
CIME Foundation Subseries
Lecture Notes in Mathematics 2219

Angela Kunoth · Tom Lyche    
Giancarlo Sangalli 
Stefano Serra-Capizzano

Splines and PDEs:  
From Approximation 
Theory to Numerical 
Linear Algebra
Cetraro, Italy 2017

Tom Lyche · Carla Manni 
Hendrik Speleers  Editors



Lecture Notes in Mathematics 2219

Editors-in-Chief:
Jean-Michel Morel, Cachan
Bernard Teissier, Paris

Advisory Board:
Michel Brion, Grenoble
Camillo De Lellis, Princeton
Alessio Figalli, Zurich
Davar Khoshnevisan, Salt Lake City
Ioannis Kontoyiannis, Athens
Gábor Lugosi, Barcelona
Mark Podolskij, Aarhus
Sylvia Serfaty, New York
Anna Wienhard, Heidelberg

More information about this series at http://www.springer.com/series/304

http://www.springer.com/series/304




Angela Kunoth • Tom Lyche • Giancarlo Sangalli •
Stefano Serra-Capizzano

Splines and PDEs:
From Approximation
Theory to Numerical
Linear Algebra
Cetraro, Italy 2017

Tom Lyche, Carla Manni, Hendrik Speleers
Editors

123



Authors
Angela Kunoth
Mathematical Institute
University of Cologne
Cologne, Germany

Tom Lyche
Department of Mathematics
University of Oslo
Oslo, Norway

Giancarlo Sangalli
Department of Mathematics
University of Pavia
Pavia, Italy

Stefano Serra-Capizzano
Department of Science and High
Technology
University of Insubria
Como, Italy

Editors
Tom Lyche
Department of Mathematics
University of Oslo
Oslo, Norway

Carla Manni
Department of Mathematics
University of Rome Tor Vergata
Rome, Italy

Hendrik Speleers
Department of Mathematics
University of Rome Tor Vergata
Rome, Italy

ISSN 0075-8434 ISSN 1617-9692 (electronic)
Lecture Notes in Mathematics
C.I.M.E. Foundation Subseries
ISBN 978-3-319-94910-9 ISBN 978-3-319-94911-6 (eBook)
https://doi.org/10.1007/978-3-319-94911-6

Library of Congress Control Number: 2018954553

Mathematics Subject Classification (2010): Primary: 65-XX; Secondary: 65Dxx, 65Fxx, 65Nxx

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-94911-6


Preface

The four chapters of this book collect the main topics that have been lectured at the
C.I.M.E. summer school “Splines and PDEs: Recent Advances from Approximation
Theory to Structured Numerical Linear Algebra” held in Cetraro, July 2–7, 2017.
The aim of the summer school has been to give an introduction to the most advanced
mathematical developments and numerical methods originating in the numerical
treatment of PDEs based on spline functions.

A renewed interest in spline methods has been stimulated in the last decade by the
success of isogeometric analysis. The large research activity around isogeometric
methods shows that splines yield a powerful tool to PDE discretizations. In this
general perspective, the progress of isogeometric analysis went hand in hand with
the formulation of new problems requiring new techniques to address them properly.
This gave rise to novel (spline) results in different areas of classical numerical
analysis, ranging from approximation theory to structured numerical linear algebra.
These developments motivated the topics of the summer school.

The first chapter “Foundations of Spline Theory: B-Splines, Spline Approxima-
tion, and Hierarchical Refinement” is written by us. It provides a comprehensive
and self-contained introduction to B-splines and their properties, discusses the
approximation power of spline spaces, and gives a review on hierarchical spline
bases.

The second chapter “Adaptive Multiscale Methods for the Numerical Treatment
of Systems of PDEs” by Angela Kunoth is devoted to numerical schemes based on
B-splines and B-spline-type wavelets as a particular multiresolution discretization
methodology, in the context of control problems.

The third chapter “Generalized Locally Toeplitz Sequences: A Spectral Anal-
ysis Tool for Discretized Differential Equations” by Carlo Garoni and Stefano
Serra-Capizzano presents the theory of generalized locally Toeplitz sequences, a
framework for computing and analyzing the spectral distribution of matrices arising
from the numerical discretization of differential equations.

The last chapter “Isogeometric Analysis: Mathematical and Implementational
Aspects, with Applications” by Thomas J.R. Hughes, Giancarlo Sangalli, and Mattia
Tani provides an overview of the mathematical properties of isogeometric analysis,
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vi Preface

discusses computationally efficient isogeometric algorithms, and presents some
isogeometric benchmark applications.

We express our deepest gratitude to all the people who have contributed to the
success of this C.I.M.E. summer school: the invited lecturers, the seminar and
contributed talk speakers, and the authors who have contributed to this C.I.M.E.
Foundation Subseries book. In addition, we thank all the participants, from 11
countries, that enthusiastically contributed to the success of the school. Last but not
least, we also thank C.I.M.E., in particular Elvira Mascolo (the C.I.M.E. director)
and Paolo Salani (the C.I.M.E. scientific secretary) for their continuous support in
the organization of the school.

Oslo, Norway Tom Lyche
Rome, Italy Carla Manni
Rome, Italy Hendrik Speleers
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Chapter 1
Foundations of Spline Theory: B-Splines,
Spline Approximation, and Hierarchical
Refinement

Tom Lyche, Carla Manni, and Hendrik Speleers

Abstract This chapter presents an overview of polynomial spline theory, with spe-
cial emphasis on the B-spline representation, spline approximation properties, and
hierarchical spline refinement. We start with the definition of B-splines by means
of a recurrence relation, and derive several of their most important properties. In
particular, we analyze the piecewise polynomial space they span. Then, we present
the construction of a suitable spline quasi-interpolant based on local integrals, in
order to show how well any function and its derivatives can be approximated in
a given spline space. Finally, we provide a unified treatment of recent results on
hierarchical splines. We especially focus on the so-called truncated hierarchical
B-splines and their main properties. Our presentation is mainly confined to the
univariate spline setting, but we also briefly address the multivariate setting via
the tensor-product construction and the multivariate extension of the hierarchical
approach.

1.1 Introduction

Splines, in the broad sense of the term, are functions consisting of pieces of smooth
functions glued together in a certain smooth way. Besides their theoretical interest,
they have application in several branches of the sciences including geometric
modeling, signal processing, data analysis, visualization, numerical simulation, and
probability, just to mention a few. There is a large variety of spline species, often
referred to as the zoo of splines. The most popular species is the one where the pieces
are algebraic polynomials and inter-smoothness is imposed by means of equality of
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2 T. Lyche et al.

derivatives up to a given order. This species will be the topic of the chapter. Several
other species can be found in [35, 45] and references therein.

To efficiently deal with splines, one needs a suitable basis for their representation.
B-splines turn out to be the most useful spline basis functions because they possess
several properties that are important from both theoretical and computational point
of view. The construction of B-splines is not confined to the algebraic polynomial
case but can be done for many species in the zoo of splines. As it is often the case
for important tools or concepts, B-splines have a long history in the sciences. They
were already used by Laplace in the early nineteenth century [33], and many of
their relevant properties were derived by Chakalov and Popoviciu in the 1930s; see
[10] and [37]. However, the modern B-spline theory roots in the seminal works
by Schoenberg; see [41, 42] and [15, 16]. There are several ways to define B-
splines, based on recurrence, differentiation, divided differences, etc. Each of those
definitions has certain advantages according to the problem one has to face. It
is impossible to trace all modern works on B-splines, but we refer the reader to
Schumaker’s book [45] for an extended bibliography on the topic also beyond the
polynomial setting.

This chapter provides an introduction to (polynomial) B-splines, starting from
their definition via a recurrence relation. Furthermore, we establish some spline
results of interest within the isogeometric analysis (IgA) paradigm. More precisely,
the chapter contains

– a self-contained overview of splines and B-splines;
– a constructive exploration of approximation properties of spline spaces;
– a discussion on adaptive spline representations based on hierarchical refinement.

There exists a huge amount of literature about the first two items including some
well-established books; see, e.g., [6, 26, 45] and references therein. The hierarchical
spline setting received only recently a lot of attention; see, e.g., [22, 51, 53]. The
novelties of the chapter can be essentially summarized as follows.

– Our introduction to B-splines differs somewhat from the standard presentations
of the topic. It is mainly based on properties of the dual polynomial functions in
the local Marsden identity.

– Our proof of the approximation properties of a given spline space relies on the
explicit construction of a spline quasi-interpolant based on local integrals. For
this quasi-interpolant we show error estimates of optimal order to any smooth
function and its derivatives.

– Our presentation of the hierarchical spline setting provides a rather complete and
unified treatment of the main properties of both the hierarchical and the truncated
hierarchical B-spline basis.

The chapter does not address the geometric modeling aspects of B-splines, explain-
ing why they form the mathematical core of current computer aided design (CAD)
systems. For this we refer the reader to the books [13, 27, 38].
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Our presentation is mainly confined to the univariate spline setting. Nevertheless,
this is the building block of the multivariate setting via the tensor-product construc-
tion. Tensor-product B-splines are currently the most common tool in CAD systems
and IgA. It is worth mentioning that there are also many other important extensions
of the univariate B-spline concepts to the multivariate setting, not restricted to a
tensor-product grid; see, for example, [31, 35] and references therein.

The remaining part of the chapter is divided into six sections. The next section
is devoted to the definition of B-splines and their main properties, including
differentiation and integration formulas, local representation of polynomials, and
local linear independence. In Sect. 1.3 we analyze the space spanned by a set of B-
splines, and we consider the representation of its elements, knot insertion, and the
stability of the B-spline basis. Cardinal B-splines, i.e., B-splines with uniform knots,
are of prominent interest in practical applications. They are addressed in Sect. 1.4
where, in particular, the evaluation of their inner products and uniform knot insertion
are discussed. In Sect. 1.5, after a general discussion about quasi-interpolants, we
present the construction of a new spline quasi-interpolant based on local integrals
and we use it to show the approximation properties of the considered spline space.
The hierarchical spline approach is the topic of Sect. 1.6, which is mainly devoted
to the construction of the truncated hierarchical B-spline basis and the derivation
of its main properties, including the so-called preservation of coefficients and the
construction of hierarchical quasi-interpolants. Finally, tensor-product B-splines
and their hierarchical extension are briefly discussed in Sect. 1.7.

1.2 B-Splines

In this section we introduce one of the most powerful tools in computer-aided
geometric design and approximation theory: B-spline functions (in short, B-
splines).1 They are piecewise polynomials with a certain global smoothness. The
positions where the pieces meet are known as knots.

1.2.1 Definition and Basic Properties

In order to define B-splines we need the concept of knot sequences.

Definition 1 A knot sequence ξ is a nondecreasing sequence of real numbers,

ξ := {ξi}mi=1 = {ξ1 ≤ ξ2 ≤ · · · ≤ ξm}, m ∈ N.

The elements ξi are called knots.

1The original meaning of the word “spline” is a flexible ruler used to draw curves, mainly in the
aircraft and shipbuilding industries. The “B” in B-splines stands for basis or basic.
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Provided that m ≥ p + 2 we can define B-splines of degree p over the knot-
sequence ξ .

Definition 2 Suppose for a nonnegative integer p and some integer j that ξj ≤
ξj+1 ≤ · · · ≤ ξj+p+1 are p + 2 real numbers taken from a knot sequence ξ . The
j -th B-spline Bj,p,ξ : R → R of degree p is identically zero if ξj+p+1 = ξj and
otherwise defined recursively by2

Bj,p,ξ (x) := x − ξj
ξj+p − ξj Bj,p−1,ξ (x)+ ξj+p+1 − x

ξj+p+1 − ξj+1
Bj+1,p−1,ξ (x), (1.1)

starting with

Bi,0,ξ (x) :=
{

1, if x ∈ [ξi , ξi+1),

0, otherwise.

Here we used the convention that fractions with zero denominator have value zero.

We start with some preliminary remarks.

• For degree 0, the B-spline Bj,0,ξ is simply the characteristic function of the
half open interval [ξj , ξj+1). This implies that a B-spline is continuous except
possibly at a knot ξ . We have Bj,p,ξ (ξ) = Bj,p,ξ (ξ+), where

x+ := lim
t→x
t>x

t, x− := lim
t→x
t<x

t, x ∈ R.

Thus a B-spline is right continuous, i.e., the value at a point x is obtained by
taking the limit from the right.

• We also use the notation

B[ξj , . . . , ξj+p+1] := Bj,p,ξ ,

showing explicitly on which knots the B-spline depends.

• We say that a knot has multiplicity μ if it occurs exactly μ times in the knot
sequence. A knot is called simple, double, triple, . . . if its multiplicity is equal
to 1, 2, 3, . . ., and a multiple knot in general.

2The recurrence relation is due to de Boor, Cox and Mansfield [4, 14]. However, it appears
already in works by Popoviciu and Chakalov in the 1930s; see [8] for an account of the early
history of splines. For the modern theory of splines we refer the reader to the seminal papers by
Schoenberg [41–43] and Curry/Schoenberg [15, 16]. In their works, B-splines were defined by
divided differences of truncated power functions.
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Example 1 A B-spline of degree 1 is also called a linear B-spline or a hat function.
The recurrence relation (1.1) takes the form

Bj,1,ξ (x) = x − ξj
ξj+1 − ξj Bj,0,ξ (x)+

ξj+2 − x
ξj+2 − ξj+1

Bj+1,0,ξ (x),

resulting in

Bj,1,ξ (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x − ξj
ξj+1 − ξj , if x ∈ [ξj , ξj+1),

ξj+2 − x
ξj+2 − ξj+1

, if x ∈ [ξj+1, ξj+2),

0, otherwise.

(1.2)

A linear B-spline is discontinuous at a double knot and continuous at a simple knot.

Example 2 A B-spline of degree 2 is also called a quadratic B-spline. Using
the recurrence relation (1.1), the three pieces of the quadratic B-spline Bj,2,ξ are
given by

Bj,2,ξ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − ξj )2
(ξj+2 − ξj )(ξj+1 − ξj ) , if x ∈ [ξj , ξj+1),

(x − ξj )(ξj+2 − x)
(ξj+2 − ξj )(ξj+2 − ξj+1)

+ (x − ξj+1)(ξj+3 − x)
(ξj+2 − ξj+1)(ξj+3 − ξj+1)

, if x ∈ [ξj+1, ξj+2),

(ξj+3 − x)2
(ξj+3 − ξj+1)(ξj+3 − ξj+2)

, if x ∈ [ξj+2, ξj+3),

0, otherwise.

(1.3)

Example 3 Figure 1.1 illustrates several sets of B-splines of degree p = 1, 2, 3.
The same knot sequence is chosen for the different degrees, with only simple knots.

Fig. 1.1 Several sets of B-splines of degree p = 1, 2, 3. The knot positions are visualized by
vertical dotted lines. (a) p = 1. (b) p = 2. (c) p = 3
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The general explicit expression for a B-spline quickly becomes complicated.
Applying the recurrence relation repeatedly we find

Bj,p,ξ (x) =
j+p∑
i=j
B
{i}
j,p,ξ

(x)Bi,0,ξ (x), p ≥ 0, (1.4)

where each B{i}
j,p,ξ

is a polynomial of degree p, assumed to be zero if ξi = ξi+1.
Note that if ξi = ξi+1 then Bi,0,ξ = 0 and the corresponding polynomial piece is
not used. In particular, for the nontrivial cases we have

B
{j}
j,0,ξ (x) = 1, B

{j}
j,1,ξ (x) =

x − ξj
ξj+1 − ξj , B

{j+1}
j,1,ξ (x) =

ξj+2 − x
ξj+2 − ξj+1

.

Furthermore, for the nontrivial cases it follows from Definition 2 that the first and
last polynomial pieces in (1.4) are given by

B
{j}
j,p,ξ

(x) = (x − ξj )p
/ p∏
i=1

(ξj+i − ξj ),

B
{j+p}
j,p,ξ

(x) = (ξj+p+1 − x)p
/ p∏
i=1

(ξj+p+1 − ξj+i ).
(1.5)

Using induction on the recurrence relation (1.1), we deduce immediately the
following basic properties of a B-spline.

• Local Support. A B-spline is locally supported on the interval given by the
extreme knots used in its definition. More precisely,

Bj,p,ξ (x) = 0, x /∈ [ξj , ξj+p+1). (1.6)

• Nonnegativity. A B-spline is nonnegative everywhere, and positive inside its
support, i.e.,

Bj,p,ξ (x) ≥ 0, x ∈ R, and Bj,p,ξ (x) > 0, x ∈ (ξj , ξj+p+1). (1.7)

• Piecewise Structure. A B-spline has a piecewise polynomial structure, i.e.,

B
{i}
j,p,ξ

∈ Pp, i = j, . . . , j + p, (1.8)

where Pp denotes the space of algebraic polynomials of degree less than or equal
to p.
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• Translation and Scaling Invariance. A B-spline is invariant under a translation
and/or scaling transformation of its knot sequence, i.e.,

Bj,p,αξ+β(αx + β) = Bj,p,ξ (x), α, β ∈ R, α �= 0, (1.9)

where αξ + β := {αξi + β}i .
Further properties will be considered in the next sections.

1.2.2 Dual Polynomials

To each B-spline Bj,p,ξ of degree p, there corresponds a polynomial ψj,p,ξ of
degree p with roots at the interior knots of the B-spline. We define ψj,0,ξ := 1
and

ψj,p,ξ (y) := (y − ξj+1) · · · (y − ξj+p), y ∈ R, p ∈ N. (1.10)

This polynomial is called dual polynomial. Many of the B-spline properties can
be proved in an elegant way by exploiting a recurrence relation for these dual
polynomials.

Theorem 1 For p ∈ N, x, y ∈ R and ξj+p > ξj , we have the dual recurrence
relation

(y − x)ψj,p−1,ξ (y) = x − ξj
ξj+p − ξj ψj,p,ξ (y)+

ξj+p − x
ξj+p − ξj ψj−1,p,ξ (y), (1.11)

and the dual difference formula

ψj,p−1,ξ (y) = ψj−1,p,ξ (y)

ξj+p − ξj − ψj,p,ξ (y)

ξj+p − ξj . (1.12)

Proof For fixed y ∈ R let us define the function �y : R → R given by �y(x) :=
y − x. By linear interpolation, we have

�y(x) = x − ξj
ξj+p − ξj �y(ξj+p)+

ξj+p − x
ξj+p − ξj �y(ξj ).

By multiplying both sides with ψj,p−1,ξ (y) we obtain (1.11). Moreover, (1.12)
follows from (1.11) by differentiating with respect to x. ��
Proposition 1 The r-th derivative of the dual polynomialψj,p,ξ for 0 ≤ r ≤ p can
be bounded as follows:

|Drψj,p,ξ (y)| ≤ p!
(p − r)! (ξj+p+1 − ξj )p−r , ξj ≤ y ≤ ξj+p+1. (1.13)
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Moreover,

|Drψj,p,ξ (y)| ≤ p!
(p − r)! (ξj+p − ξj+1)

p−r , ξj+1 ≤ y ≤ ξj+p. (1.14)

Here we define 00 := 1 if r = p and ξj+p = ξj+1.

Proof Clearly (1.13) holds for all p ∈ N0 if r = 0. Using induction on r, p and the
product rule for differentiation, we get

|Drψj,p,ξ (y)| = |Dr(ψj,p−1,ξ (y)(y − ξj+p))|
= |(Drψj,p−1,ξ (y))(y − ξj+p)+ rDr−1ψj,p−1,ξ (y)|

≤
(

(p − 1)!
(p − 1− r)! + r

(p − 1)!
(p − r)!

)
(ξj+p+1 − ξj )p−r ,

and (1.13) follows. The proof of (1.14) is similar. ��

1.2.3 Local Marsden Identity and Linear Independence

In this and the following sections (unless specified otherwise) we will extend the
knots ξj ≤ · · · ≤ ξj+p+1 of Bj,p,ξ by defining p extra knots at each end, and we
will assume

ξ := {ξj−p ≤ · · · ≤ ξj−1 < ξj ≤ · · · ≤ ξj+p+1 < ξj+p+2 ≤ · · · ≤ ξj+2p+1}.
(1.15)

These extra knots can be defined in any way we like. One possibility is

ξj−p = · · · = ξj−1 := ξj − 1, ξj+p+1 + 1 =: ξj+p+2 = · · · = ξj+2p+1.

(1.16)

On such a knot sequence 2p + 1 B-splines Bi,p,ξ = B[ξi , . . . , ξi+p+1], i = j −
p, . . . , j + p are well defined.

The following identity was first proved by Marsden [36] and simplifies many
dealings with B-splines.

Theorem 2 (Local Marsden Identity) For j ≤ m ≤ j + p and ξm < ξm+1, we
have

(y − x)p =
m∑

i=m−p
ψi,p,ξ (y)Bi,p,ξ (x), x ∈ [ξm, ξm+1), y ∈ R. (1.17)

If B{m}
i,p,ξ

is the polynomial which is equal to Bi,p,ξ (x) for x ∈ [ξm, ξm+1) then

(y − x)p =
m∑

i=m−p
ψi,p,ξ (y)B

{m}
i,p,ξ

(x), x, y ∈ R. (1.18)



1 Foundations of Spline Theory 9

Proof Suppose x ∈ [ξm, ξm+1). The equality (1.17) can be proved by induction. It
is clearly true for p = 0. Let us now assume it holds for degree p − 1. Then, by
means of the dual recurrence (1.11) and the B-spline recurrence relation we obtain

(y − x)p = (y − x)(y − x)p−1 = (y − x)
m∑

i=m−p+1

ψi,p−1,ξ (y)Bi,p−1,ξ (x)

=
m∑

i=m−p+1

(
x − ξi
ξi+p − ξi ψi,p,ξ (y)+

ξi+p − x
ξi+p − ξi ψi−1,p,ξ (y)

)
Bi,p−1,ξ (x)

=
m∑

i=m−p

(
x − ξi
ξi+p − ξi Bi,p−1,ξ (x)+ ξi+p+1 − x

ξi+p+1 − ξi+1
Bi+1,p−1,ξ (x)

)

× ψi,p,ξ (y)

=
m∑

i=m−p
ψi,p,ξ (y)Bi,p,ξ (x).

Here we used that x−ξi
ξi+p−ξi Bi,p−1,ξ (x) = 0 for i = m− p,m+ 1. ��

The local Marsden identity immediately leads to the following properties, where
we suppose ξm < ξm+1 for some j ≤ m ≤ j + p.

• Local Representation of Monomials. We have for p ≥ k,

xk =
m∑

i=m−p

(
(−1)k

k!
p!D

p−kψi,p,ξ (0)
)
Bi,p,ξ (x), x ∈ [ξm, ξm+1). (1.19)

Proof Fix x ∈ [ξm, ξm+1). Differentiating p−k times with respect to y in (1.18)
results in

(y − x)k
k! =

m∑
i=m−p

(
1

p!D
p−kψi,p,ξ (y)

)
Bi,p,ξ (x), y ∈ R, (1.20)

for k = 0, 1, . . . , p. Setting y = 0 in (1.20) results in (1.19). ��
• Local Partition of Unity. Taking k = 0 in (1.19) gives

m∑
i=m−p

Bi,p,ξ (x) = 1, x ∈ [ξm, ξm+1). (1.21)
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• Local Linear Independence. The two sets {Bi,p,ξ }mi=m−p and {ψi,p,ξ }mi=m−p
form both a basis for the polynomial space Pp on any subset of [ξm, ξm+1)

containing at least p + 1 distinct points.

Proof Let A be a subset of [ξm, ξm+1) containing at least p + 1 distinct points.
From (1.20) we see that onA every polynomial of degree at most p can be written
as a linear combination of the p+1 polynomialsB{m}

i,p,ξ
, i = m−p, . . . ,m. Since

the dimension of the space Pp on A is p+ 1, these polynomials must be linearly
independent and a basis. The result for {ψi,p,ξ }mi=m−p follows by symmetry. ��

1.2.4 Smoothness, Differentiation and Integration

The derivative of a B-spline can be expressed by means of a simple difference
formula. In the following, we denote the right derivative by D+ and the left
derivative by D−.

Theorem 3 (Differentiation) We have

D+Bj,p,ξ (x) = p
(
Bj,p−1,ξ (x)

ξj+p − ξj − Bj+1,p−1,ξ (x)

ξj+p+1 − ξj+1

)
, p ≥ 1, (1.22)

where fractions with zero denominator have value zero.

Proof If ξj+p+1 = ξj then both sides of (1.22) are zero, so we can assume
ξj+p+1 > ξj . We continue to use the extra knots (1.15). If x < ξj or x ≥ ξj+p+1
then both sides of (1.22) are zero. Otherwise x ∈ [ξm, ξm+1) for some m with
j ≤ m ≤ j +p and it is enough to prove (1.22) for such an interval. Differentiating
both sides of (1.17) with respect to x gives

− p(y − x)p−1 =
m∑

i=m−p
DBi,p,ξ (x)ψi,p(y), x ∈ [ξm, ξm+1). (1.23)

On the other hand, using the local Marsden identity (1.17) for degree p − 1 and the
difference formula for dual polynomials (1.12) results in

−p(y − x)p−1 = −p
m∑

i=m−p+1

ψi,p−1(y)Bi,p−1,ξ (x)

= p
m∑

i=m−p+1

(
ψi,p(y)

ξi+p − ξi −
ψi−1,p(y)

ξi+p − ξi
)
Bi,p−1,ξ (x)

=
m∑

i=m−p
p

(
Bi,p−1,ξ (x)

ξi+p − ξi −
Bi+1,p−1,ξ (x)

ξi+p+1 − ξi+1

)
ψi,p(y).
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When comparing this with (1.23) and using the linear independence of the dual
polynomials, it follows that (1.22) holds for i = m− p, . . . ,m. In particular, since
m− p ≤ j ≤ m, (1.22) holds for i = j . ��
Example 4 The differentiation formula (1.22) for p = 2 together with the
expression (1.2) immediately gives the piecewise form of the derivative of the
quadratic B-spline Bj,2,ξ :

D+Bj,2,ξ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(x − ξj )
(ξj+2 − ξj )(ξj+1 − ξj ) , if x ∈ [ξj , ξj+1),

2(ξj+2 − x)
(ξj+2 − ξj )(ξj+2 − ξj+1)

− 2(x − ξj+1)

(ξj+3 − ξj+1)(ξj+2 − ξj+1)
, if x ∈ [ξj+1, ξj+2),

− 2(ξj+3 − x)
(ξj+3 − ξj+1)(ξj+3 − ξj+2)

, if x ∈ [ξj+2, ξj+3),

0, otherwise.

This is in agreement with taking the derivative of the piecewise expression (1.3) of
Bj,2,ξ given in Example 2.

Proposition 2 The r-th derivative of the B-spline Bj,p,ξ for 0 ≤ r ≤ p can be
bounded as follows. For any x ∈ [ξm, ξm+1) with j ≤ m ≤ j + p we have

|DrBj,p,ξ (x)| ≤ 2r
p!

(p − r)!
p∏

k=p−r+1

1

Δm,k
, (1.24)

where

Δm,k := min
m−k+1≤i≤mhi,k, hi,k := ξi+k − ξi , k = 1, . . . , p. (1.25)

Proof This holds for r = 0 because of the nonnegativity of Bj,p,ξ and the partition
of unity property (1.21). By the differentiation formula (1.22) and the local support
property (1.6) we have

DrBj,p,ξ (x)

= p

⎧⎪⎪⎨
⎪⎪⎩
−Dr−1Bj+1,p−1,ξ (x)/hj+1,p, if m = j + p,
Dr−1Bj,p−1,ξ (x)/hj,p −Dr−1Bj+1,p−1,ξ(x)/hj+1,p, if j < m < j + p,
Dr−1Bj,p−1,ξ (x)/hj,p, if m = j.
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It follows that

|DrBj,p,ξ (x)| ≤ 2p max
m−p+1≤i≤m |D

r−1Bi,p−1,ξ (x)|/Δm,p,

and by induction on r we obtain (1.24). ��
Note that the upper bound in (1.24) is well defined sinceΔm,k ≥ ξm+1−ξm > 0.

Theorem 4 (Smoothness) If ξ is a knot of Bj,p,ξ of multiplicity μ ≤ p + 1, then

Bj,p,ξ ∈ Cp−μ(ξ), (1.26)

i.e., its derivatives of order 0, 1, . . . , p − μ are continuous at ξ .

Proof Suppose ξ is a knot of Bj,p,ξ of multiplicity μ. We first consider the
smoothness property when μ = p+ 1. For x ∈ [ξj , ξj+p+1) it follows immediately
from (1.4) and (1.5) that

Bj,p,ξ (x) = (x − ξj )p
(ξj+p+1 − ξj )p , ξj < ξj+1 = · · · = ξj+p+1, (1.27)

Bj,p,ξ (x) = (ξj+p+1 − x)p
(ξj+p+1 − ξj )p , ξj = · · · = ξj+p < ξj+p+1. (1.28)

These two B-splines are discontinuous with a jump of absolute size one at the
multiple knot showing the smoothness property for μ = p + 1.

Let us now consider the case where Bj,p,ξ has an interior knot of multiplicity
equal to μ = p, i.e., ξj < ξj+1 = · · · = ξj+p < ξj+p+1. For x ∈ [ξj , ξj+p+1) it
follows from (1.4) and (1.5) that

Bj,p,ξ (x) = (x − ξj )p
(ξj+p − ξj )p Bj,0,ξ (x)+

(ξj+p+1 − x)p
(ξj+p+1 − ξj+1)p

Bj+p,0,ξ (x). (1.29)

The two nontrivial pieces have both value one at the center knot ξj+1 = ξj+p, and
Bj,p,ξ is continuous on R. Moreover, the first derivative has a nonzero jump at the
center knot.

For the remaining cases we use induction on p to show that Bj,p,ξ ∈ Cp−μ(ξ).
The case p = 1 follows from Example 1. Suppose for some p ≥ 2 that Bj,p−1,ξ ∈
Cp−1−μ(ξ) at a knot ξ of multiplicityμ. For the multiplicity p case ξ = ξj = · · · =
ξj+p−1 < ξj+p ≤ ξj+p+1 we use the recurrence relation

Bj,p,ξ (x) = x − ξj
ξj+p − ξj Bj,p−1,ξ (x)+ ξj+p+1 − x

ξj+p+1 − ξj+1
Bj+1,p−1,ξ (x).

The first term vanishes at x = ξ = ξj . Since Bj+1,p−1,ξ has a knot of multiplicity
p − 1 at ξ , it follows from the induction hypothesis that it is continuous there.
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We conclude that Bj,p,ξ is continuous at ξ . The case where the right end knot of
Bj,p,ξ has multiplicity p is handled similarly. Finally, if μ ≤ p− 1 then both terms
in the differentiation formula (1.22) have a knot of multiplicity at most μ at ξ and
by the induction hypothesis we obtain D+Bj,p,ξ ∈ Cp−1−μ(ξ). Moreover, by the
recurrence relation and the induction hypothesis it follows that Bj,p,ξ is continuous
at ξ , and so we also conclude that Bj,p,ξ ∈ Cp−μ(ξ) if μ ≤ p − 1. This completes
the proof. ��

The B-spline Bj,p,ξ is supported on the interval [ξj , ξj+p+1]. Hence, Theorem 4
implies that Bj,p,ξ is continuous on R whenever ξj+p > ξj and ξj+p+1 > ξj+1.
Similarly, Bj,p,ξ is Cr -continuous on R whenever ξj+p−r+i > ξj+i for each i =
0, . . . , r + 1 and −1 ≤ r < p.

Theorem 5 (Integration) We have

γj,p,ξ :=
∫ ξj+p+1

ξj

Bj,p,ξ (x) dx = ξj+p+1 − ξj
p + 1

. (1.30)

Proof This time we define p + 1 extra knots at each end, and we assume

ξ := {ξj−p−1 = · · · = ξj−1 < ξj ≤ · · · ≤ ξj+p+1 < ξj+p+2 = · · · = ξj+2p+2}.

On this knot sequence we consider p+1 B-splinesBi,p+1,ξ , i = j−p−1, . . . , j−1
of degree p + 1. From Theorem 4 we know that these B-splines are continuous on
R. Therefore, we get for i = j − p − 1, . . . , j − 1,

0 = Bi,p+1,ξ (ξi+p+2)− Bi,p+1,ξ (ξi) =
∫ ξi+p+2

ξi

D+Bi,p+1,ξ (x) dx = Ei − Ei+1,

where by the local support and the differentiation formula (1.22),

Ei := p + 1

ξi+p+1 − ξi
∫ ξi+p+1

ξi

Bi,p,ξ (x) dx, i = j − p − 1, . . . , j.

This means that Ej = Ej−1 = · · · = Ej−p−1. Moreover, since ξj−p−1 = · · · =
ξj−1, we obtain from (1.28) that

Ej−p−1 = p + 1

ξj − ξj−p−1

∫ ξj

ξj−p−1

(ξj − x)p
(ξj − ξj−p−1)p

dx = 1,

and the integration formula (1.30) follows. ��
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1.3 Splines

A spline function (in short, spline) is a linear combination of B-splines defined on
a given knot sequence with a fixed degree. In this section we analyze the space of
splines and discuss several of their properties.

1.3.1 The Spline Space Sp,ξ and Some Spline Properties

Suppose for integers n > p ≥ 0 that a knot sequence

ξ := {ξi}n+p+1
i=1 = {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1}, n ∈ N, p ∈ N0,

is given. This knot sequence allows us to define a set of n B-splines of degree p,
namely

{B1,p,ξ , . . . , Bn,p,ξ }. (1.31)

We consider the space

Sp,ξ :=
{
s : [ξp+1, ξn+1] → R : s =

n∑
j=1

cjBj,p,ξ , cj ∈ R

}
. (1.32)

This is the space of splines spanned by the B-splines in (1.31) over the interval
[ξp+1, ξn+1], which is called the basic interval.

We now introduce some terminology to identify certain properties of knot
sequences which are crucial in the study of the space (1.32).

• A knot sequence ξ is called (p + 1)-regular if ξj < ξj+p+1 for j = 1, . . . , n.
By the local support (1.6) such a knot sequence ensures that all the B-splines in
(1.31) are not identically zero.

• A knot sequence ξ is called (p+1)-basic if it is (p+1)-regular with ξp+1 < ξp+2
and ξn < ξn+1. As we will show later, the B-splines in (1.31) defined on a (p+1)-
basic knot sequence are linearly independent on the basic interval [ξp+1, ξn+1].

• A knot sequence ξ is called (p + 1)-open on an interval [a, b] if it is (p + 1)-
regular and it has end knots of multiplicity p + 1, i.e.,

a := ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p+1 =: b.
(1.33)

This sequence is often used in practice. In particular, it turns out to be natural
to construct open curves, clamped at two given points. Note that (p + 1)-open
implies (p + 1)-basic.

Some further preliminary remarks are in order here.
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• We consider B-splines on a closed basic interval [ξp+1, ξn+1]. In order to avoid
the asymmetry at the right endpoint we define the B-splines to be left continuous
at the right endpoint, i.e., their value at ξn+1 is obtained by taking the limit from
the left:

Bj,p,ξ (ξn+1) := lim
x→ξn+1
x<ξn+1

Bj,p,ξ (x), j = 1, . . . , n. (1.34)

Note that for a (p + 1)-open knot sequence the end condition (1.34) means that
Bn,p,ξ (ξn+p+1) = 1 and (1.6) has to be modified for this B-spline.

• We define a multiplicity function μξ : R→ N0 given by μξ (ξi) = μi if ξi ∈ ξ

occurs exactly μi ≥ 1 times in ξ , and μξ (x) = 0 if x /∈ ξ . If ξ and ξ̃ are two

knot sequences we say that ξ ⊆ ξ̃ if μξ (x) ≤ μξ̃
(x) for all x ∈ R.

• Without loss of generality, we can always assume that the end knots have
multiplicity p + 1. If this is not the case, then we can add extra knots at the
ends and assume the extra B-splines to have coefficients zero. This observation
simplifies many proofs.

Example 5 Figure 1.2 illustrates all the B-splines of degreep = 3 on a (p+1)-open
knot sequence, where the interior knots are simple.

From the properties of B-splines, we immediately conclude the following
properties of the spline representation in (1.32).

• Smoothness. If ξ is a knot of multiplicity μ then s ∈ Cr(ξ) for any s ∈ Sp,ξ ,
where r + μ = p. This follows from the smoothness property of the B-splines
(Theorem 4). The relation between smoothness, multiplicity and degree is as
follows:

“smoothness+multiplicity = degree”. (1.35)

Fig. 1.2 The B-spline basis of degree p = 3 on a (p+ 1)-open knot sequence. The knot positions
are visualized by vertical dotted lines
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• Local Support. The local support (1.6) of the B-splines implies

n∑
j=1

cjBj,p,ξ (x) =
m∑

j=m−p
cjBj,p,ξ (x), x ∈ [ξm, ξm+1), p + 1 ≤ m ≤ n,

(1.36)

and if ξm < ξm+p then

n∑
j=1

cjBj,p,ξ (ξm) =
m−1∑
j=m−p

cjBj,p,ξ (ξm), p + 1 ≤ m ≤ n+ 1. (1.37)

• Minimal Support. From the smoothness properties it can be proved that if the
support of s ∈ Sp,ξ is a proper subset of [ξj , ξj+p+1] for some j then s = 0.
Therefore, the B-splines have minimal support.

• Coefficient Recurrence. For x ∈ [ξp+1, ξn+1], by the recurrence relation (1.1)
we have

n∑
j=1

cjBj,p,ξ (x) =
n∑
j=2

čj (x)Bj,p−1,ξ (x), (1.38)

where

čj (x) := x − ξj
ξj+p − ξj cj +

ξj+p − x
ξj+p − ξj cj−1, (1.39)

and čj (x)Bj,p−1,ξ (x) = 0 if ξj+p = ξj .
• Differentiation. For x ∈ [ξp+1, ξn+1], by the differentiation formula (1.22) we

have

D+
( n∑
j=1

cjBj,p,ξ (x)

)
=

n∑
j=2

c
(1)
j Bj,p−1,ξ (x), p ≥ 1, (1.40)

where

c
(1)
j := p

(
cj − cj−1

ξj+p − ξj
)
, (1.41)

and fractions with zero denominator have value zero.

• Linear Independence. If ξ is (p + 1)-basic, then the B-splines in (1.31) are
linearly independent on the basic interval. Thus, the spline space Sp,ξ is a vector
space of dimension n.
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Proof We must show that if s(x) =∑n
j=1 cjBj,p,ξ (x) = 0 for x ∈ [ξp+1, ξn+1]

then cj = 0 for all j . Let us fix 1 ≤ j ≤ n. Since ξ is (p + 1)-regular, there
is an integer mj with j ≤ mj ≤ j + p such that ξmj < ξmj+1. Moreover, the
assumptions ξp+1 < ξp+2 and ξn < ξn+1 guarantee that [ξmj , ξmj+1) can be
chosen in the basic interval. From the local support property (1.36) we know

s(x) =
mj∑

i=mj−p
ciBi,p,ξ (x) = 0, x ∈ [ξmj , ξmj+1).

The local linear independence property (see Sect. 1.2.3) implies cmj−p = · · · =
cmj = 0, and in particular cj = 0. ��

1.3.2 The Piecewise Polynomial Space Sr
p(Δ)

We now prove that the spline space Sp,ξ is nothing else than a space of piecewise
polynomials of degree p defined by a given sequence of break points and by some
prescribed smoothness. The set of knots ξ must be suitably selected according to
the break points and the smoothness conditions. Therefore, the B-splines are a basis
of such a space of piecewise polynomials.

Let Δ be a sequence of distinct real numbers,

Δ := {η0 < η1 < · · · < η�+1}.

The elements in Δ are called break points. Moreover, let r := (r1, . . . , r�) be a
vector of integers such that −1 ≤ ri ≤ p for i = 1, . . . , �. The space S

r
p(Δ)

of piecewise polynomials of degree p with smoothness r over the partition Δ is
defined by

S
r
p(Δ) :=

{
s : [η0,η�+1] → R : s ∈ Pp([ηi, ηi+1)), i = 0, . . . , �− 1,

s ∈ Pp([η�, η�+1]), s ∈ Cri (ηi), i = 1, . . . , �
}
.

(1.42)

Suppose that s{i} ∈ Pp is the polynomial equal to the restriction of a given
function s ∈ S

r
p(Δ) to the interval [ηi, ηi+1), i = 0, . . . , �. Since s ∈ Cri (ηi),

we have

s{i}(x)− s{i−1}(x) =
p∑

j=ri+1

ci,j (x − ηi)j ,

for some coefficients ci,j . It follows that Sr
p(Δ) is spanned by the set of functions

{
1, x, . . . , xp, (x − η1)

r1+1
+ , . . . , (x − η1)

p
+, . . . , (x − η�)r�+1

+ , . . . , (x − η�)p+
}
,

(1.43)



18 T. Lyche et al.

where the truncated power function (·)p+ is defined by

(x)
p
+ :=

{
xp, x > 0,

0, x < 0,
(1.44)

and the value at zero is defined by taking the right limit.
It is easy to see that the functions in (1.43) are linearly independent. Indeed, let

s(x) :=
p∑
j=0

c0,j x
j +

�∑
i=1

p∑
j=ri+1

ci,j (x − ηi)j+ = 0, x ∈ [η0, η�+1].

On [η0, η1) we have s(x) =∑p
j=0 c0,j x

j and it follows that c0,0 = · · · = c0,p = 0.
Suppose for some 1 ≤ k ≤ � that ci,j = 0 for i < k. Then, on [ηk, ηk+1) we have
s(x) =∑p

j=rk+1 ck,j (x − ηk)j = 0 showing that all ck,j = 0.
This implies that the set of functions in (1.43) is a basis for Sr

p(Δ), the so-called
truncated power basis. As a consequence,

dim(Sr
p(Δ)) = p + 1+

�∑
i=1

(p − ri ).

The next theorem shows that the set of B-splines in (1.31) defined over a specific
knot sequence ξ forms an alternative basis for Sr

p(Δ). This was first proved by Curry
and Schoenberg in [16].

Theorem 6 (Characterization of Spline Space) The piecewise polynomial space
S

r
p(Δ) is characterized in terms of B-splines by

S
r
p(Δ) = Sp,ξ ,

where the knot sequence ξ := {ξi}n+p+1
i=1 with n := dim(Sr

p(Δ)) is constructed such
that

ξ1 ≤ · · · ≤ ξp+1 := η0, η�+1 =: ξn+1 ≤ · · · ≤ ξn+p+1,

and

ξp+2, . . . , ξn :=
p−r1︷ ︸︸ ︷

η1, . . . , η1, . . . ,

p−r�︷ ︸︸ ︷
η�, . . . , η� .

Proof From the piecewise polynomial and smoothness properties of B-splines
it follows that the B-spline space Sp,ξ is a subspace of S

r
p(Δ). Moreover, the

constructed knot sequence ξ is (p + 1)-basic, so dim(Sp,ξ ) = n by the linear
independence property of B-splines. This implies that Sr

p(Δ) = Sp,ξ . ��
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Example 6 Consider Δ := {η0 < η1 < η2 < η3} and the space S
r
3(Δ) with r =

(r1, r2) = (2, 1). It follows from Theorem 6 that Sr
3(Δ) = S3,ξ , where

ξ = {ξi}7+3+1
i=1 = {η0 = η0 = η0 = η0 < η1 < η2 = η2 < η3 = η3 = η3 = η3}.

This knot sequence is 4-open.

Finally, we give a characterization for the space spanned by the r-th derivatives
of B-splines for 0 ≤ r ≤ p, i.e.,

Dr+Sp,ξ :=
{
s : [ξp+1, ξn+1] → R : s = Dr+

( n∑
j=1

cjBj,p,ξ

)
, cj ∈ R

}
.

Theorem 7 (Characterization of Derivative Spline Space) Given a knot
sequence ξ := {ξi}n+p+1

i=1 , we have for 0 ≤ r ≤ p,
Dr+Sp,ξ = Sp−r,ξr ,

where ξ r := {ξi}n+p+1−r
i=r+1 .

Proof The result is obvious for r = 0. Let us now consider the case r = 1, for
which we note that

{B1,p−1,ξ1
, . . . , Bn−1,p−1,ξ1

} = {B2,p−1,ξ , . . . , Bn,p−1,ξ }.

By the differentiation formula (1.40) it is clear that

D+
( n∑
j=1

cjBj,p,ξ

)
= p

n∑
j=2

(
cj − cj−1

ξj+p − ξj
)
Bj,p−1,ξ ∈ Sp−1,ξ1

.

On the other hand, suppose s ∈ Sp−1,ξ1
, represented as s = ∑n

j=2 djBj,p−1,ξ .

Then, by using again the differentiation formula, we can write s = D+
(∑n

j=1 cj

Bj,p,ξ
)
, where c1 can be any real number and

cj = cj−1 + ξj+p − ξj
p

dj , j = 2, . . . , n.

For r > 1 we use the relationDr+ = D+Dr−1+ . ��
By combining Theorems 6 and 7 it follows that for 0 ≤ r ≤ p,

S
r−r
p−r (Δ) = Dr+Sp,ξ ,

where r − r := (
max(r1 − r,−1), . . . ,max(r� − r,−1)

)
and the knot sequence ξ

is constructed as in Theorem 6.
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1.3.3 B-Spline Representation of Polynomials

Polynomials can be represented in terms of B-splines of at least the same degree.
We now derive an explicit expression for their B-spline coefficients by using the
dual polynomials and the (local) Marsden identity.

Theorem 8 (Marsden Identity) We have

(y − x)p =
n∑
j=1

ψj,p,ξ (y)Bj,p,ξ (x), x ∈ [ξp+1, ξn+1], y ∈ R, (1.45)

where ψj,p,ξ (y) := (y − ξj+1) · · · (y − ξj+p) is the polynomial of degree p that is
dual to Bj,p,ξ .

Proof This follows immediately from the local version (1.17). Indeed, if x ∈
[ξp+1, ξn+1) then x ∈ [ξm, ξm+1) for some p + 1 ≤ m ≤ n, and by the local
support property (1.36) we get

(y − x)p =
m∑

j=m−p
ψj,p,ξ (y)Bj,p,ξ (x) =

n∑
j=1

ψj,p,ξ (y)Bj,p,ξ (x).

Taking into account the left continuity of B-splines at the endpoint ξn+1, see (1.34),
we arrive at the Marsden identity (1.45). ��

Differentiating p − k times with respect to y in (1.45) results in the following
formula.

Corollary 1 For k = 0, 1, . . . , p we have

(y − x)k
k! =

n∑
j=1

(
1

p!D
p−kψj,p,ξ (y)

)
Bj,p,ξ (x), x ∈ [ξp+1, ξn+1], y ∈ R.

(1.46)

Corollary 1 immediately leads to the following properties.

• Representation of Monomials. For k = 0, 1, . . . , p we have

xk =
n∑
j=1

ξ
∗,k
j,p,ξ

Bj,p,ξ (x), x ∈ [ξp+1, ξn+1], (1.47)

where

ξ
∗,k
j,p,ξ

:= (−1)k
k!
p!D

p−kψj,p,ξ (0). (1.48)

This follows from (1.46) with y = 0.
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• Partition of Unity. Taking k = 0 in (1.47) gives

n∑
j=1

Bj,p,ξ (x) = 1, x ∈ [ξp+1, ξn+1]. (1.49)

Since the B-splines are nonnegative it follows that they form a nonnegative
partition of unity on [ξp+1, ξn+1].

• Greville Points. Taking k = 1 in (1.47) gives for p ≥ 1,

x =
n∑
j=1

ξ∗j,p,ξBj,p,ξ (x), x ∈ [ξp+1, ξn+1], (1.50)

where

ξ∗j,p,ξ := ξ∗,1j,p,ξ =
ξj+1 + · · · + ξj+p

p
. (1.51)

The number ξ∗
j,p,ξ

is called Greville point.3 It is also known as knot average or
node.

Example 7 For p = 3 Eq. (1.47) gives

1 =
n∑
j=1

Bj,3,ξ (x),

x =
n∑
j=1

ξj+1 + ξj+2 + ξj+3

3
Bj,3,ξ (x),

x2 =
n∑
j=1

ξj+1ξj+2 + ξj+1ξj+3 + ξj+2ξj+3

3
Bj,3,ξ (x),

x3 =
n∑
j=1

ξj+1ξj+2ξj+3 Bj,3,ξ (x).

We finally present an expression for the B-spline coefficients of a general
polynomial.

3An explicit expression of (1.51) was given by Greville in [24]. According to Schoenberg [43],
Greville reviewed the paper [43] introducing some elegant simplifications.
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Proposition 3 (Representation of Polynomials) Any polynomial g of degree p
can be represented as

g(x) =
n∑
j=1

Λj,p,ξ (g)Bj,p,ξ (x), x ∈ [ξp+1, ξn+1], (1.52)

where

Λj,p,ξ (g) := 1

p!
p∑
r=0

(−1)p−r Drψj,p,ξ (τj )Dp−rg(τj ), τj ∈ R. (1.53)

Proof The polynomial g can be represented in Taylor form (1.95) as

g(x) =
p∑
r=0

(x − τj )p−r
(p − r)! D

p−r g(τj ), τj ∈ R.

The result follows when we apply (1.46) with k = p − r . ��
Note that, if τj is a root of ψj of multiplicity μj then Drψi(τj ) = 0, r =

0, 1, . . . , μj − 1 and (1.53) becomes

Λj,p,ξ (g) = 1

p!
p∑

r=μj
(−1)p−r Drψj,p,ξ (τj )Dp−rg(τj ), τj ∈ R. (1.54)

Example 8 The polynomial g(x) = ax2 + bx + c can be represented in terms of
quadratic B-splines:

ax2 + bx + c =
n∑
j=1

cj Bj,2,ξ (x).

From (1.52)–(1.53) with ψj,2,ξ (y) := (y − ξj+1)(y − ξj+2), we obtain that

cj = Λj,2,ξ (g) = 1

2

[
(τj − ξj+1)(τj − ξj+2)2a

− (2τj − ξj+1 − ξj+2)(2aτj + b)
+ 2(aτ 2

j + bτj + c)
]

= a ξj+1ξj+2 + b ξj+1 + ξj+2

2
+ c.
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1.3.4 B-Spline Representation of Splines

In the previous section we have derived an explicit expression for the B-spline
coefficients of polynomials; see (1.52). The next theorem extends this result by
providing an explicit expression for the B-spline coefficients of any spline in Sp,ξ .

Theorem 9 (Representation of B-Spline Coefficients) Any element s in the space
Sp,ξ can be represented as4

s(x) =
n∑
j=1

Λj,p,ξ (s)Bj,p,ξ (x), x ∈ [ξp+1, ξn+1], (1.55)

where

Λj,p,ξ (s) := 1

p!

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑p
r=μj (−1)p−r Drψj,p,ξ (τj )Dp−r+ s(τj ), if τj = ξj ,∑p
r=μj (−1)p−r Drψj,p,ξ (τj )Dp−r s(τj ), if ξj < τj < ξj+p+1,∑p
r=μj (−1)p−r Drψj,p,ξ (τj )Dp−r− s(τj ), if τj = ξj+p+1,

(1.56)

and where μj ≥ 0 is the number of times τj appears in ξj+1, . . . , ξj+p .

Proof Suppose ξj ≤ τj < ξj+p+1 and let Ij := [ξmj , ξmj+1) be the interval
containing τj . The restriction of s to Ij is a polynomial and so by Proposition 3
we find

s(x) =
mj∑

i=mj−p

(
1

p!
p∑
r=0

(−1)p−r Drψi,p,ξ (τj )Dp−r+ s(τj )

)
Bi,p,ξ (x), x ∈ Ij .

(1.57)

Note that since ξj ≤ τj < ξj+p+1 we have j ≤ mj ≤ j + p which implies
mj−p ≤ j ≤ mj . By taking i = j in (1.57) and using the local linear independence
of the B-splines, we obtain

Λj,p,ξ (s) := 1

p!
p∑
r=0

(−1)p−r Drψj,p,ξ (τj )Dp−r+ s(τj ).

Since Drψj,p,ξ (τj ) = 0 for r < μj we obtain the top term in (1.56). In the middle

term we can replace Dp−r+ s(τj ) by Dp−r s(τj ) since s ∈ Cp−μj (τj ). The proof of
the last term is similar usingD− instead of D+. ��

4The value Λj,p,ξ (s) is known as the de Boor–Fix functional [7] applied to s.
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Note that the operator Λj,p,ξ in (1.54) is identical to Λj,p,ξ in (1.56). However,
in the spline case we need the restriction τj ∈ [ξj , ξj+p+1].

Because the set of B-splines {Bj,p,ξ }nj=1 is a basis for the space Sp,ξ , the
coefficients Λj,p,ξ (s) are uniquely determined for any s ∈ Sp,ξ . Thus, the right-
hand side in (1.56) does not depend on the choice of τj . This is an astonishing
property considering the complexity of the expression. For example, one could take
the Greville point ξ∗

j,p,ξ
defined in (1.51) as a valid choice for the point τj . It is easy

to verify that ξ∗
j,p,ξ

∈ [ξj , ξj+p+1], and moreover, ξ∗
j,p,ξ

∈ (ξj , ξj+p+1) if Bj,p,ξ is
a continuous function.

Example 9 We consider the quadratic spline

s(x) =
n∑
j=1

cjBj,2,ξ (x),

and we illustrate that some derivative terms in the expression (1.56) can be canceled
by specific choices of τj . Assume for simplicity ξj < ξj+1 < ξj+2 < ξj+3.

– If τj is the Greville point ξ∗
j,2,ξ := (ξj+1+ξj+2)/2, then there is no first derivative

term. Indeed, we have

cj = Λj,2,ξ (s) = s(ξ∗j,2,ξ )−
(ξj+2 − ξj+1)

2

8
D2s(ξ∗j,2,ξ ).

Moreover, since s ∈ P2 on [ξj+1, ξj+2], we can replace D2s(ξ∗
j,2,ξ ) by a

difference quotient

D2s(ξ∗j,2,ξ ) =
(
s(ξj+2)− 2s(ξ∗j,2,ξ )+ s(ξj+1)

)/(
ξj+2 − ξj+1

2

)2

,

to obtain

cj = −1

2
s(ξj+1)+ 2s(ξ∗j,2,ξ )−

1

2
s(ξj+2). (1.58)

– If τj is equal to ξj+1 or ξj+2, then there is no second derivative term. Indeed, we
have

cj = Λj,2,ξ (s) = s(τj )+
ξ∗
j,2,ξ − τj

2
Ds(τj ), τj ∈ {ξj+1, ξj+2}.

A similar property holds for any p: if τj is chosen as one of the interior
knots ξj+1, . . . , ξj+p , then there is no p-th derivative term in the expression of
Λj,p,ξ (s).



1 Foundations of Spline Theory 25

1.3.5 Knot Insertion

In this section we are addressing the problem of representing a given spline on
a refined knot sequence. In particular, we focus on the special case where only a
single knot is inserted. Since any refined knot sequence can be reached by repeatedly
inserting one knot at a time, it suffices to deal with this case.

Without loss of generality, we assume that the spline s =∑n
j=1 cjBj,p,ξ is given

on a (p + 1)-basic knot sequence ξ := {ξi}n+p+1
i=1 . We want to insert a knot ξ in

some subinterval [ξm, ξm+1) of [ξp+1, ξn+1), resulting in a new (p + 1)-basic knot

sequence ξ̃ := {ξ̃i}n+p+2
i=1 defined by

ξ̃i :=

⎧⎪⎪⎨
⎪⎪⎩
ξi , if 1 ≤ i ≤ m,
ξ, if i = m+ 1,

ξi−1, if m+ 2 ≤ i ≤ n+ p + 2.

(1.59)

The B-spline form of s on the new knot sequence can be computed with the aid of
the following procedure introduced by Böhm [3].

Theorem 10 (Knot Insertion) Let the (p+1)-basic knot sequence ξ̃ := {ξ̃i}n+p+2
i=1

be obtained from the (p + 1)-basic knot sequence ξ := {ξi}n+p+1
i=1 by inserting just

one knot ξ , such that ξm ≤ ξ < ξm+1 as in (1.59). Then,

s(x) =
n∑
j=1

cjBj,p,ξ (x) =
n+1∑
i=1

c̃iBi,p,ξ̃ (x), x ∈ [ξp+1, ξn+1], (1.60)

where

c̃i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ci, if i ≤ m− p,
ξ − ξi
ξi+p − ξi ci +

ξi+p − ξ
ξi+p − ξi ci−1, if m− p < i ≤ m,

ci−1, if i > m.

(1.61)

Proof From Theorem 6 it follows that Sp,ξ is a subspace of S
p,ξ̃

, since we have
reduced the continuity requirement at ξm if ξ = ξm or introduced another segment
otherwise. Hence, the B-splines in Sp,ξ belong to S

p,ξ̃
, and we can write

Bj,p,ξ =
n+1∑
i=1

αi,j,pBi,p,ξ̃ , j = 1, . . . , n,
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for some real numbers αi,j,p . Suppose s ∈ Sp,ξ is given by (1.60). Then,

n∑
j=1

cjBj,p,ξ =
n+1∑
i=1

( n∑
j=1

αi,j,pcj

)
B
i,p,ξ̃

.

By linear independence of the B-splines in S
p,ξ̃

we obtain

c̃i =
n∑
j=1

αi,j,pcj , i = 1, . . . , n+ 1. (1.62)

Note that each αi,j,p is independent of the c’s.
Now, consider the function fy(x) := (y − x)p for fixed y ∈ R. By the Marsden

identity (1.45) we have

(y − x)p =
n∑
j=1

cjBj,p,ξ (x) =
n+1∑
i=1

c̃iBi,p,ξ̃ (x), x ∈ [ξp+1, ξn+1], y ∈ R,

where

cj = ψj,p,ξ (y) = (y − ξj+1) · · · (y − ξj+p),
and

c̃i = ψi,p,ξ̃ (y) = (y − ξ̃i+1) · · · (y − ξ̃i+p).

Hence, for the function fy(x), the identity (1.62) takes the form

ψ
i,p,ξ̃

(y) =
n∑
j=1

αi,j,pψj,p,ξ (y), i = 1, . . . , n+ 1. (1.63)

From the relation (1.59) between the knot sequences ξ̃ and ξ , we deduce that
ψ
i,p,ξ̃

= ψi,p,ξ for i ≤ m − p, and ψ
i,p,ξ̃

= ψi−1,p,ξ for i > m, and using
the dual recurrence relation (1.11) that form− p < i ≤ m,

ψ
i,p,ξ̃

(y) = (y − ξ)ψi,p−1,ξ (y) = ξ − ξi
ξi+p − ξi ψi,p,ξ +

ξi+p − ξ
ξi+p − ξi ψi−1,p,ξ .

Then, (1.61) follows from (1.62) and (1.63). ��
When several knots have to be inserted simultaneously, alternative algorithms

can be used instead of repeating the single knot insertion procedure given in
Theorem 10. In Sect. 1.4.3 we provide such a simultaneous knot insertion algorithm
in case of uniform knot sequences. A more general (but also more complex) knot
insertion algorithm is known as the Oslo algorithm [11].
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• Convex Combination. From relation (1.61) we see that the coefficients c̃i are
a convex combination of the coefficients ci . In general, the coefficients obtained
after repeated knot insertion are a convex combination of the original coefficients.

• Evaluation. Repeated knot insertion gives rise to an evaluation process for spline
functions in B-spline form. Indeed, the evaluation of a spline s at the point x can
be achieved by the repeated insertion of x as a knot till it has multiplicity p.
Then, assuming that for some m,

ξm < x = ξm+1 = · · · = ξm+p < ξm+p+1,

we can conclude from (1.29) and (1.49) that

Bj,p,ξ (x) =
{

1, if j = m,
0, otherwise,

and

s(x) =
n∑
j=1

cjBj,p,ξ (x) = cmBm,p,ξ (x) = cm.

When comparing (1.61) with (1.39), we observe that single knot insertion is
nothing else than applying once the B-spline coefficient recurrence relation. This
evaluation procedure is a fast and numerically stable algorithm introduced by de
Boor [4].

1.3.6 Condition Number

A basis {Bj } of a normed space is said to be stable with respect to a vector norm if
there are positive constantsKL and KU such that

K−1
L ‖c‖ ≤

∥∥∥∥∑
j

cjBj

∥∥∥∥ ≤ KU‖c‖, (1.64)

for all coefficient vectors c := (cj ). For simplicity we use the same symbol ‖ · ‖ for
the norm in the space and the vector norm. The number

κ := inf {KLKU : KLand KU satisfy (1.64)} (1.65)

is called the condition number of the basis {Bj } with respect to ‖ · ‖.
Such condition numbers give an upper bound for how much an error in

coefficients can be magnified in function values and vice versa. Indeed, if
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f := ∑
j cjBj �= 0 and g := ∑

j djBj then it follows immediately from (1.64)
that

1

κ

‖c − d‖
‖c‖ ≤ ‖f − g‖‖f ‖ ≤ κ ‖c − d‖

‖c‖ ,

where c := (cj ) and d := (dj ). Many other applications are given in [5] and it is
interesting to have estimates for the size of κ .

We consider the Lq -norm for functions and the q-norm for vectors with 1 ≤ q ≤
∞. We focus on a scaled version of the B-spline basis defined on [ξ1, ξn+p+1],

{Nj,p,q,ξ }nj=1 := {γ−1/q
j,p,ξ

Bj,p,ξ }nj=1, (1.66)

where γj,p,ξ := (ξj+p+1 − ξj )/(p + 1); see also (1.30). The knot sequence ξ is
assumed to be (p + 1)-basic in order to have linearly independent B-splines. This
also ensures that γj,p,ξ > 0. The q-norm condition number of the basis in (1.66)
will be denoted by κp,q,ξ , i.e.,

κp,q,ξ := sup
c �=0

∥∥∑n
j=1 cj Nj,p,q,ξ

∥∥
Lq([ξ1,ξn+p+1])

‖c‖q

× sup
c �=0

‖c‖q∥∥∑n
j=1 cj Nj,p,q,ξ

∥∥
Lq([ξ1,ξn+p+1])

. (1.67)

The next theorem shows that the scaled B-spline basis above is stable in any Lq -
norm independently of the knot sequence ξ . It also provides an upper bound for the
q-norm condition number which does not depend on ξ . To this end, we first state
the Hölder inequality for sums:

n∑
j=1

|xj yj | ≤ ‖x‖q ‖y‖q ′ , (1.68)

where q, q ′ are integers so that

1

q
+ 1

q ′
= 1, 1 ≤ q ≤ ∞. (1.69)

In particular, q ′ = ∞ if q = 1 and q ′ = 2 if q = 2.

Theorem 11 For any p ≥ 0 there exists a positive constant Kp depending only on
p, such that for any vector c := (c1, . . . , cn) and for any 1 ≤ q ≤ ∞ we have

K−1
p ‖c‖q ≤

∥∥∥∥
n∑
j=1

cj Nj,p,q,ξ

∥∥∥∥
Lq([ξ1,ξn+p+1])

≤ ‖c‖q . (1.70)
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Proof We first prove the upper inequality. By using the nonnegative partition of
unity property of B-splines, the upper bound for q = ∞ is straightforward. For
q = 1, we have

∫ ξn+p+1

ξ1

∣∣∣∣
n∑
j=1

cj Nj,p,q,ξ (x)

∣∣∣∣ dx ≤
n∑
j=1

|cj | γ−1
j,p,ξ

∫ ξj+p+1

ξj

Bj,p,ξ (x) dx = ‖c‖1.

Finally, we consider 1 < q < ∞. By applying the Hölder inequality (1.68) and
again the nonnegative partition of unity property of B-splines, we obtain for x ∈
[ξ1, ξn+p+1],

∣∣∣∣
n∑
j=1

cj Nj,p,q,ξ (x)

∣∣∣∣ ≤
n∑
j=1

∣∣cj γ−1/q
j,p,ξ

(
Bj,p,ξ (x)

)1/q ∣∣ ∣∣Bj,p,ξ (x)∣∣1−1/q

≤
( n∑
j=1

|cj |q γ−1
j,p,ξ

Bj,p,ξ (x)

)1/q( n∑
j=1

Bj,p,ξ (x)

)1−1/q

≤
( n∑
j=1

|cj |q γ−1
j,p,ξ

Bj,p,ξ (x)

)1/q

.

Raising both sides of this inequality to the q-th power and integrating gives the
inequality

∫ ξn+p+1

ξ1

∣∣∣∣
n∑
j=1

cj Nj,p,q,ξ (x)

∣∣∣∣
q

dx ≤
n∑
j=1

|cj |q γ−1
j,p,ξ

∫ ξj+p+1

ξj

Bj,p,ξ (x) dx = ‖c‖qq .

Taking the q-th roots on both sides proves the upper inequality in (1.70).
We now focus on the lower inequality. We extend ξ to a (p + 1)-open knot

sequence ξ̂ by possibly increasing the multiplicity of ξ1 and ξn+p+1 to p + 1.

Clearly, the set of B-splines on ξ is a subset of the set of B-splines on ξ̂ , and any
linear combination of the B-splines on ξ is a linear combination of the B-splines
on ξ̂ where the extra B-splines have coefficients zero. Therefore, without loss of
generality, we can assume that the knot sequence is open with the basic interval
[ξ1, ξn+p+1]. The lower bound then follows from Lemma 5; see Sect. 1.5.3.1. ��

Finally, we define a condition number that is independent of the knot sequence,

κp,q := sup
ξ

κp,q,ξ . (1.71)

Theorem 11 shows that

κp,q ≤ Kp <∞.
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It is known that κp,q grows like 2p for all 1 ≤ q ≤ ∞; see [34, 40] where it has
been proved that

1

p + 1
2p−1/2 ≤ κp,q ≤ (p + 1)2p+1, 1 ≤ q ≤ ∞. (1.72)

1.4 Cardinal B-Splines

A particularly interesting case of B-spline functions is obtained when the knot
sequence is uniformly spaced. Without loss of generality, we can assume that the
knot sequence is given by the set of integers Z. It is natural to index the knots as
ξj = j , j ∈ Z. Due to the translation invariance property (1.9) we have

Bj,p,Z(x) = B0,p,Z(x − j), j ∈ Z, x ∈ R. (1.73)

Therefore, all the B-splines on the knot sequence Z are integer translates of a single
function. This motivates the following definition.

Definition 3 The function Mp := B[0, 1, . . . , p + 1] is the cardinal B-spline of
degree p.

Example 10 Figure 1.3 illustrates the cardinal B-splinesMp for p = 1, . . . , 5.

1.4.1 Main Properties

Cardinal B-splines possess several interesting features. Of course, they inherit all
the properties of general B-splines, and in particular the following ones.

Fig. 1.3 The cardinal B-splines Mp for p = 1, . . . , 5. The uniform knot positions are visualized
by vertical dotted lines
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• Local Support. From (1.6) it follows that the cardinal B-spline Mp is locally
supported on the interval [0, p + 1].

• Nonnegativity, Piecewise Structure and Smoothness. From (1.7), (1.8) and
(1.26) it follows that the cardinal B-spline Mp is a nonnegative, piecewise
polynomial of degree p belonging to the class Cp−1(R).

• Differentiation and Integration. The formulas (1.22) and (1.30) simplify in the
case of cardinal B-splines to

D+Mp(x) = Mp−1(x)−Mp−1(x − 1), p ≥ 1, (1.74)

and ∫
R

Mp(x) dx = 1. (1.75)

• Recurrence Relation. From Definition 2 we obtain the following recurrence
relation for cardinal B-splines,

M0(x) =
{

1, if x ∈ [0, 1),
0, otherwise,

(1.76)

Mp(x) = x

p
Mp−1(x)+ p + 1− x

p
Mp−1(x − 1), p ≥ 1. (1.77)

The uniformity of the knot sequence endows the cardinal B-splines with several
additional properties. A key feature is based on convolution.

• Convolution. The convolution of two functions f and g is defined by

(f ∗ g)(x) :=
∫
R

f (x − y)g(y) dy.

The cardinal B-splineMp can be characterized using convolution by

Mp(x) = (Mp−1 ∗M0)(x) =
∫ 1

0
Mp−1(x − y) dy, p ≥ 1, (1.78)

and

Mp(x) =
( p+1︷ ︸︸ ︷
M0 ∗ · · · ∗M0

)
(x). (1.79)
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Proof From (1.74) we deduce

Mp(x) =
∫ x

0
(Mp−1(y)−Mp−1(y − 1)) dy

=
∫ x

0
Mp−1(y) dy −

∫ x−1

−1
Mp−1(y) dy

=
∫ x

x−1
Mp−1(y) dy =

∫ 1

0
Mp−1(x − y) dy.

Applying recursively (1.78) immediately gives (1.79). ��
• Fourier Transform. The Fourier transform of a function f ∈ L2(R) is defined

by

f̂ (θ) :=
∫
R

f (x) e−i θx dx,

where i := √−1 denotes the imaginary unit. The Fourier transform of the
cardinal B-splineMp is given by

M̂p(θ) =
(

1− e−i θ

i θ

)p+1

. (1.80)

Proof From (1.76), a direct computation gives

M̂0(θ) = 1− e−i θ

i θ
.

An interesting property of the Fourier transform of a convolution is

(f̂ ∗ g)(θ) = f̂ (θ)ĝ(θ), ∀f, g ∈ L2(R); (1.81)

see, e.g., [39]. Hence, by combining (1.81) with (1.79) we deduce that M̂p(θ) =(
M̂0(θ)

)p+1, which implies (1.80). ��
• Symmetry. The cardinal B-splineMp is symmetric with respect to the midpoint

of its support, namely (p + 1)/2. More generally,

DrMp

(
p + 1

2
+ x

)
= (−1)r DrMp

(
p + 1

2
− x

)
, r = 0, . . . , p − 1,

(1.82)

and

D
p
−Mp

(
p + 1

2
+ x

)
= (−1)p Dp+Mp

(
p + 1

2
− x

)
. (1.83)
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Proof It suffices to prove that Mp(p + 1 − x) = Mp(x). The general result
then follows from repeated differentiations. We proceed by induction. It is easy
to check that it is true for p = 0. Assuming the symmetry property holds for
degree p − 1 and using (1.78), we get

Mp(p + 1− x) =
∫ 1

0
Mp−1(p + 1− x − t) dt =

∫ 1

0
Mp−1(x − 1+ t) dt

= −
∫ 0

1
Mp−1(x − t) dt =

∫ 1

0
Mp−1(x − t) dt = Mp(x). ��

We now focus on the set of integer translates of the cardinal B-splineMp, i.e.,

{
Mp(· − j), j ∈ Z

}
. (1.84)

They have the following properties.

• Linear Independence. From (1.73) it follows that the integer translates
Mp(· − j), j ∈ Z, are (locally) linearly independent on R. They span the
space of piecewise polynomials of degree p and smoothness p − 1 with integer
break points; see (1.42).

• Partition of Unity. From (1.49) and (1.73) we get

∑
j∈Z
Mp(x − j) = 1, x ∈ R.

Due to the local support of cardinal B-splines, the above series reduces to a finite
sum for any x. More precisely, referring to (1.21), we have

m∑
j=m−p

Mp(x − j) = 1, x ∈ [m,m+ 1).

• Greville Points. From (1.50)–(1.51) and (1.73) we have

x =
∑
j∈Z
ζ ∗j,pMp(x − j), x ∈ R,

with

ζ ∗j,p :=
(1+ j)+ · · · + (p + j)

p
= p + 1

2
+ j. (1.85)
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1.4.2 Inner Products

Inner products of cardinal B-splines and their translates can be interpreted as
evaluations of higher-degree cardinal B-splines; similar results also hold for their
derivatives.5

Theorem 12 (Inner Product) Given p1, p2 ≥ 0, we have∫
R

Mp1(y)Mp2(y + x) dy =Mp1+p2+1(p1 + 1+ x) = Mp1+p2+1(p2 + 1− x).

Proof From the symmetry property (1.82)–(1.83) and the convolution relation
(1.78) of cardinal B-splines, we get∫

R

Mp1(y)Mp2(y + x) dy =
∫
R

Mp1(y)Mp2(p2 + 1− y − x) dy

= (
Mp1 ∗Mp2

)
(p2 + 1− x)

= ( p1+1︷ ︸︸ ︷
M0 ∗ · · · ∗M0 ∗

p2+1︷ ︸︸ ︷
M0 ∗ · · · ∗M0

)
(p2 + 1− x)

= Mp1+p2+1(p2 + 1− x).
Finally, again by symmetry of cardinal B-splines, we have

Mp1+p2+1(p1 + 1+ x) =Mp1+p2+1(p2 + 1− x),
which completes the proof. ��
Theorem 13 (Inner Product of Derivatives) Given p1 ≥ r1 ≥ 0 and p2 ≥ r2 ≥
0, we have∫

R

D
r1+Mp1(y)D

r2+Mp2(y + x) dy = (−1)r1 Dr1+r2Mp1+p2+1(p1 + 1+ x)

= (−1)r2 Dr1+r2Mp1+p2+1(p2 + 1− x).

Proof Because of the (anti-)symmetry of higher order derivatives of cardinal B-
splines given in (1.82), we have

(−1)r1 Dr1+r2Mp1+p2+1(p1 + 1+ x)
= (−1)r1 (−1)r1+r2 Dr1+r2Mp1+p2+1(p1 + p2 + 2− (p1 + 1+ x))
= (−1)r2 Dr1+r2Mp1+p2+1(p2 + 1− x).

5The inner product formula for cardinal B-splines traces back to [44]. The formula for derivatives
of cardinal B-splines can be found in [21] and a generalization for multivariate box splines in [48].
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So, we only have to show one of both equalities in the theorem. This can be proved
by induction on the order of derivatives. The base case (r1 = r2 = 0) simply follows
from Theorem 12. We consider two inductive steps: in the first inductive step we
increase the order of derivative ofMp1 by one, i.e., r1 → r1 + 1, and in the second
inductive step we increase the order of derivative ofMp2 by one, i.e., r2 → r2+1.

1. (r1 → r1 + 1). Using (1.74) and the induction hypothesis, we have

∫
R

D
r1+1
+ Mp1(y)D

r2+Mp2(y + x) dy

=
∫
R

(
D
r1+Mp1−1(y)−Dr1+Mp1−1(y − 1)

)
D
r2+Mp2(y + x) dy

=
∫
R

D
r1+Mp1−1(y)D

r2+Mp2(y + x) dy

−
∫
R

D
r1+Mp1−1(y − 1)Dr2+Mp2(y + x) dy

= (−1)r1
(
Dr1+r2Mp1+p2(p1 + x)−Dr1+r2Mp1+p2(p1 + 1+ x))

= (−1)r1+1Dr1+r2+1Mp1+p2+1(p1 + 1+ x).

2. (r2 → r2 + 1). This inductive step can be proved in a completely analogous way
as the first inductive step. ��
Due to the relevance of the set (1.84), the results in Theorems 12 and 13 are of

particular interest when we consider integer shifts, i.e., x ∈ Z. In this case, the above
inner products reduce to evaluations of cardinal B-splines and their derivatives at
either integer or half-integer points. Moreover, there is a relation with the Greville
points (1.85). Indeed, if p1 = p2 = p and x = i in Theorem 12, then

∫
R

Mp(x)Mp(x + i) dx = M2p+1(p + 1+ i) = M2p+1(ζ
∗
i,2p+1).

A similar relation holds for the inner products of derivatives in Theorem 13. Thanks
to the recurrence relation for derivatives (1.74), the inner products of derivatives
of cardinal B-splines and its integer translates reduce to evaluations of cardinal B-
splines at either integer or half-integer points.

1.4.3 Uniform Knot Insertion

In Sect. 1.3.5 we have seen how to insert a (single) knot into an existing knot
sequence without changing the shape of a given spline function defined on that
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knot sequence. For uniform knot sequences, we can provide a simple alternative
algorithm for inserting simultaneously a knot in each knot interval.

Let us consider the B-splines of degree p over the uniform knot sequence given
by Z/2. In this case, it is natural to index the knots as

ξi =
{
k, if i = 2k,

k + 1/2, if i = 2k + 1,
i ∈ Z.

From the definition we have Bi,p,Z/2(x) = Mp(2x − i) for i ∈ Z. Since Sp,Z ⊂
Sp,Z/2, the cardinal B-spline Mp is a refinable function, i.e., it can be written as a
linear combination of translated and dilated versions of itself:

Mp(x) =
p+1∑
i=0

αi,p Mp(2x − i). (1.86)

We are now looking for a relation between the coefficients of a given spline
function corresponding to knots in Z and the coefficients of the same function
corresponding to knots in Z/2. The following simultaneous knot insertion procedure
was introduced by Lane and Riesenfeld [32].

Theorem 14 (Uniform Knot Insertion) Consider the uniform knot sequences Z
and Z/2. Then,

s(x) =
∑
j∈Z
cj Mp(x − j) =

∑
i∈Z
c̃i Mp(2x − i), (1.87)

with c̃i = c̃[p]i defined recursively by

c̃
[p]
i := c̃

[p−1]
i + c̃[p−1]

i−1

2
, (1.88)

starting from

c̃
[0]
i :=

{
cj , if i = 2j,

cj , if i = 2j + 1.
(1.89)

Proof For p = 0 we can directly check that

M0(x) = M0(2x)+M0(2x − 1),
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leading to (1.87) with (1.89). We proceed by induction on p. Assume the relation
(1.87) with (1.88) holds for cardinal B-splines of degree p − 1. Then, by using the
convolution property (1.78) we get

∑
j∈Z
cjMp(x − j) =

∫ 1

0

∑
j∈Z
cjMp−1(x − y − j) dy

=
∫ 1

0

∑
i∈Z
c̃
[p−1]
i Mp−1(2x − 2y − i) dy

=
∑
i∈Z
c̃
[p−1]
i

(∫ 1/2

0
Mp−1(2x − 2y − i) dy

+
∫ 1

1/2
Mp−1(2x − 2y − i) dy

)

=
∑
i∈Z

c̃
[p−1]
i

2

(
Mp(2x − i)+Mp(2x − i − 1)

)

=
∑
i∈Z

c̃
[p−1]
i + c̃[p−1]

i−1

2
Mp(2x − i),

which concludes the proof. ��
The knot insertion procedure in Theorem 14 can be geometrically described

as follows. First, every coefficient is doubled. Second, a sequence of p sets of
coefficients is constructed by taking averages of the previous set of coefficients.

The coefficients {αi,p} in (1.86) can be directly computed from Theorem 14, and
we obtain the explicit expression

αi,p = 1

2p

(
p + 1

i

)
, i = 0, . . . , p + 1. (1.90)

They are called the subdivision mask of the (uniform) B-spline refinement scheme
of degree p.

1.5 Spline Approximation

In this section we discuss how well a sufficiently smooth function can be approx-
imated in the spline space spanned by a given set of B-splines. Exploiting the
properties of the B-spline basis presented in the previous sections, we explicitly
construct a spline which achieves optimal approximation accuracy for the function
and its derivatives, and we determine the corresponding error estimates. The
construction method we are going to present is local and linear.
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1.5.1 Preliminaries

Let I be a finite interval of the real line. A function f : I → R is a piecewise
continuous function on I if it is bounded and continuous except at a finite number
of points, where the value is obtained by taking the limit either from the left or the
right. We denote the space of these functions by C−1(I).

For r ∈ N0 and 1 ≤ q ≤ ∞ the one-dimensional Sobolev spaces are defined by

Wr
q (I) :=

{
f : I → R : Djf ∈ Lq(I), j = 0, . . . , r

}
. (1.91)

They are normed spaces with norm

‖f ‖2
Wrq (I )

:=
r∑
j=0

‖Djf ‖2
Lq(I )

, (1.92)

called Sobolev norm. It can be shown that for r ∈ N and 1 < q <∞,

Cr(I) ⊂ Wr∞(I) ⊂ Wr
q (I) ⊂ Wr

1 (I) ⊂ Cr−1(I). (1.93)

The Hölder inequality for integrals is given by∫ b

a

|f (x)g(x)| dx ≤ ‖f ‖Lq(I )‖g‖Lq′ (I ), (1.94)

where I := [a, b] and q, q ′ are integers satisfying (1.69).
The Taylor polynomial of degreep at the point a to a function f ∈Wp+1

1 ([a, b])
is defined by

Ta,pf (x) :=
p∑
j=0

(x − a)j
j ! Djf (a), (1.95)

and its approximation error can be expressed in integral form for x ∈ [a, b] as

f (x)−Ta,pf (x) = 1

p!
∫ b

a

(x − y)p+Dp+1f (y) dy. (1.96)

Every polynomial g ∈ Pp can be written in Taylor form as g = Ta,pg.

Theorem 15 (Taylor Interpolation Error) Let f ∈ Wp+1
q ([a, b]) with 1 ≤ q ≤

∞, and let Ta,pf be the Taylor polynomial of degree p to f at the point a. Then,
for any x ∈ [a, b] and 0 ≤ r ≤ p,

|Dr(f − Ta,pf )(x)| ≤ (b − a)
p+1−r−1/q

(p − r)! ‖Dp+1f ‖Lq([a,b]), (1.97)
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and

‖Dr(f − Ta,pf )‖Lq([a,b]) ≤
(b − a)p+1−r

(p − r)! ‖Dp+1f ‖Lq([a,b]). (1.98)

Proof By differentiating the integral form of the Taylor approximation error (1.96)
and using the Hölder inequality (1.94), we obtain

|Dr(f − Ta,pf )(x)| = 1

(p − r)!
∫ b

a

(x − y)p−r+ Dp+1f (y) dy

≤ 1

(p − r)!
[∫ b

a

(x − y)(p−r)q ′+ dy

]1/q ′

‖Dp+1f ‖Lq([a,b])

≤ (b − a)p−r+1/q ′

(p − r)! ((p − r)q ′ + 1)1/q ′
‖Dp+1f ‖Lq([a,b]).

Since 1/q + 1/q ′ = 1 and (p − r)q ′ ≥ 0, we obtain (1.97). Finally, taking the
Lq -norm shows (1.98). ��

For the sake of simplicity one can use the following weaker, but simpler upper
bound,

‖Dr(f − Ta,pf )‖Lq([a,b]) ≤ (b − a)p+1−r‖Dp+1f ‖Lq([a,b]). (1.99)

1.5.2 Spline Quasi-Interpolation

In general, a spline approximating a function f can be written in terms of B-splines
as

Qf (x) :=
n∑
j=1

λj (f )Bj,p,ξ (x) (1.100)

for suitable coefficients λj (f ). The spline in (1.100) will be referred to as a quasi-
interpolant to f whenever it provides a “reasonable” approximation to f .

Both interpolation and least squares are examples of quasi-interpolation methods.
They are global methods since we have to solve an n by n system of linear equations
to find their coefficients λj (f ). It follows that the value of the spline (1.100) at a
point depends on all the data.

In this section we focus on local linear methods, i.e., methods where each λj
is a linear functional only depending on the values of f in the support of Bj,p,ξ .
In principle, it suffices to be “near” the support of Bj,p,ξ , but we want to keep the
presentation as simple as possible. In order to deal with point evaluator functionals
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we assume here that f ∈ C−1([a, b]), where [a, b] is a bounded interval. We
consider a spline space Sp,ξ , where the knot sequence ξ is (p + 1)-basic and the
basic interval [ξp+1, ξn+1] is equal to [a, b].

With the aim of constructing a spline quasi-interpolant with optimal accuracy, we
need to introduce some basic approximation properties of quasi-interpolants of the
form (1.100). Since we are interested in local methods, we start with the following
definition.

Definition 4 We say that a linear functional λ : C−1([a, b])→ R is supported on
a nonempty set S ⊂ [a, b] if λ(f ) = 0 for any f ∈ C−1([a, b]) which vanishes
on S .

Note that the set S in this definition is not uniquely defined and is not necessary
minimal.

To construct our quasi-interpolant, we first require linear functionals that are
supported on intervals consisting of a few knot intervals. This will ensure that
Qf only depends locally on f . To ensure a good approximation power, we also
require polynomial reproduction up to a given degree. Finally, to bound the error,
a boundedness assumption on the linear functionals is needed. This leads to the
following definitions.

Definition 5 The quasi-interpolant Q given by (1.100) is called a local quasi-
interpolant if

(i) each λj is supported on the interval Ij , where

Ij := [ξj , ξj+p+1] ∩ [a, b], (1.101)

such that Ij has nonempty interior;
(ii) the λj are chosen so that (1.100) reproduces Pl , i.e.,

Qg(x) = g(x) for all x ∈ [a, b] and all g ∈ Pl, (1.102)

for some l with 0 ≤ l ≤ p.

Definition 6 A local quasi-interpolant Q is called bounded in an Lq -norm, 1 ≤
q ≤ ∞, if there is a constant CQ such that for each λj we have

|λj (f )| ≤ CQh−1/q
j,p,ξ

‖f ‖Lq(Ij ) for all f ∈ C−1(Ij ), (1.103)

where

hj,p,ξ := max
max(j,p+1)≤k≤min(j+p,n)

ξk+1 − ξk. (1.104)

Note that hj,p,ξ is the largest length of a knot interval in the intersection of the
basic interval with the support of Bj,p,ξ . The requirement (1.101) ensures that the
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spline in (1.100) provides a local approximation to f . The polynomial reproduction
as stated in (1.102) coupled with the boundedness of the linear functionals are the
main ingredients to prove the approximation power of any bounded local quasi-
interpolant.

We now give both a local and a global version of the approximation power of
bounded local quasi-interpolants. To turn a local bound into a global bound we first
state the following lemma.

Lemma 1 Suppose that f ∈ Lq([ξp+1, ξn+1]) for some q , 1 ≤ q < ∞, and that
mi1, . . . ,mi2 are integers with mi1 < · · · < mi2 , ξp+1 ≤ ξmi1 and ξmi2+k ≤ ξn+1
for some positive integer k and integers i1 ≤ i2. Then,

( i2∑
j=i1

‖f ‖qLq([ξmj ,ξmj+k])
)1/q

≤ k1/q‖f ‖Lq([ξp+1,ξn+1]). (1.105)

Proof Under the stated assumptions, each knot interval in [ξp+1, ξn+1] is counted
at most k times and moreover all the local intervals [ξmj , ξmj+k] are contained in
[ξp+1, ξn+1]. The definition of the Lq -norm gives immediately (1.105). ��
Theorem 16 (Quasi-Interpolation Error) Let Q be a bounded local quasi-
interpolant in an Lq -norm, 1 ≤ q ≤ ∞, as in Definitions 5 and 6. Let l, p be
integers with 0 ≤ l ≤ p. Suppose ξm < ξm+1 for some p + 1 ≤ m ≤ n, and let
f ∈ Wl+1

q (Jm) with

Jm := [ξm−p, ξm+p+1] ∩ [a, b].
Then,

‖f −Qf ‖Lq([ξm,ξm+1]) ≤
(2p + 1)l+1

l! (1+ CQ)hl+1
m,ξ
‖Dl+1f ‖Lq(Jm), (1.106)

where hm,ξ is the largest length of a knot interval in Jm. Moreover, if f ∈
Wl+1
q ([a, b]) then

‖f −Qf ‖Lq([a,b]) ≤
(2p + 1)l+1+1/q

l! (1+CQ)hl+1
ξ
‖Dl+1f ‖Lq([a,b]), (1.107)

where

hξ := max
p+1≤j≤n ξj+1 − ξj .

Proof Note that f is continuous since l ≥ 0. Suppose x ∈ [ξm, ξm+1). By the local
partition of unity (1.21) and by (1.103) we have

|Qf (x)| ≤ max
m−p≤j≤m |λj (f )| ≤ CQ max

m−p≤j≤mh
−1/q
j,p,ξ

‖f ‖Lq(Ij ).
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Since ξm+1 − ξm ≤ minm−p≤j≤m hj,p,ξ and Jm = ∪m−p≤j≤mIj we find

‖Qf ‖Lq([ξm,ξm+1]) ≤ CQ‖f ‖Lq(Jm). (1.108)

From (1.102) we know that Q reproduces any polynomial g ∈ Pl , and so the triangle
inequality gives

‖f −Qf ‖Lq([ξm,ξm+1]) ≤ ‖f − g‖Lq([ξm,ξm+1]) + ‖Q(f − g)‖Lq([ξm,ξm+1]).

Since [ξm, ξm+1] ⊂ Jm and by (1.108) for any g ∈ Pl , we have

‖f −Qf ‖Lq([ξm,ξm+1]) ≤ (1+ CQ)‖f − g‖Lq(Jm). (1.109)

Let am := max(ξm−p, a), and choose g := Tam,lf , where Tam,lf is the Taylor
polynomial of degree l defined in (1.95) with a = am. Then, by (1.98) with r = 0
we have

‖f − g‖Lq(Jm) ≤
(2p + 1)l+1

l! hl+1
m,ξ
‖Dl+1f ‖Lq(Jm). (1.110)

Combining the inequalities (1.109) and (1.110) gives the local bound.
Since each Jm is contained in the basic interval [a, b] the global bound follows

immediately from the local one and Lemma 1. ��
Example 11 Let ξ be a (p + 1)-open knot sequence for p ≥ 1, and consider the
operator

Vp,ξf (x) :=
n∑
j=1

f (ξ∗j,p,ξ )Bj,p,ξ (x), (1.111)

where ξ∗
j,p,ξ

is the j -th Greville point of degreep; see (1.51). This operator is known
as the Schoenberg operator, and was introduced in [43, Section 10]. It is a bounded
local quasi-interpolant in the L∞-norm with l = 1 and CQ = 1. Note that ξ∗

j,p,ξ

belongs to [ξj+1, ξj+p]. Therefore, Theorem 16 implies for any f ∈ W 2∞([a, b]),

‖f − Vp,ξf ‖L∞([a,b]) ≤ 2(2p + 1)2h2
ξ‖D2f ‖L∞([a,b]). (1.112)

The next proposition can be used to find the degree l of polynomials reproduced
by a linear quasi-interpolant.

Proposition 4 Let

{ϕj,0, . . . , ϕj,l}, j = 1, . . . , n, 0 ≤ l ≤ p (1.113)
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be n sets of basis functions for Pl , and let

ϕj,i =
n∑
k=1

cj,i,kBk,p,ξ (1.114)

be their B-spline representations. The linear quasi-interpolant (1.100) reproduces
Pl provided the corresponding linear functionals satisfy

λj (ϕj,i ) = cj,i,j , j = 1, . . . , n, i = 0, . . . , l. (1.115)

Proof On the basic interval, any g ∈ Pl can be written both in terms of the ϕ’s and
the B-splines, say

g =
l∑
i=0

bj,iϕj,i =
n∑
k=1

bkBk,p,ξ , j = 1, . . . , n. (1.116)

By (1.114) and (1.116) for j = 1, . . . , n,

g =
l∑
i=0

bj,i

( n∑
k=1

cj,i,kBk,p,ξ

)
=

n∑
k=1

( l∑
i=0

bj,icj,i,k

)
Bk,p,ξ =

n∑
k=1

bkBk,p,ξ .

By linear independence of the B-splines and choosing j = k we obtain

bk =
l∑
i=0

bk,ick,i,k. (1.117)

Similarly, for Qg using (1.116) with j = k,

Qg :=
n∑
k=1

λk(g)Bk,p,ξ =
n∑
k=1

λk

( l∑
i=0

bk,iϕk,i

)
Bk,p,ξ .

From the linearity of λk and (1.115), (1.117) and finally (1.116) again we obtain

Qg =
n∑
k=1

l∑
i=0

bk,iλk(ϕk,i)Bk,p,ξ =
n∑
k=1

l∑
i=0

bk,ick,i,kBk,p,ξ =
n∑
k=1

bkBk,p,ξ = g.
��

The next proposition gives a sufficient condition for a quasi-interpolant to
reproduce the whole spline space, i.e., to be a projector onto Sp,ξ .

Proposition 5 The linear quasi-interpolant (1.100) reproduces the whole spline
space, i.e.,

Qs(x) = s(x), s ∈ Sp,ξ , x ∈ [ξp+1, ξn+1], (1.118)
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ifQ reproduces Pp and each linear functional λj is supported on one knot interval6

[ξ+mj , ξ−mj+1] ⊂ [ξj , ξj+p+1], with ξmj < ξmj+1. (1.119)

Proof Let j with 1 ≤ j ≤ n be fixed. By the linearity it suffices to prove that

λj (Bi,p,ξ ) = δi,j , i = 1, . . . , n,

where δi,j stands for the classical Kronecker delta. On the interval [ξ+mj , ξ−mj+1] the
local support property implies that λj (Bi,p,ξ ) = 0 for i /∈ {mj − p, . . . ,mj }. This
follows because we use the left limit at ξmj+1 if necessary. Since Bi,p,ξ ∈ Pp on
this interval, we have

Bi,p,ξ (x) = Q(Bi,p,ξ )(x) =
mj∑

k=mj−p
λk(Bi,p,ξ )Bk,p,ξ (x), x ∈ [ξmj , ξmj+1),

and by local linear independence of the B-splines we obtain λk(Bi,p,ξ ) = δi,k for
k = mj − p, . . . ,mj . In particular, it holds for k = j since the condition (1.119)
implies that mj − p ≤ j ≤ mj . ��
Example 12 Let p = 2, and let ξ be a 3-open knot sequence with at most double
knots in the interior. We consider the operator

Q2,ξf (x) :=
n∑
j=1

(
a2,0f (ξj+1)+ a2,1f (ξ

∗
j,2,ξ )+ a2,2f (ξj+2)

)
Bj,2,ξ (x),

where ξ∗
j,2,ξ = (ξj+1 + ξj+2)/2 is the j -th Greville point of degree 2. It can be

checked (see also Example 9) that if we choose a2,0 = a2,2 = −1/2 and a2,1 = 2
then Q2,ξ reproduces P2, i.e., l = 2. Proposition 5 says that it is even a projector on
the spline space S2,ξ . Moreover,

∣∣∣−1

2
f (ξj+1)+ 2f (ξ∗j,2,ξ )−

1

2
f (ξj+2)

∣∣∣ ≤ 3‖f ‖L∞([ξj ,ξj+3]).

It follows that Q2,ξ is a bounded local quasi-interpolant in the L∞-norm with l = 2
and CQ = 3. In this case, Theorem 16 implies for any f ∈ W 3∞([a, b]),

‖f −Q2,ξf ‖L∞([a,b]) ≤ 4
53

2! h
3
ξ‖D3f ‖L∞([a,b]),

showing that the error is O(h3
ξ
).

6This notation means that if λj (f ) uses the value of f or one of its derivatives at ξmj (or ξmj+1)
then this value is obtained by taking the one sided limit from the right (or the left).
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1.5.3 Approximation Power of Splines

In this section we want to understand how well a function can be approximated by
a spline. In order words, we want to investigate the distance between a general
function f and the piecewise polynomial space S

r
p(Δ) defined in (1.42). From

Theorem 6 we know that Sr
p(Δ) = Sp,ξ for a suitable choice of the knot sequence

ξ := {ξi}n+p+1
i=1 . In particular, ξ can be chosen to be (p+1)-open. Therefore, without

loss of generality, we consider the distance between a general function f and the
spline space Sp,ξ of degree p over the (p + 1)-open knot sequence ξ . For a given
f ∈ Lq([ξp+1, ξn+1]) with 1 ≤ q ≤ ∞, we define

distq(f,Sp,ξ ) := inf
s∈Sp,ξ

‖f − s‖Lq([ξp+1,ξn+1]). (1.120)

We are also interested in estimates for the distance between derivatives of f and
derivative spline spaces. To this end, in this section we use the simplified notation
Drs := Dr+s for the derivatives of a spline s ∈ Sp,ξ with the usual convention
of left continuity at the right endpoint of the basic interval. Note that with such a
notation we ensure thatDrs(x) exists for all x. In the same spirit, we use the notation
DrSp,ξ := Dr+Sp,ξ for the r-th derivative spline space. We recall from Sect. 1.3.2
that this derivative space is a piecewise polynomial space of degree p − r with a
certain smoothness, i.e.,

S
r−r
p−r (Δ) = DrSp,ξ ,

where the partitionΔ consists of the distinct break points in the knot sequence ξ and
the smoothness r is related to the multiplicity of the knots, according to the rule in
(1.35). This leads to the following more general definition of distance. For a given
f ∈ Wr

q ([ξp+1, ξn+1]) with 1 ≤ q ≤ ∞ and 0 ≤ r ≤ p, we define

distq(D
rf,DrSp,ξ ) := inf

s∈Sp,ξ
‖Dr(f − s)‖Lq([ξp+1,ξn+1]). (1.121)

We will derive the following upper bound for distq(Drf,DrSp,ξ ).

Theorem 17 (Distance to a Function) For any 0 ≤ r ≤ l ≤ p and f ∈
Wl+1
q ([ξp+1, ξn+1]) with 1 ≤ q ≤ ∞ we have

distq(D
rf,DrSp,ξ ) ≤ K(hξ )

l+1−r‖Dl+1f ‖Lq([ξp+1,ξn+1]),

where hξ := maxp+1≤j≤n(ξj+1 − ξj ) and K is a constant depending only on p.

The distance result will be shown by explicitly constructing a suitable spline
quasi-interpolant which achieves this order of approximation; see Theorem 18. For
sufficiently smooth f , the upper bound behaves like (hξ )

p+1−r .
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1.5.3.1 A Spline Quasi-Interpolant

Given an integer p ≥ 0 and a (p + 1)-open knot sequence ξ , we define a specific
spline approximant of degree p over ξ to a given function f . Let [ξmj,p , ξmj,p+1] be
a knot interval of largest length in [ξj , ξj+p+1] for any j = 1, . . . , n and hj,p,ξ :=
ξmj,p+1 − ξmj,p > 0. The spline approximant to f is constructed as

Qp,ξf (x) :=
n∑
j=1

Lj,p,ξ (f )Bj,p,ξ (x), (1.122)

where

Lj,p,ξ (f ) := 1

hj,p,ξ

∫ ξmj,p+1

ξmj,p

( p∑
i=0

aj,i

(
x − ξmj,p
hj,p,ξ

)i)
f (x) dx, (1.123)

and the coefficients aj,i , i = 0, . . . , p are such that

Lj,p,ξ

((
x − ξmj,p
hj,p,ξ

)i)
= cj,i,j , i = 0, . . . , p, (1.124)

where

(
x − ξmj,p
hj,p,ξ

)i
=

mj,p∑
k=mj,p−p

cj,i,kBk,p,ξ (x), x ∈ [ξmj,p , ξmj,p+1), i = 0, . . . , p.

(1.125)

In the next lemmas we collect some properties for the spline approximation
(1.122).

Lemma 2 The above spline approximation is well defined and reproduces polyno-
mials, i.e., for any polynomial g ∈ Pp we have

Qp,ξg(x) = g(x), x ∈ [ξp+1, ξn+1]. (1.126)

Moreover, it is a projector onto the spline space Sp,ξ , i.e., for any spline s ∈ Sp,ξ

we have

Qp,ξ s(x) = s(x), x ∈ [ξp+1, ξn+1], (1.127)

and, in particular,

s(x) =
n∑
j=1

Lj,p,ξ (s)Bj,p,ξ (x), x ∈ [ξp+1, ξn+1]. (1.128)
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Proof By applying Lj,p,ξ to the polynomials
(
x−ξmj,p
hj,p,ξ

)r
, r = 0, . . . , p, the

coefficients aj,i are given by the solution of the linear system

Hp+1aj = cj , (1.129)

where aj := (aj,0, . . . , aj,p)T , cj := (cj,0,j , . . . , cj,p,j )T , andHp+1 is a (p+1)×
(p + 1) matrix with elements

(Hp+1)i+1,r+1 := 1

hj,p,ξ

∫ ξmj,p+1

ξmj,p

(
x − ξmj,p
hj,p,ξ

)r+i
dx = 1

i + r + 1
,

for i, r = 0, . . . , p. This is the well-known Hilbert matrix which is nonsingular and
it follows that the spline approximation (1.122) is well defined. From Proposition 4
we deduce that (1.126) holds.

Since we only integrate over one subinterval when we defineLj,p,ξ , we conclude
that it reproduces not only polynomials but also splines, and (1.127) follows from
Proposition 5. ��
Lemma 3 For p ≥ 0 and 1 ≤ q ≤ ∞ we have for any f ∈ Lq([ξmj,p , ξmj,p+1]),

|Lj,p,ξ (f )| ≤ Ch−1/q
j,p,ξ

‖f ‖Lq([ξmj,p ,ξmj,p+1]), j = 1, . . . , n, (1.130)

where C is a constant depending only on p.

Proof By (1.20), (1.10) and (1.13) we have

|cj,i,j | = i!
p!
∣∣∣∣D

p−iψj,p,ξ (ξmj,p )
hi
j,p,ξ

∣∣∣∣ ≤
(
ξj+p+1 − ξj
hj,p,ξ

)i
≤ (p+1)i, i = 0, . . . , p.

Here we used that [ξmj,p , ξmj,p+1] is a knot interval of largest length in [ξj , ξj+p+1].
Since 0 ≤ x−ξmj,p

hj,p,ξ
≤ 1 for x ∈ [ξmj,p , ξmj,p+1], we get from (1.123),

|Lj,p,ξ (f )| ≤ (p + 1)h−1
j,p,ξ

‖aj‖∞ ‖f ‖L1([ξmj,p ,ξmj,p+1])

≤ (p + 1)h−1
j,p,ξ

‖H−1
p+1‖∞‖cj‖∞‖f ‖L1([ξmj,p ,ξmj,p+1]).

This gives |Lj,p,ξ (f )| ≤ Ch−1
j,p,ξ

‖f ‖L1([ξmj,p ,ξmj,p+1]), where C := ‖H−1
p+1‖∞(p+

1)p+1 only depends on p. By the Hölder inequality (1.94) we arrive at (1.130). ��
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We now give a bound for the derivative of Qp,ξf . To this end, we recall from
(1.25) that

Δm,k := min
m−k+1≤i≤mhi,k, hi,k := ξi+k − ξi , k = 1, . . . , p,

and that Δm,k > 0 for all k if ξm < ξm+1.

Lemma 4 Suppose ξm < ξm+1 for some p + 1 ≤ m ≤ n, and let f ∈
Lq([ξm−p, ξm+p+1]) with 1 ≤ q ≤ ∞. Then, we have for 0 ≤ r ≤ p,

‖Dr(Qp,ξf )‖Lq([ξm,ξm+1]) ≤ C
( p∏
k=p−r+1

1

Δm,k

)
‖f ‖Lq([ξm−p,ξm+p+1]), (1.131)

where Δm,k is defined in (1.25) and C is a constant depending only on p.

Proof From the quasi-interpolant definition (1.122), the local support property
(1.36) and Lemma 3, we have for x ∈ [ξm, ξm+1),

|Dr(Qp,ξf )(x)| =
∣∣∣∣

m∑
j=m−p

Lj,p,ξ (f )D
rBj,p,ξ (x)

∣∣∣∣
≤ max
m−p≤j≤m |D

rBj,p,ξ (x)|
m∑

j=m−p
|Lj,p,ξ (f )|

≤ (p + 1) max
m−p≤j≤m |D

rBj,p,ξ (x)|

× max
m−p≤j≤mh

−1/q
j,p,ξ

‖f ‖Lq([ξm−p,ξm+p+1]).

Note that [ξm, ξm+1] ⊂ [ξj , ξj+p+1] for j = m − p, . . . ,m. Since hj,p,ξ is the
length of the largest knot interval in [ξj , ξj+p+1], we have ξm+1 − ξm ≤ hj,p,ξ
for j = m − p, . . . ,m. Replacing |DrBj,p,ξ (x)| by the upper bound given in
Proposition 2 and taking the Lq -norm results in (1.131). ��

The next lemma will complete the proof of Theorem 11 related to the condition
number. Note that [ξp+1, ξn+1] = [ξ1, ξn+p+1] because the knot sequence ξ is open.

Lemma 5 For any p ≥ 0, there exists a positive constantKp depending only on p,
such that for any vector c := (c1, . . . , cn) and for any 1 ≤ q ≤ ∞ we have

‖c‖q ≤ Kp
∥∥∥∥
n∑
j=1

cj Nj,p,q,ξ

∥∥∥∥
Lq([ξp+1,ξn+1 ])

, (1.132)

where Nj,p,q,ξ := γ−1/q
j,p,ξ

Bj,p,ξ and γj,p,ξ := (ξj+p+1 − ξj )/(p + 1).
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Proof Let s :=∑n
j=1 γ

−1/q
j,p,ξ

cjBj,p,ξ . Observe that (1.128) and (1.130) imply

|γ−1/q
j,p,ξ

cj | = |Lj,p,ξ (s)| ≤ Ch−1/q
j,p,ξ

‖s‖Lq([ξmj,p ,ξmj,p+1]).

Since γj,p,ξ/hj,p,ξ ≤ 1 we obtain

|cj | ≤ C‖s‖Lq([ξmj,p ,ξmj,p+1]) ≤ C‖s‖Lq([ξj ,ξj+p+1]).

Raising both sides to the q-th power and summing over j gives

n∑
j=1

|cj |q ≤ Cq
n∑
j=1

∫ ξj+p+1

ξj

|s(x)|q dx ≤ (p + 1)Cq‖s‖q
Lq([ξp+1,ξn+1]).

When taking the q-th roots on both sides, we arrive at the inequality in (1.132) with
Kp := (p + 1)C ≥ (p + 1)1/qC, which only depends on p. ��

1.5.3.2 Distance to a Function

The quasi-interpolantQp,ξf described in the previous section can be used to obtain
an upper bound for the distance between a given function f and the spline space
Sp,ξ for p ≥ 0, n > p + 1 and ξ := {ξj }n+p+1

j=1 ; see Theorem 18. We recall that the
knot sequence ξ is (p+ 1)-open. We start by giving a local and global upper bound
for (the derivatives of) the difference between f and Qp,ξf .

Proposition 6 Suppose ξm < ξm+1 for some p + 1 ≤ m ≤ n, and let f ∈
Wl+1
q ([ξm−p, ξm+p+1]) with 0 ≤ l ≤ p and 1 ≤ q ≤ ∞. If Qp,ξf is defined

as in (1.122), then we have for any 0 ≤ r ≤ l,

‖Dr(f−Qp,ξf )‖Lq ([ξm,ξm+1]) ≤ Km(ξm+p+1−ξm−p)l+1−r‖Dl+1f ‖Lq([ξm−p,ξm+p+1]).

Here,

Km := 1+ C
p∏

k=p−r+1

ξm+p+1 − ξm−p
Δm,k

,

Δm,k is defined in (1.25) and C is a constant depending only on p.

Proof From Lemma 2 we know that Qp,ξ reproduces any polynomial in Pl , and so
the triangle inequality gives

‖Dr(f −Qp,ξf )‖Lq([ξm,ξm+1])

≤ ‖Dr(f − g)‖Lq([ξm,ξm+1]) + ‖DrQp,ξ (f − g)‖Lq([ξm,ξm+1]),
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for any g ∈ Pl . Let us now set g := Tξm,lf , where Tξm,lf is the Taylor polynomial
of degree l defined in (1.95) with a = ξm, b = ξm+1. Then, Eq. (1.99) implies

‖Dr(f − g)‖Lq([ξm,ξm+1]) ≤ (ξm+1 − ξm)l+1−r‖Dl+1f ‖Lq([ξm,ξm+1]).

On the other hand, since f − g ∈ Lq([ξm−p, ξm+p+1]), it follows from Lemma 4
that

‖DrQp,ξ (f − g)‖Lq([ξm,ξm+1]) ≤ C
( p∏
k=p−r+1

1

Δm,k

)
‖f − g‖Lq([ξm−p,ξm+p+1]),

where C is a constant depending only on p. Combining the above three inequalities
gives the result. ��

We know that the ratio
ξm+p+1−ξm−p

Δm,k
is well defined because Δm,k > 0. For a

uniform knot sequence

ξm+p+1 − ξm−p
Δm,k

= 2p + 1

k
.

For a general knot sequence it is related to the “local mesh ratio”, i.e., the ratio
between the lengths of the largest and smallest knot intervals in a neighborhood of
ξm.

The local error bound in Proposition 6 can be turned into a global one as in the
following proposition.

Proposition 7 Let f ∈ Wl+1
q ([ξp+1, ξn+1]) with 0 ≤ l ≤ p and 1 ≤ q ≤ ∞. If

Qp,ξf is defined as in (1.122) then, for any 0 ≤ r ≤ l,

‖Dr(f −Qp,ξf )‖Lq([ξp+1,ξn+1]) ≤ Khl+1−r
ξ

‖Dl+1f ‖Lq([ξp+1,ξn+1]), (1.133)

where hξ := maxp+1≤j≤n(ξj+1 − ξj ), and

K := (2p + 1)l+2−r
[

1+ C max
p+1≤m≤n

p∏
k=p−r+1

ξm+p+1 − ξm−p
Δm,k

]
,

where Δm,k is defined in (1.25) and C is a constant depending only on p.

Proof For q = ∞ the result follows immediately from Proposition 6 by taking into
account that ξ is (p + 1)-open. We now assume 1 ≤ q <∞. Since

max
p+1≤m≤n(ξm+p+1 − ξm−p) ≤ (2p + 1)hξ ,

the result follows from Lemma 1 and the local error bound in Proposition 6. ��
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The expressionK in the upper bound in Proposition 7 depends on the position of
the knots for r > 0. However, for any knot sequence ξ , it is possible to construct a
coarser knot sequence ξ � such that the correspondingK only depends onp. This can
be obtained by a clever thinning process. The idea of thinning out a knot sequence
to get a quasi-uniform sequence is credited to [47]; see [45, Section 6.4] for details.
Since ξ� is a subsequence of ξ , we have that Sp,ξ � is a subspace of Sp,ξ . In particular,
for any f ∈ Lq([ξp+1, ξn+1]) the spline approximation

sp := Qp,ξ �f

as defined in (1.122) belongs to the spline space Sp,ξ . This spline quasi-interpolant
leads to the following important result.

Theorem 18 (Approximation Error) Let f ∈ Wl+1
q ([ξp+1, ξn+1]) with 1 ≤ q ≤

∞ and 0 ≤ l ≤ p. Then, there exists sp ∈ Sp,ξ such that

‖Dr(f − sp)‖Lq([ξp+1,ξn+1]) ≤ Khl+1−r
ξ

‖Dl+1f ‖Lq([ξp+1,ξn+1]), 0 ≤ r ≤ l,
(1.134)

where hξ := maxp+1≤j≤n(ξj+1 − ξj ) and K is a constant depending only on p.

The constant K in Theorem 18 grows exponentially with p. However, this
dependency on p can be removed in some cases; see [1, Theorem 2] and [52,
Theorem 7] for details. Theorem 18 immediately leads to the distance result in
Theorem 17.

1.6 Hierarchical Splines and the Truncation Mechanism

The hierarchical spline model is a simple strategy to mix locally spline spaces of
different resolution (different mesh size and/or different degree). Hierarchical spline
representations are defined in terms of a sequence of nested B-spline bases and a
hierarchy of locally refined domains. In this section we define such hierarchical
splines and focus on a set of basis functions with properties similar to B-splines.

1.6.1 Hierarchical B-Splines

Let I be a closed interval of the real line, and consider a sequence of strictly nested
spline spaces defined on I , say

Sp1,ξ1
⊂ Sp2,ξ2

⊂ · · · ⊂ SpL,ξL
. (1.135)
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We assume that each knot sequence involved in (1.135),

ξ� := {ξ1,� ≤ ξ2,� ≤ · · · ≤ ξn�+p�+1,�}, � = 1, . . . , L,

is (p + 1)-basic with basic interval I . Nestedness of the spaces is ensured if and
only if

0 ≤ p�+1−p� ≤ μξ�+1
(ξ)−μξ�

(ξ), ξ ∈ ξ �∩I, � = 1, . . . , L−1. (1.136)

Note that (1.136) implies that (ξ� ∩ I) ⊆ (ξ �+1 ∩ I). The assumption of dealing
with (p + 1)-basic knot sequences ensures that the corresponding n� B-splines are
linearly independent on I . We denote the B-spline basis of the space Sp�,ξ� by

B� := {Bj,� := Bj,p�,ξ� , j = 1, . . . , n�}. (1.137)

Next, consider a sequence of nested, closed subsets of I ,

I ⊇ Ω1 ⊇ Ω2 ⊇ · · · ⊇ ΩL, (1.138)

whereΩ� is the union of some closed knot intervals related to the knot sequence ξ �.
Note that eachΩ� may consist of disjoint intervals. We assume that each connected
component of Ω1 has nonempty interior. The collection of those subsets in (1.138)
is denoted by

Ω := {Ω1,Ω2, . . . ,ΩL}, (1.139)

and will be simply referred to as the domain hierarchy in I . We also setΩL+1 := ∅.
Finally, for a given function f on I , we define its support on Ω as

suppΩ (f ) := supp(f ) ∩Ω1.

Given a sequence of spline spaces and bases as in (1.135)–(1.137) and a domain
hierarchy as in (1.138)–(1.139), we construct the corresponding set of hierarchical
B-splines (in short, HB-splines) as follows.7

Definition 7 Given a domain hierarchy Ω , the corresponding set of HB-splines is
denoted by HΩ and defined recursively as follows:

(i) H1 := {Bj,1 ∈ B1 : suppΩ (Bj,1) �= ∅};
(ii) for � = 2, . . . , L:

H� :=H C
� ∪H F

� ,

7The HB-splines in Definition 7 were introduced by Kraft [28, 29] and further elaborated in
[53]. However, the concept of hierarchical splines has a long history; for example, it was used
in preconditioning [18, 54], adaptive modeling [19, 20] and adaptive finite elements [25, 30].
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where

H C
� := {Bj,k ∈H�−1 : suppΩ(Bj,k) �⊆ Ω�},

H F
� := {Bj,� ∈ B� : suppΩ(Bj,�) ⊆ Ω�};

(iii) HΩ :=HL.

To obtain the set of HB-splines, we first take all the B-splines in B1 whose
support overlaps Ω1. Then, we apply a recursive procedure which selects at each
level � all the B-splines obtained in the previous step whose support is not entirely
contained in Ω� and all the B-splines in B� whose support is entirely contained
inΩ�.

Example 13 An example of the recursive definition of HB-splines is illustrated in
Fig. 1.4. We consider three nested knot sequences, with knots of multiplicity 4 at
the two extrema of the intervals and single knots elsewhere, as in Fig. 1.4a. This

Fig. 1.4 An example of cubic HB-splines where the domain hierarchy consists of three levels. The
knot positions are visualized by vertical dotted lines in (c)–(h). (a) Knot sequences. (b) Domain
hierarchy. (c) B1. (d) H1. (e) B2. (f) H2. (g) B3. (h) H3 = HΩ
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allows us to construct the three sets of cubic B-splines shown in Fig. 1.4c, e, g,
whose dimensions are n1 = 10, n2 = 17 and n3 = 31, respectively. The domain
hierarchy is defined by the subsets Ω1 = [ξ4,1, ξ11,1], Ω2 = [ξ8,2, ξ16,2] and Ω3 =
[ξ16,3, ξ24,3], and is shown in Fig. 1.4b. Obviously, H1 coincides with B1. Further-
more, H C

2 is obtained from H1 by removing B6,1, and H F
2 = {B8,2, . . . , B12,2}.

Hence, H2 = H C
2 ∪ H F

2 consists of 9 + 5 = 14 elements. Finally, H C
3 is

obtained from H2 by removing B10,2, and H F
3 = {B16,3, . . . , B20,3}. Hence,

H3 =H C
3 ∪H F

3 consists of 13+ 5 = 18 elements. The sets H1, H2 and H3 are
shown in Fig. 1.4d, f, h.

For each � ∈ {1, . . . , L}, let J�,Ω be the set of indices of the B-splines in B�

belonging to HΩ , i.e.,

J�,Ω := {j : Bj,� ∈ B� ∩HΩ }. (1.140)

From Definition 7 it follows that

J�,Ω = {j : Bj,� ∈ B�, suppΩ(Bj,�) ∩ Γ� �= ∅, suppΩ(Bj,�) ⊆ Ω�}, (1.141)

where

Γ� := Ω� \Ω�+1. (1.142)

Given this index set, we can reconstruct the set of HB-splines as

HΩ = {Bj,�, j ∈ J�,Ω , � = 1, . . . , L}. (1.143)

Since the set of HB-splines is a mixture of standard B-splines, we deduce immedi-
ately the following properties.

• Local Support. An HB-spline is locally supported on an interval that only
depends on the level it was introduced in the hierarchical construction and not
on the choice of subsets in the domain hierarchy.

• Nonnegativity. An HB-spline is nonnegative everywhere, and positive inside its
support.

• Piecewise Structure. An HB-spline is a piecewise polynomial, whose degree
and smoothness depends on the level it was introduced in the hierarchical
construction and the spline space used on that level.

• Linear Independence. The HB-splines in HΩ are linearly independent onΩ1.

Proof We first note that if J�,Ω is nonempty then Γ� has nonempty interior for
any �; see (1.141) and (1.142). We must prove that if

s(x) =
L∑
�=1

∑
j∈J�,Ω

cj,�Bj,�(x) = 0, x ∈ Ω1, (1.144)
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then cj,� = 0 for all j and � in (1.144). We know from the local linear
independence property that the B-splines Bj,1, j ∈ J1,Ω are linearly independent
on Γ1. Moreover, from (1.141) it follows that only those functions are nonzero
on Γ1. Hence, we conclude that cj,1 = 0 for j ∈ J1,Ω in (1.144). We can
repeat the same argument for the remaining terms in (1.144) going level by level
in the hierarchy. Indeed, for � = 2, . . . , L, the B-splines Bj,�, j ∈ J�,Ω are
linearly independent on Γ�, and only those functions are nonzero on Γ� except for
functions already considered before at previous levels. This implies that cj,� = 0
for j ∈ J�,Ω with � = 2, . . . , L. ��
The space spanned by the HB-splines in HΩ is called the hierarchical spline

space on Ω and is denoted by

SΩ :=
{
s : Ω1 → R : s =

L∑
�=1

∑
j∈J�,Ω

cj,�Bj,�, cj,� ∈ R

}
. (1.145)

Such hierarchical space has some interesting properties.

• Dimension. By the linear independence of the HB-splines, the space SΩ is a
vector space of dimension

∑L
�=1 |J�,Ω |.

• Nestedness. Let the domain hierarchy Ω̃ be obtained from another domain
hierarchy Ω such that Ω1 = Ω̃1 and Ω� ⊆ Ω̃� for � = 2, . . . , L. Then,
SΩ ⊆ S

Ω̃
.

Proof We first note that any B-spline Bj,�−1 ∈ B�−1 whose support is entirely
contained in Ω� can be represented exactly in terms of B-splines Bi,� ∈ B�

whose support is also contained inΩ�. Consider the intermediate spaces H� and
H̃� arising in Definition 7. From their construction it directly follows

span(H�−1) ⊆ span(H�) and span(H̃�−1) ⊆ span(H̃�). (1.146)

We now show that span(H�) ⊆ span(H̃�) for all � = 1, . . . , L. This clearly
holds for � = 1 since Ω1 = Ω̃1 and hence H1 = H̃1. We proceed by induction
on �, and assume that the statement is true for �− 1. Then, we have

span(H C
� ) ⊆ span(H�−1) ⊆ span(H̃�−1) ⊆ span(H̃�),

and

span(H F
� ) ⊆ span(H̃ F

� ) ⊆ span(H̃�).

This implies

span(H�) = span(H C
� ) ∪ span(H F

� ) ⊆ span(H̃�).

As a consequence, SΩ = span(HL) ⊆ span(H̃L) = S
Ω̃

. ��
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• Polynomial Embedding. The space SΩ contains (at least) all polynomials of
degree less than or equal to p1.

Proof Let g be a polynomial in Pp1 . From Sect. 1.3.3 we know that g belongs
to the coarsest spline space Sp1,ξ1

in the sequence (1.135). Hence, taking into
account (1.146), we conclude that g ∈ span(H1) ⊆ span(HL) = SΩ . ��

1.6.2 Truncated Hierarchical B-Splines

HB-splines do not satisfy the partition of unity property. In addition, the number
of overlapping basis functions associated with different hierarchical levels easily
increases. This motivates the construction of another basis for the hierarchical spline
space. The construction is based on the following truncation mechanism [22].

Definition 8 Given � ∈ {2, . . . , L}, let s ∈ Sp�,ξ � be represented in the B-spline
basis B�, i.e.,

s =
n�∑
j=1

cj,� Bj,�. (1.147)

The truncation of s at level � is defined as the sum of the terms appearing in (1.147)
related to the B-splines whose support is not a subset ofΩ�, i.e.,

trunc�,Ω(s) :=
∑

j : suppΩ (Bj,�)�Ω�

cj,� Bj,�. (1.148)

By successively truncating the functions constructed in Definition 7, we obtain
the truncated hierarchical B-splines (in short, THB-splines).8

Definition 9 Given a domain hierarchy Ω , the corresponding set of THB-splines
is denoted by TΩ and defined recursively as follows:

(i) T1 := {Bj,1 ∈ B1 : suppΩ(Bj,1) �= ∅};
(ii) for � = 2, . . . , L:

T� := T C
� ∪T F

� ,

where

T C
� := {trunc�,Ω(B

t
j,k,Ω�−1

) : Btj,k,Ω�−1
∈ T�−1, suppΩ(B

t
j,k,Ω�−1

) �⊆ Ω�},
T F
� := {Bj,� ∈ B� : suppΩ (Bj,�) ⊆ Ω�};

8The truncation approach was introduced in [22] for hierarchical tensor-product splines, but was
already developed before in the context of hierarchical Powell–Sabin splines [50]. A generalization
towards a broad class of hierarchical spaces can be found in [23].
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(iii) TΩ := TL.

To obtain the THB-splines, we apply a recursive procedure building a set T� at
level �. This set consists of two subsets, the coarse set T C

� and the fine set T F
� .

To construct the elements Btj,k,Ω� of T C
� , we first express any function Btj,k,Ω�−1

∈
T�−1 with respect to the B-spline basis B�, and then we apply the truncation as
in (1.148) with s = Btj,k,Ω�−1

. The fine set T F
� consists of all B-splines in B�

whose support is entirely contained in Ω�, exactly as in the HB-spline case; see
Definition 7.

When comparing Definition 9 with Definition 7, we see that the number of THB-
splines in the set TΩ is equal to the number of HB-splines in the set HΩ . In the
following, the THB-splines in TΩ are denoted by BTj,�,Ω for j ∈ J�,Ω and � =
1, . . . , L.

Example 14 When unrolling the recursive definition of THB-splines for L = 3, we
get

BTj,1,Ω = trunc3,Ω(trunc2,Ω(Bj,1)), j ∈ J1,Ω,

BTj,2,Ω = trunc3,Ω(Bj,2), j ∈ J2,Ω ,

BTj,3,Ω = Bj,3, j ∈ J3,Ω .

Example 15 Figure 1.5 illustrates the truncation mechanism applied to the set of
HB-splines depicted in Fig. 1.4 (Example 13). Obviously, T1 coincides with H1.

Fig. 1.5 HB-splines and THB-splines with respect to the same domain hierarchy as in Fig. 1.4b.
(a) H1. (b) T1. (c) H2. (d) T2. (e) H3. (f) T3
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Furthermore, T C
2 is obtained from H C

2 by applying the truncation mechanism to
its elements; this only results in a modification of the elements B4,1, B5,1, B7,1 and
B8,1. On the other hand, we have T F

2 =H F
2 . Finally,T C

3 is obtained fromH C
3 by

modifying B4,1, B5,1, B7,1, B8,1 (truncated at level 2) and B8,2, B9,2, B11,2, B12,2
(truncated at level 3), while T F

3 = H F
3 . It is clear that T� = T C

� ∪ T F
� and

H� =H C
� ∪H F

� have the same number of elements for � = 2, 3.

The next properties can be easily deduced from the definition of THB-splines.

• Relation to HB-Splines. Each THB-spline in TΩ is uniquely related to a single
HB-spline in HΩ possibly by successive truncations, i.e.,

BTj,�,Ω = Trunc�,Ω(Bj,�), (1.149)

where for any s ∈ Sp�,ξ� with � = 1, . . . , L− 1,

Trunc�,Ω(s) := truncL,Ω(truncL−1,Ω(· · · (trunc�+1,Ω(s)) · · · )),

and for any s ∈ SpL,ξL ,

TruncL,Ω(s) := s.

From (1.149) in combination with (1.147)–(1.148), it is clear that

BTj,�,Ω(x) = Bj,�(x), x ∈ Γ�. (1.150)

• Local Support. From (1.149) it follows that a THB-spline has the same or
smaller support than its related HB-spline.

• Nonnegativity. A THB-spline is nonnegative onΩ1.

Proof Fix 1 ≤ �1 < �2 ≤ L. Because of the nestedness of the spaces in (1.135),
we can write the B-spline Bj,�1 ∈ B�1 in terms of the B-splines in B�2 , i.e.,

Bj,�1(x) =
n�2∑
i=1

c
j,�1
i,�2
Bi,�2(x), x ∈ Ω1. (1.151)

From Sect. 1.3.5 we know that the coefficients in (1.151) are all nonnegative in
case p�1 = p�2 . This property holds in general, also when p�1 < p�2 , and we
refer to [12] for its proof. Then, since each THB-spline BTj,�,Ω can be deduced
from the B-spline Bj,� possibly by successive truncations, see (1.149), it follows
from (1.147)–(1.148) that BTj,�,Ω can be written as a linear combination of B-
splines of the finest level L with nonnegative coefficients. This implies that
BTj,�,Ω is nonnegative. ��

• Linear Independence. The THB-splines in TΩ are linearly independent onΩ1.
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Proof We must prove that if

s(x) =
L∑
�=1

∑
j∈J�,Ω

cj,�B
T
j,�(x) = 0, x ∈ Ω1, (1.152)

then cj,� = 0 for all j and � in (1.152). This can be shown using exactly the same
line of arguments as in the case of HB-splines (see (1.144)), taking into account
relation (1.150). ��
The next theorem shows that the THB-splines in TΩ form an alternative basis

for the hierarchical spline space SΩ in (1.145).

Theorem 19 (Hierarchical Spline Space) The THB-splines in TΩ span the same
space as the HB-splines inHΩ , i.e.,

SΩ = span(HΩ ) = span(TΩ). (1.153)

Proof Consider the intermediate spaces H� and T� in Definitions 7 and 9,
respectively. From their construction it directly follows

span(H�−1) ⊆ span(H�) and span(T�−1) ⊆ span(T�).

We now show that span(H�) = span(T�) for all � = 1, . . . , L. This clearly holds
for � = 1 since H1 = T1. We proceed by induction on �, and assume that the
statement is true for �− 1. Then, we have

span(H C
� ) ⊆ span(H�−1) = span(T�−1) ⊆ span(T�),

and

span(H F
� ) = span(T F

� ) ⊆ span(T�).

This implies

span(H�) = span(H C
� ) ∪ span(H F

� ) ⊆ span(T�).

Finally, since both sets H� and T� have the same number of elements and these
elements are all linearly independent, it follows that span(H�) = span(T�). As a
consequence, span(HΩ) = span(HL) = span(TL) = span(TΩ ). ��

The correspondence in (1.149) between the THB-spline BTj,�,Ω and a particular
B-spline Bj,� ∈ B� has an important consequence, namely the so-called property
of preservation of coefficients [23]. This means that the THB-spline representation
preserves certain coefficients of functions represented with respect to one of the B-
spline bases B�.
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Theorem 20 (Preservation of Coefficients) Given � ∈ {1, . . . , L}, let the
restriction of s ∈ SΩ to Γ� := Ω� \ Ω�+1 be represented in the bases TΩ and
B�, i.e.,

s(x) =
L∑
k=1

∑
j∈Jk,Ω

cTj,kB
T
j,k,Ω (x) =

n�∑
i=1

ci,�Bi,�(x), x ∈ Γ�. (1.154)

Then,

cTi,� = ci,�, i ∈ J�,Ω . (1.155)

Proof We first note that if J�,Ω is nonempty then Γ� has nonempty interior. Assume
now that Γ� has nonempty interior. Since s ∈ SΩ and the spline spaces in (1.135)
are nested, it is clear that the restriction of s to Γ� can be expressed as a linear
combination of the B-splines in B� restricted to Γ� as in (1.154). Let us focus on
the sum ∑

j∈Jk,Ω
cTj,kB

T
j,k,Ω (x), x ∈ Γ�, (1.156)

and consider three cases.

– If k > �, then the sum in (1.156) equals zero. Indeed, Definition 9 and (1.149)
imply that

suppΩ(B
T
j,k,Ω ) ⊆ suppΩ(Bj,k) ⊆ Ωk ⊆ Ω�+1,

and consequently, we have suppΩ (B
T
j,k,Ω) ∩ Γ� = ∅.

– We now consider the case k = �. From (1.150) it immediately follows

∑
j∈J�,Ω

cTj,�B
T
j,�,Ω(x) =

∑
j∈J�,Ω

cTj,�Bj,�(x), x ∈ Γ�.

– Finally, let k < �. In view of the truncation mechanism, we prove that THB-
splines introduced at levels less than � in the hierarchy can only contribute
in terms of B-splines Bi,� with i �∈ J�,Ω . To this end, let us rewrite the
corresponding THB-splines BTj,k,Ω in terms of the B-spline basis B�,

BTj,k,Ω (x) =
n�∑
i=1

c
j,k

i,� Bi,�(x), x ∈ Γ�.

Due to the definition of BTj,k,Ω and the truncation operation (1.148), we have

c
j,k
i,� = 0, if i ∈ J�,Ω .
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Hence, for k < � we arrive at

∑
j∈Jk,Ω

cTj,kB
T
j,k,Ω (x) =

∑
i �∈J�,Ω

( ∑
j∈Jk,Ω

cTj,kc
j,k
i,�

)
Bi,�(x), x ∈ Γ�.

By combining the above three cases and taking into account the local linear
independence of B-splines, we obtain the identity (1.154) where

ci,� =
{
cTi,�, if i ∈ J�,Ω,∑�−1
k=1

∑
j∈Jk,Ω c

T
j,kc

j,k
i,� , otherwise,

which in particular gives (1.155). ��
Thanks to Theorem 20, many interesting features of B-spline representations can

be transferred to THB-spline representations.

• Representation of Polynomials. Any polynomial g of degree p1 can be
represented as

g(x) =
L∑
�=1

∑
j∈J�,Ω

Λj,p�,ξ� (g)B
T
j,�,Ω (x), x ∈ Ω1, (1.157)

where Λj,p�,ξ� is defined in (1.53) with p = p� and ξ = ξ �.

Proof Using the nestedness of the spaces (1.135), it is clear that g ∈ Sp�,ξ� for
� = 1, . . . , L and also that g ∈ SΩ . Then, consider its representation with respect
to TΩ and B� for � = 1, . . . , L. Theorem 20 in combination with Proposition 3
concludes the proof. ��

• Partition of Unity. By (1.49) we have

L∑
�=1

∑
j∈J�,Ω

BTj,�,Ω(x) = 1, x ∈ Ω1. (1.158)

Since the THB-splines are nonnegative it follows that they form a nonnegative
partition of unity onΩ1.

• Greville Points. By (1.50) we have

x =
L∑
�=1

∑
j∈J�,Ω

ξ∗j,p�,ξ�B
T
j,�,Ω (x), x ∈ Ω1, (1.159)

where ξ∗
j,p�,ξ�

are the Greville points defined in (1.51) with p = p� and ξ = ξ �.
Note that the Greville points are not necessarily distinct here.
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• Strong Stability. The THB-spline basis is strongly stable with respect to the
supremum norm, under mild assumptions on the underlying knot sequences
required in the hierarchical construction. We refer the reader to [23] for a proof
based on the property of preservation of coefficients. Strong stability in the
hierarchical context means that the constants to be considered in the stability
relation (1.64) of the basis do not depend on the number of hierarchical levels.

Example 16 The polynomial g(x) = ax2 + bx + c can be represented in terms of
quadratic THB-splines:

ax2 + bx + c =
L∑
�=1

∑
j∈J�,Ω

cj,�B
T
j,�,Ω (x).

From Theorem 20 and Example 8 we obtain that

cj,� = Λj,2,ξ �(g) = a ξj+1,�ξj+2,� + b ξj+1,� + ξj+2,�

2
+ c.

1.6.3 Quasi-Interpolation in Hierarchical Spaces

The above properties of THB-splines can be exploited to develop a general and very
simple procedure for the construction of quasi-interpolants in hierarchical spline
spaces [51].

Definition 10 Given for each spline space in (1.135) a quasi-interpolant in B-spline
form, i.e.,

Q�f (x) :=
n�∑
j=1

λj,�(f )Bj,�(x), x ∈ Ω1, � = 1, . . . , L, (1.160)

the corresponding hierarchical quasi-interpolant in SΩ is defined by

QΩf (x) :=
L∑
�=1

∑
j∈J�,Ω

λj,�(f )B
T
j,�,Ω (x), x ∈ Ω1. (1.161)

According to Definition 10, in order to construct a quasi-interpolant in SΩ , it
suffices to consider first a quasi-interpolant in each space associated with a particular
level in the hierarchy. Then, the coefficients of the proposed hierarchical quasi-
interpolant are nothing else than a proper subset of the coefficients of the one-level
quasi-interpolants.
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We now show how to build hierarchical quasi-interpolants reproducing poly-
nomials of a certain degree p ≤ p1. As described in Sect. 1.5.2, this is a crucial
property feature to ensure good approximation properties.

Theorem 21 (Polynomial Reproduction) Let Q� be a given sequence of quasi-
interpolants as in (1.160), let QΩ be the corresponding hierarchical quasi-
interpolant as in (1.161), and let p ≤ p1. If

Q�g = g, ∀g ∈ Pp, � = 1, . . . , L, (1.162)

then

QΩg = g, ∀g ∈ Pp.

Proof Since the spaces in (1.135) are nested, we have p� ≥ p for all �. Let g ∈
Pp ⊆ Pp� ⊆ Sp�,ξ�

. Then, this polynomial can be uniquely represented as a linear
combination of the B-splines in B�,

g(x) =
n�∑
j=1

cj,�Bj,�(x),

and since Q�g = g we have λj,�(g) = cj,�. On the other hand, g ∈ SΩ , so

g(x) =
L∑
�=1

∑
j∈J�,Ω

cTj,�B
T
j,�,Ω(x).

From Theorem 20 it follows

cTj,� = cj,� = λj,�(g), j ∈ J�,Ω , � = 1, . . . , L,

implying that QΩg = g. ��
In the next theorem we present a sufficient condition for constructing quasi-

interpolants that are projectors onto SΩ .

Theorem 22 (Spline Reproduction) Let Q� be a given sequence of quasi-
interpolants as in (1.160), and let QΩ be the corresponding hierarchical quasi-
interpolant as in (1.161). Assume

Q�s = s, ∀s ∈ Sp�,ξ� , � = 1, . . . , L,

and each λj,� used in (1.161) is supported on Γ� := Ω� \Ω�+1. Then,

QΩ s = s, ∀s ∈ SΩ .
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Proof Due to the linearity of the quasi-interpolant, it suffices to prove that

λj,�(B
T
i,k,Ω ) = δi,j δk,�, i ∈ Jk,Ω , j ∈ J�,Ω , k, � = 1, . . . , L, (1.163)

where δr,s stands for the classical Kronecker delta. Let j and � be fixed. To prove
(1.163) we consider three cases.

– If k > �, then BTi,k,Ω (x) = 0 for x ∈ Γ�; see Definition 9. Since λj,� is only

supported on Γ�, it follows from Definition 4 that λj,�(BTi,k,Ω ) = 0.
– We now consider the case k = �. Since Q� is a projector onto S�, we have that
λj,�(Bi,�) = δi,j . From (1.150) and the support restriction of λj,�, we obtain

λj,�(B
T
i,�,Ω ) = δi,j , i, j ∈ J�,Ω .

– Finally, let k < �. Any BTi,k,Ω restricted to Γ� can then be expressed as a linear
combination of the B-splines in B� restricted to Γ�, i.e.,

BTi,k,Ω (x) =
n�∑
r=1

c
i,k
r,�Br,�(x), x ∈ Γ�,

where

c
i,k
r,� = 0, if r ∈ J�,Ω,

as explained in the third case of the proof of Theorem 20. Thus, by the support
restriction of λj,�, we have for j ∈ J�,Ω ,

λj,�(B
T
i,k,Ω ) =

n�∑
r=1

c
i,k
r,�λj,�(Br,�) =

n�∑
r=1

c
i,k
r,�δj,r = ci,kj,� = 0.

The above three cases complete the proof. ��
Some remarks are in order here.

• Constraints on (1.160). The sequence of quasi-interpolants (1.160) considered
in Theorem 22 needs to satisfy constraints more restrictive than those in Theo-
rem 21: For each level �, Q� must be a projector onto Sp�,ξ �

and each λj,�, j ∈
J�,Ω , must be supported on Γ�. The former constraint connects the sequence of
quasi-interpolants Q1, . . . ,QL with the sequence of spaces Sp1,ξ1

, . . . ,SpL,ξL
and has a similar counterpart in Theorem 21. The latter constraint links the
same sequence of quasi-interpolants with the domain hierarchy Ω . Nevertheless,
once a sequence of quasi-interpolants as in (1.160) satisfying the hypotheses
of Theorem 22 is available, the construction of a hierarchical quasi-interpolant
that is a projector onto SΩ does not require additional efforts compared to a
hierarchical quasi-interpolant that just reproduces polynomials.
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• Dual Basis. Let {λj,�} be a set of linear functionals as in (1.161) that provides a
projector onto SΩ . Then, because of (1.163), it is a dual basis for the THB-spline
basis TΩ .

• Approximation Power. Polynomial reproduction is one of the key ingredients
to show the approximation power of spline quasi-interpolants; see Sect. 1.5.2.
Boundedness of a hierarchical quasi-interpolation operator and optimal approx-
imation accuracy can be achieved on domain hierarchies that are nicely graded
(i.e., the boundaries of the different Ω� are sufficiently separated). Local error
estimates for hierarchical quasi-interpolants of the form (1.161) can be found in
[51] with respect to the L∞-norm, and in [49] with respect to the general Lq -
norm, 1 ≤ q ≤ ∞.

Example 17 Let p� = 2, and let ξ� be a 3-open knot sequence with at most
double knots in the interior for each � = 1, . . . , L. Then, we can choose the
quasi-interpolants in (1.160) as in Example 12. This leads to the hierarchical quasi-
interpolant

QΩf (x) =
L∑
�=1

∑
j∈J�,Ω

λj,�(f )B
T
j,�,Ω (x), x ∈ Ω1,

where

λj,�(f ) = −1

2
f (ξj+1,�)+ 2f (ξ∗j,2,ξ� )−

1

2
f (ξj+2,�).

From Example 12 and Theorem 21 we deduce that this hierarchical quasi-
interpolant reproduces the polynomial space P2. If [ξj+1,�, ξj+2,�] ⊆ Γ� for each
j ∈ J�,Ω , then it actually reproduces the entire hierarchical spline space SΩ ,
according to Theorem 22.

Example 18 Consider the quasi-interpolant constructed in Sect. 1.5.3.1 for each
space Sp�,ξ � of level � = 1, . . . , L. This leads to the hierarchical quasi-interpolant

QΩf (x) =
L∑
�=1

∑
j∈J�,Ω

Lj,p�,ξ �(f )B
T
j,�,Ω(x), x ∈ Ω1,

where Lj,p�,ξ� is defined in (1.123) with p = p� and ξ = ξ�; it is supported
on a single knot interval [ξmj,p� ,�, ξmj,p�+1,�]. From Lemma 2 and Theorem 21 we
deduce that this hierarchical quasi-interpolant reproduces the polynomial space Pp1 .
Theorem 22 says that if [ξmj,p� ,�, ξmj,p�+1,�] ⊆ Γ� for each j ∈ J�,Ω , then the
hierarchical quasi-interpolant reproduces the entire hierarchical spline space SΩ .

The hierarchical quasi-interpolant in Definition 10 can be interpreted as a
telescopic approximant, where for each level an approximant of the residual is
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added.9 To show this, we define the following set of indices

K�,Ω := {j : Bj,� ∈ B�, suppΩ (Bj,�) ⊆ Ω�}.

Referring to (1.141), it is easy to see that J�,Ω ⊆ K�,Ω , and moreover JL,Ω =
KL,Ω .

Theorem 23 (Telescopic Representation) Let Q� be a given sequence of quasi-
interpolants as in (1.160), and let QΩ be the corresponding hierarchical quasi-
interpolant as in (1.161). Assume

Q�s = s, ∀s ∈ Sp�,ξ�
, � = 1, . . . , L, (1.164)

then

QΩf =
L∑
�=1

f (�), (1.165)

where

f (1) :=
∑
j∈K1,Ω

λj,1(f )Bj,1,

f (�) :=
∑
j∈K�,Ω

λj,�
(
f − f (1) − . . .− f (�−1))Bj,�, � = 2, . . . , L.

(1.166)

Proof Each quasi-interpolant Q�, � = 1, . . . , L, is assumed to be a projector onto
the space Sp�,ξ � , and because of the nestedness of the spaces Sp�,ξ � ⊂ Sp�+1,ξ�+1

,
we know that every basis function Bj,� can be represented as

Bj,� =
n�+1∑
k=1

λk,�+1(Bj,�) Bk,�+1, (1.167)

where λk,�+1(Bj,�) = 0 if the support of Bk,�+1 is not contained in the support
of Bj,�. By exploiting the definition of the truncated basis (1.149) and (1.167), we
obtain

f (1) =
∑
j∈K1,Ω

λj,1(f )Bj,1

=
∑
j∈J1,Ω

λj,1(f )B
T
j,1,Ω +

∑
j∈K1,Ω

λj,1(f )

( ∑
k∈K2,Ω

λk,2(Bj,1) Bk,2

)
.

9The general telescopic expression for the hierarchical quasi-interpolant was presented in [51].
A special telescopic approximation in the hierarchical setting was already considered in [29].
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Moreover,

f (2) =
∑
j∈K2,Ω

λj,2(f )Bj,2 −
∑
k∈K2,Ω

λk,2(f
(1))Bk,2

=
∑
j∈K2,Ω

λj,2(f )Bj,2 −
∑
k∈K2,Ω

( ∑
j∈K1,Ω

λj,1(f )λk,2(Bj,1)

)
Bk,2.

Hence,

f (1) + f (2) =
∑
j∈J1,Ω

λj,1(f )B
T
j,1,Ω +

∑
j∈K2,Ω

λj,2(f )Bj,2. (1.168)

We now remark that from the truncation definition (1.148)–(1.149) it follows that
λk,3(B

T
j,1,Ω) = 0 for any k ∈ K3,Ω and j ∈ J1,Ω , and so

∑
k∈K3,Ω

λk,3(B
T
j,1,Ω)Bk,3 = 0, ∀j ∈ J1,Ω . (1.169)

By using similar arguments as before, we can write (1.168) as

f (1) + f (2) =
∑
j∈J1,Ω

λj,1(f )B
T
j,1,Ω +

∑
j∈J2,Ω

λj,2(f )B
T
j,2,Ω

+
∑
j∈K2,Ω

λj,2(f )

( ∑
k∈K3,Ω

λk,3(Bj,2) Bk,3

)
,

and by means of (1.168) and (1.169) we obtain

f (3) =
∑
j∈K3,Ω

λj,3(f )Bj,3 −
∑
k∈K3,Ω

λk,3(f
(1) + f (2))Bk,3

=
∑
j∈K3,Ω

λj,3(f )Bj,3 −
∑
k∈K3,Ω

( ∑
j∈K2,Ω

λj,2(f )λk,3(Bj,2)

)
Bk,3,

resulting in

f (1) + f (2) + f (3) =
∑
j∈J1,Ω

λj,1(f )B
T
j,1,Ω +

∑
j∈J2,Ω

λj,2(f )B
T
j,2,Ω

+
∑
j∈K3,Ω

λj,3(f )Bj,3.

By iterating over all levels in the hierarchy and repeating the same arguments, we
get the relation (1.165). ��
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The telescopic representation in Theorem 23 directly leads to the representation
of the hierarchical quasi-interpolant in terms of the HB-spline basis, instead of
in terms of the THB-spline basis (see Definition 10), under assumption (1.164).
Indeed, as observed in [51], thanks to property (1.167), one can simply replace the
index sets K�,Ω by J�,Ω in (1.166) and the relation (1.165) still remains true. This
implies that (1.165) can be rewritten as

QΩf =
L∑
�=1

∑
j∈J�,Ω

λj,�(f −Q�−1,Ωf )Bj,�, (1.170)

where

Q0,Ωf := 0, Qr,Ωf :=
r∑
k=1

∑
j∈Jk,Ω

λj,k(f −Qk−1,Ωf )Bj,k, r ≥ 1. (1.171)

1.7 Tensor-Product Structures and Adaptive Extensions

The most easy way to extend many of the previous results to the multivariate setting
is to consider a tensor-product structure. For the sake of simplicity, we briefly focus
here on the bivariate setting. The extension to higher dimensions is straightforward;
it only requires a more involved indexing notation.

1.7.1 Tensor-Product B-Splines

Given two knot sequences

ξk := {ξ1,k ≤ ξ2,k ≤ · · · ≤ ξnk+pk+1,k}, k = 1, 2,

we define the basic rectangle as

R := [ξp1+1,1, ξn1+1,1] × [ξp2+1,2, ξn2+1,2].

The tensor-product B-splines can be simply constructed as the product of univari-
ate B-splines in each variable, i.e.,

Bj1,j2,p1,p2,ξ1,ξ 2
(x1, x2) := Bj1,p1,ξ1

(x1)Bj2,p2,ξ 2
(x2), (1.172)

for jk = 1, . . . , nk and k = 1, 2.
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Example 19 Figure 1.6 shows a schematic representation of a tensor-product B-
spline basis of bidegree (p1, p2) = (3, 3). A (pk+1)-open knot sequence is chosen
in each direction xk , where the interior knots are all simple, and the corresponding
univariate B-splines are depicted. Then, the set of tensor-product B-splines is
obtained by computing the tensor product of the sets of univariate B-splines in each
direction. Contour plots of some bicubic tensor-product B-splines are depicted in
Fig. 1.7.

It is clear that tensor-product B-splines inherit all the nice features of univariate
B-splines discussed in Sects. 1.2 and 1.3. In particular, they enjoy the following
properties.

Fig. 1.6 Schematic representation of the (bivariate) tensor-product B-spline basis of bidegree
(p1, p2) = (3, 3) using a 4-open knot sequence in each direction. The knot lines are visualized
by solid lines in the rectangular domain (this is the basic rectangle), and the sets of univariate
B-splines are depicted for both directions

Fig. 1.7 Contour plots of some bicubic tensor-product B-splines Bj1,j2,3,3,ξ1,ξ2
defined on the

tensor-product mesh given in Fig. 1.6. The bounding box of the support of each B-spline is
visualized by solid blue lines. (a) (j1, j2) = (3, 3). (b) (j1, j2) = (5, 5). (c) (j1, j2) = (7, 9)
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• Local Support. A tensor-product B-spline is locally supported on the rectangle
given by the extreme knots used in the definition of its univariate B-splines in
each direction. More precisely,

Bj1,j2,p1,p2,ξ1,ξ2
(x1, x2) = 0, (x1, x2) /∈ S, (1.173)

where

S := [ξj1,1, ξj1+p1+1,1)× [ξj2,2, ξj2+p2+1,2).

• Nonnegativity. A tensor-product B-spline is nonnegative everywhere, and posi-
tive inside its support, i.e.,

Bj1,j2,p1,p2,ξ 1,ξ2
(x1, x2) ≥ 0, x1, x2 ∈ R, (1.174)

and

Bj1,j2,p1,p2,ξ1,ξ2
(x1, x2) > 0, (x1, x2) ∈ S̊, (1.175)

where

S̊ := (ξj1,1, ξj1+p1+1,1)× (ξj2,2, ξj2+p2+1,2).

• Piecewise Structure. A tensor-product B-spline has a piecewise tensor-product
polynomial structure, i.e.,

Bj1,j2,p1,p2,ξ1,ξ2
∈ Pp1([ξm1,1, ξm1+1,1))⊗ Pp2([ξm2,2, ξm2+1,2)). (1.176)

• Smoothness. If ξ is a knot of Bjk,pk,ξk of multiplicity μ ≤ pk + 1 then
Bj1,j2,p1,p2,ξ1,ξ2

belongs to the class Cpk−μ across the line xk = ξ for k = 1, 2.

• Linear Independence. If each ξ k is (pk + 1)-basic for k = 1, 2, then the tensor-
product B-splines {Bj1,j2,p1,p2,ξ1,ξ2

: jk = 1, . . . , nk, k = 1, 2} are (locally)
linearly independent on R.

• Partition of Unity. We have

n1∑
j1=1

n2∑
j2=1

Bj1,j2,p1,p2,ξ1,ξ 2
(x1, x2) = 1, (x1, x2) ∈ R. (1.177)

Since the tensor-product B-splines are nonnegative it follows that they form a
nonnegative partition of unity on R.

• Greville Points. For (x1, x2) ∈ R and �1, �2 ∈ {0, 1}, we have

x
�1
1 x

�2
2 =

n1∑
j1=1

n2∑
j2=1

(ξ∗j1,p1,ξ1
)�1(ξ∗j2,p2,ξ2

)�2Bj1,j2,p1,p2,ξ1,ξ2
(x1, x2), (1.178)

where ξ∗
jk,pk,ξk

is the Greville point defined in (1.51) for the knot sequence ξ k ,
k = 1, 2.
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A tensor-product spline function is defined as

s(x1, x2) =
n1∑
j1=1

n2∑
j2=1

cj1,j2Bj1,j2,p1,p2,ξ1,ξ2
(x1, x2), cj1,j2 ∈ R. (1.179)

Since the tensor-product B-splines are linearly independent, the space of spline
functions has dimension n1n2.

A main advantage of the representation in (1.179) is that its evaluation can be
reduced to a sequence of evaluations of univariate spline functions:

s(x1, x2) =
n1∑
j1=1

dj1,x2Bj1,p1,ξ1
(x1), dj1,x2 :=

n2∑
j2=1

cj1,j2Bj2,p2,ξ2
(x2), (1.180)

or, equivalently,

s(x1, x2) =
n2∑
j2=1

dj2,x1Bj2,p2,ξ2
(x2), dj2,x1 :=

n1∑
j1=1

cj1,j2Bj1,p1,ξ1
(x1). (1.181)

Note that (1.180) requires n1 univariate spline evaluations of degree p2 and one
univariate spline evaluation of degree p1. On the other hand, (1.181) requires n2
univariate spline evaluations of degree p1 and one univariate spline evaluation of
degree p2. Thus, it is better to choose one of the two forms according to the minimal
computational cost.

Other algorithms in the univariate B-spline setting (like knot insertion) can be
extended in a similar way to the tensor-product B-spline setting.

1.7.2 Local Refinement

Despite their simple and elegant formulation, tensor-product B-spline structures
have a main drawback. Any refinement of a knot sequence in one direction has
a global effect in the other direction, and this prevents doing local refinement as
illustrated in Fig. 1.8.

The hierarchical spline model provides a natural strategy to guarantee the locality
of the refinement. As explained in Sect. 1.6, hierarchical spline spaces are a mixture
of spline spaces of different resolution, localized by the domain hierarchy. Even
though the concept of hierarchical splines was detailed in the univariate setting, it
can be straightforwardly extended towards the bivariate (and multivariate) setting.

When selecting a sequence of nested tensor-product spline spaces on a common
basic rectangle R in place of (1.135) and considering the corresponding tensor-
product B-spline bases in place of (1.137), the definitions of tensor-product
HB-splines and THB-splines follow verbatim Definitions 7 and 9, respectively.
The properties (and their proofs) described in Sect. 1.6 also hold in the tensor-
product extension. We refer the reader to [22, 23] for more details on tensor-product
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Fig. 1.8 Given an initial tensor-product representation (a), an error estimator indicates regions of
the mesh which require further refinement (b). The tensor-product structure necessarily implies a
propagation of the refinement (c). Adaptive splines, instead, should provide a proper local control
of the refinement procedure (d)

Fig. 1.9 An example of a two-dimensional domain hierarchy consisting of three levels. The knot
lines are visualized by solid lines in the domain. (a) Global meshes. (b) Local meshes. (c) Domain
hierarchy

THB-splines and their properties. A full treatment of the construction of related
hierarchical quasi-interpolants and their approximation properties can be found in
[49, 51].

Example 20 An example of a two-dimensional domain hierarchy together with its
knot lines is illustrated in Fig. 1.9. We consider a nested sequence of three tensor-
product spline spaces defined on a (uniform) knot mesh with open knots along
the boundary (Fig. 1.9a). Assume the corresponding basic rectangle is denoted by
R. Then, we select the subsets R =: Ω1 ⊇ Ω2 ⊇ Ω3 as a union of mesh
elements at each level (Fig. 1.9b), and together they form the domain hierarchy Ω

(Fig. 1.9c). On such domain hierarchy, we can define the corresponding HB-splines
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Fig. 1.10 Contour plots of some biquadratic tensor-product THB-splines of different levels
defined on the domain hierarchy given in Fig. 1.9. The bounding box of the support of the
untruncated version of each THB-spline is visualized by solid blue lines. (a) Level 1. (b) Level
2. (c) Level 3

and THB-splines according to Definitions 7 and 9, respectively. Contour plots of
some biquadratic tensor-product THB-splines are depicted in Fig. 1.10. The shape
of THB-splines related to coarser levels adapts nicely to the locally refined regions
in Ω , as illustrated in Fig. 1.10a, b. THB-splines related to the finest level are nothing
else than standard tensor-product B-splines, as illustrated in Fig. 1.10c.

Finally, we remark that there exist also other adaptive spline models based on
local tensor-product structures, like (analysis-suitable) T-splines [2, 46] and LR-
splines [9, 17].
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Chapter 2
Adaptive Multiscale Methods
for the Numerical Treatment of Systems
of PDEs

Angela Kunoth

Abstract These notes are concerned with numerical analysis issues arising in the
solution of certain systems involving stationary and instationary linear variational
problems. Standard examples are second order elliptic boundary value problems,
where particular emphasis is placed on the treatment of essential boundary con-
ditions, and linear parabolic equations. These operator equations serve as a core
ingredient for control problems where in addition to the state, the solution of the
PDE, a control is to be determined which together with the state minimizes a certain
tracking-type objective functional. Having assured that the variational problems are
well-posed, we discuss numerical schemes based on B-splines and B-spline-type
wavelets as a particular multiresolution discretization methodology. The guiding
principle is to devise fast and efficient solution schemes which are optimal in the
number of arithmetic unknowns. We discuss optimal conditioning of the system
matrices, numerical stability of discrete formulations, and adaptive approximations.

2.1 Introduction

Multilevel ingredients have for a variety of partial differential equations (PDEs)
proved to achieve more efficient solution schemes than methods based on approx-
imating the solution with respect to a fixed fine grid. The latter simple approach
leads to the problem to solve a large ill-conditioned system of linear equations.
The success of multilevel methods is due to the fact that solutions often exhibit
a multiscale behaviour which one naturally wants to exploit. Among the first
such schemes were multigrid methods. The basic idea of multigrid schemes is to
successively solve smaller versions of the linear system which can be interpreted
as discretizations with respect to coarser grids. Here ‘efficiency of the scheme’
means that one can solve the problem with respect to the finest grid with an amount
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of arithmetic operations which is proportional to the number of unknowns on this
finest grid. Multigrid schemes provide an asymptotically optimal preconditioner for
the original system on the finest grid. The search for such optimal preconditioners
was one of the major topics in the solution of elliptic boundary value problems for
many years. Another multiscale preconditioner which has this property is the BPX-
preconditioner proposed first in [8]. It was proved to be asymptotically optimal with
techniques from Approximation Theory in [27, 61]. In the context of isogeometric
analysis, the BPX-preconditioner was further substantially optimized in [10]; this
will be detailed in Sect. 2.2.

Wavelets as a particular example of a multiscale basis were constructed with
compact support in the 1980s [36]. While mainly used for signal analysis and image
compression, they were discovered to also provide optimal preconditioners in the
above sense for elliptic boundary value problems [27, 47]. It was soon realized that
biorthogonal spline-wavelets are better suited for the numerical solution of elliptic
PDEs since they allow to work with piecewise polynomials instead of the only
implicitly defined original wavelets [36], in addition to the fact that orthogonality
of the Daubechies wavelets with respect to L2 cannot really be exploited for elliptic
PDEs. The principal ingredient that allows to prove optimality of the preconditioner
are norm equivalences between Sobolev norms and sequence norms of weighted
wavelet expansion coefficients. Optimal conditioning of the resulting linear system
of equations can be achieved by applying the Fast Wavelet Transform together with
a weighting in terms of an appropriate diagonal matrix. The terminology ‘wavelets’
here and in the sequel is to mean that these are classes of multiscale bases with
three main properties: (R) Riesz basis property for the underlying function spaces,
(L) locality of the basis functions, (CP) cancellation properties, all of which are
detailed in Sect. 2.4.1.

After these initial results, research on using wavelets for numerically solving
elliptic PDEs has gone into different directions. The original constructions in
[18, 36] and many others are based on using the Fourier transform. Thus, these
constructions provide bases for function spaces only on all of R or R

n. In order
for these tools to be applicable for the solution of PDEs which naturally live on a
bounded domainΩ ⊂ R

n, there arose the need for having available constructions on
bounded intervals without, of course, loosing the above mentioned properties (R),
(L) and (CP). The first such systematic construction of biorthogonal spline-wavelets
on [0, 1] (and, by tensor products, on [0, 1]n) was provided in [34].

Aside from the investigations to provide appropriate bases, the built-in potential
of adaptivity for wavelets has played a prominent role when solving PDEs, on
account of the fact that wavelets provide a locally supported Riesz basis for a
whole range of function spaces. The key issue is to approximate the solution
of the variational problem on an infinite-dimensional function space by the least
amount of degrees of freedom up to a certain prescribed accuracy. Many approaches
use wavelet coefficients in a heuristic way, i.e., judging approximation quality
by the size of the wavelet coefficients together with thresholding. In contrast,
convergence of wavelet-based adaptive methods for stationary variational problems
was investigated systematically in [19–21]. These schemes are particularly designed
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to provide optimal complexity of the schemes: they provide the solution in a total
amount of arithmetic operations which is comparable to the wavelet-best N-term
approximation of the solution. This means that, given a prescribed tolerance, to
find a sparse representation of the solution by extracting the N largest expansion
coefficients of the solution during the solution process.

As soon as one aims at numerically solving a variational problem which can no
longer be formulated in terms of a single elliptic operator equation such as a saddle
point problem, one is faced with the problem of numerical stability. This means
that finite approximations of the continuous well-posed problem may be ill-posed,
obstructing its efficient numerical solution. This issue will also be addressed below.

In these notes, I also would like to discuss the potential proposed by wavelet
methods for the following classes of problems. First, we will be concerned with
second order elliptic PDEs with a particular emphasis placed on treating essential
boundary conditions. Another interesting class that will be covered are linear
parabolic PDEs which are formulated in full weak space-time from [66]. Then
PDE-constrained control problems guided by elliptic boundary value problems are
considered, leading to a system of elliptic PDEs. The starting point for designing
efficient solution schemes are wavelet representations of continuous well-posed
problems in their variational form. Viewing the numerical solution of such a
discretized, yet still infinite-dimensional operator equation as an approximation
helps to discover multilevel preconditioners for elliptic PDEs which yield uniformly
bounded condition numbers. Stability issues like the LBB condition for saddle point
problems are also discussed in this context. In addition, the compact support of the
wavelets allows for sparse representations of the implicit information contained in
systems of PDEs, the adaptive approximation of their solution.

More information and extensive literature on applying wavelets for more general
PDEs addressing, among other things, the connection between adaptivity and
nonlinear approximation and the evaluation of nonlinearities may be found in
[16, 24, 25].

These notes are structured as follows. In Sect. 2.2, we begin with a simple
elliptic PDE in variational form in the context of isogeometric analysis. For this
problem, we address additive, BPX-type preconditioners and provide the main
ingredients for showing optimality of the scheme with respect to the grid spacing.
In Sect. 2.3, several well-posed variational problem classes are compiled to which
later several aspects of the wavelet methodology are applied. The simplest example
is a linear elliptic boundary value problem for which we derive two forms of an
operator equation, the simplest one consisting just of one equation for homogeneous
boundary conditions and a more complicated one in form of a saddle point problem
where nonhomogeneous boundary conditions are treated by means of Lagrange
multipliers. In Sect. 2.3.4, we consider a full weak space-time form of a linear
parabolic PDE. These three formulations are then employed for the following
classes of PDE-constrained control problems. In the distributed control problems
in Sect. 2.3.5 the control is exerted through the right hand side of the PDE, while in
Dirichlet boundary control problems in Sect. 2.3.6 the Dirichlet boundary condition
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serves this purpose. The most potential for adaptive methods to be discussed below
are control problems constrained by parabolic PDEs as formulated in Sect. 2.3.7.

Section 2.4 is devoted to assembling necessary ingredients and basic properties
of wavelets which are required in the sequel. In particular, Sect. 2.4.4 collects the
essential construction principles for wavelets on bounded domains which do not
rely on Fourier techniques, namely, multiresolution analyses of function spaces and
the concept of stable completions. In Sect. 2.5 we formulate the problem classes
introduced in Sect. 2.3 in wavelet coordinates and derive in particular for the control
problems the resulting systems of linear equations arising from the optimality
conditions. Section 2.6 is devoted to the iterative solution of these systems. We
investigate fully iterative schemes on uniform grids and show that the resulting
systems can be solved in the wavelet framework together with a nested iteration
strategy with an amount of arithmetic operations which is proportional to the
total number of unknowns on the finest grid. Finally, in Sect. 2.6.2 a wavelet-
based adaptive scheme for the distributed control problem constrained by elliptic or
parabolic PDEs as in [29, 44] will be derived together with convergence results and
complexity estimates, relying on techniques from Nonlinear Approximation Theory.

Throughout these notes we will employ the following notational convention: the
relation a ∼ b will always stand for a <∼ b and b <∼ a where the latter inequality
means that b can be bounded by some constant times a uniformly in all parameters
on which a and b may depend. Norms and inner products are always indexed by
the corresponding function space. Lp(Ω) are for 1 ≤ p ≤ ∞ the usual Lebesgue
spaces on a domainΩ , andWk

p(Ω) ⊂ Lp(Ω) denote for k ∈ N the Sobolev spaces
of functions whose weak derivatives up to order k are bounded inLp(Ω). For p = 2,
we write as usual Hk(Ω) = Wk

2 (Ω).

2.2 BPX Preconditioning for Isogeometric Analysis

For a start, we consider linear elliptic PDEs in the framework of isogeometric
analysis, combining modern techniques from computer aided design with higher
order approximations of the solution. In this context, one exploits that the solution
exhibits a certain smoothness. We treat the physical domain by means of a regular
B-spline mapping from the parametric domain Ω̂ = (0, 1)n, n ≥ 2, to the physical
domain Ω . The numerical solution of the PDE is computed by means of tensor
product B-splines mapped onto the physical domain. We will construct additive
BPX-type multilevel preconditioners and show that they are asymptotically optimal.
This means that the spectral condition number of the resulting preconditioned
stiffness matrix is independent of the grid spacing h. Together with a nested iteration
scheme, this enables an iterative solution scheme of optimal linear complexity. The
theoretical results are substantiated by numerical examples in two and three space
dimensions. The results of this section are essentially contained in [10].
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We consider linear elliptic partial differential operators of order 2r = 2, 4 on the
domainΩ in variational form: for given f ∈ H−r (Ω), find u ∈ Hr0 (Ω) such that

a(u, v) = 〈f, v〉 for all v ∈ Hr0 (Ω) (2.1)

holds. Here the energy space is Hr0 (Ω), a subset of the Sobolev space Hr(Ω),
the space of square integrable functions with square integrable derivatives up to
order r , containing homogeneous Dirichlet boundary conditions for r = 1 and
homogeneous Dirichlet and Neumann derivatives for r = 2. The bilinear form
a(·, ·) is derived from the linear elliptic PDE operator in a standard fashion, see,
e.g., [7]. For example, the Laplacian is represented as a(v,w) = ∫

Ω
∇v · ∇w dx.

In order for the problem to be well-posed, we require the bilinear form a(·, ·) :
Hr0 (Ω)×Hr0 (Ω)→ R to be symmetric, continuous and coercive onHr0 (Ω). With
〈·, ·〉, we denote on the right hand side of (2.1) the dual form between H−r (Ω)
and Hr0 (Ω). Our model problem (2.1) covers the second order Laplacian with
homogeneous boundary conditions

−Δu = f onΩ, u|∂Ω = 0, (2.2)

as well as fourth order problems with corresponding homogeneous Dirichlet
boundary conditions,

Δ2u = f onΩ, u|∂Ω = n · ∇u|∂Ω = 0 (2.3)

where ∂Ω denotes the boundary of Ω and n the outward normal derivative at ∂Ω .
These PDEs serve as prototypes for more involved PDEs like Maxwell’s equation
or PDEs for linear and nonlinear elasticity. The reason we formulate these model
problems of order 2r involving the parameter r is that this exhibits more clearly the
order of the operator and the scaling in the subsequently used characterization of
Sobolev spaces Hr(Ω). Thus, for the remainder of this section, the parameter 2r
denoting the order of the PDE operator is fixed.

The assumptions on the bilinear form a(·, ·) entail that there exist constants 0 <
cA ≤ CA < ∞ such that the induced self-adjoint operator 〈Av,w〉 := a(v,w)

satisfies the isomorphism relation

cA‖v‖Hr (Ω) ≤ ‖Av‖H−r (Ω) ≤ CA‖v‖Hr (Ω), v ∈ Hr0 (Ω). (2.4)

If the precise format of the constants in (2.4) does not matter, we abbreviate this
relation as ‖v‖Hr (Ω) <∼ ‖Av‖H−r (Ω) <∼ ‖v‖Hr (Ω), or shortly as

‖Av‖H−r (Ω) ∼ ‖v‖Hr (Ω). (2.5)
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Under these conditions, Lax-Milgram’s theorem guarantees that, for any given f ∈
H−r (Ω), the operator equation derived from (2.1)

Au = f in H−r (Ω) (2.6)

has a unique solution u ∈ Hr0 (Ω), see, e.g., [7].
In order to approximate the solution of (2.1) or (2.6), we choose a finite-

dimensional subspace of Hr0 (Ω). We will construct these approximation spaces by
using tensor products of B-splines as specified next.

2.2.1 B-Spline Discretizations

Our construction of optimal multilevel preconditioners will rely on tensor products
so that principally any space dimension n ∈ N is permissible as long as storage
permits; the examples cover the cases n = 2, 3. As discretization space, we choose
in each spatial direction B-splines of the same degree p on uniform grids and with
maximal smoothness. We begin with the univariate case and define B-splines on the
interval [0, 1] recursively with respect to their degree p. Given this positive integer
p and some m ∈ N, we call Ξ := {ξ1, . . . , ξm+p+1} a p-open knot vector if the
knots are chosen such that

0 = ξ1 = . . . = ξp+1 < ξp+2 < . . . < ξm < ξm+1 = . . . = ξm+p+1 = 1, (2.7)

i.e., the boundary knots 0 and 1 have multiplicity p + 1 and the interior knots are
single. For Ξ , B-spline functions of degree p are defined following the well-known
Cox-de Boor recursive formula, see [38]. Starting point are the piecewise constants
for p = 0 (or characteristic functions)

Ni,0(ζ ) =
{

1, if 0 ≤ ξi ≤ ζ < ξi+1 < 1,

0, otherwise,
(2.8)

with the modification that the last B-splineNm,0 is defined also for ζ = 1. For p ≥ 1
the B-splines are defined as

Ni,p(ζ ) = ζ − ξi
ξi+p − ξi Ni,p−1(ζ )+ ξi+p+1 − ζ

ξi+p+1 − ξi+1
Ni+1,p−1(ζ ), ζ ∈ [0, 1],

(2.9)

with the same modification for Nm,p . Alternatively, one can define the B-splines
explicitly by applying divided differences to truncated powers [38]. This gives a
set of m B-splines that form a basis for the space of splines, that is, piecewise
polynomials of degree p with p − 1 continuous derivatives at the internal knots ξ�
for � = p+ 2, . . . ,m. (Of course, one can also define B-splines on a knot sequence
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with multiple internal knots which entails that the spline space is not of maximal
smoothness.) For p = 1, the B-splines are at least C0([0, 1]) which suffices for the
discretization of elliptic PDEs of order 2, and for p = 2 they are C1([0, 1]) which
suffices for r = 2. By construction, the B-spline Ni,p is supported in the interval
[ξi, ξi+p+1].

These definitions are valid for an arbitrary spacing of knots in Ξ (2.7). Recall
from standard error estimates in the context of finite elements, see, e.g., [7], that
smooth solutions of elliptic PDEs can be approximated best with discretizations on
a uniform grid. Therefore, in this section, we assume from now on that the grid is
uniform, i.e., ξ�+1 − ξ� = h for all � = p + 1, . . . ,m.

For n space dimensions, we employ tensor products of the one-dimensional B-
splines. We take in each space dimension a p-open knot vector Ξ and define on
the closure of the parametric domain Ω̂ = (0, 1)n (which we also denote by Ω̂ for
simplicity of presentation) the spline space

Sh(Ω̂) := span

{
Bi(x) :=

n∏
�=1

Ni�,p(x�), i = 1, . . . , N := mn, x ∈ Ω̂
}

=: span
{
Bi(x), i ∈ I , x ∈ Ω̂

}
. (2.10)

In the spirit of isogeometric analysis, we suppose that the computational domain
Ω can also described in terms of B-splines. We assume that the computational
domain Ω is the image of a mapping F : Ω̂ → Ω with F := (F1, . . . , Fn)

T where
each component Fi of F belongs to Sh̄(Ω̂) for some given h̄. In many applications,
the geometry can be described in terms of a very coarse mesh, namely, h̄ � h.
Moreover, we suppose that F is invertible and satisfies

‖DαF‖
L∞(Ω̂) ∼ 1 for |α| ≤ r. (2.11)

This assumption on the geometry can be weakened in the sense that the mapping
F can be a piecewise C∞ function on the mesh with respect to h̄, independent of
h, or the domain Ω may have a multi-patch representation. This means that one
can allow Ω also to be the union of domainsΩk where each one parametrized by a
spline mapping of the parametric domain Ω̂ .

We now define the approximation space for (2.6) as

V rh := {vh ∈ Hr0 (Ω) : vh ◦ F ∈ Sh(Ω̂)}. (2.12)

We will formulate three important properties of this approximation space which
will play a crucial role later for the construction of the BPX-type preconditioners.
The first one is that we suppose from now on that the B-spline basis is normalized
with respect to L2, i.e.,

‖Bi‖L2(Ω̂)
∼ 1, and, thus, also ‖Bi ◦ F−1‖L2(Ω) ∼ 1 for all i ∈ I . (2.13)

Then one can derive the following facts [10].
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Theorem 1 Let {Bi}i∈I be the B-spline basis defined in (2.10) and normalized as
in (2.13),N = #I and V rh as in (2.12). Then we have

(S) Uniform stability with respect to L2(Ω)

For any c ∈ �2(I ),

∥∥∥∥∥
N∑
i=1

ci Bi ◦ F−1

∥∥∥∥∥
2

L2(Ω)

∼
N∑
i=1

|ci |2 =: ‖c‖2
�2
, c := (ci)i=1,...,N ;

(2.14)

(J) Direct or Jackson estimates

inf
vh∈V rh

‖v − vh‖L2(Ω)
<∼ hs |v|Hs(Ω) for any v ∈ Hs(Ω), 0 ≤ s ≤ r + 1,

(2.15)

where | · |Hs(Ω) denotes the Sobolev seminorm of highest weak derivatives s;
(B) Inverse or Bernstein estimates

‖vh‖Hs(Ω) <∼ h−s‖vh‖L2(Ω) for any vh ∈ V rh and 0 ≤ s ≤ r. (2.16)

In all these estimates, the constants are independent of h but may depend on F, i.e.,
Ω , on the polynomial degree p and on the spatial dimension n.

In the next section, we construct BPX-type preconditioners for (2.6) in terms of
approximations with (2.12) and show their optimality.

2.2.2 Additive Multilevel Preconditioners

The construction of optimal preconditioners are based on a multiresolution analysis
of the underlying energy function space Hr0 (Ω). As before, 2r ∈ {2, 4} stands for
the order of the PDEs we are solving and is always kept fixed.

We first describe the necessary ingredients within an abstract basis-free frame-
work, see, e.g., [24]. Afterwards, we specify the realization for the parametrized
tensor product spaces in (2.12).

Let V be a sequence of strictly nested spaces Vj , starting with some fixed
coarsest index j0 > 0, determined by the polynomial degree p which determines
the support of the basis functions (which also depends onΩ), and terminating with
a highest resolution level J ,

Vj0 ⊂ Vj0+1 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ VJ ⊂ Hr0 (Ω). (2.17)
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The index j denotes the level of resolution defining approximations on a grid with
dyadic grid spacing h = 2−j , i.e., we use from now on the notation Vj instead of Vh
to indicate different grid spacings. Then, VJ will be the space relative to the finest
grid 2−J . We associate with V a sequence of linear projectors P := {Pj }j≥j0 with
the following properties.

Properties 1 We assume that

(P1) Pj maps Hr0 (Ω) onto Vj ,
(P2) PjP� = Pj for j ≤ �,
(P3) P is uniformly bounded on L2(Ω), i.e., ‖Pj‖L2(Ω)

<∼ 1 for any j ≥ j0 with
a constant independent of j .

These conditions are satisfied, for example, for L2(Ω)-orthogonal projectors, or,
in the case of splines, for the quasi-interpolant proposed and analyzed in [65,
Chapter 4]. The second condition (P2) ensures that the differences Pj − Pj−1 are
also projectors for any j > j0. We define next a sequence W := {Wj }j≥j0 of
complement spaces

Wj := (Pj+1 − Pj )Vj+1 (2.18)

which then yields the direct (but not necessarily orthogonal) decomposition

Vj+1 = Vj ⊕Wj . (2.19)

Thus, for the finest level J , we can express VJ in its multilevel decomposition

VJ =
J−1⊕
j=j0−1

Wj (2.20)

upon setting Wj0−1 := Vj0 . Setting also Pj0−1 := 0, the corresponding multilevel
representation of any v ∈ VJ is then

v =
J∑
j=j0

(Pj − Pj−1)v. (2.21)

We now have the following result which will be used later for the proof of the
optimality of the multilevel preconditioners.

Theorem 2 Let P,V be as above where, in addition, we require that for each Vj ,
j0 ≤ j ≤ J , a Jackson and Bernstein estimate as in Theorem 1 (J) and (B) hold
with h = 2−j . Then one has the function space characterization

‖v‖Hr (Ω) ∼
⎛
⎝ J∑
j=j0

22rj‖(Pj − Pj−1)v‖2
L2(Ω)

⎞
⎠

1/2

for any v ∈ VJ . (2.22)
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Such a result holds for much larger classes of function spaces, Sobolev or even
Besov spaces which are subsets of Lq(Ω) for general q , possibly different from 2
and for any function v ∈ Hr(Ω), then with an infinite sum on the right hand side,
see, e.g., [24]. The proof of Theorem 2 for such cases heavily relies on tools from
approximation theory and can be found in [27, 61].

Next we demonstrate how to exploit the norm equivalence (2.22) in the construc-
tion of an optimal multilevel preconditioner. Define for any v,w ∈ VJ the linear
self-adjoint positive-definite operator CJ : VJ → VJ given by

(C−1
J v,w)L2(Ω) :=

J∑
j=j0

22rj ((Pj − Pj−1)v, (Pj − Pj−1)w
)
L2(Ω)

, (2.23)

which we call a multilevel BPX-type preconditioner. Let AJ : VJ → VJ be the
finite-dimensional operator defined by (AJ v,w)L2(Ω) := a(v,w) for all v,w ∈ VJ ,
the approximation of A in (2.6) with respect to VJ .

Theorem 3 With the same prerequisites as in Theorem 2, CJ is an asymptotically
optimal symmetric preconditioner for AJ , i.e., κ2(C

1/2
J AJC

1/2
J ) ∼ 1 with constants

independent of J .

Proof For the parametric domain Ω̂ , the result was proved independently in [27, 61]
and is based on the combination of (2.22) together with the well-posedness of the
continuous problem (2.6). The result on the physical domain follows then together
with (2.11). �

Realizations of the preconditioner defined in (2.23) based on B-splines lead to
representations of the complement spaces Wj whose bases are called wavelets.
For these, efficient implementations of optimal linear complexity involving the Fast
Wavelet Transform can be derived explicitly, see Sect. 2.4.

However, since the order of the PDE operator r is positive, one can use here the
argumentation from [8] which will allow to work with the same basis functions as
for the spaces Vj . The first part of the argument relies on the assumption that the
Pj are L2- orthogonal projectors. For a clear distinction, we shall use the notation
Oj forL2-orthogonal projectors and reserve the notationPj for the linear projectors
with Properties 1. Then, the BPX-type preconditioner (2.23) (using the same symbol
CJ for simplicity) reads as

C−1
J :=

J∑
j=j0

22jr(Oj −Oj−1), (2.24)

which is by Theorem 3 a BPX-type preconditioner for the self-adjoint positive
definite operatorAJ . By the orthogonality of the projectorsOj , we can immediately
derive from (2.24) that

CJ =
J∑
j=j0

2−2jr(Oj −Oj−1). (2.25)
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Since r > 0, by rearranging the sum, the exponentially decaying scaling factors
allow one to replace CJ by the spectrally equivalent operator

CJ =
J∑
j=j0

2−2jrOj (2.26)

(for which we use the same notationCJ ). Recall that two linear operatorsA : VJ →
VJ and B : VJ → VJ are spectrally equivalent if they satisfy

(A v, v)L2(Ω) ∼ (Bv, v)L2 (Ω), v ∈ VJ , (2.27)

with constants independent of J . Thus, the realization of the preconditioner is
reduced to a computation in terms of the bases of the spaces Vj instead of Wj .
The orthogonal projector Oj can, in turn, be replaced by a simpler local operator
which is spectrally equivalent to Oj , see [50] and the derivation below.

Up to this point, the introduction to multilevel preconditioners has been basis-
free. We now show how this framework can be used to construct a BPX-precon-
ditioner for the linear system (2.6). Based on the definition (2.12), we construct a
sequence of spaces satisfying (2.17) such that VJ = V rh . In fact, we suppose that for
each space dimension we have a sequence of p-open knot vectors Ξj0,�, . . . , ΞJ,�,
� = 1, . . . , n, which provide a uniform partition of the interval [0, 1] such that
Ξj,� ⊂ Ξj+1,� for j = j0, j0 + 1, . . . , J . In particular, we assume that Ξj+1,�
is obtained from Ξj,� by dyadic refinement, i.e., the grid spacing for Ξj,� is
proportional to 2−j for each � = 1, . . . , n. In view of the assumptions on the
parametric mapping F, we assume that h̄ = 2−j0 , i.e., F can be represented in
terms of B-splines on the coarsest level j0. By construction, we have now achieved
that

Sj0(Ω̂) ⊂ Sj0+1(Ω̂) ⊂ . . . ⊂ SJ (Ω̂).

Setting V rj := {v ∈ Hr0 (Ω) : v ◦ F ∈ Sj (Ω̂)}, we arrive at a sequence of nested
spaces

V rj0 ⊂ V rj0+1 ⊂ . . . ⊂ V rJ .

Setting Ij := {1, . . . , dim Sj (Ω̂)}, we denote by Bji , i ∈ Ij , the set of L2-
normalized B-spline basis functions for the space Sj (Ω̂). Define now the positive
definite operator Pj : L2(Ω)→ V rj as

Pj :=
∑
i∈Ij

( · , Bji ◦ F−1)L2(Ω) B
j
i ◦ F−1. (2.28)
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Corollary 1 For the basis {Bji ◦ F−1, i ∈ IIj }, the operators Pj and the L2-
projectorsOj are spectrally equivalent for any j .

Proof The assertion follows by combining (2.11), (2.14), with Remark 3.7.1 from
[50], see [8] for the main ingredients. �

Finally, we obtain an explicit representation of the preconditionerCJ in terms of
the mapped spline bases for V rj , j = j0, . . . , J ,

CJ =
J∑
j=j0

2−2jr
∑
i∈Ij

( · , Bji ◦ F−1)L2(Ω) B
j
i ◦ F−1 (2.29)

(denoted again by CJ ). Note that this preconditioner involves all B-splines from all
levels j with an appropriate scaling, i.e., a properly scaled generating system for
V rJ .

Remark 1 The hierarchical basis (HB) preconditioner introduced for n = 2 in
[71] for piecewise linear B-splines fits into this framework by choosing Lagrangian
interpolants in place of the projectors Pj in (2.23). However, since these operators
do not satisfy (P3) in Properties 1, they do not yield an asymptotically optimal
preconditioner for n ≥ 2. For n = 3, this preconditioner does not have an effect
at all.

So far we have not explicitly addressed the dependence of the preconditioned
system on p. Since all estimates in Theorem 1 which enter the proof of optimality
depend on p, it is to be expected that the absolute values of the condition numbers,
i.e., the values of the constants, depend on and increase with p. Indeed, in the
next section, we show some numerical results which also aim at studying this
dependence.

2.2.3 Realization of the BPX Preconditioner

Now we are in the position to describe the concrete implementation of the BPX
preconditioner. Its main ingredient are linear intergrid operators which map vectors
and matrices between different grids. Specifically, we need to define prolongation
and restriction operators.

Since V rj ⊂ V rj+1, each B-spline Bji on level j can be represented by a linear

combination of B-splines Bj+1
k on level j + 1. Arranging the B-splines in the set

{Bji , i ∈ Ij } into a vector Bj in a fixed order, this relation denoted as refinement
relation can be written as

Bj = Ij+1
j Bj+1 (2.30)
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with prolongation operator Ij+1
j from the trial space V rj to the trial space V rj+1.

The restriction Ijj+1 is then simply defined as the transposed operator, i.e., Ijj+1 =
(Ij+1
j )T . In case of piecewise linear B-splines, this definition coincides with the well

known prolongation and restriction operators from finite element textbooks obtained
by interpolation, see, e.g., [7].

We will exemplify the construction in case of quadratic and cubic B-splines on
the interval, see, e.g., [38], as follows. We equidistantly subdivide the interval [0, 1]
into 2j subintervals and obtain 2j and 2j + 1, respectively, B-splines for p = 2, 3
and the corresponding quadratic and cubic spline space V rj which is given on this
partition, respectively, see Fig. 2.1 for an illustration. Note that the two boundary
functions which do not vanish at the boundary were removed in order to guarantee
that V rj ⊂ Hr0 (Ω). Moreover, recall that the B-splines are L2 normalized according

to (2.13) which means that Bji is of the form Bji (ζ ) = 2j/2B(2j ζ − i) if Bji is an
interior function, and correspondingly for the boundary functions.
In case of quadratic B-splines (p = 2), the restriction operator Ijj+1 reads

Ijj+1 = 2−1/2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Fig. 2.1 Quadratic (p = 2) (left) and cubic (p = 3) (right) L2-normalized B-splines (see (2.13))
on level j = 3 on the interval [0, 1], yielding basis functions for V rj ⊂ Hr0 (Ω)
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For cubic B-splines (p = 3), it has the form

Ijj+1 = 2−1/2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

9
8

3
8

1
4

11
12

2
3

1
6

1
8

1
2

3
4

1
2

1
8

. . .
. . .
. . .

1
8

1
2

3
4

1
2

1
8

1
6

2
3

11
12

1
4

3
8

9
8

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

(2j+1)×(2j+1+1).

The normalization factor 2−1/2 stems from the L2-normalization (2.13). The matrix
entries are scaled in the usual fashion such that their rows sum to two. From
these restriction operators for one dimensions, one obtains the related restriction
operators on arbitrary unit cubes [0, 1]n via tensor products. Finally, we set
IJj := IJJ−1I

J−1
J−2 · · · Ij+1

j and IjJ := Ij+1
j Ij+2

j+1 · · · IJJ−1 to define prolongations and
restrictions between arbitrary levels j and J .

In order to derive the explicit form of the discretized BPX-preconditioner, for
given functions uJ , vJ ∈ VJ with expansion coefficients uJ,k and vJ,�, respectively,
we conclude from (2.29) that

(CJ uJ , vJ )L2(Ω) =
∑
k,�∈IJ

uJ,kvJ,�(CJ (B
J
k ◦ F−1), BJ� ◦ F−1)L2(Ω)

=
∑
k,�∈IJ

uJ,kvJ,�

J∑
j=j0

2−2jr
∑
i∈Ij

(BJk ◦ F−1, B
j

i ◦ F−1)L2(Ω)

× (Bji ◦ F−1, BJ� ◦ F−1)L2(Ω).

Next, one can introduce the mass matrix MJ = [(BJk ◦F−1, BJ� ◦F−1)L2(Ω)]k,� and
obtains by the use of restrictions and prolongations

(CJ uJ , vJ )L2(Ω) =
J∑
j=j0

2−2jruTJMJ IJj I
j

JMJ vJ .

The mass matrices which appear in this expression can be further suppressed since
MJ is spectrally equivalent to the identity matrix. Finally, the discretized BPX-
preconditioner to be implemented is of the simple form

CJ =
J∑
j=j0

2−2jrIJj I
j
J , (2.31)
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involving only restrictions and prolongations. A further simple improvement can
be obtained by replacing the scaling factor 2−2jr by diag(Aj )−1, where diag(Aj )
denotes the diagonal matrix built from the diagonal entries of the stiffness matrix
Aj . This diagonal scaling has the same effect as the levelwise scaling by 2−2jr but
improves the condition numbers considerably, particularly if parametric mappings
are involved. Thus, the discretized BPX-preconditioner takes on the form

CJ =
J∑
j=j0

IJj diag(Aj )−1IjJ (2.32)

which we will use in the subsequent computations presented in Tables 2.1 and 2.2.
If the condition number κ(Aj0) is already high in absolute numbers on the coarsest
level j0, it is worth to use its exact inverse on the coarse grid, i.e., to apply instead
of (2.32) the operator

CJ = IJj0A
−1
j0

Ij0J +
J∑

j=j0+1

IJj diag(Aj )−1IjJ ,

see [11, 62]. Another substantial improvement of the BPX-preconditioner can
be achieved by replacing the diagonal scaling on each level by, e.g., a SSOR
preconditioning as follows. We decompose the system matrix as Aj = Lj +
Dj + LTj with the diagonal matrix Dj , the lower triangular part Lj , and the upper

triangular part LTj . Then we replace the diagonal scaling on each level of the BPX-
preconditioner (2.32) by the SSOR preconditioner, i.e., instead of (2.32) we apply
the preconditioner

CJ =
J∑
j=j0

IJj (Dj + Lj )−TDj (Dj + Lj )−1IjJ . (2.33)

Table 2.1 Condition numbers of the BPX-preconditioned Laplacian on Ω̂ = (0, 1)n for n =
1, 2, 3

Interval (n = 1) Square (n = 2) Cube (n = 3)
Level

p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4

3 7.43 3.81 7.03 5.93 5.93 7.31 22.8 133 3.49 39.5 356 5957

4 8.87 4.40 9.47 7.81 5.00 9.03 40.2 225 4.85 50.8 624 9478

5 10.2 4.67 11.0 9.36 5.70 9.72 51.8 293 5.75 56.6 795 11,887

6 11.3 4.87 12.1 10.7 6.27 10.1 58.7 340 6.40 59.7 895 13,185

7 12.2 5.00 12.7 11.5 6.74 10.4 63.1 371 6.91 61.3 961 13,211

8 13.0 5.10 13.0 11.9 7.14 10.5 66.0 391 7.34 62.2 990 13,234

9 13.7 5.17 13.2 12.1 7.48 10.6 68.0 403 7.70 62.6 1016 13,255

10 14.2 5.22 13.4 12.2 7.77 10.6 69.3 411 7.99 62.9 1040 –
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Table 2.2 Condition numbers of the BPX-preconditioned Laplacian on the analytic arc seen on
the right hand side

Level p=1 p=2 p=3 p=4

3 5.04 12.4 31.8 184

(21.8) (8.64) (31.8) (184)

4 11.1 16.3 54.7 291

(90.2) (34.3) (32.9) (173)

5 25.3 19.0 70.1 376

(368) (139) (98.9) (171)

6 31.9 21.4 79.2 436

(1492) (560) (401) (322)

7 37.4 23.1 84.4 471

(6015) (2255) (1620) (1297)

8 42.1 24.3 87.3 490

(241,721) (9062) (6506) (5217)

9 45.7 25.2 89.0 500

(969,301) (36,353) (26,121) (20,945)

10 48.8 25.9 90.1 505

(388,690) (145,774) (104,745) (83,975)

The bracketed numbers are the related condition numbers without preconditioning

Table 2.3 Condition numbers of the BPX-preconditioned Laplacian for cubic B-splines on
different geometries in case of using a BPX-SSOR preconditioning on each level

Level Square Analytic arc C 0-map of the L-shape Singular C 1-map of the L-shape

3 3.61 3.65 3.67 3.80

4 6.58 6.97 7.01 7.05

5 8.47 10.2 10.2 14.8

6 9.73 13.1 13.2 32.2

7 10.5 14.9 15.2 77.7

8 11.0 15.9 16.3 180

9 11.2 16.5 17.0 411

10 11.4 16.9 17.7 933

In doing so, the condition numbers can be improved impressively. In Table 2.3, we
list the �2-condition numbers for the BPX-preconditioned Laplacian in case of cubic
B-splines in two spatial dimensions. By comparing the numbers with those found in
Tables 2.1 and 2.2 one can infer that the related condition numbers are all reduced
by a factor about five. Note that the setup, storage and application of the operator
defined in (2.33) is still of optimal linear complexity.

Finally, we provide numerical results in order to demonstrate the preconditioning
and to specify the dependence on the spatial dimension n and the spline degree
p. We consider an approximation of the homogeneous Dirichlet problem for the
Poisson equation on the n-dimensional unit cube Ω̂ = (0, 1)n for n = 1, 2, 3.
The mesh on level j is obtained by subdividing the cube j -times dyadically into 2n
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subcubes of mesh size hj = 2−j . On this subdivision, we consider the B-splines
of degree p = 1, 2, 3, 4 as defined in Sect. 2.2.1. The �2-condition numbers of
the related stiffness matrices, preconditioned by the BPX-preconditioner (2.32), are
shown in Table 2.1. The condition numbers seem to be independent of the level j ,
but they depend on the spline degree p and the space dimension n for n > 1. For
fourth order problems on the sphere, corresponding results for the bi-Laplacian with
and without BPX preconditioning were presented in [60].

We study next the dependence of the condition numbers on the parametric
mapping F. We consider the case n = 2 in case of a smooth mapping (see the plot
on the right hand side of Table 2.2 for an illustration of the mapping). As one can
see from Table 2.2, the condition numbers are at most about a factor of five higher
than the related values in Table 2.1. Nearly the same observation holds if we replace
the parametric mapping by a C 0-parametrization which maps the unit square onto
an L-shaped domain, see [10].

If we consider a singular map F, that is, a mapping that does not satisfy (2.11),
the condition numbers grow considerably as expected, see [10]. But even in this
case, the BPX-preconditioner with SSOR acceleration (2.33) is able to drastically
reduce the condition numbers of the system matrix in all examples, see Table 2.3.

For further remarks concerning multiplicative multilevel preconditioners as the
so-called multigrid methods in the context of isogeometric analysis together with
references, one may consult [55].

2.3 Problem Classes

The variational problems to be investigated further will first be formulated in the
following abstract form.

2.3.1 An Abstract Operator Equation

Let H be a Hilbert space with norm ‖ · ‖H and let H ′ be the normed dual of H
endowed with the norm

‖w‖H ′ := sup
v∈H

〈v,w〉
‖v‖H (2.34)

where 〈·, ·〉 denotes the dual pairing between H and H ′.
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Given F ∈H ′, we seek a solution to the operator equation

L U = F (2.35)

where L : H → H ′ is a linear operator which is assumed to be a bounded
bijection, that is,

‖L V ‖H ′ ∼ ‖V ‖H , V ∈H . (2.36)

We call the operator equation well-posed since (2.35) implies for any given data
F ∈ H ′ the existence and uniqueness of the solution U ∈ H which depends
continuously on the data.

In the following subsections, we describe some problem classes which can be
placed into this framework. In particular, these examples will have the format that
H is a product space

H := H1,0 × · · · ×HM,0 (2.37)

where each of the Hi,0 ⊆ Hi is a Hilbert space (or a closed subspace of a Hilbert
space Hi determined, e.g., by homogeneous boundary conditions). The spaces Hi
will be Sobolev spaces living on a domain Ω ⊂ R

n or on (part of) its boundary.
According to the definition of H , the elements V ∈ H will consist of M
components V = (v1, . . . , vM)

T , and we define ‖V ‖2
H :=∑M

i=1 ‖vi‖2
Hi

. The dual
space H ′ is then endowed with the norm

‖W‖H ′ := sup
V∈H

〈V,W 〉
‖V ‖H (2.38)

where 〈V,W 〉 := ∑M
i=1〈vi , wi〉i in terms of the dual pairing 〈·, ·〉i between Hi

and H ′i .
We next formulate four classes which fit into this format. The first two concern

are elliptic boundary value problems with included essential boundary conditions,
and elliptic boundary value problems formulated as saddle point problem with
boundary conditions treated by means of Lagrange Multipliers. For an introduction
into elliptic boundary value problems and saddle point problems together with
the functional analytic background one can, e.g., resort to [7]. Based on these
formulations, we afterwards introduce certain control problems. A recurring theme
in the derivation of the system of operator equation is the minimization of a
quadratic functional subject to linear constraints.
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2.3.2 Elliptic Boundary Value Problems

LetΩ ⊂ R
n be a bounded domain with piecewise smooth boundary ∂Ω := Γ ∪ΓN .

We consider the scalar second order boundary value problem

− ∇ · (a∇y)+ cy = f inΩ,

y = g on Γ, (2.39)

(a∇y) · n = 0 on ΓN,

where n = n(x) is the outward normal at x ∈ Γ , a = a(x) ∈ R
n×n is uniformly

positive definite and bounded on Ω and c ∈ L∞(Ω). Moreover, f and g are some
given right hand side and boundary data. With the usual definition of the bilinear
form

a(v,w) :=
∫
Ω

(a∇v · ∇w + cvw) dx, (2.40)

the weak formulation of (2.39) requires in the case g ≡ 0 to find y ∈H where

H := H 1
0,Γ (Ω) := {v ∈ H 1(Ω) : v|Γ = 0}, (2.41)

or

H := {v ∈ H 1(Ω) :
∫
Ω

v(x) dx = 0} when Γ = ∅, (2.42)

such that

a(y, v) = 〈v, f 〉, v ∈H . (2.43)

The Neumann-type boundary conditions on ΓN are implicitly satisfied in the weak
formulation (2.43), therefore called natural boundary conditions. In contrast, the
Dirichlet boundary conditions onΓ have to be posed explicitly, for this reason called
essential boundary conditions. The easiest way to achieve this for homogeneous
Dirichlet boundary conditions when g ≡ 0 is to include them into the solution space
as above in (2.41). In the nonhomogeneous case g �≡ 0 on Γ in (2.39) and Γ �= ∅,
one can reduce the problem to a problem with homogeneous boundary conditions
by homogenization as follows. Let w ∈ H 1(Ω) be such that w = g on Γ . Then
ỹ := y −w satisfies a(ỹ, v) = a(y, v)− a(w, v) = 〈v, f 〉 − a(w, v) =: 〈v, f̃ 〉 for
all v ∈ H defined in (2.41), and on Γ one has ỹ = g − w ≡ 0, that is, ỹ ∈ H .
Thus, it suffices to consider the weak form (2.43) with eventually modified right
hand side. (A second possibility which allows to treat inhomogeneous boundary
conditions explicitly in the context of saddle point problems will be discussed below
in Sect. 2.3.3.)
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The crucial property is that the bilinear form defined in (2.40) is continuous and
elliptic on H ,

a(v, v) ∼ ‖v‖2
H for any v ∈H , (2.44)

see, e.g., [7].
By Riesz’ representation theorem, the bilinear form defines a linear operator A :

H →H ′ by

〈w,Av〉 := a(v,w), v,w ∈H , (2.45)

which is under the above assumptions a bounded linear bijection, that is,

cA‖v‖H ≤ ‖Av‖H ′ ≤ CA‖v‖H for any v ∈H . (2.46)

Here we only consider the case where A is symmetric. With corresponding
alterations, the material in the subsequent sections can also be derived for the
nonsymmetric case with corresponding changes with respect to the employed
algorithms.

The relation (2.46) entails that given any f ∈ H ′, there exists a unique y ∈ H
which solves the linear system

Ay = f in H ′ (2.47)

derived from (2.43). This linear operator equation where the operator defines a
bounded bijection in the sense of (2.46) is the simplest case of a well-posed
variational problem (2.35). Adhering to the notation in Sect. 2.3.1, we have here
M = 1 and L = A.

2.3.3 Saddle Point Problems Involving Boundary Conditions

A collection of saddle point problems or, more general, multiple field formu-
lations including first order system formulations of the elliptic boundary value
problem (2.39) and the three field formulation of the Stokes problem with inho-
mogeneous boundary conditions have been rephrased as well-posed variational
problems in the above sense in [35], see also further references cited therein.

Here a particular saddle point problem derived from (2.39) shall be considered
which will be recycled later in the context of control problems. In fact, this formu-
lation is particularly appropriate to handle essential Dirichlet boundary conditions.
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Recall from, e.g., [7], that the solution y ∈ H of (2.43) is also the unique
minimizer of the minimization problem

inf
v∈H

J (v), J (v) := 1

2
a(v, v)− 〈v, f 〉. (2.48)

This means that y is a zero for its first order variational derivative of J , that is,
δJ (y; v) = 0. We denote here and in the following by δMJ (v;w1, . . . , wM) the
M-th variation of J at v in directionsw1, . . . , wM , see e.g., [72]. In particular, for
M = 1

δJ (v;w) := lim
ε→0

J (v + εw)−J (v)

ε
(2.49)

is the (Gateaux) derivative of J at v in direction w.
In order to generalize (2.48) to the case of nonhomogeneous Dirichlet boundary

conditions g, we formulate this as minimizing J over v ∈ H 1(Ω) subject to
constraints in form of the essential boundary conditions v = g on Γ . Using tech-
niques from nonlinear optimization theory, one can employ a Lagrange multiplier
p to append the constraints to the optimization functional J defined in (2.48).
Satisfying the constraint is guaranteed by taking the supremum over all such
Lagrange multipliers before taking the infimum. Thus, minimization subject to a
constraint leads to the problem of finding a saddle point (y, p) of the saddle point
problem

inf
v∈H 1(Ω)

sup
q∈(H 1/2(Γ ))′

J (v)+ 〈v − g, q〉Γ . (2.50)

Some comments on the choice of the Lagrange multiplier space and the dual form
〈·, ·〉Γ in (2.50) are in order. The boundary expression v = g actually means taking
the trace of v ∈ H 1(Ω) to Γ ⊆ ∂Ω which we explicitly write from now on γ v :=
v|Γ . Classical trace theorems which may be found in [43] state that for any v ∈
H 1(Ω) one looses ‘ 1

2 order of smoothness’ when taking traces so that one ends
up with γ v ∈ H 1/2(Γ ). Thus, when the data g is also such that g ∈ H 1/2(Γ ),
the expression in (2.50) involving the dual form 〈·, ·〉Γ := 〈·, ·〉H 1/2(Γ )×(H 1/2(Γ ))′ is
well-defined, and so is the selection of the multiplier space (H 1/2(Γ ))′. In case of
Dirichlet boundary conditions on the whole boundary ofΩ , i.e., the case Γ ≡ ∂Ω ,
one can identify (H 1/2(Γ ))′ = H−1/2(Γ ).

The above formulation (2.50) was first investigated in [2]. Another standard
technique from optimization to handle minimization problems under constraints is
to append the constraints to J (v) by means of a penalty parameter ε as follows,
cf. [3]. For the case of homogeneous Dirichlet boundary conditions, one could
introduce the functional J (v)+(2ε)−1‖γ v‖2

H 1/2(Γ )
. (The original formulation in [3]

uses the term ‖γ v‖2
L2(Γ )

.) Although the linear system derived from this formulation
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is still elliptic—the bilinear form is of the type a(v, v) + ε−1(γ v, γ v)H 1/2(Γ )—
the spectral condition number of the corresponding operator Aε depends on ε. The
choice of ε is typically attached to the discretization of an underlying grid with grid
spacing h for Ω of the form ε ∼ hα when h→ 0 for some exponent α > 0 chosen
such that one retains the optimal approximation order of the underlying scheme.
Thus, the spectral condition number of the operators in such systems depends
polynomially on (at least) h−α . Consequently, iterative solution schemes such as
the conjugate gradient method converge as slow as without preconditioning for A,
and so far no optimal preconditioners for this situation are known.

It should also be mentioned that the way of treating essential boundary conditions
by Lagrange multipliers can be extended to fictitious domain methods which may be
used for problems with changing boundaries such as shape optimization problems
[46, 49]. There one embeds the domain Ω into a larger, simple domain �, and
formulates (2.50) with respect to H 1(�) and dual form on the changing boundary
Γ [52]. One should note, however, that for Γ a proper subset of ∂Ω , there may
occur some ambiguity in the relation between the fictitious domain formulation and
the corresponding strong form (2.39).

In order to bring out the role of the trace operator, we define in addition to (2.40)
a second bilinear form on H 1(Ω)× (H 1/2(Γ ))′ by

b(v, q) :=
∫
Γ

(γ v)(s) q(s) ds (2.51)

so that the saddle point problem (2.50) may be rewritten as

inf
v∈H 1(Ω)

sup
q∈(H 1/2(Γ ))′

J (v, q), J (v, q) := J (v)+ b(v, q)− 〈g, q〉Γ .
(2.52)

Computing zeroes of the first order variations of J , now with respect to both v and
q , yields the system of equations that a saddle point (y, p) has to satisfy

a(y, v)+ b(v, p) = 〈v, f 〉, v ∈ H 1(Ω),

b(y, q) = 〈g, q〉Γ , q ∈ (H 1/2(Γ ))′. (2.53)

Defining the linear operator B : H 1(Ω) → H 1/2(Γ ) and its adjoint B ′ :
(H 1/2(Γ ))′ → (H 1(Ω))′ by 〈Bv, q〉Γ = 〈v,B ′q〉Γ := b(v, q), this can be
rewritten as the linear operator equation from H := H 1(Ω)× (H 1/2(Γ ))′ to H ′
as follows: Given (f, g) ∈H ′, find (y, p) ∈H that solves

(
A B ′
B 0

)(
y

p

)
=
(
f

g

)
. (2.54)

It can be shown that the Lagrange multiplier is given by p = −n ·a∇y and can here
be interpreted as a stress force on the boundary [2].
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Let us briefly investigate the properties of B representing the trace operator.
Classical trace theorems from, e.g., [43], state that for any f ∈ Hs(Ω), 1/2 <
s < 3/2, one has

‖f |Γ ‖Hs−1/2(Γ )
<∼ ‖f ‖Hs(Ω). (2.55)

Conversely, for every g ∈ Hs−1/2(Γ ), there exists some f ∈ Hs(Ω) such that
f |Γ = g and

‖f ‖Hs(Ω) <∼ ‖g‖Hs−1/2(Γ ). (2.56)

Note that the range of s extends accordingly if Γ is more regular. Estimate (2.55)
immediately entails for s = 1 that B : H 1(Ω) → H 1/2(Γ ) is continuous.
Moreover, the second property (2.56) means B is surjective, i.e., rangeB =
H 1/2(Γ ) and kerB ′ = {0}, which yields that the inf–sup condition

inf
q∈(H 1/2(Γ ))′

sup
v∈H 1(Ω)

〈Bv, q〉Γ
‖v‖H 1(Ω) ‖q‖(H 1/2(Γ ))′

>∼ 1 (2.57)

is satisfied.
At this point it will be more convenient to consider (2.54) as a saddle point

problem in abstract form on H = Y × Q. Thus, we identify Y = H 1(Ω) and
Q = (H 1/2(Γ ))′ and linear operatorsA : Y → Y ′ and B : Y → Q′.

The abstract theory of saddle point problems states that existence and uniqueness
of a solution pair (y, p) ∈ H holds if A and B are continuous, A is invertible on
kerB ⊆ Y and the range of B is closed in Q′, see, e.g., [7, 9, 42]. The properties
for B and the continuity for A have been assured above. In addition, we will always
deal here with operators A which are invertible on kerB, which cover the standard
cases of the Laplacian (a = I and c ≡ 0) and the Helmholtz operator (a = I and
c = 1).

Consequently,

L :=
(
A B ′
B 0

)
:H →H ′ (2.58)

is linear bijection, and one has the mapping property

∥∥∥∥L
(
v

q

)∥∥∥∥
H ′
∼
∥∥∥∥
(
v

q

)∥∥∥∥
H

(2.59)

for any (v, q) ∈H with constants depending on upper and lower bounds for A,B.
Thus, the operator equation (2.54) is established to be a well-posed variational
problem in the sense of Sect. 2.3.1: for given (f, g) ∈ H ′, there exists a unique
solution (y, p) ∈H = Y ×Q which continuously depends on the data.
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2.3.4 Parabolic Boundary Value Problems

More recently, weak full space-time formulation for one linear parabolic equation
became popular which allow us to consider time just as another space variable as
follows.

Let again Ω ⊂ R
n be a bounded Lipschitz domain with boundary ∂Ω , and

denote by ΩT := I ×Ω with time interval I := (0, T ) the time-space cylinder for
functions f = f (t, x) depending on time t and space x. The parameter T < ∞
will always denote a fixed final time. Let Y be a dense subspace of H := L2(Ω)

which is continuously embedded in L2(Ω) and denote by Y ′ its topological dual.
The associated dual form is denoted by 〈·, ·〉Y ′×Y or, shortly 〈·, ·〉. Later we will use
〈·, ·〉 also for time-space duality with the precise meaning clear from the context.
Norms will be indexed by the corresponding spaces. Following [59], Chapter III,
p. 100, let for a.e. t ∈ I there be bilinear forms a(t; ·, ·) : Y × Y → R so that
t "→ a(t; ·, ·) is measurable on I and that a(t; ·, ·) is continuous and elliptic on Y ,
i.e., there exists constants 0 < α1 ≤ α2 <∞ independent of t such that a.e. t ∈ I

a(t; v,w) ≤ α2‖v‖Y ‖w‖Y , v,w ∈ Y,
a(t; v, v) ≥ α1‖v‖2

Y , v ∈ Y. (2.60)

Define accordingly a linear operator A = A(t) : Y → Y ′ by

〈A(t)v,w〉 := a(t; v,w), v,w ∈ Y. (2.61)

Denoting by L (V ,W) the set of all bounded linear functions from V to W , we
have by (2.60) A(t) ∈ L (Y, Y ′) for a.e. t ∈ I . Typically, A(t) will be a scalar
linear elliptic differential operator of order two on Ω and Y = H 1

0 (Ω). We denote
by L2(I ;Z) the space of all functions v = v(t, x) for which for a.e. t ∈ I one has
v(t, ·) ∈ Z. Instead of L2(I ;Z), we will write this space as the tensor product of
the two separable Hilbert spaces, L2(I)⊗ Z, which, by Theorem 12.6.1 in [1], can
be identified. This fact will be frequently employed also in the sequel.

The standard semi-weak form a linear evolution equation is the following, see
e.g. [40]. Given an initial condition y0 ∈ H and right hand side f ∈ L2(I ; Y ′), find
y in some function space onΩT such that

〈 ∂y(t,·)
∂t
, v〉 + 〈A(t) y(t, ·), v〉 = 〈f (t, ·), v〉 for all v ∈ Y and a.e. t ∈ (0, T ),

〈y(0, ·), v〉 = 〈y0, v〉 for all v ∈ H.
(2.62)

For Y = H 1
0 (Ω), the weak formulation of the first equation includes homogeneous

Dirichlet conditions y(t, ·)|∂Ω = 0 for a.e. t ∈ I .
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The space-time variational formulation for (2.62) will be based on the solution
space

Y := L2(I ; Y ) ∩H 1(I ; Y ′) = (L2(I)⊗ Y ) ∩
(
H 1(I)⊗ Y ′

)
= {w ∈ L2(I ; Y ) : ∂w(t,·)∂t

∈ L2(I ; Y ′)} (2.63)

equipped with the graph norm

‖w‖2
Y := ‖w‖2

L2(I ;Y ) + ‖ ∂w(t,·)∂t
‖2
L2(I ;Y ′) (2.64)

and the Cartesian product space of test functions

V := L2(I ; Y )×H = (L2(I)⊗ Y )×H (2.65)

equipped for v = (v1, v2) ∈ V with the norm

‖v‖2
V := ‖v1‖2

L2(I ;Y ) + ‖v2‖2
H (2.66)

Note that v1 = v1(t, x) and v2 = v2(x).
Integration of (2.62) over t ∈ I leads to the variational problem to find for given

f ∈ V ′ a function y ∈ Y

b(y, v) = 〈f, v〉 for all v = (v1, v2) ∈ V , (2.67)

where the bilinear form b(·, ·) : Y × V → R is defined by

b(w, (v1, v2)) :=
∫
I

(
〈 ∂w(t,·)

∂t
, v1(t, ·)〉 + 〈A(t)w(t, ·), v1(t, ·)〉

)
dt + 〈w(0, ·), v2〉

(2.68)
and the right hand side 〈f, ·〉 : V → R by

〈f, v〉 :=
∫
I

〈f (t, ·), v1(t, ·)〉 dt + 〈y0, v2〉 (2.69)

for v = (v1, v2) ∈ V . It was proven in [37, Chapter XVIII, §3] that the operator
defined by the bilinear form b(·, ·) is an isomorphism with respect to the spaces Y
and V . An alternative, shorter proof given in [66] is based on a characterization
of bounded invertibility of linear operators between Hilbert spaces and provides
detailed bounds on the norms of the operator and its inverse as follows.
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Theorem 4 The operator B ∈ L (Y ,V ′) defined by 〈Bw, v〉 := b(w, v) for w ∈
Y and v ∈ V with b(·, ·) from (2.68) and spaces Y , V defined in (2.63), (2.65) is
boundedly invertible: There exist constants 0 < β1 ≤ β2 <∞ such that

‖B‖Y →V ′ ≤ β2 and ‖B−1‖V ′→Y ≤ 1

β1
. (2.70)

As proved in [66], the continuity constant β2 and the inf–sup condition constant β1
for b(·, ·) satisfy

β1 ≥ min(α1α
−2
2 , α1)√

2 max(α−2
1 , 1)+ �2

, β2 ≤
√

2 max(1, α2
2)+ �2, (2.71)

where α1, α2 are the constants from (2.60) bounding A(t), and � is defined as

� := sup
0 �≡w∈Y

‖w(0, ·)‖H
‖w‖Y .

We like to recall from [37, 40] that Y is continuously embedded in C 0(I ;H) so that
the pointwise in time initial condition in (2.62) is well-defined. From this it follows
that the constant ρ is bounded uniformly in the choice of Y ↪→ H .

For the sequel, it will be useful to explicitly identify the dual operator B∗ : V →
Y ′ of B which is defined by

〈Bw, v〉 =: 〈w,B∗v〉. (2.72)

In fact, it follows from the definition of the bilinear form (2.68) on Y × V by
integration by parts for the first term with respect to time, and using the dual A(t)∗
w.r.t. space that

b(w, (v1, v2)) =
∫
I

(
〈w(t, ·), ∂v1(t,·)

∂t
〉 + 〈w(t, ·), A(t)∗v1(t, ·)〉

)
dt

+ 〈w(0, ·), v2〉 + 〈w(t, ·), v2〉|T0

=
∫
I

(
〈w(t, ·), ∂v1(t,·)

∂t
〉 + 〈w(t, ·), A(t)∗v1(t, ·)〉

)
dt

+ 〈w(T , ·), v2〉

=: 〈w,B∗v〉. (2.73)

Note that the first term of the right hand side defining B∗ which involves ∂
∂t
v1(t, ·)

is still well-defined with respect to t as an element of Y ′ on account of w ∈ Y .
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2.3.5 PDE-Constrained Control Problems: Distributed Control

A class of problems where the numerical solution of systems (2.47) is required
repeatedly are certain control problems with PDE-constraints described next.
Adhering to the notation from Sect. 2.3.2, consider as a guiding model for the
subsequent discussion the objective to minimize a quadratic functional of the form

J (y, u) = 1

2
‖y − y∗‖2

Z + ω
2
‖u‖2

U , (2.74)

subject to linear constraints

Ay = f + u in H ′ (2.75)

where A : H → H ′ is defined as above in (2.61) satisfying (2.46) and f ∈ H
is given. Reserving the symbol H for the resulting product space in view of the
notation in Sect. 2.3.1, the space H is in this subsection defined as in (2.41) or
in (2.42). In order for a solution y of (2.75), the state of the system, to be well-
defined, the problem formulation has to ensure that the unknown control u appearing
on the right hand side is at least inH ′. This can be achieved by choosing the control
space U whose norm appears in (2.74) such that it is as least as smooth as H ′. The
second ingredient in the functional (2.74) is a data fidelity term which tries to match
the system state y to some prescribed target state y∗, measured in some norm which
is typically weaker than ‖ · ‖H . Thus, we require that the observation spaceZ and
the control space U are such that the continuous embeddings

‖v‖H ′ <∼ ‖v‖U , v ∈ U , ‖v‖Z <∼ ‖v‖H , v ∈ H, (2.76)

hold. Mostly one has investigated the simplest cases of norms which occur for U =
Z = L2(Ω) and which are covered by these assumptions [59]. The parameter
ω ≥ 0 balances the norms in (2.74).

Since the control appears in all of the right hand side of (2.75), such control
problems are termed problems with distributed control. Although their practical
value is of a rather limited nature, distributed control problems help to bring out the
basic mechanisms. Note that when the observed data are compatible in the sense
that y∗ ≡ A−1f , the control problem has the trivial solution u ≡ 0 which yields
J (y, u) ≡ 0.

Solution schemes for the control problem (2.74) subject to the constraints (2.75)
can be based on the system of operator equations derived next by the same
variational principles as employed in the previous section, using a Lagrange
multiplier p to enforce the constraints. Defining the Lagrangian functional

Lagr(y, p, u) :=J (y, u)+ 〈p,Ay − f − u〉 (2.77)
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onH ×H ×H ′, the first order necessary conditions or Karush-Kuhn-Tucker (KKT)
conditions δ Lagr(x) = 0 for x = p, y, u can be derived as

Ay = f + u
A′p = −S(y − y∗) (2.78)

ωRu = p.

Here the linear operators S and R can be interpreted as Riesz operators defined by
the inner products (·, ·)Z and (·, ·)U . The system (2.78) may be written in saddle
point form as

L V :=
(
A B′
B 0

)
V :=

⎛
⎝S 0 A′

0 ωR − I
A −I 0

⎞
⎠
⎛
⎝yu
p

⎞
⎠ =

⎛
⎝Sy∗0
f

⎞
⎠ =: F (2.79)

on H := H ×H ×H ′.
Remark 2 We can also allow for Z in (2.74) to be a trace space on part of the
boundary ∂Ω as long as the corresponding condition (2.76) is satisfied [53].

The class of control problems where the control is exerted through Neumann
boundary conditions can also be written in this form since in this case the control
still appears on the right hand side of a single operator equation of a form like (2.75),
see [29].

Well-posedness of the system (2.79) can now be established by applying the
conditions for saddle point problems stated in Sect. 2.3.3. For the control problems
here and below we will, however, follow a different route which better supports
efficient numerical solution schemes. The idea is as follows. While the PDE
constraints (2.75) that govern the system are fixed, there is in many applications
some ambiguity with respect to the choice of the spaces Z and U . L2 norms
are easily realized in finite element discretizations, although in some applications
like glass cooling smoother norms for the observation ‖ · ‖Z are desirable [63].
Once Z and U are fixed, there is only a single parameter ω to balance the two
norms in (2.74). Modelling the objective functional is therefore an issue where more
flexibility may be advantageous. Specifically in a multiscale setting, one may want
to weight contributions on different scales by multiple parameters.

The wavelet setting which we describe below allows for this flexibility. It is based
on formulating the objective functional in terms of weighted wavelet coefficient
sequences which are equivalent to Z , U and which, in addition, support an
efficient numerical implementation. Once wavelet discretizations are introduced, we
formulate below control problems with such objective functionals.
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2.3.6 PDE-Constrained Control Problems: Dirichlet Boundary
Control

Even more involved as the control problems with distributed control encountered in
the previous section are those problems with Dirichlet boundary control which are,
however, practically much more relevant.

An illustrative guiding model for this case is the problem to minimize for some
given data y∗ the quadratic functional

J (y, u) = 1

2
‖y − y∗‖2

Z + ω
2
‖u‖2

U , (2.80)

where, adhering to the notation in Sect. 2.3.2 the state y and the control u are
coupled through the linear second order elliptic boundary value problem

−∇ · (a∇y)+ ky = f inΩ,
y = u on Γ,

(a∇y) · n = 0 on ΓN.
(2.81)

The appearance of the control u as a Dirichlet boundary condition in (2.81) is
referred to as a Dirichlet boundary control. In view of the treatment of essential
Dirichlet boundary conditions in the context of saddle point problems derived in
Sect. 2.3.3, we write the PDE constraints (2.81) in the operator form (2.54) on Y×Q
where Y = H 1(Ω) andQ = (H 1/2(Γ ))′. The model control problem with Dirichlet
boundary control then reads as follows: Minimize for given data y∗ ∈ Z and f ∈ Y ′
the quadratic functional

J (y, u) = 1

2
‖y − y∗‖2

Z + ω
2
‖u‖2

U (2.82)

subject to

(
A B ′
B 0

)(
y

p

)
=
(
f

u

)
. (2.83)

In view of the problem formulation in Sect. 2.3.5 and the discussion of the choice
of the observation space Z and the control space, here we require analogously that
Z and U are such that the continuous embeddings

‖v‖Q′ <∼ ‖v‖U , v ∈ U , ‖v‖Z <∼ ‖v‖Y , v ∈ Y, (2.84)

hold. In view of Remark 2, also the case of observations on part of the boundary ∂Ω
can be taken into account [54]. Part of the numerical results are for such a situation
shown in Fig. 2.4.
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Remark 3 It should be mentioned that the simple choice U = L2(Γ )which is used
in many applications of Dirichlet control problems is not covered here. There may
arise the problem of well-posedness in this case which we briefly discuss. Note that
the constraints (2.81) or, in weak form (2.54), guarantee a unique weak solution
y ∈ Y = H 1(Ω) provided that the boundary term u satisfies u ∈ Q′ = H 1/2(Γ ).
In the framework of control problems, this smoothness of u therefore has to be
required either by the choice of U or by the choice of Z (such as Z = H 1(Ω))
which would assure By ∈ Q′. In the latter case, we could relax condition (2.84)
on U .

In the context of flow control problems, an H 1 norm on the boundary for the
control has been used in [45].

Similarly as stated at the end of Sect. 2.3.5, we can derive now by variational
principles the first order necessary conditions for a coupled system of saddle
point problems. Well-posedness of this system can then again be established by
applying the conditions for saddle point problems from Sect. 2.3.3 where the inf-
sup condition for the saddle point problem (2.54) yields an inf-sup condition for
the exterior saddle point problem of interior saddle point problems [51]. However,
also in this case, we follow the ideas mentioned at the end of Sect. 2.3.6 and pose a
corresponding control problem in terms of wavelet coefficients.

2.3.7 PDE-Constrained Control Problems: Parabolic PDEs

Finally, we consider the following tracking-type control problem constrained by an
evolution PDE as formulated in Sect. 2.3.4.

We wish to minimize for some given target state y∗ and fixed end time T > 0 the
quadratic functional

J (y, u) := ω1
2 ‖y−y∗‖2

L2(I ;Z)+ ω2
2 ‖y(T , ·)−y∗(T , ·)‖2

Z+ ω3
2 ‖u‖2

L2(I ;U) (2.85)

over the state y = y(t, x) and the control u = u(t, x) subject to

By = Eu+ f in V ′ (2.86)

where B is defined by Theorem 4 and f ∈ V ′ is given by (2.69). The real weight
parameters ω1, ω2 ≥ 0 are such that ω1 + ω2 > 0 and ω3 > 0. The space Z by
which the integral over Ω in the first two terms in (2.85) is indexed is to satisfy
Z ⊇ Y with continuous embedding. Although there is in the wavelet framework
great flexibility in choosing even fractional Sobolev spaces for Z, for transparency,
we pick here Z = Y . A more general choice only results in multiplications of
vectors in wavelet coordinate with diagonal matrices of the form (2.96) below, see
[29]. Moreover, we suppose that the operator E is a linear operator E : U → V ′
extending

∫
I 〈u(t, ·), v1(t, ·)〉 dt trivially, that is, E ≡ (I, 0)T . In order to generate a
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well-posed problem, the space U in (2.85) must be chosen to enforce that Eu is at
least in V ′. We pick here the natural case U = Y ′ which is also the weakest possible
one. More general cases for both situations which result again in multiplication with
diagonal matrices for wavelet coordinate vectors are discussed in [29].

2.4 Wavelets

The numerical solution of the classes of problems introduced above hinges on the
availability of appropriate wavelet bases for the function spaces under consideration
which are all particular Hilbert spaces. first introduce the three basic properties that
we require our wavelet bases to satisfy.

Afterwards, construction principles for wavelets based on multiresolution analy-
sis of function spaces on bounded domains will be given.

2.4.1 Basic Properties

In view of the problem classes considered above, we need to have a wavelet basis for
each occurring function space at our disposal. A wavelet basis for a Hilbert space
H is here understood as a collection of functions

ΨH := {ψH,λ : λ ∈ IIH } ⊂ H (2.87)

which are indexed by elements λ from an infinite index set ∈ IIH . Each of the λ
comprises different information λ = (j,k, e) such as the refinement scale or level
of resolution j and a spatial location k = k(λ) ∈ Z

n. In more than one space
dimensions, the basis functions are built from taking tensor products of certain
univariate functions, and in this case the third index e contains information on the
type of wavelet. We will frequently use the symbol |λ| := j to have access to the
resolution level j . In the univariate case on all of R, ψH,λ is typically generated by
means of shifts and dilates of a single functionψ , i.e.,ψλ = ψj,k = 2j/2ψ(2j ·−k),
j, k ∈ Z, normalized with respect to ‖ · ‖L2 . On bounded domains, the structure of
the functions is essentially the same up to modifications near the boundary.

The three crucial properties that we will assume the wavelet basis to have for the
sequel are the following.

Riesz Basis Property (R) Every v ∈ H has a unique expansion in terms of ΨH ,

v =
∑
λ∈IIH

vλ ψH,λ =: vT ΨH , v := (vλ)λ∈IIH , (2.88)
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and its expansion coefficients satisfy a norm equivalence, that is, for any v = {vλ :
λ ∈ IIH } one has

cH ‖v‖�2(IIH ) ≤ ‖vT ΨH‖H ≤ CH ‖v‖�2(IIH ), v ∈ �2(IIH ), (2.89)

where 0 < cH ≤ CH < ∞. This means that wavelet expansions induce
isomorphisms between certain function spaces and sequence spaces. It will be
convenient in the following to abbreviate �2 norms without subscripts as ‖ · ‖ :=
‖ · ‖�2(IIH ) when the index set is clear from the context. If the precise format of the
constants does not matter, we write the norm equivalence (2.89) shortly as

‖v‖ ∼ ‖vT ΨH ‖H , v ∈ �2(IIH ). (2.90)

Locality (L) The functions ψH,λ are have compact support which decreases with
increasing level j = |λ|, i.e.,

diam (suppψH,λ) ∼ 2−|λ|. (2.91)

Cancellation Property (CP) There exists an integer d̃ = d̃H such that

〈v,ψH,λ〉 <∼ 2−|λ|(n/2−n/p+d̃)|v|
Wd̃p (suppψH,λ)

. (2.92)

Thus, integrating against a wavelet has the effect of taking an d̃th order difference
which annihilates the smooth part of v. This property is for wavelets defined on
Euclidean domains typically realized by constructing ΨH in such a way that it
possesses a dual or biorthogonal basis Ψ̃H ⊂ H ′ such that the multiresolution
spaces S̃j := span{ψ̃H,λ : |λ| < j } contain all polynomials of order d̃ . Here
dual basis means that 〈ψH,λ, ψ̃H,ν〉 = δλ,ν , λ, ν ∈ IIH .

A few remarks on these properties are in order. In (R), the norm equiva-
lence (2.90) is crucial since it means complete control over a function measured
in ‖ · ‖H from above and below by its expansion coefficients: small changes in
the coefficients only causes small changes in the function which, together with the
locality (L), also means that local changes stay local. This stability is an important
feature which is used for deriving optimal preconditioners and driving adaptive
approximations where, again, the locality is crucial. Finally, the cancellation
property (CP) entails that smooth functions have small wavelet coefficients which,
on account of (2.89) may be neglected in a controllable way. Moreover, (CP) can be
used to derive quasi-sparse representations of a wide class of operators.

By duality arguments one can show that (2.89) is equivalent to the existence of a
biorthogonal collection which is dual or biorthogonal to ΨH ,

Ψ̃H := {ψ̃H,λ : λ ∈ IIH } ⊂ H ′, 〈ψH,λ, ψ̃H,μ〉 = δλ,μ, λ, μ ∈ IIH ,
(2.93)
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which is a Riesz basis for H ′, that is, for any ṽ = ṽT Ψ̃H ∈ H ′ one has

C−1
H ‖ṽ‖ ≤ ‖ṽT Ψ̃H‖H ′ ≤ c−1

H ‖ṽ‖, (2.94)

see [23, 25, 51]. Here and in the sequel the tilde expresses that the collection Ψ̃H
is a dual basis to a primal one for the space identified by the subscript, so that
Ψ̃H = ΨH ′ .

Above in (2.89), we have already introduced the following shorthand notation
which simplifies the presentation of many terms. We will view ΨH both as in (2.87)
as a collection of functions as well as a (possibly infinite) column vector containing
all functions always assembled in some fixed unspecified order. For a countable
collection of functions Θ and some single function σ , the term 〈Θ,σ 〉 is to be
understood as the column vector with entries 〈θ, σ 〉, θ ∈ Θ , and correspondingly
〈σ,Θ〉 the row vector. For two collections Θ,Σ , the quantity 〈Θ,Σ〉 is then
a (possibly infinite) matrix with entries (〈θ, σ 〉)θ∈Θ, σ∈Σ for which 〈Θ,Σ〉 =
〈Σ,Θ〉T . This also implies for a (possibly infinite) matrix C that 〈CΘ,Σ〉 =
C〈Θ,Σ〉 and 〈Θ,CΣ〉 = 〈Θ,Σ〉CT .

In this notation, the biorthogonality or duality conditions (2.93) can be reex-
pressed as

〈Ψ, Ψ̃ 〉 = I (2.95)

with the infinite identity matrix I.
Wavelets with the above properties can actually obtained in the following way.

This concerns, in particular, a scaling depending on the regularity of the space under
consideration. In our case, H will always be a Sobolev space Hs = Hs(Ω) or a
closed subspace ofHs(Ω) determined by homogeneous boundary conditions, or its
dual. For s < 0,Hs is interpreted as above as the dual ofH−s . One typically obtains
the wavelet basis ΨH for H from an anchor basis Ψ = {ψλ : λ ∈ II = IIH } which
is a Riesz basis for L2(Ω), meaning that Ψ is scaled such that ‖ψλ‖L2(Ω) ∼ 1.
Moreover, its dual basis Ψ̃ is also a Riesz basis for L2(Ω). Ψ and Ψ̃ are constructed
in such a way that rescaled versions of both basesΨ, Ψ̃ form Riesz bases for a whole
range of (closed subspaces of) Sobolev spaces Hs , for 0 < s < γ, γ̃ , respectively.
Consequently, one can derive that for each s ∈ (−γ̃ , γ ) the collection

Ψs := {2−s|λ|ψλ : λ ∈ II } =: D−sΨ (2.96)

is a Riesz basis for Hs [23]. This means that there exist positive finite constants
cs, Cs such that

cs ‖v‖ ≤ ‖vT Ψs‖Hs ≤ Cs ‖v‖ v ∈ �2(II), (2.97)

holds for each s ∈ (−γ̃ , γ ). Such a scaling represented by a diagonal matrix Ds

introduced in (2.96) will play an important role later on. The analogous expression
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in terms of the dual basis reads

Ψ̃s := {2s|λ| ψ̃λ : λ ∈ II } = Ds Ψ̃ , (2.98)

where Ψ̃s forms a Riesz basis ofHs for s ∈ (−γ, γ̃ ). This entails the following fact.
For τ ∈ (−γ̃ , γ ) the mapping

Dτ : v = vT Ψ "→ (Dτv)T Ψ = vTDτΨ =
∑
λ∈II

vλ 2τ |λ|ψλ (2.99)

acts as a shift operator between Sobolev scales which means that

‖Dτv‖Hs ∼ ‖v‖Hs+τ ∼ ‖Ds+τv‖, if s, s + τ ∈ (−γ̃ , γ ). (2.100)

Concrete constructions of wavelet bases with the above properties for parameters
γ, γ̃ ≤ 3/2 on a bounded Lipschitz domainΩ can be found in [33, 34]. This suffices
for the above mentioned examples where the relevant Sobolev regularity indices
range between −1 and 1.

2.4.2 Norm Equivalences and Riesz Maps

As we have seen, the scaling provided by D−s is an important feature to establish
norm equivalences (2.97) for the range s ∈ (−γ̃ , γ ) of Sobolev spaces Hs .
However, there are several other norms which are equivalent to ‖ · ‖Hs which may
later be used in the objective functional (2.74) in the context of control problems.
This issue addresses the mathematical model which we briefly discuss now.

We first consider norm equivalences for the L2 norm. Let as before Ψ be the
anchor wavelet basis for L2 for which the Riesz operator R = RL2 is the (infinite)
Gramian matrix with respect to the inner product (·, ·)L2 defined as

R := (Ψ,Ψ )L2 = 〈Ψ,Ψ 〉. (2.101)

Expanding Ψ in terms of Ψ̃ and recalling the duality (2.95), this entails

I = 〈Ψ, Ψ̃ 〉 =
〈
〈Ψ,Ψ 〉Ψ̃ , Ψ̃

〉
= R〈Ψ̃ , Ψ̃ 〉 or R−1 = 〈Ψ̃ , Ψ̃ 〉. (2.102)

R may be interpreted as the transformation matrix for the change of basis from Ψ̃

to Ψ , that is, Ψ = RΨ̃ .
For any w = wT Ψ ∈ L2, we now obtain the identities

‖w‖2
L2
= (wT Ψ,wT Ψ )L2 = wT 〈Ψ,Ψ 〉w = wTRw = ‖R1/2w‖2 =: ‖ŵ‖2.

(2.103)
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Expandingw with respect to the basis Ψ̂ := R−1/2Ψ = R1/2Ψ̃ , that is, w = ŵT Ψ̂ ,
yields ‖w‖L2 = ‖ŵ‖. On the other hand, we get from (2.97) with s = 0

c2
0 ‖w‖2 ≤ ‖w‖2

L2
≤ C2

0 ‖w‖2. (2.104)

From this we can derive the condition number κ(Ψ ) of the wavelet basis in terms of
the extreme eigenvalues of R by defining

κ(Ψ ) :=
(
C0

c0

)2

= λmax(R)
λmin(R)

= κ(R) ∼ 1, (2.105)

where κ(R) also denotes the spectral condition number of R and where the last
relation is assured by the asymptotic estimate (2.104). However, the absolute
constants will have an impact on numerical results in specific cases.

For a Hilbert space H denote by ΨH a wavelet basis for H satisfying (R), (L),
(CP) with a corresponding dual basis Ψ̃H . The (infinite) Gramian matrix with respect
to the inner product (·, ·)H inducing ‖ · ‖H which is defined by

RH := (ΨH ,ΨH )H (2.106)

will be also called Riesz operator. The space L2 is covered trivially by R0 = R. For
any function v := vT ΨH ∈ H we have then the identity

‖v‖2
H = (v, v)H = (vT ΨH , vT ΨH )H = vT (ΨH ,ΨH )H v

= vTRHv = ‖R1/2
H v‖2. (2.107)

Note that in general RH may not be explicitly computable, in particular, whenH is
a fractional Sobolev space.

Again referring to (2.97), we obtain as in (2.105) for the more general case

κ(Ψs) :=
(
Cs

cs

)2

= λmax(RHs )
λmin(RHs )

= κ(RHs ) ∼ 1 for each s ∈ (−γ̃ , γ ).
(2.108)

Thus, all Riesz operators on the applicable scale of Sobolev spaces are spectrally
equivalent. Moreover, comparing (2.108) with (2.105), we get

cs

C0
‖R1/2v‖ ≤ ‖R1/2

Hs v‖ ≤
Cs

c0
‖R1/2v‖. (2.109)

Of course, in practice, the constants appearing in this equation may be much sharper,
as the bases for Sobolev spaces with different exponents are only obtained by a
diagonal scaling which preserves much of the structure of the original basis for L2.

We summarize these results for further reference.
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Proposition 1 In the above notation, we have for any v = vT Ψs ∈ Hs the norm
equivalences

‖v‖Hs = ‖R1/2
Hs v‖ ∼ ‖R1/2v‖ ∼ ‖v‖ for each s ∈ (−γ̃ , γ ). (2.110)

2.4.3 Representation of Operators

A final ingredient concerns the wavelet representation of linear operators in terms of
wavelets. LetH,V be Hilbert spaces with wavelet bases ΨH,ΨV and corresponding
duals Ψ̃H , Ψ̃V , and suppose that L : H → V is a linear operator with dual L ′ :
V ′ → H ′ defined by 〈v,L ′w〉 := 〈L v,w〉 for all v ∈ H , w ∈ V .

We shall make frequent use of this representation and its properties.

Remark 4 The wavelet representation of L : H → V with respect to the bases
ΨH, Ψ̃V of H , V ′, respectively, is given by

L := 〈Ψ̃V ,LΨH 〉, L v = (Lv)T ΨV . (2.111)

Thus, the expansion coefficients of L v in the basis that spans the range space of
L are obtained by applying the infinite matrix L = 〈Ψ̃V ,LΨH 〉 to the coefficient
vector of v. Moreover, boundedness of L implies boundedness of L in �2, i.e.,

‖L v‖V <∼ ‖v‖H , v ∈ H, implies ‖L‖ := sup
‖v‖�2(IIH )≤1

‖Lv‖�2(IIV )
<∼ 1.

(2.112)

Proof Any image L v ∈ V can naturally be expanded with respect to ΨV as L v =
〈L v, Ψ̃V 〉ΨV . Expanding in addition v in the basis ΨH , v = vT ΨH yields

L v = vT 〈LΨH , Ψ̃V 〉ΨV = (〈LΨH , Ψ̃V 〉T v)T ΨV = (〈Ψ̃V ,LΨH 〉v)T ΨV .
(2.113)

As for (2.112), we can infer from (2.89) and (2.111) that

‖Lv‖�2(IIV ) ∼ ‖(Lv)T ΨV ‖V = ‖Lv‖V <∼ ‖v‖H ∼ ‖v‖�2(IIH ),

which confirms the claim. �

2.4.4 Multiscale Decomposition of Function Spaces

In this section, the basic construction principles of the biorthogonal wavelets with
properties (R), (L) and (CP) are summarized, see, e.g., [24]. Their cornerstones
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are multiresolution analyses of the function spaces under consideration and the
concept of stable completions. These concepts are free of Fourier techniques and
can therefore be applied to derive constructions of wavelets on domains or manifolds
which are subsets of Rn.

Multiresolution of L2 Practical constructions of wavelets typically start out with
multiresolution analyses of function spaces. Consider a multiresolution S of L2
which consists of closed subspaces Sj of L2, called trial spaces, such that they are
nested and their union is dense in L2,

Sj0 ⊂ Sj0+1 ⊂ . . . ⊂ Sj ⊂ Sj+1 ⊂ . . . L2, closL2

( ∞⋃
j=j0

Sj

)
= L2.

(2.114)

The index j is the refinement level which appeared already in the elements of the
index set II in (2.87), starting with some coarsest level j0 ∈ N0. We abbreviate for
a finite subset Θ ⊂ L2 the linear span of Θ as

S(Θ) = span{Θ}.

Typically the multiresolution spaces Sj have the form

Sj = S(Φj ), Φj = {φj,k : k ∈ Δj }, (2.115)

for some finite index setΔj , where the set {Φj }∞j=j0 is uniformly stable in the sense
that

‖c‖�2(Δj ) ∼ ‖cT Φj‖L2, c = {ck}k∈Δj ∈ �2(Δj ), (2.116)

holds uniformly in j . Here we have used again the shorthand notation

cT Φj =
∑
k∈Δj

ckφj,k

and Φj denotes both the (column) vector containing the functions φj,k as well as
the set of functions (2.115).

The collection Φj is called single scale basis since all its elements live only on
one scale j . In the present context of multiresolution analysis, Φj is also called
generator basis or shortly generators of the multiresolution. We assume that the
φj,k are compactly supported with

diam(suppφj,k) ∼ 2−j . (2.117)
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It follows from (2.116) that they are scaled such that

‖φj,k‖L2 ∼ 1 (2.118)

holds. It is known that nestedness (2.114) together with stability (2.116) implies the
existence of matrices Mj,0 = (mjr,k)r∈Δj+1,k∈Δj such that the two-scale relation

φj,k =
∑
r∈Δj+1

m
j
r,kφj+1,r , k ∈ Δj, (2.119)

is satisfied. We can essentially simplify the subsequent presentation of the material
by viewing (2.119) as a matrix-vector equation which then attains the compact form

Φj =MT
j,0Φj+1. (2.120)

Any set of functions satisfying an equation of this form, the refinement or two-scale
relation, will be called refinable.

Denoting by [X,Y ] the space of bounded linear operators from a normed linear
space X into the normed linear space Y , one has that

Mj,0 ∈ [�2(Δj ), �2(Δj+1)]

is uniformly sparse which means that the number of entries in each row or column
is uniformly bounded. Furthermore, one infers from (2.116) that

‖Mj,0‖ = O(1), j ≥ j0, (2.121)

where the corresponding operator norm is defined as

‖Mj,0‖ := sup
c∈�2(Δj ), ‖c‖�2(Δj )=1

‖Mj,0c‖�2(Δj+1).

Since the union of S is dense in L2, a basis for L2 can be assembled from
functions which span any complement between two successive spaces Sj and Sj+1,
i.e.,

S(Φj+1) = S(Φj )⊕ S(Ψj ) (2.122)

where

Ψj = {ψj,k : k ∈ ∇j }, ∇j := Δj+1 \Δj . (2.123)

The functions Ψj are called wavelet functions or shortly wavelets if, among other
conditions detailed below, the union {Φj ∪ Ψj } is still uniformly stable in the sense
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of (2.116). Since (2.122) implies S(Ψj ) ⊂ S(Φj+1), the functions in Ψj must also
satisfy a matrix-vector relation of the form

Ψj =MT
j,1Φj+1 (2.124)

with a matrix Mj,1 of size (#Δj+1) × (#∇j ). Furthermore, (2.122) is equivalent to
the fact that the linear operator composed of Mj,0 and Mj,1,

Mj = (Mj,0,Mj,1), (2.125)

is invertible as a mapping from �2(Δj ∪∇j ) onto �2(Δj+1). One can also show that
the set {Φj ∪ Ψj } is uniformly stable if and only if

‖Mj‖, ‖M−1
j ‖ = O(1), j →∞. (2.126)

The particular cases that will be important for practical purposes are when not only
Mj,0 and Mj,1 are uniformly sparse but also the inverse of Mj . We denote this
inverse by Gj and assume that it is split into

Gj =M−1
j =

(
Gj,0
Gj,1

)
. (2.127)

A special situation occurs when

Gj =M−1
j =MT

j

which corresponds to the case of L2 orthogonal wavelets [36]. A systematic
construction of more general Mj , Gj for spline-wavelets can be found in [34], see
also [24] for more examples, including the hierarchical basis.

Thus, the identification of the functions Ψj which span the complement of
S(Φj ) in S(Φj+1) is equivalent to completing a given refinement matrix Mj,0 to
an invertible matrix Mj in such a way that (2.126) is satisfied. Any such completion
Mj,1 is called stable completion of Mj,0. In other words, the problem of the
construction of compactly supported wavelets can equivalently be formulated as
an algebraic problem of finding the (uniformly) sparse completion of a (uniformly)
sparse matrix Mj,0 in such a way that its inverse is also (uniformly) sparse. The fact
that inverses of sparse matrices are usually dense elucidates the difficulties in the
constructions.

The concept of stable completions has been introduced in [14] for which a
special case is known as the lifting scheme [69]. Of course, constructions that yield
compactly supported wavelets are particularly suited for computations in numerical
analysis.
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Combining the two-scale relations (2.120) and (2.124), one can see that Mj

performs a change of bases in the space Sj+1,

(
Φj

Ψj

)
=
(MT

j,0

MT
j,1

)
Φj+1 =MT

j Φj+1. (2.128)

Conversely, applying the inverse of Mj to both sides of (2.128) results in the
reconstruction identity

Φj+1 = GTj

(
Φj

Ψj

)
= GTj,0Φj +GTj,1Ψj . (2.129)

Fixing a finest resolution level J , one can repeat the decomposition (2.122) so
that SJ = S(ΦJ ) can be written in terms of the functions from the coarsest space
supplied with the complement functions from all intermediate levels,

S(ΦJ ) = S(Φj0)⊕
J−1⊕
j=j0

S(Ψj ). (2.130)

Thus, every function v ∈ S(ΦJ ) can be written in its single-scale representation

v = (cJ )T ΦJ =
∑
k∈ΔJ

cJ,kφJ,k (2.131)

as well as in its multi-scale form

v = (cj0)T Φj0 + (dj0)T Ψj0 + · · · + (dJ−1)
T ΨJ−1 (2.132)

with respect to the multiscale or wavelet basis

Ψ J := Φj0 ∪
J−1⋃
j=j0

Ψj =:
J−1⋃
j=j0−1

Ψj (2.133)

Often the single-scale representation of a function may be easier to compute and
evaluate while the multi-scale representation allows one to separate features of
the underlying function characterized by different length scales. Since therefore
both representations are advantageous, it is useful to determine the transformation
between the two representations, commonly referred to as the Wavelet Transform,

TJ : �2(ΔJ )→ �2(ΔJ ), dJ "→ cJ , (2.134)
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where

dJ := (cj0,dj0 , . . . ,dJ−1)
T .

The previous relations (2.128) and (2.129) indicate that this will involve the matrices
Mj and Gj . In fact, TJ has the representation

TJ = TJ,J−1 · · ·TJ,j0 , (2.135)

where each factor has the form

TJ,j :=
(
Mj 0
0 I(#ΔJ−#Δj+1)

)
∈ R

(#ΔJ )×(#ΔJ ). (2.136)

Schematically TJ can be visualized as a pyramid scheme

Mj0,0 Mj0+1,0 MJ−1,0

cj0 −→ cj0+1 −→ cj0+2 −→ · · · cJ−1 −→ cJ

Mj0,1 Mj0+1,1 MJ−1,1

↗ ↗ ↗ · · · ↗
dj0 dj0+1 dj0+2 dJ−1

(2.137)

Accordingly, the inverse transform T−1
J can be written also in product struc-

ture (2.135) in reverse order involving the matrices Gj as follows:

T−1
J = T−1

J,j0
· · ·T−1

J,J−1, (2.138)

where each factor has the form

T−1
J,j :=

(
Gj 0
0 I(#ΔJ−#Δj+1)

)
∈ R

(#ΔJ )×(#ΔJ ). (2.139)

The corresponding pyramid scheme is then

GJ−1,0 GJ−2,0 Gj0 ,0

cJ −→ cJ−1 −→ cJ−2 −→ · · · −→ cj0

GJ−1,1 GJ−2,1 Gj0 ,1

↘ ↘ ↘ · · · ↘
dJ−1 dJ−2 dJ−1 dj0

(2.140)

Remark 5 Property (2.126) and the fact that Mj and Gj can be applied in (#Δj+1)

operations uniformly in j entails that the complexity of applying TJ or T−1
J using

the pyramid scheme is of order O(#ΔJ) = O(dim SJ ) uniformly in J . For this
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reason, TJ is called the Fast Wavelet Transform (FWT). Note that there is no need
to explicitly assemble TJ or T−1

J .

In Table 2.4 spectral condition numbers for the Fast Wavelet Transform (FWT) for
different constructions of biorthogonal wavelets on the interval computed in [62]
are displayed.

Since ∪j≥j0Sj is dense in L2, a basis for the whole space L2 is obtained when
letting J →∞ in (2.133),

Ψ :=
∞⋃

j=j0−1

Ψj = {ψj,k : (j, k) ∈ II }, Ψj0−1 := Φj0

II := {{j0} ×Δj0} ∪
∞⋃
j=j0

{{j } × ∇j } .
(2.141)

The next theorem from [23] illustrates the relation between Ψ and TJ .

Theorem 5 The multiscale transformations TJ are well-conditioned in the sense

‖TJ ‖, ‖T−1
J ‖ = O(1), J ≥ j0, (2.142)

if and only if the collection Ψ defined by (2.141) is a Riesz basis for L2, i.e., every
v ∈ L2 has unique expansions

v =
∞∑

j=j0−1

〈v, Ψ̃j 〉Ψj =
∞∑

j=j0−1

〈v,Ψj 〉Ψ̃j , (2.143)

where Ψ̃ defined analogously as in (2.141) is also a Riesz basis for L2 which is
biorthogonal or dual to Ψ ,

〈Ψ, Ψ̃ 〉 = I (2.144)

such that

‖v‖L2 ∼ ‖〈Ψ̃ , v〉‖�2(II ) ∼ ‖〈Ψ, v〉‖�2(II ). (2.145)

We briefly explain next how the functions in Ψ̃ , denoted as wavelets dual to Ψ , or
dual wavelets, can be determined. Assume that there is a second multiresolution S̃
of L2 satisfying (2.114) where

S̃j = S(Φ̃j ), Φ̃j = {φ̃j,k : k ∈ Δj } (2.146)
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and {Φ̃j }∞j=j0 is uniformly stable in j in the sense of (2.116). Let the functions

in Φ̃j also have compact support satisfying (2.117). Furthermore, suppose that the
biorthogonality conditions

〈Φj , Φ̃j 〉 = I (2.147)

hold. We will often refer to Φj as the primal and to Φ̃j as the dual generators. The
nestedness of the S̃j and the stability again implies that Φ̃j is refinable with some
matrix M̃j,0, similar to (2.120),

Φ̃j = M̃T
j,0Φ̃j+1. (2.148)

The problem of determining biorthogonal wavelets now consists in finding bases
Ψj , Ψ̃j for the complements of S(Φj ) in S(Φj+1), and of S(Φ̃j ) in S(Φ̃j+1), such
that

S(Φj )⊥S(Ψ̃j ), S(Φ̃j )⊥S(Ψj ) (2.149)

and

S(Ψj )⊥S(Ψ̃r ), j �= r, (2.150)

holds. The connection between the concept of stable completions and the dual
generators and wavelets is made by the following result which is a special case
from [14].

Proposition 2 Suppose that the biorthogonal collections {Φj }∞j=j0 and {Φ̃j }∞j=j0
are both uniformly stable and refinable with refinement matricesMj,0, M̃j,0, i.e.,

Φj =MT
j,0Φj+1, Φ̃j = M̃T

j,0Φ̃j+1, (2.151)

and satisfy the duality condition (2.147). Assume that M̌j,1 is any stable completion
ofMj,0 such that

M̌j := (Mj,0, M̌j,1) = Ǧ−1
j (2.152)

satisfies (2.126).
Then

Mj,1 := (I−Mj,0M̃T
j,0)M̌j,1 (2.153)
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is also a stable completion ofMj,0, andGj =M−1
j = (Mj,0,Mj,1)

−1 has the form

Gj =
(M̃T

j,0

Ǧj,1

)
. (2.154)

Moreover, the collections of functions

Ψj :=MT
j,1Φj+1, Ψ̃j := Ǧj,1Φ̃j+1 (2.155)

form biorthogonal systems,

〈Ψj , Ψ̃j 〉 = I, 〈Ψj , Φ̃j 〉 = 〈Φj , Ψ̃j 〉 = 0, (2.156)

so that

S(Ψj )⊥S(Ψ̃r ), j �= r, S(Φj )⊥S(Ψ̃j ), S(Φ̃j )⊥S(Ψj ). (2.157)

In particular, the relations (2.147), (2.156) imply that the collections

Ψ =
∞⋃

j=j0−1

Ψj , Ψ̃ :=
∞⋃

j=j0−1

Ψ̃j := Φ̃j0 ∪
∞⋃
j=j0

Ψ̃j (2.158)

are biorthogonal,

〈Ψ, Ψ̃ 〉 = I. (2.159)

Remark 6 It is important to note that the properties needed in addition to (2.159)
in order to ensure (2.145) are neither properties of the complements nor of their
bases Ψ, Ψ̃ but of the multiresolution sequences S and S̃ . These can be phrased
as approximation and regularity properties and appear in Theorem 6.

We briefly recall yet another useful point of view. The operators

Pjv := 〈v, Φ̃j 〉Φj = 〈v, Ψ̃ j 〉Ψ j = 〈v, Φ̃j0 〉Φj0 +
j−1∑
r=j0

〈v, Ψ̃r 〉Ψr

P ′j v := 〈v,Φj 〉Φ̃j = 〈v,Ψ j 〉Ψ̃ j = 〈v,Φj0 〉Φ̃j0 +
j−1∑
r=j0

〈v,Ψr 〉Ψ̃r
(2.160)

are projectors onto

S(Φj ) = S(Ψ j ) and S(Φ̃j ) = S(Ψ̃ j ) (2.161)



2 Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs 121

respectively, which satisfy

PrPj = Pr, P ′rP ′j = P ′r , r ≤ j. (2.162)

Remark 7 Let {Φj }∞j=j0 be uniformly stable. The Pj defined by (2.160) are

uniformly bounded if and only if {Φ̃j }∞j=j0 is also uniformly stable. Moreover, the

Pj satisfy (2.162) if and only if the Φ̃j are refinable as well. Note that then (2.147)
implies

MT
j,0M̃j,0 = I. (2.163)

In terms of the projectors, the uniform stability of the complement bases Ψj , Ψ̃j
means that

‖(Pj+1 − Pj )v‖L2 ∼ ‖〈Ψ̃j , v〉‖�2(∇j ), ‖(P ′j+1 − P ′j )v‖L2 ∼ ‖〈Ψj , v〉‖�2(∇j ),
(2.164)

so that the L2 norm equivalence (2.145) is equivalent to

‖v‖2
L2
∼

∞∑
j=j0

‖(Pj − Pj−1)v‖2
L2
∼

∞∑
j=j0

‖(P ′j − P ′j−1)v‖2
L2

(2.165)

for any v ∈ L2, where Pj0−1 = P ′j0−1 := 0.

The whole concept derived so far lives from bothΦj and Φ̃j . It should be pointed
out that in the algorithms one actually does not need Φ̃j explicitly for computations.

We recall next results that guarantee norm equivalences of the type (2.89) for
Sobolev spaces.

Multiresolution of Sobolev Spaces Let now S be a multiresolution sequence
consisting of closed subspaces of Hs with the property (2.114) whose union is
dense in Hs . The following result from [23] ensures under which conditions norm
equivalences hold for the Hs-norm.

Theorem 6 Let {Φj }∞j=j0 and {Φ̃j }∞j=j0 be uniformly stable, refinable, biorthog-
onal collections and let the Pj : Hs → S(Φj ) be defined by (2.160). If the
Jackson-type estimate

inf
vj∈Sj

‖v − vj‖L2
<∼ 2−sj‖v‖Hs , v ∈ Hs, 0 < s ≤ d̄, (2.166)

and the Bernstein inequality

‖vj‖Hs <∼ 2sj‖vj‖L2, vj ∈ Sj , s < t̄, (2.167)
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hold for

Sj =
{
S(Φj )

S(Φ̃j )

}
with order d̄ =

{
d

d̃

}
and t̄ =

{
t

t̃

}
, (2.168)

then for

0 < σ := min{d, t}, 0 < σ̃ := min{d̃, t̃}, (2.169)

one has

‖v‖2
Hs ∼

∞∑
j=j0

22sj‖(Pj − Pj−1)v‖2
L2
, s ∈ (−σ̃ , σ ). (2.170)

Recall that we always write Hs = (H−s)′ for s < 0.
The regularity of S and S̃ is characterized by

t := sup {s : S(Φj ) ⊂ Hs, j ≥ j0}, t̃ := sup {s : S(Φ̃j ) ⊂ Hs, j ≥ j0}
(2.171)

Recalling the representation (2.164), we can immediately derive the following
fact.

Corollary 2 Suppose that the assumptions in Theorem 6 hold. Then we have the
norm equivalence

‖v‖2
Hs ∼

∞∑
j=j0−1

22sj‖〈Ψ̃j , v〉‖2
�2(∇j ), s ∈ (−σ̃ , σ ). (2.172)

In particular for s = 0 the Riesz basis property of the Ψ , Ψ̃ relative to L2(2.145)
is recovered. For many applications it suffices to have (2.170) or (2.172) only for
certain s > 0 for which one only needs to require (2.166) and (2.167) for {Φj }∞j=j0 .

The Jackson estimates (2.166) of order d̃ for S(Φ̃j ) imply the cancellation properties
(CP) (2.92), see, e.g., [26].

Remark 8 When the wavelets live on Ω ⊂ R
n, (2.166) means that all polynomials

up to order d̃ are contained in S(Φ̃j ). One also says that S(Φ̃j ) is exact of
order d̃ . On account of (2.144), this implies that the wavelets ψj,k are orthogonal
to polynomials up to order d̃ or have d̃th order vanishing moments. By Taylor
expansion, this in turn yields (2.92).
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We will later use the following generalization of the discrete norms (2.165). Let
for s ∈ R

|||v|||s :=
⎛
⎝ ∞∑
j=j0

22sj‖(Pj − Pj−1)v‖2
L2

⎞
⎠

1/2

(2.173)

which by the relations (2.164) is also equivalent to

v s :=
⎛
⎝ ∞∑
j=j0−1

22sj‖〈Ψ̃j , v〉‖2
�2(∇j )

⎞
⎠

1/2

. (2.174)

In this notation, (2.170) and (2.172) read

‖v‖Hs ∼ |||v|||s ∼ v s . (2.175)

In terms of such discrete norms, Jackson and Bernstein estimates hold with
constants equal to one [51], which turns out to be useful later in Sect. 2.5.2.

Lemma 1 Let {Φj }∞j=j0 and {Φ̃j }∞j=j0 be uniformly stable, refinable, biorthogonal
collections and let the Pj be defined by (2.160). Then the estimates

v − Pjv s ′ ≤ 2−(j+1)(s−s ′) v s , v ∈ Hs, s′ ≤ s ≤ d, (2.176)

and

vj s ≤ 2j (s−s ′) vj s ′, vj ∈ S(Φj ), s′ ≤ s ≤ d, (2.177)

are valid, and correspondingly for the dual side.

The same results hold for the norm ||| · ||| defined in (2.173).

Reverse Cauchy–Schwarz Inequalities The biorthogonality condition (2.147)
implies together with direct and inverse estimates the following reverse Cauchy–
Schwarz inequalities for finite-dimensional spaces [28]. It will be one essential
ingredient for the discussion of the LBB condition in Sect. 2.5.2.

Lemma 2 Let the assumptions in Theorem 6 be valid such that the norm equiv-
alence (2.170) holds for (−σ̃ , σ ) with σ, σ̃ defined in (2.169). Then for any v ∈
S(Φj ) there exists some ṽ∗ = ṽ∗(v) ∈ S(Φ̃j ) such that

‖v‖Hs ‖ṽ∗‖H−s <∼ 〈v, ṽ∗〉 (2.178)

for any 0 ≤ s < min(σ, σ̃ ).
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The proof of this result given in [28] for s = 1/2 in terms of the projectors Pj
defined in (2.160) and corresponding duals P ′j immediately carries over to more
general s. Recalling the representation (2.161) in terms of wavelets, the reverse
Cauchy inequality (2.178) attains the following sharp form.

Lemma 3 ([51]) Let the assumptions of Lemma 1 hold. Then for every v ∈ S(Φj )
there exists some ṽ∗ = ṽ∗(v) ∈ S(Φ̃j ) such that

v s ṽ
∗ −s = 〈v, ṽ∗〉 (2.179)

for any 0 ≤ s ≤ min(σ, σ̃ ).

Proof Every v ∈ S(Φj ) can be written as

v =
j−1∑
r=j0−1

2sr
∑
k∈∇r

vr,kψr,k.

Setting now

ṽ∗ :=
j−1∑

r=j0−1

2−sr
∑
k∈∇r

vr,kψ̃r,k

with the same coefficients vj,k , the definition of · s yields by biorthogonal-
ity (2.159)

v s ṽ
∗ −s =

j−1∑
r=j0−1

∑
k∈∇r

|vj,k |2.

Combining this with the observation

〈v, ṽ∗〉 =
j−1∑

r=j0−1

∑
k∈∇r

|vj,k |2

confirms (2.179). �
Remark 9 The previous proof reveals that the identity (2.179) is also true for
elements from infinite-dimensional spaces Hs and (H s)′ for which Ψ and Ψ̃ are
Riesz bases.

BiorthogonalWavelets on R The construction of biorthogonal spline-wavelets on
R from [18] for L2 = L2(R) employs the multiresolution framework introduced at
the beginning of this section. There the φj,k are generated through the dilates and
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translates of a single function φ ∈ L2,

φj,k = 2j/2φ(2j · −k). (2.180)

This corresponds to the idea of a uniform virtual underlying grid, explaining the
terminology uniform refinements. B-Splines on uniform grids are known to satisfy
refinement relations (2.119) in addition to being compactly supported and having
L2-stable integer translates. For computations, they have the additional advantage
that they can be expressed as piecewise polynomials. In the context of variational
formulations for second order boundary value problems, a well-used example are
the nodal finite elements φj,k generated by the cardinal B-Spline of order two,
i.e., the piecewise linear continuous function commonly called the ‘hat function’.
For cardinal B-Splines as generators, a whole class of dual generators φ̃j,k (of
arbitrary smoothness at the expense of larger supports) can be constructed which are
also generated by one single function φ̃ through translates and dilates. By Fourier
techniques, one can construct from φ, φ̃ then a pair of biorthogonal wavelets ψ, ψ̃
whose dilates and translates built as in (2.180) constitute Riesz bases for L2(R).

By taking tensor products of these functions, one can generate biorthogonal
wavelet bases for L2(R

n).

Biorthogonal Wavelets on Domains Some constructions that exist by now have
as a core ingredient tensor products of one-dimensional wavelets on an interval
derived from the biorthogonal wavelets from [18] on R. On finite intervals in R, the
corresponding constructions are usually based on keeping the elements of Φj , Φ̃j
supported inside the interval while modifying those translates overlapping the end
points of the interval so as to preserve a desired degree of polynomial exactness.
A general detailed construction satisfying all these requirements has been proposed
in [34]. Here just the main ideas for constructing a biorthogonal pair Φj, Φ̃j and
corresponding wavelets satisfying the above requirements are sketched, where we
apply the techniques derived at the beginning of this section.

We start out with those functions from two collections of biorthogonal generators
ΦR

j , Φ̃
R

j for some fixed j ≥ j0 living on the whole real line whose support has
nonempty intersection with the interval (0, 1). In order to treat the boundary effects
separately, we assumed that the coarsest resolution level j0 is large enough so that,
in view of (2.117), functions overlapping one end of the interval vanish at the other.
One then leaves as many functions from the collectionΦR

j , Φ̃
R

j living in the interior
of the interval untouched and modifies only those near the interval ends. Note that
keeping just the restrictions to the interval of those translates overlapping the end
points would destroy stability (and also the cardinality of the primal and dual basis
functions living on (0, 1) since their supports do not have the same size). Therefore,
modifications at the end points are necessary; also, just discarding them from the
collections (2.115), (2.146) would produce an error near the end points. The basic
idea is essentially the same for all constructions of orthogonal and biorthogonal
wavelets on R adapted to an interval. Namely, one takes fixed linear combinations
of all functions in ΦR

j , Φ̃
R

j living near the ends of the interval in such a way
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that monomials up to the exactness order are reproduced there and such that the
generator bases have the same cardinality. Because of the boundary modifications,
the collections of generators are there no longer biorthogonal. However, one can
show in the case of cardinal B-Splines as primal generators (which is a widely used
class for numerical analysis) that biorthogonalization is indeed possible. This yields
collections denoted by Φ(0,1)j , Φ̃

(0,1)
j which then satisfy (2.147) on (0, 1) and all

assumptions required in Proposition 2.
For the construction of corresponding wavelets, first an initial stable completion

M̌j,1 is computed by applying Gaussian eliminations to factor Mj,0 and then to
find a uniformly stable inverse of M̌j . Here we exploit that for cardinal B-Splines as
generators the refinement matrices Mj,0 are totally positive. Thus, they can be stably
decomposed by Gaussian elimination without pivoting. Application of Proposition 2
then gives the corresponding biorthogonal wavelets Ψ (0,1)j , Ψ̃

(0,1)
j on (0, 1) which

satisfy the requirements in Corollary 2. It turns out that these wavelets coincide in
the interior of the interval again with those on all of R from [18]. An example of
the primal wavelets for d = 2 generated by piecewise linear continuous functions
is displayed in Fig. 2.2 on the left. After constructing these basic versions, one can
then perform local transformations near the ends of the interval in order to improve
the condition or L2 stability constants, see [11, 62] for corresponding results and
numerical examples.

We display spectral condition numbers for the FWT for two different construc-
tions of biorthogonal wavelets on the interval computed in [62] in Table 2.4. The
first column denotes the finest level on which the spectral condition numbers of the
FWT are computed. The next column contains the numbers for the construction of
biorthogonal spline-wavelets on the interval from [34] for the case d = 2, d̃ = 4
while the last column displays the numbers for a scaled version derived in [11]. We
will see later in Sect. 2.5.1 how the transformation TJ is used for preconditioning.

Along these lines, also biorthogonal generators and wavelets with homogeneous
(Dirichlet) boundary conditions can be constructed. Since the Φ(0,1)j are locally
near the boundary monomials which all vanish at 0, 1 except for one, removing the
one from Φ

(0,1)
j which corresponds to the constant function produces a collection

of generators with homogeneous boundary conditions at 0, 1. In order for the

Table 2.4 Computed spectral condition numbers [62] for the Fast Wavelet Transform for
different constructions of biorthogonal wavelets on the interval [11, 34]

j κ2(TDKU) κ2(TB)

4 4.743e+00 4.640e+00

5 6.221e+00 6.024e+00

6 8.154e+00 6.860e+00

7 9.473e+00 7.396e+00

8 1.023e+01 7.707e+00

9 1.064e+01 7.876e+00

10 1.086e+01 7.965e+00

j κ2(TDKU) κ2(TB)

11 1.097e+01 8.011e+00

12 1.103e+01 8.034e+00

13 1.106e+01 8.046e+00

14 1.107e+01 8.051e+00

15 1.108e+01 8.054e+00

16 1.108e+01 8.056e+00
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moment conditions (2.92) still to hold for the Ψj , the dual generators have to have
complementary boundary conditions. A corresponding construction has been carried
out in [30] and implemented in [11]. Homogeneous boundary conditions of higher
order can be generated accordingly.

By taking tensor products of the wavelets on (0, 1), in this manner biorthogonal
wavelets for Sobolev spaces on (0, 1)n with or without homogeneous boundary
conditions are obtained. This construction can be further extended to any other
domain or manifold which is the image of a regular parametric mapping of the unit
cube. Some results on the construction of wavelets on manifolds are summarized in
[25]. There are essentially two approaches. The first idea is based on domain decom-
position and consists in ‘gluing’ generators across interelement boundaries, see, e.g.,
[13, 31]. These approaches all have in common that the norm equivalences (2.172)
for Hs = Hs(Γ ) can be shown to hold only for the range−1/2 < s < 3/2, due to
the fact that duality arguments apply only for this range because of the nature of a
modified inner product to which biorthogonality refers. The other approach which
overcomes the above limitations on the ranges for which the norm equivalences hold
has been developed in [32] based on previous characterizations of function spaces
as Cartesian products from [15]. The construction in [32] has been optimized and
implemented to construct wavelet bases on the sphere in [56, 64], see Fig. 2.2.

Of course, there are also different attempts to construct wavelet bases with the
above properties without using tensor products. A construction of biorthogonal
spline-wavelets on triangles introduced by [68] has been implemented in two
spatial dimensions with an application to the numerical solution of a linear elliptic
boundary value problem in [48].

Fig. 2.2 Primal wavelets for d = 2 on [0, 1] (left) and on a sphere (right) from [64]
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2.5 Problems in Wavelet Coordinates

2.5.1 Elliptic Boundary Value Problems

We now consider the wavelet representation of the elliptic boundary value problem
from Sect. 2.3.2. Let for H given by (2.41) or (2.42) ΨH be a wavelet basis
with corresponding dual Ψ̃H which satisfies the properties (R), (L) and (CP)
from Sect. 2.4.1. Following the recipe from Sect. 2.4.3, expanding y = yT ΨH ,
f = fT Ψ̃H and recalling (2.45), the wavelet representation of the elliptic boundary
value problem (2.47) is given by

Ay = f (2.181)

where

A := a(ΨH , ΨH ), f := 〈ΨH , f 〉. (2.182)

Then the mapping property (2.46) and the Riesz basis property (R) yield the
following fact.

Proposition 3 The infinite matrix A is a boundedly invertible mapping from �2 =
�2(IIH ) into itself, and there exists finite positive constants cA ≤ CA such that

cA‖v‖ ≤ ‖Av‖ ≤ CA‖v‖, v ∈ �2(IIH ). (2.183)

Proof For any v ∈ H with coefficient vector v ∈ �2, we have by the lower
estimates in (2.89), (2.46) and the upper inequality in (2.94), respectively,

‖v‖ ≤ c−1
H ‖v‖H ≤ c−1

H c
−1
A ‖Av‖H ′ = c−1

H c
−1
A ‖(Av)T Ψ̃H ‖H ′ ≤ c−2

H c
−1
A ‖Av‖

where we have used the wavelet representation (2.111) forA. Likewise, the converse
estimate

‖Av‖ ≤ CH ‖Av‖H ′ ≤ CH CA‖v‖H ≤ C2
H CA‖v‖

follows by the lower inequality in (2.94) and the upper estimates in (2.46) and (2.89).
The constants appearing in (2.183) are therefore identified as cA := c2

H cA and
CA := c2

H CA. �
In the present situation where A is defined via the elliptic bilinear form a(·, ·),

Proposition 3 entails the following result with respect to preconditioning. Let for
II = IIH the symbol Λ denote any finite subset of the index set II . For the
corresponding set of wavelets ΨΛ := {ψλ : λ ∈ Λ} denote by SΛ := spanΨΛ
the respective finite-dimensional subspace of H . For the wavelet representation of
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A in terms of ΨΛ,

AΛ := a(ΨΛ,ΨΛ), (2.184)

we obtain the following result.

Proposition 4 If a(·, ·) is H -elliptic according to (2.44), the finite matrix AΛ is
symmetric positive definite and its spectral condition number is bounded uniformly
in Λ, i.e.,

κ2(AΛ) ≤ CA

cA
, (2.185)

where cA, CA are the constants from (2.183).

Proof Clearly, since AΛ is just a finite section of A, we have ‖AΛ‖ ≤ ‖A‖. On
the other hand, by assumption, a(·, ·) is H -elliptic which entails that a(·, ·) is also
elliptic on every finite subspace SΛ ⊂H . Thus, we infer ‖A−1

Λ ‖ ≤ ‖A−1‖, and we
have

cA‖vΛ‖ ≤ ‖AΛvΛ‖ ≤ CA‖vΛ‖, vΛ ∈ SΛ. (2.186)

Together with the definition κ2(AΛ) := ‖AΛ‖ ‖A−1
Λ ‖ we obtain the claimed

estimate. �
In other words, representations of A with respect to properly scaled wavelet bases
for H entail well-conditioned system matrices AΛ independent of Λ. This in turn
means that the convergence speed of an iterative solver applied to the corresponding
finite system

AΛyΛ = fΛ (2.187)

does not deteriorate as Λ→∞.
In summary, ellipticity implies stability of the Galerkin discretizations for any

set Λ ⊂ II . This is not the case for finite versions of the saddle point problems
discussed in Sect. 2.5.2.

Fast Wavelet Transform Let us briefly summarize how in the situation of uniform
refinements, i.e., when S(ΦJ ) = S(Ψ J ), the Fast Wavelet Transformation (FWT)
TJ can be used for preconditioning linear elliptic operators, together with a diagonal
scaling induced by the norm equivalence (2.172) [27]. Here we recall the notation
from Sect. 2.4.4 where the wavelet basis is in fact the (unscaled) anchor basis from
Sect. 2.4.1. Thus, the norm equivalence (2.89) using the scaled wavelet basis ΨH is
the same as (2.172) in the anchor basis. Recall that the norm equivalence (2.172)
implies that every v ∈ Hs can be expanded uniquely in terms of the Ψ and its
expansion coefficients v satisfy

‖v‖Hs ∼ ‖Dsv‖�2
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where Ds is a diagonal matrix with entries Ds
(j,k),(j ′,k′) = 2sj δj,j ′δk,k′ . For H ⊂

H 1(Ω), the case s = 1 is relevant.
In a stable Galerkin scheme for (2.43) with respect to S(Ψ J ) = S(ΨΛ), we have

therefore already identified the diagonal (scaling) matrix DJ consisting of the finite
portion of the matrix D = D1 for which j0 − 1 ≤ j ≤ J − 1. The representation of
A with respect to the (unscaled) wavelet basis Ψ J can be expressed in terms of the
Fast Wavelet Transform TJ , that is,

〈Ψ J ,AΨ J 〉 = TTJ 〈ΦJ ,AΦJ 〉TJ , (2.188)

where ΦJ is the single-scale basis for S(Ψ J ). Thus, we first set up the operator
equation as in Finite Element settings in terms of the single-scale basis ΦJ .
Applying the Fast Wavelet Transform TJ together with DJ yields that the operator

AJ := D−1
J TTJ 〈ΦJ ,AΦJ 〉TJ D−1

J (2.189)

has uniformly bounded condition numbers independent of J . This can be seen by
combining the properties ofA according to (2.46) with the norm equivalences (2.89)
and (2.94).

It is known that the boundary adaptations of the generators and wavelets aggra-
vate the absolute values of the condition numbers. Nevertheless, these constants can
be greatly reduced by sophisticated biorthogonalizations of the boundary adapted
functions [11]. Numerical tests confirm that the absolute constants can further be
improved by taking instead of D−1

J the inverse of the diagonal of 〈Ψ J ,AΨ J 〉
for the scaling in (2.189) [11, 17, 62]. Table 2.5 displays the condition numbers
for discretizations of an operator in two spatial dimensions for boundary adapted
biorthogonal spline-wavelets in the case d = 2, d̃ = 4 with such a scaling.

2.5.2 Saddle Point Problems Involving Boundary Conditions

As in the previous situation, we first derive an infinite wavelet representation of the
saddle point problem introduced in Sect. 2.3.3.

Let for H = Y × Q with Y = H 1(Ω), Q = (H 1/2(Γ ))′ two collections
of wavelet bases ΨY , ΨQ be available, each satisfying (R), (L) and (CP), with
respective duals Ψ̃Y , Ψ̃Q. Similar to the previous case, we expand y = yT ΨY and
p = pT ΨQ and test with the elements from ΨY , ΨQ. Then (2.54) attains the form

L
(
y
p

)
:=

(
A BT

B 0

)(
y
p

)
=
(
f
g

)
, (2.190)
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where

A := 〈ΨY ,AΨY 〉 f := 〈ΨY , f 〉,
B := 〈ΨQ,BΨY 〉, g := 〈ΨQ, g〉.

(2.191)

In view of the above assertions, the operatorL is an �2-automorphism, i.e., for every
(v,q) ∈ �2(II) = �2(IIY × IIQ) we have

cL

∥∥∥∥
(
v
q

)∥∥∥∥ ≤
∥∥∥∥L

(
v
q

)∥∥∥∥ ≤ CL

∥∥∥∥
(
v
q

)∥∥∥∥ (2.192)

with constants cL, CL only depending on cL , CL from (2.59) and the constants in
the norm equivalences (2.89) and (2.94).

For saddle point problems with an operator L satisfying (2.192), finite sections
are in general not uniformly stable in the sense of (2.186). In fact, for discretizations
on uniform grids, the validity of the corresponding mapping property relies on a
suitable stability condition, see e.g. [9, 42]. The relevant facts derived in [28] are as
follows.

The bilinear form a(·, ·) defined in (2.40) is for c > 0 elliptic on all of Y =
H 1(Ω) and, hence, also on any finite-dimensional subspace of Y . Let there be two
multiresolution analyses Y of H 1(Ω) and Q of Q where the discrete spaces are
Yj ⊂ H 1(Ω) andQΛ =: Q� ⊂ (H 1/2(Γ ))′. With the notation from Sect. 2.4.4 and
in addition superscripts referring to the domain on which the functions live, these
spaces are represented by

Yj = S(ΦΩj ) = S(Ψ j,Ω), Ỹj = S(Φ̃Ωj ) = S(Ψ̃ j,Ω),
Q� = S(ΦΓ� ) = S(Ψ �,Γ ), Q̃� = S(Φ̃Γ� ) = S(Ψ̃ �,Γ ).

(2.193)

Here the indices j and � refer to mesh sizes on the domain and the boundary,

hΩ ∼ 2−j and hΓ ∼ 2−�.

The discrete inf–sup condition, the LBB condition, for the pair Yj ,Q� requires that
there exists a constant β1 > 0 independent of j and � such that

inf
q∈Q�

sup
v∈Yj

b(v, q)

‖v‖H 1(Ω) ‖q‖(H 1/2(Γ ))′
≥ β1 > 0 (2.194)

holds. We have investigated in [28] the general case in arbitrary spatial dimensions
where the Q� are not trace spaces of Yj . Employing the reverse Cauchy-Schwarz
inequalities from Sect. 2.4.4, one can show that (2.194) is satisfied provided that
hΓ (hΩ)

−1 = 2j−� ≥ cΩ > 1, similar to a condition which was known for bivariate
polygons and particular finite elements [2, 41].
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Table 2.5 Spectral
condition numbers of the
operators A and L for
different constructions of
biorthogonal wavelets on the
interval [62]

j κ2(ADKU) κ2(AB) κ2(LDKU) κ2(LDKU)

3 5.195e+02 1.898e+01 1.581e+02 4.147e+01

4 6.271e+02 1.066e+02 1.903e+02 1.050e+02

5 6.522e+02 1.423e+02 1.997e+02 1.399e+02

6 6.830e+02 1.820e+02 2.112e+02 1.806e+02

7 7.037e+02 2.162e+02 2.318e+02 2.145e+02

8 7.205e+02 2.457e+02 2.530e+02 2.431e+02

9 7.336e+02 2.679e+02 2.706e+02 2.652e+02

It should be mentioned that the obstructions caused by the LBB condition can be
avoided by means of stabilization techniques proposed, e.g., in [67] where, however,
the location of the boundary of Ω relative to the mesh is somewhat constrained.
Another stabilization strategy based on wavelets has been investigated in [6]. A
related approach which systematically avoids restrictions of the LBB type is based
on least squares techniques [35].

It is particularly interesting that adaptive schemes based on wavelets like the one
in Sect. 2.6.2 can be designed in such a way that the LBB condition is automatically
enforced which was first observed in [22]. More on this subject can be found in [26].

In order to get an impression of the value of the constants for the condition
numbers for AΛ in (2.185) and the corresponding ones for the saddle point operator
on uniform grids (2.192), we mention an example investigated and implemented in
[62]. In this example, Ω = (0, 1)2 and Γ is one face of its boundary. In Table 2.5
from [62], the spectral condition numbers of A and L with respect to two different
constructions of wavelets for the case d = 2 and d̃ = 4 are displayed. We see next
to the first column in which the refinement level j is listed the spectral condition
numbers of A with the wavelet construction from [34] denoted by ADKU and with
the modification introduced in [11] and a further transformation [62] denoted by
AB. The last columns contain the respective numbers for the saddle point matrix L
where κ2(L) :=

√
κ(LTL).

2.5.3 Control Problems: Distributed Control

We now discuss appropriate wavelet formulations for PDE-constrained control
problems with distributed control as introduced in Sect. 2.3.5. Let for any space
V ∈ {H,Z ,U } ΨV denote a wavelet basis with the properties (R), (L), (CP) for
V with dual basis Ψ̃V .

Let Z ,U satisfy the embedding (2.76). In terms of wavelet bases, the corre-
sponding canonical injections correspond in view of (2.96) to a multiplication by a
diagonal matrix. That is, let DZ ,DH be such that

ΨZ = DZ ΨH, Ψ̃H = DHΨU . (2.195)
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Since Z possibly induces a weaker and U a stronger topology, the diagonal
matrices DZ ,DH are such that their entries are nondecreasing in scale, and there is
a finite constant C such that

‖D−1
Z ‖, ‖D−1

H ‖ ≤ C. (2.196)

For instance, for H = Hα,Z = Hβ , or for H ′ = H−α, U = H−β , 0 ≤ β ≤ α,
DZ ,DH have entries (DZ )λ,λ = (DH)λ,λ = (Dα−β)λ,λ = 2(α−β)|λ|.

We expand y in ΨH and u in a wavelet basis ΨU for U ⊂ H ′,

u = uT ΨU = (D−1
H u)T ΨH ′ . (2.197)

Following the derivation in Sect. 2.5.1, the linear constraints (2.75) attain the form

Ay = f+ D−1
H u (2.198)

where

A := a(ΨH,ΨH ), f := 〈ΨH , f 〉. (2.199)

Recall that A has been assumed to be symmetric. The objective functional (2.80)
is stated in terms of the norms ‖ · ‖Z and ‖ · ‖U . For an exact representation
of these norms, corresponding Riesz operators RZ and RU defined analogously
to (2.106) would come into play which may not be explicitly computable if Z ,U
are fractional Sobolev spaces. On the other hand, as mentioned before, such a cost
functional in many cases serves the purpose of yielding unique solutions while there
is some ambiguity in its exact formulation. Hence, in search for a formulation which
best supports numerical realizations, it is often sufficient to employ norms which are
equivalent to ‖ ·‖Z and ‖ ·‖U . In view of the discussion in Sect. 2.4.2, we can work
for the norms ‖ · ‖Z , ‖ · ‖U only with the diagonal scaling matrices Ds induced
by the regularity of Z ,U , or we can in addition include the Riesz map R defined
in (2.101). In the numerical studies in [11], a somewhat better quality of the solution
is observed when R is included. In order to keep track of the appearance of the Riesz
maps in the linear systems derived below, we choose here the latter variant.

Moreover, we expand the given observation function y∗ ∈ Z as

y∗ = 〈y∗, Ψ̃Z 〉ΨZ =: (D−1
Z y∗)T ΨZ = yT∗ ΨH . (2.200)

The way the vector y∗ is defined here for notational convenience may by itself
actually have infinite norm in �2. However, its occurrence will always include
premultiplication by D−1

Z which is therefore always well-defined. In view of (2.110),
we obtain the relations

‖y − y∗‖Z ∼ ‖R1/2D−1
Z (y− y∗)‖ ∼ ‖D−1

Z (y− y∗‖. (2.201)
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Note that here R = 〈Ψ,Ψ 〉 (and not R−1) comes into play since y, y∗ have been
expanded in a scaled version of the primal wavelet basisΨ . Hence, equivalent norms
for ‖ · ‖Z may involve R. As for describing equivalent norms for ‖ · ‖U , recall that
u is expanded in the basis ΨU for U ⊂ H ′. Consequently, R−1 is the natural matrix
to take into account when considering equivalent norms, i.e., we choose here

‖u‖U ∼ ‖R−1/2u‖. (2.202)

Finally, we formulate the following control problem in (infinite) wavelet coordi-
nates.
(DCP) For given data D−1

Z y∗ ∈ �2(IIZ ), f ∈ �2(IIH ), and weight parameter ω > 0,
minimize the quadratic functional

J̌(y,u) := 1
2 ‖R1/2D−1

Z (y− y∗)‖2 + ω
2 ‖R−1/2u‖2 (2.203)

over (y,u) ∈ �2(IIH )× �2(IIH ) subject to the linear constraints

Ay = f+ D−1
H u. (2.204)

Remark 10 Problem (DCP) can be viewed as (discretized yet still infinite-dimen-
sional) representation of the linear-quadratic control problem (2.74) together
with (2.75) in wavelet coordinates in the following sense. The functional J̌(y,u)
defined in (2.203) is equivalent to the functional J (y, u) from (2.74) in the sense
that there exist constants 0 < cJ ≤ CJ <∞ such that

cJ J̌(y,u) ≤ J (y, u) ≤ CJ J̌(y,u) (2.205)

holds for any y = yT ΨH ∈ H , given y∗ = (D−1
Z y∗)T ΨZ ∈ Z and any

u = uT ΨU ∈ U . Moreover, in the case of compatible data y∗ = A−1f yielding
J (y, u) ≡ 0, the respective minimizers coincide, and y∗ = A−1f yields J̌(y,u) ≡ 0.
In this sense the new functional (2.203) captures the essential features of the model
minimization functional.

Once problem (DCP) is posed, we can apply variational principles to derive
necessary and sufficient conditions for a unique solution. All control problems
considered here are in fact simple in this regard, as we have to minimize a quadratic
functional subject to linear constraints, for which the necessary conditions are also
sufficient. In principle, there are two ways to derive the optimality conditions for
(DCP). We have encountered in Sect. 2.3.5 already the technique via the Lagrangian.

We define for (DCP) the Lagrangian introducing the Lagrangemultiplier, adjoint
variable or adjoint state p as

Lagr(y,p,u) := J̌(y,u)+ 〈p,Ay− f− D−1
H u〉. (2.206)
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Then the KKT conditions δ Lagr(w) = 0 for w = p, y,u are, respectively,

Ay = f+ D−1
H u, (2.207a)

AT p = −D−1
Z RD−1

Z (y− y∗) (2.207b)

ωR−1u = D−1
H p. (2.207c)

The first system resulting from the variation with respect to the Lagrange multiplier
always recovers the original constraints (2.204) and will be referred to as the primal
system or the state equation. Accordingly, we call (2.207b) the adjoint or dual
system, or the costate equation. The third Eq. (2.207c) is sometimes denoted as the
design equation. AlthoughA is symmetric, we continue to write AT for the operator
of the adjoint system to distinguish it from the primal system.

The coupled system (2.207) later is to be solved. However, in order to derive
convergent iterations and deduce complexity estimates, a different formulation will
be advantageous. It is based on the fact that A is according to Proposition 3 a
boundedly invertible mapping on �2. Thus, we can formally invert (2.198) to obtain
y = A−1f+A−1D−1

H u. Substitution into (2.203) yields a functional depending only
on u,

J(u) := 1
2 ‖R1/2D−1

Z

(
A−1D−1

H u− (y∗ − A−1f)
)
‖2 + ω

2 ‖R−1/2u‖2. (2.208)

Employing the abbreviations

Z := R1/2D−1
Z A−1D−1

H , (2.209a)

G := −R1/2D−1
Z (A

−1f− y∗), (2.209b)

the functional simplifies to

J(u) = 1
2‖Zu−G‖2 + ω

2 ‖R−1/2u‖2. (2.210)

Proposition 5 ([53]) The functional J is twice differentiable with first and second
variation

δJ(u) = (ZTZ+ ωR−1)u− ZTG, δ2J(u) = ZTZ+ ωR−1. (2.211)

In particular, J is convex so that a unique minimizer exists.

Setting

Q := ZT Z+ ωR−1, g := ZTG, (2.212)
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the unique minimizer u of (2.210) is given by solving

δJ(u) = 0 (2.213)

or, equivalently, the system

Qu = g. (2.214)

By definition (2.212), Q is a symmetric positive definite (infinite) matrix. Hence,
finite versions of (2.214) could be solved by gradient or conjugate gradient iterative
schemes. As the convergence speed of any such iteration depends on the spectral
condition number of Q, it is important to note that the following result.

Proposition 6 The (infinite) matrix Q is uniformly bounded on �2, i.e., there exist
constants 0 < cQ ≤ CQ <∞ such that

cQ ‖v‖ ≤ ‖Qv‖ ≤ CQ ‖v‖, v ∈ �2. (2.215)

The proof follows from (2.46) and (2.196) [29]. Of course, in order to make
such iterative schemes for (2.214) practically feasible, the explicit inversion of A
in the definition of Q has to be avoided and replaced by an iterative solver in
turn. This is where the system (2.207) will come into play. In particular, the third
equation (2.207c) has the following interpretation which will turn out to be very
useful later.

Proposition 7 If we solve for a given control vector u successively (2.204) for y
and (2.207b) for p, then the residual for (2.214) attains the form

Qu− g = ωR−1u− D−1
U p. (2.216)

Proof Solving consecutively (2.204) and (2.207b) and recalling the definitions of
Z, g (2.209a), (2.212) we obtain

D−1
H p = −D−1

H (A
−TD−1

Z RD−1
Z (y− y∗))

= −ZTR1/2D−1
Z (A

−1f+ A−1D−1
H u− y∗)

= ZTG− ZTR1/2D−1
Z A−1D−1

H u

= g− ZT Zu.

Hence, the residual Qu− g attains the form

Qu− g = (ZTZ+ ωR−1)u− g = ωR−1u− D−1
H p,

where we have used the definition of Q from (2.212). �
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Having derived the optimality conditions (2.207), the next issue is their efficient
numerical solution. In view of the fact that the system (2.207) still involves infinite
matrices and vectors, this also raises the question how to derive computable finite
versions. By now we have investigated two scenarios.

The first version with respect to uniform discretizations is based on choosing
finite-dimensional subspaces of the function spaces under consideration. The second
version which deals with adaptive discretizations is actually based on the infinite
system (2.207). In both scenarios, a fully iterative numerical scheme for the solution
of (2.207) is designed along the following lines. The basic iteration scheme is a
gradient or conjugate gradient iteration for (2.214) as an outer iteration where each
application of Q is in turn realized by solving the primal and the dual system (2.204)
and (2.207b) also by a gradient or conjugate gradient method as inner iterations.

For uniform discretizations for which we wanted to test numerically the role of
equivalent norms and the influence of Riesz maps in the cost functional (2.203), we
have used in [12] as central iterative scheme the conjugate gradient (CG) method.
Since the interior systems are only solved up to discretization error accuracy, the
whole procedure may therefore be viewed as an inexact conjugate gradient (CG)
method. We stress already at this point that the iteration numbers of such a method
do not depend on the discretization level as finite versions of all involved operators
are also uniformly well-conditioned in the sense of (2.215). In each step of the outer
iteration, the error will be reduced by a fixed factor ρ. Combined with a nested
iteration strategy, it will be shown that this yields an asymptotically optimal method
in the amount of arithmetic operations.

Starting from the infinite coupled system (2.207), we have investigated in [29]
adaptive schemes which, given any prescribed accuracy ε > 0, solve (2.207) such
that the error for y,u,p is controlled by ε. Here we have used a gradient scheme as
basic iterative scheme since it somehow simplifies the analysis, see Sect. 2.6.2.

2.5.4 Control Problems: Dirichlet Boundary Control

Having derived a representation in wavelet coordinates for both the saddle point
problem from Sect. 2.3.3 and the PDE-constrained control problem in the previous
section, it is straightforward to find also an appropriate representation of the control
problem with Dirichlet boundary control introduced in Sect. 2.3.6. In order not to
be overburdened with notation, we specifically choose the control space on the
boundary as U := Q(= (H 1/2(Γ ))′). For the more general situation covered
by (2.84), a diagonal matrix with nondecreasing entries like in (2.195) would come
into play to switch between U and Q. Thus, the exact wavelet representation of
the constraints (2.83) is given by the system (2.190), where we exchange the given
Dirichlet boundary term g by u in the present situation to express the dependence
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on the control in the right hand side, i.e.,

L
(
y
p

)
:=

(
A BT

B 0

)(
y
p

)
=
(
f
u

)
. (2.217)

The derivation of a representer of the initial objective functional (2.82) is under
the embedding condition (2.84) ‖v‖Z <∼ ‖v‖Y for v ∈ Y now the same as in the
previous section, where all reference to the spaceH is to be exchanged by reference
to Y . We end up with the following minimization problem in wavelet coordinates
for the case of Dirichlet boundary control. (DCP) For given data D−1

Z y∗ ∈ �2(IIZ ),
f ∈ �2(IIY ), and weight parameter ω > 0, minimize the quadratic functional

J̌(y,u) := 1
2 ‖R1/2D−1

Z (y− y∗)‖2 + ω
2 ‖R−1/2u‖2 (2.218)

over (y,u) ∈ �2(IIY )× �2(IIY ) subject to the linear constraints (2.217),

L
(
y
p

)
=
(
f
u

)
.

The corresponding Karush-Kuhn-Tucker conditions can be derived by the same
variational principles as in the previous section by defining a Lagrangian in terms
of the functional J̌(y,u) and appending the constraints (2.198) with the help of
additional Lagrange multipliers (z,μ)T , see [53]. We obtain in this case a system of
coupled saddle point problems

L
(
y
p

)
=
(
f
u

)
(2.219a)

LT
(
z
μ

)
=
(−ωD−1

Z RD−1
Z (y− y∗)
0

)
(2.219b)

u = μ. (2.219c)

Again, the first system appearing here, the primal system, are just the con-
straints (2.198) while (2.95) will be referred to as the dual or adjoint system.
The specific form of the right hand side of the dual system emerges from the
particular formulation of the minimization functional (2.218). The (here trivial)
equation (2.219c) stems from measuring u just in �2, representing measuring the
control in its natural trace norm. Instead of replacing μ by u in (2.95) and trying to
solve the resulting equations, (2.219c) will be essential to devise an inexact gradient
scheme. In fact, since L in (2.198) is an invertible operator, we can rewrite J̌(y,u)
by formally inverting (2.198) as a functional of u, that is, J(u) := J̌(y(u),u) as
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above. The following result will be very useful for the design of the outer–inner
iterative solvers

Proposition 8 The first variation of J satisfies

δJ(u) = u− μ, (2.220)

where (u,μ) are part of the solution of (2.219). Moreover, J is convex so that a
unique minimizer exists.

Hence, Eq. (2.219c) is just δJ(u) = 0. For a unified treatment below of both
control problems considered in these notes, it will be useful to rewrite (2.219c)
like in (2.214) as a condensed equation for the control u alone. We formally
invert (2.217) and (2.219b) and obtain

Qu = g (2.221)

with the abbreviations

Q := ZT Z+ ωI, g := ZT (y∗ − T�L−1I�f) (2.222)

and

Z := T�L−1I�, I� :=
(
0
I

)
, T� := (T 0). (2.223)

Proposition 9 The vector u as part of the solution vector (y,p, z,μ,u) of (2.219)
coincides with the unique solution u of the condensed equations (2.221).

2.6 Iterative Solution

Each of the four problem classes discussed above lead to the problem to finally solve
a system

δJ(q) = 0 (2.224)

or, equivalently, a linear system

Mq = b, (2.225)

where M : �2 → �2 is a (possibly infinite) symmetric positive definite matrix
satisfying

cM‖v‖ ≤ ‖Mv‖ ≤ CM‖v‖, v ∈ �2, (2.226)
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for some constants 0 < cM ≤ CM <∞ and where b ∈ �2 is some given right hand
side.

A simple gradient method for solving (2.224) is

qk+1 := qk − α δJ(qk), k = 0, 1, 2, . . . (2.227)

with some initial guess q0. In all of the previously considered situations, it has been
asserted that there exists a fixed parameter α, depending on bounds for the second
variation of J, such that (2.227) converges and reduces the error in each step by at
least a fixed factor ρ < 1, i.e.,

‖q− qk+1‖ ≤ ρ‖q− qk‖, k = 0, 1, 2, . . . , (2.228)

where ρ is determined by

ρ := ‖I− αM‖ < 1.

Hence, the scheme (2.227) is a convergent iteration for the possibly infinite
system (2.225). Next we will need to discuss how to reduce the infinite systems
to computable finite versions.

2.6.1 Finite Systems on Uniform Grids

Let us first consider finite-dimensional trial spaces with respect to uniform dis-
cretizations. For each of the Hilbert spaces H , this means in the wavelet setting
to pick the index set of all indices up to some highest refinement level J , i.e.,

IIJ,H := {λ ∈ IIH : |λ| ≤ J } ⊂ IIH
satisfying NJ,H := #IIJ,H < ∞. The representation of operators is then built as in
Sect. 2.4.3 with respect to this truncated index set which corresponds to deleting all
rows and columns that refer to indices λ such that |λ| > J , and correspondingly for
functions. There is by construction also a coarsest level of resolution denoted by j0.

Computationally the representation of operators according to (2.111) is in the
case of uniform grids always realized as follows. First, the operator is set up in terms
of the generator basis on the finest level J . This generator basis simply consists of
tensor products of B-Splines, or linear combinations of these near the boundaries.
The representation of an operator in the wavelet basis is then achieved by applying
the Fast Wavelet Transform (FWT) which needs O(NJ,H ) arithmetic operations and
is therefore asymptotically optimal, see, e.g., [24, 34, 51] and Sect. 2.4.4.
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In order not to overburden the notation, let in this subsection the resulting system
for N = NJ,H unknowns again be denoted by

Mq = b, (2.229)

where now M : RN → R
N is a symmetric positive definite matrix satisfying (2.226)

on R
N . It will be convenient to abbreviate the residual using an approximation q̃ to

q for (2.229) as

RESD(q̃) :=Mq̃− b. (2.230)

We will employ a basic conjugate gradient method that iteratively computes an
approximate solution qK to (2.229) with given initial vector q0 and given tolerance
ε > 0 such that

‖MqK − b‖ = ‖RESD(qK)‖ ≤ ε, (2.231)

where K denotes the number of iterations used. Later we specify ε depending on
the discretization for which (2.229) is set up. The following scheme CG contains a
routine APP(ηk,M,dk) which in view of the problem classes discussed above is to
have the property that it approximately computes the product Mdk up to a tolerance
ηk = ηk(ε) depending on ε, i.e., the output mk of APP(ηk,M,dk) satisfies

‖mk −Mdk‖ ≤ ηk. (2.232)

For the cases where M = A, this is simply the matrix-vector multiplication Mdk .
For the situations where M may involve the solution of an additional system, this
multiplication will be only approximative. The routine is as follows.
CG [ε,q0,M,b] → qK

(I) SET d0 := b−Mq0 AND r0 := −d0. LET k = 0.
(II) WHILE ‖rk‖ > ε

mk := APP(ηk(ε),M,dk)

αk := (rk)T rk
(dk)Tmk

qk+1 := qk + αkdk

rk+1 := rk + αkmk βk := (rk+1)
T rk+1

(rk)T rk

dk+1 := −rk+1 + βkdk
k := k + 1

(2.233)

(III) SET K := k − 1.
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Let us briefly discuss in the case M = A that the final iterate qK indeed
satisfies (2.231). From the newly computed iterate qk+1 = qk + αkdk it follows
by applying M on both sides that Mqk+1 − b = Mqk − b + αkMdk which is the
same as RESD(qk+1) = RESD(qk)+αkMdk . By the initialization for rk used above,
this in turn is the updating term for rk, hence, rk = RESD(qk). After the stopping
criterion based on rk is met, the final iterate qK observes (2.231).

The routine CG computes the residual up to the stopping criterion ε. From the
residual, we can in view of (2.226) estimate the error in the solution as

‖q− qK‖ = ‖M−1(b−MqK)‖ ≤ ‖M−1‖ ‖RESD(qK)‖ ≤ ε

cM
, (2.234)

that is, it may deviate from the norm of the residual from a factor proportional to the
smallest eigenvalue of M.

Distributed Control Let us now apply the solution scheme to the situation
from Sect. 2.5.3 where Q now involves the inversion of finite-dimensional sys-
tems (2.207a) and (2.207b). The material in the remainder of this subsection is
essentially contained in [12].

We begin with a specification of the approximate computation of the right hand
side b which also contains applications of A−1.
RHS [ζ,A, f, y∗] → bζ

(I) CG [ cA2C
cA
C2C2

0
ζ, 0,A, f] → b1

(II) CG [ cA2C ζ, 0,A
T ,−D−1

Z RD−1
Z (b1 − y∗)] → b2

(III) bζ := D−1
H b2.

The tolerances used within the two conjugate gradient methods depend on
the constants cA, C,C0 from (2.46), (2.196) and (2.104), respectively. Since the
additional factor cA(CC0)

−2 in the stopping criterion in step (I) in comparison to
step (II) is in general smaller than one, this means that the primal system needs to
be solved more accurately than the adjoint system in step (II).

Proposition 10 The result bζ of RHS [ζ,A, f, y∗] satisfies

‖bζ − b‖ ≤ ζ. (2.235)

Proof Recalling the definition (2.212) of b, step (III) and step (II) yield

‖bζ − b‖ ≤ ‖D−1
H ‖ ‖b2 − DHb‖

≤ C‖A−T ‖ ‖AT b2 − D−1
Z RD−1

Z (A
−1f− b1 + b1 − y∗)‖

≤ C

cA

( cA
2C
ζ + ‖D−1

Z RD−1
Z (A

−1f− b1)‖
)
.

(2.236)
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Employing the upper bounds for D−1
Z and R, we arrive at

‖bζ − b‖ ≤ C

cA

( cA
2C
ζ + C2C2

0 ‖A−1‖ ‖f− Ab1‖
)

≤ C

cA

(
cA

2C
ζ + C

2C2
0

cA

cA

2C

cA

C2C2
0

ζ

)
= ζ.

(2.237)

�
Accordingly, an approximation mη to the matrix-vector product Qd is the output

of the following routine APP.
APP [η,Q,d] → mη

(I) CG [ cA3C
cA
C2C2

0
η, 0,A, f+ D−1

H d] → yη

(II) CG [ cA3C η, 0,A
T ,−D−1

Z RD−1
Z (yη − y∗)] → pη

(III) mη := gη/3 + ωR−1d− D−1
H pη.

The choice of the tolerances for the interior application of CG in steps (i) and (ii)
will become clear from the following result.

Proposition 11 The result mη of APP[η,Q,d] satisfies

‖mη −Qd‖ ≤ η. (2.238)

Proof Denote by yd the exact solution of (2.207a) with d in place of u on the right
hand side, and by pd the exact solution of (2.207b) with yd on the right hand side.
Then we deduce from step (iii) and (2.216) combined with (2.104) and (2.196)

‖mη −Qd‖ = ‖gη/3 − g+ ωR−1d− D−1
U pη − (Qd− g)‖

≤ 1

3
η + ‖ωR−1d− D−1

U pη − (ωR−1d− D−1
U pd)‖

≤ 1

3
η + C‖pd − pη‖.

(2.239)

Denote by p̂ the exact solution of (2.207b) with yη on the right hand side. Then we
have pd− p̂ = −A−TD−1

Z RD−1
Z (yd− yη). It follows by (2.46), (2.104) and (2.196)

that

‖pd − p̂‖ ≤ C
2C2

0

cA
‖yd − yη‖ ≤ 1

3C
η, (2.240)

where the last estimate follows by the choice of the threshold in step (i). Finally, the
combination (2.239) and (2.240) together with (2.235) and the stopping criterion in



144 A. Kunoth

step (ii) readily confirms that

‖mη −Qd‖ ≤ 1

3
η + C (‖pd − p̂‖ + ‖p̂− pη‖

)
≤ 1

3
η + C

(
1

3C
η + 1

3C
η

)
= η. �

The effect of perturbed applications of M in CG and more general Krylov
subspace schemes with respect to convergence has been investigated in a numerical
linear algebra context for a given linear system (2.229) in several papers, see,
e.g., [70]. Here we have chosen the ηi to be proportional to the outer accuracy ε
incorporating a safety factor accounting for the values of βi and ‖ri‖.

Finally, we can formulate a full nested iteration strategy for finite systems (2.207)
on uniform grids which employs outer and inner CG routines as follows. The
scheme starts at the coarsest level of resolution j0 with some initial guess uj00 and
successively solves (2.214) with respect to each level j until the norm of the current
residual is below the discretization error on that level.

In wavelet coordinates, ‖ · ‖ corresponds to the energy norm. If we employ
as in [12] on the primal side for approximation linear combinations of B-splines
of order d (degree d − 1, see Sect. 2.2.1), the discretization error is for smooth
solutions expected to be proportional to 2−(d−1)j (compare (2.15)). Then the
refinement level is successively increased until on the finest level J a prescribed
tolerance proportional to the discretization error 2−(d−1)J is met. In the following,
superscripts on vectors denote the refinement level on which this term is computed.
The given data yj∗, fj are supposed to be accessible on all levels. On the coarsest
level, the solution of (2.214) is computed exactly up to double precision by QR
decomposition. Subsequently, the results from level j are prolongated onto the next
higher level j + 1. Using wavelets, this is accomplished by simply adding zeros:
wavelet coordinates have the character of differences, this prolongation corresponds
to the exact representation in higher resolution wavelet coordinates. The resulting
Nested-Iteration-Incomplete-Conjugate-Gradient Algorithm is the following.
NEICG [J ] → uJ

(I) INITIALIZATION FOR COARSEST LEVEL j := j0
(1) COMPUTE RIGHT HAND SIDE gj0 = (ZTG)j0 BY QR DECOMPOSITION

USING (2.209).
(2) COMPUTE SOLUTION uj0 OF (2.214) BY QR DECOMPOSITION.

(II) WHILE j < J

(1) PROLONGATE uj → uj+1
0 BY ADDING ZEROS, SET j := j + 1.

(2) COMPUTE RIGHT HAND SIDE USING RHS [2−(d−1)j ,A, fj , yj∗] → gj .
(3) COMPUTE SOLUTION OF (2.214) USING CG [2−(d−1)j ,uj0,Q, g

j ] → uj .
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Recall that step (II.3) requires multiple calls of APP[η,Q,d], which in turn invokes
both CG[. . . ,A, . . .] as well as CG[. . . ,AT , . . .] in each application.

On account of (2.46) and (2.215), finite versions of the system matrices A
and Q have uniformly bounded condition numbers, entailing that each CG routine
employed in the process reduces the error by a fixed rate ρ < 1 in each iteration
step. Let NJ ∼ 2nJ be the total number of unknowns (for yJ ,uJ and pJ ) on the
highest level J . Employing the CG method only on the highest level, one needs
O(J ) = O(log ε) iterations to achieve the prescribed discretization error accuracy
εJ = 2−(d−1)J . As each application of A and Q requires O(NJ ) operations, the
solution of (2.214) by CG only on the finest level requires O(J NJ ) arithmetic
operations.

Theorem 7 ([12]) If the residual (2.216) is computed up to discretization error
proportional to 2−(d−1)j on each level j and the corresponding solutions are taken
as initial guesses for the next higher level, NEICG is an asymptotically optimal
method in the sense that it provides the solution uJ up to discretization error on
level J in an overall amount of O(NJ ) arithmetic operations.

Proof In the above notation, nested iteration allows one to get rid of the factor J
in the total amount of operations. Starting with the exact solution on the coarsest
level j0, in view of the uniformly bounded condition numbers of A and Q, one
needs only a fixed amount of iterations to reduce the error up to discretization error
accuracy εj = 2−(d−1)j on each subsequent level j , taking the solution from the
previous level as initial guess. Thus, on each level, one needs O(Nj ) operations to
realize discretization error accuracy. Since the spaces are nested and the number of
unknowns on each level grows like Nj ∼ 2nj , by a geometric series argument the
total number of arithmetic operations stays proportional to O(NJ ). �
Numerical Examples As an illustration of the ingredients for a distributed control
problem, we consider the following example taken from [12] with the Helmholtz
operator in (2.39) (a = I , c = 1) and homogeneous Dirichlet boundary condition.
A non-constant right hand side f (x) := 1+ 2.3 exp(−15|x− 1

2 |) is chosen, and the
target state is set to a constant y∗ ≡ 1. We first investigate the role the different
norms ‖ · ‖Z and ‖ · ‖U in (2.74), encoded in the diagonal matrices DZ ,DH
from (2.195), have on the solution. We see in Fig. 2.3 for the choice U = L2
and Z = Hs(0, 1) for different values of s varying between 0 and 1 the solution
y (left) and the corresponding control u (right) for fixed weight ω = 1. As s is
increased, a stronger tendency of y towards the prescribed state y∗ ≡ 1 can be
observed which is, however, deterred from reaching this state by the homogeneous
boundary conditions. Extensive studies of this type can be found in [11, 12].

As an example displaying the performance of the proposed fully iterative scheme
NEICG in two spatial dimensions, Table 2.6 from [12] is included. This is an
example of a control problem for the Helmholtz operator with Neumann boundary
conditions. The stopping criterion for the outer iteration (relative to ‖ · ‖ which
corresponds to the energy norm) on level j is chosen to be proportional to 2−j .
The second column displays the final value of the residual of the outer CG scheme
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Fig. 2.3 Distributed control problem for elliptic problem with Dirichlet boundary conditions, a
peak as right hand side f , y∗ ≡ 1, ω = 0, U = L2 and varying Z = Hs(0, 1)

Table 2.6 Iteration history for a two-dimensional distributed control problem with Neumann
boundary conditions, ω = 1, Z = H 1(Ω), U = (H 0.5(Ω))′

j ‖rjK‖ #O #E #A #R ‖R(yJ )−yj‖ ‖yJ−P (yj )‖ ‖R(uJ )−uj ‖ ‖uJ−P (uj )‖
3 6.86e−03 1.48e−02 1.27e−04 4.38e−04

4 1.79e−05 5 12 5 8 2.29e−03 7.84e−03 4.77e−05 3.55e−04

5 1.98e−05 5 14 6 9 6.59e−04 3.94e−03 1.03e−05 2.68e−04

6 4.92e−06 7 13 5 9 1.74e−04 1.96e−03 2.86e−06 1.94e−04

7 3.35e−06 7 12 5 9 4.55e−05 9.73e−04 9.65e−07 1.35e−04

8 2.42e−06 7 11 5 10 1.25e−05 4.74e−04 7.59e−07 8.88e−05

9 1.20e−06 8 11 5 10 4.55e−06 2.12e−04 4.33e−07 5.14e−05

10 4.68e−07 9 10 5 9 3.02e−06 3.02e−06 2.91e−07 2.91e−07

on this level, i.e., ‖rjK‖ = ‖RESD(ujK)‖. The next three columns show the number
of outer CG iterations (#O) for Q according to the APP scheme followed by the
maximum number of inner iterations for the primal system (#E), the adjoint system
(#A) and the design equation (#R). We see very well the effect of the uniformly
bounded condition numbers of the involved operators. The last columns display
different versions of the actual error in the state y and the control u when compared
to the fine grid solution (R denotes restriction of the fine grid solution to the actual
grid, and P prolongation). Here we can see the effect of the constants appearing
in (2.234), that is, the error is very well controlled via the residual. More results for
up to three spatial dimensions can be found in [11, 12].

Dirichlet Boundary Control For the system of saddle point problems (2.219)
arising from the control problem with Dirichlet boundary control in Sect. 2.3.6, also
a fully iterative algorithm NEICG can be designed along the above lines. Again the
design equation (2.219c) for u serves as the equation for which a basic iterative
scheme (2.227) can be posed. Of course, the CG method for A then has to be
replaced by a convergent iterative scheme for saddle point operators L like Uzawa’s
algorithm. Also the discretization has to be chosen such that the LBB condition is
satisfied, see Sect. 2.5.2. Details can be found in [53]. Alternatively, since L has
a uniformly bounded condition number, the CG scheme can, in principle, also be
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Fig. 2.4 State y of the Dirichlet boundary control problem using the objective functional
J (y, u) = 1

2‖y − y∗‖2
Hs(Γy )

+ 1
2‖u‖2

H 1/2(Γ )
for s = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9 (from bottom

to top) on resolution level J = 5

applied to LTL. The performance of wavelet schemes on uniform grids for such
systems of saddle point problems arising from optimal control is currently under
investigation [62].

Numerical Example For illustration of the choice of different norms for the
Dirichlet boundary control problem, consider the following example taken from
[62]. Here we actually have the situation of controlling the system through the
control boundary Γ on the right hand side of Fig. 2.4 while a prescribed state
y∗ ≡ 1 on the observation boundary Γy opposite the control boundary is to be
achieved. The right hand side is chosen as constant f ≡ 1, and ω = 1. Each layer
in Fig. 2.4 corresponds to the state y for different values of s when the observation
term is measured in Hs(Γy), that is, the objective functional (2.82) contains a term
‖y − y∗‖2

Hs(Γy)
for s = 1/10, 2/10, 3/10, 4/10, 5/10, 7/10, 9/10 from bottom to

top. We see that as the smoothness index s for the observation increases, the state
moves towards the target state at the observation boundary.

2.6.2 Adaptive Schemes

In case of the appearance of singularities caused by the data or the domain, a
prescribed accuracy may require discretizations with respect to uniform grids to
spend a large amount of degrees of freedom in areas where the solution is actually
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smooth. Hence, although the above numerical scheme NEICG is of optimal linear
complexity, the degrees of freedom are not implanted in an optimal way. In these
situations, one expects adaptive schemes to work favourably which judiciously place
degrees of freedom where singularities occur. Thus, the guiding line for adaptive
schemes is to reduce the total amount of degrees of freedom when compared to
discretizations on a uniform grid. This does not mean that the previous investigations
with respect to uniform discretizations are dispensable. In fact, the above results
on conditioning carry over to the adaptive case, the solvers are still linear in
the amount of arithmetic operations and, in particular, one expects to recover the
uniform situation when the solutions are smooth. Much on adaptivity for variational
problems and the relation to nonlinear approximation can be found in [26].

The starting point for adaptive wavelet schemes systematically derived for
variational problems in [19–21] is the infinite formulation in wavelet coordinates
as derived for the different problem classes in Sect. 2.5. These algorithms have been
proven to be optimal in the sense that they match the optimal work/ accuracy rate
of the wavelet-best N-term approximation, a concept which has been introduced
in [19]. The schemes start out with formulating algorithmic ingredients which are
then step by step reduced to computable quantities. We follow in this section the
material for the distributed control problem from [29]. An extension to Dirichlet
control problem involving saddle point problems can be found in [54]. It should be
pointed out that the theory is neither confined to symmetric A nor to the positive
definite case.

Algorithmic Ingredients We start out again with a very simple iterative scheme
for the design equation. In view of (2.215) and the fact that Q is positive definite,
there exists a fixed positive parameter α such that in the Richardson iteration (which
is a special case of a gradient method)

uk+1 = uk + α(g −Quk) (2.241)

the error is reduced in each step by at least a factor

ρ := ‖I− αQ‖ < 1, (2.242)

‖u− uk+1‖ ≤ ρ ‖u− uk‖, k = 0, 1, 2, . . . , (2.243)

where u is the exact solution of (2.214). As the involved system is still infinite, we
aim at carrying out this iteration approximately with dynamically updated accuracy
tolerances.

The central idea of the wavelet-based adaptive schemes is to start from the
infinite system in wavelet coordinates (2.207) and step by step reduce the routines
to computable versions of applying the infinite matrix Q and the evaluation of the
right hand side g of (2.214) involving the inversion of A. The main conceptual tools
from [19–21] are the following.
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We first assume that we have a routine at our disposal with the following property.
Later it will be shown how to realize this routine in the concrete case.
RES [η,Q, g, v] → rη DETERMINES FOR A GIVEN TOLERANCE η > 0 A

FINITELY SUPPORTED SEQUENCE rη SATISFYING

‖g−Qv− rη‖ ≤ η. (2.244)

The schemes considered below will also contain the following routine.
COARSE [η,w] → wη DETERMINES FOR ANY FINITELY SUPPORTED INPUT

VECTOR w A VECTOR wη WITH SMALLEST POSSIBLE SUPPORT SUCH THAT

‖w− wη‖ ≤ η. (2.245)

This ingredient will eventually play a crucial role in controlling the complexity of
the scheme although its role is not yet apparent at this stage. A detailed description
of COARSE can be found in [19]. The basic idea is to first sort the entries of w by
size. Then one subtracts squares of their moduli until the sum reaches η2, starting
from the smallest entry. A quasi-sorting based on binary binning can be shown to
avoid the logarithmic term in the sorting procedure at the expense of the resulting
support size being at most a fixed constant of the minimal size, see [4].

Next a perturbed iteration is designed which converges in the following sense:
for every target accuracy ε, the scheme produces after finitely many steps a finitely
supported approximate solution with accuracy ε. To obtain a correctly balanced
interplay between the routines RES and COARSE, we need the following control
parameter. Given (an estimate of) the reduction rate ρ and the step size parameter α
from (2.242), let K denote the minimal integer � for which ρ�−1(α�+ ρ) ≤ 1

10 .

Denoting in the following always by u the exact solution of (2.214), a perturbed
version of (2.241) for a fixed target accuracy ε > 0 is the following.
SOLVE [ε,Q, g,q0, ε0] → qε

(I) GIVEN AN INITIAL GUESS q0 AND AN ERROR BOUND ‖q − q0‖ ≤ ε0; SET

j = 0.
(II) IF εj ≤ ε, STOP AND SET qε := qj . OTHERWISE SET v0 := qj .

(II.1) FOR k = 0, . . . ,K − 1 COMPUTE RES [ρkεj ,Q, g, vk] → rk AND

vk+1 := vk + αrk. (2.246)

(II.2) APPLY COARSE [ 2
5εj , v

K ] → qj+1; SET εj+1 := 1
2εj , j + 1 → j AND

GO TO (II).

In the case that no particular initial guess is known, we initialize q0 = 0, set ε0 :=
c−1
Q ‖g‖ and briefly write then SOLVE [ε,Q, g] → qε.

In a straightforward manner, perturbation arguments yield the convergence of
this algorithm [20, 21].
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Proposition 12 The iterates qj generated by SOLVE [ε,Q, g] satisfy

‖q− qj‖ ≤ εj for any j ≥ 0, (2.247)

where εj = 2−j ε0.

In order to derive appropriate numerical realizations of SOLVE, recall that (2.214)
is equivalent to the KKT conditions (2.207). Although the matrix A is always
assumed to be symmetric here, the distinction between the system matrices for the
primal and the dual system, A and AT , may be helpful.

The strategy for approximating in each step the residual g − Quk , that is,
realization of the routine RES for the problem (2.214), is based upon the result stated
in Proposition 7. In turn, this requires solving the two auxiliary systems in (2.207).
Since the residual only has to be approximated, these systems will have to be solved
only approximately. These approximate solutions, in turn, will be provided again by
employing SOLVE but this time with respect to suitable residual schemes tailored
to the systems in (2.207). In our special case, the matrix A is symmetric positive
definite, and the choice of wavelet bases ensures the validity of (2.46). Thus, (2.242)
holds for A and AT so that the scheme SOLVE can indeed be invoked. Although we
conceptually use the fact that a gradient iteration for the reduced problem (2.214)
reduces the error for u in each step by a fixed amount, employing (2.207) for the
evaluation of the residuals will generate as byproducts approximate solutions to
the exact solution triple (y,p,u) of (2.207). Under this hypothesis, we formulate
next the ingredients for suitable versions SOLVEPRM and SOLVEADJ of SOLVE for the
systems in (2.207). Specifically, this requires identifying residual routines RESPRM

and RESADJ for the systems SOLVEPRM and SOLVEADJ. The main task in both cases is
to apply the operators A,AT , D−1

H and R1/2D−1
Z . Again we assume for the moment

that routines for the application of these operators are available, i.e., that for any
L ∈ {A,AT ,D−1

H ,R
1/2D−1

Z } we have a scheme at our disposal with the following
property.
APPLY [η,L, v] → wη DETERMINES FOR ANY FINITELY SUPPORTED INPUT

VECTOR v AND ANY TOLERANCE η > 0 A FINITELY SUPPORTED OUTPUT wη
WHICH SATISFIES

‖Lv− wη‖ ≤ η. (2.248)

The scheme SOLVEPRM for the first system in (2.207) is then defined by

SOLVEPRM [η,A,D−1
H , f, v, y

0, ε0] := SOLVE [η,A, f+ D−1
H v, y0, ε0],

where y0 is an initial guess for the solution y of Ay = f + D−1
H v with accuracy ε0.

The scheme RES for Step (II) in SOLVE is in this case realized by a new routine
RESPRM defined as follows.
RESPRM [η,A,D−1

H , f, v, y] → rη DETERMINES FOR ANY POSITIVE TOLERANCE

η, A GIVEN FINITELY SUPPORTED v AND ANY FINITELY SUPPORTED INPUT y A
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FINITELY SUPPORTED APPROXIMATE RESIDUAL rη SATISFYING (2.244),

‖f+ D−1
H v− Ay− rη‖ ≤ η, (2.249)

AS FOLLOWS:

(I) APPLY [ 1
3η,A, y] → wη;

(II) COARSE [ 1
3η, f] → fη;

(III) APPLY [ 1
3η,D

−1
H , v] → zη;

(IV) set rη := fη + zη − wη.

By triangle inequality, one can for RESPRM and the subsequent variants of RES show
that indeed (2.249) or (2.244) holds.

Similarly, one needs a version of SOLVE for the approximate solution of the
second system (2.207b), AT p = −D−1

Z RD−1
Z (y − y∗), which depends on an

approximate solution y of the primal system and possibly on some initial guess
p0 with accuracy ε0. Here we set

SOLVEADJ [η,A,D−1
Z , y∗, y,p

0, ε0] := SOLVE [η,AT,D−1
Z RD−1

Z (y− y),p0, ε0].

As usual we assume that the data f, y∗ are approximated in a preprocessing step with
sufficient accuracy. A suitable residual approximation scheme RESADJ for Step (II)
of this version of SOLVE is the following where the main issue is the approximate
evaluation of the right hand side.
RESADJ [η,A,D−1

Z , y∗, y,p] → rη DETERMINES FOR ANY POSITIVE TOLERANCE

η, GIVEN FINITELY SUPPORTED DATA y, y∗ AND ANY FINITELY SUPPORTED

INPUT p AN APPROXIMATE RESIDUAL rη SATISFYING (2.244), I.E.,

‖ − D−1
Z RD−1

Z (y− y∗)− AT p− rη‖ ≤ η, (2.250)

AS FOLLOWS:

(i) APPLY [ 1
3η,A

T ,p] → wη;
(ii) APPLY [ 1

6 η,D
−1
Z , y] → zη; COARSE [ 1

6 η, y∗] → (y∗)η;
SET dη := (yZ)η − zη;
APPLY [ 1

6η,D
−1
Z ,dη] → v̂η; APPLY [ 1

6η,R, v̂η] → vη;
(iii) SET rη := vη − wη.

Finally, we can define the residual scheme for the version of SOLVE applied
to (2.214). We shall refer to this specification as SOLVEDCP with corresponding
residual scheme is RESDCP. Since the scheme is based on Proposition 7, it will involve
several parameters stemming from the auxiliary systems (2.207).
RESDCP [η,Q, g, ỹ, δy, p̃, δp, v, δv] → (rη, ỹ, δy, p̃, δp) DETERMINES FOR ANY

APPROXIMATE SOLUTION TRIPLE (ỹ, p̃, v) OF THE SYSTEM (2.207) SATISFYING

‖y− ỹ‖ ≤ δy, ‖p− p̃‖ ≤ δp, ‖u− v‖ ≤ δv, (2.251)
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AN APPROXIMATE RESIDUAL rη SUCH THAT

‖g−Qv− rη‖ ≤ η. (2.252)

MOREOVER, THE INITIAL APPROXIMATIONS ỹ, p̃ ARE OVERWRITTEN BY NEW

APPROXIMATIONS ỹ, p̃ SATISFYING (2.251) WITH NEW BOUNDS δy AND δp
DEFINED IN (2.253) BELOW, AS FOLLOWS:

(I) SOLVEPRM [ 1
3cA η,A,D

−1
H , f, v, ỹ, δy] → yη;

(II) SOLVEADJ [ 1
3η,A,D

−1
Z , y∗, yη, p̃, δp] → pη;

(III) APPLY [ 1
3η,D

−1
H ,pη] → qη; SET rη := qη − ωv;

(IV) SET ξy := c−1
A δv + 1

3cAη, ξp := c−2
A δv + 2

3η; REPLACE ỹ, δy AND p̃, δp BY

ỹ := COARSE[4ξy, yη], δy := 5 ξy,
p̃ := COARSE[4ξp,pη], δp := 5 ξp.

(2.253)

Step (IV) already indicates the conditions on the tolerance η and the accuracy bound
δv under which the new error bounds in (2.253) are actually tighter. The precise
relation between η and δv in the context of SOLVEDCP is not apparent yet and emerges
as well as the claimed estimates (2.252) and (2.253) from the complexity analysis
in [29].

Finally, the scheme SOLVEDCP attains the following form with the error reduction
factor ρ from (2.242) and α from (2.241).
SOLVEDCP [ε,Q, g] → uε

(I) LET q0 := 0 AND ε0 := c−1
A (‖yZ‖ + c−1

A ‖f‖).
Let ỹ := 0, p̃ := 0 AND SET j = 0.
DEFINE δy := δy,0 := c−1

A (‖f‖ + ε0) AND δp := δp,0 := c−1
A (δy,0 + ‖yZ‖).

(II) IF εj ≤ ε, STOP AND SET uε := uj , yε = ỹ, pε = p̃.
OTHERWISE SET v0 := uj .

(II.1) FOR k = 0, . . . ,K − 1, COMPUTE

RESDCP [ρkεj ,Q, g, ỹ, δy, p̃, δp, vk, δk] → (rk, ỹ, δy, p̃, δp),
WHERE δ0 := εj and δk := ρk−1(αk + ρ)εj ;
SET

vk+1 := vk + αrk. (2.254)

(II.2) COARSE [ 2
5εj , v

K ] → uj+1; set εj+1 := 1
2εj , j + 1 → j and go to (ii).

By overwriting ỹ, p̃ at the last stage prior to the termination of SOLVEDCP one has
δv ≤ ε, η ≤ ε, so that the following fact is an immediate consequence of (2.253).

Proposition 13 The outputs yε and pε produced by SOLVEDCP in addition to uε are
approximations to the exact solutions y,p of (2.207) satisfying

‖y − yε‖ ≤ 5ε (c−1
A + 1

3cA), ‖p− pε‖ ≤ 5ε (c−2
A + 2

3 ).
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Complexity Analysis Proposition 12 states that the routine SOLVE converges for
an arbitrary given accuracy provided that there is a routine RES satisfying the
property (2.244). Then we have broken down step by step the necessary ingredients
to derive computable versions which satisfy these requirements. What we finally
want to show is that the routines are optimal in the sense that they provide the
optimal work/accuracy rate in terms of best N-term approximation. The complexity
analysis given next also reveals the role of the routine COARSE within the algorithms
and the particular choices of the thresholds in Step (IV) of RESDCP.

In order to be able to assess the quality of the adaptive algorithm, the notion of
optimality has to be clarified first in the present context.

Definition 1 The scheme SOLVE has an optimal work/accuracy rate s if the
following holds: Whenever the error of best N-term approximation satisfies

‖q− qN‖ := min
#suppv≤N ‖q− v‖ <∼ N−s ,

then the solution qε is generated by SOLVE at an expense that also stays proportional
to ε−1/s and in that sense matches the best N-term approximation rate.

Note that this implies that #suppqε also stays proportional to ε−1/s . Thus, our
benchmark is that whenever the solution of (2.214) can be approximated byN terms
at rate s, SOLVE recovers that rate asymptotically. If q is known, the wavelet-bestN-
term approximationqN of q is given by picking theN largest terms in modulus from
q, of course. However, when q is the (unknown) solution of (2.214) this information
is certainly not available.

Since we are here in the framework of sequence spaces �2, the formulation of
appropriate criteria for complexity will be based on a characterization of sequences
which are sparse in the following sense. We consider sequences v for which the best
N-term approximation error decays at a particular rate (Lorentz spaces). That is, for
any given threshold 0 < η ≤ 1, the number of terms exceeding that threshold is
controlled by some function of this threshold. In particular, set for some 0 < τ < 2

�wτ := {v ∈ �2 : #{λ ∈ II : |vλ| > η} ≤ Cv η
−τ , for all 0 < η ≤ 1}. (2.255)

This determines a strict subspace of �2 only when τ < 2. Smaller τ ’s indicate
sparser sequences. Let Cv for a given v ∈ �wτ be the smallest constant for

which (2.255) holds. Then one has |v|�wτ := supn∈N n1/τ v∗n = C
1/τ
v ,where

v∗ = (v∗n)n∈N is a non-decreasing rearrangement of v. Furthermore, ‖v‖�wτ :=
‖v‖+ |v|�wτ is a quasi-norm for �wτ . Since the continuous embeddings �τ ↪→ �wτ ↪→
�τ+ε ↪→ �2 hold for τ < τ + ε < 2, �wτ is ‘close’ to �τ and is therefore called
weak �τ . The following crucial result connects sequences in �wτ to best N-term
approximation [19].
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Proposition 14 Let positive real numbers s and τ be related by

1

τ
= s + 1

2
. (2.256)

Then v ∈ �wτ if and only if ‖v − vN‖ <∼ N−s ‖v‖�wτ .
The property that an array of wavelet coefficients v belongs to �τ is equivalent

to the fact that the expansion vT ΨH in terms of a wavelet basis ΨH for a Hilbert
spaceH belongs to a certain Besov space which describes a much weaker regularity
measure than a Sobolev space of corresponding order, see, e.g., [16, 39]. Thus,
Proposition 14 expresses how much loss of regularity can be compensated by
judiciously placing the degrees of freedom in a nonlinear way in order to retain
a certain optimal order of error decay.

A key criterion for a scheme SOLVE to exhibit an optimal work/accuracy
rate can be formulated through the following property of the respective residual
approximation. The routine RES is called τ ∗-sparse for some 0 < τ ∗ < 2 if
the following holds: Whenever the solution q of (2.214) belongs to �wτ for some
τ ∗ < τ < 2, then for any v with finite support the output rη of RES [η,Q, g, v]
satisfies

‖rη‖�wτ <∼ max{‖v‖�wτ , ‖q‖�wτ }

and

#supprη <∼ η−1/s max{‖v‖1/s
�wτ
, ‖q‖1/s

�wτ
}

where s and τ are related by (2.256), and the number of floating point operations
needed to compute rη stays proportional to #supprη.

The analysis in [20] then yields the following result.

Theorem 8 If RES is τ ∗-sparse and if the exact solution q of (2.214) belongs to
�wτ for some τ > τ ∗, then for every ε > 0 algorithm SOLVE [ε,Q, g] produces
after finitely many steps an output qε (which, according to Proposition 12, always
satisfies ‖q−qε‖ < ε) with the following properties: For s and τ related by (2.256),
one has

#suppqε <∼ ε−1/s‖q‖1/s
�wτ
, ‖qε‖�wτ <∼ ‖q‖�wτ , (2.257)

and the number of floating point operations needed to compute qε remains
proportional to #suppqε.

Hence, τ ∗-sparsity of the routine RES implies for SOLVE asymptotically optimal
work/accuracy rates for a certain range of decay rates given by τ ∗. We stress that
the algorithm itself does not require any a-priori knowledge about the solution such
as its actual best N-term approximation rate. Theorem 8 also states that controlling
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the �wτ -norm of the quantities generated in the computations is crucial. This finally
explains the role of COARSE in Step (II.2) of SOLVE in terms of the following
result [19].

Lemma 4 Let v ∈ �wτ and let w be any finitely supported approximation such that
‖v− w‖ ≤ 1

5η. Then the output wη of COARSE [ 4
5η,w] satisfies

#suppwη <∼ ‖v‖1/τ
�wτ
η−1/s, ‖v− wη‖ <∼ η, and ‖wη‖�wτ <∼ ‖v‖�wτ .

(2.258)

This can be interpreted as follows. If an error bound for a given finitely supported
approximation w is known, a certain coarsening using only knowledge about w
produces a new approximation to (the possibly unknown) v which gives rise to a
slightly larger error but realizes the optimal relation between support and accuracy
up to a uniform constant. In the scheme SOLVE, this means that by the coarsening
step the �wτ -norms of the iterates vK are controlled.

It remains to establish that for SOLVEDCP the corresponding routine RESDCP is
τ ∗-sparse. The following results from [29] reduce this question to the efficiency
of APPLY. We say that APPLY [·,L, ·] is τ ∗-efficient for some 0 < τ ∗ < 2 if
for any finitely supported v ∈ �wτ , for 0 < τ ∗ < τ < 2, the output wη of APPLY

[η,L, v] satisfies ‖wη‖�wτ <∼ ‖v‖�wτ and #suppwη <∼ η−1/s‖v‖1/s
�wτ

for η→ 0. Here
the constants depend only on τ as τ → τ ∗ and s, τ satisfy (2.256). Moreover, the
number of floating point operations needed to compute wη is to remain proportional
to #suppwη.

Proposition 15 If the APPLY schemes in RESPRM and RESADJ are τ ∗-efficient for
some τ ∗ < 2, then RESDCP is τ ∗-sparse whenever there exists a constant C such that
Cη ≥ max {δv, δp} and

max {‖p̃‖�wτ , ‖ỹ‖�wτ , ‖v‖�wτ } ≤ C
(‖y‖�wτ + ‖p‖�wτ + ‖u‖�wτ ) ,

where v is the current finitely supported input and ỹ, p̃ are the initial guesses for the
exact solution components (y,p).

Theorem 9 If the APPLY schemes appearing in RESPRM and RESADJ are τ ∗-efficient
for some τ ∗ < 2 and the components of the solution (y,p,u) of (2.207) all belong to
the respective space �wτ for some τ > τ ∗, then the approximate solutions yε,pε,uε ,
produced by SOLVEDCP for any target accuracy ε, satisfy

‖yε‖�wτ + ‖pε‖�wτ + ‖uε‖�wτ <∼ ‖y‖�wτ + ‖p‖�wτ + ‖u‖�wτ , (2.259)

and

(#supp yε)+ (#supppε)+ (#suppuε) <∼
(
‖y‖1/s

�wτ
+ ‖p‖1/s

�wτ
+ ‖u‖1/s

�wτ

)
ε−1/s,

(2.260)
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where the constants only depend on τ when τ approaches τ ∗. Moreover, the number
of floating point operations required during the execution of SOLVEDCP remains
proportional to the right hand side of (2.260).

Thus, the practical realization of SOLVEDCP providing optimal work/accuracy rates
for a possibly large range of decay rates of the error of best N-term approximation
hinges on the availability of τ ∗-efficient schemes APPLY with possibly small τ ∗ for
the involved operators.

For the approximate application of wavelet representations of a wide class of
operators, including differential operators, one can indeed devise efficient schemes
which is a consequence of the cancellation properties (CP) together with the norm
equivalences (2.89) for the relevant function spaces. For the example considered
above, the τ ∗-efficiency of A defined in (2.198) can be shown whenever A is s∗-
compressible where τ ∗ and s∗ are related by (2.256). One knows that s∗ is the larger
the higher the ‘regularity’ of the operator and the order of cancellation properties of
the wavelets are. Estimates for s∗ in terms of these quantities for spline wavelets
and the above differential operator A can be found in [5]. These were refined and
extended to trace operators in [62]. Hence, Theorem 9 guarantees asymptotically
optimal complexity bounds for τ > τ ∗. This means that the scheme SOLVEDCP

recovers rates of the error of best N-term approximation of orderN−s for s < s∗.
When describing the control problem, it has been pointed out that the wavelet

framework allows for a flexible choice of norms in the control functional which
is reflected by the diagonal matrices DZ and DH in (DCP), (2.203) together
with (2.204). The following result states that multiplication by either D−1

Z or D−1
H

makes a sequence more compressible, that is, they produce a shift in weak �τ spaces
[29].

Proposition 16 For β > 0, p ∈ �wτ implies D−βp ∈ �w
τ ′ , where

1
τ ′ := 1

τ
+ β
d
.

We can conclude the following. Whatever the sparsity class of the adjoint variable
p is, the control u is in view of (2.207c) even sparser. This means also that although
the control u may be accurately recovered with relatively few degrees of freedom,
the overall solution complexity is in the above case bounded from below by the less
sparse auxiliary variable p.

The application of these techniques to control problems constrained by parabolic
PDEs can be found in [44]. For an extension of these techniques to control problems
involving PDEs with possibly infinite stochastic coefficients which introduce a
substantial difficulty, one may consult [57, 58].
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Chapter 3
Generalized Locally Toeplitz Sequences:
A Spectral Analysis Tool for Discretized
Differential Equations

Carlo Garoni and Stefano Serra-Capizzano

Abstract The theory of Generalized Locally Toeplitz (GLT) sequences was devel-
oped in order to solve a specific application problem, namely the problem of
computing/analyzing the spectral distribution of matrices arising from the numerical
discretization of Differential Equations (DEs). A final goal of this spectral analysis
is the design of efficient numerical methods for computing the related numerical
solutions. The purpose of this contribution is to introduce the reader to the theory
of GLT sequences and to present some of its applications to the computation of
the spectral distribution of DE discretization matrices. We will mainly focus on
the applications, whereas the theory will be presented in a self-contained tool-kit
fashion, without entering into technical details.

3.1 Introduction

Origin and Purpose of the Theory of GLT Sequences The theory of Generalized
Locally Toeplitz (GLT) sequences stems from Tilli’s work on Locally Toeplitz
(LT) sequences [56] and from the spectral theory of Toeplitz matrices [2, 10–
13, 37, 44, 55, 57–60]. It was then developed by the authors in [29, 30, 50, 51]
and has been recently extended by Barbarino in [3]. It was devised in order to
solve a specific application problem, namely the problem of computing/analyzing
the spectral distribution of matrices arising from the numerical discretization of
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Differential Equations (DEs). A final goal of this spectral analysis is the design
of efficient numerical methods for computing the related numerical solutions. The
theory of GLT sequences finds applications also in other areas of science (see, e.g.,
[16] and [29, Sections 10.1–10.4]), but the computation of the spectral distribution
of DE discretization matrices remains the main application. The next paragraph is
therefore devoted to a general description of this application.

Main Application of the Theory of GLT Sequences Suppose a linear DE

A u = g

is discretized by a linear numerical method characterized by a mesh fineness
parameter n. In this situation, the computation of the numerical solution reduces
to solving a linear system of the form

Anun = gn,

where the size dn of the matrix An increases with n. What is often observed in
practice is that An enjoys an asymptotic spectral distribution as n→∞, i.e., as the
mesh is progressively refined. More precisely, it often turns out that, for a large class
of test functions F ,

lim
n→∞

1

dn

dn∑
j=1

F(λj (An)) = 1

μk(D)

∫
D

F(κ(y))dy,

where λj (An), j = 1, . . . , dn, are the eigenvalues of An, μk is the Lebesgue
measure in R

k , and κ : D ⊂ R
k → C. In this situation, the function κ is referred

to as the spectral symbol of the sequence {An}n. The spectral information contained
in κ can be informally summarized as follows: assuming that n is large enough,
the eigenvalues of An, except possibly for o(dn) outliers, are approximately equal
to the samples of κ over a uniform grid in D. For example, if k = 1, dn = n

and D = [a, b], then, assuming we have no outliers, the eigenvalues of An are
approximately equal to

κ
(
a + i b − a

n

)
, i = 1, . . . , n,

for n large enough. Similarly, if k = 2, dn = n2 and D = [a1, b1] × [a2, b2], then,
assuming we have no outliers, the eigenvalues of An are approximately equal to

κ
(
a1 + i1 b1 − a1

n
, a2 + i2 b2 − a2

n

)
, i1, i2 = 1, . . . , n,

for n large enough. It is then clear that the symbol κ provides a ‘compact’ and quite
accurate description of the spectrum of the matrices An (for n large enough).
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The theory of GLT sequences is a powerful apparatus for computing the spectral
symbol κ . Indeed, the sequence of discretization matrices {An}n turns out to be a
GLT sequence with symbol (or kernel) κ for many classes of DEs and numerical
methods, especially if the numerical method belongs to the family of the so-
called ‘local methods’. Local methods are, for example, Finite Difference (FD)
methods, Finite Element (FE) methods with ‘locally supported’ basis functions, and
collocation methods; in short, all standard numerical methods for the approximation
of DEs. We refer the reader to Sect. 3.3.2 and [9, 29, 30, 50–52] for applications
of the theory of GLT sequences in the context of FD discretizations of DEs; to
Sect. 3.3.3 and [5, 9, 25, 26, 29, 30, 51] for the FE and collocation settings; to
Sect. 3.3.4 and [22, 28–30, 32–35, 48] for the case of Isogeometric Analysis (IgA)
discretizations, both in the collocation and Galerkin frameworks; and to [23] for a
further recent application to fractional DEs.

Practical Use of the Spectral Symbol It is worth emphasizing that the knowledge
of the spectral symbol κ , which can be attained through the theory of GLT
sequences, is not only interesting in itself, but may also be exploited for practical
purposes. Let us mention some of them.

(a) Compare the spectrum of An, compactly described by κ , with the spectrum of
the differential operator A .

(b) Understand whether the numerical method used to discretize the DE A u = g
is appropriate or not to spectrally approximate the operator A .

(c) Analyze the convergence and predict the behavior of iterative methods (espe-
cially, multigrid and preconditioned Krylov methods), when they are applied to
the matrix An.

(d) Design fast iterative solvers (especially, multigrid and preconditioned Krylov
methods) for linear systems with coefficient matrix An.

The goal (b) can be achieved through the spectral comparison mentioned in (a)
and allows one to classify the various numerical methods on the basis of their
spectral approximation properties. In this way, it is possible to select the best
approximation technique among a set of given methods. In this regard, we point
out that the symbol-based analysis carried out in [35] proved that IgA is superior
to classical FE methods in the spectral approximation of the underlying differential
operator A . The reason for which the spectral symbol κ can be exploited for the
purposes (c)–(d) is the following: the convergence properties of iterative solvers in
general (and of multigrid and preconditioned Krylov methods in particular) strongly
depend on the spectral features of the matrix to which they are applied; hence,
the spectral information provided by κ can be conveniently used for designing fast
solvers of this kind and/or analyzing their convergence properties. In this respect,
we recall that noteworthy estimates on the superlinear convergence of the Conjugate
Gradient (CG) method are strictly related to the asymptotic spectral distribution of
the matrices to which the CG method is applied; see [4]. We also refer the reader
to [20, 21, 24] for recent developments in the IgA framework, where the spectral
symbol was exploited to design ad hoc iterative solvers for IgA discretization
matrices.
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Description of the Present Work The present work is an excerpt of the book
[29]. Its purpose is to introduce the reader to the theory of GLT sequences and
its applications in the context of DE discretizations. Following [29], we will here
consider only unidimensional DEs both for simplicity and because the key ‘GLT
ideas’ are better conveyed in the univariate setting. For the multivariate setting, the
reader is referred to the literature cited above and, especially, to the book [30].

3.2 The Theory of GLT Sequences: A Summary

In this section we present a self-contained summary of the theory of GLT sequences.
Despite its conciseness, our presentation contains everything one needs to know in
order to understand the applications presented in the next section.

Matrix-Sequences Throughout this work, by a matrix-sequence we mean a
sequence of the form {An}n, where An is an n × n matrix. We say that the matrix-
sequence {An}n is Hermitian if each An is Hermitian.

Singular Value and Eigenvalue Distribution of a Matrix-Sequence Let μk be
the Lebesgue measure in R

k . Throughout this work, all the terminology coming
from measure theory (such as ‘measurable set’, ‘measurable function’, ‘almost
everywhere (a.e.)’, etc.) is always referred to the Lebesgue measure. Let Cc(R)
(resp., Cc(C)) be the space of continuous complex-valued functions with bounded
support defined on R (resp., C). If A is a square matrix of size n, the singular values
and the eigenvalues of A are denoted by σ1(A), . . . , σn(A) and λ1(A), . . . , λn(A),
respectively. The set of the eigenvalues (i.e., the spectrum) ofA is denoted byΛ(A).

Definition 1 Let {An}n be a matrix-sequence and let f : D ⊂ R
k → C be a

measurable function defined on a set D with 0 < μk(D) <∞.

• We say that {An}n has a singular value distribution described by f , and we write
{An}n ∼σ f , if

lim
n→∞

1

n

n∑
i=1

F(σi(An)) = 1

μk(D)

∫
D

F(|f (x)|)dx, ∀F ∈ Cc(R).

In this case, f is called the singular value symbol of {An}n.
• We say that {An}n has a spectral (or eigenvalue) distribution described by f , and

we write {An}n ∼λ f , if

lim
n→∞

1

n

n∑
i=1

F(λi(An)) = 1

μk(D)

∫
D

F(f (x))dx, ∀F ∈ Cc(C).

In this case, f is called the spectral (or eigenvalue) symbol of {An}n.



3 GLT Sequences 165

When we write a relation such as {An}n ∼σ f or {An}n ∼λ f , it is understood that
{An}n is a matrix-sequence and f is a measurable function defined on a subsetD of
some R

k with 0 < μk(D) < ∞. If {An}n has both a singular value and a spectral
distribution described by f , we write {An}n ∼σ,λ f .

We report in S 1 and S 2 the statements of two useful results concerning the
spectral distribution of matrix-sequences. Throughout this work, if A is an n × n
matrix and 1 ≤ p ≤ ∞, we denote by ‖A‖p the Schatten p-norm of A, i.e., the p-
norm of the vector (σ1(A), . . . , σn(A)) formed by the singular values of A; see [7].
The Schatten ∞-norm ‖A‖∞ is the largest singular value of A and coincides with
the classical 2-norm ‖A‖. The Schatten 1-norm ‖A‖1 is the sum of all the singular
values ofA and is often referred to as the trace-norm ofA. The (topological) closure
of a set S is denoted by S.

S 1. If {An}n ∼λ f andΛ(An) ⊆ S for all n then f ∈ S a.e.
S 2. If An = Xn + Yn where

• each Xn is Hermitian and {Xn}n ∼λ f ,
• ‖Xn‖, ‖Yn‖ ≤ C for all n, where C is a constant independent of n,
• n−1‖Yn‖1 → 0,

then {An}n ∼λ f .

Informal Meaning Assuming that f is continuous a.e., the spectral distribution
{An}n ∼λ f has the following informal meaning: all the eigenvalues of An, except
possibly for o(n) outliers, are approximately equal to the samples of f over a
uniform grid in D (for n large enough). For instance, if k = 1 and D = [a, b],
then, assuming we have no outliers, the eigenvalues of An are approximately equal
to

f
(
a + i b − a

n

)
, i = 1, . . . , n,

for n large enough. Similarly, if k = 2, n = m2 and D = [a1, b1] × [a2, b2], then,
assuming we have no outliers, the eigenvalues of An are approximately equal to

f
(
a1 + i b1 − a1

m
, a2 + j b2 − a2

m

)
, i, j = 1, . . . ,m,

for n large enough. A completely analogous meaning can also be given for the
singular value distribution {An}n ∼σ f .

Zero-Distributed Sequences A matrix-sequence {Zn}n such that {Zn}n ∼σ 0 is
referred to as a zero-distributed sequence. In other words, {Zn}n is zero-distributed
if and only if

lim
n→∞

1

n

n∑
i=1

F(σi(Zn)) = F(0), ∀F ∈ Cc(R).
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Z1–Z2 will provide us with an important characterization of zero-distributed
sequences together with a useful sufficient condition for detecting such sequences.
For convenience, throughout this work we use the natural convention 1/∞= 0.

Z1. {Zn}n ∼σ 0 if and only if Zn = Rn + Nn with lim
n→∞ n

−1rank(Rn) =
lim
n→∞‖Nn‖ = 0.

Z2. {Zn}n ∼σ 0 if there is a p ∈ [1,∞] such that lim
n→∞ n

−1/p‖Zn‖p = 0.

Sequences of Diagonal Sampling Matrices If n ∈ N and a : [0, 1] → C, the nth
diagonal sampling matrix generated by a is the n× n diagonal matrix given by

Dn(a) = diag
i=1,...,n

a
( i
n

)
.

{Dn(a)}n is called the sequence of diagonal sampling matrices generated by a.

Toeplitz Sequences If n ∈ N and f : [−π, π] → C is a function in L1([−π, π]),
the nth Toeplitz matrix generated by f is the n× n matrix

Tn(f ) = [fi−j ]ni,j=1,

where the numbers fk are the Fourier coefficients of f ,

fk = 1

2π

∫ π

−π
f (θ)e−ikθdθ, k ∈ Z.

{Tn(f )}n is called the Toeplitz sequence generated by f .

T1. For every n ∈ N the map Tn(·) : L1([−π, π])→ C
n×n

• is linear: Tn(αf + βg) = αTn(f ) + βTn(g) for every α, β ∈ C and every
f, g ∈ L1([−π, π]);

• satisfies (Tn(f ))∗ = Tn(f ) for every f ∈ L1([−π, π]), so if f is real then
Tn(f ) is Hermitian for every n.

T2. If f ∈ L1([−π, π]) then {Tn(f )}n ∼σ f . If f ∈ L1([−π, π]) and f is real
then {Tn(f )}n ∼λ f .

T3. If n ∈ N, 1 ≤ p ≤ ∞ and f ∈ Lp([−π, π]), then ‖Tn(f )‖p ≤ n1/p

(2π)1/p
‖f ‖Lp .

Approximating Classes of Sequences The notion of approximating classes of
sequences (a.c.s.) is the fundamental concept on which the theory of GLT sequences
is based.

Definition 2 Let {An}n be a matrix-sequence and let {{Bn,m}n}m be a sequence of
matrix-sequences. We say that {{Bn,m}n}m is an approximating class of sequences
(a.c.s.) for {An}n if the following condition is met: for everym there exists nm such
that, for n ≥ nm,

An = Bn,m + Rn,m +Nn,m, rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m),



3 GLT Sequences 167

where nm, c(m), ω(m) depend only on m, and

lim
m→∞ c(m) = lim

m→∞ω(m) = 0.

Throughout this work, we use the abbreviation ‘a.c.s.’ for both the singular ‘approx-
imating class of sequences’ and the plural ‘approximating classes of sequences’;
it will be clear from the context whether ‘a.c.s.’ is singular or plural. Roughly
speaking, {{Bn,m}n}m is an a.c.s. for {An}n if, for all sufficiently large m, the
sequence {Bn,m}n approximates {An}n in the sense that An is eventually equal to
Bn,m plus a small-rank matrix (with respect to the matrix size n) plus a small-
norm matrix. It turns out that the notion of a.c.s. is a notion of convergence in the
space of matrix-sequences E = {{An}n : {An}n is a matrix-sequence}, i.e., there
exists a topology τa.c.s. on E such that {{Bn,m}n}m is an a.c.s. for {An}n if and only
if {{Bn,m}n}m converges to {An}n in (E , τa.c.s.). The theory of a.c.s. may then be
interpreted as an approximation theory for matrix-sequences, and for this reason we

will use the convergence notation {Bn,m}n a.c.s.−→ {An}n to indicate that {{Bn,m}n}m is
an a.c.s. for {An}n.

ACS1. {An}n ∼σ f if and only if there exist matrix-sequences {Bn,m}n ∼σ fm
such that {Bn,m}n a.c.s.−→ {An}n and fm → f in measure.

ACS2. Suppose each An is Hermitian. Then, {An}n ∼λ f if and only if there exist

Hermitian matrix-sequences {Bn,m}n ∼λ fm such that {Bn,m}n a.c.s.−→ {An}n
and fm → f in measure.

ACS3. Let p ∈ [1,∞] and suppose for everym there exists nm such that, for n ≥
nm, ‖An−Bn,m‖p ≤ ε(m, n)n1/p, where limm→∞ lim supn→∞ ε(m, n) =
0. Then {Bn,m}n a.c.s.−→ {An}n.

Generalized Locally Toeplitz Sequences A Generalized Locally Toeplitz (GLT)
sequence {An}n is a special matrix-sequence equipped with a measurable function
κ : [0, 1] × [−π, π] → C, the so-called symbol (or kernel). We use the notation
{An}n ∼GLT κ to indicate that {An}n is a GLT sequence with symbol κ . The symbol
of a GLT sequence is unique in the sense that if {An}n ∼GLT κ and {An}n ∼GLT ξ

then κ = ξ a.e. in [0, 1] × [−π, π]. The main properties of GLT sequences are
summarized in the following list. If A is a matrix, we denote by A† the Moore–
Penrose pseudoinverse of A; we recall that A† = A−1 whenever A is invertible and
we refer the reader to [8, 36] for more details on the pseudoinverse of a matrix. If A
is a Hermitian matrix and f is a function defined at each point of Λ(A), we denote
by f (A) the unique matrix such that f (A)v = f (λ)v whenever Av = λv; for more
on matrix functions, we refer the reader to Higham’s book [38].

GLT1. If {An}n ∼GLT κ then {An}n ∼σ κ . If {An}n ∼GLT κ and the matrices An
are Hermitian then {An}n ∼λ κ .

GLT2. If {An}n ∼GLT κ and An = Xn + Yn, where

• every Xn is Hermitian,
• ‖Xn‖, ‖Yn‖ ≤ C for some constant C independent of n,
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• n−1‖Yn‖1 → 0,

then {An}n ∼λ κ .
GLT3. We have

• {Tn(f )}n ∼GLT κ(x, θ) = f (θ) if f ∈ L1([−π, π]),
• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : [0, 1] → C is continuous a.e.,
• {Zn}n ∼GLT κ(x, θ) = 0 if and only if {Zn}n ∼σ 0.

GLT4. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ then

• {A∗n}n ∼GLT κ,
• {αAn + βBn}n ∼GLT ακ + βξ for all α, β ∈ C,
• {AnBn}n ∼GLT κξ .

GLT5. If {An}n ∼GLT κ and κ �= 0 a.e. then {A†
n}n ∼GLT κ

−1.
GLT6. If {An}n ∼GLT κ and each An is Hermitian, then {f (An)}n ∼GLT f (κ) for

every continuous function f : C→ C.
GLT7. {An}n ∼GLT κ if and only if there exist GLT sequences {Bn,m}n ∼GLT κm

such that {Bn,m}n a.c.s.−→ {An}n and κm → κ in measure.

3.3 Applications

In this section we present several applications of the theory of GLT sequences to the
spectral analysis of DE discretization matrices. Our aim is to show how to compute
the singular value and eigenvalue distribution of matrix-sequences arising from a
DE discretization through the ‘GLT tools’ presented in the previous section. We
begin by considering FD discretizations, then we will move to FE discretizations,
and finally we will focus on IgA discretizations. Before starting, we collect below
some auxiliary results.

3.3.1 Preliminaries

3.3.1.1 Matrix-Norm Inequalities

If 1 ≤ p ≤ ∞, the symbol | · |p denotes both the p-norm of vectors and the
associated operator norm for matrices:

|x|p =
{(∑m

i=1 |xi |p
)1/p

, if 1 ≤ p <∞,
maxi=1,...,m |xi |, if p = ∞, x ∈ C

m,

|X|p = max
x∈Cm
x �=0

|Xx|p
|x|p , X ∈ C

m×m.
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The 2-norm |·|2 is also known as the spectral (or Euclidean) norm and it is preferably
denoted by ‖ · ‖. Important inequalities involving the p-norms with p = 1, 2,∞ are
the following:

‖X‖ ≤ √|X|1|X|∞, X ∈ C
m×m, (3.1)

‖X‖ ≥ |xij |, i, j = 1, . . . ,m, X ∈ C
m×m; (3.2)

see [8, 36]. Since it is known that |X|1 = maxj=1,...,m
∑m
i=1 |xij | and |X|∞ =

maxi=1,...,m
∑m
j=1 |xij |, the inequalities (3.1)–(3.2) are particularly useful to esti-

mate the spectral norm of a matrix when we have bounds for its components.
As mentioned in Sect. 3.2, the Schatten p-norm of an n × n matrix A is defined

as the p-norm of the vector (σ1(A), . . . , σn(A)) formed by the singular values of
A. The Schatten∞-norm ‖A‖∞ is the largest singular value σmax(A) and coincides
with the spectral norm ‖A‖. The Schatten 1-norm ‖A‖1 is the sum of all the singular
values of A and is often referred to as the trace-norm of A. The Schatten p-norms
are deeply studied in Bhatia’s book [7]. Here, we just recall a couple of basic trace-
norm inequalities that we shall need in what follows:

‖X‖1 ≤ rank(X)‖X‖ ≤ m‖X‖, X ∈ C
m×m, (3.3)

‖X‖1 ≤
m∑

i,j=1

|xij |, X ∈ C
m×m. (3.4)

The inequality (3.3) follows from the equation σmax(X) = ‖X‖ and the definition
‖X‖1 = ∑m

i=1 σi(X) =
∑rank(X)
i=1 σi(X). For the proof of the inequality (3.4), see,

e.g., [29, Section 2.4.3].

3.3.1.2 GLT Preconditioning

The next theorem is an important result in the context of GLT preconditioning, but
it will be used only in Sect. 3.3.4.3. The reader may then decide to skip it on first
reading and come back here afterwards, just before going into Sect. 3.3.4.3.

Theorem 1 Let {An}n be a sequence of Hermitian matrices such that {An}n ∼GLT
κ , and let {Pn}n be a sequence of Hermitian Positive Definite (HPD) matrices such
that {Pn}n ∼GLT ξ with ξ �= 0 a.e. Then, the sequence of preconditioned matrices
P−1
n An satisfies

{P−1
n An}n ∼GLT ξ

−1κ,

and

{P−1
n An}n ∼σ, λ ξ−1κ.
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Proof The GLT relation {P−1
n An}n ∼GLT ξ

−1κ is a direct consequence of GLT4–
GLT5. The singular value distribution {P−1

n An}n ∼σ ξ−1κ follows immediately
from GLT1. The only difficult part is the spectral distribution {P−1

n An}n ∼λ ξ−1κ ,
which does not follow from GLT1 because P−1

n An is not Hermitian in general.

Since Pn is HPD, the eigenvalues of Pn are positive and the matrices P 1/2
n , P−1/2

n

are well-defined. Moreover,

P−1
n An ∼ P−1/2

n AnP
−1/2
n , (3.5)

whereX ∼ Y means thatX is similar to Y . The good news is that P−1/2
n AnP

−1/2
n is

Hermitian and, moreover, by GLT4–GLT6 (with GLT6 applied to f (z) = |z|1/2),
we have

{P−1/2
n AnP

−1/2
n }n ∼GLT |ξ |−1/2κ |ξ |−1/2 = |ξ |−1κ = ξ−1κ;

note that the latter equation follows from the fact that ξ ≥ 0 a.e. by S 1, since Pn is
HPD and {Pn}n ∼λ ξ by GLT1. Since P−1/2

n AnP
−1/2
n is Hermitian, GLT1 yields

{P−1/2
n AnP

−1/2
n }n ∼λ ξ−1κ.

Thus, by the similarity (3.5), {P−1
n An}n ∼λ ξ−1κ . ��

3.3.1.3 Arrow-Shaped Sampling Matrices

If n ∈ N and a : [0, 1] → C, the nth arrow-shaped sampling matrix generated by a
is denoted by Sn(a) and is defined as the following symmetric matrix of size n:

(Sn(a))i,j = (Dn(a))min(i,j),min(i,j) = a
(min(i, j)

n

)
, i, j = 1, . . . , n,

(3.6)
that is,

Sn(a) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a( 1
n
) a( 1

n
) a( 1

n
) · · · · · · a( 1

n
)

a( 1
n
) a( 2

n
) a( 2

n
) · · · · · · a( 2

n
)

a( 1
n
) a( 2

n
) a( 3

n
) · · · · · · a( 3

n
)

...
...

...
. . .

...
...

...
...

. . .
...

a( 1
n
) a( 2

n
) a( 3

n
) · · · · · · a(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The name is due to the fact that, if we imagine to color the matrix Sn(a) by assigning
the color i to the entries a( i

n
), the resulting picture looks like a sort of arrow pointing
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toward the upper left corner. Throughout this work, if X,Y ∈ C
m×m, we denote by

X ◦ Y the componentwise (Hadamard) product of X and Y :

(X ◦ Y )ij = xij yij , i, j = 1, . . . ,m.

Moreover, if g : D→ C is continuous overD, with D ⊆ C
k for some k, we denote

by ωg(·) the modulus of continuity of g,

ωg(δ) = sup
x,y∈D
‖x−y‖≤δ

|g(x)− g(y)|, δ > 0.

If we need/want to specifyD, we will say that ωg(·) is the modulus of continuity of
g overD.

Theorem 2 Let a : [0, 1] → C be continuous and let f be a trigonometric
polynomial of degree ≤ r . Then, we have

‖Sn(a) ◦ Tn(f )−Dn(a)Tn(f )‖ ≤ (2r + 1)‖f ‖∞ ωa
( r
n

)
(3.7)

for every n ∈ N,

‖Sn(a) ◦ Tn(f )‖ ≤ C (3.8)

for every n ∈ N and for some constant C independent of n, and

{Sn(a) ◦ Tn(f )}n ∼GLT a(x)f (θ). (3.9)

Proof For all i, j = 1, . . . , n,

• if |i − j | > r , then the Fourier coefficient fi−j is zero and, consequently,

(Sn(a) ◦ Tn(f ))ij = (Sn(a))ij (Tn(f ))ij = a
(min(i, j)

n

)
fi−j = 0,

(Dn(a)Tn(f ))ij = (Dn(a))ii(Tn(f ))ij = a
( i
n

)
fi−j = 0;

• if |i − j | ≤ r , then, using (3.2) and T3, we obtain

|(Sn(a) ◦ Tn(f ))ij − (Dn(a)Tn(f ))ij | = |(Sn(a))ij (Tn(f ))ij − (Dn(a))ii (Tn(f ))ij |
= |(Sn(a))ij − (Dn(a))ii | |(Tn(f ))ij |

≤
∣∣∣∣a(min(i, j )

n

)
− a

( i
n

)∣∣∣∣ ‖Tn(f )‖
≤ ‖f ‖∞ ωa

(∣∣∣min(i, j )

n
− i

n

∣∣∣).
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Since |i − j | ≤ r , we have

∣∣∣min(i, j)

n
− i

n

∣∣∣ ≤ |j − i|
n

≤ r
n
,

hence

∣∣(Sn(a) ◦ Tn(f ))ij − (Dn(a)Tn(f ))ij ∣∣ ≤ ‖f ‖∞ ωa( r
n

)
.

It follows from the first item that the nonzero entries in each row and column of
Sn(a) ◦ Tn(f ) − Dn(a)Tn(f ) are at most 2r + 1. Hence, from the second item we
infer that the 1-norm and the∞-norm of Sn(a) ◦ Tn(f )−Dn(a)Tn(f ) are bounded
by (2r + 1)‖f ‖∞ ωa( rn ). The application of (3.1) yields (3.7). Using (3.7) and T3
we obtain

‖Sn(a) ◦ Tn(f )‖ ≤ ‖Sn(a) ◦ Tn(f )−Dn(a)Tn(f )‖ + ‖Dn(a)‖ ‖Tn(f )‖
≤ (2r + 1)‖f ‖∞ ωa

( r
n

)
+ ‖a‖∞‖f ‖∞,

which implies (3.8). Finally, since ωa( rn ) → 0 as n → ∞, the matrix-sequence
{Sn(a) ◦ Tn(f ) − Dn(a)Tn(f )}n is zero-distributed by (3.7) and Z1 (or Z 2).
Thus, (3.9) follows from GLT3–GLT4. ��

3.3.2 FD Discretization of Differential Equations

3.3.2.1 FD Discretization of Diffusion Equations

Consider the following second-order differential problem:

{
−(a(x)u′(x))′ = f (x), x ∈ (0, 1),
u(0) = α, u(1) = β, (3.10)

where a ∈ C([0, 1]) and f is a given function. To ensure the well-posedness
of this problem, further conditions on a and f should be imposed; for example,
f ∈ L2([0, 1]) and a ∈ C1([0, 1]) with a(x) > 0 for every x ∈ [0, 1], so that
problem (3.10) is elliptic (see Chapter 8 of [14], especially the Sturm-Liouville
problem on page 223). However, we here only assume that a ∈ C([0, 1]) as the
GLT analysis presented herein does not require any other assumption.

FDDiscretization We consider the discretization of (3.10) by the classical second-
order central FD scheme on a uniform grid. In the case where a(x) is constant, this
is also known as the (−1, 2,−1) scheme. Let us describe it shortly; for more details
on FD methods, we refer the reader to the available literature (see, e.g., [53] or



3 GLT Sequences 173

any good book on FDs). Choose a discretization parameter n ∈ N, set h = 1
n+1 and

xj = jh for all j ∈ [0, n+1]. For j = 1, . . . , nwe approximate−(a(x)u′(x))′|x=xj
by the classical second-order central FD formula:

− (a(x)u′(x))′|x=xj ≈ −
a(xj+ 1

2
)u′(xj+ 1

2
)− a(xj− 1

2
)u′(xj− 1

2
)

h

≈ −
a(x

j+ 1
2
)
u(xj+1)− u(xj )

h
− a(x

j− 1
2
)
u(xj )− u(xj−1)

h

h

=
−a(x

j+ 1
2
)u(xj+1)+

(
a(x

j+ 1
2
)+ a(x

j− 1
2
)
)
u(xj )− a(xj− 1

2
)u(xj−1)

h2 .

(3.11)

This means that the nodal values of the solution u satisfy (approximately) the
following linear system:

− a(x
j+ 1

2
)u(xj+1)+

(
a(x

j+ 1
2
)+ a(x

j− 1
2
)
)
u(xj )− a(xj− 1

2
)u(xj−1) = h2f (xj ),

j = 1, . . . , n.

We then approximate the solution by the piecewise linear function that takes the
value uj in xj for j = 0, . . . , n + 1, where u0 = α, un+1 = β, and u =
(u1, . . . , un)

T solves

− a(x
j+ 1

2
)uj+1 +

(
a(x

j+ 1
2
)+ a(x

j− 1
2
)
)
uj − a(xj− 1

2
)uj−1 = h2f (xj ),

j = 1, . . . , n. (3.12)

The matrix of the linear system (3.12) is the n × n tridiagonal symmetric matrix
given by

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 1
2
+ a 3

2
−a 3

2

−a 3
2

a 3
2
+ a 5

2
−a 5

2

−a 5
2

. . .
. . .

. . .
. . . −a

n− 1
2

−an− 1
2

an− 1
2
+ an+ 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.13)

where ai = a(xi) for all i ∈ [0, n+ 1].
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GLT Analysis of the FD Discretization Matrices We are going to see that the
theory of GLT sequences allows one to compute the singular value and spectral
distribution of the sequence of FD discretization matrices {An}n. Actually, this is
the fundamental example that led to the birth of the theory of LT sequences and,
subsequently, of GLT sequences.

Theorem 3 If a ∈ C([0, 1]) then

{An}n ∼GLT a(x)(2− 2 cos θ) (3.14)

and

{An}n ∼σ, λ a(x)(2− 2 cos θ). (3.15)

Proof It suffices to prove (3.14) because (3.15) follows from (3.14) and GLT1 as
the matrices An are symmetric. Consider the matrix

Dn(a)Tn(2− 2 cos θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2a( 1
n
) −a( 1

n
)

−a( 2
n
) 2a( 2

n
) −a( 2

n
)

−a( 3
n
)
. . .

. . .

. . .
. . . −a(n−1

n
)

−a(1) 2a(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.16)

In view of the inequalities
∣∣xj − j

n

∣∣ ≤ 1
n+1 = h, j = 1, . . . , n, a direct comparison

between (3.16) and (3.13) shows that the modulus of each diagonal entry of the
matrix An − Dn(a)Tn(2 − 2 cos θ) is bounded by 2ωa(3h/2), and the modulus of
each off-diagonal entry of An − Dn(a)Tn(2 − 2 cos θ) is bounded by ωa(3h/2).
Therefore, the 1-norm and the∞-norm of An −Dn(a)Tn(2− 2 cos θ) are bounded
by 4ωa(3h/2), and so, by (3.1),

‖An −Dn(a)Tn(2− 2 cos θ)‖ ≤ 4ωa(3h/2)→ 0 as n→∞.

Setting Zn = An − Dn(a)Tn(2 − 2 cos θ), we have {Zn}n ∼σ 0 by Z1 (or Z 2).
Since

An = Dn(a)Tn(2− 2 cos θ)+ Zn,

GLT3 and GLT4 yield (3.14). ��
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Remark 1 (Formal Structure of the Symbol) From a formal viewpoint (i.e., disre-
garding the regularity of a(x) and u(x)), problem (3.10) can be rewritten in the
form {

−a(x)u′′(x)− a′(x)u′(x) = f (x), x ∈ (0, 1),
u(0) = α, u(1) = β.

From this reformulation, it appears more clearly that the symbol a(x)(2 − 2 cos θ)
consists of the two ‘ingredients’:

• The coefficient of the higher-order differential operator, namely a(x), in the
physical variable x. To make a parallelism with Hörmander’s theory [39], the
higher-order differential operator −a(x)u′′(x) is the so-called principal symbol
of the complete differential operator −a(x)u′′(x)− a′(x)u′(x) and a(x) is then
the coefficient of the principal symbol.

• The trigonometric polynomial associated with the FD formula (−1, 2,−1) used
to approximate the higher-order derivative −u′′(x), namely 2 − 2 cos θ =
−eiθ + 2− e−iθ , in the Fourier variable θ . To see that (−1, 2,−1) is precisely
the FD formula used to approximate−u′′(x), simply imagine a(x) = 1 and note
that in this case the FD scheme (3.11) becomes

−u′′(xj ) ≈ −u(xj+1)+ 2u(xj )− u(xj−1)

h2 ,

i.e., the FD formula (−1, 2,−1) to approximate−u′′(xj ).
We observe that the term −a′(x)u′(x), which only depends on lower-order deriva-
tives of u(x), does not enter the expression of the symbol.

Remark 2 (Nonnegativity and Order of the Zero at θ = 0) The trigonometric
polynomial 2 − 2 cos θ is nonnegative on [−π, π] and it has a unique zero of order
2 at θ = 0, because

lim
θ→0

2− 2 cos θ

θ2 = 1.

This reflects the fact that the associated FD formula (−1, 2,−1) approximates
−u′′(x), which is a differential operator of order 2 (it is also nonnegative on the
space of functions v ∈ C2([0, 1]) such that v(0) = v(1) = 0, in the sense that∫ 1

0 −v′′(x)v(x)dx =
∫ 1

0 (v
′(x))2dx ≥ 0 for all such v).

3.3.2.2 FD Discretization of Convection-Diffusion-Reaction Equations

1st Part

Suppose we add to the diffusion equation (3.10) a convection and a reaction term.
In this way, we obtain the following convection-diffusion-reaction equation in
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divergence form with Dirichlet boundary conditions:{
−(a(x)u′(x))′ + b(x)u′(x)+ c(x)u(x) = f (x), x ∈ (0, 1),
u(0) = α, u(1) = β, (3.17)

where a : [0, 1] → R is continuous as before and we assume that b, c : [0, 1] → R

are bounded. Based on Remark 1, we expect that the term b(x)u′(x) + c(x)u(x),
which only involves lower-order derivatives of u(x), does not enter the expression
of the symbol. In other words, if we discretize the higher-order term −(a(x)u′(x))′
as in (3.11), the symbol of the resulting FD discretization matrices Bn should be
again a(x)(2− 2 cos θ). We are going to show that this is in fact the case.

FD Discretization Let n ∈ N, set h = 1
n+1 and xj = jh for all j ∈ [0, n + 1].

Consider the discretization of (3.17) by the FD scheme defined as follows.

• To approximate the higher-order (diffusion) term −(a(x)u′(x))′, use again the
FD formula (3.11), i.e.,

− (a(x)u′(x))′|x=xj

≈
−a(x

j+ 1
2
)u(xj+1)+

(
a(x

j+ 1
2
)+ a(x

j− 1
2
)
)
u(xj )− a(xj− 1

2
)u(xj−1)

h2 .

(3.18)

• To approximate the convection term b(x)u′(x), use any (consistent) FD formula;
to fix the ideas, here we use the second-order central formula

b(x)u′(x)|x=xj ≈ b(xj )
u(xj+1)− u(xj−1)

2h
. (3.19)

• To approximate the reaction term c(x)u(x), use the obvious equation

c(x)u(x)|x=xj = c(xj )u(xj ). (3.20)

The resulting FD discretization matrix Bn admits a natural decomposition as

Bn = An + Zn, (3.21)

whereAn is the matrix coming from the discretization of the higher-order (diffusion)
term −(a(x)u′(x)), while Zn is the matrix coming from the discretization of the
lower-order (convection and reaction) terms b(x)u′(x) and c(x)u(x). Note that An
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is given by (3.13) and Zn is given by

Zn = h
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b1

−b2 0 b2

. . .
. . .

. . .

−bn−1 0 bn−1

−bn 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

. . .

cn−1

cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.22)

where bi = b(xi) and ci = c(xi) for all i = 1, . . . , n.

GLT Analysis of the FD Discretization Matrices We now prove that Theorem 3
holds unchanged with Bn in place of An. This highlights a general aspect: lower-
order terms such as b(x)u′(x)+ c(x)u(x) do not enter the expression of the symbol
and do not affect in any way the asymptotic singular value and spectral distribution
of DE discretization matrices.

Theorem 4 If a ∈ C([0, 1]) and b, c : [0, 1] → R are bounded then

{Bn}n ∼GLT a(x)(2− 2 cos θ) (3.23)

and

{Bn}n ∼σ, λ a(x)(2− 2 cos θ). (3.24)

Proof By (3.1), the matrix Zn in (3.22) satisfies

‖Zn‖ ≤ h‖b‖∞ + h2‖c‖∞ ≤ C/n (3.25)

for some constant C independent of n. As a consequence, {Zn}n is zero-distributed
by Z1 (orZ 2), hence {Zn}n ∼GLT 0 by GLT3. Since {An}n ∼GLT a(x)(2−2 cosθ)
by Theorem 3, the decomposition (3.21) and GLT4 imply (3.23).

Now, if the convection term is not present, i.e., b(x) = 0 identically, then Bn is
symmetric and (3.24) follows from (3.23) and GLT1. If b(x) is not identically 0,
then Bn is not symmetric in general and so (3.23) and GLT1 only imply the
singular value distribution {Bn}n ∼σ a(x)(2 − 2 cos θ). Nevertheless, in view of
the decomposition (3.21), since An is symmetric, since ‖Zn‖1 = O(1) by the
inequalities (3.25) and (3.3), and since ‖An‖ ≤ 4‖a‖∞ by (3.1), the spectral
distribution {Bn}n ∼λ a(x)(2−2 cosθ) holds (byGLT2) even if b(x) is an arbitrary
bounded function. ��
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2nd Part

So far, we only considered differential equations with Dirichlet boundary
conditions. A natural question is the following: if we change the boundary
conditions in (3.17), does the expression of the symbol change? The answer is ‘no’:
boundary conditions do not affect the singular value and eigenvalue distribution
because they only produce a small-rank perturbation in the resulting discretization
matrices. To understand better this point, we consider problem (3.17) with Neumann
boundary conditions:

{
−(a(x)u′(x))′ + b(x)u′(x)+ c(x)u(x) = f (x), x ∈ (0, 1),
u′(0) = α, u′(1) = β. (3.26)

FD Discretization We discretize (3.26) by the same FD scheme considered in the
1st part, which is defined by the FD formulas (3.18)–(3.20). In this way, we arrive
at the linear system

− a(x
j+ 1

2
)uj+1 +

(
a(x

j+ 1
2
)+ a(x

j− 1
2
)
)
uj − a(xj− 1

2
)uj−1

+ h
2

(
b(xj )uj+1 − b(xj )uj−1

)+ h2c(xj )uj = h2f (xj ), j = 1, . . . , n,

(3.27)

which is formed by n equations in the n + 2 unknowns u0, u1, . . . , un, un+1. Note
that u0 and un+1 should now be considered as unknowns, because they are not
specified by the Dirichlet boundary conditions. However, as it is common in the
FD context, u0 and un+1 are expressed in terms of u1, . . . , un by exploiting the
Neumann boundary conditions. The simplest choice is to express u0 and un+1 as a
function of u1 and un, respectively, by imposing the conditions

u1 − u0

h
= α, un+1 − un

h
= β, (3.28)

which yield u0 = u1− αh and un+1 = un+ βh. Substituting into (3.27), we obtain
a linear system with n equations and n unknowns u1, . . . , un. Setting ai = a(xi),
bi = b(xi), ci = c(xi) for all i ∈ [0, n+ 1], the matrix of this system is

Cn = Bn + Rn = An + Zn + Rn, (3.29)
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where An, Bn, Zn are given by (3.13), (3.21), (3.22), respectively, and

Rn =

⎡
⎢⎢⎢⎢⎢⎣
−a 1

2
− h

2
b1

−an+ 1
2
+ h

2
bn

⎤
⎥⎥⎥⎥⎥⎦

is a small-rank correction coming from the discretization (3.28) of the boundary
conditions.

GLTAnalysis of the FDDiscretizationMatrices We prove that Theorems 3 and 4
hold unchanged with Cn in place of An and Bn, respectively.

Theorem 5 If a ∈ C([0, 1]) and b, c : [0, 1] → R are bounded then

{Cn}n ∼GLT a(x)(2− 2 cos θ) (3.30)

and

{Cn}n ∼σ, λ a(x)(2− 2 cos θ). (3.31)

Proof Let C denote a generic constant independent of n. It is clear that ‖Rn‖ ≤
‖a‖∞ + (h/2)‖b‖∞ ≤ C. Moreover, since ‖Rn‖1 ≤ rank(Rn)‖Rn‖ ≤ C, the
matrix-sequence {Rn}n is zero-distributed byZ2. Note that {Zn}n is zero-distributed
as well because ‖Zn‖ ≤ C/n by (3.25). In view of the decomposition (3.29),
Theorem 3 and GLT3–GLT4 imply (3.30).

If the matrices Cn are symmetric (this happens if b(x) = 0), from (3.30)
and GLT1 we immediately obtain (3.31). If the matrices Cn are not symmetric,
from (3.30) and GLT1 we only obtain the singular value distribution in (3.31).
However, in view of (3.29), since ‖Rn + Zn‖1 = o(n) and ‖Rn +Zn‖, ‖An‖ ≤ C,
the spectral distribution in (3.31) holds (by GLT2) even if the matrices Cn are not
symmetric. ��

3rd Part

Consider the following convection-diffusion-reaction problem:

{
−a(x)u′′(x)+ b(x)u′(x)+ c(x)u(x) = f (x), x ∈ (0, 1),
u(0) = α, u(1) = β, (3.32)

where a : [0, 1] → R is continuous and b, c : [0, 1] → R are bounded.
The difference with respect to problem (3.17) is that the higher-order differential
operator now appears in non-divergence form, i.e., we have −a(x)u′′(x) instead of
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−(a(x)u′(x))′. Nevertheless, based on Remark 1, if we use again the FD formula
(−1, 2,−1) to discretize the second derivative−u′′(x), the symbol of the resulting
FD discretization matrices should be again a(x)(2− 2 cos θ). We are going to show
that this is in fact the case.

FD Discretization Let n ∈ N, set h = 1
n+1 and xj = jh for all j = 0, . . . , n+ 1.

We discretize again (3.32) by the central second-order FD scheme, which in this
case is defined by the following formulas:

−a(x)u′′(x)|x=xj ≈ a(xj )
−u(xj+1)+ 2u(xj )− u(xj−1)

h2 , j = 1, . . . , n,

b(x)u′(x)|x=xj ≈ b(xj )
u(xj+1)− u(xj−1)

2h
, j = 1, . . . , n,

c(x)u(x)|x=xj = c(xj )u(xj ), j = 1, . . . , n.

Then, we approximate the solution of (3.32) by the piecewise linear function that
takes the value uj at the point xj for j = 0, . . . , n + 1, where u0 = α, un+1 = β,
and u = (u1, . . . , un)

T solves the linear system

a(xj )(−uj+1 + 2uj − uj−1)+ h
2
b(xj )(uj+1 − uj−1)+ h2c(xj )uj = h2f (xj ),

j = 1, . . . , n.

The matrix En of this linear system can be decomposed according to the diffusion,
convection and reaction term, as follows:

En = Kn + Zn, (3.33)

where Zn is the sum of the convection and reaction matrix and is given by (3.22),
while

Kn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2a1 −a1

−a2 2a2 −a2

. . .
. . .

. . .

−an−1 2an−1 −an−1

−an 2an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.34)

is the diffusion matrix (ai = a(xi) for all i = 1, . . . , n).

GLT Analysis of the FD Discretization Matrices Despite the nonsymmetry of
the diffusion matrix, which is due to the non-divergence form of the higher-order
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(diffusion) operator−a(x)u′′(x), we will prove that Theorems 3–5 hold unchanged
with En in place of An, Bn, Cn, respectively.

Theorem 6 If a ∈ C([0, 1]) and b, c : [0, 1] → R are bounded then

{En}n ∼GLT a(x)(2− 2 cos θ) (3.35)

and

{En}n ∼σ, λ a(x)(2− 2 cos θ). (3.36)

Proof Throughout this proof, the letterC will denote a generic constant independent
of n. By (3.25),

‖Zn‖ ≤ C/n,

hence {Zn}n is zero-distributed. We prove that

{Kn}n ∼GLT a(x)(2− 2 cos θ), (3.37)

after which (3.35) will follow from GLT3–GLT4 and the decomposition (3.33). It
is clear from (3.34) that

Kn = diag
i=1,...,n

(ai) Tn(2− 2 cos θ).

By T 3 applied with p = ∞, we obtain

‖Kn −Dn(a)Tn(2− 2 cos θ)‖ ≤
∥∥∥ diag
i=1,...,n

(ai)−Dn(a)
∥∥∥ ‖Tn(2− 2 cos θ)‖

≤ ωa(h) ‖2 − 2 cos θ‖∞ = 4ωa(h),

which tends to 0 as n → ∞. We conclude that {Kn − Dn(a)Tn(2 − 2 cos θ)}n is
zero-distributed, and so (3.37) follows from GLT3–GLT4.

From (3.35) and GLT1 we obtain the singular value distribution in (3.36). To
obtain the spectral distribution, the idea is to exploit the fact that Kn is ‘almost’
symmetric, because a(x) varies continuously when x ranges in [0, 1], and so
a(xj ) ≈ a(xj+1) for all j = 1, . . . , n − 1 (when n is large enough). Therefore,
by replacingKn with one of its symmetric approximations K̃n, we can write

En = K̃n + (Kn − K̃n)+ Zn, (3.38)
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and in view of the decomposition (3.38) we want to obtain the spectral distribution
in (3.36) from GLT2 applied with Xn = K̃n and Yn = (Kn − K̃n)+ Zn. Let

K̃n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2a1 −a1

−a1 2a2 −a2

. . .
. . .

. . .

−an−2 2an−1 −an−1

−an−1 2an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.39)

Since

‖Kn − K̃n‖ ≤
√
|Kn − K̃n|1 |Kn − K̃n|∞ ≤ max

i=1,...,n−1
|ai+1 − ai | ≤ ωa(h)→ 0,

‖Kn‖ ≤
√|Kn|1|Kn|∞ ≤ 4‖a‖∞ ≤ C,

‖Zn‖ → 0,

it follows from GLT2 that {En}n ∼λ a(x)(2− 2 cos θ). ��
Remark 3 In the proof of Theorem 6 we could also choose

K̃n = Sn(a) ◦ Tn(2− 2 cos θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2ã1 −ã1

−ã1 2ã2 −ã2

. . .
. . .

. . .

−ãn−2 2ãn−1 −ãn−1

−ãn−1 2ãn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ãi = a( in) for all i = 1, . . . , n and Sn(a) is the arrow-shaped sampling matrix

defined in (3.6). With this choice of K̃n, nothing changes in the proof of Theorem 6
except for the bound of ‖Kn − K̃n‖, which becomes ‖Kn − K̃n‖ ≤ 4ωa(h).

4th Part

Based on Remark 1, if we change the FD scheme to discretize the differential prob-
lem (3.32), the symbol should become a(x)p(θ), where p(θ) is the trigonometric
polynomial associated with the new FD formula used to approximate the second
derivative −u′′(x) (the higher-order differential operator). We are going to show
through an example that this is indeed the case.

FD Discretization Consider the convection-diffusion-reaction problem (3.32).
Instead of the second-order central FD scheme (−1, 2,−1), this time we use the
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fourth-order central FD scheme 1
12 (1,−16, 30,−16, 1) to approximate the second

derivative−u′′(x). In other words, for j = 2, . . . , n−1 we approximate the higher-
order term −a(x)u′′(x) by the FD formula

−a(x)u′′(x)|x=xj ≈ a(xj )
u(xj+2)−16u(xj+1)+ 30u(xj)−16u(xj−1)+ u(xj−2)

12h2 ,

while for j = 1, n we use again the FD scheme (−1, 2,−1),

−a(x)u′′(x)|x=xj ≈ a(xj )
−u(xj+1)+ 2u(xj )− u(xj−1)

h2 .

From a numerical viewpoint, this is not a good choice because the FD formula
1

12 (1,−16, 30,−16, 1) is a very accurate fourth-order formula, and in order not to
destroy the accuracy one would gain from this formula, one should use a fourth-
order scheme also for j = 1, n instead of the classical (−1, 2,−1). However, in
this work we are not concerned with this kind of issues and we use the classical
(−1, 2,−1) because it is simpler and allows us to better illustrate the GLT analysis
without introducing useless technicalities. As already observed before, the FD
schemes used to approximate the lower-order terms b(x)u′(x) and c(x)u(x) do not
affect the symbol, as well as the singular value and eigenvalue distribution, of the
resulting sequence of discretization matrices. To illustrate once again this point, in
this example we assume to approximate b(x)u′(x) and c(x)u(x) by the following
‘strange’ FD formulas: for j = 1, . . . , n,

b(x)u′(x)|x=xj ≈ b(xj )
u(xj )− u(xj−1)

h
,

c(x)u(x)|x=xj ≈ c(xj )
u(xj+1)+ u(xj )+ u(xj−1)

3
.

Setting ai = a(xi), bi = b(xi), ci = c(xi) for all i = 1, . . . , n, the resulting FD
discretization matrix Pn can be decomposed according to the diffusion, convection
and reaction term, as follows:

Pn = Kn + Zn,

where Zn is the sum of the convection and reaction matrix,

Zn = h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

−b2 b2

. . .
. . .

−bn−1 bn−1

−bn bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ h

2

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 c1

c2 c2 c2

. . .
. . .

. . .

cn−1 cn−1 cn−1

cn cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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while Kn is the diffusion matrix,

Kn = 1

12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

24a1 −12a1

−16a2 30a2 −16a2 a2

a3 −16a3 30a3 −16a3 a3

. . .
. . .

. . .
. . .

. . .

an−2 −16an−2 30an−2 −16an−2 an−2

an−1 −16an−1 30an−1 −16an−1

−12an 24an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

GLT Analysis of the FD Discretization Matrices Let p(θ) be the trigonometric
polynomial associated with the FD formula 1

12 (1,−16, 30,−16, 1) used to approx-
imate the second derivative−u′′(x), i.e.,

p(θ) = 1

12
(e−2iθ − 16e−iθ + 30− 16eiθ + e2iθ ) = 1

12
(30− 32 cos θ + 2 cos(2θ)).

Based on Remark 1, the following result is not unexpected.

Theorem 7 If a ∈ C([0, 1]) and b, c : [0, 1] → R are bounded then

{Pn}n ∼GLT a(x)p(θ) (3.40)

and

{Pn}n ∼σ, λ a(x)p(θ). (3.41)

Proof Throughout this proof, the letterC will denote a generic constant independent
of n. To simultaneously obtain (3.40) and (3.41), we consider the following
decomposition of Pn:

Pn = K̃n + (Kn − K̃n)+ Zn,

where K̃n is the symmetric approximation ofKn given by

K̃n = Sn(a) ◦ Tn(p)
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= 1

12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

30ã1 −16ã1 ã1

−16ã1 30ã2 −16ã2 ã2

ã1 −16ã2 30ã3 −16ã3 ã3

. . .
. . .

. . .
. . .

. . .

ãn−4 −16ãn−3 30ãn−2 −16ãn−2 ãn−2

ãn−3 −16ãn−2 30ãn−1 −16ãn−1

ãn−2 −16ãn−1 30ãn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(ãi = a( in ) for all i = 1, . . . , n). We show that:

(a) {K̃n}n ∼GLT a(x)p(θ);
(b) ‖Kn‖, ‖K̃n‖ ≤ C and ‖Zn‖ → 0;
(c) ‖Kn − K̃n‖1 = o(n).
Note that (b)–(c) imply that {(Kn− K̃n)+Zn}n ∼σ 0 by Z2. Once we have proved
(a)–(c), the GLT relation (3.40) follows from GLT4, the singular value distribution
in (3.41) follows from (3.40) and GLT1, and the spectral distribution in (3.41)
follows from GLT2 applied with Xn = K̃n and Yn = (Kn − K̃n)+ Zn.
Proof of (a) See Theorem 2.

Proof of (b) We have

‖Zn‖ ≤
√|Zn|1 |Zn|∞ ≤ 2h‖b‖∞ + h2‖c‖∞ → 0,

‖Kn‖ ≤
√|Kn|1 |Kn|∞ ≤ 64

12
‖a‖∞,

‖K̃n‖ ≤
√
|K̃n|1 |K̃n|∞ ≤ 64

12
‖a‖∞.

Note that the uniform boundedness of ‖K̃n‖ with respect to n was already known
from Theorem 2.

Proof of (c) A direct comparison between Kn and K̃n shows that

Kn = K̃n + Rn + Nn,
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where Nn = Kn − K̃n − Rn and Rn is the matrix whose rows are all zeros except
for the first and the last one, which are given by

1

12

[
24a1 − 30ã1 − 12a1 + 16ã1 − ã1 0 · · · 0

]
and

1

12

[
0 · · · 0 − ãn−2 − 12an + 16ãn−1 24an − 30ãn

]
,

respectively. We have

‖Rn‖ ≤ 83

12
‖a‖∞, rank(Rn) ≤ 2, ‖Nn‖ ≤ 64

12
ωa

(2

n

)
and

‖Kn − K̃n‖1 ≤ ‖Rn‖1 + ‖Nn‖1 ≤ rank(Rn)‖Rn‖ + n‖Nn‖,

hence ‖Kn − K̃n‖1 = o(n). ��
Remark 4 (Nonnegativity and Order of the Zero at θ = 0) Despite we have
changed the FD scheme to approximate the second derivative−u′′(x), the resulting
trigonometric polynomial p(θ) retains some properties of 2− 2 cos θ . In particular,
p(θ) is nonnegative over [−π, π] and it has a unique zero of order 2 at θ = 0,
because

lim
θ→0

p(θ)

θ2
= 1 = lim

θ→0

2− 2 cos θ

θ2
.

This reflects the fact the associated FD formula 1
12
(1,−16, 30,−16, 1) approxi-

mates −u′′(x), which is a differential operator of order 2 and it is also nonnegative
on {v ∈ C2([0, 1]) : v(0) = v(1) = 0}; cf. Remark 2.

3.3.2.3 FD Discretization of Higher-Order Equations

So far we only considered the FD discretization of second-order differential
equations. In order to show that the GLT analysis is not limited to second-order
equations, in this section we deal with an higher-order problem. For simplicity, we
focus on the following fourth-order problem with homogeneous Dirichlet–Neumann
boundary conditions:

⎧⎪⎨
⎪⎩
a(x)u(4)(x) = f (x), x ∈ (0, 1),
u(0) = 0, u(1) = 0,

u′(0) = 0, u′(1) = 0,

(3.42)
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where a ∈ C([0, 1]) and f is a given function. We do not consider more
complicated boundary conditions, and we do not include terms with lower-order
derivatives, because we know from Remark 1 and the experience gained from
the previous section that both these ingredients only serve to complicate things,
but ultimately they do not affect the symbol, as well as the singular value and
eigenvalue distribution, of the resulting discretization matrices. Based on Remark 1,
the symbol of the matrix-sequence arising from the FD discretization of (3.42)
should be a(x)q(θ), where q(θ) is the trigonometric polynomial associated with
the FD formula used to discretize u(4)(x). We will see that this is in fact the case.

FD Discretization We approximate the fourth derivative u(4)(x) by the second-
order central FD scheme (1,−4, 6,−4, 1), which yields the approximation

a(x)u(4)(x)|x=xj ≈ a(xj )
u(xj+2)− 4u(xj+1)+ 6u(xj )− 4u(xj−1)+ u(xj−2)

h4 ,

for all j = 2, . . . , n + 1; here, h = 1
n+3 and xj = jh for j = 0, . . . , n + 3.

Taking into account the homogeneous boundary conditions, we approximate the
solution of (3.42) by the piecewise linear function that takes the value uj in xj for
j = 0, . . . , n+ 3, where u0 = u1 = un+2 = un+3 = 0 and u = (u2, . . . , un+1)

T is
the solution of the linear system

a(xj )(uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2) = h4f (xj ), j = 2, . . . , n+ 1.

The matrix An of this linear system is given by

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6a2 −4a2 a2

−4a3 6a3 −4a3 a3

a4 −4a4 6a4 −4a4 a4

. . .
. . .

. . .
. . .

. . .

an−1 −4an−1 6an−1 −4an−1 an−1

an −4an 6an −4an

an+1 −4an+1 6an+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ai = a(xi) for all i = 2, . . . , n+ 1.

GLT Analysis of the FD Discretization Matrices Let q(θ) be the trigonometric
polynomial associated with the FD formula (1,−4, 6,−4, 1), i.e.,

q(θ) = e−2iθ − 4e−iθ + 6− 4eiθ + e2iθ = 6− 8 cos θ + 2 cos(2θ).
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Theorem 8 If a ∈ C([0, 1]) then

{An}n ∼GLT a(x)q(θ) (3.43)

and

{An}n ∼σ, λ a(x)q(θ). (3.44)

Proof We show that

‖An − Sn(a) ◦ Tn(q)‖ → 0. (3.45)

Once this is proved, since {Sn(a) ◦ Tn(q)}n ∼GLT a(x)q(θ) and ‖Sn(a) ◦ Tn(q)‖ is
uniformly bounded with respect to n (by Theorem 2), and since ‖An‖ ≤ 16‖a‖∞
by (3.1), the relations (3.43)–(3.44) follow from the decomposition

An = Sn(a) ◦ Tn(q)+ (An − Sn(a) ◦ Tn(q))

and from GLT1–GLT4, taking into account that Sn(a) ◦ Tn(p) is symmetric and
{An − Sn(a) ◦ Tn(q)}n is zero-distributed by (3.45) and Z1 (or Z2). Let us then
prove (3.45). The matrices An and Sn(a) ◦ Tn(q) are banded (pentadiagonal) and,
for all i, j = 1, . . . , n with |i − j | ≤ 2, a crude estimates gives

∣∣(An)ij − (Sn(a) ◦ Tn(q))ij ∣∣ = ∣∣∣ai+1(Tn(q))ij − a
(min(i, j)

n

)
(Tn(q))ij

∣∣∣
=
∣∣∣a( i + 1

n+ 3

)
− a

(min(i, j)

n

)∣∣∣ |(Tn(q))ij |
≤ 6ωa

(6

n

)
.

Hence, by (3.1), ‖An − Sn(a) ◦ Tn(q)‖ ≤ 5 · 6ωa( 6
n
)→ 0. ��

Remark 5 (Nonnegativity and Order of the Zero at θ = 0) The polynomial q(θ) is
nonnegative over [−π, π] and has a unique zero of order 4 at θ = 0, because

lim
θ→0

q(θ)

θ4 = 1.

This reflects the fact that the FD formula (1,−4, 6,−4, 1) associated with q(θ)
approximates the fourth derivative u(4)(x), which is a differential operator of order
4 (it is also nonnegative on the space of functions v ∈ C4([0, 1]) such that
v(0) = v(1) = 0 and v′(0) = v′(1) = 0, in the sense that

∫ 1
0 v

(4)(x)v(x)dx =∫ 1
0 (v

′′(x))2dx ≥ 0 for all such v); see also Remarks 2 and 4.
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3.3.2.4 Non-uniform FD Discretizations

All the FD discretizations considered in the previous sections are based on uniform
grids. It is natural to ask whether the theory of GLT sequences finds applications
also in the context of non-uniform FD discretizations. The answer to this question
is affirmative, at least in the case where the non-uniform grid is obtained as the
mapping of a uniform grid through a fixed function G, independent of the mesh
size. In this section we illustrate this claim by means of a simple example.

FD Discretization Consider the diffusion equation (3.10) with a ∈ C([0, 1]). Take
a discretization parameter n ∈ N, fix a set of grid points 0 = x0 < x1 < . . . <

xn+1 = 1 and define the corresponding stepsizes hj = xj−xj−1, j = 1, . . . , n+1.
For each j = 1, . . . , n, we approximate−(a(x)u′(x))′|x=xj by the FD formula

− (a(x)u′(x))′|x=xj ≈ −
a(xj + hj+1

2
)u′(xj + hj+1

2
)− a(xj − hj

2
)u′(xj − hj

2
)

hj+1

2
+ hj

2

≈ −
a(xj + hj+1

2
)
u(xj+1)− u(xj )

hj+1
− a(xj − hj

2
)
u(xj )− u(xj−1)

hj
hj+1

2
+ hj

2

which is equal to
2

hj + hj+1
times

− a(xj −
hj

2
)

hj
u(xj−1)+

(
a(xj − hj

2
)

hj
+ a(xj +

hj+1

2
)

hj+1

)
u(xj )

− a(xj +
hj+1

2
)

hj+1
u(xj+1).

This means that the nodal values of the solution u satisfy (approximately) the
following linear system:

− a(xj −
hj

2
)

hj
u(xj−1)+

(
a(xj − hj

2
)

hj
+ a(xj +

hj+1

2
)

hj+1

)
u(xj )

− a(xj +
hj+1

2
)

hj+1
u(xj+1)

= hj + hj+1

2
f (xj ), j = 1, . . . , n.

We then approximate the solution by the piecewise linear function that takes the
value uj in xj for j = 0, . . . , n + 1, where u0 = α, un+1 = β, and u =
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(u1, . . . , un)
T solves

− a(xj −
hj

2
)

hj
uj−1 +

(
a(xj − hj

2
)

hj
+ a(xj +

hj+1

2
)

hj+1

)
uj −

a(xj + hj+1

2
)

hj+1
uj+1

= hj + hj+1

2
f (xj ), j = 1, . . . , n.

The matrix of this linear system is the n× n tridiagonal symmetric matrix given by

tridiagn

[
− a(xj −

hj

2
)

hj
,
a(xj − hj

2
)

hj
+ a(xj +

hj+1

2
)

hj+1
, −a(xj +

hj+1

2
)

hj+1

]
. (3.46)

GLT Analysis of the FD DiscretizationMatrices Let h = 1
n+1 and x̂j = jh, j =

0, . . . , n + 1. In the following, we assume that the set of points {x0, x1, . . . , xn+1}
is obtained as the mapping of the uniform grid {x̂0, x̂1, . . . , x̂n+1} through a fixed
functionG, i.e., xj = G(x̂j ) for j = 0, . . . , n+ 1, where G : [0, 1] → [0, 1] is an
increasing and bijective map, independent of the mesh parameter n. The resulting
FD discretization matrix (3.46) will be denoted by AG,n in order to emphasize its
dependence on G. In formulas,

AG,n = tridiagn

[
− a(G(x̂j)−

hj

2
)

hj
,
a(G(x̂j )− hj

2
)

hj
(3.47)

+ a(G(x̂j )+
hj+1

2
)

hj+1
, −a(G(x̂j)+

hj+1

2
)

hj+1

]

with

hj = G(x̂j )−G(x̂j−1), j = 1, . . . , n+ 1.

Theorem 9 Let a ∈ C([0, 1]). Suppose G : [0, 1] → [0, 1] is an increasing
bijective map in C1([0, 1]) and there exist at most finitely many points x̂ such that
G′(x̂) = 0. Then

{ 1

n+ 1
AG,n

}
n
∼GLT

a(G(x̂))

G′(x̂)
(2− 2 cos θ) (3.48)

and

{ 1

n+ 1
AG,n

}
n
∼σ, λ a(G(x̂))

G′(x̂)
(2− 2 cos θ). (3.49)
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Proof We only prove (3.48) because (3.49) follows immediately from (3.48) and
GLT1 as the matrices AG,n are symmetric. Since G ∈ C1([0, 1]), for every j =
1, . . . , n there exist αj ∈ [x̂j−1, x̂j ] and βj ∈ [x̂j , x̂j+1] such that

hj = G(x̂j )−G(x̂j−1) = G′(αj )h = (G′(x̂j )+ δj )h, (3.50)

hj+1 = G(x̂j+1)−G(x̂j ) = G′(βj )h = (G′(x̂j )+ εj )h, (3.51)

where

δj = G′(αj )−G′(x̂j ),
εj = G′(βj )−G′(x̂j ).

Note that

|δj |, |εj | ≤ ωG′(h), j = 1, . . . , n,

where ωG′ is the modulus of continuity ofG′. In view of (3.50) and (3.51), we have,
for each j = 1, . . . , n,

a
(
G(x̂j )− hj

2

)
= a

(
G(x̂j )− h

2
(G′(x̂j )+ δj )

)
= a(G(x̂j ))+ μj , (3.52)

a
(
G(x̂j )+ hj+1

2

)
= a

(
G(x̂j )+ h

2
(G′(x̂j )+ εj )

)
= a(G(x̂j ))+ ηj , (3.53)

where

μj = a
(
G(x̂j )− h

2
(G′(x̂j )+ δj )

)
− a(G(x̂j)),

ηj = a
(
G(x̂j )+ h

2
(G′(x̂j )+ εj )

)
− a(G(x̂j )).

This time

|μj |, |ηj | ≤ CGωa(h), j = 1, . . . , n,

where ωa is the modulus of continuity of a and CG is a constant depending only on
G. Substituting (3.50)–(3.53) in (3.47), we obtain

1

n+ 1
AG,n = hAG,n (3.54)

= tridiagn

[
− a(G(x̂j ))+ μj

G′(x̂j )+ δj ,
a(G(x̂j ))+ μj
G′(x̂j )+ δj

+ a(G(x̂j ))+ ηj
G′(x̂j )+ εj , −

a(G(x̂j ))+ ηj
G′(x̂j )+ εj

]
.
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Let x̃j = j
n

for j = 1, . . . , n and consider the matrix

Dn

(a(G(x̂))
G′(x̂)

)
Tn(2−2 cos θ) = tridiagn

[
− a(G(x̃j ))

G′(x̃j )
, 2
a(G(x̃j ))

G′(x̃j )
,−a(G(x̃j ))

G′(x̃j )

]
.

(3.55)

In view of the inequality |x̂j − x̃j | ≤ h, which is satisfied for all j = 1, . . . , n,
the matrix (3.55) seems to be an ‘approximation’ of 1

n+1AG,n; cf. (3.54) and (3.55).
Since the function a(G(x̂))/G′(x̂) is continuous a.e., GLT3 and GLT4 yield{

Dn

(a(G(x̂))
G′(x̂)

)
Tn(2− 2 cos θ)

}
n

∼GLT
a(G(x̂))

G′(x̂)
(2− 2 cos θ).

We are going to show that

{
Dn

(a(G(x̂))
G′(x̂)

)
Tn(2− 2 cos θ)

}
n

a.c.s.−→
{ 1

n+ 1
AG,n

}
n
. (3.56)

Once this is proved, (3.48) follows immediately from GLT7.
We first prove (3.56) in the case whereG′(x̂) does not vanish over [0, 1], so that

mG′ = min
x̂∈[0,1]

G′(x̂) > 0.

In this case, we will show directly that ‖Zn‖ → 0, where

Zn = 1

n+ 1
AG,n −Dn

(a(G(x̂))
G′(x̂)

)
Tn(2− 2 cos θ). (3.57)

The matrix Zn in (3.57) is tridiagonal and a straightforward computation based
on (3.54)–(3.55) shows that all its components are bounded in modulus by a quantity
that depends only on n,G, a and that converges to 0 as n → ∞. For example, if
j = 2, . . . , n, then

|(Zn)j,j−1| =
∣∣∣∣a(G(x̂j ))+ μjG′(x̂j )+ δj − a(G(x̃j ))

G′(x̃j )

∣∣∣∣
≤
∣∣∣∣a(G(x̂j))+ μjG′(x̂j )+ δj − a(G(x̂j))

G′(x̂j )+ δj
∣∣∣∣+

∣∣∣∣ a(G(x̂j ))G′(x̂j )+ δj −
a(G(x̂j))

G′(x̂j )

∣∣∣∣
+
∣∣∣∣a(G(x̂j ))G′(x̂j )

− a(G(x̃j ))
G′(x̃j )

∣∣∣∣
=
∣∣∣∣ μj

G′(x̂j )+ δj
∣∣∣∣+

∣∣∣∣ a(G(x̂j ))δj

G′(x̂j )(G′(x̂j )+ δj )
∣∣∣∣+

∣∣∣∣a(G(x̂j ))G′(x̂j )
− a(G(x̃j))

G′(x̃j )

∣∣∣∣
≤ CGωa(h)

mG′
+ ‖a‖∞ωG′(h)

m2
G′

+ ωa(G)/G′(h), (3.58)

where in the last inequality we used the fact that G′(x̂j ) + δj = G′(αj ) by (3.50).
Thus, ‖Zn‖ → 0 as n→∞ by (3.1).
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Now we consider the case where G has a finite number of points x̂ where
G′(x̂) = 0. In this case, the previous argument does not work because mG′ = 0.
However, we can still prove (3.56) in the following way. Let x̂(1), . . . , x̂(s) be the
points where G′ vanishes, and consider the balls (intervals) B(x̂(k), 1

m
) = {x̂ ∈

[0, 1] : |x̂ − x̂(k)| < 1
m
}. The function G′ is continuous and positive on the

complement of the union
⋃s
k=1 B(x̂

(k), 1
m
), so

mG′, m = min
x̂∈[0,1]\⋃sk=1 B(x̂

(k), 1
m
)

G′(x̂) > 0.

For all indices j = 1, . . . , n such that x̂j ∈ [0, 1]\⋃s
k=1 B(x̂

(k), 1
m
), the

components in the j th row of the matrix (3.57) are bounded in modulus by a
quantity that depends only on n,m,G, a and that converges to 0 as n → ∞. This
becomes immediately clear if we note that, for such indices j , the inequality (3.58)
holds unchanged with mG′ replaced by mG′, m and with ωa(G)/G′ replaced by
ωa(G)/G′,m, the modulus of continuity of a(G)/G′ over [0, 1]\⋃s

k=1 B(x̂
(k), 1

m
).

The number of remaining rows of Zn (the rows corresponding to indices j such that
x̂j ∈⋃s

k=1 B(x̂
(k), 1

m
)) is at most 2s(n+1)/m+s. Indeed, each intervalB(x̂(k), 1

m
)

has length 2/m (at most) and can contain at most 2(n + 1)/m + 1 grid points x̂j .
Thus, for every n,m we can split the matrix Zn into the sum of two terms, i.e.,

Zn = Rn,m +Nn,m,
where Nn,m is obtained from Zn by setting to zero all the rows corresponding to
indices j such that x̂j ∈ ⋃s

k=1 B(x̂
(k), 1

m
) and Rn,m = Zn − Nn,m is obtained

from Zn by setting to zero all the rows corresponding to indices j such that x̂j ∈
[0, 1]\⋃s

k=1 B(x̂
(k), 1

m
). From the above discussion we have

lim
n→∞‖Nn,m‖ = 0

for all m, and

rank(Rn,m) ≤ 2s(n+ 1)

m
+ s

for all m,n. In particular, for each m we can choose nm such that, for n ≥ nm,
rank(Rn,m) ≤ 3sn/m and ‖Nn,m‖ ≤ 1/m. The convergence (3.56) now follows
from the definition of a.c.s. ��

An increasing bijective mapG : [0, 1] → [0, 1] in C1([0, 1]) is said to be regular
ifG′(x̂) �= 0 for all x̂ ∈ [0, 1] and is said to be singular otherwise, i.e., if G′(x̂) = 0
for some x̂ ∈ [0, 1]. If G is singular, any point x̂ ∈ [0, 1] such that G′(x̂) = 0 is
referred to as a singularity point (or simply a singularity) ofG. The choice of a map
G with one or more singularity points corresponds to adopting a local refinement
strategy, according to which the grid points xj rapidly accumulate at the G-images
of the singularities as n increases. For example, if

G(x̂) = x̂q , q > 1, (3.59)
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then 0 is a singularity of G (becauseG′(0) = 0) and the grid points

xj = G(x̂j ) =
( j

n+ 1

)q
, j = 0, . . . , n+ 1,

rapidly accumulate at G(0) = 0 as n→ ∞. We note that, whenever G is singular,
the symbol in (3.48) is unbounded (except in some rare cases where a(G(x̂)) and
G′(x̂) vanish simultaneously).

3.3.3 FE Discretization of Differential Equations

3.3.3.1 FE Discretization of Convection-Diffusion-Reaction Equations

Consider the following convection-diffusion-reaction problem in divergence form
with Dirichlet boundary conditions:

{
−(a(x)u′(x))′ + b(x)u′(x)+ c(x)u(x) = f (x), x ∈ (0, 1),
u(0) = u(1) = 0,

(3.60)

where f ∈ L2([0, 1]) and the coefficients a, b, c are only assumed to be in
L∞([0, 1]). These sole assumptions are enough to perform the GLT analysis of the
matrices arising from the FE discretization of (3.60). In this sense, we are going to
see that the theory of GLT sequences allows one to derive the singular value and
spectral distribution of DE discretization matrices under very weak hypotheses on
the DE coefficients.

FE Discretization We consider the approximation of (3.60) by classical linear FEs
on a uniform mesh in [0, 1] with stepsize h = 1

n+1 . We briefly describe here this
approximation technique and for more details we refer the reader to [45, Chapter 4]
or to any other good book on FEs. We first recall from [14, Chapter 8] that, if
Ω ⊂ R is a bounded interval whose endpoints are, say, α and β,H 1(Ω) denotes the
(Sobolev) space of functions v ∈ L2(Ω) possessing a weak (Sobolev) derivative in
L2(Ω). We also recall that each v ∈ H 1(Ω) coincides a.e. with a continuous func-
tion in C(Ω), and H 1(Ω) can also be defined as the following subspace of C(Ω):

H 1(Ω) =
{
v ∈ C(Ω) : v is differentiable a.e. with v′ ∈ L2(Ω),

v(x) = v(α) +
∫ x

α

v′(y)dy for all x ∈ Ω
}
.

In this definition, the weak derivative of a v ∈ H 1(Ω) is just the classical derivative
v′ (which exists a.e.). Let

H 1
0 (Ω) = {v ∈ H 1(Ω) : v(α) = v(β) = 0}.
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The weak form of (3.60) reads as follows [14, Chapter 8]: find u ∈ H 1
0 ([0, 1]) such

that

a(u,w) = f(w), ∀w ∈ H 1
0 ([0, 1]),

where

a(u,w) =
∫ 1

0
a(x)u′(x)w′(x)dx +

∫ 1

0
b(x)u′(x)w(x)dx +

∫ 1

0
c(x)u(x)w(x)dx,

f(w) =
∫ 1

0
f (x)w(x)dx.

Let h = 1
n+1 and xi = ih, i = 0, . . . , n + 1. In the linear FE approach based on

the uniform mesh {x0, . . . , xn+1}, we fix the subspace Wn = span(ϕ1, . . . , ϕn) ⊂
H 1

0 ([0, 1]), where ϕ1, . . . , ϕn are the so-called hat-functions:

ϕi(x) = x − xi−1

xi − xi−1
χ[xi−1, xi )(x)+

xi+1 − x
xi+1 − xi χ[xi , xi+1)(x), i = 1, . . . , n;

(3.61)

see Fig. 3.1. Note that Wn is the space of piecewise linear functions corresponding
to the sequence of points 0 = x0 < x1 < . . . < xn+1 = 1 and vanishing on the
boundary of the domain [0, 1]. In formulas,

Wn =
{
s : [0, 1] → R : s∣∣∣[ i

n+1 ,
i+1
n+1

) ∈ P1, i = 0, . . . , n, s(0) = s(1) = 0
}
,

where P1 is the space of polynomials of degree less than or equal to 1. We look
for an approximation uWn of u by solving the following (Galerkin) problem: find
uWn ∈ Wn such that

a(uWn, w) = f(w), ∀w ∈ Wn.

Fig. 3.1 Graph of the hat-functions ϕ1, . . . , ϕn for n = 9
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Since {ϕ1, . . . , ϕn} is a basis of Wn, we can write uWn =
∑n
j=1 uj ϕj for a unique

vector u = (u1, . . . , un)
T . By linearity, the computation of uWn (i.e., of u) reduces

to solving the linear system

Anu = f,

where f = (f(ϕ1), . . . , f(ϕn))T and An is the stiffness matrix,

An = [a(ϕj , ϕi)]ni,j=1.

Note that An admits the following decomposition:

An = Kn + Zn, (3.62)

where

Kn =
[∫ 1

0
a(x)ϕ′j (x)ϕ′i(x)dx

]n
i,j=1

(3.63)

is the (symmetric) diffusion matrix and

Zn =
[∫ 1

0
b(x)ϕ′j (x)ϕi(x)dx

]n
i,j=1

+
[∫ 1

0
c(x)ϕj (x)ϕi(x)dx

]n
i,j=1

(3.64)

is the sum of the convection and reaction matrix.

GLT Analysis of the FE Discretization Matrices Using the theory of GLT
sequences we now derive the spectral and singular value distribution of the sequence
of normalized stiffness matrices { 1

n+1An}n.

Theorem 10 If a, b, c ∈ L∞([0, 1]) then
{ 1

n+ 1
An

}
n
∼GLT a(x)(2− 2 cos θ) (3.65)

and

{ 1

n+ 1
An

}
n
∼σ, λ a(x)(2− 2 cos θ). (3.66)

Proof The proof consists of the following steps. Throughout the proof, the letter C
will denote a generic constant independent of n.

Step 1 We show that

∥∥∥ 1

n+ 1
Kn

∥∥∥ ≤ C (3.67)



3 GLT Sequences 197

and

∥∥∥ 1

n+ 1
Zn

∥∥∥ ≤ C/n. (3.68)

To prove (3.67), we note that Kn is a banded (tridiagonal) matrix, due to the
local support property supp(ϕi) = [xi−1, xi+1], i = 1, . . . , n. Moreover, by the
inequality |ϕ′i(x)| ≤ n+ 1, for all i, j = 1, . . . , n we have

|(Kn)ij | =
∣∣∣∣
∫ 1

0
a(x)ϕ′j (x)ϕ′i(x)dx

∣∣∣∣ =
∣∣∣∣
∫ xi+1

xi−1

a(x)ϕ′j (x)ϕ′i(x)dx
∣∣∣∣

≤ (n+ 1)2‖a‖L∞
∫ xi+1

xi−1

dx = 2(n+ 1)‖a‖L∞ .

Thus, the components of the tridiagonal matrix 1
n+1Kn are bounded (in modulus)

by 2‖a‖L∞ , and (3.67) follows from (3.1).
To prove (3.68), we follow the same argument as for the proof of (3.67). Due to

the local support property of the hat-functions, Zn is tridiagonal. Moreover, by the
inequalities |ϕi(x)| ≤ 1 and |ϕ′i (x)| ≤ n+ 1, for all i, j = 1, . . . , n we have

|(Zn)ij | =
∣∣∣∣
∫ xi+1

xi−1

b(x)ϕ′j (x)ϕi(x)dx +
∫ xi+1

xi−1

c(x)ϕj (x)ϕi(x)dx

∣∣∣∣
≤ 2‖b‖L∞ + 2‖c‖L∞

n+ 1
,

and (3.68) follows from (3.1).

Step 2 Consider the linear operatorKn(·) : L1([0, 1])→ R
n×n,

Kn(g) =
[∫ 1

0
g(x)ϕ′j (x)ϕ′i (x)dx

]n
i,j=1

.

By (3.63), we have Kn = Kn(a). The next three steps are devoted to show that

{ 1

n+ 1
Kn(g)

}
n
∼GLT g(x)(2− 2 cos θ), ∀ g ∈ L1([0, 1]). (3.69)

Once this is done, the theorem is proved. Indeed, by applying (3.69) with g = a
we immediately get { 1

n+1Kn}n ∼GLT a(x)(2 − 2 cos θ). Since { 1
n+1Zn}n is zero-

distributed by Step 1, (3.65) follows from the decomposition

1

n+ 1
An = 1

n+ 1
Kn + 1

n+ 1
Zn (3.70)
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and from GLT3–GLT4; and the singular value distribution in (3.66) follows from
GLT1. If b(x) = 0 identically, then 1

n+1An is symmetric and also the spectral
distribution in (3.66) follows from GLT1. If b(x) is not identically 0, the spectral
distribution in (3.66) follows from GLT2 applied to the decomposition (3.70),
taking into account what we have proved in Step 1.

Step 3 We first prove (3.69) in the constant-coefficient case where g = 1 identically.
In this case, a direct computation based on (3.61) shows that

Kn(1)=
[∫ 1

0
ϕ′j (x)ϕ′i (x)dx

]n
i,j=1

= 1

h

⎡
⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .
. . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎦ =

1

h
Tn(2−2 cos θ),

and the desired relation { 1
n+1Kn(1)}n ∼GLT 2 − 2 cos θ follows from GLT3. Note

that it is precisely the analysis of the constant-coefficient case considered in this step
that allows one to realize what is the correct normalization factor. In our case, this is

1
n+1 , which removes the 1

h
fromKn(1) and yields a normalized matrix 1

n+1Kn(1) =
Tn(2 − 2 cos θ), whose components are bounded away from 0 and ∞ (actually, in
the present case they are even constant).

Step 4 Now we prove (3.69) in the case where g ∈ C([0, 1]). We first illustrate
the idea, and then we go into the details. The proof is based on the fact that the
hat-functions (3.61) are ‘locally supported’. Indeed, the support [xi−1, xi+1] of the
ith hat-function ϕi(x) is located near the point i

n
∈ [xi, xi+1], and the amplitude of

the support tends to 0 as n → ∞. In this sense, the linear FE method considered
herein belongs to the family of the so-called ‘local’ methods. Since g(x) varies
continuously over [0, 1], the (i, j) entry of Kn(g) can be approximated as follows,
for every i, j = 1, . . . , n:

(Kn(g))ij =
∫ 1

0
g(x)ϕ′j (x)ϕ′i (x)dx =

∫ xi+1

xi−1

g(x)ϕ′j (x)ϕ′i (x)dx

≈ g
( i
n

) ∫ xi+1

xi−1

ϕ′j (x)ϕ′i(x)dx = g
( i
n

) ∫ 1

0
ϕ′j (x)ϕ′i(x)dx

= g
( i
n

)
(Kn(1))ij .

This approximation can be rewritten in matrix form as

Kn(g) ≈ Dn(g)Kn(1). (3.71)
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We will see that (3.71) implies that { 1
n+1Kn(g) − 1

n+1Dn(g)Kn(1)}n ∼σ 0,
and (3.69) will then follow from Step 3 and GLT3–GLT4.

Let us now go into the details. Since supp(ϕi) = [xi−1, xi+1] and |ϕ′i (x)| ≤ n+1,
for all i, j = 1, . . . , n we have

∣∣(Kn(g))ij − (Dn(g)Kn(1))ij ∣∣ =
∣∣∣∣
∫ 1

0

[
g(x)− g

( i
n

)]
ϕ′j (x)ϕ′i (x)dx

∣∣∣∣
≤ (n+ 1)2

∫ xi+1

xi−1

∣∣∣g(x)− g( i
n

)∣∣∣dx
≤ 2(n+ 1) ωg

( 2

n+ 1

)
.

It follows that each entry of the matrix Yn = 1
n+1Kn(g) − 1

n+1Dn(g)Kn(1) is

bounded in modulus by 2ωg( 2
n+1 ). Moreover, Yn is banded (tridiagonal), because

of the local support property of the hat-functions. Thus, both the 1-norm and the∞-
norm of Yn are bounded by C ωg( 2

n+1 ), and (3.1) yields ‖Yn‖ ≤ C ωg( 2
n+1 ) → 0

as n→∞. Hence, {Yn}n ∼σ 0, which implies (3.69) by Step 3 and GLT3–GLT4.

Step 5 Finally, we prove (3.69) in the general case where g ∈ L1([0, 1]). By the
density of C([0, 1]) in L1([0, 1]), there exist continuous functions gm ∈ C([0, 1])
such that gm → g in L1([0, 1]). By Step 4,

{ 1

n+ 1
Kn(gm)

}
n
∼GLT gm(x)(2− 2 cos θ). (3.72)

Moreover,

gm(x)(2− 2 cos θ)→ g(x)(2− 2 cos θ) in measure. (3.73)

We show that

{ 1

n+ 1
Kn(gm)

}
n

a.c.s.−→
{ 1

n+ 1
Kn(g)

}
n
. (3.74)

Since
∑n
i=1 |ϕ′i (x)| ≤ 2(n+ 1) for all x ∈ [0, 1], by (3.4) we obtain

‖Kn(g)−Kn(gm)‖1 ≤
n∑

i,j=1

|(Kn(g))ij − (Kn(gm))ij |

=
n∑

i,j=1

∣∣∣∣
∫ 1

0

[
g(x)− gm(x)

]
ϕ′j (x)ϕ′i(x)dx

∣∣∣∣
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≤
∫ 1

0

∣∣g(x)− gm(x)∣∣ n∑
i,j=1

|ϕ′j (x)| |ϕ′i(x)|dx

≤ 4(n+ 1)2‖g − gm‖L1

and ∥∥∥ 1

n+ 1
Kn(g)− 1

n+ 1
Kn(gm)

∥∥∥
1
≤ Cn‖g − gm‖L1 .

Thus, { 1
n+1Kn(gm)}n

a.c.s.−→ { 1
n+1Kn(g)}n by ACS3. In view of (3.72)–(3.74), the

relation (3.69) follows from GLT7. ��
Remark 6 (Formal Structure of the Symbol) Problem (3.60) can be formally
rewritten as follows:{

−a(x)u′′(x)+ (b(x)− a′(x))u′(x)+ c(x)u(x) = f (x), x ∈ (0, 1),
u(0) = u(1) = 0.

(3.75)
It is then clear that the symbol a(x)(2 − 2 cos θ) has the same formal structure of
the higher-order differential operator −a(x)u′′(x) associated with (3.75) (as in the
FD case; see Remark 1). The formal analogy becomes even more evident if we note
that 2− 2 cosθ is the trigonometric polynomial in the Fourier variable coming from
the FE discretization of the (negative) second derivative−u′′(x). Indeed, as we have
seen in Step 3 of the proof of Theorem 10, 2− 2 cosθ is the symbol of the sequence
of FE diffusion matrices { 1

n+1Kn(1)}n, which arises from the FE approximation of
the Poisson problem

{−u′′(x) = f (x), x ∈ (0, 1),
u(0) = u(1) = 0,

that is, problem (3.60) in the case where a(x) = 1 and b(x) = c(x) = 0 identically.

3.3.3.2 FE Discretization of a System of Equations

In this section we consider the linear FE approximation of a system of differential
equations, namely

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(a(x)u′(x))′ + v′(x) = f (x), x ∈ (0, 1),
−u′(x)− ρv(x) = g(x), x ∈ (0, 1),

u(0) = 0, u(1) = 0,

v(0) = 0, v(1) = 0,

(3.76)
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where ρ is a constant and a is only assumed to be in L1([0, 1]). As we shall see, the
resulting discretization matrices appear in the so-called saddle point form [6, p. 3],
and we will illustrate the way to compute the asymptotic spectral and singular value
distribution of their Schur complements using the theory of GLT sequences. It is
worth noting that the Schur complement is a key tool for the numerical treatment
of the related linear systems [6, Section 5]. The analysis of this section is similar to
the analysis in [25, Section 2], but the discretization technique considered herein is
a pure FE approximation, whereas in [25, Section 2] the authors adopted a mixed
FD/FE technique.

FE Discretization We consider the approximation of (3.76) by linear FEs on a
uniform mesh in [0, 1] with stepsize h = 1

n+1 . Let us describe it shortly. The weak

form of (3.76) reads as follows1: find u, v ∈ H 1
0 ([0, 1]) such that, for all w ∈

H 1
0 ([0, 1]),⎧⎨

⎩
∫ 1

0 a(x)u
′(x)w′(x)dx + ∫ 1

0 v
′(x)w(x)dx = ∫ 1

0 f (x)w(x)dx,

− ∫ 1
0 u

′(x)w(x)dx − ρ ∫ 1
0 v(x)w(x)dx =

∫ 1
0 g(x)w(x)dx.

(3.77)

Let h = 1
n+1 and xi = ih, i = 0, . . . , n+ 1. In the linear FE approach based on the

mesh {x0, . . . , xn+1}, we fix the subspace Wn = span(ϕ1, . . . , ϕn) ⊂ H 1
0 ([0, 1]),

where ϕ1, . . . , ϕn are the hat-functions in (3.61) (see also Fig. 3.1). Then, we look
for approximations uWn , vWn of u, v by solving the following (Galerkin) problem:
find uWn , vWn ∈ Wn such that, for all w ∈ Wn,⎧⎪⎨

⎪⎩
∫ 1

0 a(x)u
′
Wn
(x)w′(x)dx + ∫ 1

0 v
′
Wn
(x)w(x)dx = ∫ 1

0 f (x)w(x)dx,

− ∫ 1
0 u

′
Wn
(x)w(x)dx − ρ ∫ 1

0 vWn (x)w(x)dx =
∫ 1

0 g(x)w(x)dx.

Since {ϕ1, . . . , ϕn} is a basis of Wn, we can write uWn =
∑n
j=1 uj ϕj and vWn =∑n

j=1 vj ϕj for unique vectors u = (u1, . . . , un)
T and v = (v1, . . . , vn)

T . By
linearity, the computation of uWn , vWn (i.e., of u, v) reduces to solving the linear
system

A2n

[
u
v

]
=
[
f
g

]
,

1We are proceeding formally here, because the assumption a ∈ L1([0, 1]) is too weak to ensure
that the weak form (3.77) is well-defined. Keep in mind, however, that our formal derivation is
correct if a ∈ L∞([0, 1]).



202 C. Garoni and S. Serra-Capizzano

where f = [∫ 1
0 f (x)ϕi(x)dx

]n
i=1, g =

[∫ 1
0 g(x)ϕi(x)dx

]n
i=1 andA2n is the stiffness

matrix, which possesses the following saddle point structure:

A2n =
[
Kn Hn

HTn −ρMn

]
.

Here, the blocksKn,Hn,Mn are square matrices of size n, and precisely

Kn =
[∫ 1

0
a(x)ϕ′j (x)ϕ′i (x)dx

]n
i,j=1

,

Hn =
[∫ 1

0
ϕ′j (x)ϕi(x)dx

]n
i,j=1

= 1

2

⎡
⎢⎢⎢⎢⎢⎣

0 1
−1 0 1

. . .
. . .
. . .

−1 0 1
−1 0

⎤
⎥⎥⎥⎥⎥⎦ = −i Tn(sin θ),

Mn =
[∫ 1

0
ϕj (x)ϕi(x)dx

]n
i,j=1

= h
6

⎡
⎢⎢⎢⎢⎢⎣

4 1
1 4 1
. . .
. . .
. . .

1 4 1
1 4

⎤
⎥⎥⎥⎥⎥⎦ =

h

3
Tn(2+ cos θ).

Note that Kn is exactly the matrix appearing in (3.63). Note also that the matrices
Kn, Mn are symmetric, while Hn is skew-symmetric:HTn = −Hn = i Tn(sin θ).

GLT Analysis of the Schur Complements of the FE Discretization Matrices
Assume that the matrices Kn are invertible. This is satisfied, for example, if a >
0 a.e., in which case the matrices Kn are positive definite. The (negative) Schur
complement of A2n is the symmetric matrix given by

Sn = ρMn+HTn K−1
n Hn = ρh

3
Tn(2+cos θ)+Tn(sin θ)K−1

n Tn(sin θ). (3.78)

In the following, we perform the GLT analysis of the sequence of normalized Schur
complements {(n + 1)Sn}n, and we compute its asymptotic spectral and singular
value distribution under the additional necessary assumption that a �= 0 a.e.

Theorem 11 Let ρ ∈ R and a ∈ L1([0, 1]). Suppose that the matrices Kn are
invertible and that a �= 0 a.e. Then

{(n+ 1)Sn}n ∼GLT ς(x, θ) (3.79)
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and

{(n+ 1)Sn}n ∼σ, λ ς(x, θ), (3.80)

where

ς(x, θ) = ρ
3
(2+ cos θ)+ sin2 θ

a(x)(2− 2 cos θ)
.

Proof In view of (3.78), we have

(n+ 1)Sn = ρ
3
Tn(2+ cos θ)+ Tn(sin θ)

( 1

n+ 1
Kn

)−1
Tn(sin θ).

Moreover, by (3.69),

{ 1

n+ 1
Kn

}
n
=
{ 1

n+ 1
Kn(a)

}
n
∼GLT a(x)(2− 2 cos θ).

Therefore, under the assumption that a �= 0 a.e., the GLT relation (3.79) follows
from GLT3–GLT5. The singular value and spectral distributions in (3.80) follow
from (3.79) and GLT1 as the Schur complements Sn are symmetric. ��

3.3.4 IgA Discretization of Differential Equations

Isogeometric Analysis (IgA) is a modern and successful paradigm introduced in
[18, 40] for analyzing problems governed by DEs. Its goal is to improve the
connection between numerical simulation and Computer-Aided Design (CAD)
systems. The main idea in IgA is to use directly the geometry provided by CAD
systems and to approximate the solutions of DEs by the same type of functions
(usually, B-splines or NURBS). In this way, it is possible to save about 80% of
the CPU time, which is normally employed in the translation between two different
languages (e.g., between FEs and CAD or between FDs and CAD). In its original
formulation [18, 40], IgA employs Galerkin discretizations, which are typical of
the FE approach. In the Galerkin framework an efficient implementation requires
special numerical quadrature rules when constructing the resulting system of equa-
tions; see, e.g., [42]. To avoid this issue, isogeometric collocation methods have been
recently introduced in [1]. Detailed comparisons with IgA Galerkin have shown the
advantages of IgA collocation in terms of accuracy versus computational cost, in
particular when higher-order approximation degrees are adopted [49]. Within the
framework of IgA collocation, many applications have been successfully tackled,
showing its potential and flexibility. Interested readers are referred to the recent
review [47] and references therein. Section 3.3.4.1 is devoted to the isogeometric
collocation approach, whereas the more traditional isogeometric Galerkin methods
will be addressed in Sects. 3.3.4.2–3.3.4.3.
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3.3.4.1 B-Spline IgA Collocation Discretization of
Convection-Diffusion-Reaction Equations

Consider the convection-diffusion-reaction problem{
−(a(x)u′(x))′ + b(x)u′(x)+ c(x)u(x) = f (x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω, (3.81)

where Ω is a bounded open interval of R, a : Ω → R is a function in C1(Ω) and
b, c, f : Ω → R are functions in C(Ω). We consider the isogeometric collocation
approximation of (3.81) based on uniform B-splines of degree p ≥ 2. Since this
approximation technique is not as known as FDs or FEs, we describe it below in
some detail. For more on IgA collocation methods, see [1, 47].

Isogeometric Collocation Approximation Problem (3.81) can be reformulated as
follows:{

−a(x)u′′(x)+ s(x)u′(x)+ c(x)u(x) = f (x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω, (3.82)

where s(x) = b(x)− a′(x). In the standard collocation method, we choose a finite
dimensional vector space W , consisting of sufficiently smooth functions defined on
Ω and vanishing on the boundary ∂Ω ; we call W the approximation space. Then, we
introduce a set ofN = dimW collocation points {τ1, . . . , τN } ⊂ Ω and we look for
a function uW ∈ W satisfying the differential equation (3.82) at the points τi , i.e.,

−a(τi)u′′W (τi)+ s(τi)u′W (τi)+ c(τi)uW (τi) = f (τi), i = 1, . . . , N.

The function uW is taken as an approximation to the solution u of (3.82). If we fix
a basis {ϕ1, . . . , ϕN } for W , then we have uW = ∑N

j=1 uj ϕj for a unique vector

u = (u1, . . . , uN)
T , and, by linearity, the computation of uW (i.e., of u) reduces to

solving the linear system

Au = f,

where f = [
f (τi)

]N
i=1 and

A = [−a(τi)ϕ′′j (τi)+ s(τi)ϕ′j (τi )+ c(τi)ϕj (τi)]Ni,j=1

=
(

diag
i=1,...,N

a(τi)
)[−ϕ′′j (τi )]Ni,j=1 +

(
diag

i=1,...,N
s(τi)

)[
ϕ′j (τi )

]N
i,j=1

+
(

diag
i=1,...,N

c(τi)
)[
ϕj (τi)

]N
i,j=1 (3.83)

is the collocation matrix.
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Now, suppose that the physical domainΩ can be described by a global geometry
functionG : [0, 1] → Ω , which is invertible and satisfies G(∂([0, 1])) = ∂Ω . Let

{ϕ̂1, . . . , ϕ̂N } (3.84)

be a set of basis functions defined on the parametric (or reference) domain [0, 1]
and vanishing on the boundary ∂([0, 1]). Let

{τ̂1, . . . , τ̂N } (3.85)

be a set of N collocation points in (0, 1). In the isogeometric collocation approach,
we find an approximation uW of u by using the standard collocation method
described above, in which

• the approximation space is chosen as W = span(ϕ1, . . . ϕN), with

ϕi(x) = ϕ̂i(G−1(x)) = ϕ̂i(x̂), x = G(x̂), i = 1, . . . , N, (3.86)

• the collocation points in the physical domainΩ are defined as

τi = G(τ̂i), i = 1, . . . , N. (3.87)

The resulting collocation matrix A is given by (3.83), with the basis functions ϕi
and the collocation points τi defined as in (3.86)–(3.87).

Assuming that G and ϕ̂i , i = 1, . . . , N , are sufficiently regular, we can apply
standard differential calculus to express A in terms of G and ϕ̂i , τ̂i , i = 1, . . . , N .
Let us work out this expression. For any u : Ω → R, consider the corresponding
function û : [0, 1] → R, which is defined on the parametric domain by

û(x̂) = u(x), x = G(x̂). (3.88)

In other words, û(x̂) = u(G(x̂)).2 Then, u satisfies (3.82) if and only if û satisfies
the corresponding transformed problem

{
−aG(x̂)û′′(x̂)+ sG(x̂)û′(x̂)+ cG(x̂)û(x̂) = f (G(x̂)), x̂ ∈ (0, 1),
û(x̂) = 0, x̂ ∈ ∂((0, 1)),

(3.89)
where aG, sG, cG are, respectively, the transformed diffusion, convection, reaction
coefficient. They are given by

aG(x̂) = a(G(x̂))

(G′(x̂))2
, (3.90)

2Note that ϕ̂i (x̂) = ϕi(G(x̂)) for i = 1, . . . , N , so ϕ̂1, . . . , ϕ̂N are obtained from ϕ1, . . . , ϕN by
the rule (3.88). Moreover, the equation τi = G(τ̂i) is the same as the relation x = G(x̂) in (3.88).
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sG(x̂) = a(G(x̂))G
′′(x̂)

(G′(x̂))3
+ s(G(x̂))
G′(x̂)

, (3.91)

cG(x̂) = c(G(x̂)), (3.92)

for x̂ ∈ [0, 1]. The collocation matrix A in (3.83) can be expressed in terms of G
and ϕ̂i , τ̂i , i = 1, . . . , N , as follows:

A = [−aG(τ̂i )ϕ̂′′j (τ̂i)+ sG(τ̂i)ϕ̂′j (τ̂i)+ cG(τ̂i)ϕ̂j (τ̂i)]Ni,j=1

=
(

diag
i=1,...,N

aG(τ̂i)
)[−ϕ̂′′j (τ̂i)]Ni,j=1 +

(
diag

i=1,...,N
sG(τ̂i)

)[
ϕ̂′j (τ̂i)

]N
i,j=1

+
(

diag
i=1,...,N

cG(τ̂i )
)[
ϕ̂j (τ̂i )

]N
i,j=1. (3.93)

In the IgA context, the geometry map G is expressed in terms of the functions
ϕ̂i , in accordance with the isoparametric approach [18, Section 3.1]. Moreover, the
functions ϕ̂i themselves are usually B-splines or their rational versions, the so-
called NURBS. In this section, the role of the ϕ̂i will be played by B-splines over
uniform knot sequences. Furthermore, we do not limit ourselves to the isoparametric
approach, but we allow the geometry map G to be any sufficiently regular function
from [0, 1] toΩ , not necessarily expressed in terms of B-splines. Finally, following
[1], the collocation points τ̂i will be chosen as the Greville abscissae corresponding
to the B-splines ϕ̂i .

B-Splines and Greville Abscissae For p, n ≥ 1, consider the uniform knot
sequence

t1 = · · · = tp+1 = 0 < tp+2 < · · · < tp+n < 1 = tp+n+1 = · · · = t2p+n+1,

(3.94)
where

ti+p+1 = i

n
, i = 0, . . . , n. (3.95)

The B-splines of degree p on this knot sequence are denoted by

Ni,[p] : [0, 1] → R, i = 1, . . . , n+ p, (3.96)

and are defined recursively as follows [19]: for 1 ≤ i ≤ n+ 2p,

Ni,[0](t) = χ[ti , ti+1)(t), t ∈ [0, 1]; (3.97)

for 1 ≤ k ≤ p and 1 ≤ i ≤ n+ 2p − k,

Ni,[k](t) = t − ti
ti+k − ti Ni,[k−1](t)+ ti+k+1 − t

ti+k+1 − ti+1
Ni+1,[k−1](t), t ∈ [0, 1],

(3.98)
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where we assume that a fraction with zero denominator is zero. The Greville
abscissa ξi,[p] associated with the B-spline Ni,[p] is defined by

ξi,[p] = ti+1 + ti+2 + . . .+ ti+p
p

, i = 1, . . . , n+ p. (3.99)

We know from [19] that the functions N1,[p], . . . , Nn+p,[p] belong to
Cp−1([0, 1]) and form a basis for the spline space

{
s ∈ Cp−1([0, 1]) : s∣∣∣[ in , i+1

n

) ∈ Pp, i = 0, . . . , n− 1
}
,

where Pp is the space of polynomials of degree less than or equal to p. Moreover,
N1,[p], . . . , Nn+p,[p] possess the following properties [19].

• Local support property:

supp(Ni,[p]) = [ti , ti+p+1], i = 1, . . . , n+ p. (3.100)

• Vanishment on the boundary:

Ni,[p](0) = Ni,[p](1) = 0, i = 2, . . . , n+ p − 1. (3.101)

• Nonnegative partition of unity:

Ni,[p](t) ≥ 0, t ∈ [0, 1], i = 1, . . . , n+ p, (3.102)

n+p∑
i=1

Ni,[p](t) = 1, t ∈ [0, 1]. (3.103)

• Bounds for derivatives:

n+p∑
i=1

|N ′i,[p](t)| ≤ 2pn, t ∈ [0, 1], (3.104)

n+p∑
i=1

|N ′′i,[p](t)| ≤ 4p(p − 1)n2, t ∈ [0, 1]. (3.105)

Note that the derivatives N ′1,[p](t), . . . , N ′n+p,[p](t) (resp., N ′′1,[p](t), . . . ,
N ′′n+p,[p](t)) may not be defined at some of the points 1

n
, . . . , n−1

n
when p = 1

(resp., p = 1, 2). In the summations (3.104)–(3.105), it is understood that the
undefined values are counted as 0.
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Let φ[q] be the cardinal B-spline of degree q ≥ 0 over the uniform knot sequence
{0, 1, . . . , q + 1}, which is defined recursively as follows [19]:

φ[0](t) = χ[0,1)(t), t ∈ R, (3.106)

φ[q](t) = t

q
φ[q−1](t)+ q + 1− t

q
φ[q−1](t − 1), t ∈ R, q ≥ 1.

(3.107)

It is known from [15, 19] that φ[q] ∈ Cq−1(R) and

supp(φ[q]) = [0, q + 1]. (3.108)

Moreover, the following symmetry property holds by [31, Lemma 3] (see also [15,
p. 86]):

φ
(r)
[q]
(q + 1

2
+ t

)
= (−1)rφ(r)[q]

(q + 1

2
− t

)
, t ∈ R, r, q ≥ 0, (3.109)

where φ(r)[q] is the rth derivative of φ[q]. Note that φ(r)[q](t) is defined for all t ∈ R if
r < q , and for all t ∈ R\{0, 1, . . . , q + 1} if r ≥ q . Nevertheless, (3.109) holds
for all t ∈ R, because when the left-hand side is not defined, the right-hand side
is not defined as well. Concerning the L2 inner products of derivatives of cardinal
B-splines, it was proved in [31, Lemma 4] that

∫
R

φ
(r1)[q1](t)φ

(r2)[q2](t + τ )dt = (−1)r1φ(r1+r2)[q1+q2+1](q1 + 1+ τ )

= (−1)r2φ(r1+r2)[q1+q2+1](q2 + 1− τ )
(3.110)

for every τ ∈ R and every q1, q2, r1, r2 ≥ 0. Equation (3.110) is a property of the
more general family of box splines [54] and generalizes the result appearing in [15,
p. 89]. Cardinal B-splines are of interest herein, because the so-called central basis
functionsNi,[p], i = p + 1, . . . , n, are uniformly shifted and scaled versions of the
cardinal B-spline φ[p]. This is illustrated in Figs. 3.2 and 3.3 for p = 3. In formulas,
we have

Ni,[p](t) = φ[p](nt− i+p+1), t ∈ [0, 1], i = p+1, . . . , n, (3.111)

and, consequently,

N ′i,[p](t) = nφ′[p](nt − i + p + 1), t ∈ [0, 1], i = p + 1, . . . , n,
(3.112)

N ′′i,[p](t) = n2φ′′[p](nt − i + p + 1), t ∈ [0, 1], i = p + 1, . . . , n.
(3.113)
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Fig. 3.2 Graph of the B-splines Ni,[p], i = 1, . . . , n+ p, for p = 3 and n = 10; the central basis
functions Ni,[p], i = p + 1, . . . , n, are depicted in blue

Fig. 3.3 Graph of the cubic cardinal B-spline φ[3]

Remark 7 For degree p = 1, the central B-spline basis functions N2,[1], . . . , Nn,[1]
are the hat-functions ϕ1, . . . , ϕn−1 corresponding to the grid points

xi = ih, i = 0, . . . , n, h = 1

n
.

To see this, simply write (3.98) for p = 1 and compare it with (3.61). The graph of
N2,[1], . . . , Nn,[1] for n = 10 is depicted in Fig. 3.1.

In view of (3.99) and (3.100), the Greville abscissa ξi,[p] lies in the support
of Ni,[p],

ξi,[p] ∈ supp(Ni,[p]) = [ti , ti+p+1], i = 1, . . . , n+ p. (3.114)

The central Greville abscissae ξi,[p], i = p + 1, . . . , n, which are the Greville
abscissae associated with the central basis functions (3.111), simplify to

ξi,[p] = i

n
− p + 1

2n
, i = p + 1, . . . , n. (3.115)

The Greville abscissae are somehow equivalent, in an asymptotic sense, to the
uniform knots in [0, 1]. More precisely,

∣∣∣ξi,[p] − i

n+ p
∣∣∣ ≤ Cp

n
, i = 1, . . . , n+ p, (3.116)
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where Cp depends only on p. The proof of (3.116) is a matter of straightforward
computations; we leave the details to the reader.

B-Spline IgA Collocation Matrices In the IgA collocation approach based on
(uniform) B-splines, the basis functions ϕ̂1, . . . , ϕ̂N in (3.84) are chosen as the B-
splines N2,[p], . . . , Nn+p−1,[p] in (3.96), i.e.,

ϕ̂i = Ni+1,[p], i = 1, . . . , n+ p − 2. (3.117)

In this setting,N = n+p−2. Note that the boundary functionsN1,[p] andNn+p,[p]
are excluded because they do not vanish on the boundary ∂([0, 1]); see also Fig. 3.2.
As for the collocation points τ̂1 . . . , τ̂N in (3.85), they are chosen as the Greville
abscissae ξ2,[p], . . . , ξn+p−1,[p] in (3.99), i.e.,

τ̂i = ξi+1,[p], i = 1, . . . , n+ p − 2. (3.118)

In what follows we assume p ≥ 2, so as to ensure that N ′′j+1,[p](ξi+1,[p]) is
defined for all i, j = 1, . . . , n + p − 2. The collocation matrix (3.93) resulting
from the choices of ϕ̂i , τ̂i as in (3.117)–(3.118) will be denoted by A[p]G,n, in order to
emphasize its dependence on the geometry map G and the parameters n, p:

A
[p]
G,n =

[
− aG(ξi+1,[p])N ′′j+1,[p](ξi+1,[p])+ sG(ξi+1,[p])N ′j+1,[p](ξi+1,[p])

+ cG(ξi+1,[p])Nj+1,[p](ξi+1,[p])
]n+p−2

i,j=1

= D[p]n (aG)K [p]n +D[p]n (sG)H [p]n +D[p]n (cG)M [p]
n ,

where

D
[p]
n (v) = diag

i=1,...,n+p−2
v(ξi+1,[p])

is the diagonal sampling matrix containing the samples of the function v : [0, 1] →
R at the Greville abscissae, and

K
[p]
n = [−N ′′j+1,[p](ξi+1,[p])

]n+p−2
i,j=1 ,

H
[p]
n = [

N ′j+1,[p](ξi+1,[p])
]n+p−2
i,j=1 ,

M
[p]
n = [

Nj+1,[p](ξi+1,[p])
]n+p−2
i,j=1 .

Note that A[p]G,n can be decomposed as follows:

A
[p]
G,n = K [p]G,n + Z[p]G,n,
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where

K
[p]
G,n =

[
−aG(ξi+1,[p])N ′′j+1,[p](ξi+1,[p])

]n+p−2

i,j=1
= D[p]n (aG)K [p]n

is the diffusion matrix, i.e., the matrix resulting from the discretization of the higher-
order (diffusion) term in (3.82), and

Z
[p]
G,n =

[
sG(ξi+1,[p])N ′j+1,[p](ξi+1,[p])+ cG(ξi+1,[p])Nj+1,[p](ξi+1,[p])

]n+p−2

i,j=1

= D[p]n (sG)H [p]n +D[p]n (cG)M [p]
n

is the matrix resulting from the discretization of the terms in (3.82) with lower-
order derivatives (i.e., the convection and reaction terms). As already noticed in the
previous sections about FD and FE discretizations, the matrix Z[p]G,n can be regarded
as a ‘residual term’, since it comes from the discretization of the lower-order
differential operators. Indeed, we shall see that the norm of Z[p]G,n is negligible with

respect to the norm of the diffusion matrix K [p]G,n when the discretization parameter

n is large, because, after normalization by n2, it will turn out that ‖n−2Z
[p]
G,n‖ tends

to 0 as n→∞ (contrary to ‖n−2K
[p]
G,n‖, which remains bounded away from 0 and

∞).
Let us now provide an approximate construction of K [p]n , M [p]

n , H [p]n . This is
necessary for the GLT analysis of this section. We only construct the submatrices

[
(K

[p]
n )ij

]n−1
i,j=p,

[
(H

[p]
n )ij

]n−1
i,j=p,

[
(M

[p]
n )ij

]n−1
i,j=p, (3.119)

which are determined by the central basis functions (3.111) and by the central
Greville abscissae (3.115). Note that the submatrix [(K [p]n )ij ]n−1

i,j=p, when embedded
in any matrix of size n+ p − 2 at the right place (identified by the row and column
indices p, . . . , n − 1), provides an approximation of K [p]n up to a low-rank cor-
rection. A similar consideration also applies to the submatrices [(H [p]n )ij ]n−1

i,j=p and

[(M [p]
n )ij ]n−1

i,j=p . A direct computation based on (3.109), (3.111)–(3.113) and (3.115)
shows that, for i, j = p, . . . , n− 1,

(K
[p]
n )ij = −n2φ′′[p]

(p + 1

2
+ i − j

)
= −n2φ′′[p]

(p + 1

2
− i + j

)
,

(H
[p]
n )ij = nφ′[p]

(p + 1

2
+ i − j

)
= −nφ′[p]

(p + 1

2
− i + j

)
,

(M
[p]
n )ij = φ[p]

(p + 1

2
+ i − j

)
= φ[p]

(p + 1

2
− i + j

)
.
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Since their entries depend only on the difference i − j , the submatrices (3.119) are
Toeplitz matrices, and precisely

[
(K

[p]
n )ij

]n−1
i,j=p = n2

[
−φ′′[p]

(p + 1

2
− i + j

)]n−1

i,j=p
= n2 Tn−p(fp), (3.120)

[
(H

[p]
n )ij

]n−1
i,j=p = n

[
−φ′[p]

(p + 1

2
− i + j

)]n−1

i,j=p
= n i Tn−p(gp), (3.121)

[
(M

[p]
n )ij

]n−1
i,j=p =

[
φ[p]

(p + 1

2
− i + j

)]n−1

i,j=p
= Tn−p(hp), (3.122)

where

fp(θ) =
∑
k∈Z
−φ′′[p]

(p + 1

2
− k

)
eikθ

= −φ′′[p]
(p + 1

2

)
− 2

'p/2(∑
k=1

φ′′[p]
(p + 1

2
− k

)
cos(kθ), (3.123)

gp(θ) = −i
∑
k∈Z

−φ′[p]
(p + 1

2
− k

)
eikθ

= −2
'p/2(∑
k=1

φ′[p]
(p + 1

2
− k

)
sin(kθ), (3.124)

hp(θ) =
∑
k∈Z
φ[p]

(p + 1

2
− k

)
eikθ

= φ[p]
(p + 1

2

)
+ 2

'p/2(∑
k=1

φ[p]
(p + 1

2
− k

)
cos(kθ); (3.125)

note that we used (3.108)–(3.109) to simplify the expressions of fp(θ), gp(θ),
hp(θ). It follows from (3.120) that Tn−p(fp) is the principal submatrix of both

n−2K
[p]
n and Tn+p−2(fp) corresponding to the set of indices p, . . . , n− 1. Similar

results follow from (3.121)–(3.122), and so we obtain

n−2K
[p]
n = Tn+p−2(fp)+ R[p]n , rank(R[p]n ) ≤ 4(p − 1), (3.126)

−i n−1H
[p]
n = Tn+p−2(gp)+ S[p]n , rank(S[p]n ) ≤ 4(p − 1), (3.127)

M
[p]
n = Tn+p−2(hp)+ V [p]n , rank(V [p]n ) ≤ 4(p − 1). (3.128)
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To better appreciate the above construction, let us see two examples. We only
consider the case of the matrix K [p]n because for H [p]n and M [p]

n the situation is
the same. In the first example, we fix p = 3. The matrix K [3]n is given by

K [3]n = n
2

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

33 −7 −2
−9 15 −6

−6 12 −6
−6 12 −6

. . .
. . .
. . .

−6 12 −6
−6 12 −6

−6 15 −9
−2 −7 33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The submatrix Tn−2(f3) appears in correspondence of the highlighted box and we
have

f3(θ) = 1

6
(−6eiθ + 12− 6e−iθ ) = 2− 2 cos θ,

as given by (3.123) for p = 3. In the second example, we fix p = 4. The matrix
K
[4]
n is given by

K [4]n =
n2

96

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

855 −133 −71 −3
−81 243 −63 −27
−36 −36 132 −48 −12

−16 −44 120 −48 −12
−12 −48 120 −48 −12

−12 −48 120 −48 −12
. . .

. . .
. . .

. . .
. . .

−12 −48 120 −48 −12
−12 −48 120 −48 −12

−12 −48 120 −44 −16
−12 −48 132 −36 −36

−27 −63 243 −81
−3 −71 −133 855

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The submatrix Tn−3(f4) appears in correspondence of the highlighted box and we
have

f4(θ) = 1

96
(−12e2iθ − 48eiθ + 120− 48e−iθ − 12e−2iθ) = 5

4
− cos θ − 1

4
cos(2θ),

as given by (3.123) for p = 4.
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Before passing to the GLT analysis of the collocation matricesA[p]G,n, we prove the

existence of an n-independent bound for the spectral norms of n−2K
[p]
n , n−1H

[p]
n ,

M
[p]
n . Actually, one could also prove that the components of n−2K

[p]
n , n−1H

[p]
n ,

M
[p]
n do not depend on n as illustrated above for the matrix n−2K

[p]
n in the cases

p = 3, 4. However, for our purposes it suffices to show that, for every p ≥ 2, there
exists a constant C[p] such that, for all n,

‖n−2K
[p]
n ‖ ≤ C[p], ‖n−1H

[p]
n ‖ ≤ C[p], ‖M [p]

n ‖ ≤ C[p]. (3.129)

To prove (3.129), we note that K [p]n , H [p]n , M [p]
n are banded, with bandwidth

bounded by 2p+1. Indeed, if |i−j | > p, one can show that (K [p]n )ij = (H [p]n )ij =
(M

[p]
n )ij= 0 by using (3.114), which implies that ξi+1,[p] lies outside or on the

border of supp(Nj+1,[p]), whose intersection with supp(Ni+1,[p]) consists of at most
one of the knots tk . Moreover, by (3.102)–(3.105), for all i, j = 1, . . . , n + p − 2
we have

|(K [p]n )ij | = |N ′′j+1,[p](ξi+1,[p])| ≤ 4p(p − 1)n2,

|(H [p]n )ij | = |N ′j+1,[p](ξi+1,[p])| ≤ 2pn,

|(M [p]
n )ij | = |Nj+1,[p](ξi+1,[p])| ≤ 1.

Hence, (3.129) follows from (3.1).

GLT Analysis of the B-Spline IgA Collocation Matrices Assuming that the
geometry mapG possesses some regularity properties, we show that, for any p ≥ 2,
the sequence of normalized IgA collocation matrices {n−2A

[p]
G,n}n is a GLT sequence

whose symbol describes both its singular value and spectral distribution.

Theorem 12 Let Ω be a bounded open interval of R, let a ∈ C1(Ω) and b, c ∈
C(Ω). Let p ≥ 2 and let G : [0, 1] → Ω be such that G ∈ C2([0, 1]) and
G′(x̂) �= 0 for all x̂ ∈ [0, 1]. Then

{n−2A
[p]
G,n}n ∼GLT fG,p (3.130)

and

{n−2A
[p]
G,n}n ∼σ, λ fG,p, (3.131)

where

fG,p(x̂, θ) = aG(x̂)fp(θ) = a(G(x̂))

(G′(x̂))2
fp(θ) (3.132)

and fp(θ) is defined in (3.123).
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Proof The proof consists of the following steps. Throughout the proof, the letter C
will denote a generic constant independent of n.

Step 1 We show that

‖n−2K
[p]
G,n‖ ≤ C (3.133)

and

‖n−2Z
[p]
G,n‖ ≤ C/n. (3.134)

To prove (3.133), it suffices to use the regularity ofG and (3.129):

‖n−2K
[p]
G,n‖ = ‖n−2D

[p]
n (aG)K

[p]
n ‖ ≤ ‖aG‖∞C[p] ≤ C[p]‖a‖∞

minx̂∈[0,1] |G′(x̂)|2 .

The proof of (3.134) is similar. It suffices to use the fact that G ∈ C2([0, 1])
and (3.129):

‖n−2Z
[p]
G,n‖ = ‖n−2D

[p]
n (sG)H

[p]
n + n−2D

[p]
n (cG)M

[p]
n ‖

≤ n−1C[p]
( ‖a‖∞‖G′′‖∞

minx̂∈[0,1] |G′(x̂)|3+
‖a′‖∞ + ‖b‖∞

minx̂∈[0,1] |G′(x̂)|
)
+n−2C[p]‖c‖∞.

Step 2 Define the symmetric matrix

K̃
[p]
G,n = Sn+p−2(aG) ◦ n2 Tn+p−2(fp), (3.135)

where we recall that Sm(v) is the mth arrow-shaped sampling matrix generated by
v (see (3.6)), and consider the following decomposition of n−2A

[p]
G,n:

n−2A
[p]
G,n = n−2K̃

[p]
G,n +

(
n−2K

[p]
G,n − n−2K̃

[p]
G,n

)+ n−2Z
[p]
G,n. (3.136)

We know from Theorem 2 that ‖n−2K̃
[p]
G,n‖ ≤ C and {n−2K̃

[p]
G,n}n ∼GLT fG,p(x̂, θ).

Step 3 We show that

‖n−2K
[p]
G,n − n−2K̃

[p]
G,n‖1 = o(n). (3.137)

Once this is done, the thesis is proved. Indeed, from (3.137) and (3.134) we obtain

‖(n−2K
[p]
G,n − n−2K̃

[p]
G,n)+ n−2Z

[p]
G,n‖1 ≤ ‖n−2K

[p]
G,n − n−2K̃

[p]
G,n‖1

+‖n−2Z
[p]
G,n‖n = o(n),
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hence {(n−2K
[p]
G,n − n−2K̃

[p]
G,n) + n−2Z

[p]
G,n}n is zero-distributed by Z2. Thus, the

GLT relation (3.130) follows from the decomposition (3.136) and GLT3–GLT4,
the singular value distribution in (3.131) follows from GLT1, and the eigenvalue
distribution in (3.131) follows from GLT2.

To prove (3.137), we decompose the difference n−2K
[p]
G,n− n−2K̃

[p]
G,n as follows:

n−2K
[p]
G,n − n−2K̃

[p]
G,n = n−2D

[p]
n (aG)K

[p]
n − Sn+p−2(aG) ◦ Tn+p−2(fp)

= n−2D
[p]
n (aG)K

[p]
n −D[p]n (aG) Tn+p−2(fp) (3.138)

+D[p]n (aG) Tn+p−2(fp)−Dn+p−2(aG) Tn+p−2(fp) (3.139)

+Dn+p−2(aG) Tn+p−2(fp)− Sn+p−2(aG) ◦ Tn+p−2(fp). (3.140)

We consider separately the three matrices in (3.138)–(3.140) and we show that their
trace-norms are o(n).

• By (3.126), the rank of the matrix (3.138) is bounded by 4(p − 1). By the
regularity of G, the inequality (3.129) and T3, the spectral norm of (3.138) is
bounded by C. Thus, the trace-norm of (3.138) is o(n) (actually,O(1)) by (3.3).

• By (3.116), the continuity of aG and T 3, the spectral norm of the matrix (3.139)
is bounded by CωaG(n

−1), so it tends to 0. Hence, the trace-norm of (3.139) is
o(n) by (3.3).

• By Theorem 2, the spectral norm of the matrix (3.140) is bounded byCωaG(n
−1),

so it tends to 0. Hence, the trace-norm of (3.140) is o(n) by (3.3).

In conclusion, ‖n−2K
[p]
G,n − n−2K̃

[p]
G,n‖1 = o(n). ��

Remark 8 (Formal Structure of the Symbol) We invite the reader to compare the
symbol (3.132) with the transformed problem (3.89). It is clear that the higher-
order operator −aG(x̂)û′′(x̂) has a discrete spectral counterpart aG(x̂)fp(θ) which
looks formally the same (as in the FD and FE cases; see Remarks 1 and 6). To better
appreciate the formal analogy, note that fp(θ) is the trigonometric polynomial in the
Fourier variable coming from the B-spline IgA collocation discretization of the sec-
ond derivative−û′′(x̂) on the parametric domain [0, 1]. Indeed, fp(θ) is the symbol

of the sequence of B-spline IgA collocation diffusion matrices {n−2K
[p]
n }n, which

arises from the B-spline IgA collocation approximation of (3.82) in the case where
a(x) = 1, b(x) = c(x) = 0 identically, Ω = (0, 1) and G is the identity map over
[0, 1]; note that in this case (3.82) is the same as (3.89), x = G(x̂) = x̂ and u = û.

Remark 9 (Nonnegativity and Order of the Zero at θ = 0) Figure 3.4 shows the
graph of fp(θ) normalized by its maximum Mfp = maxθ∈[−π,π] fp(θ) for p =
2, . . . , 10. Note that f2(θ) = f3(θ) = 2 − 2 cos θ . We see from the figure (and it
was proved in [22]) that fp(θ) is nonnegative over [−π, π] and has a unique zero
of order 2 at θ = 0 because

lim
θ→0

fp(θ)

θ2
= 1.
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Fig. 3.4 Graph of fp/Mfp for p = 2, . . . , 10

This reflects the fact that, as observed in Remark 8, fp(θ) arises from the B-spline
IgA collocation discretization of the second derivative −û′′(x̂) on the parametric
domain [0, 1], which is a differential operator of order 2 (and it is nonnegative on
{v ∈ C2([0, 1]) : v(0) = v(1) = 0}); see also Remarks 2, 4 and 5.

Further properties of the functions fp(θ), gp(θ), hp(θ) can be found in [22,
Section 3]. In particular, it was proved therein that fp(π)/Mfp → 0 exponentially
as p → ∞. Moreover, observing that hp(θ) is defined by (3.125) for all degrees
p ≥ 0 (and we have h0(θ) = h1(θ) = 1 identically) provided that we use the
standard convention that an empty sum like

∑0
k=1 φ[1](1 − k) cos(kθ) equals 0,3 it

was proved in [22] that, for all p ≥ 2 and θ ∈ [−π, π],

fp(θ) = (2−2 cos θ)hp−2(θ),

(
2

π

)p−1

≤ hp−2(θ) ≤ hp−2(0) = 1. (3.141)

3.3.4.2 Galerkin B-Spline IgA Discretization of
Convection-Diffusion-Reaction Equations

Consider the convection-diffusion-reaction problem

{
−(a(x)u′(x))′ + b(x)u′(x)+ c(x)u(x) = f (x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω, (3.142)

3On the contrary, fp(θ) and gp(θ) are defined by (3.123) and (3.124) only for p ≥ 2, because
φ′[1](1) and φ′′[1](1) do not exist.
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where Ω is a bounded open interval of R, f ∈ L2(Ω) and a, b, c ∈ L∞(Ω).
Problem (3.142) is the same as (3.81), except for the assumptions on a, b, c, f . We
consider the isogeometric Galerkin approximation of (3.142) based on uniform B-
splines of degree p ≥ 1. This approximation technique is described below in some
detail. For more on IgA Galerkin methods, see [18, 40].

Isogeometric Galerkin Approximation The weak form of (3.142) reads as
follows: find u ∈ H 1

0 (Ω) such that

a(u, v) = f(v), ∀ v ∈ H 1
0 (Ω),

where

a(u, v) =
∫
Ω

(
a(x)u′(x)v′(x)+ b(x)u′(x)v(x)+ c(x)u(x)v(x))dx,

f(v) =
∫
Ω

f (x)v(x)dx.

In the standard Galerkin method, we look for an approximationuW of u by choosing
a finite dimensional vector space W ⊂ H 1

0 (Ω), the so-called approximation space,
and by solving the following (Galerkin) problem: find uW ∈ W such that

a(uW , v) = f(v), ∀ v ∈ W .

If {ϕ1, . . . , ϕN } is a basis of W , then we can write uW = ∑N
j=1 uj ϕj for a unique

vector u = (u1, . . . , uN)
T , and, by linearity, the computation of uW (i.e., of u)

reduces to solving the linear system

Au = f,

where f = [
f(ϕi)

]N
i=1 and

A = [
a(ϕj , ϕi)

]N
i,j=1

=
[∫
Ω

(
a(x)ϕ′j (x)ϕ′i (x)+ b(x)ϕ′j (x)ϕi(x)+ c(x)ϕj (x)ϕi(x)

)
dx

]N
i,j=1

(3.143)

is the stiffness matrix.
Now, suppose that the physical domainΩ can be described by a global geometry

function G : [0, 1] → Ω , which is invertible and satisfies G(∂([0, 1])) = ∂Ω .
Let {ϕ̂1, . . . , ϕ̂N } be a set of basis functions defined on the parametric (or reference)
domain [0, 1] and vanishing on the boundary ∂([0, 1]). In the isogeometric Galerkin
approach, we find an approximationuW of u by using the standard Galerkin method,
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in which the approximation space is chosen as W = span(ϕ1, . . . , ϕN), where

ϕi(x) = ϕ̂i(G−1(x)) = ϕ̂i(x̂), x = G(x̂). (3.144)

The resulting stiffness matrix A is given by (3.143), with the basis functions ϕi
defined as in (3.144). Assuming that G and ϕ̂i , i = 1, . . . , N , are sufficiently reg-
ular, we can apply standard differential calculus to obtain the following expression
for A in terms of G and ϕ̂i , i = 1, . . . , N :

A =
[ ∫

[0,1]

(
aG(x̂)ϕ̂

′
j (x̂)ϕ̂

′
i (x̂)+

b(G(x̂))

G′(x̂)
ϕ̂′j (x̂)ϕ̂i(x̂)

+ c(G(x̂))ϕ̂j (x̂)ϕ̂i(x̂)
)
|G′(x̂)|dx̂

]N
i,j=1

, (3.145)

where aG(x̂) is the same as in (3.90),

aG(x̂) = a(G(x̂))

(G′(x̂))2
. (3.146)

In the IgA framework, the functions ϕ̂i are usually B-splines or NURBS. Here,
the role of the ϕ̂i will be played by B-splines over uniform knot sequences.

Galerkin B-Spline IgA Discretization Matrices As in the IgA collocation
framework considered in Sect. 3.3.4.1, in the Galerkin B-spline IgA based
on (uniform) B-splines, the functions ϕ̂1, . . . , ϕ̂N are chosen as the B-splines
N2,[p], . . . , Nn+p−1,[p] defined in (3.96)–(3.98), i.e.,

ϕ̂i = Ni+1,[p], i = 1, . . . , n+ p − 2.

The boundary functions N1,[p] and Nn+p,[p] are excluded because they do not
vanish on ∂([0, 1]); see also Fig. 3.2. The stiffness matrix (3.145) resulting from
this choice of the ϕ̂i will be denoted by A[p]G,n:

A
[p]
G,n =

[ ∫
[0,1]

(
aG(x̂)N

′
j+1,[p](x̂)N ′i+1,[p](x̂)+

b(G(x̂))

G′(x̂)
N ′j+1,[p](x̂)Ni+1,[p](x̂)

+ c(G(x̂))Nj+1,[p](x̂)Ni+1,[p](x̂)
)
|G′(x̂)|dx̂

]n+p−2

i,j=1
. (3.147)

Note that A[p]G,n can be decomposed as follows:

AG,n = K [p]G,n + Z[p]G,n, (3.148)
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where

K
[p]
G,n =

[∫
[0,1]

aG(x̂)|G′(x̂)|N ′j+1,[p](x̂)N ′i+1,[p](x̂)dx̂
]n+p−2

i,j=1
(3.149)

is the diffusion matrix, resulting from the discretization of the higher-order (diffu-
sion) term in (3.142), and

Z
[p]
G,n =

[ ∫
[0,1]

(b(G(x̂))
G′(x̂)

N ′j+1,[p](x̂)Ni+1,[p](x̂)

+ c(G(x̂))Nj+1,[p](x̂)Ni+1,[p](x̂)
)
|G′(x̂)|dx̂

]n+p−2

i,j=1
(3.150)

is the matrix resulting from the discretization of the lower-order (convection and
reaction) terms. We will see that, as usual, the GLT analysis of a properly scaled
version of the sequence {A[p]G,n}n reduces to the GLT analysis of its ‘diffusion part’

{K [p]G,n}n, because ‖Z[p]G,n‖ is negligible with respect to ‖K [p]G,n‖ as n→∞.
Let

K
[p]
n =

[∫
[0,1]

N ′j+1,[p](x̂)N ′i+1,[p](x̂)dx̂
]n+p−2

i,j=1
, (3.151)

H
[p]
n =

[∫
[0,1]

N ′j+1,[p](x̂)Ni+1,[p](x̂)dx̂
]n+p−2

i,j=1
, (3.152)

M
[p]
n =

[∫
[0,1]

Nj+1,[p](x̂)Ni+1,[p](x̂)dx̂
]n+p−2

i,j=1
. (3.153)

These matrices will play an important role in the GLT analysis of this section. In
particular, it is necessary to understand their approximate structure. This is achieved
by (approximately) construct them. We only construct their central submatrices

[
(K

[p]
n )ij

]n−1
i,j=p,

[
(H

[p]
n )ij

]n−1
i,j=p,

[
(M

[p]
n )ij

]n−1
i,j=p, (3.154)

which are determined by the central basis functions in (3.111). For i, j = p, . . . ,
n−1, noting that [−i+p, n− i+p] ⊇ supp(φ[p]) = [0, p+1] and using (3.109)–
(3.110) and (3.112), we obtain

(K
[p]
n )ij =

∫
[0,1]

N ′j+1,[p](x̂)N ′i+1,[p](x̂)dx̂

= n2
∫
[0,1]

φ′[p](nx̂ − j + p)φ′[p](nx̂ − i + p)dx̂
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= n
∫
[−i+p, n−i+p]

φ′[p](t + i − j)φ′[p](t)dt

= n
∫
R

φ′[p](t + i − j)φ′[p](t)dt

= −nφ′′[2p+1](p + 1+ i − j) = −nφ′′[2p+1](p + 1− i + j),

and similarly

(H
[p]
n )ij = φ′[2p+1](p + 1+ i − j) = −φ′[2p+1](p + 1− i + j),

(M
[p]
n )ij = 1

n
φ[2p+1](p + 1+ i − j) = 1

n
φ[2p+1](p + 1− i + j).

Since their entries depend only on the difference i − j , the submatrices (3.154) are
Toeplitz matrices. More precisely,

[
(K

[p]
n )ij

]n−1
i,j=p = n

[−φ′′[2p+1](p + 1− i + j)]n−1
i,j=p = n Tn−p(fp), (3.155)

[
(H

[p]
n )ij

]n−1
i,j=p =

[−φ′[2p+1](p + 1− i + j)]n−1
i,j=p = i Tn−p(gp), (3.156)

[
(M

[p]
n )ij

]n−1
i,j=p =

1

n

[
φ[2p+1](p + 1− i + j)]n−1

i,j=p =
1

n
Tn−p(hp), (3.157)

where

fp(θ) =
∑
k∈Z
−φ′′[2p+1](p + 1− k) eikθ

= −φ′′[2p+1](p + 1)− 2
p∑
k=1

φ′′[2p+1](p + 1− k) cos(kθ), (3.158)

gp(θ) = −i
∑
k∈Z
−φ′[2p+1](p + 1− k) eikθ

= −2
p∑
k=1

φ′[2p+1](p + 1− k) sin(kθ), (3.159)

hp(θ) =
∑
k∈Z
φ[2p+1](p + 1− k) eikθ

= φ[2p+1](p + 1)+ 2
p∑
k=1

φ[2p+1](p + 1− k) cos(kθ); (3.160)

note that we used (3.108)–(3.109) to simplify the expressions of fp(θ), gp(θ),
hp(θ). It follows from (3.155) that Tn−p(fp) is the principal submatrix of both
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n−1K
[p]
n and Tn+p−2(fp) corresponding to the set of indices p, . . . , n− 1. Similar

results follow from (3.156)–(3.157), and so

n−1K
[p]
n = Tn+p−2(fp)+ R[p]n , rank(R[p]n ) ≤ 4(p − 1), (3.161)

−iH [p]n = Tn+p−2(gp)+ S[p]n , rank(S[p]n ) ≤ 4(p − 1), (3.162)

nM
[p]
n = Tn+p−2(hp)+ V [p]n , rank(V [p]n ) ≤ 4(p − 1). (3.163)

Let us see two examples. In the case p = 2, the matrix K [2]n is given by

K [2]n = n
6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 −1 −1
−1 6 −2 −1
−1 −2 6 −2 −1

−1 −2 6 −2 −1
. . .
. . .
. . .
. . .
. . .

−1 −2 6 −2 −1
−1 −2 6 −2 −1

−1 −2 6 −1
−1 −1 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The submatrix Tn−2(f2) appears in correspondence of the highlighted box and we
have

f2(θ) = 1

6
(−e2iθ − 2eiθ + 6− 2e−iθ − e−2iθ ) = 1− 2

3
cos θ − 1

3
cos(2θ),

as given by (3.158) for p = 2. In the case p = 3, the matrixK [3]n is given by

K [3]n =
n

240

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

360 9 −60 −3
9 162 −8 −47 −2

−60 −8 160 −30 −48 −2
−3 −47 −30 160 −30 −48 −2

−2 −48 −30 160 −30 −48 −2
−2 −48 −30 160 −30 −48 −2

. . .
. . .

. . .
. . .

. . .
. . .

. . .

−2 −48 −30 160 −30 −48 −2
−2 −48 −30 160 −30 −48 −2

−2 −48 −30 160 −30 −47 −3
−2 −48 −30 160 −8 −60

−2 −47 −8 162 9
−3 −60 9 360

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



3 GLT Sequences 223

The submatrix Tn−3(f3) appears in correspondence of the highlighted box and we
have

f3(θ) = 1

240
(−2e3iθ − 48e2iθ − 30eiθ + 160− 30e−iθ − 48e−2iθ − 2e−3iθ )

= 2

3
− 1

4
cos θ − 2

5
cos(2θ)− 1

60
cos(3θ),

as given by (3.158) for p = 3.

Remark 10 For every degree q ≥ 1, the functions fq(θ), gq(θ), hq(θ) defined
by (3.158)–(3.160) for p = q coincide with the functions f2q+1(θ), g2q+1(θ),
h2q+1(θ) defined by (3.123)–(3.125) for odd degree p = 2q + 1.

GLT Analysis of the Galerkin B-Spline IgA Discretization Matrices Assuming
that the geometry map G is regular, i.e., G ∈ C1([0, 1]) and G′(x̂) �= 0 for every
x̂ ∈ [0, 1], we show that, for any p ≥ 1, {n−1A

[p]
G,n}n is a GLT sequence whose

symbol describes both its singular value and spectral distribution.

Theorem 13 Let Ω be a bounded open interval of R and let a, b, c ∈ L∞(Ω). Let
p ≥ 1 and let G : [0, 1] → Ω be such that G ∈ C1([0, 1]) and G′(x̂) �= 0 for all
x̂ ∈ [0, 1]. Then

{n−1A
[p]
G,n}n ∼GLT fG,p (3.164)

and

{n−1A
[p]
G,n}n ∼σ, λ fG,p, (3.165)

where

fG,p(x̂, θ) = aG(x̂)|G′(x̂)|fp(θ) = a(G(x̂))|G′(x̂)| fp(θ) (3.166)

and fp(θ) is defined in (3.158).

Proof We follow the same argument as in the proof of Theorem 10. Throughout the
proof, the letter C will denote a generic constant independent of n.

Step 1 We show that

‖n−1K
[p]
G,n‖ ≤ C (3.167)

and

‖n−1Z
[p]
G,n‖ ≤ C/n. (3.168)
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To prove (3.167), we note that K [p]G,n is a banded matrix, with bandwidth at most
equal to 2p + 1. Indeed, due to the local support property (3.100), if |i − j | > p
then the supports of Ni+1,[p] and Nj+1,[p] intersect in at most one point, hence

(K
[p]
G,n)ij = 0. Moreover, by (3.100) and (3.104), for all i, j = 1, . . . , n+p− 2 we

have

|(K [p]G,n)ij | =
∣∣∣∣
∫
[0,1]

aG(x̂)|G′(x̂)|N ′j+1,[p](x̂) N ′i+1,[p](x̂)dx̂
∣∣∣∣

=
∣∣∣∣∣
∫
[ti+1, ti+p+2]

a(G(x̂))

|G′(x̂)| N
′
j+1,[p](x̂) N ′i+1,[p](x̂)dx̂

∣∣∣∣∣
≤ 4p2n2‖a‖L∞

minx̂∈[0,1] |G′(x̂)|
∫
[ti+1, ti+p+2]

dx̂ ≤ 4p2(p + 1)n‖a‖L∞
minx̂∈[0,1] |G′(x̂)| ,

where in the last inequality we used the fact that tk+p+1− tk ≤ (p+1)/n for all k =
1, . . . , n+p; see (3.94)–(3.95). In conclusion, the components of the banded matrix
n−1K

[p]
G,n are bounded (in modulus) by a constant independent of n, and (3.167)

follows from (3.1).
To prove (3.168), we follow the same argument as for the proof of (3.167). Due

to the local support property (3.100), Z[p]G,n is banded and, precisely, (Z[p]G,n)ij = 0
whenever |i − j | > p. Moreover, by (3.100) and (3.102)–(3.104), for all i, j =
1, . . . , n+ p − 2 we have

|(Z[p]G,n)ij | =
∣∣∣∣
∫
[ti+1, ti+p+2]

(b(G(x̂))
G′(x̂)

N ′j+1,[p](x̂) Ni+1,[p](x̂)

+ c(G(x̂))Nj+1,[p](x̂) Ni+1,[p](x̂)
)
|G′(x̂)|dx̂

∣∣∣∣
≤ 2p(p + 1)‖b‖L∞ + (p + 1)‖c‖L∞‖G′‖∞

n
,

and (3.168) follows from (3.1).

Step 2 Consider the linear operatorK [p]n (·) : L1([0, 1])→ R
(n+p−2)×(n+p−2),

K
[p]
n (g) =

[∫
[0,1]

g(x̂)N ′j+1,[p](x̂)N ′i+1,[p](x̂)dx̂
]n+p−2

i,j=1
.

By (3.149), we have K [p]G,n = K
[p]
n (aG|G′|). The next three steps are devoted to

show that

{n−1K
[p]
n (g)}n ∼GLT g(x̂)fp(θ), ∀ g ∈ L1([0, 1]). (3.169)
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Once this is done, the theorem is proved. Indeed, by applying (3.169) with g =
aG|G′| we immediately obtain the relation {n−1K

[p]
G,n}n ∼GLT fG,p(x̂, θ). Since

{n−1Z
[p]
G,n}n is zero-distributed by Step 1, (3.164) follows from the decomposition

n−1A
[p]
G,n = n−1K

[p]
G,n + n−1Z

[p]
G,n (3.170)

and from GLT3–GLT4; and the singular value distribution in (3.165) follows from
GLT1. If b(x) = 0 identically, then n−1A

[p]
G,n is symmetric and also the spectral

distribution in (3.165) follows from GLT1. If b(x) is not identically 0, the spectral
distribution in (3.165) follows from GLT2 applied to the decomposition (3.170),
taking into account what we have seen in Step 1.

Step 3 We first prove (3.169) in the constant-coefficient case g(x̂) = 1. In this case,
we note thatK [p]n (1) = K [p]n . Hence, the desired GLT relation {n−1K

[p]
n (1)}n ∼GLT

fp(θ) follows from (3.161) and GLT3–GLT4, taking into account that {R[p]n }n is
zero-distributed by Z 1.

Step 4 Now we prove (3.169) in the case where g ∈ C([0, 1]). As in Step 4
of Sect. 3.3.3.1, the proof is based on the fact that the B-spline basis functions
N2,[p], . . . , Nn+p−1,[p] are ‘locally supported’. Indeed, the width of the support of
the ith basis function Ni+1,[p] is bounded by (p + 1)/n and goes to 0 as n → ∞.
Moreover, the support itself is located near the point i

n+p−2
, because

max
x̂∈[ti+1, ti+p+2]

∣∣∣∣x̂ − i

n+ p − 2

∣∣∣∣ ≤ Cpn (3.171)

for all i = 2, . . . , n + p − 1 and for some constant Cp depending only on p.
By (3.104) and (3.171), for all i, j = 1, . . . , n+ p − 2 we have

∣∣∣(K [p]n (g))ij − (Dn+p−2(g)K
[p]
n (1))ij

∣∣∣
=
∣∣∣∣
∫
[0,1]

[
g(x̂)− g

( i

n+ p − 2

)]
N ′j+1,[p](x̂)N ′i+1,[p](x̂)dx̂

∣∣∣∣
≤ 4p2n2

∫
[ti+1, ti+p+2]

∣∣∣g(x̂)− g( i

n+ p − 2

)∣∣∣dx̂ ≤ 4p2(p + 1)nωg
(Cp
n

)
.

It follows that each entry of Zn = n−1K
[p]
n (g)−n−1Dn+p−2(g)K

[p]
n (1) is bounded

in modulus by Cωg(1/n). Moreover,Zn is banded with bandwidth at most 2p + 1,
due to the local support property of the B-spline basis functions Ni,[p]. By (3.1)
we conclude that ‖Zn‖ ≤ Cωg(1/n) → 0 as n → ∞. Thus, {Zn}n ∼σ 0, which
implies (3.169) by Step 3 and GLT3–GLT4.

Step 5 Finally, we prove (3.169) in the general case where g ∈ L1([0, 1]). By the
density of C([0, 1]) in L1([0, 1]), there exist continuous functions gm ∈ C([0, 1])
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such that gm → g in L1([0, 1]). By Step 4,

{n−1K
[p]
n (gm)}n ∼GLT gm(x̂)fp(θ).

Moreover,

gm(x̂)fp(θ)→ g(x̂)fp(θ) in measure.

We show that

{n−1K
[p]
n (gm)}n a.c.s.−→ {n−1K

[p]
n (g)}n.

Using (3.104) and (3.4), we obtain

‖K [p]n (g)−K [p]n (gm)‖1 ≤
n+p−2∑
i,j=1

∣∣∣(K [p]n (g))ij − (K [p]n (gm))ij ∣∣∣

=
n+p−2∑
i,j=1

∣∣∣∣
∫
[0,1]

[
g(x̂)− gm(x̂)

]
N ′j+1,[p](x̂)N ′i+1,[p](x̂)dx̂

∣∣∣∣

≤
∫
[0,1]

|g(x̂)− gm(x̂)|
n+p−2∑
i,j=1

|N ′j+1,[p](x̂)| |N ′i+1,[p](x̂)|dx̂

≤ 4p2n2
∫
[0,1]

|g(x̂)− gm(x̂)|dx̂

and

‖n−1K
[p]
n (g)− n−1K

[p]
n (gm)‖1 ≤ 4p2n‖g − gm‖L1 .

Thus, {n−1K
[p]
n (gm)}n a.c.s.−→ {n−1K

[p]
n (g)}n by ACS 3. The relation (3.169) now

follows from GLT7. ��
Remark 11 (Formal Structure of the Symbol) Problem (3.142) can be formally
rewritten as in (3.82). If, for any u : Ω → R, we define û : [0, 1] → R

as in (3.88), then u satisfies (3.82) if and only if û satisfies the corresponding
transformed problem (3.89), in which the higher-order operator takes the form
−aG(x̂)û′′(x̂). It is then clear that, similarly to the collocation case (see Remark 8),
even in the Galerkin case the symbol fG,p(x̂, θ) = aG(x̂)|G′(x̂)|fp(θ) preserves
the formal structure of the higher-order operator associated with the transformed
problem (3.89). However, in this Galerkin context we notice the appearance of
the factor |G′(x̂)|, which is not present in the collocation setting; cf. (3.166)
with (3.132).
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Remark 12 (The Case p = 1) For p = 1, the symbol fp(θ) in (3.158) is given by
f1(θ) = 2 − 2 cos θ . This should not come as a surprise, because the Galerkin B-
spline IgA approximation with p = 1 (and G equal to the identity map over [0, 1])
coincides precisely with the linear FE approximation considered in Sect. 3.3.3.1;
the only (unessential) difference is that the discretization step in Sect. 3.3.3.1 was
chosen as h = 1

n+1 , while in this section we have h = 1
n

. In particular, the B-
spline basis functions of degree 1, namely N2,[1], . . . , Nn,[1], are the hat-functions;
cf. (3.98) (with p = 1) and (3.61).

Remark 13 The matrix A[p]G,n in (3.147), which we decomposed as in (3.148), can
also be decomposed as follows, according to the diffusion, convection and reaction
terms:

A
[p]
G,n = K [p]G,n +H [p]G,n +M [p]

G,n,

where the diffusion, convection and reaction matrices are given by

K
[p]
G,n =

[∫
[0,1]

a(G(x̂))

|G′(x̂)| N
′
j+1,[p](x̂)N ′i+1,[p](x̂)dx̂

]n+p−2

i,j=1
, (3.172)

H
[p]
G,n =

[∫
[0,1]

b(G(x̂))|G′(x̂)|
G′(x̂)

N ′j+1,[p](x̂)Ni+1,[p](x̂)dx̂
]n+p−2

i,j=1
, (3.173)

M
[p]
G,n =

[∫
[0,1]

c(G(x̂))|G′(x̂)|Nj+1,[p](x̂)Ni+1,[p](x̂)dx̂
]n+p−2

i,j=1
; (3.174)

note that the diffusion matrix is the same as in (3.149). Let Ω be a bounded open
interval of R and let p ≥ 1. Then, the following results hold.

(a) Suppose

a(G(x̂))

|G′(x̂)| ∈ L
1([0, 1]);

then {n−1K
[p]
G,n}n ∼GLT fG,p and {n−1K

[p]
G,n}n ∼σ, λ fG,p, where

fG,p(x̂, θ) = a(G(x̂))|G′(x̂)| fp(θ) (3.175)

and fp(θ) is defined in (3.158); note that fG,p(x̂, θ) is the same as in (3.166).
(b) Suppose

b(G(x̂))|G′(x̂)|
G′(x̂)

∈ C([0, 1]);
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then {−iH [p]G,n}n ∼GLT gG,p and {−iH [p]G,n}n ∼σ, λ gG,p, where

gG,p(x̂, θ) = b(G(x̂))|G
′(x̂)|

G′(x̂)
gp(θ) (3.176)

and gp(θ) is defined in (3.159).
(c) Suppose

c(G(x̂))|G′(x̂)| ∈ L1([0, 1]);

then {nM [p]
G,n}n ∼GLT hG,p and {nM [p]

G,n}n ∼σ, λ hG,p, where

hG,p(x̂, θ) = c(G(x̂))|G′(x̂)|hp(θ) (3.177)

and hp(θ) is defined in (3.160).

While the proof of (b) requires some work, the proofs of (a) and (c) can be done by
following the same argument as in the proof of Theorem 13. The proofs of (a)–(c)
can be found in [29, solution to Exercise 10.5].

3.3.4.3 Galerkin B-Spline IgA Discretization of Second-Order Eigenvalue
Problems

Let R+ be the set of positive real numbers. Consider the following second-order
eigenvalue problem: find eigenvalues λj ∈ R

+ and eigenfunctions uj , for j =
1, 2, . . . ,∞, such that{

−(a(x)u′j (x))′ = λjc(x)uj (x), x ∈ Ω,
uj (x) = 0, x ∈ ∂Ω, (3.178)

whereΩ is a bounded open interval of R and we assume a, c ∈ L1(Ω) and a, c > 0
a.e. in Ω . It can be shown that the eigenvalues λj must necessarily be real and
positive. This can be formally seen by multiplying (3.178) by uj (x) and integrating
overΩ :

λj =
− ∫

Ω(a(x)u
′
j (x))

′uj (x)dx∫
Ω c(x)(uj (x))

2dx
=

∫
Ω a(x)(u

′
j (x))

2dx∫
Ω c(x)(uj (x))

2dx
> 0.

Isogeometric Galerkin Approximation The weak form of (3.178) reads as
follows: find eigenvalues λj ∈ R

+ and eigenfunctions uj ∈ H 1
0 (Ω), for j =

1, 2, . . . ,∞, such that

a(uj ,w) = λj (c uj ,w), ∀w ∈ H 1
0 (Ω),
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where

a(uj ,w) =
∫
Ω

a(x)u′j (x)w′(x)dx,

(c uj ,w) =
∫
Ω

c(x)uj (x)w(x)dx.

In the standard Galerkin method, we choose a finite dimensional vector space
W ⊂ H 1

0 (Ω), the so-called approximation space, we let N = dimW and we
look for approximations of the eigenpairs (λj , uj ), j = 1, 2, . . . ,∞, by solving
the following discrete (Galerkin) problem: find λj,W ∈ R

+ and uj,W ∈ W , for
j = 1, . . . , N , such that

a(uj,W , w) = λj,W (c uj,W , w), ∀w ∈ W . (3.179)

Assuming that both the exact and numerical eigenvalues are arranged in non-
decreasing order, the pair (λj,W , uj,W ) is taken as an approximation to the pair
(λj , uj ) for all j = 1, 2, . . . , N . The numbers λj,W /λj − 1, j = 1, . . . , N , are
referred to as the (relative) eigenvalue errors. If {ϕ1, . . . , ϕN } is a basis of W , we
can identify each w ∈ W with its coefficient vector relative to this basis. With this
identification in mind, solving the discrete problem (3.179) is equivalent to solving
the generalized eigenvalue problem

Kuj,W = λj,W Muj,W , (3.180)

where uj,W is the coefficient vector of uj,W with respect to {ϕ1, . . . , ϕN } and

K =
[∫
Ω

a(x)ϕ′j (x)ϕ′i(x)dx
]N
i,j=1

, (3.181)

M =
[∫
Ω

c(x)ϕj (x)ϕi(x)dx

]N
i,j=1

. (3.182)

The matricesK andM are referred to as the stiffness and mass matrix, respectively.
Due to our assumption that a, c > 0 a.e., both K and M are symmetric positive
definite, regardless of the chosen basis functions ϕ1, . . . , ϕN . Moreover, it is clear
from (3.180) that the numerical eigenvalues λj,W , j = 1, . . . , N , are just the
eigenvalues of the matrix

L = M−1K. (3.183)

In the isogeometric Galerkin method, we assume that the physical domain Ω is
described by a global geometry function G : [0, 1] → Ω , which is invertible and
satisfiesG(∂([0, 1])) = ∂Ω . We fix a set of basis functions {ϕ̂1, . . . , ϕ̂N } defined on
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the reference (parametric) domain [0, 1] and vanishing on the boundary ∂([0, 1]),
and we find approximations to the exact eigenpairs (λj , uj ), j = 1, 2, . . . ,∞, by
using the standard Galerkin method described above, in which the approximation
space is chosen as W = span(ϕ1, . . . , ϕN), where

ϕi(x) = ϕ̂i(G−1(x)) = ϕ̂i(x̂), x = G(x̂). (3.184)

The resulting stiffness and mass matrices K and M are given by (3.181)–(3.182),
with the basis functions ϕi defined as in (3.184). If we assume that G and ϕ̂i ,
i = 1, . . . , N , are sufficiently regular, we can apply standard differential calculus to
obtain for K andM the following expressions:

K =
[∫
[0,1]

a(G(x̂))

|G′(x̂)| ϕ̂
′
j (x̂)ϕ̂

′
i (x̂)dx̂

]N
i,j=1

, (3.185)

M =
[∫
[0,1]

c(G(x̂))|G′(x̂)|ϕ̂j (x̂)ϕ̂i(x̂)dx̂
]N
i,j=1

. (3.186)

GLT Analysis of the Galerkin B-Spline IgA Discretization Matrices Following
the approach of Sects. 3.3.4.1–3.3.4.2, we choose the basis functions ϕ̂i , i =
1, . . . , N , as the B-splines Ni+1,[p], i = 1, . . . , n + p − 2. The resulting stiffness
and mass matrices (3.185)–(3.186) are given by

K
[p]
G,n =

[∫
[0,1]

a(G(x̂))

|G′(x̂)| N
′
j+1,[p](x̂)N ′i+1,[p](x̂)dx̂

]n+p−2

i,j=1
,

M
[p]
G,n =

[∫
[0,1]

c(G(x̂))|G′(x̂)|Nj+1,[p](x̂)Ni+1,[p](x̂)dx̂
]n+p−2

i,j=1
,

and it is immediately seen that they are the same as the diffusion and reaction
matrices in (3.172) and (3.174). The numerical eigenvalues will be henceforth
denoted by λj,n, j = 1, . . . , n + p − 2; as noted above, they are simply the
eigenvalues of the matrix

L
[p]
G,n = (M [p]

G,n)
−1K

[p]
G,n.

Theorem 14 Let Ω be a bounded open interval of R and let a, c ∈ L1(Ω) with
a, c > 0 a.e. Let p ≥ 1 and let G : [0, 1] → Ω be such that

a(G(x̂))

|G′(x̂)| ∈ L
1([0, 1]).

Then

{n−2L
[p]
G,n}n ∼GLT eG,p(x̂, θ) (3.187)
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and

{n−2L
[p]
G,n}n ∼σ, λ eG,p(x̂, θ), (3.188)

where

eG,p(x̂, θ) = (hG,p(θ))−1fG,p(θ) = a(G(x̂))

c(G(x̂))(G′(x̂))2
ep(θ), (3.189)

ep(θ) = (hp(θ))−1fp(θ), (3.190)

and fp(θ), hp(θ), fG,p(x̂, θ), hG,p(x̂, θ) are given by (3.158), (3.160), (3.175),
(3.177), respectively.

Proof We have a(G(x̂))/|G′(x̂)| ∈ L1([0, 1]) by assumption and c(G(x̂))|G′(x̂)| ∈
L1([0, 1]) because c ∈ L1(Ω) by assumption and

∫
[0,1]

c(G(x̂))|G′(x̂)|dx̂ =
∫
Ω

c(x)dx.

Hence, by Remark 13,

{n−1K
[p]
G,n}n ∼GLT fG,p, {nM [p]

G,n}n ∼GLT hG,p,

and the relations (3.187)–(3.188) follow from Theorem 1, taking into account that
hG,p(x̂, θ) �= 0 a.e. by our assumption that c(x) > 0 a.e. and by the positivity of
hp(θ); see (3.141) and Remark 10. ��

For p = 1, 2, 3, 4, Eq. (3.190) gives

e1(θ) = 6(1− cos θ)

2+ cos θ
,

e2(θ) = 20(3− 2 cos θ − cos(2θ))

33+ 26 cos θ + cos(2θ)
,

e3(θ) = 42(40− 15 cos θ − 24 cos(2θ)− cos(3θ))

1208+ 1191 cos θ + 120 cos(2θ)+ cos(3θ)
,

e4(θ) = 72(1225− 154 cos θ − 952 cos(2θ)− 118 cos(3θ)− cos(4θ))

78095+ 88234 cosθ + 14608 cos(2θ)+ 502 cos(3θ)+ cos(4θ)
.

These equations are the analogs of formulas (117), (130), (135), (140) obtained
by engineers in [43]; see also formulas (32), (33) in [17], formulas (23), (56) in
[41], and formulas (23), (24) in [46]. We may therefore conclude that (3.189) is
a generalization of these formulas to any degree p ≥ 1 and also to the variable-
coefficient case with nontrivial geometry map, because it should be noted that the
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engineering papers [17, 41, 43, 46] only addressed the constant-coefficient case with
identity geometry map (that is, the case in which a(x) = c(x) = 1 identically and
G is the identity map onΩ = [0, 1]).
Remark 14 Contrary to the B-spline IgA discretizations investigated herein and in
[43], the authors of [17, 41, 46] considered NURBS IgA discretizations. However,
the same formulas are obtained in both cases. This can be easily explained in view of
the results of [34], where it is shown that the symbols fp , gp, hp in (3.158)–(3.160)
are exactly the same in the B-spline and NURBS IgA frameworks. Note also that
paper [34] addresses the general variable-coefficient case with nontrivial geometry
map.

Remark 15 (A GLT Program for the Future) An extension of the results obtained in
this section can be found in [35]. In particular, it is numerically shown in [35] and
formally proved in [27] that

ep(θ)→ e∞(θ) = θ2, θ ∈ [0, π].

By Theorem 14, ep(θ) is the symbol of the matrix-sequence {n−2L
[p]
G,n}n obtained in

the constant-coefficient case a(x) = c(x) = 1 with identity geometry map G(x) =
x : [0, 1] → [0, 1]. Note that in this case the eigenvalue problem (3.178) simplifies
to {

−u′′j (x) = λjuj (x), x ∈ (0, 1),
uj (0) = uj (1) = 0,

and the corresponding eigenvalues are given by λj = j2π2 for j = 1, 2, . . . ,∞.
In particular, the first n eigenvalues are obtained as n−2λj = e∞( jπn ) for j =
1, 2, . . . , n. Based on these observations and on further insights arising from [35],
we here outline a general research program for the future, which highlights once
again the potential impact of the theory of GLT sequences.

1. Consider a general well-posed eigenvalue problem

K uj = λj Muj , j = 1, 2, . . . ,∞. (3.191)

This could be, for example, a variable-coefficient eigenvalue problem involving
low regularity coefficients, such as (3.178). It could also be a more complicated
problem, defined over a multidimensional non-rectangular domain; in this case,
the following step 4 will require the multidimensional version of the theory of
GLT sequences [30].

2. Let F [ν]
n be a family of numerical methods for the discretization of (3.191). Here,

n is the mesh fineness parameter, while ν is related to the approximation order of
the method: the larger is ν, the higher is the precision of the method. In the IgA
framework, ν could be for example the degree p.
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3. For any n and ν, let

K [ν]n uj = λ[ν]j,nM [ν]
n uj , j = 1, . . . , N [ν]n , (3.192)

be the discrete eigenvalue problem arising from the approximation of the
continuous eigenvalue problem (3.191) through the numerical method F [ν]

n , and
set

L[ν]n = (M [ν]
n )

−1K [ν]n .

Note that the discrete eigenvalues λ[ν]j,n are just the eigenvalues of L[ν]n .

4. Compute the symbol eν of a properly normalized version of {L[ν]n }n. As
illustrated throughout this work and especially in this section, this step can be
efficiently performed through the theory of GLT sequences.

5. Suppose the following conditions are met.

• For each ν there is ε = εν > 0 such that λ[ν]j,n → λj as n→ ∞ for 1 ≤ j ≤
εN

[ν]
n . In other words, we are assuming that, for every ν, a nonzero portion of

the discrete eigenvalues converge to the corresponding exact eigenvalues.
• eν converges to e∞ as ν →∞.

Then we expect that the limit symbol e∞ will provide a description of the
eigenvalue distribution of the continuous eigenvalue problem (3.191).

The program outlined in the above five steps could represent a general recipe for
determining the distribution of the eigenvalues of a general eigenvalue problem of
the form (3.191).

Acknowledgements Carlo Garoni is a Marie-Curie fellow of the Italian INdAM under grant
agreement PCOFUND-GA-2012-600198. This work has been partially supported by INdAM-
GNCS.

References

1. F. Auricchio, L. Beirão da Veiga, T.J.R. Hughes, A. Reali, G. Sangalli, Isogeometric collocation
methods. Math. Models Methods Appl. Sci. 20, 2075–2107 (2010)

2. F. Avram, On bilinear forms in Gaussian random variables and Toeplitz matrices. Probab.
Theory Relat. Fields 79, 37–45 (1988)

3. G. Barbarino, Equivalence between GLT sequences and measurable functions. Linear Algebra
Appl. 529, 397–412 (2017)

4. B. Beckermann, A.B.J. Kuijlaars, Superlinear convergence of conjugate gradients. SIAM J.
Numer. Anal. 39, 300–329 (2001)

5. B. Beckermann, S. Serra-Capizzano, On the asymptotic spectrum of finite element matrix
sequences. SIAM J. Numer. Anal. 45, 746–769 (2007)

6. M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems. Acta Numer.
14, 1–137 (2005)



234 C. Garoni and S. Serra-Capizzano

7. R. Bhatia, Matrix Analysis (Springer, New York, 1997)
8. D.A. Bini, M. Capovani, O. Menchi, Metodi Numerici per l’Algebra Lineare (Zanichelli,

Bologna, 1988)
9. A. Böttcher, C. Garoni, S. Serra-Capizzano, Exploration of Toeplitz-like matrices with

unbounded symbols is not a purely academic journey. Sb. Math. 208, 1602–1627 (2017)
10. A. Böttcher, S.M. Grudsky, Toeplitz Matrices, Asymptotic Linear Algebra, and Functional

Analysis (Birkhäuser Verlag, Basel, 2000)
11. A. Böttcher, S.M. Grudsky, Spectral Properties of Banded Toeplitz Matrices (SIAM,

Philadelphia, 2005)
12. A. Böttcher, B. Silbermann, Introduction to Large Truncated Toeplitz Matrices (Springer, New

York, 1999)
13. A. Böttcher, B. Silbermann, Analysis of Toeplitz Operators, 2nd edn. (Springer, Berlin, 2006)
14. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer,

New York, 2011)
15. C.K. Chui, An Introduction to Wavelets (Academic Press, San Diego, 1992)
16. A. Cicone, C. Garoni, S. Serra-Capizzano, Spectral and convergence analysis of the Discrete

ALIF method (submitted)
17. J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of structural

vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)
18. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD

and FEA (Wiley, Chichester, 2009)
19. C. De Boor, A Practical Guide to Splines, revised edn. (Springer, New York, 2001)
20. M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, Robust and optimal multi-

iterative techniques for IgA Galerkin linear systems. Comput. Methods Appl. Mech. Eng. 284,
230–264 (2015)

21. M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, Robust and optimal multi-
iterative techniques for IgA collocation linear systems. Comput. Methods Appl. Mech. Eng.
284, 1120–1146 (2015)

22. M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, Spectral analysis and
spectral symbol of matrices in isogeometric collocation methods. Math. Comput. 85, 1639–
1680 (2016)

23. M. Donatelli, M. Mazza, S. Serra-Capizzano, Spectral analysis and structure preserving
preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

24. M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, Symbol-based multigrid
methods for Galerkin B-spline isogeometric analysis. SIAM J. Numer. Anal. 55, 31–62 (2017)

25. A. Dorostkar, M. Neytcheva, S. Serra-Capizzano, Spectral analysis of coupled PDEs and of
their Schur complements via the notion of generalized locally Toeplitz sequences. Technical
Report 2015-008 (2015), Department of Information Technology, Uppsala University. http://
www.it.uu.se/research/publications/reports/2015-008/

26. A. Dorostkar, M. Neytcheva, S. Serra-Capizzano, Spectral analysis of coupled PDEs and of
their Schur complements via generalized locally Toeplitz sequences in 2D. Comput. Methods
Appl. Mech. Eng. 309, 74–105 (2016)

27. S.E. Ekström, I. Furci, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, Are the
eigenvalues of the B-spline isogeometric analysis approximation of −Δu = λu known in
almost closed form? Numer. Linear Algebra Appl. https://doi.org/10.1002/nla.2198

28. C. Garoni, Spectral distribution of PDE discretization matrices from isogeometric analysis: the
case of L1 coefficients and non-regular geometry. J. Spectral Theory 8, 297–313 (2018)

29. C. Garoni, S. Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applica-
tions, Volume I (Springer, Cham, 2017)

30. C. Garoni, S. Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applica-
tions, Volume II (Springer, to appear)

31. C. Garoni, C. Manni, F. Pelosi, S. Serra-Capizzano, H. Speleers, On the spectrum of stiffness
matrices arising from isogeometric analysis. Numer. Math. 127, 751–799 (2014)

http://www.it.uu.se/research/publications/reports/2015-008/
http://www.it.uu.se/research/publications/reports/2015-008/
https://doi.org/10.1002/nla.2198


3 GLT Sequences 235

32. C. Garoni, C. Manni, S. Serra-Capizzano, D. Sesana, H. Speleers, Spectral analysis and spectral
symbol of matrices in isogeometric Galerkin methods. Math. Comput. 86, 1343–1373 (2017)

33. C. Garoni, C. Manni, S. Serra-Capizzano, D. Sesana, H. Speleers, Lusin theorem, GLT
sequences and matrix computations: an application to the spectral analysis of PDE discretiza-
tion matrices. J. Math. Anal. Appl. 446, 365–382 (2017)

34. C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, NURBS versus B-splines in isogeomet-
ric discretization methods: a spectral analysis (submitted)

35. C. Garoni, H. Speleers, S.-E. Ekström, A. Reali, S. Serra-Capizzano, T.J.R. Hughes, Symbol-
based analysis of finite element and isogeometric B-spline discretizations of eigenvalue
problems: exposition and review. ICES Report 18-16, Institute for Computational Engineering
and Sciences, The University of Texas at Austin (2018). https://www.ices.utexas.edu/media/
reports/2018/1816.pdf

36. G.H. Golub, C.F. Van Loan, Matrix Computations, 4th edn. (The Johns Hopkins University
Press, Baltimore, 2013)
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Chapter 4
Isogeometric Analysis: Mathematical
and Implementational Aspects,
with Applications

Thomas J. R. Hughes, Giancarlo Sangalli, and Mattia Tani

Abstract Isogeometric analysis (IGA) is a recent and successful extension of
classical finite element analysis. IGA adopts smooth splines, NURBS and gener-
alizations to approximate problem unknowns, in order to simplify the interaction
with computer aided geometric design (CAGD). The same functions are used to
parametrize the geometry of interest. Important features emerge from the use of
smooth approximations of the unknown fields. When a careful implementation is
adopted, which exploit its full potential, IGA is a powerful and efficient high-order
discretization method for the numerical solution of PDEs. We present an overview of
the mathematical properties of IGA, discuss computationally efficient isogeometric
algorithms, and present some significant applications.

4.1 Introduction

Isogeometric Analysis (IGA) was proposed in the seminal paper [70], with a
fundamental motivation: to improve the interoperability between computer aided
geometric design (CAGD) and the analysis, i.e., numerical simulation. In IGA, the
functions that are used in CAGD geometry description (these are splines, NURBS,
etcetera) are used also for the representation of the unknowns of Partial Differential
Equations (PDEs) that model physical phenomena of interest.

In the last decade Isogeometric methods have been successfully used on a variety
of engineering problems. The use of splines and NURBS in the representation of
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unknown fields yields important features, with respect to standard finite element
methods. This is due to the spline smoothness which not only allows direct
approximation of PDEs of order higher than two,1 but also increases accuracy per
degree of freedom (comparing to standard C0 finite elements) and the spectral
accuracy,2 and moreover facilitates construction of spaces that can be used in
schemes that preserve specific fundamental properties of the PDE of interest (for
example, smooth divergence-free isogeometric spaces, see [37, 38, 57] and [58]).
Spline smoothness is the key ingredient of isogeometric collocation methods, see
[7] and [100].

The mathematics of isogeometric methods is based on the classical spline theory
(see, e.g., [51, 102]), but also poses new challenges. The study of h-refinement of
tensor-product isogeometric spaces is addressed in [15] and [22]. The study of k-
refinement, that is, the use of splines and NURBS of high order and smoothness
(Cp−1 continuity for p-degree splines) is developed in [19, 40, 59, 115]. With
a suitable code design, k-refinement boosts both accuracy and computational
efficiency, see [97]. Stability of mixed isogeometric methods with a saddle-point
form is the aim of the works [6, 21, 32, 33, 37, 56–58, 118].

Recent overview of IGA and its mathematical properties are [25] and [69].
We present in the following sections an introduction of the construction of

isogeometric scalar and vector spaces, their approximation and spectral properties,
of the computationally-efficient algorithms that can be used to construct and solve
isogeometric linear systems, and finally report (from the literature) some significant
isogeometric analyses of benchmark applications.

4.2 Splines and NURBS: Definition and Properties

This section contains a quick introduction to B-splines and NURBS and their use in
geometric modeling and CAGD. Reference books on this topic are [25, 44, 51, 91,
93, 102].

1IGA of Cahn-Hilliard 4th-order model of phase separation is studied in [62, 63]; Kirchhoff-Love
4th-order model of plates and shells in [21, 26, 78, 79]; IGA of crack propagation is studied in
[126], with 4th- and 6th-order gradient-enhanced theories of damage [127]; 4th-order phase-field
fracture models are considered in [30] and [29], where higher-order convergence rates to sharp-
interface limit solutions are numerically demonstrated.
2The effect of regularity on the spectral behavior of isogeometric discretizations has been studied
in [49, 71, 73].
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4.2.1 Univariate Splines

Given two positive integers p and n, we say thatΞ := {ξ1, . . . , ξn+p+1} is a p-open
knot vector if

ξ1 = . . . = ξp+1 < ξp+2 ≤ . . . ≤ ξn < ξn+1 = . . . = ξn+p+1,

where repeated knots are allowed, and ξ1 = 0 and ξn+p+1 = 1. The vector Z =
{ζ1, . . . , ζN } contains the breakpoints, that is the knots without repetitions, where
mj is the multiplicity of the breakpoint ζj , such that

Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸
m1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
m2 times

, . . . , ζN , . . . , ζN︸ ︷︷ ︸
mN times

}, (4.1)

with
∑N
i=1mi = n + p + 1. We assume mj ≤ p + 1 for all internal knots. The

points in Z form a mesh, and the local mesh size of the element Ii = (ζi, ζi+1) is
denoted hi = ζi+1 − ζi , for i = 1, . . . , N − 1.

B-spline functions of degree p are defined by the well-known Cox-DeBoor
recursion:

B̂i,0(ζ ) =
{

1 if ξi ≤ ζ < ξi+1,

0 otherwise,
(4.2)

and

B̂i,p(ζ ) = ζ − ξi
ξi+p − ξi B̂i,p−1(ζ )+ ξi+p+1 − ζ

ξi+p+1 − ξi+1
B̂i+1,p−1(ζ ), (4.3)

where 0/0 = 0. This gives a set of n B-splines that are non-negative, form a partition
of unity, have local support, are linear independent.

The {B̂i,p} form a basis for the space of univariate splines, that is, piecewise
polynomials of degree p with kj := p−mj continuous derivatives at the points ζj ,
for j = 1, . . . , N :

Sp(Ξ) = span{B̂i,p, i = 1, . . . , n}. (4.4)

Remark 1 The notation Spr will be adopted to refer to the space Sp(Ξ) when the
multiplicity mj of all internal knots is p − r . Then, Spr is a spline space with
continuity Cr .

The maximum multiplicity allowed, mj = p + 1, gives kj = −1, which represents
a discontinuity at ζj . The regularity vector k = {k1, . . . , kN } will collect the
regularity of the basis functions at the internal knots, with k1 = kN = −1 for
the boundary knots. An example of B-splines is given in Fig. 4.1. B-splines are
interpolatory at knots ζj if and only if the multiplicity mj ≥ p, that is where the
B-spline is at most C0.
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Fig. 4.1 Cubic B-splines and the corresponding knot vector with repetitions

Each B-spline B̂i,p depends only on p+ 2 knots, which are collected in the local
knot vector

Ξi,p := {ξi, . . . , ξi+p+1}.

When needed, we will stress this fact by adopting the notation

B̂i,p(ζ ) = B̂[Ξi,p](ζ ). (4.5)

The support of each basis function is exactly supp(B̂i,p) = [ξi, ξi+p+1].
A spline curve in R

d , d = 2, 3 is a curve parametrized by a linear combination
of B-splines and control points as follows:

C(ζ ) =
n∑
i=1

ci B̂i,p(ζ ) ci ∈ R
d, (4.6)

where {ci}ni=1 are called control points. Given a spline curve C(ζ ), its control
polygon CP (ζ ) is the piecewise linear interpolant of the control points {ci}ni=1 (see
Fig. 4.2).

In general, conic sections cannot be parametrized by polynomials but can be
parametrized with rational polynomials, see [91, Sect. 1.4]. This has motivated
the introduction of Non-Uniform Rational B-Splines (NURBS). In order to define
NURBS, we set the weight function W(ζ ) = ∑n

�=1w�B̂�,p(ζ ) where the positive
coefficients w� > 0 for � = 1, . . . , n are called weights. We define the NURBS
basis functions as

N̂i,p(ζ ) = wiB̂i,p(ζ )∑n
�=1 w�B̂�,p(ζ )

= wiB̂i,p(ζ )
W(ζ )

, i = 1, . . . , n, (4.7)
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Fig. 4.2 Spline curve (solid line), control polygon (dashed line) and control points (red dots)

Fig. 4.3 On the left, the NURBS function ξ "→ C(ξ) parametrizes the red circumference of a
circle, given as the projection of the non-rational black spline curve, parametrized by the spline
ξ "→ Cw(ξ). The NURBS and spline control points are denoted Bi and Bwi , respectively, in the
right plot

which are rational B-splines. NURBS (4.7) inherit the main properties of B-splines
mentioned above, that is they are non-negative, form a partition of unity, and have
local support. We denote the NURBS space they span by

Np(Ξ,W) = span{N̂i,p, i = 1, . . . , n}. (4.8)

Similarly to splines, a NURBS curve is defined by associating one control point
to each basis function, in the form:

C(ζ ) =
n∑
i=1

ci N̂i,p(ζ ) ci ∈ R
d . (4.9)

Actually, the NURBS curve is a projection into R
d of a non-rational B-spline curve

in the space R
d+1, which is defined by

Cw(ζ ) =
n∑
i=1

cwi B̂i,p(ζ ),

where cwi = [ci, wi ] ∈ R
d+1 (see Fig. 4.3).
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For splines and NURBS curves, refinement is performed by knot insertion and
degree elevation. In IGA, these two algorithms generate two kinds of refinement
(see [70]): h-refinement which corresponds to mesh refinement and is obtained by
insertion of new knots, and p-refinement which corresponds to degree elevation
while maintaining interelement regularity, that is, by increasing the multiplicity
of all knots. Furthermore, in IGA literature k-refinement denotes degree elevation,
with increasing interelement regularity. This is not refinement in the sense of nested
spaces, since the sequence of spaces generated by k-refinement has increasing global
smoothness.

Having defined the spline space Sp(Ξ), the next step is to introduce suitable
projectors onto it. We focus on so called quasi-interpolantsA common way to define
them is by giving a dual basis, i.e.,

Πp,Ξ : C∞([0, 1])→ Sp(Ξ), Πp,Ξ (f ) =
n∑
j=1

λj,p(f )B̂j,p, (4.10)

where λj,p are a set of dual functionals satisfying

λj,p(B̂k,p) = δjk, (4.11)

δjk being the Kronecker symbol. The quasi-interpolantΠp,Ξ preserves splines, that
is

Πp,Ξ(f ) = f, ∀f ∈ Sp(Ξ). (4.12)

From now on we assume local quasi-uniformity of the knot vector ζ1, ζ2, . . . , ζN ,
that is, there exists a constant θ ≥ 1 such that the mesh sizes hi = ζi+1 − ζi satisfy
the relation θ−1 ≤ hi/hi+1 ≤ θ , for i = 1, . . . , N − 2. Among possible choices
for the dual basis {λj,p}, j = 1, . . . , n, a classical one is given in [102, Sect. 4.6],
yielding to the following stability property (see [15, 25, 102]).

Proposition 1 For any non-empty knot span Ii = (ζi, ζi+1),

‖Πp,Ξ (f )‖L2(Ii )
≤ C‖f ‖L2(Ĩi )

, (4.13)

where the constant C depends only upon the degree p, and Ĩi is the support
extension, i.e., the interior of the union of the supports of basis functions whose
support intersects Ii
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4.2.2 Multivariate Splines and NURBS

Multivariate B-splines are defined from univariate B-splines by tensorization. Let
d be the space dimensions (in practical cases, d = 2, 3). Assume n� ∈ N, the
degree p� ∈ N and the p�-open knot vector Ξ� = {ξ�,1, . . . , ξ�,n�+p�+1} are given,
for � = 1, . . . , d . We define a polynomial degree vector p = (p1, . . . , pd) and
Ξ = Ξ1 × . . . × Ξd . The corresponding knot values without repetitions are given
for each direction � by Z� = {ζ�,1, . . . , ζ�,N�}. The knots Z� form a Cartesian grid
in the parametric domain Ω̂ = (0, 1)d , giving the Bézier mesh, which is denoted
by M̂ :

M̂ = {Qj = I1,j1 × . . .× Id,jd such that I�,j� = (ζ�,j� , ζ�,j�+1) for 1 ≤ j� ≤ nEL,� − 1}.
(4.14)

For a generic Bézier element Qj ∈ M̂ , we also define its support extension
Q̃j = Ĩ1,j1 × . . . × Ĩd,jd , with Ĩ�,j� the univariate support extension as defined in
Proposition 1. We make use of the set of multi-indices I = {i = (i1, . . . , id ) : 1 ≤
i� ≤ n�}, and for each multi-index i = (i1, . . . , id), we define the local knot vector
Ξ i,p = Ξi1,p1 × . . .×Ξid ,pd . Then we introduce the set of multivariate B-splines

{
B̂i,p(ζ ) = B̂[Ξi1,p1](ζ1) . . . B̂[Ξid,pd ](ζd), ∀i ∈ I

}
. (4.15)

The spline space in the parametric domain Ω̂ is then

Sp(Ξ) = span{B̂i,p(ζ ), i ∈ I}, (4.16)

which is the space of piecewise polynomials of degree p with the regularity across
Bézier elements given by the knot multiplicities.

Multivariate NURBS are defined as rational tensor product B-splines. Given a set
of weights {wi, i ∈ I}, and the weight functionW(ζ ) =∑

j∈IwjB̂j,p(ζ ), we define
the NURBS basis functions

N̂i,p(ζ ) = wiB̂i,p(ζ )∑
j∈IwjB̂j,p(ζ )

= wiB̂i,p(ζ )

W(ζ )
.

The NURBS space in the parametric domain Ω̂ is then

Np(Ξ ,W) = span{N̂i,p(ζ ), i ∈ I}.

As in the case of NURBS curves, the choice of the weights depends on the geometry
to parametrize, and in IGA applications it is preserved by refinement.

Tensor-product B-splines and NURBS (4.7) are non-negative, form a partition of
unity and have local support. As for curves, we define spline (NURBS, respectively)
parametrizations of multivariate geometries in R

m, m = 2, 3. A spline (NURBS,
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respectively) parametrization is then any linear combination of B-spline (NURBS,
respectively) basis functions via control points ci ∈ R

m

F(ζ ) =
∑
i∈I

ciB̂i,p(ζ ), with ζ ∈ Ω̂. (4.17)

Depending on the values of d and m, the map (4.17) can define a planar surface
in R

2 (d = 2,m = 2), a manifold in R
3 (d = 2,m = 3), or a volume in R

3

(d = 3,m = 3).
The definition of the control polygon is generalized for multivariate splines and

NURBS to a control mesh, the mesh connecting the control points ci. Since B-
splines and NURBS are not interpolatory, the control mesh is not a mesh on the
domainΩ . Instead, the image of the Bézier mesh in the parametric domain through
F gives the physical Bézier mesh in Ω , simply denoted the Bézier mesh if there is
no risk of confusion (see Fig. 4.4).

The interpolation and quasi-interpolation projectors can be also extended to the
multi-dimensional case by a tensor product construction. Let, for i = 1, . . . , d ,
the notationΠipi denote the univariate projectorΠp,Ξ onto the space Spi (Ξi), then
define

Πp(f ) = (Π1
p1
⊗ . . .⊗Πdpd )(f ). (4.18)

Fig. 4.4 The control mesh (left) and the physical Bézier mesh (right) for a pipe elbow is
represented
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Analogously, the multivariate quasi-interpolant is also defined from a dual basis (see
[51, Chapter XVII]). Indeed, we have

Πp,Ξ (f ) =
∑
i∈I
λi,p(f )B̂i,p,

where each dual functional is defined from the univariate dual bases as λi,p =
λi1,p1 ⊗ . . .⊗ λid ,pd .

4.2.3 Splines Spaces with Local Tensor-Product Structure

A well developed research area concerns extensions of splines spaces beyond
the tensor product structure, and allow local mesh refinement: for example T-
splines, Locally-refinable (LR) splines, and hierarchical splines. T-splines have been
proposed in [107] and have been adopted for isogeometric methods since [16].
They have been applied to shell problems [68], fluid-structure interaction problems
[17] and contact mechanics simulation [52]. The algorithm for local refinement
has evolved since its introduction in [108] (see, e.g., [104]), in order to overcome
some initial limitations (see, e.g.,[55]). Other possibilities are LR-splines [53] and
hierarchical splines [36, 128].

We summarize here the definition of a T-spline and its main properties, following
[25]. A T-mesh is a mesh that allows T-junctions. See Fig. 4.5 (left) for an example.
A T-spline set

{
B̂A,p, A ∈ A

}
, (4.19)

is a generalization of the tensor-product set of multivariate splines (4.15). Indeed
the functions in (4.19) have the structure

B̂A,p(ζ ) = B̂[ΞA,1,p1](ζ1) . . . B̂[ΞA,d,pd ](ζd) (4.20)

Fig. 4.5 A T-mesh with two T-junctions (on the left) and the same T-mesh with the T-junction
extensions (on the right). The degree for this example is cubic and the T-mesh is analysis suitable
since the extensions, one horizontal and the other vertical, do not intersect
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Fig. 4.6 Two bi-cubic T-spline anchors A′ and A′′ and related local knot vectors. In particular, the
local knot vectors for A′′ are ΞA′′,d,3 = {ξ ′′1,d , ξ ′′2,d , ξ ′′3,d , ξ ′′4,d , ξ ′′5,d , }, d = 1, 2. In this example, the

two T-splines B̂A′,p and B̂A′′,p partially overlap (the overlapping holds in the horizontal direction)

where the set of indices, usually referred to as anchors, A and the associated local
knot vectorsΞA,�,p� , for all A ∈ A are obtained from the T-mesh. If the polynomial
degree is odd (in all directions) the anchors are associated with the vertices of the T-
mesh, if the polynomial degree is even (in all directions) the anchors are associated
with the elements. Different polynomial degrees in different directions are possible.
The local knot vectors are obtained from the anchors by moving along one direction
and recording the knots corresponding to the intersections with the mesh. See the
example in Fig. 4.6.

On the parametric domain Ω̂ we can define a Bézier mesh M̂ as the collection
of the maximal open sets Q ⊂ Ω̂ where the T-splines of (4.19) are polynomials in
Q. We remark that the Bézier mesh and the T-mesh are different meshes.

The theory of T-splines focuses on the notion of Analysis-Suitable (AS) T-splines
or, equivalently, Dual-Compatible (DC) T-splines: these are a subset of T-splines for
which fundamental mathematical properties hold, of crucial importance for IGA.

We say that the two p-degree local knot vectors Ξ ′ = {ξ ′1, . . . ξ ′p+2} and
Ξ ′′ = {ξ ′′1 , . . . ξ ′′p+2} overlap if they are sub-vectors of consecutive knots taken from
the same knot vector. For example {ξ1, ξ2, ξ3, ξ5, ξ7} and {ξ3, ξ5, ξ7, ξ8, ξ9} overlap,
while {ξ1, ξ2, ξ3, ξ5, ξ7} and {ξ3, ξ4, ξ5, ξ6, ξ8} do not overlap. Then we say that two
T-splines B̂A′,p and B̂A′′,p in (4.19) partially overlap if, when A′ �= A′′, there exists
a direction � such that the local knot vectors ΞA′,�,p� and ΞA′′,�,p� are different and
overlap. This is the case of Fig. 4.6. Finally, the set (4.19) is a Dual-Compatible
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(DC) set of T-splines if each pair of T-splines in it partially overlaps. Its span

Sp(A ) = span
{
B̂A,p, A ∈ A

}
, (4.21)

is denoted a Dual-Compatible (DC) T-spline space. The definition of a DC set of
T-splines simplifies in two dimension ([23]): when d = 2, a T-spline space is a DC
set of splines if and only if each pair of T-splines in it have overlapping local knot
vector in at least one direction.

A full tensor-product space (see Sect. 4.2.2) is a particular case of a DC spline
space. In general, partial overlap is sufficient for the construction of a dual basis, as
in the full tensor-product case. We only need, indeed, a univariate dual basis (e.g.,
the one in [102]), and denote by λ[ΞA,�,p�] the univariate functional as in (4.11),
depending on the local knot vector ΞA,�,p� and dual to each univariate B-spline
with overlapping knot vector.

Proposition 2 Assume that (4.19) is a DC set, and consider an associated set of
functionals {

λA,p, A ∈ A
}
, (4.22)

λA,p = λ[ΞA,1,p1] ⊗ . . .⊗ λ[ΞA,d,pd ]. (4.23)

Then (4.22) is a dual basis for (4.19).

Above, we assume that the local knot vectors in (4.23) are the same as
in (4.19), (4.20). The proof of Proposition 2 can be found in [25]. The existence
of dual functionals implies important properties for a DC set (4.19) and the related
space Sp(A ) in (4.21), as stated in the following theorem.

Theorem 1 The T-splines in a DC set (4.19) are linearly independent. If the
constant function belongs to Sp(A ), they form a partition of unity. If the space of
global polynomials of multi-degree p is contained in Sp(A ), then the DC T-splines
are locally linearly independent, that is, given Q ∈ M̂ , then the non-null T-splines
restricted to the elementQ are linearly independent.

An important consequence of Proposition 2 is that we can build a projection
operatorΠp : L2(Ω̂)→ Sp(A ) by

Πp(f )(ζ ) =
∑
A∈A

λA,p(f )B̂A,p(ζ ) ∀f ∈ L2(Ω̂), ∀ζ ∈ Ω̂. (4.24)

This is the main tool (as mentioned in Sect. 4.4.1) to prove optimal approximation
properties of T-splines.

In general, for DC T-splines, and in particular for tensor-product B-splines, we
can define so called Greville abscissae. Each Greville abscissa

γA =
(
γ [ΞA,1,p1], . . . , γ [ΞA,d,pd ]

)
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is a point in the parametric domain Ω̂ and its d-component γ [ΞA,�,p�]is the average
of the p� internal knots of ΞA,�,p� . They are the coefficients of the identity function
in the T-spline expansion. Indeed, assuming that linear polynomials belong to the
space Sp(A ), we have that

ζ� =
∑
A∈A

γ [ΞA,�,p�]B̂A,p(ζ ), ∀ζ ∈ Ω̂, 1 ≤ � ≤ d. (4.25)

Greville abscissae are used as interpolation points (see [51]) and therefore for
collocation based IGA [7, 8, 100].

A useful result, proved in [20, 23], is that a T-spline set is DC if and only if (under
minor technical assumptions) it comes from a T-mesh that is Analysis-Suitable. The
latter is a topological condition for the T-mesh [16] and it refers to dimension d = 2.
A horizontal T-junction extension is a horizontal line that extend the T-mesh from
a T-junctions of kind ) and * in the direction of the missing edge for a length of
,p1/2- elements, and in the opposite direction for 'p1/2( elements; analogously
a vertical T-junction extension is a vertical line that extend the T-mesh from a T-
junctions of kind⊥ or . in the direction of the missing edge for a length of ,p2/2-
elements, and in the opposite direction for 'p2/2( elements, see Fig. 4.6 (right).
Then, a T-mesh is Analysis-Suitable (AS) if horizontal T-junction extensions do not
intersect vertical T-junction extensions.

4.2.4 Beyond Tensor-Product Structure

Multivariate unstructured spline spaces are spanned by basis functions that are not,
in general, tensor products. Non-tensor-product basis functions appear around so-
called extraordinary points. Subdivision schemes, but also multipatch or T-splines
spaces in the most general setting, are unstructured spaces. The construction and
mathematical study of these spaces is important especially for IGA and is one of the
most important recent research activities, see [35, 98]. We will further address this
topic in Sects. 4.3.3 and 4.4.3.

4.3 Isogeometric Spaces: Definition

In this section, following [25], we give the definition of isogeometric spaces. We
consider a single patch domain, i.e., the physical domain Ω is the image of
the unit square, or the unit cube (the parametric domain Ω̂) by a single NURBS
parametrization. Then, for a given degree vector p0, knot vectors Ξ0 and a weight
function W ∈ Sp0(Ξ0), a map F ∈ (Np0

(Ξ0,W))d is given such that Ω = F(Ω̂),
as in Fig. 4.7.
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Q K

F

Fig. 4.7 Mesh M̂ in the parametric domain, and its image M in the physical domain

After having introduced the parametric Bézier mesh M̂ in (4.14), as the mesh
associated to the knot vectors Ξ , we now define the physical Bézier mesh (or simply
Bézier mesh) as the image of the elements in M̂ through F:

M := {K ⊂ Ω : K = F(Q),Q ∈ M̂ }, (4.26)

see Fig. 4.7. The meshes for the coarsest knot vector Ξ 0 will be denoted by M̂0
and M0. For any elementK = F(Q) ∈M , we define its support extension as K̃ =
F(Q̃), with Q̃ the support extension ofQ. We denote the element size of any element
Q ∈ M̂ by hQ = diam(Q), and the global mesh size by h = max{hQ : Q ∈ M̂ }.
Analogously, we define the element sizes hK = diam(K) and hK̃ = diam(K̃).

For the sake of simplicity, we assume that the parametrization F is regular, that
is, the inverse parametrization F−1 is well defined, and piecewise differentiable of
any order with bounded derivatives. Assuming F is regular ensures that hQ / hK .
The case a of singular parametrization, that is, non-regular parametrization, will be
discussed in Sect. 4.4.4.

4.3.1 Isoparametric Spaces

Isogeometric spaces are constructed as push-forward through F of (refined) splines
or NURBS spaces. In detail, let V̂h = Np(Ξ ,W) be a refinement of Np0

(Ξ 0,W),
we define the scalar isogeometric space as:

Vh = {f ◦ F−1 : f ∈ V̂h}. (4.27)

Analogously,

Vh = span{Ni,p(x) := N̂i,p ◦ F−1(x), i ∈ I}, (4.28)

that is, the functions Ni,p form a basis of the space Vh. Isogeometric spaces with
boundary conditions are defined straightforwardly.
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Following [15], the construction of a projector on the NURBS isogeometric
space Vh (defined in (4.27)) is based on a pull-back on the parametric domain, on a
decomposition of the function into a numerator and weight denominator, and finally
a spline projection of the numerator. We haveΠVh : V (Ω)→ Vhdefined as

ΠVhf :=
Πp(W(f ◦ F))

W
◦ F−1, (4.29)

whereΠp is the spline projector (4.18) and V (Ω) is a suitable function space. The
approximation properties ofΠVh will be discussed in Sect. 4.4.

The isogeometric vector space, as introduced in [70], is just (Vh)d , that is a space
of vector-valued functions whose components are in Vh. In parametric coordinates
a spline isogeometric vector field of this kind reads

u(ζ ) =
∑
i∈I

uiB̂i,p(ζ ), with ζ ∈ Ω̂, (4.30)

where ui are the degrees-of-freedom, also referred as control variables since they
play the role of the control points of the geometry parametrization (4.17). This is an
isoparametric construction.

4.3.2 De Rham Compatible Spaces

The following diagram

(4.31)

is the De Rham cochain complex. The Sobolev spaces involved are the two standard
scalar-valued, H 1(Ω) and L2(Ω) , and the two vector valued

H(curl;Ω) = {u ∈ L2(Ω)3 : curl u ∈ L2(Ω)3}
H(div;Ω) = {u ∈ L2(Ω)3 : div u ∈ L2(Ω)}.

Furthermore, as in general for complexes, the image of a differential operator
in (4.31) is subset of the kernel of the next: for example, constants have null grad ,
gradients are curl-free fields, and so on. De Rham cochain complexes are related to
the well-posedness of PDEs of key importance, for example in electromagnetic or
fluid applications. This is why it is important to discretize (4.31) while preserving
its structure. This is a well developed area of research for classical finite elements,
called Finite Element Exterior Calculus (see the reviews [4, 5]) and likewise a
successful development of IGA.
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For the sake of simplicity, again, we restrict to a single patch domain and we do
not include boundary conditions in the spaces. The dimension here is d = 3. The
construction of isogeometric De Rham compatible spaces involves two stages.

The first stage is the definition of spaces on the parametric domain Ω̂ .
These are tensor-product spline spaces, as (4.16), with a specific choice for the
degree and regularity in each direction. For that, we use the expanded notation
Sp1,p2,p3(Ξ1,Ξ2,Ξ3) for Sp(Ξ ). Given degrees p1, p2, p3 and knot vectors
Ξ1,Ξ2,Ξ3 we then define on Ω̂ the spaces:

X̂0
h = Sp1,p2,p3(Ξ1,Ξ2,Ξ3),

X̂1
h = Sp1−1,p2,p3(Ξ ′1,Ξ2,Ξ3)× Sp1,p2−1,p3(Ξ1,Ξ

′
2,Ξ3)

× Sp1,p2,p3−1(Ξ1,Ξ2,Ξ
′
3),

X̂2
h = Sp1,p2−1,p3−1(Ξ1,Ξ

′
2,Ξ

′
3)× Sp1−1,p2,p3−1(Ξ ′1,Ξ2,Ξ

′
3)

× Sp1−1,p2−1,p3(Ξ ′1,Ξ ′2,Ξ3),

X̂3
h = Sp1−1,p2−1,p3−1(Ξ ′1,Ξ ′2,Ξ ′3),

(4.32)

where, given Ξ� = {ξ�,1, . . . , ξ�,n�+p�+1}, Ξ ′� is defined as the knot vector
{ξ�,2, . . . , ξ�,n�+p�}, and we assume the knot multiplicities 1 ≤ m�,i ≤ p�, for
i = 2, . . . , N� − 1 and � = 1, 2, 3. With this choice, the functions in X̂0

h are at least
continuous. Then,̂ grad (X̂0

h) ⊂ X̂1
h, and analogously, from the definition of the curl

and the divergence operators we get ĉurl(X̂1
h) ⊂ X̂2

h, and d̂iv (X̂2
h) ⊂ X̂3

h. This
follows easily from the action of the derivative operator on tensor-product splines,
for example:

∂

∂ζ1
: Sp1,p2,p3(Ξ1,Ξ2,Ξ3)→ Sp1−1,p2,p3(Ξ ′1,Ξ2,Ξ3)

It is also proved in [38] that the kernel of each operator is exactly the image of the
preceding one. In other words, these spaces form an exact sequence:

(4.33)

This is consistent with (4.31).
The second stage is the push forward of the isogeometric De Rham compatible

spaces from the parametric domain Ω̂ onto Ω . The classical isoparametric trans-
formation on all spaces does not preserve the structure of the De Rham cochain
complex. We need to use the transformations:

ι0(f ) := f ◦ F, f ∈ H 1(Ω) ,

ι1(f) := (DF)T (f ◦ F), f ∈ H(curl;Ω) ,
ι2(f) := det(DF)(DF)−1(f ◦ F), f ∈ H(div;Ω) ,
ι3(f ) := det(DF)(f ◦ F), f ∈ L2(Ω) ,

(4.34)
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where DF is the Jacobian matrix of the mapping F : Ω̂ → Ω . The transformation
above preserve the structure of the De Rham cochain complex, in the sense of the
following commuting diagram (see [66, Sect. 2.2] and [86, Sect. 3.9]):

(4.35)

Note that the diagram above implicitly defines the isogeometric De Rham compati-
ble spaces onΩ , that is X0

h, X1
h, X2

h and X3
h; for example:

X2
h =

{
f : Ω → R

3 such that det(DF)(DF)−1(f ◦ F) ∈ X̂2
h

}
. (4.36)

In this setting, the geometry parametrization F can be either a spline in (X̂0
h)

3 or a
NURBS.

In fact, thanks to the smoothness of splines, isogeometric De Rham compatible
spaces enjoy a wider applicability than their finite element counterpart. For example,
assumingm�,i ≤ p�−1, for i = 2, . . . , N�−1 and � = 1, 2, 3, then the spaceX2

h is
subset of (H 1(Ω) )3. Furthermore there exists a subsetKh ⊂ X2

h of divergence-free
isogeometric vector fields, i.e.,

Kh =
{
f ∈ X2

h such that div f = 0
}
, (4.37)

that can be characterized as

f ∈ Kh ⇔
∫
Ω

( div f)v = 0, ∀v ∈ X3
h, (4.38)

as well as

f ∈ Kh ⇔ ∃v ∈ X1
h such that curl v = f. (4.39)

Both Kh and X2
h play an important role in the IGA of incompressible fluids,

allowing exact point-wise divergence-free solutions that are difficult to achieve by
finite element methods, or in linear small-deformation elasticity for incompressible
materials, allowing point-wise preservation of the linearized volume under defor-
mation. We refer to [37, 56–58, 123] and the numerical tests of Sect. 4.7. We should
also mention that for large deformation elasticity the volume preservation constraint
becomes det f = 1, f denoting the deformation gradient, and the construction of
isogeometric spaces that allow its exact preservation is an open and very challenging
problem.
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4.3.3 Extensions

Isogeometric spaces can be constructed from non-tensor-product or unstructured
spline spaces, as the ones listed in Sect. 4.2.3.

Unstructured multipatch isogeometric spaces may have C0 continuity at patch
interfaces, of higher continuity. The implementation of C0-continuity over multi-
patch domains is well understood (see e.g. [81, 106] for strong and [34] for weak
imposition of C0 conditions). Some papers have tackled the problem of constructing
isogeometric spaces of higher order smoothness, such as [35, 48, 76, 89, 98]. The
difficulty is how to construct analysis-suitable unstructured isogeometric spaces
with global C1 or higher continuity. The main question concerns the approximation
properties of these spaces, see Sect. 4.4.3.

An important operation, derived from CAGD, and applied to isogeometric
spaces is trimming, see [85] Indeed trimming is very common in geometry
representation, since it is the natural outcome of Boolean operations (union,
intersection, subtraction of domains). One possibility is to approximate (up to some
prescribed tolerance) the trimmed domain by an untrimmed multipatch or T-spline
parametrized domain, see [109]. Another possibility is to use directly the trimmed
geometry and deal with the two major difficulties that arise: efficient quadrature and
imposition of boundary conditions, see [94, 95, 99].

4.4 Isogeometric Spaces: Approximation Properties

4.4.1 h-Refinement

The purpose of this section is to summarize the approximation properties of the
isogeometric space Vh defined in (4.27). We focus on the convergence analysis
under h-refinement, presenting results first obtained in [15] and [22]. To express
the error bounds, we will make use of Sobolev spaces on a domain D, that can be
either Ω or Ω̂ or subsets such as Q, Q̃, K or K̃. For example, Hs(D), s ∈ N is
the space of square integrable functions f ∈ L2(Ω) such that its derivatives up to
order s are square integrable. However, conventional Sobolev spaces are not enough.
Indeed, since the mapping F is not arbitrarily regular across mesh lines, even if a
scalar function f in physical space satisfies f ∈ Hs(Ω), its pull-back f̂ = f ◦ F is
not in general inHs(Ω̂). As a consequence, the natural function space in parametric
space, in order to study the approximation properties of mapped NURBS, is not the
standard Sobolev spaceHs but rather a “bent” version that allows for less regularity
across mesh lines. In the following, as usual, C will denote a constant, possibly
different at each occurrence, but independent of the mesh-size h. Note that, unless
noted otherwise, C depends on the polynomial degree p and regularity.

Let d = 1 first. We recall that Ii = (ζi, ζi+1) are the intervals of the partition
of I = (0, 1) given by the knot vector. We define for any q ∈ N the piecewise
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polynomial space

Pq(Ξ) = {v ∈ L2(I) such that v|Ii is a q -degree polynomial, ∀i = 1, . . . , N−1}.

Given s ∈ N and any sub-interval E ⊂ I , we indicate by Hs(E) the usual Sobolev
space endowed with norm ‖ · ‖Hs(E) and semi-norm | · |Hs(E). We define the bent
Sobolev space (see [15]) on I as

H s(I ) =
⎧⎨
⎩
f ∈ L2(I ) such that f |Ii ∈ Hs(Ii ) ∀ i = 1, . . . , N − 1, and

Dk−f (ζi) = Dk+f (ζi), ∀k = 0, . . . ,min{s − 1, ki},∀i = 2, . . . , N − 1,

⎫⎬
⎭

(4.40)

where Dk± denote the kth-order left and right derivative (or left and right limit for
k = 0), and ki is the number of continuous derivatives at the break point ζi . We
endow the above space with the broken norm and semi-norms

‖f ‖2
H s (I ) =

s∑
j=0

|f |2H j (I )
, |f |2H j (I )

=
N−1∑
i=1

|f |2
Hj (Ii )

∀j = 0, 1, . . . , s,

where | · |H 0(Ii )
= ‖ · ‖L2(Ii )

.
In higher dimensions, the tensor product bent Sobolev spaces are defined as

follows. Let s = (s1, s2, . . . , sd ) in N
d . By a tensor product construction starting

from (4.40), we define the tensor product bent Sobolev spaces in the parametric
domain Ω̂ := (0, 1)d

H s(Ω̂) :=H s1(0, 1)⊗H s2(0, 1)⊗ . . .⊗H sd (0, 1),

endowed with the tensor-product norm and seminorms. The above definition clearly
extends immediately to the case of any hyper-rectangle E ⊂ Ω̂ that is a union of
elements in M̂ .

We restrict, for simplicity of exposition, to the two-dimensional case. As in
the one-dimensional case, we assume local quasi-uniformity of the mesh in each
direction. LetΠpi,Ξi : L2(I)→ Spi (Ξi), for i = 1, 2, indicate the univariate quasi-
interpolant associated to the knot vectorΞi and polynomial degreepi . Let moreover
Πp,Ξ = Πp1,Ξ1 ⊗ Πp2,Ξ2 from L2(Ω) to Sp(Ξ ) denote the tensor product quasi-
interpolant built using theΠpi,Ξi defined in (4.18) for d = 2. In what follows, given
any sufficiently regular function f : Ω̂ → R, we will indicate the partial derivative
operators with the symbol

D̂rf = ∂r1∂r2f

∂ζ
r1
1 ∂ζ

r2
2

r = (r1, r2) ∈ N
2. (4.41)
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Let E ⊂ Ω̂ be any union of elementsQ ∈ M̂ of the spline mesh. We will adopt
the notation

‖f ‖2
L2
h(E)

:=
∑

Q∈M̂ s.t.Q⊂E
‖f ‖2

L2(Q)
.

The element size of a generic elementQi = I1,i1 × . . .× Id,id ∈ M̂ will be denoted
by hQi = diam(Qi). We will indicate the length of the edges of Qi by h1,i1 , h2,i2,.
Because of the local quasi-uniformity of the mesh in each direction, the length of
the two edges of the extended patch Q̃i are bounded from above by h1,i1 and h2,i2 ,
up to a multiplicative factor. The quasi-uniformity constant is denoted θ . We have
the following result (see [22, 25] for its proof), that can be established for spaces
with boundary conditions as well.

Proposition 3 Given integers 0 ≤ r1 ≤ s1 ≤ p1 + 1 and 0 ≤ r2 ≤ s2 ≤ p2 + 1,
there exists a constantC depending only on p, θ such that for all elementsQi ∈ M̂ ,

‖D̂(r1,r2)(f −Πp,Ξf )‖L2(Qi)

≤ C
(
(h1,i1)

s1−r1‖D̂(s1,r2)f ‖L2
h(Q̃i)

+ (h2,i2)
s2−r2‖D̂(r1,s2)f ‖L2

h(Q̃i)

)

for all f in H (s1,r2)(Ω̂) ∩H (r1,s2)(Ω̂).

We can state the approximation estimate for the projection operator on the
isogeometric space Vh, that is ΠVh : L2(Ω) → Vh, defined in (4.29). In the
physical domain Ω = F(Ω̂), we introduce the coordinate system naturally induced
by the geometrical map F, referred to as the F-coordinate system, that associates to
a point x ∈ Ω the Cartesian coordinates in Ω̂ of its counter-image F−1(x). At each
x ∈ K ∈M0 (more generally, at each x where F is differentiable) the tangent base
vectors g1 and g2 of the F-coordinate system can be defined as

gi = gi (x) = ∂F
∂ζi
(F−1(x)), i = 1, 2; (4.42)

these are the images of the canonical base vectors êi in Ω̂ , and represent the axis
directions of the F-coordinate system (see Fig. 4.8).

Analogously to the derivatives in the parametric domain (4.41), the derivatives
of f : Ω → R in Cartesian coordinates are denoted by

Drf = ∂r1∂r2f

∂x
r1
1 ∂x

r2
2

r = (r1, r2) ∈ N
2.
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g2 g1
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x1

F
e2 e1

ΩΩ
ζ2

ζ1

Fig. 4.8 Illustration of the F-coordinate system in the physical domain

We also consider the derivatives of f : Ω → R with respect to the F-coordinates.
These are just the directional derivatives: for the first order we have

∂f

∂gi
(x) = ∇f (x) · gi (x) = lim

t→0

f (x+ tgi (x))− f (x)
t

, (4.43)

which is well defined for any x in the (open) elements of the coarse triangulation
M0, as already noted. Higher order derivatives are defined by recursion

∂ri f

∂grii
= ∂

∂gi

(
∂ri−1f

∂gri−1
i

)
=
(
∂

∂gi

(
. . .

(
∂

∂gi

(
∂f

∂gi

))))
;

more generally, we adopt the notation

Dr
Ff =

∂r1

∂gr11

∂r2f

∂gr22

r = (r1, r2) ∈ N
2. (4.44)

Derivatives with respect to the F-coordinates are directly related to derivatives in
the parametric domain, by

Dr
Ff =

(
D̂r (f ◦ F)) ◦ F−1. (4.45)

Let E be a union of elements K ∈ M . We introduce the broken norms and
seminorms

‖f ‖2
H

(s1,s2)
F (E)

=
s1∑
r1=0

s2∑
r2=0

|f |2
H

(r1,r2)
F (E)

, (4.46)

|f |2
H

(s1,s2)
F (E)

=
∑

K∈M s.t.K⊂E
|f |2

H
(s1,s2)
F (K)

,
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h1,Q

h2,Q
h1,K

h2,K

Q F K

Fig. 4.9 Q is mapped by the geometrical map F to K

where

|f |
H
(s1,s2)
F (K)

=
∥∥∥D(s1,s2)F f

∥∥∥
L2(K)

.

We also introduce the following space

H
(s1,s2)
F (Ω) = closure of C∞(Ω) with respect to the norm ‖ · ‖

H
(s1,s2)
F (Ω)

.

The following theorem from [22] states the main estimate for the approximation
error of ΠVhf and, making use of derivatives in the F-coordinate system, it is
suitable for anisotropic meshes. For a generic element Ki = F(Qi) ∈ M , the
notation K̃i = F(Q̃i) indicates its support extension (Fig. 4.9).

Theorem 2 Given integers ri , si , such that 0 ≤ ri ≤ si ≤ pi + 1, i = 1, 2,
there exists a constant C depending only on p, θ,F,W such that for all elements
Ki = F(Qi) ∈M ,

|f −ΠVhf |H (r1,r2)
F (Ki)

≤ C
(
(h1,i1)

s1−r1‖f ‖
H

(s1,r2)
F (K̃i)

+ (h2,i2)
s2−r2‖f ‖

H
(r1,s2)
F (K̃i)

)
(4.47)

for all f in H(s1,r2)F (Ω) ∩H(r1,s2)F (Ω).

We have the following corollary of Theorem 2, similar to [15, Theorem 3.1], or
[25, Theorem 4.24] (the case with boundary conditions is handled similarly).

Corollary 1 Given integers r, s, such that 0 ≤ r ≤ s ≤ min (p1, . . . , pd)+1, there
exists a constant C depending only on p, θ,F,W such that

‖f −ΠVhf ‖Hr (Ki) ≤ C(hKi)
s−r‖f ‖Hs(K̃i)

∀Ki ∈M ,

‖f −ΠVhf ‖Hr (Ω) ≤ Chs−r‖f ‖Hs(Ω),
(4.48)

for all f in Hs(Ω).

The error bound above straightforwardly covers isogeometric/isoparametric
vector fields. The error theory is possible also for isogeometric De Rham compatible
vector fields. In this framework there exists commuting projectors, i.e., projectors
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that make the diagram

(4.49)

commutative. These projectors not only are important for stating approximation
estimates, but also play a fundamental role in the stability of isogeometric schemes;
see [4, 38].

4.4.2 p-Refinement and k-Refinement

Approximation estimates in Sobolev norms have the general form

inf
fh∈Vh

‖f − fh‖Hr(Ω) ≤ C(h, p, k; r, s)‖f ‖Hs(Ω) (4.50)

where the optimal constant is therefore

C(h, p, k; r, s) = sup
f∈Bs(Ω)

inf
fh∈Vh

‖f − fh‖Hr(Ω) (4.51)

where Bs(Ω) = {f ∈ Hs(Ω) such that ‖f ‖Hs(Ω) ≤ 1} is the unit ball in Hs(Ω).
The study in Sect. 4.4.1 covers the approximation under h-refinement, giving an
asymptotic bound to (4.51) with respect to h which is sharp, for s ≤ p + 1,

C(h, p, k; r, s) ≈ C(p, k; r, s)hs−r , for h→ 0. (4.52)

This is the fundamental and most standard analysis, but it does not explain the
benefits of k-refinement, a unique feature of IGA. High-degree, high-continuity
splines and NURBS are superior to standard high-order finite elements when
considering accuracy per degree-of-freedom. The study of k-refinement is still
incomplete even though some important results are available in the literature. In
particular, [19] contains h, p, k-explicit approximation bounds for spline spaces of
degree 2q + 1 and up to Cq global continuity, while the recent work [115] contains
the error estimate

inf
fh∈Vh

|f − fh|Hr(Ω) ≤ (
√

2h)q−r |f |Hq(Ω)

for univariate Cp−1, p-degree splines, with 0 ≤ r ≤ q ≤ p + 1 on uniform knot
vectors.
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An innovative approach, and alternative to standard error analysis, is developed
in [59]. There a theoretical/numerical investigation provides clear evidence of the
importance of k-refinement. The space of smooth splines is shown to be very close
to a best approximation space in the Sobolev metric. The approach is as follows:
given the isogeometric space Vh, withN = dimVh together with (4.51), we consider
the Kolmogorov N-width:

dN(B
s(Ω),H r(Ω)) = inf

Wh⊂Hs(Ω)
dimWh=N

sup
f∈Bs(Ω)

inf
fh∈Wh

‖f − fh‖Hr(Ω). (4.53)

Then the optimality ratio is defined as

Λ(Bs(Ω), Vh,H
r(Ω)) = C(h, p, k; r, s)

dN(Bs(Ω),H r(Ω))
. (4.54)

In general, the quantity Λ(Bs(Ω), Vh,H r(Ω)) is hard to compute analytically but
can be accurately approximated numerically, by solving suitable generalized eigen-
value problems (see [59]). In Fig. 4.10 we compare smooth C3 quartic splines and
standard quartic finite elements (that is, C0 splines) under h-refinement. An inter-
esting result is that smooth splines asymptotically achieve optimal approximation
in the context considered, that is, they tend to be an optimal approximation space
given the number of degrees-of-freedom, since Λ(B5(0, 1), S4

3 , L
2(0, 1)) → 1.

This is not surprising as it is known that uniform periodic spline spaces are optimal

Fig. 4.10 Optimality ratios: comparison between quartic C3 splines (i.e.,
Λ(B5(0, 1), S4

3 , L
2(0, 1)), blue line with circles) and C0 finite elements (i.e.,

Λ(B5(0, 1), S4
0 , L

2(0, 1)), red line with crosses) on the unit interval for different mesh-sizes h
(the total number of degrees-of-freedom N is the abscissa)
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Fig. 4.11 Optimality ratios: for different Sobolev regularity s and for different spline degree p
with maximal smoothness. The number of degrees-of-freedom is N = 30. The surface plot is
capped at 10 for purposes of visualization. Note that if p ≥ s − 1 the optimality ratio is near 1.
Even for low regularity (i.e., low s), smooth splines (i.e., high p) produce optimality ratios near 1.
This supports the claim that “smooth splines are always good”

in the periodic setting. On the contrary, C0 finite elements are far from optimal.
In Fig. 4.11 we plot the optimality ratios for the L2 error for different Sobolev
regularity s and for smooth splines with different degrees p. There is numerical
evidence that Λ(Bs(0, 1), Spp−1, L

2(0, 1)) is bounded and close to 1 for all p ≥
s − 1. It is a surprising result, but in fact confirms that high-degree smooth splines
are accurate even when the solution to be approximated has low Sobolev regularity
(see [59] for further considerations).

This issue has been further studied in [40], for the special case of solutions
that are piecewise analytic with a localized singularity, which is typical of elliptic
PDEs on domains with corners or sharp edges. The work [40] focus instead on
the simplified one-dimensional problem, and consider a model singular solution
f (ζ ) = ζ α − ζ on the interval [0, 1], with 0 < α < 1. From the theory of hp-
FEMs (i.e., hp finite elements; see [103]) it is known that exponential convergence
is achieved, precisely

|f − fh|H 1(0,1) ≤ Ce−b
√
N (4.55)

where C and b are positive constants, N is the total number of degrees-of-freedom,
and fh is a suitable finite element approximation of f . The bound (4.55) holds if the
mesh is geometrically refined towards the singularity point ζ = 0 and with a suitable
selection of the polynomial degree, growing from left (the singularity) to the right of
the interval [0, 1]. The seminal paper [10] gives the reference hp-FEM convergence
rate which is reported in Fig. 4.12. Likewise, exponential convergence occurs with
Cp−1, p-degree spline approximation on a geometrically graded knot span, as
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Fig. 4.12 Energy norm error versus the (square root of) number of degrees-of-freedom N for the
approximation of the solution u(x) = x0.7 − x of the problem −u′′ = f with homogeneous
Dirichlet boundary conditions. The mesh is geometrically graded (with ratio q = 0.35 for IGA)
and the spline degree is proportional to the number of elements for IGA, and the smoothness is
maximal, that is the spline space isCp−1 globally continuous. Mesh-size and degrees are optimally
selected for hp-FEM, according to the criteria of [10]. Exponential convergence |u − uh|H 1 ≤
C exp (−b√N) is evidenced in both cases, with larger b for IGA

reported in the same figure. Remarkably, convergence is faster (with the constant
b in (4.55) that appears to be higher) for smooth splines, even though for splines the
degree p is the same for all mesh elements, and grows proportionally with the total
number of elements, whereas for hp-FEM a locally varying polynomial degree is
utilized on an element-by-element basis.

Exponential convergence for splines is proved in the main theorem of [40],
reported below.

Theorem 3 Assume that f ∈ H 1
0 (0, 1) and∥∥∥∥ζ β+k−2 ∂

kf

∂kζ

∥∥∥∥
L2(0,1)

≤ Cudk−2
u (k − 2)!, k = 2, 3, . . . (4.56)

for some 0 < β ≤ 1 and Cu, du > 0. Then there exist b > 0 and C > 0 such that
for any q > 1, for any σ with 0 < σ < 1 and 1 > σ > (1+ 2/du)−1,

inf
fh∈Sp(Ξ)

‖f − fh‖H 1(Ω) ≤ Ce−b(σ,β)
√
N, (4.57)
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where p = 2q + 1,

Ξ = {0, . . . , 0︸ ︷︷ ︸
p times

, σp−1, . . . , σp−1︸ ︷︷ ︸
q times

, σp−2, . . . , σp−2︸ ︷︷ ︸
q times

, . . . , σ, . . . , σ︸ ︷︷ ︸
q times

, 1, . . . , 1︸ ︷︷ ︸
p times

},

(4.58)

and N is the dimension of Sp(Ξ).

Condition (4.56) expresses the piecewise analytic regularity of f . Theorem 3 is
based on [19], and as such it covers approximation by 2q + 1 degree splines
having Cq global continuity. However, as is apparent from Fig. 4.12, exponential
convergence is also observed for maximally smooth splines.

4.4.3 Multipatch

While C0 isogeometric spaces with optimal approximation properties are easy
to construct, when the mesh is conforming at the interfaces (see, e.g., [25]), the
construction of smooth isogeometric spaces with optimal approximation properties
on unstructured geometries is a challenging problem and still open in its full
generality. The problem is related to one of accurate representation (fitting) of
smooth surfaces having complex topology, which is a fundamental area of research
in the community of CAGD.

There are mainly two strategies for constructing smooth multipatch geometries
and corresponding isogeometric spaces. One strategy is to adopt a geometry
parametrization which is globally smooth almost everywhere, with the exception
of a neighborhood of the extraordinary points (or edges in 3D), see Fig. 4.13 (left).
The other strategy is to use geometry parametrizations that are only C0 at patch
interfaces; see Fig. 4.13 (right). The first option includes subdivision surfaces [43]
and the T-spline construction in [105] and, while possessing attractive features,
typically lacks optimal approximation properties [76, 89]. One exception is the
recent works [120], where a specific construction is shown to achieve optimal

Fig. 4.13 Two possible parametrization schemes: C1 away from the extraordinary point (left) and
C0 at patch interfaces (right)
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order in h-refinement. On the other hand, some optimal constructions have been
recently obtained also following the second strategy, pictured in Fig. 4.13 (right)
(see [27, 48, 77, 87]). We summarize here the main concepts and results from [48],
referring to the paper itself for a complete presentation.

Consider a planar (d = 2) spline multipatch domain of interest

Ω = Ω(1) ∪ . . . ∪Ω(N) ⊂ R
2, (4.59)

where the closed sets Ω(i) form a regular partition without hanging nodes. Assume
each Ω(i) is a non-singular spline patch, with at least C1 continuity within each
patch, and that there exist parametrizations

F(i) : [0, 1] × [0, 1] = Ω̂ → Ω(i), (4.60)

where

F(i) ∈ S p(Ξ )×S p(Ξ ) ⊂ C1(Ω̂); (4.61)

Furthermore, assume global continuity of the patch parametrizations. This means
the following. Let us fix Γ = Γ (i,j) = Ω(i) ∩ Ω(j). Let F(L), F(R) be given such
that

F(L) : [−1, 0] × [0, 1] = Ω̂(L)→ Ω(L) = Ω(i),
F(R) : [0, 1] × [0, 1] = Ω̂(R)→ Ω(R) = Ω(j),

(4.62)

where (F(L))−1 ◦ F(i) and (F(R))−1 ◦ F(j) are linear transformations. The set
[−1, 1]× [0, 1] plays the role of a combined parametric domain. The coordinates in
[−1, 1] × [0, 1] are denoted u and v. The global continuity condition states that the
parametrizations agree at u = 0, i.e., there is an F0 : [0, 1] → R

2 with

Γ = {F0(v) = F(L)(0, v) = F(R)(0, v), v ∈ [0, 1]}. (4.63)

For the sake of simplicity we assume that the knot vectors of all patches and in each
direction coincide, are open and uniform. An example is depicted in Fig. 4.14.

The multipatch isogeometric space is given as

V =
{
φ : Ω → R such that φ ◦ F(i) ∈ S

p
r (Ω̂), i = 1, . . . , N

}
; (4.64)

the space of continuous isogeometric functions is

V 0 = V ∩ C0(Ω), (4.65)
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Fig. 4.14 Example of the setting of (4.62)–(4.63)

and the space of C1 isogeometric functions is

V 1 = V ∩ C1(Ω). (4.66)

The graph Σ ⊂ Ω × R of an isogeometric function φ : Ω → R splits into
patchesΣi having the parametrization

[
F(i)

g(i)

]
: [0, 1] × [0, 1] = Ω̂ → Σ(i) (4.67)

where g(i) = φ ◦ F(i). As in (4.62), we can select a patch interface Γ = Γ (i,j) =
Ω(i) ∩Ω(j), define g(L), g(R) such that

[
F(L)

g(L)

]
: [−1, 0] × [0, 1] = Ω̂(L)→ Σ(i) = Σ(L),

[
F(R)

g(R)

]
: [0, 1] × [0, 1] = Ω̂(R)→ Σ(j) = Σ(R),

(4.68)

see Fig. 4.15. Continuity of φ is implied by the continuity of the graph parametriza-
tion, then we set

g0(v) = g(L)(0, v) = g(R)(0, v), (4.69)

for all v ∈ [0, 1], analogous to (4.63).
Under suitable conditions, smoothness of a function is equivalent to the smooth-

ness of the graph, considered as a geometric entity. In particular, for an isogeometric
function that is C1 within each patch and globally continuous, the global C1

continuity is then equivalent to the geometric continuity of order 1 (in short G1) of
its graph parametrization. Geometric continuity of the graph parametrization means
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Fig. 4.15 Example of the general setting of (4.68)

that, on each patch interface, with notation (4.68), the tangent vectors

[
DuF(L)(0, v)
Dug

(L)(0, v)

]
,

[
DvF0(v)

Dvg0(v)

]
and

[
DuF(R)(0, v)
Dug

(R)(0, v)

]
,

are co-planar, i.e., linearly dependent. In the CAGD literature, G1 continuity is
commonly stated as below (see, e.g., [18, 82, 90]).

Definition 1 (G1-Continuity at Σ(i) ∩ Σ(j)) Given the parametrizations F(L),
F(R), g(L), g(R) as in (4.62), (4.68), fulfilling (4.61) and (4.69), we say that the graph
parametrization is G1 at the interface Σ(i) ∩ Σ(j) if there exist α(L) : [0, 1] → R,
α(R) : [0, 1] → R and β : [0, 1] → R such that for all v ∈ [0, 1],

α(L)(v)α(R)(v) > 0 (4.70)

and

α(R)(v)

[
DuF(L)(0, v)
Dug

(L)(0, v)

]
− α(L)(v)

[
DuF(R)(0, v)
Dug

(R)(0, v)

]
+ β(v)

[
DvF0(v)

Dvg0(v)

]
= 0.

(4.71)

Since the first two equations of (4.71) are linearly independent, α(L), α(R) and β
are uniquely determined, up to a common multiplicative factor, by F(L) and F(R),
i.e. from the equation

α(R)(v)DuF(L)(0, v)− α(L)(v)DuF(R)(0, v)+ β(v)DvF0(v) = 0. (4.72)

We have indeed the following proposition (see [48] and [90]).
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Proposition 4 Given any F(L), F(R) then (4.72) holds if and only if α(S)(v) =
γ (v)ᾱ(S)(v), for S ∈ {L,R}, and β(v) = γ (v)β̄(v), where

ᾱ(S)(v) = det
[
DuF(S)(0, v) DvF0(v)

]
, (4.73)

β̄(v) = det
[
DuF(L)(0, v) DuF(R)(0, v)

]
, (4.74)

and γ : [0, 1] → R is any scalar function. In addition, γ (v) �= 0 if and only
if (4.70) holds. Moreover, there exist functions β(S)(v), for S ∈ {L,R}, such that

β(v) = α(L)(v)β(R)(v) − α(R)(v)β(L)(v). (4.75)

In the context of isogeometric methods we consider Ω and its parametrization
given. Then for each interface α(L), α(R) and β are determined from (4.72) as stated
in Proposition 4. It should be observed that for planar domains, there always exist
α(L), α(R) and β fulfilling (4.72) (this is not the case for surfaces, see [48]). Then, the
C1 continuity of isogeometric functions is equivalent to the last equation in (4.71),
that is

α(R)(v)Dug
(L)(0, v)− α(L)(v)Dug(R)(0, v)+ β(v)Dvg0(v) = 0 (4.76)

for all v ∈ [0, 1]. Optimal approximation properties of the isogeometric space onΩ
holds under restrictions on α(L), α(R) and β, i.e. on the geometry parametrization.
This leads to the definition below ([48]).

Definition 2 (Analysis-Suitable G1-Continuity) F(L) and F(R) are analysis-
suitable G1-continuous at the interface Γ (in short, AS G1) if there exist
α(L), α(R), β(L), β(R) ∈P1([0, 1]) such that (4.72) and (4.75) hold.

The class of planar AS G1 parametrizations contains all the bilinear ones and
more, see Fig. 4.16.

In [48], the structure of C1 isogeometric spaces over AS G1 geometries is
studied, providing an explanation of the optimal convergence of the space of p-
degree isogeometric functions, having up to Cp−2 continuity within the patches
(and global C1 continuity). On the other hand, no convergence under h-refinement
occurs for Cp−1 continuity within the patches. This phenomenon is referred to as

Fig. 4.16 Examples of planar domain having an AS G1 parametrization
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C1 locking. Moreover, it is shown that AS G1 geometries are needed to guarantee
optimal convergence, in general.

4.4.4 Singular Parametrizations

The theory of isogeometric spaces we have reviewed in previous sections assumes
that the geometry parametrization is regular. However, singular parametrizations
are used in IGA, as they allow more flexibility in the geometry representation.
Figure 4.17 shows two examples of this kind, for a single-patch parametrization
of the circle. Typically, a singularity appears when some of the control points near
the boundary coincide or are collinear.

Isogeometric spaces with singular mapping have been studied in the papers [112–
115]. The paper [113] addresses a class of singular geometries that includes the two
circles of Fig. 4.17. It is shown that in these cases the standard isogeometric spaces,
as they are constructed in the non-singular case, are not in H 1(Ω). However, [113]
identifies the subspace of H 1 isogeometric functions, and constructs a basis. The
study is generalized toH 2 smoothness in [114]. In [112], function spaces of higher-
order smoothness Ck are explicitly constructed on polar parametrizations that are
obtained by linear transformation and degree elevation from a triangular Bézier
patch. See also [119]. For general parametrizations, [116] gives a representation
of the derivatives of isogeometric functions.

Singular parametrizations can be used to design smooth isogeometric spaces on
unstructured multipatch domains. A different C1 constructions is proposed in [88].
In both cases, the singular mapping is employed at the extraordinary vertices.

From the practical point of view, isogeometric methods are surprisingly robust
with respect to singular parametrizations. Even if some of the integrals appearing
in the linear system matrix are divergent, the use of Gaussian quadrature hides the
trouble and the Galerkin variational formulation returns the correct approximation.
However, it is advisable to use the correct subspace basis, given in [113] and [114],
to avoid ill-conditioning of the isogeometric formulation.

In [12], the authors use isogeometric analysis on the sphere with a polar
parametrization (the extension of Fig. 4.17a), and benchmark the h-convergence
in H 2 and H 3 norms, for solution of 4th and 6th order differential equations,
respectively. It is shown that enforcing C0 continuity at the poles yields optimal
convergence, that is, the higher-order smoothness of the isogeometric solution at
the poles is naturally enforced by the variational formulation.
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Fig. 4.17 Two possible
singular parametrizations of
the circle. (a) One singularity
at the origin. (b) Four
singularities on the boundary

4.5 Isogeometric Spaces: Spectral Properties

We are interested in the Galerkin approximation of the eigenvalues and eigenfunc-
tion of the Laplacian differential operator, as a model problem. We will consider
mainly the univariate case. As we will see in this section, the use of Cp−1-
continuous splines yields advantages when compared to standard C0 FEM. The
results shown here are taken from [71, 73]; we refer to that works for more
details. Contrary to the previous Sect. 4.4, the error analysis considered here is not
asymptotic, rather it may be characterized as a global analysis approach.

The asymptotic approach is more commonly found in the literature. Classical
functional analysis results state that, given an eigenvalue of the differential operator,
for a small enough mesh size this eigenvalue is well approximated in the discrete
problem. However, for a given mesh size, this kind of analysis offers no information
about which discrete modes are a good approximation of the exact modes, and which
ones are not.
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What happens in practice is that only the lowest discrete modes are accurate.
In general, a large portion of the eigenvalue/eigenfunction spectrum, the so-
called “higher modes,” are not approximations of their exact counterparts in any
meaningful sense. It is well-known in the structural engineering discipline that the
higher modes are grossly inaccurate, but the precise point in the spectrum where
the eigenvalues and eigenfunctions cease to approximate their corresponding exact
counterparts is never known in realistic engineering situations.

First, we focus on the approximations of eigenvalues from a global perspective,
that is, we study the approximation errors of the full spectrum. This is done
for the simplest possible case, that is the second derivative operator. Based on
Fourier/von Neumann analysis, we show that, per degree-of-freedom and for the
same polynomial degree p, Cp−1 splines (i.e., k-method) are more accurate than C0

splines (p-method), i.e., finite elements.
Then, we study the accuracy of k-method and p-method approximations to the

eigenfunctions of the elliptic eigenvalue problem. The inaccuracy of p-method
higher modal eigenvalues has been known for quite some time. We show that there
are large error spikes in the L2-norms of the eigenfunction errors centered about the
transitions between branches of the p-method eigenvalue spectrum. The k-method
errors are better behaved in every respect. The L2-norms of the eigenfunction errors
are indistinguishable from the L2 best approximation errors of the eigenfunctions.
As shown in [73], when solving an elliptic boundary-value problem, or a parabolic
or an hyperbolic problem, the error can be expressed entirely in terms of the
eigenfunction and eigenvalue errors. This is an important result but the situation
is potentially very different for elliptic boundary-value problems and for parabolic
and hyperbolic problems. In these cases, all modes may participate in the solution
to some extent and inaccurate higher modes may not always be simply ignored. The
different mathematical structures of these cases lead to different conclusions. The
inaccuracy of the higher p-method modes becomes a significant concern primarily
for the hyperbolic initial-value problem, while the k-method produces accurate
results in the same circumstances.

4.5.1 Spectrum and Dispersion Analysis

We consider as a model problem for the eigenvalue study the one of free vibrations
of a linear (∞-dimensional) structural system, without damping and force terms:

M
d2u
dt2

+K u = 0, (4.77)

where M and K are, respectively, the mass and stiffness operators, and u = u(t, x)
is the displacement. The nth normal mode φn and its frequencyωn are obtained from
the eigenvalue problem K φn = ω2

nMφn. Separating the variables as u(t, x) =
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∑
n ûn(t)φn(x), and, using Eq. (4.77), we obtain

d2ûn(t)

dt2
+ ω2

nûn(t) = 0;

Then ûn(t) = C−e−ıωnt + C+eıωnt , that is each modal coefficient ûn oscillates at
a frequency ωn. After discretization, the following discrete equations of motion are
obtained

M
d2uh

dt2
+Kuh = 0, (4.78)

where M and K are, respectively, the finite-dimensional consistent mass and stiff-
ness matrices, and uh = uh(t, x) is the discrete displacement vector. Analogously
to the continuum case, the discrete normal modes φhn and the frequencies ωhn are
obtained from the eigenproblem

Kφhn = (ωhn)2Mφhn, (4.79)

and separating the variables as uh(t, x) = ∑
n û
h
n(t)φ

h
n(x), we end up with ûhn

oscillating at a frequency ωhn , that is: ûhn = C−e−ıωhnt + C+eıωhnt . The nth discrete
normal mode φhn is in general different from the nth exact normal mode φn
(Fig. 4.18), for n = 1, . . . , N , N being the total number of degrees-of-freedom.
The corresponding discrete and exact frequencies will be different The target of the
frequency analysis is to evaluate how well the discrete spectrum approximates the
exact spectrum.

We begin dealing with the eigenproblem (4.79) associated to a linear (p = 1)
approximation on the one-dimensional domain (0, L). We employ a uniform mesh
0 = ζ0 < ζ1 < . . . < ζA < . . . < ζN+1 = L, where the number of elements is
nel = N + 1 and the mesh-size is h = L/nel . Considering homogeneous Dirichlet
(fixed-fixed) boundary conditions, the eigenproblem (4.79) can be written as

1

h
(φA−1 − 2φA + φA+1)+ h(ω

h)2

6
(φA−1 + 4φA + φA+1) = 0, A = 1, . . . , N,

(4.80)

φ0 = φN+1 = 0, (4.81)

where N is the total number of degrees-of-freedom, and φA = φh(ζA) is the nodal
value of the discrete normal mode at node ζA. Equation (4.80) solutions are linear
combinations of exponential functions φA = (ρ1)

A and φA = (ρ2)
A, where ρ1 and

ρ2 are the distinct roots of the characteristic polynomial

(1− 2ρ + ρ2)+ (ω
hh)2

6
(1+ 4ρ + ρ2) = 0. (4.82)
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Fig. 4.18 Exact and discrete natural frequencies for the one-dimensional model problem of free
vibration of an elastic rod with homogeneous Dirichlet boundary conditions. The discrete method
is based on linear finite elements

Actually, (4.82) admits distinct roots when ωhh �= 0,
√

12; for ωhh = 0, (4.82)
admits the double root ρ = 1 (in this case, solutions of (4.80) are combinations of
φA ≡ 1 and φA = A, that is, the affine functions), while for ωhh = √12 there is a
double root ρ = −1 (and solutions of (4.80) are combinations of φA = (−1)A and
φA = A(−1)A). Observe that, in general, ρ2 = ρ−1

1 . For the purpose of spectrum
analysis, we are interested in 0 < ωhh <

√
12, which we assume for the remainder

of this section. In this case, ρ1,2 are complex conjugate (we assume Im(ρ1) ≥ 0) and
of unit modulus. Moreover, in order to compare the discrete spectrum to the exact
spectrum, it is useful to represent the solutions of (4.80) as linear combinations of
e±iAωh (that is, φA = C−e−iAωh+C+eiAωh), by introducing ω such that eiωh = ρ1.
With this hypothesis, ω is real and, because of periodicity, we restrict to 0 ≤ ωh ≤
π . Using this representation in (4.82) and using the identity 2 cos(α) = eiα + e−iα ,
after simple computations the relation between ωh and ωhh is obtained:

(ωhh)2

6
(2+ cos(ωh))− (1− cos(ωh)) = 0. (4.83)

Solving for ωhh ≥ 0, we get

ωhh =
√

6
1− cos(ωh)

2+ cos(ωh)
. (4.84)



272 T. J. R. Hughes et al.

Furthermore, taking into account the boundary conditions, (4.80)–(4.81) admit the
non-null solution

φA = C e
+iAnπ/(N+1) − e−iAnπ/(N+1)

2i
≡ C sin

(
Anπ

N + 1

)
(4.85)

for all ω = π/L, 2π/L, . . . , Nπ/L. Precisely, (4.85) is the nth discrete normal
mode, associated to the corresponding nth discrete natural frequency ωh, given
by (4.84):

ωh = N + 1

L

√
6

1− cos(nπ/(N + 1))

2+ cos(nπ/(N + 1))
. (4.86)

The nth discrete mode φA = C sin(Anπ/(N + 1)) is the nodal interpolant of the
nth exact mode φ(x) = C sin(nπx/L), whose natural frequency is ω = nπ/L. The

quantity
ωh

ω
− 1 = ωh − ω

ω
represents the relative error for the natural frequency.

The plot of

ωh

ω
= 1

ωh

√
6

1− cos(ωh)

2+ cos(ωh)
(4.87)

is shown in Fig. 4.19.
We now consider the quadraticp-method for the eigenproblem (4.79). Assuming

to have the same mesh as in the linear case, there are N = 2nel − 1 degrees-of-
freedom. If we consider the usual Lagrange nodal basis, the corresponding stencil
equation is different for element-endpoint degrees-of-freedom and bubble (internal
to element) degrees-of-freedom: one has

1

3h
(−φA−1 + 8φA−1/2 − 14φA + 8φA+1/2 − φA+1)

+ (ωh)2 h
30
(−φA−1 + 2φA−1/2 + 8φA + 2φA+1/2 − φA+1) = 0, A = 1, . . . , N.

(4.88)

and

1

3h
(8φA − 16φA+1/2 + 8φA+1)+ (ωh)2 h

30
(2φA + 16φA+1/2 + 2φA+1) = 0,

(4.89)

A = 1, . . . , N,
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Fig. 4.19 Discrete-to-exact frequencies ratio for linear approximation

respectively. We also have the boundary conditions φ0 = φN+1 = 0. The bubble
degrees-of-freedom can be calculated as

φA+1/2 = 40+ (ωhh)2
8(10− (ωhh)2) (φA + φA+1). (4.90)

Eliminating them, we obtain a system of equations for the element-endpoints
degrees of freedom:

1

3h

[(
30+ 2(ωhh)2

10− (ωhh)2
)
φA−1 +

(−60+ 16(ωhh)2

10− (ωhh)2
)
φA

+
(

30+ 2(ωhh)2

10− (ωhh)2
)
φA+1

]

+ k2 h

30

[(
5(ωhh)2

40− 4(ωhh)2

)
φA−1 +

(
200− 15(ωhh)2

20− 2(ωhh)2

)
φA

+
(

5(ωhh)2

40− 4(ωhh)2

)
φA+1

]
= 0.

(4.91)

for A = 1, . . . , N . The bubble elimination is not possible when the bubble
equation (4.89) is singular for uA+1/2, that happens for ωhh = √10.
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Normal modes at the element-endpoints nodes can be written as

φA = C−e−ıωhA + C+eıωhA, A = 1, . . . , N. (4.92)

The boundary condition φ0 = 0 determines C− = −C+, while φnel = 0 determines
ωL
π
∈ Z. Substituting (4.92) into (4.91), we obtain the relation betweenωhh and ωh:

cos(ωh) = 3 (ωhh)4 − 104 (ωhh)2 + 240

(ωhh)4 + 16 (ωhh)2 + 240
. (4.93)

The natural frequencies are obtained solving (4.93) with respect to ωhh. Unlike
the linear case, each real value of ωh is associated with two values of ωhh, on two
different branches, termed acoustical and optical. It can be shown that a monotone
ωhh versus ωh relation is obtained representing the two branches in the range
ωh ∈ [0, π] and ωh ∈ [π, 2π] respectively (see Figs. 4.20 and 4.21). Therefore,
we associate to

ωh = nπ
nel
, n = 1, . . . nel − 1, (4.94)

the smallest positive root of (4.93), obtaining the acoustical branch, and we
associate to

ωh = nπ
nel
, n = nel + 1, . . .2nel − 1 ≡ N; (4.95)

the highest root of (4.93), obtaining the optical branch. These roots are the natural
frequencies that can be obtained by bubble elimination. The frequencyωhh = √10,
which gives bubble resonance is associated with the normal mode

φA = 0, ∀A = 0, . . . , nel ,

φA+1/2 = C(−1)A ∀A = 0, . . . , nel − 1.
(4.96)

Since ωhh = √10 is located between the two branches, this frequency is associated
with mode number n = nel . Then, all normal modes at element endpoints are
given by

φA = C sin

(
Anπ

N + 1

)
, A = 0, 1, . . . nel , (4.97)

n being the mode number. Therefore, (4.97) is an interpolate of the exact modes (at
element endpoint nodes).

The numerical error in the calculation of natural frequencies is visualized by the
graph of ωh/ω versus ωh, shown in Fig. 4.21.
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Fig. 4.20 Analytically computed (discrete) natural frequencies for the quadratic p-method
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Fig. 4.21 Analytically computed (discrete) natural frequencies for the quadratic p-method
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Finally, we discuss the quadratic k-method. A rigorous analysis of this case
would be too technical; here we prefer to maintain the discussion informal and refer
the reader to [71] for the technical details. The equations of (4.79) have different
expression for the interior stencil points and for the stencil points close to the
boundary (the first and last two equations). We also have for the boundary conditions
φ0 = φN+1 = 0. In the interior stencil points, the equations read

1

6h
(φA−2 + 2φA−1 − 6φA + 2φA+1 + φA+2)

+ (ωh)2 h
120

(φA−2 + 26φA−1 + 66φA + 26φA+1 + φA+2) = 0,

∀A = 3, . . . , N − 2.

(4.98)

A major difference from the cases considered previously is that (4.98) is a
homogeneous recurrence relation of order 4. Because of its structure, its solutions
can be written as linear combinations of the four solutions e±ıωhA and e±ıω̃hA. Here
ωh is real and positive while ω̃h has a nonzero imaginary part. More precisely, the
general solution of (4.98) has the form

φA = C+eıωhA + C−e−ıωhA + C̃+eıω̃hA + C̃−e−ıω̃hA, (4.99)

for any constantsC+,C−, C̃+, C̃−. Plugging this expression of φA into the boundary
equations and imposing the boundary conditions, one finds that C̃+ = C̃− = 0 and
that C+ = −C−. Similarly as before, substituting (4.99) into (4.98), we obtain the
relation between ωhh and ωh (see Fig. 4.22):

ωhh =
√

20(2− cos(ωh)− cos(ωh)2)

16+ 13 cos(ωh)+ cos(ωh)2
. (4.100)

The plot of ωhh vs. ωh is shown in Fig. 4.23.
The study above addresses a very simple case but can be generalized. The most

interesting direction is to consider arbitrary degree. For degree higher than 2 “outlier
frequencies” appear in the k-method: these are O(p) highest frequencies that are
numerically spurious and, though they can be filtered out by a suitable geometric
parametrization [71] or mesh refinement [45], their full understanding is an open
problem. Most importantly, the higher-order p-elements give rise to so-called
“optical branches” to spectra, which have no approximation properties, having
relative errors that diverge with p; on the other hand there are no optical modes
with the k-method and, excluding the possible outlier frequencies, the spectral errors
converge with p. Based on the previous observations, we are able to confidently use
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Fig. 4.24 Comparison of k-method and p-method numerical spectra

numerics to calculate invariant analytical spectra for both p-method and k-method.
This comparison is reported in Fig. 4.24 and registers a significant advantage for the
latter. These results may at least partially explain why classical higher-order finite
elements have not been widely adopted in problems for which the upper part of
the discrete spectrum participates in a significant way, such as, for example, impact
problems and turbulence.

The study can be extended to multidimensional problems as well, mainly
confirming the previous findings. We refer again to [71] for the details.

Finally, we present a simple problem that shows how the spectrum properties
presented above may affect a numerical solution. Consider the model equation

φ′′ + kφ = 0, (4.101)

with boundary conditions

φ(0) = 1, φ(1) = 0. (4.102)

The solution to problem (4.101)–(4.102) can be written as

φ(x, k) = sin(k(1− x))
sin(k)

. (4.103)
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Fig. 4.25 Solutions of the boundary value problem (4.101)–(4.102) for p = 3 computed with
k = 71: exact solution (top), k-method (31 degrees-of-freedom, center) and p-method (31 degrees-
of-freedom, bottom)

We numerically solve (4.101)–(4.102) for k = 71, selecting p = 3 and 31
degrees-of-freedom for the k- and p-method. The results are reported in Fig. 4.25.
The k-method is able to reproduce correctly the oscillations of the exact solutions
(phase and amplitude are approximately correct). There are no stopping bands for
the k-method. On the contrary, since k = 71 is within the 2nd stopping band of
the p-method, a spurious attenuation is observed. We refer to [71] for the complete
study.
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4.5.2 Eigenfunction Approximation

Let Ω be a bounded and connected domain in R
d , where d ∈ Z

+ is the number of
space dimensions. We assumeΩ has a Lipschitz boundary ∂Ω . We assume both are
continuous and coercive in the following sense: For all v,w ∈ V ,

a(v,w) ≤ ‖v‖E‖w‖E (4.104)

‖w‖2
E = a(w,w) (4.105)

(v,w) ≤ ‖v‖‖w‖ (4.106)

‖w‖2 = (v,w) (4.107)

where ‖ · ‖E is the energy-norm which is assumed equivalent to the (Hm(Ω))n-
norm on V and ‖ · ‖ is the (L2(Ω))n = (H 0(Ω))n norm. The elliptic eigenvalue
problem is stated as follows: Find eigenvalues λl ∈ R

+ and eigenfunctions ul ∈ V ,
for l = 1, 2, . . . ,∞, such that, for all w ∈ V ,

λl(w, ul) = a(w, ul) (4.108)

It is well-known that 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . ., and that the eigenfunctions are
(L2(Ω))n-orthonormal, that is, (uk, ul) = δkl where δkl is the Kronecker delta,
for which δkl = 1 if k = l and δkl = 0 otherwise. The normalization of the
eigenfunctions is actually arbitrary. We have assumed without loss of generality
that ‖ul‖ = 1, for all l = 1, 2, . . . ,∞. It follows from (4.108) that

‖ul‖2
E = a(ul, ul) = λl (4.109)

and a(uk, ul) = 0 for k �= l. Let V h be either a standard finite element space
(p-method) or a space of maximally smooth B-splines (k-method). The discrete
counterpart of (4.108) is: Find λhl ∈ R

+ and uhl ∈ V h such that for all wh ∈ V h,

λhl (w
h, uhl ) = a(wh, uhl ) (4.110)

The solution of (4.110) has similar properties to the solution of (4.108). Specifically,
0 < λh1 ≤ λh2 ≤ . . . ≤ λhN , where N is the dimension of V h, (uhk , u

h
l ) = δkl ,

‖uhl ‖2
E = a(uhl , uhl ) = λhl , and a(uhk , u

h
l ) = 0 if k �= l. The comparison of

{
λhl , u

h
l

}
to {λl, ul} for all l = 1, 2, . . . , N is the key to gaining insight into the errors of the
discrete approximations to the elliptic boundary-value problem and the parabolic
and hyperbolic initial-value problems.

The fundamental global error analysis result for elliptic eigenvalue problems is
the Pythagorean eigenvalue error theorem. It is simply derived and is done so on
page 233 of Strang and Fix [111] The theorem is global in that it is applicable to
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each and every mode in the discrete approximation. Provided that ‖uhl ‖ = ‖ul‖,

λhl − λl
λl

+ ‖u
h
l − ul‖2

‖ul‖2
= ‖uhl − ul‖2

E

‖ul‖2
E

, ∀l = 1, 2, . . . , N (4.111)

Note that the relative error in the l th eigenvalue and the square of the relative
(L2(Ω))n-norm error in the lth eigenfunction sum to equal the square of the relative
energy-norm error in the lth eigenfunction. Due to the normalization introduced
earlier, (4.111) can also be written as

λhl − λl
λl

+ ‖uhl − ul‖2 = ‖u
h
l − ul‖2

E

λl
, ∀l = 1, 2, . . . , N (4.112)

See Fig. 4.26. We note that the first term in (4.112) is always non-negative as
λhl ≥ λl , a consequence of the “minimax” characterization of eigenvalues (see [111],
p. 223). It also immediately follows from (4.112) that

λhl − λl ≤ ‖uhl − ul‖2
E (4.113)

‖uhl − ul‖2 ≤ ‖u
h
l − ul‖2

E

λl
(4.114)

We consider the elliptic eigenvalue problem for the second-order differential
operator in one-dimension with homogeneous Dirichlet boundary conditions. The
variational form of the problem is given by (4.108), in which

a(w, ul) =
∫ 1

0

dw

dx

dul

dx
dx (4.115)

(w, ul) =
∫ 1

0
wuldx (4.116)

Fig. 4.26 Graphical
representation of the
Pythagorean eigenvalue error
theorem
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The eigenvalues are λl = π2l2 and the eigenfunctions are ul =
√

2 sin (lπx),
l = 1, 2, . . . ,∞. Now, we will present the eigenvalue errors, rather than the
eigenfrequency errors, and, in addition, L2(0, 1)- and energy-norm eigenfunction
errors. We will plot the various errors in a format that represents the Pythagorean
eigenvalue error theorem budget. We will restrict our study to quadratic, cubic,
and quartic finite elements and B-splines. In all cases, we assume linear geometric
parametrizations and uniform meshes. Strictly speaking, for the k-method the results
are only true for sufficiently largeN , due to the use of open knot vectors, but in this
case “sufficiently large” is not very large at all, say N > 30. For smaller spaces,
the results change slightly. The results that we present here were computed using
N ≈ 1000 and, in [73], have been validated using a mesh convergence study and by
comparing to analytical computations.

Let us begin with results for the quadratic k-method, i.e.C1-continuous quadratic
B-splines, presented in Fig. 4.27a. The results for the relative eigenvalue errors
(red curve) follow the usual pattern that has been seen before. The squares of the
eigenfunction errors in L2(0, 1) are also well-behaved (blue curve) with virtually no
discernible error until about l/N = 0.6, and then monotonically increasing errors
in the highest modes. The sums of the errors produce the squares of the relative

Fig. 4.27 Pythagorean eigenvalue error theorem budget for quadratic elements. (a) C1-continuous
B-splines; (b) C0-continuous finite elements. The blue curves are ‖uhl − ul‖2, the red curves are
(λhl − λl)/λl , and the black curves are ‖uhl − ul‖2

E/λl . Note that ‖ul‖ = ‖uhl ‖ = 1, ‖ul‖2
E = λl ,

and ‖uhl ‖2
E = λhl
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energy-norm errors (black curve), as per the Pythagorean eigenvalue error theorem
budget. There are no surprises here.

Next we compare with quadratic p-method, i.e., C0-continuous quadratic finite
elements in Fig. 4.27b. The pattern of eigenvalue errors (red curve), consisting of
two branches, the acoustic branch for l/N < 1/2, and the optical branch for l/N ≥
1/2, is the one known from Sect. 4.5.1. However, the eigenfunction error in L2(0, 1)
(blue curve) represents a surprise in that there is a large spike about l/N = 1/2, the
transition point between the acoustic and optical branches. Again, the square of the
energy-norm eigenfunction error term (black curve) is the sum, as per the budget.
This is obviously not a happy result. It suggests that if modes in the neighborhood
of l/N = 1/2 are participating in the solution of a boundary-value or initial-value
problem, the results will be in significant error. The two unpleasant features of this
result are (1) the large magnitude of the eigenfunction errors about l/N = 1/2 and
(2) the fact that they occur at a relatively low mode number. That the highest modes
are significantly in error is well-established for C0-continuous finite elements, but
that there are potential danger zones much earlier in the spectrum had not been
recognized previously. The midpoint of the spectrum in one-dimension corresponds
to the quarter point in two dimensions and the eighth point in three dimensions, and
so one must be aware of the fact that the onset of inaccurate modes occurs much
earlier in higher dimensions.

The spikes in the eigenfunction error spectrum for C0-finite elements raise the
question as to whether or not the eigenfunctions are representative of the best
approximation to eigenfunctions in the vicinity of l/N = 1/2. To answer this
question, we computed the L2(0, 1) best approximations of some of the exact
eigenfunctions and plotted them in Fig. 4.28b. (They are indicated by ×.) The case
forC1-continuous quadratic B-splines is presented in Fig. 4.28a for comparison. For

Fig. 4.28 Comparisons of eigenfunctions computed by the Galerkin method with L2(0, 1) best
approximations of the exact eigenfunctions. (a) C1-continuous quadratic B-splines; (b) C0-
continuous quadratic finite elements. The blue curves are ‖uhl − ul‖2, where uhl is the Galerkin
approximation of ul , and the×’s are ‖ũhl −ul‖2, where ũhl is the L2(0, 1) best approximation of ul
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this case there are almost no differences between the best approximation of the exact
eigenfunctions and the computed eigenfunctions. However, for the C0-continuous
quadratic finite elements, the differences between the computed eigenfunctions and
the L2(0, 1) best approximations of the exact eigenfunctions are significant, as can
be seen in Fig. 4.28b. The spike is nowhere to be seen in the best approximation
results. We conclude that the Galerkin formulation of the eigenvalue problem
is simply not producing good approximations to the exact eigenfunctions about
l/N = 1/2 in the finite element case.

For higher-order cases, in particular cubic and quartic, see [73] where it is shown
that the essential observations made for the quadratic case persist. An investigation
of the behavior of outlier frequencies and eigenfunctions is also presented in [73],
along with discussion of the significance of eigenvalue and eigenfunction errors in
the context of elliptic, parabolic and hyperbolic partial differential equations.

4.6 Computational Efficiency

High-degree high-regularity splines, and extensions, deliver higher accuracy per
degree-of-freedom in comparison toC0 finite elements but at a higher computational
cost, when standard finite element implementation is adopted. In this section
we present recent advances on the formation of the system matrix (Sects. 4.6.1
and 4.6.2), the solution of linear systems (Sect. 4.6.3) and the use a matrix-free
approach (Sect. 4.6.4)

We consider, as a model case, the d-dimensional Poisson problem on a single-
patch domain, and an isogeometric tensor-product space of degree p, continuity
Cp−1 and total dimension N , with N � p. This is the typical setting for the k-
method.

An algorithm for the formation of the matrix is said to be (computationally)
efficient if the computational cost is proportional to the number of non-zero entries
of the matrix that have to be calculated (storage cost). The stiffness matrix in our
model case has about N(2p + 1)d ≈ CNpd non-zero entries.

An algorithm for the solution of the linear system matrix is efficient if the
computational cost is proportional to the solution size, i.e., N .

A matrix-free approach aims at an overall computational cost and storage cost of
CN .

4.6.1 Formation of Isogeometric Matrices

When a finite element code architecture is adopted, the simplest approach is to
use element-wise Gaussian quadrature and element-by-element assembling. Each
elemental stiffness matrix has dimension (p + 1)2d and each entry is calculated by
quadrature on (p + 1)d Gauss points. The total cost is CNELp

3d ≈ CNp3d , where
NEL is the number of elements and, for the k-method,NEL ≈ N .
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A strategy to reduce the cost is to reduce the number of quadrature points. The
paper [72] proposed to use generalized Gaussian rules for smooth spline integrands.
These rules are not known analytically and need to be computed numerically (see
also [9, 13, 14] and the recent paper [75] where the problem is effectively solved
by a Newton method with continuation). Furthermore, reduced quadrature rules
have been considered in [1, 101] and [65]. Another important step is to reduce
the number of operations by arranging the computations in a way that exploits
the tensor-product structure of multivariate splines: this is done by so-called sum
factorization achieving a computational cost of CNp2d+1, see [3].

Keeping the element-wise assembling loop is convenient, as it allows reusing
available finite element routines. On the other hand, as the computation of each
elemental stiffness matrix needs at least Cp2d FLOPs (proportional to the elemental
matrix size and assuming integration cost does not depend on p) the total cost is at
least CNELp

2d ≈ CNp2d .
Further cost reduction is possible but only with a change of paradigm from

element-wise assembling. This study has been recently initiated and two promising
strategies have emerged.

One idea, in [84], is to use a low-rank expansion in order to approximate the
stiffness matrix by a sum of R Kronecker type matrices that can be easily formed,
thanks to their tensor-product structure. This approach has a computational cost of
CNRpd FLOPs.

Another possibility, from [42], is based on two new concepts. The first is the use
of a row loop instead of an element loop, and the second is the use of weighted
quadrature. This will be discussed in the next section.

4.6.2 Weighted Quadrature

This idea has been proposed in [42]. Assume we want to compute integrals of the
form:

∫ 1

0
B̂i (ζ ) B̂j (ζ ) dζ, (4.117)

where {B̂i}i=1,...,n are p-degree univariate B-spline basis functions. Consider for
simplicity only the maximum regularity case, Cp−1, and for the moment a periodic
uniform knot vector. Being in the context of Galerkin method, B̂i (ζ ) represents a
test function and B̂j (ζ ) represents a trial function.

We are interested in a fixed point quadrature rule. In the lowest degree case,
p = 1, exact integration is performed by a composite Cavalieri-Simpson rule:

∫ 1

0
B̂i(ζ ) B̂j (ζ ) dζ = Q

CS(B̂i B̂j ) =
∑
q

wCSq B̂i (x
CS
q ) B̂j (x

CS
q ), (4.118)
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where xCSq are the quadrature points and wCSq the relative weights. In the above

hypotheses the points xCSq are the knots and the midpoints of the knot-spans and

wCSq = h
3 on knots and wCSq = 2h

3 on midpoints.
Unbalancing the role of the test and the trial factors in (4.118), we can see it as a

weighted quadrature:

∫ 1

0
B̂i (ζ ) B̂j (ζ ) dζ = Q

WQ
i (B̂j ) =

∑
q

w
WQ
q,i B̂j (x

WQ
q,i ), (4.119)

where xCSq = xWQq,i and wWQq,i = B̂i (xWQq,i )wCSq . Because of the local support of the

function B̂i only in three points the quadrature Q
WQ
i is non-zero and the weights

are equal to h
3 .

If we go to higher degree, we need more quadrature points in (4.118). For p-
degree splines the integrand B̂iB̂j is a piecewise polynomial of degree 2p and an
element-wise integration requires 2p+ 1 equispaced points, or p+ 1 Gauss points,
or about p/2 points with generalized Gaussian integration (see [9, 31, 41, 72]). On
the other hand, we can generalize (4.119) to higher degree still using as quadrature
points only the knots and midpoints of the knot spans. Indeed this choice ensures
that, for each basis function B̂i , i = 1, . . . , n, there are 2p + 1 “active” quadrature
points where B̂i is nonzero. Therefore we can compute the 2p + 1 quadrature
weights by imposing conditions for the 2p+ 1 B-splines B̂j that need to be exactly
integrated. Clearly, the advantage of the weighted quadrature approach is that its
computational complexity, i.e., the total number of quadrature points, is independent
of p.

Given a weighted quadrature rule of the kind above, we are then interested in
using it for the approximate calculation of integrals as:

∫ 1

0
c(ζ )B̂i(ζ ) B̂j (ζ ) dζ ≈ Q

WQ
i

(
c(·)B̂j (·)

) =∑
q

w
WQ
q,i c(x

WQ
q,i )B̂j (x

WQ
q,i ) .

(4.120)

For a non-constant function c(·), (4.120) is in general just an approximation.
We consider now the model reaction-diffusion problem

{−∇2u+ u = f on Ω,

u = 0 on ∂Ω,
(4.121)

Its Galerkin approximation requires the stiffness matrix S and mass matrix M. After
change of variable we have M = {mi,j } ∈ R

N×N with entries given by:

mi,j =
∫
Ω̂

B̂i B̂j detD̂F dζ .
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For notational convenience we write:

mi,j =
∫
Ω̂

B̂i(ζ ) B̂j (ζ ) c(ζ ) dζ . (4.122)

In more general cases, the factor c incorporates the coefficient of the equation
and, for NURBS functions, the polynomial denominator. Similarly for the stiffness
matrix S = {si,j } ∈ R

N×N we have:

si,j =
∫
Ω̂

(
D̂F−T ∇̂B̂i

)T (
D̂F−T ∇̂B̂j

)
detD̂F dζ

=
∫
Ω̂

∇̂B̂Ti
([
D̂F−1D̂F−T

]
detD̂F

)
∇̂B̂j dζ

which we write in compact form:

si,j =
d∑

l,m=1

∫
Ω̂

(∇̂B̂i(ζ )
)
l
cl,m(ζ )

(∇̂B̂j (ζ )
)
m
dζ . (4.123)

Here we have denoted by
{
cl,m(ζ )

}
l,m=1,...,d the following matrix:

cl,m(ζ ) =
{[
D̂F−1(ζ )D̂F−T (ζ )

]
detD̂F (ζ )

}
l,m
. (4.124)

The number of non-zero elements NNZ of M and S depends on the polynomial
degree p and the required regularity r . We introduce the following sets:

Il,il =
{
jl ∈ {1, . . . , nl} s.t. B̂il · B̂jl �= 0

}
, Ii =

d∏
l=1

Il,il (4.125)

We have #Il,i ≤ (2p + 1) and NNZ = O(N pd). In particular, with maximal
regularity in the case d = 1 one has NNZ = (2p + 1)N − p(p + 1).

Consider the calculation of the mass matrix. The first step is to write the integral
in a nested way, as done in [3]:

mi,j =
∫
Ω̂

B̂i(ζ )B̂j (ζ )c(ζ ) dζ

=
∫ 1

0
B̂i1(ζ1)B̂j1(ζ1)

[∫ 1

0
B̂i2(ζ2)B̂j2(ζ2) · · ·

[∫ 1

0
B̂id (ζd)B̂jd (ζd)c(ζ ) dζd

]
· · · dζ2

]
dζ1
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The idea in is to isolate the test function B̂il univariate factors in each univariate
integral and to consider it as a weight for the construction of the weighted quadrature
(WQ) rule. This leads to a quadrature rule for each il that is:

mi,j ≈ m̃i,j = Q
WQ
i

(
B̂j (ζ )c(ζ)

) = Qi

(
B̂j (ζ )c(ζ )

)
= Qi1

(
B̂j1(ζ1)Qi2

(· · ·Qid (B̂jd (ζd )c(ζ )))) . (4.126)

Notice that we drop from now on the label WQ used in the introduction in order to
simplify notation. The key ingredients for the construction of the quadrature rules
that preserve the optimal approximation properties are the exactness requirements.
Roughly speaking, exactness means that in (4.126) we have mi,j = m̃i,j whenever
c is a constant coefficient. When the stiffness term is considered, also terms with
derivatives have to be considered.

We introduce the notation:

I
(0,0)
l,il ,jl

:=
∫ 1

0
B̂il (ζl)B̂jl (ζl) dζl

I
(1,0)
l,il ,jl

:=
∫ 1

0
B̂ ′il (ζl)B̂jl (ζl) dζl

I
(0,1)
l,il ,jl

:=
∫ 1

0
B̂il (ζl)B̂

′
jl
(ζl) dζl

I
(1,1)
l,il ,jl

:=
∫ 1

0
B̂ ′il (ζl)B̂

′
jl
(ζl) dζl

(4.127)

For each integral in (4.127) we define a quadrature rule: we look for

• points x̃q = (̃x1,q1, x̃2,q2, . . . , x̃d,qd ) with ql = 1, . . . nQP,l , with NQP is # {̃x} =∏d
l=1 nQP,l ;

• for each index il = 1, . . . , nDOF,l; l = 1, . . . , d , four quadrature rules such that:

Q
(0,0)
il

(f ) :=
nQP,l∑
ql=1

w
(0,0)
l,il ,ql

f (̃xl,ql ) ≈
∫ 1

0
f (ζl)B̂il (ζl)dζl ;

Q
(1,0)
il

(f ) :=
nQP,l∑
ql=1

w
(1,0)
l,il ,ql

f (̃xl,ql ) ≈
∫ 1

0
f (ζl)B̂il (ζl)dζl ;

Q
(0,1)
il

(f ) :=
nQP,l∑
ql=1

w
(0,1)
l,il ,ql

f (̃xl,ql ) ≈
∫ 1

0
f (ζl)B̂

′
il
(ζl)dζl ;

Q
(1,1)
il

(f ) :=
nQP,l∑
ql=1

w
(1,1)
l,il ,ql

f (̃xl,ql ) ≈
∫ 1

0
f (ζl)B̂

′
il
(ζl)dζl .

(4.128)
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fulfilling the exactness requirement:

Q
(0,0)
il

(B̂jl ) = I
(0,0)
l,il ,jl

Q
(1,0)
il

(B̂ ′jl ) = I
(1,0)
l,il ,jl

Q
(0,1)
il

(B̂jl ) = I
(0,1)
l,il ,jl

Q
(1,1)
il

(B̂ ′jl ) = I
(1,1)
l,il ,jl

, ∀jl ∈ Il,il . (4.129)

We also require that the quadrature rules Q(·,·)il
have support included in the support

of B̂il , that is

ql /∈ Ql,il ⇒ w
(·,·)
l,il ,ql

= 0 . (4.130)

where Ql,il := {
ql ∈ 1, . . . , nQP,l s.t. x̃l,ql ∈ supp

(
B̂il

)}
; recall that here the

support of a function is considered an open set. Correspondingly, we introduce the
set of multi-indexes Qi :=∏d

l=1 Ql,il .
Once the points x̃q are fixed, the quadrature rules have to be determined by

the exactness requirements, that are a system of linear equations of the unknown
weights (each of the (4.129)). For that we require

#Ql,il ≥ #Il,il . (4.131)

See[42] for a discussion on the well-posedness of the linear systems for the weights.
The construction of a global grid of quadrature points is done in order to save

computations. For the case of maximumCp−1 regularity considered here, the choice
for quadrature points of [42] is endpoints (knots) and midpoints of all internal knot-
spans, while for the boundary knot-spans (i.e. those that are adjacent to the boundary
of the parameter domain Ω̂) we take p + 1 equally spaced points. Globally NQP ≈
2dNEL = O(N) considering only the dominant term.

When all the quadrature rules are available we can write the computation
of the approximate mass matrix following (4.126), where the quadrature rules
Q
(0,0)
i1

, . . . ,Q
(0,0)
id

are used. Similar formulae and algorithms can be written for the
stiffness matrix. In that case, all the integrals are approximated separately, and all
the quadrature rules Q(·,·)il

are necessary.
The mass matrix formation algorithm is mainly a loop over all rows i, for each i

we consider the calculation of

m̃i,j =
∑
q∈Qi

w
(0,0)
i,q c(̃xq)B̂j

(̃
xq

)
. (4.132)

where w(0,0)i,q = w(0,0)1,i1,q1
. . . w

(0,0)
d,id ,qd

.
The computational cost of (4.132) is minimised by a sum factorization approach.

Nota that (4.132) can be rearranged as in (4.126) to obtain the following sequence
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of nested summations:

m̃i,j =
∑

q1∈Q1,i1

w
(0,0)
1,i1,q1

B̂j1(x1,q1)

⎛
⎝ ∑
q2∈Q2,i2

. . . (4.133)

∑
qd∈Qd,id

w
(0,0)
d,id ,qd

B̂jd (xd,qd )c
(
x1,q1, . . . , xd,qd

)⎞⎠ .
To write (4.133) in a more compact form, we introduce the notion of matrix-tensor
product. Let X = {

xk1,...,kd

} ∈ R
n1×...×nd be a d−dimensional tensor, and let

m ∈ {1, . . . , d}. The m−mode product of X with a matrix A = {
ai,j

} ∈ R
t×nm ,

denoted with X ×mA, is a tensor of dimension n1×. . .×nm−1×t×nm+1×. . .×nd ,
with components

(X ×m A)k1,...,kd =
nm∑
j=1

akm,j xk1,...km−1,j,km+1,...kd .

For l = 1, . . . , d and il = 1, . . . , nl we define the matrices

B(l,il ) = (
B̂jl (xl,ql )

)
jl∈Il,il ,ql∈Ql,il

, W(l,il ) = diag

((
w
(0,0)
l,il ,ql

)
ql∈Ql,il

)
,

where diag(v) denotes the diagonal matrix obtained by the vector v. We also define,
for each index i, the d−dimensional tensor

Ci = c(̃xQi
) = (

c(̃x1,q1, . . . , x̃d,qd )
)
q1∈Q1,i1 ,...,qd∈Qd,id

.

Using the above notations, we have

m̃i,Ii
= Ci ×d

(
B(d,id )W(d,id )

)
×d−1 . . .×1

(
B(1,i1)W(1,i1)

)
. (4.134)

Since with this choice of the quadrature points #Ql,il and #Il,il are both O(p),
the computational cost associated with (4.134) is O(pd+1) FLOPs. Note that m̃i,Ii

includes all the nonzeros entries of the i-th row of M̃. Hence if we compute it for
each i = 1, . . . , N the total cost amounts to O(N pd+1) FLOPs. This approach is
summarized in Algorithm 1.

From [42], we report CPU time results for the formation on a single patch domain
of mass matrices. Comparison is made with GeoPDEs 3.0, the optimized but SGQ-
based MATLAB isogeometric library developed by Rafael Vázquez, see[124]. In
Fig. 4.29 we plot the time needed for the mass matrix formation up to degreep = 10
withN = 203. The tests confirm the superior performance of the proposed row-loop
WQ-based algorithm vs SGQ. In the case p = 10 GeoPDEs takes more than 62 h to
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Input: Quadrature rules, evaluations of coefficients
1 for i = 1, . . . , N do
2 Set C (0)i := c(̃xQi

);
3 for l = d, d − 1, . . . , 1 do
4 Load the quadrature rule Q

(0,0)
il

and form the matrices B(l,il) and W(l,il);

5 Compute C
(d+1−l)
i = C

(d−l)
i ×l

(
B(l,il )W(l,il )

)
;

6 end

7 Store m̃i,Ii
= C

(d)
i ;

8 end

Algorithm 1: Construction of mass matrix by sum-factorization

Fig. 4.29 Time for mass matrix assembly in the framework of isogeometric-Galerkin method with
maximal regularity on a single patch domain of 203 elements. The comparison is between the WQ
approach and the SGQ as implemented in GeoPDEs 3.0 [125]

form the mass matrix while the proposed algorithm needs only 27 s, so the use high
degrees is possible with WQ.

4.6.3 Linear Solvers and Preconditioners

The study of the computational efficiency of linear solvers for isogeometric
discretizations has been initiated in the papers [46, 47], where it has been shown
that the algorithms used with the finite element method suffer of performance
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degradation when used to solve isogeometric linear systems. Consider, for example,
a Lagrangian finite element method with polynomial degree p and N degrees-of-
freedom, in 3D, for a Poisson model problem:. As shown in [46], a multifrontal
direct solver requires O(N2) FLOPs (under the assumption N > p9) to solve the
resulting linear system. If, instead, we consider the isogeometric k-method with
Cp−1 p-degree splines and N degrees-of-freedom, the same direct solver requires
O(N2p3) FLOPs, i.e., p3 times more than in the finite element case. The memory
required is also higher for the k-method.

Iterative solvers have attracted more attention in the isogeometric community
since they allow, though it is not trivial, optimal computational cost. The effort
has been primarily on the development of preconditioners for the Poisson model
problem, for arbitrary degree and continuity splines. As reported in [47], standard
algebraic preconditioners (Jacobi, SSOR, incomplete factorization) commonly
adopted for finite elements exhibit reduced performance when used in the context
of the isogeometric k-method. Standard multilevel and multigrid approaches are
studied respectively in [39] and [60], while advances in the theory of domain-
decomposition based solvers are given in, e.g., [24, 28]. These papers also confirm
the difficulty in achieving both robustness and computational efficiency for the high-
degree k-method.

More sophisticated multigrid preconditioners have been proposed in the recent
papers [54] and [67]. The latter, in particular, contains a proof of robustness,
based on the theory of [115]. The two works are based on the following common
ingredients: specific spectral properties of the discrete operator of the isogeometric
k-method and the tensor-product structure of isogeometric spaces.

The tensor-product structure of multivariate spline space is exploited in [61, 96],
based on approaches that have been developed for the so-called Sylvester equation.
The tensor product structure of splines spaces yields to a Kronecker structure of
isogeometric matrices.

We first recall the notation and basic properties of the Kronecker product of
matrices. Let A ∈ R

na×na , and B ∈ R
nb×nb . The Kronecker product between A

and B is defined as

A⊗ B =
⎡
⎢⎣
a11B . . . a1naB
...

. . .
...

ana1B . . . ananaB

⎤
⎥⎦ ∈ R

nanb×nanb ,

where aij , i, j = 1, . . . na , denote the entries of A. The Kronecker product is
an associative operation, and it is bilinear with respect to matrix sum and scalar
multiplication. Some properties of the Kronecker product that will be useful in the
following.

• It holds

(A⊗ B)T = AT ⊗ BT . (4.135)
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• If C and D are matrices of conforming order, then

(A⊗ B) (C ⊗D) = (AC ⊗ BD). (4.136)

• For any matrix X ∈ R
na×nb we denote with εc(X) the vector of Rnanb obtained

by “stacking” the columns of X. Then if A, B and X are matrices of conforming
order, and x = εc(X), it holds

(A⊗ B) x = εc(BXAT ). (4.137)

The last property can be used to cheaply compute matrix-vector products with a
matrix having Kronecker structure. Indeed, it shows that computing a matrix-vector
product with A ⊗ B is equivalent to computing nb matrix-vector products with A
and na matrix-vector products with B. Note in particular that A⊗ B does not have
to be formed.

Consider the Laplace operator with constant coefficients, on the square [0, 1]2,
then the tensor-product spline Galerkin discretization leads to the system

(K1 ⊗M2 +M1 ⊗K2)u = b (4.138)

where K� and M� denote the univariate stiffness and mass matrices in the �
direction, � = 1, 2, and ⊗ is the Kronecker product. For simplicity, we assume
that all the univariate matrices have the same order, which we denote with n. Note
in particular that N = n2.

Observe that in general, for variable coefficients, general elliptic problems, non-
trivial and possibly multipatch geometry parametrization, the isogeometric system
is not as in (4.138). In this case, a fast solver for (4.138) plays the role of a
preconditioner. At each iterative step, the preconditioner takes the form

(K1 ⊗M2 +M1 ⊗K2) s = r. (4.139)

Using relation (4.137), we can rewrite this equation in matrix form

M2SK1 +K2SM1 = R, (4.140)

where εc(S) = s and εc(R) = r . Equation (4.140) takes the name of (generalized)
Sylvester equation. Due to its many applications, the literature dealing with
Sylvester equation (and its variants) is vast, and a number of methods have been
proposed for its numerical solution. We refer to [110] for a recent survey on this
subject.

Following [96], we consider the fast diagonalization (FD) method which is a
direct solver, that is, s = P−1r is computed exactly. It was first presented in 1964
by Lynch, Rice and Thomas [83] as a method for solving elliptic partial differential
equations discretized with finite differences. This approach was extended to a
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general Sylvester equation involving nonsymmetric matrices by Bartels and Stewart
in 1972 [11], although this is not considered here.

We consider the generalized eigendecomposition of the matrix pencils (K1,M1)

and (K2,M2), namely

K1U1 =M1U1D1 K2U2 =M2U2D2, (4.141)

whereD1 andD2 are diagonal matrices whose entries are the eigenvalues ofM−1
1 K1

andM−1
2 K2, respectively, while U1 and U2 satisfy

UT1 M1U1 = I, UT2 M2U2 = I,

which implies in particular U−T1 U−1
1 = M1 and U−T2 U−1

2 = M2, and also,
from (4.141), U−T1 D1U

−1
1 = K1 and U−T2 D2U

−1
2 = K2. Therefore we factorize

P in (4.139) as follows:

(U1 ⊗ U2)
−T (D1 ⊗ I + I ⊗D2) (U1 ⊗ U2)

−1 s = r,

and adopt the following strategy:

• Compute the generalized eigendecompositions (4.141)
• Compute r̃ = (U1 ⊗ U2)

T r

• Compute s̃ = (D1 ⊗ I + I ⊗D2)
−1 r̃

• Compute s = (U1 ⊗ U2 )̃s

Algorithm 2: FD direct method (2D)

The exact cost of the eigendecompositions in line 1 depends on the algorithm
employed. A simple approach is to first compute the Cholesky factorization M1 =
LLT and the symmetric matrix K̃1 = L−1K1L

−T . Since M1 and K1 are banded,
the cost of these computations is O(pn2) FLOPs. The eigenvalues of K̃1 are the
same of (4.141), and once the matrix Ũ1 of orthonormal eigenvectors is computed
then one can compute U1 = L−T Ũ1, again at the cost of O(pn2) FLOPs. Being Ũ1
orthogonal, then UT1 M1U1 = In. If the eigendecomposition of K̃1 is computed
using a divide-and-conquer method, the cost of this operation is roughly 4n3

FLOPs. We remark that the divide-and-conquer approach is also very suited for
parallelization. In conclusion, by this approach, line 1 requires roughly 8n3 FLOPs.

Lines 2 and 4 each involve a matrix-vector product with a matrix having
Kronecker structure, and each step is equivalent (see (4.137)) to 2 matrix products
involving dense n × n matrices. The total computational cost of both steps is 8n3

FLOPs. Line 3 is just a diagonal scaling, and its O(n2) cost is negligible. We
emphasize that the overall computational cost of Algorithm 2 is independent of p.

If we apply Algorithm 2 as a preconditioner, then Step 1 may be performed
only once, since the matrices involved do not change throughout the CG iteration.
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In this case the main cost can be quantified in approximately 8n3 FLOPs per CG
iteration. The other main computational effort of each CG iteration is the residual
computation, that is the product of the system matrix A by a vector, whose cost
in FLOPs is twice the number of nonzero entries of A , that is approximately
2(2p + 1)2n2. In conclusion, the cost ratio between the preconditioner application
and the residual computation is O(n/p2).

When d = 3, Eq. (4.139) takes the form

(K1 ⊗M2 ⊗M3 +M1 ⊗K2 ⊗M3 +M1 ⊗M2 ⊗K3) s = r, (4.142)

where, as in the 2D case, we assume that all the univariate matrices have order n
(and hence N = n3).

The FD method above admits a straightforward generalization to the 3D case.
We consider the generalized eigendecompositions

K1U1 =M1U1D1, K2U2 = M2U2D2, K3U3 = M3U3D3, (4.143)

with D1, D2, D3 diagonal matrices and

UT1 M1U1 = I, UT2 M2U2 = I, UT3 M3U3 = I.

Then, (4.142) can be factorized as

(U1 ⊗ U2 ⊗ U3)
−1 (D1 ⊗ I ⊗ I + I ⊗D2 ⊗ I + I ⊗ I ⊗D3) (U1 ⊗ U2 ⊗ U3)

−T

s = r,

which suggests the following algorithm.

• Compute the generalized eigendecompositions (4.143)
• Compute r̃ = (U1 ⊗ U2 ⊗ U3)r

• Compute s̃ = (D1 ⊗ I ⊗ I + I ⊗D2 ⊗ I + I ⊗ I ⊗D3)
−1 r̃

• Compute s = (U1 ⊗ U2 ⊗ U3)
T s̃

Algorithm 3: FD direct method (3D)

Lines 1 and 3 require O(n3) FLOPs. Lines 2 and 4, as can be seen by nested
applications of formula (4.137), are equivalent to performing a total of 6 products
between dense matrices of size n×n and n×n2. Thus, neglecting lower order terms
the overall computational cost of Algorithm 3 is 12n4 FLOPs.

The FD method is even more appealing in the 3D case than it was in the 2D
case, for at least two reasons. First, the computational cost associated with the
preconditioner setup, that is the eigendecomposition, is negligible. This means that
the main computational effort of the method consists in a few (dense) matrix-
matrix products, which are level 3 BLAS operations and typically yield high
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efficiency thanks to a dedicated implementation on modern computers by optimized
usage of the memory cache hierarchy Second, in a preconditioned CG iteration
the cost for applying the preconditioner has to be compared with the cost of the
residual computation (a matrix-vector product with A ) which can be quantified
in approximately 2(2p + 1)3n3 for 3D problems, resulting in a FLOPs ratio of
the preconditioner application to residual computation of O(n/p3). However in
numerical tests we will see that, for all cases of practical interest in 3D, the
computational time used by the preconditioner application is far lower that the
residual computation itself. This is because the computational time depends not only
on the FLOPs count but also on the memory usage and, as mentioned above, dense
matrix-matrix multiplications greatly benefit of modern computer architecture.

We report some 3D single-patch numerical tests from [96]. We consider a two
domains: the first one is a thick quarter of ring; note that this solid has a trivial
geometry on the third direction. The second one is the solid of revolution obtained
by the 2D quarter of ring. Specifically, we performed a π/2 revolution around the
axis having direction (0, 1, 0) and passing through (−1,−1,−1). We emphasize
that here the geometry is nontrivial along all directions.

We consider a standard Incomplete Cholesky (IC) preconditioner (no reordering
is used in this case, as the resulting performance is better than when using the
standard reorderings available in MATLAB).

In Table 4.1 we report the results for the thick quarter ring while in Table 4.2 we
report the results for the revolved ring. The symbol “*” denotes the cases in which
even assembling the system matrix A was unfeasible due to memory limitations.
From these results, we infer that most of the conclusions drawn for the 2D case

Table 4.1 Thick quarter of ring domain

CG + P iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 26/0.19 26/0.38 26/0.75 26/1.51 26/2.64

64 27/1.43 27/3.35 27/6.59 27/12.75 27/21.83

128 28/14.14 28/32.01 28/61.22 * *

CG + PJ iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 26 (7)/0.88 26 (7)/1.20 26 (7)/1.71 26 (7)/2.62 27 (8)/4.08

64 27 (7)/7.20 27 (8)/10.98 27 (8)/14.89 27 (8)/21.81 27 (8)/30.56

128 28 (8)/99.01 28 (8)/98.39 28 (8)/143.45 * *

CG + IC iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 21/0.37 15/1.17 12/3.41 10/9.43 9/24.05

64 37/4.26 28/13.23 22/33.96 18/88.94 16/215.31

128 73/65.03 51/163.48 41/385.54 * *

Performance of CG preconditioned by the direct method (upper table), by ADI (middle table) and
by Incomplete Cholesky (lower table)
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Table 4.2 Revolved quarter of ring domain

CG + P iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 40/0.27 41/0.63 41/1.24 42/2.38 42/4.13

64 44/2.30 44/5.09 45/10.75 45/20.69 45/35.11

128 47/23.26 47/55.34 47/101.94 * *

CG + PJ iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 40 (7)/1.39 41 (7)/1.93 41 (7)/2.67 42 (7)/4.17 42 (8)/6.25

64 44 (7)/11.82 44 (8)/16.96 45 (8)/24.31 45 (8)/35.76 45 (8)/49.89

128 47 (8)/170.69 47 (8)/168.45 47 (9)/239.07 * *

CG + IC iterations/time (s)

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 24/0.44 18/1.28 15/3.61 12/9.63 11/24.57

64 47/5.19 35/14.95 28/37.33 24/94.08 20/222.09

128 94/81.65 71/211.53 57/464.84 * *

Performance of CG preconditioned by the direct method (upper table), by ADI (middle table) and
by Incomplete Cholesky (lower table)

Table 4.3 Percentage of
time spent in the application
of the 3D FD preconditioner
with respect to the overall CG
time

h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 25.60 13.34 7.40 4.16 2.44

64 22.69 11.26 5.84 3.32 1.88

128 25.64 13.09 6.92 * *

Revolved ring domain

still hold in 3D. In particular, both Sylvester-based preconditioners yield a better
performance than the IC preconditioner, especially for small h.

Somewhat surprisingly, however, the CPU times show a stronger dependence
on p than in the 2D case, and the performance gap between the ADI and the FD
approach is not as large as for the cube domain. This is due to the cost of the residual
computation in the CG iteration (a sparse matrix-vector product, costing O(p3n3)

FLOPs). This step represents now a significant computational effort in the overall
CG performance. In fact, our numerical experience shows that the 3D FD method is
so efficient that the time spent in the preconditioning step is often negligible w.r.t. the
time required for the residual computation. This effect is clearly shown in Table 4.3,
where we report the percentage of time spent in the application of the preconditioner
when compared with the overall time of CG, in the case of the revolved ring domain.
Interestingly, this percentage is almost constant w.r.t. h up to the finest discretization
level, corresponding to about two million degrees-of-freedom.

For conforming multi-patch parametrization, we can easily combine the
approaches discussed above with an overlapping Schwarz preconditioner. For
details, see [96]. Extension of this approach to nonconforming discretizations
would require the use of nonconforming DD preconditioners (e.g., [81]) instead of
an overlapping Schwarz preconditioner.
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4.6.4 Matrix-Free Computationally-Efficient k-Refinement

The techniques of Sects. 4.6.2 and 4.6.3 are still not enough to achieve the full
potential of the k-method and motivate the k-refinement from the point of view
of computational efficiency. Matrix operations are too slow and the matrix storage
itself poses restrictions to degree elevation. Therefore in [97] the idea of forming and
storing the needed matrices is abandoned and, still relying on weighted quadrature,
a matrix-free approach is developed. In such a case, the system matrix is available
only as a function that computes matrix-vector products. This is exactly what is
needed by an iterative solver. Matrix-free approaches have been use in high-order
methods based on a tensor construction like spectral elements (see [121]) and have
been recently extended to hp-finite elements [2, 80]. They are commonly used
in non-linear solvers, parallel implementations, typically for application that are
computationally demanding, for example in computational-fluid-dynamics [74, 92].

The cost to initialize the matrix-free approach is only O(N) FLOPs, while the
computation of matrix-vector products costs only O(Np) FLOPs. Moreover, the
memory required by this approach is justO(N), i.e., it is proportional to the number
of degrees of freedom. On the other hand, in 3D the memory required to store the
matrix would be O(Np3), and the cost to compute standard matrix-vector products
would be O(Np3) FLOPs. It is important to remark that, while in some cases the
reduction in storage is the major motivation of the matrix-free approach, in this
case framework both FLOPs and memory savings are fundamental in order to make
the use of the high-degree k-method possible and advantageous. We emphasize that
other matrix-free approaches which rely on more standard quadrature rules (e.g.
Gaussian quadrature) requireO(Np4) FLOPs to compute matrix-vector products.

The innovative implementation described below is, in the case of the k-method
(the isogeometric method based on splines or NURBS, etc., with maximum
regularity), orders of magnitude faster than the standard implementation inherited
by finite elements. The speedup on a mesh of 2563 elements is 13 times for degree
p = 1, 44 times for degree p = 2, while higher degrees can not be handled in
the standard framework. Indeed, in the standard implementation, higher degrees are
beyond the memory constraints of nowadays workstations, while they are easily
allowed in the new framework. This has the upshot: it gives, for the first time, clear
evidence of the superiority of the high-degree k-method with respect to low-degree
isogeometric discretizations in terms of computational efficiency.

This approach has been also studied, implemented and tested in an innovative
environment and hardware for dataflow computing, in the thesis [122].

For brevity we only present here the weighted quadrature matrix-free algorithm
for the mass matrix multiplication. Let M̃ be the approximation of M obtained with
weighted quadrature, as described in Sect. 4.6.2. We use however indices instead of
multi-indices, for the sake of simplicity. We want to compute the vector M̃v, where
v ∈ R

N is a given vector.
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For i = 1, . . . , N , we observe that

(
M̃v

)
i
=

N∑
j=1

m̃ij vj =
N∑
j=1

NQP∑
q=1

wi,qc(xq)B̂j (xq)vj

=
NQP∑
q=1

wi,qc(xq)

⎛
⎝ N∑
j=1

B̂j (xq)vj

⎞
⎠ ,

where we have used the definition of m̃ij from (4.133). If we define vh =∑N
j=1 vj B̂j , we have then the obvious relation

(
M̃v

)
i
=
NQP∑
q=1

wi,q c(xq)vh(xq) = Q
WQ
i (c(·)vh(·)) . (4.144)

Above, we see that weighted-quadrature is well suited for a direct calculation of the
i-th entry of M̃v: this is just equivalent to approximating the integral of the function
c vh using the i-th quadrature rule.

Then M̃v can be computed with the following steps:

1. Compute ṽ ∈ R
NQP , with ṽq := vh(xq), q = 1, . . . , NQP.

2. Compute ˜̃v ∈ R
NQP , with ˜̃vq := c(xq) · vh(xq), q = 1, . . . , NQP.

3. Compute
(
M̃v

)
i
=∑NQP

q=1 wi,q
˜̃vq , i = 1, . . . , N .

This algorithm, and in particular steps 1 and 3, can be performed efficiently by
exploiting the tensor structure of the basis functions and of the weights. In order to
make this fact apparent, we now derive a matrix expression for the above algorithm.
Consider the matrix of B-spline values B ∈ R

NQP×N , with Bqj := B̂j (xq), q =
1, . . . , NQP, j = 1, . . . , N , which can be written as

B = Bd ⊗ . . .⊗ B1, (4.145)

where

(Bl )qljl = B̂l,jl (xl,ql ) ql = 1, . . . , nq, jl = 1, . . . , n. (4.146)

We also consider the matrix of weights W ∈ R
N×NQP , with Wiq := wi,q , i =

1, . . . , N , q = 1, . . . , NQP. Thanks to the tensor structure of the weights, it holds

W = Wd ⊗ . . .⊗W1 (4.147)

where

(Wl )ilql = wl,il ,ql , il = 1, . . . , n, ql = 1, . . . , nq .
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Finally we introduce the diagonal matrix of coefficient values

D := diag
({
c(xq)

}
q=1,...,NQP

)
. (4.148)

Then for every i, j = 1, . . . , N we infer that

M̃ij =
NQP∑
q=1

wi,qc(xq)B̂j (xq) =
NQP∑
q=1

WiqDqqBqj = (W DB)ij .

Thus it holds

M̃ = W DB (4.149)

The factorization above of M̃ justifies Algorithm 4, which computes efficiently the
matrix-vector product.

We now analyze Algorithm 4 in terms of memory usage and of computational
cost, where we distinguish between setup cost and application cost. The initializa-
tion of Algorithm 4 requires the computation and storage of the coefficient values
c(xq), q = 1, . . . , NQP, and of the (sparse) matrices Wl ∈ R

n×nq and Bl ∈ R
nq×n,

for l = 1, . . . , d . The latter part, which involves only the computation and storage of
univariate function values and weights, has negligible requirements both in terms of
memory and arithmetic operations. The computational cost of the evaluation of the
coefficients c(xq) is problem dependent. For example, when c (ξ) = det (JFR(ξ ))
and FR is a spline/NURBS parametrization of degree lower than the one of the
isogeometric space, as it happens in the numerical benchmarks of the isogeometric
k-method, one can assume this cost is O(N) FLOPs, i.e., independent of p. In
general, the storage of such coefficients clearly requires NQP ≈ 2dN = O(N)

memory.3 We emphasize that this memory requirement is completely independent
of p; this is a great improvement if we consider that storing the whole mass matrix

Initialization: Compute and store the matrices D , Bl and Wl , for l = 1, . . . , d.
Input : Vector v ∈ R

N .
1 Compute ṽ = (Bd ⊗ . . .⊗ B1) v ;
2 Compute ˜̃v = D ṽ ;
3 Compute w = (Wd ⊗ . . .⊗W1)˜̃v ;

Output : Vector w = M̃v ∈ R
N .

Algorithm 4: Matrix-free product (mass)

3It is possible to further reduce the memory requirements at the cost of increasing the number
of computations. Indeed, note that it is not necessary to store the whole D , ṽ and ˜̃v since w in
Algorithm 4 can be computed component by component with on-the-fly calculation of the portion
of D , ṽ and ˜̃v that is needed).
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would require roughly (2p+1)dN = O(Npd)memory. As for the application cost,
Step 2 only requires N FLOPs. Using the properties of Kronecker product and the
fact that nnz

(
B(l)

) ≈ 2pn, l = 1, . . . , d , we find that the number of FLOPs required
by Step 1 is

4pn
(
nd−1 + 2nd−1 + . . .+ 2d−1nd−1

)
≤ 2d+2Np = O(Np).

Approximately the same number of operations is required for Step 3. Hence we
conclude that the total application cost of Algorithm is O(Np) FLOPs. This should
be compared with the O(Npd) cost of the standard matrix-vector product.

Similar conclusions hold for the stiffness matrix, though it requires a different
treatment of the different derivatives, in the spirit of the weighted quadrature.

Now we report some numerical tests of this approach, from [97], considering a
Poisson problem on a mesh of 2563 elements, on a thick quarter of annulus as in
Fig. 4.30 (left). For the sake of simplicity, a uniform mesh is considered but all the
algorithms do not take any advantage of it and work on non-uniform meshes.

The problem solution is an oscillating manufactured solution, namely

u(x, y, z) = sin (5πx) sin (5πy) sin (5πz)
(
x2 + y2 − 1

) (
x2 + y2 − 4

)
.

(4.150)

In the tests we see that the k-refinement, whose use has always been discouraged by
its prohibitive computational cost, becomes very appealing in the present setting.

For different values of h and p we report the total computation time (setup and
solution of the system) and the error ‖u− ũh‖H 1 , where ũh ∈ Vh is the function
associated with the approximate solution of the linear system (using BiCGStab and
the preconditioner of Sect. 4.6.3). Results are shown in Table 4.4 and in Fig. 4.31.

There is a minimal mesh resolution which is required to allow k-refinement
convergence. This depends on the solution, which is in the example (4.150) a simple

Fig. 4.30 Thick ring and revolved ring domains
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Fig. 4.31 Representation in the time-error plane of the results shown in Table 4.4

oscillating function with wavelength 1/5 on a domain with diameter 3. Indeed, there
is no approximation (i.e., the relative approximating error remains close to 1) for
meshes of 163 elements or coarser, for any p. Convergence begin at a resolution of
323 elements.

The computation time of the proposed matrix-free method grows almost linearly

with respect to N =
(

1
h

)3
(note that the growth is slower between the two coarser

discretization level, where apparently we are still in the pre-asymptotic regime).
Time dependence on p is also very mild: the computation time for p = 8 is 1/3
the one for p = 2, keeping the same mesh resolution. The time growth with respect
to N and p is due not only to the increased cost for system setup, matrix-vector
product and application of the preconditioner, but also to the increased number
of iterations. In turn, the number of iterations grows not because of a worsening
of the preconditioner’s quality (according to the results in [96, 117]) but because
of a smaller discretization error, which corresponds to a more stringent stopping
criterion.

The higher the degree, the higher the computational efficiency of the k-method.
This is clearly seen in Fig. 4.31 where the red dots (associated to p = 8, the highest
degree in our experiments), are at the bottom of the error vs. computation time plot.

The k-refinement is superior to low-degree h-refinement given a target accuracy:
for example, for a relative accuracy of order 10−3, we can select degree p =
8 on a mesh of 323 elements or p = 2 on a mesh of 2563 elements: the
former approximation is obtained in 2.7 s while the latter takes about 690 s on our
workstation, with speedup factor higher than 250.
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4.7 Application Examples

In this section we present some numerical benchmarks of model problems. The first
example, from [15], is the one of linear elasticity. The second one, from [57], is a
fluid benchmark and utilizes the divergence-free isogeometric vector fields defined
in Sect. 4.3.2.

4.7.1 Linear Elasticity

We start by considering the classical elliptic linear elastic problem. First we
introduce some notation. The body occupies a two-dimensional domain Ω ⊂ R

2.
We assume that the boundary ∂Ω is decomposed into a Dirichlet part ΓD and
a Neumann part ΓN . Moreover, let f : Ω → R

d be the given body force and
g : Ω : ΓN → R

d the given traction on ΓN .
Then, the mixed boundary-value problem reads

⎧⎨
⎩

divCε(u)+ f = 0 inΩ
u = 0 on ΓD
Cε(u) · n = g on ΓN,

(4.151)

where u is the body displacement and ε(u) its symmetric gradient, n is the unit
outward normal at each point of the boundary and the fourth-order tensor C satisfies

Cw = 2μ

[
w+ ν

1− 2ν
tr(w)I

]
(4.152)

for all second-order tensorsw, where tr represents the trace operator andμ > 0, 0 ≤
ν < 1/2 are, respectively, the shear modulus and Poisson’s ratio. The stress, σ , is
given by Hooke’s law, σ = Cε.

Assuming for simplicity a regular loading f ∈ [L2(Ω)]2 and g ∈ [L2(ΓN)]2, we
introduce also

< ψ, v >= (f, v)Ω + (g, v)ΓN ∀v ∈ [H 1(Ω)]d, (4.153)

where ( , )Ω , ( , )ΓN indicate, as usual, the L2 scalar products on Ω and
ΓN , respectively. The variational form of problem (4.151) then reads: find u ∈
[H 1
ΓD
(Ω)]d such that

(Cε(u), ε(v))Ω =< ψ, v > ∀v ∈ [H 1
ΓD
(Ω)]d (4.154)

To solve (4.151), we introduce an isogeometric vector space Vh as defined in
Sect. 4.3.1 and look for the Galerkin isogeometric approximation uh ∈ V h such
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that

(Cε(u), ε(v))Ω =< ψ, v > ∀v ∈ V h, (4.155)

where

V h = [Vh]d ∩ [H 1
ΓD
(Ω)]d. (4.156)

This is an elliptic problem, then a Galerkin method returns the best approxima-
tion in the energy norm. The order of convergence of the numerical error u − uh
follows from the approximation properties of isogeometric spaces, see Sect. 4.4.

We will see this for the model of an infinite plate with a hole, modeled by a
finite quarter plate. The exact solution [64, pp. 120–123], evaluated at the boundary
of the finite quarter plate, is applied as a Neumann boundary condition. The setup
is illustrated in Fig. 4.32. Tx is the magnitude of the applied stress at infinity, R
is the radius of the traction-free hole, L is the length of the finite quarter plate, E
is Young’s modulus, and ν is Poisson’s ratio. The rational quadratic basis is the
minimum order capable of exactly representing a circle.

The first six meshes used in the analysis are shown in Fig. 4.33. The cubic
and quartic NURBS are obtained by order elevation of the quadratic NURBS on
the coarsest mesh (for details of the geometry and mesh construction, see [70]).
Continuity of the basis is Cp−1 everywhere, except along the line which joins the
center of the circular edge with the upper left-hand corner of the domain. There it is
C1 as is dictated by the coarsest mesh employing rational quadratic parametrization.
In this example, the geometry parametrization is singular at the upper left-hand
corner of the domain. Convergence results in the L2-norm of stresses (which is
equivalent to the H 1-seminorm of the displacements) are shown in Fig. 4.34. As
can be seen, the L2-convergence rates of stress for quadratic, cubic, and quartic

Fig. 4.32 Elastic plate with a
circular hole: problem
definition
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Fig. 4.33 Elastic plate with circular hole. Meshes produced by h-refinement (knot insertion)

Fig. 4.34 Elasticity: error measured in the L2-norm of stress vs. mesh parameter (optimal
convergence rates in red)
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NURBS are 2, 3, and 4, respectively, hence optimal in all cases, consistent with the
approximation estimates described in Sect. 4.4.

4.7.2 Steady Navier-Stokes Problem

We consider now the steady Navier-Stokes Problem. The fluid occupies the domain
Ω ⊂ R

3. We assume that the boundary ∂Ω = ΓD for simplicity and take f : Ω →
R

3 as the external driving force. Then, the problem reads

⎧⎨
⎩

div (u⊗ u)− div (2νε(u))+∇p = f in Ω
divu = 0 in Ω
u · n on ∂Ω,

(4.157)

where u is the fluid velocity, p is the pressure, ν is the kinematic viscosity and ε(u)
is the symmetric gradient operator.

The variational form of (4.157) reads as follows: find u ∈ [H 1
0 (Ω)]d and p ∈

L2
0(Ω) such that

(2νε(u), ε(v))Ω − (u⊗ u,∇v)Ω − (p, divu)Ω + (q, div v)Ω

= (f, v)Ω, ∀u ∈ [H 1
0 (Ω)]d, q ∈ L2

0(Ω),
(4.158)

where L2
0(Ω) is the subspace of L2(Ω) functions having zero average on Ω . At

the discrete level, we are going to adopt a divergence-free (X2
h,X

3
h) isogeometric

discretization for the velocity-pressure pair, as defined in Sect. 4.3.2. In this case,
only the Dirichlet boundary condition on the normal velocity component (i.e., no-
penetration condition) can be imposed strongly (see [38]) while the other boundary
conditions, including the Dirichlet boundary condition on the tangential velocity
component, have to be imposed weakly, for example by Nitsche’s method, as studied
in [57]. For that, we introduce the space H 1

n(Ω) = {w ∈ [H 1(Ω)]d such that w·n =
0 on ∂Ω}, and the discrete variational formulation is: find uh ∈ X2

h ∩H 1
n(Ω) and

ph ∈ X3
h ∩ L2

0(Ω) such that

(2νε(uh), ε(vh))Ω − (uh ⊗ uh,∇vh)Ω − (ph, divuh)Ω + (qh, div vh)Ω

−
∑
F⊂∂Ω

∫
F

(
(ε(uh) n) · vh + (ε(vh) n) · uh − Cpen

hF
uh · vh

)
ds

= (f, vh)Ω, ∀vh ∈ X2
h ∩H 1

n(Ω), qh ∈ X3
h ∩ L2

0(Ω),

(4.159)
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where F ⊂ ∂Ω denote the faces (in three dimensions) of the Bézier elements that
are on the boundary ofΩ and Cpen > 0 is a suitable penalty constant.

We consider a simple configuration (see [57, Section 8.2]), withΩ = [0, 1]3 and
select in (4.32) the polynomial degrees p1 = p2 = p3 = 2 and p1 = p2 = p3 = 3.
Selecting knots with single multiplicity, the former choice X2

h is formed by linear-
quadratic splines andX3

h is formed by trilinear splines, which is the minimum degree
required to have X2

h ∈ [H 1(Ω)]d . The right-hand side is set up in order to give the
exact solution:

uh = curl

⎡
⎢⎢⎣
x(x − 1)y2(y − 1)2z2(z− 1)2

0

x2(x − 1)2y2(y − 1)2z(z− 1)

⎤
⎥⎥⎦ ; p = sin(πx) sin(πy)− 4

π2 .

Streamlines associated with the exact solution are plotted in Fig. 4.35. The conver-
gence rates are shown in Figs. 4.36 and 4.37 for Reynolds number Re = 1. Optimal
convergence is obtained for both velocity and pressure. We remark that the discrete
velocity is point-wise divergence-free, because of (4.38).

Fig. 4.35 Vortex manufactured solution: Flow velocity streamlines colored by velocity magnitude
(from [57])
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Fig. 4.36 Navier-Stokes: error measured in theH 1-norm of velocity vs. mesh-size h. The optimal
convergence rates in red (from [57])

Fig. 4.37 Navier-Stokes: error measured in the L2-norm of pressure vs. mesh-size h. Optimal
convergence rates in red (from [57])
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