Chapter 1 )
Foundations of Spline Theory: B-Splines, <o
Spline Approximation, and Hierarchical
Refinement

Tom Lyche, Carla Manni, and Hendrik Speleers

Abstract This chapter presents an overview of polynomial spline theory, with spe-
cial emphasis on the B-spline representation, spline approximation properties, and
hierarchical spline refinement. We start with the definition of B-splines by means
of a recurrence relation, and derive several of their most important properties. In
particular, we analyze the piecewise polynomial space they span. Then, we present
the construction of a suitable spline quasi-interpolant based on local integrals, in
order to show how well any function and its derivatives can be approximated in
a given spline space. Finally, we provide a unified treatment of recent results on
hierarchical splines. We especially focus on the so-called truncated hierarchical
B-splines and their main properties. Our presentation is mainly confined to the
univariate spline setting, but we also briefly address the multivariate setting via
the tensor-product construction and the multivariate extension of the hierarchical
approach.

1.1 Introduction

Splines, in the broad sense of the term, are functions consisting of pieces of smooth
functions glued together in a certain smooth way. Besides their theoretical interest,
they have application in several branches of the sciences including geometric
modeling, signal processing, data analysis, visualization, numerical simulation, and
probability, just to mention a few. There is a large variety of spline species, often
referred to as the zoo of splines. The most popular species is the one where the pieces
are algebraic polynomials and inter-smoothness is imposed by means of equality of
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derivatives up to a given order. This species will be the topic of the chapter. Several
other species can be found in [35, 45] and references therein.

To efficiently deal with splines, one needs a suitable basis for their representation.
B-splines turn out to be the most useful spline basis functions because they possess
several properties that are important from both theoretical and computational point
of view. The construction of B-splines is not confined to the algebraic polynomial
case but can be done for many species in the zoo of splines. As it is often the case
for important tools or concepts, B-splines have a long history in the sciences. They
were already used by Laplace in the early nineteenth century [33], and many of
their relevant properties were derived by Chakalov and Popoviciu in the 1930s; see
[10] and [37]. However, the modern B-spline theory roots in the seminal works
by Schoenberg; see [41, 42] and [15, 16]. There are several ways to define B-
splines, based on recurrence, differentiation, divided differences, etc. Each of those
definitions has certain advantages according to the problem one has to face. It
is impossible to trace all modern works on B-splines, but we refer the reader to
Schumaker’s book [45] for an extended bibliography on the topic also beyond the
polynomial setting.

This chapter provides an introduction to (polynomial) B-splines, starting from
their definition via a recurrence relation. Furthermore, we establish some spline
results of interest within the isogeometric analysis (IgA) paradigm. More precisely,
the chapter contains

— a self-contained overview of splines and B-splines;
— aconstructive exploration of approximation properties of spline spaces;
— adiscussion on adaptive spline representations based on hierarchical refinement.

There exists a huge amount of literature about the first two items including some
well-established books; see, e.g., [6, 26, 45] and references therein. The hierarchical
spline setting received only recently a lot of attention; see, e.g., [22, 51, 53]. The
novelties of the chapter can be essentially summarized as follows.

— Our introduction to B-splines differs somewhat from the standard presentations
of the topic. It is mainly based on properties of the dual polynomial functions in
the local Marsden identity.

— Our proof of the approximation properties of a given spline space relies on the
explicit construction of a spline quasi-interpolant based on local integrals. For
this quasi-interpolant we show error estimates of optimal order to any smooth
function and its derivatives.

— Our presentation of the hierarchical spline setting provides a rather complete and
unified treatment of the main properties of both the hierarchical and the truncated
hierarchical B-spline basis.

The chapter does not address the geometric modeling aspects of B-splines, explain-
ing why they form the mathematical core of current computer aided design (CAD)
systems. For this we refer the reader to the books [13, 27, 38].
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Our presentation is mainly confined to the univariate spline setting. Nevertheless,
this is the building block of the multivariate setting via the tensor-product construc-
tion. Tensor-product B-splines are currently the most common tool in CAD systems
and IgA. It is worth mentioning that there are also many other important extensions
of the univariate B-spline concepts to the multivariate setting, not restricted to a
tensor-product grid; see, for example, [31, 35] and references therein.

The remaining part of the chapter is divided into six sections. The next section
is devoted to the definition of B-splines and their main properties, including
differentiation and integration formulas, local representation of polynomials, and
local linear independence. In Sect. 1.3 we analyze the space spanned by a set of B-
splines, and we consider the representation of its elements, knot insertion, and the
stability of the B-spline basis. Cardinal B-splines, i.e., B-splines with uniform knots,
are of prominent interest in practical applications. They are addressed in Sect. 1.4
where, in particular, the evaluation of their inner products and uniform knot insertion
are discussed. In Sect. 1.5, after a general discussion about quasi-interpolants, we
present the construction of a new spline quasi-interpolant based on local integrals
and we use it to show the approximation properties of the considered spline space.
The hierarchical spline approach is the topic of Sect. 1.6, which is mainly devoted
to the construction of the truncated hierarchical B-spline basis and the derivation
of its main properties, including the so-called preservation of coefficients and the
construction of hierarchical quasi-interpolants. Finally, tensor-product B-splines
and their hierarchical extension are briefly discussed in Sect. 1.7.

1.2 B-Splines

In this section we introduce one of the most powerful tools in computer-aided
geometric design and approximation theory: B-spline functions (in short, B-
splines).! They are piecewise polynomials with a certain global smoothness. The
positions where the pieces meet are known as knots.

1.2.1 Definition and Basic Properties

In order to define B-splines we need the concept of knot sequences.

Definition 1 A knot sequence & is a nondecreasing sequence of real numbers,
=L =6 <6< <&} melN

The elements &; are called knots.

IThe original meaning of the word “spline” is a flexible ruler used to draw curves, mainly in the
aircraft and shipbuilding industries. The “B” in B-splines stands for basis or basic.
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Provided that m > p + 2 we can define B-splines of degree p over the knot-
sequence &.

Definition 2 Suppose for a nonnegative integer p and some integer j that §; <
£iy1 < -+ < &jyp1 are p + 2 real numbers taken from a knot sequence §. The
Jj-th B-spline B; , ¢ : R — R of degree p is identically zero if §j4 11 = &; and
otherwise defined recursively by?

x—§; Ejtpt1 — X
Bj pg(x) = ! Bjpg+ T Bit1p-16(), (LD
Ejvp —§j Ejvpr1 —&j+1
starting with
1, ifx el&, &41),
B;og(x) = o

0, otherwise.

Here we used the convention that fractions with zero denominator have value zero.
We start with some preliminary remarks.

* For degree 0, the B-spline Bj ¢ is simply the characteristic function of the
half open interval [}, &;41). This implies that a B-spline is continuous except
possibly at a knot §. We have B; ,, ¢(§) = Bj , ¢(§+), where

Xt :=1lim¢t, x_:=1lm¢ xek
1—x —Xx
t>x r<x

Thus a B-spline is right continuous, i.e., the value at a point x is obtained by
taking the limit from the right.

¢ We also use the notation

Bl§j,....&j+p+11:=Bj ps.

showing explicitly on which knots the B-spline depends.

* We say that a knot has multiplicity u if it occurs exactly p times in the knot
sequence. A knot is called simple, double, triple, ... if its multiplicity is equal
to 1, 2, 3, ..., and a multiple knot in general.

2The recurrence relation is due to de Boor, Cox and Mansfield [4, 14]. However, it appears
already in works by Popoviciu and Chakalov in the 1930s; see [8] for an account of the early
history of splines. For the modern theory of splines we refer the reader to the seminal papers by
Schoenberg [41-43] and Curry/Schoenberg [15, 16]. In their works, B-splines were defined by
divided differences of truncated power functions.



1 Foundations of Spline Theory 5

Example 1 A B-spline of degree 1 is also called a linear B-spline or a hat function.
The recurrence relation (1.1) takes the form

x —§j §j42—x
Bj1g(x) = J .Bj’()’}’:(x) + It

Bji1.0.0x),
Eip1 — & Ejpo—Ejp MO8

resulting in

TE O itxelgn g,
Ejv1—§j
Bjig(x) = Ejrr —x , ifx e [§41,&j42), (1.2)
Eiv2— &1
0, otherwise.

A linear B-spline is discontinuous at a double knot and continuous at a simple knot.

Example 2 A B-spline of degree 2 is also called a quadratic B-spline. Using
the recurrence relation (1.1), the three pieces of the quadratic B-spline B; ; ;s are
given by

(x — &))?
Ejr2 —EDEj1 — &)
(x = &) Ejr2 —x)
Ejr2 —&))Ej+2 —§j+1)

itx €[§,&+1),

Bjoe(x)=14 FT8+D6E3 - X) i e w3
Jz Ejr2 =&+ Ejr3 — &jv1) ifx €[§j11,€j42)
(j43 — x)? .
. if o Eiia),
Ej+3 =&+ Ej43 — §jv2) ifx € [§;42,§/+3)
0, otherwise.

Example 3 Figure 1.1 illustrates several sets of B-splines of degree p = 1,2, 3.
The same knot sequence is chosen for the different degrees, with only simple knots.

(a) (d) (0)

Fig. 1.1 Several sets of B-splines of degree p = 1,2, 3. The knot positions are visualized by
vertical dotted lines. (a) p=1.(b) p=2.(¢c) p=3
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The general explicit expression for a B-spline quickly becomes complicated.
Applying the recurrence relation repeatedly we find

jtr
Bjps() =Y BY) ()Biogx), p=0, (1.4)
i=j

where each B! | is a polynomial of degree p, assumed to be zero if & = & 1.

. i€ . h . .
Note that if §; = &1 then B; o ¢ = 0 and the corresponding polynomial piece is
not used. In particular, for the nontrivial cases we have

) () x =& {+1) §j+2—x
B. (_x):l, B ()C): . B (_x): .
J,0.€ AR Eip1 — &) AR Ejy2 —Ejp

Furthermore, for the nontrivial cases it follows from Definition 2 that the first and
last polynomial pieces in (1.4) are given by

. p
B o) = =) [ [T — .
- , (1.5)
B/{'{;g}(x) = Ejapti ‘x)p/l_[@HpH = &jt+i)

i=1

Using induction on the recurrence relation (1.1), we deduce immediately the
following basic properties of a B-spline.

* Local Support. A B-spline is locally supported on the interval given by the
extreme knots used in its definition. More precisely,

Bipe(x)=0, x¢I[&, &+pt1)- (1.6)

* Nonnegativity. A B-spline is nonnegative everywhere, and positive inside its
support, i.e.,

Bjpe(x) >0, xeR, and Bj,:(x)>0, xe€¢;&+p+r). (1.7
* Piecewise Structure. A B-spline has a piecewise polynomial structure, i.e.,

B

i €Pp i=J it p, (1.8)

where P, denotes the space of algebraic polynomials of degree less than or equal
to p.
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* Translation and Scaling Invariance. A B-spline is invariant under a translation
and/or scaling transformation of its knot sequence, i.e.,

Bj,p,ot§+/3(ax + ﬁ) = Bj,p,s (x)v as ,3 € Rs (24 ;é Os (19)

where & + 8 := {a&; + B}i-

Further properties will be considered in the next sections.

1.2.2 Dual Polynomials

To each B-spline B; ,¢ of degree p, there corresponds a polynomial v; , ¢ of
degree p with roots at the interior knots of the B-spline. We define ¥ 9¢ = 1
and

Vips) =0 =&+ (y=§j4p), yeR, pel (1.10)

This polynomial is called dual polynomial. Many of the B-spline properties can
be proved in an elegant way by exploiting a recurrence relation for these dual
polynomials.

Theorem1 For p € N, x,y € Rand &, > &;, we have the dual recurrence
relation

Ejvp —

V=)V p-10) = 5 Vipe(y) + % Lpe(y), (11D
j

S —§&j

Ejvp —§j
and the dual difference formula

Vi-1ps()  Vipe(y)

. (1.12)
Ejvp =& Ejtp 5

Yip-1,6(y) =

Proof For fixed y € R let us define the function £, : R — R given by £,(x) :=
y — x. By linear interpolation, we have

—§&; Ejvp —

ly(x) = Ly(Ejyp) + Zy@/)

Ejvp —§j Ejvp —&j

By multiplying both sides with v; , 1 ¢(y) we obtain (1.11). Moreover, (1.12)
follows from (1.11) by differentiating with respect to x. O

Proposition 1 The r-th derivative of the dual polynomial s , ¢ for 0 <r < p can
be bounded as follows:

ID" Y pe(M| < . Ejapr1 —ENPT", & <y =<E&jipr1. (1.13)

)V



8 T. Lyche et al.
Moreover,
r p! p—r
D Vjpe| < (p_r),(§j+p—-’3j+1) s & <y <&i4p. (1.14)

Here we define 0° := 1 ifr = p and&jyp =&j11.

Proof Clearly (1.13) holds for all p € Ny if r = 0. Using induction on r, p and the
product rule for differentiation, we get

D"V e =D (Wi p1.60DNG = Ejrp))
= (D" V) p1.6ONG —Ejp) +rD Y5 1 (V)]

<( (=D (=1
r
“\op-1-nt" -

and (1.13) follows. The proof of (1.14) is similar. |

>(§j+p+1 —EprTT,

1.2.3 Local Marsden Identity and Linear Independence

In this and the following sections (unless specified otherwise) we will extend the
knots §; < .-+ < §j4p41 of Bj ;¢ by defining p extra knots at each end, and we
will assume

E={§ p=<- <& <& < =€ p <Ejrpra << Ejrapi).

(1.15)
These extra knots can be defined in any way we like. One possibility is
§jp=-=§j1=§ -1 §ppr+tl=§p2=""=§j12p41.
(1.16)
On such a knot sequence 2p + 1 B-splines B; , ¢ = Bl[&;,....&§i+p+1], i = j —

p, ..., Jj+ p are well defined.
The following identity was first proved by Marsden [36] and simplifies many
dealings with B-splines.

Theorem 2 (Local Marsden Identity) For j <m < j+ p and &, < &u+1, we
have

G=xP= > YipsMBipe®), x€lEm bnr1), yeR (1.17)

i=m—p

IfBi{,’Z%E is the polynomial which is equal to B; , ¢ (x) for x € [&n, Emy1) then

== Y YipsMB ), x,yeR (1.18)

i=m—p
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Proof Suppose x € [&y, En+1)- The equality (1.17) can be proved by induction. It
is clearly true for p = 0. Let us now assume it holds for degree p — 1. Then, by
means of the dual recurrence (1.11) and the B-spline recurrence relation we obtain

G- =G-00-0""=0-x Y Vi, 1By 150

i=m—p+1
m
x—5§& Eiyp—x
= > ( : _’g, Vips(y) + 5?*” G wil,p,;(w)B,»,pl,;(x)
i=m—p+1 NP i i+p i
m
x =& Sitpt1 — X
> ( CBipoig)+ T B,-H,pl,;(x))
= \&itp =i Sitp+1 —&it1
=m—p
X wi,p,E (y)
m
= Y Yips(Bipe).
i=m—p
Here we used that Sii;iiéi Bip—1e(x)=0fori =m—p,m+1. |

The local Marsden identity immediately leads to the following properties, where
we suppose &, < &n41 forsome j <m < j + p.

¢ Local Representation of Monomials. We have for p > k,

= k!
=y ((—ka,Dl’—kwi,,,,g(0>)3,~,,,,g(x), X € [Em bmrn).  (L19)

! p

Proof Fix x € [&,, &n+1). Differentiating p —k times with respect to y in (1.18)
results in

G=0F (1
b= 2 | PP e ) ) Bipe(o, yER (1.20)
! e p p!
fork=0,1,..., p. Setting y = 0 in (1.20) results in (1.19). |

* Local Partition of Unity. Taking k = 0 in (1.19) gives

1

D Bips) =1, x €& Ent) (1.21)

p
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* Local Linear Independence. The two sets {B; , ¢}/" » and {v; pelit, _ »
form both a basis for the polynomial space P, on any subset of [&, &ni1)

containing at least p + 1 distinct points.

Proof Let A be a subset of [§,, &,+1) containing at least p 4 1 distinct points.
From (1.20) we see that on A every polynomial of degree at most p can be written
as a linear combination of the p 41 polynomials Bi{’m% ,i=m—p,...,m.Since
the dimension of the space P, on A is p + 1, these polynomials must be linearly
independent and a basis. The result for {v; j, &} follows by symmetry. O

m
i=m—p

1.2.4 Smoothness, Differentiation and Integration

The derivative of a B-spline can be expressed by means of a simple difference
formula. In the following, we denote the right derivative by Dy and the left
derivative by D_.

Theorem 3 (Differentiation) We have

B, 1ex B; _1e(x
D+Bj,p,§(x)=l7< 5180 Bietpora )), p>1, (1.22)
S§ivp =& Ejtp+1 —&j+1
where fractions with zero denominator have value zero.
Proof If &, ,+1 = &; then both sides of (1.22) are zero, so we can assume

&j+p+1 > &;. We continue to use the extra knots (1.15). If x < & orx > &4 41
then both sides of (1.22) are zero. Otherwise x € [&;, &n+1) for some m with
Jj <m < j+ p and it is enough to prove (1.22) for such an interval. Differentiating
both sides of (1.17) with respect to x gives

—p =" = Y DBV, x € lEm bmr).  (1.23)

i=m—p

On the other hand, using the local Marsden identity (1.17) for degree p — 1 and the
difference formula for dual polynomials (1.12) results in

m
—pG =0 ==p D Yip 1B 1)
i=m—p+1

= m Vip(y) wi_l’p(y)>B.
" Z <§i+p —&  Eiyp—& i.p—1,&(x)

i Bi ,— Biil p—
Z p( 160 Biyip 1,5()6))%[)@).

i p Sivp— &  Eixp+1 — it
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When comparing this with (1.23) and using the linear independence of the dual
polynomials, it follows that (1.22) holds fori = m — p, ..., m. In particular, since
m—p <j<m,(1.22)holds fori = j. m]

Example 4 The differentiation formula (1.22) for p = 2 together with the
expression (1.2) immediately gives the piecewise form of the derivative of the
quadratic B-spline B; 7 ¢:

: fx €&, Es),
(€42 = £ (&)1 — &) relsi v
2(&j42 — x)
(€j+2 — 5/2)((5j+2 - S)j+1)
DyBjss(x) =1 — X —§j+1 i .
o s —EaDEaa — 4D’ [&j+1, §j+2)
2(&j43 — x) _
_ o e,
Ej43 — &+ Ejp3 — Ej32) if x € [§j42,§j+3)
0, otherwise.

This is in agreement with taking the derivative of the piecewise expression (1.3) of
Bj 2 ¢ given in Example 2.

Proposition 2 The r-th derivative of the B-spline Bj ¢ for 0 < r < p can be
bounded as follows. For any x € [&y, §n41) With j < m < j 4+ p we have

P
p! 1
|ID"Bj ,e(x)| <2" | | , (1.24)
(p o r)' k:p—r+1 Am’k

where

App= min  hig, hig:=&u—&, k=1,...,p. (1.25)

m—k+1<i<m

Proof This holds for r = 0 because of the nonnegativity of B; , ¢ and the partition
of unity property (1.21). By the differentiation formula (1.22) and the local support
property (1.6) we have

DrBj,p,g(x)

—D" "Byt po16(0)/ s, p, ifm=j+ p,
=p\D"'Bj ,_16(xX)/hj =D "Bt po1£(X)/hjr1,p, ifj<m<j+p,
D' 'Bj ,_15(x)/hjp, ifm = j.
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It follows that

|D"Bjpe()| <2p max  [D"'Bi 1 £(0)|/Amp,

m—p+1<i<m

and by induction on r we obtain (1.24). |
Note that the upper bound in (1.24) is well defined since A, x > &pt1 —&n > 0.
Theorem 4 (Smoothness) If& is a knot of B}, ¢ of multiplicity u < p + 1, then

Bj g € CP7H(E), (1.26)

i.e., its derivatives of order 0, 1, ..., p — u are continuous at §.

Proof Suppose & is a knot of Bj ,¢ of multiplicity u. We first consider the
smoothness property when . = p+ 1. For x € [§;, &4 p41) it follows immediately
from (1.4) and (1.5) that

(x —&,)F
Ejrpr1 — &P’

Ejrpr1 —x)P
Ejrpr1 —E)HP’

Bj pg(x) = §j <&jr1 =" =&j1p+1, (1.27)

Bjpg(x) = Ej = =Eisp <Ejpptl. (1.28)

These two B-splines are discontinuous with a jump of absolute size one at the
multiple knot showing the smoothness property for u = p + 1.

Let us now consider the case where B; , ¢ has an interior knot of multiplicity
equal to = p,ie,§; <§jp1 = =§&j1p < Ejpy1. Forx € [§, 4 p11) it
follows from (1.4) and (1.5) that

(x —&)P Ejrpr1 —x)?P

B; = Bjog(n)+
i) Ejap = EP 040) Ejrpt1 = &jr1)P

Bjipog(x).  (1.29)

The two nontrivial pieces have both value one at the center knot §;41 = &, and
Bj p.¢ is continuous on R. Moreover, the first derivative has a nonzero jump at the
center knot.

For the remaining cases we use induction on p to show that B; , ¢ € CP7H(§).
The case p = 1 follows from Example 1. Suppose for some p > 2 that B; , 1 ¢ €
CP~1=1(&) at aknot £ of multiplicity 1. For the multiplicity p case & = Ej=-=
Ejrp—1 < &j1p < &j4p+1 we use the recurrence relation

x—§

| Ejvpr1 — X
Ejrp —§j

Bjpe(x) = Bj,_16(x)+ Bjy1,p-1,8(x).

Ejvpr1 —&j11

The first term vanishes at x = & = &;. Since B ,_1.¢ has a knot of multiplicity
p — 1 at &, it follows from the induction hypothesis that it is continuous there.
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We conclude that B; , ¢ is continuous at &. The case where the right end knot of
B; , ¢ has multiplicity p is handled similarly. Finally, if u < p — 1 then both terms
in the differentiation formula (1.22) have a knot of multiplicity at most x at & and
by the induction hypothesis we obtain Dy B; , ¢ € C? ~1=1(&). Moreover, by the
recurrence relation and the induction hypothesis it follows that B; , ¢ is continuous
at &, and so we also conclude that B; , ¢ € CP7#(§) if u < p — 1. This completes
the proof. O

The B-spline B; , ¢ is supported on the interval [§;, ;1 »+1]. Hence, Theorem 4
implies that B , ¢ is continuous on R whenever &;4, > &; and & p41 > &j11.
Similarly, B; , ¢ is C"-continuous on R whenever &4, ,4; > &;1; foreachi =
0,....,r+1land -1 <r < p.

Theorem 5 (Integration) We have

Eepe Eprt — &)
Yip. :=./‘ Bj ,e(x)dx="""" 1 (1.30)
j.p:§ E; J.p:§ PR
Proof This time we define p + 1 extra knots at each end, and we assume
E=¢ p1==8 1< < ZEip <Ejipr2=--=&j2p12)
On this knot sequence we consider p+1 B-splines B; 41 ¢,i = j—p—1,...,j—1

of degree p + 1. From Theorem 4 we know that these B-splines are continuous on
R. Therefore, we getfori = j —p—1,...,j — 1,

Eitpt2
0=Bipr1,6Gi+p+2) — Bipr1£6i) = / Dy Bipy1(x)dx = E; — Ejyq,
&i

where by the local support and the differentiation formula (1.22),

p+1 §itpt o )
Ei:=€'+ +1—§'/g Bipg(x)dx, i=j—p—1,...,].
i+p i i
This means that £; = E; | = --- = E;_, 1. Moreover, since §;_,_1 = --- =

&j_1, we obtain from (1.28) that

p+1 /sf' & —x)P

E: ., 1=
T T gt Sy, 65— Ej—p)?

and the integration formula (1.30) follows. |
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1.3 Splines

A spline function (in short, spline) is a linear combination of B-splines defined on
a given knot sequence with a fixed degree. In this section we analyze the space of
splines and discuss several of their properties.

1.3.1 The Spline Space S, ¢ and Some Spline Properties

Suppose for integers n > p > 0 that a knot sequence

E= ()M = <6< <Eipn), neN, peN,

is given. This knot sequence allows us to define a set of n B-splines of degree p,
namely

{Bi,pg,---» Buptl (1.31)
We consider the space
n
Sp,g = {s Epr1 il > Ris = ZCij,p,g, cj € R}. (1.32)
j=1

This is the space of splines spanned by the B-splines in (1.31) over the interval
[£p+1, €ng1], which is called the basic interval.

We now introduce some terminology to identify certain properties of knot
sequences which are crucial in the study of the space (1.32).

* A knot sequence £ is called (p + 1)-regularif §; < &; 4,y forj =1,...,n.
By the local support (1.6) such a knot sequence ensures that all the B-splines in
(1.31) are not identically zero.

* Aknotsequence § is called (p+1)-basicifitis (p+1)-regularwith &, 1 < &,42
and &, < &,4+1. As we will show later, the B-splines in (1.31) defined on a (p+1)-
basic knot sequence are linearly independent on the basic interval [§,41, &:41].

* A knot sequence £ is called (p + 1)-open on an interval [a, b] if it is (p + 1)-
regular and it has end knots of multiplicity p + 1, i.e.,

a:=§ ==& <bpp2 ==& <Ep1 = =&uqpr1 =1 b.
(1.33)

This sequence is often used in practice. In particular, it turns out to be natural
to construct open curves, clamped at two given points. Note that (p + 1)-open
implies (p + 1)-basic.

Some further preliminary remarks are in order here.
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* We consider B-splines on a closed basic interval [§,41, §;41]. In order to avoid
the asymmetry at the right endpoint we define the B-splines to be left continuous
at the right endpoint, i.e., their value at &,y is obtained by taking the limit from
the left:

B psEnr) = lim Bj,e(x). j=1.....n. (1.34)
X—>&p41

x<€py1

Note that for a (p + 1)-open knot sequence the end condition (1.34) means that
B, p&(ntp+1) = 1 and (1.6) has to be modified for this B-spline.

* We define a multiplicity function pg : R — No given by pg (&) = p; if & € §
occurs exactly u; > 1 times in &, and ug(x) = 0if x ¢ &. If § and é are two
knot sequences we say that § C é if pg(x) < Mg (x) forall x € R.

* Without loss of generality, we can always assume that the end knots have
multiplicity p + 1. If this is not the case, then we can add extra knots at the
ends and assume the extra B-splines to have coefficients zero. This observation
simplifies many proofs.

Example 5 Figure 1.2 illustrates all the B-splines of degree p = 3 ona (p+1)-open
knot sequence, where the interior knots are simple.

From the properties of B-splines, we immediately conclude the following
properties of the spline representation in (1.32).

* Smoothness. If £ is a knot of multiplicity 4 then s € C"(§) forany s € S, ¢,
where r + = p. This follows from the smoothness property of the B-splines
(Theorem 4). The relation between smoothness, multiplicity and degree is as
follows:

“smoothness + multiplicity = degree”. (1.35)

Fig. 1.2 The B-spline basis of degree p = 3 on a (p + 1)-open knot sequence. The knot positions
are visualized by vertical dotted lines
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* Local Support. The local support (1.6) of the B-splines implies

n m
D iBipe)= Y ¢jBjpe(). x € [Em Em1). pH1<m<n,
j=1 j=m—p

(1.36)

and if &, < &, then

n m—1
D ¢jBjpsEn)= > ¢jBjyeE). pHl<m<n+1. (137
j=1 j=m—p

e Minimal Support. From the smoothness properties it can be proved that if the
support of s € S, ¢ is a proper subset of [£;, &4 1] for some j then s = 0.
Therefore, the B-splines have minimal support.

* Coefficient Recurrence. For x € [£,1,£,11], by the recurrence relation (1.1)
we have

n n
D cjBjpe(x) =Y &i(0)Bj 1), (1.38)
j=1 j=2
where
v X — éfj §j+p —X
ci(x) = ci+ ci_1, (1.39)
! Eap—& | Erp—&

and 5j(x)Bj,,,_115(x) =0if &4, =§;.

* Differentiation. For x € [§,,1,&,1], by the differentiation formula (1.22) we

have
n n
D, (chBj,p,g(x)) = chl)Bj,p,Lg(x), p>1, (1.40)
j=1 j=2
where
. Q—W4>
c;’':=p , (1.41)
/ (§j+p - éfj

and fractions with zero denominator have value zero.

¢ Linear Independence. If £ is (p + 1)-basic, then the B-splines in (1.31) are
linearly independent on the basic interval. Thus, the spline space S, ¢ is a vector
space of dimension n.



1 Foundations of Spline Theory 17

Proof We must show thatif s(x) = Z?:l ¢cjBjpe(x) =0forx € [§pt1, &n+t1]
then c; = O forall j. Letus fix 1 < j < n. Since & is (p + 1)-regular, there
is an integer m; with j < m; < j + p such that Emj < 5m,-+1~ Moreover, the
assumptions §,41 < &p42 and &, < &,41 guarantee that [Smj,émjﬂ) can be
chosen in the basic interval. From the local support property (1.36) we know

mj

s@)= Y iBipg(x)=0, x €& Em;t1)-

i=mj—p

The local linear independence property (see Sect. 1.2.3) implies ¢y;—p = -+ =
Cmj = 0, and in particular c; = 0. m]

1.3.2  The Piecewise Polynomial Space S',(A)

We now prove that the spline space S, ¢ is nothing else than a space of piecewise
polynomials of degree p defined by a given sequence of break points and by some
prescribed smoothness. The set of knots & must be suitably selected according to
the break points and the smoothness conditions. Therefore, the B-splines are a basis
of such a space of piecewise polynomials.

Let A be a sequence of distinct real numbers,

Ai={no<n <--- <Ny}

The elements in A are called break points. Moreover, let r := (r1,...,7¢) be a
vector of integers such that —1 < r; < p fori = 1,...,£. The space S; (A)
of piecewise polynomials of degree p with smoothness r over the partition A is
defined by

S5,(A) == {s : [no,ne+1] = R : s € Pp([mi, nig1)), i =0,..., €1,

s € Pp([ne, ne+11), s€Ci(m), i=1,...,¢

(1.42)

Suppose that st} e P, is the polynomial equal to the restriction of a given

function s € S;,(A) to the interval [n;, ni+1), i = 0,..., €. Since s € C"i(n;),
we have
s sy = > aj—m),
Jj=ri+l

for some coefficients ¢; ;. It follows that S;, (A) is spanned by the set of functions

1 1
L, x? =) o a=—nf =) =m0t

(1.43)
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where the truncated power function (~)f’1r is defined by

xP, x>0,
(x)i = (1.44)
0, x <0,

and the value at zero is defined by taking the right limit.
It is easy to see that the functions in (1.43) are linearly independent. Indeed, let

P ¢t p
s(x) == ZCO,/' x! + Z Z ci,j(x —mi)y =0, x €l[no,nes1l.
j=0 i=1 j=ri+1
On [1o, 1) we have s(x) = 3-"_; co,j x/ and it follows that co,0 = - - - = co,p = 0.

Suppose for some 1 < k < ¢ phat ¢i,j = 0fori < k. Then, on [0, ni+1) we have
s() =20, 1y ckj(x — mk)! = 0 showing that all ¢, ; = 0.

This implies that the set of functions in (1.43) is a basis for SZ (A), the so-called
truncated power basis. As a consequence,

12
dim(S)(A) =p+1+ Y (p—r).

i=1

The next theorem shows that the set of B-splines in (1.31) defined over a specific
knot sequence & forms an alternative basis for S; (A). This was first proved by Curry
and Schoenberg in [16].

Theorem 6 (Characterization of Spline Space) The piecewise polynomial space
S;, (Q) is characterized in terms of B-splines by

S;(A) =S,¢,

where the knot sequence & .= {&; }lr.l:lp N ithn = dim(S;, (AQ)) is constructed such

that

&1 =& =m0, M1 = &1 <o < Epgpts

and

p—ri p—re

-~

S[J+2a---7§n :=771,---a77T,---a772a---a77£-

Proof From the piecewise polynomial and smoothness properties of B-splines
it follows that the B-spline space S, ¢ is a subspace of S;(A). Moreover, the
constructed knot sequence § is (p + 1)-basic, so dim(S,¢) = n by the linear
independence property of B-splines. This implies that S;, (A) =Spe. O
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Example 6 Consider A := {no < n1 < n2 < 13} and the space S5(A) with r =
(r1,r2) = (2, 1). It follows from Theorem 6 that S5(A) = S3 ¢, where

E={&) T =o=no=no=no<m<m=m<n=mnm=n=n.

This knot sequence is 4-open.

Finally, we give a characterization for the space spanned by the r-th derivatives
of B-splines for 0 <r < p,i.e.,

n
D.S,¢ = {s [EpitsEnp1] —> Ris =D (chBj,,,g), cj € R}.
=1

Theorem 7 (Characterization of Derivative Spline Space) Given a knot

sequence & := {&; };::pﬂ’ we have for 0 <r < p,

DiSpqE = Sp—héw

n+p+l-r
where §, = {&}, | .

Proof The result is obvious for r = 0. Let us now consider the case r = 1, for
which we note that

{Bi,p—1.6,> -+ Bu—1,p—1.6,} = {B2.p—1.6» - - -» Bu,p—1.¢}-

By the differentiation formula (1.40) it is clear that

n
C/ 1
Dy (Z Cij,p,as) Z(S ) Bjp-1& €Sp1g-
j=1 J+p

On the other hand, suppose s € S,_1¢,, represented as s = 27:2 diBjp 1.

Then, by using again the differentiation formula, we can write s = D+( Z'}Zl Cj

B; p.¢), where c| can be any real number and

Cj:Cj_1~|—€]+pp_§jdj, j=2,...,n.

For r > 1 we use the relation D', = D Dﬂr_l. O
By combining Theorems 6 and 7 it follows that for 0 < r < p,
ST(A) = DSy,

where r —r = (max(m —r,—1),...,max(rp —r, —1)) and the knot sequence &
is constructed as in Theorem 6.
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1.3.3 B-Spline Representation of Polynomials

Polynomials can be represented in terms of B-splines of at least the same degree.
We now derive an explicit expression for their B-spline coefficients by using the
dual polynomials and the (local) Marsden identity.

Theorem 8 (Marsden Identity) We have

(y—x)r= Z% pEWBjpe(x), x €&pt1,6n+1], yER, (1.45)
j=1

where Yrj p e (y) := (y —&j11) - - - (y — &j1p) is the polynomial of degree p that is
dualto Bj , ¢.

Proof This follows immediately from the local version (1.17). Indeed, if x €
[Ep+1,Enq1) then x € [€y,Ep11) for some p +1 < m < n, and by the local
support property (1.36) we get

G=0P= D YjpsMBjpe) = Vi pe()Bjpe).

j=m—p Jj=1

Taking into account the left continuity of B-splines at the endpoint &, 1, see (1.34),
we arrive at the Marsden identity (1.45). O

Differentiating p — k times with respect to y in (1.45) results in the following
formula.

Corollary 1 Fork =0,1,..., p we have

(y _x)k N . 1 p—k
=y oD Vi 0) |Bipe @), x €6 bl yER
j=1
(1.46)
Corollary 1 immediately leads to the following properties.
* Representation of Monomials. For k =0, 1, ..., p we have
x —Zs,pg Bjpe(x), x €[&pi1.Enpil, (1.47)
where
£ e == 1)" DP*"w,-,p,;(O). (1.48)

This follows from (1.46) with y = 0.
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» Partition of Unity. Taking k = 0 in (1.47) gives
n
D Bipe) =1, xel&pr1énl (1.49)
j=1

Since the B-splines are nonnegative it follows that they form a nonnegative
partition of unity on [£,1, §,11].

* Greville Points. Taking k = 1 in (1.47) gives for p > 1,

n
x=) &, eBipe), x€lEpr1burtl, (1.50)
j=1
where
Ejr1+ 45§
Epe =6 = » . (1.51)

The number S;‘ iy is called Greville point.> It is also known as knot average or
node.

Example 7 For p = 3 Eq. (1.47) gives

n
1= B3¢,
j=1

n

‘- Z Eir1+&i12+&13

3 Bj3.6(x),

j=1

n

2 Z Ejir1&j+2 +&j+16j43 + &2 43
B 3

X Bj35(x),

j=1

n
X = Z§j+1$j+2$j+3 Bj3.¢(x).

j=1

We finally present an expression for the B-spline coefficients of a general
polynomial.

3 An explicit expression of (1.51) was given by Greville in [24]. According to Schoenberg [43],
Greville reviewed the paper [43] introducing some elegant simplifications.
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Proposition 3 (Representation of Polynomials) Any polynomial g of degree p
can be represented as

n
g) =Y Ajpe(@Bjps(). x€lEpp1.Enril, (1.52)
j=1
where
p
1 p—r r p—r
Ajpe(g) = ) Z(—l) D" pe(rj) DP " g(zj), 77 € R (1.53)
T r=0

Proof The polynomial g can be represented in Taylor form (1.95) as

p _ . [)—r
g(x) = Z (x( T’)), DP"g(tj), 7tj€eR.
- P=n

The result follows when we apply (1.46) withk = p —r. O

Note that, if 7; is a root of v; of multiplicity u; then D"v;(r;) = 0, r =
0,1,..., u; — I and (1.53) becomes

1 2 —r r —r
Aipe®@= ) 2D D@ D g, TR (1S4)

. r=p,

Example 8 The polynomial g(x) = ax? + bx + c can be represented in terms of
quadratic B-splines:

n
ax>+bx+c= ch Bjog(x).
Jj=1

From (1.52)-(1.53) with ¥ 5 ¢ (y) := (y — &;+1)(y — &j+2), we obtain that

1

cj=4Aj258) =, [(tj = &) () — §j12)2a
— 2t —&j41 —&j42)Q2at; +b)
+ 20t} + bty + c)]

Eir1+&i12 te

=aéjt1j2+b )
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1.3.4 B-Spline Representation of Splines

In the previous section we have derived an explicit expression for the B-spline
coefficients of polynomials; see (1.52). The next theorem extends this result by
providing an explicit expression for the B-spline coefficients of any splinein S, ¢.

Theorem 9 (Representation of B-Spline Coefficients) Any element s in the space
Sp.¢ can be represented as*

n
s(x) = ZAj,p,E(s)Bj,p,E(x)a x € [Ept1, Ent1l, (1.55)
j=1
where
o, (CDPTTD Y e (1) DY s (), if T = &
1
A @ i= AT CDPT DY () DY), i8] < 1) < Erapn.
fzuj (=D)P™" D" pe(zj) DX s (1)), if 15 = &jgpt1,
(1.56)
and where 1 > 0 is the number of times t; appearsin &1, ..., &4 p.
Proof Suppose §j < 1; < &jyp41 and let I; := [§y;, &m;+1) be the interval

containing 7;. The restriction of s to /; is a polynomial and so by Proposition 3
we find

m;j 12 B .
s = Y (p, Y (=P D" pg(x)) DY, s(r,-))B,-,p,;oc), xel;.
i=mj—p T r=0

(1.57)

Note that since §; < t; < &j4,41 we have j < m; < j + p which implies
mj—p < j <mj. Bytakingi = jin (1.57) and using the local linear independence
of the B-splines, we obtain

1 < _ _
Ajpg(s) = o > (=P D () DL s (1)),
T r=0

Since D" pe(t;) = 0 forr < p; we obtain the top term in (1.56). In the middle
term we can replace Dfr_rs(rj) by DP™"s(t;) since s € CP7Hi(t;). The proof of
the last term is similar using D_ instead of D. O

4The value A j.p.£(s) is known as the de Boor-Fix functional [7] applied to s.
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Note that the operator A; , ¢ in (1.54) is identical to A; , ¢ in (1.56). However,
in the spline case we need the restriction t; € [£;, &1 p11].

Because the set of B-splines {Bj,,¢};_; is a basis for the space S, the
coefficients A; , ¢(s) are uniquely determined for any s € S, ;. Thus, the right-
hand side in (1.56) does not depend on the choice of 7;. This is an astonishing
property considering the complexity of the expression. For example, one could take
the Greville point éj." Dk defined in (1.51) as a valid choice for the point 7;. Itis easy
to verify that g}k,p,g € [, &+ p+1], and moreover, "37,19,5 € (&j,&j4pr1) if Bj p g is
a continuous function.

Example 9 We consider the quadratic spline

n

s() =) ¢;jBjag(x),

j=1

and we illustrate that some derivative terms in the expression (1.56) can be canceled
by specific choices of 7;. Assume for simplicity §; < &;11 < &j412 < &j43.

— If 7; is the Greville point E;‘ 26 = (§j+1+&j42)/2, then there is no first derivative
term. Indeed, we have

Ejy2 —&j41)?

o D?s(€f, )

cj=Aj25(s) =5 ) —
Moreover, since s € P, on [§;41,&42], we can replace D%(gjzg) by a
difference quotient

g \2
D2s(§}k,2,§) = (s(€j+2) — 25(572¢) +S($j+1))/<§/+2 ) §/+1) ’

to obtain

1 1
¢ = =€) + 2500 = ,5E42): (1.58)

— Ifrjisequalto &1 or §;7, then there is no second derivative term. Indeed, we
have

* —_
§jag T

5 / Ds(tj),  tj € {§j4+1.§j+2}

¢j=Aj20)=s(1j)+
A similar property holds for any p: if 7; is chosen as one of the interior
knots &;11, ..., &j+p, then there is no p-th derivative term in the expression of

Aj,p,E(s)'
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1.3.5 Knot Insertion

In this section we are addressing the problem of representing a given spline on
a refined knot sequence. In particular, we focus on the special case where only a
single knot is inserted. Since any refined knot sequence can be reached by repeatedly
inserting one knot at a time, it suffices to deal with this case.
Without loss of generality, we assume that the spline s = )

Jj=1
on a (p + 1)-basic knot sequence & := {§; }n+p+l We want to insert a knot & in

some subinterval [&,, §,41) of [Ep41, &n11), resulting in a new (p + 1)-basic knot
sequence & := {§; }"+p 2 defined by

¢jBj pg 1s given

&, ifl <i <m,
=& ifi=m+1, (1.59)
&1, ifm+2<i<n+4+p+2

The B-spline form of s on the new knot sequence can be computed with the aid of
the following procedure introduced by Béhm [3].

Theorem 10 (Knot Insertion) Let the (p+1)-basic knot sequence & := (£}~ "+p +2

be obtained from the (p + 1)-basic knot sequence § := {&;},_ "+p+ by inserting Just
one knot &, such that &, < & < &4 as in (1.59). Then,

n n+1
s() =D ¢iBjps(¥) =) &B;  5(x), x €lEp1,Eur1l, (1.60)
j=1 i=1
where
ci, ifi <m—p,
~ é _éi éfi+p _éf . .
G = ¢ + ci—1, ifm—p<i<m, (1.61
' Eivp—&  Eiyp—&i )
Ci—1, ifi > m.

Proof From Theorem 6 it follows that S, ¢ is a subspace of S ;, since we have
reduced the continuity requirement at &, 1f & = &, or introduced another segment
otherwise. Hence, the B-splines in S, ¢ belong to Sp g and we can write

n+1
Bjpg= Zai,j,pBi’p’g, j=1...,n,
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for some real numbers «;, ;,,. Suppose s € S, ¢ is given by (1.60). Then,

n+l , n

n
Y esBns = 2 Leises ) B
j=1 i=1 Nj=1
By linear independence of the B-splines in Sp g we obtain
&= aijpci, i=1....n+1L (1.62)

Note that each «; j,, is independent of the ¢’s.
Now, consider the function fy(x) := (y — x)” for fixed y € R. By the Marsden
identity (1.45) we have

n+1
0 —xF= ZCJ Bjpgx) = ch B, ,i(¥), x€lfpt1, 61l yeER,
j=1
where
i =Yjpe) ==&+ —Ep),
and

G=, i) =0 =&w) (= Eigp)-
Hence, for the function f (x), the identity (1.62) takes the form
n
Vi g =D i pVipe(, i=1...n+1 (1.63)
j=1
From the relation (1.59) between the knot sequences é and &, we deduce that

1//‘ip§ 1//,,,Ef0rz<m—p,and1/fps Yi—1,pe fori > m, and using
the dual recurrence relation (1.11) that form — p <i < m,

§—& itp—§
. o = —_ l _ = l —"— 17 .
Vi i) =0 = HVip-1£() P Vip.g P Vi-1,p.
Then, (1.61) follows from (1.62) and (1.63). |

When several knots have to be inserted simultaneously, alternative algorithms
can be used instead of repeating the single knot insertion procedure given in
Theorem 10. In Sect. 1.4.3 we provide such a simultaneous knot insertion algorithm
in case of uniform knot sequences. A more general (but also more complex) knot
insertion algorithm is known as the Oslo algorithm [11].
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¢ Convex Combination. From relation (1.61) we see that the coefficients ¢; are
a convex combination of the coefficients ¢;. In general, the coefficients obtained
after repeated knot insertion are a convex combination of the original coefficients.

» Evaluation. Repeated knot insertion gives rise to an evaluation process for spline
functions in B-spline form. Indeed, the evaluation of a spline s at the point x can
be achieved by the repeated insertion of x as a knot till it has multiplicity p.
Then, assuming that for some m,

Em <X =&mt1 =" =Entp < Emtp+1,

we can conclude from (1.29) and (1.49) that

1, ifj=m,
Bj pe(x) =
ipk 0, otherwise,

and

n

s(x) = ZCij,p,E(x) = i B, p g (x) = cm.
j=1

When comparing (1.61) with (1.39), we observe that single knot insertion is
nothing else than applying once the B-spline coefficient recurrence relation. This
evaluation procedure is a fast and numerically stable algorithm introduced by de
Boor [4].

1.3.6 Condition Number

A basis {B;} of a normed space is said to be stable with respect to a vector norm if
there are positive constants Ky and Ky such that

ZC/B/

J

K el < < Kylel, (1.64)

for all coefficient vectors ¢ := (c;). For simplicity we use the same symbol || - || for
the norm in the space and the vector norm. The number

k :=inf{K; Ky : Kpand Ky satisty (1.64)} (1.65)
is called the condition number of the basis {B;} with respectto || - ||.

Such condition numbers give an upper bound for how much an error in
coefficients can be magnified in function values and vice versa. Indeed, if
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f =2 ;¢jBj # 0and g := }_;d;B; then it follows immediately from (1.64)
that

Lle—dl _1lf —gll _ lce—dl
ko lel T T el

where ¢ := (c;) and d := (d;). Many other applications are given in [5] and it is
interesting to have estimates for the size of k.

We consider the L,-norm for functions and the g-norm for vectors with 1 < g <
00. We focus on a scaled version of the B-spline basis defined on [&1, &4 p+1],

-1
{Njpageljzi = {Vj,p,/gq Bjpelizt (1.66)

where y; p e = (§j+p+1 — &j)/(p + 1); see also (1.30). The knot sequence & is
assumed to be (p + 1)-basic in order to have linearly independent B-splines. This
also ensures that y; , ¢ > 0. The g-norm condition number of the basis in (1.66)
will be denoted by «p, 4 ¢, i.€.,

n
HZ/:I ¢j Njpgs| Lg([E1.Enspt1])
Kp,q’g ‘= Sup
¢£0 llclly

X Sup lelly (1.67)

20 [ X521 ¢j Nipa.s ||Lq(lsl,sn+pm>

The next theorem shows that the scaled B-spline basis above is stable in any L,-
norm independently of the knot sequence &. It also provides an upper bound for the
g-norm condition number which does not depend on &. To this end, we first state
the Holder inequality for sums:

n
D o lxjyil < lxllg 1yllg- (1.68)
j=1

where ¢, ¢’ are integers so that

In particular, ¢’ = ocoifg =landg’ =2if g = 2.

Theorem 11 For any p > 0 there exists a positive constant K, depending only on
p, such that for any vector ¢ .= (c1, ..., cp) and for any 1 < g < oo we have

n
K Mellg <[> ¢jNjpags < lelly- (1.70)
j=1

Lq([él;§n+p+1])
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Proof We first prove the upper inequality. By using the nonnegative partition of
unity property of B-splines, the upper bound for ¢ = o0 is straightforward. For
g = 1, we have

/$n+p+1
&

Finally, we consider 1 < g < oo. By applying the Holder inequality (1.68) and
again the nonnegative partition of unity property of B-splines, we obtain for x €

(51 &ntpr1ls

n

ZCJ Nj p.g.s(x)

j=1

Sj+p+l

n
de <) ey /S B ps(x)dx = e
j=1 :

j

n n
ch Njpge()| = Z |Cj V,T,i,/gq (Bj,p,é(x))l/q | |Bj,p,§(x)|171/q
j=1 j=1

n /g , 1 1-1/q
< (Z i1 e Bj,p,g<x)) (Z Bj,p,g<x))
j=1 j=1
n 1/q
< (Z lejl? 7//7,1,5 Bj,pyé(x)> :

j=1

Raising both sides of this inequality to the g-th power and integrating gives the
inequality

\/$n+p+l
31

Taking the g-th roots on both sides proves the upper inequality in (1.70).
We now focus on the lower inequality. We extend & to a (p + 1)-open knot
sequence & by possibly increasing the multiplicity of & and &, ;41 to p + 1.

n

ZCJ Nj.p.g.s(x)

j=1

q n Ejtp+i
dx <) lejly; ), /g Bj p(x)dx = [c]|§.
Jj=1 /

J

Clearly, the set of B-splines on & is a subset of the set of B-splines on é, and any
linear combination of the B-splines on & is a linear combination of the B-splines
on é where the extra B-splines have coefficients zero. Therefore, without loss of
generality, we can assume that the knot sequence is open with the basic interval
[1, &u4-p+1]. The lower bound then follows from Lemma 5; see Sect. 1.5.3.1. O

Finally, we define a condition number that is independent of the knot sequence,

Kpg = SIEJpr,q,E. (1.71)

Theorem 11 shows that

Kpg < Kp < o0.
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It is known that kp, 4 grows like 27 for all 1 < g < oo; see [34, 40] where it has
been proved that

1

ot 121’—1/2 <kpg <(p+ 12T 1<g<o0. (1.72)

1.4 Cardinal B-Splines

A particularly interesting case of B-spline functions is obtained when the knot
sequence is uniformly spaced. Without loss of generality, we can assume that the
knot sequence is given by the set of integers Z. It is natural to index the knots as
&j = J, j € Z.Due to the translation invariance property (1.9) we have

Bjyz(x)=Bopz(x—j), Jj€Z xeR. (1.73)

Therefore, all the B-splines on the knot sequence Z are integer translates of a single
function. This motivates the following definition.

Definition 3 The function M, := B[0, 1, ..., p + 1] is the cardinal B-spline of
degree p.

Example 10 Figure 1.3 illustrates the cardinal B-splines M), for p =1, ...,5.

1.4.1 Main Properties

Cardinal B-splines possess several interesting features. Of course, they inherit all
the properties of general B-splines, and in particular the following ones.

Fig. 1.3 The cardinal B-splines M, for p =1, ..., 5. The uniform knot positions are visualized
by vertical dotted lines
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* Local Support. From (1.6) it follows that the cardinal B-spline M, is locally
supported on the interval [0, p + 1].

* Nonnegativity, Piecewise Structure and Smoothness. From (1.7), (1.8) and
(1.26) it follows that the cardinal B-spline M, is a nonnegative, piecewise
polynomial of degree p belonging to the class C?~!(R).

» Differentiation and Integration. The formulas (1.22) and (1.30) simplify in the
case of cardinal B-splines to

DiMy@) =My 1(x) = Mp_i(x = 1), p=1, (1.74)

and
/ Mpy(x)dx = 1. (1.75)
R

* Recurrence Relation. From Definition 2 we obtain the following recurrence
relation for cardinal B-splines,

1, if 0,1),
Mo(x) = itx e 0. 1) (1.76)
0, otherwise,
X p+1—x
Mp) =" Mpr(o+ 77 T My =1, p 2. (1.77)

The uniformity of the knot sequence endows the cardinal B-splines with several
additional properties. A key feature is based on convolution.

* Convolution. The convolution of two functions f and g is defined by

(f*g)x) = /Rf(x —y)g(y)dy.

The cardinal B-spline M, can be characterized using convolution by

1
Mp(x) = (Mp—1 * Mo)(x) = /O Mp_1(x —y)dy, p=1, (1.78)

and

p+1
-

Mp(x) = (Mo % -+ % Mo) (x). (1.79)



32 T. Lyche et al.
Proof From (1.74) we deduce

MAm=AM@4w—%H@—m®
x x—1
=/0 Mp,l(y)dy—/l My_1(») dy

x 1
=/ 1Mp_l(y)dy=/0 Mp_1(x —y)dy.
.

Applying recursively (1.78) immediately gives (1.79). O
* Fourier Transform. The Fourier transform of a function f € L,(R) is defined

by

76) = / fye P dx,

R

where i := +/—1 denotes the imaginary unit. The Fourier transform of the
cardinal B-spline M, is given by

- 1— efiG p+1

M,,(O):( 0 ) : (1.80)

i

Proof From (1.76), a direct computation gives
- 1— e—ie

My(0) =
0(0) »

An interesting property of the Fourier transform of a convolution is

(F*8)0) = FO)20). Vf.geLyR); (1.81)
see, e.g., [39]. Hence, by combining (1.81) with (1.79) we deduce that @(9) =
(M\O(O))pﬂ, which implies (1.80). |

* Symmetry. The cardinal B-spline M, is symmetric with respect to the midpoint
of its support, namely (p + 1)/2. More generally,

1 1
DrMp<p'2" +x>=(—1)rDrMp(P+ _x>, r=0,....,p—1,

2
(1.82)

and

+1 +1
DfMp<p2 +x>:(—1)PDiM,,<p2 —x). (1.83)
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Proof It suffices to prove that M,(p + 1 — x) = Mp(x). The general result
then follows from repeated differentiations. We proceed by induction. It is easy
to check that it is true for p = 0. Assuming the symmetry property holds for
degree p — 1 and using (1.78), we get

1 1
M,;(P—I—l—x)z/ M,,_l(p—l—l—x—t)dtzf M, 1(x —141t)ds
0 0

0 1
= —/ Mp_1(x —t)dt = / My 1(x —t)ydt = Mpy(x). O
1 0
We now focus on the set of integer translates of the cardinal B-spline M, i.e.,

[M,(-— j), j e}, (1.84)

They have the following properties.

e Linear Independence. From (1.73) it follows that the integer translates
My(- — j), j € Z, are (locally) linearly independent on R. They span the
space of piecewise polynomials of degree p and smoothness p — 1 with integer
break points; see (1.42).

» Partition of Unity. From (1.49) and (1.73) we get

ZM,,(x—j): 1, xekR.
JEZL

Due to the local support of cardinal B-splines, the above series reduces to a finite
sum for any x. More precisely, referring to (1.21), we have

m
Z My(x —j)=1, xe[mm+1).
j=m—

p
¢ Greyville Points. From (1.50)—(1.51) and (1.73) we have
x = Z;;pMp(x -7, xeR,
JEZ
with

e _ ANttt _pl

* . . 1.85
Sip » , T (1.85)
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1.4.2 Inner Products

Inner products of cardinal B-splines and their translates can be interpreted as
evaluations of higher-degree cardinal B-splines; similar results also hold for their
derivatives.’

Theorem 12 (Inner Product) Given pi, p» > 0, we have

fR My, (9)Mpy (3 + ) dy = Mp, iy 1(p1 + 1+ %) = My pyi1(p2 + 1 = ).

Proof From the symmetry property (1.82)—(1.83) and the convolution relation
(1.78) of cardinal B-splines, we get

/RMpl(y)Mpz(y +X)dy=/RMpl(y)Mp2(p2+l—y—X)dy

= (Mpl *M,,z)(pz—l— 1—x)

pi+1 pa+l
-

S~

= (7\40*-~-*M-(;*7\40*-~-*M-(;)(p2—|—1—x)
=Mp +py+1(p2+1—x).
Finally, again by symmetry of cardinal B-splines, we have
Mp4p+1(p1+1+x) = Mp 4 py+1(p2 + 1 —x),
which completes the proof. O

Theorem 13 (Inner Product of Derivatives) Given p; >r1 > 0and p» > r, >
0, we have

/R DMy, (y) DMy, (y + x)dy = (=1)"" D" My, 1y 11 (p1 + 1 4 1)
= (=D D" My 4 pr1(p2 +1 = ).

Proof Because of the (anti-)symmetry of higher order derivatives of cardinal B-
splines given in (1.82), we have

(=D DMy s (P14 1+ x)
= (D" (=) DM, i (pr+ p2+2 = (pr+ 1+ X))
=(=D"2D""Mp 1 pyr1(p2+1—x).

5The inner product formula for cardinal B-splines traces back to [44]. The formula for derivatives
of cardinal B-splines can be found in [21] and a generalization for multivariate box splines in [48].
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So, we only have to show one of both equalities in the theorem. This can be proved
by induction on the order of derivatives. The base case (r; = r, = 0) simply follows
from Theorem 12. We consider two inductive steps: in the first inductive step we
increase the order of derivative of M), by one, i.e., 71 — r1 + 1, and in the second
inductive step we increase the order of derivative of M, by one,i.e.,72 — r2+1.

1. (r1 = r1 + 1). Using (1.74) and the induction hypothesis, we have
/RDQ“M,,l (y) D2 M, (y 4 x) dy
_ /R(Dfr'Mplq(y) — D} Mp—1(y = D) DM, (v + x) dy
= fRDi‘Mplq(y)DfMpz(y"‘x)dy

- fRDQ Mp,—1(y — DD M, (y + x) dy

= (=D (D" My, 4, (P14 X) = DM, (1 4 1))

— (_1)r1+1 Drl+r2+1Mp1+p2+l(pl + 1 +X)

2. (ro — r2 4+ 1). This inductive step can be proved in a completely analogous way
as the first inductive step. O

Due to the relevance of the set (1.84), the results in Theorems 12 and 13 are of
particular interest when we consider integer shifts, i.e., x € Z. In this case, the above
inner products reduce to evaluations of cardinal B-splines and their derivatives at
either integer or half-integer points. Moreover, there is a relation with the Greville
points (1.85). Indeed, if p; = p» = p and x =i in Theorem 12, then

/RM[J(X)Mp(x +i)dx = M2p+1(p +1+i)= M2p+1(§:2p+1)-

A similar relation holds for the inner products of derivatives in Theorem 13. Thanks
to the recurrence relation for derivatives (1.74), the inner products of derivatives
of cardinal B-splines and its integer translates reduce to evaluations of cardinal B-
splines at either integer or half-integer points.

1.4.3 Uniform Knot Insertion

In Sect.1.3.5 we have seen how to insert a (single) knot into an existing knot
sequence without changing the shape of a given spline function defined on that
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knot sequence. For uniform knot sequences, we can provide a simple alternative
algorithm for inserting simultaneously a knot in each knot interval.

Let us consider the B-splines of degree p over the uniform knot sequence given
by Z/2. In this case, it is natural to index the knots as

k, if i = 2k, .
& = n i €.
k+1/2, ifi =2k+1,

From the definition we have B; ,, 7/2(x) = M,(2x — i) fori € Z. Since S, 7 C
S,,z/2, the cardinal B-spline M), is a refinable function, i.e., it can be written as a
linear combination of translated and dilated versions of itself:

p+1

Mp(x) =Y aip Mp(2x —i). (1.86)
i=0

We are now looking for a relation between the coefficients of a given spline
function corresponding to knots in Z and the coefficients of the same function
corresponding to knots in Z/2. The following simultaneous knot insertion procedure
was introduced by Lane and Riesenfeld [32].

Theorem 14 (Uniform Knot Insertion) Consider the uniform knot sequences 7
and 7./2. Then,

s@) =Y i My(x = j) =Y & M,Q2x —i), (1.87)

JEZ i€Z
with ¢; = 5}19] defined recursively by

~[p—1] | ~[p—1]
C; +c;
art.= ) = (1.88)

starting from

R
gor._ i ¥i=2j, (1.89)
cjo ifi=2j+1.

Proof For p = 0 we can directly check that

Mo(x) = Mo(2x) + Mo(2x — 1),
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leading to (1.87) with (1.89). We proceed by induction on p. Assume the relation
(1.87) with (1.88) holds for cardinal B-splines of degree p — 1. Then, by using the
convolution property (1.78) we get

1
chMp(x—j)z/o ZCjMpfl(-x_y_j)dy

JEZ JEZ
! 1
Z/ Za}l’* M, 12x —2y —i)dy
0 i€Z
| 172
=Y & ]</ M, 1(2x — 2y —i)dy
i€Z 0

1
+/ M,,_1<2x—2y—i>dy)
1/2

5[17—1]
:Z 12 (Mp2x — i)+ M,Q2x —i — 1))
i€Z
ap=11 4 alp=1l
=3 ) oM, x i),

i€Z
which concludes the proof. O

The knot insertion procedure in Theorem 14 can be geometrically described
as follows. First, every coefficient is doubled. Second, a sequence of p sets of
coefficients is constructed by taking averages of the previous set of coefficients.

The coefficients {«;, ,} in (1.86) can be directly computed from Theorem 14, and
we obtain the explicit expression

1 (p+1 ,
Oli,p=2p(pi ) i=0,....,p+ 1L (1.90)

They are called the subdivision mask of the (uniform) B-spline refinement scheme
of degree p.

1.5 Spline Approximation

In this section we discuss how well a sufficiently smooth function can be approx-
imated in the spline space spanned by a given set of B-splines. Exploiting the
properties of the B-spline basis presented in the previous sections, we explicitly
construct a spline which achieves optimal approximation accuracy for the function
and its derivatives, and we determine the corresponding error estimates. The
construction method we are going to present is local and linear.



38 T. Lyche et al.
1.5.1 Preliminaries

Let I be a finite interval of the real line. A function f : I — R is a piecewise
continuous function on / if it is bounded and continuous except at a finite number
of points, where the value is obtained by taking the limit either from the left or the
right. We denote the space of these functions by C~!(I).

Forr € Nypand 1 < g < oo the one-dimensional Sobolev spaces are defined by

W§(1):={f:1—>R:D/feLq(l),j=0,...,r}. (1.91)

They are normed spaces with norm
,
1 Wy = D 1D FIIZ, 1y (1.92)
Jj=0
called Sobolev norm. It can be shown that forr € Nand 1 < g < oo,
C'(I) cWi()C W,;(I) cwid) c crlu). (1.93)

The Holder inequality for integrals is given by

b
f lf)g)ldx < I fllz,nllgliz, - (1.94)

where I := [a, b] and ¢, ¢’ are integers satisfying (1.69).
The Taylor polynomial of degree p at the point a to a function f € Wf’ i ([a, b))
is defined by

P —a) .
Topf )= 3 j,“) Dl f(@), (1.95)

j=0

and its approximation error can be expressed in integral form for x € [a, b] as

1 b
0 =Tt = [ = ntpr o, (196)

Every polynomial g € P, can be written in Taylor form as ¢ = .7 ,g.

Theorem 15 (Taylor Interpolation Error) Ler f € W,f H([a, b)withl < g <
oo, and let T p f be the Taylor polynomial of degree p to f at the point a. Then,
forany x € [a,bland 0 <r < p,

b — a)p+l—r—l/q

D" = Zap @I 7T T

IDPH £l qa.b)- (1.97)
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and

b — a)erlfr

(p—r)! IDP £l (fa.b- (1.98)

ID"(f = Ta,p Ly a.pn <

Proof By differentiating the integral form of the Taylor approximation error (1.96)
and using the Holder inequality (1.94), we obtain

1t .,
D= Tl = L[t o e

1 b ( v 1/q' .
< - d DPt
= (p-r! [/a (x=yy )’} l Sy qa.by)

(b —a)P~—r+1/d

+1
= (=P p = gt + v 127 haten

Since 1/q + 1/¢’ = 1 and (p — r)q’ > 0, we obtain (1.97). Finally, taking the
L 4-norm shows (1.98). |

For the sake of simplicity one can use the following weaker, but simpler upper
bound,

ID"(f = Zap Hllz, sy < b= )P IDP flIL, (1a.6)- (1.99)

1.5.2 Spline Quasi-Interpolation

In general, a spline approximating a function f can be written in terms of B-splines
as

2f(x) =Y Aj(f)Bjpe(x) (1.100)

j=1

for suitable coefficients A ; (f). The spline in (1.100) will be referred to as a quasi-
interpolant to f whenever it provides a “reasonable” approximation to f.

Both interpolation and least squares are examples of quasi-interpolation methods.
They are global methods since we have to solve an zn by n system of linear equations
to find their coefficients A ; (). It follows that the value of the spline (1.100) at a
point depends on all the data.

In this section we focus on local linear methods, i.e., methods where each
is a linear functional only depending on the values of f in the support of B; , ¢.
In principle, it suffices to be “near” the support of B; , ¢, but we want to keep the
presentation as simple as possible. In order to deal with point evaluator functionals
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we assume here that f € C’l([a, b)), where [a, b] is a bounded interval. We
consider a spline space S, ¢, where the knot sequence & is (p + 1)-basic and the
basic interval [§,+1, §:+1] is equal to [a, b].

With the aim of constructing a spline quasi-interpolant with optimal accuracy, we
need to introduce some basic approximation properties of quasi-interpolants of the
form (1.100). Since we are interested in local methods, we start with the following
definition.

Definition 4 We say that a linear functional A : C~!([a, b]) — R is supported on
a nonempty set . C [a, b]if A(f) = 0 for any f € C~'([a, b]) which vanishes
on.”.

Note that the set . in this definition is not uniquely defined and is not necessary
minimal.

To construct our quasi-interpolant, we first require linear functionals that are
supported on intervals consisting of a few knot intervals. This will ensure that
2 f only depends locally on f. To ensure a good approximation power, we also
require polynomial reproduction up to a given degree. Finally, to bound the error,
a boundedness assumption on the linear functionals is needed. This leads to the
following definitions.

Definition 5 The quasi-interpolant 2 given by (1.100) is called a local quasi-
interpolant if

(i) each A; is supported on the interval /;, where

1j =&}, §j+p+11Nla, b], (1.101)

such that /; has nonempty interior;
(i) the A; are chosen so that (1.100) reproduces I, i.e.,

g(x) = g(x) forall x € [a,b]and all g € P, (1.102)

for some [ with 0 <[ < p.

Definition 6 A local quasi-interpolant 2 is called bounded in an L,-norm, 1 <
q < oo, if there is a constant C ¢ such that for each A; we have

-1 —
(N < Coh Y4 f iy forall £ e (T, (1.103)

where

h; = max — &. 1.104
ppk m‘dX(/lP+1)§k§min(j+p,n)€k+1 S ( )

Note that /1 , ¢ is the largest length of a knot interval in the intersection of the
basic interval with the support of B; , ¢. The requirement (1.101) ensures that the
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spline in (1.100) provides a local approximation to f. The polynomial reproduction
as stated in (1.102) coupled with the boundedness of the linear functionals are the
main ingredients to prove the approximation power of any bounded local quasi-
interpolant.

We now give both a local and a global version of the approximation power of
bounded local quasi-interpolants. To turn a local bound into a global bound we first
state the following lemma.

Lemma 1 Suppose that f € Ly([§py1,8n+1]) for some q, 1 < g < oo, and that
Mmjy, ..., M, are integers with m;; < --- < mj,, py1 < éml.l and 5mi2+k < &41
for some positive integer k and integers i1 < ip. Then,

2 1/q
1
<Z ”f'l‘ll‘q([gmj’gmﬁrk])) =k /q”f||Lq(|$p+lv$n+1])‘ (1.105)

J=i

Proof Under the stated assumptions, each knot interval in [§,1, §,41] is counted
at most k times and moreover all the local intervals [&,, D Em j+k] are contained in
[6p+1, Eng1]. The definition of the L,-norm gives immediately (1.105). O

Theorem 16 (Quasi-Interpolation Error) Let 2 be a bounded local quasi-
interpolant in an Ly-norm, 1 < q < oo, as in Definitions 5 and 6. Let I, p be
integers with 0 < I < p. Suppose &, < &n+1 for some p +1 < m < n, and let
[ e Wi (Jy,) with

I = [%'m—pa §m+p+1] N [a, b].
Then,

(2]7 + 1)l+1

If = 2F L, (embmin = T

(1 + CR D™ flly s, (1.106)

where h,, ¢ is the largest length of a knot interval in Jy. Moreover, if f €
W) ([a, b]) then

(2]7 4 1)l+1+1/q

1f =2 f Ly ta.b)) < I

A+Ch D™ fllLyapy,  (1.107)
where

hg == max il —&;.
§ p+15j5n$/+ i

Proof Note that f is continuous since [ > 0. Suppose x € [§,,, &n+1)- By the local
partition of unity (1.21) and by (1.103) we have

9 —1/q
< m i < m . ).
|2f )] < o max_ 12 (Nl =Ca o hj el f Ly
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Since &1 — & < Miny—p<j<m hj p g and Jy = Uy p<j<ml; we find

12 fLy(Ememiid < C2l Ly (- (1.108)

From (1.102) we know that 2 reproduces any polynomial g € [P;, and so the triangle
inequality gives

1 = 2f g (amsned = I = 8llLggmsnen + 120 — O lLy @Em i)

Since [&,, &m+1] C Jin and by (1.108) for any g € PP;, we have

If =2 L,tmend < A+ CDNf —8llLy (- (1.109)

Let a,, := max(§,—p,a), and choose g := 7,1 f, where 7, ; f is the Taylor
polynomial of degree / defined in (1.95) with a = a,,. Then, by (1.98) with r = 0
we have

(2[7 + 1)l+1
!

/ Hy D F Ly - (1.110)

If = gllL,m =<

Combining the inequalities (1.109) and (1.110) gives the local bound.
Since each J,, is contained in the basic interval [a, b] the global bound follows
immediately from the local one and Lemma 1. O

Example 11 Let & be a (p + 1)-open knot sequence for p > 1, and consider the
operator

Vps )= &, )Bjpe(x), (1.111)

j=1

where é}‘ bk is the j-th Greville point of degree p; see (1.51). This operator is known
as the Schoenberg operator, and was introduced in [43, Section 10]. It is a bounded
local quasi-interpolant in the Loo-norm with / = 1 and C9 = 1. Note that 571, £

belongs to [§;41, §j4p]. Therefore, Theorem 16 implies for any f € Wgo([a, b)),

1f = Y flLactaby <22p + D2REID? fllLas(ta)- (1.112)

The next proposition can be used to find the degree / of polynomials reproduced
by a linear quasi-interpolant.

Proposition 4 Let

{pj0,...eju}, j=1....n, 0<l=<p (1.113)
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be n sets of basis functions for P;, and let

n

0ii =Y CjikBips (1.114)
k=1

be their B-spline representations. The linear quasi-interpolant (1.100) reproduces
IP; provided the corresponding linear functionals satisfy

Ajlpji) =cjij, Jj=1,...,n, i=0,...,1. (1.115)

Proof On the basic interval, any g € [P; can be written both in terms of the ¢’s and
the B-splines, say

n
8= bjigji=) biBipg j=1.....n (1.116)

By (1.114)and (1.116)for j = 1,...,n

I n

8= ij,i(ZCj,i,kBk,p,E) Z(Zb/,c/,k>8k,,5 = Zkaka

i=0 k=1 k=1

By linear independence of the B-splines and choosing j = k we obtain

l
= brickik. (1.117)

Similarly, for 2g using (1.116) with j =k,

g = Z)»k(g)kag = ZM(Zlﬁkﬂpk;)kag

k=1 =0

From the linearity of A; and (1.115), (1.117) and finally (1.116) again we obtain

Qg—zzbkz)»k(fﬂkz)kag —ZZbk,ck,kkas _Zkakps =g

k=1 i=0 k=1i=0
O

The next proposition gives a sufficient condition for a quasi-interpolant to
reproduce the whole spline space, i.e., to be a projector onto S, .

Proposition 5 The linear quasi-interpolant (1.100) reproduces the whole spline
space, i.e.,

Ds(x) =s(), s€Spg. x € [Epst.usil, (1.118)
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if 2 reproduces P, and each linear functional A ; is supported on one knot interval®

6, & 1] C 18 8jp1 ], with Em; < Emj1. (1.119)

Proof Let j with 1 < j < n be fixed. By the linearity it suffices to prove that
Ai(Bipe)=26ij, i=1,...,n,

where §; ; stands for the classical Kronecker delta. On the interval (&} o &, ; 411 the
local support property implies that A;(B; , ¢) = 0fori ¢ {m; — p, e m‘j}. This
follows because we use the left limit at &, 11 if necessary. Since B; , ¢ € P, on
this interval, we have

mj

Bipe() =2Bip) ()= Y M(Bipe)Bipe(). x € m; Emr1).
k=m;—p

and by local linear independence of the B-splines we obtain Ax(B; p¢) = 6;x for
k =mj; — p,...,mj. In particular, it holds for k = j since the condition (1.119)
implies thatm; — p < j <m;. m]

Example 12 Let p = 2, and let & be a 3-open knot sequence with at most double
knots in the interior. We consider the operator

n

Qs f(x) =Y (arofEjr) + a1 fE ) +a22f (Ej42)) B (),

j=1

where 5;"2’5 = (§j4+1 + &j42)/2 is the j-th Greville point of degree 2. It can be
checked (see also Example 9) that if we choose az 0 = a2 = —1/2andaz| = 2
then 2; ¢ reproduces [P, i.e., | = 2. Proposition 5 says that it is even a projector on
the spline space S, ¢. Moreover,

1 1
—zf(§j+1) +2fG5 o) — 2f(€j+2) < 3 Lo (it £ 3D

It follows that 25 ¢ is a bounded local quasi-interpolant in the Loo-norm with [ = 2
and C g = 3. In this case, Theorem 16 implies for any f € Wgo([a, b)),

53
If = 226 liotiarn <45, BEID flliqa b,

showing that the error is O (hg).

%This notation means that if A j(f) uses the value of f or one of its derivatives at Em; (o1 &mjt1)
then this value is obtained by taking the one sided limit from the right (or the left).
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1.5.3 Approximation Power of Splines

In this section we want to understand how well a function can be approximated by
a spline. In order words, we want to investigate the distance between a general
function f and the piecewise polynomial space S; (A) defined in (1.42). From
Theorem 6 we know that S; (A) = S ¢ for a suitable choice of the knot sequence

& =1{§ }7:1” 1 n particular, & can be chosen to be (p+ 1)-open. Therefore, without
loss of generality, we consider the distance between a general function f and the
spline space S ¢ of degree p over the (p + 1)-open knot sequence §. For a given
f e Ly([&ps1, Enq1]) with 1 < g < oo, we define

disty (f.Sp.g) = inf |1f = sllLy(igpar gri)- (1.120)
SEOp.&

We are also interested in estimates for the distance between derivatives of f and
derivative spline spaces. To this end, in this section we use the simplified notation
D"s := D' s for the derivatives of a spline s € S, ¢ with the usual convention
of left continuity at the right endpoint of the basic interval. Note that with such a
notation we ensure that D" s (x) exists for all x. In the same spirit, we use the notation
DSy ¢ := D! S, ¢ for the r-th derivative spline space. We recall from Sect. 1.3.2
that this derivative space is a piecewise polynomial space of degree p — r with a
certain smoothness, i.e.,

ShTh(A) = D'Spg.

where the partition A consists of the distinct break points in the knot sequence & and
the smoothness r is related to the multiplicity of the knots, according to the rule in
(1.35). This leads to the following more general definition of distance. For a given
fe W;([Epﬂ, Err1]) withl < g <ococand 0 <r < p, we define

distg(D" . D'Spg) 1= inf [ID"(f = )llLyps1.6001)- (L.121)
SEOp.§

We will derive the following upper bound for dist, (D" f, D"S, ¢).

Theorem 17 (Distance to a Function) For any 0 < r <[ < pand f €
Wé+1([§p+1, Er1]) with 1 < g < oo we have

distg(D" £, D"Sp¢) < K (he) ™ IID"™ L, (6pi1.60i1)-

where hg := maxpi1<j<n(&j+1 — &) and K is a constant depending only on p.

The distance result will be shown by explicitly constructing a suitable spline
quasi-interpolant which achieves this order of approximation; see Theorem 18. For
sufficiently smooth f, the upper bound behaves like (hg)”“”.
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1.5.3.1 A Spline Quasi-Interpolant

Given an integer p > 0 and a (p + 1)-open knot sequence &, we define a specific
spline approximant of degree p over § to a given function f. Let [§m; ,, &m; ,+1] be
a knot interval of largest lengthin [§;, &4 py1] forany j =1,...,nand h; ;¢ :=
€m; ,+1 — &m; , > 0. The spline approximant to f is constructed as

n
2ps f(x) =Y L pe(f)B) pe(x), (1.122)
j=1
where
1 Sm iptl 4 X — g . i
Lipehri=, [ (Zcm( L ) )f(x)dx, (1.123)
j.p.§ &Uw i=0 j.p.§
and the coefficients a;;, i =0, ..., p are such that
y— £\
z,-,,,,;(( é’”"") ) =cjij, i=0,...,p, (1.124)
hjpk
where

x_émj,p i Jot .
< hp )z Y CikBips @) x € ln,, Em ). P=00p.

k=mj ,—p

(1.125)

In the next lemmas we collect some properties for the spline approximation
(1.122).

Lemma 2 The above spline approximation is well defined and reproduces polyno-
mials, i.e., for any polynomial g € ), we have

Ppsg(x) =g(x), x € [Epy1, Ensrl. (1.126)

Moreover, it is a projector onto the spline space Sy g, i.e., for any spline s € Sy ¢
we have

Dpes(x) =s(x),  x € [Epr1.Enr1], (1.127)

and, in particular,

s(x) = ij,p,s(S)Bj,p,g(X), x € [Epr1, Enpl- (1.128)
j=1
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- Sm

. r
Proof By applying .Z; , ¢ to the polynomials (xh “’) ,r = 0,...,p, the

j-p§
coefficients a;; are given by the solution of the linear system

Hpiiaj =c¢j, (1.129)

wherea; := (ajo,...,a; ) ,¢j = (cj0,js---Cjpj)  and Hyppisa (p+1) x
(p 4+ 1) matrix with elements

1 fmj,lﬁrl X — ‘i:m r+i 1
(Hp+1)it+1,r+1 := / ( “’) dx = ,
hjpg Jen, hjp.g i+r+1

fori,r =0, ..., p. This is the well-known Hilbert matrix which is nonsingular and
it follows that the spline approximation (1.122) is well defined. From Proposition 4
we deduce that (1.126) holds.

Since we only integrate over one subinterval when we define . , ¢, we conclude
that it reproduces not only polynomials but also splines, and (1.127) follows from
Proposition 5. O

Lemma 3 For p > 0and 1 < g < oo we have for any f € Ly([§m; , 6m; ,+1]),

—1 .
L s OV Ch SN Ly en, s el = Loom, (1.130)

where C is a constant depending only on p.

Proof By (1.20), (1.10) and (1.13) we have

. g\
< <§j+p+1 gj)
hj.pg

Here we used that [Emm , émj‘p+1] is aknotinterval of largest lengthin [§;, &4 p41].

lcji il = i D" Gy ,)
il = i
p! hj,p,E

(p+Di, i=0,...,p.

IA

Since 0 < xfm;” < lforx € [&m;,.&m; ,+1], we get from (1.123),
J:ps
-1
1. p. (DI < (P + DA, ellajllos 1 ILidEn, 0, D
< (p+ DRy, IH, L lsollejllooll i, 6, 1D

o —1 1
This gives |2} p.& (/)] < Chy NS L1, , 5, 410> Where C = 1H [ lloo(p +

1)7*1 only depends on p. By the Holder inequality (1.94) we arrive at (1.130). O



48 T. Lyche et al.

We now give a bound for the derivative of "@Pf f. To this end, we recall from
(1.25) that

Api:i= min hig, hip=&u &, k=1,...,p

m—k+1<i<m

and that A, x > O forall k if §,, < &,41.

Lemma 4 Suppose &, < &u41 for some p +1 < m < n, and let f €
Ly((Em—p, Emtp+1]) with 1 < g < 00. Then, we have for 0 < r < p,

p

1
IID’(e@p,sﬁIquusm,smHnSC( [1 A k)||f||Lq<[gmp,gm+,,m>, (1.131)

k=p—r+1 — "

where Ap, i is defined in (1.25) and C is a constant depending only on p.

Proof From the quasi-interpolant definition (1.122), the local support property
(1.36) and Lemma 3, we have for x € [&,, En+1),

Y Zips(HID B pe)

j=m—p

ID"(2pe H(X)] =

m

< max |[D"Bj¢(x)] Z |-Z).p.& ()]

m—p=<j<m

j=m—p

<(p+1) max |D"Bj,¢x)|
m

m—p<j=<

h—l/q

xmax kel P, (e fngpai -

m—p=<j<m

Note that [&y, &na1] C [£j,&j1pr1l for j = m — p,...,m. Since hj , ¢ is the
length of the largest knot interval in [§, &4 p11], we have &1 — &n < hj pe
for j = m — p,...,m. Replacing |D"B; , ¢(x)| by the upper bound given in
Proposition 2 and taking the L,-norm results in (1.131). O

The next lemma will complete the proof of Theorem 11 related to the condition
number. Note that [£,11, &,41] = [£1, &u4 p+1] because the knot sequence & is open.

Lemma 5 For any p > 0, there exists a positive constant K ,, depending only on p,
such that for any vector ¢ := (cy, ..., cp) and for any 1 < g < 0o we have

n

ZC/' Nj.p.a.t

j=1

lelly = Kp

, (1.132)

a1 801D

L

-1
where Nj p g8 '= Vj,p,/quj,p,E and yj pg = Ejtp+1 =)/ (p + 1.
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Proof Lets :=}_, V;;,/gCJ'BJ"P"E' Observe that (1.128) and (1.130) imply

1/‘1 |

—1
Vipeeil =121 p s @) < Ch7 sl e, 6,

Js p+l

Since y; p.e/hj p.e < 1 we obtain
lejl = Clisliz, agn; , 6m; 00 = ClsliLgag g5 p00

Raising both sides to the g-th power and summing over j gives

" ki
D lejlt < ¢ Z/g_ s@)I7dx < (P + DCIUSIT 6,1 60011
j=1 j=175]

When taking the g-th roots on both sides, we arrive at the inequality in (1.132) with
K, :=(p+1)C > (p+ 1H/4C, which only depends on p. O

1.5.3.2 Distance to a Function

The quasi-interpolant 2, ¢ f described in the previous section can be used to obtain
an upper bound for the distance between a given function f and the spline space

Spgforp>0,n>p+land§:= {.SSJ}"JFPJrl see Theorem 18. We recall that the
knot sequence & is (p + 1)-open. We start by giving a local and global upper bound
for (the derivatives of) the difference between f and 2, ¢ f.

Proposition 6 Suppose &, < &n41 for some p+1 < m < n, and let f €
W (Em—p, Em+pr1D) with 0 < | < pand 1 < q < 0o If 2,¢f is defined
as in (1.122), then we have for any 0 <r <,

I+1— )
ID"(f =2y s Ly tnsid < K Gt p1=Em—p) 1D FllLy 6y ns pia))-

Here,

i éererl - é;-mfp
Kn:=1+C ] :
k= Am,k
=p—r+1
Ap i is defined in (1.25) and C is a constant depending only on p.

Proof From Lemma 2 we know that 2, ¢ reproduces any polynomial in I;, and so
the triangle inequality gives

ID"(f = 2p e Lyt i)
< ID"(f = NLyemtnird T I1D"Lp e (f — Ly (&mbmsr))>
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for any g € ;. Let us now set g := %%, f, where .7, ; f is the Taylor polynomial
of degree [ defined in (1.95) with a = &,,, b = &,,+1. Then, Eq. (1.99) implies

ID"(f = )Ly (emtmsrd < Emrt — E) T 1D FllL, (e s

On the other hand, since f — g € L;([§n—p, Em+p+1]), it follows from Lemma 4
that

p

1
ID"2pe(f = &L, (Embnii) = C( ]_[ A, k)llf = 8Ly (Emp Emipsi])s
k=p—r+1 ’

where C is a constant depending only on p. Combining the above three inequalities
gives the result. O

We know that the ratio S’”*"le{sm’” is well defined because A, ; > 0. For a

uniform knot sequence

Sm-i—p-i—l - éfm—p _ 2p+1
Apm ok k-

For a general knot sequence it is related to the “local mesh ratio”, i.e., the ratio
between the lengths of the largest and smallest knot intervals in a neighborhood of

Em.
The local error bound in Proposition 6 can be turned into a global one as in the
following proposition.

Proposition7 Let f € W, ((€p41. &) with0 <1 < pand 1 < q < oo. If
Dp¢ f is defined as in (1.122) then, for any 0 < r <,

ID"(f = 2pg HLygprnn < Khg " ID™ fll,qgprps (1133)

where hE = max,,+15j5,,(éjj+1 — %'j), and

P
K:=Qp+ 1)’+2—f[1 +c max_ ] Smtp1 é’””}
p+l1<m=<n Amk
k=p—r+1 ’
where Ay, i is defined in (1.25) and C is a constant depending only on p.

Proof For g = oo the result follows immediately from Proposition 6 by taking into
account that & is (p + 1)-open. We now assume 1 < g < oo. Since

max _ (Emyp+1 —Em—p) = 2p+ Dhe,

p+1<m=n

the result follows from Lemma 1 and the local error bound in Proposition 6. O
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The expression K in the upper bound in Proposition 7 depends on the position of
the knots for r > 0. However, for any knot sequence &, it is possible to construct a
coarser knot sequence & such that the corresponding K only depends on p. This can
be obtained by a clever thinning process. The idea of thinning out a knot sequence
to get a quasi-uniform sequence is credited to [47]; see [45, Section 6.4] for details.
Since &7 is a subsequence of &, we have that S £ is a subspace of S, ¢. In particular,
forany f € Ly;([§p+1,&nt1]) the spline approximation

Sp = QP,E: f
as defined in (1.122) belongs to the spline space S, ;. This spline quasi-interpolant

leads to the following important result.

Theorem 18 (Approximation Error) Let f € Wé+1([§p+1, Enr1Dwithl <g <
oo and 0 <1 < p. Then, there exists s, € S,,,E such that

D" (f = sp)lLgtEper nern < KB TUDH! fllL, s s 0 <7 <1,
(1.134)

where hg := maxpi1<j<n(&j+1 — &) and K is a constant depending only on p.

The constant K in Theorem 18 grows exponentially with p. However, this
dependency on p can be removed in some cases; see [1, Theorem 2] and [52,
Theorem 7] for details. Theorem 18 immediately leads to the distance result in
Theorem 17.

1.6 Hierarchical Splines and the Truncation Mechanism

The hierarchical spline model is a simple strategy to mix locally spline spaces of
different resolution (different mesh size and/or different degree). Hierarchical spline
representations are defined in terms of a sequence of nested B-spline bases and a
hierarchy of locally refined domains. In this section we define such hierarchical
splines and focus on a set of basis functions with properties similar to B-splines.

1.6.1 Hierarchical B-Splines

Let I be a closed interval of the real line, and consider a sequence of strictly nested
spline spaces defined on I, say

Spi.&; CSpg, € CSprg,- (1.135)
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We assume that each knot sequence involved in (1.135),

o= <6< Z&yip+1e}, €=1,... L,

is (p + 1)-basic with basic interval /. Nestedness of the spaces is ensured if and
only if

0 < per1—pe < pg,,  (§)—pe,(6), §e&nl, £=1,....L-1 (1.136)

Note that (1.136) implies that (§, N 1) € (§,,; N I). The assumption of dealing
with (p + 1)-basic knot sequences ensures that the corresponding 7y B-splines are
linearly independent on /. We denote the B-spline basis of the space S, ¢, by

By = {Bj¢:= Bj,[Jz,Ez’ j=1,...,n¢}. (1.137)
Next, consider a sequence of nested, closed subsets of /,
12821282282, (1.138)

where £2; is the union of some closed knot intervals related to the knot sequence &,.
Note that each £2, may consist of disjoint intervals. We assume that each connected
component of £21 has nonempty interior. The collection of those subsets in (1.138)
is denoted by

2 :={Q1,2,.... 2L}, (1.139)

and will be simply referred to as the domain hierarchy in /. We also set £27 1 := #.
Finally, for a given function f on I, we define its support on 2 as

suppg (f) := supp(f) N £2;.

Given a sequence of spline spaces and bases as in (1.135)—(1.137) and a domain
hierarchy as in (1.138)—(1.139), we construct the corresponding set of hierarchical
B-splines (in short, HB-splines) as follows.’

Definition 7 Given a domain hierarchy 2, the corresponding set of HB-splines is
denoted by 7% and defined recursively as follows:

(i) 74 :={Bj1 € % : suppg(Bj1) # 0};
(i) for =2,...,L:

M = A VAT,
"The HB-splines in Definition 7 were introduced by Kraft [28, 29] and further elaborated in

[53]. However, the concept of hierarchical splines has a long history; for example, it was used
in preconditioning [18, 54], adaptive modeling [19, 20] and adaptive finite elements [25, 30].
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where

A = {Bjx € Hi_1 : suppg(Bjx) L 2},
A" = {Bjy € By :suppg(Bj o) S 2¢);

(i) o = S5

To obtain the set of HB-splines, we first take all the B-splines in %] whose
support overlaps §21. Then, we apply a recursive procedure which selects at each
level £ all the B-splines obtained in the previous step whose support is not entirely
contained in £2, and all the B-splines in %, whose support is entirely contained
in £2¢.

Example 13 An example of the recursive definition of HB-splines is illustrated in
Fig. 1.4. We consider three nested knot sequences, with knots of multiplicity 4 at
the two extrema of the intervals and single knots elsewhere, as in Fig. 1.4a. This

(@) (b)

level 3 2
level 2 Q)

level 1 Q

(©) (d)

(O] (®

(&) (h)

RS
\
XX XY ).!AZQAQQ!“\!‘A;A

%)

Fig. 1.4 An example of cubic HB-splines where the domain hierarchy consists of three levels. The
knot positions are visualized by vertical dotted lines in (¢)—(h). (a) Knot sequences. (b) Domain
hierarchy. (¢) %,. (d) /4. (e) ;. (f) 7. (g) $3. (h) 74 = Hg
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allows us to construct the three sets of cubic B-splines shown in Fig. 1.4c, e, g,
whose dimensions are n; = 10, np = 17 and n3 = 31, respectively. The domain
hierarchy is defined by the subsets §21 = [£4,1, &11,1], §22 = [&5.2, 16,21 and §23 =
[£16.3, £24.3], and is shown in Fig. 1.4b. Obviously, .74 coincides with ;. Further-

more, %ZC is obtained from .74 by removing Bs,1, and jiﬂzF = {Bg>2,..., B12.2}.
Hence, 74 = j@c U %”ZF consists of 9 + 5 = 14 elements. Finally, j@c is
obtained from .74 by removing Bjo,2, and ji”f = {Bi6.3,--., B20.3}. Hence,

G = %@C U %@F consists of 13 + 5 = 18 elements. The sets .77, .7/ and 773 are
shown in Fig. 1.4d, f, h.

For each ¢ € {1,..., L}, let J; ¢ be the set of indices of the B-splines in %,
belonging to 7%, i.e.,

Jog :=1{j : Bj¢ € BN Hg}. (1.140)
From Definition 7 it follows that
Jo.g =1{j : Bje € B, suppg(Bj.o) NIy # 0, suppg(Bje) S 20},  (1.141)
where
Iy =820\ 2¢41. (1.142)
Given this index set, we can reconstruct the set of HB-splines as
g ={Bj¢, je Joo, t=1,...,L}. (1.143)

Since the set of HB-splines is a mixture of standard B-splines, we deduce immedi-
ately the following properties.

* Local Support. An HB-spline is locally supported on an interval that only
depends on the level it was introduced in the hierarchical construction and not
on the choice of subsets in the domain hierarchy.

* Nonnegativity. An HB-spline is nonnegative everywhere, and positive inside its
support.

* Piecewise Structure. An HB-spline is a piecewise polynomial, whose degree
and smoothness depends on the level it was introduced in the hierarchical
construction and the spline space used on that level.

* Linear Independence. The HB-splines in .7 are linearly independent on £2;.

Proof We first note that if J; g is nonempty then I, has nonempty interior for
any ¢; see (1.141) and (1.142). We must prove that if

L

s@) =Y > cjuBji(x) =0, xe, (1.144)

=1 jely o
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then c¢j, = O for all j and £ in (1.144). We know from the local linear
independence property that the B-splines Bj 1, j € Ji g are linearly independent
on I'1. Moreover, from (1.141) it follows that only those functions are nonzero
on I7. Hence, we conclude that c;; = 0 for j € J; g in (1.144). We can
repeat the same argument for the remaining terms in (1.144) going level by level
in the hierarchy. Indeed, for £ = 2, ..., L, the B-splines B¢, j € J @ are
linearly independent on Iy, and only those functions are nonzero on Iy except for
functions already considered before at previous levels. This implies that ¢; ¢ = 0
forjeJpowithe=2,..., L. m]

The space spanned by the HB-splines in /g is called the hierarchical spline
space on £2 and is denoted by

L
Se = {s:91—>R:s=Z > cjuBje c,,geR}. (1.145)

t=1jely @
Such hierarchical space has some interesting properties.

¢ Dimension. By the linear independence of the HB-splines, the space Sg is a
vector space of dimension Zé:l [Je 2l

* Nestedness. Let the domain hierarchy 2 be obtained from another domain
hierarchy $2 such that £2; = £ and 2, € £2, for £ = 2,..., L. Then,
Se C S.Q'

Proof We first note that any B-spline B; 1 € %,_| whose support is entirely
contained in £2; can be represented exactly in terms of B-splines B;y € %,
whose support is also contained in §2. Consider the intermediate spaces 777 and
#¢; arising in Definition 7. From their construction it directly follows

span(##;—1) C span(s;) and span(f%;%_l) C span(f%;%). (1.146)

holds for £ = 1 since §£2; = £2; and hence .7/ = J#. We proceed by induction
on £, and assume that the statement is true for £ — 1. Then, we have

We now show that span(j%)~ - span(f%;i) forall ¢ = 1,..., L. This clearly

span(,°)  span(H#—1) C span(H—1)  span(4),
and
span(%;") C span(,") C span(H4).
This implies
span(#7) = span(,°) U span(.#;" ) € span(J4).

As a consequence, S = span(J#7) C span(jSZL) =Sg. |
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* Polynomial Embedding. The space Sg contains (at least) all polynomials of
degree less than or equal to pj.

Proof Let g be a polynomial in P, . From Sect. 1.3.3 we know that g belongs
to the coarsest spline space S, ¢, in the sequence (1.135). Hence, taking into
account (1.146), we conclude that g € span(.#]) C span(7¢7) = Sg. O

1.6.2 Truncated Hierarchical B-Splines

HB-splines do not satisfy the partition of unity property. In addition, the number
of overlapping basis functions associated with different hierarchical levels easily
increases. This motivates the construction of another basis for the hierarchical spline
space. The construction is based on the following truncation mechanism [22].

Definition 8 Given ¢ € {2,...,L}, lets € S,,M:[ be represented in the B-spline
basis %y, i.e.,

ng
s=Zc,,g Bj.. (1.147)
j=1

The truncation of s at level £ is defined as the sum of the terms appearing in (1.147)
related to the B-splines whose support is not a subset of £2, i.e.,

truncy g (s) == > cje B (1.148)
Jj:suppg (B )L 2

By successively truncating the functions constructed in Definition 7, we obtain
the truncated hierarchical B-splines (in short, THB-splines).®

Definition 9 Given a domain hierarchy $2, the corresponding set of THB-splines
is denoted by Jp and defined recursively as follows:

(i) J1:={Bj1 € % :suppg(Bj1) # 0}
(i) fore=2,...,L:

o= T U T,
where
C . t . pt t
’% = {trunCZ*Q(Bj,k,-Qefl) : Bj,k,-(?efl € Ji-1, Suppﬂ(Bj,k,szl) Z S},
F
Ty = {Bj € By :suppg(Bj o) S 2¢};
8The truncation approach was introduced in [22] for hierarchical tensor-product splines, but was

already developed before in the context of hierarchical Powell-Sabin splines [50]. A generalization
towards a broad class of hierarchical spaces can be found in [23].



1 Foundations of Spline Theory 57

(i) To = ;.

To obtain the THB-splines, we apply a recursive procedure building a set .7 at
level £. This set consists of two subsets, the coarse set %C and the fine set %F .
To construct the elements B’., k.2, of %C, we first express any function B;, k2 €
Ji—1 with respect to the B-spline basis %, and then we apply the truncation as
in (1.148) with s = B;’ 2 The fine set ZF consists of all B-splines in %,
whose support is entirely contained in £2¢, exactly as in the HB-spline case; see
Definition 7.

When comparing Definition 9 with Definition 7, we see that the number of THB-
splines in the set Jg is equal to the number of HB-splines in the set #g. In the
following, the THB-splines in Jg are denoted by B;Z’ g forj € Jygand £ =
1,..., L.

Example 14 When unrolling the recursive definition of THB-splines for L = 3, we
get

T .

Bj,l,.fl = truncs g(truncy @ (B 1)), Jj € Ji, @,
T .

Bj, g =trunc3 @(Bj2), Jj € L0,

T .
Bj’3’_Q=Bj’3, JjEha.

Example 15 Figure 1.5 illustrates the truncation mechanism applied to the set of
HB-splines depicted in Fig. 1.4 (Example 13). Obviously, .77 coincides with 4.

(a) (b)
(©) (d)
(e) ®

Fig. 1.5 HB-splines and THB-splines with respect to the same domain hierarchy as in Fig. 1.4b.
(@) 1. (b) 71.(¢) 5. (d) 7. () 5. () 73
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Furthermore, fzc is obtained from %ZC by applying the truncation mechanism to
its elements; this only results in a modification of the elements By 1, Bs,1, B7,1 and
Bg.1. On the other hand, we have QZF = jiﬂzF . Finally, %C is obtained from %@C by
modifying By 1, Bs,1, B7,1, Bg,1 (truncated at level 2) and Bg 2, B9 2, Bi1,2, B12,2
(truncated at level 3), while %F = ji’ff . It is clear that 9 = %C U %F and
I = %@C U ji’sz have the same number of elements for £ = 2, 3.

The next properties can be easily deduced from the definition of THB-splines.
* Relation to HB-Splines. Each THB-spline in Jg is uniquely related to a single
HB-spline in .7 possibly by successive truncations, i.e.,
BjT,e,sz = Truncy @ (Bj,¢), (1.149)

where for any s € SP&E[ with¢=1,...,L —1,

Truncy @ (s) := truncy @ (truncy 1 @ (- - - (trunce41 2(s)) -+ +)),
and foranys € S, ¢, ,
Truncy, @ (s) :=s.
From (1.149) in combination with (1.147)—(1.148), it is clear that
Bj, o(x) =Bji(x), xe€ll. (1.150)
* Local Support. From (1.149) it follows that a THB-spline has the same or
smaller support than its related HB-spline.

* Nonnegativity. A THB-spline is nonnegative on £21.

Proof Fix 1 < {1 < £, < L. Because of the nestedness of the spaces in (1.135),
we can write the B-spline Bj ¢, € %, in terms of the B-splines in Zy,, i.e.,

ngz

Bjoy(x) =Y I By (n), xe (1.151)
i=1

From Sect. 1.3.5 we know that the coefficients in (1.151) are all nonnegative in
case pg, = pg,. This property holds in general, also when py, < pe,, and we
refer to [12] for its proof. Then, since each THB-spline B 'T,e, o can be deduced
from the B-spline B; ¢ possibly by successive truncations, see (1.149), it follows
from (1.147)—(1.148) that BjTj’ @ can be written as a linear combination of B-
splines of the finest level L with nonnegative coefficients. This implies that
BjTj’ @ 1s nonnegative. O

* Linear Independence. The THB-splines in 7 are linearly independent on §2;.
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Proof We must prove that if

L

s@) =Y > cjuBl,(x)=0, xe, (1.152)

t=1 jely o

then cj ¢ = Oforall j and £ in (1.152). This can be shown using exactly the same
line of arguments as in the case of HB-splines (see (1.144)), taking into account
relation (1.150). |

The next theorem shows that the THB-splines in g form an alternative basis
for the hierarchical spline space Sg in (1.145).

Theorem 19 (Hierarchical Spline Space) The THB-splines in Jg span the same
space as the HB-splines in g, i.e.,

Se = span(J£g) = span(Jg). (1.153)

Proof Consider the intermediate spaces ¢ and .7, in Definitions 7 and 9,
respectively. From their construction it directly follows

span(—1) C span(#) and  span(Zp_1) C span(.Jp).

We now show that span(#;) = span(7;) for all £ = 1, ..., L. This clearly holds
for £ = 1 since 4 = 1. We proceed by induction on ¢, and assume that the
statement is true for £ — 1. Then, we have

span(.#,") C span(#;_1) = span(J—1) < span(.7),
and
span(#") = span(.7;") C span(7).
This implies
span(#) = span(,") U span(.#;") < span(%).

Finally, since both sets 7% and .7; have the same number of elements and these
elements are all linearly independent, it follows that span(.#7) = span(.7;). As a
consequence, span(.7£g) = span(741,) = span(.77) = span(Jg). |

The correspondence in (1.149) between the THB-spline B ¢. and a particular
B-spline Bj ¢ € %, has an important consequence, namely the so-called property
of preservation of coefficients [23]. This means that the THB-spline representation
preserves certain coefficients of functions represented with respect to one of the B-
spline bases %°.
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Theorem 20 (Preservation of Coefficients) Given ¢ € {1,...,L}, let the

restriction of s € Sg to I'y := $2¢ \ 2¢+1 be represented in the bases Jg and
Py, i.e.,

L e
s(x) = Z Z CikBjT,k,sz(x) = ZCI,ZBI,Z(X), x € Iy. (1.154)
k=1 jelre i=1
Then,
Iy=cie, i€dig. (1.155)

Proof We first note that if J, @ is nonempty then Iy has nonempty interior. Assume
now that I; has nonempty interior. Since s € Sg and the spline spaces in (1.135)
are nested, it is clear that the restriction of s to Iy can be expressed as a linear
combination of the B-splines in %, restricted to Iy as in (1.154). Let us focus on
the sum

Z C;kB}:k,Q(x)’ x eIy, (1.156)

J€Jk 2

and consider three cases.

— If k > £, then the sum in (1.156) equals zero. Indeed, Definition 9 and (1.149)
imply that

suppo (B] 1 ) < suppg(Bj i) S 2k S Q¢y1,

and consequently, we have suppg (B].Tk )Nl =0.
— We now consider the case k = £. From (1.150) it immediately follows

Z cfZije,Q(x)= Z cfZBj,@(x), x eI

JEJr@ J€Ji.e

— Finally, let & < £. In view of the truncation mechanism, we prove that THB-
splines introduced at levels less than ¢ in the hierarchy can only contribute
in terms of B-splines B;, with i ¢ J; @. To this end, let us rewrite the
corresponding THB-splines BZ 1. in terms of the B-spline basis B,

ng
T ik
Bjro(x)= ZC,'J,Z Bi¢(x), xelq.
i=1

Due to the definition of B].Tk ¢ and the truncation operation (1.148), we have

ik e
c{*gzo, if i eJg.
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Hence, for k < £ we arrive at

i,k
> Bl o) = > ( > cﬁkcig>3i,g(x), x €Iy

Jj€Jk.2 ig¢Jyo “jEJk.0

By combining the above three cases and taking into account the local linear
independence of B-splines, we obtain the identity (1.154) where

{c,.TZ, ifi € J.0,

Gt = ) et j k

’ T .J» :

Dokmi X jes g CiaCiy» Otherwise,

which in particular gives (1.155). O

Thanks to Theorem 20, many interesting features of B-spline representations can
be transferred to THB-spline representations.

* Representation of Polynomials. Any polynomial g of degree p; can be
represented as

L
g =YY" Ajps (@Bl o). xe, (1.157)
(=1 jely o

where Aj , ¢, is defined in (1.53) with p = p; and § = §,.

Proof Using the nestedness of the spaces (1.135), it is clear that g € S, ¢, for

¢ =1,..., Landalsothat g € Sg. Then, consider its representation with respect
to Jg and % for £ = 1, ..., L. Theorem 20 in combination with Proposition 3
concludes the proof. O

» Partition of Unity. By (1.49) we have

L
Y Y Ble)=1. xeq. (1.158)

=1 jeli o

Since the THB-splines are nonnegative it follows that they form a nonnegative
partition of unity on £2;.

* Greville Points. By (1.50) we have
L
= Z Z é;PZquB}:Z,Q(x)’ X € 82, (1.159)
=1 jely@

where E;‘ pe.g, ATC the Greville points defined in (1.51) with p = p and § = &,.
Note that the Greville points are not necessarily distinct here.
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* Strong Stability. The THB-spline basis is strongly stable with respect to the
supremum norm, under mild assumptions on the underlying knot sequences
required in the hierarchical construction. We refer the reader to [23] for a proof
based on the property of preservation of coefficients. Strong stability in the
hierarchical context means that the constants to be considered in the stability
relation (1.64) of the basis do not depend on the number of hierarchical levels.

Example 16 The polynomial g(x) = ax” + bx + ¢ can be represented in terms of
quadratic THB-splines:

L

ax> +bx+c= Z Z cj,gB;K’Q(x).
t=1 jely o

From Theorem 20 and Example 8 we obtain that

Eivie+&j120

ciu=Aj2¢,(8) =ajr18j+2¢+D 5

1.6.3 Quasi-Interpolation in Hierarchical Spaces

The above properties of THB-splines can be exploited to develop a general and very
simple procedure for the construction of quasi-interpolants in hierarchical spline
spaces [51].

Definition 10 Given for each spline space in (1.135) a quasi-interpolant in B-spline
form, i.e.,

ng
D f(x) = ij,g(f)Bj,g(x), xe, ¢=1,...,L, (1.160)
j=1

the corresponding hierarchical quasi-interpolant in Sg is defined by

L
af(x) =Y > ru(f)Bl, o). xe. (1.161)

(=1 je; @

According to Definition 10, in order to construct a quasi-interpolant in Sg, it
suffices to consider first a quasi-interpolant in each space associated with a particular
level in the hierarchy. Then, the coefficients of the proposed hierarchical quasi-
interpolant are nothing else than a proper subset of the coefficients of the one-level
quasi-interpolants.
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We now show how to build hierarchical quasi-interpolants reproducing poly-
nomials of a certain degree p < pj. As described in Sect. 1.5.2, this is a crucial
property feature to ensure good approximation properties.

Theorem 21 (Polynomial Reproduction) Let 2, be a given sequence of quasi-
interpolants as in (1.160), let 2q be the corresponding hierarchical quasi-
interpolant as in (1.161), and let p < p1. If

Qg=g, VgeP, t=1,... L, (1.162)
then
2og=g. VgeP),

Proof Since the spaces in (1.135) are nested, we have p, > p for all £. Let g €
P, € Pp, € Sp,¢,- Then, this polynomial can be uniquely represented as a linear
combination of the B-splines in %,

ne
gx) = ch,lsz,lz(X),
j=l1
and since Zyg = g we have Aje(g) = cje. On the other hand, g € Sg, so
L
8@ =2 > cjeBjia®.
=1 jeJy @

From Theorem 20 it follows

C}jg =cje=nje(8), Jje€Joo, =1...L,

implying that 2o g = g. ]

In the next theorem we present a sufficient condition for constructing quasi-
interpolants that are projectors onto Sg.

Theorem 22 (Spline Reproduction) Ler 2, be a given sequence of quasi-
interpolants as in (1.160), and let g be the corresponding hierarchical quasi-
interpolant as in (1.161). Assume

s =s, Vs€Spg, €=1,...,L,
and each ) ¢ used in (1.161) is supported on Iy := §2¢ \ $2¢41. Then,

Qos=s, VseSg.
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Proof Due to the linearity of the quasi-interpolant, it suffices to prove that
)‘j,Z(BiTk,.Q) =60k, 1€ e, Jje€Ja, kit=1,...,L, (1.163)

where §, ; stands for the classical Kronecker delta. Let j and ¢ be fixed. To prove
(1.163) we consider three cases.

— If k > £, then ng’g(x) = 0 for x € I7; see Definition 9. Since A ¢ is only
supported on I, it follows from Definition 4 that A ; ¢ (ng, 2)=0.

— We now consider the case k = £. Since 2y is a projector onto Sy, we have that
Aj¢(Big) = 6; j. From (1.150) and the support restriction of A ; ¢, we obtain

Aie(Bl, o) =08, i.j€ g

— Finally, let £k < ¢. Any Bl.Tk o restricted to Iy can then be expressed as a linear

combination of the B-splirieé in %, restricted to Iy, i.e.,

ng
T ik
Bi’k’g(x) = E cquBr,g(x), x € Iy,

r=1
where
ik .
¢l = 0, if reldpe,
as explained in the third case of the proof of Theorem 20. Thus, by the support
restriction of A ¢, we have for j € J; g,

ny ne

T ik ik ik
A.j,[(Bl"k’ﬂ) = Zcr,l)‘jﬁf(B’j) = Zcr,isjs" =Cjy = 0.

r=1 r=1

The above three cases complete the proof. O
Some remarks are in order here.

* Constraints on (1.160). The sequence of quasi-interpolants (1.160) considered
in Theorem 22 needs to satisfy constraints more restrictive than those in Theo-
rem 21: For each level £, 2, must be a projector onto Sm,éz and each Ay, j €
Je @, must be supported on . The former constraint connects the sequence of
quasi-interpolants 21, ..., 2, with the sequence of spaces Sm,éw el SPL"EL
and has a similar counterpart in Theorem 21. The latter constraint links the
same sequence of quasi-interpolants with the domain hierarchy £2. Nevertheless,
once a sequence of quasi-interpolants as in (1.160) satisfying the hypotheses
of Theorem 22 is available, the construction of a hierarchical quasi-interpolant
that is a projector onto Sgp does not require additional efforts compared to a
hierarchical quasi-interpolant that just reproduces polynomials.
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* Dual Basis. Let {A; ¢} be a set of linear functionals as in (1.161) that provides a
projector onto Sg. Then, because of (1.163), it is a dual basis for the THB-spline
basis Jg.

* Approximation Power. Polynomial reproduction is one of the key ingredients
to show the approximation power of spline quasi-interpolants; see Sect. 1.5.2.
Boundedness of a hierarchical quasi-interpolation operator and optimal approx-
imation accuracy can be achieved on domain hierarchies that are nicely graded
(i.e., the boundaries of the different §2, are sufficiently separated). Local error
estimates for hierarchical quasi-interpolants of the form (1.161) can be found in
[51] with respect to the L-norm, and in [49] with respect to the general L,-
norm, 1 < g < oco.

Example 17 Let p, = 2, and let & be a 3-open knot sequence with at most
double knots in the interior for each £ = 1,..., L. Then, we can choose the
quasi-interpolants in (1.160) as in Example 12. This leads to the hierarchical quasi-
interpolant

L
of@X)=Y_ > Xu(f)B],o(x), xe,

(=1 jelo o

where

1 1
M) ==, fEjrro+ 2f (7o) — AR

From Example 12 and Theorem 21 we deduce that this hierarchical quasi-
interpolant reproduces the polynomial space P>. If [§;41.¢,&j42.¢] € I} for each
J € Jeg, then it actually reproduces the entire hierarchical spline space Sg,
according to Theorem 22.

Example 18 Consider the quasi-interpolant constructed in Sect. 1.5.3.1 for each
space S, ¢, of level € =1, ..., L. This leads to the hierarchical quasi-interpolant

L
2of0) =YY" ZLipe (B o), xe,

(=1 je; @

where .Z; ,, ¢, is defined in (1.123) with p = p; and § = §,; it is supported
on a single knot interval [Emj, py ol En it +1,¢]. From Lemma 2 and Theorem 21 we
deduce that this hierarchical quasi-interpolant reproduces the polynomial space P, .
Theorem 22 says that if [gm.f,pM’ émj‘pﬁl,g] C [y for each j € Jy g, then the
hierarchical quasi-interpolant reproduces the entire hierarchical spline space Sg.

The hierarchical quasi-interpolant in Definition 10 can be interpreted as a
telescopic approximant, where for each level an approximant of the residual is
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added.” To show this, we define the following set of indices
Keg:=1{j : Bju € By, suppu(Bj¢) C $2¢}.
Referring to (1.141), it is easy to see that J; o € K; @, and moreover J; o =

K @.

Theorem 23 (Telescopic Representation) Letr 2 be a given sequence of quasi-
interpolants as in (1.160), and let 2g be the corresponding hierarchical quasi-
interpolant as in (1.161). Assume

Dys =, VSGSM,E[, L=1,...,L, (1.164)
then
L
2af=Y ", (1.165)
r=1
where
SO = Z rja(H)Bj1,
JEK1 @
(1.166)
fO= 3" aju(f=fP = = fEMBjp, £=2,... L.
J€Ki @
Proof Each quasi-interpolant 2y, £ = 1, ..., L, is assumed to be a projector onto

the space S, ¢,, and because of the nestedness of the spaces S, ¢, C S
we know that every basis function B; ¢ can be represented as

Pet1,E041°

ne+1

Bje=Y M.or1(Bjo) Bioti, (1.167)
k=1

where Ag ¢1+1(Bj¢) = 0 if the support of By ¢41 is not contained in the support
of Bj ¢. By exploiting the definition of the truncated basis (1.149) and (1.167), we
obtain

fY=3" 2B

Jj€K1 2
= Y rMaHBlg+ Y. m(f)( > Ak,z(B,,l)Bk,z).
j€lie Jj€K1 2 keKs @

9The general telescopic expression for the hierarchical quasi-interpolant was presented in [51].
A special telescopic approximation in the hierarchical setting was already considered in [29].
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Moreover,

fP= 3" raHBja— Y ma(f)Bia

JE€EK2 @ keKr @
= Y Ma(HBja— > ( > )\j,l(f))\k,Z(Bj,l)>Bk,2-
j€Kz 0 keKy @ “jeKi e
Hence,
fO+ D= 3" 2uHB g+ Y Aja(f)B)o. (1.168)
jelig jekr o

We now remark that from the truncation definition (1.148)—(1.149) it follows that
)Lk,_o,(BjTl @) =0foranyk € K3 ¢ and j € J;, @, and so

> 3Bl g)Bi3=0. Vjel g (1.169)

keKs3 o

By using similar arguments as before, we can write (1.168) as

fO+fP =" 00(HBL g+ D 2a2(f)Bl,g

jEJl.SZ jEJz,g
+ Z )»j,z(f)( Z re3(Bj2) Bk,3),
jeKr @ keKs3 o

and by means of (1.168) and (1.169) we obtain

fO= 3 0is(HBia— > ma(fV+ fP)Bis

j€K3 @ keK3 @
= > 2aHBiz— Y. ( > )\j,Z(f))»k,3(Bj,2)>Bk,37
JeK3 0 keK3 o “jeKz 0

resulting in

O 4@ 4 O - Z Aj,l(f)Bf1,9+ Z Aj,Z(f)BjTZ,Q

J€J1e Jj€h e

+ > %ja(f)Bja.

JEK3 0

By iterating over all levels in the hierarchy and repeating the same arguments, we
get the relation (1.165). |
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The telescopic representation in Theorem 23 directly leads to the representation
of the hierarchical quasi-interpolant in terms of the HB-spline basis, instead of
in terms of the THB-spline basis (see Definition 10), under assumption (1.164).
Indeed, as observed in [51], thanks to property (1.167), one can simply replace the
index sets K¢ @ by J¢ @ in (1.166) and the relation (1.165) still remains true. This
implies that (1.165) can be rewritten as

L
2ef = Z Z Mjo(f —Z2e—1.2)Bje, (1.170)
=1 jeli o

where

Do.ef =0, o@r,szfi=z Z rik(f —Zi—1,0f)Bjr, r=1.  (1.171)

k=1 jeJr. o

1.7 Tensor-Product Structures and Adaptive Extensions

The most easy way to extend many of the previous results to the multivariate setting
is to consider a tensor-product structure. For the sake of simplicity, we briefly focus
here on the bivariate setting. The extension to higher dimensions is straightforward;
it only requires a more involved indexing notation.

1.7.1 Tensor-Product B-Splines

Given two knot sequences
& =61k <&r =< - <&uipr1rk), k=12,
we define the basic rectangle as

R :=1[&p 41,1, Eny+1.1] X [Epyr1.2, Enpr1,2].

The tensor-product B-splines can be simply constructed as the product of univari-
ate B-splines in each variable, i.e.,

Bj\ jo.p1.p2.&1.6, (X1, X2) 1= Bji p &, (X1 By p, g, (X2), (1.172)

for jy =1,...,nyandk =1, 2.
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Example 19 Figure 1.6 shows a schematic representation of a tensor-product B-
spline basis of bidegree (p1, p2) = (3, 3). A (px + 1)-open knot sequence is chosen
in each direction xi, where the interior knots are all simple, and the corresponding
univariate B-splines are depicted. Then, the set of tensor-product B-splines is
obtained by computing the tensor product of the sets of univariate B-splines in each
direction. Contour plots of some bicubic tensor-product B-splines are depicted in
Fig.1.7.

It is clear that tensor-product B-splines inherit all the nice features of univariate
B-splines discussed in Sects. 1.2 and 1.3. In particular, they enjoy the following
properties.

%

Fig. 1.6 Schematic representation of the (bivariate) tensor-product B-spline basis of bidegree
(p1, p2) = (3, 3) using a 4-open knot sequence in each direction. The knot lines are visualized
by solid lines in the rectangular domain (this is the basic rectangle), and the sets of univariate
B-splines are depicted for both directions

() (b) (©)

=
(ct

Fig. 1.7 Contour plots of some bicubic tensor-product B-splines B, j, 33¢,.¢, defined on the
tensor-product mesh given in Fig. 1.6. The bounding box of the support of each B-spline is
visualized by solid blue lines. (a) (ji, j2) = (3,3). () (ji, j2) = (5,5).(©) (j1,2) = (7,9
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Local Support. A tensor-product B-spline is locally supported on the rectangle
given by the extreme knots used in the definition of its univariate B-splines in
each direction. More precisely,

Bj, o pi.pakr £, (X1, %2) =0, (x1,x2) ¢ S, (1.173)

where

S:=15j1,1 Eji+pi+1.1) X [§j,,2, 8 jr4pr+1,2)-

Nonnegativity. A tensor-product B-spline is nonnegative everywhere, and posi-
tive inside its support, i.e.,

le,jzypl,Pz,‘El,&z(xl’x2) >0, xp,x R, (1.174)
and

Bji jrprprdr b (X1.X2) > 0, (x1.x2) €S, (1.175)

where

S =115 Eji+pi+1.1) X (Ejp.2, Ejptpr+1.2)-

Piecewise Structure. A tensor-product B-spline has a piecewise tensor-product
polynomial structure, i.e.,

le’ijPI’PZvSI"EZ € ]P)pl ([‘i:ml,ls §m1+1,1)) ® sz([§m2,2v ém2+1,2)). (1176)
Smoothness. If & is a knot of Bj, , ¢ of multiplicity u < pr + 1 then
Bj, j».p1.p2.8, £, Delongs to the class CPH across the line x; = & fork = 1, 2.

Linear Independence. If each &, is (px + 1)-basic for k = 1, 2, then the tensor-
product B-splines {Bj, j, p,p».6,.6, : Jk = 1,...,nk, k = 1,2} are (locally)
linearly independent on R.

Partition of Unity. We have

ni na

SO Bihpimens(x2) =1, (x1.x2) € R. (1.177)
J1=1 jo=1

Since the tensor-product B-splines are nonnegative it follows that they form a
nonnegative partition of unity on R.

Greville Points. For (x1, x) € R and £1, £, € {0, 1}, we have

nj na

JAIR 14 l
X't = Z Z(Sz,pl,él) 1(572,172,52) Bji jp.pi.p2g & (X1, X2), (1.178)
=1 ja=1

where 5;( peoks is the Greville point defined in (1.51) for the knot sequence &,
k=1,2.
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A tensor-product spline function is defined as

ni nja

s(x1, x2) = Z Z it Bt joprpakr £ (X1, X2)s €y jy € R (1.179)
J1=1 jp=1

Since the tensor-product B-splines are linearly independent, the space of spline
functions has dimension nn;.

A main advantage of the representation in (1.179) is that its evaluation can be
reduced to a sequence of evaluations of univariate spline functions:

nj na
s(x1, x2) = Z dji .y Bji.pr g, (x1)s  djyxy = Z Cjr.j2 Bja.prgy (X2), (1.180)
J1=1 J2=1

or, equivalently,

ny ni
s(x1, x2) = Z djy x, sz»Pz»ﬁz(XZ)v djy xy = Z le»j2Bj1»Pl»£1(x1)' (1.181)
=1 ji=l1

Note that (1.180) requires n1 univariate spline evaluations of degree p» and one
univariate spline evaluation of degree p;. On the other hand, (1.181) requires ny
univariate spline evaluations of degree p; and one univariate spline evaluation of
degree p>. Thus, it is better to choose one of the two forms according to the minimal
computational cost.

Other algorithms in the univariate B-spline setting (like knot insertion) can be
extended in a similar way to the tensor-product B-spline setting.

1.7.2 Local Refinement

Despite their simple and elegant formulation, tensor-product B-spline structures
have a main drawback. Any refinement of a knot sequence in one direction has
a global effect in the other direction, and this prevents doing local refinement as
illustrated in Fig. 1.8.

The hierarchical spline model provides a natural strategy to guarantee the locality
of the refinement. As explained in Sect. 1.6, hierarchical spline spaces are a mixture
of spline spaces of different resolution, localized by the domain hierarchy. Even
though the concept of hierarchical splines was detailed in the univariate setting, it
can be straightforwardly extended towards the bivariate (and multivariate) setting.

When selecting a sequence of nested tensor-product spline spaces on a common
basic rectangle R in place of (1.135) and considering the corresponding tensor-
product B-spline bases in place of (1.137), the definitions of tensor-product
HB-splines and THB-splines follow verbatim Definitions 7 and 9, respectively.
The properties (and their proofs) described in Sect. 1.6 also hold in the tensor-
product extension. We refer the reader to [22, 23] for more details on tensor-product
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(a) initial mesh (b) marked regions  (c) global refinement (d) local refinement

Fig. 1.8 Given an initial tensor-product representation (a), an error estimator indicates regions of
the mesh which require further refinement (b). The tensor-product structure necessarily implies a
propagation of the refinement (c). Adaptive splines, instead, should provide a proper local control
of the refinement procedure (d)

(a) (b)

level 3

level 2

level 1

Fig. 1.9 An example of a two-dimensional domain hierarchy consisting of three levels. The knot
lines are visualized by solid lines in the domain. (a) Global meshes. (b) Local meshes. (¢) Domain
hierarchy

THB-splines and their properties. A full treatment of the construction of related
hierarchical quasi-interpolants and their approximation properties can be found in
[49, 51].

Example 20 An example of a two-dimensional domain hierarchy together with its
knot lines is illustrated in Fig. 1.9. We consider a nested sequence of three tensor-
product spline spaces defined on a (uniform) knot mesh with open knots along
the boundary (Fig. 1.9a). Assume the corresponding basic rectangle is denoted by
R. Then, we select the subsets R =: 21 D £ O £23 as a union of mesh
elements at each level (Fig. 1.9b), and together they form the domain hierarchy 2
(Fig. 1.9¢). On such domain hierarchy, we can define the corresponding HB-splines
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(a)

)
[

\
V)

(b)

()

T T

Fig. 1.10 Contour plots of some biquadratic tensor-product THB-splines of different levels
defined on the domain hierarchy given in Fig. 1.9. The bounding box of the support of the
untruncated version of each THB-spline is visualized by solid blue lines. (a) Level 1. (b) Level
2.(c) Level 3

and THB-splines according to Definitions 7 and 9, respectively. Contour plots of
some biquadratic tensor-product THB-splines are depicted in Fig. 1.10. The shape
of THB-splines related to coarser levels adapts nicely to the locally refined regions
in £2, as illustrated in Fig. 1.10a, b. THB-splines related to the finest level are nothing
else than standard tensor-product B-splines, as illustrated in Fig. 1.10c.

Finally, we remark that there exist also other adaptive spline models based on
local tensor-product structures, like (analysis-suitable) T-splines [2, 46] and LR-
splines [9, 17].
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