
Chapter 4
Isogeometric Analysis: Mathematical
and Implementational Aspects,
with Applications

Thomas J. R. Hughes, Giancarlo Sangalli, and Mattia Tani

Abstract Isogeometric analysis (IGA) is a recent and successful extension of
classical finite element analysis. IGA adopts smooth splines, NURBS and gener-
alizations to approximate problem unknowns, in order to simplify the interaction
with computer aided geometric design (CAGD). The same functions are used to
parametrize the geometry of interest. Important features emerge from the use of
smooth approximations of the unknown fields. When a careful implementation is
adopted, which exploit its full potential, IGA is a powerful and efficient high-order
discretization method for the numerical solution of PDEs. We present an overview of
the mathematical properties of IGA, discuss computationally efficient isogeometric
algorithms, and present some significant applications.

4.1 Introduction

Isogeometric Analysis (IGA) was proposed in the seminal paper [70], with a
fundamental motivation: to improve the interoperability between computer aided
geometric design (CAGD) and the analysis, i.e., numerical simulation. In IGA, the
functions that are used in CAGD geometry description (these are splines, NURBS,
etcetera) are used also for the representation of the unknowns of Partial Differential
Equations (PDEs) that model physical phenomena of interest.

In the last decade Isogeometric methods have been successfully used on a variety
of engineering problems. The use of splines and NURBS in the representation of
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unknown fields yields important features, with respect to standard finite element
methods. This is due to the spline smoothness which not only allows direct
approximation of PDEs of order higher than two,1 but also increases accuracy per
degree of freedom (comparing to standard C0 finite elements) and the spectral
accuracy,2 and moreover facilitates construction of spaces that can be used in
schemes that preserve specific fundamental properties of the PDE of interest (for
example, smooth divergence-free isogeometric spaces, see [37, 38, 57] and [58]).
Spline smoothness is the key ingredient of isogeometric collocation methods, see
[7] and [100].

The mathematics of isogeometric methods is based on the classical spline theory
(see, e.g., [51, 102]), but also poses new challenges. The study of h-refinement of
tensor-product isogeometric spaces is addressed in [15] and [22]. The study of k-
refinement, that is, the use of splines and NURBS of high order and smoothness
(Cp−1 continuity for p-degree splines) is developed in [19, 40, 59, 115]. With
a suitable code design, k-refinement boosts both accuracy and computational
efficiency, see [97]. Stability of mixed isogeometric methods with a saddle-point
form is the aim of the works [6, 21, 32, 33, 37, 56–58, 118].

Recent overview of IGA and its mathematical properties are [25] and [69].
We present in the following sections an introduction of the construction of

isogeometric scalar and vector spaces, their approximation and spectral properties,
of the computationally-efficient algorithms that can be used to construct and solve
isogeometric linear systems, and finally report (from the literature) some significant
isogeometric analyses of benchmark applications.

4.2 Splines and NURBS: Definition and Properties

This section contains a quick introduction to B-splines and NURBS and their use in
geometric modeling and CAGD. Reference books on this topic are [25, 44, 51, 91,
93, 102].

1IGA of Cahn-Hilliard 4th-order model of phase separation is studied in [62, 63]; Kirchhoff-Love
4th-order model of plates and shells in [21, 26, 78, 79]; IGA of crack propagation is studied in
[126], with 4th- and 6th-order gradient-enhanced theories of damage [127]; 4th-order phase-field
fracture models are considered in [30] and [29], where higher-order convergence rates to sharp-
interface limit solutions are numerically demonstrated.
2The effect of regularity on the spectral behavior of isogeometric discretizations has been studied
in [49, 71, 73].
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4.2.1 Univariate Splines

Given two positive integers p and n, we say that Ξ := {ξ1, . . . , ξn+p+1} is a p-open
knot vector if

ξ1 = . . . = ξp+1 < ξp+2 ≤ . . . ≤ ξn < ξn+1 = . . . = ξn+p+1,

where repeated knots are allowed, and ξ1 = 0 and ξn+p+1 = 1. The vector Z =
{ζ1, . . . , ζN } contains the breakpoints, that is the knots without repetitions, where
mj is the multiplicity of the breakpoint ζj , such that

Ξ = {ζ1, . . . , ζ1
︸ ︷︷ ︸

m1 times

, ζ2, . . . , ζ2
︸ ︷︷ ︸

m2 times

, . . . , ζN , . . . , ζN
︸ ︷︷ ︸

mN times

}, (4.1)

with
∑N

i=1 mi = n + p + 1. We assume mj ≤ p + 1 for all internal knots. The
points in Z form a mesh, and the local mesh size of the element Ii = (ζi, ζi+1) is
denoted hi = ζi+1 − ζi , for i = 1, . . . , N − 1.

B-spline functions of degree p are defined by the well-known Cox-DeBoor
recursion:

̂Bi,0(ζ ) =
{

1 if ξi ≤ ζ < ξi+1,

0 otherwise,
(4.2)

and

̂Bi,p(ζ ) = ζ − ξi

ξi+p − ξi

̂Bi,p−1(ζ )+ ξi+p+1 − ζ

ξi+p+1 − ξi+1

̂Bi+1,p−1(ζ ), (4.3)

where 0/0 = 0. This gives a set of n B-splines that are non-negative, form a partition
of unity, have local support, are linear independent.

The {̂Bi,p} form a basis for the space of univariate splines, that is, piecewise
polynomials of degree p with kj := p−mj continuous derivatives at the points ζj ,
for j = 1, . . . , N :

Sp(Ξ) = span{̂Bi,p, i = 1, . . . , n}. (4.4)

Remark 1 The notation S
p
r will be adopted to refer to the space Sp(Ξ) when the

multiplicity mj of all internal knots is p − r . Then, S
p
r is a spline space with

continuity Cr .

The maximum multiplicity allowed, mj = p + 1, gives kj = −1, which represents
a discontinuity at ζj . The regularity vector k = {k1, . . . , kN } will collect the
regularity of the basis functions at the internal knots, with k1 = kN = −1 for
the boundary knots. An example of B-splines is given in Fig. 4.1. B-splines are
interpolatory at knots ζj if and only if the multiplicity mj ≥ p, that is where the
B-spline is at most C0.
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Fig. 4.1 Cubic B-splines and the corresponding knot vector with repetitions

Each B-spline ̂Bi,p depends only on p+ 2 knots, which are collected in the local
knot vector

Ξi,p := {ξi, . . . , ξi+p+1}.

When needed, we will stress this fact by adopting the notation

̂Bi,p(ζ ) = ̂B[Ξi,p](ζ ). (4.5)

The support of each basis function is exactly supp(̂Bi,p) = [ξi, ξi+p+1].
A spline curve in R

d , d = 2, 3 is a curve parametrized by a linear combination
of B-splines and control points as follows:

C(ζ ) =
n
∑

i=1

ci
̂Bi,p(ζ ) ci ∈ R

d, (4.6)

where {ci}ni=1 are called control points. Given a spline curve C(ζ ), its control
polygon CP (ζ ) is the piecewise linear interpolant of the control points {ci}ni=1 (see
Fig. 4.2).

In general, conic sections cannot be parametrized by polynomials but can be
parametrized with rational polynomials, see [91, Sect. 1.4]. This has motivated
the introduction of Non-Uniform Rational B-Splines (NURBS). In order to define
NURBS, we set the weight function W(ζ ) = ∑n

�=1 w�
̂B�,p(ζ ) where the positive

coefficients w� > 0 for � = 1, . . . , n are called weights. We define the NURBS
basis functions as

̂Ni,p(ζ ) = wi
̂Bi,p(ζ )

∑n
�=1 w�

̂B�,p(ζ )
= wi

̂Bi,p(ζ )

W(ζ )
, i = 1, . . . , n, (4.7)
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Fig. 4.2 Spline curve (solid line), control polygon (dashed line) and control points (red dots)

Fig. 4.3 On the left, the NURBS function ξ �→ C(ξ) parametrizes the red circumference of a
circle, given as the projection of the non-rational black spline curve, parametrized by the spline
ξ �→ Cw(ξ). The NURBS and spline control points are denoted Bi and Bw

i , respectively, in the
right plot

which are rational B-splines. NURBS (4.7) inherit the main properties of B-splines
mentioned above, that is they are non-negative, form a partition of unity, and have
local support. We denote the NURBS space they span by

Np(Ξ,W) = span{̂Ni,p, i = 1, . . . , n}. (4.8)

Similarly to splines, a NURBS curve is defined by associating one control point
to each basis function, in the form:

C(ζ ) =
n
∑

i=1

ci
̂Ni,p(ζ ) ci ∈ R

d . (4.9)

Actually, the NURBS curve is a projection into R
d of a non-rational B-spline curve

in the space R
d+1, which is defined by

Cw(ζ ) =
n
∑

i=1

cw
i
̂Bi,p(ζ ),

where cw
i = [ci, wi ] ∈ R

d+1 (see Fig. 4.3).
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For splines and NURBS curves, refinement is performed by knot insertion and
degree elevation. In IGA, these two algorithms generate two kinds of refinement
(see [70]): h-refinement which corresponds to mesh refinement and is obtained by
insertion of new knots, and p-refinement which corresponds to degree elevation
while maintaining interelement regularity, that is, by increasing the multiplicity
of all knots. Furthermore, in IGA literature k-refinement denotes degree elevation,
with increasing interelement regularity. This is not refinement in the sense of nested
spaces, since the sequence of spaces generated by k-refinement has increasing global
smoothness.

Having defined the spline space Sp(Ξ), the next step is to introduce suitable
projectors onto it. We focus on so called quasi-interpolantsA common way to define
them is by giving a dual basis, i.e.,

Πp,Ξ : C∞([0, 1])→ Sp(Ξ), Πp,Ξ (f ) =
n
∑

j=1

λj,p(f )̂Bj,p, (4.10)

where λj,p are a set of dual functionals satisfying

λj,p(̂Bk,p) = δjk, (4.11)

δjk being the Kronecker symbol. The quasi-interpolant Πp,Ξ preserves splines, that
is

Πp,Ξ(f ) = f, ∀f ∈ Sp(Ξ). (4.12)

From now on we assume local quasi-uniformity of the knot vector ζ1, ζ2, . . . , ζN ,
that is, there exists a constant θ ≥ 1 such that the mesh sizes hi = ζi+1 − ζi satisfy
the relation θ−1 ≤ hi/hi+1 ≤ θ , for i = 1, . . . , N − 2. Among possible choices
for the dual basis {λj,p}, j = 1, . . . , n, a classical one is given in [102, Sect. 4.6],
yielding to the following stability property (see [15, 25, 102]).

Proposition 1 For any non-empty knot span Ii = (ζi, ζi+1),

‖Πp,Ξ (f )‖L2(Ii )
≤ C‖f ‖L2(˜Ii )

, (4.13)

where the constant C depends only upon the degree p, and ˜Ii is the support
extension, i.e., the interior of the union of the supports of basis functions whose
support intersects Ii
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4.2.2 Multivariate Splines and NURBS

Multivariate B-splines are defined from univariate B-splines by tensorization. Let
d be the space dimensions (in practical cases, d = 2, 3). Assume n� ∈ N, the
degree p� ∈ N and the p�-open knot vector Ξ� = {ξ�,1, . . . , ξ�,n�+p�+1} are given,
for � = 1, . . . , d . We define a polynomial degree vector p = (p1, . . . , pd) and
Ξ = Ξ1 × . . . × Ξd . The corresponding knot values without repetitions are given
for each direction � by Z� = {ζ�,1, . . . , ζ�,N�}. The knots Z� form a Cartesian grid
in the parametric domain ̂Ω = (0, 1)d , giving the Bézier mesh, which is denoted
by ̂M :

̂M = {Qj = I1,j1 × . . .× Id,jd
such that I�,j�

= (ζ�,j�
, ζ�,j�+1) for 1 ≤ j� ≤ nEL,� − 1}.

(4.14)

For a generic Bézier element Qj ∈ ̂M , we also define its support extension
˜Qj = ˜I1,j1 × . . . × ˜Id,jd , with ˜I�,j� the univariate support extension as defined in
Proposition 1. We make use of the set of multi-indices I = {i = (i1, . . . , id ) : 1 ≤
i� ≤ n�}, and for each multi-index i = (i1, . . . , id), we define the local knot vector
Ξ i,p = Ξi1,p1 × . . .×Ξid ,pd . Then we introduce the set of multivariate B-splines

{

̂Bi,p(ζ ) = ̂B[Ξi1,p1](ζ1) . . . ̂B[Ξid,pd ](ζd), ∀i ∈ I
}

. (4.15)

The spline space in the parametric domain ̂Ω is then

Sp(Ξ) = span{̂Bi,p(ζ ), i ∈ I}, (4.16)

which is the space of piecewise polynomials of degree p with the regularity across
Bézier elements given by the knot multiplicities.

Multivariate NURBS are defined as rational tensor product B-splines. Given a set
of weights {wi, i ∈ I}, and the weight function W(ζ ) =∑

j∈I wĵBj,p(ζ ), we define
the NURBS basis functions

̂Ni,p(ζ ) = wîBi,p(ζ )
∑

j∈I wĵBj,p(ζ )
= wîBi,p(ζ )

W(ζ )
.

The NURBS space in the parametric domain ̂Ω is then

Np(Ξ ,W) = span{̂Ni,p(ζ ), i ∈ I}.

As in the case of NURBS curves, the choice of the weights depends on the geometry
to parametrize, and in IGA applications it is preserved by refinement.

Tensor-product B-splines and NURBS (4.7) are non-negative, form a partition of
unity and have local support. As for curves, we define spline (NURBS, respectively)
parametrizations of multivariate geometries in R

m, m = 2, 3. A spline (NURBS,
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respectively) parametrization is then any linear combination of B-spline (NURBS,
respectively) basis functions via control points ci ∈ R

m

F(ζ ) =
∑

i∈I
cîBi,p(ζ ), with ζ ∈ ̂Ω. (4.17)

Depending on the values of d and m, the map (4.17) can define a planar surface
in R

2 (d = 2,m = 2), a manifold in R
3 (d = 2,m = 3), or a volume in R

3

(d = 3,m = 3).
The definition of the control polygon is generalized for multivariate splines and

NURBS to a control mesh, the mesh connecting the control points ci. Since B-
splines and NURBS are not interpolatory, the control mesh is not a mesh on the
domain Ω . Instead, the image of the Bézier mesh in the parametric domain through
F gives the physical Bézier mesh in Ω , simply denoted the Bézier mesh if there is
no risk of confusion (see Fig. 4.4).

The interpolation and quasi-interpolation projectors can be also extended to the
multi-dimensional case by a tensor product construction. Let, for i = 1, . . . , d ,
the notation Πi

pi
denote the univariate projector Πp,Ξ onto the space Spi (Ξi), then

define

Πp(f ) = (Π1
p1
⊗ . . .⊗Πd

pd
)(f ). (4.18)

Fig. 4.4 The control mesh (left) and the physical Bézier mesh (right) for a pipe elbow is
represented
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Analogously, the multivariate quasi-interpolant is also defined from a dual basis (see
[51, Chapter XVII]). Indeed, we have

Πp,Ξ (f ) =
∑

i∈I
λi,p(f )̂Bi,p,

where each dual functional is defined from the univariate dual bases as λi,p =
λi1,p1 ⊗ . . .⊗ λid ,pd .

4.2.3 Splines Spaces with Local Tensor-Product Structure

A well developed research area concerns extensions of splines spaces beyond
the tensor product structure, and allow local mesh refinement: for example T-
splines, Locally-refinable (LR) splines, and hierarchical splines. T-splines have been
proposed in [107] and have been adopted for isogeometric methods since [16].
They have been applied to shell problems [68], fluid-structure interaction problems
[17] and contact mechanics simulation [52]. The algorithm for local refinement
has evolved since its introduction in [108] (see, e.g., [104]), in order to overcome
some initial limitations (see, e.g.,[55]). Other possibilities are LR-splines [53] and
hierarchical splines [36, 128].

We summarize here the definition of a T-spline and its main properties, following
[25]. A T-mesh is a mesh that allows T-junctions. See Fig. 4.5 (left) for an example.
A T-spline set

{

̂BA,p, A ∈ A
}

, (4.19)

is a generalization of the tensor-product set of multivariate splines (4.15). Indeed
the functions in (4.19) have the structure

̂BA,p(ζ ) = ̂B[ΞA,1,p1](ζ1) . . . ̂B[ΞA,d,pd
](ζd) (4.20)

Fig. 4.5 A T-mesh with two T-junctions (on the left) and the same T-mesh with the T-junction
extensions (on the right). The degree for this example is cubic and the T-mesh is analysis suitable
since the extensions, one horizontal and the other vertical, do not intersect
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Fig. 4.6 Two bi-cubic T-spline anchors A′ and A′′ and related local knot vectors. In particular, the
local knot vectors for A′′ are ΞA′′,d,3 = {ξ ′′1,d

, ξ ′′2,d
, ξ ′′3,d

, ξ ′′4,d
, ξ ′′5,d

, }, d = 1, 2. In this example, the

two T-splines ̂BA′,p and ̂BA′′,p partially overlap (the overlapping holds in the horizontal direction)

where the set of indices, usually referred to as anchors, A and the associated local
knot vectors ΞA,�,p�

, for all A ∈ A are obtained from the T-mesh. If the polynomial
degree is odd (in all directions) the anchors are associated with the vertices of the T-
mesh, if the polynomial degree is even (in all directions) the anchors are associated
with the elements. Different polynomial degrees in different directions are possible.
The local knot vectors are obtained from the anchors by moving along one direction
and recording the knots corresponding to the intersections with the mesh. See the
example in Fig. 4.6.

On the parametric domain ̂Ω we can define a Bézier mesh ̂M as the collection
of the maximal open sets Q ⊂ ̂Ω where the T-splines of (4.19) are polynomials in
Q. We remark that the Bézier mesh and the T-mesh are different meshes.

The theory of T-splines focuses on the notion of Analysis-Suitable (AS) T-splines
or, equivalently, Dual-Compatible (DC) T-splines: these are a subset of T-splines for
which fundamental mathematical properties hold, of crucial importance for IGA.

We say that the two p-degree local knot vectors Ξ ′ = {ξ ′1, . . . ξ ′p+2} and
Ξ ′′ = {ξ ′′1 , . . . ξ ′′p+2} overlap if they are sub-vectors of consecutive knots taken from
the same knot vector. For example {ξ1, ξ2, ξ3, ξ5, ξ7} and {ξ3, ξ5, ξ7, ξ8, ξ9} overlap,
while {ξ1, ξ2, ξ3, ξ5, ξ7} and {ξ3, ξ4, ξ5, ξ6, ξ8} do not overlap. Then we say that two
T-splines ̂BA′,p and ̂BA′′,p in (4.19) partially overlap if, when A′ 
= A′′, there exists
a direction � such that the local knot vectors ΞA′,�,p�

and ΞA′′,�,p�
are different and

overlap. This is the case of Fig. 4.6. Finally, the set (4.19) is a Dual-Compatible
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(DC) set of T-splines if each pair of T-splines in it partially overlaps. Its span

Sp(A ) = span
{

̂BA,p, A ∈ A
}

, (4.21)

is denoted a Dual-Compatible (DC) T-spline space. The definition of a DC set of
T-splines simplifies in two dimension ([23]): when d = 2, a T-spline space is a DC
set of splines if and only if each pair of T-splines in it have overlapping local knot
vector in at least one direction.

A full tensor-product space (see Sect. 4.2.2) is a particular case of a DC spline
space. In general, partial overlap is sufficient for the construction of a dual basis, as
in the full tensor-product case. We only need, indeed, a univariate dual basis (e.g.,
the one in [102]), and denote by λ[ΞA,�,p�

] the univariate functional as in (4.11),
depending on the local knot vector ΞA,�,p�

and dual to each univariate B-spline
with overlapping knot vector.

Proposition 2 Assume that (4.19) is a DC set, and consider an associated set of
functionals

{

λA,p, A ∈ A
}

, (4.22)

λA,p = λ[ΞA,1,p1] ⊗ . . .⊗ λ[ΞA,d,pd
]. (4.23)

Then (4.22) is a dual basis for (4.19).

Above, we assume that the local knot vectors in (4.23) are the same as
in (4.19), (4.20). The proof of Proposition 2 can be found in [25]. The existence
of dual functionals implies important properties for a DC set (4.19) and the related
space Sp(A ) in (4.21), as stated in the following theorem.

Theorem 1 The T-splines in a DC set (4.19) are linearly independent. If the
constant function belongs to Sp(A ), they form a partition of unity. If the space of
global polynomials of multi-degree p is contained in Sp(A ), then the DC T-splines
are locally linearly independent, that is, given Q ∈ ̂M , then the non-null T-splines
restricted to the element Q are linearly independent.

An important consequence of Proposition 2 is that we can build a projection
operator Πp : L2(̂Ω)→ Sp(A ) by

Πp(f )(ζ ) =
∑

A∈A
λA,p(f )̂BA,p(ζ ) ∀f ∈ L2(̂Ω), ∀ζ ∈ ̂Ω. (4.24)

This is the main tool (as mentioned in Sect. 4.4.1) to prove optimal approximation
properties of T-splines.

In general, for DC T-splines, and in particular for tensor-product B-splines, we
can define so called Greville abscissae. Each Greville abscissa

γA =
(

γ [ΞA,1,p1], . . . , γ [ΞA,d,pd
])
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is a point in the parametric domain ̂Ω and its d-component γ [ΞA,�,p�
]is the average

of the p� internal knots of ΞA,�,p�
. They are the coefficients of the identity function

in the T-spline expansion. Indeed, assuming that linear polynomials belong to the
space Sp(A ), we have that

ζ� =
∑

A∈A
γ [ΞA,�,p�

]̂BA,p(ζ ), ∀ζ ∈ ̂Ω, 1 ≤ � ≤ d. (4.25)

Greville abscissae are used as interpolation points (see [51]) and therefore for
collocation based IGA [7, 8, 100].

A useful result, proved in [20, 23], is that a T-spline set is DC if and only if (under
minor technical assumptions) it comes from a T-mesh that is Analysis-Suitable. The
latter is a topological condition for the T-mesh [16] and it refers to dimension d = 2.
A horizontal T-junction extension is a horizontal line that extend the T-mesh from
a T-junctions of kind � and � in the direction of the missing edge for a length of
�p1/2� elements, and in the opposite direction for �p1/2� elements; analogously
a vertical T-junction extension is a vertical line that extend the T-mesh from a T-
junctions of kind⊥ or � in the direction of the missing edge for a length of �p2/2�
elements, and in the opposite direction for �p2/2� elements, see Fig. 4.6 (right).
Then, a T-mesh is Analysis-Suitable (AS) if horizontal T-junction extensions do not
intersect vertical T-junction extensions.

4.2.4 Beyond Tensor-Product Structure

Multivariate unstructured spline spaces are spanned by basis functions that are not,
in general, tensor products. Non-tensor-product basis functions appear around so-
called extraordinary points. Subdivision schemes, but also multipatch or T-splines
spaces in the most general setting, are unstructured spaces. The construction and
mathematical study of these spaces is important especially for IGA and is one of the
most important recent research activities, see [35, 98]. We will further address this
topic in Sects. 4.3.3 and 4.4.3.

4.3 Isogeometric Spaces: Definition

In this section, following [25], we give the definition of isogeometric spaces. We
consider a single patch domain, i.e., the physical domain Ω is the image of
the unit square, or the unit cube (the parametric domain ̂Ω) by a single NURBS
parametrization. Then, for a given degree vector p0, knot vectors Ξ0 and a weight
function W ∈ Sp0(Ξ0), a map F ∈ (Np0

(Ξ0,W))d is given such that Ω = F(̂Ω),
as in Fig. 4.7.
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Q K

F

Fig. 4.7 Mesh ̂M in the parametric domain, and its image M in the physical domain

After having introduced the parametric Bézier mesh ̂M in (4.14), as the mesh
associated to the knot vectors Ξ , we now define the physical Bézier mesh (or simply
Bézier mesh) as the image of the elements in ̂M through F:

M := {K ⊂ Ω : K = F(Q),Q ∈ ̂M }, (4.26)

see Fig. 4.7. The meshes for the coarsest knot vector Ξ 0 will be denoted by ̂M0
and M0. For any element K = F(Q) ∈M , we define its support extension as ˜K =
F(˜Q), with ˜Q the support extension of Q. We denote the element size of any element
Q ∈ ̂M by hQ = diam(Q), and the global mesh size by h = max{hQ : Q ∈ ̂M }.
Analogously, we define the element sizes hK = diam(K) and h

˜K = diam(˜K).
For the sake of simplicity, we assume that the parametrization F is regular, that

is, the inverse parametrization F−1 is well defined, and piecewise differentiable of
any order with bounded derivatives. Assuming F is regular ensures that hQ � hK .
The case a of singular parametrization, that is, non-regular parametrization, will be
discussed in Sect. 4.4.4.

4.3.1 Isoparametric Spaces

Isogeometric spaces are constructed as push-forward through F of (refined) splines
or NURBS spaces. In detail, let ̂Vh = Np(Ξ ,W) be a refinement of Np0

(Ξ 0,W),
we define the scalar isogeometric space as:

Vh = {f ◦ F−1 : f ∈ ̂Vh}. (4.27)

Analogously,

Vh = span{Ni,p(x) := ̂Ni,p ◦ F−1(x), i ∈ I}, (4.28)

that is, the functions Ni,p form a basis of the space Vh. Isogeometric spaces with
boundary conditions are defined straightforwardly.
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Following [15], the construction of a projector on the NURBS isogeometric
space Vh (defined in (4.27)) is based on a pull-back on the parametric domain, on a
decomposition of the function into a numerator and weight denominator, and finally
a spline projection of the numerator. We have ΠVh : V (Ω)→ Vhdefined as

ΠVhf :=
Πp(W(f ◦ F))

W
◦ F−1, (4.29)

where Πp is the spline projector (4.18) and V (Ω) is a suitable function space. The
approximation properties of ΠVh will be discussed in Sect. 4.4.

The isogeometric vector space, as introduced in [70], is just (Vh)
d , that is a space

of vector-valued functions whose components are in Vh. In parametric coordinates
a spline isogeometric vector field of this kind reads

u(ζ ) =
∑

i∈I
uîBi,p(ζ ), with ζ ∈ ̂Ω, (4.30)

where ui are the degrees-of-freedom, also referred as control variables since they
play the role of the control points of the geometry parametrization (4.17). This is an
isoparametric construction.

4.3.2 De Rham Compatible Spaces

The following diagram

(4.31)

is the De Rham cochain complex. The Sobolev spaces involved are the two standard
scalar-valued, H 1(Ω) and L2(Ω) , and the two vector valued

H(curl;Ω) = {u ∈ L2(Ω)3 : curl u ∈ L2(Ω)3}
H(div;Ω) = {u ∈ L2(Ω)3 : div u ∈ L2(Ω)}.

Furthermore, as in general for complexes, the image of a differential operator
in (4.31) is subset of the kernel of the next: for example, constants have null grad ,
gradients are curl-free fields, and so on. De Rham cochain complexes are related to
the well-posedness of PDEs of key importance, for example in electromagnetic or
fluid applications. This is why it is important to discretize (4.31) while preserving
its structure. This is a well developed area of research for classical finite elements,
called Finite Element Exterior Calculus (see the reviews [4, 5]) and likewise a
successful development of IGA.
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For the sake of simplicity, again, we restrict to a single patch domain and we do
not include boundary conditions in the spaces. The dimension here is d = 3. The
construction of isogeometric De Rham compatible spaces involves two stages.

The first stage is the definition of spaces on the parametric domain ̂Ω .
These are tensor-product spline spaces, as (4.16), with a specific choice for the
degree and regularity in each direction. For that, we use the expanded notation
Sp1,p2,p3(Ξ1,Ξ2,Ξ3) for Sp(Ξ ). Given degrees p1, p2, p3 and knot vectors
Ξ1,Ξ2,Ξ3 we then define on ̂Ω the spaces:

̂X0
h = Sp1,p2,p3(Ξ1,Ξ2,Ξ3),

̂X1
h = Sp1−1,p2,p3(Ξ ′1,Ξ2,Ξ3)× Sp1,p2−1,p3(Ξ1,Ξ

′
2,Ξ3)

× Sp1,p2,p3−1(Ξ1,Ξ2,Ξ
′
3),

̂X2
h = Sp1,p2−1,p3−1(Ξ1,Ξ

′
2,Ξ

′
3)× Sp1−1,p2,p3−1(Ξ ′1,Ξ2,Ξ

′
3)

× Sp1−1,p2−1,p3(Ξ ′1,Ξ ′2,Ξ3),

̂X3
h = Sp1−1,p2−1,p3−1(Ξ ′1,Ξ ′2,Ξ ′3),

(4.32)

where, given Ξ� = {ξ�,1, . . . , ξ�,n�+p�+1}, Ξ ′� is defined as the knot vector
{ξ�,2, . . . , ξ�,n�+p�}, and we assume the knot multiplicities 1 ≤ m�,i ≤ p�, for
i = 2, . . . , N� − 1 and � = 1, 2, 3. With this choice, the functions in ̂X0

h are at least
continuous. Then,̂ grad (̂X0

h) ⊂ ̂X1
h, and analogously, from the definition of the curl

and the divergence operators we get ̂curl(̂X1
h) ⊂ ̂X2

h, and d̂iv (̂X2
h) ⊂ ̂X3

h. This
follows easily from the action of the derivative operator on tensor-product splines,
for example:

∂

∂ζ1
: Sp1,p2,p3(Ξ1,Ξ2,Ξ3)→ Sp1−1,p2,p3(Ξ ′1,Ξ2,Ξ3)

It is also proved in [38] that the kernel of each operator is exactly the image of the
preceding one. In other words, these spaces form an exact sequence:

(4.33)

This is consistent with (4.31).
The second stage is the push forward of the isogeometric De Rham compatible

spaces from the parametric domain ̂Ω onto Ω . The classical isoparametric trans-
formation on all spaces does not preserve the structure of the De Rham cochain
complex. We need to use the transformations:

ι0(f ) := f ◦ F, f ∈ H 1(Ω) ,

ι1(f) := (DF)T (f ◦ F), f ∈ H(curl;Ω) ,

ι2(f) := det(DF)(DF)−1(f ◦ F), f ∈ H(div;Ω) ,

ι3(f ) := det(DF)(f ◦ F), f ∈ L2(Ω) ,

(4.34)
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where DF is the Jacobian matrix of the mapping F : ̂Ω → Ω . The transformation
above preserve the structure of the De Rham cochain complex, in the sense of the
following commuting diagram (see [66, Sect. 2.2] and [86, Sect. 3.9]):

(4.35)

Note that the diagram above implicitly defines the isogeometric De Rham compati-
ble spaces on Ω , that is X0

h, X1
h, X2

h and X3
h; for example:

X2
h =

{

f : Ω → R
3 such that det(DF)(DF)−1(f ◦ F) ∈ ̂X2

h

}

. (4.36)

In this setting, the geometry parametrization F can be either a spline in (̂X0
h)

3 or a
NURBS.

In fact, thanks to the smoothness of splines, isogeometric De Rham compatible
spaces enjoy a wider applicability than their finite element counterpart. For example,
assuming m�,i ≤ p�−1, for i = 2, . . . , N�−1 and � = 1, 2, 3, then the space X2

h is
subset of ( H 1(Ω) )3. Furthermore there exists a subset Kh ⊂ X2

h of divergence-free
isogeometric vector fields, i.e.,

Kh =
{

f ∈ X2
h such that div f = 0

}

, (4.37)

that can be characterized as

f ∈ Kh ⇔
∫

Ω

( div f)v = 0, ∀v ∈ X3
h, (4.38)

as well as

f ∈ Kh ⇔ ∃v ∈ X1
h such that curl v = f. (4.39)

Both Kh and X2
h play an important role in the IGA of incompressible fluids,

allowing exact point-wise divergence-free solutions that are difficult to achieve by
finite element methods, or in linear small-deformation elasticity for incompressible
materials, allowing point-wise preservation of the linearized volume under defor-
mation. We refer to [37, 56–58, 123] and the numerical tests of Sect. 4.7. We should
also mention that for large deformation elasticity the volume preservation constraint
becomes det f = 1, f denoting the deformation gradient, and the construction of
isogeometric spaces that allow its exact preservation is an open and very challenging
problem.
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4.3.3 Extensions

Isogeometric spaces can be constructed from non-tensor-product or unstructured
spline spaces, as the ones listed in Sect. 4.2.3.

Unstructured multipatch isogeometric spaces may have C0 continuity at patch
interfaces, of higher continuity. The implementation of C0-continuity over multi-
patch domains is well understood (see e.g. [81, 106] for strong and [34] for weak
imposition of C0 conditions). Some papers have tackled the problem of constructing
isogeometric spaces of higher order smoothness, such as [35, 48, 76, 89, 98]. The
difficulty is how to construct analysis-suitable unstructured isogeometric spaces
with global C1 or higher continuity. The main question concerns the approximation
properties of these spaces, see Sect. 4.4.3.

An important operation, derived from CAGD, and applied to isogeometric
spaces is trimming, see [85] Indeed trimming is very common in geometry
representation, since it is the natural outcome of Boolean operations (union,
intersection, subtraction of domains). One possibility is to approximate (up to some
prescribed tolerance) the trimmed domain by an untrimmed multipatch or T-spline
parametrized domain, see [109]. Another possibility is to use directly the trimmed
geometry and deal with the two major difficulties that arise: efficient quadrature and
imposition of boundary conditions, see [94, 95, 99].

4.4 Isogeometric Spaces: Approximation Properties

4.4.1 h-Refinement

The purpose of this section is to summarize the approximation properties of the
isogeometric space Vh defined in (4.27). We focus on the convergence analysis
under h-refinement, presenting results first obtained in [15] and [22]. To express
the error bounds, we will make use of Sobolev spaces on a domain D, that can be
either Ω or ̂Ω or subsets such as Q, ˜Q, K or ˜K. For example, Hs(D), s ∈ N is
the space of square integrable functions f ∈ L2(Ω) such that its derivatives up to
order s are square integrable. However, conventional Sobolev spaces are not enough.
Indeed, since the mapping F is not arbitrarily regular across mesh lines, even if a
scalar function f in physical space satisfies f ∈ Hs(Ω), its pull-back ̂f = f ◦ F is
not in general in Hs(̂Ω). As a consequence, the natural function space in parametric
space, in order to study the approximation properties of mapped NURBS, is not the
standard Sobolev space Hs but rather a “bent” version that allows for less regularity
across mesh lines. In the following, as usual, C will denote a constant, possibly
different at each occurrence, but independent of the mesh-size h. Note that, unless
noted otherwise, C depends on the polynomial degree p and regularity.

Let d = 1 first. We recall that Ii = (ζi, ζi+1) are the intervals of the partition
of I = (0, 1) given by the knot vector. We define for any q ∈ N the piecewise
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polynomial space

Pq(Ξ) = {v ∈ L2(I) such that v|Ii is a q -degree polynomial, ∀i = 1, . . . , N−1}.

Given s ∈ N and any sub-interval E ⊂ I , we indicate by Hs(E) the usual Sobolev
space endowed with norm ‖ · ‖Hs(E) and semi-norm | · |Hs(E). We define the bent
Sobolev space (see [15]) on I as

H s(I ) =
⎧

⎨

⎩

f ∈ L2(I ) such that f |Ii
∈ Hs(Ii ) ∀ i = 1, . . . , N − 1, and

Dk−f (ζi) = Dk+f (ζi), ∀k = 0, . . . , min{s − 1, ki},∀i = 2, . . . , N − 1,

⎫

⎬

⎭

(4.40)

where Dk± denote the kth-order left and right derivative (or left and right limit for
k = 0), and ki is the number of continuous derivatives at the break point ζi . We
endow the above space with the broken norm and semi-norms

‖f ‖2
H s (I ) =

s
∑

j=0

|f |2H j (I )
, |f |2H j (I )

=
N−1
∑

i=1

|f |2
Hj (Ii )

∀j = 0, 1, . . . , s,

where | · |H 0(Ii )
= ‖ · ‖L2(Ii )

.
In higher dimensions, the tensor product bent Sobolev spaces are defined as

follows. Let s = (s1, s2, . . . , sd ) in N
d . By a tensor product construction starting

from (4.40), we define the tensor product bent Sobolev spaces in the parametric
domain ̂Ω := (0, 1)d

H s(̂Ω) :=H s1(0, 1)⊗H s2(0, 1)⊗ . . .⊗H sd (0, 1),

endowed with the tensor-product norm and seminorms. The above definition clearly
extends immediately to the case of any hyper-rectangle E ⊂ ̂Ω that is a union of
elements in ̂M .

We restrict, for simplicity of exposition, to the two-dimensional case. As in
the one-dimensional case, we assume local quasi-uniformity of the mesh in each
direction. Let Πpi,Ξi : L2(I)→ Spi (Ξi), for i = 1, 2, indicate the univariate quasi-
interpolant associated to the knot vector Ξi and polynomial degree pi . Let moreover
Πp,Ξ = Πp1,Ξ1 ⊗ Πp2,Ξ2 from L2(Ω) to Sp(Ξ ) denote the tensor product quasi-
interpolant built using the Πpi,Ξi defined in (4.18) for d = 2. In what follows, given
any sufficiently regular function f : ̂Ω → R, we will indicate the partial derivative
operators with the symbol

̂Drf = ∂r1∂r2f

∂ζ
r1
1 ∂ζ

r2
2

r = (r1, r2) ∈ N
2. (4.41)
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Let E ⊂ ̂Ω be any union of elements Q ∈ ̂M of the spline mesh. We will adopt
the notation

‖f ‖2
L2

h(E)
:=

∑

Q∈ ̂M s.t. Q⊂E

‖f ‖2
L2(Q)

.

The element size of a generic element Qi = I1,i1 × . . .× Id,id ∈ ̂M will be denoted
by hQi = diam(Qi). We will indicate the length of the edges of Qi by h1,i1 , h2,i2,.
Because of the local quasi-uniformity of the mesh in each direction, the length of
the two edges of the extended patch ˜Qi are bounded from above by h1,i1 and h2,i2 ,
up to a multiplicative factor. The quasi-uniformity constant is denoted θ . We have
the following result (see [22, 25] for its proof), that can be established for spaces
with boundary conditions as well.

Proposition 3 Given integers 0 ≤ r1 ≤ s1 ≤ p1 + 1 and 0 ≤ r2 ≤ s2 ≤ p2 + 1,
there exists a constantC depending only on p, θ such that for all elementsQi ∈ ̂M ,

‖̂D(r1,r2)(f −Πp,Ξf )‖L2(Qi)

≤ C
(

(h1,i1)
s1−r1‖̂D(s1,r2)f ‖L2

h(˜Qi)
+ (h2,i2)

s2−r2‖̂D(r1,s2)f ‖L2
h(˜Qi)

)

for all f in H (s1,r2)(̂Ω) ∩H (r1,s2)(̂Ω).

We can state the approximation estimate for the projection operator on the
isogeometric space Vh, that is ΠVh : L2(Ω) → Vh, defined in (4.29). In the
physical domain Ω = F(̂Ω), we introduce the coordinate system naturally induced
by the geometrical map F, referred to as the F-coordinate system, that associates to
a point x ∈ Ω the Cartesian coordinates in ̂Ω of its counter-image F−1(x). At each
x ∈ K ∈M0 (more generally, at each x where F is differentiable) the tangent base
vectors g1 and g2 of the F-coordinate system can be defined as

gi = gi (x) = ∂F
∂ζi

(F−1(x)), i = 1, 2; (4.42)

these are the images of the canonical base vectors êi in ̂Ω , and represent the axis
directions of the F-coordinate system (see Fig. 4.8).

Analogously to the derivatives in the parametric domain (4.41), the derivatives
of f : Ω → R in Cartesian coordinates are denoted by

Drf = ∂r1∂r2f

∂x
r1
1 ∂x

r2
2

r = (r1, r2) ∈ N
2.
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g2 g1

x2

x1

F
e2 e1

ΩΩ
ζ2

ζ1

Fig. 4.8 Illustration of the F-coordinate system in the physical domain

We also consider the derivatives of f : Ω → R with respect to the F-coordinates.
These are just the directional derivatives: for the first order we have

∂f

∂gi

(x) = ∇f (x) · gi (x) = lim
t→0

f (x+ tgi (x))− f (x)
t

, (4.43)

which is well defined for any x in the (open) elements of the coarse triangulation
M0, as already noted. Higher order derivatives are defined by recursion

∂ri f

∂gri
i

= ∂

∂gi

(

∂ri−1f

∂gri−1
i

)

=
(

∂

∂gi

(

. . .

(

∂

∂gi

(

∂f

∂gi

))))

;

more generally, we adopt the notation

Dr
Ff = ∂r1

∂gr1
1

∂r2f

∂gr2
2

r = (r1, r2) ∈ N
2. (4.44)

Derivatives with respect to the F-coordinates are directly related to derivatives in
the parametric domain, by

Dr
Ff = (

̂Dr (f ◦ F)
) ◦ F−1. (4.45)

Let E be a union of elements K ∈ M . We introduce the broken norms and
seminorms

‖f ‖2
H

(s1,s2)

F (E)
=

s1
∑

r1=0

s2
∑

r2=0

|f |2
H

(r1,r2)

F (E)
, (4.46)

|f |2
H

(s1,s2)

F (E)
=

∑

K∈M s.t. K⊂E

|f |2
H

(s1,s2)

F (K)
,
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h1,Q

h2,Q
h1,K

h2,K

Q F K

Fig. 4.9 Q is mapped by the geometrical map F to K

where

|f |
H

(s1,s2)

F (K)
=
∥

∥

∥D
(s1,s2)
F f

∥

∥

∥

L2(K)
.

We also introduce the following space

H
(s1,s2)
F (Ω) = closure of C∞(Ω) with respect to the norm ‖ · ‖

H
(s1,s2)

F (Ω)
.

The following theorem from [22] states the main estimate for the approximation
error of ΠVhf and, making use of derivatives in the F-coordinate system, it is
suitable for anisotropic meshes. For a generic element Ki = F(Qi) ∈ M , the
notation ˜Ki = F(˜Qi) indicates its support extension (Fig. 4.9).

Theorem 2 Given integers ri , si , such that 0 ≤ ri ≤ si ≤ pi + 1, i = 1, 2,
there exists a constant C depending only on p, θ,F,W such that for all elements
Ki = F(Qi) ∈M ,

|f −ΠVh
f |

H
(r1,r2)

F (Ki)
≤ C

(

(h1,i1)
s1−r1‖f ‖

H
(s1,r2)

F (˜Ki)
+ (h2,i2)

s2−r2‖f ‖
H

(r1,s2)

F (˜Ki)

)

(4.47)

for all f in H
(s1,r2)
F (Ω) ∩H

(r1,s2)
F (Ω).

We have the following corollary of Theorem 2, similar to [15, Theorem 3.1], or
[25, Theorem 4.24] (the case with boundary conditions is handled similarly).

Corollary 1 Given integers r, s, such that 0 ≤ r ≤ s ≤ min (p1, . . . , pd)+1, there
exists a constant C depending only on p, θ,F,W such that

‖f −ΠVhf ‖Hr (Ki) ≤ C(hKi)
s−r‖f ‖Hs(˜Ki)

∀Ki ∈M ,

‖f −ΠVhf ‖Hr (Ω) ≤ Chs−r‖f ‖Hs(Ω),
(4.48)

for all f in Hs(Ω).

The error bound above straightforwardly covers isogeometric/isoparametric
vector fields. The error theory is possible also for isogeometric De Rham compatible
vector fields. In this framework there exists commuting projectors, i.e., projectors
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that make the diagram

(4.49)

commutative. These projectors not only are important for stating approximation
estimates, but also play a fundamental role in the stability of isogeometric schemes;
see [4, 38].

4.4.2 p-Refinement and k-Refinement

Approximation estimates in Sobolev norms have the general form

inf
fh∈Vh

‖f − fh‖Hr(Ω) ≤ C(h, p, k; r, s)‖f ‖Hs(Ω) (4.50)

where the optimal constant is therefore

C(h, p, k; r, s) = sup
f∈Bs(Ω)

inf
fh∈Vh

‖f − fh‖Hr(Ω) (4.51)

where Bs(Ω) = {f ∈ Hs(Ω) such that ‖f ‖Hs(Ω) ≤ 1} is the unit ball in Hs(Ω).
The study in Sect. 4.4.1 covers the approximation under h-refinement, giving an
asymptotic bound to (4.51) with respect to h which is sharp, for s ≤ p + 1,

C(h, p, k; r, s) ≈ C(p, k; r, s)hs−r , for h→ 0. (4.52)

This is the fundamental and most standard analysis, but it does not explain the
benefits of k-refinement, a unique feature of IGA. High-degree, high-continuity
splines and NURBS are superior to standard high-order finite elements when
considering accuracy per degree-of-freedom. The study of k-refinement is still
incomplete even though some important results are available in the literature. In
particular, [19] contains h, p, k-explicit approximation bounds for spline spaces of
degree 2q + 1 and up to Cq global continuity, while the recent work [115] contains
the error estimate

inf
fh∈Vh

|f − fh|Hr(Ω) ≤ (
√

2h)q−r |f |Hq(Ω)

for univariate Cp−1, p-degree splines, with 0 ≤ r ≤ q ≤ p + 1 on uniform knot
vectors.
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An innovative approach, and alternative to standard error analysis, is developed
in [59]. There a theoretical/numerical investigation provides clear evidence of the
importance of k-refinement. The space of smooth splines is shown to be very close
to a best approximation space in the Sobolev metric. The approach is as follows:
given the isogeometric space Vh, with N = dimVh together with (4.51), we consider
the Kolmogorov N-width:

dN(Bs(Ω),H r(Ω)) = inf
Wh⊂Hs(Ω)
dimWh=N

sup
f∈Bs(Ω)

inf
fh∈Wh

‖f − fh‖Hr(Ω). (4.53)

Then the optimality ratio is defined as

Λ(Bs(Ω), Vh,H
r(Ω)) = C(h, p, k; r, s)

dN(Bs(Ω),H r(Ω))
. (4.54)

In general, the quantity Λ(Bs(Ω), Vh,H
r(Ω)) is hard to compute analytically but

can be accurately approximated numerically, by solving suitable generalized eigen-
value problems (see [59]). In Fig. 4.10 we compare smooth C3 quartic splines and
standard quartic finite elements (that is, C0 splines) under h-refinement. An inter-
esting result is that smooth splines asymptotically achieve optimal approximation
in the context considered, that is, they tend to be an optimal approximation space
given the number of degrees-of-freedom, since Λ(B5(0, 1), S4

3 , L2(0, 1)) → 1.
This is not surprising as it is known that uniform periodic spline spaces are optimal

Fig. 4.10 Optimality ratios: comparison between quartic C3 splines (i.e.,
Λ(B5(0, 1), S4

3 , L2(0, 1)), blue line with circles) and C0 finite elements (i.e.,
Λ(B5(0, 1), S4

0 , L2(0, 1)), red line with crosses) on the unit interval for different mesh-sizes h

(the total number of degrees-of-freedom N is the abscissa)
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Fig. 4.11 Optimality ratios: for different Sobolev regularity s and for different spline degree p

with maximal smoothness. The number of degrees-of-freedom is N = 30. The surface plot is
capped at 10 for purposes of visualization. Note that if p ≥ s − 1 the optimality ratio is near 1.
Even for low regularity (i.e., low s), smooth splines (i.e., high p) produce optimality ratios near 1.
This supports the claim that “smooth splines are always good”

in the periodic setting. On the contrary, C0 finite elements are far from optimal.
In Fig. 4.11 we plot the optimality ratios for the L2 error for different Sobolev
regularity s and for smooth splines with different degrees p. There is numerical
evidence that Λ(Bs(0, 1), S

p

p−1, L
2(0, 1)) is bounded and close to 1 for all p ≥

s − 1. It is a surprising result, but in fact confirms that high-degree smooth splines
are accurate even when the solution to be approximated has low Sobolev regularity
(see [59] for further considerations).

This issue has been further studied in [40], for the special case of solutions
that are piecewise analytic with a localized singularity, which is typical of elliptic
PDEs on domains with corners or sharp edges. The work [40] focus instead on
the simplified one-dimensional problem, and consider a model singular solution
f (ζ ) = ζ α − ζ on the interval [0, 1], with 0 < α < 1. From the theory of hp-
FEMs (i.e., hp finite elements; see [103]) it is known that exponential convergence
is achieved, precisely

|f − fh|H 1(0,1) ≤ Ce−b
√

N (4.55)

where C and b are positive constants, N is the total number of degrees-of-freedom,
and fh is a suitable finite element approximation of f . The bound (4.55) holds if the
mesh is geometrically refined towards the singularity point ζ = 0 and with a suitable
selection of the polynomial degree, growing from left (the singularity) to the right of
the interval [0, 1]. The seminal paper [10] gives the reference hp-FEM convergence
rate which is reported in Fig. 4.12. Likewise, exponential convergence occurs with
Cp−1, p-degree spline approximation on a geometrically graded knot span, as
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Fig. 4.12 Energy norm error versus the (square root of) number of degrees-of-freedom N for the
approximation of the solution u(x) = x0.7 − x of the problem −u′′ = f with homogeneous
Dirichlet boundary conditions. The mesh is geometrically graded (with ratio q = 0.35 for IGA)
and the spline degree is proportional to the number of elements for IGA, and the smoothness is
maximal, that is the spline space is Cp−1 globally continuous. Mesh-size and degrees are optimally
selected for hp-FEM, according to the criteria of [10]. Exponential convergence |u − uh|H 1 ≤
C exp (−b

√
N) is evidenced in both cases, with larger b for IGA

reported in the same figure. Remarkably, convergence is faster (with the constant
b in (4.55) that appears to be higher) for smooth splines, even though for splines the
degree p is the same for all mesh elements, and grows proportionally with the total
number of elements, whereas for hp-FEM a locally varying polynomial degree is
utilized on an element-by-element basis.

Exponential convergence for splines is proved in the main theorem of [40],
reported below.

Theorem 3 Assume that f ∈ H 1
0 (0, 1) and

∥

∥

∥

∥
ζ β+k−2 ∂kf

∂kζ

∥

∥

∥

∥

L2(0,1)

≤ Cud
k−2
u (k − 2)!, k = 2, 3, . . . (4.56)

for some 0 < β ≤ 1 and Cu, du > 0. Then there exist b > 0 and C > 0 such that
for any q > 1, for any σ with 0 < σ < 1 and 1 > σ > (1+ 2/du)

−1,

inf
fh∈Sp(Ξ)

‖f − fh‖H 1(Ω) ≤ Ce−b(σ,β)
√

N, (4.57)



262 T. J. R. Hughes et al.

where p = 2q + 1,

Ξ = {0, . . . , 0
︸ ︷︷ ︸

p times

, σp−1, . . . , σp−1
︸ ︷︷ ︸

q times

, σp−2, . . . , σp−2
︸ ︷︷ ︸

q times

, . . . , σ, . . . , σ
︸ ︷︷ ︸

q times

, 1, . . . , 1
︸ ︷︷ ︸

p times

},

(4.58)

and N is the dimension of Sp(Ξ).

Condition (4.56) expresses the piecewise analytic regularity of f . Theorem 3 is
based on [19], and as such it covers approximation by 2q + 1 degree splines
having Cq global continuity. However, as is apparent from Fig. 4.12, exponential
convergence is also observed for maximally smooth splines.

4.4.3 Multipatch

While C0 isogeometric spaces with optimal approximation properties are easy
to construct, when the mesh is conforming at the interfaces (see, e.g., [25]), the
construction of smooth isogeometric spaces with optimal approximation properties
on unstructured geometries is a challenging problem and still open in its full
generality. The problem is related to one of accurate representation (fitting) of
smooth surfaces having complex topology, which is a fundamental area of research
in the community of CAGD.

There are mainly two strategies for constructing smooth multipatch geometries
and corresponding isogeometric spaces. One strategy is to adopt a geometry
parametrization which is globally smooth almost everywhere, with the exception
of a neighborhood of the extraordinary points (or edges in 3D), see Fig. 4.13 (left).
The other strategy is to use geometry parametrizations that are only C0 at patch
interfaces; see Fig. 4.13 (right). The first option includes subdivision surfaces [43]
and the T-spline construction in [105] and, while possessing attractive features,
typically lacks optimal approximation properties [76, 89]. One exception is the
recent works [120], where a specific construction is shown to achieve optimal

Fig. 4.13 Two possible parametrization schemes: C1 away from the extraordinary point (left) and
C0 at patch interfaces (right)
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order in h-refinement. On the other hand, some optimal constructions have been
recently obtained also following the second strategy, pictured in Fig. 4.13 (right)
(see [27, 48, 77, 87]). We summarize here the main concepts and results from [48],
referring to the paper itself for a complete presentation.

Consider a planar (d = 2) spline multipatch domain of interest

Ω = Ω(1) ∪ . . . ∪Ω(N) ⊂ R
2, (4.59)

where the closed sets Ω(i) form a regular partition without hanging nodes. Assume
each Ω(i) is a non-singular spline patch, with at least C1 continuity within each
patch, and that there exist parametrizations

F(i) : [0, 1] × [0, 1] = ̂Ω → Ω(i), (4.60)

where

F(i) ∈ S p(Ξ )×S p(Ξ ) ⊂ C1(̂Ω); (4.61)

Furthermore, assume global continuity of the patch parametrizations. This means
the following. Let us fix Γ = Γ (i,j) = Ω(i) ∩ Ω(j). Let F(L), F(R) be given such
that

F(L) : [−1, 0] × [0, 1] = ̂Ω(L)→ Ω(L) = Ω(i),

F(R) : [0, 1] × [0, 1] = ̂Ω(R)→ Ω(R) = Ω(j),
(4.62)

where (F(L))−1 ◦ F(i) and (F(R))−1 ◦ F(j) are linear transformations. The set
[−1, 1]× [0, 1] plays the role of a combined parametric domain. The coordinates in
[−1, 1] × [0, 1] are denoted u and v. The global continuity condition states that the
parametrizations agree at u = 0, i.e., there is an F0 : [0, 1] → R

2 with

Γ = {F0(v) = F(L)(0, v) = F(R)(0, v), v ∈ [0, 1]}. (4.63)

For the sake of simplicity we assume that the knot vectors of all patches and in each
direction coincide, are open and uniform. An example is depicted in Fig. 4.14.

The multipatch isogeometric space is given as

V =
{

φ : Ω → R such that φ ◦ F(i) ∈ S
p
r (̂Ω), i = 1, . . . , N

}

; (4.64)

the space of continuous isogeometric functions is

V 0 = V ∩ C0(Ω), (4.65)
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Fig. 4.14 Example of the setting of (4.62)–(4.63)

and the space of C1 isogeometric functions is

V 1 = V ∩ C1(Ω). (4.66)

The graph Σ ⊂ Ω × R of an isogeometric function φ : Ω → R splits into
patches Σi having the parametrization

[

F(i)

g(i)

]

: [0, 1] × [0, 1] = ̂Ω → Σ(i) (4.67)

where g(i) = φ ◦ F(i). As in (4.62), we can select a patch interface Γ = Γ (i,j) =
Ω(i) ∩Ω(j), define g(L), g(R) such that

[

F(L)

g(L)

]

: [−1, 0] × [0, 1] = ̂Ω(L)→ Σ(i) = Σ(L),

[

F(R)

g(R)

]

: [0, 1] × [0, 1] = ̂Ω(R) → Σ(j) = Σ(R),

(4.68)

see Fig. 4.15. Continuity of φ is implied by the continuity of the graph parametriza-
tion, then we set

g0(v) = g(L)(0, v) = g(R)(0, v), (4.69)

for all v ∈ [0, 1], analogous to (4.63).
Under suitable conditions, smoothness of a function is equivalent to the smooth-

ness of the graph, considered as a geometric entity. In particular, for an isogeometric
function that is C1 within each patch and globally continuous, the global C1

continuity is then equivalent to the geometric continuity of order 1 (in short G1) of
its graph parametrization. Geometric continuity of the graph parametrization means
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Fig. 4.15 Example of the general setting of (4.68)

that, on each patch interface, with notation (4.68), the tangent vectors

[

DuF(L)(0, v)

Dug
(L)(0, v)

]

,

[

DvF0(v)

Dvg0(v)

]

and

[

DuF(R)(0, v)

Dug
(R)(0, v)

]

,

are co-planar, i.e., linearly dependent. In the CAGD literature, G1 continuity is
commonly stated as below (see, e.g., [18, 82, 90]).

Definition 1 (G1-Continuity at Σ(i) ∩ Σ(j)) Given the parametrizations F(L),
F(R), g(L), g(R) as in (4.62), (4.68), fulfilling (4.61) and (4.69), we say that the graph
parametrization is G1 at the interface Σ(i) ∩ Σ(j) if there exist α(L) : [0, 1] → R,
α(R) : [0, 1] → R and β : [0, 1] → R such that for all v ∈ [0, 1],

α(L)(v)α(R)(v) > 0 (4.70)

and

α(R)(v)

[

DuF(L)(0, v)

Dug
(L)(0, v)

]

− α(L)(v)

[

DuF(R)(0, v)

Dug(R)(0, v)

]

+ β(v)

[

DvF0(v)

Dvg0(v)

]

= 0.

(4.71)

Since the first two equations of (4.71) are linearly independent, α(L), α(R) and β

are uniquely determined, up to a common multiplicative factor, by F(L) and F(R),
i.e. from the equation

α(R)(v)DuF(L)(0, v)− α(L)(v)DuF(R)(0, v)+ β(v)DvF0(v) = 0. (4.72)

We have indeed the following proposition (see [48] and [90]).
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Proposition 4 Given any F(L), F(R) then (4.72) holds if and only if α(S)(v) =
γ (v)ᾱ(S)(v), for S ∈ {L,R}, and β(v) = γ (v)β̄(v), where

ᾱ(S)(v) = det
[

DuF(S)(0, v) DvF0(v)
]

, (4.73)

β̄(v) = det
[

DuF(L)(0, v) DuF(R)(0, v)
]

, (4.74)

and γ : [0, 1] → R is any scalar function. In addition, γ (v) 
= 0 if and only
if (4.70) holds. Moreover, there exist functions β(S)(v), for S ∈ {L,R}, such that

β(v) = α(L)(v)β(R)(v) − α(R)(v)β(L)(v). (4.75)

In the context of isogeometric methods we consider Ω and its parametrization
given. Then for each interface α(L), α(R) and β are determined from (4.72) as stated
in Proposition 4. It should be observed that for planar domains, there always exist
α(L), α(R) and β fulfilling (4.72) (this is not the case for surfaces, see [48]). Then, the
C1 continuity of isogeometric functions is equivalent to the last equation in (4.71),
that is

α(R)(v)Dug(L)(0, v)− α(L)(v)Dug(R)(0, v)+ β(v)Dvg0(v) = 0 (4.76)

for all v ∈ [0, 1]. Optimal approximation properties of the isogeometric space on Ω

holds under restrictions on α(L), α(R) and β, i.e. on the geometry parametrization.
This leads to the definition below ([48]).

Definition 2 (Analysis-Suitable G1-Continuity) F(L) and F(R) are analysis-
suitable G1-continuous at the interface Γ (in short, AS G1) if there exist
α(L), α(R), β(L), β(R) ∈P1([0, 1]) such that (4.72) and (4.75) hold.

The class of planar AS G1 parametrizations contains all the bilinear ones and
more, see Fig. 4.16.

In [48], the structure of C1 isogeometric spaces over AS G1 geometries is
studied, providing an explanation of the optimal convergence of the space of p-
degree isogeometric functions, having up to Cp−2 continuity within the patches
(and global C1 continuity). On the other hand, no convergence under h-refinement
occurs for Cp−1 continuity within the patches. This phenomenon is referred to as

Fig. 4.16 Examples of planar domain having an AS G1 parametrization
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C1 locking. Moreover, it is shown that AS G1 geometries are needed to guarantee
optimal convergence, in general.

4.4.4 Singular Parametrizations

The theory of isogeometric spaces we have reviewed in previous sections assumes
that the geometry parametrization is regular. However, singular parametrizations
are used in IGA, as they allow more flexibility in the geometry representation.
Figure 4.17 shows two examples of this kind, for a single-patch parametrization
of the circle. Typically, a singularity appears when some of the control points near
the boundary coincide or are collinear.

Isogeometric spaces with singular mapping have been studied in the papers [112–
115]. The paper [113] addresses a class of singular geometries that includes the two
circles of Fig. 4.17. It is shown that in these cases the standard isogeometric spaces,
as they are constructed in the non-singular case, are not in H 1(Ω). However, [113]
identifies the subspace of H 1 isogeometric functions, and constructs a basis. The
study is generalized to H 2 smoothness in [114]. In [112], function spaces of higher-
order smoothness Ck are explicitly constructed on polar parametrizations that are
obtained by linear transformation and degree elevation from a triangular Bézier
patch. See also [119]. For general parametrizations, [116] gives a representation
of the derivatives of isogeometric functions.

Singular parametrizations can be used to design smooth isogeometric spaces on
unstructured multipatch domains. A different C1 constructions is proposed in [88].
In both cases, the singular mapping is employed at the extraordinary vertices.

From the practical point of view, isogeometric methods are surprisingly robust
with respect to singular parametrizations. Even if some of the integrals appearing
in the linear system matrix are divergent, the use of Gaussian quadrature hides the
trouble and the Galerkin variational formulation returns the correct approximation.
However, it is advisable to use the correct subspace basis, given in [113] and [114],
to avoid ill-conditioning of the isogeometric formulation.

In [12], the authors use isogeometric analysis on the sphere with a polar
parametrization (the extension of Fig. 4.17a), and benchmark the h-convergence
in H 2 and H 3 norms, for solution of 4th and 6th order differential equations,
respectively. It is shown that enforcing C0 continuity at the poles yields optimal
convergence, that is, the higher-order smoothness of the isogeometric solution at
the poles is naturally enforced by the variational formulation.
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Fig. 4.17 Two possible
singular parametrizations of
the circle. (a) One singularity
at the origin. (b) Four
singularities on the boundary

4.5 Isogeometric Spaces: Spectral Properties

We are interested in the Galerkin approximation of the eigenvalues and eigenfunc-
tion of the Laplacian differential operator, as a model problem. We will consider
mainly the univariate case. As we will see in this section, the use of Cp−1-
continuous splines yields advantages when compared to standard C0 FEM. The
results shown here are taken from [71, 73]; we refer to that works for more
details. Contrary to the previous Sect. 4.4, the error analysis considered here is not
asymptotic, rather it may be characterized as a global analysis approach.

The asymptotic approach is more commonly found in the literature. Classical
functional analysis results state that, given an eigenvalue of the differential operator,
for a small enough mesh size this eigenvalue is well approximated in the discrete
problem. However, for a given mesh size, this kind of analysis offers no information
about which discrete modes are a good approximation of the exact modes, and which
ones are not.
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What happens in practice is that only the lowest discrete modes are accurate.
In general, a large portion of the eigenvalue/eigenfunction spectrum, the so-
called “higher modes,” are not approximations of their exact counterparts in any
meaningful sense. It is well-known in the structural engineering discipline that the
higher modes are grossly inaccurate, but the precise point in the spectrum where
the eigenvalues and eigenfunctions cease to approximate their corresponding exact
counterparts is never known in realistic engineering situations.

First, we focus on the approximations of eigenvalues from a global perspective,
that is, we study the approximation errors of the full spectrum. This is done
for the simplest possible case, that is the second derivative operator. Based on
Fourier/von Neumann analysis, we show that, per degree-of-freedom and for the
same polynomial degree p, Cp−1 splines (i.e., k-method) are more accurate than C0

splines (p-method), i.e., finite elements.
Then, we study the accuracy of k-method and p-method approximations to the

eigenfunctions of the elliptic eigenvalue problem. The inaccuracy of p-method
higher modal eigenvalues has been known for quite some time. We show that there
are large error spikes in the L2-norms of the eigenfunction errors centered about the
transitions between branches of the p-method eigenvalue spectrum. The k-method
errors are better behaved in every respect. The L2-norms of the eigenfunction errors
are indistinguishable from the L2 best approximation errors of the eigenfunctions.
As shown in [73], when solving an elliptic boundary-value problem, or a parabolic
or an hyperbolic problem, the error can be expressed entirely in terms of the
eigenfunction and eigenvalue errors. This is an important result but the situation
is potentially very different for elliptic boundary-value problems and for parabolic
and hyperbolic problems. In these cases, all modes may participate in the solution
to some extent and inaccurate higher modes may not always be simply ignored. The
different mathematical structures of these cases lead to different conclusions. The
inaccuracy of the higher p-method modes becomes a significant concern primarily
for the hyperbolic initial-value problem, while the k-method produces accurate
results in the same circumstances.

4.5.1 Spectrum and Dispersion Analysis

We consider as a model problem for the eigenvalue study the one of free vibrations
of a linear (∞-dimensional) structural system, without damping and force terms:

M
d2u
dt2 +K u = 0, (4.77)

where M and K are, respectively, the mass and stiffness operators, and u = u(t, x)
is the displacement. The nth normal mode φn and its frequency ωn are obtained from
the eigenvalue problem K φn = ω2

nMφn. Separating the variables as u(t, x) =
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∑

n ûn(t)φn(x), and, using Eq. (4.77), we obtain

d2ûn(t)

dt2
+ ω2

nûn(t) = 0;

Then ûn(t) = C−e−ıωnt + C+eıωnt , that is each modal coefficient ûn oscillates at
a frequency ωn. After discretization, the following discrete equations of motion are
obtained

M
d2uh

dt2 +Kuh = 0, (4.78)

where M and K are, respectively, the finite-dimensional consistent mass and stiff-
ness matrices, and uh = uh(t, x) is the discrete displacement vector. Analogously
to the continuum case, the discrete normal modes φh

n and the frequencies ωh
n are

obtained from the eigenproblem

Kφh
n = (ωh

n)2Mφh
n, (4.79)

and separating the variables as uh(t, x) = ∑

n ûh
n(t)φ

h
n(x), we end up with ûh

n

oscillating at a frequency ωh
n , that is: ûh

n = C−e−ıωh
nt + C+eıωh

nt . The nth discrete
normal mode φh

n is in general different from the nth exact normal mode φn

(Fig. 4.18), for n = 1, . . . , N , N being the total number of degrees-of-freedom.
The corresponding discrete and exact frequencies will be different The target of the
frequency analysis is to evaluate how well the discrete spectrum approximates the
exact spectrum.

We begin dealing with the eigenproblem (4.79) associated to a linear (p = 1)
approximation on the one-dimensional domain (0, L). We employ a uniform mesh
0 = ζ0 < ζ1 < . . . < ζA < . . . < ζN+1 = L, where the number of elements is
nel = N + 1 and the mesh-size is h = L/nel . Considering homogeneous Dirichlet
(fixed-fixed) boundary conditions, the eigenproblem (4.79) can be written as

1

h
(φA−1 − 2φA + φA+1)+ h(ωh)2

6
(φA−1 + 4φA + φA+1) = 0, A = 1, . . . , N,

(4.80)

φ0 = φN+1 = 0, (4.81)

where N is the total number of degrees-of-freedom, and φA = φh(ζA) is the nodal
value of the discrete normal mode at node ζA. Equation (4.80) solutions are linear
combinations of exponential functions φA = (ρ1)

A and φA = (ρ2)
A, where ρ1 and

ρ2 are the distinct roots of the characteristic polynomial

(1− 2ρ + ρ2)+ (ωhh)2

6
(1+ 4ρ + ρ2) = 0. (4.82)
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Fig. 4.18 Exact and discrete natural frequencies for the one-dimensional model problem of free
vibration of an elastic rod with homogeneous Dirichlet boundary conditions. The discrete method
is based on linear finite elements

Actually, (4.82) admits distinct roots when ωhh 
= 0,
√

12; for ωhh = 0, (4.82)
admits the double root ρ = 1 (in this case, solutions of (4.80) are combinations of
φA ≡ 1 and φA = A, that is, the affine functions), while for ωhh = √12 there is a
double root ρ = −1 (and solutions of (4.80) are combinations of φA = (−1)A and
φA = A(−1)A). Observe that, in general, ρ2 = ρ−1

1 . For the purpose of spectrum
analysis, we are interested in 0 < ωhh <

√
12, which we assume for the remainder

of this section. In this case, ρ1,2 are complex conjugate (we assume Im(ρ1) ≥ 0) and
of unit modulus. Moreover, in order to compare the discrete spectrum to the exact
spectrum, it is useful to represent the solutions of (4.80) as linear combinations of
e±iAωh (that is, φA = C−e−iAωh+C+eiAωh), by introducing ω such that eiωh = ρ1.
With this hypothesis, ω is real and, because of periodicity, we restrict to 0 ≤ ωh ≤
π . Using this representation in (4.82) and using the identity 2 cos(α) = eiα + e−iα ,
after simple computations the relation between ωh and ωhh is obtained:

(ωhh)2

6
(2+ cos(ωh))− (1− cos(ωh)) = 0. (4.83)

Solving for ωhh ≥ 0, we get

ωhh =
√

6
1− cos(ωh)

2+ cos(ωh)
. (4.84)
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Furthermore, taking into account the boundary conditions, (4.80)–(4.81) admit the
non-null solution

φA = C
e+iAnπ/(N+1) − e−iAnπ/(N+1)

2i
≡ C sin

(

Anπ

N + 1

)

(4.85)

for all ω = π/L, 2π/L, . . . , Nπ/L. Precisely, (4.85) is the nth discrete normal
mode, associated to the corresponding nth discrete natural frequency ωh, given
by (4.84):

ωh = N + 1

L

√

6
1− cos(nπ/(N + 1))

2+ cos(nπ/(N + 1))
. (4.86)

The nth discrete mode φA = C sin(Anπ/(N + 1)) is the nodal interpolant of the
nth exact mode φ(x) = C sin(nπx/L), whose natural frequency is ω = nπ/L. The

quantity
ωh

ω
− 1 = ωh − ω

ω
represents the relative error for the natural frequency.

The plot of

ωh

ω
= 1

ωh

√

6
1− cos(ωh)

2+ cos(ωh)
(4.87)

is shown in Fig. 4.19.
We now consider the quadratic p-method for the eigenproblem (4.79). Assuming

to have the same mesh as in the linear case, there are N = 2nel − 1 degrees-of-
freedom. If we consider the usual Lagrange nodal basis, the corresponding stencil
equation is different for element-endpoint degrees-of-freedom and bubble (internal
to element) degrees-of-freedom: one has

1

3h
(−φA−1 + 8φA−1/2 − 14φA + 8φA+1/2 − φA+1)

+ (ωh)2 h

30
(−φA−1 + 2φA−1/2 + 8φA + 2φA+1/2 − φA+1) = 0, A = 1, . . . , N.

(4.88)

and

1

3h
(8φA − 16φA+1/2 + 8φA+1)+ (ωh)2 h

30
(2φA + 16φA+1/2 + 2φA+1) = 0,

(4.89)

A = 1, . . . , N,
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Fig. 4.19 Discrete-to-exact frequencies ratio for linear approximation

respectively. We also have the boundary conditions φ0 = φN+1 = 0. The bubble
degrees-of-freedom can be calculated as

φA+1/2 = 40+ (ωhh)2

8(10− (ωhh)2)
(φA + φA+1). (4.90)

Eliminating them, we obtain a system of equations for the element-endpoints
degrees of freedom:

1

3h

[(

30+ 2(ωhh)2

10− (ωhh)2

)

φA−1 +
(−60+ 16(ωhh)2

10− (ωhh)2

)

φA

+
(

30+ 2(ωhh)2

10− (ωhh)2

)

φA+1

]

+ k2 h

30

[(

5(ωhh)2

40− 4(ωhh)2

)

φA−1 +
(

200− 15(ωhh)2

20− 2(ωhh)2

)

φA

+
(

5(ωhh)2

40− 4(ωhh)2

)

φA+1

]

= 0.

(4.91)

for A = 1, . . . , N . The bubble elimination is not possible when the bubble
equation (4.89) is singular for uA+1/2, that happens for ωhh = √10.
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Normal modes at the element-endpoints nodes can be written as

φA = C−e−ıωhA + C+eıωhA, A = 1, . . . , N. (4.92)

The boundary condition φ0 = 0 determines C− = −C+, while φnel = 0 determines
ωL
π
∈ Z. Substituting (4.92) into (4.91), we obtain the relation between ωhh and ωh:

cos(ωh) = 3 (ωhh)4 − 104 (ωhh)2 + 240

(ωhh)4 + 16 (ωhh)2 + 240
. (4.93)

The natural frequencies are obtained solving (4.93) with respect to ωhh. Unlike
the linear case, each real value of ωh is associated with two values of ωhh, on two
different branches, termed acoustical and optical. It can be shown that a monotone
ωhh versus ωh relation is obtained representing the two branches in the range
ωh ∈ [0, π] and ωh ∈ [π, 2π] respectively (see Figs. 4.20 and 4.21). Therefore,
we associate to

ωh = nπ

nel

, n = 1, . . . nel − 1, (4.94)

the smallest positive root of (4.93), obtaining the acoustical branch, and we
associate to

ωh = nπ

nel

, n = nel + 1, . . . 2nel − 1 ≡ N; (4.95)

the highest root of (4.93), obtaining the optical branch. These roots are the natural
frequencies that can be obtained by bubble elimination. The frequency ωhh = √10,
which gives bubble resonance is associated with the normal mode

φA = 0, ∀A = 0, . . . , nel ,

φA+1/2 = C(−1)A ∀A = 0, . . . , nel − 1.
(4.96)

Since ωhh = √10 is located between the two branches, this frequency is associated
with mode number n = nel . Then, all normal modes at element endpoints are
given by

φA = C sin

(

Anπ

N + 1

)

, A = 0, 1, . . . nel , (4.97)

n being the mode number. Therefore, (4.97) is an interpolate of the exact modes (at
element endpoint nodes).

The numerical error in the calculation of natural frequencies is visualized by the
graph of ωh/ω versus ωh, shown in Fig. 4.21.
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Finally, we discuss the quadratic k-method. A rigorous analysis of this case
would be too technical; here we prefer to maintain the discussion informal and refer
the reader to [71] for the technical details. The equations of (4.79) have different
expression for the interior stencil points and for the stencil points close to the
boundary (the first and last two equations). We also have for the boundary conditions
φ0 = φN+1 = 0. In the interior stencil points, the equations read

1

6h
(φA−2 + 2φA−1 − 6φA + 2φA+1 + φA+2)

+ (ωh)2 h

120
(φA−2 + 26φA−1 + 66φA + 26φA+1 + φA+2) = 0,

∀A = 3, . . . , N − 2.

(4.98)

A major difference from the cases considered previously is that (4.98) is a
homogeneous recurrence relation of order 4. Because of its structure, its solutions
can be written as linear combinations of the four solutions e±ıωhA and e±ıω̃hA. Here
ωh is real and positive while ω̃h has a nonzero imaginary part. More precisely, the
general solution of (4.98) has the form

φA = C+eıωhA + C−e−ıωhA + ˜C+eıω̃hA + ˜C−e−ıω̃hA, (4.99)

for any constants C+, C−, ˜C+, ˜C−. Plugging this expression of φA into the boundary
equations and imposing the boundary conditions, one finds that ˜C+ = ˜C− = 0 and
that C+ = −C−. Similarly as before, substituting (4.99) into (4.98), we obtain the
relation between ωhh and ωh (see Fig. 4.22):

ωhh =
√

20(2− cos(ωh)− cos(ωh)2)

16+ 13 cos(ωh)+ cos(ωh)2 . (4.100)

The plot of ωhh vs. ωh is shown in Fig. 4.23.
The study above addresses a very simple case but can be generalized. The most

interesting direction is to consider arbitrary degree. For degree higher than 2 “outlier
frequencies” appear in the k-method: these are O(p) highest frequencies that are
numerically spurious and, though they can be filtered out by a suitable geometric
parametrization [71] or mesh refinement [45], their full understanding is an open
problem. Most importantly, the higher-order p-elements give rise to so-called
“optical branches” to spectra, which have no approximation properties, having
relative errors that diverge with p; on the other hand there are no optical modes
with the k-method and, excluding the possible outlier frequencies, the spectral errors
converge with p. Based on the previous observations, we are able to confidently use
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Fig. 4.24 Comparison of k-method and p-method numerical spectra

numerics to calculate invariant analytical spectra for both p-method and k-method.
This comparison is reported in Fig. 4.24 and registers a significant advantage for the
latter. These results may at least partially explain why classical higher-order finite
elements have not been widely adopted in problems for which the upper part of
the discrete spectrum participates in a significant way, such as, for example, impact
problems and turbulence.

The study can be extended to multidimensional problems as well, mainly
confirming the previous findings. We refer again to [71] for the details.

Finally, we present a simple problem that shows how the spectrum properties
presented above may affect a numerical solution. Consider the model equation

φ′′ + kφ = 0, (4.101)

with boundary conditions

φ(0) = 1, φ(1) = 0. (4.102)

The solution to problem (4.101)–(4.102) can be written as

φ(x, k) = sin(k(1− x))

sin(k)
. (4.103)
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Fig. 4.25 Solutions of the boundary value problem (4.101)–(4.102) for p = 3 computed with
k = 71: exact solution (top), k-method (31 degrees-of-freedom, center) and p-method (31 degrees-
of-freedom, bottom)

We numerically solve (4.101)–(4.102) for k = 71, selecting p = 3 and 31
degrees-of-freedom for the k- and p-method. The results are reported in Fig. 4.25.
The k-method is able to reproduce correctly the oscillations of the exact solutions
(phase and amplitude are approximately correct). There are no stopping bands for
the k-method. On the contrary, since k = 71 is within the 2nd stopping band of
the p-method, a spurious attenuation is observed. We refer to [71] for the complete
study.
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4.5.2 Eigenfunction Approximation

Let Ω be a bounded and connected domain in R
d , where d ∈ Z

+ is the number of
space dimensions. We assume Ω has a Lipschitz boundary ∂Ω . We assume both are
continuous and coercive in the following sense: For all v,w ∈ V ,

a(v,w) ≤ ‖v‖E‖w‖E (4.104)

‖w‖2
E = a(w,w) (4.105)

(v,w) ≤ ‖v‖‖w‖ (4.106)

‖w‖2 = (v,w) (4.107)

where ‖ · ‖E is the energy-norm which is assumed equivalent to the (Hm(Ω))n-
norm on V and ‖ · ‖ is the (L2(Ω))n = (H 0(Ω))n norm. The elliptic eigenvalue
problem is stated as follows: Find eigenvalues λl ∈ R

+ and eigenfunctions ul ∈ V ,
for l = 1, 2, . . . ,∞, such that, for all w ∈ V ,

λl(w, ul) = a(w, ul) (4.108)

It is well-known that 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . ., and that the eigenfunctions are
(L2(Ω))n-orthonormal, that is, (uk, ul) = δkl where δkl is the Kronecker delta,
for which δkl = 1 if k = l and δkl = 0 otherwise. The normalization of the
eigenfunctions is actually arbitrary. We have assumed without loss of generality
that ‖ul‖ = 1, for all l = 1, 2, . . . ,∞. It follows from (4.108) that

‖ul‖2
E = a(ul, ul) = λl (4.109)

and a(uk, ul) = 0 for k 
= l. Let V h be either a standard finite element space
(p-method) or a space of maximally smooth B-splines (k-method). The discrete
counterpart of (4.108) is: Find λh

l ∈ R
+ and uh

l ∈ V h such that for all wh ∈ V h,

λh
l (wh, uh

l ) = a(wh, uh
l ) (4.110)

The solution of (4.110) has similar properties to the solution of (4.108). Specifically,
0 < λh

1 ≤ λh
2 ≤ . . . ≤ λh

N , where N is the dimension of V h, (uh
k , u

h
l ) = δkl ,

‖uh
l ‖2

E = a(uh
l , u

h
l ) = λh

l , and a(uh
k , u

h
l ) = 0 if k 
= l. The comparison of

{

λh
l , uh

l

}

to {λl, ul} for all l = 1, 2, . . . , N is the key to gaining insight into the errors of the
discrete approximations to the elliptic boundary-value problem and the parabolic
and hyperbolic initial-value problems.

The fundamental global error analysis result for elliptic eigenvalue problems is
the Pythagorean eigenvalue error theorem. It is simply derived and is done so on
page 233 of Strang and Fix [111] The theorem is global in that it is applicable to
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each and every mode in the discrete approximation. Provided that ‖uh
l ‖ = ‖ul‖,

λh
l − λl

λl

+ ‖u
h
l − ul‖2

‖ul‖2
= ‖u

h
l − ul‖2

E

‖ul‖2
E

, ∀l = 1, 2, . . . , N (4.111)

Note that the relative error in the l th eigenvalue and the square of the relative
(L2(Ω))n-norm error in the lth eigenfunction sum to equal the square of the relative
energy-norm error in the lth eigenfunction. Due to the normalization introduced
earlier, (4.111) can also be written as

λh
l − λl

λl

+ ‖uh
l − ul‖2 = ‖u

h
l − ul‖2

E

λl

, ∀l = 1, 2, . . . , N (4.112)

See Fig. 4.26. We note that the first term in (4.112) is always non-negative as
λh

l ≥ λl , a consequence of the “minimax” characterization of eigenvalues (see [111],
p. 223). It also immediately follows from (4.112) that

λh
l − λl ≤ ‖uh

l − ul‖2
E (4.113)

‖uh
l − ul‖2 ≤ ‖u

h
l − ul‖2

E

λl

(4.114)

We consider the elliptic eigenvalue problem for the second-order differential
operator in one-dimension with homogeneous Dirichlet boundary conditions. The
variational form of the problem is given by (4.108), in which

a(w, ul) =
∫ 1

0

dw

dx

dul

dx
dx (4.115)

(w, ul) =
∫ 1

0
wuldx (4.116)

Fig. 4.26 Graphical
representation of the
Pythagorean eigenvalue error
theorem
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The eigenvalues are λl = π2l2 and the eigenfunctions are ul =
√

2 sin (lπx),
l = 1, 2, . . . ,∞. Now, we will present the eigenvalue errors, rather than the
eigenfrequency errors, and, in addition, L2(0, 1)- and energy-norm eigenfunction
errors. We will plot the various errors in a format that represents the Pythagorean
eigenvalue error theorem budget. We will restrict our study to quadratic, cubic,
and quartic finite elements and B-splines. In all cases, we assume linear geometric
parametrizations and uniform meshes. Strictly speaking, for the k-method the results
are only true for sufficiently large N , due to the use of open knot vectors, but in this
case “sufficiently large” is not very large at all, say N > 30. For smaller spaces,
the results change slightly. The results that we present here were computed using
N ≈ 1000 and, in [73], have been validated using a mesh convergence study and by
comparing to analytical computations.

Let us begin with results for the quadratic k-method, i.e. C1-continuous quadratic
B-splines, presented in Fig. 4.27a. The results for the relative eigenvalue errors
(red curve) follow the usual pattern that has been seen before. The squares of the
eigenfunction errors in L2(0, 1) are also well-behaved (blue curve) with virtually no
discernible error until about l/N = 0.6, and then monotonically increasing errors
in the highest modes. The sums of the errors produce the squares of the relative

Fig. 4.27 Pythagorean eigenvalue error theorem budget for quadratic elements. (a) C1-continuous
B-splines; (b) C0-continuous finite elements. The blue curves are ‖uh

l − ul‖2, the red curves are
(λh

l − λl)/λl , and the black curves are ‖uh
l − ul‖2

E/λl . Note that ‖ul‖ = ‖uh
l ‖ = 1, ‖ul‖2

E = λl ,
and ‖uh

l ‖2
E = λh

l
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energy-norm errors (black curve), as per the Pythagorean eigenvalue error theorem
budget. There are no surprises here.

Next we compare with quadratic p-method, i.e., C0-continuous quadratic finite
elements in Fig. 4.27b. The pattern of eigenvalue errors (red curve), consisting of
two branches, the acoustic branch for l/N < 1/2, and the optical branch for l/N ≥
1/2, is the one known from Sect. 4.5.1. However, the eigenfunction error in L2(0, 1)

(blue curve) represents a surprise in that there is a large spike about l/N = 1/2, the
transition point between the acoustic and optical branches. Again, the square of the
energy-norm eigenfunction error term (black curve) is the sum, as per the budget.
This is obviously not a happy result. It suggests that if modes in the neighborhood
of l/N = 1/2 are participating in the solution of a boundary-value or initial-value
problem, the results will be in significant error. The two unpleasant features of this
result are (1) the large magnitude of the eigenfunction errors about l/N = 1/2 and
(2) the fact that they occur at a relatively low mode number. That the highest modes
are significantly in error is well-established for C0-continuous finite elements, but
that there are potential danger zones much earlier in the spectrum had not been
recognized previously. The midpoint of the spectrum in one-dimension corresponds
to the quarter point in two dimensions and the eighth point in three dimensions, and
so one must be aware of the fact that the onset of inaccurate modes occurs much
earlier in higher dimensions.

The spikes in the eigenfunction error spectrum for C0-finite elements raise the
question as to whether or not the eigenfunctions are representative of the best
approximation to eigenfunctions in the vicinity of l/N = 1/2. To answer this
question, we computed the L2(0, 1) best approximations of some of the exact
eigenfunctions and plotted them in Fig. 4.28b. (They are indicated by ×.) The case
for C1-continuous quadratic B-splines is presented in Fig. 4.28a for comparison. For

Fig. 4.28 Comparisons of eigenfunctions computed by the Galerkin method with L2(0, 1) best
approximations of the exact eigenfunctions. (a) C1-continuous quadratic B-splines; (b) C0-
continuous quadratic finite elements. The blue curves are ‖uh

l − ul‖2, where uh
l is the Galerkin

approximation of ul , and the×’s are ‖ũh
l −ul‖2, where ũh

l is the L2(0, 1) best approximation of ul
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this case there are almost no differences between the best approximation of the exact
eigenfunctions and the computed eigenfunctions. However, for the C0-continuous
quadratic finite elements, the differences between the computed eigenfunctions and
the L2(0, 1) best approximations of the exact eigenfunctions are significant, as can
be seen in Fig. 4.28b. The spike is nowhere to be seen in the best approximation
results. We conclude that the Galerkin formulation of the eigenvalue problem
is simply not producing good approximations to the exact eigenfunctions about
l/N = 1/2 in the finite element case.

For higher-order cases, in particular cubic and quartic, see [73] where it is shown
that the essential observations made for the quadratic case persist. An investigation
of the behavior of outlier frequencies and eigenfunctions is also presented in [73],
along with discussion of the significance of eigenvalue and eigenfunction errors in
the context of elliptic, parabolic and hyperbolic partial differential equations.

4.6 Computational Efficiency

High-degree high-regularity splines, and extensions, deliver higher accuracy per
degree-of-freedom in comparison to C0 finite elements but at a higher computational
cost, when standard finite element implementation is adopted. In this section
we present recent advances on the formation of the system matrix (Sects. 4.6.1
and 4.6.2), the solution of linear systems (Sect. 4.6.3) and the use a matrix-free
approach (Sect. 4.6.4)

We consider, as a model case, the d-dimensional Poisson problem on a single-
patch domain, and an isogeometric tensor-product space of degree p, continuity
Cp−1 and total dimension N , with N  p. This is the typical setting for the k-
method.

An algorithm for the formation of the matrix is said to be (computationally)
efficient if the computational cost is proportional to the number of non-zero entries
of the matrix that have to be calculated (storage cost). The stiffness matrix in our
model case has about N(2p + 1)d ≈ CNpd non-zero entries.

An algorithm for the solution of the linear system matrix is efficient if the
computational cost is proportional to the solution size, i.e., N .

A matrix-free approach aims at an overall computational cost and storage cost of
CN .

4.6.1 Formation of Isogeometric Matrices

When a finite element code architecture is adopted, the simplest approach is to
use element-wise Gaussian quadrature and element-by-element assembling. Each
elemental stiffness matrix has dimension (p + 1)2d and each entry is calculated by
quadrature on (p + 1)d Gauss points. The total cost is CNELp

3d ≈ CNp3d , where
NEL is the number of elements and, for the k-method, NEL ≈ N .
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A strategy to reduce the cost is to reduce the number of quadrature points. The
paper [72] proposed to use generalized Gaussian rules for smooth spline integrands.
These rules are not known analytically and need to be computed numerically (see
also [9, 13, 14] and the recent paper [75] where the problem is effectively solved
by a Newton method with continuation). Furthermore, reduced quadrature rules
have been considered in [1, 101] and [65]. Another important step is to reduce
the number of operations by arranging the computations in a way that exploits
the tensor-product structure of multivariate splines: this is done by so-called sum
factorization achieving a computational cost of CNp2d+1, see [3].

Keeping the element-wise assembling loop is convenient, as it allows reusing
available finite element routines. On the other hand, as the computation of each
elemental stiffness matrix needs at least Cp2d FLOPs (proportional to the elemental
matrix size and assuming integration cost does not depend on p) the total cost is at
least CNELp

2d ≈ CNp2d .
Further cost reduction is possible but only with a change of paradigm from

element-wise assembling. This study has been recently initiated and two promising
strategies have emerged.

One idea, in [84], is to use a low-rank expansion in order to approximate the
stiffness matrix by a sum of R Kronecker type matrices that can be easily formed,
thanks to their tensor-product structure. This approach has a computational cost of
CNRpd FLOPs.

Another possibility, from [42], is based on two new concepts. The first is the use
of a row loop instead of an element loop, and the second is the use of weighted
quadrature. This will be discussed in the next section.

4.6.2 Weighted Quadrature

This idea has been proposed in [42]. Assume we want to compute integrals of the
form:

∫ 1

0

̂Bi(ζ ) ̂Bj(ζ ) dζ, (4.117)

where {̂Bi}i=1,...,n are p-degree univariate B-spline basis functions. Consider for
simplicity only the maximum regularity case, Cp−1, and for the moment a periodic
uniform knot vector. Being in the context of Galerkin method, ̂Bi(ζ ) represents a
test function and ̂Bj (ζ ) represents a trial function.

We are interested in a fixed point quadrature rule. In the lowest degree case,
p = 1, exact integration is performed by a composite Cavalieri-Simpson rule:

∫ 1

0

̂Bi(ζ ) ̂Bj(ζ ) dζ = Q
CS(̂Bi

̂Bj ) =
∑

q

wCS
q

̂Bi(x
CS
q ) ̂Bj(x

CS
q ), (4.118)
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where xCS
q are the quadrature points and wCS

q the relative weights. In the above

hypotheses the points xCS
q are the knots and the midpoints of the knot-spans and

wCS
q = h

3 on knots and wCS
q = 2h

3 on midpoints.
Unbalancing the role of the test and the trial factors in (4.118), we can see it as a

weighted quadrature:

∫ 1

0

̂Bi(ζ ) ̂Bj(ζ ) dζ = Q
WQ
i (̂Bj ) =

∑

q

w
WQ
q,i

̂Bj(x
WQ
q,i ), (4.119)

where xCS
q = x

WQ
q,i and w

WQ
q,i = ̂Bi(x

WQ
q,i )wCS

q . Because of the local support of the

function ̂Bi only in three points the quadrature Q
WQ
i is non-zero and the weights

are equal to h
3 .

If we go to higher degree, we need more quadrature points in (4.118). For p-
degree splines the integrand ̂Bi

̂Bj is a piecewise polynomial of degree 2p and an
element-wise integration requires 2p+ 1 equispaced points, or p+ 1 Gauss points,
or about p/2 points with generalized Gaussian integration (see [9, 31, 41, 72]). On
the other hand, we can generalize (4.119) to higher degree still using as quadrature
points only the knots and midpoints of the knot spans. Indeed this choice ensures
that, for each basis function ̂Bi , i = 1, . . . , n, there are 2p + 1 “active” quadrature
points where ̂Bi is nonzero. Therefore we can compute the 2p + 1 quadrature
weights by imposing conditions for the 2p+ 1 B-splines ̂Bj that need to be exactly
integrated. Clearly, the advantage of the weighted quadrature approach is that its
computational complexity, i.e., the total number of quadrature points, is independent
of p.

Given a weighted quadrature rule of the kind above, we are then interested in
using it for the approximate calculation of integrals as:

∫ 1

0
c(ζ )̂Bi(ζ ) ̂Bj(ζ ) dζ ≈ Q

WQ
i

(

c(·)̂Bj(·)
) =

∑

q

w
WQ
q,i c(x

WQ
q,i )̂Bj (x

WQ
q,i ) .

(4.120)

For a non-constant function c(·), (4.120) is in general just an approximation.
We consider now the model reaction-diffusion problem

{−∇2u+ u = f on Ω,

u = 0 on ∂Ω,
(4.121)

Its Galerkin approximation requires the stiffness matrix S and mass matrix M. After
change of variable we have M = {mi,j } ∈ R

N×N with entries given by:

mi,j =
∫

̂Ω

̂Bi
̂Bj det̂DF dζ .
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For notational convenience we write:

mi,j =
∫

̂Ω

̂Bi(ζ ) ̂Bj (ζ ) c(ζ ) dζ . (4.122)

In more general cases, the factor c incorporates the coefficient of the equation
and, for NURBS functions, the polynomial denominator. Similarly for the stiffness
matrix S = {si,j } ∈ R

N×N we have:

si,j =
∫

̂Ω

(

̂DF−T
̂∇̂Bi

)T (

̂DF−T
̂∇̂Bj

)

det̂DF dζ

=
∫

̂Ω

̂∇̂BT
i

(
[

̂DF−1
̂DF−T

]

det̂DF
)

̂∇̂Bj dζ

which we write in compact form:

si,j =
d
∑

l,m=1

∫

̂Ω

(

̂∇̂Bi(ζ )
)

l
cl,m(ζ )

(

̂∇̂Bj (ζ )
)

m
dζ . (4.123)

Here we have denoted by
{

cl,m(ζ )
}

l,m=1,...,d
the following matrix:

cl,m(ζ ) = {[

̂DF−1(ζ )̂DF−T (ζ )
]

det̂DF (ζ )
}

l,m
. (4.124)

The number of non-zero elements NNZ of M and S depends on the polynomial
degree p and the required regularity r . We introduce the following sets:

Il,il =
{

jl ∈ {1, . . . , nl} s.t. ̂Bil · ̂Bjl 
= 0
}

, Ii =
d
∏

l=1

Il,il (4.125)

We have #Il,i ≤ (2p + 1) and NNZ = O(N pd). In particular, with maximal
regularity in the case d = 1 one has NNZ = (2p + 1)N − p(p + 1).

Consider the calculation of the mass matrix. The first step is to write the integral
in a nested way, as done in [3]:

mi,j =
∫

̂Ω

̂Bi(ζ )̂Bj (ζ )c(ζ ) dζ

=
∫ 1

0

̂Bi1(ζ1)̂Bj1(ζ1)

[∫ 1

0

̂Bi2(ζ2)̂Bj2(ζ2) · · ·
[∫ 1

0

̂Bid (ζd)̂Bjd (ζd)c(ζ ) dζd

]

· · · dζ2

]

dζ1
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The idea in is to isolate the test function ̂Bil univariate factors in each univariate
integral and to consider it as a weight for the construction of the weighted quadrature
(WQ) rule. This leads to a quadrature rule for each il that is:

mi,j ≈ m̃i,j = Q
WQ
i

(

̂Bj (ζ )c(ζ)
) = Qi

(

̂Bj (ζ )c(ζ )
)

= Qi1

(

̂Bj1(ζ1)Qi2

(· · ·Qid

(

̂Bjd (ζd)c(ζ )
)))

.
(4.126)

Notice that we drop from now on the label WQ used in the introduction in order to
simplify notation. The key ingredients for the construction of the quadrature rules
that preserve the optimal approximation properties are the exactness requirements.
Roughly speaking, exactness means that in (4.126) we have mi,j = m̃i,j whenever
c is a constant coefficient. When the stiffness term is considered, also terms with
derivatives have to be considered.

We introduce the notation:

I
(0,0)
l,il ,jl

:=
∫ 1

0

̂Bil (ζl)̂Bjl (ζl) dζl

I
(1,0)
l,il ,jl

:=
∫ 1

0

̂B ′il (ζl)̂Bjl (ζl) dζl

I
(0,1)
l,il ,jl

:=
∫ 1

0

̂Bil (ζl)̂B
′
jl
(ζl) dζl

I
(1,1)
l,il ,jl

:=
∫ 1

0

̂B ′il (ζl)̂B
′
jl
(ζl) dζl

(4.127)

For each integral in (4.127) we define a quadrature rule: we look for

• points x̃q = (̃x1,q1, x̃2,q2, . . . , x̃d,qd ) with ql = 1, . . . nQP,l , with NQP is # {̃x} =
∏d

l=1 nQP,l ;
• for each index il = 1, . . . , nDOF,l; l = 1, . . . , d , four quadrature rules such that:

Q
(0,0)
il

(f ) :=
nQP,l
∑

ql=1

w
(0,0)
l,il ,ql

f (̃xl,ql ) ≈
∫ 1

0
f (ζl)̂Bil (ζl)dζl ;

Q
(1,0)
il

(f ) :=
nQP,l
∑

ql=1

w
(1,0)
l,il ,ql

f (̃xl,ql ) ≈
∫ 1

0
f (ζl)̂Bil (ζl)dζl ;

Q
(0,1)
il

(f ) :=
nQP,l
∑

ql=1

w
(0,1)
l,il ,ql

f (̃xl,ql ) ≈
∫ 1

0
f (ζl)̂B

′
il
(ζl)dζl ;

Q
(1,1)
il

(f ) :=
nQP,l
∑

ql=1

w
(1,1)
l,il ,ql

f (̃xl,ql ) ≈
∫ 1

0
f (ζl)̂B

′
il
(ζl)dζl .

(4.128)
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fulfilling the exactness requirement:

Q
(0,0)
il

(̂Bjl ) = I
(0,0)
l,il ,jl

Q
(1,0)
il

(̂B ′jl
) = I

(1,0)
l,il ,jl

Q
(0,1)
il

(̂Bjl ) = I
(0,1)
l,il ,jl

Q
(1,1)
il

(̂B ′jl
) = I

(1,1)
l,il ,jl

, ∀jl ∈ Il,il . (4.129)

We also require that the quadrature rules Q(·,·)
il

have support included in the support

of ̂Bil , that is

ql /∈ Ql,il ⇒ w
(·,·)
l,il ,ql

= 0 . (4.130)

where Ql,il :=
{

ql ∈ 1, . . . , nQP,l s.t. x̃l,ql ∈ supp
(

̂Bil

)}

; recall that here the
support of a function is considered an open set. Correspondingly, we introduce the
set of multi-indexes Qi :=∏d

l=1 Ql,il .
Once the points x̃q are fixed, the quadrature rules have to be determined by

the exactness requirements, that are a system of linear equations of the unknown
weights (each of the (4.129)). For that we require

#Ql,il ≥ #Il,il . (4.131)

See[42] for a discussion on the well-posedness of the linear systems for the weights.
The construction of a global grid of quadrature points is done in order to save

computations. For the case of maximum Cp−1 regularity considered here, the choice
for quadrature points of [42] is endpoints (knots) and midpoints of all internal knot-
spans, while for the boundary knot-spans (i.e. those that are adjacent to the boundary
of the parameter domain ̂Ω) we take p + 1 equally spaced points. Globally NQP ≈
2dNEL = O(N) considering only the dominant term.

When all the quadrature rules are available we can write the computation
of the approximate mass matrix following (4.126), where the quadrature rules
Q

(0,0)
i1

, . . . ,Q
(0,0)
id

are used. Similar formulae and algorithms can be written for the
stiffness matrix. In that case, all the integrals are approximated separately, and all
the quadrature rules Q(·,·)

il
are necessary.

The mass matrix formation algorithm is mainly a loop over all rows i, for each i

we consider the calculation of

m̃i,j =
∑

q∈Qi

w
(0,0)
i,q c(̃xq)̂Bj

(

x̃q

)

. (4.132)

where w
(0,0)
i,q = w

(0,0)
1,i1,q1

. . . w
(0,0)
d,id ,qd

.
The computational cost of (4.132) is minimised by a sum factorization approach.

Nota that (4.132) can be rearranged as in (4.126) to obtain the following sequence
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of nested summations:

m̃i,j =
∑

q1∈Q1,i1

w
(0,0)
1,i1,q1

̂Bj1(x1,q1)

⎛

⎝

∑

q2∈Q2,i2

. . . (4.133)

∑

qd∈Qd,id

w
(0,0)
d,id ,qd

̂Bjd (xd,qd )c
(

x1,q1, . . . , xd,qd

)

⎞

⎠ .

To write (4.133) in a more compact form, we introduce the notion of matrix-tensor
product. Let X = {

xk1,...,kd

} ∈ R
n1×...×nd be a d−dimensional tensor, and let

m ∈ {1, . . . , d}. The m−mode product of X with a matrix A = {

ai,j

} ∈ R
t×nm ,

denoted with X ×mA, is a tensor of dimension n1×. . .×nm−1×t×nm+1×. . .×nd ,
with components

(X ×m A)k1,...,kd
=

nm
∑

j=1

akm,j xk1,...km−1,j,km+1,...kd .

For l = 1, . . . , d and il = 1, . . . , nl we define the matrices

B(l,il ) = (

̂Bjl (xl,ql )
)

jl∈Il,il
,ql∈Ql,il

, W(l,il ) = diag

(
(

w
(0,0)
l,il ,ql

)

ql∈Ql,il

)

,

where diag(v) denotes the diagonal matrix obtained by the vector v. We also define,
for each index i, the d−dimensional tensor

Ci = c(̃xQi
) = (

c(̃x1,q1, . . . , x̃d,qd )
)

q1∈Q1,i1 ,...,qd∈Qd,id

.

Using the above notations, we have

m̃i,Ii
= Ci ×d

(

B(d,id )W(d,id )
)

×d−1 . . .×1

(

B(1,i1)W(1,i1)
)

. (4.134)

Since with this choice of the quadrature points #Ql,il and #Il,il are both O(p),
the computational cost associated with (4.134) is O(pd+1) FLOPs. Note that m̃i,Ii

includes all the nonzeros entries of the i-th row of ˜M. Hence if we compute it for
each i = 1, . . . , N the total cost amounts to O(N pd+1) FLOPs. This approach is
summarized in Algorithm 1.

From [42], we report CPU time results for the formation on a single patch domain
of mass matrices. Comparison is made with GeoPDEs 3.0, the optimized but SGQ-
based MATLAB isogeometric library developed by Rafael Vázquez, see[124]. In
Fig. 4.29 we plot the time needed for the mass matrix formation up to degree p = 10
with N = 203. The tests confirm the superior performance of the proposed row-loop
WQ-based algorithm vs SGQ. In the case p = 10 GeoPDEs takes more than 62 h to
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Input: Quadrature rules, evaluations of coefficients
1 for i = 1, . . . , N do
2 Set C (0)

i := c(̃xQi
);

3 for l = d, d − 1, . . . , 1 do
4 Load the quadrature rule Q

(0,0)
il

and form the matrices B(l,il) and W(l,il);

5 Compute C
(d+1−l)
i = C

(d−l)
i ×l

(

B(l,il )W(l,il )
)

;
6 end

7 Store m̃i,Ii
= C

(d)
i ;

8 end

Algorithm 1: Construction of mass matrix by sum-factorization

Fig. 4.29 Time for mass matrix assembly in the framework of isogeometric-Galerkin method with
maximal regularity on a single patch domain of 203 elements. The comparison is between the WQ
approach and the SGQ as implemented in GeoPDEs 3.0 [125]

form the mass matrix while the proposed algorithm needs only 27 s, so the use high
degrees is possible with WQ.

4.6.3 Linear Solvers and Preconditioners

The study of the computational efficiency of linear solvers for isogeometric
discretizations has been initiated in the papers [46, 47], where it has been shown
that the algorithms used with the finite element method suffer of performance
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degradation when used to solve isogeometric linear systems. Consider, for example,
a Lagrangian finite element method with polynomial degree p and N degrees-of-
freedom, in 3D, for a Poisson model problem:. As shown in [46], a multifrontal
direct solver requires O(N2) FLOPs (under the assumption N > p9) to solve the
resulting linear system. If, instead, we consider the isogeometric k-method with
Cp−1 p-degree splines and N degrees-of-freedom, the same direct solver requires
O(N2p3) FLOPs, i.e., p3 times more than in the finite element case. The memory
required is also higher for the k-method.

Iterative solvers have attracted more attention in the isogeometric community
since they allow, though it is not trivial, optimal computational cost. The effort
has been primarily on the development of preconditioners for the Poisson model
problem, for arbitrary degree and continuity splines. As reported in [47], standard
algebraic preconditioners (Jacobi, SSOR, incomplete factorization) commonly
adopted for finite elements exhibit reduced performance when used in the context
of the isogeometric k-method. Standard multilevel and multigrid approaches are
studied respectively in [39] and [60], while advances in the theory of domain-
decomposition based solvers are given in, e.g., [24, 28]. These papers also confirm
the difficulty in achieving both robustness and computational efficiency for the high-
degree k-method.

More sophisticated multigrid preconditioners have been proposed in the recent
papers [54] and [67]. The latter, in particular, contains a proof of robustness,
based on the theory of [115]. The two works are based on the following common
ingredients: specific spectral properties of the discrete operator of the isogeometric
k-method and the tensor-product structure of isogeometric spaces.

The tensor-product structure of multivariate spline space is exploited in [61, 96],
based on approaches that have been developed for the so-called Sylvester equation.
The tensor product structure of splines spaces yields to a Kronecker structure of
isogeometric matrices.

We first recall the notation and basic properties of the Kronecker product of
matrices. Let A ∈ R

na×na , and B ∈ R
nb×nb . The Kronecker product between A

and B is defined as

A⊗ B =
⎡

⎢

⎣

a11B . . . a1naB
...

. . .
...

ana1B . . . anana B

⎤

⎥

⎦ ∈ R
nanb×nanb ,

where aij , i, j = 1, . . . na , denote the entries of A. The Kronecker product is
an associative operation, and it is bilinear with respect to matrix sum and scalar
multiplication. Some properties of the Kronecker product that will be useful in the
following.

• It holds

(A⊗ B)T = AT ⊗ BT . (4.135)
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• If C and D are matrices of conforming order, then

(A⊗ B) (C ⊗D) = (AC ⊗ BD). (4.136)

• For any matrix X ∈ R
na×nb we denote with εc(X) the vector of Rnanb obtained

by “stacking” the columns of X. Then if A, B and X are matrices of conforming
order, and x = εc(X), it holds

(A⊗ B) x = εc(BXAT ). (4.137)

The last property can be used to cheaply compute matrix-vector products with a
matrix having Kronecker structure. Indeed, it shows that computing a matrix-vector
product with A ⊗ B is equivalent to computing nb matrix-vector products with A

and na matrix-vector products with B. Note in particular that A⊗ B does not have
to be formed.

Consider the Laplace operator with constant coefficients, on the square [0, 1]2,
then the tensor-product spline Galerkin discretization leads to the system

(K1 ⊗M2 +M1 ⊗K2)u = b (4.138)

where K� and M� denote the univariate stiffness and mass matrices in the �

direction, � = 1, 2, and ⊗ is the Kronecker product. For simplicity, we assume
that all the univariate matrices have the same order, which we denote with n. Note
in particular that N = n2.

Observe that in general, for variable coefficients, general elliptic problems, non-
trivial and possibly multipatch geometry parametrization, the isogeometric system
is not as in (4.138). In this case, a fast solver for (4.138) plays the role of a
preconditioner. At each iterative step, the preconditioner takes the form

(K1 ⊗M2 +M1 ⊗K2) s = r. (4.139)

Using relation (4.137), we can rewrite this equation in matrix form

M2SK1 +K2SM1 = R, (4.140)

where εc(S) = s and εc(R) = r . Equation (4.140) takes the name of (generalized)
Sylvester equation. Due to its many applications, the literature dealing with
Sylvester equation (and its variants) is vast, and a number of methods have been
proposed for its numerical solution. We refer to [110] for a recent survey on this
subject.

Following [96], we consider the fast diagonalization (FD) method which is a
direct solver, that is, s = P−1r is computed exactly. It was first presented in 1964
by Lynch, Rice and Thomas [83] as a method for solving elliptic partial differential
equations discretized with finite differences. This approach was extended to a
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general Sylvester equation involving nonsymmetric matrices by Bartels and Stewart
in 1972 [11], although this is not considered here.

We consider the generalized eigendecomposition of the matrix pencils (K1,M1)

and (K2,M2), namely

K1U1 =M1U1D1 K2U2 =M2U2D2, (4.141)

where D1 and D2 are diagonal matrices whose entries are the eigenvalues of M−1
1 K1

and M−1
2 K2, respectively, while U1 and U2 satisfy

UT
1 M1U1 = I, UT

2 M2U2 = I,

which implies in particular U−T
1 U−1

1 = M1 and U−T
2 U−1

2 = M2, and also,
from (4.141), U−T

1 D1U
−1
1 = K1 and U−T

2 D2U
−1
2 = K2. Therefore we factorize

P in (4.139) as follows:

(U1 ⊗ U2)
−T (D1 ⊗ I + I ⊗D2) (U1 ⊗ U2)

−1 s = r,

and adopt the following strategy:

• Compute the generalized eigendecompositions (4.141)
• Compute r̃ = (U1 ⊗ U2)

T r

• Compute s̃ = (D1 ⊗ I + I ⊗D2)
−1 r̃

• Compute s = (U1 ⊗ U2 )̃s

Algorithm 2: FD direct method (2D)

The exact cost of the eigendecompositions in line 1 depends on the algorithm
employed. A simple approach is to first compute the Cholesky factorization M1 =
LLT and the symmetric matrix ˜K1 = L−1K1L

−T . Since M1 and K1 are banded,
the cost of these computations is O(pn2) FLOPs. The eigenvalues of ˜K1 are the
same of (4.141), and once the matrix ˜U1 of orthonormal eigenvectors is computed
then one can compute U1 = L−T

˜U1, again at the cost of O(pn2) FLOPs. Being ˜U1
orthogonal, then UT

1 M1U1 = In. If the eigendecomposition of ˜K1 is computed
using a divide-and-conquer method, the cost of this operation is roughly 4n3

FLOPs. We remark that the divide-and-conquer approach is also very suited for
parallelization. In conclusion, by this approach, line 1 requires roughly 8n3 FLOPs.

Lines 2 and 4 each involve a matrix-vector product with a matrix having
Kronecker structure, and each step is equivalent (see (4.137)) to 2 matrix products
involving dense n × n matrices. The total computational cost of both steps is 8n3

FLOPs. Line 3 is just a diagonal scaling, and its O(n2) cost is negligible. We
emphasize that the overall computational cost of Algorithm 2 is independent of p.

If we apply Algorithm 2 as a preconditioner, then Step 1 may be performed
only once, since the matrices involved do not change throughout the CG iteration.
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In this case the main cost can be quantified in approximately 8n3 FLOPs per CG
iteration. The other main computational effort of each CG iteration is the residual
computation, that is the product of the system matrix A by a vector, whose cost
in FLOPs is twice the number of nonzero entries of A , that is approximately
2(2p + 1)2n2. In conclusion, the cost ratio between the preconditioner application
and the residual computation is O(n/p2).

When d = 3, Eq. (4.139) takes the form

(K1 ⊗M2 ⊗M3 +M1 ⊗K2 ⊗M3 +M1 ⊗M2 ⊗K3) s = r, (4.142)

where, as in the 2D case, we assume that all the univariate matrices have order n

(and hence N = n3).
The FD method above admits a straightforward generalization to the 3D case.

We consider the generalized eigendecompositions

K1U1 =M1U1D1, K2U2 = M2U2D2, K3U3 = M3U3D3, (4.143)

with D1, D2, D3 diagonal matrices and

UT
1 M1U1 = I, UT

2 M2U2 = I, UT
3 M3U3 = I.

Then, (4.142) can be factorized as

(U1 ⊗ U2 ⊗ U3)
−1 (D1 ⊗ I ⊗ I + I ⊗D2 ⊗ I + I ⊗ I ⊗D3) (U1 ⊗ U2 ⊗ U3)

−T

s = r,

which suggests the following algorithm.

• Compute the generalized eigendecompositions (4.143)
• Compute r̃ = (U1 ⊗ U2 ⊗ U3)r

• Compute s̃ = (D1 ⊗ I ⊗ I + I ⊗D2 ⊗ I + I ⊗ I ⊗D3)
−1 r̃

• Compute s = (U1 ⊗ U2 ⊗ U3)
T s̃

Algorithm 3: FD direct method (3D)

Lines 1 and 3 require O(n3) FLOPs. Lines 2 and 4, as can be seen by nested
applications of formula (4.137), are equivalent to performing a total of 6 products
between dense matrices of size n×n and n×n2. Thus, neglecting lower order terms
the overall computational cost of Algorithm 3 is 12n4 FLOPs.

The FD method is even more appealing in the 3D case than it was in the 2D
case, for at least two reasons. First, the computational cost associated with the
preconditioner setup, that is the eigendecomposition, is negligible. This means that
the main computational effort of the method consists in a few (dense) matrix-
matrix products, which are level 3 BLAS operations and typically yield high
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efficiency thanks to a dedicated implementation on modern computers by optimized
usage of the memory cache hierarchy Second, in a preconditioned CG iteration
the cost for applying the preconditioner has to be compared with the cost of the
residual computation (a matrix-vector product with A ) which can be quantified
in approximately 2(2p + 1)3n3 for 3D problems, resulting in a FLOPs ratio of
the preconditioner application to residual computation of O(n/p3). However in
numerical tests we will see that, for all cases of practical interest in 3D, the
computational time used by the preconditioner application is far lower that the
residual computation itself. This is because the computational time depends not only
on the FLOPs count but also on the memory usage and, as mentioned above, dense
matrix-matrix multiplications greatly benefit of modern computer architecture.

We report some 3D single-patch numerical tests from [96]. We consider a two
domains: the first one is a thick quarter of ring; note that this solid has a trivial
geometry on the third direction. The second one is the solid of revolution obtained
by the 2D quarter of ring. Specifically, we performed a π/2 revolution around the
axis having direction (0, 1, 0) and passing through (−1,−1,−1). We emphasize
that here the geometry is nontrivial along all directions.

We consider a standard Incomplete Cholesky (IC) preconditioner (no reordering
is used in this case, as the resulting performance is better than when using the
standard reorderings available in MATLAB).

In Table 4.1 we report the results for the thick quarter ring while in Table 4.2 we
report the results for the revolved ring. The symbol “*” denotes the cases in which
even assembling the system matrix A was unfeasible due to memory limitations.
From these results, we infer that most of the conclusions drawn for the 2D case

Table 4.1 Thick quarter of ring domain

CG + P iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 26/0.19 26/0.38 26/0.75 26/1.51 26/2.64

64 27/1.43 27/3.35 27/6.59 27/12.75 27/21.83

128 28/14.14 28/32.01 28/61.22 * *

CG + PJ iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 26 (7)/0.88 26 (7)/1.20 26 (7)/1.71 26 (7)/2.62 27 (8)/4.08

64 27 (7)/7.20 27 (8)/10.98 27 (8)/14.89 27 (8)/21.81 27 (8)/30.56

128 28 (8)/99.01 28 (8)/98.39 28 (8)/143.45 * *

CG + IC iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 21/0.37 15/1.17 12/3.41 10/9.43 9/24.05

64 37/4.26 28/13.23 22/33.96 18/88.94 16/215.31

128 73/65.03 51/163.48 41/385.54 * *

Performance of CG preconditioned by the direct method (upper table), by ADI (middle table) and
by Incomplete Cholesky (lower table)
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Table 4.2 Revolved quarter of ring domain

CG + P iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 40/0.27 41/0.63 41/1.24 42/2.38 42/4.13

64 44/2.30 44/5.09 45/10.75 45/20.69 45/35.11

128 47/23.26 47/55.34 47/101.94 * *

CG + PJ iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 40 (7)/1.39 41 (7)/1.93 41 (7)/2.67 42 (7)/4.17 42 (8)/6.25

64 44 (7)/11.82 44 (8)/16.96 45 (8)/24.31 45 (8)/35.76 45 (8)/49.89

128 47 (8)/170.69 47 (8)/168.45 47 (9)/239.07 * *

CG + IC iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 24/0.44 18/1.28 15/3.61 12/9.63 11/24.57

64 47/5.19 35/14.95 28/37.33 24/94.08 20/222.09

128 94/81.65 71/211.53 57/464.84 * *

Performance of CG preconditioned by the direct method (upper table), by ADI (middle table) and
by Incomplete Cholesky (lower table)

Table 4.3 Percentage of
time spent in the application
of the 3D FD preconditioner
with respect to the overall CG
time

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 25.60 13.34 7.40 4.16 2.44

64 22.69 11.26 5.84 3.32 1.88

128 25.64 13.09 6.92 * *

Revolved ring domain

still hold in 3D. In particular, both Sylvester-based preconditioners yield a better
performance than the IC preconditioner, especially for small h.

Somewhat surprisingly, however, the CPU times show a stronger dependence
on p than in the 2D case, and the performance gap between the ADI and the FD
approach is not as large as for the cube domain. This is due to the cost of the residual
computation in the CG iteration (a sparse matrix-vector product, costing O(p3n3)

FLOPs). This step represents now a significant computational effort in the overall
CG performance. In fact, our numerical experience shows that the 3D FD method is
so efficient that the time spent in the preconditioning step is often negligible w.r.t. the
time required for the residual computation. This effect is clearly shown in Table 4.3,
where we report the percentage of time spent in the application of the preconditioner
when compared with the overall time of CG, in the case of the revolved ring domain.
Interestingly, this percentage is almost constant w.r.t. h up to the finest discretization
level, corresponding to about two million degrees-of-freedom.

For conforming multi-patch parametrization, we can easily combine the
approaches discussed above with an overlapping Schwarz preconditioner. For
details, see [96]. Extension of this approach to nonconforming discretizations
would require the use of nonconforming DD preconditioners (e.g., [81]) instead of
an overlapping Schwarz preconditioner.
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4.6.4 Matrix-Free Computationally-Efficient k-Refinement

The techniques of Sects. 4.6.2 and 4.6.3 are still not enough to achieve the full
potential of the k-method and motivate the k-refinement from the point of view
of computational efficiency. Matrix operations are too slow and the matrix storage
itself poses restrictions to degree elevation. Therefore in [97] the idea of forming and
storing the needed matrices is abandoned and, still relying on weighted quadrature,
a matrix-free approach is developed. In such a case, the system matrix is available
only as a function that computes matrix-vector products. This is exactly what is
needed by an iterative solver. Matrix-free approaches have been use in high-order
methods based on a tensor construction like spectral elements (see [121]) and have
been recently extended to hp-finite elements [2, 80]. They are commonly used
in non-linear solvers, parallel implementations, typically for application that are
computationally demanding, for example in computational-fluid-dynamics [74, 92].

The cost to initialize the matrix-free approach is only O(N) FLOPs, while the
computation of matrix-vector products costs only O(Np) FLOPs. Moreover, the
memory required by this approach is just O(N), i.e., it is proportional to the number
of degrees of freedom. On the other hand, in 3D the memory required to store the
matrix would be O(Np3), and the cost to compute standard matrix-vector products
would be O(Np3) FLOPs. It is important to remark that, while in some cases the
reduction in storage is the major motivation of the matrix-free approach, in this
case framework both FLOPs and memory savings are fundamental in order to make
the use of the high-degree k-method possible and advantageous. We emphasize that
other matrix-free approaches which rely on more standard quadrature rules (e.g.
Gaussian quadrature) require O(Np4) FLOPs to compute matrix-vector products.

The innovative implementation described below is, in the case of the k-method
(the isogeometric method based on splines or NURBS, etc., with maximum
regularity), orders of magnitude faster than the standard implementation inherited
by finite elements. The speedup on a mesh of 2563 elements is 13 times for degree
p = 1, 44 times for degree p = 2, while higher degrees can not be handled in
the standard framework. Indeed, in the standard implementation, higher degrees are
beyond the memory constraints of nowadays workstations, while they are easily
allowed in the new framework. This has the upshot: it gives, for the first time, clear
evidence of the superiority of the high-degree k-method with respect to low-degree
isogeometric discretizations in terms of computational efficiency.

This approach has been also studied, implemented and tested in an innovative
environment and hardware for dataflow computing, in the thesis [122].

For brevity we only present here the weighted quadrature matrix-free algorithm
for the mass matrix multiplication. Let ˜M be the approximation of M obtained with
weighted quadrature, as described in Sect. 4.6.2. We use however indices instead of
multi-indices, for the sake of simplicity. We want to compute the vector ˜Mv, where
v ∈ R

N is a given vector.
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For i = 1, . . . , N , we observe that

(

˜Mv
)

i
=

N
∑

j=1

m̃ij vj =
N
∑

j=1

NQP
∑

q=1

wi,qc(xq)̂Bj(xq)vj

=
NQP
∑

q=1

wi,qc(xq)

⎛

⎝

N
∑

j=1

̂Bj (xq)vj

⎞

⎠ ,

where we have used the definition of m̃ij from (4.133). If we define vh =
∑N

j=1 vj
̂Bj , we have then the obvious relation

(

˜Mv
)

i
=

NQP
∑

q=1

wi,q c(xq)vh(xq) = Q
WQ
i (c(·)vh(·)) . (4.144)

Above, we see that weighted-quadrature is well suited for a direct calculation of the
i-th entry of ˜Mv: this is just equivalent to approximating the integral of the function
c vh using the i-th quadrature rule.

Then ˜Mv can be computed with the following steps:

1. Compute ṽ ∈ R
NQP , with ṽq := vh(xq), q = 1, . . . , NQP.

2. Compute˜ṽ ∈ R
NQP , with˜ṽq := c(xq) · vh(xq), q = 1, . . . , NQP.

3. Compute
(

˜Mv
)

i
=∑NQP

q=1 wi,q˜ṽq , i = 1, . . . , N .

This algorithm, and in particular steps 1 and 3, can be performed efficiently by
exploiting the tensor structure of the basis functions and of the weights. In order to
make this fact apparent, we now derive a matrix expression for the above algorithm.
Consider the matrix of B-spline values B ∈ R

NQP×N , with Bqj := ̂Bj (xq), q =
1, . . . , NQP, j = 1, . . . , N , which can be written as

B = Bd ⊗ . . .⊗ B1, (4.145)

where

(Bl )qljl
= ̂Bl,jl (xl,ql ) ql = 1, . . . , nq, jl = 1, . . . , n. (4.146)

We also consider the matrix of weights W ∈ R
N×NQP , with Wiq := wi,q , i =

1, . . . , N , q = 1, . . . , NQP. Thanks to the tensor structure of the weights, it holds

W =Wd ⊗ . . .⊗W1 (4.147)

where

(Wl )ilql
= wl,il ,ql , il = 1, . . . , n, ql = 1, . . . , nq .
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Finally we introduce the diagonal matrix of coefficient values

D := diag
(
{

c(xq)
}

q=1,...,NQP

)

. (4.148)

Then for every i, j = 1, . . . , N we infer that

˜Mij =
NQP
∑

q=1

wi,qc(xq)̂Bj(xq) =
NQP
∑

q=1

WiqDqqBqj = (W DB)ij .

Thus it holds

˜M = W DB (4.149)

The factorization above of ˜M justifies Algorithm 4, which computes efficiently the
matrix-vector product.

We now analyze Algorithm 4 in terms of memory usage and of computational
cost, where we distinguish between setup cost and application cost. The initializa-
tion of Algorithm 4 requires the computation and storage of the coefficient values
c(xq), q = 1, . . . , NQP, and of the (sparse) matrices Wl ∈ R

n×nq and Bl ∈ R
nq×n,

for l = 1, . . . , d . The latter part, which involves only the computation and storage of
univariate function values and weights, has negligible requirements both in terms of
memory and arithmetic operations. The computational cost of the evaluation of the
coefficients c(xq) is problem dependent. For example, when c (ξ) = det (JFR(ξ ))

and FR is a spline/NURBS parametrization of degree lower than the one of the
isogeometric space, as it happens in the numerical benchmarks of the isogeometric
k-method, one can assume this cost is O(N) FLOPs, i.e., independent of p. In
general, the storage of such coefficients clearly requires NQP ≈ 2dN = O(N)

memory.3 We emphasize that this memory requirement is completely independent
of p; this is a great improvement if we consider that storing the whole mass matrix

Initialization: Compute and store the matrices D , Bl and Wl , for l = 1, . . . , d.
Input : Vector v ∈ R

N .
1 Compute ṽ = (Bd ⊗ . . .⊗ B1) v ;
2 Compute˜ṽ = D ṽ ;
3 Compute w = (Wd ⊗ . . .⊗W1)˜ṽ ;

Output : Vector w = ˜Mv ∈ R
N .

Algorithm 4: Matrix-free product (mass)

3It is possible to further reduce the memory requirements at the cost of increasing the number
of computations. Indeed, note that it is not necessary to store the whole D , ṽ and ˜ṽ since w in
Algorithm 4 can be computed component by component with on-the-fly calculation of the portion
of D , ṽ and˜ṽ that is needed).
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would require roughly (2p+1)dN = O(Npd) memory. As for the application cost,
Step 2 only requires N FLOPs. Using the properties of Kronecker product and the
fact that nnz

(

B(l)
) ≈ 2pn, l = 1, . . . , d , we find that the number of FLOPs required

by Step 1 is

4pn
(

nd−1 + 2nd−1 + . . .+ 2d−1nd−1
)

≤ 2d+2Np = O(Np).

Approximately the same number of operations is required for Step 3. Hence we
conclude that the total application cost of Algorithm is O(Np) FLOPs. This should
be compared with the O(Npd) cost of the standard matrix-vector product.

Similar conclusions hold for the stiffness matrix, though it requires a different
treatment of the different derivatives, in the spirit of the weighted quadrature.

Now we report some numerical tests of this approach, from [97], considering a
Poisson problem on a mesh of 2563 elements, on a thick quarter of annulus as in
Fig. 4.30 (left). For the sake of simplicity, a uniform mesh is considered but all the
algorithms do not take any advantage of it and work on non-uniform meshes.

The problem solution is an oscillating manufactured solution, namely

u(x, y, z) = sin (5πx) sin (5πy) sin (5πz)

(

x2 + y2 − 1
) (

x2 + y2 − 4
)

.

(4.150)

In the tests we see that the k-refinement, whose use has always been discouraged by
its prohibitive computational cost, becomes very appealing in the present setting.

For different values of h and p we report the total computation time (setup and
solution of the system) and the error ‖u− ũh‖H 1 , where ũh ∈ Vh is the function
associated with the approximate solution of the linear system (using BiCGStab and
the preconditioner of Sect. 4.6.3). Results are shown in Table 4.4 and in Fig. 4.31.

There is a minimal mesh resolution which is required to allow k-refinement
convergence. This depends on the solution, which is in the example (4.150) a simple

Fig. 4.30 Thick ring and revolved ring domains



302 T. J. R. Hughes et al.

T
ab

le
4.
4

H
1

er
ro

r
an

d
to

ta
lc

om
pu

ta
ti

on
ti

m
e

fo
r

th
e

m
at

ri
x-

fr
ee

W
Q

st
ra

te
gy

h H
1

re
la

tiv
e

er
ro

r/
to

ta
lc

om
pu

ta
ti

on
ti

m
e

(s
)

p
2−

4
2−

5
2−

6
2−

7
2−

8

1
5.

8
×

10
−1

/2
.4
×

10
−1

2.
8
×

10
−1

/9
.9
×

10
−1

1.
4
×

10
−1

/7
.4
×

10
0

6.
8
×

10
−2

/6
.2
×

10
1

3.
4
×

10
−2

/5
.1
×

10
2

2
5.

3
×

10
−1

/2
.5
×

10
−1

7.
1
×

10
−2

/1
.1
×

10
0

1.
2
×

10
−2

/8
.8
×

10
0

2.
6
×

10
−3

/7
.6
×

10
1

6.
2
×

10
−4

/6
.9
×

10
2

3
4.

5
×

10
−1

/2
.7
×

10
−1

3.
3
×

10
−2

/1
.3
×

10
0

2.
5
×

10
−3

/1
.1
×

10
1

2.
7
×

10
−4

/9
.3
×

10
1

3.
2
×

10
−5

/8
.2
×

10
2

4
5.

1
×

10
−1

/3
.0
×

10
−1

1.
4
×

10
−2

/1
.6
×

10
0

3.
8
×

10
−4

/1
.2
×

10
1

1.
8
×

10
−5

/1
.1
×

10
2

1.
0
×

10
−6

/9
.9
×

10
2

5
4.

4
×

10
−1

/3
.4
×

10
−1

6.
8
×

10
−3

/1
.8
×

10
0

7.
1
×

10
−5

/1
.5
×

10
1

1.
5
×

10
−6

/1
.3
×

10
2

4.
3
×

10
−8

/1
.2
×

10
3

6
4.

9
×

10
−1

/3
.8
×

10
−1

3.
3
×

10
−2

/2
.1
×

10
0

1.
3
×

10
−5

/1
.7
×

10
1

1.
2
×

10
−7

/1
.6
×

10
2

1.
6
×

10
−9

/1
.4
×

10
3

7
4.

1
×

10
−1

/4
.2
×

10
−1

1.
7
×

10
−3

/2
.4
×

10
0

2.
5
×

10
−6

/2
.0
×

10
1

1.
1
×

10
−8

/1
.9
×

10
2

6.
7
×

10
−1

1
/1

.6
×

10
3

8
4.

7
×

10
−1

/4
.7
×

10
−1

9.
2
×

10
−4

/2
.7
×

10
0

5.
1
×

10
−7

/2
.3
×

10
1

9.
3
×

10
−1

0
/2

.0
×

10
2

2.
8
×

10
−1

2
/1

.8
×

10
3



4 Isogeometric Analysis 303

Fig. 4.31 Representation in the time-error plane of the results shown in Table 4.4

oscillating function with wavelength 1/5 on a domain with diameter 3. Indeed, there
is no approximation (i.e., the relative approximating error remains close to 1) for
meshes of 163 elements or coarser, for any p. Convergence begin at a resolution of
323 elements.

The computation time of the proposed matrix-free method grows almost linearly

with respect to N =
(

1
h

)3
(note that the growth is slower between the two coarser

discretization level, where apparently we are still in the pre-asymptotic regime).
Time dependence on p is also very mild: the computation time for p = 8 is 1/3
the one for p = 2, keeping the same mesh resolution. The time growth with respect
to N and p is due not only to the increased cost for system setup, matrix-vector
product and application of the preconditioner, but also to the increased number
of iterations. In turn, the number of iterations grows not because of a worsening
of the preconditioner’s quality (according to the results in [96, 117]) but because
of a smaller discretization error, which corresponds to a more stringent stopping
criterion.

The higher the degree, the higher the computational efficiency of the k-method.
This is clearly seen in Fig. 4.31 where the red dots (associated to p = 8, the highest
degree in our experiments), are at the bottom of the error vs. computation time plot.

The k-refinement is superior to low-degree h-refinement given a target accuracy:
for example, for a relative accuracy of order 10−3, we can select degree p =
8 on a mesh of 323 elements or p = 2 on a mesh of 2563 elements: the
former approximation is obtained in 2.7 s while the latter takes about 690 s on our
workstation, with speedup factor higher than 250.
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4.7 Application Examples

In this section we present some numerical benchmarks of model problems. The first
example, from [15], is the one of linear elasticity. The second one, from [57], is a
fluid benchmark and utilizes the divergence-free isogeometric vector fields defined
in Sect. 4.3.2.

4.7.1 Linear Elasticity

We start by considering the classical elliptic linear elastic problem. First we
introduce some notation. The body occupies a two-dimensional domain Ω ⊂ R

2.
We assume that the boundary ∂Ω is decomposed into a Dirichlet part ΓD and
a Neumann part ΓN . Moreover, let f : Ω → R

d be the given body force and
g : Ω : ΓN → R

d the given traction on ΓN .
Then, the mixed boundary-value problem reads

⎧

⎨

⎩

divCε(u)+ f = 0 in Ω

u = 0 on ΓD

Cε(u) · n = g on ΓN,

(4.151)

where u is the body displacement and ε(u) its symmetric gradient, n is the unit
outward normal at each point of the boundary and the fourth-order tensor C satisfies

Cw = 2μ

[

w+ ν

1− 2ν
tr(w)I

]

(4.152)

for all second-order tensorsw, where tr represents the trace operator and μ > 0, 0 ≤
ν < 1/2 are, respectively, the shear modulus and Poisson’s ratio. The stress, σ , is
given by Hooke’s law, σ = Cε.

Assuming for simplicity a regular loading f ∈ [L2(Ω)]2 and g ∈ [L2(ΓN)]2, we
introduce also

< ψ, v >= (f, v)Ω + (g, v)ΓN ∀v ∈ [H 1(Ω)]d, (4.153)

where ( , )Ω , ( , )ΓN indicate, as usual, the L2 scalar products on Ω and
ΓN , respectively. The variational form of problem (4.151) then reads: find u ∈
[H 1

ΓD
(Ω)]d such that

(Cε(u), ε(v))Ω =< ψ, v > ∀v ∈ [H 1
ΓD

(Ω)]d (4.154)

To solve (4.151), we introduce an isogeometric vector space Vh as defined in
Sect. 4.3.1 and look for the Galerkin isogeometric approximation uh ∈ V h such
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that

(Cε(u), ε(v))Ω =< ψ, v > ∀v ∈ V h, (4.155)

where

V h = [Vh]d ∩ [H 1
ΓD

(Ω)]d. (4.156)

This is an elliptic problem, then a Galerkin method returns the best approxima-
tion in the energy norm. The order of convergence of the numerical error u − uh

follows from the approximation properties of isogeometric spaces, see Sect. 4.4.
We will see this for the model of an infinite plate with a hole, modeled by a

finite quarter plate. The exact solution [64, pp. 120–123], evaluated at the boundary
of the finite quarter plate, is applied as a Neumann boundary condition. The setup
is illustrated in Fig. 4.32. Tx is the magnitude of the applied stress at infinity, R

is the radius of the traction-free hole, L is the length of the finite quarter plate, E

is Young’s modulus, and ν is Poisson’s ratio. The rational quadratic basis is the
minimum order capable of exactly representing a circle.

The first six meshes used in the analysis are shown in Fig. 4.33. The cubic
and quartic NURBS are obtained by order elevation of the quadratic NURBS on
the coarsest mesh (for details of the geometry and mesh construction, see [70]).
Continuity of the basis is Cp−1 everywhere, except along the line which joins the
center of the circular edge with the upper left-hand corner of the domain. There it is
C1 as is dictated by the coarsest mesh employing rational quadratic parametrization.
In this example, the geometry parametrization is singular at the upper left-hand
corner of the domain. Convergence results in the L2-norm of stresses (which is
equivalent to the H 1-seminorm of the displacements) are shown in Fig. 4.34. As
can be seen, the L2-convergence rates of stress for quadratic, cubic, and quartic

Fig. 4.32 Elastic plate with a
circular hole: problem
definition
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Fig. 4.33 Elastic plate with circular hole. Meshes produced by h-refinement (knot insertion)

Fig. 4.34 Elasticity: error measured in the L2-norm of stress vs. mesh parameter (optimal
convergence rates in red)
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NURBS are 2, 3, and 4, respectively, hence optimal in all cases, consistent with the
approximation estimates described in Sect. 4.4.

4.7.2 Steady Navier-Stokes Problem

We consider now the steady Navier-Stokes Problem. The fluid occupies the domain
Ω ⊂ R

3. We assume that the boundary ∂Ω = ΓD for simplicity and take f : Ω →
R

3 as the external driving force. Then, the problem reads

⎧

⎨

⎩

div (u⊗ u)− div (2νε(u))+∇p = f in Ω

divu = 0 in Ω

u · n on ∂Ω,

(4.157)

where u is the fluid velocity, p is the pressure, ν is the kinematic viscosity and ε(u)

is the symmetric gradient operator.
The variational form of (4.157) reads as follows: find u ∈ [H 1

0 (Ω)]d and p ∈
L2

0(Ω) such that

(2νε(u), ε(v))Ω − (u⊗ u,∇v)Ω − (p, divu)Ω + (q, div v)Ω

= (f, v)Ω, ∀u ∈ [H 1
0 (Ω)]d, q ∈ L2

0(Ω),
(4.158)

where L2
0(Ω) is the subspace of L2(Ω) functions having zero average on Ω . At

the discrete level, we are going to adopt a divergence-free (X2
h,X3

h) isogeometric
discretization for the velocity-pressure pair, as defined in Sect. 4.3.2. In this case,
only the Dirichlet boundary condition on the normal velocity component (i.e., no-
penetration condition) can be imposed strongly (see [38]) while the other boundary
conditions, including the Dirichlet boundary condition on the tangential velocity
component, have to be imposed weakly, for example by Nitsche’s method, as studied
in [57]. For that, we introduce the space H 1

n(Ω) = {w ∈ [H 1(Ω)]d such that w·n =
0 on ∂Ω}, and the discrete variational formulation is: find uh ∈ X2

h ∩H 1
n(Ω) and

ph ∈ X3
h ∩ L2

0(Ω) such that

(2νε(uh), ε(vh))Ω − (uh ⊗ uh,∇vh)Ω − (ph, divuh)Ω + (qh, div vh)Ω

−
∑

F⊂∂Ω

∫

F

(

(ε(uh) n) · vh + (ε(vh) n) · uh − Cpen

hF

uh · vh

)

ds

= (f, vh)Ω, ∀vh ∈ X2
h ∩H 1

n(Ω), qh ∈ X3
h ∩ L2

0(Ω),

(4.159)
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where F ⊂ ∂Ω denote the faces (in three dimensions) of the Bézier elements that
are on the boundary of Ω and Cpen > 0 is a suitable penalty constant.

We consider a simple configuration (see [57, Section 8.2]), with Ω = [0, 1]3 and
select in (4.32) the polynomial degrees p1 = p2 = p3 = 2 and p1 = p2 = p3 = 3.
Selecting knots with single multiplicity, the former choice X2

h is formed by linear-
quadratic splines and X3

h is formed by trilinear splines, which is the minimum degree
required to have X2

h ∈ [H 1(Ω)]d . The right-hand side is set up in order to give the
exact solution:

uh = curl

⎡

⎢

⎢

⎣

x(x − 1)y2(y − 1)2z2(z− 1)2

0

x2(x − 1)2y2(y − 1)2z(z− 1)

⎤

⎥

⎥

⎦

; p = sin(πx) sin(πy)− 4

π2 .

Streamlines associated with the exact solution are plotted in Fig. 4.35. The conver-
gence rates are shown in Figs. 4.36 and 4.37 for Reynolds number Re = 1. Optimal
convergence is obtained for both velocity and pressure. We remark that the discrete
velocity is point-wise divergence-free, because of (4.38).

Fig. 4.35 Vortex manufactured solution: Flow velocity streamlines colored by velocity magnitude
(from [57])
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Fig. 4.36 Navier-Stokes: error measured in the H 1-norm of velocity vs. mesh-size h. The optimal
convergence rates in red (from [57])

Fig. 4.37 Navier-Stokes: error measured in the L2-norm of pressure vs. mesh-size h. Optimal
convergence rates in red (from [57])
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