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Adaptive Multiscale Methods Shethie
for the Numerical Treatment of Systems

of PDEs

Angela Kunoth

Abstract These notes are concerned with numerical analysis issues arising in the
solution of certain systems involving stationary and instationary linear variational
problems. Standard examples are second order elliptic boundary value problems,
where particular emphasis is placed on the treatment of essential boundary con-
ditions, and linear parabolic equations. These operator equations serve as a core
ingredient for control problems where in addition to the state, the solution of the
PDE, a control is to be determined which together with the state minimizes a certain
tracking-type objective functional. Having assured that the variational problems are
well-posed, we discuss numerical schemes based on B-splines and B-spline-type
wavelets as a particular multiresolution discretization methodology. The guiding
principle is to devise fast and efficient solution schemes which are optimal in the
number of arithmetic unknowns. We discuss optimal conditioning of the system
matrices, numerical stability of discrete formulations, and adaptive approximations.

2.1 Introduction

Multilevel ingredients have for a variety of partial differential equations (PDEs)
proved to achieve more efficient solution schemes than methods based on approx-
imating the solution with respect to a fixed fine grid. The latter simple approach
leads to the problem to solve a large ill-conditioned system of linear equations.
The success of multilevel methods is due to the fact that solutions often exhibit
a multiscale behaviour which one naturally wants to exploit. Among the first
such schemes were multigrid methods. The basic idea of multigrid schemes is to
successively solve smaller versions of the linear system which can be interpreted
as discretizations with respect to coarser grids. Here ‘efficiency of the scheme’
means that one can solve the problem with respect to the finest grid with an amount
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of arithmetic operations which is proportional to the number of unknowns on this
finest grid. Multigrid schemes provide an asymptotically optimal preconditioner for
the original system on the finest grid. The search for such optimal preconditioners
was one of the major topics in the solution of elliptic boundary value problems for
many years. Another multiscale preconditioner which has this property is the BPX-
preconditioner proposed first in [8]. It was proved to be asymptotically optimal with
techniques from Approximation Theory in [27, 61]. In the context of isogeometric
analysis, the BPX-preconditioner was further substantially optimized in [10]; this
will be detailed in Sect. 2.2.

Wavelets as a particular example of a multiscale basis were constructed with
compact support in the 1980s [36]. While mainly used for signal analysis and image
compression, they were discovered to also provide optimal preconditioners in the
above sense for elliptic boundary value problems [27, 47]. It was soon realized that
biorthogonal spline-wavelets are better suited for the numerical solution of elliptic
PDEs since they allow to work with piecewise polynomials instead of the only
implicitly defined original wavelets [36], in addition to the fact that orthogonality
of the Daubechies wavelets with respect to L, cannot really be exploited for elliptic
PDEs. The principal ingredient that allows to prove optimality of the preconditioner
are norm equivalences between Sobolev norms and sequence norms of weighted
wavelet expansion coefficients. Optimal conditioning of the resulting linear system
of equations can be achieved by applying the Fast Wavelet Transform together with
a weighting in terms of an appropriate diagonal matrix. The terminology ‘wavelets’
here and in the sequel is to mean that these are classes of multiscale bases with
three main properties: (R) Riesz basis property for the underlying function spaces,
(L) locality of the basis functions, (CP) cancellation properties, all of which are
detailed in Sect.2.4.1.

After these initial results, research on using wavelets for numerically solving
elliptic PDEs has gone into different directions. The original constructions in
[18, 36] and many others are based on using the Fourier transform. Thus, these
constructions provide bases for function spaces only on all of R or R”. In order
for these tools to be applicable for the solution of PDEs which naturally live on a
bounded domain £2 C R", there arose the need for having available constructions on
bounded intervals without, of course, loosing the above mentioned properties (R),
(L) and (CP). The first such systematic construction of biorthogonal spline-wavelets
on [0, 1] (and, by tensor products, on [0, 1]") was provided in [34].

Aside from the investigations to provide appropriate bases, the built-in potential
of adaptivity for wavelets has played a prominent role when solving PDEs, on
account of the fact that wavelets provide a locally supported Riesz basis for a
whole range of function spaces. The key issue is to approximate the solution
of the variational problem on an infinite-dimensional function space by the least
amount of degrees of freedom up to a certain prescribed accuracy. Many approaches
use wavelet coefficients in a heuristic way, i.e., judging approximation quality
by the size of the wavelet coefficients together with thresholding. In contrast,
convergence of wavelet-based adaptive methods for stationary variational problems
was investigated systematically in [19-21]. These schemes are particularly designed
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to provide optimal complexity of the schemes: they provide the solution in a total
amount of arithmetic operations which is comparable to the wavelet-best N-term
approximation of the solution. This means that, given a prescribed tolerance, to
find a sparse representation of the solution by extracting the N largest expansion
coefficients of the solution during the solution process.

As soon as one aims at numerically solving a variational problem which can no
longer be formulated in terms of a single elliptic operator equation such as a saddle
point problem, one is faced with the problem of numerical stability. This means
that finite approximations of the continuous well-posed problem may be ill-posed,
obstructing its efficient numerical solution. This issue will also be addressed below.

In these notes, I also would like to discuss the potential proposed by wavelet
methods for the following classes of problems. First, we will be concerned with
second order elliptic PDEs with a particular emphasis placed on treating essential
boundary conditions. Another interesting class that will be covered are linear
parabolic PDEs which are formulated in full weak space-time from [66]. Then
PDE-constrained control problems guided by elliptic boundary value problems are
considered, leading to a system of elliptic PDEs. The starting point for designing
efficient solution schemes are wavelet representations of continuous well-posed
problems in their variational form. Viewing the numerical solution of such a
discretized, yet still infinite-dimensional operator equation as an approximation
helps to discover multilevel preconditioners for elliptic PDEs which yield uniformly
bounded condition numbers. Stability issues like the LBB condition for saddle point
problems are also discussed in this context. In addition, the compact support of the
wavelets allows for sparse representations of the implicit information contained in
systems of PDEs, the adaptive approximation of their solution.

More information and extensive literature on applying wavelets for more general
PDEs addressing, among other things, the connection between adaptivity and
nonlinear approximation and the evaluation of nonlinearities may be found in
[16, 24, 25].

These notes are structured as follows. In Sect.2.2, we begin with a simple
elliptic PDE in variational form in the context of isogeometric analysis. For this
problem, we address additive, BPX-type preconditioners and provide the main
ingredients for showing optimality of the scheme with respect to the grid spacing.
In Sect. 2.3, several well-posed variational problem classes are compiled to which
later several aspects of the wavelet methodology are applied. The simplest example
is a linear elliptic boundary value problem for which we derive two forms of an
operator equation, the simplest one consisting just of one equation for homogeneous
boundary conditions and a more complicated one in form of a saddle point problem
where nonhomogeneous boundary conditions are treated by means of Lagrange
multipliers. In Sect.2.3.4, we consider a full weak space-time form of a linear
parabolic PDE. These three formulations are then employed for the following
classes of PDE-constrained control problems. In the distributed control problems
in Sect. 2.3.5 the control is exerted through the right hand side of the PDE, while in
Dirichlet boundary control problems in Sect. 2.3.6 the Dirichlet boundary condition
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serves this purpose. The most potential for adaptive methods to be discussed below
are control problems constrained by parabolic PDEs as formulated in Sect. 2.3.7.

Section 2.4 is devoted to assembling necessary ingredients and basic properties
of wavelets which are required in the sequel. In particular, Sect.2.4.4 collects the
essential construction principles for wavelets on bounded domains which do not
rely on Fourier techniques, namely, multiresolution analyses of function spaces and
the concept of stable completions. In Sect. 2.5 we formulate the problem classes
introduced in Sect. 2.3 in wavelet coordinates and derive in particular for the control
problems the resulting systems of linear equations arising from the optimality
conditions. Section 2.6 is devoted to the iterative solution of these systems. We
investigate fully iterative schemes on uniform grids and show that the resulting
systems can be solved in the wavelet framework together with a nested iteration
strategy with an amount of arithmetic operations which is proportional to the
total number of unknowns on the finest grid. Finally, in Sect.2.6.2 a wavelet-
based adaptive scheme for the distributed control problem constrained by elliptic or
parabolic PDEs as in [29, 44] will be derived together with convergence results and
complexity estimates, relying on techniques from Nonlinear Approximation Theory.

Throughout these notes we will employ the following notational convention: the
relation a ~ b will always stand fora < b and b < a where the latter inequality
means that b can be bounded by some constant times a uniformly in all parameters
on which a and b may depend. Norms and inner products are always indexed by
the corresponding function space. L,(§2) are for 1 < p < oo the usual Lebesgue
spaces on a domain 2, and WI’; (£2) C L,(82) denote for k € N the Sobolev spaces
of functions whose weak derivatives up to order k are boundedin L ,(§2). For p =2,
we write as usual H¥(2) = W5 ().

2.2 BPX Preconditioning for Isogeometric Analysis

For a start, we consider linear elliptic PDEs in the framework of isogeometric
analysis, combining modern techniques from computer aided design with higher
order approximations of the solution. In this context, one exploits that the solution
exhibits a certain smoothness. We treat the physical domain by means of a regular
B-spline mapping from the parametric domain 2 =(0,1)",n > 2, tothe physical
domain £2. The numerical solution of the PDE is computed by means of tensor
product B-splines mapped onto the physical domain. We will construct additive
BPX-type multilevel preconditioners and show that they are asymptotically optimal.
This means that the spectral condition number of the resulting preconditioned
stiffness matrix is independent of the grid spacing /. Together with a nested iteration
scheme, this enables an iterative solution scheme of optimal linear complexity. The
theoretical results are substantiated by numerical examples in two and three space
dimensions. The results of this section are essentially contained in [10].
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We consider linear elliptic partial differential operators of order 2r = 2, 4 on the
domain £2 in variational form: for given f € H™"(£2), find u € Hg($2) such that

a(u,v) = (f,v) forallve Hj(£2) (2.1)

holds. Here the energy space is H;(§2), a subset of the Sobolev space H'(£2),
the space of square integrable functions with square integrable derivatives up to
order r, containing homogeneous Dirichlet boundary conditions for r = 1 and
homogeneous Dirichlet and Neumann derivatives for r = 2. The bilinear form
a(-, -) is derived from the linear elliptic PDE operator in a standard fashion, see,
e.g., [7]. For example, the Laplacian is represented as a(v, w) = fg Vv - Vwdx.
In order for the problem to be well-posed, we require the bilinear form a(-, ) :
Hy(£2) x Hj(§2) — R to be symmetric, continuous and coercive on H (§2). With
(-, -), we denote on the right hand side of (2.1) the dual form between H " (£2)
and H{(£2). Our model problem (2.1) covers the second order Laplacian with
homogeneous boundary conditions

—Au=f onf2, ulse=0, 2.2)

as well as fourth order problems with corresponding homogeneous Dirichlet
boundary conditions,

A’u=7f onf, ulpgo =n- Vulyo =0 (2.3)

where 052 denotes the boundary of £2 and n the outward normal derivative at 052.
These PDEs serve as prototypes for more involved PDEs like Maxwell’s equation
or PDEs for linear and nonlinear elasticity. The reason we formulate these model
problems of order 2r involving the parameter r is that this exhibits more clearly the
order of the operator and the scaling in the subsequently used characterization of
Sobolev spaces H” (§2). Thus, for the remainder of this section, the parameter 2r
denoting the order of the PDE operator is fixed.

The assumptions on the bilinear form a (-, -) entail that there exist constants 0 <
ca < Cq < oo such that the induced self-adjoint operator (Av, w) := a(v, w)
satisfies the isomorphism relation

calvllar @) < NAvllg—r(2) < Callvllar (@), v e Hy(82). (2.4)

If the precise format of the constants in (2.4) does not matter, we abbreviate this
relation as [v|lgr(2) < IlAvlg-r(2) < lvilar (), or shortly as

AVl -2y ~ IVllar (2)- (2.5)
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Under these conditions, Lax-Milgram’s theorem guarantees that, for any given f €
H™"(£2), the operator equation derived from (2.1)

Au=f inH(2) (2.6)

has a unique solution u € H{j(£2), see, e.g., [7].

In order to approximate the solution of (2.1) or (2.6), we choose a finite-
dimensional subspace of Hj (£2). We will construct these approximation spaces by
using tensor products of B-splines as specified next.

2.2.1 B-Spline Discretizations

Our construction of optimal multilevel preconditioners will rely on tensor products
so that principally any space dimension n € N is permissible as long as storage
permits; the examples cover the cases n = 2, 3. As discretization space, we choose
in each spatial direction B-splines of the same degree p on uniform grids and with
maximal smoothness. We begin with the univariate case and define B-splines on the
interval [0, 1] recursively with respect to their degree p. Given this positive integer
p and some m € N, we call & := {&1,...,&,1p+1} a p-open knot vector if the
knots are chosen such that

0=&6=...=6r1 <&pr2<...<én<&pr1=...=&mtp+r1 =1, 2.7

i.e., the boundary knots 0 and 1 have multiplicity p 4+ 1 and the interior knots are
single. For &, B-spline functions of degree p are defined following the well-known
Cox-de Boor recursive formula, see [38]. Starting point are the piecewise constants
for p = 0 (or characteristic functions)

Noo(6) = :1, f0<& <¢ <& <1, 08

0, otherwise,

with the modification that the last B-spline N, ¢ is defined also for { = 1. For p > 1
the B-splines are defined as

¢ =& Sitpt1 — ¢

Nip@ =" 7 Nip1(@)+ Nis1.p-1(0). ¢ €[0,1],
éft+p =&

2.9)

Sitp+1 —&it1

with the same modification for Ny, ,. Alternatively, one can define the B-splines
explicitly by applying divided differences to truncated powers [38]. This gives a
set of m B-splines that form a basis for the space of splines, that is, piecewise
polynomials of degree p with p — 1 continuous derivatives at the internal knots &,
for¢ = p+2,...,m. (Of course, one can also define B-splines on a knot sequence
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with multiple internal knots which entails that the spline space is not of maximal
smoothness.) For p = 1, the B-splines are at least CY([0, 17) which suffices for the
discretization of elliptic PDEs of order 2, and for p = 2 they are cl ([0, 11) which
suffices for r = 2. By construction, the B-spline N; , is supported in the interval
(&, Sivpr1l.

These definitions are valid for an arbitrary spacing of knots in = (2.7). Recall
from standard error estimates in the context of finite elements, see, e.g., [7], that
smooth solutions of elliptic PDEs can be approximated best with discretizations on
a uniform grid. Therefore, in this section, we assume from now on that the grid is
uniform,i.e., &1 — & =hforalé=p+1,...,m.

For n space dimensions, we employ tensor products of the one-dimensional B-
splines. We take in each space dimension a p-open knot vector Z and define on
the closure of the parametric domain £2 = (0, 1)" (which we also denote by $2 for
simplicity of presentation) the spline space

N

n
Sh(Q) ‘= span :Bi(x) = l_[N,-[,p(xg), i=1,...,N:=mn, xe 2
=1

=: span{B,-(x),ieﬂ, xe!}}. (2.10)

In the spirit of isogeometric analysis, we suppose that the computational domain
£2 can also described in terms of B-splines. We assume that the computational
domain 2 is the image of a mapping F : 2 — QwithF := (F|,..., F,)T where
each component F; of F belongs to Sj, (£2) for some given h. In many applications,

the geometry can be described in terms of a very coarse mesh, namely, &7 > h.
Moreover, we suppose that F is invertible and satisfies

ID*F,_ )~ 1 for |a| <r. 2.11)

This assumption on the geometry can be weakened in the sense that the mapping
F can be a piecewise C™ function on the mesh with respect to /, independent of
h, or the domain §2 may have a multi-patch representation. This means that one
can allow £2 also to be the union of domains §2; where each one parametrized by a
spline mapping of the parametric domain 2.

We now define the approximation space for (2.6) as

V] :={vy € H{(2): vy oF € Sp(£2)}. (2.12)

We will formulate three important properties of this approximation space which
will play a crucial role later for the construction of the BPX-type preconditioners.
The first one is that we suppose from now on that the B-spline basis is normalized
with respect to Lo, i.e.,

||B,-||L2(_(A2) ~ 1, and, thus, also || B; o F71||L2(_Q) ~ 1foralli € .7. (2.13)

Then one can derive the following facts [10].
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Theorem 1 Let {B;};c_s be the B-spline basis defined in (2.10) and normalized as
in(2.13), N=#2 and V; asin (2.12). Then we have

(S) Uniform stability with respect to L, (£2)
For any ¢ € £5(.%),

N

ZC,’ B; oF~!

i=1

N
2 2
~ Y lalP=tllelf,  e:=(eiz1..N;
Ly =1

(J) Direct or Jackson estimates

inf |lv—unlr,2) < h lase) foranyve H(§2), 0 <s <r+1,
thV]:

(2.15)

where | - | gs() denotes the Sobolev seminorm of highest weak derivatives s;
(B) Inverse or Bernstein estimates

lonllas2y < A5 vnllL,e) forany vy € Vi, and0 <s <r. (2.16)

In all these estimates, the constants are independent of h but may depend on F, i.e.,
§2, on the polynomial degree p and on the spatial dimension n.

In the next section, we construct BPX-type preconditioners for (2.6) in terms of
approximations with (2.12) and show their optimality.

2.2.2 Additive Multilevel Preconditioners

The construction of optimal preconditioners are based on a multiresolution analysis
of the underlying energy function space Hj(£2). As before, 2r € {2, 4} stands for
the order of the PDEs we are solving and is always kept fixed.

We first describe the necessary ingredients within an abstract basis-free frame-
work, see, e.g., [24]. Afterwards, we specify the realization for the parametrized
tensor product spaces in (2.12).

Let ¥ be a sequence of strictly nested spaces V;, starting with some fixed
coarsest index jo > 0, determined by the polynomial degree p which determines
the support of the basis functions (which also depends on £2), and terminating with
a highest resolution level J,

Viy CVjpt1 C---C Vj C--- C Vy C H}(£2). (2.17)
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The index j denotes the level of resolution defining approximations on a grid with
dyadic grid spacing 7 = 27/, i.e., we use from now on the notation V; instead of Vj,
to indicate different grid spacings. Then, V; will be the space relative to the finest
grid 277, We associate with 7" a sequence of linear projectors & := {Pj}j>j, with
the following properties.

Properties I We assume that

(P1) P; maps Hj(£2) onto V;,

(P2) PjPy= Pjforj<{,

(P3) & is uniformly bounded on L»(£2),i.e., | Pjliz,2) < 1forany j > jo with
a constant independent of j.

These conditions are satisfied, for example, for L,(£2)-orthogonal projectors, or,
in the case of splines, for the quasi-interpolant proposed and analyzed in [65,
Chapter 4]. The second condition (P2) ensures that the differences P; — P;_; are
also projectors for any j > jo. We define next a sequence #' := {W;};>, of
complement spaces

Wj = (Pj+1 — Pj)Vj+1 (2.18)
which then yields the direct (but not necessarily orthogonal) decomposition
Vii=V; & W;. (2.19)

Thus, for the finest level J, we can express Vj in its multilevel decomposition

J-1
vV, = @ W, (2.20)
Jj=Jjo—1
upon setting Wj,_1 := Vj,. Setting also Pj,_; := 0, the corresponding multilevel
representation of any v € V; is then
J
v= > (Pj = Pji_1v. (2.21)

J=Jo

We now have the following result which will be used later for the proof of the
optimality of the multilevel preconditioners.

Theorem 2 Let &2,V be as above where, in addition, we require that for each V;,
Jo=j=Ja Jackson and Bernstein estimate as in Theorem 1 (J) and (B) hold
with h = 277, Then one has the function space characterization

; 1/2

a2y~ | Y 227 1(P; = Pi-)vllf, g foranyv e Vy;.  (222)
J=Jo



86 A. Kunoth

Such a result holds for much larger classes of function spaces, Sobolev or even
Besov spaces which are subsets of L, (§2) for general g, possibly different from 2
and for any function v € H"(£2), then with an infinite sum on the right hand side,
see, e.2., [24]. The proof of Theorem 2 for such cases heavily relies on tools from
approximation theory and can be found in [27, 61].

Next we demonstrate how to exploit the norm equivalence (2.22) in the construc-
tion of an optimal multilevel preconditioner. Define for any v, w € V; the linear
self-adjoint positive-definite operator C; : V; — V; given by

J
(€7 v wiLy2) = Y 277 ((Pj = Pi_)v, (P — PiDw), - (2.23)
J=Jo
which we call a multilevel BPX-type preconditioner. Let Ay : V; — V; be the

finite-dimensional operator defined by (A jv, w) 1, (@) := a(v, w) forallv, w € Vy,
the approximation of A in (2.6) with respect to V.

Theorem 3 With the same prerequisites as in Theorem 2, Cj is an asymptotically
optimal symmetric preconditioner for Ay, i.e., k2(C }/ ZA JC }/ 2) ~ 1 with constants

independent of J.

Proof For the parametric domain £2, the result was proved independently in [27, 61]
and is based on the combination of (2.22) together with the well-posedness of the
continuous problem (2.6). The result on the physical domain follows then together
with (2.11). O

Realizations of the preconditioner defined in (2.23) based on B-splines lead to
representations of the complement spaces W; whose bases are called wavelets.
For these, efficient implementations of optimal linear complexity involving the Fast
Wavelet Transform can be derived explicitly, see Sect. 2.4.

However, since the order of the PDE operator r is positive, one can use here the
argumentation from [8] which will allow to work with the same basis functions as
for the spaces V. The first part of the argument relies on the assumption that the
P; are Ly- orthogonal projectors. For a clear distinction, we shall use the notation
O for L;-orthogonal projectors and reserve the notation P; for the linear projectors
with Properties 1. Then, the BPX-type preconditioner (2.23) (using the same symbol
C for simplicity) reads as

J
c;li=) 2570, - 0j0). (2.24)
j=Jjo
which is by Theorem 3 a BPX-type preconditioner for the self-adjoint positive

definite operator A ;. By the orthogonality of the projectors O, we can immediately
derive from (2.24) that

J
Cr=) 27570 -0;). (2.25)
j=Jjo
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Since r > 0, by rearranging the sum, the exponentially decaying scaling factors
allow one to replace C; by the spectrally equivalent operator

J
C; = Z 27270, (2.26)
Jj=Jjo

(for which we use the same notation Cy). Recall that two linear operators &7 : V; —
Vjand & : Vy — Vj are spectrally equivalent if they satisfy

(T, V)1,2) ~ (Bv,V),2), VeV, (2.27)

with constants independent of J. Thus, the realization of the preconditioner is
reduced to a computation in terms of the bases of the spaces V; instead of W;.
The orthogonal projector O; can, in turn, be replaced by a simpler local operator
which is spectrally equivalent to O}, see [50] and the derivation below.

Up to this point, the introduction to multilevel preconditioners has been basis-
free. We now show how this framework can be used to construct a BPX-precon-
ditioner for the linear system (2.6). Based on the definition (2.12), we construct a
sequence of spaces satisfying (2.17) such that V; = V;'. In fact, we suppose that for
each space dimension we have a sequence of p-open knot vectors Zj, ¢, ..., &y ¢,
£ = 1,...,n, which provide a uniform partition of the interval [0, 1] such that
Eje¢ C Ejpe for j = jo, jo+1,...,J. In particular, we assume that = ¢
is obtained from Z;, by dyadic refinement, i.e., the grid spacing for Z;, is
proportional to 27/ for each £ = 1,...,n. In view of the assumptions on the
parametric mapping F, we assume that 7 = 27/, i.e., F can be represented in
terms of B-splines on the coarsest level jy. By construction, we have now achieved
that

S;p(£2) C Sjy+1(82) C ... C S;(2).

Setting Vj’ ={ve Hj(2): voF e (.Q)}, we arrive at a sequence of nested
spaces

Vi CVig1 C...C V]
Setting .#; = {1,.. .,dimSj(Q)}, we denote by Bl.j, i € ., the set of L,-
normalized B-spline basis functions for the space S; (£2). Define now the positive
definite operator P; : L(£2) — Vj’ as

P = Z(.,B{ oF p,2) Bl oF7\. (2.28)
iEﬂj
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Corollary 1 For the basis {Bij oF ! i€ I}, the operators P; and the Lj-
projectors O are spectrally equivalent for any j.

Proof The assertion follows by combining (2.11), (2.14), with Remark 3.7.1 from
[50], see [8] for the main ingredients. O

Finally, we obtain an explicit representation of the preconditioner C; in terms of
the mapped spline bases for Vj’, j=7Jo....,J,

J
Cc; = Z 27 2ir Z(- B o ¥ 1)1 (2) B/ o F! (2.29)
Jj=Jo e

(denoted again by C,). Note that this preconditioner involves all B-splines from all
levels j with an appropriate scaling, i.e., a properly scaled generating system for
4%

Remark 1 The hierarchical basis (HB) preconditioner introduced for n = 2 in
[71] for piecewise linear B-splines fits into this framework by choosing Lagrangian
interpolants in place of the projectors P; in (2.23). However, since these operators
do not satisfy (P3) in Properties 1, they do not yield an asymptotically optimal
preconditioner for n > 2. For n = 3, this preconditioner does not have an effect
at all.

So far we have not explicitly addressed the dependence of the preconditioned
system on p. Since all estimates in Theorem 1 which enter the proof of optimality
depend on p, it is to be expected that the absolute values of the condition numbers,
i.e., the values of the constants, depend on and increase with p. Indeed, in the
next section, we show some numerical results which also aim at studying this
dependence.

2.2.3 Realization of the BPX Preconditioner

Now we are in the position to describe the concrete implementation of the BPX
preconditioner. Its main ingredient are linear intergrid operators which map vectors
and matrices between different grids. Specifically, we need to define prolongation
and restriction operators.

3 r r
Since Vj C Vj+1,

combination of B-splines B,{ 1 on level j + 1. Arranging the B-splines in the set

each B-spline Bl.j on level j can be represented by a linear

{Bl.] ,i € J;} into a vector B/ in a fixed order, this relation denoted as refinement

relation can be written as

B/ — 1;1“13/“ (2.30)
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with prolongation operator I;H from the trial space Vj’ to the trial space Vj’ Ry

The restriction Ij. 41 is then simply defined as the transposed operator, i.e., Ij. =

(Ifrl )T In case of piecewise linear B-splines, this definition coincides with the well
known prolongation and restriction operators from finite element textbooks obtained
by interpolation, see, e.g., [7].

We will exemplify the construction in case of quadratic and cubic B-splines on
the interval, see, e.g., [38], as follows. We equidistantly subdivide the interval [0, 1]
into 2/ subintervals and obtain 2/ and 27 + 1, respectively, B-splines for p = 2,3
and the corresponding quadratic and cubic spline space Vj’ which is given on this
partition, respectively, see Fig.2.1 for an illustration. Note that the two boundary
functions which do not vanish at the boundary were removed in order to guarantee
that Vj’ C Hj(£2). Moreover, recall that the B-splines are L normalized according

to (2.13) which means that Bl.j is of the form Bl.j (¢) =2/”BQRIc —i)if Bl.j is an
interior function, and correspondingly for the boundary functions.
In case of quadratic B-splines (p = 2), the restriction operator Ij. 4 reads

r1 9 3 ]
2 88
1331
4.4 4 4
) 13 3 1 -
_ Jx2J
I]~ =21/2 4 4 4 4 ERZX
Jj+1 . . :
1 3 31
4 4 44
391
L 8 8 2-
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0.9
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0.7
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05 06}

0.4
0.4
0.3 H
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0.2
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0

L " L { ) L L L
0 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1

Fig. 2.1 Quadratic (p = 2) (left) and cubic (p = 3) (right) L;-normalized B-splines (see (2.13))
on level j = 3 on the interval [0, 1], yielding basis functions for Vj’ C Hy($2)
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For cubic B-splines (p = 3), it has the form

-1 9 3 =
2 8 8
111 2 1
4123 6
11 3 1 1
8 2 4 2 8
Joo=2712 SRS @D x @1 41)
IjJrl =2 L eR .
1 1 311
8 2 428
12111
6 3 12 4
391
= § 8 24
The normalization factor 2~!/2 stems from the L>-normalization (2.13). The matrix

entries are scaled in the usual fashion such that their rows sum to two. From
these restriction operators for one dimensions, one obtains the related restriction
operators on arbitrary unit cubes [0, 1]” via tensor products. Finally, we set
I]! = 15_115:% . Ifrl and I]J = Ij.HIj.ﬁ .- '15—1 to define prolongations and
restrictions between arbitrary levels j and J.

In order to derive the explicit form of the discretized BPX-preconditioner, for
given functions uy, v; € V; with expansion coefficients u y x and vy ¢, respectively,
we conclude from (2.29) that

(Crug, vy = Z ug vy 0(Cy(Bf oF 1), B o F V),

k,@Eﬂj
J
—-2j J -1 j -1
= Z u‘]ﬁkv‘],gzz ]rZ(Bk oF ,BiJOF )Ly (2)
ke .9 Jj=jo ied;

x (B} o F7' B} o F 1) 1,0).

Next, one can introduce the mass matrix M; = [(B,;’ oF 1, Bé’ o F’l)Lz(g)]k,g and
obtains by the use of restrictions and prolongations

J
—2jr T Iy
(Cruy,vi)L0) = Z 2 f’uJMJIjI’JMJVJ.
J=Jo
The mass matrices which appear in this expression can be further suppressed since

M; is spectrally equivalent to the identity matrix. Finally, the discretized BPX-
preconditioner to be implemented is of the simple form

J
C, = Z 27T, (2.31)
J=jo
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involving only restrictions and prolongations. A further simple improvement can
be obtained by replacing the scaling factor 272/" by diag(A j)’l, where diag(A ;)
denotes the diagonal matrix built from the diagonal entries of the stiffness matrix
A ;. This diagonal scaling has the same effect as the levelwise scaling by 272" but
improves the condition numbers considerably, particularly if parametric mappings
are involved. Thus, the discretized BPX-preconditioner takes on the form

J
C, =) I/diagA)~'Y (2.32)
J=Jo

which we will use in the subsequent computations presented in Tables 2.1 and 2.2.
If the condition number « (A j,) is already high in absolute numbers on the coarsest
level jo, it is worth to use its exact inverse on the coarse grid, i.e., to apply instead
of (2.32) the operator

J
J A—1yJ J q; —1yJ
C,r=LA, I+ E I; diag(A ) I,
j=io 1

see [11, 62]. Another substantial improvement of the BPX-preconditioner can
be achieved by replacing the diagonal scaling on each level by, e.g., a SSOR
preconditioning as follows. We decompose the system matrix as A; = L; +
D; + LJT with the diagonal matrix D, the lower triangular part L, and the upper

triangular part LJT. Then we replace the diagonal scaling on each level of the BPX-
preconditioner (2.32) by the SSOR preconditioner, i.e., instead of (2.32) we apply
the preconditioner

J
C;=) T/D;+L) "D;®; +L) 'L, (2.33)
Jj=Jo

Table 2.1 Condition numbers of the BPX-preconditioned Laplacian on 2 =1 forn =
1,2,3
Interval (n = 1) Square (n = 2) Cube (n = 3)
p=1p=2p=3p=4p=1p=2p=3p=4p=1p=2p=3p=4
743 381 7.03 593 593 731 228 133 349 395 356 5957
8.87 440 947 781 500 9.03 40.2 225 4.85 50.8 624 9478
102 4.67 11.0 936 570 9.72 51.8 293 575 56.6 795 11,887
113 4.87 12.1 107 627 10.1 587 340 640 59.7 895 13,185
122 500 127 11.5 6.74 104 63.1 371 691 61.3 961 13,211
13.0 5.10 130 119 7.14 105 66.0 391 7.34 622 990 13,234
13.7 517 132 121 7.48 106 68.0 403 7.70 62.6 1016 13,255
10 142 522 134 122 777 106 693 411 799 629 1040 -

Level

O 0 9 N bW
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Table 2.2 Condition numbers of the BPX-preconditioned Laplacian on the analytic arc seen on
the right hand side

Level p=1 p=2 p=3 p=4
3 5.04 12.4 31.8 184
(21.8) (8.64) (31.8) (184)
4 11.1 16.3 54.7 291
(90.2) (34.3) (32.9) (173)
5 25.3 19.0 70.1 376
(368) (139) (98.9) (171)
6 31.9 21.4 79.2 436
(1492) (560) (401) (322)
7 37.4 23.1 84.4 471
(6015) (2255) (1620) (1297)
8 42.1 24.3 87.3 490
(241,721)  (9062) (6506) (5217)
9 45.7 25.2 89.0 500
(969,301)  (36,353) (26,121) (20,945)
10 48.8 25.9 90.1 505

(388,690) (145,774)  (104,745)  (83,975)

The bracketed numbers are the related condition numbers without preconditioning

Table 2.3 Condition numbers of the BPX-preconditioned Laplacian for cubic B-splines on
different geometries in case of using a BPX-SSOR preconditioning on each level

Level Square Analyticarc  %-map of the L-shape  Singular ¢! -map of the L-shape

3 3.61 3.65 3.67 3.80
4 6.58 6.97 7.01 7.05
5 8.47 10.2 10.2 14.8
6 9.73 13.1 13.2 322
7 10.5 14.9 15.2 71.7
8 11.0 15.9 16.3 180

9 11.2 16.5 17.0 411

10 11.4 16.9 17.7 933

In doing so, the condition numbers can be improved impressively. In Table 2.3, we
list the £>-condition numbers for the BPX-preconditioned Laplacian in case of cubic
B-splines in two spatial dimensions. By comparing the numbers with those found in
Tables 2.1 and 2.2 one can infer that the related condition numbers are all reduced
by a factor about five. Note that the setup, storage and application of the operator
defined in (2.33) is still of optimal linear complexity.

Finally, we provide numerical results in order to demonstrate the preconditioning
and to specify the dependence on the spatial dimension n and the spline degree
p. We consider an approximation of the homogeneous Dirichlet problem for the
Poisson equation on the n-dimensional unit cube Q= O, D" forn = 1,2, 3.
The mesh on level j is obtained by subdividing the cube j-times dyadically into 2"
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subcubes of mesh size h; = 27, On this subdivision, we consider the B-splines
of degree p = 1,2,3,4 as defined in Sect.2.2.1. The £>-condition numbers of
the related stiffness matrices, preconditioned by the BPX-preconditioner (2.32), are
shown in Table 2.1. The condition numbers seem to be independent of the level j,
but they depend on the spline degree p and the space dimension n for n > 1. For
fourth order problems on the sphere, corresponding results for the bi-Laplacian with
and without BPX preconditioning were presented in [60].

We study next the dependence of the condition numbers on the parametric
mapping F. We consider the case n = 2 in case of a smooth mapping (see the plot
on the right hand side of Table 2.2 for an illustration of the mapping). As one can
see from Table 2.2, the condition numbers are at most about a factor of five higher
than the related values in Table 2.1. Nearly the same observation holds if we replace
the parametric mapping by a ¢°-parametrization which maps the unit square onto
an L-shaped domain, see [10].

If we consider a singular map F, that is, a mapping that does not satisfy (2.11),
the condition numbers grow considerably as expected, see [10]. But even in this
case, the BPX-preconditioner with SSOR acceleration (2.33) is able to drastically
reduce the condition numbers of the system matrix in all examples, see Table 2.3.

For further remarks concerning multiplicative multilevel preconditioners as the
so-called multigrid methods in the context of isogeometric analysis together with
references, one may consult [55].

2.3 Problem Classes

The variational problems to be investigated further will first be formulated in the
following abstract form.

2.3.1 An Abstract Operator Equation

Let 27 be a Hilbert space with norm | - || s and let .5 be the normed dual of .77
endowed with the norm

v, W
lw|l s :== sup ( ) (2.34)

veor Wz

where (-, -) denotes the dual pairing between ¢ and 5¢”'.
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Given F € 2, we seek a solution to the operator equation
ZLU=F (2.35)

where & : J — S is a linear operator which is assumed to be a bounded
bijection, that is,

1L Vilser ~ VI, Ved. (2.36)

We call the operator equation well-posed since (2.35) implies for any given data
F € 2 the existence and uniqueness of the solution U € .5 which depends
continuously on the data.

In the following subsections, we describe some problem classes which can be
placed into this framework. In particular, these examples will have the format that
2 is a product space

H=Hyox---x Hyo (2.37)

where each of the H; o € H; is a Hilbert space (or a closed subspace of a Hilbert
space H; determined, e.g., by homogeneous boundary conditions). The spaces H;
will be Sobolev spaces living on a domain £2 C R” or on (part of) its boundary.
According to the definition of J#, the elements V € ¢ will consist of M
components V = (v1, ..., vy)!, and we define ||V||éf = Zlﬂil lvi ”%'Ii' The dual
space " is then endowed with the norm

(V,w)
Wl e := sup (2.38)
vese IVIw

where (V, W) := Ziﬂil(vi, w;); in terms of the dual pairing (-, -); between H;
and H/.

We next formulate four classes which fit into this format. The first two concern
are elliptic boundary value problems with included essential boundary conditions,
and elliptic boundary value problems formulated as saddle point problem with
boundary conditions treated by means of Lagrange Multipliers. For an introduction
into elliptic boundary value problems and saddle point problems together with
the functional analytic background one can, e.g., resort to [7]. Based on these
formulations, we afterwards introduce certain control problems. A recurring theme
in the derivation of the system of operator equation is the minimization of a
quadratic functional subject to linear constraints.
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2.3.2 Elliptic Boundary Value Problems

Let £2 C R” be a bounded domain with piecewise smooth boundary 082 := I"'UI'y.
We consider the scalar second order boundary value problem
—V-(@Vy)+cy=f 1in£2,
y=g onl, (2.39)
(aVy) - n=0 onlYy,
where n = n(x) is the outward normal at x € I, a = a(x) € R™" is uniformly
positive definite and bounded on £2 and ¢ € L (§2). Moreover, f and g are some

given right hand side and boundary data. With the usual definition of the bilinear
form

a(v,w) := / (aVv - Vw + cvw) dx, (2.40)
2

the weak formulation of (2.39) requires in the case g = 0 to find y € .7 where

H = Hy (2):={ve H(2): v]r =0}, (2.41)
or
={ve H (Q): fg v(x)dx =0} when I" =, (2.42)
such that
a(y,v) = (v, f), ve. (2.43)

The Neumann-type boundary conditions on Iy are implicitly satisfied in the weak
formulation (2.43), therefore called natural boundary conditions. In contrast, the
Dirichlet boundary conditions on I" have to be posed explicitly, for this reason called
essential boundary conditions. The easiest way to achieve this for homogeneous
Dirichlet boundary conditions when g = 0 is to include them into the solution space
as above in (2.41). In the nonhomogeneous case g % 0 on I" in (2.39) and I" # ¢,
one can reduce the problem to a problem with homogeneous boundary conditions
by homogenization as follows. Let w € H'(£2) be such that w = g on I'. Then
y =y — w satisfies a(y, v) = a(y, v) —a(w, v) = (v, f) —a(w, v) =: (v, f) for
all v € S defined in (2.41),and on I" onehas y = g — w = 0, thatis, y € 7.
Thus, it suffices to consider the weak form (2.43) with eventually modified right
hand side. (A second possibility which allows to treat inhomogeneous boundary
conditions explicitly in the context of saddle point problems will be discussed below
in Sect. 2.3.3.)
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The crucial property is that the bilinear form defined in (2.40) is continuous and
elliptic on JZ,

a(v,v) ~ |vl%,  foranyv e 7, (2.44)

see, e.g., [7].
By Riesz’ representation theorem, the bilinear form defines a linear operator A :

I — ' by
(w, Av) :=a(v, w), v, w € I, (2.45)
which is under the above assumptions a bounded linear bijection, that is,
callvlly = llAvle < Callvlly  foranyv e J2. (2.46)

Here we only consider the case where A is symmetric. With corresponding
alterations, the material in the subsequent sections can also be derived for the
nonsymmetric case with corresponding changes with respect to the employed
algorithms.

The relation (2.46) entails that given any f € J#”, there exists a unique y € %
which solves the linear system

Ay=f  inA (2.47)

derived from (2.43). This linear operator equation where the operator defines a
bounded bijection in the sense of (2.46) is the simplest case of a well-posed
variational problem (2.35). Adhering to the notation in Sect.2.3.1, we have here
M =1and Z = A.

2.3.3 Saddle Point Problems Involving Boundary Conditions

A collection of saddle point problems or, more general, multiple field formu-
lations including first order system formulations of the elliptic boundary value
problem (2.39) and the three field formulation of the Stokes problem with inho-
mogeneous boundary conditions have been rephrased as well-posed variational
problems in the above sense in [35], see also further references cited therein.

Here a particular saddle point problem derived from (2.39) shall be considered
which will be recycled later in the context of control problems. In fact, this formu-
lation is particularly appropriate to handle essential Dirichlet boundary conditions.



2 Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs 97

Recall from, e.g., [7], that the solution y € 7 of (2.43) is also the unique
minimizer of the minimization problem

. 1 _
Uler?jff/(v), F () = za(v, v) — (v, f). (2.48)

This means that y is a zero for its first order variational derivative of ¢, that is,
8_# (y; v) = 0. We denote here and in the following by SM/(U; wi, ..., wy) the
M-th variation of ¢ at v in directions wy, ..., wy, see e.g., [72]. In particular, for
M=1

Fw+ew)— _7(v)

&

8 7 (v; w) := lim (2.49)
e—0
is the (Gateaux) derivative of ¢ at v in direction w.

In order to generalize (2.48) to the case of nonhomogeneous Dirichlet boundary
conditions g, we formulate this as minimizing J over v € H!(£2) subject to
constraints in form of the essential boundary conditions v = g on I". Using tech-
niques from nonlinear optimization theory, one can employ a Lagrange multiplier
p to append the constraints to the optimization functional J defined in (2.48).
Satisfying the constraint is guaranteed by taking the supremum over all such
Lagrange multipliers before taking the infimum. Thus, minimization subject to a
constraint leads to the problem of finding a saddle point (y, p) of the saddle point
problem

inf sup (W) +(v—g,q9)r. (2.50)
veH! () ge(H\2(M)y

Some comments on the choice of the Lagrange multiplier space and the dual form
(-, -)r in (2.50) are in order. The boundary expression v = g actually means taking
the trace of v € H'(£2) to I' € 32 which we explicitly write from now on yv :=
v|r. Classical trace theorems which may be found in [43] state that for any v €
H'(£2) one looses *, order of smoothness’ when taking traces so that one ends
up with yv € H'/2(I"). Thus, when the data g is also such that g € H/2(I"),
the expression in (2.50) involving the dual form (-, ) := (-, -} g2y 12y 18
well-defined, and so is the selection of the multiplier space (H 172(r))’. In case of
Dirichlet boundary conditions on the whole boundary of £2, i.e., the case I' = 952,
one can identify (H'/2(I")) = H~/2(I").

The above formulation (2.50) was first investigated in [2]. Another standard
technique from optimization to handle minimization problems under constraints is
to append the constraints to J(v) by means of a penalty parameter ¢ as follows,
cf. [3]. For the case of homogeneous Dirichlet boundary conditions, one could

introduce the functional J (v)+ (2¢) !y v ”%11 2(ry (The original formulation in [3]

uses the term ||y v ||%2( F).) Although the linear system derived from this formulation
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is still elliptic—the bilinear form is of the type a(v, v) + ¢~ '(yv, YV E12(r)y—
the spectral condition number of the corresponding operator A, depends on ¢. The
choice of ¢ is typically attached to the discretization of an underlying grid with grid
spacing h for £2 of the form ¢ ~ h* when h — 0 for some exponent ¢ > 0 chosen
such that one retains the optimal approximation order of the underlying scheme.
Thus, the spectral condition number of the operators in such systems depends
polynomially on (at least) #~%. Consequently, iterative solution schemes such as
the conjugate gradient method converge as slow as without preconditioning for A,
and so far no optimal preconditioners for this situation are known.

It should also be mentioned that the way of treating essential boundary conditions
by Lagrange multipliers can be extended to fictitious domain methods which may be
used for problems with changing boundaries such as shape optimization problems
[46, 49]. There one embeds the domain §2 into a larger, simple domain [, and
formulates (2.50) with respect to H'(CJ) and dual form on the changing boundary
I" [52]. One should note, however, that for I" a proper subset of 9£2, there may
occur some ambiguity in the relation between the fictitious domain formulation and
the corresponding strong form (2.39).

In order to bring out the role of the trace operator, we define in addition to (2.40)
a second bilinear form on Hl(.Q) X (H1/2(F))’ by

b(v,q) = /F(yv)(S)q(S) ds (2.51)
so that the saddle point problem (2.50) may be rewritten as

inf sup 7 (v,q), W, q):=Jw) +bv,q) —(g.q9)r.
veH! () ge(H2(I)y

(2.52)

Computing zeroes of the first order variations of _#, now with respect to both v and
q, yields the system of equations that a saddle point (y, p) has to satisfy

a(y,v) + b, p) = (v, ), ve H(R), (2.53)

b(y.q)=(g.q)r. g€ HI)). '
Defining the linear operator B : H (©2) - HYXI) and its adjoint B’
(HVX(IN) — (HY(R)) by (Bv,q)r = (v,B'q)r = b(v,q), this can be
rewritten as the linear operator equation from .7 := H L2) x (HY2(IM) to
as follows: Given (f, g) € 2, find (y, p) € J# that solves

6200

It can be shown that the Lagrange multiplier is given by p = —n-aVy and can here
be interpreted as a stress force on the boundary [2].
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Let us briefly investigate the properties of B representing the trace operator.
Classical trace theorems from, e.g., [43], state that for any f € H*(£2), 1/2 <
s < 3/2, one has

If1rlgs=12¢my < I lEs (92)- (2.55)

Conversely, for every g € H s=1/2(IM), there exists some f € H®(§2) such that
flr =gand

I llEs2y < N8llas—12(ry- (2.56)

Note that the range of s extends accordingly if I" is more regular. Estimate (2.55)
immediately entails for s = 1 that B : H 1(@2) — HY2(I") is continuous.
Moreover, the second property (2.56) means B is surjective, i.e., rangeB =
H'/2(I") and ker B’ = {0}, which yields that the inf-sup condition

Buv,
inf sup (Bv.g)r > 1 (2.57)
qe 2D yemay WIa @) Ng a2y

is satisfied.

At this point it will be more convenient to consider (2.54) as a saddle point
problem in abstract form on s# = Y x Q. Thus, we identify ¥ = H'(£2) and
Q = (H'Y2(I"))’ and linear operators A : Y — Y’ and B: Y — Q.

The abstract theory of saddle point problems states that existence and uniqueness
of a solution pair (y, p) € S holds if A and B are continuous, A is invertible on
ker B C Y and the range of B is closed in Q’, see, e.g., [7, 9, 42]. The properties
for B and the continuity for A have been assured above. In addition, we will always
deal here with operators A which are invertible on ker B, which cover the standard
cases of the Laplacian (a = I and ¢ = 0) and the Helmholtz operator (a = [ and
c=1).

Consequently,

L= AB > A (2.58)
B 0

is linear bijection, and one has the mapping property

@I~ 1GL. -

for any (v, g) € # with constants depending on upper and lower bounds for A, B.
Thus, the operator equation (2.54) is established to be a well-posed variational
problem in the sense of Sect.2.3.1: for given (f, g) € J#’, there exists a unique
solution (y, p) € ## = Y x Q which continuously depends on the data.
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2.3.4 Parabolic Boundary Value Problems

More recently, weak full space-time formulation for one linear parabolic equation
became popular which allow us to consider time just as another space variable as
follows.

Let again £2 C R” be a bounded Lipschitz domain with boundary 9£2, and
denote by 27 := I x §2 with time interval I := (0, T') the time-space cylinder for
functions f = f (¢, x) depending on time ¢ and space x. The parameter 7 < 00
will always denote a fixed final time. Let Y be a dense subspace of H := L,(£2)
which is continuously embedded in L;(§2) and denote by Y’ its topological dual.
The associated dual form is denoted by (-, -)y’xy or, shortly (-, -). Later we will use
(-, -) also for time-space duality with the precise meaning clear from the context.
Norms will be indexed by the corresponding spaces. Following [59], Chapter III,
p. 100, let for a.e. t € I there be bilinear forms a(¢;-,-) : ¥ x ¥ — R so that
t — af(t; -, -) is measurable on [ and that a(¢; -, -) is continuous and elliptic on Y,
i.e., there exists constants 0 < o1 < ap < oo independent of ¢ such that a.e. t € [

a(t;v,w) < azfvllyllwly, v,w €Y,

(2.60)
a(t; v, v) > ailvlly, vevy.
Define accordingly a linear operator A = A(f) : Y — Y’ by
(A()v, w) :==a(t; v, w), v,w €Y. (2.61)

Denoting by .Z(V, W) the set of all bounded linear functions from V to W, we
have by (2.60) A(t) € Z(Y,Y’) for ae. t € I. Typically, A(z) will be a scalar
linear elliptic differential operator of order two on £2 and ¥ = HO1 (£2). We denote
by Ly(I; Z) the space of all functions v = v(, x) for which for a.e. € I one has
v(t, ) € Z. Instead of Ly(1; Z), we will write this space as the tensor product of
the two separable Hilbert spaces, L, (1) ® Z, which, by Theorem 12.6.1 in [1], can
be identified. This fact will be frequently employed also in the sequel.

The standard semi-weak form a linear evolution equation is the following, see
e.g. [40]. Given an initial condition yg € H and right hand side f € L(I; Y"), find
y in some function space on §27 such that

(M) 0y 4 (A@) y(t, ), v) = (f(1,-),v) forallv € ¥ and ae. 1 € (0, T),

(¥(0, ), v) = (yo, v) forallv € H.
(2.62)

ForY = HO1 (£2), the weak formulation of the first equation includes homogeneous
Dirichlet conditions y(z, -)|92 = O fora.e.t € I.
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The space-time variational formulation for (2.62) will be based on the solution
space

Y = Ly(I;Y)NH'I;Y) = (Lo() @ Y) N (Hl(I) ® Y’)
= {weLy;Y): ™" e Ly Y) (2.63)

equipped with the graph norm

9 -
lwiiy = lwli T,y + 1750712 iy (2.64)

and the Cartesian product space of test functions
Vi =Ly(I;Y)xH=(L2(I)®Y)x H (2.65)
equipped for v = (v1, v2) € ¥ with the norm
10115 = il .y + 2l (2.66)
Note that vy = v1 (¢, x) and v = va(x).
Integration of (2.62) over ¢ € I leads to the variational problem to find for given
f €V afunctiony € &
b(y,v) = (f,v) forall v = (vy, 12) € 7, (2.67)
where the bilinear form b(-, -) : # x ¥ — R is defined by

bw, (v1, 12)) 1= /1 ("0, 01, 9) + (AW w(E, ), 010, ) di + (O, ), v2)

(2.68)
and the right hand side (f, ) : ¥ — R by

(fiv) = /1<f(t’ 9, v1(t, ) dt + (yo, v2) (2.69)

for v = (v, vp) € 7. It was proven in [37, Chapter XVIII, §3] that the operator
defined by the bilinear form b(-, -) is an isomorphism with respect to the spaces %
and 7. An alternative, shorter proof given in [66] is based on a characterization
of bounded invertibility of linear operators between Hilbert spaces and provides
detailed bounds on the norms of the operator and its inverse as follows.



102 A. Kunoth

Theorem 4 The operator B € £(%, V") defined by (Bw, v) := b(w, v) for w €
% and v € ¥V with b(-, -) from (2.68) and spaces %', V" defined in (2.63), (2.65) is
boundedly invertible: There exist constants 0 < 1 < By < oo such that

_ 1
IBlly—y < B and B '|yrg < . (2.70)

As proved in [66], the continuity constant 8, and the inf—sup condition constant S
for b(-, -) satisfy

min(oqocz_z, o)

pr = L B y2max(lod) + o2, @.71)

- \/Zmax(afz, 1) + 02
where a1, o are the constants from (2.60) bounding A (), and o is defined as

lw (O, )l #
0£we? lwlla

We like to recall from [37, 40] that ¢ is continuously embedded in €O(I; H) so that
the pointwise in time initial condition in (2.62) is well-defined. From this it follows
that the constant p is bounded uniformly in the choice of % < H.

For the sequel, it will be useful to explicitly identify the dual operator B* : ¥ —
%’ of B which is defined by

(Bw, v) =: {(w, B*v). (2.72)
In fact, it follows from the definition of the bilinear form (2.68) on % x ¥ by

integration by parts for the first term with respect to time, and using the dual A(¢)*
w.r.t. space that

b(w, (1, v2)) = /1 (w9, ™) + (i, ), AW, )) dr

+ (w0, ), v2) + (w(t, ), v)IE

= / ((w(t, 9, My (e, ), A, -)>) dt

1
+ (w(T, ), v2)
=: (w, B*v). (2.73)

Note that the first term of the right hand side defining B* which involves gt vi(t,-)
is still well-defined with respect to ¢ as an element of %" on account of w € %'
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2.3.5 PDE-Constrained Control Problems: Distributed Control

A class of problems where the numerical solution of systems (2.47) is required
repeatedly are certain control problems with PDE-constraints described next.
Adhering to the notation from Sect.2.3.2, consider as a guiding model for the
subsequent discussion the objective to minimize a quadratic functional of the form

1 w
S (y,u) = My = el + ) luell?, (2.74)
subject to linear constraints
Ay=f+u in H’' (2.75)

where A : H — H' is defined as above in (2.61) satisfying (2.46) and f € H
is given. Reserving the symbol .7 for the resulting product space in view of the
notation in Sect.2.3.1, the space H is in this subsection defined as in (2.41) or
in (2.42). In order for a solution y of (2.75), the state of the system, to be well-
defined, the problem formulation has to ensure that the unknown control u appearing
on the right hand side is at least in H’. This can be achieved by choosing the control
space 7/ whose norm appears in (2.74) such that it is as least as smooth as H'. The
second ingredient in the functional (2.74) is a data fidelity term which tries to match
the system state y to some prescribed target state y,, measured in some norm which
is typically weaker than || - || 7. Thus, we require that the observation space % and
the control space % are such that the continuous embeddings

llg < lvlle, ve#, lvlz < lvlla, veH, (2.76)

hold. Mostly one has investigated the simplest cases of norms which occur for % =
Z = Ly(82) and which are covered by these assumptions [59]. The parameter
o > 0 balances the norms in (2.74).

Since the control appears in all of the right hand side of (2.75), such control
problems are termed problems with distributed control. Although their practical
value is of a rather limited nature, distributed control problems help to bring out the
basic mechanisms. Note that when the observed data are compatible in the sense
that y, = A~! f, the control problem has the trivial solution u = 0 which yields
F(y,u) =0.

Solution schemes for the control problem (2.74) subject to the constraints (2.75)
can be based on the system of operator equations derived next by the same
variational principles as employed in the previous section, using a Lagrange
multiplier p to enforce the constraints. Defining the Lagrangian functional

Lagr(y, p,u) :== 7 (y,u) + (p, Ay — f —u) (2.77)
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on H x H x H’, the first order necessary conditions or Karush-Kuhn-Tucker (KKT)
conditions § Lagr(x) = 0 for x = p, y, u can be derived as

Ay=f+u
A'p=—S(y—y) (2.78)
wRu = p.

Here the linear operators S and R can be interpreted as Riesz operators defined by
the inner products (-, -) 2 and (-, -)¢ . The system (2.78) may be written in saddle
point form as

s 0 A

/ y Sy«
LV .= (gg‘g)sz 0 wR —1 ul=|0|=F (2.79)
A—-I 0 p f

on” :=H x H x H'.

Remark 2 'We can also allow for 2 in (2.74) to be a trace space on part of the
boundary 92 as long as the corresponding condition (2.76) is satisfied [53].

The class of control problems where the control is exerted through Neumann
boundary conditions can also be written in this form since in this case the control
still appears on the right hand side of a single operator equation of a form like (2.75),
see [29].

Well-posedness of the system (2.79) can now be established by applying the
conditions for saddle point problems stated in Sect.2.3.3. For the control problems
here and below we will, however, follow a different route which better supports
efficient numerical solution schemes. The idea is as follows. While the PDE
constraints (2.75) that govern the system are fixed, there is in many applications
some ambiguity with respect to the choice of the spaces 2 and % . L, norms
are easily realized in finite element discretizations, although in some applications
like glass cooling smoother norms for the observation || - || o~ are desirable [63].
Once Z and % are fixed, there is only a single parameter w to balance the two
norms in (2.74). Modelling the objective functional is therefore an issue where more
flexibility may be advantageous. Specifically in a multiscale setting, one may want
to weight contributions on different scales by multiple parameters.

The wavelet setting which we describe below allows for this flexibility. It is based
on formulating the objective functional in terms of weighted wavelet coefficient
sequences which are equivalent to 2, % and which, in addition, support an
efficient numerical implementation. Once wavelet discretizations are introduced, we
formulate below control problems with such objective functionals.



2 Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs 105

2.3.6 PDE-Constrained Control Problems: Dirichlet Boundary
Control

Even more involved as the control problems with distributed control encountered in
the previous section are those problems with Dirichlet boundary control which are,
however, practically much more relevant.

An illustrative guiding model for this case is the problem to minimize for some
given data y, the quadratic functional

1 w
/mw=2w—m@+zw@, (2.80)

where, adhering to the notation in Sect.2.3.2 the state y and the control u are
coupled through the linear second order elliptic boundary value problem

—V.-(@Vy)+ky=jf ing,
y=u onl, (2.81)
(aVy)-n=0 onl[ly.

The appearance of the control u as a Dirichlet boundary condition in (2.81) is
referred to as a Dirichlet boundary control. In view of the treatment of essential
Dirichlet boundary conditions in the context of saddle point problems derived in
Sect. 2.3.3, we write the PDE constraints (2.81) in the operator form (2.54)on Y x Q
where Y = H'(£2) and Q = (H'/2(I"))’. The model control problem with Dirichlet
boundary control then reads as follows: Minimize for givendata y, € & and f € Y’
the quadratic functional

1 w
T = _lly =yl +  llull?, (2.82)
2 2

(25)G)-() 2

In view of the problem formulation in Sect.2.3.5 and the discussion of the choice
of the observation space 2 and the control space, here we require analogously that
% and % are such that the continuous embeddings

subject to

Ivller < vz, ve#, lvlz < llvlly, vey, (2.84)

hold. In view of Remark 2, also the case of observations on part of the boundary 02
can be taken into account [54]. Part of the numerical results are for such a situation
shown in Fig.2.4.
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Remark 3 Tt should be mentioned that the simple choice %7 = L, (I") which is used
in many applications of Dirichlet control problems is not covered here. There may
arise the problem of well-posedness in this case which we briefly discuss. Note that
the constraints (2.81) or, in weak form (2.54), guarantee a unique weak solution
yeY =H\R) provided that the boundary term u satisfies u € Q' = HY2(I).
In the framework of control problems, this smoothness of u therefore has to be
required either by the choice of % or by the choice of 2 (such as 2 = H'(£2))
which would assure By € Q. In the latter case, we could relax condition (2.84)
on% .

In the context of flow control problems, an H'! norm on the boundary for the
control has been used in [45].

Similarly as stated at the end of Sect.2.3.5, we can derive now by variational
principles the first order necessary conditions for a coupled system of saddle
point problems. Well-posedness of this system can then again be established by
applying the conditions for saddle point problems from Sect.2.3.3 where the inf-
sup condition for the saddle point problem (2.54) yields an inf-sup condition for
the exterior saddle point problem of interior saddle point problems [51]. However,
also in this case, we follow the ideas mentioned at the end of Sect. 2.3.6 and pose a
corresponding control problem in terms of wavelet coefficients.

2.3.7 PDE-Constrained Control Problems: Parabolic PDEs

Finally, we consider the following tracking-type control problem constrained by an
evolution PDE as formulated in Sect. 2.3.4.

We wish to minimize for some given target state y, and fixed end time 7 > 0 the
quadratic functional

Jow) = DUy =yl .y T F IV )= yuT NG+ G Nul} gy (2:85)
over the state y = y(¢, x) and the control u = u(¢, x) subject to
By=FEu+ f in ¥’ (2.86)

where B is defined by Theorem 4 and f € ¥ is given by (2.69). The real weight
parameters w1, wy > 0 are such that w1 + wp > 0 and w3 > 0. The space Z by
which the integral over §2 in the first two terms in (2.85) is indexed is to satisfy
Z 2 Y with continuous embedding. Although there is in the wavelet framework
great flexibility in choosing even fractional Sobolev spaces for Z, for transparency,
we pick here Z = Y. A more general choice only results in multiplications of
vectors in wavelet coordinate with diagonal matrices of the form (2.96) below, see
[29]. Moreover, we suppose that the operator E is a linear operator E : U — ¥~
extending fl(u(t, -), v1(t, -)) dt trivially, that is, E = (I, O)T. In order to generate a
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well-posed problem, the space U in (2.85) must be chosen to enforce that Eu is at
least in ¥”. We pick here the natural case U = Y’ which is also the weakest possible
one. More general cases for both situations which result again in multiplication with
diagonal matrices for wavelet coordinate vectors are discussed in [29].

2.4 Wavelets

The numerical solution of the classes of problems introduced above hinges on the
availability of appropriate wavelet bases for the function spaces under consideration
which are all particular Hilbert spaces. first introduce the three basic properties that
we require our wavelet bases to satisfy.

Afterwards, construction principles for wavelets based on multiresolution analy-
sis of function spaces on bounded domains will be given.

2.4.1 Basic Properties

In view of the problem classes considered above, we need to have a wavelet basis for
each occurring function space at our disposal. A wavelet basis for a Hilbert space
H is here understood as a collection of functions

Wy = {Yus:relly) CH (2.87)

which are indexed by elements A from an infinite index set € Jy. Each of the A
comprises different information A = (j, k, e) such as the refinement scale or level
of resolution j and a spatial location k = k(1) € Z". In more than one space
dimensions, the basis functions are built from taking tensor products of certain
univariate functions, and in this case the third index e contains information on the
type of wavelet. We will frequently use the symbol |A| := j to have access to the
resolution level j. In the univariate case on all of R, ¥, is typically generated by
means of shifts and dilates of a single function ¥, i.e., ¥ = ¥ = 2//2¢ (27 - —k),
J, k € Z, normalized with respect to || - ||,. On bounded domains, the structure of
the functions is essentially the same up to modifications near the boundary.

The three crucial properties that we will assume the wavelet basis to have for the
sequel are the following.

Riesz Basis Property (R) Every v € H has a unique expansion in terms of ¥y,

v= Y w¥us =V ¥y, v:i= ey (2.88)
relly
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and its expansion coefficients satisfy a norm equivalence, that is, for any v = {v, :
A € Iy} one has

cu Wllearyy < IV WullE < Cu IVl V€ La(y), (2.89)

where 0 < ¢y < Cp < oo. This means that wavelet expansions induce
isomorphisms between certain function spaces and sequence spaces. It will be
convenient in the following to abbreviate £, norms without subscripts as || - || :=
Il - le; (i) When the index set is clear from the context. If the precise format of the
constants does not matter, we write the norm equivalence (2.89) shortly as

vl ~ IV @y, Vel (2.90)

Locality (L) The functions vy ; are have compact support which decreases with
increasing level j = |A|, i.e.,

diam (supp¥rg.;) ~ 27, (2.91)
Cancellation Property (CP) There exists an integer d=d g such that

(v, ) < 27O D) (2.92)
P

(suppYyu )"

Thus, integrating against a wavelet has the effect of taking an dth order difference
which annihilates the smooth part of v. This property is for wavelets defined on
Euclidean domains typically realized by constructing ¥y in such a way that it
possesses a dual or biorthogonal basis ¥y C H’ such that the multiresolution
spaces S’j = span{IZfH,;L . |A] < j} contain all polynomials of order d. Here
dual basis means that (Y g 5, &H,U) =0y A vely.

A few remarks on these properties are in order. In (R), the norm equiva-
lence (2.90) is crucial since it means complete control over a function measured
in || - ||z from above and below by its expansion coefficients: small changes in
the coefficients only causes small changes in the function which, together with the
locality (L), also means that local changes stay local. This stability is an important
feature which is used for deriving optimal preconditioners and driving adaptive
approximations where, again, the locality is crucial. Finally, the cancellation
property (CP) entails that smooth functions have small wavelet coefficients which,
on account of (2.89) may be neglected in a controllable way. Moreover, (CP) can be
used to derive quasi-sparse representations of a wide class of operators.

By duality arguments one can show that (2.89) is equivalent to the existence of a
biorthogonal collection which is dual or biorthogonal to ¥y,

Uy = {Yus:re€ly) CH, (Yui VHu) =8 A€ Ty,
(2.93)
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which is a Riesz basis for H', that is, for any o = ¥/ ¥y € H’' one has
Cy' IVl = W' ullar < e IVl (2.94)

see [23, 25, 51]. Here and in the sequel the tilde expresses that the collection 'f/H
is a dual basis to a primal one for the space identified by the subscript, so that
Uy =Wy

Above in (2.89), we have already introduced the following shorthand notation
which simplifies the presentation of many terms. We will view ¥y both as in (2.87)
as a collection of functions as well as a (possibly infinite) column vector containing
all functions always assembled in some fixed unspecified order. For a countable
collection of functions ® and some single function o, the term (®, o) is to be
understood as the column vector with entries (6, o), & € ©, and correspondingly
(0, ®) the row vector. For two collections ®, ¥, the quantity (®, ¥) is then
a (possibly infinite) matrix with entries ({6, 0))gco, sex for which (®, X) =
(X, )T, This also implies for a (possibly infinite) matrix C that (CO®, X) =
C(®, X)and (®,CX) = (O®, £)CT.

In this notation, the biorthogonality or duality conditions (2.93) can be reex-
pressed as

(w,v) =1 (2.95)

with the infinite identity matrix I.

Wavelets with the above properties can actually obtained in the following way.
This concerns, in particular, a scaling depending on the regularity of the space under
consideration. In our case, H will always be a Sobolev space H* = H*(§2) or a
closed subspace of H®(£2) determined by homogeneous boundary conditions, or its
dual. For s < 0, H*® is interpreted as above as the dual of H ~*. One typically obtains
the wavelet basis ¥y for H from an anchor basis ¥ = {{, : A € I = Iy} which
is a Riesz basis for L,(£2), meaning that ¥ is scaled such that ||1/fx||L2(_Q) ~ 1.
Moreover, its dual basis ¥ is also a Riesz basis for L>(£2). ¥ and J are constructed
in such a way that rescaled versions of both bases W, ¥ form Riesz bases for a whole
range of (closed subspaces of) Sobolev spaces H*, for 0 < s < y, y, respectively.
Consequently, one can derive that for each s € (—y, y) the collection

=2y, el =D ¥ (2.96)

is a Riesz basis for H® [23]. This means that there exist positive finite constants
cg, Cs such that

cs IV < IV W llms < Gy |Vl v e €a(ID), (2.97)

holds for each s € (—y, y). Such a scaling represented by a diagonal matrix D*
introduced in (2.96) will play an important role later on. The analogous expression
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in terms of the dual basis reads
U= 2y, e} =D ¥, (2.98)

where ¥ forms a Riesz basis of H* fors € (—y, 7). This entails the following fact.
For € (—y, y) the mapping

D" :v=v'¥ s WU =vDW=>" v 2"y, (2.99)
rell

acts as a shift operator between Sobolev scales which means that
ID™vllgs ~ vl gs+e ~ ID*FV, if 5, s+ 7 € (=7, ). (2.100)

Concrete constructions of wavelet bases with the above properties for parameters
¥, ¥ < 3/2onabounded Lipschitz domain §2 can be found in [33, 34]. This suffices
for the above mentioned examples where the relevant Sobolev regularity indices
range between —1 and 1.

2.4.2 Norm Equivalences and Riesz Maps

As we have seen, the scaling provided by D™* is an important feature to establish
norm equivalences (2.97) for the range s € (—y,y) of Sobolev spaces H®.
However, there are several other norms which are equivalent to || - || gs which may
later be used in the objective functional (2.74) in the context of control problems.
This issue addresses the mathematical model which we briefly discuss now.

We first consider norm equivalences for the Ly norm. Let as before ¥ be the
anchor wavelet basis for L, for which the Riesz operator R = Ry, is the (infinite)
Gramian matrix with respect to the inner product (-, -)r, defined as

R:= W, ¥), =W VY). (2.101)
Expanding ¥ in terms of ¥ and recalling the duality (2.95), this entails

=W ¥) = <<l1/, o\, w) —RW@. &) or R '=@. &) (2102

R may be interpreted as the transformation matrix for the change of basis from ¥
to ¥, thatis, ¥ = RY.
For any w = wlW e L,, we now obtain the identities

lwll, = W&, wiw), = wl (&, ) w=w'Rw = |[R"?w|* = |W|*.
(2.103)
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Expanding w with respect to the basis ¥ =R 2¢ = RV2¢ thatis, w = W &,
yields [[w| L, = ||W]|. On the other hand, we get from (2.97) with s = 0

< C3llw|* (2.104)

2 2 2
coliwll® = llwllz,

From this we can derive the condition number k (W) of the wavelet basis in terms of
the extreme eigenvalues of R by defining

o Co 2 _ Amax (R) _ ~
k(W) = (CO> =R = k(R) ~ 1, (2.105)

where «(R) also denotes the spectral condition number of R and where the last
relation is assured by the asymptotic estimate (2.104). However, the absolute
constants will have an impact on numerical results in specific cases.

For a Hilbert space H denote by Wy a wavelet basis for H satisfying (R), (L),
(CP) with a corresponding dual basis Wy . The (infinite) Gramian matrix with respect
to the inner product (-, -) g inducing || - ||z which is defined by

Ry == Yy, ¥Yn)H (2.106)

will be also called Riesz operator. The space L is covered trivially by Rop = R. For
any function v := v/ ¥y € H we have then the identity

ol = (v, v)a = VT Oy, vV Wy g = v Wy, Yu)uv
= v Ryv = R} VI (2.107)

Note that in general Ry may not be explicitly computable, in particular, when H is
a fractional Sobolev space.
Again referring to (2.97), we obtain as in (2.105) for the more general case

k(Rgs) ~1 foreachs € (—y, y).
(2.108)

Cs>2  maRps)

KW= < - Amin (Rpzs) B

Cs

Thus, all Riesz operators on the applicable scale of Sobolev spaces are spectrally
equivalent. Moreover, comparing (2.108) with (2.105), we get

g IRV2V) < IRY2V < R (2.109)

0 o

Of course, in practice, the constants appearing in this equation may be much sharper,

as the bases for Sobolev spaces with different exponents are only obtained by a

diagonal scaling which preserves much of the structure of the original basis for L.
We summarize these results for further reference.
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Proposition 1 In the above notation, we have for any v = v! ¥ € H® the norm
equivalences

1/2 -
lvllgs = IRV ~ IRV2v| ~ vl foreachs € (=7, y). (2.110)

2.4.3 Representation of Operators

A final ingredient concerns the wavelet representation of linear operators in terms of
wavelets. Let H, V be Hilbert spaces with wavelet bases ¥, Wy and corresponding
duals ¥y, Yy, and suppose that .2 : H — V is a linear operator with dual ." :
V' — H' defined by (v, Z'w) := (Lv,w) forallve H,w € V.

We shall make frequent use of this representation and its properties.

Remark 4 The wavelet representation of < : H — V with respect to the bases
Wy, Wy of H, V/, respectively, is given by
L= (Jy, LVy), Lv=Lv) . (2.111)

Thus, the expansion coefficients of .Zv in the basis that spans the range space of
Z are obtained by applying the infinite matrix L = (¥y, ZW¥y) to the coefficient
vector of v. Moreover, boundedness of . implies boundedness of L in £, i.e.,

IZvllv < lvlla, veH, implies [[L|l:= sup [Lvlleyar,) < 1
IVlley gy <1

(2.112)

Proof Any image Zv € V can naturally be expanded with respect to ¥y as Zv =
(ZLv, Yy )Wy. Expanding in addition v in the basis ¥y, v = viwy yields

Lo =vI(Lwy, Oy)Wy = (LY, W)V Wy = (By, L85 oy,

(2.113)
As for (2.112), we can infer from (2.89) and (2.111) that
ILVlley ) ~ NAN Sy lly = [Lvlly < ol ~ IVeyc),
which confirms the claim. (]

2.4.4 Multiscale Decomposition of Function Spaces

In this section, the basic construction principles of the biorthogonal wavelets with
properties (R), (L) and (CP) are summarized, see, e.g., [24]. Their cornerstones
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are multiresolution analyses of the function spaces under consideration and the
concept of stable completions. These concepts are free of Fourier techniques and
can therefore be applied to derive constructions of wavelets on domains or manifolds
which are subsets of R".

Multiresolution of L, Practical constructions of wavelets typically start out with
multiresolution analyses of function spaces. Consider a multiresolution . of Ly
which consists of closed subspaces S; of Ly, called trial spaces, such that they are
nested and their union is dense in Ly,

00
Sy CSjp+1 C...CSj CSjy1 C...Ly, CIOSLz(U Sj) = L;.
j=Jo
(2.114)

The index j is the refinement level which appeared already in the elements of the
index set [ in (2.87), starting with some coarsest level jo € Ny. We abbreviate for
a finite subset ® C L, the linear span of ® as

S(®) = span{®}.
Typically the multiresolution spaces S; have the form

S = 8(Pj), D ={pjr:ke A} (2.115)

for some finite index set A j, where the set {P }?Oz B

that

is uniformly stable in the sense

lelleyay ~ e ®jll,. €= {ckea; € £2(A)), (2.116)

holds uniformly in j. Here we have used again the shorthand notation

CT®j = Z kP k

keA;

and @; denotes both the (column) vector containing the functions ¢; x as well as
the set of functions (2.115).

The collection @; is called single scale basis since all its elements live only on
one scale j. In the present context of multiresolution analysis, @; is also called
generator basis or shortly generators of the multiresolution. We assume that the
¢ .k are compactly supported with

diam(supppj i) ~ 277, (2.117)
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It follows from (2.116) that they are scaled such that

o)kl ~1 (2.118)

holds. It is known that nestedness_(Z.l 14) together with stability (2.116) implies the
existence of matrices M o = (mf rea irked; such that the two-scale relation

pik= Y. mldicir kea; (2.119)

redjig

is satisfied. We can essentially simplify the subsequent presentation of the material
by viewing (2.119) as a matrix-vector equation which then attains the compact form

;=M (P (2.120)

Any set of functions satisfying an equation of this form, the refinement or two-scale
relation, will be called refinable.

Denoting by [X, Y] the space of bounded linear operators from a normed linear
space X into the normed linear space Y, one has that

Mj,() S [ﬁz(Aj), EZ(A/'+1)]

is uniformly sparse which means that the number of entries in each row or column
is uniformly bounded. Furthermore, one infers from (2.116) that

IMjoll=00), j=jo (2.121)
where the corresponding operator norm is defined as

IM; ol := sup IMj.0¢llex(a,41)-
cela(4)), llelleycap=1

Since the union of . is dense in L,, a basis for L, can be assembled from
functions which span any complement between two successive spaces S; and S; 41,
ie.,

S(@j41) = S(@)) D S(¥)) (2.122)
where

lI/jZ{wj’kikGVj}, Vj = Aj+1\Aj. (2.123)

The functions ¥; are called wavelet functions or shortly wavelets if, among other
conditions detailed below, the union {@; U ¥;} is still uniformly stable in the sense



2 Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs 115

of (2.116). Since (2.122) implies S(¥;) C S(P;41), the functions in ¥; must also
satisfy a matrix-vector relation of the form

W =M] &, (2.124)

with a matrix M 1 of size (#A 1) x (#V). Furthermore, (2.122) is equivalent to
the fact that the linear operator composed of M o and M 1,

M; = (M; 0, M; 1), (2.125)

is invertible as a mapping from £, (A ; U V) onto £3(A j+1). One can also show that
the set {®@; U ¥;} is uniformly stable if and only if

IM; [, M = 61, j — oo (2.126)

The particular cases that will be important for practical purposes are when not only
M; o and M; ; are uniformly sparse but also the inverse of M;. We denote this
inverse by G; and assume that it is split into

G =M;'= (G/*O). (2.127)

which corresponds to the case of Ly orthogonal wavelets [36]. A systematic
construction of more general M, G for spline-wavelets can be found in [34], see
also [24] for more examples, including the hierarchical basis.

Thus, the identification of the functions ¥; which span the complement of
S(®;) in S(P;41) is equivalent to completing a given refinement matrix M o to
an invertible matrix M in such a way that (2.126) is satisfied. Any such completion
M; 1 is called stable completion of Mj . In other words, the problem of the
construction of compactly supported wavelets can equivalently be formulated as
an algebraic problem of finding the (uniformly) sparse completion of a (uniformly)
sparse matrix M ¢ in such a way that its inverse is also (uniformly) sparse. The fact
that inverses of sparse matrices are usually dense elucidates the difficulties in the
constructions.

The concept of stable completions has been introduced in [14] for which a
special case is known as the lifting scheme [69]. Of course, constructions that yield
compactly supported wavelets are particularly suited for computations in numerical
analysis.
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Combining the two-scale relations (2.120) and (2.124), one can see that M;
performs a change of bases in the space S;1,

D; M7
( /> - (M/T’())q),ﬂ =M{®; . (2.128)

¥ jl

Conversely, applying the inverse of M; to both sides of (2.128) results in the
reconstruction identity

qj‘
it = G/T<W{> =Gl @ + G ¥, (2.129)
J

Fixing a finest resolution level J, one can repeat the decomposition (2.122) so
that S; = S(@;) can be written in terms of the functions from the coarsest space
supplied with the complement functions from all intermediate levels,

J—1
S(Py) =8P, @ @ SW)). (2.130)
J=Jo

Thus, every function v € S(®;) can be written in its single-scale representation

v=C(e)Td, = Z Cr ki k (2.131)
keAy

as well as in its multi-scale form
—(c YV . Ny . T
v = (i) @jy + (djg) Wy + -+ @y Wy (2.132)

with respect to the multiscale or wavelet basis

J—-1 J—-1
v =00l o= (J ¥ (2.133)
J=o J=io—1

Often the single-scale representation of a function may be easier to compute and
evaluate while the multi-scale representation allows one to separate features of
the underlying function characterized by different length scales. Since therefore
both representations are advantageous, it is useful to determine the transformation
between the two representations, commonly referred to as the Wavelet Transform,

T, : €2(A)) = €2(A)), d/ — ¢y, (2.134)
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where
J . T
d’ = (Cjo, djo’ PN d171) .

The previous relations (2.128) and (2.129) indicate that this will involve the matrices
M; and G;. In fact, T, has the representation

Ty =Ty -1---Tyj, (2.135)

where each factor has the form

. M; 0 #A )X (HA
Ty = < 0] I(#AJ#Aj+1)> € RWANXEA), (2.136)

Schematically T; can be visualized as a pyramid scheme

M;).0 Mjj+1.0 M;-10

Cjy — Cjo+1 —> Cjp42 —> -+ €Cj—1 —> CJ
M;).1 Mjj+1.1 Mjy_1.1 (2.137)
/ / S /

djo djo+1 djo+2 dy—1

Accordingly, the inverse transform T;l can be written also in product struc-
ture (2.135) in reverse order involving the matrices G as follows:

-1 —1 —1
T; =TJ’j0---TJ’J_1, (2.138)
where each factor has the form
-1 . G, 0 #A )X H#A
T, ;= ( 0] I(#AJ#AJ'H)) € RFANXEAD, (2.139)
The corresponding pyramid scheme is then
Gy-10 G20 Gjjy.0
¢jg — ¢j-1 — C¢j2 —> -+ —> Cj,
Gy-1,1 Gy-2,1 Gj).1 (2.140)
N N NN
dy—1 d;— dy—1 d;,

Remark 5 Property (2.126) and the fact that M; and G can be applied in (#A4;1)
operations uniformly in j entails that the complexity of applying T; or T;l using
the pyramid scheme is of order 6(#A;) = ¢(dim S;) uniformly in J. For this
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reason, T is called the Fast Wavelet Transform (FWT). Note that there is no need
to explicitly assemble T; or T;l.

In Table 2.4 spectral condition numbers for the Fast Wavelet Transform (FWT) for
different constructions of biorthogonal wavelets on the interval computed in [62]
are displayed.

Since Uj> j,S; is dense in L, a basis for the whole space L; is obtained when
letting J/ — oo in (2.133),

00
v o= U sz{i/fj,k:(j,k)eﬂ}, V-1 :=Dj,

j=jo—1
. (2.141)
1= {{jo} x Ap}u | {1} x v}
J=Jjo

The next theorem from [23] illustrates the relation between ¥ and T}.

Theorem S The multiscale transformations T j are well-conditioned in the sense
IS0 0T5 = o), T = jo, (2.142)

if and only if the collection W defined by (2.141) is a Riesz basis for Lo, i.e., every
v € Ly has unique expansions

o0 o0
v= Y W= > (0¥, (2.143)
Jj=Jjo—1 Jj=Jjo—1

where W defined analogously as in (2.141) is also a Riesz basis for Ly which is
biorthogonal or dual to W,

(w,v)=1 (2.144)

such that
lvllz, ~ I, )y ~ 14 0)lleymy- (2.145)
We briefly explain next how the functions in 'f/, denoted as wavelets dual to ¥, or
dual wavelets, can be determined. Assume that there is a second multiresolution .

of L, satisfying (2.114) where

S; = S(®)), D ={Pjx:keA;) (2.146)
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and {® j }?‘; i is uniformly stable in j in the sense of (2.116). Let the functions

in @ ; also have compact support satisfying (2.117). Furthermore, suppose that the
biorthogonality conditions

(@), Pj) =1 (2.147)

hold. We will often refer to @; as the primal and to @ j as the dual generators. The
nestedness of the § ; and the stability again implies that @ ;j is refinable with some
matrix M; o, similar to (2.120),

;=M (B (2.148)
The problem of determining biorthogonal wavelets now consists in finding bases
¥; for the complements of S(®;) in S(P;41), and of S(dﬁ ) in S((P i+1), such

that
S(@)HLSW)),  S(@)LSW)) (2.149)

and
SWHLSW).  j#m (2.150)
holds. The connection between the concept of stable completions and the dual

generators and wavelets is made by the following result which is a special case
from [14].

Proposition 2 Suppose that the biorthogonal collections {® j}?‘;. and {<1§ 10 o

are both uniformly stable and refinable with refinement matrices M o, M/,o, ie.,
O =Ml @11, ;=M ®;, (2.151)

and satisfy the duality condition (2.147). Assume that I\V/IN is any stable completion
of M o such that

M, := (Mo, M) = é;l (2.152)

satisfies (2.126).
Then

Mj:=a- Mj,OM]T,o)l\V/IjJ (2.153)
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is also a stable completion of M o, and G; = M;l = M, o, Mj,l)’1 has the form

M7
= < f’°>. (2.154)

Moreover; the collections of functions
v =ML @i, B =680 (2.155)
form biorthogonal systems,
(W, &) =1, (W, ;) = (@;,¥) =0, (2.156)
so that
SWHLSW,), j#T, S(@)LSWF)), S(P;)LSW)). (2.157)

In particular, the relations (2.147), (2.156) imply that the collections

(o) o0 o0
v=J v, &= ¥=0,0JY¥ (2.158)
Jj=jo—1 J=Jjo—1 Jj=Jjo
are biorthogonal,
(W, &) =1 (2.159)

Remark 6 1t is important to note that the properties needed in addition to (2.159)
in order to ensure (2.145) are neither properties of the complements nor of their
bases ¥, ¥ but of the multiresolution sequences . and .. These can be phrased
as approximation and regularity properties and appear in Theorem 6.

We briefly recall yet another useful point of view. The operators

j—1
Piv:=(v,®0;)®; = (v, Y)W/ = (v,P;)Pj, + Z(v, Y,

’jif'f (2.160)
Plv:= (v, ®))®; = (v, W)¥/ = (v, Q)P + Z(v, U\,

r=jo
are projectors onto

S(@)=SW/) and  S(P;)=SW/) (2.161)
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respectively, which satisfy

P.P; = P,, P,’P]’- =P, r<ij. (2.162)
Remark 7 Let {® /}?O=jo be uniformly stable. The P; defined by (2.160) are
uniformly bounded if and only if {® j}j‘; io is also uniformly stable. Moreover, the
P; satisfy (2.162) if and only if the @ ;j are refinable as well. Note that then (2.147)
implies

MfOM jo=L (2.163)

In terms of the projectors, the uniform stability of the complement bases ¥;, lf/j
means that

I(Pjs1 = Ppvll, ~ 10, )lleawyys 1P = PPy ~ 145, v)lleyw)),
(2.164)

so that the L, norm equivalence (2.145) is equivalent to

o (0.¢]
oIz, ~ Y 1P = Pj-pvlig, ~ D I(P; = Pj_pvli, (2.165)
Jj=Jo J=Jo

=0.
i0—1
The whole concept derived so far lives from both @ ; and @ ;. It should be pointed
out that in the algorithms one actually does not need @ ; explicitly for computations.

We recall next results that guarantee norm equivalences of the type (2.89) for
Sobolev spaces.

forany v € Ly, where Pj,_| = P/’.

Multiresolution of Sobolev Spaces Let now . be a multiresolution sequence
consisting of closed subspaces of H® with the property (2.114) whose union is
dense in H*. The following result from [23] ensures under which conditions norm
equivalences hold for the H®-norm.

Theorem 6 Let {@ j}i‘; io and {® j}i‘; io be uniformly stable, refinable, biorthog-
onal collections and let the P; : H° — S(®;) be defined by (2.160). If the
Jackson-type estimate

< 27|v|lgs, veEH', O0<s<d, (2.166)

~

inf v — v,

VjEdj

and the Bernstein inequality

lvilles < 29 0vjllL,, vj €Sj, s <1, (2.167)
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hold for

5= 15PN itnorderd = {4V anai =11, (2.168)
S(®;) d i

then for
0 < o := min{d, 1}, 0 < 6 := min{d, 7}, (2.169)

one has

OO .
vll3s ~ Z 2%||(Pj — Pi_vl7,. s€(=6.0). (2.170)
Jj=Jo

Recall that we always write H* = (H~*)" for s < 0.
The regularity of . and . is characterized by

t:=supfs:S(®;) C H, j= jo}, f:=sup{s: S(é/’) C H®, j = jo}
(2.171)

Recalling the representation (2.164), we can immediately derive the following
fact.

Corollary 2 Suppose that the assumptions in Theorem 6 hold. Then we have the
norm equivalence

e¢]

ol ~ D 221 I, s € (=6,0). (2.172)
Jj=jo—1

In particular for s = 0 the Riesz basis property of the ¥, ¥ relative to Ly(2.145)
is recovered. For many applications it suffices to have (2.170) or (2.172) only for
certain s > 0 for which one only needs to require (2.166) and (2.167) for {P; }?‘; i
The Jackson estimates (2.166) of order d for S(® ;j) imply the cancellation properties
(CP) (2.92), see, e.g., [26].

Remark 8 When the wavelets live on £2 C R", (2.166) means that all polynomials
up to order d are contained in S(®;). One also says that S(®;) is exact of
order d. On account of (2.144), this implies that the wavelets v/ j.k are orthogonal

to polynomials up to order d or have dth order vanishing moments. By Taylor
expansion, this in turn yields (2.92).
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We will later use the following generalization of the discrete norms (2.165). Let
fors e R

-~ 1/2
Iolls := | Y 229 11(P; — Pj-nvlli, (2.173)
J=Jo
which by the relations (2.164) is also equivalent to
o 1/2
vy= [ Y 22|, v) IIZ(V,) . (2.174)
Jj=Jjo—1
In this notation, (2.170) and (2.172) read
lolles ~ lvlls ~ v . (2.175)

In terms of such discrete norms, Jackson and Bernstein estimates hold with
constants equal to one [51], which turns out to be useful later in Sect. 2.5.2.

Lemma 1l Let {P; }?ijo and {Qsj }?ijo be uniformly stable, refinable, biorthogonal
collections and let the P; be defined by (2.160). Then the estimates

v—Pjv g < 27UFDE=D Y e HY, <5 <d, (2.176)
and

<2070y 0, v eS@)), 5 <s<d, (2.177)

are valid, and correspondingly for the dual side.
The same results hold for the norm || - || defined in (2.173).

Reverse Cauchy-Schwarz Inequalities The biorthogonality condition (2.147)
implies together with direct and inverse estimates the following reverse Cauchy—
Schwarz inequalities for finite-dimensional spaces [28]. It will be one essential
ingredient for the discussion of the LBB condition in Sect. 2.5.2.

Lemma 2 Let the assumptions in Theorem 6 be valid such that the norm equiv-
alence (2.170) holds for (—&, o) with o,fr defined in (2.169). Then for any v €
S(@;) there exists some V* = v*(v) € S(P;) such that

lollas 19 g-s < (v, 0%) (2.178)

~

forany 0 < s < min(o, 7).
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The proof of this result given in [28] for s = 1/2 in terms of the projectors P;
defined in (2.160) and corresponding duals PJ’. immediately carries over to more
general s. Recalling the representation (2.161) in terms of wavelets, the reverse
Cauchy inequality (2.178) attains the following sharp form.

Lemma 3 ([51]) Let the assumptions of Lemma 1 hold. Then for every v € S(®;)
there exists some v* = v*(v) € S(qu) such that

vy U L = (v, 7%) (2.179)

forany 0 <s < min(o, 7).

Proof Every v € §(®;) can be written as
j—1
v = Z 25 Z vr,kwr,k-
r=jo—1 keV,
Setting now
j—1
vt = Z 27 Z vr,kwr,k
r=jo—1 keV,

with the same coefficients v;, the definition of -  yields by biorthogonal-
ity (2.159)

j—1
~ 2
L v* —s = Z Z |vj,k| .

r=jo—1keV,
Combining this with the observation
j—1
~ 2
W o) = > Y vl
r=jo—1kev,
confirms (2.179). O

Remark 9 The previous proof reveals that the identity (2.179) is also true for
elements from infinite-dimensional spaces H* and (H*)" for which ¥ and ¥ are
Riesz bases.

Biorthogonal Wavelets on R The construction of biorthogonal spline-wavelets on
R from [18] for Ly, = L>(R) employs the multiresolution framework introduced at
the beginning of this section. There the ¢; ; are generated through the dilates and
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translates of a single function ¢ € L,
bik =2"p27 - —k). (2.180)

This corresponds to the idea of a uniform virtual underlying grid, explaining the
terminology uniform refinements. B-Splines on uniform grids are known to satisfy
refinement relations (2.119) in addition to being compactly supported and having
L,-stable integer translates. For computations, they have the additional advantage
that they can be expressed as piecewise polynomials. In the context of variational
formulations for second order boundary value problems, a well-used example are
the nodal finite elements ¢; ; generated by the cardinal B-Spline of order two,
i.e., the piecewise linear continuous function commonly called the ‘hat function’.
For cardinal B-Splines as generators, a whole class of dual generators ¢ ik (of
arbitrary smoothness at the expense of larger supports) can be constructed which are
also generated by one single function ¢ through translates and dilates. By Fourier
techniques, one can construct from ¢, & then a pair of biorthogonal wavelets V, v
whose dilates and translates built as in (2.180) constitute Riesz bases for L, (R).

By taking tensor products of these functions, one can generate biorthogonal
wavelet bases for L, (R").

Biorthogonal Wavelets on Domains Some constructions that exist by now have
as a core ingredient tensor products of one-dimensional wavelets on an interval
derived from the biorthogonal wavelets from [18] on R. On finite intervals in R, the
corresponding constructions are usually based on keeping the elements of @, fﬁj
supported inside the interval while modifying those translates overlapping the end
points of the interval so as to preserve a desired degree of polynomial exactness.
A general detailed construction satisfying all these requirements has been proposed
in [34]. Here just the main ideas for constructing a biorthogonal pair @;, ffj and
corresponding wavelets satisfying the above requirements are sketched, where we
apply the techniques derived at the beginning of this section.

We start out with those functions from two collections of biorthogonal generators
CDJR, @]]R for some fixed j > jp living on the whole real line whose support has
nonempty intersection with the interval (0, 1). In order to treat the boundary effects
separately, we assumed that the coarsest resolution level jj is large enough so that,
in view of (2.117), functions overlapping one end of the interval vanish at the other.
One then leaves as many functions from the collection QDE&, @R living in the interior
of the interval untouched and modifies only those near the interval ends. Note that
keeping just the restrictions to the interval of those translates overlapping the end
points would destroy stability (and also the cardinality of the primal and dual basis
functions living on (0, 1) since their supports do not have the same size). Therefore,
modifications at the end points are necessary; also, just discarding them from the
collections (2.115), (2.146) would produce an error near the end points. The basic
idea is essentially the same for all constructions of orthogonal and biorthogonal
wavelets on R adapted to an interval. Namely, one takes fixed linear combinations
of all functions in CDJR, é]]R living near the ends of the interval in such a way
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that monomials up to the exactness order are reproduced there and such that the
generator bases have the same cardinality. Because of the boundary modifications,
the collections of generators are there no longer biorthogonal. However, one can
show in the case of cardinal B-Splines as primal generators (which is a widely used
class for numerical analysis) that biorthogonalization is indeed possible. This yields
collections denoted by @j(.o’l), 05;0’1) which then satisfy (2.147) on (0, 1) and all
assumptions required in Proposition 2.

For the construction of corresponding wavelets, first an initial stable completion

v

M; 1 is computed by applying Gaussian eliminations to factor M; ¢ and then to
find a uniformly stable inverse of M ;- Here we exploit that for cardinal B-Splines as
generators the refinement matrices M ¢ are totally positive. Thus, they can be stably
decomposed by Gaussian elimination without pivoting. Application of Proposition 2
then gives the corresponding biorthogonal wavelets lllj(o’l), lf/j(o’l) on (0, 1) which
satisfy the requirements in Corollary 2. It turns out that these wavelets coincide in
the interior of the interval again with those on all of R from [18]. An example of
the primal wavelets for d = 2 generated by piecewise linear continuous functions
is displayed in Fig. 2.2 on the left. After constructing these basic versions, one can
then perform local transformations near the ends of the interval in order to improve
the condition or L, stability constants, see [11, 62] for corresponding results and
numerical examples.

We display spectral condition numbers for the FWT for two different construc-
tions of biorthogonal wavelets on the interval computed in [62] in Table 2.4. The
first column denotes the finest level on which the spectral condition numbers of the
FWT are computed. The next column contains the numbers for the construction of
biorthogonal spline-wavelets on the interval from [34] for the case d = 2, d=4
while the last column displays the numbers for a scaled version derived in [11]. We
will see later in Sect. 2.5.1 how the transformation T is used for preconditioning.

Along these lines, also biorthogonal generators and wavelets with homogeneous
(Dirichlet) boundary conditions can be constructed. Since the q§/(0,1) are locally
near the boundary monomials which all vanish at 0, 1 except for one, removing the
one from CD](.O’I) which corresponds to the constant function produces a collection
of generators with homogeneous boundary conditions at 0, 1. In order for the

Table 2.4 Computed spectral condition numbers [62] for the Fast Wavelet Transform for
different constructions of biorthogonal wavelets on the interval [11, 34]

i 2 (Tpku) k2(TB)
k2 (Tpku) 2 (Tg)
4 4.743e+00 4.640e+00
s 6.2216400 6.0246+00 11 1.097e+01 8.011e+00
221e+ .024e+
12 1.103e+01 8.034e+00
6 8.154e+00 6.860e+00
13 1.106e+01 8.046e+00
7 9.473e+00 7.396e+00 14 11076401 8.051e400
. (& B €
8 1.023e+01 7.707e+00
15 1.108e+01 8.054e+00
9 1.064e+01 7.876e+00
16 1.108e+01 8.056e+00

10 1.086e+01 7.965e+00
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moment conditions (2.92) still to hold for the ¥;, the dual generators have to have
complementary boundary conditions. A corresponding construction has been carried
out in [30] and implemented in [11]. Homogeneous boundary conditions of higher
order can be generated accordingly.

By taking tensor products of the wavelets on (0, 1), in this manner biorthogonal
wavelets for Sobolev spaces on (0, 1) with or without homogeneous boundary
conditions are obtained. This construction can be further extended to any other
domain or manifold which is the image of a regular parametric mapping of the unit
cube. Some results on the construction of wavelets on manifolds are summarized in
[25]. There are essentially two approaches. The first idea is based on domain decom-
position and consists in ‘gluing’ generators across interelement boundaries, see, e.g.,
[13, 31]. These approaches all have in common that the norm equivalences (2.172)
for H® = H*(I") can be shown to hold only for the range —1/2 < s < 3/2, due to
the fact that duality arguments apply only for this range because of the nature of a
modified inner product to which biorthogonality refers. The other approach which
overcomes the above limitations on the ranges for which the norm equivalences hold
has been developed in [32] based on previous characterizations of function spaces
as Cartesian products from [15]. The construction in [32] has been optimized and
implemented to construct wavelet bases on the sphere in [56, 64], see Fig. 2.2.

Of course, there are also different attempts to construct wavelet bases with the
above properties without using tensor products. A construction of biorthogonal
spline-wavelets on triangles introduced by [68] has been implemented in two
spatial dimensions with an application to the numerical solution of a linear elliptic
boundary value problem in [48].

25

N

0
_0.5\/ \/\/ \></
03 04 05 06 07 08

0 01 02 0.9 1

Fig. 2.2 Primal wavelets for d = 2 on [0, 1] (left) and on a sphere (right) from [64]
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2.5 Problems in Wavelet Coordinates

2.5.1 Elliptic Boundary Value Problems

We now consider the wavelet representation of the elliptic boundary value problem
from Sect.2.3.2. Let for J# given by (2.41) or (2.42) W, be a wavelet basis
with corresponding dual ¥, which satisfies the properties (R), (L) and (CP)
from Sect.2.4.1. Following the recipe from Sect.2.4.3, expanding y = y’ ¥,
f = tT¥ , and recalling (2.45), the wavelet representation of the elliptic boundary
value problem (2.47) is given by

Ay =f (2.181)
where
A:=aWyp, Yy, f:= (Y, f). (2.182)
Then the mapping property (2.46) and the Riesz basis property (R) yield the
following fact.
Proposition 3 The infinite matrix A is a boundedly invertible mapping from €, =
U (Il yp) into itself, and there exists finite positive constants ca < Ca such that

callvll = Av]| < Callvll, v e bo(llLy). (2.183)

Proof For any v € . with coefficient vector v € £, we have by the lower
estimates in (2.89), (2.46) and the upper inequality in (2.94), respectively,
-1 -1,.-1 _ 1 -1 T -2 —1
IVl < coplvlle = cppey 1AVILE = cppey AV Worllr < c ey AV

where we have used the wavelet representation (2.111) for A. Likewise, the converse
estimate

IAV]| < CorllAvl e < CorCallvlle < CopCallvl

follows by the lower inequality in (2.94) and the upper estimates in (2.46) and (2.89).
The constants appearing in (2.183) are therefore identified as cp := céch and

CA = CéfCA- [l

In the present situation where A is defined via the elliptic bilinear form a(-, -),
Proposition 3 entails the following result with respect to preconditioning. Let for
I = I, the symbol A denote any finite subset of the index set . For the
corresponding set of wavelets ¥, := {y, : XA € A} denote by Sy = span¥,
the respective finite-dimensional subspace of .7. For the wavelet representation of
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A in terms of ¥y,
Ajpi=aWa,¥a), (2.184)

we obtain the following result.

Proposition 4 If a(-, ) is F-elliptic according to (2.44), the finite matrix A 4 is
symmetric positive definite and its spectral condition number is bounded uniformly
in A, ie.,

Ca

k2(Ap) < 7, (2.185)
cA

where cp, Ca are the constants from (2.183).
Proof Clearly, since A 4 is just a finite section of A, we have |[A4|| < ||A]. On
the other hand, by assumption, a(, -) is #-elliptic which entails that a(-, -) is also

elliptic on every finite subspace Sy C . Thus, we infer ||AZl | < IA~Y], and we
have

callvall < lAavall < Calivall, VA € Sa. (2.186)
Together with the definition k2(A4) = |Aall ||A;‘1|| we obtain the claimed
estimate. (I

In other words, representations of A with respect to properly scaled wavelet bases
for 77 entail well-conditioned system matrices A 4 independent of A. This in turn
means that the convergence speed of an iterative solver applied to the corresponding
finite system

AAyA = fA (2.187)

does not deteriorate as A — 00.

In summary, ellipticity implies stability of the Galerkin discretizations for any
set A C [I. This is not the case for finite versions of the saddle point problems
discussed in Sect. 2.5.2.

Fast Wavelet Transform Let us briefly summarize how in the situation of uniform
refinements, i.e., when S(®;) = S(¥”), the Fast Wavelet Transformation (FWT)
T can be used for preconditioning linear elliptic operators, together with a diagonal
scaling induced by the norm equivalence (2.172) [27]. Here we recall the notation
from Sect. 2.4.4 where the wavelet basis is in fact the (unscaled) anchor basis from
Sect.2.4.1. Thus, the norm equivalence (2.89) using the scaled wavelet basis ¥y is
the same as (2.172) in the anchor basis. Recall that the norm equivalence (2.172)
implies that every v € H® can be expanded uniquely in terms of the ¥ and its
expansion coefficients v satisfy

Iollas ~ DV,
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where D’ is a diagonal matrix with entries ij, 0.k = 2598 j18k g For H# C
H'(£2), the case s = 1 is relevant.

In a stable Galerkin scheme for (2.43) with respect to S’y = S(W,), we have
therefore already identified the diagonal (scaling) matrix D; consisting of the finite
portion of the matrix D = D! for which jo— 1< j < J — 1. The representation of
A with respect to the (unscaled) wavelet basis ¥ can be expressed in terms of the
Fast Wavelet Transform T, that is,

', Aty = 0 (®,, AD)) T, (2.188)

where @ is the single-scale basis for S(¥”). Thus, we first set up the operator
equation as in Finite Element settings in terms of the single-scale basis @;.
Applying the Fast Wavelet Transform T; together with D yields that the operator

Ay = D' 1T (0,, A®)) T, D! (2.189)

has uniformly bounded condition numbers independent of J. This can be seen by
combining the properties of A according to (2.46) with the norm equivalences (2.89)
and (2.94).

It is known that the boundary adaptations of the generators and wavelets aggra-
vate the absolute values of the condition numbers. Nevertheless, these constants can
be greatly reduced by sophisticated biorthogonalizations of the boundary adapted
functions [11]. Numerical tests confirm that the absolute constants can further be
improved by taking instead of D;l the inverse of the diagonal of (W7, Aw/)
for the scaling in (2.189) [11, 17, 62]. Table 2.5 displays the condition numbers
for discretizations of an operator in two spatial dimensions for boundary adapted

biorthogonal spline-wavelets in the case d = 2, d = 4 with such a scaling.

2.5.2 Saddle Point Problems Involving Boundary Conditions

As in the previous situation, we first derive an infinite wavelet representation of the
saddle point problem introduced in Sect. 2.3.3.

Let for # = Y x Q with Y = HY (), 0 = (H'*(I'))’ two collections
of wavelet bases ¥y, Wp be available, each satisfying (R), (L) and (CP), with
respective duals Py, lf/Q. Similar to the previous case, we expand y = y’ ¥y and
p=p’ ¥ and test with the elements from ¥y, Y. Then (2.54) attains the form

. (i) - (ﬁ BoT> @ - @ (2.190)
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where

A= (Uy, AYy) f:=(Py, f),
(2.191)
B .=

(WQ, BYy), g = ('J/Q, g).

In view of the above assertions, the operator L is an £;-automorphism, i.e., for every
(v,q) € &o(I) = £,(fly x llp) we have
(V) H (2.192)
q

WS W

with constants cr,, Ct, only depending on ¢ ¢, C & from (2.59) and the constants in
the norm equivalences (2.89) and (2.94).

For saddle point problems with an operator L satisfying (2.192), finite sections
are in general not uniformly stable in the sense of (2.186). In fact, for discretizations
on uniform grids, the validity of the corresponding mapping property relies on a
suitable stability condition, see e.g. [9, 42]. The relevant facts derived in [28] are as
follows.

The bilinear form a(-, -) defined in (2.40) is for ¢ > O elliptic on all of ¥ =
H! (£2) and, hence, also on any finite-dimensional subspace of Y. Let there be two
multiresolution analyses % of H 1(£2) and 2 of Q where the discrete spaces are
Y; C H'(2)and Q4 =: Q; C (H'Y2(I"))’. With the notation from Sect. 2.4.4 and
in addition superscripts referring to the domain on which the functions live, these
spaces are represented by

‘L

Y = S(@F) = SWI9), ¥; = S(@F) = S,

- - - (2.193)
Q¢ = S@F) =SWhT), Q¢ = S@F) = SwhD).

Here the indices j and ¢ refer to mesh sizes on the domain and the boundary,
hg ~277 and hp ~27¢.

The discrete inf-sup condition, the LBB condition, for the pair Y;, Q¢ requires that
there exists a constant 81 > 0 independent of j and £ such that

b
inf  sup (v q) > B >0 (2.194)

a€Q¢ vey; IVlgrc@y lall iy

holds. We have investigated in [28] the general case in arbitrary spatial dimensions
where the Q, are not trace spaces of Y;. Employing the reverse Cauchy-Schwarz
inequalities from Sect.2.4.4, one can show that (2.194) is satisfied provided that
hr(h _Q)’1 =2/t > ¢o > 1, similar to a condition which was known for bivariate
polygons and particular finite elements [2, 41].
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Table 2.5 Spectral
condition numbers of the
operators A and L for
different constructions of
biorthogonal wavelets on the
interval [62]

k2(Apku)  Kk2(AB) x2(Lpku)  x2(Lpku)
5.195e+02 1.898e+01 1.581e+02 4.147e+01
6.271e+02 1.066e+02 1.903e+02 1.050e+02
6.522e+02 1.423e+02 1.997e+02 1.399e+02
6.830e+02 1.820e+02 2.112e+02 1.806e+02
7.037e+02 2.162e+02 2.318e+02 2.145e+02
7.205e+02 2.457e+02 2.530e+02 2.431e+02
7.336e+02  2.679e+02 2.706e+02 2.652e+02

O 00 1 N B W~

It should be mentioned that the obstructions caused by the LBB condition can be
avoided by means of stabilization techniques proposed, e.g., in [67] where, however,
the location of the boundary of 2 relative to the mesh is somewhat constrained.
Another stabilization strategy based on wavelets has been investigated in [6]. A
related approach which systematically avoids restrictions of the LBB type is based
on least squares techniques [35].

It is particularly interesting that adaptive schemes based on wavelets like the one
in Sect. 2.6.2 can be designed in such a way that the LBB condition is automatically
enforced which was first observed in [22]. More on this subject can be found in [26].

In order to get an impression of the value of the constants for the condition
numbers for A 4 in (2.185) and the corresponding ones for the saddle point operator
on uniform grids (2.192), we mention an example investigated and implemented in
[62]. In this example, £2 = (0, 1)2 and I" is one face of its boundary. In Table 2.5
from [62], the spectral condition numbers of A and L with respect to two different
constructions of wavelets for the case d = 2 and d = 4 are displayed. We see next
to the first column in which the refinement level j is listed the spectral condition
numbers of A with the wavelet construction from [34] denoted by Apgy and with
the modification introduced in [11] and a further transformation [62] denoted by
Ag. The last columns contain the respective numbers for the saddle point matrix L
where k2 (L) := /k (LTL).

2.5.3 Control Problems: Distributed Control

We now discuss appropriate wavelet formulations for PDE-constrained control
problems with distributed control as introduced in Sect.2.3.5. Let for any space
¥V e {H,Z, %} Wy denote a wavelet basis with the properties (R), (L), (CP) for
¥ with dual basis ¥y .

Let 2, 7% satisfy the embedding (2.76). In terms of wavelet bases, the corre-
sponding canonical injections correspond in view of (2.96) to a multiplication by a
diagonal matrix. That is, let D 2+, Dy be such that

Uy =DoyWy, Yy=Dy¥y. (2.195)
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Since & possibly induces a weaker and % a stronger topology, the diagonal
matrices D o, Dy are such that their entries are nondecreasing in scale, and there is
a finite constant C such that

DL ID' I < C. (2.196)

For instance, for H = H%, % = HP ,orfor H = H*, % =H ?,0<B <a,
D 4, Dy have entries (D), 5 = (Dy)i s = (DY P), 5 = 2@ PR
We expand y in ¥y and u in a wavelet basis Wy, for % C H’,

u=uvy = O 0wy, (2.197)
Following the derivation in Sect. 2.5.1, the linear constraints (2.75) attain the form
Ay=f+D,'u (2.198)
where
A :=aWu, ¥n), f:= (Yu, f). (2.199)

Recall that A has been assumed to be symmetric. The objective functional (2.80)
is stated in terms of the norms || - || and || - |4 . For an exact representation
of these norms, corresponding Riesz operators Rs and Ry, defined analogously
to (2.106) would come into play which may not be explicitly computable if 2, %
are fractional Sobolev spaces. On the other hand, as mentioned before, such a cost
functional in many cases serves the purpose of yielding unique solutions while there
is some ambiguity in its exact formulation. Hence, in search for a formulation which
best supports numerical realizations, it is often sufficient to employ norms which are
equivalent to || - || 2z and || - ||¢, . In view of the discussion in Sect. 2.4.2, we can work
for the norms || - || #, || - |l% only with the diagonal scaling matrices D* induced
by the regularity of 2, %/, or we can in addition include the Riesz map R defined
in (2.101). In the numerical studies in [11], a somewhat better quality of the solution
is observed when R is included. In order to keep track of the appearance of the Riesz
maps in the linear systems derived below, we choose here the latter variant.
Moreover, we expand the given observation function y, € Z as

Y = (Vs li’ff)‘k,@’ =: (D?jy*)T'Pg = yf'lfy. (2.200)

The way the vector y, is defined here for notational convenience may by itself
actually have infinite norm in ¢;. However, its occurrence will always include
premultiplication by D;j} which is therefore always well-defined. In view of (2.110),
we obtain the relations

Iy = yellz ~ IRVZD (y — yll ~ DL (y — yall. (2.201)
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Note that here R = (¥, &) (and not R™") comes into play since y, y, have been
expanded in a scaled version of the primal wavelet basis ¥ . Hence, equivalent norms
for || - || 22 may involve R. As for describing equivalent norms for || - |4, recall that
u is expanded in the basis Wy for U ¢ H'. Consequently, R™! is the natural matrix
to take into account when considering equivalent norms, i.e., we choose here

lully ~ IR™ul|. (2.202)

Finally, we formulate the following control problem in (infinite) wavelet coordi-
nates.
(DCP) For given data D;j}y* € bo(ll#),f € Lr(Iy), and weight parameter @ > 0,
minimize the quadratic functional

Jy.w =} IRV2D(y -yl + 4§ IR/ 2ul? (2.203)
over (y,u) € {r(llg) X £2(l ) subject to the linear constraints
Ay =f+Dj'u. (2.204)

Remark 10 Problem (DCP) can be viewed as (discretized yet still infinite-dimen-
sional) representation of the linear-quadratic control problem (2.74) together
with (2.75) in wavelet coordinates in the following sense. The functional J (y,w
defined in (2.203) is equivalent to the functional J(y, #) from (2.74) in the sense
that there exist constants 0 < ¢; < Cj < o0 such that

csdy,w) < J(y,u) < Cr Iy, v (2.205)

holds for any y = y’¥y € H, given y, = (DZle*)TWg € % and any
u = u' Wy € %. Moreover, in the case of compatible data y, = A’v1 f yielding
J (v, u) = 0, the respective minimizers coincide, and y, = A lf yields J(y,u) = 0.
In this sense the new functional (2.203) captures the essential features of the model
minimization functional.

Once problem (DCP) is posed, we can apply variational principles to derive
necessary and sufficient conditions for a unique solution. All control problems
considered here are in fact simple in this regard, as we have to minimize a quadratic
functional subject to linear constraints, for which the necessary conditions are also
sufficient. In principle, there are two ways to derive the optimality conditions for
(DCP). We have encountered in Sect. 2.3.5 already the technique via the Lagrangian.

We define for (DCP) the Lagrangian introducing the Lagrange multiplier, adjoint
variable or adjoint state p as

Lagr(y, p.w) :=J(y,u) + (p. Ay — f — D} 'u). (2.206)
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Then the KKT conditions § Lagr(w) = 0 for w = p, y, u are, respectively,

Ay= f+D'u, (2.207a)
ATp=-D,RD} (y —y.) (2.207b)
oRlu= D.'p. (2.207¢)

The first system resulting from the variation with respect to the Lagrange multiplier
always recovers the original constraints (2.204) and will be referred to as the primal
system or the state equation. Accordingly, we call (2.207b) the adjoint or dual
system, or the costate equation. The third Eq. (2.207¢) is sometimes denoted as the
design equation. Although A is symmetric, we continue to write A’ for the operator
of the adjoint system to distinguish it from the primal system.

The coupled system (2.207) later is to be solved. However, in order to derive
convergent iterations and deduce complexity estimates, a different formulation will
be advantageous. It is based on the fact that A is according to Proposition 3 a
boundedly invertible mapping on £». Thus, we can formally invert (2.198) to obtain
y=A"f+ A_lD;u. Substitution into (2.203) yields a functional depending only
onu,

J) ==} |RY2D}) (A—lng,lu — (ys — A—lt)) 12+ 4 IRV2u)2. (2.208)

Employing the abbreviations

Z:= R'’DJ/AT'D, (2.209a)
G:=-R'/D} A -y, (2.209b)

the functional simplifies to
J) = |1Zu - G|? + ¢ RV 2u|2. (2.210)

Proposition 5 ([53]) The functional J is twice differentiable with first and second
variation

sJw) = (ZTZ+ oR Hu - 727G, 82Ju)=Z"Z + R, (2.211)

In particular, J is convex so that a unique minimizer exists.

Setting

Q:=Z"Z+wR™', g:=2"G, (2.212)
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the unique minimizer u of (2.210) is given by solving

8J(m) =0 (2.213)
or, equivalently, the system

Qu=g. (2.214)

By definition (2.212), Q is a symmetric positive definite (infinite) matrix. Hence,
finite versions of (2.214) could be solved by gradient or conjugate gradient iterative
schemes. As the convergence speed of any such iteration depends on the spectral
condition number of Q, it is important to note that the following result.

Proposition 6 The (infinite) matrix Q is uniformly bounded on €3, i.e., there exist
constants 0 < cq < Cq < o0 such that

cQ vl = 1Qvll = Cq IV, v € L. (2.215)

The proof follows from (2.46) and (2.196) [29]. Of course, in order to make
such iterative schemes for (2.214) practically feasible, the explicit inversion of A
in the definition of Q has to be avoided and replaced by an iterative solver in
turn. This is where the system (2.207) will come into play. In particular, the third
equation (2.207¢) has the following interpretation which will turn out to be very
useful later.

Proposition 7 If we solve for a given control vector u successively (2.204) for'y
and (2.207b) for p, then the residual for (2.214) attains the form

Qu-g=oR 'u-D,'p. (2.216)

Proof Solving consecutively (2.204) and (2.207b) and recalling the definitions of
Z, g (2.209a), (2.212) we obtain

D,'p=-D,'(A"DLRD (v - y.)
=-Z"R'’D,} AT+ A'D,u—y,)
T TR1/2n-1A-1n-!
= Z'G-Z'R'’D /A 'D,'u
= g—Z"7u.
Hence, the residual Qu — g attains the form
Qu—-g=Z"Z+oR Hu—g=0wR u— D;Ilp,

where we have used the definition of Q from (2.212). [l
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Having derived the optimality conditions (2.207), the next issue is their efficient
numerical solution. In view of the fact that the system (2.207) still involves infinite
matrices and vectors, this also raises the question how to derive computable finite
versions. By now we have investigated two scenarios.

The first version with respect to uniform discretizations is based on choosing
finite-dimensional subspaces of the function spaces under consideration. The second
version which deals with adaptive discretizations is actually based on the infinite
system (2.207). In both scenarios, a fully iterative numerical scheme for the solution
of (2.207) is designed along the following lines. The basic iteration scheme is a
gradient or conjugate gradient iteration for (2.214) as an outer iteration where each
application of Q is in turn realized by solving the primal and the dual system (2.204)
and (2.207b) also by a gradient or conjugate gradient method as inner iterations.

For uniform discretizations for which we wanted to test numerically the role of
equivalent norms and the influence of Riesz maps in the cost functional (2.203), we
have used in [12] as central iterative scheme the conjugate gradient (CG) method.
Since the interior systems are only solved up to discretization error accuracy, the
whole procedure may therefore be viewed as an inexact conjugate gradient (CG)
method. We stress already at this point that the iteration numbers of such a method
do not depend on the discretization level as finite versions of all involved operators
are also uniformly well-conditioned in the sense of (2.215). In each step of the outer
iteration, the error will be reduced by a fixed factor p. Combined with a nested
iteration strategy, it will be shown that this yields an asymptotically optimal method
in the amount of arithmetic operations.

Starting from the infinite coupled system (2.207), we have investigated in [29]
adaptive schemes which, given any prescribed accuracy ¢ > 0, solve (2.207) such
that the error for y, u, p is controlled by €. Here we have used a gradient scheme as
basic iterative scheme since it somehow simplifies the analysis, see Sect. 2.6.2.

2.5.4 Control Problems: Dirichlet Boundary Control

Having derived a representation in wavelet coordinates for both the saddle point
problem from Sect. 2.3.3 and the PDE-constrained control problem in the previous
section, it is straightforward to find also an appropriate representation of the control
problem with Dirichlet boundary control introduced in Sect.2.3.6. In order not to
be overburdened with notation, we specifically choose the control space on the
boundary as % := Q(= (H 1/ 2(F ))’). For the more general situation covered
by (2.84), a diagonal matrix with nondecreasing entries like in (2.195) would come
into play to switch between %/ and Q. Thus, the exact wavelet representation of
the constraints (2.83) is given by the system (2.190), where we exchange the given
Dirichlet boundary term g by u in the present situation to express the dependence
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on the control in the right hand side, i.e.,

Q-EDE-0 e
p B 0 p u

The derivation of a representer of the initial objective functional (2.82) is under
the embedding condition (2.84) |[v]|z =< |lv|ly for v € Y now the same as in the
previous section, where all reference to the space H is to be exchanged by reference
to Y. We end up with the following minimization problem in wavelet coordinates

for the case of Dirichlet boundary control. (DCP) For given data D;_Z,} Vi € Lo o),
f € {r(lly), and weight parameter @ > 0, minimize the quadratic functional

Jv.w = Y IRY2D (y — y) 2 + & R/ 2u)? (2.218)

over (y,u) € £r(lly) x €>(lly) subject to the linear constraints (2.217),

f
13- )
p u
The corresponding Karush-Kuhn-Tucker conditions can be derived by the same
variational principles as in the previous section by defining a Lagrangian in terms
of the functional J(y, u) and appending the constraints (2.198) with the help of

additional Lagrange multipliers (z, )7, see [53]. We obtain in this case a system of
coupled saddle point problems

L <y) = <f> (2.2192)
P u

-1 -1
LT (;) _ <—a)fo RDOg (y-— y*)> (2.2190)

u=pu. (2.219c¢)

Again, the first system appearing here, the primal system, are just the con-
straints (2.198) while (2.95) will be referred to as the dual or adjoint system.
The specific form of the right hand side of the dual system emerges from the
particular formulation of the minimization functional (2.218). The (here trivial)
equation (2.219c¢) stems from measuring u just in ¢, representing measuring the
control in its natural trace norm. Instead of replacing u by u in (2.95) and trying to
solve the resulting equations, (2.219c) will be essential to devise an inexact gradient
scheme. In fact, since L in (2.198) is an invertible operator, we can rewrite j (y,w)
by formally inverting (2.198) as a functional of u, that is, J(u) := j (y(u), u) as
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above. The following result will be very useful for the design of the outer—inner
iterative solvers

Proposition 8 The first variation of J satisfies
sJ(u) = u—p, (2.220)

where (u, p) are part of the solution of (2.219). Moreover, J is convex so that a
unique minimizer exists.

Hence, Eq.(2.219c¢) is just J(u) = 0. For a unified treatment below of both
control problems considered in these notes, it will be useful to rewrite (2.219c)
like in (2.214) as a condensed equation for the control u alone. We formally
invert (2.217) and (2.219b) and obtain

Qu=g¢g (2.221)
with the abbreviations
Q:=2"Z+0wl, g:=7"(y,—ToL'Igf (2.222)
and
Z :=ToL '1p, Ig = <(I)> T := (T 0). (2.223)

Proposition 9 The vector u as part of the solution vector (y, p, z, g, u) of (2.219)
coincides with the unique solution u of the condensed equations (2.221).

2.6 Iterative Solution

Each of the four problem classes discussed above lead to the problem to finally solve
a system

5J(q@ =0 (2.224)
or, equivalently, a linear system
Mq = b, (2.225)

where M : £, — {3 is a (possibly infinite) symmetric positive definite matrix
satisfying

em|vll < IMv]| < Cmllvll, v e £, (2.226)
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for some constants 0 < cpyp < Cm < o0 and where b € £ is some given right hand
side.
A simple gradient method for solving (2.224) is

Qit1 =k — & 8J(qr), k=0,1,2,... (2.227)

with some initial guess qo. In all of the previously considered situations, it has been
asserted that there exists a fixed parameter «, depending on bounds for the second
variation of J, such that (2.227) converges and reduces the error in each step by at
least a fixed factor p < 1, i.e.,

lg = dir1ll = pllg —qill, k=0,1,2,..., (2.228)
where p is determined by
o =|I—aM| < 1.

Hence, the scheme (2.227) is a convergent iteration for the possibly infinite
system (2.225). Next we will need to discuss how to reduce the infinite systems
to computable finite versions.

2.6.1 Finite Systems on Uniform Grids

Let us first consider finite-dimensional trial spaces with respect to uniform dis-
cretizations. For each of the Hilbert spaces H, this means in the wavelet setting
to pick the index set of all indices up to some highest refinement level J, i.e.,

Ijg:={ellyg:|Al<J}Cly

satisfying Nj g := #l[; g < oo. The representation of operators is then built as in
Sect. 2.4.3 with respect to this truncated index set which corresponds to deleting all
rows and columns that refer to indices A such that |A| > J, and correspondingly for
functions. There is by construction also a coarsest level of resolution denoted by jo.

Computationally the representation of operators according to (2.111) is in the
case of uniform grids always realized as follows. First, the operator is set up in terms
of the generator basis on the finest level J. This generator basis simply consists of
tensor products of B-Splines, or linear combinations of these near the boundaries.
The representation of an operator in the wavelet basis is then achieved by applying
the Fast Wavelet Transform (FWT) which needs &'(N;, i) arithmetic operations and
is therefore asymptotically optimal, see, e.g., [24, 34, 51] and Sect.2.4.4.



2 Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs 141

In order not to overburden the notation, let in this subsection the resulting system
for N = N m unknowns again be denoted by

Mq = b, (2.229)

where now M : RY — R is a symmetric positive definite matrix satisfying (2.226)
on RV It will be convenient to abbreviate the residual using an approximation § to
q for (2.229) as

RESD({) := Mg — b. (2.230)

We will employ a basic conjugate gradient method that iteratively computes an
approximate solution qg to (2.229) with given initial vector qo and given tolerance
& > 0 such that

Mgk — bl = [RESD(qx) |l <&, (2.231)

where K denotes the number of iterations used. Later we specify ¢ depending on
the discretization for which (2.229) is set up. The following scheme CG contains a
routine APP(nx, M, di) which in view of the problem classes discussed above is to
have the property that it approximately computes the product Mdy up to a tolerance
Nk = nk(¢) depending on ¢, i.e., the output my of APP(n;, M, dy) satisfies

[mg — Mdg| < k. (2.232)

For the cases where M = A, this is simply the matrix-vector multiplication Mdy.
For the situations where M may involve the solution of an additional system, this
multiplication will be only approximative. The routine is as follows.

CG [e, qo, M, b] — qx

(1) SETdp :=b —Mqp AND g := —do. LET k = 0.
(I1) WHILE |[rg] > ¢

my = APP(n(e), M, dy)

(o) ey
Xk = k+1 = Qi + oxdy
(dp) T my Qi+ q ¢
(1) Treat
Ti4+1 = Iy + opemy Bi = + , + (2.233)
(rg) ' ry

diy1 i= =11 + Brdy

k =k+1

(r) SET K =k — 1.
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Let us briefly discuss in the case M = A that the final iterate qx indeed
satisfies (2.231). From the newly computed iterate qx4+1 = qx + oxdy it follows
by applying M on both sides that Mqx+; — b = Mqx — b + oxMd; which is the
same as RESD(qx+1) = RESD(qx) + o Mdy. By the initialization for ry used above,
this in turn is the updating term for ry, hence, ry = RESD(qx). After the stopping
criterion based on ry is met, the final iterate qx observes (2.231).

The routine CG computes the residual up to the stopping criterion &. From the
residual, we can in view of (2.226) estimate the error in the solution as

_ _ &
lg—qkll = IM~' (b —Mgg)| < IM || IRESD(qk)Il < o (2.234)

that is, it may deviate from the norm of the residual from a factor proportional to the
smallest eigenvalue of M.

Distributed Control Let us now apply the solution scheme to the situation
from Sect.2.5.3 where Q now involves the inversion of finite-dimensional sys-
tems (2.207a) and (2.207b). The material in the remainder of this subsection is
essentially contained in [12].

We begin with a specification of the approximate computation of the right hand
side b which also contains applications of A~!.
RHS [¢, A, f,y«] — b,

1 CG [gé C(;Acé(;, 0,A,f] - by

(i) CG [52¢,0,AT, —D,'RD ! (b; — y.)] — by
(1) by :=Dy'by.

The tolerances used within the two conjugate gradient methods depend on
the constants ca, C, Co from (2.46), (2.196) and (2.104), respectively. Since the
additional factor c5 (CCo)~2 in the stopping criterion in step (I) in comparison to
step (II) is in general smaller than one, this means that the primal system needs to
be solved more accurately than the adjoint system in step (II).

Proposition 10 The result by of RHS [¢, A, £, y.] satisfies
Ib; —bj| <¢. (2.235)
Proof Recalling the definition (2.212) of b, step (111) and step (11) yield

Ib; —b|| < [ID'|l b2 — Dyb]|
< CIA [ |ATb, —=D3/RDL AT —bi+b1 ¥yl (530

C [ca oyl A1
A(zcuungmng(A £-bpl).
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Employing the upper bounds for D,}l and R, we arrive at

C (ca 2,2 1A—1
- ATE-A
I = bl < - (Se6+C2CHIAT - Aby)
2.237
_Cfea +C2C§CA cA B @237
Sl o 2CC2C§§ - ¢
O

Accordingly, an approximation my, to the matrix-vector product Qd is the output
of the following routine APP.
APP [1,Q,d] — m,
(1) CG[5a CgAcgn,o, A f+D,'d -y,
(1) CG [§41,0,A7, ~D3'RD,' (v, — y:)] > p,
(1 m, = g,3+oR'd - lellpn.

The choice of the tolerances for the interior application of CG in steps (i) and (ii)
will become clear from the following result.

Proposition 11 The result m, of APP[n, Q, d] satisfies
m; —Qd|| < 7. (2.238)
Proof Denote by yq the exact solution of (2.207a) with d in place of u on the right

hand side, and by pq the exact solution of (2.207b) with yq on the right hand side.
Then we deduce from step (iii) and (2.216) combined with (2.104) and (2.196)

Im, — Qd| = llg;;3 —g+wR'd—Dy'p, —(Qd—g)|

IA

1 _ _ _ _
37+ R 'd—D,'p, — (@R 'd — D 'pa)ll (2.239)

1
3

IA

n+ Cllpa — pyll-

Denote by p the exact solution of (2.207b) with y, on the right hand side. Then we
have pg —p = —A~"D,'RD, (ya — y,). It follows by (2.46), (2.104) and (2.196)
that
R T (2.240)
Pa —PIl = cA Yd — ¥y _3C77, .

where the last estimate follows by the choice of the threshold in step (i). Finally, the
combination (2.239) and (2.240) together with (2.235) and the stopping criterion in
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step (ii) readily confirms that

1 R n
Im; —Qdll = ;n+C (Ilpa — DIl + 11 — pyll)
1

3

1 1
c =1. 0
n+ <3Cn+3cn) n

The effect of perturbed applications of M in CG and more general Krylov
subspace schemes with respect to convergence has been investigated in a numerical
linear algebra context for a given linear system (2.229) in several papers, see,
e.g., [70]. Here we have chosen the n; to be proportional to the outer accuracy ¢
incorporating a safety factor accounting for the values of 8; and ||r;||.

Finally, we can formulate a full nested iteration strategy for finite systems (2.207)
on uniform grids which employs outer and inner CG routines as follows. The

scheme starts at the coarsest level of resolution jj with some initial guess u(/)0 and
successively solves (2.214) with respect to each level j until the norm of the current
residual is below the discretization error on that level.

In wavelet coordinates, || - || corresponds to the energy norm. If we employ
as in [12] on the primal side for approximation linear combinations of B-splines
of order d (degree d — 1, see Sect.2.2.1), the discretization error is for smooth
solutions expected to be proportional to 2~@~DJ (compare (2.15)). Then the
refinement level is successively increased until on the finest level J a prescribed
tolerance proportional to the discretization error 2~@~D/ is met. In the following,
superscripts on vectors denote the refinement level on which this term is computed.
The given data yZ, f/ are supposed to be accessible on all levels. On the coarsest
level, the solution of (2.214) is computed exactly up to double precision by QR
decomposition. Subsequently, the results from level j are prolongated onto the next
higher level j + 1. Using wavelets, this is accomplished by simply adding zeros:
wavelet coordinates have the character of differences, this prolongation corresponds
to the exact representation in higher resolution wavelet coordinates. The resulting
Nested-1teration-Incomplete-Conjugate-Gradient Algorithm is the following.
NEICG [J] — u’

(I) INITIALIZATION FOR COARSEST LEVEL j := jg

(1) COMPUTE RIGHT HAND SIDE g/0 = (ZTG)/ BY QR DECOMPOSITION
USING (2.209). ‘
(2) COMPUTE SOLUTION u/? OF (2.214) BY QR DECOMPOSITION.

(1) WHILE j < J

(1) PROLONGATE u/ — ué“ BY ADDING ZEROS, SET j := j + I.
(2) COMPUTE RIGHT HAND SIDE USING RHS [27@~D/ A f/ y]] — g/.
(3) COMPUTE SOLUTION OF (2.214) USING CG [27“~DJ u/, Q, g/]1 — u/.
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Recall that step (11.3) requires multiple calls of APP[7, Q, d], which in turn invokes
both CGI..., A, ...]aswell as CG[...,AT, .. .]in each application.

On account of (2.46) and (2.215), finite versions of the system matrices A
and Q have uniformly bounded condition numbers, entailing that each CG routine
employed in the process reduces the error by a fixed rate p < 1 in each iteration
step. Let N; ~ 2™/ be the total number of unknowns (for y/, u’ and p”) on the
highest level J. Employing the CG method only on the highest level, one needs
O(J) = O(loge) iterations to achieve the prescribed discretization error accuracy
g7 = 27@=DJAg each application of A and Q requires ¢(N;) operations, the
solution of (2.214) by CG only on the finest level requires &'(J Ny) arithmetic
operations.

Theorem 7 ([12]) If the residual (2.216) is computed up to discretization error
proportional to 2~@=VJ on each level j and the corresponding solutions are taken
as initial guesses for the next higher level, NEICG is an asymptotically optimal
method in the sense that it provides the solution w’ up to discretization error on
level J in an overall amount of O(Nj) arithmetic operations.

Proof In the above notation, nested iteration allows one to get rid of the factor J
in the total amount of operations. Starting with the exact solution on the coarsest
level jo, in view of the uniformly bounded condition numbers of A and Q, one
needs only a fixed amount of iterations to reduce the error up to discretization error
accuracy &; = 2-@=DJ on each subsequent level j, taking the solution from the
previous level as initial guess. Thus, on each level, one needs &'(N;) operations to
realize discretization error accuracy. Since the spaces are nested and the number of
unknowns on each level grows like N; ~ 2" | by a geometric series argument the
total number of arithmetic operations stays proportional to &' (N ). (]

Numerical Examples As an illustration of the ingredients for a distributed control
problem, we consider the following example taken from [12] with the Helmholtz
operator in (2.39) (a = I, ¢ = 1) and homogeneous Dirichlet boundary condition.
A non-constant right hand side f(x) := 1 4+ 2.3 exp(—15|x — ; |) is chosen, and the
target state is set to a constant y, = 1. We first investigate the role the different
norms || - ||# and || - ||¢ in (2.74), encoded in the diagonal matrices Do, Dy
from (2.195), have on the solution. We see in Fig.2.3 for the choice Z = L
and & = H*(0, 1) for different values of s varying between 0 and 1 the solution
y (left) and the corresponding control u (right) for fixed weight ® = 1. As s is
increased, a stronger tendency of y towards the prescribed state y, = 1 can be
observed which is, however, deterred from reaching this state by the homogeneous
boundary conditions. Extensive studies of this type can be found in [11, 12].

As an example displaying the performance of the proposed fully iterative scheme
NEICG in two spatial dimensions, Table 2.6 from [12] is included. This is an
example of a control problem for the Helmholtz operator with Neumann boundary
conditions. The stopping criterion for the outer iteration (relative to || - || which
corresponds to the energy norm) on level j is chosen to be proportional to 27/,
The second column displays the final value of the residual of the outer CG scheme
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Fig. 2.3 Distributed control problem for elliptic problem with Dirichlet boundary conditions, a
peak as right hand side f, y, =1, w =0, % = L, and varying & = H*(0, 1)

Table 2.6 Iteration history for a two-dimensional distributed control problem with Neumann
boundary conditions, w = 1, Z = H'(2), % = (H*(Q))’

i ekl #0 #E #A #R |RGy)—y/|| ly/ —PG)I IR@)—u/[| Ju’—P@))]|
3 6.86e—03 1.48e—02 1.27e—04 4.38e—04
4 1.79¢e—-05 5 12 5 8 2.29¢—-03 7.84e—03 4.77e—05 3.55e—04
5 198e—05 5 14 6 9 6.59¢—-04 3.94e—03 1.03e—05 2.68e—04
6 492e—-06 7 13 5 9 1.74e—04 1.96e—03 2.86e—06 1.94e—04
7 33506 7 12 5 9 4.55e—05 9.73e—04 9.65e—07 1.35e—04
8 242e—-06 7 11 5 10 1.25¢—05 4.74e—04 7.59e—07 8.88e—05
9 1.20e—06 8 11 5 10 4.55e—06 2.12e—04 4.33e—07 5.14e—05
10 4.68¢e—07 9 10 5 9 3.02¢-06 3.02¢e—06 2.91e—07 2.91e—-07
on this level, i.e., ||r§< | = ||RESD(u§<) |I. The next three columns show the number

of outer CG iterations (#0O) for Q according to the APP scheme followed by the
maximum number of inner iterations for the primal system (#E), the adjoint system
(#A) and the design equation (#R). We see very well the effect of the uniformly
bounded condition numbers of the involved operators. The last columns display
different versions of the actual error in the state y and the control u when compared
to the fine grid solution (R denotes restriction of the fine grid solution to the actual
grid, and P prolongation). Here we can see the effect of the constants appearing
in (2.234), that is, the error is very well controlled via the residual. More results for
up to three spatial dimensions can be found in [11, 12].

Dirichlet Boundary Control For the system of saddle point problems (2.219)
arising from the control problem with Dirichlet boundary control in Sect. 2.3.6, also
a fully iterative algorithm NEICG can be designed along the above lines. Again the
design equation (2.219c) for u serves as the equation for which a basic iterative
scheme (2.227) can be posed. Of course, the CG method for A then has to be
replaced by a convergent iterative scheme for saddle point operators L like Uzawa’s
algorithm. Also the discretization has to be chosen such that the LBB condition is
satisfied, see Sect.2.5.2. Details can be found in [53]. Alternatively, since L has
a uniformly bounded condition number, the CG scheme can, in principle, also be
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Fig. 2.4 State y of the Dirichlet boundary control problem using the objective functional
J(y,u) = élly — y*”%ﬁ(ry) + ;”“”311/2(1*) for s = 0.1, 0.2,0.3,0.4,0.5,0.7,0.9 (from bottom
to top) on resolution level J =5

applied to LTL. The performance of wavelet schemes on uniform grids for such
systems of saddle point problems arising from optimal control is currently under
investigation [62].

Numerical Example For illustration of the choice of different norms for the
Dirichlet boundary control problem, consider the following example taken from
[62]. Here we actually have the situation of controlling the system through the
control boundary I" on the right hand side of Fig.2.4 while a prescribed state
¥+ = 1 on the observation boundary I'y opposite the control boundary is to be
achieved. The right hand side is chosen as constant f = 1, and @ = 1. Each layer
in Fig. 2.4 corresponds to the state y for different values of s when the observation
term is measured in H* (1)), that is, the objective functional (2.82) contains a term
Iy — y*||%{y(ry) fors = 1/10,2/10,3/10,4/10,5/10,7/10, 9/10 from bottom to
top. We see that as the smoothness index s for the observation increases, the state
moves towards the target state at the observation boundary.

2.6.2 Adaptive Schemes

In case of the appearance of singularities caused by the data or the domain, a
prescribed accuracy may require discretizations with respect to uniform grids to
spend a large amount of degrees of freedom in areas where the solution is actually
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smooth. Hence, although the above numerical scheme NEICG is of optimal linear
complexity, the degrees of freedom are not implanted in an optimal way. In these
situations, one expects adaptive schemes to work favourably which judiciously place
degrees of freedom where singularities occur. Thus, the guiding line for adaptive
schemes is to reduce the total amount of degrees of freedom when compared to
discretizations on a uniform grid. This does not mean that the previous investigations
with respect to uniform discretizations are dispensable. In fact, the above results
on conditioning carry over to the adaptive case, the solvers are still linear in
the amount of arithmetic operations and, in particular, one expects to recover the
uniform situation when the solutions are smooth. Much on adaptivity for variational
problems and the relation to nonlinear approximation can be found in [26].

The starting point for adaptive wavelet schemes systematically derived for
variational problems in [19-21] is the infinite formulation in wavelet coordinates
as derived for the different problem classes in Sect. 2.5. These algorithms have been
proven to be optimal in the sense that they match the optimal work/ accuracy rate
of the wavelet-best N-term approximation, a concept which has been introduced
in [19]. The schemes start out with formulating algorithmic ingredients which are
then step by step reduced to computable quantities. We follow in this section the
material for the distributed control problem from [29]. An extension to Dirichlet
control problem involving saddle point problems can be found in [54]. It should be
pointed out that the theory is neither confined to symmetric A nor to the positive
definite case.

Algorithmic Ingredients We start out again with a very simple iterative scheme
for the design equation. In view of (2.215) and the fact that Q is positive definite,
there exists a fixed positive parameter « such that in the Richardson iteration (which
is a special case of a gradient method)

ot = vk 4+ a(g — Qub) (2.241)

the error is reduced in each step by at least a factor
p=I-aQ| <1, (2.242)
lu—u ) <plu=vf|, k=0,1,2,..., (2.243)

where u is the exact solution of (2.214). As the involved system is still infinite, we
aim at carrying out this iteration approximately with dynamically updated accuracy
tolerances.

The central idea of the wavelet-based adaptive schemes is to start from the
infinite system in wavelet coordinates (2.207) and step by step reduce the routines
to computable versions of applying the infinite matrix Q and the evaluation of the
right hand side g of (2.214) involving the inversion of A. The main conceptual tools
from [19-21] are the following.
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We first assume that we have a routine at our disposal with the following property.
Later it will be shown how to realize this routine in the concrete case.
RES [7,Q,g,v] — r, DETERMINES FOR A GIVEN TOLERANCE n > 0 A
FINITELY SUPPORTED SEQUENCE r; SATISFYING

lg —Qv—ryll <n. (2.244)

The schemes considered below will also contain the following routine.
COARSE [n,wW] — W, DETERMINES FOR ANY FINITELY SUPPORTED INPUT
VECTOR w A VECTOR Wy WITH SMALLEST POSSIBLE SUPPORT SUCH THAT

lw —wyll <n. (2.245)

This ingredient will eventually play a crucial role in controlling the complexity of
the scheme although its role is not yet apparent at this stage. A detailed description
of COARSE can be found in [19]. The basic idea is to first sort the entries of w by
size. Then one subtracts squares of their moduli until the sum reaches n?, starting
from the smallest entry. A quasi-sorting based on binary binning can be shown to
avoid the logarithmic term in the sorting procedure at the expense of the resulting
support size being at most a fixed constant of the minimal size, see [4].

Next a perturbed iteration is designed which converges in the following sense:
for every target accuracy ¢, the scheme produces after finitely many steps a finitely
supported approximate solution with accuracy e. To obtain a correctly balanced
interplay between the routines RES and COARSE, we need the following control
parameter. Given (an estimate of) the reduction rate p and the step size parameter o
from (2.242), let K denote the minimal integer £ for which ,oe’1 (al + p) < 110.

Denoting in the following always by u the exact solution of (2.214), a perturbed
version of (2.241) for a fixed target accuracy ¢ > 0 is the following.

SOLVE [¢,Q. 8. ¢°, c0] — g,

(1) GIVEN AN INITIAL GUESS q” AND AN ERROR BOUND ||q — q°|| < &g; SET
j=0.

(i1) IF &; < &, STOP AND SET q, := q/. OTHERWISE SET V" := ¢/.

(i.1) FORk =0,..., K — 1 COMPUTE RES [p*¢;, Q, g vF] — r* AND
v = vE o ok, (2.246)

(11.2) APPLY COARSE [2¢;,vK] — ¢/T!;SET 641 1= Jej, j+1— j AND
GO TO (I1).

In the case that no particular initial guess is known, we initialize q0 =0, set gg :=
cal llg|| and briefly write then SOLVE [¢, Q, g] — q,.

In a straightforward manner, perturbation arguments yield the convergence of
this algorithm [20, 21].
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Proposition 12 The iterates q/ generated by SOLVE [e, Q, g] satisfy
la—q’ll <e;  forany j=0, (2.247)

where £; = 2=V go.

In order to derive appropriate numerical realizations of SOLVE, recall that (2.214)
is equivalent to the KKT conditions (2.207). Although the matrix A is always
assumed to be symmetric here, the distinction between the system matrices for the
primal and the dual system, A and A7, may be helpful.

The strategy for approximating in each step the residual g — Qu¥, that is,
realization of the routine RES for the problem (2.214), is based upon the result stated
in Proposition 7. In turn, this requires solving the two auxiliary systems in (2.207).
Since the residual only has to be approximated, these systems will have to be solved
only approximately. These approximate solutions, in turn, will be provided again by
employing SOLVE but this time with respect to suitable residual schemes tailored
to the systems in (2.207). In our special case, the matrix A is symmetric positive
definite, and the choice of wavelet bases ensures the validity of (2.46). Thus, (2.242)
holds for A and A7 so that the scheme SOLVE can indeed be invoked. Although we
conceptually use the fact that a gradient iteration for the reduced problem (2.214)
reduces the error for u in each step by a fixed amount, employing (2.207) for the
evaluation of the residuals will generate as byproducts approximate solutions to
the exact solution triple (y, p, u) of (2.207). Under this hypothesis, we formulate
next the ingredients for suitable versions SOLVE, and SOLVE,;, of SOLVE for the
systems in (2.207). Specifically, this requires identifying residual routines RES;gy,
and RES,;, for the systems SOLVE,, and SOLVE,,. The main task in both cases is
to apply the operators A, AT, D; and R!/ ZD;.Z‘}' Again we assume for the moment
that routines for the application of these operators are available, i.e., that for any
L € {A, AT, D;II, Rl/zD:@,}} we have a scheme at our disposal with the following
property.

APPLY [n,L,v] — w, DETERMINES FOR ANY FINITELY SUPPORTED INPUT
VECTOR V AND ANY TOLERANCE 77 > 0 A FINITELY SUPPORTED OUTPUT Wy
WHICH SATISFIES

ILv — wy|l <n. (2.248)
The scheme SOLVE,y,, for the first system in (2.207) is then defined by
SOLVEgw [1, A, D' £, v, y°, £0] := SOLVE [, A, f + D,'v, ¥°, 0],
where y0 is an initial guess for the solution y of Ay = f + D;V with accuracy &g.
The scheme RES for Step (II) in SOLVE is in this case realized by a new routine
RES;zy defined as follows.

RESwkw [7, A, D;l, f,v,y] — r, DETERMINES FOR ANY POSITIVE TOLERANCE
1, A GIVEN FINITELY SUPPORTED V AND ANY FINITELY SUPPORTED INPUT y A
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FINITELY SUPPORTED APPROXIMATE RESIDUAL r; SATISFYING (2.244),
If+D5'v— Ay — 1| <, (2.249)

AS FOLLOWS:

(1) APPLY [31,A,y] — wy;
(1) COARSE [}n, f] — fy;
(1) APPLY [1n, D}, vl — 2,3
(1v) setry =1, +z, — wy.

By triangle inequality, one can for RES,;,, and the subsequent variants of RES show
that indeed (2.249) or (2.244) holds.

Similarly, one needs a version of SOLVE for the approximate solution of the
second system (2.207b), ATp = _D:JIRDZZ} (y — y«), which depends on an
approximate solution y of the primal system and possibly on some initial guess
p® with accuracy €o. Here we set

SOLVE,y [, A, D3, ¥+ y. p*, £0] := SOLVE [, AT, D/RD >} (y — ). p’. 0].

As usual we assume that the data f, y, are approximated in a preprocessing step with
sufficient accuracy. A suitable residual approximation scheme RES,;, for Step (II)
of this version of SOLVE is the following where the main issue is the approximate
evaluation of the right hand side.

RES. [77, A, D:@}, Y+, Y, Pl — r; DETERMINES FOR ANY POSITIVE TOLERANCE
1, GIVEN FINITELY SUPPORTED DATA Yy, Yy AND ANY FINITELY SUPPORTED
INPUT p AN APPROXIMATE RESIDUAL r; SATISFYING (2.244), LE.,

| =D, RD, (v —ys) —ATp 1yl <. (2.250)

AS FOLLOWS:

(i) APPLY [3n, AT p]l — wy;
(i) APPLY [} 1, D7}, y] = z,; COARSE [} 1, ¥s] = (¥i)n;
SETdy; :=(Yz)y — Zp;
APPLY [{1, D7}, dy] — ¥, APPLY [0, R, 9] — Vi;
(iii) SET Iy :=V; — Wy,.

Finally, we can define the residual scheme for the version of SOLVE applied
to (2.214). We shall refer to this specification as SOLVE, with corresponding
residual scheme is RES,,. Since the scheme is based on Proposition 7, it will involve
several parameters stemming from the auxiliary systems (2.207).

RESper [7,Q, 8,5, 8y,P,8,,v,8,] — (r,,¥,8y,D,8,) DETERMINES FOR ANY
APPROXIMATE SOLUTION TRIPLE (¥, p, V) OF THE SYSTEM (2.207) SATISFYING

Iy =3I <8y, Ip—PI <38p, u—vl =5, (2.251)
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AN APPROXIMATE RESIDUAL I, SUCH THAT
g — Qv —ryl <n. (2.252)

MOREOVER, THE INITIAL APPROXIMATIONS ¥, p ARE OVERWRITTEN BY NEW
APPROXIMATIONS y, p SATISFYING (2.251) WITH NEW BOUNDS dy AND §,
DEFINED IN (2.253) BELOW, AS FOLLOWS:

(1) SOLVEuy [Lcan, A, D' £V, 7, 8,] = yy:
(1) SOLVE«y [31. A, D3, ¥u. ¥y P. 8,1 = Py
(1) APPLY [1n, D}, pyl = @3 SET T := q; — wV;
(IV) SET &y 1=c,' 8, + jcan, &p = cy> 8y + 313 REPLACE §, 8, AND p, 8, BY

= COARSE[4¢y,y,], 8, :=5§,,

2.2
= COARSE[4§), pyl, 8p :=5§),. (2:253)

y:
p:
Step (1v) already indicates the conditions on the tolerance n and the accuracy bound
8, under which the new error bounds in (2.253) are actually tighter. The precise
relation between n and §, in the context of SOLVE,, is not apparent yet and emerges
as well as the claimed estimates (2.252) and (2.253) from the complexity analysis
in [29].
Finally, the scheme SOLVE,, attains the following form with the error reduction
factor p from (2.242) and « from (2.241).
SOLVEye [, Q, g] — u,

(1) LET q° := 0 AND g9 := ¢ ' (lyzl + ¢y Ifl).

Lety:=0,p:=0AND SET j = 0.

DEFINE §y 1= dy,0 := c;1(||f|| +&0) AND §), :=8p 0 := cgl(Sy,o +llyzID-
(i1) IFe; < e, STOP AND SET U, :=w/,y, =§, p, = p.

OTHERWISE SET V" := u/.

(.1) ForRk=0,..., K — 1, COMPUTE

RESDCP [pkgj’ Qa ga 5’5 8_)75 ﬁa 8[)5 Vka 8](] g (rka 5’7 8}1’ 137 8[))’
WHERE &) := ¢ and 8 := p*~!(ak + p)e;;
SET

Vil — vE ek, (2.254)

(11.2) COARSE [gej, vE] — w/tlset ey = ;ej, j+1— jand go to (ii).

By overwriting y, p at the last stage prior to the termination of SOLVEpq, one has
8y < &, 1n < g, so that the following fact is an immediate consequence of (2.253).

Proposition 13 The outputs 'y, and p, produced by SOLVE,, in addition to u, are
approximations to the exact solutions'y, p of (2.207) satisfying

Iy = yell < Se(cy' +ca),  Ip—pell <5e(cy> +2).
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Complexity Analysis Proposition 12 states that the routine SOLVE converges for
an arbitrary given accuracy provided that there is a routine RES satisfying the
property (2.244). Then we have broken down step by step the necessary ingredients
to derive computable versions which satisfy these requirements. What we finally
want to show is that the routines are optimal in the sense that they provide the
optimal work/accuracy rate in terms of best N-term approximation. The complexity
analysis given next also reveals the role of the routine COARSE within the algorithms
and the particular choices of the thresholds in Step (1V) of RESp.

In order to be able to assess the quality of the adaptive algorithm, the notion of
optimality has to be clarified first in the present context.

Definition 1 The scheme SOLVE has an optimal work/accuracy rate s if the
following holds: Whenever the error of best N-term approximation satisfies

lg—qnll:==_ min flq—v| < N7,
#suppv<N

then the solution q, is generated by SOLVE at an expense that also stays proportional
to £/ and in that sense matches the best N-term approximation rate.

Note that this implies that #suppq, also stays proportional to e~!/*. Thus, our
benchmark is that whenever the solution of (2.214) can be approximated by N terms
atrate s, SOLVE recovers that rate asymptotically. If q is known, the wavelet-best N-
term approximation qu of q is given by picking the N largest terms in modulus from
q, of course. However, when q is the (unknown) solution of (2.214) this information
is certainly not available.

Since we are here in the framework of sequence spaces ¢, the formulation of
appropriate criteria for complexity will be based on a characterization of sequences
which are sparse in the following sense. We consider sequences v for which the best
N-term approximation error decays at a particular rate (Lorentz spaces). That is, for
any given threshold 0 < 5 < 1, the number of terms exceeding that threshold is
controlled by some function of this threshold. In particular, set for some 0 < t < 2

e i={vely: #{r el : vl >n} <Cyn 7, forall0 < n < 1}. (2.255)

This determines a strict subspace of ¢, only when T < 2. Smaller t’s indicate
sparser sequences. Let Cy for a given v € (¢ be the smallest constant for
which (2.255) holds. Then one has [|v]|pw = sup, ey n/Tuf = Cvl/r,where
v¥ = (v})nen is a non-decreasing rearrangement of v. Furthermore, ||v|| w o=
VIl + [V]ew is a quasi-norm for £7. Since the continuous embeddings ¢{; < €7 <~
lrye — Lrholdfor v < 7+ ¢ < 2, £¥ is ‘close’ to £, and is therefore called
weak £.. The following crucial result connects sequences in £¥ to best N-term
approximation [19].
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Proposition 14 Let positive real numbers s and T be related by

1 1
=5+ _. (2.256)
T 2

Thenv € £y ifand only if |V — vy < N7%||v]lew.

The property that an array of wavelet coefficients v belongs to £, is equivalent
to the fact that the expansion vI Wy in terms of a wavelet basis ¥y for a Hilbert
space H belongs to a certain Besov space which describes a much weaker regularity
measure than a Sobolev space of corresponding order, see, e.g., [16, 39]. Thus,
Proposition 14 expresses how much loss of regularity can be compensated by
judiciously placing the degrees of freedom in a nonlinear way in order to retain
a certain optimal order of error decay.

A key criterion for a scheme SOLVE to exhibit an optimal work/accuracy
rate can be formulated through the following property of the respective residual
approximation. The routine RES is called t*-sparse for some 0 < 7* < 2 if
the following holds: Whenever the solution q of (2.214) belongs to £ for some
™ < 1 < 2, then for any v with finite support the output r, of RES[n,Q, g, v]
satisfies

leyller < max{||vllee, qllex}
and

—1/s 1/s 1/s
#suppry < 0~ max{Ivil,l, b

where s and 7 are related by (2.256), and the number of floating point operations
needed to compute r;, stays proportional to #suppr;.
The analysis in [20] then yields the following result.

Theorem 8 If RES is t*-sparse and if the exact solution q of (2.214) belongs to
LY for some T > T*, then for every ¢ > 0 algorithm SOLVE [g, Q, g] produces
after finitely many steps an output q, (which, according to Proposition 12, always
satisfies |q—q.|| < ) with the following properties: For s and T related by (2.256),
one has

—1/s 1/s
#suppg, < e Cllaly’s  lgcler < llller, (2.257)

and the number of floating point operations needed to compute q, remains
proportional to #suppq,.

Hence, t*-sparsity of the routine RES implies for SOLVE asymptotically optimal
work/accuracy rates for a certain range of decay rates given by t*. We stress that
the algorithm itself does not require any a-priori knowledge about the solution such
as its actual best N-term approximation rate. Theorem 8 also states that controlling



2 Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs 155

the £} -norm of the quantities generated in the computations is crucial. This finally
explains the role of COARSE in Step (11.2) of SOLVE in terms of the following
result [19].

Lemma 4 Let v € £¥ and let w be any finitely supported approximation such that
lv—w| < én. Then the output wy of COARSE [gn, w] satisfies
1 —
#suppwy < VI 07 Iv=wyll <m0 and Wyl S IViley.
(2.258)

This can be interpreted as follows. If an error bound for a given finitely supported
approximation w is known, a certain coarsening using only knowledge about w
produces a new approximation to (the possibly unknown) v which gives rise to a
slightly larger error but realizes the optimal relation between support and accuracy
up to a uniform constant. In the scheme SOLVE, this means that by the coarsening
step the £¥-norms of the iterates vK are controlled.

It remains to establish that for SOLVE,, the corresponding routine RESy; is
*-sparse. The following results from [29] reduce this question to the efficiency
of APPLY. We say that APPLY [-, L, -] is t*-efficient for some 0 < * < 2 if
for any finitely supported v € £, for 0 < 7* < v < 2, the output w,, of APPLY
[n, L, v] satisfies [|wy[lew < ||V||gw and#suppw,; < g7l 1/s
the constants depend only on 7 as T — 7* and s, 7 satisfy (2. 256) Moreover, the
number of floating point operations needed to compute wy, is to remain proportional
to #supp w;,.

Ivll,w forn — O.Here

Proposition 15 If the APPLY schemes in RESuyy and RES,y, are t*-efficient for
some T* < 2, then RESpep is T*-sparse whenever there exists a constant C such that
Cn > max {8y, §,} and

max {[[pllew, Fllew, [Vller} < C (Iyllew + Pl + luller),

where v is the current finitely supported input and y, p are the initial guesses for the
exact solution components (y, p).

Theorem 9 [f the APPLY schemes appearing in RESpy and RES ., are T*-efficient
for some t* < 2 and the components of the solution (y, p, ) of (2.207) all belong to
the respective space (¥ for some v > t*, then the approximate solutions ye, pg, U,
produced by SOLVE, for any target accuracy &, satisfy

[¥ellew 4 IIPeller + lellew < [lyllew + [IPllex + lullew, (2.259)

and

1/s 1/s 1/s —_
(hsuppye) + Ghsupppe) + (suppue) < (IyIe + Pl + ) =7,

(2.260)
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where the constants only depend on Tt when t approaches t*. Moreover, the number
of floating point operations required during the execution of SOLVE,q remains
proportional to the right hand side of (2.260).

Thus, the practical realization of SOLVE, providing optimal work/accuracy rates
for a possibly large range of decay rates of the error of best N-term approximation
hinges on the availability of t*-efficient schemes APPLY with possibly small * for
the involved operators.

For the approximate application of wavelet representations of a wide class of
operators, including differential operators, one can indeed devise efficient schemes
which is a consequence of the cancellation properties (CP) together with the norm
equivalences (2.89) for the relevant function spaces. For the example considered
above, the t*-efficiency of A defined in (2.198) can be shown whenever A is s*-
compressible where 7* and s* are related by (2.256). One knows that s* is the larger
the higher the ‘regularity’ of the operator and the order of cancellation properties of
the wavelets are. Estimates for s* in terms of these quantities for spline wavelets
and the above differential operator A can be found in [5]. These were refined and
extended to trace operators in [62]. Hence, Theorem 9 guarantees asymptotically
optimal complexity bounds for T > t*. This means that the scheme SOLVEpc
recovers rates of the error of best N-term approximation of order N —* for s < s*.

When describing the control problem, it has been pointed out that the wavelet
framework allows for a flexible choice of norms in the control functional which
is reflected by the diagonal matrices Do and Dy in (DCP), (2.203) together
with (2.204). The following result states that multiplication by either D,:ZAI or D;II
makes a sequence more compressible, that is, they produce a shift in weak £, spaces
[29].

Proposition 16 For g > 0, p € €% implies D~Fp € €Y, where Tl/ = i + 5

We can conclude the following. Whatever the sparsity class of the adjoint variable
p is, the control u is in view of (2.207c¢) even sparser. This means also that although
the control u may be accurately recovered with relatively few degrees of freedom,
the overall solution complexity is in the above case bounded from below by the less
sparse auxiliary variable p.

The application of these techniques to control problems constrained by parabolic
PDEs can be found in [44]. For an extension of these techniques to control problems
involving PDEs with possibly infinite stochastic coefficients which introduce a
substantial difficulty, one may consult [57, 58].
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