
Automated Smartphone Keyboard Error
Corrections

Vered Aharonson1,2(&), Rotem Rousseau3, and Eran Aharonson3

1 Department of Electrical Engineering,
Afeka Tel Aviv Academic College of Engineering, Tel Aviv, Israel

2 School of Electrical and Information Engineering,
University of the Witwatersrand, Johannesburg, South Africa

vered.aharonson@wits.ac.za
3 Department of Software Engineering,

Afeka Tel Aviv Academic College of Engineering, Tel Aviv, Israel
erana@afeka.ac.il

Abstract. The usability of smartphone’s touch keyboard is often hampered by
typing mistakes resulting from the small size of the virtual keys relatively to the
user’s finger size. Although this problem has been addressed in various methods,
an optimal solution in terms of both accuracy and user experience, however, has
not been achieved. We developed an algorithm that predicts users typing
intentions based on a statistical geometrical modeling of the touch points area.
The algorithm builds a user-adaptive virtual location of the key based on devi-
ations probability computation. An uncertainly measure activates a language
statistics engine to enhance the prediction. The algorithm was integrated into the
default Android® keyboard and was tested on users. Typing error rate using the
implemented algorithms was reduced by 23.1% on average. The proposed
method can enhance typing accuracy and user experience and may facilitate and
improve the design of smaller and cheaper touch based smartphones.

Keywords: Smart keyboard � Enhanced typing experiences
Typing error corrections � Location statistics

1 Introduction

A vast majority of smartphones applications use text inputs and entail typing. The user
experience when typing on a smartphones’ virtual keyboard is often hampered by
typing errors. One reason for these errors is the small size of the keys relatively to the
user’s finger [1, 2]. Another may be shifts in the user’s finger placement due to eye –

finger coordination [3–5].
A prevalent solution to this problem, which is implemented in many smartphones is

a language-based auto-correction of the errors [6], which predicts the letter typed
according to its highest probability in the word or sentence (Fig. 1).

Many users, however, find this solution irritating, since the predicted word often
does not match the user’s intention, especially when it comes to non-vocabulary words
like names and abbreviations, or to uncommon languages [7]. Although this technique

© Springer International Publishing AG, part of Springer Nature 2019
T. Z. Ahram and C. Falcão (Eds.): AHFE 2018, AISC 794, pp. 574–580, 2019.
https://doi.org/10.1007/978-3-319-94947-5_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94947-5_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94947-5_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94947-5_58&domain=pdf

improved considerably over the years, especially where a user’s language adaptation
was implemented, (i.e. SwiftKey®, Google® keyboard, Fleksy®, Swype®, Minuum®)
these limitations have not yet been fully resolved.

Recent studies explored the association between the geometrical properties of a
user’s touch points and the intended key. Azenkot et al. [4] investigated the average
deviations between the positions of each key to the users’ touch points. Their study
illustrated various patterns in the offsets between the different touchpoints and their
intended keys. The authors proposed a method called `Remulation’ for real time cor-
rections based on their users’ studies [8]. The method is based, however, on prior user’s
typing patterns database and is not personalized to a specific user.

The goal of our study is to develop and implement an algorithm that can provide
typing accuracy while maintaining the user experience. The algorithm is user adaptive
and does not necessitate training.

2 Methods

Our design entails an adaptive keyboard that adjusts for key offsets in the individual
user typing. The keyboard learns the association between the user’s touch locations and
the intended key. A hybrid configuration design combines this geometrical analysis of
the user’s touch point and a language analysis of the typed keys. An unsupervised
learning design does not require prior knowledge or data base.

2.1 Algorithm

An The algorithm produces an “intended key” estimation for each location of the user’s
touch, denoted Touchpoint. The computation is based on a first order Markov chain
model, updating for each additional touchpoint. The initial state, or TouchPoint, of the
chain is the center of the keyboard key. A geometrical location estimation, denoted
TouchMap, is computed as the weighted average of the current and last TouchPoints
for each key (Eq. 1). The weights are heuristically chosen, based on the observation
that the current touch points have more strength than past ones.

Fig. 1. Illustration of a keyboard language based auto-correction

Automated Smartphone Keyboard Error Corrections 575

TouchMap ¼ 0:9 TouchPointcurrentð Þþ 0:1 TouchPointlastð Þ ð1Þ

The association of every new TouchPoint, with an “intended key” is based on the
TouchPoint’s distance from all TouchMaps:

The three smallest distances are selected as ‘candidates’. If one of these 3 values is
smaller by more than 5% from the other 2, it is selected as the “intended key”. If two of
the three or all three values are less than 5% apart from each other in terms of distance,
the decision is of uncertainty and a second phase of the algorithm is activated

The second phase is based on language prediction: each of the “intended key”
candidates is tested using its bigram and trigram with the previous letters in the typed
word and the probability of these n-grams is retrieved from a database dictionary. The
highest probability ranks the chosen candidate. If two candidate letters have identical
probability, one of them is randomly chosen.

A flow diagram of the algorithm is presented in Fig. 2.

2.2 Implementation

Signal The system includes three main components: a user interface, which is the
original user interface of the smartphone’s default keyboard, the algorithm’s imple-
mentation and a database for later analysis and testing.

The implementation is designed to fit Android smartphones from version 4.1 or
higher, which can accommodate the majority of Android devices available today.

Fig. 2. Algorithm flow chart

576 V. Aharonson et al.

The algorithm was implemented using Android Studio® and Google®’s open
source default keyboard software.

The user interface is identical to the standard Smartphone keyboard except of an
optional additional key which activate a new debug visual tool called TouchpointView.
The tool allows a qualitative examination of the TouchPoints. As illustrated in Fig. 3,
the additional key displays a circle and an “x” which lays over the keyboard a display
of the actual touch points of the user’s typing and clears them, respectively.

The TouchpointView tool is also implemented as an option in the user interface, for
users who wish to observe their own key touch distributions.

2.3 Performance Evaluation

Ten users participated in a performance evaluation experiment. The users were asked to
type a set of 21 short sentences on an Android smartphone, using the default smart-
phone keyboard. The sentences contained 86 words and 405 letters which were uni-
formly distributed among the 26 English letters. The users did not see the result of their
typing, except from an asterisk symbol indication that a letter was typed. The same
experiment was performed twice, on two different smartphones, with different screen
sizes. The Smartphones used were Galaxy S5 – as a large screen example (5.1 in.) and
Posh Micro X SN40 – the smallest Android smartphone (2.4 in.). The keyboard key
sizes are 182 � 108 pixels and 52 � 24 pixels. For the large and small screens,
respectively.

Fig. 3. TouchpointView tool display of the touch points (small blue dots) upon pressing the
additional button (circle and “x”).

Automated Smartphone Keyboard Error Corrections 577

The performance, in terms of error rate, was compared between the default key-
board and when running the algorithm. In order to evaluate the contribution of the
language based key prediction to the basic geometrical model, the performance of the
two versions of the algorithm: with and without the language layer were compared, for
the two screen sizes. The performance measure was error rate: ratio of key errors to the
number of TouchPoints, in percentage.

Error rates were compared between the two keyboard implementations: standard
and enhanced, and between the two screen sizes.

3 Results

The Fig. 4 presents the error rates of the 10 subjects when typing on the two screen
sizes. Both the standard keyboard’s results and the ones acquired when implementing
our algorithm (“enhanced” are presented for both screen’s experiments.

The error rates’ means and standard deviations (SD) for the two keyboard imple-
mentations, standard and enhanced, and for the two screen sizes are presented in
Table 1.

Fig. 4. Bar graph of the users’ error rate for the two screen sizes and for the standard and
enhanced keyboards implementations.

Table 1. Average users error rates.

Error rate [%]
mean ± SD

Standard keyboard Enhanced keyboard

Small screen 20.0 ± 9.9 16.63 ± 9.2
Large screen 4.2 ± 1.6 3.0 ± 1.1

578 V. Aharonson et al.

It is obvious that the smaller screen induces significantly more errors. The results
indicate that error rate was reduced when the enhanced keyboard was implemented, for
both screen sizes. The reductions in error rate were 18.1% and 22.9% for the small and
large keyboard, respectively.

A further analyzes examined which of the correction layers: geometric or language
based contributed to the error correction. The results are presented in Table 2.

The results indicate that the geometric correction is able to attend to more than 75%
of the typing errors for the large screen, whereas in the small screen case, most errors
necessitated an activation of the language-based correction.

4 Discussion and Conclusions

We presented an algorithm that could correct typing errors on touchscreen, primarily by
examining the geometrical distribution of a user’s TouchPoints and determining the
user’s intended key according to distances minimization. The algorithm is implemented
in a hybrid structure, such that in case of uncertainty in the geometrical decision, a
language-based decision is activated, which takes into account the letters bi-grams
probabilities. The algorithm is continuously updating its decision with each TouchPoint
employing an unsupervised decision logic, and therefore does not require any training
by the user.

The experiment was performed on two screen sizes and indicated that the algorithm
was able to substantially reduce the error rates in both screens.

When the contribution of each part of the hybrid system; geometric and linguistic
on the performance was examined, a linguistic error correction was needed for 70% of
the error corrections in the small screen as compared to 22.5% of the cases in the large
screen experiments. As could be predicted, the uncertainly in the geometric decision is
larger for smaller keys and hence a language based decision is required in most cases
for the smaller screens.

The results imply that this enhanced keyboard is more accurate and more user-
adaptive than the standard keyboard of Android smartphones available in the market
today. Its implementation is transparent to the user and does not necessitate any user
interface changes.

Healthy subjects’ typing errors are not large in size and their rate, especially on large
keyboards, is relatively small. A further study will examine if our system could be aug-
mented to accommodate people with both vision and motor disorders or disabilities [9].

Table 2. Relative contribution to error rate corrections.

Error rate correction
improvement [%]

Geometric correction
algorithm

Language-based correction
algorithm

Small screen 29.38 70.62
Large screen 77.50 22.50

Automated Smartphone Keyboard Error Corrections 579

References

1. Sears, A., Revis, D., Swatski, J., Crittenden, R., Shneiderman, B.: Investigating touchscreen
typing: the effect of keyboard size on typing speed. Behaviour & Information Technology 12
(1), 17–22 (1993)

2. Findlater, L., Wobbrock, J. O., Wigdor, D.: Typing on flat glass: examining ten-finger expert
typing patterns on touch surfaces, pp. 2453–2462

3. Kwon, S., Lee, D., Chung, M.K.: Effect of key size and activation area on the performance of
a regional error correction method in a touch-screen QWERTY keyboard. Int. J. Ind. Ergon.
39(5), 888–893 (2009)

4. Azenkot, S., Zhai, S.: Touch behavior with different postures on soft smartphone keyboards,
pp. 251–260

5. Nicolau, H., Jorge, J.: Touch typing using thumbs: understanding the effect of mobility and
hand posture, pp. 2683–2686

6. Kukich, K.: Techniques for automatically correcting words in text. ACM Computing Surveys
(CSUR) 24(4), 377–439 (1992)

7. Tetariy, E., Bar-Yosef, Y., Silber-Varod, V., Gishri, M., Alon-Lavi, R., Aharonson, V.,
Opher, I., Moyal, A.: Cross-language phoneme mapping for phonetic search keyword spotting
in continuous speech of under-resourced languages. Artificial Intelligence Research 4(2), p72
(2015)

8. Bi, X., Azenkot, S., Partridge, K., Zhai, S.: Octopus: evaluating touchscreen keyboard
correction and recognition algorithms via, pp. 543–552

9. Trewin, S., Pain, H.: Keyboard and mouse errors due to motor disabilities. Int. J. Hum
Comput Stud. 50(2), 109–144 (1999)

580 V. Aharonson et al.

	Automated Smartphone Keyboard Error Corrections
	Abstract
	1 Introduction
	2 Methods
	2.1 Algorithm
	2.2 Implementation
	2.3 Performance Evaluation

	3 Results
	4 Discussion and Conclusions
	References

