
Chapter 4
Master Equations Versus Keldysh
Green’s Functions for Correlated
Quantum Systems Out of Equilibrium

Enrico Arrigoni and Antonius Dorda

Abstract The goal of these lecture notes is to illustrate connections between two
widely used, but often separately adopted approaches to deal with quantum systems
out of equilibrium, namely quantum master equations and nonequilibrium Green’s
functions. For the paradigmatic case of the Anderson impurity model out of equilib-
rium we elaborate on these connections and map its description from one approach
to the other. At the end of this chapter, we will show how the “best of the two worlds”
can be combined to obtain a highly accurate solution of this model, which resolves
the nonequilibriumKondo physics down to temperatureswell below theKondo scale.
As a training course, these lectures devote a large portion to an introduction to the
Lindblad quantummaster equation based on standard treatments, as well as methods
to solve this equation. For nonequilibrium Green’s functions, which are discussed
in the first part of the course, we only provide a summary of the most important
aspects necessary to address the topics of the present chapter. The relevant aspects
of these two topics are presented in a self-contained manner so that a background in
equilibrium many-body physics is sufficient to follow these notes.

4.1 Introduction

The problem we address in these lectures consists of a small correlated central sys-
tem in which particles interact with each other, connected to external noninteracting
infinite reservoirs (leads), see Fig. 4.1.We focus here to the case of a purely fermionic
model, althoughmany ideas can be easily extended tomore general problems includ-
ing, e.g., electron-phonon interactions, photons, etc. We are typically interested in
the case of two leads with different chemical potentials and/or temperatures (see,
e.g. [1, 2]). Thus, a particle current flows from the lead with larger chemical poten-
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Fig. 4.1 Schematic illustration of the system of interest: A small interacting central system is
connected to two leadswith different chemical potentials and/or temperatures. The leads are infinite,
so that a stationary current flows from one lead to the other in the steady state

Fig. 4.2 Special case of the system depicted in Fig. 4.1: The single impurity Anderson Model out
of equilibrium. The central system consists of a single spin-degenerate level, with on-site Hubbard
interaction U . The coupling to the leads is provided by the hopping V

tial through the central system to the other lead, and, since the leads are infinite
they provide the dissipation necessary to reach a stationary state. As a paradigmatic
example, on which we will focus in the last part of this lecture, we consider the spe-
cial case of a central system consisting of a single interacting spin-degenerate level
with an onsite Hubbard interaction (Fig. 4.2), the single impurity Anderson model
(SIAM) [3–7] out of equilibrium. This model is, on the one hand, interesting per
se as a simple description of transport across quantum dots or small molecules and
for understanding the Kondo effect, and on the other hand, constitutes the “bottle-
neck” problem in the self-consistent cycle within nonequilibrium dynamical mean
field theory (DMFT) [8–24], see also previous chapters in this book. Therefore, an
accurate solution of impurity models is of great interest and importance.

While we will restrict mainly to the steady state, other related situations can be
treated with the approaches presented here and similar ones. For example, one can
include a periodic driving within a Floquet approach, or study quantum quenches in
which one is interested in the real time dynamics after a sudden change of parameters
(see Fig. 4.3).
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Fig. 4.3 Possible extensions: Time-dependent situations such as quantum quenches [15, 25], i.e.
sudden change of parameters, or periodically driven systems [11, 26–29] (left); or coupling to a
bosonic bath to account e.g. for electron phonon interaction [30–35] (right)

Limits in which the impurity problem can be solved

Numerous approaches have been developed in the past decades to address impurity
problems. For the case of a single reservoir, the steady state corresponds to thermo-
dynamic equilibrium. Dedicated methods such as numerical renormalization group
(NRG) were developed in order to resolve the challenging and exponentially small
low-energy physics of the model. As a result, the so-called Kondo effect (in equilib-
rium) is nowadayswell understood [7, 36–38]. For the nonequilibrium case a number
of numerical approaches have been suggested that are valid in specific limits, but a
“full solution” is not yet available. A discussion of all these approaches is beyond
the scope of these lectures.1 Instead, we present in Sect. 4.9 the so-called Auxil-
iary Master Equation Approach (AMEA) a non-perturbative approach devised and
developed in our group in recent years, which is based on a combination of quantum
master equation with nonequilibrium Green’s functions.

To startwith, let consider situations inwhichmodels of Figs. 4.1 and4.2 are exactly
solvable. Two trivial cases are (i) the noninteracting case U = 0, where one can use
nonequilibrium Green’s functions, and the decoupled case V = 0, for which one can
explicitly carry out an exact diagonalization of the many-body Fock space of the
small central system. But there is another less trivial limit in which an exact solution
is available, the so-calledMarkovian Limit. This is the case when the response of the
reservoir is instantaneous, i.e. without memory effects. In this limit, the reservoir’s
degrees of freedom can be eliminated and the dynamics of the reduced density matrix
of the central system is exactly described by the so-called Lindblad Equation. Since
the central system is small this can again be solved by exact diagonalization in the
space of many-body density matrices. This will be discussed in detail in Sect. 4.9.1.2.

Outline

The Lindblad equation is the main topic of the first part of the present lectures. More
specifically, we will:

1For a non-comprehensive list see, e.g., [21, 39–64].



124 E. Arrigoni and A. Dorda

(1) Provide a derivation of the Lindblad Equation, first heuristically in Sect. 4.4.1
and then rigorously in Sect. 4.4.4.

(2) Discuss under which condition a reservoir can be considered as Markovian
(Sect. 4.4.4). We will specify this explicitly in terms of the parameters of the
microscopic model. As anticipated, we will mainly concentrate on fermionic
models.

(3) Present some approaches to solve the many-body Lindblad equation for the non-
interacting and the interacting case. In particular, we shall present the so-called
superfermion representation [65] (Sect. 4.5), in which the space of density oper-
ators for the open system is replaced by a “superspace” of state vectors acting
on twice as many single-particle levels (see also [66, 67]). In this formalism,
the Lindblad equation acquires a structure like the Schrödinger equation, with
which many of us are more familiar.
In the noninteracting case, this linear operator problem can be solved by
equations-of-motion techniques, leading to an analytic expression for the steady-
state Green’s functions, see Sect. 4.9.1.1. In the interacting case we will discuss
the solution via exact diagonalization in Sect. 4.9.1.2.

Master Equation Approaches

Unfortunately, it turns out that the Markovian approximation is unrealistic for inter-
esting fermionic models. As we will see, a Markovian reservoir must have both
a constant density of states as well as an infinite temperature T and/or chemical
potential(s) μ.2 While these two conditions appear quite restrictive and unphysical,
a possible solution is to introduce an intermediate auxiliary buffer zone (mesoreser-
voir) between the Lindblad couplings and the central system (Sect. 4.8.1, see, e.g.
[65, 69, 70] and Fig. 4.4). The buffer zone consists of NB isolated discrete sites (bath
levels), each one coupled to a reservoir with a constant density of states that is either
completely filled μ = +∞ or completely empty μ = −∞. Therefore, these reser-
voirs fulfill the Markovian condition and the system can be exactly mapped onto a
Lindblad equation. With properly chosen parameters and for large enough NB, the
buffer layer plus Markovian reservoirs exactly describe an arbitrary non-Markovian
reservoir of noninteracting fermions coupled to the central system [71].3

Here comes the connectionwith nonequilibriumGreen’s functions4: Themodel as
depicted in the lower part of Fig. 4.4 can, on the one hand, be seen as a an open system
(the central system plus the buffer layer) whose dynamics is exactly controlled by the
Lindblad equation, and on the other hand, consists of a closed systemwith an infinite
number of fermionic levels, that can be (approximately) treated by nonequilibrium
Green’s functions. For the case of a noninteracting central system, an exact solution is
obviously available in both cases. This is shown in Sect. 4.9.1.1, where wewill derive
analytic expressions for the steady state Green’s functions in the noninteracting case.

2See also [68].
3For related discussions about non-Markovianity and open quantum systems, see e.g. [72–76].
4For similar discussions see, e.g. [52, 77].
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Fig. 4.4 Buffer layer
approach: Mapping the
original problem onto a
system with a finite number
of levels, connected in turn
to Markovian environments.
With appropriate choice of
the parameters, the mapping
becomes exact for NB → ∞

The problem we want to address, however, includes an interaction in the central
system, which makes an exact solution by Green’s function methods impossible. On
the other hand, the Lindblad equation for the open system can, in principle, be solved
exactly by approaches addressing the full many body space of density matrices, pro-
vided NB is small enough. This will be discussed in Sect. 4.9.1.2. Unfortunately,
the buffer layer representation discussed above is limited by the fact that an accu-
rate description of the original system requires quite large values NB, especially at
low temperatures where the Fermi function is sharp. Consequently, the many-body
Hilbert space is too large and the treatment of a correlated problem becomes pro-
hibitive.

In the last part of these lectures, Sect. 4.9, we will illustrate how the efficiency of
this buffer layer approach can be significantly improved by allowing formore general
Lindblad couplings [21, 63, 71, 78], which are determined through an optimization
procedure aiming at fitting the so-called bath hybridization function. For the case
of the nonequilibrium Anderson impurity model, Fig. 4.2, already modest values of
NB (NB � 8), which can be treated by Krylov-space schemes [63], are sufficient
to resolve the nonequilibrium behavior of the Kondo resonance. Larger values of
NB (NB � 20) can be addressed by matrix-product states [79–82] which allows to
resolve the Kondo peak at temperatures below the Kondo scale with an accuracy
that, in equilibrium, becomes comparable with NRG up to intermediate values of the
interaction U [78].5

4.2 Master Equations

Besides quantum problems, master equations are a central object in classical physics
in the context of stochastic processes. Examples are for instance Brownian motion

5More specifically, in [78] we resolved temperatures down to T/TK = 0.25 for TK = 0.2Γ .
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or any other subsystem coupled to a heat bath/environment. In such cases, when the
dynamics of a system is non-deterministic it is convenient to describe its state by
a probability density. For the case of stochastic processes which fulfill the Markov
property, i.e. which have a very short memory kernel and only depend on the present
state of the system, a master equation is applicable. For a thorough introduction we
refer e.g. to [83–85]. Here, we will follow the treatment by Schaller [84].

Let us consider here a discrete set of system states labeled by k and assign each
state a probability Pk . The temporal evolution of these probabilities is governed by
the rates Tkl ≥ 0 for a transition from state l to state k, and is described by the master
equation:

dPk

dt
=
∑

l

[TklPl − TlkPk ] (4.1)

In order for thePk to be interpreted as probabilities, at each time they have to obey two
properties: (i) Conservation of total probability

∑
k Pk = 1, and (ii) semipositivity

Pk ≥ 0 ∀k. Assuming that (i) and (ii) are fulfilled at some initial time, the master
equation must guarantee that these properties are preserved.
(i) can be proven as follows:

∑

k

dPk

dt
=
∑

kl

(TklPl − TlkPk) =
∑

kl

(TlkPk − TlkPk) = 0 . (4.2)

For (ii) one can argue in the following way. Assume that for a certain k∗, the corre-
sponding Pk∗ becomes zero at a certain time. Then

dPk∗

dt

∣∣∣∣
Pk∗ =0

= +
∑

l

Tk∗lPl ≥ 0 . (4.3)

Therefore, Pk∗ cannot become negative.

Example Consider the temporal dynamics of a two level system with transition rate
T10 from state k = 0 to state k = 1 and rate T01 for the inverse process. The master
equation (4.1) is in matrix form then given by

d

dt

(
P0

P1

)
=
(−T10 +T01

+T10 −T01

)(
P0

P1

)
. (4.4)

The stationary (steady-state) solution P∞
i is obtained by setting the left-hand side to

zero, yielding

P∞
0 = T01/ (T01 + T10) ,

P∞
1 = T10/ (T01 + T10) . (4.5)
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The two eigenvalues of the matrix on the right-hand side of (4.4) are 0 and −λ =
−T01 − T10. The former corresponds to the stationary solution and λ determines the
decay rate in the time evolution. The full time-dependent solution of (4.4) is easily
seen to be

P0(t) = P0(0)e
−λt + P∞

0

(
1 − e−λt

)
,

P1(t) = P1(0)e
−λt + P∞

1

(
1 − e−λt

)
. (4.6)

4.3 Density Matrix

Open quantum systems consist of a microscopic quantum mechanical central sys-
tem of interest which couples, possibly weakly, with an environment. Due to the
entanglement with the environment, the properties of the central system cannot be
described by a quantum state alone, but rather require the concept of reduced density
matrix. The same concept is also needed if the quantum state of the central system is
not known exactly due to a statistical uncertainty. A general mixed system state can
be characterized by an ensemble of states {|Φi〉} which are realized with probability
Pi. Here

∑
i Pi = 1 and the states are normalized but not necessarily orthogonal.

Such a mixed quantum state is conveniently described in terms of the density matrix
(or density operator)

ρ =
∑

i

Pi|Φi〉〈Φi| . (4.7)

The expectation value of an operator A for the system is then given by

〈A〉 =
∑

i

Pi〈Φi|A|Φi〉

=
∑

i,n

Pi〈Φi|n〉〈n|A|Φi〉 (4.8)

=
∑

n

〈n|A
∑

i

Pi|Φi〉〈Φi|
︸ ︷︷ ︸

Density matrix

n〉

= TrAρ .

ρ must fulfill the following properties:

〈1〉 = 1 ⇒ Trρ = 1 Normalization
ρ = ρ† Hermiticity
〈ψ |ρ|ψ〉 = ∑

i Pi|〈ψ |Φi〉|2 ≥ 0 ∀|ψ〉 (Semi) positivity: ρ ≥ 0
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If the system is characterized by a single quantum mechanical state with probability
1, the density matrix describes a so-called pure state for which

ρ = |Φi〉〈Φi| ⇒ ρ2 = ρ. (4.9)

On theother hand, for a general non-pure (mixed) stateρ = ∑
n Pn|ψn〉〈ψn| expanded

in its eigenbasis6 one finds

Trρ2 =
∑

m,n,k

〈ψm|ψn〉〈ψn|ψk〉〈ψk |ψm〉PnPk

=
∑

n

P2
n ≤ 1. (4.10)

Therefore, a system is in a pure state if and only if

Trρ2 = 1 (4.11)

so that Trρ2 is a measure for the degree of purity of the state [86].

4.3.1 Time Dependence

The time evolution of the densitymatrix ρ for a closed quantum system is determined
by the Liouville von Neumann Equation7:

ρ̇ =
∑

i

Pi
(|Φ̇i〉〈Φi| + |Φi〉〈Φ̇i|

)

= −i[H , ρ] , (4.12)

which can be easily obtained by applying the Schrödinger equation for |Φ̇i〉, and
using Ṗi = 0. Notice that (4.12) is similar to the Heisenberg time evolution for an
operator, Ȧ = +i[H ,A], however, the sign is opposite.

It is easy to verify that (4.12) preserves normalization, Hermiticity and semipos-
itivity of the density matrix:

Trρ = 1 ρ = ρ† ρ ≥ 0 , (4.13)

An important example for a nonunitary evolution is a measure operation. Let us
consider the spectral representation of a generic operator A,8

6In contrast to the |Φi〉 in (4.7) the |ψn〉 are orthogonal to each other.
7From now on we will adopt units in which � = 1.
8In these lectures, we will not explicitly mark operators with a hat “ˆ” except when there is a risk
of confusion.
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A =
∑

n

anP̂n,

P̂n ≡ |an〉〈an|, (4.14)

with P̂n the projection operators onto the eigenstates |an〉, of A, i.e. A|an〉 = an|an〉.
Quantum mechanics tells us that if one measures A on a pure state |Φi〉, the value an
is obtained with probability Pn = |P̂n|Φi〉|2, and the state collapses to

|Φi〉 → P̂n|Φi〉√
Pn

. (4.15)

Therefore, when starting from ρ = |Φi〉〈Φi| and performing a measure without
looking at the result one gets an ensemble of states with the probabilities Pn, i.e.

ρ
Measure−−−−→

∑

n

Pn

(
P̂n|Φi〉√

Pn

)(
〈Φi|P̂n√

Pn

)

=
∑

n

P̂n|Φi〉〈Φi|P̂n =
∑

n

P̂nρP̂n . (4.16)

Clearly, the last line of (4.16), the von Neumann measure, holds also in the case in
which one starts from a mixed state ρ. Also in the case of a von Neumann measure,
the properties (4.13) are preserved.

Unitary evolution and von Neumann measure are two examples of quantum oper-
ations, i.e. linear time evolutions for the density matrix.

Example The density matrix of a spin 1/2 system, or any other two-state quantum
system, can be represented in terms of the so-called Bloch sphere. The density matrix
for such a system can be expressed in terms of the identity I and the Pauli matrices σ

ρ = 1

2
(I + α · σ ), (4.17)

with α an appropriate vector with real coefficients. From

Trρ2 = 1

4
Tr
(
I + 2α · σ + (α · σ )2

)

= 1

4
(2 + 2|α|2) , (4.18)

using Trσiσj = 2δij, one finds that |α| = 1 describes a pure state, while a mixed state
has |α| < 1.
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4.3.2 Reduced Density Matrix

Open quantum systems consist of amicroscopic system embeddedwithin a reservoir,
see also Fig. 4.5. In general, one is not interested in the properties of the reservoir
itself, however, the latter affect the dynamics of the system. Ideally, one would
like to eliminate the degrees of freedom of the reservoir and obtain an effective
description for the system alone. Due to the entanglement with the reservoir, the
system’s quantum mechanical state must be formulated in terms of the so-called
reduced density matrix, which, quite generally, describes a mixed state.

The combined Hilbert space of the so-called “universe” (= system + reservoir) is
given by the tensor product space of the system and the reservoir Hilbert spacesHS

and HR:
HU = HS ⊗ HR. (4.19)

A basis of HU is {|Si〉 ⊗ |Rα〉}, where {|Si〉} is a basis of HS and {|Rα〉} a basis of
HR. For simplicity, we will use alternative equivalent notations

|Si〉 ⊗ |Rα〉 ↔ |Si〉|Rα〉 ↔ |Si,Rα〉 , (4.20)

and for the bra counterparts

〈Si| ⊗ 〈Rα| ↔ 〈Si|〈Rα| ↔ 〈Si|〈Rα| .

Let us recall the following important properties of the tensor product:

• Distributivity:

(|a〉 + |b〉) ⊗ |c〉 = |a〉 ⊗ |c〉 + |b〉 ⊗ |c〉
= |a, c〉 + |b, c〉 (4.21)

• Operators act only on states in their corresponding subspace:

(A ⊗ B)|x〉 ⊗ |y〉 = (A|x〉) ⊗ (B|y〉) (4.22)

Fig. 4.5 Open system embedded into a reservoir. The Hilbert space for the full “universe” is given
byHU = HS ⊗ HR, for which a pure state description in terms of a wave function is possible. Due
to particle/energy exchange between the system and the reservoir this is not true for HS and HR
separately, which requires a description in terms of density matrices
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• Scalar Product:
(〈a| ⊗ 〈b|) ⊗ (|x〉 ⊗ |y〉) = 〈a|x〉〈b|y〉 (4.23)

As noted above, the set of product states (4.20) provides a complete basis forHU .
However, a generic state in HU will not factorize in simple product states in terms
of the system and the reservoir separately. One then speaks of entangled states. As
an example, let us consider two basis states for the system and the reservoir each,
|Si〉 and |Rα〉, i, α = 1, 2 and the following two states:

|ψP〉 = |S1〉|R1〉 + |S2〉|R1〉
= (|S1〉 + |S2〉)|R1〉, (4.24)

and

|ψE〉 = |S1〉|R1〉 + |S2〉|R2〉
�= |a〉|b〉. (4.25)

While |ψp〉 is a product state, the latter is not.
From the properties (4.22) and (4.23) one can compute the trace of a tensor product

operator Ô = Â ⊗ B̂ as

TrÔ =
∑

i,α

〈Si,Rα|Ô|Si,Rα〉

=
∑

i,α

〈Si|Â|Si〉〈Rα|B̂|Rα〉

= TrÂ︸︷︷︸
TrS

TrB̂︸︷︷︸
TrR

. (4.26)

In the last line we introduced the partial traces over either system or reservoir states,
defined as:

TrS Ô =
∑

i

〈Si|Ô|Si〉,

TrR Ô =
∑

α

〈Rα|Ô|Rα〉.

(4.27)

Let us consider for instance the operator Ô = |S〉〈S ′| ⊗ |R〉〈R′| and evaluate

TrRÔ = |S〉〈S ′|
∑

α

〈Rα|R〉〈R′|Rα〉

= |S〉〈S ′|TrR|R〉〈R′|. (4.28)



132 E. Arrigoni and A. Dorda

From this one sees that the partial trace TrR produces an operator acting inHS alone.
An explicit expression for the partial trace of an arbitrary operator Ô expanded in
the product basis (4.20)

Ô =
∑

i,α,j,β

Oi,α,j,β |Si〉|Rα〉〈Sj|〈Rβ |

can be readily obtained as

TrRÔ =
∑

i,j

(
∑

α

Oi,α,j,α

)
|Si〉〈Sj|. (4.29)

Ifwe are interested in observables of the systemonlywe can restrict to the system’s
reduced density matrix

ρS = TrRρ, (4.30)

which is obtained as the partial trace of the density matrix ρ of the universe over the
reservoir degrees of freedom. Indeed, the expectation value of an arbitrary operator
A ⊗ I acting on the system only can be expressed as

〈A ⊗ I〉 = Tr {(A ⊗ I)ρ}
=
∑

i,α

(〈Si|A ⊗ 〈Rα|) ρ (|Si〉 ⊗ |Rα〉)

=
∑

i

〈Si|A
∑

α

〈Rα|ρ|Rα〉|Si〉 (4.31)

=
∑

i

〈Si|A(TrRρ)|Si〉

= TrSAρS ,

which is valid for any system operator A. The reduced density matrix, thus, contains
all the necessary information to compute system properties. Quite generally, for the
universe one can assume that the density matrix is represented by a pure state ρ =
|ψ〉〈ψ |. On the contrary, the reduced system density matrix ρS = TrR|ψ〉〈ψ | only
describes a pure state if the universe wave function is a product state: |ψ〉 = |R〉|S〉.
In the general case, when |ψ〉 is entangled, ρS describes a mixed state with Trρ2

S < 1.
On the other hand, for every given system density matrix ρS one can always

construct a “sufficiently large” universe HU = HS ⊗ HR such that

ρS = TrR|ψ〉〈ψ | , (4.32)

and with |ψ〉 a pure state. This procedure is termed purification. For example, sup-
pose we have ρS = ∑N

n=1 Pn|Φn〉〈Φn|. In this case one needs a reservoir with an
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N -dimensional orthonormal basis set {|Rn〉}. A universe wave function |ψ〉 satisfy-
ing (4.32) is then, for instance, given by

|ψ〉 =
∑

n

√
Pn|Φn〉 ⊗ |Rn〉 .

Proof

TrR|ψ〉〈ψ | =
∑

n,m

√
Pn

√
Pm|Φn〉〈Φm|TrR|Rn〉〈Rm|︸ ︷︷ ︸

δn,m

.

= ρS

The above examples show that there can be two situations in which the quantum
mechanical state |ψ〉 is not sufficient to describe a microscopic system and one needs
a density matrix:

1. The exact state is not known, only its statistical distribution.
2. The system is entangled with a reservoir.

In the rest of these lectures we will be interested in the second case.

4.4 Lindblad Equation

As discussed in the previous section, the reduced density matrix contains all possible
information about amicroscopic systemeven if it is in contact (entangled)with a large
reservoir. This is obviously a big advantage since one has to deal with a much smaller
Hilbert space, without caring about the much larger reservoir. However, computing
the time evolution of the reduced densitymatrix is again a prohibitive task.Whenever
there is a coupling between system and environment, ρS does not evolve according
to the Liouville equation (4.12). To find its time evolution one should first evolve the
densitymatrix of the universe ρ, which follows the Liouville equation, and then carry
out the partial trace (4.29). The intermediate step, thus, involves again addressing the
full universe Hilbert space. It would be useful if, under some conditions, one could
work in the restricted subspace of the system reduced density matrices including the
action of the reservoir in some effective way. In this section, we are going to show
that within the so-called Markovian condition one can indeed formulate the time
evolution of the reservoir within a closed time evolution equation for ρS , the Lindblad
equation. In Sect. 4.4.4 we will present a microscopic derivation of the Lindblad
equation in the so-called strong-coupling limit, and discuss under which conditions,
in terms of the parameters of the microscopic model, this equation provides an exact
description of the effects of the environment. A microscopic derivation, as well as a
derivation obtained by the conventional Markovian assumption based on so-called
Kraus operators can be found in several textbooks, see, e.g. [83–85, 87, 88]. Here
we will roughly follow the treatments of [84, 88].
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But before becoming rigorous, we first present a heuristic derivation based on the
master equation discussed in Sect. 4.2.

4.4.1 Heuristic Derivation

A situation described in Sect. 4.3 in which one has a set of quantum-mechanical
states |k〉 occupied with probabilities Pk (also called populations) is described by
a density matrix with diagonal elements ρk,k = Pk . As a consequence, the Master
equation (4.1) can be rewritten as

dρkk

dt

∣∣∣∣
Master

=
∑

l

(Tklρll − Tlkρkk), (4.33)

The transitions between different states in (4.33) can be expressed in terms of jump
operators

Ĵkl = |k〉〈l|. (4.34)

This allows to express (4.33) in operator form

d ρ̂

dt

∣∣∣∣
Master

=
∑

l,k

(Tkl Ĵkl ρ̂Ĵ
†
kl − Tlk Ĵkk ρ̂). (4.35)

In order to have an expression which is quadratic in Ĵ , we rewrite Ĵkk = ĴknĴnk =
Ĵ †
nk Ĵnk with arbitrary n. Accordingly, the term Ĵkk ρ̂ can be written in several forms,
for instance Ĵ †

lk Ĵlk ρ̂ or ρ̂Ĵ †
lk Ĵlk . While these give the same result for the diagonal terms

(4.33), different results are obtained for the nondiagonal terms. We here choose9 the
symmetrized form

Ĵkk ρ̂ → 1

2

{
Ĵ †
lk Ĵlk , ρ̂

}
, (4.36)

leading to

d ρ̂

dt

∣∣∣∣
Master

=
∑

l,k

Tkl

(
Ĵkl ρ̂Ĵ

†
kl − 1

2

{
Ĵ †
kl Ĵkl, ρ̂

})
. (4.37)

We now replace the jump operators by arbitrary operators

Jkl → S̄n

9Remember, this is just a non-rigorous derivation.
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with corresponding coefficients

Tkl → γ̄n

and omit the “hats” for the sake of readability. In addition to the master equation
(4.33), which describes changes in population of the states, one has to include the
Liouville vonNeumann contribution (4.12) originating from the internalHamiltonian
dynamics, which leads to

dρ

dt
= −i [H , ρ] +

∑

n

γ̄n

(
S̄nρS̄

†
n − 1

2

{
S̄†
n S̄n, ρ

})
. (4.38)

This is the Lindblad equation in diagonal form.
The positivity of probabilities is ensured by using nonnegative coefficients γ̄n.

This allows them to be absorbed into the definition of the S̄n operators

Γn = √
γ̄nS̄n, (4.39)

so that (4.38) can be written as

dρ

dt
= −i [H , ρ] +

∑

n

(
ΓnρΓ †

n − 1

2

{
Γ †
n Γn, ρ

})
. (4.40)

Besides the diagonal form (4.40), also a non-diagonal one is often adopted:

dρ

dt
= −i [H , ρ] +

∑

αβ

γαβ

(
SβρS†

α − 1

2

{
S†

αSβ, ρ
})

, (4.41)

where the coefficient matrix γαβ is Hermitian and semi-positive definite. As can
be easily checked, the two forms are linked by the eigen decomposition γαβ =∑

n U
†
α,nγ̄nUn,β and the linear combination S̄n = ∑

α Un,αSα .
The Lindblad equations (4.38), (4.40) and (4.41) can be formally written in the

following form

d ρ̂

dt
= ˆ̂Lρ̂

= ˆ̂LH ρ̂ + ˆ̂LDρ̂. (4.42)

Here, we have introduced a notation with two hats to indicate a superoperator ( ˆ̂L),
i.e. a linear transformation in the space of operators (here density matrices). As for
operators, we will use the “hat” notation only when necessary in order to avoid

confusion. In (4.42) ˆ̂LH describes the Liouville von Neumann contribution and thus
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unitary time evolution, while ˆ̂LD is the so-called dissipator. It is straightforward to
prove (see, e.g. [83, 84]) that the Lindblad equation preserves the properties of the
density matrix, namely

Trρ = 1 ρ = ρ† ρ ≥ 0 . (4.43)

4.4.2 Solution of the Lindblad Equation by Exact
Diagonalization

The formal solution of the linear equation (4.42), for the case of a time-independent
ˆ̂L, is obtained in the usual way:

ρ̂(t) = e
ˆ̂Lt ρ̂(0). (4.44)

Or, in terms of the eigenoperators ρ̂(α) and corresponding eigenvalues Lα of ˆ̂L,
satisfying

ˆ̂Lρ̂(α) = Lαρ̂(α), (4.45)

one has
ρ̂(t) =

∑

α

cαρ̂(α)eLα t, (4.46)

where the cα are fixed by the initial t = 0 condition. Since ˆ̂L is non-Hermitian its
eigenvalues are complex, so we write them as

Lα = Rα + iIα. (4.47)

From (4.46) we readily see that we must have Rα ≤ 0 since otherwise there would
be unphysical exponential divergences at large times. The coefficients −Rα are the
decay rates of the exponentially damped modes described by the corresponding ρ̂(α).
In order for the trace to be preserved, at least one eigenvalue, say the one with α = 0,
is expected to be zero,10 Lα=0 = 0. Then ρ̂(α=0) corresponds to the stationary or
steady state which survives in the long-time limit.

Alternatively, instead of addressing the full “doubled” many-body space of the
density matrix, one can use quantum trajectory methods [82, 89–92], whereby the
density matrix is replaced by an ensemble of quantum states and the dissipative terms
of the Lindblad equation produces so-called quantum jumps.

10Or one or more must have Rα = 0.
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4.4.3 Fermionic Model Described by the Lindblad Equation

We are here interested in the situation of a fermionic central system connected to
a reservoir of non-interacting fermions. We will later show that under some condi-
tions, the action of the reservoir can be described by a correction to the system’s
Hamiltonian (Lamb shift) plus a dissipator [cf. (4.41)]

LDρ =
∑

i,j

2Γ1ij

(
ajρa

†
i − 1

2

{
a†i aj, ρ

})

+
∑

i,j

2Γ2ij

(
a†i ρaj −

1

2

{
aja

†
i , ρ

})
.

(4.48)

Here, ρ is the reduced density matrix of the central system. This becomes an exact
description of the reservoir in particular limits, as discussed below. The terms in
(4.48) proportional to Γ1ij with jump operators aj describe particles jumping from
the central system into the reservoir. The ones withΓ2ij describe the opposite process,
namely particles jumping from the reservoir into the central system.

Example As an example, consider a single-level model [(4.48) with no indices
i and j], for which the Hamiltonian reads

H = εa†a. (4.49)

By explicitly solving for the steady-state of theLindblad equation it is straightforward
to show that the steady state occupation reads

〈a†a〉 = Γ2

Γ1 + Γ2
(4.50)

4.4.4 Microscopic Derivation of the Lindblad Equation

In this section we will provide an explicit derivation of (4.41) starting from a micro-
scopic model describing a central system coupled to a reservoir. In (4.41), ρ is the
reduced density matrix of the central system after tracing out the reservoir. This topic
has been treated in a number of textbooks. Here, we roughly follow [84, 88].

We start from a “universe” consisting of a central system +reservoir and described
by the following Hamiltonian

H = HS ⊗ I + I ⊗ HR + V = H0 + V . (4.51)

Here, HS (HR) is the Hamiltonian for the isolated central system (reservoir), and V
is the coupling between the two. The latter can always be expressed in terms of a
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sum of tensor products of system (Sα) and reservoir (Rα) operators:

V = v
∑

α

Sα ⊗ Rα. (4.52)

The parameter v is introduced for convenience as a measure for the strength of the
coupling V , and will be used later in order to discuss the range of validity of the
Lindblad equation. v is chosen in such a way that the operators Sα and Rα are of
order 1. The full density matrix ρ for the (closed) universe obeys the Liouville-von
Neumann equation

ρ̇ = −i [H0 + V, ρ] . (4.53)

The goal is to integrate out the reservoir degrees of freedom in order to arrive at an
effective time evolution equation for the reduced density matrix

ρS(t) = TrRρ(t), (4.54)

which only depends on system operators and ρS(t) itself. As we will show on the
next pages, under certain conditions one gets an equation of Lindblad form

d ρ̂S(t)

dt
= ˆ̂Lρ̂S(t). (4.55)

A central aspect is that this equation is time local, which is a consequence of the
so-called Markovian assumption for the reservoirs’ dynamics, see below, so that
memory effects are neglected.

A trivial limit is the decoupled case V = 0. Here, the time evolution for ρS(t) is
unitary and the Lindblad equation is given by

d

dt
ρ̂S = −i

[
ĤS , ρ̂S

]
. (4.56)

Introducing the density matrix in the interaction picture

ρ̄(t) ≡ eiH0tρ(t)e−iH0t, (4.57)

Equation (4.53) can be rewritten as

˙̄ρ = −i
[
V̄ (t), ρ̄

]
, (4.58)

where

V̄ (t) = eiH0tV e−iH0t

= v
∑

α

Sα(t) ⊗ Rα(t), (4.59)
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is the system-reservoir coupling in the interaction picture, and the time evolution
of Sα(t)11 is determined by its corresponding unperturbed Hamiltonian, i.e. Sα(t) =
eiHS tSαe−iHS t , and similarly for Rα .

4.4.4.1 Born Markov Approximation

According to (4.58), the time evolution for a small step Δt is given by

ρ̄(t + Δt) = −i
∫ t+Δt

t

[
V̄ (t′), ρ̄(t′)

]
dt′ + ρ̄(t). (4.60)

This equation can be iterated by inserting for ρ̄(t′) again (4.60), leading to

Δρ̄(t) = −i
∫ t+Δt

t

[
V̄ (t′), ρ̄(t)

]
dt′ −

∫ t+Δt

t
dt′
∫ t′

t
dt′′
[
V̄ (t′),

[
V̄ (t′′), ρ̄(t′′)

]]
,

(4.61)

where Δρ̄(t) ≡ ρ̄(t + Δt) − ρ̄(t). We now split ρ̄ in the following way:

ρ̄(t) = ρ̄S(t) ⊗ ρ̄R0(t) + δρ̄corr(t), (4.62)

where, ρ̄S(t) ≡ TrRρ̄(t) is the system’s reduced density matrix, ρ̄R0(t) the unper-
turbed (V = 0) reservoir density matrix, and δρ̄corr the rest, which accounts for
correlations between system and reservoir. ρ̄R0(t) is chosen to commute with HR,
so that it is time independent ρ̄R0(t) → ρR. This is not a major restriction and, for
example, this is the case for the equilibrium distribution ρR ∝ e−βHR .

The main approximation now will be to neglect δρ̄corr . In Sect. 4.4.4.3 we will
discuss under which conditions and in what sense this is justified. With this approx-
imation, (4.61) becomes

Δρ̄S(t) = −i
∫ t+Δt

t
dt′TrR

[
V̄ (t′), ρ̄S(t

′) ⊗ ρR
]

−
∫ t+Δt

t
dt′
∫ t′

t
dt′′TrR

[
V̄ (t′),

[
V̄ (t′′), ρ̄S(t

′′) ⊗ ρR

]]
.

(4.63)

The first term on the r.h.s. of (4.63) can generally be taken to be zero. Specifically,
this part contains terms of the form

TrRRα(t′)ρR = TrRRαρR = rα, (4.64)

11We omit the bar used to indicate the interaction picture here, since this is already clear from the
time dependence.
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and the numbers rα can be chosen without restriction to be zero. Indeed, for nonzero
rα one may introduce new reservoir operators

R′
α = Rα − rα 1, (4.65)

which yield TrRR′
αρR = 0. The coupling Hamiltonian (4.52) becomes

V = v
∑

α

(
R′

α ⊗ Sα + rαSα

)
, (4.66)

and the term v
∑

α rαSα can be reabsorbed into HS .
To get a useful expression out of the remaining term in (4.63) (second line), we

need to introduce theMarkov approximation. In order to understand it, let us denote
by TS the time scale over which the system, i.e. ρ̄S , changes due to the interaction
with the environment. In terms of ρ̄S this is clearly given by

TS ∼
( |Δρ̄S |

Δt

1

|ρ̄S |
)−1

, (4.67)

where | · · · | is some suitable measure. We now take Δt, which up to now can be
chosen arbitrarily, to be

Δt � TS . (4.68)

In this way, since the variation of ρ̄S(t′′) for t ≤ t′′ ≤ t + Δt is negligible, one can
replace in (4.63) ρ̄S(t′′) → ρ̄S(t). With this one obtains from (4.63) the coarse-
grained derivative

Δρ̄S(t)

Δt
= − 1

Δt

∫ t+Δt

t
dt′
∫ t′

t
dt′′ TrR

[
V̄ (t′),

[
V̄ (t′′), ρ̄S(t) ⊗ ρR

]]
. (4.69)

This equation looksMarkovian, as ρ̄S(t) is time local and there is no memory on the
past. However, this is valid only in a very small interval Δt, and we will see below
that Δt cannot be taken arbitrarily small.

4.4.4.2 Reservoir Correlation Functions

Equation (4.69) contains terms of the form

TrRRα(t′)Rβ(t′′)ρR ≡ Cαβ(t′ − t′′), (4.70)

and permutations thereof. Here, we have again exploited time translational invariance
of the reservoir. Provided the reservoir is infinite, its correlation functions Cαβ(τ )
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decay with a characteristic time scale τR. As we will see, in order to be able to neglect
δρ̄corr , one must have

τR � Δt. (4.71)

This has to be supplemented with the previous requirement Δt � TS . More specifi-
cally, we will see (cf. [88]) that if (4.71) is fulfilled, the contribution from δρ̄corr are
canceled from coarse graining on the scale Δt.

Introducing the time difference τ = t′ − t′′ ∈ (0,Δt), the integrals in (4.69) can
be rewritten as ∫ Δt

0
dτ

∫ t+Δt

t+τ

dt′ . . . . (4.72)

The integrand contains terms Cαβ(τ ), which decay in a time τR � Δt. Therefore, it
is safe to change the boundaries of the integrals to

∫ ∞

0
dτ

∫ t+Δt

t
dt′ . . . (4.73)

With the explicit form of the coupling Hamiltonian (4.52), (4.69) becomes

Δρ̄S(t)

Δt
= −

∫ ∞

0
dτ

1

Δt

∫ t+Δt

t
dt′v2

∑

αβ

{
Sα(t′)Sβ(t′ − τ)ρ̄S(t)Cαβ(τ )

−Sα(t′)ρ̄S(t)Sβ(t′ − τ)Cβα(−τ)

−Sβ(t′ − τ)ρ̄S(t)Sα(t′)Cαβ(τ )

+ρ̄S(t)Sβ(t′ − τ)Sα(t′)Cβα(−τ)

}
.

(4.74)

From here we shall omit to explicitly indicate the time argument for ρ̄S(t). Equa-
tions (4.74) in turn can be rewritten in terms of commutators as

Δρ̄S

Δt
= −

∫ ∞

0
dτ

1

Δt

∫ t+Δt

t
dt′v2

∑

αβ

{
Cαβ(τ )

[
Sα(t′), Sβ(t′ − τ)ρ̄S

]

+Cβα(−τ)
[
ρ̄SSβ(t′ − τ), Sα(t′)

]}
,

(4.75)

and we are now in the position to determine the order of magnitude of (4.75). As
stated above, τR is assumed to be the characteristic decay time of Cαβ(τ ), (4.70).
Since the involved operators Rα and ρR are of O(1), one can estimate

∫ ∞

0
dτ Cαβ(τ ) ∼ τR. (4.76)
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Since also the Sα ∼ O(1) we can estimate

1

TS
∼ |Δρ̄S |

Δt

1

|ρ̄S | ∼ τRv
2. (4.77)

The two conditions (4.68) and (4.71) become

τR � Δt � 1

τRv2
, (4.78)

which brings us to the necessary condition

τR v � 1. (4.79)

In terms of energy scales (4.78) reads

WR ≡ 1

τR
� 1

Δt
� v2τR ≡ ΓS = 1

TS
. (4.80)

Here,WR is the typical energy scale of the reservoir controlling its relaxation rate, e.g.
the bandwidth or chemical potential μ, and ΓS is a measure for the system-reservoir
coupling which will be related to the system’s relaxation rate. From (4.79) we have
the requirement

WR � v. (4.81)

A further scale is the typical spacing ΔεS of the system’s energies. Depending on its
magnitude there can be two situations

(1) ΔεS � ΓS → weak coupling limit: One then takes

ΔεS � 1

Δt
� ΓS , (4.82)

which leads to the so-called secular approximation, [83] which we are not going
to discuss here.

(2) WR � ΔεS → singular coupling limit: Formally this is obtained by rewrit-
ing (4.51) as

H = HS + 1

δ
V + 1

δ2
HR, (4.83)

and taking δ → 0.

Of course one can, in principle, have both situations at the same time, provided

WR � ΔεS � 1

Δt
� ΓS . (4.84)
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In these lectures we focus on the second case. The interesting situation is especially
when ΓS ∼ ΔεS , so that the action of the environment on the system cannot be
regarded as small. Here we have

1

τR
≡ WR � 1

Δt
� ΔεS ∼ ΓS . (4.85)

We now return to the evolution equation for ρ̄S(t), (4.75). Let us consider the
eigenvectors |n〉 with eigenvalues εn of the system Hamiltonian in terms of which
the time dependence of the system operators can be rewritten as

Sα(t′) =
∑

m,n

|n〉〈m|〈n|Sα|m〉ei(εn−εm)t′ , (4.86)

see also (4.59). The integration in (4.75) has to be evaluated in the range τ ∈ (0, τR)
and t′ − t ∈ (0,Δt), which allows one to approximate

(εn − εm)t′ ∼ (εn − εm)(t′ − τ) ∼ (εn − εm)t, (4.87)

since ΔεS Δt � 1 due to (4.85). Therefore, the detailed t′- and τ -dependence of
Sα can be neglected and we can replace Sα(t′) and Sα(t′ − τ) in (4.75) by Sα(t).
This allows us to pull out the t-dependent terms and the integration 1

Δt

∫ t+Δt
t dt′ → 1

can be dropped. We denote the remaining integrals over the reservoir correlation
functions by

C±
αβ ≡

∫ ∞

0
Cαβ(±τ)dτ. (4.88)

Furthermore, one can formally interpret Δρ̄S/Δt on the lhs of (4.75) as a derivative
dρ̄S/dt. The t-dependent terms in (4.75) are of the form

Sα(t)Sβ(t)ρ̄S(t) = eiHS tSαe
−iHS t

︸ ︷︷ ︸
Sα(t)

eiHS tSβ e
−iHS t ρ̄S(t)e

iHS t

︸ ︷︷ ︸
ρS (t)

e−iHS t

= eiHS tSαSβρS(t)e
−iHS t . (4.89)

We now transform the derivative from the interaction to the Schrödinger representa-
tion. From differentiating

ρ̄S(t) = eiHS tρS(t)e
−iHS t, (4.90)
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one finds

dρ̄S(t)

dt
= eiHS t

(
i [HS , ρS ] + dρS

dt

)
e−iHS t, (4.91)

⇒ dρS

dt
= −i [HS , ρS ] + e−iHS t

dρ̄S(t)

dt
eiHS t, (4.92)

where we omitted the time argument of ρS(t), and the terms e−iHS t . . . eiHS t cancel
the ones eiHS t . . . e−iHS t in (4.89). We thus get from (4.75) and (4.92)

dρS

dt
= −i [HS , ρS ] − v2

∑

αβ

(
C+

αβ

[
Sα, SβρS

]+ C−
αβ

[
ρSSα, Sβ

])
, (4.93)

with C±
αβ given in (4.88). Furthermore, by defining

Cαβ ≡ C+
αβ + C−

αβ =
∫ ∞

−∞
Cαβ(τ )dτ (4.94)

C̄αβ ≡ C+
αβ − C−

αβ =
∫ ∞

−∞
sgn(τ )Cαβ(τ )dτ, (4.95)

one arrives at

dρS

dt
= − i [HS , ρS ] + v2

∑

α,β

Cαβ

(
SβρSSα − 1

2
{SαSβ, ρS}

)

− v2
∑

α,β

C̄αβ

1

2

[
SαSβ, ρS

]
.

(4.96)

This expression can be rewritten in a more convenient form when explicitly con-
sidering that the coupling Hamiltonian V in (4.52) is Hermitian and, thus, can be
rewritten as

V = v
∑

α

Sα ⊗ Rα (4.97)

= v
∑′

α

(
Sα ⊗ Rα + S†

α ⊗ R†
α

)
, (4.98)

where the
∑′

α
is such that the two expressions coincide. Introducing α indices in

such a way that

Sα = S†
α Rα = R†

α, (4.99)
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as well as new coefficients

γαβ ≡ Cαβv
2, iσαβ ≡ −v2C̄αβ, (4.100)

we can rewrite (4.96) as (we omit the prime from the sum from now on)

dρS

dt
= −i

[
H̃S , ρS

]+
∑

αβ

γαβ

(
SβρSS

†
α − 1

2
{S†

αSβ, ρS}
)

≡ LHρS + LDρS . (4.101)

Here,

H̃S = HS + 1

2

∑

αβ

σαβSαS
†
β. (4.102)

Equation (4.101) is just the Lindblad equation (4.41) stated before, provided the
coefficient matrix γαβ is Hermitian and semipositive definite and σαβ is Hermitian,
which is straightforward to prove. As a side remark, the same form of the Lindblad
equation is obtained in the weak-coupling limit (4.82), see, e.g. [83, 84, 87].

As mentioned before, L = LH + LD is the Lindblad superoperator. It consists of
a unitary part LH , which simply provides a correction [the so-called “Lamb shift”
cf. (4.102)] to the system Hamiltonian, and of the dissipatorLD. Furthermore, notice
that the Lindblad equation is Markovian since dρS(t)/dt only depends on ρS(t), i.e.
there are no contribution from the past values of ρS(t).

4.4.4.3 Validity of Neglecting δρ̄corr

In order to derive the pleasant equation (4.101) we introduced the quite drastic
approximation of neglecting correlations between system and environment described
by δρ̄corr. Fortunately, one can readily show that this is justified without the need to
introduce further assumptions beyond the ones we have already made in (4.85).

We follow the discussion of [88]. The correction term, as defined in (4.62),
accounts for both correlations as well as changes in ρR. When including δρ̄corr in
(4.63), it enters in the first term on the r.h.s. and leads to the modification δΔρ̄S , of
Δρ̄S :

δΔρ̄S = −i TrR

∫ t+Δt

t

[
V̄ (t′), δρ̄corr(t)

]
dt′. (4.103)

Let us consider some initial time t0 < t at which δρ̄corr(t0) = 0, e.g. t0 → −∞.
During the time evolution this term becomes nonzero due to V , and to first order in
v we have
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δρ̄corr(t) ∼
∫ t

−∞
dt′′V̄ (t′′)... (4.104)

Upon insertion into (4.103) one finds terms of the form

δΔρ̄S ∼
∫ t+Δt

t
dt′
∫ t

−∞
TrR

(
V̄ (t′)V̄ (t′′)ρR

)
︸ ︷︷ ︸
v2〈R(t′)R(t′′)〉S(t′)S(t′′)

dt′′... (4.105)

With (4.52) and (4.70) we can relate this to the reservoir correlation functions

v2〈R(t′)R(t′′)〉 ∼ Cαβ(t′ − t′′)v2, (4.106)

which are nonzero only in a small region |t′ − t′′| < τR. This allows one to estimate

δΔρ̄S ∼
∫ t+τR

t
dt′
∫ t

t−τR

dt′′Cαβ(t′ − t′′)v2 (4.107)

∼ v2τ 2
R , (4.108)

which has to be compared with

Δρ̄S ∼ Δt

TS
∼ Δt τR v2. (4.109)

Therefore, the condition for neglecting the contribution δΔρ̄S originating from δ

becomes
δΔρ̄S

Δρ̄S
∼ τR

Δt
� 1, (4.110)

i.e. (4.71). In other words, averaging over a time Δt � τR allows one to “forget” the
effects of correlations prior to t.

4.4.5 Derivation for a Fermionic System-Reservoir Setup

We now derive the Lindblad equation (4.48) from a microscopic fermion-reservoir
model and discuss the limit in which the Lindblad representation of the reservoir
becomes exact. According to (4.79) we need WR = 1

τR
� v, which is fulfilled when

(1) The DOS of the reservoir is ω-independent, i.e., the so-called wide-band limit

and

(2) T and/or |μ| → ∞,which corresponds to anω-independent reservoir occupation.
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We consider a generic noninteracting fermionic reservoir described by the Hamil-
tonian

HR =
∑

k

εkc
†
kck ,

V =
∑

kn

vkn
(
c†kan + h.c.

)
, (4.111)

where c(†)
k are reservoir and a(†)

n system fermionic operators, and vkn are real-valued
coupling constants. We don’t need to specify the form of the system Hamiltonian
HS [a], since we just want to derive the effects of the reservoir. The reservoir levels εk
must be continuous in order to produce dissipation, so we will let the level spacing
go to zero, Δε → 0, and we introduce continuous operators12

ck =
√

Δε

2π
c(ε) , (4.112)

and couplings

vkn =
√

Δε

2π
vn(ε) , (4.113)

where the system indices n remain discrete. In this way, the reservoir and coupling
Hamiltonians become

HR =
∫

dε

2π
ε c†(ε)c(ε),

V =
∑

n

∫
dε

2π
vn(ε) c

†(ε)an + h.c.

≡
∑

n

Rnan + h.c. (4.114)

This is in the form of (4.52), except for the fact that, for simplicity, we have absorbed
v in the definition of the Rn. From (4.114) we read off

Rn =
∫

dε

2π
vn(ε)c

†(ε), (4.115)

We need to evaluate the reservoir correlation functions (4.70)

cn̄m(τ ) = 〈R†
n(τ )Rm(0)〉, (4.116)

12To be more rigorous: c(ε) = 1√
D(ε)

∑
k δ(ε − εk )ck .
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and

cnm̄(τ ) = 〈Rn(τ )R†
m(0)〉

=
∫

dε dε′

(2π)2
vn(ε)vm(ε′)〈c†(ε, τ )c(ε′)〉, (4.117)

where
c†(ε, τ ) = e−iετ c†(ε) . (4.118)

The occupation of reservoir states is given by

〈c†kck ′ 〉 = δkk ′ n(k)

= Δε

2π
〈c†(ε)c(ε′)〉, (4.119)

and with δkk ′/Δε → δ(ε − ε′) one finds that

〈c†(ε, τ )c(ε′)〉 = 2πδ(ε − ε′)n(ε)e−iετ , (4.120)

by which (4.117) simplifies to

cnm̄(τ ) =
∫

dε

2π
vn(ε)vm(ε) n(ε) e−iετ . (4.121)

As discussed in (4.80), in order for the Lindblad equation representation of the
reservoir to be accurate, the correlation functions (4.121) must decay fast enough,
i.e. with a rate 1/τR much larger than theΔεS and v. 1/τR is proportional to the width
of the argument in (4.121), F(ε) ≡ vn(ε)vm(ε)n(ε). Therefore, strictly speaking the
Lindblad representation becomes exact when F(ε) is constant. In this case,

cnm̄(τ ) ∝ δ(τ ) , (4.122)

i.e. the Markovian condition. It is interesting to notice that this is the only require-
ment and once (4.122) is fulfilled there is no further weak-coupling requirement
although a weak-coupling expansion was used for the Born-Markov approximation.
The condition F(ε) = const. requires both the wide-band limit vn(ε) = const. and
n(ε) = const.. The latter corresponds to having either (i) μ → ±∞ or (ii) T → ∞.
Otherwise, cnm̄(τ ) decays with a rate 1/τR proportional to the width of F(ε). In
nonequilibrium situations it is useful to have reservoirs with different occupations
n(ε). This is not in contradiction with the above condition since one can generalize
(4.114) by including a sum over separate reservoirs α with constant but different
occupations nα(ε).
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From (4.121) we determine the correlation functions (4.95), (4.100) by exploiting
the following relations

I1 ≡
∫ ∞

0
e−i(ε−iδ)τdτ = 1

i(ε − iδ)
= −iP

1

ε
+ πδ(ε),

I2 ≡
∫ 0

−∞
e−i(ε+iδ)τdτ = − 1

i(ε + iδ)
= I∗

1 . (4.123)

This gives for the two matrices γ and σ of (4.101) and (4.102)

cnm̄ =
∫

dτ cnm̄(τ ) = vn(0)vm(0)n(0) = γn̄m̄,

c̄nm̄ =
∫

dτ cnm̄(τ ) sgn(τ ) = −iP
∫

dε

π

1

ε
vn(ε)vm(ε)n(ε) = −iσnm . (4.124)

Even for energy independent vn(ε)vm(ε)n(ε), the quantities σnm may be sensitive to
their values at high energies. For simplicity, we here take even functions v(ε), n(ε),
so that σnm = 0. Similarly

γnm = vn(0)vm(0)m(0) (m(ε) = 1 − n(ε)),

σn̄m̄ = −P
∫

dε

π

1

ε
vn(ε)vm(ε)m(ε) . (4.125)

Thus, the parameters entering (4.48) are (we omit the ε-dependence of the vn and
of n)

2Γ1nm = γnm = vnvm(1 − n),

2Γ2nm = γn̄m̄ = vnvmn. (4.126)

As already discussed, Γ1nm describes the removal of particles from the system which
is consistent with it being proportional to (1 − n), and Γ2nm describes particle injec-
tion and is proportional to n.

For the 1-level model discussed above, we have in the steady state [cf. (4.50)]

〈a†a〉 = Γ2

Γ1 + Γ2
= n, (4.127)

which we expect for a level in equilibrium with a reservoir.



150 E. Arrigoni and A. Dorda

4.5 Superfermion Representation

The so-called superfermion representation is a useful scheme to map the Lindblad

equation onto a standard operator problem, in which the superoperator ˆ̂L acting on ρ̂

is replaced by an ordinary operator L̂ acting on the corresponding state vector |ρ〉 in
an enlargedHilbert space. Like (4.42), the resulting equation is of “Schrödinger” type

d

dt
|ρ〉 = L̂|ρ〉, (4.128)

in which, however, the “Hamiltonian” iL̂ is a non-Hermitian operator.
Here, we follow the treatment by Dzhioev and Kosov [65], see also [93, 94], as

well as [66, 67] for an earlier treatment. The starting point is an augmented fermion
Fock space, in which the original Hilbert space is doubled. Starting from the basis
states |n〉 of the original space of dimension NH, one introduces additional”tilde“
states and defines the new basis states |n〉|m̃〉. The size of the new Hilbert space
clearly becomes NH → N 2

H. This allows for a convenient representation of (system)
density matrices13:

ρ̂ =
∑

nm

|n〉 〈m|︸︷︷︸
⇒|m̃〉

ρnm. (4.129)

For this one introduces the so-called “left vacuum”

|I〉 =
∑

m

|m〉|m̃〉 , (4.130)

which is essentially a purification of the identity operator. Applying ρ̂ to the left
vacuum maps the density matrix onto a state vector of the augmented space.

ρ̂ ⇒ |ρ〉 = ρ̂ ⊗ Ĩ︸︷︷︸
implicit

|I〉 =
∑

nm

ρnm|n〉|m̃〉. (4.131)

In general, for an arbitrary operator B̂ one defines the corresponding state vector

|B〉 ≡ B̂|I〉 , (4.132)

which can be used to evaluate traces of operators

TrB̂ = 〈I |B̂|I〉 = 〈I |B〉. (4.133)

13We omit here the system index of ρS for the sake of clarity.
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Proof

〈I |B̂|I〉 =
∑

knm

〈k|〈̃k|Bnm|n〉|m̃〉 =
∑

k

Bkk . (4.134)

In particular, expectation values of operators are given by

〈Â〉 = TrÂρ̂ = 〈I | Âρ̂︸︷︷︸
(implicitly Âρ̂⊗̃I)

|I〉

= 〈I |Â|ρ〉. (4.135)

Besides expressions of the form Âρ̂ we also need to evaluate ρ̂Â, which occurs for
instance in the Lindblad equation. For the first casewe already found that Âρ̂ → Â|ρ〉
but a transformationof the form ρ̂Â → ρ̂Â|I〉 is not useful, aswewould like to express
also the second case in terms of an operator applied to |ρ〉. ρ̂Â is written as

ρ̂Â =
∑

nm

ρnm|n〉〈m|Â, (4.136)

i.e. Â acts on the bra vector 〈m|. Its representation within the augmented space is
thus given by

ρ̂Â →
∑

nm

(ρ̂Â)nm|n〉|m̃〉 . (4.137)

One now introduces the operator14

Ã ≡ I ⊗ AT =
∑

kl

Akl |̃l〉〈̃k|, (4.138)

acting on tilde states only. Applied on the state |ρ〉 it provides the desired result

Ã|ρ〉 =
∑

klnm

Akl |̃l〉〈̃k|ρnm|n〉|m̃〉

=
∑

lnm

Amlρnm|n〉|̃l〉

=
∑

nl

(ρ̂Â)nl |n〉|̃l〉, (4.139)

which is the r.h.s. of (4.137), i.e. we have

ρ̂Â → Ã|ρ〉. (4.140)

14Note that the definition of AT is basis dependent.
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For a Fock space of fermionic particles one has to specify the fermionic sign of
each term, or in other words the ordering of the levels when specifying states such as
(4.130).Considering amany-fermion systemcharacterized by levels i = 1, 2, . . . ,N ,
which may include spin, the basis states of the two Fock spaces are indicated as

|n〉 = |n1n2 . . . nN 〉,
|̃n〉 “tilde” Fock space, (4.141)

with corresponding creation and annihilation operators a†i , ai, ã
†
i , ãi. In the left

vacuum one can include an arbitrary phase for each state. Here, it is convenient to
adopt the convention

|I〉 =
∑

{n}
|n, ñ〉,

|n, ñ〉 = (−i)
∑

i ni (a†1ã
†
1)

n1 . . . (a†N ã
†
N )nN |0〉|̃0〉. (4.142)

Using this expression, one obtains the so-called tilde conjugation rules [65]:

aj|I〉 = −i ã†j |I〉,
a†j |I〉 = −i ãj|I〉. (4.143)

By taking their Hermitian conjugate, these can be easily generalized to

F |I〉 = −i F̃†|I〉,
〈I |F = i 〈I |F̃†, (4.144)

where F is an arbitrary linear combination of ai, a
†
j with real coefficients.

Proof of (4.143):

aj|I〉 =
∑

n:nj=1

(−i)
∑

i ni . . . aj(a
†
j ã

†
j ) . . . |0〉|̃0〉

= −i ã†j
∑

n:nj=0

|n, ñ〉 (due to ã†j , nj = 0 is guaranteed)

= −i ã†j |I〉,

and similarly for a†j .
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4.5.1 Representation of the Lindblad Equation

For a representation of the Lindblad equation (4.101), or specifically for fermions
(4.48), we have to consider the representation of different operator terms multiplying
the density matrix and applied to the left vacuum state. If the Sα are linear combina-
tions of the a(†)

i and ai, we have for a quadratic term multiplied from the left

SαSβρ̂|I〉 = SαSβ |ρ〉, (4.145)

and for one multiplied from the right

ρ̂SαSβ |I〉 = ρ̂Sα (−i S̃†
β)

︸ ︷︷ ︸
can now be moved

to the left

|I〉 (4.146)

= i S̃†
βρ̂(−i S̃†

α)|I〉 (4.147)

= S̃†
β S̃

†
α|ρ〉, (4.148)

where we used (4.143). In a similar manner, quartic terms are transformed as

ρ̂S1S2S3S4|I〉 = S̃†
4 S̃

†
3 S̃

†
2 S̃

†
1 |ρ〉, (4.149)

and in general, for an operator O with an even number of fermionic ai or a
†
i one has

ρ̂O|I〉 = Õ†|ρ〉. (4.150)

Finally, (4.101) contains terms with operators multiplying on the left and on the right
that become15

Sαρ̂Sβ |I〉 = −i Sα S̃
†
β |ρ〉. (4.151)

We are now in the position to express the superfermion representation of the Lind-

blad equation (4.101), or more specifically of (
ˆ̂Lρ̂)|I〉. The Liouville von Neumann

part ˆ̂LH becomes

ˆ̂LH ρ̂|I〉 = −i
[
H , ρ̂

] |I〉 = −i
(
H − H̃

) |ρ〉, (4.152)

i.e. we have the following mapping of the superoperator ˆ̂LH in the superfermion
space:

ˆ̂LH ⇒ −i
(
H − H̃

)
, (4.153)

15Note that ρ contains even products of untilded fermion operators only, and thus commutes with
tilde operators.



154 E. Arrigoni and A. Dorda

where H̃ is the Hamiltonian applied to the “tilde” part of the Hilbert space [cf.
(4.138)]. Here we used (4.150) and the fact that H is Hermitian and contains terms
quadratic and quartic in the fermionic operators.

The dissipator ˆ̂LD in (4.101) becomes

( ˆ̂LDρ̂

)
|I〉 =

∑

αβ

γαβ

(
−iSβ S̃α − 1

2
S†

αSβ − 1

2
S̃†

β S̃α

)
|ρ〉, (4.154)

where we have used (4.145, 4.148, 4.151).
On the whole, (4.152) and (4.154) transform the Lindblad equation into a

“Schrödinger-type” equation governing the time evolution of the “supervector” |ρ〉,
d

dt
|ρ〉 = L̂|ρ〉, (4.155)

with a non-Hermitian generator iL̂. The trace preserving property of the Lindblad
equation transforms into [cf. (4.133)]

d

dt
Trρ = 0 ⇒ 〈I | d

dt
|ρ〉 = 〈I |L̂|ρ〉 = 0. (4.156)

Since this holds true for any |ρ〉, one has

〈I |L̂ = 0. (4.157)

Therefore, the left vacuum 〈I | is a left eigenstate of L̂ with eigenvalue zero, which
explains its name. For each left eigenstate there is a right one with the same eigen-
value. In this case this is the steady state |ρ∞〉 with the property

L̂|ρ∞〉 = 0 . (4.158)

Equations of Motion

Oneway to address the time dependence of observables is via the equations of motion
technique:

〈A(t)〉 = 〈I |A|ρ(t)〉,
d

dt
〈A(t)〉 = 〈I |AL|ρ(t)〉

= 〈I | [A,L]︸ ︷︷ ︸
because 〈I |L=0

|ρ(t)〉. (4.159)
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In some cases, e.g. noninteracting particles, this yields a closed set of equations. In
the general interacting case, however, this is not possible and a hierarchy of equations
is created, which must be truncated at some point. Below we discuss in more detail
an alternative way, namely to directly solve (4.155) in a manybody basis.

Example (Single-level model) Consider again a fermionic system consisting of a
single level with Hamiltonian (4.49) and dissipator (4.48) with no indices i, j. Using
(4.154), the superfermion representation of the Lindblad operator becomes

L̂ = − iε
(
a†a − ã†ã

)− Γ1
(
a†a + ã†ã + 2iãa

)

− Γ2
(
aa† + ã̃a† + 2ia†ã†

)
,

(4.160)

which can be conveniently written in a matrix form

L̂ = −i
(
a†ã
)
H

(
a
ã†

)
+ const.

= −ia†H a, (4.161)

with the matrix H given by

H =
(
E+ B
B̄ E−

)
E± = ε ± i(Γ2 − Γ1), B = 2Γ2, B̄ = −2Γ1 . (4.162)

We leave it as an exercise to use the equations of motion technique discussed above
to evaluate the time dependence of the density

n(t) = 〈I |a†a|ρ(t)〉, (4.163)

for this model.

Example (Current) Consider the single-level model (4.161), (4.162) coupled to two
reservoirs, one described by the Γ1 term and the other by the Γ2 term only. Accord-
ingly, we split the dissipator as

LD = LD1 + LD2 . (4.164)

The current I2 from the level to theΓ2 reservoir is determined by the temporal change
of the electron density in the level due to the coupling to the reservoir Γ2 only:

I2 = − d

dt
〈a†a〉Γ2 (4.165)

= −Tr

(
a†a ˆ̂LD2ρ

)
(4.166)

= −〈I |
[
a†a, L̂D2

]
|ρ〉. (4.167)
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We leave it as an exercise to determine the steady-state current and show that in
steady state the current is conserved I1 = −I2.

4.5.1.1 Generic Fermionic Hamiltonian with Many Levels

For the case of a central system consisting of N noninteracting fermionic levels with
Hamiltonian

H =
∑

nm

εnma
†
nam,

and dissipator (4.48), it is straightforward to show that the expressions (4.161)
with (4.162) still hold, provided one takes ε, Γ1, Γ2 as matrices with elements
εnm, Γ1nm, Γ2nm, as well as

a† =
(
a†1, . . . , a

†
N , ã1, . . . , ãN

)
. (4.168)

If, additionally, an interaction described by a Hamiltonian HU is present in the
central system, the corresponding contribution to the Lindblad operator being
ˆ̂LU ρ̂ = −i

[
HU , ρ̂

]
, becomes in the superfermion representation [cf. (4.153)]

L̂U |ρ〉 = −i(HU − H̃U )|ρ〉. (4.169)

Example (Anderson impurity chain attached to reservoirs) As a simple example,
one can consider a fermionic tight-binding chain consisting of N sites (spin is not
indicated explicitly) inwhich the leftmost siten = 1 is attached to a reservoir injecting
particles, Γ2 with the only nonzero matrix element Γ2 1,1, and the rightmost site
n = N is attached to a reservoir removing particles, Γ1 with the only nonzero matrix
elementΓ1 N ,N . One can include a Hubbard interactionU on the central chain, so that
the system describes a nonequilibrium Anderson impurity chain in which a current
flows from left to right, see upper part of Fig. 4.6. The corresponding superfermion
Hamiltonian describes two chains, one corresponding to the operators an, the other
to the ãn. The two chains are coupled by the Γ and have opposite sign of the single-
particle parameters. The Γ2 (Γ1) term injects (removes) particles on both chains, so
that the total particle number is not conserved (see lower part of Fig. 4.6). However,
if one carries out a particle-hole transformation for the tilde particles d̃n = ã†n, then
the total particle number

∑N
n=1

(
a†nan + d̃†

n d̃n
)
is conserved.
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Fig. 4.6 (Top) Illustration of anAnderson impurity coupled to two reservoirs given by tight-binding
chains with Lindblad drivings at the outermost sites. (Bottom) In the superfermion representation
this maps onto to two chains, which are coupled via the Lindblad terms Γ1 and Γ2

4.6 Correlation Functions and Quantum
Regression Theorem

Up to now we only discussed the time dependence of expectation values 〈A(t)〉.
We now focus on two-time correlation functions 〈A(t)B(t′)〉. The computation of
such correlation or Green’s functions is particularly important in the present treat-
ment, since it enables us to combine the Lindblad approach with the framework of
nonequilibrium Green’s functions, as outlined below in more detail.

The time dependence of an operator A acting on the system only is given by

〈A(t)〉 = TrA(t)� = TrS TrR A�(t) = TrS A�S(t), (4.170)

with �S = TrR � the system reduced and � the universe density matrix. Here, we have
exploited the fact that the Heisenberg time evolution of an operator A has opposite
sign with respect to the time evolution of ρ, the cyclic property of the trace, and
that the reservoir trace can be “pulled over” the system operator A. Due to this, it
is sufficient to know the time dependence of �S(t), which is given by the Lindblad
equation (4.41) as discussed up to now. However, for two-time correlation functions
of system operators a knowledge of �S(t) is no longer sufficient. Let us illustrate this
for the following correlation function of two system operators A,B:
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iGBA(t1 + τ, t1) = TrB(t1 + τ)A(t1)�

= TreiH (t1+τ)Be−iH (t1+τ)eiHt1Ae−iHt1�

= TrBe−iHτA�(t1)e
iHτ = TrS BTrR e

−iHτA�(t1)e
iHτ . (4.171)

Now, since the Hamiltonian H acts on both system and reservoir, one cannot pull
TrR over e−iHτ .

In order to make progress, let us introduce the following system operator

AS(τ, t1) := TrR e
−iHτA�(t1)e

iHτ , (4.172)

in terms of which
iGBA(t1 + τ, t1) = TrS BAS(τ, t1). (4.173)

Unfortunately, AS(τ, t1) cannot be determined solely from the knowledge of the
reduced density matrix �S(t1). Fortunately, the so-called quantum regression theo-
rem [85, 87] states that the time dependence of the operator AS(τ, t1) is governed by
an equation of Lindblad type

d

dτ
AS(τ, t1) = LAS(τ, t1), (4.174)

provided that the same Markovian conditions as for ρS , (4.80), hold true:

TS � Δt � τR. (4.175)

This result combined with the initial (τ = 0) condition

AS(0, t1) = TrR A�(t1) = A�S(t1), (4.176)

allows to determine an arbitrary operator AS(τ, t1), and thus any two-time correlation
function iGBA(t + τ, t1). This works as follows:

(1) First calculate ρS(t1) from d
dt1

ρS = LρS and a given initial condition. In partic-
ular, we are interested in the steady state case t1 → ∞, see below.

(2) Then compute the τ -time evolution of AS(τ, t1) from (4.174), with initial con-
dition (4.176), taking t1 as a fixed parameter.

In fact, for the case that A is a bosonic operator (or contains even products of
fermionic creation/annihilation operators), L and L from (4.41) coincide. For the
case of operators containing odd products of fermions, which is relevant in evaluating
single-particleGreen’s functions, there is an additional sign, [95], whichwe are going
to discuss below.

The QuantumRegression Theorem (4.174) can be readily proven by repeating the
steps of Sect. 4.4.4 whereby one takes instead of the universe density matrix ρ(t),
the quantity [A�(t1)](t), where d

dt [· · · ](t) = −i[H , [· · · ](t)], c.f. (4.53). Since the
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quantity we are looking for is precisely AS(t, t1) = TrR[A�(t1)](t) (cf. (4.172)), the
procedure carried out to determine the time dependence of ρS(t) ((4.54)) is precisely
the same. As a result, one gets the same (4.174) with L = L. For fermions, one
should take care of the fact that the coupling Hamiltonian cannot be readily written
in the form (4.52), since there are additional fermionic signs. In the end, this leads to
a slightly different expression for L, which we are going to discuss below. See [95],
Appendix B, for a complete treatment.

One should point out that the Lindblad time evolutions (4.174) and (4.41) are valid
only in the positive direction of time. Inherently, this is connected to the Markov
approximation and the dissipative dynamics. However, in the case of correlation
functions we generally need to compute iGBA(t + τ, t) for τ < 0 as well. This can
be achieved in two ways

• Instead of iGBA(t + τ, t) one considers the complex conjugate

− iG∗
BA(t + τ, t) = TrA†(t)B†(t + τ)�

= iGA†B†(t, t + τ), (4.177)

which is in the proper time order since t − (t + τ) > 0 for τ < 0.
• Alternatively, with the cyclic invariance of the trace one has that

iGBA(t + τ, t) = TrA(t)�B(t + τ)

= TrS ATrR
{
eiHτ �(t + τ)Be−iHτ

}

= TrS AB̃
†
S(−τ, t + τ), (4.178)

and the time evolution of B̃†
S(−τ, t + τ) is determined by (4.174) for τ < 0.

4.6.1 Superfermion Representation

Wenowwant to express a correlation function (4.173) in the superfermion formalism
of Sect. 4.5. In this notation,

iGBA(t1 + τ, t1) = 〈I |BAS(τ, t1)|I〉 ≡ 〈I |B|AS(τ, t1)〉 . (4.179)

Here, the supervector |AS(τ, t1)〉 has the properties
d

dτ
|AS(τ, t1)〉 = L̂|AS(τ, t1)〉, |AS(0, t1)〉 = A|ρS(t1)〉, (4.180)

provided A is a bosonic operator. This can be easily shown by using (4.174), (4.176),
and (4.144), and proceeding like for (4.145, 4.148, 4.151). For fermionic operators
the derivation is somewhat more tricky, but in the end one obtains effectively the
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same expression (4.180) with the same L̂, despite of the fact that in (4.174) ˆ̂L differs

from ˆ̂L. This is discussed in the next section.
Note that the expression (4.179) is valid for τ > 0 only. For negative τ one should

use (4.177) or (4.178).

4.6.2 Fermionic Operators

As mentioned above, special care has to be taken for the case of fermionic operators
since their expression in terms of tensor products is not trivial. We here only sketch
the issue and refer to [95], AppendixB, for a complete treatment. The systemoperator
A of Sect. 4.6 has in fact the form A = IR ⊗ AS . On the other hand, a single-particle
fermionic operator C for the system does not have this form since it anti-commutes
with reservoir states. Consider for instance the product state |ψ〉 = |R〉 ⊗ |S〉. Here,16

C|ψ〉 = (−1)NR |R〉 ⊗ CS |S〉 , (4.181)

withNR the number of fermions in state |R〉. Therefore, one must include these phase
factors in the definition of the tensor product operators, leading to

C = (−1)NR ⊗ CS . (4.182)

When carrying out the microscopic derivation of Sect. 4.4.4, one finds that these sign
factors cancel away in the case of the Lindblad equation for the density matrix ρ,
while for correlation functions they do matter.

Following the treatment of [95], AppendixB, one obtains that a fermionic operator
CS(τ, t1) defined similarly to (4.172) obeys

d

dτ
CS(τ, t1) = ˆ̂LCS(τ, t1) , (4.183)

with

ˆ̂LCS := −i [H ,CS ] +
∑

αβ

γαβ

(
ηSαCSS

†
β − 1

2

{
S†

βSα,CS

})
. (4.184)

The additional sign factor η (possibly) distinguishes this result from (4.41) and is
equal to −1 if CS and Sα both contain an odd number of fermionic operators, and
+1 otherwise.

16CS is the same as C but acting on the system Hilbert space only.
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Nevertheless, the pleasant aspect is that in the superfermion representation of
Sect. 4.5, this sign η cancels out again. Therefore, in the superfermion representation,
the vector |CS(τ, t1)〉 associated to CS(τ, t1) obeys an equation like (4.155)

d

dτ
|CS(τ, t1)〉 = L̂|CS(τ, t1)〉, (4.185)

with the same L̂ (4.153), (4.154).

4.7 Nonequilibrium Green’s Functions

Nonequilibrium Green’s functions have been treated in detail in the previous two
lectures, so here we are simply going to summarize the parts which are most relevant
for the present treatment. Again we specialize to the case of a fermionic system. We
refer to these lectures and to previous literature (see, e.g. [1, 2, 96]).

As introduced by Kadanoff, Baym and Keldysh, a modified time contour ordering
allows one to formulate a systematic Green’s function formalism analogous to the
equilibrium case. In contrast to equilibrium, the system states at t → ±∞ are no
longer equivalent and thus the only reference point is the infinite past.17 Only there
one can assume that the system is in a noninteracting initial state necessary in order
to applyWick’s theorem. Therefore, instead of time-ordered expectation values as in
equilibrium, one has to consider contour-ordered ones. Different contour orders exist
and we focus here only on the Keldysh contour, as sketched in Fig. 4.7. Here, the
Matsubara branch, accounting for initial correlations, is neglected and the contour
extends until t → −∞. This is justified when considering steady states or even when
carrying out time evolutions starting from a steady state.18 An example for a two-
time correlation function is depicted in Fig. 4.7, which demonstrates that the contour-
ordering of times generally differs from the ordinary time-ordering. When denoting
contour times by τA/B and “standard” times by tA/B, one can write contour-ordered
two-time Green’s functions in the following way

G(τA, τB) ⇒ Ĝ(tA, tB) =
(
GT (tA, tB) G<(tA, tB)
G>(tA, tB) GT̄ (tA, tB)

)
. (4.186)

It is convenient to employ amatrix structure, which contains all the possible orderings
of the two time variables tA/B on the lower and on the upper contour. GT (tA, tB)
(GT̄ (tA, tB)) is the time (anti-time) ordered Green’s function, which corresponds to
the case that tA and tB are both on the upper (lower) contour. The lesser (greater)

17In case of the L-shaped Kadanoff-Baym contour this starting point is on the imaginary-time
Matsubara branch, i.e. corresponds to a thermal initial state.
18 In principle, one could avoid the Matsubara branch altogether by designing a Hamiltonian whose
steady state is the required initial state.
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Fig. 4.7 Sketch of the Keldysh contour with an upper and a lower branch, both extending to −∞.
Depicted is the example of a “lesser” two-time function (e.g. G<(tA, tB)), in which tA is before tB
in terms of the contour ordering

Green’s function G<(tA, tB) (G>(tA, tB)) refers to the mixed cases, with one time
variable on the upper and one on the lower time contour.

The matrix form stated above contains redundant information and it is thus con-
venient to employ a transformation [2]

G = Lσ3ĜL† =
(
GR GK

0 GA

)
, (4.187)

to the so-called Keldysh space. The retarded (GR), advanced (GA) and Keldysh (GK )
Green’s functions are hereby defined as:

GR(1, 2) = −iΘ(t1 − t2)〈{c(1), c†(2)}〉,
GA(1, 2) = GR(2, 1)

†,

GK (1, 2) = −i〈[c(1), c†(2)]〉. (4.188)

Thematrix form (4.187), which we shall indicate by an underscore “_”, is very useful
since essentially the full perturbation theory and Feynman diagrams developed for
equilibrium is also applicable in the nonequilibrium case, whereby all scalar expres-
sions for the Green’s functions have to replaced by analogous matrix expressions.

Besides matrix products, one also needs to compute inverses F−1 of two-point
Keldysh objects F . This is given in terms of the Langreth rules, by

F =
(
FR FK

0 FA

)
→ F−1 =

(
F−1
R −F−1

R FKF
−1
A

0 F−1
A

)
, (4.189)

whereby the individual objects FR, FK , . . . can also be matrices in site and/or spin
indices. Clearly, retarded objects transform in a simple manner and only the Keldysh
part is more involved

(F−1)R = (FR)
−1,

(F−1)K = −F−1
R FKF

−1
A . (4.190)
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4.7.1 Anderson Impurity Model

As mentioned at the beginning, we are particularly interested in the nonequilibrium
Anderson impurity model, which is described by the Hamiltonian

H = HC + HR + V,

HC = ε
∑

σ

c†0σ c0σ +Un0↑n0↓,

HR =
∑

σ,p �=0

εpc
†
pσ cpσ ,

V =
∑

σ,p �=0

vpc
†
pσ c0σ + h.c., (4.191)

with HC the impurity, HR the reservoir and V the coupling Hamiltonian.19 For the
reservoirwe consider the case of two leads denoted by+ and−, corresponding to p >

0 and p < 0 in (4.191), with different chemical potentials (μ+, μ−) and temperatures
(T+,T−), see left side of Fig. 4.8. The unperturbed Hamiltonian

H0 = H− + H+ + HC0. (4.192)

corresponds to the decoupled system without interaction and we consider as pertur-
bation the hybridizations vp and the interaction U . At t0 → −∞ the system is pre-
pared in an eigenstate of H0, i.e. the three regions are separately in equilibrium with
their respective chemical potentials and temperatures, and the perturbation is then
switched on. For t − t0 → ∞ the system reaches the steady state of the full Hamil-
tonian (4.191). In the steady state one can assume that time translational invariance
applies, so that Green’s functions can be written in the frequency domain:

G(t1 − t2) → G(ω) . (4.193)

From now on we assume that all Green’s functions are ω-dependent and omit the
argument for the sake of simplicity.

Let us start with the noninteracting case U = 0, so that the perturbation is only
given by the hybridizations to the leads. For this case the exact Dyson equation reads

G = g + g V G. (4.194)

The equation is analogous to the equilibrium case, the difference being that every
object has a 2 × 2 matrix structure in Keldysh space, in addition to level and/or

19Similarly, one could also generalize the steps outlined below to the situation of a central system
containing a small number of interacting sites, see Fig. 4.1, by a suitable matrix notation.



164 E. Arrigoni and A. Dorda

Fig. 4.8 (Left) Sketch of the nonequilibrium Anderson impurity model as defined in (4.191). The
two reservoirs p < 0 and p > 0 consist of an infinite number of levels εp, which are (at t0 → −∞)
filled according to the Fermi-Dirac distributions fF (ω − μ±,T±). This is the “star” representation.
(Right) Equivalent “chain” representation, with two semi-infinite chains representing the reservoirs

spin indices. G is the full Green’s function, g is the Green’s function of the isolated
regions (vp = 0) and V is the hybridization, which is diagonal in Keldysh space:

V 0p = V p0 =
(
vp 0
0 vp

)
. (4.195)

In principle, the full matrices in (4.194) can be inverted with the help of (4.189). It
is convenient to write them explicitly in terms of their components

G00 = g
00

+ g
00

∑

p

V 0pGp0,

Gp0 = g
p0︸︷︷︸
0

+
∑

p′
g
pp′V p′0G00. (4.196)

Here, wemade use of the fact that g
pp′ does not have off-diagonal components linking

the initially decoupled regions. On the whole, one can write Dyson’s equation as

G00 = g
00

+ g
00

ΔG00, (4.197)

with the bath hybridization function defined as

Δ =
∑

p,p′
V 0pgpp′V p′0 . (4.198)

As usual, the solution of (4.197) is obtained by

G00 =
(
g−1
00

− Δ
)−1

, (4.199)
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whereby one has to take the Langreth rules (4.189) into account, in order to invert
the 2 × 2 Keldysh objects.

The reservoir Green’s functions g
pp′ are known analytically, since they correspond

to a noninteracting system in equilibrium.20 For a reservoir Hamiltonian as specified
in (4.191), which is diagonal in the p operators, the retarded part is given by

gRpp′(ω) = δpp′
(
ω − εp + i0+)−1

. (4.200)

Of course, other choices of the reservoir are possible as well, e.g. a “chain” instead
of a “star” representation, see Fig. 4.8. In the latter case, only one site of each lead,
e.g. gR11(ω) and gR−1−1(ω), would couple to the central system. Notice that such
“surface” Green’s function of a noninteracting semi-infinite tight-binding chain can
be determined analytically, cf. [97].

In equilibrium, theKeldysh and the retardedGreen’s functions are not independent
but linked via the so-called fluctuation dissipation theorem:

gKpp(ω) = (
gRpp(ω) − gApp(ω)

)
sp(ω),

sp(ω) = 1 − 2fF(ω − μp,Tp), (4.201)

with fF(ω − μp,Tp) the Fermi-Dirac distribution. For the nonequilibrium case, the
Keldysh and the retarded component are independent functions and both of them
must be considered explicitly.

As in equilibrium, the solution of the interacting problem U �= 0 poses the main
challenge. A couple of different approaches are discussed in the next section. Here,
let us focus on the general properties. As usual, the contribution from U can be
encoded in terms of the self energy Σ(ω), which is also a 2 × 2 Keldysh object in
nonequilibrium. In terms of site indicespp′,Σ(ω) is only nonzerowhen an interaction
term is present in the Hamiltonian at p and p′. Therefore, in the single impurity case
considered here, the self energy has only contributions on the impurity site. In this
way, (4.199) is modified to

G00 =
(
g−1
00

− Δ − Σ00

)−1
. (4.202)

Once Σ00 is known, all single particle quantities of interest can be computed.21

The possibly spin-dependent particle density on the impurity site, for instance, is
given in terms of the Keldysh Green’s function by

n = 1

2
− i

4π

∫
GK00(ω)dω . (4.203)

20Note that g refers to the initially decoupled situation.
21We focus here on the impurity, but also reservoir properties are accessible via Dyson’s equation.
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The current from the reservoir to the impurity is determined in terms of GKp0 leading
to the Meir-Wingreen formula: [98]

j = i

2π

∫ ∞

−∞
dω
([

γ−(ω) − γ+(ω)
]
G<

00(ω)

+ [
fF−(ω)γ−(ω) − fF+(ω)γ+(ω)

]
[GR00(ω) − GA00(ω)]

)
, (4.204)

with fF± the Fermi functions of the left (-) and right (+) reservoir, and γ±(ω) =
−2�m {ΔR±(ω)} accounts for the coupling strength to and the DOS of each lead.

4.8 Nonequilibrium Impurity Problems

The manybody solution of nonequilibrium impurity problems, as defined by (4.191),
is an active area of research and numerous different approacheswere devised in recent
years. Here, we want to give only a brief overview over some of them and then focus
on solution strategies based on a combination of nonequilibrium Green’s functions
and Lindblad equations, which is the topic of the present lecture.

Powerful numerical methods for the solution of equilibrium impurity models are
for instance exact diagonalization (ED), quantumMonte Carlo (QMC), matrix prod-
uct states (MPS) and numerical renormalization group (NRG). Except for action-
based QMC solvers, the common solution strategy is to replace the exact hybridiza-
tion function Δ(ω) by an approximate one, corresponding to a finite size system
which can be solved precisely by numerical techniques (see, e.g., Fig. 4.9).

The key point is always that the influence of the leads is completely determined
by Δ(ω). In other words, the self energy Σ(ω) depends solely on ε, U and Δ(ω),
but not on other details of the reservoir. This means that different representations of
the reservoir, for instance a chain or a star geometry, which yield the same Δ(ω) are
equivalent on the level of impurity properties. Both of them result in the same G00

Fig. 4.9 Exact
diagonalization approach as
used for equilibrium
situations. Instead of the
exact system, Fig. 4.8 with a
single reservoir, e.g. p > 0
only, a finite size problem
consisting of the impurity
and a small number of levels
ε̄n is solved
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Fig. 4.10 Sketch of the diagrammatic proof that correlation functions on the impurity site are fully
determined by the hybridization function Δ(ω), and the impurity terms U and g

IMP
. Other details

of the bath are irrelevant, e.g. whether one considers a “star” or “chain” representation, cf. Fig. 4.8.
The bath can be also represented by a mixed auxiliary system consisting of orbitals and Lindblad
terms, such as a buffer layer (see Sect. 4.8.1) or by a more generic one within the Auxiliary Master
Equation Approach [21, 63], as depicted in Fig. 4.13, see Sect. 4.9

and Σ00. Of course, this fact holds in nonequilibrium as well, see Fig. 4.10. Within
NRG, this fact is exploited to justify the Wilson chain [6].

In equilibriumone exploits this to replace the dense reservoir by an auxiliary reser-
voir with a small number of levels only and different parameters ε̄n, v̄n, see Fig. 4.9.
Here, the parameters are determined (fitted) in order to provide the best representa-
tion of the bath hybridization function Δ(iωλ) in Matsubara frequency space. This
is the exact-diagonalization based impurity solver [8, 9], widely used for DMFT.
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Out of equilibrium this does not work since a finite size reservoir cannot provide
dissipation and thus a steady state situation can never be reached in the time evolution.
Instead, such a system exhibits oscillating dynamics. Here, we want to consider
closely related approaches, in which the reservoir is modeled by a small number of
levels which are additionally coupled to Markovian environments. Such auxiliary
systems are governed by a Lindblad equation, which we discussed earlier. The key
advantage is that these reservoir representations exhibit dissipative dynamics and
truly represent nonequilibrium impurity systems.

4.8.1 Buffer Layer Approach

In the so-called buffer layer approach, see e.g. [65], one considers a certain numberNB

of bath levels coupled to the impurity site, similar to the original Hamiltonian (4.191)
but with NB finite. To “compensate” for the missing part of the infinite reservoir one
additionally couples the bath sites to Markovian environments, see also Fig. 4.11. In
this way one is able to achieve a continuous DOS in the auxiliary system, appropriate
for a nonequilibrium situation.

If one assumes for theMarkovian environments an infinite bandwidth and energy-
independent occupations nn, the auxiliary system can be exactly written in terms of
a Lindblad equation, as previously discussed

ρ̇ = LHρ + LDρ,

LDρ = 2
NB∑

n=1

(
Γ1n
(
dnρd

†
n − 1

2
{d†

n dn, ρ})+ Γ2n
(
d†
nρdn − 1

2
{dnd†

n , ρ})
)

, (4.205)

Fig. 4.11 Buffer layer approach: The nonequilibrium impurity model Fig. 4.8 is replaced by a finite
number of levels ε̄n which are additionally coupled to Markovian environments. The appropriate
filling nn = fF (ε̄n − μ±,T±) is achieved by suitable coupling constants Γ1n and Γ2n to the empty
and filled Markovian environments, (4.206). The resulting finite size open quantum system is
governed by a Lindblad equation (4.205) and represents a true nonequilibrium model
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where ρ represents the density matrix of the open system consisting of impurity
plus level sites with corresponding operators dn. There are two types of Markovian
environments, one completely empty (μ → −∞) and one completely filled (μ →
+∞). The coefficients Γ1n determine the couplings to the empty environment, and
Γ2n the couplings to the filled one. One can choose them in the following way:

Γ1n = M̄n(1 − nn),

Γ2n = M̄nnn. (4.206)

Here, M̄n determines the coupling strength of the n-th level to the two Markovian
environments, and nn refers to its desired occupation.

We now evaluate the corresponding auxiliary bath hybridization function ΔAux

at the impurity site. For this one should first determine the noninteracting Green’s
function and then use (4.199). The expression for the noninteractingGreen’s function
of an open lattice system described by (4.161), (4.162) is evaluated in Sect. 4.9.1.1,
and the expression for the Green’s function matrices is given in (4.222).

For the present case it is more convenient to use (4.198) in terms of the local
Green’s function g

nn
= g

n
of the n-th isolated level plus Markovian reservoir, i.e.

decoupled from the impurity site. These can be determined by using (4.222) for a
single site, leading to

gRn = (ω − ε̄n + iΓ+n)
−1,

gKn = 2igRn(Γ2n − Γ1n)g
∗
Rn = 2i(Γ2n − Γ1n)

(ω − εn)2 + Γ 2+n

. (4.207)

With (4.198), the auxiliary hybridization function on the impurity site is given by

ΔAux
R =

∑

n

v̄2ngRn,

ΔAux
K =

∑

n

v̄2ngKn. (4.208)

Now, the goal is to approximate the physicalΔR, ΔK as accurately as possible by
ΔAux

R and ΔAux
K . Due to the Kramers-Kronig relation between the imaginary and the

real part of retarded functions, it is sufficient to consider only the imaginary part of
ΔR, and ΔK is itself purely imaginary. The bath spectral function, determining the
DOS of the auxiliary reservoir, is given by

AAux
Δ (ω) ≡ − 1

π
�m {ΔAux

R (ω)
}

=
∑

n

v̄2nδΓ+n(ω − ε̄n), (4.209)
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Fig. 4.12 Sketch of ΔAux(ω) in the buffer layer approach, with parameters chosen according to
(4.211) and (4.212), and description in the text. The separate levels produce Lorentzian curves. For
illustrative purposes we choose Γ+n = δn/2, see e.g. [95] for a detailed discussion

with the Lorentzians

δΓ (ω) ≡ 1

π

Γ

ω2 + Γ 2
. (4.210)

Therefore, a given physical bath spectral function AΔ(ω) = −1/π�m {ΔR(ω)} is
approximated by a superposition of Lorentz curves, as sketched in Fig. 4.12. For
equidistant levels with energies ε̄n the level spacing is given by

δn = W

NB
, (4.211)

with W the bandwidth. The width of the Lorentzians (4.210) is given by Γ+n, and
one should choose

Γ+n ≈ δn, (4.212)

in order to achieve a smooth and non-peaked AAux
Δ (ω), which reproduces features

in AΔ(ω) properly. The hoppings v̄n are then adjusted in such a way that the local
density of states is correctly reproduced, and normalization requires that

∑
n v̄

2
n = 1.

In the hypothetical NB → ∞ limit, one recovers the exact result AAux
Δ (ω) → AΔ(ω).

See [95] for a further discussion of these aspects.
Up to now we only made use of v̄n and Γ+n, but Γ−n = Γ2n − Γ1n was not deter-

mined. This remaining degree of freedom amounts to specifying the filling of each
Lorentz peak δΓ+n(ω), and thus to adjusting the Keldysh component ΔAux

K . From
(4.201) one knows that the latter is related to the spectral function via

ΔK (ω) = −2π iAΔ(ω)s(ω), (4.213)
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with s(ω) = 1 − 2n(ω) the particular equilibrium or nonequilibrium occupation.
From (4.207) and (4.208) we have for the auxiliary system

ΔAux
K (ω) = 2iπ

∑

n

v̄2n
Γ−n

Γ+n
δΓ+(ω − ε̄n), (4.214)

which suggests to determine Γ−n via

Γ−n

Γ+n
= −s(ε̄n), (4.215)

in order to achieve the correct NB → ∞ limit. Furthermore, when inserting (4.206)
into this expression we find

Γ−n

Γ+n
= 2nn − 1 , (4.216)

and thus s(ε̄n) = 1 − 2nn, as desired. For an exemplary plot of ΔAux
R and ΔAux

K with
the buffer layer idea see Fig. 4.12.

4.8.2 Finite Size Lindblad Impurity Problem

As sketched above, in the buffer layer approach one is able to approximate the original
nonequilibrium impurity model by an auxiliary one, with a finite numberNB of levels
only. Most importantly, these levels are coupled to additional Markovian reservoirs
in order to obtain dissipation. Once this mapping to a finite size Lindblad model has
been achieved, one can solve the auxiliary manybody problem with U �= 0. This is
much simpler than in the original model because one only has to deal with a finite
many-body Hilbert space. Appropriate methods for this, such as Lanczos ED orMPS
are discussed below.

On the whole, from solving theU �= 0 Lindblad model one obtains the interacting
Green’s function GAux on the impurity site. From the discussion at the beginning of
this section it is clear that the mismatch between the auxiliary GAux and the exact G
of the original model depends solely on ‖ΔAux − Δ‖. This difference can be reduced
by increasing NB. However, a larger number of bath sites comes at the price of a
drastically increased effort to address the manybody solution. For example, methods
such as Lanczos ED scale exponentially inNB. Therefore, it is highly desirable to find
a mapping procedure which yields a good accuracy ‖ΔAux − Δ‖ � ‖Δ‖ already for
modest values of NB. This is provided by the Auxiliary Master Equation Approach
[21, 63, 78] which we present in the next section.
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4.9 Auxiliary Master Equation Approach

The key idea of the auxiliary master equation approach (AMEA), introduced in [21,
63], is to make optimal use of all available parameters in the finite size Lindblad
impurity model. In this way, it is possible to achieve already for small values of
NB ≈ O(10) a very good accuracy‖ΔAux − Δ‖ � ‖Δ‖. For this purposewe consider
the most general quadratic Lindblad dissipator with one impurity and NB bath levels

LDρ = 2
NB∑

n,m=1

(
Γ1mn

(
dnρd

†
m − 1

2
{d†

mdn, ρ})+ Γ2mn
(
d†
mρdn − 1

2
{dnd†

m, ρ})
)

.

(4.217)

Note here the important aspect that the coupling matrices Γ1nm and Γ2nm to the
Markovian environments are non diagonal, in contrast to (4.205), i.e. every possible
coupling is included. The unitary part of the Lindblad equation can be chosen to be
sparse, even in the most general case, since one always has the freedom to perform
unitary transformations among bath sites only, since it does not affect ΔAux on the
impurity site. Therefore, the NB bath sites can be assumed to be either in a chain or
star geometry. The former case is schematically depicted in Fig. 4.13. In the latter
case, in addition to Γ1nm and Γ2nm, we have the Hamiltonian parameters ε̄n and v̄n.
In AMEA all these parameters are optimized in a fit procedure by minimizing the
difference between ΔAux and Δ. We again stress that the better ΔAux approaches
Δ, the better the accuracy of the impurity solver is. In order to carry out the fit, we
define the cost function

χ(ε̄, v̄, Γ ) =
∫

dω‖�m {ΔAux(ω) − Δ(ω)
} ‖2 , (4.218)

and minimize it with respect to {Γ1nm, Γ2nm, ε̄n, v̄n}. On the whole, this amounts to
solving a multi-dimensional optimization problem with O(N 2

B) parameters. Even
though this procedure is more involved than the simple choice of {Γ1nn, Γ2nn, ε̄n, v̄n}

Fig. 4.13 Auxiliary master equation approach: The reservoirs are represented by a finite number of
levels coupled to two Markovian environments. In contrast to the buffer layer approach, Fig. 4.11,
all possible couplings are allowed, so that the coupling matrices Γ1nm and Γ2nm are non diagonal.
Again, the system is governed by a Lindblad equation (4.217)
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Fig. 4.14 Results for ΔAux(ω) in the auxiliary master equation approach, for a physical Δ(ω)

similar to the one in Fig. 4.12. Already for real, dense Γ1nm and Γ2nm matrices, a rapid convergence
with increasing NB is observed, see also [63, 71, 78]. The bias voltage between left and right lead
is denoted by φ, and Γ refers to the hybridization strength of the leads

in the buffer layer idea discussed above, the key aspect is that one achieves here
an exponential convergence of ΔAux towards Δ with increasing NB, see also [71].
Exemplary results for this fitting procedure are depicted in Fig. 4.14. More details
can be found in [71].

Once the parameters of the auxiliary system are fitted, the interacting Lindblad
equation must be solved. Up to now, we employed for this two different strategies
based on ED and MPS, respectively, see [63] and [78] for details. The former allows
us to consider all possible couplings so that modest values of NB = 6 are sufficient
for an accurate representation of the reservoirs, see Fig. 4.14. In the latter case we
restricted the fit to sparseΓ1nm andΓ2nm matrices, in order to be able to apply efficient
MPS techniques. The restriction results in not as optimal fits as with dense Γ1nm and
Γ2nm, but, due toMPSmuch larger system sizes ofNB = 15 − 20 are possible, which
outweighs and yields a significantly improved accuracy compared to the ED solver.

In the figures below, we present exemplary results for the ED and the MPS
approach. In Figs. 4.15 and 4.16 ED results for a semi-circular lead DOS are shown.
With the MPS approach we focused on the low-bias regime and considered a wide
band model for the leads, as plotted in Figs. 4.12 and 4.14. Very accurate spectral
functions could be obtained and it was possible for us to resolve the splitting of the
Kondo peak with increasing bias voltage φ = μL − μR in detail, see Figs. 4.17, 4.18
and 4.19.

4.9.1 Evaluation of Steady State Green’s Functions

Wenow focus on the computation of the steady stateGreen’s functions in the auxiliary
Lindblad system. At first we consider the noninteracting case, for which compact
expressions are derived. These are crucial for AMEA in order to efficiently compute
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Fig. 4.15 ED results for the evolution of the impurity spectral function A(ω) with increasing bias
voltage φ. In the equilibrium limit φ = 0, a distinct Kondo peak and two Hubbard bands are clearly
visible. The former splits upon increasing φ into two weak excitations, which are located at the
positions of the chemical potentialsμ± = ±φ/2. Results taken from [63], for an interaction strength
U = 20Δ0, with Δ0 half the hybridization strength of the leads

Fig. 4.16 ED results for the current-voltage characteristics of the nonequilibrium SIAMwith semi-
circular lead DOS. At the lead bandwidth φ = 40Δ0, the current is strongly suppressed and must
vanish for U = 0. MPS refers to quasi exact reference data [61]. Results taken from [63]
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Fig. 4.17 MPS results for the equilibrium, i.e. φ = 0, spectral function with increasing num-
ber of bath sites. A comparison to a quasi exact NRG reference calculation reveals a remarkably
close agreement. Results for a temperature T = 0.05Γ well below the Kondo scale TK ≈ 0.2Γ ,
taken from [78] (For T/TK → 0 the exact spectral function fullfills the so-called Friedel sum rule
A(ω) = πΓ .)

Fig. 4.18 Sketch of the nonequilibrium impurity problem on the left. In the low energy limit
φ � TK , as well as in the high energy limit φ � TK , the detailed physics is known. On the right
we present MPS results for the nonequilibrium spectral function in the challenging intermediate
regime T < TK and φ ∼ TK , displaying a clear splitting of the Kondo peak for φ > Γ/2. Figure
on the right taken from [78]
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Fig. 4.19 MPS results for
the current-voltage
characteristics together with
the differential conductance
∂j/∂φ. At low temperatures
and close to φ ≈ 0, a clear
enhancement of the
conductivity due to the
Kondo effect is found.
Figure taken from [78]

ΔAux(ω), and thus, for fitting ΔAux(ω) to Δ(ω) by minimizing (4.218). After that
we focus on the manybody problem and the computation of the interacting Green’s
function GAux.

4.9.1.1 Noninteracting Case

We start from (4.153), (4.154) and (4.155), i.e. the Lindblad equation in superfermion
representation. This equation of “Schrödinger type” can be rewritten in the following
form

iL = C†H C + const., (4.219)

where

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
...

cN
c̃†1
...

c̃†N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.220)

summarizes the fermionic operators ci (c̃
†
i ) for original (tilde) sites, and

H =
(
E+ B
B̄ E−

)
,

E± = E ± i(Γ2 − Γ1),

B = 2Γ2,

B̄ = −2Γ1. (4.221)
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ThematrixE accounts hereby for all single-particle terms in the originalHamiltonian,
i.e. all hoppings and onsite energies, and the dense matrices Γ1/2 contain all the
couplings to the Markovian environments, see (4.217).

The detailed derivation of the Green’s functions for the generic case of a lattice
model is rather lengthy and can be found for instance in [63, 95]. On the other hand,
the final expression is quite compact, so we start by displaying it here in matrix form
in the i, j indices

GR(ω) = (ω − E + iΓ+)−1,

GK (ω) = 2i GR(ω)Γ−GA(ω), (4.222)

with the abbreviationsΓ± = Γ2 ± Γ1. These analytic expressions involve onlymatrix
multiplications of size N = NB + 1 and are thus numerically cheap to evaluate. We
now prove (4.222).

Proof for the Retarded Component

The retarded Green’s function is given by

GR(t)αβ = −iθ(t)〈{cα(t), c†β}〉
= θ(t)(pαβ(t) + gαβ(t)), (4.223)

with the first part

pαβ(t) = −iTrcα(c†βρ)t = −i〈I |cα(c†βρ)t|I〉
= −i〈I |cαe

Ltc†β |ρ〉 ≡ −i〈I |cα|c†β(t)〉, (4.224)

whereρ is in the steady state, and the usual restriction t > 0of theLindblad formalism
applies. When making use of the property 〈I |L = 0 one can write the time derivative
in terms of an equation of motion

d

dt
pαβ(t) = −i〈I |[cα,L]|c†β(t)〉. (4.225)

With the Lindblad operator in the form of (4.219) one finds for the commutator

[cα, iL] =
2N∑

γ̃=1

H
αγ̃

C
γ̃

=
N∑

γ=1

(
E+αγ cγ + Bαγ c̃†γ

)
, (4.226)

where we made use of the definition (4.220) in the second line. Multiplied with the
left vacuum this results in terms of the form
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〈I |[cα, iL] →
∑

γ

(E+ − iB)αγ 〈I |cγ =
∑

γ

(E − iΓ+)αγ 〈I |cγ , (4.227)

due to the tilde conjugation rule 〈I |c̃† = −i〈I |c. In matrix notation one thus arrives at

d

dt
p = −i(E − iΓ+)p. (4.228)

Now, we proceed analogously with the second part

gαβ(t) = −iTr(c†βcα(t)ρ) = −iTrcα(ρc†β)t . (4.229)

In terms of Lindblad time evolution and with the help of the tilde conjugation rules
we find that

gαβ(t) = −i〈I |cαe
Ltρc†β |I〉 = −i〈I |cαe

Lt(−ic̃β)|ρ〉
= −〈I |cαe

Lt c̃β |ρ〉 = −〈I |cα|c̃β(t)〉. (4.230)

In the samemanner as before, by writing down the equations of motion one arrives at

d

dt
g = −i(E − iΓ+)g. (4.231)

Finally, from inserting the results (4.228) and (4.231) into the time derivative of
(4.223), one finds the following equation of motion for the retarded Green’s function

i
d

dt
GR(t) = Iδ(t) + (E − iΓ+)GR(t). (4.232)

Fourier transforming of the lhs and rhs of the equation yields
∫
i ddt GR(t)eiωtdt =

ωGR(ω) and I + (E − iΓ+)GR(ω). Overall this results in the first equation in
(4.222). The effective broadening Γ+ corresponds in real time to a damping:
GR(t) = ∫ +∞

−∞ GR(ω)e−iωt dω
2π ∼ e−Γ+t for t > 0.

In analogous manner one obtains for the advanced Green’s function the usual
relation

GA(ω) = GR(ω)†

= (ω − E − iΓ+)−1. (4.233)

Proof for the Keldysh component

For the Keldysh component we follow closely the one presented in [95]. Analogous
to (4.223), GK is given by
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GK (t) = −i〈[c(t), c†]〉
= p(t) − g(t), (4.234)

when written in matrix form. Using the expressions for p(t) and g(t) derived above,
one has for t > 0

i
d

dt
GK (t) = (E − iΓ+)GK (t), (4.235)

with the solution

GK (t > 0) = e−i(E−iΓ+)t GK0︸︷︷︸
GK (t=0)

. (4.236)

For t < 0 one can use the following property

GK (t) = −GK (−t)†, (4.237)

which is easily verified by inserting the definition of GK , (4.234). For negative times
one thus has

GK (t < 0) = GK0e
−i(E+iΓ+)t, (4.238)

since G†
K0 = −GK0. When splitting the time integration in the Fourier transform,

one finds from (4.236) and (4.238)22

GK (ω) =
∫ +∞

−∞
dteiωtGK (t)

= i(ω − E + iΓ+)−1GK0 − iGK0(ω − E − iΓ+)−1

= i(GR(ω)GK0 − GK0GA(ω)). (4.239)

From the Langreth rules, (4.190), one has for the inverse

[G(ω)−1]K = −i(GK0GA(ω)−1 − GR(ω)−1GK0), (4.240)

and GK0 is given by the equal time expectation value

GK0 = −i(2m − I),

mαβ(t) = 〈cαc
†
β〉t . (4.241)

From the corresponding equation of motion we now determine the steady state
expression for mαβ(t):

22Cf. Generalized Kadanoff-Baym ansatz (GKBA) [99].
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0 = dmαβ

dt
= d

dt
〈cαc

†
β〉 = 〈I |[cαc

†
β,L]|ρ(t)〉 = 〈I |(cα[c†β,L] + [cα,L]c†β)|ρ〉.

(4.242)

For the sake of claritywe omitmatrix indices. Using (4.219) for the Lindblad operator
we obtain

dm

dt
= −i〈I |c(−C†H )|ρ〉 − i〈I |(H C)c†|ρ〉
= i〈I |c(c†E+ + c̃B̄)|ρ〉 − i〈I |(E+c + Bc̃†)c†|ρ〉
= imE+ − 〈I |c†c|ρ〉︸ ︷︷ ︸

1−m

B̄ − iE+m − Bm, (4.243)

where in the last line we have made use of the tilde conjugation rules. On the whole,
the steady-state single particle density matrix 1 − m is obtained from solving

(m − 1)B̄ − Bm − i[E+,m] = 0. (4.244)

With the definitions from (4.221) and (4.241) this amounts to

2Γ− = (E − iΓ+)GK0 − GK0(E + iΓ+). (4.245)

The rhs is just what is obtained from (4.240), when inserting the expressions for
GR/A(ω):

[G(ω)−1]K = −i(GK0GA(ω)−1 − GR(ω)−1GK0)

= −i(GK0(ω − E − iΓ+) − (ω − E + iΓ+)GK0)

= 2iΓ−. (4.246)

4.9.1.2 Interacting Case

To solve the interacting problem we set up the full manybody basis in the super-
fermion representation, which corresponds to the manybody Hilbert space for
(density) operators of the N = NB + 1 sites system. The Hilbert space size is expo-
nentially large, NH = 16N , when taking both spin directions and no particle conser-
vation into account. In the following we assume that the Lindblad operator and the
corresponding manybody states are expressed in this basis, so that the time evolution
equation

|ρ(t)〉 = eL̂t|ρ(0)〉, (4.247)

corresponds to a linear algebra problem of size NH. As before, iL̂ plays the role of
a non-Hermitian Hamiltonian.
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We assume that L̂ can be diagonalized, a property which is not trivial for a non-
Hermitian matrix but can be argued from a physical point of view. The left- and
right-sided eigenvectors

L̂|αR〉 = Lα|αR〉,
〈αL|L̂ = Lα〈αL| , (4.248)

with eigenvalues Lα can be chosen in such a way that they are bi-orthogonal to each
other

〈αL|βR〉 = δαβ, (4.249)

and form a complete set,
Î =

∑

α

|αR〉〈αL|. (4.250)

Due to this we can expand any state |ρ(t)〉 in this basis and one can rewrite (4.247)
as

|ρ(t)〉 =
∑

α

Pα(t)|αR〉,

Pα(t) = eLα tPα(0). (4.251)

For a stable solution one must have that �{Lα} ≤ 0, which is ensured by the form
of the Lindblad equation. Furthermore, at least one eigenvalue must be zero due to
the property 〈I |L̂ = 0 of the left vacuum, (4.157). We assume here that exactly one
eigenvalue, say Lα=0, is zero with the following two corresponding left and right
eigenstates

〈I | = 〈α = 0,L|,
|ρ∞〉 = |α = 0,R〉, (4.252)

where |ρ∞〉 is the steady state. From (4.249) it follows that

〈I |ρ∞〉 = 1, (4.253)

which is just the trace normalization of the density matrix. The assumption that only
one eigenvalue is zero, and, more generally, that only one has a vanishing real part,
is expected to be fullfilled for systems in which each level which is connected to
a Lindblad coupling. In this case, any initial state is expected to dissipate so that a
unique steady state is fullfilled.
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In order to reduce the relevant Hilbert space size NH it is expedient to make use
of conserved quantities. In many interesting cases, the number of particles per spin
component is conserved. Within the superfermion representation this translates into
the conservation of the operator23

Δσ = Nσ − Ñσ

=
∑

i

(
c†iσ ciσ − c̃†iσ c̃iσ

)
(4.254)

The left vacuum 〈I | and, consequently also the steady state |ρ∞〉 are situated in
the sector Δσ = 0, as can be easily checked. The excited states used to evaluate
Green’s function belong to sectors with one of the Δσ �= 0. For example, |c†↑(t)〉 =
eLtc†↑|ρ∞〉 has Δ↑ = 1 and Δ↓ = 0. A general non-stationary state |ρ(t)〉 which is
not an eigenstate of L, however, does not necessarily have a well-defined particle
sector Δσ . From (4.251) it follows that in this case all components with Δσ �= 0 are
exponentially damped and only the steady state component |α = 0,R〉 in the sector
Δσ = 0 survives in the long-time limit. Thus, for the purpose of finding the steady
state |ρ∞〉, a convenient choice for the initial state is for instance |ρ(t = 0)〉 = |I〉.24

Steady State Correlation Functions

Here we show that correlation functions in the steady state can be expressed in the
form of a Lehmann representation, analogous to the equilibrium case (cf. [63, 100]).
The steady state Green’s function in the time domain, iGBA(t) ≡ 〈B(t)A〉, reads in
terms of the superfermion representation

iGBA(t,+) ≡ θ(t)〈I |B|A(t)〉
= θ(t)〈I |BeLtA|ρ∞〉, (4.255)

where + indicates that the time argument is ≥ 0 and one can use the “normal”
quantum regression theorem, see Sect. 4.6. When inserting the identity operator in
terms of the eigenstates of L, (4.250), one obtains

iGBA(t,+) = θ(t)〈0L|BIeLt IA|0R〉
= θ(t)

∑

α

〈0L|B|αR〉〈αL|A|0R〉eLα t , (4.256)

23Also the analogue to the usual SU(2) spin symmetry can be implemented, although it is more
involved.
24Note that a more standard form for the conserved quantities is obtained when performing a
particle-hole transformation in the tilde space c̃σ → h̃†σ , since then Δσ → Nσ + Ñσ − N .
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and subsequent Fourier transformation yields

GBA(ω,+) =
∫ ∞

−∞
GBA(t,+)eiωtdt

=
∑

α

〈0L|B|αR〉〈αL|A|0R〉 1

ω − iLα

. (4.257)

In particular we are interested in the retarded and Keldysh Green’s functions. The
retarded Green’s function in the time domain is given by

GRBA(t) = −iθ(t)〈{B(t),A}〉
= −iθ(t)〈B(t)A + A(−t)B〉
= GBA(t,+) + GAB(−t,−), (4.258)

where the QRT cannot be applied directly to the second term. But, as before, from
the complex conjugate one finds

iGAB(−t,−) ≡ θ(t)〈AB(t)〉
= θ(t)〈B†(t)A†〉∗
= θ(t)〈I |B†|A†(t)〉∗

= θ(t)

(
∑

α

〈0L|B†|αR〉〈αL|A†|0R〉eLα t

)∗
, (4.259)

and the Fourier transform is given by

GAB(ω,−) =
∫ ∞

−∞
GAB(−t,−)eiωtdt

=
∑

α

(〈0L|B†|αR〉〈αL|A†|0R〉)∗ 1

ω − iL∗
α

. (4.260)

On the whole, GRBA(ω) is obtained by the Fourier transform of (4.258), so by the
sum of (4.257) and (4.260). In particular, one can see that the poles are located at
ω = iLα and ω = iL∗

α , so in the lower complex half plane since �{Lα} ≤ 0 for all
eigenstates. This ensures the causality of the retarded Green’s functions. Due to these
poles away from the real axis, the spectrum is not given by a sum of delta peaks, as
for a finite size system, but by a continuous function.
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The Lehmann representation of GKAB(ω) is obtained in a similar way, leading to

GKAB(ω) = −iF{〈[B(t),A]〉}
=
∑

α

〈0L|B|αR〉〈αL|A|0R〉 1

ω − iLα

+
∑

α

〈0L|A|αR〉〈αL|B|0R〉 1

ω + iLα

− h.c. (4.261)

with F{} denoting the Fourier transformation and h.c. stands for the Hermitian con-
jugate of the two sums.

In practice, the Green’s functions described above can be determined either
directly by full diagonalization of the Lindblad operator, see (4.248), or with Krylov
space methods. A full diagonalization is only feasible for rather small matrices of
size NH � 5000, due to memory constraints and since the numerical effort scales
with the third power of the matrix size. Krylov space methods, on the other hand,
allow one to consider much larger values of NH ≈ 107 − 109, because only matrix-
vector products are needed. Instead of computing all eigenvectors of the Lindblad
operator, only the relevant subset, the so-called Krylov subspace is targeted in an
iterative fashion. For the case of Green’s functions, for instance, 〈l|1/(ω − αL)|r〉
is computed by forming a bi-orthogonal set of vectors spanned by 〈l|Ln and Ln|r〉
with n = 0, 1, 2, . . . . For more details on the common Lanczos algorithm for Her-
mitian problems, as well as the bi- or two-sided Lanczos and the Arnoldi algorithm
for non-Hermitian matrices, which must be used in the present problem, we refer to
[101–103].
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