
Chapter 1
Foundations of Spline Theory: B-Splines,
Spline Approximation, and Hierarchical
Refinement

Tom Lyche, Carla Manni, and Hendrik Speleers

Abstract This chapter presents an overview of polynomial spline theory, with spe-
cial emphasis on the B-spline representation, spline approximation properties, and
hierarchical spline refinement. We start with the definition of B-splines by means
of a recurrence relation, and derive several of their most important properties. In
particular, we analyze the piecewise polynomial space they span. Then, we present
the construction of a suitable spline quasi-interpolant based on local integrals, in
order to show how well any function and its derivatives can be approximated in
a given spline space. Finally, we provide a unified treatment of recent results on
hierarchical splines. We especially focus on the so-called truncated hierarchical
B-splines and their main properties. Our presentation is mainly confined to the
univariate spline setting, but we also briefly address the multivariate setting via
the tensor-product construction and the multivariate extension of the hierarchical
approach.

1.1 Introduction

Splines, in the broad sense of the term, are functions consisting of pieces of smooth
functions glued together in a certain smooth way. Besides their theoretical interest,
they have application in several branches of the sciences including geometric
modeling, signal processing, data analysis, visualization, numerical simulation, and
probability, just to mention a few. There is a large variety of spline species, often
referred to as the zoo of splines. Themost popular species is the one where the pieces
are algebraic polynomials and inter-smoothness is imposed by means of equality of
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derivatives up to a given order. This species will be the topic of the chapter. Several
other species can be found in [35, 45] and references therein.

To efficiently deal with splines, one needs a suitable basis for their representation.
B-splines turn out to be the most useful spline basis functions because they possess
several properties that are important from both theoretical and computational point
of view. The construction of B-splines is not confined to the algebraic polynomial
case but can be done for many species in the zoo of splines. As it is often the case
for important tools or concepts, B-splines have a long history in the sciences. They
were already used by Laplace in the early nineteenth century [33], and many of
their relevant properties were derived by Chakalov and Popoviciu in the 1930s; see
[10] and [37]. However, the modern B-spline theory roots in the seminal works
by Schoenberg; see [41, 42] and [15, 16]. There are several ways to define B-
splines, based on recurrence, differentiation, divided differences, etc. Each of those
definitions has certain advantages according to the problem one has to face. It
is impossible to trace all modern works on B-splines, but we refer the reader to
Schumaker’s book [45] for an extended bibliography on the topic also beyond the
polynomial setting.

This chapter provides an introduction to (polynomial) B-splines, starting from
their definition via a recurrence relation. Furthermore, we establish some spline
results of interest within the isogeometric analysis (IgA) paradigm. More precisely,
the chapter contains

– a self-contained overview of splines and B-splines;
– a constructive exploration of approximation properties of spline spaces;
– a discussion on adaptive spline representations based on hierarchical refinement.

There exists a huge amount of literature about the first two items including some
well-established books; see, e.g., [6, 26, 45] and references therein. The hierarchical
spline setting received only recently a lot of attention; see, e.g., [22, 51, 53]. The
novelties of the chapter can be essentially summarized as follows.

– Our introduction to B-splines differs somewhat from the standard presentations
of the topic. It is mainly based on properties of the dual polynomial functions in
the local Marsden identity.

– Our proof of the approximation properties of a given spline space relies on the
explicit construction of a spline quasi-interpolant based on local integrals. For
this quasi-interpolant we show error estimates of optimal order to any smooth
function and its derivatives.

– Our presentation of the hierarchical spline setting provides a rather complete and
unified treatment of the main properties of both the hierarchical and the truncated
hierarchical B-spline basis.

The chapter does not address the geometric modeling aspects of B-splines, explain-
ing why they form the mathematical core of current computer aided design (CAD)
systems. For this we refer the reader to the books [13, 27, 38].
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Our presentation is mainly confined to the univariate spline setting. Nevertheless,
this is the building block of the multivariate setting via the tensor-product construc-
tion. Tensor-product B-splines are currently the most common tool in CAD systems
and IgA. It is worth mentioning that there are also many other important extensions
of the univariate B-spline concepts to the multivariate setting, not restricted to a
tensor-product grid; see, for example, [31, 35] and references therein.

The remaining part of the chapter is divided into six sections. The next section
is devoted to the definition of B-splines and their main properties, including
differentiation and integration formulas, local representation of polynomials, and
local linear independence. In Sect. 1.3 we analyze the space spanned by a set of B-
splines, and we consider the representation of its elements, knot insertion, and the
stability of the B-spline basis. Cardinal B-splines, i.e., B-splines with uniform knots,
are of prominent interest in practical applications. They are addressed in Sect. 1.4
where, in particular, the evaluation of their inner products and uniformknot insertion
are discussed. In Sect. 1.5, after a general discussion about quasi-interpolants, we
present the construction of a new spline quasi-interpolant based on local integrals
and we use it to show the approximation properties of the considered spline space.
The hierarchical spline approach is the topic of Sect. 1.6, which is mainly devoted
to the construction of the truncated hierarchical B-spline basis and the derivation
of its main properties, including the so-called preservation of coefficients and the
construction of hierarchical quasi-interpolants. Finally, tensor-product B-splines
and their hierarchical extension are briefly discussed in Sect. 1.7.

1.2 B-Splines

In this section we introduce one of the most powerful tools in computer-aided
geometric design and approximation theory: B-spline functions (in short, B-
splines).1 They are piecewise polynomials with a certain global smoothness. The
positions where the pieces meet are known as knots.

1.2.1 Definition and Basic Properties

In order to define B-splines we need the concept of knot sequences.

Definition 1 A knot sequence ξ is a nondecreasing sequence of real numbers,

ξ := {ξi}mi=1 = {ξ1 ≤ ξ2 ≤ · · · ≤ ξm}, m ∈ N.

The elements ξi are called knots.

1The original meaning of the word “spline” is a flexible ruler used to draw curves, mainly in the
aircraft and shipbuilding industries. The “B” in B-splines stands for basis or basic.
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Provided that m ≥ p + 2 we can define B-splines of degree p over the knot-
sequence ξ .

Definition 2 Suppose for a nonnegative integer p and some integer j that ξj ≤
ξj+1 ≤ · · · ≤ ξj+p+1 are p + 2 real numbers taken from a knot sequence ξ . The
j -th B-spline Bj,p,ξ : R → R of degree p is identically zero if ξj+p+1 = ξj and
otherwise defined recursively by2

Bj,p,ξ (x) := x − ξj

ξj+p − ξj

Bj,p−1,ξ (x) + ξj+p+1 − x

ξj+p+1 − ξj+1
Bj+1,p−1,ξ (x), (1.1)

starting with

Bi,0,ξ (x) :=
{
1, if x ∈ [ξi , ξi+1),

0, otherwise.

Here we used the convention that fractions with zero denominator have value zero.

We start with some preliminary remarks.

• For degree 0, the B-spline Bj,0,ξ is simply the characteristic function of the
half open interval [ξj , ξj+1). This implies that a B-spline is continuous except
possibly at a knot ξ . We have Bj,p,ξ (ξ) = Bj,p,ξ (ξ+), where

x+ := lim
t→x
t>x

t, x− := lim
t→x
t<x

t, x ∈ R.

Thus a B-spline is right continuous, i.e., the value at a point x is obtained by
taking the limit from the right.

• We also use the notation

B[ξj , . . . , ξj+p+1] := Bj,p,ξ ,

showing explicitly on which knots the B-spline depends.

• We say that a knot has multiplicity μ if it occurs exactly μ times in the knot
sequence. A knot is called simple, double, triple, . . . if its multiplicity is equal
to 1, 2, 3, . . ., and amultiple knot in general.

2The recurrence relation is due to de Boor, Cox and Mansfield [4, 14]. However, it appears
already in works by Popoviciu and Chakalov in the 1930s; see [8] for an account of the early
history of splines. For the modern theory of splines we refer the reader to the seminal papers by
Schoenberg [41–43] and Curry/Schoenberg [15, 16]. In their works, B-splines were defined by
divided differences of truncated power functions.
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Example 1 AB-spline of degree 1 is also called a linear B-spline or a hat function.
The recurrence relation (1.1) takes the form

Bj,1,ξ (x) = x − ξj

ξj+1 − ξj

Bj,0,ξ (x) + ξj+2 − x

ξj+2 − ξj+1
Bj+1,0,ξ (x),

resulting in

Bj,1,ξ (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x − ξj

ξj+1 − ξj

, if x ∈ [ξj , ξj+1),

ξj+2 − x

ξj+2 − ξj+1
, if x ∈ [ξj+1, ξj+2),

0, otherwise.

(1.2)

A linear B-spline is discontinuous at a double knot and continuous at a simple knot.

Example 2 A B-spline of degree 2 is also called a quadratic B-spline. Using
the recurrence relation (1.1), the three pieces of the quadratic B-spline Bj,2,ξ are
given by

Bj,2,ξ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − ξj )
2

(ξj+2 − ξj )(ξj+1 − ξj )
, if x ∈ [ξj , ξj+1),

(x − ξj )(ξj+2 − x)

(ξj+2 − ξj )(ξj+2 − ξj+1)

+ (x − ξj+1)(ξj+3 − x)

(ξj+2 − ξj+1)(ξj+3 − ξj+1)
, if x ∈ [ξj+1, ξj+2),

(ξj+3 − x)2

(ξj+3 − ξj+1)(ξj+3 − ξj+2)
, if x ∈ [ξj+2, ξj+3),

0, otherwise.

(1.3)

Example 3 Figure 1.1 illustrates several sets of B-splines of degree p = 1, 2, 3.
The same knot sequence is chosen for the different degrees, with only simple knots.

Fig. 1.1 Several sets of B-splines of degree p = 1, 2, 3. The knot positions are visualized by
vertical dotted lines. (a) p = 1. (b) p = 2. (c) p = 3
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The general explicit expression for a B-spline quickly becomes complicated.
Applying the recurrence relation repeatedly we find

Bj,p,ξ (x) =
j+p∑
i=j

B
{i}
j,p,ξ

(x)Bi,0,ξ (x), p ≥ 0, (1.4)

where each B
{i}
j,p,ξ

is a polynomial of degree p, assumed to be zero if ξi = ξi+1.
Note that if ξi = ξi+1 then Bi,0,ξ = 0 and the corresponding polynomial piece is
not used. In particular, for the nontrivial cases we have

B
{j}
j,0,ξ (x) = 1, B

{j}
j,1,ξ (x) = x − ξj

ξj+1 − ξj

, B
{j+1}
j,1,ξ (x) = ξj+2 − x

ξj+2 − ξj+1
.

Furthermore, for the nontrivial cases it follows from Definition 2 that the first and
last polynomial pieces in (1.4) are given by

B
{j}
j,p,ξ

(x) = (x − ξj )
p
/ p∏

i=1

(ξj+i − ξj ),

B
{j+p}
j,p,ξ

(x) = (ξj+p+1 − x)p
/ p∏

i=1

(ξj+p+1 − ξj+i ).

(1.5)

Using induction on the recurrence relation (1.1), we deduce immediately the
following basic properties of a B-spline.

• Local Support. A B-spline is locally supported on the interval given by the
extreme knots used in its definition. More precisely,

Bj,p,ξ (x) = 0, x /∈ [ξj , ξj+p+1). (1.6)

• Nonnegativity. A B-spline is nonnegative everywhere, and positive inside its
support, i.e.,

Bj,p,ξ (x) ≥ 0, x ∈ R, and Bj,p,ξ (x) > 0, x ∈ (ξj , ξj+p+1). (1.7)

• Piecewise Structure. A B-spline has a piecewise polynomial structure, i.e.,

B
{i}
j,p,ξ

∈ Pp, i = j, . . . , j + p, (1.8)

where Pp denotes the space of algebraic polynomials of degree less than or equal
to p.
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• Translation and Scaling Invariance. A B-spline is invariant under a translation
and/or scaling transformation of its knot sequence, i.e.,

Bj,p,αξ+β(αx + β) = Bj,p,ξ (x), α, β ∈ R, α �= 0, (1.9)

where αξ + β := {αξi + β}i .
Further properties will be considered in the next sections.

1.2.2 Dual Polynomials

To each B-spline Bj,p,ξ of degree p, there corresponds a polynomial ψj,p,ξ of
degree p with roots at the interior knots of the B-spline. We define ψj,0,ξ := 1
and

ψj,p,ξ (y) := (y − ξj+1) · · · (y − ξj+p), y ∈ R, p ∈ N. (1.10)

This polynomial is called dual polynomial. Many of the B-spline properties can
be proved in an elegant way by exploiting a recurrence relation for these dual
polynomials.

Theorem 1 For p ∈ N, x, y ∈ R and ξj+p > ξj , we have the dual recurrence
relation

(y − x)ψj,p−1,ξ (y) = x − ξj

ξj+p − ξj

ψj,p,ξ (y) + ξj+p − x

ξj+p − ξj

ψj−1,p,ξ (y), (1.11)

and the dual difference formula

ψj,p−1,ξ (y) = ψj−1,p,ξ (y)

ξj+p − ξj

− ψj,p,ξ (y)

ξj+p − ξj

. (1.12)

Proof For fixed y ∈ R let us define the function �y : R → R given by �y(x) :=
y − x. By linear interpolation, we have

�y(x) = x − ξj

ξj+p − ξj
�y(ξj+p) + ξj+p − x

ξj+p − ξj
�y(ξj ).

By multiplying both sides with ψj,p−1,ξ (y) we obtain (1.11). Moreover, (1.12)
follows from (1.11) by differentiating with respect to x. ��
Proposition 1 The r-th derivative of the dual polynomialψj,p,ξ for 0 ≤ r ≤ p can
be bounded as follows:

|Drψj,p,ξ (y)| ≤ p!
(p − r)! (ξj+p+1 − ξj )

p−r , ξj ≤ y ≤ ξj+p+1. (1.13)
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Moreover,

|Drψj,p,ξ (y)| ≤ p!
(p − r)! (ξj+p − ξj+1)

p−r , ξj+1 ≤ y ≤ ξj+p. (1.14)

Here we define 00 := 1 if r = p and ξj+p = ξj+1.

Proof Clearly (1.13) holds for all p ∈ N0 if r = 0. Using induction on r, p and the
product rule for differentiation, we get

|Drψj,p,ξ (y)| = |Dr(ψj,p−1,ξ (y)(y − ξj+p))|
= |(Drψj,p−1,ξ (y))(y − ξj+p) + rDr−1ψj,p−1,ξ (y)|

≤
(

(p − 1)!
(p − 1 − r)! + r

(p − 1)!
(p − r)!

)
(ξj+p+1 − ξj )

p−r ,

and (1.13) follows. The proof of (1.14) is similar. ��

1.2.3 Local Marsden Identity and Linear Independence

In this and the following sections (unless specified otherwise) we will extend the
knots ξj ≤ · · · ≤ ξj+p+1 of Bj,p,ξ by defining p extra knots at each end, and we
will assume

ξ := {ξj−p ≤ · · · ≤ ξj−1 < ξj ≤ · · · ≤ ξj+p+1 < ξj+p+2 ≤ · · · ≤ ξj+2p+1}.
(1.15)

These extra knots can be defined in any way we like. One possibility is

ξj−p = · · · = ξj−1 := ξj − 1, ξj+p+1 + 1 =: ξj+p+2 = · · · = ξj+2p+1.

(1.16)

On such a knot sequence 2p + 1 B-splines Bi,p,ξ = B[ξi , . . . , ξi+p+1], i = j −
p, . . . , j + p are well defined.

The following identity was first proved by Marsden [36] and simplifies many
dealings with B-splines.

Theorem 2 (Local Marsden Identity) For j ≤ m ≤ j + p and ξm < ξm+1, we
have

(y − x)p =
m∑

i=m−p

ψi,p,ξ (y)Bi,p,ξ (x), x ∈ [ξm, ξm+1), y ∈ R. (1.17)

If B{m}
i,p,ξ

is the polynomial which is equal to Bi,p,ξ (x) for x ∈ [ξm, ξm+1) then

(y − x)p =
m∑

i=m−p

ψi,p,ξ (y)B
{m}
i,p,ξ

(x), x, y ∈ R. (1.18)
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Proof Suppose x ∈ [ξm, ξm+1). The equality (1.17) can be proved by induction. It
is clearly true for p = 0. Let us now assume it holds for degree p − 1. Then, by
means of the dual recurrence (1.11) and the B-spline recurrence relation we obtain

(y − x)p = (y − x)(y − x)p−1 = (y − x)

m∑
i=m−p+1

ψi,p−1,ξ (y)Bi,p−1,ξ (x)

=
m∑

i=m−p+1

(
x − ξi

ξi+p − ξi

ψi,p,ξ (y) + ξi+p − x

ξi+p − ξi

ψi−1,p,ξ (y)

)
Bi,p−1,ξ (x)

=
m∑

i=m−p

(
x − ξi

ξi+p − ξi

Bi,p−1,ξ (x) + ξi+p+1 − x

ξi+p+1 − ξi+1
Bi+1,p−1,ξ (x)

)

× ψi,p,ξ (y)

=
m∑

i=m−p

ψi,p,ξ (y)Bi,p,ξ (x).

Here we used that x−ξi

ξi+p−ξi
Bi,p−1,ξ (x) = 0 for i = m − p,m + 1. ��

The local Marsden identity immediately leads to the following properties, where
we suppose ξm < ξm+1 for some j ≤ m ≤ j + p.

• Local Representation of Monomials.We have for p ≥ k,

xk =
m∑

i=m−p

(
(−1)k

k!
p!D

p−kψi,p,ξ (0)

)
Bi,p,ξ (x), x ∈ [ξm, ξm+1). (1.19)

Proof Fix x ∈ [ξm, ξm+1). Differentiating p−k times with respect to y in (1.18)
results in

(y − x)k

k! =
m∑

i=m−p

(
1

p!D
p−kψi,p,ξ (y)

)
Bi,p,ξ (x), y ∈ R, (1.20)

for k = 0, 1, . . . , p. Setting y = 0 in (1.20) results in (1.19). ��
• Local Partition of Unity. Taking k = 0 in (1.19) gives

m∑
i=m−p

Bi,p,ξ (x) = 1, x ∈ [ξm, ξm+1). (1.21)
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• Local Linear Independence. The two sets {Bi,p,ξ }mi=m−p and {ψi,p,ξ }mi=m−p

form both a basis for the polynomial space Pp on any subset of [ξm, ξm+1)

containing at least p + 1 distinct points.

Proof Let A be a subset of [ξm, ξm+1) containing at least p + 1 distinct points.
From (1.20) we see that onA every polynomial of degree at most p can be written
as a linear combination of the p+1 polynomialsB

{m}
i,p,ξ

, i = m−p, . . . ,m. Since
the dimension of the space Pp on A is p + 1, these polynomials must be linearly
independent and a basis. The result for {ψi,p,ξ }mi=m−p follows by symmetry. ��

1.2.4 Smoothness, Differentiation and Integration

The derivative of a B-spline can be expressed by means of a simple difference
formula. In the following, we denote the right derivative by D+ and the left
derivative by D−.

Theorem 3 (Differentiation) We have

D+Bj,p,ξ (x) = p

(
Bj,p−1,ξ (x)

ξj+p − ξj

− Bj+1,p−1,ξ (x)

ξj+p+1 − ξj+1

)
, p ≥ 1, (1.22)

where fractions with zero denominator have value zero.

Proof If ξj+p+1 = ξj then both sides of (1.22) are zero, so we can assume
ξj+p+1 > ξj . We continue to use the extra knots (1.15). If x < ξj or x ≥ ξj+p+1
then both sides of (1.22) are zero. Otherwise x ∈ [ξm, ξm+1) for some m with
j ≤ m ≤ j + p and it is enough to prove (1.22) for such an interval. Differentiating
both sides of (1.17) with respect to x gives

− p(y − x)p−1 =
m∑

i=m−p

DBi,p,ξ (x)ψi,p(y), x ∈ [ξm, ξm+1). (1.23)

On the other hand, using the local Marsden identity (1.17) for degree p − 1 and the
difference formula for dual polynomials (1.12) results in

−p(y − x)p−1 = −p

m∑
i=m−p+1

ψi,p−1(y)Bi,p−1,ξ (x)

= p

m∑
i=m−p+1

(
ψi,p(y)

ξi+p − ξi

− ψi−1,p(y)

ξi+p − ξi

)
Bi,p−1,ξ (x)

=
m∑

i=m−p

p

(
Bi,p−1,ξ (x)

ξi+p − ξi
− Bi+1,p−1,ξ (x)

ξi+p+1 − ξi+1

)
ψi,p(y).
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When comparing this with (1.23) and using the linear independence of the dual
polynomials, it follows that (1.22) holds for i = m − p, . . . ,m. In particular, since
m − p ≤ j ≤ m, (1.22) holds for i = j . ��
Example 4 The differentiation formula (1.22) for p = 2 together with the
expression (1.2) immediately gives the piecewise form of the derivative of the
quadratic B-spline Bj,2,ξ :

D+Bj,2,ξ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(x − ξj )

(ξj+2 − ξj )(ξj+1 − ξj )
, if x ∈ [ξj , ξj+1),

2(ξj+2 − x)

(ξj+2 − ξj )(ξj+2 − ξj+1)

− 2(x − ξj+1)

(ξj+3 − ξj+1)(ξj+2 − ξj+1)
, if x ∈ [ξj+1, ξj+2),

− 2(ξj+3 − x)

(ξj+3 − ξj+1)(ξj+3 − ξj+2)
, if x ∈ [ξj+2, ξj+3),

0, otherwise.

This is in agreement with taking the derivative of the piecewise expression (1.3) of
Bj,2,ξ given in Example 2.

Proposition 2 The r-th derivative of the B-spline Bj,p,ξ for 0 ≤ r ≤ p can be
bounded as follows. For any x ∈ [ξm, ξm+1) with j ≤ m ≤ j + p we have

|DrBj,p,ξ (x)| ≤ 2r p!
(p − r)!

p∏
k=p−r+1

1

Δm,k

, (1.24)

where

Δm,k := min
m−k+1≤i≤m

hi,k, hi,k := ξi+k − ξi , k = 1, . . . , p. (1.25)

Proof This holds for r = 0 because of the nonnegativity of Bj,p,ξ and the partition
of unity property (1.21). By the differentiation formula (1.22) and the local support
property (1.6) we have

DrBj,p,ξ (x)

= p

⎧⎪⎪⎨
⎪⎪⎩

−Dr−1Bj+1,p−1,ξ (x)/hj+1,p, if m = j + p,

Dr−1Bj,p−1,ξ (x)/hj,p − Dr−1Bj+1,p−1,ξ(x)/hj+1,p, if j < m < j + p,

Dr−1Bj,p−1,ξ (x)/hj,p, if m = j.
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It follows that

|DrBj,p,ξ (x)| ≤ 2p max
m−p+1≤i≤m

|Dr−1Bi,p−1,ξ (x)|/Δm,p,

and by induction on r we obtain (1.24). ��
Note that the upper bound in (1.24) is well defined since Δm,k ≥ ξm+1 −ξm > 0.

Theorem 4 (Smoothness) If ξ is a knot of Bj,p,ξ of multiplicity μ ≤ p + 1, then

Bj,p,ξ ∈ Cp−μ(ξ), (1.26)

i.e., its derivatives of order 0, 1, . . . , p − μ are continuous at ξ .

Proof Suppose ξ is a knot of Bj,p,ξ of multiplicity μ. We first consider the
smoothness property when μ = p + 1. For x ∈ [ξj , ξj+p+1) it follows immediately
from (1.4) and (1.5) that

Bj,p,ξ (x) = (x − ξj )
p

(ξj+p+1 − ξj )p
, ξj < ξj+1 = · · · = ξj+p+1, (1.27)

Bj,p,ξ (x) = (ξj+p+1 − x)p

(ξj+p+1 − ξj )p
, ξj = · · · = ξj+p < ξj+p+1. (1.28)

These two B-splines are discontinuous with a jump of absolute size one at the
multiple knot showing the smoothness property for μ = p + 1.

Let us now consider the case where Bj,p,ξ has an interior knot of multiplicity
equal to μ = p, i.e., ξj < ξj+1 = · · · = ξj+p < ξj+p+1. For x ∈ [ξj , ξj+p+1) it
follows from (1.4) and (1.5) that

Bj,p,ξ (x) = (x − ξj )
p

(ξj+p − ξj )p
Bj,0,ξ (x) + (ξj+p+1 − x)p

(ξj+p+1 − ξj+1)p
Bj+p,0,ξ (x). (1.29)

The two nontrivial pieces have both value one at the center knot ξj+1 = ξj+p, and
Bj,p,ξ is continuous on R. Moreover, the first derivative has a nonzero jump at the
center knot.

For the remaining cases we use induction on p to show that Bj,p,ξ ∈ Cp−μ(ξ).
The case p = 1 follows from Example 1. Suppose for some p ≥ 2 that Bj,p−1,ξ ∈
Cp−1−μ(ξ) at a knot ξ of multiplicityμ. For the multiplicity p case ξ = ξj = · · · =
ξj+p−1 < ξj+p ≤ ξj+p+1 we use the recurrence relation

Bj,p,ξ (x) = x − ξj

ξj+p − ξj

Bj,p−1,ξ (x) + ξj+p+1 − x

ξj+p+1 − ξj+1
Bj+1,p−1,ξ (x).

The first term vanishes at x = ξ = ξj . Since Bj+1,p−1,ξ has a knot of multiplicity
p − 1 at ξ , it follows from the induction hypothesis that it is continuous there.
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We conclude that Bj,p,ξ is continuous at ξ . The case where the right end knot of
Bj,p,ξ has multiplicity p is handled similarly. Finally, if μ ≤ p − 1 then both terms
in the differentiation formula (1.22) have a knot of multiplicity at most μ at ξ and
by the induction hypothesis we obtain D+Bj,p,ξ ∈ Cp−1−μ(ξ). Moreover, by the
recurrence relation and the induction hypothesis it follows that Bj,p,ξ is continuous
at ξ , and so we also conclude that Bj,p,ξ ∈ Cp−μ(ξ) if μ ≤ p − 1. This completes
the proof. ��

The B-spline Bj,p,ξ is supported on the interval [ξj , ξj+p+1]. Hence, Theorem 4
implies that Bj,p,ξ is continuous on R whenever ξj+p > ξj and ξj+p+1 > ξj+1.
Similarly, Bj,p,ξ is Cr -continuous on R whenever ξj+p−r+i > ξj+i for each i =
0, . . . , r + 1 and −1 ≤ r < p.

Theorem 5 (Integration) We have

γj,p,ξ :=
∫ ξj+p+1

ξj

Bj,p,ξ (x) dx = ξj+p+1 − ξj

p + 1
. (1.30)

Proof This time we define p + 1 extra knots at each end, and we assume

ξ := {ξj−p−1 = · · · = ξj−1 < ξj ≤ · · · ≤ ξj+p+1 < ξj+p+2 = · · · = ξj+2p+2}.

On this knot sequence we consider p+1 B-splinesBi,p+1,ξ , i = j−p−1, . . . , j−1
of degree p + 1. From Theorem 4 we know that these B-splines are continuous on
R. Therefore, we get for i = j − p − 1, . . . , j − 1,

0 = Bi,p+1,ξ (ξi+p+2) − Bi,p+1,ξ (ξi) =
∫ ξi+p+2

ξi

D+Bi,p+1,ξ (x) dx = Ei − Ei+1,

where by the local support and the differentiation formula (1.22),

Ei := p + 1

ξi+p+1 − ξi

∫ ξi+p+1

ξi

Bi,p,ξ (x) dx, i = j − p − 1, . . . , j.

This means that Ej = Ej−1 = · · · = Ej−p−1. Moreover, since ξj−p−1 = · · · =
ξj−1, we obtain from (1.28) that

Ej−p−1 = p + 1

ξj − ξj−p−1

∫ ξj

ξj−p−1

(ξj − x)p

(ξj − ξj−p−1)p
dx = 1,

and the integration formula (1.30) follows. ��



14 T. Lyche et al.

1.3 Splines

A spline function (in short, spline) is a linear combination of B-splines defined on
a given knot sequence with a fixed degree. In this section we analyze the space of
splines and discuss several of their properties.

1.3.1 The Spline Space Sp,ξ and Some Spline Properties

Suppose for integers n > p ≥ 0 that a knot sequence

ξ := {ξi}n+p+1
i=1 = {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1}, n ∈ N, p ∈ N0,

is given. This knot sequence allows us to define a set of n B-splines of degree p,
namely

{B1,p,ξ , . . . , Bn,p,ξ }. (1.31)

We consider the space

Sp,ξ :=
{
s : [ξp+1, ξn+1] → R : s =

n∑
j=1

cjBj,p,ξ , cj ∈ R

}
. (1.32)

This is the space of splines spanned by the B-splines in (1.31) over the interval
[ξp+1, ξn+1], which is called the basic interval.

We now introduce some terminology to identify certain properties of knot
sequences which are crucial in the study of the space (1.32).

• A knot sequence ξ is called (p + 1)-regular if ξj < ξj+p+1 for j = 1, . . . , n.
By the local support (1.6) such a knot sequence ensures that all the B-splines in
(1.31) are not identically zero.

• A knot sequence ξ is called (p+1)-basic if it is (p+1)-regularwith ξp+1 < ξp+2
and ξn < ξn+1. As we will show later, the B-splines in (1.31) defined on a (p+1)-
basic knot sequence are linearly independent on the basic interval [ξp+1, ξn+1].

• A knot sequence ξ is called (p + 1)-open on an interval [a, b] if it is (p + 1)-
regular and it has end knots of multiplicity p + 1, i.e.,

a := ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p+1 =: b.

(1.33)

This sequence is often used in practice. In particular, it turns out to be natural
to construct open curves, clamped at two given points. Note that (p + 1)-open
implies (p + 1)-basic.

Some further preliminary remarks are in order here.
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• We consider B-splines on a closed basic interval [ξp+1, ξn+1]. In order to avoid
the asymmetry at the right endpoint we define the B-splines to be left continuous
at the right endpoint, i.e., their value at ξn+1 is obtained by taking the limit from
the left:

Bj,p,ξ (ξn+1) := lim
x→ξn+1
x<ξn+1

Bj,p,ξ (x), j = 1, . . . , n. (1.34)

Note that for a (p + 1)-open knot sequence the end condition (1.34) means that
Bn,p,ξ (ξn+p+1) = 1 and (1.6) has to be modified for this B-spline.

• We define a multiplicity function μξ : R → N0 given by μξ (ξi) = μi if ξi ∈ ξ

occurs exactly μi ≥ 1 times in ξ , and μξ (x) = 0 if x /∈ ξ . If ξ and ξ̃ are two

knot sequences we say that ξ ⊆ ξ̃ if μξ (x) ≤ μ
ξ̃
(x) for all x ∈ R.

• Without loss of generality, we can always assume that the end knots have
multiplicity p + 1. If this is not the case, then we can add extra knots at the
ends and assume the extra B-splines to have coefficients zero. This observation
simplifies many proofs.

Example 5 Figure 1.2 illustrates all the B-splines of degreep = 3 on a (p+1)-open
knot sequence, where the interior knots are simple.

From the properties of B-splines, we immediately conclude the following
properties of the spline representation in (1.32).

• Smoothness. If ξ is a knot of multiplicity μ then s ∈ Cr(ξ) for any s ∈ Sp,ξ ,
where r + μ = p. This follows from the smoothness property of the B-splines
(Theorem 4). The relation between smoothness, multiplicity and degree is as
follows:

“smoothness+ multiplicity = degree”. (1.35)

Fig. 1.2 The B-spline basis of degree p = 3 on a (p + 1)-open knot sequence. The knot positions
are visualized by vertical dotted lines
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• Local Support. The local support (1.6) of the B-splines implies

n∑
j=1

cjBj,p,ξ (x) =
m∑

j=m−p

cjBj,p,ξ (x), x ∈ [ξm, ξm+1), p + 1 ≤ m ≤ n,

(1.36)

and if ξm < ξm+p then

n∑
j=1

cjBj,p,ξ (ξm) =
m−1∑

j=m−p

cjBj,p,ξ (ξm), p + 1 ≤ m ≤ n + 1. (1.37)

• Minimal Support. From the smoothness properties it can be proved that if the
support of s ∈ Sp,ξ is a proper subset of [ξj , ξj+p+1] for some j then s = 0.
Therefore, the B-splines have minimal support.

• Coefficient Recurrence. For x ∈ [ξp+1, ξn+1], by the recurrence relation (1.1)
we have

n∑
j=1

cjBj,p,ξ (x) =
n∑

j=2

čj (x)Bj,p−1,ξ (x), (1.38)

where

čj (x) := x − ξj

ξj+p − ξj

cj + ξj+p − x

ξj+p − ξj

cj−1, (1.39)

and čj (x)Bj,p−1,ξ (x) = 0 if ξj+p = ξj .

• Differentiation. For x ∈ [ξp+1, ξn+1], by the differentiation formula (1.22) we
have

D+
( n∑

j=1

cjBj,p,ξ (x)

)
=

n∑
j=2

c
(1)
j Bj,p−1,ξ (x), p ≥ 1, (1.40)

where

c
(1)
j := p

(
cj − cj−1

ξj+p − ξj

)
, (1.41)

and fractions with zero denominator have value zero.

• Linear Independence. If ξ is (p + 1)-basic, then the B-splines in (1.31) are
linearly independent on the basic interval. Thus, the spline space Sp,ξ is a vector
space of dimension n.
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Proof We must show that if s(x) = ∑n
j=1 cjBj,p,ξ (x) = 0 for x ∈ [ξp+1, ξn+1]

then cj = 0 for all j . Let us fix 1 ≤ j ≤ n. Since ξ is (p + 1)-regular, there
is an integer mj with j ≤ mj ≤ j + p such that ξmj < ξmj +1. Moreover, the
assumptions ξp+1 < ξp+2 and ξn < ξn+1 guarantee that [ξmj , ξmj +1) can be
chosen in the basic interval. From the local support property (1.36) we know

s(x) =
mj∑

i=mj −p

ciBi,p,ξ (x) = 0, x ∈ [ξmj , ξmj +1).

The local linear independence property (see Sect. 1.2.3) implies cmj −p = · · · =
cmj = 0, and in particular cj = 0. ��

1.3.2 The Piecewise Polynomial Space Sr
p(Δ)

We now prove that the spline space Sp,ξ is nothing else than a space of piecewise
polynomials of degree p defined by a given sequence of break points and by some
prescribed smoothness. The set of knots ξ must be suitably selected according to
the break points and the smoothness conditions. Therefore, the B-splines are a basis
of such a space of piecewise polynomials.

Let Δ be a sequence of distinct real numbers,

Δ := {η0 < η1 < · · · < η�+1}.

The elements in Δ are called break points. Moreover, let r := (r1, . . . , r�) be a
vector of integers such that −1 ≤ ri ≤ p for i = 1, . . . , �. The space S

r
p(Δ)

of piecewise polynomials of degree p with smoothness r over the partition Δ is
defined by

S
r
p(Δ) := {

s : [η0,η�+1] → R : s ∈ Pp([ηi, ηi+1)), i = 0, . . . , � − 1,

s ∈ Pp([η�, η�+1]), s ∈ Cri (ηi), i = 1, . . . , �
}
.

(1.42)

Suppose that s{i} ∈ Pp is the polynomial equal to the restriction of a given
function s ∈ S

r
p(Δ) to the interval [ηi, ηi+1), i = 0, . . . , �. Since s ∈ Cri (ηi),

we have

s{i}(x) − s{i−1}(x) =
p∑

j=ri+1

ci,j (x − ηi)
j ,

for some coefficients ci,j . It follows that Sr
p(Δ) is spanned by the set of functions

{
1, x, . . . , xp, (x − η1)

r1+1
+ , . . . , (x − η1)

p
+, . . . , (x − η�)

r�+1
+ , . . . , (x − η�)

p
+
}
,

(1.43)
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where the truncated power function (·)p+ is defined by

(x)
p
+ :=

{
xp, x > 0,

0, x < 0,
(1.44)

and the value at zero is defined by taking the right limit.
It is easy to see that the functions in (1.43) are linearly independent. Indeed, let

s(x) :=
p∑

j=0

c0,j xj +
�∑

i=1

p∑
j=ri+1

ci,j (x − ηi)
j
+ = 0, x ∈ [η0, η�+1].

On [η0, η1) we have s(x) = ∑p
j=0 c0,j xj and it follows that c0,0 = · · · = c0,p = 0.

Suppose for some 1 ≤ k ≤ � that ci,j = 0 for i < k. Then, on [ηk, ηk+1) we have
s(x) = ∑p

j=rk+1 ck,j (x − ηk)
j = 0 showing that all ck,j = 0.

This implies that the set of functions in (1.43) is a basis for Sr
p(Δ), the so-called

truncated power basis. As a consequence,

dim(Sr
p(Δ)) = p + 1 +

�∑
i=1

(p − ri ).

The next theorem shows that the set of B-splines in (1.31) defined over a specific
knot sequence ξ forms an alternative basis for Sr

p(Δ). This was first proved by Curry
and Schoenberg in [16].

Theorem 6 (Characterization of Spline Space) The piecewise polynomial space
S

r
p(Δ) is characterized in terms of B-splines by

S
r
p(Δ) = Sp,ξ ,

where the knot sequence ξ := {ξi}n+p+1
i=1 with n := dim(Sr

p(Δ)) is constructed such
that

ξ1 ≤ · · · ≤ ξp+1 := η0, η�+1 =: ξn+1 ≤ · · · ≤ ξn+p+1,

and

ξp+2, . . . , ξn :=
p−r1︷ ︸︸ ︷

η1, . . . , η1, . . . ,

p−r�︷ ︸︸ ︷
η�, . . . , η� .

Proof From the piecewise polynomial and smoothness properties of B-splines
it follows that the B-spline space Sp,ξ is a subspace of S

r
p(Δ). Moreover, the

constructed knot sequence ξ is (p + 1)-basic, so dim(Sp,ξ ) = n by the linear
independence property of B-splines. This implies that Sr

p(Δ) = Sp,ξ . ��
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Example 6 Consider Δ := {η0 < η1 < η2 < η3} and the space Sr
3(Δ) with r =

(r1, r2) = (2, 1). It follows from Theorem 6 that Sr
3(Δ) = S3,ξ , where

ξ = {ξi}7+3+1
i=1 = {η0 = η0 = η0 = η0 < η1 < η2 = η2 < η3 = η3 = η3 = η3}.

This knot sequence is 4-open.

Finally, we give a characterization for the space spanned by the r-th derivatives
of B-splines for 0 ≤ r ≤ p, i.e.,

Dr+Sp,ξ :=
{
s : [ξp+1, ξn+1] → R : s = Dr+

( n∑
j=1

cjBj,p,ξ

)
, cj ∈ R

}
.

Theorem 7 (Characterization of Derivative Spline Space) Given a knot
sequence ξ := {ξi}n+p+1

i=1 , we have for 0 ≤ r ≤ p,

Dr+Sp,ξ = Sp−r,ξr
,

where ξ r := {ξi}n+p+1−r

i=r+1 .

Proof The result is obvious for r = 0. Let us now consider the case r = 1, for
which we note that

{B1,p−1,ξ1 , . . . , Bn−1,p−1,ξ1} = {B2,p−1,ξ , . . . , Bn,p−1,ξ }.

By the differentiation formula (1.40) it is clear that

D+
( n∑

j=1

cjBj,p,ξ

)
= p

n∑
j=2

(
cj − cj−1

ξj+p − ξj

)
Bj,p−1,ξ ∈ Sp−1,ξ1 .

On the other hand, suppose s ∈ Sp−1,ξ1 , represented as s = ∑n
j=2 djBj,p−1,ξ .

Then, by using again the differentiation formula, we can write s = D+
(∑n

j=1 cj

Bj,p,ξ

)
, where c1 can be any real number and

cj = cj−1 + ξj+p − ξj

p
dj , j = 2, . . . , n.

For r > 1 we use the relation Dr+ = D+Dr−1+ . ��
By combining Theorems 6 and 7 it follows that for 0 ≤ r ≤ p,

S
r−r
p−r (Δ) = Dr+Sp,ξ ,

where r − r := (
max(r1 − r,−1), . . . ,max(r� − r,−1)

)
and the knot sequence ξ

is constructed as in Theorem 6.
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1.3.3 B-Spline Representation of Polynomials

Polynomials can be represented in terms of B-splines of at least the same degree.
We now derive an explicit expression for their B-spline coefficients by using the
dual polynomials and the (local) Marsden identity.

Theorem 8 (Marsden Identity) We have

(y − x)p =
n∑

j=1

ψj,p,ξ (y)Bj,p,ξ (x), x ∈ [ξp+1, ξn+1], y ∈ R, (1.45)

where ψj,p,ξ (y) := (y − ξj+1) · · · (y − ξj+p) is the polynomial of degree p that is
dual to Bj,p,ξ .

Proof This follows immediately from the local version (1.17). Indeed, if x ∈
[ξp+1, ξn+1) then x ∈ [ξm, ξm+1) for some p + 1 ≤ m ≤ n, and by the local
support property (1.36) we get

(y − x)p =
m∑

j=m−p

ψj,p,ξ (y)Bj,p,ξ (x) =
n∑

j=1

ψj,p,ξ (y)Bj,p,ξ (x).

Taking into account the left continuity of B-splines at the endpoint ξn+1, see (1.34),
we arrive at the Marsden identity (1.45). ��

Differentiating p − k times with respect to y in (1.45) results in the following
formula.

Corollary 1 For k = 0, 1, . . . , p we have

(y − x)k

k! =
n∑

j=1

(
1

p!D
p−kψj,p,ξ (y)

)
Bj,p,ξ (x), x ∈ [ξp+1, ξn+1], y ∈ R.

(1.46)

Corollary 1 immediately leads to the following properties.

• Representation of Monomials. For k = 0, 1, . . . , p we have

xk =
n∑

j=1

ξ
∗,k
j,p,ξ

Bj,p,ξ (x), x ∈ [ξp+1, ξn+1], (1.47)

where

ξ
∗,k
j,p,ξ

:= (−1)k
k!
p!D

p−kψj,p,ξ (0). (1.48)

This follows from (1.46) with y = 0.
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• Partition of Unity. Taking k = 0 in (1.47) gives

n∑
j=1

Bj,p,ξ (x) = 1, x ∈ [ξp+1, ξn+1]. (1.49)

Since the B-splines are nonnegative it follows that they form a nonnegative
partition of unity on [ξp+1, ξn+1].

• Greville Points. Taking k = 1 in (1.47) gives for p ≥ 1,

x =
n∑

j=1

ξ∗
j,p,ξBj,p,ξ (x), x ∈ [ξp+1, ξn+1], (1.50)

where

ξ∗
j,p,ξ := ξ

∗,1
j,p,ξ

= ξj+1 + · · · + ξj+p

p
. (1.51)

The number ξ∗
j,p,ξ

is called Greville point.3 It is also known as knot average or
node.

Example 7 For p = 3 Eq. (1.47) gives

1 =
n∑

j=1

Bj,3,ξ (x),

x =
n∑

j=1

ξj+1 + ξj+2 + ξj+3

3
Bj,3,ξ (x),

x2 =
n∑

j=1

ξj+1ξj+2 + ξj+1ξj+3 + ξj+2ξj+3

3
Bj,3,ξ (x),

x3 =
n∑

j=1

ξj+1ξj+2ξj+3 Bj,3,ξ (x).

We finally present an expression for the B-spline coefficients of a general
polynomial.

3An explicit expression of (1.51) was given by Greville in [24]. According to Schoenberg [43],
Greville reviewed the paper [43] introducing some elegant simplifications.
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Proposition 3 (Representation of Polynomials) Any polynomial g of degree p

can be represented as

g(x) =
n∑

j=1

Λj,p,ξ (g)Bj,p,ξ (x), x ∈ [ξp+1, ξn+1], (1.52)

where

Λj,p,ξ (g) := 1

p!
p∑

r=0

(−1)p−r Drψj,p,ξ (τj ) Dp−rg(τj ), τj ∈ R. (1.53)

Proof The polynomial g can be represented in Taylor form (1.95) as

g(x) =
p∑

r=0

(x − τj )
p−r

(p − r)! Dp−r g(τj ), τj ∈ R.

The result follows when we apply (1.46) with k = p − r . ��
Note that, if τj is a root of ψj of multiplicity μj then Drψi(τj ) = 0, r =

0, 1, . . . , μj − 1 and (1.53) becomes

Λj,p,ξ (g) = 1

p!
p∑

r=μj

(−1)p−r Drψj,p,ξ (τj ) Dp−rg(τj ), τj ∈ R. (1.54)

Example 8 The polynomial g(x) = ax2 + bx + c can be represented in terms of
quadratic B-splines:

ax2 + bx + c =
n∑

j=1

cj Bj,2,ξ (x).

From (1.52)–(1.53) with ψj,2,ξ (y) := (y − ξj+1)(y − ξj+2), we obtain that

cj = Λj,2,ξ (g) = 1

2

[
(τj − ξj+1)(τj − ξj+2)2a

− (2τj − ξj+1 − ξj+2)(2aτj + b)

+ 2(aτ 2j + bτj + c)
]

= a ξj+1ξj+2 + b
ξj+1 + ξj+2

2
+ c.



1 Foundations of Spline Theory 23

1.3.4 B-Spline Representation of Splines

In the previous section we have derived an explicit expression for the B-spline
coefficients of polynomials; see (1.52). The next theorem extends this result by
providing an explicit expression for the B-spline coefficients of any spline in Sp,ξ .

Theorem 9 (Representation of B-Spline Coefficients) Any element s in the space
Sp,ξ can be represented as4

s(x) =
n∑

j=1

Λj,p,ξ (s)Bj,p,ξ (x), x ∈ [ξp+1, ξn+1], (1.55)

where

Λj,p,ξ (s) := 1

p!

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑p
r=μj

(−1)p−r Drψj,p,ξ (τj )D
p−r
+ s(τj ), if τj = ξj ,∑p

r=μj
(−1)p−r Drψj,p,ξ (τj )Dp−r s(τj ), if ξj < τj < ξj+p+1,∑p

r=μj
(−1)p−r Drψj,p,ξ (τj )D

p−r
− s(τj ), if τj = ξj+p+1,

(1.56)

and where μj ≥ 0 is the number of times τj appears in ξj+1, . . . , ξj+p .

Proof Suppose ξj ≤ τj < ξj+p+1 and let Ij := [ξmj , ξmj +1) be the interval
containing τj . The restriction of s to Ij is a polynomial and so by Proposition 3
we find

s(x) =
mj∑

i=mj −p

(
1

p!
p∑

r=0

(−1)p−r Drψi,p,ξ (τj ) D
p−r
+ s(τj )

)
Bi,p,ξ (x), x ∈ Ij .

(1.57)

Note that since ξj ≤ τj < ξj+p+1 we have j ≤ mj ≤ j + p which implies
mj −p ≤ j ≤ mj . By taking i = j in (1.57) and using the local linear independence
of the B-splines, we obtain

Λj,p,ξ (s) := 1

p!
p∑

r=0

(−1)p−r Drψj,p,ξ (τj ) D
p−r
+ s(τj ).

Since Drψj,p,ξ (τj ) = 0 for r < μj we obtain the top term in (1.56). In the middle

term we can replace D
p−r
+ s(τj ) by Dp−r s(τj ) since s ∈ Cp−μj (τj ). The proof of

the last term is similar using D− instead of D+. ��

4The value Λj,p,ξ (s) is known as the de Boor–Fix functional [7] applied to s.
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Note that the operator Λj,p,ξ in (1.54) is identical to Λj,p,ξ in (1.56). However,
in the spline case we need the restriction τj ∈ [ξj , ξj+p+1].

Because the set of B-splines {Bj,p,ξ }nj=1 is a basis for the space Sp,ξ , the
coefficients Λj,p,ξ (s) are uniquely determined for any s ∈ Sp,ξ . Thus, the right-
hand side in (1.56) does not depend on the choice of τj . This is an astonishing
property considering the complexity of the expression. For example, one could take
the Greville point ξ∗

j,p,ξ
defined in (1.51) as a valid choice for the point τj . It is easy

to verify that ξ∗
j,p,ξ

∈ [ξj , ξj+p+1], and moreover, ξ∗
j,p,ξ

∈ (ξj , ξj+p+1) if Bj,p,ξ is
a continuous function.

Example 9 We consider the quadratic spline

s(x) =
n∑

j=1

cjBj,2,ξ (x),

and we illustrate that some derivative terms in the expression (1.56) can be canceled
by specific choices of τj . Assume for simplicity ξj < ξj+1 < ξj+2 < ξj+3.

– If τj is the Greville point ξ∗
j,2,ξ := (ξj+1+ξj+2)/2, then there is no first derivative

term. Indeed, we have

cj = Λj,2,ξ (s) = s(ξ∗
j,2,ξ ) − (ξj+2 − ξj+1)

2

8
D2s(ξ∗

j,2,ξ ).

Moreover, since s ∈ P2 on [ξj+1, ξj+2], we can replace D2s(ξ∗
j,2,ξ ) by a

difference quotient

D2s(ξ∗
j,2,ξ ) = (

s(ξj+2) − 2s(ξ∗
j,2,ξ ) + s(ξj+1)

)/(
ξj+2 − ξj+1

2

)2

,

to obtain

cj = −1

2
s(ξj+1) + 2s(ξ∗

j,2,ξ ) − 1

2
s(ξj+2). (1.58)

– If τj is equal to ξj+1 or ξj+2, then there is no second derivative term. Indeed, we
have

cj = Λj,2,ξ (s) = s(τj ) + ξ∗
j,2,ξ − τj

2
Ds(τj ), τj ∈ {ξj+1, ξj+2}.

A similar property holds for any p: if τj is chosen as one of the interior
knots ξj+1, . . . , ξj+p , then there is no p-th derivative term in the expression of
Λj,p,ξ (s).
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1.3.5 Knot Insertion

In this section we are addressing the problem of representing a given spline on
a refined knot sequence. In particular, we focus on the special case where only a
single knot is inserted. Since any refined knot sequence can be reached by repeatedly
inserting one knot at a time, it suffices to deal with this case.

Without loss of generality, we assume that the spline s = ∑n
j=1 cjBj,p,ξ is given

on a (p + 1)-basic knot sequence ξ := {ξi}n+p+1
i=1 . We want to insert a knot ξ in

some subinterval [ξm, ξm+1) of [ξp+1, ξn+1), resulting in a new (p + 1)-basic knot

sequence ξ̃ := {ξ̃i}n+p+2
i=1 defined by

ξ̃i :=

⎧⎪⎪⎨
⎪⎪⎩

ξi , if 1 ≤ i ≤ m,

ξ, if i = m + 1,

ξi−1, if m + 2 ≤ i ≤ n + p + 2.

(1.59)

The B-spline form of s on the new knot sequence can be computed with the aid of
the following procedure introduced by Böhm [3].

Theorem 10 (Knot Insertion) Let the (p+1)-basic knot sequence ξ̃ := {ξ̃i}n+p+2
i=1

be obtained from the (p + 1)-basic knot sequence ξ := {ξi}n+p+1
i=1 by inserting just

one knot ξ , such that ξm ≤ ξ < ξm+1 as in (1.59). Then,

s(x) =
n∑

j=1

cjBj,p,ξ (x) =
n+1∑
i=1

c̃iBi,p,ξ̃
(x), x ∈ [ξp+1, ξn+1], (1.60)

where

c̃i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ci, if i ≤ m − p,
ξ − ξi

ξi+p − ξi

ci + ξi+p − ξ

ξi+p − ξi

ci−1, if m − p < i ≤ m,

ci−1, if i > m.

(1.61)

Proof From Theorem 6 it follows that Sp,ξ is a subspace of S
p,ξ̃

, since we have
reduced the continuity requirement at ξm if ξ = ξm or introduced another segment
otherwise. Hence, the B-splines in Sp,ξ belong to S

p,ξ̃
, and we can write

Bj,p,ξ =
n+1∑
i=1

αi,j,pB
i,p,ξ̃

, j = 1, . . . , n,
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for some real numbers αi,j,p . Suppose s ∈ Sp,ξ is given by (1.60). Then,

n∑
j=1

cjBj,p,ξ =
n+1∑
i=1

( n∑
j=1

αi,j,pcj

)
B

i,p,ξ̃
.

By linear independence of the B-splines in S
p,ξ̃

we obtain

c̃i =
n∑

j=1

αi,j,pcj , i = 1, . . . , n + 1. (1.62)

Note that each αi,j,p is independent of the c’s.
Now, consider the function fy(x) := (y − x)p for fixed y ∈ R. By the Marsden

identity (1.45) we have

(y − x)p =
n∑

j=1

cjBj,p,ξ (x) =
n+1∑
i=1

c̃iBi,p,ξ̃
(x), x ∈ [ξp+1, ξn+1], y ∈ R,

where

cj = ψj,p,ξ (y) = (y − ξj+1) · · · (y − ξj+p),

and

c̃i = ψ
i,p,ξ̃

(y) = (y − ξ̃i+1) · · · (y − ξ̃i+p).

Hence, for the function fy(x), the identity (1.62) takes the form

ψ
i,p,ξ̃

(y) =
n∑

j=1

αi,j,pψj,p,ξ (y), i = 1, . . . , n + 1. (1.63)

From the relation (1.59) between the knot sequences ξ̃ and ξ , we deduce that
ψ

i,p,ξ̃
= ψi,p,ξ for i ≤ m − p, and ψ

i,p,ξ̃
= ψi−1,p,ξ for i > m, and using

the dual recurrence relation (1.11) that for m − p < i ≤ m,

ψ
i,p,ξ̃

(y) = (y − ξ)ψi,p−1,ξ (y) = ξ − ξi

ξi+p − ξi

ψi,p,ξ + ξi+p − ξ

ξi+p − ξi

ψi−1,p,ξ .

Then, (1.61) follows from (1.62) and (1.63). ��
When several knots have to be inserted simultaneously, alternative algorithms

can be used instead of repeating the single knot insertion procedure given in
Theorem 10. In Sect. 1.4.3 we provide such a simultaneous knot insertion algorithm
in case of uniform knot sequences. A more general (but also more complex) knot
insertion algorithm is known as the Oslo algorithm [11].
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• Convex Combination. From relation (1.61) we see that the coefficients c̃i are
a convex combination of the coefficients ci . In general, the coefficients obtained
after repeated knot insertion are a convex combination of the original coefficients.

• Evaluation.Repeated knot insertion gives rise to an evaluation process for spline
functions in B-spline form. Indeed, the evaluation of a spline s at the point x can
be achieved by the repeated insertion of x as a knot till it has multiplicity p.
Then, assuming that for some m,

ξm < x = ξm+1 = · · · = ξm+p < ξm+p+1,

we can conclude from (1.29) and (1.49) that

Bj,p,ξ (x) =
{
1, if j = m,

0, otherwise,

and

s(x) =
n∑

j=1

cjBj,p,ξ (x) = cmBm,p,ξ (x) = cm.

When comparing (1.61) with (1.39), we observe that single knot insertion is
nothing else than applying once the B-spline coefficient recurrence relation. This
evaluation procedure is a fast and numerically stable algorithm introduced by de
Boor [4].

1.3.6 Condition Number

A basis {Bj } of a normed space is said to be stable with respect to a vector norm if
there are positive constants KL and KU such that

K−1
L ‖c‖ ≤

∥∥∥∥∑
j

cjBj

∥∥∥∥ ≤ KU‖c‖, (1.64)

for all coefficient vectors c := (cj ). For simplicity we use the same symbol ‖ · ‖ for
the norm in the space and the vector norm. The number

κ := inf {KLKU : KLand KU satisfy (1.64)} (1.65)

is called the condition number of the basis {Bj } with respect to ‖ · ‖.
Such condition numbers give an upper bound for how much an error in

coefficients can be magnified in function values and vice versa. Indeed, if
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f := ∑
j cjBj �= 0 and g := ∑

j djBj then it follows immediately from (1.64)
that

1

κ

‖c − d‖
‖c‖ ≤ ‖f − g‖

‖f ‖ ≤ κ
‖c − d‖

‖c‖ ,

where c := (cj ) and d := (dj ). Many other applications are given in [5] and it is
interesting to have estimates for the size of κ .

We consider the Lq -norm for functions and the q-norm for vectors with 1 ≤ q ≤
∞. We focus on a scaled version of the B-spline basis defined on [ξ1, ξn+p+1],

{Nj,p,q,ξ }nj=1 := {γ −1/q
j,p,ξ

Bj,p,ξ }nj=1, (1.66)

where γj,p,ξ := (ξj+p+1 − ξj )/(p + 1); see also (1.30). The knot sequence ξ is
assumed to be (p + 1)-basic in order to have linearly independent B-splines. This
also ensures that γj,p,ξ > 0. The q-norm condition number of the basis in (1.66)
will be denoted by κp,q,ξ , i.e.,

κp,q,ξ := sup
c �=0

∥∥∑n
j=1 cj Nj,p,q,ξ

∥∥
Lq([ξ1,ξn+p+1])

‖c‖q

× sup
c �=0

‖c‖q∥∥∑n
j=1 cj Nj,p,q,ξ

∥∥
Lq([ξ1,ξn+p+1])

. (1.67)

The next theorem shows that the scaled B-spline basis above is stable in any Lq -
norm independently of the knot sequence ξ . It also provides an upper bound for the
q-norm condition number which does not depend on ξ . To this end, we first state
the Hölder inequality for sums:

n∑
j=1

|xj yj | ≤ ‖x‖q ‖y‖q ′ , (1.68)

where q, q ′ are integers so that

1

q
+ 1

q ′ = 1, 1 ≤ q ≤ ∞. (1.69)

In particular, q ′ = ∞ if q = 1 and q ′ = 2 if q = 2.

Theorem 11 For any p ≥ 0 there exists a positive constant Kp depending only on
p, such that for any vector c := (c1, . . . , cn) and for any 1 ≤ q ≤ ∞ we have

K−1
p ‖c‖q ≤

∥∥∥∥
n∑

j=1

cj Nj,p,q,ξ

∥∥∥∥
Lq([ξ1,ξn+p+1])

≤ ‖c‖q . (1.70)
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Proof We first prove the upper inequality. By using the nonnegative partition of
unity property of B-splines, the upper bound for q = ∞ is straightforward. For
q = 1, we have

∫ ξn+p+1

ξ1

∣∣∣∣
n∑

j=1

cj Nj,p,q,ξ (x)

∣∣∣∣ dx ≤
n∑

j=1

|cj | γ −1
j,p,ξ

∫ ξj+p+1

ξj

Bj,p,ξ (x) dx = ‖c‖1.

Finally, we consider 1 < q < ∞. By applying the Hölder inequality (1.68) and
again the nonnegative partition of unity property of B-splines, we obtain for x ∈
[ξ1, ξn+p+1],

∣∣∣∣
n∑

j=1

cj Nj,p,q,ξ (x)

∣∣∣∣ ≤
n∑

j=1

∣∣cj γ
−1/q
j,p,ξ

(
Bj,p,ξ (x)

)1/q ∣∣ ∣∣Bj,p,ξ (x)
∣∣1−1/q

≤
( n∑

j=1

|cj |q γ −1
j,p,ξ

Bj,p,ξ (x)

)1/q( n∑
j=1

Bj,p,ξ (x)

)1−1/q

≤
( n∑

j=1

|cj |q γ −1
j,p,ξ

Bj,p,ξ (x)

)1/q

.

Raising both sides of this inequality to the q-th power and integrating gives the
inequality

∫ ξn+p+1

ξ1

∣∣∣∣
n∑

j=1

cj Nj,p,q,ξ (x)

∣∣∣∣
q

dx ≤
n∑

j=1

|cj |q γ −1
j,p,ξ

∫ ξj+p+1

ξj

Bj,p,ξ (x) dx = ‖c‖q
q .

Taking the q-th roots on both sides proves the upper inequality in (1.70).
We now focus on the lower inequality. We extend ξ to a (p + 1)-open knot

sequence ξ̂ by possibly increasing the multiplicity of ξ1 and ξn+p+1 to p + 1.

Clearly, the set of B-splines on ξ is a subset of the set of B-splines on ξ̂ , and any
linear combination of the B-splines on ξ is a linear combination of the B-splines
on ξ̂ where the extra B-splines have coefficients zero. Therefore, without loss of
generality, we can assume that the knot sequence is open with the basic interval
[ξ1, ξn+p+1]. The lower bound then follows from Lemma 5; see Sect. 1.5.3.1. ��

Finally, we define a condition number that is independent of the knot sequence,

κp,q := sup
ξ

κp,q,ξ . (1.71)

Theorem 11 shows that

κp,q ≤ Kp < ∞.
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It is known that κp,q grows like 2p for all 1 ≤ q ≤ ∞; see [34, 40] where it has
been proved that

1

p + 1
2p−1/2 ≤ κp,q ≤ (p + 1)2p+1, 1 ≤ q ≤ ∞. (1.72)

1.4 Cardinal B-Splines

A particularly interesting case of B-spline functions is obtained when the knot
sequence is uniformly spaced. Without loss of generality, we can assume that the
knot sequence is given by the set of integers Z. It is natural to index the knots as
ξj = j , j ∈ Z. Due to the translation invariance property (1.9) we have

Bj,p,Z(x) = B0,p,Z(x − j), j ∈ Z, x ∈ R. (1.73)

Therefore, all the B-splines on the knot sequence Z are integer translates of a single
function. This motivates the following definition.

Definition 3 The function Mp := B[0, 1, . . . , p + 1] is the cardinal B-spline of
degree p.

Example 10 Figure 1.3 illustrates the cardinal B-splines Mp for p = 1, . . . , 5.

1.4.1 Main Properties

Cardinal B-splines possess several interesting features. Of course, they inherit all
the properties of general B-splines, and in particular the following ones.

Fig. 1.3 The cardinal B-splines Mp for p = 1, . . . , 5. The uniform knot positions are visualized
by vertical dotted lines
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• Local Support. From (1.6) it follows that the cardinal B-spline Mp is locally
supported on the interval [0, p + 1].

• Nonnegativity, Piecewise Structure and Smoothness. From (1.7), (1.8) and
(1.26) it follows that the cardinal B-spline Mp is a nonnegative, piecewise
polynomial of degree p belonging to the class Cp−1(R).

• Differentiation and Integration. The formulas (1.22) and (1.30) simplify in the
case of cardinal B-splines to

D+Mp(x) = Mp−1(x) − Mp−1(x − 1), p ≥ 1, (1.74)

and ∫
R

Mp(x) dx = 1. (1.75)

• Recurrence Relation. From Definition 2 we obtain the following recurrence
relation for cardinal B-splines,

M0(x) =
{
1, if x ∈ [0, 1),
0, otherwise,

(1.76)

Mp(x) = x

p
Mp−1(x) + p + 1 − x

p
Mp−1(x − 1), p ≥ 1. (1.77)

The uniformity of the knot sequence endows the cardinal B-splines with several
additional properties. A key feature is based on convolution.

• Convolution. The convolution of two functions f and g is defined by

(f ∗ g)(x) :=
∫
R

f (x − y)g(y) dy.

The cardinal B-spline Mp can be characterized using convolution by

Mp(x) = (Mp−1 ∗ M0)(x) =
∫ 1

0
Mp−1(x − y) dy, p ≥ 1, (1.78)

and

Mp(x) = ( p+1︷ ︸︸ ︷
M0 ∗ · · · ∗ M0

)
(x). (1.79)



32 T. Lyche et al.

Proof From (1.74) we deduce

Mp(x) =
∫ x

0
(Mp−1(y) − Mp−1(y − 1)) dy

=
∫ x

0
Mp−1(y) dy −

∫ x−1

−1
Mp−1(y) dy

=
∫ x

x−1
Mp−1(y) dy =

∫ 1

0
Mp−1(x − y) dy.

Applying recursively (1.78) immediately gives (1.79). ��
• Fourier Transform. The Fourier transform of a function f ∈ L2(R) is defined

by

f̂ (θ) :=
∫
R

f (x) e−i θx dx,

where i := √−1 denotes the imaginary unit. The Fourier transform of the
cardinal B-spline Mp is given by

M̂p(θ) =
(
1 − e−i θ

i θ

)p+1

. (1.80)

Proof From (1.76), a direct computation gives

M̂0(θ) = 1 − e−i θ

i θ
.

An interesting property of the Fourier transform of a convolution is

(f̂ ∗ g)(θ) = f̂ (θ)ĝ(θ), ∀f, g ∈ L2(R); (1.81)

see, e.g., [39]. Hence, by combining (1.81) with (1.79) we deduce that M̂p(θ) =(
M̂0(θ)

)p+1, which implies (1.80). ��
• Symmetry. The cardinal B-spline Mp is symmetric with respect to the midpoint

of its support, namely (p + 1)/2. More generally,

DrMp

(
p + 1

2
+ x

)
= (−1)r DrMp

(
p + 1

2
− x

)
, r = 0, . . . , p − 1,

(1.82)

and

D
p
−Mp

(
p + 1

2
+ x

)
= (−1)p D

p
+Mp

(
p + 1

2
− x

)
. (1.83)
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Proof It suffices to prove that Mp(p + 1 − x) = Mp(x). The general result
then follows from repeated differentiations. We proceed by induction. It is easy
to check that it is true for p = 0. Assuming the symmetry property holds for
degree p − 1 and using (1.78), we get

Mp(p + 1 − x) =
∫ 1

0
Mp−1(p + 1 − x − t) dt =

∫ 1

0
Mp−1(x − 1 + t) dt

= −
∫ 0

1
Mp−1(x − t) dt =

∫ 1

0
Mp−1(x − t) dt = Mp(x). ��

We now focus on the set of integer translates of the cardinal B-spline Mp, i.e.,{
Mp(· − j), j ∈ Z

}
. (1.84)

They have the following properties.

• Linear Independence. From (1.73) it follows that the integer translates
Mp(· − j), j ∈ Z, are (locally) linearly independent on R. They span the
space of piecewise polynomials of degree p and smoothness p − 1 with integer
break points; see (1.42).

• Partition of Unity. From (1.49) and (1.73) we get

∑
j∈Z

Mp(x − j) = 1, x ∈ R.

Due to the local support of cardinal B-splines, the above series reduces to a finite
sum for any x. More precisely, referring to (1.21), we have

m∑
j=m−p

Mp(x − j) = 1, x ∈ [m,m + 1).

• Greville Points. From (1.50)–(1.51) and (1.73) we have

x =
∑
j∈Z

ζ ∗
j,pMp(x − j), x ∈ R,

with

ζ ∗
j,p := (1 + j) + · · · + (p + j)

p
= p + 1

2
+ j. (1.85)
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1.4.2 Inner Products

Inner products of cardinal B-splines and their translates can be interpreted as
evaluations of higher-degree cardinal B-splines; similar results also hold for their
derivatives.5

Theorem 12 (Inner Product) Given p1, p2 ≥ 0, we have∫
R

Mp1(y)Mp2(y + x) dy = Mp1+p2+1(p1 + 1 + x) = Mp1+p2+1(p2 + 1 − x).

Proof From the symmetry property (1.82)–(1.83) and the convolution relation
(1.78) of cardinal B-splines, we get∫

R

Mp1(y)Mp2(y + x) dy =
∫
R

Mp1(y)Mp2(p2 + 1 − y − x) dy

= (
Mp1 ∗ Mp2

)
(p2 + 1 − x)

= ( p1+1︷ ︸︸ ︷
M0 ∗ · · · ∗ M0 ∗

p2+1︷ ︸︸ ︷
M0 ∗ · · · ∗ M0

)
(p2 + 1 − x)

= Mp1+p2+1(p2 + 1 − x).

Finally, again by symmetry of cardinal B-splines, we have

Mp1+p2+1(p1 + 1 + x) = Mp1+p2+1(p2 + 1 − x),

which completes the proof. ��
Theorem 13 (Inner Product of Derivatives) Given p1 ≥ r1 ≥ 0 and p2 ≥ r2 ≥
0, we have∫

R

D
r1+Mp1(y) D

r2+Mp2(y + x) dy = (−1)r1 Dr1+r2Mp1+p2+1(p1 + 1 + x)

= (−1)r2 Dr1+r2Mp1+p2+1(p2 + 1 − x).

Proof Because of the (anti-)symmetry of higher order derivatives of cardinal B-
splines given in (1.82), we have

(−1)r1 Dr1+r2Mp1+p2+1(p1 + 1 + x)

= (−1)r1 (−1)r1+r2 Dr1+r2Mp1+p2+1(p1 + p2 + 2 − (p1 + 1 + x))

= (−1)r2 Dr1+r2Mp1+p2+1(p2 + 1 − x).

5The inner product formula for cardinal B-splines traces back to [44]. The formula for derivatives
of cardinal B-splines can be found in [21] and a generalization for multivariate box splines in [48].
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So, we only have to show one of both equalities in the theorem. This can be proved
by induction on the order of derivatives. The base case (r1 = r2 = 0) simply follows
from Theorem 12. We consider two inductive steps: in the first inductive step we
increase the order of derivative of Mp1 by one, i.e., r1 → r1 + 1, and in the second
inductive step we increase the order of derivative ofMp2 by one, i.e., r2 → r2+1.

1. (r1 → r1 + 1). Using (1.74) and the induction hypothesis, we have

∫
R

D
r1+1
+ Mp1(y) D

r2+Mp2(y + x) dy

=
∫
R

(
D

r1+ Mp1−1(y) − D
r1+Mp1−1(y − 1)

)
D

r2+Mp2(y + x) dy

=
∫
R

D
r1+ Mp1−1(y)D

r2+Mp2(y + x) dy

−
∫
R

D
r1+ Mp1−1(y − 1)Dr2+Mp2(y + x) dy

= (−1)r1
(
Dr1+r2Mp1+p2(p1 + x) − Dr1+r2Mp1+p2(p1 + 1 + x)

)
= (−1)r1+1 Dr1+r2+1Mp1+p2+1(p1 + 1 + x).

2. (r2 → r2 + 1). This inductive step can be proved in a completely analogous way
as the first inductive step. ��
Due to the relevance of the set (1.84), the results in Theorems 12 and 13 are of

particular interest when we consider integer shifts, i.e., x ∈ Z. In this case, the above
inner products reduce to evaluations of cardinal B-splines and their derivatives at
either integer or half-integer points. Moreover, there is a relation with the Greville
points (1.85). Indeed, if p1 = p2 = p and x = i in Theorem 12, then

∫
R

Mp(x)Mp(x + i) dx = M2p+1(p + 1 + i) = M2p+1(ζ
∗
i,2p+1).

A similar relation holds for the inner products of derivatives in Theorem 13. Thanks
to the recurrence relation for derivatives (1.74), the inner products of derivatives
of cardinal B-splines and its integer translates reduce to evaluations of cardinal B-
splines at either integer or half-integer points.

1.4.3 Uniform Knot Insertion

In Sect. 1.3.5 we have seen how to insert a (single) knot into an existing knot
sequence without changing the shape of a given spline function defined on that
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knot sequence. For uniform knot sequences, we can provide a simple alternative
algorithm for inserting simultaneously a knot in each knot interval.

Let us consider the B-splines of degree p over the uniform knot sequence given
by Z/2. In this case, it is natural to index the knots as

ξi =
{

k, if i = 2k,

k + 1/2, if i = 2k + 1,
i ∈ Z.

From the definition we have Bi,p,Z/2(x) = Mp(2x − i) for i ∈ Z. Since Sp,Z ⊂
Sp,Z/2, the cardinal B-spline Mp is a refinable function, i.e., it can be written as a
linear combination of translated and dilated versions of itself:

Mp(x) =
p+1∑
i=0

αi,p Mp(2x − i). (1.86)

We are now looking for a relation between the coefficients of a given spline
function corresponding to knots in Z and the coefficients of the same function
corresponding to knots inZ/2. The following simultaneous knot insertion procedure
was introduced by Lane and Riesenfeld [32].

Theorem 14 (Uniform Knot Insertion) Consider the uniform knot sequences Z
and Z/2. Then,

s(x) =
∑
j∈Z

cj Mp(x − j) =
∑
i∈Z

c̃i Mp(2x − i), (1.87)

with c̃i = c̃
[p]
i defined recursively by

c̃
[p]
i := c̃

[p−1]
i + c̃

[p−1]
i−1

2
, (1.88)

starting from

c̃
[0]
i :=

{
cj , if i = 2j,

cj , if i = 2j + 1.
(1.89)

Proof For p = 0 we can directly check that

M0(x) = M0(2x) + M0(2x − 1),
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leading to (1.87) with (1.89). We proceed by induction on p. Assume the relation
(1.87) with (1.88) holds for cardinal B-splines of degree p − 1. Then, by using the
convolution property (1.78) we get

∑
j∈Z

cjMp(x − j) =
∫ 1

0

∑
j∈Z

cjMp−1(x − y − j) dy

=
∫ 1

0

∑
i∈Z

c̃
[p−1]
i Mp−1(2x − 2y − i) dy

=
∑
i∈Z

c̃
[p−1]
i

(∫ 1/2

0
Mp−1(2x − 2y − i) dy

+
∫ 1

1/2
Mp−1(2x − 2y − i) dy

)

=
∑
i∈Z

c̃
[p−1]
i

2

(
Mp(2x − i) + Mp(2x − i − 1)

)

=
∑
i∈Z

c̃
[p−1]
i + c̃

[p−1]
i−1

2
Mp(2x − i),

which concludes the proof. ��
The knot insertion procedure in Theorem 14 can be geometrically described

as follows. First, every coefficient is doubled. Second, a sequence of p sets of
coefficients is constructed by taking averages of the previous set of coefficients.

The coefficients {αi,p} in (1.86) can be directly computed from Theorem 14, and
we obtain the explicit expression

αi,p = 1

2p

(
p + 1

i

)
, i = 0, . . . , p + 1. (1.90)

They are called the subdivision mask of the (uniform) B-spline refinement scheme
of degree p.

1.5 Spline Approximation

In this section we discuss how well a sufficiently smooth function can be approx-
imated in the spline space spanned by a given set of B-splines. Exploiting the
properties of the B-spline basis presented in the previous sections, we explicitly
construct a spline which achieves optimal approximation accuracy for the function
and its derivatives, and we determine the corresponding error estimates. The
construction method we are going to present is local and linear.
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1.5.1 Preliminaries

Let I be a finite interval of the real line. A function f : I → R is a piecewise
continuous function on I if it is bounded and continuous except at a finite number
of points, where the value is obtained by taking the limit either from the left or the
right. We denote the space of these functions by C−1(I).

For r ∈ N0 and 1 ≤ q ≤ ∞ the one-dimensional Sobolev spaces are defined by

Wr
q (I) := {

f : I → R : Djf ∈ Lq(I), j = 0, . . . , r
}
. (1.91)

They are normed spaces with norm

‖f ‖2Wr
q (I ) :=

r∑
j=0

‖Dj f ‖2Lq(I ), (1.92)

called Sobolev norm. It can be shown that for r ∈ N and 1 < q < ∞,

Cr(I) ⊂ Wr∞(I) ⊂ Wr
q (I) ⊂ Wr

1 (I) ⊂ Cr−1(I). (1.93)

The Hölder inequality for integrals is given by∫ b

a

|f (x)g(x)| dx ≤ ‖f ‖Lq(I )‖g‖Lq′ (I ), (1.94)

where I := [a, b] and q, q ′ are integers satisfying (1.69).
TheTaylor polynomial of degreep at the point a to a function f ∈W

p+1
1 ([a, b])

is defined by

Ta,pf (x) :=
p∑

j=0

(x − a)j

j ! Djf (a), (1.95)

and its approximation error can be expressed in integral form for x ∈ [a, b] as

f (x) − Ta,pf (x) = 1

p!
∫ b

a

(x − y)
p
+Dp+1f (y) dy. (1.96)

Every polynomial g ∈ Pp can be written in Taylor form as g = Ta,pg.

Theorem 15 (Taylor Interpolation Error) Let f ∈ W
p+1
q ([a, b]) with 1 ≤ q ≤

∞, and let Ta,pf be the Taylor polynomial of degree p to f at the point a. Then,
for any x ∈ [a, b] and 0 ≤ r ≤ p,

|Dr(f − Ta,pf )(x)| ≤ (b − a)p+1−r−1/q

(p − r)! ‖Dp+1f ‖Lq([a,b]), (1.97)
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and

‖Dr(f − Ta,pf )‖Lq([a,b]) ≤ (b − a)p+1−r

(p − r)! ‖Dp+1f ‖Lq([a,b]). (1.98)

Proof By differentiating the integral form of the Taylor approximation error (1.96)
and using the Hölder inequality (1.94), we obtain

|Dr(f − Ta,pf )(x)| = 1

(p − r)!
∫ b

a

(x − y)
p−r
+ Dp+1f (y) dy

≤ 1

(p − r)!
[∫ b

a

(x − y)
(p−r)q ′
+ dy

]1/q ′

‖Dp+1f ‖Lq([a,b])

≤ (b − a)p−r+1/q ′

(p − r)! ((p − r)q ′ + 1)1/q ′ ‖Dp+1f ‖Lq([a,b]).

Since 1/q + 1/q ′ = 1 and (p − r)q ′ ≥ 0, we obtain (1.97). Finally, taking the
Lq -norm shows (1.98). ��

For the sake of simplicity one can use the following weaker, but simpler upper
bound,

‖Dr(f − Ta,pf )‖Lq([a,b]) ≤ (b − a)p+1−r‖Dp+1f ‖Lq([a,b]). (1.99)

1.5.2 Spline Quasi-Interpolation

In general, a spline approximating a function f can be written in terms of B-splines
as

Qf (x) :=
n∑

j=1

λj (f )Bj,p,ξ (x) (1.100)

for suitable coefficients λj (f ). The spline in (1.100) will be referred to as a quasi-
interpolant to f whenever it provides a “reasonable” approximation to f .

Both interpolation and least squares are examples of quasi-interpolationmethods.
They are global methods since we have to solve an n by n system of linear equations
to find their coefficients λj (f ). It follows that the value of the spline (1.100) at a
point depends on all the data.

In this section we focus on local linear methods, i.e., methods where each λj

is a linear functional only depending on the values of f in the support of Bj,p,ξ .
In principle, it suffices to be “near” the support of Bj,p,ξ , but we want to keep the
presentation as simple as possible. In order to deal with point evaluator functionals
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we assume here that f ∈ C−1([a, b]), where [a, b] is a bounded interval. We
consider a spline space Sp,ξ , where the knot sequence ξ is (p + 1)-basic and the
basic interval [ξp+1, ξn+1] is equal to [a, b].

With the aim of constructing a spline quasi-interpolant with optimal accuracy, we
need to introduce some basic approximation properties of quasi-interpolants of the
form (1.100). Since we are interested in local methods, we start with the following
definition.

Definition 4 We say that a linear functional λ : C−1([a, b]) → R is supported on
a nonempty set S ⊂ [a, b] if λ(f ) = 0 for any f ∈ C−1([a, b]) which vanishes
onS .

Note that the setS in this definition is not uniquely defined and is not necessary
minimal.

To construct our quasi-interpolant, we first require linear functionals that are
supported on intervals consisting of a few knot intervals. This will ensure that
Qf only depends locally on f . To ensure a good approximation power, we also
require polynomial reproduction up to a given degree. Finally, to bound the error,
a boundedness assumption on the linear functionals is needed. This leads to the
following definitions.

Definition 5 The quasi-interpolant Q given by (1.100) is called a local quasi-
interpolant if

(i) each λj is supported on the interval Ij , where

Ij := [ξj , ξj+p+1] ∩ [a, b], (1.101)

such that Ij has nonempty interior;
(ii) the λj are chosen so that (1.100) reproduces Pl , i.e.,

Qg(x) = g(x) for all x ∈ [a, b] and all g ∈ Pl, (1.102)

for some l with 0 ≤ l ≤ p.

Definition 6 A local quasi-interpolant Q is called bounded in an Lq -norm, 1 ≤
q ≤ ∞, if there is a constant CQ such that for each λj we have

|λj (f )| ≤ CQh
−1/q
j,p,ξ

‖f ‖Lq(Ij ) for all f ∈ C−1(Ij ), (1.103)

where

hj,p,ξ := max
max(j,p+1)≤k≤min(j+p,n)

ξk+1 − ξk. (1.104)

Note that hj,p,ξ is the largest length of a knot interval in the intersection of the
basic interval with the support of Bj,p,ξ . The requirement (1.101) ensures that the
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spline in (1.100) provides a local approximation to f . The polynomial reproduction
as stated in (1.102) coupled with the boundedness of the linear functionals are the
main ingredients to prove the approximation power of any bounded local quasi-
interpolant.

We now give both a local and a global version of the approximation power of
bounded local quasi-interpolants. To turn a local bound into a global bound we first
state the following lemma.

Lemma 1 Suppose that f ∈ Lq([ξp+1, ξn+1]) for some q , 1 ≤ q < ∞, and that
mi1, . . . ,mi2 are integers with mi1 < · · · < mi2 , ξp+1 ≤ ξmi1

and ξmi2+k ≤ ξn+1
for some positive integer k and integers i1 ≤ i2. Then,

( i2∑
j=i1

‖f ‖q

Lq([ξmj
,ξmj +k])

)1/q

≤ k1/q‖f ‖Lq([ξp+1,ξn+1]). (1.105)

Proof Under the stated assumptions, each knot interval in [ξp+1, ξn+1] is counted
at most k times and moreover all the local intervals [ξmj , ξmj +k] are contained in
[ξp+1, ξn+1]. The definition of the Lq -norm gives immediately (1.105). ��
Theorem 16 (Quasi-Interpolation Error) Let Q be a bounded local quasi-
interpolant in an Lq -norm, 1 ≤ q ≤ ∞, as in Definitions 5 and 6. Let l, p be
integers with 0 ≤ l ≤ p. Suppose ξm < ξm+1 for some p + 1 ≤ m ≤ n, and let
f ∈ Wl+1

q (Jm) with

Jm := [ξm−p, ξm+p+1] ∩ [a, b].
Then,

‖f − Qf ‖Lq([ξm,ξm+1]) ≤ (2p + 1)l+1

l! (1 + CQ)hl+1
m,ξ

‖Dl+1f ‖Lq(Jm), (1.106)

where hm,ξ is the largest length of a knot interval in Jm. Moreover, if f ∈
Wl+1

q ([a, b]) then

‖f −Qf ‖Lq([a,b]) ≤ (2p + 1)l+1+1/q

l! (1+CQ)hl+1
ξ

‖Dl+1f ‖Lq([a,b]), (1.107)

where

hξ := max
p+1≤j≤n

ξj+1 − ξj .

Proof Note that f is continuous since l ≥ 0. Suppose x ∈ [ξm, ξm+1). By the local
partition of unity (1.21) and by (1.103) we have

|Qf (x)| ≤ max
m−p≤j≤m

|λj (f )| ≤ CQ max
m−p≤j≤m

h
−1/q
j,p,ξ

‖f ‖Lq(Ij ).
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Since ξm+1 − ξm ≤ minm−p≤j≤m hj,p,ξ and Jm = ∪m−p≤j≤mIj we find

‖Qf ‖Lq([ξm,ξm+1]) ≤ CQ‖f ‖Lq(Jm). (1.108)

From (1.102)we know thatQ reproduces any polynomial g ∈ Pl , and so the triangle
inequality gives

‖f − Qf ‖Lq([ξm,ξm+1]) ≤ ‖f − g‖Lq([ξm,ξm+1]) + ‖Q(f − g)‖Lq([ξm,ξm+1]).

Since [ξm, ξm+1] ⊂ Jm and by (1.108) for any g ∈ Pl , we have

‖f − Qf ‖Lq([ξm,ξm+1]) ≤ (1 + CQ)‖f − g‖Lq(Jm). (1.109)

Let am := max(ξm−p, a), and choose g := Tam,lf , where Tam,lf is the Taylor
polynomial of degree l defined in (1.95) with a = am. Then, by (1.98) with r = 0
we have

‖f − g‖Lq(Jm) ≤ (2p + 1)l+1

l! hl+1
m,ξ

‖Dl+1f ‖Lq(Jm). (1.110)

Combining the inequalities (1.109) and (1.110) gives the local bound.
Since each Jm is contained in the basic interval [a, b] the global bound follows

immediately from the local one and Lemma 1. ��
Example 11 Let ξ be a (p + 1)-open knot sequence for p ≥ 1, and consider the
operator

Vp,ξf (x) :=
n∑

j=1

f (ξ∗
j,p,ξ )Bj,p,ξ (x), (1.111)

where ξ∗
j,p,ξ

is the j -th Greville point of degreep; see (1.51). This operator is known
as the Schoenberg operator, and was introduced in [43, Section 10]. It is a bounded
local quasi-interpolant in the L∞-norm with l = 1 and CQ = 1. Note that ξ∗

j,p,ξ

belongs to [ξj+1, ξj+p]. Therefore, Theorem 16 implies for any f ∈ W 2∞([a, b]),

‖f − Vp,ξf ‖L∞([a,b]) ≤ 2(2p + 1)2h2ξ‖D2f ‖L∞([a,b]). (1.112)

The next proposition can be used to find the degree l of polynomials reproduced
by a linear quasi-interpolant.

Proposition 4 Let

{ϕj,0, . . . , ϕj,l}, j = 1, . . . , n, 0 ≤ l ≤ p (1.113)
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be n sets of basis functions for Pl , and let

ϕj,i =
n∑

k=1

cj,i,kBk,p,ξ (1.114)

be their B-spline representations. The linear quasi-interpolant (1.100) reproduces
Pl provided the corresponding linear functionals satisfy

λj (ϕj,i ) = cj,i,j , j = 1, . . . , n, i = 0, . . . , l. (1.115)

Proof On the basic interval, any g ∈ Pl can be written both in terms of the ϕ’s and
the B-splines, say

g =
l∑

i=0

bj,iϕj,i =
n∑

k=1

bkBk,p,ξ , j = 1, . . . , n. (1.116)

By (1.114) and (1.116) for j = 1, . . . , n,

g =
l∑

i=0

bj,i

( n∑
k=1

cj,i,kBk,p,ξ

)
=

n∑
k=1

( l∑
i=0

bj,icj,i,k

)
Bk,p,ξ =

n∑
k=1

bkBk,p,ξ .

By linear independence of the B-splines and choosing j = k we obtain

bk =
l∑

i=0

bk,ick,i,k. (1.117)

Similarly, forQg using (1.116) with j = k,

Qg :=
n∑

k=1

λk(g)Bk,p,ξ =
n∑

k=1

λk

( l∑
i=0

bk,iϕk,i

)
Bk,p,ξ .

From the linearity of λk and (1.115), (1.117) and finally (1.116) again we obtain

Qg =
n∑

k=1

l∑
i=0

bk,iλk(ϕk,i)Bk,p,ξ =
n∑

k=1

l∑
i=0

bk,ick,i,kBk,p,ξ =
n∑

k=1

bkBk,p,ξ = g.

��
The next proposition gives a sufficient condition for a quasi-interpolant to

reproduce the whole spline space, i.e., to be a projector onto Sp,ξ .

Proposition 5 The linear quasi-interpolant (1.100) reproduces the whole spline
space, i.e.,

Qs(x) = s(x), s ∈ Sp,ξ , x ∈ [ξp+1, ξn+1], (1.118)



44 T. Lyche et al.

ifQ reproduces Pp and each linear functional λj is supported on one knot interval6

[ξ+
mj

, ξ−
mj +1] ⊂ [ξj , ξj+p+1], with ξmj < ξmj +1. (1.119)

Proof Let j with 1 ≤ j ≤ n be fixed. By the linearity it suffices to prove that

λj (Bi,p,ξ ) = δi,j , i = 1, . . . , n,

where δi,j stands for the classical Kronecker delta. On the interval [ξ+
mj

, ξ−
mj +1] the

local support property implies that λj (Bi,p,ξ ) = 0 for i /∈ {mj − p, . . . ,mj }. This
follows because we use the left limit at ξmj +1 if necessary. Since Bi,p,ξ ∈ Pp on
this interval, we have

Bi,p,ξ (x) = Q(Bi,p,ξ )(x) =
mj∑

k=mj −p

λk(Bi,p,ξ )Bk,p,ξ (x), x ∈ [ξmj , ξmj +1),

and by local linear independence of the B-splines we obtain λk(Bi,p,ξ ) = δi,k for
k = mj − p, . . . ,mj . In particular, it holds for k = j since the condition (1.119)
implies that mj − p ≤ j ≤ mj . ��
Example 12 Let p = 2, and let ξ be a 3-open knot sequence with at most double
knots in the interior. We consider the operator

Q2,ξf (x) :=
n∑

j=1

(
a2,0f (ξj+1) + a2,1f (ξ∗

j,2,ξ ) + a2,2f (ξj+2)
)
Bj,2,ξ (x),

where ξ∗
j,2,ξ = (ξj+1 + ξj+2)/2 is the j -th Greville point of degree 2. It can be

checked (see also Example 9) that if we choose a2,0 = a2,2 = −1/2 and a2,1 = 2
thenQ2,ξ reproduces P2, i.e., l = 2. Proposition 5 says that it is even a projector on
the spline space S2,ξ . Moreover,

∣∣∣−1

2
f (ξj+1) + 2f (ξ∗

j,2,ξ ) − 1

2
f (ξj+2)

∣∣∣ ≤ 3‖f ‖L∞([ξj ,ξj+3]).

It follows thatQ2,ξ is a bounded local quasi-interpolant in the L∞-norm with l = 2
and CQ = 3. In this case, Theorem 16 implies for any f ∈ W 3∞([a, b]),

‖f − Q2,ξf ‖L∞([a,b]) ≤ 4
53

2! h
3
ξ‖D3f ‖L∞([a,b]),

showing that the error is O(h3
ξ
).

6This notation means that if λj (f ) uses the value of f or one of its derivatives at ξmj
(or ξmj +1)

then this value is obtained by taking the one sided limit from the right (or the left).
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1.5.3 Approximation Power of Splines

In this section we want to understand how well a function can be approximated by
a spline. In order words, we want to investigate the distance between a general
function f and the piecewise polynomial space S

r
p(Δ) defined in (1.42). From

Theorem 6 we know that Sr
p(Δ) = Sp,ξ for a suitable choice of the knot sequence

ξ := {ξi}n+p+1
i=1 . In particular, ξ can be chosen to be (p+1)-open. Therefore, without

loss of generality, we consider the distance between a general function f and the
spline space Sp,ξ of degree p over the (p + 1)-open knot sequence ξ . For a given
f ∈ Lq([ξp+1, ξn+1]) with 1 ≤ q ≤ ∞, we define

distq(f,Sp,ξ ) := inf
s∈Sp,ξ

‖f − s‖Lq([ξp+1,ξn+1]). (1.120)

We are also interested in estimates for the distance between derivatives of f and
derivative spline spaces. To this end, in this section we use the simplified notation
Drs := Dr+s for the derivatives of a spline s ∈ Sp,ξ with the usual convention
of left continuity at the right endpoint of the basic interval. Note that with such a
notationwe ensure thatDrs(x) exists for all x. In the same spirit, we use the notation
Dr

Sp,ξ := Dr+Sp,ξ for the r-th derivative spline space. We recall from Sect. 1.3.2
that this derivative space is a piecewise polynomial space of degree p − r with a
certain smoothness, i.e.,

S
r−r
p−r (Δ) = Dr

Sp,ξ ,

where the partition Δ consists of the distinct break points in the knot sequence ξ and
the smoothness r is related to the multiplicity of the knots, according to the rule in
(1.35). This leads to the following more general definition of distance. For a given
f ∈ Wr

q ([ξp+1, ξn+1]) with 1 ≤ q ≤ ∞ and 0 ≤ r ≤ p, we define

distq(Drf,Dr
Sp,ξ ) := inf

s∈Sp,ξ

‖Dr(f − s)‖Lq([ξp+1,ξn+1]). (1.121)

We will derive the following upper bound for distq(Drf,Dr
Sp,ξ ).

Theorem 17 (Distance to a Function) For any 0 ≤ r ≤ l ≤ p and f ∈
Wl+1

q ([ξp+1, ξn+1]) with 1 ≤ q ≤ ∞ we have

distq(Drf,Dr
Sp,ξ ) ≤ K(hξ )

l+1−r‖Dl+1f ‖Lq([ξp+1,ξn+1]),

where hξ := maxp+1≤j≤n(ξj+1 − ξj ) and K is a constant depending only on p.

The distance result will be shown by explicitly constructing a suitable spline
quasi-interpolant which achieves this order of approximation; see Theorem 18. For
sufficiently smooth f , the upper bound behaves like (hξ )

p+1−r .
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1.5.3.1 A Spline Quasi-Interpolant

Given an integer p ≥ 0 and a (p + 1)-open knot sequence ξ , we define a specific
spline approximant of degree p over ξ to a given function f . Let [ξmj,p , ξmj,p+1] be
a knot interval of largest length in [ξj , ξj+p+1] for any j = 1, . . . , n and hj,p,ξ :=
ξmj,p+1 − ξmj,p > 0. The spline approximant to f is constructed as

Qp,ξf (x) :=
n∑

j=1

Lj,p,ξ (f )Bj,p,ξ (x), (1.122)

where

Lj,p,ξ (f ) := 1

hj,p,ξ

∫ ξmj,p+1

ξmj,p

( p∑
i=0

aj,i

(
x − ξmj,p

hj,p,ξ

)i)
f (x) dx, (1.123)

and the coefficients aj,i , i = 0, . . . , p are such that

Lj,p,ξ

((
x − ξmj,p

hj,p,ξ

)i)
= cj,i,j , i = 0, . . . , p, (1.124)

where

(
x − ξmj,p

hj,p,ξ

)i

=
mj,p∑

k=mj,p−p

cj,i,kBk,p,ξ (x), x ∈ [ξmj,p , ξmj,p+1), i = 0, . . . , p.

(1.125)

In the next lemmas we collect some properties for the spline approximation
(1.122).

Lemma 2 The above spline approximation is well defined and reproduces polyno-
mials, i.e., for any polynomial g ∈ Pp we have

Qp,ξg(x) = g(x), x ∈ [ξp+1, ξn+1]. (1.126)

Moreover, it is a projector onto the spline space Sp,ξ , i.e., for any spline s ∈ Sp,ξ

we have

Qp,ξ s(x) = s(x), x ∈ [ξp+1, ξn+1], (1.127)

and, in particular,

s(x) =
n∑

j=1

Lj,p,ξ (s)Bj,p,ξ (x), x ∈ [ξp+1, ξn+1]. (1.128)
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Proof By applying Lj,p,ξ to the polynomials
(

x−ξmj,p

hj,p,ξ

)r

, r = 0, . . . , p, the

coefficients aj,i are given by the solution of the linear system

Hp+1aj = cj , (1.129)

where aj := (aj,0, . . . , aj,p)T , cj := (cj,0,j , . . . , cj,p,j )
T , and Hp+1 is a (p+1)×

(p + 1) matrix with elements

(Hp+1)i+1,r+1 := 1

hj,p,ξ

∫ ξmj,p+1

ξmj,p

(
x − ξmj,p

hj,p,ξ

)r+i

dx = 1

i + r + 1
,

for i, r = 0, . . . , p. This is the well-known Hilbert matrix which is nonsingular and
it follows that the spline approximation (1.122) is well defined. From Proposition 4
we deduce that (1.126) holds.

Since we only integrate over one subinterval when we defineLj,p,ξ , we conclude
that it reproduces not only polynomials but also splines, and (1.127) follows from
Proposition 5. ��
Lemma 3 For p ≥ 0 and 1 ≤ q ≤ ∞ we have for any f ∈ Lq([ξmj,p , ξmj,p+1]),

|Lj,p,ξ (f )| ≤ Ch
−1/q
j,p,ξ

‖f ‖Lq([ξmj,p
,ξmj,p+1]), j = 1, . . . , n, (1.130)

where C is a constant depending only on p.

Proof By (1.20), (1.10) and (1.13) we have

|cj,i,j | = i!
p!
∣∣∣∣D

p−iψj,p,ξ (ξmj,p )

hi
j,p,ξ

∣∣∣∣ ≤
(

ξj+p+1 − ξj

hj,p,ξ

)i

≤ (p+1)i, i = 0, . . . , p.

Here we used that [ξmj,p , ξmj,p+1] is a knot interval of largest length in [ξj , ξj+p+1].
Since 0 ≤ x−ξmj,p

hj,p,ξ
≤ 1 for x ∈ [ξmj,p , ξmj,p+1], we get from (1.123),

|Lj,p,ξ (f )| ≤ (p + 1)h−1
j,p,ξ

‖aj‖∞ ‖f ‖L1([ξmj,p
,ξmj,p+1])

≤ (p + 1)h−1
j,p,ξ

‖H−1
p+1‖∞‖cj‖∞‖f ‖L1([ξmj,p

,ξmj,p+1]).

This gives |Lj,p,ξ (f )| ≤ Ch−1
j,p,ξ

‖f ‖L1([ξmj,p
,ξmj,p+1]), where C := ‖H−1

p+1‖∞(p +
1)p+1 only depends on p. By the Hölder inequality (1.94) we arrive at (1.130). ��
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We now give a bound for the derivative of Qp,ξf . To this end, we recall from
(1.25) that

Δm,k := min
m−k+1≤i≤m

hi,k, hi,k := ξi+k − ξi , k = 1, . . . , p,

and that Δm,k > 0 for all k if ξm < ξm+1.

Lemma 4 Suppose ξm < ξm+1 for some p + 1 ≤ m ≤ n, and let f ∈
Lq([ξm−p, ξm+p+1]) with 1 ≤ q ≤ ∞. Then, we have for 0 ≤ r ≤ p,

‖Dr(Qp,ξf )‖Lq([ξm,ξm+1]) ≤ C

( p∏
k=p−r+1

1

Δm,k

)
‖f ‖Lq([ξm−p,ξm+p+1]), (1.131)

where Δm,k is defined in (1.25) and C is a constant depending only on p.

Proof From the quasi-interpolant definition (1.122), the local support property
(1.36) and Lemma 3, we have for x ∈ [ξm, ξm+1),

|Dr(Qp,ξf )(x)| =
∣∣∣∣

m∑
j=m−p

Lj,p,ξ (f )DrBj,p,ξ (x)

∣∣∣∣
≤ max

m−p≤j≤m
|DrBj,p,ξ (x)|

m∑
j=m−p

|Lj,p,ξ (f )|

≤ (p + 1) max
m−p≤j≤m

|DrBj,p,ξ (x)|

× max
m−p≤j≤m

h
−1/q
j,p,ξ

‖f ‖Lq([ξm−p,ξm+p+1]).

Note that [ξm, ξm+1] ⊂ [ξj , ξj+p+1] for j = m − p, . . . ,m. Since hj,p,ξ is the
length of the largest knot interval in [ξj , ξj+p+1], we have ξm+1 − ξm ≤ hj,p,ξ

for j = m − p, . . . ,m. Replacing |DrBj,p,ξ (x)| by the upper bound given in
Proposition 2 and taking the Lq -norm results in (1.131). ��

The next lemma will complete the proof of Theorem 11 related to the condition
number. Note that [ξp+1, ξn+1] = [ξ1, ξn+p+1] because the knot sequence ξ is open.

Lemma 5 For any p ≥ 0, there exists a positive constant Kp depending only on p,
such that for any vector c := (c1, . . . , cn) and for any 1 ≤ q ≤ ∞ we have

‖c‖q ≤ Kp

∥∥∥∥
n∑

j=1

cj Nj,p,q,ξ

∥∥∥∥
Lq([ξp+1,ξn+1 ])

, (1.132)

where Nj,p,q,ξ := γ
−1/q
j,p,ξ

Bj,p,ξ and γj,p,ξ := (ξj+p+1 − ξj )/(p + 1).
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Proof Let s := ∑n
j=1 γ

−1/q
j,p,ξ

cjBj,p,ξ . Observe that (1.128) and (1.130) imply

|γ −1/q
j,p,ξ

cj | = |Lj,p,ξ (s)| ≤ Ch
−1/q
j,p,ξ

‖s‖Lq([ξmj,p
,ξmj,p+1]).

Since γj,p,ξ/hj,p,ξ ≤ 1 we obtain

|cj | ≤ C‖s‖Lq([ξmj,p
,ξmj,p+1]) ≤ C‖s‖Lq([ξj ,ξj+p+1]).

Raising both sides to the q-th power and summing over j gives

n∑
j=1

|cj |q ≤ Cq
n∑

j=1

∫ ξj+p+1

ξj

|s(x)|q dx ≤ (p + 1)Cq‖s‖q

Lq([ξp+1,ξn+1]).

When taking the q-th roots on both sides, we arrive at the inequality in (1.132) with
Kp := (p + 1)C ≥ (p + 1)1/qC, which only depends on p. ��

1.5.3.2 Distance to a Function

The quasi-interpolantQp,ξf described in the previous section can be used to obtain
an upper bound for the distance between a given function f and the spline space
Sp,ξ for p ≥ 0, n > p + 1 and ξ := {ξj }n+p+1

j=1 ; see Theorem 18. We recall that the
knot sequence ξ is (p + 1)-open. We start by giving a local and global upper bound
for (the derivatives of) the difference between f andQp,ξf .

Proposition 6 Suppose ξm < ξm+1 for some p + 1 ≤ m ≤ n, and let f ∈
Wl+1

q ([ξm−p, ξm+p+1]) with 0 ≤ l ≤ p and 1 ≤ q ≤ ∞. If Qp,ξf is defined
as in (1.122), then we have for any 0 ≤ r ≤ l,

‖Dr(f −Qp,ξf )‖Lq ([ξm,ξm+1]) ≤ Km(ξm+p+1−ξm−p)l+1−r‖Dl+1f ‖Lq([ξm−p,ξm+p+1]).

Here,

Km := 1 + C

p∏
k=p−r+1

ξm+p+1 − ξm−p

Δm,k

,

Δm,k is defined in (1.25) and C is a constant depending only on p.

Proof From Lemma 2 we know thatQp,ξ reproduces any polynomial in Pl , and so
the triangle inequality gives

‖Dr(f − Qp,ξf )‖Lq([ξm,ξm+1])

≤ ‖Dr(f − g)‖Lq([ξm,ξm+1]) + ‖DrQp,ξ (f − g)‖Lq([ξm,ξm+1]),
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for any g ∈ Pl . Let us now set g := Tξm,lf , where Tξm,lf is the Taylor polynomial
of degree l defined in (1.95) with a = ξm, b = ξm+1. Then, Eq. (1.99) implies

‖Dr(f − g)‖Lq([ξm,ξm+1]) ≤ (ξm+1 − ξm)l+1−r‖Dl+1f ‖Lq([ξm,ξm+1]).

On the other hand, since f − g ∈ Lq([ξm−p, ξm+p+1]), it follows from Lemma 4
that

‖DrQp,ξ (f − g)‖Lq([ξm,ξm+1]) ≤ C

( p∏
k=p−r+1

1

Δm,k

)
‖f − g‖Lq([ξm−p,ξm+p+1]),

where C is a constant depending only on p. Combining the above three inequalities
gives the result. ��

We know that the ratio
ξm+p+1−ξm−p

Δm,k
is well defined because Δm,k > 0. For a

uniform knot sequence

ξm+p+1 − ξm−p

Δm,k

= 2p + 1

k
.

For a general knot sequence it is related to the “local mesh ratio”, i.e., the ratio
between the lengths of the largest and smallest knot intervals in a neighborhood of
ξm.

The local error bound in Proposition 6 can be turned into a global one as in the
following proposition.

Proposition 7 Let f ∈ Wl+1
q ([ξp+1, ξn+1]) with 0 ≤ l ≤ p and 1 ≤ q ≤ ∞. If

Qp,ξf is defined as in (1.122) then, for any 0 ≤ r ≤ l,

‖Dr(f − Qp,ξf )‖Lq([ξp+1,ξn+1]) ≤ Khl+1−r
ξ

‖Dl+1f ‖Lq([ξp+1,ξn+1]), (1.133)

where hξ := maxp+1≤j≤n(ξj+1 − ξj ), and

K := (2p + 1)l+2−r

[
1 + C max

p+1≤m≤n

p∏
k=p−r+1

ξm+p+1 − ξm−p

Δm,k

]
,

where Δm,k is defined in (1.25) and C is a constant depending only on p.

Proof For q = ∞ the result follows immediately from Proposition 6 by taking into
account that ξ is (p + 1)-open. We now assume 1 ≤ q < ∞. Since

max
p+1≤m≤n

(ξm+p+1 − ξm−p) ≤ (2p + 1)hξ ,

the result follows from Lemma 1 and the local error bound in Proposition 6. ��



1 Foundations of Spline Theory 51

The expression K in the upper bound in Proposition 7 depends on the position of
the knots for r > 0. However, for any knot sequence ξ , it is possible to construct a
coarser knot sequence ξ � such that the correspondingK only depends onp. This can
be obtained by a clever thinning process. The idea of thinning out a knot sequence
to get a quasi-uniform sequence is credited to [47]; see [45, Section 6.4] for details.
Since ξ� is a subsequence of ξ , we have that Sp,ξ � is a subspace of Sp,ξ . In particular,
for any f ∈ Lq([ξp+1, ξn+1]) the spline approximation

sp := Qp,ξ �f

as defined in (1.122) belongs to the spline space Sp,ξ . This spline quasi-interpolant
leads to the following important result.

Theorem 18 (Approximation Error) Let f ∈ Wl+1
q ([ξp+1, ξn+1]) with 1 ≤ q ≤

∞ and 0 ≤ l ≤ p. Then, there exists sp ∈ Sp,ξ such that

‖Dr(f − sp)‖Lq([ξp+1,ξn+1]) ≤ Khl+1−r
ξ

‖Dl+1f ‖Lq([ξp+1,ξn+1]), 0 ≤ r ≤ l,

(1.134)

where hξ := maxp+1≤j≤n(ξj+1 − ξj ) and K is a constant depending only on p.

The constant K in Theorem 18 grows exponentially with p. However, this
dependency on p can be removed in some cases; see [1, Theorem 2] and [52,
Theorem 7] for details. Theorem 18 immediately leads to the distance result in
Theorem 17.

1.6 Hierarchical Splines and the Truncation Mechanism

The hierarchical spline model is a simple strategy to mix locally spline spaces of
different resolution (different mesh size and/or different degree). Hierarchical spline
representations are defined in terms of a sequence of nested B-spline bases and a
hierarchy of locally refined domains. In this section we define such hierarchical
splines and focus on a set of basis functions with properties similar to B-splines.

1.6.1 Hierarchical B-Splines

Let I be a closed interval of the real line, and consider a sequence of strictly nested
spline spaces defined on I , say

Sp1,ξ1
⊂ Sp2,ξ2

⊂ · · · ⊂ SpL,ξL
. (1.135)
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We assume that each knot sequence involved in (1.135),

ξ� := {ξ1,� ≤ ξ2,� ≤ · · · ≤ ξn�+p�+1,�}, � = 1, . . . , L,

is (p + 1)-basic with basic interval I . Nestedness of the spaces is ensured if and
only if

0 ≤ p�+1−p� ≤ μξ�+1
(ξ)−μξ�

(ξ), ξ ∈ ξ � ∩I, � = 1, . . . , L−1. (1.136)

Note that (1.136) implies that (ξ� ∩ I) ⊆ (ξ �+1 ∩ I). The assumption of dealing
with (p + 1)-basic knot sequences ensures that the corresponding n� B-splines are
linearly independent on I . We denote the B-spline basis of the space Sp�,ξ�

by

B� := {Bj,� := Bj,p�,ξ�
, j = 1, . . . , n�}. (1.137)

Next, consider a sequence of nested, closed subsets of I ,

I ⊇ Ω1 ⊇ Ω2 ⊇ · · · ⊇ ΩL, (1.138)

whereΩ� is the union of some closed knot intervals related to the knot sequence ξ �.
Note that each Ω� may consist of disjoint intervals. We assume that each connected
component of Ω1 has nonempty interior. The collection of those subsets in (1.138)
is denoted by

Ω := {Ω1,Ω2, . . . ,ΩL}, (1.139)

and will be simply referred to as the domain hierarchy in I . We also setΩL+1 := ∅.
Finally, for a given function f on I , we define its support on Ω as

suppΩ (f ) := supp(f ) ∩ Ω1.

Given a sequence of spline spaces and bases as in (1.135)–(1.137) and a domain
hierarchy as in (1.138)–(1.139), we construct the corresponding set of hierarchical
B-splines (in short, HB-splines) as follows.7

Definition 7 Given a domain hierarchy Ω , the corresponding set of HB-splines is
denoted byHΩ and defined recursively as follows:

(i) H1 := {Bj,1 ∈ B1 : suppΩ (Bj,1) �= ∅};
(ii) for � = 2, . . . , L:

H� := H C
� ∪ H F

� ,

7The HB-splines in Definition 7 were introduced by Kraft [28, 29] and further elaborated in
[53]. However, the concept of hierarchical splines has a long history; for example, it was used
in preconditioning [18, 54], adaptive modeling [19, 20] and adaptive finite elements [25, 30].



1 Foundations of Spline Theory 53

where

H C
� := {Bj,k ∈ H�−1 : suppΩ(Bj,k) �⊆ Ω�},

H F
� := {Bj,� ∈ B� : suppΩ(Bj,�) ⊆ Ω�};

(iii) HΩ := HL.

To obtain the set of HB-splines, we first take all the B-splines in B1 whose
support overlaps Ω1. Then, we apply a recursive procedure which selects at each
level � all the B-splines obtained in the previous step whose support is not entirely
contained in Ω� and all the B-splines in B� whose support is entirely contained
in Ω�.

Example 13 An example of the recursive definition of HB-splines is illustrated in
Fig. 1.4. We consider three nested knot sequences, with knots of multiplicity 4 at
the two extrema of the intervals and single knots elsewhere, as in Fig. 1.4a. This

Fig. 1.4 An example of cubic HB-splines where the domain hierarchy consists of three levels. The
knot positions are visualized by vertical dotted lines in (c)–(h). (a) Knot sequences. (b) Domain
hierarchy. (c) B1. (d) H1. (e) B2. (f) H2. (g) B3. (h) H3 = HΩ
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allows us to construct the three sets of cubic B-splines shown in Fig. 1.4c, e, g,
whose dimensions are n1 = 10, n2 = 17 and n3 = 31, respectively. The domain
hierarchy is defined by the subsets Ω1 = [ξ4,1, ξ11,1], Ω2 = [ξ8,2, ξ16,2] and Ω3 =
[ξ16,3, ξ24,3], and is shown in Fig. 1.4b. Obviously,H1 coincides with B1. Further-
more, H C

2 is obtained from H1 by removing B6,1, and H F
2 = {B8,2, . . . , B12,2}.

Hence, H2 = H C
2 ∪ H F

2 consists of 9 + 5 = 14 elements. Finally, H C
3 is

obtained from H2 by removing B10,2, and H F
3 = {B16,3, . . . , B20,3}. Hence,

H3 = H C
3 ∪ H F

3 consists of 13+ 5 = 18 elements. The setsH1,H2 andH3 are
shown in Fig. 1.4d, f, h.

For each � ∈ {1, . . . , L}, let J�,Ω be the set of indices of the B-splines in B�

belonging toHΩ , i.e.,

J�,Ω := {j : Bj,� ∈ B� ∩ HΩ }. (1.140)

From Definition 7 it follows that

J�,Ω = {j : Bj,� ∈ B�, suppΩ(Bj,�) ∩ Γ� �= ∅, suppΩ(Bj,�) ⊆ Ω�}, (1.141)

where

Γ� := Ω� \ Ω�+1. (1.142)

Given this index set, we can reconstruct the set of HB-splines as

HΩ = {Bj,�, j ∈ J�,Ω , � = 1, . . . , L}. (1.143)

Since the set of HB-splines is a mixture of standard B-splines, we deduce immedi-
ately the following properties.

• Local Support. An HB-spline is locally supported on an interval that only
depends on the level it was introduced in the hierarchical construction and not
on the choice of subsets in the domain hierarchy.

• Nonnegativity. An HB-spline is nonnegative everywhere, and positive inside its
support.

• Piecewise Structure. An HB-spline is a piecewise polynomial, whose degree
and smoothness depends on the level it was introduced in the hierarchical
construction and the spline space used on that level.

• Linear Independence. The HB-splines in HΩ are linearly independent on Ω1.

Proof We first note that if J�,Ω is nonempty then Γ� has nonempty interior for
any �; see (1.141) and (1.142). We must prove that if

s(x) =
L∑

�=1

∑
j∈J�,Ω

cj,�Bj,�(x) = 0, x ∈ Ω1, (1.144)
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then cj,� = 0 for all j and � in (1.144). We know from the local linear
independence property that the B-splines Bj,1, j ∈ J1,Ω are linearly independent
on Γ1. Moreover, from (1.141) it follows that only those functions are nonzero
on Γ1. Hence, we conclude that cj,1 = 0 for j ∈ J1,Ω in (1.144). We can
repeat the same argument for the remaining terms in (1.144) going level by level
in the hierarchy. Indeed, for � = 2, . . . , L, the B-splines Bj,�, j ∈ J�,Ω are
linearly independent on Γ�, and only those functions are nonzero on Γ� except for
functions already considered before at previous levels. This implies that cj,� = 0
for j ∈ J�,Ω with � = 2, . . . , L. ��
The space spanned by the HB-splines in HΩ is called the hierarchical spline

space on Ω and is denoted by

SΩ :=
{
s : Ω1 → R : s =

L∑
�=1

∑
j∈J�,Ω

cj,�Bj,�, cj,� ∈ R

}
. (1.145)

Such hierarchical space has some interesting properties.

• Dimension. By the linear independence of the HB-splines, the space SΩ is a
vector space of dimension

∑L
�=1 |J�,Ω |.

• Nestedness. Let the domain hierarchy Ω̃ be obtained from another domain
hierarchy Ω such that Ω1 = Ω̃1 and Ω� ⊆ Ω̃� for � = 2, . . . , L. Then,
SΩ ⊆ S

Ω̃
.

Proof We first note that any B-spline Bj,�−1 ∈ B�−1 whose support is entirely
contained in Ω� can be represented exactly in terms of B-splines Bi,� ∈ B�

whose support is also contained in Ω�. Consider the intermediate spacesH� and
H̃� arising in Definition 7. From their construction it directly follows

span(H�−1) ⊆ span(H�) and span(H̃�−1) ⊆ span(H̃�). (1.146)

We now show that span(H�) ⊆ span(H̃�) for all � = 1, . . . , L. This clearly
holds for � = 1 since Ω1 = Ω̃1 and hence H1 = H̃1. We proceed by induction
on �, and assume that the statement is true for � − 1. Then, we have

span(H C
� ) ⊆ span(H�−1) ⊆ span(H̃�−1) ⊆ span(H̃�),

and

span(H F
� ) ⊆ span(H̃ F

� ) ⊆ span(H̃�).

This implies

span(H�) = span(H C
� ) ∪ span(H F

� ) ⊆ span(H̃�).

As a consequence, SΩ = span(HL) ⊆ span(H̃L) = S
Ω̃
. ��
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• Polynomial Embedding. The space SΩ contains (at least) all polynomials of
degree less than or equal to p1.

Proof Let g be a polynomial in Pp1 . From Sect. 1.3.3 we know that g belongs
to the coarsest spline space Sp1,ξ1

in the sequence (1.135). Hence, taking into
account (1.146), we conclude that g ∈ span(H1) ⊆ span(HL) = SΩ . ��

1.6.2 Truncated Hierarchical B-Splines

HB-splines do not satisfy the partition of unity property. In addition, the number
of overlapping basis functions associated with different hierarchical levels easily
increases. This motivates the construction of another basis for the hierarchical spline
space. The construction is based on the following truncation mechanism [22].

Definition 8 Given � ∈ {2, . . . , L}, let s ∈ Sp�,ξ �
be represented in the B-spline

basisB�, i.e.,

s =
n�∑

j=1

cj,� Bj,�. (1.147)

The truncation of s at level � is defined as the sum of the terms appearing in (1.147)
related to the B-splines whose support is not a subset of Ω�, i.e.,

trunc�,Ω(s) :=
∑

j : suppΩ (Bj,�)�Ω�

cj,� Bj,�. (1.148)

By successively truncating the functions constructed in Definition 7, we obtain
the truncated hierarchical B-splines (in short, THB-splines).8

Definition 9 Given a domain hierarchy Ω , the corresponding set of THB-splines
is denoted by TΩ and defined recursively as follows:

(i) T1 := {Bj,1 ∈ B1 : suppΩ(Bj,1) �= ∅};
(ii) for � = 2, . . . , L:

T� := T C
� ∪ T F

� ,

where

T C
� := {trunc�,Ω(Bt

j,k,Ω�−1
) : Bt

j,k,Ω�−1
∈ T�−1, suppΩ(Bt

j,k,Ω�−1
) �⊆ Ω�},

T F
� := {Bj,� ∈ B� : suppΩ (Bj,�) ⊆ Ω�};

8The truncation approach was introduced in [22] for hierarchical tensor-product splines, but was
already developed before in the context of hierarchical Powell–Sabin splines [50]. A generalization
towards a broad class of hierarchical spaces can be found in [23].
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(iii) TΩ := TL.

To obtain the THB-splines, we apply a recursive procedure building a set T� at
level �. This set consists of two subsets, the coarse set T C

� and the fine set T F
� .

To construct the elements Bt
j,k,Ω�

of T C
� , we first express any function Bt

j,k,Ω�−1
∈

T�−1 with respect to the B-spline basis B�, and then we apply the truncation as
in (1.148) with s = Bt

j,k,Ω�−1
. The fine set T F

� consists of all B-splines in B�

whose support is entirely contained in Ω�, exactly as in the HB-spline case; see
Definition 7.

When comparing Definition 9 with Definition 7, we see that the number of THB-
splines in the set TΩ is equal to the number of HB-splines in the set HΩ . In the
following, the THB-splines in TΩ are denoted by BT

j,�,Ω for j ∈ J�,Ω and � =
1, . . . , L.

Example 14 When unrolling the recursive definition of THB-splines for L = 3, we
get

BT
j,1,Ω = trunc3,Ω(trunc2,Ω(Bj,1)), j ∈ J1,Ω,

BT
j,2,Ω = trunc3,Ω(Bj,2), j ∈ J2,Ω ,

BT
j,3,Ω = Bj,3, j ∈ J3,Ω .

Example 15 Figure 1.5 illustrates the truncation mechanism applied to the set of
HB-splines depicted in Fig. 1.4 (Example 13). Obviously, T1 coincides with H1.

Fig. 1.5 HB-splines and THB-splines with respect to the same domain hierarchy as in Fig. 1.4b.
(a) H1. (b) T1. (c) H2. (d) T2. (e) H3. (f) T3
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Furthermore, T C
2 is obtained from H C

2 by applying the truncation mechanism to
its elements; this only results in a modification of the elements B4,1, B5,1, B7,1 and
B8,1. On the other hand, we haveT F

2 = H F
2 . Finally,T C

3 is obtained fromH C
3 by

modifying B4,1, B5,1, B7,1, B8,1 (truncated at level 2) and B8,2, B9,2, B11,2, B12,2
(truncated at level 3), while T F

3 = H F
3 . It is clear that T� = T C

� ∪ T F
� and

H� = H C
� ∪ H F

� have the same number of elements for � = 2, 3.

The next properties can be easily deduced from the definition of THB-splines.

• Relation to HB-Splines. Each THB-spline in TΩ is uniquely related to a single
HB-spline in HΩ possibly by successive truncations, i.e.,

BT
j,�,Ω = Trunc�,Ω(Bj,�), (1.149)

where for any s ∈ Sp�,ξ�
with � = 1, . . . , L − 1,

Trunc�,Ω(s) := truncL,Ω(truncL−1,Ω(· · · (trunc�+1,Ω(s)) · · · )),

and for any s ∈ SpL,ξL
,

TruncL,Ω(s) := s.

From (1.149) in combination with (1.147)–(1.148), it is clear that

BT
j,�,Ω(x) = Bj,�(x), x ∈ Γ�. (1.150)

• Local Support. From (1.149) it follows that a THB-spline has the same or
smaller support than its related HB-spline.

• Nonnegativity. A THB-spline is nonnegative on Ω1.

Proof Fix 1 ≤ �1 < �2 ≤ L. Because of the nestedness of the spaces in (1.135),
we can write the B-spline Bj,�1 ∈ B�1 in terms of the B-splines inB�2 , i.e.,

Bj,�1(x) =
n�2∑
i=1

c
j,�1
i,�2

Bi,�2(x), x ∈ Ω1. (1.151)

From Sect. 1.3.5 we know that the coefficients in (1.151) are all nonnegative in
case p�1 = p�2 . This property holds in general, also when p�1 < p�2 , and we
refer to [12] for its proof. Then, since each THB-spline BT

j,�,Ω can be deduced
from the B-spline Bj,� possibly by successive truncations, see (1.149), it follows
from (1.147)–(1.148) that BT

j,�,Ω can be written as a linear combination of B-
splines of the finest level L with nonnegative coefficients. This implies that
BT

j,�,Ω is nonnegative. ��
• Linear Independence. The THB-splines in TΩ are linearly independent on Ω1.
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Proof We must prove that if

s(x) =
L∑

�=1

∑
j∈J�,Ω

cj,�B
T
j,�(x) = 0, x ∈ Ω1, (1.152)

then cj,� = 0 for all j and � in (1.152). This can be shown using exactly the same
line of arguments as in the case of HB-splines (see (1.144)), taking into account
relation (1.150). ��
The next theorem shows that the THB-splines in TΩ form an alternative basis

for the hierarchical spline space SΩ in (1.145).

Theorem 19 (Hierarchical Spline Space) The THB-splines in TΩ span the same
space as the HB-splines inHΩ , i.e.,

SΩ = span(HΩ ) = span(TΩ). (1.153)

Proof Consider the intermediate spaces H� and T� in Definitions 7 and 9,
respectively. From their construction it directly follows

span(H�−1) ⊆ span(H�) and span(T�−1) ⊆ span(T�).

We now show that span(H�) = span(T�) for all � = 1, . . . , L. This clearly holds
for � = 1 since H1 = T1. We proceed by induction on �, and assume that the
statement is true for � − 1. Then, we have

span(H C
� ) ⊆ span(H�−1) = span(T�−1) ⊆ span(T�),

and

span(H F
� ) = span(T F

� ) ⊆ span(T�).

This implies

span(H�) = span(H C
� ) ∪ span(H F

� ) ⊆ span(T�).

Finally, since both sets H� and T� have the same number of elements and these
elements are all linearly independent, it follows that span(H�) = span(T�). As a
consequence, span(HΩ) = span(HL) = span(TL) = span(TΩ ). ��

The correspondence in (1.149) between the THB-spline BT
j,�,Ω and a particular

B-spline Bj,� ∈ B� has an important consequence, namely the so-called property
of preservation of coefficients [23]. This means that the THB-spline representation
preserves certain coefficients of functions represented with respect to one of the B-
spline basesB�.
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Theorem 20 (Preservation of Coefficients) Given � ∈ {1, . . . , L}, let the
restriction of s ∈ SΩ to Γ� := Ω� \ Ω�+1 be represented in the bases TΩ and
B�, i.e.,

s(x) =
L∑

k=1

∑
j∈Jk,Ω

cT
j,kB

T
j,k,Ω (x) =

n�∑
i=1

ci,�Bi,�(x), x ∈ Γ�. (1.154)

Then,

cT
i,� = ci,�, i ∈ J�,Ω . (1.155)

Proof We first note that if J�,Ω is nonempty then Γ� has nonempty interior. Assume
now that Γ� has nonempty interior. Since s ∈ SΩ and the spline spaces in (1.135)
are nested, it is clear that the restriction of s to Γ� can be expressed as a linear
combination of the B-splines in B� restricted to Γ� as in (1.154). Let us focus on
the sum ∑

j∈Jk,Ω

cT
j,kB

T
j,k,Ω (x), x ∈ Γ�, (1.156)

and consider three cases.

– If k > �, then the sum in (1.156) equals zero. Indeed, Definition 9 and (1.149)
imply that

suppΩ(BT
j,k,Ω ) ⊆ suppΩ(Bj,k) ⊆ Ωk ⊆ Ω�+1,

and consequently, we have suppΩ (BT
j,k,Ω) ∩ Γ� = ∅.

– We now consider the case k = �. From (1.150) it immediately follows

∑
j∈J�,Ω

cT
j,�B

T
j,�,Ω(x) =

∑
j∈J�,Ω

cT
j,�Bj,�(x), x ∈ Γ�.

– Finally, let k < �. In view of the truncation mechanism, we prove that THB-
splines introduced at levels less than � in the hierarchy can only contribute
in terms of B-splines Bi,� with i �∈ J�,Ω . To this end, let us rewrite the
corresponding THB-splines BT

j,k,Ω in terms of the B-spline basisB�,

BT
j,k,Ω (x) =

n�∑
i=1

c
j,k

i,� Bi,�(x), x ∈ Γ�.

Due to the definition of BT
j,k,Ω and the truncation operation (1.148), we have

c
j,k
i,� = 0, if i ∈ J�,Ω .
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Hence, for k < � we arrive at

∑
j∈Jk,Ω

cT
j,kB

T
j,k,Ω (x) =

∑
i �∈J�,Ω

( ∑
j∈Jk,Ω

cT
j,kc

j,k
i,�

)
Bi,�(x), x ∈ Γ�.

By combining the above three cases and taking into account the local linear
independence of B-splines, we obtain the identity (1.154) where

ci,� =
{

cT
i,�, if i ∈ J�,Ω,∑�−1

k=1
∑

j∈Jk,Ω
cT
j,kc

j,k
i,� , otherwise,

which in particular gives (1.155). ��
Thanks to Theorem 20, many interesting features of B-spline representations can

be transferred to THB-spline representations.

• Representation of Polynomials. Any polynomial g of degree p1 can be
represented as

g(x) =
L∑

�=1

∑
j∈J�,Ω

Λj,p�,ξ�
(g)BT

j,�,Ω (x), x ∈ Ω1, (1.157)

where Λj,p�,ξ�
is defined in (1.53) with p = p� and ξ = ξ �.

Proof Using the nestedness of the spaces (1.135), it is clear that g ∈ Sp�,ξ�
for

� = 1, . . . , L and also that g ∈ SΩ . Then, consider its representation with respect
to TΩ andB� for � = 1, . . . , L. Theorem 20 in combination with Proposition 3
concludes the proof. ��

• Partition of Unity. By (1.49) we have

L∑
�=1

∑
j∈J�,Ω

BT
j,�,Ω(x) = 1, x ∈ Ω1. (1.158)

Since the THB-splines are nonnegative it follows that they form a nonnegative
partition of unity on Ω1.

• Greville Points. By (1.50) we have

x =
L∑

�=1

∑
j∈J�,Ω

ξ∗
j,p�,ξ�

BT
j,�,Ω (x), x ∈ Ω1, (1.159)

where ξ∗
j,p�,ξ�

are the Greville points defined in (1.51) with p = p� and ξ = ξ �.
Note that the Greville points are not necessarily distinct here.
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• Strong Stability. The THB-spline basis is strongly stable with respect to the
supremum norm, under mild assumptions on the underlying knot sequences
required in the hierarchical construction. We refer the reader to [23] for a proof
based on the property of preservation of coefficients. Strong stability in the
hierarchical context means that the constants to be considered in the stability
relation (1.64) of the basis do not depend on the number of hierarchical levels.

Example 16 The polynomial g(x) = ax2 + bx + c can be represented in terms of
quadratic THB-splines:

ax2 + bx + c =
L∑

�=1

∑
j∈J�,Ω

cj,�B
T
j,�,Ω (x).

From Theorem 20 and Example 8 we obtain that

cj,� = Λj,2,ξ �
(g) = a ξj+1,�ξj+2,� + b

ξj+1,� + ξj+2,�

2
+ c.

1.6.3 Quasi-Interpolation in Hierarchical Spaces

The above properties of THB-splines can be exploited to develop a general and very
simple procedure for the construction of quasi-interpolants in hierarchical spline
spaces [51].

Definition 10 Given for each spline space in (1.135) a quasi-interpolant in B-spline
form, i.e.,

Q�f (x) :=
n�∑

j=1

λj,�(f )Bj,�(x), x ∈ Ω1, � = 1, . . . , L, (1.160)

the corresponding hierarchical quasi-interpolant in SΩ is defined by

QΩf (x) :=
L∑

�=1

∑
j∈J�,Ω

λj,�(f )BT
j,�,Ω (x), x ∈ Ω1. (1.161)

According to Definition 10, in order to construct a quasi-interpolant in SΩ , it
suffices to consider first a quasi-interpolant in each space associated with a particular
level in the hierarchy. Then, the coefficients of the proposed hierarchical quasi-
interpolant are nothing else than a proper subset of the coefficients of the one-level
quasi-interpolants.



1 Foundations of Spline Theory 63

We now show how to build hierarchical quasi-interpolants reproducing poly-
nomials of a certain degree p ≤ p1. As described in Sect. 1.5.2, this is a crucial
property feature to ensure good approximation properties.

Theorem 21 (Polynomial Reproduction) Let Q� be a given sequence of quasi-
interpolants as in (1.160), let QΩ be the corresponding hierarchical quasi-
interpolant as in (1.161), and let p ≤ p1. If

Q�g = g, ∀g ∈ Pp, � = 1, . . . , L, (1.162)

then

QΩg = g, ∀g ∈ Pp.

Proof Since the spaces in (1.135) are nested, we have p� ≥ p for all �. Let g ∈
Pp ⊆ Pp� ⊆ Sp�,ξ�

. Then, this polynomial can be uniquely represented as a linear
combination of the B-splines in B�,

g(x) =
n�∑

j=1

cj,�Bj,�(x),

and since Q�g = g we have λj,�(g) = cj,�. On the other hand, g ∈ SΩ , so

g(x) =
L∑

�=1

∑
j∈J�,Ω

cT
j,�B

T
j,�,Ω(x).

From Theorem 20 it follows

cT
j,� = cj,� = λj,�(g), j ∈ J�,Ω , � = 1, . . . , L,

implying that QΩg = g. ��
In the next theorem we present a sufficient condition for constructing quasi-

interpolants that are projectors onto SΩ .

Theorem 22 (Spline Reproduction) Let Q� be a given sequence of quasi-
interpolants as in (1.160), and let QΩ be the corresponding hierarchical quasi-
interpolant as in (1.161). Assume

Q�s = s, ∀s ∈ Sp�,ξ�
, � = 1, . . . , L,

and each λj,� used in (1.161) is supported on Γ� := Ω� \ Ω�+1. Then,

QΩ s = s, ∀s ∈ SΩ .
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Proof Due to the linearity of the quasi-interpolant, it suffices to prove that

λj,�(B
T
i,k,Ω ) = δi,j δk,�, i ∈ Jk,Ω , j ∈ J�,Ω , k, � = 1, . . . , L, (1.163)

where δr,s stands for the classical Kronecker delta. Let j and � be fixed. To prove
(1.163) we consider three cases.

– If k > �, then BT
i,k,Ω (x) = 0 for x ∈ Γ�; see Definition 9. Since λj,� is only

supported on Γ�, it follows from Definition 4 that λj,�(B
T
i,k,Ω ) = 0.

– We now consider the case k = �. Since Q� is a projector onto S�, we have that
λj,�(Bi,�) = δi,j . From (1.150) and the support restriction of λj,�, we obtain

λj,�(B
T
i,�,Ω ) = δi,j , i, j ∈ J�,Ω .

– Finally, let k < �. Any BT
i,k,Ω restricted to Γ� can then be expressed as a linear

combination of the B-splines inB� restricted to Γ�, i.e.,

BT
i,k,Ω (x) =

n�∑
r=1

c
i,k
r,�Br,�(x), x ∈ Γ�,

where

c
i,k
r,� = 0, if r ∈ J�,Ω,

as explained in the third case of the proof of Theorem 20. Thus, by the support
restriction of λj,�, we have for j ∈ J�,Ω ,

λj,�(B
T
i,k,Ω ) =

n�∑
r=1

c
i,k
r,�λj,�(Br,�) =

n�∑
r=1

c
i,k
r,�δj,r = c

i,k
j,� = 0.

The above three cases complete the proof. ��
Some remarks are in order here.

• Constraints on (1.160). The sequence of quasi-interpolants (1.160) considered
in Theorem 22 needs to satisfy constraints more restrictive than those in Theo-
rem 21: For each level �, Q� must be a projector onto Sp�,ξ �

and each λj,�, j ∈
J�,Ω , must be supported on Γ�. The former constraint connects the sequence of
quasi-interpolants Q1, . . . ,QL with the sequence of spaces Sp1,ξ1

, . . . ,SpL,ξL

and has a similar counterpart in Theorem 21. The latter constraint links the
same sequence of quasi-interpolants with the domain hierarchyΩ . Nevertheless,
once a sequence of quasi-interpolants as in (1.160) satisfying the hypotheses
of Theorem 22 is available, the construction of a hierarchical quasi-interpolant
that is a projector onto SΩ does not require additional efforts compared to a
hierarchical quasi-interpolant that just reproduces polynomials.
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• Dual Basis. Let {λj,�} be a set of linear functionals as in (1.161) that provides a
projector onto SΩ . Then, because of (1.163), it is a dual basis for the THB-spline
basis TΩ .

• Approximation Power. Polynomial reproduction is one of the key ingredients
to show the approximation power of spline quasi-interpolants; see Sect. 1.5.2.
Boundedness of a hierarchical quasi-interpolation operator and optimal approx-
imation accuracy can be achieved on domain hierarchies that are nicely graded
(i.e., the boundaries of the different Ω� are sufficiently separated). Local error
estimates for hierarchical quasi-interpolants of the form (1.161) can be found in
[51] with respect to the L∞-norm, and in [49] with respect to the general Lq -
norm, 1 ≤ q ≤ ∞.

Example 17 Let p� = 2, and let ξ� be a 3-open knot sequence with at most
double knots in the interior for each � = 1, . . . , L. Then, we can choose the
quasi-interpolants in (1.160) as in Example 12. This leads to the hierarchical quasi-
interpolant

QΩf (x) =
L∑

�=1

∑
j∈J�,Ω

λj,�(f )BT
j,�,Ω (x), x ∈ Ω1,

where

λj,�(f ) = −1

2
f (ξj+1,�) + 2f (ξ∗

j,2,ξ�
) − 1

2
f (ξj+2,�).

From Example 12 and Theorem 21 we deduce that this hierarchical quasi-
interpolant reproduces the polynomial space P2. If [ξj+1,�, ξj+2,�] ⊆ Γ� for each
j ∈ J�,Ω , then it actually reproduces the entire hierarchical spline space SΩ ,
according to Theorem 22.

Example 18 Consider the quasi-interpolant constructed in Sect. 1.5.3.1 for each
space Sp�,ξ �

of level � = 1, . . . , L. This leads to the hierarchical quasi-interpolant

QΩf (x) =
L∑

�=1

∑
j∈J�,Ω

Lj,p�,ξ �
(f )BT

j,�,Ω(x), x ∈ Ω1,

where Lj,p�,ξ�
is defined in (1.123) with p = p� and ξ = ξ�; it is supported

on a single knot interval [ξmj,p�
,�, ξmj,p�

+1,�]. From Lemma 2 and Theorem 21 we
deduce that this hierarchical quasi-interpolant reproduces the polynomial space Pp1 .
Theorem 22 says that if [ξmj,p�

,�, ξmj,p�
+1,�] ⊆ Γ� for each j ∈ J�,Ω , then the

hierarchical quasi-interpolant reproduces the entire hierarchical spline space SΩ .

The hierarchical quasi-interpolant in Definition 10 can be interpreted as a
telescopic approximant, where for each level an approximant of the residual is
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added.9 To show this, we define the following set of indices

K�,Ω := {j : Bj,� ∈ B�, suppΩ (Bj,�) ⊆ Ω�}.

Referring to (1.141), it is easy to see that J�,Ω ⊆ K�,Ω , and moreover JL,Ω =
KL,Ω .

Theorem 23 (Telescopic Representation) Let Q� be a given sequence of quasi-
interpolants as in (1.160), and let QΩ be the corresponding hierarchical quasi-
interpolant as in (1.161). Assume

Q�s = s, ∀s ∈ Sp�,ξ�
, � = 1, . . . , L, (1.164)

then

QΩf =
L∑

�=1

f (�), (1.165)

where

f (1) :=
∑

j∈K1,Ω

λj,1(f )Bj,1,

f (�) :=
∑

j∈K�,Ω

λj,�

(
f − f (1) − . . . − f (�−1))Bj,�, � = 2, . . . , L.

(1.166)

Proof Each quasi-interpolantQ�, � = 1, . . . , L, is assumed to be a projector onto
the space Sp�,ξ �

, and because of the nestedness of the spaces Sp�,ξ �
⊂ Sp�+1,ξ�+1

,
we know that every basis function Bj,� can be represented as

Bj,� =
n�+1∑
k=1

λk,�+1(Bj,�) Bk,�+1, (1.167)

where λk,�+1(Bj,�) = 0 if the support of Bk,�+1 is not contained in the support
of Bj,�. By exploiting the definition of the truncated basis (1.149) and (1.167), we
obtain

f (1) =
∑

j∈K1,Ω

λj,1(f )Bj,1

=
∑

j∈J1,Ω

λj,1(f )BT
j,1,Ω +

∑
j∈K1,Ω

λj,1(f )

( ∑
k∈K2,Ω

λk,2(Bj,1) Bk,2

)
.

9The general telescopic expression for the hierarchical quasi-interpolant was presented in [51].
A special telescopic approximation in the hierarchical setting was already considered in [29].
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Moreover,

f (2) =
∑

j∈K2,Ω

λj,2(f )Bj,2 −
∑

k∈K2,Ω

λk,2(f
(1))Bk,2

=
∑

j∈K2,Ω

λj,2(f )Bj,2 −
∑

k∈K2,Ω

( ∑
j∈K1,Ω

λj,1(f )λk,2(Bj,1)

)
Bk,2.

Hence,

f (1) + f (2) =
∑

j∈J1,Ω

λj,1(f )BT
j,1,Ω +

∑
j∈K2,Ω

λj,2(f )Bj,2. (1.168)

We now remark that from the truncation definition (1.148)–(1.149) it follows that
λk,3(B

T
j,1,Ω) = 0 for any k ∈ K3,Ω and j ∈ J1,Ω , and so

∑
k∈K3,Ω

λk,3(B
T
j,1,Ω)Bk,3 = 0, ∀j ∈ J1,Ω . (1.169)

By using similar arguments as before, we can write (1.168) as

f (1) + f (2) =
∑

j∈J1,Ω

λj,1(f )BT
j,1,Ω +

∑
j∈J2,Ω

λj,2(f )BT
j,2,Ω

+
∑

j∈K2,Ω

λj,2(f )

( ∑
k∈K3,Ω

λk,3(Bj,2) Bk,3

)
,

and by means of (1.168) and (1.169) we obtain

f (3) =
∑

j∈K3,Ω

λj,3(f )Bj,3 −
∑

k∈K3,Ω

λk,3(f
(1) + f (2))Bk,3

=
∑

j∈K3,Ω

λj,3(f )Bj,3 −
∑

k∈K3,Ω

( ∑
j∈K2,Ω

λj,2(f )λk,3(Bj,2)

)
Bk,3,

resulting in

f (1) + f (2) + f (3) =
∑

j∈J1,Ω

λj,1(f )BT
j,1,Ω +

∑
j∈J2,Ω

λj,2(f )BT
j,2,Ω

+
∑

j∈K3,Ω

λj,3(f )Bj,3.

By iterating over all levels in the hierarchy and repeating the same arguments, we
get the relation (1.165). ��
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The telescopic representation in Theorem 23 directly leads to the representation
of the hierarchical quasi-interpolant in terms of the HB-spline basis, instead of
in terms of the THB-spline basis (see Definition 10), under assumption (1.164).
Indeed, as observed in [51], thanks to property (1.167), one can simply replace the
index sets K�,Ω by J�,Ω in (1.166) and the relation (1.165) still remains true. This
implies that (1.165) can be rewritten as

QΩf =
L∑

�=1

∑
j∈J�,Ω

λj,�(f − Q�−1,Ωf )Bj,�, (1.170)

where

Q0,Ωf := 0, Qr,Ωf :=
r∑

k=1

∑
j∈Jk,Ω

λj,k(f − Qk−1,Ωf )Bj,k, r ≥ 1. (1.171)

1.7 Tensor-Product Structures and Adaptive Extensions

The most easy way to extend many of the previous results to the multivariate setting
is to consider a tensor-product structure. For the sake of simplicity, we briefly focus
here on the bivariate setting. The extension to higher dimensions is straightforward;
it only requires a more involved indexing notation.

1.7.1 Tensor-Product B-Splines

Given two knot sequences

ξk := {ξ1,k ≤ ξ2,k ≤ · · · ≤ ξnk+pk+1,k}, k = 1, 2,

we define the basic rectangle as

R := [ξp1+1,1, ξn1+1,1] × [ξp2+1,2, ξn2+1,2].

The tensor-product B-splines can be simply constructed as the product of univari-
ate B-splines in each variable, i.e.,

Bj1,j2,p1,p2,ξ1,ξ 2
(x1, x2) := Bj1,p1,ξ1

(x1)Bj2,p2,ξ 2
(x2), (1.172)

for jk = 1, . . . , nk and k = 1, 2.
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Example 19 Figure 1.6 shows a schematic representation of a tensor-product B-
spline basis of bidegree (p1, p2) = (3, 3). A (pk +1)-open knot sequence is chosen
in each direction xk , where the interior knots are all simple, and the corresponding
univariate B-splines are depicted. Then, the set of tensor-product B-splines is
obtained by computing the tensor product of the sets of univariate B-splines in each
direction. Contour plots of some bicubic tensor-product B-splines are depicted in
Fig. 1.7.

It is clear that tensor-product B-splines inherit all the nice features of univariate
B-splines discussed in Sects. 1.2 and 1.3. In particular, they enjoy the following
properties.

Fig. 1.6 Schematic representation of the (bivariate) tensor-product B-spline basis of bidegree
(p1, p2) = (3, 3) using a 4-open knot sequence in each direction. The knot lines are visualized
by solid lines in the rectangular domain (this is the basic rectangle), and the sets of univariate
B-splines are depicted for both directions

Fig. 1.7 Contour plots of some bicubic tensor-product B-splines Bj1,j2,3,3,ξ1,ξ2 defined on the
tensor-product mesh given in Fig. 1.6. The bounding box of the support of each B-spline is
visualized by solid blue lines. (a) (j1, j2) = (3, 3). (b) (j1, j2) = (5, 5). (c) (j1, j2) = (7, 9)
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• Local Support. A tensor-product B-spline is locally supported on the rectangle
given by the extreme knots used in the definition of its univariate B-splines in
each direction. More precisely,

Bj1,j2,p1,p2,ξ1,ξ2
(x1, x2) = 0, (x1, x2) /∈ S, (1.173)

where

S := [ξj1,1, ξj1+p1+1,1) × [ξj2,2, ξj2+p2+1,2).

• Nonnegativity. A tensor-product B-spline is nonnegative everywhere, and posi-
tive inside its support, i.e.,

Bj1,j2,p1,p2,ξ 1,ξ2
(x1, x2) ≥ 0, x1, x2 ∈ R, (1.174)

and

Bj1,j2,p1,p2,ξ1,ξ2
(x1, x2) > 0, (x1, x2) ∈ S̊, (1.175)

where

S̊ := (ξj1,1, ξj1+p1+1,1) × (ξj2,2, ξj2+p2+1,2).

• Piecewise Structure. A tensor-product B-spline has a piecewise tensor-product
polynomial structure, i.e.,

Bj1,j2,p1,p2,ξ1,ξ2
∈ Pp1([ξm1,1, ξm1+1,1)) ⊗ Pp2([ξm2,2, ξm2+1,2)). (1.176)

• Smoothness. If ξ is a knot of Bjk,pk,ξk
of multiplicity μ ≤ pk + 1 then

Bj1,j2,p1,p2,ξ1,ξ2
belongs to the class Cpk−μ across the line xk = ξ for k = 1, 2.

• Linear Independence. If each ξ k is (pk + 1)-basic for k = 1, 2, then the tensor-
product B-splines {Bj1,j2,p1,p2,ξ1,ξ2

: jk = 1, . . . , nk, k = 1, 2} are (locally)
linearly independent on R.

• Partition of Unity.We have

n1∑
j1=1

n2∑
j2=1

Bj1,j2,p1,p2,ξ1,ξ 2
(x1, x2) = 1, (x1, x2) ∈ R. (1.177)

Since the tensor-product B-splines are nonnegative it follows that they form a
nonnegative partition of unity on R.

• Greville Points. For (x1, x2) ∈ R and �1, �2 ∈ {0, 1}, we have

x
�1
1 x

�2
2 =

n1∑
j1=1

n2∑
j2=1

(ξ∗
j1,p1,ξ1

)�1(ξ∗
j2,p2,ξ2

)�2Bj1,j2,p1,p2,ξ1,ξ2
(x1, x2), (1.178)

where ξ∗
jk,pk,ξk

is the Greville point defined in (1.51) for the knot sequence ξ k ,
k = 1, 2.
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A tensor-product spline function is defined as

s(x1, x2) =
n1∑

j1=1

n2∑
j2=1

cj1,j2Bj1,j2,p1,p2,ξ1,ξ2
(x1, x2), cj1,j2 ∈ R. (1.179)

Since the tensor-product B-splines are linearly independent, the space of spline
functions has dimension n1n2.

A main advantage of the representation in (1.179) is that its evaluation can be
reduced to a sequence of evaluations of univariate spline functions:

s(x1, x2) =
n1∑

j1=1

dj1,x2Bj1,p1,ξ1
(x1), dj1,x2 :=

n2∑
j2=1

cj1,j2Bj2,p2,ξ2
(x2), (1.180)

or, equivalently,

s(x1, x2) =
n2∑

j2=1

dj2,x1Bj2,p2,ξ2
(x2), dj2,x1 :=

n1∑
j1=1

cj1,j2Bj1,p1,ξ1
(x1). (1.181)

Note that (1.180) requires n1 univariate spline evaluations of degree p2 and one
univariate spline evaluation of degree p1. On the other hand, (1.181) requires n2
univariate spline evaluations of degree p1 and one univariate spline evaluation of
degree p2. Thus, it is better to choose one of the two forms according to the minimal
computational cost.

Other algorithms in the univariate B-spline setting (like knot insertion) can be
extended in a similar way to the tensor-product B-spline setting.

1.7.2 Local Refinement

Despite their simple and elegant formulation, tensor-product B-spline structures
have a main drawback. Any refinement of a knot sequence in one direction has
a global effect in the other direction, and this prevents doing local refinement as
illustrated in Fig. 1.8.

The hierarchical spline model provides a natural strategy to guarantee the locality
of the refinement. As explained in Sect. 1.6, hierarchical spline spaces are a mixture
of spline spaces of different resolution, localized by the domain hierarchy. Even
though the concept of hierarchical splines was detailed in the univariate setting, it
can be straightforwardly extended towards the bivariate (and multivariate) setting.

When selecting a sequence of nested tensor-product spline spaces on a common
basic rectangle R in place of (1.135) and considering the corresponding tensor-
product B-spline bases in place of (1.137), the definitions of tensor-product
HB-splines and THB-splines follow verbatim Definitions 7 and 9, respectively.
The properties (and their proofs) described in Sect. 1.6 also hold in the tensor-
product extension. We refer the reader to [22, 23] for more details on tensor-product
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Fig. 1.8 Given an initial tensor-product representation (a), an error estimator indicates regions of
the mesh which require further refinement (b). The tensor-product structure necessarily implies a
propagation of the refinement (c). Adaptive splines, instead, should provide a proper local control
of the refinement procedure (d)

Fig. 1.9 An example of a two-dimensional domain hierarchy consisting of three levels. The knot
lines are visualized by solid lines in the domain. (a) Global meshes. (b) Local meshes. (c) Domain
hierarchy

THB-splines and their properties. A full treatment of the construction of related
hierarchical quasi-interpolants and their approximation properties can be found in
[49, 51].

Example 20 An example of a two-dimensional domain hierarchy together with its
knot lines is illustrated in Fig. 1.9. We consider a nested sequence of three tensor-
product spline spaces defined on a (uniform) knot mesh with open knots along
the boundary (Fig. 1.9a). Assume the corresponding basic rectangle is denoted by
R. Then, we select the subsets R =: Ω1 ⊇ Ω2 ⊇ Ω3 as a union of mesh
elements at each level (Fig. 1.9b), and together they form the domain hierarchy Ω

(Fig. 1.9c). On such domain hierarchy, we can define the corresponding HB-splines
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Fig. 1.10 Contour plots of some biquadratic tensor-product THB-splines of different levels
defined on the domain hierarchy given in Fig. 1.9. The bounding box of the support of the
untruncated version of each THB-spline is visualized by solid blue lines. (a) Level 1. (b) Level
2. (c) Level 3

and THB-splines according to Definitions 7 and 9, respectively. Contour plots of
some biquadratic tensor-product THB-splines are depicted in Fig. 1.10. The shape
of THB-splines related to coarser levels adapts nicely to the locally refined regions
inΩ , as illustrated in Fig. 1.10a, b. THB-splines related to the finest level are nothing
else than standard tensor-product B-splines, as illustrated in Fig. 1.10c.

Finally, we remark that there exist also other adaptive spline models based on
local tensor-product structures, like (analysis-suitable) T-splines [2, 46] and LR-
splines [9, 17].
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