

The Hamming distance of two non-empty strings A and B of equal length,
denoted as H(A,B), is defined as the number of string positions where the
characters differ. A substring S[i..j] is k-mismatch unique, for some k ≥ 0, if
there does not exist another substring S[i′..j′], such that i′ �= i, j − i = j′ − i′,
and H(S[i..j], S[i′..j′]) ≤ k. A substring is a k-mismatch repeat if it is not
k-mismatch unique.
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Definition 1 (k-Mismatch SUS). For a particular string position p in S and
an integer k, 0 ≤ k ≤ n − 1, the k-mismatch shortest unique substring (SUS)
covering position p, denoted as SUSk

p, is a k-mismatch unique substring S[i..j],
such that (1) i ≤ p ≤ j, and (2) there does not exist another k-mismatch unique
substring S[i′..j′], such that i′ ≤ p ≤ j′ and j′ − i′ < j − i.

We call the case of k = 0 exact and the case of k > 0 approximate.

Problem (k-Mismatch SUS Finding on GPU): Given a string S[1..n] and
the value of k ≥ 0, design a time- and space-efficient algorithm for shared-
memory parallel processing on GPU to find SUSk

p, for every p = 1, 2, . . . , n. If
there are multiple choices for any SUSk

p, we pick the leftmost one1.

3 Preparation

The suffix array SA[1..n] of the string S is a permutation of {1, 2, . . . , n}, such
that for any i and j, 1 ≤ i < j ≤ n, we have S[SA[i]..n] < S[SA[j]..n]. That is,
SA[i] is the start position of the ith smallest suffix in the lexicographic order.
The rank array RA[1..n] is the inverse of the suffix array, i.e., RA[i] = j iff
SA[j] = i.

Definition 2. The k-mismatch longest common prefix (LCP) between two
strings A and B, k ≥ 0, denoted as LCPk(A,B), is the longest prefix of A
and B within Hamming distance k.

Definition 3 (k-Mismatch LSUS). For a particular string position p in S
and an integer k, 0 ≤ k ≤ n − 1, the k-mismatch left-bounded shortest unique
substring (LSUS) starting at position p, denoted as LSUSk

p, is a k-mismatch
unique substring S[p..j], such that either p = j or any proper prefix of S[p..j] is
not k-mismatch unique.

Lemma 1 ([5]). For any k and p: (1) LSUSk
1 always exists. (2) If LSUSk

p exists,
then LSUSk

i exists, for all i ≤ p. (3) If LSUSk
p does not exist, then none of

LSUSk
i exists, for all i ≥ p.

4 Parallel SUS Computation

In this section, we present our GPU solution for the k-mismatch SUS queries.
Figure 1 shows the high-level picture of the strategy in the computation for both
exact and approximate SUS. Our strategy makes full use of the GPU resource in
the sense that all computation involved happens on the GPU. Given the string
S, the only work for the CPU host is to ship the string S to the GPU memory
as the input for the rest of the computation.
1 Since any SUS may have multiple choices, it is our arbitrary decision to resolve the

ties by picking the leftmose choice. However, our solution can also be easily modified
to find any other choice.
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Fig. 1. Diagram of k-mismatch
SUS computation on GPU

Our GPU solution for k-mismatch SUS
queries takes two different routes for exact
SUS (k = 0) and approximate SUS (k > 0)
computation. Each route follows the same
strategy of computing LSUS (exact or approx-
imate) first, then use the result from the LSUS
computation to find SUS query answers. The
two routes differ at the part where LSUS is
computed. For the exact LSUS part, the com-
putation takes advantage of efficient string
data structures including suffix array, rank
array, and implicite LCP array. The use of
implicite LCP array is not picturized in Fig. 1
but will be explained with more details later in this section. For the approxi-
mate LSUS part, data structures such as suffix array and rank arrays are no
longer useful as their design does not allow mismatches. Thus, the computa-
tion of approximate LSUS needs different approaches that are parallelizable in
the GPU architecture. The two routes share the same algorithm for the step of
computing SUS using LSUS.

In the rest of this section, we will explain the algorithmic and design details
of each route, from the input string S to the answers for SUS queries. We start
with the following notation that is used frequently in the rest of this section.

Definition 4 (Subrange of String Positions). For some integers m, t, and
j, 1 ≤ m ≤ n, 1 ≤ t ≤ m, and 1 ≤ j ≤ t, let P(m, t, j) = {(j − 1)m/t + i | 1 ≤
i ≤ m/t}. Namely, if we cut the range of the m string positions {1, 2, . . . ,m}
into t equally sized subranges, where each subrange has size m/t, P(m, t, j) is
the collection of string positions that belong to the jth subrange2.

4.1 Exact LSUS

The first step in calculating exact SUS is the construction of the suffix array
SA[1..n] of the input string S. We use the Nvidia-endorsed recent break-
through [12] for GPU suffix array construction. In addition to a faster con-
struction, the GPU suffix array construction also helps avoid the extra latency
caused by the transmission of the massive suffix array from the CPU host to the
GPU memory.

After the suffix array is constructed and resides in the GPU global memory,
the rank array, which is the inverse of the suffix array, can be easily calculated:
RA[SA[i]] = i, 1 ≤ i ≤ n, in a parallel manner. In particular, if we hire t worker
threads on GPU, each worker thread j only needs to do these assignments:

For every i ∈ P(n, t, j) : RA[SA[i]] = i.

2 For simplicity and clearness of exposition, we neglect the details on the rounding of
floating point numbers that happens in division operations of integers. It is trivial
to handle such engineering details in implementation.
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Because the access to the suffix array within each worker thread is a continuous
subarray of the suffix array and the access is in a sequential manner, this parallel
construction of the rank array is cache efficient. After the suffix array and rank
array are constructed, we are ready to construct the exact LSUS array.

Definition 5

xi =
{∣∣ LCP0

(
S[i..n], S [SA [RA[i] − 1] ..n]

) ∣∣, if RA[i] > 1
0, otherwise

yi =
{∣∣ LCP0

(
S[i..n], S [SA [RA[i] + 1] ..n]

) ∣∣, if RA[i] < n
0, otherwise

That is, xi (yi, resp.) is the length of the exact LCP of S[i..n] and its lexi-
cographically preceding (succeeding, resp.) suffix, if the preceding (succeeding,
resp.) suffix exists. The next fact shows that LSUS 0

i can be obtained directly
provided with xi and yi, for any i.

Fact 1 ([5]). For every string position i, 1 ≤ i ≤ n:

LSUS 0
i =

{
S [i..i + max{xi, yi}] , if i + max{xi, yi} ≤ n
not existing, otherwise.

Using the idea behind the linear-time LCP array construction [8], both
sequences of xi and yi, i = 1, 2, . . . , n, can be computed sequentially in lin-
ear time [5], and thus so is the exact LSUS array construction in O(n) time. The
GPU method for exact LSUS computation is to hire t worker threads, and each
thread j works on the computation for xi, yi, and LSUS 0

i for every i ∈ P(n, t, j).
Within each thread j, only the computation of xmin(P(n,t,j)), ymin(P(n,t,j)), and
LSUS 0

min(P(n,t,j)) may take O(n) time, which however is usually a small number
for real-world data [10]. The computation of each of other x, y, and LSUS 0 only
takes O(1) time. Therefore, the total workload of this parallelized method for
exact LSUS computation on GPU remains to be O(n) time, practically.

4.2 Approximate LSUS

Definition 6 (k-Mismatch LLR). For a particular string position p in S and
an integer k, 0 ≤ k ≤ n − 1, the k-mismatch left-bounded longest repeat (LLR)
starting at position p, denoted as LLRk

p, is a k-mismatch repeat S[p..j], such
that either j = n or any S[p..q] is a k-mismatch unique, q > j.

Fact 2. If LLRk
p = S[p..j] and j < n, then LSUSk

p = S[p..j+1]. In other words,
any LSUSk

p is a one-character right extension of LLRk
p if that extension exists.

Our approach for approximate LSUS finding is comprised of n − 1 rounds of
computation, indexed as 1, 2, . . . , n − 1. We work through these n rounds one
after another, sequentially, and parallelism happens within each round. Each
round i finds LSUSk

n−i+1, via the finding of LLRk
n−i+1. By Fact 2, we know
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once LLRk
n−i+1 is found, LSUSk

n−i+1 is just the one-character right extension of
LLRk

n−i+1 if the right boundary of LLRk
n−i+1 is not n; otherwise, LSUSk

n−i+1

simply does not exist. The search of LLRk
n−i+1 is conducted by finding the k-

mismatch LCP between the suffix Sn−i+1 with each of all other suffixes of the
string S. And, LLRk

n−i+1 is the longest one among all these k-mismatch LCPs.
Next, we describe the details of one particular round i that finds LLRk

n−i+1 (and
thus LSUSk

n−i+1).

Round i: We first describe the sequential behavior of round i for clearness in con-
cept. Recall that the goal of round i is to find LLRn−i+1 (and thus LSUSk

n−i+1)
via the comparison between suffix Sn−i+1 and all other suffixes of string S. Note
that, when we work at round i, all the previous rounds 1, 2, . . . , i − 1 have been
finished. That means, the comparisons between suffix Sn−i+1 with all the suffixes
Sj , j > n−i+1, have been conducted and thus we do not have to redo them if the
results have been saved. Using this idea for the purpose of better performance,
we allocate an array R[1..n], where each element R[x] always saves the longest
one among all the k-mismatch LCPs between suffix Sx and any other suffix that
Sx has been compared with over the rounds of computation. In particular, we
want to maintain the following invariant by the time round i is finished:

1. Each array element R[x], 1 ≤ x ≤ n− i, has stored the longest one among all
the k-mismatch LCPs between between Sx and Sj , j ≥ n − i + 1.

2. Each array element R[x], x ≥ n − i + 1, has stored LLRk
x.

By using array R, each round i only needs to compare suffix Sn−i+1 with all
suffix Sj , j ≤ n − i.

Next, we describe the parallel implementation of round i on GPU. We equally
divide the work of comparing Sn−i+1 and all other suffixes Sj , j ≤ n − i, to t
worker threads. Each thread handles the work of (n − i)/t suffix comparisons.
Namely, each thread α, 1 ≤ α ≤ t, compares suffix Sn−i+1 with suffix Sx, for
every x ∈ P(n−i, t, α). Within a particular thread α, for every x ∈ P(n−i, t, α),
it always picks the longer one between R[x] and LCPk(Sn−i+1, Sx), and saves
the result back into R[x]. We also allocate an array L of size t. Each thread
α also keeps track of the longest one among all LCPs between Sn−i+1 and Sx,
over all x ∈ P(n − i, t, α), and save the result in L[α]. After all the t threads
are finished and synchronized, we use parallel reduction over the array L to find
LLRn−i+1 = max(R[n − i + 1],max{L[α] | 1 ≤ α ≤ t}) and save the result back
into R[n − i + 1].

Dynamic Resource Management in Different Rounds. The number of suffix com-
parisons changes from round to round. Each round i has n−i suffix comparisons.
Since the workload is not static, the algorithm dynamically decides how many
threads to launch each round. At the beginning of each round, there is a check to
determine if the kernel launch parameters will ensure optimal resource use, and
if not, t is adjusted. Due to page limit, we present the details of this engineering
effort in the full version of this paper.
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Launching Rounds via Dynamic Parallelism. For the approximate LSUS cal-
culation, there are n − 1 rounds of work for finding the approximate LLR. If
dynamic parallelism is not used, each round of work incurs one round of CPU-
GPU kernel launch and communication. For better efficiency, we thus hired the
dynamic parallelism in the approximate LSUS calculation as follows. The CPU
uses one thread to launch a single kernel on the GPU. The GPU thread handles
all kernel launches for all the rounds in the LLR computation. Once the parent
kernel is launched on the GPU, there is zero communication needed until all
rounds are finished. This significantly reduces the latency experienced over the
course of obtaining the approximate LSUS.

4.3 Parallel SUS Computation from LSUS

Now we discuss the GPU procedure for finding SUS from LSUS. The algorithm
accomplishing this step works for both exact and approximate SUS finding.

Definition 7 (k-Mismatch SLS). For a particular string position p in S and
an integer k, 0 ≤ k ≤ n − 1, we use SLSk

p to denote the shortest k-mismatch
LSUS covering position p.

Lemma 2 ([5]). For any k and p, SUSk
p is either SLSk

p or S[x..p], for some x,
such that x + |LSUSk

x| − 1 < p.

Lemma 2 says every SUSk
p is either the shortest k-mismatch LSUS that covers

position p or a right-extension (through position p) of a k-mismatch LSUS. In
the GPU method for finding k-mismatch SUS from k-mismatch LSUS, we hire
t worker threads, where each thread i is assigned with the task of computing
SUSk

p for every p ∈ P(n, t, i). When thread i computes a particular SUSk
p for

some p ∈ P(n, t, i), it walks from position p toward left, checking LSUSk
p toward

LSUSk
1 . The walk stops at a position, say z, such that LSUSk

z does not cover
position p or z = 1. By Lemma 2, we can assert that SUSk

p is the shortest one
among all LSUSes we have seen during the walk and the right-extension (through
position p) of LSUSk

z if LSUSk
z does not cover position p.

SUSk
p =

{
SLSk

p, if LSUSk
z covers position p.

The shorter one of SLSk
p and S[z..p], otherwise.

Because we simply ignore any non-existing LSUS during the walk, a practical
improvement to the performance of the walk can be as follows. Within each
thread i, before doing any walk, we first find: q = max{p | LSUSk

p exists and p ≤
max(P(n, t, i))}, i.e., q is the largest string position such that: (1) There is an
LSUS starting from that position. (2) It is on or before the right boundary of the
work area of thread i. We can easily find q by checking LSUSmax(P(n,t,i)) towards
the left until we meet q at which we observe the first existing LSUS. After that,
the walk within each thread i searching for SUSk

p, for each p ∈ P(n, t, i), only
needs to start from the string position min(p, q) toward the left.
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Fig. 2. Time cost of exact SUS compu-
tation on protein

Fig. 3. Time cost of exact SUS computa-
tion on DNA

5 Experimental Study

Our experiments were conducted on a MSI GT Series GT62VR Dominator Pro
laptop that has a Quad Core Intel i7 6700HQ CPU with 8 MB L3 Cache, 16 GB
DDR4 Main System Memory Running @ 2400 MHz, and a Nvidia GTX 1070
Mobile GPU with 8 GB Video Memory. The machine runs Microsoft Windows
10 64-bit Operating System. The CUDA C API was used for the implementation
of our GPU proposal3. The C implementation of IPSUS, which is currently the
fastest and most space-saving sequential solution for exact SUS computation
and is the only prior work on approximate SUS computation, was given by the
authors of IPSUS. The libdivsufsort8 library [1] was used for the sequential
suffix array construction on CPU, whereas CUDPP [3,12] was used for parallel
suffix array construction on GPU. The real-world protein and DNA sequences
from Pizza&Chili Corpus [2] were used as input strings in all experiments. Each
experiment was repeated ten times and the average of the results from the ten
repeats were taken as the performance of the relevant algorithm.

5.1 Experimental Results on Exact SUS

Time. (1) We observe that both IPSUS and our GPU proposal have a linear time
cost over string size, but our GPU proposal is consistently faster than IPSUS by
a factor of at least 6. More precisely, our GPU proposal has a speedup of 6.09x
and 6.72x for protein and DNA sequences, respectively. Figures 2 and 3 show the
curve of the time cost of IPSUS and our GPU proposals using protein and DNA
sequences of different sizes. (2) Recall that the implementations of both IPSUS
and our GPU proposal use other third-party code for suffix array construction. In
order to show the performance gain in the algorithmic part after the suffix array
construction, we compared the time cost of our GPU proposal against IPSUS on
the computation after the suffix array is constructed. Figures 2 and 3 also reports
the results on this comparison, which shows that our GPU proposal is faster than
IPSUS by a factor of 8.2 and 11.92 for protein and DNA sequences, respectively.
(3) It is important to observe the speedup gained by our GPU proposal for the

3 Our code: http://penguin.ewu.edu/∼bojianxu/publications.

http://penguin.ewu.edu/~bojianxu/publications
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Fig. 4. Peak memory usage of exact
SUS computation on both protein and
DNA

Fig. 5. Peak memory usage of exact SUS
computation on both protein and DNA
(excluding SA construction)

computation excluding suffix array construction, because roughly 50% of the
total computation time of IPSUS is spend on suffix array construction. Therefore,
in the case where the suffix array of the string is given, we can simply copy
the suffix array to the GPU memory and continue to finish the rest of the
computation with a good speedup overall (and a significant memory space saving
for GPU, which will be explained in the space cost comparison analysis next).

Space. Figure 4 shows the linear peak memory usage for the exact SUS computa-
tion observed in IPSUS and our GPU proposal. The space cost of each algorithm
stays the same regardless of string type (protein or DNA). While both proposals
show a linear space cost, our GPU proposal overall uses more memory space
by a factor of 7.8 in the worst case in our experiments. However, the major-
ity memory cost overhead in our GPU proposal is spent by CUDPP, the third
party GPU suffix array construction program. This claim is demonstrated by
Fig. 5, which shows that, after the suffix array construction, the memory usages
of IPSUS and our GPU proposal are nearly the same. This gives practitioners
a time and memory usage trade-off: If the suffix array is constructed in CPU
and then shipped to GPU, the memory space cost can be significantly reduced,
while a descend speedup is still maintained (see the previous time cost result
analysis).

5.2 Experimental Results on Approximate SUS

We performed our experiments on approximate SUS computation on string size
up to 200 KB, due to the intensive computation time cost by the algorithms.
We observe that experiments with string size up to 200 KB already serve well
enough to present the performance comparison between IPSUS and our GPU
proposal. In experiments, we set k ∈ {1, 5, 10, 15}, the number of mismatches
allowed in approximate SUS. In the implementation of our GPU proposal for
approximate SUS computation, we have used dynamic parallelism to avoid the
many CPU-GPU kernel launching and communication caused by the nature of
the algorithm.
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Fig. 6. Time cost of approx. SUS com-
putation on protein

Fig. 7. Time cost of approx. SUS compu-
tation on DNA

Fig. 8. Time cost of approximate SUS
computation on protein (GPU only)

Fig. 9. Time cost of approximate SUS
computation on DNA (GPU only)

Fig. 10. Peak memory usage of approxi-
mate SUS computation on both DNA and
protein

Time. (1) Figures 6 and 7 clearly show
that IPSUS has a quadratic time cost,
while our GPU solution has a super-
linear time cost but is much faster, for
both string types, for any string size,
and for any value of k. The speedup
for the GPU solution is 23.557x and
5.254x for DNA and protein sequences
of size 200KB, respectively. Different
speedup for DNA and protein is caused
by the fact that the average size of
SUS in protein is longer and thus needs
more comparisons in the GPU solu-
tion. (2) Figures 6 and 7 also show that, the longer the string is, the more
speedup our GPU solution attains, since the GPU solution’s time cost has a
smaller growth rate than the quadratic time cost of IPSUS. (3) The time cost
of IPSUS is irrelevant to the value of k (Figs. 6 and 7), where our GPU solu-
tion spend more computation time when the value of k increases (Figs. 8 and
9), because more comparisons are needed in GPU solution for the approximate
SUS.
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Space. Figure 10 shows the peak memory space cost for the approximate SUS
observed in IPSUS and the GPU solution. The IPSUS and GPU solution both
have space cost that is linear of string size. Our GPU solution use slightly more
space, due to the additional constants and small sized arrays used for the approx-
imate LSUS computation. It is consistent to the theoretical analysis that the
space costs of both CPU and GPU solutions are irrelevant to string type and
the value of k. It is worthing noting that our GPU proposal uses dynamic paral-
lelism, which incurs a constant amount of memory usage overhead. That memory
cost overhead is about 712 MB consistently, used by the GPU system for device
runtimes execution tracking and management that are involved in dynamic par-
allelism. We have also tried the GPU implementation implementation without
using dynamic parallelism. It turns out that the space cost of the GPU solution
is exactly the same as what have in Fig. 10, but the speedup attained by the
GPU proposal become much smaller—about 1.5x for protein and about 6x for
DNA sequences.
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Abstract. In cryo-electron microscopy, RELION has been proven to be
a powerful tool for high-resolution reconstruction and has quickly gained
its popularity. However, as the data processed in cryoEM is large and the
algorithm of RELION is computation-intensive, the refinement proce-
dure of RELION appears quite time-consuming and memory-demanding.
These two problems have become major bottlenecks for its usage. Even
though there have been efforts on paralleling RELION, the global mem-
ory size still may not meet its requirement. Also as by now there is no
automatic memory management system on GPU (Graphics Processing
Unit), the fragmentation will increase with iteration. Eventually, it would
crash the program. In our work, we designed a memory-efficient and sta-
bilizing management system to guarantee the robustness of our program
and the efficiency of GPU memory usage. To reduce the memory usage,
we developed a novel RELION 2.0 data structure. Also, we proposed a
weight calculation parallel algorithm to speedup the calculation. Exper-
iments show that the memory system can avoid memory fragmentation
and we can achieve better speedup ratio compared with RELION 2.0.

Keywords: cryoEM · RELION · CUDA · Performance tuning

1 Introduction

Single particle cryo-electron microscopy (CryoEM) uses images of randomly-
oriented particles to reconstruct 3D density map [1]. Over the past decades,
cryoEM is increasingly becoming a mainstream technology for studying the
architecture of biological macromolecules [2]. RELION (REgularised LIkelihood
OptimisatioN) [3,4] significantly increased possible resolution of reconstruc-
tion algorithm by adopting expectation maximization (EM) algorithm. By now,
many cryoEM structures were determined to a resolution better than 5Å using
RELION [2,5–7].
c© Springer International Publishing AG, part of Springer Nature 2018
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However, expectation maximization (EM) algorithms [8] need to integrate
over the hidden variables in the expectation step, which requires large amounts
of computing time [9] and memory. Taking the EM algorithm used in RELION
as example, calculating one dataset usually takes days of time. In 3D refine-
ment stage, the test data used in the tutorial of RELION [10] with 6,496 β-
galactosidase 128 * 128 particles. It costs more than 2 GB memory per process
and 40 CPU hours, even though this dataset is really small.

To accelerate RELION, we must accelerate the calculation of EM algorithm.
In RELION, the calculation of weights takes a major part of the processing
time. However, even though RELION 2.0 has been implemented on GPU, multi-
threads are launched. The calculation of weights still take up a large part of
calculation time. In this step, a lot of global memory accessing occurrs. To solve
this problem we developed a weight calculation parallel algorithm. By making
use of the shared memory on GPU, we can dramatically reduce the time of global
memory accessing thus shortening its processing time.

Like many other softwares used in cryoEM, in order to cope with the time-
consuming problem, RELION adopts parallel technology on Graphics Processor
Units (GPUs) to speedup the processing procedure [11]. However, the stabil-
ity and performance of GPU relies heavily on its hardware characteristics. For
memory-intensive applications like RELION, memory-related code may dramat-
ically influence the performance. Also there is not a sophisticated memory man-
agement system to handle the fragmentation problem. Fragmentation is gen-
erated during the randomly allocating and de-allocating operation. Fragments
divide the successive memory into several pieces of memory. When the program
try to allocate a large piece of memory, even though the total available memory
is sufficient, the allocation can still fall because of the fragmentation. However
this severe problem has not caught enough attention. By now, there still is
no stable memory management strategy introduced in RELION parallelization.
For example, we use NVIDIA K20c to process one dataset EMPIAR-10028 with
360 * 360 particle size, “Out of Memory” error occurs during later iterations.
Facing this condition, we developed a stabilizing memory manage system to
ensure the robustness of program, especially for large dataset. In this system,
we avoid fragmentation based on the characteristics of iterative methods. Also
our method can be applied to other iterative methods.

As the total memory consumption of RELION exceeds the memory of GPU.
Reducing memory consumption is of great importance. Weight array is the most
memory demanding data structure. We analysed the data structure of weight
array carefully and find out that we can reduce the memory requirements of
weight array by redesign its structure delicately.

In summarize, in this work, we designed a memory-efficient and stabilizing
management system to guarantee the robustness of our program and the effi-
ciency of GPU memory usage. Then to reduce the memory usage, we developed a
novel data structure. Also, we developed a weight calculation parallel algorithm
to speedup the calculation.
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Our paper is organized as follows: in Sect. 2, we introduce the related work; in
Sect. 3, we introduce our stabilizing management system; in Sect. 4 a memory-
efficient data structure is shown; in Sect. 5, we present the weight calculation
parallel algorithm. The results of experiment are presented in Sect. 6. After that
we conclude the paper.

2 Related Work

In this section we will introduce the basic algorithm flow of RELION and its
accelerating work.

RELION adopts a modified adaptive expectation maximization (EM) algo-
rithm based on the work of Tagare et al. [8]. Instead of assigning the best ori-
entation for each particle, RELION generates a probability distribution over all
orientations for each particle. We use Γ

(n)
iφ to indicate the posterior probability

of orientation assignment φ for the ith image in the nth iteration (i ∈ [0, I]). In
particular, the orientations φ ∈ [0, Φ] is in a five dimension domain, comprising
3 rotations and 2 translations, i.e. Φ = (rRot, rT ilt, rPsi, tX, tY ).

The expectation-maximization algorithm iteratively optimizes the structure
through a two-step procedure. The first step is “Expectation”, in this step,
computer-generated projections (here we also call them re-projections) of the
structure are compared with the real particle images, resulting in relative simi-
larity information about the relevant orientations of the images. The second step
is “Maximization”, the images are combined with the prior information into a
smooth, 3D reconstruction. Meanwhile, the power of the noise and the signal in
the data are updated.

In step “Expectation”, RELION implements a modified version of the adap-
tive expectation-maximization algorithm. It owns two times finer procedure. For
each particle image i, in the first pass (oversampling = 0), Γ

(n)
i is evaluated over

the entire domain using a relatively coarsely sampled grid. RELION selects the
sub-domain of all orientations φ corresponding to the highest values of Γ

(n)
iφ that

sum to 99.9% of the total probability mass on the coarse grid. Then, in the
second pass (oversampling = 1), Γ

(n)
i is evaluated only over the selected sub-

domain using a finer grid which owns 32 times more sampling points than the
coarse sampling grid [4].

Based on the analysis of GeRelion [12] and Relion 2.0 [11], the most time-
consuming part is the step “Expection”. And the most memory demanding data
structure is weight array Γ .

GeRelion [12] is a GPU-accelerated version of RELION 1.4. Based on the
high parallel ability of GPU, GeRelion adopts a four-level parallel model. Also
to reduce the memory consumption, the sparse array is compacted to continuous
vector and an aux vector was introduced to store the indexes of the weight array,
which also will cause memory consumption. When the weight array is not sparse,
this structure will take up more memory than original structure. Based on this
consideration, we developed a new data structure which uses less memory.
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RELION 2.0 [11] also accelerates the expectation-maximization algorithm
on GPU. To reduce the memory consumption, it used single precision instead
of double. Meanwhile, as the texture memory owns cache, RELION 2.0 stores
the re-projection image on texture memory to accelerate the memory accessing.
However, as the size of re-projection increase, one projection image will not
fit in the texture memory cache. This will introduce frequently data swap in
cache. The accelerating performance will be significantly weaken. Meanwhile,
the calculation of weight array takes up majority time of program, in which
accessing re-projection takes up a big part of the time. So we designed a different
accelerate strategy to speedup this part.

3 Stack-Based Stabilizing Management System

RELION involved a lot of internal variables to perform its calculation. For
many of these variables, their memory requirement may differ with sampling
and particles, which means these variables require frequently and repeatedly
allocation and de-allocation. Without memory management system on GPU,
repeatedly allocation and de-allocation may introduce memory fragmentations.
In later stage of iterations, these fragments can cause very serious consequence,
i.e. application crash.

As mentioned above, there is no suitable memory management system by
now. RELION 2.0 adopted linked list to collect memory fragments. The linked
list can merge adjacent fragments. But it still can not prevent the generating of
fragments.

Essentially EM algorithm is one of those iterative methods. Within each iter-
ation, there is a loop for processing each particle. When processing one particle,
there are variables allocating and de-allocating during the calculation for each
orientation. So the lifetime of different variables can be classified into four types,
global scope, iteration scope, during processing one particle (job scope) and dur-
ing processing one orientation. As the lifetime is quite regular, we can control
them using characteristic. The corresponding operation is shown Fig. 1. At the
beginning of the whole program, we first allocate variables with global scope.
While at the beginning of each iteration, we allocate memory for variables of
iteration scope. Then, we allocate variable used in each job of processing one
particle. After one job completed, the variables of job scope are released. At the
end of one iteration, the variables of iteration scope are released. And at the end
of program, variables of global scope are released. As the variables allocated last
will alway be freed first. Based on this rule, we can build a stack based memory
management system thoroughly to avoid memory fragments.

4 Memory-Efficient Data Structure

As mentioned above, the memory requirements of weight array are quite large,
especially for the fine sampling pass. And, as mentioned, the global memory of
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Fig. 1. Memory consumption on host.

GPU is quite limited. So more efficient data structure to store the weight array
is of great importance.

By analyzing the data structure of weight array carefully, we find out that we
can reduce the memory requirements of weight array by redesigning its struc-
ture delicately. In the first pass, all possible assignments are calculated. But
before the second pass, RELION selects assignments with high probability. In
the second pass, only assignments with high probability will be considered with
fine sampling steps. Because the adoption of fine sampling, the size of weight
array in the second pass is 32 times (the multiplication of 8 orientations and 4
translations) as large as that in the first pass. While because the selecting step,
most of the assignments are neglected, only a few elements in weight array are
non-zero.

Obviously, the storage of neglected assignments wastes a lot of memory. In
our compressed structure, we can only store the non-zero value and their corre-
sponding subscript. We observed that the assignments in first pass correspond
to 32 assignments in the second pass. The weight of these 32 assignments must
be stored in weight array successively. This trait can be used to reduce the size
of aux index array. Instead of storing the column subscript of each non-zero
element, only the first subscript of the 32 assignments will be stored.

The conversion of compressed data structure and original structure is shown
in Fig. 2. The upper side of this figure shows the original data structure. The
upper left array indicates the weight array, the upper right array is its corre-
sponding array, this array indicates which assignments should be used in the
second pass.

The bottom side of this figure shows our compressed data structure. The
array in the middle stores all the non-zero elements. Below this array, we show the
subscript. For each group of successive 32 elements, we only store the subscript
of the first assignment. The array at the bottom stores the information about the
number of non-zero elements for each particle. For convenient data accessing, we
use the start point of each particle to show this information. For each particle, the
number elements is N , the non-zero elements in matrix is n. For each particle,
size original, size conpressed and size newshows the number of bits cost in
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Fig. 2. Memory-efficient data structure.

original version of RELION, general compressed method and our method. We can
easily know, when n > 0.67N , the memory consumption of general compressed
method will exceed original version. However the memory consumption of our
method won’t exceed original version unless n > 0.98N .

size original = N ∗ (32 ∗ 8)
size conpressed = n ∗ (32 ∗ (8 + 4))
size new = n ∗ (32 ∗ 8 + 4)

(4.1)

5 Weight Calculation Parallel Algorithm

In step Get Squared Differences (GSD), it calculates the actual squared differ-
ence term of the gaussian probability function. Its main part can be written in
Formula 5.1:

Γ
(n)
iφ =

1
2

N∑

k=1

((Re(pΦk) − Re(Xik))2 + (Im(pΦk) − Im(Xik))2) (5.1)

where pφk is the kth component of the projection at orientation assignment φ.
Xik is the kth component of the particle at the ith image.

Different from later iterations, in the first iteration, this step calculates the
normalized cross-correlation coefficient. Although the formulas of these two con-
ditions are different. Their computational complexity is of the same order. As for
each particle, we need to calculate the weight for each assignment. This means
each projection image should compare with each particle image, accordingly. Its
calculation can be formalized as following:
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⎡

⎢⎢⎣

Γi1φ1 Γi1φ2 ... Γi1φm

Γi2φ1 Γi2φ2 ... Γi2φm

...
Γikφ1 Γikφ2 ... Γikφm

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
k=1

fi1,φ1,k ...
N∑

k=1

fi1,φm,k

N∑
k=1

fi2,φ1,k ...
N∑

k=1

fi2,φm,k

...
N∑

k=1

fiu,φ1,k ...
N∑

k=1

fiu,φm,k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

n1∑
k=1

fi1,φ1,k ...
n1∑

k=1

fi1,φm,k

n1∑
k=1

fi2,φ1,k ...
n1∑

k=1

fi2,φm,k

...
n1∑

k=1

fiu,φ1,k ...
n1∑

k=1

fiu,φm,k

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+ ... +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
k=nc

fi1,φ1,k ...
N∑

k=nc

fi1,φm,k

N∑
k=nc

fi2,φ1,k ...
N∑

k=nc

fi2,φm,k

...
N∑

k=nc

fiu,φ1,k ...
N∑

k=nc

fiu,φm,k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎣
Γi1φ1(1, n1) ... Γi1φm

(1, n1)
Γi2φ1(1, n1) ... Γi2φm

(1, n1)
Γikφ1(1, n1) ... Γikφm

(1, n1)

⎤

⎦ + ... +

⎡

⎣
Γi1φ1(nc, N) ... Γi1φm

(nc, N)
Γi2φ1(nc, N) ... Γi2φm

(nc, N)
Γikφ1(nc, N) ... Γikφm

(nc, N)

⎤

⎦

(5.2)

In formula 5.2, the first line shows the common way of calculation. The
calculation of weight Γiφ is independent of Γi′φ′ . Considering the structure of
GPU card, accessing time to global memory can be 100 times greater than
shared memory [13]. So reducing the global memory accessing can dramatically

improve the time performance of applications. Here Γi1φ1(n, n′) =
n′∑

k=n

fi1,φ1,k

means the partial results of Γi1φ1 . The second and third lines of formula 5.2
show that we can calculate part of weights first and sum these intermediate
results to get the final results. Generally speaking, instead of calculating Γiφ

independently, we calculate a group of Γiφ(n, n′) together. First, threads load a
portion of projection pφ(n, n′) and particle Xi(n, n′) into shared memory, where
we can access them much more quickly. Then, the partial results of Γi1φ1 can be
calculated using shared memory.

As shared memory are available for all threads of one block, we can reuse the
data and reduce the data accessing time. Take a 32 * 32 block as an example,
the global memory accessing time can be reduced by 32 times. As step “Get
Squared Differences (GSD)” take majority time in expectation step, reducing
global memory accessing can efficiently reduce the processing time of this step.

6 Experiments

6.1 Environment and Test Dataset

Generally, we adopts two dataset to perform our experiment. First, we use the
dataset used in the tutorial of RELION, owning 6,496 β-galactosidase particles
(EMPIAR-10017 [10]). The size of each particle is 128 * 128. Its experiments are
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carried out on a machine running the Ubuntu operating system 64-bit with an
Intel(R) Xeon(R) CPU E5630 at 2.53 GHz. The GPU card is NVIDIA Tesla
K20c, with 2496 stream processors and 5 GB global memory.

Another dataset is “plasmodium falciparum 80S ribosome bound to the anti-
protozoan drug emetine”, which owns 100,000 particles with pixels size 360 * 360
(EMPIAR-10028 [2,5]). Its experiments are carried out on a machine running
the Ubuntu operating system 14.04, 64-bit with an Intel(R) Xeon(R) CPU E5-
2680 v3 at 2.50 GHz. The GPU card is NVIDIA GeForce GTX Titan X, with
3072 stream processers and 12288 MB global memory. In our test, we use 5 MPI
processes (one thread for each process), each slave process owns one GPU.

6.2 Performance of Stack-Based Memory Management System

In this section, we show the detailed working process of stack-based memory
management system. To do so, we record the variation of used memory when
running the dataset EMPIAR-10028. As shown in Fig. 3, the top pointer indi-
cates that memory before this pointer is used memory. Memory with larger
address is continuous free memory. In this method, the fragment are avoided. In
this figure, we can see that the memory operation indeed shows the characteristic
of iterative algorithm. But as marked with red rectangle, the memory operation
owns randomness. Also the randomness doesn’t influent the working process of
stack-based memory.

Fig. 3. The top pointer of used memory (Color figure online)

6.3 Memory Consumption Optimization

We modified the data structure of array Γ (n), which saves a lot of memory.
For dataset EMPIAR-10017, we show the memory consumption of double pre-
cision version. As discussed in RELION 2.0 the single precision version doesn’t
adversely affect results. We still keeps the double version for users demanding
more accurate calculation. As the size of single-precision floating-point number
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is half of double ones, the memory of single precision is just half of the double
version.

We record the max memory consumption of array Γ (n) for one particle to
show the performance. As shown in Fig. 4. The most memory demanding array
appears in the middle of the iterations. In these iterations, our structure signif-
icantly reduce the memory requirements. The upper bound of the size of array
Γ (n) is mainly the sampling number in first pass in both float mode and dou-
ble mode. The memory consumption of array Γ (n) is generally 1/32 of the old
version.

Fig. 4. Maximum memory consumption of array “Γ (n)” for one particle for β-
galactosidase in double mode.

6.4 The Speedup Ratio of Weight Calculation Parallel Algorithm

In this section, we test the performance of our weight calculation parallel algo-
rithm. Different from the texture memory, the performance of our method is
not restricted by the total size of re-projection. We compared our method with
RELION 2.0, both methods are GPU parallelized. The speedup ratio shows the
improvement by our method. We tested the methods on dataset EMPIAR-10028.
In Fig. 5, the horizontal axis indicates the iteration number. As the size and num-
ber of re-projection image may vary during iterating. We use different iterations
to indicate different processing size of data. As we can see, the performance of
two methods is similar. However, in iterations of larger dataset, the advantage
of reusing shared memory shows up.



214 J. Zhang et al.

5 10 15 20 25 30 35

Iteration Number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
pe

ed
up

 R
at

io

Fig. 5. Speedup ratio of weight calculation parallel algorithm.

6.5 The General Speedup Ratio

After analyzing the speedup ratio, we summarize the total speedup ratio for each
iteration. As our program is based on the MPI version of RELION, we don’t
modify the master-slave MPI parallel model. In this experiment, we compare
the CUDA+MPI version with MPI version using the same number of processes
and threads. Different from the MPI version, each slave process owns one GPU.
From Fig. 6, we can see that the double precision version can reach 80x speedup
ratio for dataset EMPIAR-10028 in the most time-consuming iterations.

Fig. 6. The general speedup ratio.

To compare the performance of RELION 2.0 and our method, we used dataset
EMPIAR-10017 with single precision version. We compare them with the origi-
nal MPI version and record the speedup ratio. Figure 7 shows the speedup ratio
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respectively. Generally speaking, our version owns better speedup ratio. Espe-
cially in the most time consuming iteration, our version can reach 105x speedup
ratio, while the speedup ratio of RELION 2.0 is 96x.

Fig. 7. Compare the performance of RELION 2.0 with our method.

7 Conclusion

In this work, we proposed stack-based memory management system, which can
ensure the program to proceed without “Out of Memory” error and enable it to
process dataset with large particle size. Then we introduced our compressed data
structure which will dramatically reduce the memory consumption. After that,
we developed the weight calculation parallel algorithm using shared memory.
Its performance won’t be affected by the size of re-projection. The results of
experiment show that the memory system can avoid memory fragments. And we
have achieved better speedup ratio compared to RELION 2.0.
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Abstract. Cryo-electron microscopy is a technique that is capable of
producing high quality three-dimensional density maps of proteins. The
identification of secondary structures from within these proteins is impor-
tant to help understand the protein’s overall structure and function. One
of the more commonly found secondary structures is the β barrel. In pre-
vious papers, we presented a novel approach utilizing a genetic algorithm
and ray tracing to identify and isolate β barrels from the density maps.
However, one key limitation of that approach was the computational
cost of ray tracing portion. In this paper, we applied parallel processing
and graphical processing units (GPU) to increase the performance of the
ray tracing. We tested this method on both experimental and simulated
cryo-EM density maps. The results suggest that we were successful in
speeding up our method significantly using parallelization and graphical
processing units.

1 Introduction

Cryo-electron (Cryo-EM) microscopy is a laboratory technique used to produce
three-dimensional electron density maps of large molecules, such as proteins [1].
Proteins are the fundamental building blocks of life on earth and the study of
protein structures is vital to many fields. Cryo-EM works by freezing a molecule
to extremely low temperatures to reduce the amount of movement from that
molecule. Afterwards, using an electron microscope, a large number of two-
dimensional images are taken of the frozen molecule. These two-dimensional
images are then used to reconstruct a three-dimensional electron density map of
the molecule being studied (See Fig. 1).

Cryo-EM technology has improved in recent years to atomic resolutions,
where individual atoms within the larger molecules can be easily distinguished
from each other [21]. However, there still exists a large number of cryo-EM den-
sity maps produced over the years that were resolved at medium resolutions
(5–10 Å) [9]. One of the key advantages of these medium resolution density
maps, over the more modern high resolution maps, is that secondary structures
can still be identified [4].
c© Springer International Publishing AG, part of Springer Nature 2018
F. Zhang et al. (Eds.): ISBRA 2018, LNBI 10847, pp. 217–226, 2018.
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Fig. 1. Examples of cryo-electron (cryo-EM) microscopy density maps at medium res-
olutions. Highlighted in red within the density maps are β barrels. (Color figure online)

Secondary structures are substructures within proteins that combine with one
another to help form the overall shape and structure of the protein. There exists
two types of secondary structures: α-helices and β sheets. Due to the regular
nature of α-helices, there have been many successful attempts in developing
methods to automatically detect α-helices directly from the cryo-EM density
map [4,5,15,20]. However, because β sheets are capable of folding and twisting
into numerous different geometries and shapes, it is far more difficult to achieve
automatic detection for β sheets. Some methods are capable of automatically
detecting some β sheets structures [16–19]. One such β sheet structure is the β
barrel, which is commonly found in membrane and transport proteins.

In [11,12], we proposed a method to isolate and detect β barrels from medium
resolution cryo-EM density maps. The method used a combination of a genetic
algorithm and ray tracing to detect and isolate β barrel density from was shown
to be capable of detecting both experimental and simulated density. One of the
key limitations of that proposed method was that the ray tracing portion was
relatively computationally expensive. This limited the number of rays that could
be casted and we felt that this limited how much detail the ray tracing method
could capture. In order to speed up the ray tracing, parallelizing the ray tracing
portion of the method represents a potential solution to this limitation.

In this paper, we explored a solution to this by parallelizing the ray tracing
algorithm using accelerators such as graphical processing units (GPU). Addition-
ally, we explored the effect of number rays casted on the accuracy of β barrel
detection.

2 Method

The method described in this paper is separated into two main parts: a genetic
algorithm component and a ray tracing component (see Fig. 2). The genetic
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algorithm component attempts to fit a model cylinder to the general β barrel
region. The ray tracing component uses the fitted cylinder as a base to isolate
and detect the true shape of the β barrel.

Fig. 2. Flowchart of the major steps in this method.

2.1 Genetic Algorithm

The purpose of the genetic algorithm is to search the entire density map to
identify the general β barrel region and to fit a cylinder to the region as a basic
approximation.

Preprocessing. Before the genetic algorithm is initiated, unnecessary voxels
are filtered out from the cryo-EM density maps beforehand. First, Chimera [13]
is used to select a density threshold to filter out background voxels. Second,
using Gorgon [3] and SSETracer [20], α-helix voxels are removed.

The removal of density in the previous preprocessing step tends to leave
behind small isolated clusters of non-β barrel voxels. The density map is then
divided into clusters, defined as a group of voxels that is at least 2.0 Å away
from any other cluster. Any cluster with a voxel count below a manually defined
threshold is removed. Additionally, this clustering allows for the ability to detect
multiple β barrels in the same density map. The following steps are applied to
each remaining cluster.

Genetic Algorithm. The genetic algorithm is an optimization algorithm that
is well suited to searching across large search spaces that attempts to mimic how
natural selection works [8]. The genetic algorithm searches the entire density
map to fit an ideal cylinder to the general β barrel region. Afterwards, a second
algorithm is used to accurately detect and isolate the β barrel from the density
map.

The candidate used in this genetic algorithm is an open-ended ideal cylin-
der. The cylinder is represented by two points, that represent the center of the
two circles at the ends, and the radius of the cylinder. An initial population of
candidates is randomly generated in order to seed the first generation for the
genetic algorithm.
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Fitness Score. The fitness equation represents the equation that we wish to
optimize using the genetic algorithm. In this method, the fitness equation, F, is
given by Eq. 1.

F =
N∑

i

(di)2

N
+

M∑

j

(dj)3 (1)

The first portion of the fitness equation represents the mean-squared error.
N is the total number of voxels and di is the distance between the voxel and
the cylinder. The second portion of the fitness equation represents a penalty for
when voxels are located inside the cylinder. M represents the number of voxels
located inside the cylinder and dj is the distance between the voxel inside the
cylinder and the surface of the cylinder.

Crossover. The crossover function is used to create the next generation of candi-
dates. In this method, crossover is done by selecting the top 50% of the current
candidates as parents for the next generation and the bottom 50% are discarded.
The parents are then randomly paired up with one another to produce two chil-
dren candidates. Each children candidate randomly selects one cylinder endpoint
from each parent and its radius is set to the average of the radius of its parents.

Mutation. The mutation function is used to add some randomness to the genetic
algorithm to help avoid it become trapped in local minima. Every child candidate
has a chance that one of its seven parameters may be modified by a mutation
factor. This method uses a non-uniform mutation strategy [21] to control the
size of the mutation factor.

2.2 Ray Tracing

Ray tracing is a computer graphics technique that attempts to mimic light rays
[7]. This method uses the ray tracing algorithm to find the β barrel from the rest
of the density map. Once the genetic algorithm has fit a cylinder to the β barrel
region, the cylinder is used as the reference point from where the ray tracing is
done.

Ray Tracing Algorithm. The cylinder is first split up into evenly divided
circular slices stacked on top of each other. Within each slice, rays are shot out
from the center of the slice out towards the edges of the circle. Because voxels
are infinitesimally small, the casted ray is given a thickness of 0.5 Å. The closest
voxel to the cylinder slice that each ray intersects with is then found. This is
added to the set of solution β barrel voxels for each set. If the ray intersected
with no voxels, then it is assumed that the ray was shot into empty space and
no voxel is added to the solution set.

The number of slices that the cylinder is divided into and the rays shot
from each slice is defined by the user. The higher the number of slices and rays
used results in more rays casted in general, resulting in potentially more detail
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captured from the β barrel surrounding the cylinder. However, increasing the
number of slices and rays increases the computational cost of the ray tracing
and can greatly increase the time needed to finish.

GPU Accelerated Ray Tracing. One of the key issues with ray tracing is
its relative high computational costs. In [11,12], the ray tracing algorithm was
done on a single CPU thread and this resulted in it taking up the vast majority
of the runtime. Because of this, ways to speed up the ray tracing algorithm
is necessary. One such way is to parallelize the ray tracing algorithm and use
graphical processing units to help accelerate the computations [14].

The ray tracing algorithm naturally tends itself to parallelization, as it con-
sists of the tracing of numerous independent rays on the same data set [6].
The algorithm does not have any of the classic problems that prevent effective
parallelization, such as data dependency between parallelized elements. In this
method, each ray is designed to be executed in parallel. This should drastically
reduce the total amount of time necessary to complete the ray tracing.

However, the average CPU only has two to four cores and only two to four
rays can be run in parallel. Due to Amdahl’s Law [2], the absolute theoretical
maximum speedup from parallelizing the ray tracing algorithm on average CPUs
is limited to two to four times faster, and far slower in real conditions. Acceler-
ators, like GPUs, allow for the simultaneous execution of numerous threads at
a given time. To take advantage of accelerators, the ray tracing algorithm was
modified such that every ray trace would be executed on its own GPU thread
to maximize parallelism.

In order to utilize the graphical processing units, the C++ Accelerated Mas-
sive Parallelism (AMP) library was used. Previous code written by Adedayo
Odesile was used as the basis for this1.

Extending and Shrinking the Cylinder. For each slice, the ratio of rays
that intersected with a voxel over the total number of rays casted is calculated.
Starting from the slices at the edges, the ratio is checked to make sure that it is
over a threshold. For this paper, a ratio of 0.6 was used for all tests. Slice and its
voxels are removed if this threshold is not met and the next slice is then checked.
This continues until a slice that reaches the threshold is reached. If all slices are
removed, then this method would suggest that no β barrel exists. However, if
the ratios at the initial edges match the threshold, then an additional slice is
then added to that end. This continues until an added slice does not meet the
threshold ratio.

Removal of Outlier Voxels. Due to the irregular shape of β barrels, there
are occasionally gaps in the β barrel walls. Because this method assumes an
ideal cylinder shape, these gaps allow for some of the rays casted to shoot past
the β barrel and intersect with non β barrel voxels that should be blocked by
1 https://github.com/oddyloops/RayTracer.

https://github.com/oddyloops/RayTracer
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the β barrel walls. This method removes these voxels by automatically removing
voxels that are two standard deviations away from the mean distance between
the detected β barrel voxels and the fitted cylinder.

Results Metrics

Sensitivity. Sensitivity (Sens) indicates the ratio of β barrel α carbons that
were correctly detected by this method. An α carbon is deemed to be detected
if there are voxels labeled as β barrel voxels within 2.0 Å from it. Sensitivity is
calculated using Eq. 2.

Sensitivity =
# of β barrel α carbons detected
total # of β barrel α carbons

(2)

Specificity. Specificity (Spec) indicates the ratio of non-β barrel α carbons the
were correctly detected by this method. An α carbon is deemed to be detected
if there are no voxels labels as β-barrel voxels within 2.0 Å from it. Specificity is
calculated using Eq. 3.

Specificity = 1 − # of non-β barrel α carbons detected
total # of non-β barrel α carbons

(3)

Execution Time. Execution time (t) is used to measure performance between
the GPU-accelerated method and the original non-parallelized methods. The
execution time is defined as starting from when the method starts and stops
when ray tracing is complete.

3 Results

Simulated Data. Eleven simulated density maps were tested using the original
non-parallelized method and the new GPU-accelerated method. These density
maps were generated using the base Protein Data Bank (PDB) file and the
EMAN2 program pdb2mrc at a resolution of 9 Å and 1 Å per pixel. In Fig. 3, an
example of the results is shown.

Fig. 3. Example of results using protein 1AJZ. (Left) Simulated density map of protein
1AJZ at 9 Å. (Center) Detected β barrel surface (in red) superimposed onto the density
map (Right) Detected β barrel surface (in red) superimposed over the true PDB
structure. (Color figure online)
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Table 1. Accuracy and execution time (in seconds) on simulated density maps

PDB ID Voxels Original GPU1 GPU2 GPU3

Sens Spec t(sec) Sens Spec t(sec) Sens Spec t(sec) Sens Spec t(sec)

1AJZ A 20242 1.00 0.80 137 1.00 0.80 36 1.00 0.79 46 1.00 0.80 36

1AL7 A 26189 0.97 0.82 184 0.98 0.84 37 1.00 0.83 36 1.00 0.83 37

1JB3 A 11808 0.97 0.79 68 0.98 0.79 20 0.98 0.75 23 0.98 0.74 22

1NNX A 6938 1.00 0.88 49 1.00 0.85 20 1.00 0.81 24 1.00 0.85 21

1TIM A 16999 0.99 0.75 127 0.98 0.75 29 0.99 0.75 31 0.99 0.76 29

1Y0Y A 25434 0.97 0.73 196 0.97 0.72 56 0.99 0.72 60 0.99 0.74 57

2DYI A 12879 0.93 0.82 83 0.93 0.82 35 0.92 0.83 35 0.93 0.80 35

2F01 A 8963 0.95 0.88 65 0.95 0.85 26 0.95 0.91 27 0.96 0.92 26

2VDF A 16051 0.92 0.89 104 0.92 0.91 24 0.92 0.86 23 0.92 0.84 23

3GP6 A 12820 0.93 0.86 75 0.93 0.86 37 0.94 0.84 38 0.93 0.86 38

3ULJ A 6849 0.93 0.87 41 0.93 0.88 18 0.95 0.83 18 0.95 0.80 18

Average 0.96 0.83 102.64 0.96 0.82 30.73 0.97 0.81 32.18 0.97 0.81 31.09

In Table 1, the results using both methods are shown. Original represents the
results generated using the non-parallelized method, dividing the cylinder into
40 slices, and casting a ray every 1◦ around the slice. GPU1 represents results
generated using the GPU accelerated method, dividing the cylinders into 40
slices, and casting a ray every 1◦. GPU2 also uses the GPU accelerated method
and dividing the cylinders into 40 slices, but instead casts a ray every 0.1◦.
Lastly, GPU3 uses the GPU accelerated method and casts a ray every 1◦, but
uses 80 slices instead.

As shown in Table 1, the difference between the original method and the GPU
accelerated method is significant in terms of performance. By using the GPU,
the ray tracing algorithm averages approximately three times faster compared to
the original version of the method. This improvement is even more pronounced
for density maps with very high voxel counts, such as 1AL7, as this improvement
increases to nearly five times faster than the original.

However, the results also demonstrate that when the number of rays and
slices is increased, the accuracy is not generally affected. In terms of sensitivity,
although increasing the number of rays and slices suggests a slight increase in
sensitivity. In terms of specificity, increasing the number of rays and slices seems
to show a minor decrease in specificity. However, in both cases, the differences
are less than a percent. These results suggest that the default number of rays
and slices that we used in the original method is sufficient to accurately detect
and isolate the β barrel and the number of rays and slices was not a limiting
factor in previous results.

Experimental Data. Eight experimental density maps were tested using both
the original non-parallelized method and the GPU-accelerated method. Unlike
the simulated density maps, however, these were obtained from the EM Data
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Table 2. Accuracy and execution time (in seconds) on experimental density maps

EMDB ID(Res) Voxels Original GPU1 GPU2 GPU3

Sens Spec t(sec) Sens Spec t(sec) Sens Spec t(sec) Sens Spec t(sec)

1657 (5.8 Å) 3720 0.73 0.78 7 0.73 0.78 2 0.73 0.77 2 0.73 0.73 2

1780 (5.5 Å) 4570 0.82 0.76 11 0.82 0.76 3 0.86 0.74 3 0.86 0.74 3

1849 L (8.25 Å) 2592 0.81 0.91 4 0.81 0.91 1.07 0.81 0.91 1.12 0.84 0.91 1.09

1849 W (8.25 Å) 2509 0.93 0.81 4 0.93 0.81 1.03 0.93 0.78 1.05 0.90 0.80 1.07

2169 (8.1 Å) 1800 0.85 0.73 4 0.85 0.73 1.10 0.85 0.72 1.03 0.89 0.75 1.03

2605 (5.5 Å) 867 0.93 0.93 2 0.96 0.93 1.08 0.93 0.93 1.13 0.89 0.93 1.12

5036 (6.7 Å) 3524 0.83 0.83 8 0.83 0.83 3 0.83 0.85 3 0.83 0.83 3

6396 (6.4 Å) 3051 0.93 0.74 6 0.93 0.73 2 0.97 0.77 2 0.67 0.78 2

Average 0.85 0.81 5.75 0.86 0.81 1.77 0.86 0.81 1.78 0.86 0.81 1.78

Bank (EMDB). Like with the simulated results, the same four ray/slice config-
urations were used to test the experimental density maps.

Table 2 demonstrates similar results to the simulated density maps. The
GPU-accelerated method generally reduced the computation time by around
three times compared to the original method. Like with the simulated den-
sity maps, the sensitivity generally increased slightly and specificity decreased
slightly as rays and slices increased. However, the differences in sensitivity and
specificity between the configurations averaged less than a percent difference.

Testing Environment. All tests were performed using a desktop computer
with an Intel i7-4790k @ 4.0 GHz processor, 16 GB of RAM, and a nVidia
GeForce 980TI.

4 Conclusion

In this paper, one way to improve the previous method of β barrel detection
was to focus on the performance of the ray tracing. The previous ray tracing
algorithm was parallelized and graphics processing units were used to accelerate
the calculations. The results suggest that utilizing GPUs to accelerate the ray
tracing algorithm generally resulted in a significant decrease in computation
time. Additionally, the results suggest that the number of rays and cylinder
slices used by the previous method was sufficient to accurately detect β barrels
from density maps. However, this should be further explored to confirm this and
to potentially find an optimal number of rays/slices.

Future Work. Future work should focus on working on improving the genetic
algorithm portion of this method. The performance of the ray tracing algorithm
no longer seems to be the major bottleneck of the method and work should be
done on improving the preprocessing step of the genetic algorithm. Addition-
ally, the use of other machine learning techniques, such as convolutional neural
networks [10], should be explored.
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Abstract. A fast genome sequence aligner is proposed in this paper. The
alignment algorithm is based on minimal perfect hash, reducing the memory
occupation and improving memory access efficiency. Several strategies and
techniques are adopted to improve the speed and accuracy of the aligner.
Realized with a field programmable gate array (FPGA) based heterogeneous
computing platform, the aligner achieves similar accuracy compared with
BWA-MEM while the speed is around 10 times faster than BWA-MEM.

Keywords: FPGA � Minimal perfect hash � Fast alignment � Smith-Waterman

1 Introduction

As the cost of next generation sequencing (NGS) technology continues to decrease,
high throughput NGS technology has made its way into a variety of fields, from plant
biology to human infectious disease, cancer research, and clinical medicine. With the
advent of newest Illumina NovaSeq sequencer, the sequencing throughput has soared
to 6T base pairs every two days [1], making the analysis of massive gene data a
bottleneck.

The sequence alignment is a very key and time-consuming step of genetic data
analysis. BWA [2] is an aligner which has been widely accepted for NGS data
alignment. To further improve the speed and accuracy, researchers have kept studying
new algorithms and optimal realization [3, 4]. Among these researches, aligners real-
ized with FPGA offer very good speed and accuracy performance. An exact matcher
based on minimal perfect hash realized with FPGA is reported in [3]. However, the
reference index build and algorithm design is quite simple, limiting its application only
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in sequence exact match. A FPGA based aligner DRAGEN is reported in [4], which is
the fastest sequence aligner reported by now. However, very few technical detail of the
aligner is reported.

This paper proposes a fast sequence aligner based on minimal perfect hash algo-
rithm, reducing the memory occupation and improving memory access efficiency.
Several strategies and techniques are adopted to improve the speed and accuracy of the
aligner. Realized with a FPGA based heterogeneous computing platform,the aligner
achieves similar accuracy compared with BWA-MEM while the speed is around 10
times faster than BWA-MEM.

2 Algorithm and Realization

The aligner basically employs the classical seed-and-extend strategy. The
seed-and-extend method was pioneered by BLAST, which builds hash indexes of small
sub-strings (seeds) of the reference genome and checks seeds from the reads against it
for exact matches. It then uses a local extension process at each seed location to find
good alignments. BWA-MEM also employs seed-and-extend strategy, while its ref-
erence index is Burrows-Wheeler transform (BWT) based, not hash-based.

Compared with BWT-based reference index, hash-based index needs less memory
access but requires more memory occupation. If the memory space is enough,
hash-based aligner should achieve better speed performance theoretically. However,
memory space is not infinite in most computing systems. Moreover, hash collision and
reference duplication greatly influence the speed performance of hash-based aligner.
Thus proper organization of reference index is crucial to hash-based aligner.
A hash-based reference genome index method is introduced in this paper to properly
organize reference index to 16 GB memory.

A. Minimal Perfect Hash Introduction

A perfect hash function for a set S is a hash function that maps distinct elements in
S to a set of integers, with no collisions. In mathematical terms, it is an injective
function. A minimal perfect hash function is a perfect hash function that maps n keys to
n consecutive integers. A more formal way of expressing this is: Let j and k be
elements of some finite set S. F is a minimal perfect hash function if and only if
F(j) = F(k) implies j = k (injectivity) and there exists an integer X such that the range
of F is from X to X + |S| − 1. Figure 1 shows the definition of perfect hash and
minimal perfect hash.

Minimal perfect hash algorithm eliminates hash collision and builds compact ref-
erence index with no vacant memory space. These advantages greatly reduce com-
putation complexity and alleviate space limitation, accelerating hash table look up and
saving memory space.

B. Aligner Strategies and Techniques

This paper will not discuss the minimal perfect hash construction as details can be
found in both [5, 6]. With a set of known keys, we can construct a minimal perfect hash
using a generalized method called hash and displace. In the aligner, Jenkin’s Spooky
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Hash [7] was chosen because it is both fast in software and easy to implement in
hardware due to its reliance on only shifts, adds, and XOR operations. And the seed
input of Jenkin’s Spooky Hash function facilitates minimal perfect hash realization.
Figure 2 illustrates the basic idea of reference index organization. The reference gen-
ome index is composed of 37 K-mer tables, ranging from 19 bp to 127 bp with a
interval of 3 bp. Each K-mer table consists of an intermediate table, an address table
and a duplicate table. The intermediate table is employed to realize minimal perfect
hash [3], and this table stores an information bit indicating whether the table value is an
offset or rehash seed. If a K-mer is unique in the reference, the address table records
the K-mer address in the reference and K-mer occurrence number in the reference.
If a K-mer is not unique in the reference, the duplicate table records all the locations
of the K-mer, while the address table records the access address of duplicate table
and the K-mer occurrence number in the reference. Meanwhile, the address table also
stores 2 bytes reference sequence at each location as verification bytes. When looking
up a K-mer, the aligner compares K-mer with reference sequence at the candidate
location, greatly reducing false hash hits. Noting that each K-mer table only records the
K-mers whose occurrence number is smaller than 16. If the occurrence number is not
smaller than 16, we record the occurrence number as −1 and keep extending the K-mer
in the reference by 3 bp until the occurrence number smaller than 16. The maximum
length of K-mer is 127 bp in the aligner. If a 127 bp K-mer occurs more than 15 times
in the reference, the aligner drops this K-mer. By sampling both forward and reverse
complemented human reference genome by every 4 bp, we successfully construct the
37 K-mer tables within 15 GB. Considering another 1 GB for human reference gen-
ome, total reference index size is smaller than 16 GB. The pseudocode of K-mer
looking up in is shown in Fig. 3.

Fig. 1. (a) Perfect hash (b) Minimal perfect hash
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C. Aligner Realization

When aligning a read, the aligner extracts overlapping K-mers from a read starting
at each base pair. These K-mers are mapped by DRAM hash table queries, each to zero
or more reference positions. Matches along similar alignment diagonals are grouped
into seed chains, which are sent to a voting module to conservatively filter out low
quality seed chains. Each seed chain is then extended by Smith-Waterman gapped local
alignment, permitting mismatch, clipping and indels. Tracing from the maximum score,
a back-trace module generates alignment score and CIGAR string. All gapped local
alignment results are compared to obtain best and second-best scores to generate the
estimated mapping quality. All aligner modules, including K-mer mapping, seed chain
filtering, Smith-Waterman local aligner and back-trace, are realized with FPGA and
designed to be highly parallel and pipelined.

Fig. 2. Basic idea of reference index organization

Fig. 3. K-mer looking up pseudocode
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3 Results

We choose several dataset including whole exome sequencing (WES) and
whole-genome sequencing (WGS) data to test the aligner speed and accuracy under
various situation. In the test pipeline, the proposed aligner maps raw FASTQ to gen-
erate BAM files. BWA-MEM is employed to map these FASTQ files to generate BAM
files at the same time. Subsequently, these BAM files are processed by GATK pipeline
to call variants. The VCF files are compared to check calling consistency. All these
tests are run on a server with 1 Xillinx FPGA card, 256 GB memory, 1 TB SSD hard
disk and dual 10-core 2.3 GHz Intel Xeon E5 CPU supporting 40 logical threads.
Figure 4 shows the run time of BWA-MEM and the proposed aligner. Table 1 illus-
trates the mapping rate and calling consistency of proposed aligner and BWA-MEM. It
is shown that the FPGA aligner achieves similar accuracy compared with BWA-MEM
while the aligner speed is around 10 times faster than BWA-MEM.

Fig. 4. Run time of the proposed aligner and BWA-MEM

Table 1. Mapping rate and calling consistency

Test data BWA-MEM mapping
rate

Proposed aligner
mapping rate

GATK calling
consistency

ERR034544 99.54% 99.54% 98.9%
SRR098359 93.36% 94.42% 97.7%
SRR702068 99.64% 99.67% 99.1%
SRR742200 99.12% 99.07% 98.5%
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Abstract. Cryo-electron microscopy (Cryo-EM) and cryo-electron tomography
(cryo-ET) produce 3-D density maps of biological molecules at a range of
resolution levels. Pattern recognition tools are important in distinguishing bio-
logical components from volumetric maps with the available resolutions. One of
the most distinct characters in density maps at medium (5–10 Å) resolution is
the visibility of protein secondary structures. Although computational methods
have been developed, the accurate detection of helices and b-strands from cryo-
EM density maps is still an active research area. We have developed a tool for
protein secondary structure detection and evaluation of medium resolution 3-D
cryo-EM density maps that combines three computational methods (SSETracer,
StrandTwister, and AxisComparison). The program was integrated in UCSF
Chimera, a popular visualization software in the cryo-EM community. In related
work, we have developed BundleTrac, a computational method to trace fila-
ments in a bundle from lower resolution cryo-ET density maps. It has been
applied to actin filament tracing in stereocilia with good accuracy and can be
potentially added as a tool in Chimera.

Keywords: Pattern recognition � Cryo-electron microscopy � Density map
Helix � Beta-strands � Filament � Stereocilia

1 Introduction

The use of a transmission electron microscope to determine the 3-D volumetric image of
biological molecules is a powerful approach to study the structure and function of
macromolecules, recognized by the 2017 Nobel Prize in Chemistry [1]. Many large
molecular machines that had been difficult to visualize in detail can now been resolved to
near-atomic resolution [2]. While the atomic structure of some macromolecules can now
be solved directly, the number of available density maps at medium resolution (5–10 Å)
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has also increased steadily as seen in Electron Microscopy Data Bank (EMDB) [3].
Due to the quality of the density map at such a resolution range, it is challenging to detect
structure information with high accuracy; hence, it is challenging to obtain accurate
atomic models that correspond to the medium-resolution density.

While atomic-level details may not be directly available, secondary structure ele-
ments such as helices and b-sheets are often visible in cryo-EM density maps at
medium resolution. In general, a helix appears approximately as a cylinder and a b-
sheet appears as a thin layer of density. Various computational methods have been
developed to detect helices and b-sheets using their shape patterns [4–9], including
HelixTracer, SSEhunter, SSELearner, SSETracer and VolTrac [5, 6, 9–11]. There are
very few tools available to detect a-helices from medium-resolution density maps, and
none to model b-strands in the density region of a b-sheet. In order to develop an
accurate method for secondary structure modeling, it is essential to evaluate the
accuracy of the detection. In this paper, we introduce a tool for the detection of a-
helices, b-sheets, b-strands, and quantitative evaluation of accuracy.

2 Integrated Interface for Protein Secondary Structure
Detection and Evaluation in UCSF Chimera

UCSF Chimera is a comprehensive visualization and analysis software widely used in
the cryo-EM community for volumetric data and atomic the structure of molecules
[12]. Chimera uses Python at the highest layer to organize individual functional
components. The universal Python framework makes it convenient to package user-
developed methods into Chimera. We have integrated three computational methods
with Chimera so that they utilize existing capabilities without reinventing them
(Fig. 1). SSETracer is a method for the detection of the locations of helices (redlines in
Fig. 2A and b-sheets (blue regions in Fig. 2B) from a 3D density map at a medium
resolution [5]. StrandTwister is a method to predict the location of b-strands (lines in
Fig. 2C) from an isolated density region of a b-sheet [13]. AxisComparison is a method
that uses an idea of arc-length association to evaluate the accuracy of detected helices
and b-strands [14]. It compares the detected traces of helices and b-strands (red and
black lines in Fig. 2D) with the axes derived from the atomic structure (green lines in
Fig. 2D). The cross and longitudinal discrepancies are quantified for each line trace.

Integration of the three secondary structure analysis methods in UCSF Chimera
allows a user to perform our three methods interactively so that a user may use various
manipulation and visualization options in Chimera for an individual helix or b-strand
and for the subsequent quantitative evaluation. This makes it convenient to scan
through secondary structure detection and evaluation, particularly when there is a large
number of secondary structure elements detected in the density map. The Chimera
plugin is downloadable from http://www.cs.odu.edu/*jhe.
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3 Filament Tracing in a Bundle

Cryo-electron tomography (Cryo-ET) is a technique to obtain 3-D images of much larger
cellular targets such as organelles, which are often complex and thus do not lend
themselves to averaging. The data collection process in cryo-ET differs from that of
cryo-EM. Instead of taking single images of particles in a random orientation and
averaging the different views and reconstructing the object given the different orienta-
tions, cryo-ET collects multiple images from the same object, with the specimen being
tilted at different angles. However, due to tilt angle limitations and limits on the
acceptable total radiation dose, tomograms often display reconstruction artifacts, ani-
sotropic resolution and a high level of noise. In particular, orientational (missing-wedge)
artifacts are prominent in the reconstructed 3-D volume due to limitations in the data
collection geometry. Furthermore, cryo-ET density maps usually show a much lower
resolution (30–50 Å) than those obtained using single-particle cryo-EM or other implicit
averaging approaches, which makes the direct modeling and interpretation of structural
features difficult.

We have developed a computational method, BundleTrac, to trace filaments in a
bundle and applied it to stereocilia density maps obtained using cryo-ET (Fig. 3) [15].
BundleTrac is a semi-automated method that starts with user-defined seed points in
UCSF Chimera on a cross-section of the bundle. It traces the rest of the filaments using
the geometric pattern of a bundle of filaments.

Fig. 1. Integrated interface in UCSF Chimera for SSETracer, StrandTwister, and
AxisComparison.
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4 Summary

We present, in this paper, a pattern recognition tool for protein secondary structure
detection and evaluation of cryo-EM density maps at medium resolutions. We show
that the three computational methods in secondary structure detection and evaluation
can be combined and inserted in the framework of Chimera to utilize existing resources
in Chimera. BundleTrac potentially can be inserted in Chimera using a similar
approach in the future to benefit pattern recognition needs in cryo-ET.

Fig. 2. Three computational methods SSETracer, StrandTwister, and AxisComparison. (A) An
isolated density region of cryo-EM map EMD-3204 (EMDB ID) that corresponds to a single
chain of the protein; (B) SSETracer detected helices (red lines) and b-sheets (blue) superimposed
on the density map; (C) StrandTwister detected b-strands (black lines) from the b-sheets (cyan or
blue in (B)); (D) AxisComparison quantifies the error between detected helices (red lines)/b-
strands (black lines) and the true axes obtained from atomic structure of 5FKX (PDB ID). UCSF
Chimera was used as a platform to develop an integrated interface for the three methods. (Color
figure online)
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Fig. 3. Detection of actin filaments from a bundle using BundleTrac. (A) a cross-section of the
bundle in a stereocilium density map obtained using cryo-ET technique; (B) the density map of
the stereocilium; (C) The cross-section at the same location of the bundle as in (A) after an
average along the calculated bundle axis; (D) a subset of filaments (red lines) detected using
BundleTrac superimposed with the image of a stereocilium. Visualization was performed in
Chimera. (Color figure online)
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Abstract. Knowing the transcription factor binding sites (TFBSs) is essential
for modeling the underlying binding mechanisms and follow-up cellular func-
tions. Convolutional neural networks (CNNs) have outperformed methods in
predicting TFBSs from the primary DNA sequence. In addition to DNA
sequences, histone modifications and chromatin accessibility are also important
factors influencing their activity. They have been explored to predict TFBSs
recently. However, current methods rarely take into account histone modifica-
tions and chromatin accessibility using CNN in an integrative framework. To
this end, we developed a general CNN model to integrate these data for pre-
dicting TFBSs. We systematically benchmarked a series of architecture variants
by changing network structure in terms of width and depth, and explored the
effects of sample length at flanking regions. We evaluated the performance of
the three types of data and their combinations using 256 ChIP-seq experiments
and also compared it with competing machine learning methods. We find that
contributions from these three types of data are complementary to each other.
Moreover, the integrative CNN framework is superior to traditional machine
learning methods with significant improvements.

Keywords: Bioinformatics � Machine learning
Transcription factors binding sites � Convolutional neural networks
DNA accessibility � Histone modification

1 Introduction

It has been well known that transcription factors (TFs) are key proteins decoding the
information in the genome to express a precise and unique set of proteins and RNAs in
each cell type in the cellular system [1]. How TFs bind to specific DNA-regulatory
sequences (known as TF binding site, or TFBS for short) to cooperatively modulate the
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gene transcription and protein synthesis is an essential procedure, which plays key roles
in many biological processes [2, 3]. Moreover, it has been reported that some genomic
variants in such TFBSs are associated with serious diseases including cancer and so on
[4]. In the past decade, large amount of immunoprecipitation followed by high
throughput sequencing (ChIP-seq) data have been generated and profiled to study the
mechanisms behind these regulatory processes [5]. However, the ChIP-seq experiment
can only profile one TF binding map in a given cell type one time [6, 7]. Hence it is not
possible to profile every TF binding maps in all cell types due to the large number of
TF-cell combinations and the high experimental cost [6, 7]. Thus, accurate computa-
tional methods are desired to decode the underlying binding rules under different
circumstances. Naturally, how to predict TFBSs in DNA sequences is a basic problem
in bioinformatics.

In this background, using primary DNA sequences to predict the TFBSs has
become a direct and promising paradigm. At first position weight matrices (PWMs)
based methods achieved great success in modeling the DNA binding protein process
[8]. Later, gkm-SVM (i.e., gapped k-mers along with support vector machine) shows
great superiority over the PWM-based methods [9]. More recently, convolutional
neural networks [10], coupled with the one-hot coding format of DNA sequences [11–
20], attracted great interest in predicting TFBSs. However, prediction or imputation of
TFBSs using solely primary DNA sequences lacks the ability of dealing with cell type-
specific binding events.

As a result, more and more methods turn to using cell type-specific information for
addressing this issue. In addition to primary DNA sequences, other local chromatin
information such as chromatin accessibility and histone modifications also have great
impact to the binding of TFs to their target sites [21]. Their analysis suggested models
learned from one TF was transferable across diverse TFs. Xin and Rohs [22] built a L2-
regularized multiple linear regression (MLR) model to analyze histone modification
patterns associated with TFBSs and showed that histone modification patterns con-
tribute to TF binding specificities. Their results suggested that adding histone modi-
fication or chromatin accessibility information could increase the prediction
performance of a classifier. However, there still exist limitations to be addressed when
integrating data from different sources.

In the last few years, the fast development of deep learning or deep neural networks
such as the convolutional neural networks (CNNs) attracts great attentions for the
predicting of TFBSs. First, the convolution filters fitting in well with the one-hot
coding format of DNA sequence can mimic the characteristics of DNA motifs [12–15,
23, 24]. Meanwhile, the learning procedure of CNN automatically extract features,
which may overcome the information loss of handcrafted features. Second, the deep
learning framework is flexible enough to integrate different sources of data. In addition
to DNA sequence data, other data sources can be put as inputs using a computational
graph, which is a directed acyclic graph representing the arbitrary information flow
[25]. Third, the use of graphics processing unit (GPU) makes the training process of
deep learning and especially CNNs extremely faster than before. This enables the CNN
models to be applicable to deal with large amount of biological samples. However, all
the existing CNN based models use solely primary DNA sequence to predict TFBSs.
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Currently, it is not clear how to effectively integrate DNA sequence information with
other local chromatin information (e.g., DNase and histone modification) using CNN.

To this end, we disentangled the contributions of DNA sequence and DNase I
hypersensitivity (DHS for short) and histone modifications (HMS for short) in dis-
tinguishing TFBSs from background based on a CNN model (Fig. 1). To explore how
to use DHS and HMS to train the neural networks, we first benchmarked a series of
architecture variants by changing network structure in terms of width and depth. We
also explored the effects of sample length at flanking regions 5’ and 3’ of the motif
binding sites ranging from 5 to 101 bp of DHS and HMS data. Based on detailed
experimental setup, we evaluated the performance of the three types of data and their
combinations using 256 ChIP-seq experiments [15]. We find that contributions from
these three types of data are complementary to each other. Moreover, the results show
distinct superiority of the integrative framework over traditional machine learning
methods. We expect to see wide applications of integrating multiple types of data with
deep learning methods not only for TFBSs prediction, but also for other genomic
studies in near future.

2 Materials and Methods

2.1 Datasets

We downloaded 256 TF ChIP-seq experiments for 15 cell types from [15]. Each
experiment includes training and testing datasets in fastq format. In the datasets, DNA
sequences and its location in the reference genome (hg19) and labels are given.

Fig. 1. Overview of the unified framework for predicting TFBSs using CNN.
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The positive and negative samples have matched GC-content and sequence length
(101 bp). Then we downloaded normalized DNase-seq (DHS) and five core histone
modifications (HMS) ChIP-seq data (H3K4me3, H3K4me1, H3K36me3, H3K9me3,
H3K27me3) for the 15 cell types from the REMC database [26]. The DHS and HMS
data are genome-wide –log10 (p-value) signal coverage tracks in bigwig format.

According to the location of the sample in the sequence datasets, we extracted the
signal values of the corresponding positions from the DHS and HMS signal coverage
tracks. The DNase-seq or each histone modification data was represented in a feature
vector (where each nucleotide position has a value). Thus, TFBSs and non-TFBSs were
described as three types of features: (1) a one-hot vector for a DNA sequence; (2) a
vector for DHS at each nucleotide position; (3) a vector for each HMS at each
nucleotide position. For each dataset, we used 70% samples for training, 10% samples
for validating and 20% for testing.

2.2 Neural Network Setup

For a DNA sequence, TFBSs and non-TFBSs were described as one dimensional
image with four channels. Each base pair (A, C, T, G) was denoted as a one-hot vector
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] respectively. For DNase-seq data and
each histone modification data, TFBSs and non-TFBSs were described as one channel
vector at each nucleotide position, For HMS, existing methods calculated the statistical
values (such average reads number in each base pair) within the range of hundreds or
thousands nucleotide. However, such a simplistic approach may not fully use the
information in HMS data. So we used histone modification data of single base reso-
lution in our study. HMS and DHS are contiguous attributes describing surrounding
epigenetic marks and chromatin accessibility that may be related to the binding of
specific TFs [27].

From the viewpoint of data, to examine how these models perform quantitatively in
terms of the length of flanking regions used in calculating DHS and HMS, we tried
different length scales ranging from 5 to 101 bp centered on the motif binding sites. For
example, if we used DNase-seq data with 101 bp, the vector was of size 1 � 101 for a
sample; if we used five histone modifications data with 71 bp, the dimension of a
vector was of size 1 � 71, and they were combined as matrix with size of 5 � 71 for a
sample.

For the purpose of combining DHS, HMS and sequence in the unified deep
learning framework, after collecting DNA sequence, HMS, DHS, labels data and
encoding features for each sample, we first implemented five different models:
sequence CNN model, using DNA sequence as features; DHS CNN model, using DHS
as features; DHS Deep Neural Networks (DNN) model, using DHS as features;
HMS CNN model, using HMS as features; HMS DNN model, using HMS as features.
We used CNN and DNN models to compare which one was more suitable for DHS and
HMS data. The CNN consists of a convolutional layer, a max-pooling layer, a fully
connected layer, a dropout layer [28] and an output layer. DNN consists of one or two
full connection layers, a dropout layer after each full connection layer and an output
layer. For CNN models, we vary the number of kernels, the size of kernel window, and
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the number of neurons in the full connection layer. For DNN models, we vary the
number of layers, and the number of neural in each full connection layer.

After determining an appropriate model, hyper-parameters and sample length for
each data, we then studied the combinations performances of two types of data
implementing three different models: sequence + HMS model, using a combination of
DNA sequence and HMS as features, sequence + DHS model, using a combination of
DNA sequence and DHS as features, DHS + HMS model, using a combination of
DHS and HMS as features. We suggest an integrative model combing all three types of
data (sequence + HMS + DHS model) as features at last.

For training, we used the cross-entropy as the loss function. Given this loss function
and different hyper-parameters (see below), the models were trained using the standard
error back-propagation algorithm and AdaDetla method [29]. Passing all the training
data through the model once is an epoch. We set each model for 100 epochs and 128
mini-batch size and validated the model after each epoch. Then the early-stop trick was
used to stop training as the error on validation set is higher than the last four epochs.
The best model was chosen according to the accuracy on the validation set.

2.3 Leave-One-Feature-Out of the HMS Model

To determine the importance of each histone modification feature in the classification
models by combining five core histone modification features, we implemented CNN
models where we left out one of the features at a time. We recorded the AUC for each
model compared to the model that used all five histone modification features.

2.4 Comparison with Conventional Learning Methods with HMS
and DHS Data

We evaluated whether conventional learning methods can get comparable predictions
compared with CNN. We predicted the TFBSs using k-Nearest Neighbor (kNN),
Logistic Regression (LR), Random Forest (RF) classifiers. For KNN, LR, RF, we
implemented these baselines using the python based scikit-learn package.

For the kNN classifier implementation, this model was trained on varying hyper-
parameter values of n_neighbors: 1, 3, or 5, weights: ‘uniform’, or ‘distance’, the
algorithm was ‘auto’. The n_neighbors parameter defines the number of neighbors to
be used for prediction. The weights define weight function used in prediction. Uniform
means all points in each neighborhood are weighted equally. Distance means weight
points by the inverse of their distance. In this case, closer neighbors of a query point
will have a greater influence than neighbors which are a little far away.

For the LR classifier implementation, the model was trained on varying hyper-
parameter values of penalty: ‘l1’ or ‘l2’, C: 0.1, 1, or 10. The penalty is used to specify
the norm used in the penalization. C is the inverse of regularization strength, smaller
values specify stronger regularization.

For the RF Classifier implementation, we varied the number of trees in the forest,
n_estimators: 10, 20, 30, …, 100, 200, 300, used to train each model.
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All the above models were trained on the training set, and evaluated on the cor-
responding testing set. For kNN, we selected n_neighbors = 5, weights = ‘distance’.
For RF, we selected n_estimators = 100. For LR, we selected penalty = l2, C = 1.

2.5 Implementation

We used python and Keras framework to train neural networks. We used python and
skcikit-learn to train conventional machine learning methods [30]. All the source codes
are available at http://page.amss.ac.cn/shihua.zhang/.

3 Results

3.1 Long Sample Length and CNN Architecture Improve TFBSs
Prediction Based on Histone Modification Profiles

For predicting TFBSs, we considered several practical aspects to make full use of HMS
data. We first tested the effects of using different sample lengths. We used different
sample lengths to train the CNN models and different hyper-parameters for each length.
For each length, we selected the results of best hyper-parameters. As expected, the
longer the sequence length was, the better the model performs (Fig. 2A). The
improvement may come from the extra context information contained in the longer
samples.

Fig. 2. Performance evaluation of CNN with respect to sample length and model structure using
HMS data in terms of the distribution of AUCs across 256 experiments. (A) The effect of
sequence length. (B) The effect of kernel number. (C) The effect of neuron number. (D) The
effect of kernel window size. (E) The effect of sample length and DNN model structure. (F) The
performance comparison of DNN versus CNN.
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In addition to different sequence lengths, proper model architecture was also nee-
ded. First, more convolutional kernels could also improve the prediction performance
(Fig. 2B). This observation shows additional kernels add power in extracting features.
However, when more than 64 kernels were used, the improvement seemed to be
saturated for the 256 experiments (Fig. 2B). Second, more neurons in the full con-
nection layer of CNN could improve the prediction performance (Fig. 2C). And adding
more neurons could improve the results. We observe that small kernel window size
achieves better performance than using large ones (Fig. 2D) while big kernel window
size usually used in sequence-based CNN models. This suggests that HMS features is
different from sequence, and big window size may lose some information. Since the
small window size is good, we are wondering how DNN performs. For comparison, we
trained DNN with HMS data. We find that deeper neural networks and longer sample
length work better too for DNN (Fig. 2E). As model with more neurons and layers
could represent more abstract features, this observation emphasizes sufficient neurons
and layers are needed to extract abstract features. However, the performance of DNN is
still slightly worse than that of CNN, indicating the importance of combining convo-
lution operation with HMS data (Fig. 2F).

3.2 Different Histone Modification Features Contribute Diversely

How each individual histone modification feature contribute relative to all five features
together? We conducted leave-one-feature-out feature selection experiments to train the
CNN models by using merely four histone modifications data with the same hyper-
parameters in previous section. Our results suggest that H3K4me3 mark is the most
important mark and H3K4me1 is the second most important one (Fig. 3). We also
known that H3K4me3 denotes a specific chemical modification of proteins used to
package DNA in eukaryotic cells, which is commonly associated with active tran-
scription of nearby genes [26]. While H3K4me1 has been shown distinct enrichment at
active and primed enhancers, indicating its underlying strong connections with
enhancer activity and function. However, the remaining three marks H3K27me3,
H3K36me3, H3K9me3 play limited impacts on the prediction performance. This is
very consistent with their well-known characteristics that H3K27me3, H3K36me3,
H3K9me3 are found in facultatively repressed genes, actively transcribed gene bodies,
and constitutively repressed genes respectively. Thus, this is reasonable that H3K9me3
shows the worst prediction ability to TFBSs. In summary, the histone modification
importance observations are in consistent with their general functions and might pro-
vide further insights into the importance of different types of data in a similar way.

3.3 TFBSs Prediction Results Based on DNase-seq Profiles

Similar to HMS data, we also considered several practical aspects to make full use of
DNase-seq data. We first tested the effects of using different sample lengths. As
expected, the longer the sequence length is, the better the model performs (Fig. 4A).
This indicates that the improvement may also come from the extra context information
contained in the longer samples. For model architectures, more convolutional kernels
could also improve the prediction performance (Fig. 4B). Thus, no matter what the data
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type is, the additional kernels are beneficial to enhance power in extracting features and
improve model performance. By changing the number of neurons in the last dense layer
of CNN, we can see that models with more hidden neurons achieve better performance
(Fig. 4C). This observation was similar with that of HMS data. We also see that CNN
models with small and large kernel window sizes (4 and 24) achieve almost the same
performance for different sample lengths (Fig. 4D). This suggests that kernel window
sizes (4 and 24) could not distinctly influence DHS data information. For comparison
with CNN, we also trained DNN using different sequence lengths and hyper-parameters
for the DHS data. Similarly, the deeper neural networks and longer sample length also
work better based on DHS data (Fig. 4E). Moreover, the performance of DNN is
slightly worse than that of CNN, indicating the importance of combining convolution
operation with DHS data (Fig. 4F).

3.4 Comparison of CNN with Conventional Learning Methods with HMS
and DHS Data

We have shown that CNN models with HMS and DHS data could make very
promising predictions for diverse TFs. In this section, we evaluated whether conven-
tional learning methods can get such predictions compared to CNN. As we showed that
for DHS and HMS, the longer the sequence length was, the better the model performed.
Here all sample lengths used were set as 101 bp. We adopted the popular k-Nearest
Neighbor (kNN), Logistic Regression (LR) and Random Forest (RF) for this task. The

Fig. 3. Performance comparison of different HMS combinations in terms of distribution of
AUCs across 256 experiments. HMS means using all five histone modification marks. HMS-
H3K4me3 means using other four histone modification marks except H3K4me3.

248 F. Jing et al.



Fig. 4. Performance evaluation of CNN with respect to sample length and model structure using
DHS data in terms of the distribution of AUCs across 256 experiments. (A) The effect of
sequence length. (B) The effect of kernel number. (C) The effect of neuron number. (D) The
effect of kernel window size. (E) The effect of sample length and DNN model structure. (F) The
performance comparison of DNN versus CNN.

Fig. 5. Comparison of CNN with conventional learning methods in terms of the distribution of
AUCs across 256 experiments. KNN: k-Nearest Neighbor; LR: Logistic Regression; RF:
Random Forest.
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best hyper-parameters of these methods were also chosen according to the performance
on testing set (Methods and Supplementary Information). In both HMS and DHS cases,
CNN perform significantly better than conventional classifiers in term of the distri-
bution of AUCs across 256 experiments (Fig. 5). This was not surprisingly, as deep
learning models could automatically extract high-level features in the DHS or HMS
data due to its elaborate architectures. We note that most conventional learning
methods are shallow models, which limited their performance. Taken together, our
study suggests that CNN model is a more reliable tool for predicting the TFBSs by
integrating these three types of data.

4 Conclusion and Discussion

In this work, we systematically explored the effects of epigenomic information from the
chromatin accessibility and histone modifications data on the basis of a series of CNN
architectures. We suggest an integrative CNN framework to combine primary DNA
sequence, DHS and HMS data to predict cell type-specific TFBSs. Thorough evalua-
tion demonstrate that the integrative framework show much better performance than
using primary DNA sequence data only.

Chromatin accessibility and histone modifications are critical factors enabling the
binding of TFs to their target genes. Chromatin accessibility has been widely used in
conventional methods. But conventional methods required a lot of time for large input
data and they used low resolution canonical features. Thus, we expect to improve
discrimination ability through deep learning approach by automatically extracting
efficient features. Histone modifications data is less used in TFBSs prediction than
chromatin accessibility. The reason is that DNase-seq can give base pair resolution
whereas DNA sequence was nicked, histone modification ChIP-seq gives a region
where protein interacting with DNA sequence, so it only gives low resolution infor-
mation compared to DNase-seq data. Besides DNA sequence and DHS data, we
suggest that the HMS data can also provide extra context information despite of the low
experimental resolution. In short, our work suggests combining more data in deep
learning model may be beneficial.
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Abstract. Benign epilepsy with centrotemporal spikes (BECT) is the
most common epilepsy in the children. The research of BECT mainly
focuses on the comparative analysis of the BECT patients and the
healthy controls. Different from the existing methods, we proposed a 3D
convolution neural network (3DCNN) that directly predicts the disease
of BECT from raw magnetic resonance imaging (MRI). The experiment
shows our 3DCNN model get an 89.80% accuracy in the five-fold cross-
validation evaluation which is over a large margin than the benchmark
method.

Keywords: BECT · 3DCNN · MRI

1 Introduction

The disease of benign epilepsy with centrotemporal spikes (BECT) is first
reported in the 1950s and is now the most common epilepsy syndrome in chil-
dren between the age of 4 and 13 years old [9]. For a long-term, doctors diagnosis
the BECT is a “benign” case, and there is a dispute on drug treatment to the
young children [6]. However, a series of review works reveal some BECT patients
have verbal dysfunction, attention deficit, and language impairment [11]. Recent
research reveals that children with benign epilepsy with centrotemporal spikes
may even arise sudden unexpected death in epilepsy (SUDEP) [7]. Therefore, the
International League Against Epilepsy suggests the term of “benign” is improper
in the denomination [16]. Unfortunately, the precise reason and mechanism caus-
ing the BECT are still unclear. The researchers want to get more profound
knowledge from the comparison of the BECT patients and the healthy controls.

Supported by the science and technology department of Sichuan province (No.
18MZGC0127).

c© Springer International Publishing AG, part of Springer Nature 2018
F. Zhang et al. (Eds.): ISBRA 2018, LNBI 10847, pp. 253–258, 2018.
https://doi.org/10.1007/978-3-319-94968-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94968-0_24&domain=pdf


254 M. Yan et al.

In a study of 200 BECT patients, BECT instance always has a spike-waves in
their sleeping electroencephalograph (EEG), and it also is a localization-related
epilepsy [3]. Moreover, from 98 consecutive BECT patients investigation in 15
years, Gelisse confirms that the BECT patient has an abnormal brain lesion in
their MRI images [10]. As we know, MRI is a static reflection of the anatomical
structure, while functional MRI (fMRI) views the metabolic function. Regional
homogeneity (ReHo) reveals that the BECT patients have a high value in their
fMRI [17]. Moreover, another researcher points out that the fMRI has a spike-
related activation region related to EEG expression in the BECT patients [4]. All
the works research around the reasons and the related differences in the BECT
from different methods and data sources. But the doctor diagnoses BECT by
clinical behavior and EEG expression.

Our manuscript presents a data-driven deep learning method, termed 3D
convolutional neural network (3DCNN), to predict BECT. Different from the
previous methods which aim to explore the differences and relations between the
BECT patients and the healthy controls. 3DCNN classifies the BECT patients
from the healthy controls. Moreover, the model of 3DCNN does BECT prediction
only depending on the raw MRI image data, which is much more straightforward
than the clinical diagnosis with EEG and clinical behaviors. Furthermore, the
clinical diagnosis is after the event of epilepsy seizure, while 3DCNN model could
predict epilepsy in advance.

2 Related Works

2.1 BECT

BECT researchers are mostly focusing on revealing the cause of BECT and the
relationship between the BECT and the health. For this cause, some work sup-
ports the BECT a genetic disease. A study of DNA linkage shows that there
are some regions on chromosome 15q15 have strong linkage in the BECT fam-
ilies [12]. For the relation analysis between BECT and healthy children, the
children with BECT have an expression on their EEG and MRI [3]. In a 2-years
tracking of 9 BECT children shows that the BECT patients have an interic-
tal epileptic discharge during their sleeping [2]. In a further study of the EEG
signal, the θ EEG frequency activity overall cortical regions in the analysis of
21 BECT children [1]. Similarly, another research shows the frontal, temporal,
and occipital regions of BECT patients are thinner than the healthy controls.
Conversely, the subcortical volumes are larger in the BECT patients [8].

2.2 Deep Neural Networks

The deep neural networks have achieved great success in the biomedical area [13].
3D U-Net extends 2D convolution neural network to the 3D, which gets good
performance on the kidney segmentation [5]. In the detection of lymph node,
the classifier of deep convolution neural network predicts the candidate region
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with a high accuracy which beyond the previous works [15]. DeepMeSH learns
semantic representations and assigns the appropriate indexings to citations auto-
matically [14]. All the biomedical methods embrace the deep neural network.

3 Method

A 3-dimensional convolution neural network is proposed to predict the disease of
BECT from the raw MRI data and learns the data representation from original
data. As the MRI data is a 3D data, 3DCNN is fit for the process raw MRI data
in an end-to-end way. With 3D convolution kernel in 3DCNN could learn more
spatial information than the standard 2D convolutional neural networks with
the 2D kernels. In Fig. 1, the children’s whole skull high-resolution 3D MRI data
is acquired from the MRI machine. Then, the data is sent to the 3DCNN model
to train and prediction.

Fig. 1. The workflow of BECT prediction.

3.1 3DCNN

Our 3DCNN is a seven layers deep neural network consists the layers of 3D con-
volution, batch normalization, and Softmax. As the input is a high-resolution 3D
MRI data, 3DCNN is applied deep convolution layers with small kernel numbers
to overcome the overfitting problem. Meanwhile, 3DMaxPooling is introduced
to dimension reduction. Figure 2 shows the architecture of 3DCNN.

Fig. 2. The architecture of 3DCNN.

Except for the output layer, all the layers are 3D convolution layers, which
have a much stronger nonlinear mapping power and feature extraction capacity
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than traditional 2D convolution neural network. 3D convolution operation is an
extension of 2D convolution which reformulate in Eq. 1:

yi′′,j′′,k′′,d′′ =
I∑

i=1

J∑

j=1

D∑

d=1

C∑

c=1

f(wi,j,dxi′,j′,d′,c′) (1)

The 3D convolution computation is similar to 2D which adds the third dimen-
sion of d. The variable i, j, d notate the index of convolution width, height, and
depth. c notates the kernel or channel. The capital words are the correspond-
ing total number. The superscript of x and y denotes the index of feature map
or activation. The backpropagation computation of 3D convolution follows the
chain-rule which multiples the sensitivity (θ) to the transposition of convolution
kernel (WT ) in Eq. 2. Equation 3 denotes the gradient computation ( ∂J

∂W l ) from
the higher layer’s sensitivity (θl+1) and activations (al). The variable J denotes
the cost function.

θl = θl+1WT (2)
∂J

∂W l
= θl+1alT (3)

Our method is different from the traditional clinical diagnosis of BECT,
which only uses the raw MRI data material instead of EEG and clinical behavior.
Moreover, 3D convolution has a much more powerful feature extraction capacity
than the traditional 2D convolution. At last, due to the 3D high dimension in
MRI data, all the parameters and convolution kernels in 3DCNN are small to
prevent the overfitting.

4 Experiments

4.1 Data

There are 80 samples in our MRI dataset which consists 40 BECT instances and
40 control instances. All the data acquired from a SIEMENS TrioTim 3T with
the same resolution of 256× 256× 200 in each case. The only data processing is
scaling down to the range of (0–1).

4.2 Baseline

As far as we know, no existing deep-learning based methods in BECT predic-
tion. The research works of the BECT disease mainly concerning to explore the
connection and relations between the BECT patients and the healthy controls.
Therefore, we construct a traditional 2D convolution neural network (2DCNN) as
the baseline model for BECT prediction. The convolution kernel sizes of 2DCNN
are set the same 3DCNN. And the stride of 2DCNN is modified to get a full con-
volution architecture which reduces the number of weights and overcomes the
overfitting problem. So, the third dimension of MRI in 2DCNN is computed as
the channel dimension. However, 3DCNN extends one more dimension as the
data channel dimension in the input layer. The detailed comparison of 2DCNN
and 3DCNN are shown in Table 1.
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Table 1. Comparison of 2DCNN and 3DCNN.

Layer name Input Layer1 Layer2 Layer3 Layer4 Layer5 Layer6

2DCNN 256× 256× 200× 1 5× 5× 5 3× 3× 3 2× 4× 4 1× 1× 1 16 2

3DCNN 256× 256× 200 5× 5 3× 3 3× 3 1× 1 16 2

4.3 Result

We evaluate 3DCNN on our MRI dataset in five-fold cross-validation. The
whole 80-cases dataset is divided into training dataset (54 instances) and testing
dataset (16 instances), and the evaluation criterion is the prediction accuracy.
The learning rate is set to 1e − 4 under Adam optimizer. Table 2 shows the
performance of 3DCNN and 2DCNN on the test dataset.

Table 2. Comparison of BECT prediction accuracy.

Model name Accuracy-1 Accuracy-2 Accuracy-3 Accuracy-4 Accuracy-5 Total

2DCNN 87.50% 81.25% 81.25% 75.00% 87.50% 82.50%

3DCNN 93.25% 87.50% 93.25% 87.50% 87.50% 89.80%

The result shows 3DCNN achieving a prediction accuracy of 89.80% on the
five-fold cross-validation evaluation, which outperforms the 2DCNN baseline
model (82.50%). 3DCNN performs a consistently high performance on the whole
testing dataset which shows 3D convolution neural network has a good capacity
of data presentation and feature extraction in 3D MRI images.

5 Conclusion

A 3DCNN is proposed to BECT prediction, which is a data-driven method on the
BECT prediction. Different to the verification research work, 3DCNN directly
predict the disease from raw MRI dataset. In the further work, we will introduce
more data source and dataset to our deep convolution model (Eg: hand design
feature, and fMRI data, etc.).
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Abstract. Influenza-like illness (ILI) is an acute respiratory infection
causes substantial mortality and morbidity. Predict Influenza trends and
response to a health disease rapidly is crucial to diminish the loss of life.
In this paper, we employ the long short term memory (LSTM) recurrent
neural networks to forecast the influenza trends. We are the first one
to use multiple and novel data sources including virologic surveillance,
influenza geographic spread, Google trends, climate and air pollution
to predict influenza trends. Moreover, We find there are several environ-
mental and climatic factors have the significant correlation with ILI rate.

Keywords: Influenza-like illness · Influenza trends · Google trends
Climate change · Air pollution · Long short term memory

1 Introduction

Influenza-like illness (ILI) is an acute respiratory infection causes substantial
mortality and morbidity. Influenza leads to the hospitalization of more than
200,000 people yearly and results in 36,000 deaths from flu or flu-related com-
plications in the United States [1]. The New York Times reported 2017–2018
influenza season is the worst in nearly a decade in the United States, the cumu-
lative amount of ILI in January and February 2018 is 573,622, higher than the
yearly cumulative amount of ILI in 2011 [2]. Besides, a total of 142 influenza-
associated pediatric deaths for the 2017–2018 flu season have been reported by
the United States Centers for Disease Control and Prevention (CDC) [3]. There-
fore, effective influenza prediction and early outbreak detection are valuable in
bioinformatics research. There are numerous studies related to the influenza pre-
diction [4]. Google Flu Trends operated a linear model to provided estimates of
influenza activity for more than 25 countries but is now no longer publishing cur-
rent estimates [5]. Dugas et al. employed generalized linear models with Google
trends data [6] and Paul et al. applied the linear model with Google trends and
twitter data [7] to predict influenza. However, predict influenza trends with social
media data is a post-verify scheme [8,9]. People usually post influenza-related
tweets after the seasonal outbreak. Furthermore, in traditional time series mod-
els, they mainly used linear models that cannot describe the uncertainty and
non-linearity relationship very well, the models’ accuracy will decrease when
c© Springer International Publishing AG, part of Springer Nature 2018
F. Zhang et al. (Eds.): ISBRA 2018, LNBI 10847, pp. 259–264, 2018.
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the datasets have numerous variables. Since the limitation of conventional time
series models, there are several novel methods emerged for analyzing time series
data, Guo et al. employed Bayesian-inference-based methods to analysis time
series data, Dietterich et al. introduced several machine learning methods for
analysis sequential data [10,11]. Deep learning is a family member of machine
learning methods which based on learning data representations and handle the
uncertainty and non-linear problems. The architecture could deploy various hid-
den layers with non-linear processing units to extract data features and transfer
to a different dimension. It is worth to mention, deep learning algorithms are
rarely implemented in influenza prediction. In this paper, we assemble CDC
data, Google trends data, climatic data, air pollution data to forecast influenza
trends which few researchers focused before. We employ pearson correlation to
prove PM2.5 and carbon monoxide (CO) are significant impact the rate of ILI.
The Lofgren et al.’s research shows that variations of temperature associated
with high levels of seasonal influenza. There exist substantial evidence to add
climatic data as the predictor variables [12]. Based on the recent research and
advanced deep learning algorithm, we combine various dataset and deploy long
short-term memory (LSTM) recurrent neural networks to forecast st influenza
trends. The dataset includes virologic surveillance, influenza geographic spread,
Google trends, climate and air pollution. The experiment results indicate our
approach can predict the influenza trend very well.

2 Data Source

In this research, we focus on Georgia state in the United States. However, our
approach could also apply in global regions. We collect related datasets based on
Georgia state area from 2012 to 2018. The virologic surveillance and influenza
geographic spread data collected from Centers for Disease Control and Preven-
tion (CDC) based on FluView system. The terms highly correlated with influenza
geographic spread [7] adopt to collect Google trends data. Since it is hard to
assemble state’s climate and air pollution data by week, we use data from the
six most representative cities in Georgia: Athens, Atlanta, Augusta, Columbus,
Macon, Savannah. The climate data reached from Climate Data Online (CDO)
and the air pollution data collected from the United States Environmental Pro-
tection Agency. The weather data includes daily information of minimum tem-
perature, maximum temperature, and average temperature. The pollution data
includes the variables: PM2.5 concentration, Carbon Monoxide (CO) concen-
tration, Lead (Pb) concentration, Nitrogen Dioxide (NO2) concentration, Ozone
concentration, PM10 concentration, Sulfur Dioxide (SO2) concentration. We pre-
process all the data we mention above and organize them by weekly. Finally, the
dataset for model contains 32 independent variables, 1 dependent variable, and
1 time index.
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3 Method

Correlation analysis: Pearson correlation coefficient is the method employed to
measure the linear dependence between two variables. It has the value between
positive 1 and negative 1, where 1 is the total positive linear correlation and
0 is no linear correlation, and negative 1 is total negative linear correlation.
Figure 1 is the pearson parametric correlation matrix of the relationship between
air pollution, climate change and the rate of unweighted ILI. From the pearson
correlation matrix, we can observe PM2.5 and CO have the significant correlation
with the rate of unweighted ILI as their p-values are smaller than 0.05.

Fig. 1. Variables correlation between air pollution, temperature change and Influenza-
like illness

Long Short-term Memory: It is the recurrent neural network (RNN) architec-
ture that was designed by Hochreiter and Schmidhuber to address the vanishing
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and exploding gradient problems of traditional RNNs [13,14]. The LSTM is com-
posed of some memory blocks. Memory block contains memory cells and gates.
Memory cells able to remembering the temporal state of the network by self-
connections and the gates control the flow of information. Each memory block
contains an input gate to control the flow of input activations into the memory
cell, an output gate to control the output flow of cell activations into the rest
of the network and a forget gate [14]. The compact form of the equations for an
LSTM unit with a forget gate shown follows, where the xt denotes the input vec-
tor to the LSTM unit, ft denotes the forget gate’s activation vector, it denotes
the input gate’s activation vector, ot denotes the output gate’s activation vector
and ht denotes the output vector of LSTM unite, the initial value c0 = 0 and
h0 = 0, the operator � denotes the Hadamard product [13,15].

it = σg(Wixt + Uiht−1 + bi) (1)
ft = σg(Wfxt + Ufht−1 + bf ) (2)
ot = σg(Woxt + Uoht−1 + bo) (3)
ct = ft�ct−1 + it�σc(Wcxt + Ucht−1 + bc) (4)
ht = ot�σh(ct) (5)

Model evaluation: Root mean squared error (RMSE) captures the square root
of the difference between ground truth values and predicted values. We employ
RMSE to evaluate the LSTM models.

4 Results

From week 1 to week 10 in 2018, temperature dramatically changes have the
significant correlation with ILI rate. In 2017–2018 influenza season, the google
search interest of “Flu Shot” and “Flu Vaccine” has 2 times than the google
search interest in 2016–2017 influenza season, but the ILI rate still soaring in
this season. Using the historical air pollution and CDC data from 2012 to 2017,
we observed that PM2.5 and CO significantly correlated with ILI rate. Using
the long short-term memory (LSTM) recurrent neural networks algorithms, our
predict trends are strongly fit the real trends as Fig. 2 shows. We test 4 different
LSTM models: large/small sample size that the predictor variables come from air
pollution, temperature change, and google trends datasets; large/small sample
size that only use google trends data as predictor variables. The outcome variable
of these 4 models are the rate of ILI collected from CDC. From Fig. 3, we can
observe the multivariant LSTM models’ RMSEs are smaller than the models’
only use Google trends data. It proves the method of using the multivariant data
sources to predict influenza trends is better than the method of only using google
trends data. The extra related data could provide more insights through LSTM.
In addition, we find the large sample size can improve the influenza prediction
model performance evidently.
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Fig. 2. Long short-term memory predict trends and real trends

Fig. 3. RMSE of long short-term memory models

5 Conclusion

In this paper, we have three crucial contributions. First, we are the first one
combine the air pollution data, climate data, google trends data, and CDC data
to improve the model of influenza prediction. Second, the applicability of the
LTSM method which is shown to outperform in other influenza prediction mod-
els. The multiple data sources LSTM models’ performances are better than the
LSTM models only rely the data from Google trends. Third, the data-driven
approach is incorporated into our work to further confirm that the air pollution
factors significantly correlated with ILI rate.

In the future work, we will incorporate the framework with multiple dif-
ference data sources and the improved deep learning algorithm to leverage the
performance of the prediction and try to make the framework and the prediction
could benefit the real life applications.
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Abstract. In this study, we propose a manifold learning-based method
for predicting disease genes by assuming that a disease and its associated
genes should be consistent in some lower dimensional manifold. The 10-
fold cross-validation experiments show that the area under of the receiver
operating characteristic (ROC) curve (AUC) generated by our approach
is 0.7452 with high-quality gene-disease associations in OMIM dataset,
which is greater that of the competing method PBCF (0.5700). 9 out of
top 10 predicted gene-disease associations can be supported by existing
literature, which is better than the result (6 out of top 10 predicted
association) of the PBCF. All these results illustrate that our method
outperforms the competing method.

1 Introduction

Complex diseases are usually caused by a group of disease genes. Uncovering
gene-disease associations is critical for diagnosis, treatment and prevention of dis-
eases. With advances in high-throughput techniques, a large amount of potential
disease causative mutations have been generated. Further validation of these data
is time-consuming and expensive. Thus, computationally predict disease genes is
necessary to effectively translate the experimental data into legible disease-gene
associations.

Current computational methods can be basically classified as two cate-
gories: the machine learning-based approaches, which focus on learning gene-
disease relations [1–3], and the network-based techniques, which are based on
the assumption that genes closed related in a network are associated with the
same diseases [4–9]. As one kind of machine learning methods, matrix completion
is also used to predict gene-disease associations [10,11]. However, matrix com-
pletion methods generally do not have the global optimal solutions and could
take very long time to converge to even a local optimal solution [12,13].
c© Springer International Publishing AG, part of Springer Nature 2018
F. Zhang et al. (Eds.): ISBRA 2018, LNBI 10847, pp. 265–271, 2018.
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In this study, we propose a manifold learning-based method which assumes
that the geodetic distance between any disease and the genes associated with
it are shorter than other non associated gene-disease pairs in a lower dimen-
sional manifold [14,15]. The experiments show that our method performs better
than competing method in terms of the area under of the receiver operating
characteristic (ROC) curve (AUC) and de novo validation.

2 Dataset and Method

2.1 Dataset

The disease-gene association data are downloaded from the Online Mendelian
Inheritance in Man (OMIM) database [16]. To get the most reliable associations,
three steps are adopted to preprocess the data. First, associations of disorders
with tag ‘(3)’ are selected since the molecular basis of these diseases is known,
which means the associations are reliable. Second, disease terms are classified
into distinct diseases by merging disease subtypes based on their given disorder
names. Third, 475 diseases are removed because each of them is associated with
only one gene which is not associated with any other diseases. As a result, the
final dataset consists of 4257 associations between 1146 diseases and 2809 genes.

2.2 Method

The final dataset can be presented by a nd × ng gene-disease association matrix
A, where aij = 1 if disease i is associated with gene j and aij = 0 otherwise, for
i = 1, . . . , nd and j = 1, . . . , ng, where nd = 1146 and ng = 2809. Intuitively, each
disease can be represented by a ng-dimensional 0–1 row vector while each gene
can be represented by a nd-dimensional 0–1 column vector. However, in higher
dimensional different spaces, it is hard to learn the distance between a disease
and a gene. In this study, we map diseases and genes into the same manifold with
the lower dimensionality while assuming that the distance between a disease and
its associated genes should be as short as possible on this manifold. This problem
can be mathematically formulated as: finding k-dimensional representatives of
genes g1, . . . , gng

and k-dimensional representatives of diseases d1, . . . , dng
such

that the following objective function is minimized

Qk =
nd∑

i=1

ng∑

j=1

aij

∥∥∥di − gj

∥∥∥
2

. (1)

All d1, . . . , dnd
and g1, . . . , gng

are considered as k-dimensional column vectors.
To make (1) well defined, we add the following constraints

nd∑

i=1

wr,idid
T
i = Ik and

ng∑

j=1

wc,jgjg
T
j = Ik. (2)
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where Ik is the k × k identify matrix and

wr,i =
ng∑

j=1

aij , i = 1, . . . , nd and wc,j =
nd∑

i=1

aij , j = 1, . . . , ng. (3)

Now the optimization problem with the objective function (1) and constraints
(2) is well defined. To solve this optimization problem, we notice that

Qk =
nd∑

i=1

ng∑

j=1

aij

∥∥∥di − gj

∥∥∥
2

=
nd∑

i=1

ng∑

j=1

aij(di − gj)T (di − gj)

=
nd∑

i=1

ng∑

j=1

aij(dTi di − dTi gj − gTj di + gTj gj)

=
nd∑

i=1

wr,id
T
i di − 2

nd∑

i=1

ng∑

j=1

aijd
T
i gj +

ng∑

j=1

wc,jg
T
j gj

(4)

Note that dTi di = tr(didTi ) and gTj gj = tr(gjgTj ), we can have∑nd

i=1 wr,id
T
i di = k and

∑ng

j=1 wc,jg
T
j gj = k. Furthermore, let Wr =

diag[wr,1, . . . , wr,nd
], Wc = diag[wc,1, . . . , wr,ng

], X = W
1
2
r [dT1 , . . . , dTnd

]T , Y =

W
1
2
c [gT1 , . . . , gTng

]T , and C = W
− 1

2
r AW

− 1
2

c , then we can obtain

Qk = 2k − 2tr(XTCY ) (5)

From (5), minimizing the objective function (1) with constraints (2) is equivalent
to maximizing the following objective function

Pk = tr(XTCY ) (6)

with the following constraints

XTX = Ik and Y TY = Ik (7)

From the matrix analysis [17], matrix C has the singular value decomposition
as follows

C =
r−1∑

k=0

skvkuk. (8)

where r ≤ min[ng, nd] is the rank of matrix C. Actually, it can be verified that
matrix C is a so-called correspondence matrix [18]. Therefore, the maximum
singular value of matrix C is 1, that is, s0 = 1 ≥ s1 ≥ · · · ≥ sr−1 > 0 are the
non-zero singular values of matrix C. In addition, 1 is a single singular value
if matrix C is non-decomposable and its corresponding singular vector pair is
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v0 = (√wr,1, . . . ,
√

wr,nd
) and u0 = (√wc,1, . . . ,

√
wc,ng

). Furthermore, according
to Eq. (8), the optimization problem of maximizing the objective function (6)
with constraints (7) can be solved by

X∗ = W
1
2
r (v0, v1, . . . , vk) and Y ∗ = W

1
2
c (u0, u1, . . . , uk). (9)

From (9), if matrix C is non-decomposable, the first columns of X∗ and Y ∗

are W
1
2
r v0 and W

1
2
c u0, which are the constant vectors of Rnd and Rng with all

components of 1, respectively. Therefore, they do not contribute to describe a
gene or a disease in a manifold. Let X̂ and Ŷ denote the matrices by removing the
first columns of matrices X∗ and Y ∗, respectively. As a result, each row vector
of matrices X̂ and Ŷ is the representation of the corresponding disease and gene
in a k-dimensional manifold. Then, the geodetic distance gdistij between disease
i and gene j can be calculated as follows

gdistij =
∥∥∥X̂(i, :) − Ŷ (j :, )

∥∥∥
2

. (10)

for i = 1, . . . , nd and j = 1, . . . , ng. The smaller the value of gdistij , the more
possibly disease i associates with gene j.

In our dataset, matrix A is decomposable although no diagonal elements
of matrices Wr or Wc are zeros. Therefore, matrix C is still decomposable. In
addition, as matrix A is too sparse (4257/(1146 ∗ 2809)), matrix C is also too
sparse, which causes the singular value decomposition diverging. To solve these
issues, we add a small positive number α to each element of matrix A, which make
matrix A+α non-decomposable and its singular value decomposition converged.
Furthermore, if we understand the value of aij in A as the probability that disease
i associates with gene j, adding a value α can be understood as giving a small
chance for every disease-gene pairs to be associated even if their association has
not been verified yet. The value of α is discussed in the next section.

3 Experiments and Results

3.1 10 Fold Cross Validation

To evaluate our method, ROC curve and AUC value are computed based on
10-fold cross validation. In each round of the validation, we randomly select 10%
of known associations as positive testing samples, and set their values in A to be
zeros. The resultant matrix is denoted by Â. We also randomly select the same
number of unknown associations in A as negative testing samples. Then we apply
our method to Â and calculate the geodetic distance between the disease-gene
pairs in the testing set. This process is repeated 20 times.

In our method, the values of two parameters k and α can affect its
performance. Thus, we use grid search to find the optimal values of k
among k = 50, . . . , 950 with the step increase of 50 and α among α =
0.01, 0.005, . . . , 0.00001, 0.00005. From the experiments, for different values of α,
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Fig. 1. The values of AUC in our experiments. (Color figure online)

our method achieves the best performance at k = 900 consistently. Figure 1(a)
shows the AUC values over different values of k when α = 0.00005. Figure 1(b)
shows the AUC values over different values of α when k = 900. In summary, our
method achieves the best performance with α = 0.00005 and k = 900.

We also implement the best matrix completion-based method PBCF in [11]
and compare it with our method on the same dataset. Figure 1(c) shows the
comparison of ROC and AUC values. One can see that the ROC curve of our
method (red) is always above that of PBCF (green) and the AUC value of our
method (0.7452) is larger than that of PBCF (0.5700), which implies our method
performs better.

3.2 De Novo Validation

To further evaluate our method, we also conduct the de novo validation and
compare the results with PBCF. Out of the top 10 unknown gene-disease asso-
ciations predicted by our method, 9 associations are found to be supported by
existing literature. While in the ranked top 10 associations of PBCF, only 6 can
be supported by existing studies.

4 Conclusions

In this study, we propose a novel method based on manifold learning to predict
gene-disease associations. Evaluations performed on OMIM data have shown
that our method outperforms the competing method PBCF in terms of both
AUC with 10-fold cross validation and de novo validation. As can be seen, our
proposed method only uses the experimentally validated gene-disease associa-
tions. However, it is believed that gene-gene similarity and disease-disease simi-
larity can be used to improve the prediction of gene-disease associations. One of
our future studies should be to integrate such data into our method to improve
the prediction performance.
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Abstract. Given one generic linear genome G with gene duplications
(over n gene families), an exemplar genome G is a permutation obtained
from G by deleting duplicated genes such that G contains exactly one
gene from each gene family (i.e., G is a permutation of length n). If we
relax the constraint such that G+ is obtained in the same way but has
length at least k, then we call G+ a pseudo-exemplar genome. Given G
and one exemplar genome H over the same set of n gene families, the
One-sided Exemplar Adjacency Number problem (One-sided EAN) is
defined as follows: delete duplicated genes from the genome G to obtain
an exemplar genome G of length n, such that the number of adjacencies
between G and H is maximized. It is known that the problem is NP-
hard; in fact, almost as hard to approximate as Independent Set, even
when each gene (from the same gene family) appears at most twice in
the generic genome G. To overcome the constraint on the length of G,
we define a slightly more general problem (One-sided EAN+) where we
only need to obtain a pseudo-exemplar genome G+ from G (by deleting
duplicated genes) such that the number of adjacencies in H and G+

is maximized. While One-sided EAN+ contains One-sided EAN as a
special case, it does give us some flexibility in designing an algorithm.
Firstly, we reformulate and relax the One-sided EAN+ problem as the
maximum independent set (MIS) on a colored interval graph and hence
reduce the appearance of each gene to at most two times. We show
that this new relaxation is still NP-complete, though a simple factor-
2 approximation algorithm can be designed; moreover, we also prove
that the problem cannot be approximated within 2 − ε by a local search
technique. Secondly, we use integer linear programming (ILP) to solve
this relaxed problem exactly. Finally, we compare our results with the
up-to-date software GREDU, with various simulation data. It turns out
that our algorithm is more stable and can process genomes of length up to
12,000 (while GREDU sometimes can falter on such a large dataset).

1 Introduction

Comparing two generic genomes (with gene duplications) using different similar-
ity measures, such as the exemplar genomic distance and the exemplar adjacency
number, have been well studied in the past two decades. Sankoff first formulated
c© Springer International Publishing AG, part of Springer Nature 2018
F. Zhang et al. (Eds.): ISBRA 2018, LNBI 10847, pp. 275–286, 2018.
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the exemplar breakpoint distance problem as selecting exactly one gene from
each gene family, such that the breakpoint distance between the two resulting
exemplar genomes is minimized [10]. The exemplar adjacency number problem
is the complement of the exemplar breakpoint distance problem [5,6], which we
will focus on in this paper. Formally, the Exemplar Adjacency Number (EAN)
problem is defined as follows: given two generic linear genomes G and H over
the same set of n gene families, delete duplicated genes from them to obtain two
exemplar genomes G and H each of length n, such that the number of adjacen-
cies between G and H is maximized. The One-Sided EAN problem is the one
when H(= H) is given exemplar.

In theory, not only computing the exemplar breakpoint distance is NP-hard
[3], even computing any approximation is NP-hard when each gene appears in
G and H at most three times [4] or twice [2,8]. (They all showed that deciding
whether the optimal exemplar breakpoint distance is zero, i.e, whether G = H,
is NP-complete. Hence, computing any approximation solution is NP-hard.)
Nonetheless, several algorithms have been proposed. Sankoff presented a branch-
and-bound approach for the exemplar breakpoint distance problem [10]. Nguyen
et al. gave a more efficient divide-and-conquer algorithm for the exemplar break-
point distance problem [9]. Angibaud et al. developed an integer linear program-
ming method for computing the exact breakpoint distance [1]. Shao and Moret
gave a slight different formulation for the exemplar breakpoint distance problem
where not all genes need to appear in the resulting (reduced) genomes, and they
also proposed a fast and exact algorithm using integer linear programming [11].

The Exemplar Adjacency Number problem (EAN) is the complement of the
breakpoint distance problem. Chen et al. showed that if one of the genomes G and
H is exemplar and the other is 2-repetitive (each gene from each gene family
appears at most twice), then this One-sided EAN problem admits neither a
polynomial-time factor-n0.5−ε approximation (where n is the size of the gene
family) unless P = NP , nor an FPT algorithm unless FPT=W[1] [5,6]. Chen
et al. also designed a factor-n0.5 approximation algorithm for the EAN problem
when each gene appears at most twice in both G and H [6]. Because of the
hardness result of the EAN problem (especially that a gene in each gene family
must appear in G), it is not convenient to design efficient algorithms.

In this paper, we focus on the One-sided EAN problem whose input is G and
H, over the same set of n gene families. We first relax the problem by allowing the
reduced (pseudo-exemplar) genome G+, obtained from G by deleting duplicated
genes, to have a length less than n (but each gene can still appear most once),
the objective is to maximize the number of adjacencies between G+ and H. We
call this problem One-sided EAN+, which is a general version of One-sided EAN
and at least as hard as the latter. (The two problems are not exactly the same,
e.g., G = 153642 and H = 123456, with the latter there is no adjacency while in
the former we could delete 3 to obtain an adjacency 56.)

On the other hand, One-sided EAN+ does allow a new relaxation of the prob-
lem as the maximum independent set (MIS) on new variants of interval graph
for linear genomes (where the intervals correspond to the potential adjacency
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ab or −b − a in G are given the same color). While MIS on interval graphs are
known to be polynomial-time solvable [7], in this paper, we show that the MIS
problem on interval graphs becomes NP-complete when the vertices are colored.
On the other hand, a simple factor-2 approximation can be obtained.

The above MIS approximation gives us a reduced/relaxed instance for the
One-sided EAN+ problem. Let G′ be the reduced instance for G, obtained
through the approximate MIS solution. G′ has the property that each gene
appears at most twice in G′ (but some gene might not occur in G′ at all). The
next step is to use integer linear programming (ILP) to compute the exemplar
adjacency between the pseudo-exemplar genome G+ (obtained from G′) and H.
(Note that we never alter H, which is different from that of [11].)

We implement the algorithm and use simulated data (generated in the same
way as in [11]. The comparison with GREDU indicates that our algorithm is more
stable and generate comparable number of adjacencies (though the definitions
of the adjacencies differ a little). The details are in Sect. 4.

This paper is organized as follows. In Sect. 2, we make necessary definitions.
In Sect. 3, we approach the One-sided EAN+ problem by first reformulating it
as the maximum independent set on colored interval graph, provide the NP-
hardness proof of the MIS-problem and then design a simple 2-approximation
algorithm (to obtain a reduced instance). Finally we use integer linear program-
ming to solve the reduced instance exactly. In Sect. 4, we report our test results
in comparison with GREDU on simulated data datasets. In Sect. 5, we conclude
the paper and discuss the future work.

2 Preliminaries

Given n gene families (alphabet) F , a genome G is a sequence of elements of F
such that each element is with a sign (+ or −). Given a genome with a gene
in each family appears exactly once (which is called exemplar) G = g1g2 · · · gn,
we say that gene gi immediately precedes gj , if j = i + 1. Given two exemplar
genomes G,H, if gene a immediately precedes b in G and neither a immediately
precedes b nor −b immediately precedes −a in H, then they constitute a break-
point in G. The breakpoint distance is the number of breakpoints in G or H,
denoted as bd(G,H). Similarly, given genomes G, H with no duplications, if gene
a immediately precedes b in G and either a immediately precedes b or −b imme-
diately precedes −a in H, then they constitute an adjacency in G. The adjacency
number is the number of adjacencies in G or H, denoted as an(G,H). In the
exemplar genomes G,H, we have bd(G,H) + an(G,H) = n − 1. For example, let
G = 12345,H = −5 − 4312, then there are two adjacencies and two breakpoints
between G and H.

Given generic genomes G and H the exemplar breakpoint distance between
them, denoted as ebd(G,H), is the minimum breakpoint distance bd(G,H) where
G,H are exemplar genomes obtained from G and H respectively. Similarly, the
exemplar adjacency number between G and H, denoted as ean(G,H), is the max-
imum adjacency number an(G,H), where G,H are exemplar genomes obtained
from G and H respectively. Again, we have ebd(G,H) + ean(G,H) = n − 1.
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The problem of computing ean(G,H) is formally defined as the Exemplar
Adjacency Number (EAN) problem. When one of G,H is given exemplar, we call
the corresponding problem One-sided EAN problem. Throughout this paper,
we assume H is given exemplar and we use H instead of H henceforth. A
genome G+ with length at least k (k ≤ n), obtained from G by deleting dupli-
cated genes (but each gene cannot appear more than once in G+), is called
a pseudo-exemplar genome. (Note that the definition of breakpoints and adja-
cencies between pseudo-exemplar genomes are the same as between exemplar
genomes.) Given k, the problem of computing G+ from G such that the number
of adjacencies between G+ and H is maximized, is hence called the One-sided
EAN+ problem. (One-sided EAN+ contains One-sided EAN as a special case
when k = n; hence it is at least as hard as the latter.)

Finally, an interval graph I = (V,E) is a graph whose vertices have an one-to-
one correspondence to a set of intervals on a line. An interval u = (l(u), r(u)) is
represented by its left endpoint l(u) and the right endpoint r(u). There is an edge
between two vertices u, v ∈ V iff the intervals have a non-empty intersection.
See Fig. 1 for an example.

Starting in the next section, we present a new method for the One-sided
EAN+ problem. We start with a different relaxation/formulation of the problem.

3 A New Formulation of the Problem

Assume that we are given a generic linear genome G and an exemplar linear
genome H, over the same gene family. Firstly, we try to identify some disjoint
intervals in G, one for each color (corresponding to some 2-substring in H).
These intervals are the vertices of the corresponding colored interval graph I.
Then we try to identify the maximum number of disjoint intervals in G, each of
a different color. Clearly they correspond to a maximum independent set in I.
These intervals are formally constructed as follows.

For each 2-substring aiai+1 in H, we list all the minimal intervals aiβai+1

or −ai+1β − ai (for unsigned genomes ai+1βai) in G such that the contents β
could be deleted to have a potential adjacency aiai+1 or −ai+1 − ai (ai+1ai for
unsigned genomes). Note that a substring xβy is minimal if the substring β does
not contain x, or y, or a subsequence (potential adjacency) −y − x. All these
minimal intervals in G corresponding to aiai+1 in H will be given the same color.
See Fig. 1 for an example of this construction with a colored interval graph where
an unsigned genome is used.

We define the Maximum Independent Set (MIS) problem in a Colored Inter-
val Graph (MIS-CIG for short) as follows.

Problem: MIS-CIG
Instance: A set I of m intervals on a line, each is in one of the k(k < m)

colors, and a parameter k1 ≤ k.
Question: Are there k1 disjoint intervals of different colors?
We show next that MIS-CIG is NP-complete.
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a   b   c   d   e   f  ......

i  g  f  a  i  d  h  b  c  e  g  e  b  f  d  i  g  f  h  ......  g  a  e  i  h  d  f  b

1 1

22
G

H

Fig. 1. Formulation of the one-sided EAN problem potentially as MIS in a colored
interval graph. Note that in G the two intervals labeled with color 1 correspond to the
adjacency ab, while the three intervals labeled with color 2 correspond to the adja-
cency de.

3.1 Hardness of MIS-CIG

Theorem 1. The decision version of the MIS-CIG problem is NP-complete.

Proof. It is not hard to see that the decision version of MIS-CIG is in NP. We
reduce the classic 3SAT problem to MIS-CIG to prove that it is NP-complete.
Given a Boolean formula φ in 3-conjunctive normal form, φ = F1 ∧F2 ∧ · · · ∧F�,
where each of the � clauses Fi has three distinct literals from a set of m boolean
variables x1, x2, · · · , xm, the problem is to decide whether φ is satisfiable.

For each variable xi and its negation x̄i, we construct two copies of inter-
leaving intervals of four different colors 4i − 3, 4i − 2, 4i − 1, 4i (See Fig. 2). If xi

is assigned TRUE, we select 4i − 3, 4i − 1 at the top-right corner and 4i − 2, 4i
at the bottom-left corner. If xi is assigned FALSE, we select 4i − 3, 4i − 1
at the top-left corner and 4i − 2, 4i at the bottom-right corner. For each
clause Fj , we create three very small intervals of the same color (Fj). We
put the interval with color Fj under the interval 4i − 3 corresponding to xi

if xi appears in Fj , and we put the interval with color Fj under the inter-
val 4i − 3 of x̄i if x̄j appears in Fj . We give an example to illustrate the
construction. Assume we have a 3SAT formula φ = F1 ∧ F2 ∧ F3 ∧ F4, with
F1 = (x1∨x̄2∨x3), F2 = (x̄1∨x2∨x̄4), F3 = (x̄2∨x̄3∨x4), and F4 = (x1∨x̄3∨x̄4).
In Fig. 2, we show the construction on x1, x2 as the remaining construction for
x3, x4 is similar.

We show that φ is satisfiable if and only if the colored interval graph has an
IS of 4m + l intervals (all with different colors).

“→” Suppose that the 3SAT instance φ is satisfiable. If xi is assigned TRUE,
we select the top-right intervals 4i − 3, 4i − 1, the bottom-left intervals 4i − 2, 4i
and all other Fj intervals in the bottom row under the unselected interval 4i− 3
as part of the MIS. (If multiple Fj intervals are selected, we just arbitrarily keep
one of them.) If xi is assigned FALSE, we select the top-left intervals 4i−3, 4i−1,
the bottom-right intervals 4i− 2, 4i and all other Fj intervals in the bottom row
under the unselected interval 4i− 3 as part of the MIS. Consequently, we obtain
an MIS with 4m + � intervals (all with different colors).
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“←” Suppose that the colored interval graph contains an independent set
of 4m + � intervals, all with different colors. For the two groups of interleaving
intervals 4i − 3, 4i − 2, 4i − 1 and 4i (corresponding to xi and x̄i respectively),
clearly we could only select them in two different ways. We could either select
the top-right 4i − 3, 4i − 1 and the bottom-left 4i − 2, 4i intervals, we could
select the top-left 4i − 3, 4i − 1 and the bottom-right 4i − 2, 4i intervals. In the
former case, we assign xi TRUE, and then the Fj intervals containing xi will
be in the independent set as the top-left interval 4i − 3, which intersects all the
Fj intervals containing xi, is not selected. In this case, Fj evaluates to TRUE
and is satisfied. Similarly, we could show Fj containing x̄i is also satisfied if we
select the top-left 4i − 3, 4i − 1 and the bottom-right 4i − 2, 4i intervals, which
corresponds to assigning xi FALSE. Then, we have a truth assignment for all
the variables such that each Fj in φ is satisfied.

The reduction takes O(m + �) time. Hence the theorem is proven. �	
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Fig. 2. Illustration for the reduction from the 3SAT instance φ. To save space, only
the construction for x1, x1 and x2, x2 are shown.

4 Algorithms

In this section, we design an efficient factor-2 approximation algorithm for the
MIS-CIG problem. Moreover, we prove that the approximation factor cannot
be improved to be less than 2 by some local search technique. This gives us a
reduced instance G′ where each gene appears at most twice. On top of this, we
use integer linear programming to efficiently delete extra gene duplications while
computing the maximum number of adjacencies.

4.1 A Factor 2-Approximation

A factor-2 approximation for the MIS-CIG can be obtained using the well-known
greedy method. Firstly, the intervals are ordered by their monotonically increas-
ing right endpoints. Secondly, we scan the intervals from left to right and put
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Algorithm 1. Greedy algorithm
1. m ← size of I.
2. S ← ∅.
3. Sort all intervals in I according to their right endpoints as I1, . . . , Im.
4. Delete from I all the intervals of the same color with I1 or overlapping with I1.
5. Delete I1 from I.
6. S ← S ∪ {I1}.
7. while I �= ∅
8. It ← the first interval in I.
9. S ← S ∪ {It}.

10. Delete all the intervals of the same color with It or overlapping with It.
11. Delete It from I.
12. Return S.

the first interval I1 in the solution. Then we delete all the intervals of the same
color or overlapping with I1 and repeat this process.

It is straightforward to see that the algorithm returns a factor-2 approxima-
tion for MIS-CIG. Let Ii ∈ S and let Ij be some interval which intersects r(Ii)
(the right endpoint of Ii). As the algorithm scans intervals from left to right,
any optimal solution not containing Ii must either contain an interval of the
same color with Ii, or contain an interval of the same color with Ij (inclusive of
Ij), or both. Hence the approximation algorithm would return at least a half of
the optimal solution associated with r(Ii). Applying this argument recursively
would give us a factor-2 approximation.

4.2 A Local Search Improvement?

After obtaining the greedy algorithm, it is easy to come up with an improvement
using a local search method. Let I be the input intervals for the MIS-CIG
problem. We search for a subset of c intervals in S, Sc, such that putting Sc

back to I\S enables us to find locally a subset S′
c of more than c independent

intervals with different colors and all the colors in S′
c do not appear in S\Sc.

Then (S\Sc) ∪ S′
c would give us a better solution than S and we update S ←

(S\Sc) ∪ S′
c. This process will continue until no Sc can be found. For a constant

c, we call the corresponding local search procedure c-local search. Unfortunately,
for c = 1, 2, this local search method cannot improve the result in the worst
case. We summarize the result as follows.

Theorem 2. Algorithm1 returns a 2-approximation for MIS-CIG. For c = 1, 2
and some constant ε, the solution obtained by Algorithm1 cannot be improved
to have an approximation factor smaller than 2 − ε using c-local search.

Proof. Assume to the contrary that with c-local search, c = 1, 2, we could obtain
a 2− ε approximation for the MIS-CIG problem. We construct an instance with
3n + 2 intervals, with 2n colors {0, 1, . . . , 2n − 1}. The greedy algorithm would
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select the intervals at the bottom row with colors 0, 1, 2, . . . , n. The optimal
solution is to select all the intervals in the top row (except the last interval with
color 0), with colors 0, 1, . . . , 2n − 2, 2n − 1. When context is clear, we just call
an interval with color i interval i (Fig. 3).

1 n−2 n−1 n

n 0 n−3 n−2 n−1 0...... 2n−2 2n−1
......

n+1

0

Fig. 3. Illustration for the proof of Theorem 2.

To see that c-local search does not incur any improvement for c = 1, 2, it is
important to notice that any interval i (i > 0) at the bottom row contains an
interval i − 1 at the top row; moreover, the two neighboring intervals of interval
i − 1 at the top row, n + i − 1 and (n + i) mod 2n, are both intersecting with
the corresponding neighboring intervals of i at the bottom row. (For interval 0
at the bottom row, it intersects interval n at the top row.) Hence, for 1-local
search, it is impossible to obtain a better result by swapping interval i at the
bottom row with two intervals in new colors at the top row. Similarly, for 2-local
search, it is impossible to obtain a better result by swapping two intervals i, j
at the bottom row with three intervals in new colors at the top row.

For this instance, the approximation factor is

2n

n + 1
= 2 − 2

n + 1
> 2 − ε,

when n is sufficiently large at n > 2−ε
ε . Hence, the approximation factor of the

greedy algorithm is tight, whether or not c-local search, c = 1, 2, are applied. �	
Note that when c ≥ 3, the above argument does not work anymore. On

the other hand, a local search with c ≥ 3 could incur high cost. Hence, after a
reduced genome G′ is obtained through the MIS approximation, we would use
integer linear programming (ILP) instead.

4.3 ILP Formulation on the Reduced Instance

The genes in the reduced genome G′ occur at most twice after using the MIS
approximation in a colored interval graph on the original generic genome G. The
reason is that each gene could appear in two intervals, e.g., (i−1, i) and (i, i+1).
Moreover, there is no guarantee that a gene in each gene family appears in G′.
Hence from G′ we could only hope to compute a pseudo-exemplar genome (i.e.,
each gene appears at most once, some might never appear). In this subsection, we
use integer linear programming (ILP) on the reduced genome to get a pseudo-
exemplar genome based on the property that every pair of genes appear in
G′ in an adjacent form already, e.g., (i, i + 1) or (i + 1, i). We keep the order
of genes in the intervals resulting from the greedy method. For example, G′ =
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67 45 32 56 12 34 . Due to the space constraint, we leave out other details
using ILP in this conference version. The full details will be presented in the final
journal version.

5 Simulation Results

Our algorithm’s simulation can be divided into two main components; namely,
data generation and greedy exemplar selection written in Java, and the exemplar
alignment written in Matlab using CPLEX for ILP. (The GREDU software was
written in C++ which is usually much faster, and the ILP package GUROBI
was used.) We ran our approximation algorithm as well as GREDU on a PC
with 2.5 GHz Intel Core processor and 4 GB of memory.

Our simulated data is generated using a method similar to that in [11]. The
dataset generator builds an exemplar genome, H, of size n, comprising of an
integer sequence [1 . . . n] representing n unique genes. This exemplar genome is
then mutated m times to produce some genome, G, where m is a user provided
integer that roughly corresponds to the number of generations between H to
G. A mutation cycle on a genome is performed by traversing each gene gk in
the genome, and mutating gk with some probability. Our generator can perform
up to eight different mutations:

– Unit Reversal: Given a gene, gk, switch the locations of gk and gk+l with a
probability of p1.

– Unit Insertion: An arbitrary gene is inserted at location k with a probability
of p2.

– Unit Deletion: The gene, gk, is removed with a probability of p3.
– Unit Duplication: The gene, gk, is copied and then inserted at location k + 1

in the genome with a probability of p4.
– Segment Reversal: Given some length, l, and a gene, gk, the ordering of the

genome between genes gk and gk+l is reversed with a probability of p5.
– Tandem Duplication: Given some length, l, and a gene, gk, the genes between

gk and gk+l are copied and placed at location k + l + 1 with a probability of
p6.

– Segment Deletion: Given some length, l, and a gene, gk, the genes between
gk and gk+l are removed with a probability of p7.

– Segment Duplication: Given some length, l, and a gene, gk, the sequence of
the genome between gk and gk+l is copied and then inserted at a random
location in the genome with a probability of p8.

Every mutation cycle is performed on the mutated genome from the last muta-
tion cycle, until m cycles have completed. Both the exemplar genome H and the
genome G are then written to disk. These exemplar-genome pairs are then used
as test datasets for both our Greedy-ILP algorithm, as well as for the GREDU
software that we compare performance against.

In our simulations we use three different settings for the probabilities, P1, P2,
and P3.
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– P1 = {p1 = 0.05, p2 = 0.10, p3 = 0.05, p4 = 0.05, p5 = 0.03, p6 = 0.06, p7 =
0.03, p8 = 0.10, p9 = 0.07, l = 5}

– P2 = {p1 = 0.20, p2 = 0.15, p3 = 0.15, p4 = 0.10, p5 = 0.05, p6 = 0.08, p7 =
0.04, p8 = 0.12, p9 = 0.10, l = 1}

– P3 = {p1 = 0.20, p2 = 0.18, p3 = 0.10, p4 = 0.10, p5 = 0.05, p6 = 0.09, p7 =
0.05, p8 = 0.10, p9 = 0.00, l = 10}

While these cases are not exhaustive in regards to the coverage of genome gen-
eration free variables, they do provide the three unique cases of genomes that
we are interested in for our comparison of our algorithm and GREDU. The first
case, P1 is designed to not mutate aggressively, and is designed to change slowly.
This means that most of the gene families will still be in the same ordering as
the exemplar, and many alignment pairs should be found. The second case, P2,
is designed for rapid mutations. Higher mutations rates coupled with a small l

Table 1. Comparison results (signed genome) between the number of adjacencies n1

from our algorithms and the number of adjacencies n2 from GREDU. The gap - indicate
that we get a core dumped warning from GREDU and can not see the results after 10
times tries.

N M P1 P2 P3

n1 n2 n1 n2 n1 n2

500 1 247 242 216 224 204 198

3 87 41 34 34 19 20

5 17 12 23 8 8 2

1000 1 512 481 391 406 301 297

3 106 96 66 61 54 47

5 24 23 33 29 23 18

3000 1 1552 1442 1231 1244 703 756

3 360 330 232 222 171 164

5 80 78 97 73 64 50

5000 1 2441 2307 2044 2067 1532 -

3 658 568 439 397 204 196

5 163 159 272 197 110 91

7000 1 3471 3433 2495 2525 2010 -

3 823 740 630 512 515 409

5 223 208 249 139 151 128

9000 1 4563 4296 3507 3588 3355 -

3 1103 969 933 828 583 -

5 257 249 276 154 177 152

12000 1 6183 5756 5217 5322 3423 -

3 1383 1287 1247 1112 279 237

5 365 332 379 239 257 205
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value mean that the genome that is generated will likely have a vastly different
relative ordering of gene families compared to the exemplar, and few pairs should
be found. The last case, P3, is somewhat of a mixing between P1 and P2. The
mutation rates are still set relatively high, but the value of l is also increased to
10. This means that while the genome is changing rapidly, large sections of it
will also be moved and copied without changing the local ordering. We do not
expect many adjacencies to be found, but we do expect slightly better results
that from P2.

Although the platforms (even the adjacency definitions) between our imple-
mentation and GREDU are quite different, we compare them using the same
simulated data in Table 1. All the numbers are averaged over 10 tries. Even
though that GREDU is much faster as it is written in C++, our implemen-
tation, which is based on Java and Matlab, does not need more than 20 min
for any case we tested (which should be fine with this application). However,
for many P3 datasets, GREDU cannot run to completion. Our implementation
is much stable and the number of adjacencies computed do not differ too much
between the two (even though the definitions of adjacencies differ a bit). We also
obtained similar results for unsigned genomes, but the details will have to be left
out in this conference version due to the space constraint. Note that GREDU
only handles signed genomes.

6 Conclusion

We approach the One-sided EAN problem by considering a general version of it,
One-sided EAN+. We approach the One-sided EAN+ problem by first relaxing
it as the maximum independent set in a colored interval graph, which open a new
research pipeline to deal with the exemplar genomic distance problems for linear
genomes. Our greedy + ILP algorithm can handle large scale genomic (singed
and unsigned) data with deep evolution size based on the simulation results.

For the future work along this line, we can formulate the problem as MIS in a
colored 2-interval graph for two generic linear genomes with duplications. We can
also define similarly MIS in a colored circular-arc graph for two generic circular
genomes. Note that the greedy algorithm cannot produce a 2-approximation in
these settings.
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Abstract. The type III secreted effectors (T3SEs) are virulence pro-
teins that play an important role in the pathogenesis of Gram-negative
bacteria. They are injected into the host cells by the pathogens, inter-
fere with the immune system of the host cells, and help the growth and
reproduction of the pathogens. It is a very challenging task to identify
T3SEs because of the high diversity of their sequences and the lack of
defined secretion signals. Moreover, their working mechanisms have not
been fully understood yet. In order to speed up the recognition of T3SEs
and the studies of type III secretion systems, computational tools for the
prediction of T3SEs are in great demand. In this study, we regard the pro-
tein sequences as a special language. Inspired by the word2vec model in
natural language processing, we convert the sequences into word embed-
ding vectors in a similar manner with a specific segmentation strategy
for protein sequences. And then we construct the T3SE predictor based
on the new sequence feature representation. We conduct experiments on
both mono-species data and multi-species data. The experimental results
show that the new feature representation model has a competitive per-
formance and can work together with the traditional features to enhance
the identification of T3SEs.

Keywords: Type III secreted effectors · Word2vector
Feature representation

1 Introduction

The type III secreted effectors (T3SE) are virulence proteins produced by Gram-
negative pathogenic bacteria to interfere with host immune signaling networks
[1,2]. They are injected into the host cells through type III secretion systems
(T3SS) [1], which are indispensable for the pathogenesis of a large variety of
plant and animal pathogens, such as Pseudomonas, Erwinia, Xanthomonas,
Ralstonia, Salmonella, Y ersinia, Shigella and Escherichia, etc. [3,4].
c© Springer International Publishing AG, part of Springer Nature 2018
F. Zhang et al. (Eds.): ISBRA 2018, LNBI 10847, pp. 287–298, 2018.
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The T3SEs have important functions for the virulence of pathogens, and
the research achievements of T3SEs will contribute to the understanding of the
work mechanism of T3SS. However, although researchers have explored for over
a decade, the precise principle underlying the secretion process has not been
fully uncovered, and a large proportion of T3SEs remain uncovered [5]. More-
over, T3SEs and T3SS are also found in non-pathogenic bacteria, which makes
T3SEs powerful weapons for researchers to explore the immunity and functions
of the host cells. Over the past decade, benefitting from the advances of high-
throughput sequencing technologies, a lot of pathogenic bacterial genomes have
been sequenced, and the known T3SE sequences have also accumulated rapidly.
Typical T3SE databases include T3SEdb [6], T3DB [7], etc. The labor-intensive
experimental verification methods have largely restricted the development of
T3SE research, while computational methods have been demonstrated to be
useful for accelerating the verification of T3SEs [8]. Some computational tools
have been developed for the prediction of T3SEs [9]. The research achievements
of these prediction systems could be helpful for T3SS researchers to verify T3SEs
from tremendous genomic sequences efficiently.

The recognition of T3SEs is essentially a classification problem based on pro-
tein sequences. Due to the lack of defined signal/motif for known effectors, most
of the existing predictors for T3SEs utilize general classification methods for pro-
tein sequences, e.g., [10–12]. Moreover, since the amino acid sequences of T3SEs
have great diversity, effective feature extraction methods are highly in need to
enhance the prediction performance. Many machine learning methods have been
proposed for the identification of T3SEs [5,13–15]. For instance, Yang et al.
[5,13] proposed the SSE-ACC method (amino acid composition in terms of their
different secondary structures and solvent accessibility states) and topic models
for T3SE recognition. Löwer and Schneider [14] used sliding-window technique
to extract features. Wang et al. [15] proposed a position-specific feature extrac-
tion. The position-specific occurrence time of each amino acid is recorded, and
then the profile is analyzed to compose features. Recently, Goldberg et al. pro-
posed the pEffect method, which creates an alignment profile using PSI-BLAST
method and maps the profile to feature vectors for classification in SVMs [16].

Besides the feature extraction based on statistical characteristics, sequence
encoding schemes have also been adopted in biological sequence analysis. For
instance, one-hot encoding is a simple and common scheme, which has been
widely used in biological sequence classification [17]. Here, we regard the protein
sequences as a special biological language. Instead of using traditional discrete
features, like the bag-of-words model, most of the current natural language pro-
cessing (NLP) tasks have adopted the continuous word representation, i.e., the
word embedding, obtained by word2vec [18] or similar techniques, based on an
unsupervised learning using deep models. Given the embedding vectors, it is
convenient to measure word semantic correlations by calculations in the vec-
tor space. Although the concept of biological language has been proposed over a
decade ago [19], the studies on continuous representation for biological sequences
are very few [20]. A major reason is that defining words in biological sequences is
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Fig. 1. Flowchart of the prediction system.

difficult. The natural languages have predefined dictionaries with defined words.
Words correspond to subsequences with certain functions in the protein/DNA
sequences. However, there is neither predefined word list nor spaces for sepa-
rating words/phases in protein or DNA sequences. Therefore, in this study, we
investigate different segmentations for protein sequences and then exploit the
word2vector technique to transform the segments into embedding vectors that
can be used in machine learning methods.

We represent all the T3SEs and non-T3SEs with the proposed method and
build a predictor by using the word embeddings. The experiments were con-
ducted on two datasets, including both a mono-species set and a cross-species
set. We compared the new method with traditional feature extraction methods
for amino acid sequences. The experimental results show that the new word
embedding features have a competitive performance against traditional meth-
ods. Moreover, they can work with traditional features together, to improve the
prediction accuracy.

2 Methods

In this study, we focus on the continuously distributed representation (word
embedding) of protein sequences, which is based on the assumption that biologi-
cal sequences can be viewed as texts written in a special language [19], where the
words are k-mer subsequences, syntax and semantics may correspond to molec-
ular structure and biological function, respectively. Analogous to Word2Vec, we
can convert k-mers into word embeddings and apply them to the inference of
molecular structure, dynamics, and function. Therefore, our method contains
four steps: (1) segmenting protein sequences; (2) training the word embedding
vectors; (3) obtaining the feature representation of protein sequences; (4) classi-
fication. Figure 1 shows the pipeline of our method. In the following subsections,
we describe the four steps respectively in details.

2.1 Segmentation

Similar to Chinese sentences, there is no space for separating words in protein
sequences. We assume that residue segments serve as words in this special bio-
logical language. Converting the consecutive amino acids into a concatenation
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of words is a key step that has a significant impact on the performance of clas-
sification/prediction. In this study, we segment the sequences using a sliding
window with fixed size k, i.e., generating amino acid segments of length k in an
overlapping manner (Fig. 1 shows an example when k = 3).

Compared to the method which segments the sequences non-overlappingly,
the sliding window method could contain more sequence information. Moreover,
because of the ambiguity of word boundaries, the start sites for segmentation is
usually unknown, and the non-overlappingly method may result in wrong words,
while the sliding window method can void this issue.

2.2 Training of the Word Embedding Vectors

In the word2vec model for natural language processing, the word embedding
vectors are trained via a large corpus based on the context information in an
unsupervised manner, where Wikipedia is usually used as the corpus. Thus firstly
we need to define a suitable corpus, i.e., a protein database. In a previous study,
Asgari and Mofrad [20] used the Swiss-Prot database as the corpus, which con-
tains over 550,000 amino acid sequences in the current release. However, accord-
ing to our experiments, the Swiss-Prot is not large enough for a sufficient training
of the word vectors. In this study, we adopt UniRef50 (http://www.uniprot.org/
uniref/), which is built by clustering UniRef90 seed sequences that have at least
50% sequence identity to, and 80% overlap with, the longest sequence in the
cluster, including 30,000,000 sequences. The reasons for choosing this database
as our corpus is that: (i) this database is large enough to satisfy the requirement
of training the word vectors; (ii) this database reduces sequence redundancy to
some extent, thus avoids the issues brought by high sequence identity.

The word2vec model takes full advantage of the relationship between the
segment and its context and can train a continuously distributed vector for each
segment. The purpose of this algorithm is to maximize the log-likelihood (Eq. 1)
generated by the segment and its context,

L =
∑

ω∈C

log p(ω|Context(ω)), (1)

where ω is the query word (whose vector is to be estimated), Context(ω) is its
context, and C is the corpus. The central problem is to find an appropriate algo-
rithm to estimate the probability of the query word predicted by the surrounding
words. According to the frequency of the segments, Mikolov et al. constructed
a Huffman tree for the corpus [18,21], where each leaf node represents a word.
The input vector Xω in the Eq. (2) represents the sum of the vectors of the
words within the context of ω, i.e., words preceding and following the query
word. There is a unique path from the root node of the Huffman tree to ω, and
the selection of a non-leaf node in the path can be regarded as a binary classi-
fication problem, where θω

j is the parameter vector of the classification problem
and dω

j is the result of the problem. The product of the probabilities of all l − 1

http://www.uniprot.org/uniref/
http://www.uniprot.org/uniref/
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classification problems is used to represent the probability of ω predicted by the
surrounding words (l denotes the length of the path from the root node to the
leaf node),

p(ω|Context(ω)) =
lω∏

j=2

p(dω
j |Xω, θω

j−1). (2)

2.3 Protein Sequence Representation

At this stage, we already have the continuous vectors for all words/k-mers. In
order to obtain the representation for a whole sequence, the k-mers’ vectors
need to be integrated. Here we assume that the words contribute equally to the
classification of the protein sequence. A combination strategy is to concatenate
all the word vectors into a (L − 1) × d-dimensional vector (Eq. 3), where L is
the length of the sequence (there are L − 1 words obtained by the sliding win-
dow scheme) and d is the dimensionality of the word embedding vectors. In this
case, the dimensionality of the sequence is too high, and the input space will
have variable sized input because the lengths of protein sequences are different,
which may increase the difficulty of classification using machine learning meth-
ods. An alternative strategy is to generate d-dimensional feature representations
for sequences, either by summing over all word vectors (Eq. (4)) or using the
mean vectors of all the words (Eq. (5)). This strategy leads to a much lower
dimensional feature space with a fixed length. In our experiments, we assess the
performance of using both the sum vectors and mean vectors for representing
protein sequences.

χ = [Vω1 , Vω2 , . . . , VωL−2 , VωL−1 ] (3)

χ =
∑

i

Vωi
, i ∈ {1, 2, . . . , L − 1}, (4)

χ =
∑

i Vωi

L − 1
, i ∈ {1, 2, . . . , L − 1}, (5)

where ωi denotes a word, Vωi
denotes the vector of ωi, and χ is the feature vector

for the whole sequence.

2.4 Classification

After we obtain the representation vectors for the whole protein sequences, the
vectors are fed into classifiers. We adopt the support vector machines (SVMs) as
the classifiers, which are widely used in bioinformatics because of their excellent
and stable performance in the classification tasks. The RBF function is used to
optimize the classifier. Its optimal parameters C and γ are determined by a grid
search.
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3 Results and Discussions

3.1 Data Sources

In order to assess the performance of our model on the recognition of type III
secreted effectors (T3SE), we construct two datasets and conduct two groups of
experiments on them, respectively. In the first group of experiments, we perform
training and prediction within the same species; while in the second group, we
perform a cross-species prediction. Therefore, the two datasets contain mono-
species data and multi-species data, respectively.

The first dataset include T3SEs only from Pseudomonas syringae, which has
the largest number of putative and confirmed type III secreted effectors. We have
collected a total of 283 confirmed Pseudomonas effectors from three strains, P.
syringae pv. tomato strain DC3000, P. syringae pv. syringae strain B728a and
P. syringae pv. phaseolicola strain 1448A. A certain percentage of T3SEs in this
dataset are obtained using homology search, which makes the similarity between
the sequences very high. Considering that the high similarity of the dataset
would result in overestimation of the performance, we cluster these effectors
with sequence similarity over 60% and use only the representative sequence of
each cluster in our dataset, resulting into 102 positive samples. The negative
dataset is extracted from the genome of P. syringae pv. tomato strain DC3000
because it has been intensively investigated for the research of T3SS. A total of
136 non-effectors are retrieved as negative samples.

Pseudomonas syringae is a model organism in plant pathology. In order to
examine the generalization performance of this method, we prepare another
dataset of effectors from multiple species, including both plant and animal
pathogens. Currently, there have been several T3SE databases (e.g., T3SEdb
[6], Effective [22] and Bean 2.0 [23]). Among them, Bean 2.0 is the most recent
and largest one. Therefore, we collect 713 T3SEs from BEAN 2.0 (http://systbio.
cau.edu.cn/bean-/index.php), remove sequence redundancy by using CD-hit [24]
with the sequence identity cutoff of 40%, and get 241 T3SEs. Meanwhile, 284
negative samples are randomly selected from the non-T3SE proteins released in
Bean 1.0. The source pathogens of the collected T3SEs are associated with a
total of 14 host species, thus it is a comprehensive dataset. The detailed data
statistics are shown in Table 1. Note that in the genomes, T3SEs are much fewer
than non-T3SEs. That is, the identification of T3SE is essentially an imbalanced
classification problem, as mentioned in many protein-related studies [25–27].
Considering that most of the machine learning algorithms cannot handle imbal-
anced data well, we adopt a nearly 1:1 ratio, where the negative samples are
slightly more than the positive samples.

3.2 Experimental Settings and Evaluation Criteria

There are two key parameters in our method. One is the length of words, i.e., the
value of k for k-mers, and the other is the dimensionality of word vectors. When
the value of k increases, the number of k-mers (20k) increases exponentially, and

http://systbio.cau.edu.cn/bean-/index.php
http://systbio.cau.edu.cn/bean-/index.php
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Table 1. Data statistics

Dataset Positive samples # Negative samples # Total #

Dataset I 102 136 238

Dataset II 241 284 525

the k-mers have much sparse distribution in the corpus (some k-mers are even
absent in the corpus). Besides, it would take much more time for training word
embedding vectors in the corpus when k is large. On the contrary, if k is small, the
too-short words may contain little biological meaning, like the auxiliary words
in natural languages. Therefore, we should choose a proper value for k. Some
previous literature has demonstrated the good performance of using 4-mers in
protein classification problems, as FOUR is the typical longest distance for local
interactions between amino acids [28]. Here we investigate the values around 4,
i.e., 3 ≤ k ≤ 5, and the result is discussed in Sect. 3.3. We set the number of
dimensions for the continuous feature vectors to 100, same as the study in [20].

Our implementation of the support vector machines adopts the RBF kernel
function. On both the two datasets, we conduct a 10-fold cross-validation, and
the optimal values of the parameters C and γ are searched via a grid search using
a nested-cross-validation. In order to provide reliable predictions for future wet-
bench analysis, we use two metrics to evaluate the performance of the proposed
method, including total accuracy (TA) and F1-score (F1). The accuracy TA is
used to measure the overall prediction quality, i.e., the ratio of the test samples
the system classifies correctly. The F1-score is a common metric that takes into
account both the precision and recall of the classification model.

3.3 Investigation on the Feature Representation

For the settings of word vectors, we investigate the impact of the length of
words and also the integration strategy for generating sequence representation
from word vectors. Figure 2 shows the results of two methods (using the sum of
vectors and mean vector of words, respectively) under three values of k. As can be
seen that the best performance is obtained by the mean vectors when k equals
4, which is consistent with the analysis in Sect. 3.2. And, 3-mers and 4-mers
have relatively close performance, while 5-mers have much worse performance,
indicating that long words do not necessarily improve the accuracy.

3.4 Result Comparisons with Other Feature Extraction Methods

We compared our model with multiple traditional feature extraction methods for
amino acid sequences. The compared methods include auto covariance (AC), k-
mer method, PC-PseAAC, PC-PseACC-General, SC-PseAAC and SC-PseAAC-
General. They are described as follows.

– Auto covariance (AC) incorporates the correlation of the properties between
two amino acids [29,30].
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Fig. 2. Performance of different parameter settings for feature representation. ‘sum’
and ‘mean’ denote the methods using the sum and mean of word vectors, respectively.

– The k-mer method calculates the occurrence frequencies of k-mers to reflect
the short-range or local sequence compositions [31].

– PC-PseAAC and SC-PseAAC methods generate the feature vectors by com-
bining the amino acid composition and global sequence-order effects via par-
allel correlation and series correlation respectively [32,33].

– PC-PseAAC-General and SC-PseAAC-General are updated versions of PC-
PseAAC and SC-PseAAC, respectively. They incorporate domain knowledge,
such as functional domain, gene ontology and sequence evolution [32–34].

In order to assess the performance of the new method, we conduct experi-
ments on both Datasets I and II, i.e., the Pseudomonas syringae dataset and
the multi-species dataset. The experimental results are shown in Table 2.

Table 2. Result comparison of feature extraction methods on Datasets I and II∗

Method DataSet I DataSet II

TA (%) F1 (%) TA (%) F1 (%)

AC 71.44 64.33 71.37 55.47

1-mer 82.84 80.72 83.31 74.32

2-mer 89.58 87.70 83.59 74.22

3-mer 88.60 86.56 81.35 70.62

PC-PseAAC 89.03 87.12 87.99 81.18

PC-PseACC-General 89.47 87.40 86.64 79.69

SC-PseAAC 89.79 88.00 87.47 81.16

SC-PseAAC-General 82.94 81.01 78.71 68.86

Word vector (wordlen= 3) 90.01 88.32 83.04 73.87

Word vector (wordlen= 4) 91.31 89.74 87.30 80.60

Word vector (wordlen= 5) 84.13 82.54 84.37 75.65
∗Experiments of the traditional feature extraction methods were
conducted using the Pse-in-One webserver [35].
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As can be seen in Table 2, the proposed method using word embedding vectors
has a competitive performance compared with the traditional feature extraction
methods. It has the highest accuracy on Dataset I and is very close to the best
method on Dataset II. Interestingly, this method, based merely on sequence
information, has obvious advantages over the methods based on the combina-
tion of sequence and domain knowledge (PC-PseAAC-General and SC-PseAAC-
General), demonstrating the powerful representation ability of the continuous
vectors for words. And, another reason is that the functional annotations (func-
tional domain, gene ontology) for effectors are scarce.

The performance of our method varies as the length of words changes. Specifi-
cally, the methods using word length of 4 achieve the best results. For the k-mer
method, the 2-mers have the best performance among the three values of k,
suggesting that a large k does not necessarily lead to a high accuracy.

Apparently, the T3SEs within the same species have more common char-
acteristics, while the cross-species prediction is more difficult. Generally, the
accuracies of the cross-species experiments are much lower than the results of
within-species experiments. As for our method, the total accuracy drops about
4% and F1 decreases 9%, but the over 80% accuracy can still provide a valuable
reference for biological researchers in the identification of T3SEs.

3.5 Results of the Combination of Word Embeddings and
Traditional Features

Considering that the word embedding feature vectors are generated by using an
entirely different mechanism against the previous feature extraction methods,
we explore the potential performance improvement via the combination of these
two kinds of features. We concatenate two different vectors together to form a
new vector. The results are shown in Table 3.

Table 3. Result comparison on the combination of feature extraction methods

Method DataSet I DataSet II

Acc (%) F1 (%) Acc (%) F1 (%)

Word vector + AC 86.42 83.92 83.85 74.06

Word vector + 1-mer 90.65 89.68 84.96 76.13

Word vector + 2-mer 90.03 87.63 87.71 80.52

Word vector + 3-mer 89.58 87.96 86.35 78.94

Word vector + PC-PseAAC 91.09 90.09 88.16 81.37

Word vector + PC-PseACC-General 93.27 92.04 87.15 80.04

Word vector + SC-PseAAC 91.53 90.25 88.38 81.69

Word vector + SC-PseAAC-General 90.11 88.28 84.54 75.71

As can be seen, the combination strategy results into the significant enhance-
ment of performance. On Dataset I, the combination of our method and PC-
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PseACC-General achieves the highest accuracy, i.e., total accuracy of 93.27%
and F1 of 92.04%, which are 2% higher than word vector method without com-
bination, and 4% higher then PC-PseACC-General. As for Dataset II, the com-
bination of our method and SC-PseAAC achieves the highest accuracy, which
has a relatively small improvement compared with the single methods.

3.6 Discussion

The word embeddings have been widely used in natural language processing,
and it has outstanding performance in the representation of word features. The
proposed method for generating protein sequence embeddings will be a powerful
tool in the studies of protein sequence analysis. Since the biological system is
complex and can not be described in a single data type, the proposed model can
only analyze the information in the sequence and neglect the spatial structure
and other information of T3SEs. As a future work, more biological features can
be incorporated into the predictor to enhance the discriminant ability for T3SEs.
Besides, although the current experiments demonstrate the good performance
of the word vectors, we haven’t fully exploited this method, as the segmentation
method is relatively simple, and may not be able to distinguish between useful
words and useless words which brings noise to the training and prediction system.

4 Conclusion

In this paper, we propose a machine learning method to predict the type III
secreted effectors. First, the protein sequences are segmented into words (k-
mers) by a sliding window. Then the word embedding vectors are trained with
a large protein corpus. We obtain the vector information of the sequence by
combining the vectors of all the segments in the sequence. By using the state-
of-art classifier, support vector machines, we construct a system to distinguish
T3SEs and non-T3SEs, which outperforms the existing prediction methods based
on traditional feature representation methods. Thus far, a large portion of T3SEs
still remains unknown. Bioinformatics tools are of great importance for exploring
the characteristics of effectors and discovering them automatically. We believe
that this computational method can be applied to the prediction of T3SEs in
various bacteria species, and can also assist in other sequence analysis tasks.

Acknowledgement. This work has been supported by the Shanghai Municipal Nat-
ural Science Foundation (No. 16ZR1448700).
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Abstract. In 2006, Valiant introduced a variation to his celebrated PAC
model to Biology, by which he wished to explain how such complex life
mechanisms evolved in that short time by two simple mechanisms - ran-
dom variation and natural selection. Soon after, several works extended
and specialized his work to more specific processes. To the best of our
knowledge, there is no such extension to the prokaryotic world, in which
gene sharing is the prevailing mode of evolution.

Here we extend the evolvability framework to accommodate horizon-
tal gene transfer (HGT), the transfer of genetic material between unre-
lated organisms. While in a separate work we focused on the theoretical
aspects of this extension and its learnability power, here the focus is on
more practical and biological facets of this new model. Specifically, we
focus on the evolutionary process of developing a trait and model it as
the conjunction function. We demonstrate the speedup in learning time
for a variant of conjunction to which learning algorithms are known. We
also confront the new model with the recombination model on real data
of E. coli strains under the task of developing pathogenicity and obtain
results adhering to current existing knowledge.

Apart from the sheer extension to the understudied prokaryotic world,
our work offers comparisons of three different models of evolution under
the same conditions, which we believe is unique and of a separate
interest.

The code of the simulations is freely available at: https://github.com/
byohay/LearningModels.git.

Keywords: Prokaryotic evolution · Evolvability
Horizontal gene transfer · PAC learning · E. coli

1 Introduction

One of the most fundamental tasks in biology is deciphering the history of life
on Earth. In the past it was generally thought that the history of life is best
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described using a tree structure. The leaves of this tree represent extant species
(taxa) and tree branches - evolutionary relationships. This vertical inheritance
framework of evolution, frequently dubbed as Darwinian evolution to commem-
orate Darwin’s influential part in our understanding of evolution. It is of no
wonder that Darwin’s only drawing in his On the Origin of Species [4] is a
sketch of a tree structure. An important implication of this theory, is that all
life forms (at least the ones known to Darwin) evolved through a process of
mutational events occurring in an ancestor-descendant basis since the beginning
of life on Earth.

Despite its intriguing appeal to fields in exact sciences like information the-
ory or computational learning, it was only in 2006 that this theory was put
by Valiant [23,24] under such a rigorous framework attempting to explore the
learning power of this mechanism. A genome is viewed as a function, reacting
to a set of signals from the outer world, where this function improves towards
a hypothetical, hidden, ideal function through a mechanism generating varia-
tions and natural selection. Then, the formal question asked by Valiant is what
are the complexity of functions that can be efficiently learned. To address this
question, he introduced a computational model of evolution, that he denoted
evolvability, that captures the central ideas of the mechanism. The goal of com-
putational learning theory is to separate concept classes that can be efficiently
learned under a certain mechanism, from those that cannot. Examples of concept
classes of interest include Decision Trees, Parities, etc. The question of evolv-
ability can be asked in the language of computational learning theory: For what
classes of ideal functions, can one expect to find an evolutionary mechanism that
gets arbitrarily close to the ideal, within feasible computational resources?

Apart from the computational appeal of this new field, it is especially inter-
esting to fit biological processes into Valiant’s model. Kanade [12] considered
the mechanism of recombination occurring through a sexual reproduction, and
suggested a model extending the basic evolvability to capture recombination.
Angelino and Kanade [2] asked what is the suitable representation of transcrip-
tion and under what conditions it is evolvable.

Except for the recombination model of Kanade, all previous works, and in
particular “evolvability”, assumed a vertical mode of evolution where the only
variation introduced to the parent’s inherited genome is by random mutations.
However the advent of High-throughput sequencing revealed strong signals that
stand in absolute conflict to the classical Darwinian theory. It appeared that a big
part of life on Earth does not adhere to the principals of vertical evolution. Specif-
ically, prokaryotic evolution is characterized by extensive gene mobility between
species that is crucial for their functionality [9,13]. The principal mechanism
accounting for gene mobility is horizontal gene transfer (HGT) [6,11,14,17,18]
in which a gene (or a group of genes) of a donor species being acquired by a
recipient organism. Recent studies have shown that HGT stands out as the dom-
inant factor in bacterial evolution, responsible for phenomena such as adaptation
to niches, development of antibiotic resistance, and pathogenicity. Despite the
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importance of each of these phenomena, our knowledge on HGT is very limited,
partly due to the lack of use of analytic tools and models in the field [7].

In this work we extend the Evolvability theory to account for this less stud-
ied, yet very important, mode of evolution. In particular, we define the notion
of population-based models where a population is evolving simultaneously and
information is shared between members of this population. We define such a
computational learning model, which is an extension to the basic evolvability
model. The new model accommodates phenomena such as HGT where genetic
information in the form of DNA is passed between individuals. While in a recent
separate work [21], we focused on the theoretical aspects of the newly defined
model and showed that it provides an asymptotic acceleration in learning, here
the emphasis is on more biological practical points. We first give the formal nec-
essary definitions as required by the new extension. Subsequently, we use the
conjunction function to model the process of acquiring a character or a property
by an organism. Focusing on this important function class, we show experimen-
tal results regarding the new and existing models. Finally, we analyze real data
in the form of developing virulence in E. coli. We demonstrate that this function
can be depicted by a monotone conjunction and compare between the models on
this data. Our results, in the form of actual concrete times, give convincing evi-
dence to the superiority of the HGT process over more conservative mechanisms,
explaining the vastness of the gradually discovered world of mobile elements -
the mobilome [20].

2 Preliminaries

We now give necessary definitions required for the extension. For the sake of com-
patibility with previous works, we tried to use original definitions from existing
works in places where this was possible. In such cases we give explicit reference
to the appropriate work inside the definition.

2.1 The Evolvability Model

A description of the evolvability framework is necessary for our extension and
is given hereby. For the full definition of the evolvability model the reader is
referred to [24].

We start with a notational comment. Throughout the paper we abuse nota-
tion P − r to mean P\{r}. We assume a finite set of conditions organisms have
to respond to. A condition may represent a certain disease, availability of food
or water, etc. All the possible combinations of conditions are given by the set
X = {x1, ..., xn}. For simplicity, we represent a single condition as a boolean
attribute with a low value of −1 and a high value of +1. We define D to be a
probability distribution over X that describes the relative frequency with which
the various combinations of values for xi are generated.

The functions discussed in this work are boolean functions with domain X
and possible outputs of −1 and +1. A concept class C over X is a set of boolean
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functions. Suppose that f ∈ C is the ideal function, i.e. the desirable response
for that organism. In the context of evolution, the ideal function can be thought
of as the organism that is most adapt to all environmental conditions. The goal
is to learn the ideal function and produce a hypothesis within computationally-
bounded resources that depend on a polynomial in n and on an accuracy param-
eter ε.

The hypothesis shall be viewed as a representation of a function since it
should be represented concretely in the organism. A representation class R is
a set of representations, such that every r ∈ R is a boolean function, r : X →
{−1,+1}. In this paper we also allow randomized boolean functions and use
r(x) to also denote E[r(x)]. Thus, r can be viewed as a real-valued function with
range [−1, 1].

The goal of the evolvability learning algorithm is to evolve some represen-
tation into a hypothesis that gets arbitrary close to the ideal function, using
evolutionary processes. The learning occurs throughout discrete generations.

2.2 Evolvability with HGT

We now define a model that captures the central mechanisms in the process of
HGT.

Prokaryotic genomes are characterized by extensive gene mobility. Each indi-
vidual may receive genes, in a rather short period of time from many different
individuals. We capture this process by allowing a representation to mutate in
dependence of other representations (in Biology the other representations typi-
cally represent organisms that are in close proximity to that representation). We
encompass this idea by defining the following neighborhood function:

Definition 1 (HGT Neighborhood Function). For polynomial p(·, ·), a
p-bounded HGT neighborhood function is a randomized Turing machine that
takes as input a representation r ∈ R, a set of representations, P ′ ⊂ R and a con-
stant ε and outputs a multi-set of representations Neigh(r, P ′, ε) ⊆ R. The run-
ning time of the Turing machine is bounded by p(n, ε−1) and |Neigh(r, P ′, ε)| ≤
p(n, ε−1). If Neigh(r, P ′, ε) is empty, it is interpreted as the representation r
cannot continue to the next generation.

Remark 1. We have defined Neigh(r, P ′, ε) as a multi-set since it can be pop-
ulated by an algorithm that chooses to insert the same representation multiple
times to the set Neigh(r, P ′, ε).

Remark 2. Note that a mutation in the classical sense of Valiant’s model is the
sole way to add new variation in the process of evolution. The HGT neighborhood
function is allowed the power of an efficient Turing machine, and is assumed to
model both mutation and HGT.

Thus, r is mutated according to the set P ′. This models the process in which a
genome (typically of a prokaryote) is receiving genes from other nearby genomes.
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This extension is based on Kanade’s recombination model [12] to the basic evolv-
ability model [24], however where in the recombination model the mutation
depends on at most two representations, the HGT neighborhood function allows
the mutation to depend on a polynomial number of representations.

We now define the performance. The performance is used to give a quan-
titative measurement of the how well a representation approximates the ideal
function.

Definition 2 (Performance [24]). The performance of a representation r with
respect to target function f and distribution D is defined as:

Perff,D(r) = ED[f(x) · r(x)] ∈ [−1, 1]. (1)

The evolutionary algorithm will have access to an oracle that given a rep-
resentation returns its estimated performance. We define the estimated perfor-
mance according to Valiant’s basic evolvability definition, with a slight modifi-
cation: Instead of observing the sample size s, we observe the estimation error
(noise) τ . A conversion from s to τ can be done using Hoeffding-Chernoff bound.

Definition 3 (Estimated Performance). The estimated performance func-
tion takes as input a representation r and outputs τ -Perff,D(r) which satisfies
|τ -Perff,D(r)−Perff,D(r)| ≤ τ . We require that τ−1 is bounded by a polynomial
in n, ε−1.

We now define the tolerance function. We will use the tolerance function to
separate the mutations that performed good from the other mutations in relation
to the current representation’s performance.

Definition 4 (Tolerance function [24]). A tolerance function t takes as input
a representation r ∈ R and an accuracy parameter ε and outputs t(r, ε) ∈ [0, 1]
that is bounded above and below by two polynomially-related polynomials. That
is, there exist polynomials tl(·, ·), tu(·, ·) such that for every r ∈ R, n and ε,
1/tu(n, ε−1) ≤ t(r, ε) ≤ 1/tl(n, ε−1) and that there exists a constant a such that
tu(n, ε−1) ≤ (tl(n, ε−1))a. Furthermore, t can be computed in polynomial time
in n, ε−1.

We define a probability function ρ(r, r′, ε) that returns the probability that r
mutates into r′. It is required that the sum of the probabilities ρ(r, r′, ε) over all
r′ is 1.

A selection rule Sel selects a (possibly random) representation of the neigh-
borhood function based on its estimated performance. In this work we use the
selection rule used by Valiant, which we denote by SelNB.

Definition 5. For an error parameter ε, a tolerance t, noise τ , and probability
function ρ, the selection rule SelNB is an algorithm that for any representation
r, any population P ′, outputs a random variable r′ determined as follows:

1. Let Benet,τ (r, P ′, ε) = {r′ ∈ Neigh(r, P ′, ε)|τ -Perff,D(r′) ≥ τ -Perff,D(r)+
t(r, ε)} and Neutt,τ (r, P ′, ε) = {r′ ∈ Neigh(r, P ′, ε)| |τ -Perff,D(r′)−
τ -Perff,D(r)| ≤ t(r, ε)}.
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2. If Benet,τ (r, P ′, ε) �= ∅, output one from it according to the relative
probability ρ(r, r′, ε)/

∑
r′′∈Benet,τ (r,P ′,ε) ρ(r, r′′, ε).

3. Otherwise, if Neutt,τ (r, P ′, ε) �= ∅, output one from it according to the rela-
tive probability ρ(r, r′, ε)/

∑
r′′∈Neutt,τ (r,P ′,ε) ρ(r, r′′, ε).

4. Otherwise, output ⊥.

Thus, SelNB chooses a beneficial mutation if one exists, and otherwise chooses
a neutral representation.

The notion of a population was suggested by Kanade [12] to allow the process
of recombination between individuals. Indeed in an environment where informa-
tion is shared between organisms, it is more natural to look at a set of represen-
tations across generations. Thus, we assume the existence of a finite population
with polynomial size.

An HGT mutator (or evolutionary step) takes a population Pi to population
Pi+1 at the next generation. This involves taking variants of representations in Pi

using the neighborhood function, and inserting them to Pi+1 using the selection
rule. The transition is completed when the size of the next population equals
the size of the current population. Formally,

Definition 6 (Modified from [12]). An HGT mutator takes as input a start-
ing population Pi ⊆ R, and using an HGT neighborhood function that defines
Neigh(r, P ′, ε) for every r ∈ R,P ′ ⊂ R, and a selection rule Sel outputs a
population Pi+1 as follows:

1. Let Pi+1 = ∅.
2. While |Pi+1| < |Pi|

2.1. Select randomly r ∈ Pi.
2.2. Consider the mutations Neigh(r, Pi − r, ε).
2.3. Activate the selection rule function Sel(r, Pi − r, ε) which returns a rep-

resentation r′.
2.4. If r′ �=⊥, put r′ in P i+1.

Remark 3. Note that the same function r ∈ Pi can be chosen multiple times
during the evolutionary step. This may seem unnatural because the same genome
cannot mutate several times and still remain in the original population. We say
that this is due to the process of prokaryotic replication. Prokaryotes divide
very rapidly; Their population may double itself in a single day. We assume that
evolutionary processes take much longer than replication and thus, we assume
that replication may have occurred during an evolutionary step.

Definition 7 (Modified from [12]). For a polynomial p(·, ·), a p-bounded evo-
lutionary algorithm consists of a representation class R, an HGT neighborhood
function operator Neigh, a tolerance function t, a probability function ρ and has
access to a performance oracle τ -Perff,D. An evolutionary algorithm starting
with population P0 is a sequence of evolutionary steps (activations of the muta-
tor), that successively produce populations P0, P1, P2.... It is required that Neigh
is p-bounded, |P0| ≤ p(n, ε−1) and τ−1 ≤ p(n, ε−1).
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Remark 4. Note that basic evolvability is a special case where the population
consists only of a single representation, i.e. P = {r}. In this case, neighborhood
will be of the form Neigh(r, ∅, ε) which is essentially equivalent to Neigh(r, ε)
in Valiant’s model.

Finally, we define the notion of evolvability with HGT in g generations.

Definition 8 (Modified from [12]). We say that a concept class C is evolvable
with HGT with respect to distribution D over X in g generations, if for some
polynomial p(n, ε−1) there exists a p-bounded evolutionary algorithm, that for
every ε > 0, from any starting population P0 and for every target function f ∈ C,
with probability at least 1 − ε for some k < g reaches a population Pk containing
a member r ∈ Pk such that Perff,D(r) ≥ 1 − ε.

In our recent work [21], we have showed the equivalence between evolvability
and evolvability with HGT, by proving the following straightforward theorem:

Theorem 1. A concept class C is evolvable with HGT extension if and only if
it is evolvable.

The equivalence shows that the models can learn the same range of concept
classes efficiently (i.e. within polynomially-bounded resources). Nevertheless, dif-
ferent models can learn the same problem in different speed, i.e. different number
of generations. The main result of our previous work [21] manifests that the HGT
extension allows an acceleration in terms of the number of generations. This is
done using a general reduction from the parallel CSQ model that we define below.

2.3 Parallel CSQ Models

We define a model for parallel correlational statistical-query learning with a
τ -CSQ oracle. The model was first introduced in Kanade’s paper. A parallel
CSQ algorithm has a polynomial number of processors p. We assume that there
is a common clock which defines the parallel time steps. During every time step,
each processor may ask a query from the oracle, perform polynomially bounded
computation, and send a message that any other processor can read. The oracle
answers all the queries in parallel.

Definition 9 (Parallel CSQ Learning [12]). A concept class C over an
instance space X is (τ, T )-parallel CSQ learnable using p processors under dis-
tribution D, if there exists a parallel CSQ algorithm that uses p processors and
for every ε > 0 and target function f ∈ C, after at most T parallel steps and with
access to a τ −CSQ oracle, outputs a hypothesis h such that Perff,D(h) ≥ 1−ε.
Each query ϕ must be polynomially (in n, ε−1) evaluatable and τ−1 must be
bounded by a polynomial in n, ε−1. Each parallel step must be completed by each
processor in polynomial time.

Now we can state the theorem showing a speedup in terms of the number of
generations.
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Theorem 2. [21] Suppose concept class C is (τ, T )-parallel CSQ learnable using
p processors. Then C is evolvable with HGT starting with an initialized popu-
lation P0 within polynomially bounded resources in O(T ) generations, using the
selection rule SelNB.

For the sake of completeness, an outline of the proof is provided in the full
version of the paper.

3 Results

In this section we show several implications of the theoretical results described in
previous sections. We model a biological trait that depends on multiple param-
eters as a conjunction function and acquisition of that trait as learning of the
function. Due to the importance of this class, we derive several analytical results
on it that appear in the full version of the paper, and strengthen these results
with experiments. We run simulations in which the conjunctions concept class
is learned, and show that these results affirm our analytical results. We end this
section by applying these models to real biological data regarding the develop-
ment of pathogenicity in microbes.

3.1 The Conjunction Function and Concept Class

Let the sample space consist of n boolean variables (literals), X = {−1, 1}n.
A conjunction function [16] (class) f is defined by a subset S ⊆ X. Given a
sample x ∈ X, f outputs 1 if each literal in f is consistent with the literals of
x. Otherwise, f outputs −1. The concept class of conjunctions is the set of all
conjunctions, denoted by C.

The concept class of monotone conjunctions is the set of conjunction classes
such that the classes do not contain a negated literal.

Conjunction is biologically relevant as many biological processes or characters
can be seen as a result of the simultaneous existence of a set of genes and absence
of another set (see for example microbial pathogenicity in our real data part
Subsect. 3.3 below). The same also holds for an expression of a certain protein,
that is conditioned on the existence and absence of some other proteins [1].

The values 1/−1 at index i of a sample indicate that the ith gene is
expressed/not expressed. A conjunction function is a combination of genes
(genome), where the presence/absence of the ith literal indicates the pres-
ence/absence of the ith gene. Thus, learning the ideal function (genome) can
be viewed as acquiring/losing certain genes in the representations. The learn-
ing stops when a sufficiently close genome was found (i.e. the performance of a
representation has an error rate of ε).

3.2 Simulation Study

We conducted simulation study to illustrate the difference between the vari-
ous models under realistic size problems. The processes (models) examined are:
the mutation process (i.e. evolvability), recombination, and HGT. As each such
process uses another technique to adapt to the environment, we ask, how fast, in
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terms of generations, a given function is learned, under each such evolutionary
process.

Roughly speaking, we can divide the models into two very distinct groups:
individum-based model, where only a single representation is examined, and
population-based models, where a population of representations are generated
each generation and relations between them are enabled. Even though recombi-
nation and HGT are both population-based, recombination allows merging only
between two individuals, while HGT allows information sharing between the
whole population. We will see that this variance makes a large difference in the
results.

In reality, HGT is mandated by HGT rate that determines probability of
HGT events. Therefore, the first experiment measures the effect of HGT rate on
the speed of evolution. We model the HGT as a Poisson process [10] operating
on a genome through time [8,19]. This allows easy conversion from rate to event
probability. We executed the HGT algorithm with HGT rate varies from PHGT =
0 to PHGT = 1. We then compared the results with the results from the other
models.

In the second experiment, we examined the interplay between the two pro-
cesses occurring in the population simultaneously. Underneath the population
processes - recombination and HGT - an underlying mutation process operates
individually on every element. We therefore set to test that interplay under
the two population models. Specifically, we varied the underlying mutation fac-
tor while maintaining all other parameters constant, including the population
parameters.

The third experiment deals with the role of the size of the population in
learning. We start with some population and increase it up to a size of 5 times
that starting population.

Learning and Models Description

We have conducted the experiments with three models: the basic evolvability
model described by Valiant, evolvability with recombination as described by
Kanade, and the model we described in Subsect. 2.1, evolvability with HGT.
We start by describing the common setup and goal of the models. Our overall
goal is to draw a distinction between the three learning models. As the learning
processes are computationally very heavy, we selected fairly small parameter
values, however the general trend is still reflected.

The parameters in the experiments are thus: The number of boolean vari-
ables was set to 40 (n = 40). Under this value an exhaustive search for the
ideal function will not be possible. We chose the approximation parameter ε
to be 2−31 guaranteeing that the performance of a random starting representa-
tion is low with high probability1. Thus, if no starting representation has high

1 We need to calculate the expected performance of two random monotone conjunction
functions. This is done by using a combinatorial computation. For n variables, the

expected performance rate is almost 1 − 2− 3n
4 . Thus if ε is smaller than 2− 3n

4 , the
chance of a high performance at generation 0 is relatively low. For n = 40, we need
to choose a number smaller than 2−30, therefore we chose ε to be 2−31.
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Fig. 1. (a) Experimental results of HGT effect on the HGT model. Note that in the case
of recombination and the basic evolvability model, the HGT rate doesn’t affect these
models at all and therefore the value is constant. (b) The results of the experiment of
the affect of an increasing mutation factor on recombination and HGT model. When
the mutation factor is 0, the algorithm can’t always learn the ideal function so the
number of generations is ∞. This is due to the fact that recombination and HGT don’t
introduce new variation to the population.

performance, learning is performed. D was chosen to be the uniform distribution.
Valiant [24] proved that monotone conjunctions is evolvable and described an
algorithm for evolving this concept class. The tolerance function and the noise
of the performance oracle are derived from that algorithm.

A run of the experiment starts by choosing a random ideal function f and
a representation r (or a population of such), and trying to learn f through-
out generations. The next generation is obtained by applying the mutator (or
recombinator) to the current generation.

The learning stops when at least one representation r in the current popula-
tion satisfies Perff,D(r) ≥ 1 − ε. For completeness, a more detailed description
of the models is given in the full version of the paper.

Experimental Results

We now describe the experiments done. In any experiment, the number of runs
was set to 10 for any value of the independent parameter (x) and the average
result (generations) is plotted.

Our first experiment focused on the effect of HGT on the speed of learning.
Obviously, this parameter is effective only to the HGT model. In the population-
based models, mutation factor was set to 0.1 so it does not interfere with the
overlying processes recombination and HGT (in the basic evolvability model
mutation is the only process so we set it to 1). The results of the experiment are
shown in Fig. 1. With an HGT rate of 0.2 or higher, the HGT model outraces the
other models. Actually, under HGT rate 1, the model learns in almost third of
the generations that took the recombination model. Alternatively, under HGT
rate 0, learning is confined only to natural mutation with a factor of 0.1, which
explains why it is very slow, even slower than the basic evolvability model. We
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can therefore infer that HGT rate plays a major role in the learning process of
the HGT model.

In the next experiment we examined the role of the underlying mutation
factor under the three models. For HGT, we considered two rates: 0.2 and 1 In the
experiment, mutation factor varied from 0 to 1. Ideal function length and ε were
set to 10 and 2−8 respectively. The results appear in Fig. 1. We comment that
under no mutations (i.e. factor zero), there were runs where the models couldn’t
learn the ideal function, due to the fact that the models without natural mutation
do not introduce new variation to the population. Under recombination, from
0.1 to 0.6, we can see a gradual decrease in the generations. However, around a
mutation factor of 0.6, it has almost no affect on it. In the case of HGT with
a rate of 1, we see that the mutation factor has almost no affect on the model
as the overlying model introduce enough variation. However, under HGT rate of
0.2, the mutation factor has a large impact. A mutation factor of 1 makes the
model seven times faster than under 0.1. Finally, as the two HGT curves meet,
we hypothesize that under certain mutation rate, the HGT model is faster than
recombination for any HGT rate.

Fig. 2. Experimental results of the effect of the size of the population on the number
of generations.

Our final experiment examined the effect of population size on speed of
learning under the two population models - recombination and HGT. We there-
fore varied population size from 100 up to 1000. The results (see Fig. 2) show
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interestingly a constant decrease in learning time (generations) under both pop-
ulation models, however HGT decreases faster than recombination.

3.3 Real Data Analysis

In this section we apply the same models from the previous section on real data.
We chose to focus on the pathogenicity of the E. coli bacteria. The virulence
of an organism is the degree of pathology caused by that organism. In order to
use the evolvability framework, we need a quantitative trait of pathogenicity,
which is why we focus on virulence in this section. A virulence gene is a gene
whose existence in the genome of an organism affects its virulence. A genome is
considered pathogenic if it has an appropriate virulence gene combination [3].

We do not however claim that these models represent the processes exactly
as they occur in nature. The use of real data in the rigorous framework of
evolvability and the comparison between the models grants a realistic aspect
to this framework and, in particular, to evolvability with HGT, and hence its
importance.

We now show an example of how to deduce the boolean variables from the
genes: The pathogenic strain Enterotoxigenic Escherichia coli was identified in
[5] by carrying either the gene combinationfedA, estII or faeG, estI, estII, eltA.
First, we enumerate the genes x1 = fedA, x2 = estII, x3 = faeG, x4 = estI,
x5 = eltA. Then, assuming there are no more virulence genes, we can model the
virulence of the genome by the following conjunction: x1∧x2∧x3∧x4∧x5. Thus,
the more virulence genes an organism has, the more virulent it becomes. Note
that because we consider only the existence of genes, we can limit the concept
class to be the class of monotone conjunctions.

Simulation of Real Data Results

We compare between the power of two biological processes: the process of HGT
and recombination. 58 virulence genes were observed in [3]. The number of
boolean variables was set to 100, where 58 of them were randomly chosen to
represent the virulence genes and their values were set to 1. The other variables
were chosen randomly. A value of 1 in one of the other variables represents a
virulence gene that has yet been discovered.

The size of the population is chosen to be 75, corresponding to the 75 E.
coli isolates that were taken in Chapman et al. paper [3]. The approximation
parameter ε was chosen to be 2−70. We believe that this approximation of the
ideal function is reasonable for a representation to be considered highly virulent.

An estimation of the HGT rate for Escherichia coli showed that 17.6% of
the genes have been transferred since its divergence from Salmonella lineage
100 million years ago [15]. We consider a single generation in our models as a
million year, and set the HGT and recombination rate to be 0.176% (A recom-
bination rate of x signifies that if recombination does not occur, one of the two
representations is chosen randomly).

Over a total of 20 runs, the recombination model learned in 256 generations
average, and the HGT model learned in 35 generations average.
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In conclusion, if evolution would have occurred according to our parame-
ters, a highly virulent organism would have emerged in 35 million years using
HGT process. If instead the recombination process would have taken place, the
pathogenic organism would have emerged in 256 million years.

4 Conclusions

In his seminal work from 2006 [24], Leslie Valiant extended his celebrated PAC
model [22] to the biological world and denoted it evolvability. Evolvability quan-
tifies the process of evolution in terms of computational learning power. Subse-
quently, Kanade [12] extended evolvability to higher level organisms’ reproduc-
tion by combining the mechanism of recombination. Nevertheless, to the best of
our knowledge, no such extension to evolvability was suggested for prokaryotes.
Prokaryotic evolution largely proceeds by exchanging DNA between unrelated
organisms, a mechanism denoted horizontal gene transfer (HGT). It is mainly
due to HGT that microbes adapt to new ecological conditions, develop resistance
to antibiotics, and so forth. In this work, we define a conceptual model encom-
passing this phenomena. The model is conceptual/mathematical and therefore
isn’t limited to a specific biological phenomena. Valiant’s evolvability is a special
case in this new model. The evolutionary advantage of the new model is by allow-
ing (genetic) information sharing between individuals in an evolving population,
similarly to the recombination model.

While in a recent work we have focused on the theoretical aspects of the newly
suggested model, here the emphasis is on its biological application. Specifically,
we focus at apparently a biologically relevant function - conjunction, modeling
existence of an entity contingent on the presence of several other entities. We
show that for conjunction, the new model achieves asymptotic acceleration in
learning time over evolvability and recombination. We corroborate these findings
in simulation where we use a randomized learning algorithm for conjunction
under evolvability. We conclude with learning a real data function of virulence
in the E. coli bacterium.

The primary contribution of this work is the extension of the Evolvability
framework to account to prokaryotes. We believe its importance stems from the
lag of application of rigorous computational learning tools to model evolution in
this life domain. The comparison between several modes of real life evolutionary
mechanisms under a common ground, from a rigorous computational learning
perspective, provides another explanation to the versatility of these increasingly
discovered world.

There are several future directions to take from this work that we consider
of interest. Conjunction may be relevant for the case discussed here, but other
biological mechanisms may require other concept classes. This may give insight
into these mechanisms. We think that evolvability is a powerful yet flexible tool
and can be used extensively to analyze more real biological data, using the
scheme described in this work. Finally, modeling more evolutionary phenomena
with this framework is interesting both from the aspect of computer science and
from the aspect of biology.
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Abstract. Opioid crisis was declared as a public health emergency in
2017 by the President of USA. According to the Centers for Disease
Control and Prevention, more than 91 Americans die every day from an
opioid overdose. Nearly $4B is provided to address the opioid epidemic
in the 2018 spending bill and help fulfill the President’s Opioid Initiative.

How to monitor and predict the opioid epidemic accurately and in real
time? The traditional methods mainly use the hospital data and usually
have a lag of several years. Even though they are accurate, the long lag
period prevents us from monitoring and predicting the epidemic in real
time. We observe that people discuss things related to the epidemic a
lot in social media platforms. These user behavior data collected from
social media platforms can potentially help us monitor and predict the
epidemic in real time.

In this paper, we study how to use Twitter to monitor the epidemic.
We collect the historic tweets containing the set of keywords related to
the epidemic. We count the frequency of the tweets posted at each month
and each state. We compare the frequency values with the real-world
death rates at each month and each state. We identify high correlation
between tweet frequency values and real-world death rates. The statis-
tical significance demonstrates that the Twitter data can be used for
predicting the death rate and epidemic in future.

1 Introduction

According to the Centers for Disease Control and Prevention, more than 91
Americans die every day from an opioid overdose. Opioid crisis is killing more
people than car crashes and it is the deadliest drug crisis in American history.
President Trump has declared the opioid crisis a public health emergency in
October 2017. The 2018 spending bill provides nearly $4B to address the opioid
epidemic and help fulfill the President’s Opioid Initiative.

How to predict and monitor the epidemic accurately and in real time? This
is a fundamental question that needs to be addressed urgently. The traditional
methods mainly use the real-world death data collected from hospitals and usu-
ally have a lag of several years. We observe that people discuss things related to
c© Springer International Publishing AG, part of Springer Nature 2018
F. Zhang et al. (Eds.): ISBRA 2018, LNBI 10847, pp. 314–318, 2018.
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Fig. 1. Software architecture.

the epidemic and drugs a lot in social media platforms. “No family should EVER
have to go through this. My cousin dies from a drug overdose” and “Apparently
I am very into heroin and I overdose every night” are two real tweets about
drug overdose. If we can infer the drug usage behaviors of users from the posted
texts by using artificial intelligence, we potentially can monitor and predict the
epidemic in real time.

In this project, we study how to use Twitter to monitor the opioid epidemic.
We design and implement a novel distributed software system. The system col-
lects the historic tweets and curates them in a distributed database. It then
performs further data analysis to monitor and predict the epidemic. We have
collected millions of historic tweets and compare them with the real-world death
rates. We find that the frequency values of tweets significantly correlate with the
real-world death rates. This demonstrates that social media data can be used to
monitor and predict the epidemic in real time.

Modern web scraping and data streaming techniques are used to collect the
data from Twitter. Big data programming tools such as Spark and HBase are
used to preprocess and curate the data. We also design distributed computing
algorithms to perform the analysis on the large amount of tweets. The overall
contributions are summarized as follows.

– We empirically prove that Twitter data can generally be used for monitoring
and predicting the opioid epidemic.

– We design and implement a software system which can collect the historic
tweets, perform analysis, and monitor and predict the epidemic.

The proposed software system is designed to monitor and predict the opioid
epidemic. But it can also be used for other types of epidemics such as HIV,
HCV, flu, and alcoholism.

2 Software Architecture

In order to process large amount of tweet data, we implement the software
by using Apache Spark. Therefore, the software system can be deployed in a
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computer cluster. Figure 1 shows the software architecture of the system. From
Fig. 1, we can see that there are two stages. In the first stage, the system collects
and pre-processes tweets from Twitter platform. The collected data is stored in
HBase, a distributed database system. In the second stage, the system analyzes
the tweets and predict the epidemic. In both stages, multiple computer nodes
run in parallel thus the system can process large amount of data efficiently.

All programs are written in Python. HBase Thrift APIs are used to access
the database. Selenium is used to automate the Google Chrome web browser
and crawl tweets from Twitter advanced search websites.

3 Query Conditions

We aim at crawling the historic tweets posted in USA related to opioid epidemic.
To achieve this goal, we specify three concrete conditions.

– 30 keywords: opioid, alprazolam, amphetamine, antidepressant, benzodi-
azepine, buprenorphine, cocaine, diazepam, fentanyl, heroin, hydrocodone,
meth, methadone, morphine, naloxone, narcan, opana, opiate, overdose, oxy-
codone, oxymorphone, percocet, suboxone, subutex, pill, rehab, sober, with-
drawal, shooting up, track marks

– 144 cities in USA with large populations and minimum two cities in each
state; the diameter is set to 45 miles

– 145 months: from March 21, 2006, to March 26, 2018.

The set of 30 keywords are chosen by domain experts and are shown empir-
ically to be associated with opioid epidemic. The selected 144 cities are chosen
based on the population size. Minimum two cities are chosen in each state. The
dates are from the date of first tweet to a recent date. There are 145 months
in total. The algorithm thus submits one query for each city and each month.
Since infinite scrolling is used in the Twitter advanced search website, the algo-
rithm scrolls down the website in order to collect all tweets.

4 Results and Discussion

The system crawls 1, 896, 961 tweets in total. We design the distributed algorithm
and count the number of tweets posted in each month and in each state. Figure 2
shows the frequency values. The x-axis represents the month from October 2009
to March 2018. There are no tweets satisfying the query conditions from March
2006 to September 2009 in any cities. Therefore, the x-axis starts from October
2009. The y-axis represents the number of tweets published in one month and
in one state. Each line in the figure represents the number of tweets posted in
one state. There are 50 states in total.

From Fig. 2, we can see that the number of tweets are generally increasing
in the past 10 years. We also observe a peak from Dec 2012 to August 2014.
In 2015, press reports that there was an outbreak of HIV caused by the use of
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Fig. 2. Frequency values of tweets.

Opana as an injectable recreational drug [1]. This event correlates with the peak
in that period.

We also downloaded the national overdose death rate data. We aggregate the
data into year and state level. Similarly, we also aggregate the tweet frequency
values into year and state level. Then we compare the two sets of data by calcu-
lating the Pearson correlation. The overall correlation coefficient value is 0.83.
This demonstrates that the overdose death rates correlate with the frequency
values of tweets. Therefore, we can use the frequency of tweets to monitor and
predict the death rates and the epidemic in real time.

5 Conclusion

Opioid overdose crisis is an urgent societal issue to be solved. In this paper,
we explore the possibility of monitoring and predicting the epidemic by using
Twitter, a social media platform. We design the distributed software system and
crawl millions of tweets containing the keywords about the epidemic. We observe
meaningful patterns from the crawled tweets. We compare the tweet data with
real-world overdose deaths and find that they highly correlate with each other.
This demonstrates that the tweets can be used to predict the epidemic in real
time.
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Abstract. Phylogenetic trees are fundamental to biology and are bene-
fitting several other research areas. Various methods have been developed
for inferring such trees, and comparing them is an important problem
in computational phylogenetics. Addressing this problem requires tree
measures, but all of them suffer from problems that can severely limit
their applicability in practice. This also holds true for one of the old-
est and most widely used tree measures, the Robinson-Foulds distance.
While this measure is satisfying the properties of a metric and is effi-
ciently computable, it has a negatively skewed distribution, a poor range
of discrimination and diameter, and may not be robust when comparing
erroneous trees. The cluster distance is a measure for comparing rooted
trees that can be interpreted as a weighted version of the Robinson-
Foulds distance. We show that when compared with the Robinson-Foulds
distance, the cluster distance is much more robust towards small errors
in the compared trees, and has a significantly improved distribution and
range.

Keywords: Evolutionary trees · Bipartite perfect matching
Robinson-Foulds distance · Cluster matching distance

1 Introduction

Phylogenetic trees depict the phylogenetic relationships of entities (e.g., molec-
ular sequences, genomes, or species), and are a fundamental tool for organizing
our knowledge of biological diversity. Through these relationships, we are able
to understand how entities have evolved over time the way they are today, and
analyzing them benefits a vast variety of fundamental research areas such as
biology, ecology, epidemiology, and conservation biology [12,14,18,26].

Analyzing phylogenetic trees requires the comparative evaluation of their
differences, similarities, and distances, which has become a fundamental task
in computational phylogenetics [11,30]. To compare phylogenetic trees a large
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variety of measures has been considered and analyzed [7,19,20]. However, all
of these measures have shortcomings that can severely limit their applicabil-
ity in practice, which range from intrinsic exponential time complexities [1,5,9]
to negatively skewed distributions [31], and several measures suffer from topol-
ogy biases [34] or do not satisfy the properties of a metric [24]. For example,
computing distance measures based on edit distances under the classic tree edit
operations nearest neighbor interchange (NNI), subtree pruning and regrafting
(SPR), and tree bisection and reconnection (TBR), are NP-Hard [1,9,15,16].
Gene tree parsimony costs that rely on evolutionary models to compare trees do
not satisfy the properties of a metric [24] and suffer from topology biases [33,34].
While the in practice widely-used Robinson-Foulds (RF) distance can be com-
puted in linear time [10], this distance is not robust when a small error is present
in the compared trees. A distance is robust when a small error in the compared
trees that is modeled by successive applications of the classic tree operations will
not cause abrupt distance changes [23]. In addition, the RF distance has a nega-
tively skewed distribution [8,31] where most distances are close to the maximum
possible distance (i.e., the diameter of the RF distance). A weighted version
of the RF distance is the bipartition matching distance [23], which is robust
and has a significantly better discrimination than the RF distance due to a less
skewed distribution. Unfortunately, in contrast to the RF distance, the bipar-
tition matching distance is limited to the comparison of unrooted trees, while
at the same time many tree comparisons involve rooted trees [19]. The cluster
matching distance [4] can be seen as a rooted version of the bipartition match-
ing distance [23]. Like the bipartition matching distance, the cluster matching
distance relies on matching and can be computed in polynomial time. However,
the behavior of the cluster matching distance when small error is present has
not been analyzed.

Here, we show the robustness of the cluster matching distance by proving
asymptotical bounds on the change of the cluster matching distance caused by
the tree edit operations NNI, SPR, and TBR. Furthermore, in our experimental
studies, we demonstrate that the cluster matching distance is less sensitive to
the classic tree edit operations than the rooted RF distance. Thus, unlike the
rooted RF distance, the cluster matching distance is robust when small error is
present in the compared trees. Finally, we demonstrate that the cluster matching
distance is bell-shaped under two classic tree sampling models, and offers a
significantly better discrimination when compared to the rooted RF distance.

1.1 Related Work

The need to compare phylogenetic trees has given rise to the proliferation of
various measures for the pairwise comparison of such trees [19]. Here we describe
distance-based measures for the pairwise comparison of trees over the same label
set that are closely related to the presented work and discuss their advantages
and shortcomings.

While all of the presented measures induce a metric on the tree space, which
is not true for measures that rely on biological models [24], they largely differ in
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their asymptotic computation times and distributions. In addition, these mea-
sures vary in terms of their diameters, and gradients regarding the classic tree
edit operations NNI, SPR, and TBR. The diameter of a measure for the tree
space of all n taxa trees is the maximum distance between any pair of trees in this
space [19]. In practice, such diameters are often used to normalize their corre-
sponding measures in order to compare them when analyzing distances between
trees [17]. The gradient of a tree edit operation with respect to a given distance
metric is the maximum distance between all pairs of trees that can be trans-
formed into each other by one edit operation. Errors in trees can be expressed
in terms of the tree edit operations [35], and thus the gradient of an edit opera-
tion for a measure can be used to describe the robustness regarding the error of
this measure [23]. In the following, we overview the measures of interest for this
work, which are (i) tree edit based measures, (ii) the RF measure, and (iii) the
bipartition matching distance.

Tree Edit Based Measures. Maybe the most natural tree measures are based
on the classic tree edit operations that are informally described for an unrooted
and full-binary tree T over n taxa as follows:

– Nearest neighbor interchange (NNI): This operation selects an internal edge
in T (i.e., an edge that is not incident to a leaf), and exchanges a subtree on
one side of the selected edge with a subtree on the other side of the edge.

– Subtree prune and regraft (SPR): This operation prunes a subtree from T
by cutting an edge and redrafts the subtree to a new vertex obtained by
subdividing an edge of the edited tree.

– Tree bisection and reconnection (TBR): This operation divides tree T into
two subtrees by removing an edge, and then reconnects these subtrees by
creating a new edge between the midpoints of edges in them.

The NNI, SPR, and TBR measures are defined to count the minimal number
of corresponding edit operations required to change a given pair of trees into
each other. The NNI distance has been introduced independently by Das Gupta
[9] and Li et al. [21], and computing this distance is NP-hard [22]. Later on,
the SPR distance and TBR distance were introduced for unrooted and rooted
trees, and their NP-harness was shown eventually [1,5]. All of these measures
induce metrics or distances on the space of trees [19]. The diameter of the NNI
distance is Θ(n log n) [9,21], and the diameters for the SPR and TBR distance
are Θ(n) [1].

The RF Measure. The RF measure (also referred to as symmetric difference
measure [29], or partition measure [31]) is a popular and widely used measure
in the literature [6,10,25,29]. Originally proposed by Bourque [6] in 1978, this
measure was generalized by Robinson and Foulds [27,29] later on, and is induc-
ing a distance on the space of trees, which can be computed in linear time in the
size of the trees that are compared [10]. However, the RF distance has a nega-
tively skewed distribution, and in practice, this distance is only useful when the
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compared trees are “very similar” [31]. Further, the RF distance is not robust
towards small changes, as reattaching a single leaf elsewhere in one of the com-
pared trees can maximize the distance.

Here, we are focusing on the (rooted) RF distance for a pair of rooted and
full binary trees over the same taxon set that is the normalized count of the
symmetric difference of the cluster representations of these trees [29]. The cluster
representation of a tree is the set containing a cluster for each of the vertices
of the tree, and the cluster of a vertex is the set of taxa of the subtree rooted
at this vertex. The cluster presentation of a tree (represented as a graph) are
equivalent representations of each other [30]. Observe that the diameter of the
rooted RF distance for the space of trees over n taxa is n − 2 [20].

The Bipartition Matching Distance. Lin et al. [23] have proposed the
bipartition matching distance. Similar to the clusters in a rooted tree, every
internal edge e in an unrooted tree T defines a nontrivial bipartition σe on
the leaves, and the tree T is uniquely represented by the set of bipartitions
Σ(T ) = {σe|e ∈ E(T )}, where E(T ) is the set of internal edges in T . A biparti-
tion can be represented by the binary vector, i.e., if σ = (1, . . . , k|k + 1, . . . n),
then the corresponding binary representation is [1, . . . , 1, 0, . . . , 0] where the
number of 1’s is equal to k. Given two trees, T1 and T2 on the same set of leaves, a
complete weighted bipartite graph G(X,Y,E) with X = Σ(T1) and Y = Σ(T2)
is denoted by B(T1, T2). The weight of each edge e = {u, v} in B(T1, T2) is
set to W (u, v) = min{HD(Vu, Vv),HD(Vu, Vv)} where Vu and Vv are the two
binary vector representations of the bipartition u and v, V is the complement
vector representation of V , and HD is the Hamming distance. The bipartition
matching distance BM(T1, T2) between trees T1 and T2 is the weight of the
minimum-weight perfect matching in B(T1, T2) with the weighting scheme W .
Considering the space of unrooted and full binary trees over n taxa, the bipar-
tition matching distance for a pair of trees can be computed in O(n2.5 log n)
time [23]. Further, experimental studies suggest that this distance has a better
discrimination when compared to the unrooted RF distance [23].

1.2 Contribution

Here we prove that the gradients of the edit operations NNI, SPR, and TBR
with respect to the bipartition matching distance are bound by Θ(n), Θ(n2),
and Θ(n2) respectively.

In an experimental study, we demonstrate the distribution of the cluster
matching distance between randomly generated binary trees using Yule-Harding
model and birth-death process model. For both models, the cluster matching
distance is more broadly distributed in the form of a bell-shape and has a wider
range than the RF distance. We also compare how the tree distance metrics are
correlated with the number of classical tree edit operations. When compared to
the RF distance, the cluster matching distance is gradually saturated towards
its maximum value.
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2 Preliminaries and Basic Definitions

A (phylogenetic) tree T is a connected acyclic graph that has exactly one distin-
guished vertex of degree two, called the root of T , and where all of the remaining
vertices are either of degree three or one. The vertices of degree larger than one
are the internal vertices of T , and the remaining vertices are the leaves of T . For
a tree T we denote its vertex set, edge set, leaves, internal vertices, and root, by
V (T ), E(T ),L(T ), Vint(T ), and r(T ), respectively.

Let T be a tree. Given X ⊆ L(T ) we define the leaf complement of X as
X := L(T ) \ X. The subtree of T induced by X, denoted by T (X), is the
minimal connected subgraph of T that contains X. The restricted subtree of T
induced by X, denoted by T |X, is the tree obtained from T (X) by suppressing
all vertices of degree two with the exception of the root.

In the following we introduce needed terminology relating to the semi-order
represented by T . We define ≤T to be the partial order on V (T ), where x ≤T y
if y is a vertex on the path between r(T ) and x. If x ≤T y, we call x a descendant
of y, and y an ancestor of x. We also define x <T y, if x ≤T y and x �= y. If
{x, y} ∈ E(T ) and x ≤T y, then we call y the parent of x and x a child of y.
The cluster of x is defined by CT (x) := L(T (x)), and the set of all clusters of
T is defined by H(T ) =

⋃
y∈V (T ) CT (y). X ∈ H(T ) is called a trivial cluster if

X = L(T ) or |X| = 1, it is called non-trivial otherwise.
Let T1 and T2 be trees, then the (rooted) Robinson-Foulds (rRF) distance

[29] is defined as RF (T1, T2) := 1
2 ((‖H(T1) \ H(T2)|) + (|H(T2) \ H(T1)|)).

The cluster matching distance [4] for T1 and T2 is based on the complete
weighted bipartite graph B(T1, T2) := G(X,Y,E) with X = Vint(T1) \ {r(T1)}
and Y = Vint(T2) \ {r(T2)} where the weight of each edge {u, v} is W (u, v) :=
|CT1(u)�CT2(v)| = |(CT1(u)\CT2(v))∪(CT2(v)\CT1(u))|. Now, the cluster match-
ing distance CM (T1, T2) between T1 and T2 is defined to be the weight of the
minimum weight perfect matching in B(T1, T2).

Let T(n) be the space of all trees on n leaves. Then the diameter of T(n) with
respect to a distance metric D on T(n) is defined as Δ(D,n) := max{D(T1, T2) |
T1, T2 ∈ T(n)}. The diameter of the CM distance is Δ(CM , n) = Θ(n2) [4].

3 Gradients to the Tree Edit Operations

Let T be a tree and φ(T ) be the set of trees derived by applying the edit operation
φ to T , then φ(T ) is called the (local) neighborhood of T under φ [30]. We provide
the definitions for the classic tree edit operations in their rooted settings.

– rNNI [28]: Let T2 ∈ rNNI (T1). An internal vertex u of a rooted binary tree
T1 has two incident edges that connects its children l and r. A rooted binary
tree T2 is obtained from T1 by deleting e = {u, l} (or e′ = {u, r}), adding the
edge between l (or r) and the vertex subdivides the edge that is incident with
PaT1(u) and u’s sibling, and then suppressing any degree-two vertices.
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– rSPR [1]: Let T2 ∈ rSPR(T1). e = {u, v} and u ≤T1 v. A rooted binary
tree T2 is obtained from T1 by deleting e, adding the edge between u and the
vertex that subdivides the edge of T1\e, and then suppressing any degree-two
vertices.

– rTBR [1]: Let T2 ∈ rTBR(T1). Analogous to rSPR, a rooted binary tree T2

is obtained from T1 by deleting e, adding an edge between vertices such that
each of the vertices subdivides the edge of one and the other component of
T1 \ e, and then suppressing any degree-two vertices.

Definition 1. The gradient of a tree edit operation φ with respect to a distance
D on T(n) is G(T (n),D, φ) := max{D(T1, T2) | T1, T2 ∈ T(n) ∧ T2 ∈ φ(T1)}.
Proposition 1. G(n,RF , rNNI ) = 1, G(n,CM , rNNI ) = Θ(n).

Proof. Consider two trees T1 and T2 as shown in Fig. 1. Suppose that T1 in
Fig. 1 is a caterpillar tree, CT1(u1) = {1, . . . , k − 2, k − 1}, CT1(u2) = {1, . . . , k −
2, k − 1, k}, CT2(v1) = {k − 1, k}, and CT2(v2) = {1, . . . , k − 2, k − 1, k} where
3 ≤ k ≤ n. The rNNI operation replaces the cluster CT1(u1) = {1, . . . , k −
2, k − 1} in H(T1) with the cluster CT2(v1) = {k − 1, k} in H(T2). Hence,
RF (T1, T2) = G(T (n),RF , NNI) = 1. For the CM distance, in B(T1, T2),
we have W (u2, v2) = 0, since CT1(u2) = CT2(v2) = {1, . . . , k − 2, k − 1, k}.
The edge weight W (u1, v1) between u1 and v1 in B(T1, T2) is k − 1, since
|CT1(u1)�CT2(v1)| = |{1, . . . , k −2, k −1}�{k −1, k}| = |{1, . . . , k −2}∪{k}| =
k − 1. Therefore, G(T (n),CM , rNNI ) = Θ(n), since 3 ≤ k ≤ n.

Fig. 1. An rNNI operation where T1 ∈
rNNI (T2) and T2 ∈ rNNI (T1).

Fig. 2. An rSPR operation where
RF (T1, T2) = n − 2.

Proposition 2. G(n,RF , rSPR) = n − 2, G(n,CM , rSPR) = Θ(n2)

Proof. Consider two trees T1 and T2 as shown in Fig. 2. The bound for the RF
distance is derived by prune one leaf (1) at one end of T1 and regraft it to
the other end (n) of the tree. Hence, G(T (n),RF , rSPR) = n − 2. For the CM
distance, consider two trees T1 and T2 as shown in Fig. 3. By the rSPR operation
from T1 to T2, the edge {uk, uk+1} is deleted, and the subtree T1(uk) is grafted
between uk and uk+1 where 1 < l < k < n. Note that CT2(vm) = {l + 1, . . . , m}
for vl+1 <T2 vm ≤T2 vk. Suppose that n

4 ≤ l and 3
4n ≤ k, then in B(T1, T2),

W (u, vm) =

⎧
⎪⎨

⎪⎩

m u ≤T1 ul

m − 1 u = ul+1

l + δ otherwise (δ > 0)
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W (u, vm) > n
4 for vl+1 <T2 vm ≤T2 vk because m > l + 1 and there are at least

n
2 such a vertex vm. Hence, any matching in B(T1, T2) has a weight of at least
n
4 × n

2 = Ω(n2). The upper bound is trivial by Δ(CM , n) = Θ(n2).

Fig. 3. An example of an rSPR operation where CM (T1, T2) = Θ(n2), and T1 ∈
rSPR(T2) and T2 ∈ rSPR(T1).

Proposition 3. G(n,RS, rTBR) = n − 2, G(n,RSM, rTBR) = Θ(n2)

Proof. Since rSPR is a special case of rTBR, the results follow from Proposi-
tion 2.

4 Experiments

We demonstrate the characteristics of the rRF distance in comparison with the
CM distance using simulated datasets. First, we compare the distances of pairs
of trees under these measures when randomly sampled under two classic models.
Then, we compare how the rRF distance and the CM distance are correlated
with the number of consecutive tree edit operations that are either rNNI, rSPR,
or rTBR. For the experiments, we define a profile to be a tuple of trees over the
same leaf set. All of the experiments were performed on a workstation with an
Intel R© Xeon R© CPU E7-8837 @2.66 GHz with 128 GB RAM.

4.1 Distribution of the Tree Distance Metrics

We compared the distributions of the rRF distance and the CM distance for
randomly sampled trees under two classic models, the Yule-Harding model [13]
and the birth-death process model [2].

Dataset. We generated the profiles Pk := {p1, . . . , pl} and Qk := {q1, . . . , ql}
of random trees over k leaves for each k ∈ {100, 1000}, and l := 105 separately
under the Yule-Harding model [13] and the birth-death process model [2]. The
trees under each of these models were sampled as follows.

Yule-Harding Model. The following procedure is sampling trees, for each k under
the Yule-Harding model as shown in [3].
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i. an initial list of k single-vertex trees (representing the leaves of the final
tree) is generated.

ii. two randomly chosen trees are merged into a new tree by making the roots
of these trees the children of a new root.

iii. this process is repeated until the list contains only one tree.

Birth-Death Process Model. The trees were sampled under the birth-death model
using the software DendroPy version 3.10 [32] with the parameters 0.1 and 0 for
the birth rate and death rate, respectively.

Experimental Setting. For the profiles Pk and Qk (k ∈ {100, 1000}) generated
under each of the two models, we computed the rRF distance and the CM
distance for each pair pi and qi, where 1 ≤ i ≤ l.

Results and Discussion. We discuss the results for each of the two models.

Fig. 4. Distribution of the rRF and
the CM distances between a pair of
randomly generated binary trees (Yule-
Harding model) on 100 and 1000 leaves.

Fig. 5. Distribution of the rRF and the
CM distances between a pair of ran-
domly generated binary trees (birth-
death process model) on 100 and 1000
leaves.

Yule-Harding Model. The distributions of the rRF distance and the CM distance
between the pairs of randomly generated trees are depicted in Fig. 4, and the
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corresponding descriptive statistics are shown in Table 1. The rRF distances
show left-skewed distribution for the sampled pairs of trees with 100 and 1000
leaves, and thus the range of these distributions is very narrow. In addition, also
the minimum value and mean value for both of these distributions are very close
to the theoretical maximum values (i.e., diameters). Furthermore, the standard
deviation and the range of the rRF distances are similar for trees that have
between 100 and 1000 leaves, suggesting that they are not proportional to the
number of leaves.

In contrast, the CM distances are more broadly and bell-shape like dis-
tributed, which have also much wider ranges than the corresponding rRF distri-
butions for both 100 and 1000 leaves.

Table 1. Descriptive statistics of the RF distance and the CM distance between a pair
of randomly generated binary trees on 100 and 1000 leaves.

Distance Leaves Yule-Harding Birth-death

Mean SD Min Max Range Mean SD Min Max Range

RF 100 97.77 0.48 93 98 5 81.37 4.16 61 96 35

CM 100 891.6 38.28 760 1123 363 460.52 59.41 249 851 602

RF 1000 997.78 0.47 994 998 4 837.8 12.89 788 883 95

CM 1000 17659.27 423.3 16253 20031 3778 7705.55 623.8 5257 11327 6070

Birth-Death Process Model. Table 1 summarizes the descriptive statistics and
Fig. 5 shows the distributions of the RF distance and the CM distance between
a pair of randomly generated trees. Unlike the Yule-Harding model, the dis-
tributions of the RF distance and the CM distance are both in the form of a
bell-shape. However, the distribution of the CM distance shows a wider range
than the one of the RF distance, for both 100 and 1000 leaves.

4.2 Distance Metrics Under the Tree Edit Operations

We demonstrate how the rRF distances and the CM distances correlate with the
number of consecutive rNNI, rSPR, and rTBR edit operations. From the result
of Sect. 4.1, the rRF distance is expected to be saturated faster than the CM
distance by repeating the number of tree edit operations.

Dataset. We generated a profile P consisting of 1000 random trees on 500
leaves, where each tree in P was sampled under the Yule-Harding model using
the procedure described in Sect. 4.1. For each of the rooted tree edit operations
rNNI, rSPR, and rTBR we generated the profiles Q(i) := {q(i)1, . . . , q(i)1000} for
(i) every i ∈ {1, . . . , 2000} for the rNNI operation, and (ii) every i ∈ {1, . . . , 500}
for the rSPR and rTBR operations. The profiles were generated as follows.
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i. Given a tree edit operation, the initial profile Q(1) is set to profile P . If this
operation is rNNI the range r is set to 2000, and is set to 500 otherwise.

ii. For each i ∈ {2, . . . , r} the profile Q(i + 1) is generated from profile Q(i).
The tree q(i + 1)j is created by applying the input tree edit operation to
tree q(i + 1)j (for each j ∈ {1, . . . , 1000}), where the selection of edges in
q(i)j that is needed to specify the operation is chosen randomly. E.g., for the
rSPR operation, two edges (possibly including a root edge) of tree q(i)j are
randomly chosen, where the first edge determines the pruning location of the
subtree, and the second edge the regrafting location of the subtree.

Experimental Setting. We computed the distances between the tree pairs
q(1)j and q(i)j averaged over all j ∈ {1, . . . , 1000}, under the rRF and the CM
distance measures, for every i ∈ {1, . . . , r} (r = 2000 for rNNI, and r = 500
for rSPR and rTBR) using the profiles that were generated for each of the edit
operations. Similarly, the maximum of the distances between the tree pairs q(1)j
and q(i)j over all j ∈ {1, . . . , 1000} was computed to finally compute the ration
of the averages to their corresponding maximum distances ratio.

(a) rNNI operations (b) rSPR operations (c) rTBR operations

Fig. 6. The average RF distance and CM distance of 1000 trees on 500 leaves as a
function of the number of consecutive tree edit operations.

4.3 Results and Discussion

Figure 6 shows the average RF distance and CM distance between the initial
tree and rNNI operation applied trees. The gradient of the rRF distance curve is
very steep between 0–1200 operations, and the inclination of the curve is gradual
after 1600 operations. However, after 1600 operations the CM distance still has
an increasing trend. Figure 6 shows the average RF distance and CM distance
between the initial tree and rSPR operation applied trees. While the gradient
of the sRF distance curve is gradual after 400 operations, but the gradient of
the CM distance is in an increasing trend. Figure 6 shows the average rRF dis-
tance and CM distance between the initial tree and rTBR operation applied
trees. Unlike the rSPR operation, the gradients of the RF and the CM distance
curves are both steep between 0–200 operations, and they are gradual after 350
operations.
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5 Conclusion

There may not be an optimal tree comparison measure, and one or more mea-
sures may be used by the practitioner depending on the application. However,
such choices can be guided by the strengths and weaknesses of such measures.
The CM measure induces a metric on the space of rooted trees and that this
metric is low polynomial time computable. In contrast, many other distance mea-
sures used in comparative phylogenetics, are intrinsically difficult to compute,
such as the edit distances under the classic tree edit operations.

We showed that the CM distance offers a variety of desirable features, in
particular when compared to the popular rooted RF distance, which is poorly
distributed, shows insufficient discrimination, and is too sensitive to tree edit
operations. In particular, we demonstrated that the CM metric is distributed
much more broadly and is less biased when compared to the rRF distance. In
addition, our experiments suggest that the CM metric is less sensitive to a tree
edit operation than the rRF distance. Thus, the CM distance appears to be a
viable alternative to the classic RF metric for rooted trees.
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Science Foundation under Grant No. 1617626.
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3. Betkier, A., Szczesny, P., Górecki, P.: Fast algorithms for inferring gene-species
associations. In: Harrison, R., Li, Y., Măndoiu, I. (eds.) ISBRA 2015. LNCS,
vol. 9096, pp. 36–47. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19048-8 4

4. Bogdanowicz, D., Giaro, K.: On a matching distance between rooted phylogenetic
trees. Int. J. Appl. Math. Comput. Sci. 23(3), 669–684 (2013)

5. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree
prune and regraft distance. Ann. Comb. 8(4), 409–423 (2005)
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Abstract. The development of single cell RNA sequencing (scRNA-seq)
has enabled innovative approaches to investigating mRNA abundances.
In our study, we are interested in extracting the systematic patterns of
scRNA-seq data in an unsupervised manner, thus we have developed
two extensions of robust principal component analysis (RPCA). First, we
present a truncated version of RPCA (tRPCA), that is much faster and
memory efficient. Second, we introduce a noise reduction in tRPCA with
L2 regularization (tRPCAL2). Unlike RPCA that only considers a low-rank
L and sparse S matrices, the proposed method can also extract a noise
E matrix inherent in modern genomic data. We demonstrate its useful-
ness by applying our methods on the peripheral blood mononuclear cell
(PBMC) scRNA-seq data. Particularly, the clustering of a low-rank L
matrix showcases better classification of unlabeled single cells. Overall,
the proposed variants are well-suited for high-dimensional and noisy data
that are routinely generated in genomics.

Keywords: Principal component analysis · Robust PCA
Truncated singular value decomposition · Matrix decomposition
Unsupervised learning · Single cell RNA-seq

1 Introduction

Single cell RNA sequencing (scRNA-seq) present new opportunities to elucidate
systematic patterns of variation underlying biological processes and complex
phenotypes. Conventionally, bulk RNA-seq data provide mean gene expression
values from a large number of cells in that sample. However, a mixture of multi-
ple cells that often have different functions or origins may hide relevant informa-
tion, carry high variance related to their cellular composition, and might not be
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reproducible in separate studies [1–3]. With scRNA-seq, we can overcome these
challenges by measuring gene expression at a single cell resolution [4,5]. How-
ever, scRNA-seq data present new challenges for unsupervised learning methods
because of unlabeled samples, higher dimensionality, dropouts, and sparsity.

Unsupervised learning techniques have become increasingly popular and use-
ful for exploring and analyzing scRNA-seq data. In particular, principal compo-
nent analysis (PCA) is most frequently used to reduce dimensions that enable a
number of downstream statistical and machine learning [6]. Furthermore, closely
related to factor analysis and latent variable models, principal components (PCs)
help us to identify hidden and unmeasured structure that arise from biolog-
ical and technical sources of variation [7–9]. Some of biological applications
include tracking Definitive Endoderm Cells (DfE) to explain their linage from
Embryonic Stem Cells [10], classifying sensory neuron types [11], and identifying
potentially damanged cells [12]. To account for an underlying sparse component
(e.g., sparsely corrupted data or sparse latent structure), [13] proposed robust
PCA (RPCA) that can decompose the observed data into low-rank and sparse
components.

We build on the strength of RPCA [13] to introduce an computationally effi-
cient truncated version and a noise reduction using L2 regularization. In high
dimensional genomic data, the systematic variation is likely contained in a small
number of PCs, whereas lower-ranked PCs only contain noise. Therefore, our
truncated RPCA (tRPCA) uses the top k singular vectors to estimate low-rank and
sparse components. Noise reduction of scRNA-seq data was possible by intro-
ducing an error component, in addition to low-rank and sparse components that
were originally introduced in [13]. Advancements of matrix decomposition have
a long history, including non-negative matrix factorization [14], sparse PCA [15],
penalized matrix decomposition [16], and more. Inspired by these methods, our
innovation enables separation of low-rank and sparse components, while impos-
ing a L2 penalty on a noise term inherent in large scale genomic data.

The paper is organized as follows. In Sect. 2 Methods, we present two proposed
methods based on RPCA, namely its truncated version and noise reduction with
L2 regularization. We provide the algorithms and their characteristics. Section 3
contains the description and processing procedures for the scRNA-seq datasets
used as the case study. In Sect. 4 Results and Discussion, we present the main
results of our analysis, as well as provide some interpretations of low-rank, sparse,
and noise components. Finally, in Sect. 5. Conclusions and Further Research,
we summarize our work and discuss the future steps concerning the proposed
methods.

2 Robust PCA and Extensions

Robust PCA. In our work we start from the decomposition algorithm pro-
posed by Candes et al. [13] called robust PCA (RPCA). The aim of the RPCA is
to decompose the input matrix M , into low-rank matrix L and sparse matrix S
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components. Simultaneously, the algorithm should minimize the following opti-
mization problem:

min
L,S

||L||∗ + λ1||S||1, where M = L + S

Here we denote ||A||∗ as the nuclear norm of matrix A and ||A||1 as the first
norm of a vectorized A matrix which are given by the following formulas:

||A||∗ =
∑

σi = tr
(√

AAT
)

, and ||A||1 =
∑

i,j

|aij |

In their work, authors discuss the assumptions that matrix M should follow
for the decomposition to exist. Moreover they prove that the parameter λ1 can
be set to 1/

√
min (m,n), where m,n are dimensions of the input matrix M ,

which guarantees proper decomposition into low-rank and sparse components
as m,n → ∞ under weak probabilistic assumptions, however, the spectrum of
feasible values of λ1 parameters is broad.

In order to solve the above problem, as proposed in [17], we use an imple-
mentation of a special case of the Alternating Directions method, which belongs
to a more general class of augmented Lagrangian (AGL) multiplier algorithms.
The approach is based on minimizing the following AGL operator with respect
to L and S matrix alternately:

l(L, S, Y ) = ||L||∗ + λ1||S||1 +
〈
Y,M − L − S

〉
+

μ

2
||M − L − S||2F

where Y is the Lagrange multiplier matrix, the inner product of matrices
〈·, ·〉

is defined as the trace of their product, i.e.
〈
A,B

〉
= tr(ABT ), ||A||F is the

Forbenius norm of the form ||A||F =
√∑

i,j a2
i,j and μ is the penalty coefficient.

The outline of the solution is presented in the Algorithm1, in which we use
two shrinkage operators Sτ (x) = sgn(x) · max(|x| − τ, 0) and Dτ = USτ (Σ)V ∗,
where UΣV ∗ is a SVD of X and τ is the shrinkage threshold value. In case of
initialization of the μ parameter and convergence condition, we set μ = m·n

4·||M ||1 ,
as suggested in [17] and terminate the algorithm when ||M − L − S||F ≤ δ||M ||F
and δ = 10−7. The base implementation of the algorithm that we have extended
in this work is publicly available as a R package [18] (https://cran.r-project.org/
web/packages/rpca/).

Truncated Version of RPCA. First, we consider a truncated version of the
algorithm, which calculates the L matrix in the L + S decomposition in such a
way that it is of a given rank k or the lowest possible rank grater than k0, for
which the problem has a solution that meet all its criteria. In order to achieve
that behavior we use the truncated version of SVD (implementation from the
irlba R package [19]) instead of a full SVD and iteratively modify the μ parameter
with

μ−1
i+1 = max(c · μ−1

i , σk+1)

https://cran.r-project.org/web/packages/rpca/
https://cran.r-project.org/web/packages/rpca/
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Algorithm 1. RPCA by Alternating Directions
1: procedure RPCA(λ1)
2: S0, Y0 ← 0; μ > 0
3: while not converged do
4: compute Li+1 = Dμ−1(M − Si + μ−1Yi)
5: compute Si+1 = Sλ1μ−1(M − Li+1 + μ−1Yi)
6: compute Yi+1 = Yi + μ · (M − Li+1 − Si+1)

Algorithm 2. truncated-RPCA
1: procedure tRPCA(λ1, k0, c)
2: S0, Y0 = 0; μ0 > 0; k = k0

3: while not converged do
4: compute Li+1 = D

μ−1
i

(M − Si + μ−1
i Yi)

5: compute Si+1 = S
λ1μ−1

i
(M − Li+1 + μ−1

i Yi)

6: compute Yi+1 = Yi + μi · (M − Li+1 − Si+1)
7: compute μ−1

i+1 = max(c · μ−1
i , σk+1)

8: if μ−1
i == σk+1 then increase k

where σk is the k-th singular value from the truncated SVD and c < 1 is the
AGL constraints penalty growth rate.

As μ−1
i decreases the penalty coefficient for M = L+S constraints increases,

which also speeds up the algorithm’s convergence, however, in theory, AGL algo-
rithm converges to the constraint problem even when μi �→ ∞. Simultaneously,
when μ−1

i+1 is set to the value of σk+1 we increase k, i.e. the number of computed
SVD vectors, which is at same time the approximate expected rank of L matrix.

The above modification (see Algorithm 2) reduces significantly the computa-
tion time of the algorithm compared to the original RPCA preserving its accuracy.
However, in the case of real data (e.g. biomedical) the decomposition into low-
rank and sparse matrices is not always feasible or easily obtainable. The data
matrix usually has significant singular values (below the first k low-rank impor-
tant ones) that may come from biological activity, technical reasons, or other
unknown sources. These prevent the recovery of low-rank component as when
subtracted from M they do not constitute a sparse matrix. We interpret these
perturbations in the L matrix as a noise or low-importance information. Since
it does not have a sparse nature we extend the decomposition into L + S + E,
where the matrix E contains a dense noise controlled for using the L2 norm on
vectorized matrix M (i.e. Frobenius norm).

Noise Reduction. In order to relax the assumptions on the input matrix we
introduce the E matrix to the decomposition. Now, the decomposition problem
can be reformulated as follows:

M = L + S + E
min

L,S,E
||L||∗ + λ1||S||1 + λ2||E||F
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The E matrix is meant to contain the information of low importance or noise,
which is carried by the lowest singular values in the SVD of L matrix. To solve
this problem we extend the Alternating Directions approach and we minimize
the following AGL operator with respect to the E matrix:

l(L, S,E, Y ) = ||L||∗ + λ1||S||1 + λ2||E||F
+

〈
Y,M − L − S − E

〉
+

μ

2
||M − L − S − E||2F

Solving ∂l
∂E = 0 results in:

E

(
λ2

||E||F + μ

)
= Y + μ(M − L − S)

Let C = Y + μ(M − L − S), then ∃d∈R E = d · C. Assuming that C �= 0 we
determine the value of d. Since d < 0 results in a contradiction, we assume that
d ≥ 0 we have:

d =
||C||F − λ2

μ||C||F =
1
μ

(
1 − λ2

||C||F

)
≥ 0

which holds for ||C||F ≥ λ2. We define the operator:

Eτ (X) = max
(

0, 1 − τ

||X||F

)
· X

which describes how to determine the matrix E which minimizes l.
Finally, we extend the algorithm of truncated-PCA by applying the defined

operator Eτ . In our approach we apply the operator twice, both, after minimiza-
tion with respect to the L, and S matrix. It is worth to emphasize, that in the
case of large λ2 > ||C||F we end up with the previously introduced truncated-
RPCA procedure. Moreover, in every iteration we adjust k parameter to be of
minimal value such that Dμ−1 operator can be properly applied. Algorithm3
presents the pseudo-code of the whole decomposition procedure.

3 Single Cell Transcriptomic Data

In this study we use the publicly available scRNA-seq datasets provided by
the 10x Genomics company (https://www.10xgenomics.com/solutions/single-
cell/). Specifically, our results, that are presented in the next section, were
obtained using the scRNA-seq datasets experiments performed on peripheral
blood mononuclear cells (PBMCs) from a healthy donor. PBMCs are primary
cells with relatively small amounts of RNA (1pg RNA/cell). The final dataset
contains 2.7k individual single cells, sequenced on Illumina NextSeq 500 with
approx. 69k reads per cell. Amplification was performed on 98bp read1 (tran-
script), 8bp I5 sample barcode, 14bp I7 GemCode barcode and 10bp read2
(UMI).

https://www.10xgenomics.com/solutions/single-cell/
https://www.10xgenomics.com/solutions/single-cell/
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Algorithm 3. truncated-RPCA with L2 regularization
1: procedure tRPCAL2(λ1, λ2, k0, c)
2: S0, Y0, E0 = 0; μ0 > 0; k = k0

3: while not converged do
4: compute Li+1 = Dμ−1(M − Si − Ei + μ−1Yi)
5: compute E∗

i+1 = Eλ2μ−1(M − Si − Li+1 + μ−1Yi)
6: compute Si+1 = Sλ1μ−1(M − E∗

i+1 − Li+1 + μ−1Yi)
7: compute Ei+1 = Eλ2μ−1(M − Si+1 − Li+1 + μ−1Yi)
8: compute Yi+1 = Yi + μ · (M − Ei+1 − Li+1 − Si+1)
9: compute μ−1

i+1 = max(c · μ−1
i , σk+1)

10: if μ−1
i == σk+1 then increase k

11: else k = 1 + argmaxj (σj > μ−1
i+1)

Along with the 2.7k PBMCs dataset, we have used the scRNA-seq data
retrieved from homogeneous samples of specific cell types that constitute the
PBMC sample. Each type-specific dataset has over 90% of purity for each sub-
type by Fluorescence Activated Cell Sorting (FACS) [20]. The transcriptomes
were used in [21] and described the following types and subtypes: CD14+ Mono-
cytes, CD56+ Natural Killer cells, CD19+ B cells, CD34+ cells and subfamilies
of T cells: CD8+ Cytotoxic T cells, CD8+/CD45RA+ Naive Cytotoxic T cells,
CD4+/CD45RO+ Memory T cells, CD4+ Helper T cells.

Each of the above datasets is given in the form of a counts matrix A i.e.
i-th row represents a gene and j-th column represents an individual cell. The
value of aij is the number of counts of the i-th gene for the j-th cell. Since
our method is meant to filter out the sparse signal in S and the dense noise
in E we do not apply the typical quality control step. All cells are used in the
analysis and we expect all perturbations that break the linear behavior (e.g.
biological or technical outliers or fluctuations) to remain in S + E component
of the decomposition. Additionally, for each dataset we filter out genes that had
zero number of counts for all cells in a given set. Finally, the number of counts
for each cell was normalized by its total number of counts and log-scaled. Further
on we denote the processed 2.7k PBMCs data matrix by M .

Test Set Construction. In order to test our method we first set the labeling of
cells from the PBMCs dataset. For each available type-specific dataset we calcu-
late its average transcriptome. However, since the correlation between averaged
subtype-specific transcriptomes within T-cell family is relatively high, for the
purpose of this work, we label the cells with one of the five possible types: (i)
Monocytes, (ii) Natural Killers, (iii) B cells, (iv) T cells, (v) Unknown. T cells
family transcriptome is designated as an average among all T cells subtypes
transcriptomes.

The criterion for labeling consists of two conditions. First, a cell is assumed
to be of an unknown type if it does not correlate with any of the given profiles
at least at the level of 0.5. Next, the cell is assumed to be of a specific type
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if the separation between its correlation and correlations with other types is
statistically significant (p-value < 0.05) otherwise it is assumed to be unknown.

Even though there are no transcriptomes available for other cell types, e.g.
Megakaryocytes we are aware that they may also exist in our dataset and thus
expect to find them using our decomposition method.

4 Results and Discussion

By definition our final extension of RPCA explains the input matrix data (M) in
terms of compressed, low-rank information (L), sparse signal (S) and noise (E).
In order to validate our method on real data and evaluate its suitability for
biomedical data analysis, we investigate the scRNA-seq 2.7k PBMCs data. We
report, that the tRPCAL2 algorithm converged after 49 iterations, exec. time: 97 s
(compared to 20 s PCA from R prcomp). As expacted, due to the high background
variance tRPCA and RPCA did not converge before 1000 iterations.

Clustering via Low-Rank Matrix. First we validate the quality of the
dimension reduction by clustering cells basing on their low-rank representa-
tion kept in the L matrix. Using the unsupervised, hierarchical clustering algo-
rithm we determined 5 clusters, which we visualized using t-SNE approach [22]
(see Fig. 1). In contrast with expected cell types (derived from correlation with

Fig. 1. Clustering of 2.7k PBMCs. In both panels, cells are visualized using t-SNE
dimension reduction algorithm (perplexity = 35) run on the 10-dimensional represen-
tation of the original data (M) derived from L matrix. (a) Colors correspond to the
cell types inferred from the correlation of each cell original transcriptome (columns
of M) with type-specific PBMCs transcriptomes. We have determined: 630 Monocytes
(orange), 251 B-cells (pink), 437 Natural Killer cells (blue) and 700 T-cells (yellow).
Remaining 682 (gray) we assume to be of an unknown or tentative type. (b) Colors
correspond to 5 clusters determined by hierarchical clustering method. Colors of the
clusters are set such that the correspondence between predicted and original clusters
is noticeable. Additionally, increased activity of CD8 in the gray cluster suggests that
it can be mostly composed of cytotoxic T-cells. (Color figure online)
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type-characteristic transcriptomes) we observe that the obtained clustering well
determines all 4 main families of cells from PBMCs. Additionally, one more
cluster separating NK and T cell family clusters was discovered. The cluster
is described by increased activity of CD8A and CD8B (Bonferroni adjusted
p-value < 10−3) and regular activity of CD4, CD45 and CD25 genes in con-
trast to other cells, which suggests a cluster of mostly CD8+ T cytotoxic cells
and explains its similarity to NK cells [21,23].

Next, we compared our way of dimension reduction with the method anal-
ogous to the one used in [21]. With SVD we calculate top 10 singular values
(in pursuance of the L matrix rank) of the PBMC data matrix (M) using R
irlba package. Then, we approximate the original data through the reduced 10-
dimensional space. We perform the hierarchical clustering of all cells on the most
characteristic marker genes per cell type (selected from the literature) from the
described and the L matrices. The aim is to verify how well the dimensionality
reduction preserved the most reliable, biological information related to type-
specific marker genes. It appeared that not only the L matrix guarantees more
accurate clustering, but also it contains more pronounced differences of the signal
between clusters of both cells and genes, c.f. Fig. 2.

Fig. 2. Marker gene based clustering comparison. The figure compares clustering of
cells of known type with literature-based marker genes characterizing the analyzed
types of PBMC cells. The left panel is related to the signal represented in terms of
the truncated PCA (10 highest singular values used). The right panel corresponds to
the signal stored in the L matrix of the L + S + E decomposition. Top bars encode
the original correlation-inferred cell types. Colors in the heatmap describe the activity
level of a gene from lowest (red) through average (black) up to highest (green). (Color
figure online)
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Monocyte Subtypes and Co-expression Detection. The literature sug-
gests existance of at least three subtypes of monocytes in PBMCs [24]. Their
characterization can be based on the presence of CD14 (coded by CD14 gene)
and CD16 (coded by FCGR3A, FCGR3B genes) clusters of differentiation: (i)
the classical monocyte with high activity of CD14 (CD14++ FCGR3A−); (ii) the
intermediate monocyte with high activity of CD14 and low activity of FCGR3A
(CD14++FCGR3A+); (iii) the non-classical monocyte with low activity of CD14
and co-expressed FCGR3A (CD14+FCGR3A++).

Interestingly, such classification of subtypes can be found using the low rank
signal from the L matrix (see Fig. 3). The activity of CD14 is almost uniquely
distributed among cluster of monocyte cells and, simultaneously, the activity of
FCGR3A changes with the gradient defining the cell subtype progression among
all monocytes. Moreover, the Fig. 3c shows how the original expression values
are distributed among decomposition matrices. The sparse peaks of activity are
stored in S and the linear part in L. Finally, E contains remaining noise of mean
0 and the standard deviation of order 10−4 for both CD14 and FCGR3A.

Fig. 3. CD14 and FCGR3A activity levels. Panels present the activity of monocytes
marker genes. (a) and (b) Figures present the activity of CD14 and FCGR3A genes
among all cells, respectively. The level of activity (low to high) is spanned on the red
to green color scale. (c) Consecutive panels present: (i) the log-transformed data from
M ; (ii) low-rank signal in L matrix; (iii) sparse signal in S matrix. In each panel cells
(x-axis) are sorted by the activity level of CD14 (y-axis). (Color figure online)
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The other interesting property of the L matrix is the fact that it recovers
co-expression patterns between genes. Namely, the activity of B cells can be
detected e.g. by the presence of CD79 heterodimer composed of CD79A and
CD79B proteins [25]. Their co-expression measured in terms of correlation was
at the level of 0.227, while after the decomposition their low-rank signal had
correlation of level 0.995. Similarly, the correlation between FCGR3A and GNLY
characterizing Natural Killer cells increased from 0.400 to 0.949. Naturally, these
observations result from filtering out the sparse and noise signals. Nonetheless,
it is worth to emphasize that this type of information is retrieved by the method,
because it can help in suggesting new co-expression patterns.

Sparse Signal Interpretation. The presence of megakaryocytes in our PBMC
dataset, that was reported in the population of PBMCs sample from [21], was
not evident using the low-rank L matrix. Even though, a small cluster of cells of
unknown type was separated by t-SNE method (see Fig. 1) it was not straight-
forward conclusion from clustering results. However, with the hierarchical clus-
tering performed on the subset of unknown type cells and genes that had at
least one non-zero entry form the sparse S matrix we recover well-separated
cluster of 9 cells. Further analysis confirmed that the cluster is characterized
by high over-expression of PF4 gene, which is a well known marker for mature
megakaryocytes [26], in comparison to other unknown cell types.

Noise Reduction Level. Finally, we want to discuss briefly the importance
of the noise matrix E and setting of both λ1 and λ2 parameters. The final
decomposition quality in terms of information distribution among three matrices
is mainly based on the choice of these crucial parameters. For the purpose of
this study, we performed a grid-based search through the parameter space which
resulted in λ1 = 0.016, λ2 = 10.0 and consequently L + S + E decomposition
with the following norms of the (vectorized) matrices: ||·||∗ : 5.753, 60.289, 57.881;
||·||1 : 3398.162, 60.289, 2670.012; ||·||2 : 4.265, 2.826, 1.440 (L, S, E respectively).

To determine the order of magnitude for both parameters we have made use
of the theory described in [13] as well as estimations based on the properties
of the MMT matrix trace operator. Because tRPCAL2 algorithm mixes L1 and
L2 norms, and because of their nature, final decomposition depends not only
on relative or absolute values of lambdas, but also on distributions of elements
in the decomposed matrices. We investigated the influence of λ1 and λ2 on
decomposition properties such as: the rank of the resulting L matrix, relative
and absolute sparsity of the S matrix and the variance of the noise level in E
matrix. We report few observations on PBMCs data: (i) relative sparsity of S (i.e.
proportion between sparsity of S and original matrices) decreases exponentially
with respect to λ1

λ2
; the rank of matrix L increases; (ii) sub-linearly as a function

of λ1 and fixed λ2; (iii) polynomially as a function of λ2 and fixed λ1.
Finally, in theory it seems intuitive to expect elements of the E matrix

to be normally distributed with 0 mean. However, the computational experi-
ments showed, that this distribution is a mixture of the zero-centered Gaus-
sian and another low-variance Gaussian concentrated around non-negative,
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lambda2-dependent value. We assume that this is a linear dependency, nonethe-
less its precise description is still unexplored.

More formal investigation of theoretical properties of the tRPCAL2 decompo-
sition with respect to lambdas and L, S,E matrices could be of high interest in
terms of future research.

5 Conclusions and Further Research

Concluding, in this paper we introduce an extension of the robust PCA
matrix decomposition method. We propose a L + S + E decomposition of the
matrix into: low-rank L, sparse S and noise E components. Thanks to the reduc-
tion of L2 moderated noise we restore the inner structure of the matrix, which
approximates the original data with high accuracy, as well as recognize the sparse
perturbation signal of the data. We present the case study based on the scRNA-
seq data from 2.7k PBMCs. The method provides relatively fast and accurate
dimension reduction and clustering of the high-dimensional data detecting differ-
ent subtypes within a given cell type, co-expression patterns and novel subtypes.

One possible direction for the further research is to derive precise formulas
for λ1 and λ2 parameters that guarantee optimal solutions of the decomposition
problem. So far, simulation-based selection of the parameters is time consuming.
Ideally, a lambda parameter selection method would result with the most natural
L + S + E decomposition, taking into account user’s expectations in terms of,
for example, Bayesian priors to relative magnitudes, and to other components’
statistics. This and the applicability of our method to other types of data we
see as a promising direction of research. Preliminary results of video and image
analysis, not described in this paper, suggest that the method can be successfully
harnessed in the field of video-surveillance and image analysis. The most recent
implementation of the tRPCAL2 algorithm as an R package is available under
https://github.com/macieksk/rpca.
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Abstract. One of the most notable challenges in single cell RNA-Seq
data analysis is the so called drop-out effect, where only a fraction of the
transcriptome of each cell is captured. The random nature of drop-outs,
however, makes it possible to consider imputation methods as means of
correcting for drop-outs. In this paper we study some existing scRNA-Seq
imputation methods and propose a novel iterative imputation approach
based on efficiently computing highly similar cells. We then present the
results of a comprehensive assessment of existing and proposed methods
on real scRNA-Seq datasets with varying per cell sequencing depth.

Keywords: Single cell RNA-Seq · Imputation

1 Introduction

Emerging single cell RNA sequencing (scRNA-Seq) technologies enable the anal-
ysis of transcriptional profiles at single cell resolution, bringing new insights into
tissue heterogeneity, cell differentiation, cell type identification and many other
applications. The scRNA-Seq technologies, however, suffer from several sources
of significant technical and biological noise, that need to be addressed differently
than in bulk RNA-Seq.

One of the most notable challenges is the so called drop-out effect. Whether
occurring because of inefficient mRNA capture, or naturally due to low number
of RNA transcripts and the stochastic nature of gene expression, the result is
capturing only a fraction of the transcriptome of each cell and hence data that
has a high degree of sparsity. The drop-outs typically do not affect the highly
expressed genes but may affect biologically interesting genes expressed at low
levels such as transcription factors. Combining cells as a measure to compensate
for the drop-out effects could be defeating the purpose of performing single cell
RNA-Seq. In this paper we take advantage of the random nature of drop-outs and
develop imputation methods for scRNA-Seq. In next section we briefly discuss
some existing scRNA-Seq imputation methods and propose a novel iterative
imputation approach based on efficiently computing highly similar cells. We then
present the results of a comprehensive assessment of the existing and proposed
methods on real scRNA-Seq datasets with varying sequencing depth.
c© Springer International Publishing AG, part of Springer Nature 2018
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2 Methods

2.1 Existing Single Cell RNA-Seq Imputation Methods

DrImpute [4]. The DrImpute R package implements imputation for scRNA-Seq
based on clustering the data. First DrImpute computes the distance between
cells using Spearman and Pearson correlations, then it performs cell clustering
based on each distance matrix, followed by imputing zero values multiple times
based on the resulting clusters, and finally averaging the imputation results to
produce a final value for the drop-outs.

scImpute [8]. The scImpute R package makes the assumption that most genes
have a bimodal expression pattern that can be described by a mixture model
with two components. The first component is a Gamma distribution used to
account for the drop-outs, while the second component is a Normal distribu-
tion to represent the actual gene expression levels. Thus, in [8], the expres-
sion level of gene i is considered a random variable with density function
fXi

(x) = λiGamma(x;αi;βi) + (1 − λi)Normal(x;μi;σi), where λi is the drop-
out rate of gene i, αi and βi are shape and rate parameters of its Gamma
distribution component, and μi and σi are the mean and standard deviation of
its Normal distribution component. The parameters in the mixture model are
estimated using Expectation-Maximization (EM). The authors’ intuition behind
this mixture model is that if a gene has high expression and low variation in the
majority of cells, then a zero count is more likely to be a drop-out value than
when the opposite occurs, i.e., when a gene has constantly low expression or
medium expression with high variation, then a zero count reflects real biological
variability. According to [8] this model does not assume an empirical relation-
ship between drop-out rates and mean expression levels and thus allows for more
flexibility in model estimation.

KNNImpute [16]. Weighted K-nearest neighbors (KNNimpute), a method origi-
nally developed for microarray data, selects genes with expression profiles similar
to the gene of interest to impute missing values. For instance, consider a gene
A that has a missing value in cell 1, KNN will find K other genes which have a
value present in cell 1, with expression most similar to A in cells 2 − N , where
N is the total number of cells. A weighted average of values in cell 1 for the K
genes closest in Euclidean distance is then used as an estimate for the missing
value for gene A.

There are also some methods for clustering with implicit imputation, like
BISCUIT [1,13] and CIDR [9]. These however are out of scope of this paper,
as we are focusing on stand-alone imputation methods yielding imputed gene
expression profiles that can be used for downstream analyses beyond unsuper-
vised clustering, like dimensionality reduction, counting cells that express known
markers, and differential gene expression analysis.



Locality Sensitive Imputation for Single-Cell RNA-Seq Data 349

2.2 Proposed Method: Locality Sensitive Imputation (LSImpute)

We propose a novel algorithm that uses similarity between cells to infer missing
values in an iterative approach. The algorithm summary is as follows:

Step 1. Given a set S of n cells (represented by their scRNA-Seq gene expression
profiles), start by selecting pairs of cells with highest similarity level until at least
mmin distinct cells (mmin = 6 in our implementation) are selected or the highest
pair similarity drops below a given threshold. This process guarantees that each
selected cell has highest pairwise similarity level to at least one other selected
cell.1

Step 2. Cluster the m cells selected in Step 1 using a suitable clustering algo-
rithm (our implementation uses spherical K-means with k =

√
m). The clusters

formed in this step are expected to be “tight”, with each selected cell having
high similarity to the other cells in its cluster.

Step 3. For each of the clusters identified in step 2, replace zero values for each
gene j with values imputed based on the expression levels of gene j in all the
cells within the cluster.

Step 4. The selected cells now have imputed values and the clusters they form
are collapsed into their respective centroids. The centroids are pooled together
with unselected cells to form a new set S, and the process is repeated starting
again at Step 1.

Fig. 1. Illustration of Steps 1 (left) and 2 (right) of LSImpute. Gray dots represent
already processed cells and collapsed centroids from previous iterations. Pink dots
represent cells in pairs with highest similarity level which are selected for clustering.
(Color figure online)

1 Note that, unlike KNN, which uses similarity between genes, LSImpute uses similar-
ity between cells. Also, the number of nearest cells used for imputation is not fixed
but depends on the minimum similarity threshold.
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Note that, naturally, in Step 3 expression levels are imputed only for orig-
inal cells and not for centroids but centroid expression levels are used in the
imputation process if they are selected in Step 1. The expression levels used to
replace the zero expression values can be inferred via different models. In Sect. 3
we give results for two simple approaches, namely using the mean, respectively
the median of all expression values for gene j in cells belonging to the cluster
(these variants are referred to as LSImputeMean, respectively LSImputeMed in
Sect. 3). Using the median of both zero and non-zero values first, decides implic-
itly whether a zero is a drop-out event or a true biological effect, and prevents
large but isolated expression values from driving imputation of nearby zeros,
while collapsing into centroids in each iteration limits the propagation of poten-
tial imputation errors. Figure 1 illustrates the first two steps of the algorithm.

The worst case number of iterations taken by the algorithm is O(n) as the
total number of remaining cells and centroids starts at n and decreases by at
least one in each iteration. In practice the number of iterations is much smaller.
Our current implementation has two options for finding the pairs of cells with
highest similarity level in Step 1. The first option is to use Cosine similarity
and the O(n log n) algorithm of [3]. Alternatively, this could be done in O(n)
time using Jaccard similarity and Locality Sensitive Hashing [6]. Both similarity
metrics are available in the Shiny app available at http://cnv1.engr.uconn.edu:
3838/LSImpute/, where the user can also adjust the minimum similarity thresh-
old used in Step 1. It is recommended however to use a high similarity threshold,
which will restrict the imputation to only highly similar cells as a way of being
conservative with imputation to avoid the risk of over-imputation. A low sim-
ilarity threshold can lead to imputing more values and can be used when the
data set is of particularly low depths. All results presented in Sect. 3 use Cosine
similarity and a minimum similarity threshold of 0.85 for all sets regardless of
depth to avoid over-fitting. Using Jaccard similarity based on the R package
LSHR [15] resulted in similar imputation levels as the Cosine similarity based
implementation.

2.3 Experimental Setup

Data Sets. To assess the performance of the compared imputation methods,
we used multiple evaluation metrics on data sets consisting of real scRNA-Seq
reads down-sampled to simulate varying sequencing depths per cell. Specifically,
we used ultra-deep scRNA-Seq data generated for 209 somatosensory neurons
isolated from the mouse dorsal root ganglion (DRG) and described in [7]. An
average of 31.5M 2× 100 read pairs were sequenced for each cell, leading to
the detection of an average of 10, 950 ± 1, 218 genes per cell. To simulate vary-
ing levels of drop-out effects we down-sampled the full dataset to 50K, 100K,
200K, 300K, 400K, 500K, 1M, 5M, 10M, respectively 20M read pairs per cell.
At each sequencing depth transcript per million (TPM) gene expression values
were estimated for each neuron using the IsoEM2 package [10]. As ground truth
we used TPM values determined by running IsoEM2 on the full set of reads. For
clustering accuracy evaluation, we used as ground truth the cluster assignment

http://cnv1.engr.uconn.edu:3838/LSImpute/
http://cnv1.engr.uconn.edu:3838/LSImpute/
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Fig. 2. Heatmap of log-transformed TPM values of marker genes identified for DRG
neurons in [7] (left) and t-SNE plot showing the 8 clusters from [7] (right).

from [7], focusing on the 8 cell populations identified using scRNA-Seq data and
not its refinement based on neuron sizes (see Fig. 2). The C1-C8 clusters we
use in this paper correspond to the following cell populations identified by their
most prominent marker genes as indicated by [7]: C1: Gal; C2: Nppb; C3: Th;
C4: Mrgpra3 & Mrgprb4; C5:Mrgprd-high; C6:Mrgprd-low & S100b-high; C7:
S100b-low; C8: Ntrk2 & S100b-high.

Evaluation Metrics. We used the following metrics to evaluate the imputation
methods’ performance at different sequencing depths:

– Detection fraction accuracy. A common application of single cell anal-
yses is to estimate the percentage of cells expressing a given marker gene,
for instance CD4+ or CD8+ tumor infiltrating lymphocytes [2]. A gene is
considered to be detected in a cell if the (imputed or ground truth) TPM
is positive. For each imputation method, the detection fraction is defined as
the number of cells in which the cell is detected divided by the total number
of cells. This was compared to the ‘true’ detection ratio, defined based on
ground truth TPM values.

– Median percent error (MPE). As defined in [12], the Median Percentage
Error (MPE) is the median of the set of relative errors for the gene metric
examined, in this case the detection fraction. If a gene has predicted detection
fraction y and a ground truth detection fraction of x, the gene’s relative error
is defined as |y−x|

x . For each sequencing depth we computed MPE relative to
all genes as well as subsets of genes corresponding to the four quartiles defined
by gene averages of non-zero ground truth TPM values over all cells (ranges
of mean non-zero TPM values for the four quantiles were [0, 2.3] (2.3, 6.744],
(6.744, 24.517], and (24.517, 18576.98], respectively. Full error curves plotting
the percentage of genes with relative error above varying thresholds were also
used for a more detailed comparison of imputation methods.
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– Gene detection accuracy. This metric views gene detection as a binary
classification problem. For each imputation method, true positives (TP) are
the (gene, cell) pairs for which both imputed and ground truth TPM values
are positive, while true negatives (TN) are (gene, cell) pairs for which both
TPM values are zero. The accuracy is computed as the number of true pre-
dictions (TP +TN) divided by the product between the number of genes and
the number of cells.

– Clustering micro-accuracy. For each sequencing depth and imputation
method we clustered imputed TPM values using several clustering algorithms
and assessed the effect of imputation on clustering accuracy using the micro-
accuracy measure [5,17] defined by

∑K
i=1 Ci/

∑K
i=1 Ni, where K is the number

of classes, Ni is the size of class i, and Ci is the number of correctly labeled
samples in class i relative to the ground truth from [7].

3 Results and Discussion

To assess imputation accuracy on data sets with varying amounts of drop-outs
we sub-sampled the ultra-deep DRG scRNA-Seq data to simulate sequencing
depths between 50K and 20M read pairs per cell. For each sequencing depth
the metrics described in Sect. 2.3 were computed for three previous methods
(DrImpute, scImpute and KNNImpute), the two variants of our locality sensitive
imputation method described in Sect. 2.2 (LSImputeMean and LSImputeMed),
and, as a reference, for the ‘Raw Data’ consisting of TPM values without any
imputation.

Detection Fraction Accuracy. Figure 3 plots the true detection fraction (x-axis)
against the detection fraction in the raw data, respectively after imputation
with each of the five compared methods (y-axis) at three selected sequencing
depths (100K, 1M, respectively 10M read pairs per cell; high resolution plots
for all ten evaluated sequencing depths are available at https://doi.org/10.1101/
291807. Each dot in the scatter plots represents one gene. Dot color shades are
based on the four quartiles as defined above. For an ideal imputation method all
dots would lie on the main diagonal, which represents perfect agreement between
predicted and true detection fractions. Dots below the diagonal correspond to
genes for which the detection fraction is under-estimated, while dots above the
diagonal correspond to genes for which the detection fraction is over-estimated.
Drop-outs in the raw data yield severe under-estimation of the detection fraction
for most genes at sequencing depths of 100K and 1M read pairs per cell, but at
10M read pairs per cell detection fractions computed based on raw data are very
close to the true fractions for nearly all genes. Existing methods over-impute
detection fractions for most genes, even at low sequencing depths. At 100K
read pairs per cell LSImputeMed under-estimates detection fractions, improving
very little over raw values, while LSImputeMean gives most accurate detection
fractions. At higher sequencing depths LSImputeMean begins over-imputing,
while LSImputeMed yields most accurate detection fractions at 1M read pairs
per cell and only slightly over-imputes at 10M read pairs per cell.

https://doi.org/10.1101/291807
https://doi.org/10.1101/291807
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Fig. 3. True vs. imputed detection fractions (left to right: 100K, 1M, 10M read pairs
per cell; top to bottom: Raw data, DrImpute, scImpute, KNNImpute, LSImputeMed,
and LSImputeMean). (Color figure online)
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Fig. 4. Error curves for (a) 100K, (b) 1M, respectively (c) 10M read pairs per cell. The
abscissa of dashed vertical lines correspond to MPE of raw data.

Detection Fraction Error Curves and MPE Comparison. While dot-plots in
Fig. 3 give a useful qualitative comparison of detection fraction accuracy of differ-
ent methods, for a more quantitative comparison of detection fraction accuracy
Fig. 4 gives the so called error curve of each method. The error curve plots,
for every threshold x between 0 and 1, the percentage of genes with a relative
error above x. The error curves in Fig. 4 confirm that LSImputeMean has high-
est detection fraction accuracy of the compared methods at a sequencing depth
of 100K read pairs per cell, while LSImputeMed significantly outperforms the
other methods at 1M read pairs per cell and matches raw data accuracy at 10M
read pairs per cell. The relative performance of the methods can be even more
concisely captured by their MPE values, which are the abscissae of the points
where the horizontal line with an ordinate of 0.5 crosses the corresponding error
curves. The surface plots in Fig. 5 display MPE values (y-axis, on a logarith-
mic scale) as a function of both sequencing depth (x-axis) and mean non-zero
expression quartile (z-axis). The only imputation methods that do not result in
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Fig. 5. Surface plots indicating median percent error values in log scale (y-axis) for each
depth (x-axis) in each quantile (z-axis) for each method: (a) Raw data, (b) DrImpute,
(c) scImpute, (d) KNNImpute, (e) LSImputeMed, and (f) LSImputeMean (Color figure
online)

MPE values over 100%, depicted in red in the surface plot, are LSImputeMed
and LSImputeMean. At all sequencing depths and for all assessed imputation
methods genes in the lowest quartile (Q1) have very high MPE, suggesting that
detection fractions based on imputed values should not be used for these genes.

Gene Detection Accuracy and Relation to MPE. Table 1 shows the gene detec-
tion accuracy achieved by the compared imputation methods, with the highest
accuracy at each sequencing depth typeset in bold. We assessed gene detection
accuracy both based on fractional ground truth and imputed TPM values, as
well as after rounding both to the nearest integer, which is equivalent to using a
TPM of 0.5 as the detection threshold. For the results without rounding, DrIm-
pute has the highest gene detection accuracy at 50K and 100K read pairs per
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Table 1. Gene detection accuracy

Data Not rounded Rounded

Raw Dr. sc. KNN. LSMd LSMn Raw Dr. sc. KNN. LSMd LSMn

50K 0.676 0.822 0.700 0.799 0.687 0.693 0.752 0.866 0.748 0.700 0.762 0.765

100K 0.740 0.810 0.778 0.713 0.772 0.797 0.816 0.876 0.720 0.712 0.841 0.850

200K 0.800 0.778 0.754 0.726 0.836 0.839 0.872 0.878 0.689 0.722 0.892 0.884

300K 0.829 0.772 0.740 0.732 0.864 0.861 0.899 0.880 0.673 0.726 0.909 0.892

400K 0.847 0.762 0.731 0.736 0.872 0.868 0.915 0.882 0.663 0.730 0.918 0.895

500K 0.859 0.759 0.725 0.738 0.878 0.878 0.927 0.883 0.655 0.732 0.928 0.909

1M 0.891 0.737 0.703 0.747 0.899 0.896 0.952 0.882 0.634 0.738 0.947 0.937

5M 0.918 0.705 0.661 0.762 0.902 0.910 0.980 0.894 0.621 0.772 0.940 0.960

10M 0.920 0.768 0.692 0.648 0.896 0.887 0.987 0.907 0.627 0.800 0.947 0.939

20M 0.921 0.690 0.635 0.774 0.892 0.901 0.994 0.921 0.634 0.825 0.959 0.970
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Fig. 6. Gene detection accuracy vs. MPE at varying sequencing depths.

cell. LSImputeMean has highest gene detection accuracy for 200K read pairs
per cell, while LSImputeMed outperforms the other methods for 300K–1M read
pairs per cell. Raw data (no imputation) gives best gene detection accuracy at
5M read pairs per cell and higher depths. For the rounded data sets, DrImpute
also has the highest gene detection accuracy at 50K and 100K read pairs per
cell, while LSImputeMed outperforms the other methods for 200K–500K read
pairs per cell. For sequencing depth of 1M read pairs per cell and higher the raw
data gives best detection accuracy followed by LSImpute methods.

At very low sequencing depth it is possible for some methods to impute values
that are not detected in the ground truth. This could lead to good performance in
detection fraction accuracy despite low performance in gene detection accuracy.
Furthermore, although one would expect all accuracy measures to improve with
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increased sequencing depth, this may not necessarily be the case for methods
that over-impute. To illustrate the relation between MPE and gene detection
accuracy and the effect of sequencing depth increase, in Fig. 6 we plot for each
method the gene detection accuracy and MPE achieved without rounding at
each sequencing depth from 50K up to 20M read pairs per cell, with consecu-
tive depths connected by arrows pointing in the direction of sequencing depth
increase. Since high accuracy and low MPE are preferable, the points near the
lower right corner of the plot and arrows pointing towards it indicate better
results. For some methods like scImpute and DrImpute, although the starting
point (50K read pairs per cell) shows considerable improvement over raw data,
as sequencing depth increases one or both of the accuracy measures substantially
worsen due to over-imputation. Both LSImputeMed and LSImputeMean start
with improvement over raw data in both MPE as and Gene Detection Accuracy
and continue in the right direction for higher depths until as mentioned before,
the raw data without any imputation gives slightly better gene detection accu-
racy at 5M read pairs per cell and higher, which suggests that imputation at
such high depths comes with the risk of over-imputation for all methods tested.

Fig. 7. Micro-accuracy on inputed data for (a) PCA-based hierarchical clustering using
Spearman correlation, (b) TF-IDF Top C [11], and (c) PCA-based spherical k-means.
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Fig. 8. Heatmaps of marker genes from [7] for the 100K DRG dataset: (a) Raw data,
(b) DrImpute, (c) scImpute, (d) KNNImpute, (e) LSImputeMed, (f) LSImputeMean.
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Clustering Accuracy. In order to assess the impact of imputation on clustering
results, we tested each of the imputation methods in combination with following
clustering methods: PCA based hierarchical clustering using Spearman correla-
tion, the TF-IDF Top C clustering approach from [11], and PCA based spherical
k-means clustering. The micro-accuracy results in Fig. 7 suggest that the effect of
imputation varies when combined with different clustering approaches. We also
tested Seurat [14] k-means clustering of genes and cells (using k = 8 with default
parameters), however there was very little change in clustering accuracy for dif-
ferent depths. Although the MPE and detection accuracy of some imputation
methods suggest the imputation radically alters gene expression profiles, the sim-
ilarity between cells of a cluster could still hold when all cell profiles are changed
in a consistent manner. This can very well lead to no or little change in clustering
accuracy, when in fact cell expression profiles are far from the ground truth as
the MPE and gene detection accuracy results suggest. As seen in Fig. 8 featuring
the log(x + 1) expression levels of the marker genes for the DRG 100K data set,
although the expression levels of most genes are changed through imputation,
the clusters driven by high expression levels of several marker genes can still be
the prominent signal for clustering and in most cases this signal remains visually
apparent in the heatmaps. Clustering accuracy is hence not recommended as the
sole performance evaluation metric when assessing imputation methods.

4 Conclusion

Although imputation can be a useful step in scRNA-Seq analysis pipelines, it
can become a two-edged sword if expression values are over-imputed. In this
paper we evaluated the performance of several existing imputation R packages
and presented a novel approach for imputation. LSImpute, especially the variant
based on median imputation, tends to impute more conservatively than existing
methods resulting in improved performance based on a variety of metrics. Over-
all, LSImpute is more likely to reduce drop-out effects and reduce sparsity of the
data without introducing false expression patterns or over-imputation. Cosine
and Jaccard similarity based implementations of LSImpute are available as a
Shiny app at http://cnv1.engr.uconn.edu:3838/LSImpute/.
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