
Optimal Patrol on a Graph Against
Random and Strategic Attackers

Richard G. McGrath

1 Background

Patrol problems are encountered in many real-world situations. Generally speaking,
a patrol is the movement of a guard force through a designated area of interest
(AOI) for the purpose of observation or security. Patrols are often conducted by
authorized and specially trained individuals or groups, and are common in military
and law-enforcement settings. The use of patrols, instead of fixed, continuous
surveillance, is often necessary because of real-world limitations on time and
resources. Patrollers must operate with the intent of maximizing the likelihood
of detection of adversaries, infiltration, or attacks. The objective in solving patrol
problems is to determine the actions or policies that will maximize this likelihood.
In most patrol problems, consideration must be made for the time required for a
patroller to travel between specific locations within an AOI, and the time required
to conduct an inspection in order to detect illicit activities at a particular location.

There are several military and non-military applications of patrol problems.
Military applications include the routing of an unmanned aerial vehicle (UAV) on a
surveillance mission or the conduct of ground patrols to interdict the placement
of improvised explosive devices (IEDs). Non-military applications include the
movement of security guards through museums or art galleries; police forces
patrolling streets in a city; security officials protecting airport terminals; and
conductors checking passenger tickets on trains in order to detect fare evaders.

This work is motivated by the need to provide for effective security, usually with
limited resources, and often against very sophisticated and capable enemies. Not
only does the solution to a patrol problem need to be mathematically sound, it also

R. G. McGrath (�)
United States Naval Academy, Annapolis, MD, USA
e-mail: rmcgrath@usna.edu

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_10

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_10&domain=pdf
mailto:rmcgrath@usna.edu
https://doi.org/10.1007/978-3-319-94830-0_10

216 R. G. McGrath

needs to be executable. Additionally, it is often important to ensure that the solution
to a patrol problem incorporates sufficient randomization, and thus be unpredictable
to potential adversaries.

1.1 Problem Description

We consider a problem where multiple locations within an AOI are subject to attack.
A patroller (defender) is assigned to the area in order to detect attacks before they
can be completed. An attack is considered to be any activity that the patroller wants
to interdict or prevent, such as planting or detonating an explosive device, stealing
a valuable asset, or breaching a perimeter. The patroller moves between locations
and conducts inspections at those locations in order to detect any illicit activity. A
specified travel time is required for movements between locations. It then takes the
patroller an additional specified amount of time to inspect a new location after he
arrives. At the end of the time required to complete an inspection, the patroller can
move to any other location in the area.

We explicitly model the patrol problem on a graph, where potential attack
locations are represented by vertices. We consider the inclusion of inspection times
at each vertex and travel times for the patroller to move along edges between vertices
in the graph. We consider this problem in continuous time and structure the patrol
model on a complete graph, where the edge length represents the travel time between
each pair of vertices.

The time at which an attacker arrives at a location to conduct an attack is random,
and occurs according to a Poisson process. When an attacker arrives at a location he
begins an attack immediately. The time required to complete an attack is random,
with a probability distribution that is known to the attacker and the patroller. The
patroller detects any ongoing attacks at a location at the end of his inspection. We
consider an attacker to be detected if both the patroller and attacker occupy the
same location at the end of the patroller’s inspection. The amount of time it takes to
complete an attack, as well as the amount of damage that an undetected attack will
cause, is specific to each location.

The patroller’s objective is to determine a path of locations to visit and inspect
that will minimize the long-run cost incurred due to undetected attacks. For instance,
where the cost of an attack is the same at all locations, this objective is equivalent to
maximizing the probability of detecting an attack.

We consider two patrol models that are closely related:

1. A single patroller against random attackers: In the random-attacker case, an
attacker will choose a location to attack according to a probability distribution
that is known to the patroller. This situation may occur when there is intelligence
available regarding potential enemy attack locations. It may be possible from this
intelligence to assign a likelihood of attack to specific locations.

Optimal Patrol on a Graph Against Random and Strategic Attackers 217

2. A single patroller against strategic attackers: In the strategic-attacker case, an
attacker will actively choose a location to attack in order to inflict the maximum
expected damage. Conversely, the patroller seeks to conduct his patrol so as to
sustain the least expected damage. This situation may occur with a more capable
or better-resourced enemy, who can analyze the expected damage among several
attack locations.

In each of these cases, we assume that the attacker cannot observe the real-time
location of the patroller. In other words, once an attacker initiates an attack, he will
carry on with the attack until either completing the attack or getting detected. An
attacker cannot time his attack, nor can he abandon an attack, based on real-time
information about the patroller’s location.

In the case of a single patroller against random attackers, we present a linear
program to determine an optimal patrol policy. This linear program is constructed
as a minimum cost-to-time ratio cycle problem on a directed graph. We also present
two heuristic methods based on the graph structure that utilize aggregate index
values to determine a heuristic patrol policy.

In the case of a single patroller against strategic attackers, we present a linear
program to determine an optimal patrol policy. This linear program is a modification
of the minimum cost-to-time ratio cycle linear program used for a random attacker
that minimizes the largest expected cost among all locations and provides a direct
mapping to a mixed strategy. We also present two heuristic methods for this case.
The first is a combinatorial method based on the shortest Hamiltonian cycle in the
graph. The second is an iterative method based on fictitious play. We also present
a linear program that provides a lower bound to an optimal solution, which helps
evaluate our heuristic policy when an optimal solution is not available.

1.2 Literature Review

A patrol problem can be considered more generally as a type of search problem.
Many types of search and patrol problems have been studied in diverse literatures.
Early work on search theory focused on two general categories: one-sided search
and search games. One-sided search refers to the assumption that a target does not
respond to, or is even necessarily aware of, the searcher’s actions. In this type of
problem, the objective is often to maximize the probability of detection before a
deadline, or to minimize the expected time or cost of a search [9].

The two-sided search problem, more commonly referred to as a search game,
involves a searcher and a target who knows that he is being pursued. These type
of search problems are generally formulated as game-theoretic problems. The
information that the target has concerning the searcher will vary anywhere from
complete information on the searcher’s strategy to a complete lack of information
[9]. In these scenarios, a searcher and target can be working in competition, whereby
the target wishes to evade detection. Alternatively, a searcher and a target can be

218 R. G. McGrath

working in cooperation, such as a search and rescue scenario, where the objective
for both is to minimize the time (or cost) of the search.

Patrol problems are a specific type of search problem. In a patrol problem, a
searcher utilizes a patrol strategy to cover an area where an attacker or target may or
may not be present [5]. There are several types of game-theoretic patrol problems
that relate to our work. An accumulation game is a type of patrol problem where
a patroller visits several locations to collect materials hidden by an attacker. If the
patroller finds a certain amount of the materials, he wins; otherwise, he loses [4],
[14]. An infiltration game is a type of patrol problem where an intruder attempts
to penetrate an area without being intercepted by a patroller [2, 7, 10, 21, 23]. An
inspection game is a type of patrol problem where the patroller attempts to interdict
an attacker during an attack [8, 24]. The infiltration and inspection game categories
are most similar to the models that we examine.

There are several examples in search-game literature where the search area is
modeled as a graph or network. Kikuta and Ruckle [13] study initial point searches
on weighted trees. Kikuta [12] studies search games with traveling costs on a tree.
Alpern [3] examines search games on trees with asymmetric travel times.

The works most closely related to this problem are those by McGrath and Lin
[16], Lin et al. [15], and Alpern et al. [6]. Alpern et al. examine optimized random
patrols where a facility to be patrolled is modeled on a graph with interconnected
vertices representing individual locations within the facility. This work focuses on
the case of strategic attackers, where an attacker actively chooses a location to
attack, and assumes that the time to complete an attack is deterministic and is the
same for all locations. Lin et al. examine a patrol problem on a graph with both
random and strategic attackers. They use an exact linear program to compute an
optimal solution. Since this method quickly becomes computationally intractable
as a problem size increases, they introduce index heuristics based on Gittins et
al. [11] to determine a patrol policy. They use an aggregate index, where index
values are accumulated as a patroller looks ahead into the future, to produce effective
patrol policies in a game-theoretic setting. Both of these works use discrete-time
models, require the same inspection time at all locations, and prescribe an adjacency
structure for their graphs—which puts constraints on how a patroller can move
between locations.

2 Single Patroller Against Random Attackers

We consider the case of a single patroller against random attackers. In this patrol
problem, the patroller’s objective is to determine a patrol policy that minimizes the
long-run average cost due to undetected attacks. Section 2.1 introduces a patrol
model on a graph, where an attacker chooses to attack a specific location based on
a probability distribution that is known to the patroller. In Section 2.2, we present
a linear program that determines an optimal solution to the patrol problem. Since
the linear program quickly becomes computationally intractable as the size of the

Optimal Patrol on a Graph Against Random and Strategic Attackers 219

problem grows, we also present two heuristic methods for determining a solution in
Section 2.3. We conduct extensive numerical experiments for several scenarios and
present the results in Section 2.4. We make recommendations on how to best utilize
the heuristic methods based on the experimental results.

2.1 Patrol Model

We consider a problem where multiple heterogeneous locations dispersed through-
out an area of interest (AOI) are subject to attack. A patroller (defender) is assigned
to patrol the area and inspect locations in order to detect attacks before they can
be completed. An attack is considered to be any type of activity that the patroller
wants to interdict and prevent, such as planting an explosive device, stealing a
valuable asset, or breaching a perimeter. The patroller moves between locations and
conducts inspections at those locations in order to detect illicit activity. We consider
an attacker to be detected and his attack defeated if both the patroller and attacker
occupy the same location at the end of an inspection.

We model this problem as a graph with n vertices, where each vertex represents
a location that is subject to attack. We define a set of vertices N = {1, . . . , n} to
represent potential attack locations. A random attacker will choose to attack vertex
i with probability pi ≥ 0, for i ∈ N , and

∑n
i=1 pi = 1. The time required for

an attacker to complete an attack at vertex i is a random variable, which follows a
distribution function Fi(·), for i ∈ N , that is known to the attacker and the patroller.

The patroller detects any ongoing attacks at a vertex at the end of an inspection.
We assume that there are no false negatives; that is, the attacker will successfully
detect all ongoing attacks at a vertex at the end of his inspection. An attack is
considered to be unsuccessful if it is detected by the patroller. An attack is successful
if it is completed before it is detected.

We assume that an attacker arrives at a location in the AOI to commence an attack
according to a Poisson process with rate Λ. The Poisson process has stationary and
independent increments, which implies that attacks are equally likely to occur at any
time and that prior attacks do not help the patroller predict future attacks. Attackers
arrive at a specific vertex i to begin an attack at a rate of λi = piΛ, for i ∈ N . These
attacker arrivals at specific vertices constitute independent Poisson processes.

In most situations, the attacker arrival rate Λ is very small. In the formulation
of our problem, the value of Λ is inconsequential because we ignore interruptions
from attacks. In other words, several attackers can operate simultaneously on the
graph, or even at the same vertex, with each acting independently. By minimizing
the long-run cost rate, we also minimize the average cost from each attack with Λ

acting as a scaling constant. Thus, an optimal solution does not depend on the value
of Λ.

It takes a specified amount of time to travel between vertices and conduct
inspections. These times are fixed in our problem. The time required for a patroller
to travel between vertices is denoted by an n × n distance matrix D = [dij], for

220 R. G. McGrath

i, j ∈ N , where dij ≥ 0 for all pairs of vertices i �= j and dii = 0. The time required
for a patroller to complete an inspection at a vertex is denoted by (v1, . . . , vn). From
these values, we construct an n × n transit time matrix denoted by T = [tij], where
tij = dij + vj , to indicate the time required for a patroller to travel from vertex
i to vertex j and complete an inspection at vertex j . The damage inflicted due to
an undetected attack at a vertex is denoted by (c1, . . . , cn). An attack inflicts no
damage if it is detected before it is completed.

The patroller travels between vertices in the graph and conducts inspections in
order to detect attacks. A patrol policy consists of a sequence of vertices that the
patroller will visit and inspect. We seek to determine an optimal patrol policy that
minimizes the long-run cost rate incurred due to undetected attacks.

Fundamentally, the patroller is making a series of sequential decisions under
uncertainty in order to determine a patrol policy. Decisions are made at decision
epochs, which occur at a specific point in time (in this case at the end of an
inspection). At each decision epoch, the patroller observes the state of the system
as the amount of time elapsed since he last completed an inspection at each vertex.
Based on this information, he chooses an action. The choice of action is which
vertex to visit next. The action incurs a cost and causes the system to transition to a
new state at a subsequent point in time. The cost incurred is the expected cost due
to attacks that will be completed during the time it takes for the patroller to travel to
and inspect the next vertex. At the end of the inspection time at the chosen vertex,
the system will transition to a new state. At this point, the patroller reaches another
decision epoch and the process repeats.

In our problem, we wish to determine an optimal choice of action for the patroller
at each decision epoch. The essential elements of this sequential decision model are
[18]

1. A set of system states.
2. A set of available actions.
3. A set of state-dependent and action-dependent costs.
4. A set of state-dependent and action-dependent transition times and transition

probabilities.

We incorporate all of these elements into a sequential decision model in order to
determine an optimal patrol policy.

2.2 Optimal Policy

In order to find an optimal solution to our patrol problem, we must determine a
patrol policy that minimizes the long-run cost rate. To do so, we define a state space
Ω that consists of all feasible states of the system. The state of the system at any
given time can be delineated by

s = (s1, s2, . . ., sn), (1)

Optimal Patrol on a Graph Against Random and Strategic Attackers 221

where si denotes the time elapsed since the patroller last completed an inspection
at vertex i, for i ∈ N . Based on the assumption that a patroller detects all ongoing
attacks at a vertex at the end of an inspection, the state of a vertex returns to 0
immediately upon completion of an inspection. Since we consider this problem in
continuous time, the state of a vertex can assume any non-negative value. We write
the state space of the system as

Ω = {(s1, . . ., sn) : si ≥ 0,∀ i ∈ N}. (2)

At the end of each inspection, the patroller reaches a decision epoch and will
decide to stay at his current vertex to conduct an additional inspection or proceed to
another vertex. The action space can be defined as

A = {j : j ∈ N}. (3)

A deterministic, stationary patrol policy can be specified by a map π from the state
space to the action space:

π : Ω → A. (4)

This patrol policy is deterministic because, for any state of the system, a specific
action is prescribed with certainty. It is stationary, or time-homogeneous, because
the decision rules associated with a particular patrol policy do not change over time.
For any given state of the system, the future of the process is independent of its
past. The resulting state depends only on the action chosen by the patroller. If the
patroller just inspected vertex k and next wants to inspect vertex j , that action will
take time dkj + vj ; and the system that started in state s will transition to state

s̃ = (s̃1, s̃2, . . ., s̃n), s̃j = 0; s̃i = si + dkj + vj ,∀ i �= j . (5)

In order to identify the vertex where a patroller has just finished an inspection
and is currently located at a decision epoch, we define

ω(s) = arg min
i

si , (6)

since the state of the vertex where an inspection has just been completed will be 0
and the state of all other vertices will be greater than 0.

In our model, the times between decision epochs and state transitions are
deterministic. They depend on previous system states and actions only through the
current state of the system. We define

τ(s, j) = dω(s),j + vj , (7)

222 R. G. McGrath

as the time between decision epochs and the time between state transitions, if the
patroller decides to visit vertex j , when the system is in state s. At a decision epoch,
the patroller will decide his action based only on the current state of the system. For
these reasons, our model falls in the category of a semi-Markov decision process
(SMDP).

The cost function for this SMDP can be calculated based on the distribution of
time required to complete an attack Fi(·) and the cost ci incurred due to a successful
attack at vertex i. To illustrate how expected costs are incurred, suppose that the
patroller has just finished an inspection at vertex k and the current state of the system
is s, where ω(s) = k. The patroller can then elect to travel to another vertex or
remain at vertex k and conduct an additional inspection. There will be an expected
cost incurred for each vertex in the graph based on the cost of a successful attack and
the number of attacks expected to be completed at that vertex during the transition
time between state s and state s̃.

To determine the expected number of attacks that are completed at a particular
vertex in a time interval, recall from Section 2.1 that the arrival of attackers at a
vertex constitutes a Poisson process. Consider an attacker arriving to a vertex at time
y after the last inspection was completed, and suppose that the patroller completes
his next inspection at that vertex at time s. The attacker will complete his attack if the
attack time is no greater than s − y. Using Poisson sampling (see Proposition 5.3
in Ross [20]), the number of successful attacks at vertex i will follow a Poisson
distribution with expected value

λi

∫ s

0
P(Xi ≤ s − y) dy = λi

∫ s

0
P(Xi ≤ t) dt, (8)

where Xi denotes the time required to complete an attack at vertex i, for i ∈ N .
If we know the expected number of attacks that will be completed at vertex i

in a time interval, then we can determine the expected cost incurred at vertex i by
multiplying (8) by ci . Thus, the expected cost incurred at vertex i when the system
is in state s and the patroller elects to transit to vertex j is

Ci(s, j) = ciλi

(∫ si+τ(s,j)

0
P(Xi ≤ t) dt −

∫ si

0
P(Xi ≤ t) dt

)

. (9)

The cost at each vertex can be summed across all n vertices in the graph in order
to determine the total expected cost when the system starts in state s and the patroller
transits to vertex j . The overall cost function for this SMDP is

C(s, j) =
n∑

i=1

Ci(s, j). (10)

As currently defined, the state space has an infinite number of states; however,
in order to be able to compute an optimal policy, we need a finite state space. To

Optimal Patrol on a Graph Against Random and Strategic Attackers 223

do so, we assume that there is an upper limit on the attack time distribution at each
vertex. Specifically, let Bi denote the maximum time required to complete an attack
at vertex i. For the case where si = S ≥ Bi , (9) becomes

Ci(s, j) = ciλi

(∫ S+τ(s,j)

S

P (Xi ≤ t) dt

)

= ciλi(S + τ(s, j) − S) = ciλiτ (s, j), (11)

which remains a constant function over time for any state si ≥ Bi . Therefore, once
the state of a vertex has reached the bounded attack time, any additional expected
cost will accrue at a constant rate. The bounded attack times allow us to restrict the
state of a vertex so that si ≤ Bi , and the state space becomes

Ω = {(s1, . . ., sn) : 0 ≤ si ≤ Bi,∀ i ∈ N}. (12)

We consider cases where the attack times at all vertices are bounded. Thus, if the
patroller has just inspected vertex k and next wants to inspect vertex j , the resulting
state at the end of the inspection at vertex j is

s̃ = (s̃1, s̃2, . . ., s̃n), s̃j = 0; s̃i = min{si + dkj + vj , Bi},∀ i �= j . (13)

Using (13), we define a transition function to identify the resulting state if the
patroller decides to visit vertex j when the system is in state s:

φ(s, j) = s̃. (14)

The objective of the patrol problem is to determine a policy for the patroller that
minimizes the long-run cost. Recall that the action space in this SMDP is finite
because the number of vertices is finite. Therefore, by Theorem 11.3.2 in Puterman
[18], there exists a deterministic, stationary optimal policy. Thus, we only need to
consider deterministic, stationary policies in our problem. We define

ψπ(s) = φ(s, π(s)) (15)

as the resulting state if the patroller applies policy π when in state s. We can define
this function because the state transitions are deterministic. From an initial state s0,
policy π will produce an indefinite sequence of states, {ψκ

π(s0), κ = 0, 1, 2, . . . }.
This sequence must eventually visit some state for a second time since the state
space if finite; and since the state transitions are deterministic under the same policy
π , this sequence will then continue to repeat indefinitely. The sequence of vertices
that correspond to this repeating cycle of states will constitute a patrol pattern.

224 R. G. McGrath

We define Vi as the long-run expected cost rate at vertex i. If we apply the
deterministic, stationary policy π to any initial state s0, then the long-run expected
cost rate at vertex i is

Vi(π, s0) = lim
ξ→∞

∑ξ
κ=0 Ci(ψ

κ
π (s0), π(ψκ

π (s0))
∑ξ

κ=0 τ(ψκ
π (s0), π(ψκ

π (s0))
. (16)

We seek to determine the minimum long-run cost rate across all vertices, which will
give an optimal solution

COPT(s0) = min
π∈Π

n∑

i=1

Vi(π, s0), (17)

where Π is the set of all feasible deterministic, stationary patrol policies. Divid-
ing (17) by Λ will give the minimum average cost incurred for each attack.

We note that Vi(π, s0) depends on π and s0. However, in a connected graph, an
optimal cost rate COPT(s0) does not depend on s0. Since determining an optimal
patrol policy is equivalent to finding an optimal patrol pattern, we can develop a
policy π in a connected graph that will produce any feasible patrol pattern from any
starting state s0. Therefore, when we determine COPT in (17), it will be the same for
all initial states since we minimize across all feasible patrol policies π ∈ Π . Thus
we can drop the notational dependence of COPT on s0.

2.2.1 Linear Program Formulation

One method to solve this SMDP is to construct another graph that uses the state
space of the system modeled as a network. To do so, we redefine the problem on
a directed graph, G(N ,A). Each node k ∈ N will represent one state of the
system, and each arc (k, l) ∈ A will represent a feasible transition between states.
This network will be of order |N | = |Ω| and size |A | = |Ω|n. Each arc is assigned
a transit time tkl as determined by the vertex-pair specific distance and inspection
times, where tkl = τ(k, ω(l)); and cost ckl as determined by the cost function (10),
where ckl = C(k, ω(l)).

The objective is to find a directed cycle in the network with the smallest ratio of
total cost to total transit time. This is a sufficient solution to the problem because
any directed cycle in this network will constitute a valid patrol policy, regardless of
the length of the cycle. This is an example of a minimum cost-to-time ratio cycle
problem, also known as the tramp steamer problem, which is described in Sect. 5.7
of Ahuja et al. [1].

To solve this problem, we formulate the following linear program, which we refer
to as the random-attacker linear program (RALP):

Optimal Patrol on a Graph Against Random and Strategic Attackers 225

min
x

∑

(k,l)∈A
cklxkl (18a)

subject to
∑

l|(k,l)∈A
xkl −

∑

l|(l,k)∈A
xlk = 0,∀ k ∈ N (18b)

∑

(k,l)∈A
tklxkl = 1, (18c)

xkl ≥ 0,∀ (k, l) ∈ A . (18d)

The variable xkl represents the long-run rate at which the patroller uses arc (k, l).
The objective function value in (18a) represents the long-run cost rate. The total rate
at which the system enters state k must be equal to the total rate that the system exits
state k, which is ensured by the network balance of flow constraint in (18b). For a
single patroller, the rate that he uses arc (k, l) times the amount of time required
to transit from node k to node l indicates the fraction of time that he will spend on
arc (k, l). The fractions of time must sum to 1, which is ensured by the total-rate
constraint in (18c). Finally, the long-run rate at which the patroller uses arc (k, l)

cannot be negative, which is ensured by the non-negativity constraint in (18d).
The states on an optimal cycle directly correspond to vertices on the graph, which

can be determined by the function ω(s). Thus, this linear program will produce a
specific patrol pattern consisting of a repeating sequence of vertices for the patroller
to visit and inspect. This patrol pattern represents an optimal solution to the patrol
problem.

The number of decision variables in this linear program is |Ω|n. The size of the
constraint matrix is on the order of |Ω|. The value of |Ω| grows as a function of the
number of vertices in the graph, the attack time distributions, and the transit times.

2.2.2 Size of State Space

To understand the size of the state space, consider the case where the maximum
attack time at all vertices is B, the travel time between all vertices is d, and the
inspection time at all vertices is v. Define Z as

Z =
⌈

B

d + v

⌉

. (19)

The number of states in the system for a graph with n vertices and Z ≥ n is given
by

|Ω| =
n−1∑

i=0

(
n

1

)(
n − 1

i

)(
Z − 1

n − 1 − i

)

(n − 1 − i)!, (20)

226 R. G. McGrath

Table 1 Examples of state
space size

n B d v Z |Ω|
5 9.8 1.0 0.2 9 16,965

7 11.5 1.2 0.3 8 >260,000

8 15.5 0.9 0.6 11 >20,000,000

12 18.3 0.8 0.8 12 >40,000,000,000

since for each state of the system there will be exactly one vertex in state 0, as
indicated by the first term; i of the remaining n − 1 vertices at the bounded attack
time state B, as indicated by the second term; and each of the remaining n − 1 − i

vertices in a distinctive state between d + v and (d + v)(Z − 1), as indicated by the
third and fourth terms. Some examples of state space size are shown in Table 1. The
number of states grows exponentially with the number of vertices, and grows even
larger when combined with higher bounded attack times and shorter transit times.

Although we can compute an optimal patrol policy using linear programming,
this method quickly becomes computationally intractable as the number of vertices
increases and the ratio of the bound of the attack times to transit times increases.
Hence, there is a need to develop efficient heuristics.

2.3 Heuristic Policies

In this section, we consider solutions based on index heuristic methods. To begin,
consider a special case of our problem when vi = 1 and di,j = 0, for i, j ∈ N .
This special case coincides with the model presented in Lin et al. [15]. By adding a
Lagrange multiplier w > 0, they show the optimization problem can be broken into
n separate problems, each concerning a single vertex. The Lagrange multiplier w

can be interpreted as a service charge incurred for each patrol visit to a vertex. The
objective is to decide how frequently to summon a patroller at each vertex in order
to minimize the long-run cost rate due to undetected attacks and service charges. For
a given state of the system, the solution to this problem can be used to determine an
index value for each vertex in the graph. We can develop a heuristic policy where,
based only on the current state of the system, the patroller can choose to travel to and
inspect the vertex that has the highest index value. We next explain how to extend
this method to our patrol model.

2.3.1 Single Vertex Problem

We consider the problem at a single vertex where each visit from the patroller incurs
a service charge w > 0. For a given value of w, our objective is to determine a policy
that minimizes the total long-run cost rate due to undetected attacks and service
charges. Generally speaking, a policy is a mapping from a state to an action. For the

Optimal Patrol on a Graph Against Random and Strategic Attackers 227

single vertex problem, the state of the system s ≥ 0 is the amount of time since the
patroller last completed an inspection at the vertex. The action space for the patroller
simplifies to a binary decision: Inspect the vertex at time s or continue to wait.

Although the state space is infinite, the action space is finite for every s ∈
Ω . Therefore, we only need to consider deterministic, stationary policies [18].
In addition, since each inspection brings the state of the vertex back to 0, any
deterministic, stationary policy reduces to the following format: Inspect the vertex
once every s time units.

Recall from (8) that the number of successful attacks in the time interval [0, s)

between patroller inspections follows a Poisson distribution with expected value

λ

∫ s

0
P(X ≤ t) dt . (21)

Since each successful attack costs c, and a patrol visit costs w, the average long-run
cost given a policy that inspects the vertex every s time units is

f (s) = cλ
∫ s

0 P(X ≤ t) dt +w

s
, s > 0. (22)

For a given value of w, we find s in order to minimize f (s). To minimize f (s),
we take the first derivative of f (s), which gives

f ′(s) = cλ

s
P (X ≤ s) − cλ

s2

∫ s

0
P(X ≤ t) dt − w

s2 , (23)

and set f ′(s) = 0 to obtain

0 = cλsP (X ≤ s) − cλ

∫ s

0
P(X ≤ t) dt −w. (24)

We solve this equation for w as a new function of s:

W(s) = cλ

(

sP (X ≤ s) −
∫ s

0
P(X ≤ t) dt

)

, (25)

where W(s) indicates the corresponding service charge such that it is optimal for
the vertex to summon patrol visits once every s time units.

Since attack times at each vertex are bounded by a constant B, for cases where
s ≥ B we note that

W(s) = cλ

(

s −
∫ s

0
P(X ≤ t) dt

)

= cλ

∫ s

0
P(X > t) dt

= cλ

∫ B

0
P(X > t) dt = cλE[X], (26)

which remains the same for all s ≥ B.

228 R. G. McGrath

2.3.2 Index Heuristic Time Method

Since W(s) represents the per-visit cost for an optimal policy that visits a vertex in
state s, we can define an index value for vertex i based on (25) as

Wi(s) = ciλi

(

sP (Xi ≤ s) −
∫ s

0
P(Xi ≤ t) dt

)

, (27)

if the last inspection at vertex i was completed s time units ago.
A straightforward heuristic method for the patroller at a decision epoch is to

compute the index values based on the current state of each vertex and choose
to visit the vertex that has the highest index value. This method will produce
a feasible patrol pattern; however, it does not account for different travel times
between vertices. To solve this problem, we develop methods for the patroller to
look further ahead and compute aggregate index values before choosing which
vertex to visit next. When computing an aggregate index in our continuous-time
model, we consider the amount of time that different actions will take. To do so, we
select a fixed look-ahead time window δ and consider all feasible paths and partial
paths beginning from the patroller’s current vertex ω(s) that can be completed
during time δ. We call this the index heuristic time (IHT) method. A value for δ

is selected based on the structure of the graph and is discussed at the end of this
section.

To illustrate the IHT method, we select a look-ahead window δ and examine an
arbitrary patrol sequence over the next δ time units. For the time window [0, δ], let
Si(t), t ∈ [0, δ] denote the state of vertex i at time t . By definition, Si(0) = si and
Si(t) increases over time at slope 1 until the patroller next completes an inspection
at vertex i, when its value returns to 0. The aggregate index values accumulated at
vertex i over the time window [0, δ] can be written as

∫ δ

0
Wi(Si(t)) dt,∀ i ∈ N. (28)

For a given patrol sequence, the total index value for all n vertices over the time
window [0, δ] is

n∑

i=1

∫ δ

0
Wi(Si(t)) dt . (29)

To determine a patrol pattern using the IHT method, we select a starting state
of the system s0 and enumerate all possible paths over the next δ time units. We
compute the total aggregate index value for each of these paths using (29), and
choose the path with the highest aggregate index value per unit time. The first vertex
along that path becomes the vertex that the patroller inspects next. We repeat this
process using the new state of the system as the starting state, and continue to repeat

Optimal Patrol on a Graph Against Random and Strategic Attackers 229

the process to form a path of vertices. Recall that since the state space is finite, this
sequence must eventually visit some state for a second time. The process terminates
when a state repeats and a cycle has been found. The vertices corresponding to the
states of the system on this cycle is the patrol pattern that results from using the IHT
method.

In order to select a value for δ in the IHT method, we determine the average
transit time r between all vertices in the graph as

r =
∑n

i=1
∑n

j=1(dij + vj)

n2 . (30)

We then choose a look-ahead time window in terms of multiples of r . For example,
if we choose δ = 3r as a look-ahead window, then we are choosing an amount of
time that on average will allow the patroller to visit any sequence of three vertices
from his current vertex. We can choose a multiple of r more generally, such as n/2,
which will on average allow the patroller to look ahead over about half the vertices
in the graph from his current location. We make recommendations on how to select
specific values for δ based on our numerical experiments. These recommendations
are presented in Section 2.4.3.

Although we can choose any state from which to start the IHT method, for
consistency in our numerical experiments we identify the vertex that has the
maximum value of W(s) when s ≥ B, as defined in (26). We choose as s0 the
state of the system where this vertex has just completed an inspection and the state
of all other vertices is at the bounded attack time. In other words, we determine

k = arg max
i∈N

{ciλiE[Xi]}, (31)

and select as s0 the state where sk = 0 and sj = Bj , for j ∈ N, j �= k.

2.3.3 Index Heuristic Epoch Method

Instead of looking ahead for a fixed time period, as in the IHT method, we consider
another heuristic which looks ahead for a fixed number of decision epochs. We
call this the index heuristic epoch (IHE) method. To compute an aggregate index
using the IHE method, we select a number of decision epochs η for the patroller
to look ahead. The number η can be any positive integer value. For example, if we
choose η = 3 as a look-ahead window, the patroller considers all paths of three
vertices from his current vertex, since a decision epoch in our model occurs at the
end of each inspection. As with the IHE method, we choose the path with the highest
aggregate index value per unit time, and the first vertex along that path is the vertex
that the patroller inspects next. We can also choose the look-ahead window more
generally, such as η = ⌈

n
2

⌉
, which allows the patroller to look ahead over at least

half the vertices in the graph.

230 R. G. McGrath

We choose a starting state s0 for the IHE method using the same criteria as we did
for the IHT method. We enumerate all feasible paths from s0 that consist of exactly η

decision epochs and then proceed in the same manner as the IHT method described
in Section 2.3.2 to determine a path of vertices based on the highest aggregate index
value per unit time, until a patrol pattern has been obtained.

2.4 Numerical Experiments

To test the IHT and IHE methods, we conduct several numerical experiments.
We compare the results obtained from these heuristic methods with an optimal
solution. We also report the computation time required. Based on these results,
we make conclusions on the efficacy of the heuristic methods, as well as make
recommendations for the selection of look-ahead parameters to be used in both the
IHT and IHE methods.

As inputs for the problem, we use a probability vector (p1, . . . , pn) indicating
the likelihood of an attacker to choose to attack a specific vertex; an attack time
distribution parameter matrix; a vector (c1, . . . , cn) of the cost incurred due to a
successful attack at each vertex; a distance matrix D of the time it takes for a
patroller to travel between each pair of vertices; a vector (v1, . . . , vn) of the time
required for a patroller to conduct an inspection at each vertex; and an overall
attacker arrival rate Λ. Recall from Section 2.1 that an optimal solution does not
depend on the value of Λ; therefore, without loss of generality, we set the overall
attacker arrival rate to be Λ = 1 in our numerical experiments. We also set the cost
incurred from a successful attack to ci = 1, for i ∈ N , which allows the results to
be interpreted as the long-run proportion of attackers that will evade detection.

We consider three general cases of patrol problems. In the first case, which we
use as a baseline, the patroller spends about half of the time traveling and half
of the time inspecting vertices. For this case, we choose average travel times that
are comparable to average inspection times. In the second case, we choose average
inspection times that are twice as long as average travel times. In other words, each
vertex takes more time to inspect, but the vertices are closer together. In the third
case, we choose average travel times that are twice as long as average inspection
times. In other words, each vertex takes less time to inspect, but the vertices are
farther apart.

All computations are done on a 64-bit Windows 7 desktop computer (Intel Core
i7 860@2.8 GHz; 8.0 GB RAM). All linear programs that determine an optimal
solution or a lower bound are implemented using GAMS 23.8.2.

2.4.1 Generation of Problem Instances

We conduct our numerical experiments on a graph with n = 5 vertices, which is
a problem size that allows for the computation of an optimal solution. We choose

Optimal Patrol on a Graph Against Random and Strategic Attackers 231

parameters in order to generate and test cases where an optimal detection probability
is in the neighborhood of 0.5. This is the case where the development of a good
patrol policy can be most helpful.

To generate a random graph of n patrol locations for our experiments, let (Xi, Yi)

denote the Cartesian coordinate of vertex i, for i ∈ N , and draw Xi and Yi from
independent uniform distributions over [0, 1]. Letting dij denote the travel distance
between vertices i and j , we compute

di,j =
√

(Xi − Xj)2 + (Yi − Yj)2, ∀ i, j ∈ N. (32)

The expected value of di,j is E[dij] = 0.5215 and the variance of di,j is Var(dij) =
0.0615.

Based on this average distance and variance, we generate an inspection time
at each vertex by drawing from a uniform distribution over [0.3857, 0.6573].
This distribution gives an expected inspection time of E[vi] = 0.5215, which
is comparable to the average travel time between vertices. The variance of the
inspection times is 0.00615, which is approximately 1/10 of the variance of the
vertex distance values. We choose these parameters in order to prevent very small
inspection times at vertices, which could lead to excessively large state spaces and
prevent the computation of an optimal solution.

For the attack time at each vertex, we use a triangular distribution. A triangular
distribution requires three parameters: lower limit (minimum) a, upper limit
(maximum) b, and mode c, where a < b and a ≤ c ≤ b. We generate values
for (a, b, c) independently from a uniform distribution over [1.043, 4.172]. This
distribution gives a minimum attack time that is comparable to the average travel
time between any two vertices plus the inspection time at the second vertex, which
in this case is 0.5215 × 2 = 1.043. The expected value of this distribution is
comparable to the time required for a patroller to travel and complete inspections
over approximately half of the vertices in the graph, which for the case of n = 5
is 1.043 × 5/2 = 2.6075. From this minimum and expected value, we determine a
maximum attack time for use in our experiments as 2 × 2.6075 − 1.043 = 4.172.
More generally, we can generate attack time distribution parameters from a uniform
distribution on [1.043, 1.043(n − 1)] for problems with any number of vertices
n > 2.

For the likelihood of an attacker to choose a vertex to attack, we create a
probability vector (p1, . . . , pn). We spread 0.5 of the total attack probability equally
across all n vertices and then randomly assign the remaining 0.5 probability. This
ensures that the minimum probability of attack at any vertex is 0.5/n, which
will encourage a patrol policy that visits many or all of the vertices rather than
completely excluding one or several vertices simply due to a low probability of
attack. To create this vector, we generate n uniform random variables ui on U[0, 1]
and then normalize them so that pi = (0.5/n)+(0.5ui/

∑n
j=1 uj), for i ∈ N . In our

experiments with n = 5, this ensures that each vertex has at least a 0.1 probability
of selection for attack and no more than a 0.6 probability.

232 R. G. McGrath

2.4.2 Baseline Problems

For our baseline problem, we consider the case where a patroller spends about half
of the time traveling and half of the time inspecting vertices. We randomly generate
1000 problem scenarios and determine an optimal solution using the RALP from
Section 2.2 and a solution using the heuristic methods from Section 2.3. The RALP
on average uses 5920 decision variables and 7105 constraints for a problem size with
1184 states. An optimal solution takes on average 20.68 s to compute. We compare
the solution obtained from the heuristic method to an optimal solution. For the look-
ahead depth parameter δ used in the IHT method, we chose an initial value of δ =
(n/2)r , with r defined in (30) as the average transit time between vertex pairs in
each problem instance. For n = 5, this starting value is δ = 2.5r . We also test
additional parameter values by increasing and decreasing the look-ahead depth in
0.5r increments.

As the IHT method looks further ahead, the computation time increases due to
the higher number of paths that must be considered. Performance does not always
improve when using deeper looks, and in many cases it may be worse. Two different
look-ahead parameter values, 2.5r and 3r in the IHT method, for example, may
return the same patrol pattern or two distinct patrol patterns with different long-run
cost rates. If the same problem is solved using multiple look-ahead parameters, we
select the best solution that is obtained.

We consider single look-ahead parameter values and also consider sets of
multiple look-ahead values in our numerical experiments. For the sets of multiple
look-ahead values, we run the selected heuristic method for each individual value
and then choose the patrol policy that yields the minimum cost, regardless of which
specific look-ahead parameter produced that policy. This method tends to improve
overall performance, but with a proportional increase in computation time based on
the number and size of the look-ahead parameter values.

Results for the IHT method are shown in Table 2. When using a single look-ahead
depth parameter, the best performance, as determined by the smallest excess over
optimum for the mean and 90th percentile of problem instances, is obtained with a
look-ahead time value of δ = 2.5r . For the hybrid method of using up to three look-
ahead parameters and then choosing the best patrol pattern, the best performance
using similar criteria is obtained with a look-ahead depth set of {2r, 2.5r, 3r}.

We repeat the same experiments using the IHE method. For the look-ahead depth
parameter η used in the IHE method, we chose an initial value of η =
n

2 �. For
n = 5 this starting value is η = 3. This indicates that, at each decision epoch, the
patroller will consider all possible paths consisting of three decision epochs. We test
additional IHE depth parameter values by increasing and decreasing the look-ahead
depth in η = 1 increments.

The IHE method is like the IHT method in that, as it looks further ahead,
computation time increases due to the higher number of paths that must be
considered. Similarly, the performance does not always improve when using deeper
looks. For this reason, we test the IHE method using single look-ahead parameters
and also using the hybrid method of comparing the results from multiple look-ahead
parameters and selecting the best solution. Results are shown in Table 3. When

Optimal Patrol on a Graph Against Random and Strategic Attackers 233

Table 2 Performance of the IHT method on a complete graph with n = 5 vertices for 1000
randomly generated problem scenarios with average inspection times comparable to average travel
times, using the best solution that was obtained in each problem scenario for the indicated look-
ahead depth parameter sets

Percent over optimum

IHT look-ahead depth (δ) Mean 50th 75th 90th Time (s)

2r 3.31 0.38 4.13 8.65 2.19

2.5r 1.22 0.00 1.60 3.60 2.47

3r 1.36 0.00 1.34 5.51 3.64

3.5r 1.88 0.00 2.03 6.52 6.75

4r 3.26 1.24 5.61 7.96 18.22

{2r, 3r} 0.55 0.00 0.23 1.56 5.83

{2.5r, 3r} 0.62 0.00 0.49 2.15 6.11

{2r, 2.5r, 3r} 0.49 0.00 0.20 1.38 8.30

{2.5r, 3r, 3.5r} 0.49 0.00 0.23 1.39 12.86

{3r, 4r} 1.11 0.00 1.07 4.26 21.86

{2r, 3r, 4r} 0.54 0.00 0.23 1.56 24.05

Mean, 50th, 75th, and 90th percentile performance is indicated as the percentage excess over an
optimal solution

Table 3 Performance of the IHE method on a complete graph with n = 5 vertices for 1000
randomly generated problem scenarios with average inspection times comparable to average travel
times, using the best solution that was obtained in each problem scenario for the indicated look-
ahead depth parameter sets

Percent over optimum

IHE look-ahead depth (η) Mean 50th 75th 90th Time (s)

2 12.72 11.25 18.48 23.33 3.22

3 3.09 0.67 5.33 7.60 2.76

4 1.62 0.24 2.41 5.61 3.78

5 2.81 1.14 3.90 7.98 11.25

{2, 3} 2.87 0.28 4.32 7.36 5.98

{3, 4} 1.04 0.00 0.95 4.32 6.54

{2, 3, 4} 0.97 0.00 0.92 3.85 9.76

{4, 5} 1.30 0.00 1.49 4.36 15.03

{3, 4, 5} 0.89 0.00 0.63 3.68 17.79

{2, 3, 4, 5} 0.89 0.00 0.63 3.68 21.01

Mean, 50th, 75th, and 90th percentile performance is indicated as the percentage excess over an
optimal solution

using a single look-ahead depth parameter, the best performance, as determined
by the smallest excess over optimum for the mean and 90th percentile of problem
instances, is obtained with a decision epoch look-ahead value of η = 4. For the
hybrid method of running the IHE method with several look-ahead parameters and
then choosing the best patrol pattern, the best performance, as determined by a
comparison of the excess over optimum and computation time required, is obtained
using look-ahead depth sets of {2, 3, 4} and {3, 4, 5}.

234 R. G. McGrath

Fig. 1 IHT and IHE 90th percentile performance with average travel times comparable to average
inspection times

Performance of the IHT and IHE methods in the baseline case with a single
look-ahead parameter is presented in Figure 1. This figure shows a comparison of
performance versus computation time required for different heuristic methods and
look-ahead parameters. Although both methods perform well in the experiments,
we tend to see better performance using the IHT method in the single look-ahead
parameter cases.

In an effort to obtain the best possible results, we also use a hybrid set of look-
ahead depth parameters that combine both the IHT and IHE methods. We selected
various combinations of parameters based on the results from the individual IHT and
IHE experiments. Results are shown in Table 4. Very good performance is obtained
with a hybrid IHT look-ahead set of {2r, 2.5r, 3r} and the performance improves
when incrementally adding IHE look-ahead parameters.

Performance of the combined IHT and IHE methods in the baseline case for
different look-ahead depth parameters is presented in Figure 2. This figure shows a
comparison of performance versus computation time required for different hybrid
combinations of heuristic methods and look-ahead parameters. Both methods again
perform well in the experiments, but we tend to see better performance using the
IHT method in the hybrid set look-ahead cases, similar to the results from the single
look-ahead parameter cases.

Optimal Patrol on a Graph Against Random and Strategic Attackers 235

Table 4 Performance of combined IHT and IHE methods on a complete graph with n = 5 vertices
for 1000 randomly generated problem scenarios with average inspection times comparable to
average travel times, using the best solution that was obtained in each problem scenario for the
indicated look-ahead depth parameter sets

IHT(δ) and IHE(η) Percent over optimum

look-ahead depth set Mean 50th 75th 90th Time (s)

{IHT(2.5r), IHE(3)} 0.88 0.00 0.95 3.45 5.18

{IHT(2.5r), IHE(4)} 0.61 0.00 0.49 2.12 6.19

{IHT(2r, 2.5r, 3r)} 0.49 0.00 0.20 1.38 8.30

{IHE(2, 3, 4)} 0.97 0.00 0.92 3.85 9.67

{IHT(2.5r, 3r), IHE(3, 4)} 0.42 0.00 0.15 1.30 12.65

{IHT(2r, 2.5r, 3r), IHE(2, 3, 4)} 0.30 0.00 0.00 0.92 17.89

Mean, 50th, 75th, and 90th percentile performance is indicated as the percentage excess over an
optimal solution

Fig. 2 IHT and IHE hybrid 90th percentile performance with average travel times comparable to
average inspection times

2.4.3 Recommendations Based on Numerical Experiments

We see very favorable results using the IHT and IHE methods with many combina-
tions of look-ahead parameters. In general, we have found that looking ahead over
about half of the graph structure provides a good balance of performance versus
computation time required. We recommend choosing look-ahead depth parameter
values as a function of n, which represents the number of vertices that are assigned
to a patroller.

236 R. G. McGrath

Table 5 Prioritized heuristic
methods and look-ahead
depth parameters

Heuristic method and look-ahead depth parameter

1 IHT
(

n
2 r

)

2 IHT
(

(n+1)
2 r

)

3 IHT
(

(n−1)
2 r

)

4 IHE
(
 n

2 �)

5 IHE
(
 n

2 � + 1
)

6 IHE
(
 n

2 � − 1
)

Table 6 Performance of the
IHT and IHE methods on a
complete graph with n = 5
vertices for 1000 randomly
generated problem scenarios
with average inspection times
comparable to average travel
times, using the best solution
that was obtained in each
problem scenario for the
indicated look-ahead depth
parameter sets

Percent over optimum

Heuristic set Mean 50th 75th 90th Time (s)

1 1.22 0.00 1.60 3.60 2.47

2 0.62 0.00 0.49 2.15 6.11

3 0.49 0.00 0.20 1.38 8.30

4 0.37 0.00 0.01 1.29 10.96

5 0.30 0.00 0.00 0.92 14.67

6 0.30 0.00 0.00 0.92 17.89

Mean, 50th, 75th, and 90th percentile performance is
indicated as the percentage excess over an optimal solu-
tion when using prioritized hybrid look-ahead depth sets
as indicated. Mean time to compute an optimal solution
is 20.68 s

Based on the experimental results, we recommend starting with the IHT method
and using a look-ahead depth parameter value of δ = (n/2) × r , where r represents
the average transit time in the graph. We then recommend adding additional looks
using the hybrid method and selecting the best solution that is obtained. The total
number of look-ahead depth parameters to use depends on the desired accuracy
of a solution and computation time to be expended. Specifically, we recommend
six prioritized look-ahead parameter values, each with a corresponding heuristic
method, as presented in Table 5.

In a problem with n = 5, for example, after executing the heuristic method using
IHT(2.5r) we would next use IHT(3r) and then continue in a similar manner until
completing the desired number of looks. The IHE method is introduced at the fourth
iteration of the heuristic method in order to complement the results obtained from
using the IHT method.

We test the prioritized look-ahead depth parameter set method using the baseline
problem case. Results are presented in Table 6. The results indicate a steady
improvement in performance, along with a corresponding increase in computation
time required, as the number of looks increases. We observe that the heuristic
method will return an optimal solution in at least half of the problem instances when

Optimal Patrol on a Graph Against Random and Strategic Attackers 237

Fig. 3 Combined IHT and IHE 90th percentile hybrid performance with average travel times
comparable to average inspection times, using prioritized heuristic methods and look-ahead depth
parameter sets

using a single look-ahead parameter IHT(2.5r). The heuristic method will return a
solution that is within 0.01 percent of optimal in at least 75 percent of the problem
instances when using the fourth look-ahead set {IHT(2r, 2.5r, 3r), IHE(3)}. Finally,
we observe that the heuristic method will return a solution that is within 1 percent
of optimal in at least 90 percent of the problem instances when using the fifth look-
ahead set, {IHT(2r, 2.5r, 3r), IHE(3,4)}.

These results are also presented in Figure 3 to show the rate of improvement
of the prioritized hybrid look-ahead depth sets as computation time increases. We
observe the best rate of improvement in performance as a function of computation
time required through the third look-ahead depth set {IHT(2r, 2.5r, 3r)}. We test
these recommendations further using several additional problem cases.

2.4.4 Sensitivity Analysis

In addition to the baseline problems, we consider the case where a patroller needs
to spend more time conducting inspections than he does traveling between vertices
and the case where the patroller needs to spend more time traveling between vertices
than he does conducting inspections. The problem cases considered in the numerical
experiments are summarized in Table 7.

238 R. G. McGrath

Table 7 Summary of numerical experiments for random attackers

Parameter Case I Case II Case III Case IV Case V

Travel time 1× 1× 1× 2× 2×
Inspection time 1× 2× 2× 1× 1×
Attack time 1× 1.5× 1× 1.5× 1×
Mean travel time 0.5125 0.5125 0.5125 1.0430 1.0430

Mean inspection time 0.5125 1.0430 1.0430 0.5125 0.5125

Mean transit time 1.0430 1.5645 1.5645 1.5645 1.5645

Mean bounded attack time 3.2537 4.8805 3.2537 4.8805 3.2537

Mean number of states, |Ω| 1184 633 102 3938 318

Mean number of decision variables 5920 3165 510 19,690 1590

Mean number of constraints 7105 3799 613 23,674 1909

Mean optimal long-run cost 0.3921 0.4200 0.5679 0.4617 0.5198

Mean optimal computation time (s) 20.68 4.99 0.11 574.85 2.11

For the case where the average inspection times are longer than average travel
times, we double the inspection times in the problem scenarios and run the
experiment using both the linear programming and heuristic methods. We conduct
these experiments with the original attack time distributions and also adjust the
attack distributions as a separate case to maintain an overall probability of detection
rate of approximately 0.5. We do this by increasing the attack time distribution
parameters at each vertex by a factor of 1.5. The rest of the problem scenario
parameters remain the same.

For the case where the average travel times are longer than average inspection
times, we double the travel times in the problem scenarios and the run the
experiment using both the linear programming and heuristic methods. We use the
same original and adjusted attack distributions at each vertex that were used in the
cases of increased inspection times as described above. The rest of the problem
scenario parameters remain the same. Case I, the baseline case, had the lowest long-
run cost on average. Case III generated the smallest number of states and had the
highest long-run cost on average. Case IV generated the largest number of states on
average.

Results for problem cases II through V using the prioritized look-ahead param-
eter sets from Section 2.4.3 are presented in Table 8. In each of these problem
cases, very favorable results were obtained using the recommended method of
incrementally increasing the heuristic method and look-ahead parameter sets.
We note that the heuristic performed slightly better in problem cases involving
shorter travel times. The average computation time required in each case increases
significantly as the average size of the state space grows. We particularly note
this for problem Case IV, which had an average state space approximately three
times larger than the baseline case, but required computation times that were
approximately 25 times greater.

Optimal Patrol on a Graph Against Random and Strategic Attackers 239

Table 8 Performance of IHT and IHE methods for problem cases as indicated in Table 7, using
prioritized look-ahead depth parameter sets

Optimal solution
time (s)

Heuristic
set

Percent over optimum Heuristic
solution time (s)Case Mean 50th 75th 90th

I 20.68 See Table 6

II 4.99 1 0.69 0.00 0.81 2.25 0.84

2 0.35 0.00 0.13 1.47 1.95

3 0.29 0.00 0.00 1.10 2.66

4 0.26 0.00 0.00 0.84 3.45

5 0.15 0.00 0.00 0.52 4.91

6 0.14 0.00 0.00 0.36 5.68

III 0.11 1 0.99 0.00 0.94 2.99 0.09

2 0.70 0.00 0.64 2.38 0.75

3 0.41 0.00 0.01 1.31 0.81

4 0.41 0.00 0.01 1.31 0.87

5 0.35 0.00 0.00 1.12 1.08

6 0.18 0.00 0.00 0.35 1.12

IV 574.85 1 2.03 0.01 2.48 6.90 51.12

2 0.61 0.00 0.50 2.09 164.94

3 0.41 0.00 0.01 1.21 203.11

4 0.41 0.00 0.01 1.21 267.43

5 0.39 0.00 0.00 0.82 320.75

6 0.39 0.00 0.00 0.82 403.52

V 2.11 1 2.44 0.00 2.02 7.15 0.49

2 1.06 0.00 0.67 3.97 1.96

3 0.53 0.00 0.02 1.12 2.21

4 0.44 0.00 0.00 0.96 2.43

5 0.41 0.00 0.00 0.86 2.97

6 0.41 0.00 0.00 0.86 3.18

Performance is indicated as the percentage excess over an optimal solution

In general, the heuristic returns a solution within 0.01 percent of optimal in at
least half of the problem instances using a single look-ahead parameter, IHT(2.5r).
The heuristic returns a solution within 0.01 percent of optimal in at least 75
percent of the problem instances using the third look-ahead set, {IHT(2r, 2.5r, 3r)}.
Finally, we observe that the heuristic returns a solution within 1 percent of optimal
in at least 90 percent of the problem instances using the sixth look-ahead set,
{IHT(2r, 2.5r, 3r), IHE(2, 3, 4)}. We also note in certain problem cases that this
method may require more computation time than what is required to determine an
optimal solution using the RALP.

240 R. G. McGrath

3 Single Patroller Against Strategic Attackers

We consider the case of a single patroller against strategic attackers. Section 3.1
introduces a patrol model on a graph, where an attacker will actively choose a
location to attack in order to incur the highest cost. In Section 3.2, we present a
linear program that determines an optimal solution to the patrol problem. Since
the linear program quickly becomes computationally intractable as the size of the
problem grows, we also present heuristic methods for determining a solution in
Section 3.3. In Section 3.4, we present a method to compute a lower bound for
an optimal solution, which allows us to evaluate the heuristic methods when an
optimal solution is unavailable. We conduct extensive numerical experiments for
several scenarios and present the results in Section 3.5. We make recommendations
on how to best utilize the heuristic methods based on the experimental results.

3.1 Patrol Model

We consider a patrol model similar to the random-attacker model presented in
Section 2.1, except that in this case, an attacker will actively choose which vertex to
attack in order to incur the highest expected cost. In other words, the attacker and the
patroller play a simultaneous-move two-person zero-sum game where the attacker
is trying to maximize the cost incurred due to a successful attack and the patroller
is trying to minimize it. The patroller chooses how to patrol the graph while the
attacker chooses which vertex to attack. Except for trivial cases, an optimal strategy
for either player in a two-person zero-sum game is often a mixed strategy, which is
a probability distribution on the set of a player’s pure strategies [17].

To formulate this problem, we modify the model that was used for the random-
attacker case in Section 2. Recall from (16) that for a given patrol policy π , Vi(π)

is the long-run cost rate at vertex i. While the attacker is trying to maximize the
expected cost incurred by choice of vertex to attack, the patroller is simultaneously
trying to minimize it by choice of patrol policy. The patroller’s objective function in
this two-person zero-sum game against a strategic attacker is

min
π∈ΠR

max
i∈N

Vi(π)

λi

, (33)

where ΠR is the set of randomized patrol policies.

Optimal Patrol on a Graph Against Random and Strategic Attackers 241

3.2 Optimal Policy

It is possible to determine an optimal solution to this problem by formulating
and solving a linear program. Recall the linear program from Section 2.2.1 that
was used to find an optimal solution for the case of random attackers, where the
objective function represented the overall long-run cost rate. In the case of strategic
attackers, the objective is to minimize the largest expected cost per attack across
each individual vertex, rather than the overall long-run cost rate for the entire graph.

To solve this problem, we again use the directed graph of the state space
G(N ,A), where each node k ∈ N represents one state of the system and each
arc (k, l) ∈ A represents a feasible transition between states. Each arc is assigned
a transit time tkl as determined by the vertex-pair specific distance and inspection
times, where tkl = τ(k, ω(l)). Each arc is also assigned cost data that represents the
expected cost incurred at each vertex when the system transitions from state k to
state l. We write c

(i)
kl as the expected cost incurred at vertex i for the state pair (k, l),

as determined by (9), for i ∈ N .
If xkl represents the long-run fraction of time that arc (k, l) is utilized during the

patrol pattern, the long-run cost rate at vertex i is

∑

(k,l)∈A
c
(i)
kl xkl . (34)

Dividing this total by the arrival rate of attackers at vertex i, we can define the zero-
sum game between the patroller and strategic attacker as

min
x

max
i∈N

∑

(k,l)∈A

c
(i)
kl xkl

λi

. (35)

Note that c
(i)
kl xkl scales proportionately with λi , so the long-run average cost at

vertex i does not depend on the value of λi . Hence, we let λi = 1, for all i ∈ N .
To determine an optimal solution for the strategic-attacker problem, we modify

the linear program in Section 2.2.1 to minimize the largest long-run average cost per
attack among all vertices, which we refer to as the strategic-attacker linear program
(SALP):

min
x

zOPT (36a)

subject to
∑

(k,l)∈A
c
(i)
kl xkl ≤ zOPT,∀ i ∈ N (36b)

∑

l|(k,l)∈A
xkl −

∑

l|(l,k)∈A
xlk = 0,∀ k ∈ N (36c)

242 R. G. McGrath

∑

(k,l)∈A
tklxkl = 1, (36d)

xkl ≥ 0,∀ (k, l) ∈ A . (36e)

In an optimal solution, the positive values of xkl indicate the arcs that belong to the
cycle with the lowest total cost per unit time. The states on these cycles directly
correspond to vertices on the graph, which can be determined by the function ω(s).
Therefore, an optimal mixed strategy patrol policy can be determined. For each
state of the system, the patrol policy specifies the probability that the patroller will
choose to move to each vertex. We map the solution from the linear program to a
patrol policy using

pkl = xkl
∑

l|(k,l)∈A xkl

, for
∑

l|(k,l)∈A
xkl > 0, (37)

where pkl is the probability that the patroller will choose to next go to vertex ω(l)

when the system is in state k.
As the problem size grows, it quickly becomes computationally intractable to use

this method. Therefore, there is a need for efficient heuristic policies.

3.3 Heuristic Policies

In this section, we consider heuristics to determine a strategy for the patroller. This
method introduces a different kind of randomized strategy, by letting the patroller
choose a patrol pattern from a predetermined set and repeat the patrol pattern
indefinitely.

For the patrol problems we consider, there are an infinite number of feasible
patrol patterns. As it would be impossible to consider an infinite number of patrol
patterns, we propose a heuristic method to define a finite set of patrol patterns from
which the patroller can select a mixed strategy. If it were possible to consider every
feasible patrol pattern, then this method would find an optimal solution. Similarly,
if we consider a finite subset of all the feasible patrol patterns, such that all patrol
patterns that are part of an optimal solution are elements of that subset, then this
method would also find an optimal solution.

We develop strategy reduction techniques that allow us to consider a comprehen-
sive, but reasonable, number of patrol patterns for use in this heuristic method. To do
so, we create a finite set S of feasible patrol patterns, ideally with elements that are
identical or very similar to the patrol patterns that are part of an optimal solution. In
the best case, S would contain all patrol patterns that are part of an optimal solution.

Once we determine a finite set of patrol patterns, S = {ξ1, ξ2, . . . , ξm}, we
formulate a different two-person zero-sum game between the attacker and the
patroller in a standard matrix form. In this game matrix, row i corresponds to

Optimal Patrol on a Graph Against Random and Strategic Attackers 243

the attacker choosing to attack vertex i and column j corresponds to the patroller
choosing patrol pattern ξj , for i ∈ N and j = 1, . . . , m. A linear program can then
be formulated to solve this two-person zero-sum matrix game [22]. The solution to
this game will provide a mixed strategy for both the attacker and the patroller, and
the value of the game will be the expected cost due to an undetected attack.

3.3.1 Patrol Cost Determination

For any feasible patrol pattern, we can determine the expected cost incurred at each
vertex due to an undetected, and therefore successful, attack. We denote the expected
cost at vertex j by ρj . These expected costs are used to populate the game matrix
used in the heuristic method. There are three cases to consider when computing the
expected cost at a vertex, which are based on the structure of the patrol pattern.

Case one occurs if the patrol pattern never visits vertex j . In this case, the
expected cost for an attack on vertex j is cj , due to the fact that if the attacker
chooses to attack vertex j then the attack will always succeed. Thus,

ρj = cj . (38)

Case two occurs if the patroller visits vertex j exactly once during a patrol pattern
of total time length τ . Recall from Section 2.2 that we can compute the expected
number of successful attacks at vertex j when vertex j is inspected once every τ

time units as

λj

∫ τ

0
Fj (τ − t) dt = λj

∫ τ

0
Fj (s) ds . (39)

Divide this by the expected number of attackers that will arrive at vertex j during
time interval τ , which is λj τ , to determine the probability of a successful attack:

λj

∫ τ

0 Fj (s) ds

λj τ
=

∫ τ

0 Fj (s) ds

τ
. (40)

The expected cost at vertex j will therefore be the cost of a successful attack cj

times the probability of a successful attack:

ρj = cj

∫ τ

0 Fj (s) ds

τ
. (41)

Case three occurs if the patroller visits vertex j two or more times during the
patrol pattern. In this case, we break the patrol pattern into intervals based on each
time the patroller returns to the vertex. If a patroller visits the vertex m ≥ 2 times
during a patrol pattern of total time length τ , we define t1 as the time interval
between the m-th (final) visit and the first visit to the vertex. The second interval t2

244 R. G. McGrath

is the time between the first and second visit. The last interval tm is the time between
visit m − 1 and visit m. We compute the expected number of successful attacks at
the vertex during each interval and divide that sum by the time to complete a full
patrol cycle τ . Thus, the probability of a successful attack at vertex j , with m ≥ 2
visits to vertex j , during a patrol pattern of total length τ = t1 + t2 + · · · + tm is

λj

∫ t1
0 Fj (s) ds + · · · + λj

∫ tm
0 Fj (s) ds

λj τ

=
∫ t1

0 Fj (s) ds + · · · + ∫ tm
0 Fj (s) ds

τ
, (42)

and the expected cost is

ρj =
cj

(∫ t1
0 Fj (s) ds + · · · + ∫ tm

0 Fj (s) ds
)

τ
. (43)

3.3.2 Selection of Patrol Patterns

We consider two groups of patrol patterns to include in S. The first group is a
combinatorial selection of patrol patterns based on the shortest Hamiltonian cycle
in the graph. The second group is determined through an iterative method based on
fictitious play.

3.3.3 Patrol Patterns Based on Shortest Path

Consider a case where the patroller chooses to use a single patrol pattern, or in other
words, he uses a pure strategy. He would likely choose a pattern that visited each
vertex at least once, since if he were to never visit a vertex, then an attack at that
vertex would always be successful and would incur the full cost. Furthermore, he
would likely try to minimize the time between inspections at each vertex.

To minimize the time between inspections at each vertex while visiting each
vertex at least once during the patrol pattern, the patroller will follow a shortest
Hamiltonian cycle in the graph. This patrol pattern is designated as the first element
in the set S and we refer to it as the shortest-path patrol pattern. Finding the
shortest-path patrol pattern is an example of solving a traveling salesman problem,
as described in Sect. 16.5 of Ahuja et al. [1], in which the vertices represent locations
that are subject to attack and the weight on each edge is the time required to travel
between those locations and complete an inspection at the arrival location.

From (41), the expected cost at vertex j using a shortest-path patrol pattern with
total transit time τ is

ρj = cj

∫ τ

0 Fj (s) ds

τ
,∀ j ∈ N. (44)

Optimal Patrol on a Graph Against Random and Strategic Attackers 245

If a patroller were to use this patrol pattern as a pure strategy against strategic
attackers, then the long-run cost of this policy is

V = max
j∈N

ρj , (45)

since an attacker will employ his own pure strategy of always choosing to attack the
vertex that incurs the highest cost.

Since we want to consider the option of a mixed strategy for the patroller, we
must add additional patrol patterns to S. We start by considering subsets of the
shortest-path patrol pattern. Specifically, we consider n additional patrol patterns,
which consist of the cycle where one vertex is skipped in the shortest-path patrol
pattern and the patroller proceeds to the next vertex in the sequence. These are good
patrol patterns to consider because they are consistent with the reasoning of using
the shortest-path patrol pattern to minimize time spent on traveling, but they can
also account for the heterogeneous qualities of potential attack locations. Due to
differences among vertices in attack time distributions Fi(·) or cost incurred due to
a successful attack ci , a patroller may want to use a mixed strategy that periodically
skips a visit to one or more vertices in order to occasionally direct more resources
toward other vertices.

As an example, if the shortest-path patrol pattern in a graph with n = 5 vertices
is {1 − 2 − 3 − 4 − 5−}, then the first subset of patrol patterns is

{2− 3− 4− 5−,

1− 3− 4− 5−,

1− 2− 4− 5−,

1− 2− 3− 5−,

1− 2− 3− 4−}.

For similar reasons, we also consider all paths of length n−2, where two vertices
are removed from the shortest-path patrol pattern. In our example, there will be(5

3

) = 10 of these patterns to consider:

{3− 4− 5−, 2− 4− 5−,

2− 3− 5−, 2− 3− 4−,

1− 4− 5−, 1− 3− 5−,

1− 3− 4−, 1− 2− 5−,

1− 2− 4−, 1− 2− 3−}.

We continue this process by removing vertices until all subsets of the shortest-path
patrol pattern that consist of only one vertex have been considered. For paths of
length greater than three, the sequence of vertices can be reordered as required, so
that the patroller will be utilizing the shortest Hamiltonian cycle within a particular
subgraph of vertices. The total number of patrol patterns considered when using
this method is 2n − 1. We refer to this set of patterns as the shortest-path (SP) patrol
patterns.

246 R. G. McGrath

In addition to the shortest-path patrol pattern and its subsets, we consider patrol
patterns where the patroller chooses one vertex to visit twice during his patrol while
visiting each remaining vertex only once. Ideally, we would choose the time for a
revisit to a vertex in the patrol pattern such that the time between inspections is
as close to even as possible. To determine these patterns, we continue to use the
shortest-path patrol pattern as a baseline and insert a revisit to each vertex at all
possible points in the pattern, such that the patroller does not complete a revisit to a
vertex immediately after completing an inspection at that vertex. Using this method,
we will consider an additional n(n − 2) patrol patterns. We refer to this set of patrol
patterns as the shortest-path with one revisit (SPR1) patrol patterns.

To continue the example from above, for a graph with n = 5 vertices and
shortest-path patrol pattern {1 − 2 − 3 − 4 − 5−}, the SPR1 set would consist
of the following additional 15 patrol patterns:

{1− 2− 1− 3− 4− 5−,

1− 2− 3− 1− 4− 5−,

1− 2− 3− 4− 1− 5−,

1− 2− 3− 2− 4− 5−,

1− 2− 3− 4− 2− 5−,

1− 2− 3− 4− 5− 2−,

1− 3− 2− 3− 4− 5−,

1− 2− 3− 4− 3− 5−,

1− 2− 3− 4− 5− 3−,

1− 4− 2− 3− 4− 5−,

1− 2− 4− 3− 4− 5−,

1− 2− 3− 4− 5− 4−,

1− 5− 2− 3− 4− 5−,

1− 2− 5− 3− 4− 5−,

1− 2− 3− 5− 4− 5−}.

Similarly, we can continue this method of generating additional patrol patterns
based on the shortest-path patrol pattern by allowing multiple revisits to a vertex. We
consider the case of the shortest path with two revisits (SPR2) by starting with the
SPR1 patrol patterns and, for each of these patrol patterns, conducting an additional
visit to each vertex. We consider paths that revisit all combinations of two vertices,
including two revisits to the same vertex, such that there are no immediate revisits
to any vertex.

The number of patrol patterns that are generated for a particular number of
revisits is based on the number of vertices n in the graph. For the case of two revisits,
such as in the SPR2 method, there are an additional n(n − 2)[(n − 1)(n − 1) +
(n − 3)] patrol patterns to consider. The SPR3 method follows a similar process
by conducting revisits to all combinations of three vertices such that there are no
immediate revisits to any vertex. The length of the patrol patterns and the size of the
sets that are generated in each of these methods are summarized in Table 9.

Optimal Patrol on a Graph Against Random and Strategic Attackers 247

Table 9 Shortest path patrol pattern sets

Path generation method Length Number of patterns

Shortest path (SP) ≤ n 2n − 1

Shortest path with one revisit (SPR1) n + 1 n2 − 2n

Shortest path with two revisits (SPR2) n + 2 n4 − 3n3 + 4n

Shortest path with three revisits (SPR3) n + 3 n6 − 3n5 − 5n4 + 19n3 − 20n

Table 10 Example numbers of shortest-path patrol patterns

Pattern set n = 5 n = 6 n = 7 n = 10 n = 11 n = 12

SP 31 63 127 1023 2047 4095

SPR1 15 24 35 80 99 120

SPR2 270 672 1400 7040 10,692 15,600

SPR3 5400 20,832 61,600 668,800 1,240,272 2,168,400

A summary of representative patrol pattern sizes for the type of problems that
we consider is presented in Table 10. As revisits are increased to four and beyond,
there are very large increases in the number of patrol patterns without much further
improvement in performance.

3.3.4 Patrol Patterns Based on Fictitious Play

We consider an additional group of patrol patterns that are generated using fictitious
play as described by Robinson [19]. She shows that an iterative method can be used
to generate mixed strategies in a two-person zero-sum game that will converge to
an optimal solution. In this iterative method of play, each player arbitrarily chooses
a pure strategy in the first round. In subsequent rounds, each player chooses a pure
strategy that will produce the best expected value against the mixture of strategies
used by the other player in all the previous rounds.

We compute the attacker’s mixed strategy (p1, . . . , pn) based on the mixture of
strategies used by the patroller in the previous rounds. Based on that probability
vector, we can use the IHT and IHE heuristic methods from the random-attacker
case presented in Section 2 to generate a new patrol pattern for the patroller. The
following algorithm is adapted from Lin et al. [15]:

1. In round 1, each player picks a strategy.

a. Denote by ξ (d) the patrol pattern used by the patroller in round d. Choose ξ (1)

to be the shortest-path patrol pattern.
b. Let the attacker pick the vertex j that has the highest cost in the shortest-path

patrol to attack. Use ri , for i ∈ N , to keep track of the number of times vertex
i is picked by the attacker. Initialize rj = 1 and ri = 0, for i ∈ N, i �= j .

2. Repeat the following steps for the predetermined number of rounds, ν. In round
d ≥ 2,

248 R. G. McGrath

a. Set pi = ri/
∑n

k=1 rk , which represents the attacker’s mixed strategy based
on his attack history from rounds 1 to d−1. Use the random-attacker heuristic
method to generate a patrol pattern ξ (d).

b. Find the best vertex for the attacker to attack by assuming the patroller uses
patrol pattern ξ (j), j = 1, . . . , (m − 1), each with probability 1/(m − 1). If
attacking vertex i yields the highest expected cost, set ri ← ri + 1.

Thus, we can generate two groups of patrol patterns for use in the strategic-
attacker heuristic method: the shortest-path patrol pattern and its associated derived
patrol patterns, and a set of patrol patterns determined by an iterative method using
fictitious play. The heuristic method in the case of fictitious play will have two
parameters, the set L of look-ahead depth parameters to be used with the IHT and
IHE methods, and the number of iterations of fictitious play, ν.

For a graph with n vertices, we generate 2n − 1 + n(n − 2) patrol patterns in
the first group when using the SP and SPR1 patrol pattern sets. In the second group
we generate up to |L| × ν patrol patterns. The actual number of patrol patterns
considered in the problem is often much smaller than [2n +n2 −2n−1]+[|L|×ν],
since many of the patrol patterns generated during the fictitious-play algorithm will
be identical or will produce identical performance.

3.4 Lower Bound

When an optimal solution cannot be determined due to the size of a problem, it is
valuable to have a way to evaluate a heuristic solution. For this purpose, we provide
a method to compute a lower bound for an optimal solution in the strategic-attacker
problem. This is a modification of the discrete-time method presented in Lin et
al. [15] for our continuous-time problem.

To determine a lower bound for an optimal solution, we formulate a linear
program. We define yir as the rate at which an inspection is completed at vertex
i, with the last inspection at that vertex having been completed exactly r time units
ago.

For example, consider a patrol pattern of total length τ = 17 where inspections
are completed at vertex 1 at times 2 − 5 − 7 − 10 − 14 − 17. The times between
inspections are 2 − 3 − 2 − 3 − 4 − 3. The inspection rates at vertex 1 using this
patrol pattern are y12 = 2/17, y13 = 3/17, and y14 = 1/17. It follows that there
is a total inspection rate constraint for any vertex i that is inspected during a patrol
pattern:

∞∑

r=1

yir r = 1. (46)

If a vertex is not visited at all during a patrol pattern, then the total inspection rate
at that vertex will be 0. Therefore, in order to create a total-rate constraint for all
vertices and all patrol policies, we use

Optimal Patrol on a Graph Against Random and Strategic Attackers 249

Table 11 Example case of
time-interval inspections

q Interval Inspections

1 [0, 1.2) 0

2 [1.2, 2.4) 2

3 [2.4, 3.6) 3

4 [3.6, 4.8) 1

5 [4.8, 6.0) 0

6 [6.0, 7.2) 0

7 [7.2, 8.4) 0

8 [8.4, ∞) 0

∞∑

r=1

yir r ≤ 1,∀ i ∈ N. (47)

Since we consider this problem in continuous time, we must modify the definition
of the inspection rate in order to use it as a variable in a linear program. Recall that
the attack time at vertex i is bounded by Bi . We divide the time interval [0, Bi] at
vertex i into m equal length subintervals. We then define an inspection rate yiq , for
q = 1, . . . , (m − 1), as the rate at which vertex i is inspected with the previous

inspection having been completed at time in
[

(q−1)Bi

m
,

qBi

m

)
, and yim as the rate at

which vertex i is inspected with the previous inspection having been completed at
least (m−1

m
)Bi time units ago.

Again consider the example of a patrol pattern of total length τ = 17 where
inspections are completed at vertex 1 at times 2 − 5 − 7 − 10 − 14 − 17. Suppose
that B1 = 9.6 and we choose m = 8. Table 11 indicates the number of inspections
that are completed in each time interval.

Thus, the inspection rates yiq at vertex i = 1 for this patrol pattern are y12 =
2/17, y13 = 3/17, y14 = 1/17, and y11 = y15 = y16 = y17 = y18 = 0.

Since the inspection times are broken into m discrete-time intervals, the identity
in (47) becomes

m∑

q=1

yiq

(q − 1)Bi

m
≤ 1,∀ i ∈ N. (48)

We now focus on a single vertex in order to quantify the long-run cost at that
vertex. Define Ri(t) as the expected cost that can be avoided for completing an
inspection at vertex i if the previous inspection was completed t time units ago.
This is equivalent to the expected number of ongoing attacks at vertex i at time t

multiplied by ci , so

Ri(t) = ciλi

∫ t

0
P(Xi > s) ds . (49)

250 R. G. McGrath

We also define

Riq = Ri

(
qBi

m

)

, q = 1, . . . , m, (50)

as the cost that can be avoided at vertex i for completing an inspection at time
q(Bi/m).

Although we do not know the exact value of the expected cost at vertex i, we do
know that
⎛

⎝ci − 1

λi

m∑

q=1

yiqRiq

⎞

⎠ ≤ [expected cost at vertex i] ≤
⎛

⎝ci − 1

λi

m∑

q=1

yiqRi(q−1)

⎞

⎠ .

Therefore, the expected cost incurred at vertex i will be at least

ci − 1

λi

m∑

q=1

yiqRiq,∀ i ∈ N, (51)

because the expression in (51) will take credit for avoiding cost in the entire interval[
0,

qBi

m

)
at the constant value represented by Ri(

qBi

m
) times the inspection rate yiq .

Thus, the value in (51) represents a lower bound for the expected cost for each attack
at vertex i.

To formulate a linear program to determine a lower bound for an optimal
solution, we also incorporate constraints that account for graph structure. Define
xij as the rate at which a patroller travels from vertex i to vertex j and conducts an
inspection at vertex j , for i, j ∈ N . Recall that tij represents the time required for
a patroller to travel from vertex i to vertex j and conduct an inspection at vertex j .
On a graph with a single patroller, the following total-rate constraint applies:

∑

i,j∈N

xij tij = 1. (52)

Since the total rate of arrivals to a vertex must equal the total rate of departures from
a vertex, we also observe that

∑

j∈N

xij =
∑

j∈N

xji,∀ i ∈ N. (53)

The variables xij and yiq are connected through the equation

m∑

q=1

yiq =
∑

j∈N

xij ,∀ i ∈ N, (54)

Optimal Patrol on a Graph Against Random and Strategic Attackers 251

since both sides represent the long-run inspection rate at vertex i.
We now formulate a linear program to determine the lower bound for an optimal

solution in the single patroller against strategic attackers problem, which we refer to
as the lower bound linear program (LBLP):

min
x,y

zLB (55a)

subject toci − 1

λi

m∑

q=1

yiqRiq ≤ zLB,∀ i ∈ N, (55b)

m∑

q=1

yiq

(q − 1)Bi

m
≤ 1,∀ i ∈ N, (55c)

∑

j∈N

xij −
∑

j∈N

xji = 0,∀ i ∈ N, (55d)

m∑

q=1

yiq −
∑

j∈N

xji = 0,∀ i ∈ N, (55e)

∑

i,j∈N

xij tij = 1, (55f)

xij ≥ 0,∀ i, j ∈ N, (55g)

yiq ≥ 0,∀ i ∈ N; q = 1, . . . , m. (55h)

The decision variables in this problem are xij , the rate that the patroller transits from
vertex i to vertex j ; and yiq , the rate that an inspection is completed at vertex i with

the time since the last inspection falling in
[

(q−1)Bi

m
,

qBi

m

)
.

In this linear program, we seek to minimize the maximum expected cost for
each attack across all n vertices, which is ensured by constraint (55b). We observe
the total inspection rate constraints at each vertex with (55c). We also observe the
network balance of flow and total arrival and inspection rate equality constraints
in (55d) and (55e). Finally, we observe the total transit rate constraint on a single
patroller in (55f), and the non-negativity constraint on patroller transit rates and
inspection rates in (55g) and (55h).

While the preceding linear program will produce a valid lower bound, it can be
quite loose. We add additional constraints to the linear program in order to tighten
the lower bound by limiting the rate of reinspections at a vertex and by considering
the transit time that is required between vertices.

To account for the action of a patroller electing to stay at a vertex to conduct an
additional inspection, define

ai =
⌈

vi

(Bi/m)

⌉

,∀ i ∈ N, (56)

252 R. G. McGrath

as the number of subintervals needed for the patroller to inspect vertex i again
without leaving vertex i; and require that

ai∑

q=1

yiq ≥ xii ,∀ i ∈ N, (57)

which ensures the total rate of inspections at vertex i in the time interval it takes to
conduct an inspection is at least equal to the rate of reinspections at vertex i.

We also add constraints to the linear program to account for the patroller’s transit
rate from vertex i to j and back to vertex i, denoted by uiji , for i �= j , as follows:

uiji ≤ xij ,∀ i, j ∈ N; i �= j, (58a)

uiji ≤ xji,∀ i, j ∈ N; i �= j, (58b)

xij −
∑

k �=i

xjk ≤ uiji ,∀ i, j ∈ N; i �= j. (58c)

Since the rate that a patroller transits from vertex i to j must be at least equal to
the rate that the patroller transits from vertex i to j and back to vertex i, we include
constraint (58a). The same reasoning applies to constraint (58b). We also observe
in (58c) that the rate the patroller transits from vertex i to j and back to vertex i

must be at least equal to the rate that he transits from vertex i to j , minus the rate he
transits from vertex j to any vertex other than i.

It also holds that the inspection rate at vertex i must be at least equal to the rate
that the patroller transits from vertex i to j and back to vertex i. To incorporate this
constraint, define

giji =
⌈

tij + tj i

(Bi/m)

⌉

,∀ i, j ∈ N; i �= j, (59)

and require that

giji∑

q=1

yiq ≥ xii + uiji ,∀ i, j ∈ N; i �= j, (60)

where xii is the rate that the patroller remains at vertex i to conduct an additional
inspection and uiji is the rate that the patroller transits from vertex i to j and back
to vertex i.

We can continue this same idea to account for paths that visit at least two vertices
prior to returning to vertex i and define wijki as the rate at which the patroller transits
from vertex i to vertex j to vertex k and returns immediately to vertex i. Based on
the patroller’s transit rate from vertex i to j to k and back to vertex i, for i �= j, k,
we add the following additional constraints to the linear program:

Optimal Patrol on a Graph Against Random and Strategic Attackers 253

wijki ≤ xij ,∀ i, j, k ∈ N; i �= j, k, (61a)

wijki ≤ xjk,∀ i, j, k ∈ N; i �= j, k, (61b)

wijki ≤ xki,∀ i, j, k ∈ N; i �= j, k, (61c)

xij −
∑

l �=k

xjl −
∑

l �=i

xkl ≤ wijki ,∀ i, j, k ∈ N; i �= j, k. (61d)

Since the rate that a patroller transits from vertex i to j must be at least equal to the
rate that the patroller transits from vertex i to j to k and back to vertex i, we include
constraint (61a). The same reasoning applies to constraints (61c) and (61d). We also
observe in (61d) that the rate the patroller transits from vertex i to j to k and back
to vertex i must be at least equal to the rate that he transits from vertex i to j , minus
the rate he transits from vertex j to any vertex other than k and the rate he transits
from vertex k to any vertex other than i.

It also holds that the inspection rate at vertex i must be at least equal to the rate
that the patroller transits from vertex i to j to k and back to vertex i. To incorporate
this constraint, define

hijki =
⌈

tij + tjk + tki

(Bi/m)

⌉

,∀ i, j, k ∈ N; i �= j, k, (62)

and require that

hijki∑

q=1

yiq ≥ xii + uiji + wijki,∀ i, j, k ∈ N; i �= j, k, (63)

where xii is the rate that the patroller remains at vertex i to conduct an additional
inspection; uiji is the rate that the patroller transits from vertex i to j and back to
vertex i; and wijki is the rate that the patroller transits from vertex i to j to k and
then back to vertex i.

We add constraints (57), (58a), (58b), (58c), (60), (61a), (61b), (61c), (61d),
and (63) to the LBLP, which considerably tightens the lower bound. We could
continue this same idea to account for paths that visit three or more vertices before
returning to a starting vertex; however, for the size of the graphs that we consider,
that would involve many more variables with negligible gains in performance.
The number of decision variables in this linear program is n2 + mn. The number
of constraints is 5n3 + 5n2 + (m − 10)n + 1. For a problem with n = 5 and
m = 100, there are 525 decision variables and 1,201 constraints. In our numerical
experiments, it takes on average 0.61 s to compute a lower bound for a problem of
this size.

254 R. G. McGrath

3.5 Numerical Experiments

To test the shortest-path and fictitious-play (FP) heuristic methods, we conduct
several numerical experiments. We compare the results obtained from using the
heuristic methods to an optimal solution. We also report the computation time
required. Additionally, we compute a lower bound for an optimal solution using
the linear program described in Section 3.4. Based on these results, we make
conclusions on the efficacy of the heuristics, as well as make recommendations for
the best use of the shortest-path and fictitious-play methods.

We test the same five problem cases for strategic attackers that we did for random
attackers in Section 2. In each case, we use the same 1000 problem scenarios
that were randomly generated for the random-attacker experiments. The attack
probability vector is omitted for the strategic-attacker problems, but all other data
remain the same. We conduct our baseline experiments on a graph with n = 5
vertices.

In our experimental results, an optimal solution that is obtained from using the
SALP is indicated by zOPT. The lower bound that is obtained from using the LBLP
is indicated by zLB. Solutions obtained from using a heuristic method are indicated
by zH, where H indicates the heuristic method that was used.

3.5.1 Baseline Problems

For our baseline problem, we consider the case where a patroller spends about half
of the time traveling and half of the time inspecting vertices. We determine an
optimal solution using the SALP from Section 3.2 and a solution using the heuristic
methods from Section 3.3. The SALP on average uses 5920 decision variables and
7110 constraints for a problem size with 1184 states. An optimal solution takes on
average 20.68 s to compute. We compare the solution obtained from the heuristic
method to an optimal solution. We also determine a lower bound for an optimal
solution using the LBLP in Section 3.4, and compare that result to an optimal
solution.

Using 1000 problem instances, we test the shortest-path method with the SP,
SPR1, SPR2, and SPR3 patrol pattern sets. We also test the FP method with 10, 20,
30, and 50 iterations. Results of the baseline experiments are presented in Table 12.
Excellent performance is observed with both the shortest-path SPR2 and SPR3
methods and the FP method with 50 iterations. Each of these methods returns a
solution within 1.11 percent of an optimal solution in at least 90 percent of the
problem instances. The shortest-path method uses considerably less computation
time than the FP method in all cases. A tight lower bound for an optimal solution was
also obtained, with an average difference between the lower bound and an optimal
solution of 1.20 percent.

We also test combinations of the two-person zero-sum game matrices that are
produced from each heuristic method. When the game matrices are combined,

Optimal Patrol on a Graph Against Random and Strategic Attackers 255

Table 12 Performance of the shortest-path and fictitious-play heuristic methods on a complete
graph with n = 5 vertices, based on 1000 randomly generated problem instances with average
inspection times that are comparable to average travel times

Heuristic method Percent over optimum

Mean 50th 75th 90th Time (s)

Shortest-path (SP) 1.95 1.18 2.53 4.45 < 0.01

SP with one revisit (SPR1) 0.72 0.39 0.93 1.82 0.04

SP with two revisits (SPR2) 0.39 0.12 0.47 1.11 0.52

SP with three revisits (SPR3) 0.28 0.05 0.28 0.80 6.15

Fictitious play (ν = 10) 3.76 3.11 5.23 8.18 85.51

Fictitious play (ν = 20) 1.85 1.39 2.42 4.13 167.56

Fictitious play (ν = 30) 0.79 0.45 0.90 2.11 255.45

Fictitious play (ν = 50) 0.32 0.22 0.43 0.73 425.45

Lower bound −1.20 −0.29 −1.17 −3.35 0.61

Mean, 50th, 75th, and 90th percentile performance is indicated as the percentage excess over an
optimal solution. The lower bound is reported as (zLB − zOPT)/zOPT in percentage

Table 13 Mean performance of the shortest-path and fictitious-play heuristic methods on a
complete graph with n = 5 vertices, based on 1000 randomly generated problem instances with
average inspection times that are comparable to average travel times, reported as the percentage
excess over an optimal solution

Percent over optimum

FP/SP – SP SPR1 SPR2 SPR3 Time (s)

– – 1.95 0.72 0.39 0.28

FP 10 3.76 1.70 0.57 0.32 0.23 85.51

FP 20 1.85 0.99 0.36 0.19 0.16 167.56

FP 30 0.79 0.50 0.24 0.13 0.10 255.45

FP 50 0.32 0.26 0.13 0.11 0.08 425.45

Time (s) < 0.01 0.04 0.52 6.15

the resulting performance can be no worse than what is obtained with each of
the individual methods since additional patrol patterns are being considered. The
mean and 90th percentile performance results are presented in Table 13 and
Table 14, respectively. We see an improvement in performance when the methods
are combined, but it is generally not significant enough to justify the additional
computation time required by the FP method. It requires at least 20 iterations of FP
combined with the SPR2 set and at least 30 iterations of FP combined with the SPR1
set to improve upon the performance obtained from using the SPR3 patrol pattern
set alone.

256 R. G. McGrath

Table 14 90th percentile performance of the shortest-path and fictitious-play heuristic methods on
a complete graph with n = 5 vertices, based on 1000 randomly generated problem instances with
average inspection times that are comparable to average travel times, reported as the percentage
excess over an optimal solution

Percent over optimum

FP/SP – SP SPR1 SPR2 SPR3 Time (s)

– – 4.45 1.82 1.11 0.80

FP 10 8.18 3.98 1.75 1.04 0.72 185.51

FP 20 4.13 2.43 1.16 0.66 0.42 167.56

FP 30 2.11 1.40 0.69 0.43 0.27 255.45

FP 50 0.73 0.67 0.43 0.28 0.17 425.45

Time (s) <0.01 0.04 0.52 6.15

3.5.2 Recommendations Based on Numerical Experiments

We see very favorable results with the SP method. In at least 90 percent of the
problem instances, we observe results within 1.11 percent of an optimal solution
when using the SPR2 method and within 0.80 percent of an optimal solution when
using the SPR3 method. For problems with n = 5, the SPR2 method required 0.52 s
on average and the SPR3 method required 6.15 s on average to return a solution.
The advantage to the SP method is that it provides excellent results for very little
computation time.

We can generate additional effective patrol patterns for consideration in deter-
mining a randomized patrol policy, and further refine the overall solution, by
considering the patterns obtained from multiple iterations of FP. The solution
improves as the number of iterations of FP increases, but comes at a cost of
significantly increased computation time. In at least 90 percent of problem instances,
we see solutions within 2.11 percent of optimal when using 30 iterations of FP
and within 0.73 percent of optimal when using 50 iterations of FP. These problem
instances required on average 4.25 min and 7 min, respectively, to return a solution.
Based on the experimental results, we recommend using the SPR2 method for the
strategic-attacker problem.

3.5.3 Performance on Smaller and Larger Graphs

In addition to problems with n = 5, we test the heuristic methods on smaller and
larger size graphs. For graphs with n = 3, 4, and 5, we compare the performance of
the SPR2 heuristic to an optimal solution. Results are presented in Table 15.

We note that the SPR2 heuristic method works extremely well for graphs smaller
than n = 5, returning a solution that is within 0.17 percent of optimal in 90 percent
of the problem instances with computation times of less than 0.1 s. For graphs with
n = 6, 7, 8, and 9, we compare the performance of the heuristic to the lower bound.
Results are presented in Table 16. We use the lower bound for a comparison because,
in our experiments, it is not practical to compute an optimal solution for graphs with
n > 5 due to computer memory limitations.

Optimal Patrol on a Graph Against Random and Strategic Attackers 257

Table 15 Performance of the SPR2 shortest-path heuristic on a complete graph, based on 1000
randomly generated problem instances with average inspection times comparable to average travel
times

Vertices Percent over optimum Time (s)

(n) Mean 50th 75th 90th zSPR2 zOPT Lower bound

3 0.00 0.00 0.00 0.00 0.03 <0.01 0.00

4 0.10 0.00 0.04 0.17 0.08 0.23 −0.04

5 0.39 0.12 0.47 1.11 0.52 20.68 −1.27

Mean, 50th, 75th, and 90th percentile performance is indicated as the percentage over the optimum
solution. The mean lower bound is reported as (zLB − zOPT)/zOPT in percentage

Table 16 Performance of the
SPR2 shortest-path heuristic
on a complete graph, based
on 1000 randomly generated
problem scenarios with
average inspection times that
are comparable to average
travel times

Vertices Percent over lower bound

(n) Mean 50th 75th 90th Time (s)

3 0.00 0.00 0.00 0.00 0.03

4 0.14 0.03 0.08 0.22 0.08

5 1.66 0.75 1.57 3.15 0.52

6 3.58 2.03 4.63 9.71 0.58

7 4.93 3.03 5.75 11.98 1.35

8 5.84 4.54 8.64 12.47 3.34

9 7.56 5.67 10.49 15.93 7.98

Mean, 50th, 75th, and 90th percentile performance is indicated
as the percentage excess above the lower bound, reported as
(zSPR2 − zLB)/zLB in percentage

We note that the SPR2 shortest-path heuristic method returns results that are
within 10 percent of the lower bound in 90 percent of the problem instances for n =
6, and within 16 percent of the lower bound in 90 percent of problem instances for
n = 9. These solutions take on average 0.58 s and 7.98 s, respectively, to compute.

3.5.4 Performance on Additional Graph Structures

In addition to problems on a complete graph, we test the SPR2 heuristic method
on several additional graph structures. Specifically, we consider line graphs, circle
graphs, and random trees. We use the procedures from Section 2.4.1 to generate
1000 random problem instances for problem cases with n = 4, 5, 6, and 7 vertices.

To construct a line graph, we randomly assign n − 1 edges between n vertices,
such that the degree of each vertex is at least one but no more than two. To construct
a circle graph, we randomly assign n edges between n vertices, such that the degree
of each vertex is exactly two. To construct a random tree, we randomly assign n− 1
edges between n vertices, such that the degree of each vertex is at least one and there
is at least one vertex of degree greater than two, which excludes line graphs from
the random tree category.

258 R. G. McGrath

We still allow a patroller to travel between any two vertices in order to determine
a patrol policy. For these additional graph structures, a patroller may have to travel
through one or more interim vertices (without conducting inspections at those
vertices) in order to arrive at the destination vertex.

We consider cases where average travel times are comparable to average
inspection times. To do this, we scale the travel times between each pair of vertices
based on the graph structure. Specifically for any particular graph, we determine
the average number of edges between each pair of vertices and divide the travel
times by that average value. This produces average total travel times between each
pair of vertices that are comparable to average inspection times. We construct a
distance matrix D using these scaled travel times. The distance dij is the total travel
time along the shortest path in the graph between each pair of vertices i and j , for
i, j ∈ N .

Results for these additional graph structures with n = 4, 5, 6, and 7 are presented
in Table 17. For graphs with n ≤ 5, we compare the performance of the heuristic
to an optimal solution as well as to the lower bound. For graphs with n ≥ 6,
we compare the heuristic to the lower bound, since an optimal solution cannot be
determined for problems of this size.

Table 17 Mean performance of the SPR2 heuristic method on additional graph structures, based
on 1000 randomly generated problem scenarios for average inspection times that are comparable
to average travel times

Vertices Performance (%) Time (s)

Graph (n) zSPR2/zOPT zSPR2/zLB zSPR2 zOPT

Complete 4 0.10 0.12 0.08 0.23

Complete 5 0.39 1.66 0.52 20.68

Complete 6 – 3.58 0.58 –

Complete 7 – 4.93 1.35 –

Line 4 0.08 0.10 0.09 0.28

Line 5 0.26 0.90 0.46 35.84

Line 6 – 8.11 0.53 –

Line 7 – 11.12 1.31 –

Circle 4 0.12 0.15 0.08 0.29

Circle 5 0.50 1.18 0.50 22.25

Circle 6 – 2.32 0.54 –

Circle 7 – 3.73 1.29 –

Random tree 4 0.05 0.14 0.09 0.23

Random tree 5 0.15 0.84 0.52 28.62

Random tree 6 – 4.79 0.55 –

Random tree 7 – 5.99 1.35 –

Performance is indicated as the mean percentage over optimum for problems where an optimal
solution can be determined using the SALP, and the mean percentage over lower bound for all
problems

Optimal Patrol on a Graph Against Random and Strategic Attackers 259

These results indicate that the shortest-path heuristic method can be used very
effectively for the strategic-attacker problem on several different graph structures
and sizes. For problems with n = 5, where an optimal solution can be determined,
the SPR2 method returns a solution on average that is within 0.50 percent of optimal.
These solutions take approximately 0.5 s to compute, which is 40 times less than the
time required to compute an optimal solution. For problems with n = 7, where an
optimal solution cannot be determined, the heuristic produces on average a result
within 3.73 percent of the lower bound on a circle graph, and within 11.12 percent
of the lower bound on a line graph. These solutions take less than 1.5 s to compute.

3.5.5 Sensitivity Analysis

In addition to the baseline problems, we consider the case where a patroller needs
to spend more time conducting inspections than he does traveling between vertices;
and the case where the patroller needs to spend more time traveling between vertices
than he does conducting inspections. The five specific cases we consider in the
numerical experiments are summarized in Table 18. Case III generated the smallest
number of states and had the highest long-run cost on average. It also generated the
tightest lower bound for an optimal solution. Case IV generated the largest number
of states and had the lowest long-run cost on average. It also generated the loosest
lower bound for an optimal solution.

The mean performance results for problem cases II through V using both the
SP and FP methods are presented in Table 19. The 90th percentile performance
results are presented in Table 20. In each of the problem cases, very favorable results
are obtained using the SP heuristic method. In at least 90 percent of the problem
instances, the SPR2 method returns a solution within 1.51 percent of optimal. These
solutions take 0.52 s to compute on average.

Table 18 Summary of numerical experiments for strategic attackers

Parameter Case I Case II Case III Case IV Case V

Travel time 1× 1× 1× 2× 2×
Inspection time 1× 2× 2× 1× 1×
Attack time 1× 1.5× 1× 1.5× 1×
Mean number of states, |Ω| 1,184 633 102 3,938 318

Mean number of decision variables 5,920 3,165 510 19,690 1,590

Mean number of constraints 7,110 3,804 613 23,679 1,914

Mean optimal long-run cost 0.4892 0.5085 0.6589 0.4761 0.6224

Mean optimal computation time (s) 20.68 4.99 0.11 574.85 2.11

Lower bound −1.20 −0.20 −0.03 −4.81 −0.88

The mean lower bound is reported as (zLB − zOPT)/zOPT in percentage

260 R. G. McGrath

Table 19 Mean performance
of the shortest-path and
fictitious-play methods, based
on 1000 randomly generated
problem scenarios for each
case

Percent over optimum

(mean)

Case FP/SP – SP SPR2 SPR3 Time (s)

II – – 1.26 0.21 0.14 0.52

FP 10 3.32 1.23 0.18 0.12 29.71

FP 20 1.20 0.67 0.13 0.10 59.52

FP 30 0.60 0.44 0.10 0.07 89.92

FP 50 0.30 0.27 0.08 0.04 151.99

III – – 0.41 0.22 0.17 0.50

FP 10 1.66 0.39 0.19 0.15 2.25

FP 20 0.74 0.27 0.16 0.12 4.75

FP 30 0.50 0.15 0.10 0.07 7.38

FP 50 0.37 0.15 0.09 0.05 12.79

IV – – 2.65 0.50 0.34 0.50

FP 10 4.49 2.15 0.34 0.26 717.60

FP 20 2.19 1.42 0.26 0.19 1337.60

FP 30 1.08 0.80 0.12 0.09 1977.97

V – – 0.90 0.53 0.44 0.47

FP 10 2.96 0.74 0.45 0.38 14.30

FP 20 1.37 0.51 0.31 0.26 29.78

FP 30 0.83 0.60 0.22 0.17 47.16

FP 50 0.51 0.17 0.16 0.11 78.87

Performance is indicated as the percentage excess over an
optimal solution. Shortest-path computation time is indi-
cated for the SPR2 heuristic

4 Conclusion

We examine methods to determine effective patrol policies against both random
and strategic attackers. We consider two cases: a single patroller against random
attackers and a single patroller against strategic attackers.

In the case of a single patroller against random attackers, we determine an
optimal solution by modeling the state space of the system as a network and solve a
minimum cost-to-time ratio cycle problem using linear programming. The solution
represents a patrol policy, which is a repeating pattern of locations for a patroller
to visit and inspect that minimizes the long-run cost incurred due to undetected
attacks. Although the linear program returns an optimal solution, it quickly becomes
computationally intractable for problems of moderate size. We therefore develop
and test two aggregate-index heuristic methods, the index heuristic time (IHT)
method and the index heuristic epoch (IHE) method. Both of these methods consider
the structure of the graph, to include travel and inspection time requirements. The
IHT method utilizes a predetermined look-ahead time window for the patroller to

Optimal Patrol on a Graph Against Random and Strategic Attackers 261

Table 20 90th percentile
performance of the
shortest-path and
fictitious-play methods, based
on 1000 randomly generated
problem scenarios for each
case

Percent over optimum

(90th PCTL)

Case FP/SP – SP SPR2 SPR3 Time (s)

II – – 3.21 0.69 0.49 0.52

FP 10 5.95 2.94 0.66 0.42 29.71

FP 20 2.47 1.64 0.49 0.33 59.52

FP 30 1.35 1.05 0.37 0.24 89.92

FP 50 0.79 0.47 0.23 0.16 151.99

III – – 1.06 0.60 0.53 0.50

FP 10 3.08 1.04 0.45 0.39 2.25

FP 20 1.47 0.78 0.39 0.32 4.75

FP 30 1.12 0.69 0.30 0.24 7.38

FP 50 0.77 0.36 0.28 0.19 12.79

IV – – 5.44 1.51 1.06 0.50

FP 10 8.63 4.58 0.87 0.76 717.60

FP 20 4.72 3.84 0.82 0.68 1337.60

FP 30 2.78 2.18 0.27 0.21 1977.97

V – – 1.90 1.26 1.16 0.47

FP 10 5.79 1.77 1.02 0.85 14.30

FP 20 3.07 1.30 0.73 0.61 29.78

FP 30 1.94 1.27 0.60 0.49 47.16

FP 50 1.32 0.42 0.34 0.24 78.87

Performance is indicated as the percentage excess over an
optimal solution. Shortest-path computation time is indi-
cated for the SPR2 heuristic

decide his next action by considering all possible paths and partial paths that can be
completed during the time window when starting from his current vertex. For each
of these paths, aggregate index values per unit time are computed and the patroller
chooses his action based on those index values. He then repeats the process from the
next vertex using the same look-ahead time window. This process continues until a
patrol pattern is determined. The IHE method works in a similar fashion. However,
in this method, a patroller looks ahead a predetermined number of decision epochs,
and determines his action by considering all possible paths from the current vertex
that consist of the specified number of decision epochs, regardless of the total time
those paths will take. We see very favorable results using these methods in numerical
experiments. In our baseline experiments, a solution within 1 percent of optimal was
returned in at least 90 percent of the problem instances.

In the case of a single patroller against strategic attackers, we determine an
optimal solution by modeling the state space of the system as a network and
solve a linear program to minimize the largest expected cost per attack among all
vertices. The solution consists of a patrol policy, which is a randomized strategy

262 R. G. McGrath

for the patroller that minimizes the long-run expected cost due to an undetected
attack. Although the linear program returns an optimal solution, it quickly becomes
computationally intractable for problems of moderate size. We therefore develop
two heuristic methods, the shortest-path (SP) and fictitious-play (FP) methods. The
SP method uses a combinatorial selection of patrol patterns based on the shortest
Hamiltonian cycle in the graph. The FP method is an iterative method based on
fictitious play. We also present a linear program that determines a lower bound for
an optimal solution, so that we can evaluate our heuristics when an optimal solution
is not available. We see very favorable results using both methods in numerical
experiments; however, the FP method uses considerably more computation time
than the SP method. In our baseline experiments, a solution within 1.2 percent of
optimal was returned in at least 90 percent of the problem instances.

References

1. R. Ahuja, T. Magnanti, J. Orlin, Network Flows: Theory, Algorithms, and Applications
(Prentice Hall, Englewood Cliffs, NJ, 1993)

2. S. Alpern, Infiltration games on arbitrary graphs. J. Math. Anal. Appl. 163(1), 286–288 (1992)
3. S. Alpern, Search games on trees with asymmetric travel times. SIAM J. Control Optim. 48(8),

5547–5563 (2010)
4. S. Alpern, R. Fokkink, Accumulation games on graphs. Networks 64(1), 40–47 (2014)
5. S. Alpern, S. Gal, Searching for an agent who may or may not want to be found. Oper. Res.

50(2), 311–323 (2002)
6. S. Alpern, A. Morton, K. Papadaki, Patrolling games. Oper. Res. 59(5), 1246–1257 (2011)
7. J. Auger, An infiltration game on k arcs. Nav. Res. Logist. 38(4), 511–529 (1991)
8. R. Avenhaus, Applications of inspection games. Math. Model. Anal. 9(3), 179–192 (2004)
9. S. Benkoski, M. Monticino, J. Weisinger, A survey of the search theory literature. Nav. Res.

Logist. 38, 469–464 (1991)
10. A. Garnaev, G. Garnaeva, P. Goutal, On the infiltration game. Int. J. Game Theory 26(2),

215–221 (1997)
11. J. Gittins, K. Glazebrook, R. Weber, Multi-armed Bandit Allocation Indices, 2nd edn. (Wiley,

Hoboken, NJ, 2011)
12. K. Kikuta, A search game with traveling cost on a tree. J. Oper. Res. Soc. Jpn. 38(1), 70–88

(1995)
13. K. Kikuta, W. Ruckle, Initial point search on weighted trees. Nav. Res. Logist. 41, 821–831

(1994)
14. K. Kikuta, W. Ruckle, Continuous accumulation games on discrete locations. Nav. Res. Logist.

49(1), 60–77 (2002)
15. K. Lin, M. Atkinson, T. Chung, K. Glazebrook, A graph patrol problem with random attack

times. Oper. Res. 61(3), 694–710 (2013)
16. R. McGrath, K. Lin, Robust patrol strategies against attacks at dispersed heterogeneous

locations. Int. J. Oper. Res. 30(3), 340–358 (2017)
17. G. Owen, Game Theory, 3rd edn. (Academic, San Diego, CA, 1995)
18. M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming (Wiley-

Interscience, New York, NY, 1994)
19. J. Robinson, An iterative method of solving a game. Ann. Math. 54(2), 296–301 (1951)
20. S. Ross, Introduction to Probability Models, 10th edn. (Academic, San Diego, CA, 2010)

Optimal Patrol on a Graph Against Random and Strategic Attackers 263

21. W. Ruckle, Geometric Games and Their Applications (Pitman, Boston, MA, 1983)
22. A. Washburn, Two-Person Zero-Sum Games, 3rd edn. (INFORMS, Linthicum, MD, 2003)
23. A. Washburn, K. Wood, Two-person zero-sum games for network interdiction. Oper. Res.

43(2), 243–351 (1995)
24. K. Zoroa, P. Zoroa, M. Fernandez-Saez, Weighted search games. Eur. J. Oper. Res. 195(2),

394–411 (2009)

	Optimal Patrol on a Graph Against Random and Strategic Attackers
	1 Background
	1.1 Problem Description
	1.2 Literature Review

	2 Single Patroller Against Random Attackers
	2.1 Patrol Model
	2.2 Optimal Policy
	2.2.1 Linear Program Formulation
	2.2.2 Size of State Space

	2.3 Heuristic Policies
	2.3.1 Single Vertex Problem
	2.3.2 Index Heuristic Time Method
	2.3.3 Index Heuristic Epoch Method

	2.4 Numerical Experiments
	2.4.1 Generation of Problem Instances
	2.4.2 Baseline Problems
	2.4.3 Recommendations Based on Numerical Experiments
	2.4.4 Sensitivity Analysis

	3 Single Patroller Against Strategic Attackers
	3.1 Patrol Model
	3.2 Optimal Policy
	3.3 Heuristic Policies
	3.3.1 Patrol Cost Determination
	3.3.2 Selection of Patrol Patterns
	3.3.3 Patrol Patterns Based on Shortest Path
	3.3.4 Patrol Patterns Based on Fictitious Play

	3.4 Lower Bound
	3.5 Numerical Experiments
	3.5.1 Baseline Problems
	3.5.2 Recommendations Based on Numerical Experiments
	3.5.3 Performance on Smaller and Larger Graphs
	3.5.4 Performance on Additional Graph Structures
	3.5.5 Sensitivity Analysis

	4 Conclusion
	References

