
From Metadata Catalogs to Distributed Data
Processing for Smart City Platforms

and Services: A Study on the Interplay
of CKAN and Hadoop

Robert Scholz(&), Nikolay Tcholtchev, Philipp Lämmel,
and Ina Schieferdecker

Fraunhofer Institute for Open Communication Systems (FOKUS),
Berlin, Germany

{robert.scholz,nikolay.tcholtchev,philipp.lammel,

ina.schieferdecker}@fokus.fraunhofer.de

Abstract. Smart Cities are emerging based on the idea of provisioning and
processing large amounts of urban data for various use cases. Thereby, Urban
Data Platforms are usually employed to accumulate and expose the large
amounts of governmental (i.e. public sector), sensor, static and real-time data in
order to enable the community to create valuable applications and services for
future Smart Cities. Hitherto, the Open Data initiative was seen as the key driver
to providing large amounts of data within a city. Open Data platforms employ
so-called data registries in order to keep track of the available datasets at various
sources spread throughout the city, with CKAN currently being among the most
popular data catalog software worldwide. With the emergence of frameworks for
large scale distributed computing and storage, such as Hadoop and the
belonging distributed file systems (HDFS), there is an inherent need for bridging
the worlds of metadata catalogs and distributed data processing towards the goal
of providing sophisticated urban ICT services. The current paper constitutes a
first attempt on this new field, by prototyping and evaluating components that
enable the collaboration and interplay between CKAN and Hadoop/HDFS. This
interplay is realized through extensions to CKAN and its harvesting process and
its benefits are demonstrated by belonging case studies.

Keywords: Smart Cities � Open Data � Distributed processing
Hadoop � CKAN

1 Introduction

One pivotal concern for the creation of real Smart Cities is the establishment of a
working data processing pipeline. Typical Smart City solutions require the integration
of big and diverse data on (potentially) distributed systems. A first step towards this
goal was and is the ongoing process of establishing city-wide metadata catalogs that
index available datasets from all the different contributing stakeholders of the Smart
City environment. This creates a single point of access for most of the available (open
or specifically licensed) data for a particular city.

© Springer International Publishing AG, part of Springer Nature 2018
D. Ferguson et al. (Eds.): CLOSER 2017, CCIS 864, pp. 115–136, 2018.
https://doi.org/10.1007/978-3-319-94959-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94959-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94959-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94959-8_7&domain=pdf

In a previous work [1], the authors highlighted a lack of research efforts concerning
the seamless integration of the existing metadata hubs and the available data processing
engines throughout a city. As of then, required data(-sets) needed to be manually
collected, transferred onto the processing system and kept up-to-date, thereby forfeiting
some of the potential advantages offered by the aforementioned cataloging systems.
The authors therefore suggested a novel concept for integration of these two types of
systems and consequently implemented an extension that closed this gap by providing
the automated integration between the Comprehensive Knowledge Archive Network
(CKAN) [2] and the Hadoop Distributed File System (HDFS) [3], serving as exemplary
systems from each domain. This concept and its belonging prototype were denoted as
HdfsStorer extension. The prototype builds on the CKAN platform and utilizes the core
structure of a CKAN extension.

The current paper is a follow-up to this previous publication from the CLOSER
2017 proceedings [1]. The present update puts a stronger emphasis on the framework of
projects in which the extension was developed and highlights some practicalities
encountered during development of the presented extension. Additionally, the paper
describes newly added functionalities that haven’t been part of the previous
publication.

The aforementioned extension was developed in the late stages of the German
Governmental Data-Portal (GovData) project [4], whose main aim was the creation of a
unified, country-wide metadata catalog for governmental data from municipalities, city
councils and other federal and state entities. The project itself was part of a series of
open government projects by the chief executive body of the German government
(Bundesregierung) in cooperation with the IT-Planungsrat, which is responsible for the
coordination of the collaboration of the federal government and federal states in the
area of IT. As a key asset defined within the Open Data strategy of the German
Government [5], the portal was launched in February 2013.

Such a metadata catalog holds only references to the data, along with other attri-
butes, such as licensing, file size and -type or time of the last update. The actual data
remains available only over the web portals of the belonging institutions. The aggre-
gation of metadata accomplished either through manual addition of metadata entries or
through “harvesting” of other metadata catalogs (e.g. separate catalogs of federal states
or cities) or similar sources. CKAN is a major open source platform for metadata
cataloging and was used to implement the GovData metadata engine. In CKAN,
harvesting is realized through a dedicated extension [6], which provides harvesting
plugins for specific standardized metadata formats. Additional plugins may be devel-
oped to enable the harvesting of sources that provide their metadata in a different
format.

The previously developed extension established a means for integrating CKAN as a
metadata store with the powerful capabilities of Hadoop [7], in order to enable the
efficient handling of large (open) datasets in urban environments. This first extension
allowed for the entirety of all harvested datasets by intercepting resource addition and
update events. This is now extended by a CKAN harvester plugin that provides a
means for selecting the desired type of datasets for each harvested source (i.e. other
metadata catalogs) in order to allow for the realization of more dedicated use cases and
resource (storage space and bandwidth) usage optimization.

116 R. Scholz et al.

The HDFS was chosen as the system for data storage for a range of reasons. As
integral part of the Hadoop framework for big data processing, it enables parallel data-
local processing of data distributed over a cluster of machines. Efficient replication of
datasets, aside of bestowing failure resistance, allows for the dynamical addition and
removal of (virtual) machines during runtime and thus provides the scalability neces-
sary for the creation of different applications that make use of ever growing datasets
and serve a continuously growing user base. This can be facilitated by cluster coor-
dinators such as Zookeeper [8]. The stored data can be processed by a multitude of
HDFS-compatible software solutions, such as batch processing engines (MapReduce
[9]), in-memory solutions (Flink [10], Spark [11]), integrated with stream processing
(Spark Streaming, Storm [12]) or used within graph processing frameworks (Giraph
[13]) as well as data base/warehousing systems (HIVE [14], Impala [15], HBase [16]).
This allows for the development of small to large scale applications within Smart Cities
or other environments. Hadoop-based machine learning systems may additionally
benefit from the ease of creation of homogenous big datasets – ensured through
restricted harvesting of many data sources - that are usually required for their initial
training phase.

The remainder of this paper is divided as follows: The next section presents already
existing relevant work from the fields introduced above. Sections 3 and 4 describe the
envisioned solutions, namely the HdfsStorer and the CKAN harvester plugin for fil-
tering. Thereupon, the implementations of both extensions are described in detail
(Sects. 5 and 6, respectively). A realized proto-use case is given in Sect. 7. In com-
plement to that, Sect. 8 outlines a possible real-world application of said extensions
within an aspiring Smart City. Lastly, the authors provide a discussion of aspects
presented hitherto and summarize the contributions of the paper.

2 Related Work

A multitude of projects worldwide – such as the Open Data portal of Japan [17] or the
municipal data hub in Rio de Janeiro [18] - use CKAN for metadata cataloging. Its
major competitor is Socrata [19]. Proprietary solutions such as Konema [20] exist as
well. CKAN instances find their application on all levels of geographical and admin-
istrative granularity, ranging from the regional (i.e. in Berlin Open Data Portal [21]),
over the federal level (GovData [4]) to multinational communities (such as the Euro-
pean Data Portal [22]). Fraunhofer FOKUS has played a major role in the conceptu-
alization and development of these latter three Open Data portals. These portals aim to
provide a single point of access to predominantly governmental data, whereby the data
itself remains on the web portals of the belonging institutions (also denoted as data
providers). GovData indexes data from a multitude of providers i.e. municipalities, city
councils, or federal institutions such as the Federal Statistical Office of Germany, which
are either directly publishing the data (i.e. via custom Application Programming
Interfaces [APIs]) or providing access to it through their own metadata catalogs. The
European Data portal is one position downstream and itself harvests the metadata hubs
of the individual countries, such as those of Germany (GovData.de), Portugal (da-
dos.gov.pt) or Estonia (opendata.riik.ee). Private entities such as companies also

A Study on the Interplay of CKAN and Hadoop 117

provide their data to some of the harvested data hubs upstream. This harvesting
pipeline is shown in Fig. 1.

To enable the efficient integration of metadata from different data hubs and data
sources, a set of specifications and standards pertaining harvesting protocols, interfaces
and metadata schemes have been developed. These include the Open Archives Ini-
tiative Protocol for Metadata Harvesting (OAI-PMH) [23] and Object Exchange and
Reuse (OAI-ORE) standards [24], the open government data (ODG) metadata scheme
[25], the Infrastructure for Spatial Information in the European Community (INSPIRE)
specification [26] for geospatial data and the Dublin-Core [27] and Machine-Readable
Cataloging (MARC) [28] metadata vocabularies. Harvest sources usually provide their

data in one of those standardized formats and different harvester types or plugins
are needed for automated metadata import.

GovData supports harvesting of three types of sources. Firstly, a large number of
CKAN based platforms are harvested over the belonging CKAN-Representational
State Transfer (REST) interfaces by a standard CKAN-Harvester. Geospatial data
compliant with the INSPIRE specification is captured via CSW interfaces by a dedi-
cated harvester. The inclusion of such geospatial data requires the CKAN spatial
extension. Lastly, a number of data providers come up with own metadata represen-
tations provided over REST services that output JavaScript Object Notation (JSON)
strings. Those are imported through custom harvester plugins. The harvested metadata
is then transformed into OGD metadata scheme, which constitutes the base for cap-
turing metadata within GovData.

The OAI-PMH standard was originally developed in the context of publication
retrieval and later on taken up by further institutions, such as the Internet Archive [29],
to serve different purposes. It can make use of the Dublin-Core metadata vocabulary for
object and document description, but also supports further formats such as MARC. The
OAI-ORE standard builds on the OAI-PMH stack and adds the possibility of defining
links between different documents and associated alternative formats and version in a
so-called resource map, akin to the package description of CKAN. The CKAN har-
vester implementation for the OAI-PMH [30] allows for selective harvesting of only a

Fig. 1. Schematic overview of the metadata accumulation for the European Open Data Portal.
Regional catalogs receive exclusively direct input (not shown). Direct Data Provider may either
provide their data in a harvestable format (akin to the regional catalogs) or their data can be
manually registered in the corresponding catalog (dotted arrow).

118 R. Scholz et al.

subset of datasets based on certain spec attributes, which may be comparable to tags.
These specs have to be set by the data source for each dataset individually. As only a
few harvest sources are compliant with this standard – i.e. none of the harvest sources
from GovData - and out of those that are compliant not all come with a complete set of
specs, a more general way for filtering or selection is desirable.

The HDFS was preferred over other available distributed storage systems, because
they are either focused on a specific type of data (i.e. wide-columnar databases such as
Apache Cassandra [31] or document stores such as Open Stack Cinder [32]), propri-
etary (Amazon S3 cloud [33] and the Ceph File System [34]) or appeared to be to a
lesser degree in focus of the developer community (OpenStack Swift [35]). Further-
more, data stored on either of these other sub-systems can be readily made available to
multitude of Hadoop solutions [36, 37]. More efficient transfer of big data files between
repositories can be achieved through usage of the Remote Direct Memory Access
protocol over Converged Ethernet (RoCE) [38] that overcomes a weakness of the
Transmission Control Protocol (TCP) regarding resource consumption that becomes
apparent when transferring big amounts of data.

Streaming data - i.e. coming in real-time from various sensors in the city - can be
already readily persisted on the HDFS through tools such as Kafka [39] or integrated
later on in-memory at the level of processing engines (such as Spark or Flink) with
static data that has been previously imported to the HDFS. Static data so far had to be
manually transferred onto the file system, even if it was already cataloged within the
corresponding metadata engine. The HdfsStorer – proposed by the authors - closed this
gap by enabling the automated data import of indexed resources/files in those metadata
catalogs to the HDFS. Filtering of the imported data allows for resource economization
and benefits the topicality of the imported data as it allows for more frequent harvesting
cycles.

The following sections will give an overview about the structure of these two
extensions and highlight their possible utilization through both a realization of a proto-
use case, as well as a description of a potential real-world application in a Smart City
context.

3 Requirements for the HdfsStorer and the Filter Plugin

Various requirements have to be met by the data import procedure in order to be used
sensibly in future Smart City as well as for Big Data applications. These are motivated
by the nature of the different environments - determined by the diversity of use cases
and infrastructure deployments within different Smart Cities - in which systems like
CKAN and Hadoop operate:

Req. 1: Smooth Interplay and Integration between the HdfsStorer and CKAN.
User experience and established operational perception should not be affected by the
emerging HdfsStorer extension running in the background.

Req. 2: Tracking and Being Up-to-Date with Resource Changes. Given that a
new resource was created, or an existing one was changed or deleted, the belonging
updates should then be transferred directly to the employed distributed file system
(HDFS).

A Study on the Interplay of CKAN and Hadoop 119

Req. 3: Network Bandwidth Optimization. HDFS entries (i.e. files) should only
be updated in case the original resources have changed, such that the network uti-
lization is kept minimal.

Req. 4: Handling Large Data Files. The HDFS extension should be able to
import files to the HDFS, irrespective of their size and format. Size limitations - as in
the case of the CKAN-internal FileStore - should not be present.

Req. 5: Import of Datasets, which are Already Registered with CKAN. Given
that the HdfsStorer is activated after a number of datasets have already been cataloged
within the belonging CKAN, it should be possible to automatically import the data
resources for those already registered datasets.

Req. 6: Filtering. It should be possible to set specific exclusion as well as inclu-
sion filters to restrict the range of datasets imported through the harvesting procedure.

Req. 7: Flexibility of Filters. It should be possible to define a separate set of filters
for each harvest source.

Based on these key requirements, the next sections proceed with devising the
architecture of the HdfsStorer extension and the Harvester Filter Plugin, evaluating it
based on a prototype, as well presenting the belonging case study and measurements.

4 Internal Architecture of the CKAN HdfsStorer
and TheHarvester Filter Plugin

The CKAN platform provides different integration points for extension development.
These integration points constitute a set of programming interfaces, which are to be
utilized by Python extensions running on top. In general, the programming interfaces
are event triggered and are related to the lifecycle of a data resource, encompassing
(1) the initial creation of a data resource, (2) its updates, and at the end (3) its
deletion/removal. A belonging Python interface is provided, which encompasses hooks
to catch and process these events on top of the CKAN harvesting platform. The
relevant interface for resource updates is denoted as IResourceController and the main
hooks of interest are called after_create, after_update and before_delete.

When working with the CKAN metadata catalog, a number of special features
related to the metadata and the belonging process of dataset registration should be taken
into account. Within CKAN, the concept of a package captures the metadata
descriptions of a particular dataset along with all its attributes and a list of belonging
data resources. The resources stand for single files or data dumps, but can also point to
service endpoints on the Internet. Irrespective of the presence of a service, file or a data
dump, the resources are referenced by an URL and are accessible over the Internet. In
case resources and packages are removed from CKAN, these are not really deleted but
rather marked as hidden within the corresponding PostgreSQL [40] database, i.e. a
single attribute is changed preventing the datasets from being visible on the belonging
portals/platforms and being searchable over the CKAN platform interfaces. Indeed,
datasets that are marked for deletion are only visible for administrator users with
appropriate authorization. In order to fully remove the corresponding packages from
the system, a purging process needs to be initiated, either through the CKAN portal
graphical user interface or by directly accessing the database underneath, in order to

120 R. Scholz et al.

delete resource and package metadata entries. It has to be noted that there is no
possibility to purge “deleted” metadata over an API. Similarly, there is no possibility to
intercept a purge even – i.e. a hook called “after_purge” does not exist. Hence, a design
decision was made to completely remove a dataset from the HDFS storage every time
the before_delete function of the IResourceController is triggered. This leads to a
construction where each package deletion (i.e. marking of a package as pending for
deletion) leads to removing the belonging data from the HFDS storage.

Datasets come from a range of sources that each have different quality standards
and most importantly index very diverse data, from which only a subgroup may be
required for a particular use case. Therefore, it should be possible to create separate sets
of filters for each data source (see Requirement (6)). This ensures a maximum degree
of flexibility and does not restrict the range of potential future use cases. In order to
harvest a specific data source, a separate harvest job has to be created and data source
specific parameters can be set. The CKAN harvesting extension allows for the
development of specific harvester plugins. Those plugins are derived from the Har-
vesterBase class and override or extend certain provided methods, corresponding to
different harvest stages. Usually such plugins are developed to enable the harvesting of
a different kind of data source. We can use this capability to introduce a means for
filtering of imported datasets.

Based on the above generic considerations, the next two sections proceed with
introducing the internal components of the emerging HdfsStorer extension and Harvest
Filter Plugin.

4.1 Components and Dynamic Aspects

Figure 2 depicts the general architecture of the extensions including the flow of
information (as sequence operations) in an enumerated manner. In this scope, it is
clearly described which components are accommodated within the CKAN platform and
which are to be viewed as related to the HDFS.

Filtering takes place within the harvesting procedure (more specifically during the
gather stage) shortly before step (1b). The harvesting procedure is subdivided into
three main stages: During the first stage - the gather stage - a list of available datasets is
retrieved from the harvest source. This is followed by the fetch stage, wherein the
corresponding metadata packages to these datasets are accumulated to be then - during
the import stage - integrated into the local catalog (triggering e.g. resource creation or
update events). Each of these methods can be altered independently in each harvester
plugin implementation. Practically, the gather and fetch stage are often regarded as a
single process, with all the functionality implemented in the gather_stage method.
Filtering should take place as early as possible to reduce the load on the entire system.
The required attributes for filtering are part of the metadata packages and filtering can
thus already take place during the gather and fetch stage. Because a multitude of
specific harvester plugin implementations override the original HarvesterBase class
gather method entirely, the authors decided to alter the gather stage method of a
specific harvester implementation (the general CKAN harvester) instead of altering the
method of the base class.

A Study on the Interplay of CKAN and Hadoop 121

Provided that a resource is imported and created or updated with respect to its
metadata in CKAN, through either manual interaction or the harvesting procedure –

operations (1a) and (1b), all included resource files need to be newly uploaded or
refreshed within the HDFS. This flow is given by operations (2), (3) and (4a-b) in
Fig. 2.

Furthermore, in case a package or single resources are marked for “deletion” from
CKAN, the belonging data files have to be removed again from the HFDS. The
identification of the files to delete is performed over the resource IDs, given that for
each ID a directory on the HDFS is maintained. Indeed, the CKAN platform generates
deletion events and triggers corresponding API calls for the methods implemented by

HdfsStorer extension based on the IResourceController interface. After each
CKAN data handling event – such as creation, update and deletion - the corresponding
ID and a reference to the latest version of the resource are passed as parameters to the
HdfsStorer. During the deletion of CKAN-packages, the corresponding ID is given,
which leads to a database lookup for obtaining and identifying the resources for
removal from the HDFS.

Various communication and data exchanges between the HdfsStorer extension and
the HDFS (in the upper right part of Fig. 2) are realized using the WebHDFS protocol
[41], which is a REST-API for Hypertext Transfer Protocol/TCP based manipulation of
resources kept within the HDFS. The belonging WebHDFS operations are provided in
Table 1, including functions such as (1) checking whether a file or directory exist,
(2) download and access to resources/files or parts (i.e. chunks) of files/resources,
(3) the creation of directories, (4) obtaining a resource/file handle for overwriting an
existing resource/file, (5) appending data to an existing resource file and (6) the
removal of resource files and directories from the HDFS.

Harvester
with Filter

HdfsStorer

H
arvest Packages

1b) Send
resource
packages

3) Exchange of
Fileinfo and

Redirect

4a) Upload and Download of
(Parts of) Files

API 2) Resource
Packages

1a) Creation
and Request
of Resources

Feedback
/Link to
Webhdfs

Harvest Sources

CKAN User

Internal Communication

* Optional Function

4b) Internal
Forwarding

.

Namenode

Webhdfs

.

DataNode 1

Webhdfs

.

DataNode 2

Webhdfs

Direct Download

Fig. 2. Extension and Plugin Architecture (highlighted). Figure modified from [1].

122 R. Scholz et al.

5 CKAN-Based Extension Implementation

The following paragraphs elucidate in detail the HdfsStorer extension implementation,
starting with the procedure for resource creation and update.

5.1 Creation and Update of Resources

When a new resource is created within CKAN, the before_create method is invoked for
CKAN extensions that have registered over the corresponding hooks of the
IResourceController interface. A new resource can be either created manually (e.g.
through a Command Line Interface or through the CKAN portal interface) or can be the
result of a data harvesting procedure. Thereby, the available implementations of the
before_create method are invoked with the appropriate data (dictionary) structure filled
with information for the new resource as a main parameter. Subsequently, the resource
is internally cataloged (i.e. added to the database) and the corresponding after_create
method is invoked. Similar procedures are followed in the course of resource updates
and removals.

Figure 3 details the overall procedure within the HdfsStorer extension. The call of
the after_create method - provided by the IResourceController interface and imple-
mented by the extension – results in the creation of an HDFS directory named after the
ID of the resource. This directory is located on the resource storage folder, which is
prepared in advance on the HDFS and passed to the overall system via a CKAN
configuration parameter. Furthermore, the mirroring of the remote resource is prepared
by creating an empty file carrying an identical name as the name of the remote
resource. In order to enable the subsequent appending of data, a redirect is provided to
the HDFS DataNode hosting the newly created empty file. On this basis, the original
data resource is read chunk-by-chunk and the chunks are appended to the previously
created empty file. This continuous piecewise process of chunking and appending
allows for transferring large (larger than the machine’s memory) amounts of data from
their original locations to the HDFS – during the experimentations the authors managed
to transfer files of roughly 30 GB in size. Hence, it can be claimed that Requirement
(4) is fulfilled. In case the resource size is larger than the block size specified by HDFS,
then the remaining data is automatically redirected to a different DataNode where a new
block is created. In all cases, data replication is automatically conducted in the
background.

Table 1. List of WebHDFS Operations as described in [1].

Method Operation Fields HTTP return type

GET liststatus 200 (OK) + JSON
GET open 200 (OK) + FILE
PUT mkdirs 200 (OK) + JSON
PUT createfile data = ‘ ’ 203 (redirect)
POST append data; content-type 200 (OK)
DELETE delete 200 (OK) + JSON

A Study on the Interplay of CKAN and Hadoop 123

Some very important aspects of the current processes – as described here – are
tackled through the usage of hashing concepts. Given that only such resource files
should be harvested (i.e. transferred to HDFS) which have changed since the last
harvesting processes, a hash check was put in place as visualized on the right in Fig. 3,
thereby addressing Requirement (3). A typical approach would be to calculate the
checksum (i.e. hash) using the entire file in question. In order to conduct such a
checksum computation, the complete files need to be locally in place, i.e. on one single
machine. Since it cannot be assumed that data providers will provide appropriate
checksums for their data resources, this circumstance would require the files to be
additionally downloaded to a single machine in order to compute the hashes and
compare the resulting checksums. Unfortunately, this would lead to additional network
traffic and contradict Requirements (3) and (4), as all files would be downloaded
irrespective of their novelty and single machines may not accommodate enough storage
space for very big data files. The optimization of this process is a potential topic for
further research. However, a first proposition on how to deal with this challenge is
given in the following paragraph.

Based on the files’ characteristic according to the various contexts of application,
two possible approaches can be considered: (1) the comparison procedure is completely
omitted and each resource is always harvested and uploaded to the HDFS, or (2) the
comparison of the resources is conducted thereby using a partial checksum. Within the
(CKAN-)HdfsStorer extension the second approach was considered, given that the
HDFS and the HdfsStorer are meant to be utilized in Big Data generating urban
environments. A side remark: the name of a resource (including a checksum based on

New Resource
is created Resource is Updated

Override with empty file

Append Chunk to local File

Get first X Bytes of
remote File + Filelength

Get first X Bytes of
exis ng File + Filelength

Finished

different

same

Can not
retrieve
Chunk

yes

no

Both files
exist? Compute Hashes

Compare
Hash

yes

Get Chunk of
Remote File

ok

Chunks remaining?

no

Fig. 3. Resource Addition and Update onto the HDFS as described in [1].

124 R. Scholz et al.

it) is not considered as an indicator for a resource update given that a simple renaming
of a file does not necessarily imply a change in the belonging contents. Another good
indicator for changes in large resources is provided by changes in the file size for a
resource. Hence, the file sizes can serve as one constituent for the hash key. However,
there are also cases where the size doesn’t hold as a good indicator. For example, log
files – constituting a big share of the resources to be processed by big data engines – are
usually changed on a log-rotate principle, which means that the file size remains
constant, whilst the oldest data is removed and the newest is appended. By selecting a
number of bytes at either the beginning or the end of a file (or both), and including
these bytes as further parameters for the hash key, changes to such files would be
reliably detected and taken into account. If the number of bytes is of a large enough
amount, then for smaller files (e.g. configuration files or images) the entire checksum is
computed within the presented approach. The downside is that resources which do not
differ in file size after update and are larger than the defined chunk size, with static
header (beginning of the file) and footer (last bytes of the file) will be omitted as
resources that have changed and need to be harvested anew. Such files are not very
suitable for distributed computing and processing, given that they are normally hard to
split. In addition, the (rare) case of data with only minor differences in a large splittable,
identically sized resource will be omitted. Given the large size of the expected datasets,
individual items should be only of minor importance to the final result (after processing
the entire dataset) and the more single items are updated, the higher is the probability
that a difference in file size can be detected. Hence, the above described drawback can
be considered acceptable for the majority of scenarios.

5.2 Parallel Upload of Data

In order to avoid negative influence on the performance of the CKAN system - thus
addressing Requirement (1) - the design decision was made to avoid parallel running
data uploads to the HDFS, since - based on the specific setting - many parallel data
upload processes may use up the entire network bandwidth to the server. This should
be considered when setting the repetition period for data/metadata harvesting, because
a single harvesting job might be significantly slowed down and might result in an ever-
increasing queue of harvesting jobs leading to outdated and invalid data. Provisioning
of a second CKAN server only for the purpose of harvesting is a possible solution,
thereby establishing a periodical synchronization of its database with the main CKAN
server. This is expected to enable parallel data upload without influencing Require-
ment (1) in a negative way.

5.3 Deletion of Resources

The process of resource and package deletion is visualized in Fig. 4. The removal of a
single resource from CKAN leads to the call of the before_delete function of the
IResourceController interface, which is implemented and utilized by the HdfsStorer
extension. As previously explained, package removal in CKAN does not lead to the
deletion of the respective resources, and hence does not result in the call of any
additional functions from the IResourceController interface. Correspondingly, package

A Study on the Interplay of CKAN and Hadoop 125

removal has to be intercepted and handled by the (CKAN-) HdfsStorer extension,
which is done by implementing the after_delete function from the IPackageController
interface (depicted in Fig. 4). It is required to retrieve all corresponding resource IDs in
both of these two functions and initiate the deletion of the specific directories on the
HDFS and their contents by utilizing the belonging WebHDFS API. This fulfills
Requirement (2).

5.4 Backwards Compatibility

Given the need to address Requirement (5) - referring to handling existing CKAN
entries - another module was designed and implemented. This module is mainly
responsible for reading the internal CKAN database and the transfer of the referenced
files to the HDFS, whilst ensuring in parallel the consistency of the data. The belonging
process flow is demonstrated in Fig. 5. The information for each resource registered

within CKAN is obtained from the PostgreSQL-database in the backend and
subsequently uploaded to the HDFS DataNodes. Packages and resources which have
been marked as deleted (i.e. they wait to be purged) are excluded from uploading to the
HDFS.

Package to be
deleted

Ressource Dele on
Process (IRessourceController)

Delete ressource
on the HDFS

Get ressources
for package

Ressource to be
deleted

before delete

dele on from
ressources table in
database

Package Dele on Process
(IPackageController)

before delete
dele on from
package table in
database

a er delete

a er delete

Fig. 4. Deletion of a Package or a Resource. Package deletion does not usually result in resource
deletion and hence had to be explicitly implemented.

126 R. Scholz et al.

6 Implementation of the Harvester Filter Plugin

A way of filtering datasets has been implemented through extending one of the
available harvest plugins of the CKAN harvest extension. In order to satisfy
Requirements (6) and (7), a means for the definition of the set of filters for specific
harvest sources and the actual application of the filters - within the harvesting proce-
dure – were realized.

6.1 Initialization of Filters

In order to harvest a specific data source, a harvest job has to be defined in the CKAN
backend by a user with the appropriate privileges. This definition includes the URL
under which the harvest source is reachable, the harvester plugin to be used (which
depends on the type of the data source), the periodicity of harvest iterations and an
optional dictionary including further configuration settings. We can pass therein the
desired filter settings that are then available to the harvester plugin. In order to ensure a
required degree of quality, these settings are validated upon creation of the harvesting
job and an error can be thrown in case faulty or conflicting parameters were provided.

Mainly two types of filters can be used: (1) Inclusion filters define certain criteria
that have to be met by an item, in order to successfully pass the selection process. In
contrast to that stand (2) exclusion filters that pass all items that do not meet the filter
criteria. The filter type can be set through the filter attribute of the harvest job con-
figuration dictionary.

Possible filtering criteria include restrictions on file formats, file size or string
matching within the file name. Similar to the filter type, these criteria are also defined in

Current Resource
Row

Current Package
Row

Get the contents of both tables
sorted by package ID

In
cr

em
en

t u
n

l t
he

 n
ew

Re

so
ur

ce
 h

as
 a

 d
iff

er
en

t
Pa

ck
ag

e
ID

YES

NO

Upload Resource
Files to HDFS YES

YES
NO

Increment
by one

NO

Same Package
ID?

Package not
marked as
deleted?

Resource not
deleted?

Fig. 5. Resource Import from the CKAN-internal Database as described in [1].

A Study on the Interplay of CKAN and Hadoop 127

the harvest job configuration dictionary. For instance, to harvest only images exceeding
a file size of 3 MB, the following configuration would have to be used: {filter: ‘in-
clusion’, size: ‘ > 3mb’, file_type: ‘jpg,png,gif’}. Disjunction of multiple attributes for
inclusion filtering can be achieved by the creation of multiple harvest jobs working in a
pipeline, each of which would be configured with one of the disjunct inclusion criteria
as filtering settings.

6.2 Application of Filters

During the gather stage, the configuration dictionary that has been passed during the
creation of the harvest job is parsed and the different filtering parameters extracted and
compared against the “to-be-gathered” datasets. Resources and packages that do not
belong to the group specified by the filters are excluded from further harvesting stages
and thus are not imported. This process is illustrated in Fig. 6.

Add Package to
Import Queue

Filter Type

Harves ng Procedure

Fetch stage
Gather stage
Import Stage

Target a ributes
matches all filter

Keep Resouce in
Package

Target
a ribute doesnt match

any Filter?

More Pkgs available
in fetch queue?

Next Res in Pkg?

Any Res le in Pkg?

Get next Res from Pkg

Remove Resource
from Package

yes

yes

Inclusion Exclusion

yes no

no

yes

no

no

Con nue with Import

Get next Pkg from Fetch
Queue

Start Gather Stage

Fig. 6. The Filtering Procedure implemented in the Harvester Plugin. Res: Resources, Pkg:
Package.

128 R. Scholz et al.

In order to realize the logic from the previous paragraph, the list of available
packages is iterated through. For each of the resources, it is then ascertained that they
either do - in case of inclusion filters - or do not - in case of exclusion filters - match the
defined filter criteria. Shouldn’t this be the case, the resource is removed from the
current package. The package – given that some resources remain contained within – is
then put onto a stack that is later handed over to the import stage of the HdfsStorer.
Empty packages are discarded.

7 Proof of Concept

In order to demonstrate the feasibility and the processes around the HdfsStorer
extension, a scenario was worked out making use of an established technique from the
field of Machine Learning. Thereby, the techniques are employed on top of two dif-
ferent processing engines for classification of multi-dimensional data. The utilization of
two different processing engines demonstrates the variety of further utilization the data
can be used for (e.g. based on the free choice of processing engines), once it has been
imported to the HDFS. In this scope, the HdfsStorer is the key element for such
analyses by enabling large scale Big Data and Open Data to be integrated and effi-
ciently re-used in the scope of urban data platforms. Creating an application that has as
input datasets, which are linked in the belonging CKAN-registry, essentially consists of
three major steps described in the following.

7.1 Import of the Dataset(S) to the HDFS by Means of the Hdfsstorer

The utilized dataset [42] contains descriptions of phoneme properties (such as place of
articulation) and the belonging classification (i.e. classification tags) of those into
phoneme classes. It was necessary to split the data into training and a test subset for
evaluation purposes. Both subsets were stored in different files. Once the files are
cataloged within CKAN, either through manual addition or file type-specific harvesting
of a data source, they are automatically imported to the HDFS by the HdfsStorer.

7.2 Selection of the Appropriate Processing Engine and Program Logics

Both Standard Hadoop Mapreduce and Its in-Memory Counterpart Spark Were Used to
Separately Train an Artificial Neural Networks (ANN) on The Training Subset.
Thereby, a Standard Backpropagation Algorithm Was Used to Perform The Training
Procedure. The Details of The Employed Back Propagation Algorithm Can Be Found
in [43]. The Trained Anns Were Subsequently Used as Data Point Classifiers for The
Evaluation Set.

7.3 Job Execution and Result Retrieval

The executed jobs were triggered over the command line. The belonging data classi-
fication results - based on the HdfsStorer data imports - can be in turn retrieved from
the HDFS filesystem. As the goal of this work is not given by the evaluation of the

A Study on the Interplay of CKAN and Hadoop 129

classification quality of different ANN implementations, only the training step is
considered in the following text, with the goal to look into the performance of two key
Big data technologies (Hadoop MapReduce and Spark) on top of the HdfsStorer
results, i.e. the imported datasets.

The performed execution time measurements are provided in Fig. 7. The execution
time was obtained as the time difference between job application submission (be it a
Spark or a Hadoop job) and job termination. The Spark and Hadoop execution times in
Fig. 7 show that for the dataset in question - which was imported over CKAN and the
HdfsStorer extension - not only Spark execution times are by far shorter (based on
experiments with various number of ANN iterations), but also rise more slowly than
Hadoop execution times. This can be attributed to the much lower Spark overhead for
each iteration.

In addition, Fig. 8 describes the average memory utilization of both Hadoop and
Spark during idle time and job execution with 100 iterations on top of the open dataset
that has been imported to HDFS over the HdfsStorer extension and CKAN. The
vertical axis displays the memory usage in Mega-Bytes. Because of the comparably
small size of the dataset, expected characteristics (e.g. the much higher expected
memory utilization of Spark) in the absolute statistics have not been evident. The
difference between idle time and work intensive job execution periods is greater for
both slaves in the Spark deployment than that of the slaves in the Hadoop deployment.
This is a clear sign for the stronger memory dependence of Spark during data
processing.

The above evaluation gives an idea of how important it is to choose the right
processing engine for the overall efficiency of a Big Data driven Smart City service.
The usage of the HDFS thereby facilitates the free choice of the processing engine,
given that HDFS is a common platform for distributed processing in modern data
centres. The processing engine evaluation can be done on a broader basis or can be
targeting specific datasets within particular Smart City scenarios. Overall, this con-
stellation is made possible by the HdfsStorer extension, which has been specified and
prototyped in the current work.

Fig. 7. Execution times of Spark and Hadoop compared. Stars indicate the level of significance
(p < 0.0001) as described in [1].

130 R. Scholz et al.

8 A Smart City Scenario Using Hadoop and CKAN

Having shown the general architecture and process flows of the extension, and having
evaluated its principal applicability, a natural next step is to apply the HdfsStorer for
the purpose of realizing a more complex scenario. We target a use case relating to the
public transport system of a forthcoming Smart City, which requires to be streamlined
and optimized. This includes various aspects such as schedule improvements based on
the dynamic identification of peak traffic hours combined with delay and occupancy
prediction integrated with trip planning [1]. The ultimate goal is to provide a better
travel experience to passengers.

The data needed for the above scenario is given by two different types: static and
real-time. The transport schedule and history of occupancy and punctuality statistics
together with the belonging history of road and weather condition records are dis-
tributed over different data stores as static data. Correspondingly, these datasets would
be indexed in a CKAN-catalog. Periodical harvesting based on CKAN mechanisms
would guarantee that this catalog is up-to-date and the Harvester Filter Plugin would
ensure that only relevant data is indexed by the local catalog and consequently
transferred to the Hadoop cluster. Data regarding the current weather, road and traffic
conditions as well as the amount of passengers — e.g. measured by sensors inside the
transport vehicle - are provided as streaming data. The interplay between these two
types of data within Hadoop is sketched in Fig. 9. The HdfsStorer extension takes the
role of the key component responsible for importing static data to the HDFS according
to metadata provided within the CKAN-catalog (e.g. URL of the original dataset).
Consequently, various processing engines - that can make use of the files stored on the
HDFS and of data streams provided through message brokers - integrate the data and
enable the envisioned correlation and data integration towards sophisticated urban
services.

Fig. 8. Comparison of ANN Training Memory Usage of Hadoop (H) and Spark (S) Memory
Usage between idle (“Baseline”, BL) and work intensive Periods for 100 Training Iterations as
described in [1]. NN: NameNode/MasterServer, RM: ResourceManager, SL1/2: Slaves.

A Study on the Interplay of CKAN and Hadoop 131

A realization of a similar process can be found on the H2O.ai github-page [44].
Thereby, Spark is utilized in combination with an H2O extension (=Sparkling water) to
create a prediction system for flight delays based on historical data and current weather
information. As compared to our use case, the dataset in question is presumed to be in
place on the HDFS right from the beginning, e.g. through a manual upload. The current
work enhances such traditional solutions by a more convenient way for data import to
HDFS, thereby making use of a widely applied data cataloging system (i.e. CKAN) for
Open Data in the Smart City context.

9 Discussion

In this paper, the authors described the implementation of two extensions to the CKAN
metadata storage system. The first allowed for the automated transfer of the actual data
files that are described by the cataloged metadata entries to a designated data storage
and processing hub, exemplified by the HDFS. The second extension allows to restrict
the range of datasets imported to CKAN through its harvesting procedure. In combi-
nation, these two extensions enable the rapid import of (only) relevant data, which has
been referenced in various metadata catalogs, onto a scalable distributed file system.
This imported data can then be directly used as the basis for a diverse range of Smart
City as well as general data science applications.

The creation of applications on the basis of Open Data and the possibly resulting
informational and economic gain is one of the main motivations for making previously
closed data available to the public [45]. However, making data available to the public
remains a heavy burden for the required institutions. Normally this comes at the cost of

Fig. 9. Integration of both static and streaming Data coming from different Sources on the Level
of distributed Storage and Processing Engines, as described in [1].

132 R. Scholz et al.

having to invest additional labour and exposing their inner workings to the scrutinizing
eye of the general public. This results in the current situation, where even though the
European Commission has issued corresponding regulations years ago (European PSI
directive 2003 [46]), the amount of available Open Data across Europe remains far
behind the identified potentials. A further factor that may contribute to the currently
apparent shortcomings of Open Data, in both the private as well as the governmental
sector, could be the lack of quality assurance mechanisms. To ensure the quality of the
publicized data, providers are required to go through a process of continuously
updating these datasets and belonging metadata. Currently, they are not obliged to this
commitment. This has the consequence that, after an initial dataset is published, it very
often is not continuously updated since it requires an additional effort from the data
provider’s side. Potential users thus may find incomplete, outdated or erroneous data
and refrain from using it altogether for the development of new applications or as a
reliable source of information. This interactive but manual procedure could be com-
plemented by automated periodic quality checks on the basis of either actual data or
metadata, addressing issues such as completeness, accuracy, timeliness, as well as
privacy concerns and other quality parameters. The frequency of these checks could be
coupled to the harvesting frequency or run independently at regular intervals, possibly
defined separately for each type of dataset or data source, or estimated by analysis of
the time course of previous dataset and version changes. The described data import
extension could additionally empower such automated quality checks, as these could
make use of the already imported data on the distributed file system without the
additional overhead of having to download (parts of) the data files a second time and
furthermore run in parallel by virtue of the distributed nature of the HDFS and asso-
ciated processing engines.

Also, other fields outside the scope of Smart Cities may benefit from the outlined
extensions, especially those that require the accumulation of big corpora of textual or
other data files. These include computational linguistics and other data/machine
learning-heavy disciplines. The reduction or corpora reuse - through enabling also
small research and development groups to create their own corpora – and the intro-
duction of more diverse sources may enable better generalization of applications such
as speech generation and translation engines [46]. Dedicated corpora that can be
accumulated from multiple data sources through more filtered selection (i.e. by lan-
guage, text type or image/video resolution) of datasets could furthermore enable more
detailed insights - i.e. into situative or group-specific media and language usage or
geographically and time-restricted phenomena and interactions - as well as the creation
of more dedicated applications. Certain types of advanced filtering may imply the
necessity for downloading parts of the actual data files and possibly the need for
conducting expensive (non-distributed) computations. Thus, it may be more reasonable
in some use cases to carry out such second step filtering after data import.

The insights gained during the development of both extensions, and the above
considerations regarding the success of Open Data initiatives and application devel-
opment, will be taken up as input for emerging and running national and international
projects on Urban Data Platforms.

A Study on the Interplay of CKAN and Hadoop 133

10 Summary and Conclusions

Smart City projects are currently on the rise, as major and minor municipalities strive to
be on the forefront of state-of-the-art technologies and smart solutions in areas such as
mobility, energy and ICT. Correspondingly, ample funding is available. In parallel,
initial expectations on the impact of Open Data remained unmet and have been
dampened. The current work described a possibility of re-establishing and strength-
ening the link between these two fields – Smart Cities and Open Data - by means of
integrating metadata hubs with data processing engines. Thereby each aspect represents
a key component in its corresponding field. The authors hope that this link may have
some contribution in transferring the momentum that Smart City concepts currently
enjoy also to the field of Open Data and furthermore also highlight how Smart Cities
may benefit from the continued publication of freely useable data.

References

1. Scholz, R., Tcholtchev, N.,Lämmel, P., Schieferdecker, I.: A CKAN plugin for data
harvesting to the Hadoop distributed file system. In: 7th International Conference on Cloud
Computing and Services Science (CLOSER) (2017). http://dx.doi.org/10.5220/
0006230200470056

2. CKAN Association: CKAN Overview. http://ckan.org
3. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In:

2010 IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST2010
(2010). http://dx.doi.org/10.1109/MSST.2010.5496972

4. Helene, M.: GovData - Das Datenportal für Deutschland. In: Hill, H., Martini, M., Wagner,
E. (eds.) Transparenz, Partizipation, Kollaboration: Die digitale Verwaltung neu denken,
pp. 109–116. Nomos Verlagsgesellschaft mbH & Co. KG, Baden-Baden (2014)

5. Bundesministerium des Innern: Nationaler Aktionsplan der Bundesregierung zur Umsetzung
der Open-Data-Charta der G8. https://www.bmi.bund.de/SharedDocs/Downloads/DE/
Broschueren/2014/aktionsplan-open-data.pdf (2014)

6. Mercader, A., et al.: ckanext-harvest - remote harvesting extension (2012). https://github.
com/ckan/ckanext-harvest

7. The Apache Software Foundation: Hadoop Project Webpage. http://hadoop.apache.org/
8. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: ZooKeeper: wait-free Coordination for

Internet-scale systems. In: USENIX Annual Technical Conference, Boston, MA, USA, p. 9
(2010)

9. Dittrich, J., Quiané-Ruiz, J.-A.: Efficient big data processing in Hadoop MapReduce. Proc.
VLDB Endow. 5, 2014–2015 (2012). https://doi.org/10.14778/2367502.2367562

10. The Apache Software Foundation: Apache Flink: Scalable Stream and Batch Data
Processing. https://flink.apache.org/

11. The Apache Software Foundation: Apache Spark - Lightning-Fast Cluster Computing.
https://spark.apache.org/

12. Iqbal, M., Soomro, T.: Big Data Analysis: Apache Storm Perspective (2015). https://doi.org/
10.14445/22312803/ijctt-v19p103

13. Avery, C.: Giraph: large-scale graph processing infrastructure on hadoop. Proc. Hadoop
Summit. St. Cl. 11, 5–9 (2011)

134 R. Scholz et al.

http://dx.doi.org/10.5220/0006230200470056
http://dx.doi.org/10.5220/0006230200470056
http://ckan.org
http://dx.doi.org/10.1109/MSST.2010.5496972
https://www.bmi.bund.de/SharedDocs/Downloads/DE/Broschueren/2014/aktionsplan-open-data.pdf
https://www.bmi.bund.de/SharedDocs/Downloads/DE/Broschueren/2014/aktionsplan-open-data.pdf
https://github.com/ckan/ckanext-harvest
https://github.com/ckan/ckanext-harvest
http://hadoop.apache.org/
http://dx.doi.org/10.14778/2367502.2367562
https://flink.apache.org/
https://spark.apache.org/
http://dx.doi.org/10.14445/22312803/ijctt-v19p103
http://dx.doi.org/10.14445/22312803/ijctt-v19p103

14. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P.,
Murthy, R.: Hive: a warehousing solution over a Map-Reduce framework. Proc. VLDB
Endow. 2, 1626–1629 (2009). https://doi.org/10.14778/1687553.1687609

15. Bittorf, M., Bobrovytsky, T., Erickson, C.C.A.C.J., Hecht, M.G.D., Kuff, M.J.I.J.L.,
Leblang, D.K.A., Robinson, N.L.I.P.H., Rus, D.R.S., Wanderman, J.R.D.T.S., Yoder, M.M.:
Impala: A modern, open-source SQL engine for Hadoop. In: Proceedings of the 7th Biennial
Conference on Innovative Data Systems Research (2015)

16. Vora, M.N.: Hadoop-HBase for large-scale data (2011). http://dx.doi.org/10.1109/ICCSNT.
2011.6182030

17. National Strategy Office of Information and Communications Technology in Cabinet
Secretariat: data.go.jp. http://www.data.go.jp/?lang=english

18. Matheus, R., Vaz, J., Maia Ribeiro, M.: Open Government Data and the Data Usage for
Improvement of Public Services in the Rio de Janeiro City (2014). http://dx.doi.org/10.1145/
2691195.2691240

19. Socrata: Socrata - The Data Platform for 21st Century Digital Government. https://www.
socrata.com/

20. Knoema: knoema.com Webpage. https://knoema.com/
21. Senatsverwaltung für Wirtschaft, E. und B.: Offene Daten Berlin. https://daten.berlin.de/
22. European Commission Directorate-General Communication: European Data Portal. https://

www.europeandataportal.eu/en/
23. Lagoze, C., Van de Sompel, H., Nelson, M., Warner, S.: Open Archives Initiative Protocol

for Metadata Harvesting (2015)
24. Open Archives Initiative: Object Reuse and Exchange Specifications and User Guides.

https://www.openarchives.org/ore/1.0/toc
25. Marienfeld, F.: Open Government Data (OGD) - Die Metadaten-Struktur für Open

Government Data in Deutschland. http://open-data.fokus.fraunhofer.de/die-metadaten-
struktur-fur-open-government-data-in-deutschland/

26. Bartha, G., Kocsis, S.: Standardization of geographic data: the european inspire directive.
Eur. J. Geogr. 2, 79–89 (2011)

27. Weibel, S., Kunze, J., Lagoze, C., Wolf, M.: Dublin core metadata for resource discovery
(1998). https://doi.org/10.17487/rfc2413

28. Coyle, K.: MARC21 as data: a start. Code4Lib J. 14, 1–10 (2011)
29. Liu, Xiaoming, Balakireva, Lyudmila, Hochstenbach, Patrick, Van de Sompel, Herbert: File-

based storage of digital objects and constituent datastreams: XMLtapes and Internet
Archive ARC files. In: Rauber, Andreas, Christodoulakis, Stavros, Tjoa, A.Min (eds.) ECDL
2005. LNCS, vol. 3652, pp. 254–265. Springer, Heidelberg (2005). https://doi.org/10.1007/
11551362_23

30. Open science and research initiative: OAI-PMH harvester for CKAN. https://github.com/
kata-csc/ckanext-oaipmh

31. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 44, 35–40 (2010). https://doi.org/10.1145/1773912.1773922

32. McGninnis, S., et al.: OpenStack Block Storage Cinder. https://wiki.openstack.org/wiki/
Cinder

33. Amazon.com, In.: Amazon Web Services S3 - Simple Cloud Storage Service
34. Watkins, N., Sevilla, M., Jimenez, I., Maltzahn, C.: Ceph: An Open-Source Software-

Defined Storage Stack
35. Dickinson, J., et al.: OpenStack Object Storage. https://wiki.openstack.org/wiki/Swift
36. Nóbrega, T.: OpenStack Sahara. https://wiki.openstack.org/wiki/Sahara
37. Red Hat Inc.: Using Hadoop with CephFS. http://docs.ceph.com/docs/master/cephfs/hadoop/

A Study on the Interplay of CKAN and Hadoop 135

http://dx.doi.org/10.14778/1687553.1687609
http://dx.doi.org/10.1109/ICCSNT.2011.6182030
http://dx.doi.org/10.1109/ICCSNT.2011.6182030
http://www.data.go.jp/?lang=english
http://dx.doi.org/10.1145/2691195.2691240
http://dx.doi.org/10.1145/2691195.2691240
https://www.socrata.com/
https://www.socrata.com/
https://knoema.com/
https://daten.berlin.de/
https://www.europeandataportal.eu/en/
https://www.europeandataportal.eu/en/
https://www.openarchives.org/ore/1.0/toc
http://open-data.fokus.fraunhofer.de/die-metadaten-struktur-fur-open-government-data-in-deutschland/
http://open-data.fokus.fraunhofer.de/die-metadaten-struktur-fur-open-government-data-in-deutschland/
http://dx.doi.org/10.17487/rfc2413
http://dx.doi.org/10.1007/11551362_23
http://dx.doi.org/10.1007/11551362_23
https://github.com/kata-csc/ckanext-oaipmh
https://github.com/kata-csc/ckanext-oaipmh
http://dx.doi.org/10.1145/1773912.1773922
https://wiki.openstack.org/wiki/Cinder
https://wiki.openstack.org/wiki/Cinder
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Sahara
http://docs.ceph.com/docs/master/cephfs/hadoop/

38. Tierney, B., Kissel, E., Swany, M., Pouyoul, E.: Efficient data transfer protocols for big data
(2012). http://dx.doi.org/10.1109/eScience.2012.6404462

39. Kreps, J., Narkhede, N., Rao, J.: Kafka: a distributed messaging system for log processing.
In: Proceedings of the NetDB, pp. 1–7 (2011)

40. Momjian, B.: PostgreSQL: Introduction and Concepts. Addison-Wesley, New York (2001)
41. The Apache Software Foundation: WebHDFS REST API. http://hadoop.apache.org/docs/%

0Ar1.0.4/webhdfs.html
42. Alinat, P., Pierrel, J.M.: Esprit II project 5516 Roars: robust analytic speech recognition

system (1993)
43. Liu, Z., Li, H., Miao, G.: MapReduce-based Backpropagation Neural Network over large

scale mobile data (2010). http://dx.doi.org/10.1109/ICNC.2010.5584323
44. H2O.ai: AirlinesWithWeatherDemo. https://github.com/h2oai/sparkling-water/tree/master/

examples/
45. Klessmann, J., Denker, P., Schieferdecker, I., Schulz, S.: Open government data

Deutschland. Eine Studie zu Open Government in Deutschland im Auftrag des Bundesmin-
isterium des Innern. Deutschland <Bundesrepublik>/Bundesministerium (2012)

46. Wuebker, J., Ney, H., Zens, R.: Fast and scalable decoding with language model look-ahead
for phrase-based statistical machine translation. In: Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics: Short Papers, vol. 2, pp. 28–32.
Association for Computational Linguistics, Stroudsburg (2012)

136 R. Scholz et al.

http://dx.doi.org/10.1109/eScience.2012.6404462
http://hadoop.apache.org/docs/%250Ar1.0.4/webhdfs.html
http://hadoop.apache.org/docs/%250Ar1.0.4/webhdfs.html
http://dx.doi.org/10.1109/ICNC.2010.5584323
https://github.com/h2oai/sparkling-water/tree/master/examples/
https://github.com/h2oai/sparkling-water/tree/master/examples/

	From Metadata Catalogs to Distributed Data Processing for Smart City Platforms and Services: A Study on the Interplay of CKAN and Hadoop
	Abstract
	1 Introduction
	2 Related Work
	3 Requirements for the HdfsStorer and the Filter Plugin
	4 Internal Architecture of the CKAN HdfsStorer and TheHarvester Filter Plugin
	4.1 Components and Dynamic Aspects

	5 CKAN-Based Extension Implementation
	5.1 Creation and Update of Resources
	5.2 Parallel Upload of Data
	5.3 Deletion of Resources
	5.4 Backwards Compatibility

	6 Implementation of the Harvester Filter Plugin
	6.1 Initialization of Filters
	6.2 Application of Filters

	7 Proof of Concept
	7.1 Import of the Dataset(S) to the HDFS by Means of the Hdfsstorer
	7.2 Selection of the Appropriate Processing Engine and Program Logics
	7.3 Job Execution and Result Retrieval

	8 A Smart City Scenario Using Hadoop and CKAN
	9 Discussion
	10 Summary and Conclusions
	References

