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1 Introduction

Berge’s lemma [3] states that a matching M (a set of edges without common
vertices) of a graph G is maximum (contains the largest number of edges) if and
only if there is no augmenting path (a path that starts and ends on free (unmatched)
vertices, and alternates between edges in and not in the matching) with M . Edmonds
[11] used this idea to develop Blossom Algorithm for this problem. This idea was
used first for the Maximum Independent Set problem, i.e. the problem asks for a
largest number of vertices set without edges among them, by Sbihi [33] and Minty
[28]. Clearly, a matching in a graph G corresponds to an independent set in the line
graph of G. Hence, we can use Edmonds’ algorithm to find Maximum Independent
Set for line graphs. Sbihi and Minty extended this idea for a more general graph
class, say claw-free graph, by showing that an independent set S of a graph G is
maximum if and only if there is no augmenting path (a path that starts and ends on
vertices not lies in the independent set and alternates between vertices in and not in
the independent set) with S. This technique was extended for more general graph
classes by using the augmenting graph concept as described as follows.

Definition 1 ([17]) Given a graph G and an independent set S, an induced bipartite
subgraph H = (W,B,E) of G is called an augmenting graph for S if (i) W ⊆ S,
B ⊆ V (G)\S, (ii) N(B) ∩ (S\W) = ∅, and (iii) |B| > |W |.

An augmenting graph H is called minimal if it does not contain any augmenting
graph as a proper induced subgraph.
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Theorem 1 ([17]) An independent set S in a graph G is maximum if and only if
there is no augmenting graph for S.

This theorem suggests the following general approach to find a maximum inde-
pendent set in a graph G. Begin with any independent set S (may be empty) in
G and as long as S admits an augmenting graph H , exchange white and black
vertices of H . Clearly, the problem of consecutively finding augmenting graphs
and of applying these augmentations is generally NP-hard, as the MIS problem is
NP-hard. Moreover, we can restrict ourselves in minimal augmenting graph only.
Hence, for a polynomial time solution to some graph class, one has to solve the two
following problems:

(P1) Find a complete list of (minimal) augmenting graphs.
(P2) Develop polynomial time algorithms for detecting (minimal) augmenting

graphs.

So far, characterizations of (minimal) augmenting graphs mainly followed the two
following directions. In the first approach, augmenting graphs in (S1,2,k ,banner)-
free graphs are characterized based on the observation that a banner-free bipartite
graph is either C4-free or complete. The most general result follows this direction
described by Lozin and Milanič [23] for (S1,2,5,banner)-free graphs.

In the second approach, augmenting graphs of subclasses of P5-free graphs are
characterized based on the observation showed indepedently by many researchers
(e.g., [29]) that every connected P5-free bipartite graph is a bipartite-chain graph,
i.e. the vertices of each part can be ordered under inclusion of their neighborhood.
Based on this property, polynomial solutions were obtained for some subclasses of
P5-free graphs [4, 16, 25, 29, 30]. It is also worth to notice that the MIS problem is
shown polynomially solvable in P5-free graphs [22].

In this paper, we try to combine the two above approaches to a subclass of
(banner2,domino)-free graphs (see Figure 1). In particular, we obtain the following
theorem.

Theorem 2 Given integers m, l, the MIS problem is polynomially solvable in
(S2,2,5,banner2,domino,Mm,Km,m − e,R1

l , R
2
l , R3

l )-free graphs. (See Figure 4.)

Obviously, banner and domino are two natural generalizations of P5 and banner
(banner1), R1

l , R2
l , R3

l are generalizations of S1,2,5. Hence, our result is a gen-
eralization of some previous known results for (S1,2,5, banner)-free graphs [23],
(P5,K3,3 − e)-free graphs [16, 25] for (P5,K2,m − e)-free graphs, and some
subclasses of S1,2,2-free graphs [20].

The organization of the paper is as follows. Augmenting graphs for some
subclasses of S2,2,l-free graphs are characterized in Section 2, i.e. to solve Problem
P1. Methods for finding such augmenting graphs are described in Section 3, i.e. to
solve Problem V2. In Section 4, we summarize some results in using technique for
other combinatorial and graph-theoretical problem. Section 5 is a discussion about
the issue. Many of long proofs are put in the Appendix part.
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Fig. 1 Si,j,k , domino, bannerk , and applel

Here, we want to collect most of the terminology and notations used in the paper.
For those not given here, they will be defined when needed. For those not given, we
refer the readers to [5]. Given a graph G = (V ,E), for a vertex u, we denote by
N(u) := {v ∈ V : uv ∈ E} the neighborhood of u in G. For a subset U ⊂ V (G),
we denote by N(U) := (

⋃

u∈U

N(u))\U the neighborhood of U . If W,U are two

vertex subsets of G, then NU(W) := N(W) ∩ U . Also, NU(v) := N(v) ∩ U for a
vertex v. Given a graph G = (V ,E) and a vertex subset U , we denote by G−U the
graph obtained from G by deleting all vertices (together with adjacent edges) in U .
For two vertices u, v ∈ V , we write u ∼ v if uv ∈ E. For a vertex u, we denote by
d(u) := |N(u)|, the degree of u in G. We also denote by G[U ] := G − (V (G)\U),
the subgraph of G induced by U .

2 Augmenting Graphs in Subclasses of (S2,2,l ,bannerl)-Free
Graphs

Hertz and Lozin [17] obtained the following observation about minimal augmenting
graphs.

Lemma 1 ([17]) If H = (B,W,E) is a minimal augmenting graph for an
independent set S of a graph G, then

1. H is connected;
2. |W | = |B| − 1;
3. for every subset U ⊆ W , |U | < |NB(U)|.
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2.1 Redundant Sets and Reduction Sets

Let us report from Section 3 of [23] a general observation on the problem of finding
augmenting graphs and let us slightly extend it according to the Remark of Section 3
of [23]. Given an augmenting graph class A , a graph G, and an independent
set S, let Problem Augmentation (A ) denote the problem of finding augmenting
graphs if S admits an augmenting graph in A . Lozin and Milanič [23] showed that
in (S1,2,5,banner)-free graphs, the problem can be reduced to finding augmenting
graphs of the form tree1,. . . ,tree6 (see Figure 2) by using redundant set concept. We
extend this concept as follows.

Definition 2 In an augmenting graph H = (W,B,E), a vertex subset U is called
redundant if

1. |U ∩ W | = |U ∩ B| and
2. for every vertex b ∈ B\U , NW\U(U ∩ B) ⊆ NW\U(b).

Theorem 3 Let A1 and A2 be two classes of augmenting graphs. If there exists
a constant k such that, for every augmenting graph H = (W,B,E) ∈ A2, there
exists a redundant subset U of size at most k such that H − U ∈ A1, then Problem
Augmentation(A2) is polynomially reducible to the problem Augmentation(A1).

Proof Assume that Algorithm Augment1(G, S) outputs a subset V ′ ⊆ V (G) such
that G[V ′] is augmenting for S whenever S admits an augmenting graph from
A1 (and perhaps even if this is not the case). The procedure also returns ∅ if no
augmenting graph is found.

Assume that S admits an augmenting graph H = (B,W,E) ∈ A2. Then by
the theorem’s assumption, H contains a redundant set U of size at most k such that
H −U ∈ A1. It is obvious that the graph H −U is augmenting for S\U . Moreover,
since U is redundant, G′′ contains every vertex of H − U , i.e. Steps 1 and 2 have
not removed any vertex of H − U . Therefore, Algorithm Augment1 must output a
non-empty set T . Consequently, Algorithm Augment2 also outputs a non-empty set
U ∪ T .

We show that G[U ∪ T ] is augmenting for S. Indeed, by Step 1, G[U ∪ T ] is a
bipartite graph. Since T is augmenting for S\U in G′′, |T ∩ S\U | < |T ∩ V (G′′)|.
Moreover, since |U ∩ S| = |U ∩ V (G)\S|, |(T ∪ U) ∩ S| < |(T ∪ U) ∩ V (G)\S|.
By Step 2, NS(U\S) ⊆ T ∩ S, i.e. NS((T ∪ U)\S) ⊆ (T ∪ U) ∩ S. Hence, the
graph G[U ∪ T ] is augmenting for S, even if G[T ] does not coincide with H − U .
Therefore, whenever S admits an augmenting graph in A2, Algorithm Augment2
finds an augmenting graph.

To this end, the procedure inspects polynomially many subsets of vertices of the
input graph, which results in polynomially many calls of Algorithm Augment1. The
construction of the graph G′′ also is performed in polynomial time. Hence, Problem
Augmentation(A2) is polynomially reducible to Problem Augmentation (A1).

Note that Problem Augmentation(A1) becomes Problem (P2) when A1 is the
class of all (possible) augmenting graphs.
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Algorithm 1 Augment2(G, S) (Version 1)
Input: A graph G and an independent set S of G

Output: A subset V ′ ⊆ V (G) such that G[V ′] is augmenting for S whenever S admits an
augmenting graph from A2. Return ∅ if no augmenting graph is found.

1: for all U ⊆ V (G) of size at most k such that

1. B0 := U ∩ (V (G)\S) is independent in G,
2. |B0| = |U ∩ S|
do

2: G′ := G − NG(B0) ∩ (V (G)\S) {Remove the (black) neighbors of B0 in V (G)\S};
3: G′′ := G′ − {b ∈ V (G′)\S : NS\U (B0)\NS\U (b) 
= ∅} {Remove the (black) vertices of

V (G′)\S whose neighborhood in S\U does not cover the neighborhood of B0 in S\U};
4: T := Augment1(G

′′ − U, S\U);
5: if T 
= ∅ then
6: return U ∪ T {We have an augmenting graph for S}
7: end if
8: end for
9: return ∅

Moreover, we can also extend the redundant set concept further as follows. If
Algorithm Augment1 starts with some initialization process (see Algorithm 2),
which computes some finite vertex set C such that NS\U(U\S) ⊆ NS(C\S), then
we can process this initialization procedure in Augment2 as in Version 2 and remove
the condition that every neighbor in S\U of black vertices in B\U covers the
neighbor of U in S\U (see Algorithm 3). More precisely, we have the following
definition.

Definition 3 Let A1 and A2 be the two augmenting graph classes. Given an integer
k. Assume that there exists a polynomial time procedure finding an augmenting
graph in A1 (or deciding such augmenting graph does not exist) and such a
procedure has a form as in Algorithm 2, i.e. starts by generating some candidates
and from each candidate C, builds up augmenting graphs (Generate1(C,G, S)).
In an augmenting graph H = (B,W,E) ∈ A2, a vertex subset U is called a
reduction set associated with some key set B∗ ⊆ B ∩ C if |U ∩ B| = |U ∩ W |
and NW\U(U ∩ B) ⊆ NW\U((B∗\U) ∩ B).

And by the above arguments, we have the following observation.

Theorem 4 Let A1 and A2 be the two augmenting graph classes. Then Problem
Augmentation(A2) is polynomially reducible to Problem Augmentation(A1) if there
are two integers k1, k2 such that for every augmenting graph H = (B,W,E) ∈ A2,
there is a reduction set U of size at most k1 associated with a key set B∗ of size at
most k2 such that H − U ∈ A1.
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Algorithm 2 Augment1(G, S)

Input: A graph G and an independent set S of G

Output: A subset V ′ ⊆ V (G) such that G[V ′] is augmenting for S whenever S admits an
augmenting graph from A1. Return ∅ if no augmenting graph is found.

1: Generate Candidates;
2: for all Candidates C do
3: T := Generate1(C,G, S);
4: if T 
= ∅ then
5: return T {We have an augmenting graph for S}
6: end if
7: end for
8: return ∅

Algorithm 3 Augment2(G, S) (Version 2)
Input: A graph G and an independent set S of G.
Output: A subset V ′ ⊆ V (G) such that G[V ′] is augmenting for S whenever S admits an

augmenting graph from A2. Return ∅ if no augmenting graph is found.
1: for all U ⊆ V (G) of size at most k such that

1. B0 := U ∩ (V (G)\S) is independent in H ,
2. |B0| = |U ∩ S|
do

2: G′ := G − NG(B0) ∩ (V (G)\S) {Remove the (black) neighbors of B0 in V (G)\S};
3: Generate Candidates;
4: for all Candidates C of G′ such that NS\U (B0) ⊆ NS\U (C ∩ (V (G′ − U)\S)) do
5: T := Generate1(C,G′ − U, S\U);
6: if T 
= ∅ then
7: return U ∪ T {We have an augmenting graph for S}
8: end if
9: end for

10: end for
11: return ∅

2.2 Augmenting Graphs in Subclasses of S2,k,l-Free Graphs

The following corollary is a consequence of Lemma 1 and was obtained in [23].

Corollary 1 ([23]) Let H = (B,W,E) be a minimal augmenting graph for an
independent set S of a graph G. Then for every vertex b ∈ M , there exists a perfect
matching between B\{b} and W in H , i.e. a matching consists of every vertex of
B\{b} and W .

Remark 1 By the above corollary, from now on, given a minimal augmenting graph
H = (B,W) and a black vertex b ∈ B, we denote by M such a perfect matching
and for every vertex u of H different from b and by μ(u) the matched vertex of u

in M . For a subset U ⊆ V (H), we also denote μ(U) := {μ(u) : u ∈ U}.
Corollary 2 Let H = (B,W) be a minimal augmenting graph. Then every white
vertex of H is of degree at least two.
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We say that G is an (k,m)-extended-chain if G is a tree and contains two vertices
a, b such that there exists an induced path P ⊂ G connecting a, b, every vertex of
G−P is of distance at most k −1 from either a or b, and every vertex of G−P has
no neighbor in P except possibly a or b and every vertex of G is of degree at most
m − 1. The following observation is an extension of Theorem 8 of [17]. The result
was announced in [21] without full proof.

Lemma 2 ([21]) For any three integers k, l, and m such that 4 ≤ 2k ≤ l and m ≥
3, in (S2,2k,l ,applel

4, applel
6,. . .,applel

2k+2,K1,m)-free graphs, there are only finitely
many minimal augmenting graphs different from augmenting (2k,m)-extended-
chains and not of the form apple2p. Moreover, if H is of the form augmenting
(2k,m)-extended-chain, then every white vertex is of degree two.

Note that in an augmenting graph of the form apple2p (or augmenting apple for
short), the vertex of degree three is white. However, given an augmenting apple
H = (B,W,E(H)), where b is the black vertex of degree one and w is the white
vertex of degree three. Then U := {b,w} is a redundant set such that H − U is an
augmenting chain, a special case of augmenting (k,m)-extended-chain.

2.3 Augmenting Graphs in Subclasses of S2,2,5-Free Graphs

Now, we try to omit K1,m from the list of forbidden induced subgraphs by consid-
ering (S2,2,5,banner2,domino)-free augmenting graphs. We extend the consideration
of Section 4 in [23]

Lemma 3 Given a graph G and an (S2,2,5,banner2,domino)-free minimal augment-
ing graph H = (B,W,E) for an independent set S, at least one of the following
statements is true:

1. H belongs to some finite set of augmenting graphs;
2. H is an augmenting chain or an augmenting apple (see Figure 1);
3. H is an augmenting graph of the form tree1, tree2, . . . , tree7 (see Figure 2) or can

be reduced by a redundant set containing at most 32 vertices to an augmenting
graph of the form tree1, tree2, . . . , tree7;

4. there is a vertex b ∈ B such that b is adjacent to all vertices of W .

Such b of Case 4 is called the augmenting vertex of S, as in [29, 30]. We also
call augmenting graphs of the form tree1, tree2, . . . , tree7 as augmenting trees.
For Case 4 of Lemma 3, we show that under some restrictions, these augmenting
graphs have structural properties similar to P5-free augmenting graphs, i.e. being a
bipartite-chain by the following observation.

Lemma 4 Given a (domino,banner2)-free graph G, an integer m ≥ 3, and an Mm-
free (see Figure 3) minimal augmenting graph H = (B,W,E) for an independent
set S such that there exists some black vertex b ∈ B adjacent to every white vertex
of W , and |W | ≥ 2m + 1, at least one of the following statements is true.
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Fig. 2 Augmenting trees
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Fig. 3 Mm and Qp

1. H is of the form tree1 or there exists a reduction set U of size at most 2m − 2
associated with a key set of size one such that H − U is of the form tree1.

2. H is a bipartite-chain or there exists a redundant set U of size at most 2m − 2
such that H − U is a bipartite-chain.

Proof We refer to Lemma 10 for the procedure finding tree1 and note that such a
procedure starts by finding a candidate containing b, i.e. b is adjacent to every white
vertex in the augmenting tree1 and we have the key set B∗ := {b}.

Let B = {b, b1, . . . , bq}, b be the vertex b in Corollary 1, p be the integer p

in Lemma 8 such that NW(bi) ⊇ NW(bj ) for every 1 ≤ i ≤ p, i < j ≤ q and
|NW(bi)| = 1 for every i ≥ p + 1.

If p ≤ m−1, then U = {b1, . . . , bp, μ(b1), . . . , μ(bp)} is a reduction set of size
at most 2m − 2 associated with B∗ such that H − U is of the form tree1.

If p ≥ q −m+ 1, then U = {bp+1, . . . , bq, μ(bp+1), . . . , μ(bq)} is a redundant
set of size at most 2m − 2 such that H − U is a bipartite-chain.

If m ≤ p ≤ q−m, then {b, b1, . . . , bk−1, bq−k+1, . . . , bq, μ(bq−k+1), . . . , μ(bq)}
induces an Mm, a contradiction.

The following observation is a generalization of Lemma 10 in [4] and Theorem 1
in [16] about augmenting graphs in (P5,K2,m − e)-free graphs and (P5,K3,3, − e)-
free graphs, respectively.

Lemma 5 Given a graph G, an independent set S of G, an integer m, and a
(Km,m − e)-free minimal augmenting bipartite-chain H = (B,W,E), either

1. H has at most 2m − 2 white vertices; or
2. H is of the form Kl,l+1 or there is a redundant set of size at most 2m − 4 such

that H − U is of the form Kl,l+1, for some l.

Proof Assume that |W | = p ≥ 2m − 1. Let W = {w1, w2, . . . , wp} and B =
{b1, b2, . . . , bp, bp+1}. Assume that NW(bi) ⊆ NW(bj ) for i < j . Moreover, by
Corollary 1, there exists a perfect matching between B\{bp+1} and W . Without loss
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of generality, assume that bi ∼ wi for 1 ≤ i ≤ p. Then we have |NW(bi)| ≥ i for
i = 1, 2, . . ..

Now, bi ∼ wj for every bi ∈ B and wj ∈ W such that p − m + 4 ≥ i ≥ m − 1
and p − m + 3 ≥ j ≥ i + 1, otherwise {b, bp, . . . , bp−m+3, bi, wj ,wm−1, . . . , w1}
induces a Km,m − e, a contradiction.

Hence, {b, bp, . . . , bm−1, wp−m+1, . . . , w1} induces a Kp−m+3,p−m+2 and U :=
{bm−2, . . . , b1, wp, . . . , wp−m+2} is a redundant of size 2m − 4 such that H − U is
a Kp−m+3,p−m+2.

Note that if an augmenting graph contains at most 2m− 2 white vertices, it contains
at most 4m − 3 vertices.

3 Finding Augmenting Graphs

Now, we consider Problem (P2), i.e. the problem of finding augmenting graphs
characterized in Section 2. Remind that we can enumerate all augmenting graphs
of bounded size in polynomial time. Moreover, Hertz and Lozin [17] described a
method of finding augmenting graphs of the form Km,m+1 in banner2-free graphs.
Besides, it is obvious that augmenting apples can be reduced to augmenting chains
by a redundant set of size two. Hence, we have to find augmenting extended-chains
and augmenting trees.

3.1 Augmenting Extended-Chain and Augmenting Trees

The method for finding augmenting chains in (S1,2,j ,banner)-free graphs has been
described by Hertz, Lozin, and Schindl [18]. We have extended this method and
obtain the following result, which was published in [21] without proof.

Lemma 6 ([21]) Given integers l and m, where l is even, an (S2,l,l ,bannerl ,R1
l ,R2

l , R
3
l ,

R4
l , R5

l )-free graph G, and an independent set S in G, one can determine whether
S admits an augmenting (l, m)-extended-chain in polynomial time (Figure 4).

By extending the techniques presented in [23] (finding augmenting trees of the
form tree1, . . . , tree6 in (S1,2,5, banner)-free graphs), we obtain the following result.

Lemma 7 An augmenting graph of the form tree1, tree2, . . . , tree7 can be found in
(S2,2,5,banner2)-free graphs in polynomial time.

Together with the method of Lozin and Hertz [17] for finding augmenting graphs of
the form Kp,p+1 in banner2-free graphs, it leads us to the following result.

Corollary 3 Given an integer m, the MIS problem is polynomially solvable in
(S1,2,5,banner2,domino,Mm,Km,m − e)-free graphs.
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Fig. 4 R1
l ,R2

l , R
3
l , R

4
l , and R5

l
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Theorem 42 (as well as Corollary 3) is a generalization of the results of Lozin and
Milanič for (S1,2,5, banner)-free graphs [23], of Lozin and Mosca for (P5,K3,3 −e)-
free graphs [25], of Gerber et al. [16] for (P5,K2,m − e)-free graphs, and some
subclasses of S1,2,2-free graphs [20]. Note that we used redundant set and reduction
set to reduce “near” augmenting complete bipartite graphs to augmenting complete
bipartite graphs. This technique is a generalization of method for augmenting
K+

m,m’s in [25].

3.2 The Maximum Independent Set Problem in Further
Subclasses of S2,2,5-Free Graphs

So far, for (S2,2,5,banner2,domino,R1
l , R

2
l , R

3
l ,Mm)-free graphs, we can find every

(minimal) augmenting graph in polynomial time except for augmenting bipartite-
chains. Mosca in [29] and then in [30] (see also [14, 16]) developed augmenting
vertex technique for this issue, which we describe next.

Let S be an independent set of a graph G = (V ,E) and v ∈ V \S. We denote
as in [29], H(v, S) := {w ∈ V \(S ∪ {v} ∪ N(v)) : NS(w) ⊂ NS(v)}. Given
a graph G = (V ,E), an independent set S, and a vertex v ∈ V \S, Mosca [29]
defined that v is augmenting for S (and that S admits an augmenting vertex), if
G[H(v, S)] contains an independent set Sv such that |Sv| ≥ |NS(v)|. This implies
that H ′ := (Sv ∪ {v}, NS(v), E(H ′)) is an augmenting graph. Then by Theorem 1
and Lemma 3, we restrict ourselves in the following problem.

Here we use some notations in [30]. Let K be a graph, we denote as K(h)

the graph obtained from K by adding h + 1 new vertices v, s1, . . . , sh such that
{s1, s2, . . . , sh} induce an independent set, si’s dominate K , while v is adjacent only
to si’s.

By considering the problem of finding augmenting bipartite chains, we obtain
the following result as an extension of a similar result in [30] for P5-free graphs.

Theorem 5 Given three integers h, l,m and a graph K , if the MIS problem in
the (S2,2,5,banner2,domino,Mm,R1

l , R
2
l , R

3
l , K)-free graph class is polynomially

solvable, then so it is in the (S2,2,5, banner2,domino,Mm,R1
l , R

2
l , R

3
l , K

(h))-free
graph class.

Corollary 4 Given two integers h,m and a graph K , if the MIS problem is
polynomially solvable in (S1,2,5,banner2,domino,Mm,K)-free graph class, then so
it is the (S1,2,5,banner2,domino,Mm,K(h))-free graph class.

Especially, Theorem 5 leads to some interesting polynomially solvable graph classes
of the MIS problem. Remind that the MIS problem was proved to be polynomially
solvable in P5-free graphs [22], (P2+claw)-free graphs [24], 2P3-free graphs [26],
and pK2-free graphs [1], we have the following consequence.
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Fig. 5 Special graphs in Corollary 5

Corollary 5 Given four integers h, l,m, p, the MIS problem is polynomially
solvable in the following graph classes (see Figure 5):

1. (S2,2,5,banner2,domino,Mm,R1
l , R

2
l , R

3
l , P

(h)
5 )-free graphs,

2. (S2,2,5,banner2,domino,Mm,R1
l , R

2
l , R

3
l , (P2 + claw)(2))-free graphs,

3. (S2,2,5,banner2,domino,Mm,R1
l , R

2
l , R

3
l , (2P3)

(2))-free graphs, and
4. (S2,2,5,banner2,domino,Mm,R1

l , R
2
l , R

3
l , (pK2)

(h)).

Let treer be the graph of the form tree1 with parameter r (Figure 2). Let G =
(V ,E) be a graph, U be a subset of V and u be a vertex of G outside U . We say
that u distinguishes U if u has both a neighbor and a non-neighbor in U . A subset
U ⊆ V (G) is called a module in G if it is indistinguishable for any vertex outside
U . A module U is trivial if U is a single vertex or V itself, otherwise it is non-
trivial. A graph whose each module is trivial is called prime. It has been shown (for
example in [27]) that if the problem is polynomially solvable for every prime graph
of a graph class X , then it is also polynomial solvable in X . Using the modular
decomposition technique described in [6] for P5-free graphs we can extend Case 4.,
the case h = 2 of the above corollary, as follows.

Corollary 6 Given four integers l, m, p, and r , the MIS problem is polynomially
solvable in (S2,2,5,banner2,domino,Mm, treer ,R1

l , R
2
l , R

3
l ,Qp)-free graph class

(see Figure 3).

Proof We show that a prime (Qp,treer )-free graph is ((2p + r − 2)K2)
(2)-free.

Indeed, let G be a prime (Qp,treer )-free graph, and suppose that G contains an
induced subgraph Q′ isomorphic to ((2p + r − 2)K2)

(2).
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Fig. 6 Qp

Let T ⊆ V (G) be the subset of vertices of G adjacent to every vertex of the
(2p + r − 2)K2 of Q′. Since T contains at least two non-adjacent vertices, Ḡ[T ],
the complement subgraph of G induced by T , contains a non-trivial component C.
Since G is prime, C is not a module. Hence, there exists a vertex v ∈ V (G)\C
distinguishing C, i.e. v ∼ c1 and v � c2 for some vertices c1, c2 in C. Moreover,
since Ḡ[C] is connected, we can substitute c1, c2 by two vertices of the path
connecting them and can assume that c1 � c2 in G.

If v is adjacent to every vertex of the (2p+ r −2)K2 of Q′, then v ∈ T and since
v � c2, v ∈ C, a contradiction. Hence, there exists a vertex c′ of the (2p+ r −2)K2
of Q′ such that c′

� v.
Since G is treer -free, v distinguishes at most r − 1 edges of the (2p + r − 2)K2

of Q′. Then we have the two following cases.

Case 1 v is adjacent to both end-vertices of at least p edges of the (2p + r − 2)K2
of Q′. Then {v, c′, c2} together with these p edges induce a Qp, a contradiction.

Case 2 v is non-adjacent to both end-vertices of at least p edges of the (2p +
r − 2)K2 of Q′. Then {v, c1, c2} together with these p edges induce a Qp, a
contradiction (Figure 6).

4 Augmenting Graphs in Other Problems

In [19], we have extended the augmenting graph approach for a more more general
combinatorial and graph-theoretical problem, say Maximum Π -set Problem. Given
a graph G, the problem asks for a maximum vertex subset such that the induced
subgraph satisfies some give properties Π . Here are some examples for the property
Π and related problems.

Maximum k-Independent Set. [13] Π : Every vertex is of degree at most k − 1.
Note that the Maximum Independent Set is the case k = 1.
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Maximum k-Path Free Set. Π : The graph contains no path (not necessarily
induced) of k vertices (k ≥ 2), also called k-path free. This problem is a dual
version of the Minimum Vertex k-Path Cover problem [7].
Maximum Forest. Π : The graph contains no cycle. This problem is a dual
version of the Minimum Feedback Vertex Cover problem [12].
Maximum Induced Bipartite Subgraph. Π : The graph contains no cycle of
odd length.
Maximum k-Acyclic Set. Π : The graph contains no cycle of length at most k.
Maximum k-Chordal Set. Π : The graph contains no cycle of length larger than
k.
Maximum k-Cycle Free Set. Π : The graph contains no cycle of length k (k ≥
3), also called k-cycle free. This problem is a dual version of the Minimum Vertex
k-Cycle Cover problem.
Maximum Induced Matching. [8] Π : Every vertex is of degree one.
Maximum k-Regular Induced Subgraph. [9] Π : Every vertex is of degree k.
Maximum k-Regular Induced Bipartite Subgraph. [9] Π : The graph is
bipartite and every vertex is of degree k.
Maximum Induced k-Cliques. Π : Every connected component is a k-clique.
This problem is a generalization of Maximum Induced Matching problem (k =
2).

We have considered two special cases of the problem. First, the property Π

is hereditary (i.e., if a graph G satisfies Π , then every induced subgraph of G

satisfies Π ) and additive (i.e., a graph G satisfies Π if and only if every connected
component of G satisfies Π ). Second, Π is of the form F -induced subgraph, i.e.
every connected component of G belongs to some graph set F . In both cases,
we have defined the augmenting graphs and the key theorem, says the Π -set is
maximum if and only if there exists no augmenting graph. We also have considered
a simple case, says the (S1,2,l ,bannerl ,K1,m)-free minimal augmenting graph either
belongs to a finite set or is augmenting extended-chain. By showing that we can find
augmenting extended-chain in polynomial time for the above problem, we obtained
polynomial algorithms for these non-trivial problems in (S1,2,l ,bannerl ,K1,m)-free
graphs.

5 Conclusion

In this paper, we have combined the methods applied for P5-free graphs and
(S1,2,5,banner)-free graphs to generalize some known results. By extending the
method of Lozin and Milanič [23] for (S1,2,5,banner)-free graphs, we show that the
problem can be restricted to finding augmenting chains and augmenting bipartite-
chains in (S2,2,5,banner2,domino, Mm)-free graphs by using concepts of redundant
sets (in the extended senses). It leads us to some generalizations of results about
(P5,K2,m − e)-free graphs [4], (P5,K3,3 − e)-free graphs [16], and augmenting
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vertex in P5-free graphs [14, 16, 29, 30]. It also leads to some interesting results in
(S2,2,5,banner2,domino,Mm)-free graphs, e.g. Corollaries 5 and 6.

Note that S1,1,2 (fork) and S0,1,3 (P5) are the largest single known forbidden
subgraphs, for which the MIS problem is polynomially solvable. For Si,j,k such that
i + j + k ≥ 5, even for subclasses, to the best of our knowledge, there are still not
many known results except in some subclasses of P6-free graphs, graphs of bounded
maximum degree, planar graphs, (S1,2,5,banner)-free graphs [23], (S1,1,3,Kp,p)-
free graphs [10], and (S1,2,l ,bannerl ,K1,m)-free graphs [19]. Combining different
techniques is a potential approach helping us extend these results to tackling the
general question about complexity of the MIS problem in Si,j,k-free graphs.

Besides, by applying a technique, which has been used for P5-free graphs, for
a larger graph class, e.g. S2,2,5-free graphs, we believe that it is possible to apply
other techniques, which were used in P5-free graphs, in S2,2,l-free graphs.

The augmenting graph technique is also very potential in many other non-trivial
combinatorial and graph-theoretical problems.
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Appendix 1: Proof of Lemma 2

Proof (of Lemma 2) Let H = (B,W,E) be a minimal augmenting graph. If
Δ(H) = 2, then H is a cycle or a chain. Since H is bipartite and |B| = |W | + 1, H

cannot be a cycle. Now, assume that H is not a chain. We show that either (i) there
exists some vertex a such that there is no vertex of distance 2k + l + 1 from a or (ii)
H is an augmenting extended-chain or augmenting apple. Note that, every vertex of
H is of degree at most m − 1, otherwise an induced K1,m appears, a contradiction.
Since H is connected, if we have (i), then

|V (H)| ≤
2k+l+1∑

i=0

(m − 1)i = 1 − (m − 1)2k+l+2

2 − m
,

i.e., H belongs to some finite set of augmenting graphs.
If a white vertex w ∈ W has two black neighbor b1, b2 of degree one, then

{b1, a, b2} is an augmenting P3, a contradiction. Hence, we have the following
observation.

Claim 1 Every white vertex of H has at most one black neighbor of degree one. In
particular, if a white vertex w is of degree at least four, then there are at least three
neighbors of w of degree two.
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Claim 2 Either H contains a vertex, say a, of degree at least three and a has at least
three neighbors of degree at least two or H is an augmenting apple.

Proof Since H is neither a chain or a cycle, there exists at least one vertex of degree
at least three.

By Corollary 2, every white vertex of H is of degree at least two, i.e. every white
neighbor of a black vertex has another black neighbor. Hence, if H contains a black
vertex of degree three, then this vertex is a desired vertex a.

Hence, we assume that (1) every black vertex of H is of degree at most two. If
there exist two black vertices of degree one, then by (1), the path connecting these
two black vertices is an augmenting chain, a contradiction. Hence, we assume that
(2) there exists at most one black vertex of degree one.

By Claim 1, there exists no white vertex of degree four or we have a desired
vertex a. Moreover, if there exist two white vertices of degree three, then either one
of them has three neighbors of degree two, i.e. we have a desired vertex a, or we
have two black vertex of degree one.

Now, if every white vertex of H is of degree two except one of degree three
whose one black neighbor is of degree one, then H is an augmenting apple.

Let a be a vertex in the conclusion of the above claim. Denote by Vi the subset of
vertices of H of distance i from a. Let ap be the vertex of maximum distance from
a and assume that p ≥ 2k + l + 1. Let P := (a0, a1, . . . , ap), where ai ∈ Vi , be
a shortest path connecting a = a0 and ap. Let V1 = {a1, b1,1, b1,2, . . .}, and bi+1,j

be a vertex of NVi+1(bi,j ), if such one exists. By the assumption about a, b2,1, and
b2,2 exist (note that they may coincide).

We show that ai � bi+1,1 and ai+1 � bi,1 for i = 1, 2, . . . , 2k by induction.
Note that it also implies that bi,j 
= ai for every i, j .

If a2 ∼ b1,1, then {b1,1, a, a1, a2, a3, . . . , al+2} induces a bannerl , a contradic-
tion.

If a1 ∼ b2,1, then either {b2,1, b1,1, a, a1, a2, . . . , al+1} or {b2,1, a1, a2, a3, a4, . . . ,

al+3} induces a bannerl depending on a3 ∼ b2,1 or not, a contradiction.
Now, by induction hypothesis, consider 2 ≤ i ≤ k. If ai ∼ bi+1,1,

then either {bi+1,1, ai, ai+1, ai+2, ai+3, . . . , ai+l+2} induces a bannerl or
{bi+1,1, bi,1, . . . , b1,1, a, a1, . . . , ai, ai+1, . . . , ai+l} induces an applel

2i+2
depending on ai+2 ∼ bi+1 or not, a contradiction. If ai+1 ∼ bi,1 for 2 ≤ i ≤ k, then
{bi,1, bi−1,1, . . . , b1,1, a, a1, a2, . . . , ai+1, ai+2, . . . , ai+l+1} induces an applel

2i+2,
a contradiction.

Again, by induction hypothesis, consider k + 1 ≤ i ≤ 2k. If ai ∼ bi+1,1,
then either {bi+1,1, ai, ai+1, ai+2, ai+3, . . . , ai+l+2} induces a bannerl or
{ai−1, ai−2, . . . , a1, a, b1,1, b2,1, . . . , bi+1,1, ai, ai+1, ai+2, . . . , ai+l} induces an
S2,2k,l depending on ai+1 ∼ bi,1 or not, a contradiction. If ai+1 ∼ bi,1, then
{ai, ai−1, ai−2, . . . , a1, a, b1,1, b2,1, . . . , bi,1, ai+1, ai+2, . . . , ai+l+1} induces an
S2,2k,l , a contradiction.

Hence, ai has only one neighbor, say ai+1, in Vi+1 and only one neighbor, say
ai−1, for i = 1, 2, . . . , 2k.
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If bi,1 ∼ bi+1,2 for some 1 ≤ i ≤ 2k − 1 (if such two vertices exist),
then {b1,1, . . . , bi,1, bi+1,2, bi,2, . . . , b1,2, a, a1, . . . , al} induces an applel

2i+2, a
contradiction. Hence, bi,j (if such vertex exists) has at most one neighbor in Vi+1
for 1 ≤ i ≤ 2k − 1. It also implies that bi,j 
= bi,k for every 1 ≤ i ≤ 2k and j 
= k

if such vertices exist.
If V2k contains at least two vertices, say a2k and, without loss of generality,

b2k,1, then {b2,2, b1,2, a, b1,1, b2,1, . . . , b2k,1, a1, a2, . . . , al} induces an S2,2k,l , a
contradiction.

To summarize, V2k = {a2k}, every vertex of Vi has only one neighbor in Vi−1,
for every 1 ≤ i ≤ p.

Let T be the connected component of H − a1 containing a. Then T is a tree by
the above arguments. We show that a is black. Indeed, for contradiction, suppose
that a is white. Let a1 be the black vertex b of Corollary 1. Then there is a perfect
matching between B ∩ T and W ∩ T . Let b be a leaf of T . Then by Corollary 2, b is
black and hence μ(b) be the (only) white neighbor of b. It also implies that μ(b) has
only one neighbor being a leaf. Indeed, if μ(b) has another black neighbor being a
leaf b′, then there exists no μ(b′), a contradiction. Then by induction on T , a has
only one black neighbor in T , a contradiction to a is of degree at least three. Hence,
we have the following claim.

Claim 3 If a is a vertex of the conclusion of Claim 2, then a is black. Moreover,
there exists a neighbor w of a such that the connected component of H − w

containing a is a tree T , every vertex of T is of distance at most 2k − 2 to a, and
every white vertex of T is of degree two.

Let a be the black vertex b of Corollary 1. Then there is a perfect matching between
B ∩ T \{a} and W ∩ T , i.e. |B ∩ T | = |W ∩ T | + 1. Claims 1 and 3 lead to the
following observation.

Claim 4 Every white vertex w of H is either of degree two or three. Moreover, in
the latter case, exactly one black neighbor of w is of degree one.

Let j be the largest number such that |Vj | ≥ 2. Then 2 ≤ j ≤ 2k − 2. Moreover, j

is even, since every leaf of T is black.
Note that every black vertex aq such that 2k − j < q < p − 2k is of degree two,

otherwise aq becomes a vertex of the conclusion of Claim 2 and there exist at least
two vertices of degree 2k from aq , a contradiction to Claim 3.

Let T1 and T2 be the two connected component of H − a2k−j+1 − ap−2k−1
containing a2k−j and ap−2k , respectively. Then by Claim 3, T1 and T2 are trees
such that the most distance between a vertex of T1 (respectively, T2) to a2k−j

(respectively, ap−2k) is 2k − 2. Moreover |W ∩ (T1 + T2)| + 2 = |B ∩ (T1 + T2)|.
Now, every white vertex aq , where 2k − j < q < p − 2k, is of degree two or

three, and in the later case a black neighbor of aq different from aq−1 and aq+1 is
of degree one. Hence, every such white vertex is of degree two, otherwise we have
a contradiction to |W | + 1 = |B|.

Thus, H is an augmenting (2k − 1,m)-extended-chain.
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Appendix 2: Proof of Lemma 3

We go through the Proof by first obtaining some results related to the cases when
the considered augmenting graph contains a K1,m as an induced subgraph.

Lemma 8 Let G = (X, Y,E) be a bipartite graph such that there exists a vertex
x ∈ X and NY (x) = Y . Assume that |X| = m+1. Then at least one of the following
statements is true.

1. H2 contains a banner2 or a domino.
2. We can linearly order X = (x, x1, x2, . . . , xm) so that there exists a natural p,

with 0 ≤ p ≤ m, such that (i) NY (x1) ⊇ . . . ⊇ NY (xp) and |NY (xi)| = 1 for
every i ≥ p + 1. Moreover, if p ≥ m − 1, then G is a bipartite-chain.

Proof First, assume that Case 1 does not happen. We linearly order X by the
construction method.

Assume that we already have chosen x1, . . . , xp. Let U = X\{x, x1, . . . , xp}.
Let xp+1 ∈ U be a vertex such that |NY (xp+1)| is largest among vertices in U .
Suppose that |NY (xp+1)| ≥ 2 and there exists a vertex xi ∈ U\{xp+1} such that
xi ∼ yi and xp+1 � yi for some yi ∈ Y . By the choice of xp+1, xi � yj for some
yj ∈ NY (xp+1). Then {x, yk, yi, yj , xp+1, xj } induces a domino or a banner2 for
some yk ∈ NY (xp+1)\{yj } depending on xi ∼ yk or not and x is a vertex of degree
three in both cases, a contradiction.

If p ≥ m − 1, then NY (x) ⊇ NY (xi) ⊇ NY (xj ) for every 1 ≤ i < j ≤ m. We
show that for yi, yj ∈ Y , either NX(yi) ⊆ NX(yj ) or NX(yj ) ⊆ NX(yi). Indeed,
suppose that yi ∼ xi and yj ∼ xj for some xi ∈ X\N(yj ) and xj ∈ X\N(yi).
Then NY (xi) 
⊆ NY (xj ) and NY (xj ) 
⊆ NY (xi), a contradiction.

Lemma 9 If an (S2,2,5,banner2,domino)-free minimal augmenting graph H con-
tains no black vertex of degree more than k (k ≥ 2), then the degree of each white
vertex is at most k2 + k + 2.

Proof Suppose that H contains a white vertex w of degree more than k2 + k + 2.
Denote by Vj the set of vertices of H at distance j from w. Hence, |V1| ≥ k2+k+3.

Claim 5 |V2| ≥ k2 + k + 1, V2 contains at least k2 + 1 vertices having only one
neighbor in V1, i.e. having a neighbor in V3, and |V3| ≥ k + 1.

Proof Suppose that V3 = ∅. Then by Lemma 1, |V2| = |V1| − 2 ≥ k2 + k + 1.
Let p be the p in 2. of Lemma 8. Note that p ≤ k, otherwise there exists a black
vertex in V1 having at least k neighbors in H , a contradiction. Hence, by Lemma 8,
there exists a white vertex in V2 having only one neighbor in V1, i.e. only one black
neighbor. This contradiction (with Corollary 2) implies that V3 
= ∅.

Then |V2| ≥ k2 + k + 1, otherwise H [{b} ∪ V1 ∪ V2] is an augmenting graph,
a contradiction. Again, by Lemma 8 and condition that there is no black vertex of
degree larger than k, V2 contains at least k2 + 1 vertices having only one neighbor
in V1, i.e. having a neighbor in V3 by Corollary 2. Since every black vertices of V3
has at most k neighbors in V2, |V3| ≥ k + 1. ��
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Claim 6 V4 = ∅, i.e. |V3| + |V1| = |V2| + 2.

Proof Suppose that V4 contains a (white) vertex x and let y be its neighbor in V3.
Assume that y ∼ w1 ∈ V2 and w1 ∼ b1 ∈ V1.

If w1 ∼ b2 for some b2 ∈ V1\{b1}, then {b1, w, b2, w1, y, x} induces a banner2,
a contradiction. Hence, NV1(w1) = {b1}.

By Corollary 2, x has at least one more black neighbor, named z (z ∈ V3 or z ∈
V5). Now, let b1 be the b in Corollary 1. We have |μ(V1\{b1, μ(w)})| ≥ k2 + k + 1.
Since d(y), d(z) ≤ k, V1 contains at least two vertices, named b2, b3 whose the
neighbors, say w2 = μ(b2), w3 = μ(b3) ∈ V2, respectively, adjacent to neither y

nor z.
If w2 ∼ b1, then {w,w1, w2, b1, b2, y} induces a domino or a banner2, depend-

ing on y ∼ w2 or not, a contradiction. If w2 ∼ b4 for some b4 ∈ V1\{b1, b2}, then
{b2, w2, b4, w, b1, w1} induces a banner2, a contradiction. Hence, w1, w2, and w3,
each has only one neighbor in V1. Moreover, z � w1, otherwise, {y, x, z,w1, b1, w}
induces a banner2, a contradiction. Now, {w3, b3, w,w2, b2, b1, w1, y, z, x} induces
an S2,2,5, a contradiction. Therefore, V4 is empty and |V3| + |V1| = |V2| + 2 by
Lemma 1. ��
Let b ∈ V3 be the vertex b in Corollary 1. Since μ(w) has at most k − 1 neighbors
in μ(V3\{b}), there exists a vertex d1 ∈ V3 such that μ(d1) � μ(w).

Claim 7 μ(d1) has a neighbor a1 in V1 such that μ(a1) has no neighbor in V1 other
than a1.

Proof Let a1 be a neighbor of μ(d1) in V1, i.e. μ(a1) 
= w. If μ(a1) has no neighbor
in V1 other than a1, then we have the statement of the claim. Now, let a2 be a
neighbor of μ(a1) in V1. Then μ(d1) ∼ a2, otherwise {w, a2, μ(a1), a1, μ(d1), d1}
induces a domino or a banner2 depending on d1 ∼ μ(a1) or not, a contradiction.
It implies that μ(a2) 
= w. We continue considering μ(a2). Since V1 is finite, this
process must stop, i.e. we have the claim. ��
Note that d1 � μ(a1), otherwise {μ(a1), d1, μ(d1), a1, w,μ(w)} induces a domino
or a banner2 depending on μ(w) ∼ μ(a1) or not, a contradiction. Since μ(a1) has
no neighbor in V1 other than a1, by Corollary 2, μ(a1) has a neighbor d2 ∈ V3.

Since |NV2({d1, d2})| ≤ 2k, there is a vertex a ∈ V1\{μ(w)} such that μ(a) is not
adjacent to d1, d2. Then μ(a) � a1, otherwise {w, a,μ(a), a1, μ(a1), d2} induces a
banner2, a contradiction. If μ(a) ∼ a2 for some a2 ∈ V1, then {a, μ(a), a2, w, a1,

μ(a1)} induces a banner2, a contradiction. Hence, μ(a) has only one neighbor in V1
and has a neighbor, named d3 ∈ V3, by Corollary 2.

Then μ(d1) � a, otherwise {w, a1, a, μ(d1), d3, μ(a)} induces a domino or a
banner2 depending on d3 ∼ μ(d1) or not, a contradiction. Moreover μ(d3) � a,
otherwise {w, a1, a, μ(a), d3, μ(d3)} induces a domino or a banner2 depending on
a1 ∼ μ(d3) or not, a contradiction.

We show that d1 � μ(d3). Indeed, if d1 ∼ μ(d3), then μ(d1) � d3, otherwise
{μ(d3), d1, μ(d1), d3, μ(a), a} induces a banner2, a contradiction. If μ(d1) ∼ a2
for some a2 ∈ V1\{a1}, then {w, a1, μ(d1), a2, d1, μ(d3)} induces a domino or a



Combinatorial and Graph-Theoretical Problems and Augmenting Technique 189

banner2 depending μ(d3) ∼ a2 or not, a contradiction. If μ(d3) has two neighbors
a2, a3 ∈ V1\{a1}, then {a2, w, a3, μ(d3), d1, μ(d1)} induces a banner2, a contradic-
tion. Hence, μ(d1) has only one neighbor in V1 and μ(d3) has at most one neighbor
in V1 different from a1. Thus, because |NV2(d1, d2)| ≤ 2k, there exist two vertices
b1, b2 ∈ V1\{μ(w)} such that μ(b1), μ(b2) each has only one neighbor in V1 and
is not adjacent to d1, d3. Now, {μ(b1), b1, w, b2, μ(b2), a1, μ(d1), d1, μ(d3), d3}
induces an S2,2,5, a contradiction.

Similarly, d3 is not adjacent to μ(d1), μ(a1), and μ(d3) � d2. Moreover μ(d1) �

d2, otherwise {w1, d2, μ(d1), a1, w,μ(w)} induces a banner2, a contradiction.
Similarly, μ(a1) � d1.

Now, {d2, μ(a1), a1, μ(d1), d1, w, a, μ(a), d3, μ(d3)} induces an S2,2,5, a con-
tradiction. ��
Proof (of Lemma 3) We proof by contradiction. Let b ∈ B such that |NW(b)| is
largest. If every black vertex is of degree one, then H is an augmenting P3. If
NW(b) = W , then we have 4. By Lemma 9, if every black vertex of H is of degree
bounded by a given number k, then every white vertex of H is of degree bounded
by k2 + k + 2, i.e. H is K1,m-free for m = k2 + k + 3. In this case, by Lemma 2,
we have 1. or 2.

Now, we assume that 10 ≤ |NW(b)| ≤ |W | − 1. Let b be the vertex b of
Corollary 1. Let A = N(b) = {w1, w2, . . . , wk} (k ≥ 10), C = W\A, i.e. C 
= ∅.
Let bi = μ(wi). Let C1 denote the set of vertices in C having at least one neighbor
in μ(A) and C0 = C\C1. By the connectivity of H , one can choose μ(A) in order
that C1 
= ∅. We have the following observations.

Claim 8 H [A ∪ μ(A)] is an induced sub-matching of M .

Proof We show that bi � wj for every pair i, j such that i 
= j , 1 ≤ i, j ≤ k. Let
z ∈ C1 and without loss of generality, assume that z ∼ b1 ∈ μ(A).

By the choice of b, b1 is not adjacent to all wi’s, without loss of generality,
assume that b1 � w2.

Now, b2 � w1, otherwise {b, b1, b2, w1, w2, z} induces a domino or a banner2
depending on b2 ∼ z or not, a contradiction.

Moreover, b2 � wi for every i > 2, otherwise {b, b1, b2, w1, w2, wi} induces a
domino or a banner2 depending on b1 ∼ wi or not, a contradiction.

Now, b1 � wi , for every i > 2, otherwise {w1, b1, wi, b,w2, b2} induces a
banner2, a contradiction.

Hence, bi � w1 for i > 2, otherwise {b,wi, bi, w1, b1, z} induces a domino or a
banner2, depending on z ∼ bi or not, a contradiction.

Thus, bi � w2 for i > 2, otherwise {w2, bi, wi, b,w1, b1} induces a banner2, a
contradiction.

Moreover bi � wj , for any j 
= i and i, j > 2, otherwise {wj , bi, wi, b,w1, b1}
induces a banner2, a contradiction.

Claim 9 There exists no vertex pair z1, z2 ∈ C1 sharing two neighbors in μ(A).
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Proof Suppose that there exists a vertex pair z1, z2 ∈ C1 sharing two neigh-
bors in μ(A), without loss of generality, assume that they are b1, b2. Then
{z1, b2, z2, b1, w1, b} induces a banner2, a contradiction. ��
Claim 10 Given z ∈ C1, z ∼ bj for some bj ∈ μ(A), a black neighbor c of z

different from bj , a black neighbor μ(t) of z for some t ∈ C, and another white
neighbor y ∈ C of μ(t) different from z, the following statements are true:

1. c � wj ;
2. y � bj and μ(y) � z; and
3. if μ(t) ∼ wi for some i 
= j , then y, z are not adjacent to bi and μ(y) � wi ;
4. in particular, μ(y) and μ(t) cannot share a same neighbor in A.

Proof Suppose that c ∼ wj . Then c ∼ wi for every i 
= j , otherwise
{bj , z, c, wj , b, wi} induces a banner2, a contradiction. But now, we have a
contradiction to the choice of b.

Now, y � bj , otherwise {z, μ(t), y, bj , wj , b} induces a banner2, a contradic-
tion. Moreover, μ(y) � z, otherwise {wj , bj , z, μ(t), y, μ(y)} induces a domino or
a banner2 depending on μ(y) ∼ wj or not, a contradiction.

Assume that μ(t) ∼ wi for some i 
= j . Then z � bi , otherwise
{μ(t), wi, bi, z, bj , wj } induces a banner2, a contradiction. Hence, y � bi ,
otherwise {bi, y, μ(t), wi, b, wj } induces a banner2, a contradiction. Now,
μ(y) � wi , otherwise {wi, μ(y), y, μ(t), z, bj } induces a banner2, a contradiction.

��
Claim 11 Every black vertex different from b has at most one neighbor in A.

Proof Clearly, every black vertex of μ(A) has only one neighbor in A by Claim 8.
Now, suppose that there exists some black vertex y ∈ B\({b} ∪ μ(A)) having
two neighbors, without loss of generality, assume that they are w1, w2 ∈ A. Then
y is adjacent to every vertex wi ∈ A\{w1, w2}, otherwise {w1, y,w2, b,wi, bi}
induces a banner2, contradiction. Now, y is adjacent to every vertex of A and μ(y),
a contradiction to the choice of b. ��
Claim 12 There exists no vertex bj ∈ μ(A) having two neighbors z1, z2 ∈ C1
sharing another black neighbor, named c 
= bj .

Proof Indeed, otherwise, by Claim 10, c � wj , then {z1, c, z2, bj , wj , b} induces a
banner2, a contradiction. ��
Claim 13 Given a vertex bj ∈ μ(A), let C(bj ) be the set of vertices of C1 adjacent
to bj . Then H [C(bj ) ∪ μ(C(bj ))] is an induced sub-matching of M .

Proof For contradiction, without loss of generality, suppose that z1, z2 ∈ C are
two neighbors of bj and z1 ∼ μ(z2). By Claim 10, μ(z2) � wj . Hence,
{z1, μ(z2), z2, bj , wj , b} induces a banner2, a contradiction. ��
Claim 14 If H contains a vertex y ∈ C1 adjacent to at least k − 3 vertices of μ(A),
then either H is of the form tree5 or tree6 or H contains a redundant set U of size at
most 32, such that H − U is of the form either tree1, tree4, tree5, or tree6.
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Proof Let D1 be the subset of vertices of C1 sharing some neighbor in μ(A) with y,
A1 be the vertex subset of A such that μ(A1) = Nμ(A)(y), A2 = A\A1, E1 be the
vertices subset of C1 adjacent to some vertex in μ(A2). Without loss of generality,
assume that w1, w2, . . . , wk−3 ∈ A1. We have the following observations.

(1) y has no neighbor in μ(D1) and μ(y) has no neighbor in A1 ∪ D1. Indeed,
by Claim 10, μ(y) has no neighbor in A1. If for some z ∈ D1, without
loss of generality, assume that z ∼ b1, y ∼ μ(z), then y � b1, by
Claim 10, a contradiction. Moreover, since μ(y) � w1, μ(y) � z, otherwise
{z, μ(y), y, b1, w1, b} induces a banner2, a contradiction.

(2) By Claim 9, every vertex of D1 has exactly one neighbor in μ(A1). In particular,
every vertex of C1\{y} has at most four neighbors in μ(A). Moreover, there
exists only one vertex y ∈ C1 adjacent to at least k − 3 vertices in μ(A).

(3) Any two vertices of D1 have different neighbors in μ(A1). Indeed, without
loss of generality, suppose that z1, z2 ∈ D1 both are adjacent to b1. By
Claim 11, and since |A1| = k − 3 ≥ 7, there exist wi,wj ∈ A1
different from w1 and not adjacent to μ(z1), μ(z2). By (2) and Claim 13,
{μ(z1), z1, b1, z2, μ(z2), y, bi, wi, b,wj } induces an S2,2,5, a contradiction.

(4) Similar to Claim 13, let C(y) be the subset of vertices of C0 adjacent to μ(y).
Then H [C(y) ∪ μ(C(y))] is an induced sub-matching of M .

(5) Similarly to (3) (using (4)), there is at most one vertex of C0 adjacent to μ(y).
(6) H [(C1\{y}) ∪ μ(C1\{y})] is an induced sub-matching of M . Indeed, suppose

that for a couple of vertices z1, z2 ∈ C1\{y}, z1 ∼ μ(z2). Without loss of gen-
erality, assume that z1, z2 are adjacent to bi1 , bi2 ∈ μ(A), respectively. Then by
Claim 10, μ(z2) � wi2 . Hence, z1 � bi2 , otherwise {z2, μ(z2), z1, bi2 , wi2 , b}
induces a banner2, a contradiction. By (2) and Claim 11, there exists a pair
of vertices bi, bj ∈ μ(A) not adjacent to z1, z2 such that wi and wj are
not adjacent to μ(z1), μ(z2). Now, {bi, wi, b,wj , bj , wi2 , bi2 , z2, μ(z2), z1}
induces an S2,2,5, a contradiction.

(7) There exists no vertex t ∈ C\{y} having a neighbor in μ(C1\{y, μ(t)}). Indeed,
if t ∈ C is adjacent to μ(z) for some z ∈ C1\{y, t}, then for the vertex bj

adjacent to z, t � bj by Claim 10. By (2) and Claim 13, there exists a pair
of vertices wi,wl non-adjacent to μ(z) such that bi, bl non-adjacent z, t . Now,
{bi, wi, b,wl, bl, wj , bj , z, μ(z), t} induces an S2,2,5, a contradiction.

(8) Similarly, there exists no vertex t ∈ C1\{y} having a neighbor in μ(C\{y,

μ(t)}).
(9) If C0 = {z}, then z ∼ μ(y). If |C0| ≥ 2, then there exists a vertex x ∈ C0

such that x ∼ μ(z). For every such vertex x, the following statements are true:
y ∼ μ(x), μ(x) � z, and μ(x) � wi for wi ∈ A1. Moreover, if |C0| ≥ 2, then
A2 = ∅, i.e. y is adjacent to every vertex of μ(A).

Indeed, if C0 
= ∅, then by (7) and the minimality of H , there exists a
vertex z ∈ C0 such that z ∼ μ(y), otherwise |C0| = |NH (C0)|(= |μ(C0)|),
a contradiction. Moreover, no other vertex of C0 is adjacent to μ(y) by (5).
Hence, if |C0| ≥ 2, then, again by (7) and the minimality of H , there exists a
vertex x ∈ C0 such that x ∼ μ(z).
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Let x ∈ C0 such that x ∼ μ(z). Since μ(z) � y by Claim 10, x � μ(y),
otherwise {z, μ(z), x, μ(y), y, b1} induces a banner2, a contradiction. Thus,
μ(x) � z, otherwise {y, μ(y), z, μ(z), x, μ(x)} induces a domino or a banner2,
depending on μ(x) ∼ y or not, a contradiction. Now, if y � μ(x), then by
Claim 11, there exists a pair of vertices bi, bj ∈ μ(A1) such that wi and wj

are not adjacent to μ(x), μ(z) and {wi, bi, y, bj , wj , μ(y), z, μ(z), x, μ(x)}
induces an S2,2,5, a contradiction. Then μ(x) � wi for any wi ∈ A1, otherwise
{y, bi, wi, μ(x), x, μ(t)} induces a banner2, a contradiction.

Assume that |C0| ≥ 2, we show that A2 = ∅. Indeed, without loss of
generality, assume that y � bk . Let x ∈ C0 be a vertex such that x ∼ μ(z).
Then μ(y) or μ(z) is not adjacent to wk , otherwise since z � wk by Claim 10,
{z, μ(z),wk, μ(y), y, b1} induces a banner2, a contradiction. Similarly, μ(x)

or μ(z) is not adjacent to wk . Now, μ(y) � wk , otherwise since there exists
a pair of vertices wi,wj ∈ A1 not adjacent to μ(y), μ(z) by Claim 11,
{bi, wi, b,wj , bj , wk, μ(y), z, μ(z), x} induces an S2,2,5, a contradiction. By
similar reasons, μ(x) � wk . Now, by Claim 11, there exists a vertex wi ∈ A1
not adjacent to μ(x) and {z, μ(y), y, μ(x), x, bi , wi, b,wk, bk} induces an
S2,2,5, a contradiction.

(10) If |D1| ≥ 2, then no vertex of μ(D1) has a neighbor in A. Indeed, by (3),
without loss of generality, let z1, z2 ∈ D1 be adjacent to b1, b2, respec-
tively. To the contrary, suppose that μ(z1) has a neighbor wi ∈ A. By
Claim 10, wi 
= w1. If wi = w2, then by (1), (6), and Claims 10, 11,
{z2, b2, w2, b,wj , μ(z1), z1, b1, y, μ(y)} induces an S2,2,5 for some vertex
wj 
= w1, w2 such that wj � μ(z1), a contradiction. If wi 
= w1, w2, then
by (1) and (6), {w2, b,wi, μ(z2), z2, μ(z1), z1, b1, y, μ(y)} induces an S2,2,5
in the case that μ(z2) ∼ wi , or {μ(z2), z2, b2, y, μ(y),w2, b,wi, μ(z1), z1}
induces an S2,2,5 in the case that μ(z2) � wi , a contradiction.

(11) If there exist two vertices z1, z2 ∈ C1 sharing a neighbor in μ(A2), then either
H is of the form tree5 or there is a redundant set U containing at most four
vertices such that H − U is of the form tree2 or tree5.

First, since A2 
= ∅, |C0| ≤ 1 by (9). Without loss of generality, assume that
z1, z2 share a neighbor bk ∈ μ(A2).

If z2 has another neighbor, say bl ∈ μ(A), then since by (2), there
exists a pair of vertices bi, bj ∈ μ(A1) not adjacent to z1, z2, one has that
{bi, wi, b,wj , bj , wl, bl, z2, bk, z1} induces an S2,2,5, a contradiction. Thus, bk

is the only one neighbor in μ(A) for any vertex z ∈ C1 adjacent to bk .
Note that, for any such z, μ(z) � wk by Claim 10. Moreover, μ(z) � wj ∈ A

for wj 
= wk , otherwise {bi, wi, b, bl, wl, wj , μ(z), z, bk, z
′} induces an S2,2,5 for

z′ be another neighbor of bk in C1 different from z; by Claim 11 and (2), bi, bl not
adjacent to z, z′; and wi,wl not adjacent to μ(z), a contradiction.

Now, y is adjacent to at least one vertex among μ(z1), μ(z2), otherwise by
(6), {μ(z1), z1, bk, z2, μ(z2), wk, b,w1, b1, y} induces an S2,2,5, a contradiction.
Without loss of generality, assume that y ∼ μ(z1). Then y ∼ μ(z2), otherwise by
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(6), {w1, b1, y, b2, w2, μ(z1), z1, bk, z2, μ(z2)} induces an S2,2,5, a contradiction.
Hence, y is adjacent to every vertex z ∈ C1 adjacent to bk .

That also implies that y has no other non-neighbor than bk in μ(A). Indeed, with-
out loss of generality, suppose that y � bk−1. Then {z1, μ(z1), y, μ(z2), z2, b1, w1, b,

wk−1, bk−1} induces an S2,2,5, a contradiction.
Moreover, μ(y) � z for every vertex z ∈ C1 adjacent to bk , otherwise {μ(y), z,

μ(z), y, b1, w1} induces a banner2, a contradiction.
Besides, D1 = ∅. Indeed, without loss of generality, suppose that there

exists some vertex t ∈ D1 such that t ∼ b1. Then t � bk , otherwise
an S2,2,5 arises. Moreover, t � μ(z) for any z ∈ C1 adjacent to bk , oth-
erwise {t, μ(z), y, b1, w1, b} induces a banner2, a contradiction. Now, by (6),
{μ(z1), z1, bk, z2, μ(z2), wk, b,w1, b1, t} induces an S2,2,5, a contradiction.

We consider the two following cases.

Case 1. C0 = ∅. Then

U := {y, μ(y)}

is a redundant set of size two such that H − U is of the form tree2 in the case that
μ(y) � wk , or H is of the form tree5 in the case that μ(y) ∼ wk .

Case 2. C0 = {x} and x ∼ μ(y) by (9). Then μ(x) � wk , otherwise
{x, μ(x),wk, μ(y), y, b1} induces a banner2 or {w1, b1, y, b2, w2, μ(y), x, μ(x),

wk, bk} induces an S2,2,5 depending on μ(y) ∼ wk or not, a contradiction.
Thus, μ(x) � z for any z ∈ C1 adjacent to bk , otherwise, by Claim 11,
there exists a pair of vertices wi,wj 
= wk not adjacent to μ(x) and hence,
{bi, wi, b,wj , bj , wk, bk, z, μ(x), x} induces an S2,2,5, a contradiction. More-
over, μ(x) � wi for any wi ∈ A1, otherwise {z1, μ(z1), y, μ(z2), z2, μ(y), x,

μ(x),wi, b} induces an S2,2,5, a contradiction. Now,

U := {y, μ(y), x, μ(x)}

is a redundant set of size at most four such that H − U is of the form tree2, in the
case that μ(y) � wk , or

U := {x, μ(x)}

is a redundant set of size at most two such that H − U is of the form tree5, in the
case that μ(y) ∼ wk .

From now on, we assume the following statement.

(11’) Two different vertices in C1\{y} share no common neighbor in μ(A). This
also implies that |E1| ≤ 3.

(12) If D1 = ∅, then there exists a redundant set U of size at most 24 such that
H − U is of the form tree1. Indeed, if in addition, C0 = ∅, then by Claim 11,

U := {y, μ(y)} ∪ A2 ∪ μ(A2) ∪ E1 ∪ μ(E1) ∪ NA(μ(E1)) ∪ μ(NA(μ(E1)))
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is a redundant set of size at most 20 such that H − U is of the form tree1.
Now, we consider the two following cases.

Case 1. C0 = {z}. Then by (9) and Claim 11,

U := {y, μ(y), z, μ(z)} ∪ A2 ∪ μ(A2) ∪ E1 ∪ μ(E1) ∪
∪NA(μ(E1) ∪ {μ(z)}) ∪ μ(NA(μ(E1) ∪ {μ(z)}))

is a redundant set of size at most 24 such that H − U is of the form tree1.
Case 2. |C0| ≥ 2. Then y is adjacent to every vertex of μ(A) by (2). Let z

be the (only) vertex of C0 adjacent to μ(y). Denote by C′
0 the set of vertices of

C0\{z} adjacent to μ(z) and let C′′
0 := C0\(C′

0 ∪ {z}). Then C′
0 
= ∅, otherwise

|C0\{z}| = |NH (C0\{z})|, a contradiction to the minimality of H . Moreover, for
every x ∈ C′

0, μ(x) ∼ y, μ(x) is not adjacent to any vertex of A1, and x � μ(y) by
(9).

2.1. C′′
0 = ∅. Then H is of the form tree5 or tree6 depending on μ(z) has a

neighbor in A or not.
2.2. C′′

0 
= ∅. Then it must contain a vertex t ∼ μ(x) for some x ∈ C′
0, otherwise

|N(C′′
0 )| = |C′′

0 |, a contradiction to the minimality of H . Now, μ(t) � x, otherwise
{z, μ(z), x, μ(x), t, μ(t)} induces a domino or a banner2 depending on μ(t) ∼ z or
not, a contradiction. Thus, μ(t) � y, otherwise {y, μ(t), t, μ(x), x, μ(z)} induces a
banner2, a contradiction. Now, by Claim 11, there exists a pair of vertices wi,wj is
not adjacent to μ(x), μ(t), μ(z) and hence, {μ(t), t, μ(x), x, μ(z), y, bi , wi, b,wj }
induces an S2,2,5, a contradiction.

From now on, we assume the following statement.

(12’) D1 
= ∅.
(13) If |C0| ≥ 2, then H contains a redundant set U of size at two such that H −U

is of the form tree5.

By (9), y is adjacent to every vertex of μ(A). Let z be the (only) vertex of C0
adjacent to μ(y) and x ∈ C0 be adjacent to μ(z). Also by (9), for every such vertex
x, μ(x) ∼ y, μ(x) � z. Moreover, by Claim 10, z has no neighbor in μ(A).

Since D1 
= ∅, without loss of generality, assume that there exists a vertex z1 ∈
D1 adjacent to b1. Now, μ(z) ∼ w1, otherwise {μ(z1), z1, b1, w1, b, y, μ(y), z, μ(z),

x} induces an S2,2,5, a contradiction. Moreover, by (3) and Claim 11, D1 = {z1}.
We consider the two following cases.

Case 1. z has a neighbor μ(t) ∈ μ(C0) for some t ∈ C0 dif-
ferent from z. Then by (7), (8), and Claim 10, μ(t) ∼ w1, otherwise
{μ(z1), z1, b1, w1, b, y, μ(y), z, μ(t), t} induces an S2,2,5, a contradiction. But
now, {μ(z),w1, μ(t), z, μ(y), y} induces a banner2, a contradiction.

Case 2. z has no neighbor in μ(C0) other than μ(z). Let x be a vertex in C0
adjacent to μ(z) and C′

0 be the set of vertices of C0 different from z and not
adjacent to μ(z). If C′

0 
= ∅, then by (7) and (8), there exists a vertex t ∈ C′
0

adjacent to μ(x), otherwise |C′
0| = |NH (C′

0)|, a contradiction to the minimality
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of H . Now, t � μ(z), otherwise {μ(y), z, μ(z), x, μ(x), t} induces a domino or a
banner2 depending on t ∼ μ(y) or not, a contradiction. Now, by Claim 11, there
exists a pair of vertices wi,wj different from w1 not adjacent to μ(x) and hence,
{bi, wi, b,wj , bj , w1, μ(z), x, μ(x), t} induces an S2,2,5, a contradiction.

From above considerations, every vertex x ∈ C0 different from z is adjacent to
μ(z) and μ(x) is adjacent to y. Now,

U := {z1, μ(z1)}

is a redundant set of size two, such that H − U is of the form tree5.
From now on, we assume the following statement.

(13’) |C0| ≤ 1.
(14) If |D1| ≥ 2, then by (10) and (13’),

U := {y, μ(y)} ∪ C0 ∪ μ(C0) ∪ E1 ∪ μ(E1) ∪
∪NA(μ(E1) ∪ μ(C0)) ∪ μ(NA(μ(E1) ∪ μ(C0))) ∪
∪ND1(μ(NA(μ(E1) ∪ μ(C0)))) ∪
∪μ(ND1(μ(NA(μ(E1) ∪ μ(C0)))))

is a redundant set of size at most 26 such that H − U is of the form tree4.
(15) If |D1| = 1, then

U := {y, μ(y)} ∪ C0 ∪ μ(C0) ∪ D1 ∪ μ(D1) ∪ E1 ∪ μ(E1) ∪
∪NA(μ(D1) ∪ μ(E1) ∪ μ(C0)) ∪ μ(NA(μ(D1) ∪ μ(E1) ∪ μ(C0))) ∪
∪ND1(μ(NA(μ(D1) ∪ μ(E1) ∪ μ(C0))))

∪μ(ND1(μ(NA(μ(D1) ∪ μ(E1) ∪ μ(C0)))))

is a redundant set of size at most 32 such that H − U is of the form tree1.

All the above observations ((1)–(15)) finish the proof of the claim. ��
From now on, assume that every vertex of C1 has at least four non-neighbors in
μ(A).

Claim 15 C0 = ∅, i.e. C = C1.

Proof Suppose that C0 
= ∅. Then there exists some vertex z ∈ C1, without loss of
generality, assume that z ∼ b1, and y ∈ C0 such that y ∼ μ(z), otherwise |C0| =
|NH (C0)|, a contradiction to the minimality of H . Thus, {bi, wi, b,wj , bj , w1, b1,

z, μ(z), y} induces an S2,2,5, for bi, bj not adjacent to z and wi,wj not adjacent to
μ(z), a contradiction. ��
Claim 16 If |C| ≤ 4, then H contains a redundant set U of size at most 16 such
that H − U is of the form tree1.
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Proof Assume that |C| ≤ 4, i.e. |μ(C)| ≤ 4. Note that every (black) vertex of μ(C)

has at most one neighbor in A by Claim 11, i.e. |NA(μ(C))| ≤ 4. Then

U := C ∪ μ(C) ∪ NA(μ(C)) ∪ μ(NA(μ(C)))

is a redundant set of size at most 16 such that H − U is of the form tree1. ��
Claim 17 Assume that |C| ≥ 5. Then the following statements are true.

Case 1. If there exist vertices z1, z2 ∈ C sharing some neighbor in μ(A), then H

is of the form tree2.
Case 2. If for any two vertices y, z ∈ C, y, z share no neighbor in μ(A), then H

is of the form tree3 or tree7 or H contains a redundant set U of size at most six such
that H − U is of the form tree3.

Proof We consider the two above cases.
Case 1. Without loss of generality, assume that z1, z2 ∈ C share a neighbor

b1 ∈ μ(A). Let us consider the following occurrences which are exhaustive by
symmetry.

1.1. z2 has another neighbor, say b2 ∈ μ(A). Note that then b2 � b1 since
otherwise a banner2 arises. Assume that there exist two vertices, without loss of gen-
erality, assume that they are b3, b4, not adjacent to z1, z2. Then {b3, w3, b, b4, w4,

w2, b2, z2, b1, z1} induces an S2,2,5, a contradiction. Hence, |Nμ(A)({z1, z2})| ≥
k − 1. Since both z1 and z2 have at most k − 4 neighbors in μ(A), each of them has
at least four neighbors in μ(A).

Let z3 ∈ C be adjacent to some vertex bi ∈ Nμ(A)({z1, z2}). Then z3 has at
least four neighbors in μ(A). Hence, z3 shares two neighbors in μ(A) with z1 or
z2, a contradiction to Claim 9. So, there exists no other vertex in C (than z1, z2)
having a neighbor in Nμ(A)({z1, z2}). Together with |C| ≥ 5, this implies that
|Nμ(A)({z1, z2})| ≤ k − 1, i.e. |Nμ(A)({z1, z2})| = k − 1.

Without loss of generality, assume that z1, z2 are not adjacent to bk . Since
|C| ≥ 5, there exist z3, z4 ∈ C such that z3, z4 are adjacent to bk . Moreover,
z3, z4 have no other neighbor in μ(A). By Claim 11, there exists a vertex bi

such that bi ∼ z1 and wi is not adjacent to μ(z3), μ(z4). Hence, by Claim 13,
{μ(z3), z3, bk, z4, μ(z4), wk, b, bi, wi, z1} induces an S2,2,5, a contradiction.

1.2. Every vertex of C adjacent to b1 has only one neighbor (b1) in μ(A). Note
that, for every such vertex z, μ(z) � w1 by Claim 10. Moreover, μ(z) � wi ∈ A for
wi 
= w1, otherwise since by Claim 11, there exists a pair of vertices wj ,wl 
= w1
and non-adjacent to μ(z) and one has that {bj ,wj , b,wl, bl, wi, μ(z), z, b1, z

′}
induces an S2,2,5 for z′ be another neighbor of b1 in C different from z, a
contradiction.

Now, let C11 be the set of vertices of C1 adjacent to b1 and C12 := C1\C11.
If C12 = ∅, then H is of the form tree2. Then assume that C12 
= ∅ and
let y ∈ C12 and, without loss of generality, assume that y ∼ b2 ∈ μ(A).
If y is not adjacent to two vertices, say μ(z1), μ(z2) ∈ μ(C11), then
{μ(z1), z1, b1, z2, μ(z2), w1, b,w2, b2, y} induces an S2,2,5, a contradiction.
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If y is adjacent to two vertices μ(z1), μ(z2) ∈ μ(C11), then y is adjacent to every
vertex bi ∈ μ(A) different from b1, otherwise {z1, μ(z1), y, μ(z2), z2, b2, w2, b,wi,

bi} induces an S2,2,5, a contradiction.
Now, y has at least k − 1 neighbors in μ(A), a contradiction. Hence, C11 =

{z1, z2} and every vertex y ∈ C12 is adjacent to exactly one vertex of μ(C11).
If μ(z1) is adjacent to two vertices y1, y2 ∈ C12, then {y1, μ(z1), y2, bi, wi, b}

induces a banner2 in the case that y1, y2 share the same neighbor bi ∈ μ(A) by
Claim 10 or {bi1 , y1, μ(z1), y2, bi2 , z1, b1, w1, b,wi} induces an S2,2,5 for bi1 , bi2

be (different) neighbors of y1, y2 in μ(A), respectively, and wi ∈ A different from
w1, wi1 , wi2 , a contradiction. Hence, each μ(z1), μ(z2) has at most one neighbor in
C12. It implies that |C12| ≤ 2 and thus, |C| ≤ 4, a contradiction.

Case 2. If for every vertex μ(z) ∈ μ(C1), z is the only neighbor of μ(z), then H

is of the form tree3.
Then assume that there is a vertex μ(z) ∈ μ(C1) such that z is not the only

neighbor of μ(z). First we show that for every pair z1, z2 ∈ C, μ(z1) � z2. Indeed,
for contradiction, suppose that μ(z1) ∼ z2. Without loss of generality, assume that
z1, z2 are adjacent to b1, b2, respectively. Then μ(z2) � z1, otherwise by Claim 10,
{μ(z2), z1, μ(z1), z2, b2, w2} induces a banner2, a contradiction.

Moreover, Nμ(A)({z1, z2}) ≥ k − 2, otherwise by Claim 11, there exists a pair
of vertices wi,wj not adjacent to μ(z) such that bi, bj not adjacent to z1, z2, and
hence, {bi, wi, b,wj , bj , w2, b2, z2, μ(z1), z1} induces an S2,2,5, a contradiction.

Hence, the non-neighbors of z1, z2 in μ(A) have at most two neighbors in C, i.e.
|C| ≤ 4, a contradiction.

Then there exists some vertex z ∈ C, such that μ(z) is adjacent to some vertex
of A. Without loss of generality, assume that z ∼ b1 and μ(z) ∼ w2. Then b2 � z,
by Claim 10. We consider the two following subcases.

2.1. b2 ∼ y for some y ∈ C. Then for every x ∈ C\{y, z}, μ(x) ∼ w2, otherwise
{z, μ(z),w2, b2, y, b,wi, bi, x, μ(x)} induces an S2,2,5 for bi ∼ x, a contradiction.
By Claim 11, that also implies that μ(y) is not adjacent to any vertex wi ∈ A

such that bi ∼ x for some x ∈ C1 different from y, otherwise |C| = 2 < 5, a
contradiction. Now,

U := {w2, b2, y, μ(y)} ∪ NA(μ(y)) ∪ μ(NA(μ(y)))

is a redundant set containing at most six vertices such that H − U is of the form
tree3.

2.2. NC(b2) = ∅. Assume that there exists some vertex y ∈ C, without loss of
generality, assume that y ∼ b3 and μ(y) ∼ w2. Then for every x ∈ C different
from y, z, μ(x) ∼ w2, otherwise {z, μ(z),w2, μ(y), y, b,wi, bi, x, μ(x)} induces
an S2,2,5 for bi ∼ x, a contradiction. Now,

U := {w2, b2}

is a redundant set of size two such that H − U is of the form tree3.
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Now, if there exists no vertex pair y, z ∈ C, such that μ(y), μ(z) share the same
neighbor in A, then H is of the form tree7. ��
All above claims finish the proof.

Appendix 3: Proof of Lemma 6

Proof (of Lemma 6) To simplify the proof, we start with a pre-processing consisting
in detecting augmenting (l, m)-extended-chains whose path-part is of length at most

2l since such an augmenting (l, m)-extended-chain contains at most 1−(m−1)l

2−m
+2l+1

vertices and can be enumerated in polynomial time.
In order to determine whether S admits an augmenting (l, m)-extended-chain

whose path-part is of length at least 2l + 2, we first find a candidate, i.e. a pair
(L,R), where L and R are disjoint trees consisting induced paths x0, x1, . . . , xl and
x2p−l , x2p−l+1, . . . , x2p, respectively (p ≥ l +1) and every vertex outside that path
of L (R, respectively) is of distance at most l−1 from x0 (x2p, respectively) and not
adjacent to any vertices among {x1, x2, . . . , xl, x2p−l , x2p−l+1, . . . , x2p}. If such a
candidate does not exist, then there is no augmenting (l, m)-extended-chain whose
path-part is of length at least 2l + 2 for S. Moreover, since such candidates contain
only finite vertices, we can enumerate them in polynomial time.

Our purpose is to find an alternating chain connecting xl and x2p−l . Evidently, if
there are no such chains, then there is no augmenting (l, m)-extended-chain whose
path-part is of length at least 2l + 2 for S containing L and R.

Having found a candidate (L,R), we have the following observations about
vertices of G in the sense that the vertices not satisfying these assumptions can
be simply removed from the graph, since they cannot occur in any valid alternating
chain connecting xl and x2p−l . Let P := (x0, x1, . . . , x2p) be the path part of a
desired (l, m)-extended-chain.

Claim 18

1. Each white vertex has at least two black neighbors.
2. Each black vertex lying outside L and R has exactly two white neighbors.
3. No black vertex outside L and R has a neighbor in L or R.
4. No white vertex outside L and R has a neighbor in L or R, except such a neighbor

is xl or x2p−l .
Moreover, no white vertex outside P has a neighbor in P .

Proof 1. and 2. are obvious since a vertex not satisfying these conditions cannot
occur in any augmenting extended-chain containing L and R as sub-extended-
chains.

Note that xl and x2p−l are black vertices. Hence, if a black vertex outside L and
R has a neighbor in L or R, then clearly such a vertex cannot belong to the desired
augmenting chain, similar for a white vertex outside L and R.
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If a white vertex outside P has a neighbor in P , then clearly such a neighbor is
black and hence it has at least three white neighbors, a contradiction.

From the conditions of the above claim, we have the following observation.

Claim 19 If S admits an augmenting (l, m)-extended-chain containing L and R,
then no vertex of P \(L ∪ R) is the center of an induced claw.

Proof By contradiction, suppose that G contains a claw G[C], where C =
{a, b, c, d}, whose center a (i.e., the vertex of degree three) is a vertex xj on P .
Without loss of generality, we choose a claw such that |{b, c, d}\P | is minimal and,
among such claws, choose a claw such that j is minimum. Note that, since there
exists at least one vertex of {b, c, d} lying outside P , together with 3. of Claim 18,
l + 1 ≤ j ≤ 2p − l − 1. Moreover, since every black vertex of P has all its white
neighbors lying in P , every vertex of C\P is black.

We shall use the following convention: for a black vertex v outside P , if only one
of the two white neighbors of v is defined explicitly, then the other is denoted as v̄.
Also, for a vertex v of C not belonging to P such that N(v) ∩ P 
= ∅, we denote by
r(v) the largest index in {j, j + 1, . . . , 2p − l − 1} and by s(v) the smallest index
in {l + 1, l + 2, . . . , j} such that v is adjacent to xr(v), xs(v).

We now analyze three cases: exactly one (C1), two (C2), or three (C3) ver-
tex/vertices of {b, c, d} do(es)n’t belong to P .

Case (C1). Without loss of generality, assume that b = xj−1 and c = xj+1. Then
we have the following observations.

(1) d is not adjacent to xj−2, xj+2. Indeed, if d ∼ xj−2 (similar for the case
d ∼ xj+2), then {xj−2, xj−1, xj , d, xr(d), xr(d)+1, . . . , xr(d)+l−1} induces a
bannerl in the case r(d) ≥ j +2 or {d, xj−2, xj−1, xj , xj+1, . . . , xj+l} induces
a bannerl in the case r(d) = j , a contradiction.

(2) r(d) = j or s(d) = j . Indeed, by (1), suppose that r(d) ≥ j + 3 and s(d) ≤
j − 3. Then {xj−1, xj , d, xs(d), xs(d)−1, . . . , xs(d)−l+1, xr(d), xr(d)+1, . . . ,

xr(d)+l−1} induces an S2,l,l , a contradiction.
(3) s(d) ≥ j−3 and r(d) ≤ j+3. Indeed, suppose that s(d) ≤ j−4 (similar for the

case r(d) ≥ j + 4). Then by (2), {xj−2, xj−1, xj , xs(d), xs(d)−1, . . . , xs(d)−l+1,

xj+1, xj+2, . . . , xj+l−1} induces an S2,l,l , a contradiction.
(4) r(d) = s(d) = j . Indeed, by (2) and (3), suppose that r(d) = j + 3

and s(d) = j (similar for the case s(d) = j − 3 and r(d) =
j ). Among {xj , xj+3}, there exists at most one white vertex. Hence,
{xj+2, xj+1, d̄, d, xj+3, xj+4, xj+5, . . . , xj+l+3, xj , xj−1, . . . , xj−l} induces
an R1

l , a contradiction.

Now, since r(d) = s(d) = j , {d̄, d, xj , xj−1, xj−2, . . . , xj−l , xj+1, xj+2, . . . ,

xj+l} induces an S2,l,l , a contradiction.
Case (C2). Without loss of generality, assume that b = xj−1 and c and d are

outside P . Then we have the following observations.

(1) xj+1 is adjacent both to c and d to avoid (C1).
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(2) Also to avoid (C1), c is adjacent to xs(c)+1, xr(c)−1, similarly for d.
(3) It cannot happen that s(c) = s(d) ≤ j −2 or r(c) = r(d) ≥ j +2. Indeed, say

if s(c) = s(d) ≤ j − 2, then {c, xj+1, d, xs(c), xs(c)−1, . . . , xs(c)−l} induces a
bannerl , a contradiction.

(4) Similarly, if s(c) = s(d) = j , then there exists no common neighbor xi of c

and d for i ≥ j + 2 and if r(c) = r(d) = j + 1, then there exists no common
neighbor xi of c and d for i ≤ j − 2. And in both cases, c and d have no
common neighbor outside P .

(5) c and d are not adjacent to xj−2. Indeed, suppose that c ∼ xj−2
(similar for the case d ∼ xj−2). Then r(c) = j + 1 (similarly,
r(d) = j + 1), otherwise {xj , xj−1, xj−2, c, xr(c), xr(c)+1, . . . , xr(c)+l−1}
induces a bannerl , a contradiction, and s(c) = j − 3, otherwise
{xj , xj−1, xj−2, c, xs(c), xs(c)−1, . . . , xs(c)−l+1} induces a bannerl , a contra-
diction. Moreover, d is neither adjacent to xj−2 nor xj−3 also by (4). Hence,
s(d) = j , otherwise {xj−1, xj−2, c, xj , d, xs(d), xs(d)−1, . . . , xs(d)−l+1}
induces a bannerl , a contradiction. Now, among {xj , xj+1}, there exists
exactly one white vertex. Moreover, c � d̄ by (4). Now, {d, d̄, xj+1, c, xj−3,

xj−4, . . . , xj−l−2, xj+2, xj+3, . . . , xj+l+1}, induces an S2,l,l , a contradiction.
(6) By (2) and (5), if s(c) ≤ j − 3, then s(c) ≤ j − 4.
(7) s(c) = j or r(c) = j + 1. Similarly, s(d) = j or r(d) = j + 1.

Indeed, by (5) and (6), if s(c) ≤ j − 4 and r(c) ≥ j + 2, then
{xj−1, xj , c, xs(c), xs(c)−1, . . . , xs(c)−l+1, xr(c), xr(c)+1, . . . , xr(c)+l−1}
induces an S2,l,l , a contradiction.

(8) s(c) = j or r(d) = j + 1 (similarly, s(d) = j or r(c) = j +
1). Indeed, by (5) and (6), without loss of generality, suppose that
s(c) ≤ j − 4 and r(d) ≥ j + 2. Then by (7), r(c) = j + 1 and
s(d) = j . Hence, {xj−2, xj−1, xj , c, xs(c), xs(c)−1, . . . , xs(c)−l+2, d, xr(d),

xr(d)+1, . . . , xr(d)+l−2} induces an S2,l,l , a contradiction.
(9) s(c) = j or s(d) = j . Indeed, by (5) and (6), without loss of generality,

suppose that s(c), s(d) ≤ j − 4. Then r(c) = r(d) = j + 1, by (7). Now,
by (3), without loss of generality, assume that s(c) < s(d). Then by (4),
{xs(d)+1, d, xj+1, c, xs(c), xs(c)−1, . . . , xs(c)−l+2, xj+2, xj+3, . . . , xj+l+1}
induces an S2,l,l , a contradiction.

(10) r(c) = j +1 or r(d) = j +1. Indeed, if r(c), r(d) ≥ j +2, then by (7), s(c) =
s(d) = j . Without loss of generality, by (2) and (4), assume that r(c) > r(d)+
1. Then {xr(d), d, xj , c, xr(c), xr(c)+1, . . . , xr(c)+l−2, xj−1, xj−2, . . . , xj−l}
induces an S2,l,l , a contradiction.

(11) s(c) = s(d) = j . Indeed, by (5) and (6), suppose that s(c) ≤ j − 4
(similar for the case that s(d) ≤ j − 4). Then by (9), (8), and (7),
s(d) = j , r(d) = r(c) = j + 1. Note that, among {xj , xj+1, xs(c), xs(c)+1},
neighbors of c, there exist exactly two white vertices and hence, c � d̄ . Now,
{d̄, d, xj+1, c, xs(c), xs(c)−1, . . . , xs(c)−l+2, xj+2, xj+3, . . . , xj+l+1} induces
an S2,l,l , a contradiction.

(12) r(c) = r(d) = j + 1. Indeed, by (10), suppose that r(c) = j + 1 and r(d) ≥
j + 2. Among xj , xj+1, there exists only one white vertex and d � c̄ by (4).
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Then {c̄, c, xj , xj−1, xj−2, . . . , xj−l , d, xr(d), xr(d)+1, . . . , xr(d)+l−2} induces
an S2,l,l , a contradiction.

Now, {c̄, c, xj , d, d̄, xj−1, xj−2, . . . , xj−l , xj+1, xj+2, . . . , xj+l+1} induces an
R2

l , a contradiction.
Case (C3). We have the following observations.

(1) First, note that, r(b), r(c), and r(d) (and similarly, s(b), s(c), and s(c)) are
three mutually different integers. Otherwise, suppose that r(b) = r(c). Then
we have the claw {xr(c), xr(c)+1, b, c}, i.e. (C2).

(2) To avoid (C1), if b ∼ xi for some i, then b is adjacent to at least one vertex
among xi−1, xi+1. It implies b is adjacent to xs(b)+1, xr(b)−1. Similarly for c

and d.
(3) Moreover, by the minimality of j and to avoid (C2), we know that xj−1 has

exactly two neighbors in {b, c, d}, say b and c. To avoid (C1) and (C2), we
conclude that xj+1 is adjacent to d and has at least one neighbor in {b, c},
say c. Moreover, b � xj+1. Indeed, if b ∼ xj+1, then r(b), r(c), r(d) ≤
j + 2, otherwise {xj−1, b, xj+1, c, xr(c), xr(c)+1, . . . , xr(c)+l−1} or
{xj−1, c, xj+1, b, xr(b), xr(b)+1, . . . , xr(b)+l−1} or {b, xj−1, c, xj+1, d, xr(d),

xr(d)+1, . . . , xr(d)+l−2} induces a bannerl depending on which is the
largest index among r(b), r(c), r(d), a contradiction. But now, j + 1 ≤
r(c), r(b), r(d) ≤ j + 2, a contradiction with the mutual difference of
r(b), r(c), and r(d).

(4) It also implies that at least one of s(b), s(c) is less than j − 1 and at least one
of r(d), r(c) is greater than j + 1.

(5) b � xj+1, together with b ∼ xr(b)−1, it implies that if r(b) ≥ j + 2, then
r(b) ≥ j + 3. Similarly, if s(d) ≤ j − 2, then s(d) ≤ j − 3.

(6) In a pair of consecutive vertices of P , there is a black vertex and a white vertex.
Hence, b, c, d are not adjacent to three pairs of consecutive vertices of P ,
otherwise we have a black vertex with three white neighbors, a contradiction.
Together with c is adjacent to xs(c)+1 and xr(c)−1, it leads to either r(c) ≤ j+2
or s(c) ≥ j − 2. Moreover, if c is adjacent to xj−2, xj+2, then s(c) = j − 2
and r(c) = j + 2. Similarly, we have the following observations: r(b) = j or
s(b) ≥ j − 2, s(d) = j or r(d) ≤ j + 2.

(7) c and b cannot share a neighbor xi for some i ≤ j − 2, otherwise
{xi, c, xj , b, xr(b), . . . , xr(b)+l−1}, {b, xi, c, xj , d, xr(d), . . . , xr(d)+l−2}, or
{xi, b, xj , c, xr(c), . . . , xr(c)+l−1} induces a bannerl depending on which
is the largest index among r(b), r(c), r(d) (note that at least one of
these integers is bigger than j + 1 and they are mutually different by
(1)), a contradiction. Moreover, b and c cannot share a neighbor xi for
some i ≥ j + 2, otherwise {xj , c, xi, b, xs(b), xs(b)−1, . . . , xs(b)−l+1} or
{xj , b, xi, c, xs(c), . . . , xs(c)−l+1} induces a bannerl depending on which one
is larger among s(b) and s(c). Similarly, c and b cannot share a white neighbor
outside P . By similar arguments, these properties are also true for the two
pairs c, d and b, d.
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(8) s(c) ≥ j − 2, similarly, r(c) ≤ j + 2. Moreover, if s(c) = j − 2,
then r(c) = j + 1. Similarly, if r(c) = j + 2, then s(c) = j − 1.
Indeed, suppose that s(c) ≤ j − 4. Then c ∼ xj−2, otherwise
{xj−1, xj−2, xj−3, c, xr(c), xr(c)+1, . . . , xr(c)+l−1} induces a bannerl or
{xj−2, xj−1, c, xs(c), xs(c)−1, . . . , xs(c)−l+1, xr(c), xr(c)+1, xr(c)+l−1} induces
an S2,l,l depending on c ∼ xj−3 or not. But now, c is adjacent to
{xs(c), xs(c)+1, xj+1, xj , xj−1, xj−2}, a contradiction to (6). Now, if
s(c) = j − 3, then c ∼ xj−2 by (2) and r(c) = j + 1 by (6). Hence,
{c, xj−l−3, . . . , xj−4, xj−3, . . . , xj+1, xj+2, . . . , xj+l+1} induces an R3

l ,
a contradiction. Moreover, if s(c) = j − 2 and r(c) = j + 2, then
{c, xj−l−2, . . . , xj−3, xj−2, . . . , xj+1, xj+2, . . . , xj+l+2} induces an R3

l , a
contradiction.

(9) r(b) = j or s(b) = j−1, similarly, r(d) = j+1 or s(d) = j . Indeed, if r(b) ≥
j + 3 and s(b) ≤ j − 2, then {xj , xj+1, xj+2, b, xs(b), xs(b)−1, . . . , xs(b)−l+1}
induces a bannerl or {xj+1, xj , b, xs(b), xs(b)−1, . . . , xs(b)−l+1, xr(b),

xr(b)+1, . . . , xr(b)+l−1} induces an S2,l,l depending on b ∼ xj+2 or not, a
contradiction.

(10) s(b) ≥ j − 3, similarly, r(d) ≥ j + 3. Indeed, suppose that s(b) ≤ j − 4.
Then r(b) = j , by (9). Now b is not adjacent to xj−2 and xj−3 at the same
time, otherwise either {b, xj−l−4, . . . , xj−5, xj−4, . . . , xj , xj+1, . . . , xj+l}
induces an R3

l or b is adjacent to three pairs of consecutive ver-
tices of P , a contradiction to (6). Hence, b � xj−2, otherwise
{xj−3, xj−2, b, xs(b), xs(b)−1, . . . , xs(b)−l+1, xj , xj+1, . . . , xj+l−1} induces
an S2,l,l , a contradiction. Suppose that b ∼ xj−3. Then c ∼ xj−2,
otherwise {b, xj−3, xj−2, xj−1, c, xr(c), xr(c)+1, . . . , xr(c)+l−2} induces a
bannerl , a contradiction. Now, r(c) = j + 1 by (8), r(d) ≥ j + 2 by (1),
and s(d) = j by (9). Hence, {xj−2, c, xj , b, xs(b),xs(b)−1 , . . . , xs(b)−l+2, d,

xr(d), xr(d)+1, . . . , xr(d)+l−2} induces an S2,l,l , a contradiction. Thus, b �

xj−3. Now, {xj−3, xj−2, xj−1, b, xs(b), . . . , xs(b)−l+2, c, xr(c), . . . , xr(c)+l−2}
induces an S2,l,l , a contradiction.

(11) r(b) = j , similarly, s(d) = j . Indeed, suppose that r(b) ≥ j + 3.
Then by (9), s(b) = j − 1. Moreover, s(c) = j − 2, r(c) =
j + 1, r(d) ≥ j + 2, and s(d) = j by (1), (8), and (9). Now,
{xr(b)−1, b, xj , c, xj−2, xj−3, . . . , xj−l , d, xr(d), xr(d)+1, . . . , xr(d)+l−2}
or {xr(d), d, xj , c, xj−2, xj−3, . . . , xj−l , b, xr(b), xr(b)+1, . . . , xr(b)+l−2}
induces an S2,l,l depending on r(d) > r(b) or r(b) > r(d) (note that by
(2) and (7), if r(b) > r(d), then r(b) > r(d) + 1).

(12) s(c) = j − 1, similarly, r(c) = j + 1. Indeed, suppose that s(c) =
j − 2. Then r(c) = j + 1 by (8), s(b) = j − 1 by (1), (2), and
(7) and r(d) ≥ j + 2 by (1). Among xj and xj−1, there exists only
one white vertex. Consider the other white neighbor of b, say b̄. Then
{b̄, b, xj , c, xj−2, xj−3, . . . , xj−l , d, xr(d), xr(d)+1, . . . , xr(d)+l−2} induces an
S2,l,l , a contradiction.
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(13) xj is black, otherwise {c̄, c, xj , b, xs(b), . . . , xs(b)−l+2, d, xr(d), . . . , xr(d)+l−2}
induces an S2,l,l , a contradiction. Now, by the symmetry, we have three
remaining cases, which are considered follows.

Case 3.1. b is adjacent to xj−2 and xj−3, d is adjacent to xj+2 and xj+3.
Then {xj , xj−l−2, . . . , xj−3, b, xj−1, c, xj+1, d, xj+3, . . . , xj+l+2} induces an R3

l ,
a contradiction.

Case 3.2. s(b) = j−2 and r(d) = j+2. Then {xj , xj−l−1, . . . , xj−2, b̄, b, xj−1, c,

xj+1, d, d̄, xj+2, . . . , xj+l+1} induces an R4
l , a contradiction.

Case 3.3. s(b) = j−2 and d is adjacent to xj+2 and xj+3. Then {xj , xj−l−1, . . . ,

xj−2, b̄, b, xj−1, c, xj+1, d, xj+2, xj+3, . . . , xj+l+1} induces an R5
l , a contradic-

tion.

Our purpose here is to detect an augmenting extended-chain whose path-part is of
length at least 2l + 2. We first find candidates (L,R) as described above. Note that
such candidates can be enumerated in polynomial time. Then perform Steps (a)
through (d) for each such pair:

(a) remove all black vertices that have a neighbor in L or in R,
(b) remove the vertices of L and R except for xl and x2p−l , and
(c) remove all the vertices that are the center of a claw in the remaining graph,
(d) then in the resulting claw-free graph, determine whether there exists an

alternating chain between xl and x2p−l by the method described in [28, 33].

For each candidate, Steps (a) through (d) can be implemented in time O(n4).
Hence, we have the conclusion of the lemma.

Appendix 4: Proof of Lemma 7

The proof is consisted of the six following observations.

Lemma 10 If G contains no augmenting P3, then an augmenting tree1 (if any) can
be found in time O(n17).

Proof Refer to Figure 2, tree1 with parameter r . If r = 1, then tree1 is a P3. Assume
that G contains an augmenting graph tree1, for some r ≥ 2. Therefore, G contains
an induced P5 = (b1, a1, x, a2, b2), where b1, b2 ∈ B1 and b1, b2 are non-adjacent
to any vertex of W {a1, x, a2}. If G contains no such an initial structure, then it
contains no augmenting tree1. If such a structure exists, then we proceed as follows.

Let us denote A = {a ∈ W(x)\{a1, a2} : a � b1, b2} and for a ∈ A, let
K(a) denote the set of black neighbors of a in B1 not adjacent to any vertex of
{x, a1, a2, b1, b2}. Notice that a desired augmenting tree exists only if K(a) 
= ∅
for every a ∈ A. Finally, let V ′ = ⋃

a∈A

K(a). Since K(a) ⊆ B1 for every a ∈ A,

K(a) ∩ K(a′) = ∅ for every pair of distinct vertices a, a′ ∈ A.
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Consider any vertex a ∈ A, we show that K(a) induces a clique for every
a ∈ A. Indeed, suppose that K(a) contains two non-adjacent vertices b1, b2. Then
{b1, a, b2} induces an augmenting P3, a contradiction. It follows that a desired
augmenting tree1 exists if and only if α(G[V ′]) = |A|.

We show that G[V ′] must be P5-free. Indeed, consider an induced P4 =
(p1, p2, p3, p4) in G[V ′] and let a ∈ A be such that p1 ∈ K(a). Then none of
the vertices p3, p4 is adjacent to a because K(a) is a clique. Thus, p2 ∈ K(a),
otherwise {b1, a1, x, a2, b2, a, p1, p2, p3, p4} induces an S2,2,5, a contradiction.
Hence, if G[V ′] induces a P4 = (p1, p2, p3, p4), then p1 and p2 have a common
white neighbor, while p2 and p3 have no common white neighbor, a contradiction to
when consider an induced P4 = (p2, p3, p4, p5) in the P5 = (p1, p2, p3, p4, p5).

Since the P5-free graph class is MIS-solvable in time O(n12) [22], one can find
a simple augmenting tree containing the P5 (b1, w1, b,w2, b2) in O(n12). With an
exhaustive search, all candidate P5 of augmenting trees can be found in time O(n5).
For such candidates P5’s, V ′ can be built in O(n3). Hence, we have the conclusion
of the lemma.

Lemma 11 If G contains neither augmenting P3 nor P7, then an augmenting tree2

(if any) can be found in time O(n14).

Proof Refer to Figure 2, tree2 with parameter r and s. We may restrict ourselves to
finding a tree2 with r, s ≥ 2, since any tree2 with, say r = 1, either equals to P7 or
contains a redundant subset U of size two such that tree2 − U is of the form tree1.

As a candidate, consider the subgraph of tree2 (see Figure 2) induced by
{a1, a2, b1, b2, c1, c2, d1, d2, x, y, z} such that b1, b2, d1, d2 ∈ B1 and x, z share
no common white neighbor other than y.

Let us denote A = (W(x)∪W(z))\{a1, a2, c1, c2, y}. For a ∈ A, let K(a) denote
the set of black neighbors of a in B1 not adjacent to any vertex of {x, b1, b2, d1, d2}.
Note that, by the assumption, every vertex of A is either adjacent to x or y. Notice
that a desired augmenting tree exists only if K(a) 
= ∅ for every a ∈ A.

We show that K(a) induces a clique. Indeed, suppose that K(a) contains
two non-adjacent vertices b1, b2. Then {b1, a, b2} induces an augmenting P3, a
contradiction.

Since for every a ∈ A, K(a) ∈ B1, K(a) ∩ K(a′) = ∅ for every pair of distinct
vertices a, a′ ∈ A.

Finally, let V ′ = ⋃

a∈A

K(a). It follows that a desired augmenting tree2 exists if

and only if α(G[V ′]) = |A|.
We now show that G[V ′] is P3-free. Suppose, to the contrary, that (p1, p2, p3) is

an induced P3 in G[V ′]. Let a ∈ A such that p1 ∈ K(a). Since K(a) is a clique, p3
is not adjacent to a. Assume that p3 ∼ a′. Then since p2 ∈ B1, p2 is not adjacent
to at least one vertex among a, a′. Without loss of generality, assume that p2 � a,
and a is adjacent to x, but not to z. Then {d2, c2, z, c1, d1, y, x, a, p1, p2} induces
an S2,2,5, a contradiction.

Hence, G[V ′] is a disjoint union of cliques, i.e. a maximum independent set in
G[V ′] can be found in linear time. All candidates of the form tree2 whose r = s = 2
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can be found by an exhaustive search in time O(n11). For such candidates P5’s, V ′
can be built in O(n3). Hence, we have the conclusion of the lemma.

Lemma 12 If G contains neither augmenting P3 nor P5, then an augmenting tree3

or an augmenting tree4 (if any) can be found in time O(n31).

Proof First, note that tree4 is a special case of tree3. We refer to Figure 2, tree3 for
indices. Moreover, we may restrict ourselves to finding a tree3 with s ≥ 3, since any
tree3 with, say, s ≤ 2 is either of the form tree1 or contains a redundant subset U of
size four such that tree3 − U is of the form tree1.

As a candidate, consider the subgraph of tree3 (see Figure 2) induced
by {d1, c1, b

1
1, a1

1, x, a2
1, b2

1, c2, d2, a
3
1, b3

1, c3, d3} such that b1
1, b

2
1, b

3
1 ∈ B2,

d1, d2, d3 ∈ B1. Let us denote A = W(x)\{a1
1, a2

1, a3
1}. For a ∈ A, let K(a)

denote the set of black neighbors b of a in B1 ∪ B2 and not adjacent to any vertex
of {x, b1

1, b
2
1, b

3
1, d1, d2, d3} such that if b ∈ B2, then G contains a pair of adjacent

vertices cb and db such that cb /∈ W(x), W(b) = {a, cb}, db ∈ B1, and db is not
adjacent to any vertex of {x, b1

1, b
2
1, b

3
1, d1, d2, d3, b} (note that db may coincide

with d1, d2, or d3). Let V ′ = ⋃

a∈A

K(a). And again, by the existence of a desired

augmenting tree3, K(a) is not empty for all a ∈ A. Note that by the assumption,
K(a) ∩ K(a′) = ∅ for every pair of distinct vertices a, a′ ∈ A.

Consider any vertex a ∈ A, we show that K(a) induces a clique. Indeed, suppose
that K(a) contains two non-adjacent vertices b, b′. By the symmetry, we consider
the three following cases.

Case 1. b, b′ ∈ B1. Then {b, a, b′} induces an augmenting P3, a contradiction.
Case 2. b′ ∈ B1 and b ∈ B2. Then {b′, a, b, cb, db} induces an augmenting P5, a

contradiction.
Case 3. b, b′ ∈ B2. Then cb 
= cb′ , otherwise {b, cb, b

′, a, x, a1
1} induces a

banner2, a contradiction. Now, {cb′ , b′, a, b, cb, x, ai
1, b

i
1, ci , di} induces an S2,2,5,

for ci is among c1, c2, c3 different from cb, cb′ , a contradiction.
It follows that a desired augmenting tree3 exists if and only if α(G[V ′]) = |A|.
Given a, a′ ∈ A and b ∈ K(a) ∩ B2, b′ ∈ K(a′) such that b � b′ and if

b′ ∈ B2, assume that db 
= db′ , we show that b′
� db. Indeed, suppose that b′ ∼ db.

Then b′
� cb, otherwise cb′ = cb, and hence, db′ = db, a contradiction. Thus,

{b1
1, a

1
1, x, a2

1, b2
1, a

′, b′, db, cb, b} induces an S2,2,5, a contradiction. Now, if b′ ∈
B2, then db � db′ , otherwise {b1

1, a
1
1, x, a2

1, b2
1, a

′, b′, cb′ , db′ , db} induces an S2,2,5,
a contradiction.

Hence, for every pair of non-adjacent vertices b, b′ such that b ∈ K(a)∩B2, b′ ∈
K(a′) for two distinct vertices a, a′ ∈ A, {b, b′, d(b)} is independent. Moreover, if
b′ ∈ B2, then {b, b′, db, db′ } is independent.

Now, assume that B ′ is a maximum independent set of G[V ′]. Let C′ := {cb :
b ∈ B ′ ∩ B2}, D′ := {db : b ∈ B ′ ∩ B2}. Then by above arguments, B ′ ∪ D′ is
independent. And in the case that |B ′| = |A|, H := G[A ∪ B ′ ∪ C′ ∪ D′] is an
augmenting graph of the form tree3 of G.
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As in Lemma 10, we show that G[V ′] is P5 free. Indeed, consider an induced
P4 = (p1, p2, p3, p4) in G[V ′] and let a ∈ A such that p1 ∈ K(a). Then none of
the vertices p3, p4 is adjacent to a because K(a) is a clique. But now, p2 ∈ K(a),
otherwise {b1

1, a
1
1, x, a2

1, b2
1, a, p1, p2, p3, p4} induces an S2,2,5, a contradiction.

Hence, if G[V ′] induces a P4 = (p1, p2, p3, p4), then p1 and p2 have a common
white neighbor, while p2 and p3 have no common white neighbor, a contradiction to
when consider an induced P4 = (p2, p3, p4, p5) in the P5 = (p1, p2, p3, p4, p5).

All candidates can be found by an exhaustive search in time O(n19). For such
candidates, V ′ can be built in O(n3). Again, by the solution for the MIS problem in
P5-free graphs [22], we have the conclusion of the lemma.

Lemma 13 An augmenting tree5 (if any) can be found in time O(n14).

Proof Refer to Figure 2, tree5 with parameter r and s. We may restrict ourselves to
finding a tree5 with r, s ≥ 1 and r ≥ 2, since a tree5 with, say, r = 0 contains a
redundant set U of size four such that tree5 −U is of the form tree1, and a tree5 with
r = s = 1 can be found in time O(n9).

As a candidate, consider the subgraph of tree5 (see Figure 2) induced by
{a1, a2, b1, b2, c1, d1, u, v, x, y, z} such that b1, b2, v, d1 ∈ B2 and x, y share no
common white neighbor other than u. Let us denote Ax = W(x)\{a1, a2, u} and
Ay = W(y)\{c1, u} and for a ∈ A := Ax ∪ Ay , let K(a) denote the set of common
black neighbors of a and z in B2 not adjacent to any vertex of {x, y, b1, b2, v, d1}.

Note that by the assumption, every vertex of A is either adjacent to x or y. Since
K(a) ⊆ B2 for every a ∈ A, K(a) ∩ K(a′) = ∅, for every pair of distinct vertices
a, a′ ∈ A.

Consider a pair of distinct vertices b, b′ ∈ K(a) for some a ∈ A. If b � b′, then
{b, a, b′, z, v, u} induces a banner2, a contradiction. Hence, K(a) is a clique for all
a ∈ A.

Now, let V ′(x) := ⋃

a∈Ax

(K(a)), V ′(y) := ⋃

a∈Ay

(K(a)), and V ′ := V ′(x) ∪ V ′
y .

Note that, V ′(x) ∩ V ′(y) = ∅ by the definition. Then a desired augmenting tree5

exists if and only if K(a) 
= ∅ for every a ∈ A and α(G[V ′]) = |A|.
As in Lemma 11, we show that G[V ′] is P3-free. Suppose, to the contrary, that

(p1, p2, p3) is an induced P3 in G[V ′]. Let a ∈ A such that p1 ∈ K(a). Since K(a)

is a clique, p3 is not adjacent to a. Assume that p3 ∼ a′. Since p2 ∈ B2, p2 is not
adjacent to at least one vertex among a, a′. Without loss of generality, assume that
p2 � a and a is adjacent to y, but not to x. Then {b2, a2, x, b1, a1, u, y, a, p1, p2}
induces an S2,2,5, a contradiction. Hence, a maximum independent set can be found
in G[V ′] in linear time.

All candidates can be found by an exhaustive search in time O(n11). For such
candidates, V ′ can be build in O(n3). Hence, we have the conclusion of the lemma.

Lemma 14 An augmenting tree6 (if any) can be found in time O(n27).

Proof Refer to Figure 2, tree6 with parameter r and s. We may restrict ourselves to
finding a tree6 with r, s ≥ 2, since a tree6 with, say, r = 1, contains a redundant set
U of size four such that tree6 − U is of the form tree1.
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As a candidate, consider the subgraph of tree6 (see Figure 2) induced by
{a1, a2, b1, b2, c1, c2, d1, d2, x, y, z} such that b1, b2, c1, c2 ∈ B2 and x, z share
no common white neighbor.

Let us denote Ax = W(x)\{a1, a2} and Az = W(z)\{d1, d2}. For a ∈ A :=
Ax ∪ Az, let K(a) denote the set of common black neighbors of a and y in B2 and
not adjacent to any vertex of {x, b1, b2, c1, c2, z}. Note that Ax ∩ Az = ∅ by the
assumption. Since for every a ∈ A, K(a) ⊆ B2, K(a) ∩ K(a′) = ∅ for every pair
of distinct vertices a, a′ ∈ A.

Consider a pair of distinct vertices b, b′ ∈ K(a) for some a ∈ A. If b � b′, then
{b, a, b′, y, c1, d1} induces a banner2 in the case that a ∈ Ax (similar for the case
a ∈ Az), a contradiction. Hence, K(a) is a clique for all a ∈ A.

Now, let V ′(x) := ⋃

a∈Ax

(K(a)), V ′(z) := ⋃

a∈Az

(K(a)), and V ′ := V ′(x) ∪ V ′
z .

Note that, V ′(x) ∩ V ′(z) = ∅. Then a desired augmenting tree6 exists if and only if
K(a) 
= ∅ for every a ∈ A and α(G[V ′]) = |A|.

As in Lemma 10, we show that G[V ′
x] and G[V ′

z] are P5-free. Indeed, consider
an induced P4 = (p1, p2, p3, p4) in G[V ′

x] or G[V ′
z], let a ∈ A be such that

p1 ∈ K(a). Then none of the vertices p3, p4 is adjacent to a because K(a)

is a clique. But now, p2 ∈ K(a), otherwise {b1, a1, x, a2, b2, a, p1, p2, p3, p4}
or {c1, d1, z, d2, c2, a, p1, p2, p3, p4} induces an S2,2,5 depending on a ∈ Ax or
a ∈ Az, a contradiction. Hence, if G[V ′

x] or G[V ′
z] induces a P4 = (p1, p2, p3, p4),

then p1 and p2 have a common white neighbor, while p2 and p3 have no common
white neighbor, a contradiction to when consider an induced P4 = (p2, p3, p4, p5)

in the P5 = (p1, p2, p3, p4, p5).
Moreover, assume that there exists a pair of vertices b, b′ such that b ∈

K(a), b′ ∈ K(a′) for some a ∈ A(x), a′ ∈ Az, and b ∼ b′. Then
{b1, a1, x, a2, b2, a, b, b′, a′, z} induces an S2,2,5, a contradiction. Hence, there
is no edge connecting a vertex in G[V ′

x] and a vertex in G[V ′
z]. So, G[V ′] is

P5-free.
Note that all candidates can be found by an exhaustive search in time O(n15). For

such candidates, V ′ can be build in O(n3). Hence, by the result of Lokshtanov et al.
[22] we have the conclusion of the lemma.

Lemma 15 If G contains no augmenting P3, nor P5, nor P7, then an augmenting
tree7 (if any) can be found in time O(n19).

Proof Refer to Figure 2 for indices. We may restrict ourselves to finding a tree7

with s ≥ 3, since a tree7 with s ≤ 2 is of the form tree3 or contains a redundant set
U of size at most eight such that tree7 − U is of the form tree3.

As a candidate, consider the subgraph of tree7 (see Figure 2) induced by
{x, a1

1, b1
1, c1, d1, e1, f1, a

2
1, b2

1, c2, d2, e2, f2, a
3
1, b3

1, c3, d3, e3, f3} such that
b1

1, d1 ∈ B2 and f1 ∈ B1. Let us denote A = W(x)\{a1
1, a2

1, a3
1, e1, e2, e3}.

For a ∈ A, let K(a) denote the set of black neighbors b of a in B1 ∪ B2 not
adjacent to any vertex of {x, b1

1, d1, e1, f1, b
2
1, d2, e2, f2, b

3
1, d3, e3, f3} and such

that if b ∈ B2, then G contains either



208 N. C. Lê

• two vertices cb, db such that cb /∈ W(x), W(b) = {a, cb}, db ∈ B1, and db is not
adjacent to any vertex of {x, b1

1, b
2
1, b

3
1, d1, d2, d3, f1, f2, f3, b} or

• an induced alternating (black white vertices) P4 (cb, db, eb, fb) such that eb ∈
W(x)\{a1

1, c1, a
2
1, c2, a

3
1, c3}, cb /∈ W(x), W(b) = {a, cb}, W(db) = {cb, eb},

W(fb) = {eb}, and db, fb are not adjacent to any vertex of {x, b1
1, b

2
1, b

3
1, d1, d2,

d3, f1, f2, f3, b}.
Let V ′ = ⋃

a∈A

K(a).

By the existence of a desired augmenting tree7, K(a) is not empty for all a ∈ A.
Note that, by assumption, K(a) ∩ K(a′) = ∅ for every pair of distinct vertices
a, a′ ∈ A.

Given a vertex b ∈ K(a)∩B2 for some a ∈ A, we show that db /∈ K(eb). Indeed,
suppose that db /∈ K(eb). Since db ∈ B2, cb = cdb

, ddb
= b, and edb

= a. Hence,
there exists some vertex b′ ∈ B1, such that fdb

= b′, i.e. b′ ∼ a and b′ is not adjacent
to b, db. Hence, b′

� fb, otherwise {cb, b, a, b′, fb, x, ai
1, b

i
1, ci , di} induces an

S2,2,5, for ci is a vertex among c1, c2, c3 different from cb, a contradiction. Now,
{b′, a, b, cb, db, eb, fb} induces an augmenting P7, a contradiction.

Suppose that there exist two vertices b, b′ such that b ∈ K(a) ∩ B2 and
b′ ∈ K(a′) ∩ B2 for two distinct vertices a, a′ ∈ A and db, db′ are different and
adjacent to some vertex a′′ ∈ W(x)\{a, a′, a1

1, a2
1, a3

1} different from a, a′. Then
{cb, db, a

′′, db′ , cb′ , x, ai
1, b

i
1, ci , di} induces an S2,2,5 where ci is a vertex among

c1, c2, c3 different from cb, cb′ , a contradiction. Hence, for every pair of vertices
b, b′ such that b ∈ K(a) ∩ B2, b′ ∈ K(a′) ∩ B2 for two distinct vertices a, a′ ∈ A,
eb 
= eb′ .

Consider any vertex a ∈ A, we show that K(a) induces a clique. Indeed, suppose
that K(a) contains two non-adjacent vertices b, b′. By the symmetry, we consider
the three following cases.

Case 1. b, b′ ∈ B1. Then {b, a, b′} induces an augmenting P3, a contradiction.
Case 2. b′ ∈ B1 and b ∈ B2. We have the three following subcases.
2.1. db ∈ B1. Then {b′, a, b, cb, db} induces an augmenting P5, a contradiction.
2.2. db ∈ B2 and b′

� fb. Then {b′, a, b, cb, db, eb, fb} induces an augmenting
P7, a contradiction.

2.3. db ∈ B2 and b′ ∼ fb. Then {fb, b
′, a, b, cb, x, ai

1, b
i
1, ci , di} induces an

S2,2,5, for ci is a vertex among c1, c2, c3 different from cb, a contradiction.
Case 3. b, b′ ∈ B2. Then cb 
= cb′ , otherwise {b, cb, b

′, a, x, a1
1} induces a

banner2, a contradiction. Now, {cb′ , b′, a, b, cb, x, ai
1, b

i
1, ci , di} induces an S2,2,5,

for ci is a vertex among c1, c2, c3 different from cb, cb′ , a contradiction.
It follows that a desired augmenting tree7 exists if and only if α(G[V ′]) = |A|.
Given a, a′ ∈ A, b ∈ K(a) ∩ B2, and b′ ∈ K(a′) such that b � b′, if

b′ ∼ db, then b′
� cb, otherwise cb′ = cb and then db′ = db, a contradiction.

Then {b1
1, a

1
1, x, a2

1, b2
1, a

′, b′, db, cb, b} induces an S2,2,5, a contradiction. Now, if

b′ ∈ B2, then db � db′ , otherwise {bi
1, a

i
1, x, a

j

1 , b
j

1 , a′, b′, cb′ , db′ , db} induces an
S2,2,5, for i, j ∈ {1, 2, 3} such that cb is different from ci, cj , a contradiction. Note
that for every b ∈ K(a) ∩ B2 for some a ∈ A, fb ∈ K(eb). Hence, for every
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pair of non-adjacent vertices b, b′ such that b ∈ K(a) ∩ B2, b′ ∈ K(a′) for two
distinc vertices a, a′ ∈ A, {b, b′, db, fb} is independent. Moreover, if b′ ∈ B2, then
{b, b′, db, db′ , fb, fb′ } is independent.

Now, assume that B ′ is a maximum independent set of G[V ′]. Let C′ := {cb :
b ∈ B ′ ∩ B2}, D′ := {db : b ∈ B ′ ∩ B2}. Then by above arguments, B ′ ∪ D′ is
independent. And in the case that |B ′| = |A|, H := G[A ∪ B ′ ∪ C′ ∪ D′] is an
augmenting graph of the form tree7 of G. Hence, a maximum independent set of
G[V ′] in the case that α(G[V ′]) = |A| gives us an augmenting of the form tree7.

As in Lemma 10, we show that G[V ′] is P5-free. Indeed, consider an induced
P4 = (p1, p2, p3, p4) in G[V ′], and let a ∈ A be such that p1 ∈ K(a). Then none
of the vertices p3, p4 is adjacent to a because K(a) is a clique. But now, p2 ∈ K(a),
otherwise {b1

1, a
1
1, x, a2

1, b2
1, a, p1, p2, p3, p4} induces an S2,2,5, a contradiction.

Hence, if G[V ′] induces a P4 = (p1, p2, p3, p4), then p1 and p2 have a common
white neighbor, while p2 and p3 have no common white neighbor, a contradiction to
when consider an induced P4 = (p2, p3, p4, p5) in the P5 = (p1, p2, p3, p4, p5).

All candidates can be found by an exhaustive search in time O(n19). For such
candidates, V ′ can be built in O(n3). By the result of Lokshtanov et al. [22], we
have the conclusion of the lemma.

Appendix 5: Proof of Theorem 5

So, we modify the concept of augmenting vertex [30] as follows.

Definition 4 Let S be an independent set of a graph G = (V , F ) and v ∈ V \S,
s ∈ NS(v). We say that v is augmenting for S associated with s if G[N(s)∩H(v, S)]
contains an independent set Sv,s such that |Sv,s | ≥ |NS(v)|.
Moreover, with an addition assumption that a maximum independent set of
G[N(s) ∩ H(v, S)] can be found in polynomial time for every s ∈ NS(v), we
can also choose s such that α(G[N(s) ∩ H(v, S)]) is maximum.

Refer to Algorithm 4, where p is a constant defined as in Lemma 3, an extended
version of Algorithm Alpha in [29], a maximal independent set of G can be found
(say by some greedy method) in time O(n2). One can compute the set H(v, S) in
time O(n2). Note that an augmenting of at most 2m−1 vertices can be found in time
O(n2m+1). Moreover, by Lemmas 6, 10, . . . , 15, an augmenting graph of the forms
mentioned in the while condition can be found in polynomial time. The while loop
is repeated at most n time. Hence, we observe the following result, an extension of
Theorem 7 in [29].

Lemma 16 Given two integers l and m, an (S2,2,5,banner2,domino,Mm,R3
l , R

4
l ,

R5
l )-free graph G = (V ,E), a maximal independent set of G S, and v ∈ V \S, if

one can find a maximum independent set of G[N(s)∩H(v, S)] for every s ∈ NS(v)

in polynomial time, then one can find a maximum independent set of G in polynomial
time.
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Algorithm 4 MISAugVer(G)
Input: a (S2,2,5,banner2,domino,Mm)-free graph G

Output: S, A maximum independent set of G.
1: Find an arbitrary maximal independent set S in G;
2: while There exists an H -augmentations to S where H contains at most 2m − 1 vertices, or H

is an augmenting (4, p)-extended-chain, an augmenting apple, or H is of the form tree1, . . . ,
tree7 or can be reduced to such forms by some redundant set or some reduction set of size at
most 32, or S admits an augmenting vertex v associated with some vertex s do

3: if S admits an H -augmentation then
4: Apply an augmenting H for S;
5: end if
6: if S admits an augmenting vertex v associated with s then
7: S := (S\NS(v)) ∪ {v} ∪ Sv,s ;
8: end if
9: end while

10: return S

Let G = (V ,E) be an (S2,2,5,banner2,domino,Mm,R3
l , R

4
l , R

5
l , K

(h))-free graph
with n vertices and S be a maximal independent set of G. Assume that one can
solve the MIS problem for (S2,2,5,banner2,domino,Mm,R3

l , R
4
l , R

5
l , K)-free graphs

in polynomial time. The goal is to show that one can carry out Step 2 of Algorithm 4
in polynomial time. We use the technique described in [30]. Let us say that a vertex
v ∈ V is a trivial augmenting vertex for S if v is augmenting for S and |NS(v)| ≤ h.
Then one can check if a vertex v ∈ V is a trivial augmenting vertex for S in time
O(nh+1), by verifying if G[H(v, S)] contains an independent set S∗ of |NS(v)|
vertices. Such S∗ is called the independent set associated with the augmenting
vertex v.

Assume that G admits no trivial augmenting vertex for S and that there exists
v ∈ V \S augmenting for S (in particular, h < |NS(v)|). Thus, G[H(v, S)] contains
an independent set T with |NS(v)| ≤ |T |. Since G is (S2,2,5,banner2,domino,Mm)-
free together with an additional assumption that G contains no augmenting graph
contains at most 2m − 1 vertices, no augmenting graph of the forms tree1, . . . ,
tree7, no augmenting (4, p)-extended-chain, no augmenting apple, no augmenting
graph that can be reduced to such forms by some redundant set or reduction set, by
Lemmas 3 and 4, H ′ := (T ∪ {v}, NS(v), E(H ′)) is an augmenting bipartite-chain.

Let us write T = {t1, . . . , tr} (r ≥ |NS(v)| ≥ h), with NS(ti) ⊂ NS(ti+1) for any
index i. Since G admits no trivial augmenting vertex for S, one has |NS(tk)| ≥ k

for k = 1, . . . , h. For any t ∈ H(v; S), let us write M(t) = {w ∈ H(v, S) :
NS(w) ⊃ NS(t), |NS(w)| ≥ h}. Then T ⊂ {t1, . . . , th} ∪ (M(th)\N({t1, . . . , th})).
Note that M(th) is K-free, otherwise M(th) ∪ {s1, s2, . . . , sh} ∪ {v} induces a K(h)

for s1, . . . , sh ∈ NS(th), a contradiction.
Now, since Step 2 of Algorithm 4 considers all the vertices in V \S, to check if S

admits an augmenting vertex one has not to solve the MIS problem in H(v, S) for
every v ∈ V \S. In fact, for every v ∈ V \S, it is sufficient to verify: (i) if v is a trivial
augmenting vertex for S, and then (ii) if v is augmenting, by assuming that S admit
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Algorithm 5 Procedure Green (v)
Input: a vertex v ∈ V \S
Output: a possible proof that v is augmenting associated with T = {t1, . . . , th} and an

independent set S∗ associated with v.
1: S∗ := ∅; T := ∅;
2: if |NS(v)| ≤ h then
3: if H(v; S) contains an independent set Q of |NS(v)| vertices then
4: set S∗ := Q; {v is (trivially) augmenting for S};
5: end if
6: else
7: for all independent set U of h vertices of G[H(v, S)], i.e. U = {t1, . . . , th}, with NS(ti ) ⊂

NS(ti+1), and |NS(ti )| ≥ i do
8: S′ := MISAugVer(G[M(th)\N({t1, . . . , th})]);
9: if |S′ ∪ {t1, . . . , th}| > |S∗| then

10: S∗ := S′ ∪ {t1, . . . , th}; T := {t1, . . . , th};
11: end if
12: end for
13: end if
14: if |S∗| ≥ |NS(v)| then
15: return v is augmenting for S associated with T and S∗
16: end if

no trivial augmenting vertex. That can be formalized by the procedure Algorithm 5
[30], whose input is any vertex v of V \S which can be executed in time O(nh+d+1).

Note that, given an augmenting vertex v (for S), Procedure Green(v) could not
recognize it as an augmenting vertex: that can happen whenever H(v, S) contains a
trivial augmenting vertex. Now, we give the new definition for augmenting vertex v

as following.

Definition 5 Let S be an independent set of a graph G = (V ,E), h be an
integer, and v ∈ V \S, t1, t2, . . . , th ∈ H [v, S]. We say that v is h-augmenting
for S associated with {t1, . . . , th}, where NS(ti) ⊂ NS(ti+1) for every index i, if
G[M(th)\N({t1, . . . , th})] contains an independent set Sv,t1,...,th such that |S∗| ≥
|NS(v)| where S∗ := Sv,t1,...,th ∪ {t1, t2, . . . , th}. S∗ is called the independent set
associated with the augmenting vertex v.

To summarize, in order to define an efficient method to solve the MIS problem
in (S2,2,5,banner2,domino,Mm,K(h))-free graphs, one can rewrite Step 2 of Algo-
rithm 4 as in Algorithm 6.
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Algorithm 6 New Step 6
1: for all v ∈ V \S do
2: Procedure Green(v);
3: if v is augmenting for S associated with S∗ then
4: S := (S\NS(v)) ∪ S∗; stop;
5: end if
6: end for
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