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Preface

The present book includes extended and revised versions of a set of selected papers
from the 7th International Conference on Cloud Computing and Services Science
(CLOSER 2017), held in Porto, Portugal, during April 24–26, 2017.

CLOSER 2017 received 102 paper submissions from 33 countries of which 28% are
included in this book. The papers were selected by the event chairs and their selection
is based on a number of criteria that include the classifications and comments provided
by the Program Committee members, the session chairs’ assessment, and also the
program chairs’ global view of all papers included in the technical program. The
authors of selected papers were then invited to submit a revised and extended version
of their papers having at least 30% innovative material.

The 7th International Conference on Cloud Computing and Services Science,
CLOSER 2017, focused on the emerging area of cloud computing inspired by some
of the latest advances that concern the infrastructure, operations, and available services
through the global network. Furthermore, the conference considers as essential the link
to services science, acknowledging the service orientation in most current IT-driven
collaborations. The conference is nevertheless not about the union of these two (already
broad) fields, but about cloud computing where we are also interested in how services
science can provide theory, methods and techniques to design, analyze, manage,
market, and study various aspects of cloud computing.

The papers selected to be included in this book contribute to the understanding of
relevant trends of current research ranging from cloud infrastructure-level virtualization
to service science in various application domains. Directions that emerge as being of
particular importance are resource elasticity, performance, and energy, and how they
are monitored and optimized. Furthermore, how to migrate and architect for the cloud
is an ongoing challenge. The effective orchestration and provisioning of cloud services
is another specific focus of current research. Recent technology advancements like
containers have also being investigated in terms of their benefits as an application
deployment framework.

We would like to thank all the authors for their contributions and also the reviewers
who helped ensure the quality of this publication.

April 2017 Donald Ferguson
Víctor Méndez Muñoz

Jorge Cardoso
Markus Helfert

Claus Pahl
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Performance Principles for Trusted
Computing with Intel SGX

Anders T. Gjerdrum(B), Robert Pettersen, H̊avard D. Johansen,
and Dag Johansen

Department of Computer Science, UIT The Arctic University of Norway,
Tromsø, Norway

anders.t.gjerdrum@uit.no

Abstract. Cloud providers offering Software-as-a-Service (SaaS) are
increasingly being trusted by customers to store sensitive data. Com-
panies often monetize such personal data through curation and analy-
sis, providing customers with personalized application experiences and
targeted advertisements. Personal data is often accompanied by strict
privacy and security policies, requiring data processing to be governed
by non-trivial enforcement mechanisms. Moreover, to offset the cost of
hosting the potentially large amounts of data privately, SaaS compa-
nies even employ Infrastructure-as-a-Service (IaaS) cloud providers not
under the direct supervision of the administrative entity responsible for
the data. Intel Software Guard Extensions (SGX) is a recent trusted
computing technology that can mitigate some of these privacy and secu-
rity concerns through the remote attestation of computations, establish-
ing trust on hardware residing outside the administrative domain. This
paper investigates and demonstrates the added cost of using SGX, and
further argues that great care must be taken when designing system
software in order to avoid the performance penalty incurred by trusted
computing. We describe these costs and present eight specific principles
that application authors should follow to increase the performance of
their trusted computing systems.

Keywords: Privacy · Security · Cloud computing
Trusted computing · Performance

1 Introduction

Pervasive computing and the ongoing Internet of Things (IoT) revolution have
led to many new mobile recording and sensory devices that record ever more
facets of our daily lives. Captured data is often analyzed and stored by complex
ecosystems of cloud hosted services. Storing and analyzing large amounts of data
are non-trivial problems. Handling personal data such as smart home monitoring
systems and health tracking, only adds the to this complexity as data processing
might be governed by strict privacy requirements [1].

c© Springer International Publishing AG, part of Springer Nature 2018
D. Ferguson et al. (Eds.): CLOSER 2017, CCIS 864, pp. 1–18, 2018.
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The curation and analysis of privacy sensitive personal data on third-
party cloud providers necessitate the design of a new Software-as-a-Service
(SaaS) architecture that is able to enforce rigid privacy and security policies
[2] throughout the entire software stack, including the underlying cloud pro-
vided Infrastructure-as-a-Service (IaaS). Commodity hardware components for
trusted computing have been available for some time [3,4], but the functionality
of existing solutions has been limited to establishing trust and guarantees on the
integrity of running software, and rudimentary support for secure code execution
(e.g., Intel Trusted Execution Technology).

In 2015, Intel introduced the Software Guard Extensions [5] as part of their
sixth generation Intel Core processor micro architecture (codenamed Skylake).
Together with complementary efforts by ARM and AMD, SGX is making general
trusted computing a commodity, providing confidentiality, integrity and attesta-
tion of code and data running on untrusted third-party platforms. SGX is able
to deter multiple different software and physical attacks by establishing secure
execution environments, or enclaves, of trusted code and data segments inside
individual CPUs. While SGX is an iterative technology building upon previous
efforts, it is more general in functionality allowing code execution inside enclaves
at native processor speeds, a significant performance improvement over previ-
ous efforts. SGX is designed with backwards compatibility in mind, allowing
developers to port sensitive logic from existing legacy applications into secure
enclaves. These properties make SGX a compelling technology for cloud based
SaaS hosting privacy sensitive data on untrusted third-party cloud providers.
SGX is a proprietary technology and prior knowledge of its characteristics is
mostly based on limited documentation by Intel. In particular, little is known
about the performance of the computing primitives comprising SGX and how
developers should best utilize these to maximize application performance.

This paper provide an in-depth investigation into key performance traits of
the Intel SGX platform. We provide a performance analysis of its low-level mech-
anisms and primitives, and describe several non-obvious idiosyncrasies related
to threading, context switching, and memory footprint. From our observations,
we derive 1 principles for developing more efficient software on this platform.

The remainder of this paper is structured as follows: Sect. 2 outlines the
relevant parts of the SGX micro architecture while Sect. 3 outlines the details of
our micro benchmarks. Section 4 provides an informed discussion of our findings
and a set of derived principles intended for developers of trusted computing
systems. Section 5 details relevant work before concluding remarks.

2 Intel Software Guard Extensions (SGX)

Intel’s new general trusted computing platform enables the execution of code
on untrusted third-parties at native processor speed. Moreover, the platform
preserves the confidentiality and integrity of code and data segments running
inside what is referred to as enclaves. This section details the core mechanisms
comprising SGX, building a foundation for the performance analysis detailed in
Sect. 3.
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2.1 Enclave Creation

Enclave code and data are distributed to runtime systems in form of a shared
library which is bundled together with what the developer reference refers to
as the SIGSTRUCT data structure. During the compilation of an enclave, a
hash, or measurement, of each code and data segment executable within the
shared library is computed and stored together with a signature generated by
the developers private key. This bundle is then distributed to the target third-
party platform together with the corresponding public key. During initialization,
the signature is verified against the public key and the measurement is recalcu-
lated and compared with the corresponding value inside the SIGSTRUCT. If
the signature matches that of the public key and the integrity of the code and
data segments are preserved, the enclave is allowed to execute. This establishes
a guarantee that only the expected enclave code and data from the expected
enclave author are successfully able to run on the third-party.

2.2 Entry and Exit

Regular application threads are able to enter secure enclaves by invoking the
EENTER instruction on a particular logical core. The thread then performs a
controlled jump into the enclave code, similar in operation to a call-gate. Threads
can only enter enclaves from privilege level 3 (user level).

Software interrupts are prohibited when running in encalve mode. As a con-
sequence, no system calls are allowed within enclaves. Applications requesting
access to common Operating System (OS) resources such as IO, must there-
fore explicitly exit the enclave prior to invocation. The application developer
explicitly defines these transitions and, in the presence of a potentially malicious
OS, all such transitions, parameters to these and responses must be carefully
validated.

Although threads cannot be instantiated in enclave mode, SGX allows multi-
ple threads to enter the same enclave and execute concurrently. For each logical
core executing inside a particular enclave, a Thread Control Structure (TCS) is
required to keep track of thread specific context. Before instantiation, these data
structures must be provisioned and stored in the Enclave Page Cache (EPC),
comprising pages explicitly set aside for enclaves. The TCS contains an OENTRY
field specifying the entry point for the thread, loaded into the instruction pointer
upon entry. Stack regions are not explicitly handled by the SGX microcode, how-
ever, as Costan and Devadas [6] state, the stack pointer is expected to be set
to a region of memory fully contained within the enclave during entry transi-
tion. Parameters input to the developer-specified entry points are marshaled and,
once the transition is done, copied into enclave memory from untrusted memory.
Although not handled by SGX directly, parameter marshaling and stack pointer
manipulation are managed under the hood by the SDK implementation which
most application authors will use for enclave development.

Threads may transition out of enclaves by means of two different mechanisms,
either synchronously trough the explicit EEXIT instruction, or asynchronously
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by service of a hardware interrupt. Synchronous exists will cause the thread to
leave enclave mode, restoring the execution context to its content prior to enclave
entry. Asynchronous Enclave Exit (AEX) is caused by a hardware interrupt such
as a page fault event. In this case all threads executing on the logical core affected
by the interrupt must exit the enclave and trap down to the kernel in order to
service the fault. Before exit, the execution context for all logical cores executing
within the enclave is saved and subsequently cleared to avoid leaking information
to the untrusted OS. When the page fault has been serviced, the ERESUME
instruction restores the context and the enclave resumes execution.

2.3 Enclave Memory

During boot-up of the CPU, a contiguous region of memory called Processor
Reserved Memory (PRM) is set aside from regular DRAM. Divided into 4 kB
pages, only accessible inside the enclave or directly by the SGX instructions,
this region of memory is collectively referred to as the EPC. Any attempts to
either read or write EPC memory from both privileged level system software or
regular user level applications are ignored. Moreover, any Direct Memory Access
(DMA) request to this region is explicitly prohibited, deterring physical attacks
on the system bus by potentially malicious peripheral devices. Confidentiality is
achieved through Intels Memory Encryption Engine (MEE), further preventing
physical memory inspection attacks as enclave data is encrypted at the CPU
package boundary on the system bus right after the L3 cache.

Much the same as regular virtual memory, EPC pages are also managed
by the OS. However, these are handled indirectly through SGX instructions
as EPC memory is not directly accessible. The OS is responsible for assigning
pages to enclaves and evict unused pages to regular DRAM. Through memory
management, the physical limit of 128 MB is evaded by swapping EPC pages
and as such there is no practical limit to the size of enclaves. The integrity
and liveness of pages being evicted are guarded by an axillary data structure
also contained within the PRM, called the Enclave Page Cache Map (EPCM).
The EPCM maintains the mappings between virtual and physical addresses of
PRM memory. Moreover, it maintains for each page an integrity check and a
liveness challenge vector. These precautions guard against a malicious OS trying
to subvert an enclave by either manipulating the address translation, explicitly
manipulating pages, or serving old pages back to the enclave (replay attacks). In
this memory model, only one enclave can claim ownership of a particular page
at one given moment, and as a consequence shared memory between enclaves is
prohibited. Enclaves are however allowed to read and write directly to untrusted
DRAM inside the host process’ address space, and therefore two enclaves residing
within the same host process are able to share untrusted memory.

Because stale address translations may be exploited to subvert enclave
integrity, the processor performs a coarse-grained Translation Lookaside Buffer
(TLB) shootdown for each page subject to eviction. Given a page fault event on a
particular thread executing inside an enclave, all threads executing on that same
logical core must perform an AEX, as described in Sect. 2.2. In order to avoid
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information leakage stemming from memory access patterns inside enclaves, the
lowermost 12 bits of the faulting address, stored in the CR2 registry are cleared.
SGX instructions explicitly support batching up to 16 page evictions together
at a time, thus curtailing the cost of AEX for each page fault inside an enclave.

2.4 Enclave Initialization

SGX allows the creation of multiple, mutually distrusting enclaves, on the same
hardware instance. These can reside in either a single process’ address space or
multiple. To instantiate enclave system software the OS, on behalf of the applica-
tion, invokes the ECREATE instruction. This causes the underlying microcode
implementation to allocate a new EPC page for the SGX Enclave Control Struc-
ture (SECS), identifying each enclave and storing per-enclave operational meta-
data. Moreover, physical pages are mapped to enclave SECS through the EPCM
structure. Before initialization is complete, each separate code and data segment
must be added to enclave memory explicitly through the EADD instructions.
Similarly, each TCS is added for each logical core expected to execute within
the enclave. Once this process is complete the OS issues the EINIT instruction
which finalizes initialization and compares the enclave measurement observed to
the contents of the SIGSTRUCT. Upon completion, a launch token is generated
by a special pre-provisioned enclave trusted by Intel, at which point the enclave
is considered fully initialized. Once this process is completed, no further mem-
ory page allocations may happen. Intels revised specifications for SGX version 2
includes the possibility for dynamic paging support by means of the EEXTEND
command. However, we refrain from further comment, as hardware supporting
these features have not yet been released at the time of writing.

Inversely, during teardown of an enclave, the opposite operation is performed.
The OS tags each page as invalid, by issuing the EREMOVE instruction. Prior
to this, SGX verifies for each page that no threads attributed to that page
are executing inside the enclave. Lastly, the SECS is destroyed once all pages
referring to it through the EPCM are themselves deallocated.

2.5 Enclave Attestation

In order for applications to securely host privacy-sensitive software components
on platforms outside of their administrative domain, we need to establish trust.
This can be achieved through remote attestation, a process in which the remote
party proves its correctness to the initiator. Assuming an enclave has been cre-
ated and initialized as outlined above on an untrusted platform, the entity wish-
ing to establish trust with this enclave issues a request for proof. The code
inside this enclave then requests a Quote from the hardware, which consists of
the enclave measurement, in addition to a signature from the hardware platform
key. This quote is then sent to the requesting party which can themselves val-
idate the measurement compared to the expected provisioned enclave. Lastly,
the quote is sent to Intel for verification through their Intel Attestation Ser-
vice, which validates the signature against their own private key. These two in
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combination prove to the requesting party that the expected code and data
segments are running on a valid SGX-enabled platform.

3 Experiments

The next generation of SaaS systems should be designed from the ground up to
utilize trusted computing features in a performance optimal way. Therefore,
we conduct a series of micro benchmark experiments on a SGX-enabled CPU to
fully understand the micro architectural cost of trusted computing on commodity
hardware. Our experimental setup consists of a Dell Optiplex workstation with
an Intel Core i5-6500 CPU @ 3.20 GHz with four logical cores and 2 × 8 GB of
DDR3 DIMM DRAM. Dynamic frequency scaling, Intel Speedstep and CStates
are disabled throughout our experiments to avoid inaccuracies. We set the PRM
size to its maximum allowed 128 MB to measure the peak theoretical perfor-
mance of the platform. Our experiments ran on Ubuntu 14.04 using the open
source kernel module by Intel implementing OS support for SGX1. Furthermore,
this module has been modified with instrumentation in order to also capture the
operational cost from the system perspective. Based on our knowledge regarding
SGX, we have derived a set of benchmarks conjectured to capture core aspects
of the trusted computing platform. It is worth noting that for all our exper-
iments, more iterations did not yield a lower deviation. We attribute this to
noise generated by the rest of the system that while subtle, becomes significant
at fine-grained time intervals.

t Application Enclave
enclave_ecall(  )

t0_ocall(  )

get_time(  )

enclave_ecall(  )

t0_ocall(  )

t1_ocall(  )

t1_ocall(  )

Δt

get_time(  )

Fig. 1. Sequence of events involved in measuring time spent inside enclaves [7].

1 https://github.com/01org/linux-sgx-driver.

https://github.com/01org/linux-sgx-driver
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The current generation of SGX does not support the use of the RDTSC
instruction or any other native timing facilities inside enclaves. Intel has later
released a microcode update to counter this problem, allowing for the RTDSC
instruction to execute inside enclaves. We are however unsuccessful, at the time of
writing, in obtaining a firmware update specific to our SKU through the correct
OEM. Measurements performed throughout the experiments must therefore exit
the enclave for each point in time. Consequently, all measurements therefore
include the time taken to enter and exit the enclave, described as the sequence
of events detailed in Fig. 1.

3.1 Entry and Exit Costs

With SGX, SaaS applications are able to influence the size of their Trusted
Computing Base (TCB) by partitioning application logic between trusted and
untrusted execution domains. In order to quantify any potential performance
trade-off, we examine the associated cost of enclave transitions. An optimal
application arrangement should conciser the following trade-off depending on
the transition cost: A high cost of transition would necessitate a reduction in the
overall amount of transitions and mediating this cost will increase the amount of
logic residing within the enclave, thus expanding the TCB. A prominent example
at one end of the spectrum is Heaven [8], in which an entire library OS is placed
within a secure enclave. Furthermore, details in the Intel Software Developer
Manual2 suggest that the cost of entering an enclave should also factor in the
cost of argument data copied as part of the transition into the enclave. There-
fore, if the cost of data input to an enclave is high, only data requiring explicit
confidentiality and trust should be placed within the enclave.

Figure 2 depicts the measured cost in millisecond latency, as a function of
increasing buffer sizes. The cost of entering an enclave is observed to increase
linearly with the size of the buffer input as the argument. It is worth mentioning
that only buffer input to the enclave is considered. The experiment does not
include output buffers or return values from enclaves.

Hosting a buffer inside enclave memory requires that the enclave heap is
sufficiently large. Since enclave sizes are final after initialization, we set the heap
size to be equally large for all iterations of the experiment. From the graph, we
observe that the baseline cost of entering an enclave quickly becomes insignificant
as the buffer size increases. This behavior is not surprising, as the overall cost
includes the cost of copying memory into the enclaves which invokes the MEE
for each page written to the enclave. A curious observation, however, is the fact
that the baseline cost only increases linearly for buffers larger than 64 kB. This
could be explained by enclaves less than 64 kB being fully provisioned into EPC
memory at startup. Whereas for large buffers the cost may be attributed to lazily
loaded enclave memory, triggering page faults during the buffer copy operation.
This aspect is explored in detail in the following experiment.

2 https://software.intel.com/en-us/articles/intel-sdm.

https://software.intel.com/en-us/articles/intel-sdm


8 A. T. Gjerdrum et al.

Fig. 2. Enclave transition cost as a function of buffer size [7].

3.2 Paging

Another aspect to consider in the application trade off between TCB and enclave
transition cost, is the fact that an increase in TCB would cause an increase in
PRM consumption. Moreover, as stated in Sect. 2.3, PRM is a fairly limited
resource compared to regular memory and the depletion of this resource will
cause system software to evict EPC pages more aggressively. As such, any appli-
cation utilizing SGX should consider carefully the cost of enclave memory man-
agement, more specifically the cost of page swapping between EPC and regular
DRAM. Figure 3 illustrates this overhead as observed by both the OS kernel and
inside the enclave.

The y-axis is the discrete cost in nano seconds, while the x-axis is time elapsed
into the experiment. The SGX kernel module has been instrumented to measure
the latency of page eviction denoted by the red dots, and the total time spent
in the page fault handler, represented by the black solid line.

From the enclave perspective, the green line denotes the user level instru-
mentation and represents time spent writing to a particular address in enclave
memory. As mentioned in the experimental introduction, measurement primi-
tives are unavailable inside enclaves, and all user level measurements therefore
include the cost of entry and exit, including a 4 byte word as parameter input
each way.

To induce page faults, the experimental enclave heap size is set to 256 MB,
double that of the of the physical PRM size made available by hardware. More-
over, we invoke write operations on addresses located within each 4 kB page
sequentially along the allocated memory address space inside the enclave.
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Fig. 3. Paging overhead in nano seconds as a function of time elapsed while writing
sequentially to enclave memory [7]. (Color figure online)

Recall from Sect. 2 that all memory for a particular enclave must be allocated
prior to initialization. We observe from Fig. 3 that prior to enclave startup, a
cluster of page fault events occur at the beginning of the experiment, correspond-
ing with our prior observations. The system is attempting to allocate memory
for an enclave of 256 MB while only being physically backed by 128 MB of EPC
memory.

The events occurring at user level can easily be correlated with the obser-
vations made in the page fault handler. For each increase in latency observed
from inside the enclave, a corresponding cluster of evictions occur in the page
fault handler. Moreover, the total time spent in the page fault handler coin-
cides with the write overhead observed at user level. Parts of the overhead can
be attributed to the fact that page faults cause AEX events to occur for each
logical core executing within the enclave, as detailed in Sect. 2.

Moreover, we observe that the SGX kernel module is behaving conserva-
tively in terms of page evictions, and is not exhausting EPC memory resources.
As detailed in Sect. 2, the 12 lower bits of the virtual page fault address are
cleared by SGX before exiting the enclave and trapping down to the page fault
handler. Hence, system software is not able to make any algorithmic assump-
tions about memory access patterns to optimize page assignment. Furthermore,
liveness challenge vector data might also be evicted out of EPC memory, causing
a cascade of page loads to occur from DRAM. As a side note, this experiment
only uses a single thread, and all page evictions only interrupt this single thread.

In light of the prior discovery, high performance applications should consider
tuning the SGX page fault handler to their particular use case, given that the
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application is able to predict a specific access pattern. Moreover, regardless of
access pattern the SGX page fault handler should be optimized to allow exhaus-
tive use of EPC, such that applications running inside enclaves may be less
affected by page faults in high memory footprint scenarios.

The initial setup of enclaves will retain large amounts of the pages in EPC
memory, alleviating the overhead of paging in certain situations. Moreover, this
reduces the execution overhead caused by threads performing AEX. Given that
the cost of enclave setup is still a large factor, by the prior statements, it might
be advantageous for application developers to pre-provision enclaves.

3.3 Enclave Provisioning

Modular programming and componentized system organization are paradigms
commonly used in modern distributed systems. Applications consisting of pos-
sibly multiple trust domains and third-party open source components should
separate the unit of failure and trust to reduce the overall system impact.

By enabling the creation of mutually distrusting enclaves, SGX is able to sup-
port a modular application architecture. Section 2 explains how enclaves might
communicate with the untrusted application through well defined interfaces,
lending itself to compartmentalization of software into separate enclaves. To
capture the cost of using SGX through the scope of a modular software archi-
tecture, Fig. 4 illustrates the cost in terms of provisioning latency as a func-
tion of enclaves created simultaneously for differently sized enclaves. We observe
that the added cost of enclave creation increases linearly for all sized enclaves,

Fig. 4. Latency as a function of number of enclaves created simultaneously, for differing
sizes of enclaves [7].
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becoming significant for enclaves larger than 256 kB. As detailed in Sect. 2,
enclaves are created by allocating each page of code and data to the enclave
prior to initialization. During this experiment we observed a significant amount
of page faults further attributing to the creation cost. This is expected as the
size of enclaves combined with number of instances increases above that of the
physically available PRM. Our observations about buffers less than 64 kB from
Sect. 3.1 still stands, as we observe that the provisioning cost for enclaves less
than 64 kB is nearly identical.

To offset the latency of creation for enclave instances, real-time applications
should consider pre-provisioning them. However, as prior experiments show co-
locating multiple enclaves in EPC memory might result in additional cost if the
memory footprint is large enough.

3.4 Multithreading

The curation and analysis of large amounts of data use concurrency as a measure
to speed up processing of data elements. This is especially true for embarrassingly
parallel computations. One example is the distinct count aggregate operation,
where a large corpus of data is sectioned into buckets and where each can be
counted in parallel. Such computations require parallelism built into the run-
time. Fortunately, SGX provides the ability to run multithreaded operations
inside the same enclave. However, implementation details reveal that applica-
tions with high memory footprint might suffer from extensive page faults, which
can act as a barrier and in the worst cases degrade performance significantly. Fur-
thermore, as we argued earlier, applications with multiple tenants might want to
isolate analytics execution into separate enclaves, and it is therefore important
to consider how threads are delegated inside of enclaves.

To induce a high memory footprint we use the same technique as in Sect. 3.2,
where we create an enclave which exceeds in size the amount of available physical
PRM. We expect some performance degradation for multiple threads running on
the same logical core executing within the enclave. When a page fault occurs, all
threads running on the particular core must exit the enclave and block until the
page fault is serviced. Our experiment therefore consists of two modes, one where
we pin all threads to separate logical cores, and one where we pin all threads to
a single core. Both experiments dedicate a single thread to interrogating every
4 kB page of the heap memory causing regular page faults to occur. Our test
bench has 4 logical cores so our experiment runs a total of 4 threads simulta-
neously for both experiments. The remaining threads are just busy-waiting in a
loop, measuring the time taken in each iteration. Figure 5 illustrates 4 threads
pinned to 4 different cores where core 0 is interrogating memory and causing page
faults to occur as illustrated in the green spikes. We observe that there is no co-
dependency between threads, and the 3 remaining threads are not impacted by
interrupts occurring on the former (Fig. 6).

Our second experiment demonstrates the opposite. We force all 4 threads to
be pinned to a single logical core, and as a consequence we observe that thread
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Fig. 5. Execution overhead for multiple threads running on separate logical cores, with
page fault events occurring. (Color figure online)

Fig. 6. Execution overhead for multiple threads pinned to a single core, with page fault
events occurring.

0, who is causing interrupts to occur, is blocking all other threads from execut-
ing while servicing the costly page faults. It is worth noting that this is how
threads behave in regular process address space when faced with a hardware
interrupt. However, page faults are more costly to perform in enclave memory
and more frequent as previous experiments show due to memory footprint con-
straints. Secondly, we observe that thread scheduling behaves differently as well.
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Context switches between threads executing on the same logical core happens
multiple magnitudes more infrequently than regular threads executing outside
of enclaves. We theorize that this is a design choice when implementing enclave
support, because interrupts in enclaves are especially costly. Any context switch
would have to be induced by the timer hardware interrupt triggering the thread
to exit the enclave, and so it makes sense increasing the scheduler time slices to
amortize this cost.

4 Discussion

From the micro benchmarks detailed in Sect. 3, we pinpoint several performance
traits of SGX that should be taken into consideration when designing trusted
computing-enabled cloud services. We classify these individually as the cost of
entering and exiting enclaves, the cost of data copying, the cost of provisioning
new enclaves, the cost of memory usage and the cost of multithreaded execution.

Section 2 explained that the transitioning cost is uniform in terms of cost
with respect to direction. Moreover, the most significant cost is attributed to
the buffer size input as argument to the transition. More specifically, from Fig. 2
we observe a sharp rise in cost when buffer sizes are larger than 64 kB. We conjec-
ture that this is an architectural boundary, where encalves are pre-provisioned,
by default, with a given number of pages. Future iterations of SGX may alter
this behavior, opting for an increase in pre-provisioned pages. Our principles
therefore state:

The Size Principle. The size of an enclave should not exceed the architecturally
determined pre-provisioned memory resources.

The Cohesion Principle. Applications should partition its functional compo-
nents to minimize data copied across enclave boundaries.

Following the latter principle, a possible component architecture would be
to co-locate all application logic into a single, self-sufficient enclave. Haven [8],
is a prominent example of this approach. By means of a library OS, a large
part of the system software stack is placed within a single enclave, reducing the
interface between trusted and untrusted code. However, this approach directly
contradicts the observation made in Sect. 3.2 regarding the cost of having a
large memory footprint. Since the EPC is a limited resource, the SGX page
fault handler promptly pages out enclave memory not being used. However,
the paging experiment demonstrates that the available pool of EPC memory is
not exhausted, even in the presence of high memory contention. As detailed in
Sect. 3.2, the faulting address is not provided as part of the page fault event and
the page fault handler is therefore not able to make any assumptions about the
memory access patterns. We therefore state that:
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The Access Pattern Principle. Prior knowledge about application’s memory
consumption and access pattern should be used to modify the SGX kernel module
in order to reduce memory page eviction.

Our experiments have demonstrated that enclave creation is costly in terms
of provisioning latency. By pre-provisioning enclaves whenever usage patterns
can be predicted, the application is able to hide some of this cost. However, once
used, an enclave might be tainted with secret data. Recycling used enclaves to
a common pool can therefore potentially leek secrets from one domain to the
next; invalidating the isolation guarantees. We therefore state that:

The Pre-provisioning Principle. Application authors that can accurately
predict before-the-fact usage of enclaves should pre-provision enclaves in a dis-
posable pool of resources that guarantees no reuse between isolation domains.

The cost of enclave creation must also factor in the added baseline cost of
storing metadata structures associated with each enclave in memory. Provision-
ing enclaves must at least account for its SECS, one TCS structure for each
logical core executed inside an enclave, and one SSA for storing secure execution
context for each thread. [6] details that to simplify implementation, most of these
structures are allocated at the beginning of an EPC page wholly dedicated to
that instance. Therefore, enclaves executing on 4 logical cores may have 9 pages
(34 kB) in total allocated to it, excluding code and data segments. Applications
should consider the added memory cost of separate enclaves in conjunction with
the relative amount of available EPC. Furthermore, to offset the cost of hav-
ing multiple enclaves, application authors should consider security separation
at a continuous scale. Some security models might be content with role based
isolation, rather than call for an explicit isolation of all users individually. We
therefore state that:

The Isolation Principle. Application authors should carefully consider the
granularity of isolation required for their intended use, as a finer granularity
includes the added cost of enclave creation.

Executing multiple threads from the same core inside a single enclave
degrades the concurrent performance by blocking execution when servicing a
page fault. Although regular non-enclave execution behaves similarly, the over-
head associated with enclave page faults becomes significant when memory foot-
print increases. Moreover, latency critical applications will suffer because of the
increased time slices of thread interrupts initially thought to amortize the cost of
exiting enclaves when switching contexts. From this we deduce that the number
of threads executing inside enclaves should never exceed the logical core count
for a given system. We therefore establish the following principle:

The Affinity Principle. Applications should not affinitize multiple threads to
the same core.
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Section 3.1 demonstrates the cost of transitioning into and out of an enclave,
and it becomes evident that to reduce the transitioning overhead threads should
be pinned inside enclaves. Enclave threads should rather transport data out of
the enclave through writing to regular DRAM and similarly poll for incoming
data. We therefore state:

The Pinning Principle. Application authors should pin threads to enclaves to
avoid costly transitions.

The prior statements lead us to the following principle:

The Asynchrony Principle. All execution inside enclaves should be asyn-
chronous.

Threads should be pinned inside enclaves to amortize transition cost and
total thread count should not exceed logical core count. Application authors
must therefore be diligent in terms of assigning threads to enclaves. Applica-
tions might further isolate contexts based on either user or tenant in different
mutually distrusting enclaves, each of which requires a dedicated thread. Core
logic executing inside enclaves should remain responsive at all time, servicing
both incoming requests and processing data. We therefore state that rather
than allocating multiple threads to the same enclave, all execution should be
fully asynchronous. This furthermore has the added benefit of high resource
utilization improving overall application performance.

At the time of writing, the only available hardware supporting SGX are the
Skylake generation Core chips with SGX version 1. Our experiments demonstrate
that paging has a profound impact on performance and a natural follow-up
would be to measure the performance characteristics of dynamic paging support
proposed in the SGX version 2 specifications.

SGX supports attestation of software running on top of an untrusted plat-
form, by using signed hardware measurements to establish trust between parties.
For future efforts it would be interesting, in light of the large cost of enclave
transition demonstrated above, to examine the performance characteristics of a
secure channel for communication between enclaves.

5 Related Work

Several previous works quantify various aspects of the overhead associated with
composite architectures based on SGX. Haven [8] implements shielded execution
of unmodified legacy applications by inserting a library OS entirely inside of SGX
enclaves. This effort resulted in architectural changes to the SGX specification to
include, among other things, support for dynamic paging. The proof-of-concept
implementation of Haven is only evaluated in terms of legacy applications run-
ning on top of the system. Furthermore, Haven was built on a pre-release emu-
lated version of SGX, and the performance evaluation is not directly comparable
to real world applications. Overshadow [9] provides similar capabilities as Haven,
but does not rely on dedicated hardware support.
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SCONE [10] implements support for secure containers inside of SGX enclaves.
The design of SCONE is driven by experiments on container designs pertaining
to the TCB size inside enclaves, in which, at the most extreme an entire library
OS is included and at the minimum a stub interface to application libraries. The
evaluation of SCONE is much like the evaluation of Haven, based on running
legacy applications inside SCONE containers. While Arnautov et al. [10] make
the same conclusions with regards to TCB size versus memory usage and enclave
transition cost as Baumann et al. [8], the paper does not quantify this cost.
Despite this, SCONE supplies a solution to the entry-exit problem we outline in
Sect. 3, where threads are pinned inside the enclave, and do not transition to the
outside. Rather, communication happens by means of the enclave threads writing
to a dedicated queue residing in regular DRAM memory. This approach is still,
however, vulnerable to threads being evicted from enclaves by AEX caused by
an Inter Processor Interrupt (IPI) as part of a page fault.

Costan and Devadas [6] describe the architecture of SGX based on prior art,
released developer manuals, and patents. Furthermore, they conduct a compre-
hensive security analysis of SGX, falsifying some of its guarantees by explaining
in detail exploitable vulnerabilities within the architecture. This work is mostly
orthogonal to our efforts, yet we base most of our knowledge of SGX from this
treatment on the topic. These prior efforts lead Costan et al. [11] to implement
Sanctum, an alternative hardware architectural extension providing many of the
same properties as SGX, but targeted towards the Rocket RISC-V chip archi-
tecture. This paper evaluates its prototype by simulated hardware, against an
insecure baseline without the proposed security properties. McKeen et al. [12]
introduce dynamic paging support to the SGX specifications. This prototype
hardware was not available to us.

Ryoan [13] attempts to solve the same problems outlined in the introduc-
tion, by implementing a distributed sandbox facilitating untrusted computing
on secret data residing on third-party cloud services. Ryoan proposes a new
request oriented data-model where processing modules are activated once with-
out persisting data input to them. Furthermore, by remote attestation, Ryoan
is able to verify the integrity of sandbox instances and protect execution. By
combining sandboxing techniques with SGX, Ryoan is able to create a shielding
construct supporting mutually distrust between the application and the infras-
tructure. Again, Ryoan is benchmarked against real world applications, and just
like other prior work, does not correctly quantify the exact overhead attributed
to SGX primitives. Furthermore, large parts of its evaluation is conducted in an
SGX emulator based on QEMU, which has been retrofitted with delays and TLB
flushes based upon real hardware measurements to better mirror real SGX per-
formance. These hardware measurements are present for EENTRY and EEXIT
instructions, but do not attribute the cost of moving argument data into and out
of enclave memory. Moreover, Ryoan speculates on the cost of SGX V2 paging
support, although strictly based on emulated measurements and assumptions
about physical cost.

ARM TrustZone is a hardware security architecture that can be incorporated
into ARMv7-A, ARMv8-A and ARMv8-M on-chip systems [14,15]. Although the
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underlying hardware design, features, and interfaces differ substantially to SGX,
both essentially provide the same key concepts of hardware isolated execution
domains and the ability to bootstrap attested software stacks into those enclaves
[16]. However, the TrustZone hardware can only distinguish between two execu-
tion domains, and relies on having a software based trusted execution environ-
ment for any further refinements.

6 Conclusion

SaaS providers are increasingly storing personal privacy-sensitive data about
customers on third-party cloud providers. Moreover, companies monetize this
data by providing personalized experiences for customers requiring curation and
analysis. This dilution of responsibility and trust is concerning for data owners
as cloud providers cannot be trusted to enforce the, often government mandated,
restrictive usage policies which accompany privacy-sensitive data.

Intel SGX is part of a new wave of trusted computing targeting commodity
hardware and allowing for the execution of code and data in trusted segments
of memory at close to native processor speed. These extensions to the x86 ISA
guarantee confidentiality, integrity and correctness of code and data residing on
untrusted third-party platforms.

Prior work demonstrates the applicability of SGX for complete systems capa-
ble of hosting large legacy applications. These systems, however, do not quan-
tify the exact micro architectural cost of achieving confidentiality, integrity and
attestation for applications through the use of trusted computing. This paper has
evaluated the cost of provisioning, data copying, context transitioning, memory
footprint and multi-threaded execution of enclaves. From these results we have
distilled a set of principles which developers of trusted analytics systems should
use to maximize the performance of their application while securing privacy-
sensitive data on third-party cloud platforms.
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Abstract. Cloud-native applications are often designed for only one
specific cloud infrastructure or platform. The effort to port such kind of
applications into a different cloud is usually a laborious one time exercise.
Modern Cloud-native application architecture approaches make use of
popular elastic container platforms (Apache Mesos, Kubernetes, Docker
Swarm). These kind of platforms contribute to a lot of existing cloud
engineering requirements. This given, it astonishes that these kind of
platforms (already existing and open source available) are not considered
more consequently for multi-cloud solutions. These platforms provide
inherent multi-cloud support but this is often overlooked. This paper
presents a software prototype and shows how Kubernetes and Docker
Swarm clusters could be successfully transfered at runtime across pub-
lic cloud infrastructures of Google (Google Compute Engine), Microsoft
(Azure) and Amazon (EC2) and further cloud infrastructures like Open-
Stack. Additionally, software engineering lessons learned are derived and
some astonishing performance data of the mentioned cloud infrastruc-
tures is presented that could be used for further optimizations of IaaS
transfers of Cloud-native applications.
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Container · Portability · Transferability · MAPE · AWS · GCE
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1 Introduction

This Chapter extends the ideas formulated in [1] and focuses on the complexity
to transfer Cloud-native Applications (CNA) at runtime which seems – even
after 10 years of cloud computing – to be an astonishingly complex problem
[2,3]. It can be hard to operate a CNA across different public or private infras-
tructures. Very often, because standardization in cloud computing is not very
established or in very early stages. A very good case study is Instagram. Insta-
gram had to analyze their existing services for almost one year to derive a viable
migration plan how to transfer their services from Amazon Web Services (AWS )
c© Springer International Publishing AG, part of Springer Nature 2018
D. Ferguson et al. (Eds.): CLOSER 2017, CCIS 864, pp. 19–45, 2018.
https://doi.org/10.1007/978-3-319-94959-8_2
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to Facebook datacenters1. This migration was accompanied by some observable
outages for service customers. This phenomenon is called a vendor lock-in and
CNAs seem to be extremely vulnerable for it [4]. Therefore, the author proposes
to think about the way how to deploy CNAs in order to get migration capabili-
ties across different cloud infrastructures by design. The central idea is to split
the migration problem into two independent engineering problems which are too
often solved together.

Table 1. Some popular open source elastic platforms.These kind of platforms
can used as a kind of cloud infrastructure unifying middleware.

Platform Contributors URL

Kubernetes Cloud Native Comput. Found http://kubernetes.io (initiated by Google)

Swarm Docker https://docker.io

Mesos Apache http://mesos.apache.org/

Nomad Hashicorp https://nomadproject.io/

1. The infrastructure aware deployment and operation of elastic container
platforms (like the platforms listed in Table 1). However, these platforms can
be deployed and operated in a way that they can be transferred across IaaS
infrastructures of different private and public cloud service providers at run-
time as this contribution will show.

2. The infrastructure agnostic deployment of applications on top of these
kind of migrateable container platforms. These elastic container platforms
can be seen as a kind of cloud infrastructure unifying middleware.

The main point of this contribution is to make use of elastic container plat-
forms that can be used to abstract and encapsulate IaaS infrastructure specifics.
That makes it possible to define CNAs that must not be aware about specifics
of underlying cloud infrastructures. CNAs are operated on a logical platform
and this logical platform is transferable across different public or private IaaS
infrastructures. Although this is possible technologically as this contribution will
show, almost no recent multi-cloud survey study (see Sect. 6) considered elastic
container platforms (see Table 1) as a viable and pragmatic option to support
this style of multi-cloud handling. It is very astonishing that this kind of already
existing and open source available technology is not considered more conse-
quently (see Sect. 6). That might have to do with the fact, that “the emergence
of containers, especially container supported microservices and service pods, has
raised a new revolution in [...] resource management.” [5]. However, container
technologies and elastic container platforms gained substantial momentum in
recent years and resulted in a lot of technological progress driven by companies

1 To the best of the author’s knowledge there are no research papers analyzing this
interesting case study. So, the reader is referred to an Wired magazine article:
https://www.wired.com/2014/06/facebook-instagram/.

http://kubernetes.io
https://docker.io
http://mesos.apache.org/
https://nomadproject.io/
https://www.wired.com/2014/06/facebook-instagram/


About the Complexity to Transfer Cloud Applications at Runtime 21

like Docker, Netflix, Google, Facebook, Twitter. A lot of these companies released
their solutions as Open Source software. Having this progress in mind, we have
to state that existing multi-cloud approaches are often dated before container
technologies have been widespread and seem very complex – much too complex
for a lot of use cases of cloud-native applications. This Chapter considers this
progress and presents a software prototype that provides the following:

– Section 4.2 presents a control loop that is able to scale elastic container plat-
forms in multi-cloud scenarios. But the control loop make use of the same
features providing scalability to support federation and transferability across
multiple IaaS cloud infrastructures as a side-effect.

– The intention of this control loop is to be used in the execution phase of
higher-level auto-scaling MAPE loops (monitoring, analysis, planning, exe-
cution) [5,6] and to make the necessity for complex and IaaS infrastructure-
specific multi-cloud workflows redundant (to some degree).

Section 2 will investigate how CNAs are being build and how to use these insights
to avoid vendor lock-in in a pragmatic and often overlooked way. Section 3 will
focus requirements which should be fulfilled by multi-cloud capable CNAs and
how existing open source elastic container platforms contribute pragmatically
to fulfill these requirements in a resilient and elastic way. Section 4 presents a
multi-cloud aware proof-of-concept. Several lessons learned from the evaluation,
performance analysis and software prototyping are presented in Sect. 5. The
presented approach is related to other work in Sect. 6.

Table 2. Cloud Application Maturity Model, adapted from OPEN DATA CEN-
TER ALLIANCE Best Practices (Architecting Cloud-Aware Applications) [9].

Level Maturity Criteria

3 Cloud
native

- A CNA can migrate across infrastructure providers at runtime
and without interruption of service (focus of this Chapter)

- A CNA can automatically scale out/in based on stimuli

2 Cloud
resilient

- The application state is isolated in a minimum of services

- The application is unaffected by dependent service failures

- The application is infrastructure agnostic

1 Cloud
friendly

- The application is composed of loosely coupled services

- Application services are discoverable by name (not by IP)

- Application components are designed using cloud patterns

- Application compute and storage are separated

0 Cloud
ready

- The application runs on virtualized infrastructure

- The application can be instantiated from an image or script
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2 Commonalities of Cloud-Native Applications

There exist noteworthy similarities of various view points with regard to the
vague term CNA [2]. A common approach is to define maturity levels in order to
categorize different kind of cloud applications. Table 2 shows a maturity model
proposed by the Open Data Center Alliance. Common motivations for CNA
architectures are software development speed (time to market), fault isolation,
fault tolerance, and automatic recovery to improve safety, and to enable hor-
izontal (instead of vertical) application scalability [7]. Fehling et al. [8] pro-
posed the IDEAL model for CNAs. A CNA should strive for an isolated state,
is distributed, provides elasticity in a horizontal scaling way, and should be
operated on an automated deployment machinery. Finally, its components
should be loosely coupled.

Balalaie et al. [10] stress that these properties are addressed by cloud-specific
architecture and infrastructure approaches like Microservices [11,12], API-
based collaboration, adaption of cloud-focused patterns [8], and self-
service elastic platforms that are used to deploy and operate these microser-
vices via self-contained deployment units (containers). These platforms provide
additional operational capabilities on top of IaaS infrastructures like automated
and on-demand scaling of application instances, application health management,
dynamic routing and load balancing as well as aggregation of logs and metrics [2].
Some open source examples of such kind of elastic platforms are listed in Table 1.

If the reader understands the commonality that CNAs are operated (more
and more often) on elastic – often container-based – platforms, it is an obvious
idea to delegate the multi-cloud handling down to these platforms. The question
is how to do this? Therefore, the multi-cloud aware handling of these elastic
platforms is focused throughout this Chapter.

3 Multi-cloud Specifics

A lot of requirements regarding transferability, awareness and security come along
with multi-cloud approaches [13–16]. These requirements will be addressed in this
Section. Furthermore it is investigated how already existing elastic container plat-
forms contribute to fulfill these requirements [4]. Impatient readers may jump
directly to Table 3 at the end of this Section which summarizes the main points.

3.1 Transferability Requirements

Cloud computing can be understood as a computing model making use of ubiq-
uitous network access to a shared and virtualized pool of resources. Sadly, this
conceptual model is quite vague and has been implemented by a large number
of service providers in different and not necessarily standardized or compatible
ways. So, portability or transferability has to be requested for multi-cloud
capable CNAs due to several reasons like costs, optimal resource utilization,
technology changes, or legal issues [14].
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Fig. 1. Deployment options and transferability opportunities: taken from [1].

Elastic container platforms (see Table 1) compose container hosts (nodes)
into a higher level logical concept – a cluster. Such clusters provide self-service
elastic platforms for cloud-native applications [7] in an often overlooked way.
Some of these platforms are really “bulletproofed”. Apache Mesos [17] has been
successfully operated for years by companies like Twitter or Netflix to consolidate
hundreds of thousands of compute nodes. Peinl and Holzschuher [18] provide an
excellent overview for interested readers. From the author’s point of view, there
are the following benefits using these elastic container platforms.

1. The integration of single nodes (container hosts) into one logical
cluster is mainly done to manage complexity. However, it is possible to
deploy such clusters across public and private cloud infrastructures.

2. If elastic container platforms are deployed across different cloud service
providers they can be still accessed as one logical cluster. And cross-provider
deployed elastic container platforms are obviously vendor lock-in avoiding.

3. Furthermore, elastic container platforms are designed for failure and
provide self-healing capabilities via auto-placement, auto-restart, auto-
replication and auto-scaling features. They will identify lost containers (due to
whatever reasons, e.g. process failure or node unavailability) and will restart
containers and place them on remaining nodes. These features are absolutely
necessary to operate large-scale distributed systems in a resilient way. How-
ever, exactly the same features can be used intentionally to realize trans-
ferability requirements.

A cluster can be resized simply by adding or removing nodes to the cluster.
Affected containers will be rescheduled to other available nodes. In a first step,
we simply attach additional nodes provisioned by GCE to the cluster. In a
second step, we shut down all nodes provided by AWS. The cluster will observe
node failures and trigger its self-healing features to reschedule lost containers
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accordingly. From an inner point of view of the platform, rescheduling operations
are tasked due to node failures. From an outside point of view it looks like (and
in fact is) a migration from one provider to another provider at run-time. At this
point this should make the general idea clear. All the details will be explained
in more details in Sect. 4 and further multi-cloud options like public cloud exits,
cloud migrations, public multi-clouds, hybrid clouds, overflow processing and
further can be handled using the same approach (see Fig. 1).

3.2 Awareness Requirements

Beside portability/transferability requirements, multi-cloud applications need to
have several additional awarenesses [16]:

1. Data Location Awareness. The persistent data and the processing units
of an application should be in the same data center (even on the same rack).

2. Geo-location Awareness. To achieve better performance requests should
be scheduled near the geographical location of their origin.

3. Pricing Awareness. Fiscally efficient provisioning needs information about
providers’ prices for scheduling operations.

4. Legislation/Policy Awareness. For some use cases legislative and political
considerations upon provisioning and scheduling must be taken into account.
For example, some services could be required to avoid placing data outside a
given country.

5. Local Resources Awareness: Very often in-house resources should have
higher priority than external ones (overflow processing into a public cloud).

Platforms like Kubernetes, Mesos, Docker Swarm are able to tag nodes of their
clusters with arbitrary key/value pairs. These tags can be used to encode geo-
locations, prices, policies and preferred local resources (and further aspects).
So, the above mentioned awareness requirements can be mapped to scheduling
constraints for container schedulers of elastic platforms.

For instance, Docker Swarm uses constraint filters2 for that kind of purpose.
Arbitrary tags like a location tag “Germany” can be assigned to a node. This
tagging can be defined in a cluster definition file and will be assigned to a node in
the install node step shown in Fig. 4. Docker Swarm would schedule a CouchDB
database container only on nodes which are tagged as “location=Germany” if a
constraint filter is applied like shown.

docker run -e constraint:location==Germany couchdb

2 See https://docs.docker.com/v1.11/swarm/scheduler/filter/ (last access 15th Feb.
2017).

https://docs.docker.com/v1.11/swarm/scheduler/filter/
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Table 3. Common multi-cloud requirements and contributing elastic platform con-
cepts.

Requirements Contributing platform concepts

Transferability - Integration of nodes into one logical elastic platform

- Elastic platforms are designed for failure

- Cross-provider deployable (as shown by Sect. 4)

Data location - Pod Concept (Kubernetes)

- Volume Orchestrators (e.g. Flocker for Docker)

Awarenesses - Tagging of nodes with geolocation, pricing,

- Pricing policy or on-premise informations

- Legislation/policy - Platform schedulers have selectors (Swarm),

- Local resources affinitities (Kubernetes), constraints (Mesos/Marathon)

to consider these taggings for scheduling

Security - Default encrypted data/control plane (e.g. Swarm)

- Pluggable and encryptable overlay networks

(e.g. Weave for Kubernetes)

Kubernetes provides similar tag-based concepts called node selectors and even
more expressive (anti-)affinities which are considered by the Kubernetes sched-
uler3. The Marathon framework for Mesos uses constraints4. All of these con-
cepts rely on the same idea and can be used to handle mentioned awareness
requirements.

3.3 Security Requirements

If such kind of elastic platforms are deployed across different providers it is
likely that data has to be submitted via the “open and unprotected” internet.
Therefore elastic container platforms provide encryptable overlay networks which
can be used for such kind of scenarios. For instance, Docker’s Swarm Mode (since
version 1.12) provides an encrypted data and control plane and Kubernetes can
be configured to use encryptable overlay network plugins like Weave. The often
feared network performance impacts can be contained [19,20].

4 Proof of Concept

This Section presents a software prototype that is implemented in Ruby and
provides a command line tool as core component. The tool can be triggered in

3 See https://kubernetes.io/docs/user-guide/node-selection/ (last access 15th Feb.
2017).

4 See https://mesosphere.github.io/marathon/docs/constraints.html (last access 15th
Feb. 2017).

https://kubernetes.io/docs/user-guide/node-selection/
https://mesosphere.github.io/marathon/docs/constraints.html
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the execution phase of a MAPE auto-scaling loop [5] and scales elastic container
platforms according to an execution pipeline (see Fig. 4). The control process
interprets cluster description format (the intended state of the container cluster,
see Appendix 7) and the current state of the cluster (attached nodes, existing
security groups, see Appendix 7). If the intended state differs from the current
state necessary adaption actions are deduced (attach/detachment of nodes, cre-
ation and termination of security groups). The execution pipeline assures that

– security groups are established in participating cloud service infrastructures
to enable network access control before a node joins the elastic container
platform,

– that all nodes are reachable by all other nodes of the cluster adjusting all
security groups if a node enters or leaves the cluster,

– that nodes are provided with all necessary software and configuration installed
to join the elastic container platform successfully,

– that the elastic container platform is operated in a way that it is providing
encrypted overlay networks for containers,

– that removed nodes are drained (graceful node shutdown) in order to initiate
rescheduling of workloads to remaining nodes of the cluster,

– that leaving nodes and “empty” security groups are terminated to free
resources of IaaS infrastructures.

4.1 Description of Elastic Platforms

The conceptual model shown in Fig. 3 is used to describe the deployment of
elastic platforms in multi-cloud scenarios and considers arbitrary IaaS cloud
service providers [4]. Public cloud service providers organize their IaaS services
using mainly two approaches: project- and region-based service delivery. GCE
and OpenStack infrastructures are examples of project-based approaches. To
request IaaS resources like virtual machines one has to create a project first. The
project has access to resources of all provider regions. AWS is an example for
such kind of region-based service delivery. Both approaches have their advantages
and disadvantages as the reader will see. However, the approaches are given
and multi-cloud solutions must prepared that both approaches occur in parallel.
The conceptual model integrates both approaches introducing a concept called
District (see Fig. 3).

A District can be understood as a user defined “datacenter” which is pro-
vided by a specific cloud service provider (following the project- or region-based
approach). So, provider regions or projects can be mapped to one or more
Districts and vice versa. This additional layer provides maximum flexibility in
defining multi-cloud deployments of elastic container platforms. A multi-cloud
deployed elastic container platform can be defined using two definition formats
(cluster.json and districts.json). The definition formats are explained in
the Appendices in more details.
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The control theory inspired execution control loop compares the intended state of an elastic con-
tainer platform with the current state and derives necessary actions. These actions are processed
by the execution pipeline explained in Figure 4. The elastic container platform is operated in a
set of synchronized security groups across different IaaS infrastructures.

An elastic container platform composed of several nodes is deployed to multiple providers and
secured by synchronized security groups (IP incoming access rules) allowing platform internal
traffic only. To allow external traffic this must be configured explicitly by the operator and is not
done by the execution pipeline or covered by this contribution.

Fig. 2. The execution loop and synchronized security group concept.

An (elastic platform) is defined as a list of Deployments in a cluster definition
file (see Appendix 7). A Deployment is defined per District and defines how
many nodes of a specific Flavor should perform a specific cluster role. A lot of
elastic container platforms have two main roles of nodes in a cluster. A “master”
role to perform scheduling, control and management tasks and a “worker” (or
slave) role to execute containers. The proposed prototype can work with arbi-
trary roles and rolenames. Role-specifics can be considered by Platform drivers
(see Fig. 3) in their install, join and leave cluster hooks (see Fig. 4). A typical
Deployment can be expressed using this JSON snippet.
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Fig. 3. The conceptual data model: The relation to descriptive cluster definition
formats is shown as well (please compare with Appendices 7, 7, 7, 7).

{ "district": "gce-europe",

"flavor": "small",

"role": "master",

"quantity": 3

"tags": {

"location": "Europe", "policy": "Safe-Harbour",

"scheduling-priority": "low", "further": "arbitrary tags"

}

}

A complete elastic container platform will be composed by a list of such
Deployments. Machine Flavors (e.g. small, medium and large machines) and
Districts are user defined and have to be mapped to concrete cloud service
provider specifics. This is done using the districts.json definition file (see
Appendix 7). Each District object executes deployments by adding or removing
machines to the cluster as well as tagging them to handle the awareness require-
ments mentioned in Sect. 3. The infrastructure-specific execution is delegated by
a District object to a Driver object. A Driver encapsules and processes all
necessary cloud service provider and elastic container platform specific requests.
The driver uses access Credentials for authentication (see Appendix 7) and
generates Resource objects (Nodes and SecurityGroups) representing resources
(current state of the cluster, encoded in a resources.json file, see Appendix 7)
provided by the cloud service provider (District). SecurityGroups are used to
allow internal platform communication across IaaS infrastructures. These basic
security means are provided by all IaaS infrastructures under different names
(firewalls, security groups, access rules, network rules, ...). This resources list
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is used by the control process to build the delta between the intended state
(encoded in cluster.json) and the current state (encoded in resources.json).

4.2 The Control Loop

The control loop shown in Fig. 2 is responsible to reach the intended state
(encoded in cluster.json, Appendix 7) and can handle common multi-cloud
workflows:

– A deployment of a cluster can be understood as running the execution pipeline
on an initially empty resources list.

– A shutdown can be expressed by setting all deployment quantities to 0.
– A migration from one District A to another District B can be expressed by

setting all Deployment quantities of A to 0 and adding the former quantities
of A to the quantities of B.

– and more.

The execution pipeline of the control loop derives a prioritized action plan to
reach the intended state (see Fig. 4). The reader should be aware that the pipeline
must keep the affected cluster in a valid and operational state at all times.
The currently implemented strategy considers practitioner experience to reduce
“stress” for the affected elastic container platform but other pipeline strategies
might work as well and are subject to further research.

Whenever a new node attachment is triggered by the control loop, the corre-
sponding Driver is called to launch a new Node request. The Node is added to the
list of requested resources (and extends therefore the current state of the cluster).
Then all existing SecurityGroups are updated to allow incoming network traffic
from the new Node. These steps are handled by an IaaS Infrastructure driver.
Next, the control is handed over to a Platform driver performing necessary soft-
ware install steps via SSH-based scripting. Finally, the node is joined to the cluster
using platform (and maybe role-)specific joining calls provided by the Platform
driver. If install or join operations were not successful, the machine is terminated
and removed from the resources list by the Infrastructure driver. In these cases
the current state could not be extended and a next round of the control loop would
do a retry. Due to its “cybernetic” design philosophy, the control-loop can handle
failures simply by repeating failed actions in a next loop.

4.3 IaaS Infrastructures and Platforms

The handling of infrastructure and platform specifics is done using an extendable
driver concept (see Fig. 3). The classes Platform and Infrastructure form two
extension points to provide support for IaaS infrastructures like AWS, GCE,
Azure, DigitalOcean, RackSpace, ..., and for elastic container platforms like
Docker Swarm, Kubernetes, Mesos/Marathon, Nomad, and so on. Infrastruc-
tures and platforms can be integrated by extending the Infrastructure class



30 N. Kratzke

Fig. 4. Execution pipeline.

(for IaaS infrastructures) or Platform class (for additional elastic container plat-
forms). The current state of implementation provides platform drivers for the
elastic container platforms Kubernetes and Docker’s SwarmMode and infras-
tructure drivers for the public IaaS infrastructures AWS, GCE, Azure and
the IaaS infrastructure OpenStack. Due to the mentioned extension points fur-
ther container Platforms and IaaS Infrastructures are easily extendable.

Table 4 shows how this has been applied for different IaaS drivers. Although
only common and very basic IaaS concepts (virtual machine, security groups and
IP based access rules) have been used, we can observe a substantial variation
in infrastructure specific detail concepts. Even the drivers for OpenStack and
Azure rely on different detail concepts. This is astonishing because both drivers
have been implemented using the same cloud library (fog.io). That is why CNAs
are prone for vendor lock-in. They bind to these detail infrastructure specifics.
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The proposed concept encapsulates all those details in low level infrastructure
drivers to make them completely transparent for the platform driver and CNAs
being operated on elastic container platforms.

Table 4. IaaS drivers: The following APIs were used to interact with different cloud
infrastructures. In case of GCE the terminal based CLI gcloud program is used to
demonstrate that the presented approach would even work for infrastructures where no
Ruby API is available. Drivers are responsible to launch and terminate nodes (Ubuntu
16.04 LTS) and to synchronize security groups (see Fig. 2).

Driver Provider API Used detail provider concepts

AWS AWS Ruby SDK - Keyfile (SSH public/private key)

- Virtual network + subnet (AWS VPC)

- Internet gateway + route tables

- Security group

- IP based ingress permissions

- Virtual machines (AWS instances)

OpenStack fog.io library - Keyfile (SSH public/private key)

fog-openstack - Security group

- Security group rules

- External network

- Floating IPs

- Fog server concept (virtual machine)

GCE gcloud CLI - Keyfile (SSH public/private key)

(fog.io would work as well) - Virtual network + subnet (GCE VPC)

- GCE instance concept (virtual
machine)

Azure fog.io library with Azure
plugin

- Keyfile (SSH public/private key)

- Virtual network + subnet (Azure)

(fog-azure-rm) - Network interface (Azure)

- Public IPs (Azure)

- Storage account (Azure)

- Security group + rules (Azure)

- Resource group (Azure)

- Fog server concept (virtual machine)

See the following urls:
https://github.com/aws/aws-sdk-ruby, https://github.com/fog/fog-openstack,
https://github.com/fog/fog-azure-rm, https://cloud.google.com/sdk/gcloud/.

https://github.com/aws/aws-sdk-ruby
https://github.com/fog/fog-openstack
https://github.com/fog/fog-azure-rm
https://cloud.google.com/sdk/gcloud/
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5 Evaluation

The prototype was evaluated operating and transferring two elastic platforms
(Swarm Mode of Docker 17.06 and Kubernetes 1.7 ) across four public and
private cloud infrastructures (see Table 5). The platforms operated a reference
“sock-shop” application5 being one of the most complete reference applications
for microservices architecture research [21].

Table 5. Used machine types and regions: The machine types have been selected
according to the proposed method by Kratzke and Quint [22]. The OpenStack m1.large
and m1.medium are research institute specific machine types and that have been inten-
tionally defined to show maximum similarities with the other mentioned machine types.
The OpenStack platform is operated in the author’s research institution datacenter and
does not necessarily provide representative data.

Provider Region Master node type Worker node type

AWS eu-west-1 m4.xlarge (4 vCPU) m4.large (2 vCPU)

GCE europe-west1 n1-standard-4 (4 vCPU) n1-standard-2 (2 vCPU)

Azure europewest Standard A3 (4 vCPU) Standard A2 (2 vCPU)

OpenStack own datacenter m1.large (4 vCPU) m1.medium (2 vCPU)

Fig. 5. Launching and terminating times (Kubernetes): The Kubernetes cluster
was composed of one master and five worker nodes. Data of single cloud experiments
E1 and E2 (see Table 6) is presented.

5.1 Experiments

The implementation was tested using a 6 node cluster formed of one master node
and 5 worker nodes executing the above mentioned reference application. The
experiments shown in Table 6 demonstrate elastic container platform deploy-
ments, terminations, and platform transfers across different cloud service infras-
tructures. Additionally, the experiments were used to measure the runtimes of
these kind of infrastructure operations.
5 https://github.com/microservices-demo/microservices-demo (last access 3rd July

2017).

https://github.com/microservices-demo/microservices-demo
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Table 6. Experiments: Single cloud experiments E1 and E2 were mainly used to
measure infrastructure specific timings (see Fig. 5) and have been repeated 10 times.

To compare similar machine types it was decided to follow the approach
presented in [22] to make use of machine types from different providers that
show high similarities regarding processing, networking, I/O and memory per-
formance. Table 5 shows the selection of machine types.

It turned out that most of runtimes are due to low level IaaS infrastructure
operations and not due to elastic container platform operations. Figure 6 shows
platform differences of Kubernetes and Swarm measured using the cloud ser-
vice provider AWS. We see that the container platform Swarm can be installed
approximately 10 s faster than Kubernetes. And the joining of a Kubernetes node
is approximately 5 s slower than joining a Swarm node. Only the cluster initial-
ization of Kubernetes is remarkable slower. However, that is an operation which
is done only one time while bootstrapping the cluster. The reader should com-
pare these platform runtimes with infrastructure specific runtimes presented in
Fig. 5. Even on the fastest provider it took more than three minutes to launch a
cluster. So, 15 s of installation and joining runtime differences between different
elastic container platforms are negligible. So, only the data for Kubernetes is
presented throughout this Chapter. The data for another elastic container plat-
form like Swarm would be simply to similar to present. Instead of that, Fig. 7 can
be used to identify much more severe and there more interesting time intensive
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Fig. 6. Differences in platform specific timings: differences in creation are due to
slightly longer installation times of Kubernetes; differences in joining are due to a more
complex join process of Kubernetes (especially for cluster initialization, initial join of
approx. 50 s)

infrastructure operations. Several interesting findings especially regarding soft-
ware defined network aspects in multi-cloud scenarios and reactiveness of public
cloud service infrastructures might be of interest for the reader.

Figure 5 shows the results of the experiments E1 and E2. The reader might
be surprised, that cloud infrastructure operations have a substantial variation
in runtimes although similar resources were used for the presented experiments.
Figure 5 shows that a cluster launch on AWS takes only 3 min but can take up to
15 min on Azure (median values). The termination is even more worse. A cluster
can be terminated in approximately a minute on AWS or OpenStack, but it can
take up 18 min to complete on Azure.

The question is why? Figure 7 presents runtimes of infrastructure operations
to create/delete and adjust security groups and to create/terminate virtual clus-
ter nodes (virtual machines) that have been measured while performing the
mentioned experiments. Transfers are complex sequences of these IaaS opera-
tions and substantial differences for different IaaS infrastructures are observable
for these operations. AWS and OpenStack infrastructures are much faster than
GCE and Azure in creating security groups and nodes. The same is true for
node terminations.

And because different providers (and their different runtime behaviors) can be
combined in any combination this can result in astonishing runtime differences for
node transfers. Figure 8 shows all E3 experiments and plots measured runtime dif-
ferences of transfers between the analyzed infrastructures of AWS, GCE, Azure
and OpenStack. In the best case (transfer from OpenStack to AWS ) the trans-
fer could be completed in 3 min, in the worst case (transfer from Azure to GCE )
the transfer took more than 18 min (median values). Furthermore, a transfer from
provider A to B did in no case take the same time as from B to A. A more in-depth
analysis turned out that this is mainly due to different runtimes of create/termi-
nate security groups and whether the APIs are triggering node terminations in a
blocking or non-blocking way. The APIs used for the providers GCE and Azure
are blocking operations (that means the call returns at the point in time when the
infrastructure completed the termination operation). The behavior for OpenStack
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and AWS was non-blocking (that means, the calls returned immediately and just
triggered the termination but did not wait until completion). The non-blocking
behavior obviously leads to a more reactive behavior in case of node terminations
(a complete node termination takes a minute and more). Figure 9 visualizes this by
plotting how many nodes during a transfer are up at any point in time. A transfer
from a “faster” provider (AWS ) to a “slower” provider (Azure) can be done sub-
stantially faster than vice versa. It turned out, that the runtime behavior
of the slowest IaaS operation is dominating the overall runtime behav-
ior ofmulti-cloud operations. Taking all together, IaaS termination operations
should be launched in a non-blocking manner (whenever possible) to improve the
overall multi-cloud performance.

5.2 Critical Discussion

The proposed control loop is designed to be generic enough to adapt to each
provider specific and non-standardized detail concepts which are likely to occur
in a IaaS context. For instance, the control loop was even able to handle com-
pletely different timing behaviors. Intentionally, only very basic IaaS concepts

Fig. 7. Differences in infrastructure specific processing times: data is taken
from experiments E1, E2 and E3.x and presented for the Kubernetes elastic container
platform (AWS = Amazon Web Service EC2, OS = OpenStack, GCE = Google Com-
pute Engine, Azure = Microsoft Azure).
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Fig. 8. Transfer times between different providers: data is taken from experi-
ments E3.x and presented for the Kubernetes elastic container platform. The reader
can deduce the effect of combining slow, medium and fast IaaS infrastructure providers
on transfer durations. The slowest provider is dominating the overall runtime of an scal-
ing operation. (AWS = Amazon Web Service EC2, OS = OpenStack, GCE = Google
Compute Engine, Azure = Microsoft Azure).

are used in order to assure that the control loop can work with every pub-
lic or private IaaS infrastructure providing concepts like virtual machines and
IP-based network access control concepts. An IaaS infrastructure not provid-
ing these basic concepts is hardly imaginable and to the best of the author’s
knowledge not existing.

A migration from one infrastructure A to another infrastructure B could be
expressed by setting all quantities of A to 0 and all quantities of B to the former
quantities of A. The presented prototype keeps the cluster in an operational state
under all circumstances. The current implementation of the execution pipeline
executes simply a worst case scaling. The pipeline processes node creation steps
before node termination steps. In consequence a migration increases the cluster
to its double size in a first step. In a second step, the cluster will be shrinked down
to its intended size in its intended infrastructure. This not very sophisticated
and leaves obviously room for improvement. Figure 9 visualizes this behavior
over time for different infrastructure transfers.

The execution pipeline is designed to be just the execution step of a higher
order MAPE loop. That might lead to situations that an intended state is not
reachable. In these cases, the execution loop may simply have no effect. For
better understandability the reader might want to imagine a cluster under high
load. If the intended state would be set to half of the nodes, the execution
loop would not be able to reach this state. Why? Before a node is terminated
the execution pipeline informs the scheduler of the elastic container platform
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to mark this node as unschedulable with the intent that the container platform
will reschedule all load of this node to other nodes. A lot of elastic container
platforms call this “draining a node”. For these kind of purposes elastic con-
tainer platforms have operations to mark nodes as unschedulable (Kubernetes
has the cordon command, Docker has a drain concept and so on). Only in the
case that the container platform could successfully drain the node, the node will
be deregistered and deleted. However, in high load scenarios the scheduler of the
container platform will return an error due to the fact that draining is not pos-
sible. In consequence the execution pipeline will not terminate the node and will
trigger to drain the next node on its list (which will not work as well). So, this
cycle of the execution pipeline will be finished without substantially changing
the current state. The analyzing step of the higher order MAPE loop will still
identify a delta between the intended and the current state and will retrigger
the execution pipeline. That is not perfect but at last the cluster is kept in an
operational state.

5.3 Lessons Learned

By building, testing and evaluation the presented prototype several lessons
learned have been derived from performed software engineering activities. These
following lessons learned might be of interest for researchers or practitioners.

Fig. 9. Amount of nodes during a transfer: These are randomly choosen transfers
taken from experiments E3.1, E3.2 and E3.3 to visualize the pipeline behaviour of a
transfer over time. For a longer or shorter amount of time (depending on the reactive-
ness of the provider) the cluster is doubled in its size. After that it is shrinked down to
its intended size in the intended provider district. The transfer is completed when the
lines end.
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1. Secure Networking Should Be Considered from the Beginning. If
different IaaS cloud service providers shall be bridged, it is necessary to work
with public IPs from the very beginning! According to made experiences
this is not the default operation for most elastic platforms and may result
in tricky details to consider6. A second essential aspect is, that the control
and data plane encryption must be supported by the used overlay network
of the elastic platform. If several overlay networks can be used by the elastic
platform, encryption should be rated as a “showstopper” feature for overlay
network selection.

2. Do Not Rely on IaaS Infrastructure Elasticity Features like auto-
scaling, load-balancing and so on. Although these features are – from a high
level point of view – very basic concepts, these features are in a lot of cases
not 1:1 portable across providers. The elastic platform (and its supervising
MAPE loop) has to cover this.

3. Separate IaaS Support and Elastic Platform Support Concerns.
Both concerns can be solved independently from each other using two inde-
pendent extension points. The proposed prototype introduced drivers for plat-
forms like Kubernetes and Swarm and drivers for Infrastructures like AWS,
GCE, OpenStack, Azure.

4. To Describe an Intended State and Let a Control Process Take
Care to Reach this Intended State is Less Complex. To think in IaaS
infrastructure specific workflows how to deploy, scale, migrate and terminate
an elastic platform has the tendency to increase complexity. The presented
prototype showed that this can be solved by a single control loop.

5. Consider what Causes Stress to an Elastic Platform. Adding nodes
to a platform is less stressful than to remove nodes. To add a node has no
immediate rescheduling involved, to deregister and remove a node has imme-
diate rescheduling efforts in consequence. Knowing that, it seems a good and
defensive strategy to add nodes in parallel but to shutdown nodes sequentially.
However, this increases the runtime of the execution phase of a MAPE loop.
To investigate time optimal execution strategies might be a fruitful research
direction to make MAPE loops more reactive.

6. Consider Varying Runtimes Of similar IaaS Infrastructure Oper-
ations Across Different Providers. IaaS operations take often (several)
minutes. Container platform operations just take seconds or even less. MAPE
loops should consider this providing two adaption levels for auto-scaling. One
slow reacting infrastructure-aware auto-scaling loop for the elastic container
platform and one fast reacting infrastructure-agnostic auto-scaling loop for
the applications operating on top of elastic container platforms. Furthermore,
the infrastructure aware auto-scaling loop must be aware that different IaaS
service providers might show substantial differing reaction times. The reader
might want to recapitulate the really differing timing behaviours of the AWS
and Azure IaaS infrastructures.

6 To get Kubernetes running in a multi-cloud scenario it is necessary to assign an addi-
tional virtual network interface with the public IP address of the node. Kubernetes
provides no config options for that mode of operation! However, even these kind of
obstacles can be transparently handled by drivers.
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7. Respect Resilience Limitations of Elastic Platforms. Never shutdown
nodes before attaching compensating nodes (in case of transferability scaling
actions) is an obvious solution! But it is likely not ressource efficient - especially
if we consider different timing behaviours of public cloud service providers (see
Figs. 5, 7, 8 and 9). To investigate resilient, resource and timing efficient execu-
tion strategies could be a fruitful research direction to optimize MAPE loops
for transferability scenarios.

8. Platform Roles Increase Avaidable Deployment Complexity. Plat-
form roles increase the inner complexity of platform drivers. Elastic container
platforms should be more P2P-like and composed of homogeneous and equal
nodes. This could be a fruitful research direction either and there exist first
interesting ideas investigating this direction [23].

9. Non-blocking APIs are Preferable. This is especially true for terminating
operations. In consequence elastic container platforms will show much more
reactive behavior (and faster adaption cycles) if operated on IaaS infrastruc-
tures providing non-blocking terminating operations (see Figs. 8 and 9).

6 Related Work

Several promising approaches dealing with multi-cloud scenarios. There are some
good survey papers on this [13–16]. But none of these surveys identified elastic
container platforms as a viable option. Nevertheless, the need to “adopt open-
source platforms” and “mechanisms for real-time migration” at run-time level is
identified [14]. But to the best of author’s knowledge there do not exist concrete
and existing platforms or solutions based on container platforms. All surveys
identified approaches fitting mainly in the following fields:

– Volunteer federations for groups of “cloud providers collaborating volun-
tarily with each other to exchange resources” [16].

– Independent federations (or multi-clouds) “when multiple clouds are used
in aggregation by an application or its broker. This approach is essentially
independent of the cloud provider” and focus the client-side of cloud comput-
ing [15].

This contribution intentionally did not proposed a broker-based solution [13]
because cloud-brokers have the tendency just to shift the vendor lock-in problem
to a broker. Instead of that mainly independent federations (multi-clouds) were
focused by this Chapter. But if course there are similarities with other existing
approaches.

Approaches like OPTIMIS [24], ConTrail [25] or multi-cloud PaaS plat-
forms [26] enable dynamic provisioning of cloud services targeting multi-cloud
architectures. These solutions have to provide a lot of plugins to support possi-
ble implementation languages. For instance, [26] mention at least 19 different plu-
gins (just for a research prototype). Such solutions seem to come along with an
increase of inner complexity. Container-based approaches seem to be a better fit
handling this language complexity. mOSAIC [27] or Cloud4SOA [28] assume
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that an application can be divided into components according to a service oriented
application architecture (SOA) and rely on the constraint that applications are
bound to a specific run-time environment. This is true for the proposed approach
as well. However, this paper proposes a solution where the run-time environment
(elastic container platform) is up to a user decision as well.

The proposed deployment description format is based on JSON and shows
similarities with other kind of deployment description languages like TOSCA
[29], CAMEL [30] or CloudML [31]. In fact, some EC-funded projects like
PaaSage7 [32] combine such deployment specification languages with run-
time environments. Nonetheless, the proposed prototype is focused on a more
container-centric approach. Finally, several libraries have been developed
in recent years like JClouds, LibCloud, DeltaCloud, SimpleCloud, fog,
Nuvem, CPIM [33] to name a few. All these libraries unify differences in
the management APIs of clouds and provide control over the provisioning of
resources across geographical locations. And experiences with the fog library
for the Azure and OpenStack driver show, that infrastructure specifics are not
completely capsuled (even the (non-)blocking behavior can differ for the same
operation in different infrastructures8).

Taking all together, the proposed approach leverages more up-to-date con-
tainer technologies with the intend to be more “pragmatic”, “lightweight” and
complexity hiding. On the downside, it might be only applicable for container-
based applications being on the cloud-native level of the maturity model shown
in Table 2. But to use container platforms and corresponding microservice archi-
tectures gets more and more common in CNA engineering [2].

7 Conclusions

Elastic container platforms provide inherent – but often overlooked – multi-
cloud support and are a viable and pragmatic option to support multi-cloud
handling. But to operate elastic container platforms across different public and
private IaaS cloud infrastructures can be a complex and challenging engineering
task. Most manuals do not recommend to operate these kind of platforms in the
proposed way due to operational complexity. In fact, to define an intended multi-
cloud state of an elastic container platform and let a control process take care
to reach this state is not less challenging. But it hides and manages complexity
much better from the author’s point of view. This Chapter showed that this
complexity could be efficiently embedded in an execution pipeline of a control
loop. This kind of resulting control process was able to migrate and operate elas-
tic container platforms at runtime across different cloud-service providers. It
was possible to transfer two of the currently most popular open-source container
platforms Swarm and Kubernetes between AWS, GCE, Azure and OpenStack.
These infrastructures cover three of the big five public cloud service providers

7 http://www.paasage.eu/ (visited 15th Feb. 2017).
8 In this case node termination (Azure blocking, OpenStack non-blocking).

http://www.paasage.eu/
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that are responsible for almost 70% of the worldwide IaaS market share9. In
other words, the presented solution can already be used for 70% of the most fre-
quently used IaaS infrastructures. Due to its driver concept it can be extended
with further IaaS infrastructures and further elastic container platforms.

However, there is work to do. It was astonishing to see, that the comple-
tion times of these transfers vary from 3 min to almost 20 min depending on
the involved infrastructures (see Fig. 8). This should be considered for further
thoughts how to implement a more time and resource efficient execution pipeline.
Fruitful lessons learned about runtime behaviors of IaaS operations and promis-
ing research directions like more P2P-based and control-loop based designs of
elastic container platforms could be derived for that purpose. The presented data
can be used as reference for further research and development for these kind of
ideas. However, even the worst transfer times are likely to be much faster than
the engineering effort to port infrastructure-specific CNAs in a different cloud
which is usually a very time consuming and complex one time exercise not being
done in hours or minutes.
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Appendix

Cluster Definition File (Intended state)

This exemplary cluster definition file defines a Swarm cluster with the
intended state to be deployed in two districts provided by two providers GCE
and AWS. It defines three type of user defined node types (flavors): small, med,
and large. 3 master and 3 worker nodes should be deployed on small virtual
machine types in district gce-europe. 10 worker nodes should be deployed on
small virtual machine types in district aws-europe. The flavors small, med, large
are defined in Appendix 7.

9 According to the synergy 2016 Cloud Research Report http://bit.ly/2f2FsGK (vis-
ited 12th Jul. 2017).

http://bit.ly/2f2FsGK
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{
"type": "cluster",
"platform ": "Swarm",
// [...] , Simplified for readability
"flavors ": ["small", "med", "large"],
"deployments ": [

{ "district ": "gce -europe",
"flavor": "med",
"role": "master",
"quantity ": 3

},
{ "district ": "aws -europe",

"flavor": "small",
"role": "worker",
"quantity ": 10

}
]

}

Listing 1.1. Cluster Definition (cluster.json).

Resources File (Current state)

This exemplary resources file describes provided resources for the operated
cluster. This example describes a simple one node cluster (1 master) being oper-
ated in one district (OpenStack). A security group was requested. Some data is
omitted for better readability.
[

{ "id": "36c76118 -d8e4 -4d2c -b14e -fd67387d35f5",
"district_id ": "openstack -nova",
"os_external_network_id": "80 de501b -e836 -47ed-a413",
"os_secgroup_name ": "secgroup -a66817bd85e96c",
"os_secgroup_id ": "36 c76118 -d8e4 -4d2c -b14e",
"os_key_name ": "sshkey -for -secgroup -a66817bd85e96c",
"type": "secgroup"

},
{ "id": "13 c30642 -b337 -4963 -94aa -60 cef8db9bbf",

"role": "master",
"flavor": "medium",
"public_ip ": "212.201.22.189" ,
"user": "ubuntu",
"sshkey": "sshkey.pem",
"district_id ": "openstack -nova",
"os_zone ": "nova",
"type": "node"

}
]

Listing 1.2. Resources (resources.json).

District Definition File (JSON)

The following and exemplary district definition defines provider specific set-
tings and mappings. The user defined district gce-europe should be realized using
the provider specific GCE zones europe-west1-b and europe-west1-c. Necessary
and provider specific access settings like project identifiers, regions, and cre-
dentials are provided as well. User defined flavors (see cluster definition format
above) are mapped to concrete provider specific machine types.
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[
{ "type": "district",

"id": "gce -europe",
"provider ": "gce",
"credential_id ": "gce_default",
"gce_project_id ": "your -proj -id",
"gce_region ": "europe -west1",
"gce_zones ": ["europe -west1 -b", "europe -west1 -c"],
"flavors ": [

{ "flavor": "small", "machine_type ": "n1-standard -1" },
{ "flavor": "med", "machine_type ": "n1-standard -2" },
{ "flavor": "large", "machine_type ": "n1-standard -4" }

]
}

]

Listing 1.3. District Definitions (districts.json).

Credentials File (JSON)

The following and exemplary credential file provides access credentials for
customer specific GCE and AWS accounts as identified by the district definition
file (gce default and aws default).

[ { "type": "credential",
"id": "gce_default",
"provider ": "gce",
"gce_key_file ": "path -to-key.json"

},
{ "type": "credential",

"id": "aws_default",
"provider ": "aws",
"aws_access_key_id": "AKID",
"aws_secret_access_key": "SECRET"

}
]

Listing 1.4. Credentials (credentials.json).
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Song, H. (eds.) MRT 2015: 10th International Workshop on Models@run.time,
Co-located with MODELS 2015: 18th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, vol. 1474 of CEUR Workshop
Proceedings. CEUR (2015)

32. Baur, D., Domaschka, J.: Experiences from building a cross-cloud orchestration
tool. In: Proceedings of the 3rd Workshop on CrossCloud Infrastructures & Plat-
forms, CrossCloud 2016, New York, NY, USA, pp. 4:1–4:6. ACM (2016)

33. Giove, F., Longoni, D., Yancheshmeh, M.S., Ardagna, D., Di Nitto, E.: An app-
roach for the development of portable applications on PaaS Clouds. In: Proceedings
of the 3rd International Conference on Cloud Computing and Services Science, pp.
591–601. SciTePress - Science and and Technology Publications (2013)

https://doi.org/10.1007/978-3-319-67220-5_24
https://doi.org/10.1007/978-3-319-67220-5_24
https://doi.org/10.1007/978-3-642-29737-3_19
https://doi.org/10.1007/978-3-642-29737-3_19
https://doi.org/10.1007/978-3-642-40651-5_6
https://doi.org/10.1007/978-3-642-40651-5_6
https://doi.org/10.1007/978-3-662-44879-3_13
https://doi.org/10.1007/978-3-662-44879-3_13


A Decentralized on Demand Cloud CPU
Design with Instruction Level Virtualization

Erhan Gokcay(&)

Software Engineering Department, Atilim University, Incek, Ankara, Turkey
erhan.gokcay@atilim.edu.tr

Abstract. Cloud technology provides many advantages and provides many
services over traditional computational models. Although the provided virtual
services increase resource sharing and cost effectiveness of the system, each
node in the system is still centralized. Different CPU and OS versions bring
interoperability problems in data exchange between nodes. In most cases less
powerful units are left outside the service area. These units can only be con-
sidered as consumers of the cloud system. A new service called Cloud CPU is
described elsewhere where the cloud provides the computational background for
the components of a virtual CPU and the computation is distributed over
internet. The design is using all units connected to the internet and it achieves a
massively parallel operation. In this paper, the design of Cloud CPU will be
extended and description of services needed with the new architecture will be
discussed. One of the new services needed is a multi-language compiler where
the target language is not fixed as well as the source language. The job of the
compiler is not using the cloud for execution but to distribute the computation
depending on the provided instruction sets published by each node. The com-
putation makes sense only when all units work together and there is a need to
synchronize and connect all nodes included in a particular computation. The
need for synchronization will be gone when the computation is finished.
Therefore an on demand Cloud-OS service is needed for bookkeeping and
synchronization. The need for the Cloud-OS is temporary and the on demand
initiated Cloud-OS will be terminated when the computation is ended.
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1 Introduction

Advances in cloud systems are in-creasing rapidly as users are discovering cost and
performance benefits of cloud systems. Some features can be listed as efficient resource
sharing, security, flexibility and on-demand service. Available hardware and software
resources can be shared among different users and/or systems with a higher granularity
than before. This is important because most of the time the computing resources of a
system is never utilized fully in standalone mode. There are different deployment
models [1–4] like private, public, community and hybrid models. Almost anything is
provided as a service.
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The term cloud has different definitions. We could say that clouds are a large pool
of virtual and easy to reach resources (hardware and/or software). These resources can
be dynamically adjusted and assigned depending on the demand. Cloud computing is
based on several old concepts like Service-oriented architecture (SOA), distributed and
grid computing (utility computing) [5] and virtualization de-scribed in [1, 6, 7].
Security is always an issue in computing systems. With a distributed approach pro-
tection, security and privacy issues become more important and this issue is analyzed in
[8–10].

There is a great deal of work to create a standard for the services provided such as
Distributed Management Task Force (DMTF) which is an interoperable cloud infras-
tructure management standard focuses on interoperability [11]. Storage Networking
Industry Association (SNIA) SNIA standards are used to manage the data, storage,
information and also address the issues such as interoperability, usability, and com-
plexity [12, 13]. OGF standards Open Virtual Machine Format (OVF) is a platform
independent format which provides the features like efficiency, flexibility, security and
mobility of virtual machines [13] in order to achieve interoperability.

One of the studies in this area is done in [14] where the focus is on the integration
of Cloud and IoT. Although the integration is discussed in detail, still IoT devices are
passive elements, not contributing to the computation power of Cloud.

The computational units are getting decentralized but the limit of this process needs
to be answered. The growing IoT concept needs to be merged to Cloud systems and the
interoperability problems need to be solved as well.

The main research question is that how small the computational units can get in a
Cloud environment, how these small units can be configured; how IoT devices can
contribute to the Cloud computation and how smaller devices will help to the inter-
operability problem.

Section 2 describes the basic challenges of cloud systems and the motivation of the
paper. Section 3 describes the new decentralized extended service architecture. In
Sect. 4, the basic building blocks of Cloud CPU architecture is explained. Section 5
describes Cloud CPU operations. Section 6 introduces the new level of virtualization.
Finally, Sect. 7 discusses the Cloud CPU system.

2 Cloud Challenges

The cloud computing faces many challenges that are related to the data interoperability
and portability, governance and management, metering and monitoring, security which
are addressed by MOSAIC (Open source API and Platform for Multiple Clouds) [15].
There are interoperability problems between cloud systems and services because of
different services depend on different operating systems and CPU types. Each vendor is
providing a different service with a different set of tools. Most cloud computing sys-
tems in operation today are proprietary, rely upon infrastructure that is invisible to the
research community, or are not explicitly designed to be instrumented and modified by
systems researchers [16].

Although there are many open-source cloud systems for researchers as the devel-
opment of cloud computing, they still are using a different Application Programming
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Interface (API) from each other. For IaaS, there are some popular open-source cloud
systems, such as Eucalyptus [16], Open Nebula [17], Nimbus [18], etc.

A different weakness of cloud computing is the exclusion of not-so-powerful units
from the system as a source of the services provided. Smart devices and computational
units with fewer resources are basically consumers in a cloud system as described in
[19]. Those devices, although very high in terms of connected units, are using cloud
systems but not providing any resource back.

3 Decentralized on Demand Service

The computational services provided by computers started with a centralized approach
called mainframes. Although all computational and storage power is provided in a
single environment, the centralized approach also created problems. The single point of
failure problem and dependency on a single system and organization are the main
disadvantages of mainframe systems. The workstation concept is introduced where
high computational power can be obtained on desktop machines and the need for
mainframes reduced drastically. Grid systems are introduced to increase parallel cal-
culations. The computational power of systems are increased to such a level where the
user cannot utilize current capacity anymore and the extra resources are made available
to outside world by virtual services at different levels, which is called basically a Cloud
System.

The user in a Cloud framework still depends on the service provider, since the
service cannot be modified or changed by the user. The capability of a virtual service in
a cloud system is decided by the service provider. In order to remove the dependency
problem to the service provider, a new framework is needed in such a way that the
consumer or user can configure the services needed, including functionality and
computing power, from the cloud system. Instead of providing a high level service and
computation, cloud systems will provide low level services or computations without
any final computational goal and the user will combine these services to configure its
own customized and dedicated service. The granularity of the service provided will be
minimized and decentralized. A similar reduction is also introduced to a regular CPU
design and it had faced a reduction in terms of complexity of the instruction set. The
early designs include complex instructions (CISC), whereas later designs include very
simple instructions (RISC) to execute a program with higher efficiency. The building
blocks of RISC architecture can be designed with less complication and with higher
efficiency.

The required computation is built on top of very basic cloud services which are
very easy to implement by any unit attached to the cloud. Because of basic service
requirement from each node, any smart device can contribute to the Cloud CPU.
A simple device can provide a simple arithmetic operation whereas a complicated
device or unit can provide a more sophisticated calculation.

The design is inspired from the design of a CPU, hence called Cloud CPU. The
description and basic execution flow diagrams are given in [20]. In this paper the
services required for Cloud CPU will be discussed in detail and extended.
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4 Cloud CPU Architecture

The configurable service is called Cloud CPU and once it is created, it can be saved for
future use. The instruction set represents minimized collection of sub-services or
computations received from cloud units. Program counter represents a service that
controls the flow of the execution. Register sets represent storage for the service.
Process represents all the information that represents the created service or Cloud CPU.
The CCPU basic architecture is given in Fig. 1.

The instruction set of a CCPU is provided also as a service by each node where the
total set will be called Cloud Instruction Set (CIS) for that particular CCPU. The
number of instructions or services provided is limited by the capacity and number of
the nodes connected to the cloud system.

For a given CCPU created in the cloud, nodes or resources connected to the cloud
will register themselves to provide the required CCPU services. The node assignments
may change with time due to failures or high load constraints where multiple resource
assignments for each service will provide fault tolerance and protect the CCPU.

Since there are multiple CCPU’s implemented, each node in the cloud may reg-
isters itself to more than one service, fully or partially. For example one node may have
resources to execute two instructions from one CCPU and four instructions from
another CCPU. Another node may register itself to store ten registers from one CCPU
and four registers from another CCPU.

Fig. 1. Cloud CPU basic architecture and elements.
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4.1 Cloud CPU Execution Flow

The main Cloud CPU execution flow is given in Fig. 2. The final collection of nodes
and the sub-services provided as a whole creates the Cloud CPU for this particular
application or service and it can be saved for future use. For another computation or
service requirement, the same procedure will be repeated to create another Cloud CPU
(CCPU).

4.2 Cloud CPU ID (CCPUID)

The virtual CCPU created needs an id, so that it can be identified and referred later.
During the creation of CCPU, several nodes in the cloud should register themselves.
The instruction and register set of the CCPU, the set of nodes that registered themselves
to implement Cloud Instruction Set (CIS) and Cloud Register Set (CRS) are also part of
the information attached to CCPU ID.

4.3 Cloud Instruction Set (CIS)

The instruction set provided by the cloud for a particular CCPU is called Cloud-
Instruction Set (CIS). Each node in the system registers itself to execute some or all of
the CIS’s of a CCPU. Since multiple nodes can provide this service, there is a great
deal of fault tolerance and parallel execution in the system. Each node can serve to
multiple CCPU’s with a subset of CIS depending its capacity and load. For example in

Fig. 2. Execution flow of Cloud CPU.
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Fig. 3, a sample configuration to implement instructions is given. Each node publishes
possible instructions they can provide if needed. CELL-PHONE and LAPTOP nodes
are registered themselves to CCPU1 and these nodes provide the corresponding
instructions to CCPU1 configuration. The instruction of CELL-PHONE node is a
simple instruction whereas the instructions provided by the LAPTOP node are high-
level complicated ones. Each node can serve to multiple CCPU configurations like
CCPU2 is using CELL-PHONE, LAPTOP and iPAD nodes as well. CELL-PHONE
node is providing “inc” instruction to both CCPU configurations. Both CELL-PHONE
and iPAD nodes can execute “inc” instruction which creates a fault tolerant system
with multiple sources for the same instruction.

4.4 Cloud Register Set (CRS)

Each instruction may need temporary storage (i.e. registers). The register service
provided by the cloud is called Cloud Register Set (CRS). CRS will be associated
differently to each CCPU. High level register types can be created like queue types,
arrays or any other high level storage types, since the register design seen by the CCPU
configurations are virtual. A sample assignment of nodes to implement storage service
is given in Fig. 4.

Fig. 3. Different instruction sets for different CCPU configure.
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4.5 Cloud Process Descriptor (CPD)

There is a need to identify each process that executes in the cloud. Also CPC should
keep track of the process in the cloud. It can locate the process using CPD. This
information again is saved in the cloud by nodes who registered themselves to provide
the needed service.

4.6 Cloud Program Counter (CPC)

Each computation or process needs a cloud program counter (CPC), so that the system
can calculate the next instruction (sub-service) to execute. CPC is created by the node
that starts the execution initially. Using the distributed data storage service of the cloud,
the Cloud Program Counter (CPC) is implemented easily. During the creation of the
CCPU, nodes will register themselves to store and execute the CPC where the CPC
created is associated with the process through a Cloud Process Descriptor (CPD). Since
the CPC information is shared among the registered nodes for this service, it will
provide the required fault tolerance. If one node fails, the other registered node will
continue the execution. The structure of CPC is shown in Fig. 5.

4.7 Cloud Node

The nodes willing to participate in the Cloud CPU framework needs to perform several
operations. The first decision is the service type(s) the node can contribute. Depending on
the capability of the node more than one service type can be supported. The basic service
types are storage and execution. Storage can be divided into storing Cloud program data
or Cloud OS information like scheduling or program counter. Execution can also be

Fig. 4. Storage types and assignments.
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divided into two basic operations like executing Cloud CPU instructions or Cloud OS
and Cloud Scheduler operations.

The role of the node can be decided by the administrator/user of the node or it can
be decided by the node dynamically depending on the current load and capacity. The
possible services for a node are shown in Fig. 6. The listener process will listen for the
service calls and will respond to the corresponding calls related to its functionality. The
configuration Manager holds all information regarding to registered services and nodes,
implemented instructions, capacity and load.

Fig. 5. CPC structure.

Fig. 6. Services of a Cloud CPU node.
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4.8 Cloud Instruction Description

The instructions needed are created on demand by the Cloud Compiler. To streamline
the process a detailed description of each instruction is needed. Two samples are shown
in Tables 1 and 2 where details of each instruction, storage requirements, computa-
tional requirements, algorithm or description of the instruction are given. If a
description is not available, then a pseudo algorithm can be given.

5 Cloud CPU Operations

There are several operations that may take place in the system. The user will decide to
the desired service (represented by compiling a program) using a specific CCPU as the
target using the compiler CCC and submit the program to the cloud as a Cloud Process
(CPR). In the cloud, a CPC will be formed to execute the CPR. The operations required
in the system are explained below.

5.1 Cloud Program Compilation

The difference in Cloud Process Compilation (CCC) is that the CPU hardware is not
fixed anymore and the target CCPU, hence the target language, can be changed for each

Table 1. Sample Cloud Instruction Description: sort(b).

Type Statement, arithmetic

Instruction/function/class a = sort(b)
Complexity O(log(n))
Operation Sort
Pseudo algorithm N/A
Required storage types Array: a

Array: b
Input/output parameters Input: b

Parameter1: “ascending”
Output: a

Table 2. Sample Cloud Instruction Description: a + b.

Type Statement, arithmetic

Instruction/function/class a = a + b
Complexity O(1)
Operation Addition
Pseudo algorithm N/A
Required storage types Register: a

Register: b
Input/output parameters Input: a, b

Output: a
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compilation and most importantly it can be created from scratch. Several CCPU types
can coexist and run in this system as shown as an instance in Fig. 7.

There are several choices for the compiler. The first decision is whether a new
CCPU should be created for compilation or an existing one should be used. The user
may also specify the target CCPU. In that case, the compiler will check if a conversion
is possible or not. For example in Fig. 8, several choices a Cloud Compiler can face are
shown. The source language needs to be executed. There are several choices for the
compiler. CCPU1 and CCPU2 are two templates where the implemented instructions
are not one-to-one match with the source language but it is possible to compile the
compatible with the source language at all so it is dismissed. Depending on the source
language with the available instructions. CCPU3 instruction set is not level of the
similarity, either the compiler will use CCPU1 or CCPU2 templates and compiles the
program for it, or it creates a new CCPU and the program is compiled for the new
CCPU type created. The decision will be based on the programming language to be
compiled, cloud capacity, complexity of the new CCPU needed, communication speed,
execution speed of each node and the time for the compilation for an existing CCPU.
The decision can change depending on a system from one instant to another and it is
not hard-wired.

5.2 Cloud Instruction Set Creation

Determining the instruction list and storage types of the CCPU is a complicated pro-
cess. There are almost infinitely many combinations of nodes. As a result the virtual
hardware and available instructions are flexible and they can behave as you wish. The
instructions are not limited by the hardware anymore. In addition to the number of
combinations, there are other factors as the interconnection speed, storage capacity and

Fig. 7. Compiler instance.
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processing speed of nodes. An exhaustive list and the decision process cannot be given
here as it will be out of scope of this paper. The creation of the CCPU process can be
initiated by the user to save it for future use but normally it will be initiated by the
compiler when the user wants to run a program.

• The programming language is analyzed.
• A decision will be made if the language should be implemented as it is or it should

be converted to a different language. For example we can have a microcontroller
that can execute BASIC language directly. The second choice is to convert (com-
pile) the BASIC language to a more basic RISC type language with few basic
machine instructions. The decision depends on complexity of the source and target
language.

• It is possible to have predefined templates for a language carefully designed by a
user.

• The compiler will check the available templates if there is a close match to the
current language. A close match means that although a one-to-one conversion is not
possible, the source language can be converted to target language by using one or
more in instructions. The compiler can decide to use one of the templates or create a
new one.

• If a new template is needed by the compiler, the scope will be limited to the
instructions in the current program. A new implementation may not cover all
possible constructs of the target language, since the compiler scope is limited by the
current program and it would be a waste of time and resources to implement
instructions not needed. On the other hand, a user created template may cover the
whole language elements.

Fig. 8. Cloud compilation and choices.
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• If the decision is to create a new instruction set, in that case the compiler will create
a list of needed instructions using a Cloud Instruction Description (CID). Type can
be class, function, statement, arithmetic or other constructs necessary. The
description should give the required functionality as an operation or as a pseudo
algorithm. Complexity can be given or can be calculated from the algorithm.
Required storage types should also be listed. This information is needed so that each
node in the cloud can respond to the request.

5.3 Cloud CPU Creation

Once the CCPU type is determined, the node performs two different actions depending
on the state of the CCPU explained below and given in Fig. 9.

• Use an existing CCPU

Since there are many nodes involved in a CCPU, all these nodes should be checked
before execution. The Cloud OS starting from the initiating node will check if all the
nodes registered to execute this CCPU are still active or not. If not, a broadcast is sent
to invite new nodes to join for the missing instructions and/or architecture. Once the
CCPU is refreshed, all nodes are informed.

• Create a new CCPU

The instruction list created by the compiler for a new CPU is sent as a broadcast to the
cloud to invite interesting nodes to implement the required instructions. Nodes with
desired properties to implement the required functionality will respond and register
themselves to execute a specific function. For example a system with high speed
storage may respond to create the registers and/or queues, and another system with high

Fig. 9. Cloud CPU creation.
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speed processing units may respond to implement a complicated instruction in the
CCPU. The final decision is up to the Cloud Operating System.

5.4 Cloud OS

The operating system concept for the Cloud CPU is different than a regular one. In
order to create and synchronize all operations of the CCPU, a Cloud OS is needed but
since all nodes will have some kind of operating system or a similar controlling
program, the need for a Cloud OS is temporary. The job of the Cloud OS is to create
the CCPU, to communicate with all the nodes and to distribute the job and other
information to registered nodes. Cloud OS works very closely with Cloud Compiler
since most decisions are initiated by the compiler. In order to be compatible with the
decentralized operation of Cloud CPU services, Cloud OS is also decentralized and
executed by many nodes where each registered itself to be member of the Cloud OS.
The Cloud Program Counter is passed from one node to another. During the execution,
Cloud OS is informed by each node so that and the process is controlled and verified by
Cloud OS. The information exchange is based on data that is small in terms of size and
therefore will not create traffic congestion.

Cloud OS is a combination of all services created during the execution and it is
initiated by the node that wants to execute a specific program using a Cloud CPU
structure. When such a request is initiated by a node, a stub code executes and starts
creating all needed services on demand. At the end of the requested execution, all
created services terminates although the databases created are saved for a possible next
execution.

6 Instruction Level Virtualization

When the virtualization layers of current Cloud systems are analyzed, it will be very
easy to see that every provided service, like Platform as-a-Service, Software as-a-
service, Hard-ware as-a-service, depends on a particular CPU type and operating
system. The dependency of a program to the underlying hardware and software has not
changed at all. By moving the virtualization layer to a instruction level granularity, the
dependency to the underlying system is minimized. The dependency cannot be
removed completely since current systems depend on a particular CPU and an oper-
ating system to run it properly. When the Cloud CPU is active, there is no need to get
services from each node with a different CPU and operating system. The cloud system
becomes an active platform where the program executes on it directly.

7 Conclusions

In this paper, the configurable Virtual CPU service using the cloud architecture is
extended where the units of a CPU core represent nodes or services provided by a cloud
system and the data transfer between them is replaced by a data transfer inside the
cloud system. By pushing the CPU units to a cloud system, a giant virtual CPU is
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created where each unit of the CPU can have multiple implementations, support, and
parallel execution and fault tolerance. The minimized functional block structure and
implementation have many advantages like Fault Tolerance, Security, Scalability,
Computational Requirements, Communication, Interoperability, Optimization,
Heterogeneous CPU implementations, Hardware independent virtual CPU, Process
and/or programming language specific virtual CPU, and Parallel Operation and these
are discussed in detail in [20].

The Cloud CPU structure resembles the working principle of a living brain where
simple structures (neurons) are connected to each other by many connections. The real
power of a brain comes not from the speed of each neuron, but it comes from the high
level of parallel connections. The calculations are not fast but highly parallelized which
is also a reason for the fault tolerant structure. The Cloud CPU may not be the best
choice for number crunching, but it will be very powerful in parallel operations. When
you destroy some nodes from the Cloud CPU, it will stay running as high number of
registered nodes provides the desired fault tolerance.

On the other hand, the Cloud CPU implementation will create a Global Unified on
Demand Computational Software Platform. The compiler paradigm will change from
compiling into a fixed language to compiling into an unconstrained flexible pro-
gramming language. Cloud OS will select the best nodes for the current source lan-
guage and execution and it will decide to the target language which is not fixed.
Another change in computing paradigm is that the need for a particular CPU, real or
virtual, becomes obsolete. The same is valid for a specific operating system, again real
or virtual.
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and John P. Morrison

Department of Computer Science, University College Cork, Cork T12 YN60, Ireland
{d.dong,h.xiong,g.castane,p.stack,j.morrison}@cs.ucc.ie

Abstract. The addition of heterogeneous resources to conventional homoge-
neous cloud environments has enabled clouds to embrace a wide variety of new
applications that heretofore were traditionally confined to specialized comput-
ing environments. The enhanced and extended features offered by heterogeneous
resources enable service offerings that pose challenges to traditional cloud man-
agement throughout the entire service delivery stack. The accelerated uptake of
heterogeneous resources is exacerbating these challenges, which no longer can be
efficiently addressed in an ad-hoc manner. Therefore, an integrated approach to
heterogeneous resource management that is cognizant of the unique advantages
of different hardware types is needed. In this paper, two candidate approaches,
a platform-integration scheme and a server-integration scheme, are introduced to
address this management challenge. The platform-integration scheme integrates
and coordinates the management of various coexisting resource managers and
associated environments each of which may be managing resources of different
types using the most appropriate resource abstraction method. In contrast, the
server-integration scheme provides a single, lower level, fine-grained manage-
ment mechanism across all hardware resource types. Ultimately, the goal of each
schemes is to provide a unified view of resources from a capability perspective to
consumers.

Keywords: Architecture · Heterogeneous resource · Platform integration
Cloud · HPC

1 Introduction

The employment of various advanced technologies, such as virtualization and more
recently, containerization, for managing and organizing resources in cloud environ-
ments has yielded several distinct system features, such as resource elasticity, system
scalability, application load-balancing, configuration flexibility, cost-effective usage
models and rapid deployment. Moreover, recent evidence shows an increased demand
for support for High Performance Computing (HPC) applications in the cloud. For
example, weather forecasting, medical imaging and computational fluid dynamics, that
have traditionally been confined to cluster environments are now being migrated to the
cloud. To effectively support applications of this type and to demonstrate that compa-
rable performance can be achieved in the cloud, specialized hardware, such as, Graphi-
cal Processing Units (GPUs), Many-Integrated-Core processors (MICs) and Data-Flow
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Engines (DFEs), and dedicated networking configurations, including 40 Gb/s Ether-
net and InfiniBand, are being incorporated into the cloud infrastructure. Consequently,
cloud service providers have begun to offer specialized services, for example, Amazon
EC2 Cluster Compute, EC2 F1 Instances [1] and Microsoft FPGA-based cloud [2] are
all designed to support these high-end applications. The introduction of a wide range
of hardware and associated configurations to conventional homogeneous cloud envi-
ronments is introducing heterogeneity and associated challenges for effectively inte-
grating and efficiently managing heterogeneous resources and the heterogeneity arising
from new hardware architectures, diverse computational abilities, diverse power usage
patterns, mixed operating system architectures and specialized software libraries. This
evolution is having a significant impact on the transitional cloud architectures, and a
re-consideration of the organization of the physical hardware resources in the cloud
infrastructure layer, the resource management and scheduling approaches in the cloud
management layer, and the service orchestration and resource representation in service
delivery layer is becoming necessary.

Several cloud management platforms exist for managing virtualized environments
(e.g., OpenStack Nova [3]), container environments (e.g., Kubernetes [4], Mesos [5]
and Docker Swarm [6,7]), containers in virtualized environments (e.g., Magnum [8]),
bare metal servers (e.g., Ironic [9]). These platforms have sufficiently matured and
have begun to find practical applications in many public and private clouds. Traditional
clouds typically support only one of these platforms and this limits the structure of the
cloud environment in terms of hardware diversity. For instance, in a virtualized envi-
ronment, only certain models and types of computation accelerators (e.g., GPUs) can
be accessed by virtual machines with additional configurations on both the underlying
hardware (e.g., CPU and motherboard) and software (e.g., Hypervisor and host operat-
ing system). In contrast, containers can directly use many of the existing computation
accelerators, but have limited features, especially for networking where advanced fire-
wall and load-balancing are noticeably absent. Thus, having multiple abstraction meth-
ods simultaneously available in a single cloud deployment [10] is desirable. If a cloud
provider supports more than one of these platforms simultaneously, each is provided
in isolation from the rest in a manner that effectively partitions the cloud resources
among them, thus, creating a situation where those resources can not be shared across
platforms.

Without doubt, heterogeneity complicates resource management and resource allo-
cation. In current homogeneous environments, resource allocation is typically formu-
lated using multi-objective optimization equations involving resource availability (e.g.,
CPU cores, system memory and storage space) and system requirements (e.g., host-
affinity and load-balancing). To make decisions in a timely fashion, relaxed algo-
rithms (meta-heuristics or greedy algorithms) are often used. Since heterogeneity offers
considerably more features, these calculations become consequently more complex.
Improved organization at the system level offers a potential pathway for efficient
resource allocation. However, this approach assumes the existence of a unified platform
for managing heterogeneous resources. In this paper, two implementation schemes for
such a unified platform are introduced. They are referred to as a platform-integration
scheme and a server-integration scheme.
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This paper is organized as follows. A brief introduction to the background of this
work and a consideration of related work are presented in Sect. 2. The proposed uni-
fied platform schemes are outlined in Sect. 3, and a use case application demonstrating
the platform-integration scheme is given in Sect. 4. Section 5 concludes the paper by
highlighting the main ideas of this research and by indicating some potentially fruitful
future directions.

2 Background and Related Work

The cloud computing paradigm has shifted the focus of data center management from
providing bare-metal resources to providing virtual resources to the end user. These
advantages have long been demonstrated in production cloud environments, such as
the Amazon EC2, the Microsoft Azure, and the Google Cloud Platforms. Virtual-
ization enhances cloud management by enabling flexible resource configuration and
deployment, efficient use of resources, and by offering opportunities for reducing power
consumption.

Virtualization and containerization are the two dominant technologies used for man-
aging and abstracting computational resources. Virtualization is generally achieved
through abstracting hardware components into logical objects. This abstraction can
be realized by hardware emulation and/or by time sharing of a hardware component
between multiple processes. A software component that provides virtualization func-
tions is commonly referred to as a hypervisor, historically named as a Virtual Machine
Manager (VMM). A hypervisor is responsible for providing instances of virtual envi-
ronments identical to the underlying physical server with minimum performance cost,
while retaining full control of the physical resources [11]. It allows for architecturally
diverse operating systems to coexist and to simultaneously run on the same physical
server. A complete operating system can be installed and run in a virtual environment
exactly the same way that it runs on a physical server. This instance of the operating sys-
tem is often known as a guest Virtual Machine (VM) [12]. All hardware resource related
operations, which are initiated from guest VMs, are under the control of the hypervisor,
and the hypervisor executes these operations on the actual hardware on behalf of each
guest VM.

Containerization is another type of virtualization. Technically, containerization
technology provides isolated application execution environments at the operating sys-
tem level. It uses Linux native functions, mainly the control groups (cgroups) and the
namespace, to isolate applications/processes. Because containers do not use hypervisor-
like middleware, multiple container applications can share common libraries and hard-
ware drivers installed on the host operating system. This also makes a container appli-
cation lightweight and easier for it to access specialized hardware, such as GPUs and
MICs. On the other hand, a container application is less secure because of its shared
environment and offers less functionality; it is essentially an application wrapping
mechanism. In practical deployments, selecting either virtualization or containeriza-
tion technologies for managing a cloud environment depends on the business goals set
out by Cloud Service Provider (CSP). From an architecture design perspective, contain-
ers are suitable for running applications, whereas VMs are suitable for building virtual
Information Technology (IT) infrastructures.
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In a cloud environment, each virtualization or containerization technology pro-
vides desired features such as elasticity, scalability and high-availability. This requires a
hyper-level management framework that can coordinate virtual resources across physi-
cal servers at large scale. The following sections review the architectural design of sev-
eral widely adopted Infrastructure-as-a-Service (IaaS) management frameworks focus-
ing on computational resource management.

2.1 Virtualization Management Frameworks

OpenStack [3] is an open-source cloud platform focusing on the management of virtu-
alized environments. In particular, for managing computational resources, OpenStack
uses a front-end API server for receiving and responding to requests for resources. Allo-
cating a computational resource will require various other components be associated
with it, such as, networking, storage and security groups. This can be a very complex
process when multiple simultaneous requests, with different configurations trying to
acquire globally available resources are made. In order to reduce this complexity of this
process, requests are forwarded to mediator service, known as the nova-conductor. The
nova-conductor coordinates various components (e.g., networking, image, storage, and
compute) for each request, and multiple instances of the nova-conductor can be cre-
ated to deal with a high-volume of requests. The nova-conductor first uses a scheduler
service (the nova-scheduler) to locate a group of potential physical server(s) that meet
specified requirements, specified requirements, such as, the number of CPU cores, the
size of memory, and the required storage space. Subsequently, those candidate physical
servers are further filtered, in a iterative manner, based on the preferences and criteria
(also know as weights) specified by the user and/or the CSP. The requested resources
will subsequently be deployed by the nova-compute service (by calling Hypervisor spe-
cific APIs) on the most appropriate physical servers [13].

OpenNebula [14] provisions VMs in a similar manner to OpenStack. It uses a front-
end service to deal with requests and resource management. A request for VMs is first
formulated into a VM template, this template is forwarded to a scheduler service [15],
which selects available resources based on the system requirements and/or user pref-
erences, such as, Packing, Striping and Load-aware polices [16]. The front-end service
coordinates VM deployment on the selected server(s) by calling Hypervisor specific
APIs.

Nimbus [17] is another IaaS management framework for scientific users. It takes a
simpler approach for managing resources than those mentioned above. Architecturally,
Nimbus consists of three main core components including a Nimbus IaaS central ser-
vice, a storage service (Cumulus) and VMM control services, running on each server
basis. The Nimbus IaaS central service acts as a middleware between cloud end-users
and cloud resources. From an end-user perspective, the central service is the server
that deals with requests for resources; from a CSP point of view, the central service is
a client that initiates requests for resource deployment to the VMM control service(s)
on the selected server(s). Thus, Nimbus implements a client-server model. The client-
server model greatly simplifies the Nimbus architecture and provides a robust platform.
On the other hand, this model may limit scalability. Nevertheless, Nimbus supports
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cloud federations that can be formed by different cloud platforms and this is achieved
through a centralized account management service [18].

2.2 Containerization Management Frameworks

Borg [19] is a former proprietary Google platform used for managing large-scale con-
tainer environments. Borg manages tens of thousands of servers simultaneously. The
Borg architecture consists of three main components including Borg masters, job sched-
ulers, and Borglet agents. A typical Borg instance consists of a single Borg master, a
single job scheduler and multiple Borglet agents. The Borg master is the central point
for managing and scheduling jobs and requests. A Borg master and job scheduler are
replicated in several copies for purposes of high-availability, however, only a single
Borg master and a single job scheduler are active in the system at any one time. The
Borg master is responsible for dealing with requests for deploying jobs and the job
scheduler searches for suitable servers to host tasks. The actual deployment of the job
is carried out by a Borglet agent on the selected server (multiple tasks on the same server
are separated and distinguished by the Linux kernel functions cgroups and namespace).

Borg presents a centralized management approach. This also requires Borg masters
and job schedulers (the original and all replicas used for high-availability) to be large
enough to scale out as required. The Borg job scheduler may potentially manage a very
high volume of jobs simultaneously, this has made Borg more suitable for long-running
services and batch jobs, since those job profiles reduce the load on the job scheduler.

Omega [20] is an enhancement of Borg system’s scheduler architecture. It employs
multiple schedulers working in parallel to speed up resource allocation and job schedul-
ing. Each scheduler maintains the complete state of all available resources and decisions
are made by each scheduler, independently. Conflicting resource allocations will be
determined in resource deployment phase, and one or both of the conflicting requests
will be returned to their originating scheduler for rescheduling. Kubernetes [21,22] is
the most recent evolution of Google’s data center management technology. Architec-
turally, Kubernetes implements a master-worker model. The master runs an API service
for dealing with requests, a cluster state maintenance service (Etcd) for tracking data
center resource information, and a scheduler for locating resources. On each compu-
tational node, a local container management service (kubelet) is used for managing
container life-cycles and a network proxy service (Proxy) is used for establishing inter-
and intra-communications between containers and the Internet. Notably, containers are
not managed individually. A collection of containers is organized together and man-
aged as a single entity. This is commonly referred to as a Pod. The concepts of the Pod
reflects the service management philosophy that a large cloud application should be
decomposed into a set of self-contained services; each service carries a single function
per container basis; and all services belonging to an application should be managed
together. Additionally, the use of Pods also makes Kubernetes more scalable.

Docker Swarm [6,7] mimics Pod concept. It provides a flexible and easy way for
building virtual clusters on demand in which cluster members can be distributed across
physical servers. Members of a swarm cluster are connected through a designated over-
lay network. A swarm is conceptually a virtual cluster. Common services or services
belong to the same application, can be managed and grouped into the same swarm.
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Architecturally, a swarm consists of a swarm master and swarm workers. Any available
computational nodes in a data center can freely join and leave a swarm, and provides
the basis for application/service elasticity.

Mesos [5] is another management platform that is based on a master/worker archi-
tecture. Mesos enables multiple different scheduling frameworks to manage the same
environment. This is achieved by employing a coordinator service that assigns con-
trols on resources to a single scheduler during its decision making processes. This can
potentially lead to an inefficient use of resources when the request is lightweight and
available resources are significantly large.

Alibaba Inc. has created the Fuxi [23] platform for supporting its large scale world-
wide e-commerce business. The Fuxi architecture design focuses on scalability and
fault tolerance. It consists of three main components including a FuxiMaster, a FuxiA-
gent and an ApplicationMaster on each physical server. The FuxiMaster is responsible
for receiving and responding to job requests and for locating a FuxiAgent suitable for
each individual job. The designated FuxiAgent spawns an ApplicationMaster to handle
the job and potentially split the job into smaller tasks depending on the job type. The
ApplicationMaster then initiates requests to the FuxiMaster for resources. When the
FuxiMaster returns a list of FuxiAgents that contain sufficient resources for the job, the
ApplicationMaster starts issuing commands directly to the selected FuxiAgents to start
the job. In comparison with common container technologies that use cgroups to control
resource assignment and kernel namespace for isolating task execution environments,
Fuxi continuous to use cgroups to control resource assignment, but makes use of inde-
pendent sandboxes for isolating task execution environments.

2.3 Bare-Metal Management Frameworks

Although virtualization and containerization are the main technologies used for man-
aging resources, in many situations, managing bare-metal resources are still important.
For example, provisioning data center infrastructure and providing high-performance
servers for heavily loaded database systems and specialized computation accelerators
remain an important activity.

Bare-metal server management is technically different from managing container-
ized and virtualized environments. Since bare-metal servers do not have pre-installed
operating systems, vendor-specific chip-level management modules such as, Intelligent
Platform Management Interface (IPMI) and Preboot Execution Environment (PXE)
must be used. In general, provisioning a new server requires the sending of a request
to an API server, a controller service is then invoked to identify a target physical server
by matching user specified criteria, such as, CPU architecture and system memory size.
The controller service then prepares for the operating system images or ramdisk to be
installed on the selected server and issues IPMI commands to the server for network
booting and operating system image or ramdisk installation via PXE. After the image
loading and installation processes, the status and access methods are handed to the end-
user. Ironic [9], Razor [24], and Foreman [25] are several typical implementations of
such a scheme.

In summary, modern data center management platforms still operate a client-
server model and this model continuous to scales. Architecturally, those management
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platforms consist of three common components including a front-end facing API server,
a coordinator service (e.g., schedulers and resource management), and back-end agents
(e.g., Hypervisors, Borglet and Kubelet). To further improve on scalability, cloud feder-
ation can be used and is commonly implemented through centralized account manage-
ment mechanisms incorporated with networking inter-routing schemes.

3 Heterogeneous Resource Integration

Existing data center management platforms typically employ a single resource abstrac-
tion method (such as, vitalization or containerization). These are efficient and effective
for managing homogeneous resources. The increasing demand for supporting versatile
high-performance accelerators and high-throughput network connections are changing
the nature of a data center from a homogeneous environment to one that is more hetero-
geneous. This poses challenges to existing data center management platforms and how
they accommodate various types of computational hardware resources. Orchestrating
services and resources with complex configurations to meet user- and/or system-specific
requirements is thus becoming increasingly more difficult. As system functions become
more versatile, the complexity of the system is also increased. However, this complex-
ity must be made transparent to end-users. Consequently this requires an adjustment the
paradigms used for delivering services. In the following sections, a blueprint-oriented
service delivery model and two integration schemes (a platform-integration scheme
and a server-integration scheme) for managing and unifying heterogeneous resources
in cloud environments are introduced.

3.1 Service Delivery Model

To fully exploit versatile service and resource options offered by heterogeneous
resource, a careful and a considered approach to manage these resources is necessary.
This can be challenging for both the service provider and for the service consumer,
especially, when the components of a cloud application may require the deployment
on different types of resources. Moreover, leaving aside the difficulties of working
with heterogeneous hardware environment, expert knowledge related to the deployment
of cloud application components is usually required to fully exploit these hardware
resources and accelerators. Configuration complexity and deep domain-specific knowl-
edge should be made transparent to end-users. Thus, an approach is taken that allows
end-users to compose their tasks into a workflow of constituent service(s). Workflows
of this kind are often referred to as blueprints.

An application blueprint can be visualized as a graph that expresses the busi-
ness logic and intra-relationships of application components. Deploying an applica-
tion blueprint effectively deploys the set of services that comprise the application. In
an homogeneous cloud, deploying a set of services results in each being hosted by
resources of a single type. This represented the state of the industry. However, in mak-
ing the transition to an heterogeneous cloud a blueprint involves assigning services to
the most appropriate heterogeneous resources. Depending on the nature of the applica-
tion and/or user preferences, a service or a group of services can thus be assigned to the
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same resource or indeed to different resources of different types, when necessary. This
advancement requires adjusting the resource provisioning models appropriately and is
addressed in Sects. 3.3 and 3.4.

3.2 System Workflow

Given the blueprint-oriented service delivery model, the system workflow is shown in
Fig. 1. An application blueprint is composed by end-users and first submitted to an
API Server. The API Server is responsible for receiving and responding to end-user
requests and forward the a blueprint to an instance of a Resource Coordinator. Many
Resource Coordinators may potentially work in parallel to load-balance large volume
of requests. Each application blueprint is processed by a single Resource Coordina-
tor. The Resource Coordinator decomposes the blueprint into sub-groups of resource
requests according to the resource abstraction types. For example, a complex blueprint
may consists of many services and each of the service may require to be deployed on
different types of hardware resources. For instance, a blueprint may be described as an
application that requires front-end web servers to collect data which is subsequently
processed using accelerators, thus, the resources required for this blueprint deployment
may be a set of VMs running on CPUs, and a set of containers running on servers hav-
ing Xeon Phi co-processors. After the blueprint decomposition process, the Resource
Coordinator analyses the relationships between sub-groups of the resource requests and
makes further amendments to the blueprint. The amendments are mainly made for real-
izing communications between sub-groups. The Resource Coordinator then forwards
each sub-group of resource requests to designated Virtual Resource Partitions (VRPs)
that are managed by corresponding management platforms. Details about VRPs and
management platforms are given in Sects. 3.3, and 3.4.

Blueprint

API Server

Resource Coordinator Resource CatalogueInformation

Locate Resources

Management Platforms

Submit

Compose

ReportResource Deploy

Return

Dispatch

Fig. 1. System workflow.

3.3 The Platform-Integration Scheme

Different types of hardware resources require appropriate resource management tech-
niques. The mechanisms for integration heterogeneous resources and their respective
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Fig. 2. Managing and accommodating heterogeneous hardware resources through multiple inte-
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management techniques in a single unified scheme. An overview of the proposed
platform-integration scheme is shown in Fig. 2. In this scheme, hardware resources are
virtually partitioned based on the resource abstraction/access methods (virtualization,
containerization and bare metal) most appropriate for the respective hardware type.
A corresponding management framework is then adopted to manage groups of hard-
ware of the same type. A central Resource Coordinator component is provided as an
interface to be used by end-users to deploy applications on the underlining resources.
More importantly, the Resource Coordinator component coordinates the deployment for
the application blueprint components on, potentially, various types of resources across
those virtual partitions.

Heterogeneous hardware resources are managed through the designated platforms.
This may raise interoperability issues, however, as each platform manages a virtual
resource partition, in the same management domain, the resulting interoperability issues
reduced to a technical integration action and are not exacerbated by having to consider
the interests of multiple entities. Figure 2 shows how the integration scheme may use
OpenStack to manage virtual environment, Mesos to manage container environment,
and Ironic [9] to manage bare-metal servers. Each platform offers a different set of
Application Programming Interfaces (APIs) and utilities for similar resource manage-
ment operations, such as, creating virtual machines and/or containers. The Resource
Coordinator uses a Plug & Play Interface that defines a set of common operations for
managing underlying resources, and these operations are then translated to platform-
specific API calls or commands using the Plug & Play implementation modules to
carry out service deployment processes. Additionally, storage systems are organized
and managed independently. Processing units can be easily configured to use volume-
based and/or network attached storage systems.
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Fig. 3. Networking integration scheme using bringing network.

Networking Integration Strategy. Two schemes are available for networking inte-
gration. The first scheme is to treat networking in each VRP, independently, as shown
in Fig. 3. Application components are deployed independently in their corresponding
VRP and virtual networks are created accordingly within each VRP. At the same time,
network bridges are created in order to establish communication channels across VRPs.
The scheme does not require any modification to the respective resource management
platforms. This gives the flexibility for integrating other resource management plat-
forms, for example, Kubernetes and Docker Swarms, with existing environment. The
concerns about this scheme arise from the differences associated with each of the net-
working approaches taken by each of the respective resource management platforms.
Considering that different platforms offer different types of networking services at
various level, for example, an OpenStack managed network uses the Neutron frame-
work, which offers rich functionalities including firewalls, load-balancers, and security
groups, etc., these may not be available in the container environment if it is managed by
Mesos. As the available functional components are different from platform to platform,
this will affect how an application blueprint can be created.

The second scheme employs the Neutron framework [26] for building and manag-
ing virtual network infrastructure. Figure 4 shows the simplified networking plan. All
hardware resources are connected to the same physical networking infrastructure, but
logically, they are managed by corresponding platforms, independently. From an end-
user point of view, all resources are in a single resource pool. In the case that multiple
components of a single application-blueprint need to be deployed on both VMs and
containers, which are managed by different platforms, this requires a dedicated virtual
network for the entire application-blueprint over the end-user (tenant) network. Thus,
there is a need for a unified virtual network infrastructure management framework to
be installed across all platforms, horizontally. In addition, the tenant networks must be
managed in a seamless fashion. The second networking planning scheme adopts Open-
Stack Neutron for this purpose. In general, frameworks and services developed under
the OpenStack Big Tent Governance natively support Neutron services. In contrast,
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Fig. 4. Networking integration scheme using unified network framework across multiple
platforms.

container technologies such as Kubernetes, Mesos, and Docker Swarm employ differ-
ent networking models. For example, Kubernetes can use Flannel [27], Weave Net [28]
frameworks operating in various modes; Docker uses libnetwork [29] by default. In the
context of this work, the Kuryr network driver [30] is employed to link Neutron and
container networks. Thus, end-users will experience seamless connections between all
types of heterogeneous hardware resources.

3.4 The Server-Integration Scheme

In the second integration scheme, heterogeneous hardware is organized on a per server
basis, as shown in Fig. 5. Each physical server is equipped with both general purpose
processors and computation accelerators where they are applicable. Two types of net-
working interfaces, including high-speed interface(s) (e.g., InfiniBand or 40 Gb/s Eth-
ernet) and standard-speed interface(s) (e.g., 1/10 Gb/s Ethernet) are also installed on a
per server basis. Different types of networks are connected to their corresponding dedi-
cated networking switches. In this configuration, a physical server is capable of offering
high-performance computational resources for HPC applications as well as economical
computational resources for general applications such as Web services.

The mixed hardware configuration also requires both container engine and hypervi-
sor to coexist on the same physical server. This is because, in a virtualized environment,
access to specialized computational accelerators (e.g., MICs, GPUs and DFEs), espe-
cially when dealing with various types and models of those accelerators, from a VM can
be very problematic. It is generally requires both software (including operating system
and hypervisor) and hardware (including CPU and motherboard) to support for pass-
ing through specialized accelerators to VMs. In contrast, a container application can
directly use accelerators that have been already recognized by the underly host operat-
ing systems. Nevertheless, trade offs need to be taken into account when using differ-
ent resource abstraction/access methods. For examples, VMs, as a complete operating
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Fig. 5. Managing and accommodating heterogeneous hardware resources through hardware inte-
gration on a per server basis.

system, can provide all features that a standard operating system offers; a container
provides a light-weight application execution environment which may result in better
performance, but may be less flexible and secure. For applications to experience native
performances or strict secure environment, for example heavily loaded database sys-
tems and banking transaction processing systems, the option for access to bare-metal
servers is often needed. Thus, the coexistence of various resource abstraction methods
on each individual server is desirable. Note that the coexistence of both container engine
and hypervisor may affect the choices for selecting the types of hypervisor (Classic Sys-
tem VMs or Hosted VMs) [12].

At the management layer, all resources are registered with a Resource Catalogue
and compatible computational resources are logically grouped together from an appli-
cation perspective. Depending on the characteristics of an application blueprint to be
deployed, the Resource Coordinator uses the information from the Resource Catalogue
to make decisions on how and where to provision resources. One of the key features
of the Server-Integration scheme is that it allows for various software and hardware
components, including types of operating system, hypervisors, container engines, gen-
eral purpose processors, computational accelerators, and different types of networking
connections to be dynamically and flexibly combined together to meet application and
system requirements.

3.5 Summary

The platform-integration scheme can provision heterogeneous resources through the
integration of various existing platforms in which each platform manages a set of homo-
geneous hardware resources, independently. Globally, all types of resources are virtu-
ally presented in a unified resource pool to end-users. The use of existing management
platforms provides a solution for rapid construction of a heterogeneous cloud. Most of
the architectural components such as telemetry, fine-grained resource scheduling, and
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resource management, are reused. It is must be noted that, in some circumstances, for
example, an orchestrated service that are deployed on various types of resources across
different platforms, may encounter network congestion issues, especially for those high-
throughput HPC alike applications. Additionally, as each management platforms (e.g.,
OpenStack and Mesos) have their built-in resource schedulers, the platform-integration
scheme is limited on how they control and optimize resources at a coarse-grained level.
In contrast, the server-integration scheme is more flexible. Multiple management plat-
forms can be configured to simultaneously manage their corresponding resource types
on the same server across the data center, provided no conflicts between them; or a
customized platform to manage the system in a more dedicated manner, providing all
necessary auxiliary services such as telemetry and resource manager. Additionally, as
the coexistence of various types of resources on each server, more diverse applications
and system requirements can be more easily met by wiring appropriate components.

4 Experiment

The initial implementation and the deployment of the proposed schemes have been
realized in the context of CloudLightning project [31]. In this paper, a use case based
on the Intel’s Ray-Tracing application [32] is used to demonstrate the need for a unified
platform to manage a cloud environment composed of heterogeneous resources.

4.1 Testbed Configuration

The experimental environment consists of an OpenStack managed virtualization envi-
ronment (Newton release) which consists of eight Dell C6145 compute servers in total
having 384 cores, 1.4 TB RAM, 12 TB storage and a Mesos managed Docker container
environment (v17.04.0-ce) which consists of five IBM 326e servers in total having 10
cores, 40 GB RAM, 200 GB storage. In this deployment configuration, all physical
servers have multiple dedicated network connections to three different networks includ-
ing a public, a private and a bridge network. The public network connects to the Inter-
net, the private networks are private to OpenStack or Mesos, respectively, the bridge
network provides interconnections between virtual machines (managed by OpenStack)
and containers (managed by Mesos). In the context of OpenStack, the private network
is equivalent to the Neutron Tenant network, the public and bridge networks are the
Neutron Provider networks. In the Mesos managed Docker environment, three Docker
Bridge networks are created with each connecting to the public, private and bridge net-
work, respectively. This deployment configuration is flexible to allow for future plat-
forms, if needed, to be integrated with the existing environments. The detailed testbed
layout and network configuration are shown in Fig. 6.

4.2 Use Case Blueprint

The Intel’s Ray-Tracing application use case is composed of two parts, the first part is
the Ray-Tracing engine and the second part is a Web interface. Both the engine and
the Web interfaces should be respectively deployed on the most appropriate back-end



74 D. Dong et al.

O
pe

nS
ta

ck
 M

an
ag

ed
Vi

rt
ua

l E
nv

iro
nm

en
t

M
es

os
 M

an
ag

ed
 

Co
nt

ai
ne

r E
nv

iro
nm

en
t

Internet Domain Bridge PrivatePrivate

Bridge NetPrivate NetPublic Net Public NetPrivate NetBridge Net

Internet

Fig. 6. Testbed layout and network configuration.

resources. For example, it has been demonstrated that the Ray-Tracing application can
gain much better performance with MICs [33,34] comparing to general purpose CPUs.
In order to use MICs, applications are generally required to be deployed in containers
or directly on bare metal servers. And it is economically reasonable for deploying a
Web server on a VM (providing more secured environment) that is configured with
general purpose CPU processors. Thus, in the experiment, a blueprint is constructed
which specifies that the Web interface should be deployed on VMs and the Ray-Tracing
engine should be deployed in a container.

The graphical representation of the use case blueprint is shown in Fig. 7. The
blueprint is also expressed in EXtensible Markup Language (XML) for machine inter-
pretation. A blueprint consists of four main components:

1. Execution Environments, specifying the resource types such as virtual machines,
containers, bare metal and so on,

2. Service Element, detailing the software component(s) to be deployed in an Execution
Environment,

3. Artifacts, containing configurations for each Execution Environment or Service Ele-
ment,

4. Connections, specifying the connectivity between Execution Environments and Ser-
vice Elements.

The Resource Coordinator is responsible for parsing, decomposing and transform-
ing blueprint components to a format, that can be understood by the underlying cloud
management platforms, to facilitate application deployment.

The Resource Coordinator categorizes Execution Environments of the blueprint
in to groups based on resource types (EE-Group), such as virtual machines, containers,
or bare-metal. Within each EE-Group, Execution Environments are further partitioned
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<<Execution Environment>>
Virtual Machine

<<Service Element>>
Web Front-end

<<Execution Environment>>
Container

<<Artifact>>
Virtual Machine Configuration

<<Service Element>>
Ray-Tracer

Type: OS::Nova::Server
Properties:
Key_Name: project-cl-key
image: ubuntu-trusty-x86_64
flavor: m1.small

…...

<<Artifact>>
Container Configuration
“vCores” : 2,
“Memory” : 20480,
“Image” : “mic_app_embree:1”,
“Network” : “BRIDGE”,
“ContainerPort”: 22,
…...

<<Artifact>>
Service Element Configuration
“SEName” : “Embree Web Front”,
“ServiceContainer” : “Tomcat 6.0”,
“Port” : 80,
“User” : “CloudLightning”,
“Password” : “CloudLightning”,
…...

<<Artifact>>
Service Element Configuration
“Device” : “singleray_xeonphi”,
“SampleRate” : 16,
“NetworkMode” : True,
“ServerIP” : 192.168.1.166,
…...

Fig. 7. Ray-Tracing application blueprint.

into sub-groups based on the connectivities (C-Group), for example, if another given
blueprint consists of three virtual machines without specifying connections between
them, then this blueprint will be partitioned into one EE-Group and three C-Group
within that EE-Group. In the use case scenario described there, there are two EE-groups,
and one C-Group within each EE-Group. This grouping can be determined by formu-
lating the blueprint topology into a graph G(V,E), then connectivities between Exe-
cution Environments can be identified using the Union-Find algorithm, as illustrated in
Algorithm 1. Where V indicates the vertices in the graph corresponding to the Execu-
tion Environments in the blueprint, and E denotes the edges in the graph corresponding
to the connections between Execution Environments.

The algorithm assumes the connections are symmetric (if Execution Environment A
is connected to Execution Environment B, then B is connected to A) and transitive (if
Execution Environment A is connected to B, B is connected to C, then A is connected
to C). Additional constraints can be added to make blueprint connections asymmetric
and/or non-transitive.

When the grouping process is completed, the Resource Coordinator seeks for con-
nections between C-Groups within each EE-Group. A connection between a pair of
Execution Environments in different C-Groups indicates that the both Execution Envi-
ronments should be placed in a bridge network or need to be attached to a bridge net-
work, to establish cross platform communications. Execution Environments in a com-
pletely isolated C-Group should be placed in a private network, if Internet access is
desired, then each Execution Environment must be attached to the public network,
independently. Once the networks are identified, Execution Environments with their
corresponding configurations in each EE-Group are transformed into deployment tem-
plates that are compatible with the corresponding management platforms. The Resource
Coordinator initiates the deployment process and subsequently manages the life-cycle
of the application blueprint. Listing 1.1 shows the deployment template for the Intel
Ray-tracing Web front-end, in YAML format. This template is converted from the use
case blueprint (as shown in Fig. 7) to make it compatible with corresponding platforms.
In this use case, the Ray-tracing Web front-end is configured to be deployed on a VM,
and VMs are managed by OpenStack. Listing 1.2 shows the deployment template for
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Algorithm 1. Identifying Connectivity Groups (C-Groups) in each Execution Environment
(EE-Group) using Union-Find Algorithm.

/* Identify C-Groups in a EE-Group */
Data: EE-Group
Result: List{C-Group{v.idx}}
GEE−Group(V, E); size ← V.size(); topology = new int[size];
for i ← 0 to size-1 do

topology[i] = i;
end
foreach Edge e(vi, vj) : E do

if connected(vi, vj) then
continue;

end
else

idxi = find(vi); idxj = find(vj);
if idxi == idxj then

return
end
else

for q ← 0 to size-1 do
if topology[i] == idxi then

topology[i] = idxj
end

end
end

end
end
/* Store topology to C-Groups */
cgroupSize ← number of unique values in topology;
for i ← 0 to cgroupSize-1 do

new cGroupi()
end
for i ← 0 to topology.lenght-2; i++ do

if topology[i] == -1 then
continue

end
cGroupk.add(i);
for j ← i+1 to topology.length-1; j++ do

if topology[j] == topology[i] then
cGroupk.add(j); topology[j] == -1

end
end
topology[i] == -1; k++;

end
/* Determine which connectino group an Execution

Environment belongs to */
Function find(v)

return topology[v.index]
/* Detect whether two Execution Environments are connected

*/
Function connected(v1, v2)

return find(v1) == find(v2)
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the Intel Ray-tracing back-end application, in JSON format. This templates is also con-
verted from the use case blueprint, but the template is made compatible with Mesos/-
Marathon for the application deployment in containers.

Listing 1.1. Intel Ray-tracing Web front-end deployment template in YALM format.

b l u e p r i n t −i d : c97e718674c34adf815316ad4cec93c f
h e a t t e m p l a t e v e r s i o n : 2016−10−14
r e s o u r c e s :

e m b r e e w e b f r o n t e n d :
t y p e : OS : : Nova : : S e r v e r
p r o p e r t i e s :

image : Ubuntu14 . 0 4 L T S s v r x 8 6 6 4
f l a v o r : m1 . s m a l l
key name : c l−p r o j e c t
n e t w o r k s :

− ne twork : b r i d g e −p r o v i d e r
u s e r d a t a :

t e m p l a t e : |
# ! / b i n / bash −v
a p t −y i n s t a l l h t t p d

. . . . . .

Listing 1.2. Ray-Tracer in Mesos managed Docker containers using Marathon.

{
” b l u e p r i n t −i d ” : ” c97e718674c34adf815316ad4cec93c f ” ,
c u r l −X POST −H ” Conten t−t y p e : a p p l i c a t i o n / j s o n ”
mara thon : 8 0 8 0 / v2 / apps −d
{

” i d ” : ” embree ” ,
” cpus ” : 2 ,
”mem” : 1 0 2 4 0 . 0 ,
” c o n t a i n e r ” :
{

” t y p e ” : ”DOCKER” ,
” d o c k e r ” :
{

” image ” : ” mic−app−embree : 1 ” ,
” ne twork ” : ”BRIDGE” ,
” po r tMapp ings ” :
[

{
” c o n t a i n e r P o r t ” : 2 2 ,
” h o s t P o r t ” : 0

}
]

}
}

}
}
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5 Conclusions

Conventional cloud environments typically consist of homogeneous resources. Driven
by consumer needs and technological advances, this situation is gradually changing.
Heterogeneity in resource types is being introduced, and this poses challenges to tradi-
tional resource management mechanisms which aspire to seamlessly deliver the advan-
tages associated with novel heterogeneous architectures to the end user. In response
to this transition, a platform-integration scheme and a server-integration scheme have
been presented. The platform-integration scheme describes a hyper-level management
approach by integrating, and coordinating various coexisting cloud management plat-
forms. Each of these platforms manages hardware resources of a particular type, char-
acteristics, and an abstraction method most appropriate for its management. A use case
experiment was presented to demonstrate how an application blueprint can be deployed
and managed in an heterogeneous environment implementing the platform-integration
scheme. The experiment also illustrates the benefit of having a management framework
providing a unified view of heterogeneous resources. In contrast, the server-integration
scheme is employed at the lowest level in the service delivery stack and performs fine-
grained resource optimization and flexible service orchestration. This is achieved by
reorganizing the hardware components on each physical server and by resource group-
ing at data center infrastructure level. The development of a use case to illustrate the
server-integration scheme requires specialized hardware capabilities including I/O vir-
tualization. Moreover, specialized configurations and software libraries are required to
support hardware accelerator pass-through technologies. This use case will be devel-
oped in future work.

The candidate heterogeneous cloud management solutions proposed here, while still
in the early stage of the development, provide realistic solutions to the complex prob-
lem of heterogeneous resource management. The platform-integration scheme can more
readily be exploited, since it integrates and manages a multiplicity of extant technolo-
gies. The server-integration scheme, being a lower-level solution, is more specialized in
its requirements from both the hardware and software environments. Hence, it can be
seen as more of a longer-term solution.

To efficiently and effectively manage an heterogeneous cloud as an holistic entity,
re-consideration of physical server design (incl. on-board computation accelerator inte-
gration, a good balance between computation accelerator and general purpose process-
ing capacity, and a redesign of the cooling system), heterogeneous environment man-
agement (incl. neural network based resource management and collective intelligence
based autonomic computing), service delivery model and cloud application develop-
ment methodology (incl. a unified view of heterogeneous resources and a script-less
application development) should all be addressed in a coherent and integrated manner.
This is the challenge for the designers of the emerging heterogeneous cloud.

Acknowledgment. This work is funded by the European Unions Horizon 2020 Research and
Innovation Programme through the CloudLightning project under Grant Agreement Number
643946.
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Abstract. Vendor lock-in is a major obstacle for cloud users in perform-
ing multi-cloud deployment or inter-cloud migration, due to the lack of
standardization. Current research efforts tackling the inter-cloud migra-
tion problem are commonly technology-oriented with significant perfor-
mance overheads. Moreover, current studies do not provide adequate
support for decision making such as why and when inter-cloud migra-
tion should take place. We propose the architecture and the problem
formulation of a Multi-objective dYnamic MIgratioN Decision makER
(MyMinder) framework that assists cloud users in achieving a stable
QoS performance in the post-deployment phase by helping decide on
actions to be taken as well as providing support to achieve such actions.
Additionally, we demonstrate the migration capability of MyMinder by
proposing an Automated Triggering Algorithm (ATA), which uses exist-
ing Docker Swarm technology for application migration.

Keywords: Cloud Computing · Dynamic decision making
QoS monitoring · Inter-cloud migration · Docker Swarm

1 Introduction

With the expansion of the range of Cloud Infrastructure-as-a-Service (IaaS)
providers, efficient and accurate cloud provider (CP) selection based on user-
specific requirements has become a significant challenge for cloud IaaS users.
Cloud users have to engage in a number of complex decision-making processes
which mainly stem from performance variability amongst the CPs and also from
diversified pricing policies offered by different CPs. The reason for such variabil-
ity is the heterogeneity prevailing amongst the CPs. In addition to this initial
challenge in CP selection, there exist further challenges after the deployment
of user applications in the form of monitoring the health of the acquired vir-
tual machines (VMs) to verify whether the applications are performing in a
stable manner with minimum or acceptable variations. In the post-deployment
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phase the major cause for performance variability is multi-tenancy problems
which arise because most of the computing resources (network and disk I/O)
except for CPU cores are shared amongst several users’ instances (from here
on we will use the terms VM and instance interchangeably) running in a phys-
ical server [15,18,19]. Such variations due to performance degradation can be
a serious problem for latency-sensitive and I/O-bound applications. Therefore,
accurate monitoring and detection methods are required. Although cloud ser-
vice monitoring tools are provided by CPs and third party companies [4,30,33],
these monitoring tools do not provide any decision support on what steps a
cloud user should follow if he/she realises that even their minimum performance
requirements are not met by the selected instances in the current CP.

To meet the desired performance requirements cloud users may require to
migrate their applications to new instance type with higher configuration from
the same provider or with a similar configuration from a different provider.
Apart from performance, cost can also be an important factor for certain budget-
constrained users who may be interested to migrate to different instances if the
price for the current cloud service rises or other providers offer a better price.
Taking decisions on whether to migrate applications for better performance/cost
poses further decision making and technical challenges for cloud users.

Although some researchers have tried to address the vendor lock-in issues by
designing inter-cloud migration techniques, they have not provided any decision-
making support. Others have focussed mainly on pre-deployment decision-
making and there has been very limited work on post-deployment phase support,
and these latter do not consider realistic migration overheads in the evaluation
of their decision making framework. Therefore, naive cloud users should have an
efficient dynamic decision making framework, which can help to provide guidance
on the following:

1. How to detect if the current provider is not performing as required by user’s
application?

2. How to decide that the user’s application needs to be migrated from the
current provider?

3. Which alternative CP should be chosen to migrate the VM?
4. What instance type(s) will provide the best trade-off between cost and per-

formance?
5. Whether the migration overhead will be more significant compared to the

performance degradation in the current CP?

We envisage a system which can handle inter-cloud migration automatically
along with a decision making framework, thus delivering the best of both the
worlds. In previous work [1] we introduced a Multi-objective dYnamic MIgratioN
Decision makER (MyMinder) framework designed to address the above issues.
MyMinder offers a catalogue of metrics based on performance, cost and type of
resources, from which cloud users can choose their requirement metrics depend-
ing on their application. Also, while choosing these metrics users can set some
internal performance requirements and their maximum budget. MyMinder takes
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these requirements as inputs to carry out the monitoring and computes user sat-
isfaction values based on their applications’ performance requirements. In the
event of any QoS violation or performance degradation MyMinder supports the
user in finding alternative cloud services which can provide near-optimal perfor-
mance, and efficiently migrate the application to that service provided by either
the same or different CP. Our work in [1] presented the MyMinder architec-
ture and problem formulation for selecting the most suitable CP to migrate the
VM along with some initial experimental results that motivate the need for live
VM migration from one CP to another. Although we presented the performance
variability results from the bursting instance types of the selected public CPs,
authors in [14,15] have experimentally proved that even dedicated instances
show performance variability.

In this study we present MyMinder’s migration module and demonstrate its
use for performing user application migration across VMs within the same CP or
across different CPs. We deploy user applications using Docker container technol-
ogy [5]. Docker container is a lightweight virtualisation technology that relies on
operating system virtualisation. Using operating system virtualisation, contain-
ers can be easily ported across multiple providers and can run smoothly on top
of public cloud providers’ virtual machines. These capabilities have made Docker
container technology highly prevalent in the DevOps community [5]. All these
features make containers a suitable lightweight option for cloud user applications
that easily supports transferability/portability and interoperability across differ-
ent CPs. Considering the benefits of Docker containers and Docker Swarm man-
agement facilities [8] (detailed discussion is in Sect. 2), the proposed MyMinder
prototype adopts the widely accepted Docker Swarm technology in order to per-
form the multi-cloud deployment of user applications. However, Docker Swarm
does not provide a facility for resource provisioning policies that are required by
MyMinder. Therefore, we introduce an Automated Triggering Algorithm (ATA)
that automates VM allocation and de-allocation in the Docker Swarm cluster
and integrates the Swarm orchestration features as guided by the output gener-
ated by MyMinder’s Decision-making process. We evaluate the performance of
MyMinder’s migration process by deploying it in an OpenStack testbed, where a
cluster of Docker Swarm nodes are created using the VMs and application con-
tainers are transferred among these Swarm nodes. This evaluation is an attempt
to verify the feasibility of MyMinder’s migration process and does not include
performance results from inter-cloud migration across public clouds.

The remainder of the paper is organised as follows. Section 2 presents back-
ground and related work in user centric live VM migration and decision making.
Sections 3 and 4 provide detail of the problem formulation and the MyMinder
architecture, respectively. Migration using Docker Swarm and ATA is explained
in Sect. 5. MyMinder migration module prototype set-up and performance evalu-
ation of ATA are discussed in Sect. 6. Section 7 concludes the paper and discusses
future work.



84 E. Barlaskar et al.

2 Background and Related Work

With the proliferation of CPs it has become very difficult for cloud users to
select the one that best meets their needs. Once they select the perceived optimal
cloud service from a CP, cloud users encounter further challenges as they need
to verify whether their applications are performing in a stable manner with
minimum or acceptable variations after being deployed in the CP’s instances. If
the user realises that their desired QoS requirements are not met by the selected
instances then they may require to migrate their applications to a new instance
type from the same provider or to an instance with a similar configuration from a
new provider. Apart from performance, cost can also be an important factor for
certain budget-constrained users who may be interested in migrating to different
instances if the price for the current cloud service rises or other providers offer
better price. Taking decisions on whether to migrate applications for better
QoS/cost poses further decision-making and technical challenges for the user.
We discuss how current work in the literature addresses these challenges in the
following sections.

2.1 Post-deployment Decision Making

Although researchers have proposed different decision making methods in the
pre-deployment phase [3,11,16,24,26,32] decision making in the post-
deployment phase has not received much attention, other than the works in
[17,25].

The authors in [25] address decision making in the post-deployment phase
by proposing a multi-stage decision-making approach. In the first stage, the
available CP instances are shortlisted on the basis of the user’s minimum QoS
and cost criteria, and in the second stage, migration cost and time are evalu-
ated. After completing these stages, they use the Technique for Order of Pref-
erence by Similarity to Ideal Solution (TOPSIS) [2] and ELimination Et Choix
Traduisant la REalit (ELimination and Choice Expressing REality), commonly
known as ELECTRE [28], to find the most appropriate migration suggestion.
They demonstrate their approach using a case study example. However, in their
evaluation, they consider the overhead of a manual migration process where
they assume that the network throughput between the source and the destina-
tion hosts remains constant during the migration process, which is unlikely to
be true in real scenarios.

In [17] a linear integer programming model for dynamic cloud scheduling via
migration of VMs across multiple clouds is proposed in the context of a cloud
brokerage system. The migration is triggered if a CP either offers a special dis-
count or introduces a new instance type, and also if the user needs to increase the
infrastructure capacity. They do not consider QoS violation or degradation in
their migration decision. Moreover, they performed their experiments in a sim-
ulation based environment and the metrics that they considered for measuring
migration overhead may not be feasible to obtain in real world scenarios.
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2.2 User-Centric Inter-cloud Migration

Although cloud users should not be worried about the complexities involved
in VM migration - which is the essence of the ‘cloud philosophy’, experienced
cloud users may wish to have the flexibility that migration brings in the form of
inter-cloud migration. However, there are complexities in migrating VMs from
one CP to another CP due to vendor lock-in issues. Vendor lock-in makes a
cloud customer dependent on a specific CP due to inherent dependencies on
underlying cloud infrastructures. This makes it very difficult for the customers
to transfer their applications to another CP without substantial migration costs.
These dependencies are often subject to CPs specific (non-standardized) service
APIs. For users to avail of the benefits of application migration independent
of the CP’s permission, recent studies proposed different inter-cloud migration
techniques which use a second layer of hardware virtualisation called nested vir-
tualisation [12,23,34]. Nested VMs are usually migrated by using an NFS-based
solution or an iSCSI-based solution. In some cases such as that of [22] the focus
is not on providing storage and network support for wide-area network (WAN)
application but rather on providing an enclosed environment for distributed
application development and debugging. In an NFS-based and iSCSI-based solu-
tion the WAN VM migration experiences increased latencies, low bandwidth,
and high internet cost in accessing a shared disk image if the shared storage is
located in a different data centre or region. To address this issue [31] proposed
Supercloud using nested virtualisation with a geo-replicated image file storage
that maintains the trade-off between performance and cost. They designed an
image storage that tries to propagate only data which is frequently accessed and
it proactively transmits data before migration is triggered. However, Supercloud
have some performance overhead due to that fact that nested virtualization
imposes additional performance overhead, I/O overhead and CPU scheduling
delay and also they do not provide any decision-making framework.

Other state-of-the-art techniques which allow multi-cloud deployment are
Docker [5] and Multibox containers [10]. Nowadays containers are widely used
as an alternative solution to more traditional Virtual Machines (VMs) allowing
the deployment of virtualised resources with comparatively limited performance
impact. Unlike VMs which run a full OS on virtual hardware, containers provide
operating system level virtualisation where the associated deployments are much
smaller in size because the container-based applications share their underlying
OS. Containers can easily package an application into a single file which makes
the process of application delivery and orchestration very flexible for the devel-
opers. Docker offers an elastic container platform called Docker Swarm which
integrates container hosts (also referred to as Docker nodes or Docker Engines)
into one single and higher level cluster. The Docker SwarmKit performs the
Docker Engine’s cluster management and builds the orchestration features for
the cloud user applications. These features include deployment, scale up/down,
termination, and migration/transfer across Docker nodes. The author in [13]
proposed a control loop which is able to scale and transfer elastic container
platforms (i.e. Docker Swarm and Kubernates etc.) across different public and
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private cloud-service providers. However, this control loop is just one phase of a
self-adaptive auto-scaling MAPE loops (monitoring, analysis, planning, execu-
tion) and does not include the monitoring, analysis and planning phases.

In an extensive discussion the author in [13] points out the four main benefits
of using the elastic container platforms (like Docker Swarm, Google’s Kuber-
netes, etc.), which are summarised below:

1. One logical cluster can be formed by integrating single container nodes
(hosts), where the hosts are within a single CP in order to help in complexity
management of the deployed application.

2. This logical cluster can be extended across different CPs.
3. Different CP container nodes can be accessed as one single cluster which will

solve the vendor lock-in problem.
4. These elastic container platforms have self-healing capabilities as they are

designed with failover mechanisms. Their auto-restart, auto-replication, and
auto scaling features help in the event of node failure or any process failure.

Considering the benefits of lightweight virtualization and evaluating the com-
plexities/performance overhead of the existing inter-cloud migration techniques
like nested virtualisation [12], the proposed MyMinder prototype adopts the
widely accepted Docker Swarm container technology [8] in order to perform
the multi-cloud deployment of user applications. However, Docker Swarm does
not provide the facility for resource provisioning policies that are required by
MyMinder. Therefore, we introduce an Automated Triggering Algorithm (ATA)
that automates Docker Swarm cluster management and orchestration features
based on the output generated by MyMinder’s Decision-making process.

3 Problem Formulation

As presented in [1] the MyMinder framework (Fig. 1) can assist cloud users
in achieving a stable QoS performance in the post-deployment phase by helping
decide on actions to be taken as well as providing support to achieve such actions.
MyMinder can monitor the performance of the deployed users’ applications and
provide the required measurements to determine the satisfaction level of the
user’s requirements described in their requests. In the event of QoS violation or
degradation in the current CP’s service, MyMinder can trigger a migration deci-
sion after identifying a suitable CP to which the overhead of migration and the
chances of QoS violation are the least. For performing these actions MyMinder
needs to evaluate the satisfaction values based on the QoS/performance require-
ments specified in the user’s requests. In the following subsections we illustrate
user requirements, details of the CP instance type model, and the related mea-
sures [1].

3.1 User Requirements

A user sends a request describing his/her resource requirements and
QoS/performance requirements. This request is represented by a requirement
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vector : r = [r1, r2, ...., rj ] where rj specifies the jth(j = 1, 2, ...J) requirement
of the user that has to be satisfied by the selected CP and these requirements
may include the following information criteria [1]: (1) Resource criteria: amount
of resources required for running user’s application (e.g. memory, storage, CPU
etc.). (2) Budget constraint: prices of the instances should be within the cost
limit of the user. (3) QoS/performance criteria: Quality of service or performance
requirements of user’s application that has to be fulfilled (e.g. desired and max-
imum execution time, response time, throughput etc.) (4) Migration overhead
constraint: cost of migration and performance overhead of migration should be
acceptable.

Here, criteria 1 and 2 will be evaluated before deploying the application and
only if these criteria are met then the application will be deployed and after
deploying the application criteria 3 will be measured using a satisfaction value.
The criteria 4 depends on the type of inter-cloud migration technology being
used. The details of migration overhead measurement is discussed in Sect. 5

3.2 CP Instance Types Model

Instances of different CPs differ in performance depending on their characteris-
tics such as VM instance size, hardware infrastructure, VM placement policies
used for load balancing or power optimisation etc. Factors affecting the QoS
obtained from a particular instance type of a CP are typically not known by
the user and so the QoS data of a given CP are not available in advance. It
is possible to measure the QoS parameters only after the instance is deployed
and these measurements may be evaluated against the requirements specified
in the user request by determining the runtime performances such as execution
time of applications, instructions committed per second (IPS), throughput etc.
These measurements constitute the evaluation of the extent to which the QoS/
performance requirements specified in the user’s request rj are satisfied. The
satisfaction level of user requirement rj is denoted by sj ∈ [0, 1], where sj = 1 if
the requirement rj is fully satisfied, otherwise 0 � sj < 1 [1].

If a user provides the requirement vector ri along with the desired QoS
requirement and acceptable maximum variability in the QoS, then standard
deviation (SD) is used as a measure of QoS performance variability. The closer
the SD is to 0, the greater is the uniformity of performance data to the desired
value (rQd(rj)) and greater is the satisfaction value. The closer the SD is to 1,
the greater is the variability of performance data to the desired value and smaller
is the satisfaction value. Hence, the satisfaction value is given as follows [1]:

sj = 1 − SD (1)

SD =

√
√
√
√ 1

N − 1

N∑

i=1

(Qa(rj) − M(rj))2 (2)

M(rj) =
1

N − 1

N∑

i=1

(Qa(rj)) (3)
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where,

Qa(rj) = Actual QoS value obtained after deploying the user’s application
(e.g. actual execution time, response time, etc.). These values are in nor-
malised form.
M(rj) = The arithmetic mean of Qa(rj).
rQd(rj) = Desired QoS requirements of the user’s applications (e.g. desired
execution time, response time, etc.) for the QoS requirement rj . This value
is used as a standard value against which QoS variability is compared.
N = total number of measurements.

3.3 Utility Function

The utility function f(r) for each user request rj is a linear combination of the
satisfaction value sj and the associated weights wj multiplied by an indicator
function φ(r). The weight for each of the user requests indicates its importance
to the user and the indicator function sets the satisfaction level to zero when the
request is not satisfied. In the case of satisfied requests the value of the indicator
function is selected such that: φ(r) = (

∑

j wj)−1 normalizes the weight vector
and limit the maximum possible value of f(r) to 1 [1].

Thus, the utility function is defined as [1]:

f(r) = φ(r)
J∑

n=1

wjsj (4)

where

φ(r) =

{

0, if QoS not met.

(
∑

j wj)−1, otherwise.
(5)

If all the requirements of a user are fully satisfied then f(r) = 1; otherwise if
the requirements are partially satisfied then the value of f(r) will vary with the
amount of requirements being satisfied by a particular instance type of a CP. To
demonstrate this lets consider one simple example [1]:

Let r = [r1, r2, ...., rj ] be the user’s requirement vector while making his/her
initial request. The request contains the user’s requirements constraints and the
type of the requirement attributes are presented below:

(1) rR: Requested amount of resources required for running the user’s applica-
tion (e.g. memory, storage, CPU etc.) where rR ∈ micro, small,medium,
large, xlarge.

(2) rB : Prices of the instances specified in the user’s budget where rB ∈ Maxprice

(3) rQd: Desired QoS requirements of the user’s applications (e.g. desired exe-
cution time, response time, IPS, etc.) where rQd ∈ Dval.

(4) rMo: Maximum migration overhead a user can accept where
rM ∈ Overhead of migration.
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The value of the satisfaction vector is calculated with the help of monitoring
and detection modules (see Sect. 4) which is given by ST

i (Eq. 1). We assume that
for a user’s request with a requirement vector ri = [micro, 200 s, 400 s, £5/hr,
30%], the satisfaction vector is calculated as [1]:

ST = [1, 0, 1, 1] (6)

For simplifying the example we did not consider partial satisfaction values,
and here 0 denotes fully satisfied and 1 denotes not satisfied. Therefore the utility
value is calculated as follows if the weight vector is WT = [0.1, 0.1, 0.1, 0.3] [1]:

f(r) =

{

0, if QoS not met.

φ(r)WT ST = 0.5, otherwise.
(7)

The induction function’s value is considered to be 1 in this case and also the
utility function’s value did not exceed 0.5 even though more than half of the
requirements were fully satisfied.

These utility values will be used to predict the QoS for each CP’s instance
types model [1].

4 MyMinder Architecture

In this section we describe the architecture of MyMinder [1] that will implement
the problem formulation. Figure 1 [1] depicts the MyMinder architecture, which
includes modules for: monitoring, detection, prediction, decision making and
migration. We describe each of these modules in the following subsections:

4.1 Monitoring Module

The monitoring module is designed for monitoring the QoS performance of the
user’s application containers deployed in the VM. The performance data are
collected by local monitoring agents deployed in each user’s VM. The local mon-
itoring agents send the collected data periodically to the global monitoring com-
ponent in the monitoring module and then finally the data are stored in the QoS
performance repository. Also, the monitoring module maintains another reposi-
tory, which stores information regarding the list of available VMs from different
CPs and their prices. This information is collected by CP profiling components.

4.2 Detection Module

The detection module is responsible for detecting any QoS violation or degrada-
tion in the performance. The performance data are retrieved from the QoS per-
formance repository. It uses a window-based violation detection technique [20] to
generate QoS violation or performance degradation alarms based on the user’s
QoS requirement constraints and the user can decide the size of the window.
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Fig. 1. MyMinder architecture.

This module generates QoS violation alarms if the current performance value
falls outside the acceptable range as defined by the QoS statement. It also can
be tuned to generate a degradation alarm if the performance moves to and stays
within a defined distance of the QoS limits throughout a defined period. Degra-
dation alarms may be used to predict likely breach of QoS and so may contribute
to preventative migration. The module reports QoS violation and degradation
alarms on a continuous basis by sending them to the decision making module.

4.3 Prediction Module

The objective of the prediction module is to help identify a suitable CP instance
to which the user’s application may be migrated. Based on the user’s QoS satis-
faction values (measured by the detection module) and the user’s requirements,
the prediction module calculates the utility function (see Eq. 4) for each of the
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available CP instances. The satisfaction values for the current as well as previ-
ously deployed CP instances by the same user or different users are stored with
their corresponding utility values. These perceived utility values are used to train
the prediction models for each of the CP instances using machine learning tech-
niques. Thus, the prediction models are capable of predicting the QoS satisfac-
tion values in the destination CP for the new user’s instance which needs migra-
tion. Further, the prediction module predicts application migration/transfer time
based on the analysis of the historical migration time data (stored in the mon-
itoring module) factoring in similar type of applications and also the pair of
CPs involved in the migration. The measurements of the migration time are
previously obtained by ATA (see Sect. 5) in the migration module.

4.4 Decision-Making Module

The decision making module receives alarms from the detection module if any
QoS violation or degradation is detected, and also it takes utility function values
as input from the prediction module. It then checks with user requirement con-
straints to know whether the user wants to be informed before reaching the min-
imum requirement levels, i.e. performance degradation alert or to be informed if
the minimum requirements are not met, i.e. QoS violation alert. After confirming
user requirements, this module verifies whether the instances with different util-
ity values provided by the prediction module are currently available for selection.
If the instances are available then it evaluates the migration overhead of each
of the instances and finally ranks the instances based on their utility value and
migration overhead values. The instance with highest utility value and lowest
migration overhead is chosen for migration. The migration overhead will depend
on the type of inter-cloud migration technique being used. The migration over-
head can be defined either in terms of monetary loss or performance loss and it
usually denotes the service downtime penalty per time unit.

4.5 Migration Module

The migration module (Fig. 2) takes the decision generated by the decision-
making module as its input for transferring/migrating user applications to the
selected VM of the same CP or different CP. Once the migration module com-
pletes the task of application transfer/migration, it sends the migration overhead
measurements to the monitoring module, which stores them as historical data for
later use by the predication module. We adopt Docker containers to deploy user
applications in the VMs of the selected CPs and Docker Swarm technology [8] to
enable the transferability and portability features of Docker containers. We intro-
duce an Automated Triggering Algorithm (ATA) that takes the output gener-
ated by the Decision-making module and makes use of the Docker Swarm cluster
management and orchestration features (e.g. auto-placement, auto-restart, auto-
replication and auto-scaling) in order to meet MyMinder’s migration require-
ments. For example, if the decision making module takes a decision to migrate
the user application from CP1 to CP2, ATA firstly adds the selected VMs of
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Fig. 2. MyMinder migration module.

CP2 to the Swarm cluster and secondly, ATA de-allocates the VMs of CP1. The
Swarm cluster immediately identifies this de-allocation of VMs as node failures
and then using its self-healing mechanism it auto-restarts the lost application
containers in CP2. Although this action is just a rescheduling mechanism of the
Docker Swarm platform due to the node failures, this appears to be a migra-
tion from CP1 to CP2 at real-time from a cloud user perspective. The following
section explains the transferability/migration operations in details.

5 Migration Using Docker Swarm

As stated earlier, by proposing MyMinder we do not aim to design a new inter-
cloud migration technique, but rather we aim to design a framework for cloud
users which can take correct decisions on when and where to migrate their appli-
cations in case of QoS violations and degradations. In order to demonstrate the
capability of MyMinder in performing migrations, we prototype the migration
using the existing Docker Swarm technology in a lab-based OpenStack cloud.

In addition to using the Docker Swarm orchestration features we need to per-
form allocation and de-allocation of resources (VMs) to/from the Docker Swarm
cluster in order to complete the migration operation. Specifically, we need to allo-
cate new VMs (to which the applications need to be migrated) from the same
CP or a different CP in the Swarm cluster and de-allocate current VMs (which
failed to meet users’s satisfaction) from the Swarm cluster. Figure 3 shows the
migration scenario within a single CP, whereas Fig. 4 depicts inter-cloud migra-
tion scenario. However, adding VMs to a Swarm cluster from multiple CPs is
challenging due to the different approaches followed by different CPs in providing
access to their virtual resources. As reported in [13] the public CPs organize their
IaaS by using mainly two approaches which are identified as project-based and



Using Docker Swarm with a User-Centric Decision-Making Framework 93

Fig. 3. MyMinder migration scenario 1 (migration within a single cloud provider
(CP1)): (a) start new VMs, (b) allocate new VMs to Swarm Cluster, (c) de-allocate
old VMs from Swarm cluster, (d) terminate the old VMs.

region-based service deliveries. Any multi-cloud deployment must consider the
occurrence of both approaches in parallel. Therefore, we introduce an Automated
Triggering Algorithm (ATA) to merge different approaches of different CPs and
allocate/de-allocate VMs to Swarm cluster. To connect the Swarm cluster with
a specific public CP it is required to have a configuration file for storing details
used to communicate with the CPs. This can include authentication credentials
and driver-specific configuration options. In this paper, the focus is on multiple
VMs from a single private OpenStack cloud as depicted in Fig. 3, so the dis-
cussions on authentication credentials and driver-specific configurations are not
included. Deployment in multiple public CPs will be considered in our future
work once the decision-making module is functional; readers interested in details
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Fig. 4. MyMinder migration scenario 2 (migration across cloud providers (CP1 to
CP2)): (a) start new VMs in CP2, (b) allocate new VMs to Swarm Cluster, (c) de-
allocate old VMs from Swarm cluster, (d) terminate the old VMs from existing cloud
provider (CP1).

of multi-cloud deployment can refer to [13]. We describe MyMinder’s migration
operation using ATA in the following subsection.

5.1 Automated Triggering Algorithm (ATA)

This section describes MyMinder’s migration operation using ATA, which
includes four stages. We present the pseudocode of the algorithm in Algorithm
1 and explain the stages as follows.

1. Resource (VM) Provisioning: ATA runs a configuration file for provi-
sioning new VMs (as decided by the decision making module) either from the
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Algorithm 1.
Automated Triggering Algorithm

input:

V Mnew : list of N new VMs (name and flavour of the VMs) to be allocated to Swarm
cluster

V Mold : list of N old VMs (name and flavour of the VMs) to be de-allocated from
Swarm cluster

CPsel : selected CP where the new VMs need to be allocated
Cred : credential file that includes the authentication credentials for the new VMs

Driver : IaaS driver for the selected CP
output: Moverhead - total application migration overhead, which is calculated as the summation

of VM allocation, VM de-allocation, and application transfer time.
explanation: token = Swarm cluster joining token, one for master node and one for worker

node,

1: for each V Mnewi where i=1,...,N do
2: ssh to V Mnewi

3: start VM(V Mnewi, Cred, Driver) in the CPsel

4: end for
5: allocation start time = current time()
6: for each V Mnewi where i=1,...,N do
7: if (V Mnewi is INITIAL VM) then
8: install docker engine()
9: token[master/worker] = swarm init()

10: else
11: allocate VM(token[master/worker])
12: end if
13: end for
14: allocation end time = current time()
15: allocation time = allocation end time - allocation start time
16: de-allocation start time = current time()
17: for each V Moldi where i=1,...,N do
18: de-allocate VM(SwarmLeave[master/worker])
19: end for
20: de-allocation end time = current time()
21: de-allocation time = de-allocation end time - de-allocation start time
22: transfer start time = current time()
23: transfer application (from V Mold to V Mnew) � this is performed by Swarm cluster’s

auto-restart feature
24: transfer end time = current time()
25: transfer time = transfer end time - transfer start time
26: for each V Moldi where i=1,...,N do
27: terminate VM(V Moldi, Cred, Driver) in the CPexisting

28: end for
29: Moverhead = allocation time + de-allocation time + transfer time
30: return Moverhead

same CP (as shown in Fig. 3(a)) or from a different CP (as shown in Fig. 4(a)).
This configuration file includes the detailed information about the VMs (e.g.
flavor and name) along with the authentication credentials and IaaS drivers.
In this stage all the requested VMs are started (pseudocode lines 1–4). This
installation is done by running SSH-based scripts. ATA starts the second
stage only when all the requested VMs are running successfully and all the
security groups are ready.

2. VM Allocation to Swarm Cluster: ATA installs Docker Engine in the
VMs (pseudocode line 8) and allocates these VMs to the Swarm cluster (as
shown in Figs. 3(b) and 4(b)) (pseudocode line 11). During the allocation
process their roles (master/ worker) are defined by calling the CP specific
platform driver [6]. In Docker Swarm platform nodes acts as either masters
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or workers. The master performs all scheduling tasks (auto-restart, auto-scale
etc.) and the workers run the application containers. Therefore, the VMs
which are master nodes are added first and then the worker nodes. If any of
joining fails then ATA again runs the joining procedure until all the requested
nodes are successfully added to the Swarm cluster.

3. VM de-allocation from Swarm Cluster: To reach the desired state (as
given by the output of the decision-making module) the user application con-
tainers need to be rescheduled to the newly added Swarm nodes (new VMs).
This is achieved by de-allocating the current Swarm nodes (old VMs) (as
shown in Figs. 3(c) and 4(c)) (pseudocode lines 17–19) which in turn triggers
the Swarm master to auto-restart the application containers in the available
nodes (new VMs). Thus, in this stage all the old VMs are de-allocated from
the Swarm cluster. After the de-allocation procedure, the Swarm scheduler
recognises this as node failure and then using its auto-rescheduling features
it automatically transfers all the application containers to the newly added
Swarm nodes (new VMs) (pseudocode line 23).

4. Resource (VM) Termination: After the containers are auto-restarted in
the new Swarm nodes, ATA terminates the old VMs (as shown in Figs. 3(d)
and 4(d)) and also deletes the old security groups (pseudocode lines 26–28).
Finally, the total application migration overhead is calculated by adding the
time required for VM allocation, VM de-allocation, and application transfer
(pseudocode line 29).

6 Experimental Evaluation

In this section we evaluate the performance of MyMinder’s migration operation
while migrating user applications from one VM to another VM in a lab-based
OpenStack cloud. As the decision making module is not yet fully functional,
we trigger the migration module manually by requesting migration of a user
application from one VM to another VM.

6.1 Experimental Set-Up

We built a multi-node Swarm cluster in an OpenStack cloud test-bed which
consists of four compute nodes. All the compute nodes are Dell PowerEdge R420
servers which run CentOS 6.6 and have 6 cores, 2-way hyper-threaded, clocked
at 2.20 GHz with 12 GB DRAM clocked at 1600 MHz. The nodes include two
7.2K RPM hard drives with 1 TB of SATA in RAID 0 and a single 1GBE port.
KVM is the default hypervisor of the compute nodes.

To measure the application transfer time we run a simple voting applica-
tion [29] from Docker [7] that is representative of real world microservice cloud
applications. The application has several microservices. The voting application is
composed of: (i) Python web app (vote-app) which allows users to vote between
two options (cats or dogs), (ii) Redis queue which collects new votes, (iii) .NET
worker which consumes votes and stores them in a database, (iv) Postgres



Using Docker Swarm with a User-Centric Decision-Making Framework 97

database backed by a Docker volume (volume is created in the Swarm man-
ager node), and (v) Node.js webapp (results-app) which shows the results of the
voting. The services are deployed in the Swarm with certain constraints. The
Python web app and the redis are deployed with two replicas and with a restart
policy which restarts the containers on node failures. The Node.js webapp is also
deployed with node failure restart policy and with one replica. But the Postgres
database and the .NET worker are deployed with a placement constraint which
starts them on the Swarm manager node only and without any restart policy.
The database is stored in the host machine (Swarm manager node) which pro-
vides data persistence for the application. Therefore, in our experiments the
Swarm manager node is not de-allocated (also referred to as drained) as the
Docker volume is attached to this VM. We have put this placement constraint
because if we deploy the Postgres container in one of the worker nodes which
is drained later then losing the data of the Postgres container would cause the
application to fail.

However, this approach does not allow migration of application containers
with attached databases: to perform such migrations Docker Swarm requires addi-
tional storage plugins. Open-source container data volume orchestrators such as
Flocker [9], Portworx [21] and REX-RAY [27] can be used for migrating stateful
Dockerized applications. Unlike a Docker data volume which is tied to a single
server, the data volume provided by these storage drivers is portable and can be
used with any container in the Swarm cluster. Flocker can only be used within
a single data centre whereas, Portworx and REX-RAY can migrate data across
CPs. In our future work we will consider stateful application (databases) migra-
tion across CPs by using the storage drivers such as Portworx or REX-RAY.

6.2 Experimental Results and Discussion

MyMinder’s migration operation is performed by Docker Swarm and with the
help of ATA allocation and de-allocation of VMs (Swarm nodes) to/from Docker
Swarm cluster. We examine the migration performance by measuring the allo-
cation and de-allocation time of the Swarm nodes and the application transfer
time taken by Docker Swarm node manager (scheduler). In order to collect these
measurements we initially set the Swarm cluster with four VMs allocated as the
Swarm nodes where one of the VMs acts as the Swarm master node and rest of
the three VMs act as Swarm worker nodes. All four VMs are ‘medium’ flavour
instances from OpenStack. Later we add three new ‘large’ flavour VMs (as Swarm
worker nodes) to the Swarm cluster and remove the three ‘medium’ flavour VMs
(Swarm worker nodes) one by one. The list of the VMs for addition and deletion
are stored in a configuration file which is sent to the ATA to trigger the Swarm
cluster’s node allocation and de-allocation steps.

In the Fig. 5, we present the time taken to allocate new VMs (the new “large”
flavour VMs as Swarm worker nodes) to the existing Swarm cluster, the time
taken to de-allocate the existing VMs (the “medium” flavour VMs running as
Swarm worker nodes) from the Swarm cluster, and the application transfer time
from one VM to another VM which is performed by the Docker Swarm. We
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present the averaged values of the observed measurements, where the alloca-
tion, de-allocation, and transfer were performed 20 times. The allocation and
de-allocation time are almost the same every time but the transfer time showed
some variation in a 10 s range when we repeated the transfer procedure. As shown
in Fig. 5 the time taken to allocate one Swarm worker node is less than 1 s and to
allocate all the three worker nodes together is between 1 to 3 s. The de-allocation
time is between 1 to 2 s to remove 1 worker node and between 3 to 6 s to remove
all three worker nodes one by one. De-allocation takes longer than the alloca-
tion time because the nodes are removed sequentially to avoid over stressing the
Swarm master in rescheduling the application containers, whereas allocation is
done in parallel as the Swarm master does not assign any existing container on
the newly allocated nodes until any new application is deployed or any existing
node is failed [13]. Importantly, we observe that once the ‘medium’ flavour VMs
are de-allocated from the Swarm cluster, the application containers running on
those VMs are rescheduled to the new VMs (the ‘large’ flavour VMs). The appli-
cation reschedule/transfer time is around 20 s for a single node and it is around
50 s for the three nodes, which is shown in the Fig. 5. The reschedule/transfer
is performed using Docker Swarm’s auto-restart feature. Since the de-allocation
is performed sequentially, the Swarm scheduler performs the rescheduling of the
application containers in the same order in which the their hosted nodes are
de-allocated. We observe that during the transfer period when the Swarm node
with the results-app (Node.js) containers is drained we are not able to browse
the results of the poll until the container is rescheduled and restarted.

If we add up the time taken for allocation, de-allocation, and application
reschedule/transfer, we get the overall migration time as observed in the Fig. 5,
which is around 23 s if the migration requires a single node allocation/de-
allocation and around 59 s if the migration requires multi-node allocation/de-
allocation. These migration overhead results give us an understanding of the
effectiveness of the proposed ATA in migrating applications across VMs in an

Fig. 5. Total application migration time as summation of VM allocation, de-allocation,
and transfer time.
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OpenStack cloud environment and we do not intend it to be compared with
the inter-cloud migration performance across public clouds. We performed the
migration in a private cloud environment in order to build the proof of concept
of the migration functionality of MyMinder. In future, we will carry out further
experiments on evaluating ATA in migrating cloud application across public CPs
in order to build the proof of concept of the framework as a whole.

7 Conclusion and Future Work

In this paper we present the architecture of MyMinder [1], a post-deployment
decision making framework, which can detect QoS violation and performance
degradation and dynamically decide whether a user’s VM requires migration
from the current provider to another provider. Also, we present the problem for-
mulation [1] for selecting the most suitable CP in the case that the VM requires
migration from the current provider. As an extension, we present MyMinder’s
migration module and demonstrate its feasibility in performing user application
migration across VMs from either the same CP or different CP. The MyMin-
der migration prototype adopts the widely accepted Docker Swarm technol-
ogy. To merge and automate the migration steps, we propose an Automated
Triggering Algorithm (ATA) that performs VM allocation and de-allocation
to/from the Docker Swarm cluster in addition to the core Docker Swarm auto-
rescheduling feature. We evaluate the performance of MyMinder’s migration pro-
cess by deploying it in a lab-based OpenStack testbed, where a cluster of Docker
Swarm nodes is created using the VMs and application containers are transferred
amongst the Swarm nodes. The experimental evaluation demonstrates that we
can migrate user applications from one VM to another VM within a single CP
without depending on the CP and with minimum migration overhead. This eval-
uation is an attempt to verify the feasibility of MyMinder’s migration process
and does not include performance results from inter-cloud migration across pub-
lic clouds. In future, we consider to evaluate the performance of the proposed
ATA in migrating applications across public CPs once the monitoring, detection,
prediction, and decision-making modules are fully functional.
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Abstract. Driven by the successful business model, cloud computing is
evolving rapidly from a moderate size data center consisting of homoge-
neous resources to a hyper-scale heterogeneous computing environment.
The evolution has made the computing environment ever-increasingly
complex, thus, raises challenges for the traditional approaches for manag-
ing a cloud environment in an efficient and effective manner. In response,
a decentralized system architecture for cloud management is introduced.
In this architecture, the management responsibility and resource orga-
nization in a conventional cloud environment are re-considered. The
re-consideration results in composing a cloud environment into three
entities including the Infrastructure, the Cloud Utility and Information
Base, and Application Autonomous Systems. In this configuration, ser-
vice providers focus on providing connected physical resources and intro-
ducing featured resources. Information related to the Infrastructure is
stored and periodically updated in the Information Base. A consumer
employs an Application Autonomous System for managing the life-cycle
of a cloud application. An Application Autonomous System in the con-
text of this paper is defined as a self-contained entity that encapsulates
a cloud application, the associated resources and the management func-
tions. An Application Autonomous System uses the Information Base
and Cloud Utilities to locate and acquire desired resources, subsequently
resources are deployed on the Infrastructure by invoking Cloud Utili-
ties. Thereafter, the Application Autonomous System manages the life-
cycle of both the application and the associated resources. Consumers
are offered opportunities to employ preferred algorithms and strategies
for this management. Thus, the responsibility of cloud application man-
agement and partially the resource management has shifted from service
providers to the consumers in this decentralized system architecture.

Keywords: Cloud architecture · Decentralized management
Resource management · Service management

1 Introduction

The success of the business model and the service model of the utility computing
have motivated service providers to build and expend their data centers to an
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unprecedented size. It has been estimated that Google data centers may consist
of one million servers in 2013 [1] and grew to ∼2.5 million servers in 2016 [2];
Facebook data centers consist of ∼60 K servers in 2010 [3]; and a more recent
Microsoft data center has the capacity to host ∼224 K servers on a single site [4].
At the same time, modern data center servers are built with tens of processing
cores and hundreds of Gigabytes of system memory, the actual number of virtual
machines and/or containers deployed in a data center can be several magnitude
more than the physical servers. Along with the emerging trends for supporting
High-Performance Computing (HPC) applications, a wide variety of heteroge-
neous hardware resources have been introduced to the cloud environments. The
management of such large scale and diverse resources becomes increasingly chal-
lenging for cloud service providers.

Currently, the majority of existing cloud management platforms can be
categorized by the cloud service models, namely Software-as-a-Service (SaaS),
Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS), defined by
the National Institute of Standards and Technology (NIST) [5]. The cloud plat-
forms for managing IaaS, for example OpenStack [6], provide tools and util-
ity libraries for managing physical and virtual resources. The main challenges
for managing IaaS are on the resource allocation efficiency and infrastructure
operational efficiency from a technical perspective. The IaaS management plat-
forms also provide Application Programming Interfaces (APIs) and user inter-
faces to the resource consumers. Consumers use these interfaces for provisioning
resources in a self-service mode. For instance, a consumer (either an user or a pro-
gram) can acquire resources through the interfaces provided by the management
platform. The resource scheduling and allocation components of the management
platform decide where the resources (e.g., virtual machines or containers) should
be allocated. This poses two concerns. First, resources are provisioned and allo-
cated before the deployment of the actual cloud services. This process does not
consider the characteristics of each individual service nor the inter-relationships
between services that all together constitute as a complete cloud application.
This can potentially be harmful to the overall performance of the cloud applica-
tion, due to that the underlying virtual infrastructure/resources were not con-
structed/provisioned in an optimal configuration. Second, in response to the
quantity and diversity of the underlying resources to be managed, the increas-
ing complexity of resource acquisition requirements, the more restricted service
level agreement, the volume of requests for resources and the dynamicity of the
environment, novel management strategies for efficient and effective provisioning
and managing the life-cycle of resources (physical and virtual) are needed, which
determines a sustainable cloud environment.

The subscribers of IaaS services are responsible for configuring the leased
resources and the subsequent deployment of the services/applications on the
resources. Often, the configuration processes and the deployment of ser-
vices/applications are time consuming and may require domain-specific knowl-
edge and skills. To ease these processes, management frameworks and plat-
forms for PaaS start gaining popularities, for example, OpenStack Solum [7]
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and Apache Brooklyn [8]. These PaaS management platforms provide facilities
for consumers to express their needs and requirements in a blueprint alike style,
articulated in domain-specific languages, for example, Topology and Orchestra-
tion Specification for Cloud Applications (TOSCA) [9] and Cloud Application
Management for Platforms (CAMP) [10]. These languages are sufficiently flexible
to express the details of the entire service and resource life-cycle management,
and surely results in a blueprint that is complex and subject to error-prone.

Nevertheless, the service and resource deployment are still two separate pro-
cesses. Resources are provisioned and deployed by invoking IaaS management
functions, for example, in an OpenStack managed environment, an application
and resource orchestration framework, such as Heat [11], invokes OpenStack
Nova services (e.g., nova-api, nova-conductor, nova-scheduler and nova-compute)
for provisioning and deployment of virtual machines [12], and uses OpenStack
Neutron for creating virtual networking environment [13]. Given that the under-
lying resources are ready to use, the Heat deploys services/applications on the
resources. This also implicitly allows cloud consumers to have full control over
the management of applications as well as the underlying resources and subse-
quently narrows down the opportunities for cloud service providers to improve
resource utilization, power efficiency and potentially the quality of services. Note
that SaaS is often built on top of PaaS and IaaS. SaaS has the main focus on
providing functions, utilities and services to consumers, directly. Thus, SaaS is
outside of the context of this paper.

Additionally, the IaaS/PaaS resource allocation components typically do
not take the characteristics of the services into account when provisioning
resources. The optimizations are generally carried out afterwards during the
service/application lifetime. Such optimizations are traditionally done through
monitoring various aspects of resource usages, such as processor utilization, mem-
ory utilization, and network bandwidth consumption. But, this is often done for
the interests of service provides, for instance, virtual machine consolidations for
improving server utilizations. Certainly, more restrictions and requirements (for
both consumers and service providers) can be expressed in a blueprint, provided
that the service descriptionlanguages are capable of doing so. As the size of the
data center increases and the number of services/applications hosted by the data
center grows rapidly, the management overhead associated with such optimiza-
tion becomes non-negligible. Shifting such overheads to cloud consumers may
results in a more sustainable environment. In other words, shifting the man-
agement responsibility to consumers and splitting the centralized management
overheads into distributed management on a per application basis. In the con-
text of this paper, a cloud environment is virtually divided into Application
Autonomous Systems (AASs). Each AAS presents a self-contained management
domain and logically manages a cloud application. In this configuration, con-
sumers need to bear the cost for the management processes (the underlying
resources that are needed to host the management functions) and cloud service
provides only need to provide resources and a set of common utilities that are
essential for an AAS to function.
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An AAS interprets and executes an application Blueprints consisting of many
services and taking into account of the entire collection of services to deter-
mine an optimal set of resources, and subsequently controls the application and
resource life-cycle management. It is also possible for an AAS to be reused for
the similar type of applications. In this respect, it is imperative to maintain
a separation between application life-cycle management and resource manage-
ment. Thus, an AAS can address the potential conflicts between cloud service
management and cloud resource management while maximizing user experience
and cloud efficiency on each side, as well as making it is possible to implement
continuous improvement on resource utilization and service delivery.

The remainder of this paper is organized as follows. Backgrounds and dis-
cussions on several related works are given in Sect. 2. The proposed solution is
introduced in Sect. 3, Important concepts and detailed architecture are given in
Sect. 4. Future directions and conclusions are drawn in Sect. 5.

2 Background and Related Work

Existing IaaS/PaaS management platforms manage the life-cycle of cloud
applications together with their associated underlying resources. Three rep-
resentative platforms are used in this section to highlight the mainstream
approaches for managing a PaaS/IaaS cloud environment. Figure 1 shows the
application/resource life-cycle management schemes employed by the OpenStack
Solum [7], Apache Brooklyn [8], and OpenStack Heat [11]. These platforms pro-
vide tools for deploying and managing services/resources, and provide APIs to
interface with cloud consumers and/or applications. Solum and Brooklyn are
usually considered to be PaaS management platforms, while Heat is an ser-
vice/resource orchestration framework for IaaS.

Application Lifecycle Management (CAMP Compatible)

Application Lifecycle Management (TOSCA Compatible)

IaaS Management (TOSCA Compatible)

Solum 
Blueprint

Solum 
Blueprint

Brooklyn 
Blueprint
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va

-A
PI

No
va

- A
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Nova-ConductorNova-Conductor

Fig. 1. An overview of cloud application/resource life-cycle management in OpenStack
Solum, Apache Brooklyn and OpenStack Heat.

The Solum and Brooklyn frameworks allow cloud consumers to deploy
and execute blueprints written in a service description language, particularly,
TOSCA and CAMP. These languages are used to describe the characteristics
of application components, deployment scripts, dependencies, locations, logging,
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policies, and so on. The Solum engine takes a blueprint as an input and converts
it to a Heat Orchestration Template (HOT), this template can be understood
by the application and resource management engine (Heat). The Heat engine,
thereafter, carries out the application and resource deployment by invoking the
corresponding service APIs that are provided by the underlying cloud infras-
tructure framework, for example, Nova and Neutron APIs.

In contrast, Brooklyn engine converts a blueprint into a series of jCloud [14]
API calls that can be used to interact with the underlying cloud infrastructure
management components. For example, a jCloud API call for creating an virtual
machine in OpenStack is sent to the nova-api component. The nova-api com-
ponent notifies the nova-scheduler component to determine where the requested
virtual machine should be created. Once an suitable server is identified, the
request is forwarded to the nova-compute component to carry our the actual
deployment on the selected server. This “Request and Response” approach is
simple, robust, and efficient. However, it should be noted that each request is
processed independently, making it impossible to consider relative placement of
virtual machines associated with multiple requests. Additionally, this “Request
and Response” approach does not support the optimal deployment for a group
of services that all together are considered as a complete cloud application. This
limitation is not specific to virtual machine placement, but also applies to the
deployment of containers, for example in a Kubernets [15,16] or Mesos [17] man-
aged containerized environments.

3 Architecture Overview

Conventional clouds provide interfaces to consumers for consuming resources
in a self-service manner. Either in an IaaS or a PaaS model, beneath the user
interfaces, the underlying resource management typically take a centralized man-
agement approach. Recall from the discussions given in Sects. 1 and 2 that due
to the ever-increasing size of the data center and resource heterogeneity, the
centralized resource management systems are continuously being challenged. In
response, a decentralized management architecture is introduced, as shown in
Fig. 2. The main design principle is to divide a cloud environment into three
entities including the Infrastructure, Cloud Utilities and Information Base, and
Application Autonomous Systems. The Infrastructure provides interconnected
physical resources. Information related to resources, such as server status and
computational resource availabilities, are stored and periodically updated in the
Information Base. An AAS is a self-contained entity that encapsulates a cloud
application, the associated resources and the management functions. AASs use
the Information Base and Cloud Utilities to locate and acquire resources, and
resources are deployed on the Infrastructure by invoking the Cloud Utilities.
Thereafter, the AAS manages the life-cycle of both the application and the
associated resources.

In this design, the centralized resource management is divided by the num-
ber of AASs. Each AAS makes its own decisions on what resources to be used
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Fig. 2. Decentralized system architecture based on Application Autonomous Systems.

and where to provision the resources. This gives an opportunity to the con-
sumers to employ preferred strategies for the management of their applications
and resources. In addition, since each AAS manages a relatively small number
of services, more sophisticated management strategies and optimization meth-
ods can be employed. All AASs indirectly compete with each others for the
best of resources. This implicitly shifted the management costs and responsibili-
ties from service providers to consumers. As all information about the resources
are logged into the Information Base, an AAS can query the Information Base
with desired features to locate appropriate resources. This also allows service
providers to focus on providing better quality resources and makes the Infras-
tructure more static. When the number of AAS increases, it only makes AASs
harder to compete with each others for resources. This has no effects on the
underlying resources, the Cloud Utilities, and the Information Base that are
organized by the service provider. At the same time, when adding more resources
and/or introducing different types of resources to the Infrastructure, AASs are
not affected. New features, such as computation accelerators, are advertised to
AASs. It is the AASs’ responsibility to locate the featured resources. Thus, a
cloud environment that employs the decentralized management becomes more
sustainable.

Since a cloud environment is logically divided into a number of Application
Autonomous Systems, the answers to what defines a management domain for
an AAS, how a management domain can be constructed, and how an AAS
evolves internally and externally with the environment to achieve the designated
goals, ensures the proposed decentralized management approach to function in
an efficient and effective manner.
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4 Application Autonomous System

An Application Autonomous System is an independent entity. An AAS manages
a group of services that can be logically grouped together to form a complete
cloud application. An AAS also manages the resources that are associated with
the managed cloud application. AASs do not have direct intercommunications
with each others. Each AAS reacts upon the changes in the cloud application
and the environment. Conceptually, the environment is the Infrastructure. The
changes in the environment is the changes of the status of the infrastructure, for
example, the changes of the status on the computational resource availability
of each server and/or the average networking traffic load on a particular link.
The Resource Management component interacts with both the Application Man-
agement and the Infrastructure. Thus, the Resource Management must employ
algorithms/strategies that can satisfy both the consumers’ and service providers’
interests. In contrast, the Application Management is an optional component for
managing applications at various levels. In the absence of the application-specific
interfaces, the Application Management manages the life-cycle of the application
(e.g., deploy and decommission). With provided application-specific interfaces,
more advanced optimizations can be carried out (e.g., load-balancing).

The AAS-based management approach provides PaaS services. It must be
noted that the definition of the platform is a broad term. It can be a manage-
ment framework, such as Apache Brooklyn, an application server, such as Google
App Engine, or an analytic platform, such as Hadoop/Spark. The AAS-based
management approach can be considered as an management framework, such
as Apache Brooklyn. Application servers or analytic platforms can be seen as
cloud applications in this context. However, the differences between AAS and
the Brooklyn alike frameworks lie on the cloud application and resource manage-
ment styles. More specifically, the cloud application and resource management in
Brooklyn alike frameworks are tightly coupled. In other words, cloud applications
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and the associated resources coexist. Decommission of a cloud applications
implies freeing the underlying resources. In contrast, AAS is designed based
on the concept of Separation of Concerns [18], i.e., cloud applications and the
associated resources are manged independently, but they are also complementary
to each other.

4.1 The Concept of Separation of Concerns

The main idea of the Separation of Concerns is to decouple the cloud application
management from the associated resource management, while the desires (e.g.,
needing for more resources) from cloud application management actions can be
forwarded asynchronously to the resource management functions, meaning that
the resource management functions can decide whether to react upon receiv-
ing a desire based on the feasibility of doing so. Inversely, the outcomes from a
resource management action (e.g., virtual machine migration to avoid resource
contentions or server consolidation for improving power efficiency) can be fed
back to the cloud application management functions in the same asynchronous
manner. The separation yields several unique features. First, resources do not
have to rely on the existences of cloud applications. When a cloud applications is
at the end of its lifetime, the underlying resources can be kept by the AAS, so that
the AAS can be reused as a pre-provisioned template for incoming cloud appli-
cations that have similar characteristics and requirements on resources, thus,
it can accelerate the service delivery processes and improves user experiences.
Second, the separation allows the cloud application and resource management
functions to focus on their respective optimizations. Third, cloud application
optimization and management generally require application-specific interfaces
to interact with. More often, these interfaces are not available for many existing
cloud deployable applications. In such a case, the absence of the application-
specific interfaces does not affect the deployment and execution of the cloud
application.

4.2 Resource Management in Application Autonomous Systems

A striking characteristic of traditional cloud management platforms is apparent,
that global optimizations between multiple services are not generally available
due to the way in which resource requests are individually processed. The Sepa-
ration of Concerns provides direct architectural support for considering optimal
resource requests from multiple interacting services simultaneously.

In order to separate the concerns of cloud application life-cycle management
and resource life-cycle management, a cloud application, especially when a cloud
application consists of several dependent services, need to be expressed in a ser-
vice description language, for example, TOSCA and CAMP, in a blueprint style.
In the context of AAS, a cloud application blueprint deployment starts by decom-
posing a blueprint into two parts: Resource Blueprint and Application Blueprint
which can be used by the AAS resource/application management, respectively,
as shown in Fig. 4 (label 1). The Resource Blueprint is first sent to the Resource
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Fig. 4. Resource management in an Application Autonomous System.

Discovery and Resource Selection components to locate and acquire the most
appropriate (defined by constrains, parameters, and preferences of both users
and systems) resources for the cloud application, as indicated in Fig. 4 (label 2
& 3). The returned location information and the Resource Blueprint are then
sent to the Resource Orchestration engine (e.g., a customized Heat Engine) to
carry out the actual resource deployment on the infrastructure. The deployment
processes are essentially invoking the Cloud Utilities, for example, in a Kernel-
based Virtual Machine (KVM) [19] managed virtual environment, provisioning
virtual machines on a designated server requires to invoke a series of libvirt API
calls. These libvirt APIs thus must be included as a part of the Cloud Utilities.
The resource deployment process results in the return of a number of resource
handlers (A resource handler can be a login account includes, for example, user
name, access key, and IP address to a virtual machine). These resource handlers
are sent back to the Resource Orchestration engine, which, in turn, will use
them to finalize the Application Blueprint. The Application Blueprint is then
forwarded to the corresponding application life-cycle management component
to carry out the application deployment on the pre-provisioned resources. This
process is shown in Fig. 4 (label 6, 7, 8 and 9).

In contrast to existing frameworks, the proposed service delivery model will
facilitate blueprint developers to specify comprehensive constraints and quality
of service parameters for both services and resources. Based on the specified
constraints and parameters, in contrast to existing solutions, can provide an ini-
tial optimal deployment of the resources. For example, creating and identifying
resources on adjacent physical servers to minimize communication delay or provi-
sioning containers with attached GPUs to balance performance and cost. During
the life-cycle of the resources, optimizations (e.g., load-balance and elasticity)
are done by the Resource Management functions, as shown in Fig. 4 (label 2, 3
and 4), in-conjunction with the resource telemetry services, as shown in Fig. 3,
in a closed feedback-react loop.
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4.3 Cloud Application Management in Application Autonomous
Systems

The cloud application deployment is an incremental process. Depending on
the different types of resources and the resource availabilities, each individual
resource provisioning process may take different time to complete. For instance,
given a blueprint that requires a virtual machine and a container resources,
provisioning a virtual machine may take several tens of seconds, where as pro-
visioning a container may only take several seconds. In order to improve the
service delivery experiences, the resource handlers are returned asynchronously.
Upon receiving a resource hander or a group of resource handlers, a temporary
Application Blueprint is constructed, as shown in Fig. 4 (label 7 & 8). The tem-
porary Application Blueprint is then sent to the Service Orchestration engine for
deployment, as shown in Fig. 5. Subsequently, the Service Orchestration engine
invokes the Cloud Utilities for the actual cloud application deployment. It must
be noted that all deployment related information is embedded in the Application
Blueprint, as shown in Fig. 5.

The Optimization component together with the Application Telemetry ser-
vices (as shown in Fig. 3) attempt to perform continuous improvement over the
life-time of the deployed blueprint. This is achieved by periodically reconstruct-
ing an Application Blueprint based on the information received from the Appli-
cation Telemetry service, and re-submit the updated Application Blueprint to
the Service Orchestration engine for the execution of the optimization actions,
such as, load-balancing.

Fig. 5. Application management in an Application Autonomous System.
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The concept of the Separation of Concerns has been realized in the Cloud-
Lightning project [20]. In the service provider-consumer context, CloudLightning
defines three actors including End-users (application/service consumers), Enter-
prise Application Operator/Enterprise Application Developer, and Resource
Provider. These actors represent three distinct domains of concerns.

– For the end-users, the concerns are cloud application continuity, availability,
performance, security, and business logic correctness.

– For the Enterprise Application Operators/Enterprise Application Developers,
the concerns are cloud application configuration management, performance,
load balancing, security, availability, and deployment environment.

– For the Resource Providers, the concerns are resource availability, operation
costs such as power consumption, resource provisioning, resource organization
and partitioning.

CloudLightning is built on the premise that there are significant advantages
in separating these domains and the use of service description languages has been
designed to facilitate this separation. Inevitability, there will always be concerns
that overlap the interests of two or more actors. This may require a number of
actors to act together, for example, an Enterprise Application Operator may need
to configure a load-balancer and a Resource Provider may need to implement a
complementary host-affinity policy to realize high-availability. These overlapping
concerns are managed by each individual Application Autonomous Systems by
providing vertical communications between the application life-cycle manage-
ment and the resource life-cycle management.

Enterprise Application Operators/Enterprise Application Developers are
responsible for managing the life-cycle of Application Blueprints. At the same
time, the underlying resources are managed independently by the Resource
Provider. As a result, the following advantages accrue:

– continuous improvement on the quality of the Blueprint services delivery;
– reducing the time to start a service and hence improve the user experience

by reusing resources that have already been provisioned;
– resource optimizations and energy optimization;
– creating a flexible and extensible integration with other management frame-

works such as the OpenStack Solum or Apache Brooklyn management system.

The first step in the CloudLightning is to establish a clear services inter-
face between the service consumer and the service provider. The essence of this
interface is the establishment of a separation of concerns between cloud service
consumers and cloud service providers. In this view, various service implementa-
tion options can be assumed to already exist and consumers no longer have to be
an expert creator of those service implementations. Consumers should not have
to be aware of the actual physical resources being used to deliver their desired
service, however, given the fact that multiple diverse implementations may exist
for each service (each on a different hardware type, and each characterized by
different price/performance attributes) consumers should be able to distinguish
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and choose between these options based on service delivery attributes alone. Ser-
vice creation, in the approach proposed here, remains a highly specialized task
that is undertaken by an expert.

5 Conclusion

The Application Autonomous System based on the decentralized cloud manage-
ment tries to re-align the evolving cloud environment with the services-oriented
architecture of conventional clouds. Application Autonomous Systems manage-
ment uses a vertical management approach that implements the concept of Sepa-
ration of Concerns. It is a more sophisticated management approach than current
self-service models. The implementation allows the application management and
the resource management to operate independently, consequently, it separates
consumer concerns with optimizing cloud applications and service provider con-
cerns with the efficient use of resources and the reduction of operational costs.
Application Autonomous Systems virtually and logically divide a cloud environ-
ment in to a number of self-contained management domains, hence, it represents
a decentralized system architecture. The application and resource decentraliza-
tion shift the management responsibility from cloud service providers to con-
sumers. This makes a cloud service provider focusing on providing resources, and
consumers on taking responsibility for managing applications, thus, it results in
a more sustainable computing environment.
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Abstract. Smart Cities are emerging based on the idea of provisioning and
processing large amounts of urban data for various use cases. Thereby, Urban
Data Platforms are usually employed to accumulate and expose the large
amounts of governmental (i.e. public sector), sensor, static and real-time data in
order to enable the community to create valuable applications and services for
future Smart Cities. Hitherto, the Open Data initiative was seen as the key driver
to providing large amounts of data within a city. Open Data platforms employ
so-called data registries in order to keep track of the available datasets at various
sources spread throughout the city, with CKAN currently being among the most
popular data catalog software worldwide. With the emergence of frameworks for
large scale distributed computing and storage, such as Hadoop and the
belonging distributed file systems (HDFS), there is an inherent need for bridging
the worlds of metadata catalogs and distributed data processing towards the goal
of providing sophisticated urban ICT services. The current paper constitutes a
first attempt on this new field, by prototyping and evaluating components that
enable the collaboration and interplay between CKAN and Hadoop/HDFS. This
interplay is realized through extensions to CKAN and its harvesting process and
its benefits are demonstrated by belonging case studies.

Keywords: Smart Cities � Open Data � Distributed processing
Hadoop � CKAN

1 Introduction

One pivotal concern for the creation of real Smart Cities is the establishment of a
working data processing pipeline. Typical Smart City solutions require the integration
of big and diverse data on (potentially) distributed systems. A first step towards this
goal was and is the ongoing process of establishing city-wide metadata catalogs that
index available datasets from all the different contributing stakeholders of the Smart
City environment. This creates a single point of access for most of the available (open
or specifically licensed) data for a particular city.
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In a previous work [1], the authors highlighted a lack of research efforts concerning
the seamless integration of the existing metadata hubs and the available data processing
engines throughout a city. As of then, required data(-sets) needed to be manually
collected, transferred onto the processing system and kept up-to-date, thereby forfeiting
some of the potential advantages offered by the aforementioned cataloging systems.
The authors therefore suggested a novel concept for integration of these two types of
systems and consequently implemented an extension that closed this gap by providing
the automated integration between the Comprehensive Knowledge Archive Network
(CKAN) [2] and the Hadoop Distributed File System (HDFS) [3], serving as exemplary
systems from each domain. This concept and its belonging prototype were denoted as
HdfsStorer extension. The prototype builds on the CKAN platform and utilizes the core
structure of a CKAN extension.

The current paper is a follow-up to this previous publication from the CLOSER
2017 proceedings [1]. The present update puts a stronger emphasis on the framework of
projects in which the extension was developed and highlights some practicalities
encountered during development of the presented extension. Additionally, the paper
describes newly added functionalities that haven’t been part of the previous
publication.

The aforementioned extension was developed in the late stages of the German
Governmental Data-Portal (GovData) project [4], whose main aim was the creation of a
unified, country-wide metadata catalog for governmental data from municipalities, city
councils and other federal and state entities. The project itself was part of a series of
open government projects by the chief executive body of the German government
(Bundesregierung) in cooperation with the IT-Planungsrat, which is responsible for the
coordination of the collaboration of the federal government and federal states in the
area of IT. As a key asset defined within the Open Data strategy of the German
Government [5], the portal was launched in February 2013.

Such a metadata catalog holds only references to the data, along with other attri-
butes, such as licensing, file size and -type or time of the last update. The actual data
remains available only over the web portals of the belonging institutions. The aggre-
gation of metadata accomplished either through manual addition of metadata entries or
through “harvesting” of other metadata catalogs (e.g. separate catalogs of federal states
or cities) or similar sources. CKAN is a major open source platform for metadata
cataloging and was used to implement the GovData metadata engine. In CKAN,
harvesting is realized through a dedicated extension [6], which provides harvesting
plugins for specific standardized metadata formats. Additional plugins may be devel-
oped to enable the harvesting of sources that provide their metadata in a different
format.

The previously developed extension established a means for integrating CKAN as a
metadata store with the powerful capabilities of Hadoop [7], in order to enable the
efficient handling of large (open) datasets in urban environments. This first extension
allowed for the entirety of all harvested datasets by intercepting resource addition and
update events. This is now extended by a CKAN harvester plugin that provides a
means for selecting the desired type of datasets for each harvested source (i.e. other
metadata catalogs) in order to allow for the realization of more dedicated use cases and
resource (storage space and bandwidth) usage optimization.
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The HDFS was chosen as the system for data storage for a range of reasons. As
integral part of the Hadoop framework for big data processing, it enables parallel data-
local processing of data distributed over a cluster of machines. Efficient replication of
datasets, aside of bestowing failure resistance, allows for the dynamical addition and
removal of (virtual) machines during runtime and thus provides the scalability neces-
sary for the creation of different applications that make use of ever growing datasets
and serve a continuously growing user base. This can be facilitated by cluster coor-
dinators such as Zookeeper [8]. The stored data can be processed by a multitude of
HDFS-compatible software solutions, such as batch processing engines (MapReduce
[9]), in-memory solutions (Flink [10], Spark [11]), integrated with stream processing
(Spark Streaming, Storm [12]) or used within graph processing frameworks (Giraph
[13]) as well as data base/warehousing systems (HIVE [14], Impala [15], HBase [16]).
This allows for the development of small to large scale applications within Smart Cities
or other environments. Hadoop-based machine learning systems may additionally
benefit from the ease of creation of homogenous big datasets – ensured through
restricted harvesting of many data sources - that are usually required for their initial
training phase.

The remainder of this paper is divided as follows: The next section presents already
existing relevant work from the fields introduced above. Sections 3 and 4 describe the
envisioned solutions, namely the HdfsStorer and the CKAN harvester plugin for fil-
tering. Thereupon, the implementations of both extensions are described in detail
(Sects. 5 and 6, respectively). A realized proto-use case is given in Sect. 7. In com-
plement to that, Sect. 8 outlines a possible real-world application of said extensions
within an aspiring Smart City. Lastly, the authors provide a discussion of aspects
presented hitherto and summarize the contributions of the paper.

2 Related Work

A multitude of projects worldwide – such as the Open Data portal of Japan [17] or the
municipal data hub in Rio de Janeiro [18] - use CKAN for metadata cataloging. Its
major competitor is Socrata [19]. Proprietary solutions such as Konema [20] exist as
well. CKAN instances find their application on all levels of geographical and admin-
istrative granularity, ranging from the regional (i.e. in Berlin Open Data Portal [21]),
over the federal level (GovData [4]) to multinational communities (such as the Euro-
pean Data Portal [22]). Fraunhofer FOKUS has played a major role in the conceptu-
alization and development of these latter three Open Data portals. These portals aim to
provide a single point of access to predominantly governmental data, whereby the data
itself remains on the web portals of the belonging institutions (also denoted as data
providers). GovData indexes data from a multitude of providers i.e. municipalities, city
councils, or federal institutions such as the Federal Statistical Office of Germany, which
are either directly publishing the data (i.e. via custom Application Programming
Interfaces [APIs]) or providing access to it through their own metadata catalogs. The
European Data portal is one position downstream and itself harvests the metadata hubs
of the individual countries, such as those of Germany (GovData.de), Portugal (da-
dos.gov.pt) or Estonia (opendata.riik.ee). Private entities such as companies also
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provide their data to some of the harvested data hubs upstream. This harvesting
pipeline is shown in Fig. 1.

To enable the efficient integration of metadata from different data hubs and data
sources, a set of specifications and standards pertaining harvesting protocols, interfaces
and metadata schemes have been developed. These include the Open Archives Ini-
tiative Protocol for Metadata Harvesting (OAI-PMH) [23] and Object Exchange and
Reuse (OAI-ORE) standards [24], the open government data (ODG) metadata scheme
[25], the Infrastructure for Spatial Information in the European Community (INSPIRE)
specification [26] for geospatial data and the Dublin-Core [27] and Machine-Readable
Cataloging (MARC) [28] metadata vocabularies. Harvest sources usually provide their

data in one of those standardized formats and different harvester types or plugins
are needed for automated metadata import.

GovData supports harvesting of three types of sources. Firstly, a large number of
CKAN based platforms are harvested over the belonging CKAN-Representational
State Transfer (REST) interfaces by a standard CKAN-Harvester. Geospatial data
compliant with the INSPIRE specification is captured via CSW interfaces by a dedi-
cated harvester. The inclusion of such geospatial data requires the CKAN spatial
extension. Lastly, a number of data providers come up with own metadata represen-
tations provided over REST services that output JavaScript Object Notation (JSON)
strings. Those are imported through custom harvester plugins. The harvested metadata
is then transformed into OGD metadata scheme, which constitutes the base for cap-
turing metadata within GovData.

The OAI-PMH standard was originally developed in the context of publication
retrieval and later on taken up by further institutions, such as the Internet Archive [29],
to serve different purposes. It can make use of the Dublin-Core metadata vocabulary for
object and document description, but also supports further formats such as MARC. The
OAI-ORE standard builds on the OAI-PMH stack and adds the possibility of defining
links between different documents and associated alternative formats and version in a
so-called resource map, akin to the package description of CKAN. The CKAN har-
vester implementation for the OAI-PMH [30] allows for selective harvesting of only a

Fig. 1. Schematic overview of the metadata accumulation for the European Open Data Portal.
Regional catalogs receive exclusively direct input (not shown). Direct Data Provider may either
provide their data in a harvestable format (akin to the regional catalogs) or their data can be
manually registered in the corresponding catalog (dotted arrow).
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subset of datasets based on certain spec attributes, which may be comparable to tags.
These specs have to be set by the data source for each dataset individually. As only a
few harvest sources are compliant with this standard – i.e. none of the harvest sources
from GovData - and out of those that are compliant not all come with a complete set of
specs, a more general way for filtering or selection is desirable.

The HDFS was preferred over other available distributed storage systems, because
they are either focused on a specific type of data (i.e. wide-columnar databases such as
Apache Cassandra [31] or document stores such as Open Stack Cinder [32]), propri-
etary (Amazon S3 cloud [33] and the Ceph File System [34]) or appeared to be to a
lesser degree in focus of the developer community (OpenStack Swift [35]). Further-
more, data stored on either of these other sub-systems can be readily made available to
multitude of Hadoop solutions [36, 37]. More efficient transfer of big data files between
repositories can be achieved through usage of the Remote Direct Memory Access
protocol over Converged Ethernet (RoCE) [38] that overcomes a weakness of the
Transmission Control Protocol (TCP) regarding resource consumption that becomes
apparent when transferring big amounts of data.

Streaming data - i.e. coming in real-time from various sensors in the city - can be
already readily persisted on the HDFS through tools such as Kafka [39] or integrated
later on in-memory at the level of processing engines (such as Spark or Flink) with
static data that has been previously imported to the HDFS. Static data so far had to be
manually transferred onto the file system, even if it was already cataloged within the
corresponding metadata engine. The HdfsStorer – proposed by the authors - closed this
gap by enabling the automated data import of indexed resources/files in those metadata
catalogs to the HDFS. Filtering of the imported data allows for resource economization
and benefits the topicality of the imported data as it allows for more frequent harvesting
cycles.

The following sections will give an overview about the structure of these two
extensions and highlight their possible utilization through both a realization of a proto-
use case, as well as a description of a potential real-world application in a Smart City
context.

3 Requirements for the HdfsStorer and the Filter Plugin

Various requirements have to be met by the data import procedure in order to be used
sensibly in future Smart City as well as for Big Data applications. These are motivated
by the nature of the different environments - determined by the diversity of use cases
and infrastructure deployments within different Smart Cities - in which systems like
CKAN and Hadoop operate:

Req. 1: Smooth Interplay and Integration between the HdfsStorer and CKAN.
User experience and established operational perception should not be affected by the
emerging HdfsStorer extension running in the background.

Req. 2: Tracking and Being Up-to-Date with Resource Changes. Given that a
new resource was created, or an existing one was changed or deleted, the belonging
updates should then be transferred directly to the employed distributed file system
(HDFS).
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Req. 3: Network Bandwidth Optimization. HDFS entries (i.e. files) should only
be updated in case the original resources have changed, such that the network uti-
lization is kept minimal.

Req. 4: Handling Large Data Files. The HDFS extension should be able to
import files to the HDFS, irrespective of their size and format. Size limitations - as in
the case of the CKAN-internal FileStore - should not be present.

Req. 5: Import of Datasets, which are Already Registered with CKAN. Given
that the HdfsStorer is activated after a number of datasets have already been cataloged
within the belonging CKAN, it should be possible to automatically import the data
resources for those already registered datasets.

Req. 6: Filtering. It should be possible to set specific exclusion as well as inclu-
sion filters to restrict the range of datasets imported through the harvesting procedure.

Req. 7: Flexibility of Filters. It should be possible to define a separate set of filters
for each harvest source.

Based on these key requirements, the next sections proceed with devising the
architecture of the HdfsStorer extension and the Harvester Filter Plugin, evaluating it
based on a prototype, as well presenting the belonging case study and measurements.

4 Internal Architecture of the CKAN HdfsStorer
and TheHarvester Filter Plugin

The CKAN platform provides different integration points for extension development.
These integration points constitute a set of programming interfaces, which are to be
utilized by Python extensions running on top. In general, the programming interfaces
are event triggered and are related to the lifecycle of a data resource, encompassing
(1) the initial creation of a data resource, (2) its updates, and at the end (3) its
deletion/removal. A belonging Python interface is provided, which encompasses hooks
to catch and process these events on top of the CKAN harvesting platform. The
relevant interface for resource updates is denoted as IResourceController and the main
hooks of interest are called after_create, after_update and before_delete.

When working with the CKAN metadata catalog, a number of special features
related to the metadata and the belonging process of dataset registration should be taken
into account. Within CKAN, the concept of a package captures the metadata
descriptions of a particular dataset along with all its attributes and a list of belonging
data resources. The resources stand for single files or data dumps, but can also point to
service endpoints on the Internet. Irrespective of the presence of a service, file or a data
dump, the resources are referenced by an URL and are accessible over the Internet. In
case resources and packages are removed from CKAN, these are not really deleted but
rather marked as hidden within the corresponding PostgreSQL [40] database, i.e. a
single attribute is changed preventing the datasets from being visible on the belonging
portals/platforms and being searchable over the CKAN platform interfaces. Indeed,
datasets that are marked for deletion are only visible for administrator users with
appropriate authorization. In order to fully remove the corresponding packages from
the system, a purging process needs to be initiated, either through the CKAN portal
graphical user interface or by directly accessing the database underneath, in order to
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delete resource and package metadata entries. It has to be noted that there is no
possibility to purge “deleted” metadata over an API. Similarly, there is no possibility to
intercept a purge even – i.e. a hook called “after_purge” does not exist. Hence, a design
decision was made to completely remove a dataset from the HDFS storage every time
the before_delete function of the IResourceController is triggered. This leads to a
construction where each package deletion (i.e. marking of a package as pending for
deletion) leads to removing the belonging data from the HFDS storage.

Datasets come from a range of sources that each have different quality standards
and most importantly index very diverse data, from which only a subgroup may be
required for a particular use case. Therefore, it should be possible to create separate sets
of filters for each data source (see Requirement (6)). This ensures a maximum degree
of flexibility and does not restrict the range of potential future use cases. In order to
harvest a specific data source, a separate harvest job has to be created and data source
specific parameters can be set. The CKAN harvesting extension allows for the
development of specific harvester plugins. Those plugins are derived from the Har-
vesterBase class and override or extend certain provided methods, corresponding to
different harvest stages. Usually such plugins are developed to enable the harvesting of
a different kind of data source. We can use this capability to introduce a means for
filtering of imported datasets.

Based on the above generic considerations, the next two sections proceed with
introducing the internal components of the emerging HdfsStorer extension and Harvest
Filter Plugin.

4.1 Components and Dynamic Aspects

Figure 2 depicts the general architecture of the extensions including the flow of
information (as sequence operations) in an enumerated manner. In this scope, it is
clearly described which components are accommodated within the CKAN platform and
which are to be viewed as related to the HDFS.

Filtering takes place within the harvesting procedure (more specifically during the
gather stage) shortly before step (1b). The harvesting procedure is subdivided into
three main stages: During the first stage - the gather stage - a list of available datasets is
retrieved from the harvest source. This is followed by the fetch stage, wherein the
corresponding metadata packages to these datasets are accumulated to be then - during
the import stage - integrated into the local catalog (triggering e.g. resource creation or
update events). Each of these methods can be altered independently in each harvester
plugin implementation. Practically, the gather and fetch stage are often regarded as a
single process, with all the functionality implemented in the gather_stage method.
Filtering should take place as early as possible to reduce the load on the entire system.
The required attributes for filtering are part of the metadata packages and filtering can
thus already take place during the gather and fetch stage. Because a multitude of
specific harvester plugin implementations override the original HarvesterBase class
gather method entirely, the authors decided to alter the gather stage method of a
specific harvester implementation (the general CKAN harvester) instead of altering the
method of the base class.
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Provided that a resource is imported and created or updated with respect to its
metadata in CKAN, through either manual interaction or the harvesting procedure –

operations (1a) and (1b), all included resource files need to be newly uploaded or
refreshed within the HDFS. This flow is given by operations (2), (3) and (4a-b) in
Fig. 2.

Furthermore, in case a package or single resources are marked for “deletion” from
CKAN, the belonging data files have to be removed again from the HFDS. The
identification of the files to delete is performed over the resource IDs, given that for
each ID a directory on the HDFS is maintained. Indeed, the CKAN platform generates
deletion events and triggers corresponding API calls for the methods implemented by

HdfsStorer extension based on the IResourceController interface. After each
CKAN data handling event – such as creation, update and deletion - the corresponding
ID and a reference to the latest version of the resource are passed as parameters to the
HdfsStorer. During the deletion of CKAN-packages, the corresponding ID is given,
which leads to a database lookup for obtaining and identifying the resources for
removal from the HDFS.

Various communication and data exchanges between the HdfsStorer extension and
the HDFS (in the upper right part of Fig. 2) are realized using the WebHDFS protocol
[41], which is a REST-API for Hypertext Transfer Protocol/TCP based manipulation of
resources kept within the HDFS. The belonging WebHDFS operations are provided in
Table 1, including functions such as (1) checking whether a file or directory exist,
(2) download and access to resources/files or parts (i.e. chunks) of files/resources,
(3) the creation of directories, (4) obtaining a resource/file handle for overwriting an
existing resource/file, (5) appending data to an existing resource file and (6) the
removal of resource files and directories from the HDFS.
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Fig. 2. Extension and Plugin Architecture (highlighted). Figure modified from [1].
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5 CKAN-Based Extension Implementation

The following paragraphs elucidate in detail the HdfsStorer extension implementation,
starting with the procedure for resource creation and update.

5.1 Creation and Update of Resources

When a new resource is created within CKAN, the before_create method is invoked for
CKAN extensions that have registered over the corresponding hooks of the
IResourceController interface. A new resource can be either created manually (e.g.
through a Command Line Interface or through the CKAN portal interface) or can be the
result of a data harvesting procedure. Thereby, the available implementations of the
before_create method are invoked with the appropriate data (dictionary) structure filled
with information for the new resource as a main parameter. Subsequently, the resource
is internally cataloged (i.e. added to the database) and the corresponding after_create
method is invoked. Similar procedures are followed in the course of resource updates
and removals.

Figure 3 details the overall procedure within the HdfsStorer extension. The call of
the after_create method - provided by the IResourceController interface and imple-
mented by the extension – results in the creation of an HDFS directory named after the
ID of the resource. This directory is located on the resource storage folder, which is
prepared in advance on the HDFS and passed to the overall system via a CKAN
configuration parameter. Furthermore, the mirroring of the remote resource is prepared
by creating an empty file carrying an identical name as the name of the remote
resource. In order to enable the subsequent appending of data, a redirect is provided to
the HDFS DataNode hosting the newly created empty file. On this basis, the original
data resource is read chunk-by-chunk and the chunks are appended to the previously
created empty file. This continuous piecewise process of chunking and appending
allows for transferring large (larger than the machine’s memory) amounts of data from
their original locations to the HDFS – during the experimentations the authors managed
to transfer files of roughly 30 GB in size. Hence, it can be claimed that Requirement
(4) is fulfilled. In case the resource size is larger than the block size specified by HDFS,
then the remaining data is automatically redirected to a different DataNode where a new
block is created. In all cases, data replication is automatically conducted in the
background.

Table 1. List of WebHDFS Operations as described in [1].

Method Operation Fields HTTP return type

GET liststatus 200 (OK) + JSON
GET open 200 (OK) + FILE
PUT mkdirs 200 (OK) + JSON
PUT createfile data = ‘ ’ 203 (redirect)
POST append data; content-type 200 (OK)
DELETE delete 200 (OK) + JSON
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Some very important aspects of the current processes – as described here – are
tackled through the usage of hashing concepts. Given that only such resource files
should be harvested (i.e. transferred to HDFS) which have changed since the last
harvesting processes, a hash check was put in place as visualized on the right in Fig. 3,
thereby addressing Requirement (3). A typical approach would be to calculate the
checksum (i.e. hash) using the entire file in question. In order to conduct such a
checksum computation, the complete files need to be locally in place, i.e. on one single
machine. Since it cannot be assumed that data providers will provide appropriate
checksums for their data resources, this circumstance would require the files to be
additionally downloaded to a single machine in order to compute the hashes and
compare the resulting checksums. Unfortunately, this would lead to additional network
traffic and contradict Requirements (3) and (4), as all files would be downloaded
irrespective of their novelty and single machines may not accommodate enough storage
space for very big data files. The optimization of this process is a potential topic for
further research. However, a first proposition on how to deal with this challenge is
given in the following paragraph.

Based on the files’ characteristic according to the various contexts of application,
two possible approaches can be considered: (1) the comparison procedure is completely
omitted and each resource is always harvested and uploaded to the HDFS, or (2) the
comparison of the resources is conducted thereby using a partial checksum. Within the
(CKAN-)HdfsStorer extension the second approach was considered, given that the
HDFS and the HdfsStorer are meant to be utilized in Big Data generating urban
environments. A side remark: the name of a resource (including a checksum based on
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Fig. 3. Resource Addition and Update onto the HDFS as described in [1].
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it) is not considered as an indicator for a resource update given that a simple renaming
of a file does not necessarily imply a change in the belonging contents. Another good
indicator for changes in large resources is provided by changes in the file size for a
resource. Hence, the file sizes can serve as one constituent for the hash key. However,
there are also cases where the size doesn’t hold as a good indicator. For example, log
files – constituting a big share of the resources to be processed by big data engines – are
usually changed on a log-rotate principle, which means that the file size remains
constant, whilst the oldest data is removed and the newest is appended. By selecting a
number of bytes at either the beginning or the end of a file (or both), and including
these bytes as further parameters for the hash key, changes to such files would be
reliably detected and taken into account. If the number of bytes is of a large enough
amount, then for smaller files (e.g. configuration files or images) the entire checksum is
computed within the presented approach. The downside is that resources which do not
differ in file size after update and are larger than the defined chunk size, with static
header (beginning of the file) and footer (last bytes of the file) will be omitted as
resources that have changed and need to be harvested anew. Such files are not very
suitable for distributed computing and processing, given that they are normally hard to
split. In addition, the (rare) case of data with only minor differences in a large splittable,
identically sized resource will be omitted. Given the large size of the expected datasets,
individual items should be only of minor importance to the final result (after processing
the entire dataset) and the more single items are updated, the higher is the probability
that a difference in file size can be detected. Hence, the above described drawback can
be considered acceptable for the majority of scenarios.

5.2 Parallel Upload of Data

In order to avoid negative influence on the performance of the CKAN system - thus
addressing Requirement (1) - the design decision was made to avoid parallel running
data uploads to the HDFS, since - based on the specific setting - many parallel data
upload processes may use up the entire network bandwidth to the server. This should
be considered when setting the repetition period for data/metadata harvesting, because
a single harvesting job might be significantly slowed down and might result in an ever-
increasing queue of harvesting jobs leading to outdated and invalid data. Provisioning
of a second CKAN server only for the purpose of harvesting is a possible solution,
thereby establishing a periodical synchronization of its database with the main CKAN
server. This is expected to enable parallel data upload without influencing Require-
ment (1) in a negative way.

5.3 Deletion of Resources

The process of resource and package deletion is visualized in Fig. 4. The removal of a
single resource from CKAN leads to the call of the before_delete function of the
IResourceController interface, which is implemented and utilized by the HdfsStorer
extension. As previously explained, package removal in CKAN does not lead to the
deletion of the respective resources, and hence does not result in the call of any
additional functions from the IResourceController interface. Correspondingly, package
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removal has to be intercepted and handled by the (CKAN-) HdfsStorer extension,
which is done by implementing the after_delete function from the IPackageController
interface (depicted in Fig. 4). It is required to retrieve all corresponding resource IDs in
both of these two functions and initiate the deletion of the specific directories on the
HDFS and their contents by utilizing the belonging WebHDFS API. This fulfills
Requirement (2).

5.4 Backwards Compatibility

Given the need to address Requirement (5) - referring to handling existing CKAN
entries - another module was designed and implemented. This module is mainly
responsible for reading the internal CKAN database and the transfer of the referenced
files to the HDFS, whilst ensuring in parallel the consistency of the data. The belonging
process flow is demonstrated in Fig. 5. The information for each resource registered

within CKAN is obtained from the PostgreSQL-database in the backend and
subsequently uploaded to the HDFS DataNodes. Packages and resources which have
been marked as deleted (i.e. they wait to be purged) are excluded from uploading to the
HDFS.
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Fig. 4. Deletion of a Package or a Resource. Package deletion does not usually result in resource
deletion and hence had to be explicitly implemented.
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6 Implementation of the Harvester Filter Plugin

A way of filtering datasets has been implemented through extending one of the
available harvest plugins of the CKAN harvest extension. In order to satisfy
Requirements (6) and (7), a means for the definition of the set of filters for specific
harvest sources and the actual application of the filters - within the harvesting proce-
dure – were realized.

6.1 Initialization of Filters

In order to harvest a specific data source, a harvest job has to be defined in the CKAN
backend by a user with the appropriate privileges. This definition includes the URL
under which the harvest source is reachable, the harvester plugin to be used (which
depends on the type of the data source), the periodicity of harvest iterations and an
optional dictionary including further configuration settings. We can pass therein the
desired filter settings that are then available to the harvester plugin. In order to ensure a
required degree of quality, these settings are validated upon creation of the harvesting
job and an error can be thrown in case faulty or conflicting parameters were provided.

Mainly two types of filters can be used: (1) Inclusion filters define certain criteria
that have to be met by an item, in order to successfully pass the selection process. In
contrast to that stand (2) exclusion filters that pass all items that do not meet the filter
criteria. The filter type can be set through the filter attribute of the harvest job con-
figuration dictionary.

Possible filtering criteria include restrictions on file formats, file size or string
matching within the file name. Similar to the filter type, these criteria are also defined in
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the harvest job configuration dictionary. For instance, to harvest only images exceeding
a file size of 3 MB, the following configuration would have to be used: {filter: ‘in-
clusion’, size: ‘ > 3mb’, file_type: ‘jpg,png,gif’}. Disjunction of multiple attributes for
inclusion filtering can be achieved by the creation of multiple harvest jobs working in a
pipeline, each of which would be configured with one of the disjunct inclusion criteria
as filtering settings.

6.2 Application of Filters

During the gather stage, the configuration dictionary that has been passed during the
creation of the harvest job is parsed and the different filtering parameters extracted and
compared against the “to-be-gathered” datasets. Resources and packages that do not
belong to the group specified by the filters are excluded from further harvesting stages
and thus are not imported. This process is illustrated in Fig. 6.
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In order to realize the logic from the previous paragraph, the list of available
packages is iterated through. For each of the resources, it is then ascertained that they
either do - in case of inclusion filters - or do not - in case of exclusion filters - match the
defined filter criteria. Shouldn’t this be the case, the resource is removed from the
current package. The package – given that some resources remain contained within – is
then put onto a stack that is later handed over to the import stage of the HdfsStorer.
Empty packages are discarded.

7 Proof of Concept

In order to demonstrate the feasibility and the processes around the HdfsStorer
extension, a scenario was worked out making use of an established technique from the
field of Machine Learning. Thereby, the techniques are employed on top of two dif-
ferent processing engines for classification of multi-dimensional data. The utilization of
two different processing engines demonstrates the variety of further utilization the data
can be used for (e.g. based on the free choice of processing engines), once it has been
imported to the HDFS. In this scope, the HdfsStorer is the key element for such
analyses by enabling large scale Big Data and Open Data to be integrated and effi-
ciently re-used in the scope of urban data platforms. Creating an application that has as
input datasets, which are linked in the belonging CKAN-registry, essentially consists of
three major steps described in the following.

7.1 Import of the Dataset(S) to the HDFS by Means of the Hdfsstorer

The utilized dataset [42] contains descriptions of phoneme properties (such as place of
articulation) and the belonging classification (i.e. classification tags) of those into
phoneme classes. It was necessary to split the data into training and a test subset for
evaluation purposes. Both subsets were stored in different files. Once the files are
cataloged within CKAN, either through manual addition or file type-specific harvesting
of a data source, they are automatically imported to the HDFS by the HdfsStorer.

7.2 Selection of the Appropriate Processing Engine and Program Logics

Both Standard Hadoop Mapreduce and Its in-Memory Counterpart Spark Were Used to
Separately Train an Artificial Neural Networks (ANN) on The Training Subset.
Thereby, a Standard Backpropagation Algorithm Was Used to Perform The Training
Procedure. The Details of The Employed Back Propagation Algorithm Can Be Found
in [43]. The Trained Anns Were Subsequently Used as Data Point Classifiers for The
Evaluation Set.

7.3 Job Execution and Result Retrieval

The executed jobs were triggered over the command line. The belonging data classi-
fication results - based on the HdfsStorer data imports - can be in turn retrieved from
the HDFS filesystem. As the goal of this work is not given by the evaluation of the

A Study on the Interplay of CKAN and Hadoop 129



classification quality of different ANN implementations, only the training step is
considered in the following text, with the goal to look into the performance of two key
Big data technologies (Hadoop MapReduce and Spark) on top of the HdfsStorer
results, i.e. the imported datasets.

The performed execution time measurements are provided in Fig. 7. The execution
time was obtained as the time difference between job application submission (be it a
Spark or a Hadoop job) and job termination. The Spark and Hadoop execution times in
Fig. 7 show that for the dataset in question - which was imported over CKAN and the
HdfsStorer extension - not only Spark execution times are by far shorter (based on
experiments with various number of ANN iterations), but also rise more slowly than
Hadoop execution times. This can be attributed to the much lower Spark overhead for
each iteration.

In addition, Fig. 8 describes the average memory utilization of both Hadoop and
Spark during idle time and job execution with 100 iterations on top of the open dataset
that has been imported to HDFS over the HdfsStorer extension and CKAN. The
vertical axis displays the memory usage in Mega-Bytes. Because of the comparably
small size of the dataset, expected characteristics (e.g. the much higher expected
memory utilization of Spark) in the absolute statistics have not been evident. The
difference between idle time and work intensive job execution periods is greater for
both slaves in the Spark deployment than that of the slaves in the Hadoop deployment.
This is a clear sign for the stronger memory dependence of Spark during data
processing.

The above evaluation gives an idea of how important it is to choose the right
processing engine for the overall efficiency of a Big Data driven Smart City service.
The usage of the HDFS thereby facilitates the free choice of the processing engine,
given that HDFS is a common platform for distributed processing in modern data
centres. The processing engine evaluation can be done on a broader basis or can be
targeting specific datasets within particular Smart City scenarios. Overall, this con-
stellation is made possible by the HdfsStorer extension, which has been specified and
prototyped in the current work.

Fig. 7. Execution times of Spark and Hadoop compared. Stars indicate the level of significance
(p < 0.0001) as described in [1].
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8 A Smart City Scenario Using Hadoop and CKAN

Having shown the general architecture and process flows of the extension, and having
evaluated its principal applicability, a natural next step is to apply the HdfsStorer for
the purpose of realizing a more complex scenario. We target a use case relating to the
public transport system of a forthcoming Smart City, which requires to be streamlined
and optimized. This includes various aspects such as schedule improvements based on
the dynamic identification of peak traffic hours combined with delay and occupancy
prediction integrated with trip planning [1]. The ultimate goal is to provide a better
travel experience to passengers.

The data needed for the above scenario is given by two different types: static and
real-time. The transport schedule and history of occupancy and punctuality statistics
together with the belonging history of road and weather condition records are dis-
tributed over different data stores as static data. Correspondingly, these datasets would
be indexed in a CKAN-catalog. Periodical harvesting based on CKAN mechanisms
would guarantee that this catalog is up-to-date and the Harvester Filter Plugin would
ensure that only relevant data is indexed by the local catalog and consequently
transferred to the Hadoop cluster. Data regarding the current weather, road and traffic
conditions as well as the amount of passengers — e.g. measured by sensors inside the
transport vehicle - are provided as streaming data. The interplay between these two
types of data within Hadoop is sketched in Fig. 9. The HdfsStorer extension takes the
role of the key component responsible for importing static data to the HDFS according
to metadata provided within the CKAN-catalog (e.g. URL of the original dataset).
Consequently, various processing engines - that can make use of the files stored on the
HDFS and of data streams provided through message brokers - integrate the data and
enable the envisioned correlation and data integration towards sophisticated urban
services.

Fig. 8. Comparison of ANN Training Memory Usage of Hadoop (H) and Spark (S) Memory
Usage between idle (“Baseline”, BL) and work intensive Periods for 100 Training Iterations as
described in [1]. NN: NameNode/MasterServer, RM: ResourceManager, SL1/2: Slaves.
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A realization of a similar process can be found on the H2O.ai github-page [44].
Thereby, Spark is utilized in combination with an H2O extension (=Sparkling water) to
create a prediction system for flight delays based on historical data and current weather
information. As compared to our use case, the dataset in question is presumed to be in
place on the HDFS right from the beginning, e.g. through a manual upload. The current
work enhances such traditional solutions by a more convenient way for data import to
HDFS, thereby making use of a widely applied data cataloging system (i.e. CKAN) for
Open Data in the Smart City context.

9 Discussion

In this paper, the authors described the implementation of two extensions to the CKAN
metadata storage system. The first allowed for the automated transfer of the actual data
files that are described by the cataloged metadata entries to a designated data storage
and processing hub, exemplified by the HDFS. The second extension allows to restrict
the range of datasets imported to CKAN through its harvesting procedure. In combi-
nation, these two extensions enable the rapid import of (only) relevant data, which has
been referenced in various metadata catalogs, onto a scalable distributed file system.
This imported data can then be directly used as the basis for a diverse range of Smart
City as well as general data science applications.

The creation of applications on the basis of Open Data and the possibly resulting
informational and economic gain is one of the main motivations for making previously
closed data available to the public [45]. However, making data available to the public
remains a heavy burden for the required institutions. Normally this comes at the cost of

Fig. 9. Integration of both static and streaming Data coming from different Sources on the Level
of distributed Storage and Processing Engines, as described in [1].
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having to invest additional labour and exposing their inner workings to the scrutinizing
eye of the general public. This results in the current situation, where even though the
European Commission has issued corresponding regulations years ago (European PSI
directive 2003 [46]), the amount of available Open Data across Europe remains far
behind the identified potentials. A further factor that may contribute to the currently
apparent shortcomings of Open Data, in both the private as well as the governmental
sector, could be the lack of quality assurance mechanisms. To ensure the quality of the
publicized data, providers are required to go through a process of continuously
updating these datasets and belonging metadata. Currently, they are not obliged to this
commitment. This has the consequence that, after an initial dataset is published, it very
often is not continuously updated since it requires an additional effort from the data
provider’s side. Potential users thus may find incomplete, outdated or erroneous data
and refrain from using it altogether for the development of new applications or as a
reliable source of information. This interactive but manual procedure could be com-
plemented by automated periodic quality checks on the basis of either actual data or
metadata, addressing issues such as completeness, accuracy, timeliness, as well as
privacy concerns and other quality parameters. The frequency of these checks could be
coupled to the harvesting frequency or run independently at regular intervals, possibly
defined separately for each type of dataset or data source, or estimated by analysis of
the time course of previous dataset and version changes. The described data import
extension could additionally empower such automated quality checks, as these could
make use of the already imported data on the distributed file system without the
additional overhead of having to download (parts of) the data files a second time and
furthermore run in parallel by virtue of the distributed nature of the HDFS and asso-
ciated processing engines.

Also, other fields outside the scope of Smart Cities may benefit from the outlined
extensions, especially those that require the accumulation of big corpora of textual or
other data files. These include computational linguistics and other data/machine
learning-heavy disciplines. The reduction or corpora reuse - through enabling also
small research and development groups to create their own corpora – and the intro-
duction of more diverse sources may enable better generalization of applications such
as speech generation and translation engines [46]. Dedicated corpora that can be
accumulated from multiple data sources through more filtered selection (i.e. by lan-
guage, text type or image/video resolution) of datasets could furthermore enable more
detailed insights - i.e. into situative or group-specific media and language usage or
geographically and time-restricted phenomena and interactions - as well as the creation
of more dedicated applications. Certain types of advanced filtering may imply the
necessity for downloading parts of the actual data files and possibly the need for
conducting expensive (non-distributed) computations. Thus, it may be more reasonable
in some use cases to carry out such second step filtering after data import.

The insights gained during the development of both extensions, and the above
considerations regarding the success of Open Data initiatives and application devel-
opment, will be taken up as input for emerging and running national and international
projects on Urban Data Platforms.

A Study on the Interplay of CKAN and Hadoop 133



10 Summary and Conclusions

Smart City projects are currently on the rise, as major and minor municipalities strive to
be on the forefront of state-of-the-art technologies and smart solutions in areas such as
mobility, energy and ICT. Correspondingly, ample funding is available. In parallel,
initial expectations on the impact of Open Data remained unmet and have been
dampened. The current work described a possibility of re-establishing and strength-
ening the link between these two fields – Smart Cities and Open Data - by means of
integrating metadata hubs with data processing engines. Thereby each aspect represents
a key component in its corresponding field. The authors hope that this link may have
some contribution in transferring the momentum that Smart City concepts currently
enjoy also to the field of Open Data and furthermore also highlight how Smart Cities
may benefit from the continued publication of freely useable data.
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Abstract. The increasing popularity of Software-Defined Network tech-
nologies is shaping the characteristics of present and future data centers.
This trend, leading to the advent of Software-Defined Data Centers, will
have a major impact on the solutions to address the issue of reducing
energy consumption in cloud systems. As we move towards a scenario
where network is more flexible and supports virtualization and soft-
warization of its functions, energy management must take into account
not just computation requirements but also network related effects, and
must explicitly consider migrations throughout the infrastructure of Vir-
tual Elements (VEs), that can be both Virtual Machines and Virtual
Routers. Failing to do so is likely to result in a sub-optimal energy man-
agement in current cloud data centers, that will be even more evident
in future SDDCs. In this chapter, we propose a joint computation-plus-
communication model for VEs allocation that minimizes energy con-
sumption in a cloud data center. The model contains a threefold con-
tribution. First, we consider the data exchanged between VEs and we
capture the different connections within the data center network. Sec-
ond, we model the energy consumption due to VEs migrations consider-
ing both data transfer and computational overhead. Third, we propose a
VEs allocation process that does not need to introduce and tune weight
parameters to combine the two (often conflicting) goals of minimizing the
number of powered-on servers and of avoiding too many VE migrations.
A case study is presented to validate our proposal. We apply our model
considering both computation and communication energy contributions
even in the migration process, and we demonstrate that our proposal out-
performs the existing alternatives for VEs allocation in terms of energy
reduction.
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1 Introduction

The fast deployment of new services involving more and more intense data traffic
exchange and complex QoS demands require the underlying infrastructure of a
cloud data center to be highly flexible and adaptable. This scenario motivates
the paradigm shift towards the adoption of techniques such as Software-Defined
Network applied to data centers, giving origin to Software-Defined Data Centers
(SDDCs), where virtualization is extended to network elements and functionali-
ties. This change will have a major impact on the solutions to address the issue
of reducing energy consumption in cloud systems, since SDDCs realize a more
seamless integration of the network within the data center IT processes, opening
up to the possibility of novel energy-efficient resource strategies for the cloud
infrastructures integrating complex and adaptive network management.

Most of the existing solutions to reduce energy consumption in cloud data
centers mainly focus on server consolidation, which aims at minimizing the
number of turned on physical servers while satisfying the resource demands of
the active Virtual Machines (VMs) [1–4]. However, an effective management of
SDDCs must be network-aware, meaning the need to consider the impact of data
traffic exchange between the Virtual Elements (VEs) of the cloud infrastructure,
that may be both Virtual Machines and Virtual Routers. Failing to do so is likely
to result in a sub-optimal energy management, because networks in modern data
centers tend to consume about 10%–20% of energy in normal usage, and may
account for up to 50% energy during low loads [5]. Furthermore, few studies
proposing solutions for VEs allocation consider the contribution of VEs migra-
tion to energy consumption, both in terms of computational and network costs.
On the other hand, when taking into account the costs for migration, this is car-
ried out in a quite straightforward (e.g., [6]): the allocation model considers just
the number of VEs migrations, and introduces weight parameters to address the
trade-off of minimizing the number of turned on physical servers while reducing
expensive VMs migrations required for the server consolidation. These limita-
tions are clearly visible in modern data centers, but will be even more critical
in future SDDCs, where the support for more flexible network reconfiguration
allows the migration of both virtual machine and communication channels and
virtualized network apparatus [7]. Hence, we believe that traditional allocation
policies, that are network blind or adopt simplified models for migration, will be
inadequate to support future SDDC infrastructures.

This chapter, which extends a previous study of the authors [8], presents a
joint computation-plus-communication model for Virtual Elements (VEs) allo-
cation that minimizes energy consumption in a SDDC scenario. The proposed
optimization model for VMs allocation aims not only to reduce as much as
possible the number of turned on servers, but also to minimize the energy con-
sumption due to the exchange of data traffic between VMs over the data center
infrastructure. The main contribution of our proposal is threefold. First, the
model is aware of the heterogeneous connections existing within the data center
and considers the data traffic exchanges occurring between VEs. Second, the
energy contribution of VEs migration takes into account both the data transfer
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and the computational overhead. Third, the objective function of the proposed
optimization model does not need to add weight parameters to merge the often
conflicting goals of avoiding a high number of VEs migrations while guaranteeing
the optimal VEs allocation.

We evaluate the performance of the proposed model by considering a case
study based on traces from a real data center. The results confirms the validity
of our model, showing that the proposed solution outperforms approaches for
VEs allocation in terms of energy reduction. Moreover, we show that our opti-
mization model allows to limit the number of VM migrations, thus achieving
more stable energy consumption over time and leading to major global energy
saving if compared with other existing approaches.

The remainder of this paper is organized as follows. Section 2 presents the
reference scenario for our proposal, while Sect. 3 describes the main requirements
for an energy model in SDDCs. Section 4 describes the proposed model for solving
the VEs allocation problem. Section 5 describes the case study based on traces
from a real data center. Finally, Sect. 6 concludes the paper with some final
remarks and outlines open research problems.

2 Reference Scenario

In this section we describe the reference scenario for our proposal, comparing the
characteristics of a Software-Defined Data Center (SDDC) with a more tradi-
tional cloud data center. Starting from this scenario, we illustrate how the char-
acteristics of a SDDC impact on the model used to ensure the energy-efficient
management of a cloud data center, with special focus on the operations that
decide the allocation of the VMs over the physical servers of the infrastructure.

Figure 1 presents the general schema of a traditional cloud data center.
The considered data center is based on the Infrastructure as a Service (IaaS)

paradigm, where VMs can be deployed and destroyed at any time by cloud
customers. This explains the system view at a virtual level, where we simply
have the VMs that are the object of the cloud customer attention. The cloud
provider must map these VMs over the physical infrastructure, defining the
data center management strategies. The VMs are hosted on physical servers,
which are grouped into pods (roughly corresponding in a set of interconnected
racks housing the servers). The data center is based on a two-level network
architecture, with Top-of-Rack (ToR) switches connecting the servers of the
same pod, and an upper layer of networking (data center core network) that
manages the communication among multiple racks of servers. This structure
implies two different costs for transferring data between servers belonging to
the same pod (passing through the ToR switch) and to different pods (passing
through the data center core network).

The figure also presents the logical blocks of the system implementing the
data center management logic (in the right part of Fig. 1). The input of such task
is the data about the resource utilization of the VMs and the information about
the network traffic over the data center. Two main components are involved in



140 C. Canali et al.

Fig. 1. Traditional cloud data center.

the management of the data center. The VM allocation manager (on the top-
right side of Fig. 1) is the data center component responsible for running the
model for VMs allocation that determines the optimal allocation of VMs on
the physical servers to minimize the global energy consumption. After achieving
a solution, the allocation manager notifies the servers of the VMs migrations
that need to be applied. The VM allocation and migration decisions are then
used as the input for a second block: the Network manager that, considering
the current network utilization level, issues commands for re-configuring routing
tables, firewalling rules and to turn on or off some network links to cope with
the network traffic patterns changes resulting from the VM allocation manger
decisions.

The VMs allocation manager operates mainly by planning VMs migrations
across the infrastructure to accomplish the goal of minimizing the energy con-
sumption of the cloud data center in terms of both computational and network
contributions. It is worth to note that many solutions for energy-aware VMs
allocation are based on reactive approaches, which rely on events to trigger the
VM migrations [1,4,6]. On the other hand, in a SDDC scenario an approach
based on time intervals, where a control of the optimality of the VMs allocation
on the physical servers is periodically performed, could be preferable. The main
reason is that, while for CPU utilization it is feasible and easy to define events
(typically based on thresholds) to trigger migrations, for network-related energy
costs it is much more difficult to define similar triggers. The details of the opti-
mization model proposed to reduce energy consumption in the networked cloud
data center are described in Sect. 4.

Figure 2 presents an example of a newer generation of infrastructure,
called Software-Defined Data Center (SDDC), which is a data center where
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Fig. 2. Software-defined data center.

virtualization is much more pervasive within the system. A first significant dif-
ference with a traditional data center is evident if we compare the virtual level of
Figs. 1 and 2: while a traditional data center considers just VMs, in a SDDC we
focus on virtual networks composed of Virtual Elements (VE) that can be either
Virtual Machines (VMs) or Virtual Routers (VRs). A virtual router can be both
implemented as a VM running a routing software, or as a set of rules and actions
for a SDN appliance. This paradigm shift explains why there is a partial over-
lap between the computational and network layers in Fig. 2. The need to take
into account the interaction between virtual elements in a virtual network and
the inherent programmability of the network layer have a major impact on the
data center management (right part of Fig. 2): in a SDDC the management is an
integrated process that combines different models for the multiple elements of
the data center. In particular, we evidence four models that must be taken into
account for the SDDC management: a computational model, a network model, a
migration model for VMs and VRs, and a time model. These models (that we
will discuss in more detail in the following section) take as input the data on
computation and networking usage from the data center and produce an inte-
grated decision about VMs/VRs allocation and migrations, and re-configuration
of the network policies.

It is worth to note that considering the data center management as a single
process is important to cope with the double nature of VRs and is the only
viable choice to support the vision of virtual networks at the level of the vir-
tual layer that characterize this scenario. It is also worth to note that a model
that fully leverages the potential of SDN and router virtualization simplifies the
adoption of common standards, such as the OpenFlow protocol1, that can be

1 http://archive.openflow.org/wp/learnmore/.

http://archive.openflow.org/wp/learnmore/
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used both in physical and virtual SDN devices, and provides a common method
to define heterogeneous network functionalities, ranging from network monitor-
ing, to IP routing, and up to NAT and firewalling. Furthermore, the presence of
virtualization simplifies both the management of migration (supporting traffic
engineering techniques [9] to make sure that live VEs migration does not interfere
with network operations) configuration savings and device status checkpointing
operations (for example using VM snapshots), thus making faster and less error
prone the recovery form a faulty state of the networking infrastructure.

3 Requirements for a SDDC Energy Model

The approaches for efficient energy management in cloud data centers can be
classified according to how they model the four main components already under-
lined in the previous section: (1) computation, (2) network, (3) VEs migration,
and (4) time, as shown in Fig. 3 (and anticipated in the internal representation
of the SDDC management in Fig. 1).

Existing solutions typically adopt simplified models not considering all the
above components. Most of the studies just consider the energy consumption
related to computational processes, not taking into account networking aspects
in their proposed model [10,11]. In this case, the main mechanism for optimizing
energy consumption in the cloud data center is to operate a VEs allocation that
minimizes the number of active physical hosts through server consolidation tech-
niques [10,12,13]. However, this vision does not capture the challenges of SDDC
with the increasing amount of data-intensive applications. Few studies consider
the energy consumption related to the data transfer among VEs, and they typi-
cally focus only on optimizing the network infrastructure in terms of links recon-
figuration or reallocating VEs based only on their traffic exchanges [14]. The rest
of this section details the possible options in modeling the different contributions
to energy consumption in a SDDC.

Computation Model. Three main approaches are typically adopted to model
computation-related energy. A possibility is to focus on a detailed model of
CPU utilization that includes frequency scaling features (e.g., DVFS). These
models typically introduce a non-linear dependency (e.g., quadratic, cubic or

Fig. 3. Models for energy contributions in SDDC.
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exponential) of energy consumption on the CPU frequency [12,15]. However,
this approach would lead to very complex models when a high level of virtu-
alization is applied to computational tasks (through VMs or containers) as in
large size cloud data centers. Moreover, it does not capture the fact that power
consumption of several sub-systems, such as disks and memory, is not related
to the actual CPU frequency. Hence, the most widespread option is to model
the energy consumption at the level of physical host, considering the energy
consumption starting from a minimum (idle) value and increasing with a linear
dependency on the host utilization [1,11]. The final option is the simplest app-
roach, that just considers the number of physical hosts [13]. However, this latter
model is hardly applicable in a SDDC, because of the inherent complexity of
the data center (possibly composed of heterogeneous physical hosts) and of the
difficulty of combining possible energy contributions expressed through different
units of measurements (e.g., number of hosts and energy due to data transfers).

Network Model. When network-related energy consumption is taken into
account, multiple choices may affect the resulting model. The energy consump-
tion due to traffic exchange on data links may be modeled following two main
approaches. The first approach considers the energy consumption as mainly
related to the status ON or OFF of the network link [16]: this is appropriate
when the link has a fixed data rate or when the main energy expenditure is due
to features, such as Power-over-Ethernet, that are not affected by the volume of
data exchanged over the link. Recent proposals suggest a second more realistic
approach where energy is modeled as the sum of a fixed value, related to the
status of the network interfaces, plus a variable contribution that depends on
the actual link activity. This model has been proposed both to model the impact
of energy consumption of data center network appliances [17] and to model the
actual consumption of network link interfaces in the presence of Adaptive Link
Rate (ALR) systems [14]. Another important consideration regards should be
done about the presence of Network Virtualization. In this case, all or part of
networking is implemented through virtual devices: for example, exploiting the
added flexibility of Software-Defined Network elements [7], or running multiple
virtual routers on a single physical router with virtualization capabilities [14], or
using VMs to run the IP routing software [18]. In this case, the energy consump-
tion of networking elements virtualized over highly programmable or general
purpose hardware should be considered linearly proportional to the network
utilization [15,19] (similarly to virtualized computation over a general-purpose
hardware).

Migration Model. A migration process occurs when a virtual element (a VM or
a VR) is moved from one host to another one. We should consider that migration
is not a cost-free operation from an energy point of view: developing an energy
model able to reduce the amount of migrations is a critical goal to achieve.
Several optimization models simply consider the number of VM migrations in
the objective function to minimize the data center energy consumption [6,12].
However, this approach presents two main limitations: first, the assumption of
identical virtual elements from a migration energy point of view; second, the
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need to use weight parameters to include the number of migrations in the energy
budget of the data center. More sophisticate approaches have been recently pro-
posed that consider two possible energy contributions of the migration process.
The first contribution is the energy associated with the data transfer of the VE
memory from one host to the another, possibly including also the management of
dirty memory pages during a live migration. The second contribution is related
to the computational overhead caused by the virtual element migration at the
level of hypervisor, that may reach up to 10% for the duration of the migration
process [11].

Time Model. As regards time modeling, we have two main approaches: reactive
and time slot-based models. In the reactive model, any action aiming to reduce
energy consumption is triggered by some events. This model is suitable to cope
with critical situations, such as overload of the physical hosts, while keeping
a minimum level of reconfiguration operations carried out only when strictly
required [1,4,11,12]. On the other hand, the time slot-based model carries out a
continuous optimization effort, where reconfigurations of the data center are peri-
odically evaluated [10]. This approach is useful in situations where sub-optimal
configurations of the data center would not trigger any reconfiguration in a
reactive model but, over long period of time, cause significant energy waste. A
reactive model is the most common choice when the energy optimization con-
siders mainly computational resources. However, optimization of network traffic
across the data center is more often associated to a time slot-based approach
for the difficulty to define network-related thresholds that trigger events. This
motivates the preference towards the time slot-based model when features of the
SDDC are taken into account (e.g., use of virtual routers).

As a concluding remark, we observe that none of the previously cited energy
models, considered by itself, is suitable to fully exploit the opportunities and
to capture the inherent complexity of a SDDC. Indeed, to achieve this goal
the energy model needs to include all the four previously aspects with an ade-
quate level of accuracy. On the other hand, each of the above considered models
includes some oversimplification that makes it not completely suitable for SDDC
case. This motivates our proposal of an example model that is explicitly tailored
to this type of scenario.

4 Problem Model

This section describes the proposed model to address the problem of optimizing
the VEs allocation on the physical servers of the data center with the goal to
reduce the energy consumption. Specifically, we take into account the contribu-
tions of computational and networking tasks as well as of VEs migrations. The
energy model used for the contribution of VEs migration is a qualifying and
original point of the proposed solution.
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4.1 Model Overview

The model considers a set of servers M, where each server i hosts multiple VEs.
For each VE j ∈ N , we consider requirements expressed in terms of CPU power
cj , memory mj and network traffic, that is described by the data traffic passing
between two VEs dj1,j2 . In this model, we made the assumption that a SLA is
respected if and only if the VE actually has the specified CPU, memory, and
network resources (same approach in [1], where the SLA is based only the CPU
resource). This assumption for the SLA is consistent with the Infrastructure as
a Service (IaaS) paradigm.

As for the time model adopted in our proposal, we assume that time is
modeled through a discrete succession of intervals, where each interval has the
same length T . It is worth to note that, differently from our approach, many
other studies rely on a reactive model based on events: for example, an event
is triggered when the CPU utilization exceeds a certain threshold [1,4,6]. We
assume that the VEs resource demands refer to a generic time interval t, and that
the VEs allocation over the physical servers of the data center is known from the
previous time interval t − 1. The knowledge of the previous VEs allocation is a
necessary condition to exploit an approach based on dynamic programming. On
the other hand, the knowledge of the future VEs requirements in terms of CPU,
memory and network traffic may be predicted on the basis of recurring resource
demand patterns, such as diurnal patterns that are typical of the network traffic
exchange among VEs within a data centers [10].

For a new VE entering the system at time interval t, we consider the nominal
values of the resource requirements in terms of CPU and memory, and we discard
inter-VEs communication costs since we cannot assume to have information
about it. As the new VE enters, it is placed in the system using the Modified
Best Fit Decreasing (MBFD) algorithm presented in [1].

The optimization model is now described. The list of the main decision vari-
ables, model parameters and internal variables used in the formal description
is presented in Table 1 (the table has been used also in a previous work of the
authors [8]).

We recall that in our model the VEs migration is not only necessary for server
consolidation, but it also allows us to reduce the energy contribution related to
the data transfer between couples of VEs. The VEs migrations are modeled by
means of two matrices, whose elements g−

i,j(t) and g+i,j(t) represent the source
and destination of a migration (with i being the server and j the VE), similarly
to [6].

The decision variables of the problem are: an allocation binary matrix, whose
elements xi,j(t) determine the allocation of the VE j on the server i, and a binary
vector, where the elements Oi(t) represents the status of the physical server i,
that can be ON (Oi(t) = 1) or OFF (Oi(t) = 0). Finally, the allocation matrix
at time t − 1 represents the system status at the end of the interval t − 1: this
means that the VEs that left and joined the system in the interval t − 1 have
been removed and added in the allocation matrix.
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Table 1. Notation.

Symbol Meaning/Role

Decision variables

xi,j(t) Allocation of VE j on server i at time t

Oi(t) Status (ON or OFF) of server i

Model parameters

xi,j(t− 1) Allocation of VE j on server i at time t− 1

T Duration of a time interval

N Set of existing VEs to deploy |N | = N

M Set of on servers in the data center |M| = M

cj(t) Computational demand of VE j at time t

dj1,j2(t) Data transfer rate between VE j1 and j2 at time t

mj(t) Memory requirement demand of VE j at time t

cmi Maximum computational resources of server i

dmi Maximum data rate manageable by server i

Edi1,i2
Energy consumption for transferring 1 data unit from i1 to i2

mm
i Maximum memory of server i

Pm
i Maximum power consumption of server i

P d
i Power consumption related to the “on” status of network connection of

server i

KCi Ratio between maximum and idle power consumption of server i

KMi Computational overhead when server i is involved in a migration

Model variables

i Index of a server

j Index of a VE

ECi(t) Energy for server i at time t

ED(t) Energy for data transfer for server i at time t

EMj (t) Energy for migration of VE j time t

g−i,j(t) 1 if VE j migrates from server i time t

g+i,j(t) 1 if VE j migrates to server i at time t

We now detail the optimization problem defining the VEs allocation for the
time interval t.

4.2 Optimization Model for VEs Allocation

In this section we formally describe the considered optimization problem. The
objective function (1.1) of the optimization model aims to minimize the main
three contributions to the energy consumption: Computational demand, Data
transfer, and VE migration. The optimization model is now discussed in details,
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analyzing each of the three components. We recall that the objective function
and the model constraints comes from the previous work of the authors [8].

min
∑

i∈M
ECi

(t) + ED(t) +
∑

j∈N
EMj

(t) (1.1)

subject to:
∑

j∈N
xi,j(t)cj(t) ≤ cmi Oi(t) ∀i ∈ M, (1.2)

∑

j1∈N

∑

j2∈N

(
xi,j1(t) + xi,j2(t) − 2xi,j1(t)xi,j2(t)

)
dj1,j2(t)

≤ dmi Oi(t), ∀i ∈ M, (1.3)
∑

j∈N
xi,j(t)mj(t) ≤ mm

i Oi(t), ∀i ∈ M, (1.4)

∑

i∈M
xi,j(t) = 1, ∀j ∈ N , (1.5)

∑

i∈M
g+i,j(t) =

∑

i∈M
g−
i,j(t) ≤ 1, ∀j ∈ N , (1.6)

g−
i,j(t) ≤ xi,j(t − 1), ∀j ∈ N , i ∈ M, (1.7)

g+i,j(t) ≤ xi,j(t), ∀j ∈ N , i ∈ M, (1.8)

xi,j(t) = xi,j(t − 1) − g−
i,j(t) + g+i,j(t), ∀j ∈ N , i ∈ M, (1.9)

xi,j(t), g+i,j(t), g
−
i,j(t), Oi(t) = {0, 1}, ∀j ∈ N , i ∈ M, (1.10)

We model the Computational demand energy consumption of a generic server
i as the sum of two components (as in [1]): first, a fixed energy cost for a server
in the ON status (Pm

i KCi
is the power consumption for an idle server); second,

a variable cost which is linearly proportional to the server utilization (Pm
i is the

power consumption of a fully utilized server). The server utilization is computed
based on the computational demands of each VE hosted on the server cj(t) and
the maximum server capacity (cmi ). The computational demand component is
expressed as follows:

ECi
(t) = Oi(t)T Pm

i

(
KCi

+ (1 − KCi
)

∑
j∈N xi,j(t)cj(t)

cmi

)

As regards the Data transfer component, it represents a data center-wise
value that we model again as the sum of two elements: the first component is
represented by the power consumption of the server network interfaces when
they are in an idle but turned on status (P d

i for server i); the second component
is proportional to the amount of data exchanged and is based on the parameter
dj1,j2 describing the data exchange between two VEs j1 and j2. This approach
is consist with the proposal presented in [19]. According to [1,10,19], we assume
a linear energy model for the network data transfer: this model is realistic for
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current data centers and will be even more viable for modeling future data
centers exploiting software-defined and virtualized network functions, where the
network functions can be considered as abstract computation elements [7]. It is
worth to note that the square matrix Edi1,i2

, representing the cost to transfer a
data unit between two different servers, can capture the characteristics of any
topology of a data center network. Hence, the global energy cost of the data
exchange is described as follows:

ED(t) =
∑

i∈M
Oi(t)T P d

i +
∑

j1∈N

∑

j2∈N

∑

i1∈M

∑

i2∈M
xi1,j1(t)xi2,j2(t)dj1,j2(t)T Edi1,i2

The third component is the VEs migration cost, which represents a per-VE
value modeling the energy consumption for the migration process. The energy
contribution caused by the migration of a generic VE j depends on two main
elements. First, the whole memory mj of the migrating VE is transferred from a
source to a destination server (note that the amount of data actually transferred
is slightly higher than the nominal one because it is necessary to retransmit the
dirty memory pages, but the typical small size of the active pages with respect
to the VE global memory space allows us to neglect this effect). Second, we need
to take into account the performance degradation occurring during the memory
copy between two servers: we model the performance degradation through the
parameter KMij for the server i hosting the VE j. The degradation is typically
in the order of 10% of the performance [20] and takes typically a few tens of
seconds, which is significantly lower with respect to the length of the time slot
T . The energy cost for the migration VE j can be described as:

EMj
(t) =

∑

i1∈M

∑

i2∈M
g−
i1,j

(t)g+i2,j(t)
(
mj(t)Edi1,i2

+ (1 − KCi1
)Pm

i1 KMi1
T + (1 − KCi2

)Pm
i2 KMi2

T
)

It is important to note that the proposed model is significantly more com-
plex with respect to state-of-the-art models considering only the number of VEs
migrations, as done in [6]. The model complexity is motivated by the need to
consider a complete network model assuming that a VE migration should be trig-
gered in the system only if the energy savings due to the better VE allocation
in the future time slot will compensate the cost of the migration.

Let us now describe the constraints of our optimization problem. The capac-
ity limit of the bin-packing problem of VEs allocation is expressed through
the first group of constraints. The constraint 1.2 indicates that the sum of the
CPU demands cj(t) of the VEs allocated on each server must not exceed the
server maximum capacity cmi . The quadratic constraint 1.3 means that the link
capacity of each server (defined as dmi ) should not be exceeded by the data
exchanged between the VEs on that servers and the ones on other servers. dj1,j2
indicates the data exchanged between the VEs j1 and j2, while the formula
xi,j1(t)+xi,j2(t)− 2xi,j1(t)xi,j2(t) corresponds to the binary operator based for-
mulation xi,j1(t)⊕xi,j2(t): since VEs that are places on the same physical server
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do not use network links to exchange data, our model only takes into account the
VEs located on different servers. The constraint 1.4 requires that the available
memory on each servers mm

i is not exceeded by the sum of memory demands
mj(t) of the VEs allocated on that server. The constraint 1.5 indicates that each
VE must be allocated on one and only one server (classic bin-packing problem
constraint). The following constraints concern the VEs migration process. The
short notation used in constraint 1.6 actually combines two different constraints:
first, each VE cannot be involved in more than one migration (inequality con-
straint); second, a VE involved in a migration must appear in both the matrices
g−
i,j(t) and g+i,j(t). The constraint 1.7 indicates that a VE migration must start

from the server where the VE was allocated at the previous time slot (t−1), while
the constraint 1.8 requires that a VE migrates only toward a server where the
VE is allocated at time t (we add this constraint for the clarity of the model even
if it is actually redundant, because satisfied by constraint 1.9). The constraint
1.9 means that the VEs allocation at time t must be the result of the allocation
at the previous time t − 1 plus the VEs migrations. Finally, the constraint 1.10
expresses the boolean nature of xi,j(t), g+i,j(t), g

−
i,j(t), and Oi(t).

5 Case Study

We now introduce a case study showing how the proposed model can be applied
to a SDDC with Virtual Machines (VMs) and Virtual Routers (VRs), in short
referred to as Virtual Elements (VEs). The present section starts with a a
description of the considered case study; next, we provide a performance compar-
ison between the proposed VEs allocation model and other alternatives presented
in literature. A qualifying point of our analysis is considering the contribution
of VEs migration on the overall energy consumption of the data center. Further-
more, we discuss how the size of the data center impacts on the optimization
model performance.

5.1 Experimental Setup

Let us start with the experimental setup of the considered case study. We con-
sider a time slot with a duration T = 15 min for the migration of VEs among
the infrastructure. Each VE is implemented as a Virtual Machine (that my host
routing software in the case of a VR) that requires 4 cores and 40 GB of RAM.
For the server we rely on the data provided by the the energystar datasheets2

that are freely available. In particular, we focus on a Dell R410 server with a
2×6 cores Xeon X5670 2.93 MHz and 128 GB of RAM, so that each server can
host up to three VMs. For the considered servers, the power consumption ranges
form from 197.6 W to 328.2 W.

For the data center network, we recall that its architecture is based on a two-
level topology as described in Fig. 2. In our case study we assume communication

2 https://www.energystar.gov/index.cfm?c=archives.enterprise servers.

https://www.energystar.gov/index.cfm?c=archives.enterprise_servers
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between VEs not involving data exchange across different Pods consumes half
energy with respect to a communication passing both levels of the data center
network. Clearly, communication between VEs on the same server has no cost
associated. The model for network communication energy cost is obtained by
combining multiple sources. On one hand, the switching infrastructure energy
cost is based on the Cisco Catalyst 2960 series data sheet3. On the other hand,
we rely on technical blogs4 to infer the power consumption when a link can take
advantage from idle mode and other advanced energy saving features. In the case
study we consider that the per-port network power is 4.2 W, while the energy
cost for transferring one byte of data is 3 or 6 mJ in the case communication
occurs within one Pod or across multiple pods, respectively. It is worth to note
that, even if in our case study we consider an homogeneous data center, the
model can capture much more complex and heterogeneous scenarios.

Finally, we use the IBM ILOG CPLEX 12.65 solver that implements solu-
tion algorithms that can cope with the non-convex and quadratic nature of our
problem.

In our case study we rely on time series describing the resource (CPU, mem-
ory, and network) utilization of VMs in a private cloud data center hosting a
e-health application. We also assume that VRs, implemented through Additional
VMs, are part of the virtual networks hosted in the data center and we consider
the resource consumption on these VRs as proportional to the network traffic.
All the VEs show resource utilization characterized by regular daily patterns.
In our case study we consider, by default, 80 VEs, resulting in 20–30 servers
being powered on. While this scenario is small compared to large public cloud
data centers, we consider that for our goal, that is the validation of the opti-
mization model proposed in the present chapter, the case study is significant.
Furthermore, we consider that the scalability of the VEs allocation process may
be improved integrating a Class-based approach as described in [3,21], where
the solution of a small allocation problems can be replicated as a building block
of a larger solution.

In our case study we compare three different models for VEs allocation. The
first model, namely Migration-Aware (MA), is the model proposed in our study
and detailed in Sect. 4. The second model, namely No Migration-Aware (NMA),
differs from our proposal because it does not consider the cost for VEs migration.
For the sake of our model, this means that we consider EMj

(t) = 0 ∀j ∈ N in the
objective function Eq. 1.1. The NMA model is consistent with other proposals
in literature, such as [22]. The third and last model, namely No Network-Aware
(NNA), does not consider neither migration nor network-related energy costs.
The model just minimize the number of powered-on servers, as in [2]. The last
model (NNA) and, to a lesser degree, the second one (NMA) are more suitable
for the traditional data centers, where network and management are considered

3 http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-2960-x-
series-switches/data sheet c78-728232.html.

4 http://blogs.cisco.com/enterprise/reduce-switch-power-consumption-by-up-to-80.
5 www.ibm.com/software/commerce/optimization/cplex-optimizer/.

http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-2960-x-series-switches/data_sheet_c78-728232.html
http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-2960-x-series-switches/data_sheet_c78-728232.html
http://blogs.cisco.com/enterprise/reduce-switch-power-consumption-by-up-to-80
www.ibm.com/software/commerce/optimization/cplex-optimizer/


Reduce Energy Consumption in Software-Defined Data Centers 151

as less important issues, while most focus is devoted to the management of
computational demands of VEs (in a traditional scenario, VEs consist only in
VMs).

A critical point in the traces for network traffic available to us is that we
do not have a full description of the data exchange between each couple of
VEs and we limit our knowledge to the total amount of data coming in/out
form each single VE. To cope with this limit, we reconstruct the data exchange
between each couple of VEs creating two different scenarios: Network 1 and
Network 2. In the Network 1 scenario we randomly distribute among the VEs
the incoming/outgoing traffic to/from each VEs making sure that the total traffic
still matches. In the Network 2 scenario we consider in the traffic distribution
the presence of a Pareto Law, so that 80% of the traffic of each VE goes to just
20% of the remaining VEs. Furthermore, we make sure that the set of VEs with
the highest data exchange shifts over time.

In our analysis we consider mainly the total energy Etot consumed in the
data center. However, we also measure the single energy contributions related
to computational demand (EC), data transfer (ED), and VE migrations (EM ) to
provide additional insight on the model performance.

5.2 Model Comparison

As a first comparison between the three considered models, we analyze the total
energy consumption and its components for the Network 1 and Network 2 sce-
narios. The results are shown in Fig. 4 (results in Fig. 4(a) were already presented
in [8]).

(a) Network 1 Scenario (b) Network 2 Scenario

Fig. 4. Energy consumption comparison.

A first general result is evident from the leftmost column of Fig. 4(a) and
concerns the total energy consumption. The proposed MA model clearly out-
performs the alternatives with an energy saving of 20% over the NMA model
and up to 40% with respect to the NNA alternative. To clarify this result, we
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can compare the contributions to the total energy consumption in the other
columns of the figure. From the point of view of energy for computation, all
three solution achieve the same results because every approach can consolidate
the VEs in the same number of physical servers. The second component of the
total energy is related to data transfer. In this case the NMA model provides the
best performance due to its objective function that consider just computation
and data transfer. As a clarification, it is worth to recall that data transfer does
not include the bytes transferred to migrate VEs across the infrastructure. The
energy for data transfer in the MA model is 20% higher and the NNA model
has an even higher 60% more energy for data transfer. The poor performance of
the NNA model is intuitive. However, to understand why the NMA model out-
performs the MA alternative we can refer to the last columns of the graphs that
is the energy consumed for VEs migration. Specifically, we see that the lower
network-related energy consumption of the NMA model comes at the price of
a number of migrations that far overweight the benefits of optimized network
data exchange. We can thus conclude that not considering the cost of migra-
tions results in an higher than necessary number of migration that, in the end,
increase the total energy consumption.

The results for the Network 2 scenario are shown in Fig. 4(b) and confirm the
message previously explained for the Network 1 scenario. Indeed, we observe that
the behavior of the different considered models have similar results also under
different different network traffic conditions. Furthermore, comparing Fig. 4(a)
and 4(b), we observer that even the ratio in energy savings are similar: in the
Network 2 the MA model uses 37% and 22% less energy with respect to the
NNA and NMA alternatives, respectively (compared with the 40% and 20% of
the Network 1 scenario).

5.3 Impact of Migration

We can conclude, from the previous set of experiments that the network-aware
models (MA and NMA) clearly outperform the NNA alternative in reducing the
energy consumption in a modern data center. It is then interesting to delve into
a more detailed comparison of MA and NMA models to understand the impact
of migration awareness.

Figures 5 and 6 provide a per-time slot breakdown of the energy consumption
of the MA and NMA models for the two network scenarios, respectively. Starting
with the Network 1 scenario, a comparison of Figs. 5(a) and (b), provides a
further confirmation that the MA model outperforms the NMA alternative not
just in terms of global energy consumption over time, but also for almost every
time slot, as shown by the total energy consumption (lines with empty squares).
We have also a confirmation that the different results in total energy consumption
is mainly related to the energy consumption due to VEs migrations, as testified
by the similar behavior of the total energy line (empty squares) and migration
energy (filled circles). This finding is even more clear if we refer to the Network
2 scenario. Looking at Fig. 6(b) (presented also in [8]) we observe that in the
NMA model the minimization of data transfer costs (line with empty circles)
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(a) Migration-Aware Model (b) No Migration-Aware Model

Fig. 5. Energy consumption over time, Network 1 scenario.

(a) Migration-Aware Model (b) No Migration-Aware Model

Fig. 6. Energy consumption over time, Network 2 scenario.

comes at the cost of a herding effect with burst of migrations that dominates
the energy consumption of the data center. Looking at the MA alternative in
Fig. 6(a) it is clear that the MA model accepts a sub-optimal energy consumption
for data transfer, but achieves a major energy saving by reducing significantly
the number of migrations and the associated energy cost compared with the
NMA alternative.

5.4 Result Stability

The last analysis focuses on the stability of the energy savings with respect to
the problem size in terms of VEs.

Figure 7 shows the per-VE energy consumption for the MA model as a func-
tion of the data center size with the number of VEs ranging from 20 to 140.
We present the analysis for both the Network 1 (Fig. 7(a), already presented
in [8]) and for the Network 2 scenarios (Fig. 7(b)). The graphs for both scenar-
ios, demonstrate that the per-VE data transfer and migration energy are quite
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(a) Network 1 Scenario (b) Network 2 Scenario

Fig. 7. Energy consumption vs. problem size.

stable with respect to the data center size. On the other hand, the computa-
tion energy presents more variability, accounting for the fluctuations in the total
energy.

The variability in the computation energy is explained by the impact of
fragmentation on the server consolidation process. Especially for small problem
sizes, we may have servers not fully utilized and, due to the small problem size the
cost for a marginally utilized server (dominated by the idle power of the server)
is spread over a limited number of VEs, thus determining a low efficiency in
the server consolidation. The fragmentation effect is amplified by adopting the
Class-based consolidation model [3], that trade the possibility of sub-optimal
allocations for scalability in the VEs allocation. However, as the data center
grows the fraction of servers under-utilized due to fragmentation in the VEs
allocation is reduced, resulting in more stable performance with problem size.

6 Conclusions and Future Work

In this chapter we discussed the problem of energy-wise optimization of VEs
allocation in cloud data centers. This discussion may be applied to existing data
centers, but it is mainly focused to a new generation of infrastructures which
follow the paradigm of a Software-Defined Data Center, leveraging technologies
such as network virtualization and software-defined networks.

Our main contribution is to point out the key differences of these new type of
data centers with respect to traditional scenarios and to propose an optimization
model to determine VEs allocation in order to combine three goals. The first goal
is the reduction of the number of powered-on physical servers achieving what
is called server consolidation. The second goal is the reduction of the power
consumption for data transfer; as we model the energy cost of data exchange
between VEs in the infrastructure, we can reduce this energy component by
placing VEs with significant amount of data exchange close to each other (ideally
on the same server). The third and last goal is to reduce energy consumption due
to VEs migration, where this energy contribution is modeled considering both
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data transfer and CPU overhead due to migration. The model is designed to
automatically evaluate if the cost of migrating a VE is balanced by the benefits
of reducing the number of turned on servers and optimizing the data transfer
over the data center infrastructure. A qualifying point of our proposal is that
the components of the objective function considered in our optimization problem
measures directly the energy consumption. As a consequence, we do not need
to introduce and tune weight parameters to merge the often conflicting goals
of optimal VEs allocation and of avoiding a high number of VEs migrations,
because the components of the objective function can be immediately combined
together.

We consider a case study based on traces from a real data center, that con-
firms the validity of our model. The results show that we can reduce the energy
consumption from 60% to 37% with respect to a solution which is not aware of
network-related energy consumption, and from 22% to 20% with respect to a
model that does not take into account the cost of migrations.
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ena and Reggio Emilia through the project S2C: Secure, Software-defined Clouds.
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Abstract. Migration software systems to the cloud causes challenges. This
applies especially for companies that do not have sufficient cloud expertise. In
many of these companies there is a clear ideas about expected benefits. There
is also an awareness of some potential problems. However, this is often not suf-
ficient to assess the risks before starting on a full cloud migration of a legacy
system.

Technical and conceptual analyses can only help to identify risks in the migra-
tion process with from a cost and a quality perspective to a limited extent. So, we
investigate here the suitability of feasibility studies with a focus on experimental
exploration. These studies would generally only cost 5% of the overall costs of a
migration project, but can strongly support a reliable risk assessment. These can
determine how much of the expectations and intentions can achieved in a cloud
deployment. The cost of the migration, but also the cost of operating an IT sys-
tem in the cloud can be estimated in the context of quality expectations. Using a
feasibility study with an experimental core based on a partial prototype delivers
much more reliable figures regarding configurations, quality-of-service and cost-
ing than a theoretical analysis could deliver.

We will embed our feasibility study approach into a pattern-based migration
method. We report on a number of case studies to validate the expected benefits
of feasibility-driven migration.

Keywords: Cloud migration · Experiment · Prototyping ·Migration patterns
Cloud architecture · Cloud cost model · Performance · Scalability

1 Introduction

Today, cloud computing is a widely used form of operating software. However, the
migration of software systems to the cloud [2] is still a problem for many, especially
small and medium-sized enterprises and organisations without sufficient cloud expertise
[12]. These companies generally need to rely on support from consultants and solution
providers. Expected benefits are known and an awareness of potential problems exists.
However, this is often not sufficient to confidently embark on a full migration of a
software system, which requires estimates of the migration costs as well as costs of
operating software within the limits of required quality in the cloud.
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Technical and cost-oriented discussions can help to some extent, but many assump-
tions rely on expert knowledge from similar cases, but might not always be fully reli-
able. We investigate here feasibility studies with a focus on experiments to assess risk
through quality and cost analyses. These studies cost typically be five percent of the
overall migration cost. They can consequently be considered a worthwhile investment.

Apart from legacy-to-cloud migration, our solution can also be used for migrations
to another cloud architectures. So, rather than cloud-onboarding, the source architecture
is already cloud-based. An IaaS to PaaS migration from a basic, virtualized on-premise
system into a fully cloud-native architecture could serve as an example here.

An adequate project scoping for any cloud migration is a problem [4], because of
misconceptions and unclear technical expectations that significantly increase the risk.
Migration frameworks and case studies have been reported in the literature by aca-
demics and practitioners from industry [2,3,18], but how to reliably estimate a ‘right-
scaling’ of a cloud deployment remains unclear if cost and quality concerns need to be
aligned.

Feasibility studies can support risk assessment. It can clarify how much of the
expectations and intentions can be achieved. The cost of the migration [5] and also
the cost of operating a software system in the cloud can be better estimated [6]. It also
helps to better understand technical cloud architecture concerns. Another question is a
re-engineering one. What is migratable and what is the extent of refactoring necessary
to make migration work are questions. Often, re-engineering software in order to mod-
ernise and adapt to cloud constraints is needed. Prototyping in the cloud can help to
address scalability requirements, i.e., to align performance and cost concerns. Using a
feasibility study with an experimental core based on a partial prototype of the proposed
cloud software system [13] delivers much more reliable figures regarding configura-
tions, quality-of-service and costing than a theoretical analysis could delivery.

In this investigation, we report on case studies that we carried out as independent
consultants with small and medium-sized enterprises in the software sector. These case
studies serve to validate the benefits of the approach towards a more reliable risk anal-
ysis by integrating cost and quality.

The paper is structured as follows. We introduce a migration feasibility framework
in Sect. 2. The, in Sect. 3, we define our architecture assessment and risk framework
that links to known architecture analysis methods. We investigate the goals of feasibility
studies and practical concerns of feasibility studies in a migration project in Sect. 4. We
focus on the experimentation process in Sect. 5. In Sect. 6, we discuss a selected use
case in more detail. In Sect. 7, we discuss our observations. Related work is discussed
in Sect. 8, before ending with conclusions and a discussion of future work.

2 A Pattern-Based Migration Planning Framework

Our migration approach starts with a pattern-based architecture description. These are
used to define an initial migration plan.
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2.1 Pattern-Based Cloud Architecture Migration

Our proposed pattern-based architecture migration method considers the following
components: (i) the source architecture of the system, (ii) the target architecture options
in the cloud, and (iii) the high-level architectural transformations for the different tar-
get architectures [7]. This is formalised through a catalogue of migration patterns which
each describe simple architectural transformations for specific scenarios (e.g. for simple
cloudification in an IaaS solution). This defines a staged process based on a migration
path which in the individual steps are driven by selection criteria (e.g., time to market
or introduction of new capabilities). A sample pattern is Multi-Cloud Relocation [6],
see Fig. 1, which simply replaces on-premise by cloud-based components.

Fig. 1. Cloud migration pattern: multi-cloud relocation.

Several migration patterns are sequenced together to form an incremental migration
path, see Fig. 2 which gives a path with options included. Usually, a cloud migration is
an incremental activity, which is reflected in the path.

A concrete application shall also be introduced. A sample migration from a legacy
system’s architecture to a cloud-based one is displayed in Figs. 3 and 4. In this case, the
migration of a classical enterprise application, an expense system, is migrated into the
cloud, ultimately using several cloud-native services (here Azure storage services), but
also other external services (such as the Payment component).

Of key importance in a migration are:

– the expected quality-of-service;
– the resources needed;
– the architecture patterns meant to be preserved or employed;
– the platforms chosen to host the application in the cloud.

These need to be mapped to patterns.
A migration pattern is represented by an architecture diagram of the service archi-

tecture deployment before and after migration, i.e., a migration pattern is a transforma-
tion triple based on source and target architecture combined with the applied pattern
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Fig. 2.Migration path based on several pattern applications.

Fig. 3. Sample migrated architecture – before migration.

as the transformation specification. Each source or target architecture is represented
by architectural elements such as services and connectors, deployment platforms (on-
premise and cloud-based) and cloud services. The notation here is somewhat aligned
with UML component diagrams. We have specific component types color-coded.

A service component can either be atomic or contain internal components allowing
for hierarchical decomposition. For example, the migration pattern MP1 in Fig. 1 con-
sists of a coarse-grained component that consumes services of an on-premise deploy-
ment platform. These can be coordination services that orchestrate different compo-
nents in larger compartments or simply configurable IaaS resources providing required
operating system or storage features. After migration, this component, instead of using
on-premise platforms, uses services offered by a public cloud platform. Thus, the appli-
cation component is re-deployed as-is on a cloud platform.
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Fig. 4. Sample migrated architecture – after migration.

To identify a suitable pattern, the patterns are specified by pattern descriptions that
focus on quality and resources/patterns to guide the selection process:

– Definition: A component re-hosted (or relocated) on a cloud platform is enhanced
by using the environmental services of the other cloud platforms.

– Problem: Availability of an application needs to be enhanced without architecture
change, and without capital expenditure for hardware.

– Solution: Leverage cloud platform environment services to improve availability, e.g.,
live migration from existing platform to target platform in case of outage.

– Benefits: As component re-hosting in multiple cloud platforms and improve avail-
ability and avoid vendor lock-in.

– Risks: Cloud providers do not provide the necessary services for applications to run
in cloud platforms without re-architecting or rewriting code.

Our migration patterns are meant to be aligned sequences of architectural changes
in the application, through which the current application is gradually refactored and
modernized. For each migration pattern, an architectural migration schema has to be
defined.

Our migration pattern catalogue comprises of 15 individual patterns. We have iden-
tified these 15 patterns through an empirical extraction process. To make the selection
easier, these 15 patterns can be categorised into a number of Core Patterns and derived
Pattern Variants. Full descriptions of core patterns and variants for the following core
patterns can be found in detail in [26]. The categorisation is as follows:

– Re-deployment (core pattern MP1): variant pattern MP2 (for re-deployment in pub-
lic cloud)

– Relocation (core pattern MP3): variant pattern MP4 (relocation for multi-clouds)
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– Multi-Cloud Refactoring (core pattern MP5): variant patterns MP6 (hybrid refactor-
ing), MP7 (hybrid refactoring with on-premise adaptation), MP8 (hybrid refactoring
with cloud adaptation), MP9 (hybrid refactoring with hybrid adaptation)

– Multi-Cloud Rebinding (core pattern MP10): variant pattern MP11 (rebinding with
cloud brokerage [23])

– Replacement (core pattern MP12): variant patterns MP13 (replacement with on-
premise adaptation), MP14 (replacement with cloud adaptation)

Further variants can be added, but there is a sufficient completeness of the given set to
model common PaaS migration scenarios, which we have demonstrated through past
case study evaluations.

The core pattern and variants guides the migration pattern selection. Architecture
aspects (from the application and platform profiles) and the technical quality constraints
are the initial selection criteria. The pattern selection can be seen as a variability man-
agement problem that distinguishes internal (provider-based deployment) and external
(application and application access) perspectives. To make this more clear, we can look
at different applications. Some applications are integrated and support core business
processes and services, but many of them support utility needs, are certainly non-core
applications and are independent. The latter category may be obvious candidates for
direct re-deployment. For the former integrated core ones, refactoring (re-architecting
or redesigning) is more appropriate.

Migration paths emerge as sequential compositions of these patterns on a source
architecture, see Fig. 1. These paths are defined based on discussions with the com-
pany about their existing architecture and a high-level specification of technical and
business targets. Migration paths define decision points where typically several archi-
tectural options emerge, e.g., different data storage options [7–9]. For (a subset of) these
options, an experimental evaluation can be considered.

2.2 Experimental Evaluation of Migration Options

The current architecture is ported into the cloud, but can there take advantage of virtual-
ization to not only reduce operational expenditure, but also to create multiple instances
of the application to improve scalability and failover without increasing capital expen-
diture. A risk is that underlying architecture concerns are not sufficiently addressed.
A monolithic legacy application in the cloud is still monolithic including the previous
limitations such as a lack of scalability. Scalability cannot easily be achieved if, e.g.,
the architecture does not allow the database to be updated by multiple instances.

We can used the pattern-based migration paths (including options) to investigate
quality and cost concerns.

Based on the identified migration paths, a plan focusing on a subset of compo-
nents is identified for experimental evaluation: Firstly, define source and possible target
architectures. Secondly, select critical components, e.g., high volume data process to
test scalability of storage (DB) or communications infrastructure to test integration and
communications scalability. The benefit of the patterns is that they link architecture con-
figuration to quality. We use this link to select components for the feasibility exploration
based on the most relevant quality concern to be explored.
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3 Architecture Assessment and Risk

This cloud migration process can be seen as an incarnation of a wider architecture
modifiability method. We can benefit from a scenario-based approach to frame this,
in particular one supporting the evaluation of modifiability. The migration patterns we
introduced actually reflect different migration scenarios. An architecture analysis can
inform the decision how migrateable (i.e., modifiable in a certain way) a system is and
whether to migrate this. ATAM (Architecture Tradeoff Analysis Method) and ALMA
(Architecture-Level Modifiability Analysis) are two widely used methods for architec-
ture analysis [15]. Using these can help assessing the migration risk and identifying
possible quality concerns that need to be further explored.

ATAM is not specifically positioned for migration evaluation, but it does more gen-
erally target the trade-offs between different quality concerns. However, a scenario-
based approach as followed by ATAM is useful and can be complemented by
architecture-level metrics that we use specifically for the migration evaluation.

ALMA is another scenario-based method, which is more specific to modifiability
[15] and thus applies better in the migration context. ALMA is proposed for software
architecture modifiability assessment by using a number of indicators: maintenance cost
prediction, risk assessment. In case of assessing and comparing different system, the
modifiability analysis performed with ALMA supports software architecture selection
as well. ALMA is based on five steps, which we actually implement as part of the
migration pattern method:

– Step 1: Goal definition using pattern properties.
– Step 2: Target architecture description using a pattern-based migration path.
– Step 3: Define (elicit) change scenarios. This means in our context to define migra-
tion plans, possibly involving different architectural alternatives (represented as
alternative paths in a transition graph). The use of patterns allows us then to assemble
alternatives from basic building blocks.

– Step 4: Evaluate scenarios, analyse expected and unexpected changes on a number
of qualities. Examples of assessment criteria are cost and workload or performance
to be experimentally evaluated. This is supported by properties attached to patterns.

– Step 5: Interpret results (pattern-based migration paths, annotated with quality
properties).

The ALMA method allows us to consider maintenance cost and carry out in this way a
form of risk assessment for a migration decision, which are the relevant concerns at the
interaction of technical and business sustainability. Risks are clarified here through an
experimental feasibility study, see Fig. 5.

We use the migration pattern to define a draft plan, to which we add here a risk
assessment model of the target architecture options, driven by a selected architecture
assessment method, such as ATAM or ALMA. The risk assessment introduces quality
and cost metrics that can be integrated with the target architecture. The metrics include
factors such as complexity and amount of changes on both of the architecture and source
code, code efficiency and security. Those metrics change depending upon the existing
software. However, the metrics also may change when correlated with business objec-
tives and services costing model [25,29]. In order to answer those risk-based migration
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Fig. 5. Architecture and risk framework.

questions, a survey has been conducted by us about the business needs and costs. The
risk assessment aims to address the issues that could occur in the migration process, as
well as designing more reliable plan in terms of resources and time.

– Defining the metrics: defining what we aim by each factor since those factors could
be utilized in different way:
• Efficiency metrics: indicate how many methods, modules will be called and exe-
cuted that are included in scaling cycle iterations, e.g., how far the application
scales, how many times it was used.

• Complexity metrics: indicate the amount of effort needed to develop and main-
tain the code. The more difficult code, the more effort and time needed to
develop and maintain this code. The code metrics calculates: Maintainability
Index, Cyclomatic Complexity, Depth of Inheritance, Class Coupling and Lines
of Code.

• Security metrics: security requirements that indicate vulnerability, violations,
and threats with perspectives of Authentication, Authorisation and Storage
Security. However, security practices and related metrics is beyond the scope
here.

– During experimentation: we apply the new metrics approach on our use cases, such
as performance and scalability concerns.

– Understanding the new architecture components: a way to improve the scalability
and efficiency of the existing software is to refactor the software architecture to have
more decoupled and separated service components.

From the different metrics listed here, we will largely focus on efficiency aspects in the
use cases that will be introduced later.

4 Experimentally-Oriented Migration Feasibility Studies

Experimentation is the most important activity in the proposed feasibility study app-
roach. We will look into objectives and the role of experiments to determine feasibility.
Some use cases will illustrate the concerns.



The Benefits of Using Experimental Exploration 165

4.1 Quality Requirements and Possible Cost Implications

The feasibility studies are driven by the following goals:

– Quality and Cost: This concerns the quantification of quality and cost aspects. Often,
scalability is an important concern, driven by the business objective to expand. In
this case, an experimental feasibility study can validate a proposed architecture scal-
ability. Another motivation is a cost-vs-performance experiment, i.e., to consider
different options and compare them technically (e.g., scalability of different tar-
get architecture options), but rank them considering the costs that they would incur
[14,22].

– Usage and Cost: By looking at the usage, we change the focus to the potential user.
Usage exploration through experiments is a suitable tool to explore usage patterns
and predict potential income based on this. This can then directly be related to the
resources (and their costs) to facilitate user requests.

– Process and Platform Understanding: Experimentation allows to achieve a better
understanding of technical constraints and operational activities in the cloud. What
experimentation can shows is the difference between PaaS/IaaS/SaaS solutions (as
consumer and provider) and integration and interoperation problems. It also clarifies
how to structure and cost a staged migration (plan derivation).

The problem that emerges in the migration decision and planning process that links
quality, usage and costs to the architectural configuration, can be phrased in the follow-
ing question: How many processes can be hosted on a fixed cloud compute resource
with a pre-defined latency performance target for a forecasted number of users of a
particular application with a forecasted mix of application operation usage.

4.2 Experimental Studies as a Solution for Quality and Cost Estimation

Experimental studies can play an important role in the determination of migration
feasibility. Experimentation often results in a prototype evaluation of a partly cloud-
native architecture. Rather than just cloudifying a system in a virtual machine, we often
selected a component such as data storage and have experimented with different cloud-
native storage options, including for instance a mix of traditional RDBM and other
table/blob storage formats. Partial experimentation with cloud-native prototypes allows
to consider a fully cloud-native architecture to be discussed with realistic technical (e.g.,
scalability) and cost assumptions (storage, access) [10]. Only realistic costs for cloud
operation allows a charging model to be developed and validated that fits their own
product.

4.3 Use Cases

We discuss the migration concerns and how they are documented. When looking at
concrete use cases, we distinguish what is expected and understood on the one hand
and misconceptions and lack of knowledge on the other.
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– Clarity of expectations and objectives: Business reasons to go to cloud are often
clear, e.g., a planned internationalisation or expecting an increase in company value
(in the cloud). Technical reasons for a cloud migration are at a high level clear, for
instance scalability, but often lack deeper understanding of cost and quality.

– Understanding of cloud concerns (having an impact on architecture and pro-
cess selection) is often limited. Technically, the difference between provision
models/layers is unclear. This includes the management effort at I/P/SaaS level in
comparison. Another problem is a possible vendor lock-in. In business terms, e.g.,
possibly required revenue model changes remain very unclear. Legal/Governance
concerns such as data location are known, but without reliable knowledge.

We have conducted a number of case studies in the following application domains. We
highlight the specific needs for a feasibility study that has emerged in each of the cases.

The central case study, which we will also use later for further illustration is docu-
ment management: the application is document image processing to allowmore efficient
processing in the cloud, but also to enable the company to extend into new markets.

The other relevant use cases are:

– Banking solution: an integrated solution (account management plus ATM opera-
tions) – provided in Africa and Asia, raising uncertainty concerns from security to
legal,

– Insurance: a solution for multi-product management in multiple countries – uncer-
tainty arise from the need for variability management of a single product across
different regions/jurisdiction,

– Food sector ERP: an ERP solution for food production and sales – where a stable
in-house solution is prepared for launch as a product into different markets. Food
safety regulations impact on the architecture a cloud-based solution,

– Business Registry: enterprise repositories – scalable internationalisation is the driver,
allowing clients to access their services through the cloud.

5 Structured Experimentation in Migration Feasibility Studies

We now explore the proposed feasibility studies based on experimentation in more
detail. Experimentation aims to allow to establish a link between technical feasibility
and quality (e.g., performance) and costs [7]. The pattern-approach helps to guide the
select the components for exploration based on the most relevant quality concern. This
can range from performance to security to integration and interoperability, as indicated
for the use cases.

Furthermore, in many development approaches, quality testing is an integral compo-
nent, in particular if the software is directly used by end-users. Load testing is difficult
if prior testing has been done in-house and no expertise in testing in the cloud exists.
The feasibility study thus also addresses load testing.
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5.1 A Process for Migration Feasibility Studies

We frame our experimental approach in a process for migration feasibility studies:

1. Definition of the source architectures and a number of possible target architectures,
2. Selection of critical components, e.g., a high volume data process to test scalability

of storage (DB) or a communications infrastructure to test integration or communi-
cations scalability.

This is a critical challenges for the migration expert and the company architects. They
have to understand the existing architecture and to select the most suited component
for the experimental studies (ranges from individual component to full virtualisation as
VM). The feasibility process is based on architecture determination, prototype compo-
nent selection, and construction of realistic use case application for further analysis: (i)
setup of services and data (real or dummy) and monitoring, (ii) experiment specifica-
tion, (iii) experiment execution, (iv) data collection and analysis.

5.2 Benefits of Experimentatal Studies

Some of the experiments that we carried out targeted for instance data storage for image
processing in the ‘Document Management’ use case. What experimentation shows are
a number of concerns that would normally not always be identified and clarified in
discussions and non-experimental analyses:

– Difference between PaaS/IaaS/SaaS solutions (as consumer and provider). Based
on the migration architecture it allows to practically demonstrate configuration and
operation of different scenarios.

– Scalability of the solutions, as exemplified in Figs. 6 and 7 for response time
behaviour based on different retrieval and update loads.

Fig. 6. Comparison of storage options (technical quality). Three DB configurations (Cache, SQL,
NoSQL) are compared in terms of the page response time (in sec) [1] for given load test times.
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Fig. 7. Comparison of storage options (data consumption versus cost) [1].

– Identification of integration and interoperation problems that emerge in the proto-
type implementation when on-premise components are migrated.

– How to structure and cost a staged migration (plan derivation) can be estimated on
the prototype component migration that typical involves the migration of existing
components. In order to experiment, data and traffic needs to be available, again
either imported or generated. In all cases, a realistic prediction of software and data
migration tasks and related costs is possible.

Figure 6 shows the performance results for different storage options for aWeb appli-
cation. Figure 7 maps the architectural options onto costs.

5.3 Costs of the Experimental Effort

Cost is a key factor in the decision whether to conduct a feasibility study, i.e., does it pay
off to carry out a feasibility study. The costs include the cloud platform to experiment
with and the migration expert.

The total experimental costs are 5–10% of the predicted migration costs based on
our case study experience – including architectural analysis, draft migration plan and
security and data protection analysis1.

6 A Selected Migration Use Case

In the migration process, the problem is costing an application on a public cloud within
the given performance and scalability quality requirements. The total costs include the
implementation costs of refactoring the system as a cloud application, as well as the
operational cloud charges associated with running the new system on a cloud provider.

1 Please note, these costs were part-funded for the given use cases documented here by govern-
mental business innovation schemes.
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This use case – the document management use case – focuses on the migration of
a legacy client-server on-premise single-tenant enterprise application to the cloud by
re-designing, re-engineering and recoding the system as a cloud application. The com-
pany in question is an independent software vendor (ISV) that has over 1,000 existing
client installs and this case study is to estimate the costs in migrating a part of these to
a cloud platform. The application is Document Management, which enables scanning
documents and save them as electronic images. Documents can be classified and meta-
data templates are used to store searchable tagged data for the documents for retrieval
and reporting. Additional services such as image processing, which allows for example
Optical Character Recognition (OCR) and barcode reading can be added. The applica-
tion is a multi-process system that consists of a web server (a compute resource) and a
separate image processing component (another compute resource). However, the func-
tional dependency between these does not need to be considered in any cost analysis as
image processing VMs work independently from the web server, which operates regard-
less of the state of the image processor. Therefore, we can calculate VM configuration
requirements based on a linear multiplication of the CPU load per tenant.

For the experimental part of this use case, we have considered the following archi-
tecture components:

– A cloud data store – made up of Azure-based NoSQL Table structure (Azure Table
service) and an object store (Azure Blob Storage service). The former service stores
metadata associated with the documents. The latter service stores the corresponding
document image files.

– A cloud compute architecture made up of a separate compute resource for the web
server of the web application (Web Role Virtual Machine), and a separate compute
component for carrying out the image processing functions, such as barcode reading
(Worker Role Virtual Machine);

The following data sources of data were used for an estimated technical configura-
tion and cost calculation of a suitable full system.

– Prediction of the usage of storage resources when applications and their tenant are
migrated: if available, we can use actual historical data from an existing average-
sized tenant with a typical application usage pattern. The historical storage informa-
tion, available from experiments or related sources, namely, the images, metadata
and template files saved by a user of the application a given period in an on-premise
context, provided a reference data store usage profile for a typical average user of
data stored on the cloud.

– Prediction of the cloud compute resources required: we can monitor the usage and
performance during an experimental period of the operational use of the application,
again by a typical user as above. Monitoring includes here the application functions
called and the number of document images/metadata stored and modified.

– In order to support the configuration to select the optimal VM type, we can carry
out a benchmark study of the performance of the different VMs as part of the exper-
imentation.

For the given use case, an experimental benchmarking and performance analysis
has identified that the VM CPU load is the driving factor that determines the compute
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resource required. Therefore, this parameter is used as the main driver in the calculation
of cloud costs in relation to performance requirements.

As an observation on the experiments carried out, there is an important difference
between storage and compute resources in the cost calculation.

– When the cloud provider provides automatic scaling of the available storage capacity
so that it appears to be effectively infinite from the application perspective. The
application or cloud orchestration do not need to consider scaling storage capacity.

– The same is not the case for the compute resources. The auto-scaling of Virtual
Machines (VM) must be configured and monitored by the administrator and set
according to changing tenant numbers and sizes and application usage patterns
and operational profiles. It must be carried out by taking Quality-Of-Service (QoS)
parameters and Service Level Agreement (SLA) targets into account.

As a consequence, we monitored the usage and performance of the application over
a test period during which a user carried out some typical operations of the applica-
tion. We measured VM CPU and Memory utilisation as well as web application page
response times and storage access end-to-end latency times. In the use case, the mea-
sured response times have demonstrated that the performance for file searching and
scanning are within acceptable limits. Note that storage latency times are outside the
control of the application and are a quality issue with the cloud provider, such as
Microsoft Azure in the given case. The Memory and CPU usage indicated that the ded-
icated image processing VM is constant. This was expected since the processing was
managed by an Azure Queue service which spreads the workload suitably. The memory
utilisation of the server is equally constant, which can also be expected for a web server
running web applications such as this.

While these observation are helpful in the configuration and cost calculation, we
need to note some caveats. The calculations carried out in the experimental phases were
to some extent rudimentary, because they were carried out before more comprehensive
performance tuning could have been performed on the full application and the platform
it was put on. The following aspects of the application and cloud platform could be
further assessed during full operation of the application, e.g., in order to improve and
optimise the deployment of the application.

– The existing deployment does not include any data caching, which would likely
significantly reduce the CPU overhead as well as data storage access costs.

– The platform can be re-engineered to make use of newer platform services which
allow for code to be run on demand rather than on compute role services – cf.,
recent lambda functions available by some major cloud service providers that should
significantly reduce compute costs.

– The CPU load can be further optimised by looking at the queries to the table service
through the use of indexing tables or schema denormalisation. This could be carried
out once the more heavily used operational queries have been identified.

It should also be noted that a simple linear multiplier has been used here to estimate
the tenant load for the forecasted tenant numbers. This, as explained does not take
into account of the smoothing effect of multiple tenants sharing the same application
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compute resources. It therefore represents a conservative estimate of compute VMs
required.

Detailed results on the effectiveness of the experimental feasibility studies will be
reported in the next section.

7 Observations on Use Cases and Evaluation

The benefits of feasibility studies in the proposed format are experimentation results
and documentation:

– a proper documentation of scenarios and plans needed at a high level, which allow
detailed migration plans for a full migration to be developed,

– experiments help to clarify options, address misconceptions, and identify open
problems.

They help to scope a full migration project. We have evaluated our feasibility approach
to cloud migration analysis and planning based on the following criteria:

– Clarification of architectural options ans concerns.
– Reliable quality prediction & cost prediction.
– Cost effectiveness as an instrument.

7.1 Clarification of Architectural Concerns

A clarification of architectural options for organisations planning to migrate through
architectural prototyping using a pattern approach allows to use patterns that link quality
to structure [16,19]. A survey has been carried out with architects involved in the migra-
tion studies – with at least 3 architects for each participating use case. This includes
architects both within the company in question and also consulting software architects.

The key results of the survey we carried out are:

– All participants surveyed (100%) agree or strongly agree that the method is suitable
as an analysis tool to identify options and concerns.

– Almost all (88% of the participants) agree that the migration method is suitable
to analyse and discuss functional and non-functional architecture requirements for
migration.

However, there has been one limitation that has been flagged by the survey participants.
While 55% strongly agree that the method is suitable for SMEs and that is also suitable
for multi-cloud migration (80% positive), there are also 43% that have concerns with
its applicability for large-scale migration. This remains a concern for future work.

7.2 Prediction of Software Quality and Cost

We have already talked about the link between quality and cost. We can distinguish
quality and cost observations in an attempt to obtain reliable estimations:
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– Reliable Quality Prediction: experimental quality assessment results in trustworthy,
reliable input to predict full system behaviour. This has been discussed and analysed
with the customer companies in question. In the case of successful migrations at a
later stage, we have not found any major deviations from the predictions when using
the configurations experimented with.

– Reliable Cost Prediction: experimental cost assessment provides a low-to-high
demand cost range, allowing to predict to system costs on a reliable basis [11].
These have been discussed with the customer company and, where possible, evalu-
ated through a later full implementation.

Only an empirical evaluation of the two quality items is currently possible due to
the lack of suitable quality and cost mapping models. Cloud computing is here, how-
ever, highly suitable as monitoring of technical details can be set to be detailed for the
experiments and billing for the resources used is equally detailed with typically metered
usage for different resources used. For instance, for the ‘Document Management’ use
case, the factors considered for storage only were: region, replication options, data size
stored, transaction number, data transfer.

7.3 Cost Effectiveness of Migration Feasibility Studies

Cost effectiveness as an instrument is a key aim of our approach. We looked at the
actual costs of feasibility studies relative to full migration costs. We also considered
how successful feasibility studies were in terms of determining a decision for the actual
migration.

– Cost per project: For the 5 migration cases that we have carried out, the average cost
was around 5% of the total budget for a full migration. The full migration budget was
determined after the feasibility study concluded. The 5% cost was considered ade-
quate. Please note that the overall budget for the migrations ranged between 100,000
and 250,000 Euros, including substantial re-architecting in some cases.

– Decisions taken: Concrete results from the use cases are as follows: 1 full migration
(document management) has started and is currently being finalised, 1 full migra-
tion (insurance) has started, 1 decision against due to quality grounds (banking), 2
decision have at this stage not yet been taken (food, registry). In the all finalised
cases, the companies in questions have based their decision on the outcome of the
feasibility studies.

For the discussion with the companies in question, readiness to make a decision to
embark on a full migration is considered a success. The experimental feasibility study
is also considered successful if a decision against migration is taken on the grounds of
an unfavourable quality or cost result.

7.4 Discussion of the Effectiveness of Migration Feasibility Studies

The limitations of the approach are related to the delay it might cause. In many circum-
stances this might not be an issue, but in some situations an approval to embark on a
full migration is necessary, possibly depending on a successful outcome of the study.
The format of this approval is typically one of the following:
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– External private investment in a cloud
– Public support, e.g. through innovation schemes
– Internal approval for further funding

While there might be a delay particularly if an approval process is included, any full
migration decision can be based on reliable input data. Please note that in the use cases
where a decision has not been taken yet, this was not due to the study results.

In the context of the whole migration costs and generally some risk involved, the
low feasibility study cost are a valuable investment.

Another limitation at the moment is that we have only carried out migration studies
for small to medium sized applications with SMEs as customers. Data for large-scale
experimentation with a possibly more complex setup does not exist yet.

8 Related Work

We distinguish related work in terms of three concerns – architecture migration, general
cloud costing and quality-linked costing and pricing.

Architecture Migration. A number of cloud migration approaches exist. Authors like
Jamshidi et al. [2] survey the literature on cloud migration. Fahmideh et al. [18] pro-
vide a comparison framework for cloud migration methods. We target specifically an
experimental framework that goes beyond the surveyed process models for migration.
However, we assume here a pattern-based migration method, into which a number of
existing methods fall. To the best of our knowledge, the role of feasibility studies has
not been explored yet in the context of cloud migration.

Costing in Migration. Costing models for cloud are important for organisations to
understand their own costs and expenses. In [5], an overview of pricing models for
the cloud for operational costs is provided. On the expenses side, e.g., at IaaS level,
resources are priced often like commodities [11]. At the income side for an ISV oper-
ating through the cloud, the product is typically provided as a SaaS with possibly a mix
of model from pay-per-use to pay-per-user and flat-fee models. Our solution is meant
to bridge between the two perspectives.

Another direction would be the consideration of the total cost of ownership (TCO)
and the Return-On-Investment (ROI) [32]. TCO in a cloud context would include the
migration costs as well as the operational costs of running an application in the cloud.
We were primarily interested in the operational costs for given quality requirements.
Thus, actual migration costs for re-engineering and adaptation have been ignored in
this investigation. Our work could be extended by determining the TCO for an SLA-
compliant configuration.

Architecture and Pricing. Quality in the cloud is manageable for quality factors as
performance by configuring and adapting the virtual resources used appropriately. We
propose a manual experimentation approach for cloud prototype implementation. In
[4] a system to support automated resource selection is suggested. Although this is
not generally applicable, the ideas could help to automate our approach further. The
automation of cloud experimentation is also addressed in [20] through a tool suite for
the OpenStack platform.
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9 Conclusions

The decision whether to run software in the cloud is both a cost and a quality question.
For instance, fior a cloud-based software provider, quality and cost need to be reconciled
in a cloud-based system architecture. This architecture needs to map software hosted
using IaaS or PaaS services onto a SaaS delivery model. In this context, the reliability
of relevant data and an understanding of the processes of migration and operating in the
cloud and their impact are important elements for taking a decisions [17].

Our proposal here is to support this process through feasibility studies. These can
help the companies in question to determine or at least confidently estimate the costs
of the cloud migration, but also the operation of a software product in the cloud. Fea-
sibility studies provide decision support. The key questions are whether and how a
software product can be deployed and delivered cost-effectively in the cloud while
at the same time maintaining desired quality. The benefit is increased reliability of
data/assumptions, rather than relying on experience or guesses. We put experiments
at the core of these feasibility studies. Testing and experimentation is often not don
until a much later stage around systems deployments. Performance is the focus of these
experiments. Load tests are normally not done a performance testing stage. In our pro-
posal, load testing is an experimental technique that allows to reduce technical risks
before the actual migration starts.

We have demonstrated the costs of conducting a feasibility study are moderate given
the risks of failure during a full migration or during the operation of the software in
question.

The experimental part relies currently on the manual setup by an experienced con-
sultant. This could be improved through an automation of the experiments. What could
help is automated test case generation for performance and scalability. The test con-
figuration could also consider alternative configurations, such as an automated storage
service selection and configuration. Also relevant is the consideration of large-scale
application migration. For instance, it is currently unclear if migration costs scale up
linearly based on the application size or if normal development cost heuristics can be
applied. A further possible direction is to focus on prevalent architectural trends such
as cloud-native microservice [24,30,31] or container-based architectures [27]. These
architectures can be reflected in the patterns themselves, for instance more clearly iden-
tifying cloud-native architectures in terms of a microservices style [21]. This would
allow to fine-tune settings in terms of performance [28].
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1 Introduction

High performance computing (HPC) systems have increasingly delivered a wide
variety of functions and been difficult for HPC system users to own a variety function
of HPC systems for themselves. Besides HPC systems have been used for conventional
scientific simulations, they have been used for some applications analyzing a lot of
streaming data coming from such as many sensors (IoT/BigData) and getting an
Artificial Intelligence (AI) to learn a function from these data. Future HPC systems are
required to perform a wider range of functions and provide higher performance than
today. However, the HPC systems tend to require application specific configuration,
and it is becoming increasingly difficult for users to own such HPC systems. For
example, a server of a HPC system for graphics processing unit (GPU) computing must
have a high electrical power supply, a large slot space, and a cooling mechanism to
install a high-power GPU accelerator. Generally, MPI (Message Passing Interface) is
installed in the cluster computing system, and introduction of InfiniBand’s high-speed
and expensive host bus adapter (HBA) is considered for high performance. As a result,
these HPC systems are far more expensive and consume more electrical power than
conventional computing systems.

For such the users, advanced cloud services are a way to obtain HPC systems such
as a GPU computing platform [1, 2] and a distributed cluster system using an MPI [3].
However, each system configuration of these HPC systems is unique and fixed in that it
uses specific devices, network topologies, and protocols (see Fig. 1).

For this reason, the computing resources in the cloud must be reserved only for
prepared usage and cannot be flexibly used for other usages. For example, even if one
GPU of server nodes that installed two GPUs is used, the remaining one GPU cannot
be used for another application. In order to provide the best performance for each
system, it is necessary to configure a cluster system consisting of multiple server nodes
with carefully designed networks in advance. For example, a MPI application may

Fig. 1. HPC systems need special configuration.
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require a mesh or fat tree topology, whereas a Hadoop/Spark application may neces-
sitate a topology for map and reduce tasks.

This rigidness causes problems against the users and the cloud service providers.
From the users’ point of view, they cannot obtain the most appropriate computing
resources in a cloud for their applications because computing resources must be chosen
from a fixed configuration menu. This menu may not be the optimal configuration for
their usage because the menu items may be under or over the predicted specifications.
In addition, conflicts of resource requests between users may occur. This happens
because the cloud’s HPC resources are less than the traditional server of the general
cloud service. From the perspective of cloud service providers, providers need to
prepare various HPC platforms to meet the diversified needs of HPC users. This
shortens the time that each platform is used to execute jobs. As a result, although HPC
platforms have high installation and maintenance costs, the utility rate of each HPC
platform is low.

Our goal is to flexibly provide HPC resources that meet the needs of diverse users
from the cloud. We call the concept High performance computing Infrastructure as a
Service (Hi-IaaS). Providing HPC resources as a cloud service encounters the above-
mentioned problems caused by the rigidness of the HPC systems. Therefore, a system
for Hi-IaaS needs a flexibility to cover diversified HPC applications and different
platforms for each application.

In addition to the scientific simulation of the major applications of HPC, Hi-IaaS
needs to provide a computer platform that runs recently emerging applications such as
IoT/BigData and AI. In other words, Hi-IaaS must provide computing platforms for
both high performance data analytics (HPDA) and HPC from a cloud. The key to cover
a variety of application specific computing platforms is software and hardware
reconfigurability.

In this paper, we present the architecture of Hi-IaaS and describe key technologies
mainly focusing on the hardware reconfigurability. The hardware platform reconfig-
urability of the Hi-IaaS system includes important functions from hardware reconfig-
uration to job execution according to the user’s job and request submission.

2 Concept and Architecture of Hi-IaaS

Hi-IaaS provides a computing platform for various HPDA and HPC applications
flexibly according to user’s request as a cloud service. This section explains Hi-IaaS
concept and architecture.

2.1 Architecture

From the background mentioned in Sect. 1, the requirements for Hi-IaaS system are
summarized as follows.

a. Covering diversified HPDA and HPC applications.
b. Providing optimal hardware for each user’s job.
c. Minimizing users’ job waiting time.
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d. Minimizing hardware and software cost.
e. Increasing resource utility rate.

In a conventional cloud computing system, a graphics processing unit (GPU), a
field programmable gate array (FPGA) accelerator, a high-speed storage, and an
interconnection network are prepared in order to execute various applications with high
performance. In addition, from the perspective of the cloud service provider, computing
platforms must be provided quickly without conflicts among users. The simplest
solution is to prepare sufficient quantity and quality of hardware to execute all diverse
applications at high performance. However, this solution does not solve problems of
high initial cost and operating costs including electrical power consumption and low
resource utility rate. Therefore, this solution does not satisfy requirements (d) and (e).

Hi-IaaS system architecture is shown in Fig. 2. the system has three functional
blocks, reconfigurable hardware, reconfigurable software, and a job resource cross-
management system. With these functions, the system has the following three features
and then these tree features can satisfy the five requirements.

a. A computing platform is reconfigured dynamically.
b. Application specific software framework can be used.
c. Hardware resources are shared among different jobs.

In terms of requirement (d), the platform must be implemented on the basis of open
standard hardware and software because utilizing open source resources effectively
reduces the capital cost and operational cost for a big system like a cloud.

2.2 Reconfigurable Hardware

The solution we present in this paper is based on a highly reconfigurable hardware with
a software defined management method. A reconfiguring hardware process can be
executed dynamically along with each user’s job with the method. Therefore, an
optimum number and type of hardware resources can be allocated to each user’s job
and hardware cost become minimum and resource utility rate increases by sharing them
among different user jobs.

Reconfigurable hardware can be reconfigured at the level of each device. This
means that each user can specify the number and type of hardware devices required for
the job. For example, if the user wishes to execute a deep learning job with GPUs, the

Fig. 2. Proposed system architecture.
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user can specify the number of GPUs required for that job. In addition, when the job is
completed, the GPUs are detached and assigned to other jobs. This hardware device
level reconfigurability is the key to execute various applications at high performance by
preparing the optimum hardware for each application.

2.3 Reconfigurable Software

In order to execute applications with high performance, application specific software
frameworks should be installed for each user’s job before processing. For example,
most recently-emerged high performance applications such as high performance data
analytics are executed on a distributed system by using software framework such as
Hadoop [4] and Spark [5]. These software frameworks provide users with distributed
data storage and scaling out methods and can increase the throughput of HPDA
applications. On the other hand, if a user’s job utilizes GPUs or FPGA accelerators in a
system with heterogeneous processing units, the system needs a mechanism to allocate
a set of processors and accelerators to execute the user’s job from multiple central
processing units (CPUs). Therefore, the system needs to install a software framework
for heterogeneous processing.

The proposed system needs to provide optimum computing resources by installing
the required software framework in cooperation with reconfigurable hardware.
Reconfigurable software platform is important and essential for the reconfigurable
hardware because the number of processors, accelerators and storages devices might
change after the reconfiguration sequence. According to a user’s job and reconfiguring
hardware sequence, reconfigurable software platform uninstalls and installs application
specific software frameworks in the hardware platform provided to the user.

2.4 Job and Resource Cross-Management

In order for the proposed system to realize reduction of job waiting time and
improvement of resource utilization rate, it is necessary to accept requests from users
and cooperate with reconfigurable computer platforms according to the requests. In
other words, the proposed system avoids conflicts of resource requests among users,
which occurred in a system with a predefined configuration, by dynamically recon-
figuring the computer platform according to the user’s request. It is possible to elim-
inate waiting time of jobs and resources not used due to the conflict.

For this purpose, we introduce the job and resource cross-management system
(JRMS) in the proposed system. the JRMS has two functions of allocating computer
resources to jobs and working with reconfigurable computer platforms. When a user’s
job is submitted, the JRMS’s job scheduler enqueues the job and makes a list of
necessary hardware and software frameworks as a resource recipe. Then the JRMS asks
for reconfigurable hardware and software platform to configure hardware and software
for the job in accordance with the resource recipe. After that, the scheduler gives the
dynamically configured computer platform to the job.

Dynamic Reconfiguration of Computer Platforms 181



3 Dynamic Reconfigurable Hardware

The Hi-IaaS system proposed in Sect. 2 provides a computer platform reconfigured in
response to user’s request. In terms of hardware platform, even after system intro-
duction, the proposed system must be able to change the hardware configuration such
as the number of servers, network connection, data storage and so on. In addition,
hardware devices (GPU accelerator, solid state drive (SSD) storage, InfiniBand HBA,
etc.) that make up each platform need to be easily connected and disconnected by
resource management software. We realize such dynamic hardware reconfiguration
with the cooperative operation of the function enabling reconfiguration at device level
and the function of accepting user’s job and resource request.

3.1 Software Defined Reconfigurable Hardware Platform

The first key component is a software defined reconfigurable hardware platform. One
way to realize a reconfigurable hardware platform is a resource pool system (or dis-
aggregated computer system) [6–8]. It has pools of hardware devices such as a set of
CPU and memory (compute) pool, a GPU pool, FPGA accelerator pool, a storage pool,
and a network interface pool. Interconnect technology is one of the most important in
such disaggregated computer systems. In order to attach hardware devices such as
accelerators, storages, and network interfaces at the same point in the computer
architecture, peripheral component interconnect express (PCI Express) is known as the
most common open standard of an I/O interface today.

However, PCI Express is a bus technology with limited link distance and number of
connected devices. Due to the scalability performance of PCI Express switch chips,
most PCI Express bus technologies limit the number of devices that can be connected
to less than 10. The link distance is also limited by the conventional basic input/output
system (BIOS). Cascading PCI Express switches creates a complex and deep PCI
bridge forest, where traditional BIOS cannot complete all detection and enumeration
processes for buses and endpoint devices. In addition, PCI Express has a single root
tree topology implemented by switch chips so that only one computing can exist in a
PCI Express based fabric network.

As a technique to reduce these limitations of PCI Express, Express Ether (ExpE-
ther) [9] is available. ExpEther is a PCI Express switch over the Ethernet as shown in
Fig. 3, which enables creation of multiple single-hop PCI Express switches on the
Ethernet network. ExpEther has advantages as an interconnect network of highly
reconfigurable disaggregated computer hardware [10]. The distributed PCI Express
switch architecture of ExpEther [9] creates multiple single-hop PCI Express trees, even
though the Ethernet network consists of multiple switches. Each ExpEther device has a
ExpEther chip with group ID and PCI Express logical connections are controlled by
setting the same group ID. That is, ExpEther chips with the same group ID connected
through the Ethernet are logically equivalent to a PCI Express switch. With this
architecture, the required number of computes and devices can be connected to a single
Ethernet network without distance limitations, then multiple single-hop PCI Express
trees can be created on that network. In addition, ExpEther’s internal Ethernet network
is transparent to OS and software. From the OS and software, all devices are recognized
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as local devices as if they were in the local chassis. Therefore, by controlling the group
ID with a management software, software defined reconfiguration of hardware plat-
forms becomes possible. Note that all ExpEther functions are implemented on a
hardware chip, and the chip latency is 1 ls or less. Therefore, hardware devices have
performance equivalent to that installed in the local slot in the computer’s chassis.

In consideration of these features, we adopt ExpEther as an interconnection fabric
of reconfigurable computer hardware platforms. The simplest implementation of a
resource pool is using a pair of an ExpEther HBA card and an IO Expansion box
connected directly or via an Ethernet switch. The IO Expansion box contains multiple
PCI Express slots with an ExpEther chip on the motherboard. By using ExpEther when
creating a resource pool, we can use conventional servers as a compute, and use a PCI
Express device without modification. we also can use software including OS and
device driver without modification. In addition, ExpEther chips have congestion
control and a retry mechanism. Therefore, a standard Ethernet switch that does not
support the converged Ethernet specification can be used.

In order to flexibly provide hardware platform in accordance with users’ requests
by using ExpEther, all the devices and PCI Express device connections in a resource
pool need to be remotely controlled (software defined). As mentioned above, PCI
Express devices can be attached and detached logically by controlling the group ID of
ExpEther chips. Controlling the group ID is realized by sending a control packet to an
ExpEther chip in ExpEther technology. In addition, if the PCI Express device does not
support the PCI-compliant hot-plug process, the (re)boot process is necessary for
computes to recognize these PCI Express devices.

We have developed the Resource Manager based on the OpenStack framework [11]
as shown Fig. 4. The resource manager is a software which monitors and controls all

Fig. 3. PCI Express over Ethernet.
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the computes, devices and PCI Express level connections in the resource pool. One
version of OpenStack (MITAKA) has no management methods for disaggregated
computers and devices. The Openstack framework mainly controls virtual machines,
but it also has the function of bare metal (physical) server control (Ironic). The Ironic
has the advantage of controlling (re)booting of bare metal server required to attach and
detach PCI Express devices. Therefore, we modified Ironic’s functionality to support
ExpEther’s device level management.

The monitor and controller functions of the ExpEther system are implemented as
EE managers. The EE manager is a simple module that monitors and sends ExpEther’s
control packets. The monitored information is recorded in the database through Ironic.
When reconfiguring the system, the EE manager sends control packets containing the
new group ID to the ExpEther chips of the specified computes and devices via Eth-
ernet. ExpEther-specific management method is implemented as Ironic’s EE driver. By
separating management methods, modified Ironic can also accommodate other dis-
tributed computer systems using interconnect fabrics other than ExpEther.

The resource manager has a control application program interface (API) for Job
Resource cross-Management System (JRMS). The resource manager controls the group
IDs of computes and devices that need to be connected according to the hardware
reconfiguration specified in the JRMS described below. In addition, the resource
manager has a graphical user interface (GUI) and a command line interface (CLI) for
direct user control. The Horizon GUI has been extended to include PCI Express device
level monitors and their connection control interface. Other functions (Heat: Orches-
tration, Ceilometer: Telemetry, Nova: Scheduler, Keystone: Authentication etc.) nec-
essary for managing bare metal servers are implemented together without changing
from the original OpenStack framework.

3.2 Job and Resource Cross-Management System

The second key component is job and resource cross-management system (JRMS).
The JRMS realizes that application specific hardware platforms are dynamically allo-
cated to users’ job in accordance with users’ requests. The JRMS has two major
function blocks; accepting users’ jobs with their requests about application specific

Fig. 4. OpenStack-based resource manager.
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hardware platforms, allocating reconfigured resources to users’ jobs. As shown in
Fig. 5, one function block is a job management system (JMS) based on Open Grid
Scheduler [12]. JMS receives users’ jobs and requests, then the jobs are scheduled and
the requests are sent to another functional block. Another functional block is a policy
based resource assignment controller (Brain). The Brain has an interface between the
Resource Manager. The flow of instructions for accepting a request for each user and
allocating the reconfigured hardware platform to a job for each user is as follows:

a. User submits a job with resource request.
b. JMS makes a list of resources.
c. Brain asks the resource manager to configure computing platform.
d. Resource manager controls the group IDs and (re)boot processes.
e. JMS executes the job on reconfigured computing platform.

The JMS receives a user’s job with resource requests. The requests are described in
a job script as a standard style of Open Grid Engine’s job script (It is a kind of a special
comment sentence starting with “#$”). Then, the JMS makes a resource recipe used for
reconfiguration. The number of server nodes and devices the user requests are
described in a resource recipe. In addition, the JMS sends it to the Brain and waits for
completion of reconfiguration.

Brain receives the resource recipe from JMS and current hardware resource uti-
lization from the resource manager. If a resource pool has sufficient resources to
execute the user’s job, Brain asks for the resource manager to reconfigure hardware
platform in accordance with the resource recipe. After the reconfiguration, the resource
manager notifies the Brain of the resource status. Then Brain tells the JMS the address
of reconfigured resources.

Fig. 5. Job and Resource Cross Management System (JRMS).
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4 Experimental System

We have built an experimental system and confirmed the feasibility of our proposed
system architecture. In this experiment, we confirmed whether the experiment system
could execute the job after reconfiguring the computer platform according to user’s
resource requirements. In addition, we confirmed whether using GPU via ExpEther
does not prevent acceleration of job execution by using one Spark benchmark job.

4.1 Implementation

The experiment system consists of a resource pool, a resource manager, and a job and
resource cross-management system as shown in Fig. 6. The resource pool has two
computes, two GPUs and one non-volatile memory express (NVMe) storage. These
computes are commercially available compact workstations which attached an ExpEther
chip (NEC Express 5800 52Xa: CPU: E3-1200v3, Memory: DDR3-1600 SDRAM).
These I/O devices (two GPUs and one NVMe storage) are connected to PCI Express slot
of ExpEther I/O expansion box. These GPUs are commercially available (NVIDIA
K-5000) and the NVMe storage card is a laboratory-level prototype. It supports NVMe
1.1 specification including single-root input/output virtualization (SR-IOV). By using
ExpEther, a PCI Express device can be shared among multiple computes at the PCI
Express level. In other words, in this experimental system, two computes use the NVMe
storage card as if it was connected to each compute’s local slot. In order to avoid the
conflict between two data writing operations, the “exclusive write” operation is
implemented by using NVMe 1.1 specifications operation “compare and write”. Two
computes, two GPUs and the NVMe storage are connected by ExpEther via a standard
Ethernet switch (NEC QX-S5828T) and 10G-Ethernet with two paths.

Fig. 6. Experimental system.
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The resource manager and JRMS are installed on separate virtual machines
(VMs) on the same machine using VirtualBox. The operating system (OS) for the
resource manager is CentOS 7.2, and the JRMS is CentOS 6.4. The version of the
OpenStack is Kilo. The resource manager is connected to the ExpEther network
(Ethernet), and JRMS is connected to each compute via an Internet protocol
(IP) network.

In this implementation, the software platform including the OS installed on each
compute is static. Apache Spark, storage software and computational accelerator uti-
lization management software are pre-installed on each compute. It is possible to install
these software on each compute after hardware platform reconfiguration by using
Ironic’s function. Reconfiguration of the software platform is out of the scope of this
paper and it is a topic to be addressed in the future.

4.2 Operation

We Confirmed Whether the Experiment System Could Execute the Job after Recon-
figuring the Computer Platform According to User’s Resource Requirements. In This
Experimental System, Two Computes, Two Gpus and an Nvme Storage Card Are in
the Resource Pool. The Software Platforms on Each Compute Node Are Static as
Mentioned in Sect. 4.1.

We Set an Experimental Operation Scenario as Shown in Fig. 7. In This Scenario,
the Group Ids of Expether Are Assigned for Each Device in Resource Pool in an
Example Scenario. The Group Ids Are Assigned as #1 and #2 for Each Compute Node
in Advance. These Computes Share an External Nvme Storage Card in the Pool by
using the Software Storage Engine We Have Developed. The Group Ids of Other
Devices (Two Gpus) in the Resource Pool Are Assigned as #0 Which Mean That These
Devices Are Logically Unconnected to Any Compute. The Flow of Operation Is as
Follows:

a. JMS makes a resource recipe (two computes, a GPU attached to each node).
b. Brain tells the resource manager to attach a GPU to each node.
c. Resource Manager sets two GPUs’ group IDs to #1 and #2.
d. Resource Manager monitors configuration status of the resource pool.
e. Brain get an information of completion of the reconfiguration.

Fig. 7. Sequence of reconfiguration and job execution.
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f. Brain tells JMS to assign the job to compute #1 and #2.
g. JMS executes the job on compute #1 and #2.

First, a job request is submitted to the JRMS. It contains a user’s requirements for
the computing platform. In this scenario, the user requests two computes both installed
with one GPU (K-5000). Both computes share the same external NVMe storage
regarded as a local storage from the software view of each compute.

The JRMS puts the job into the queue. Then JRMS makes a list of the resources
that can be used to satisfy the request described in the job script. Brain always gathers
the information of the resource pool from the Resource Manager and puts it in the
database. When Brain receives the resource list, Brain determines the devices (GPU in
this scenario) for each compute by referring to the database.

Then the Resource Manager indicates to attach a GPU to each compute node. In
order to manage the PCI Express connection, the group ID of each ExpEther chip
connected to the compute and IO device is recorded in the device list. In this scenario,
the group IDs of each GPU are assigned #1 and #2. Then the GPUs are attached to each
compute node and each OS of compute node recognize attached GPU. We set the
waiting time for completion of the hot-plug process in OS to 20 s. This waiting time is
longer than the time for the hot-plug process, but the time for the hot-plug process
differs depending on the computing platform environment. It should be shortened by
investigating the hot-plug process in future work.

In the end, the Brain tells the JRMS to executed the job on a two-node cluster
(compute #1 and #2) in which both nodes are installed with a GPU in accordance with
the user’s request.

The hot-plug process of the GPUs can be seen by the horizon GUI of OpenStack
framework as shown in Fig. 8. The GUI is modified to show the PCI Express tree just
like “lspci –t” command in LINUX. Figure 8 shows the server-view that displays the
PCI Express connections from a compute node to endpoint devices.

The device tree before the job execution is shown in the left part of Fig. 8. PCI
Express trees of two computes with group IDs of #1 and #2 are shown here. The red
mark of the NVMe storage cards indicates that the device shared among other com-
putes. No GPU was seen in either PCI Express tree because both are in the resource
pool with a group ID set as #0.

Fig. 8. Hot plug process on OpenStack management window (cited from [17]).
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When the job is submitted with a request for using GPUs, the Resource Manager
connects them to each compute by setting group IDs of each GPU as #1 and #2. After
the reconfiguration, GPUs are seen in both PCI Express trees as shown in the right part
of Fig. 8. Then, the job is executed on compute node #1 and #2. Through this
experimental scenario, we found that our proposed system architecture can execute the
expected operation dynamically reconfiguring a computer hardware platform before job
execution.

4.3 Performance

We have used the experiment setup described in the previous section to verify that the
system can function as an HPC system. The main performance concerns are the
interconnect latency to form a resource pool, ExpEther chip, cable, and switch latency.

It is about 700 ns for the ExpEther chip and 5 ns/m for the cable. Switch single hop
is about 500 ns. This means a roundtrip takes about 3 ls.

The performance degradation due to this latency varies widely depending on the
application. The group of Amano evaluated in detail by examining the performance
scale up according to the number of GPUs [13, 14]. In this experiment, we investigated
whether the logarithmic regression, Spark benchmark software, is accelerated by
connected GPUs from the resource pool. Figure 9 shows the time to run a spark
benchmark job with different configurations. In this verification, we found that
degradation of I/O performance by ExpEther does not prevent accelerated by GPU.

It should be noted that the computer used in this experiment was too compact to
install the GPU internally so it was not possible to compare the performance with the
system where the GPU was directly installed in the computer. Therefore, we cannot
investigate to what degree ExpEther’s latency worsens performance compared to HPC
system and should investigate in the future. However, this research focuses on the use
of HPC in the cloud, and most cloud users understand that the computer resources in

Fig. 9. Execution time for one Spark benchmark in different configuration.
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the cloud are executed worse than specially designed HPC systems. Therefore, we
conclude that GPU computing can be provided by using this reconfigurable mecha-
nism, even for traditional 1-U machines deployed in the cloud that cannot connect
GPUs. This increases the probability of obtaining a computer platform matching the
user’s request from the cloud.

4.4 Reconfiguring Time

Another performance impact to consider is the time for reconfiguring computer plat-
forms. If a reboot process is required during a reconfiguration process, the reconfig-
uration lasts as long as the OS restarts. Currently, there is no technology to shorten the
startup time of OS that takes more than tens of seconds, it is much longer than any
other process of reconfiguration. Rebooting the OS occurs, for example, when con-
necting a device that cannot be hot-plugged, adding special drivers for devices that the
OS does not support, allocating memory, etc.

On the other hand, if it is not necessary to restart the OS, changing the PCI Express
setting with ExpEther only takes a few µsec to send a control packet to change the
group ID of the ExpEther chip to the target device. However, before using a device
which support hot-plug process in software, a hot plug handler that manage the attach
and detach process in the OS needs to recognize the device. Depending on the com-
puting device and status, it may take about 10 s to recognize the device. Therefore, we
set the hardware reconfiguration waiting time to 20 s in this experimental setup. Cur-
rently this waiting time dominates the reconfiguration time in non-reboot case. In the
future, it is necessary to investigate to accurately evaluate the hot-plug processing time
and speed up hardware reconfiguration with minimal hot-plug processing time.

5 Evaluation in Cloud Usecase

Our organization, the Cybermedia Center, provides computer resources to researchers
and students of Osaka University as well as other universities. It has three major
computing systems; a vector super computer (SXAce), a scalar cluster computer
(HCC), and a scalar cluster computer with GPU (VCC) [15].

VCC consists of 65 servers with IO extensions by using ExpEther. However, in the
current operation, the configuration of the computer platform is not dynamically
changed. A reconfiguration is done semi-annually by investigating the user’s plans on
the utilization of the computing platform. For example, the computer platform con-
figuration for the next six months is determined according to the user’s plan, such as
using the four computing nodes with two GPUs for 200 h, using 16 nodes with PCI-
SSD for 100 h. That is, the system configuration has been fixed for half a year.

In this section, we evaluate how resource utilization and job waiting time can be
improved by adopting the proposed dynamic reconfiguration by using resource allo-
cating simulation. In addition, we investigated whether or not problems that can be
resolved by adopting dynamic reconfiguration occurred, by collecting usage status data
of actually operated VCC.

190 A. Misawa et al.



5.1 Resource Utilization Simulation

We have been evaluating how resource utilization and job waiting time are improved
by proposed dynamic reconfiguration by simulating resource allocation to jobs. We
have developed a resource allocation simulator for jobs simulating a dynamically
reconfigurable cluster based on the job scheduling simulator ALEA [16].

ALEA can deal with common problems of job scheduling in clusters and grids, like
heterogeneity of jobs and resources and dynamic runtime changes, and provide a
handful of features including a large set of various scheduling algorithms, several
standard workload parsers, and a set of typical fairness-related job ordering policies.

Determining the best job and resource scheduling algorithm for a dynamically
reconfigurable computer system is too complicated to address in this paper. This is
because the system is very flexible and the simulation conditions to consider are very
diverse. Therefore, we fixed some conditions to simplify the simulation and estimated
the dependency of utility rate on hardware reconfiguration and job workload.

Firstly, we simulated five types of GPU cluster system to investigate the difference
how our proposed system improves GPU utility rate [17]. We have investigated GPU
utility rate in two cases about cluster configuration; dynamic reconfigurable hardware
and static. The five static cluster configurations in Table 1 and simulation conditions
are as follows:

a. All GPU cluster systems are composed of 64 GPUs and 64 compute nodes.
b. Job scheduling algorithm is FIFO.
c. Reconfiguration is applied only for the number of nodes and GPUs.
d. All job execution time is fixed and same.
e. A node can accept only a single job at a time.
f. Number of nodes each job request is fixed to 8 or 16.
g. Number of GPUs on each compute node each job request is fixed to 0 or 1.

Average GPU utility rate of all the static cluster configuration is plotted in Fig. 10.
In addition, average GPU utility rate of hardware reconfigurable cluster is also plotted
in the figure as a dotted line because it is independent from the static cluster config-
uration. The numbers of GPUs for each compute node jobs requests are well balanced
to execute jobs in cluster sets #1 to #3. However, because the total number of GPUs is
limited to 64, #4 and #5 that include four-GPU machines, the number of nodes without

Table 1. Cluster system configuration (cited from [17]).

Cluster set Number of
GPU/node set

#1 1/64 - -
#2 2/8 1/48 0/8
#3 2/16 1/32 0/16
#4 4/8 2/16 0/40
#5 4/10 2/12 0/42
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GPUs becomes dominant. Thus, more jobs that request GPUs have to wait for GPU
nodes to be released and then average GPU utility rate become low.

The GPU utility rate of cluster set #5 is shown in Fig. 11 as an example. When a
job cannot be assigned on its requested computer resources in terms of the number of
nodes or GPUs, the job stays in a queue waiting for finished other jobs to release the
resources. This happens even if some resources are available. For example, if the job
requests four-GPU nodes, it cannot be executed even if two-GPU nodes are available.
Then the GPUs on the two-GPU nodes are left unused until a job with two-GPU nodes
is submitted. By using a reconfigurable hardware platform, unused GPUs are returned
into the resource pool, then four-GPU nodes are configured by using them, and thus,
the four-GPU job can be executed without waiting time. This results in decreasing the

Fig. 10. Utility rate depending on cluster configuration (cited from [17]).

Fig. 11. Utility rate of GPU of cluster set #5 (cited from [17]).
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time for executing all jobs by about 42% that of the rigid system, in addition to
increasing the average GPU utility rate from 20% to 47% in the example use case
shown in Fig. 11.

Secondly, we simulated the GPU cluster system which models VCC and the sit-
uation in which number of GPUs each job request is diversified to investigate how our
proposed system improves GPU utility rate. The static cluster configuration is
described in Table 2 and simulation conditions are as follows:

a. Job scheduling algorithm is FIFO.
b. Reconfiguration is applied only for the number of nodes and GPUs.
c. All job execution time is fixed and same.
d. A node can accept only a single job at a time.
e. Number of GPUs on each compute node each job request is randomly chosen from

0 to 4.

Generally, static cluster configuration is announced to users in advance and users of
the cluster request computing resources within the limits of static configuration. Thus,
we assumed that a job request compute nodes and GPUs as executable on a cluster in
this simulation. For example, VCC users must request four-GPU machines less than
five. If a VCC user submit a job which request six four-GPU machines, the user’s job
dose not be executed on VCC because of lack of four-GPU machine. Therefore, in this
hypothesis, the number of compute nodes and the number of GPUs per node are limited
by static cluster configuration. When the number of compute nodes (GPUs per node) is
randomly chosen within the limits of static configuration, the number of GPUs per node
(compute nodes) has biased distribution. In this simulation, we focus on diversified
number of GPUs a job request. Therefore, we randomly changed the number of GPUs
per node a job request in range of zero to four and histograms about requested the
number of compute nodes and GPUs per node are shown in Fig. 12.

The average GPU utility rate and the time for executing all jobs of the static cluster
configuration and dynamic reconfigurable hardware are shown in Fig. 13. Dynamic
reconfigurable hardware cluster decreases 50% the time for executing all jobs and
improves from 39% to 78% the average GPU utility rate. Our proposed system can
improve average GPU utility rate in the situation in which the number of GPUs per
node requested is diversified.

Table 2. Cluster configurations of VCC in 2016 (cited from [17]).

Node number # GPUs per node

#0 to #4 4
#5 to #10 3
#11 to #21 2
#22 to #64 0
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5.2 Job Waiting Time Estimation with Real Operation

In order to investigate whether Hi-IaaS can increase resource utility, we investigated
actual usage record of VCC system. Table 2 shows the cluster configuration in the first
half of 2016. In this static configuration, some users’ jobs were congested.

Figure 14 shows the worst case of 2Q–3Q in 2016. For simplicity of explanation,
only nodes #19–#23 are shown in this figure. On September 28, a blue job was
executed on nodes #22 and #23. Then at 15:00, a yellow job was enqueued. Although
the yellow job did not request any GPUs, because computer nodes without GPU are
occupied by the blue job (#22, #23), the yellow job was executed on the GPU machine
(#19, #20, #21). At 20:00, a purple job that requested two nodes with a GPU was
enqueued. However, since all the GPU machines (#19, #20, #21) were occupied at that
time, the purple job had to wait for resources to be released. At 20:00 on September
29th, the yellow job was completed. After that, a purple GPU job was executed. Purple
job waiting time was 25.1 h.

In this case, when a purple job with GPU request was enqueued, the compute nodes
were free (#22, #23). At the same time, GPUs of #19 to #21 were not used. Therefore,
if the system can be dynamically reconfigured by returning the unused GPUs of the #

Fig. 12. Histograms of requested the number of GPUs per node and compute nodes.
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Fig. 13. Average GPU utility rate and all job execution time of static and dynamic
reconfigurable hardware configuration.

Fig. 14. Stacked jobs can be executed by using this platform.
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19 to #21 to the resource pool and connecting it flexibly to the computing nodes (#22,
#23), the purple job is executed without long waiting time.

6 Related Works

Our research aims to realize disaggregated computing platform which can flexibly
provide resources to more users at the hardware device level by using ExpEther.
Although previous research on distributed computing using ExpEther [10, 18] has been
focused on scale up and device sharing in multiple servers, this research focuses on
providing a reconfigurable HPC platform from the cloud.

A lot of research has done on the cloud management frameworks including
OpenStack [19, 20] which can realize reconfiguring computing platforms. These
research focus on reconfiguration of virtual machine based system. On the other hand,
our research focuses on hardware device level reconfiguration aiming at improving the
performance of computer platform provided to users.

Interest in Intel Rack Scale Architecture [6] and OpenComputeProject [7] have
been growing as a research aimed at realizing a disaggregated computing system.
However, these works mainly focus on the distribution of computing resources within
the server rack. Han et al. considered the computing resource disaggregation of a data
center focusing mainly on performance degradation of memory disaggregation caused
by the interconnection network [8]. Katrinis et al. also published a research plan for
cloud data center scale disaggregation [21] but it was a vision level at the time of
publication. Our work also has been aiming at a data center scale disaggregation. The
difference is that we realized the resource disaggregation by pure open standard
interface PCI Express and Ethernet. In terms of the performance consideration of
disaggregated computing system with ExpEther, Amano’s team has investigated per-
formance in detail and found the performance scalability according to the number of
GPUs [13, 14].

In terms of computing resource allocation scheduling, G. Lee et al. studied about
computing jobs which is executed in a hetero computing platform in a cloud [22]. In
this study, as with the current cloud, the allocated resources are fixed instances selected
from the menu. Considering the reconfiguration of the computer platform at the
hardware device level realized by our research, there is a possibility of more flexible
job scheduling by hardware device level scheduling algorithm.

In terms of HPC as a service, Wheeler et al. made a framework to dispatch a user’s
job over different HPC system including BlueGene [23]. This framework can provide
HPC resource to more users than current HPC system without long waiting time. The
purpose of this research is partly the same as the purpose of our research. This research
takes the approach of connecting external HPC systems and providing a lot of
resources. Our research takes an approach to provide resources to many people by
using resources efficiently.
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7 Conclusions

We introduced the concept of High performance computing Infrastructure as a Service
(Hi-IaaS) and proposed a system architecture which can meet Hi-IaaS’s requirements.
The Hi-IaaS system has three key functional blocks; reconfigurable hardware, recon-
figurable software, and job and resource cross-management system (JRMS). Recon-
figurable hardware can flexibly be reconfigured in device level in accordance with a
user’s request. Reconfigurable software can make a middleware and software platform
in accordance with user’s requests after reconfiguration of hardware platform.
Reconfigurable software provides application specific software sets to conventional
high performance computing application and recently-emerged applications such as
high performance data analysis. JRMS realize dynamic allocation optimal computing
resources to users’ job. JRMS accepts users’ job and users’ computing resource
requests then allocates optimal computing resource in cooperation with reconfigurable
hardware and software platform.

In this paper, we focused on the reconfigurable hardware of Hi-IaaS. The recon-
figurable hardware can be realized by adopting the technology of peripheral component
interconnect express (PCI Express) over Ethernet. By attaching and detaching com-
putes and devices in the resource pool, the reconfigurable hardware can be reconfigured
at the PCI Express device level. We have developed a small experimental imple-
mentation of the proposed system with two computes, two graphics processing units
(GPUs), and a shared non-volatile memory express standard storage card. By running
one Spark benchmark application on the experimental system, we confirmed whether
the proposed system could perform and whether using GPU via ExpEther does not
prevent acceleration of job execution.

In addition, the simulation results showed the effectiveness of reconfigurable
platform for the resource utility rate increased from 39% to 78% and job execution time
reduced by 50% in the system which models our university’s cloud system. Finally, we
found our system can eliminate the 25-h waiting time recorded as the worst case in the
half-year real job operational record of our university’s computing center.

8 Future Work

We have investigated the effectiveness of our proposed system in terms of fixed
conditions about job workloads and system configurations. Next, in order to reveal the
effectiveness of the system, we will simulate the time for hardware reconfiguration
process and think about distribution of job execution time. Especially, the time for
hardware reconfiguration process causes decreasing resource utility rate.

In addition, we will investigate suitable algorithms for the reconfiguration that fit
these job workloads and system configuration variations. We will also try to investigate
the dynamic reconfiguration process and performance in a real-world big system by
using a VCC system when it can be utilized for experimental usage that does not
conflict with ordinary HPC services.

Dynamic Reconfiguration of Computer Platforms 197



References

1. Linux Accelerated Computing Instances of Amazon Web Service. http://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html. Accessed 31 Aug
2017

2. Azure GPU Instance. https://azure.microsoft.com/en-us/blog/azure-n-series-preview-availability/.
Accessed 31 Aug 2017

3. A Set of Scripts to Create Simplest MPI Cluster on SoftLayer. https://github.com/irifed/
softlayer-mpicluster. Accessed 31 Aug 2017

4. Apache Hadoop Homepage. http://hadoop.apache.org/. Accessed 31 Aug 2017
5. Apche Spark Homepage. http://spark.apache.org/. Accessed 31 Aug 2017
6. Intel Rack Scale Architecture Overview. http://goo.gl/ATtRR5. Accessed 31 Aug 2017
7. Open Compute Project. http://www.opencompute.org/. Accessed 31 Aug 2017
8. Han, S., Egi, N., Panda, A., et al.: Network support for resource disaggregation in next-

generation datacenters. In: 12th International Proceedings on ACMWorkshop on Hot Topics
in Networks (HotNets), pp. 10:1–10:7. ACM, New York (2013)

9. Suzuki, J., Hidaka, Y., Higuchi, J., et al.: Expressether - Ethernet-based virtualization
technology for reconfigurable hardware platform. In: 14th International Proceedings on
IEEE Symposium on High-Performance Interconnects, Stanford, CA, USA, pp. 45–51.
IEEE (2006)

10. Yoshikawa, T., Suzuki, J., Hidaka, Y., et al.: Bridge chip composing a PCIe switch over
Ethernet to make a seamless disaggregated computer in data-center scale. In: 26th
International Proceedings on IEEE Hot Chips 26 Symposium (HC26), Cupertino, CA, USA,
p. 1. IEEE (2014)

11. OpenStack framework Homepage. https://www.openstack.org/software/. Accessed 31 Aug
2017

12. Open Grid Scheduler Homepage. http://gridscheduler.sourceforge.net/. Accessed 31 Aug
2017

13. Nomura, S., Mitsuishi, T., Suzuki, J., et al.: Performance analysis of the multi-GPU system
with ExpEther. In: ACM SIGARCH Computer Architecture News - HEART 2014, vol. 42,
issue 4, pp. 9–14. ACM, New York (2014)

14. Mitsuishi, T., Suzuki, J., Hayashi, Y., et al.: Breadth first search on cost-efficient multi-GPU
systems. In: ACM SIGARCH Computer Architecture News - HEART 2015, vol. 43, issue 4,
pp. 58–63. ACM, New York (2015)

15. Cybermedia Center. http://www.hpc.cmc.osaka-u.ac.jp/en/. Accessed 31 Aug 2017
16. Klusáček, D., Rudová, H.: Alea 2 - job scheduling simulator. In: 3rd Proceedings on ICST

Conference on Simulation Tools and Techniques, Brussels, Belgium, Belgium,
pp. 61:1–61:10. ICST (2010)

17. Misawa, A., Date, S., Takahashi, K., et al.: Highly reconfigurable computing platform for
high performance computing infrastructure as a service: Hi-IaaS. In 7th International
Proceedings on Cloud Computing and Services Science (CLOSER 2017), Setúbal, Portugal,
pp. 135–146. Science and Technology Publications, Lda (SciTePress) (2017)

18. Suzuki, J., Hidaka, Y., Higuchi, J., et al.: Disaggregation and sharing of I/O devices in cloud
data centers. IEEE Trans. Comput. 65(10), 3013–3026 (2016)

19. Sefraoui, O., Aissaoui, M., Ekeuldj, M.: Dynamic reconfigurable component for cloud
computing resources. Int. J. Comput. Appl. 88(7), 1–5 (2014)

20. Xu, F., Liu, F., Jin, H., et al.: Managing performance overhead of virtual machines in cloud
computing: a survey, state of the art, and future directions. Proc. IEEE 102(1), 11–31 (2014)

198 A. Misawa et al.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html
https://azure.microsoft.com/en-us/blog/azure-n-series-preview-availability/
https://github.com/irifed/softlayer-mpicluster
https://github.com/irifed/softlayer-mpicluster
http://hadoop.apache.org/
http://spark.apache.org/
http://goo.gl/ATtRR5
http://www.opencompute.org/
https://www.openstack.org/software/
http://gridscheduler.sourceforge.net/
http://www.hpc.cmc.osaka-u.ac.jp/en/


21. Katrinis, K., Syrivelis, D., Pnevmatikatos, D., et al.: Rack-scale disaggregated cloud data
centers: the dReDBox project vision. In: 20th International Proceedings on Design,
Automation and Test in Europe Conference and Exhibition (DATE), Cupertino, CA, USA,
pp. 690–695. IEEE (2016)

22. Lee, G., Chun, B., Katz, R.H.: Heterogeneity-aware resource allocation and scheduling in
the cloud. In: 3rd International Proceedings on USENIX conference on Hot topics in cloud
computing (HotCloud 2011), p. 4. USENIX Association, Berkley (2011)

23. Wheeler, M.F., Pencheva, G., Tavakoli, R., et al.: Enabling high-performance computing as
a service. Computer 45, 72–80 (2012)

Dynamic Reconfiguration of Computer Platforms 199



Controlling Cloud-Based Systems
for Elasticity Test Reproduction

Michel Albonico1(B), Jean-Marie Mottu2, Gerson Sunyé2,
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Abstract. Systems deployed on elastic infrastructures deal with
resource variations by adapting themselves, which is error-prone. There-
fore, we must test Cloud-Based Systems (CBS) throughout elasticity.
Such tests may be re-executed regularly to diagnose and fix CBS bugs,
which requires to design tests to execute in a deterministic manner.
In this paper, we identify three main challenges that testers face when
reproducing elasticity tests: to control the elasticity behaviour, to select
specific resources to be deallocated, and to coordinate events parallel
to elasticity. Since elasticity tests can last long, we consider the test
execution time as a secondary challenge. In this paper, we propose an
approach that meets such challenges. Experimental results show that the
proposed approach successfully reproduces elasticity-related bugs that
face the listed challenges while reducing the execution time.

Keywords: Cloud computing · Elasticity · Elasticity testing
Test reproduction · Speediness

1 Introduction

Elasticity is one of the main reasons that make cloud computing an emerging
trend. It allows to allocate or deallocate system resources according to demand
[1,2]. Therefore, Cloud-Based Systems (CBS) must adapt themselves according
to resource variations. These adaptations are not trivial and may affect the CBS
execution. According to Bersani et al. [2]:

“Scaling resources may incur in non-trivial operations inside the system.
Component synchronization, registration, and data migration and data
replication are just the most widely known examples[. . . ], which may
degrade system QoS.”

c© Springer International Publishing AG, part of Springer Nature 2018
D. Ferguson et al. (Eds.): CLOSER 2017, CCIS 864, pp. 200–222, 2018.
https://doi.org/10.1007/978-3-319-94959-8_11
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Therefore, to guarantee their quality, we must test CBSs in the presence of
elasticity, i.e., elasticity testing.

During CBSs development, tests may be regularly re-executed [3] to detect,
diagnose, and correct bugs, where each execution must reproduce the same
behaviour. This requires to design elasticity tests to be deterministic, which
raises four challenges that we have identified: three functional and one non-
functional. The first challenge (functional) is to repeat the CBS elastic behaviour
by managing sequences of resource allocations and deallocations. In this case,
the same elastic behaviour leads the CBS to repeat its adaptations over the
multiple test executions. As a consequence, this reproduces the issues related to
those adaptations, in case such issues have not been corrected. Looking into two
CBSs bug tracking, i.e., MongoDB1 and ZooKeeper2, we measure that as soon
as bugs are related to elasticity, all of them require to be able to repeat the CBS
elastic behaviour.

By analysing further MongoDB and ZooKeeper bug tracking, we realize
that other elasticity-related bug reproductions require to combine the elastic
behaviour along with two further conditions, which we consider as second and
third challenges. At least one of them is required 70% and 67% of the MongoDB
and ZooKeeper bugs respectively.

The second challenge (functional) is to repeat time-based events, where
elasticity tests may require to repeat an elastic behaviour, and to synchronize
time-based events with specific CBS states. This is required when testing ≈40%
of MongoDB and ≈33% of ZooKeeper elasticity-related bugs. An example is
the MongoDB NoSQL database bug 7974 [4], where two time-based events are
required to reproduce the bug: (1) to create a unique index before one of the
MongoDB nodes is removed by a resource deallocation, and (2) to upload a
document after a new node is added by a resource allocation.

The third challenge (functional) is to repeat a specific CBS components
variation, what we call selective elasticity. Elasticity tests may require repeat
an elastic behaviour, and to remove a specific CBS component during a resource
deallocation. This is the case when testing ≈44% of both MongoDB and
ZooKeeper elasticity-related bugs. An example is the Apache ZooKeeper bug
2164 [5], which only occurs when the ZooKeeper leader component is removed
by a resource deallocation.

Finally, reproducing elasticity tests has a fourth challenge (non-functional),
to reduce elasticity test execution time. Reducing the execution time can also
save money since in cloud computing the billing model is pay-as-you-go, where
customers are charged by the time they use resources. One way to do this is
to anticipate the reaction to resource demands. Indeed, driving CBSs is time
consuming since elastic controllers take a while (at least 60 s) to react to a
resource demand. This, summed to the time to allocate or deallocated a resource,
result in test executions that last hours, or even days, depending on the length
of the elasticity states sequence.

1 https://www.mongodb.com/.
2 https://zookeeper.apache.org/.

https://www.mongodb.com/
https://zookeeper.apache.org/
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In this paper, we present an approach and a prototype to address the three
functional listed challenges in reproducing elasticity tests: the reproduction of
an elastic behaviour, the scheduling of time-based events, and the reproduction
of CBS components variation. The approach also addresses the non-functional
challenge by anticipating the reaction to resource demand, and as a consequence,
accelerating the test reproduction.

To support our claims, we conduct five experiments with two different CBS
case studies. The first two experiments aim at measuring the test execution
time reduction when using the proposed approach. The other three experiments
aim at reproducing three existing elasticity-related bugs by controlling the test
reproduction with the proposed approach.

The remainder of this paper is organized as follows. In the next section, we
remind the major aspects of cloud computing elasticity, and a previous work of
part of the authors in driving CBSs throughout elasticity. Section 3 details the
challenges in elasticity test reproduction and introduces the proposed approach.
The experiments and their results are described in Sect. 4. Section 5 discusses
the related work. Finally, Sect. 6 concludes.

2 Cloud Computing Elasticity

This section defines the main concepts related to Cloud Computing Elasticity,
which will help the understanding of our approach.

2.1 Typical Elastic Behavior

Figure 1 presents the typical behavior of elastic cloud computing applications.
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Fig. 1. Typical elastic behavior [6].
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In this figure, the resource demand (continuous line) varies over time, increas-
ing from 0 to 1.5 then decreasing back to 0. A resource demand of 1.5 means that
the application demands 50% more resources than the current allocated ones.

When the resource demand exceeds the scale-out threshold and remains
higher during the scale-out reaction time, the cloud elasticity controller assigns
a new resource. The new resource becomes available after a scale-out time, the
time the cloud infrastructure spends to allocate it. Once the resource is avail-
able, the threshold values are updated accordingly. This behavior is similar when
considering a resource scale-in, respectively. Except that, as soon as the scale-in
begins, the threshold values are updated and the resource is becomes unavailable.
Nonetheless, the infrastructure needs a scale-in time to release the resource.

2.2 Elasticity States

Workload fluctuations lead to resource variations (elasticity) that drive the
CBS throughout elasticity-related states. Figure 2 depicts the possible transi-
tions between elasticity states.

         ready (ry)
scaling

-out (so)
steady 
(ry_s)

si reac on 
(ry_sir)

scaling
-in (si)

so reac on 
(ry_sor)

Fig. 2. Elasticity states [6].

At the beginning the CBS is at the ready state (ry), when the resource
configuration is steady (ry s substate). Then, if the CBS is exposed for a certain
time (scale-out reaction time, ry sor substate) to a pressure that breaches the
scale-out threshold, the cloud elasticity controller starts adding a new resource.
At this point, the CBS moves to the scaling-out state (so) and remains in this
state while the resource is added. After a scaling-out, the CBS returns to the
ready state, and can move either back to a scaling-out state or to a scaling-in
state (si).

2.3 Elasticity Control

When testing CBSs throughout elasticity, testers should be able to drive the
CBS in a deterministic way, controlling its elastic behaviour. Thus, they can be
more specific and model situations they judge as critical. Furthermore, this can
also reduce testing execution time since the elasticity behaviour is specific. In
cloud computing, this also means reduction of cost since most of cloud providers
use the policy of pay-as-you-go, where consumers pay for the time they use
resources.
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We can categorize CBS driving into two groups: (i) direct resource man-
agement, and (ii) generation of adequate workload. The first and simplest one
(i) interacts directly with the cloud infrastructure, asking for resource allocation
and deallocation. The second one (ii) consists in generating adequate workload
variations that drive CBS throughout elasticity states, as previously explained
in Sect. 1, which reproduces a realistic scenario. The second group is more com-
plex since requires a preliminary step for profiling the CBS resource usage, and
calculating the workload variations that trigger the elasticity states.

In a previous work [7], we propose a CBS driving approach that fits in the
second group. That approach is based in the assumption that elasticity state
transitions occur due to workload variations that eventually breach the thresh-
olds, as illustrated in Fig. 1. We provide further details about this approach in
the following paragraphs.

An input workload has three characteristics [8]: workload type, request mix,
and request intensity. The workload type is the type of requests sent to the CBS,
such as read and write operations. The mix of requests is the set of requests
associated to a workload type. Finally, the request intensity is the amount of
requests sent to the CBS in a period. Then, given a workload type, the CBS
driving approach calculates the requests intensity variation that should drive
the CBS throughout a pre-set list of elasticity states.

Figure 3 depicts the approach workflow, which has three execution phases:
workload profiling, workload calculation, and application leading.
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Fig. 3. CBS driving procedure workflow [7].

The workload profiling phase has four parameters: the target CBS, the work-
load generator, the workload type, and the Profiling Intensity (PI). The target
CBS is the CBS driven throughout elasticity. The workload generator is the
tool that generates the workload. The workload type describes the type or set
of requests sent to the CBS. Finally, the PI defines the number of requests per
second sent to the CBS during the workload profiling phase.



Controlling Cloud-Based Systems for Elasticity Test Reproduction 205

To profile the effect of the workload on the CBS, the approach generates
the workload according to the workload profiling parameters. Then, it calculates
the Average Resource Usage (ARU) for the period, which is the input of the
workload calculation phase.

In the workload calculation phase, the CBS driving approach calculates the
request intensity(ies) that drive the CBS throughout the Required Elasticity
States (RES), which we call workload intensity(ies).

Therefore, to drive a CBS throughout elasticity states we must know which
are the workload intensities that breach the scale-out, and the scale-in thresh-
olds, which we call multipliers. The scale-out multiplier, denoted by Mso, is the
workload intensity that breaches the scale-out threshold. The scale-in multiplier,
denoted by Msi, is the workload intensity that breaches the scale-in threshold.

After discovering the multipliers, the CBS driving approach calculates the
workload intensities for each elasticity state in the RES. For scaling states, i.e.,
scaling-out and scaling-in, the workload intensity must breach a threshold, while
for the ready state it must not breach any threshold. However, since scaling states
change the amount of resources over time, the amount of allocated resource
(AR) is a key parameter. The approach calculates the workload intensities by
multiplying it by Mso and Msi. We call the product of this multiplication as
current multiplier (CM), where CMso = Mso · AR and CMsi = Msi · AR. Such
multipliers correspond to the workload intensities that drive the CBS through the
scaling-out and the scaling-in states, denoted by WIso and WIsi. The workload
intensity for ready states (WIry s) is calculated as ι percent of CMso (WIry s =

ι
100 · CMso), where ι is a configurable parameter. Such intensity must lead the
resource usage to a level close to CMso, a significant amount of work, but without
breaching any threshold.

In the application leading phase, we lead the CBS using the calculated work-
load intensities (WI), which is presented in Algorithm 1. We expose the CBS
to each workload intensity until the related elasticity state ends. To identify
the elasticity state transitions, the approach monitors the cloud infrastructure
periodically.

Algorithm 1. Application Leading.

Data: workload intensities WI
monitorElasticity();
foreach p < s, i > ∈ WI do

while s.isUp do
generateWorkload(i);

end

end

3 Elasticity Testing Approach

In this section, we first present the challenges in elasticity test reproduction, then
we present the overall architecture of our approach and aspects of the prototype
implementation.
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3.1 Challenges in Elasticity Test Reproduction

Elasticity test reproduction consists in exposing the CBS to the same conditions
as previous executions, which should stimulate it to repeat the same behaviour.
Then, testers can find CBS bugs, correct them, and then check whether they
have been fixed, requiring several runs of failed tests. Another use is to check
if changes in the CBS, such as new features, affect its behaviour, or introduce
bugs.

To discover which are the conditions that CBSs face, we analyse elasticity-
related bugs reported in the bug tracking of two popular CBSs: MongoDB and
ZooKeeper. Bug reports have rich information since developers use them to
implement tests reproducing bugs. Therefore, these reports reveal the conditions
necessary to reproduce elasticity-related bugs, and as a consequence, elasticity
tests. The search for elasticity-related bugs has two steps:

1. Select bug reports that contain in their description words that may refer
to elasticity, such as: elasticity, scaling, adding, removing, node, sync (for
synchronization), and replic (for replication).

2. Gather the bug reports whose description refers to resource changes, excluding
bug reports where the resource changes do not reflect an elastic behaviour,
such as the ones that restart a Virtual Machine (VM) rather than remove or
add one.

The two CBS projects use JIRA3 issue tracking to report their bugs. There-
fore, for the Step 1, we use the query in Listing 1 to select bug reports related
to elasticity. In the query, we change $PROJECT by the project name that cor-
responds to the CBS, where for MongoDB the project name is SERVER, while
for ZooKeeper, it is ZOOKEEPER. We exclude bug reports whose resolution is
Cannot Reproduce or Duplicate. The first resolution refers to bugs that devel-
opers could not reproduce due to either wrong or insufficient information, while
the second resolution refers to duplicate bug reports.

Listing 1. Query Used at Step 1.

p ro j e c t = ”$PROJECT” AND i s su e type = Bug AND r e s o l u t i o n not
in (”Cannot Reproduce ” ,” Dupl icate ”) AND ( de s c r i p t i o n ˜ ” e l a s t i c i t y ”
OR de s c r i p t i o n ˜ ” s c a l i n g ” OR de s c r i p t i o n ˜ ”adding”
OR de s c r i p t i o n ˜ ” removing” OR de s c r i p t i o n ˜ ”node”
OR de s c r i p t i o n ˜ ” sync” OR de s c r i p t i o n ˜ ” r e p l i c ”)

Table 1 lists the number of bugs selected at each searching step. MongoDB
has 25,780 bugs reported on its bug tracking system, where we find 316 in the
first step, and 43 in the second step. ZooKeeper has 2677 bugs reported, where
we find 188 bugs in the first step, and 9 in the second step.

The selected bugs reveal three main challenges in reproducing elasticity-
related bug, which we consider as elasticity tests reproduction challenges:
elasticity control, selective elasticity, and event scheduling. These challenges are
functional since the tests cannot be reproduced and the bugs corrected without
3 https://jira.atlassian.com.

https://jira.atlassian.com
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Table 1. Selected bugs in the systematic search.

Total of bugs Bugs at step 1 Bugs at step 2

MongoDB 25.780 316 43

ZooKeeper 2.677 188 9

solving them. As usual non-functional challenge of the speediness is a concern.
It is a requirement to be able to run the numerous tests of such systems. More-
over, since cloud computing’s billing model is pay-as-you-go, speediness is a cost
concern.

– Elasticity Control is the ability to reproduce a specific elastic behaviour. All
the selected Elasticity-related bugs occur after a specific sequence of resource
allocations and deallocations. Therefore, the challenge is to repeat the CBS
elastic behaviour by managing sequences of resource allocations and deallo-
cations.

– Event Scheduling is the ability to synchronize events to elasticity states. An
event is any interaction with or stimulus to CBS, such as forcing a data
increment or to simulate infrastructure failures. The challenge is to identify
elasticity states at CBS runtime, and to switch among events according to
the elasticity state they are associated.

– Selective Elasticity is the ability to remove a specific CBS component. The
challenge is to identify and to deallocate the resource that hosts the CBS
component that must be removed.

– Speediness is the ability of reproducing elasticity tests faster than relying on
native cloud computing elasticity controllers. The challenge is to repeat the
CBS elastic behaviour anticipating the resource changes.

Table 2 shows the quantity of challenges faced by each CBS bug reproduction.
As previously mentioned, all the selected bugs face the elasticity control, where
13 MongoDB (30%) and 3 ZooKeeper (33%) do not face the other challenges for
their reproductions. Out of MongoDB bugs, 30 bugs (70%) also face challenges
rather than elasticity control, within which 6 (14%) bugs face all the challenges.
Out of ZooKeeper bugs, 6 bugs (66%) face further challenges, and 5 (55%) of
them face all the challenges.

Table 2. Challenges in bug reproduction.

Bugs
considered

Elasticity
control

Selective
elasticity

Event
scheduling

All Only
elasticity
control

MongoDB 43 43 19 17 6 13

ZooKeeper 9 9 4 3 5 3
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3.2 Architecture Overview

Figure 4 depicts the overall architecture of our approach. The architecture has
four main components, which aim at meeting the elasticity test reproduc-
tion challenges: Elasticity Controller Mock (ECM), Workload Generator (WG),
Event Scheduler (ES), and Cloud Monitor (CM).
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Fig. 4. Overall architecture [6].

The ECM simulates the behaviour of the cloud provider elasticity controller,
allocating and deallocating determined resources, according to testing needs. It
also asks the WG to generate the workload accordingly. The role of the ES is to
schedule and execute a sequence of events in parallel with the other components.
Finally, the CM monitors the cloud system, gathering information that helps
orchestrating the behaviour of the three other components, ensuring the sequence
of elasticity states, and their synchronization with the events.

Table 3 summarizes the challenges that each component meets, as we detail
in this section.

Elasticity Controller Mock. The ECM is designed to reproduce the elastic
behavior. By default, ECM requires as input a sequence of elasticity changes,
denoted by E = {ec1, ec2, ..., ecn}, where each ec is a pair that corresponds to an
elasticity change. Elasticity change pairs are composed of a required elasticity
state (si) and a workload (Wi), eci = 〈si,Wi〉 where 1 ≤ i ≤ n. A workload
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Table 3. Challenges met by the architecture components.

Component Elasticity control Selective elasticity Event scheduling Speediness

ECM Yes Yes Yes Yes

WG Yes No No No

ES No No Yes No

CM Yes Yes No No

is characterized by an intensity (i.e., amount of operations per second), and a
workload type (i.e., set of transactions sent to the cloud system).

ECM reads elasticity change pairs sequentially. For each pair, ECM requests
resource changes to meet elasticity state si and requests the Workload Generator
to apply the workload Wi. Indeed, we have to send the corresponding workload
to prevent cloud infrastructure to provoke unexpected resource variations. In
particular, it could deallocate a resource that ECM just allocated, because the
workload has remained low and under the scale-in threshold.

Rather than waiting for the cloud computing infrastructures for elasticity
changes, the ECM directly requests to change the resource allocation (elasticity
control). Based on both, required elasticity state and workload (elasticity change
pair), ECM anticipates the resource changes. To be sure CBS enters the expected
elasticity state, ECM queries the CM, which periodically monitors the cloud
infrastructure.

The ECM may also lead to a precise resource deallocation (selective
elasticity). Typically, elasticity changes are transparent to the tester, managed
by the cloud provider. To set up the selective elasticity, ECM requires a sec-
ondary input, i.e., Selective Elasticity Requests (SER). SER is denoted by
SER = {(ec1, ser1), ..., (ecn, sern)}, where eci ∈ E, and seri refers to a selec-
tive elasticity request. A selective elasticity request is a reference to an algorithm
(freely written by tester) that gets a resource’s ID. When eci is performed by
ECM, the algorithm referred by seri is executed, and the resource with the
returned ID is deallocated by ECM.

ECM helps in meeting all of elasticity testing challenges. As earlier explained
in this section, it deterministically requests resource variations (elasticity control
and selective elasticity), and helps in ensuring the event scheduling providing
information of the current elasticity state to the Event Scheduler. As earlier
explained in this section, the ECM deterministically requests resource variations
(elasticity control and selective elasticity). In addition, the ECM helps in ensur-
ing the event scheduling by providing information of the current elasticity state
to the Event Scheduler, and in meeting the speediness by anticipating resource
changes.

Workload Generator. The Workload Generator is responsible for generating
the workload (W ). We base it on our previous work [7], which takes into account
a threshold-based elasticity (see Fig. 1), where resource change demand occurs
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when a threshold is breached for a while (reaction time). Therefore, a workload
should result in either threshold breached (for scaling states) or not breached (for
ready state), during the necessary time. To ensure this, the Workload Generator
keeps the workload constant, either breaching a threshold or not, until a new
request arrives.

Considering a scale-out threshold set at 60% of CPU usage, the workload
should result in a CPU usage higher than 60% to request a scale-out. In that
case, if 1 operation A hypothetically uses 1% of CPU, it would be necessary
at least 61 operations A to request the scale-out. On the other hand, less than
61 operations would not breach the scale-out threshold, keeping the resource
steady.

The Workload Generator contributes with the Elasticity Controller Mock to
meet the elasticity control challenge.

Event Scheduler. The ES input is a map associating sets of events to elasticity
changes (eci), i.e., the set of events that should be sent to the cloud system when
a given elasticity change is managed by the ECM. Table 4 abstracts an input
where four events are associated to two elasticity changes.

Table 4. Events schedule.

Elasticity change Event ID Execution order Wait time

ec1 e1 1 0 s

e2 2 10 s

e3 2 0 s

ec2 e2 1 0 s

e4 2 0 s

Periodically, the ES polls the ECM for the current elasticity change, executing
the events associated to it. For instance, when the ECM manages the elasticity
change ec1, it executes the events e1, e2, and e3. Events have execution orders,
which define priorities among events associated to the same state: event e1 is
executed before events e2 and e3. Events with the same execution order are
executed in parallel (e.g., e2 and e3). Events are also associated to a wait time,
used to delay the beginning of an event. In Table 4, event e2 has a wait time
of 10 s (starting 10 s after e3, but nonetheless executed in parallel). This delay
may be useful, for instance, to add a server to the server list a few seconds after
the ready state begins, waiting for data synchronization to be finished. The ES
meets the event scheduling challenge.

Cloud Monitor. The CM helps ECM to ensure elasticity control and selective
elasticity. It periodically requests current elasticity state and stores it in order
to respond to the ECM queries, necessary for elasticity control. It also executes
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the selective elasticity algorithm of SER, responding to ECM with the ID of the
found resources.

3.3 Prototype Implementation

Each component of the testing approach architecture is implemented in Java and
communicate with each other through Java RMI. Currently, we only support
Amazon EC2 interactions, though one could adapt our prototype to interact
with other cloud providers.

Elasticity Controller Mock. The elasticity changes are described in a prop-
erty file. The entries are set as 〈key, value〉 pairs, as presented in Listing 2. The
key corresponds to the elasticity change name, while the value corresponds to
the elasticity change pair. The first part of the value is the elasticity state, and
the second part is the workload, divided into intensity and type.

Listing 2. Example of Elasticity Controller Mock Input File (Elasticity Changes).

ec1=ready , (1000 , wr i t e )
ec2=sca l i ng−out , (2000 , read/wr i t e )
. . .
ec4=sca l i ng−in , (1500 , read )

As previously explained, for each entry, the ECM sends the workload parameters
to the Workload Generator and deterministically requests the specified resource
change. Resource changes are requested through the cloud provider API, which
enables resource allocation and deallocation, general infrastructure settings, and
monitoring tasks. Before performing an elasticity change, the ECM asks the CM
whether the previous elasticity state was reached. The CM uses the Selenium4

automated browser to gather pertinent information from cloud provider’s dash-
board Web page.

We use Java annotations to set up selective elasticity requests (SER), as illus-
trated in Listing 3. A Java method implements the code that identifies a specific
resource and returns its identifier as a String type. This method is annotated
with metadata that specifies its name and associated elasticity change.

Listing 3. Selective Elasticity Input File.

@Select ion {name=” se r1 ” , e l a s t i c i t y c h a n g e=” ec4 ”}
public St r ing s e l e c t 1 ( ) {

. . . //code to f ind a resource ID
return resourceID ; }

Workload Generator. The WG generates the workload according to the
parameters received from the ECM (i.e., workload type and intensity), whereas
the workload is cyclically generated until new parameters arrive. It uses existing
benchmark tools, setting the workload parameters in the command line.

4 http://www.seleniumhq.org/.

http://www.seleniumhq.org/
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For instance, YCSB benchmark tool allows three parameters related to the
workload: the preset workload profile, the number of operations, and the number
of threads. The preset workload profile refers to the workload type, while the
multiplication of the two last parameters results in the workload intensity.

Event Scheduler. Event schedules is set in a Java file, where each event is an
annotated method, such as the example illustrated in Listing 4. Java methods
are annotated with the event identifier, the related elasticity change, the order,
and the waiting time. EC periodically polls the ECM to obtain the current
elasticity change. Then, it uses Java Reflection to execute the Java methods
related to it.

Listing 4. Example of Event Scheduler Input File.

@Event{ id=”e1” , e l a s t i c i t y c h a n g e=” ec1 ” , order=”1” , wait=”0”}
public void event1 ( ) { . . . }

3.4 Prototype Execution

Figure 5 illustrates the prototype execution sequence. This execution starts by
the CM component, which interacts with the cloud infrastructure (Cloud) to
get information that identifies the current elasticity state. Then, the prototype
executes the ec ⊂ EC in parallel to the elasticity states identification. For each
ec ⊂ EC, the ECM sends a message to WG, which generates the workload Wi

until the ECM sends a message to stop this process. The ECM sends this message
when the CM identifies that the current elasticity state has ended. During the
workload generation, if esi is different from ready, the ECM changes the resource.
Otherwise, it only waits for a given time-frame before moving to the next ec.
When a new elasticity state begins, the ECM sends a message to the EVs, which
leads the execution of all the events related to this state. The prototype repeats
this process until the last ec ends.

4 Experiments

In this section, we present five experiments. The first two experiments aim at
demonstrating the test execution time reduction when using the Elasticity Con-
troller Mock (ECM). The other three experiments aim at controlling the test
reproduction of three existing elasticity-related bugs. We conduct all the exper-
iments in the environment described in the next section.

4.1 Experimental Environment

CBS Case Studies. In the experiments, we use two CBS case studies,
MongoDB5 and Apache ZooKeeper6 (or simply ZooKeeper).
5 https://www.mongodb.org/.
6 https://zookeeper.apache.org/.

https://www.mongodb.org/
https://zookeeper.apache.org/
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loop
par

par

:ECM :WGen :ES :CBS :Cloud:CM

loop
[ec:EC]

op t
[es_i <> ready] 

stopGen()

execEvents()
newState(es_i)

changeResource(es_i)

sendRequests()
genWorkload(W_i)

eState

getState()

stateEnded

Fig. 5. Prototype execution sequence.

MongoDB is a NoSQL document database. It has three different compo-
nents: configuration server, MongoS, and MongoD. The configuration server
stores meta-data and configuration settings. The MongoS instance is a query
router, which ensures load balance, while MongoD instances store and process
data.

ZooKeeper is a coordination service for distributed systems. ZooKeeper coor-
dination is intended to be replicated over a set of nodes, called as an ensemble.
Requests from ZooKeeper clients are forwarded to a single node, the leader
(which is elected using a distributed algorithm). The leader works as a proxy,
distributing the request among other nodes called as followers. The followers
keep a local copy of the configuration data to respond to requests.

To generate the workload in the experiments with MongoDB, we use the
Yahoo Cloud Serving Benchmark (YCSB) [9], while in the experiments with
ZooKeeper, we use an open-source benchmark tool [10].
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Cloud Computing Infrastructure. All the experiments are conducted on the
commercial cloud provider Amazon Elastic Cloud Compute (EC2), where we set
scale-out and scale-in thresholds as 60% and 30% of CPU usage, respectively.
Since the threshold values are not critical for the experiment goals, we set them in
an arbitrary manner. We choose a scale-out threshold value as 60% of CPU since
it should not result in CBS stress. This threshold value also makes it possible
to reduce the execution cost since the workload generation can be executed on
a single medium machine (m3.medium7, with a 2.6 GHz vCPU, 3.75 MB of
memory, and 4 GB of disk). We set the scale-in threshold value as half of the
scale-out threshold value.

In the experiment with MongoDB, the MongoS instance is deployed on a
large machine (m3.large, with 2 vCPUs of 2.6 GHz, 7.5 MB of memory, and 32
GB of disk), while the other instances are deployed on medium machines. In the
experiments with ZooKeeper, every node is deployed on a medium machine.

4.2 Speediness Experiment

In this second set of experiments, we verify whether the Elasticity Controller
Mock (ECM) reduces test execution time. In the experiment we lead two CBS
case studies, MongoDB and ZooKeeper, through an elasticity states sequence
that covers all the possible elasticity state transitions. This is the elasticity states
sequence: ready , scaling-out , ready , scaling-in, and ready . This leading is done in
two ways, by using the Elasticity Controller Mock, and by using the Amazon EC2
elasticity controller. The workload pattern used in this experiment is only read
operations, which keeps the data size unchanged along the experiment execution.

Speediness Considering ZooKeeper. For the ZooKeeper, we consider the
following elasticity changes sequence:

E = 〈ry sor, 〈5800, r〉〉, 〈so, 〈5800, r〉〉, 〈ry sir, 〈5000, r〉〉,
〈si, 〈5000, r〉〉, 〈ry, 〈5000, r〉〉

Aiming at accelerating the elasticity changes sequence execution, the first two
ready states correspond to ry sor and ry sir sub-states (see Fig. 2), according
to the next scaling state in the sequence. Thus, as soon as the CBS enters a
ready state, there is a threshold breaching that triggers the next scaling state.
The last ready state corresponds to a rys sub-state, where none of thresholds
is breached. When executing the sequence by using the native Amazon EC2
elasticity controller, we set the scale-out and scale-in reaction times (see Fig. 1)
as the minimum allowed, i.e., 60 s. In the ECM, we set this as 30 s, half of the
minimum allowed by the Amazon EC2 elasticity controller. In both cases, the
last ready state lasts 30 s.

Figures 6(a) and (b) present ZooKeeper performance results when using
Amazon EC2 and the ECM.
7 https://aws.amazon.com/fr/ec2/itype/.

https://aws.amazon.com/fr/ec2/itype/
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Fig. 6. ZooKeeper performance.

The execution by using the ECM lasts ≈250 s, while with Amazon EC2 the
execution lasts ≈310 s. This difference of (2 × 30) s is due to our shortest reaction
time after the threshold breaching. Both executions show a similar performance
variation (doted line), which corresponds to the applied workload (dashed line):
it starts by ≈5800 ops and keeps at this level until the end of the scaling-out
state, goes down to ≈5000 ops from the second ready state until the end of the
execution. When using the ECM, the average performance varies less than 1%
compared the execution by using the Amazon EC2 elasticity controller. This
value is insignificant, and can be associated to external factors, such as network
latencies.
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Speediness Considering MongoDB. For the MongoDB, we consider the
following elasticity changes sequence:

E = 〈ry sor, 〈1500, r〉〉, 〈so, 〈1500, r〉〉, 〈ry sir, 〈1000, r〉〉,
〈si, 〈1000, r〉〉, 〈ry, 〈1000, r〉〉

The test sequence execution time is ≈330 s when using Amazon EC2 and
≈270 s when using the ECM. The difference corresponds to the (2 × 30) s short-
est reaction time after the threshold breaching. We measured a performance
difference of less than 2% comparing the use of our approach with the default
Amazon EC2.

4.3 Test Reproduction Experiment

In this section, we describe the use of our approach to reproduce the three bugs,
and compare the results to reproduction attempts without our approach. We do
not explain in details the setup of reproductions without the proposed approach,
though in such executions the elasticity control is managed. Indeed, reproducing
elasticity is a native feature of cloud computing infrastructures, and we just drive
CBS through required elastic behavior using our approach [7].

Selected Bugs. Table 5 summarizes the challenges in the reproduction of the
three selected bugs.

Table 5. Challenges in reproducing the three selected bugs.

Bug Feature

Elasticity control Selective elasticity Event scheduling

MongoDB − 7974 Yes Yes Yes

ZooKeeper − 2164 Yes Yes No

ZooKeeper − 2172 Yes No Yes

The selected bugs cover all the possible combinations of challenges, con-
strained by the mandatory presence of elasticity control, and the need of at least
one of the other challenges. We do not attempt to reproduce any bug that only
faces elasticity control challenge since one could reproduce the required elastic
behavior using our elastic control approach [7].

MongoDB Bug 7974. This bug affects the MongoDB versions 2.2.0 and 2.2.2,
when a secondary component of a MongoDB replica set8 is deallocated. Indeed,
in a MongoDB replica set, one of the components is elected as primary member,
which works as a coordinator, while the others remain as secondary members.
8 https://docs.mongodb.com/replica-set.

https://docs.mongodb.com/replica-set
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To reproduce this bug, we must follow a specific elastic behavior: initializa-
tion of a replica set with three members, deallocation of a secondary member,
and allocation of a new secondary member. Therefore, the second step of the
elastic behavior requires the deallocation of a precise resource, one of the sec-
ondary members. The bug reproduction also requires two events synchronized
to elasticity changes. Right after the secondary member deallocation, we must
create a unique index, and after the last step of the elastic behavior, we must
add a document in the replica set.

In conclusion, the reproduction of this bug faces all the challenges that we
consider in this paper: elasticity control, selective elasticity, and event scheduling.

ZooKeeper Bug . This bug is related to ZooKeeper version 3.4.5 and concerns
the leader election. According to the bug report9, in an ensemble with three
nodes, when the node running the leader shuts down, a new leader election
starts and never ends.

The reproduction of this bug must follow a precise sequence: initialization
(allocation of the first node), followed by the allocation of two nodes and the
deallocation of the leader node. The main difficulty of reproducing this bug is
that when ZooKeeper is deployed on three nodes, the deallocated node is not nec-
essarily the leader. The problem is that during a scale-in, Amazon EC2 removes
either the newest or the oldest node and cannot reproduce the bug straightfor-
wardly. In conclusion, the reproduction of this bug faces two challenges: elasticity
control and selective elasticity.

ZooKeeper Bug 2172. This bug is related to ZooKeeper version 3.5.0. Accord-
ing to the bug report10, when a third node is added to a ZooKeeper ensemble,
the system enters an unstable state and cannot recover.

After a thorough analysis of the available logs, we understand that the bug
occurs when a leader election starts right after the allocation of a third node.
More precisely, when a new node joins the ensemble, there is a data synchro-
nization with the leader. Then, if the data is not already synchronized at the
moment of the leader election, the bug occurs.

The reproduction of this bug requires a simple elastic behaviour: the alloca-
tion of one initial node, and then the allocation of two more nodes. However,
this sequence alone does not reproduce the bug: we need to be sure that the
leader election starts before the end of the data synchronization process. We can
force this by increasing the data amount through an event synchronized with
the completion of the third node allocation.

The reproduction of this bug faces two challenges: elasticity control and event
scheduling.

9 https://issues.apache.org/jira/ZK2164.
10 https://issues.apache.org/jira/ZK2172.

https://issues.apache.org/jira/ZK2164
https://issues.apache.org/jira/ZK2172
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4.4 Bug Reproductions

MongoDB-7974 Bug Reproduction. This bug reproduction has been
already described in our previous paper [6]. To reproduce MongoDB bug 7974
using our approach, we first manually create the MongoDB replica set, composed
of three nodes. Then, we set up the following sequence of elasticity changes, which
should drive MongoDB through the required elastic behavior:

E = 〈ry1, 〈4500, r〉〉, 〈si1, 〈1500, r〉〉,
〈ry2, 〈3000, r〉〉, 〈so1, 〈4500, r〉〉, 〈ry3, 〈4500, r〉〉

Since we must deallocate a secondary member of MongoDB replica set at
elasticity change ec2, it is associated to a selective elasticity request (SER). The
SER queries MongoDB replica set’s members, using MongoDB shell method
db.isMaster, until finding a member that is secondary.

In parallel to the elasticity changes, we set up two events, e1 and e2, which
respectively create a unique index, and insert a new document in the replica
set. The e1 is associated to elasticity change ec3, a ready state that follows the
scaling-in state where a secondary member is deallocated. The e2 is associated
to elasticity change ec5, the last ready state. Both events are scheduled without
waiting time (Table 6).

Table 6. MongoDB-7974 event schedule [6].

Elasticity change Event ID Execution sequence Wait time

ec3 e1 1 0 s

ec5 e2 1 0 s

We repeat the bug reproduction for three times. After each execution, we look
for the expression “duplicate key error index” in the log files. If the expression
is found, we consider the bug is reproduced.

Table 7 shows the result of all the three executions, either using our approach
or not. All the attempts using our approach reproduce the bug, while none of
the attempts without our approach do it.

Table 7. MongoDB-7974 bug reproduction results [6].

Reproduction Reproduced Not Reproduced

With our approach 3 0

Without our approach 0 3

For the executions without our approach, we force MongoDB to elect the
intermediate node (in the order of allocation) as primary member11, what can
11 https://docs.mongodb.com/force-primary.

https://docs.mongodb.com/force-primary
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occur in a real situation. In this scenario, independent of scale-in settings, cloud
computing elasticity controllers always deallocate a secondary member, since
Amazon EC2 only allows to deallocated the oldest or newest nodes. This is
because we want to see the effect of event synchronization. Therefore, we assure
the elastic behaviour is the required to reproduce the bug. Even though we force
the reproduction of the required elastic behaviour, this bug still needs the event
executions, which must be correctly synchronized. This is the reason the bug is
not reproduced without our approach.

ZooKeeper-2164 Bug Reproduction. To reproduce this bug, we translate
and complete the scenario (Sect. 4.3) into the following sequence of elasticity
changes:

E = 〈ry1, 〈3000, r〉〉, 〈so1, 〈5000, r〉〉, 〈ry2, 〈5000, r〉〉,
〈so2, 〈10 000, r〉〉, 〈ry3, 〈10 000, r〉〉, 〈si1, 〈5000, r〉〉

The sequence of elasticity changes first initializes the cloud system with one
node, then it requests two scale-out. Once the three nodes are running, the
sequence requests a scale-in.

To discover the leader node, we write a SER that is associated to the last elas-
ticity change e6 (〈si1, 〈5000, r〉〉). The SER method connects to every Zookeeper
node and executes ZooKeeper command named stat. This command describes,
among other information, the node execution mode: leader or follower.

The sequence of elasticity states, including a selective elasticity, is supposed
to reproduce the bug. To verify whether the failure occurs, we write a test oracle,
which is implemented in JUnit [11]. It is run after the last elasticity change
(〈si1, 〈5000, r〉〉), and repetitively searches for a leader until it is found or the
timeout is reached. In the first case, the verdict is pass, what means the bug is
reproduced and observed. Otherwise, the verdict is fail.

As well as in the first experiment, we use two different setups to execute
this experiment: with our approach, and without our approach. We repeat the
experiment three times for each setup.

Since the selective elasticity is one of the challenges for this bug reproduction,
when executing without our approach, we try to reproduce a real scenario, where
every node can be elected as a leader. Therefore, we force ZooKeeper to elect a
different node as the leader at each execution: the newest, the oldest, then the
intermediate node. Then, we use Amazon EC2 to deallocate a node. Its policy is
to deallocate either the newest or the oldest node, it is not possible to deallocate
the intermediate node. Hence, during two executions we can ask Amazon EC2
to deallocate the leader, but not during the third one.

Table 8 summarizes the results. When using our approach, all the three test
executions pass, demonstrating the ability of our testing approach to determinis-
tically reproduce the bug. In contrast, only two executions without our approach
pass, the ones where the leader is the newest or the oldest node. Therefore, with-
out our approach the bug was not reproduced deterministically.
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Table 8. ZooKeeper-2164 bug reproduction results.

Reproduction Pass verdicts Fail verdicts

With our approach 3 0

Without our approach 2 1

ZooKeeper-2172 Bug Reproduction. We create the following sequence of
elasticity changes to reproduce this bug (Sect. 4.3):

E = 〈ry1, 〈3000, r〉〉, 〈so1, 〈5000, r〉〉,
〈ry2, 〈5000, r〉〉, 〈so2, 〈10 000, r〉〉, 〈ry3, 〈10 000, r〉〉

According to the bug log files, the bug occurs when the leader election starts
before the end of the data synchronization between the third node and the pre-
vious leader. Thus, the test sequence must ensure that the data synchronization
process is longer than the delay needed to start a new election, which is about
10 s according to the log files. Forcing the data synchronization to take long
enough, we create an event schedule to associate an event e1 to the state so2,
as described in Table 9. The e1 requests a data increasing to an amount that
should take longer than 10 s to synchronize. Since this experiment uses Ama-
zon m3.large machines, which have a bandwidth of 62.5 MB/s, the data amount
must be ≈625 MB of data.

Table 9. ZooKeeper-2172 event schedule.

Elasticity change Event ID Execution sequence Wait time

ec4 e1 1 0 s

We use the test oracle as for the bug 2164, which is associated to the last
ready elasticity state which is not supposed to be able to elect a leader before the
timeout. Table 10 summarizes the experiment execution. In all three executions,
the test verdict is pass, meaning that the testing approach reproduces the bug
successfully. Since Amazon EC2 cannot manage natively the scheduling of events
synchronized with elasticity states, it cannot reproduce the bug deterministically.

Table 10. ZooKeeper-2172 bug reproduction results.

Reproduction Pass verdicts Fail verdicts

With our approach 3 0

Without our approach 0 3
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5 Related Work

Several research efforts are related to our approach in terms of elasticity con-
trol, selective elasticity, and events scheduling. The work of Gambi et al. [8,12]
addresses elasticity testing. The authors predict elasticity state transition based
on workload variations and test whether cloud infrastructures react accordingly.
However, they do not focus on controlling elasticity and cannot drive cloud
application throughout different elasticity states.

Banzai et al. [13] propose D-Cloud, a virtual machine environment specialized
in fault injection. Like our approach, D-Cloud is able to control the test envi-
ronment and allows testers to specify test scenarios. Test scenarios are specified
in terms of fault injection and not on elasticity and events, as in our approach.

Yin et al. [14] propose CTPV, a Cloud Testing Platform Based on Virtualiza-
tion. The core of CTPV is the private virtualization resource pool. The resource
pool mimics cloud infrastructures environments, which in part is similar to our
elasticity controller. CTPV differs from our approach in two points: (i) it does
not use real cloud infrastructures and (ii) it uses an elasticity controller that
does not anticipate resource demand reaction.

Vasar et al. [15] propose a framework to monitor and test cloud computing
web applications. Their framework replaces the cloud elasticity controller, pre-
dicting the resource demand based on past workload. Contrary to our approach,
they do not allow to control a specific sequence of elasticity states or events.

Li et al. [16] propose Reprolite, a tool that reproduces cloud system bugs
quickly. Similarly to our approach, Reprolite allows the execution of parallel
events on the cloud system and on the environment, but it does not focus on
elasticity, one of our main contributions.

6 Conclusion

In this paper, we proposed an approach to reproduce elasticity tests in a deter-
ministic manner. This approach meets four challenges: elasticity control, selective
elasticity, event scheduling, and execution time reduction.

We used this approach to reduce the execution time when driving two CBSs,
ZooKeeper and MongoDB, throughout an elasticity state sequence that covers
all the elasticity state transitions. We compare these executions to the ones
without the proposed approach by measuring the CBS performance throughout
the executions. The performance in both executions does not present a significant
variation, which indicates that the approach reduces the execution time without
compromising the CBS behaviour.

We also used the approach to control the reproduction of three bugs of those
two CBSs. Indeed, the bugs cannot be deterministically reproduced with state-
of-the-art approaches. This also indicates that execution time reduction does not
hamper such bug reproductions.
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As testing is not only about reproducing existing bugs, but also diagnos-
ing them. An evolution for the proposed approach is to generate different test
scenarios combining elasticity state transitions, workload variations, selective
elasticity, and event scheduling. Another perspective could be to further inves-
tigate the impacts of speediness. In fact, in this paper, we proposed a way to
accelerate elasticity test executions, but it lacks a deeper investigation on how
fast we can reproduce elasticity tests without compromising them.
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Abstract. Cloud computing is a suitable platform for running appli-
cations to process large volumes of data. Currently, with the growth of
geographic and spatial data volume, conceptualized as Big Geospatial
Data, some tools have been developed to allow the processing of this
data efficiently. This work presents a cost-efficient method for processing
geospatial data, optimizing the number of data nodes in a SpatialHadoop
cluster according to dataset size. With this, it is possible to analyse and
compare the costs for this type of application on public cloud providers.
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1 Introduction

Big geospatial data is the emerging paradigm for the infinite amount of infor-
mation available with the development and massive use of Geographical Infor-
mation System (GIS) software, delivering hundreds of TiB up to several PiB per
hour and there is some characteristics that distinguish it from other datasets
[18]. These characteristics, known as the 5 Vs, are [20]: (i) Variety – referring
to the different types of data, with more than 80% of them in an unstructured
form; (ii) Volume – the tremendous amount of data generated each second;
(iii) Velocity – the speed at which new data is being produced; (iv) Veracity –
how trustworthy the data is; and, (v) Value – the importance of the data to the
business.

The rise of cloud computing and cloud data stores have been a precursor
and a facilitator to the emergence of big data. In this model, computational
resources can be acquired quickly, and released with very little managing effort,
or interaction with the service provider. Yang and Huang [19] proposed Spatial
Cloud Computing, an infrastructure that could help conduct relevant computing
and data processing with the characteristics of enough computing capability, a
minimized energy cost, a fast response to spike computing needs, and a wide
accessibility to the public when needed.

c© Springer International Publishing AG, part of Springer Nature 2018
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To be able to process these vast volume of geospatial data, particular methods
were developed [18]. Among them, Apache Hadoop stands out for its effective-
ness. It is a programming framework for distributed computing using the divide
and conquer (or Map and Reduce) method to break down complex big data
problems into small units of work, and process them in parallel.

Therefore, Big Geospatial data has demanded a lot of resources to store
and process information. The amount of computational resources required by
this vast volume of information grows in an asymptotic way and each wasted
resource can represent a high monetary value that can be saved, once public
cloud providers, such as Amazon AWS1, Microsoft Azure2, Google Cloud3 and
others, charge users on a pay-per-use basis.

With this, the primary challenge of working in a cloud environment is gauging
the cost of processing big data in public cloud providers. According to Zhang
et al. [3], cloud computing has impact where large companies, such as Google,
Amazon and Microsoft strive to provide cost-efficient cloud platforms. Thus,
the cost to execute the applications using these public providers is fundamental
information for executing applications in a cloud [17]. In this context, this article
presents a cost-efficient method and a comparative analysis for processing big
geospatial data using SpatialHadoop on public cloud providers, with the goal of
optimizing the use of computational resources to reduce costs.

The remainder of the article is divided into 7 sections. Section 2 covers con-
cepts of Spatial Cloud Computing and Public Cloud Providers. SpatialHadoop
is presented in Sect. 3; and some related works in Sect. 4. Section 5 presents the
method to determine the number of data nodes in a cluster, based on dataset
size. Information about system architecture is presented in Sect. 6. Tests and
results are presented in Sect. 7. Finally, Sect. 8 contains the conclusion and some
suggestions for future work.

2 Spatial Cloud Computing

Yang et al. [19] defines Spatial Cloud Computing as the cloud computing
paradigm that is driven by geospatial sciences, and optimized by spatiotemporal
principles for enabling geospatial science discoveries and cloud computing within
a distributed computing environment. This is expected to supply the computa-
tional needs for geospatial data intensity, computing intensity, concurrent access
intensity and spatiotemporal intensity.

With Spatial Cloud Computing, is possible to bypass the challenges for a com-
puting infrastructure that needs: (i) support data discovery, access, use and pro-
cess well, relieving scientists and engineers of IT tasks so that they can focus on
scientific discoveries; (ii) provide real-time IT resources to enable real-time appli-
cations, such as emergency response; (iii) deal with access spikes; and (iv) provide

1 https://aws.amazon.com.
2 http://azure.microsoft.com/.
3 https://cloud.google.com.

https://aws.amazon.com
http://azure.microsoft.com/
https://cloud.google.com
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extremely reliable and scalable service for massive numbers of concurrent users
to advance public knowledge [8].

The five essential characteristics for an cloud environment defined by NIST
[14], namely, on demand self-service, broad network access, resource pooling,
rapid elasticity, and measured service, demonstrates that cloud computing offers
facilities that help overcome the challenges of a big geospatial data environment.

Fig. 1. Utilizing cloud computing to address big geospatial data applications [20].

Figure 1 presents the facilities offered by cloud computing which are essential
to support big geospatial data applications that need to transform the input of
4 Vs (Volume, Velocity, Variety and Veracity) to an output with the last V, that
is the Value that can be used by geospatial domains.

2.1 Public Cloud Providers

According to NIST [14], there are four deployment models for clouds, namely pri-
vate, public, hybrid and community. Regarding public clouds, the authors define
how the cloud infrastructure is provisioned for open use by the general public.
These public providers offer two types of plans for the allocation of resources:
on demand and reserved. With the on–demand plan, users are charged on a pay-
per-use basis. The customer is charged for specific use (per hour, for example),
which can include an increase or reduction of resources allocated according to the
applications needs. With the reserved plan, users are charged fees and resources
are allocated over an extended time period (one-time fee for available resources
per year, for example). However, although is cheaper than the on–demand plan,
the reserved plan is not suitable for applications that have ample variations in
processing, since located resources may not be used, thereby wasting finances.
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According to the Gartner Magic Quadrant for Cloud Infrastructure as a Ser-
vice4, Amazon AWS is the leading public cloud provider, followed by Microsoft
Azure and Google Cloud.

For the processing of large volumes of data (Big Data), several providers
offer specific services, given the complexity that an environment for this type
of application requires. The main concept of this service is related to the pro-
visioning and scaling of the cluster. A cluster is a resource pool consisting of a
master server and one or more slaves servers. A comparison between Big Data
services offered by the three public providers of cloud computing are presented
in Table 1.

Table 1. Services for process Big Data applications on public cloud providers.

Microsoft Azure Google Cloud Amazon AWS

Service HDInsight Dataproc Elastic MapReduce
(EMR)

Applications Hadoop, Spark,
Hive, HBase, Storm,
Kafka e R

Hadoop, Spark, Pig
e Hive

Hadoop, Spark,
HBase, Presto e
Flink

Charging unit per minute per minute per hour

The life cycle of a cluster begins with its provisioning and ends when it is
turned-off. Therefore, as seen in Table 1, charging fees by the hours (instead by
the minute) can be a financial waste. Among the three services compared, only
AWS EMR does not allow per-minute charging.

3 SpatialHadoop

Although Hadoop, an open-source project from the Apache community, is the
most popular technique for working with big data, there are some limitations
when working with big geospatial data related to the indexing of HDFS (Hadoop
Distributed File System) files [8]. SpatialHadoop was developed as a fully-fledged
MapReduce framework with native support for spatial data. It was built on
Hadoop base code, adding spatial constructs and the awareness of spatial data
inside the core functionality of traditional Hadoop.

SpatialHadoop comprises four main layers (shown Fig. 2), namely language,
operations, MapReduce and storage. All of them execute in a cluster environment
with one master node that breaks a MapReduce job into smaller tasks, carried
out by slave nodes.

The Language layer uses the Pigeon programming language [7], a simple high-
level SQL-like language, extended from Pig Latin [16]. The advantage is that
it is compliant with the Open Geospatial Consortium’s (OGC) simple feature
4 www.gartner.com/doc/reprints?id=1\discretionary-2G2O5FC&ct=150519.

www.gartner.com/doc/reprints?id=1discretionary {-}{}{}2G2O5FC&ct=150519
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Fig. 2. SpatialHadoop high-level architecture.

access standard, supported both open source and commercial spatial Data Base
Management System (DBMS). Pigeon also supports OGC standard data types
including point, linestring and polygon, as well as OGC standard functions for
spatial data.

The Operations layer encapsulates the implementation of various spatial
operations with spatial indexes and the new components in the MapReduce
layer. The Operations layer comprises: basic operations, range query, k-nearest
neighbor (knn) and spatial join [8]; CG Hadoop, a suite of scalable and effi-
cient MapReduce algorithms for various fundamental computational geometry
problems, namely, polygon union, skyline, convex hull, farthest pair, and closest
pair [5]; and spatial data mining, operations developed using spatial data mining
techniques.

The core layer of SpatialHadoop is the MapReduce layer (Figs. 3 and 4)
because it is the query processing layer that runs MapReduce programs [8].
To be able to process spatial data, SpatialHadoop improves Hadoop systems
with two main components: SpatialFileSplitter and SpatialRecordReader. The
first one, exploits the global index in input files to perform early pruning of file

Fig. 3. MapReduce in traditional Hadoop [8].
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Fig. 4. MapReduce in SpatialHadoop [8].

blocks not contributing to answer. The second one reads a split originating from
spatially indexed input files and exploits the local indexes to efficiently process it.

The Storage layer creates two index layers, global (on master node) and local
(on slaves nodes). The SpatialHadoop supports the main spatial index structures
[8]: grid file (Fig. 5a), a simple flat index that partitions the data according to
a grid, such that, records overlapping each grid cell are stored in one file block
as a single partition; R-tree (Fig. 5b), records are not replicated which causes
partitions to overlap; and R+-tree (Fig. 5c), a variation of the R-tree where nodes
at each level are kept disjointed, while records overlapping multiple nodes are
replicated to each node to ensure efficient query answering.

Fig. 5. (a) Grid File Indexing. (b) R-tree Indexing. (c) R+-tree Indexing. [8].

4 Related Work

The comparison between cloud providers is a recurring theme, since new ser-
vices are offered on this platform every day. In the work presented in [13], four
public cloud providers were compared (Amazon AWS, Microsoft Azure, Google
AppEngine, and Rackspace CloudServers) based on four functionalities consid-
ered essential by the authors (elasticity, storage persistence, cloud and wide
access). In this scenario, a tool called CloudCmp was presented to compare both
the performance and the cost of cloud providers, which, in the different case stud-
ies presented, showed a great disparity in between the costs of each provider. At
the time of this work, there were still very few providers offering services for Big
Data processing, so this type of service was not compared.
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The use of a computational cloud environment for Big Data applications
was also addressed by [10,11], focusing mainly on applications implemented by
Hadoop. There are several challenges presented by [10] for improving the perfor-
mance of large-volume data processing in a cloud environment through Hadoop
applications. The first challenge is keeping down costs and the time required
for data transfer. The second is optimizating iterations of jobs to avoid wasted
processing. Finally, both there is the need for real–time processing for some
applications, and the need for optimizations for join queries. The authors also
pointed out that even with the straights computational power of cloud comput-
ing, applications need to be able to simplify information processing - indexing
the databases to be processed, for example - to avoid wasting resources.

The work presented by [11] also proposes an optimization in the provision-
ing of resources to execute Hadoop jobs in the cloud environment. For this, the
authors use adjustments in Hadoop parameters, such as the number of replicas
of the data, the number of tasks executed in parallel etc., to estimate the appro-
priate resources for the execution of the application, maintaining performance
and avoiding wasted resources. Although studies indicate that this optimization
is independent of the cloud provider being used, there have not been any studies
carried out to prove the effectiveness of the proposal in different providers.

The same objective was presented by [21], which proposes an algorithm called
Profit Optimization Resource Scheduling for the optimization of resources allo-
cated in cloud providers for the processing of Analytics-as-a-Service (AaaS).
The tests to demonstrate the applicability of this algorithm were executed in
the provider CloudSim5, proving effective in the optimization of the utilization
of the resources. There was, however, no results presented on the performance
in other cloud providers nor any indication of an actual reduction in cost.

SpatialHadoop was presented in 2013 by Eldawy and Mokbel [6] as the first
fully-fledged MapReduce framework with native support for spatial data. In this
article, the authors used a demonstration scenario created on an Amazon AWS,
with a 20 node cluster to compare SpatialHadoop and traditional Hadoop in
three operations, namely, range query, knn and spatial join. In this paper, as
in others, such as, Mokbel et al. [15], Alarabi et al. [1], Eldawy et al. [8] and
Eldawy et al. [9], a static computational environment was used to validate tests.
The increase of data nodes was done in a controlled way, without automation.

A modular software architecture for processing big geospatial data using
SpatialHadoop on a cloud infrastructure was presented by Kramer and Senner
[12]. Since the proposed framework does not distinguish whether the cloud envi-
ronment is private or public, a third-party tool Ansible was used to execute
provisioning scripts. Also related to Big Geospatial Data processing, in 2016,
Das et al. [4] proposed a geospatial query resolution framework using an orches-
tration engine for clouds. However, the cloud environment used was private, and
no dynamic allocation of computational resources was performed.

Finally, Yang et al. [20] presented work on the use of cloud computing to
assist in the processing of large volumes of geographic data. The benefits of

5 www.cloudbus.org/cloudsim.

www.cloudbus.org/cloudsim


230 J. Bachiega et al.

the cloud platform, such as elasticity, service measurement, on-demand service
and pay-per-use, were evidenced through four use cases, which were climate
studies, mining knowledge, analysis of changes in the terrestrial surface and the
simulation of storms. Cloud computing has proven to be very compliant and
suitable for all the tests generated by the proposed use cases. However, the
authors were not concerned with the costs of executing the tests, and focused
solely on the computational power offered by the platform.

None of these works presents a method to optimize the use of computational
resources, and reduce financial costs when using SpatialHadoop to process big
geospatial data. Also, none of these works shows a cost analysis for big geospatial
data applications on public cloud providers.

This paper presents a cost-efficient method for processing geospatial data,
optimizing the number of data nodes in a SpatialHadoop cluster according to
dataset size. Thus, it is possible to analyse and compare the costs for this type
of application on public cloud providers.

5 Cluster Sizing

A very important task for Hadoop environment administrators is to define the
cluster size infrastructure. The application must have a good performance and
all computational resources must be not wasted. To solve this problem, the
Formulas 1 and 2 presented by [2] must be used to calculate the quantity of data
nodes based on dataset size for a SpatialHadoop environment on public cloud
providers:

DN =
⌈T
d

⌉
(1)

DN represents the total number of data nodes needed; T is the total amount
of data and d is the disk size in each node.

It is necessary to calculate T because the total amount of data used in a
SpatialHadoop application is not only the volume of the dataset. To calculate
T, the Formula 2 can be used:

T =
C ×R× S

(1 − i) × (1 + w)
(2)

C represents the compression rate of the dataset, required, because Spatial-
Hadoop can work with compressed files. When no compression is used, the value
must be 1. R is the number of replicas of data in HDFS and S represents the size
of the dataset. The notation i refers to the intermediate working space dedicated
to temporarily storing results of Map Tasks. Finally, w represents the percentage
of space left (wasted) to HDFS file system.

To demonstrate the use of these formulas, let us consider a real Open Street
Map dataset of 96Gb of total size (2.7 billion records) available to download
at http://spatialhadoop.cs.umn.edu/datasets. Without compression (C = 1 ),
without replication (R = 1 ), considering i = 25% and w = 20%, the value
obtained for T is 106.67. Considering that each data node has a disk with

http://spatialhadoop.cs.umn.edu/datasets
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32 Gb (d = 32 ) it is possible to conclude that the ideal number of data nodes
(DN ) is 4.

6 System Architecture

An architecture composed of four layers, namely User Interface, Storage, Spatial-
Hadoop and Management (Fig. 6), was created to support the test environment,
and the proposed method were presented in [2].

Fig. 6. System architecture overview [2].

The User Interface layer is a user-friendly interface to receive inputs and to
show results. In this layer, the user selects an available dataset (or uploads one if
it is new) using the Database Catalogue. The workflow to be executed is loaded
or created through the Workflow Catalogue. A workflow contains information
about queries and operations to be executed and file index type (Grid, R–Tree
or R+–Tree). Results are available in Results Catalogue.

The Storage layer stores all datasets available, the workflows used, and the
results saved after application execution.

The Management layer is responsible for provisioning the SpatialHadoop
cluster with one master node and n data nodes. The quantity of data nodes is
defined based on dataset size, as shown in Sect. 5. After all jobs were done, this
layer will turn-off the cluster.

The SpatialHadoop layer is the core layer. This layer indexes the dataset
(based on user choice in the Web Interface layer), processes queries and opera-
tions, and saves the results file back in the Storage layer.
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7 Tests and Results

A SpatialHadoop environment was configured in each of the providers mentioned
in Table 1, using clusters with virtual servers with 4 vCPUs, 14 Gb of memory
and 2 SSDs with 40 GiB each one, to test the proposed method and analyse the
total costs to process Big Geospatial Data on providers presented in Table 1.

The datasets used for tests were extracted from OpenStreetMap (OSM),
which is a project for geographic information comprised of a world map built
by volunteers, presented in Table 2. All datasets are available to download in
http://spatialhadoop.cs.umn.edu/datasets.html.

Table 2. Datasets and their features.

Dataset Description Records Size

Lakes Boundaries of lakes in the world 20 millions 9.0 GB

Buildings Boundaries of all buildings around the world 115 millions 26.0 GB

Objects All extracted map objects 263 millions 96.0 GB

The clusters created for tests comprise one master node and the quantity of
data nodes based on the formulas shown in Sect. 5, with C = 1, R = 3, i = 25%
and w = 20%. To compare the costs in each cloud provider, the on-demand (or
pay-per-use) price was used. To all datasets presented on Table 2, the following
steps were executed:

– Provisioning Cluster: a defined request is sent by the Management layer to
the cloud provider with the number and type of master node and data nodes;

– Transfer Dataset: copies an existing dataset from the Storage layer to Data
nodes;

– Index Dataset: applies the user-defined index type to dataset;
– Queries and Operations: executes the user-defined queries and operations;
– Save Results: saves the result file usually a text file on Storage layer to be

accessed by the user;
– Turn-off Cluster: to avoid wasting of computational resources and to reduce

financial costs, all the cluster (master node and data nodes) are turned off by
the Management layer, unless some stickiness parameter was defined by the
user.

Table 3 presents the runtime of each task executed on Amazon AWS. The
values represent an average of 3 executions for each dataset. The queries KNN
(with k = 100 ) and Range Query, and the indexing type Grid were chosen
randomly.

Considering Amazon AWS alone, and the instances configurations presented
on Table 4, given the cost of the cluster to support the Small Dataset (1 master
node and 1 data node) as US$ 0.63/h, the total cost to execute all the tasks
presented on Table 3 was US$ 0.19 (18 min). For the cluster to support the

http://spatialhadoop.cs.umn.edu/datasets.html
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Table 3. Time (seconds) measured in each task.

Task Lakes (Small) Buildings (Medium) Objects (Large)

Provisioning cluster 262 262 262

Indexing (Grid) 602 3, 543 15, 361

KNN query 8 10 9

Range query 8 6 7

Turning-off cluster 164 164 164

Total time 1, 044 3, 985 15, 803

Medium Dataset (comprising 1 master node and 2 data nodes), the cost per
hour was US$ 0.84, and the cost to process these tasks was US$ 0,94 (1 h and
7 min). Finally, for the cluster to support the Large Dataset (1 master node and
4 data nodes) the cost per hour was US$ 1.26, and the cost to process these tasks
was US$ 5.53 (4 h and 24 min). However, since on AWS users are charged by the
hour, and not the minute, the cost for a small dataset is US$ 0.63 (1 h), for a
medium dataset was US$ 1.68 (2 h). For a large dataset, the cost was US$ 6.30
(5 h). This problem did not occur in others cloud providers tested - Microsoft
Azure and Google Cloud - because these providers charge per minute of use.

Table 4. Cluster price on each provider.

Function AWS Azure Google

Master node 0.42/h 1.24/h 0.23/h

Data node 0.21/h 0.62/h 0.23/h

If this cluster was created without considering the datasets size, and other
parameters defined in the Formula 1, it would be necessary to consider the largest
dataset available to ensure that any query or operation could be executed in this
cluster. Considering all datasets available to download on the SpatialHadoop
webpage, the largest dataset an OSM file with 137 Gb of size and 717 M records
about road networks represented as individual road segments would require a
cluster comprising 1 master node and 6 data nodes. Analysing all datasets avail-
able in SpatialHadoop webpage, and considering the scenario and parameters
defined in our test environment (C = 1, R = 3, i = 25% and w = 20%), only 7
out of a total of 33 datasets needed more than 1 data node to be executed. On
the other extreme, only 1 dataset needed a 6-node cluster. Processing any other
datasets would waste computational resources if the proposed Formula 1 is not
applied.

A comparison of performance and costs for the Large Dataset was executed
on the 3 providers and is presented in Fig. 7. In this case, although Microsoft
Azure has the best performance time (154 min against 214 min from Google,
and 262 min from AWS), the cost from Azure is more expensive (US$ 9.58).
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Fig. 7. Time and costs to execute big geospatial data queries on cloud providers.

The cost-efficient cloud provider for processing Big Geospatial Data, in this
case, is Google Cloud, with a cost of (US$ 4.11).

Other important information includes the amount of time spent by the index-
ing task. It is very important to ensure the SpatialHadoop is high performance,

Fig. 8. Time for indexing task.
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however it takes up most of the time, although later the queries are done very
quickly. Figure 8 presents the percentage of time used to index the 3 sizes of
datasets (Table 2) executed on Azure. The time necessary to index a dataset is
related to the dataset’s size, that is, for the biggest dataset, the time necessary
to index representing 97% of the total time.

8 Conclusion and Future Works

The execution of applications for processing Big Geospatial Data is very adher-
ent to cloud computing, since it requires vast computational resources and can be
executed in distributed form through applications like SpatialHadoop. The ser-
vices offered by the providers, which were compared in this article, demonstrate
that it is possible to obtain a viable cost-benefit ratio.

A major advantage that leads organizations to seek the services offered by
cloud providers is related to cost reduction, especially for applications that are
executed sporadically, making investments in equipment with high computa-
tional power underutilized. Among these tasks is the indexing of datasets for
the processing of Big Geospatial Data which, as shown, is very expensive, but is
necessary to guarantee the performance of queries and geographic operations.

The method proposed in this paper achieves the goal of supporting a Spa-
tialHadoop environment on public cloud providers, while avoiding the waste of
computational resources. The formula to define the number of data nodes was
validated in a test scenario.

Thus, among the three services evaluated, the Dataproc, offered by the
provider Google Cloud, is the most cost-efficient one, while the HDInsight offered
by the Microsoft Azure, was the most performative, but had the highest cost.

Testing with other databases, other virtual server specifications, other cluster
configurations, or even other existing tools for processing Big Geospatial Data
is suggested as future work.
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Abstract. Linked Data (LD) technology enables integrating informa-
tion across disparate sources and can be exploited to perform inferencing
for deriving added-value knowledge. As such, it can really support per-
forming different kinds of analysis tasks over business process (BP) exe-
cution related information. When moving BPs in the cloud, giving rise to
Business Process as a Service (BPaaS) concept, the first main challenge
is to collect and link, based on a certain structure, information originat-
ing from different systems. To this end, two main ontologies are proposed
in this paper to enable this structuring: a KPI and a Dependency one.
Then, via exploiting these well-connected ontologies, an innovative Key
Performance Indicator (KPI) analysis system is built that offers two main
analysis capabilities: KPI assessment and drill-down, where the second
can enable finding root causes of KPI violations. This system advances
the state-of-the-art by exhibiting the capability, through the LD usage,
of the flexible construction and assessment of any KPI kind, allowing
experts to better explore the possible KPI space.

1 Introduction

Organisations formulate and realise both internal and external procedures in
the form of business processes (BPs) in order to provide support or enable their
core business. In this respect, corresponding process-aware information systems
(PAIS) are embraced that enable the execution and management of these BPs
to facilitate the delivery of core services and products. The traditional BP man-
agement lifecycle [1] comprises the four main activities of BP design, allocation,
execution and evaluation. The first three activities focus on bridging the well-
known business-to-IT gap and supporting BP execution. The evaluation activity
supports deriving business intelligence (BI) information via conducting various
analysis tasks to facilitate BP improvement, thus closing the BP lifecycle loop.

Key Performance Indicator (KPI) measurement and assessment is a well-
studied BP evaluation task in the literature. A KPI specifies a condition over a
BP quality metric, thus defining the minimum respective quality level to be sus-
tained. The involved metric supplies all measurement details needed to measure
a certain BP quality attribute, which can be categorised into 4 groups: (a) time,
c© Springer International Publishing AG, part of Springer Nature 2018
D. Ferguson et al. (Eds.): CLOSER 2017, CCIS 864, pp. 237–261, 2018.
https://doi.org/10.1007/978-3-319-94959-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94959-8_13&domain=pdf


238 K. Kritikos et al.

(b) quality, (c) customer satisfaction, and (d) financial [2]. As such, an evalu-
ation expert has the main goal to specify suitable KPIs, possibly spanning all
four groups, which can be measured by the BP evaluation system and enable
assessing the quality levels of BPs.

In this respect, various KPI measurement systems have been proposed which
use different technologies, such as OLAP [3] or SQL query evaluation [4]. While
such systems can rapidly perform the KPI assessment, we believe that their main
goal should not be the KPI assessment speed but the assistance to evaluation
experts in defining the most suitable KPIs for a BP. However, there is a lack of
flexible and user-intuitive mechanisms for KPI definition in these systems. Such
systems are also usually special-purposed as they are designed to serve only a
fix set of KPI metric types, such that introducing a new metric can require re-
engineering the underlying system database. Finally, they do not exploit sophis-
ticated integration mechanisms to integrate any information source kind. Such
an integration is essential to integrate information not only from internal infor-
mation sources within a BP management system (e.g., from BP monitoring and
execution components) but also external ones that can enable deriving suit-
able, added-value facts. For instance, a location ontology could certainly assist
in deriving non-obvious location relations between KPI assessment facts such
that, e.g., the deployment of a BP component in a certain cloud region leads
constantly to KPI violations, thus enabling to derive of useful deployment facts.

The latter issue is critical in the context of not only traditional but also BPs
that have been moved to the Cloud, i.e., BP as a Service (BPaaS). Such a migra-
tion has become a trend nowadays due to the great advantages that cloud com-
puting offers, such as reduced cost and elasticity. As such, this migration must
be suitably supported. This support can be realised via a BPaaS management
system, able to control the whole BPaaS lifecycle, which comprises different envi-
ronments, each responsible for a different lifecycle activity [5]. This inevitably
well justifies the need to integrate information from many of these environments
and their components to support the BPaaS monitoring and evaluation.

To realise the vision of a BPaaS by providing essential, flexible and user-
intuitive support to BPaaS evaluation, this paper advocates the use of Linked
Data (LD) technology for the following reasons: (a) it allows performing infer-
encing tasks to deduce added-value analysis information; (b) enables integrat-
ing information, even in unforeseen ways, across disparate information sources;
(c) LD are represented via ontologies which are closer to human perception.

The information integration task is facilitated via introducing two ontologies:
(a) a dependency ontology that captures the dependencies between BPaaS com-
ponents, across different abstraction levels (BP, software and infrastructure), and
their state. This ontology constitutes the major integration point for informa-
tion coming from different systems, enabling its suitable correlation for support-
ing KPI analysis; (b) a KPI-based extension of the OWL-Q [6] ontology which
enables formally and fully specifying how KPIs can be measured over which
BPaaS hierarchy components. As such, via introducing KPI metric hierarchies
that span the whole BPaaS hierarchy, the measurability of KPIs is guaranteed.
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An innovative KPI measurement system has been built [7] over these two
ontologies offering its facilities in the form of a REST service. This system can
integrate information from many parts of a BPaaS management system and offers
two KPI analysis capabilities: KPI measurement and drill-down. The KPI drill-
down capability relies on relating via parent-child relations different KPIs at both
business and technical levels which enables performing root cause analysis over
a high-level KPI violation. This capability comes into two flavours depending
on which KPI elements are related: the KPI itself or its metric. The proposed
measurement system supports the on-the-fly KPI metric formula specification
and assessment, provided that the relation of the formula to a certain context
is given. This highlights the great flexibility in KPI measurement offered that
greatly assists in the best possible exploration of the KPI metric space.

The rest of this paper is structured as follows. Section 2 reviews the related
work. Section 3 offers background information enabling to better understand the
main paper contribution. The two proposed ontologies are analysed in Sect. 4.
Section 5 analyses the proposed system architecture and explains the way KPI
analysis is performed. Finally, Sect. 6 concludes the paper and draws directions
for further research.

2 Related Work

Work related to this paper spans KPI & dependency modelling and KPI analysis
which is analysed in 3 respective sub-sections.

2.1 KPI Meta-Models

As KPI modelling is a pre-requisite for KPI assessment, a great amount of
research was devoted in developing KPI meta-models, languages and ontologies,
especially as currently there is no standardised BP language covering the BP con-
text perspective (including goal-based and measurement information aspects) [8].

The related work evaluation in KPI modelling relies on a systematic approach
which: (a) considers a comparison criteria set, (b) summarises the comparison
based on these criteria in the form of an evaluation table, where rows map to the
related work approaches, columns to the criteria and cells to the performance
of an approach over a certain criterion, and (c) supplies a discussion over the
evaluation results presented.

The following comparison criteria were considered: (a) KPI coverage: how
well the notion of a KPI is covered; (b) metric formulas: computation formulas
are provided to support the KPI metric measurement; (c) measurability : other
aspects complementing metric specification are expressed to cover all measure-
ment details (e.g., units, measured objects); (d) goal coverage: KPIs are con-
nected to goals to enable assessing operational or even tactical goals satisfaction
via performing goal analysis; (e) semantics: the meta-model/language should be
semantic or allow semantic annotations to enable formal reasoning and reach-
ing better evaluation accuracy levels; (f) information sources: both internal and
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Table 1. Comparison table [7] over KPI modelling work.

Work KPI Cov. Metric

formulas

Measur. Goal

Cov.

Semantics Inf.

Sources

Meas.

Origin

Level

[9] Moderate Yes Moderate No No Internal Probes BP, SE

[10] Low No Low yes No Internal - BP, SE

[11] Good Yes Low yes No Internal - BP

[12] Good Yes Moderate No No Internal Probes BP

[13] Moderate No Low yes No Internal Probes BP, Inf

[14] Low Yes low No No Internal Probes BP

[15] Moderate Yes Good Yes Yes Internal Probes BP

[16] Low No Low No Yes Internal probes BP

[17] Low Yes Low No no Both Probes BP, Inf

OWL-Q

KPI

Extension

Good Yes Excellent Yes Yes Both All BP, SE, Inf

external information sources should be exploited; (g) measurement origin: the
coverage of measurements and their origin (probes, sensors, or humans); (h)
level : the levels covered (BP, SE - service, Inf - Infrastructure) (Table 1).

The table evaluation results [7] show that not only our ontology scores well
over all criteria but also exhibits the best performance for almost all of them.
Thus, it can be considered as the most prominent. [15] maps to the sole modelling
work close to ours. However, that work does not cover all levels and correlate
measurements to human sources, it exploits only internal information sources
and supplies a moderate KPI coverage. It also does not directly model the notion
of a metric but intermixes it with that of an indicator. This is wrong as when
the latter notion is re-used in the context of KPI computation formulas, it maps
to a metric condition and not to the metric itself which represents all suitable
measurement details to enable KPI computation. The metric formula definition
in that work, though, is interesting as it involves a restricted natural language
form. This might be more user-intuitive but loses on clarity and comprehension
when recursive composite metric formulas must be specified. A pure mathemat-
ical form might be more suitable, an issue that we currently explore.

2.2 Dependency Meta-Models

Dependency modelling is a pre-requisite for system monitoring and adaptation.
Without dependency knowledge, both monitoring can be limited, covering low
abstraction levels as propagation to higher levels is prohibited, as well as respec-
tive adaptation capabilities.

By following the same analysis approach as in the previous sub-section, the
following evaluation criteria have been devised: (a) abstraction level : the lev-
els (denoted as BE, SE, Inf) in the BPaaS hierarchy covered; (b) formalism:
the dependency model formalism used; (c) runtime: the capability to cover a
dynamic or just a static system view. Dynamic views enable to record system
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Table 2. Evaluation table [7] over dependency modelling work.

Work Abst. Level Formal. Runtime Detail level

SEE BP, SE Ontology No Good

GRU SE, INF Graph Yes Low

CUI SE, INF Graph Yes Mod.

HASS SE, INF Graph Yes Good

TOSCA SE, INF DSL No Good

CAMEL SE, INF DSL Yes Good

Ours All Ontology Yes Good

evolution and enable realising monitoring and adaptation mechanisms; (d) detail
level : how well component dependencies are expressed.

The dependency modelling work, apart from ours, encoded in the table [7]
is the following: (a) SEE [18], (b) GRU [19], (c) CUI [20], (d) HASS [21], (e)
TOSCA1 and (f) CAMEL2.

The evaluation results show that our ontology covers all possible levels, cov-
ers runtime information and includes a good detail level for the dependencies
captured. Thus, it is better than all other work. Sole competitors are approaches
in [18,22] that do not cover all BPaaS hierarchy levels. Moreover, the approach
in [18] does not capture runtime information, while [22] does not rely on seman-
tics. Please also consider that: (a) an ontology-based approach is essential for
better integrating dependency information from various information sources as
well as enabling interesting inferencing over this information; (b) some modelling
approaches must go beyond the good dependency detail level that they exhibit
(Table 2).

Table 3. Evaluation table [7] over KPI analysis work.

Work Analysis

types

DB type Evaluation

technique

Drill-Down

technique

Evaluation

flexibility

Level

[4] All Relational SQL queries Decision trees Low BP

[23] All Relational Formula comp Decision trees Low BP, SE

[16] EvaluationSemantic Formula comp - Low BP

[24] EvaluationSemantic WSML rules - Moderate BP, SE

[3] EvaluationWarehouseOLAP - Moderate BP

[25] All Semantic SPARQL queries KPI-based Moderate BP

Our

Framework

All Semantic SPARQL queries Metric/KPI-based Good All

1 http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html.
2 www.camel-dsl.org.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
www.camel-dsl.org
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2.3 KPI Analysis Systems

The KPI analysis frameworks proposed employ techniques that mainly support
KPI evaluation but also KPI drill-down in some cases. Most techniques employ
relational or semantic dbs or data warehouses in order to appropriately structure
the underlying database to support KPI analysis.

By following the same evaluation approach as in previous subsections, the fol-
lowing evaluation criteria have been devised: (a) analysis types: the KPI analysis
kinds supported; (b) db type: type of db used to store the information relevant
for KPI analysis; (c) evaluation technique: the KPI measurement technique used;
(d) drill-down technique: the KPI drill-down technique used; (e) evaluation flex-
ibility : the level of flexibility offered in the exploration of the possible metric
space; (f) level : the BPaaS hierarchy levels covered.

The evaluation results in Table 3 [7] show that semantic dbs are do con-
sidered in more than half of the systems, indicating that their added-value is
recognised: they better link information and enable various forms of reasoning.
Almost half of the systems focus only on KPI evaluation, while the rest support
KPI drill-down via two main techniques: decision trees and combination of met-
ric & KPI hierarchies. The first technique is suitable for covering measurability
gaps (disconnected metric trees). The second is suitable when measurability gaps
do not exist and KPI hierarchies are formed, such that we can go down to more
technical KPIs and then continue from there by exploring the respective metric
hierarchies involved for finding the root causes of the high-level KPI violations
considered.

Evaluation techniques greatly vary, from SQL queries, OLAP and event-
based metric formula calculation to WSML rules and SPARQL queries. SPARQL
queries, however, can be more expressive, even with respect to semantic rules, as
they: (a) allow different ways to link the underlying semantic information; (b)
have similar grouping and aggregation capabilities with SQL queries; (c) operate
on the conceptual level which is closer to actual human perception.

Our system seems to be one step ahead in evaluation flexibility from the work
in [3,24,25] as it does not only allow to map human-based formulations of met-
ric formulas into SPARQL queries but also to experiment with the metric and
condition context. Via combining this with the respective KPI ontology capa-
bilities, it can also support exploiting various information sources, like metrics
and service properties to enable better exploring the metric space. As such, our
approach is more complete and user-intuitive than the other two systems.

Finally, the evaluation results show that only our system is able to cover all
levels. In fact only three out of seven systems recognise the need to cover more
than one BPaaS hierarchy level.

3 Background

As OWL-Q is the basis for the KPI ontology proposed, it is shortly analysed
in this section. OWL-Q is a prominent [26] non-functional service specification
ontology-based language that captures all necessary measurability aspects via
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the introduction of corresponding OWL-Q facets. Semantic rule also accompany
OWL-Q to enable two semantic reasoning types: (a) semantic OWL-Q model
validation based on the domain semantics; (b) added-value knowledge generation
in the form of term equivalence facts. The 6 main facets of OWL-Q are now
analysed by focusing more on those more relevant to this paper’s work.

The core facet captures generic concepts and properties, such as Schedule and
name. Category is one important generic concept, enabling to construct hierar-
chies of categories, i.e., partitions of this and other element types, like quality
metrics and attributes. As such, this concept facilitates specifying structured
quality models (see KPI categories in Sect. 1) that can be re-used in the context
of non-functional capability and KPI description.

The attribute, unit and value type facets capture respective attribute, unit
and value type elements. Attributes (e.g., utilisation) represent properties mea-
surable by metrics. Units can be derived (e.g., bytes/sec), single (e.g., sec) or
dimensionless (e.g., percentage). Different value types can be specified spanning
both non-numeric (e.g., lists) and numeric (e.g., ranges) constructs. Such value
types express the domain of values for metrics. As such, they can be used for
measurement or metric condition threshold validation by checking whether such
values are included in them.

The metric facet specifies how attributes can be measured via the conceptual-
isation of the Metric concept. A metric can be raw (e.g., uptime), computed from
sensors or measurement directives posed over service instrumentation systems,
or composite (e.g., availability), computed from formulas, i.e., function applica-
tions over a list of arguments, where an argument can be a metric, attribute,
service property or another formula. Any kind of metric can be related to a
respective context which details its measurement frequency and window.

The specification facet enables expressing non-functional specifications as
sets of respective capabilities/requirements. Each capability/requirement is
expressed as a constraint which can be either a logical combination of other
constraints (i.e., a CompositeConstraint) or a simple condition imposing a cer-
tain threshold over a metric (i.e., a SimpleConstraint. A metric condition is
related with two different contexts: the metric and condition ones. The condi-
tion context explicates which object (e.g., service or service input) is measured
and the way the condition should be evaluated over this object’s instances. In
the latter case, it is expressed whether the measurements over all or a certain
amount or percentage of object instances should be considered in the condition
evaluation.

4 KPI and Dependency Ontologies

To enable conducting any KPI analysis kind, meta-models must be supplied that
structure and link respective information on which the analysis relies. As such,
to support BPaaS KPI analysis, 2 main ontologies have been developed: (a) the
dependency ontology covering BPaaS dependency models; (b) the KPI ontology
covering KPI modelling. These ontologies are interconnected in one major point,
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the actual BPaaS element measured within the BPaaS hierarchy. In this way,
based on the BPaaS dependency model and interconnections between different
BPaaS elements, measurement propagation hierarchies to cover measurability
gaps can be deduced while root causes for KPI violation can be discovered. In
the following, these two ontologies are analysed in separate sub-sections.

4.1 KPI Ontology

It has been decided to extend OWL-Q to cover the modelling of KPIs as it com-
pletely covers the specification of QoS profiles and SLAs. The OWL-Q extension
developed builds upon OWL-Q constructs only a minimum but sufficient num-
ber of relevant new parts. It does not only involve extending the core OWL-Q
ontology but also the rule set that has been originally specified for OWL-Q.
The latter extension kind involved the development of validation and knowledge
production rules which apply for the KPI domain and enable both the semantic
validation of OWL-Q KPI models (to detect, e.g., that a parent KPI is measured
by a metric which is not a parent of the metric used for the evaluation of a child
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KPI) but also the production of new knowledge based on them (e.g., the kind of
KPI violation for a certain KPI measurement based on the measurement value).

The current application of the overall OWL-Q extension over the Cloud-
Socket project3 use cases has led to the full modelling of all KPIs needed. This
is a major evaluation step which validates the design of this OWL-Q extension.

Figure 1 [7] depicts the KPI OWL-Q extension, where the grey colour denotes
core OWL-Q concepts, blue metric-related concepts, green specification-related
concepts, and yellow a concept from the Dependency ontology, while red denotes
the KPI extension concepts mapping to a sub-facet of the specification one.

A KPI represents an indicator signifying whether BP performance is satisfac-
tory, problematic or erroneous. Thus, it maps to 3 possible states, captured by a
warning and violation threshold. The BP performance for positively monotonic
metrics is satisfactory when is above the warning threshold, problematic when
is between the warning and violation ones, and erroneous when is below the
violation threshold. In case of negatively monotonic metrics, the order between
warning and violation thresholds is reversed and the state mapping is symmetric.

A KPI was modelled as a sub-concept of simple constraint which apart from
the existing reference to a metric and (violation) threshold, it carries extra
information spanning a human-oriented description (for human consumption), a
validity period and the warning threshold.

OWL-Q enables the modelling of preference models which can represent the
actual way measurements can be propagated from the lowest to the highest level
by also providing weights to each node in the hierarchy signifying its relative
importance and contribution to the higher-level quality of the parent node. Such
weighting as well as the content of such preference models can be BPaaS or
customer-specific and thus might be subjective. This also signifies that weights
can be modified as suited at evaluation time to represent the change of (bro-
ker/customer) opinion or any kind of initial misjudgement.

In other KPI meta-models in the literature, weights are given to KPIs and
not metrics. This is an alternative modelling for representing this nested metric
structures. However, such a modelling caters for an ad hoc propagation (e.g.,
possibly with the on-the-fly grouping of KPIs in order to produce a certain
higher-level quality value) of quality and not for a generic one.

While OWL-Q fully covers the specification of metrics, it was extended to
address the issue of external information access via incorporating such informa-
tion in metric formulas. By realistically assuming that all modern information
sources are available in the form of REST APIs or database endpoints, this exten-
sion was implemented by introducing the Query and APICall as sub-concepts of
Argument, enabling instances of these classes to be directly used as input argu-
ments in metric formulas. A Query expresses in an implementation-independent
way the information required to connect and query a db spanning: (a) the db
connection URL; (b) the query language; (c) the actual query; (d) the db type.

On the other hand, an APICall expresses all information needed to call a
REST API and retrieve back the result, spanning: (a) the API URL; (b) values to

3 http://www.cloudsocket.eu.

http://www.cloudsocket.eu
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all API input parameters for the call; (c) input information encoding; (d) output
format (e.g., XML or JSON); (e) a JSON or XML-like script (e.g., in XPath)
to operate over the output returned so as to return a single value focusing on a
certain part within the retrieved output (e.g., the post-code for an email address).

In certain cases (e.g., customer satisfaction metrics) it is imperative to enable
humans to manually provide measurements in the system. In this case, the
measurement-to-user linkage should be modelled. When connected to certain
aspects like human trust and reliability, such linkage can enable reasoning over
measurements and their propagation to establish a so-called trust level over them
and a more reliable and accurate way to aggregate them. This was realised in
OWL-Q by not only associating a measurement to a specific sensor or directive
but also to a human resource that might produce this measurement. Such a
human resource could also be part of the BPaaS dependency hierarchy (e.g., the
knowledge worker responsible for the execution of a certain BPaaS user task)
which then makes this extension another connection point with the Dependency
ontology proposed.

The drill-down from higher- to lower-level KPIs to support root-cause analy-
sis is enabled by associating KPIs to each other via a parent-child relation. This
relation must conform to the parent-child relation between the metrics of the
involved KPIs (i.e., the parent KPI’s metric should be a parent metric of the
child KPI metric). For instance, a KPI for service response time could be related
to KPIs mapping to the service execution time and network latency.

While such relations enable us to go down until low-level KPIs which could
be blamed for a high-level KPI violation, the actual root cause of such a viola-
tion may not be clearly identified. Even in this case, the specification of metric
hierarchies can suffice to enable going even further down to the actual problem
by also observing the objects being involved. The inspection of the lowest level
metric values could be subject to automatic analysis tools to produce the respec-
tive derivations needed or based on the experience of the analyst which can know
what can be the improper measurement values for quite low-level metrics.

In KPI assessment, we are also interested in deriving other information, such
as the value trend with respect to the previous assessments, by performing dif-
ferent analysis kinds. For instance, we could evaluate whether the BPaaS per-
formance gets gradually reduced from the very beginning. To this end, to also
make a connection to the original OWL-Q concept called Measurement, spec-
ifying a measurement’s value and its timestamp, a new sub-concept named as
KPIAssessment was developed, specifying additional information spanning the
value trend and the KPI violation kind (warning or fatal) occurred.

By connecting a KPI to a business goal to be satisfied, we have the capability
to assess the respective goal’s achievement. In this way, such a linkage can enable
performing goal-based analysis in order to reach interesting conclusions related,
e.g., to the satisfaction of strategic goals from operational ones.

To this end, OWL-Q was further extended to both specify goals and their
linkage to KPIs. First, the concept of Goal, representing any goal kind, along with
respective sub-concepts mapping to strategic, tactical, operational, functional
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and non-functional goals were introduced. Any goal was associated with a name,
description and application level, while operational goals were mapped to the
BPs used to satisfy them (another connection point with Dependency ontology).
Goals were also linked with each other via AND/OR self-relations or contribu-
tion relations to enable forming goal hierarchies from strategic to operational
goals. The Contribution concept was modelled to express contribution relations
by linking a goal with another goal or KPI and being mapped to a certain
contribution level.

4.2 Dependency Ontology

Various analysis types over a certain system can be performed only if the evolu-
tion of the system dependency model is captured. This model reveals what are
the system components, how they are interconnected and what is the intercon-
nection direction. Such a direction indicates the way faults and measurements
can be propagated from lower to higher abstraction levels. Following the opposite
direction enables conducting root cause analysis, i.e., from a current, issue at a
high-level component down to the actual component to blame in a lower-level.

The Dependency ontology proposed captures both deployment and state
information about all components in a BPaaS hierarchy. It extensively covers
many information aspects, thus becoming suitable for many different BPaaS
analysis kinds, including: (a) KPI analysis; (b) (semantic) process mining [27],
due to the coverage of (semantic) I/O information for tasks and workflows; (c)
best BPaaS deployment analysis [28] as all possible deployment information
across all levels is covered; (d) the detection of event patterns [29] leading to a
KPI violation.

Figure 2 [7] depicts the Dependency Ontology which follows the well-known
type-instance pattern, enabling to capture both the allocation decisions made as
well as the whole BPaaS allocation history and evolution. The proposed ontology
also captures organisational information. In particular, the Tenant concept was
incorporated to model an organisation, also associated with a User set. Different
kinds of tenants exist: (a) Brokers that offer a BPaaS, (b) Customers that can
purchase a BPaaS, and (c) Providers which offer a cloud service supporting the
BPaaS execution. A string type enumeration was also modelled to cover different
kinds of customer organisations, like SMEs, start-ups or big companies.

Similar to the new design of OWL-Q [30], the Dependency ontology includes
generic data properties which can be mapped to all or a subset of the con-
cepts modelled, such as id properties to be attributed to any concept and end-
point/URL properties to be attributed only to services. As such, from now on,
the analysis focuses on specific data properties that individually characterise
aspect-specific concepts and not generic ones.

We follow a a top-down analysis for the ontology from the type to the instance
level. The top concept at the type level represents a BPaaS which is associated
with an owner and an executable Workflow to be run in the Cloud. The exe-
cutable workflow is related in turn to its main Tasks.
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Fig. 2. Dependency ontology UML class diagram [7].

A task can have input and output Variables and is associated with a certain
user or role that can be assigned to it. It can be further classified into a Manu-
alTask (performed by human workers), a ScriptTask (performed automatically
via a script) and a ServiceTask (performed automatically by calling a Software
as a Service (SaaS)).

As stated, a BPaaS corresponds to an allocated executable workflow. This
signifies that: (a) many BPaaSes can share the same workflow; (b) from these
BPaaSes each BPaaS can be uniquely distinguished based on the specific set of
allocations performed on that workflow. Such a distinction is enabled via the
modelling of the Allocation concept which represents an allocation decision that
is linked to a certain BPaaS and workflow. Such an allocation maps a service
task in the workflow to a SaaS, either an ExternalSaaS or a (internal) Service-
Component. In case of a ServiceComponent, the allocation is also associated to
an Infrastructure as a Service (IaaS) which supports its deployment. A IaaS
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is characterised by the following properties: its number of cores and the main
memory & storage size.

The top concept at the instance level is BPaaSInstance which represents
an instance of a BPaaS associated with the Customer that has purchased it,
its actual cost and the DeployedWorkflow. The latter concept represents the
BPaaS workflow deployed on behalf of a customer upon successful purchasing
of this BPaaS. The instances of this workflow are then associated with: (a) the
instances of tasks (TaskInstance) created; (b) its start and end time; (c) its
resulting state (“SUCCESS” or “ERROR”); (d) the user that has initiated it;
(e) the adaptations performed on it to maintain the service level promised in the
corresponding SLA signed with the customer. Instances of tasks of this workflow
are associated with similar information that incorporates the user (if exists)
executing them and the input/output VariableInstances that they generate. The
latter map to the actual Variable concerned and include the respective values
produced.

The Dependency ontoloy models two types of concrete allocations: (a) from
a deployed workflow task to a SaaSInstance realising its functionality; (b) from
an internal SaaSInstance to the IaaSInstance hosting it (in case of instances of
internal service components). Both SaaS and IaaS instances are sub-concepts of
ServiceInstance which encompasses their common features including the service’s
endpoint and its physical & cloud location. IaaSInstances further encapsulate
certain hardware-specific information, such as the id and name of the image
involved as well as the respective OS deployed, while they also map to respective
IP on which they are available.

The FAO (United Nations Food and Agriculture Organisation) geopolitical
ontology4 has been used to capture physical locations and their hierarchies. In
particular, the physical service location is mapped to the concepts of geograph-
ical region and self governing that represent geographical regions (e.g., conti-
nents), and all locations mapping to self governing countries, respectively. The
CloudLocation concept was also used to structure arbitrary hierarchies of cloud
locations to cover the hierarchy diversity across different cloud providers. The
Cloud concept was also modelled in order to specify the cloud that is being
offered by a certain Provider for which the corresponding location hierarchy
applies.

Concerning BPaaS adaptation, the most usual types as reported in respective
literature have been modelled, i.e., service replacement and scaling ones. Any
kind of Adaptation is mapped to its start and end time, its final state and the
adaptation rule triggered. A ServiceReplacement is additionally associated with
the service instance being substituted and the service instance substituting it.

On the other hand, any kind of scaling maps to the IaaS to be scaled. Two
main scaling types have been covered: (a) HorizontalScalings for which we spec-
ify one or more service components hosted by the IaaS to be scaled plus the
amount of instances to be generated or removed; (b) VerticalScalings for which

4 http://aims.fao.org/aos/geopolitical.owl.

http://aims.fao.org/aos/geopolitical.owl
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we indicate the respective increase or decrease amount of the corresponding IaaS
characteristic(s) scaled.

5 KPI Analysis System

In the following, we analyse the architecture of the KPI analysis system, then
we provide some implementation details and finally we describe in detail the
algorithms used for the KPI measurement and drill-down mapping to respective
components of the system architecture analysed.

5.1 Architecture

The proposed system offers the following main features: (a) it supports multi-
tenancy in the context of BPaaS brokers. This means that the system can support
multiple BPaaS brokers in the conduction of KPI analysis tasks and also enforces
the right access control such that no broker can conduct analysis tasks and see
corresponding analysis results pertaining to other brokers; (b) it enables not
only to evaluate the current value of KPI metrics but also the browsing and
search over their measurement history; (c) it supports the dynamic evaluation
of KPI metrics via the more flexible exploration of the possible metric space;
(d) it supports the storage of the KPI measurements produced allowing the
more efficient querying of the KPI evaluation history rather than its more time-
consuming reconstruction; (e) it adopts a high-level language in the specification
of the KPI metrics to be evaluated which is closer to the human perception.

Figure 3 depicts the service-oriented architecture of the KPI analysis sys-
tem which comprises eleven main components and follows the known three-level
implementation pattern of UI-business logic-database. In the following, we anal-
yse the functionality of each system component in different paragraphs.

Fig. 3. Architecture of the KPI analysis system.
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Hybrid Dashboard. This component constitutes the main entry point to the
system from which respective analysis tasks can be performed and then their
results are represented according to suitable visualisation metaphors.

Harvester. This composite component is responsible for the harvesting of infor-
mation from different components of the BPaaS management platform. The
information harvested at a particular frequency is further structured and linked
according to the two ontologies proposed as well as stored in the Semantic KB.
The population is performed periodically to not overwhelm the system but more
frequently with respect to the way KPI measurements are assessed. The analysis
of the internal architecture of this composite component is out of context of this
paper but can be found here [31].

Conceptual Analytics Service. This component is a REST service offering the
two main KPI analysis capabilities at the following URL: http://134.60.64.222/
evaluation. As such, it can be exploited by external components to program-
matically deliver these capabilities. The KPI measurement comes into two main
forms: (a) measurement over certain KPIs which have been already defined for
the BPaaS; (b) measurement over dynamically specified KPI metrics - here is
where the flexibility in the evaluation is supported as the user can specify dynam-
ically KPI metric formulas as well as play with the metric measurement schedule
and window. For the first type of KPI measurement, there are two possibilities
as mentioned in the main features of the KPI analysis system: either we directly
measure the KPI or we just perform a query over its measurement/evaluation
history. The first possibility is more appropriate in the case of the production of
new KPI measurements while the second is more efficient in terms of evaluation
response time in the context of browsing the evaluation history of a certain KPI.

Similarly, KPI drill-down comes into two forms: (a) KPI drill-down based
on KPI parent-child relationships - here the whole KPI hierarchy is exploited in
order to go from the violation of a high-level KPI to a low-level KPI which is to be
blamed for this violation; (b) KPI drill-down based on the KPI metric parent-
child relationships - here we follow the dependencies between KPI metrics in
order to find the root causes of KPI violations. Another main differentiation with
respect to the other drill-down type is the fact that the analysis can further go
down into metrics over which KPIs have not been specified enabling to perform
a deeper root cause analysis.

Apart from these two analysis capabilities, the Conceptual Analytics Service
offers additional functionality which covers

1. the enumeration of all KPIs that can be evaluated for a certain BPaaS - this
can enable a UI to visualise represent all these KPIs and assist the user in
selecting the right KPI to evaluate for that BPaaS

2. the enumeration of all metrics that can be used for the construction of
dynamic metric formulas for on-the-fly evaluation of new, more composite
KPI metrics

http://134.60.64.222/evaluation
http://134.60.64.222/evaluation
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3. the enumeration of all BPaaS customers for which a certain BPaaS applies -
this enables the system to focus the analysis on a certain customer once this
customer has been selected in the Hybrid Business Dashboard.

4. the supply of a SPARQL query which can be evaluated in the underlying
semantic LD database. This latter functionality is more suitable for an expert
which is aware of the two ontologies proposed for a more ad-hoc and spe-
cialised exploration of the possible metric space.

Underlying the Conceptual Analytics Engine lie two main components which
are responsible in turn for the delivery of the two main KPI analysis functionali-
ties: (a) the Query Creator and the Drill-Down Handler. These two components
are now analysed in detail.

Query Creator. This component is responsible for the production of a SPARQL
query for the evaluation of a certain KPI metric. This query is then issued by
the Conceptual Analytics Service on the Semantic KB in order to produce the
corresponding KPI measurement as a result that is finally compared against
the KPI threshold in order to evaluate whether the KPI is violated or not.
Internally, the Query Creator orchestrates the functionality of the following three
components.

KPI Handler. This component is responsible for the management of the KPIs.
In particular, this component extracts the KPI model of a certain BPaaS which
is specified in OWL-Q into a list of KPI objects that can then be retrieved
by the Query Creator component for their further respective processing and
transformation into an SPARQL query. This extraction is supported by the
OWL-Q processing library which is analysed in the implementation details sub-
section.

Resource Accessor. This component is responsible for accessing information
resources from external information sources. In particular, each time a met-
ric formula needs to be transformed into a SPARQL query, it is checked whether
it accesses external information. If this holds, then this component takes care
of accessing the DB or invoking the corresponding API exposed by the exter-
nal information source in order to retrieve the respective information resource
required. Subsequently, the retrieved information can be exploited as a constant
in the SPARQL query used to evaluate the metric computation formula.

SPARQL Transformer. This component is responsible for the actual transfor-
mation of the KPI object into a SPARQL query. More details about how this
transformation takes place is supplied in Sect. 5.3.

Drill-Down Handler. This component is responsible for the execution of the
two main drill-down forms. Internally, it exploits the Query Creator in order to
produce respective SPARQL queries when corresponding KPI metrics need to
be evaluated. This is needed, for example, when we need to evaluate the KPIs
within the hierarchy of a certain high-level KPI. More details about these two
forms of KPI drill-down are supplied in Sect. 5.3.
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Semantic KB. This component is a semantic Triple Store which enables the
management and storage of semantic information, which is structured in our
case based on the two ontologies proposed. To address the heterogeneity of dif-
ferent triple store implementations and their exchange, a Semantic KB Service
was developed on top of this KB to offer a RESTful interface enabling LD man-
agement via methods that facilitate issuing SPARQL queries, inserting as well
as updating RDF graphs.

Meta-Model Repository. This component includes basic information about BPs
like their models and annotations to be exploited for visualisation and informa-
tion harvesting reasons. In the current implementation prototype, this compo-
nent is shared between the BPaaS Design and Evaluation environments in the
corresponding BPaaS management platform (see CloudSocket project). This wit-
nesses the closeness between the two BP lifecycle activities and the respective
level of cooperation established between them.

5.2 Implementation Details

All the components were developed in the Java programming language. The
development of the Conceptual Analytics Service relied on the Jersey library5.

The transformation of a OWL-Q KPI model to KPI in-memory objects relied
on the OWL-Q library. This library enables the domain code-based representa-
tion of OWL-Q models as well as their loading from and storage to the file
system. Such a library can also be exploited for the production of a customised
OWL-Q editor in order to provide a more user-intuitive way of editing and man-
aging OWL-Q models with respect to generic OWL editors like Protege6. Such
an editor would also enable the expert user not to possess any knowledge over
OWL and ontology modelling for the production of KPI models. This would
increase the mass of possible experts that can be involved in the production of
KPI models based on OWL-Q.

The Resource Accessor is a Java-based component which encompasses drivers
for the accessing of widely-known DBs like MySQL or Postgresql. It also relies on
the Jersey library for the invocation of REST APIs for the accessing of external
information needed in metric formulas.

The Semantic KB was realised based on the Virtuoso Triple Store7. This
triple store is quite efficient in SPARQL query evaluation, especially as it relies
on a column-based object database, The service on top of the Semantic KB was
realised again via the Jersey as well as the sesame RDF management library8.
This enabled us to exploit the sesame driver in Virtuoso for a more advanced
and high-level handling of the SPARQL query evaluation.

5 https://jersey.github.io/.
6 protege.stanford.edu.
7 https://virtuoso.openlinksw.com.
8 rdf4j.org.

https://jersey.github.io/
https://protege.stanford.edu/
https://virtuoso.openlinksw.com
http://rdf4j.org/
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5.3 KPI Analysis and Drill-Down Algorithms

KPI Analysis. Independently of what is the KPI analysis form, a core KPI met-
ric evaluation functionality has to be realised. To this end, a semantic approach
for this realisation was selected for two main reasons: (a) evaluation accuracy is
higher; (b) semantic linking enables better exploring the actual space of possible
KPI metric computation formulas. The latter actually reflects the current KPI
evaluation practice where, apart from some KPI metrics that can be fixed in
advance (e.g., cross-domain metrics like process duration), the rest of the KPI
metrics must be computed based on the knowledge and expertise of the (BP
performance) evaluator.

Semantic linking enables a richer connection between different information
aspects to facilitate the metric formula construction with respect to other forms
of measurement storage and aggregation. On the other hand, other measurement
system alternatives, like Time Series Data Bases, require an a-priori design of
the measurement space and do not enable advanced forms of information linking
and aggregation. This means that such systems suffer from a certain form of
inflexibility while they do not offer a satisfactory level of dynamicity.

The most intuitive way to express metric formulas for a semantic approach
that adopts LD technology is via SPARQL queries. However, SPARQL queries
require deep knowledge about LD technology and great expertise in SPARQL
query modelling which might not be possessed by a BP performance evaluation
expert. Such an expert would rather prefer to specify the metric formula in
mathematical terms via a simplified language. This observation has led us to
adopting the OWL-Q KPI extension. By relying on an user-intuitive OWL-
Q editor and the fact that ontologies represent human conceptualisations of a
domain, the expert can more naturally specify the metric formula. This obstacle
could be further overpassed by introducing a domain-specific language for pure
mathematical metric formula expressions which is left as a possible future work
direction.

Based on this (language) adoption, the challenge that still remains for a
suitable KPI evaluation lies in the capability to transform OWL-Q models, and
especially KPI metric formulas, into a SPARQL query specification. This met-
ric formula to SPARQL query transformation comprises some specific hurdles
that had to be overcome. First, it is differentiated based on the metric kind.
Two metric kinds exist: (a) customer-specific, pertaining to a certain BPaaS
instance purchased by a customer of the BPaaS broker at hand; (b) broker-
specific, pertaining to the overall performance of the BPaaS offered across all
customers. Customer-specific metrics have as their measurement space all the
measurements produced for the customer’s BPaaS instance, while broker-specific
metrics have a broader measurement space spanning all measurements over all
instances of a BPaaS purchased.

Second, two main factors harden the transformation: (a) it should not only
consider the metric itself (i.e., the actual computation) but also the metric and
condition context, which indicates that all such information should be linked
together to obtain the right set of measurements to be aggregated; (b) the
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dynamic KPI evaluation kind envisioned, where the expert can experiment with
formulas, metric kinds, evaluation (schedule & windows) and history periods,
does not allow storing the measurements in the physical storage once they are
derived. To this end, the way lower-level KPI metrics can be derived needs to be
accounted for when attempting to compute a high-level KPI metric. This means
that we might need to go down even to the level of low-level or resource metrics
for which measurements are already produced to derive the measurements for a
high-level KPI.

By taking into consideration the above two issues, a particular transformation
algorithm has been produced which, depending on the input provided, attempts
to generate dynamically the SPARQL query to be issued for deriving the respec-
tive metric measurement. Listing 1.1 depicts the pseudo-code of this algorithm.

Listing 1.1. Transformation & Drill-Down Algorithms pseudo-code.
ResultSet evalKPI{Metric m, Object object , BPaaS bpaas ,

DateTime star t , DateTime end , St r ing custID}{
MetricFormula mf = expandFormula (m. formula ) ;
List<Str ing> vars = getVars (mf ) ;
S t r ing c l au s e = getClause (mf ) ;
S t r ing query = createQuery ( vars , c lause , object , bpaas ,
s ta r t , end ,m. metricContext . schedule , cus t Id ) ;

return runQuery ( query ) ;
}

Str ing createQuery ( List<Str ing> vars , S t r ing c lause ,
Object obj , BPaaS bpaas , DateTime star t , DateTime end ,
Schedule schedule , S t r ing customerId ){

Str ing query = i n s e r tP r e f i x e s ( ) ;
query += applyClause ( c lause , getBrokerGraph ( ) ) ;
query += createMeasurementTriples ( vars , obj .URI ) ;
query += crea t e In t e rL ink ( bpaas , object , customerId ) ;
query += app l yF i l t e r s ( s ta r t , end , vars ) ;
query += applyGrouping ( schedule , vars ) ;
return query ;

}

Tree<ResultSet> kpiDril lDown (KPI kpi ,
BPaaS bpaas , DateTime star t , DateTime end ,
St r ing cus t Id ){
Tree<ResultSet> r e s u l t = evalKPI ( kpi . metric ,

kpi . object , bpaas , s ta r t , end , customerId ) ;
Set<Tree<ResultSet>> r e s u l t s =

measureKPIsInParal le l ( kpi . ch i ldren ,
s ta r t , end , customerId ) ;

r e s u l t . addChildren ( r e s u l t s ) ;
return r e s u l t ;

}

Hashtable<Metric , ResultSet> metricDri l lDown ( Metric m,
Object object , BPaaS bpaas , DateTime star t ,
DateTime end , St r ing cust Id ){

MetricTree mt = expandFormulaInTree (m. formula ) ;
Set<MetricNode> metr i c s = getLeaves (mt ) ;
Hashtable<Metric , ResultSet> r e s u l t s =
new Hashtable<Metric , ResultSet >();

while ( ! metr i c s . isEmpty ( ) ){
for ( MetricNode mn: metr i c s{
i f (mn. i sL ea f ( ) ) r e s u l t s . union ( evalKPI (mn. metric ,

object , bpaas , s ta r t , end , cus t Id ) ) ;
else r e s u l t s . union (measureKPI (mn, object , s ta r t ,
end , custId , r e s u l t s ) ) ;

}
metr i c s = getParents ( metr i c s ) ;

}
return r e s u l t s ;

}

This algorithm (see evaluateKPI method) comprises four main steps: (a)
metric formula expansion which includes the recursive substitution of component
metrics, for which measurements are not stored in the Semantic KB, with their
derivation formulas; (b) SPARQL query variable derivation from those metrics
in the expanded formula, i.e., the leaf ones, for which measurements have been



256 K. Kritikos et al.

stored; (c) production of the (SPARQL) select clause from the expanded formula;
(d) production of the whole SPARQL query.

The SPARQL query production (see createQuery method) involves execut-
ing the following steps: (i) creation of query prefixes; (ii) application of SELECT &
FROM clauses by also taking into account the respective LD graph URI mapping
to the individual RDF graph of the broker from which the relevant information
for the query evaluation can be obtained; (iii) generation of the triple patterns
mapping to the measurements of the leaf metrics/variables in the expanded met-
ric formula; (iv) enforcement of the correlation between measurements according
to the object being measured, the customer (if given as input) and the respective
BPaaS instances mapping to these measurements; (v) application of the filtering
(FILTER clause) over the history period to select measurements produced only
on that period; (vi) application of SPARQL GROUP BY clauses based on the KPI
metric evaluation period, i.e., its measurement schedule.

To exemplify this OWL-Q-to-SPARQL transformation algorithm and raise
its understanding level, we now highlight its application on a specific example of
a KPI metric by especially taking a closer look at the corresponding SPARQL
query being generated.

Suppose that the average availability metric AV GA has to be measured
for the whole BPaaS workflow. This metric can be computed via the formula
MEAN (RAWA), where RAWA represents the instance-based availability metric
for this workflow. Further suppose that: (i) the average availability metric should
be calculated every 1 h, while the raw availability metric every minute; (ii) the
history period is 1 day.

The first transformation algorithm step will expand the above computa-
tion formula based on the measurability of the component metrics of average
availability. In particular, RAWA is not stored in the Semantic KB, thus it is
expanded into its derivation formula

UPTIME

TOTAL OBSERV ATION TIME

where UPTIME is a raw metric and TOTAL OBSERV ATION TIME is a
constant. As such, the final expanded formula will take the following form:

MEAN
(

UPTIME

TOTAL OBSERV ATION TIME

)

Based on this formula, the next two algorithm steps will generate a set of one
variable (“?uptime”) and the select clause (“SELECT (AVG(?uptime/60) as
?value) (MAX(?uptime ms ts) as ?date)”). As uptime is calculated every second,
please observe that 60 is the total observation time constant.

The fourth step will finally generate the actual SPARQL query depicted in
Fig. 4 [7]. This SPARQL query is now explained by focusing over all the steps
involved in the createQuery method and the content generated by them.

Lines 1–2 supply the prefixes of the two ontologies being exploited mapping
to the first query generation step. Lines 3–4 depict the query SELECT & FROM
clauses produced from the second step of the query generation sub-algorithm.
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Lines 5–9 express a set of triple patterns, generated by the third query gen-
eration step, linking the uptime measurement to: (a) the Uptime metric; (b) its
actual value used in the formula of Line 3; (c) the actual dateTime where this
measurement was produced; (d) the URI of the object measured (i.e., a workflow
instance in our case). These lines guarantee that we operate over Uptime mea-
surements but do not provide suitable connections to other major information
aspects, such as which BPaaS is actually concerned.

To this end, Lines 10–13, which map to the fourth query generation step,
realise the needed connections from the object measured to both the BPaaS
instance involving it and the current BPaaS at hand. Line 10 links the current
BPaaS to one of its instances, while Line 11 connects this BPaaS instance with
a deployed workflow. Line 12, currently commented, could link this instance to
a certain client that has purchased it, in case we are dealing with a customer-
specific metric. Finally, Line 13 links the deployed workflow to the actual work-
flow instance measured. Depending on the kind of object being measured, Lines
11–13 can be differentiated. For instance, if a task instance is to be measured, we
need to add another triple pattern linking the workflow instance involved with
this task instance.

Line 15, currently commented, mapping to the fifth query generation step,
supplies a SPARQL FILTER constraint that can restrict the history period
under investigation. In particular, the conjunction of two simple constraints
is expressed over the dateTime of the measurement indicating that this date-
Time should be greater or equal to the low bound dateTime of the considered
period and less than or equal to the upper bound dateTime of this period.
This line is commented as the whole evaluation history of the KPI metric is
explored.

Finally, Line 17, generated by the last query creation step, supplies a grouping
statement where the last sub-group directly relates to the evaluation period of
the KPI metric (i.e., per hour). This statement groups first the results based on
the month, then on the day and finally on the respective hour.

Fig. 4. Constructed SPARQL query for the example [7].
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Drill-Down Algorithms. Two main forms of drill-down are supported by the
KPI Analysis System proposed: (a) based on KPI parent-child relationships;
(b) based on KPI metric parent-child relationships. It can be indicated that
the first form is equivalent to the second one. This is not the actual case due
to the fact that while KPI relationships might involve corresponding metric
relationships, the latter relationships might not be complete in the sense that
the metrics of the child KPIs cannot be solely used for the production of the
measurement of the metric of the parent KPI. This indicates that possibly there
is a component metric of a parent KPI metric for which a KPI has not been
supplied. For instance, suppose that we have a parent KPI metric over BPaaS
availability. This metric might be computed from other metrics that span the
availability of the SaaS services exploited plus the availability of the workflow
engine used to execute this BPaaS. Logically speaking, a BPaaS broker might
express KPIs for all SaaS-based availability metrics but not for the workflow
engine availability one. As such, the first form of KPI drill-down will be able to
show the relationships between the KPIs and their respective evaluations. On the
other hand, the second KPI drill-down form will show the relationships between
the KPI metrics and their measurements. As such the first form is suitable until
the point where KPI relationships clearly show the root causes of problems.
However, the second form is a more elaborate one which is also able to bring the
analysis until the lowest possible level. These two KPI drill-down forms are now
analysed in the following paragraphs.

KPI Parent-Child Relationship based Drill-Down. This form of KPI drill-down is
handled by the algorithm mapping to the kpiDrillDown method in Listing 1.1.
In this form, the parent-child relations between KPIs are exploited. The main
logic of this algorithm is quite simple: each KPI involved in the hierarchy of a
top-level KPI needs to be evaluated. In this respect, the algorithm comprises two
main steps: (a) processing of current KPI by producing its SPARQL query via
the OWL-Q-to-SPARQL transformation and evaluation of the query in order to
produce the respective measurement; (b) processing of the child KPIs of current
KPI in parallel and storage of the respective measurements produced into a
hierarchical tree-form where parent KPI measurement is described first and then
followed by the measurement trees of all its children. Due to the recursive form
of this algorithm we will be able in the end to produce the whole hierarchical
measurement tree for the top-level KPI which could then enable the respective
assessment of all the KPIs involved in the top-level KPI’s hierarchy.

KPI Metric Parent-Child Relationship based Drill-Down. This KPI drill-down
form is handled by the algorithm mapping to the metricDrillDown method in
Listing 1.1. This algorithm exploits the OWL-Q-to-SPARQL transformation one
by also considering the whole derivation tree of the current KPI metric at hand. It
sequentially executes the following steps: (a) expand recursively the top metric’s
derivation list until leaf metric nodes are reached. This leads to producing a
metric (derivation) tree which has as leaf nodes metrics for which measurements
exist in the Semantic KB ; (b) compute the needed intermediate metric (node)
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values based on the SPARQL-based transformation approach in a bottom-up
way. This means that we proceed in a level-by-level basis in the computation
of not yet processed metrics for which the child nodes map to metrics whose
values have been already computed or map to measurements already stored in
the Semantic KB. This procedure the propagates up the produced measurements
in the tree until the top level metric is reached. Each time a KPI metric node
is visited, its values are produced based on the metric formula involved and the
already produced measurements. The produced measurements are stored in the
hashtable, from metrics to measurement result sets, to support the higher-level
metric computations plus the production of the drill-down results to be returned.

6 Conclusions

This paper has presented a service-oriented, multi-tenant KPI evaluation sys-
tem which enables the intelligent and dynamic exploration of the whole KPI
metric space. The system’s evaluation and exploration capabilities rely on the
semantic and human-oriented capturing of the KPI information and its linkage
with respective BPaaS dependency information. The linked information is then
stored into a semantic KB over which not only KPI evaluation but also other
kinds of BPaaS analysis can be performed, such as process mining and best
BPaaS deployment discovery. BPaaS evaluation relies on the transformation of
KPI information into SPARQL queries which are then issued over the semantic
KB. On the other hand, to support root-cause analysis, also two KPI drill-down
forms are supplied by the system which rely on the appropriate capturing of
KPI dependencies. The coverage of KPI & BPaaS dependency information is
achieved via the introduction of two main ontologies: (a) a KPI extension of
OWL-Q [6] and (b) a BPaaS dependency ontology.

Future work will pursue the following research directions. First, thoroughly
evaluating the KPI analysis system according to both performance and accu-
racy aspects. Second, further validating the proposed ontologies to obtain suit-
able feedback to optimise them. Third, realising and injecting additional BPaaS
analysis algorithms into the respective KPI analysis system so as to transform
it into a full-fledged BPaaS evaluation environment.
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Abstract. Cloud computing is a consolidated and high-maturity level
paradigm which is capable of handling powerful computing environ-
ments and providing complex services in a flexible and scalable way.
In order to compete in the cloud service market, one of the challenges
Cloud providers are faced with is to efficiently automate the service
“provisioning” activities through the use of Cloud orchestration tech-
niques. The focus of this paper is the orchestration process. Starting with
TOSCA, a well-known standard specification used to represent the com-
plete structure of a Cloud service, we developed an orchestrator capable
of automating the workflow of all the tasks required to build up such a
service. What makes our approach novel is the definition of a converter
component which takes as input a TOSCA service template and trans-
forms it into a BPMN process model that is ready to be fed to a workflow
engine. The BPMN notation is used to represent both the workflow and
the data associated with each workflow step. To prove the viability of the
YAML-to-BPMN conversion process, a software prototype of the system
was developed and tested with a sample use case which is discussed in
the paper.

1 Introduction

In the last few years, cloud computing platforms have been widely adopted to
provide increasingly complex services in very different fields. From the cloud
providers’ point of view, a significant and increasing cost factor is related to the
management and operational tasks needed for the provision of each cloud service.
All the big cloud players are making a lot of investments to develop software
tools and frameworks that support the automation of cloud services’ delivery and
maintenance. Also the scientific community has shown a growing interest around
the topic of cloud provisioning and orchestration [4,30,36]. The lack of a common
and established industry standard for defining composite applications, including
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their orchestration and management, appears today as one of the critical issues
preventing from a wider cloud’s adoption, also affecting the actual portability of
a cloud application.

In the panorama of standard initiatives, OASIS TOSCA (Topology and
Orchestration Specification for Cloud Applications) [22] has become very pop-
ular. It is supported by many big cloud players and promises to cater for their
need of streamlining cloud service orchestration and provisioning operations.
Also, the standardization body has released a version of the specification which
makes use of a very simple and human understandable language (YAML) that
has contributed to speed up the standard adoption process.

The work described in this paper grounds on the TOSCA specification,
extending the one presented in [7]. It leverages the TOSCA features to build
up a cloud service orchestrator capable of automating the execution of tasks
and operations required for the provisioning of a cloud application. The strat-
egy adopted by the cloud orchestrator is to convert a TOSCA cloud application
model into its equivalent BPMN workflow and dataflow model [25]. The orches-
trator will then use a BPMN engine to enforce the operations specified in the
BPMN model. The approach we propose clearly separates the orchestration of
the provisioning tasks from the real provisioning services (i.e., the e-services that
enforce the provisioning). In this work, we present the design of a cloud service
provisioning framework, and discuss the design and implementation of a cloud
orchestrator prototype. With respect to [7], in this paper we also describe the
service provisioning architecture. Further, we discuss a real use case of a cloud
application provisioning.

The remainder of the paper is organized in the following way. In Sect. 2 we
report the related work. Section 3 provides a bird’s eye view of the TOSCA
specification. The core ideas of the proposed framework are presented in Sect. 4.
The design and implementation details of the cloud orchestrator and provisioning
services are discussed in Sects. 5 and 6, respectively. A real use case showing the
potential of the proposed idea is discussed in Sect. 5.4. Section 7 draws some final
considerations and suggests some future directions.

2 Related Work

This section presents a survey of all the recent and authoritative initiatives, both
commercial and scientific, that address the cloud provisioning and orchestration
topic.

Many cloud industry players have developed cloud management plat-
forms [1,10,13–15,31,32] for automating the provisioning of cloud services. All
platforms, to varying degrees, promise to provide automation in three funda-
mental steps: cloud configuration, cloud provisioning and cloud deployment. The
more advanced platforms also offer services and tools for the management of
cloud applications’ lifecycle. None of these commercial products are open to
the community, and the solutions they offer are not portable across third-party
providers either.
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The open source world has shown interest on this topic as well. Taking a look
at the category of configuration management tools, DevOps Chef [9] is a soft-
ware used to streamline the task of configuring and maintaining server applica-
tions and utilities. It is based on the concept of configuration “recipes”, which are
instructions on the desired state of resources (software packages to be installed,
services to be run, or files to be written). Chef takes care of those recipes and
makes sure that resources are actually in the desired state. Chef can integrate
with cloud-based platforms such as Amazon EC2, Google Cloud Platform, Open-
Stack, Microsoft Azure and Rackspace to automatically provision and configure
new virtual machines. Similar recipe-based approaches are proposed by other
open-source solutions like Puppet [29] with its Puppet manifests and Juju [16]
with its Juju charms. Speaking of cloud orchestration tools, OpenStack Heat
[26] is a service to orchestrate composite cloud applications using a declarative
template format - namely, the Heat Orchestration Template (HOT) - through
both an OpenStack-native REST API and AWS CloudFormation-compatible
API [1]. HOT describes the infrastructure for a cloud application in text files
which are readable and writable by humans and software tools as well. Also,
it integrates well with software configuration management tools such as Pup-
pet and Chef. Very recently, orchestration concepts have been analyzed also in
the context of containers [35]. Even if containers represent a portable unit of
deployment, when an application is built out of multiple containers the setting
up of a cluster of containers can actually become complex, because it is needed
to make one container aware of another and expose several details required for
them to communicate. As an example, Docker Compose, currently under active
development, is one of the first tools for defining and running multi-container
Docker applications [11].

With respect to standardizing initiatives, OASIS is the most active
on the topic. TOSCA [22] is an OASIS open cloud standard supported by
a large and growing number of international industry leaders. It defines an
interoperable description of applications, including their components, relation-
ships, dependencies, requirements, and capabilities, thus enabling portability and
automated management across multiple cloud providers regardless of underly-
ing platform or infrastructure. No commercial solution supports processing of
the TOSCA specification at this moment. OpenTOSCA [3] is a famous open
source TOSCA runtime environment. Although authors have been working on
adding support to the TOSCA Simple Profile [28], only a few YAML elements
are supported by the converter. At this moment, imports, inputs, outputs and
groups are not supported, thereby limiting the description of application com-
ponents. The reader may find some insight on the technical aspects of TOSCA
in Sect. 3.

In the scientific literature a few works have addressed the TOSCA
specification. In [18], BPMN4TOSCA was proposed as a domain-specific
BPMN [25] extension to ease modelling of management plans by enabling
convenient integration and direct access to TOSCA topology and provided
management operations. Since the BPMN4TOSCA extension introduces new
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functionalities which are not natively supported by workflow engines, it leads
to a non-standards-compliant BPMN and, therefore, needs special treatment,
i.e., a transformation to plain BPMN. In [17], a proof of concept for the actual
portability features of TOSCA on OpenStack and Opscode Chef has been pre-
sented. To that end, an execution runtime environment named TOSCA2Chef
was developed to automate the deployment of TOSCA-based cloud application
topologies to OpenStack by employing Chef and BPEL processes. An extension
of the system to support different IaaS providers would require different data
models reflecting new domain-specific attributes. Plus, the plan execution oper-
ation would need some adaptation to base its execution logic on the new model.
In [37], a unified invocation bus and interface to be used by TOSCA management
plans has been presented. Based on OpenTOSCA’s architecture, a service bus
(Operation Invoker) was implemented to provide a unified invocation interface
for TOSCA plans to invoke operations without knowing what kind of technol-
ogy is used in the background. When a particular operation is called through the
Operation Invoker, it checks what kind of Implementation Artifact (IA) is avail-
able to execute the operation. Then, it checks whether there is a plugin registered
that can execute IAs of the given type (e.g., SOAP or REST or script). In case
there is a corresponding plugin, this plugin gets invoked, which itself invokes the
corresponding IA. Plans need to communicate with the unified interface of the
Operation Invoker, but they can only be modelled with the knowledge of it. On
top of that, this solution is strongly linked to OpenTosca runtime environment,
too. In [38], with the goal of achieving a seamless and interoperable orches-
tration of arbitrary artifacts, an integrated modelling and runtime framework
has been introduced. After executable DevOps artifacts of different kinds get
discovered and stored in DevOps knowledge repositories, they are transformed
into TOSCA-based descriptions. OpenTOSCA was used as a deployment engine.
However, this approach is still bound to the specific implementation of the run-
time environment, which TOSCA specification does not cover. In [5], a process
modelling concept to enable the integration of imperative and declarative pro-
visioning models has been introduced with the goal of preserving the strengths
of both flavours. The general modelling approach is based on extending imper-
ative workflow languages such as BPMN and BPEL [21] by means of Declar-
ative Provisioning Activities, which enable to specify declarative provisioning
goals directly in the control flow of a workflow model. The data flow between
provisioning activities is defined through input parameters, output parameters
and content injection. A prototype based on the OpenTOSCA ecosystem and
the BPEL workflow language was implemented. As the authors themselves
underlined, a drawback is that process models often have to be created from
scratch, while maintaining existing processes results in complex, time-consuming
adaptations.

Several EU funded research projects, such as ARTIST [20], SeaClouds [6],
PaaSage [33], MODAClouds [12] and PaaSport [2], also addressed cloud appli-
cation portability in its essence. Most of these projects, instead of building a
TOSCA engine, transform the TOSCA-based application specification into a
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single orchestration script, such as YAML, and execute it by a corresponding
management tool, such as CAMP [23], Brooklyn [34], etc.

The work we propose grounds on the TOSCA standard as well. A distinc-
tive feature of our approach is the clear separation between the orchestration
of the provisioning tasks, intended as the scheduling of the logical steps to be
taken, and the provisioning services, which are the services implementing the
tasks’ instructions. As for the orchestration aspect, we devised a mechanism
that automatically builds a plain BPMN orchestration plan starting from a cloud
application’s TOSCA model.

3 The TOSCA Specification

TOSCA is the acronym for Topology and Orchestration Specification for Cloud
Applications. It is a standard put together by OASIS that can be used to enable
the portability of cloud applications and related IT services. This specification
permits describing the structure of a cloud application as a service template,
that is in turn composed of a topology template and the types needed to build
such a template. The topology template is a typed directed graph, whose nodes
(called node templates) model the application components, and edges (called
relationship templates) model the relations occurring among such components.
Each node of a topology can also be associated with the corresponding com-
ponent’s requirements, the operations to manage it, the capabilities it features,
and the policies applied to it. Inter-node dependencies associate the requirements
of a node with the capabilities featured by other nodes. TOSCA supports the
deployment and management of applications in two different flavors: imperative
processing and declarative processing. The imperative processing requires that
all needed management logic is contained in the Cloud Service Archive (CSAR),
which stores all software artifacts required to provision, operate, and manage the
application. Management plans imperatively orchestrate low-level management
operations that are either provided by the application components themselves or
by publicly accessible services (e.g., the Amazon Web Services API). These plans
are typically implemented using workflow languages, such as BPMN or BPEL
[21]. The declarative processing shifts management logic from plans to runtime,
therefore no plans are actually required. TOSCA runtime engines automatically
infer the corresponding logic by interpreting the application topology template.
This requires a precise definition of the semantics of nodes and relations based
on well-defined Node Types and Relationship Types. The set of provided man-
agement functionalities depends on the corresponding runtime and is not stan-
dardized by the TOSCA specification.

The TOSCA Simple Profile is a rendering of the TOSCA specification in
the YAML language [24]. It aims to provide a more accessible syntax as well
as a more concise and incremental expressiveness of the TOSCA language in
order to speed up the adoption of TOSCA to describe cloud applications in
a portable manner. The work described in this paper heavily grounds on the
TOSCA standard and, specifically, on the TOSCA Simple Profile.



A Framework for the Orchestration and Provision of Cloud Services 267

4 Design of a Cloud Service Provisioning Framework

This work addresses the design and implementation of a software framework that
automates the processes pertaining to the operational management of cloud ser-
vices. The stakeholders that may have a keen interest in the services provided
through the framework are the Customers in need of cloud resources and appli-
cations (in a few words, “cloud services”) and the Providers of cloud services.
To the former, the framework offers tools to state functional requirements of the
cloud service they are in need of; depending on those requirements, the frame-
work takes the necessary actions for the service delivery to happen. The latter
have the chance to offer their cloud services through the framework, while play-
ing no active role in the service orchestration which the framework itself is in
charge of.

The focus of this work is on the automation of the cloud service provision-
ing process, i.e., the process which is entrusted with setting up all the resources
that build up the cloud service requested by the Customer. The framework has
been designed to support more sophisticated operations such as, to cite a few,
resource monitoring, resilience and scaling. Those specific operations are though
out of the scope of the current work, and will be addressed in the future. As for
the service provision, this work revolves around the design and implementation
of an orchestrator which is capable of generating on the fly a cloud provisioning
process made up of tasks that build up the ready-to-use service to be delivered.
Specifically, the orchestrator coordinates the whole process and makes sure that
every task’s activity is performed with proper timing.

We inspected the literature for a well established and broadly accepted way
of representing the cloud application requirements, i.e., a language or a meta-
model the Customer may use to describe the stack of resources, and also, the
way those resources need to get configured and coupled together in order to
ensure that the final service will meet Customer expectations. As mentioned
before, the approach we propose grounds on the OASIS TOSCA standard and,
more specifically, on the TOSCA Simple Profile rendering. The TOSCA Simple
Profile provides a meta-model written in YAML (a human friendly data serializa-
tion standard) which the Customer may use to define their cloud application
model, i.e., to describe both the application topology and the artifacts needed
by the application itself. We opted for a workflow-based solution which, starting
from the cloud application model description, is capable of devising and orches-
trating the flow of the provisioning operations to execute. Instead of developing a
workflow engine from scratch, we decided to make use of a BPMN engine, i.e., an
engine capable of executing workflows represented in the BPMN language. Since
a YAML application model is not executable by a BPMN engine, we developed
an ad-hoc YAML-to-BPMN converter. The reader may discover the details of
the converter in Sect. 5. We chose the BPMN as workflow language since it is a
robust standard and it also provides support for data modelling, a feature that
we exploited to represent the application artifacts needed along the workflow.
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A novelty introduced by this approach is the separation between the orches-
tration of the provisioning tasks and the provisioning services themselves. We
propose a solution where the provisioning services may be supplied by third-
party service providers, while the provisioning tasks orchestrated by the work-
flow engine will draw on those services in a SOA (Service Oriented Architecture)
fashion. This enables a scenario of a market of services in which many providers
are allowed to participate and where Customers can get the best combination
of services that meet their requirements. The overall scenario described so far is
best depicted in Fig. 1.

Fig. 1. Cloud orchestrator scenario [7].

We have designed and implemented a TOSCA Orchestrator which takes
as input the application model and deploys the concrete application in the cloud.
The Orchestrator takes the YAML model and transforms it into an equivalent
BPMN model. The BPMN model is in turn fed to a BPMN engine that will
instantiate and coordinate the relative process. The process will put in force
all the provisioning activities needed to build up the application stack; as the
reader may notice, the provisioning activities access a service bus in order to get
the required services which are in turn supplied by third-party service providers.
Finally, once the cloud application is up and running, the Customer is invited
to take charge.

The framework we propose aims to offer tools and services that enable
the scenario depicted in Fig. 1. Customers can use the YAML representa-
tion to express application requirements and push them into the framework.
Providers can design their services according to specific templates and offer
them to Customers through the framework. The framework is entrusted with
orchestrating the provisioning activities and matching the services’ offer and
demand. In the current implementation, the framework cares just for functional
requirements. Non-functional requirements, which call for enhanced service
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matchmaking mechanisms, are out of the scope of this work and will be addressed
in future work.

5 Converting YAML to BPMN

This section discusses the features and the technical details of the software com-
ponent we devised to convert a TOSCA Simple Profile into its equivalent BPMN
process model. Starting from a TOSCA Simple Profile compliant service tem-
plate, our software creates a Provisioning Plan which is fed into the workflow
engine for the automated application deployment. This approach brings consider-
able benefits, among which (a) reusability of the process logic, since components
of the same type use the same logic; (b) portability of the Plan, as the application
can be deployed on a generic Cloud Provider; (c) efficiency in terms of stream-
lining Customer’s work, because they only have to define their templates and fill
them with the management functions of their choice, without caring about how
Provisioning Plans will be created and executed on the Cloud Provider.

The proposed solution consists of three components: TOSCA-Parser, BPMN-
Generator, and BPMN-Validator. The TOSCA-Parser deals with the service
template by providing means to load, parse and validate the YAML file, and
creates the dependency graph, a data structure containing the relationships
between all of the nodes in the TOSCA template. Vertices in the graph rep-
resent nodes, while edges represent relationships occurring between them. The
BPMN-Generator grounds the creation of the Provisioning Plan on the parsed
service template and the dependency graph. The BPMN-Validator validates
the automatically generated Plan against the BPMN specification. The following
Sections will provide more details about these components.

5.1 TOSCA-Parser

The TOSCA Parser takes a TOSCA YAML template as input, with an optional
dictionary of needed parameters with their values, validates it, and produces
in-memory objects of different TOSCA elements with their relationship to each
other. It also creates an in-memory graph of TOSCA node templates and their
relationships. This software component is widely based on the OpenStack parser
for TOSCA Simple Profile in YAML [27], a Python project licensed under
Apache 2.0. In agreement with the overall structure of a service template,
shown in Listing 1.1, the parser contains various Python modules to handle
it including topology templates, node templates, relationship templates, data
types, node types, relationship types, capability types, artifact types, etc. The
ToscaTemplate class is an entry class of the parser and is of great importance,
along with TopologyTemplate, NodeTemplate and RelationshipTemplate, in the
construction of the ToscaGraph, which keeps track of all nodes and dependency
relationships between them in the TOSCA template. This in-memory graph is,
in turn, a milestone in the generation of the BPMN Provisioning Plan, and the
entire process is covered in Sect. 5.2.
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Listing 1.1. TOSCA Service Template grammar.

# Required TOSCA Definitions version string
t o s c a d e f i n i t i o n s v e r s i o n :
# Optional . default namespace ( for type schema )
to s ca de fau l t namespace :

# Optional metadata keyname : value pairs
metadata:
template name: # Optional name of the service template
template author : # Optional author of the service template
t emp la t e ve r s i on : # Optional version of the service template
# Optional list of domain specific metadata keynames

# Optional description of the definitions in the file .
de s c r i p t i o n : <t emp l a t e t ype de s c r i p t i on>
# list of import statements for other definitions files
imports :
# list of YAML alias anchors ( or macros )
d s l d e f i n i t i o n s :
# list of repository definitions hosting TOSCA artifacts
r e p o s i t o r i e s :
# list of TOSCA datatype definitions
data types :
# list of node type definitions
node types :
# list of capability type definitions
c ap ab i l i t y t yp e s :
# list of relationship type definitions
r e l a t i o n s h i p t y p e s :
# list of artifact type definitions
a r t i f a c t t y p e s :
# list of interface type definitions
i n t e r f a c e t y p e s :

# topology template of the cloud application or service
topo logy template :

# a description of the topology template
de s c r i p t i o n :
# input parameters for the topology template
inputs :
# node templates of the topology
node templates :
# relationship templates of the topology
r e l a t i o n s h i p t emp l a t e s :
# output parameters for the topology template
outputs :
# logical groups of node templates within the topology
groups:

subs t i tut ion mapp ings :
node type: <node type name>

c a p a b i l i t i e s :
<map o f capab i l i ty mapp ings to expose>

requi rements :
<map of requirement mapping to expose>

5.2 BPMN-Generator

The BPMN-Generator takes the aforementioned ToscaGraph and ToscaTem-
plate elements (e.g., Inputs, Outputs, NodeTemplates, RelationshipTemplates)
as input and automatically generates the BPMN Provisioning Plan for the des-
ignated Cloud application. For clarity purposes, the service template shown in
Listing 1.2 will be taken as a toy example to show what needs to be done to reach



A Framework for the Orchestration and Provision of Cloud Services 271

the goal. The BPMN generation is composed of the following two steps: (1) the
creation of a Workflow modelling a detailed sequence of business activities to
perform; (2) the creation of a Dataflow modelling the data to be read, written
or updated during the Workflow execution.

Listing 1.2. SW Component - Service Template [7].

t o s c a d e f i n i t i o n s v e r s i o n : t o s ca s imp l e yaml 1 0

d e s c r i p t i o n : >
TOSCA simple p r o f i l e with a so f tware component .

topo logy template :
inputs :

cpus:
type: i n t e g e r
d e s c r i p t i o n : Number o f CPUs f o r the s e r v e r .
c on s t r a i n t s :

- v a l i d v a l u e s : [ 1 , 2 , 4 , 8 ]
d e f au l t : 1

node templates :
sw:

type: to sca . nodes . SoftwareComponent
p r op e r t i e s :

component vers ion: 1 . 0
requi rements :

- host : s e r v e r
i n t e r f a c e s :

Standard:
c r e a t e : s o f t w a r e i n s t a l l . sh
s t a r t : s o f twa r e s t a r t . sh

s e r v e r :
type: to sca . nodes . Compute
c a p a b i l i t i e s :

host :
p r op e r t i e s :

d i s k s i z e : 10 GB
num cpus: { ge t input : cpus }
mem size: 1024 MB

os:
p r op e r t i e s :

a r c h i t e c t u r e : x86 64
type: Linux
d i s t r i b u t i o n : Ubuntu
ve r s i on : 14 .04

The Workflow basically comprises a BPMN process made of Service Tasks,
Sequence Flows and Gateways used to control how the process flows, with every
single component being derived from all the node templates and their require-
ments in the YAML Service Template. In particular, taking inspiration from
normative node states and lifecycle operations of the Standard interface [22],
each node template in the YAML scenario leads to a new Service Task for every
operation specified on that node. Such Service Tasks are related to each other
by means of Sequence Flows and possible Gateways, whose creation depends on
Service Tasks dependencies, which, in turn, depend on node templates require-
ments. The ToscaGraph, which stores all nodes and dependency relationships
between them in the TOSCA Template, is the reference point to determine
such requirements. In this regard, the graph is traversed and for each node,
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represented by a vertex, the whole set of requirements is constructed in terms
of relationships with other nodes, represented by related edges. Service Tasks
dependencies are then obtained by taking into account the node requirements
and the lifecycle operations they represent. Starting from such dependencies, it
is possible to compute the execution order of all Service Tasks in the Provision-
ing Plan, i.e., the deployment order of all Cloud application components. This
information is represented by numerical data: the lower the number is, the less
priority that Service Task gets. Service Tasks with the lowest execution order,
hereby collectively called Service Tasks Endpoint, don’t feature in between any
Service Task’s required dependencies, whereas Service Tasks with the highest
execution order, hereby collectively called Service Tasks Startpoint, don’t fea-
ture any Service Task as a required dependency. With reference to our example
scenario, the resulting data structures are shown in Listing 1.3.

Listing 1.3. SW Component - Tasks, Requirements, Order [7].

service_tasks = [‘server ’, ‘sw_create ’, ‘sw_configure ’, ‘sw_start ’]

service_tasks_requirements = {‘sw_create ’: [‘server ’],
‘sw_configure ’: [‘sw_create ’], ‘sw_start ’: [‘sw_configure ’]}

service_tasks_order = {‘server ’: 4, ‘sw_create ’: 3,
‘sw_configure ’: 2, ‘sw_start ’: 1}

service_tasks_startpoint = [‘server ’]

service_tasks_endpoint = [‘sw_start ’]

Service Tasks Endpoint and Startpoint are of paramount importance to define
a proper execution flow, because they may lead to some degree of parallelism
in the Workflow through Parallel Gateways, which are used to synchronize or
create parallel flows. Specifically, they play a role in the creation of Start Event,
End Event and Service Tasks. In the first case, an outgoing sequence flow must
be created, having the Start Event as source and a Service Task as target when
the Service Tasks Startpoint only contains one element, or a Parallel Diverg-
ing Gateway otherwise. In the second case, an incoming sequence flow must be
created, having the End Event as target and a Service Task as source when
the Service Tasks Endpoint only contains one element, or a Parallel Converg-
ing Gateway otherwise. In the third case, Service Tasks and related Sequence
Flows are created by proceeding in ascending Service Tasks priority fashion (i.e.,
in their reverse execution order). From lowest to highest priority, each Service
Task is created and then their incoming and outgoing paths are determined by
distinguishing three further cases: (a) the Service Task belongs to Service Tasks
Endpoint set, (b) the Service Task belongs to Service Tasks Startpoint set, (c)
the Service Task belongs to neither of them. In case (a), the incoming path is
calculated by analysing the Service Task dependencies: if there is just one of
them, then a Sequence Flow must be created, having the required Service Task
as source and the Service Task under consideration as target; if there is more
than one of them, then a Parallel Convergent Gateway must be created, along
with a Sequence Flow having the Gateway as source and the Service Task under
consideration as target. The outgoing path is calculated by analysing the Service
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Tasks Endpoint set: if it has just one element, a Sequence Flow must be created,
having the Service Task under consideration as source and the End Event as
target; if it has more than one element, a Parallel Converging Gateway must
be created, along with a Sequence Flow having the Service Task under consid-
eration as source and the Gateway as target. In case (b), the incoming path
is calculated by examining the Service Tasks Startpoint set: if it has just one
element, a Sequence Flow must be created, having the Start Event as source and
the Service Task at hand as target; if it has more than one element, a Parallel
Diverging Gateway must be created, along with a Sequence Flow having the
Gateway as source and the Service Task at hand as target. The outgoing path
is calculated by inspecting the set of all Tasks having the Service Task under
consideration as a dependency: if it has just one element, a Sequence Flow must
be created, having the Service Task at hand as source and that element as target;
if it has more than one element, a Parallel Diverging Gateway must be created,
along with a Sequence Flow having the Service Task at hand as source and the
Gateway as target. In case (c), the incoming path is calculated in the same way
as case (a), and the outgoing path is calculated just like case (b). As to our
example scenario, the resulting BPMN Workflow is shown in Fig. 2.

Fig. 2. Output of the BPMN generator - Workflow [7].

The Dataflow simply consists of Data Inputs, Data Outputs and Data
Objects, which are derived from node templates and their data requirements
in the YAML Service Template. Speaking of data requirements, the TOSCA
standard allows template authors to customize Service Templates through the
inputs section in the Topology Template, which represents an optional list of
input parameters for the Topology Template. In a complementary way, the out-
puts section represents an optional list of output parameters for the Topology
Template. Inputs and outputs can be used to parameterize node templates prop-
erties or node templates and relationship templates lifecycle operations. Data
Inputs, which capture input data that Activities and Processes often need in
order to execute, are utilized to model such inputs; Data Outputs, which cap-
ture data that they can produce during or as a result of execution, are uti-
lized to model such outputs. It should be noted that node templates attributes
can be used as parameters in the lifecycle operations as well. Data Objects
are utilized to model this kind of data requirements, with Data Associations
determining how information stored in Data Objects is handled and passed
between Process flow elements. Data Inputs and Data Outputs integration
involves the following steps: (1) define Data Inputs, InputSets, Data Outputs
and OutputSets within the Workflow Process, (2) add Data Output Associa-
tions (one for each Data Input) to the Start Event and Data Input Associations
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(one for each Data Output) to the End Event, (3) define Data Inputs, InputSets,
Data Input Associations, Data Outputs, OutputSets and Data Output Associ-
ations within Service Tasks of interest. Data Objects integration includes the
following steps: (1) define Data Objects and Data Object References within the
Workflow Process, (2) define Data Objects within Service Tasks of interest, i.e.,
define Data Outputs and Data Output Associations in Data Object source Ser-
vice Tasks and Data Inputs and Data Input Associations in Data Object target
Service Tasks. With reference to our sample template in Listing 1.2, there is
only one input variable specified in the server num cpus property. This leads to
a Data Input and a Data Association between the Start Event and the server
Service Task, as depicted in Fig. 3.

Fig. 3. Output of the BPMN generator - Workflow and Dataflow [7].

5.3 BPMN-Validator

The BPMN-Validator validates the BPMN Plan generated in the previous step
against the BPMN XML Schema [25], with both of them being taken as input
parameters. The validation is performed by means of etree module in Python
lxml package [19]. More specifically, the BPMN XML Schema gets parsed and
turned into an XML Schema validator, which checks if the previously parsed
BPMN plan complies with the provided schema. If that is not the case, then a
validation error is going to be raised.

5.4 Case Study

The Application model taken into consideration aims to deploy a WordPress web
application on an Apache web server, with a MySQL DBMS hosting the database
content of the application on a separate server. Figure 4 shows the overall
architecture compliant with the TOSCA Simple Profile specification (although
wordpress, php and apache node types are non-normative).

There are two separate servers: app server for the web server hosting and
mysql server for the DBMS hosting. Both servers are configurable on hardware
side (e.g., disk size, number of cpus, memory size and CPU frequency) and soft-
ware side (e.g., OS architecture, OS type, OS distribution and OS version). The
apache node features port and document root properties, and is dependent upon
the app server via a HostedOn relationship as well. In the same way, the php node
is dependent upon the app server via a HostedOn relationship. The mysql dbms
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node features port and root password properties, and a HostedOn dependency
relationship upon the mysql server. The mysql database node features name,
username, password and port properties, and a HostedOn dependency relation-
ship upon the mysql dbms. Finally, the wordpress node features the context root
property, and depends on mysql database and php by means of two ConnectsTo
relationships and on apache by means of a HostedOn relationship, respectively.

Fig. 4. Wordpress Deploy - TOSCA template [7].

For the sake of clarity, Listing 1.4 shows the apache node declaration in
YAML. As mentioned above, the node takes the app server as requirement
and has port and document root properties, whose values are retrieved from
apache port and apache doc root input parameters, respectively, by means of
the get input intrinsic function. Two lifecycle operations are also defined (i.e.,
create and start), with both of them taking ip as input parameter, whose value
is retrieved from the private address attribute of the app server through the
get attribute intrinsic function.
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Listing 1.4. Wordpress Deploy - Apache node [7].

apache:
type: to sca . nodes . WebServer . Apache
p r op e r t i e s :

port : { ge t input : apache port }
document root: { ge t input : apache doc root }

requi rements :
- host : app se rve r

i n t e r f a c e s :
Standard:

c r e a t e :
inputs :

ip : { g e t a t t r i b u t e : [ app server , p r i v a t e add r e s s ] }
port : { ge t p rope r ty : [ SELF, port ] }
doc root : { ge t p rope r ty : [ SELF, document root ] }

implementation: s c r i p t s / i n s t a l l a p a c h e . sh
s t a r t :

inputs :
ip : { g e t a t t r i b u t e : [ app server , p r i v a t e add r e s s ] }

implementation: s c r i p t s / s ta r t apache . sh

In conformity with Sect. 5.2, the node transformation from YAML to
BPMN leads to the creation of: (1) three Service Tasks (apache create,
apache configure and apache start); (2) two Data Inputs (doc root and port) with
their respective Data Input Associations in apache create; (3) one Data Object
(app server.private address) with its Data Input Associations in apache create
and apache start.

Fig. 5. Wordpress Deploy - Workflow [7].

Figures 5 and 6 show the overall Workflow and Dataflow-decorated Workflow,
respectively. The workflow represented in Fig. 6 is then fed to a BPMN engine
that will actually enforce the workflow’s tasks.

6 Implementing the Provisioning Services

This Section explores the basic idea behind the design and implementation of the
Provisioning Services. As anticipated in Sect. 4, our approach neatly separates
the Provisioning Tasks from the Provisioning Services. On the one hand, the Pro-
visioning Tasks orchestrated by the Workflow engine draw on the Provisioning
Services supplied by third-party Providers to meet Customers’ requirements.
On the other hand, Providers can design their services according to specific
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Fig. 6. Wordpress Deploy - Workflow and data flow [7].

templates and offer them to Customers through an Enterprise Service Bus (ESB)
[8]. The ESB incorporates the features required to implement complex service-
oriented architectures meeting challenges of integrating applications and provid-
ing a single, unified architecture.

There are mainly two categories of Provisioning Services that need to be
integrated in the ESB: Cloud Services, provided by commercial Cloud providers
by means of proprietary web interfaces, and Packet-based Services. The first cat-
egory comprises the resources offered through any of the Cloud delivery models
(IaaS, PaaS, SaaS), be them virtual machines, platforms or even software appli-
cation instances hosted on a third-party provider’s premises; by contrast, the
second category includes all the downloadable software “packets” which require
a pre-configured runtime environment to run (a database management system or
a web server executable, to name a few). In order to integrate all the mentioned
services in the ESB, we deploy a layer of Service Connectors which are respon-
sible for connecting the requests coming from the Provisioning Tasks with the
actual Provisioning Services. The connectors layer is meant to offer Providers a
uniform way to publish their Provisioning Services, and to present Provisioning
Tasks with a uniform way to invoke those services. To make it clearer, let us focus
on the Cloud Services. Cloud Providers have different means to manage VMs
or networks, different image formats that can be deployed on a physical host,
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or different interfaces. The Service Connectors layer interfaces with the specific
IaaS management platforms (such as Amazon, Azure, OpenNebula, OpenStack)
and provides the Provisioning Tasks with a uniform and standard way of man-
aging the resources of a Cloud Provider, thus hiding away the peculiarity of each
Cloud Service’s invocation.

The following Sections will discuss the details of the ESB architecture and
will describe the steps of the Provisioning Services’ invocation process.

6.1 Architecture

Figure 7 shows the ESB-based architecture. The Connectors layer provides a
unified interface model for the invocation of the services, which allows to achieve
service location transparency and loose coupling between Provisioning BPMN
plans (orchestrated by the Process Engine) and Provisioning Services.

Fig. 7. Enterprise Service Bus and Service Connectors.

The Service Registry is responsible for the registration and discovery of the
Connectors. At registration time, each Connector has to provide information
regarding the service being provided such as service description, functional and
non-functional properties of the service, service url. The Service Broker is in
charge of taking care of the requests coming from the Provisioning Tasks. Its duty
is to meet the expectation of the requestors by querying the Service Registry and
selecting the Connectors which best fit requestors’ need. The selection process
of the “best” Connector is out of the scope of this work, and will be addressed
in future work.
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In Fig. 7 the Cloud and the Packet-based Service Connectors have been
depicted. Cloud Services Connectors implement interactions with Cloud
Providers for the allocation of Cloud resources (e.g., Virtual Machines, Vir-
tual Storage). To serve this purpose, for each service type a specific Connector
needs to be implemented. For instance, Instantiate VM represents the generic
Connector interface to the instantiation of Cloud resources of “Virtual Machine”
type. All concrete Connectors to real VM services (Amazon, OpenStack, Azure,
etc.) must implement the Instantiate VM interface. Likewise, Add Storage is
the interface of the generic Connector to storage services that concrete Connec-
tors to real storage services in the Cloud must implement. By way of example,
let us consider the Instantiate VM interface which exposes a createvm method
in order to create and start a VM instance. Listing 1.5 shows the JSON Schema
to validate the body of an HTTP-POST request to a RESTful-based /creat-
evm web service. Three aggregated parameters are required: “host”, “os” and
“credentials”. Host and os allow to specify the necessary hardware (i.e., number
of CPUs, CPU frequency, disk size and memory size) and software (OS archi-
tecture, OS type, OS distribution and OS version) requirements, respectively;
credentials enables to indicate the user’s RSA public key to grant them private
access to the VM, instead.

Listing 1.5. Instantiate VM - JSON Schema Request.

{
"$schema ": "http ://json -schema.org/draft -06/ schema#",
"title": "VM",
"description ": "A VM instantiation",
"type": "object",
"properties ": {

"host": {
"type": "object",
"properties ": {

"num_cpus ": {"type": "number"},
"cpu_frequency ": {" type": "string"},
"disk_size ": {"type": "string"},
"mem_size ": {"type": "string"}

},
"required ": [" num_cpus", "cpu_frequency", "disk_size", "mem_size "]

},
"os": {

"type": "object",
"properties ": {

"architecture ": {" type": "string"},
"type": {"type": "string"},
"distribution ": {" type": "string"},
"version ": {"type ": "string"}

},
"required ": [" architecture", "type", "distribution", "version "]

},
"credentials ": {

"type": "object",
"properties" : {

"public_key ": {"type": "string"}
},
"required ": [" public_key "]

}
},
"required ": ["host", "os", "credentials "]

}
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Packet-based Services Connectors are meant to implement interactions with
all service providers that provide packet-based applications. As specified in
Sect. 5.2, YAML to BPMN conversion implies that three types of BPMN service
tasks are in place: “Create”, “Configure” and “Start”. To each of these tasks cor-
responds a generic connector interface (Create, Configure and Start in the
bottom of Fig. 7). Those interfaces are then extended in order to manage many
types of applications (DBMS, Web Servers, etc.). The latters are the ones that
concrete Connectors must implement in order to interact with real packet-based
application providers. To make an example, for the correct provisioning of a
specific DBMS application, three connectors need to be implemented in order to
create, configure and start the DBMS, respectively. Listing 1.6 displays a JSON
Schema to validate the body of an HTTP-POST request to a RESTful-based
/createdbms web service. Two parameters are required: “vm url” and “work-
flow id”. Vm url specifies the VM instance URL, whereas workflow id uniquely
identifies the provisioning workflow and allows Connectors to retrieve private
application data (i.e., the DBMS root password to be set, in this particular
case).

Listing 1.6. Create DBMS - JSON Schema Request.

{
"$schema ": "http ://json -schema.org/draft -06/ schema#",
"title": "DBMS",
"description ": "A DBMS installation",
"type": "object",
"properties ": {

"vm_url": { "type": "string" },
"correlation_key ": { "type": "string" }

},
"required ": [" vm_url", "correlation_key "]

}

For the DBMS provisioning to actually take place, the Connector needs
to inject all the required instructions and parameters into the VM instance.
Listing 1.7 shows a MySQL DBMS installation script for a VM with a Debian-
based operating system.

Listing 1.7. Create MySQL - Example of installation script.

#!/bin/bash
#This script installs mysql server

apt -get update

debconf -set -selections <<< "mysql -server mysql -server/root_password password
$db_root_password"

debconf -set -selections <<< "mysql -server mysql -server/root_password_again
password $db_root_password"

apt -get -y install --fix -missing mysql -server



A Framework for the Orchestration and Provision of Cloud Services 281

6.2 Invocation of Provisioning Services

In this Section a dynamic view of the system is provided by means of two UML
Sequence Diagrams: the former models the instantiation of a VM (as an exam-
ple of the allocation of Cloud resources), and the latter models the installation
of a MySQL DBMS on a previously instantiated VM (as an example of the
provisioning of packed-based applications).

Figure 8 shows the necessary steps that need to be taken for the instantiation
of a VM. The BP engine, which is responsible for orchestrating the Provisioning
Tasks, is the actor who initiates the interaction. To that end, the creation of a
VM originates from the execution of a Service Task in the Provisioning Plan,
through which the invocation of specific service is requested on the Service Bro-
ker. The Service Broker handles the request by querying the Service Registry in
order to find the connector that meets as many requestor’s requirements as pos-
sible. The Service Registry returns the URL of the selected connector (Amazon
Instantiate VM, in this case) to the Service Broker, which invokes the connector
service. Then, the connector transparently interfaces with the Cloud Provider
management APIs (Amazon AWS, in this case) which take care of the VM
instantiation and return the VM access URL to the connector. Finally, the URL
is forwarded from the connector to the Service Task passing through the Service
Broker, thus determining the end of interaction with control being returned to
the BP Engine.

Fig. 8. Steps for the instantiation process of a VM.

Figure 9 exhibits the required steps for the installation of a DBMS on a
previously instantiated VM. For the sake of clarity, the following assumptions are
made: (a) MySQL is the DBMS of choice, (b) the VM is hosted on Amazon EC2,
and (c) an Ubuntu Server distribution runs on the VM. As with the previous
scenario, the BP engine is the actor who initiates the interaction. The installation
of a DMBS starts from the execution of a Service Task in the Provisioning
Plan, through which the invocation of specific service is requested on the Service
Broker. The Service Broker manages the request by querying the Service Registry
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Fig. 9. Steps for the installation process of a DBMS.

in order to find the connector that suits the requestor’s needs. The Service
Registry returns the URL of the selected connector (MySQL Create DBMS,
in this case) to the Service Broker, which invokes the connector service passing
as parameters the VM URL and information about the OS distribution running
on it. Then, depending on this information, the connector injects the proper
MySQL installation script into the VM where it gets executed. The interaction
ends with control being ultimately returned to the BP engine.

7 Conclusion

In this paper we addressed the challenge that many cloud industry players are
nowadays facing to reduce costs and improve flexibility in service provisioning:
the automation of the operational management and orchestration of a cloud
application. As shown, several different initiatives and tools have appeared to
tackle the issue: very recently the TOSCA specification has emerged with the
promise to facilitate the portable, automated, and reusable management of cloud
services throughout their lifecycle. Our work leverages just on the TOSCA stan-
dard, by proposing a cloud orchestration and provisioning framework. Basically,
the automation is carried out by a two-step process: (1) transforming a TOSCA
cloud application model into a BPMN workflow; (2) getting the workflow exe-
cuted on a workflow engine. The novelty of the approach consists in the definition
of a data model that enriches the workflow and in the clear separation between
the Provisioning Tasks and the Provisioning Services. In the future, the frame-
work will be enhanced by providing support for non-functional requirements,
also introducing advanced service matchmaking mechanisms.
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Abstract. The trans-cloud approach has recently been proposed to
simplify the development and operation of cloud applications, and to
minimize the lock-in problem. The three key ingredients of the trans-cloud
approach are: agnostic topology descriptions, a unified API, and mech-
anisms for the independent specification of providers’ services. We build
on the trans-cloud mechanisms to propose a solution for the migration of
stateless cloud components at runtime. In the context of our trans-cloud
tool, we propose an algorithm for the migration of cloud applications’
components between different providers, possibly changing their service
levels between IaaS and PaaS. We present an implementation of our
proposed solution, and illustrate it with a case study and experimental
results.

1 Introduction

As an answer to the increasing demand of services in Cloud Computing [1,2],
vendors are offering their own cloud solutions. Vendors have developed similar
resources, which offer through their own APIs, defining their own service level
agreements (SLA), non-functional requirements, add-ons, and quality of service
(QoS) specifications. Such heterogeneity has derived into many interoperability
and portability restrictions on cloud applications, often producing situations in
which cloud developers are locked-in specific services from cloud providers.

We have recently witnessed how most of the interoperability issues have been
solved thanks to the advances in the management of the connections between
components deployed using different technologies and vendors (see, e.g., [3–5]).
These advances have allowed the development of different deployment plat-
forms, capable of distributing application modules using services from different
providers. With these technologies, we can now deploy our applications using for
each of the individual components the best alternative, with the best possible
result for the operation of our applications. Trans-cloud environments [6] has
been proposed as the last step in this direction, with the goal of providing the
possibility of deploying applications combining IaaS and PaaS services, possibly
provided by different vendors.

The selection of the service level and vendor to deploy each of the compo-
nents of our applications, from the multitude of cloud offerings, is challenging
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(see, e.g., [7–9]). Furthermore, since the context and required knowledge may
change while applications are under operation, performing the required changes
may result in additional costs to stop and re-started applications. This is part
of life however. Even though developers may decide today, for example, to use a
PaaS provider for a particular module because it is more cost effective, or because
it requires less management effort, tomorrow they may require, e.g., to increase
the security level of their services, or a better integration with their enterprise’s
infrastructure. These new operation requirements may force a change on the
original decisions, since the new needs or business model requires more control
over virtual machines. In this situation the best decision may be to move some
component to IaaS services. Unfortunately, moving an application’s component
between different providers is problematic, and even worst between different
abstraction levels.

With current technologies, provider or level changes may require a significant
development effort [10,11], to adapt the components to the new service require-
ments and to their interaction with the rest of the components of the application,
which may be running in other providers. Migration of individual components
or entire applications may however be unavoidable over time, because of changes
in the offered services, prices, security policies, or simply because a provider just
stops providing its services. Once developers can take advantage of the features
of different kinds of services, they will be interested as well in optimizing the
cloud resources usage and improve their applications’ performance.

To accomplish the correct movement of components, the migration of an
application requires the orchestration of the entire environment where it is being
executed. If we have to directly handle cloud interoperability and portability
issues, the task becomes very complicated. Indeed, live migration of cloud appli-
cations pose a number of new key issues related to cloud resources and the
control of the components of applications. Migration is currently being widely
studied both at academia and at industry (see, e.g., [12,13]), and there have been
several proposals for the live migration of cloud application’s components (see,
e.g., [14–16]). In some of these proposals, components of running applications are
moved to different vendors or locations. However, they still present significant
limitations, mainly due to the difficulties related to the cross-vendor portability
of components, but also to their interoperability, which is typically solved by
providing ad-hoc solutions. FurthermoreIn all these cases, solutions are limited
to one specific service level, which may be IaaS or PaaS (cf. [15–17]).

To allow the migration of stateless components of cloud applications at run-
time, we propose an orchestration algorithm. Our algorithm is agnostic, in the
sense that it is not bound to a specific service level, nor any particular provider. In
order to ensure this agnosticity, our algorithm is built over trans-cloud concepts
[6]: agnostic topology descriptions, a unified API, and mechanisms for the inde-
pendent specification of providers’ services. The trans-cloud environment releases
developers of most of the vendor lock-in issues, and facilitates the adaptation
of running applications. Individual components may be moved independently of
the target abstraction level. Specifically, [6] uses the TOSCA standard to model
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applications’ topologies agnostically, without using any particularities of the tar-
get providers. The information related to the cloud service level, IaaS or PaaS, is
added by means of policies, completely independent of the topology description.
these specifications are then processed by the trans-cloud environment, which
unifies IaaS and PaaS services of different vendors through an homogeneization
API. Such unified API allows us to orchestrate the deployment and migration of
applications over the required cloud services in a completely agnostic way. We
focus on stateless components, the migration of components with state is left as
future work.

The proposal for component-wise migration of applications at runtime
was originally presented in [18]. Here we present an improved version of the
approach and provide a detailed account on its implementation and use, with
special attention to the extension of Apache Brooklyn, on which the trans-cloud
environment was developed. Since our migration algorithm relies on the trans-
cloud infrastructure for the management of each application module and the
interaction with the used cloud services—to stop, restart or move the necessary
components independently of the service level, IaaS or PaaS, the cloud technol-
ogy or any other dependencies—in order to provide the necessary ground for
the migration algorithm, an extensive presentation of the implementation of the
trans-cloud infrastructure is provided before presenting the algorithm.

The rest of this paper is structured as follows. Preliminaries about trans-
cloud deployment and its current implementation are presented in Sect. 2. The
proposed migration algorithm is described in Sect. 3. Details on the implementa-
tion of the algorithm are presented in Sect. 4, together with some experimental
results. Finally, Sect. 5 conclude the paper and presents some plans for future
work.

2 A Brooklyn Basis for Trans-cloud

The trans-cloud tool presented in [6] is based on the TOSCA standard1 for the
description of agnostic topologies. Specifically, it builds on the Brooklyn-TOSCA
open project for enabling an independent specification of the used services, and
on the Apache Brooklyn project to provide a common API for the unified man-
agement of IaaS and PaaS services. Figure 2 shows an overview of the proposal
in [6].

All concepts in the rest of the paper are illustrated on a running case
study presented in Sect. 2. The example will be used in this section to illustrate
Brooklyn and the main concepts in it (following the CAMP standard). Specif-
ically, Sect. 2.3 presents Brooklyn’s abstract architecture, and Sects. 2.4–2.7 its
main elements, namely, entities, drivers, locations, and lifecycles. The same case
study is later used to show the use of the our proposal in Sect. 3 and to evaluate
it in Sect. 4.
1 TOSCA (Topology and Orchestration Specification for Cloud Applications) is an

OASIS standard for the description of cloud applications, the corresponding services
and their relationships.
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2.1 Trans-cloud Concepts

The main goal of the trans-cloud management proposal is to allow the devel-
opment and deployment of applications without restrictions on the providers or
service levels used for each individual component. A trans-cloud environment
provides facilities for the use of available services and resources, at IaaS or PaaS
levels, in accordance to the requirements and preferences of the applications.

The trans-cloud approach liberates developers from the usual infrastructure
limitations while defining their applications, and significantly reduces all issues
related to the portability and interoperability of applications and components.
The key ingredients of the approach are:

Agnostic topology descriptions. Applications’ components, configurations,
interrelations, etc. are specified without details about cloud providers.

Target service specifications. Topology descriptions are kept agnostic and reusable
by using topology-independent specifications of target providers. This inde-
pendence allows the flexible specification of target services, IaaS or PaaS, for
the deployment of individual components.

A unified API. IaaS and PaaS services management is unified under a com-
mon homogeneization API. Cloud heterogeneity is thus mitigated, providing
a vendor-independent solution, which releases ourselves of proprietary tools,
frameworks and technologies to manage IaaS and PaaS services of specific
vendors.

Thanks to these key ingredients, given the definition of an application’s topol-
ogy and specifications of the target providers of each of its components, the
deployment of the application can be carried out by using the unified API to
operate with the selected services, IaaS or PaaS. And as for the provision of a
unified cloud management, these concepts are also useful as an essential basis
for the migration of components: the unified API may be used for the manage-
ment of the necessary resources (using drivers for the cloud technologies and
connectors) to adjust to a change of the target locations of a component in an
application’s description.

2.2 The Softcare Case Study

Softcare is a cloud-based clinical, educational, and social application, based on
state-of-the-art technology developed by Atos Spain [19]. It is an innovative
application for the social inclusion of elderly people and for the management of
their medical problems. The main features of the application.

Figure 1 depicts Softcare’s topology. It is composed of seven modules: Soft-

wareWS, Forum, Multimedia, and SoftwareDashboard are web modules over respective
Tomcat servers (note the Tomcat icons), and SoftcareDB, ForumDB, and Multime-

diaDB are MySQL databases (note the database icons). The main graphical user
interface is provided by the Softcare Dashboard component, which depends on
the SoftwareWS, Forum, and Multimedia modules. The Forum module provides a
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Fig. 1. Brooklyn-TOSCA Softcare’s topology [19].

forum service to the web platform, the Multimedia module is responsible for the
management of the multimedia content, and the SoftcareWS module provides
the business logic. The ForumDB and MultimediaDB databases store the forum’s
messages and the multimedia content, respectively. The rest of the application’s
data is stored in the SoftcareDB database.

2.3 Brooklyn’s Abstract Architecture

Brooklyn is a framework for modeling, monitoring, and managing cloud applica-
tions. It quite closely follows the OASIS CAMP standard,2 an API for managing
public and private cloud applications. Indeed, current Brooklyn blueprints con-
form to the OASIS CAMP v1.1 Public Review Draft 01 [20]. Most concepts and
terminology in its definition, such as entities, locations, drivers or policies, come
from the standard.

In this section, we present some details on Brooklyn’s architecture and oper-
ation. The complexity of Brooklyn makes it really challenging to present all the
details of its architecture. Instead, for our explanation of Brooklyn, as for the
presentation of our extension in Sect. 2.8, we will focus on a small set of classes
and interfaces, as well as the relationships between them, that gives an insight
into its design, enough to understand the extension we have developed. Figure 3
depicts a few classes and interfaces as in the actual Java implementation of
Brooklyn. Further details on Brooklyn and its implementation may be found in
its official documentation [21].

To be precise, the open-source Apache Brooklyn project is a multi-cloud
application management platform for the management of the provisioning and
deployment of cloud applications. Although Brooklyn provides a unified API
that enables cross-computing features, its current official release only handles
IaaS services. As can be seen in Fig. 2, in [6] Brooklyn’s API was extended
with new mechanisms for the management of PaaS services. PaaS providers
and mechanisms have been added to allow the deployment and management
of application components on PaaS services as well as on IaaS services. Our
extension builds on the flexibility and genericity of Brooklyns API, which has the
independency between application descriptions and cloud services used in their
operation as one of its goals. As a prototype for the PaaS support, and to allow

2 Information on the use of standards in Brooklyn can be found at https://brooklyn.
apache.org/learnmore/theory.html.

https://brooklyn.apache.org/ learnmore/theory.html
https://brooklyn.apache.org/ learnmore/theory.html
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components to be deployed using both IaaS and PaaS, we initially integrated
CloudFoundry-based platforms, like IBM Bluemix, Pivotal Web Services, etc.

The other key ingredient of our proposal for trans-cloud is the open project
Brooklyn-TOSCA, whose main goal is to extend the Brooklyn tool with capa-
bilities for the deployment and management of cloud applications and resources
using TOSCA concepts. In Brooklyn-TOSCA, agnostic TOSCA topologies are
built by expressing the target services using TOSCA policies.

Fig. 2. Trans-cloud approach [6].

To illustrate the agnostic description of applications’ topologies, the TOSCA
YAML topology schema of the Softcare case study is shown in Listing 1.1. For
brevity, only some elements are described. This definition follows the Brooklyn-
TOSCA initiative that allows target cloud services to be specified by means of
policies (brooklyn.location), as can be seen in lines 29–37. In this example specifica-
tion, one group of components is to be deployed on AWS (Ireland’s cluster) and
another one on SoftLayer (London’s cluster). Although in this case both target
location are IaaS, we can observe the separation between the topology descrip-
tion and the provider specifications. If we decided to use different providers to re-
deploy the application, changing the corresponding locations would be enough,
with no need for modifying the original topology. Listing 1.2 shows an exceprt
of the corresponding TOSCA YAML description using Pivotal (PaaS) as target
location for the deployment of some of the components.

Our agnostic algorithm for the migration of application’s component build
on the trans-cloud approach, which provides a set of useful basic mechanisms.

2.4 Brooklyn Entities

In Brooklyn, entities represent agnostic pieces of software, such as cloud
resources, applications, and application modules (servers, databases, etc.), with
the purpose of managing their deployment and operation. A cloud application
is an entity that has a collection of other entities forming a hierarchy of appli-
cation modules: its children. The parent-child relationship of entities does not
represent any dependency between the software artifacts modeled by the enti-
ties, but a control dependency, meaning that a parent entity is responsible for
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1 tosca definitions version: tosca simple yaml 1 0 0 wd03
2 ...
3 topology template:
4 node templates:
5 SoftcareDashboard:
6 type: org.apache.brooklyn.entity.webapp.tomcat.TomcatServer
7 ...
8 requirements:
9 − endpoint configuration:

10 node: SoftcareWS
11 ...
12 − endpoint configuration:
13 node: Forum
14 ...
15 − endpoint configuration:
16 node: Multimedia
17 ...
18 SoftcareWS:
19 type: org.apache.brooklyn.entity.webapp.tomcat.TomcatServer
20 ...
21 requirements:
22 − endpoint configuration:
23 node: SoftcareDB
24 ...
25 SoftcareDB:
26 type: org.apache.brooklyn.entity.database.mysql.MySqlNode
27 ...
28 ...
29 groups:
30 add compute locations:
31 members: [SoftcareDB, ForumDB, MultimediaDB, Forum]
32 policies:
33 − brooklyn.location: aws−ec2:eu−west−1
34 add web locations:
35 members: [SoftcareDashboard, SoftcareWS, Multimedia]
36 policies:
37 − brooklyn.location: softlayer:lon02

Code 1.1. Softcare’s TOSCA description [6].

controlling its children entities. For example, if an entity, such as a cluster, is to
be started, it will also have to start its children. In Brooklyn, each entity of an
application may be deployed on a different location, supporting what is known
as multi-cloud deployment.

An entity represents the core of any deployable artefact, so it can be extended
to model new concrete software pieces, such as web servers, DBMSs, etc. For
illustration purposes, Fig. 3 shows interfaces TomcatServer and MySqlNode, which
model, respectively, the software modules Tomcat server and MySql server.
Of course, Brooklyn also provides concrete software representations for JBoss
servers, clusters, and many others. As shown in the diagram, the Entity interface
is extended by the SoftwareProcess interface, which is described as the basis of any
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1 ...
2 groups:
3 add compute locations:
4 members: [SoftcareDB, ForumDB, MultimediaDB, Forum]
5 policies:
6 − brooklyn.location: aws−ec2:eu−west−1
7 add web locations:
8 members: [SoftcareDashboard, SoftcareWS, Multimedia]
9 policies:

10 − brooklyn.location: pivotal−ws

Code 1.2. New locations for some of the web modules [6].

software process, that is, a piece of software to run somewhere. This interface is
extended for each specific piece of software.

Following the interface-based architectural pattern, Brooklyn provides classes
implementing each of these interfaces. For example, TomcatServerImpl implements
TomcatServer. These specializations form themselves a new hierarchy inheriting
from AbstractEntity, an abstract class that provides the behavior of Brooklyn
entities. Inheriting from it, we find SoftwareProcessImpl, which implements the
SoftwareProcess interface and provides the management logic of any software
process.

The management of entities is performed through their provided endpoints,
to know their status (sensors) and operate on them (effectors). Sensors allow
entities to expose data. For example, a server can offer the number of requests
per second or its running time; a cluster can offer the current number of server

Fig. 3. Brooklyn’s architecture.
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instances it handles. Effectors are used to model the actions that can be applied
on an entity. For example, effectors are used for starting an entity using offered
cloud resources, or for stopping an entity in a VM. Although sensors and effec-
tors are independent, entities are responsible for the connection and updating
of their sensors and effectors (as for any other entities depending on them).
Effectors and sensors can be injected into an entity at runtime, following the
classical Abstract Factory and the Strategy patterns [22], and allowing a use-
ful elasticity. These mechanisms are very helpful for improving the extensibility
and flexibility of entities. In a similar vein, configuration keys are used to model
their configuration, for the establishment of dependencies between components
in provider-independent application specifications.

2.5 Locations

Each entity has an associated location, which defines where the entity is or is to
be deployed. A location represents a cloud service or a deployment resource, and
contains the necessary information to access and to use the referenced elements.
Thus, a local VM or an AWS datacenter will be modeled by different locations.
Furthermore, these classes have to provide the necessary mechanisms to manage
the target services and resources. For example, an AWS EC2 location should
contain the necessary methods to connect to the specific AWS datacenter and to
use the necessary services, such as creating and launching a VM, and configuring
network resources.

On the right-hand side of Fig. 3, we show the Location hierarchy. Locations
represent the cloud services and providers where entities are to be deployed.
Some examples are a remote or local virtual machine, remote hosts (BYONS),
public and private datacenters to provision virtual machines on-demand, and so
forth. The diagram shows some location classes in the Brooklyn implementation.
For instance, the SshMachineLocation class implements the Location interface, and
represents machines that can be managed using the ssh protocol. This technol-
ogy is very useful in IaaS environments, where a very wide range of virtual and
physical machines are accessed using this protocol. Locations have to include the
necessary mechanisms to manage the represented element. Thus, SshMachineLo-

cation offers methods to establish a connection with any machine reachable by
ssh, to copy files, to execute commands, etc.

Two different SshMachineLocation specializations are depicted in Fig. 3. The
first one is LocalhostMachine, which represents the machine where the Brooklyn
instance is running. Deploying an entity using LocalhostMachine is straightfor-
ward, since the location exists and can be easily reached. The second specializa-
tion is JcloudsSshMachineLocation, for jclouds locations. Brooklyn relies on jclouds
to, with a single location, manage all providers supported by jclouds3 in an
unified way.

3 The list of providers supported by jclouds is available at https://jclouds.apache.org/
reference/providers/.

https://jclouds.apache.org/reference/ providers/
https://jclouds.apache.org/reference/ providers/


Component Migration in a Trans-cloud Environment 295

Brooklyn has been developed in an extensible and flexible way. To allow
the addition of new elements, the different entities, locations, and drivers are
discovered and injected at runtime in accordance with the requirements of the
applications. In the case of locations, Brooklyn offers the LocationResolver inter-
face, which must be implemented by each location in order to enable its discovery
and usage at runtime. Then, Brooklyn uses resolvers to create instances of the
expected locations. For instance, given the Brooklyn locations above, we find
resolvers LocalhostLocationResolver and JcloudsLocationResolver.

The current location hierarchy of Brooklyn includes other location classes.
For example, the ProvisioningLocation class models locations where new VMs can
be provisioned and launched, such as cloud datacenters. If we wanted Brooklyn
to support further cloud offerings, either services, providers, or resources, then
we would have to develop corresponding new implementations of Location and
LocationResolver.

2.6 Drivers

The location of a SoftwareProcess defines where the modeled piece of software
will be deployed and run. For example, if a JBossServer has a LocalhostMachine as
location, then it will be deployed on the machine where the Brooklyn instance is
running. Moreover, with this approach, entities may operate on their correspond-
ing locations if they need to carry out some of their tasks. Of course, they will
be the implementations AbstractEntity, SoftwareProcessImpl, TomcatServerImpl, etc.,
and not the entity interfaces, the ones with the references to locations and the
ones that provide the endpoints to manage them. However, to avoid requiring an
intimate knowledge or management of any concrete location, these implemen-
tations have been developed generically by delegating the location management
to another hierarchy of elements: the drivers. A driver contains the code to
allow a specific entity to operate over a specific location. This scheme allows the
location-independent definition of entities. Moreover, it is very useful if a new
kind of location has to be supported, since in that case just a new driver will be
required, which will be able to manage the entity in the new location, satisfying
the open/closed principle. In other words, entities use a Strategy pattern [23] to
delegate the necessary behavior to carry out the location’s management.

Class SoftwareProcessImpl implements the DriverDependentEntity interface,
which determines that an entity must have a driver implementing SoftwarePro-

cessDriver. To enable the management of different kinds of drivers, each entity
declares a driver interface that the given driver will implement. For instance,
TomcatServerImpl demands a specific driver, which will focus on a specific loca-
tion, that implements TomcatDriver. This leads to a new hierarchy of driver inter-
faces, as shown in Fig. 3. With this approach, implementations of SoftwareProcess

just see a driver interface, which hides the fine-grained details of each specific
driver. Of course, although SoftwareProcessImpl follows a driver-based approach,
by appropriately implementing DriverDependentEntity, other implementations of
the SoftwareProcess interface could be provided.
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Corresponding specializations of SoftwareProcessDriver are provided for the
deployment and management of entities on each location. For illustrative pur-
poses, Fig. 3 shows the sub-hierarchy of locations based on SshMachineLocation. In
it, we find a driver TomcatSshDriver that handles the deployment of TomcatServer

entities on SshMachineLocation. More precisely, this class contains operations
to download, install, configure and run Tomcat servers on machines accessed
through ssh. That is to say, the driver contains the capability to place and
manage a piece of software on a specific location. The driver specializations in
Fig. 3 extend AbstractSoftwareProcessSshDriver, which implements the SoftwarePro-

cessDriver interface. Indeed, the AbstractSoftwareProcessSshDriver class is extended
by class AbstractSoftwareProcessDriver, which is in charge of implementing the Soft-

wareProcessDriver interface.

2.7 Entities’ Life Cycles

Although a driver contains the necessary knowledge to deploy and run an entity
on a location, drivers operate in the context of an entity, which means that
drivers expect configured locations to operate on. For instance, according to the
entity restrictions, some ports are required for SshMachineLocation. For example,
a MySqlNode will require port 3306, which is the one normally used by MySQL
servers. Machine-based location management is extracted to an abstract class
MachineLifecycleEffectorTasks, which defines the life cycle to carry out. This life
cycle is responsible for different tasks, such as configuring the machines, adding
the necessary information to the entities, and even machine provisioning. This
class focuses on machine management, but SoftwareProcess will require it to form
part of this life cycle in order to be deployed and run. Then, class MachineLife-

cycleEffectorTasks is extended by class SoftwareProcessDriverLifecycleEffector, which
specializes the machine life cycle by adding driver management and improving
the integration of the life cycle with the entity. Thus, we can say that life cycles
handle the different entities’ processes, because they manage the location, the
drivers and even the entity itself.

Life cycles define the operations to handle the deployment of entities, to
manage machines and any other required infrastructure in a systematic and
generic way, using specific effectors. For IaaS-based life cycles, the only ones
supported in Brooklyn, life cycles assume the Startable interface, which forces
entities to offer effectors such as start, stop and restart. During the initialization
of an entity, the operations of its effectors are modified by injecting appropriate
body effectors, which are defined by the lifecycle, to manage a certain kind of
location. After that, the entity is ready to support locations based on machines
and use the drivers to carry out the deployment and management of the entity
in the desired machine-based location. Specifically, the SoftwareProcess interface
extends the Startable interface, and when a subclass of SoftwareProcessImpl is cre-
ated, its effectors’ default behavior is overridden with the appropriate effector
bodies during the initialization phase of their life cycle.
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Thus, the start, stop and re-start effectors executed by the life cycle will be
those injected into the corresponding SoftwareProcessImpl entity. The (start routine
of the) start effector is in charge of managing the entity’s location and driver,
which is described by SoftwareProcessDriverEffectorTasks. It begins by getting the
necessary flags to configure the machine, open ports, etc. Once the machine is
running, the start effector will create the expected driver, and will add it to
the entity. The configuration of the entity is completed with some final details,
e.g., the creation of sensors offering the address and the host’s name for the
entity. Then, the start effector manages the entity’s children. By default, they
are started using the location of their parent. Once its children have started,
the entity’s driver is executed, which takes care of installing, configuring and
launching the entity’s software in its location. Finally, the entity’s sensors are
connected. The stop effector is in charge of disconnecting the entity’s sensors, and
stopping their children. Then, the entity driver is used to stop the software which
is running on the location. Once the software has been stopped, the machine is
released if necessary. The re-start effector uses the previous effectors. First, it
stops the entity using the stop effector, without releasing the machine, and then
it uses the start effector to start the entity software again in the target location.

Although effectors are injected during the initialization phase of an entity’s
life cycle, as defined in the Startable interface, the start effector takes a location
as parameter. This location will be used to start the entity on it. As a result
of this, an entity does not fix the specific location where it will run until the
start effector is invoked, which allows it to start an application in a location
different to the one it was designed for, or, more interestingly, postponing the
assignment of a given location until its start. When SoftwareProcessImpl-based
entities are initialized, their effectors are replaced by SoftwareProcessDriverEffec-

torTasks effector bodies, which are intended to manage machine locations. This
means that, although SoftwareProcessImpl entities assume a MachineLocation-based
management, the specific target location (JcloudsSshMachineLocation, LocalHostLo-

cation, etc.) to use will not be specified until the start effector is called. This
mechanism will be key for the agnostic definition of entities in our extension,
since we will use this possibility, not only to change the specific location, but
also to change the entire life cycle.

In summary, in order to enable the deployment on PaaS locations, the PaaS
life cycle we have developed and added to Brooklyn’s API for PaaS entities, is
responsible for: (1) injecting effector logic to allow interaction with PaaS plat-
forms, (2) creating drivers and adding them to entities, and (3) defining the
key steps for managing application processing (deployment, stopping, removing,
etc.) on the target PaaS platform. As explained, life cycles are agnostic pieces
and do not know about final providers’ management, so they require the speci-
fication of drivers to manage entities on target locations. For instance, an entity
requires PaaS-based drivers for signing in to the target platform and using the
required services.
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2.8 Extended Architecture

As explained in the previous sections, Brooklyn provides an API for the man-
agement of IaaS cloud services for a significant number of providers, and estab-
lishes a life cycle for the management of IaaS services and applications. We have
extended Brooklyn by adding some new elements to this API in order to facil-
itate the management of PaaS services, provided by platforms such as Cloud
Foundry, thus providing an homogeneous access to IaaS and PaaS services.

The Apache Brooklyn tool presented in the previous sections was extended in
several ways, but keeping its architecture. To be able to handle PaaS locations,
it is not enough providing the corresponding locations and drivers to manage
them. More importantly, PaaS services follow a completely different life cycle
to orchestrate application deployment. The new locations allow PaaS platforms
to be modeled inside Brooklyn, allowing the creation of a new family of PaaS-
based drivers. These new drivers contain the logic to enable the deployment and
management of entities on PaaS platforms. However, as for the management
of IaaS locations, SoftwareProcess instances require a new PaaS-based life cycle.
Indeed, to manage IaaS and PaaS behaviors at runtime many other classes and
patterns were developed.

Our migration algorithm (see Sect. 3) was developed and integrated into
Brooklyn as an independent piece of the customized Brooklyn described in
Sect. 2. The algorithm is accessed as part of a set of available trans-cloud mech-
anisms, its public API, which provides support for the management of cloud
providers and resources. These operations perform activities such as stopping,
starting, restarting, etc.

Brooklyn, as the customized Brooklyn presented in Sect. 2, have a limited
support for the management of relations between components. Although rela-
tionships are specified in the TOSCA descriptions of applications’ topologies and
on the configuration of components, the explicit knowledge about the relations
was not shared with the trans-cloud API. This basically means that it does
not offer the operations to identify, and manage the relations and functional
dependencies between components, which are necessary for the development of
the proposed migration algorithm: we cannot get these dependencies, for exam-
ple to re-establishment the connections, to find the components that depend on
another (parents), or retrieve all the dependencies of one of them (children).

Our trans-cloud infrastructure was therefore extended to enable the explicit
management of functional relationships of application’s components. In our
extended implementation of Brooklyn, when Brooklyn-TOSCA processes the
TOSCA relationships to configure the component’s relations, this information is
added to the trans-cloud API. This functionality was provided by adding mecha-
nisms that enable the management of relationships, and by providing operations
to find the children and parents of a given component.

A particularly interesting type of functional dependencies are composition
relations. In the case of composition relations, a component is in charge of the
management of its sub-components. For example, the relation between a cluster
and the servers it controls is modeled by a composition relation. Then, if a
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stopping or starting operation is applied to a cluster, the same operation must
also be applied to all its children, in order to maintain the consistency of the
topology. For this reason, a composed element, like a cluster or other elastic
components, can be considered and managed as a bundle, which represent a set
of sub-components.

Regarding our migration algorithm, if an operation must be carried out on a
bundle, the algorithm takes care of ensuring that the same operation is applied
to all its sub-components. For instance, if the migration algorithm requires to
stop a cluster, this cluster itself ensures that all its component servers will also be
stopped. This simple mechanism maintains the integrity of the topology during
the migration process and ensures that the algorithm orchestration is delivered
to all the components of the application.

Our Brooklyn-based trans-cloud tool, including its source code, is
publicly available at https://github.com/scenic-uma/brooklyn-dist/tree/trans-
cloud. Some additional documentation, examples and evaluation are available at
https://trans-cloud.firebaseapp.com.

3 Migration Algorithm

In this section, we present our algorithm for the reconfiguration of cloud appli-
cations’ components. The algorithm allows connecting the components in a con-
venient way, provisioning the necessary cloud resources, making the required
operations (stop, start, and release), and respecting functional dependencies.

3.1 Description of the Algorithm

In this section we provide some insights on how the algorithm works by illus-
trating it on our case study. Specifically, we describe how the Forum component
of the Softcare case study can be migrated step by step.

Let us assume that we have deployed the Softcare application following the
trans-cloud approach. That is, we have an agnostic description of the applica-
tion and all its components, for instance using TOSCA, such as it was made in
Sect. 2. In that description, we used policies to specify the concrete locations on
which the components were deployed, what also includes information about the
service level, IaaS or PaaS. The trans-cloud infrastructure is in charge of man-
aging the module to be deployed or migrated, as well as the required resources.
The application developer does not have to worry about the management of
the components, vendors, or abstraction levels. The infrastructure is therefore
responsible of guaranteeing the integrity of the topology. It will identify and
handle the interdependencies between components, both during deployment and
migration.

As in the deployment plan in Sect. 2, we assume that the Forum component
of the Softcare application is running in AWS EC2 (IaaS). The diagram in Fig. 4
shows the sequence of steps followed when migrating the Forum component to
Pivotal Web Services (PaaS). In the sequence diagram se can observe how the

https://github.com/scenic-uma/brooklyn-dist/tree/trans-cloud
https://github.com/scenic-uma/brooklyn-dist/tree/trans-cloud
https://trans-cloud.firebaseapp.com
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Migration Orchestrator controls the migration process fired by the request to
migrate the Forum component.

To avoid having active components depending on non-active ones, all ele-
ments that have functional dependencies with the Forum component are stopped
by the migration orchestrator upon the reception of the migration request. Notice
that collecting all parents of a module might be a complex task, because of the
variety of mechanisms for configuring and establishing connections between com-
ponents: environment variables, configuration files, etc. In the trans-cloud app-
roach, however, all the relations and dependencies are specified in the description
of the application’s topology, which allows to quickly identify and process all the
relations between components.

Fig. 4. Forum migration process [18].

The execution of an operation over a component depends on the specific
vendor and level, PaaS or IaaS, of the service the component is running on.
For instance, if a server is running on a PaaS environment, to stop it, a con-
crete REST web service of the platforms API should be called; however, if the
server was running on a VM in IaaS, a specific command should probably be
executed on the VM using ssh. Nevertheless, the trans-cloud approach greatly
simplifies the management of different cloud services, because it hides the cloud
heterogeneity through its unified API.

Once all parents have been stopped, the component to be migrated must
be stopped. We can see how in the Step 2 in the diagram in Fig. 4, the Forum

component is stopped. Since the resources used by the Forum component in
AWS will not be used after the component is moved to its new location, the
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trans-cloud infrastructure takes care of releasing all these resources. This allows
us to stop a component without having to worry about the resources use by the
component, or the vendor and abstraction level of the services used.

Step 3 shows how, once the component has been stopped and the resources
used released, a new instance of the component is started in its new location.
Again, the trans-cloud infrastructure greatly simplifies this task. The informa-
tion about the structure of the application included in the specification of the
topology of the application is used to deploy the component in its new location
by using the information on the target providers. In this case, the description
of the Forum component and its associated resources, and the new target loca-
tion (Pivotal Web Service), are provided as arguments to the operations in the
unified API in charge of the task.

Once the component is in its new location, in Step 4, the connections of its
functional dependencies are re-established, in order to maintain the structural
integrity of the application. In our example, once the Forum component in running
in Pivotal, its connection with the ForumDB component is re-established. The
trans-cloud environment analyzes the application topology, finds the necessary
relations for the newly migrated component, and re-establishes the connections
with the other components in the topology, independently of the cloud envi-
ronments components are running in. Continuing with our ample, since Pivotal
offers PaaS services, environment variables are used to handle the connections
between components.

The process concludes with the re-start of all the components of the
application that were stopped in Step 1. Once more, the trans-cloud infras-
tructure greatly simplifies the re-starting of the necessary components and the
re-establishment of their connections (see Steps 5 and 6). Thanks to the infor-
mation on the topology of the application, the Dashboard component, only parent
of the Forum component, is re-started. Finally, the new Forum component’s end-
point, now provided by Pivotal, is used to re-establish the connection.

3.2 Specification of the Algorithm

Since the trans-cloud infrastructure takes care of the diversity of the cloud and
the complex management of applications’ components, we can provide a migra-
tion algorithm that completely abstracts from details from vendors and service
levels. The Algorithm 1 can therefore be reduced to a process orchestrator. Given
an application, the component to be migrated, and the target location for such a
component, the algorithm generates a plan for the migration process, delegating
all the management details to the trans-cloud infrastructure.

The operation migrate(a, c, l) takes three parameters: the application to
operate on (a), the component to be migrated (c), and the target location (l).
The process to migrate a component starts by stopping all its input dependen-
cies (lines 2–3). stopParents (lines 10–13) is a recursive procedure that stops
all the ancestors of a given component following a top-down strategy, that is,
it stops a component once all its parents have been previously stopped. The
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stop(a, c) operation (line 15), provided by the trans-cloud infrastructure, stops
an application’s component.

Once all parent components have been stopped, the trans-cloud operation
stopAndReleaseResources(a, c) is used to stop the component to be migrated
and to release all its bound resources (line 4). Then, the target component is
started in its new location and all its connections are re-established (lines 6–8).
The trans-cloud operations start(a, c, l) and reestablishRelations(a, c, child) are
used to deploy and start the component in its new location, thus hiding the
complexity of managing the different services.

In a last step, all components stopped in previous steps are re-started (lines
9–10). The recursive function restartParents(a, parent) (lines 17–22), which
follows a bottom-up strategy, is in charge of re-starting all the stopped ancestors.
This procedure ensures that all dependencies of a component are available before
re-starting it, and thus concluding the migration process.

Algorithm 1. Migration Algorithm.

Input: a : application
Input: c : component to migrate
Input: l : new location for the component
1: procedure migrate(a, c, l) � Main function
2: for parent : parents(a, c) do
3: stopParents(a, parent)

4: stopAndReleaseResources(a, c)
5: start(a, c, l)
6: for child : children(a, c) do
7: restablishRelations(a, c, child)

8: for parent : parents(a, c) do
9: restartParents(a, parent)

10: procedure stopParents(a, c) � stopParents auxiliary function
11: for parent : parents(a, c) do
12: stopParents(a, parent)

13: stop(a, c)

14: procedure restartParents(a, c) � restartParents auxiliary function
15: re − start(a, c)
16: for child : children(a, c) do
17: reestablishRelations(a, c, child)

18: for parent : parents(a, c) do
19: restartParents(a, parent)

4 The Tool in Practice

Our migration algorithm has been integrated into our proposal for trans-cloud
deployment and management as an effector of cloud entities. In this section,
we evaluate our proposal by focusing on two aspects: the effort required for
migrating one component from one location to another, and the times taken for
the execution of two different migration scenarios.
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4.1 The Effort Required for Migration

Whereas the migration from on-premise applications to the cloud has been stud-
ied by many researchers [12], not much work has been published on changes in
target providers for migration. Moreover, there seems not be a consensus on how
to compare alternative deployments. We use the approach in [24] to compare and
analyze, in terms of portability and effort, the feasibility of the migration of an
application using several different vendors.

In the analysis in [24], for an application with modules similar to those used in
our case study, the deployment steps needed for several PaaS providers are very
different. Although for the different vendors these steps are semantically similar,
they must be executed using proprietary tools, each of which requires its own
set of steps and information. The experiments in [24] show that, on average, a
migration operation may require an effort of 17 actions, with a maximum spread
of 14 and a standard deviation of 5. In their analysis, a low number of steps is
offset by a complex configuration of the initial code repository, which increases
the complexity of the initial deployment.

In their analysis, this effort is reduced to 1 when they use a bidimensional
cross-cloud approach to orchestrate the migration of components and interact
with the different providers. This is also true in our case, although with our
algorithm in a trans-cloud environment this is the case, not only for migrations
between locations in the same level, but also for any combination of IaaS and
PaaS vendors used for each of our application’s modules.

The encapsulation inside the customized Brooklyn of the knowledge to inter-
act with a specific provider and to handle application topologies, like relations,
allows the reduction of the effort required for the migration of an application
component to 1. Because of this, given an initial effort to provide the TOSCA
specification of the topology of our application, our trans-cloud-based algorithm
allows any application’s component to be migrated between different providers
with no effort.

4.2 The Time Required for Migration

We illustrate the performance and reliability of our algorithm by showing the
results of a trans-cloud migration. We have carried out experiments with two
different scenarios. We assume the Softcare application has previously been
deployed using different services, and then we migrate the Forum component
to a different provider: (1) in the Aws-to-Pivotal case the Forum component is
moved from AWS EC2 to Pivotal Web Services, and (2) in the Pivotal-to-Aws

case the Forum component is moved from Pivotal Web Services to AWS EC2.
To follow their evolution along time, the tool was instrumentalized to gather

information at each sub-task of the process for each module. Then, each migra-
tion scenario was executed 10 times using our algorithm. Following the process
explained in Sect. 3.2, we identified in both cases tasks Dashboard.stop, Forum.stop,
Forum.start, Dashboard.restart, and gather the times at which they were performed
(all times are in seconds).
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Figures 5(a) and (b) show, respectively, box plots for the migration times in
the Aws-to-Pivotal and Pivotal-to-Aws scenarios. We can observe that both show
similar times for the stopping of the Dashboard component. However, since the

(a) Aws-to-Pivotal

(b) Pivotal-to-Aws

Fig. 5. Forum migration process [18].
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releasing of cloud resources on IaaS takes more time than releasing of PaaS, we
observe different delays in the stopping and releasing of the Forum component
(Forum.stop).

When the Forum component is deployed on IaaS (AWS EC2), it requires
provisioning and configuring a new virtual machine, and then executing the
necessary commands to deploying the component, etc. However, the process is
much simpler on PaaS. The Forum.start event represents the re-deployment of the
Forum component in its new location and the reconnection of its dependencies.
Figure 5(a) present smaller time values for Forum.start, and smaller dispersion,
than Fig. 5(b).

Although the Dashboard component is running on AWS EC2 in both cases, the
Dashboard.restart event shows a greater delay in Fig. 5(b) due to the accumulated
dispersion in previous steps.

5 Conclusions

This paper presents an algorithm to orchestrate the migration process of state-
less components of applications. The algorithm is based on a trans-cloud infras-
tructure (also proposed by the authors), allowing it to abstract from vendor,
technology and service-level.

The proposed algorithm takes significant advantage of the capabilities pro-
vided by the trans-cloud infrastructure. This allows greatly simplifying the man-
agement of the different cloud solutions and abstraction levels. In turn, this
abstraction reduces portability and interoperability issues related to the vendor
lock-in problem. In fact, the algorithm is fully agnostic, and it can be applied to
any stateless application component, independently of the service level (IaaS or
PaaS) it uses, as far as the component and the target provider are in Brooklyn’s
catalog.

The algorithm completely automates the migration process. The process is
initiated by a migration request with the component to migrate and its target
location as parameters. The operation is handled as an autonomous task. It
does not need to be integrated in the application modeling or its management
lifecycle.

The algorithm presented in this paper is intended for the migration of a single
stateless component of an application. We are currently working on extending
the algorithm to support the concurrent migration of a number of components
of an application. A discussion on related work may be found in [18].
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4 Université du Québec à Montréal, Montréal, Canada

Abstract. Cloud computing is a popular Internet-based computing pa-
radigm that provides on-demand computational services and resources,
generally offered by Cloud providers’ REpresentational State Transfer
(REST) APIs. Developers use REST APIs by invoking these APIs by
their names and, thus, the lexicons used in the APIs are important to
ease the developers’ comprehension. In this paper, we study the lexicons
and the linguistic (anti)patterns from 16 providers of REST Cloud Com-
puting APIs. We observe that, although the 16 REST APIs describe the
same domain (Cloud computing), contrary to what one might expect,
their lexicons do not share a large number of common terms and 90% of
the terms (3,561/3,947) are just used by one provider. Thus, the APIs are
lexically heterogeneous and there is not a consensus on which terms to use
in Cloud computing. Further, we observe that the majority of the URIs,
54%, follow the Contextualised Resource Names pattern, which is con-
sidered a good practice in REST API design. However, a majority of the
URIs, 62.82%, suffer from the Non-pertinent Documentation antipattern.
Thus, we present three main contributions: (1) a tooled approach, called
CloudLex, for extracting and analysing REST Cloud computing lexi-
cons; (2) our analysis of the terms used in 16 REST APIs in 59,677 term
occurrences; (3) our analysis of the linguistic (anti)patterns in more than
23,000 URIs of the 142 services of the 16 Cloud providers. We also show
that CloudLex has an average precision of 84.82%, recall of 63.57%, and
F1-measure of 71.03% on one complete API, Docker Engine, which con-
firms the accuracy of our semantic analyses for the detection of linguistic
(anti)patterns.

1 Introduction

Cloud computing has transformed the information-technology industry [2] by
hosting applications and providing resources (e.g., CPU and storage) as ser-
vices on-demand over the Internet [23]. Cloud providers, such as Google Cloud
Platform (a commercial public Cloud) and OpenStack (an open-source stack for
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building public/private Clouds), usually offer these services in the form of REST
(REpresentational State Transfer) [7] APIs, the de facto standard adopted by
many software organisations for publishing their services.

Most of Cloud providers, such as Google Cloud Platform or OpenStack, pro-
pose their own proprietary APIs. Conversely, open and standard Cloud APIs
have also been proposed, such as the Open Cloud Computing Interface (OCCI)
[14], which is a vendor-neutral cloud standard.

This observed variety of cloud APIs may decrease developers’ comprehen-
sion, especially within such a complex and technical context as Cloud computing.
Moreover, well-designed and well-named REST APIs may attract client develop-
ers to use them more than poorly designed and named ones, particularly in the
current open market, where Web services are competing against one another [13].
Indeed, client developers must understand the providers’ APIs while designing
and developing applications that use these APIs.

Therefore, the understandability of REST APIs are two major quality charac-
teristics, which are reachable when best practices for REST APIs design [13] and
naming are followed. Because developers’ comprehension is essential for Cloud
computing adoption [21], we claim that this comprehension requires quality lex-
icons in the APIs and the URIs used to access these APIs.

Consequently, we study 16 different and well-known REST APIs to investi-
gate and organise their lexicons. We also study the linguistic (anti)patterns on
REST APIs of 16 cloud providers, extending and complementing our previous
work [17]. Linguistic antipatterns represent poor solutions to recurring naming
problems, which may hinder (1) the consumption of APIs by client developers
and (2) the maintenance/evolution of APIs by the API developers. In contrast,
linguistic patterns are good solutions to recurring naming problems—they facil-
itate the consumption and maintenance of APIs [15].

For the semantic analysis of Cloud REST APIs, we apply the SARA approach
[15]. We rely on WordNet1 and Stanford CoreNLP2 as English dictionaries with
a combination of Latent Dirichlet Allocation (LDA) topic modeling technique [3]
and second-order semantic-similarity metric [11,12]. LDA is a popular technique
in the natural-language processing domain. The second-order semantic-similarity
metric is based on the distributional similarity between terms to decide their
semantic similarities.

The remainder of the paper is organised as follows. Section 2 presents the
main concepts about natural-language processing and the second-order semantic-
similarity metric. Section 3 presents the key concepts of CloudLex, our app-
roach to analyse lexically and semantically Cloud computing REST APIs. Sec-
tions 4 and 5 present our results, answer the research questions, and discuss
threats to validity. Section 6 presents some related work. Finally, Sect. 7 con-
cludes the paper with future work.

This paper is an extension of our previous conference paper [17]. We extended
our paper with (1) a dataset sixteen Cloud computing providers (thirteen more

1 wordnet.princeton.edu.
2 nlp.stanford.edu/software/corenlp.shtml.

http://wordnet.princeton.edu
http://nlp.stanford.edu/software/corenlp.shtml
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that the previous paper; (2) a larger analysis of the terms used in 16 REST APIs
in 59,677 term occurrences; (3) an analysis of the linguistic (anti)patterns in more
than 23,000 URIs of the 142 services of the 16 Cloud providers. Moreover, we
addressed new quality dimensions and three new research questions. Finally, our
analysis confirm and corroborate the previous results presented in our conference
paper.

2 Background

The second-order semantic-similarity metric [11,12] and the Latent Dirichlet
Allocation (LDA) algorithm [3] are applied in natural-language processing, e.g.,
[15] for various purposes. We now present them briefly because we use them to
analyse the linguistic quality of Cloud APIs.

2.1 Second Order Semantic Similarity

The second-order semantic-similarity metric helps finding distributionally the
most similar terms among a set of terms and computes similarity scores for the
terms based on the second-order terms vectors [11,12]. Two terms are distribu-
tionally similar if they have multiple co-occurring terms in the same syntactic
relations.

Table 1. Window set up for the calculation of window-position triples (WPT).

−3 −2 −1 - +1 2 3

social media and newsportal are more popular

online social and newsportal are beyond those

Table 1 shows an example of the analysis of the term newsportal. If we consider
window size as ±3, it gives us two occurrences of newsportal. When we consider
the position, the term newsportal has eight unique features (without stop words,
e.g., “are”, “beyond”, “and”) as shown in Table 2 in the WPT column. If we do
not consider the window position, then the term newsportal has seven different
features without stop words, as shown in the Co-occurrences column.

By moving the window over the corpus, we can get the terms vectors for each
term. Using the terms vectors and normalising the counts [12], we can compute
the distributionally similar terms used in similar contexts. For example, if news-
portal co-occurs with three terms {social, online, media, and both the terms
print} and media co-occur with those three terms, then the terms newsportal,
print, and media are said to be distributionally similar.

We can obtain the list of the n most similar terms for a given input by
using this technique. We can use this list as the second order term vector for a
given term, which contains the terms that occur together in similar contexts. We
can apply a similar technique to compare the second order terms vectors and
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Table 2. Examples of the window-position triples and co-occurrences for the example
in Table 1.

WPT Co-occurrence

<newsportal,−3, social> 1 <newsportal, social> 2

<newsportal,−3, online> 1 <newsportal, online> 1

<newsportal,−2,media> 1 <newsportal,media> 1

<newsportal,−2, social> 1 <newsportal, are> 1

<newsportal,+1, are> 2 <newsportal,more> 2

<newsportal,+2,more> 1 <newsportal, popular> 1

<newsportal,+3, popular> 1 <newsportal, those> 1

<newsportal,+3, those> 1

compute the second-order semantic-similarity metric [11,12]. Compared to
WordNet [4,12], this metric allows going beyond the is-a relationships between
nouns and verbs because WordNet only contains synonyms (warm–hot),
meronyms (car–wheel), and antonyms (hot–cold).

2.2 Latent Dirichlet Allocation

In natural-language processing, topic models describe documents as aggrega-
tions of latent topics. Latent topics are clustered set of terms [3]. The LDA
algorithm extracts topic models from a corpus of terms built from documents.
These topic models are low-dimensional representations of the contents of the
documents. The cardinality of each topic model, its dimensionality or size, k is
set beforehand as an input to building topic models using LDA. LDA allows
binding multiple topic models to a single document, which gives flexibility in
deciding if a document or part thereof belongs to a topic.

However, LDA is impeded by the sizes of the vocabulary, the numbers of
terms, inherent to the majority of documents corpora [3]. Consequently, a new
document may contain new and unobserved terms to be classified that were not
initially present in the training corpus. This problem along with the bag-of-words
assumptions motivate us to define an approach combining LDA and second-
order semantic-similarity metric. The former allows obtaining a low-dimensional
representation of a corpus and the later measures the semantic similarity between
the terms in the corpus.

2.3 Linguistic Patterns and Antipatterns

We now describe four linguistic (anti)patterns: Contextualised vs. Contextless
Resource Names [8] and Pertinent vs. Non-pertinent Documentation [15], which
we will study in the rest of this paper.
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Contextualised vs. Contextless Resource Names. URIs of Cloud
resources defined by Cloud providers should be contextual, i.e., it is a
good practice for URIs to be in semantically-related or similar contexts.
The Contextless Resource Names linguistic antipattern is introduced when
API developers do not design URI nodes within the same semantic con-
text. An example of Contextless Resource Names linguistic antipattern is
www.provider.com/server/research/stock?id=01 where the terms “server”,
“research”, and “stock” are not from semantically-related contexts. In con-
trast, www.provider.com/server/memory?size=1024 is an example of Con-
textual Resource Names pattern because “server” and “memory” belong to
semantically-related contexts (assuming that the statement “server has mem-
ory” is true). The consequences of the Contextless Resource Names antipattern
include not providing a clear context for a Cloud resource and misleading the
cloud API clients, which reduce API understandability [8].

Pertinent vs. Non-pertinent Documentation. The Non-pertinent Docu-
mentation linguistic antipattern occurs when the documentation of a Cloud
resource URI is not consistent with its set of nodes. Therefore, this antipat-
tern involves both the URI and its documentation. Contrary to this antipat-
tern, a well-documented URI describes its goals and functions using rel-
evant semantic terms. An example of a Non-pertinent Documentation is
/v2/tenant id/flavors/flavor id/os-extra specs/key id – Gets the value

of the specified key from OpenStack, in which the URI and its documenta-
tion have no semantic similarity. In contrast, from the same Cloud provider,
/v2/software deployments/ – Lists all available software deployments. is an exam-
ple of Pertinent Documentation pattern as this URI–documentation pair shows a
high semantic similarity. As a consequence of the Non-pertinent Documentation
linguistic antipattern, Cloud API consumers may make incorrect assumptions
on the URIs, which can hinder their comprehension. In addition, for Cloud API
providers, this may hinder understandability during the maintenance and evo-
lution [15].

3 Approach

We now present CloudLex, our approach to building the lexicon of Cloud com-
puting REST APIs. First, we introduce a conceptual model of Cloud computing
REST APIs. Second, we describe our approach to extract and analyse lexicons
from Cloud APIs. Finally, we describe our semantic analysis of Cloud APIs.

3.1 Conceptual Model for Cloud Computing REST APIs

Cloud computing is the root concept of this model composed of the key con-
cepts of Provider, Service, Resource, and Action, their main attributes and
aggregation relationships. Figure 1 sketches our conceptual model. In our concep-
tual model, we abstract Cloud computing actors (companies, implementations,
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Fig. 1. Conceptual model of cloud computing REST APIs [17].

and standards) under the single concept of Provider. Each provider supplies a
set of REST APIs. For example, in Google Cloud Platform, each API is in fact
a commercial Google product, such as compute and sql.

Independently of the name used by Cloud providers (product, API, exten-
sion), each provider’s REST API exposes conceptually useful services, e.g., man-
aging virtual machines, networks, databases, or applications, orchestrating their
deployment, controlling their access, etc. The number and contents of these
services are extremely heterogeneous for each provider: hundreds of services in
Google Cloud Platform, more than one hundred in OpenStack, and five in OCCI.
In our conceptual model, we abstract this diversity of functional services under
the single concept of Service.

Each provider’s service manages a set of computing resources imple-
mented as REST resources. A service is characterised by a unique resource
identifier, e.g., URI, URL, etc., and usually a documentation to describe
the service. For example, virtual machines are accessible through the URI
/project/zones/zone id/instances/instance id in the compute service of Google
Cloud Platform and the URI /tenant id/servers/server id in the os-compute-2
service of OpenStack. Our conceptual model abstracts this diversity of comput-
ing resources under the single concept of Resource.

Each resource supports common CRUD operations (Create, Retrieve,
Update, and Delete) and some specific business behaviours, like starting and
stopping a virtual machine, attaching a disk to a virtual machine, etc. Our con-
ceptual model abstracts this diversity of operations and behaviours under the
single concept of Action.

To instantiate this conceptual model, we designed a tooled approach for iden-
tifying automatically Service, Resource, and Action from Cloud computing
REST APIs of any Provider and then extracting and analysing the lexicons of
these APIs.
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3.2 CLOUDLEX

The CloudLex approach divides in four steps:

Step 1. Collecting Documentation. The first step consists in collecting manually
the documentation of a provider’s Cloud computing REST API.

Step 2. Parsing Documentation. The second step parses all the provider’s doc-
umentation to identify the Service, Resource, and Action of the conceptual
model automatically to create the Cloud Dataset of our conceptual model.

Step 3. Extracting Lexicon. The third step extracts the lexicon of each provider
from its associated Cloud Dataset. The lexicon of each provider contains the
names of all the services, the terms extracted from the path of the URIs of all
provided resources, and the names of all the actions defined on the resources

For example, the URI /project/zones/zone id/instances/instance id contains
five segments: {project}, zones, {zone id}, instances, and {instance id}.
We keep in the lexicon all segments not enclosed by braces, e.g., zones and
instances. Other segments enclosed by braces identify specific resources, usually
as identifiers, such as {project} and all {instance id}.

Step 4. Analysing Lexicon. The fourth step analyses automatically the lexicons.
We use various analyses to count occurrences of each term in the lexicons, identify
nouns and verbs, singular and plural terms, and lower/upper/camel cased terms.

The lexicons are encoded as CSV files (Comma-Separated Values). This
implementation choice fosters the reusability of the lexicons by researchers and
practitioners. Most of the CloudLex parsers, extractors, and analyses are imple-
mented in Python, a dynamic scripting language providing simple libraries to
get and parse HTML pages/Swagger files, and read/write CSV files. The imple-
mentation of the CloudLex approach is freely available at https://github.com/
Spirals-Team/CloudLexicon.

3.3 Semantic Analysis of Cloud APIs

The semantic analysis of Cloud APIs requires four automatic steps shown in
Fig. 2. The first step involves the collection of API documentation and perform-
ing a pre-processing phase, for example to remove stop words. The second step
processes URI nodes to their base form (a.k.a., lemmatisation) using the Stan-
ford Core NLP. The third step involves the extraction of topic models using
LDA. In the final step, we compute the second-order semantic-similarity metric
between the obtained topic models and the nodes in a URI. We illustrate with a
running example the semantic analysis, showing the detection of the Contextless
Resource Names antipattern and Contextual Resource Names pattern.

https://github.com/Spirals-Team/CloudLexicon
https://github.com/Spirals-Team/CloudLexicon
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Fig. 2. The Semantic analysis method applied to cloud APIs from [15].

Semantic Analysis. To infer the contextual relationships between nodes in URIs,
we rely on Mallet LDA topic modeling3. LDA forms a model for a given docu-
ment, which represents a URI and its documentation. Our proposed approach
applies Mallet topic modeling to build topic models by accepting resource iden-
tifiers and descriptions of Cloud resources as input.

Table 4 shows an excerpt of the LDA topic model created during our analysis
of the Cloud API provider Docker Engine. The complete topic model consists of
ten topic clusters and we consider the ten most relevant terms in each topic, i.e.,
the top ten terms. We can use this set of topics to measure similarity between
resource identifiers, if two URI nodes are semantically related. URI nodes are
semantically related if they are from the same topic [19] (Table 3).

Table 3. List of extracted topics in Docker Engine.

List of topics

auth

build

commit

containers

events

exec

images

info

ping

version

To compute the semantic similarity between terms, we use the second-order
semantic-similarity metric. We rely on the distributional second-order similarity

3 http://mallet.cs.umass.edu.

http://mallet.cs.umass.edu
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Table 4. Top ten terms for Docker Engine topic model with k=10.

Topic0 Topic1 Topic2 Topic3 Topic4 Topic5 Topic6 Topic7 Topic8 Topic9

copy resize image amp container create search ping container json

unpause start version restart info attach height history top exec

commit tag event wait push log log change change load

build build width width width stop stop auth auth kill

pause pause pause pause pause pause pause export

because the nodes in the URI can be slightly different from the terms used for
their description (structure and form). A pair of terms are distributionally similar
if they have common co-occurring terms, i.e., terms that appear frequently with
the same set of terms as neighbors. As described in Sect. 2.1, the computation of
this similarity is based on the corpus of terms extracted from the URI dataset,
which we analyse to find the terms that occur together within a context of
±window size terms. We then process the resulting terms matrix to build terms
vectors that represent the distribution of a term in the corpus and show the
terms sharing a maximum number of co-occurrences. We use these to compare
two terms by analysing the extent to which these two terms have similar second-
order terms vectors [12]. We use DISCO [11] to compute such distributional
similarity between terms.

Identifying Antipatterns. To compare the context of every pair of nodes in a
URI, we measure the second-order semantic similarity between each node with
the ten top terms of each topic. Based on the similarity value, we determine
to which topics a node belongs. We consider that a node belongs to a topic if
the average second-order semantic similarity value is greater than a predefined
threshold, i.e., 0.3, for any terms in each topic. We simulate over several threshold
values and choose the minimum with reasonable results based on our simulation
results and comprehension. And, finally, we choose the same threshold based on
the work in [15] where the authors reasoned their detection accuracy over this
threshold value.

If, for a given nodes pair of a URI, the intersection of topic sets to which each
node belongs is empty (i.e., there is no common topic for that pair of nodes in
the URI), then we report the URI as a Contextless Resource Names antipattern.
Otherwise, if each pair of nodes in the URI share at least one common topic,
then we report the URI as a Contextual Resource Names pattern.

Table 5 shows the results for a resource URI from the Docker Engine API
https://docker.engine.com/images/search. The base forms of each node
(i.e., image and search) appear in Topic2 and Topic6 shown in Table 4. Hence,
we report the URI as a Contextual Resource Names pattern. As shown in Table 5,
we have two nodes in base forms: image and search. We compare the second-
order similarity for each node with each terms of the obtained topic model shown
in Table 5. The first column shows the second-order similarity values between the
first node image and the topic model, and the second column shows the values
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Table 5. Example of analysis of a URI from the Docker Engine API.

https://docker.engine.com/images/search

URI Nodes: /images/search

Node: image Node: search Topic average

image vs. Topic0 search vs. Topic0

copy: 0.45550877 copy: 0.31544656

unpause: −2.0 unpause: −2.0

commit: 0.0 commit: 0.098813675

build: 0.32840174 build: 0.01179231

Max Result Topic 0: 0.45550877 Max Result Topic 0: 0.31544656 0.385477665

image vs. Topic1 search vs. Topic1

resize: 0.2891726 resize: 0.57163477

start: 0.012896833 start: 0.018111441

tag: 0.101503715 tag: 0.1996914

Max Result Topic 1: 0.2891726 Max Result Topic 1: 0.57163477 0.430403685

image vs. Topic2 search vs. Topic2

image: 2.0 image: 0.2916552

version: 0.2870915 version: 0.24986088

event: 0.0743737 event: 0.042658847

width: 0.12692761 width: 0.011248095

pause: 0.07810811 pause: 0.09917007

Max Result Topic 2: 2.0 Max Result Topic 2: 0.2916552 1.1458276

image vs. Topic3 search vs. Topic3

amp: 0.032073073 amp: 0.011314062

restart: 0.011473239 restart: 0.031095618

wait: 0.036101706 wait: 0.09236097

Max Result Topic 3: 0.0 Max Result Topic 3: 0.0 0

image vs. Topic4 search vs. Topic4

container: 0.1470323 container: 0.070620485

info: 0.23985307 info: 0.5876746

push: 0.04289078 push: 0.078571856

Max Result Topic 4: 0.23985307 Max Result Topic 4: 0.5876746 0.413763835

image vs. Topic5 search vs. Topic5

create: 0.16315852 create: 0.19966161

attach: 0.21755742 attach: 0.015138787

log: 0.16914968 log: 0.31177378

stop: 0.017904773 stop: 0.100144744

Max Result Topic 5: 0.21755742 Max Result Topic 5: 0.31177378 0.2646656

(continued)
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Table 5. (continued)

https://docker.engine.com/images/search

URI Nodes: /images/search

Node: image Node: search Topic average

image vs. Topic6 search vs. Topic6

search: 0.2916552 search: 2.0

height: 0.15941465 height: 0.0106301615

Max Result Topic 6: 0.2916552 Max Result Topic 6: 2.0 1.1458276

image vs. Topic7 search vs. Topic7

ping: 0.0 ping: 0.0

history: 0.06135501 history: 0.05444772

change: 0.11254101 change: 0.13595133

auth: 0.04527525 auth: 0.28564966

Max Result Topic 7: 0.11254101 Max Result Topic 7: 0.28564966 0.199095335

image vs. Topic8 search vs. Topic8

container: 0.1470323 container: 0.070620485

top: 0.18044263 top: 0.0

Max Result Topic 8: 0.18044263 Max Result Topic 8: 0.0 0.090221315

image vs. Topic9 search vs. Topic9

json: 0.11969886 json: 0.4653473

exec: 0.073554516 exec: 0.2546377

load: 0.14074977 load: 0.13070202

kill: 0.0 kill: 0.13537067

export: 0.022680383 export: 0.051750746

Max Result Topic 9: 0.14074977 Max Result Topic 9: 0.4653473 0.303048535

Maximum Average 1.1458276

between the second node search and the topic model. The third column shows
the average second-order similarity for each topic for both nodes. We obtain
the maximum average of 1.1458 as the second-order semantic-similarity metric.
Topic6 has the maximum average vale for the nodes, which is higher than the
predefined threshold. Thus, we report these two nodes as contextual. We repeat
this process for all the URIs and Cloud APIs to decide if the nodes in URIs are
from the same context.

4 Cloud Lexical Analysis

Using CloudLex presented in Sect. 3.2, we extract a total of 3,947 different
terms in the REST APIs of 16 Cloud computing providers. We analyse the
terms to answer two main research questions as follows.



A Lexical and Semantical Analysis on REST Cloud Computing APIs 319

4.1 RQ1: Do RESTful Cloud APIs Follow Good Practices?

We analyse automatically the quality of the terms along five dimensions. We
group the terms based on these dimensions, counting how many terms belong to
each dimension. Table 6 shows the result of the grouping from which we observe
several findings.

1. Parts of Speech: we classified the parts of speech of each term as Noun or
V erb.

2. Number: we classified the terms as Plural or Singular.
3. Casing: we classified the terms as Camel, Lower, or Upper cased.
4. Hyphenation: we classified the terms based on the presence or not of

hyphens.
5. Underscoring: we classified the terms based on the presence or not of under-

scores.

First, we find that 69% of the terms are nouns (3,323/4,843) and 31% verbs
(1,520/4,843) and that the majority of the APIs avoid using extensively verbs.
Second, we observe that 56% of the terms are plural (2,127/4,843) and 44% are
singular (2,716/4,843). Third, the analysis of the APIs shows that 52% of the
terms use camel casing (2,517/4,843), close to 48% are lowercase (2,313/4,843),
and only 0.27% are upper case (13/4,843). Finally, 98% of the terms do not
include hyphens (4,735/4,843) or underscores (4,753/4,843).

Petrillo et al. [18] compiled a catalog of 73 best practices in the design of
REST APIs. In the catalog, there are five best practices directly related to URI

Table 6. Number of terms by provider and quality dimensions.

Provider
Terms

Ocurrences
by Provider

Parts of Speech Quantity Case Hyphens Underscores

Noun Verb Plural Singular Camel Lower Upper No Yes No Yes

1and1 42 93% 7% 64% 36% 0% 95% 5% 60% 40% 100% 0%

Cloud Foundry 75 93% 7% 64% 36% 0% 100% 0% 52% 48% 100% 0%

CloudStack 565 2% 98% 28% 72% 99% 1% 0% 100% 0% 100% 0%

Digital Ocean 46 52% 48% 54% 46% 0% 100% 0% 72% 28% 100% 0%

Docker 32 34% 66% 16% 84% 0% 100% 0% 97% 3% 100% 0%

Google Cloud 349 47% 53% 48% 52% 51% 49% 0% 100% 0% 100% 0%

Heroku 14 79% 21% 64% 36% 0% 100% 0% 93% 7% 100% 0%

IBM Bluemix 52 67% 33% 52% 48% 0% 100% 0% 100% 0% 96% 4%

Kubernetes 16 94% 6% 75% 25% 0% 100% 0% 100% 0% 100% 0%

Microsoft Azure 622 67% 33% 63% 37% 58% 42% 0% 100% 0% 100% 0%

OCCI 46 70% 30% 0% 100% 0% 100% 0% 74% 26% 100% 0%

OpenStack 160 76% 24% 54% 46% 8% 89% 3% 92% 8% 68% 32%

Oracle Cloud 1,518 88% 12% 52% 48% 60% 40% 0% 100% 0% 99% 1%

OVH 1,014 79% 21% 23% 77% 48% 52% 0% 100% 0% 100% 0%

Rackspace 146 81% 19% 51% 49% 5% 94% 1% 95% 5% 92% 8%

VMWare 146 81% 19% 51% 49% 5% 94% 1% 95% 5% 92% 8%

Total 4,843 69% 31% 44% 56% 52% 48% 0% 98% 2% 98% 2%
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lexicons: (1) lowercase letters should be preferred in URI paths; (2) a singular
noun should be used for document names; (3) a plural noun should be employed
for collection names; (4) a verb or verb phrase should be used for controller
names; (5) underscores should not be used. Our results show that the APIs, in
general, follow these five good practices.

We thus conclude that the lexicon of the analysed Cloud computing
REST APIs contains a majority of nouns, which are equally singular
or plural, and are mainly in lower case, following REST API best
practices.

4.2 RQ2: Which Lexicon Is Adopted by Cloud Computing
Providers?

We count the number of providers that adopt a same term, observing that
although the 16 studied REST Cloud APIs describe the same domain, contrary
to our expectation, they do not share a large number of common terms. In fact,
90% of the terms (3,561/3,947) are used by one provider only, 5% of the terms
(198/3,947) are adopted by two providers, and 5% of the terms (198/3,947) are
adopted by three providers or more. If we define consensus when all providers
adopt a term, there is no term that is consensual in the 16 studied APIs.

Although a majority of the terms are adopted just by one provider, we can
highlight 23 terms that are used by seven4 or more providers: images (used by
11 providers), events (10), users (9), services (9), stop (9), resources (8), logs
(8), roles (8), snapshots (8), restore (8), actions (8), restart (8), instances (7),
domains (7), volumes (7), credentials (7), config (7), export (7), start (7), tags
(7), validate (7), and resume (7).

Thus, we conclude that the 16 Cloud APIs are lexically heteroge-
neous, with few common terms. There is not a consensus on which
terms to use in Cloud computing REST APIs.

5 Semantic Analysis of Cloud APIs for the Detection
of Linguistic (Anti)patterns

In this section, we assess the effectiveness of our semantic analysis approach
on Cloud APIs by (1) verifying if linguistic (anti)patterns do occur in Cloud
APIs and (2) analysing the detection accuracy for the detected linguistic
(anti)patterns. In this paper, we perform the validation study on more than
23,000 URIs from 16 Cloud API providers.

5.1 Subjects and Objects

The subjects of our semantic analysis are the four linguistic patterns and antipat-
terns described in Sect. 2.3 and the objects of our analysis are the 23,062 URIs
4 We chose at least seven providers to show a short list of terms (around of 20 terms).

The full list is available at https://github.com/Spirals-Team/CloudLexicon.

https://github.com/Spirals-Team/CloudLexicon
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Table 7. Number of URIs tested from each Cloud API provider.

Cloud API providers Test URIs

1and1 Cloud Server 161

Apache CloudStack 563

Cloud Foundry 233

Digital Ocean 131

Docker Engine 40

Google Cloud Platform 505

Heroku 30

IBM Bluemix 113

Kubernetes 114

Microsoft Azure 1, 820

OCCI 204

OpenStack 588

Oracle Cloud 11, 264

OVH 4, 229

Rackspace 479

VMware 2, 588

Total 23,062

from the 16 Cloud API providers. Table 7 summarises the numbers of URIs per
provider.

5.2 Research Questions

We propose two research questions to assess the effectiveness of our semantic
analysis for the detection of linguistic (anti)patterns:

RQ1 To what extent do the analysed Cloud APIs contain the linguistic pat-
terns and antipatterns (defined in Sect. 2.3)?
By answering RQ1, we show the quality of the URIs.
RQ2 How accurate are the detected linguistic patterns and antipatterns?
By answering RQ2, we show whether our identification process is accurate.

5.3 Validation Process

For the validation, we collected URIs and their corresponding documentations
for each Cloud APIs and subsequently applied the detection rules of linguis-
tic patterns and antipatterns [15] in the form of detection algorithms using
CloudLex. We validated detection results in two parts: (1) for Contextless
vs. Contextual Resource Names, 50 randomly-selected URIs from the 16 Cloud
APIs and for Pertinent vs. Non-pertinent Documentation, 25 randomly-selected
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URI–documentation pairs to measure the overall precision and (2) to measure
precision and recall for one Cloud API provider, we chose Docker Engine with
its reasonable number of URIs, i.e., other providers have high numbers of URIs
up to 11,264.

We involved three professionals, who are expert in Android, iOS, and Cloud
development, to identify the true positives and false negatives to define a gold
standard for Docker Engine. They also assisted in our validation process where
we calculate overall precision by randomly choosing 50 URIs and 25 URI–
documentation pairs. For the validation purposes, we provided them with the
online descriptions5 of the linguistics patterns and antipatterns, the sets of 50
randomly selected URIs, the set of 25 randomly selected URI–documentation
pairs, and all the URIs and URI–documentation pairs from Docker Engine. We
involved odd number of professionals to resolve their conflicts with majority
decision.

5.4 Detection Results

Table 8 shows detection results for the first 15 URIs from Docker Engine. As
shown in Table 8, all the URIs from Docker Engine are detected as Contextu-
alised Resource Names pattern.

Table 8. Detection results of Contextless vs. Contextualised Resource Names for the
first 15 URIs from Docker Engine.

URI Detected as

https://docker.engine.com/auth Pattern

https://docker.engine.com/build Pattern

https://docker.engine.com/commit Pattern

https://docker.engine.com/containers/create Pattern

https://docker.engine.com/containers/{id}/start Pattern

https://docker.engine.com/containers/{id}/stop Pattern

https://docker.engine.com/containers/{id}/top Pattern

https://docker.engine.com/containers/{id}/logs Pattern

https://docker.engine.com/containers/{id}/attach Pattern

https://docker.engine.com/containers/{id}/exec Pattern

https://docker.engine.com/containers/{id}/json Pattern

https://docker.engine.com/containers/{id} Pattern

https://docker.engine.com/containers/{id}/unpause Pattern

https://docker.engine.com/containers/{id}/export Pattern

https://docker.engine.com/containers/{id}/wait Pattern

5 http://sofa.uqam.ca/resources/antipatterns.php.

http://sofa.uqam.ca/resources/antipatterns.php
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Table 9 shows the detection results for the first 20 URI–documentation pairs
of the Docker Engine API. All these pairs are identified as Pertinent Doc-
umentation except two. Those two pairs: (1) https://docker.engine.com/
containers/id/json – [inspect a container] and (2) https://docker.
engine.com/containers/json – [List containers] are Non-pertinent
Documentation. The rationale behind this outcome could be the absence of
the specific term “json” in both their documentations and, in the first documen-
tation, the term “inspect” seems important but the URI does refer to it. All our
analyses results are available on our project Web site at https://github.com/
Spirals-Team/CloudLexicon.

In the following sections, we answer our two research questions on the pres-
ence of patterns and antipatterns in Cloud APIs (RQ1) and on the accuracy of
our identification approach (RQ2).

Table 9. Detection results of Pertinent vs. Non-pertinent Documentation for the first
20 URI–documentation pairs of Docker Engine.

URI Description Detected as

https://docker.engine.com/auth Check auth configuration Pattern

https://docker.engine.com/build Build an image from

Docker file via stdin

Pattern

https://docker.engine.com/commit Create a new image from a

containers changes

Pattern

https://docker.engine.com/containers/create Create a container Pattern

https://docker.engine.com/containers/{id}/start Start a container Pattern

https://docker.engine.com/containers/{id}/stop Stop a container Pattern

https://docker.engine.com/containers/{id}/top List processes running

inside a container

Pattern

https://docker.engine.com/containers/{id}/logs Get container logs Pattern

https://docker.engine.com/containers/{id}/attach Attach to a container Pattern

https://docker.engine.com/containers/{id}/exec Image tarball format Pattern

https://docker.engine.com/containers/{id}/json Inspect a container Antipattern

https://docker.engine.com/containers/{id} Remove a container Pattern

https://docker.engine.com/containers/{id}/unpause Unpause a container Pattern

https://docker.engine.com/containers/{id}/export Export a container Pattern

https://docker.engine.com/containers/{id}/wait Wait a container Pattern

https://docker.engine.com/containers/{id}/pause Pause a container Pattern

https://docker.engine.com/containers/json List containers Antipattern

https://docker.engine.com/containers/{id}/changes Inspect changes on a

containers file system

Pattern

https://docker.engine.com/containers/{id}/restart Restart a container Pattern

https://docker.engine.com/containers/{id}/copy Copy files or folders from a

container

Pattern

https://github.com/Spirals-Team/CloudLexicon
https://github.com/Spirals-Team/CloudLexicon
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Table 10. Summary of the semantic analyses of the 16 Cloud APIs.

API providers URIs tested Contextless Contextual Pertinent Non-pertinent

1and1 Cloud Server 161 2 (1.24%) 159 (98.76%) 72 (44.72%) 89 (55.28%)

Apache CloudStack 563 0 (0%) 563 (100%) 0 (0%) 563 (100%)

Cloud Foundry 233 5 (2.15%) 228 (97.85%) - -

Digital Ocean 131 35 (26.72%) 96 (73.28%) 46 (35.11%) 85 (64.89%)

Docker Engine 40 0 (0%) 40 (100%) 35 (87.50%) 5 (12.50%)

Google Cloud Platform 505 248 (49.11%) 257 (50.89%) 58 (11.49%) 447 (88.51%)

Heroku 30 5 (16.67%) 25 (83.33%) 14 (46.67%) 16 (53.33%)

IBM Bluemix 113 8 (7.08%) 105 (92.92%) 91 (80.53%) 22 (19.47%)

Kubernetes 114 3 (2.63%) 111 (97.37%) - -

Microsoft Azure 1, 820 1,744 (95.82%) 76 (4.18%) - -

OCCI 204 4 (1.96%) 200 (98.04%) - -

OpenStack 588 57 (9.69%) 531 (90.31%) 476 (80.95%) 112 (19.05%)

Oracle Cloud 11, 264 4,717 (41.88%) 6,547 (58.12%) - -

OVH 4, 229 2,702 (63.89%) 1,527 (36.11%) - -

Rackspace 479 62 (12.94%) 417 (87.06%) - -

VMware 2, 588 1,003 (38.76%) 1,585 (61.24%) - -

Total 23, 062 10,595 12,467 792 1,339

Average for APIs 23.16% 76.84% 48.37% 51.63%

5.5 RQ1: To What Extent Do the Analysed Cloud APIs Contain
the Linguistic Patterns and Antipatterns?

Table 10 shows the summary of our detection results in the 16 Cloud APIs. Fig-
ures 3 and 4 show the total numbers of linguistic patterns and antipatterns for
each Cloud API. All the Cloud APIs follow the Contextualised Resource Names

Fig. 3. Detection results of the four patterns and antipatterns in the 16 Cloud APIs
(part-I).
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Fig. 4. Detection results of the four patterns and antipatterns in the 16 Cloud APIs
(part-II).

pattern. We identified two APIs following the Contextualised Resource Names
pattern for all of their URIs, e.g., Apache CloudStack and Docker Engine.
Around 50%–98% of the URIs from remaining 14 Cloud APIs follow this pat-
tern. In addition, we identified the Contextless Resource Names antipattern in
some large Cloud APIs, including Google Cloud Platform (248 occurrences,
49%), IBM Bluemix (8 occurrences, 7%), Microsoft Azure (1,744 occurrences,
95%), Oracle Cloud (4,717 occurrences, 41%), and VMware (1,003 occurrences,
38%). In summary, out of 23,062 URIs, 10,595 (45.94%) are Contextless Resource
Names and 12,467 (54.06%) are Contextualised Resource Names.

Moreover, of the eight Cloud APIs in which we identified the Pertinent
vs. Non-pertinent Documentation (anti)patterns, we report that they all have
Non-pertinent Documentation. In particular, 89 occurrences (55.28%) of 1and1
Cloud Server, 563 occurrences (99.98%) of Apache CloudStack, 85 occurrences
(64.89%) of Digital Ocean, 5 occurrences (12.50%) of Docker Engine, 447
occurrences (88.51%) of Google Cloud Platform, 16 occurrences (53.33%) of
Heroku, 22 occurrences (19.47%) of IBM Bluemix, and 112 (19.05%) occurrences
of OpenStack have Non-pertinent Documentation. Thus, out of 2,131 pairs of
URIs–documentations, 1,339 (62.82%) have Non-pertinent Documentation.

These findings suggest that majority, i.e., 54%, of the analysed URIs follow
Contextualised Resource Names pattern that is a good practice in API design.
In contrast, a majority, i.e., 62.82%, of the analysed URI–documentation pairs
suffer of the Non-pertinent Documentation.

We can positively answer RQ1: analysed Cloud APIs contain the linguis-
tic patterns and antipatterns. The majority of the analysed URIs have Con-
textualised Resource Names—a good design practice. Our findings also show
that the majority of the analysed URI–documentation pairs have Non-pertinent
Documentation.
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5.6 RQ2: How Accurate Are the Detected Linguistic Patterns and
Antipatterns?

Table 11 shows that our approach identified 22 URIs as antipatterns, 14 of them
were true positive as validated manually. Therefore, we obtained an accuracy
of 63.64%. Together with Contextualised Resource Names pattern (with 78.57%
accuracy), we obtain an overall precision of 71.10% for Contextualised vs. Con-
textless Resource Names. Similarly, for Pertinent vs. Non-pertinent Documenta-
tion, we obtain an average precision of 77.27% with the manual validation for
randomly selected 25 URI–documentation pairs from the 2,131 pairs. Thus, for
the first validation, we obtain an average precision of 74.19%.

Table 11. Validation summary on 50 randomly-selected URIs and 25 randomly-
selected URI–documentation pairs of the 16 Cloud APIs.

Antipatterns/patterns P TP Validated Precision Average precision
for anti(pattern)

Contextless Resource Names 22 14 20 63.64% 71.10%

Contextualised Resource Names 28 22 30 78.57%

No detection 0 0 0 -

Non-pertinent Documentation 11 6 6 54.55% 77.27%

Pertinent Documentation 14 14 19 100%

No detection 0 0 0 -

Average Precision 74.19%

While the goal of our first validation is to measure the overall accuracy of our
approach for linguistic analysis, in this second validation, we want to show not
only the precision but also the recall of our approach. Professional developers
manually validated all 40 URIs from Docker Engine Cloud API for Contextu-
alised vs. Contextless Resource Names and all 40 URI–documentation pairs from
Docker Engine for Pertinent vs. Non-pertinent Documentation. Table 12 shows
that we did not identify any occurrence of Contextless Resource Names but the
manual validation revealed instances of contextless nodes in three URIs. There-
fore, our detection process missed all three true positives (i.e., recall of 0%) for
this antipattern. However, we obtained 100% of precision. On average, for the
Contextualised vs. Contextless Resource Name, we obtain an average precision
of 92.5% and an average recall of 50% with F1-measure of 64.91%. Similarly, for
the Pertinent vs. Non-pertinent Documentation, we obtain an average precision
and recall of 77.14% with F1-measure of 77.14%.

We conclude that, as shown in Table 12, our approach has a global aver-
age precision of 84.82% and a global average recall of 63.57% with an average
F1-measure of 71.03%. Thus, we can positively answer RQ2 on the detection
accuracy of linguistic patterns and antipatterns.
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Table 12. Validation summary on the URIs and URI–documentation pairs of Docker

Engine.

Antipatterns/patterns P TP Validated Precision Avg.

precision

Recall Avg.

recall

F1-

measure

Contextless Resource Names 0 0 3 - 92.5% 0% 50% 64.91%

Contextualised Resource Names 40 37 37 92.50% 100%

No detection 0 0 0 - -

Non-pertinent Documentation 5 3 5 60% 77.14% 60% 77.14% 77.14%

Pertinent Documentation 35 33 35 94.29% 94.29%

No detection 0 0 0 - -

Average Precision 84.82%

Average Recall 63.57%

Average F1-measure 71.03%

5.7 Threats to Validity

As with any empirical study, threats exist that reduce the validity of our results,
which we attempted to mitigate or had to accept. We now discuss these threats
and the measures that we took on them.

Threats to the Construct Validity. These threats concern the relationship
between theory and observations. We assumed that good naming practices [18]
improve the quality of the REST APIs of the Cloud providers [23]. Although
these assumptions are legitimate and have been withheld by many researchers
and works, for example that of Zhang and Budgen [22], future work should study
whether these good naming practices apply universally to all Cloud services.
Also, we argued that the lexicons should be homogeneous to help developers’
comprehension but this argument should be validated experimentally.

Threats to Internal Validity. These threats concern confounding factors that
can affect our dependent variables. Although we did not carry any statistical
analysis on the characteristics of the studied REST APIs, we assumed that the
lexicons were a feature of the REST APIs. However, there may be other terms
that describe more accurately these REST APIs and that impact their compre-
hension, in particular their documentations. Future work includes analysing and
contrasting more APIs with more terms and documentations.

Threats to External Validity. These threats concern the generalization of our
results. Although we presented, to the best of our knowledge, the largest study
on the lexicons of Cloud computing REST APIs, we cannot generalise our results
to all Cloud computing REST APIs. Future work is necessary to analyze more
REST APIs, from other Cloud providers, open-source implementations, and
standards to confirm and–or infirm our observations.
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6 Related Work

Recently, there is a growing interest in the design quality evaluation of REST
APIs. However, to the best of our knowledge, few studies made specifically a
lexical evaluation of REST APIs in general, and none in the domain of cloud
computing.

In related work for the general design quality evaluation of REST APIs, we
can cite the research work of Hausenblas [10], who studies some widely used
REST Web APIs in terms of URI space design, resource representations, and
hyperlinking support. Rodŕıguez et al. [5] evaluated also the conformance of good
and bad design practices in REST APIs from the perspective of mobile applica-
tions. They analysed large data logs of HTTP calls collected from the Internet
traffic of mobile applications, identified usage patterns from logs, and compared
these patterns with best design practices. Zhou et al. [24] showed how to fix
design problems related to the use of REST services in existing Northbound
networking APIs in a Software Defined Network and how to design a REST
Northbound API in the context of OpenStack. These previous work made con-
tributions to the design evaluation of REST APIs for general or specific domains,
mobile and networking, while we consider the domain of cloud services.

Palma et al. [16] evaluated the linguistic aspects of several REST APIs based
on REST patterns and anti-patterns, which correspond to good and bad practices
in the design of REST services. However, the APIs evaluated were selected from
different and general domains. They included Facebook, Twitter, Dropbox, and
Bestbuy. So, it was not possible to compare and discuss the results among the
APIs. Moreover, the list of patterns and anti-patterns was really compared to
this focused study.

Petrillo et al. [18] evaluated three cloud computing REST APIs using a cat-
alog of 73 general best practices. However, this catalog was mainly dedicated to
the design of REST APIs from a conceptual and syntactic point of view, but not
necessarily lexical. The present paper specifically focuses on a lexical evaluation
of cloud computing REST APIs.

Researchers have analysed Cloud APIs to verify if the developers properly
use them [9,20]. However, no study were conducted in the literature to assess
the linguistic quality of Cloud APIs. In the following, we discuss some relevant
research done on assessing the structural correctness of APIs [9,20] or the use
of Cloud ontology [1,21] for comprehension.

Developers repeatedly need to manually ensure that they are building HTTP
requests using correct URIs while developing framework-based JavaScript Web
applications, which is error-prone. Wittern et al. [20] proposed an approach for
statically checking request URIs in JavaScript-based applications by extracting
their URLs, HTTP methods, and the corresponding request data. The authors
evaluated if request URIs in JavaScript files conform to their publicly avail-
able specifications. With analysing more than 6,000 request URIs, the approach
achieved the detection accuracy of more than 95%. This study ensures develop-
ers use URI correctly, however, does not analyse the linguistic quality which we
perform in our work.
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Haupt et al. [9] proposed a framework for structural analysis of REST APIs
based on their online specifications. The authors considered this proposed frame-
work as a first catalog of REST APIs describing structural characteristics that
comprises a set of metrics and graphical representation for each API. Moreover,
this framework comes useful in identifying the non-conformity of REST APIs to
the REST design principles and architectural style. Similar to our work in this
paper, the proposed framework in [9] considers the API descriptions and the
structure of REST APIs. The authors also proposed a meta-model for REST
APIs describing the structure of REST APIs. However, this study only verifies
structural correctness of APIs but does not verify their linguistic quality.

Androcec et al. [1] provided a global view of Cloud computing ontology after
a systematic review. The authors classified the relevant studies into four main
categories: cloud resources and services description, cloud security, cloud interop-
erability, and cloud services discovery and selection. The authors found that the
studies from ‘cloud resources and services descriptions’ category applied Cloud
ontologies to describe Cloud resources and services, classify the current services,
and pricing models. The Cloud interoperability category consisted of the studies
that use ontologies to achieve interoperability among different Cloud providers
and their offered services. The authors concluded that Cloud Computing ontolo-
gies are primarily applied in the discovery and selection of the best candidate
service in accordance with users’ computing requirements and the specifications
of Cloud resources and services.

In another study, Youseff et al. [21] proposed a detailed Cloud ontology to
facilitate the comprehension of the Cloud technology as, the authors suggested, it
would enable the community to design more efficient cloud applications. Based on
the fact that the current state-of-the-art in Cloud computing research lacks the
thorough understanding of the classification of the cloud systems, the authors
presented a classification of Cloud components, their relationships, and their
dependency on concepts from other service computing domains. According to
the proposed ontology, the Cloud computing systems fall within applications,
software environments, software infrastructure, software kernel, and hardware
categories. However, both the studies [1,21] focused on ontology aspect of REST
APIs. The linguistic aspect of the Cloud APIs is not considered in these studies.

Last but not least, Chalitta et al. [6] defined formal-based framework for
semantic interoperability in multi-clouds, organizing a catalogue of formal mod-
els that mathematically describe cloud APIs, describing their concepts and
semantic interoperability.

7 Conclusion and Future Work

Cloud computing is a popular Internet-based computing paradigm that provides
on-demand computational services and resources, generally offered by Cloud
providers’ REpresentational State Transfer (REST) APIs. Developers use REST
APIs by invoking these APIs by their names and, thus, the lexicons used in the
APIs are important to ease the developers’ comprehension. We claimed that
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Cloud computing lexicons reflect the nature of their APIs and the automatic
detection of “linguistic” antipatterns could further boost the adoption of Cloud
computing.

We presented three contributions. First, we introduced CloudLex, an app-
roach to build the lexicons of Cloud computing REST APIs, based on a con-
ceptual model and providing a toolkit to extract and analyse these lexicons.
Second, we extracted and studied the lexicons of 16 REST Cloud Computing
APIs. Finally, we analysed semantically the (anti)patterns in 1,297 URIs of the
142 services of the 16 Cloud providers.

We showed that the 16 APIs form a lexicon of 3,947 different terms
to express all provided services. We found that this lexicon contains a majority
of nouns, which are equally singular or plural, and are mainly in lower case,
following REST API best practices.

We observed that, although the 16 studied REST Cloud APIs describe the
some domain (Cloud computing), contrary to what one might expect, they do not
share a large number of common terms. In fact, 90% of the terms (3,561/3,947)
are used by only one provider, 5% of the terms (198/3,947) are adopted by
two providers, and the other 5% of the terms (198/3,947) are adopted by three
providers or more. Thus, we conclude that the 16 APIs are lexically heteroge-
neous, which point that there is not a consensus on which terms to use in Cloud
computing.

We also showed that, through our semantic analysis of the Cloud APIs, 54%
of the URIs follow the Contextualised Resource Names pattern, which is consid-
ered a good practice in API design. However, 62.82% of the URIs suffer from
the Non-pertinent Documentation antipattern. We also reported the detection
accuracy on one complete API, Docker Engine, with a global average precision
of 84.82% and a global average recall of 63.57% for an average F1-measure of
71.03%, which confirms the accuracy of our semantic analyses for the detection
of linguistic patterns and antipatterns.

In future work, we plan to build an ontology of Cloud computing APIs, estab-
lishing semantic joins between services and resources from different providers to
deal with semantic interoperability between Clouds. Further, future work is nec-
essary to analyze more REST APIs, from other Cloud providers, open-source
implementations, and standards to confirm and–or infirm our observations.
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