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Abstract. Cloud computing is a popular Internet-based computing pa-
radigm that provides on-demand computational services and resources,
generally offered by Cloud providers’ REpresentational State Transfer
(REST) APIs. Developers use REST APIs by invoking these APIs by
their names and, thus, the lexicons used in the APIs are important to
ease the developers’ comprehension. In this paper, we study the lexicons
and the linguistic (anti)patterns from 16 providers of REST Cloud Com-
puting APIs. We observe that, although the 16 REST APIs describe the
same domain (Cloud computing), contrary to what one might expect,
their lexicons do not share a large number of common terms and 90% of
the terms (3,561/3,947) are just used by one provider. Thus, the APIs are
lexically heterogeneous and there is not a consensus on which terms to use
in Cloud computing. Further, we observe that the majority of the URIs,
54%, follow the Contextualised Resource Names pattern, which is con-
sidered a good practice in REST API design. However, a majority of the
URIs, 62.82%, suffer from the Non-pertinent Documentation antipattern.
Thus, we present three main contributions: (1) a tooled approach, called
CloudLex, for extracting and analysing REST Cloud computing lexi-
cons; (2) our analysis of the terms used in 16 REST APIs in 59,677 term
occurrences; (3) our analysis of the linguistic (anti)patterns in more than
23,000 URIs of the 142 services of the 16 Cloud providers. We also show
that CloudLex has an average precision of 84.82%, recall of 63.57%, and
F1-measure of 71.03% on one complete API, Docker Engine, which con-
firms the accuracy of our semantic analyses for the detection of linguistic
(anti)patterns.

1 Introduction

Cloud computing has transformed the information-technology industry [2] by
hosting applications and providing resources (e.g., CPU and storage) as ser-
vices on-demand over the Internet [23]. Cloud providers, such as Google Cloud
Platform (a commercial public Cloud) and OpenStack (an open-source stack for
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building public/private Clouds), usually offer these services in the form of REST
(REpresentational State Transfer) [7] APIs, the de facto standard adopted by
many software organisations for publishing their services.

Most of Cloud providers, such as Google Cloud Platform or OpenStack, pro-
pose their own proprietary APIs. Conversely, open and standard Cloud APIs
have also been proposed, such as the Open Cloud Computing Interface (OCCI)
[14], which is a vendor-neutral cloud standard.

This observed variety of cloud APIs may decrease developers’ comprehen-
sion, especially within such a complex and technical context as Cloud computing.
Moreover, well-designed and well-named REST APIs may attract client develop-
ers to use them more than poorly designed and named ones, particularly in the
current open market, where Web services are competing against one another [13].
Indeed, client developers must understand the providers’ APIs while designing
and developing applications that use these APIs.

Therefore, the understandability of REST APIs are two major quality charac-
teristics, which are reachable when best practices for REST APIs design [13] and
naming are followed. Because developers’ comprehension is essential for Cloud
computing adoption [21], we claim that this comprehension requires quality lex-
icons in the APIs and the URIs used to access these APIs.

Consequently, we study 16 different and well-known REST APIs to investi-
gate and organise their lexicons. We also study the linguistic (anti)patterns on
REST APIs of 16 cloud providers, extending and complementing our previous
work [17]. Linguistic antipatterns represent poor solutions to recurring naming
problems, which may hinder (1) the consumption of APIs by client developers
and (2) the maintenance/evolution of APIs by the API developers. In contrast,
linguistic patterns are good solutions to recurring naming problems—they facil-
itate the consumption and maintenance of APIs [15].

For the semantic analysis of Cloud REST APIs, we apply the SARA approach
[15]. We rely on WordNet1 and Stanford CoreNLP2 as English dictionaries with
a combination of Latent Dirichlet Allocation (LDA) topic modeling technique [3]
and second-order semantic-similarity metric [11,12]. LDA is a popular technique
in the natural-language processing domain. The second-order semantic-similarity
metric is based on the distributional similarity between terms to decide their
semantic similarities.

The remainder of the paper is organised as follows. Section 2 presents the
main concepts about natural-language processing and the second-order semantic-
similarity metric. Section 3 presents the key concepts of CloudLex, our app-
roach to analyse lexically and semantically Cloud computing REST APIs. Sec-
tions 4 and 5 present our results, answer the research questions, and discuss
threats to validity. Section 6 presents some related work. Finally, Sect. 7 con-
cludes the paper with future work.

This paper is an extension of our previous conference paper [17]. We extended
our paper with (1) a dataset sixteen Cloud computing providers (thirteen more

1 wordnet.princeton.edu.
2 nlp.stanford.edu/software/corenlp.shtml.

http://wordnet.princeton.edu
http://nlp.stanford.edu/software/corenlp.shtml
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that the previous paper; (2) a larger analysis of the terms used in 16 REST APIs
in 59,677 term occurrences; (3) an analysis of the linguistic (anti)patterns in more
than 23,000 URIs of the 142 services of the 16 Cloud providers. Moreover, we
addressed new quality dimensions and three new research questions. Finally, our
analysis confirm and corroborate the previous results presented in our conference
paper.

2 Background

The second-order semantic-similarity metric [11,12] and the Latent Dirichlet
Allocation (LDA) algorithm [3] are applied in natural-language processing, e.g.,
[15] for various purposes. We now present them briefly because we use them to
analyse the linguistic quality of Cloud APIs.

2.1 Second Order Semantic Similarity

The second-order semantic-similarity metric helps finding distributionally the
most similar terms among a set of terms and computes similarity scores for the
terms based on the second-order terms vectors [11,12]. Two terms are distribu-
tionally similar if they have multiple co-occurring terms in the same syntactic
relations.

Table 1. Window set up for the calculation of window-position triples (WPT).

−3 −2 −1 - +1 2 3

social media and newsportal are more popular

online social and newsportal are beyond those

Table 1 shows an example of the analysis of the term newsportal. If we consider
window size as ±3, it gives us two occurrences of newsportal. When we consider
the position, the term newsportal has eight unique features (without stop words,
e.g., “are”, “beyond”, “and”) as shown in Table 2 in the WPT column. If we do
not consider the window position, then the term newsportal has seven different
features without stop words, as shown in the Co-occurrences column.

By moving the window over the corpus, we can get the terms vectors for each
term. Using the terms vectors and normalising the counts [12], we can compute
the distributionally similar terms used in similar contexts. For example, if news-
portal co-occurs with three terms {social, online, media, and both the terms
print} and media co-occur with those three terms, then the terms newsportal,
print, and media are said to be distributionally similar.

We can obtain the list of the n most similar terms for a given input by
using this technique. We can use this list as the second order term vector for a
given term, which contains the terms that occur together in similar contexts. We
can apply a similar technique to compare the second order terms vectors and
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Table 2. Examples of the window-position triples and co-occurrences for the example
in Table 1.

WPT Co-occurrence

<newsportal,−3, social> 1 <newsportal, social> 2

<newsportal,−3, online> 1 <newsportal, online> 1

<newsportal,−2,media> 1 <newsportal,media> 1

<newsportal,−2, social> 1 <newsportal, are> 1

<newsportal,+1, are> 2 <newsportal,more> 2

<newsportal,+2,more> 1 <newsportal, popular> 1

<newsportal,+3, popular> 1 <newsportal, those> 1

<newsportal,+3, those> 1

compute the second-order semantic-similarity metric [11,12]. Compared to
WordNet [4,12], this metric allows going beyond the is-a relationships between
nouns and verbs because WordNet only contains synonyms (warm–hot),
meronyms (car–wheel), and antonyms (hot–cold).

2.2 Latent Dirichlet Allocation

In natural-language processing, topic models describe documents as aggrega-
tions of latent topics. Latent topics are clustered set of terms [3]. The LDA
algorithm extracts topic models from a corpus of terms built from documents.
These topic models are low-dimensional representations of the contents of the
documents. The cardinality of each topic model, its dimensionality or size, k is
set beforehand as an input to building topic models using LDA. LDA allows
binding multiple topic models to a single document, which gives flexibility in
deciding if a document or part thereof belongs to a topic.

However, LDA is impeded by the sizes of the vocabulary, the numbers of
terms, inherent to the majority of documents corpora [3]. Consequently, a new
document may contain new and unobserved terms to be classified that were not
initially present in the training corpus. This problem along with the bag-of-words
assumptions motivate us to define an approach combining LDA and second-
order semantic-similarity metric. The former allows obtaining a low-dimensional
representation of a corpus and the later measures the semantic similarity between
the terms in the corpus.

2.3 Linguistic Patterns and Antipatterns

We now describe four linguistic (anti)patterns: Contextualised vs. Contextless
Resource Names [8] and Pertinent vs. Non-pertinent Documentation [15], which
we will study in the rest of this paper.
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Contextualised vs. Contextless Resource Names. URIs of Cloud
resources defined by Cloud providers should be contextual, i.e., it is a
good practice for URIs to be in semantically-related or similar contexts.
The Contextless Resource Names linguistic antipattern is introduced when
API developers do not design URI nodes within the same semantic con-
text. An example of Contextless Resource Names linguistic antipattern is
www.provider.com/server/research/stock?id=01 where the terms “server”,
“research”, and “stock” are not from semantically-related contexts. In con-
trast, www.provider.com/server/memory?size=1024 is an example of Con-
textual Resource Names pattern because “server” and “memory” belong to
semantically-related contexts (assuming that the statement “server has mem-
ory” is true). The consequences of the Contextless Resource Names antipattern
include not providing a clear context for a Cloud resource and misleading the
cloud API clients, which reduce API understandability [8].

Pertinent vs. Non-pertinent Documentation. The Non-pertinent Docu-
mentation linguistic antipattern occurs when the documentation of a Cloud
resource URI is not consistent with its set of nodes. Therefore, this antipat-
tern involves both the URI and its documentation. Contrary to this antipat-
tern, a well-documented URI describes its goals and functions using rel-
evant semantic terms. An example of a Non-pertinent Documentation is
/v2/tenant id/flavors/flavor id/os-extra specs/key id – Gets the value

of the specified key from OpenStack, in which the URI and its documenta-
tion have no semantic similarity. In contrast, from the same Cloud provider,
/v2/software deployments/ – Lists all available software deployments. is an exam-
ple of Pertinent Documentation pattern as this URI–documentation pair shows a
high semantic similarity. As a consequence of the Non-pertinent Documentation
linguistic antipattern, Cloud API consumers may make incorrect assumptions
on the URIs, which can hinder their comprehension. In addition, for Cloud API
providers, this may hinder understandability during the maintenance and evo-
lution [15].

3 Approach

We now present CloudLex, our approach to building the lexicon of Cloud com-
puting REST APIs. First, we introduce a conceptual model of Cloud computing
REST APIs. Second, we describe our approach to extract and analyse lexicons
from Cloud APIs. Finally, we describe our semantic analysis of Cloud APIs.

3.1 Conceptual Model for Cloud Computing REST APIs

Cloud computing is the root concept of this model composed of the key con-
cepts of Provider, Service, Resource, and Action, their main attributes and
aggregation relationships. Figure 1 sketches our conceptual model. In our concep-
tual model, we abstract Cloud computing actors (companies, implementations,
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Fig. 1. Conceptual model of cloud computing REST APIs [17].

and standards) under the single concept of Provider. Each provider supplies a
set of REST APIs. For example, in Google Cloud Platform, each API is in fact
a commercial Google product, such as compute and sql.

Independently of the name used by Cloud providers (product, API, exten-
sion), each provider’s REST API exposes conceptually useful services, e.g., man-
aging virtual machines, networks, databases, or applications, orchestrating their
deployment, controlling their access, etc. The number and contents of these
services are extremely heterogeneous for each provider: hundreds of services in
Google Cloud Platform, more than one hundred in OpenStack, and five in OCCI.
In our conceptual model, we abstract this diversity of functional services under
the single concept of Service.

Each provider’s service manages a set of computing resources imple-
mented as REST resources. A service is characterised by a unique resource
identifier, e.g., URI, URL, etc., and usually a documentation to describe
the service. For example, virtual machines are accessible through the URI
/project/zones/zone id/instances/instance id in the compute service of Google
Cloud Platform and the URI /tenant id/servers/server id in the os-compute-2
service of OpenStack. Our conceptual model abstracts this diversity of comput-
ing resources under the single concept of Resource.

Each resource supports common CRUD operations (Create, Retrieve,
Update, and Delete) and some specific business behaviours, like starting and
stopping a virtual machine, attaching a disk to a virtual machine, etc. Our con-
ceptual model abstracts this diversity of operations and behaviours under the
single concept of Action.

To instantiate this conceptual model, we designed a tooled approach for iden-
tifying automatically Service, Resource, and Action from Cloud computing
REST APIs of any Provider and then extracting and analysing the lexicons of
these APIs.
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3.2 CLOUDLEX

The CloudLex approach divides in four steps:

Step 1. Collecting Documentation. The first step consists in collecting manually
the documentation of a provider’s Cloud computing REST API.

Step 2. Parsing Documentation. The second step parses all the provider’s doc-
umentation to identify the Service, Resource, and Action of the conceptual
model automatically to create the Cloud Dataset of our conceptual model.

Step 3. Extracting Lexicon. The third step extracts the lexicon of each provider
from its associated Cloud Dataset. The lexicon of each provider contains the
names of all the services, the terms extracted from the path of the URIs of all
provided resources, and the names of all the actions defined on the resources

For example, the URI /project/zones/zone id/instances/instance id contains
five segments: {project}, zones, {zone id}, instances, and {instance id}.
We keep in the lexicon all segments not enclosed by braces, e.g., zones and
instances. Other segments enclosed by braces identify specific resources, usually
as identifiers, such as {project} and all {instance id}.

Step 4. Analysing Lexicon. The fourth step analyses automatically the lexicons.
We use various analyses to count occurrences of each term in the lexicons, identify
nouns and verbs, singular and plural terms, and lower/upper/camel cased terms.

The lexicons are encoded as CSV files (Comma-Separated Values). This
implementation choice fosters the reusability of the lexicons by researchers and
practitioners. Most of the CloudLex parsers, extractors, and analyses are imple-
mented in Python, a dynamic scripting language providing simple libraries to
get and parse HTML pages/Swagger files, and read/write CSV files. The imple-
mentation of the CloudLex approach is freely available at https://github.com/
Spirals-Team/CloudLexicon.

3.3 Semantic Analysis of Cloud APIs

The semantic analysis of Cloud APIs requires four automatic steps shown in
Fig. 2. The first step involves the collection of API documentation and perform-
ing a pre-processing phase, for example to remove stop words. The second step
processes URI nodes to their base form (a.k.a., lemmatisation) using the Stan-
ford Core NLP. The third step involves the extraction of topic models using
LDA. In the final step, we compute the second-order semantic-similarity metric
between the obtained topic models and the nodes in a URI. We illustrate with a
running example the semantic analysis, showing the detection of the Contextless
Resource Names antipattern and Contextual Resource Names pattern.

https://github.com/Spirals-Team/CloudLexicon
https://github.com/Spirals-Team/CloudLexicon
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Fig. 2. The Semantic analysis method applied to cloud APIs from [15].

Semantic Analysis. To infer the contextual relationships between nodes in URIs,
we rely on Mallet LDA topic modeling3. LDA forms a model for a given docu-
ment, which represents a URI and its documentation. Our proposed approach
applies Mallet topic modeling to build topic models by accepting resource iden-
tifiers and descriptions of Cloud resources as input.

Table 4 shows an excerpt of the LDA topic model created during our analysis
of the Cloud API provider Docker Engine. The complete topic model consists of
ten topic clusters and we consider the ten most relevant terms in each topic, i.e.,
the top ten terms. We can use this set of topics to measure similarity between
resource identifiers, if two URI nodes are semantically related. URI nodes are
semantically related if they are from the same topic [19] (Table 3).

Table 3. List of extracted topics in Docker Engine.

List of topics

auth

build

commit

containers

events

exec

images

info

ping

version

To compute the semantic similarity between terms, we use the second-order
semantic-similarity metric. We rely on the distributional second-order similarity

3 http://mallet.cs.umass.edu.

http://mallet.cs.umass.edu
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Table 4. Top ten terms for Docker Engine topic model with k=10.

Topic0 Topic1 Topic2 Topic3 Topic4 Topic5 Topic6 Topic7 Topic8 Topic9

copy resize image amp container create search ping container json

unpause start version restart info attach height history top exec

commit tag event wait push log log change change load

build build width width width stop stop auth auth kill

pause pause pause pause pause pause pause export

because the nodes in the URI can be slightly different from the terms used for
their description (structure and form). A pair of terms are distributionally similar
if they have common co-occurring terms, i.e., terms that appear frequently with
the same set of terms as neighbors. As described in Sect. 2.1, the computation of
this similarity is based on the corpus of terms extracted from the URI dataset,
which we analyse to find the terms that occur together within a context of
±window size terms. We then process the resulting terms matrix to build terms
vectors that represent the distribution of a term in the corpus and show the
terms sharing a maximum number of co-occurrences. We use these to compare
two terms by analysing the extent to which these two terms have similar second-
order terms vectors [12]. We use DISCO [11] to compute such distributional
similarity between terms.

Identifying Antipatterns. To compare the context of every pair of nodes in a
URI, we measure the second-order semantic similarity between each node with
the ten top terms of each topic. Based on the similarity value, we determine
to which topics a node belongs. We consider that a node belongs to a topic if
the average second-order semantic similarity value is greater than a predefined
threshold, i.e., 0.3, for any terms in each topic. We simulate over several threshold
values and choose the minimum with reasonable results based on our simulation
results and comprehension. And, finally, we choose the same threshold based on
the work in [15] where the authors reasoned their detection accuracy over this
threshold value.

If, for a given nodes pair of a URI, the intersection of topic sets to which each
node belongs is empty (i.e., there is no common topic for that pair of nodes in
the URI), then we report the URI as a Contextless Resource Names antipattern.
Otherwise, if each pair of nodes in the URI share at least one common topic,
then we report the URI as a Contextual Resource Names pattern.

Table 5 shows the results for a resource URI from the Docker Engine API
https://docker.engine.com/images/search. The base forms of each node
(i.e., image and search) appear in Topic2 and Topic6 shown in Table 4. Hence,
we report the URI as a Contextual Resource Names pattern. As shown in Table 5,
we have two nodes in base forms: image and search. We compare the second-
order similarity for each node with each terms of the obtained topic model shown
in Table 5. The first column shows the second-order similarity values between the
first node image and the topic model, and the second column shows the values
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Table 5. Example of analysis of a URI from the Docker Engine API.

https://docker.engine.com/images/search

URI Nodes: /images/search

Node: image Node: search Topic average

image vs. Topic0 search vs. Topic0

copy: 0.45550877 copy: 0.31544656

unpause: −2.0 unpause: −2.0

commit: 0.0 commit: 0.098813675

build: 0.32840174 build: 0.01179231

Max Result Topic 0: 0.45550877 Max Result Topic 0: 0.31544656 0.385477665

image vs. Topic1 search vs. Topic1

resize: 0.2891726 resize: 0.57163477

start: 0.012896833 start: 0.018111441

tag: 0.101503715 tag: 0.1996914

Max Result Topic 1: 0.2891726 Max Result Topic 1: 0.57163477 0.430403685

image vs. Topic2 search vs. Topic2

image: 2.0 image: 0.2916552

version: 0.2870915 version: 0.24986088

event: 0.0743737 event: 0.042658847

width: 0.12692761 width: 0.011248095

pause: 0.07810811 pause: 0.09917007

Max Result Topic 2: 2.0 Max Result Topic 2: 0.2916552 1.1458276

image vs. Topic3 search vs. Topic3

amp: 0.032073073 amp: 0.011314062

restart: 0.011473239 restart: 0.031095618

wait: 0.036101706 wait: 0.09236097

Max Result Topic 3: 0.0 Max Result Topic 3: 0.0 0

image vs. Topic4 search vs. Topic4

container: 0.1470323 container: 0.070620485

info: 0.23985307 info: 0.5876746

push: 0.04289078 push: 0.078571856

Max Result Topic 4: 0.23985307 Max Result Topic 4: 0.5876746 0.413763835

image vs. Topic5 search vs. Topic5

create: 0.16315852 create: 0.19966161

attach: 0.21755742 attach: 0.015138787

log: 0.16914968 log: 0.31177378

stop: 0.017904773 stop: 0.100144744

Max Result Topic 5: 0.21755742 Max Result Topic 5: 0.31177378 0.2646656

(continued)
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Table 5. (continued)

https://docker.engine.com/images/search

URI Nodes: /images/search

Node: image Node: search Topic average

image vs. Topic6 search vs. Topic6

search: 0.2916552 search: 2.0

height: 0.15941465 height: 0.0106301615

Max Result Topic 6: 0.2916552 Max Result Topic 6: 2.0 1.1458276

image vs. Topic7 search vs. Topic7

ping: 0.0 ping: 0.0

history: 0.06135501 history: 0.05444772

change: 0.11254101 change: 0.13595133

auth: 0.04527525 auth: 0.28564966

Max Result Topic 7: 0.11254101 Max Result Topic 7: 0.28564966 0.199095335

image vs. Topic8 search vs. Topic8

container: 0.1470323 container: 0.070620485

top: 0.18044263 top: 0.0

Max Result Topic 8: 0.18044263 Max Result Topic 8: 0.0 0.090221315

image vs. Topic9 search vs. Topic9

json: 0.11969886 json: 0.4653473

exec: 0.073554516 exec: 0.2546377

load: 0.14074977 load: 0.13070202

kill: 0.0 kill: 0.13537067

export: 0.022680383 export: 0.051750746

Max Result Topic 9: 0.14074977 Max Result Topic 9: 0.4653473 0.303048535

Maximum Average 1.1458276

between the second node search and the topic model. The third column shows
the average second-order similarity for each topic for both nodes. We obtain
the maximum average of 1.1458 as the second-order semantic-similarity metric.
Topic6 has the maximum average vale for the nodes, which is higher than the
predefined threshold. Thus, we report these two nodes as contextual. We repeat
this process for all the URIs and Cloud APIs to decide if the nodes in URIs are
from the same context.

4 Cloud Lexical Analysis

Using CloudLex presented in Sect. 3.2, we extract a total of 3,947 different
terms in the REST APIs of 16 Cloud computing providers. We analyse the
terms to answer two main research questions as follows.
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4.1 RQ1: Do RESTful Cloud APIs Follow Good Practices?

We analyse automatically the quality of the terms along five dimensions. We
group the terms based on these dimensions, counting how many terms belong to
each dimension. Table 6 shows the result of the grouping from which we observe
several findings.

1. Parts of Speech: we classified the parts of speech of each term as Noun or
V erb.

2. Number: we classified the terms as Plural or Singular.
3. Casing: we classified the terms as Camel, Lower, or Upper cased.
4. Hyphenation: we classified the terms based on the presence or not of

hyphens.
5. Underscoring: we classified the terms based on the presence or not of under-

scores.

First, we find that 69% of the terms are nouns (3,323/4,843) and 31% verbs
(1,520/4,843) and that the majority of the APIs avoid using extensively verbs.
Second, we observe that 56% of the terms are plural (2,127/4,843) and 44% are
singular (2,716/4,843). Third, the analysis of the APIs shows that 52% of the
terms use camel casing (2,517/4,843), close to 48% are lowercase (2,313/4,843),
and only 0.27% are upper case (13/4,843). Finally, 98% of the terms do not
include hyphens (4,735/4,843) or underscores (4,753/4,843).

Petrillo et al. [18] compiled a catalog of 73 best practices in the design of
REST APIs. In the catalog, there are five best practices directly related to URI

Table 6. Number of terms by provider and quality dimensions.

Provider
Terms

Ocurrences
by Provider

Parts of Speech Quantity Case Hyphens Underscores

Noun Verb Plural Singular Camel Lower Upper No Yes No Yes

1and1 42 93% 7% 64% 36% 0% 95% 5% 60% 40% 100% 0%

Cloud Foundry 75 93% 7% 64% 36% 0% 100% 0% 52% 48% 100% 0%

CloudStack 565 2% 98% 28% 72% 99% 1% 0% 100% 0% 100% 0%

Digital Ocean 46 52% 48% 54% 46% 0% 100% 0% 72% 28% 100% 0%

Docker 32 34% 66% 16% 84% 0% 100% 0% 97% 3% 100% 0%

Google Cloud 349 47% 53% 48% 52% 51% 49% 0% 100% 0% 100% 0%

Heroku 14 79% 21% 64% 36% 0% 100% 0% 93% 7% 100% 0%

IBM Bluemix 52 67% 33% 52% 48% 0% 100% 0% 100% 0% 96% 4%

Kubernetes 16 94% 6% 75% 25% 0% 100% 0% 100% 0% 100% 0%

Microsoft Azure 622 67% 33% 63% 37% 58% 42% 0% 100% 0% 100% 0%

OCCI 46 70% 30% 0% 100% 0% 100% 0% 74% 26% 100% 0%

OpenStack 160 76% 24% 54% 46% 8% 89% 3% 92% 8% 68% 32%

Oracle Cloud 1,518 88% 12% 52% 48% 60% 40% 0% 100% 0% 99% 1%

OVH 1,014 79% 21% 23% 77% 48% 52% 0% 100% 0% 100% 0%

Rackspace 146 81% 19% 51% 49% 5% 94% 1% 95% 5% 92% 8%

VMWare 146 81% 19% 51% 49% 5% 94% 1% 95% 5% 92% 8%

Total 4,843 69% 31% 44% 56% 52% 48% 0% 98% 2% 98% 2%
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lexicons: (1) lowercase letters should be preferred in URI paths; (2) a singular
noun should be used for document names; (3) a plural noun should be employed
for collection names; (4) a verb or verb phrase should be used for controller
names; (5) underscores should not be used. Our results show that the APIs, in
general, follow these five good practices.

We thus conclude that the lexicon of the analysed Cloud computing
REST APIs contains a majority of nouns, which are equally singular
or plural, and are mainly in lower case, following REST API best
practices.

4.2 RQ2: Which Lexicon Is Adopted by Cloud Computing
Providers?

We count the number of providers that adopt a same term, observing that
although the 16 studied REST Cloud APIs describe the same domain, contrary
to our expectation, they do not share a large number of common terms. In fact,
90% of the terms (3,561/3,947) are used by one provider only, 5% of the terms
(198/3,947) are adopted by two providers, and 5% of the terms (198/3,947) are
adopted by three providers or more. If we define consensus when all providers
adopt a term, there is no term that is consensual in the 16 studied APIs.

Although a majority of the terms are adopted just by one provider, we can
highlight 23 terms that are used by seven4 or more providers: images (used by
11 providers), events (10), users (9), services (9), stop (9), resources (8), logs
(8), roles (8), snapshots (8), restore (8), actions (8), restart (8), instances (7),
domains (7), volumes (7), credentials (7), config (7), export (7), start (7), tags
(7), validate (7), and resume (7).

Thus, we conclude that the 16 Cloud APIs are lexically heteroge-
neous, with few common terms. There is not a consensus on which
terms to use in Cloud computing REST APIs.

5 Semantic Analysis of Cloud APIs for the Detection
of Linguistic (Anti)patterns

In this section, we assess the effectiveness of our semantic analysis approach
on Cloud APIs by (1) verifying if linguistic (anti)patterns do occur in Cloud
APIs and (2) analysing the detection accuracy for the detected linguistic
(anti)patterns. In this paper, we perform the validation study on more than
23,000 URIs from 16 Cloud API providers.

5.1 Subjects and Objects

The subjects of our semantic analysis are the four linguistic patterns and antipat-
terns described in Sect. 2.3 and the objects of our analysis are the 23,062 URIs
4 We chose at least seven providers to show a short list of terms (around of 20 terms).

The full list is available at https://github.com/Spirals-Team/CloudLexicon.

https://github.com/Spirals-Team/CloudLexicon
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Table 7. Number of URIs tested from each Cloud API provider.

Cloud API providers Test URIs

1and1 Cloud Server 161

Apache CloudStack 563

Cloud Foundry 233

Digital Ocean 131

Docker Engine 40

Google Cloud Platform 505

Heroku 30

IBM Bluemix 113

Kubernetes 114

Microsoft Azure 1, 820

OCCI 204

OpenStack 588

Oracle Cloud 11, 264

OVH 4, 229

Rackspace 479

VMware 2, 588

Total 23,062

from the 16 Cloud API providers. Table 7 summarises the numbers of URIs per
provider.

5.2 Research Questions

We propose two research questions to assess the effectiveness of our semantic
analysis for the detection of linguistic (anti)patterns:

RQ1 To what extent do the analysed Cloud APIs contain the linguistic pat-
terns and antipatterns (defined in Sect. 2.3)?
By answering RQ1, we show the quality of the URIs.
RQ2 How accurate are the detected linguistic patterns and antipatterns?
By answering RQ2, we show whether our identification process is accurate.

5.3 Validation Process

For the validation, we collected URIs and their corresponding documentations
for each Cloud APIs and subsequently applied the detection rules of linguis-
tic patterns and antipatterns [15] in the form of detection algorithms using
CloudLex. We validated detection results in two parts: (1) for Contextless
vs. Contextual Resource Names, 50 randomly-selected URIs from the 16 Cloud
APIs and for Pertinent vs. Non-pertinent Documentation, 25 randomly-selected
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URI–documentation pairs to measure the overall precision and (2) to measure
precision and recall for one Cloud API provider, we chose Docker Engine with
its reasonable number of URIs, i.e., other providers have high numbers of URIs
up to 11,264.

We involved three professionals, who are expert in Android, iOS, and Cloud
development, to identify the true positives and false negatives to define a gold
standard for Docker Engine. They also assisted in our validation process where
we calculate overall precision by randomly choosing 50 URIs and 25 URI–
documentation pairs. For the validation purposes, we provided them with the
online descriptions5 of the linguistics patterns and antipatterns, the sets of 50
randomly selected URIs, the set of 25 randomly selected URI–documentation
pairs, and all the URIs and URI–documentation pairs from Docker Engine. We
involved odd number of professionals to resolve their conflicts with majority
decision.

5.4 Detection Results

Table 8 shows detection results for the first 15 URIs from Docker Engine. As
shown in Table 8, all the URIs from Docker Engine are detected as Contextu-
alised Resource Names pattern.

Table 8. Detection results of Contextless vs. Contextualised Resource Names for the
first 15 URIs from Docker Engine.

URI Detected as

https://docker.engine.com/auth Pattern

https://docker.engine.com/build Pattern

https://docker.engine.com/commit Pattern

https://docker.engine.com/containers/create Pattern

https://docker.engine.com/containers/{id}/start Pattern

https://docker.engine.com/containers/{id}/stop Pattern

https://docker.engine.com/containers/{id}/top Pattern

https://docker.engine.com/containers/{id}/logs Pattern

https://docker.engine.com/containers/{id}/attach Pattern

https://docker.engine.com/containers/{id}/exec Pattern

https://docker.engine.com/containers/{id}/json Pattern

https://docker.engine.com/containers/{id} Pattern

https://docker.engine.com/containers/{id}/unpause Pattern

https://docker.engine.com/containers/{id}/export Pattern

https://docker.engine.com/containers/{id}/wait Pattern

5 http://sofa.uqam.ca/resources/antipatterns.php.

http://sofa.uqam.ca/resources/antipatterns.php
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Table 9 shows the detection results for the first 20 URI–documentation pairs
of the Docker Engine API. All these pairs are identified as Pertinent Doc-
umentation except two. Those two pairs: (1) https://docker.engine.com/
containers/id/json – [inspect a container] and (2) https://docker.
engine.com/containers/json – [List containers] are Non-pertinent
Documentation. The rationale behind this outcome could be the absence of
the specific term “json” in both their documentations and, in the first documen-
tation, the term “inspect” seems important but the URI does refer to it. All our
analyses results are available on our project Web site at https://github.com/
Spirals-Team/CloudLexicon.

In the following sections, we answer our two research questions on the pres-
ence of patterns and antipatterns in Cloud APIs (RQ1) and on the accuracy of
our identification approach (RQ2).

Table 9. Detection results of Pertinent vs. Non-pertinent Documentation for the first
20 URI–documentation pairs of Docker Engine.

URI Description Detected as

https://docker.engine.com/auth Check auth configuration Pattern

https://docker.engine.com/build Build an image from

Docker file via stdin

Pattern

https://docker.engine.com/commit Create a new image from a

containers changes

Pattern

https://docker.engine.com/containers/create Create a container Pattern

https://docker.engine.com/containers/{id}/start Start a container Pattern

https://docker.engine.com/containers/{id}/stop Stop a container Pattern

https://docker.engine.com/containers/{id}/top List processes running

inside a container

Pattern

https://docker.engine.com/containers/{id}/logs Get container logs Pattern

https://docker.engine.com/containers/{id}/attach Attach to a container Pattern

https://docker.engine.com/containers/{id}/exec Image tarball format Pattern

https://docker.engine.com/containers/{id}/json Inspect a container Antipattern

https://docker.engine.com/containers/{id} Remove a container Pattern

https://docker.engine.com/containers/{id}/unpause Unpause a container Pattern

https://docker.engine.com/containers/{id}/export Export a container Pattern

https://docker.engine.com/containers/{id}/wait Wait a container Pattern

https://docker.engine.com/containers/{id}/pause Pause a container Pattern

https://docker.engine.com/containers/json List containers Antipattern

https://docker.engine.com/containers/{id}/changes Inspect changes on a

containers file system

Pattern

https://docker.engine.com/containers/{id}/restart Restart a container Pattern

https://docker.engine.com/containers/{id}/copy Copy files or folders from a

container

Pattern

https://github.com/Spirals-Team/CloudLexicon
https://github.com/Spirals-Team/CloudLexicon
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Table 10. Summary of the semantic analyses of the 16 Cloud APIs.

API providers URIs tested Contextless Contextual Pertinent Non-pertinent

1and1 Cloud Server 161 2 (1.24%) 159 (98.76%) 72 (44.72%) 89 (55.28%)

Apache CloudStack 563 0 (0%) 563 (100%) 0 (0%) 563 (100%)

Cloud Foundry 233 5 (2.15%) 228 (97.85%) - -

Digital Ocean 131 35 (26.72%) 96 (73.28%) 46 (35.11%) 85 (64.89%)

Docker Engine 40 0 (0%) 40 (100%) 35 (87.50%) 5 (12.50%)

Google Cloud Platform 505 248 (49.11%) 257 (50.89%) 58 (11.49%) 447 (88.51%)

Heroku 30 5 (16.67%) 25 (83.33%) 14 (46.67%) 16 (53.33%)

IBM Bluemix 113 8 (7.08%) 105 (92.92%) 91 (80.53%) 22 (19.47%)

Kubernetes 114 3 (2.63%) 111 (97.37%) - -

Microsoft Azure 1, 820 1,744 (95.82%) 76 (4.18%) - -

OCCI 204 4 (1.96%) 200 (98.04%) - -

OpenStack 588 57 (9.69%) 531 (90.31%) 476 (80.95%) 112 (19.05%)

Oracle Cloud 11, 264 4,717 (41.88%) 6,547 (58.12%) - -

OVH 4, 229 2,702 (63.89%) 1,527 (36.11%) - -

Rackspace 479 62 (12.94%) 417 (87.06%) - -

VMware 2, 588 1,003 (38.76%) 1,585 (61.24%) - -

Total 23, 062 10,595 12,467 792 1,339

Average for APIs 23.16% 76.84% 48.37% 51.63%

5.5 RQ1: To What Extent Do the Analysed Cloud APIs Contain
the Linguistic Patterns and Antipatterns?

Table 10 shows the summary of our detection results in the 16 Cloud APIs. Fig-
ures 3 and 4 show the total numbers of linguistic patterns and antipatterns for
each Cloud API. All the Cloud APIs follow the Contextualised Resource Names

Fig. 3. Detection results of the four patterns and antipatterns in the 16 Cloud APIs
(part-I).
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Fig. 4. Detection results of the four patterns and antipatterns in the 16 Cloud APIs
(part-II).

pattern. We identified two APIs following the Contextualised Resource Names
pattern for all of their URIs, e.g., Apache CloudStack and Docker Engine.
Around 50%–98% of the URIs from remaining 14 Cloud APIs follow this pat-
tern. In addition, we identified the Contextless Resource Names antipattern in
some large Cloud APIs, including Google Cloud Platform (248 occurrences,
49%), IBM Bluemix (8 occurrences, 7%), Microsoft Azure (1,744 occurrences,
95%), Oracle Cloud (4,717 occurrences, 41%), and VMware (1,003 occurrences,
38%). In summary, out of 23,062 URIs, 10,595 (45.94%) are Contextless Resource
Names and 12,467 (54.06%) are Contextualised Resource Names.

Moreover, of the eight Cloud APIs in which we identified the Pertinent
vs. Non-pertinent Documentation (anti)patterns, we report that they all have
Non-pertinent Documentation. In particular, 89 occurrences (55.28%) of 1and1
Cloud Server, 563 occurrences (99.98%) of Apache CloudStack, 85 occurrences
(64.89%) of Digital Ocean, 5 occurrences (12.50%) of Docker Engine, 447
occurrences (88.51%) of Google Cloud Platform, 16 occurrences (53.33%) of
Heroku, 22 occurrences (19.47%) of IBM Bluemix, and 112 (19.05%) occurrences
of OpenStack have Non-pertinent Documentation. Thus, out of 2,131 pairs of
URIs–documentations, 1,339 (62.82%) have Non-pertinent Documentation.

These findings suggest that majority, i.e., 54%, of the analysed URIs follow
Contextualised Resource Names pattern that is a good practice in API design.
In contrast, a majority, i.e., 62.82%, of the analysed URI–documentation pairs
suffer of the Non-pertinent Documentation.

We can positively answer RQ1: analysed Cloud APIs contain the linguis-
tic patterns and antipatterns. The majority of the analysed URIs have Con-
textualised Resource Names—a good design practice. Our findings also show
that the majority of the analysed URI–documentation pairs have Non-pertinent
Documentation.
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5.6 RQ2: How Accurate Are the Detected Linguistic Patterns and
Antipatterns?

Table 11 shows that our approach identified 22 URIs as antipatterns, 14 of them
were true positive as validated manually. Therefore, we obtained an accuracy
of 63.64%. Together with Contextualised Resource Names pattern (with 78.57%
accuracy), we obtain an overall precision of 71.10% for Contextualised vs. Con-
textless Resource Names. Similarly, for Pertinent vs. Non-pertinent Documenta-
tion, we obtain an average precision of 77.27% with the manual validation for
randomly selected 25 URI–documentation pairs from the 2,131 pairs. Thus, for
the first validation, we obtain an average precision of 74.19%.

Table 11. Validation summary on 50 randomly-selected URIs and 25 randomly-
selected URI–documentation pairs of the 16 Cloud APIs.

Antipatterns/patterns P TP Validated Precision Average precision
for anti(pattern)

Contextless Resource Names 22 14 20 63.64% 71.10%

Contextualised Resource Names 28 22 30 78.57%

No detection 0 0 0 -

Non-pertinent Documentation 11 6 6 54.55% 77.27%

Pertinent Documentation 14 14 19 100%

No detection 0 0 0 -

Average Precision 74.19%

While the goal of our first validation is to measure the overall accuracy of our
approach for linguistic analysis, in this second validation, we want to show not
only the precision but also the recall of our approach. Professional developers
manually validated all 40 URIs from Docker Engine Cloud API for Contextu-
alised vs. Contextless Resource Names and all 40 URI–documentation pairs from
Docker Engine for Pertinent vs. Non-pertinent Documentation. Table 12 shows
that we did not identify any occurrence of Contextless Resource Names but the
manual validation revealed instances of contextless nodes in three URIs. There-
fore, our detection process missed all three true positives (i.e., recall of 0%) for
this antipattern. However, we obtained 100% of precision. On average, for the
Contextualised vs. Contextless Resource Name, we obtain an average precision
of 92.5% and an average recall of 50% with F1-measure of 64.91%. Similarly, for
the Pertinent vs. Non-pertinent Documentation, we obtain an average precision
and recall of 77.14% with F1-measure of 77.14%.

We conclude that, as shown in Table 12, our approach has a global aver-
age precision of 84.82% and a global average recall of 63.57% with an average
F1-measure of 71.03%. Thus, we can positively answer RQ2 on the detection
accuracy of linguistic patterns and antipatterns.
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Table 12. Validation summary on the URIs and URI–documentation pairs of Docker

Engine.

Antipatterns/patterns P TP Validated Precision Avg.

precision

Recall Avg.

recall

F1-

measure

Contextless Resource Names 0 0 3 - 92.5% 0% 50% 64.91%

Contextualised Resource Names 40 37 37 92.50% 100%

No detection 0 0 0 - -

Non-pertinent Documentation 5 3 5 60% 77.14% 60% 77.14% 77.14%

Pertinent Documentation 35 33 35 94.29% 94.29%

No detection 0 0 0 - -

Average Precision 84.82%

Average Recall 63.57%

Average F1-measure 71.03%

5.7 Threats to Validity

As with any empirical study, threats exist that reduce the validity of our results,
which we attempted to mitigate or had to accept. We now discuss these threats
and the measures that we took on them.

Threats to the Construct Validity. These threats concern the relationship
between theory and observations. We assumed that good naming practices [18]
improve the quality of the REST APIs of the Cloud providers [23]. Although
these assumptions are legitimate and have been withheld by many researchers
and works, for example that of Zhang and Budgen [22], future work should study
whether these good naming practices apply universally to all Cloud services.
Also, we argued that the lexicons should be homogeneous to help developers’
comprehension but this argument should be validated experimentally.

Threats to Internal Validity. These threats concern confounding factors that
can affect our dependent variables. Although we did not carry any statistical
analysis on the characteristics of the studied REST APIs, we assumed that the
lexicons were a feature of the REST APIs. However, there may be other terms
that describe more accurately these REST APIs and that impact their compre-
hension, in particular their documentations. Future work includes analysing and
contrasting more APIs with more terms and documentations.

Threats to External Validity. These threats concern the generalization of our
results. Although we presented, to the best of our knowledge, the largest study
on the lexicons of Cloud computing REST APIs, we cannot generalise our results
to all Cloud computing REST APIs. Future work is necessary to analyze more
REST APIs, from other Cloud providers, open-source implementations, and
standards to confirm and–or infirm our observations.
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6 Related Work

Recently, there is a growing interest in the design quality evaluation of REST
APIs. However, to the best of our knowledge, few studies made specifically a
lexical evaluation of REST APIs in general, and none in the domain of cloud
computing.

In related work for the general design quality evaluation of REST APIs, we
can cite the research work of Hausenblas [10], who studies some widely used
REST Web APIs in terms of URI space design, resource representations, and
hyperlinking support. Rodŕıguez et al. [5] evaluated also the conformance of good
and bad design practices in REST APIs from the perspective of mobile applica-
tions. They analysed large data logs of HTTP calls collected from the Internet
traffic of mobile applications, identified usage patterns from logs, and compared
these patterns with best design practices. Zhou et al. [24] showed how to fix
design problems related to the use of REST services in existing Northbound
networking APIs in a Software Defined Network and how to design a REST
Northbound API in the context of OpenStack. These previous work made con-
tributions to the design evaluation of REST APIs for general or specific domains,
mobile and networking, while we consider the domain of cloud services.

Palma et al. [16] evaluated the linguistic aspects of several REST APIs based
on REST patterns and anti-patterns, which correspond to good and bad practices
in the design of REST services. However, the APIs evaluated were selected from
different and general domains. They included Facebook, Twitter, Dropbox, and
Bestbuy. So, it was not possible to compare and discuss the results among the
APIs. Moreover, the list of patterns and anti-patterns was really compared to
this focused study.

Petrillo et al. [18] evaluated three cloud computing REST APIs using a cat-
alog of 73 general best practices. However, this catalog was mainly dedicated to
the design of REST APIs from a conceptual and syntactic point of view, but not
necessarily lexical. The present paper specifically focuses on a lexical evaluation
of cloud computing REST APIs.

Researchers have analysed Cloud APIs to verify if the developers properly
use them [9,20]. However, no study were conducted in the literature to assess
the linguistic quality of Cloud APIs. In the following, we discuss some relevant
research done on assessing the structural correctness of APIs [9,20] or the use
of Cloud ontology [1,21] for comprehension.

Developers repeatedly need to manually ensure that they are building HTTP
requests using correct URIs while developing framework-based JavaScript Web
applications, which is error-prone. Wittern et al. [20] proposed an approach for
statically checking request URIs in JavaScript-based applications by extracting
their URLs, HTTP methods, and the corresponding request data. The authors
evaluated if request URIs in JavaScript files conform to their publicly avail-
able specifications. With analysing more than 6,000 request URIs, the approach
achieved the detection accuracy of more than 95%. This study ensures develop-
ers use URI correctly, however, does not analyse the linguistic quality which we
perform in our work.
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Haupt et al. [9] proposed a framework for structural analysis of REST APIs
based on their online specifications. The authors considered this proposed frame-
work as a first catalog of REST APIs describing structural characteristics that
comprises a set of metrics and graphical representation for each API. Moreover,
this framework comes useful in identifying the non-conformity of REST APIs to
the REST design principles and architectural style. Similar to our work in this
paper, the proposed framework in [9] considers the API descriptions and the
structure of REST APIs. The authors also proposed a meta-model for REST
APIs describing the structure of REST APIs. However, this study only verifies
structural correctness of APIs but does not verify their linguistic quality.

Androcec et al. [1] provided a global view of Cloud computing ontology after
a systematic review. The authors classified the relevant studies into four main
categories: cloud resources and services description, cloud security, cloud interop-
erability, and cloud services discovery and selection. The authors found that the
studies from ‘cloud resources and services descriptions’ category applied Cloud
ontologies to describe Cloud resources and services, classify the current services,
and pricing models. The Cloud interoperability category consisted of the studies
that use ontologies to achieve interoperability among different Cloud providers
and their offered services. The authors concluded that Cloud Computing ontolo-
gies are primarily applied in the discovery and selection of the best candidate
service in accordance with users’ computing requirements and the specifications
of Cloud resources and services.

In another study, Youseff et al. [21] proposed a detailed Cloud ontology to
facilitate the comprehension of the Cloud technology as, the authors suggested, it
would enable the community to design more efficient cloud applications. Based on
the fact that the current state-of-the-art in Cloud computing research lacks the
thorough understanding of the classification of the cloud systems, the authors
presented a classification of Cloud components, their relationships, and their
dependency on concepts from other service computing domains. According to
the proposed ontology, the Cloud computing systems fall within applications,
software environments, software infrastructure, software kernel, and hardware
categories. However, both the studies [1,21] focused on ontology aspect of REST
APIs. The linguistic aspect of the Cloud APIs is not considered in these studies.

Last but not least, Chalitta et al. [6] defined formal-based framework for
semantic interoperability in multi-clouds, organizing a catalogue of formal mod-
els that mathematically describe cloud APIs, describing their concepts and
semantic interoperability.

7 Conclusion and Future Work

Cloud computing is a popular Internet-based computing paradigm that provides
on-demand computational services and resources, generally offered by Cloud
providers’ REpresentational State Transfer (REST) APIs. Developers use REST
APIs by invoking these APIs by their names and, thus, the lexicons used in the
APIs are important to ease the developers’ comprehension. We claimed that
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Cloud computing lexicons reflect the nature of their APIs and the automatic
detection of “linguistic” antipatterns could further boost the adoption of Cloud
computing.

We presented three contributions. First, we introduced CloudLex, an app-
roach to build the lexicons of Cloud computing REST APIs, based on a con-
ceptual model and providing a toolkit to extract and analyse these lexicons.
Second, we extracted and studied the lexicons of 16 REST Cloud Computing
APIs. Finally, we analysed semantically the (anti)patterns in 1,297 URIs of the
142 services of the 16 Cloud providers.

We showed that the 16 APIs form a lexicon of 3,947 different terms
to express all provided services. We found that this lexicon contains a majority
of nouns, which are equally singular or plural, and are mainly in lower case,
following REST API best practices.

We observed that, although the 16 studied REST Cloud APIs describe the
some domain (Cloud computing), contrary to what one might expect, they do not
share a large number of common terms. In fact, 90% of the terms (3,561/3,947)
are used by only one provider, 5% of the terms (198/3,947) are adopted by
two providers, and the other 5% of the terms (198/3,947) are adopted by three
providers or more. Thus, we conclude that the 16 APIs are lexically heteroge-
neous, which point that there is not a consensus on which terms to use in Cloud
computing.

We also showed that, through our semantic analysis of the Cloud APIs, 54%
of the URIs follow the Contextualised Resource Names pattern, which is consid-
ered a good practice in API design. However, 62.82% of the URIs suffer from
the Non-pertinent Documentation antipattern. We also reported the detection
accuracy on one complete API, Docker Engine, with a global average precision
of 84.82% and a global average recall of 63.57% for an average F1-measure of
71.03%, which confirms the accuracy of our semantic analyses for the detection
of linguistic patterns and antipatterns.

In future work, we plan to build an ontology of Cloud computing APIs, estab-
lishing semantic joins between services and resources from different providers to
deal with semantic interoperability between Clouds. Further, future work is nec-
essary to analyze more REST APIs, from other Cloud providers, open-source
implementations, and standards to confirm and–or infirm our observations.
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