
Springer Optimization and Its Applications  139

Boris Goldengorin Editor

Optimization
Problems in
Graph Theory
In Honor of Gregory Z. Gutin’s 60th
Birthday

Springer Optimization and Its Applications

Volume 139

Managing Editor
Panos M. Pardalos, University of Florida

Editor-Combinatorial Optimization
Ding-Zhu Du, University of Texas at Dallas

Advisory Board
J. Birge, University of Chicago
S. Butenko, Texas A&M University
F. Giannessi, University of Pisa
S. Rebennack, Karlsruhe Institute of Technology
T. Terlaky, Lehigh University
Y. Ye, Stanford University

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate during the
last few decades. New algorithmic and theoretical techniques have been developed,
the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge
of all aspects of the field has grown even more profound. At the same time, one of
the most striking trends in optimization is the constantly increasing emphasis on the
interdisciplinary nature of the field. Optimization has been a basic tool in all areas of
applied mathematics, engineering, medicine, economics and other sciences.

The series Springer Optimization and Its Applications publishes undergraduate
and graduate textbooks, monographs and state-of-the-art expository works that
focus on algorithms for solving optimization problems and also study applications
involving such problems. Some of the topics covered include nonlinear optimization
(convex and nonconvex), network flow problems, stochastic optimization, optimal
control, discrete optimization, multi-objective programming, description of soft-
ware packages, approximation techniques and heuristic approaches.

More information about this series at http://www.springer.com/series/7393

http://www.springer.com/series/7393

Boris Goldengorin
Editor

Optimization Problems
in Graph Theory
In Honor of Gregory Z. Gutin’s 60th Birthday

123

Editor
Boris Goldengorin
Department of Information Systems
and Decision Science
Merrick School of Business
University of Baltimore
Baltimore, MD, USA

ISSN 1931-6828 ISSN 1931-6836 (electronic)
Springer Optimization and Its Applications
ISBN 978-3-319-94829-4 ISBN 978-3-319-94830-0 (eBook)
https://doi.org/10.1007/978-3-319-94830-0

Library of Congress Control Number: 2018958502

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-94830-0

This book is dedicated to Professor Gregory
Z. Gutin on the occasion of his 60th birthday.

Preface

This book is a collection of papers related to the conference on 7 and 8 January
2017 organised by Simon Blackburn, Jason Crampton and Stefanie Gerke at Royal
Holloway University of London on the occasion of Professor Gregory Z. Gutin’s
60th birthday. The invited speakers Noga Alon, Jørgen Bang-Jensen, Fedor Fomin,
Mark Jones, Daniel Karapetyan, Eunjung Kim, Michael Krivelevich, Igor Razgon,
Saket Saurabh, Benny Sudakov, Stefan Szeider and Anders Yeo have contributed to
the success of this conference with the following:

Programme

Saturday 7th January 2017, Horton Lecture Theatre 1

10.20–10.50 Coffee/tea break (McCrea 219)
10.50–11.00 Welcome
11.00–11.30 Noga Alon, Tel Aviv University, Israel. Universal tournaments.

Abstract Tournaments have been the subject of much of the work of Gutin. In
the spirit of his work, I will discuss the problem, raised by Moon in the 1960s, of
estimating the minimum possible number of vertices in a tournament that contains
every k-vertex tournament as an induced subgraph. The main result is that this
number is (1 + o(1))2(k−1)/2, improving earlier estimates of several researchers.
The proof combines combinatorial and probabilistic techniques with group theoretic
tools.

11.35–12.05 Jørgen Bang-Jensen, University of Southern Denmark, Den-
mark. 2-partitions of digraphs.

Abstract We report on recent results with various co-authors on the complexity
of deciding whether a given digraph D has a vertex partition into two digraphs D′
and D′′ such that these have prespecified properties. These could be minimum out-
degree at least k, being strongly connected, acylic and lots of others. Among the
results on which we report is a complete classification of the complexity for 120
natural such problems. This part is joint work with Havet and Cohen.

vii

viii Preface

12.10–12.40 Anders Yeo, Singapore University of Technology and Design.
Perfect forests in digraphs

Abstract A spanning subgraph F of a graph G is called perfect if F is a forest, the
degree of each vertex in F is odd, and each tree of F is an induced subgraph of G.
Alex Scott (Graphs and Combinatorics, 2001) proved that every connected graph
G contains a perfect forest if and only if G has an even number of vertices. We
consider four generalisations to directed graphs of the concept of a perfect forest.
While the problem of existence of the most straightforward one is NP-hard, for
the three others, this problem is polynomial time solvable. Moreover, every digraph
with only one strong component contains a directed forest of each of these three
generalisation types. One of our results extends Scott's theorem to digraphs in a
nontrivial way.

12.40–14.30 Lunch break (McCrea 219)
14.30–15.00 Michael Krivelevich, Tel Aviv University, Israel. Long cycles

in locally expanding graphs, with applications

Abstract We provide sufficient conditions for the existence of long cycles in
locally expanding graphs. Time permitting, we will present applications of our
conditions and techniques to Ramsey theory, random graphs and positional games.

15.05–15.35 Eunjung Kim, Paris Dauphine University. A polynomial kernel
for distance-hereditary vertex deletion

Abstract A graph is distance-hereditary if, for any pair of vertices, their distance
in every connected induced subgraph containing both vertices is the same as their
distance in the original graph. Distance hereditary graphs are exactly the graphs
with rank-width at most 1. The Distance-Hereditary Vertex Deletion problem asks,
given a graph G on n vertices and an integer k, whether there is a set S of at most k

vertices in G such that GS is distance-hereditary. It was shown by Eiben, Ganian and
Kwon (MFCS'16) that Distance-Hereditary Vertex Deletion can be solved in time
2O(k)nO(1), and they asked whether the problem admits a polynomial kernelisation.
We show that this problem admits a polynomial kernel, answering this question
positively. For this, we use a similar idea for obtaining an approximate solution
for Chordal Vertex Deletion due to Jansen and Pilipczuk (SODA'17) to obtain an
approximate solution with O(k4) vertices when the problem is a Yes-instance and
use Mader's S-path theorem to hit all obstructions containing exactly one vertex of
the approximate solution. Then, we exploit the structure of split decompositions of
distance-hereditary graphs to reduce the total size. Using Mader's S-path theorem in
the context of kernelisation might be of independent interest.

15.35–16.10 Coffee/tea break (McCrea 219)
16.10–16.40 Benny Sudakov. Swiss Federal Institute of Technology,

Switzerland. Rainbow cycles and trees in properly edge-colored complete graphs

Abstract A rainbow subgraph of a properly edge-colored complete graph is a
subgraph all of whose edges have different colors. One reason to study such
subgraphs arises from the canonical version of Ramsey’s theorem, proved by Erdõs
and Rado. Another motivation comes from problems in design theory. In this talk,

Preface ix

we discuss several old conjectures about finding spanning rainbow cycles and trees
in properly edge-colored complete graphs and present some recent progress on these
problems. Joint work with A. Pokrovskiy and in part with N. Alon.

16.45–17.15 Mark Jones, Royal Holloway, University of London. Enforcing
information flow policies through chain and tree-based enforcement schemes

Abstract In an information flow policy, users have different access permissions
based on their position in a hierarchy or partial order. In most enforcement schemes
that use symmetric cryptographic primitives, each user is assigned a single secret
and derives decryption keys using this secret and publicly available information.
Recent work has challenged this approach by developing schemes, based on chain or
tree partitions of the information flow policy, that do not require public information
for key derivation, the trade-off being that a user may need to be assigned more
than one secret. In this talk, we show how to construct chain and tree-based
cryptographic enforcement schemes and give polynomial-time algorithms to find
such enforcement schemes using the minimum number of secrets.

18.30 Dinner (Large Board Room, Founders) Only if you have reserved a
seat!

Sunday 8th January 2018, McCrea 219
9.30–10.00 Fedor Fomin, University of Bergen, Norway. Finding detours is

fixed-parameter tractable

Abstract We consider the following natural “above guarantee” parameterisation of
the classical longest path problem: For given vertices s and t of a graph G and an
integer k, the problem longest detour asks for an (s, t)-path in G that is at least
k longer than a shortest (s, t)-path. Using insights into structural graph theory,
we prove that Longest Detour is fixed-parameter tractable on undirected graphs
and actually even admits a single-exponential algorithm, that is, one of running
time exp(O(k))poly(n). This matches (up to the base of the exponential) the best
algorithms for finding a path of length at least k. Joint work with Ivona Bezáková,
Radu Curticapean and Holger Dell.

10.05–10.35 Stefan Szeider, Vienna University of Technology, Austria.
Backdoors for constraint satisfaction

Abstract We will review some recent parameterised complexity results for the
constraint satisfaction problem (CSP), considering parameters that arise from strong
backdoor sets. A strong backdoor set of a CSP instance is a set of variables
with the property that any instantiation of these variables moves the instance into
a polynomial-time tractable class. We will focus on tractable classes defined by
restricting the involved constraint relations. Joint work with R. Ganian, S. Gaspers,
N. Misra, S. Ordyniak, M.S. Ramanujan and S. Živný.

10.35–11.00 Coffee/tea break (McCrea 237)
11.00–11.30 Saket Saurabh, University of Bergen, Norway. Gregory: The

“tree” of knowledge

x Preface

Abstract In this talk, I will document my association with Gregory via algorithms
for finding trees with certain properties. This will include some old and some more
modern developments in the area.

11.35–12.05 Igor Razgon, Birkbeck University of London, United King-
dom. Well quasi-orderability vs. clique-width

Abstract Well quasi-orderability is an important topic of structural graph theory.
The famous result of Robertson and Seymour showing that the class of all graphs
is well-quasi-ordered (WQO) by the graph minors relation inspired researchers to
consider other order relations on graphs. One such relation is “induced subgraph”.
This relation is easy to show to be non-WQO; however, many hereditary graph
classes are WQO. Up to some moment, all known WQO classes were of bounded
clique-width, and this led researchers to a question whether this situation is true
in general (i.e. whether a class of graphs that is WQO under the induced subgraph
relation is of bounded clique-width). A wide belief was that it is indeed the case.
V. Lozin, V. Zamaraev, and myself have demonstrated the first counterexample: a
hereditary class of unbounded clique-width which is WQO by the induced subgraph
relation. A preliminary version of our result appeared in WG15. In this talk, I will
overview the result and state several interesting open problems.

12.10–12.40 Daniel Karapetyan, University of Essex, United Kingdom.
Practically efficient algorithms for the workflow satisfiability problem and its
optimisation version.

Abstract We consider an interesting satisfiability problem finding applications in
access control. The problem is known to be fixed-parameter tractable (FPT), but
existing algorithms are relatively inefficient in practice. Our new algorithm more
than doubled the value of the parameter that could be practically tackled. The key
idea of this new approach is also incorporated into a pseudo-Boolean formulation,
with promising results. In the second part of the talk, we discuss single- and bi-
objective optimisation extensions of the problem. While providing much greater
modelling power, these extensions are still FPT, and our algorithms need only
small modification to be used for them. Some conclusions of this research may be
applicable to other FPT problems.

This book’s focus is on the recent research in modern optimisation problems on
graphs and their computational complexities. Researchers, students and engineers
will benefit from the original contributions and overviews included in this book.
The book is of great interest to researchers in algorithmical graph theory and
its applications to max-clique and stable set problems, computing the line index
of balance in general graphs, branching in digraphs with many and few leaves,
dominance certificates for combinatorial optimisation problems, improved upper
bounds for 12 computationally difficult KG instances for the simple plant location
problem, an algorithmic answer to the Ore-type version of Dirac’s question on
disjoint cycles formulated in 1963, efficient heuristics for solving optimal patrol
problem on graph against random and strategic attackers, branch-and-cut-type
algorithm for the network design problem with cut constraints, heuristic algorithm

Preface xi

for the sequencing problem in distributed manufacturing planning process as well
as sharp Nordhaus-Gaddum-type lower bounds for proper connection numbers of
graphs.

The book presents open problems in graph theory including applied optimisation
problems on graphs and networks which have many applications in markets and
data analysis, design of efficient algorithms and software for solving optimisation
problems in industrial and systems engineering. Undergraduate, graduate and PhD
students as well as theoreticians in computer science, big data analysis, applied
mathematics, operations research, design of algorithms, artificial intelligence and
software engineering will benefit from the state-of-the-art results in modern graph
theory and its applications presented in this book.

Baltimore, MD, USA Boris Goldengorin
October 2018

Acknowledgements

I would like to acknowledge Simon Blackburn, Jason Crampton and Stefanie Gerke
who have organised a great conference and supported my idea to publish this
book. I am thankful to the reviewers for their comprehensive feedback on every
submitted paper and their timely replies. They fundamentally improved the quality
of submitted contributions and hence of this volume.

The project of this book was supported by Panos M. Pardalos. His careful editing
contributed enormously to the production of this book.

Technical assistance with reformatting and compilations of several versions of
this book by Arkopaul Sarkar (PhD candidate in the Industrial and Systems Engi-
neering Department, Ohio University, Athens, OH, USA) is greatly appreciated.
I would like to thank all my colleagues from the Department of Industrial and
Sys-tems Engineering, the Russ College of Engineering and Technology, and Ohio
University, Athens, OH, USA, especially the chair and Russ professor, Robert
Judd for providing me with unlimited freedom in research activities and creative
atmosphere to work within C. Paul Stocker visiting professor position.

The research and travel grant supported by the Chair of Department of Infor-
mation Systems and Decision Science, Danielle Fowler, and granted by the Dean
of Merrick School of Business, Murray Dalziel, University of Baltimore Maryland,
USA is greatly appreciated.

The support of my wife, Ljana, and children, Mark, Vitaliy, Nicolai and Polina,
stimulated to complete this book with the highest quality.

xiii

Contents

Gregory Gutin and Graph Optimization Problems . 1
Noga Alon

On Graphs Whose Maximal Cliques and Stable Sets Intersect 3
Diogo V. Andrade, Endre Boros, and Vladimir Gurvich

Computing the Line Index of Balance Using Integer
Programming Optimisation . 65
Samin Aref, Andrew J. Mason, and Mark C. Wilson

Optimal Factorization of Operators by Operators That Are
Consistent with the Graph’s Structure . 85
Victoria Goncharenko, Yuri Goncharenko, Sergey Lyashko,
and Vladimir Semenov

Branching in Digraphs with Many and Few Leaves: Structural
and Algorithmic Results . 93
Jørgen Bang-Jensen and Gregory Gutin

Dominance Certificates for Combinatorial Optimization Problems 107
Daniel Berend, Steven S. Skiena, and Yochai Twitto

Conditional Markov Chain Search for the Simple Plant Location
Problem Improves Upper Bounds on Twelve Körkel–Ghosh Instances . . . 123
Daniel Karapetyan and Boris Goldengorin

An Algorithmic Answer to the Ore-Type Version of Dirac’s
Question on Disjoint Cycles . 149
H. A. Kierstead, A. V. Kostochka, T. Molla, and D. Yager

Combinatorial and Graph-Theoretical Problems
and Augmenting Technique . 169
Ngoc C. Lê

xv

xvi Contents

Optimal Patrol on a Graph Against Random and Strategic Attackers 215
Richard G. McGrath

Network Design Problem with Cut Constraints . 265
Firdovsi Sharifov and Hakan Kutucu

Process Sequencing Problem in Distributed Manufacturing
Process Planning . 293
Dusan Sormaz and Arkopaul Sarkar

Sharp Nordhaus–Gaddum-Type Lower Bounds for Proper
Connection Numbers of Graphs . 325
Yuefang Sun

Dr. Gregory Gutin – Short Bio

Gregory Gutin received his MSc in mathematics in 1979 from Gomel State
University, Belarus. He worked in high school and research institutes of Belarus
from 1979 to 1990. He studied for PhD under Professor Noga Alon at the School of
Mathematics, Tel Aviv University, Israel, and received his PhD (with distinction)
in 1993. Between 1993 and 1996, he held visiting positions in the Department
of Mathematics and Computer Science, Odense University, Denmark, and then
became a lecturer in the Department of Mathematics, Brunel University, United
Kingdom. Since 2000, Gregory has been professor of computer science, Department
of Computer Science, Royal Holloway, University of London.

Gregory is recepient of the following prestigious scientific awards. In 1992, he
received the Wolf Prize for PhD students scholarship for excellence. This is the
most prestigious Israeli prize awarded to PhD students. The Wolf Foundation also
grants the international Wolf Prize to senior researchers. The Wolf Foundation Prize
Committee elects the candidates according to high-standard excellence criteria,
regardless to the institution where the research is conducted.

In 1996, he received the Kirkman Medal of International Institute of Combina-
torics and Applications to recognise outstanding achievements by members who are
within 4 years past their PhD.

In 2014, he received Royal Society Wolfson Research Merit Award and the
Best Paper Awards at SACMAT 2015 and 2016. In 2017, he became a member
of Academia Europaea.

Currently, Gregory Gutin’s h-index is 38 with 8400 citations including 3542
citations since 2013.

Professor Gutin’s main research interests include graphs and combinatorics
(theory, algorithms and applications), parameterised algorithmics and combina-
torial optimisation. Dr. Gutin has more than 200 papers published or accepted
for publication in refereed journals and conference proceedings. He published
nine chapters/sections in books and two editions of the following monograph:
J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications,

xvii

xviii Dr. Gregory Gutin – Short Bio

Springer-Verlag 2000 (1st Ed.) and 2009 (2nd Ed.). The 1st Edition was published
in Chinese in 2009. He co-edited (with A.P. Punnen) the book Traveling Salesman
Problem and Its Variations, Springer 2002. He was or is on the editorial board of the
following journals: Discrete Optimization, Order, Algorithmic Operations Research,
Memetic Computing.

Gregory Gutin and Graph Optimization
Problems

Noga Alon

This is a very brief contribution to the book “Optimization Problems In Graph
Theory” devoted to the 60th birthday of Gregory (Zvi) Gutin, whom I first met when
he came as a graduate student to Tel Aviv University nearly 30 years ago. I always
knew that I learned far more from my graduate students than they have learned from
me, and this has certainly been the case with Gregory.

When he came to Tel Aviv University he already had several beautiful results,
most notably his 1986 paper showing that in any multipartite tournament containing
at most one vertex of indegree 0, there is a vertex v so that for every u there is a
directed path of length at most 4 from v to u.

His work in Combinatorial Optimization and his results in Parameterized
Complexity are of top quality, contributing to the topics discussed in the present
book which deals with optimization problems on graphs and their computational
complexity. The topics studied in this book represent well the interests of Gutin.
The interesting papers here include a discussion of the algorithmic aspects of
problems dealing with disjoint cycles in graphs, with the maximum independent
set problem in some special classes of graphs, and with the existence of branchings
with many and few leaves in directed graphs. There is also a paper providing a
general technique for proving that a heuristic algorithm for an optimization problem
provides a solution which is not worse than many others, an investigation of a
network design problem with cut constraints, and a discussion of algorithms for
computing the frustration index of a signed graph. Other results provide a heuristic
approach for studying a patrol problem on a graph and an investigation of the

N. Alon (�)
Sackler School of Mathematics and Blavatnik School of Computer Science, Tel Aviv University,
Tel Aviv, Israel
e-mail: nogaa@tau.ac.il

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_1&domain=pdf
mailto:nogaa@tau.ac.il
https://doi.org/10.1007/978-3-319-94830-0_1

2 N. Alon

minimum possible sum and product of the proper connection number of a graph
of a given order and that of its complement.

A subject considered often by Gutin is Hamilton cycles and the Traveling
Salesman Problem. I thus chose to include here a simple yet intriguing result on
this topic. This is a solution of a problem I heard from Amin Rezaie that compares
two heuristics to the (path version of) the Traveling Salesman Problem. The first
seems natural, the second seems terrible, yet it requires some thought to show that
the first indeed always gives a result which is at least as good as that provided by
the second. I believe that the reasoning in the proof fits this book and the way of
thinking of Gutin.

The brief technical part follows.
Let Kn be a complete, undirected graph with edges of non-negative weights.

Starting from a vertex v construct a greedy Hamilton path P by always selecting
the cheapest edge leading to a yet uncovered vertex. Starting from a vertex u (which
may be equal to v or not) construct an anti-greedy Hamilton path Q by always
selecting the most expensive edge leading to a yet uncovered vertex. Is it necessarily
true that the total weight of P is at most the total weight of Q?

We prove that this is indeed the case. Without loss of generality we may assume
that all weights are positive reals. For a set of edges F and a real x let f (x, F)

denote the number of edges in F whose weight is at least x. It is easy to see that the
total weight of the edges in F is exactly

∫∞
x=0 f (x, F)dx. Thus, in order to prove

the desired result it suffices to show that for any fixed x, f (x, P) ≤ f (x,Q). We
proceed with a proof of that. Let P(x) denote the set of all edges of P whose weight
is at least x. Then P(x) is a union of connected components, and each of them is a
path. Let C = c1c2 . . . ck be such a path that forms a component with at least one
edge, thus |C| = k ≥ 2. Assume that C was selected greedily in this order, from
c1 to ck . Note that the weight of every edge cicj with 1 ≤ i < j ≤ k is at least
x. Indeed, this weight is at least the weight of cici+1, as P was chosen greedily.
Consider now the path Q chosen anti-greedily. As Q is a Hamilton path all the
vertices of C appear in Q in some order. We claim that for every i, 1 ≤ i < k,
the edge of Q emanating from the vertex of C that appears in place number i in
this order is of weight at least x. Indeed, when we chose this edge anti-greedily,
there was still at least one yet uncovered vertex of C and by the argument above the
weight of the edge leading to it is at least x. Thus the weight of the edge chosen was
indeed at least x. This means that among the edges emanating from vertices of C

at least k − 1 have weight at least x, and as C has k − 1 edges, summing over all
components implies that indeed f (x,Q) ≥ f (x, P), completing the proof. ��
Note Added in Proof After the completion of this note I have heard from Gutin
that the problem discussed above has been solved much earlier by V.M. Kirzhner and
V.I. Rublinetskii in their paper: On the procedure “go to the nearest” of the Traveling
Salesman Problem, Vychislitel’naya Matematika i Vychislitel’naya Technika, no. 4
(1973), 40–41 (in Russian). Their proof is different than the one presented here.
This is yet another demonstration of the fact mentioned in the first paragraph of
this note that I learned (and am still learning) more from Gutin than he has learned
from me!

On Graphs Whose Maximal Cliques
and Stable Sets Intersect

Diogo V. Andrade, Endre Boros, and Vladimir Gurvich

1 Introduction

1.1 CIS-Graphs and Simplicial Vertices

Given a graph G, we say that it has the CIS-property, or equivalently that G is a CIS-
graph, if every maximal clique C and every maximal stable set S in G intersects.
Obviously, they may have at most one common vertex and hence |C ∩ S| = 1. It
is convenient to represent a CIS-graph G as a 2-dimensional box partition, that is,
a matrix whose rows and columns are labeled, respectively, by the maximal cliques
and stable sets of G and whose entries are the (unique) vertices of the corresponding
intersections. For example, Figure 1 shows four CIS-graphs and their intersection
matrices. More examples are given in Figures 6, 7, and 10.

The CIS-property appears in the survey [8] (under the name clique-kernel
intersection property) but no related results are mentioned. Indeed, natural problems
of efficient characterization and recognition of the CIS-graphs look difficult and
remain open. Perhaps, one of the reasons is that the CIS-property is not hereditary.
Indeed, if C∩S = {v} then C \{v}, and S \{v}may become disjoint maximal clique
and stable set after v is deleted.

D. V. Andrade
Google Inc NYC, New York, NY, USA

E. Boros
RUTCOR, Rutgers University, Piscataway, NJ, USA
e-mail: endre.boros@rutgers.edu

V. Gurvich (�)
National Research University Higher School of Economics (HSE), Moscow, Russia
e-mail: vgurvich@hse.ru

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_2

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_2&domain=pdf
mailto:endre.boros@rutgers.edu
mailto:vgurvich@hse.ru
https://doi.org/10.1007/978-3-319-94830-0_2

4 D. V. Andrade et al.

2468 15 37 146 368 582 724
123 2 1 3 1 3 2 2
345 4 5 3 4 3 5 4
567 6 5 7 6 6 5 7
781 8 1 7 1 8 8 7

1

2

3

4

5

6

7

8

258 147 369 249 537 816
123 2 1 3 2 3 1
456 5 4 6 4 5 6
789 8 7 9 9 7 8
267 2 7 6 2 7 6
591 5 1 9 9 5 1
834 8 4 3 4 3 8

1

2

3

4

5678

9

13579a 1470 369b 258a 260 48b
12b 1 1 b 2 2 b
234 3 4 3 2 2 4
456 5 4 6 5 6 4
678 7 7 6 8 6 8
890 9 0 9 8 0 8
0ab a 0 b a 0 b
168 1 1 6 8 6 8
249 9 4 9 2 2 4
380 3 0 3 8 0 8
46a a 4 6 a 6 4
50b 5 0 b 5 0 b
27b 7 7 b 2 2 b

1

2 3

4

56

7

89

0

a b

159 168 249 276 348 357
123 1 1 2 2 3 3
456 5 6 4 6 4 5
789 9 8 9 7 8 7
147 1 1 4 7 4 7
258 5 8 2 2 8 5
369 9 6 9 6 3 3

1 2 3

4 5 6

7 8 9

Fig. 1 Four CIS-graphs and their intersection matrices

On Graphs Whose Maximal Cliques and Stable Sets Intersect 5

6

1

4

7

2

5

8

3

2

4

9

6

3

7

5

8 1

Fig. 2 Complements to the first two graphs in the previous figure (Obviously, for every graph G

the intersection matrix of G is the transpose of the intersection matrix of G.)

On the positive side, by definition, the CIS-property is self-complementary, that
is, G is a CIS-graph if and only if the complementary graph G is a CIS-graph.

We start with a simple sufficient condition. Given a graph G = (V ,E), a vertex
v ∈ V is called simplicial if its neighborhood N [v] is a clique.

Clearly, if a maximal clique C of G contains a simplicial vertex v, then it is a
private vertex of C, that is, v cannot belong to any other maximal clique, except C.
Vice versa, every private vertex v of a maximal clique C is simplicial, since in this
case N [v] = C.

Moreover, in this case C ∩ S
= ∅ for every maximal stable set S in G. Indeed, if
S ∩ (C \ {v}) = ∅, then v ∈ S, since S is maximal. Thus, we obtain the following
statement.

Proposition 1 Graph G is a CIS-graph whenever
(s) every maximal clique of G has a simplicial vertex. ��
Let us remark that condition (s): is only sufficient but not necessary. For example,

(s) holds for the first graph in Figure 1 but not for the other three graphs. Let us also
remark that (s) does not hold for both graphs in Figure 2. Furthermore, (s) holds for
the graphs of Figures 6, 7, and 10 and (s) does not hold for the graphs of Figures 4, 5,
and 9, because they are not CIS-graphs.

By Proposition 1, given an arbitrary graph G, we can get a CIS-graph Gs just
adding a simplicial (private) vertex vC to each maximal clique C of G that does not
have one.

Let us remark that we have to add such a vertex to C even when C ∩ S
= ∅ for
each maximal stable set S in G, since otherwise C may become disjoint from a new
maximal stable set of Gs ; consider, for example, G = C6.

Obviously, the size of Gs may be exponential in the size of G.

Corollary 1 Any graph G is an induced subgraph of a CIS-graph.

Proof Indeed, for any graph G the CIS-graph Gs contains G as an induced
subgraph. ��

6 D. V. Andrade et al.

Thus, CIS-graphs cannot be characterized in terms of forbidden induced sub-
graphs. This is not surprising, since the CIS-property is not hereditary.

Remark 1 Interestingly, this mapping f : G → Gs can be viewed as a “bridge”
between perfect graphs and cooperative games [3]. Given a graph G = (V ,E), let
C = CG and S = SG be, respectively, the families of all maximal cliques and
stable sets of G. Let us assign a player (voter) iC to each maximal clique C ∈ CG

and an outcome (candidate) aS to each maximal stable set S ∈ SG. Furthermore, to
every vertex v ∈ V let us assign a coalition of players Kv = {iC | v ∈ C} ⊆ CG

and block of outcomes Bv = {aS | v ∈ S} ⊆ SG. Then let us introduce a family of
coalitions KG = {Kv | v ∈ V } and define an effectivity function EG : 2C × 2S →
{0, 1} by formula EG(K,B) = 1 iff Kv ⊆ K and Bv ⊆ B for some v ∈ V . It is
proved in [3–5] that the following claims are equivalent:

(i) Graph G is perfect;
(ii) Effectivity function EG is stable;

(iii) Family of coalitions KG is stable;
(iv) Family of coalitions KGs is partitionable.

A family of sets is called partitionable if every of its minimal balanced subfamily
is a partition. A family of coalitions or an effectivity function is called stable if
the corresponding core is not empty for any utility function. We refer to [3–5] for
accurate definitions.

1.2 Almost CIS-Graphs and Split Graphs

We will call a graph G = (V ,E) an almost CIS-graph if every (maximal) clique C

and stable set S in G intersects, except for a unique pair (C0, S0).
By definition, almost CIS-graphs are closed under complementation. However,

unlike CIS-graphs, they are not closed under substitution.
Notice that, by definition, the families of CIS- and almost CIS-graphs are disjoint.
Let us recall that G = (V ,E) is a split graph if V = C0 ∪ S0, where C0 and S0

are (maximal) clique and stable set, respectively. Foldes and Hammer [19] showed
that split graphs are exactly (C4, C4, C5)-free graphs.

It is not difficult to see that every split graph is either a CIS-graph or an almost
CIS-graph. More precisely, the following claim holds.

Proposition 2 Let G = (V ,E) be a split graph in which C0 and S0 are maximal
and V = C0∪S0. If C0∩S0
= ∅, then G is a CIS-graph, otherwise, if C0∩S0 = ∅,
then G is an almost CIS-graph in which (C0, S0) is the only disjoint pair.

Proof Obviously, for each maximal clique C and stable set S in G we have: C0 ∩
S
= ∅ unless S = S0 and C ∩ S0
= ∅ unless C = C0. Let us assume that both
intersections are non-empty (then, clearly, each of them consists of a single vertex)
and denote C0 ∩ S by vS and C ∩ S0 by vC . If vC = vS , then C ∩ S = {vS} = {vS}.

On Graphs Whose Maximal Cliques and Stable Sets Intersect 7

Otherwise, if (vC, vS) ∈ E, then C∩S = {vS}; if (vC, vS)
∈ E, then C∩S = {vC}.
In any case C ∩ S
= ∅.

Thus, if C ∩ S = ∅, then C = C0, S = S0, and C0 ∩ S0 = ∅. ��
Theorem 1 Every almost CIS-graph is a split graph.

By [19], it is sufficient to show that almost CIS graphs are (C4, C4, C5)-free.
This statement of Theorem 1 was conjectured in [7], where some partial results

were obtained. Then, the proof was given in [43].

1.3 P4-Free CIS-Graphs

We proceed with the following simple observation: every P4-free graph is a CIS-
graph; see, e.g., [16, 17, 20, 22, 23, 25, 28, 30, 42]. In fact, a stronger claim holds.
We say that a set T ⊆ V is a transversal of the hypergraphs H ⊆ 2V if T ∩H
= ∅
for all hyperedges H ∈ H . The family of minimal transversals of H is denoted
by H d and is called the dual of H . Given a graph G = (V ,E) we assign to it two
hypergraphs, C = CG the collection of all maximal cliques of G, and S = SG the
collections of all its maximal stable sets.

Proposition 3 ([22, 25, 28, 30]) A graph G has no induced P4 if and only if
the hypergraphs C and S of all maximal cliques and stable sets of G are dual
hypergraphs. ��

Furthermore, P4-free graphs are closely related to read-once Boolean functions
and 2-person positional games, see for definitions, e.g., [21, 24, 25, 30].

Remark 2 Read-once Boolean functions can be efficiently characterized, since their
co-occurrence graphs are P4-free [6, 16, 17, 22, 23, 25–27, 30]. Moreover, the
normal forms of positional 2-person games with perfect information can be char-
acterized by Proposition 3 [23–25]. Such a normal form is exactly the intersection
matrix of the maximal cliques and stable sets of the corresponding graph, where the
final positions (outcomes) of the game are in one-to-one correspondence with the
vertices of this graph. See an example in Figure 3, where the monotone Boolean
functions FS = 13∨ 24 and FC = (1∨ 3)(2∨ 4) corresponding to the hypergraphs
S = {(1, 3), (2, 4)} and C = {(1, 2), (2, 3), (3, 4), (4, 1)} are read-once.

However, the absence of induced P4s is only sufficient but not necessary
for the CIS-property to hold. Let a graph G contain an induced P4 defined by
(v1, v

′
1), (v2, v

′
2), (v1, v2). The clique {v1, v2} and stable set {v′1, v′2} are disjoint.

Hence, they cannot be maximal in G if it is a CIS-graph. In other words, G must
contain a fifth vertex v0 such that (v0, v1), (v0, v2) are edges, while (v0, v

′
1), (v0, v

′
2)

are not. In this case we will say that P4 is settled by v0, cf. [2, 37]. Let us note that
the graph induced by {v0, v1, v2, v

′
1, v
′
2} is a CIS-graph, see Figure 6.

8 D. V. Andrade et al.

1 2

34
= {(1,2)(2,3)(3,4)(4,1)}
= {(1,3)(2,4)}

1 3 2 4

Player S

Player C

12 23 34 41
13 1 3 3 1
24 2 2 4 4

Fig. 3 A P4-free graph and the corresponding positional and normal game forms

Thus, every induced P4 in a CIS-graph must be settled. This condition is
necessary, as we argued above, yet, it is not sufficient, according to the following
examples.

1.4 Combs and Anti-combs

Given an integer k ≥ 2, a comb (or k-comb) Sk is defined as a graph with 2k

vertices k of which form a clique C = {v1, . . . , vk}, while the remaining k form a
stable set S = {v′1, . . . , v′k}. In addition, Sk contains the perfect matching (vi, v

′
i) for

i = 1, . . . , k, and there are no more edges in Sk . Let us note that graphs S2 and P4
are isomorphic. Furthermore, S3 contains 3 induced S2 and all 3 are settled. More
generally, Sk contains k induced Sk−1 and they all are settled. Figure 4 shows Sk ,
for k = 2, 3, and 4.

The complementary graph Sk is called an anti-comb (or k-anti-comb). Figure 5
shows Sk for k = 2, 3, and 4.

Clearly, the sets S and C are switched in Sk and Sk . It is also clear that combs
and anti-combs are not CIS-graphs, since they contain a maximal clique C and
stable set S that are disjoint. Hence, if a CIS-graph G contains an induced comb
Sk (respectively, anti-comb Sk), then it must be settled, that is, G must contain a
vertex v0 adjacent to each vertex of C and to no vertex of S. Thus, the following
condition is necessary for the CIS-property to hold.
(COMB) Every induced comb and anti-comb must be settled in G.

On Graphs Whose Maximal Cliques and Stable Sets Intersect 9

v1 v2

v1 v2

v1

v2v3

v1

v2v3

v1

v2 v3

v4

v1

v2 v3

v4

Fig. 4 Combs Sk , for k = 2, 3 and 4

v1 v2

v2 v1

v1 v2

v3 v1v2

v3
v1

v2 v3

v4

v3

v4 v1

v2

Fig. 5 Anti-combs Sk , for k = 2, 3 and 4

For k = 2 this observation was made by Berge [2] in 1985.
Figures 6 and 7 show settled combs and anti-combs. It is easy to verify that they

are complementary CIS-graphs. Hence, the corresponding intersection matrices are
mutually transposed.

The following obvious properties of combs and anti-combs are worth summariz-
ing:

• The 2-comb S2 and 2-anti-comb S2 are isomorphic, while the k-comb Sk and
k-anti-comb Sk are not isomorphic for k > 2.

• The k-comb Sk contains
(

k
m

)
induced m-combs Sm that are all settled in Sk , yet, it

contains no induced m-anti-combs Sm for m > 2, respectively, the k-anti-comb
Sk contains

(
k
m

)
induced m-anti-combs Sm that are all settled in Sk , yet, it contains

no induced m-combs Sm for m > 2.
• The settled k-comb and anti-comb are complementary CIS-graphs.

Obviously, COMB is a necessary condition for the CIS-property to hold. Yet, it is
not sufficient, as we will see in Section 1.5. Let us introduce the following stronger
condition.

10 D. V. Andrade et al.

v0

v1 v2

v1 v2

01 2 12 1 2
012 0 1 2
11 1 1 1
22 2 2 2

v0

v1

v2v3

v1

v2v3

01 2 3 12 3 1 23 1 2 3
0123 0 1 2 3
11 1 1 1 1
22 2 2 2 2
33 3 3 3 3

v0

v1

v2 v3

v4

v1

v2 v3

v4

01 2 3 4 12 3 4 1 23 4 1 2 34 1 2 3 4
01234 0 1 2 3 4
11 1 1 1 1 1
22 2 2 2 2 2
33 3 3 3 3 3
44 4 4 4 4 4

Fig. 6 Settled combs Sk , for k = 2, 3 and 4

COMB(3, 3) There is no induced 3-comb or 3-anti-comb, and every induced 2-
comb is settled in G. This stronger condition already implies the CIS-property.

Theorem 2 A graph G is a CIS-graph whenever it satisfies COMB(3, 3).

This was conjectured by Chvatal in early 90s. The first partial results were
published by Zang [44]. Then, the statement was proven in [14, 15]. In Section 2
we give an alternative proof, which is of independent interest. It still contains a
complicated case analysis in which one of the cases results in a remarkable graph
that is “almost” a counterexample to Theorem 2. This graph 2P (see Figure 8)
consists of two identical copies of the Petersen graph induced by the vertices
v0, . . . , v9 and v′0, . . . , v′9, respectively. Furthermore, (v′i , vj) is an edge if and only

On Graphs Whose Maximal Cliques and Stable Sets Intersect 11

v0

v1 v2

v2 v1

v0

v1 v2

v3 v1v2

v3

v0

v1

v2 v3

v4

v3

v4 v1

v2

Fig. 7 Settled anti-combs Sk , for k = 2, 3 and 4

v1

v2

v3 v4

v5
v8

v9

v7 v0

v6
+

v1

v2

v3 v4

v5
v8

v9

v7 v0

v6

Fig. 8 Graph 2P

if (vi, vj) is not, for all i
= j . Ten remaining pairs, (vi, v
′
i), i = 0, . . . , 9, are

uncertain, that is, configuration 2P represents in fact 210 possible graphs rather
than one graph. The following properties of 2P are easy to see.

(a) 2P is isomorphic to its complement.
(b) 2P is regular of “degree 9.5,” that is, each vertex is incident to 9 edges and

belongs to one uncertain pair.
(c) For every two vertices u, v there is an automorphism α of 2P such that α(u) =

v.
(d) None of the 210 graphs of 2P contains an induced 3-comb or 3-anti-comb.
(e) Every induced 2-comb in all 210 graphs of 2P involves a pair vi, v

′
i for some

i = 0, . . . , 9.

In fact, 36 induced 2-combs appear, whenever we substitute a pair vi, v
′
i by an

edge (or by a non-edge). It is easy to see that none of these 2-combs can be settled
by a vertex of 2P , and if it is settled by a new vertex then an unsettled 3-comb or
3-anti-comb always appears. Thus, the case under consideration does not lead to a
counterexample, and a complete case analysis yields the proof of Theorem 2, see
Section 2.

12 D. V. Andrade et al.

Four examples of CIS-graphs satisfying condition COMB(3, 3) are given in
Figure 1.

It would be interesting to analyze the following relaxations of condition
COMB(3, 3) that are still stronger than COMB. Given integers i, j ≥ 2, we
say that a graph G satisfies condition COMB(i, j) if all induced combs and anti-
combs in G are settled and, moreover, G contains no induced Si and Sj . By a
natural convention we have COMB = COMB(∞,∞).

Clearly, condition COMB(2, 2) implies the CIS-property, since it means that the
graph is P4-free. In fact, we have COMB(2, 2) ≡ COMB(2, i) ≡ COMB(i, 2) for
every i ≥ 2, since the 2-comb S2 ≡ P4 is self-complementary and every comb
and anti-comb contains an induced 2-comb. Furthermore, condition COMB(i, j) is
monotone in the sense that it implies COMB(i′, j ′) for all i ≤ i′ and j ≤ j ′, and
symmetric, in the sense that COMB(i, j) implies the CIS-property if and only if
COMB(j, i) does (due to the fact that G is a CIS-graph if and only if its complement
G is a CIS-graph).

By Theorem 2, COMB(3, 3) implies the CIS-property. However, it is not known
whether COMB(4, 4) or COMB(3, j) for some j ≥ 4 implies it. Certainly,
condition COMB(5, 4) does not, as the next section shows.

1.5 (n, k, �)-Graphs and Their Complements

The following graph G = (V ,E) was suggested by Ron Holzman in 1994. It has(5
1

)
+

(5
2

) = 5 + 10 = 15 vertices, where subsets S = {v1, . . . , v5} and C =
{v12, . . . , v45} induce a stable set and clique, respectively; V = C ∪ S (hence, G is
a split graph); furthermore, every pair (vi, vij), where i, j = 1, . . . , 5 and i
= j ,
is an edge, and there are no more edges. Let us denote this graph by G(5, 1, 2), see
Figure 9.

It is easy to verify that G(5, 1, 2) contains no induced 5-combs and
4-anti-combs. In Section 3 we will show that all induced combs and anti-
combs in G(5, 1, 2) are settled. For example, the 4-comb induced by vertices
(v12, v13, v14, v15, v2, v3, v4, v5) is settled by v1 and the 3-anti-comb induced by
(v12, v13, v23, v1, v2, v3) is settled by v45, etc. Thus, the graph G(5, 1, 2) satisfies

v12 v13 v14 v15 v23 v24 v25 v34 v35 v45

v1 v2 v3 v4 v5

Fig. 9 Graph G(5, 1, 2) was constructed by Ron Holzman in 1994

On Graphs Whose Maximal Cliques and Stable Sets Intersect 13

v12 v13 v14 v15 v23 v24 v25 v34 v35 v45

v1 v2 v3 v4 v5

v0

01213141523
2425343545 112131415 212232425 313233435 414243445 515253545

012345 0 1 2 3 4 5
12345 12 12 12 3 4 5
13245 13 13 2 13 4 5
14235 14 14 2 3 14 5
15234 15 15 2 3 4 15
23145 23 1 23 23 4 5
24135 24 1 24 3 24 5
25134 25 1 25 3 4 25
34125 34 1 2 34 34 5
35124 35 1 2 35 4 35
45123 45 1 2 3 45 45

Fig. 10 Settled G(5, 1, 2)

condition COMB(5, 4), however, it is not a CIS-graph, since C ∩ S = ∅. Let us
notice that the settled extension of G(5, 1, 2) is a CIS-graph, see Figure 10.

We generalize the above example as follows. Given integers n, k, � such that
n > k ≥ 1 and n > � ≥ 1, consider a set S (respectively, C) consisting of(
n
k

)
(respectively,

(
n
�

)
) vertices labeled by k-subsets (respectively, by �-subsets) of

a ground n-set. Let us introduce the graph G(n, k, �) on the vertex-set C ∪ S such
that S is a stable set, C is a clique, and a vertex of S is adjacent to a vertex of C if and
only if the corresponding k-set is either a subset or a superset of the corresponding
�-set. Obviously, G(n, k, �) is not a CIS-graph, since C ∩ S = ∅. However, some
of these graphs satisfy the condition COMB, for example, G(5, 1, 2). Moreover,
G(5, 1, 2) satisfies the stronger condition COMB(5, 4).

By definition, G(n, 1, 1) = Sn is an n-comb and G(n, n − 1, 1) = Sn is an
n-anti-comb. Furthermore, it is easy to see that

(i) the graphs G(n, k, �) and G(n, n− k, n− �) are isomorphic.

Hence, without loss of generality we can assume that k ≤ � and even that k < �,
since G(n, k, k) is just a comb S(n

k)
. Then, from the simple fact that a set contains

an element if and only if the complementary set does not contain it, we derive

14 D. V. Andrade et al.

(ii) the graphs G(n, k, 1) and G(n, 1, n− k) are complementary.

Thus, the graphs G(n, k, n − 1) and G(n, n − k, 1) are isomorphic by (i) and
complementary to G(n, 1, k) by (ii). Hence, without loss of generality we can
assume that � ≤ n− 2. Summarizing, we will assume in the sequel that

1 ≤ k < � ≤ n− 2. (1)

In Section 3 we will prove the following two claims analyzing the existence of
unsettled anti-combs and combs in G(n, k, �).

Theorem 3

(i) Each induced anti-comb in G(n, k, �) is settled whenever

n >
k + 1

k
�.

(ii) An unsettled induced anti-comb exists in G(n, k, �) whenever

k + � ≤ n ≤ k + 1

k
�.

Theorem 4

(a) Each induced comb is settled in G(n, 1, �), and it is settled in G(n, 2, �)

whenever

n < 2�− 3.

(b) An unsettled induced comb exists in G(n, k, �) for k ≥ 2 whenever

n ≥ k

k − 1
�− r

k − 1
or n = k

k − 1
�− r

k − 1
− 1 and � > r + k2 − k,

where r ≡ � (mod k − 1) and r ∈ {2, 3, . . . , k}.
Let us denote by G the subfamily of graphs G(n, k, �) whose induced combs and

anti-combs are all settled and n, k, � satisfy (1).

Corollary 2 For k = 1 and k = 2 the membership in G is characterized as follows:

G(n, 1, �) ∈ G iff n > 2�

G(n, 2, �) ∈ G iff 2�− 3 > n > (3/2)�.

Proof By (1) we have n ≥ �+ 2 ≥ �+ k, whenever k ≤ 2, and thus, by Theorem 3,
all induced anti-combs are settled in G(n, k, �) for k ≤ 2 if and only if n > k+1

k
�.

This and (a) of Theorem 4 then imply the claim for k = 1.

On Graphs Whose Maximal Cliques and Stable Sets Intersect 15

If k = 2, then G(n, 2, �) has an unsettled comb, by (b) of Theorem 4, if n ≥
2�− 2 or if n = 2�− 3 and � > 4, since r = 2 in this case. However, if n = 2�− 3
then � ≥ 5 by (1). Hence, the second condition holds automatically, and therefore
by (a) and (b) of Theorem 4, we can conclude that G(n, 2, �) has an unsettled comb
if and only if n ≥ 2�− 3. ��

Thus, for k = 1 we get {G(5, 1, 2),G(6, 1, 2),G(7, 1, 2),G(7, 1, 3), . . .} ⊆
G and for k = 2 we get {G(14, 2, 9), G(16, 2, 10), G(17, 2, 11), G(18, 2, 11),

G(19, 2, 12), G(20, 2, 13), . . .} ⊆ G.

Remark 3 Notice that conditions (i) and (ii) of Theorem 3 provide an almost
complete characterization of the existence of unsettled anti-combs in G(n, k, �).
However, it is not clear if condition n ≥ k + � in part (ii) is necessary. Note that if
k ≤ 2, then this condition holds automatically by (1). For instance, we do not know
if G(8, 3, 6) has an unsettled anti-comb. Computer experiments show that there are
no unsettled m-anti-combs for m ≤ 10. In any case, G(8, 3, 6) has an unsettled
6-comb, by Theorem 4.

Let us also note that we know much less about combs. For instance, we could
only treat the case of k ≤ 2 in (a) of Theorem 4, though we conjecture that a similar
claims can hold for all k. For example, G(10, 3, 8) is the smallest graph for which
we do not know if it contains an unsettled comb or anti-comb.

Based on the proofs of the above theorems and on several numerical examples
we conjecture that membership in G can be characterized by inequalities of the
approximate form

k

k − 1
�+O(k) ≥ n ≥ k + 1

k
�−O(k).

This is certainly the case for k ≤ 2, by Corollary 2.

By definition, in a graph G = G(n, k, �) ∈ G, as well as in its complement
G, all induced combs and anti-combs are settled, that is, both G and G satisfy the
condition COMB. Let us notice, however, that G is not an (n, k, �)-graph unless
k = 1. (Recall that G(n, 1, �) and G(n, n− �, 1) are complementary.)

It seems that every non-CIS-graph satisfying COMB contains either an induced
G(n, k, �) ∈ G or its complement. At least, we have no counterexample for this
claim.

Let us add that, unlike the case of combs and anti-combs, one graph from G
may contain another as an unsettled induced subgraph. For example, G(6, 1, 2)

contains an unsettled induced G(5, 1, 2), while in G(7, 1, 2) all induced G(5, 1, 2)

are settled. Yet, in G(7, 1, 2) there is an unsettled induced G(6, 1, 2). Vice versa,
in G(7, 1, 3) each induced G(6, 1, 2) is settled but there are unsettled induced
G(5, 1, 2). Further, in G(8, 1, 3), all induced G(5, 1, 2) and G(7, 1, 2) are settled
but there are unsettled induced G(6, 1, 2) and G(7, 1, 3). Due to this “non-
transitivity,” in order to enforce the CIS-property for a graph G, it seems easier to
assume that all induced subgraphs from G as well as their complements are settled

16 D. V. Andrade et al.

in G. Of course, it is even simpler to assume that G does not contain such subgraphs
at all.

Conjecture 1 If G contains no induced G(5, 1, 2) nor its complement G(5, 3, 1)

and all induced combs and anti-combs are settled in G, then G is a CIS-graph.

We remark here that G(n, k, l) contains an induced G(n′, k′, l′) whenever n′ ≤
n, k′ ≤ k, and l′ ≤ l.

Remark 4 Let us note that CIS-graphs and perfect graphs look somewhat similar.
Both classes are closed with respect to complementation and substitution. Odd holes
and anti-holes are similar to combs and anti-combs. The following two tests look
similar too: whether G contains an induced odd hole or anti-hole and whether G

contains an induced unsettled comb or anti-comb. It seems that CIS-graphs, like
perfect graphs, may allow a simple characterization and a polynomial recognition
algorithm (that may be very difficult to obtain, though).

However, there are dissimilarities, too. The property of perfectness is hereditary,
unlike the CIS-property. Also, there are non-CIS-graphs in which all induced combs
and anti-combs are settled. (By Conjecture 1, every such graph contains an induced
G(5, 1, 2) or its complement G(5, 3, 1).)

Remark 5 CIS-graphs were recently mentioned (under the name of stable graphs)
in [45], where it is shown that recognition of stable graphs is a special case of a
difficult problem (strongly bipartite bihypergraph recognition problem) introduced
in this paper. Based on this observation, the authors conjecture that recognition
of stable graphs is co-NP-complete. However, we conjecture that this problem is
polynomial.

The following relaxation of the CIS-property was considered in [31] and [41].

Triangle Condition For every maximal stable set S and every edge (u, v) such
that u, v
∈ S there exists a vertex w ∈ S such that vertices u, v,w induce a clique.

Obviously, each CIS-graph has this property.

1.6 Gallai’s and CIS-d-Graphs

Let us generalize the concept of a CIS-graph as follows. For a given integer d ≥ 2,
a complete graph whose edges are colored by d colors G = (V ;E1, . . . , Ed) is
called a d-graph. To a given d-graph G let us assign a family of d hypergraphs C =
C (G) = {Ci | i = 1, . . . , d} on the common vertex-set V , where the hyperedges
of Ci are all inclusion maximal subsets of V containing no edges of color i. We say
that G is a CIS-d-graph (has the CIS-d-property) if

⋂d
i=1 Ci
= ∅ for all selections

Ci ∈ Ci for i = 1, . . . , d. Obviously, such an intersection can contain at most
one vertex. If d = 2, then we obtain the original concept of CIS-graphs. (More
accurately, CIS-2-graph is a pair of two complementary CIS-graphs.) Similarly to
CIS-graphs, CIS-d-graphs also satisfy a natural requirement that can be considered

On Graphs Whose Maximal Cliques and Stable Sets Intersect 17

as a generalization of settling. Assume that Xi is a clique in the subgraph Gi =
(V ,∪j
=iEj) for i = 1, . . . , d, and that ∩d

i=1Xi = ∅. Then, these cliques cannot
all be maximal and, hence, there must be a vertex x ∈ V such that for every i =
1, . . . , d and y ∈ Xi we have (x, y)
∈ Ei . We will say in this case that {X1, . . . , Xd}
are settled by x.

Given a CIS-d-graph G , let us assign to it a d-dimensional table g = g(G), that
is, a mapping g : C1 × · · · × Cd → V defined by the rule: g(C1, . . . , Cd) = v

whenever {v} = ∩d
i=1Ci . Let us observe that this d-dimensional array is partitioned

by the elements of V into n = |V | sub-arrays called boxes, since the following
implication holds:

if g(C′1, . . . , C′d) = g(C′′1 , . . . , C′′d) = v, then v belongs to all these 2d sets,
and hence,

g(C1, . . . , Cd) = v for all 2d choices Ci ∈ {C′i , C′′i }, i = 1, . . . , d.
Let us further introduce two special edge colored graphs. Let Π denote

the 2-colored graph whose both chromatic components form a P4, that
is, V = {v1, v2, v3, v4}; E1 = {(v1, v2), (v2, v3), (v3, v4)}, and E2 =
{(v2, v4), (v4, v1), (v1, v3)}. Furthermore, let Δ denote the 3-colored triangle, for
which V = {v1, v2, v3}, E1 = {(v1, v2)}, E2 = {(v2, v3)}, and E3 = {(v3, v1)}.
Figure 11 illustrates these graphs.

Proposition 4 ([23, 25]) Every Π - and Δ-free d-graph is a CIS-d-graph. ��
In fact, a stronger claim holds.

Proposition 5 ([23–25]) A d-graph G is Π - and Δ-free if and only if the corre-
sponding mapping g(G) defines the normal form of a positional d-person game
with perfect information whose final positions (outcomes of the game) are in one-
to-one correspondence with the vertices of G . ��

For example, let us consider the Π - and Δ-free 3-graph G given in Figure 12.
For this graph we have C1 = {(1, 3), (2, 4)}, C2 = {(1, 2, 4), (2, 3, 4)}, and C3 =
{(1, 2, 3), (1, 3, 4)}. The mapping g(G) and the corresponding positional game are
shown in Figure 12.

Another example of a Π - and Δ-free 3-graph is given in Figure 13. In this case
C1 = {(1), (2, 3, 4)}, C2 = {(1, 3), (1, 2, 4)}, and C3 = {(1, 2, 3), (1, 3, 4)}. The
mapping g(G) and the corresponding positional game are shown in Figure 13.

Of course, the condition that a d-graph G must be Π - and Δ-free is only
sufficient but not necessary for the CIS-d-property to hold. On the other hand, the

Fig. 11 Colored Π and Δ

v1

v2 v3

v4 v1

v2

v3

18 D. V. Andrade et al.

1 2

34

1 = {(13)(24)}
2 = {(124)(234)}
3 = {(123)(134)}

1 3 2 4

Player R

Player GPlayer B 13 24
1 1 124 2 4
3 3 234 2 4
1 1 1 1
2 3 2 3
3 4 3 4

Fig. 12 A Π - and Δ-free 3-graph and the corresponding positional and normal game forms

1 2

34

1 = {(1)(234)}
2 = {(13)(124)}
3 = {(123)(134)}

R

1

B

3

G

2 4

players

outcomes

1 234
1 1 13 3 3
1 1 124 2 4
1 1 1 1
2 3 2 3
3 4 3 4

Fig. 13 A Π - and Δ-free 3-graph and the corresponding positional and normal game forms

following condition is clearly necessary. Given a d-graph G = (V ;E1, . . . , Ed)

and a partition P1 ∪ . . . ∪ Pδ = {1, . . . , d} of its colors, let us define a δ-graph
G ′ = (V ;E′1, . . . , E′δ) by setting E′i = ∪j∈Pi

Ej , i = 1, . . . , δ and call G ′ the
δ-projection of G .

On Graphs Whose Maximal Cliques and Stable Sets Intersect 19

Proposition 6 Let G be a CIS-d-graph whose set of colors {1, . . . , d} is partitioned
into δ non-empty subsets (2 ≤ δ ≤ d) then the corresponding δ-graph G ′ is a CIS-
δ-graph.

In particular, in case δ = 2 we must get two complementary CIS-graphs.
The following conjecture is open since 1978.

Conjecture 2 ([23]) Every CIS-d-graph is Δ-free.

By Proposition 6, it would suffice to prove this conjecture for d = 3. In this case,
it was verified up to n = 12 vertices by a computer code written by Steven Jaslar
in 2003. We will consider this conjecture in Section 4 and show that, similarly to
combs and anti-combs, all Δs in a CIS-d-graph must be settled, and it takes two
vertices to settle a Δ (see Section 4.2). Although there are d-graphs in which all Δs
are settled, yet, it seems impossible to have settled simultaneously all combs and
anti-combs in all 2-projections of these d-graphs, a condition that is necessary by
Proposition 6.

In the literature Δ-free d-graphs are called Gallai’s graphs, since they were
introduced by Gallai in [20]. We will call them Gallai’s d-graphs which is more
accurate. They are well studied [1, 10–12, 18, 29, 32, 33]. Conjecture 2 means that
CIS-d-graphs form a subfamily of Gallai’s d-graphs. Next, we will characterize
Gallai’s CIS-d-graphs in terms of CIS-graphs. Hence, to characterize CIS-d-graphs
it would suffice to do it for d = 2 and prove Conjecture 2.

First, let us note that both Gallai’s and CIS-d-graphs are closed under substi-
tution. (For Gallai’s d-graphs this is well known [10, 29].) Moreover, the inverse
claims hold too.

Proposition 7 Let us substitute a d-graph G ′′ for a vertex v of a d-graph G ′ and
denote the obtained d-graph by G = G (G ′, v,G ′′). Then G is a Gallai (respectively,
CIS-) d-graph if and only if both G ′ and G ′′ are Gallai’s (respectively, CIS-) d-
graphs.

In case d = 2 this proposition implies the similar property for CIS-graphs.

Proposition 8 Let us substitute a graph G′′ for a vertex v of a graph G′ and denote
the obtained graph by G = G(G′, v,G′′). Then G is a CIS-graph if and only if both
G′ and G′′ are CIS-graphs. ��

Let us recall, however, that CIS-d-property is not hereditary, that is, an induced
subgraph of a CIS-d-graph may have no CIS-d-property. In particular, for d = 2,
this means that an induced subgraph of a CIS-graph may have no CIS-property.

Here and in the sequel we assume that the set of colors [d] = {1, . . . , d} is the
same for all considered d-graphs, while some chromatic components may be trivial
(edge-empty). For example, by a 2-graph we mean a d-graph with at most 2 non-
trivial chromatic components.

It is known that each Gallai d-graph can be obtained from 2-graphs by substitu-
tions. More precisely, the following claim holds.

20 D. V. Andrade et al.

Proposition 9 (Cameron and Edmonds [10]; Gyárfás and Simonyi [29]) For
each Gallai d-graph G there exist a 2-graph G0 with n vertices and n Gallai d-
graphs G1, . . . ,Gn such that G is obtained by substituting G1, . . .Gn for n vertices
of G0.

In [29], this claim is derived from the following Lemma.

Lemma 1 ([10, 20], and [29]) Every Gallai d-graph G = (V ;E1, . . . , Ed) with
d ≥ 3 has a color i ∈ [d] that does not span V , or in other words, the graph
Gi = (V ,Ei) is not connected.

Remark 6 It is interesting to compare Lemma 1 with the following Lemma from
[23, 25]. If a d-graph G is Π - and Δ-free, then there exists a unique color i ∈ [d]
such that the complement of the i-th chromatic component, Gi , is disconnected.

Gyárfás and Simonyi remark that Lemma 1 “is essentially a content of Lemma
(3.2.3) in [20]” and they derive Proposition 9 from it as follows. If d ≤ 2, we
are done. Otherwise, we have a color i ∈ [d] such that graph Gi = (V ,Ei)

is disconnected. It is not difficult to show that for each two of its connected
components all edges between them are of the same color j (clearly, j
= i), since
otherwise a Δ appears.

Collapsing these components into vertices we get a smaller (d − 1)-graph which
is still Δ-free, by Proposition 7. By induction, G1, . . . ,Gn and G0 can be constructed
as required. ��

Moreover, applying the above decomposition recursively, we can represent an
arbitrary Gallai d-graph G = (V ;E1, . . . , Ed) by a substitution-tree T (G) whose
leaves are associated to 2-graphs. If d ≤ 2, then G itself is a 2-graph and T (G)

is reduced to one vertex. If d ≥ 3 then, by Lemma 1, there is a color i ∈ [d]
such that the i-th component Gi = (V ,Ei) does not span V , or in other words,
it is disconnected. Let W ⊂ V be a connected component of Gi . Furthermore, let
G′′ = G[W] be the subgraph of G induced by W , while G′ be obtained from G by
contracting W to a single new vertex v. Then, as it was shown above, substituting
G ′′ for v in G ′ we get G = G (G ′, v,G ′′); see Figure 14. If G ′ (or G ′′) is a 2-graph,
then it becomes a leaf of T (G). Otherwise, if G ′ (or G ′′) has more than 2 non-trivial
chromatic components, we decompose it further in the same way until only 2-graphs
remain. They are the leaves of the obtained decomposition tree T (G), as required.

Fig. 14 Decomposing G by
the tree T (G); substituting G ′′
for v in G ′ to get G

v

On Graphs Whose Maximal Cliques and Stable Sets Intersect 21

It is wellknown that decomposing a given graph into connected components can
be executed in linear time. Hence, given G , its decomposition tree T (G) can be
constructed in linear time, too.

Remark 7 As defined above, tree T (G) is not unique, since several chromatic
components of G may be disconnected and any connected component of any
chromatic component can be chosen as W for the decomposition. Let us note,
however, that the corresponding vertex sets are nested. More precisely, if Ea

i , Eb
j

are connected components of colors i, j ∈ [d], then the corresponding vertex-sets
V a

i , V b
j ⊆ V are either disjoint or one of them is a subset of the other. Yet, the latter

case cannot take place when i = j .
Let us also note that in general T (G) can be extended further, since some 2-

graphs also can be decomposed by substitution. Obviously, the decomposition of a
2-graph G = (V ;E1, E2) is reduced to a decomposition of a graph, namely, of a
chromatic component, G1 = G(V,E1) or G2 = G(V,E2).

In general, decomposing graphs (as well as d-graphs, digraphs, Boolean func-
tions, etc.) by substitution is known as their modular decomposition. A module is a
set X ⊆ V such that no member of V \X distinguishes members of X. A set family
F is called decomposable if X∩Y , X∪Y , X\Y , Y \X, and XΔY = (X\Y)∪(Y \X)

are in F whenever X, Y ∈ F and X ∩ Y
= ∅. Möring [39] proved that the
family of modules is decomposable and hence, there is a unique canonical modular
decomposition tree.

In general, modular decomposition is more complicated than decomposition of
Gallai’s d-graphs. There have been a number of O(n4), O(n3), O(mn), O(n2),
O(n + m log n) algorithms. Finally, O(m + n) algorithms were given by Cournier
and Habib [13] and McConnell and Spinrad [38]. Some linear time algorithms work
for graphs, d-graphs, digraphs, and Boolean functions. See [8, 9, 38–40] for a survey
on modular decomposition.

We make use of the decomposition tree T (G) to recognize whether G is a CIS-
d-graph. Obviously, by Proposition 7, we can extend Proposition 9 as follows.

Proposition 10 A Gallai d-graph G has the CIS-d-property if and only if all n+ 1
d-graphs G1, . . . ,Gn and G0 from Proposition 9 have this property. ��

Thus, every Gallai’s CIS-d-graph can be obtained from CIS-2-graphs by
recursive substitutions, and hence, a characterization or polynomial recognition
algorithm of CIS-graphs would provide one for the Gallai CIS-d-graphs too.

From Propositions 6, 9, and 10 we will derive the following two claims.

Proposition 11 A Gallai d-graph G is a CIS-d-graph if and only if all d of its
chromatic components are CIS-graphs.

The “only if” part follows from Proposition 6 and “if” part can be strengthened
as follows.

Proposition 12 Given a Gallai d-graph G such that at least d−1 of its d chromatic
components are CIS-graphs, then G is a CIS-d-graph.

22 D. V. Andrade et al.

Fig. 15 A non-Gallai
3-graph in which G1 and G2
are CIS-graphs, while G3 is
not

1

23

4

5 6

In particular, the remaining chromatic component of G must be a CIS-graph.
In the next subsection we generalize the last claim by showing that it holds not

only for CIS-graphs but also for perfect graphs and, in fact, for every family of
graphs satisfying some simple requirements.

Yet, of course, it is essential that G is a Gallai d-graph. For example, let us
consider a 3-graph G in Figure 15. Graphs G1 and G2 are isomorphic, each of them
is a settled 2-comb with one isolated vertex. Hence, they are CIS-graphs. Yet, G3 is
not, since the stable set S = {2, 3, 5, 6} and clique C = {1, 4} are disjoint. However,
G is not Gallai’s 3-graph, for example, {5, 6, 1} as well as {1, 2, 3} is a Δ.

1.7 Extending Cameron-Edmonds-Lovász’ Theorem

Cameron, Edmonds, and Lovász [11] proved the statement similar to Proposition 12
for perfect graphs: given a Gallai d-graph, if at least d − 1 of its chromatic
components are perfect graphs, then the remaining component is a perfect graph,
too. Later, Cameron and Edmonds [10] showed that, in fact, the statement holds for
any family of graphs that is closed under: (i) substitution, (ii) complementation, and
(iii) taking induced subgraphs. For example, it holds for P4-free graphs, or in other
words, for the components of Π - and Δ-free d-graphs [23].

However, CIS-graphs satisfy only (i) and (ii) but not (iii). Nevertheless, the
statement holds for them too; see Proposition 12.

In general, one can substitute the following property for (iii).
Let us say that a family of graphs (or d-graphs) F is exactly closed under

substitution G = G(G′, v,G′′) whenever G ∈ F if and only if both G′ and G′′
belong to F .

For example, CIS-graphs are exactly closed under substitution, by Propositions 8,
and both, Gallai’s and CIS-d-graphs, by Propositions 7.

Proposition 13 If F is closed under substitution and taking induced subgraphs,
then F is exactly closed under substitution.

On Graphs Whose Maximal Cliques and Stable Sets Intersect 23

Proof Indeed, if G = G(G′, v,G′′), then both G′ and G′′ are induced subgraphs
of G . ��

We say that the family of graphs F has the CES-property and call it a CES-family
if F is closed under complementation and exactly closed under substitution.

For example, the families of perfect graphs and CIS-graphs have the CES-
property.

We strengthen Cameron-Edmonds’ theorem as follows.

Theorem 5 Let F be a CES-family of graphs and G = (V ;E1, . . . , Ed) be a
Gallai d-graph such that at least d − 1 of its chromatic components, say, Gi =
(V ,Ei) for i = 1, . . . , d − 1, belong to F . Then

(a) the last component Gd = (V ,Ed) is in F too, and moreover,
(b) all 2d projections of G belong to F , that is, for each subset I ⊆ [d] =
{1, . . . , d} the graph GI = (V ,∪i∈IEi) is in F .

We will prove this Theorem in Section 4.1. By Proposition 13, part (a) implies
Cameron-Edmonds’ theorem. Since CIS-graphs form a CES-family, we obtain the
following claim.

Corollary 3 Let G = (V ;E1, . . . , Ed) be a Gallai d-graph such that at least
d − 1 of its chromatic components are CIS-graphs. Then the remaining chromatic
component of G is a CIS-graph too; hence, G is a CIS-d-graph and all its 2d

projections are CIS-graphs. ��

1.8 On families of Graphs Closed with Respect to Substitution

To get more examples of CES-families let us, first, consider hereditary classes. Each
such class is a family of graphs F defined by a family, finite or infinite, of forbidden
subgraphs F ′. By definition, G ∈ F if and only if G contains no induced subgraph
isomorphic to a G′ ∈ F ′.

Let us call a graph (or d-graph) G substitution-prime (or just, prime, for brevity)
if it is not decomposable by substitution, or more precisely, if G = G(G′, v,G′′)
for no G′,G′′ and v, except for two trivial cases: (G = G′ and V (G′′) = {v}) or
(G = G′′ and V (G′) = {v}).

Suppose that G is decomposable, G = G(G′, v,G′′). Then, as we already
mentioned, both G′ and G′′ are induced subgraphs of G. Hence, if G′ or G′′ contains
an induced subgraph G0, then G also contains it. However, G may contain G0 even
if G′ and G′′ do not. Yet, clearly, in this case G0 is not substitution-prime. Thus, for
both, graphs and d-graphs, we obtain the following statement.

Proposition 14 Family F is exactly closed under substitution if all d-graphs in F ′
are substitution-prime. ��

24 D. V. Andrade et al.

The inverse holds too if we assume (by the way, without any loss of generality)
that no (d-)graph of F ′ contains another one as an induced subgraph. Thus, F is
a CES-family (and, hence, it satisfies all conditions of Theorem 5) whenever F ′ is
closed under complementation (G ∈ F ′ if and only if G ∈ F ′) and F ′ contains
only substitution-prime graphs.

For example, these two properties hold for the odd holes and anti-holes. In this
case, F is the family of Berge graphs. Thus, Theorem 5 and the Strong Perfect
Graph Theorem imply the Cameron-Edmonds-Lovász Theorem [11]. Of course,
it can be proved simpler: first, show that perfect graphs are exactly closed under
substitution, [35], and then apply Lovász’ perfect graph theorem [34, 35], instead of
the strong one.

Another example is provided by the family F of P4-free graphs. In this case
F ′ = {P4} and all conditions of Theorem 5 hold, since P4 is self-complementary
and prime.

Remark 8 Moreover, in this case, it is easy to verify directly claims (a) and (b) of
Theorem 5, see [23]. The following implication is instrumental: if a d-graph G =
(V ;E1, . . . , Ed) is Π - and Δ-free, then every its 2-projection G ′ = (V ;E′1, E′2) is
Π -free too.

A similar example is given by the family F of A-free graphs. In this case F ′ =
{A}, where A is the settled P4 (or in other words, settled 2-comb, or bull-graph).
Like P4, it is also self-complementary and substitution-prime.

However, if F ′ contains a decomposable graph, e.g., C4, then F may be not
closed under substitution. For example, let F ′ = {C4, C4} and consider the Gallai
3-graph in Figure 12. Two of its chromatic components belong to F , while the third
one, C4, does not.

As another example, let us consider F ′ = {C4, C4, C5}. By [19], F is the
family of split graphs. This family is self-complementary, yet, it is not closed under
substitution. Indeed, substituting, for example, a non-edge for the middle vertex of
P3 we get C4.

There are also non-hereditary families of graphs (respectively, d-graphs) closed
under substitution; for example, CIS-graphs (respectively, CIS-d-graphs). It is not
difficult to give more examples of such families and even to characterize them.
Given a family F ′, finite or infinite, of (d-)graphs, let us denote by cl(F ′) its
closure with respect to substitution.

Proposition 15 A family F of (d-)graphs is exactly closed under substitution if and
only if F = cl(F ′), where F ′ is a family, finite or infinite, of substitution-prime
(d-)graphs. Furthermore, F is closed under complementation whenever F ′ is.

Proof The second claim makes sense only for graphs and it is obvious. The first one
follows from uniqueness of the canonical modular decomposition [39]. ��

The obtained family F = cl(F ′) is not hereditary if and only if there are
substitution-prime (d)-graphs G ∈ F ′ and G′
∈ F ′ such that G′ is an induced

On Graphs Whose Maximal Cliques and Stable Sets Intersect 25

subgraph of G. For example, let F ′ = {A} contain only the bull-graph A then
F = cl(F ′) contains no 2-comb.

However, the characterization of the CES-families by Proposition 15 is not con-
structive. For example, the substitution-prime perfect or CIS-graphs form infinite
families that are difficult to describe explicitly.

1.9 Almost CIS-d-Graphs

A d-graph G = (V ;E1, . . . , Ed) will be called an almost CIS-d-graph if⋂d
i=1 Ci = ∅ for exactly one d-tuple C1, . . . , Cd , where Ci ⊆ V is an inclusion

maximal vertex-set containing no edges of color i, that is, for each i ∈ [d] =
{1, . . . , d}, we have (v, v′) ∈ Ei for no v, v′ ∈ Ci ,

Notice that, by definition, the families of CIS- and almost CIS-d-graphs are
disjoint.

For d = 2 we return to the definition of almost CIS-graphs. More precisely, an
almost CIS-2-graph is a pair of two complementary almost CIS-graphs.

By Proposition 2, any split graph is either a CIS- or almost CIS-graph. Moreover,
by Theorem 1, except split graphs, there are no other almost CIS-graphs. The latter
are in a natural one-to-one correspondence with the split almost CIS-2-graphs. Let
us recall that we may have d ≥ 2 for a 2-graph. In particular, for an arbitrary d ≥ 2
and almost CIS graph G = (V ,E) let us define a d-graph G = (V ;E1, . . . , Ed) by
setting E1 = E, E2 = E, and Ei = ∅ for each i > 2. It is easy to see that G is an
almost CIS-d-graph.

Let us note that already the 3-graph Δ is not almost CIS, since it has two distinct
triplets C1 = {v2, v3}, C2 = {v3, v1}, C3 = {v1, v2} and C′1 = {v3, v1}, C′2 ={v1, v2}, C′3 = {v2, v3} such that C1 ∩ C2 ∩ C3 = ∅ and C′1 ∩ C′2 ∩ C′3 = ∅; see
Figure 16 and also Section 4.2 for more details.

However, it is not difficult to extend Δ to an almost CIS-3-graph. Indeed, let us
add to Δ a new vertex v4 such that (v1, v4) ∈ E1, (v2, v4) ∈ E2, (v3, v4) ∈ E3, and
denote the obtained 3-graph by Δ′. In other words, Δ′ = (V ;E1, E2, E3), where

V = {v1, v2, v3, v4};
E1 = {(v1, v2), (v1, v4)}, E2 = {(v2, v3), (v2, v4)}, E3 = {(v3, v1), (v3, v4)}.

It is easy to see that in Δ′ vertices v1, v2, v3 induce Δ and that
C1 = {(v3, v1), (v2, v3, v4)}, C2 = {(v1, v2), (v3, v1, v4)},
C3 = {(v2, v3), (v1, v2, v4)}.

Thus, Δ′ is an almost CIS-3-graph, since only one of its eight triplets has the empty
intersection: {v3, v1} ∩ {v1, v2} ∩ {v2, v3} = ∅.
Remark 9 We can say that vertex v4 settles one of the above two triplets of
Δ, namely, (C1, C2, C3). However, if we introduce one more vertex v5 to settle
(C′1, C′2, C′3), too, then we have to choose a color for (v4, v5). It is easy to verify

26 D. V. Andrade et al.

Fig. 16 Almost CIS-3-graph
Δ′

v1

v2

v3

v4

that for each coloring of it a new Δ appears that should be, in its turn, settled, etc.;
see Section 4.2 for more details.

Furthermore, it is not difficult to verify that Δ′ is a unique almost CIS-3-graph
with four vertices. Let us recall that there are also two CIS-3-graphs given in
Figures 12 and 13.

Standardly, for any d ≥ 3 we obtain an almost CIS-3-graph G = (V ; E1, . . . ,

Ed) setting E1, E2, E3, and V by (1.9) and Ei = ∅ for each i > 3.
Let us also remark that, unlike CIS-d-graphs, almost CIS-d-graphs (and, in

particular, almost CIS-graphs) are not closed under substitution. Nevertheless, we
get an almost CIS-3-graph substituting Δ′ for a vertex of a 1-graph G . More
precisely, G is a monochromatic clique whose all edges are colored by one of the
three colors of Δ′.

However, if all edges of G are colored by a new, fourth, color, then the obtained
4-graph is not almost CIS. Similarly, we won’t get an almost CIS-3- or 4-graph by
substituting Δ′ for more than one vertex of G , nor, viceversa, by substituting G for
a vertex of Δ′.

Finally, let us mention that we are not aware of any other almost CIS-d-graphs.

2 Proof of Theorem 2

In this section we prove Theorem 2 which claims that graphs satisfying condition
COMB(3, 3) are CIS-graphs. First we describe the structure of our proof and a
few main lemmas, then we give the complete proofs which are technical, long, and
partially computer assisted.

2.1 Plan of the Proof of Theorem 2

Let us assume by contradiction that there is a graph G such that

(i) it contains no induced 3-combs and 3-anti-combs,
(ii) each induced 2-comb is settled in G, and

On Graphs Whose Maximal Cliques and Stable Sets Intersect 27

Fig. 17 Graph G10 v1

v2

v3

v4

v5

v6

v7

v8

v0

v9

(iii) there exist a maximal clique C and a maximal stable set S in G such that
S ∩ C = ∅.

First, we will prove that G must contain an induced subgraph G10, shown in
Figure 17.

Lemma 2 If G satisfies conditions (i), (ii), and (iii), then G must contain an
induced G10.

Graph G10 contains no induced 3-combs and 3-anti-combs, yet it contains several
unsettled induced 2-combs. To settle them we have to introduce 10 new vertices that,
somewhat surprisingly, induce a graph isomorphic to G10 itself (since otherwise
an induced 3-comb or 3-anti-comb would appear). Moreover, the obtained 20-
vertex graph is the sum of two Petersen graphs, that is, the graph 2P described
in Section 1.4, Figure 8.

Lemma 3 If G contains an induced G10 and satisfies conditions (i) and (ii), then
G must contain an induced 2P .

Let us recall that 2P contains 10 uncertain pairs of vertices each of which can
be either an edge or non-edge. Hence in fact, 2P represent 210 = 1024 graphs. We
will show that all these 1024 graphs contain no induced 3-combs and 3-anti-combs
and, moreover, each induced 2-comb in 2P (that contains no uncertain pair) is
settled. However, 36 induced 2-combs appear in 2P whenever we fix any uncertain
pair either as an edge or as a non-edge. It is easy to see that none of these 2-combs
are settled in 2P . We will show that they cannot be settled in G either, because
if a vertex of G were settling one of them then an induced 3-comb or 3-anti-comb
would exist in G. We can reformulate this result as follows.

Lemma 4 If G satisfies conditions (i) and (ii), then it cannot contain an induced
2P .

Obviously, the above 3 lemmas prove Theorem 2 by contradiction. We will prove
Lemmas 2, 3, and 4 below in Sections 2.2, 2.3, and 2.4, respectively.

28 D. V. Andrade et al.

The last two proofs are computer assisted. We use two procedures, one for
generating all induced 2-combs, 3-combs, and 3-anti-combs of a given graph G,
and a second one for testing if all induced 2-combs are settled in G, and outputting
all non-settled ones.

2.2 Proof of Lemma 2

Let us consider a pair of disjoint maximal clique C and maximal stable set S of G,
as in condition (iii). Let NS(v) be the set of neighbors of v in S. Notice that

⋂

v∈C
NS(v) = ∅, (2)

because C is maximal. Moreover,

NS(v)
= ∅ for all v ∈ C, (3)

because S is maximal.
We assume that G satisfies conditions (i), (ii), and (iii). The following series of

claims will imply the lemma.

Claim 1 Given a maximal clique C and a (not necessarily maximal) stable set S in
G such that C ∩S = ∅, there exists vertices u, v ∈ C such that NS(u)∩NS(v) = ∅.
Proof Assume by contradiction that for all pairs of vertices u, v ∈ C, we have
NS(u) ∩ NS(v)
= ∅. By this assumption, |C| ≥ 3, otherwise C would not be
maximal.

So let I = {v1, v2, . . . , vk} be a minimal subset of C such that
⋂

v∈I NS(v) = ∅.
Such a minimal subset of C exists according to (2). Furthermore, by our assumption
|I | ≥ 3.

Now, define ui ∈ ⋂k
j
=i NS(vj) for i = 1, . . . , k. Note that ui
= uj , due to

the minimality of I . Thus, any 3 vertices v1, v2, v3 ∈ I with the corresponding
u1, u2, u3 form an S3 (see Figure 18), contradicting condition (i).

Note that for this claim we only need that G is S3-free.
From Claim 1, it follows that there are some pairs of vertices u, v ∈ C such that

NS(u) ∩ NS(v) = ∅. Hence, there exist x ∈ NS(u) and y ∈ (NS(v)) such that
x, u, v, y form an S2 not settled by any vertex of S. The following claim states a
useful property of any vertex w ∈ V (G) settling such an S2.

Claim 2 We have NS(w) ⊆ NS(u) ∪NS(v).

Proof First notice that x, y
∈ NS(w) because w is a settling vertex. Then, assume
by contradiction that there is a vertex z ∈ NS(w) \ (NS(u)∪NS(v)). Then, vertices
u, v,w, x, y, z form an S3 (see Figure 19), contradicting condition (i).

On Graphs Whose Maximal Cliques and Stable Sets Intersect 29

Fig. 18 Illustration of the
proof of Claim 1

C

S

v1

v2

v3

u3 u2 u1

Fig. 19 Illustration of the
proof of Claim 2

C

S

u

w

v

x z y

For the remainder of the proof we fix a maximal clique C, a maximal stable set
S, and vertices u, v ∈ C such that

(iv) C ∩ S = ∅, NS(u) ∩NS(v) = ∅, and NS(u) ∪NS(v) is minimal,

among all possible choices of such sets C, S and vertices u, v ∈ C satisfying the
conditions of (iv). Let us note that by (2) and (3), we have such a selection of C, S,
u, and v for which NS(u)
= ∅, NS(v)
= ∅, and hence u
= v.

Claim 3 Let x ∈ NS(u), y ∈ NS(v), and w be a vertex of V (G) that settles S2 =
{x, u, v, y}. Then, NS(w) ∩NS(u)
= ∅ and NS(w) ∩NS(v)
= ∅.
Proof From Claim 2, we know that NS(w) ⊆ NS(u) ∪ NS(v). Assume by
contradiction that e.g., NS(w)∩NS(u) = ∅. This implies that NS(w) ⊆ NS(v)\{y}
(since w is settling S2).

Then, consider a maximal clique C′ ⊇ {u,w}. Notice that C′ ∩ S = ∅ because
NS(w) ∩ NS(u) = ∅. But NS(u) ∪ NS(w) � NS(u) ∪ NS(v), since y
∈ NS(u) ∪
NS(w), contradicting property (iv), that is, the minimality of NS(u) ∪NS(v).

We define next a minimal collection of settling vertices W . Given a maximal
clique C, a maximal stable set S, and vertices u, v ∈ C satisfying property (iv), let

30 D. V. Andrade et al.

Fig. 20 Illustration of the
proof of Claim 4

NS(u) NS(v)

NS(w)

u v

w

x y

us consider all possible 2-combs induced by {x, u, v, y} in G, where x ∈ NS(u) and
y ∈ NS(v). Let us call a settling vertex a vertex w of G that settles such a 2-comb. If
w is a settling vertex, then we have by Claims 2 and 3 that X(w) = NS(w)∩NS(u)

and Y (w) = NS(w) ∩ NS(v) are subsets, uniquely defined by w, satisfying the
following properties:

X(w)
= ∅, Y (w)
= ∅, and NS(w) = X(w) ∪ Y (w). (4)

Note that we may have X(w) = X(w′) and Y (w) = Y (w′) for two distinct settling
vertices. Note further that if X(w) ⊆ X(w′) and Y (w) ⊆ Y (w′) hold for two
vertices w and w′, then the set of S2 subgraphs settled by w′ are also settled by w.

Let us consider now all pairs of subsets (X, Y) such that X = X(w) and Y =
Y (w) for some settling vertex w. Let us call (X, Y) minimal, if for there is no settling
vertex w′ such that X(w′) ⊆ X, Y (w′) ⊆ Y and X(w′) ∪ Y (w′) � X ∪ Y , and let
X Y denote the collection of all such minimal pairs. For each pair (X, Y) ∈ X Y
let us choose one settling vertex w = wXY for which X = X(w) and Y = Y (w),
and denote by W = {wXY |(X, Y) ∈ X Y } the collection of these vertices; see
Figure 20.

Claim 4 There are at least two distinct vertices in W .

Proof The statement follows from the definition of W and (4). Indeed, if wXY ∈ W ,
then by (4) there are vertices x ∈ X and y ∈ Y , and hence the 2-comb S2 induced
by {x, u, v, y} is not settled by wXY . Let w be a vertex settling this 2-comb. By the
minimality of (X, Y) the pair (X(w), Y (w)) is not comparable to (X, Y), and hence
we must have a pair (X′, Y ′) ∈ X Y such that X′ ⊆ X and Y ′ ⊆ Y . Consequently,
wX′Y ′ ∈ W and wXY
= wX′Y ′ .

In the sequel we consider pairs of vertices from W and derive some containment
relations for the corresponding sets. First we consider pairs which are edges of G.

Claim 5 If (wXY ,wX′Y ′) ∈ E(G) and X ∩X′
= ∅, then Y ⊆ Y ′ or Y ′ ⊆ Y .

On Graphs Whose Maximal Cliques and Stable Sets Intersect 31

Fig. 21 Illustration of the
proof of Claim 5

NS(u) NS(v)

u v

wXY wX’Y’

x y1 y2

Proof Assume by contradiction that there is a vertex x ∈ X ∩ X′, but Y
⊆ Y ′ and
Y ′
⊆ Y , that is, there are vertices y1 ∈ Y \Y ′ and y2 ∈ Y ′ \Y . Then, an S3 is formed
by wXY ,wX′Y ′, v, x, y1, y2 (see Figure 21), in contradiction to (i).

We next show a stronger version of the above claim, by proving proper
containments.

Claim 6 If (wXY ,wX′Y ′) ∈ E(G) and X ∩X′
= ∅, then either Y � Y ′ or Y ′ � Y .

Proof Assume by contradiction that X ∩ X′
= ∅ and Y = Y ′. By this assumption
Y ∩ Y ′
= ∅. Hence, we can apply Claim 5 (with the roles of X and Y exchanged),
and conclude that X ⊆ X′ or X′ ⊆ X.

Say, e.g., that X ⊆ X′. Then, X ∪ Y ⊆ X′ ∪ Y ′, and consequently we would not
have both wX,Y and wX′,Y ′ in W , by its definitions.

Claim 7 If (wXY ,wX′Y ′) ∈ E(G), then exactly one of the following holds:

(a) X ∩X′ = Y ∩ Y ′ = ∅,
(b) (X � X′ and Y ′ � Y),
(c) (X′ � X and Y � Y ′).

Proof This follows from Claim 6 by applying it twice: once directly and once
exchanging the roles of X and Y . Since X, Y , X′ and Y ′ are nonempty sets by (4),
cases (a), (b), and (c) are pairwise exclusive.

Next we consider pairs of settling vertices that are not edges of G.

Claim 8 If (wXY ,wX′Y ′)
∈ E(G), then either X ⊆ X′ or Y ⊆ Y ′.

Proof If not, then there are vertices x ∈ X \ X′ and y ∈ Y \ Y ′ such that
{wXY , u, v, x, y,wX′Y ′ } form a 3-anti-comb S3 (see Figure 22), in contradiction
to condition (i).

Note that we cannot have both containments in the claim, because of the
minimality of pairs in X Y .

32 D. V. Andrade et al.

Fig. 22 Illustration of the
3-anti-comb S3 induced by
{wXY , u, v, x, y,wX′Y ′ }

NS(u) NS(v)

u v

wXY wX’Y’

yx

Claim 9 If (wXY ,wX′Y ′)
∈ E(G), then exactly one of the following must hold:

(a) X � X′ and Y ′ � Y ,
(b) X′ � X and Y � Y ′,
(c) X = X′,
(d) Y = Y ′.

Proof Since the roles of (X, Y) and (X′, Y ′) are symmetric, it follows directly by
Claim 8 that one of (a), (b), (c), or (d) holds. To see that exactly one of them holds,
it is enough to note that (c) and (d) together would contradict the minimality of the
pairs (X, Y) ∈X Y .

We are going to show next that if (c) or (d) holds in the previous claim for some
vertices wXY ,wX′Y ′ ∈ W , then G contains an induced G10, as claimed in Lemma 2.
For this end, let us first observe that if e.g., (d) holds, then we cannot have X ⊆ X′
or X′ ⊆ X, by the minimality and uniqueness of pairs in X Y . Consequently, we
can choose vertices x ∈ X \ X′, and x′ ∈ X′ \ X. Let us also choose an arbitrary
vertex y ∈ Y = Y ′ (which exists by (4)), and consider first the 2-comb S2 induced
by {x, u, v, y}. This 2-comb is settled by neither wXY nor wX′Y ′ , and therefore there
must be a vertex wAB ∈ W settling it, since all 2-combs, containing (u, v) as their
middle edge, are settled by some vertices in W .

Claim 10 If Y = Y ′, then (wAB,wXY) ∈ E(G).

Proof Since x
∈ A and y
∈ B we have

X
⊆ A and Y
⊆ B (5)

implied. Assume indirectly that (wAB,wXY)
∈ E(G), then the previous observation
implies that in Claim 9 applied to wXY and wAB none of (a), (b), (c) or (d) could
hold. This contradiction proves the claim.

Claim 11 If Y = Y ′, then A∩X = B∩Y = ∅, A∪X = NS(u) and B∪Y = NS(v).

On Graphs Whose Maximal Cliques and Stable Sets Intersect 33

Proof Due to (5) only (a) of Claim 7 is possible, that is A ∩ X = B ∩ Y = ∅ is
implied. Therefore the neighborhoods of wAB and wXY within S are disjoint, and
since they are subsets of the neighborhoods of u and v, they cannot be proper subsets
by property (iv), implying the statement.

Claim 12 If Y = Y ′, then (wAB,wX′Y ′)
∈ E(G).

Proof Since y ∈ Y ′ \ B and x ∈ X \ A (since wAB is settling {x, u, v, y}),
cases (b) and (c) of Claim 7 cannot hold for the pair wAB and wX′Y ′ . Thus, if
(wAB,wX′Y ′) ∈ E(G), then A ∩ X′ = B ∩ Y ′ = ∅ would follow by Claim 7.
Therefore, the neighborhoods of wAB and wX′Y ′ in S are disjoint, and their union
is a proper subset of NS(u) ∪ NS(v), in contradiction with property (iv). This
contradiction proves the claim.

Claim 13 If Y = Y ′, then A = X′ = NS(u) \X and Y = Y ′ = NS(v) \ B.

Proof Claims 11 and 9 applied to wAB and wX′Y ′ implies that only (c) of Claim 9
can hold. Thus, the statement implied by Claim 11 and (c) of Claim 9.

Let us still assume Y = Y ′ and consider next the 2-comb induced by {x′, u, v, y}
(where x′ ∈ X′ \X). None of the vertices wXY , wX′Y ′ and wAB settle this 2-comb,
hence, there is a vertex wA′B ′ ∈ W that settles it. By exchanging the roles of wXY

and wX′Y ′ in Claims 10–13, we can conclude that

(wA′B ′ , wXY)
∈ E(G), (wA′B ′ , wX′Y ′) ∈ E(G),A′ = X′ and B = B ′. (6)

Claim 14 If Y = Y ′ or X = X′, then G contains an induced G10.

Proof Note that the roles of conditions (c) and (d) in Claim 9 are perfectly
symmetric, thus we could arrive to the same conclusions from both assumptions.
Starting with Y = Y ′ we arrived to the equalities of Claim 13 and (6). Choosing
one vertex from each of the sets X, Y , A, and B, these four vertices together with
u, v, wXY , wX′Y ′ , wAB , and wA′B ′ form an induced G10 by the above claims and
definitions; see Figure 23.

Fig. 23 Illustration of the
induced G10 that appears by
adding the settling vertices
wXY ,wX′Y ′ , wAB,wA′B ′

wXY

X

wA’B’

B

wAB

A

wX’Y’

Y

u

v

34 D. V. Andrade et al.

For the rest of the proof, we assume that (a) or (b) of Claim 9 holds for every
non-edge (wXY ,wX′Y ′)
∈ E(G). We are going to derive a contradiction from this
assumption, completing the proof of Lemma 2.

First, we show that under the above assumption, case (a) of Claim 7 never holds.

Claim 15 If (wXY ,wX′Y ′) ∈ E(G), then either X ∩X′
= ∅ or Y ∩ Y ′
= ∅.
Proof Assume by contradiction that (a) of Claim 9 holds, that is that X ∩ X′ =
Y ∩ Y ′ = ∅. Then, by the minimality of NS(u) ∪ NS(v) as stated in property (iv),
and by Claim 2, we know that NS(u) = X ∪X′ and NS(v) = Y ∪ Y ′.

Let us consider vertices x ∈ X and y ∈ Y ′ such that the set {x, u, v, y} forms a
2-comb. This 2-comb is settled neither by wXY nor by wX′Y ′ . Since every 2-comb
with (u, v) as a middle edge is settled by a vertex of W , this 2-comb is also settled
by one, say by a vertex wAB ∈ W . Let us now check the connections of this vertex
to wXY and wX′Y ′ . We consider two cases:

Case 1. If (wAB,wXY)
∈ E(G), then by Claim 9 we must have A ⊂ X and
Y ⊂ B, because x
∈ A, and because we assumed that only cases (a) or (b) are
possible in Claim 9.
If (wAB,wX′Y ′)
∈ E(G), then by similar reasoning based on by Claim 9 and the
fact that y
∈ B we can conclude that X′ ⊂ A and B ⊂ Y ′. This, however, leads
to a contradiction, since A ⊆ X and X ∩X′ = ∅.
Hence, we must have (wAB,wX′Y ′) ∈ E(G) in this case. Then by Claim 7 either
X′ ∩A = Y ′ ∩B = ∅ or A,X′ and B, Y ′ are inversely nested. However, the latter
is not possible, since A ⊂ X and X ∩ X′ = ∅. In this case the neighborhoods of
wAB and wX′Y ′ are disjoint in S, and their union is a proper subset of NS(u) ∪
NS(v) (since x
∈ A), in contradiction with property (iv).

Case 2. If (wAB,wXY) ∈ E(G), then (b) of Claim 7 is not possible, since x ∈
X \A. If (a) holds, that is if X∩A = Y ∩B = ∅, then the neighborhoods of wAB

and wXY are disjoint in S, and their union is a proper subset of NS(u) ∪ NS(v)

(since y ∈ Y ′ \ B), contradicting to property (iv). Consequently, case (c) holds,
that is A ⊂ X and Y ⊂ B, and consequently we can proceed as in Case 1.

In both cases we arrived to a contradiction, completing the proof of the claim.

The above claim implies that if (wXY ,wX′Y ′) ∈ E(G), then the sets X, X′ and
Y , Y ′ are inversely nested (cases (b) or (c) in Claim 7). Since we also assumed that
only cases (a) or (b) are possible in Claim 9, we can conclude that for all pairs of
settling vertices wXY ,wX′Y ′ ∈ W we have

either X ⊂ X′ and Y ′ ⊂ X or X′ ⊂ X and Y ⊂ Y ′. (7)

Now we are ready to complete the proof of the lemma; see Figure 24.
Let us consider an arbitrary vertex wXY ∈ W . Since wXY is settling a 2-comb

with (u, v) as its middle edge, we must have Y
= NS(v), and consequently we can
choose a vertex y ∈ NS(v) \ Y . Furthermore, we have X
= ∅ by (4), thus we can
also choose a vertex x ∈ X.

On Graphs Whose Maximal Cliques and Stable Sets Intersect 35

Fig. 24 Illustration to the
end of the proof of Lemma 2

NS(u)

X X
A

NS(v)

Y Y
B

u v

wXY wX’Y’

wAB

x y

Then, the 2-comb S2 induced by {x, u, v, y} is not settled by wXY , and therefore
there is a vertex wX′Y ′ ∈ W settling this 2-comb. Then, by (7) we must have X′ ⊆
X \ {x} and Y ⊂ Y ′, since x
∈ X′.

Then, X′
= ∅ by (4), so we can choose a vertex x′ ∈ X′ � X. The 2-comb
induced by {x′, u, v, y} is not settled by either wXY or wX′Y ′ , and therefore there is
a vertex wX′′Y ′′ ∈ W settling this 2-comb.

Clearly, we can repeat the same arguments, and choose a vertex x′′ ∈ X′′ �
X′ � X, etc., resulting in an infinite chain X � X′ � X′′ � · · · of strictly nested
nonempty subsets, contradicting the finiteness of G. This concludes the proof of the
lemma. ��

2.3 Proof of Lemma 3

In this section we present the proof of Lemma 3, claiming that if G contains G10 as
an induced subgraph and satisfies conditions (i) and (ii) of Section 2.1, then it must
have an induced 2P configuration (see Figures 8 and 17).

The proof is a case analysis that was assisted by a computer program. We
assume by contradiction that there is a graph that has an induced G10, has all 2-
combs settled, and does not contain 3-combs and 3-anti-combs. The graph G10
itself contains neither 3-combs nor 3-anti-combs, but it has several 2-combs that
are not settled in it. For instance, such 2-combs are induced by {v2, v1, v5, v4},
{v6, v7, v3, v4}, {v1, v2, v3, v7}, etc. Therefore, some other vertices of G must settle
these 2-combs.

We show that in order to settle all 2-combs of G10, the graph G must contain a
disjoint copy of G10 such that the 20 vertices of these two G10 subgraphs form an
induced 2P configuration. Since we do not know G, we try to extend G10, and we
show that this can be done essentially in a unique way.

36 D. V. Andrade et al.

We use a computer program to find all unsettled 2-combs of G10. For each, one
by one, we introduce a new vertex to settle it. After adding a settling vertex v′
∈
V (G10), we consider the pairs (v′, vj) for all vj ∈ V (G10). Some of these pairs
are forced to be edges or non-edges, since G contains no induced 3-combs and 3-
anti-combs. Some other pairs, however, may remain uncertain, that is those pairs
may be either edges or non-edges of G. Surprisingly, all but one of the pairs are
forced. We can discover the forced edge assignments by excluding all other possible
assignments. This can be accomplished by exhibiting an induced 3-comb or 3-anti-
comb. This task is also assisted by a computer program.

Another property which simplifies our case analysis is the symmetry of G10. In
particular, we reduce significantly the number of cases in our proof by means of the
following three automorphisms:

A1: (3)(7)(1, 5)(2, 4)(6, 8)(0, 9)

A2: (1)(5)(2, 8)(3, 7)(4, 6)(0, 9)

A3: (7, 5, 3, 1)(8, 6, 4, 2)(0, 9)

They are given in the cycle notation, that is (i1, i2, . . . , in) means the cyclic mapping
i1 �→ i2, i2 �→ i3, . . ., in �→ i1. Figure 25 shows the graphs after the application of
these automorphisms.

From now on we will choose some of the unsettled 2-combs to be settled, and
try to fix as many edges and non-edges as possible. Even though the order that we
pick the 2-combs may seem arbitrary, we follow an order that reduces the number
of cases to be considered.

Let us choose first the 2-comb induced by {v2, v3, v7, v8}, and denote by v′1 the
vertex that settles it. The pairs (v′1, v3) and (v′1, v7) are forced to be edges, while
(v′1, v2) and (v′1, v8) are forced to be non-edges, by the definition of settling. There
are six more pairs, connecting v′1 with v0, v1, v4, v5, v6 and v9, that remain uncertain.

Let us note first that (v′1, v5) has to be a non-edge, since otherwise the vertices
{v3, v7, v

′
1, v2, v8, v5} form a 3-comb. Unlike (v′1, v5), the pairs (v′1, v0), (v′1, v4),

(v′1, v6), (v′1, v9) cannot be fixed if treated individually. But analyzing them together,
we conclude that (v′1, v4) and (v′1, v6) are edges, while (v′1, v0) and (v′1, v9) are
non-edges. Table 1 shows that in any other case there is an induced 3-comb or 3-
anti-comb.

v5

v4

v3

v2

v1

v8

v7

v6

v9

v0

v1

v8

v7

v6

v5

v4

v3

v2

v9

v0

v3

v4

v5

v6

v7

v8

v1

v2

v9

v0

Fig. 25 Graphs A1(G10), A2(G10), and A3(G10)

On Graphs Whose Maximal Cliques and Stable Sets Intersect 37

Table 1 Case analysis for the pairs (v′1, v0), (v′1, v4), (v′1, v6), (v′1, v9)

(v′1, v4) (v′1, v6) (v′1, v0) (v′1, v9) S3 or S3

0 0 0 0 S3 : {v3, v0, v9, v
′
1, v6, v8}

0 0 0 1 S3 : {v2, v5, v
′
1, v3, v0, v9}

0 0 1 0 S3 : {v4, v8, v
′
1, v3, v7, v9}

0 0 1 1 S3 : {v4, v6, v
′
1, v5, v0, v9}

0 1 0 0 S3 : {v5, v6, v0, v2, v4, v
′
1}

0 1 0 1 S3 : {v3, v9, v
′
1, v2, v6, v8}

0 1 1 0 S3 : {v4, v8, v
′
1, v3, v7, v9}

0 1 1 1 S3 : {v3, v9, v
′
1, v2, v6, v8}

1 0 0 0 S3 : {v3, v0, v9, v6, v8, v
′
1}

1 0 0 1 S3 : {v2, v5, v
′
1, v3, v0, v9}

1 0 1 0 S3 : {v4, v5, v9, v6, v8, v
′
1}

1 0 1 1 S3 : {v7, v0, v
′
1, v2, v4, v8}

1 1 0 0 None

1 1 0 1 S3 : {v3, v9, v
′
1, v2, v6, v8}

1 1 1 0 S3 : {v7, v0, v
′
1, v2, v4, v8}

1 1 1 1 S3 : {v3, v9, v
′
1, v2, v6, v8}

Table 2 Connections
between v′1 and G10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v0

v′1 ∗ 0 1 1 0 1 1 0 0 0

Table 3 Connections
between v′5 and G10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v0

v′5 0 1 1 0 ∗ 0 1 1 0 0

Only one pair (v′1, v1) remains uncertain, since no induced S3 nor S3 appears
whether this pair is an edge or not.

Tables 2–16 show the connections between all pairs of vertices. For each pair,
entry 1 means an edge, 0 means a non-edge, while ∗ means an uncertain pair.

Table 2 shows the connections between v′1 and the vertices of G10.
Next, we use automorphisms to simplify case analysis for the three 2-combs

induced by {v4, v3, v7, v6}, {v6, v5, v1, v8}, and {v2, v1, v5, v4}, respectively, and not
settled by v′1.

Let us denote by v′5 the vertex that settles {v4, v3, v7, v6}. By applying the
automorphism A1 to G10, the 2-comb {v2, v3, v7, v8} settled by v′1 becomes
{v4, v3, v7, v6}. Consequently, v′5 should have the same connections as v′1 has after
applying A1. Table 3 shows the connections between v′5 and G10.

Analogously, let us denote by v′3 the vertex that settles {v2, v1, v5, v4}. By
applying A3 to G10, {v2, v3, v7, v8} becomes {v2, v1, v5, v4}. Therefore, v′3 should
have the same connections as v′1 after transformation A3. Table 4 shows the
connections between v′3 and G10.

38 D. V. Andrade et al.

Table 4 Connections
between v′3 and G10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v0

v′3 1 0 ∗ 0 1 1 0 1 0 0

Table 5 Connections
between v′7 and G10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v0

v′7 1 1 0 1 1 0 ∗ 0 0 0

Table 6 Case analysis for the pairs (v′2, v6), (v′2, v7), (v′2, v8), (v′2, v0)

(v′2, v6) (v′2, v7) (v′2, v8) (v′2, v0) S3 or S3

0 0 0 0 S3 : {v1, v5, v0, v3, v8, v
′
2}

0 0 0 1 S3 : {v6, v8, v
′
2, v7, v0, v9}

0 0 1 0 S3 : {v4, v5, v
′
2, v3, v6, v8}

0 0 1 1 S3 : {v4, v5, v
′
2, v3, v6, v8}

0 1 0 0 S3 : {v1, v5, v0, v3, v8, v
′
2}

0 1 0 1 S3 : {v1, v4, v7, v5, v0, v
′
2}

0 1 1 0 S3 : {v4, v5, v
′
2, v3, v6, v8}

0 1 1 1 S3 : {v4, v5, v
′
2, v3, v6, v8}

1 0 0 0 S3 : {v1, v5, v0, v3, v8, v
′
2}

1 0 0 1 S3 : {v1, v4, v6, v0, v9, v
′
2}

1 0 1 0 S3 : {v1, v7, v
′
2, v5, v6, v0}

1 0 1 1 S3 : {v1, v4, v6, v0, v9, v
′
2}

1 1 0 0 S3 : {v1, v5, v0, v3, v8, v
′
2}

1 1 0 1 S3 : {v1, v4, v6, v0, v9, v
′
2}

1 1 1 0 None

1 1 1 1 S3 : {v1, v4, v6, v0, v9, v
′
2}

Table 7 Connections
between v′2 and G10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v0

v′2 0 ∗ 0 1 1 1 1 1 1 0

Next, let us denote by v′7 the vertex that settles {v8, v1, v5, v6}. By applying A3
then A2 to G10, {v2, v3, v7, v8} becomes {v8, v1, v5, v6}. Thus, v′3 should have the
same connections as v′1 after transformations A3 then A2 (or the same connections
as v′3 after A2). Table 5 shows the connections between v′7 and G10.

Next, let us consider four 2-combs induced by {v5, v1, v2, v3}, {v1, v5, v4, v3},
{v7, v3, v4, v5}, and {v1, v2, v3, v7}. They are not settled by any of the vertices of
G10, nor by v′1, v′3, v′5, v′7.

Let v′2 denote the vertex settling {v3, v4, v5, v1}. By definition of settling, the
pairs (v′2, v4) and (v′2, v5) are edges, while (v′2, v1) and (v′2, v3) are non-edges. The
pair (v′2, v9) must be an edge, since otherwise {v1, v3, v

′
2, v4, v5, v9} forms a 3-

anti-comb. Table 6 shows the case analysis for the pairs (v′2, v6), (v′2, v7), (v′2, v8),
and (v′2, v0). The only possible configuration is that (v′2, v6), (v′2, v7), (v′2, v8) are
edges, and (v′2, v0) is not. The pair (v′2, v2) remains uncertain. Table 7 shows the
connections between v′2 and the vertices of G10.

On Graphs Whose Maximal Cliques and Stable Sets Intersect 39

Table 8 Connections
between v′4 and G10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v0

v′4 1 1 0 ∗ 0 1 1 1 0 1

Table 9 Connections
between v′6 and G10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v0

v′6 1 1 1 1 0 ∗ 0 1 1 0

Table 10 Connections
between v′8 and G10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v0

v′8 0 1 1 1 1 1 0 ∗ 0 1

Let v′4 denote the vertex settling {v5, v1, v2, v3}. By applying A1 to G10, the
subgraph {v1, v5, v4, v3} becomes {v5, v1, v2, v3}. Therefore, vertex v′4 must have
the same connections as v′2 after transformation A1. Table 8 shows the connections
between v′4 and G10.

Next, let v′6 denote the vertex settling {v7, v3, v4, v5}. By applying transfor-
mations, first A1 and then A3, to G10, the subgraph {v1, v5, v4, v3} becomes
{v7, v3, v4, v5}. Thus, v′6 must have the same connections as v′2 after the transforma-
tion A3 ◦ A1. Table 9 shows the connections between v′6 and G10.

Let us next denote by v′8 the vertex that settles {v1, v2, v3, v7}. By applying A−1
3 ,

to G10, the subgraph {v1, v5, v4, v3} becomes {v1, v2, v3, v7}. Therefore, v′8 should
have the same connections as v′2 after A−1

3 . Table 10 shows the connections between
v′8 and G10.

At this point, all S2 subgraphs of G10 are settled by some of the vertices v′1,
v′2, . . . , v′8. Yet, nothing was said about the connections between those vertices.
Nevertheless, all 3-combs and 3-anti-combs that appeared to indicate contradictions
were independent from those connections; in other words, each of those subgraphs
contains only one vertex v′i and the remaining five vertices are in G10.

Interestingly, the connections between these eight vertices are uniquely implied.
Table 11 shows the only possible assignments of edges and non-edges between the
vertices v′i and v′j , for i, j = 1, . . . , 8, i
= j . Each entry of the table contains the
assignment, and the corresponding 3-comb or 3-anti-comb that would appear if the
entry was reversed.

Let us notice that the pairs (vi, v
′
i) still remain uncertain. This means that all 28

possible graphs have no induced 3-combs and 3-anti-combs. Yet, they contain some
unsettled induced 2-combs.

Next, we introduce the automorphism A4 of the current configuration, induced
by the 18 vertices V (G10) ∪ {v′1, . . . , v′8}.
A4: (1, 3, 5, 7)(2, 4, 6, 8)(0, 9)(1′, 3′, 5′, 7′)(2′, 4′, 6′, 8′).

Let us further consider the unsettled 2-comb induced by {v2, v
′
1, v
′
5, v6}, and

denote by v′0 the vertex that settles it. By definition, (v′0, v′1) and (v′0, v′5) are edges,
while (v′0, v2) and (v′0, v6) are non-edges. The pair (v′0, v9) cannot be an edge, since
otherwise {v′1, v′5, v′0, v2, v6, v9} forms a 3-comb. Table 16 shows that (v′0, v4) and
(v′0, v8) must be edges, while (v′0, v1), (v′0, v3), (v′0, v5) and (v′0, v7) must be non-

40 D. V. Andrade et al.

Table 11 Case analysis for the connections between v′1, . . . , v′8
Edge S3 or S3 Edge S3 or S3

(v′1, v′2) = 1 S3 : {v4, v5, v
′
2, v8, v0, v

′
1} (v′1, v′3) = 0 S3 : {v6, v

′
1, v
′
3, v4, v8, v0}

(v′1, v′4) = 0 S3 : {v6, v
′
1, v
′
4, v3, v5, v8} (v′1, v′5) = 1 S3 : {v2, v8, v

′
1, v3, v7, v

′
5}

(v′1, v′6) = 0 S3 : {v4, v
′
1, v
′
6, v2, v5, v7} (v′1, v′7) = 0 S3 : {v4, v

′
1, v
′
7, v2, v6, v9}

(v′1, v′8) = 1 S3 : {v5, v6, v
′
8, v2, v9, v

′
1} (v′2, v′3) = 1 S3 : {v7, v8, v

′
2, v4, v0, v

′
3}

(v′2, v′4) = 0 S3 : {v1, v3, v
′
2, v7, v0, v

′
4} (v′2, v′5) = 0 S3 : {v8, v

′
5, v
′
2, v1, v3, v6}

(v′2, v′6) = 0 S3 : {v1, v4, v7, v8, v
′
2, v
′
6} (v′2, v′7) = 0 S3 : {v4, v

′
7, v
′
2, v1, v3, v6}

(v′2, v′8) = 0 S3 : {v1, v3, v
′
2, v5, v0, v

′
8} (v′3, v′4) = 1 S3 : {v6, v7, v

′
4, v2, v9, v

′
3}

(v′3, v′5) = 0 S3 : {v8, v
′
5, v
′
3, v2, v6, v9} (v′3, v′6) = 0 S3 : {v8, v

′
3, v
′
6, v2, v5, v7}

(v′3, v′7) = 1 S3 : {v2, v4, v
′
3, v1, v5, v

′
7} (v′3, v′8) = 0 S3 : {v6, v

′
3, v
′
8, v1, v4, v7}

(v′4, v′5) = 1 S3 : {v1, v2, v
′
4, v6, v9, v

′
5} (v′4, v′6) = 0 S3 : {v3, v5, v

′
4, v1, v9, v

′
6}

(v′4, v′7) = 0 S3 : {v2, v
′
7, v
′
4, v3, v5, v8} (v′4, v′8) = 0 S3 : {v1, v3, v6, v2, v

′
4, v
′
8}

(v′5, v′6) = 1 S3 : {v1, v8, v
′
6, v4, v0, v

′
5} (v′5, v′7) = 0 S3 : {v2, v

′
5, v
′
7, v4, v8, v0}

(v′5, v′8) = 0 S3 : {v2, v
′
5, v
′
8, v1, v4, v7} (v′6, v′7) = 1 S3 : {v3, v4, v

′
6, v8, v0, v

′
7}

(v′6, v′8) = 0 S3 : {v1, v7, v
′
8, v3, v9, v

′
6} (v′7, v′8) = 1 S3 : {v2, v3, v

′
8, v6, v9, v

′
7}

Table 12 Connections
between v′0 and G10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v0

v′0 0 0 0 1 0 0 0 1 0 ∗

Table 13 Connections
between v′9 and G10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v0

v′9 0 1 0 0 0 1 0 0 0 ∗

edges. Furthermore, the pairs (v′0, v′2), (v′0, v′3), (v′0, v′6), and (v′0, v′7) must be edges,
since otherwise one of the following 3-combs would appear: {v4, v5, v

′
2, v1, v7, v

′
0},{v1, v8, v

′
3, v2, v6, v

′
0}, {v1, v8, v

′
6, v3, v5, v

′
0}, or {v1, v8, v9, v3, v

′
7, v
′
0}. The pairs

(v′0, v′4) and (v′0, v′8) cannot be edges, since otherwise the 3-combs induced by
{v1, v2, v

′
4, v3, v5, v

′
0} and {v2, v3, v

′
8, v1, v7, v

′
0} would appear. Finally, the pair

(v′0, v0) remains uncertain. Table 12 shows the connections between v′0 and G10.
Next, let us consider the 2-comb induced by {v′3, v′7, v4, v8} and denote by v′9

the vertex settling it. Notice that this 2-comb can be obtained from {v′1, v′5, v2, v6}
by applying transformation A4. Therefore v′9 must have the same connections as v′0
after applying A4. Table 13 shows the connections between v′9 and G10.

We summarize the connections between vertices . . . in Table 14; between . . .

and . . . in Table 15, and finally between v′0 and v1, v3, v4, v5, v7, v8 in Table 16.
Interestingly, the graph induced by v′1, . . . , v′9, v′0 is an isomorphic copy of G10.

Moreover, (vi, v
′
j) for i
= j is an edge if and only if (vi, vj) is not an edge, while

the pairs (vi, v
′
i), i = 0, 1, . . . , 9 are uncertain. Thus, this configuration is the sum

of two copies of G10, that is, the graph 2G10; see Figure 26. Let us recall that to any
graph G we can apply the same operation and obtain the sum G+G = 2G.

On Graphs Whose Maximal Cliques and Stable Sets Intersect 41

Table 14 Connections
between vertices
v′1, . . . , v′9, v′0

v′1 v′2 v′3 v′4 v′5 v′6 v′7 v′8 v′9 v′0
v′1 – 1 0 0 1 0 0 1 1 1

v′2 1 – 1 0 0 0 0 0 0 1

v′3 0 1 – 1 0 0 1 0 1 1

v′4 0 0 1 – 1 0 0 0 1 0

v′5 1 0 0 1 – 1 0 0 1 1

v′6 0 0 0 0 1 – 1 0 0 1

v′7 0 0 1 0 0 1 – 1 1 1

v′8 1 0 0 0 0 0 1 – 1 0

v′9 1 0 1 1 1 0 1 1 – 1

v′0 1 1 1 0 1 1 1 0 1 –

Table 15 Connections
between vertices
v1, . . . , v9, v0 and
v′1, . . . , v′9, v′0

v1 v2 v3 v4 v5 v6 v7 v8 v9 v0

v′1 ∗ 0 1 1 0 1 1 0 0 0

v′2 0 ∗ 0 1 1 1 1 1 1 0

v′3 1 0 ∗ 0 1 1 0 1 0 0

v′4 1 1 0 ∗ 0 1 1 1 0 1

v′5 0 1 1 0 ∗ 0 1 1 0 0

v′6 1 1 1 1 0 ∗ 0 1 1 0

v′7 1 1 0 1 1 0 ∗ 0 0 0

v′8 0 1 1 1 1 1 0 ∗ 0 1

v′9 0 1 0 0 0 1 0 0 ∗ 0

v′0 0 0 0 1 0 0 0 1 0 ∗

Another remarkable property of the obtained configuration is as follows: if we
exchange v0 with v′0 and v9 with v′9 then the resulting graph becomes the sum of
two Petersen graphs, that is, 2P ≡ 2G10, as shown in Figure 27.

This completes the proof of Lemma 3. ��

2.4 Proof of Lemma 4

We prove that if a graph G contains an induced 2P , then it must have either an
unsettled 2-comb or an induced 3-comb or 3-anti-comb.

Let us recall that 2P still has 10 uncertain edges. Hence, it gives us in fact
1024 possible graphs, one of which is an induced subgraph of G. Since we do not
know which one, we will prove the statement by considering each such possible
subgraphs.

Remarkably, none of these 1024 graphs contains an induced 3-comb or 3-anti-
comb, as verified by computer.

42 D. V. Andrade et al.

Table 16 Case analysis for the pairs (v′0, v1), (v′0, v3), (v′0, v4), (v′0, v5), (v′0, v7), and (v′0, v8)

(v′0, v1) (v′0, v3) (v′0, v4) (v′0, v5) (v′0, v7) (v′0, v8) S3 or S3

0 0 0 0 0 0 S3 : {v2, v3, v
′
5, v1, v4, v

′
0}

0 0 0 0 0 1 S3 : {v1, v8, v9, v2, v4, v
′
0}

0 0 0 0 1 0 S3 : {v2, v3, v
′
5, v1, v4, v

′
0}

0 0 0 0 1 1 S3 : {v1, v8, v9, v2, v4, v
′
0}

0 0 0 1 0 0 S3 : {v1, v5, v9, v2, v7, v
′
0}

0 0 0 1 0 1 S3 : {v1, v5, v9, v2, v7, v
′
0}

0 0 0 1 1 0 S3 : {v2, v3, v
′
5, v1, v4, v

′
0}

0 0 0 1 1 1 S3 : {v1, v8, v9, v2, v4, v
′
0}

0 0 1 0 0 0 S3 : {v3, v4, v9, v2, v8, v
′
0}

0 0 1 0 0 1 None

0 0 1 0 1 0 S3 : {v3, v4, v9, v2, v8, v
′
0}

0 0 1 0 1 1 S3 : {v3, v7, v9, v2, v5, v
′
0}

0 0 1 1 0 0 S3 : {v1, v5, v9, v2, v7, v
′
0}

0 0 1 1 0 1 S3 : {v1, v5, v9, v2, v7, v
′
0}

0 0 1 1 1 0 S3 : {v3, v4, v9, v2, v8, v
′
0}

0 0 1 1 1 1 S3 : {v4, v5, v
′
0, v3, v6, v8}

0 1 0 0 0 0 S3 : {v3, v7, v9, v1, v6, v
′
0}

0 1 0 0 0 1 S3 : {v1, v8, v9, v2, v4, v
′
0}

0 1 0 0 1 0 S3 : {v4, v8, v
′
0, v3, v7, v9}

0 1 0 0 1 1 S3 : {v1, v8, v9, v2, v4, v
′
0}

0 1 0 1 0 0 S3 : {v1, v5, v9, v2, v7, v
′
0}

0 1 0 1 0 1 S3 : {v1, v5, v9, v2, v7, v
′
0}

0 1 0 1 1 0 S3 : {v3, v7, v
′
0, v2, v5, v8}

0 1 0 1 1 1 S3 : {v1, v8, v9, v2, v4, v
′
0}

0 1 1 0 0 0 S3 : {v3, v7, v9, v1, v6, v
′
0}

0 1 1 0 0 1 S3 : {v3, v4, v
′
0, v2, v5, v8}

0 1 1 0 1 0 S3 : {v4, v5, v9, v6, v8, v
′
0}

0 1 1 0 1 1 S3 : {v3, v4, v
′
0, v2, v5, v8}

0 1 1 1 0 0 S3 : {v1, v5, v9, v2, v7, v
′
0}

0 1 1 1 0 1 S3 : {v1, v5, v9, v2, v7, v
′
0}

0 1 1 1 1 0 S3 : {v3, v7, v
′
0, v2, v5, v8}

0 1 1 1 1 1 S3 : {v3, v
′
1, v
′
0, v2, v6, v8}

1 0 0 0 0 0 S3 : {v1, v5, v9, v3, v6, v
′
0}

1 0 0 0 0 1 S3 : {v1, v5, v9, v3, v6, v
′
0}

1 0 0 0 1 0 S3 : {v1, v5, v9, v3, v6, v
′
0}

1 0 0 0 1 1 S3 : {v1, v5, v9, v3, v6, v
′
0}

1 0 0 1 0 0 S3 : {v3, v7, v
′
1, v2, v8, v

′
0}

1 0 0 1 0 1 S3 : {v3, v7, v
′
5, v4, v6, v

′
0}

1 0 0 1 1 0 S3 : {v1, v5, v
′
0, v2, v4, v7}

(continued)

On Graphs Whose Maximal Cliques and Stable Sets Intersect 43

Table 16 (continued)

1 0 0 1 1 1 S3 : {v1, v5, v
′
0, v2, v4, v7}

1 0 1 0 0 0 S3 : {v1, v5, v9, v3, v6, v
′
0}

1 0 1 0 0 1 S3 : {v1, v5, v9, v3, v6, v
′
0}

1 0 1 0 1 0 S3 : {v1, v5, v9, v3, v6, v
′
0}

1 0 1 0 1 1 S3 : {v1, v5, v9, v3, v6, v
′
0}

1 0 1 1 0 0 S3 : {v3, v4, v9, v2, v8, v
′
0}

1 0 1 1 0 1 S3 : {v1, v8, v
′
0, v2, v4, v7}

1 0 1 1 1 0 S3 : {v3, v4, v9, v2, v8, v
′
0}

1 0 1 1 1 1 S3 : {v4, v5, v
′
0, v3, v6, v8}

1 1 0 0 0 0 S3 : {v6, v7, v
′
1, v5, v8, v

′
0}

1 1 0 0 0 1 S3 : {v3, v
′
1, v
′
0, v2, v6, v8}

1 1 0 0 1 0 S3 : {v3, v7, v
′
0, v1, v4, v6}

1 1 0 0 1 1 S3 : {v3, v7, v
′
0, v1, v4, v6}

1 1 0 1 0 0 S3 : {v1, v5, v
′
0, v3, v6, v8}

1 1 0 1 0 1 S3 : {v3, v
′
1, v
′
0, v2, v6, v8}

1 1 0 1 1 0 S3 : {v1, v5, v
′
0, v2, v4, v7}

1 1 0 1 1 1 S3 : {v1, v5, v
′
0, v2, v4, v7}

1 1 1 0 0 0 S3 : {v4, v5, v9, v6, v8, v
′
0}

1 1 1 0 0 1 S3 : {v1, v8, v
′
0, v2, v4, v7}

1 1 1 0 1 0 S3 : {v4, v5, v9, v6, v8, v
′
0}

1 1 1 0 1 1 S3 : {v3, v4, v
′
0, v2, v5, v8}

1 1 1 1 0 0 S3 : {v1, v5, v
′
0, v3, v6, v8}

1 1 1 1 0 1 S3 : {v1, v8, v
′
0, v2, v4, v7}

1 1 1 1 1 0 S3 : {v1, v5, v
′
0, v3, v6, v8}

1 1 1 1 1 1 S3 : {v3, v
′
1, v
′
0, v2, v6, v8}

v1

v2

v3

v4

v5

v6

v7

v8

v0

v9

+

v1

v2

v3

v4
v5

v6

v7

v8

v0

v9

Fig. 26 The sum of two graphs G10 or 2G10

44 D. V. Andrade et al.

v1

v2

v3

v4

v5

v6

v7

v8

v0

v9

+

v1
v2

v3

v4
v5

v6

v7

v8

v0

v9

Fig. 27 The graph 2P , isomorphic to 2G10 by exchanging v0, v
′
0 and v9, v

′
9

Furthermore, 2P itself contains no induced 2-combs either. (Since 2P contains
uncertain pairs, we call a subgraph of 2P an induced one only if it does not involve
any uncertain pair.) However, each of the 1024 graphs obtained from 2P contains
many 2-combs each of which involves exactly one pair of vertices vi and v′i for some
index i.

Now we will fix one of the uncertain pairs (once as an edge and once as a non-
edge), while keeping all others uncertain. Several (36) unsettled induced 2-combs
appear that contain the fixed uncertain pair. Each of these 2-combs must be settled
in G by our assumption (i), thus there exists a vertex x settling it. There are 16 pairs
(x, y), where y is a vertex of 2P , not belonging to the unsettled 2-comb. We check
all 216 possible edge/non-edge assignments to these 16 pairs, and find by computer
search that for each of them an induced 3-comb or 3-anti-comb exists.

More precisely, let us fix the uncertain pair (v0, v
′
0) and consider two cases:

1. If (v0, v
′
0) is an edge, then the 2-comb induced by the vertices {v1, v0, v

′
0, v4} is

unsettled in 2P , because no vertex in 2P is connected to both v0 and v′0 by the
definition of the sum of two graphs.

Let x be a settling vertex. Then, by definition, (x, v0), (x, v′0) must be edges
of G, and the pairs (x, v1) and (x, v4) must be non-edges. There are 16 other
pairs of the form (x, y), where y is a vertex of 2P . Hence, there are 216 possible
assignments of edges/non-edges between x and 2P . We check by computer all
216 possible assignments and find that in each 216 graphs there is an induced
(without uncertain pairs) 3-comb or 3-anti-comb.

2. If (v0, v
′
0) is not an edge of G, then the 2-comb induced by the vertices

{v0, v1, v8, v
′
0} is not settled in 2P . Since it must be settled in G by condition

(i), there is a vertex x of G that settles it. Similarly to the previous case, we again
consider all 216 graphs, and find by computer search that all of them contain an
induced 3-comb or 3-anti-comb.

This concludes the proof of Lemma 4. ��

On Graphs Whose Maximal Cliques and Stable Sets Intersect 45

3 Proof of Theorems 3 and 4

Proof of Theorem 3 Recall by (1) that we can reduce the case analysis by assuming
that 1 ≤ k < � ≤ n− 2.

We Start By Proving (i) Assume by contradiction that there exists an unsettled
Sm = {B1, . . . , Bm,A1, . . . , Am}, |Bi | = k, |Ai | = �. Then, by assumption we
must have

Ai ⊃ Bj for all j
= i and Ai
⊃ Bi. (8)

Let us recall that Sm is settled by a k-set K iff K ⊆⋂m
j=1 Aj , and it is settled by an

�-set L iff L
⊇ Bi for i = 1, . . . , m.
Let B = {B1, . . . , Bm}, and let X ⊆ [n] be the set that contains the elements

that are in more than one of the Bi’s, i.e. X = {x ∈ [n] | degB(x) > 1}. Notice
that X ⊆ ⋂m

j=1 Aj because by (8) we have that every vertex belonging to two or
more of the sets from B must belong to all sets Ai , i = 1, . . . , m. Clearly |X| < k,
otherwise Sm would be settled by a k-set in X.

In the following steps of the proof, we will derive some inequalities, to arrive to
a contradiction. First, we need some more definitions.

Let ap, p = 0, 1, . . . q ≤ |X| < k, be the number of sets Bi ∈ B for which
|Bi ∩ X| = p, and let H = {Bi ∩ X|i = 1, . . . , m}. Let us observe first that
τ(B) ≤ τ(H) + a0, where τ denotes the size of a minimum vertex cover. To
see this inequality, let us first cover the intersecting hyperedges of B optimally by
τ(H) vertices, and then cover the rest by choosing one vertex from each remaining
set outside of X (i.e., by at most a0 additional vertices). Moreover, we have τ(B) >

n− �, since otherwise there exists an �-set settling Sm. Thus, we can conclude that

τ(H)+ a0 ≥ n− �+ 1 (9)

Assume w.l.o.g. that |B1 ∩ X| ≤ |B2 ∩ X| ≤ . . . ≤ |Bm ∩ X|. Since we know
by (8) that

⋃m−1
j=1 Bj ⊆ Am, we have:

|
m−1⋃

i=1

Bj | = |X| +
q∑

p=0

(k − p)ap − (k − q) ≤ � (10)

Let us now take away k times Equation (9) from (10) and obtain

|X| +
q∑

p=0

(k − p)ap − (k − q)− k(τ (H)+ a0) ≤ �− k(n− �+ 1)

46 D. V. Andrade et al.

which can be simplified to

|X| +
q∑

p=1

(k − p)ap + q − kτ(H) ≤ (k + 1)�− kn (11)

Notice that the right-hand side of (11) is negative by our initial assumption of
kn > (k + 1)�. Thus, to arrive to a contradiction, it is enough to prove that

kτ(H) ≤ |X| +
q∑

p=1

(k − p)ap + q. (12)

Let us observe next that
∑q

p=1(k ap) = k|H |, and that
∑

p(p ap) =
∑

H∈H |H |. Thus, we can equivalently rewrite inequality (12) as:

k(|H | − τ(H)) ≥
∑

H∈H
|H | − |X| − q (13)

To show (13), let us construct a cover C of H as follows. First we choose into C a

vertex of the highest degree in H . This vertex covers at least
∑

H∈H |H |
|X| hyperedges

of H . We cover the remaining edges by choosing one vertex from each. This simple
procedure shows that

τ(H) ≤ |C| ≤ |H | −
∑

H∈H |H |
|X| + 1. (14)

From this simple inequality we can derive the following:

k(|H | − τ(H)) ≥ k
|X|

∑
H∈H |H | − k

=∑
H∈H |H | + k−|X|

|X|
∑

H∈H |H | − k

≥∑
H∈H |H | − |X|

where the second inequality follows from |X| ≤ ∑
H∈H |H |, which is true, since

every vertex of X has degree at least 2 in B. The above inequalities then prove (13),
since q ≥ 0, which then yields the desired contradiction, completing the proof of
(i). ��

We Prove Next (ii) We will show, by a construction that an unsettled Sm exists
in G(n, k, �), whenever kn ≤ (k + 1)� and n ≥ k + �.

For this let us set r ≡ � (mod k), 0 ≤ r < k, m = �+k−r
k

, and let B1, . . . , Bm,
and R be pairwise disjoint subsets of [n] = {1, 2, . . . , n}, such that |R| = r and
|Bi | = k for i = 1, . . . , m. Notice that

|R ∪ B1 ∪ · · · ∪ Bm| = km+ r = �+ k. (15)

On Graphs Whose Maximal Cliques and Stable Sets Intersect 47

Thus, it is possible to choose such pairwise disjoint subsets, since k + � ≤ n by our
assumption. Let us further define

Ai = R ∪
⎛

⎝
⋃

j
=i

Bj

⎞

⎠ for i = 1,, m.

With these definitions, we have |Ai | = r + k(m − 1) = r + (� − r) = � for all
i = 1, . . . , m. Furthermore, Ai ⊇ Bj if and only if i
= j . Thus, the sets A1, . . . ,
Am, and B1, . . . , Bm are vertices of G(m, k, �) forming an Sm.

We show that this Sm is unsettled in G(n, k, �). For this, observe first that
|⋂m

i=1 Ai | = |R| = r < k, and consequently, no k-set can settle Sm.
Next, let us assume indirectly that there is an �-set L which settles Sm. Hence,

L cannot be connected in G(n, k, �) to any of the Bi’s. In other words, L
⊇ Bi for
i = 1, . . . , m. It follows that |L ∩ Bi | ≤ k − 1 for all i = 1, . . . , m, implying

|L| ≤ m(k − 1)+ r + (n− k − �). (16)

That is, we can take at most k−1 elements from each of the k-sets, and the remaining
r + n − k − � elements of [n], as implied by (15). It is now enough to show that
|L| < �, because this contradicts the assumption that L is an �-set. To do this, let us
rewrite (16) as

|L| ≤ m(k − 1)+ r + (n− k − �) = �+ k − r

k
(k − 1)+ r − n− k − �,

which implies

k|L| + � ≤ (�+ k − r)(k − 1)+ k(r − n− k − �)+ �

= k�− �+ k2 − k − kr + r + kr + kn− k2 − k�+ �

= kn− (k − r) < kn ≤ (k + 1)�

where the last two inequalities follow by k > r and our assumption that kn ≤
(k + 1)�. Thus, |L| < � follows, completing the proof of (ii). ��

This completes the proof of Theorem 3. ��
Proof of Theorem 4

We Prove First (a) Even though this claim is only for k ≤ 2, let us first
disregard this restriction. Assume by contradiction that there exists an unsettled
Sm in G(m, k, �) defined by the sets {B1, . . . , Bm,A1, . . . , Am}, where |Bi | = k,
|Ai | = �, for i = 1, . . . , m, and Bj ⊆ Ai , iff i = j . Set B = {B1, . . . , Bm} and
A = {A1, . . . , Am}.

By definitions, an �-set L can settle Sm only if [n] \ L is a vertex cover of
the hypergraph B. Furthermore, a k-set K can settle Sm, only if K ⊆ Ai for all

48 D. V. Andrade et al.

i = 1, . . . , m. Since Sm is assumed to be unsettled in G(n, k, �), we must have the
following properties.

(i) τ(B) ≥ n− �+ 1, since otherwise the complement of a minimum vertex cover
of B would contain a settling �-set.

(ii) |
m⋂

i=1

Ai | < k, since otherwise the intersection of the sets of A would contain a

settling k-set.

Let us also observe that Bj ⊆ Ai if and only if i = j implies that Ai = [n] \ Ai

is a vertex cover for B \ Bi , implying |Ai | = n − � ≥ τ(B \ {Bi}) ≥ τ(B) − 1.
This, together with (i), implies that

n− � = τ(B)− 1 = τ(B \ {Bi}) (17)

for all i = 1, . . . , m.
Let us now consider the subset

X = [n] \
m⋃

i=1

Bi.

Equation (17) imply that X ⊆ Ai for all i = 1, . . . , m. Thus, by property (ii) we
must have

|X| ≤ k − 1 (18)

Another consequence of (17) is that the hypergraph B is τ -critical, i.e., the
minimum vertex cover size strictly decreases whenever we remove a hyperedge
from B. This also implies that B is α-critical, where α(B) is the size of the largest
independent set of B, i.e., the largest set not containing a hyperedge of B. This is
because α(B)+ τ(B) = n for all hypergraphs B.

Let us now consider the case of k = 1. In this case we have |B| = τ(B) and
by (18) X = ∅, implying that |B| = n, which together with the previous equality
and (17) implies

n = |B| = τ(B) = n− �+ 1

from which � = 1 follows, contradicting (1).
Let us next consider the case of k = 2. In this case B is an α-critical graph G on

vertex-set V = [n] \X, with α(G) = α(B)− |X| = �− 1− |X|.
We apply a result attributed to Erdős and Gallai (see Exercise 8.20 in [36]; see

also the proof of Exercise 8.10 by Hajnal), stating that in an α-critical graph G

with no isolated vertices we have |V | ≥ 2α(G). This implies for our case that
n− |X| ≥ 2(�− 1− |X|), from which

n ≥ 2�− 2− |X|

On Graphs Whose Maximal Cliques and Stable Sets Intersect 49

follows. Since by (18) we have |X| ≤ k − 1 = 1, the above inequality implies

n ≥ 2�− 3

contradicting (a) of Theorem 4, according to which we have n < 2�− 3. ��
Remark 10 We could extend the above line of arguments for k ≥ 3, if the inequality
n ≥ k

k−1α(B) were valid for α-critical k-uniform hypergraphs, in general. However,
this is not the case, as the following example shows: let n = 10, k = 3 and B =
{{1, 2, 3}, {3, 4, 5}, {5, 6, 7}, {7, 8, 9}, {9, 10, 1}}. In this case we have α(B) = 7,
and 10
≥ (3/2)7 = 21/2.

Now We Prove (b) We will now provide a construction for an unsettled Sm. Let
L = {2, 3, . . . , k}, and choose r ∈ L, such that r ≡ � (mod k − 1) (for instance, if
k = 2 then we have r = 2).

Let us next partition [n] as

[n] = X ∪
p⋃

j=1

Qj,

where |X| = r − 1, p = �−r
k−1 , and where the sets Q1, . . . ,Qp are almost equal, i.e.,

|Qi | ∼ n−r+1
p

.
Then, we construct an unsettled Sm = {B1, . . . , Bm, A1, . . . , Am} as follows.

We define
(m=∑p

j=1 |Qi |
k

)
, and the sets Bi , i = 1, . . . , m are thek-subsets of the Qj -s,

i.e.,

({B1, .., Bm} = ⋃p

i=1 Qi

k.

)

Finally, we set for i = 1, . . . , m

Ai = X ∪ Bi ∪
⋃

1≤j≤p

j
=j∗

Rij ,

where Bi ⊆ Qj∗ and Rij ⊆ Qj , |Rij | = k − 1 for all j
= j∗. In other words,
each Ai contains X, the corresponding set Bi , and k − 1 points from each set Qj

not containing Bi .
It is easy to see that |Ai | = �. Indeed,

|Ai | = k + r − 1+ (p − 1)(k − 1)

= k + r − 1+
(

�− r

k − 1
− 1

)

(k − 1)

= r + �− r = �

50 D. V. Andrade et al.

Let us observe first that by the above calculations no �-set can settle Sm. This
is because all �-sets must intersect at least one of the Qj ’s in k or more points,
therefore any �-set contains at least one of the Bi’s.

Furthermore, we can show that |Qj | ≥ k, for j = 1, . . . , p. By our assumption
we have n(k − 1) ≥ �k − r − k + 1 from which we can derive the following chain
of inequalities:

n ≥ �
k

k − 1
− k + r − 1

k − 1
n(k − 1) ≥ k�− k − r + 1

n(k − 1)− kr + k + r − 1 ≥ k�− kr

(n− r + 1)(k − 1) ≥ k�− kr

(n− r + 1) ≥ k
�− r

k − 1
= kp

n− r + 1

p
≥ k,

which implies that |Qj | ≥ �n−r+1
p
� ≥ k.

Finally we have to prove that no k-set can settle Sm. For this, as we remarked
earlier, it is enough to show that |⋂m

i=1 Ai | < k, which will follow from

(
m⋂

i=1

Ai

)

∩Qj = ∅ (19)

for j = 1, . . . , p, since then (
⋂m

i=1 Ai) ⊆ X is implied, and we have |X| = k − 1.
To see (19) let us consider the following cases:

Case 1 If |Qj | > k, then for all v ∈ Qj , there is an index i such that Bi ⊂ Qj \ {v},
implying by the definitions that v
∈ Ai . Hence, (19) follows.

Case 2 If |Qj | = k and m ≥ k + 1, then we have Qj = Bi∗ for exactly one index
i∗ ∈ {1, . . . , m}. For all other indices i we have Qj ∩ Ai = Rij of size k − 1.
Thus, since m ≥ k+ 1, we can choose for each v ∈ Qj an index i
= i∗ such that
v
∈ Ai , implying (19).

Case 3 If m ≤ k, then we must have |Q1| = |Q2| = . . . = |Qp| = k, m = p ≤ k,
since we already know that |Qj | ≥ k for all j = 1, . . . , p, and if |Qj | > k for at
least one index j , then m ≥ k + 1 would be implied. Thus, we have

n = |X| +
p∑

i=1

|Qi |
= r − 1+ pk

= r − 1+ k
�− r

k − 1

= �
k

k − 1
− r

k − 1
− 1,

On Graphs Whose Maximal Cliques and Stable Sets Intersect 51

and hence, by our assumption, we must have � ≥ r+k2−k+1. However, p ≤ k

implies that p = �−r
k−1 ≤ k from which � ≤ r + k2 − k follows. ��

This completes the proof of Theorem 4. ��

4 More About CIS-d-Graphs

4.1 Proofs of Propositions 6, 7, 11 and Theorem 5

Proof of Proposition 6 Obviously, every partition of colors can be realized by
successive identification of two colors. Hence, the following Lemma implies
Proposition 6.

Given a (d + 1)-graph G = (V ;E1, . . . , Ed,Ed+1), let us identify the last two
colors d and d + 1 and consider the d-graph G ′ = (V ;E1, . . . , Ed−1, Ed), where
Ed = Ed ∪ Ed+1.

Lemma 5 If G is a CIS-(d + 1)-graph, then G ′ is a CIS-d-graph.

Proof Suppose that G ′ does not have the CIS-d-property, that is, there are d vertex-
sets C1, . . . , Cd−1, Cd ⊆ V such that they have no vertex in common, where Ci is
a maximal subset of V avoiding color i for i = 1, . . . , d − 1, and Cd is a maximal
subset of V avoiding both colors d and d+1. Clearly, there exist maximal vertex-sets
Cd and Cd+1 avoiding colors d and d + 1, respectively, and such that Cd ∩Cd+1 =
Cd. Then C1, . . . , Cd−1, Cd, Cd+1 ⊆ V are maximal vertex-sets avoiding colors
1, . . . , d − 1, d, d + 1, respectively, and with no vertex in common. Hence, the
(d + 1)-graph G ′ does not have the CIS-(d + 1)-property, either. ��

A little later we will need the following similar claim.

Lemma 6 If G is a Gallai (d + 1)-graph then G ′ is a Gallai d-graph.

Proof It is obvious. If G ′ contains a Δ, then the same three vertices form a Δ in G
too. ��
Proof of Proposition 7 It follows by a routine case analysis from the definitions.

First, let us consider Gallai’s property. Suppose that G has a Δ. Clearly, it cannot
contain exactly one edge in G ′′, since then two remaining edges are of the same
color. If this Δ contains 2 edges in G ′′, then the third one is there, too, and hence
G′′ contains a Δ. If all 3 edges are in G ′, then G′ contains a Δ. Conversely, if G ′ or
G ′′ contains a Δ then, clearly, G contains it too, since both G ′ and G ′′ are induced
subgraphs of G .

Now let us consider the CIS-property. To simplify the notation we restrict
ourselves by the case d = 2, though exactly the same arguments work in general.
Obviously, all maximal cliques (respectively, stable sets) of G ′ which do not contain
v remain unchanged in G , while a maximal clique C′ (respectively, a maximal stable
set S′) of G ′ which contains v and for every maximal clique C′′ (respectively, every

52 D. V. Andrade et al.

maximal stable set S′′) of G ′′ the set C = C′∪C′′\{v} (respectively, S = S′∪S′′\{v}
is a maximal clique (respectively, a maximal stable set) of G and moreover, there
are no other maximal cliques (respectively, maximal stable sets) in G .

It is not difficult to verify that every maximal clique C = C′ ∪C′′ \ {v} and every
maximal stable set S = S′ ∪ S′′ \ {v} in G intersects if and only if every maximal
clique C′ intersects every maximal stable set S′ of G′ and every maximal clique C′′
intersects every maximal stable set S′′ of G′′. Indeed, if C′ ∩ S′ = {v′}
= {v}, then
C ∩ S = {v′} for any C′′ and S′′. If C′ ∩ S′ = {v}, then C ∩ S = C′′ ∩ S′′ and hence
C ∩ S
= ∅ if and only if C′′ ∩ S′′
= ∅. If C ∩ S
= ∅, then both C′ ∩ S′ and C′′ ∩ S′′
must be non-empty. ��
Proof of Theorem 5

Part (a) By Proposition 7, G is exactly closed under substitution. By Proposi-
tion 9, G can be obtained from 2-graphs by substitutions. Such a decomposition of
G is given by a tree T (G) whose leaves correspond to 2-graphs. It is easy to see
that by construction each chromatic component of G is decomposed by the same
tree T (G). Hence, all we have to prove is that both chromatic components of every
2-graph belong to F . For colors 1, . . . , d − 1 this holds, since F is exactly closed
under substitution, and for the color d it holds, too, since F is also closed under
complementation.

Part (b) It follows easily from part (a). As in Lemma 5, given a (d + 1)-graph
G = (V ;E1, . . . , Ed,Ed+1), let us identify the last two colors d and d + 1 and
consider the d-graph G ′ = (V ;E1, . . . , Ed−1, Ed), where Ed = Ed ∪ Ed+1. We
assume that G is Δ-free and that Gi = (V ,Ei) ∈ F for i = 1, . . . , d − 1. Then, by
Lemma 6, G ′ is Δ-free, too, and it follows from part (a) that Gd = (V ,Ed) is also
in F . Hence, the union of any two colors is in F . From this by induction we derive
that the union of any set of colors is in F . ��
Proof of Proposition 11 Given G , let us again consider the decomposition tree
T (G), fix an arbitrary its leaf v, and consider the corresponding 2-graph Gv . Both
its chromatic components are CIS-graphs, by Proposition 8. Hence, Gv is a CIS-d-
graph. Thus, G is a CIS-d-graph, too, by Proposition 7. ��

4.2 Settling Δ

Let V = {v1, v2, v3} and assume that E1 = {(v1, v2)}, E2 = {(v2, v3)}, and E3 =
{(v3, v1)} form a Δ, see Figure 11. Obviously, Δ is not a CIS-3-graph. Indeed, let
us consider C1 = {v2, v3}, C2 = {v3, v1}, and C3 = {v1, v2}. There is no edge
from Ei in Ci for i = 1, 2, 3 and C1 ∩ C2 ∩ C3 = ∅. Hence, if a CIS-3-graph
G = (V ;E1, E2, E3) contains a Δ, then it must contain a vertex v4 such that the
sets C′1 = {v2, v3, v4}, C′2 = {v3, v1, v4}, and C′3 = {v1, v2, v4} contain no edges
from E1, E2, and E3, respectively.

On Graphs Whose Maximal Cliques and Stable Sets Intersect 53

Fig. 28 Settling Δ

v1

v2

v3 v1

v2

v3

v4

v5

Similarly, let us consider the sets C1 = {v3, v1}, C2 = {v1, v2}, and C3 =
{v2, v3}. Again, there is no edge from Ei in Ci for i = 1, 2, 3 and C1∩C2∩C3 = ∅.
Hence, if a CIS-3-graph G = (V ;E1, E2, E3) contains a Δ, then it must contain
a vertex v5 such that C′1 = {v3, v1, v5}, C′2 = {v1, v2, v5}, and C′3 = {v2, v3, v5}
contain no edges from E1, E2, and E3, respectively.

It is easy to check that v4
= v5 and that we must have (v4, v1), (v1, v2), (v2, v5) ∈
E1, (v4, v2), (v2, v3), (v3, v5) ∈ E2, (v4, v3), (v3, v1), (v1, v5) ∈ E3, see Figure 11.
This leaves only one pair (v4, v5) whose color is not implied. Yet, let us note that
for any coloring of (v4, v5) a new Δ appears. For example, if (v4, v5) ∈ E1, then
vertices (v3, v4, v5) form a Δ′ given in Figure 28.

4.3 A Stronger Conjecture

We say that two vertices v4 and v5 settle Δ. Note however that v1 and v2 do not settle
Δ′. So we need more vertices to settle it. Nevertheless, there are d-graphs whose all
Δs are settled. The first such example was given by Andrey Gol’berg in 1984, see
Figure 30.

We call this construction a 4-cycle. It has 4 Δs and they are all settled. Yet, if
we partition its three colors into two sets, we will get 44 2-combs none of which is
settled. Hence, by Proposition 6, the 4-cycle is not a CIS-3-graph.

Moreover, in the next section we give examples of 3-graphs whose all Δs and
2-combs are settled, however, their 2-projections have unsettled induced 3-combs
or 3-anti-combs.

Conjecture 3 Let G be a non-Gallai 3-graph with chromatic components
G1,G2,G3, then there is an unsettled Δ in G or Gi has an unsettled induced
comb or anti-comb for some i = 1, 2, 3.

Obviously, Proposition 6 and Conjecture 3 imply Conjecture 2.

Remark 11 It is not difficult to show that for every fixed k, d ∈ ZZ+ and ε > 0 there
is n = n(k, d, ε) such that in a random d-graph G with a fixed |V (G)| ≥ k all Δs
as well as all induced m-combs and m-anti-combs for m ≤ k in all projections of G
are settled with probability greater than 1− ε.

54 D. V. Andrade et al.

0

1

2

3

4

5

6

7

Fig. 29 Initial 4-cycle structure

Yet, for m > k, unsettled induced m-combs and m-anti-combs exist with high
probability.

4.4 Even Cycles and Flowers

In this section we describe some interesting 3-graphs in support of Conjecture 3.
They have all Δs settled, and sometimes even all 2-combs are settled in their 2-
projections. However, then unsettled 3-combs, or 3-anti-combs, or 4-combs appear.

Let us consider four Δs in Figure 29. They form a cycle.
This construction can be extended (uniquely) to a 3-graph, shown in Figure 30,

in which all four Δs are settled “counterclockwise” (i.e., Δs induced by the triplets
{0, 1, 2}, {2, 3, 4}, {4, 5, 6}, and {6, 7, 0} are settled by the pairs {3, 4}, {5, 6},
{7, 1}, and {1, 2}, respectively), and no new Δ appears. However, 2-projections of
this 3-graph contain 44 unsettled 2-combs (induced by the quadruples {0, 5, 1, 4},
{3, 2, 6, 7}, {4, 1, 2, 3}, {0, 5, 6, 7}, etc.) as shown in Figure 30.

On Graphs Whose Maximal Cliques and Stable Sets Intersect 55

0

1

2

3

4

5

6

7

Level 1: GBBGGBBG
Level 2: RGRBRGRB
Level 3: RBRGRBRG
Level 4: GBBRGBBR

4 settled Ds
44 S2: 0 settled

Fig. 30 4-cycle with all Δs settled. This 3-graph was constructed by Andrey Gol’berg in 1984

Now, let us consider four Δs with one common vertex as shown in Figure 31.
This construction we call a 4-flower. It can be extended to a 3-graph, as shown in
Figure 31, in which all four Δs are settled “counterclockwise” (i.e., Δs induced by
the triplets {0, 1, 2}, {0, 3, 4}, {0, 5, 6}, and {0, 7, 8} are settled by the pairs {3, 4},
{5, 6}, {7, 8}, and {1, 2}, respectively). Although four more Δs (induced by the
triplets {0, 1, 6}, {0, 2, 5}, {0, 4, 7}, and {0, 3, 8)} appear in this extension), yet they
are settled too. Moreover, 2-projections of this 3-graph contain twenty induced 2-
combs that are all settled. However, there exist also eight induced 3-combs that are
not settled.

Using a computer, we analyzed also some larger flowers (namely, 2j -flowers for
j = 3, 4, 5, and 6) shown below. In all these examples all Δs are settled. However,
in agreement with Conjecture 3, for each of these 3-graphs always there is a 2-
projection that contains an unsettled comb or anti-comb.

56 D. V. Andrade et al.

10

2

3

4

5

6

7

8

Fig. 31 Initial 4-flower structure

We have to explain the notation used in the figures. The three colors are red
R, blue B, and green G, and we denote them by solid, dashed, and dotted lines,
respectively.

In a 2j -flower we denote the central vertex by 0 and other vertices are labeled by
1, 2, . . . , 2j − 1, 2j . Due to the symmetry, we can describe this 3-graph in terms of
a list of colors L present in level i, where level i contains all edges (a, b) such that
a − b = ±i (mod n). Clearly, we only need to provide the color lists from level 1
to j , since level i gives the same assignment as level 2j − i. Finally Level 0 shows
the coloring of the radial edges. For example, the 4-flower in Figure 31 is colored
as follows:

Level 0: the edges (0, 1), (0, 2), (0, 3)(0, 4), (0, 5), (0, 6), (0, 7), (0, 8) are colored
by RGRGRGRG.

Level 1: the edges (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 1) are col-
ored by BGBGBGBG;

Level 2: the edges (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8), (7, 1), (8, 2) are all
colored by BBBBBBBB;

On Graphs Whose Maximal Cliques and Stable Sets Intersect 57

0 1

2

3

4

5

6

7

8

Level 0: RGRGRGRG
Level 1: BGBGBGBG
Level 2: BBBBBBBB
Level 3: RBRBRBRB
Level 4: RGRGRGRG

8 Ds: 8 settled
20 S2: 20 settled
8 S3: 0 settled

Fig. 32 4-flower example

Level 3: the edges (1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 1), (7, 2), (8, 3) are col-
ored by RBRBRBRB;

Level 4: the edges (1, 5), (2, 6), (3, 7), (4, 8), ((5, 1), (6, 2), (7, 3), (8, 4)) are col-
ored by RGRG(RGRG) (Figures 32, 33, 34, 35, and 36).

58 D. V. Andrade et al.

0 1

2

3

4

5

6

7

8

9

10

11

12

Level 0: RGRGRGRGRGRG
Level 1: BGBGBGBGBGBG
Level 2: BBBBBBBBBBBB
Level 3: RBRBRBRBRBRB
Level 4: RGRGRGRGRGRG
Level 5: BRBRBRBRBRBR
Level 6: BBBBBBBBBBBB

18 Ds: 18 settled
66 S2: 66 settled
38 S3: 20 settled
6 S4: 0 settled

Fig. 33 6-flower example

On Graphs Whose Maximal Cliques and Stable Sets Intersect 59

0 1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

Level 0: RGRGRGRGRGRGRGRG
Level 1: BGBGBGBGBGBGBGBG
Level 2: BBBBBBBBBBBBBBBB
Level 3: RBRBRBRBRBRBRBRB
Level 4: RGRGRGRGRGRGRGRG
Level 5: BRBRBRBRBRBRBRBR
Level 6: BBBBBBBBBBBBBBBB
Level 7: GBGBGBGBGBGBGBGB
Level 8: RRRRRRRRRRRRRRRR

32 Ds: 32 settled
192 S2: 192 settled
256 S3: 0 settled

Fig. 34 8-flower example

60 D. V. Andrade et al.

0 1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Level 0: RGRGRGRGRGRGRGRGRGRG
Level 1: BGBGBGBGBGBGBGBGBGBG
Level 2: BBBBBBBBBBBBBBBBBBBB
Level 3: RBRBRBRBRBRBRBRBRBRB
Level 4: RGRGRGRGRGRGRGRGRGRG
Level 5: BRBRBRBRBRBRBRBRBRBR
Level 6: BBBBBBBBBBBBBBBBBBBB
Level 7: RBRBRBRBRBRBRBRBRBRB
Level 8: RGRGRGRGRGRGRGRGRGRG
Level 9: BRBRBRBRBRBRBRBRBRBR
Level 10: BBBBBBBBBBBBBBBBBBBB

50 Ds: 50 settled
290 S2: 290 settled
220 S3: 120 settled
110 S4: 0 settled

Fig. 35 10-flower example

On Graphs Whose Maximal Cliques and Stable Sets Intersect 61

0 1

2

3

4

5
678

9

10

11

12

13

14

15

16

17
18 19 20

21

22

23

24

Level 0: RGRGRGRGRGRGRGRGRGRGRGRG
Level 1: BGBGBGBGBGBGBGBGBGBGBGBG
Level 2: BBBBBBBBBBBBBBBBBBBBBBBB
Level 3: RBRBRBRBRBRBRBRBRBRBRBRB
Level 4: RRRRRRRRRRRRRRRRRRRRRRRR
Level 5: BRBRBRBRBRBRBRBRBRBRBRBR
Level 6: BBBBBBBBBBBBBBBBBBBBBBBB
Level 7: RBRBRBRBRBRBRBRBRBRBRBRB
Level 8: RGRGRGRGRGRGRGRGRGRGRGRG
Level 9: BGBGBGBGBGBGBGBGBGBGBGBG
Level 10: BBBBBBBBBBBBBBBBBBBBBBBB
Level 11: RBRBRBRBRBRBRBRBRBRBRBRB
Level 12: RRRRRRRRRRRRRRRRRRRRRRRR

72 settled Ds
600 S2: 600 settled
184 S3: 76 settled
24 S4: 0 settled

Fig. 36 12-flower example

62 D. V. Andrade et al.

Acknowledgements The third author was partially funded by the Russian Academic Excellence
Project ‘5-100’.

References

1. R.N. Ball, A. Pultr, P. Vojtěchovský, Colored graphs without colorful cycles. Combinatorica
27(4), 407–427 (2007)

2. C. Berge, Problems 9.11 and 9.12, in Graphs and Order, ed. by I. Rival (Reidel, Dordrecht,
1985), pp. 583–584

3. E. Boros, V. Gurvich, Perfect graphs are kernel-solvable. Discret. Math. 159, 35–55 (1996)
4. E. Boros, V. Gurvich, Stable effectivity functions and perfect graphs. Math. Soc. Sci. 39, 175–

194 (2000)
5. E. Boros, V. Gurvich, A. Vasin, Stable families of coalitions and normal hypergraphs. Math.

Soc. Sci. 34, 107–123 (1997). RUTCOR Research Report, RRR-22-1995, Rutgers University
6. E. Boros, V. Gurvich, P.L. Hammer, Dual subimplicants of positive Boolean functions. Optim.

Methods Softw. 10, 147–156 (1998)
7. E. Boros, V. Gurvich, I. Zverovich, On split and almost CIS-graphs. Aust. J. Comb. 43, 163–

180 (2009)
8. A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes: A Survey (SIAM, Philadelphia, 1999)
9. H. Buer, R. Möring, A fast algorithm for decomposition of graphs and posets. Math. Oper. Res.

3, 170–184 (1983)
10. K. Cameron, J. Edmonds, Lambda composition. J. Graph Theory 26, 9–16 (1997)
11. K. Cameron, J. Edmonds, L. Lovász, A note on perfect graphs. Period. Math. Hung. 17(3),

441–447 (1986)
12. F.R.K. Chung, R.L. Graham, Edge-colored complete graphs with precisely colored subgraphs.

Combinatorica 3, 315–324 (1983)
13. A. Cournier, M. Habib, A new linear algorithm for modular decomposition, in Proceedings of

19th International Colloquium on Trees in Algebra and Programming (CAAP-94), Edinburgh,
ed. by S. Tison. Lecture Notes in Computer Science, vol. 787 (Springer, Berlin, 1994), pp.
68–82

14. X. Deng, G. Li, W. Zang, Proof of Chvatal’s conjecture on maximal stable sets and maximal
cliques in graphs. J. Comb. Theory Ser. B 91(2), 301–325 (2004)

15. X. Deng, G. Li, W. Zang, Corrigendum to proof of Chvatal’s conjecture on maximal stable sets
and maximal cliques in graphs. J. Comb. Theory Ser. B 94, 352–353 (2005)

16. T. Eiter, Exact transversal hypergraphs and application to Boolean μ-functions. J. Symb.
Comput. 17, 215–225 (1994)

17. T. Eiter, Generating Boolean μ-expressions. Acta Informatica 32, 171–187 (1995)
18. P. Erdős, M. Simonovits, V.T. Sos, Anti-Ramsey theorems. Colloq. Math. Soc. Janos Bolyai

10, 633–643 (1973)
19. S. Foldes, P.L. Hammer, Split graphs, in Proceedings of the 8th Southeastern Conference on

Combinatorics, Graph Theory, and Computing (Louisiana State University, Baton Rouge, LA,
1977). Congressus Numerantium, vol. XIX (Utilitas Mathematica Publisher, Winnipeg, 1977),
pp. 311–315

20. T. Gallai, Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar. 18(1–2), 25–66
(1967). English translation by F. Maffray, M. Preissmann, Chapter 3: Perfect graphs, ed. by
J.L.R. Alfonsin, B.A. Reed (Wiley, Hoboken, 2001)

21. M.C. Golumbic, V. Gurvich, Read-once Boolean functions, in Boolean Functions: Theory,
Algorithms, and Applications, ed. by Y. Crama, P.L. Hammer (Cambridge University Press,
Cambridge, 2011), pp. 448–486

22. V. Gurvich, On repetition-free Boolean functions. Russ. Math. Surv. 32(1), 183–184 (1977) (in
Russian)

On Graphs Whose Maximal Cliques and Stable Sets Intersect 63

23. V. Gurvich, Applications of Boolean functions and contact schemes in game theory, section 5,
Repetition-free Boolean functions and normal forms of positional games, Ph.D. thesis, Moscow
Institute of Physics and Technology, Moscow, USSR (in Russian), 1978

24. V. Gurvich, On the normal form of positional games. Soviet Math. Dokl. 25(3), 572–575 (1982)
25. V. Gurvich, Some properties and applications of complete edge-chromatic graphs and hyper-

graphs. Soviet Math. Dokl. 30(3), 803–807 (1984)
26. V. Gurvich, Criteria for repetition-freeness of functions in the Algebra of Logic. Russ. Acad.

Sci. Dokl. Math. 43(3), 721–726 (1991)
27. V. Gurvich, Positional game forms and edge-chromatic graphs. Russ. Acad. Sci. Dokl. Math.

45(1), 168–172 (1992)
28. V. Gurvich, Decomposing complete edge-chromatic graphs and hypergraphs, revisited. Discret.

Appl. Math. 157, 3069–3085 (2009)
29. A. Gyárfás, G. Simonyi, Edge coloring of complete graphs without tricolored triangles. J.

Graph Theory 46, 211–216 (2004)
30. M. Karchmer, N. Linial, L. Newman, M. Saks, A. Wigderson, Combinatorial characterization

of read-once formulae. Discret. Math. 114, 275–282 (1993)
31. T. Kloks, C.-M. Lee, J. Liu, H. Müller, On the recognition of general partition graphs, in

Graph-Theoretic Concepts of Computer Science. Lecture Notes in Computer Science, vol.
2880 (Springer, Berlin, 2003), pp. 273–283

32. J. Körner, G. Simonyi, Graph pairs and their entropies: modularity problems. Combinatorica
20, 227–240 (2000)

33. J. Körner, G. Simonyi, Zs. Tuza, Perfect couples of graphs. Combinatorica 12, 179–192 (1992)
34. L. Lovász, Normal hypergraphs and the weak perfect graph conjecture. Discret. Math. 2(3),

253–267 (1972)
35. L. Lovász, A characterization of perfect graphs. J. Comb. Theory Ser. B 13(2), 95–98 (1972)
36. L. Lovász, Combinatorial Problems and Exercises (North-Holland Publishing, Amsterdam,

1979)
37. K. McAvaney, J. Robertson, D. DeTemple, A characterization and hereditary properties for

partition graphs. Discret. Math. 113(1–3), 131–142 (1993)
38. R.M. McCollel, J.P. Spinrad, Modular decomposition and transitive orientation. Discret. Math.

201, 189–241 (1999)
39. R. Möring, Algorithmic aspects of the substitution decomposition in optimization over

relations, set systems, and Boolean functions. Ann. Oper. Res. 4, 195–225 (1985/1986)
40. J. Muller, J. Spinrad, Incremental modular decomposition. J. ACM 36(1), 1–19 (1989)
41. Yu.L. Orlovich, I.E. Zverovich, Independent domination and the triangle condition. Electron.

Notes Discrete Math. 28, 341–348 (2007)
42. G. Ravindra, Strongly perfect line graphs and total graphs, in Finite and Infinite Sets, 6-th

Hungarian Combinatorial Colloquium, vol. 2, Eger, 1981. Colloquia Mathematica Societatis
Janos Bolyai, vol. 37 (North Holland, Amsterdam, 1984) 621–633.

43. Y. Wu, W. Zang, C.-Q. Zhang, A characterization of almost CIS graphs. SIAM J. Discret. Math.
23(2), 749–753 (2009)

44. W. Zang, Generalizations of Grillet’s theorem on maximal stable sets and maximal cliques in
graphs. Discret. Math. 143, 259–268 (1995)

45. I. Zverovich, I. Zverovich, Bipartite hypergraphs: a survey and new results. Discret. Math. 306,
801–811 (2006)

Computing the Line Index of Balance
Using Integer Programming
Optimisation

Samin Aref, Andrew J. Mason, and Mark C. Wilson

1 Introduction

Graphs with positive and negative edges are referred to as signed graphs [67] which
are very useful in modelling the dual nature of interactions in various contexts.
Graph-theoretic conditions [11, 30] of the structural balance theory [30, 36] define
the notion of balance in signed graphs. If the vertex set of a signed graph can be
partitioned into k ≤ 2 subsets such that each negative edge joins vertices belonging
to different subsets, then the signed graph is balanced [11]. For graphs that are
not balanced, a distance from balance (a measure of partial balance [7]) can be
computed.

Among various measures is the frustration index that indicates the minimum
number of edges whose removal results in balance [1, 32, 65]. This number was
originally proposed in oblique form and referred to as complexity by Abelson et
al. [1]. One year later, Harary proposed the same idea much more clearly with the
name line index of balance [32]. More than two decades later, Toulouse used the
term frustration to discuss the minimum energy of an Ising spin glass model [63].
Zaslavsky has made a connection between the line index of balance and spin glass
concepts and introduced the name frustration index [65]. We use both names, line
index of balance and frustration index, interchangeably in this chapter.

S. Aref (�) · M. C. Wilson
Department of Computer Science, University of Auckland, Auckland, New Zealand
e-mail: sare618@aucklanduni.ac.nz

A. J. Mason
Department of Engineering Science, University of Auckland, Auckland, New Zealand

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_3

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_3&domain=pdf
mailto:sare618@aucklanduni.ac.nz
https://doi.org/10.1007/978-3-319-94830-0_3

66 S. Aref et al.

2 Literature Review

Except for a normalised version of the frustration index [7], measures of balance
used in the literature [11, 18, 42, 53, 61] do not satisfy key axiomatic properties
[7]. Using cycles [11, 53], triangles [42, 61], Laplacian matrix eigenvalues [43],
and closed walks [18] to evaluate distance from balance has led to conflicting
observations [18, 19, 45].

Besides applications as a measure of balance, the frustration index is a key to
frequently stated problems in several fields of research [4]. In biology, optimal
decomposition of biological networks into monotone subsystems is made possible
by calculating the line index of balance [38]. In finance, portfolios whose underlying
signed graph has negative edges and a frustration index of zero have a relatively low
risk [34]. In physics, the line index of balance provides the minimum energy state
of atomic magnets [8, 39, 60]. In international relations, alliance and antagonism
between countries can be analysed using the line index of balance [15]. In chemistry,
bipartite edge frustration indicates the stability of fullerene, a carbon allotrope [16].
For a discussion on applications of the frustration index, one may refer to [4].

Detecting whether a graph is balanced can be solved in polynomial time
[29, 33, 64]. However, calculating the line index of balance in general graphs is
an NP-hard problem equivalent to the ground state calculation of an unstructured
Ising model [50]. Computation of the line index of balance can be reduced from the
graph maximum cut (MAXCUT) problem, in the case of all negative edges, which
is known to be NP-hard [37].

Similar to MAXCUT for planar graphs [27], the line index of balance can
be computed in polynomial time for planar graphs [40]. Other special cases of
related problems can be found among the works of Hartmann and collaborators who
have suggested efficient algorithms for computing ground state in 3-dimensional
spin glass models [47] improving their previous contributions in 1-, 2-, and 3-
dimensional [14, 35, 49] spin glass models. Recently, they have used a method
for solving 0/1 optimisation models to compute the ground state of 3-dimensional
models containing up to 2683 nodes [24].

A review of the literature shows 5 algorithms suggested for computing the line
index of balance between 1963 and 2002. The first algorithm [21, pp. 98–107] is
developed specifically for complete graphs. It is a naive algorithm that requires
explicit enumeration of all possible combinations of sign changes that may or may
not lead to balance. With a run time exponential in the number of edges, this is
clearly not practical for graphs with more than 8 nodes that require billions of
cases to be checked. The second algorithm is an optimisation method suggested by
Hammer [28]. This method is based on solving an unconstrained binary quadratic
model. We will discuss a model of this type in Section 4.2 and other more efficient
models later in this chapter. The third computation method is an iterative algorithm
suggested in [29, algorithm 3, p. 217]. The iterative algorithm is based on removing
edges to eliminate negative cycles of the graph and only provides an upper bound
on the line index of balance. A fourth method suggested by Harary and Kabell

Computing the Line Index of Balance 67

[33, p. 136] is based on extending a balance detection algorithm. This method is
inefficient according to Bramsen [10] who in turn suggests an iterative algorithm
with a run time that is exponential in the number of nodes. Using Bramsen’s
suggested method for a graph with 40 nodes requires checking trillions of cases to
compute the line index of balance which is clearly impractical. Doreian and Mrvar
have recently attempted computing the line index of balance using a polynomial
time algorithm [15]. However, our computations on their data show that their
solutions are not optimal and thus do not give the line index of balance.

This review of literature shows that computing the line index of balance in
general graphs lacks extensive and systematic investigation.

We provide an efficient method for computing the line index of balance in general
graphs of the sizes found in many application areas. Starting with a quadratic
programming model based on signed graph switching equivalents, we suggest
several optimisation models. We use powerful mathematical programming solvers
like Gurobi [25] to solve the optimisation models.

This chapter begins with the preliminaries in Section 3. Three mathematical
programming models are developed in Section 4. The results on synthetic data are
provided in Section 5. Numerical results on real social and biological networks are
provided in Section 6 including graphs with up to 3215 edges. Section 7 summarises
the key highlights of the research.

3 Preliminaries

3.1 Basic Notation

We consider undirected signed networks G = (V ,E, σ). The set of nodes is denoted
by V , with |V | = n. The set E of edges is partitioned into the set of positive edges
E+ and the set of negative edges E− with |E−| = m−, |E+| = m+, and |E| =
m = m− + m+. For clarity, we sometimes use m−(G) to refer to the number of
negative edges in G. The sign function, denoted by σ , is a mapping of edges to signs
σ : E → {−1,+1}. We represent the m undirected edges in G as ordered pairs of
vertices E = {e1, e2, . . . , em} ⊆ {(i, j) | i, j ∈ V, i < j}, where a single edge ek

between nodes i and j , i < j , is denoted by ek = (i, j), i < j . We denote the graph
density by ρ = 2m/(n(n − 1)). The entries of the adjacency matrix A = (aij) are
defined in (1).

aij =
⎧
⎨

⎩

σ(i,j) if (i, j) ∈ E

σ(j,i) if (j, i) ∈ E

0 otherwise
(1)

The number of positive (negative) edges incident on the node i ∈ V is the positive
(negative) degree of the node and is denoted by d+(i) (d−(i)). The net degree of a

68 S. Aref et al.

node is defined by d+(i) − d−(i). The degree of node i is represented by d(i) =
d+(i)+ d−(i) and equals the total number of edges incident on node i.

A walk of length k in G is a sequence of nodes v0, v1, . . . , vk−1, vk such that for
each i = 1, 2, . . . , k there is an edge between vi−1 and vi . If v0 = vk , the sequence
is a closed walk of length k. If the nodes in a closed walk are distinct except for the
endpoints, it is a cycle of length k. The sign of a cycle is the product of the signs of
its edges. A balanced graph is one with no negative cycles [11].

3.2 Node Colouring and Frustration Count

For each signed graph G = (V ,E, σ), we can partition V into two sets, denoted
X ⊆ V and X̄ = V \X. We think of X as specifying a colouring of the nodes, where
each node i ∈ X is coloured black, and each node i ∈ X̄ is coloured white.

We let xi denote the colour of node i ∈ V under X, where xi = 1 if i ∈ X and
xi = 0 otherwise. We say that an edge (i, j) ∈ E is frustrated under X if either
edge (i, j) is a positive edge ((i, j) ∈ E+) but nodes i and j have different colours
(xi
= xj), or edge (i, j) is a negative edge ((i, j) ∈ E−) but nodes i and j share
the same colour (xi = xj). We define the frustration count fG(X) as the number of
frustrated edges in G under X:

fG(X) =
∑

(i,j)∈E
fij (X)

where for (i, j) ∈ E:

fij (X) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if xi = xj and (i, j) ∈ E+

1, if xi = xj and (i, j) ∈ E−

0, if xi
= xj and (i, j) ∈ E−

1, if xi
= xj and (i, j) ∈ E+.

(2)

The frustration index L(G) of a graph G can be obtained by finding a subset
X∗ ⊆ V of G that minimises the frustration count fG(X), i.e. solving Equation (3).

L(G) = min
X⊆V

fG(X) (3)

3.3 Minimum Deletion Set and Switching Function

For each signed graph, there are sets of edges, called deletion sets, whose deletion
results in a balanced graph. A minimum deletion set E∗ ⊆ E is a deletion set

Computing the Line Index of Balance 69

with the minimum size. The frustration index L(G) equals the size of a minimum
deletion set: L(G) = |E∗|.

We define the switching function g(X) operating over a set of vertices, called the
switching set, X ⊆ V as follows in (4).

σ
g(X)

(i,j) =
{

σ(i,j) if i, j ∈ X or i, j /∈ X

−σ(i,j) if (i ∈ X and j /∈ X) or (i /∈ X and j ∈ X)
(4)

The graph resulting from applying switching function g to signed graph G is called
G’s switching equivalent and denoted by Gg . The switching equivalents of a graph
have the same value of the frustration index, i.e. L(Gg) = L(G)∀g [66]. It is
straightforward to prove that the frustration index is equal to the minimum number
of negative edges in Gg over all switching functions g. An immediate result is
that any balanced graph can switch to an equivalent graph where all the edges are
positive [66]. Moreover, in a switched graph with the minimum number of negative
edges, called a negative minimal graph and denoted by Gg∗ , all vertices have a non-
negative net degree. In other words, every vertex i in Gg∗ satisfies d−(i) ≤ d+(i).

3.4 Bounds for the Line Index of Balance

An obvious upper bound for the line index of balance is L(G) ≤ m− which
states the result that removing all negative edges gives a balanced graph. Recalling
that acyclic signed graphs are balanced, the circuit rank of the graph can also be
considered as an upper bound for the frustration index [22, p. 8]. Circuit rank, also
known as the cyclomatic number, is the minimum number of edges whose removal
results in an acyclic graph.

Petersdorf [56] proves that among all sign functions for complete graphs with n

nodes, assigning negative signs to all the edges, i.e. putting σ : E → {−1}, gives
the maximum value of the frustration index which equals �(n−1)2/4�. Petersdorf’s
proof confirms a conjecture by Abelson and Rosenberg[1] that is also proved in [62]
and further discussed in [2].

Akiyama et al. provide results indicating that the frustration index of signed
graphs with n nodes and m edges is bounded by m/2 [2]. They also show that the
frustration index of signed graphs with n nodes is maximum in all complete graphs
with no positive 3-cycles and is bounded by �(n − 1)2/4� [2, Theorem 1]. This
group of graphs also contains complete graphs with nodes that can be partitioned
into two classes such that all positive edges connect nodes from different classes
and all negative edges connect nodes belonging to the same class [62]. Akiyama
et al. refer to these graphs as antibalanced [2] which is a term coined by Harary in
[31] and also discussed in [66].

70 S. Aref et al.

4 Mathematical Programming Models

In this section, we formulate three mathematical programming models in (5), (8),
and (11) to calculate the frustration index by optimising an objective function
formed using integer variables.

4.1 A Quadratically Constrained Quadratic Programming
Model

We formulate a mathematical programming model in Equation (5) to maximise
Z1, the sum of entries of Ag , the adjacency matrix of the graph switched by g,
over different switching functions. Bearing in mind that the frustration index is the
number of negative edges in a negative minimal graph, L(G) = m−(Gg∗), then
maximising Z1 will effectively calculate the line index of balance. We use decision
variables, yi ∈ {−1, 1} to define node colours. Then X = {i | yi = 1} gives
the black-coloured nodes (alternatively nodes in the switching set). The restriction
yi ∈ {−1, 1} for the variables is formulated by n quadratic constraints y2

i = 1.
Note that the switching set X = {i | yi = 1} creates a negative minimal graph
with the adjacency matrix entries given by aij yiyj . The model can be represented
as Equation (5) in the form of a continuous quadratically constrained quadratic
programming (QCQP) model with n decision variables and n constraints.

max
yi

Z1 =
∑

i∈V

∑

j∈V
aij yiyj

s.t. y2
i = 1 ∀i ∈ V

(5)

Maximising
∑

i∈V
∑

j∈V aij yiyj is equivalent to computing m−(Gg∗) =
|{(i, j) ∈ E : aij yiyj = −1}|. Note that choosing yi, i ∈ V to maximise∑

i∈V
∑

j∈V aij yiyj is equivalent to choosing g to minimise m−(Gg). The
optimal value of the objective function, Z∗1 , is equal to the sum of entries in
the adjacency matrix of a negative minimal graph which can be represented by
Z∗1 = 2m+(Gg∗) − 2m−(Gg∗) = 2m − 4L(G). Therefore, the graph frustration
index can be calculated by L(G) = (2m− Z∗1)/4.

While the model expressed in (5) is quite similar to the non-linear energy
function minimisation model used in [17, 19, 20, 46] and the Hamiltonian of Ising
models with ±1 interactions [60], the feasible region in model (5) is neither convex
nor a second order cone. Therefore, the QCQP model in (5) only serves as an
easy-to-understand optimisation model clarifying the node colouring (alternatively
selecting nodes to switch) and how it relates to the line index of balance.

Computing the Line Index of Balance 71

4.2 An Unconstrained Binary Quadratic Programming Model

The optimisation model (5) can be converted into an unconstrained binary quadratic
programming (UBQP) model (8) by changing the decision variables into binary
variables yi = 2xi − 1 where xi ∈ {0, 1}. Note that the binary variables, xi , define
the black-coloured nodes X = {i | xi = 1} (alternatively, nodes in the switching
set). The optimal solution represents a subset X∗ ⊆ V of G that minimises the
resulting frustration count.

Furthermore, by substituting yi = 2xi − 1 into the objective function in (5) we
get (6). The terms in the objective function can be modified as shown in (6)–(7) in
order to have an objective function whose optimal value, Z∗2 , equals L(G).

Z1 =
∑

i∈V

∑

j∈V
(4aij xixj − 2xiaij − 2xjaij + aij)

=
∑

i∈V

∑

j∈V
(4aij xixj − 4xiaij)+ (2m− 4m−(G))

(6)

Z2 = (2m− Z1)/4 (7)

Note that the binary quadratic model in Equation (8) has n decision variables and
no constraints.

min
xi

Z2 =
∑

i∈V

∑

j∈V
(aij xi − aij xixj)+m−(G)

s.t. xi ∈ {0, 1} i ∈ V

(8)

The optimal value of the objective function in Equation (8) represents the
frustration index directly as shown in (9).

Z∗2 = (2m− Z∗1)/4 = (2m− (2m− 4L(G)))/4 = L(G) (9)

The objective function in Equation (8) can be interpreted as initially starting with
m−(G) and then adding 1 for each positive frustrated edge (positive edge with different
endpoint colours) and −1 for each negative edge that is not frustrated (negative
edge with different endpoint colours). This adds up to the total number of frustrated
edges.

4.3 The 0/1 Linear Model

The linearised version of (8) is formulated in Equation (11). The objective function
of (8) is first modified as shown in Equation (10) and then its non-linear term xixj

72 S. Aref et al.

is replaced by |E| additional binary variables xij . The new decision variables xij

are defined for each edge (i, j) ∈ E and take value 1 whenever xi = xj = 1 and
0 otherwise. Note that di = ∑

j∈V aij is a constant that equals the net degree of
node i.

Z2 =
∑

i∈V

∑

j∈V
aij xi −

∑

i∈V

∑

j∈V
aij xixj +m−(G)

=
∑

i∈V
xi

∑

j∈V
aij −

∑

i∈V

∑

j∈V,j>i

2aij xixj +m−(G)

=
∑

i∈V
xidi −

∑

i∈V

∑

j∈V,j>i

2aij xixj +m−(G)

(10)

The dependencies between the xij and xi, xj values are taken into account by
considering a constraint for each new variable. Therefore, the 0/1 linear model has
n+m variables and m constraints, as shown in (11).

min
xi ,xij

Z2 =
∑

i∈V
dixi −

∑

(i,j)∈E
2aij xij +m−(G)

s.t. xij ≤ (xi + xj)/2 ∀(i, j) ∈ E+

xij ≥ xi + xj − 1 ∀(i, j) ∈ E−

xi ∈ {0, 1} i ∈ V

xij ∈ {0, 1} (i, j) ∈ E

(11)

4.4 Additional Constraints for the 0/1 Linear Model

The structural properties of the model allow us to restrict the model by adding
additional valid inequalities. Valid inequalities are utilised by our solver Gurobi
as additional non-core constraints that are kept aside from the core constraints of
the model. Upon violation by a solution, valid inequalities are efficiently pulled in
to the model. Pulled-in valid inequalities cut away a part of the feasible space and
restrict the model. Additional restrictions imposed on the model can often speed
up the solver algorithm if they are valid and useful [41]. Properties of the optimal
solution can be used to determine these additional constraints. Two properties we

Computing the Line Index of Balance 73

use are the non-negativity of net degrees in negative minimal graphs and the fact
that in every cycle there is always an even number of edges that change sign when
applying the switching function g.

An obvious structural property of the nodes in a negative minimal graph, Gg∗ , is
that their net degrees are always non-negative, i.e. d+(i)−d−(i) ≥ 0 ∀i ∈ V . This
can be proved by contradiction using the definition of the switching function (4). To
see this, assume a node in a negative minimal graph has a negative net degree. It
follows that the negative edges incident on the node outnumber the positive edges.
Therefore, switching the node decreases the total number of negative edges in a
negative minimal graph which is a contradiction.

This structural property can be formulated as constraints in the problem. A
net-degree constraint can be added to the model for each node restricting all
variables associated with the connected edges. These constraints are formulated
using quadratic terms of xi variables. As xi represents the colour of a node,
(1 − 2xi)(1 − 2xj) takes value −1 if and only if the two endpoints of edge
(i, j) ∈ E have different colours. Interpreting this based on the concept of switching
sets, different values of the xi variables associated with the two endpoints of edge
(i, j) ∈ E mean that the edge should be negated (change sign) in the process of
transforming to a negative minimal graph. The linearised formulation of the net-
degree constraints using xi and xij variables is provided in (12).

∑

j :(i,j)∈E or (j,i)∈E
aij (1− 2xi − 2xj + 4xij) ≥ 0 ∀i ∈ V (12)

Another structural property we observe is related to the edges making a cycle.
According to the definition of the switching function (4), switching one node negates
all edges (changes the signs on all edges) incident on that node. Because there are
two edges incident on each node in a cycle, in every cycle there is always an even
number of edges that change sign when switching function g is applied to signed
graph G.

As listing all cycles of a graph is computationally intensive, this structural
property can be applied to cycles of a limited length. For instance, we may apply
this structural property to the edge variables making triangles in the graph. This
structural property can be formulated as valid inequalities in Equation (13) in which
T = {(i, j, k) ∈ V 3 | (i, j), (i, k), (j, k) ∈ E} contains ordered 3-tuples of nodes
whose edges form a triangle. Note that (xi + xj − 2xij) equals 1 if edge (i, j) ∈ E

is negated and equals 0 otherwise. The expression in Equation (13) denotes the total
number of negated edges in the triangle formed by three edges (i, j), (i, k), (j, k).

xi + xj − 2xij + xi + xk − 2xik + xj + xk − 2xjk

= 0 or 2 ∀(i, j, k) ∈ T
(13)

74 S. Aref et al.

Table 1 Comparison of the three optimisation models

QCQP (5) UBQP (8) 0/1 linear model (11)

Variables n n n+m

Constraints n 0 m

Variable type Continuous Binary Binary

Constraint type Quadratic – Linear

Objective Quadratic Quadratic Linear

Equation (13) can be linearised to Equation (14) as follows. Triangle constraints
can be applied to the model as four constraints per triangle, restricting three edge
variables and three node variables per triangle.

xi + xjk ≥ xij + xik ∀(i, j, k) ∈ T

xj + xik ≥ xij + xjk ∀(i, j, k) ∈ T

xk + xij ≥ xik + xjk ∀(i, j, k) ∈ T

1+ xij + xik + xjk ≥ xi + xj + xk ∀(i, j, k) ∈ T

(14)

In order to speed up the model in (11), we consider fixing a node colour to
increase the root node objective function in the solver’s branch and bound process.
We conjecture the best node variable to fix is the one associated with the highest
unsigned node degree. This constraint is formulated in (15) which our experiments
show speeds up the branch and bound algorithm by increasing the lower bound.

xk = 1 k = arg max
i∈V d(i) (15)

The complete formulation of the 0/1 linear model with further restrictions on the
feasible space includes the objective function and core constraints in Equation (11)
and valid inequalities in Equations (12), (14), and (15). The model has n+m binary
variables, m core constraints, and n+ 4|T | + 1 additional constraints.

Table 1 provides a comparison of the three optimisation models based on their
variables, constraints, and objective functions. In the next sections, we mainly focus
on the 0/1 linear model solved in conjunction with the valid inequalities (additional
constraints).

5 Numerical Results in Random Graphs

In this section, the frustration index of various random networks is computed by
solving the 0/1 linear model (11) coupled with the additional constraints. We use
Gurobi version 7 on a desktop computer with an Intel Core i5 4670 @ 3.40 GHz and

Computing the Line Index of Balance 75

8.00 GB of RAM running 64-bit Microsoft Windows 7. The models were created
using Gurobi’s Python interface. All four processor cores available were used by
Gurobi.

To verify our software implementation, we manually counted the number of
frustrated edges given by our software’s proposed node colouring for a number of
test problems, and confirmed that this matched the frustration count reported by our
software. These tests showed that our models and implementations were performing
as expected.

5.1 Performance of the 0/1 Linear Model on Random Graphs

In this subsection we discuss the time performance of the branch and bound
algorithms for solving the 0/1 linear model. In order to evaluate the performance
of the 0/1 linear model (11) coupled with the additional constraints, we generate 10
decent-sized Erdős-Rényi random graphs [9] as test cases with various densities and
percentages of negative edges. Results are provided in Table 2 in which B&B nodes
stands for the number of branch and bound nodes (in the search tree of the branch
and bound algorithm) explored by the solver.

The results in Table 2 show that random test cases based on Erdős-Rényi graphs
with 500–600 edges can be solved to optimality in a reasonable time. The branching
process for these test cases explores various numbers of nodes ranging between 0
and 12,384. These numbers also depend on the number of threads and the heuristics
that the solver uses automatically.

Table 2 Performance measures of Gurobi solving the 0/1 linear model in (11) for the random
networks

TestCase n m m− ρ m−
m

L(G) B&B nodes Time(s)

1 65 570 395 0.27 0.69 189 5133 65.4

2 68 500 410 0.22 0.82 162 4105 27.3

3 80 550 330 0.17 0.60 170 11,652 153.3

4 50 520 385 0.42 0.74 185 901 22.4

5 53 560 240 0.41 0.43 193 292 13.5

6 50 510 335 0.42 0.66 178 573 13.8

7 59 590 590 0.34 1.00 213 1831 46.0

8 56 600 110 0.39 0.18 110 0 0.4

9 71 500 190 0.20 0.38 155 6305 77.7

10 80 550 450 0.17 0.82 173 12,384 138.0

76 S. Aref et al.

Fig. 1 The frustration index
in Erdős-Rényi (ER)
networks with 15 nodes and
50 edges and Barabási-Albert
(BA) networks with 15 nodes
and 50 edges and various
number of negative edges

5.2 Impact of Negative Edges on the Frustration Index

In this subsection we use both Erdős-Rényi and Barabási-Albert random networks
[9] as synthetic data for calculation of the line index of balance. In this analysis,
we use the same randomly generated graphs with different numbers of negative
edges assigned by a uniform random distribution as test cases over 50 runs per
experiment setting. Figure 1 shows the average and standard deviation of the line
index of balance in these random signed networks with n = 15,m = 50. It is worth
mentioning that we have observed similar results in other types of random graphs
including small world, scale-free, and random regular graphs [9].

Figure 1 shows similar increases in the line index of balance in the two graph
classes as m− increases. It can be observed that the maximum frustration index is
still smaller than m/3 for all graphs. This shows a gap between the values of the
line index of balance in random graphs and the theoretical upper bound of m/2. It
is important to know whether this gap is proportional to graph size and density.

5.3 Impact of Graph Size and Density on the Frustration Index

In order to investigate the impact of graph size and density, 4-regular random graphs
with a constant fraction of randomly assigned negative edges are analysed averaging
over 50 runs per experiment setting. The frustration index is computed for 4-regular
random graphs with 25%, 50%, and 100% negative edges and compared with the
upper bound m/2. Figure 2 demonstrates the average and standard deviation of the
frustration index where the degree of all nodes remains constant, but the density of
the 4-regular graphs, ρ = 4/n− 1, decreases as n and m increase.

Computing the Line Index of Balance 77

Fig. 2 The frustration index in random 4-regular networks of different orders n and decreasing
densities

An observation to derive from Figure 2 is the similar frustration index values
obtained for networks of the same sizes, even if they have different percentages of
negative edges. It can be concluded that starting with an all-positive graph (which
has a frustration index of 0), making the first quarter of graph edges negative
increases the frustration index much more than making further edges negative.
Future research is required to get a better understanding of how the frustration index
and minimum deletion sets change when the number of negative edges is increased
(on a fixed underlying structure). Another observation is that the gap between the
frustration index values and the theoretical upper bound increases with increasing n.

6 Numerical Results in Real Signed Networks

In this section, the frustration index is computed in nine real networks by solving
the 0/1 linear model (11) using Gurobi version 7 on a desktop computer with an
Intel Core i5 4670 @ 3.40 GHz and 8.00 GB of RAM running 64-bit Microsoft
Windows 7.

We use well-studied signed social network datasets representing communities
with positive and negative interactions and preferences including Read’s dataset for
New Guinean highland tribes [57] and Sampson’s dataset for monastery interactions
[59] which we denote respectively by G1 and G2. We also use graphs inferred from
datasets of students’ choice and rejection, denoted by G3 and G4 [44, 52]. A further
explanation on the details of inferring signed graphs from choice and rejection data
can be found in [7]. Moreover, a larger signed network, denoted by G5, is inferred
by Neal [51] through implementing a stochastic degree sequence model on Fowler’s
data on Senate bill co-sponsorship [23].

As well as the signed social network datasets, large-scale biological networks
can be analysed as signed graphs. There are four signed biological networks
analysed by [13] and [38]. Graph G6 represents the gene regulatory network of

78 S. Aref et al.

Table 3 The frustration index in various signed networks

Graph n m m− L(G) L(Gr)± SD Z score

G1 16 58 29 7 14.65± 1.38 −5.54

G2 18 49 12 5 9.71± 1.17 −4.03

G3 17 40 17 4 7.53± 1.24 −2.85

G4 17 36 16 6 6.48± 1.08 −0.45

G5 100 2461 1047 331 965.6± 9.08 −69.89

G6 690 1080 220 41 124.3± 4.97 −16.75

G7 1461 3215 1336 371 653.4± 7.71 −36.64

G8 329 779 264 193 148.96± 5.33 8.26

G9 678 1425 478 332 255.65± 8.51 8.98

Saccharomyces cerevisiae [12] and graph G7 is related to the gene regulatory
network of Escherichia coli [58]. The Epidermal growth factor receptor pathway
[55] is represented as graph G8. Graph G9 represents the molecular interaction map
of a macrophage [54]. For more details on the four biological datasets, one may
refer to [38]. The data for real networks used in this study is publicly available on
the Figshare research data sharing website [5].

We use Gr = (V ,E, σr) to denote a reshuffled graph in which the sign
function σr is a random mapping of E to {−1,+1} that preserves the number of
negative edges. The reshuffling process preserves the underlying graph structure.
The numerical results on the frustration index of our nine signed graphs and
reshuffled versions of these graphs are shown in Table 3 where, for each graph G,
the average and standard deviation of the line index of balance in 500 reshuffled
graphs, denoted by L(Gr) and SD, are also provided for comparison.

Although the signed networks are not balanced, the relatively small values of
L(G) suggest a low level of frustration in some of the networks. Figure 3 shows how
the small signed networks G1–G4 can be made balanced by negating (or removing)
the edges on a minimum deletion set. Dotted lines represent negative edges, solid
lines represent positive edges, and frustrated edges are indicated by dotdash lines
regardless of their original signs. The node colourings leading to the minimum
frustration counts are also shown in Figure 3. Note that it is pure coincidence
that there are an equal number of nodes coloured black for each graph G1–G4
in Figure 3. Visualisations of graphs G1–G4 without node colours and minimum
deletion sets can be found in [7].

In order to be more precise in evaluating the relative levels of frustration in G1–
G9, we have implemented a very basic statistical analysis using Z scores, where Z =
(L(G)− L(Gr))/SD. The Z scores, provided in the right column of Table 3, show
how far the frustration index is from the values obtained through random allocation
of signs to the fixed underlying structure (unsigned graph). Negative values of the Z
score can be interpreted as a lower level of frustration than the value resulting from
a random allocation of signs. G1, G2, G5, G6, and G7 exhibit a level of frustration
lower than what is expected by chance, while the opposite is observed for G8 and
G9. The numerical results for G3 and G4 do not allow a conclusive interpretation.

https://figshare.com/articles/Signed_networks_from_sociology_and_political_science_biology_international_relations_finance_and_computational_chemistry/5700832

Computing the Line Index of Balance 79

(a)

(c) (d)

(b)

Fig. 3 The frustrated edges represented by dotdash lines for four small signed networks inferred
from the sociology datasets. (a) Highland tribes network (G1), a signed network of 16 tribes of
the Eastern Central Highlands of New Guinea [57]. Minimum deletion set comprises 7 negative
edges. (b) Monastery interactions network (G2) of 18 New England novitiates inferred from
the integration of all positive and negative relationships [59]. Minimum deletion set comprises
2 positive and 3 negative edges. (c) Fraternity preferences network (G3) of 17 boys living in
a pseudo-dormitory inferred from ranking data of the last week in [52]. Minimum deletion set
comprises 4 negative edges. (d) College preferences network (G4) of 17 girls at an Eastern college
inferred from ranking data of house B in [44]. Minimum deletion set comprises 3 positive and 3
negative edges

Various performance measures for the 0/1 linear model (11) coupled with the
additional constraints for solving G1–G9 are provided in Table 4.

We compare the quality and solve time of our exact algorithm with that of recent
heuristics and approximations implemented on the datasets. Table 5 provides a
comparison of the 0/1 linear model (11) with other methods in the literature.

Hüffner et al. have previously investigated frustration in G6–G9 suggesting a data
reduction scheme and (an attempt at) an exact algorithm [37]. Their suggested data
reduction algorithm can take more than 5 h for G6, more than 15 h for G8, and more
than 1 day for G9 if the parameters are not perfectly tuned [37]. Their algorithm
coupled with their data reduction scheme and heuristic speed-ups does not converge

80 S. Aref et al.

Table 4 Performance measures of Gurobi solving the 0/1 linear model in (11) for the real
networks

Graph L(G) Root node objective B&B nodes Solve time (s)

G1 7 4.5 0 0.03

G2 5 0 0 0.04

G3 4 2.5 0 0.02

G4 6 2 0 0.04

G5 331 36.5 0 78.67

G6 41 3 0 0.28

G7 371 21.5 1085 27.22

G8 193 17 457 0.72

G9 332 14.5 1061 1.92

Table 5 Comparison of the solution and solve time against models in the literature

Graph Hüffner et al. [37] Iacono et al. [38] 0/1 linear model

Solution G6 41 41 41

G7 Not converged [365, 371] 371

G8 210 [186, 193] 193

G9 374 [302, 332] 332

Time G6 60 s A few minutes 0.28 s

G7 Not converged A few minutes 27.22 s

G8 6480 s A few minutes 0.72 s

G9 60 s A few minutes 1.92 s

for G7 [37]. In addition to these solve time and convergence issues, their algorithm
provides L(G8) = 210, L(G9) = 374, both of which are incorrect based on our
results.

Iacono et al. have investigated frustration in G6–G9 [38]. Their heuristic
algorithm provides upper and lower bounds for G6–G9 with a 100%, 98.38%,
96.37% and 90.96% ratio of lower to upper bound, respectively. Regarding solve
time, they have only mentioned that their heuristic requires a fairly limited amount
of time (a few minutes on an ordinary PC).

While data reduction schemes [37] take up to 1 day for these datasets and
heuristic algorithms [38] only provide bounds with up to 9% gap from optimality,
our 0/1 linear model solves each of the 9 datasets to optimality in less than a minute.

7 Conclusion and Future Research

This study focuses on frustration index as a measure of balance in signed networks
and the findings may well have a bearing on the applications of the line index
of balance in the other disciplines [4]. The present study has suggested a novel

Computing the Line Index of Balance 81

method for computing a measure of structural balance that can be used for analysing
dynamics of signed networks. It contributes additional evidence that suggests signed
social networks and biological gene regulatory networks exhibit a relatively low
level of frustration (compared to the expectation when allocating signs at random).
On similar lines of research, we have undertaken a follow-up study with more focus
on operations research aspects of this topic [6].

This study has a number of important implications for future investigation. Point
index of balance is a similarly defined measure of balance based on removing
minimum nodes to achieve balance [32]. The computations of this measure may
also be considered as a niche point to be explored using exact and heuristic
computational methods [26]. The optimisation model introduced can make network
dynamics models more consistent with the theory of structural balance [3]. Many
sign change simulation models that allow one change at a time use the number of
balanced triads in the network as a criterion for transitioning towards balance. These
models may result in stable states that are not balanced, like jammed states and
glassy states [48]. This contradicts not only the instability of unbalanced states, but
also the fundamental assumption that networks gradually move towards balance.
Deploying decrease in the frustration index as the criterion, the above-mentioned
states might be avoided resulting in a more realistic simulation of signed network
dynamics that is consistent with structural balance theory and its assumptions.

Acknowledgements The authors are grateful for the extremely valuable comments of the
anonymous reviewers that have prevented incorrect attributions in the literature review section
and helped improve the discussions in this chapter.

References

1. R.P. Abelson, M.J. Rosenberg, Symbolic psycho-logic: a model of attitudinal cognition. Behav.
Sci. 3(1), 1–13 (1958). https://doi.org/10.1002/bs.3830030102

2. J. Akiyama, D. Avis, V. Chvàtal, H. Era, Balancing signed graphs. Discret. Appl. Math. 3(4),
227–233 (1981). https://doi.org/10.1016/0166-218X(81)90001-9

3. T. Antal, P.L. Krapivsky, S. Redner, Dynamics of social balance on networks. Phys. Rev. E
72(3), 036121 (2005)

4. S. Aref, M.C. Wilson, Balance and frustration in signed networks. J. Complex Networks (2018,
in press)

5. S. Aref, Signed networks from sociology and political science, systems biology, international
relations, finance, and computational chemistry (2017). https://doi.org/10.6084/m9.figshare.
5700832.v2

6. S. Aref, A.J. Mason, M.C. Wilson, An exact method for computing the frustration index in
signed networks using binary programming. arXiv:1611.09030 (2017)

7. S. Aref, M.C. Wilson, Measuring partial balance in signed networks. J. Complex Networks
(2018, in press). https://doi.org/10.1093/comnet/cnx044

8. F. Barahona, On the computational complexity of Ising spin glass models. J. Phys. A Math.
Gen. 15(10), 3241 (1982)

9. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001)

https://doi.org/10.1002/bs.3830030102
https://doi.org/10.1016/0166-218X(81)90001-9
https://doi.org/10.6084/m9.figshare.5700832.v2
https://doi.org/10.6084/m9.figshare.5700832.v2
https://doi.org/10.1093/comnet/cnx044

82 S. Aref et al.

10. J. Bramsen, Further algebraic results in the theory of balance. J. Math. Sociol. 26(4), 309–319
(2002)

11. D. Cartwright, F. Harary, Structural balance: a generalization of Heider’s theory. Psychol. Rev.
63(5), 277–293 (1956)

12. M.C. Costanzo, M.E. Crawford, J.E. Hirschman, J.E. Kranz, P. Olsen, L.S. Robertson,
M.S. Skrzypek, B.R. Braun, K.L. Hopkins, P. Kondu, C. Lengieza, J.E. Lew-Smith, M.
Tillberg, J.I. Garrels: YPD™, PombePD™ and WormPD™: model organism volumes of the
BioKnowledge™ Library, an integrated resource for protein information. Nucleic Acids Res.
29(1), 75–79 (2001). https://doi.org/10.1093/nar/29.1.75

13. B. DasGupta, G.A. Enciso, E. Sontag, Y. Zhang, Algorithmic and complexity results for
decompositions of biological networks into monotone subsystems. Biosystems 90(1), 161–178
(2007)

14. T. Dewenter, A.K. Hartmann, Exact ground states of one-dimensional long-range random-field
Ising magnets. Phys. Rev. B 90(1), 014207 (2014)

15. P. Doreian, A. Mrvar, Structural balance and signed international relations. J. Soc. Struct. 16,
1–49 (2015)

16. T. Došlić, D. Vukičević, Computing the bipartite edge frustration of fullerene graphs. Discret.
Appl. Math. 155(10), 1294–1301 (2007). https://doi.org/10.1016/j.dam.2006.12.003

17. P. Esmailian, S.E. Abtahi, M. Jalili, Mesoscopic analysis of online social networks: the role of
negative ties. Phys. Rev. E 90(4), 042817 (2014)

18. E. Estrada, M. Benzi, Walk-based measure of balance in signed networks: detecting lack of
balance in social networks. Phys. Rev. E 90(4), 1–10 (2014)

19. G. Facchetti, G. Iacono, C. Altafini, Computing global structural balance in large-scale signed
social networks. Proc. Natl. Acad. Sci. 108(52), 20953–20958 (2011). https://doi.org/10.1073/
pnas.1109521108

20. G. Facchetti, G. Iacono, C. Altafini, Exploring the low-energy landscape of large-scale signed
social networks. Phys. Rev. E 86(3), 036116 (2012)

21. C. Flament, Applications of Graph Theory to Group Structure (Prentice-Hall, Upper Saddle
River, 1963)

22. C. Flament, Équilibre d’un graphe: quelques résultats algébriques. Math. Sci. Hum. 8, 5–10
(1970)

23. J.H. Fowler, Legislative cosponsorship networks in the US House and Senate. Soc. Networks
28(4), 454–465 (2006)

24. N.G. Fytas, P.E. Theodorakis, A.K. Hartmann, Revisiting the scaling of the specific heat of the
three-dimensional random-field Ising model. Eur. Phys. J. B 89(9), 200 (2016)

25. Gurobi Optimization Inc.: Gurobi optimizer reference manual, Houston, TX (2018). www.
gurobi.com/documentation/8.0/refman/index.html. Accessed 1 May 2015

26. G. Gutin, D. Karapetyan, I. Razgon, Fixed-parameter algorithms in analysis of heuristics for
extracting networks in linear programs, in International Workshop on Parameterized and Exact
Computation (Springer, Berlin, 2009), pp. 222–233

27. F. Hadlock, Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput.
4(3), 221–225 (1975). https://dx.doi.org/10.1137/0204019

28. P.L. Hammer, Pseudo-boolean remarks on balanced graphs, in Numerische Methoden bei
Optimierungsaufgaben Band 3 (Springer, Basel, 1977), pp. 69–78

29. P. Hansen, Labelling algorithms for balance in signed graphs, in Problèmes Combinatoires et
Théorie des Graphes (Éditions du Centre national de la recherche scientifique, Paris, 1978),
pp. 215–217

30. F. Harary, On the notion of balance of a signed graph. Mich. Math. J. 2(2), 143–146 (1953)
31. F. Harary: Structural duality. Behav. Sci. 2(4), 255–265 (1957)
32. F. Harary, On the measurement of structural balance. Behav. Sci. 4(4), 316–323 (1959). https://

doi.org/10.1002/bs.3830040405
33. F. Harary, J.A. Kabell, A simple algorithm to detect balance in signed graphs. Math. Soc. Sci.

1(1), 131–136 (1980)

https://doi.org/10.1093/nar/29.1.75
https://doi.org/10.1016/j.dam.2006.12.003
https://doi.org/10.1073/pnas.1109521108
https://doi.org/10.1073/pnas.1109521108
www.gurobi.com/documentation/8.0/refman/index.html
www.gurobi.com/documentation/8.0/refman/index.html
https://dx.doi.org/10.1137/0204019
https://doi.org/10.1002/bs.3830040405
https://doi.org/10.1002/bs.3830040405

Computing the Line Index of Balance 83

34. F. Harary, M.H. Lim, D.C. Wunsch, Signed graphs for portfolio analysis in risk management.
IMA J. Manag. Math. 13(3), 201–210 (2002). https://doi.org/10.1093/imaman/13.3.201

35. A.K. Hartmann, Ground states of two-dimensional Ising spin glasses: fast algorithms, recent
developments and a ferromagnet-spin glass mixture. J. Stat. Phys. 144(3), 519–540 (2011)

36. F. Heider, Social perception and phenomenal causality. Psychol. Rev. 51(6), 358–378 (1944)
37. F. Hüffner, N. Betzler, R. Niedermeier, Separator-based data reduction for signed graph

balancing. J. Comb. Optim. 20(4), 335–360 (2010)
38. G. Iacono, F. Ramezani, N. Soranzo, C. Altafini, Determining the distance to monotonicity of

a biological network: a graph-theoretical approach. IET Syst. Biol. 4(3), 223–235 (2010)
39. P.W. Kasteleyn, Dimer statistics and phase transitions. J. Math. Phys. 4(2), 287–293 (1963).

https://doi.org/10.1063/1.1703953
40. O. Katai, S. Iwai, Studies on the balancing, the minimal balancing, and the minimum balancing

processes for social groups with planar and nonplanar graph structures. J. Math. Psychol. 18(2),
140–176 (1978)

41. E. Klotz, A.M. Newman, Practical guidelines for solving difficult mixed integer linear
programs. Surv. Oper. Res. Manag. Sci. 18(1–2), 18–32 (2013). http://dx.doi.org/10.1016/j.
sorms.2012.12.001

42. J. Kunegis, Applications of structural balance in signed social networks. arXiv:1402.6865
[physics] (2014)

43. J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E.W. De Luca, S. Albayrak, Spectral
analysis of signed graphs for clustering, prediction and visualization, in Proceedings of
the 2010 SIAM International Conference on Data Mining, ed. by S. Parthasarathy, B. Liu,
B. Goethals, J. Pei, C. Kamath, vol. 10 (Society for Industrial and Applied Mathematics,
Philadelphia, 2010), pp. 559–570. https://doi.org/10.1137/1.9781611972801.49

44. T.B. Lemann, R.L. Solomon, Group characteristics as revealed in sociometric patterns and
personality ratings. Sociometry 15, 7–90 (1952)

45. J. Leskovec, D. Huttenlocher, J. Kleinberg, Signed networks in social media, in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2010),
pp. 1361–1370

46. L. Ma, M. Gong, H. Du, B. Shen, L. Jiao, A memetic algorithm for computing and transforming
structural balance in signed networks. Knowl.-Based Syst. 85, 196–209 (2015). http://dx.doi.
org/10.1016/j.knosys.2015.05.006

47. M. Manssen, A.K. Hartmann, Matrix-power energy-landscape transformation for finding NP-
hard spin-glass ground states. J. Glob. Optim. 61(1), 183–192 (2015)

48. S.A. Marvel, S.H. Strogatz, J.M. Kleinberg, Energy landscape of social balance. Phys. Rev.
Lett. 103(19), 198701 (2009)

49. O. Melchert, A. Hartmann, Information-theoretic approach to ground-state phase transitions
for two-and three-dimensional frustrated spin systems. Phys. Rev. E 87(2), 022107 (2013)

50. M. Mézard, G. Parisi, The Bethe lattice spin glass revisited. Eur. Phys. J. B Condens. Matter
Complex Syst. 20(2), 217–233 (2001)

51. Z. Neal, The backbone of bipartite projections: inferring relationships from co-authorship, co-
sponsorship, co-attendance and other co-behaviors. Soc. Networks 39, 84–97 (2014)

52. T. Newcomb, The Acquaintance Process (Holt, Rinehart and Winston, New York, 1966).“The
General Nature of Peer Group Influence”, pp. 2–16 in College Peer Groups, ed. by T.M.
Newcomb, E.K. Wilson. (Aldine Publishing Co, Chicago, 1961)

53. R.Z. Norman, F.S. Roberts, A derivation of a measure of relative balance for social structures
and a characterization of extensive ratio systems. J. Math. Psychol. 9(1), 66–91 (1972)

54. K. Oda, T. Kimura, Y. Matsuoka, A. Funahashi, M. Muramatsu, H. Kitano, Molecular
interaction map of a macrophage. AfCS Res. Rep. 2(14), 1–12 (2004)

55. K. Oda, Y. Matsuoka, A. Funahashi, H. Kitano, A comprehensive pathway map of epidermal
growth factor receptor signaling. Mol. Syst. Biol. 1(1) (2005)

56. M. Petersdorf, Einige Bemerkungen über vollständige Bigraphen. Wiss. Z. Techn. Hochsch.
Ilmenau 12, 257–260 (1966)

https://doi.org/10.1093/imaman/13.3.201
https://doi.org/10.1063/1.1703953
http://dx.doi.org/10.1016/j.sorms.2012.12.001
http://dx.doi.org/10.1016/j.sorms.2012.12.001
https://doi.org/10.1137/1.9781611972801.49
http://dx.doi.org/10.1016/j.knosys.2015.05.006
http://dx.doi.org/10.1016/j.knosys.2015.05.006

84 S. Aref et al.

57. K.E. Read, Cultures of the central highlands, New Guinea. Southwest. J. Anthropol. 10(1),
1–43 (1954)

58. H. Salgado, S. Gama-Castro, M. Peralta-Gil, E. Diaz-Peredo, F. Sánchez-Solano, A. Santos-
Zavaleta, I. Martinez-Flores, V. Jiménez-Jacinto, C. Bonavides-Martinez, J.Segura-Salazar,
et al., Regulondb (version 5.0): Escherichia coli k-12 transcriptional regulatory network,
operon organization, and growth conditions. Nucleic Acids Res. 34(suppl 1), D394–D397
(2006)

59. S.F. Sampson, A novitiate in a period of change. An experimental and case study of social
relationships (PhD thesis), Cornell University, Ithaca, 1968

60. D. Sherrington, S. Kirkpatrick, Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796
(1975). https://doi.org/10.1103/PhysRevLett.35.1792

61. E. Terzi, M. Winkler, A spectral algorithm for computing social balance, in Algorithms and
Models for the Web Graph (Springer, Berlin, 2011), pp. 1–13

62. I. Tomescu, Note sur une caractérisation des graphes dont le degré de déséquilibre est maximal.
Math. Sci. Hum. 42, 37–40 (1973)

63. G. Toulouse, Theory of the frustration effect in spin glasses: I. Spin Glass Theory and Beyond:
An Introduction to the Replica Method and Its Applications, vol. 9 (World Scientific, Singapore,
1987), p. 99

64. T. Zaslavsky, Signed graphs: to: T. Zaslavsky, Discrete Applied Mathematics 4 (1982) 47–74
Erratum. Discret. Appl. Math. 5(2), 248 (1983)

65. T. Zaslavsky, Balanced decompositions of a signed graph. J. Comb. Theory Ser. B 43(1), 1–13
(1987)

66. T. Zaslavsky, Matrices in the theory of signed simple graphs, advances in discrete mathematics
and applications, in Proceedings of the International Conference on Discrete Mathematics,
ICDM-2008, vol. 13 (Ramanujan Mathematical Society, Mysore, 2010), pp. 207–229

67. T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas. Electron.
J. Comb. Dynamic Surveys in Combinatorics DS8 (2012)

https://doi.org/10.1103/PhysRevLett.35.1792

Optimal Factorization of Operators
by Operators That Are Consistent
with the Graph’s Structure

Victoria Goncharenko, Yuri Goncharenko, Sergey Lyashko,
and Vladimir Semenov

1 General Factorization Problem Statement

Consider a MIMD-structure multiprocessor computer system (CS) with local
interactions. We interpret it as an oriented graph G. The vertices of the graph
are universal machines, and the arcs are one-way communication channels. If the
i-th machine can transmit the message to the machine with the number j , then
the graph has an arc that starts at the vertex with the number i and ends at the
vertex with the number j . If the machine has local memory, then the corresponding
vertex of the graph has a loop. We call the graph G the graph of inter-machine
communication CS.

We denote by the symbol Θi the set of numbers of those vertices of the graph
from which the arc leads to the i-th vertex. In other words, Θi is the set of numbers
of vertices of the stellar approach graph defined by the vertex with the number i.

Let Xi be the set of states of the i-th machine, then vector x̄ = (x, x, . . . , x),
where x ∈ Xi (Xi describes the state of the system). We denote by the symbol D

the set of possible states of CS (D ⊆ ⊕n
i=1Xi). We distinguish the moments of state

changes in the functioning of the system. It is natural to assume that the subsequent
state of the machine with the number i is a function of its own previous state and
the state of the machines directly connected to it, i.e., machines with numbers from
Θi . Then the subsequent state of the system will be a vector of the form

ȳ = F(x̄) = (f1(x̄), . . . , fi(x̄), . . . , fn(x̄)) , (1)

V. Goncharenko · Y. Goncharenko · S. Lyashko · V. Semenov (�)
Department of Computational Mathematics, Taras Shevchenko Kiev National University,
Kiev, Ukraine
e-mail: yuragoko@mail.ru

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_4

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_4&domain=pdf
mailto:yuragoko@mail.ru
https://doi.org/10.1007/978-3-319-94830-0_4

86 V. Goncharenko et al.

where operator F takes the set D into itself, and it’s coordinate functions fi depend
only on the set of those coordinates of the state vector whose numbers belong to Θi .

Definition 1 ([3]) The operator of the form (1) called consistent with the graph’s
structure G (CGS operator).

The functioning of the system can be represented as a sequence of states

x̄(j) = (
Fj ◦ Fj−1 ◦ Fj−2 ◦ . . . F0

)
(x̄(0)), j ∈ N, (2)

where Fi is the CGS operator; x(0), x(j) are vectors of the initial and subsequent
states of the system. Operator F = Fj ◦ Fj−1 ◦ Fj−2 ◦ . . . ◦ F0, that takes x̄(0)

into x̄(j) is not necessarily the CGS operator. The representation of operator F

in the form of composition of operators is called the factorization. The number of
mappings in a factorization chain is called its length.

Remark 1 This model of distributed computing was considered in the early
work [4].

Definition 2 ([2]) We denote as L(D) some set of operators that take the set of
states D into itself. We call the computational system universal in class L(D), if
any operator from L(D) can be represented as the composition of finite number
of operators that are consistent with the structure of graph of inter-machine
communication G.

Suppose that we want to realize the action of operator F ∈ L(D) (ȳ = F(x̄),
where x̄, ȳ ∈ D) on the CS that is universal in class L(D). That means that we need
F to be factorized into the chain (2) of successive CGS operators. Their sequential
realization on the CS transforms the system from the state x̄ to state ȳ. The time
spent by the system for the transition from the state x̄ to state y is determined by
the length of the corresponding chain. Thus, the productivity of the system in the
class L(D) is determined by the length of the factorization chains. There are many
ways to factorize the operator. The most effective is the one that leads to a chain of
minimum length.

The proof of the universality of CS in the corresponding class of mappings is the
content of the basic parallelization theorem for a particular CS. The construction
of the factorization method leading to a factorization chain of minimal length will
be called the main problem of mapping the algorithm to the structure of a given
computing system.

Definition 3 ([2]) The factorization length of operator F ∈ L(D) of a CGS
operator is the smallest possible length of a factorization chain

min
σ(F)
{ j : F = Fj ◦ Fj−1 ◦ Fj−1 ◦ . . . ◦ F0},

Optimal Factorization of Operators 87

where F is CGS operator, σ(F) is the set of all possible approaches of operator
factorization. The depth of factorization for the set L(D) is

max
F∈L(D)

{

min
σ(F)
{ j : F = Fj ◦ Fj−1 ◦ Fj−1 ◦ . . . ◦ F0}

}

.

The factorization length of a particular operator F characterizes the highest
productivity that CS can achieve by executing the action ȳ = F(x̄). The depth
of the factorization serves for upper bounds and is characterized by the “worst”
implementation of the operator from L(D).

At a fixed speed of the physical components of the system, the increase
in the productivity of CS is achieved by changing the graph of inter-machine
communications and the class of operators L(D). In other words, by configuring
the CS architecture for a class of tasks, or by choosing the class of tasks that are
optimally implemented on the CS of this architecture, or both.

We can improve the calculus of CGS operators by endowing D and L(D) with
the properties of specific mathematical structures. Below we consider an important
case for numerical analysis when the set of states of each machine is a set of real
numbers, and the set of states CS is the arithmetic vector space of column vectors
Rn (Cn) .

2 Factorization of Linear Operators

Let G be a finite oriented graph containing n vertices with a loop at each vertex (arcs
and loops are single), A is its adjacency matrix. Graph G is strongly connected, if
any ordered pair of its vertices is connected by an oriented path.

Suppose also that Rn is an n-dimensional arithmetic vector space over the field of
real numbers. Consider the space of linear operators acting in Rn . Further, a linear
operator in Rn and its matrix will be denoted by one letter.

We provide an order relation on the set of square matrices with n× n dimension.
We say that the matrix B = {bi,j } precedes the matrix C = {ci,j }, if for all i,
j = 1, n from the fact that ci,j = 0 it follows that bi,j = 0 (denoted by B ≺ C).

A linear operator with matrix B is consistent with the structure of graph G if
and only if B ≺ AT . We note that adding a diagonal matrix does not change the
consistency.

Theorem 1 (The Factorization Criterion) Every linear invertible operator in Rn

can be represented as a composition of operators compatible with the structure of
the graph G with a loop at each vertex, if and only if G is strongly connected.

We preface the proof by two lemmas.

Lemma 1 Every non-singular square matrix can be represented as a product of
matrices of elementary transformations by a diagonal matrix.

88 V. Goncharenko et al.

Lemma 2 Suppose that in a finite oriented graph G the vertices vi and vj are not
connected, then there exists a numbering of the vertices of the graph G, that its
adjacency matrix has a block triangular form

(
A1,1 A1,2

02,1 A2,2

)

(3)

where A1,1, A2,2 are square matrices of dimension p × p and q × q, respectively,
p+q = n, A1,2 is matrix of dimension p×q, 02,1 is zero matrix of dimension q×p.

Proof Consider two cases. Let vi be an isolated vertex. The set of vertices of the
graph V \ vi is numbered from 1 to n− 1, and we assign the number n to the vertex
vi . The matrix of a graph G with such a numbering has a block-diagonal form,
which satisfies the hypothesis of the theorem.

Let vi be a non-isolated vertex. We denote by V (vi) the set of vertices such
that the vertex vi is connected with them by outgoing ways. The set V \ V (vi) is
nonempty since by the condition vi ∈ V \ V (vi). Renumber the vertices from the
set V \V (vi) by numbers from 1 to p and vertices from set V (vi) by numbers from
p + 1 to n. With such a numbering of vertices, the adjacency matrix of the oriented
graph G has a form (3).

Since the lower (upper) block-triangular matrices form a subring in the ring of
square matrices, it follows that filled non-singular matrix cannot be represented in
the product of the product of the upper (lower) block-triangular matrices. We return
to the proof of the Theorem 1.

Proof Sufficiency By the hypothesis of the theorem, the adjacency matrix A of the
graph G has a nonzero diagonal. Hence the diagonal matrix is always consistent with
the structure of the graph G. By Lemma 1, it suffices to show that any elementary
transformation can be represented as a product of elementary transformations
consistent with the structure of the graph G. Elementary transformation when the
i-th row of the matrix multiplied by the number λ is added to the j -th row of the
matrix and denoted by

Tij (λ) = E +Λij (λ),

where E is the identity matrix, Λij (λ) is the matrix where the element with the
index ij is equal to λ, and all other elements are equal to zero. We note that the
product Λik(a) ·Λlj (b) is equal to the zero matrix for k
= l and is equal to Λij (ab)

for l = k. This implies that the matrices Tij (λ) and Tij (−λ) are mutually inverse.
We carry out the proof by mathematical induction on the length of the path.

Suppose that the vertex vi is connected with the vertex vj , then the elementary
transformation Tij (λ) is consistent with the structure of the graph G. By the
induction hypothesis, if the vertices vi and vk are connected by a path of length
m, then the elementary transformations Tik(λ) can be decomposed into a product of
matrices consistent with the structure of the graph G.

Optimal Factorization of Operators 89

Let vertices vi and vj be connected by a path of length m+ 1 and the last arc of
the path connects a pair of vertices (vk, vj). A direct calculation shows that

Tij (λ) = Tik(−1)Tik(λ)Tkj (1)Tkj (−λ),

which was to be shown.

Necessity From the opposite. Suppose that every invertible matrix can be
represented as a product of matrices compatible with the structure graph G, but in
the graph there are vertices vi and vj not connected by any path. By Lemma 2, there
exists a numbering of the vertices of the graph such that its adjacency matrix has
a block-triangular structure. Matrices consistent with the structure of such a graph
form a subring of block-triangular matrices. This subring is closed with respect to
products, and so it is impossible to be a non-singular filled matrix. The theorem is
proved.

3 The Upper Bound of the Factorization Depth

The proof of the Theorem 1 is constructive and allows to obtain an upper bound for
the depth of factorization.

Theorem 2 Let d be the diameter of a strongly connected graph G with a loop at
each vertex, and α the factorization depth of the set of linear invertible operators in
Rn by operators consistent with the structure of G. Then we have the estimation

α < 4dn(n− 1)+ 1. (4)

Proof Since all elementary transformations are invertible, to restore the matrix from
its diagonal matrix, it suffices to have n(n− 1) elementary transformations, each of
which can be factored by at most 4d elementary transformations. We obtain the
estimate (4).

The estimate (4) is rough.
Hypothesis. The estimate α ≤ d holds.

Consider the problem of solving a system of equations of the form Bx̄ = c̄,
where B is a matrix consistent with the structure of the graph G. Its solution
x̄ = B−1c̄ requires the inversion of the matrix B−1, but the inverse matrix is
not consistent with the structure of the graph. Then arises the question about the
algorithm and the length of the factorization of non-singular matrices B−1.

Theorem 3 ([1]) For any non-singular matrix B consistent with the structure of the
graph, the factorization length of the matrix B−1 does not exceed n− 1.

Proof Let B be a square matrix of size n×n. Consider its characteristic polynomial

Pn(λ) = det(λE − B) = λn + a1λ
n−1 + a2λ

n−2 + . . .+ an−1λ+ an.

90 V. Goncharenko et al.

If B is a non-singular matrix, then the free term of the characteristic polynomial

an = Pn(0) = det(−B)

is nonzero. By the Hamilton-Kelly theorem, the characteristic polynomial Pλ is
annihilating for the matrix B, so

Bn + a1B
n−1 + a2B

n−2 + . . .+ an−1B + anE = 0.

We represent the last term of this matrix equality in the form anE = anB
−1B, then

Bn + a1B
n−1 + a2B

n−2 + . . .+ an−1B = −anB
−1B.

Multiplying on the right by B−1 and divide on −an we get

B−1 = −a−1
n

(
Bn−1 + a1B

n−2 + . . .+ an−1E
)

.

Thus, the substitution of the matrix B in the polynomial (Pn(λ)− an) λ−1 gives the
adjoint matrix. Denote it by

P̃n−1(λ) = λn−1 + a1λ
n−2 + a2λ

n−3 + . . .+ an−1λ
n + an−1.

Let its roots (possibly complex) μ1,. . . , μn−1, then

P̃n−1(λ) = (λ− μn−1)(λ− μn−2)(λ− μn−3) . . . (λ− μ1).

So

B−1 = −a−1
n (B − μn−1E)(B − μn−2E) . . . (B − μ1E).

Since the matrix (B − μn−1E) ≺ B, it follows that the matrix B−1 is represented
as a product of n − 1 matrices consistent with the structure of the graph G. The
theorem is proved.

Thus, for the set of matrices of the inverse of the structure of the graph, the depth
of factorization is n − 1. Estimation is not optimal. For a complete graph, every
matrix is consistent with it. The proposed factorization method yields n− 1 factors.
This estimate is exact because you can specify the graph and the matrix on which
it is achieved. Indeed, let the graph G contains n vertices V = {v1, v2, v3, . . . , vn}
and 2(n − 1) arcs {(v1, v2), (v2, v1), (v2, v3), (v3, v2), . . . , (vn−1, vn), (vn, vn−1)}.
Its adjacency matrix is 3-diagonal. The elementary transformation matrix Tnn(1) is
factorized by a chain containing n− 1 factors, but not less than n− 1.

Optimal Factorization of Operators 91

4 Conclusion

The notion of an operator that is consistent with the structure of a graph and the
computational system that is universal in the class of operators are proposed. The
model fully corresponds to the processes occurring in modern distributed computing
systems. The preliminary versions of this model of distributed computations were
considered in the early paper [4]. The problem of the factorization of operators
by operators consistent with the structure of a graph is formulated. The criterion
for the factorization of a linear invertible operator acting in a finite-dimensional
linear space is proved. Upper estimations of the factorization depth of the class
of linear invertible operators by linear operators compatible with the structure of
the graph are obtained. The formulation of the problem of factorization and the
solution of the problem of its existence are new. In our opinion, they have important
practical applications for the construction of algorithms for parallel and distributed
computing systems. We note that the problem of constructing an algorithm for
optimal factorization for a given graph of any operator from a given class remains
unresolved, even in the linear case.

An interesting problem is the construction of optimal factorizations of linear
operators for concrete graphs, for example, rectangular or hexagonal lattices. This
issue we will consider in one of the future works.

Acknowledgements This research is supported by the Ministry of Education and Science of
Ukraine (project 0116U004777). Vladimir Semenov thanks the State Fund for Fundamental
Researches of Ukraine for support.

References

1. V. Yu. Goncharenko, Factorization of inverse matrices by sparse matrices. J. Comput. Appl.
Math. 1(111), 94–100 (2013)

2. V. Yu. Goncharenko, The factorization of mapping and parallelization of algorithms. Rep. Natl.
Acad. Sci. Ukr., no. 2, 38–40 (1995)

3. V. Yu. Goncharenko, Some properties of operators that are consistent with the graph structure,
in Operations Research and ACS, vol. 23, (KSU, Kiev, 1984), pp. 73–81

4. V. Yu. Goncharenko, B.B. Nesterenko, Asynchronous principles in parallel computing, part II.
WP of Institute of Mathematics of the NASU, no. 82–38. Kiev, 1982

Branching in Digraphs with Many and
Few Leaves: Structural and Algorithmic
Results

Jørgen Bang-Jensen and Gregory Gutin

1 Introduction

This is a survey on out-branchings with minimum and maximum number of leaves,
which updates the previous one [5].1 The reader will see, in what follows, that out-
branchings with minimum and maximum number of leaves are of great relevance to
several areas of graph theory and algorithms.

A subgraph T of a digraph D is called an out-tree if T is an oriented tree with
just one vertex s of in-degree zero. The vertex s is the root of T . If an out-tree
B is a spanning subgraph of D, B is called an out-branching. A vertex x of an
out-branching B is called a leaf if d+B (x) = 0. All other vertices of B are called
internal vertices. Figure 1 shows a digraph D and, respectively, out-branchings
with minimum and maximum number of leaves of D.

The problems of finding an out-branching with extremal number of leaves are
of interest in practical applications; e.g., the problem of finding an out-branching
with minimum number of leaves was considered in the US patent [20] by Demers
and Downing, where its application to the area of database systems was described.

1We removed results on lower bounds on the maximum number of leaves in an out-branching as
it does not seem to be of interest any longer, and added new structural and algorithmic results,
especially on fixed-parameter tractable algorithms.

J. Bang-Jensen
IMADA, University of Southern Denmark, Odense M, Denmark
e-mail: jbj@imada.sdu.dk

G. Gutin (�)
Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, UK
e-mail: gutin@cs.rhul.ac.uk

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_5&domain=pdf
mailto:jbj@imada.sdu.dk
mailto:gutin@cs.rhul.ac.uk
https://doi.org/10.1007/978-3-319-94830-0_5

94 J. Bang-Jensen and G. Gutin

(c) R(a) D (b) Q

Fig. 1 A digraph D and its out-branchings with minimum and maximum number of leaves (Q
and R, respectively). (a) D, (b) Q, (c) R

Also, structural and algorithmic results on out-branchings with extremal number of
leaves can be used to solve problems not directly related to the topic. For example,
see the proof of Theorem 9.

For general digraphs, the problems of finding an out-branching with mini-
mum/maximum number of leaves are N P-hard: the problem of verifying the
existence of an out-branching with just one leaf is the same as the hamiltonian
path problem and the problem of finding a spanning tree with maximum number of
leaves in an undirected graph is N P-hard [27] (we may transform an undirected
graph to the corresponding directed graph by replacing each edge xy by two arcs
xy and yx). Thus, it is natural to consider parameterized complexities of the two
problems. Let k be a parameter. The problem of checking whether a digraph D

has an out-branching with at least k leaves (k internal vertices, respectively) is
fixed-parameter tractable (FPT) which was proved by Bonsma and Dorn [14]
(by Gutin et al. [28], respectively).2 This means that each of the two parameterized
problems can be solved by an algorithm of running time O(f (k) · nO(1)), where
f (k) is a computable function dependent on k but not on n and n is the order of D.
Such an algorithm is called an FPT algorithm; clearly, FPT algorithms generalize
polynomial time algorithms, for the polynomial-time algorithms f (k) can be set
to a constant. Often in the parameterized algorithms and complexity literature, the
running time O(f (k) · nO(1)) is written as O∗(f (k)), where O∗ hides polynomial
factors.3 We would like to note, in passing, that the problem of checking whether a
digraph D has an out-tree with at least k leaves is also FPT [1].

Note that restricted to acyclic digraphs the problems of finding an out-branching
with minimum and maximum number of leaves are of different complexities
(provided P
= N P): while the former is polynomial time solvable (see
Section 3), the latter is N P-hard (see Section 4).

2The algorithms of [14] and [28] have been significantly improved and we discuss the improve-
ments in the survey.
3For an excellent introduction to the area of parameterized algorithms and complexity, see the
monograph [16] by Cygan et al.

Branching in Digraphs with Many and Few Leaves: Structural and Algorithmic Results 95

Our survey is organized as follows. In the next section, we will provide additional
terminology and notation. Sections 3 and 4 are devoted to out-branchings with
minimum and maximum number of leaves, respectively.

In this survey, we do not consider approximation or exact algorithms (with one
exception in Section 4). Also, we do not consider parameterized kernelization,
where some important notions and results on out-branchings with maximum number
of leaves were obtained in [10]. Binkele-Raible et al. [10] proved that while the
problem of deciding whether a given digraph has an out-branching rooted at a given
vertex admits a polynomial-size kernel, the same problem without fixed root does
not admit such a kernel subject to a well-known complexity theory hypothesis.
The negative result was the first of its kind for a natural problem and led to the
introduction of so-called Turing kernels.4

2 Terminology, Notation, and Preliminaries

For an out-branching B, let L(B) denote the set of leaves of B. For a digraph D

containing an out-branching, let �min(D) and �max(D) denote the minimum and
maximum number of leaves in an out-branching of D. If D has no out-branching,
we can write �min(D) = 0 and �max(D) = 0.

For a digraph D, α(D) denotes the independence number of D, i.e., the
maximum size of a vertex set X of D such that there is no arc between any pair
of vertices of X. A vertex x of a digraph D is called a source, if the in-degree of
x equals zero. The path covering number pc(D) of a digraph D is the minimum
number of disjoint directed paths needed to cover V (D). A digraph D is called
transitive if the existence of arcs xy, yz implies the existence of the arc xz, where
x, y, and z are distinct vertices of D. The underlying (undirected) graph of a digraph
D will be denoted by UG(D).

For more terminology and notation on digraphs, see Chapter 1 of [4].
In the study of out-branchings, the first question is when a digraph has an out-

branching. This question is answered in the following well-known proposition, see,
e.g., [4].

Proposition 1 A digraph D has an out-branching if and only if D has only one
strongly connected component without incoming arcs.

Since the strongly connected components of D can be computed in time O(n+
m), where n and m are the number of vertices and arcs in D, respectively, one can
decide whether a digraph has an out-branching in linear time. The same time is
sufficient to decide whether D has an out-branching rooted at a particular vertex
r: just apply a breath-first search from r and check whether all vertices could be
reached from r .

4For more information of the area of parameterized kernels, see [16].

96 J. Bang-Jensen and G. Gutin

Later on, we will consider the question of whether a digraph contains a k-leaf
out-branching, i.e. an out-branching with at least k-leaves. The following simple
proposition helps us to answer this question. Here, a k-leaf out-tree is an out-tree
with at least k leaves.

Proposition 2 ([33]) If a digraph D contains an out-branching rooted at a vertex
r , then any k-leaf out-tree rooted at r can be extended to a k-leaf out-branching
rooted at r .

3 Minimum Leaf Out-Branchings

In this subsection, we give upper bounds on �min(D) for general and strongly
connected digraphs D (Section 3.1), a polynomial algorithm for computing �min(D)

for acyclic digraphs D (Section 3.2), and discuss FPT algorithms for the problem
to decide whether a digraph has an out-branching with at least k internal vertices
(Section 3.3).

3.1 Upper Bounds on �min(D)

Las Vergnas [34] proved the following upper bound on �min(D) for general
digraphs.

Theorem 1 (Las Vergnas’ Theorem) For a digraph D, we have �min(D) ≤ α(D).

We will prove the following proposition which immediately implies the theorem.

Proposition 3 ([34]) Let B be an out-branching of D with more than α(D) leaves.
Then D contains an out-branching B ′ such that L(B ′) is a proper subset of L(B).

Proof We will prove this claim by induction on the number n of vertices in D.

For n ≤ 2 the result holds; thus, we may assume that n ≥ 3 and consider an out-
branching B of D with |L(B)| > α(D). Clearly, D has an arc xy such that x, y

are leaves of B. If the in-neighbor p of y in B is of out-degree at least 2, then
L(B ′) ⊂ L(B), where B ′ = B + xy − py. So, we may assume that d+B (p) = 1.

Observe that α(D − y) ≤ α(D) < |L(B)| = |L(B − y)|. Hence by the induction
hypothesis, D−y has an out-branching B ′′ such that L(B ′′) ⊂ L(B−y). Notice that
L(B−y) = L(B)∪{p}\{y}. If p ∈ L(B ′′), then observe that L(B ′′ +py) ⊂ L(B).
Otherwise, L(B ′′ + xy) ⊆ L(B) \ {x} ⊂ L(B). ��

The bound in Las Vergnas’ theorem is tight as there are many digraphs D for
which �min(D) = α(D), see, e.g., Theorem 3. It would be interesting to find other
tight upper bounds on �min(D).

Branching in Digraphs with Many and Few Leaves: Structural and Algorithmic Results 97

A digraph has a hamiltonian path if and only if it has an out-branching with only
one leaf, so the problem of deciding whether a digraph has an out-branching with
at most k leaves is N P-complete for each fixed natural number k. Gutin et al.
[28, 29] proved that the problem of checking whether a digraph D of order n has an
out-branching with at most n − k leaves (or, equivalently, at least k non-leaves) is
fixed-parameter tractable.

Below we show that the well-known Gallai-Milgram theorem (Theorem 2) is
a simple consequence of Las Vergnas’ theorem. To do this we need the following
simple result.

Lemma 1 ([29]) Let D = (V ,A) be a digraph and let D̂ be the digraph obtained
from D by adding a new vertex s and all possible arcs from s to V . Then pc(D) =
�min(D̂).

Proof Since a collection of p disjoint directed paths in D covering V (D) corre-
sponds to an out-branching of D̂ with p leaves, we have pc(D) ≥ �min(D̂). Let B

be an out-branching of D̂ with p leaves. We say that a vertex x of B is branching
if d+B (x) > 1. Consider a maximal directed path Q of B not containing branching
vertices. Observe that B − V (Q) has p − 1 leaves. Thus, we can decompose the
vertices of B into p disjoint directed paths. Deleting the vertex s from this collection
of paths, we see that pc(D) ≤ �min(D̂). Thus, pc(D) = �min(D̂). ��
Theorem 2 (Gallai-Milgram Theorem) [25] For every digraph D, pc(D) ≤
α(D).

Proof Consider the digraph D̂ defined in Lemma 1. By Lemma 1 and Las Vergnas’
theorem, pc(D) = �min(D̂) ≤ α(D̂) = α(D). ��

The following result shows that the bound of Las Vergnas’ theorem is sharp.

Theorem 3 ([5]) If D is a transitive acyclic digraph with a unique source s, then
�min(D) = α(D).

Proof By Las Vergnas’ theorem, D contains an out-branching B with k ≤ α(D)

leaves. Observe that B is rooted at s and the vertices of every path in B starting
at s and terminating at a leaf induce a clique in UG(D). Thus, the vertices of
UG(D) can be covered by k cliques and, hence, α(UG(D)) ≤ k. We conclude
that �min(D) = α(D). ��

The next theorem is equivalent to Theorem 3. Indeed, by Theorem 3 and
Lemma 1, we have pc(D) = �min(D̂) = α(D̂) = α(D) for every transitive acyclic
digraph D which implies Dilworth’s theorem. Since pc(D) ≤ �min(D) ≤ α(D)

for each transitive acyclic digraph with a unique source, Dilworth theorem implies
Theorem 3.

Theorem 4 (Dilworth’s Theorem) [21] Every transitive acyclic digraph D has
pc(D) = α(D).

Theorems 3 and 4 give raise to the following natural research problem.

98 J. Bang-Jensen and G. Gutin

Problem 1 Find other non-trivial digraph classes for which the equalities of
Theorem 3 and/or Theorem 4 hold.

Las Vergnas proved another upper bound on �min(D).

Theorem 5 ([34]) Let D be a digraph on n vertices such that any two distinct non-
adjacent vertices have degree sum at least 2n− 2h− 1, where 1 ≤ h ≤ n− 1. Then
�min(D) ≤ h.

Settling a conjecture of Las Vergnas [34], Thomassé [38] proved the following:

Theorem 6 If D is a strong, then �min(D) ≤ max{α(D)− 1, 1}.

3.2 Acyclic Digraphs

Demers and Downing [20] suggested a heuristic approach for finding, in an acyclic
digraph, an out-branching with minimum number of leaves. However, no argument
or assertion has been made to provide the validity of their approach and to
investigate its computational complexity. Using another approach, Gutin et al. [28]
showed that a minimum leaf out-branching in an acyclic digraph can be found in
polynomial time.

The following algorithm MINLEAF introduced by Gutin et al. [28] returns an
out-branching with minimum number of leaves in an acyclic digraph. Observe that
an acyclic digraph D has an out-branching if and only if it has exactly one source.
It is not difficult to prove that MINLEAF is correct and of running time O(

√
mn3),

where n (m) is the order (size) of the input digraph.
Figure 2 illustrates MINLEAF. There M = {rx′, xy′, zt ′} and T = D − zy.
The parameters directed tree-width, directed path-width, and DAG-width of

digraphs are analogs of tree-width of undirected graphs; for definitions, see [26, 32].
Acyclic digraphs have directed tree-width, directed path-width, and DAG-width
equal zero. It follows from one of the main results of the paper [32] by Johnson
et al. that there are polynomial-time algorithms for verifying whether a digraph of
bounded directed tree-width (directed path-width, DAG-width, respectively) has a
Hamilton directed path. In contrast, Dankelmann et al. [19] proved that the problem

r

x y

z t

D

rr
xx
yy

zz
tt

x x
y y
z z

t t
B(D) M∗

Fig. 2 Illustration for MINLEAF

Branching in Digraphs with Many and Few Leaves: Structural and Algorithmic Results 99

Algorithm 1 MINLEAF
Input: An acyclic digraph D with vertex set V .
Output: A minimum leaf out-branching T of D if �min(D) > 0 and “NO”, other-
wise.
1: Find a source r in D. If there is another source in D, return “no out-branching”. Let V ′ = {v′ :

v ∈ V }.
2: Construct a bipartite graph B = B(D) of D with partite sets V, V ′ − r ′ and edge xy′ for each

arc xy ∈ A(D).
3: Find a maximum matching M in B.
4: M∗ := M . For all y′ ∈ V ′ not covered by M , set M∗ := M∗ ∪{an arbitrary edge incident with

y′}.
5: A(T) := ∅. For all xy′ ∈ M∗, set A(T) := A(T) ∪ {xy}.
6: Return T .

of finding the minimum number of leaves in an out-branching of a digraph of
directed tree-width (directed path-width, DAG-width, respectively) equal one is
N P-hard.

3.3 FPT Algorithms for General Digraphs

In this subsection we discuss FPT algorithms for the problem of deciding whether
a digraph has an out-branching with at least k internal vertices. This is called the k-
INTERNAL OUT-BRANCHING problem (k-IOB). The undirected version of k-IOB,
called k-INTERNAL SPANNING TREE (k-IST), is defined similarly.

Note that k-IOB is a generalization of k-IST since the latter can easily be reduced
to k-IOB on symmetric digraphs, i.e. digraphs in which every arc is on a directed
cycle of length 2. The k-IOB problem a priori seems more difficult than the well-
known k-Path problem (decide whether a given digraph has a path on k vertices)
since a witness of a yes-instance of k-path is a subgraph of size k, that is, a path
on k vertices. However, it is easy to see that a witness of a yes-instance of k-IOB
(which has an out-branching) can be a subgraph of size 2k − 1, that is, an out-tree
with k internal vertices and k − 1 leaves. This simple but crucial observation lies at
the heart of several algorithms for k-IOB.

Parameterized algorithms for k-IST and k-IOB were first studied by Prieto
and Sloper [36] and Gutin et al. [28], who proved that both problems are FPT.
Since then several papers improved complexities of deterministic and randomized
algorithms for both problems; we list these algorithms in Table 1. We also remark
that approximation algorithms, exact exponential-time algorithms, and kernelization
algorithms for both k-IOB and k-IST were extensively studied, but we do not
overview such results in this survey.

100 J. Bang-Jensen and G. Gutin

Table 1 FPT algorithms for k-IOB and k-IST

Reference Det./rand. Space Graph TimeO∗(·)
Prieto et al. [36] det poly Undirected 2O(k log k)

Gutin et al. [28] det exp Directed 2O(k log k)

Cohen et al. [15] det exp Directed 55.8k

rand poly Directed 49.4k

Fomin et al. [23] det exp Directed 16k+o(k)

rand poly Directed 16k+o(k)

Fomin et al. [24] det poly Undirected 8k

Shachnai et al. [37] det exp Directed 6.855k

Daligault [17] rand poly Directed 4k

Li et al. [35] det poly Undirected 4k

Zehavi [39] det exp Directed 5.139k

rand exp Directed 3.617k

Björklund et al. [12] rand poly Undirected 3.455k

Björklund et al. [13] rand poly Directed 2k

Gutin et al. [31] det poly Directed 3.86k

Gutin et al. [31] det exp Directed 3.41k

Let us give a brief overview of the algorithms in [13] and [31] as their algorithms
are currently the best among randomized and deterministic algorithms for k-IOB.
Unlike the algorithms in the previous papers, the algorithms in [13] and [31] rely on
the well-known Directed Matrix-Tree theorem.

The (symbolic) Kirchhoff matrix K = K(D) of a directed multigraph D on
n vertices is defined as follows, where we assume that the vertex set is [n] :=
{1, 2, . . . , n}.

Kij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

�i∈A(D)

x�i if i = j,

−xij if ij ∈ A(D),

0 otherwise,

(1)

where A(D) is the arc set of D and xij are variables.
For r ∈ [n] we denote by Kr̄(D) the matrix obtained from K(D) by deleting

the rth row and the rth column. Moreover, let Br denote the set of out-branchings
rooted at r . The following version of the Directed Matrix-Tree Theorem implies a
natural one-to-one correspondence between the monomials of det (Kr̄ (D)) and the
out-branchings in Br .

Theorem 7 For every directed multigraph D with symbolic Kirchhoff matrix K(D)

and i ∈ V (D), det (Kr̄ (D)) =
∑

B∈Br

∏

ij∈A(B)

xij .

Branching in Digraphs with Many and Few Leaves: Structural and Algorithmic Results 101

For a proof of this theorem, see, e.g., [13].
For the algorithm in [13], Björklund et al. set xij to (1 + tyi)zij and observed

that D has an out-branching rooted at r with at least k internal vertices if and only
if the coefficient of tk in det (Kr̄ (D)) has a monomial that is multilinear of degree k

in the variables yi . Indeed, observe that the substitution xij = (1 + tyi)zij adds to
the degree of the variable yi whether i occurs as an internal vertex; the variables
zij make sure that distinct spanning out-branchings will not cancel each other.
To compute det (Kr̄ (D)) in polynomial time, we can build an arithmetic circuit
C of polynomial size using, for example, Berkowitz’s determinant circuit design
[9]. To detect a multilinear monomial in C restricted to the coefficient of tk we
can invoke Lemma 1 in [11]. This results in a randomized algorithm of running
time O∗(2k).

To improve deterministic FPT algorithms for k-IOB, Gutin et al. [31] developed
the following framework that can be used to design FPT algorithms for some other
problems as well.

1. Identify a polynomial such that it has a monomial with at least k distinct variables
(called a witnessing monomial) if and only if the input instance of the problem at
hand is a yes-instance. It should be possible to efficiently evaluate the polynomial
(black box-access is sufficient here).

2. Color the variables of the polynomial with k colors using a polynomial-delay
perfect hash-family. To improve the running time of this step, we apply a
problem-specific coloring guide to reduce the number of “random” colors. Given
a k-coloring, we obtain a smaller polynomial by identifying all variables of the
same color.

3. Use inclusion–exclusion to extract the coefficient of a colorful monomial
from the reduced polynomial. By the usual color-coding arguments, if such
a monomial exists, then the original polynomial contained a witnessing
monomial.

While it is not possible to explain, in a short survey, all details of the imple-
mentation of the framework for k-IOB, let us comment on Steps 1 and 2 with
respect to k-IOB. The polynomial used for k-IOB in [31] is the determinant in
the Directed Matrix-Tree Theorem. We replace every variable xij in (1) by xi and
observe that now by Theorem 7 we have that if the polynomial det(Kr̄ (D)) over
variables x1, . . . , xn contains a monomial with at least k different variables, then
there exists an out-branching rooted at r with at least k internal vertices.

The following lemma establishes useful connections between matchings and out-
trees/out-branchings; it is the key to the computation of a coloring guide in [31]. We
believe it is of independent interest, too. A matching in a digraph is a set of arcs
without common vertices.

102 J. Bang-Jensen and G. Gutin

Lemma 2

(1) Let T be an out-tree with k ≥ 0 internal vertices. Then T has a matching of size
at least k/2.

(2) Let D = (V ,A) be a digraph containing an out-branching, and M a matching
in D. Then, in polynomial time, we can find an out-branching of D for which
no arc of M has both end-vertices as leaves.

Proof

(1) We prove it by induction on k ≥ 0. The claim obviously holds for k = 0, so
assume that k ≥ 1. Let k1 be the number of pre-leaves, i.e. vertices of T whose
only out-neighbors are leaves and k2 the number of prepre-leaves, i.e. vertices
of T whose only out-neighbors are pre-leaves. Observe that k1 ≥ k2 and that
T has a matching M1 with k1 edges whose vertices are some leaves and all
pre-leaves. Let T ′ be an out-tree obtained from T by deleting all leaves and pre-
leaves. Observe that T ′ has k − k1 − k2 internal vertices and thus by induction
hypothesis T ′ has a matching M2 of size at least (k − k1 − k2)/2 ≥ k/2 − k1.

Thus, the matching M1 ∪M2 of T is of size at least k/2.
(2) Let B be an out-branching of D and suppose that both end-vertices of some arc

xy of M are leaves in B. Then add xy to B and delete zy from B, where z is
the in-neighbor of y in B. In the resulting out-branching B ′, x is an internal
vertex. Notice that zy does not belong to M . Hence, B ′ contains one more arc
of M than B. Starting with an arbitrary out-branching and repeating the above
exchange operation at most |M| times, we will get an out-branching in which
no arc of M has both end-vertices as leaves. This process can be completed in
polynomial time.

4 Maximum Leaf Out-Branchings

Alon et al. [2] proved the following complexity result.

Proposition 4 The problem of finding an out-branching of maximum number of
leaves in an acyclic digraph is N P-hard.

Proof Consider a bipartite graph G with bipartition X, Y and a vertex s
∈ V (G).
To obtain an acyclic digraph D from G and s, orient the edges of G from X to Y

and add all arcs sx, x ∈ X. Let B be an out-branching in D. Then the set of leaves
of B is Y ∪X′, where X′ ⊂ X, and for each y ∈ Y there is a vertex z ∈ Z = X \X′
such that zy ∈ A(D). Observe that B has maximum number of leaves if and only if
Z ⊆ X is of minimum size among all sets Z′ ⊆ X such that NG(Z′) = X. However,
the problem of finding Z′ of minimum size such that NG(Z′) = X is equivalent to
the Set Cover problem ({NG(y) : y ∈ Y } is the family of sets to cover), which is
N P-hard. ��

Branching in Digraphs with Many and Few Leaves: Structural and Algorithmic Results 103

Alon et al. [2] also proved that the problem of deciding whether a digraph has
an out-branching with at least k leaves is FPT for acyclic and strongly connected
digraphs. Bonsma and Dorn [14] extended this result to all digraphs. In [14], they
presented an algorithm for the problem of running time O∗(2O(k log k)). Kneis et al.
[33] designed an algorithm of running time O∗(4k); an algorithm of running time
O∗(3.72k) was consequently obtained by Daligault et al. [18].

Since the algorithm of Kneis et al. [33] is quite simple, let us consider its short
description. We will first check whether the input digraph D has an out-branching
rooted at vertex r for each vertex r of D. Let R be the set of vertices, which are roots
of out-branchings of D. Using Proposition 2, it suffices to check whether D has an
out-branching with at least k leaves rooted at a vertex r ∈ R. So for each r ∈ R,
we will run the following procedure. Let an out-tree T initially contain only r and
let r be active. In every iteration, choose an active vertex v of T , declare it passive
and either move to the next iteration or add to T all arcs going from v to vertices
outside of T and then move to the next iteration. Kneis et al. [33] proved that D has
an out-tree rooted at r ∈ R with at least k leaves if and only if the procedure obtains
such a tree.

The paper [33] of Kneis et al. was a breakthrough as (a) it gave an algorithm,
which was simpler and easier to analyze than that in [14], (b) the algorithm’s
complexity was lower than even that of algorithms to find a spanning tree with
maximum number of leaves in an undirected graph. Apart from improving the
running time of the algorithm in [33], Daligault et al. [18] improved the running
time O∗(2n) of the following simple exact algorithm for finding an out-branching
with maximum number of leaves: in a digraph D = (V ,A), for every S ⊂ V delete
all arcs leaving vertices of S and check whether the resulting digraph has an out-
branching (in which the vertices of S will be a subset of leaves). By Proposition 1,
the existence of an out-branching can be decided in polynomial time. The exact
algorithm in [18] runs in time O∗(1.9973n); it would be interesting to design an
exact algorithm with significantly smaller running time.

While the algorithmic results of Alon et al. [2] were significantly improved,
their structural results are still of interest including the following theorem that was
recently applied to solve an open problem, which will be discussed below.

Theorem 8 ([2]) Let D be a strongly connected digraph. If D has no out-branching
with at least k leaves, then the (undirected) pathwidth of D is bounded by
O(k log k).

A well-known result in digraph algorithms, due to Edmonds, states that given
a digraph D and a positive integer �, we can decide whether D has � arc-disjoint
out-branchings in polynomial time [22]. The same result holds for � arc-disjoint
in-branchings. Inspired by this fact, it is natural to ask for a “mixture” of out- and in-
branchings: given a digraph D and a pair u, v of (not necessarily distinct) vertices,
decide whether D has an arc-disjoint out- branching T +u rooted at u and an in-
branching T −v rooted at v.

104 J. Bang-Jensen and G. Gutin

Thomassen proved (see [3]) that the problem is N P-complete and remains
N P-complete if we add the condition that u = v. The same result still holds
for digraphs in which the out-degree and in-degree of every vertex equals two [6].

An out-branching T + and an in-branching T − are called k-distinct if |A(T +) \
A(T −)| ≥ k. Bang-Jensen and Yeo [7] asked whether the following problem called
SINGLE-ROOT k-DISTINCT BRANCHINGS is FPT with respect to the parameter k:
Given a digraph D; does D contain a vertex r and an out-branching T + and an
in-branching T −, both rooted at r and which are k-distinct? Note that if D has an
out-branching and in-branching with the same root, then D is strongly connected.
Gutin et al. [30] proved that the problem is FPT and we will give their short proof
below. Let us start from the following simple yet important lemma.

Lemma 3 ([30]) Let D be a digraph containing an out-branching and an in-
branching. If D contains an out-branching (in-branching) T with at least k + 1
leaves, then every in-branching (out-branching) T ′ of D is k-distinct from T .

Proof We will consider only the case when T is an out-branching since the other
case can be treated similarly. Let T ′ be an in-branching of D and let L be the set of
all leaves of T apart from the one which is the root of T ′. Observe that all vertices
of L have outgoing arcs in T ′ and since in T the incoming arcs of L are the only
arcs incident to L in T , the sets of the outgoing arcs in T ′ and incoming arcs in T

do not intersect.

We will use the following dynamic programming result of Bang-Jensen et al. [8].

Lemma 4 Let H be a digraph of (undirected) treewidth τ . Then SINGLE-ROOT

k-DISTINCT BRANCHINGS on H can be solved in time O∗(2O(τ log τ)).

Theorem 9 ([30]) SINGLE-ROOT k-DISTINCT BRANCHINGS can be solved in
time O∗(2O(k log2 k)).

Proof Let D be an input digraph. As we noted above, we may assume that D is
strongly connected. Using an O∗(3.72k)-time algorithm of [18] we can find an out-
branching T + with at least k+1 leaves, or decide that D has no such out-branching.
If T + is found, the instance of SINGLE-ROOT k-DISTINCT BRANCHINGS is positive
by Lemma 3 as any in-branching T − of D is k-distinct from T +. In particular, we
may assume that T − has the same root as T + (a strongly connected digraph has
an in-branching rooted at any vertex). Now suppose that T + does not exist. Then,
by Theorem 8 the (undirected) pathwidth of D is bounded by O(k log k). Thus, by
Lemma 4 the instance can be solved in time O∗(2O(k log2 k)).

SINGLE-ROOT k-DISTINCT BRANCHINGS requires that k-distinct in- and out-
branchings must have the same root. Bang-Jensen et al. [8] considered the k-
DISTINCT BRANCHINGS problem, where the same root requirement is removed.
Bang-Jensen et al. [8] proved that the problem is FPT for strongly connected
digraphs and conjectured that the result can be extended to all digraphs. This was
confirmed by Gutin et al. [30], who used the approach of Theorem 9 coupled with a
new digraph decomposition.

Branching in Digraphs with Many and Few Leaves: Structural and Algorithmic Results 105

Acknowledgements The research of Jørgen Bang-Jensen was supported by the Danish research
council, grant number 1323-00178B. The research of Gregory Gutin was supported in part by
Royal Society Wolfson Research Merit Award.

References

1. N. Alon, F. Fomin, G. Gutin, M. Krivelevich, S. Saurabh, Parameterized algorithms for directed
maximum leaf problems, in Proceedings of ICALP 2007. Lecture Notes in Computer Science,
vol. 4596 (2007), pp. 352–362

2. N. Alon, F. Fomin, G. Gutin, M. Krivelevich, S. Saurabh, Spanning directed trees with many
leaves. SIAM J. Discret. Math. 23, 466–476 (2009)

3. J. Bang-Jensen, Edge-disjoint in- and out-branchings in tournaments and related path problems.
J. Combin. Theory Ser. B 51(1), 1–23 (1991)

4. J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd edn. (Springer,
Berlin, 2009)

5. J. Bang-Jensen, G. Gutin, Out-branchings with extremal number of leaves. Ramanujan Math.
Soc. Lect. Notes 13, 91–99 (2010)

6. J. Bang-Jensen, S. Simonsen, Arc-disjoint paths and trees in 2-regular digraphs. Discret. Appl.
Math. 161(16–17), 2724–2730 (2013)

7. J. Bang-Jensen, A. Yeo, The minimum spanning strong subdigraph problem is fixed parameter
tractable. Discret. Appl. Math. 156, 2924–2929 (2008)

8. J. Bang-Jensen, S. Saurabh, S. Simonsen, Parameterized algorithms for non-separating trees
and branchings in digraphs. Algorithmica 76(1), 279–296 (2016)

9. S.J. Berkowitz, On computing the determinant in small parallel time using a small number of
processors. Inf. Process. Lett. 18 147–150 (1984)

10. D. Binkele-Raible, H. Fernau, F.V. Fomin, D. Lokshtanov, S. Saurabh, Y. Villanger, Kernel(s)
for problems with n kernel: on out-trees with many leaves. ACM Trans. Algorithms 9(4)
(2011), article 39

11. A. Björklund, P. Kaski, L. Kowalik, Constrained multilinear detection and generalized graph
motifs. Algorithmica 74(2), 947–967 (2016)

12. A. Björklund, V. Kamat, L. Kowalik, M. Zehavi, Spotting trees with few leaves. SIAM J.
Discret. Math. 31(2), 687–713 (2017)

13. A. Björklund, P. Kaski, I. Koutis, Directed hamiltonicity and out-branchings via generalized
Laplacians, in Automata, Languages and Programming, 44th International Colloquium,
ICALP 2017. Leibniz International Proceedings in Informatics (LIPIcs), vol. 80 (2017), pp.
91:1–91:14

14. P. Bonsma, F. Dorn, Tight bounds and a fast FPT algorithm for directed Max-Leaf Spanning
Tree. J. ACM Trans. Algorithms 7(4), 1–19 (2011)

15. N. Cohen, F.V. Fomin, G. Gutin, E.J. Kim, S. Saurabh, A. Yeo, Algorithm for finding k-vertex
out-trees and its application to k-internal out-branching problem. J. Comput. Syst. Sci. 76,
650–662 (2010)

16. M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S.
Saurabh, Parameterized Algorithms (Springer, Berlin, 2015)

17. J. Daligault, Combinatorial techniques for parameterized algorithms and kernels, with applica-
tions to multicut, PhD thesis, Universite Montpellier II, Montpellier, Herault, 2011

18. J. Daligault, G. Gutin, E.J. Kim, A. Yeo, FPT algorithms and kernels for the directed k-leaf
problem. J. Comput. Syst. Sci. 76, 144–152 (2010)

19. P. Dankelmann, G. Gutin, E.J. Kim, On complexity of minimum leaf out-branching problem.
Discret. Appl. Math. 157, 3000–3004 (2009)

20. A. Demers, A. Downing, minimum leaf spanning tree. US Patent no. 6,105,018, August 2000

106 J. Bang-Jensen and G. Gutin

21. R.P. Dilworth, A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166
(1950)

22. J. Edmonds, Edge-disjoint branchings, in Combinatorial Algorithms, ed. by B. Rustin (Aca-
demic Press, Cambridge, 1973), pp. 91–96

23. F.V. Fomin, F. Grandoni, D. Lokshtanov, S. Saurabh, Sharp separation and applications to exact
and parameterized algorithms. Algorithmica 63, 692–706 (2012)

24. F.V. Fomin, S. Gaspers, S. Saurabh, S. Thomassé, A linear vertex kernel for maximum internal
spanning tree. J. Comput. Syst. Sci. 79, 1–6 (2013)

25. T. Gallai, A.N. Milgram, Verallgemeinerung eines graphentheoretischen Satzes von Rédei.
Acta Sci. Math. Szeged 21, 181–186 (1960)

26. R. Ganian, P. Hlineny, A. Langer, J. Obdrzalek, P. Rossmanith, Digraph width measures in
parameterized algorithmics. Discret. Appl. Math. 168, 88–107 (2014)

27. M.R. Garey, D.S. Johnson, Computers and Intractability (W.H. Freeman and Co., San
Francisco, 1979)

28. G. Gutin, I. Razgon, E.J. Kim, Minimum leaf out-branching problems, in AAIM’08. Lecture
Notes in Computer Science, vol. 5034 (2008), pp. 235–246

29. G. Gutin, I. Razgon, E.J. Kim, Minimum leaf out-branching and other problems. Theor.
Comput. Sci. 410, 4571–4579 (2009)

30. G. Gutin, F. Reidl, M. Wahlström, k-distinct in- and out-branchings in digraphs. J. Comput.
Syst. Sci. 95, 86–97 (2018)

31. G. Gutin, F. Reidl, M. Wahlström, M. Zehavi, Designing deterministic polynomial-space
algorithms by color-coding multivariate polynomials. J. Comput. Syst. Sci. 95, 69–85 (2018)

32. T. Johnson, N. Robertson, P.D. Seymour, R. Thomas, Directed tree-width. J. Combin. Theory
Ser. B 82, 138–154 (2001)

33. J. Kneis, A. Langer, P. Rossmanith, A new algorithm for finding trees with many leaves, in
ISAAC 2008. Lecture Notes in Computer Science, vol. 5369 (2008), pp. 270–281

34. M. Las Vergnas, Sur les arborescences dans un graphe orienté. Discret. Math. 15, 27–39 (1976)
35. W. Li, Y. Cao, J. Chen, J. Wang, Deeper local search for parameterized and approximation

algorithms for maximum internal spanning tree. Inf. Comput. 252, 187–200 (2017)
36. E. Prieto, C. Sloper, Reducing to independent set structure – the case of k-internal spanning

tree. Nord. J. Comput. 12, 308–318 (2005)
37. H. Shachnai, M. Zehavi, Representative families: a unified tradeoff-based approach. J. Comput.

Syst. Sci. 82, 488–502 (2016)
38. S. Thomassé, Covering a strong digraph by α − 1 disjoint paths: a proof of Las Vergnas’

conjecture. J. Combin. Theory Ser. B 83, 331–333 (2001)
39. M. Zehavi, Mixing color coding-related techniques, in Algorithms - ESA 2015 - 23rd Annual

European Symposium. Lecture Notes in Computer Science, vol. 9294 (2015), pp. 1037–1049

Dominance Certificates for
Combinatorial Optimization Problems

Daniel Berend, Steven S. Skiena, and Yochai Twitto

1 Introduction

One of the most active research areas in the theory of combinatorial algorithms
is the design of approximation algorithms for NP-hard problems. However, while
approximation ratio analysis does give some information on heuristics, it does not
provide the whole picture regarding their performance in practice.

Algorithmic solutions used in practice are often some form of local improve-
ment heuristic, based on techniques such as simulated annealing [18], HC [31],
GRASP [24], tabu search [8], or genetic algorithms [17, 22]. Properly implemented,
these techniques may lead to short, efficient programs which yield reasonable
solutions. However, these heuristics often come with no theoretical guarantee as
to the quality of the provided solution.

An f (I) combinatorial dominance guarantee is a certificate that a solution is not
worse than at least f (I) solutions for a particular problem instance I . The intuition
behind this performance measure rests on the letter of recommendation one could
write on behalf of a given person, or heuristic solution. A recommendation like “She
is the best of the 75 students in my class this year” is analogous to a combinatorial

D. Berend (�)
Department of Mathematics and of Computer Science, Ben-Gurion University, Beer Sheva, Israel

Department of Mathematics, Rice University, Houston, TX, USA
e-mail: berend@cs.bgu.ac.il

S. S. Skiena
Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
e-mail: skiena@cs.stonybrook.edu

Y. Twitto
Department of Computer Science, Ben-Gurion University, Beer Sheva, Israel
e-mail: twittoy@cs.bgu.ac.il

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_6

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_6&domain=pdf
mailto:berend@cs.bgu.ac.il
mailto:skiena@cs.stonybrook.edu
mailto:twittoy@cs.bgu.ac.il
https://doi.org/10.1007/978-3-319-94830-0_6

108 D. Berend et al.

dominance guarantee. It certifies the candidate as superior to a certain number of
members of a given pool, with the implied assumption that this says something
meaningful about the candidate’s global ranking as well. The larger the number of
competitors dominated by the candidate, the stronger the recommendation.

The previous body of work concerns proving existential bounds for particular
problems over the space of all problem instances. In this paper, we demonstrate a
general technique for awarding combinatorial dominance “certificates” to arbitrary
solutions of various optimization problems. We demonstrate this technique on the
TRAVELING SALESMAN and MAXIMUM SATISFIABILITY problems, and briefly
experiment its usability. Observe that similar approximation ratio certificates are not
forthcoming for ad-hoc solutions. Namely, given a particular solution of a problem,
it is not at all clear how we can compare its quality with that of the (unknown)
optimal solution.

Additionally, we describe how to simulatively estimate the number of solutions
better than a given solution up to a given error with high probability. We experiment
the usability of the simulative estimation for differentiating between heuristics for
MAXIMUM SATISFIABILITY in terms of dominance, and compare the estimate
derived from Chebyshev’s inequality to simulation results.

In Section 1.1 we briefly survey previous work. The notions of combinatorial
dominance guarantees are formalized in Section 1.2. In Section 2 we show how
an arbitrary (and, in particular, a randomly selected) solution may be proved to
have some combinatorial dominance guarantee. Brief experimental examinations
are summarized in Section 3. Finally, we discuss directions for future research in
Section 4.

1.1 Previous Work

The issue of measuring the quality of approximate solutions has been addressed
by Zemel [35]. A formulation of the very basic properties expected from a function
measuring the quality of approximate solutions was given, and the notion of a proper
quality measure stated accordingly. Zemel suggested considering some measures,
such as z-approximation [16] and location ratio, which is more familiar recently as
dominance ratio [1, 14]. Both of these measures are proper.

The latter measure has been studied primarily within the operations research
community. The basic notion appears to have been independently discovered several
times. The primary focus has been on algorithms for TSP, specifically designing
polynomial-time algorithms which dominate exponentially large neighborhoods.
The first TSP heuristics with an exponential dominance number are due to Rubli-
neckii [30] (see also Sarvanov and Doroshko [32, 33]).

The question whether there exists a polynomial-time algorithm which yields a
solution dominating (n − 1)!/p(n) tours, where p(n) is polynomial, appears to
have first been raised by Glover and Punnen [9]. Dominance bounds for TSP have
been most aggressively pursued by Gutin, Yeo, and Zverovich in a series of papers

Dominance Certificates for Combinatorial Optimization Problems 109

(cf. [10, 11]), culminating in a polynomial-time algorithm which finds a solution
dominating Θ((n−1)!) tours. These bounds follow by applying certain Hamiltonian
cycle decomposition theorems to the complete graph. We refer to [12] for more
information.

Deineko and Woeginger [7] survey the complexity of optimizing TSP over sev-
eral well-defined but exponentially large neighborhoods. Such optima by definition
have large dominance numbers. Balas and Simonetti [4] perform an experimental
study of certain linear-time dynamic programming algorithms for TSP, which
dominate exponentially many solutions.

Gutin, Vainshtein, and Yeo [14] appear to have been the first to consider the com-
plexity of achieving a given dominance bound. In particular, they define complexity
classes of DOM-easy and DOM-hard problems. They prove that weighted MAX k-
SAT and MAX CUT are DOM-easy while (unless P = NP) VERTEX COVER and
CLIQUE are DOM-hard.

Alon, Gutin, and Krivelevich [1] provide several algorithms which achieve large
dominance ratios for versions of INTEGER PARTITION, MAX CUT, and MAX r-
SAT. These algorithms share a common property—they provide solutions of quality
guaranteed to be not worse than the average solution value. This property has been
used also in other dominance proofs [11, 14, 19, 25, 26]. Twitto [34] showed that
this property by itself does not necessarily ensure good dominance.

Other works on dominance analysis include [13, 26], where it is proved that the
nearest neighbor, minimum spanning tree, and greedy heuristics perform extremely
poorly for symmetric and asymmetric TSP. Various combinatorial optimization
problems and classical heuristics for them have been analyzed in [5, 6, 15]. In [23],
a model for analyzing heuristic search algorithms (such as simulated annealing and
backtracking), based on the ideas of combinatorial dominance, has been developed.

Recently, Kühn and Osthus [20] studied a polynomial-time algorithm for ATSP,
and showed that it provides a dominance ratio of at least 1/2−o(1). In [21], together
with Patel, they gave a polynomial-time algorithm with dominance ratio of 1 −
n−1/29 for a special case of TSP in which the edges may take only two possible
weights.

In another quite recent work, Punnen, Sripratak, and Karapetyan [27] analyzed
the BBQP problem with m + n variables. They proved that any solution for
this problem, with quality no worse than the average, dominates at least 2m+n−2

solutions, and that this bound is the best possible. They provided an O(mn)

algorithm to identify such a solution.

1.2 Definitions

Consider a given instance I of some combinatorial optimization problem P . The
instance is represented by a solution space SP (I) and objective function CP (I, x).
The solution space SP (I) is the set of all combinatorial objects representing possible
solutions x to I . The objective function CP (I, x) is defined for all solutions x ∈

110 D. Berend et al.

SP (I). If P is a maximization (minimization, resp.) problem, we seek an x0 ∈ SP (I)

such that CP (I, x0) ≥ CP (I, x) (CP (I, x0) ≤ CP (I, x), resp.) for all x ∈ SP (I).
A heuristic HP for P is a procedure which, for any instance I , selects a solution

x ∈ SP (I). For a given instance I of P , denote by F(I) the number of solutions that
are not better than the heuristic solution HP (I). The number of all other solutions
in SP (I) (which are better than HP (I)) is denoted by B(I).

Definition 1 A heuristic HP offers an F(n) combinatorial dominance guarantee
(dominance bound/number) for problem P if for each n:

1. For all instances I of size n of P , the solution HP (I) dominates at least F(n)

elements of SP (I).
2. There exists an instance I ′ of size n for which HP (I ′) dominates exactly F(n)

elements of SP (I ′).

The heuristic blackball bound/number of HP is B(n) = |SP (n)| − F(n).

The heuristic dominance (blackball, resp.) ratio is defined to be its dominance
(blackball, resp.) number divided by the size of the solution space.

2 Certified Dominance Bounds for Arbitrary Solutions

In this section we demonstrate a general technique for awarding combinatorial
dominance certificates to arbitrary solutions of various optimization problems. Such
a certificate is a proof that a given solution of some instance (of some optimization
problem) is not worse than at least some prescribed number of solutions of that
instance. Additionally, we describe how to simulatively estimate the number of
solutions better than a given solution up to a given error with high probability.

Assume we have any instance of some optimization problem, and let X be its
objective function. Suppose we can calculate the expected value μ = E(X) and the
variance σ 2 = V (X) of the value of the objective function at a random solution.
(Note that these quantities can be calculated for many problems; see Sections 2.1
and 2.2 below for two important examples.) Now, suppose we have any solution with
an objective value x0 which happens to be better than μ, i.e., x0 > μ (x0 < μ, resp.)
for maximization (minimization, resp.) problems. We may then assert that there is
some percentage of the solutions which are not better than this solution. Indeed,
denote by x the objective value of a random solution, and assume, say, that we deal
with a maximization problem. By the one-sided Chebyshev’s inequality [29], we
have

P(X > x0) ≤ σ 2

σ 2 + (x0 − μ)2 < 1. (1)

One way to obtain (with probability arbitrarily close to 1) a solution significantly
above the mean is to take the best of a large number of randomly selected solutions.

Dominance Certificates for Combinatorial Optimization Problems 111

For example, suppose the values of the objective function are approximately
normally distributed, which is true in many situations. The best solution out of
approximately 40 sampled solutions is expected to be about two standard deviations
above the mean, as approximately 2.5% of the solutions have this property. By
Chebyshev’s inequality, such a solution is in any case guaranteed to be not worse
than at least four fifths of the solutions. Note that this bound holds whether the
values are normally distributed or not, given the distance from the mean is verified
somehow. It is the value from Chebyshev’s inequality that provides the dominance
certificate.

2.1 TSP Certification

In the SYMMETRIC TRAVELING SALESMAN problem (STSP), we are given an
edge-weighted complete undirected graph KV . We seek an ordering p of the n =
|V | vertices, minimizing the sum of weights of the edges along the tour induced
by p on KV . The size of the solution space is (n−1)!/2, and the size of the problem
is taken as n = |V |. We apply the above technique to STSP.

Denote by wij the weight of edge (i, j), and let X be the weight of a random
tour. We have to find E(X) and V (X). For 1 ≤ i < j ≤ n, put:

Xij =
{

1, the tour contains the edge (i, j),

0, otherwise.

Then:

X =
∑

1≤i<j≤n

wijXij .

For Xij , we have

E
(
Xij

) = P
(
Xij = 1

) = n
(
n
2

) = 2

n− 1
,

V
(
Xij

) = E
(
X2

ij

)
− E2 (

Xij

) = 2(n− 3)

(n− 1)2
.

The covariance Cov
(
Xij ,Xkl

)
is given by

Cov
(
Xij ,Xkl

) = E
(
XijXkl

)− E
(
Xij

)
E (Xkl)

= P
(
Xij = Xkl = 1

)−
(

2

n− 1

)2

,

112 D. Berend et al.

where

P
(
Xij = Xkl = 1

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

4
(n−1)(n−2)

, {i, j} ∩ {k, l} = ∅,

2
(n−1)(n−2)

, |{i, j} ∩ {k, l}| = 1,

2
n−1 , {i, j} = {k, l}.

Therefore

E(X) =
∑

1≤i<j≤n

wijE
(
Xij

) = 2

n− 1

∑

1≤i<j≤n

wij ,

and

V (X) = V

⎛

⎝
∑

1≤i<j≤n

wijXij

⎞

⎠

=
∑

1≤i<j≤n

w2
ij V

(
Xij

)+
∑

(i,j)
=(k,l)

wijwklCov
(
Xij ,Xkl

)

= 2(n− 3)

(n− 1)2

∑

1≤i<j≤n

w2
ij +

4

(n− 1)2(n− 2)

∑

{i,j}∩{k,l}=∅
wijwkl

− 2(n− 3)

(n− 1)2(n− 2)

∑

|{i,j}∩{k,l}|=1

wijwkl.

Having these explicit formulas for E(X) and V (X), we may easily, and automat-
ically, bound the quality of any given solution for any given instance of STSP. The
automation may be obtained by a program that first computes the expectation and
variance by the above formulas for the given instance. Then, for any solution thereof,
it computes and returns the probability given in (1) as the certified dominance bound
for the solution.

2.2 MAXSAT Certification

In the MAXIMUM SATISFIABILITY problem (MAXSAT), we are given a multiset
of clauses over some Boolean variables. Each clause is a disjunction of literals (a
variable xi or its negation xi). We seek a true-false assignment for the variables,
maximizing the number of satisfied clauses.

Dominance Certificates for Combinatorial Optimization Problems 113

For disjoint sets A,B ⊆ {1, 2, . . . , n}, denote:

TAB =
∨

i∈A
xi ∨

∨

j∈B
xj .

For example, T{1,4}{2} = x1 ∨ x4 ∨ x2. Suppose the multiset, which we denote by
T , consists of cAB occurrences of each TAB . For a random assignment of values,
consider the random variable Y—the number of satisfied clauses in T . We have

E(Y) =
∑

A,B

cAB

(
1− 2−|A|−|B|

)
,

and

V (Y) =
∑

A,B

c2
AB2−|A|−|B|

(
1− 2−|A|−|B|

)

+
∑

(A,B)
=(A′,B ′)
cABcA′B ′

(
P(TAB = TA′B ′ = false)− 2−|A|−|B|−|A′|−|B ′|

)
,

where

P(TAB = TA′B ′ = false) =
{

2−|A∪A′|−|B∪B ′|, A ∩ B ′ = A′ ∩ B = ∅,
0, otherwise.

Again, automating the computation of the quantities above to bound the quality
of any given solution for any given instance of MAXSAT is immediate.

2.3 A Confidence Interval for the Blackball Ratio

Given an instance I of an optimization problem P , and a solution s0 of I , let:

g(s) =
{

1, s is better than s0,

0, otherwise.

Denote by Ps0(s) the probability that a random solution s of I is better than s0.

Lemma 1 Let ε, δ ∈ (0, 1). Suppose s1, s2, . . . , st are t ≥
⌈

(2+ε) ln 2
δ

ε2

⌉

uniformly

and independently sampled solutions of I , and let

μ̃ = 1

t
|{1 ≤ i ≤ t : g(si) = 1}| .

114 D. Berend et al.

Then, for a uniformly sampled solution s of I , we have

μ̃ ∈ [
Ps0(s)− ε, Ps0(s)+ ε

]

with probability at least 1− δ.

Proof Consider the random variables Yi = g(si), 1 ≤ i ≤ t . Note that E(Yi) =
P(Yi = 1) = Ps0(s). Let Y =∑t

i=1 Yi . By Chernoff’s inequality [2] we have

P(|μ̃− Ps0(s)| > ε) = P(|Y/t − Ps0(s)| > ε)

= P(|Y − tPs0(s)| > εtPs0(s)/Ps0(s))

≤ 2e−ε2t/(2Ps0 (s)+ε)

≤ 2e−ε2t/(2+ε)

≤ 2e
− ε2(2+ε) ln 2

δ

(2+ε)ε2 = δ.

The selection between several heuristics for a problem is often made by compar-
ing their performance experimentally. The experiments may include applying the
heuristics to random instances of the problem, or a predefined set of representative
instances. Note that the above simple method might be used to obtain a single
number representing the performance (in the experiments) of each of the heuristics.
Namely, the method may yield an estimate of the blackball ratio of each of the
heuristics in the experiments. Automation of this method is immediate. Observe that
similar estimations of the approximation ratio of heuristics are not forthcoming, as
the optimal objective value is usually unknown.

3 Experimental Results

In this section we present the results of experiments we performed in order to
examine the techniques presented in Section 2.

3.1 Results on the Chebyshev’s Bound-Based Technique

In these experiments, our aim is to check to what extent Chebyshev’s bound gives
meaningful results. To this end, we took 1000 random instances of STSP, on 20
vertices each, with edge weights selected uniformly and independently in [0, 1].
For each of the instances, we randomly selected a solution that is better than the
average solution of that instance (by randomly generating solutions until obtaining
a solution with this property). We compared Chebyshev’s bound on the dominance

Dominance Certificates for Combinatorial Optimization Problems 115

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 37 73 109 145 181 217 253 289 325 361 397 433 469 505 541 577 613 649 685 721 757 793 829 865 901 937 973

simulative domination ratio

Relative error

Lower bound (Chebyshev)

Fig. 1 Comparing Chebyshev’s lower bound to simulation results

ratio of the selected solution with an estimate of this ratio, given by simulation. The
latter estimate was calculated as the percentage of solutions which outperformed our
initial randomly selected solution, taken over a large number of random solutions.

Figure 1 shows the results. The instances (horizontal axis) are sorted according
to their simulative estimation. The decreasing graph provides the relative error of
Chebyshev’s bound with respect to the (probably very accurate) estimate given by
the simulation. It shows that Chebyshev’s bound gets better and more meaningful
as the solutions get better. For solutions close to the average solution value,
Chebyshev’s bound yields meaningless estimates, whereas for very good solutions
it yields good estimates. A scatterplot of Chebyshev’s bound (vertical axis) and the
estimation provided by simulation (horizontal axis) is provided in Figure 2.

Likewise, we considered all the Euclidean instances of size of up to 1000 vertices
from TSPLIB [28]. We used the following six heuristics available in the Concorde
TSP Solver [3]: Greedy (GR), Boruvka (BV), Quick Boruvka (QBV), Nearest
Neighbor (NN), LinKernighan (LK), and Optimal (OPT). (For more information
on these heuristics consult the solver’s [3] documentation.) We applied each of the
heuristics on each of the instances, obtained solutions, and calculated Chebyshev’s
lower bounds on the dominance ratio of each of the solutions.

The graphs of the dominance of the heuristics are given in Figure 3, in which a
representative part has been zoomed in. In this figure (as well as in Figure 4), the
instances are arranged by their size on the horizontal axis. The vertical axis provides
the dominance ratio. The location of the two coinciding graphs corresponding to the
OPT and LK heuristics, above all the other graphs, shows that the dominance ratio
is able to point to the better methods, and that the LK heuristic usually provides very

116 D. Berend et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Fig. 2 Scatterplot of Chebyshev’s lower bound and simulation results

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

0.9952

0.9954

0.9956

0.9958

0.996

0.9962

0.9964

0.9966

0.9968

30 31 32 33 34

OPT GR BV QBV NN LK

Fig. 3 Comparison by dominance. Instances from TSPLIB

Dominance Certificates for Combinatorial Optimization Problems 117

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

0.9954

0.9956

0.9958

0.996

0.9962

0.9964

0.9966

0.9968

0.997

20 21 22 23 24 25 26 27 28 29

GR NN

Fig. 4 GR vs. NN. Applied on randomly generated instances

good solutions. The NN heuristic seems to be the worst all the way long. The other
three heuristics (GR, BV, and QBV) are in the middle.

Similar phenomena were observed when we used Chebyshev’s lower bound to
compare GR and NN on randomly generated instances (Figure 4). A comparison
using approximation ratio yielded similar results, as can be seen in Figure 5. To
make it clearer, the instances in this figure are sorted according to the approximation
ratio of the NN heuristic on them.

3.2 Results on the Confidence Interval-Based Technique

In the following, our main aim is to examine and demonstrate the usability of
the technique presented in Section 2.3 as a way to compare and differentiate
heuristics according to their estimated domination ratio. To this end, we compared
the following heuristics for MAXSAT:

Majority Vote (MV). This heuristic assigns the value true to a variable if its
number of positive occurrences is at least as large as its number of negative
occurrences. Otherwise, it assigns the value false.

Step-by-step Majority Vote (SMV). This heuristic goes over the variables one-
by-one according to some random order. It assigns a truth value to the current

118 D. Berend et al.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

OPT GR BV QBV NN LK

Fig. 5 Comparison by approximation ratio. Instances from TSPLIB

variable according to the majority vote as before. However, after each assignment
it discards all the clauses satisfied so far. The resulting instance is passed for the
next step.

Greedy Occurrence SMV (GOSMV). Same as SMV, but at each step assigns a
truth value to the currently most frequent variable. Ties are broken arbitrarily.

Greedy Unbalanced SMV (GUBSMV). Same as SMV, but at each step assigns
a truth value to the variable for which the absolute value of the difference
between its number of positive occurrences and number of negative occurrences
is maximal at this point. Ties are broken arbitrarily.

The comparisons were done on 1000 randomly generated MAXSAT instances,
on n = 50 variables x1, x2, . . ., xn and m = 300 clauses. We select the number of
variables to appear in each clause uniformly from the interval [1, n]. Then, for each
variable xi we draw a random number from the interval [0, 1/i], and select the ones
with the largest random numbers to appear in the clause. Each of these variables
appears in the clause positively or negatively with probability 1/2.

For each such randomly generated instance we applied each of the heuristics,
and obtained their solutions. The quality of a solution was assessed by Lemma 1.
We have chosen ε = 0.03 and δ = 0.001. Each variable of the random solutions
generated for the assessment was set to true or false with probability 1/2.

The estimated domination ratio of each of the heuristics on the randomly
generated instances is depicted in Figure 6. On the horizontal axis, the instances
are sorted in ascending order of performance of the heuristics on them. The sorting

Dominance Certificates for Combinatorial Optimization Problems 119

0 100 200 300 400 500 600 700 800 900 1000

Instances (random)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
om

in
at

io
n

ra
tio

 (
es

tim
at

ed
)

Estimated domination ratio of Majority Vote heuristics on random instances

MV

GOSMV

GUBSMV

SMV

X: 147
Y: 0.3

Fig. 6 Estimated domination ratio of Majority Vote heuristics on random MAXSAT instances

is done for each of the heuristics independently, so that a specific point on the
horizontal axis is likely to correspond to distinct instances for the various heuristics.
The vertical axis is the estimated domination ratio at this point. For example,
the point (147, 0.3) marked on the graph of the MV heuristic indicates that the
domination ratio of the instance ranked as the 147’th out of 1000 (from the bottom)
for this heuristic is 0.3. A vertical zoom on the top echelon of the domination ratio
(above 0.9) is provided in Figure 7.

A performance statistics is provided in Table 1. For each of the heuristics we give
the minimum, maximum, mean, and median, estimated domination ratio measured
over the 1000 instances. The standard deviation around the mean estimated dom-
ination ratio is also provided. For example, one may learn from the performance
statistics that the mean estimated domination ratio of the SMV heuristic was 0.9603,
whereas its worst case domination ratio was 0.3463.

Inspecting the results, one can clearly see that the MV heuristic is the worst, as
expected. Better performance was shown by the GOSMV heuristics which performs
relatively well on average but failed to provide good performance in the worst case.
Both were inferior to the SMV heuristic. The best performance was shown by the
GUBSMV heuristic, which performed well not only on average but also in the worst
case; see the minimum performance in the table. The median of 1 for this heuristic

120 D. Berend et al.

0 100 200 300 400 500 600 700 800 900 1000

Instances (random)

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

D
om

in
at

io
n

ra
tio

 (
es

tim
at

ed
)

Estimated domination ratio of Majority Vote heuristics on random instances

MV

SMV

GOSMV

GUBSMV

Fig. 7 Estimated domination ratio of Majority Vote heuristics on random MAXSAT instances. A
vertical zoom on the top echelon

Table 1 Performance
statistics of Majority Vote
heuristics on random
MAXSAT instances

MV SMV GOSMV GUBSMV

min 0.0037 0.3463 0.1716 0.8341

max 1 1 1 1

mean 0.6611 0.9603 0.8991 0.9908

median 0.7263 0.9901 0.9599 1

std 0.2811 0.0735 0.1394 0.0206

indicates that it provided a solution better than all randomly selected solutions for
at least half of the instances.

It is worthwhile mentioning that, by applying the technique demonstrated in this
section, we not only obtained a clear differentiation between the explored heuristics,
but also gained quantitative insights regarding the performance gap between them
in terms of domination ratio.

Dominance Certificates for Combinatorial Optimization Problems 121

4 Discussion

We have demonstrated analytic and probabilistic methods to obtain a non-trivial
combinatorial dominance certificate on the quality of any ad-hoc solution to a given
combinatorial optimization problem on any particular instance. We have shown
that these methods are easily applied to TSP and MAXSAT. We note that similar
approximation ratio certificates are not forthcoming for ad-hoc solutions.

This opens up two interesting lines for investigation. The first is to apply these
methods to experimentally compare heuristics for other optimization problems.
These methods provide ways of identifying relatively hard instances of particular
problems and certifying the quality of heuristics even in the absence of known
optimal solutions. The second direction concerns theoretical investigations of the
power of the Chebyshev-based method. Does the method provably yield more
meaningful bounds on some problems than others? To what extent does this method
apply to problems with infeasible solutions?

Acknowledgements The authors would like to thank Gregory Gutin and the referees for their
helpful comments on this paper.

References

1. N. Alon, G. Gutin, M. Krivelevich, Algorithms with large domination ratio. J. Algorithms
50(1), 118–131 (2004)

2. D. Angluin, L.G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings,
in Proceedings of the Ninth annual ACM Symposium on Theory of Computing (STOC), pp. 30–
41, New York, NY (1977)

3. D. Applegate, R. Bixby, V. Chvatal, W. Cook. Concorde TSP solver (2006). See http://www.
tsp.gatech.edu/concorde/

4. E. Balas, N. Simonetti, Linear time dynamic programming algorithms for some new classes of
restricted TSPs: a computational study. INFORMS J. Comput. 13(1), 56–75 (2001)

5. D. Berend, S. Skiena, Y. Twitto, Combinatorial dominance guarantees for heuristic algorithms,
in Proceedings of the International Conference on Analysis of Algorithms (AofA), Juan-les-
Pins, France, June (2007)

6. D. Berend, S. Skiena, Y. Twitto, Combinatorial dominance guarantees for problems with
infeasible solutions. ACM Trans. Algorithms 5(1), 1–29 (2008)

7. V. Deineko, G. Woeginger, A study of exponential neighborhoods for the traveling salesman
problem and the quadratic assignment problem. Math. Programm. 87(3), 519–542 (2000)

8. F. Glover, Tabu search — Part I. ORSA J. Comput. 1(3), 190–206 (1989)
9. F. Glover, A. Punnen, The travelling salesman problem: new solvable cases and linkages with

the development of new approximation algorithms. J. Oper. Res. Soc. 48(5), 502–510 (1997)
10. G. Gutin, A. Yeo, TSP tour domination and Hamilton cycle decompositions of regular digraphs.

Oper. Res. Lett. 28(3), 107–111 (2001)
11. G. Gutin, A. Yeo, Polynomial approximation algorithms for the TSP and the QAP with a

factorial domination number. Discret. Appl. Math. 119(1), 107–116 (2002)
12. G. Gutin, A. Yeo, A. Zverovich, Exponential neighborhoods and domination analysis for the

TSP, in The Traveling Salesman Problem and its Variations, ed. by G. Gutin, A. Punnen
(Kluwer Academic Publishers, Boston, 2002), pp. 223–256

http://www.tsp.gatech.edu/concorde/
http://www.tsp.gatech.edu/concorde/

122 D. Berend et al.

13. G. Gutin, A. Yeo, A. Zverovich, Traveling salesman should not be greedy: domination analysis
of greedy-type heuristics for the TSP. Discret. Appl. Math. 117(1), 81–86 (2002)

14. G. Gutin, A. Vainshtein, A. Yeo, Domination analysis of combinatorial optimization problems.
Discret. Appl. Math. 129(2), 513–520 (2003)

15. G. Gutin, B. Goldengorin, J. Huang, Worst case analysis of max-regret, greedy and other
heuristics for multidimensional assignment and traveling salesman problems. J. Heuristics
14(2), 169–181 (2008)

16. R. Hassin, S. Khuller, z-approximations. J. Algorithms 41(2), 429–442 (2001)
17. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence (MIT Press, Cambridge, 1992)
18. S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science

220(4598), 671–680 (1983)
19. A.E. Koller, S.D. Noble, Domination analysis of greedy heuristics for the frequency assignment

problem. Discret. Math. 275(1), 331–338 (2004)
20. D. Kühn, D. Osthus, Hamilton decompositions of regular expanders: a proof of Kelly’s

conjecture for large tournaments. Adv. Math. 237, 62–146 (2013)
21. D. Kühn, D. Osthus, V. Patel, A domination algorithm for {0, 1}-instances of the traveling

salesman problem. Random Struct. Algorithms 48(3), 427–453 (2016)
22. H. Mühlenbein, Genetic algorithms, in Local Search in Combinatorial Optimization, ed. by

E. Aarts, J.-K. Lenstra (Wiley, New York, 1997), pp. 137–171
23. V. Phan, S. Skiena, P. Sumazin, A model for analyzing black-box optimization, in Lecture

Notes in Computer Science, vol. 2748 (Springer, Berlin 2003), pp. 424–438
24. L.S. Pitsoulis, M.G.C. Resende, Greedy randomized adaptive search procedures, in Handbook

of Applied Optimization, ed. by P.M. Pardalos, M.G.C. Resende (Oxford University Press,
Oxford, 2002), pp. 178–183

25. A. Punnen, S. Kabadi, Domination analysis of some heuristics for the asymmetric traveling
salesman problem. Discret. Appl. Math. 119(1), 117–128 (2002)

26. A. Punnen, F. Margot, S. Kabadi, TSP heuristics: domination analysis and complexity.
Algorithmica 35(2), 111–127 (2003)

27. A. Punnen, P. Sripratak, D. Karapetyan, Domination analysis of algorithms for bipartite
boolean quadratic programs, in Proceedings of the International Symposium on Fundamentals
of Computation Theory (FCT), pp. 271–282, Liverpool, August (2013)

28. G. Reinelt, TSPLIB — a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384
(1991). See also http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

29. S. Ross, A First Course in Probability, 5th edn. (Prentice Hall, Upper Saddle River, 1998)
30. V.I. Rublineckii, Estimates of the accuracy of procedures in the traveling salesman problem.

Numer. Math. Comput. Technol. (in Russian) 4, 18–23 (1973)
31. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd edn. (Prentice Hall,

Upper Saddle River, 2003)
32. V. Sarvanov, N. Doroshko, The approximate solution of the traveling salesman problem by

a local algorithm that searches neighborhoods of exponential cardinality in quadratic time.
Softw. Algorithm. Program. (in Russian) 31, 8–11 (1981)

33. V. Sarvanov, N. Doroshko, The approximate solution of the traveling salesman problem by
a local algorithm that searches neighborhoods of factorial cardinality in cubic time. Softw.
Algorithm. Program. (in Russian) 31, 11–13 (1981)

34. Y. Twitto, Dominance guarantees for above-average solutions. Discret. Optim. 5(3), 563–568
(2008)

35. E. Zemel, Measuring the quality of approximate solutions to zero-one programming problems.
Math. Oper. Res. 6(3), 319–332 (1981)

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Conditional Markov Chain Search for the
Simple Plant Location Problem Improves
Upper Bounds on Twelve Körkel–Ghosh
Instances

Daniel Karapetyan and Boris Goldengorin

1 Introduction

The Simple Plant Location Problem (SPLP), also known as Uncapacitated Facility
Location Problem, is a classical combinatorial optimisation problem [11] with many
applications in quantitative logistics [13] and flexible manufacturing systems [20].
The SPLP takes a set I = {1, 2, . . . , m} of sites in which plants can be located, a set
J = {1, 2, . . . , n} of clients, each having a unit demand, a vector F = (fi) of fixed
costs for setting up plants at sites i ∈ I , and a matrix C = [cij] of transportation
costs from i ∈ I to j ∈ J as input. It computes a set P �, ∅ ⊂ P � ⊆ I , at which
plants can be located so that the total cost of satisfying all client demands is minimal.
The costs involved in meeting the client demands include the fixed costs of setting
up plants, and the transportation cost of supplying clients from the plants that are
set up.

Historical roots of the SPLP can be found in pioneering Weber’s publication [39],
and a modern formulation of the SPLP as a Mixed Integer Linear Programming
(MILP) problem can be read in [3].

A detailed introduction to this problem has appeared in [11]. The SPLP forms
the underlying model in several combinatorial problems, such as set covering, set
partitioning, information retrieval, simplification of logical Boolean expressions,
airline crew scheduling, vehicle despatching, and is a subproblem for various
location analysis problems (see [21] and the references within).

D. Karapetyan (�)
Institute for Analytics and Data Science, University of Essex, Colchester, UK

B. Goldengorin
Department of Information Systems and Decision Science, Merrick School of Business,
University of Baltimore, Baltimore, MD, USA

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_7

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_7&domain=pdf
https://doi.org/10.1007/978-3-319-94830-0_7

124 D. Karapetyan and B. Goldengorin

The SPLP is N P-hard [11], and several exact and heuristic algorithms for
solving it have been discussed in the literature. Most of the exact algorithms are
based on a mathematical programming formulation of the SPLP (see, for example,
Cornuejols and Thizy [12], Morris [33], and Schrage [36]). Polyhedral results for
the SPLP polytope have been reported in Trubin [38], Balas and Padberg [2], Cho
et al. [9], Cho et al. [10], Farias [14], Cánovas et al. [8], and Galli et al. [17]. In
theory, these results allow us to solve the SPLP by applying the simplex algorithm
to the strong linear programming relaxation, with the additional stipulation that
a pivot to a new extreme point is allowed only when this new extreme point is
integral. However, efficient implementations of this pivot rule are not available.
Beasley [6] reported computational experiments with Lagrangian heuristics for
SPLP instances. Körkel [28] proposed algorithms based on refinements to a dual-
ascent heuristic procedure to solve the dual of a linear programming relaxation of
the SPLP combined with the use of the complementary slackness conditions to
construct primal solutions [15]. Barahona and Chudak [4, 5] have reported optimal
solutions to some SPLP instances with m = n = 3000 and paid attention to
computationally difficult SPLP instances with large fixed costs and several opened
sites in an optimal solution and easy solvable SPLP instances with small fixed costs
and almost all opened sites in an optimal solution.

Since the SPLP is NP-hard, an essential number of publications are devoted to
approximation and heuristic algorithms (see, e.g., [35]). For example, Guha and
Khuller [22] have established a lower bound of 1.463 for the approximation factor,
under some widely believed assumptions. Another heuristic by Jain et al. [26] has a
performance guarantee of only 1.61, but in computational experiments returns good
quality SPLP solutions within 2% of their optimality. In practice, these heuristics
tend to be much closer to optimality for non-pathological instances. There is a
long list of heuristics without any theoretically proven approximation ratio for the
found feasible solutions which return high quality SPLP solutions. Among them
constructive and local search heuristics rooted from the pioneering work of Kuehn
and Hamburger [30], and successfully continued by simulated annealing [1] and
[40], genetic algorithms [29], complete local search with memory [18], and tabu
search [32] as well as Sun [37]. Dual-based methods such as Erlenkotters [15]
dual ascent, Guignard’s [23] Lagrangian dual ascent, and the volume algorithm
by Barahona and Chudak [4] have also shown promising results. An experimental
comparison of some state-of-the-art heuristics is presented by Hoefer [25] with a
recommendation that tabu search finds the highest quality heuristic solutions within
reasonable CPU time.

Researchers found that many SPLP instance families are relatively easy to solve.
For example, one can solve all Beaslye SPLP benchmark instances just by two
Khumawala preprocessing rules combined with a few branchings on variables with
the largest violation within a fraction of a second [19]. Letchford and Miller [31]
designed preprocessing rules which are effective for the SPLP instances with
facilities and clients located at points on the Euclidean plane. In 2003, Ghosh [18]
proposed a class of computationally hard instances which are now known as Körkel–
Ghosh (KG) instances since these instances are modified Körkel instances [28].

Conditional Markov Chain Search for the Simple Plant Location Problem 125

Fischetti et al. [16] explain the computational intractability of the KG instances
because they have a large number of near-optimal solutions, which makes it hard
to identify variables that could not be in an optimal KG SPLP instance solution.
Since on average at least 80% of all sites should be closed in an optimal solution
to the KG instances most of the preprocessing approaches are not successful in
their efforts to find high quality solutions to the KG instances. The KG instance
library includes three classes of instances, namely A, B, and C. In class A, the fixed
costs fi are drawn uniformly from [100, 200], in class B—from [1000, 2000], and
in class C—from [10000, 20000]. The transportation costs cij are always drawn
uniformly from [1000, 2000]. Symmetric and asymmetric instances are included,
where symmetric instances satisfy cij = cji . The KG library includes instances of
size m× n = 250× 250, m× n = 500× 500, and m× n = 750× 750.

In the recent decade, many different heuristics (see, e.g., [37]) as well as exact
approaches by Beltran-Royo et al. [7], Posta et al. [34], and Fischetti et al. [16]
were applied to improve the best known upper bounds for the KG instances. A
recent attack on the KG benchmark showed that the upper bounds for many of the
instances can still be improved [16] but this takes a significant computational effort.
Fischetti et al. [16] conclude that 50 KG instances still remain out of reach for
existing exact methods. Nevertheless, they have been able to improve the best known
upper bounds for 22 KG instances solutions and matched the other 21 within 3600 s.
After increasing the CPU time budget to 7200 s they slightly improved their results
by keeping 22 strictly improved and one more matched (now 22 matched) solutions.
For the remaining six instances (out of 50) their upper bounds are worse than the
best known.

The purpose of our paper is to present the next step in finding better solutions
to the KG SPLP benchmark instances. While all the previous attempts to tackle
SPLP were based on human-designed algorithms, we applied automated heuristic
generation to produce an effective method for SPLP.

The main idea behind automated heuristic generation is that (meta)heuristic
design is a labour-intensive process in which an expert is required to use their
skills and intuition about the domain to combine available components into an
algorithm with complex behaviour. Automated generation of (meta)heuristics, also
known as generating hyper-heuristics, is meant to make the design process cheaper
and quicker, and avoid the subjective judgement of the expert that usually affects
the algorithm architecture. The completely automated algorithm design is not yet
available; however, a recent approach called Conditional Markov Chain Search
(CMCS) enables one to automatically compose a metaheuristic from a set of given
domain-specific routines in [27].

The CMCS gives a flexible framework capable of describing a wide range of
metaheuristics using a set of parameters. Each specific combination of parameter
values is called a configuration. In other words, a configuration is a specific compo-
sition of a metaheuristic from the available domain-specific routines. By selecting
one of the top performing configurations, we generate an effective metaheuristic.

We use this approach to automatically design a simple yet effective metaheuristic
for SPLP. An important contribution of the paper is a refined CMCS generation

126 D. Karapetyan and B. Goldengorin

method. Observe that the problem of selecting the best performing configuration
out of several candidates is not well-defined, mainly because there is unlikely to be
a single configuration performing better than every other configuration in every test.
We propose an approach to selecting the best CMCS configuration from the space
of all feasible configurations. We further apply several rules to significantly reduce
the space of CMCS configurations and use a brute-force-like algorithm to choose
the best of them.

While searching for the best performing CMCS configuration, we use a training
dataset consisting of small instances, and use short running times. Nevertheless,
the performance of our selected configuration scales well to the size of large KG
instances. In particular, we show that our automatically generated metaheuristic
clearly outperforms previous state-of-the-art heuristics including the most recent
computational records in [16]. Moreover, in our experiments it improved 12 (and
matched 38 remaining) best known values among the 50 yet unsolved KG SPLP
instances, and have not returned any worse solution for all previously solved 90 KG
benchmark instances keeping the total CPU time budget not more than 1 s!

The paper is structured as follows. The SPLP-specific parts of the algorithm,
i.e. the data structures and algorithmic components, are described in Section 2.
The CMCS framework, the generation procedure, and the best performing CMCS
configurations are discussed in Section 3. The computational results of applying the
best performing CMCS configurations to the benchmark instances are reported in
Section 4. The concluding remarks and future work are discussed in Section 5.

2 SPLP Components

In this section we describe the domain-specific components that will later be used
within our CMCS configurations. All of these components are well-known from the
SPLP literature, or are variations of standard algorithms.

2.1 Data Structures

Our data structure is based on the ideas previously proposed in the SPLP literature,
see, e.g., [24]. We store the list of opened sites in two forms: a vector y ∈ {0, 1}m,
where yi indicates whether site i is opened, and a set of indices P ⊆ I of opened
sites. In addition, for each client j ∈ J , we store the closest opened site p(j) ∈ P

and the second closest opened site q(j) ∈ P . Thus, the objective value of a solution
can be efficiently computed as

∑

i∈P
fi +

∑

j∈J
cp(j),j .

Conditional Markov Chain Search for the Simple Plant Location Problem 127

In practice, we never need to compute the objective value as we store it in a variable
v and maintain its value while manipulating the solution.

Our data structure requires that at least two sites are opened, which is a
reasonable assumption for our test problems, and so we enforce this constraint in
every component. If for some other problem instances such an assumption would
be too strong, one can start the search with evaluating all the m solutions containing
exactly one opened site, which would take only O(mn) time.

We also precompute a matrix π = [π(i, j)] of size m × n, where π(i, j) is the
index of the j th closest site for the client i. In other words, cπ(i,1) ≤ cπ(i,2) ≤ · · · ≤
cπ(i,m). We will need the matrix π for efficient exploration of a neighbourhood, see
Section 2.4.

This data structure allows efficient procedures for opening or closing a site. For
details see Algorithms 1 and 2. The worst case time complexity of opening a site is
O(n) and of closing—O(n|P |).

2.2 Open Random (k)

The first two components we discuss are mutation operators, i.e. components that
make random changes to the solution, usually applied to escape a local minimum
by worsening its quality. The ‘Open Random (k)’ component opens k randomly
selected sites. More specifically, the component selects k distinct sites, opening
those of them that are not currently opened (we assume that the number of opened
sites is relatively small and thus the probability of hitting a site that is already opened
is relatively small).

The time complexity of the ‘Open Random (k)’ component is O(kn).

Algorithm 1 Opening a site
input : Site i∗ ∈ I \ P to be opened

1 forall the j ∈ J do
2 if ci∗,j < cp(j),j then
3 v← v − cp(j),j + ci∗,j q(j)← p(j) p(j)← i∗

4 v← v + fi∗ P ← P ∪ {i∗} yi∗ ← 1

Algorithm 2 Closing a site
input : Site i∗ ∈ P to be closed

5 P ← P \ {i∗} yi∗ ← 0 forall the j ∈ J do
6 if p(j) = i∗ then
7 v← v − cp(j),j + cq(j),j p(j)← q(j) q(j)← arg mini∈P \{p(j)} ci,j

8 else if q(j) = i∗ then
9 q(j)← arg mini∈P \{p(j)} ci,j

10 v← v − fi∗

128 D. Karapetyan and B. Goldengorin

2.3 Close Random (k)

The ‘Close Random (k)’ component is another mutation operator; it closes k

randomly selected sites. More specifically, the component selects min{k, |P | − 2}
currently opened sites and closes them. The worst case time complexity of the
‘Close Random (k)’ component is O(kn|P |).

2.4 Open Best

The ‘Open Best’ component is a local search procedure that opens a single site if
that improves the solution. The cardinality of the corresponding neighbourhood is
m − |P |, and the procedure chooses the best candidate. A naive implementation
of the ‘Open Best’ local search would take O(mn) time. We reduce this to
O(m +∑

j∈J p(j)). (Observe that p(j) ≤ m and hence
∑

j∈J p(j) ≤ mn, while
in practice the sum is considerably smaller.) This is achieved by gradually building
a vector δi , i ∈ I , where δi is the change in the objective value if the site i is to be
opened. We initialise δi ← fi . Then, for each client j ∈ J , we scan through the
sites i that are closer than p(j), i.e. through the sites that, if opened, will improve the
transportation cost for that client, and update δi ← δi+ci,j−cp(j),j . This operation
is implemented efficiently by utilising the precomputed π matrix, see Section 2.1.
At the end, we choose i∗ = arg mini∈I δi . If δi∗ < 0, then we open site i∗. Otherwise
we leave the solution unchanged.

2.5 Close Best

The ‘Close Best’ component is a local search procedure that closes a single site
if that improves the solution. The corresponding neighbourhood consists of |P |
solutions, and the procedure chooses the best out of them.

A naive implementation of the ‘Close Best’ local search would take O(|P |n)

time, whereas we reduce the exploration time to O(m+n) time. We gradually build
a vector δi , i ∈ I , where δi is the change in the objective value caused by closing
site i. Initially we set δi = −fi for every i ∈ P . Then, for each client j ∈ J , we
increase δp(j) by cq(j),j − cp(j),j . At the end, we choose i∗ = arg mini∈P δi , and if
δi∗ < 0, then we close site i∗. Otherwise we leave the solution unchanged.

2.6 Exchange Best

The ‘Exchange Best’ component is a local search procedure that closes one site and
opens another one if that improves the solution. It chooses the best candidate out of
the (m− |P |)|P | solutions in the neighbourhood.

Conditional Markov Chain Search for the Simple Plant Location Problem 129

A native implementation would take O(mn|P |) time to explore the ‘Exchange
Best’ neighbourhood. By following the logic of the ‘Open Best’ local search
implementation and building a matrix δ of size |P | × n, we reduce this to O(mn).

2.7 Exchange Half Fixed

Observe that the ‘Exchange Best’ local search is relatively slow comparing to
the other two local search procedures. We propose a local search that explores
only a fraction of the ‘Exchange Best’ neighbourhood but runs much quicker.
Our ‘Exchange Half Fixed’ local search randomly selects the site i∗ ∈ P to be
closed, and then searches for the best site to be opened. This exploration takes
O(

∑
j∈J p(j)+mγ) time, where γ is the number of clients j for which p(j) = i∗.

For a random instance, the expected value of γ is n/|P |.

3 Conditional Markov Chain Search

Conditional Markov Chain Search (CMCS) was first introduced by Karapetyan
et al. [27] as a framework to enable automated generation of metaheuristics. It
gives a flexible way of composing a metaheuristic from a set of domain-specific
components, with the behaviour of the control mechanism defined by numerical
parameters.

Let H be an ordered set of available domain-specific components, which we
call a solution pool. By component we mean a black box algorithm that takes the
problem instance and a solution as an input and outputs a new (modified) solution.
A component could implement, for example, a local search procedure or a random
move (mutation).

CMCS is a single-point metaheuristic. It applies the components to the current
solution, one at a time, in a certain sequence. The output of the previous component
is an input of the next component in the sequence. For example, if the sequence is

H1,H1,H3,H3,H2,H1,

and the initial solution is S0, the CMCS will proceed as follows:

S1 ←H1(S0),

S2 ←H1(S1),

S3 ←H3(S2),

S4 ←H3(S3),

S5 ←H2(S4),

S6 ←H1(S5).

130 D. Karapetyan and B. Goldengorin

CMCS saves the best solution found so far. Hence, at the end of iteration i, it stores
two solutions: current solution Si and the best of S0, S1, . . . , Si .

Each component modifies the solution according to its internal logic. The change
may improve or worsen the solution quality; a component may also leave the
solution intact.

The components are stateless, and are independent (do not communicate with
each other). A component may be randomised or be deterministic.

Given a fixed set of components, the behaviour of CMCS is defined by the
sequence in which the components are executed. This sequence is decided online.
The decision of which component to execute in iteration i is made at the end
of iteration i − 1. In particular, this decision depends on two factors: (i) which
component was executed at iteration i− 1, and (ii) whether Si−1 is better than Si−2.
Hence, the sequence of components is a Markov chain, with the state consisting
of the last executed component and a Boolean variable indicating whether the last
executed component has improved the solution.

The specific logic of the next component selection is called configuration. While
CMCS is a framework, a CMCS configuration is a fixed metaheuristic algorithm.
Observe that a CMCS configuration can be completely defined by two transition
matrices, Msucc and M fail, each of size |H | × |H |. The matrix Msucc is used when
the solution is improved by the last executed component, and M fail is used otherwise
(when either the objective value has not changed, or has worsened). To keep the
paper self-contained, we include a pseudo-code of CMCS in Algorithm 3, a close
copy from [27].

CMCS does not have any acceptance criteria, i.e. it never backtracks any
changes made by the components. (Backtracking can be implemented within a
domain-specific component, e.g. inside a local search procedure, however, once the
component execution is finished, the change, in general, cannot be undone.) There-

Algorithm 3 Conditional Monte-Carlo search
input : Components pool H ;
input : Matrices Msucc and M fail of size |H | × |H |;
input : Objective function f (S) to be minimised;
input : Instance data I ;
input : Initial solution S0;
input : Termination time terminate-at;

11 S∗ ← S0 f ∗ ← f (S0) fprev ← f ∗ h← 1 i ← 1 while now < terminate-at do
12 Si ← Hh(I , Si−1) fcur ← f (Si) if fcur < fprev then
13 h← RouletteWheel(Msucc

h,1 ,Msucc
h,2 , . . . , Msucc

h,|H |)
14 if fcur < f ∗ then
15 S∗ ← Si f ∗ ← fcur

16 else
17 h← RouletteWheel(M fail

h,1,M fail
h,2, . . . , M fail

h,|H |)
18 fprev ← fcur i ← i + 1

19 return S∗

Conditional Markov Chain Search for the Simple Plant Location Problem 131

fore, the only source of the improvement pressure in CMCS is the improvement
pressure generated by some of the components. As a result, it is necessary to include
in the component pool at least one component that would be biased towards good
solutions, such as a local search procedure. It is equally important to include at least
one component capable of worsening the solution, such as a mutation operator, to
escape local minima.

Observe that CMCS is completely domain-independent as all the knowledge
of the domain is incorporated in the components treated as black boxes. Hence,
both the control mechanism and the configuration generation routines are domain-
independent and reusable. Such a reusability is a long-standing goal in the area of
optimisation algorithm design.

We proceed by discussing in Section 3.1 how to restrict CMCS to leave only
a finite manageable number of configurations, and also how to enumerate them,
and then, in Section 3.2, we discuss how to choose the best of the available
configurations.

3.1 Deterministic CMCS

Recall that a CMCS configuration is specified by two matrices, Msucc and M fail.
Each value in a transition matrix defines the probability of the corresponding
transition, hence the space of configurations is continuous. Searching in this space is
particularly hard due to the roughness of the landscape, typical in parameter tuning.
However, as shown in [27], discretisation of the search space allows one to use brute
force to optimise some special cases of CMCS.

In this project, we restrict CMCS to the deterministic case, i.e. to the case where
each row of Msucc and M fail contains exactly one non-zero element. (Note that the
resultant configuration is not necessarily a deterministic SPLP algorithm; it is only
the transition mechanism that is deterministic.) This leaves us with k2k feasible
configurations.

Out of these configurations, some are equivalent. Consider the example in
Figure 1. As H3 is unreachable in either of the two configurations, the last row of
the matrices can be ignored (it does not affect the behaviour of the configurations).
Then the two configurations, formally different, are equivalent.

To exclude such ‘duplicates’, we follow a two-step procedure:

1. At first, we generate all non-empty subsets H ⊆H .
2. For each subset H , we generate all the configurations that use every component

h ∈ H . By ‘use’ we mean that there exists a non-zero probability of transition
from any h′ ∈ H to h, perhaps within several iterations. This can be formalised
using a directed graph G = (H,E) with a node set H and arc set E which
includes an arc (h, h′) ∈ E if and only if Msucc

h,h′ + M fail
h,h′ > 0. We say that

the configuration uses all the components H if and only if graph G is strongly
connected. One may note that some component h may not be reachable from

132 D. Karapetyan and B. Goldengorin

Fig. 1 Configurations A (a)
and B (b) are equivalent.
Indeed, they are only different
in the last row of Msucc, i.e.
in transition from H3.
However, H3 is unreachable.
Hence, the last row of either
of the transition matrices does
not affect the behaviour of the
configurations

Msucc =

1 2 3
1 1 0 0
2 1 0 0
3 0 1 0

Mfail =

1 2 3
1 0 1 0
2 0 1 0
3 1 0 0

(a)

Msucc =

1 2 3
1 1 0 0
2 1 0 0
3 0 0 1

Mfail =

1 2 3
1 0 1 0
2 0 1 0
3 1 0 0

(b)

some other components, however be executed during the first iterations of the
algorithm, for example, if it is the entry point. We assume here that the effect of
h in such a case is likely to be negligible after a large number of iterations.

We can further eliminate some configurations by imposing several constraints:

• At least one of the components in H needs to generate improvement pressure. In
practice, this usually means that at least one of the components is a local search.

• At least one of the components in H needs to be able to worsen the solution, as
otherwise the search will quickly converge to a local minimum and stop there. In
practice, this usually means that as least one of the components is a mutation.

• If component Hh is a classic local search, i.e. it explores some deterministic
neighbourhood and makes the move if and only if it improves the solution, then
we can fix M fail

h,h = 0.

We say that a configuration that satisfies all the above conditions is meaningful.
This still leaves us with a considerable number of meaningful configurations. For

example, for a set of six components, where three of them are deterministic local
search procedures and three are mutations, the number of meaningful configurations
is approximately 3.4 · 108. This is a significant improvement over the number
of feasible configurations k2k ≈ 2 · 109, but still impractical even for such a
small number of components. Thus, we introduce an additional constraint; we
only consider configurations for |H | = λ, where λ is a parameter. Then we can
ask a question of the form ‘what is the best configuration composed of exactly λ

components’ or ‘what is the best configuration composed of at most Λ components’.
The parameter λ greatly reduces the number of configurations. The number of

feasible λ-component configurations is

(|H |
λ

)

· λ2λ configurations. (1)

Given three local searches and ten mutation, there are only 2.1·105 three-component
and 1.2 · 103 two-component feasible configurations. By using the conditions
discussed above, we end up with 3.7 · 104 three-component and 1.8 · 102 two-

Conditional Markov Chain Search for the Simple Plant Location Problem 133

component meaningful configurations (there are no meaningful configurations with
one component, as we require that both local searches and mutations are included
into H , see the above constraints). Compare this to the overall 9.2 · 1028 feasible
configurations.

We recognise that the parameter λ greatly restricts the complexity of the CMCS
configurations, however, this restriction allows us to include many components and
let the CMCS generator, rather than a human expert, choose which component
combinations are most efficient.

3.2 CMCS Generator

CMCS generator is a procedure that finds the best (or some very good) CMCS
configuration. In this project, as we restrict the set of configurations to deterministic
configurations, our CMCS generator aims at selecting the best of all the meaningful
configurations.

To evaluate a configuration, we use a training dataset T . Each element of T
is a triple (Inst, S0, t), where Inst is the SPLP instance, S0 is the initial solution,
and t is the time budget. Let f (C, Inst, S0, t) be the objective value of a solution
obtained by solving instance Inst with the initial solution S0 and the time budget t

by the CMCS configuration C. Then we can interpret the problem of selecting the
best configurations as a multi-dimensional optimisation problem, with the objective
functions f (C, Inst, S0, t), (Inst, S0, t) ∈ T . With a large number of dimensions,
one may assume that the majority of the configurations would be Pareto optimal.
However, in practice many configurations demonstrate very poor solution quality
and as a result are dominated by top ranked configurations. Hence, the Pareto
domination approach is sufficient to filter out the majority of poorly performing
configurations.

The approach taken in [27] was to run all the tests for each configuration. Here
we improve this by filtering out the least promising configurations after the first
few tests. More specifically, if a configuration C performs strictly worse than some
other configuration C∗ in the first seven tests, we can use the sign test condition
to conclude that C∗ is superior to C with significance level 99%. This heuristic
approach will not allow us to select the best performing configuration but it will let
us quickly focus on the most promising configurations.

Selection of the best performing configuration out of the most promising
candidates requires multiple-criteria decision-making. The standard methods, such
as the Analytic hierarchy process or ELECTRE, are designed to tackle problems
with hard to quantify and compare attributes. In our problem, all the attributes (the
f (C, Inst, S0, t) values) have equal weights, and are inherently easy to quantify.
Thus, we use the simple weighted sum model, with equal weights.

To summarise, our CMCS generator performs in two stages:

134 D. Karapetyan and B. Goldengorin

1. Form a set C of all meaningful configurations and run the first seven tests
T1,T2, . . . ,T7 for each configuration C ∈ C . Select non-dominated configu-
rations and save them to C ′, i.e.

C ′ = {C ∈ C :
 ∃C∗ ∈ C such that C∗ dominates C} . (2)

C ′ usually includes only a small fraction of all the meaningful configurations.
2. Run the remaining tests for each configuration in C ′. As the scale of objective

values may vary between tests, then, for each (Inst, S0, t) ∈ T , normalise
f (C, Inst, S0, t) by scaling it to the [0, 1] interval:

f ′(C, Inst, S0, t) = f (C, Inst, S0, t)−minC′∈C ′ f (C′, Inst, S0, t)

maxC′∈C ′ f (C′, Inst, S0, t)−minC′∈C ′ f (C′, Inst, S0, t)
.

Finally, select a configuration C ∈ C ′ that minimises

∑

(Inst,S0,t)∈T
f (C, Inst, S0, t) . (3)

4 Computational Results

We first describe in Section 4.1 our set up for the CMCS configuration generation,
as well as the produced configurations. We then apply in Section 4.2 these config-
urations to the KG instances to obtain upper bounds for the yet unsolved instances
and compare our results to the state-of-the-art heuristics from the literature. We also
check the performance of our CMCS configurations on already solved instances.

All our algorithms were implemented in C#, and the experiments were conducted
on a Windows machine with two Intel Xeon E5-2690 v4 (2.6 GHz) CPUs and
HyperThreading enabled. Our implementation of CMCS does not use concurrency.
We used the multiple cores to run the experiments in parallel, but not more than one
experiment per physical CPU core.

4.1 CMCS Configuration Generation for SPLP

In our experiments, we restricted the set of configurations to two- and three-
component configurations, i.e. set Λ = 3. Our pool H of components consisted
of:

• ‘Open Best’, ‘Close Best’, ‘Exchange Best’, and ‘Exchange Half Fixed’ local
searches;

• ‘Open Random (k)’ and ‘Close Random (k)’ mutations for k = 1, 2, 3, 4.

Conditional Markov Chain Search for the Simple Plant Location Problem 135

The training dataset included 200 tests (Inst, S0, t). The instances Inst were
generated using the KG instance generator, with the instance size n = m selected
uniformly at random between 300 and 400. The size and the type of the instance
(‘a’, ‘b’, or ‘c’) was also drawn uniformly at random. The initial solution S0 was
generated by opening r random sites, where r ∈ [2, �0.1n�] was chosen uniformly
at random. Note that an optimal solution to a KG instance is likely to have more
than two but less than �0.1n� opened sites; hence, we exercise both situations when
the number of opened sites needs to be increased and decreased. The time budget
t for each test was set to 0.5 s. This time budget was selected to allow a CMCS
configuration to run a sufficiently large number of iterations (about 50) to reveal its
long-term behaviour.

Some of the data on CMCS generation is summarised in Table 1. One can see
that the value of λ significantly affects the number of meaningful configurations, as
well as the number of configurations selected at the first stage of the generation. As a
result, the wall time taken by the generator for λ = 2 was around 4 min whereas for
λ = 3 it was more than 12 h. This shows that the current generator is not well suited
for more complex configurations or significantly larger component pools, however,
even this limited set of configurations yields good results, as we will show in our
computational study.

The configurations generated for λ = 2 and λ = 3 are shown in Figure 2. Each
node in these diagrams corresponds to a component, and each arc to a transition.
Blue arcs show transitions when the last component execution was successful

Table 1 CMCS generation data

λ = 2 λ = 3

Feasible deterministic configurations (see (1)) 1056 160,380

Meaningful deterministic configurations 216 43,326

Second stage configurations 28 4901

Overall generation time, sec (wall time) 293 43,326

Close Rnd
(4)Open Best

(a)

Open Rnd
(4)Close Best Exchange

Half Fixed

(b)

Fig. 2 Best performing CMCS configurations. The blue arcs correspond to successful transitions
(after the solution was improved), and the red arcs correspond to the unsuccessful transitions
(after the solution was not improved). The thickness of an arc indicates the frequency of the
corresponding transition. (a) Best performing two-component CMCS configuration. (b) Best
performing three-component CMCS configuration

136 D. Karapetyan and B. Goldengorin

(improved the solution) and red—when unsuccessful (the solution quality was
worsened or has not changed). The thickness of the arc indicates the frequency of
that transition; it is proportional to square root of that frequency.

The strategy of the two-component configuration is easy to explain. The configu-
ration opens sites, in a greedy manner, as long as this improves the solution. Then it
closes four sites randomly and gets back to adding new sites. This strategy, in fact,
exactly replicates the behaviour of iterated local search.

The three-component configuration is more complex, but its logic can still be
interpreted. The algorithm closes sites, in a greedy manner, until it reaches a local
minimum. Then it attempts to replace some site with another one (‘Exchange Half
Fixed’). If successful, there is a chance some other site got redundant which is why
it returns to the ‘Close Best’ component. If, however, ‘Exchange Half Fixed’ fails,
a mutation is applied. In particular, four random sites are opened and the control is
passed back to ‘Exchange Half Fixed’. There is a high chance that ‘Exchange Half
Fixed’ will be able to improve the solution, and then the control will be returned
to ‘Close Best’. Note that this strategy closely resembles variable neighbourhood
search, with three neighbourhoods. As soon as the search in one neighbourhood
fails, the next neighbourhood is used. It is non-typical though that one of the local
searches (‘Exchange Half Fixed’) explores only a randomly chosen area of the
neighbourhood.

While we can explain the behaviour of the three-component CMCS configuration
and even show its similarity to a well-known metaheuristic, the point of the
automated generation is that this strategy was produced without prior knowledge
of existing metaheuristics. Moreover, many decisions were taken automatically,
such as which components to include in the metaheuristic, and in which order to
use them. The whole design process is completely unbiased, hence the generated
configuration is objectively one of the most effective ones possible within the
framework. (The exact definition of effectiveness may vary, but then the CMCS
generation procedure can also be adjusted accordingly.) Thus, we can expect
that the generated configuration performs at least as well as any human-designed
metaheuristics, unless the limited component pool or complexity of CMCS is an
issue.

The source codes of our two- and three-component CMCS configurations can be
downloaded from

http://csee.essex.ac.uk/staff/dkarap/splp-source-and-solutions.zip (the URL will
be shortened in the final version).

4.2 Experiments with the KG Instances

In this section we solve the KG instances with the two- and three-component CMCS
configurations discussed above. We first solve the 50 instances to which optimal
solutions are not yet known. We use time budget 7200 s, same as in [16]. (The test
machine used in [16] is based on Intel Xeon E3-1220V2 CPU (3.10 GHz), which

http://csee.essex.ac.uk/staff/dkarap/splp-source-and-solutions.zip

Conditional Markov Chain Search for the Simple Plant Location Problem 137

is comparable to our CPUs. However, Fischetti et al. [16] utilised four CPU cores,
effectively increasing computational power fourfold. By assuming that one time unit
in the experiments of [16] is equal to one time unit in our experiments, we give [16]
advantage.

Our results are reported in Table 2. These new upper bounds are the best solutions
we found in our experiments (as the reader will see later, all these solutions were
obtained by the three-component CMCS configuration with time budget 1000 s). We
improved 12 best known upper bounds and matched all others. We further tested
our solvers on the instances for which optimal solutions are known. Our three-
component CMCS configuration could solve any of those instances to optimality
within 1 s. While not being a formal proof, this suggests that we, perhaps, have also
reached optimal solutions for most of the yet unsolved instances.

Table 2 Previous and new
upper bounds for the yet
unsolved KG instances

Instance Previously best known Our best Difference

ga500a-1 511,383 511,383 0

ga500a-2 511,255 511,255 0

ga500a-3 510,810 510,810 0

ga500a-4 511,008 511,008 0

ga500a-5 511,239 511,226 −13

ga500b-1 538,060 538,060 0

ga500b-2 537,850 537,850 0

ga500b-3 537,924 537,921 −3

ga500b-4 537,925 537,925 0

ga500b-5 537,482 537,482 0

ga750a-1 763,528 763,520 −8

ga750a-2 763,653 763,623 −30

ga750a-3 763,697 763,684 −13

ga750a-4 763,945 763,941 −4

ga750a-5 763,786 763,786 0

ga750b-1 796,454 796,454 0

ga750b-2 795,963 795,963 0

ga750b-3 796,130 796,130 0

ga750b-4 797,013 797,013 0

ga750b-5 796,387 796,312 −75

ga750c-1 902,026 902,026 0

ga750c-2 899,651 899,651 0

ga750c-3 900,010 900,010 0

ga750c-4 900,044 900,044 0

ga750c-5 899,235 899,235 0

gs500a-1 511,188 511,187 −1

gs500a-2 511,179 511,179 0

(continued)

138 D. Karapetyan and B. Goldengorin

Table 2 (continued) Instance Previously best known Our best Difference

gs500a-3 511,112 511,106 −6

gs500a-4 511,137 511,137 0

gs500a-5 511,293 511,293 0

gs500b-1 537,931 537,931 0

gs500b-2 537,763 537,763 0

gs500b-3 537,854 537,854 0

gs500b-4 537,742 537,742 0

gs500b-5 538,270 538,270 0

gs750a-1 763,671 763,671 0

gs750a-2 763,548 763,548 0

gs750a-3 763,727 763,702 −25

gs750a-4 763,887 763,887 0

gs750a-5 763,614 763,614 0

gs750b-1 797,026 797,026 0

gs750b-2 796,170 796,170 0

gs750b-3 796,589 796,589 0

gs750b-4 796,734 796,709 −25

gs750b-5 796,365 796,365 0

gs750c-1 900,363 900,363 0

gs750c-2 897,886 897,886 0

gs750c-3 901,656 901,089 −567

gs750c-4 901,239 901,239 0

gs750c-5 900,216 900,216 0

Our best solutions can be downloaded from http://csee.essex.ac.uk/staff/dkarap/
splp-source-and-solutions.zip (the URL will be shortened in the final version), and
are also reported in Appendices 1 and 2.

In Table 3, we compare our two- and three-component CMCS configurations
to the results of the previous attack on the KG instances [16]. The time budget of
each method is given in the second row of the table. Observe that either of the two
CMCS configurations clearly outperforms [16] being given only 100 s, whereas the
time budget in [16] is 7200 s. Moreover, being given 1000 s, the three-component
CMCS configuration matches or outperforms [16] on every instance, finding all the
new best solutions. Hence, the three-component CMCS is faster than Fischetti et
al. [16] by two orders of magnitude, and it is capable of achieving higher solution
quality.

We also note here that the three-component CMCS configuration performs better,
on average, than the two-component one. For example, the three-component CMCS
configuration given 1000 s achieves the same solution quality as the two-component
CMCS configuration given 7200 s. The two-component configuration was also less
successful on the solved KG instances; even given 7200 s per instances, it could
not reach the optimal solution for one of them. This demonstrates the importance
of configuration complexity and diversity of components; setting Λ = 2 could be

http://csee.essex.ac.uk/staff/dkarap/splp-source-and-solutions.zip
http://csee.essex.ac.uk/staff/dkarap/splp-source-and-solutions.zip

Conditional Markov Chain Search for the Simple Plant Location Problem 139

Table 3 Comparison of the CMCS configurations to [16]

Solver: Fischetti
Budget, et al. [16] Two-component configuration Three-component configuration
sec: 7200 1 10 100 1000 7200 1 10 100 1000 7200

ga500a-1 511,383 53 7 0 0 0 0 0 0 0 0

ga500a-2 511,255 7 0 0 0 0 21 0 0 0 0

ga500a-3 510,810 3 0 0 0 0 7 0 0 0 0

ga500a-4 511,008 37 30 0 0 0 48 30 30 0 0

ga500a-5 511,239 95 0 −13 −13 −13 50 1 −13 −13 −13

ga500b-1 538,060 0 0 0 0 0 0 0 0 0 0

ga500b-2 537,850 7 0 0 0 0 0 0 0 0 0

ga500b-3 537,924 −3 −3 −3 −3 −3 166 −3 −3 −3 −3

ga500b-4 537,925 43 0 0 0 0 69 0 0 0 0

ga500b-5 537,482 0 0 0 0 0 0 0 0 0 0

ga750a-1 763,528 141 0 0 −8 −8 150 −8 18 −8 −8

ga750a-2 763,653 63 8 −30 −30 −30 59 −19 −17 −30 −30

ga750a-3 763,697 196 46 −13 −13 −13 170 59 −7 −13 −13

ga750a-4 763,945 200 34 −4 19 −4 180 103 −4 −4 −4

ga750a-5 763,786 260 12 4 8 0 212 63 0 0 0

ga750b-1 796,454 337 0 0 0 0 26 0 0 0 0

ga750b-2 795,963 190 0 0 0 0 248 0 0 0 0

ga750b-3 796,359 132 −216 −229 −229 −229 90 −229 −229 −229 −229

ga750b-4 797,013 128 0 0 0 0 0 0 0 0 0

ga750b-5 796,549 −104 −237 −237 −237 −237 −65 −214 −237 −237 −237

ga750c-1 902,026 0 0 0 0 0 0 0 0 0 0

ga750c-2 899,651 81 0 0 0 0 81 0 0 0 0

ga750c-3 900,019 −9 −9 −9 −9 −9 −9 −9 −9 −9 −9

ga750c-4 900,044 0 0 0 0 0 0 0 0 0 0

ga750c-5 899,235 0 0 0 0 0 0 0 0 0 0

gs500a-1 511,188 12 −1 −1 −1 −1 114 41 −1 −1 −1

gs500a-2 511,179 0 0 0 0 0 0 0 0 0 0

gs500a-3 511,112 0 25 −6 −6 −6 31 0 −6 −6 −6

gs500a-4 511,137 117 0 0 0 0 139 0 0 0 0

gs500a-5 511,293 81 27 27 0 0 88 0 0 0 0

gs500b-1 537,931 64 0 0 0 0 0 0 0 0 0

gs500b-2 537,763 16 0 0 0 0 48 0 0 0 0

gs500b-3 537,854 72 0 0 0 0 0 0 0 0 0

gs500b-4 537,742 0 0 0 0 0 0 0 0 0 0

gs500b-5 538,270 82 0 0 0 0 82 0 0 0 0

gs750a-1 763,671 63 5 0 0 0 159 17 0 0 0

gs750a-2 763,548 199 15 15 0 0 157 15 14 0 0

gs750a-3 763,727 155 46 21 −25 −25 −12 11 21 −25 −25

gs750a-4 763,922 58 6 −35 −35 −35 53 22 −3 −8 −35

gs750a-5 763,614 102 27 2 0 0 87 18 2 0 0

(continued)

140 D. Karapetyan and B. Goldengorin

Table 3 (continued)

Solver: Fischetti
Budget, et al. [16] Two-component configuration Three-component configuration
sec: 7200 1 10 100 1000 7200 1 10 100 1000 7200

gs750b-1 797,329 −138 −303 −303 −303 −303 −303 −303 −303 −303 −303

gs750b-2 796,170 31 25 0 0 0 31 31 0 0 0

gs750b-3 796,589 0 0 0 0 0 534 0 0 0 0

gs750b-4 797,020 −311 −286 −311 −311 −311 −178 −286 −311 −311 −311

gs750b-5 796,365 0 0 0 0 0 0 0 0 0 0

gs750c-1 900,363 0 0 0 0 0 0 0 0 0 0

gs750c-2 897,886 0 0 0 0 0 187 0 0 0 0

gs750c-3 901,656 −567 −567 −567 −567 −567 −567 −567 −567 −567 −567

gs750c-4 901,239 0 0 0 0 0 0 0 0 0 0

gs750c-5 900,216 0 0 0 0 0 0 0 0 0 0

Improved 6 8 14 15 16 6 9 14 16 16

Same 14 28 31 33 34 16 29 31 34 34

Worse 30 14 5 2 0 28 12 5 0 0

considered as a minimal option, which restricts the performance that can be achieved
by corresponding configurations. On the other hand, we have evidence that Λ = 3
is sufficient to achieve outstanding performance when compared to human-designed
algorithms. A more efficient CMCS generation routine will let us verify if a four-
component configuration can achieve an even better performance.

5 Conclusions

In this paper, we discussed automated generation of CMCS configurations for the
SPLP, and have shown the success of our approach. In particular, we clearly out-
performed the previous state-of-the-art solver and improved the best known upper
bounds for 12 out of 50 yet unsolved KG instances. The outstanding performance
of our SPLP heuristic is attributed to that it was generated automatically.

The automated generation of the algorithm has several obvious advantages.
One is that it saves labour and human expertise required for (meta)heuristic
design. Also, automated generation is significantly quicker than a manual design
process, hence the entire algorithm design can be completed within a few days.
Finally, the computer is capable of testing more combinations than a human and
objectively selecting the best of them. This lack of bias means, among other things,
that the computer does test strategies that a human would usually rule out, and
in our experience such unusual strategies often demonstrate unexpectedly good
performance.

In the spirit of the no free lunch theorem, we note here that the selected
configuration performs best only under certain circumstances such as a specific

Conditional Markov Chain Search for the Simple Plant Location Problem 141

instance family or certain time budget. By correctly selecting the training dataset,
we can obtain an algorithm that is best suited for our particular case. Moreover, it
is easy to obtain several algorithms for various circumstances and requirements and
then use the most appropriate one for each job.

In this project, we limited CMCS configurations to deterministic strategies,
and also restricted the number of components to be included in a configuration.
These simple measures greatly reduced the number of candidate configurations
allowing us to enumerate all of them and choose the best performing one. We use
a combination of Pareto dominance and sign test to quickly rule out less promising
configurations, and then apply a multi-criteria optimisation method to choose a
single best candidate.

We leave for future work investigation of more efficient CMCS generation
procedures, which will allow one to include more components into the component
pool and consider more sophisticated configurations. Also, it would be interesting
to select not a single best configuration but several well-performing configurations
with complementary properties, and select the most appropriate one at run time.
Finally, we are interested to apply the CMCS approach to other classes of allocation
and clustering instances as well as to routing and scheduling optimisation problems.

Appendix 1: Optimal Solutions for Instances Solved to
Optimality

Instance Obj. v. Opened sites

ga250a-3 257953 22 35 39 46 57 66 76 86 97 100 105 112 114 116 121 124 126 127
144 154 155 176 192 196 200 207 211 219 223 227 229 237 246
249

ga250a-5 258190 13 17 29 35 40 43 49 55 60 63 79 82 110 126 135 139 150 157 161
174 178 179 198 201 204 208 211 230 232 241 248

ga500c-5 621313 4 75 183 259 360 491

gs500c-3 621204 98 195 216 245 333 429

gs500c-5 623180 22 51 276 355 439 444

ga250a-1 257957 21 32 38 47 53 56 58 84 94 100 101 103 111 129 136 139 144 146
149 150 168 170 175 178 203 204 219 224 234 238 239 250

ga250a-2 257502 11 37 55 62 64 84 88 99 100 103 107 114 115 116 118 132 146 157
158 160 171 191 200 211 213 217 218 221 237 238 240 250

ga250a-4 257987 4 5 7 30 31 37 53 55 69 73 74 75 84 92 93 103 108 115 119 127 129
153 163 168 173 174 188 199 200 203 208 213 219 236 250

ga250b-1 276296 10 56 60 94 106 129 149 150 170 203 219 250

ga250b-2 275141 37 55 88 103 135 141 158 191 211 213 231

ga250b-3 276093 1 18 22 35 39 50 97 192 200 229 246

ga250b-4 276332 5 7 36 56 77 92 124 160 228 236 250

(continued)

142 D. Karapetyan and B. Goldengorin

Instance Obj. v. Opened sites

ga250b-5 276404 40 57 79 110 157 161 183 184 208 211 241 246

ga250c-1 334135 100 154 175 231

ga250c-2 330728 45 55 88 99

ga250c-3 333662 22 97 127 138

ga250c-4 332423 5 124 143 188

ga250c-5 333538 74 110 157 247

ga500c-1 621360 127 269 378 403 430

ga500c-2 621464 28 107 212 315 344 456

ga500c-3 621428 68 187 314 326 370 474

ga500c-4 621754 56 97 307 350 436

gs250a-1 257964 4 10 12 25 27 30 47 51 63 71 119 123 126 132 137 143 145 155 161
163 169 176 177 178 203 214 232 234 236 238 245 246 249

gs250a-2 257573 9 24 25 40 43 46 52 74 77 86 87 88 95 96 98 100 101 113 114 120
130 139 154 160 161 165 166 184 191 241 245 250

gs250a-3 257626 9 20 33 34 37 38 55 60 67 69 71 72 91 110 120 121 132 139 144
148 166 172 174 177 187 189 190 199 204 209 223 229 234

gs250a-4 257961 3 20 31 36 46 54 101 102 104 115 118 128 139 143 144 159 160
163 168 179 188 193 195 207 208 217 221 226 233 237

gs250a-5 257896 18 33 36 47 49 60 76 77 89 98 104 114 118 122 124 133 137 156
161 168 172 189 204 207 209 212 213 217 223 227 228 230 235
250

gs250b-1 276761 8 27 47 63 71 113 137 145 170 178 229 232

gs250b-2 275675 25 43 52 69 77 87 120 139 149 160 221 245

gs250b-3 275710 32 55 57 60 67 69 82 166 172 174 210

gs250b-4 276114 13 19 31 35 97 106 139 144 157 177 191 247

gs250b-5 275916 18 36 118 122 124 137 166 172 177 204 209 230

gs250c-1 332935 63 170 176 232

gs250c-2 334630 25 52 83 144

gs250c-3 333000 57 60 69 166

gs250c-4 333158 52 144 157 191

gs250c-5 334635 18 84 114 186

gs500c-1 620041 29 102 112 242 440

gs500c-2 620434 70 286 424 439 495

gs500c-4 620437 96 247 283 316 390

Conditional Markov Chain Search for the Simple Plant Location Problem 143

Appendix 2: Best Known Solutions for Instances Not Yet Solved
to Optimality

The objective values of these solutions can be found in Table 2, column ‘Our best’.

Instance Opened sites

ga500a-1 22 28 52 59 65 70 73 79 86 90 100 103 111 126 142 152 156 173 177 189
199 205 208 219 221 234 245 246 260 265 269 275 280 299 301 303 313 375
378 397 410 419 430 463 475 486 490 494

ga500a-2 34 51 54 70 84 116 120 122 126 144 155 158 169 177 188 193 195 204 212
213 218 222 223 238 255 289 313 315 321 333 338 345 360 372 391 397 399
401 413 415 437 450 466 470 476 478 485 487 500

ga500a-3 12 33 36 37 44 49 55 65 75 85 88 92 94 96 114 132 145 148 150 166 178 184
185 187 192 196 201 220 241 252 257 278 285 288 290 303 340 364 367 370
375 378 386 393 431 451 474

ga500a-4 18 19 29 35 39 42 43 49 56 65 74 78 102 119 138 140 144 155 188 197 204
214 267 273 280 281 282 293 317 329 340 346 350 360 364 371 377 388 404
411 417 419 430 436 448 456 466 484 496

ga500a-5 4 11 14 22 34 36 38 40 47 51 55 95 100 120 123 125 127 133 155 174 181
183 199 216 229 283 284 301 316 321 326 328 332 336 348 369 371 380 382
387 390 397 399 424 429 487 488 491 497

ga500b-1 34 100 127 153 156 176 184 189 199 236 277 375 378 379 410 430 470

ga500b-2 28 34 51 137 212 213 225 238 241 245 249 268 315 336 338 344 459 478

ga500b-3 36 66 92 94 166 185 187 189 241 290 300 303 326 340 370 393 431 474

ga500b-4 24 138 204 282 293 329 330 343 360 388 396 436 448 451 456 466 484 496

ga500b-5 2 14 55 123 124 135 142 147 181 183 231 258 259 349 360 382 399 414

gs500a-1 6 22 42 53 55 58 94 95 115 116 120 121 126 127 129 144 149 154 164 171
173 212 239 252 270 285 294 300 320 321 327 335 336 343 352 377 379 384
385 389 399 420 426 429 434 442 464 490

gs500a-2 9 50 53 62 70 99 109 110 115 124 168 169 175 185 198 202 204 218 229 233
241 247 269 276 289 290 294 295 301 316 333 335 336 356 358 376 383 394
400 422 426 437 439 453 457 459 460 463 464 470

gs500a-3 7 17 28 38 41 55 65 67 74 84 86 110 117 147 152 153 162 173 212 219 223
244 256 259 269 271 273 287 300 301 308 310 365 369 371 377 381 385 394
401 413 417 421 437 453 456 493 494

gs500a-4 9 10 14 18 56 67 68 84 87 93 95 123 124 136 137 161 165 173 180 189 194
196 202 217 229 231 258 273 277 281 290 350 356 359 363 371 378 380 390
391 435 438 453 458 464 484 490 491 495

gs500a-5 3 4 7 13 15 30 40 47 60 69 78 86 122 123 136 153 156 159 160 171 174 185
192 231 233 234 235 250 251 257 268 281 304 312 316 322 331 338 384 391
411 424 431 444 459 460 481 498

gs500b-1 22 29 45 82 102 112 116 193 215 257 258 313 385 410 440 468 470 471

gs500b-2 24 70 85 95 115 168 233 247 329 356 358 382 383 408 437 439 457 488

gs500b-3 7 41 116 216 235 245 255 269 273 279 287 299 308 333 347 371 392 429

gs500b-4 76 91 103 120 132 142 165 171 173 212 230 351 380 406 437 438 447 491

(continued)

144 D. Karapetyan and B. Goldengorin

Instance Opened sites

gs500b-5 3 7 13 40 65 105 153 185 226 235 319 322 372 384 431 444 460 486

ga750a-1 2 18 35 50 52 67 69 71 74 105 110 111 117 118 127 152 155 209 219 233
234 242 263 280 296 305 309 316 330 335 346 381 430 431 435 446 449 457
478 484 494 512 538 540 548 559 564 587 616 640 644 647 650 667 680 689
711 713 716 729 738 745

ga750a-2 1 18 40 45 71 102 104 109 110 114 120 126 131 144 150 154 168 170 180
183 211 214 227 234 235 237 239 259 283 288 289 296 301 316 351 352 357
359 362 369 375 382 387 436 447 455 491 511 528 530 539 550 581 582 615
642 644 645 673 684 710 722

ga750a-3 49 68 71 75 88 95 101 109 113 127 183 202 206 212 254 266 295 298 334
339 349 356 361 379 389 400 415 419 428 433 436 439 446 447 450 464 465
483 506 560 561 565 570 575 580 581 585 590 606 626 627 645 657 666 669
679 682 694 698 731

ga750a-4 25 54 79 87 99 100 104 108 112 149 154 160 163 169 176 195 224 226 258
266 271 279 291 292 303 305 319 324 326 363 386 400 413 416 418 420 437
454 468 487 496 534 536 551 561 568 628 635 636 652 656 669 672 684 693
695 703 718 733 737 748

ga750a-5 18 34 35 67 75 77 80 87 93 117 119 146 161 167 168 187 189 195 224 228
235 246 247 271 315 320 325 329 359 365 367 373 389 411 421 424 426 429
452 456 475 476 507 522 523 524 532 553 562 565 578 588 655 678 702 706
709 713 734 736 747 749

ga750b-1 58 67 71 100 117 184 214 335 346 386 478 484 512 559 589 593 616 647
662 711 720 745 746

ga750b-2 1 45 109 110 144 168 182 214 235 237 239 283 288 296 308 329 375 505
637 644 645 712

ga750b-3 53 68 101 202 206 215 254 298 334 356 404 408 464 560 570 575 596 604
669 673 726 728

ga750b-4 47 52 55 104 115 128 149 154 202 232 266 303 358 434 468 551 635 639
672 704 733

ga750b-5 29 42 49 87 99 182 193 194 218 224 351 363 373 376 380 456 473 523 667
685 700 746

ga750c-1 214 418 476 587 593 644 711

ga750c-2 1 170 182 235 237 564 590

ga750c-3 68 101 173 215 439 548 616

ga750c-4 128 144 154 279 413 456 704

ga750c-5 14 344 376 456 577 659 685

gs750a-1 2 20 52 64 75 89 93 124 128 130 143 147 177 199 205 218 232 236 237 240
264 279 281 289 305 317 320 335 336 374 393 403 404 425 453 458 466 468
482 487 496 518 538 541 545 554 555 564 602 609 637 651 658 659 663 669
672 681 682 706 713 729 743

gs750a-2 1 19 24 62 64 70 92 93 94 100 108 113 134 137 146 157 178 180 186 213
225 265 268 278 281 325 334 336 341 348 362 393 397 398 411 444 451 460
462 493 494 498 504 554 574 575 594 595 620 625 628 636 639 646 650 661
721 724 735

(continued)

Conditional Markov Chain Search for the Simple Plant Location Problem 145

Instance Opened sites

gs750a-3 6 22 35 38 46 66 96 110 117 119 133 135 171 182 192 230 250 287 288 291
317 354 357 360 367 374 385 392 396 409 412 425 437 450 458 463 465 487
499 510 528 554 561 562 583 596 609 612 624 640 677 688 702 710 715 721
728 732 746

gs750a-4 2 4 24 26 34 56 78 80 81 95 107 115 117 123 136 139 145 146 151 172 174
190 241 243 258 266 269 294 305 323 332 346 377 388 399 412 434 443 459
473 477 498 500 522 530 536 537 551 558 573 603 617 640 641 656 666 669
673 721 722 740 749

gs750a-5 3 12 31 46 54 65 74 88 91 96 102 104 112 114 119 135 150 182 198 202 207
231 234 288 302 317 356 359 386 394 397 410 411 417 421 425 483 579 582
587 607 612 638 644 654 662 663 669 672 680 693 707 716 720 721 725 731
744

gs750b-1 41 45 67 75 128 130 213 232 237 242 279 281 313 428 487 538 573 658 698
699 725 743

gs750b-2 1 10 108 126 191 213 214 257 265 314 336 341 348 367 444 450 494 508
617 636 639 650 661

gs750b-3 22 26 64 135 171 192 281 291 304 317 446 462 484 553 561 583 702 706
715 727 728

gs750b-4 4 59 81 95 107 113 165 174 179 190 238 248 261 294 305 355 431 459 616
641 654 721

gs750b-5 3 31 74 90 104 200 281 302 359 392 394 427 487 540 549 568 593 627 635
693 707 709

gs750c-1 67 112 128 428 479 603 639

gs750c-2 29 92 108 265 336 494 639

gs750c-3 6 44 304 583 624 680 698

gs750c-4 26 139 151 287 522 628 721

gs750c-5 104 198 302 557 607 635 707

References

1. M.L. Alves, M.T. Almeida, Simulated annealing algorithm for the simple plant location
problem: a computational study. Revista Invest. Oper. 12, (1992)

2. E. Balas, M.W. Padberg, On the set covering problem. Oper. Res. 20, 1152–1161 (1972)
3. M. Balinski, Integer programming: methods, uses, computations. Manag. Sci. 12, 253–313

(1965)
4. F.F. Barahona, F.N.A. Chudak, Solving large scale uncapacitated facility-location problems,

in Approximation and Complexity in Numerical Optimization, ed. by P.M. Pardalos (Kluwer
Academic Publishers, Norwell, MA, 1990), pp. 48–62

5. F.F. Barahona, F.N.A. Chudak, Near-optimal solutions to large-scale facility location problems.
Discret. Optim. 2, 35–50 (2005)

6. J.E. Beasley, Lagrangian heuristics for location problems. Eur. J. Oper. Res. 65, 383–399
(1993)

7. C. Beltran-Royo, J.-P. Vial, A. Alonso-Ayuso, Semi-Lagrangian relaxation applied to the
uncapacitated facility location problem. Comput. Optim. Appl. 51, 387–409 (2012)

8. L. Cánovas, M. Landete, A. Marin, On the facets of the simple plant location packing polytope.
Discret. Appl. Math. 23, 27–53 (2002)

146 D. Karapetyan and B. Goldengorin

9. D.C. Cho, E.J. Johnson, M.W. Padberg, M.R. Rao, On the uncapacitated location problem I:
valid inequalities and facets. Math. Oper. Res. 8, 579–589 (1983)

10. D.C. Cho, E.J. Johnson, M.W. Padberg, M.R. Rao, On the uncapacitated location problem II:
facets and lifting theorems. Math. Oper. Res. 8, 590–612 (1983)

11. G. Cornuejols, G. Nemhauser, L.A. Wolsey, The uncapacitated facility location problem,
in Discrete Location Theory, ed. by P.B. Mirchandani, R.L. Francis (Wiley-Interscience,
New York, 1990)

12. G. Cornuejols, J.-M. Thizy, A primal approach to the simple plant location problem. SIAM J.
Algebraic Discret. Methods 3(4), 504–510 (1982)

13. M.S. Daskin, Network and Discrete Location: Models, Algorithms, and Applications, 2nd edn.
(Wiley, New York, 2013)

14. I.R. de Farias, A family of facets for the uncapacitated p-median polytope. Oper. Res. Lett. 28,
161–167 (2001)

15. D. Erlenkotter, A dual-based procedure for uncapacitated facility location. Oper. Res. 26,
992–1009 (1978)

16. M. Fischetti, I. Ljubić, M. Sinnl, Redesigning benders decomposition for large-scale facility
location. Manag. Sci. 63(7), 2146–2162 (2017)

17. L. Galli, A.N. Letchford, S.J. Miller, New valid inequalities and facets for the simple plant
location problem. Eur. J. Oper. Res. 269(3), 824–833 (2018)

18. D. Ghosh, Neighborhood search heuristics for the uncapacitated facility location problem. Eur.
J. Oper. Res. 150(4), 150–162 (2003)

19. B. Goldengorin, Data correcting approach for routing and location in networks, in Handbook
of Combinatorial Optimization, ed. by P.M. Pardalos, D.-Z. Du, R.L. Graham (Springer, New
York, 2013), pp. 929–993

20. B. Goldengorin, D. Krushinsky, P.M. Pardalos, Cell Formation in Industrial Engineering:
Theory, Algorithms and Experiments (Springer, New York, 2013)

21. B. Goldengorin, G.A. Tijssen, D. Ghosh, G. Sierksma, Solving the simple plant location
problems using a data correcting approach. J. Glob. Optim. 25, 377–406 (2003)

22. S. Guha, S. Khuller, Greedy strikes back: improved facility location algorithms. J. Algorithms
31, 228–248 (1999)

23. M. Guignard, A Lagrangean dual ascent algorithm for simple plant location problems. Eur. J.
Oper. Res. 33, 193–200 (1988)

24. P. Hansen, N. Mladenović, Variable neighborhood search for the p-median. Locat. Sci. 5(4),
207–226 (1997)

25. M. Hoefer, Experimental comparison of heuristic and approximation algorithms for unca-
pacitated facility location, in Experimental and Efficient Algorithms (Springer, Berlin, 2003),
pp. 165–178

26. K. Jain, M. Mahdian, E. Markakis, A. Saberi, V.V. Vazirani. Greedy facility location algorithms
analyzed using dual fitting with factor-revealing LP. J. ACM 60, 795–824 (2003)

27. D. Karapetyan, A.P. Punnen, A.J. Parkes, Markov chain methods for the bipartite boolean
quadratic programming problem. Eur. J. Oper. Res. 260(2), 494–506 (2017)

28. M. Körkel, On the exact solution of large-scale simple plant location problems. Eur. J. Oper.
Res. 39, 157–173 (1989)

29. J. Kratica, D. Tosic, V. Filipović, I. Ljubić, Solving the simple plant location problem by
genetic algorithm. RAIRO Oper. Res. 35, 127–142 (2001)

30. A.A. Kuehn, M.J. Hamburger, A heuristic program for locating warehouses. Manag. Sci. 9(4),
643–646 (1963)

31. A. Letchford, S. Miller, An aggressive reduction scheme for the simple plant location problem.
Eur. J. Oper. Res. 234, 674–682 (2014)

32. L. Michel, P. Van Hentenryck, Solving the simple plant location problem by genetic algorithm.
RAIRO Oper. Res. 35, 127–142 (2001)

33. J.G. Morris, On the extent to which certain fixed charge depot location problems can be solved
by LP. J. Oper. Res. Soc. 29, 71–76 (1978)

34. M. Posta, J.A. Ferland, P. Michelon, An exact cooperative method for the uncapacitated facility
location problem. Math. Programm. Comput. 6, 199–231 (2014)

Conditional Markov Chain Search for the Simple Plant Location Problem 147

35. M.G.C. Resende, R. Werneck, A hybrid multistart heuristic for the uncapacitated facility
location problem. Eur. J. Oper. Res. 174, 54–68 (1975)

36. L. Schrage, Implicit representation of variable upper bounds in linear programming. Math.
Programm. Study 4, 118–132 (1975)

37. M. Sun, Solving uncapacitated facility location problems using tabu search. Comput. Oper.
Res. 33, 2563–2589 (2006)

38. V.A. Trubin, On a method of solution of integer programming problems of a special kind.
Soviet Math. Doklady 10, 1544–1546 (1969)

39. A. Weber, Theory of the Location of Industries. The University of Chicago Press Chicago,
Illinois (1929). English Edition, with Introduction and Notes by Carl J. Friedrich.

40. V. Yigit, M.E. Aydin, O. Turkbey, Evolutionary simulated annealing algorithms for uncapaci-
tated facility location problems, in Adaptive Computing in Design and Manufacture VI, ed. by
I.C. Parmee (Springer, New York, 2004), pp. 185–194

An Algorithmic Answer to the Ore-Type
Version of Dirac’s Question on Disjoint
Cycles

H. A. Kierstead, A. V. Kostochka, T. Molla, and D. Yager

Dedicated to Gregory Gutin on the occasion of his 60th birthday

1 Introduction

For a multigraph G = (V ,E), let |G| = |V |, ‖G‖ = |E|, and α(G) be the
independence number of G. Also, for S, T ⊆ V , let ||S, T || = |{uv ∈ E : u ∈
S, v ∈ T }|. The minimum degree of G, denoted δ(G), is the minimum number of
edges incident to a vertex where edges are counted according to their multiplicities.
For a simple graph G, let G denote the complement of G. For multigraphs G

and H , let G ∪ H denote the multigraph with V (G ∪ H) = V (G) ∪ V (H) and
E(G∪H) = E(G)∪E(H). For disjoint graphs G and H , let G∨H denote G∪H

together with all edges from V (G) to V (H).
Let K(X) be the complete graph with vertex set X, and Kt(X) = K(X) indicate

that |X| = t .
If we only want to specify one vertex v of Kt we write Kt(v).

H. A. Kierstead
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
e-mail: kierstead@asu.edu

A. V. Kostochka (�)
Department of Mathematics, University of Illinois, Urbana, IL, USA

Sobolev Institute of Mathematics, Novosibirsk, Russia
e-mail: kostochk@math.uiuc.edu

T. Molla
Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA
e-mail: molla@usf.edu

D. Yager
Department of Mathematics, University of Illinois, Urbana, IL, USA
e-mail: yager2@illinois.edu

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_8

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_8&domain=pdf
mailto:kierstead@asu.edu
mailto:kostochk@math.uiuc.edu
mailto:molla@usf.edu
mailto:yager2@illinois.edu
https://doi.org/10.1007/978-3-319-94830-0_8

150 H. A. Kierstead et al.

The problem of finding the maximum number of disjoint cycles in a graph is
NP -hard, since even some partial cases of it are:

Theorem 1 ([6], p. 68) Determining whether a 3n-vertex graph has n disjoint
triangles is an NP -complete problem.

On the other hand, Bodlaender [1] and independently Downey and Fellows [4]
showed that this problem is fixed parameter tractable:

Theorem 2 ([1, 4]) For every fixed k, the question whether an n-vertex graph has
k disjoint cycles can be resolved in linear (in n) time.

Since the general problem is hard, it is natural to look for sufficient conditions
that ensure the existence of “many” disjoint cycles in a graph. One well-known
result of this type is the following theorem of Corrádi and Hajnal [2] from 1963:

Theorem 3 ([2]) Let k ∈ Z+. Every graph G with |G| ≥ 3k and δ(G) ≥ 2k

contains k disjoint cycles.

The hypothesis δ(G) ≥ 2k is best possible, as shown by the 3k-vertex graph
H = Kk+1 ∨ K2k−1, which has δ(H) = 2k − 1 but does not contain k disjoint
cycles. The proof yields a polynomial algorithm for finding k disjoint cycles in the
graphs satisfying the conditions of the theorem.

Theorem 3 was refined and generalized in several directions. Enomoto [5] and
Wang [15] generalized the Corrádi–Hajnal Theorem in terms of the minimum Ore-
degree σ2(G) := min{d(x)+ d(y) : xy
∈ E(G)}:
Theorem 4 ([5],[15]) Let k ∈ Z+. Every graph G with |G| ≥ 3k and

σ2(G) ≥ 4k − 1

contains k disjoint cycles.

Kierstead, Kostochka, and Yeager [9] refined Theorem 3 by characterizing all
simple graphs that fulfill the weaker hypothesis δ(G) ≥ 2k−1 and contain k disjoint
cycles. This refinement depends on an extremal graph Yk,k,k where Yh,s,t = Kh ∨
(Ks ∪Kt) and Yh,s,t (X0, X1, X2) = Kh(X0) ∨ (Ks(X1) ∪Kt(X2)) (Figure 1).

Fig. 1 Yh,t,s , shown with
h = 3 and t = s = 4

X2

X0

X1

An Algorithmic Answer to the Ore-Type Version of Dirac’s Question on Disjoint Cycles 151

Theorem 5 ([9]) Let k ≥ 2. Every simple graph G with |G| ≥ 3k and δ(G) ≥
2k − 1 contains k disjoint cycles if and only if:

(i) α(G) ≤ |G| − 2k;
(ii) if k is odd and |G| = 3k, then G
= Yk,k,k; and

(iii) if k = 2 then G is not a wheel.

Theorem 4 was refined in a similar way in [9] and [8] (see Theorem 13 in the next
section).

Dirac [3] described all 3-connected multigraphs that do not have two disjoint
cycles and posed the following question:

Question 1 ([3]) Which (2k − 1)-connected multigraphs1 do not have k disjoint
cycles?

Kierstead, Kostochka, and Yeager [10] used Theorem 5 to answer Question 1
(see Theorem 11 in Section 2). The goal of this paper is to resolve the Ore-type
version of Question 1 for multigraphs in an algorithmic way. In Theorem 14, we
consider the class DOk of multigraphs G whose underlying simple graph G satisfies
dG(x)+dG(y) ≥ 4k−3 for all nonadjacent vertices x and y, and describe all graphs
in DOk that do not have k disjoint cycles. Using this description we construct a
polynomial time algorithm that for every multigraph G in DOk decides whether G

has k disjoint cycles or not.
In the next section, we introduce notation and discuss existing results to be used

later on. In Section 3 we state our main results, Theorems 14 and 15. In the next
two sections, we prove Theorem 14, and in the last section we prove Theorem 15.

2 Preliminaries and Known Results

2.1 Notation

A loop is an edge consisting of a single vertex, and a strong edge is an edge with
multiplicity greater than one. For every multigraph G, let V1 = V1(G) be the set of
vertices in G incident to loops, and V2 = V2(G) be the set of vertices in G − V1
incident to strong edges. Let F = F(G) be the simple graph with V (F) = V2 and
E(F) consisting of the strong edges in G−V1. We define α′ = α′(F) to be the size
of a maximum matching in F . Let G denote the underlying simple graph of G, i.e.,
the simple graph on V (G) such that two vertices are adjacent in G if and only if they
are adjacent in G. For e /∈ E(G), let G+e denote the graph with V (G+e) = V (G)

and E(G+ e) = E(G) ∪ {e}. For a path P with P ∩G = ∅, let sd(G, e, P) be the
result of subdividing e with P .

1Dirac used the word graphs, but in [3] this appears to mean multigraphs.

152 H. A. Kierstead et al.

Recall that Kt(X) = K(X) denotes the complete graph with vertex set X where
|X| = t . Similarly, K(Y,Z) is the complete Y,Z-bigraph. We also extend this
notation to the case that Y is a graph. Then, K(Y,Z) is K(V (Y), Z) ∪ Y .

For S ⊆ V (G), let S = V (G)−S and let NG(S) =⋃
v∈S NG(v). For a matching

M , let W = W(M) denote the set of vertices saturated by M , and G′ = G′(M) =
G −W(M). If |F | = 2α′, then G′(M) = G′(M ′) for all perfect matchings M and
M ′ in F .

For v ∈ V (G), we define s(v) = |N(v)| to be the simple degree of v, and we
say that S (G) = min{s(v) : v ∈ V } is the minimum simple degree of G. Similarly,
SO(G) = min{s(v) + s(u) : v, u ∈ V, v
= u and uv /∈ E(G)}. Let c(G) be the
maximum number of disjoint cycles contained in G.

We define Dk to be the family of multigraphs G with S (G) ≥ 2k − 1 and DOk

to be the family of multigraphs G with SO(G) ≥ 4k − 3. For a graph G ∈ DOk ,
call a vertex v ∈ V (G) low if dG(v) ≤ 2k − 2. Let Bk = {G ∈ Dk : c(G) < k},
and let BOk = {G ∈ DOk : c(G) < k}.

If G ∈ DOk is an n-vertex multigraph and α(G) ≥ n − 2k + 2, then for any
distinct v1, v2 in a maximum independent set I , s(v1)+s(v2) ≤ (2k−2)+(2k−2) <

4k−3. Thus, α(G) ≤ n−2k+1 for every n-vertex G ∈ DOk; so, we call G ∈ DOk

extremal if α(G) = n− 2k + 1. If G ∈ DOk is extremal, and v1 and v2 are distinct
vertices in a maximum independent set I , then s(v1)+s(v2) ≤ (2k−1)+(2k−1) =
4k − 2. Since SO(G) ≥ 4k − 3, this means that for some v ∈ {v1, v2} we have
s(v) = 2k− 1 and I is exactly V (G)−N(v). Thus, to check whether G is extremal
it is enough to check for every v ∈ V (G) with s(v) = 2k − 1 whether the set
V (G) − N(v) is independent. If I is a maximum independent set in an extremal
G ∈ DOk , then since SO(G) ≥ 4k − 3,

at most one vertex in I has nonneighbors in V (G)− I , and any such vertex has
at most one nonneighbor in V (G)− I . (1)

We call all such maximum independent sets in an extremal graph big sets. On the
other hand, if x is a common vertex of big sets I and J , then s(x) ≤ |G|− |I ∪J | ≤
2k − 1 − |J − I |. Hence, for every y ∈ I − x, s(x) + s(y) ≤ 4k − 2 − |J − I |,
and so |J − I | ≤ 1. Furthermore, if |J − I | = 1 and there is x′ ∈ J ∩ I − x,
then s(x)+ s(x′) ≤ 2(n− α(G)− 1) = 4k − 4, a contradiction. Thus, in this case
α(G) = 2. This yields the following.

Let G be extremal. If |G| > 2k + 1, then every two distinct big sets in G are
disjoint. If |G| = 2k + 1, sets I, J ⊂ V (G) are big and x ∈ I ∩ J , then
s(x) = 2k − 2. (2)

2.2 Gallai–Edmonds Theorem

We will use the classical Gallai–Edmonds Theorem on the structure of graphs
without perfect matchings. Recall that a graph H is odd if |H | is odd, and that
o(H) denotes the number of odd components of H . For a matching M and uv ∈ M ,

An Algorithmic Answer to the Ore-Type Version of Dirac’s Question on Disjoint Cycles 153

we say that u is the M-mate of v. For a graph H and S ⊆ V (H), the deficiency
def(S) is o(H − S) − |S|. Next, def(H) := max{def(S) : S ⊆ V (H)}. For each
graph H , def(F) ≥ 0, since def(∅) = o(H) ≥ 0.

Theorem 6 (Gallai–Edmonds) Let H be a graph and D be the set of v ∈ V (H)

such that there is a maximum matching in H not covering v. Let A be the set of the
vertices in V (H)−D that have neighbors in D, and let C = V (H)−D − A. Let
H1, . . . , Hk be the components of H [D]. If M is a maximum matching in H , then
all of the following hold:

(a) C ∪ A ⊆ W(M) and the M-mates of A are in distinct components of H [D].
(b) For each Hi and every v ∈ V (Hi), Hi − v has a perfect matching.
(c) If ∅
= S ⊆ A, then N(S) intersects at least |S| + 1 components of H [D].
(d) def(H) = def(A) = k − |A|.

We refer to (D,A,C) as the Gallai–Edmonds decomposition (GE-decomposition)
of H .

2.3 Results for Dk

Since every cycle in a simple graph has at least three vertices, the condition |G| ≥ 3k

is necessary in Theorem 3. However, it is not necessary for multigraphs, since loops
and multiple edges form cycles with fewer than three vertices. Theorem 3 can easily
be extended to multigraphs, although the statement is no longer as simple:

Theorem 7 For k ∈ Z+, let G be a multigraph with S (G) ≥ 2k, and set F =
F(G), V1 = V1(G), and α′ = α′(F). Then, G has no k disjoint cycles if and only if

|V (G)| − |V1| − 2α′ < 3(k − |V1| − α′), (3)

that is, |V (G)| + 2|V1| + α′ < 3k.

Proof If (3) holds, then G does not have enough vertices to contain k disjoint cycles.
If (3) fails, then we choose |V1| cycles of length one and α′ cycles of length two from
V1 ∪ V (F). By Theorem 3, the remaining (simple) graph contains k − |V1| − α′
disjoint cycles. ��
Theorem 7 yields the following.

Corollary 1 Let G be a multigraph with S (G) ≥ 2k − 1 for some integer k ≥ 2,
and set F = F(G), V1 = V1(G), and α′ = α′(F). Suppose G contains at least one
loop. Then, G has no k disjoint cycles if and only if |V (G)| + 2|V1| + α′ < 3k.

Since acyclic graphs are exactly forests, Theorem 5 can be restated as follows:

Theorem 8 For k ∈ Z+, let G be a simple graph in Dk . Then, G has no k disjoint
cycles if and only if one of the following holds:

154 H. A. Kierstead et al.

(α) |G| ≤ 3k − 1;
(β) k = 1 and G is a forest with no isolated vertices;
(γ) k = 2 and G is a wheel;
(δ) α(G) = n− 2k + 1; or
(ε) k > 1 is odd and G = Yk,k,k .

Dirac [3] described all 3-connected multigraphs that do not have two disjoint
cycles:

Theorem 9 ([3]) Let G be a 3-connected multigraph. Then, G has no two disjoint
cycles if and only if one of the following holds:

(A) G = K4 and the strong edges in G form either a star (possibly empty) or a
3-cycle;

(B) G = K5;
(C) G = K5 − e and the strong edges in G are not incident to the ends of e;
(D) G is a wheel, where some spokes could be strong edges; or
(E) G is obtained from K3,|G|−3 by adding non-loop edges between the vertices of

the (first) 3-class.

Going further, Lovász [12] described all multigraphs with no two disjoint cycles.
To state his result, let a bud be a vertex incident to at most one edge. Also, let
Wn = K1 ∨ Cn be the wheel with n + 1 vertices and W+n be obtained from Wn

by replacing each spoke with a strong edge. Similarly, let K+3,n−3 be the n-vertex
multigraph obtained from K3,n−3 by adding strong edges connecting all pairs of
the vertices of the (first) 3-class. Then, each multigraph described by Theorem 9(A)
above is contained either in W+3 or in K+3,1.

Lovász [12] observed that any connected multigraph can be transformed into a
multigraph with minimum degree at least 3 or a multigraph with exactly one vertex
without affecting the maximum number of disjoint cycles in it by using a sequence
of operations of the following two types: (1) deleting a bud; (2) replacing a vertex v

of degree 2 that has neighbors x and y (where v /∈ {x, y} but possibly x = y) by a
new (possibly parallel) edge connecting x and y.

He also proved the following:

Theorem 10 ([12]) Let H be a multigraph with δ(H) ≥ 3. Then, H has no two
disjoint cycles if and only if :

(L1) H = K5;
(L2) H ⊆W+|H|−1;

(L3) H ⊆ K+3,|H|−3; or
(L4) H is obtained from a forest T and vertex x with possibly some loops at x by

adding edges linking x to T .

Say that a multigraph G has the 2-property if the vertices of degree at most 2
form a clique Q(G) (possibly with some multiple edges). Let G ∈ DO2 with no
two disjoint cycles. Then, G has the 2-property. By Lovász’s observation above,
G can be transformed into a multigraph H that has exactly one vertex or is of

An Algorithmic Answer to the Ore-Type Version of Dirac’s Question on Disjoint Cycles 155

type (L1)–(L4) by a sequence of deleting buds and/or contracting edges. Note that
if a multigraph G′ has the 2-property, then the multigraph obtained from G′ by
deleting a bud or contracting an edge also has the 2-property. Thus, H and all the
intermediate multigraphs have the 2-property. Reversing this transformation, G can
be obtained from H by adding buds and subdividing edges. If H has exactly one
vertex and at most one edge, then any multigraph with the 2-property that can
be obtained from H this way has maximum degree at most 2 or is a path with a
single loop at one end. Hence, G is a Ki for i ≤ 3, is a path on at most 3 vertices
with a loop at an endpoint, or forms a strong edge. If δ(H) ≥ 3, then the clique
Q := Q(G) cannot have more than 2 vertices: by the definition of Q(G), |Q| ≤ 3,
and if |Q| = 3, then Q induces a K3-component of G and δ(G−Q) ≥ 3; thus, G−Q

has another cycle. Let Q′ := V (G) − V (H). By above, Q ⊆ Q′. If Q′
= Q, then
Q consists of a single leaf in G with a neighbor of degree 3, so G is obtained from
H by subdividing an edge and adding a leaf to the vertex of degree 2. If Q′ = Q,
then Q is a component of G, or G = H +Q+ e for some edge e ∈ E(H,Q), or at
least one vertex of Q subdivides an edge e ∈ E(H). In the last case, when |Q| = 2,
e is subdivided twice by Q.

In case (L4), because δ(H) ≥ 3, either T has at least two buds, each linked to
x by multiple edges, or T has one bud linked to x by an edge of multiplicity at
least 3. So, this case cannot arise from G. Also, δ(H) = 3, unless H = K5, in
which case δ(H) = 4. So, Q is not an isolated vertex, lest deleting Q leave H with
δ(H) ≥ 5 > 4; and if Q has a vertex of degree 1, then H = K5. Else all vertices
of Q have degree 2, and Q consists of the subdivision vertices of one edge of H .
This yields the following characterization of multigraphs in G ∈ DO2 with no two
disjoint cycles.

Set Zt = {z1, . . . , zt }, and define S3 = K(Z5)∪z1xy, S4 = sd(K(Z5), z1z2, x)∪
xy, and S5 = sd(K(Z5), z1z2, xy) (see Figure 2).

Corollary 2 All G ∈ DO2 with |G| ≥ 4 and no 2 disjoint cycles satisfy one of:

(Y1) G ⊆ S3;
(Y2) G ⊆ S4;
(Y3) G = S5;
(Y4) G ∈ {H, sd(H, e, x), sd(H, e, xy)}, where W|H |−1 ⊆ H ⊆W+|H|−1;

z1

z2

z3z4

z5

x y

S3

z1

z2

z3z4

z5

x y

S4

z1

z2

z3z4

z5

x
y

S5

Fig. 2 Graphs S3, S4, and S5

156 H. A. Kierstead et al.

(Y5) G ∈ {H, sd(H, e, x), sd(H, e, xy)}, where H ⊆ K+3,|H|−3 and H contains
K3,|H |−3 minus an edge.

By Corollary 1, in order to describe the multigraphs in Dk not containing k

disjoint cycles, it is enough to describe such multigraphs with no loops. Recently,
Kierstead, Kostochka, and Yeager [10] proved the following:

Theorem 11 ([10]) Let k ≥ 2 and n ≥ k be integers. Let G be an n-vertex graph
in Dk with no loops. Set F = F(G), α′ = α′(F), and k′ = k − α′. Then, G does
not contain k disjoint cycles if and only if one of the following holds:

(a) n+ α′ < 3k;
(b) |F | = 2α′ (i.e., F has a perfect matching) and either

(i) k′ is odd and G− F = Yk′,k′,k′ , or
(ii) k′ = 2 < k and G− F = W5;

(c) G is extremal and either

(i) some big set is not incident to any strong edge, or
(ii) for some two distinct big sets Ij and Ij ′ , all strong edges intersecting Ij∪Ij ′

have a common vertex outside of Ij∪Ij ′ and if v ∈ Ij∩Ij ′ (this may happen
only if k′ = 2), then v is not incident with a strong edge;

(d) n = 2α′ + 3k′, k′ is odd, and there is S = {v0, . . . , vs} ⊆ V (F) such that F [S]
is a star with center v0, F − S has a perfect matching and either

(i) G− (F − S + v0) = Yk′+1,k′,k′ , or
(ii) s = 2, v1v2 ∈ E(G), G − F = Yk′−1,k′,k′ and G has no edges between
{v1, v2} and the set X0 in G− F ;

(e) k = 2 and Wn−1 ⊆ G ⊆W+n−1;
(f) k′ = 2, |F | = 2α′ + 1 = n− 5, and G− F = C5.

2.4 Results for DOk

Theorem 4 can be restated as follows.

Theorem 12 For k ∈ Z+, let G be a simple graph with SO(G) ≥ 4k − 1 and
|G| ≥ 3k. Then, G has k disjoint cycles.

Theorem 10 implies a description of graphs in DO2 with no two disjoint cycles
(see Corollary 2).

The next theorem summarizes the results of [9] and [8].

Theorem 13 For k, n ∈ Z+ with n ≥ 3k, let G be an n-vertex simple graph in
DOk . Then, G has no k disjoint cycles if and only if one of the following holds:

(S1) k = 1 and G is a forest with at most one isolated vertex;

An Algorithmic Answer to the Ore-Type Version of Dirac’s Question on Disjoint Cycles 157

Fig. 3 Graph F1

z1

z2
z3

z4

z5
z6

z7

z8

x1

x2

Fig. 4 Graphs O5 and F2 x1

x2

x3
z2

y4

y3

y1

y2

z1

O5

x1 x3x2

y1 y4y2 y3

t

z2 z1
F2

Fig. 5 Graphs F3 and B y1

y2

y3

w1

w2

w3

x1

x2

x3F3

y1

y2

y3

y4

w1

w2

w3

x1

x2

x3
B

(S2) k = 2 and G satisfies the conditions of Corollary 2;
(S3) α(G) = n− 2k + 1;
(S4) k = 3 and G = F1 (see Figure 3);
(S5) k = 3 and G = F2 = {t}∨O5 where O5 is the 5-chromatic graph in Figure 4;
(S6) k = 3 and G is the graph F3 in Figure 5;
(S7) k ≥ 3, n = 3k, α(G) ≤ k, and χ(G) > k;
(S8) k ≥ 3, n = 3k, and G ⊆ Yk,c,2k−c for some odd 1 ≤ c ≤ 2k − 1;
(S9) k ≥ 3, n = 3k, and G = Yk−1,1,2k .

Remark 1 The result of Rabern [14] (see also [7, 11]) implies that if (S7) holds,
then k ≤ 4.

158 H. A. Kierstead et al.

3 Main Results

In this section, we state our main results. We call a graph G ∈ DOk a coun-
terexample if it does not have k disjoint cycles. We believe that it is possible to
give an explicit list of all counterexamples in the style of previous results, but
the list would be quite long and complicated. Here, we are content to give broad
categories of counterexamples together with a poly-time algorithm that determines
membership. We plan to revisit this problem again and give a more explicit list of
counterexamples. This may (or may not) lead to a faster algorithm.

The first theorem supports the algorithmic problem by proving that for k ≥ 5
the loopless multigraphs in DOk are counterexamples if and only if they belong
to at least one of five categories. The second theorem gives a poly-time algorithm
that detects if G ∈ DOk is a counterexample by describing, for each of the five
categories, a poly-time algorithm that determines membership.

Theorem 14 Let k ≥ 5 and n ≥ k be integers. Let G be an n-vertex multigraph in
DOk with no loops. Set F = F(G), α′ = α′(F), and k′ = k − α′. Let (D,A,C) be
the GE-decomposition of F and let D′ = V (G)− V (F). Then, G does not contain
k disjoint cycles if and only if one of the following holds:

(Q1) n < 3k − α′;
(Q2) n > 2k + 1, G is extremal and either

(Q2a) some big set is not incident to any strong edge, or
(Q2b) for some two distinct big sets J and J ′, all strong edges intersecting J ∪J ′

have a common vertex outside of J ∪ J ′;

(Q3) k′ ≥ 5 and n = 3k − α′, and G has a vertex x ∈ D′ of degree k + α′ − 1
such that for each maximum matching M in F , the set N(x) − W(M) is
independent;

(Q4) 3k−α′ ≤ n ≤ 3k−α′ +1 and k′ ≤ 4 and G−W(M) has no k−|M| disjoint
cycles for all (possibly nonmaximum) matchings M in F ; or

(Q5) k′ ≥ 5 and n = 3k−α′, |F |−2α′ ∈ {0, |D|−2, |D|−1} and for all maximum
matchings M in F either α(G′(M)) = k′+1 or G′(M) ⊆ Yk′,c,2k′−c for some
odd c ≤ k′.

Theorem 15 There is a polynomial time algorithm that for every multigraph G ∈
DOk decides whether G has k disjoint cycles or not.

4 Proof of Theorem 14: Sufficiency

We will prove that if G contains a set C = {C1, . . . , Ck} of k disjoint cycles, then all
of the conditions (Q1)–(Q5) fail. Given such C , let M ⊆ C be the set of cycles in C
that are strong edges, m = |M| and C ′ = C −M . Since m ≤ α′ and each cycle that
is not a strong edge has at least 3 vertices, n ≥ 2m+3(k−m) = 3k−m ≥ 3k−α′;
so (Q1) does not hold.

An Algorithmic Answer to the Ore-Type Version of Dirac’s Question on Disjoint Cycles 159

If (Q2) holds, then G is extremal. Every big set J satisfies |V (G)− J | < 2k. So
some cycle CJ ∈ C has at most one vertex in V (G) − J . Since J is independent,
CJ has at most one vertex in J . Thus CJ is a strong edge and (Q2a) fails. Suppose
there are big sets J and J ′ satisfying (Q2b). Then, |W(M) ∩ (J ∪ J ′)| ≤ 1, and so
for some I ∈ {J, J ′}, I ⊆ V −W(M). By this fact and independence, each cycle
in C has at least two vertices outside of I , and so |I | ≤ n − 2k contradicting the
definition of a big set. So (Q2b) also fails.

Note that the k − |M| cycles in C ′ correspond to disjoint cycles in G −W(M),
so (Q4) does not hold.

If n = 3k − α′, then m = α′, every cycle in C ′ is a triangle and every vertex in
G−W(M) belongs to exactly one triangle in C ′. Therefore, (Q3) and (Q5) do not
hold.

5 Proof of Theorem 14: Necessity

Suppose G does not have k disjoint cycles and that none of the conditions (Q1)–
(Q5) hold. Because (Q4) does not hold, either n ≥ 3k − α′ + 2 = 2k + k′ + 2, or
k′ ≥ 5; the latter implies that n ≥ 3k − α′ = 2k + k′ ≥ 2k + 5. Therefore,

n ≥ 2k + 3. (4)

Among the maximum matchings in F , choose a matching M such that

α(G−W) is minimum, where W = W(M). (5)

Then, |M| = α′, G′ = G−W is simple, and SO(G′) ≥ 4k − 3− 4α′ = 4k′ − 3.
So G′ ∈ DOk′ . Let n′ := |V (G′)| = n− 2α′. Since (Q1) does not hold,

n′ ≥ 3k′. (6)

If n′ = 3k′, then G′ is quite dense, so sometimes it will be convenient to consider
the complement of G. For v ∈ V (G), let N [v] = V (G)−N [v] and s(v) = |N [v]| =
n− 1− s(v). When n′ = 3k′, we have n = 2k + k′ and thus the inequality s(v)+
s(u) ≥ 4k − 3 can be written as

s(v)+ s(u) ≤ 2k′ + 1 for all vu /∈ E(G). (7)

Since G′ has no k′ disjoint cycles and (6) holds, one of (S1)–(S9) in Theorem 13
holds for G′ with k′ in place of k. We will now show that each of (S1)–(S9) will
lead to one of (Q1)–(Q5) holding or some other contradiction.

160 H. A. Kierstead et al.

Case 1 (S4), (S5), or (S6) hold for G′.
Then, k′ ≤ 3 and 3k′ ≤ |G′| ≤ 3k′ + 1, so (Q4) holds, because G has no k disjoint
cycles.

Case 2 (S3) holds for G′.
Then, n > 2k + 1 and G′ is extremal. Let J be a big set in G′. Then, |J | =
n′ − 2k′ + 1 = n − 2k + 1. So, G is extremal and J is a big set in G. Since (Q2a)
fails, some w ∈ J has a strong neighbor v. Let vu be the edge in M containing v. In
F , consider the maximum matching M ′ = M−vu+wv, and set G′′ = G−W(M ′).
By (5), G′′ contains a big set J ′, and J ′ is big in G. Since w /∈ J ′, J ′
= J . So by (2),
J ′ ∩J = ∅ (possibly, u ∈ J ′). Since (Q2a) fails, some w′ ∈ J ′ has a strong neighbor
v′. Possibly, v′ = v, but then since (Q2b) fails, some w′′ ∈ J ∪ J ′ has a strong
neighbor v′′
= v. Thus, we can choose notation so that v′
= v. As M ′ is maximum,
there is an edge v′u′ ∈ M ′. Set M ′′ = M ′ + w′v′ − v′u′ and G∗ := G −W(M ′′).
Again by (5), G∗ contains a big set J ′′. Since w,w′ /∈ J ′′, we have J ′′ /∈ {J, J ′}. So
by (2), J ′′ ∩ (J ∪ J ′) = ∅. Thus, since V (G∗) ⊇ (J − w) ∪ (J ′ − w′) ∪ J ′′,

n′ ≥ 3|J | − 2 = 3(n′ − 2k′ + 1)− 2 = 3n′ − 6k′ + 1,

which yields 2n′ ≤ 6k′ − 1, a contradiction to (6). Hence, (Q2) holds.

Case 3 (S7) holds for G′.
So k′ ≥ 3, |G′| = 3k′, α(G′) ≤ k′, and χ(G′) > k′. Since |G′| = 3k′, (7) must
hold. Since χ(G′) > k′, G′ contains an induced subgraph G0 such that G0 is a
vertex-(k′ + 1)-critical graph. By (7),

for every xy ∈ E(G0), the sum of the degrees of x and y in G0 is at most 2k′ + 1.

(8)

The (k′ + 1)-critical graphs satisfying (8) were studied recently. If k′ ≥ 5, then by
results in [7] and [14], G0 = Kk′+1, which means α(G′) ≥ k′ + 1, a contradiction
to the case. If k′ ≤ 4, then (Q4) holds.

Case 4 (S1) holds for G′.
So k′ = 1 and G′ is a forest with at most one isolated vertex. Since k ≥ 5, |M| ≥ 4.
Let xz, x′z′, x′′z′′ be three strong edges in M .

Case 4.1: G′ has at least two non-singleton components, say H1 and H2. Then,
n′ ≥ 4. For i = 1, 2, let Pi be a longest path in Hi , and let ui and wi be the ends
of Pi . As SO(G) ≥ 4k − 3, at most two edges between W and {u1, u2, w1, w2}
are missing in G. So, we may assume that at most one edge between {x, z} and
{u1, u2, w1, w2} is missing in G. By symmetry, we assume that among these edges
only xu1 could be missing in G. Then, the α′ − 1 strong edges of M − xz and the
cycles xu2w2x and zu1w1z form k disjoint cycles in G, a contradiction.

Case 4.2: G′ has a unique non-singleton component H , and this H is not a star.
Let P = y1 . . . yt be a longest path in H . Since H is not a star, t ≥ 4. Then, y1 is
a leaf in G′, and either dG′(y2) = 2 or y2 is adjacent to a leaf l
= y1. Let y′1 = y2

An Algorithmic Answer to the Ore-Type Version of Dirac’s Question on Disjoint Cycles 161

if dH (y2) = 2 and y′1 = l otherwise. Similarly, either dG′(yt−1) = 2 or yt−1 is
adjacent to a leaf l′
= yt . Let y′t = yt−1 if dH (yt−1) = 2 and y′t = l′ otherwise.
Since y1y

′
t , y
′
1yt /∈ E(G) and G ∈ DOk ,

the number of missing edges between {y1, y
′
1, yt , y

′
t } and W in G is at most

q + r , where q = |{y′1, y′t } ∩ {y2, yt−1}| and r is the number of low vertices
in {y1, y

′
1, yt , y

′
t }. (9)

Since q ≤ 2, r ≤ 2, and |M| ≥ 3, we can assume that at most one edge between
{x, z} and {y1, y

′
1, yt , y

′
t } is missing in G. So, we get a contradiction as at the end of

Case 4.1.

Case 4.3: The unique non-singleton component H of G′ is a star. The leaves of the
star form an independent set of size n′ −1 = n′ −2k′ +1. By (4), we are in Case 2.

Remark The proof of the next case works even if (5) does not hold, and we will use
this in Case 6.

Case 5 (S9) holds for G′.
So n′ = 3k′ and G′ ⊆ Yk′−1,1,2k′(Y, {x}, Z). If k′ ≤ 4, then (Q4) holds. So, below
we assume

k′ ≥ 5. (10)

Since n′ = 3k′, we will often use (7). Since each y ∈ Y has k′ − 2 nonneighbors
in Y , (7) yields

|N [y] − Y | + |N [y′] − Y | ≤ 5 for all distinct y, y′ ∈ Y. (11)

Since x is not adjacent to any of the 2k′ vertices in Z, by (7)

N(x) = V (G)− Z − x and N(z) = V (G)− x − z for each z ∈ Z. (12)

If x has a strong neighbor v0 with the M-mate u0, then we construct k disjoint
cycles in G as follows. First, take the α′ strong edges in M − v0u0 + v0x. By (12),
G[Z] = K2k′ and each y ∈ Y + u0 is adjacent to all of Z. So, we take k′ 3-cycles
each of which contains one vertex in Y+u0 and two vertices in Z. This contradiction
shows that x ∈ D′.

Since x ∈ D′ and d(x) = k+α′−1, if (Q3) does not hold, then F has a maximum
matching M ′ such that

there are u1, u2 ∈ V (G)−W(M ′)− Z with u1u2 ∈ E(G). (13)

For i = 1, 2, the symmetric difference M%M ′ contains a path Pi of an even length
an end of which is ui . Since the other end wi of Pi is not covered by M , wi ∈
V (G′) ∩ D. Also by definition, none of the vertices in G′ is an internal vertex in

162 H. A. Kierstead et al.

Pi . In particular, x /∈ V (Pi). Let M ′′ be the maximum matching in F such that
M%M ′′ = P1 ∪ P2. Then, V (G) − W(M ′′) = V (G′) − {w1, w2} ∪ {u1, u2}. If
|{w1, w2}∩Z| = �Z and |{w1, w2}∩Y | = �Y , then we can renumber the vertices in
Z − {w1, w2} and Y − {w1, w2} as z1, . . . , z2k′−�Z

, y1, . . . , yk′−1−�Y
and construct

k disjoint cycles in G as follows. Take the k − k′ strong edges in M ′′, then take the
cycle xu1u2x and for j = 1, . . . , k′ −1−�Y take the cycle (yj , z2j−1, z2j). Finally,
if �Y ≥ 1, then |Z − {z1, . . . , z2(k′−1−�Y), w1, w2}| = 3�Y , then we simply take
�Y triangles in the remaining complete graph G[Z−{z1, . . . , z2(k′−1−�Y), w1, w2}].
Hence, (Q3) holds.

Case 6 (S8) holds for G′.
So n′ = 3k′ and G′ ⊆ Yk′,c,2k′−c(Y,X,Z) for k′ ≥ 3 and some odd 1 ≤ c ≤ k′. If
k′ ≤ 4, then (Q4) holds. So, as in the previous case, we assume k′ ≥ 5.

Let M ′ be an arbitrary maximum matching in F . Since G has no k disjoint cycles,
G′(M ′) does not have k′ disjoint triangles. Therefore, by (6), (10), and Theorem 13
(with Remark 1), we have that one of (S3), (S8), or (S9) holds in G′(M ′). By the
remark before Case 5,

if (S9) holds in G′(M ′), then (Q3) holds. (14)

If (S3) holds in G′(M ′), then α(G′(M ′)) = n′ − 2k′ + 1 = k′ + 1. Therefore, if
we assume (Q3) does not hold, to show that (Q5) holds, we only need to show that
|F | − 2α′ ∈ {0, |D| − 2, |D| − 1} which is true when |W | ≤ 2+ |A| + |C|.

Since n′ = 3k′, we will often use (7). Since each y ∈ Y has k′ − 1 nonneighbors
in Y , (7) yields

|N [y] − Y | + |N [y′] − Y | ≤ 3 for all y, y′ ∈ Y. (15)

By (15),

there is y0 ∈ Y such that |N [y] − Y | ≤ 1 for every y ∈ Y − y0. (16)

Since each x ∈ X has 2k′ − c nonneighbors in Z, if x has a nonneighbor y ∈ Y ,
then by (7),

2k′ + 1 ≥ s(x)+ s(y) ≥ (2k′ − c + 1)+ (k′ − 1+ 1) = 3k′ − c + 1,

which yields c = k′. Moreover, if in this case some z ∈ Z also has a nonneighbor
y′ ∈ Y , then again by (7), 2k′ + 1 ≥ s(x)+ s(z) ≥ (k′ + 1)+ (k′ + 1) = 2k′ + 2,
a contradiction. Thus, we may assume (by possibly switching the roles of X and Z

when c = k′) that

|N [x] ∩W | ≤ 1 and N [x] ∩W = Zfor each x ∈ X, (17)

An Algorithmic Answer to the Ore-Type Version of Dirac’s Question on Disjoint Cycles 163

and

|N [z] −X| ≤ 1 for each z ∈ Z, and if c = k′, then G[Z] = Kc. (18)

We will need the following observation.

Lemma 1 Let t ≥ 2 and ε ∈ {0, 1}. Let H be a graph with a partition V (H) =
R ∪Q such that |R| = 2t + ε, |Q| = 3t − |R| = t − ε, and let y0 ∈ Q. If

1. each u ∈ R has at most one nonneighbor in H and
2. each y ∈ Q− y0 has at most 1+ ε nonneighbors in R and
3. y0 has at most two nonneighbors in R and has only 1+ ε nonneighbors if t = 2,

then H contains t vertex-disjoint triangles.

Proof Using induction, note that the lemma holds for t = 2. If t ≥ 3, then H has
a triangle T = y0z1z2y0 with z1, z2 ∈ R. By induction, H ′ := H − T has t − 1
disjoint triangles. ��
Claim 1 Let G′ ⊆ Yk′,c,2k′−c(Y,X,Z) for k′ ≥ 4 and an odd c ≤ k′. Suppose there
are w ∈ V (G′) and u ∈ W such that F has an M-alternating u,w-path P .

(A) If w ∈ Y ∪ Z, then u has no neighbor in Y − w or no neighbor in X.
(B) If w ∈ X, then u has no neighbor in Y or no neighbor in Z.

Proof Let M ′ be the matching obtained from M by switching edges on P . Then,
W(M ′) = W(M) − w + u. Set t = (2k′ − c − 1)/2. Since 1 ≤ c ≤ k′ and is odd,
by (10),

|Z| = 2k′ − c ≥ 5 and k′ − 1 ≥ t ≥ 2. (19)

Arguing by contradiction, we assume that the lemma fails and construct k disjoint
cycles.

Case 1 w ∈ Y ∪Z. Since (A) does not hold, u has neighbors x ∈ X and y ∈ Y −w.
Pick y ∈ N(u) ∩ Y − w with s(y) minimum. Then, for y0 defined in (16), we

have

if y0 ∈ Y − w − y, then y0u /∈ E(G), and so by (15), |N [y0] ∩ Z| ≤ 2. (20)

By (17), T := uxyu ⊆ G. Set ε := 0 if w ∈ Z; else ε := 1. Partition Y − y −w

as {Q,Q} so that |Q| = t − ε, |Q| = c−1
2 , and y0 ∈ Q ∪ {w, y} if c > 1. So

t ≥ 3, if y0 ∈ Q. Regardless, by (16), (18), and (20), Q and R := Z − w satisfy
the conditions of Lemma 1. Thus, Q ∪ R contains t disjoint triangles. By (17),
(X− x)∪Q contains c−1

2 disjoint triangles. Counting these k′ − 1 triangles, T , and
k − k′ strong edges of M ′ gives k disjoint cycles.

Case 2 w ∈ X. Since (B) fails, there are z ∈ N(u) ∩ Z and y ∈ N(u) ∩ Y . Our
first goal is to show that there is an edge with ends in N(u) ∩ Y and N(u) ∩ Z. If

164 H. A. Kierstead et al.

N(u)∩N(z)∩Y
= ∅, then we are done. Else, by (18), N(z)∩Y = Y−y = N [u]∩Y .
Let y′ ∈ Y − y. By (15) applied to y and y′, |N [y] ∩ Z| ≤ 2. By (7) applied to u

and y′, |N [u] ∩ Z| ≤ 2. By (19), |Z| ≥ 5, so there is z′ ∈ Z ∩ N(u) ∩ N(y), and
we are done.

Pick yz ∈ E with y ∈ N(u) ∩ Y and z ∈ N(u) ∩Z so that s(y) is minimum and
let T := uzyu. Then, for y0 defined in (16), using (15),

if y0 ∈ Y − y then |N[y0] ∩ (Z − z)| ≤ 2, (21)

since y0u /∈ E(G) or y0z /∈ E(G).
Partition Y − y as {Q,Q} so that |Q| = t , |Q| = c−1

2 , and y0 ∈ Q+ y if c > 1.
So t ≥ 3, if y0 ∈ Q. Regardless, by (16), (18), and (21), Q and R := Z − z satisfy
the conditions of Lemma 1. Thus, Q ∪ R contains t disjoint triangles. By (17),
(X−w)∪Q contains c−1

2 disjoint triangles. Counting these k′ −1 triangles, T , and
k − k′ strong edges of M ′ gives k disjoint cycles. ��
Claim 2 Let G′ ⊆ Yk′,c,2k′−c(Y,X,Z) for k′ ≥ 4 and an odd c ≤ k′. Then, |D ∩
W | ≤ 2.

Proof Suppose u ∈ D ∩W . Then, there is a matching M ′ and vertex wu ∈ V (G′)
such that W(M ′) = W(M)+wu− u and there is an M,M ′-alternating path from u

to wu. By Claim 1, u has no neighbors in Y − wu or in X or in Z.
By degree condition (7), there is at most one u ∈ D ∩W with no neighbor in X

or no neighbor in Z: otherwise, for any x ∈ X and z ∈ Z, we have the contradiction

‖{x, z},W‖ ≤ 4α′ − 2 and so s(x)+ s(z) ≤ 4k′ − 2+ 4α′ − 2 ≤ 4k − 4.

Similarly, there is at most one u ∈ D∩W with at most one neighbor in Y : otherwise,
as k′ ≥ 4, there are two y, y′ ∈ Y with

∥
∥{y, y′},W∥

∥ ≤ 4α′ − 4 and so s(y)+ s(y′) ≤ 4k′ + 4α′ − 4 ≤ 4k − 4.

Thus, |D ∩W | ≤ 2. ��
Lemma 2 yields that |W | ≤ 2+ |A| + |C|. Thus, (Q5) holds.

Case 7 (S2) holds for G′.
So, n′ ≥ 3k′ and k′ = 2 and G′ satisfies one of (Y1)–(Y5) from Corollary 2. If
n′ ≤ 7, then (Q4) holds, so assume n′ ≥ 8. This implies that G′ satisfies either (Y4)
or (Y5). As k ≥ 5, |M| = α′ = k − k′ ≥ 3.

Define a vertex v ∈ W to be i-acceptable if |N(v)∩W | ≥ 2α′ − i, acceptable if
it is 1-acceptable, and good if it is 0-acceptable. Let u, v ∈ W with uv /∈ E. If i and
j are minimum natural numbers such that u is i-acceptable and v is j -acceptable,
then

i + j ≤ dG′(u)+ dG′(v)− 5. (22)

An Algorithmic Answer to the Ore-Type Version of Dirac’s Question on Disjoint Cycles 165

Case 7.1: G′ satisfies (Y4), i.e., G′ ∈ {H, sd(H, e, x), sd(H, e, xy)}, where
W|H |−1 ⊆ H ⊆W+|H|−1. Set t = |H | − 1. Let H have center v0 and rim v1 . . . vt v1,
and let W′t be the result of adding a parallel edge between v0 and v1 in Wt . Since G′
is simple, we may assume H ∈ {Wt, W′t}. If G′
= H then we may assume that the
subdivided edge e is incident to v1. As n′ ≥ 8, t ≥ 5.

Case 7.1.1: t = 5. The subdividing vertex x exists. By (22), the subdividing
vertices and v3, v4, v5 are all good, v2 is acceptable, and v1 is 2-acceptable. As
|M| ≥ 3, there is an edge ab ∈ M with av1, bv2 ∈ E. Then, there are k disjoint
cycles v0v4v5v0, av1xa, bv2v3b, and |M − ab| strong edges, contradicting G ∈
BOk .

Case 7.1.2: t ≥ 6. By (22), the rim vertices v3, v4, v5, v6 are all acceptable. As
|M| ≥ 3, there is an edge ab ∈ M such that av3v4a and bv5v6b are cycles. Let
C be the smallest cycle containing v0, v1, v2 (and any subdividing vertices). Then,
there are k disjoint cycles C, av3v4a, bv5v6b and α′ − 1 strong edges, contradicting
G ∈ BOk .

Case 7.2: G′ satisfies (Y5), i.e., G′ ∈ {H, sd(H, e, x), sd(H, e, xy)}, where

K3,|H |−3(Y, Zt) − e′ ⊆ H ⊆ K+3,|H|−3(Y, Zt) where Y = {y1, y2, y3},
Zt = {z1, · · · , zt }.

As n′ ≥ 8, t ≥ 3. If α(G′) ≥ n′ − 2k′ + 1, then (Q2) holds and so (S3) holds which
falls under Case 2. So, assume that the subdividing vertex x exists in G′.

Case 7.2.1: e = yhyi , where {h, i, j} = [3]. Since α(G′) ≤ n′ − 2k′ and Z + x

is independent, e is subdivided twice. As dG′(x) = 2, every vertex of Z is adjacent
to every vertex of Y (and no other vertex of G′). Thus, G′ = sd(H, e, xy) and the
vertices of Z + x + y are all good.

Suppose t = 3. Then, dG′(yj) ≤ 5. By (22), yj is 2-acceptable. As |M| ≥ 3,
there is an edge ab ∈ M with ayj ∈ E. Thus, there are k disjoint cycles ayj z1a,
bxyb, z2yhz3yiz2, and α′ − 1 strong edges, contradicting G ∈ BOk .

Otherwise, t ≥ 4. Then, for every ab ∈ M , there are k disjoint cycles axya,

bz1y1z2b, z3y2z4y3z3, and α′ − 1 other strong edges, contradicting G ∈ BOk .

Case 7.2.2: e ∈ E(Y,Zt). Now, H is simple. Say e = y1z1 and e′ = y′z′. If
e′ /∈ E(H), then y′
= y1. By degree conditions xz′ ∈ E, so z′ = z1. As xzi, z1zi /∈
E for i ≥ 2, (22) implies that all vertices of Z − z1 and all subdividing vertices are
good, z1 is acceptable, and z1 is good if e′ /∈ H .

Case 7.2.2.1 t ≥ 4. Let ab ∈ M with a ∈ N(z1). If t ≥ 5, then there are k

disjoint cycles, az1xa, bz2y1z3b, z4y2z5y3z4, and α′−1 strong edges, contradicting
G ∈ BOk . Else, t = 4. Since dG′(y2) ≤ 6 and xy2 /∈ E, (22) implies y2 is
3-acceptable. As z1 is acceptable and |M| ≥ 3, there is an edge ab ∈ M with
az1, by2 ∈ E. As x and z2 are good, this yields k disjoint cycles az1xa, by2z2b,
z3y1z4y3z3, and α′ − 1 strong edges, contradicting G ∈ BOk .

166 H. A. Kierstead et al.

Case 7.2.2.2 t = 3 and z1y1 is subdivided twice with z1x, yy1 ∈ E. Then, x

and y are both good. Since dG′(y1) ≤ 5 and xy1 /∈ E, y1 is 2-acceptable. As z1 is
acceptable, there is an edge ab ∈ M with az1, by1 ∈ E. Thus, there are k disjoint
cycles az1xa, by1yb, y2z2y3z3y2, and α′ −1 strong edges, contradicting G ∈ BOk .

Case 7.2.2.3 t = 3 and z1y1 is subdivided once. Suppose there is an edge yiyj ∈
E, where [3] = {i, j, h}. Then, dG′(yh) ≤ 5 and either yhx /∈ E or yhz1 /∈ E.
By (22), yh is 3-acceptable. As |M| ≥ 3, there is an edge ab ∈ M with az1, byh ∈
M . Thus, there are k disjoint cycles az1xa, byhz2b, yiz3yj z3, and α′ − 1 strong
edges, contradicting G ∈ BOk . So, assume ‖G[Y]‖ = 0.

If |F | = 2α′, then (Q4) holds. Else, there are edges ab, a′b′ ∈ M and a vertex
u ∈ W with au ∈ E(F). All vertices of G′ are good except one of y1, z1 might only
be acceptable. Choose notation so that {b, a′, b′} = {c1, c2, c3} and |N(c1)∩W | ≥ 6
and |N(c2)∩W |, |N(c3)∩W | ≥ 7. By inspection, G′−u contains a perfect matching
{e1, e2, e3} with e1 ⊆ N(c1). Thus, G contains k disjoint cycles, c1e1c1, c2e2c2,
c3e3c3, aua and α′ − 2 other strong edges, contradicting G ∈ BOk .

��

6 Proof of Theorem 15

To construct the algorithm, we first describe several subroutines.

Lemma 2 Let k ≥ 4 and n = 3k. There is a subroutine that for any simple graph
G = (V ,E) ∈ DOk with |G| = n checks whether G ⊆ Yk,s,2k−s for some s ≤ k,
and in this case constructs the representation G ⊆ Yk,s,2k−s(Y,X,Z), all in O(n3)

time.

Proof Note that if G ⊆ Yk,s,2k−s(Y,X,Z) for some s ≤ k, then we can choose
notation so that every x ∈ X is adjacent to every other vertex in X ∪ Y by (17).
Search for a vertex x such that d(x) ≤ 2k − 1 and N [x] can be partitioned as
{Q,R} so that Q = {v ∈ N [x] : N [v] = N [x]} and R is independent with |R| = k.
This takes O(n3) time. If we find such an x, then G ⊆ Yk,s,2k−s(R,Q,Z), Q = X,
and R = Y . Otherwise, G � Yk,s,2k−s for any s ≤ k. ��
Lemma 3 There are subroutines that for any simple graph F with |F | = n

construct:

1. a maximum matching of F in O(n2.5) time;
2. a GE-decomposition (D,A,C) of F in O(n3.5) time.

Proof For (1), see [13]. For (2), using (1), find the sizes of a maximum matching in
F and in all the graphs (F−v) with v ∈ V (F). This can be done in O(n3.5) time. Set
D = {v ∈ V (F) : α′(F −v) = α′(F)}, A = NF (D)−D, and C = V (F)−D−A.

��
Now, we are ready to define our algorithm.

An Algorithmic Answer to the Ore-Type Version of Dirac’s Question on Disjoint Cycles 167

Setup We are given a positive integer k and a multigraph G ∈ DOk . By
Corollary 1, we may assume that G is loopless. Construct the simple graph F

induced by the strong edges of G and the GE-decomposition (D,A,C) of F in
O(n3.5) time. Set |G| = n, D′ = V (G)− V (F), α′ = α′(F), and k′ = k − α′.

If k ≤ 4, then construct G1 from G by subdividing each edge. Then, G1 is a
simple graph with n + ‖G‖ vertices and 2‖G‖ edges, and the number of disjoint
cycles in G1 equals that in G. By Theorem 2, we can determine whether G1 has k

disjoint cycles in linear time in n + ‖G‖. So, in total this step takes O(n2) time.
Thus, below we assume k ≥ 5 and apply Theorem 14 to G. Checking (Q1) is trivial,
so it remains to show how to check (Q2)–(Q5).

Check (Q2) First check whether n > 2k+1 and G is extremal: DOk . As observed
in Section 2.1, every big set J ⊆ G has the form J = V (G)−N(v) for some vertex
v with s(v) = 2k − 1. We can find all such sets in O(n3) time by checking whether
V (G)−N(v) is independent for each v ∈ V (G) with s(v) = 2k− 1. If n ≤ 2k+ 1
or there are no such sets, then (Q2) fails. Otherwise, let I1, . . . , Iq be the big sets
in G. As n > 2k + 1, (2) implies they are disjoint, so q < n. For each j ∈ [q],
check whether Ij has no strong neighbors or has a unique strong neighbor w(j).
This takes O(n2) time. If at least one Ij has no strong neighbors or w(j) = w(j ′)
for some distinct j, j ′ ∈ [q], then (Q2) holds; otherwise, (Q2) does not hold.

Check (Q3) First confirm that k′ ≥ 5 and n = 3k − α′. Next, construct the set U

of vertices v ∈ D′ with s(v) = k + α′ − 1. Then, test each v ∈ U to see if (*) for
some adjacent pair {x, y} ∈ N(v) there is an α′-matching contained in F − x − y.
This uses O(n5.5) steps. Now, (Q3) holds if and only if (*) fails.

Check (Q4) First confirm that 3k − α′ ≤ n ≤ 3k − α′ + 1 and k′ ≤ 4. If so, then
we still need to check whether G − W(M) has no k − |M| disjoint cycles for all
matchings M in F . If |G−W(M)| ≤ 3(k−|M|)−1, then G−W(M) does not have
enough vertices to have k − |M| disjoint cycles. So, it suffices to check for every
W ⊆ V (G) with 2(α′ − 1) ≤ |W | ≤ 2α′ whether: (i) F [W] has a perfect matching
and (ii) G−W has no k − |W |/2 disjoint cycles. Then, (Q4) holds if and only if (i)
implies (ii) for all such W . As n− |W | ≤ 3(k− α′ + 1) ≤ 15, there are O(n15) sets
to test. Testing (i) takes O(n2.5) time and testing (ii) takes O(1) time. So altogether,
we use O(n17.5) time.

Check (Q5) First confirm that k′ ≥ 5, n = 3k−α′ and |F |−2α′ ∈ {0, |D|−2, |D|−
1}. If so, then we still need to check that for all maximum matchings M either: (i)
α(G−W(M)) = k′ +1 or (ii) G−W(M) ⊆ Yk′,c,2k′−c for some odd c ≤ k′. We do
this by checking certain subsets W ⊆ V (G) to see if F [W] has a perfect matching
M satisfying (i) and (ii). If |F | − 2α′ = 0, then W := W(M) = V (F); else, using
|F | − 2α′ ∈ {|D| − 2, |D| − 1}, V (F) = A ∪ C ∪D and W = A ∪ C ∪ (W ∩D),
we have

|D −W | = |F | − 2α′ ≥ |D| − 2 = |D −W | + |W ∩D| − 2,

168 H. A. Kierstead et al.

so |W ∩D| ≤ 2. Thus, we only need to check O(n2) sets W . By Lemma 2 and the
argument in Check (Q2), each check takes O(n3) time, so all together we use (n5)

time.
This completes our description of the algorithm. ��

Acknowledgements We thank a referee for a number of helpful comments. Research of
A. Kostochka is supported in part by NSF grant DMS-1600592 and by grants 18-01-00353A
and 16-01-00499 of the Russian Foundation for Basic Research. Research of T. Molla is supported
in part by NSF grant DMS-1500121. Research of D. Yager is supported by the Campus Research
Board of the University of Illinois.

References

1. H.L. Bodlaender, On disjoint cycles. Int. J. Found. Comput. Sci. 5, 59–68 (1994)
2. K. Corrádi, A. Hajnal, On the maximal number of independent circuits in a graph. Acta Math.

Acad. Sci. Hungar. 14, 423–439 (1963)
3. G. Dirac, Some results concerning the structure of graphs. Can. Math. Bull. 6, 183–210 (1963)
4. R.G. Downey, M.R. Fellows Fixed-parameter tractability and completeness. Congr. Numer. 87,

161–178 (1992)
5. H. Enomoto, On the existence of disjoint cycles in a graph. Combinatorica 18(4), 487–492

(1998)
6. M.R. Garey, D.S. Johnson, Computers and intractability, in A Guide to the Theory of NP-

Completeness. A Series of Books in the Mathematical Sciences (W. H. Freeman and Co., San
Francisco, 1979), x+338 pp. (p. 68)

7. H.A. Kierstead, A.V. Kostochka, Ore-type versions of Brooks’ theorem. J. Comb. Theory Ser.
B 99, 298–305 (2009)

8. H. Kierstead, A. Kostochka, T. Molla, E.C. Yeager, Sharpening an Ore-type version of the
Corrádi-Hajnal theorem. Abhandlungen aus dem Mathematischen Seminar der Universität
Hamburg, published online (2016)

9. H.A. Kierstead, A.V. Kostochka, E.C. Yeager, On the Corrádi-Hajnal theorem and a question
of dirac. J. Comb. Theory Ser. B 122, 121–148 (2017)

10. H.A. Kierstead, A.V. Kostochka, E.C. Yeager, The (2k − 1)-connected multigraphs with at
most k − 1 disjoint cycles. Combinatorica 37(1), 77–86 (2017)

11. A.V. Kostochka, L. Rabern, M. Stiebitz, Graphs with chromatic number close to maximum
degree. Discret. Math. 312, 1273–1281 (2012)

12. L. Lovász, On graphs not containing independent circuits, (Hungarian. English summary) Mat.
Lapok 16, 289–299 (1965)

13. S. Micali, V. Vazirani, An O(
√|V | · |E|) algorithm for finding a maximum matching in general

graphs, in Proceedings of Twenty-first Annual Symposium on Foundations of Computer Science
(IEEE Berkeley, California, 1980), pp. 17–27

14. L. Rabern, A-critical graphs with small high vertex cliques. J. Comb. Theory Ser. B 102, 126–
130 (2012)

15. H. Wang, On the maximum number of disjoint cycles in a graph. Discret. Math. 205, 183–190
(1999)

Combinatorial and Graph-Theoretical
Problems and Augmenting Technique

Ngoc C. Lê

1 Introduction

Berge’s lemma [3] states that a matching M (a set of edges without common
vertices) of a graph G is maximum (contains the largest number of edges) if and
only if there is no augmenting path (a path that starts and ends on free (unmatched)
vertices, and alternates between edges in and not in the matching) with M . Edmonds
[11] used this idea to develop Blossom Algorithm for this problem. This idea was
used first for the Maximum Independent Set problem, i.e. the problem asks for a
largest number of vertices set without edges among them, by Sbihi [33] and Minty
[28]. Clearly, a matching in a graph G corresponds to an independent set in the line
graph of G. Hence, we can use Edmonds’ algorithm to find Maximum Independent
Set for line graphs. Sbihi and Minty extended this idea for a more general graph
class, say claw-free graph, by showing that an independent set S of a graph G is
maximum if and only if there is no augmenting path (a path that starts and ends on
vertices not lies in the independent set and alternates between vertices in and not in
the independent set) with S. This technique was extended for more general graph
classes by using the augmenting graph concept as described as follows.

Definition 1 ([17]) Given a graph G and an independent set S, an induced bipartite
subgraph H = (W,B,E) of G is called an augmenting graph for S if (i) W ⊆ S,
B ⊆ V (G)\S, (ii) N(B) ∩ (S\W) = ∅, and (iii) |B| > |W |.

An augmenting graph H is called minimal if it does not contain any augmenting
graph as a proper induced subgraph.

N. C. Lê (�)
School of Applied Mathematics and Informatics, Hanoi University of Science and Technology,
Hanoi, Vietnam

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_9

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_9&domain=pdf
https://doi.org/10.1007/978-3-319-94830-0_9

170 N. C. Lê

Theorem 1 ([17]) An independent set S in a graph G is maximum if and only if
there is no augmenting graph for S.

This theorem suggests the following general approach to find a maximum inde-
pendent set in a graph G. Begin with any independent set S (may be empty) in
G and as long as S admits an augmenting graph H , exchange white and black
vertices of H . Clearly, the problem of consecutively finding augmenting graphs
and of applying these augmentations is generally NP-hard, as the MIS problem is
NP-hard. Moreover, we can restrict ourselves in minimal augmenting graph only.
Hence, for a polynomial time solution to some graph class, one has to solve the two
following problems:

(P1) Find a complete list of (minimal) augmenting graphs.
(P2) Develop polynomial time algorithms for detecting (minimal) augmenting

graphs.

So far, characterizations of (minimal) augmenting graphs mainly followed the two
following directions. In the first approach, augmenting graphs in (S1,2,k ,banner)-
free graphs are characterized based on the observation that a banner-free bipartite
graph is either C4-free or complete. The most general result follows this direction
described by Lozin and Milanič [23] for (S1,2,5,banner)-free graphs.

In the second approach, augmenting graphs of subclasses of P5-free graphs are
characterized based on the observation showed indepedently by many researchers
(e.g., [29]) that every connected P5-free bipartite graph is a bipartite-chain graph,
i.e. the vertices of each part can be ordered under inclusion of their neighborhood.
Based on this property, polynomial solutions were obtained for some subclasses of
P5-free graphs [4, 16, 25, 29, 30]. It is also worth to notice that the MIS problem is
shown polynomially solvable in P5-free graphs [22].

In this paper, we try to combine the two above approaches to a subclass of
(banner2,domino)-free graphs (see Figure 1). In particular, we obtain the following
theorem.

Theorem 2 Given integers m, l, the MIS problem is polynomially solvable in
(S2,2,5,banner2,domino,Mm,Km,m − e,R1

l , R
2
l , R3

l)-free graphs. (See Figure 4.)

Obviously, banner and domino are two natural generalizations of P5 and banner
(banner1), R1

l , R2
l , R3

l are generalizations of S1,2,5. Hence, our result is a gen-
eralization of some previous known results for (S1,2,5, banner)-free graphs [23],
(P5,K3,3 − e)-free graphs [16, 25] for (P5,K2,m − e)-free graphs, and some
subclasses of S1,2,2-free graphs [20].

The organization of the paper is as follows. Augmenting graphs for some
subclasses of S2,2,l-free graphs are characterized in Section 2, i.e. to solve Problem
P1. Methods for finding such augmenting graphs are described in Section 3, i.e. to
solve Problem V2. In Section 4, we summarize some results in using technique for
other combinatorial and graph-theoretical problem. Section 5 is a discussion about
the issue. Many of long proofs are put in the Appendix part.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 171

Fig. 1 Si,j,k , domino, bannerk , and applel

Here, we want to collect most of the terminology and notations used in the paper.
For those not given here, they will be defined when needed. For those not given, we
refer the readers to [5]. Given a graph G = (V ,E), for a vertex u, we denote by
N(u) := {v ∈ V : uv ∈ E} the neighborhood of u in G. For a subset U ⊂ V (G),
we denote by N(U) := (

⋃

u∈U
N(u))\U the neighborhood of U . If W,U are two

vertex subsets of G, then NU(W) := N(W) ∩ U . Also, NU(v) := N(v) ∩ U for a
vertex v. Given a graph G = (V ,E) and a vertex subset U , we denote by G−U the
graph obtained from G by deleting all vertices (together with adjacent edges) in U .
For two vertices u, v ∈ V , we write u ∼ v if uv ∈ E. For a vertex u, we denote by
d(u) := |N(u)|, the degree of u in G. We also denote by G[U] := G− (V (G)\U),
the subgraph of G induced by U .

2 Augmenting Graphs in Subclasses of (S2,2,l ,bannerl)-Free
Graphs

Hertz and Lozin [17] obtained the following observation about minimal augmenting
graphs.

Lemma 1 ([17]) If H = (B,W,E) is a minimal augmenting graph for an
independent set S of a graph G, then

1. H is connected;
2. |W | = |B| − 1;
3. for every subset U ⊆ W , |U | < |NB(U)|.

172 N. C. Lê

2.1 Redundant Sets and Reduction Sets

Let us report from Section 3 of [23] a general observation on the problem of finding
augmenting graphs and let us slightly extend it according to the Remark of Section 3
of [23]. Given an augmenting graph class A , a graph G, and an independent
set S, let Problem Augmentation (A) denote the problem of finding augmenting
graphs if S admits an augmenting graph in A . Lozin and Milanič [23] showed that
in (S1,2,5,banner)-free graphs, the problem can be reduced to finding augmenting
graphs of the form tree1,. . . ,tree6 (see Figure 2) by using redundant set concept. We
extend this concept as follows.

Definition 2 In an augmenting graph H = (W,B,E), a vertex subset U is called
redundant if

1. |U ∩W | = |U ∩ B| and
2. for every vertex b ∈ B\U , NW\U(U ∩ B) ⊆ NW\U(b).

Theorem 3 Let A1 and A2 be two classes of augmenting graphs. If there exists
a constant k such that, for every augmenting graph H = (W,B,E) ∈ A2, there
exists a redundant subset U of size at most k such that H − U ∈ A1, then Problem
Augmentation(A2) is polynomially reducible to the problem Augmentation(A1).

Proof Assume that Algorithm Augment1(G, S) outputs a subset V ′ ⊆ V (G) such
that G[V ′] is augmenting for S whenever S admits an augmenting graph from
A1 (and perhaps even if this is not the case). The procedure also returns ∅ if no
augmenting graph is found.

Assume that S admits an augmenting graph H = (B,W,E) ∈ A2. Then by
the theorem’s assumption, H contains a redundant set U of size at most k such that
H −U ∈ A1. It is obvious that the graph H −U is augmenting for S\U . Moreover,
since U is redundant, G′′ contains every vertex of H − U , i.e. Steps 1 and 2 have
not removed any vertex of H − U . Therefore, Algorithm Augment1 must output a
non-empty set T . Consequently, Algorithm Augment2 also outputs a non-empty set
U ∪ T .

We show that G[U ∪ T] is augmenting for S. Indeed, by Step 1, G[U ∪ T] is a
bipartite graph. Since T is augmenting for S\U in G′′, |T ∩ S\U | < |T ∩ V (G′′)|.
Moreover, since |U ∩ S| = |U ∩ V (G)\S|, |(T ∪ U) ∩ S| < |(T ∪ U) ∩ V (G)\S|.
By Step 2, NS(U\S) ⊆ T ∩ S, i.e. NS((T ∪ U)\S) ⊆ (T ∪ U) ∩ S. Hence, the
graph G[U ∪ T] is augmenting for S, even if G[T] does not coincide with H − U .
Therefore, whenever S admits an augmenting graph in A2, Algorithm Augment2
finds an augmenting graph.

To this end, the procedure inspects polynomially many subsets of vertices of the
input graph, which results in polynomially many calls of Algorithm Augment1. The
construction of the graph G′′ also is performed in polynomial time. Hence, Problem
Augmentation(A2) is polynomially reducible to Problem Augmentation (A1).

Note that Problem Augmentation(A1) becomes Problem (P2) when A1 is the
class of all (possible) augmenting graphs.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 173

Algorithm 1 Augment2(G, S) (Version 1)
Input: A graph G and an independent set S of G

Output: A subset V ′ ⊆ V (G) such that G[V ′] is augmenting for S whenever S admits an
augmenting graph from A2. Return ∅ if no augmenting graph is found.

1: for all U ⊆ V (G) of size at most k such that

1. B0 := U ∩ (V (G)\S) is independent in G,
2. |B0| = |U ∩ S|
do

2: G′ := G−NG(B0) ∩ (V (G)\S) {Remove the (black) neighbors of B0 in V (G)\S};
3: G′′ := G′ − {b ∈ V (G′)\S : NS\U (B0)\NS\U (b)
= ∅} {Remove the (black) vertices of

V (G′)\S whose neighborhood in S\U does not cover the neighborhood of B0 in S\U};
4: T := Augment1(G

′′ − U, S\U);
5: if T
= ∅ then
6: return U ∪ T {We have an augmenting graph for S}
7: end if
8: end for
9: return ∅

Moreover, we can also extend the redundant set concept further as follows. If
Algorithm Augment1 starts with some initialization process (see Algorithm 2),
which computes some finite vertex set C such that NS\U(U\S) ⊆ NS(C\S), then
we can process this initialization procedure in Augment2 as in Version 2 and remove
the condition that every neighbor in S\U of black vertices in B\U covers the
neighbor of U in S\U (see Algorithm 3). More precisely, we have the following
definition.

Definition 3 Let A1 and A2 be the two augmenting graph classes. Given an integer
k. Assume that there exists a polynomial time procedure finding an augmenting
graph in A1 (or deciding such augmenting graph does not exist) and such a
procedure has a form as in Algorithm 2, i.e. starts by generating some candidates
and from each candidate C, builds up augmenting graphs (Generate1(C,G, S)).
In an augmenting graph H = (B,W,E) ∈ A2, a vertex subset U is called a
reduction set associated with some key set B∗ ⊆ B ∩ C if |U ∩ B| = |U ∩ W |
and NW\U(U ∩ B) ⊆ NW\U((B∗\U) ∩ B).

And by the above arguments, we have the following observation.

Theorem 4 Let A1 and A2 be the two augmenting graph classes. Then Problem
Augmentation(A2) is polynomially reducible to Problem Augmentation(A1) if there
are two integers k1, k2 such that for every augmenting graph H = (B,W,E) ∈ A2,
there is a reduction set U of size at most k1 associated with a key set B∗ of size at
most k2 such that H − U ∈ A1.

174 N. C. Lê

Algorithm 2 Augment1(G, S)

Input: A graph G and an independent set S of G

Output: A subset V ′ ⊆ V (G) such that G[V ′] is augmenting for S whenever S admits an
augmenting graph from A1. Return ∅ if no augmenting graph is found.

1: Generate Candidates;
2: for all Candidates C do
3: T := Generate1(C,G, S);
4: if T
= ∅ then
5: return T {We have an augmenting graph for S}
6: end if
7: end for
8: return ∅

Algorithm 3 Augment2(G, S) (Version 2)
Input: A graph G and an independent set S of G.
Output: A subset V ′ ⊆ V (G) such that G[V ′] is augmenting for S whenever S admits an

augmenting graph from A2. Return ∅ if no augmenting graph is found.
1: for all U ⊆ V (G) of size at most k such that

1. B0 := U ∩ (V (G)\S) is independent in H ,
2. |B0| = |U ∩ S|
do

2: G′ := G−NG(B0) ∩ (V (G)\S) {Remove the (black) neighbors of B0 in V (G)\S};
3: Generate Candidates;
4: for all Candidates C of G′ such that NS\U (B0) ⊆ NS\U (C ∩ (V (G′ − U)\S)) do
5: T := Generate1(C,G′ − U, S\U);
6: if T
= ∅ then
7: return U ∪ T {We have an augmenting graph for S}
8: end if
9: end for

10: end for
11: return ∅

2.2 Augmenting Graphs in Subclasses of S2,k,l-Free Graphs

The following corollary is a consequence of Lemma 1 and was obtained in [23].

Corollary 1 ([23]) Let H = (B,W,E) be a minimal augmenting graph for an
independent set S of a graph G. Then for every vertex b ∈ M , there exists a perfect
matching between B\{b} and W in H , i.e. a matching consists of every vertex of
B\{b} and W .

Remark 1 By the above corollary, from now on, given a minimal augmenting graph
H = (B,W) and a black vertex b ∈ B, we denote by M such a perfect matching
and for every vertex u of H different from b and by μ(u) the matched vertex of u

in M . For a subset U ⊆ V (H), we also denote μ(U) := {μ(u) : u ∈ U}.
Corollary 2 Let H = (B,W) be a minimal augmenting graph. Then every white
vertex of H is of degree at least two.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 175

We say that G is an (k,m)-extended-chain if G is a tree and contains two vertices
a, b such that there exists an induced path P ⊂ G connecting a, b, every vertex of
G−P is of distance at most k−1 from either a or b, and every vertex of G−P has
no neighbor in P except possibly a or b and every vertex of G is of degree at most
m − 1. The following observation is an extension of Theorem 8 of [17]. The result
was announced in [21] without full proof.

Lemma 2 ([21]) For any three integers k, l, and m such that 4 ≤ 2k ≤ l and m ≥
3, in (S2,2k,l ,applel

4, applel
6,. . .,applel

2k+2,K1,m)-free graphs, there are only finitely
many minimal augmenting graphs different from augmenting (2k,m)-extended-
chains and not of the form apple2p. Moreover, if H is of the form augmenting
(2k,m)-extended-chain, then every white vertex is of degree two.

Note that in an augmenting graph of the form apple2p (or augmenting apple for
short), the vertex of degree three is white. However, given an augmenting apple
H = (B,W,E(H)), where b is the black vertex of degree one and w is the white
vertex of degree three. Then U := {b,w} is a redundant set such that H − U is an
augmenting chain, a special case of augmenting (k,m)-extended-chain.

2.3 Augmenting Graphs in Subclasses of S2,2,5-Free Graphs

Now, we try to omit K1,m from the list of forbidden induced subgraphs by consid-
ering (S2,2,5,banner2,domino)-free augmenting graphs. We extend the consideration
of Section 4 in [23]

Lemma 3 Given a graph G and an (S2,2,5,banner2,domino)-free minimal augment-
ing graph H = (B,W,E) for an independent set S, at least one of the following
statements is true:

1. H belongs to some finite set of augmenting graphs;
2. H is an augmenting chain or an augmenting apple (see Figure 1);
3. H is an augmenting graph of the form tree1, tree2, . . . , tree7 (see Figure 2) or can

be reduced by a redundant set containing at most 32 vertices to an augmenting
graph of the form tree1, tree2, . . . , tree7;

4. there is a vertex b ∈ B such that b is adjacent to all vertices of W .

Such b of Case 4 is called the augmenting vertex of S, as in [29, 30]. We also
call augmenting graphs of the form tree1, tree2, . . . , tree7 as augmenting trees.
For Case 4 of Lemma 3, we show that under some restrictions, these augmenting
graphs have structural properties similar to P5-free augmenting graphs, i.e. being a
bipartite-chain by the following observation.

Lemma 4 Given a (domino,banner2)-free graph G, an integer m ≥ 3, and an Mm-
free (see Figure 3) minimal augmenting graph H = (B,W,E) for an independent
set S such that there exists some black vertex b ∈ B adjacent to every white vertex
of W , and |W | ≥ 2m+ 1, at least one of the following statements is true.

176 N. C. Lê

Fig. 2 Augmenting trees

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 177

Fig. 3 Mm and Qp

1. H is of the form tree1 or there exists a reduction set U of size at most 2m − 2
associated with a key set of size one such that H − U is of the form tree1.

2. H is a bipartite-chain or there exists a redundant set U of size at most 2m − 2
such that H − U is a bipartite-chain.

Proof We refer to Lemma 10 for the procedure finding tree1 and note that such a
procedure starts by finding a candidate containing b, i.e. b is adjacent to every white
vertex in the augmenting tree1 and we have the key set B∗ := {b}.

Let B = {b, b1, . . . , bq}, b be the vertex b in Corollary 1, p be the integer p

in Lemma 8 such that NW(bi) ⊇ NW(bj) for every 1 ≤ i ≤ p, i < j ≤ q and
|NW(bi)| = 1 for every i ≥ p + 1.

If p ≤ m−1, then U = {b1, . . . , bp, μ(b1), . . . , μ(bp)} is a reduction set of size
at most 2m− 2 associated with B∗ such that H − U is of the form tree1.

If p ≥ q −m+ 1, then U = {bp+1, . . . , bq, μ(bp+1), . . . , μ(bq)} is a redundant
set of size at most 2m− 2 such that H − U is a bipartite-chain.

If m ≤ p ≤ q−m, then {b, b1, . . . , bk−1, bq−k+1, . . . , bq, μ(bq−k+1), . . . , μ(bq)}
induces an Mm, a contradiction.

The following observation is a generalization of Lemma 10 in [4] and Theorem 1
in [16] about augmenting graphs in (P5,K2,m − e)-free graphs and (P5,K3,3, − e)-
free graphs, respectively.

Lemma 5 Given a graph G, an independent set S of G, an integer m, and a
(Km,m − e)-free minimal augmenting bipartite-chain H = (B,W,E), either

1. H has at most 2m− 2 white vertices; or
2. H is of the form Kl,l+1 or there is a redundant set of size at most 2m − 4 such

that H − U is of the form Kl,l+1, for some l.

Proof Assume that |W | = p ≥ 2m − 1. Let W = {w1, w2, . . . , wp} and B =
{b1, b2, . . . , bp, bp+1}. Assume that NW(bi) ⊆ NW(bj) for i < j . Moreover, by
Corollary 1, there exists a perfect matching between B\{bp+1} and W . Without loss

178 N. C. Lê

of generality, assume that bi ∼ wi for 1 ≤ i ≤ p. Then we have |NW(bi)| ≥ i for
i = 1, 2,

Now, bi ∼ wj for every bi ∈ B and wj ∈ W such that p −m+ 4 ≥ i ≥ m− 1
and p−m+ 3 ≥ j ≥ i+ 1, otherwise {b, bp, . . . , bp−m+3, bi, wj ,wm−1, . . . , w1}
induces a Km,m − e, a contradiction.

Hence, {b, bp, . . . , bm−1, wp−m+1, . . . , w1} induces a Kp−m+3,p−m+2 and U :=
{bm−2, . . . , b1, wp, . . . , wp−m+2} is a redundant of size 2m− 4 such that H −U is
a Kp−m+3,p−m+2.

Note that if an augmenting graph contains at most 2m−2 white vertices, it contains
at most 4m− 3 vertices.

3 Finding Augmenting Graphs

Now, we consider Problem (P2), i.e. the problem of finding augmenting graphs
characterized in Section 2. Remind that we can enumerate all augmenting graphs
of bounded size in polynomial time. Moreover, Hertz and Lozin [17] described a
method of finding augmenting graphs of the form Km,m+1 in banner2-free graphs.
Besides, it is obvious that augmenting apples can be reduced to augmenting chains
by a redundant set of size two. Hence, we have to find augmenting extended-chains
and augmenting trees.

3.1 Augmenting Extended-Chain and Augmenting Trees

The method for finding augmenting chains in (S1,2,j ,banner)-free graphs has been
described by Hertz, Lozin, and Schindl [18]. We have extended this method and
obtain the following result, which was published in [21] without proof.

Lemma 6 ([21]) Given integers l and m, where l is even, an (S2,l,l ,bannerl ,R1
l ,R2

l , R
3
l ,

R4
l , R5

l)-free graph G, and an independent set S in G, one can determine whether
S admits an augmenting (l, m)-extended-chain in polynomial time (Figure 4).

By extending the techniques presented in [23] (finding augmenting trees of the
form tree1, . . . , tree6 in (S1,2,5, banner)-free graphs), we obtain the following result.

Lemma 7 An augmenting graph of the form tree1, tree2, . . . , tree7 can be found in
(S2,2,5,banner2)-free graphs in polynomial time.

Together with the method of Lozin and Hertz [17] for finding augmenting graphs of
the form Kp,p+1 in banner2-free graphs, it leads us to the following result.

Corollary 3 Given an integer m, the MIS problem is polynomially solvable in
(S1,2,5,banner2,domino,Mm,Km,m − e)-free graphs.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 179

Fig. 4 R1
l ,R2

l , R
3
l , R

4
l , and R5

l

180 N. C. Lê

Theorem 42 (as well as Corollary 3) is a generalization of the results of Lozin and
Milanič for (S1,2,5, banner)-free graphs [23], of Lozin and Mosca for (P5,K3,3−e)-
free graphs [25], of Gerber et al. [16] for (P5,K2,m − e)-free graphs, and some
subclasses of S1,2,2-free graphs [20]. Note that we used redundant set and reduction
set to reduce “near” augmenting complete bipartite graphs to augmenting complete
bipartite graphs. This technique is a generalization of method for augmenting
K+m,m’s in [25].

3.2 The Maximum Independent Set Problem in Further
Subclasses of S2,2,5-Free Graphs

So far, for (S2,2,5,banner2,domino,R1
l , R

2
l , R

3
l ,Mm)-free graphs, we can find every

(minimal) augmenting graph in polynomial time except for augmenting bipartite-
chains. Mosca in [29] and then in [30] (see also [14, 16]) developed augmenting
vertex technique for this issue, which we describe next.

Let S be an independent set of a graph G = (V ,E) and v ∈ V \S. We denote
as in [29], H(v, S) := {w ∈ V \(S ∪ {v} ∪ N(v)) : NS(w) ⊂ NS(v)}. Given
a graph G = (V ,E), an independent set S, and a vertex v ∈ V \S, Mosca [29]
defined that v is augmenting for S (and that S admits an augmenting vertex), if
G[H(v, S)] contains an independent set Sv such that |Sv| ≥ |NS(v)|. This implies
that H ′ := (Sv ∪ {v}, NS(v), E(H ′)) is an augmenting graph. Then by Theorem 1
and Lemma 3, we restrict ourselves in the following problem.

Here we use some notations in [30]. Let K be a graph, we denote as K(h)

the graph obtained from K by adding h + 1 new vertices v, s1, . . . , sh such that
{s1, s2, . . . , sh} induce an independent set, si’s dominate K , while v is adjacent only
to si’s.

By considering the problem of finding augmenting bipartite chains, we obtain
the following result as an extension of a similar result in [30] for P5-free graphs.

Theorem 5 Given three integers h, l,m and a graph K , if the MIS problem in
the (S2,2,5,banner2,domino,Mm,R1

l , R
2
l , R

3
l , K)-free graph class is polynomially

solvable, then so it is in the (S2,2,5, banner2,domino,Mm,R1
l , R

2
l , R

3
l , K

(h))-free
graph class.

Corollary 4 Given two integers h,m and a graph K , if the MIS problem is
polynomially solvable in (S1,2,5,banner2,domino,Mm,K)-free graph class, then so
it is the (S1,2,5,banner2,domino,Mm,K(h))-free graph class.

Especially, Theorem 5 leads to some interesting polynomially solvable graph classes
of the MIS problem. Remind that the MIS problem was proved to be polynomially
solvable in P5-free graphs [22], (P2+claw)-free graphs [24], 2P3-free graphs [26],
and pK2-free graphs [1], we have the following consequence.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 181

Fig. 5 Special graphs in Corollary 5

Corollary 5 Given four integers h, l,m, p, the MIS problem is polynomially
solvable in the following graph classes (see Figure 5):

1. (S2,2,5,banner2,domino,Mm,R1
l , R

2
l , R

3
l , P

(h)
5)-free graphs,

2. (S2,2,5,banner2,domino,Mm,R1
l , R

2
l , R

3
l , (P2 + claw)(2))-free graphs,

3. (S2,2,5,banner2,domino,Mm,R1
l , R

2
l , R

3
l , (2P3)

(2))-free graphs, and
4. (S2,2,5,banner2,domino,Mm,R1

l , R
2
l , R

3
l , (pK2)

(h)).

Let treer be the graph of the form tree1 with parameter r (Figure 2). Let G =
(V ,E) be a graph, U be a subset of V and u be a vertex of G outside U . We say
that u distinguishes U if u has both a neighbor and a non-neighbor in U . A subset
U ⊆ V (G) is called a module in G if it is indistinguishable for any vertex outside
U . A module U is trivial if U is a single vertex or V itself, otherwise it is non-
trivial. A graph whose each module is trivial is called prime. It has been shown (for
example in [27]) that if the problem is polynomially solvable for every prime graph
of a graph class X , then it is also polynomial solvable in X . Using the modular
decomposition technique described in [6] for P5-free graphs we can extend Case 4.,
the case h = 2 of the above corollary, as follows.

Corollary 6 Given four integers l, m, p, and r , the MIS problem is polynomially
solvable in (S2,2,5,banner2,domino,Mm, treer ,R1

l , R
2
l , R

3
l ,Qp)-free graph class

(see Figure 3).

Proof We show that a prime (Qp,treer)-free graph is ((2p + r − 2)K2)
(2)-free.

Indeed, let G be a prime (Qp,treer)-free graph, and suppose that G contains an
induced subgraph Q′ isomorphic to ((2p + r − 2)K2)

(2).

182 N. C. Lê

Fig. 6 Qp

Let T ⊆ V (G) be the subset of vertices of G adjacent to every vertex of the
(2p + r − 2)K2 of Q′. Since T contains at least two non-adjacent vertices, Ḡ[T],
the complement subgraph of G induced by T , contains a non-trivial component C.
Since G is prime, C is not a module. Hence, there exists a vertex v ∈ V (G)\C
distinguishing C, i.e. v ∼ c1 and v � c2 for some vertices c1, c2 in C. Moreover,
since Ḡ[C] is connected, we can substitute c1, c2 by two vertices of the path
connecting them and can assume that c1 � c2 in G.

If v is adjacent to every vertex of the (2p+ r−2)K2 of Q′, then v ∈ T and since
v � c2, v ∈ C, a contradiction. Hence, there exists a vertex c′ of the (2p+ r−2)K2
of Q′ such that c′ � v.

Since G is treer -free, v distinguishes at most r − 1 edges of the (2p + r − 2)K2
of Q′. Then we have the two following cases.

Case 1 v is adjacent to both end-vertices of at least p edges of the (2p+ r − 2)K2
of Q′. Then {v, c′, c2} together with these p edges induce a Qp, a contradiction.

Case 2 v is non-adjacent to both end-vertices of at least p edges of the (2p +
r − 2)K2 of Q′. Then {v, c1, c2} together with these p edges induce a Qp, a
contradiction (Figure 6).

4 Augmenting Graphs in Other Problems

In [19], we have extended the augmenting graph approach for a more more general
combinatorial and graph-theoretical problem, say Maximum Π -set Problem. Given
a graph G, the problem asks for a maximum vertex subset such that the induced
subgraph satisfies some give properties Π . Here are some examples for the property
Π and related problems.

Maximum k-Independent Set. [13] Π : Every vertex is of degree at most k− 1.
Note that the Maximum Independent Set is the case k = 1.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 183

Maximum k-Path Free Set. Π : The graph contains no path (not necessarily
induced) of k vertices (k ≥ 2), also called k-path free. This problem is a dual
version of the Minimum Vertex k-Path Cover problem [7].
Maximum Forest. Π : The graph contains no cycle. This problem is a dual
version of the Minimum Feedback Vertex Cover problem [12].
Maximum Induced Bipartite Subgraph. Π : The graph contains no cycle of
odd length.
Maximum k-Acyclic Set. Π : The graph contains no cycle of length at most k.
Maximum k-Chordal Set. Π : The graph contains no cycle of length larger than
k.
Maximum k-Cycle Free Set. Π : The graph contains no cycle of length k (k ≥
3), also called k-cycle free. This problem is a dual version of the Minimum Vertex
k-Cycle Cover problem.
Maximum Induced Matching. [8] Π : Every vertex is of degree one.
Maximum k-Regular Induced Subgraph. [9] Π : Every vertex is of degree k.
Maximum k-Regular Induced Bipartite Subgraph. [9] Π : The graph is
bipartite and every vertex is of degree k.
Maximum Induced k-Cliques. Π : Every connected component is a k-clique.
This problem is a generalization of Maximum Induced Matching problem (k =
2).

We have considered two special cases of the problem. First, the property Π

is hereditary (i.e., if a graph G satisfies Π , then every induced subgraph of G

satisfies Π) and additive (i.e., a graph G satisfies Π if and only if every connected
component of G satisfies Π). Second, Π is of the form F -induced subgraph, i.e.
every connected component of G belongs to some graph set F . In both cases,
we have defined the augmenting graphs and the key theorem, says the Π -set is
maximum if and only if there exists no augmenting graph. We also have considered
a simple case, says the (S1,2,l ,bannerl ,K1,m)-free minimal augmenting graph either
belongs to a finite set or is augmenting extended-chain. By showing that we can find
augmenting extended-chain in polynomial time for the above problem, we obtained
polynomial algorithms for these non-trivial problems in (S1,2,l ,bannerl ,K1,m)-free
graphs.

5 Conclusion

In this paper, we have combined the methods applied for P5-free graphs and
(S1,2,5,banner)-free graphs to generalize some known results. By extending the
method of Lozin and Milanič [23] for (S1,2,5,banner)-free graphs, we show that the
problem can be restricted to finding augmenting chains and augmenting bipartite-
chains in (S2,2,5,banner2,domino, Mm)-free graphs by using concepts of redundant
sets (in the extended senses). It leads us to some generalizations of results about
(P5,K2,m − e)-free graphs [4], (P5,K3,3 − e)-free graphs [16], and augmenting

184 N. C. Lê

vertex in P5-free graphs [14, 16, 29, 30]. It also leads to some interesting results in
(S2,2,5,banner2,domino,Mm)-free graphs, e.g. Corollaries 5 and 6.

Note that S1,1,2 (fork) and S0,1,3 (P5) are the largest single known forbidden
subgraphs, for which the MIS problem is polynomially solvable. For Si,j,k such that
i + j + k ≥ 5, even for subclasses, to the best of our knowledge, there are still not
many known results except in some subclasses of P6-free graphs, graphs of bounded
maximum degree, planar graphs, (S1,2,5,banner)-free graphs [23], (S1,1,3,Kp,p)-
free graphs [10], and (S1,2,l ,bannerl ,K1,m)-free graphs [19]. Combining different
techniques is a potential approach helping us extend these results to tackling the
general question about complexity of the MIS problem in Si,j,k-free graphs.

Besides, by applying a technique, which has been used for P5-free graphs, for
a larger graph class, e.g. S2,2,5-free graphs, we believe that it is possible to apply
other techniques, which were used in P5-free graphs, in S2,2,l-free graphs.

The augmenting graph technique is also very potential in many other non-trivial
combinatorial and graph-theoretical problems.

Acknowledgements This research is supported by National Foundation for Science and Tech-
nology Development (NAFOSTED) of Vietnam, project code: 101.99-2016.20. We would like
to express our special thanks to an anonymous reviewer for his/her very useful suggestions and
comments.

Appendix 1: Proof of Lemma 2

Proof (of Lemma 2) Let H = (B,W,E) be a minimal augmenting graph. If
Δ(H) = 2, then H is a cycle or a chain. Since H is bipartite and |B| = |W | + 1, H

cannot be a cycle. Now, assume that H is not a chain. We show that either (i) there
exists some vertex a such that there is no vertex of distance 2k+ l+ 1 from a or (ii)
H is an augmenting extended-chain or augmenting apple. Note that, every vertex of
H is of degree at most m− 1, otherwise an induced K1,m appears, a contradiction.
Since H is connected, if we have (i), then

|V (H)| ≤
2k+l+1∑

i=0

(m− 1)i = 1− (m− 1)2k+l+2

2−m
,

i.e., H belongs to some finite set of augmenting graphs.
If a white vertex w ∈ W has two black neighbor b1, b2 of degree one, then

{b1, a, b2} is an augmenting P3, a contradiction. Hence, we have the following
observation.

Claim 1 Every white vertex of H has at most one black neighbor of degree one. In
particular, if a white vertex w is of degree at least four, then there are at least three
neighbors of w of degree two.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 185

Claim 2 Either H contains a vertex, say a, of degree at least three and a has at least
three neighbors of degree at least two or H is an augmenting apple.

Proof Since H is neither a chain or a cycle, there exists at least one vertex of degree
at least three.

By Corollary 2, every white vertex of H is of degree at least two, i.e. every white
neighbor of a black vertex has another black neighbor. Hence, if H contains a black
vertex of degree three, then this vertex is a desired vertex a.

Hence, we assume that (1) every black vertex of H is of degree at most two. If
there exist two black vertices of degree one, then by (1), the path connecting these
two black vertices is an augmenting chain, a contradiction. Hence, we assume that
(2) there exists at most one black vertex of degree one.

By Claim 1, there exists no white vertex of degree four or we have a desired
vertex a. Moreover, if there exist two white vertices of degree three, then either one
of them has three neighbors of degree two, i.e. we have a desired vertex a, or we
have two black vertex of degree one.

Now, if every white vertex of H is of degree two except one of degree three
whose one black neighbor is of degree one, then H is an augmenting apple.

Let a be a vertex in the conclusion of the above claim. Denote by Vi the subset of
vertices of H of distance i from a. Let ap be the vertex of maximum distance from
a and assume that p ≥ 2k + l + 1. Let P := (a0, a1, . . . , ap), where ai ∈ Vi , be
a shortest path connecting a = a0 and ap. Let V1 = {a1, b1,1, b1,2, . . .}, and bi+1,j

be a vertex of NVi+1(bi,j), if such one exists. By the assumption about a, b2,1, and
b2,2 exist (note that they may coincide).

We show that ai � bi+1,1 and ai+1 � bi,1 for i = 1, 2, . . . , 2k by induction.
Note that it also implies that bi,j
= ai for every i, j .

If a2 ∼ b1,1, then {b1,1, a, a1, a2, a3, . . . , al+2} induces a bannerl , a contradic-
tion.

If a1 ∼ b2,1, then either {b2,1, b1,1, a, a1, a2, . . . , al+1} or {b2,1, a1, a2, a3, a4, . . . ,

al+3} induces a bannerl depending on a3 ∼ b2,1 or not, a contradiction.
Now, by induction hypothesis, consider 2 ≤ i ≤ k. If ai ∼ bi+1,1,

then either {bi+1,1, ai, ai+1, ai+2, ai+3, . . . , ai+l+2} induces a bannerl or
{bi+1,1, bi,1, . . . , b1,1, a, a1, . . . , ai, ai+1, . . . , ai+l} induces an applel

2i+2
depending on ai+2 ∼ bi+1 or not, a contradiction. If ai+1 ∼ bi,1 for 2 ≤ i ≤ k, then
{bi,1, bi−1,1, . . . , b1,1, a, a1, a2, . . . , ai+1, ai+2, . . . , ai+l+1} induces an applel

2i+2,
a contradiction.

Again, by induction hypothesis, consider k + 1 ≤ i ≤ 2k. If ai ∼ bi+1,1,
then either {bi+1,1, ai, ai+1, ai+2, ai+3, . . . , ai+l+2} induces a bannerl or
{ai−1, ai−2, . . . , a1, a, b1,1, b2,1, . . . , bi+1,1, ai, ai+1, ai+2, . . . , ai+l} induces an
S2,2k,l depending on ai+1 ∼ bi,1 or not, a contradiction. If ai+1 ∼ bi,1, then
{ai, ai−1, ai−2, . . . , a1, a, b1,1, b2,1, . . . , bi,1, ai+1, ai+2, . . . , ai+l+1} induces an
S2,2k,l , a contradiction.

Hence, ai has only one neighbor, say ai+1, in Vi+1 and only one neighbor, say
ai−1, for i = 1, 2, . . . , 2k.

186 N. C. Lê

If bi,1 ∼ bi+1,2 for some 1 ≤ i ≤ 2k − 1 (if such two vertices exist),
then {b1,1, . . . , bi,1, bi+1,2, bi,2, . . . , b1,2, a, a1, . . . , al} induces an applel

2i+2, a
contradiction. Hence, bi,j (if such vertex exists) has at most one neighbor in Vi+1
for 1 ≤ i ≤ 2k − 1. It also implies that bi,j
= bi,k for every 1 ≤ i ≤ 2k and j
= k

if such vertices exist.
If V2k contains at least two vertices, say a2k and, without loss of generality,

b2k,1, then {b2,2, b1,2, a, b1,1, b2,1, . . . , b2k,1, a1, a2, . . . , al} induces an S2,2k,l , a
contradiction.

To summarize, V2k = {a2k}, every vertex of Vi has only one neighbor in Vi−1,
for every 1 ≤ i ≤ p.

Let T be the connected component of H − a1 containing a. Then T is a tree by
the above arguments. We show that a is black. Indeed, for contradiction, suppose
that a is white. Let a1 be the black vertex b of Corollary 1. Then there is a perfect
matching between B ∩ T and W ∩ T . Let b be a leaf of T . Then by Corollary 2, b is
black and hence μ(b) be the (only) white neighbor of b. It also implies that μ(b) has
only one neighbor being a leaf. Indeed, if μ(b) has another black neighbor being a
leaf b′, then there exists no μ(b′), a contradiction. Then by induction on T , a has
only one black neighbor in T , a contradiction to a is of degree at least three. Hence,
we have the following claim.

Claim 3 If a is a vertex of the conclusion of Claim 2, then a is black. Moreover,
there exists a neighbor w of a such that the connected component of H − w

containing a is a tree T , every vertex of T is of distance at most 2k − 2 to a, and
every white vertex of T is of degree two.

Let a be the black vertex b of Corollary 1. Then there is a perfect matching between
B ∩ T \{a} and W ∩ T , i.e. |B ∩ T | = |W ∩ T | + 1. Claims 1 and 3 lead to the
following observation.

Claim 4 Every white vertex w of H is either of degree two or three. Moreover, in
the latter case, exactly one black neighbor of w is of degree one.

Let j be the largest number such that |Vj | ≥ 2. Then 2 ≤ j ≤ 2k − 2. Moreover, j

is even, since every leaf of T is black.
Note that every black vertex aq such that 2k− j < q < p− 2k is of degree two,

otherwise aq becomes a vertex of the conclusion of Claim 2 and there exist at least
two vertices of degree 2k from aq , a contradiction to Claim 3.

Let T1 and T2 be the two connected component of H − a2k−j+1 − ap−2k−1
containing a2k−j and ap−2k , respectively. Then by Claim 3, T1 and T2 are trees
such that the most distance between a vertex of T1 (respectively, T2) to a2k−j

(respectively, ap−2k) is 2k − 2. Moreover |W ∩ (T1 + T2)| + 2 = |B ∩ (T1 + T2)|.
Now, every white vertex aq , where 2k − j < q < p − 2k, is of degree two or

three, and in the later case a black neighbor of aq different from aq−1 and aq+1 is
of degree one. Hence, every such white vertex is of degree two, otherwise we have
a contradiction to |W | + 1 = |B|.

Thus, H is an augmenting (2k − 1,m)-extended-chain.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 187

Appendix 2: Proof of Lemma 3

We go through the Proof by first obtaining some results related to the cases when
the considered augmenting graph contains a K1,m as an induced subgraph.

Lemma 8 Let G = (X, Y,E) be a bipartite graph such that there exists a vertex
x ∈ X and NY (x) = Y . Assume that |X| = m+1. Then at least one of the following
statements is true.

1. H2 contains a banner2 or a domino.
2. We can linearly order X = (x, x1, x2, . . . , xm) so that there exists a natural p,

with 0 ≤ p ≤ m, such that (i) NY (x1) ⊇ . . . ⊇ NY (xp) and |NY (xi)| = 1 for
every i ≥ p + 1. Moreover, if p ≥ m− 1, then G is a bipartite-chain.

Proof First, assume that Case 1 does not happen. We linearly order X by the
construction method.

Assume that we already have chosen x1, . . . , xp. Let U = X\{x, x1, . . . , xp}.
Let xp+1 ∈ U be a vertex such that |NY (xp+1)| is largest among vertices in U .
Suppose that |NY (xp+1)| ≥ 2 and there exists a vertex xi ∈ U\{xp+1} such that
xi ∼ yi and xp+1 � yi for some yi ∈ Y . By the choice of xp+1, xi � yj for some
yj ∈ NY (xp+1). Then {x, yk, yi, yj , xp+1, xj } induces a domino or a banner2 for
some yk ∈ NY (xp+1)\{yj } depending on xi ∼ yk or not and x is a vertex of degree
three in both cases, a contradiction.

If p ≥ m − 1, then NY (x) ⊇ NY (xi) ⊇ NY (xj) for every 1 ≤ i < j ≤ m. We
show that for yi, yj ∈ Y , either NX(yi) ⊆ NX(yj) or NX(yj) ⊆ NX(yi). Indeed,
suppose that yi ∼ xi and yj ∼ xj for some xi ∈ X\N(yj) and xj ∈ X\N(yi).
Then NY (xi)
⊆ NY (xj) and NY (xj)
⊆ NY (xi), a contradiction.

Lemma 9 If an (S2,2,5,banner2,domino)-free minimal augmenting graph H con-
tains no black vertex of degree more than k (k ≥ 2), then the degree of each white
vertex is at most k2 + k + 2.

Proof Suppose that H contains a white vertex w of degree more than k2 + k + 2.
Denote by Vj the set of vertices of H at distance j from w. Hence, |V1| ≥ k2+k+3.

Claim 5 |V2| ≥ k2 + k + 1, V2 contains at least k2 + 1 vertices having only one
neighbor in V1, i.e. having a neighbor in V3, and |V3| ≥ k + 1.

Proof Suppose that V3 = ∅. Then by Lemma 1, |V2| = |V1| − 2 ≥ k2 + k + 1.
Let p be the p in 2. of Lemma 8. Note that p ≤ k, otherwise there exists a black
vertex in V1 having at least k neighbors in H , a contradiction. Hence, by Lemma 8,
there exists a white vertex in V2 having only one neighbor in V1, i.e. only one black
neighbor. This contradiction (with Corollary 2) implies that V3
= ∅.

Then |V2| ≥ k2 + k + 1, otherwise H [{b} ∪ V1 ∪ V2] is an augmenting graph,
a contradiction. Again, by Lemma 8 and condition that there is no black vertex of
degree larger than k, V2 contains at least k2 + 1 vertices having only one neighbor
in V1, i.e. having a neighbor in V3 by Corollary 2. Since every black vertices of V3
has at most k neighbors in V2, |V3| ≥ k + 1. ��

188 N. C. Lê

Claim 6 V4 = ∅, i.e. |V3| + |V1| = |V2| + 2.

Proof Suppose that V4 contains a (white) vertex x and let y be its neighbor in V3.
Assume that y ∼ w1 ∈ V2 and w1 ∼ b1 ∈ V1.

If w1 ∼ b2 for some b2 ∈ V1\{b1}, then {b1, w, b2, w1, y, x} induces a banner2,
a contradiction. Hence, NV1(w1) = {b1}.

By Corollary 2, x has at least one more black neighbor, named z (z ∈ V3 or z ∈
V5). Now, let b1 be the b in Corollary 1. We have |μ(V1\{b1, μ(w)})| ≥ k2+ k+ 1.
Since d(y), d(z) ≤ k, V1 contains at least two vertices, named b2, b3 whose the
neighbors, say w2 = μ(b2), w3 = μ(b3) ∈ V2, respectively, adjacent to neither y

nor z.
If w2 ∼ b1, then {w,w1, w2, b1, b2, y} induces a domino or a banner2, depend-

ing on y ∼ w2 or not, a contradiction. If w2 ∼ b4 for some b4 ∈ V1\{b1, b2}, then
{b2, w2, b4, w, b1, w1} induces a banner2, a contradiction. Hence, w1, w2, and w3,
each has only one neighbor in V1. Moreover, z � w1, otherwise, {y, x, z,w1, b1, w}
induces a banner2, a contradiction. Now, {w3, b3, w,w2, b2, b1, w1, y, z, x} induces
an S2,2,5, a contradiction. Therefore, V4 is empty and |V3| + |V1| = |V2| + 2 by
Lemma 1. ��
Let b ∈ V3 be the vertex b in Corollary 1. Since μ(w) has at most k − 1 neighbors
in μ(V3\{b}), there exists a vertex d1 ∈ V3 such that μ(d1) � μ(w).

Claim 7 μ(d1) has a neighbor a1 in V1 such that μ(a1) has no neighbor in V1 other
than a1.

Proof Let a1 be a neighbor of μ(d1) in V1, i.e. μ(a1)
= w. If μ(a1) has no neighbor
in V1 other than a1, then we have the statement of the claim. Now, let a2 be a
neighbor of μ(a1) in V1. Then μ(d1) ∼ a2, otherwise {w, a2, μ(a1), a1, μ(d1), d1}
induces a domino or a banner2 depending on d1 ∼ μ(a1) or not, a contradiction.
It implies that μ(a2)
= w. We continue considering μ(a2). Since V1 is finite, this
process must stop, i.e. we have the claim. ��
Note that d1 � μ(a1), otherwise {μ(a1), d1, μ(d1), a1, w,μ(w)} induces a domino
or a banner2 depending on μ(w) ∼ μ(a1) or not, a contradiction. Since μ(a1) has
no neighbor in V1 other than a1, by Corollary 2, μ(a1) has a neighbor d2 ∈ V3.

Since |NV2({d1, d2})| ≤ 2k, there is a vertex a ∈ V1\{μ(w)} such that μ(a) is not
adjacent to d1, d2. Then μ(a) � a1, otherwise {w, a,μ(a), a1, μ(a1), d2} induces a
banner2, a contradiction. If μ(a) ∼ a2 for some a2 ∈ V1, then {a, μ(a), a2, w, a1,

μ(a1)} induces a banner2, a contradiction. Hence, μ(a) has only one neighbor in V1
and has a neighbor, named d3 ∈ V3, by Corollary 2.

Then μ(d1) � a, otherwise {w, a1, a, μ(d1), d3, μ(a)} induces a domino or a
banner2 depending on d3 ∼ μ(d1) or not, a contradiction. Moreover μ(d3) � a,
otherwise {w, a1, a, μ(a), d3, μ(d3)} induces a domino or a banner2 depending on
a1 ∼ μ(d3) or not, a contradiction.

We show that d1 � μ(d3). Indeed, if d1 ∼ μ(d3), then μ(d1) � d3, otherwise
{μ(d3), d1, μ(d1), d3, μ(a), a} induces a banner2, a contradiction. If μ(d1) ∼ a2
for some a2 ∈ V1\{a1}, then {w, a1, μ(d1), a2, d1, μ(d3)} induces a domino or a

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 189

banner2 depending μ(d3) ∼ a2 or not, a contradiction. If μ(d3) has two neighbors
a2, a3 ∈ V1\{a1}, then {a2, w, a3, μ(d3), d1, μ(d1)} induces a banner2, a contradic-
tion. Hence, μ(d1) has only one neighbor in V1 and μ(d3) has at most one neighbor
in V1 different from a1. Thus, because |NV2(d1, d2)| ≤ 2k, there exist two vertices
b1, b2 ∈ V1\{μ(w)} such that μ(b1), μ(b2) each has only one neighbor in V1 and
is not adjacent to d1, d3. Now, {μ(b1), b1, w, b2, μ(b2), a1, μ(d1), d1, μ(d3), d3}
induces an S2,2,5, a contradiction.

Similarly, d3 is not adjacent to μ(d1), μ(a1), and μ(d3) � d2. Moreover μ(d1) �

d2, otherwise {w1, d2, μ(d1), a1, w,μ(w)} induces a banner2, a contradiction.
Similarly, μ(a1) � d1.

Now, {d2, μ(a1), a1, μ(d1), d1, w, a, μ(a), d3, μ(d3)} induces an S2,2,5, a con-
tradiction. ��
Proof (of Lemma 3) We proof by contradiction. Let b ∈ B such that |NW(b)| is
largest. If every black vertex is of degree one, then H is an augmenting P3. If
NW(b) = W , then we have 4. By Lemma 9, if every black vertex of H is of degree
bounded by a given number k, then every white vertex of H is of degree bounded
by k2 + k + 2, i.e. H is K1,m-free for m = k2 + k + 3. In this case, by Lemma 2,
we have 1. or 2.

Now, we assume that 10 ≤ |NW(b)| ≤ |W | − 1. Let b be the vertex b of
Corollary 1. Let A = N(b) = {w1, w2, . . . , wk} (k ≥ 10), C = W\A, i.e. C
= ∅.
Let bi = μ(wi). Let C1 denote the set of vertices in C having at least one neighbor
in μ(A) and C0 = C\C1. By the connectivity of H , one can choose μ(A) in order
that C1
= ∅. We have the following observations.

Claim 8 H [A ∪ μ(A)] is an induced sub-matching of M .

Proof We show that bi � wj for every pair i, j such that i
= j , 1 ≤ i, j ≤ k. Let
z ∈ C1 and without loss of generality, assume that z ∼ b1 ∈ μ(A).

By the choice of b, b1 is not adjacent to all wi’s, without loss of generality,
assume that b1 � w2.

Now, b2 � w1, otherwise {b, b1, b2, w1, w2, z} induces a domino or a banner2
depending on b2 ∼ z or not, a contradiction.

Moreover, b2 � wi for every i > 2, otherwise {b, b1, b2, w1, w2, wi} induces a
domino or a banner2 depending on b1 ∼ wi or not, a contradiction.

Now, b1 � wi , for every i > 2, otherwise {w1, b1, wi, b,w2, b2} induces a
banner2, a contradiction.

Hence, bi � w1 for i > 2, otherwise {b,wi, bi, w1, b1, z} induces a domino or a
banner2, depending on z ∼ bi or not, a contradiction.

Thus, bi � w2 for i > 2, otherwise {w2, bi, wi, b,w1, b1} induces a banner2, a
contradiction.

Moreover bi � wj , for any j
= i and i, j > 2, otherwise {wj , bi, wi, b,w1, b1}
induces a banner2, a contradiction.

Claim 9 There exists no vertex pair z1, z2 ∈ C1 sharing two neighbors in μ(A).

190 N. C. Lê

Proof Suppose that there exists a vertex pair z1, z2 ∈ C1 sharing two neigh-
bors in μ(A), without loss of generality, assume that they are b1, b2. Then
{z1, b2, z2, b1, w1, b} induces a banner2, a contradiction. ��
Claim 10 Given z ∈ C1, z ∼ bj for some bj ∈ μ(A), a black neighbor c of z

different from bj , a black neighbor μ(t) of z for some t ∈ C, and another white
neighbor y ∈ C of μ(t) different from z, the following statements are true:

1. c � wj ;
2. y � bj and μ(y) � z; and
3. if μ(t) ∼ wi for some i
= j , then y, z are not adjacent to bi and μ(y) � wi ;
4. in particular, μ(y) and μ(t) cannot share a same neighbor in A.

Proof Suppose that c ∼ wj . Then c ∼ wi for every i
= j , otherwise
{bj , z, c, wj , b, wi} induces a banner2, a contradiction. But now, we have a
contradiction to the choice of b.

Now, y � bj , otherwise {z, μ(t), y, bj , wj , b} induces a banner2, a contradic-
tion. Moreover, μ(y) � z, otherwise {wj , bj , z, μ(t), y, μ(y)} induces a domino or
a banner2 depending on μ(y) ∼ wj or not, a contradiction.

Assume that μ(t) ∼ wi for some i
= j . Then z � bi , otherwise
{μ(t), wi, bi, z, bj , wj } induces a banner2, a contradiction. Hence, y � bi ,
otherwise {bi, y, μ(t), wi, b, wj } induces a banner2, a contradiction. Now,
μ(y) � wi , otherwise {wi, μ(y), y, μ(t), z, bj } induces a banner2, a contradiction.

��
Claim 11 Every black vertex different from b has at most one neighbor in A.

Proof Clearly, every black vertex of μ(A) has only one neighbor in A by Claim 8.
Now, suppose that there exists some black vertex y ∈ B\({b} ∪ μ(A)) having
two neighbors, without loss of generality, assume that they are w1, w2 ∈ A. Then
y is adjacent to every vertex wi ∈ A\{w1, w2}, otherwise {w1, y,w2, b,wi, bi}
induces a banner2, contradiction. Now, y is adjacent to every vertex of A and μ(y),
a contradiction to the choice of b. ��
Claim 12 There exists no vertex bj ∈ μ(A) having two neighbors z1, z2 ∈ C1
sharing another black neighbor, named c
= bj .

Proof Indeed, otherwise, by Claim 10, c � wj , then {z1, c, z2, bj , wj , b} induces a
banner2, a contradiction. ��
Claim 13 Given a vertex bj ∈ μ(A), let C(bj) be the set of vertices of C1 adjacent
to bj . Then H [C(bj) ∪ μ(C(bj))] is an induced sub-matching of M .

Proof For contradiction, without loss of generality, suppose that z1, z2 ∈ C are
two neighbors of bj and z1 ∼ μ(z2). By Claim 10, μ(z2) � wj . Hence,
{z1, μ(z2), z2, bj , wj , b} induces a banner2, a contradiction. ��
Claim 14 If H contains a vertex y ∈ C1 adjacent to at least k− 3 vertices of μ(A),
then either H is of the form tree5 or tree6 or H contains a redundant set U of size at
most 32, such that H − U is of the form either tree1, tree4, tree5, or tree6.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 191

Proof Let D1 be the subset of vertices of C1 sharing some neighbor in μ(A) with y,
A1 be the vertex subset of A such that μ(A1) = Nμ(A)(y), A2 = A\A1, E1 be the
vertices subset of C1 adjacent to some vertex in μ(A2). Without loss of generality,
assume that w1, w2, . . . , wk−3 ∈ A1. We have the following observations.

(1) y has no neighbor in μ(D1) and μ(y) has no neighbor in A1 ∪ D1. Indeed,
by Claim 10, μ(y) has no neighbor in A1. If for some z ∈ D1, without
loss of generality, assume that z ∼ b1, y ∼ μ(z), then y � b1, by
Claim 10, a contradiction. Moreover, since μ(y) � w1, μ(y) � z, otherwise
{z, μ(y), y, b1, w1, b} induces a banner2, a contradiction.

(2) By Claim 9, every vertex of D1 has exactly one neighbor in μ(A1). In particular,
every vertex of C1\{y} has at most four neighbors in μ(A). Moreover, there
exists only one vertex y ∈ C1 adjacent to at least k − 3 vertices in μ(A).

(3) Any two vertices of D1 have different neighbors in μ(A1). Indeed, without
loss of generality, suppose that z1, z2 ∈ D1 both are adjacent to b1. By
Claim 11, and since |A1| = k − 3 ≥ 7, there exist wi,wj ∈ A1
different from w1 and not adjacent to μ(z1), μ(z2). By (2) and Claim 13,
{μ(z1), z1, b1, z2, μ(z2), y, bi, wi, b,wj } induces an S2,2,5, a contradiction.

(4) Similar to Claim 13, let C(y) be the subset of vertices of C0 adjacent to μ(y).
Then H [C(y) ∪ μ(C(y))] is an induced sub-matching of M .

(5) Similarly to (3) (using (4)), there is at most one vertex of C0 adjacent to μ(y).
(6) H [(C1\{y}) ∪ μ(C1\{y})] is an induced sub-matching of M . Indeed, suppose

that for a couple of vertices z1, z2 ∈ C1\{y}, z1 ∼ μ(z2). Without loss of gen-
erality, assume that z1, z2 are adjacent to bi1 , bi2 ∈ μ(A), respectively. Then by
Claim 10, μ(z2) � wi2 . Hence, z1 � bi2 , otherwise {z2, μ(z2), z1, bi2 , wi2 , b}
induces a banner2, a contradiction. By (2) and Claim 11, there exists a pair
of vertices bi, bj ∈ μ(A) not adjacent to z1, z2 such that wi and wj are
not adjacent to μ(z1), μ(z2). Now, {bi, wi, b,wj , bj , wi2 , bi2 , z2, μ(z2), z1}
induces an S2,2,5, a contradiction.

(7) There exists no vertex t ∈ C\{y} having a neighbor in μ(C1\{y, μ(t)}). Indeed,
if t ∈ C is adjacent to μ(z) for some z ∈ C1\{y, t}, then for the vertex bj

adjacent to z, t � bj by Claim 10. By (2) and Claim 13, there exists a pair
of vertices wi,wl non-adjacent to μ(z) such that bi, bl non-adjacent z, t . Now,
{bi, wi, b,wl, bl, wj , bj , z, μ(z), t} induces an S2,2,5, a contradiction.

(8) Similarly, there exists no vertex t ∈ C1\{y} having a neighbor in μ(C\{y,

μ(t)}).
(9) If C0 = {z}, then z ∼ μ(y). If |C0| ≥ 2, then there exists a vertex x ∈ C0

such that x ∼ μ(z). For every such vertex x, the following statements are true:
y ∼ μ(x), μ(x) � z, and μ(x) � wi for wi ∈ A1. Moreover, if |C0| ≥ 2, then
A2 = ∅, i.e. y is adjacent to every vertex of μ(A).

Indeed, if C0
= ∅, then by (7) and the minimality of H , there exists a
vertex z ∈ C0 such that z ∼ μ(y), otherwise |C0| = |NH (C0)|(= |μ(C0)|),
a contradiction. Moreover, no other vertex of C0 is adjacent to μ(y) by (5).
Hence, if |C0| ≥ 2, then, again by (7) and the minimality of H , there exists a
vertex x ∈ C0 such that x ∼ μ(z).

192 N. C. Lê

Let x ∈ C0 such that x ∼ μ(z). Since μ(z) � y by Claim 10, x � μ(y),
otherwise {z, μ(z), x, μ(y), y, b1} induces a banner2, a contradiction. Thus,
μ(x) � z, otherwise {y, μ(y), z, μ(z), x, μ(x)} induces a domino or a banner2,
depending on μ(x) ∼ y or not, a contradiction. Now, if y � μ(x), then by
Claim 11, there exists a pair of vertices bi, bj ∈ μ(A1) such that wi and wj

are not adjacent to μ(x), μ(z) and {wi, bi, y, bj , wj , μ(y), z, μ(z), x, μ(x)}
induces an S2,2,5, a contradiction. Then μ(x) � wi for any wi ∈ A1, otherwise
{y, bi, wi, μ(x), x, μ(t)} induces a banner2, a contradiction.

Assume that |C0| ≥ 2, we show that A2 = ∅. Indeed, without loss of
generality, assume that y � bk . Let x ∈ C0 be a vertex such that x ∼ μ(z).
Then μ(y) or μ(z) is not adjacent to wk , otherwise since z � wk by Claim 10,
{z, μ(z),wk, μ(y), y, b1} induces a banner2, a contradiction. Similarly, μ(x)

or μ(z) is not adjacent to wk . Now, μ(y) � wk , otherwise since there exists
a pair of vertices wi,wj ∈ A1 not adjacent to μ(y), μ(z) by Claim 11,
{bi, wi, b,wj , bj , wk, μ(y), z, μ(z), x} induces an S2,2,5, a contradiction. By
similar reasons, μ(x) � wk . Now, by Claim 11, there exists a vertex wi ∈ A1
not adjacent to μ(x) and {z, μ(y), y, μ(x), x, bi , wi, b,wk, bk} induces an
S2,2,5, a contradiction.

(10) If |D1| ≥ 2, then no vertex of μ(D1) has a neighbor in A. Indeed, by (3),
without loss of generality, let z1, z2 ∈ D1 be adjacent to b1, b2, respec-
tively. To the contrary, suppose that μ(z1) has a neighbor wi ∈ A. By
Claim 10, wi
= w1. If wi = w2, then by (1), (6), and Claims 10, 11,
{z2, b2, w2, b,wj , μ(z1), z1, b1, y, μ(y)} induces an S2,2,5 for some vertex
wj
= w1, w2 such that wj � μ(z1), a contradiction. If wi
= w1, w2, then
by (1) and (6), {w2, b,wi, μ(z2), z2, μ(z1), z1, b1, y, μ(y)} induces an S2,2,5
in the case that μ(z2) ∼ wi , or {μ(z2), z2, b2, y, μ(y),w2, b,wi, μ(z1), z1}
induces an S2,2,5 in the case that μ(z2) � wi , a contradiction.

(11) If there exist two vertices z1, z2 ∈ C1 sharing a neighbor in μ(A2), then either
H is of the form tree5 or there is a redundant set U containing at most four
vertices such that H − U is of the form tree2 or tree5.

First, since A2
= ∅, |C0| ≤ 1 by (9). Without loss of generality, assume that
z1, z2 share a neighbor bk ∈ μ(A2).

If z2 has another neighbor, say bl ∈ μ(A), then since by (2), there
exists a pair of vertices bi, bj ∈ μ(A1) not adjacent to z1, z2, one has that
{bi, wi, b,wj , bj , wl, bl, z2, bk, z1} induces an S2,2,5, a contradiction. Thus, bk

is the only one neighbor in μ(A) for any vertex z ∈ C1 adjacent to bk .
Note that, for any such z, μ(z) � wk by Claim 10. Moreover, μ(z) � wj ∈ A

for wj
= wk , otherwise {bi, wi, b, bl, wl, wj , μ(z), z, bk, z
′} induces an S2,2,5 for

z′ be another neighbor of bk in C1 different from z; by Claim 11 and (2), bi, bl not
adjacent to z, z′; and wi,wl not adjacent to μ(z), a contradiction.

Now, y is adjacent to at least one vertex among μ(z1), μ(z2), otherwise by
(6), {μ(z1), z1, bk, z2, μ(z2), wk, b,w1, b1, y} induces an S2,2,5, a contradiction.
Without loss of generality, assume that y ∼ μ(z1). Then y ∼ μ(z2), otherwise by

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 193

(6), {w1, b1, y, b2, w2, μ(z1), z1, bk, z2, μ(z2)} induces an S2,2,5, a contradiction.
Hence, y is adjacent to every vertex z ∈ C1 adjacent to bk .

That also implies that y has no other non-neighbor than bk in μ(A). Indeed, with-
out loss of generality, suppose that y � bk−1. Then {z1, μ(z1), y, μ(z2), z2, b1, w1, b,

wk−1, bk−1} induces an S2,2,5, a contradiction.
Moreover, μ(y) � z for every vertex z ∈ C1 adjacent to bk , otherwise {μ(y), z,

μ(z), y, b1, w1} induces a banner2, a contradiction.
Besides, D1 = ∅. Indeed, without loss of generality, suppose that there

exists some vertex t ∈ D1 such that t ∼ b1. Then t � bk , otherwise
an S2,2,5 arises. Moreover, t � μ(z) for any z ∈ C1 adjacent to bk , oth-
erwise {t, μ(z), y, b1, w1, b} induces a banner2, a contradiction. Now, by (6),
{μ(z1), z1, bk, z2, μ(z2), wk, b,w1, b1, t} induces an S2,2,5, a contradiction.

We consider the two following cases.

Case 1. C0 = ∅. Then

U := {y, μ(y)}

is a redundant set of size two such that H − U is of the form tree2 in the case that
μ(y) � wk , or H is of the form tree5 in the case that μ(y) ∼ wk .

Case 2. C0 = {x} and x ∼ μ(y) by (9). Then μ(x) � wk , otherwise
{x, μ(x),wk, μ(y), y, b1} induces a banner2 or {w1, b1, y, b2, w2, μ(y), x, μ(x),

wk, bk} induces an S2,2,5 depending on μ(y) ∼ wk or not, a contradiction.
Thus, μ(x) � z for any z ∈ C1 adjacent to bk , otherwise, by Claim 11,
there exists a pair of vertices wi,wj
= wk not adjacent to μ(x) and hence,
{bi, wi, b,wj , bj , wk, bk, z, μ(x), x} induces an S2,2,5, a contradiction. More-
over, μ(x) � wi for any wi ∈ A1, otherwise {z1, μ(z1), y, μ(z2), z2, μ(y), x,

μ(x),wi, b} induces an S2,2,5, a contradiction. Now,

U := {y, μ(y), x, μ(x)}

is a redundant set of size at most four such that H − U is of the form tree2, in the
case that μ(y) � wk , or

U := {x, μ(x)}

is a redundant set of size at most two such that H − U is of the form tree5, in the
case that μ(y) ∼ wk .

From now on, we assume the following statement.

(11’) Two different vertices in C1\{y} share no common neighbor in μ(A). This
also implies that |E1| ≤ 3.

(12) If D1 = ∅, then there exists a redundant set U of size at most 24 such that
H −U is of the form tree1. Indeed, if in addition, C0 = ∅, then by Claim 11,

U := {y, μ(y)} ∪A2 ∪μ(A2)∪E1 ∪μ(E1)∪NA(μ(E1))∪μ(NA(μ(E1)))

194 N. C. Lê

is a redundant set of size at most 20 such that H − U is of the form tree1.
Now, we consider the two following cases.

Case 1. C0 = {z}. Then by (9) and Claim 11,

U := {y, μ(y), z, μ(z)} ∪ A2 ∪ μ(A2) ∪ E1 ∪ μ(E1) ∪
∪NA(μ(E1) ∪ {μ(z)}) ∪ μ(NA(μ(E1) ∪ {μ(z)}))

is a redundant set of size at most 24 such that H − U is of the form tree1.
Case 2. |C0| ≥ 2. Then y is adjacent to every vertex of μ(A) by (2). Let z

be the (only) vertex of C0 adjacent to μ(y). Denote by C′0 the set of vertices of
C0\{z} adjacent to μ(z) and let C′′0 := C0\(C′0 ∪ {z}). Then C′0
= ∅, otherwise
|C0\{z}| = |NH (C0\{z})|, a contradiction to the minimality of H . Moreover, for
every x ∈ C′0, μ(x) ∼ y, μ(x) is not adjacent to any vertex of A1, and x � μ(y) by
(9).

2.1. C′′0 = ∅. Then H is of the form tree5 or tree6 depending on μ(z) has a
neighbor in A or not.

2.2. C′′0
= ∅. Then it must contain a vertex t ∼ μ(x) for some x ∈ C′0, otherwise
|N(C′′0)| = |C′′0 |, a contradiction to the minimality of H . Now, μ(t) � x, otherwise
{z, μ(z), x, μ(x), t, μ(t)} induces a domino or a banner2 depending on μ(t) ∼ z or
not, a contradiction. Thus, μ(t) � y, otherwise {y, μ(t), t, μ(x), x, μ(z)} induces a
banner2, a contradiction. Now, by Claim 11, there exists a pair of vertices wi,wj is
not adjacent to μ(x), μ(t), μ(z) and hence, {μ(t), t, μ(x), x, μ(z), y, bi , wi, b,wj }
induces an S2,2,5, a contradiction.

From now on, we assume the following statement.

(12’) D1
= ∅.
(13) If |C0| ≥ 2, then H contains a redundant set U of size at two such that H −U

is of the form tree5.

By (9), y is adjacent to every vertex of μ(A). Let z be the (only) vertex of C0
adjacent to μ(y) and x ∈ C0 be adjacent to μ(z). Also by (9), for every such vertex
x, μ(x) ∼ y, μ(x) � z. Moreover, by Claim 10, z has no neighbor in μ(A).

Since D1
= ∅, without loss of generality, assume that there exists a vertex z1 ∈
D1 adjacent to b1. Now, μ(z) ∼ w1, otherwise {μ(z1), z1, b1, w1, b, y, μ(y), z, μ(z),

x} induces an S2,2,5, a contradiction. Moreover, by (3) and Claim 11, D1 = {z1}.
We consider the two following cases.

Case 1. z has a neighbor μ(t) ∈ μ(C0) for some t ∈ C0 dif-
ferent from z. Then by (7), (8), and Claim 10, μ(t) ∼ w1, otherwise
{μ(z1), z1, b1, w1, b, y, μ(y), z, μ(t), t} induces an S2,2,5, a contradiction. But
now, {μ(z),w1, μ(t), z, μ(y), y} induces a banner2, a contradiction.

Case 2. z has no neighbor in μ(C0) other than μ(z). Let x be a vertex in C0
adjacent to μ(z) and C′0 be the set of vertices of C0 different from z and not
adjacent to μ(z). If C′0
= ∅, then by (7) and (8), there exists a vertex t ∈ C′0
adjacent to μ(x), otherwise |C′0| = |NH (C′0)|, a contradiction to the minimality

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 195

of H . Now, t � μ(z), otherwise {μ(y), z, μ(z), x, μ(x), t} induces a domino or a
banner2 depending on t ∼ μ(y) or not, a contradiction. Now, by Claim 11, there
exists a pair of vertices wi,wj different from w1 not adjacent to μ(x) and hence,
{bi, wi, b,wj , bj , w1, μ(z), x, μ(x), t} induces an S2,2,5, a contradiction.

From above considerations, every vertex x ∈ C0 different from z is adjacent to
μ(z) and μ(x) is adjacent to y. Now,

U := {z1, μ(z1)}

is a redundant set of size two, such that H − U is of the form tree5.
From now on, we assume the following statement.

(13’) |C0| ≤ 1.
(14) If |D1| ≥ 2, then by (10) and (13’),

U := {y, μ(y)} ∪ C0 ∪ μ(C0) ∪ E1 ∪ μ(E1) ∪
∪NA(μ(E1) ∪ μ(C0)) ∪ μ(NA(μ(E1) ∪ μ(C0))) ∪
∪ND1(μ(NA(μ(E1) ∪ μ(C0)))) ∪
∪μ(ND1(μ(NA(μ(E1) ∪ μ(C0)))))

is a redundant set of size at most 26 such that H − U is of the form tree4.
(15) If |D1| = 1, then

U := {y, μ(y)} ∪ C0 ∪ μ(C0) ∪D1 ∪ μ(D1) ∪ E1 ∪ μ(E1) ∪
∪NA(μ(D1) ∪ μ(E1) ∪ μ(C0)) ∪ μ(NA(μ(D1) ∪ μ(E1) ∪ μ(C0))) ∪
∪ND1(μ(NA(μ(D1) ∪ μ(E1) ∪ μ(C0))))

∪μ(ND1(μ(NA(μ(D1) ∪ μ(E1) ∪ μ(C0)))))

is a redundant set of size at most 32 such that H − U is of the form tree1.

All the above observations ((1)–(15)) finish the proof of the claim. ��
From now on, assume that every vertex of C1 has at least four non-neighbors in
μ(A).

Claim 15 C0 = ∅, i.e. C = C1.

Proof Suppose that C0
= ∅. Then there exists some vertex z ∈ C1, without loss of
generality, assume that z ∼ b1, and y ∈ C0 such that y ∼ μ(z), otherwise |C0| =
|NH (C0)|, a contradiction to the minimality of H . Thus, {bi, wi, b,wj , bj , w1, b1,

z, μ(z), y} induces an S2,2,5, for bi, bj not adjacent to z and wi,wj not adjacent to
μ(z), a contradiction. ��
Claim 16 If |C| ≤ 4, then H contains a redundant set U of size at most 16 such
that H − U is of the form tree1.

196 N. C. Lê

Proof Assume that |C| ≤ 4, i.e. |μ(C)| ≤ 4. Note that every (black) vertex of μ(C)

has at most one neighbor in A by Claim 11, i.e. |NA(μ(C))| ≤ 4. Then

U := C ∪ μ(C) ∪NA(μ(C)) ∪ μ(NA(μ(C)))

is a redundant set of size at most 16 such that H − U is of the form tree1. ��
Claim 17 Assume that |C| ≥ 5. Then the following statements are true.

Case 1. If there exist vertices z1, z2 ∈ C sharing some neighbor in μ(A), then H

is of the form tree2.
Case 2. If for any two vertices y, z ∈ C, y, z share no neighbor in μ(A), then H

is of the form tree3 or tree7 or H contains a redundant set U of size at most six such
that H − U is of the form tree3.

Proof We consider the two above cases.
Case 1. Without loss of generality, assume that z1, z2 ∈ C share a neighbor

b1 ∈ μ(A). Let us consider the following occurrences which are exhaustive by
symmetry.

1.1. z2 has another neighbor, say b2 ∈ μ(A). Note that then b2 � b1 since
otherwise a banner2 arises. Assume that there exist two vertices, without loss of gen-
erality, assume that they are b3, b4, not adjacent to z1, z2. Then {b3, w3, b, b4, w4,

w2, b2, z2, b1, z1} induces an S2,2,5, a contradiction. Hence, |Nμ(A)({z1, z2})| ≥
k− 1. Since both z1 and z2 have at most k− 4 neighbors in μ(A), each of them has
at least four neighbors in μ(A).

Let z3 ∈ C be adjacent to some vertex bi ∈ Nμ(A)({z1, z2}). Then z3 has at
least four neighbors in μ(A). Hence, z3 shares two neighbors in μ(A) with z1 or
z2, a contradiction to Claim 9. So, there exists no other vertex in C (than z1, z2)
having a neighbor in Nμ(A)({z1, z2}). Together with |C| ≥ 5, this implies that
|Nμ(A)({z1, z2})| ≤ k − 1, i.e. |Nμ(A)({z1, z2})| = k − 1.

Without loss of generality, assume that z1, z2 are not adjacent to bk . Since
|C| ≥ 5, there exist z3, z4 ∈ C such that z3, z4 are adjacent to bk . Moreover,
z3, z4 have no other neighbor in μ(A). By Claim 11, there exists a vertex bi

such that bi ∼ z1 and wi is not adjacent to μ(z3), μ(z4). Hence, by Claim 13,
{μ(z3), z3, bk, z4, μ(z4), wk, b, bi, wi, z1} induces an S2,2,5, a contradiction.

1.2. Every vertex of C adjacent to b1 has only one neighbor (b1) in μ(A). Note
that, for every such vertex z, μ(z) � w1 by Claim 10. Moreover, μ(z) � wi ∈ A for
wi
= w1, otherwise since by Claim 11, there exists a pair of vertices wj ,wl
= w1
and non-adjacent to μ(z) and one has that {bj ,wj , b,wl, bl, wi, μ(z), z, b1, z

′}
induces an S2,2,5 for z′ be another neighbor of b1 in C different from z, a
contradiction.

Now, let C11 be the set of vertices of C1 adjacent to b1 and C12 := C1\C11.
If C12 = ∅, then H is of the form tree2. Then assume that C12
= ∅ and
let y ∈ C12 and, without loss of generality, assume that y ∼ b2 ∈ μ(A).
If y is not adjacent to two vertices, say μ(z1), μ(z2) ∈ μ(C11), then
{μ(z1), z1, b1, z2, μ(z2), w1, b,w2, b2, y} induces an S2,2,5, a contradiction.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 197

If y is adjacent to two vertices μ(z1), μ(z2) ∈ μ(C11), then y is adjacent to every
vertex bi ∈ μ(A) different from b1, otherwise {z1, μ(z1), y, μ(z2), z2, b2, w2, b,wi,

bi} induces an S2,2,5, a contradiction.
Now, y has at least k − 1 neighbors in μ(A), a contradiction. Hence, C11 =

{z1, z2} and every vertex y ∈ C12 is adjacent to exactly one vertex of μ(C11).
If μ(z1) is adjacent to two vertices y1, y2 ∈ C12, then {y1, μ(z1), y2, bi, wi, b}

induces a banner2 in the case that y1, y2 share the same neighbor bi ∈ μ(A) by
Claim 10 or {bi1 , y1, μ(z1), y2, bi2 , z1, b1, w1, b,wi} induces an S2,2,5 for bi1 , bi2

be (different) neighbors of y1, y2 in μ(A), respectively, and wi ∈ A different from
w1, wi1 , wi2 , a contradiction. Hence, each μ(z1), μ(z2) has at most one neighbor in
C12. It implies that |C12| ≤ 2 and thus, |C| ≤ 4, a contradiction.

Case 2. If for every vertex μ(z) ∈ μ(C1), z is the only neighbor of μ(z), then H

is of the form tree3.
Then assume that there is a vertex μ(z) ∈ μ(C1) such that z is not the only

neighbor of μ(z). First we show that for every pair z1, z2 ∈ C, μ(z1) � z2. Indeed,
for contradiction, suppose that μ(z1) ∼ z2. Without loss of generality, assume that
z1, z2 are adjacent to b1, b2, respectively. Then μ(z2) � z1, otherwise by Claim 10,
{μ(z2), z1, μ(z1), z2, b2, w2} induces a banner2, a contradiction.

Moreover, Nμ(A)({z1, z2}) ≥ k − 2, otherwise by Claim 11, there exists a pair
of vertices wi,wj not adjacent to μ(z) such that bi, bj not adjacent to z1, z2, and
hence, {bi, wi, b,wj , bj , w2, b2, z2, μ(z1), z1} induces an S2,2,5, a contradiction.

Hence, the non-neighbors of z1, z2 in μ(A) have at most two neighbors in C, i.e.
|C| ≤ 4, a contradiction.

Then there exists some vertex z ∈ C, such that μ(z) is adjacent to some vertex
of A. Without loss of generality, assume that z ∼ b1 and μ(z) ∼ w2. Then b2 � z,
by Claim 10. We consider the two following subcases.

2.1. b2 ∼ y for some y ∈ C. Then for every x ∈ C\{y, z}, μ(x) ∼ w2, otherwise
{z, μ(z),w2, b2, y, b,wi, bi, x, μ(x)} induces an S2,2,5 for bi ∼ x, a contradiction.
By Claim 11, that also implies that μ(y) is not adjacent to any vertex wi ∈ A

such that bi ∼ x for some x ∈ C1 different from y, otherwise |C| = 2 < 5, a
contradiction. Now,

U := {w2, b2, y, μ(y)} ∪NA(μ(y)) ∪ μ(NA(μ(y)))

is a redundant set containing at most six vertices such that H − U is of the form
tree3.

2.2. NC(b2) = ∅. Assume that there exists some vertex y ∈ C, without loss of
generality, assume that y ∼ b3 and μ(y) ∼ w2. Then for every x ∈ C different
from y, z, μ(x) ∼ w2, otherwise {z, μ(z),w2, μ(y), y, b,wi, bi, x, μ(x)} induces
an S2,2,5 for bi ∼ x, a contradiction. Now,

U := {w2, b2}

is a redundant set of size two such that H − U is of the form tree3.

198 N. C. Lê

Now, if there exists no vertex pair y, z ∈ C, such that μ(y), μ(z) share the same
neighbor in A, then H is of the form tree7. ��
All above claims finish the proof.

Appendix 3: Proof of Lemma 6

Proof (of Lemma 6) To simplify the proof, we start with a pre-processing consisting
in detecting augmenting (l, m)-extended-chains whose path-part is of length at most

2l since such an augmenting (l, m)-extended-chain contains at most 1−(m−1)l

2−m
+2l+1

vertices and can be enumerated in polynomial time.
In order to determine whether S admits an augmenting (l, m)-extended-chain

whose path-part is of length at least 2l + 2, we first find a candidate, i.e. a pair
(L,R), where L and R are disjoint trees consisting induced paths x0, x1, . . . , xl and
x2p−l , x2p−l+1, . . . , x2p, respectively (p ≥ l+1) and every vertex outside that path
of L (R, respectively) is of distance at most l−1 from x0 (x2p, respectively) and not
adjacent to any vertices among {x1, x2, . . . , xl, x2p−l , x2p−l+1, . . . , x2p}. If such a
candidate does not exist, then there is no augmenting (l, m)-extended-chain whose
path-part is of length at least 2l + 2 for S. Moreover, since such candidates contain
only finite vertices, we can enumerate them in polynomial time.

Our purpose is to find an alternating chain connecting xl and x2p−l . Evidently, if
there are no such chains, then there is no augmenting (l, m)-extended-chain whose
path-part is of length at least 2l + 2 for S containing L and R.

Having found a candidate (L,R), we have the following observations about
vertices of G in the sense that the vertices not satisfying these assumptions can
be simply removed from the graph, since they cannot occur in any valid alternating
chain connecting xl and x2p−l . Let P := (x0, x1, . . . , x2p) be the path part of a
desired (l, m)-extended-chain.

Claim 18

1. Each white vertex has at least two black neighbors.
2. Each black vertex lying outside L and R has exactly two white neighbors.
3. No black vertex outside L and R has a neighbor in L or R.
4. No white vertex outside L and R has a neighbor in L or R, except such a neighbor

is xl or x2p−l .
Moreover, no white vertex outside P has a neighbor in P .

Proof 1. and 2. are obvious since a vertex not satisfying these conditions cannot
occur in any augmenting extended-chain containing L and R as sub-extended-
chains.

Note that xl and x2p−l are black vertices. Hence, if a black vertex outside L and
R has a neighbor in L or R, then clearly such a vertex cannot belong to the desired
augmenting chain, similar for a white vertex outside L and R.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 199

If a white vertex outside P has a neighbor in P , then clearly such a neighbor is
black and hence it has at least three white neighbors, a contradiction.

From the conditions of the above claim, we have the following observation.

Claim 19 If S admits an augmenting (l, m)-extended-chain containing L and R,
then no vertex of P \(L ∪ R) is the center of an induced claw.

Proof By contradiction, suppose that G contains a claw G[C], where C =
{a, b, c, d}, whose center a (i.e., the vertex of degree three) is a vertex xj on P .
Without loss of generality, we choose a claw such that |{b, c, d}\P | is minimal and,
among such claws, choose a claw such that j is minimum. Note that, since there
exists at least one vertex of {b, c, d} lying outside P , together with 3. of Claim 18,
l + 1 ≤ j ≤ 2p − l − 1. Moreover, since every black vertex of P has all its white
neighbors lying in P , every vertex of C\P is black.

We shall use the following convention: for a black vertex v outside P , if only one
of the two white neighbors of v is defined explicitly, then the other is denoted as v̄.
Also, for a vertex v of C not belonging to P such that N(v)∩ P
= ∅, we denote by
r(v) the largest index in {j, j + 1, . . . , 2p − l − 1} and by s(v) the smallest index
in {l + 1, l + 2, . . . , j} such that v is adjacent to xr(v), xs(v).

We now analyze three cases: exactly one (C1), two (C2), or three (C3) ver-
tex/vertices of {b, c, d} do(es)n’t belong to P .

Case (C1). Without loss of generality, assume that b = xj−1 and c = xj+1. Then
we have the following observations.

(1) d is not adjacent to xj−2, xj+2. Indeed, if d ∼ xj−2 (similar for the case
d ∼ xj+2), then {xj−2, xj−1, xj , d, xr(d), xr(d)+1, . . . , xr(d)+l−1} induces a
bannerl in the case r(d) ≥ j +2 or {d, xj−2, xj−1, xj , xj+1, . . . , xj+l} induces
a bannerl in the case r(d) = j , a contradiction.

(2) r(d) = j or s(d) = j . Indeed, by (1), suppose that r(d) ≥ j + 3 and s(d) ≤
j − 3. Then {xj−1, xj , d, xs(d), xs(d)−1, . . . , xs(d)−l+1, xr(d), xr(d)+1, . . . ,

xr(d)+l−1} induces an S2,l,l , a contradiction.
(3) s(d) ≥ j−3 and r(d) ≤ j+3. Indeed, suppose that s(d) ≤ j−4 (similar for the

case r(d) ≥ j + 4). Then by (2), {xj−2, xj−1, xj , xs(d), xs(d)−1, . . . , xs(d)−l+1,

xj+1, xj+2, . . . , xj+l−1} induces an S2,l,l , a contradiction.
(4) r(d) = s(d) = j . Indeed, by (2) and (3), suppose that r(d) = j + 3

and s(d) = j (similar for the case s(d) = j − 3 and r(d) =
j). Among {xj , xj+3}, there exists at most one white vertex. Hence,
{xj+2, xj+1, d̄, d, xj+3, xj+4, xj+5, . . . , xj+l+3, xj , xj−1, . . . , xj−l} induces
an R1

l , a contradiction.

Now, since r(d) = s(d) = j , {d̄, d, xj , xj−1, xj−2, . . . , xj−l , xj+1, xj+2, . . . ,

xj+l} induces an S2,l,l , a contradiction.
Case (C2). Without loss of generality, assume that b = xj−1 and c and d are

outside P . Then we have the following observations.

(1) xj+1 is adjacent both to c and d to avoid (C1).

200 N. C. Lê

(2) Also to avoid (C1), c is adjacent to xs(c)+1, xr(c)−1, similarly for d.
(3) It cannot happen that s(c) = s(d) ≤ j−2 or r(c) = r(d) ≥ j+2. Indeed, say

if s(c) = s(d) ≤ j − 2, then {c, xj+1, d, xs(c), xs(c)−1, . . . , xs(c)−l} induces a
bannerl , a contradiction.

(4) Similarly, if s(c) = s(d) = j , then there exists no common neighbor xi of c

and d for i ≥ j + 2 and if r(c) = r(d) = j + 1, then there exists no common
neighbor xi of c and d for i ≤ j − 2. And in both cases, c and d have no
common neighbor outside P .

(5) c and d are not adjacent to xj−2. Indeed, suppose that c ∼ xj−2
(similar for the case d ∼ xj−2). Then r(c) = j + 1 (similarly,
r(d) = j + 1), otherwise {xj , xj−1, xj−2, c, xr(c), xr(c)+1, . . . , xr(c)+l−1}
induces a bannerl , a contradiction, and s(c) = j − 3, otherwise
{xj , xj−1, xj−2, c, xs(c), xs(c)−1, . . . , xs(c)−l+1} induces a bannerl , a contra-
diction. Moreover, d is neither adjacent to xj−2 nor xj−3 also by (4). Hence,
s(d) = j , otherwise {xj−1, xj−2, c, xj , d, xs(d), xs(d)−1, . . . , xs(d)−l+1}
induces a bannerl , a contradiction. Now, among {xj , xj+1}, there exists
exactly one white vertex. Moreover, c � d̄ by (4). Now, {d, d̄, xj+1, c, xj−3,

xj−4, . . . , xj−l−2, xj+2, xj+3, . . . , xj+l+1}, induces an S2,l,l , a contradiction.
(6) By (2) and (5), if s(c) ≤ j − 3, then s(c) ≤ j − 4.
(7) s(c) = j or r(c) = j + 1. Similarly, s(d) = j or r(d) = j + 1.

Indeed, by (5) and (6), if s(c) ≤ j − 4 and r(c) ≥ j + 2, then
{xj−1, xj , c, xs(c), xs(c)−1, . . . , xs(c)−l+1, xr(c), xr(c)+1, . . . , xr(c)+l−1}
induces an S2,l,l , a contradiction.

(8) s(c) = j or r(d) = j + 1 (similarly, s(d) = j or r(c) = j +
1). Indeed, by (5) and (6), without loss of generality, suppose that
s(c) ≤ j − 4 and r(d) ≥ j + 2. Then by (7), r(c) = j + 1 and
s(d) = j . Hence, {xj−2, xj−1, xj , c, xs(c), xs(c)−1, . . . , xs(c)−l+2, d, xr(d),

xr(d)+1, . . . , xr(d)+l−2} induces an S2,l,l , a contradiction.
(9) s(c) = j or s(d) = j . Indeed, by (5) and (6), without loss of generality,

suppose that s(c), s(d) ≤ j − 4. Then r(c) = r(d) = j + 1, by (7). Now,
by (3), without loss of generality, assume that s(c) < s(d). Then by (4),
{xs(d)+1, d, xj+1, c, xs(c), xs(c)−1, . . . , xs(c)−l+2, xj+2, xj+3, . . . , xj+l+1}
induces an S2,l,l , a contradiction.

(10) r(c) = j+1 or r(d) = j+1. Indeed, if r(c), r(d) ≥ j+2, then by (7), s(c) =
s(d) = j . Without loss of generality, by (2) and (4), assume that r(c) > r(d)+
1. Then {xr(d), d, xj , c, xr(c), xr(c)+1, . . . , xr(c)+l−2, xj−1, xj−2, . . . , xj−l}
induces an S2,l,l , a contradiction.

(11) s(c) = s(d) = j . Indeed, by (5) and (6), suppose that s(c) ≤ j − 4
(similar for the case that s(d) ≤ j − 4). Then by (9), (8), and (7),
s(d) = j , r(d) = r(c) = j + 1. Note that, among {xj , xj+1, xs(c), xs(c)+1},
neighbors of c, there exist exactly two white vertices and hence, c � d̄ . Now,
{d̄, d, xj+1, c, xs(c), xs(c)−1, . . . , xs(c)−l+2, xj+2, xj+3, . . . , xj+l+1} induces
an S2,l,l , a contradiction.

(12) r(c) = r(d) = j + 1. Indeed, by (10), suppose that r(c) = j + 1 and r(d) ≥
j + 2. Among xj , xj+1, there exists only one white vertex and d � c̄ by (4).

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 201

Then {c̄, c, xj , xj−1, xj−2, . . . , xj−l , d, xr(d), xr(d)+1, . . . , xr(d)+l−2} induces
an S2,l,l , a contradiction.

Now, {c̄, c, xj , d, d̄, xj−1, xj−2, . . . , xj−l , xj+1, xj+2, . . . , xj+l+1} induces an
R2

l , a contradiction.
Case (C3). We have the following observations.

(1) First, note that, r(b), r(c), and r(d) (and similarly, s(b), s(c), and s(c)) are
three mutually different integers. Otherwise, suppose that r(b) = r(c). Then
we have the claw {xr(c), xr(c)+1, b, c}, i.e. (C2).

(2) To avoid (C1), if b ∼ xi for some i, then b is adjacent to at least one vertex
among xi−1, xi+1. It implies b is adjacent to xs(b)+1, xr(b)−1. Similarly for c

and d.
(3) Moreover, by the minimality of j and to avoid (C2), we know that xj−1 has

exactly two neighbors in {b, c, d}, say b and c. To avoid (C1) and (C2), we
conclude that xj+1 is adjacent to d and has at least one neighbor in {b, c},
say c. Moreover, b � xj+1. Indeed, if b ∼ xj+1, then r(b), r(c), r(d) ≤
j + 2, otherwise {xj−1, b, xj+1, c, xr(c), xr(c)+1, . . . , xr(c)+l−1} or
{xj−1, c, xj+1, b, xr(b), xr(b)+1, . . . , xr(b)+l−1} or {b, xj−1, c, xj+1, d, xr(d),

xr(d)+1, . . . , xr(d)+l−2} induces a bannerl depending on which is the
largest index among r(b), r(c), r(d), a contradiction. But now, j + 1 ≤
r(c), r(b), r(d) ≤ j + 2, a contradiction with the mutual difference of
r(b), r(c), and r(d).

(4) It also implies that at least one of s(b), s(c) is less than j − 1 and at least one
of r(d), r(c) is greater than j + 1.

(5) b � xj+1, together with b ∼ xr(b)−1, it implies that if r(b) ≥ j + 2, then
r(b) ≥ j + 3. Similarly, if s(d) ≤ j − 2, then s(d) ≤ j − 3.

(6) In a pair of consecutive vertices of P , there is a black vertex and a white vertex.
Hence, b, c, d are not adjacent to three pairs of consecutive vertices of P ,
otherwise we have a black vertex with three white neighbors, a contradiction.
Together with c is adjacent to xs(c)+1 and xr(c)−1, it leads to either r(c) ≤ j+2
or s(c) ≥ j − 2. Moreover, if c is adjacent to xj−2, xj+2, then s(c) = j − 2
and r(c) = j + 2. Similarly, we have the following observations: r(b) = j or
s(b) ≥ j − 2, s(d) = j or r(d) ≤ j + 2.

(7) c and b cannot share a neighbor xi for some i ≤ j − 2, otherwise
{xi, c, xj , b, xr(b), . . . , xr(b)+l−1}, {b, xi, c, xj , d, xr(d), . . . , xr(d)+l−2}, or
{xi, b, xj , c, xr(c), . . . , xr(c)+l−1} induces a bannerl depending on which
is the largest index among r(b), r(c), r(d) (note that at least one of
these integers is bigger than j + 1 and they are mutually different by
(1)), a contradiction. Moreover, b and c cannot share a neighbor xi for
some i ≥ j + 2, otherwise {xj , c, xi, b, xs(b), xs(b)−1, . . . , xs(b)−l+1} or
{xj , b, xi, c, xs(c), . . . , xs(c)−l+1} induces a bannerl depending on which one
is larger among s(b) and s(c). Similarly, c and b cannot share a white neighbor
outside P . By similar arguments, these properties are also true for the two
pairs c, d and b, d.

202 N. C. Lê

(8) s(c) ≥ j − 2, similarly, r(c) ≤ j + 2. Moreover, if s(c) = j − 2,
then r(c) = j + 1. Similarly, if r(c) = j + 2, then s(c) = j − 1.
Indeed, suppose that s(c) ≤ j − 4. Then c ∼ xj−2, otherwise
{xj−1, xj−2, xj−3, c, xr(c), xr(c)+1, . . . , xr(c)+l−1} induces a bannerl or
{xj−2, xj−1, c, xs(c), xs(c)−1, . . . , xs(c)−l+1, xr(c), xr(c)+1, xr(c)+l−1} induces
an S2,l,l depending on c ∼ xj−3 or not. But now, c is adjacent to
{xs(c), xs(c)+1, xj+1, xj , xj−1, xj−2}, a contradiction to (6). Now, if
s(c) = j − 3, then c ∼ xj−2 by (2) and r(c) = j + 1 by (6). Hence,
{c, xj−l−3, . . . , xj−4, xj−3, . . . , xj+1, xj+2, . . . , xj+l+1} induces an R3

l ,
a contradiction. Moreover, if s(c) = j − 2 and r(c) = j + 2, then
{c, xj−l−2, . . . , xj−3, xj−2, . . . , xj+1, xj+2, . . . , xj+l+2} induces an R3

l , a
contradiction.

(9) r(b) = j or s(b) = j−1, similarly, r(d) = j+1 or s(d) = j . Indeed, if r(b) ≥
j + 3 and s(b) ≤ j − 2, then {xj , xj+1, xj+2, b, xs(b), xs(b)−1, . . . , xs(b)−l+1}
induces a bannerl or {xj+1, xj , b, xs(b), xs(b)−1, . . . , xs(b)−l+1, xr(b),

xr(b)+1, . . . , xr(b)+l−1} induces an S2,l,l depending on b ∼ xj+2 or not, a
contradiction.

(10) s(b) ≥ j − 3, similarly, r(d) ≥ j + 3. Indeed, suppose that s(b) ≤ j − 4.
Then r(b) = j , by (9). Now b is not adjacent to xj−2 and xj−3 at the same
time, otherwise either {b, xj−l−4, . . . , xj−5, xj−4, . . . , xj , xj+1, . . . , xj+l}
induces an R3

l or b is adjacent to three pairs of consecutive ver-
tices of P , a contradiction to (6). Hence, b � xj−2, otherwise
{xj−3, xj−2, b, xs(b), xs(b)−1, . . . , xs(b)−l+1, xj , xj+1, . . . , xj+l−1} induces
an S2,l,l , a contradiction. Suppose that b ∼ xj−3. Then c ∼ xj−2,
otherwise {b, xj−3, xj−2, xj−1, c, xr(c), xr(c)+1, . . . , xr(c)+l−2} induces a
bannerl , a contradiction. Now, r(c) = j + 1 by (8), r(d) ≥ j + 2 by (1),
and s(d) = j by (9). Hence, {xj−2, c, xj , b, xs(b),xs(b)−1 , . . . , xs(b)−l+2, d,

xr(d), xr(d)+1, . . . , xr(d)+l−2} induces an S2,l,l , a contradiction. Thus, b �

xj−3. Now, {xj−3, xj−2, xj−1, b, xs(b), . . . , xs(b)−l+2, c, xr(c), . . . , xr(c)+l−2}
induces an S2,l,l , a contradiction.

(11) r(b) = j , similarly, s(d) = j . Indeed, suppose that r(b) ≥ j + 3.
Then by (9), s(b) = j − 1. Moreover, s(c) = j − 2, r(c) =
j + 1, r(d) ≥ j + 2, and s(d) = j by (1), (8), and (9). Now,
{xr(b)−1, b, xj , c, xj−2, xj−3, . . . , xj−l , d, xr(d), xr(d)+1, . . . , xr(d)+l−2}
or {xr(d), d, xj , c, xj−2, xj−3, . . . , xj−l , b, xr(b), xr(b)+1, . . . , xr(b)+l−2}
induces an S2,l,l depending on r(d) > r(b) or r(b) > r(d) (note that by
(2) and (7), if r(b) > r(d), then r(b) > r(d)+ 1).

(12) s(c) = j − 1, similarly, r(c) = j + 1. Indeed, suppose that s(c) =
j − 2. Then r(c) = j + 1 by (8), s(b) = j − 1 by (1), (2), and
(7) and r(d) ≥ j + 2 by (1). Among xj and xj−1, there exists only
one white vertex. Consider the other white neighbor of b, say b̄. Then
{b̄, b, xj , c, xj−2, xj−3, . . . , xj−l , d, xr(d), xr(d)+1, . . . , xr(d)+l−2} induces an
S2,l,l , a contradiction.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 203

(13) xj is black, otherwise {c̄, c, xj , b, xs(b), . . . , xs(b)−l+2, d, xr(d), . . . , xr(d)+l−2}
induces an S2,l,l , a contradiction. Now, by the symmetry, we have three
remaining cases, which are considered follows.

Case 3.1. b is adjacent to xj−2 and xj−3, d is adjacent to xj+2 and xj+3.
Then {xj , xj−l−2, . . . , xj−3, b, xj−1, c, xj+1, d, xj+3, . . . , xj+l+2} induces an R3

l ,
a contradiction.

Case 3.2. s(b) = j−2 and r(d) = j+2. Then {xj , xj−l−1, . . . , xj−2, b̄, b, xj−1, c,

xj+1, d, d̄, xj+2, . . . , xj+l+1} induces an R4
l , a contradiction.

Case 3.3. s(b) = j−2 and d is adjacent to xj+2 and xj+3. Then {xj , xj−l−1, . . . ,

xj−2, b̄, b, xj−1, c, xj+1, d, xj+2, xj+3, . . . , xj+l+1} induces an R5
l , a contradic-

tion.

Our purpose here is to detect an augmenting extended-chain whose path-part is of
length at least 2l + 2. We first find candidates (L,R) as described above. Note that
such candidates can be enumerated in polynomial time. Then perform Steps (a)
through (d) for each such pair:

(a) remove all black vertices that have a neighbor in L or in R,
(b) remove the vertices of L and R except for xl and x2p−l , and
(c) remove all the vertices that are the center of a claw in the remaining graph,
(d) then in the resulting claw-free graph, determine whether there exists an

alternating chain between xl and x2p−l by the method described in [28, 33].

For each candidate, Steps (a) through (d) can be implemented in time O(n4).
Hence, we have the conclusion of the lemma.

Appendix 4: Proof of Lemma 7

The proof is consisted of the six following observations.

Lemma 10 If G contains no augmenting P3, then an augmenting tree1 (if any) can
be found in time O(n17).

Proof Refer to Figure 2, tree1 with parameter r . If r = 1, then tree1 is a P3. Assume
that G contains an augmenting graph tree1, for some r ≥ 2. Therefore, G contains
an induced P5 = (b1, a1, x, a2, b2), where b1, b2 ∈ B1 and b1, b2 are non-adjacent
to any vertex of W {a1, x, a2}. If G contains no such an initial structure, then it
contains no augmenting tree1. If such a structure exists, then we proceed as follows.

Let us denote A = {a ∈ W(x)\{a1, a2} : a � b1, b2} and for a ∈ A, let
K(a) denote the set of black neighbors of a in B1 not adjacent to any vertex of
{x, a1, a2, b1, b2}. Notice that a desired augmenting tree exists only if K(a)
= ∅
for every a ∈ A. Finally, let V ′ = ⋃

a∈A
K(a). Since K(a) ⊆ B1 for every a ∈ A,

K(a) ∩K(a′) = ∅ for every pair of distinct vertices a, a′ ∈ A.

204 N. C. Lê

Consider any vertex a ∈ A, we show that K(a) induces a clique for every
a ∈ A. Indeed, suppose that K(a) contains two non-adjacent vertices b1, b2. Then
{b1, a, b2} induces an augmenting P3, a contradiction. It follows that a desired
augmenting tree1 exists if and only if α(G[V ′]) = |A|.

We show that G[V ′] must be P5-free. Indeed, consider an induced P4 =
(p1, p2, p3, p4) in G[V ′] and let a ∈ A be such that p1 ∈ K(a). Then none of
the vertices p3, p4 is adjacent to a because K(a) is a clique. Thus, p2 ∈ K(a),
otherwise {b1, a1, x, a2, b2, a, p1, p2, p3, p4} induces an S2,2,5, a contradiction.
Hence, if G[V ′] induces a P4 = (p1, p2, p3, p4), then p1 and p2 have a common
white neighbor, while p2 and p3 have no common white neighbor, a contradiction to
when consider an induced P4 = (p2, p3, p4, p5) in the P5 = (p1, p2, p3, p4, p5).

Since the P5-free graph class is MIS-solvable in time O(n12) [22], one can find
a simple augmenting tree containing the P5 (b1, w1, b,w2, b2) in O(n12). With an
exhaustive search, all candidate P5 of augmenting trees can be found in time O(n5).
For such candidates P5’s, V ′ can be built in O(n3). Hence, we have the conclusion
of the lemma.

Lemma 11 If G contains neither augmenting P3 nor P7, then an augmenting tree2

(if any) can be found in time O(n14).

Proof Refer to Figure 2, tree2 with parameter r and s. We may restrict ourselves to
finding a tree2 with r, s ≥ 2, since any tree2 with, say r = 1, either equals to P7 or
contains a redundant subset U of size two such that tree2 − U is of the form tree1.

As a candidate, consider the subgraph of tree2 (see Figure 2) induced by
{a1, a2, b1, b2, c1, c2, d1, d2, x, y, z} such that b1, b2, d1, d2 ∈ B1 and x, z share
no common white neighbor other than y.

Let us denote A = (W(x)∪W(z))\{a1, a2, c1, c2, y}. For a ∈ A, let K(a) denote
the set of black neighbors of a in B1 not adjacent to any vertex of {x, b1, b2, d1, d2}.
Note that, by the assumption, every vertex of A is either adjacent to x or y. Notice
that a desired augmenting tree exists only if K(a)
= ∅ for every a ∈ A.

We show that K(a) induces a clique. Indeed, suppose that K(a) contains
two non-adjacent vertices b1, b2. Then {b1, a, b2} induces an augmenting P3, a
contradiction.

Since for every a ∈ A, K(a) ∈ B1, K(a) ∩K(a′) = ∅ for every pair of distinct
vertices a, a′ ∈ A.

Finally, let V ′ = ⋃

a∈A
K(a). It follows that a desired augmenting tree2 exists if

and only if α(G[V ′]) = |A|.
We now show that G[V ′] is P3-free. Suppose, to the contrary, that (p1, p2, p3) is

an induced P3 in G[V ′]. Let a ∈ A such that p1 ∈ K(a). Since K(a) is a clique, p3
is not adjacent to a. Assume that p3 ∼ a′. Then since p2 ∈ B1, p2 is not adjacent
to at least one vertex among a, a′. Without loss of generality, assume that p2 � a,
and a is adjacent to x, but not to z. Then {d2, c2, z, c1, d1, y, x, a, p1, p2} induces
an S2,2,5, a contradiction.

Hence, G[V ′] is a disjoint union of cliques, i.e. a maximum independent set in
G[V ′] can be found in linear time. All candidates of the form tree2 whose r = s = 2

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 205

can be found by an exhaustive search in time O(n11). For such candidates P5’s, V ′
can be built in O(n3). Hence, we have the conclusion of the lemma.

Lemma 12 If G contains neither augmenting P3 nor P5, then an augmenting tree3

or an augmenting tree4 (if any) can be found in time O(n31).

Proof First, note that tree4 is a special case of tree3. We refer to Figure 2, tree3 for
indices. Moreover, we may restrict ourselves to finding a tree3 with s ≥ 3, since any
tree3 with, say, s ≤ 2 is either of the form tree1 or contains a redundant subset U of
size four such that tree3 − U is of the form tree1.

As a candidate, consider the subgraph of tree3 (see Figure 2) induced
by {d1, c1, b

1
1, a1

1, x, a2
1, b2

1, c2, d2, a
3
1, b3

1, c3, d3} such that b1
1, b

2
1, b

3
1 ∈ B2,

d1, d2, d3 ∈ B1. Let us denote A = W(x)\{a1
1, a2

1, a3
1}. For a ∈ A, let K(a)

denote the set of black neighbors b of a in B1 ∪ B2 and not adjacent to any vertex
of {x, b1

1, b
2
1, b

3
1, d1, d2, d3} such that if b ∈ B2, then G contains a pair of adjacent

vertices cb and db such that cb /∈ W(x), W(b) = {a, cb}, db ∈ B1, and db is not
adjacent to any vertex of {x, b1

1, b
2
1, b

3
1, d1, d2, d3, b} (note that db may coincide

with d1, d2, or d3). Let V ′ = ⋃

a∈A
K(a). And again, by the existence of a desired

augmenting tree3, K(a) is not empty for all a ∈ A. Note that by the assumption,
K(a) ∩K(a′) = ∅ for every pair of distinct vertices a, a′ ∈ A.

Consider any vertex a ∈ A, we show that K(a) induces a clique. Indeed, suppose
that K(a) contains two non-adjacent vertices b, b′. By the symmetry, we consider
the three following cases.

Case 1. b, b′ ∈ B1. Then {b, a, b′} induces an augmenting P3, a contradiction.
Case 2. b′ ∈ B1 and b ∈ B2. Then {b′, a, b, cb, db} induces an augmenting P5, a

contradiction.
Case 3. b, b′ ∈ B2. Then cb
= cb′ , otherwise {b, cb, b

′, a, x, a1
1} induces a

banner2, a contradiction. Now, {cb′ , b′, a, b, cb, x, ai
1, b

i
1, ci , di} induces an S2,2,5,

for ci is among c1, c2, c3 different from cb, cb′ , a contradiction.
It follows that a desired augmenting tree3 exists if and only if α(G[V ′]) = |A|.
Given a, a′ ∈ A and b ∈ K(a) ∩ B2, b′ ∈ K(a′) such that b � b′ and if

b′ ∈ B2, assume that db
= db′ , we show that b′ � db. Indeed, suppose that b′ ∼ db.
Then b′ � cb, otherwise cb′ = cb, and hence, db′ = db, a contradiction. Thus,
{b1

1, a
1
1, x, a2

1, b2
1, a
′, b′, db, cb, b} induces an S2,2,5, a contradiction. Now, if b′ ∈

B2, then db � db′ , otherwise {b1
1, a

1
1, x, a2

1, b2
1, a
′, b′, cb′ , db′ , db} induces an S2,2,5,

a contradiction.
Hence, for every pair of non-adjacent vertices b, b′ such that b ∈ K(a)∩B2, b′ ∈

K(a′) for two distinct vertices a, a′ ∈ A, {b, b′, d(b)} is independent. Moreover, if
b′ ∈ B2, then {b, b′, db, db′ } is independent.

Now, assume that B ′ is a maximum independent set of G[V ′]. Let C′ := {cb :
b ∈ B ′ ∩ B2}, D′ := {db : b ∈ B ′ ∩ B2}. Then by above arguments, B ′ ∪ D′ is
independent. And in the case that |B ′| = |A|, H := G[A ∪ B ′ ∪ C′ ∪ D′] is an
augmenting graph of the form tree3 of G.

206 N. C. Lê

As in Lemma 10, we show that G[V ′] is P5 free. Indeed, consider an induced
P4 = (p1, p2, p3, p4) in G[V ′] and let a ∈ A such that p1 ∈ K(a). Then none of
the vertices p3, p4 is adjacent to a because K(a) is a clique. But now, p2 ∈ K(a),
otherwise {b1

1, a
1
1, x, a2

1, b2
1, a, p1, p2, p3, p4} induces an S2,2,5, a contradiction.

Hence, if G[V ′] induces a P4 = (p1, p2, p3, p4), then p1 and p2 have a common
white neighbor, while p2 and p3 have no common white neighbor, a contradiction to
when consider an induced P4 = (p2, p3, p4, p5) in the P5 = (p1, p2, p3, p4, p5).

All candidates can be found by an exhaustive search in time O(n19). For such
candidates, V ′ can be built in O(n3). Again, by the solution for the MIS problem in
P5-free graphs [22], we have the conclusion of the lemma.

Lemma 13 An augmenting tree5 (if any) can be found in time O(n14).

Proof Refer to Figure 2, tree5 with parameter r and s. We may restrict ourselves to
finding a tree5 with r, s ≥ 1 and r ≥ 2, since a tree5 with, say, r = 0 contains a
redundant set U of size four such that tree5−U is of the form tree1, and a tree5 with
r = s = 1 can be found in time O(n9).

As a candidate, consider the subgraph of tree5 (see Figure 2) induced by
{a1, a2, b1, b2, c1, d1, u, v, x, y, z} such that b1, b2, v, d1 ∈ B2 and x, y share no
common white neighbor other than u. Let us denote Ax = W(x)\{a1, a2, u} and
Ay = W(y)\{c1, u} and for a ∈ A := Ax ∪Ay , let K(a) denote the set of common
black neighbors of a and z in B2 not adjacent to any vertex of {x, y, b1, b2, v, d1}.

Note that by the assumption, every vertex of A is either adjacent to x or y. Since
K(a) ⊆ B2 for every a ∈ A, K(a) ∩ K(a′) = ∅, for every pair of distinct vertices
a, a′ ∈ A.

Consider a pair of distinct vertices b, b′ ∈ K(a) for some a ∈ A. If b � b′, then
{b, a, b′, z, v, u} induces a banner2, a contradiction. Hence, K(a) is a clique for all
a ∈ A.

Now, let V ′(x) := ⋃

a∈Ax

(K(a)), V ′(y) := ⋃

a∈Ay

(K(a)), and V ′ := V ′(x) ∪ V ′y .

Note that, V ′(x) ∩ V ′(y) = ∅ by the definition. Then a desired augmenting tree5

exists if and only if K(a)
= ∅ for every a ∈ A and α(G[V ′]) = |A|.
As in Lemma 11, we show that G[V ′] is P3-free. Suppose, to the contrary, that

(p1, p2, p3) is an induced P3 in G[V ′]. Let a ∈ A such that p1 ∈ K(a). Since K(a)

is a clique, p3 is not adjacent to a. Assume that p3 ∼ a′. Since p2 ∈ B2, p2 is not
adjacent to at least one vertex among a, a′. Without loss of generality, assume that
p2 � a and a is adjacent to y, but not to x. Then {b2, a2, x, b1, a1, u, y, a, p1, p2}
induces an S2,2,5, a contradiction. Hence, a maximum independent set can be found
in G[V ′] in linear time.

All candidates can be found by an exhaustive search in time O(n11). For such
candidates, V ′ can be build in O(n3). Hence, we have the conclusion of the lemma.

Lemma 14 An augmenting tree6 (if any) can be found in time O(n27).

Proof Refer to Figure 2, tree6 with parameter r and s. We may restrict ourselves to
finding a tree6 with r, s ≥ 2, since a tree6 with, say, r = 1, contains a redundant set
U of size four such that tree6 − U is of the form tree1.

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 207

As a candidate, consider the subgraph of tree6 (see Figure 2) induced by
{a1, a2, b1, b2, c1, c2, d1, d2, x, y, z} such that b1, b2, c1, c2 ∈ B2 and x, z share
no common white neighbor.

Let us denote Ax = W(x)\{a1, a2} and Az = W(z)\{d1, d2}. For a ∈ A :=
Ax ∪ Az, let K(a) denote the set of common black neighbors of a and y in B2 and
not adjacent to any vertex of {x, b1, b2, c1, c2, z}. Note that Ax ∩ Az = ∅ by the
assumption. Since for every a ∈ A, K(a) ⊆ B2, K(a) ∩ K(a′) = ∅ for every pair
of distinct vertices a, a′ ∈ A.

Consider a pair of distinct vertices b, b′ ∈ K(a) for some a ∈ A. If b � b′, then
{b, a, b′, y, c1, d1} induces a banner2 in the case that a ∈ Ax (similar for the case
a ∈ Az), a contradiction. Hence, K(a) is a clique for all a ∈ A.

Now, let V ′(x) := ⋃

a∈Ax

(K(a)), V ′(z) := ⋃

a∈Az

(K(a)), and V ′ := V ′(x) ∪ V ′z .

Note that, V ′(x) ∩ V ′(z) = ∅. Then a desired augmenting tree6 exists if and only if
K(a)
= ∅ for every a ∈ A and α(G[V ′]) = |A|.

As in Lemma 10, we show that G[V ′x] and G[V ′z] are P5-free. Indeed, consider
an induced P4 = (p1, p2, p3, p4) in G[V ′x] or G[V ′z], let a ∈ A be such that
p1 ∈ K(a). Then none of the vertices p3, p4 is adjacent to a because K(a)

is a clique. But now, p2 ∈ K(a), otherwise {b1, a1, x, a2, b2, a, p1, p2, p3, p4}
or {c1, d1, z, d2, c2, a, p1, p2, p3, p4} induces an S2,2,5 depending on a ∈ Ax or
a ∈ Az, a contradiction. Hence, if G[V ′x] or G[V ′z] induces a P4 = (p1, p2, p3, p4),
then p1 and p2 have a common white neighbor, while p2 and p3 have no common
white neighbor, a contradiction to when consider an induced P4 = (p2, p3, p4, p5)

in the P5 = (p1, p2, p3, p4, p5).
Moreover, assume that there exists a pair of vertices b, b′ such that b ∈

K(a), b′ ∈ K(a′) for some a ∈ A(x), a′ ∈ Az, and b ∼ b′. Then
{b1, a1, x, a2, b2, a, b, b′, a′, z} induces an S2,2,5, a contradiction. Hence, there
is no edge connecting a vertex in G[V ′x] and a vertex in G[V ′z]. So, G[V ′] is
P5-free.

Note that all candidates can be found by an exhaustive search in time O(n15). For
such candidates, V ′ can be build in O(n3). Hence, by the result of Lokshtanov et al.
[22] we have the conclusion of the lemma.

Lemma 15 If G contains no augmenting P3, nor P5, nor P7, then an augmenting
tree7 (if any) can be found in time O(n19).

Proof Refer to Figure 2 for indices. We may restrict ourselves to finding a tree7

with s ≥ 3, since a tree7 with s ≤ 2 is of the form tree3 or contains a redundant set
U of size at most eight such that tree7 − U is of the form tree3.

As a candidate, consider the subgraph of tree7 (see Figure 2) induced by
{x, a1

1, b1
1, c1, d1, e1, f1, a

2
1, b2

1, c2, d2, e2, f2, a
3
1, b3

1, c3, d3, e3, f3} such that
b1

1, d1 ∈ B2 and f1 ∈ B1. Let us denote A = W(x)\{a1
1, a2

1, a3
1, e1, e2, e3}.

For a ∈ A, let K(a) denote the set of black neighbors b of a in B1 ∪ B2 not
adjacent to any vertex of {x, b1

1, d1, e1, f1, b
2
1, d2, e2, f2, b

3
1, d3, e3, f3} and such

that if b ∈ B2, then G contains either

208 N. C. Lê

• two vertices cb, db such that cb /∈ W(x), W(b) = {a, cb}, db ∈ B1, and db is not
adjacent to any vertex of {x, b1

1, b
2
1, b

3
1, d1, d2, d3, f1, f2, f3, b} or

• an induced alternating (black white vertices) P4 (cb, db, eb, fb) such that eb ∈
W(x)\{a1

1, c1, a
2
1, c2, a

3
1, c3}, cb /∈ W(x), W(b) = {a, cb}, W(db) = {cb, eb},

W(fb) = {eb}, and db, fb are not adjacent to any vertex of {x, b1
1, b

2
1, b

3
1, d1, d2,

d3, f1, f2, f3, b}.
Let V ′ = ⋃

a∈A
K(a).

By the existence of a desired augmenting tree7, K(a) is not empty for all a ∈ A.
Note that, by assumption, K(a) ∩ K(a′) = ∅ for every pair of distinct vertices
a, a′ ∈ A.

Given a vertex b ∈ K(a)∩B2 for some a ∈ A, we show that db /∈ K(eb). Indeed,
suppose that db /∈ K(eb). Since db ∈ B2, cb = cdb

, ddb
= b, and edb

= a. Hence,
there exists some vertex b′ ∈ B1, such that fdb

= b′, i.e. b′ ∼ a and b′ is not adjacent
to b, db. Hence, b′ � fb, otherwise {cb, b, a, b′, fb, x, ai

1, b
i
1, ci , di} induces an

S2,2,5, for ci is a vertex among c1, c2, c3 different from cb, a contradiction. Now,
{b′, a, b, cb, db, eb, fb} induces an augmenting P7, a contradiction.

Suppose that there exist two vertices b, b′ such that b ∈ K(a) ∩ B2 and
b′ ∈ K(a′) ∩ B2 for two distinct vertices a, a′ ∈ A and db, db′ are different and
adjacent to some vertex a′′ ∈ W(x)\{a, a′, a1

1, a2
1, a3

1} different from a, a′. Then
{cb, db, a

′′, db′ , cb′ , x, ai
1, b

i
1, ci , di} induces an S2,2,5 where ci is a vertex among

c1, c2, c3 different from cb, cb′ , a contradiction. Hence, for every pair of vertices
b, b′ such that b ∈ K(a) ∩ B2, b′ ∈ K(a′) ∩ B2 for two distinct vertices a, a′ ∈ A,
eb
= eb′ .

Consider any vertex a ∈ A, we show that K(a) induces a clique. Indeed, suppose
that K(a) contains two non-adjacent vertices b, b′. By the symmetry, we consider
the three following cases.

Case 1. b, b′ ∈ B1. Then {b, a, b′} induces an augmenting P3, a contradiction.
Case 2. b′ ∈ B1 and b ∈ B2. We have the three following subcases.
2.1. db ∈ B1. Then {b′, a, b, cb, db} induces an augmenting P5, a contradiction.
2.2. db ∈ B2 and b′ � fb. Then {b′, a, b, cb, db, eb, fb} induces an augmenting

P7, a contradiction.
2.3. db ∈ B2 and b′ ∼ fb. Then {fb, b

′, a, b, cb, x, ai
1, b

i
1, ci , di} induces an

S2,2,5, for ci is a vertex among c1, c2, c3 different from cb, a contradiction.
Case 3. b, b′ ∈ B2. Then cb
= cb′ , otherwise {b, cb, b

′, a, x, a1
1} induces a

banner2, a contradiction. Now, {cb′ , b′, a, b, cb, x, ai
1, b

i
1, ci , di} induces an S2,2,5,

for ci is a vertex among c1, c2, c3 different from cb, cb′ , a contradiction.
It follows that a desired augmenting tree7 exists if and only if α(G[V ′]) = |A|.
Given a, a′ ∈ A, b ∈ K(a) ∩ B2, and b′ ∈ K(a′) such that b � b′, if

b′ ∼ db, then b′ � cb, otherwise cb′ = cb and then db′ = db, a contradiction.
Then {b1

1, a
1
1, x, a2

1, b2
1, a
′, b′, db, cb, b} induces an S2,2,5, a contradiction. Now, if

b′ ∈ B2, then db � db′ , otherwise {bi
1, a

i
1, x, a

j

1 , b
j

1 , a′, b′, cb′ , db′ , db} induces an
S2,2,5, for i, j ∈ {1, 2, 3} such that cb is different from ci, cj , a contradiction. Note
that for every b ∈ K(a) ∩ B2 for some a ∈ A, fb ∈ K(eb). Hence, for every

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 209

pair of non-adjacent vertices b, b′ such that b ∈ K(a) ∩ B2, b′ ∈ K(a′) for two
distinc vertices a, a′ ∈ A, {b, b′, db, fb} is independent. Moreover, if b′ ∈ B2, then
{b, b′, db, db′ , fb, fb′ } is independent.

Now, assume that B ′ is a maximum independent set of G[V ′]. Let C′ := {cb :
b ∈ B ′ ∩ B2}, D′ := {db : b ∈ B ′ ∩ B2}. Then by above arguments, B ′ ∪ D′ is
independent. And in the case that |B ′| = |A|, H := G[A ∪ B ′ ∪ C′ ∪ D′] is an
augmenting graph of the form tree7 of G. Hence, a maximum independent set of
G[V ′] in the case that α(G[V ′]) = |A| gives us an augmenting of the form tree7.

As in Lemma 10, we show that G[V ′] is P5-free. Indeed, consider an induced
P4 = (p1, p2, p3, p4) in G[V ′], and let a ∈ A be such that p1 ∈ K(a). Then none
of the vertices p3, p4 is adjacent to a because K(a) is a clique. But now, p2 ∈ K(a),
otherwise {b1

1, a
1
1, x, a2

1, b2
1, a, p1, p2, p3, p4} induces an S2,2,5, a contradiction.

Hence, if G[V ′] induces a P4 = (p1, p2, p3, p4), then p1 and p2 have a common
white neighbor, while p2 and p3 have no common white neighbor, a contradiction to
when consider an induced P4 = (p2, p3, p4, p5) in the P5 = (p1, p2, p3, p4, p5).

All candidates can be found by an exhaustive search in time O(n19). For such
candidates, V ′ can be built in O(n3). By the result of Lokshtanov et al. [22], we
have the conclusion of the lemma.

Appendix 5: Proof of Theorem 5

So, we modify the concept of augmenting vertex [30] as follows.

Definition 4 Let S be an independent set of a graph G = (V , F) and v ∈ V \S,
s ∈ NS(v). We say that v is augmenting for S associated with s if G[N(s)∩H(v, S)]
contains an independent set Sv,s such that |Sv,s | ≥ |NS(v)|.
Moreover, with an addition assumption that a maximum independent set of
G[N(s) ∩ H(v, S)] can be found in polynomial time for every s ∈ NS(v), we
can also choose s such that α(G[N(s) ∩H(v, S)]) is maximum.

Refer to Algorithm 4, where p is a constant defined as in Lemma 3, an extended
version of Algorithm Alpha in [29], a maximal independent set of G can be found
(say by some greedy method) in time O(n2). One can compute the set H(v, S) in
time O(n2). Note that an augmenting of at most 2m−1 vertices can be found in time
O(n2m+1). Moreover, by Lemmas 6, 10, . . . , 15, an augmenting graph of the forms
mentioned in the while condition can be found in polynomial time. The while loop
is repeated at most n time. Hence, we observe the following result, an extension of
Theorem 7 in [29].

Lemma 16 Given two integers l and m, an (S2,2,5,banner2,domino,Mm,R3
l , R

4
l ,

R5
l)-free graph G = (V ,E), a maximal independent set of G S, and v ∈ V \S, if

one can find a maximum independent set of G[N(s)∩H(v, S)] for every s ∈ NS(v)

in polynomial time, then one can find a maximum independent set of G in polynomial
time.

210 N. C. Lê

Algorithm 4 MISAugVer(G)
Input: a (S2,2,5,banner2,domino,Mm)-free graph G

Output: S, A maximum independent set of G.
1: Find an arbitrary maximal independent set S in G;
2: while There exists an H -augmentations to S where H contains at most 2m− 1 vertices, or H

is an augmenting (4, p)-extended-chain, an augmenting apple, or H is of the form tree1, . . . ,
tree7 or can be reduced to such forms by some redundant set or some reduction set of size at
most 32, or S admits an augmenting vertex v associated with some vertex s do

3: if S admits an H -augmentation then
4: Apply an augmenting H for S;
5: end if
6: if S admits an augmenting vertex v associated with s then
7: S := (S\NS(v)) ∪ {v} ∪ Sv,s ;
8: end if
9: end while

10: return S

Let G = (V ,E) be an (S2,2,5,banner2,domino,Mm,R3
l , R

4
l , R

5
l , K

(h))-free graph
with n vertices and S be a maximal independent set of G. Assume that one can
solve the MIS problem for (S2,2,5,banner2,domino,Mm,R3

l , R
4
l , R

5
l , K)-free graphs

in polynomial time. The goal is to show that one can carry out Step 2 of Algorithm 4
in polynomial time. We use the technique described in [30]. Let us say that a vertex
v ∈ V is a trivial augmenting vertex for S if v is augmenting for S and |NS(v)| ≤ h.
Then one can check if a vertex v ∈ V is a trivial augmenting vertex for S in time
O(nh+1), by verifying if G[H(v, S)] contains an independent set S∗ of |NS(v)|
vertices. Such S∗ is called the independent set associated with the augmenting
vertex v.

Assume that G admits no trivial augmenting vertex for S and that there exists
v ∈ V \S augmenting for S (in particular, h < |NS(v)|). Thus, G[H(v, S)] contains
an independent set T with |NS(v)| ≤ |T |. Since G is (S2,2,5,banner2,domino,Mm)-
free together with an additional assumption that G contains no augmenting graph
contains at most 2m − 1 vertices, no augmenting graph of the forms tree1, . . . ,
tree7, no augmenting (4, p)-extended-chain, no augmenting apple, no augmenting
graph that can be reduced to such forms by some redundant set or reduction set, by
Lemmas 3 and 4, H ′ := (T ∪ {v}, NS(v), E(H ′)) is an augmenting bipartite-chain.

Let us write T = {t1, . . . , tr} (r ≥ |NS(v)| ≥ h), with NS(ti) ⊂ NS(ti+1) for any
index i. Since G admits no trivial augmenting vertex for S, one has |NS(tk)| ≥ k

for k = 1, . . . , h. For any t ∈ H(v; S), let us write M(t) = {w ∈ H(v, S) :
NS(w) ⊃ NS(t), |NS(w)| ≥ h}. Then T ⊂ {t1, . . . , th} ∪ (M(th)\N({t1, . . . , th})).
Note that M(th) is K-free, otherwise M(th) ∪ {s1, s2, . . . , sh} ∪ {v} induces a K(h)

for s1, . . . , sh ∈ NS(th), a contradiction.
Now, since Step 2 of Algorithm 4 considers all the vertices in V \S, to check if S

admits an augmenting vertex one has not to solve the MIS problem in H(v, S) for
every v ∈ V \S. In fact, for every v ∈ V \S, it is sufficient to verify: (i) if v is a trivial
augmenting vertex for S, and then (ii) if v is augmenting, by assuming that S admit

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 211

Algorithm 5 Procedure Green (v)
Input: a vertex v ∈ V \S
Output: a possible proof that v is augmenting associated with T = {t1, . . . , th} and an

independent set S∗ associated with v.
1: S∗ := ∅; T := ∅;
2: if |NS(v)| ≤ h then
3: if H(v; S) contains an independent set Q of |NS(v)| vertices then
4: set S∗ := Q; {v is (trivially) augmenting for S};
5: end if
6: else
7: for all independent set U of h vertices of G[H(v, S)], i.e. U = {t1, . . . , th}, with NS(ti) ⊂

NS(ti+1), and |NS(ti)| ≥ i do
8: S′ :=MISAugVer(G[M(th)\N({t1, . . . , th})]);
9: if |S′ ∪ {t1, . . . , th}| > |S∗| then

10: S∗ := S′ ∪ {t1, . . . , th}; T := {t1, . . . , th};
11: end if
12: end for
13: end if
14: if |S∗| ≥ |NS(v)| then
15: return v is augmenting for S associated with T and S∗
16: end if

no trivial augmenting vertex. That can be formalized by the procedure Algorithm 5
[30], whose input is any vertex v of V \S which can be executed in time O(nh+d+1).

Note that, given an augmenting vertex v (for S), Procedure Green(v) could not
recognize it as an augmenting vertex: that can happen whenever H(v, S) contains a
trivial augmenting vertex. Now, we give the new definition for augmenting vertex v

as following.

Definition 5 Let S be an independent set of a graph G = (V ,E), h be an
integer, and v ∈ V \S, t1, t2, . . . , th ∈ H [v, S]. We say that v is h-augmenting
for S associated with {t1, . . . , th}, where NS(ti) ⊂ NS(ti+1) for every index i, if
G[M(th)\N({t1, . . . , th})] contains an independent set Sv,t1,...,th such that |S∗| ≥
|NS(v)| where S∗ := Sv,t1,...,th ∪ {t1, t2, . . . , th}. S∗ is called the independent set
associated with the augmenting vertex v.

To summarize, in order to define an efficient method to solve the MIS problem
in (S2,2,5,banner2,domino,Mm,K(h))-free graphs, one can rewrite Step 2 of Algo-
rithm 4 as in Algorithm 6.

212 N. C. Lê

Algorithm 6 New Step 6
1: for all v ∈ V \S do
2: Procedure Green(v);
3: if v is augmenting for S associated with S∗ then
4: S := (S\NS(v)) ∪ S∗; stop;
5: end if
6: end for

References

1. V. E. Alekseev, On the number of maximal stable sets in graphs from hereditary classes, in
Combinatorial-Algebraic Methods in Applied Mathematics (Gorkiy University, Gorky, 1991),
pp. 3–13 (in Russian)

2. V. E. Alekseev, A polynomial algorithm for finding maximum independent sets in fork-free
graphs. Discret. Anal. Oper. Res. Ser. 1, 3–19 (1999) (in Russian)

3. C. Berge, Two theorems in graph theory. Proc. Natl. Acad. Sci. U. S. A. 43, 842–844 (1957)
4. R. Boliac, V.V. Lozin, An augmenting graph approach to the stable set problem in P5-free

graphs. Discret. Appl. Math. 131(3), 567–575 (2003)
5. J.A. Bondy, U.S.R. Murty, Graph theory, in Graduate Text in Mathematics, vol. 244 (Springer,

Berlin, 2008)
6. A. Brandstädt, V.B. Le, S. Mahfud, New applications of clique separator decomposition for the

maximum weight stable set problem. Theor. Comput. Sci. 370(1–3), 229–239 (2007)
7. B. Brešar, F. Kardoš, J. Katrenic̆, G. Semanišin, Minimum k-path vertex cover. Discret. Appl.

Math. 159(12), 1189–1195 (2011)
8. K. Cameron, Induced matching. Discret. Appl. Math. 24(1–3), 97–102 (1989)
9. D.M. Cardoso, M. Kamiński, V.V. Lozin, Maximum k-regular induced subgraphs. J. Comb.

Optim. 14(4), 455–463 (2007)
10. A.K. Dabrowski, V.V. Lozin, D. de Werra, V. Zamaraev, Combinatorics and algorithms for

augmenting graphs. Graphs Comb. 32(4), 1339–1352 (2016)
11. J. Edmonds, Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
12. P. Festa, P.M. Pardalos, M.G.C. Resende, Feedback set problems, in Handbook of Combinato-

rial Optimization (Kluwer Academic Publishers, Dordrecht, 1999), pp. 209–259
13. J.F. Fink, M.S. Jacobson, n-Domination n-dependence and forbidden subgraphs, in Graph

Theory with Applications to Algorithms and Computer (Wiley, New York, 1985), pp. 301–311
14. M.U. Gerber, V.V. Lozin, On the stable set problem in special P5-free graphs. Discret. Appl.

Math. 125(2–3), 215–224 (2003)
15. M.U. Gerber, A. Hertz, V.V. Lozin, Stable sets in two subclasses of banner-free graphs. Discret.

Appl. Math. 132(1–3), 121–136 (2003)
16. M.U. Gerber, A. Hertz, D. Schindl, P5-free augmenting graphs and the maximum stable set

problem. Discret. Appl. Math. 132(1–3), 109–119 (2004)
17. A. Hertz, V.V. Lozin, The maximum independent set problem and augmenting graphs, in Graph

Theory and Combinatorial Optimization (Springer Science and Business Media, Inc., New
York, 2005), pp. 69–99

18. A. Hertz, V.V. Lozin, D. Schindl, Finding augmenting chains in extensions of claw-free graphs.
Inf. Process. Lett. 86(3), 311–316 (2003)

19. N.C. Lê, Augmenting approach for some maximum set problems. Discret. Math. 339(8), 2186–
2197 (2016)

Combinatorial and Graph-Theoretical Problems and Augmenting Technique 213

20. N.C. Lê, C. Brause, I. Schiermeyer, New sufficient conditions for α-redundant vertices. Discret.
Math. 338(10), 1674–1680 (2015)

21. N.C. Lê, C. Brause, I. Schiermeyer, The maximum independent set problem in subclasses of
Si,j,k . Electron. Notes Discret. Math. 49, 43–49 (2015)

22. D. Lokshtanov, M. Vatshelle, Y. Villanger, Independent set in P5-free graphs in polynomial
time, in Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(2014), pp. 570–581

23. V.V. Lozin, M. Milanič, On finding augmenting graphs. Discret. Appl. Math. 156(13), 2517–
2529 (2008)

24. V.V. Lozin, R. Mosca, Independent sets in extensions of 2K2-free graphs. Discret. Appl. Math.
146(1), 74–80 (2005)

25. V.V. Lozin, R. Mosca, Maximum independent sets in subclasses of P5-free graphs. Inf. Process.
Lett. 109(6), 319–324 (2009)

26. V.V. Lozin, R. Mosca, Maximum regular induced subgraphs in 2P3-free graphs. Theor.
Comput. Sci. 460(16), 26–33 (2012)

27. M. Milanič, Algorithmic developments and complexity results for finding maximum and exact
independent sets in graphs. PhD thesis, Rutgers, The State University of New Jersey, 2007

28. G.J. Minty, On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser.
B 28(3), 284–304 (1980)

29. R. Mosca, Polynomial algorithms for the maximum stable set problem on particular classes of
P5-free graphs. Inf. Process. Lett. 61(3), 137–143 (1997)

30. R. Mosca, Some results on maximum stable sets in certain P5-free graphs. Discret. Appl. Math.
132(1–3), 175–183 (2004)

31. R. Mosca, Independent sets in (P6,diamond)-free graphs. Discret. Math. Theoretical Comput.
Sci. 11(1), 125–140 (2009)

32. R. Mosca, Stable sets for (P6,K2,3)-free graphs. Discuss. Math. Graph Theory 32(3), 387–401
(2012)

33. N. Sbihi, Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans
etoile. Discret. Math. 29(1), 53–76 (1980)

Optimal Patrol on a Graph Against
Random and Strategic Attackers

Richard G. McGrath

1 Background

Patrol problems are encountered in many real-world situations. Generally speaking,
a patrol is the movement of a guard force through a designated area of interest
(AOI) for the purpose of observation or security. Patrols are often conducted by
authorized and specially trained individuals or groups, and are common in military
and law-enforcement settings. The use of patrols, instead of fixed, continuous
surveillance, is often necessary because of real-world limitations on time and
resources. Patrollers must operate with the intent of maximizing the likelihood
of detection of adversaries, infiltration, or attacks. The objective in solving patrol
problems is to determine the actions or policies that will maximize this likelihood.
In most patrol problems, consideration must be made for the time required for a
patroller to travel between specific locations within an AOI, and the time required
to conduct an inspection in order to detect illicit activities at a particular location.

There are several military and non-military applications of patrol problems.
Military applications include the routing of an unmanned aerial vehicle (UAV) on a
surveillance mission or the conduct of ground patrols to interdict the placement
of improvised explosive devices (IEDs). Non-military applications include the
movement of security guards through museums or art galleries; police forces
patrolling streets in a city; security officials protecting airport terminals; and
conductors checking passenger tickets on trains in order to detect fare evaders.

This work is motivated by the need to provide for effective security, usually with
limited resources, and often against very sophisticated and capable enemies. Not
only does the solution to a patrol problem need to be mathematically sound, it also

R. G. McGrath (�)
United States Naval Academy, Annapolis, MD, USA
e-mail: rmcgrath@usna.edu

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_10

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_10&domain=pdf
mailto:rmcgrath@usna.edu
https://doi.org/10.1007/978-3-319-94830-0_10

216 R. G. McGrath

needs to be executable. Additionally, it is often important to ensure that the solution
to a patrol problem incorporates sufficient randomization, and thus be unpredictable
to potential adversaries.

1.1 Problem Description

We consider a problem where multiple locations within an AOI are subject to attack.
A patroller (defender) is assigned to the area in order to detect attacks before they
can be completed. An attack is considered to be any activity that the patroller wants
to interdict or prevent, such as planting or detonating an explosive device, stealing
a valuable asset, or breaching a perimeter. The patroller moves between locations
and conducts inspections at those locations in order to detect any illicit activity. A
specified travel time is required for movements between locations. It then takes the
patroller an additional specified amount of time to inspect a new location after he
arrives. At the end of the time required to complete an inspection, the patroller can
move to any other location in the area.

We explicitly model the patrol problem on a graph, where potential attack
locations are represented by vertices. We consider the inclusion of inspection times
at each vertex and travel times for the patroller to move along edges between vertices
in the graph. We consider this problem in continuous time and structure the patrol
model on a complete graph, where the edge length represents the travel time between
each pair of vertices.

The time at which an attacker arrives at a location to conduct an attack is random,
and occurs according to a Poisson process. When an attacker arrives at a location he
begins an attack immediately. The time required to complete an attack is random,
with a probability distribution that is known to the attacker and the patroller. The
patroller detects any ongoing attacks at a location at the end of his inspection. We
consider an attacker to be detected if both the patroller and attacker occupy the
same location at the end of the patroller’s inspection. The amount of time it takes to
complete an attack, as well as the amount of damage that an undetected attack will
cause, is specific to each location.

The patroller’s objective is to determine a path of locations to visit and inspect
that will minimize the long-run cost incurred due to undetected attacks. For instance,
where the cost of an attack is the same at all locations, this objective is equivalent to
maximizing the probability of detecting an attack.

We consider two patrol models that are closely related:

1. A single patroller against random attackers: In the random-attacker case, an
attacker will choose a location to attack according to a probability distribution
that is known to the patroller. This situation may occur when there is intelligence
available regarding potential enemy attack locations. It may be possible from this
intelligence to assign a likelihood of attack to specific locations.

Optimal Patrol on a Graph Against Random and Strategic Attackers 217

2. A single patroller against strategic attackers: In the strategic-attacker case, an
attacker will actively choose a location to attack in order to inflict the maximum
expected damage. Conversely, the patroller seeks to conduct his patrol so as to
sustain the least expected damage. This situation may occur with a more capable
or better-resourced enemy, who can analyze the expected damage among several
attack locations.

In each of these cases, we assume that the attacker cannot observe the real-time
location of the patroller. In other words, once an attacker initiates an attack, he will
carry on with the attack until either completing the attack or getting detected. An
attacker cannot time his attack, nor can he abandon an attack, based on real-time
information about the patroller’s location.

In the case of a single patroller against random attackers, we present a linear
program to determine an optimal patrol policy. This linear program is constructed
as a minimum cost-to-time ratio cycle problem on a directed graph. We also present
two heuristic methods based on the graph structure that utilize aggregate index
values to determine a heuristic patrol policy.

In the case of a single patroller against strategic attackers, we present a linear
program to determine an optimal patrol policy. This linear program is a modification
of the minimum cost-to-time ratio cycle linear program used for a random attacker
that minimizes the largest expected cost among all locations and provides a direct
mapping to a mixed strategy. We also present two heuristic methods for this case.
The first is a combinatorial method based on the shortest Hamiltonian cycle in the
graph. The second is an iterative method based on fictitious play. We also present
a linear program that provides a lower bound to an optimal solution, which helps
evaluate our heuristic policy when an optimal solution is not available.

1.2 Literature Review

A patrol problem can be considered more generally as a type of search problem.
Many types of search and patrol problems have been studied in diverse literatures.
Early work on search theory focused on two general categories: one-sided search
and search games. One-sided search refers to the assumption that a target does not
respond to, or is even necessarily aware of, the searcher’s actions. In this type of
problem, the objective is often to maximize the probability of detection before a
deadline, or to minimize the expected time or cost of a search [9].

The two-sided search problem, more commonly referred to as a search game,
involves a searcher and a target who knows that he is being pursued. These type
of search problems are generally formulated as game-theoretic problems. The
information that the target has concerning the searcher will vary anywhere from
complete information on the searcher’s strategy to a complete lack of information
[9]. In these scenarios, a searcher and target can be working in competition, whereby
the target wishes to evade detection. Alternatively, a searcher and a target can be

218 R. G. McGrath

working in cooperation, such as a search and rescue scenario, where the objective
for both is to minimize the time (or cost) of the search.

Patrol problems are a specific type of search problem. In a patrol problem, a
searcher utilizes a patrol strategy to cover an area where an attacker or target may or
may not be present [5]. There are several types of game-theoretic patrol problems
that relate to our work. An accumulation game is a type of patrol problem where
a patroller visits several locations to collect materials hidden by an attacker. If the
patroller finds a certain amount of the materials, he wins; otherwise, he loses [4],
[14]. An infiltration game is a type of patrol problem where an intruder attempts
to penetrate an area without being intercepted by a patroller [2, 7, 10, 21, 23]. An
inspection game is a type of patrol problem where the patroller attempts to interdict
an attacker during an attack [8, 24]. The infiltration and inspection game categories
are most similar to the models that we examine.

There are several examples in search-game literature where the search area is
modeled as a graph or network. Kikuta and Ruckle [13] study initial point searches
on weighted trees. Kikuta [12] studies search games with traveling costs on a tree.
Alpern [3] examines search games on trees with asymmetric travel times.

The works most closely related to this problem are those by McGrath and Lin
[16], Lin et al. [15], and Alpern et al. [6]. Alpern et al. examine optimized random
patrols where a facility to be patrolled is modeled on a graph with interconnected
vertices representing individual locations within the facility. This work focuses on
the case of strategic attackers, where an attacker actively chooses a location to
attack, and assumes that the time to complete an attack is deterministic and is the
same for all locations. Lin et al. examine a patrol problem on a graph with both
random and strategic attackers. They use an exact linear program to compute an
optimal solution. Since this method quickly becomes computationally intractable
as a problem size increases, they introduce index heuristics based on Gittins et
al. [11] to determine a patrol policy. They use an aggregate index, where index
values are accumulated as a patroller looks ahead into the future, to produce effective
patrol policies in a game-theoretic setting. Both of these works use discrete-time
models, require the same inspection time at all locations, and prescribe an adjacency
structure for their graphs—which puts constraints on how a patroller can move
between locations.

2 Single Patroller Against Random Attackers

We consider the case of a single patroller against random attackers. In this patrol
problem, the patroller’s objective is to determine a patrol policy that minimizes the
long-run average cost due to undetected attacks. Section 2.1 introduces a patrol
model on a graph, where an attacker chooses to attack a specific location based on
a probability distribution that is known to the patroller. In Section 2.2, we present
a linear program that determines an optimal solution to the patrol problem. Since
the linear program quickly becomes computationally intractable as the size of the

Optimal Patrol on a Graph Against Random and Strategic Attackers 219

problem grows, we also present two heuristic methods for determining a solution in
Section 2.3. We conduct extensive numerical experiments for several scenarios and
present the results in Section 2.4. We make recommendations on how to best utilize
the heuristic methods based on the experimental results.

2.1 Patrol Model

We consider a problem where multiple heterogeneous locations dispersed through-
out an area of interest (AOI) are subject to attack. A patroller (defender) is assigned
to patrol the area and inspect locations in order to detect attacks before they can
be completed. An attack is considered to be any type of activity that the patroller
wants to interdict and prevent, such as planting an explosive device, stealing a
valuable asset, or breaching a perimeter. The patroller moves between locations and
conducts inspections at those locations in order to detect illicit activity. We consider
an attacker to be detected and his attack defeated if both the patroller and attacker
occupy the same location at the end of an inspection.

We model this problem as a graph with n vertices, where each vertex represents
a location that is subject to attack. We define a set of vertices N = {1, . . . , n} to
represent potential attack locations. A random attacker will choose to attack vertex
i with probability pi ≥ 0, for i ∈ N , and

∑n
i=1 pi = 1. The time required for

an attacker to complete an attack at vertex i is a random variable, which follows a
distribution function Fi(·), for i ∈ N , that is known to the attacker and the patroller.

The patroller detects any ongoing attacks at a vertex at the end of an inspection.
We assume that there are no false negatives; that is, the attacker will successfully
detect all ongoing attacks at a vertex at the end of his inspection. An attack is
considered to be unsuccessful if it is detected by the patroller. An attack is successful
if it is completed before it is detected.

We assume that an attacker arrives at a location in the AOI to commence an attack
according to a Poisson process with rate Λ. The Poisson process has stationary and
independent increments, which implies that attacks are equally likely to occur at any
time and that prior attacks do not help the patroller predict future attacks. Attackers
arrive at a specific vertex i to begin an attack at a rate of λi = piΛ, for i ∈ N . These
attacker arrivals at specific vertices constitute independent Poisson processes.

In most situations, the attacker arrival rate Λ is very small. In the formulation
of our problem, the value of Λ is inconsequential because we ignore interruptions
from attacks. In other words, several attackers can operate simultaneously on the
graph, or even at the same vertex, with each acting independently. By minimizing
the long-run cost rate, we also minimize the average cost from each attack with Λ

acting as a scaling constant. Thus, an optimal solution does not depend on the value
of Λ.

It takes a specified amount of time to travel between vertices and conduct
inspections. These times are fixed in our problem. The time required for a patroller
to travel between vertices is denoted by an n × n distance matrix D = [dij], for

220 R. G. McGrath

i, j ∈ N , where dij ≥ 0 for all pairs of vertices i
= j and dii = 0. The time required
for a patroller to complete an inspection at a vertex is denoted by (v1, . . . , vn). From
these values, we construct an n× n transit time matrix denoted by T = [tij], where
tij = dij + vj , to indicate the time required for a patroller to travel from vertex
i to vertex j and complete an inspection at vertex j . The damage inflicted due to
an undetected attack at a vertex is denoted by (c1, . . . , cn). An attack inflicts no
damage if it is detected before it is completed.

The patroller travels between vertices in the graph and conducts inspections in
order to detect attacks. A patrol policy consists of a sequence of vertices that the
patroller will visit and inspect. We seek to determine an optimal patrol policy that
minimizes the long-run cost rate incurred due to undetected attacks.

Fundamentally, the patroller is making a series of sequential decisions under
uncertainty in order to determine a patrol policy. Decisions are made at decision
epochs, which occur at a specific point in time (in this case at the end of an
inspection). At each decision epoch, the patroller observes the state of the system
as the amount of time elapsed since he last completed an inspection at each vertex.
Based on this information, he chooses an action. The choice of action is which
vertex to visit next. The action incurs a cost and causes the system to transition to a
new state at a subsequent point in time. The cost incurred is the expected cost due
to attacks that will be completed during the time it takes for the patroller to travel to
and inspect the next vertex. At the end of the inspection time at the chosen vertex,
the system will transition to a new state. At this point, the patroller reaches another
decision epoch and the process repeats.

In our problem, we wish to determine an optimal choice of action for the patroller
at each decision epoch. The essential elements of this sequential decision model are
[18]

1. A set of system states.
2. A set of available actions.
3. A set of state-dependent and action-dependent costs.
4. A set of state-dependent and action-dependent transition times and transition

probabilities.

We incorporate all of these elements into a sequential decision model in order to
determine an optimal patrol policy.

2.2 Optimal Policy

In order to find an optimal solution to our patrol problem, we must determine a
patrol policy that minimizes the long-run cost rate. To do so, we define a state space
Ω that consists of all feasible states of the system. The state of the system at any
given time can be delineated by

s = (s1, s2, . . ., sn), (1)

Optimal Patrol on a Graph Against Random and Strategic Attackers 221

where si denotes the time elapsed since the patroller last completed an inspection
at vertex i, for i ∈ N . Based on the assumption that a patroller detects all ongoing
attacks at a vertex at the end of an inspection, the state of a vertex returns to 0
immediately upon completion of an inspection. Since we consider this problem in
continuous time, the state of a vertex can assume any non-negative value. We write
the state space of the system as

Ω = {(s1, . . ., sn) : si ≥ 0,∀ i ∈ N}. (2)

At the end of each inspection, the patroller reaches a decision epoch and will
decide to stay at his current vertex to conduct an additional inspection or proceed to
another vertex. The action space can be defined as

A = {j : j ∈ N}. (3)

A deterministic, stationary patrol policy can be specified by a map π from the state
space to the action space:

π : Ω → A. (4)

This patrol policy is deterministic because, for any state of the system, a specific
action is prescribed with certainty. It is stationary, or time-homogeneous, because
the decision rules associated with a particular patrol policy do not change over time.
For any given state of the system, the future of the process is independent of its
past. The resulting state depends only on the action chosen by the patroller. If the
patroller just inspected vertex k and next wants to inspect vertex j , that action will
take time dkj + vj ; and the system that started in state s will transition to state

s̃ = (s̃1, s̃2, . . ., s̃n), s̃j = 0; s̃i = si + dkj + vj ,∀ i
= j . (5)

In order to identify the vertex where a patroller has just finished an inspection
and is currently located at a decision epoch, we define

ω(s) = arg min
i

si , (6)

since the state of the vertex where an inspection has just been completed will be 0
and the state of all other vertices will be greater than 0.

In our model, the times between decision epochs and state transitions are
deterministic. They depend on previous system states and actions only through the
current state of the system. We define

τ(s, j) = dω(s),j + vj , (7)

222 R. G. McGrath

as the time between decision epochs and the time between state transitions, if the
patroller decides to visit vertex j , when the system is in state s. At a decision epoch,
the patroller will decide his action based only on the current state of the system. For
these reasons, our model falls in the category of a semi-Markov decision process
(SMDP).

The cost function for this SMDP can be calculated based on the distribution of
time required to complete an attack Fi(·) and the cost ci incurred due to a successful
attack at vertex i. To illustrate how expected costs are incurred, suppose that the
patroller has just finished an inspection at vertex k and the current state of the system
is s, where ω(s) = k. The patroller can then elect to travel to another vertex or
remain at vertex k and conduct an additional inspection. There will be an expected
cost incurred for each vertex in the graph based on the cost of a successful attack and
the number of attacks expected to be completed at that vertex during the transition
time between state s and state s̃.

To determine the expected number of attacks that are completed at a particular
vertex in a time interval, recall from Section 2.1 that the arrival of attackers at a
vertex constitutes a Poisson process. Consider an attacker arriving to a vertex at time
y after the last inspection was completed, and suppose that the patroller completes
his next inspection at that vertex at time s. The attacker will complete his attack if the
attack time is no greater than s − y. Using Poisson sampling (see Proposition 5.3
in Ross [20]), the number of successful attacks at vertex i will follow a Poisson
distribution with expected value

λi

∫ s

0
P(Xi ≤ s − y) dy = λi

∫ s

0
P(Xi ≤ t) dt, (8)

where Xi denotes the time required to complete an attack at vertex i, for i ∈ N .
If we know the expected number of attacks that will be completed at vertex i

in a time interval, then we can determine the expected cost incurred at vertex i by
multiplying (8) by ci . Thus, the expected cost incurred at vertex i when the system
is in state s and the patroller elects to transit to vertex j is

Ci(s, j) = ciλi

(∫ si+τ(s,j)

0
P(Xi ≤ t) dt −

∫ si

0
P(Xi ≤ t) dt

)

. (9)

The cost at each vertex can be summed across all n vertices in the graph in order
to determine the total expected cost when the system starts in state s and the patroller
transits to vertex j . The overall cost function for this SMDP is

C(s, j) =
n∑

i=1

Ci(s, j). (10)

As currently defined, the state space has an infinite number of states; however,
in order to be able to compute an optimal policy, we need a finite state space. To

Optimal Patrol on a Graph Against Random and Strategic Attackers 223

do so, we assume that there is an upper limit on the attack time distribution at each
vertex. Specifically, let Bi denote the maximum time required to complete an attack
at vertex i. For the case where si = S ≥ Bi , (9) becomes

Ci(s, j) = ciλi

(∫ S+τ(s,j)

S

P (Xi ≤ t) dt

)

= ciλi(S + τ(s, j)− S) = ciλiτ (s, j), (11)

which remains a constant function over time for any state si ≥ Bi . Therefore, once
the state of a vertex has reached the bounded attack time, any additional expected
cost will accrue at a constant rate. The bounded attack times allow us to restrict the
state of a vertex so that si ≤ Bi , and the state space becomes

Ω = {(s1, . . ., sn) : 0 ≤ si ≤ Bi,∀ i ∈ N}. (12)

We consider cases where the attack times at all vertices are bounded. Thus, if the
patroller has just inspected vertex k and next wants to inspect vertex j , the resulting
state at the end of the inspection at vertex j is

s̃ = (s̃1, s̃2, . . ., s̃n), s̃j = 0; s̃i = min{si + dkj + vj , Bi},∀ i
= j . (13)

Using (13), we define a transition function to identify the resulting state if the
patroller decides to visit vertex j when the system is in state s:

φ(s, j) = s̃. (14)

The objective of the patrol problem is to determine a policy for the patroller that
minimizes the long-run cost. Recall that the action space in this SMDP is finite
because the number of vertices is finite. Therefore, by Theorem 11.3.2 in Puterman
[18], there exists a deterministic, stationary optimal policy. Thus, we only need to
consider deterministic, stationary policies in our problem. We define

ψπ(s) = φ(s, π(s)) (15)

as the resulting state if the patroller applies policy π when in state s. We can define
this function because the state transitions are deterministic. From an initial state s0,
policy π will produce an indefinite sequence of states, {ψκ

π(s0), κ = 0, 1, 2, . . . }.
This sequence must eventually visit some state for a second time since the state
space if finite; and since the state transitions are deterministic under the same policy
π , this sequence will then continue to repeat indefinitely. The sequence of vertices
that correspond to this repeating cycle of states will constitute a patrol pattern.

224 R. G. McGrath

We define Vi as the long-run expected cost rate at vertex i. If we apply the
deterministic, stationary policy π to any initial state s0, then the long-run expected
cost rate at vertex i is

Vi(π, s0) = lim
ξ→∞

∑ξ
κ=0 Ci(ψ

κ
π (s0), π(ψκ

π (s0))
∑ξ

κ=0 τ(ψκ
π (s0), π(ψκ

π (s0))
. (16)

We seek to determine the minimum long-run cost rate across all vertices, which will
give an optimal solution

COPT(s0) = min
π∈Π

n∑

i=1

Vi(π, s0), (17)

where Π is the set of all feasible deterministic, stationary patrol policies. Divid-
ing (17) by Λ will give the minimum average cost incurred for each attack.

We note that Vi(π, s0) depends on π and s0. However, in a connected graph, an
optimal cost rate COPT(s0) does not depend on s0. Since determining an optimal
patrol policy is equivalent to finding an optimal patrol pattern, we can develop a
policy π in a connected graph that will produce any feasible patrol pattern from any
starting state s0. Therefore, when we determine COPT in (17), it will be the same for
all initial states since we minimize across all feasible patrol policies π ∈ Π . Thus
we can drop the notational dependence of COPT on s0.

2.2.1 Linear Program Formulation

One method to solve this SMDP is to construct another graph that uses the state
space of the system modeled as a network. To do so, we redefine the problem on
a directed graph, G(N ,A). Each node k ∈ N will represent one state of the
system, and each arc (k, l) ∈ A will represent a feasible transition between states.
This network will be of order |N | = |Ω| and size |A | = |Ω|n. Each arc is assigned
a transit time tkl as determined by the vertex-pair specific distance and inspection
times, where tkl = τ(k, ω(l)); and cost ckl as determined by the cost function (10),
where ckl = C(k, ω(l)).

The objective is to find a directed cycle in the network with the smallest ratio of
total cost to total transit time. This is a sufficient solution to the problem because
any directed cycle in this network will constitute a valid patrol policy, regardless of
the length of the cycle. This is an example of a minimum cost-to-time ratio cycle
problem, also known as the tramp steamer problem, which is described in Sect. 5.7
of Ahuja et al. [1].

To solve this problem, we formulate the following linear program, which we refer
to as the random-attacker linear program (RALP):

Optimal Patrol on a Graph Against Random and Strategic Attackers 225

min
x

∑

(k,l)∈A
cklxkl (18a)

subject to
∑

l|(k,l)∈A
xkl −

∑

l|(l,k)∈A
xlk = 0,∀ k ∈ N (18b)

∑

(k,l)∈A
tklxkl = 1, (18c)

xkl ≥ 0,∀ (k, l) ∈ A . (18d)

The variable xkl represents the long-run rate at which the patroller uses arc (k, l).
The objective function value in (18a) represents the long-run cost rate. The total rate
at which the system enters state k must be equal to the total rate that the system exits
state k, which is ensured by the network balance of flow constraint in (18b). For a
single patroller, the rate that he uses arc (k, l) times the amount of time required
to transit from node k to node l indicates the fraction of time that he will spend on
arc (k, l). The fractions of time must sum to 1, which is ensured by the total-rate
constraint in (18c). Finally, the long-run rate at which the patroller uses arc (k, l)

cannot be negative, which is ensured by the non-negativity constraint in (18d).
The states on an optimal cycle directly correspond to vertices on the graph, which

can be determined by the function ω(s). Thus, this linear program will produce a
specific patrol pattern consisting of a repeating sequence of vertices for the patroller
to visit and inspect. This patrol pattern represents an optimal solution to the patrol
problem.

The number of decision variables in this linear program is |Ω|n. The size of the
constraint matrix is on the order of |Ω|. The value of |Ω| grows as a function of the
number of vertices in the graph, the attack time distributions, and the transit times.

2.2.2 Size of State Space

To understand the size of the state space, consider the case where the maximum
attack time at all vertices is B, the travel time between all vertices is d, and the
inspection time at all vertices is v. Define Z as

Z =
⌈

B

d + v

⌉

. (19)

The number of states in the system for a graph with n vertices and Z ≥ n is given
by

|Ω| =
n−1∑

i=0

(
n

1

)(
n− 1

i

)(
Z − 1

n− 1− i

)

(n− 1− i)!, (20)

226 R. G. McGrath

Table 1 Examples of state
space size

n B d v Z |Ω|
5 9.8 1.0 0.2 9 16,965

7 11.5 1.2 0.3 8 >260,000

8 15.5 0.9 0.6 11 >20,000,000

12 18.3 0.8 0.8 12 >40,000,000,000

since for each state of the system there will be exactly one vertex in state 0, as
indicated by the first term; i of the remaining n − 1 vertices at the bounded attack
time state B, as indicated by the second term; and each of the remaining n − 1 − i

vertices in a distinctive state between d + v and (d + v)(Z− 1), as indicated by the
third and fourth terms. Some examples of state space size are shown in Table 1. The
number of states grows exponentially with the number of vertices, and grows even
larger when combined with higher bounded attack times and shorter transit times.

Although we can compute an optimal patrol policy using linear programming,
this method quickly becomes computationally intractable as the number of vertices
increases and the ratio of the bound of the attack times to transit times increases.
Hence, there is a need to develop efficient heuristics.

2.3 Heuristic Policies

In this section, we consider solutions based on index heuristic methods. To begin,
consider a special case of our problem when vi = 1 and di,j = 0, for i, j ∈ N .
This special case coincides with the model presented in Lin et al. [15]. By adding a
Lagrange multiplier w > 0, they show the optimization problem can be broken into
n separate problems, each concerning a single vertex. The Lagrange multiplier w

can be interpreted as a service charge incurred for each patrol visit to a vertex. The
objective is to decide how frequently to summon a patroller at each vertex in order
to minimize the long-run cost rate due to undetected attacks and service charges. For
a given state of the system, the solution to this problem can be used to determine an
index value for each vertex in the graph. We can develop a heuristic policy where,
based only on the current state of the system, the patroller can choose to travel to and
inspect the vertex that has the highest index value. We next explain how to extend
this method to our patrol model.

2.3.1 Single Vertex Problem

We consider the problem at a single vertex where each visit from the patroller incurs
a service charge w > 0. For a given value of w, our objective is to determine a policy
that minimizes the total long-run cost rate due to undetected attacks and service
charges. Generally speaking, a policy is a mapping from a state to an action. For the

Optimal Patrol on a Graph Against Random and Strategic Attackers 227

single vertex problem, the state of the system s ≥ 0 is the amount of time since the
patroller last completed an inspection at the vertex. The action space for the patroller
simplifies to a binary decision: Inspect the vertex at time s or continue to wait.

Although the state space is infinite, the action space is finite for every s ∈
Ω . Therefore, we only need to consider deterministic, stationary policies [18].
In addition, since each inspection brings the state of the vertex back to 0, any
deterministic, stationary policy reduces to the following format: Inspect the vertex
once every s time units.

Recall from (8) that the number of successful attacks in the time interval [0, s)

between patroller inspections follows a Poisson distribution with expected value

λ

∫ s

0
P(X ≤ t) dt . (21)

Since each successful attack costs c, and a patrol visit costs w, the average long-run
cost given a policy that inspects the vertex every s time units is

f (s) = cλ
∫ s

0 P(X ≤ t) dt +w

s
, s > 0. (22)

For a given value of w, we find s in order to minimize f (s). To minimize f (s),
we take the first derivative of f (s), which gives

f ′(s) = cλ

s
P (X ≤ s)− cλ

s2

∫ s

0
P(X ≤ t) dt −w

s2 , (23)

and set f ′(s) = 0 to obtain

0 = cλsP (X ≤ s)− cλ

∫ s

0
P(X ≤ t) dt −w. (24)

We solve this equation for w as a new function of s:

W(s) = cλ

(

sP (X ≤ s)−
∫ s

0
P(X ≤ t) dt

)

, (25)

where W(s) indicates the corresponding service charge such that it is optimal for
the vertex to summon patrol visits once every s time units.

Since attack times at each vertex are bounded by a constant B, for cases where
s ≥ B we note that

W(s) = cλ

(

s −
∫ s

0
P(X ≤ t) dt

)

= cλ

∫ s

0
P(X > t) dt

= cλ

∫ B

0
P(X > t) dt = cλE[X], (26)

which remains the same for all s ≥ B.

228 R. G. McGrath

2.3.2 Index Heuristic Time Method

Since W(s) represents the per-visit cost for an optimal policy that visits a vertex in
state s, we can define an index value for vertex i based on (25) as

Wi(s) = ciλi

(

sP (Xi ≤ s)−
∫ s

0
P(Xi ≤ t) dt

)

, (27)

if the last inspection at vertex i was completed s time units ago.
A straightforward heuristic method for the patroller at a decision epoch is to

compute the index values based on the current state of each vertex and choose
to visit the vertex that has the highest index value. This method will produce
a feasible patrol pattern; however, it does not account for different travel times
between vertices. To solve this problem, we develop methods for the patroller to
look further ahead and compute aggregate index values before choosing which
vertex to visit next. When computing an aggregate index in our continuous-time
model, we consider the amount of time that different actions will take. To do so, we
select a fixed look-ahead time window δ and consider all feasible paths and partial
paths beginning from the patroller’s current vertex ω(s) that can be completed
during time δ. We call this the index heuristic time (IHT) method. A value for δ

is selected based on the structure of the graph and is discussed at the end of this
section.

To illustrate the IHT method, we select a look-ahead window δ and examine an
arbitrary patrol sequence over the next δ time units. For the time window [0, δ], let
Si(t), t ∈ [0, δ] denote the state of vertex i at time t . By definition, Si(0) = si and
Si(t) increases over time at slope 1 until the patroller next completes an inspection
at vertex i, when its value returns to 0. The aggregate index values accumulated at
vertex i over the time window [0, δ] can be written as

∫ δ

0
Wi(Si(t)) dt,∀ i ∈ N. (28)

For a given patrol sequence, the total index value for all n vertices over the time
window [0, δ] is

n∑

i=1

∫ δ

0
Wi(Si(t)) dt . (29)

To determine a patrol pattern using the IHT method, we select a starting state
of the system s0 and enumerate all possible paths over the next δ time units. We
compute the total aggregate index value for each of these paths using (29), and
choose the path with the highest aggregate index value per unit time. The first vertex
along that path becomes the vertex that the patroller inspects next. We repeat this
process using the new state of the system as the starting state, and continue to repeat

Optimal Patrol on a Graph Against Random and Strategic Attackers 229

the process to form a path of vertices. Recall that since the state space is finite, this
sequence must eventually visit some state for a second time. The process terminates
when a state repeats and a cycle has been found. The vertices corresponding to the
states of the system on this cycle is the patrol pattern that results from using the IHT
method.

In order to select a value for δ in the IHT method, we determine the average
transit time r between all vertices in the graph as

r =
∑n

i=1
∑n

j=1(dij + vj)

n2 . (30)

We then choose a look-ahead time window in terms of multiples of r . For example,
if we choose δ = 3r as a look-ahead window, then we are choosing an amount of
time that on average will allow the patroller to visit any sequence of three vertices
from his current vertex. We can choose a multiple of r more generally, such as n/2,
which will on average allow the patroller to look ahead over about half the vertices
in the graph from his current location. We make recommendations on how to select
specific values for δ based on our numerical experiments. These recommendations
are presented in Section 2.4.3.

Although we can choose any state from which to start the IHT method, for
consistency in our numerical experiments we identify the vertex that has the
maximum value of W(s) when s ≥ B, as defined in (26). We choose as s0 the
state of the system where this vertex has just completed an inspection and the state
of all other vertices is at the bounded attack time. In other words, we determine

k = arg max
i∈N {ciλiE[Xi]}, (31)

and select as s0 the state where sk = 0 and sj = Bj , for j ∈ N, j
= k.

2.3.3 Index Heuristic Epoch Method

Instead of looking ahead for a fixed time period, as in the IHT method, we consider
another heuristic which looks ahead for a fixed number of decision epochs. We
call this the index heuristic epoch (IHE) method. To compute an aggregate index
using the IHE method, we select a number of decision epochs η for the patroller
to look ahead. The number η can be any positive integer value. For example, if we
choose η = 3 as a look-ahead window, the patroller considers all paths of three
vertices from his current vertex, since a decision epoch in our model occurs at the
end of each inspection. As with the IHE method, we choose the path with the highest
aggregate index value per unit time, and the first vertex along that path is the vertex
that the patroller inspects next. We can also choose the look-ahead window more
generally, such as η = ⌈

n
2

⌉
, which allows the patroller to look ahead over at least

half the vertices in the graph.

230 R. G. McGrath

We choose a starting state s0 for the IHE method using the same criteria as we did
for the IHT method. We enumerate all feasible paths from s0 that consist of exactly η

decision epochs and then proceed in the same manner as the IHT method described
in Section 2.3.2 to determine a path of vertices based on the highest aggregate index
value per unit time, until a patrol pattern has been obtained.

2.4 Numerical Experiments

To test the IHT and IHE methods, we conduct several numerical experiments.
We compare the results obtained from these heuristic methods with an optimal
solution. We also report the computation time required. Based on these results,
we make conclusions on the efficacy of the heuristic methods, as well as make
recommendations for the selection of look-ahead parameters to be used in both the
IHT and IHE methods.

As inputs for the problem, we use a probability vector (p1, . . . , pn) indicating
the likelihood of an attacker to choose to attack a specific vertex; an attack time
distribution parameter matrix; a vector (c1, . . . , cn) of the cost incurred due to a
successful attack at each vertex; a distance matrix D of the time it takes for a
patroller to travel between each pair of vertices; a vector (v1, . . . , vn) of the time
required for a patroller to conduct an inspection at each vertex; and an overall
attacker arrival rate Λ. Recall from Section 2.1 that an optimal solution does not
depend on the value of Λ; therefore, without loss of generality, we set the overall
attacker arrival rate to be Λ = 1 in our numerical experiments. We also set the cost
incurred from a successful attack to ci = 1, for i ∈ N , which allows the results to
be interpreted as the long-run proportion of attackers that will evade detection.

We consider three general cases of patrol problems. In the first case, which we
use as a baseline, the patroller spends about half of the time traveling and half
of the time inspecting vertices. For this case, we choose average travel times that
are comparable to average inspection times. In the second case, we choose average
inspection times that are twice as long as average travel times. In other words, each
vertex takes more time to inspect, but the vertices are closer together. In the third
case, we choose average travel times that are twice as long as average inspection
times. In other words, each vertex takes less time to inspect, but the vertices are
farther apart.

All computations are done on a 64-bit Windows 7 desktop computer (Intel Core
i7 860@2.8 GHz; 8.0 GB RAM). All linear programs that determine an optimal
solution or a lower bound are implemented using GAMS 23.8.2.

2.4.1 Generation of Problem Instances

We conduct our numerical experiments on a graph with n = 5 vertices, which is
a problem size that allows for the computation of an optimal solution. We choose

Optimal Patrol on a Graph Against Random and Strategic Attackers 231

parameters in order to generate and test cases where an optimal detection probability
is in the neighborhood of 0.5. This is the case where the development of a good
patrol policy can be most helpful.

To generate a random graph of n patrol locations for our experiments, let (Xi, Yi)

denote the Cartesian coordinate of vertex i, for i ∈ N , and draw Xi and Yi from
independent uniform distributions over [0, 1]. Letting dij denote the travel distance
between vertices i and j , we compute

di,j =
√

(Xi −Xj)2 + (Yi − Yj)2, ∀ i, j ∈ N. (32)

The expected value of di,j is E[dij] = 0.5215 and the variance of di,j is Var(dij) =
0.0615.

Based on this average distance and variance, we generate an inspection time
at each vertex by drawing from a uniform distribution over [0.3857, 0.6573].
This distribution gives an expected inspection time of E[vi] = 0.5215, which
is comparable to the average travel time between vertices. The variance of the
inspection times is 0.00615, which is approximately 1/10 of the variance of the
vertex distance values. We choose these parameters in order to prevent very small
inspection times at vertices, which could lead to excessively large state spaces and
prevent the computation of an optimal solution.

For the attack time at each vertex, we use a triangular distribution. A triangular
distribution requires three parameters: lower limit (minimum) a, upper limit
(maximum) b, and mode c, where a < b and a ≤ c ≤ b. We generate values
for (a, b, c) independently from a uniform distribution over [1.043, 4.172]. This
distribution gives a minimum attack time that is comparable to the average travel
time between any two vertices plus the inspection time at the second vertex, which
in this case is 0.5215 × 2 = 1.043. The expected value of this distribution is
comparable to the time required for a patroller to travel and complete inspections
over approximately half of the vertices in the graph, which for the case of n = 5
is 1.043 × 5/2 = 2.6075. From this minimum and expected value, we determine a
maximum attack time for use in our experiments as 2 × 2.6075 − 1.043 = 4.172.
More generally, we can generate attack time distribution parameters from a uniform
distribution on [1.043, 1.043(n − 1)] for problems with any number of vertices
n > 2.

For the likelihood of an attacker to choose a vertex to attack, we create a
probability vector (p1, . . . , pn). We spread 0.5 of the total attack probability equally
across all n vertices and then randomly assign the remaining 0.5 probability. This
ensures that the minimum probability of attack at any vertex is 0.5/n, which
will encourage a patrol policy that visits many or all of the vertices rather than
completely excluding one or several vertices simply due to a low probability of
attack. To create this vector, we generate n uniform random variables ui on U[0, 1]
and then normalize them so that pi = (0.5/n)+(0.5ui/

∑n
j=1 uj), for i ∈ N . In our

experiments with n = 5, this ensures that each vertex has at least a 0.1 probability
of selection for attack and no more than a 0.6 probability.

232 R. G. McGrath

2.4.2 Baseline Problems

For our baseline problem, we consider the case where a patroller spends about half
of the time traveling and half of the time inspecting vertices. We randomly generate
1000 problem scenarios and determine an optimal solution using the RALP from
Section 2.2 and a solution using the heuristic methods from Section 2.3. The RALP
on average uses 5920 decision variables and 7105 constraints for a problem size with
1184 states. An optimal solution takes on average 20.68 s to compute. We compare
the solution obtained from the heuristic method to an optimal solution. For the look-
ahead depth parameter δ used in the IHT method, we chose an initial value of δ =
(n/2)r , with r defined in (30) as the average transit time between vertex pairs in
each problem instance. For n = 5, this starting value is δ = 2.5r . We also test
additional parameter values by increasing and decreasing the look-ahead depth in
0.5r increments.

As the IHT method looks further ahead, the computation time increases due to
the higher number of paths that must be considered. Performance does not always
improve when using deeper looks, and in many cases it may be worse. Two different
look-ahead parameter values, 2.5r and 3r in the IHT method, for example, may
return the same patrol pattern or two distinct patrol patterns with different long-run
cost rates. If the same problem is solved using multiple look-ahead parameters, we
select the best solution that is obtained.

We consider single look-ahead parameter values and also consider sets of
multiple look-ahead values in our numerical experiments. For the sets of multiple
look-ahead values, we run the selected heuristic method for each individual value
and then choose the patrol policy that yields the minimum cost, regardless of which
specific look-ahead parameter produced that policy. This method tends to improve
overall performance, but with a proportional increase in computation time based on
the number and size of the look-ahead parameter values.

Results for the IHT method are shown in Table 2. When using a single look-ahead
depth parameter, the best performance, as determined by the smallest excess over
optimum for the mean and 90th percentile of problem instances, is obtained with a
look-ahead time value of δ = 2.5r . For the hybrid method of using up to three look-
ahead parameters and then choosing the best patrol pattern, the best performance
using similar criteria is obtained with a look-ahead depth set of {2r, 2.5r, 3r}.

We repeat the same experiments using the IHE method. For the look-ahead depth
parameter η used in the IHE method, we chose an initial value of η = &n2 '. For
n = 5 this starting value is η = 3. This indicates that, at each decision epoch, the
patroller will consider all possible paths consisting of three decision epochs. We test
additional IHE depth parameter values by increasing and decreasing the look-ahead
depth in η = 1 increments.

The IHE method is like the IHT method in that, as it looks further ahead,
computation time increases due to the higher number of paths that must be
considered. Similarly, the performance does not always improve when using deeper
looks. For this reason, we test the IHE method using single look-ahead parameters
and also using the hybrid method of comparing the results from multiple look-ahead
parameters and selecting the best solution. Results are shown in Table 3. When

Optimal Patrol on a Graph Against Random and Strategic Attackers 233

Table 2 Performance of the IHT method on a complete graph with n = 5 vertices for 1000
randomly generated problem scenarios with average inspection times comparable to average travel
times, using the best solution that was obtained in each problem scenario for the indicated look-
ahead depth parameter sets

Percent over optimum

IHT look-ahead depth (δ) Mean 50th 75th 90th Time (s)

2r 3.31 0.38 4.13 8.65 2.19

2.5r 1.22 0.00 1.60 3.60 2.47

3r 1.36 0.00 1.34 5.51 3.64

3.5r 1.88 0.00 2.03 6.52 6.75

4r 3.26 1.24 5.61 7.96 18.22

{2r, 3r} 0.55 0.00 0.23 1.56 5.83

{2.5r, 3r} 0.62 0.00 0.49 2.15 6.11

{2r, 2.5r, 3r} 0.49 0.00 0.20 1.38 8.30

{2.5r, 3r, 3.5r} 0.49 0.00 0.23 1.39 12.86

{3r, 4r} 1.11 0.00 1.07 4.26 21.86

{2r, 3r, 4r} 0.54 0.00 0.23 1.56 24.05

Mean, 50th, 75th, and 90th percentile performance is indicated as the percentage excess over an
optimal solution

Table 3 Performance of the IHE method on a complete graph with n = 5 vertices for 1000
randomly generated problem scenarios with average inspection times comparable to average travel
times, using the best solution that was obtained in each problem scenario for the indicated look-
ahead depth parameter sets

Percent over optimum

IHE look-ahead depth (η) Mean 50th 75th 90th Time (s)

2 12.72 11.25 18.48 23.33 3.22

3 3.09 0.67 5.33 7.60 2.76

4 1.62 0.24 2.41 5.61 3.78

5 2.81 1.14 3.90 7.98 11.25

{2, 3} 2.87 0.28 4.32 7.36 5.98

{3, 4} 1.04 0.00 0.95 4.32 6.54

{2, 3, 4} 0.97 0.00 0.92 3.85 9.76

{4, 5} 1.30 0.00 1.49 4.36 15.03

{3, 4, 5} 0.89 0.00 0.63 3.68 17.79

{2, 3, 4, 5} 0.89 0.00 0.63 3.68 21.01

Mean, 50th, 75th, and 90th percentile performance is indicated as the percentage excess over an
optimal solution

using a single look-ahead depth parameter, the best performance, as determined
by the smallest excess over optimum for the mean and 90th percentile of problem
instances, is obtained with a decision epoch look-ahead value of η = 4. For the
hybrid method of running the IHE method with several look-ahead parameters and
then choosing the best patrol pattern, the best performance, as determined by a
comparison of the excess over optimum and computation time required, is obtained
using look-ahead depth sets of {2, 3, 4} and {3, 4, 5}.

234 R. G. McGrath

Fig. 1 IHT and IHE 90th percentile performance with average travel times comparable to average
inspection times

Performance of the IHT and IHE methods in the baseline case with a single
look-ahead parameter is presented in Figure 1. This figure shows a comparison of
performance versus computation time required for different heuristic methods and
look-ahead parameters. Although both methods perform well in the experiments,
we tend to see better performance using the IHT method in the single look-ahead
parameter cases.

In an effort to obtain the best possible results, we also use a hybrid set of look-
ahead depth parameters that combine both the IHT and IHE methods. We selected
various combinations of parameters based on the results from the individual IHT and
IHE experiments. Results are shown in Table 4. Very good performance is obtained
with a hybrid IHT look-ahead set of {2r, 2.5r, 3r} and the performance improves
when incrementally adding IHE look-ahead parameters.

Performance of the combined IHT and IHE methods in the baseline case for
different look-ahead depth parameters is presented in Figure 2. This figure shows a
comparison of performance versus computation time required for different hybrid
combinations of heuristic methods and look-ahead parameters. Both methods again
perform well in the experiments, but we tend to see better performance using the
IHT method in the hybrid set look-ahead cases, similar to the results from the single
look-ahead parameter cases.

Optimal Patrol on a Graph Against Random and Strategic Attackers 235

Table 4 Performance of combined IHT and IHE methods on a complete graph with n = 5 vertices
for 1000 randomly generated problem scenarios with average inspection times comparable to
average travel times, using the best solution that was obtained in each problem scenario for the
indicated look-ahead depth parameter sets

IHT(δ) and IHE(η) Percent over optimum

look-ahead depth set Mean 50th 75th 90th Time (s)

{IHT(2.5r), IHE(3)} 0.88 0.00 0.95 3.45 5.18

{IHT(2.5r), IHE(4)} 0.61 0.00 0.49 2.12 6.19

{IHT(2r, 2.5r, 3r)} 0.49 0.00 0.20 1.38 8.30

{IHE(2, 3, 4)} 0.97 0.00 0.92 3.85 9.67

{IHT(2.5r, 3r), IHE(3, 4)} 0.42 0.00 0.15 1.30 12.65

{IHT(2r, 2.5r, 3r), IHE(2, 3, 4)} 0.30 0.00 0.00 0.92 17.89

Mean, 50th, 75th, and 90th percentile performance is indicated as the percentage excess over an
optimal solution

Fig. 2 IHT and IHE hybrid 90th percentile performance with average travel times comparable to
average inspection times

2.4.3 Recommendations Based on Numerical Experiments

We see very favorable results using the IHT and IHE methods with many combina-
tions of look-ahead parameters. In general, we have found that looking ahead over
about half of the graph structure provides a good balance of performance versus
computation time required. We recommend choosing look-ahead depth parameter
values as a function of n, which represents the number of vertices that are assigned
to a patroller.

236 R. G. McGrath

Table 5 Prioritized heuristic
methods and look-ahead
depth parameters

Heuristic method and look-ahead depth parameter

1 IHT
(

n
2 r

)

2 IHT
(

(n+1)
2 r

)

3 IHT
(

(n−1)
2 r

)

4 IHE
(& n2 '

)

5 IHE
(& n2 ' + 1

)

6 IHE
(& n2 ' − 1

)

Table 6 Performance of the
IHT and IHE methods on a
complete graph with n = 5
vertices for 1000 randomly
generated problem scenarios
with average inspection times
comparable to average travel
times, using the best solution
that was obtained in each
problem scenario for the
indicated look-ahead depth
parameter sets

Percent over optimum

Heuristic set Mean 50th 75th 90th Time (s)

1 1.22 0.00 1.60 3.60 2.47

2 0.62 0.00 0.49 2.15 6.11

3 0.49 0.00 0.20 1.38 8.30

4 0.37 0.00 0.01 1.29 10.96

5 0.30 0.00 0.00 0.92 14.67

6 0.30 0.00 0.00 0.92 17.89

Mean, 50th, 75th, and 90th percentile performance is
indicated as the percentage excess over an optimal solu-
tion when using prioritized hybrid look-ahead depth sets
as indicated. Mean time to compute an optimal solution
is 20.68 s

Based on the experimental results, we recommend starting with the IHT method
and using a look-ahead depth parameter value of δ = (n/2)× r , where r represents
the average transit time in the graph. We then recommend adding additional looks
using the hybrid method and selecting the best solution that is obtained. The total
number of look-ahead depth parameters to use depends on the desired accuracy
of a solution and computation time to be expended. Specifically, we recommend
six prioritized look-ahead parameter values, each with a corresponding heuristic
method, as presented in Table 5.

In a problem with n = 5, for example, after executing the heuristic method using
IHT(2.5r) we would next use IHT(3r) and then continue in a similar manner until
completing the desired number of looks. The IHE method is introduced at the fourth
iteration of the heuristic method in order to complement the results obtained from
using the IHT method.

We test the prioritized look-ahead depth parameter set method using the baseline
problem case. Results are presented in Table 6. The results indicate a steady
improvement in performance, along with a corresponding increase in computation
time required, as the number of looks increases. We observe that the heuristic
method will return an optimal solution in at least half of the problem instances when

Optimal Patrol on a Graph Against Random and Strategic Attackers 237

Fig. 3 Combined IHT and IHE 90th percentile hybrid performance with average travel times
comparable to average inspection times, using prioritized heuristic methods and look-ahead depth
parameter sets

using a single look-ahead parameter IHT(2.5r). The heuristic method will return a
solution that is within 0.01 percent of optimal in at least 75 percent of the problem
instances when using the fourth look-ahead set {IHT(2r, 2.5r, 3r), IHE(3)}. Finally,
we observe that the heuristic method will return a solution that is within 1 percent
of optimal in at least 90 percent of the problem instances when using the fifth look-
ahead set, {IHT(2r, 2.5r, 3r), IHE(3,4)}.

These results are also presented in Figure 3 to show the rate of improvement
of the prioritized hybrid look-ahead depth sets as computation time increases. We
observe the best rate of improvement in performance as a function of computation
time required through the third look-ahead depth set {IHT(2r, 2.5r, 3r)}. We test
these recommendations further using several additional problem cases.

2.4.4 Sensitivity Analysis

In addition to the baseline problems, we consider the case where a patroller needs
to spend more time conducting inspections than he does traveling between vertices
and the case where the patroller needs to spend more time traveling between vertices
than he does conducting inspections. The problem cases considered in the numerical
experiments are summarized in Table 7.

238 R. G. McGrath

Table 7 Summary of numerical experiments for random attackers

Parameter Case I Case II Case III Case IV Case V

Travel time 1× 1× 1× 2× 2×
Inspection time 1× 2× 2× 1× 1×
Attack time 1× 1.5× 1× 1.5× 1×
Mean travel time 0.5125 0.5125 0.5125 1.0430 1.0430

Mean inspection time 0.5125 1.0430 1.0430 0.5125 0.5125

Mean transit time 1.0430 1.5645 1.5645 1.5645 1.5645

Mean bounded attack time 3.2537 4.8805 3.2537 4.8805 3.2537

Mean number of states, |Ω| 1184 633 102 3938 318

Mean number of decision variables 5920 3165 510 19,690 1590

Mean number of constraints 7105 3799 613 23,674 1909

Mean optimal long-run cost 0.3921 0.4200 0.5679 0.4617 0.5198

Mean optimal computation time (s) 20.68 4.99 0.11 574.85 2.11

For the case where the average inspection times are longer than average travel
times, we double the inspection times in the problem scenarios and run the
experiment using both the linear programming and heuristic methods. We conduct
these experiments with the original attack time distributions and also adjust the
attack distributions as a separate case to maintain an overall probability of detection
rate of approximately 0.5. We do this by increasing the attack time distribution
parameters at each vertex by a factor of 1.5. The rest of the problem scenario
parameters remain the same.

For the case where the average travel times are longer than average inspection
times, we double the travel times in the problem scenarios and the run the
experiment using both the linear programming and heuristic methods. We use the
same original and adjusted attack distributions at each vertex that were used in the
cases of increased inspection times as described above. The rest of the problem
scenario parameters remain the same. Case I, the baseline case, had the lowest long-
run cost on average. Case III generated the smallest number of states and had the
highest long-run cost on average. Case IV generated the largest number of states on
average.

Results for problem cases II through V using the prioritized look-ahead param-
eter sets from Section 2.4.3 are presented in Table 8. In each of these problem
cases, very favorable results were obtained using the recommended method of
incrementally increasing the heuristic method and look-ahead parameter sets.
We note that the heuristic performed slightly better in problem cases involving
shorter travel times. The average computation time required in each case increases
significantly as the average size of the state space grows. We particularly note
this for problem Case IV, which had an average state space approximately three
times larger than the baseline case, but required computation times that were
approximately 25 times greater.

Optimal Patrol on a Graph Against Random and Strategic Attackers 239

Table 8 Performance of IHT and IHE methods for problem cases as indicated in Table 7, using
prioritized look-ahead depth parameter sets

Optimal solution
time (s)

Heuristic
set

Percent over optimum Heuristic
solution time (s)Case Mean 50th 75th 90th

I 20.68 See Table 6

II 4.99 1 0.69 0.00 0.81 2.25 0.84

2 0.35 0.00 0.13 1.47 1.95

3 0.29 0.00 0.00 1.10 2.66

4 0.26 0.00 0.00 0.84 3.45

5 0.15 0.00 0.00 0.52 4.91

6 0.14 0.00 0.00 0.36 5.68

III 0.11 1 0.99 0.00 0.94 2.99 0.09

2 0.70 0.00 0.64 2.38 0.75

3 0.41 0.00 0.01 1.31 0.81

4 0.41 0.00 0.01 1.31 0.87

5 0.35 0.00 0.00 1.12 1.08

6 0.18 0.00 0.00 0.35 1.12

IV 574.85 1 2.03 0.01 2.48 6.90 51.12

2 0.61 0.00 0.50 2.09 164.94

3 0.41 0.00 0.01 1.21 203.11

4 0.41 0.00 0.01 1.21 267.43

5 0.39 0.00 0.00 0.82 320.75

6 0.39 0.00 0.00 0.82 403.52

V 2.11 1 2.44 0.00 2.02 7.15 0.49

2 1.06 0.00 0.67 3.97 1.96

3 0.53 0.00 0.02 1.12 2.21

4 0.44 0.00 0.00 0.96 2.43

5 0.41 0.00 0.00 0.86 2.97

6 0.41 0.00 0.00 0.86 3.18

Performance is indicated as the percentage excess over an optimal solution

In general, the heuristic returns a solution within 0.01 percent of optimal in at
least half of the problem instances using a single look-ahead parameter, IHT(2.5r).
The heuristic returns a solution within 0.01 percent of optimal in at least 75
percent of the problem instances using the third look-ahead set, {IHT(2r, 2.5r, 3r)}.
Finally, we observe that the heuristic returns a solution within 1 percent of optimal
in at least 90 percent of the problem instances using the sixth look-ahead set,
{IHT(2r, 2.5r, 3r), IHE(2, 3, 4)}. We also note in certain problem cases that this
method may require more computation time than what is required to determine an
optimal solution using the RALP.

240 R. G. McGrath

3 Single Patroller Against Strategic Attackers

We consider the case of a single patroller against strategic attackers. Section 3.1
introduces a patrol model on a graph, where an attacker will actively choose a
location to attack in order to incur the highest cost. In Section 3.2, we present a
linear program that determines an optimal solution to the patrol problem. Since
the linear program quickly becomes computationally intractable as the size of the
problem grows, we also present heuristic methods for determining a solution in
Section 3.3. In Section 3.4, we present a method to compute a lower bound for
an optimal solution, which allows us to evaluate the heuristic methods when an
optimal solution is unavailable. We conduct extensive numerical experiments for
several scenarios and present the results in Section 3.5. We make recommendations
on how to best utilize the heuristic methods based on the experimental results.

3.1 Patrol Model

We consider a patrol model similar to the random-attacker model presented in
Section 2.1, except that in this case, an attacker will actively choose which vertex to
attack in order to incur the highest expected cost. In other words, the attacker and the
patroller play a simultaneous-move two-person zero-sum game where the attacker
is trying to maximize the cost incurred due to a successful attack and the patroller
is trying to minimize it. The patroller chooses how to patrol the graph while the
attacker chooses which vertex to attack. Except for trivial cases, an optimal strategy
for either player in a two-person zero-sum game is often a mixed strategy, which is
a probability distribution on the set of a player’s pure strategies [17].

To formulate this problem, we modify the model that was used for the random-
attacker case in Section 2. Recall from (16) that for a given patrol policy π , Vi(π)

is the long-run cost rate at vertex i. While the attacker is trying to maximize the
expected cost incurred by choice of vertex to attack, the patroller is simultaneously
trying to minimize it by choice of patrol policy. The patroller’s objective function in
this two-person zero-sum game against a strategic attacker is

min
π∈ΠR

max
i∈N

Vi(π)

λi

, (33)

where ΠR is the set of randomized patrol policies.

Optimal Patrol on a Graph Against Random and Strategic Attackers 241

3.2 Optimal Policy

It is possible to determine an optimal solution to this problem by formulating
and solving a linear program. Recall the linear program from Section 2.2.1 that
was used to find an optimal solution for the case of random attackers, where the
objective function represented the overall long-run cost rate. In the case of strategic
attackers, the objective is to minimize the largest expected cost per attack across
each individual vertex, rather than the overall long-run cost rate for the entire graph.

To solve this problem, we again use the directed graph of the state space
G(N ,A), where each node k ∈ N represents one state of the system and each
arc (k, l) ∈ A represents a feasible transition between states. Each arc is assigned
a transit time tkl as determined by the vertex-pair specific distance and inspection
times, where tkl = τ(k, ω(l)). Each arc is also assigned cost data that represents the
expected cost incurred at each vertex when the system transitions from state k to
state l. We write c

(i)
kl as the expected cost incurred at vertex i for the state pair (k, l),

as determined by (9), for i ∈ N .
If xkl represents the long-run fraction of time that arc (k, l) is utilized during the

patrol pattern, the long-run cost rate at vertex i is

∑

(k,l)∈A
c
(i)
kl xkl . (34)

Dividing this total by the arrival rate of attackers at vertex i, we can define the zero-
sum game between the patroller and strategic attacker as

min
x

max
i∈N

∑

(k,l)∈A

c
(i)
kl xkl

λi

. (35)

Note that c
(i)
kl xkl scales proportionately with λi , so the long-run average cost at

vertex i does not depend on the value of λi . Hence, we let λi = 1, for all i ∈ N .
To determine an optimal solution for the strategic-attacker problem, we modify

the linear program in Section 2.2.1 to minimize the largest long-run average cost per
attack among all vertices, which we refer to as the strategic-attacker linear program
(SALP):

min
x

zOPT (36a)

subject to
∑

(k,l)∈A
c
(i)
kl xkl ≤ zOPT,∀ i ∈ N (36b)

∑

l|(k,l)∈A
xkl −

∑

l|(l,k)∈A
xlk = 0,∀ k ∈ N (36c)

242 R. G. McGrath

∑

(k,l)∈A
tklxkl = 1, (36d)

xkl ≥ 0,∀ (k, l) ∈ A . (36e)

In an optimal solution, the positive values of xkl indicate the arcs that belong to the
cycle with the lowest total cost per unit time. The states on these cycles directly
correspond to vertices on the graph, which can be determined by the function ω(s).
Therefore, an optimal mixed strategy patrol policy can be determined. For each
state of the system, the patrol policy specifies the probability that the patroller will
choose to move to each vertex. We map the solution from the linear program to a
patrol policy using

pkl = xkl∑
l|(k,l)∈A xkl

, for
∑

l|(k,l)∈A
xkl > 0, (37)

where pkl is the probability that the patroller will choose to next go to vertex ω(l)

when the system is in state k.
As the problem size grows, it quickly becomes computationally intractable to use

this method. Therefore, there is a need for efficient heuristic policies.

3.3 Heuristic Policies

In this section, we consider heuristics to determine a strategy for the patroller. This
method introduces a different kind of randomized strategy, by letting the patroller
choose a patrol pattern from a predetermined set and repeat the patrol pattern
indefinitely.

For the patrol problems we consider, there are an infinite number of feasible
patrol patterns. As it would be impossible to consider an infinite number of patrol
patterns, we propose a heuristic method to define a finite set of patrol patterns from
which the patroller can select a mixed strategy. If it were possible to consider every
feasible patrol pattern, then this method would find an optimal solution. Similarly,
if we consider a finite subset of all the feasible patrol patterns, such that all patrol
patterns that are part of an optimal solution are elements of that subset, then this
method would also find an optimal solution.

We develop strategy reduction techniques that allow us to consider a comprehen-
sive, but reasonable, number of patrol patterns for use in this heuristic method. To do
so, we create a finite set S of feasible patrol patterns, ideally with elements that are
identical or very similar to the patrol patterns that are part of an optimal solution. In
the best case, S would contain all patrol patterns that are part of an optimal solution.

Once we determine a finite set of patrol patterns, S = {ξ1, ξ2, . . . , ξm}, we
formulate a different two-person zero-sum game between the attacker and the
patroller in a standard matrix form. In this game matrix, row i corresponds to

Optimal Patrol on a Graph Against Random and Strategic Attackers 243

the attacker choosing to attack vertex i and column j corresponds to the patroller
choosing patrol pattern ξj , for i ∈ N and j = 1, . . . , m. A linear program can then
be formulated to solve this two-person zero-sum matrix game [22]. The solution to
this game will provide a mixed strategy for both the attacker and the patroller, and
the value of the game will be the expected cost due to an undetected attack.

3.3.1 Patrol Cost Determination

For any feasible patrol pattern, we can determine the expected cost incurred at each
vertex due to an undetected, and therefore successful, attack. We denote the expected
cost at vertex j by ρj . These expected costs are used to populate the game matrix
used in the heuristic method. There are three cases to consider when computing the
expected cost at a vertex, which are based on the structure of the patrol pattern.

Case one occurs if the patrol pattern never visits vertex j . In this case, the
expected cost for an attack on vertex j is cj , due to the fact that if the attacker
chooses to attack vertex j then the attack will always succeed. Thus,

ρj = cj . (38)

Case two occurs if the patroller visits vertex j exactly once during a patrol pattern
of total time length τ . Recall from Section 2.2 that we can compute the expected
number of successful attacks at vertex j when vertex j is inspected once every τ

time units as

λj

∫ τ

0
Fj (τ − t) dt = λj

∫ τ

0
Fj (s) ds . (39)

Divide this by the expected number of attackers that will arrive at vertex j during
time interval τ , which is λj τ , to determine the probability of a successful attack:

λj

∫ τ

0 Fj (s) ds

λj τ
=

∫ τ

0 Fj (s) ds

τ
. (40)

The expected cost at vertex j will therefore be the cost of a successful attack cj

times the probability of a successful attack:

ρj = cj

∫ τ

0 Fj (s) ds

τ
. (41)

Case three occurs if the patroller visits vertex j two or more times during the
patrol pattern. In this case, we break the patrol pattern into intervals based on each
time the patroller returns to the vertex. If a patroller visits the vertex m ≥ 2 times
during a patrol pattern of total time length τ , we define t1 as the time interval
between the m-th (final) visit and the first visit to the vertex. The second interval t2

244 R. G. McGrath

is the time between the first and second visit. The last interval tm is the time between
visit m − 1 and visit m. We compute the expected number of successful attacks at
the vertex during each interval and divide that sum by the time to complete a full
patrol cycle τ . Thus, the probability of a successful attack at vertex j , with m ≥ 2
visits to vertex j , during a patrol pattern of total length τ = t1 + t2 + · · · + tm is

λj

∫ t1
0 Fj (s) ds+ · · · + λj

∫ tm
0 Fj (s) ds

λj τ

=
∫ t1

0 Fj (s) ds+ · · · + ∫ tm
0 Fj (s) ds

τ
, (42)

and the expected cost is

ρj =
cj

(∫ t1
0 Fj (s) ds+ · · · + ∫ tm

0 Fj (s) ds
)

τ
. (43)

3.3.2 Selection of Patrol Patterns

We consider two groups of patrol patterns to include in S. The first group is a
combinatorial selection of patrol patterns based on the shortest Hamiltonian cycle
in the graph. The second group is determined through an iterative method based on
fictitious play.

3.3.3 Patrol Patterns Based on Shortest Path

Consider a case where the patroller chooses to use a single patrol pattern, or in other
words, he uses a pure strategy. He would likely choose a pattern that visited each
vertex at least once, since if he were to never visit a vertex, then an attack at that
vertex would always be successful and would incur the full cost. Furthermore, he
would likely try to minimize the time between inspections at each vertex.

To minimize the time between inspections at each vertex while visiting each
vertex at least once during the patrol pattern, the patroller will follow a shortest
Hamiltonian cycle in the graph. This patrol pattern is designated as the first element
in the set S and we refer to it as the shortest-path patrol pattern. Finding the
shortest-path patrol pattern is an example of solving a traveling salesman problem,
as described in Sect. 16.5 of Ahuja et al. [1], in which the vertices represent locations
that are subject to attack and the weight on each edge is the time required to travel
between those locations and complete an inspection at the arrival location.

From (41), the expected cost at vertex j using a shortest-path patrol pattern with
total transit time τ is

ρj = cj

∫ τ

0 Fj (s) ds

τ
,∀ j ∈ N. (44)

Optimal Patrol on a Graph Against Random and Strategic Attackers 245

If a patroller were to use this patrol pattern as a pure strategy against strategic
attackers, then the long-run cost of this policy is

V = max
j∈N ρj , (45)

since an attacker will employ his own pure strategy of always choosing to attack the
vertex that incurs the highest cost.

Since we want to consider the option of a mixed strategy for the patroller, we
must add additional patrol patterns to S. We start by considering subsets of the
shortest-path patrol pattern. Specifically, we consider n additional patrol patterns,
which consist of the cycle where one vertex is skipped in the shortest-path patrol
pattern and the patroller proceeds to the next vertex in the sequence. These are good
patrol patterns to consider because they are consistent with the reasoning of using
the shortest-path patrol pattern to minimize time spent on traveling, but they can
also account for the heterogeneous qualities of potential attack locations. Due to
differences among vertices in attack time distributions Fi(·) or cost incurred due to
a successful attack ci , a patroller may want to use a mixed strategy that periodically
skips a visit to one or more vertices in order to occasionally direct more resources
toward other vertices.

As an example, if the shortest-path patrol pattern in a graph with n = 5 vertices
is {1− 2− 3− 4− 5−}, then the first subset of patrol patterns is

{2− 3− 4− 5−,

1− 3− 4− 5−,

1− 2− 4− 5−,

1− 2− 3− 5−,

1− 2− 3− 4−}.

For similar reasons, we also consider all paths of length n−2, where two vertices
are removed from the shortest-path patrol pattern. In our example, there will be(5

3

) = 10 of these patterns to consider:

{3− 4− 5−, 2− 4− 5−,

2− 3− 5−, 2− 3− 4−,

1− 4− 5−, 1− 3− 5−,

1− 3− 4−, 1− 2− 5−,

1− 2− 4−, 1− 2− 3−}.

We continue this process by removing vertices until all subsets of the shortest-path
patrol pattern that consist of only one vertex have been considered. For paths of
length greater than three, the sequence of vertices can be reordered as required, so
that the patroller will be utilizing the shortest Hamiltonian cycle within a particular
subgraph of vertices. The total number of patrol patterns considered when using
this method is 2n− 1. We refer to this set of patterns as the shortest-path (SP) patrol
patterns.

246 R. G. McGrath

In addition to the shortest-path patrol pattern and its subsets, we consider patrol
patterns where the patroller chooses one vertex to visit twice during his patrol while
visiting each remaining vertex only once. Ideally, we would choose the time for a
revisit to a vertex in the patrol pattern such that the time between inspections is
as close to even as possible. To determine these patterns, we continue to use the
shortest-path patrol pattern as a baseline and insert a revisit to each vertex at all
possible points in the pattern, such that the patroller does not complete a revisit to a
vertex immediately after completing an inspection at that vertex. Using this method,
we will consider an additional n(n− 2) patrol patterns. We refer to this set of patrol
patterns as the shortest-path with one revisit (SPR1) patrol patterns.

To continue the example from above, for a graph with n = 5 vertices and
shortest-path patrol pattern {1 − 2 − 3 − 4 − 5−}, the SPR1 set would consist
of the following additional 15 patrol patterns:

{1− 2− 1− 3− 4− 5−,

1− 2− 3− 1− 4− 5−,

1− 2− 3− 4− 1− 5−,

1− 2− 3− 2− 4− 5−,

1− 2− 3− 4− 2− 5−,

1− 2− 3− 4− 5− 2−,

1− 3− 2− 3− 4− 5−,

1− 2− 3− 4− 3− 5−,

1− 2− 3− 4− 5− 3−,

1− 4− 2− 3− 4− 5−,

1− 2− 4− 3− 4− 5−,

1− 2− 3− 4− 5− 4−,

1− 5− 2− 3− 4− 5−,

1− 2− 5− 3− 4− 5−,

1− 2− 3− 5− 4− 5−}.

Similarly, we can continue this method of generating additional patrol patterns
based on the shortest-path patrol pattern by allowing multiple revisits to a vertex. We
consider the case of the shortest path with two revisits (SPR2) by starting with the
SPR1 patrol patterns and, for each of these patrol patterns, conducting an additional
visit to each vertex. We consider paths that revisit all combinations of two vertices,
including two revisits to the same vertex, such that there are no immediate revisits
to any vertex.

The number of patrol patterns that are generated for a particular number of
revisits is based on the number of vertices n in the graph. For the case of two revisits,
such as in the SPR2 method, there are an additional n(n − 2)[(n − 1)(n − 1) +
(n − 3)] patrol patterns to consider. The SPR3 method follows a similar process
by conducting revisits to all combinations of three vertices such that there are no
immediate revisits to any vertex. The length of the patrol patterns and the size of the
sets that are generated in each of these methods are summarized in Table 9.

Optimal Patrol on a Graph Against Random and Strategic Attackers 247

Table 9 Shortest path patrol pattern sets

Path generation method Length Number of patterns

Shortest path (SP) ≤ n 2n − 1

Shortest path with one revisit (SPR1) n+ 1 n2 − 2n

Shortest path with two revisits (SPR2) n+ 2 n4 − 3n3 + 4n

Shortest path with three revisits (SPR3) n+ 3 n6 − 3n5 − 5n4 + 19n3 − 20n

Table 10 Example numbers of shortest-path patrol patterns

Pattern set n = 5 n = 6 n = 7 n = 10 n = 11 n = 12

SP 31 63 127 1023 2047 4095

SPR1 15 24 35 80 99 120

SPR2 270 672 1400 7040 10,692 15,600

SPR3 5400 20,832 61,600 668,800 1,240,272 2,168,400

A summary of representative patrol pattern sizes for the type of problems that
we consider is presented in Table 10. As revisits are increased to four and beyond,
there are very large increases in the number of patrol patterns without much further
improvement in performance.

3.3.4 Patrol Patterns Based on Fictitious Play

We consider an additional group of patrol patterns that are generated using fictitious
play as described by Robinson [19]. She shows that an iterative method can be used
to generate mixed strategies in a two-person zero-sum game that will converge to
an optimal solution. In this iterative method of play, each player arbitrarily chooses
a pure strategy in the first round. In subsequent rounds, each player chooses a pure
strategy that will produce the best expected value against the mixture of strategies
used by the other player in all the previous rounds.

We compute the attacker’s mixed strategy (p1, . . . , pn) based on the mixture of
strategies used by the patroller in the previous rounds. Based on that probability
vector, we can use the IHT and IHE heuristic methods from the random-attacker
case presented in Section 2 to generate a new patrol pattern for the patroller. The
following algorithm is adapted from Lin et al. [15]:

1. In round 1, each player picks a strategy.

a. Denote by ξ (d) the patrol pattern used by the patroller in round d. Choose ξ (1)

to be the shortest-path patrol pattern.
b. Let the attacker pick the vertex j that has the highest cost in the shortest-path

patrol to attack. Use ri , for i ∈ N , to keep track of the number of times vertex
i is picked by the attacker. Initialize rj = 1 and ri = 0, for i ∈ N, i
= j .

2. Repeat the following steps for the predetermined number of rounds, ν. In round
d ≥ 2,

248 R. G. McGrath

a. Set pi = ri/
∑n

k=1 rk , which represents the attacker’s mixed strategy based
on his attack history from rounds 1 to d−1. Use the random-attacker heuristic
method to generate a patrol pattern ξ (d).

b. Find the best vertex for the attacker to attack by assuming the patroller uses
patrol pattern ξ (j), j = 1, . . . , (m − 1), each with probability 1/(m − 1). If
attacking vertex i yields the highest expected cost, set ri ← ri + 1.

Thus, we can generate two groups of patrol patterns for use in the strategic-
attacker heuristic method: the shortest-path patrol pattern and its associated derived
patrol patterns, and a set of patrol patterns determined by an iterative method using
fictitious play. The heuristic method in the case of fictitious play will have two
parameters, the set L of look-ahead depth parameters to be used with the IHT and
IHE methods, and the number of iterations of fictitious play, ν.

For a graph with n vertices, we generate 2n − 1 + n(n − 2) patrol patterns in
the first group when using the SP and SPR1 patrol pattern sets. In the second group
we generate up to |L| × ν patrol patterns. The actual number of patrol patterns
considered in the problem is often much smaller than [2n+n2−2n−1]+[|L|×ν],
since many of the patrol patterns generated during the fictitious-play algorithm will
be identical or will produce identical performance.

3.4 Lower Bound

When an optimal solution cannot be determined due to the size of a problem, it is
valuable to have a way to evaluate a heuristic solution. For this purpose, we provide
a method to compute a lower bound for an optimal solution in the strategic-attacker
problem. This is a modification of the discrete-time method presented in Lin et
al. [15] for our continuous-time problem.

To determine a lower bound for an optimal solution, we formulate a linear
program. We define yir as the rate at which an inspection is completed at vertex
i, with the last inspection at that vertex having been completed exactly r time units
ago.

For example, consider a patrol pattern of total length τ = 17 where inspections
are completed at vertex 1 at times 2 − 5 − 7 − 10 − 14 − 17. The times between
inspections are 2 − 3 − 2 − 3 − 4 − 3. The inspection rates at vertex 1 using this
patrol pattern are y12 = 2/17, y13 = 3/17, and y14 = 1/17. It follows that there
is a total inspection rate constraint for any vertex i that is inspected during a patrol
pattern:

∞∑

r=1

yir r = 1. (46)

If a vertex is not visited at all during a patrol pattern, then the total inspection rate
at that vertex will be 0. Therefore, in order to create a total-rate constraint for all
vertices and all patrol policies, we use

Optimal Patrol on a Graph Against Random and Strategic Attackers 249

Table 11 Example case of
time-interval inspections

q Interval Inspections

1 [0, 1.2) 0

2 [1.2, 2.4) 2

3 [2.4, 3.6) 3

4 [3.6, 4.8) 1

5 [4.8, 6.0) 0

6 [6.0, 7.2) 0

7 [7.2, 8.4) 0

8 [8.4,∞) 0

∞∑

r=1

yir r ≤ 1,∀ i ∈ N. (47)

Since we consider this problem in continuous time, we must modify the definition
of the inspection rate in order to use it as a variable in a linear program. Recall that
the attack time at vertex i is bounded by Bi . We divide the time interval [0, Bi] at
vertex i into m equal length subintervals. We then define an inspection rate yiq , for
q = 1, . . . , (m − 1), as the rate at which vertex i is inspected with the previous

inspection having been completed at time in
[

(q−1)Bi

m
,

qBi

m

)
, and yim as the rate at

which vertex i is inspected with the previous inspection having been completed at
least (m−1

m
)Bi time units ago.

Again consider the example of a patrol pattern of total length τ = 17 where
inspections are completed at vertex 1 at times 2 − 5 − 7 − 10 − 14 − 17. Suppose
that B1 = 9.6 and we choose m = 8. Table 11 indicates the number of inspections
that are completed in each time interval.

Thus, the inspection rates yiq at vertex i = 1 for this patrol pattern are y12 =
2/17, y13 = 3/17, y14 = 1/17, and y11 = y15 = y16 = y17 = y18 = 0.

Since the inspection times are broken into m discrete-time intervals, the identity
in (47) becomes

m∑

q=1

yiq

(q − 1)Bi

m
≤ 1,∀ i ∈ N. (48)

We now focus on a single vertex in order to quantify the long-run cost at that
vertex. Define Ri(t) as the expected cost that can be avoided for completing an
inspection at vertex i if the previous inspection was completed t time units ago.
This is equivalent to the expected number of ongoing attacks at vertex i at time t

multiplied by ci , so

Ri(t) = ciλi

∫ t

0
P(Xi > s) ds . (49)

250 R. G. McGrath

We also define

Riq = Ri

(
qBi

m

)

, q = 1, . . . , m, (50)

as the cost that can be avoided at vertex i for completing an inspection at time
q(Bi/m).

Although we do not know the exact value of the expected cost at vertex i, we do
know that
⎛

⎝ci − 1

λi

m∑

q=1

yiqRiq

⎞

⎠ ≤ [expected cost at vertex i] ≤
⎛

⎝ci − 1

λi

m∑

q=1

yiqRi(q−1)

⎞

⎠ .

Therefore, the expected cost incurred at vertex i will be at least

ci − 1

λi

m∑

q=1

yiqRiq,∀ i ∈ N, (51)

because the expression in (51) will take credit for avoiding cost in the entire interval[
0,

qBi

m

)
at the constant value represented by Ri(

qBi

m
) times the inspection rate yiq .

Thus, the value in (51) represents a lower bound for the expected cost for each attack
at vertex i.

To formulate a linear program to determine a lower bound for an optimal
solution, we also incorporate constraints that account for graph structure. Define
xij as the rate at which a patroller travels from vertex i to vertex j and conducts an
inspection at vertex j , for i, j ∈ N . Recall that tij represents the time required for
a patroller to travel from vertex i to vertex j and conduct an inspection at vertex j .
On a graph with a single patroller, the following total-rate constraint applies:

∑

i,j∈N
xij tij = 1. (52)

Since the total rate of arrivals to a vertex must equal the total rate of departures from
a vertex, we also observe that

∑

j∈N
xij =

∑

j∈N
xji,∀ i ∈ N. (53)

The variables xij and yiq are connected through the equation

m∑

q=1

yiq =
∑

j∈N
xij ,∀ i ∈ N, (54)

Optimal Patrol on a Graph Against Random and Strategic Attackers 251

since both sides represent the long-run inspection rate at vertex i.
We now formulate a linear program to determine the lower bound for an optimal

solution in the single patroller against strategic attackers problem, which we refer to
as the lower bound linear program (LBLP):

min
x,y

zLB (55a)

subject toci − 1

λi

m∑

q=1

yiqRiq ≤ zLB,∀ i ∈ N, (55b)

m∑

q=1

yiq

(q − 1)Bi

m
≤ 1,∀ i ∈ N, (55c)

∑

j∈N
xij −

∑

j∈N
xji = 0,∀ i ∈ N, (55d)

m∑

q=1

yiq −
∑

j∈N
xji = 0,∀ i ∈ N, (55e)

∑

i,j∈N
xij tij = 1, (55f)

xij ≥ 0,∀ i, j ∈ N, (55g)

yiq ≥ 0,∀ i ∈ N; q = 1, . . . , m. (55h)

The decision variables in this problem are xij , the rate that the patroller transits from
vertex i to vertex j ; and yiq , the rate that an inspection is completed at vertex i with

the time since the last inspection falling in
[

(q−1)Bi

m
,

qBi

m

)
.

In this linear program, we seek to minimize the maximum expected cost for
each attack across all n vertices, which is ensured by constraint (55b). We observe
the total inspection rate constraints at each vertex with (55c). We also observe the
network balance of flow and total arrival and inspection rate equality constraints
in (55d) and (55e). Finally, we observe the total transit rate constraint on a single
patroller in (55f), and the non-negativity constraint on patroller transit rates and
inspection rates in (55g) and (55h).

While the preceding linear program will produce a valid lower bound, it can be
quite loose. We add additional constraints to the linear program in order to tighten
the lower bound by limiting the rate of reinspections at a vertex and by considering
the transit time that is required between vertices.

To account for the action of a patroller electing to stay at a vertex to conduct an
additional inspection, define

ai =
⌈

vi

(Bi/m)

⌉

,∀ i ∈ N, (56)

252 R. G. McGrath

as the number of subintervals needed for the patroller to inspect vertex i again
without leaving vertex i; and require that

ai∑

q=1

yiq ≥ xii ,∀ i ∈ N, (57)

which ensures the total rate of inspections at vertex i in the time interval it takes to
conduct an inspection is at least equal to the rate of reinspections at vertex i.

We also add constraints to the linear program to account for the patroller’s transit
rate from vertex i to j and back to vertex i, denoted by uiji , for i
= j , as follows:

uiji ≤ xij ,∀ i, j ∈ N; i
= j, (58a)

uiji ≤ xji,∀ i, j ∈ N; i
= j, (58b)

xij −
∑

k
=i

xjk ≤ uiji ,∀ i, j ∈ N; i
= j. (58c)

Since the rate that a patroller transits from vertex i to j must be at least equal to
the rate that the patroller transits from vertex i to j and back to vertex i, we include
constraint (58a). The same reasoning applies to constraint (58b). We also observe
in (58c) that the rate the patroller transits from vertex i to j and back to vertex i

must be at least equal to the rate that he transits from vertex i to j , minus the rate he
transits from vertex j to any vertex other than i.

It also holds that the inspection rate at vertex i must be at least equal to the rate
that the patroller transits from vertex i to j and back to vertex i. To incorporate this
constraint, define

giji =
⌈

tij + tj i

(Bi/m)

⌉

,∀ i, j ∈ N; i
= j, (59)

and require that

giji∑

q=1

yiq ≥ xii + uiji ,∀ i, j ∈ N; i
= j, (60)

where xii is the rate that the patroller remains at vertex i to conduct an additional
inspection and uiji is the rate that the patroller transits from vertex i to j and back
to vertex i.

We can continue this same idea to account for paths that visit at least two vertices
prior to returning to vertex i and define wijki as the rate at which the patroller transits
from vertex i to vertex j to vertex k and returns immediately to vertex i. Based on
the patroller’s transit rate from vertex i to j to k and back to vertex i, for i
= j, k,
we add the following additional constraints to the linear program:

Optimal Patrol on a Graph Against Random and Strategic Attackers 253

wijki ≤ xij ,∀ i, j, k ∈ N; i
= j, k, (61a)

wijki ≤ xjk,∀ i, j, k ∈ N; i
= j, k, (61b)

wijki ≤ xki,∀ i, j, k ∈ N; i
= j, k, (61c)

xij −
∑

l
=k

xjl −
∑

l
=i

xkl ≤ wijki ,∀ i, j, k ∈ N; i
= j, k. (61d)

Since the rate that a patroller transits from vertex i to j must be at least equal to the
rate that the patroller transits from vertex i to j to k and back to vertex i, we include
constraint (61a). The same reasoning applies to constraints (61c) and (61d). We also
observe in (61d) that the rate the patroller transits from vertex i to j to k and back
to vertex i must be at least equal to the rate that he transits from vertex i to j , minus
the rate he transits from vertex j to any vertex other than k and the rate he transits
from vertex k to any vertex other than i.

It also holds that the inspection rate at vertex i must be at least equal to the rate
that the patroller transits from vertex i to j to k and back to vertex i. To incorporate
this constraint, define

hijki =
⌈

tij + tjk + tki

(Bi/m)

⌉

,∀ i, j, k ∈ N; i
= j, k, (62)

and require that

hijki∑

q=1

yiq ≥ xii + uiji + wijki,∀ i, j, k ∈ N; i
= j, k, (63)

where xii is the rate that the patroller remains at vertex i to conduct an additional
inspection; uiji is the rate that the patroller transits from vertex i to j and back to
vertex i; and wijki is the rate that the patroller transits from vertex i to j to k and
then back to vertex i.

We add constraints (57), (58a), (58b), (58c), (60), (61a), (61b), (61c), (61d),
and (63) to the LBLP, which considerably tightens the lower bound. We could
continue this same idea to account for paths that visit three or more vertices before
returning to a starting vertex; however, for the size of the graphs that we consider,
that would involve many more variables with negligible gains in performance.
The number of decision variables in this linear program is n2 + mn. The number
of constraints is 5n3 + 5n2 + (m − 10)n + 1. For a problem with n = 5 and
m = 100, there are 525 decision variables and 1,201 constraints. In our numerical
experiments, it takes on average 0.61 s to compute a lower bound for a problem of
this size.

254 R. G. McGrath

3.5 Numerical Experiments

To test the shortest-path and fictitious-play (FP) heuristic methods, we conduct
several numerical experiments. We compare the results obtained from using the
heuristic methods to an optimal solution. We also report the computation time
required. Additionally, we compute a lower bound for an optimal solution using
the linear program described in Section 3.4. Based on these results, we make
conclusions on the efficacy of the heuristics, as well as make recommendations for
the best use of the shortest-path and fictitious-play methods.

We test the same five problem cases for strategic attackers that we did for random
attackers in Section 2. In each case, we use the same 1000 problem scenarios
that were randomly generated for the random-attacker experiments. The attack
probability vector is omitted for the strategic-attacker problems, but all other data
remain the same. We conduct our baseline experiments on a graph with n = 5
vertices.

In our experimental results, an optimal solution that is obtained from using the
SALP is indicated by zOPT. The lower bound that is obtained from using the LBLP
is indicated by zLB. Solutions obtained from using a heuristic method are indicated
by zH, where H indicates the heuristic method that was used.

3.5.1 Baseline Problems

For our baseline problem, we consider the case where a patroller spends about half
of the time traveling and half of the time inspecting vertices. We determine an
optimal solution using the SALP from Section 3.2 and a solution using the heuristic
methods from Section 3.3. The SALP on average uses 5920 decision variables and
7110 constraints for a problem size with 1184 states. An optimal solution takes on
average 20.68 s to compute. We compare the solution obtained from the heuristic
method to an optimal solution. We also determine a lower bound for an optimal
solution using the LBLP in Section 3.4, and compare that result to an optimal
solution.

Using 1000 problem instances, we test the shortest-path method with the SP,
SPR1, SPR2, and SPR3 patrol pattern sets. We also test the FP method with 10, 20,
30, and 50 iterations. Results of the baseline experiments are presented in Table 12.
Excellent performance is observed with both the shortest-path SPR2 and SPR3
methods and the FP method with 50 iterations. Each of these methods returns a
solution within 1.11 percent of an optimal solution in at least 90 percent of the
problem instances. The shortest-path method uses considerably less computation
time than the FP method in all cases. A tight lower bound for an optimal solution was
also obtained, with an average difference between the lower bound and an optimal
solution of 1.20 percent.

We also test combinations of the two-person zero-sum game matrices that are
produced from each heuristic method. When the game matrices are combined,

Optimal Patrol on a Graph Against Random and Strategic Attackers 255

Table 12 Performance of the shortest-path and fictitious-play heuristic methods on a complete
graph with n = 5 vertices, based on 1000 randomly generated problem instances with average
inspection times that are comparable to average travel times

Heuristic method Percent over optimum

Mean 50th 75th 90th Time (s)

Shortest-path (SP) 1.95 1.18 2.53 4.45 < 0.01

SP with one revisit (SPR1) 0.72 0.39 0.93 1.82 0.04

SP with two revisits (SPR2) 0.39 0.12 0.47 1.11 0.52

SP with three revisits (SPR3) 0.28 0.05 0.28 0.80 6.15

Fictitious play (ν = 10) 3.76 3.11 5.23 8.18 85.51

Fictitious play (ν = 20) 1.85 1.39 2.42 4.13 167.56

Fictitious play (ν = 30) 0.79 0.45 0.90 2.11 255.45

Fictitious play (ν = 50) 0.32 0.22 0.43 0.73 425.45

Lower bound −1.20 −0.29 −1.17 −3.35 0.61

Mean, 50th, 75th, and 90th percentile performance is indicated as the percentage excess over an
optimal solution. The lower bound is reported as (zLB − zOPT)/zOPT in percentage

Table 13 Mean performance of the shortest-path and fictitious-play heuristic methods on a
complete graph with n = 5 vertices, based on 1000 randomly generated problem instances with
average inspection times that are comparable to average travel times, reported as the percentage
excess over an optimal solution

Percent over optimum

FP/SP – SP SPR1 SPR2 SPR3 Time (s)

– – 1.95 0.72 0.39 0.28

FP 10 3.76 1.70 0.57 0.32 0.23 85.51

FP 20 1.85 0.99 0.36 0.19 0.16 167.56

FP 30 0.79 0.50 0.24 0.13 0.10 255.45

FP 50 0.32 0.26 0.13 0.11 0.08 425.45

Time (s) < 0.01 0.04 0.52 6.15

the resulting performance can be no worse than what is obtained with each of
the individual methods since additional patrol patterns are being considered. The
mean and 90th percentile performance results are presented in Table 13 and
Table 14, respectively. We see an improvement in performance when the methods
are combined, but it is generally not significant enough to justify the additional
computation time required by the FP method. It requires at least 20 iterations of FP
combined with the SPR2 set and at least 30 iterations of FP combined with the SPR1
set to improve upon the performance obtained from using the SPR3 patrol pattern
set alone.

256 R. G. McGrath

Table 14 90th percentile performance of the shortest-path and fictitious-play heuristic methods on
a complete graph with n = 5 vertices, based on 1000 randomly generated problem instances with
average inspection times that are comparable to average travel times, reported as the percentage
excess over an optimal solution

Percent over optimum

FP/SP – SP SPR1 SPR2 SPR3 Time (s)

– – 4.45 1.82 1.11 0.80

FP 10 8.18 3.98 1.75 1.04 0.72 185.51

FP 20 4.13 2.43 1.16 0.66 0.42 167.56

FP 30 2.11 1.40 0.69 0.43 0.27 255.45

FP 50 0.73 0.67 0.43 0.28 0.17 425.45

Time (s) <0.01 0.04 0.52 6.15

3.5.2 Recommendations Based on Numerical Experiments

We see very favorable results with the SP method. In at least 90 percent of the
problem instances, we observe results within 1.11 percent of an optimal solution
when using the SPR2 method and within 0.80 percent of an optimal solution when
using the SPR3 method. For problems with n = 5, the SPR2 method required 0.52 s
on average and the SPR3 method required 6.15 s on average to return a solution.
The advantage to the SP method is that it provides excellent results for very little
computation time.

We can generate additional effective patrol patterns for consideration in deter-
mining a randomized patrol policy, and further refine the overall solution, by
considering the patterns obtained from multiple iterations of FP. The solution
improves as the number of iterations of FP increases, but comes at a cost of
significantly increased computation time. In at least 90 percent of problem instances,
we see solutions within 2.11 percent of optimal when using 30 iterations of FP
and within 0.73 percent of optimal when using 50 iterations of FP. These problem
instances required on average 4.25 min and 7 min, respectively, to return a solution.
Based on the experimental results, we recommend using the SPR2 method for the
strategic-attacker problem.

3.5.3 Performance on Smaller and Larger Graphs

In addition to problems with n = 5, we test the heuristic methods on smaller and
larger size graphs. For graphs with n = 3, 4, and 5, we compare the performance of
the SPR2 heuristic to an optimal solution. Results are presented in Table 15.

We note that the SPR2 heuristic method works extremely well for graphs smaller
than n = 5, returning a solution that is within 0.17 percent of optimal in 90 percent
of the problem instances with computation times of less than 0.1 s. For graphs with
n = 6, 7, 8, and 9, we compare the performance of the heuristic to the lower bound.
Results are presented in Table 16. We use the lower bound for a comparison because,
in our experiments, it is not practical to compute an optimal solution for graphs with
n > 5 due to computer memory limitations.

Optimal Patrol on a Graph Against Random and Strategic Attackers 257

Table 15 Performance of the SPR2 shortest-path heuristic on a complete graph, based on 1000
randomly generated problem instances with average inspection times comparable to average travel
times

Vertices Percent over optimum Time (s)

(n) Mean 50th 75th 90th zSPR2 zOPT Lower bound

3 0.00 0.00 0.00 0.00 0.03 <0.01 0.00

4 0.10 0.00 0.04 0.17 0.08 0.23 −0.04

5 0.39 0.12 0.47 1.11 0.52 20.68 −1.27

Mean, 50th, 75th, and 90th percentile performance is indicated as the percentage over the optimum
solution. The mean lower bound is reported as (zLB − zOPT)/zOPT in percentage

Table 16 Performance of the
SPR2 shortest-path heuristic
on a complete graph, based
on 1000 randomly generated
problem scenarios with
average inspection times that
are comparable to average
travel times

Vertices Percent over lower bound

(n) Mean 50th 75th 90th Time (s)

3 0.00 0.00 0.00 0.00 0.03

4 0.14 0.03 0.08 0.22 0.08

5 1.66 0.75 1.57 3.15 0.52

6 3.58 2.03 4.63 9.71 0.58

7 4.93 3.03 5.75 11.98 1.35

8 5.84 4.54 8.64 12.47 3.34

9 7.56 5.67 10.49 15.93 7.98

Mean, 50th, 75th, and 90th percentile performance is indicated
as the percentage excess above the lower bound, reported as
(zSPR2 − zLB)/zLB in percentage

We note that the SPR2 shortest-path heuristic method returns results that are
within 10 percent of the lower bound in 90 percent of the problem instances for n =
6, and within 16 percent of the lower bound in 90 percent of problem instances for
n = 9. These solutions take on average 0.58 s and 7.98 s, respectively, to compute.

3.5.4 Performance on Additional Graph Structures

In addition to problems on a complete graph, we test the SPR2 heuristic method
on several additional graph structures. Specifically, we consider line graphs, circle
graphs, and random trees. We use the procedures from Section 2.4.1 to generate
1000 random problem instances for problem cases with n = 4, 5, 6, and 7 vertices.

To construct a line graph, we randomly assign n − 1 edges between n vertices,
such that the degree of each vertex is at least one but no more than two. To construct
a circle graph, we randomly assign n edges between n vertices, such that the degree
of each vertex is exactly two. To construct a random tree, we randomly assign n− 1
edges between n vertices, such that the degree of each vertex is at least one and there
is at least one vertex of degree greater than two, which excludes line graphs from
the random tree category.

258 R. G. McGrath

We still allow a patroller to travel between any two vertices in order to determine
a patrol policy. For these additional graph structures, a patroller may have to travel
through one or more interim vertices (without conducting inspections at those
vertices) in order to arrive at the destination vertex.

We consider cases where average travel times are comparable to average
inspection times. To do this, we scale the travel times between each pair of vertices
based on the graph structure. Specifically for any particular graph, we determine
the average number of edges between each pair of vertices and divide the travel
times by that average value. This produces average total travel times between each
pair of vertices that are comparable to average inspection times. We construct a
distance matrix D using these scaled travel times. The distance dij is the total travel
time along the shortest path in the graph between each pair of vertices i and j , for
i, j ∈ N .

Results for these additional graph structures with n = 4, 5, 6, and 7 are presented
in Table 17. For graphs with n ≤ 5, we compare the performance of the heuristic
to an optimal solution as well as to the lower bound. For graphs with n ≥ 6,
we compare the heuristic to the lower bound, since an optimal solution cannot be
determined for problems of this size.

Table 17 Mean performance of the SPR2 heuristic method on additional graph structures, based
on 1000 randomly generated problem scenarios for average inspection times that are comparable
to average travel times

Vertices Performance (%) Time (s)

Graph (n) zSPR2/zOPT zSPR2/zLB zSPR2 zOPT

Complete 4 0.10 0.12 0.08 0.23

Complete 5 0.39 1.66 0.52 20.68

Complete 6 – 3.58 0.58 –

Complete 7 – 4.93 1.35 –

Line 4 0.08 0.10 0.09 0.28

Line 5 0.26 0.90 0.46 35.84

Line 6 – 8.11 0.53 –

Line 7 – 11.12 1.31 –

Circle 4 0.12 0.15 0.08 0.29

Circle 5 0.50 1.18 0.50 22.25

Circle 6 – 2.32 0.54 –

Circle 7 – 3.73 1.29 –

Random tree 4 0.05 0.14 0.09 0.23

Random tree 5 0.15 0.84 0.52 28.62

Random tree 6 – 4.79 0.55 –

Random tree 7 – 5.99 1.35 –

Performance is indicated as the mean percentage over optimum for problems where an optimal
solution can be determined using the SALP, and the mean percentage over lower bound for all
problems

Optimal Patrol on a Graph Against Random and Strategic Attackers 259

These results indicate that the shortest-path heuristic method can be used very
effectively for the strategic-attacker problem on several different graph structures
and sizes. For problems with n = 5, where an optimal solution can be determined,
the SPR2 method returns a solution on average that is within 0.50 percent of optimal.
These solutions take approximately 0.5 s to compute, which is 40 times less than the
time required to compute an optimal solution. For problems with n = 7, where an
optimal solution cannot be determined, the heuristic produces on average a result
within 3.73 percent of the lower bound on a circle graph, and within 11.12 percent
of the lower bound on a line graph. These solutions take less than 1.5 s to compute.

3.5.5 Sensitivity Analysis

In addition to the baseline problems, we consider the case where a patroller needs
to spend more time conducting inspections than he does traveling between vertices;
and the case where the patroller needs to spend more time traveling between vertices
than he does conducting inspections. The five specific cases we consider in the
numerical experiments are summarized in Table 18. Case III generated the smallest
number of states and had the highest long-run cost on average. It also generated the
tightest lower bound for an optimal solution. Case IV generated the largest number
of states and had the lowest long-run cost on average. It also generated the loosest
lower bound for an optimal solution.

The mean performance results for problem cases II through V using both the
SP and FP methods are presented in Table 19. The 90th percentile performance
results are presented in Table 20. In each of the problem cases, very favorable results
are obtained using the SP heuristic method. In at least 90 percent of the problem
instances, the SPR2 method returns a solution within 1.51 percent of optimal. These
solutions take 0.52 s to compute on average.

Table 18 Summary of numerical experiments for strategic attackers

Parameter Case I Case II Case III Case IV Case V

Travel time 1× 1× 1× 2× 2×
Inspection time 1× 2× 2× 1× 1×
Attack time 1× 1.5× 1× 1.5× 1×
Mean number of states, |Ω| 1,184 633 102 3,938 318

Mean number of decision variables 5,920 3,165 510 19,690 1,590

Mean number of constraints 7,110 3,804 613 23,679 1,914

Mean optimal long-run cost 0.4892 0.5085 0.6589 0.4761 0.6224

Mean optimal computation time (s) 20.68 4.99 0.11 574.85 2.11

Lower bound −1.20 −0.20 −0.03 −4.81 −0.88

The mean lower bound is reported as (zLB − zOPT)/zOPT in percentage

260 R. G. McGrath

Table 19 Mean performance
of the shortest-path and
fictitious-play methods, based
on 1000 randomly generated
problem scenarios for each
case

Percent over optimum

(mean)

Case FP/SP – SP SPR2 SPR3 Time (s)

II – – 1.26 0.21 0.14 0.52

FP 10 3.32 1.23 0.18 0.12 29.71

FP 20 1.20 0.67 0.13 0.10 59.52

FP 30 0.60 0.44 0.10 0.07 89.92

FP 50 0.30 0.27 0.08 0.04 151.99

III – – 0.41 0.22 0.17 0.50

FP 10 1.66 0.39 0.19 0.15 2.25

FP 20 0.74 0.27 0.16 0.12 4.75

FP 30 0.50 0.15 0.10 0.07 7.38

FP 50 0.37 0.15 0.09 0.05 12.79

IV – – 2.65 0.50 0.34 0.50

FP 10 4.49 2.15 0.34 0.26 717.60

FP 20 2.19 1.42 0.26 0.19 1337.60

FP 30 1.08 0.80 0.12 0.09 1977.97

V – – 0.90 0.53 0.44 0.47

FP 10 2.96 0.74 0.45 0.38 14.30

FP 20 1.37 0.51 0.31 0.26 29.78

FP 30 0.83 0.60 0.22 0.17 47.16

FP 50 0.51 0.17 0.16 0.11 78.87

Performance is indicated as the percentage excess over an
optimal solution. Shortest-path computation time is indi-
cated for the SPR2 heuristic

4 Conclusion

We examine methods to determine effective patrol policies against both random
and strategic attackers. We consider two cases: a single patroller against random
attackers and a single patroller against strategic attackers.

In the case of a single patroller against random attackers, we determine an
optimal solution by modeling the state space of the system as a network and solve a
minimum cost-to-time ratio cycle problem using linear programming. The solution
represents a patrol policy, which is a repeating pattern of locations for a patroller
to visit and inspect that minimizes the long-run cost incurred due to undetected
attacks. Although the linear program returns an optimal solution, it quickly becomes
computationally intractable for problems of moderate size. We therefore develop
and test two aggregate-index heuristic methods, the index heuristic time (IHT)
method and the index heuristic epoch (IHE) method. Both of these methods consider
the structure of the graph, to include travel and inspection time requirements. The
IHT method utilizes a predetermined look-ahead time window for the patroller to

Optimal Patrol on a Graph Against Random and Strategic Attackers 261

Table 20 90th percentile
performance of the
shortest-path and
fictitious-play methods, based
on 1000 randomly generated
problem scenarios for each
case

Percent over optimum

(90th PCTL)

Case FP/SP – SP SPR2 SPR3 Time (s)

II – – 3.21 0.69 0.49 0.52

FP 10 5.95 2.94 0.66 0.42 29.71

FP 20 2.47 1.64 0.49 0.33 59.52

FP 30 1.35 1.05 0.37 0.24 89.92

FP 50 0.79 0.47 0.23 0.16 151.99

III – – 1.06 0.60 0.53 0.50

FP 10 3.08 1.04 0.45 0.39 2.25

FP 20 1.47 0.78 0.39 0.32 4.75

FP 30 1.12 0.69 0.30 0.24 7.38

FP 50 0.77 0.36 0.28 0.19 12.79

IV – – 5.44 1.51 1.06 0.50

FP 10 8.63 4.58 0.87 0.76 717.60

FP 20 4.72 3.84 0.82 0.68 1337.60

FP 30 2.78 2.18 0.27 0.21 1977.97

V – – 1.90 1.26 1.16 0.47

FP 10 5.79 1.77 1.02 0.85 14.30

FP 20 3.07 1.30 0.73 0.61 29.78

FP 30 1.94 1.27 0.60 0.49 47.16

FP 50 1.32 0.42 0.34 0.24 78.87

Performance is indicated as the percentage excess over an
optimal solution. Shortest-path computation time is indi-
cated for the SPR2 heuristic

decide his next action by considering all possible paths and partial paths that can be
completed during the time window when starting from his current vertex. For each
of these paths, aggregate index values per unit time are computed and the patroller
chooses his action based on those index values. He then repeats the process from the
next vertex using the same look-ahead time window. This process continues until a
patrol pattern is determined. The IHE method works in a similar fashion. However,
in this method, a patroller looks ahead a predetermined number of decision epochs,
and determines his action by considering all possible paths from the current vertex
that consist of the specified number of decision epochs, regardless of the total time
those paths will take. We see very favorable results using these methods in numerical
experiments. In our baseline experiments, a solution within 1 percent of optimal was
returned in at least 90 percent of the problem instances.

In the case of a single patroller against strategic attackers, we determine an
optimal solution by modeling the state space of the system as a network and
solve a linear program to minimize the largest expected cost per attack among all
vertices. The solution consists of a patrol policy, which is a randomized strategy

262 R. G. McGrath

for the patroller that minimizes the long-run expected cost due to an undetected
attack. Although the linear program returns an optimal solution, it quickly becomes
computationally intractable for problems of moderate size. We therefore develop
two heuristic methods, the shortest-path (SP) and fictitious-play (FP) methods. The
SP method uses a combinatorial selection of patrol patterns based on the shortest
Hamiltonian cycle in the graph. The FP method is an iterative method based on
fictitious play. We also present a linear program that determines a lower bound for
an optimal solution, so that we can evaluate our heuristics when an optimal solution
is not available. We see very favorable results using both methods in numerical
experiments; however, the FP method uses considerably more computation time
than the SP method. In our baseline experiments, a solution within 1.2 percent of
optimal was returned in at least 90 percent of the problem instances.

References

1. R. Ahuja, T. Magnanti, J. Orlin, Network Flows: Theory, Algorithms, and Applications
(Prentice Hall, Englewood Cliffs, NJ, 1993)

2. S. Alpern, Infiltration games on arbitrary graphs. J. Math. Anal. Appl. 163(1), 286–288 (1992)
3. S. Alpern, Search games on trees with asymmetric travel times. SIAM J. Control Optim. 48(8),

5547–5563 (2010)
4. S. Alpern, R. Fokkink, Accumulation games on graphs. Networks 64(1), 40–47 (2014)
5. S. Alpern, S. Gal, Searching for an agent who may or may not want to be found. Oper. Res.

50(2), 311–323 (2002)
6. S. Alpern, A. Morton, K. Papadaki, Patrolling games. Oper. Res. 59(5), 1246–1257 (2011)
7. J. Auger, An infiltration game on k arcs. Nav. Res. Logist. 38(4), 511–529 (1991)
8. R. Avenhaus, Applications of inspection games. Math. Model. Anal. 9(3), 179–192 (2004)
9. S. Benkoski, M. Monticino, J. Weisinger, A survey of the search theory literature. Nav. Res.

Logist. 38, 469–464 (1991)
10. A. Garnaev, G. Garnaeva, P. Goutal, On the infiltration game. Int. J. Game Theory 26(2),

215–221 (1997)
11. J. Gittins, K. Glazebrook, R. Weber, Multi-armed Bandit Allocation Indices, 2nd edn. (Wiley,

Hoboken, NJ, 2011)
12. K. Kikuta, A search game with traveling cost on a tree. J. Oper. Res. Soc. Jpn. 38(1), 70–88

(1995)
13. K. Kikuta, W. Ruckle, Initial point search on weighted trees. Nav. Res. Logist. 41, 821–831

(1994)
14. K. Kikuta, W. Ruckle, Continuous accumulation games on discrete locations. Nav. Res. Logist.

49(1), 60–77 (2002)
15. K. Lin, M. Atkinson, T. Chung, K. Glazebrook, A graph patrol problem with random attack

times. Oper. Res. 61(3), 694–710 (2013)
16. R. McGrath, K. Lin, Robust patrol strategies against attacks at dispersed heterogeneous

locations. Int. J. Oper. Res. 30(3), 340–358 (2017)
17. G. Owen, Game Theory, 3rd edn. (Academic, San Diego, CA, 1995)
18. M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming (Wiley-

Interscience, New York, NY, 1994)
19. J. Robinson, An iterative method of solving a game. Ann. Math. 54(2), 296–301 (1951)
20. S. Ross, Introduction to Probability Models, 10th edn. (Academic, San Diego, CA, 2010)

Optimal Patrol on a Graph Against Random and Strategic Attackers 263

21. W. Ruckle, Geometric Games and Their Applications (Pitman, Boston, MA, 1983)
22. A. Washburn, Two-Person Zero-Sum Games, 3rd edn. (INFORMS, Linthicum, MD, 2003)
23. A. Washburn, K. Wood, Two-person zero-sum games for network interdiction. Oper. Res.

43(2), 243–351 (1995)
24. K. Zoroa, P. Zoroa, M. Fernandez-Saez, Weighted search games. Eur. J. Oper. Res. 195(2),

394–411 (2009)

Network Design Problem with Cut
Constraints

Firdovsi Sharifov and Hakan Kutucu

1 Introduction

In this paper, we focus on the following minimum cost network design problem
under conditions that the number of edges crossing a cut is lower bounded, in the
resulting network. We call it as the network design problem with cut constraints
(NDPC). Let G = (V ,E) be an undirected graph with node set V and edge set
E, where nodes in V represent a given set of locations and edges of E correspond
to potential links. Given a cost ce ≥ 0 associated with each edge e, some of the
edges e in E may be marked as magisterial links whose at least le parallel copies
must be installed in a resulting network, where le ≥ 0 is a given integer number
for each of them. Let le = 0 for unmarked edges e. Let xe ≥ le be the number of
parallel copies of e which will be installed in a resulting network for each e ∈ E.
We want to define a minimum cost spanning subgraph of G in which at least le
parallel copies of edges e ∈ E must be installed; moreover, the summation of xe’s
for edges crossing the cut determined by any nonempty subset S ⊂ V is bounded
below by the value of a set function f (S) defined on the subsets S of V . We assume
that there is an oracle returning f (S) for each query S. We view the latter conditions
as survivability requirements by well-known Menger’s theorem in terms of cuts.

Throughout the paper, we denote the family of subsets {S; ∅
= S ⊂ V } by
F (V) and the set of edges with one end node in S and the other end node in V \ S

by δ(S). In other words, δ(S) is the minimal cut of G determined by a nonempty
subset S ⊂ V . For all S ⊆ V , we use S to denote V \ S.

F. Sharifov (�)
V.M. Glushkov Institute of Cybernetics, Kyiv, Ukraine

H. Kutucu
Karabuk University, Department of Computer Engineering, Karabuk, Turkey
e-mail: hakankutucu@karabuk.edu.tr

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_11

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_11&domain=pdf
mailto:hakankutucu@karabuk.edu.tr
https://doi.org/10.1007/978-3-319-94830-0_11

266 F. Sharifov and H. Kutucu

Since f (S) can be interpreted as a prediction of the capacity of the cut determined
by any nonempty subset S ⊂ V , we assume that f (S) is a symmetric submodular
function [11] and f (∅) = f (V) = 0. For such symmetric submodular function,
f (S) ≥ 0, since f (S) = f (S) and 2f (S) = f (S) + f (S) ≥ f (V) + f (∅) = 0.
We consider the case f (S) > 0 for each S ∈ F (V) which provides connectivity of
a spanning subgraph induced by edge set {e ∈ E; xe ≥ le > 0}.

We use Lemma 2 (see Section 3) to formulate NDPC as a linear integer program.
The lemma states that it is enough to include the survivability requirement only for
minimal cuts in the form of δ(S) to model of NDPC. This means that NDPC can be
formulated as the following integer program:

ψ(IP) = min
∑

e∈E
cexe, (1)

subject to

x(δ(S)) ≥ f (S), S ∈ F (V), (2)

xe ≥ le ≥ 0, e ∈ E, (3)

xe integral, e ∈ E. (4)

This problem was brought to our attention by Air Transportation Management
Department in National Aviation University of Ukraine in the following case [10].

Air Transport System (ATS) as a communication system should operate with
account of all the factors that stimulate the growth and efficiency of air transporta-
tion. The growth of air traffic and, accordingly, the efficient performance of all
types of services in the structure of ATS cause a number of essential reorganization
and technical changes in the major subsystems of the ATS. The main purpose
of these reconstructions is to improve the service at airports, to expand the route
network geographically and to increase flight frequency. In the process of planning
these stage changes, it needs to define the optimal flight frequency, the appropriate
structure of the route network. Total cost of works related to organizational and
technical transformations results from their summing up [2]. Airport capacity
in terms of flight frequency can be determined according to the Development
Reference Manual, developed by International Air Transport Association (IATA).

The route network is understood as a network, consisting of many airports as
its nodes and of nonstop routes as its edges. The total cost ci of i-th airport recon-
struction is defined as the sum of costs per unit at all stages of its reconstruction.
The vector lij represents the minimum passenger traffics (flow) between pair of
airports i and j with nonstop communication. For any subset S of airports, f (S)

is defined as total potentially passenger traffics which may be predictably arrival to
each airport in subset S and may be predictably departure from every airport of S.
Due to IATA, unknown capacity of any airport can be defined as the sum of unknown
passenger traffic flows on nonstop flight lines adjacent to this airport. Since f (S) is
a symmetric cut function by the definition, the problem can be naturally formulated
as NDPC.

Network Design Problem with Cut Constraints 267

The well-known NP -hard problems such as k-edge connected network design
problem [7] and the survivable network design problem (SNDP) with a given
connectivity type vector (rv; v ∈ V) [7, 9] are special cases of NDPC, when
f (S) = k and

f (S) = con(S) = min{max{rs; s ∈ S}, max{rt : t ∈ S}},

for any ∅
= S ⊂ V and f (∅) = f (V) = 0. By Menger’s theorem, we obtain
integer formulations for these problems by letting xe = 0 ∨ 1 in (4). Note that the
following submodular inequality

con(L)+ con(S) ≥ con(L ∪ S)+ con(L ∩ S)

may be held strongly, if

max{rs; s ∈ L ∩ S} > max{rt ; t ∈ L ∩ S}

for nonempty subsets L, T ⊂ V . The latter inequality holds in a few cases if |rv−rw|
is not ranged over big set of integers for any pair of distinct nodes v,w ∈ V . Since
rv ∈ {0, 1, 2} for many cases of SNDP in practice, con(S) can be considered as
a modular function. This fact facilitates the work for finding a violated constraint
in solving SNDP by the polyhedral approach. We will also approximate f (S) by a
modular function to facilitate the same work.

The NDPC may be solved in polynomial time depending on topology of the
graph G and the definition of the function f . When G is a complete graph and f (S)

is a symmetric cut function that is available via only an oracle (see [3, 14]) and all
edge costs equal to 0, then NDPC is the problem of finding a spanning subgraph,
so that f (S) is the capacity of the cut δ(S) determined by each S ∈ F (V). The
algorithm in [14] constructs such subgraphs using the values f ({v,w}) for all pair
of distinct nodes v,w ∈ V in O(n2) time. In Section 3, we use techniques [13–15]
to reduce the separation problem for inequalities (2) to the minimum cuts problem
for modular case of the function f .

In addition to the problems mentioned above, an example of the linear relax-
ation (1)–(3) can be given in the traffic engineering process of the network design
[1, 16], where xe can be interpreted as road strip (edge) e. More precisely, consider
an example on some transportation network G = (V ,E) and let xe = (xe; e ∈ E)

denote the current capacities of its edges. For any nonempty subset S ⊂ V , an
estimated capacity of the cut δ(S) can be computed using the techniques in [17]
on statistic data about rates of routing traffics in G. The edge capacities xe can be
considered as normal if Δ(f, x) = 0, where

Δ(f, x) = min{x(δ(S))− f (S); S ∈ F (V)}.

Indeed, if Δ(f, x) > 0, then it is clear that x(δ(S)) > f (S) for any ∅
= S ⊂
V , and hence the capacities xe are superfluous. If Δ(f, x) < 0, then there exist

268 F. Sharifov and H. Kutucu

subsets S1, . . . , Sq ∈ F (V) (q ≥ 1) such that x(δ(Sk)) < f (Sk) for k = 1, . . . , q.
Therefore, the capacities of the cuts δ(Sk) are not enough for normal operation of
the network. It needs to extend the capacities of the cuts δ(Sk) up to f (Sk). So, the
problem with objective (1) is subject to the following constraints:

x(δ(Sk)) ≥ f (Sk), k = 1, . . . , q,

xe ≥ xe ≥ 0, e ∈ E.

For a given vector x = (xe; e ∈ E), if Δ(f, x) ≥ 0, then it satisfies all
inequalities (2). Under the trivial inequalities (3), the separation problem for a vector
x = (xe; e ∈ E) is Δ(f, x), which is NP -hard, in general. The reason is that if f

is a cut function; that is, f (S) = p(δ(S)) for some given vector p, and pe > xe,
then Δ(f, x) is the well-known NP -hard maximum cut problem on G with edge
capacities pe − xe.

The theory of linear programming [12] states that a linear program with
exponential number of inequalities can be solved in polynomial time if and
only if the separation problem associated with these inequalities is polynomially
solvable. This result has theoretical consequences. For solving network design
problems, approximation solutions and polyhedral approaches use the combination
of separation algorithms and linear programming solvers. The difficulty with this
approach to solve NDPC is that the separation problem Δ(f, x) is NP -hard. In
order to use the same techniques in solving NDPC, we first show that when δ(S)

is not a non-minimal cut, that is, after deleting the edges of δ(S) the graph G splits
more than two connected components, then the inequalities (2) for S and S can be
dropped by Lemma 2 in Section 3. Thus, only minimal cuts can be considered in
solving NDPC. For this reason, we consider the collection F (T) of the fundamental
cut sets to be determined by deleting each edge of a spanning tree T of G, since
each subset S ∈ F (T) determines the minimal cut δ(S). We restrict F (V) to
F (T) in (2) and consider the two special cases of NDPC, namely, when NDPC
includes constraints (2) only for S ∈ F (T) (NDPC1), and when NDPC includes
the constraints (2) in the form of equations only for each S ∈ F (T) (NDPC2). We
will call their standard linear programming (LP) relaxations as fundamental cut sets
relaxations of NDPC and show that the simplex algorithm finds optimal solutions to
the LP-relaxation of NDPC2 in at most m−n+1 iterations. We illustrate advantages
or disadvantages of the LP-relaxations of NDPC1 and NDPC2 in the solving NDPC
in a simple example.

We show that the problem defining a spanning tree for obtaining the fundamental
cut sets whose LP-relaxation has smaller optimal objective value is NP -hard.
For Hamiltonian path as spanning tree T , the corresponding fundamental cut sets
LP-relaxations of NDPC have an integer-valued optimal solution for any integer-
valued function f . In particular, this shows that the LP-relaxation of the constrained
forest problem (CFP) [6] has an integer-valued optimal solution for the proper
function with values 1 on the fundamental cut sets determined with respect to some
Hamiltonian path. In Section 2, we will describe these in more detail.

Network Design Problem with Cut Constraints 269

In Section 3, we present a strongly polynomial algorithm for finding a solution
to the dual problem of the linear relaxation of NDPC based on the fact that the
separation problem Δ(w, x) can be solved by solving at most n minimum cut
problems for a modular function w as approximation f . In order to get a suitable
modular function for approximation to f , we use the convex hull of bases of the
extended polymatroid associated with the function f . The solution to the dual
problem is used to define initial spanning tree T in G and for finding an optimal
solution x ∈ RE to the fundamental cut sets LP -relaxations of NDPC. Then, we
use the results in [4] and the branch and cut techniques to convert the vector x

to the solution of NDPC. In conclusion, we discuss several possible directions for
improving the accuracy of approximate solution to NDPC.

2 Fundamental Cut Sets LP-Relaxations of NDPC

In this section, we consider fundamental cut sets LP-relaxations of NDPC as special
cases of (1)–(3) to obtain a solution to NDPC. Let T be a spanning tree of G. We
denote the edges of the tree T by t1, . . . , tn−1. Removing any edge tk splits T into
two subtrees whose node sets are denoted by Vk and V k = V \ Vk . So, each edge
tk ∈ T corresponds to the cut δ(Vk) and vice versa. We set F (T) = {V1, . . . , Vn−1}
and call it as fundamental cut sets of the spanning tree T . Consider the following
linear programming problem:

min
∑

e∈E
cexe,

subject to

x(δ(S)) ≥ f (S), S ∈ F (T),

xe ≥ le ≥ 0, e ∈ E.

It is convenient to write it in the variables ye = xe − le as follows:

ϕ1(T) = min
∑

e∈E
ceye, (5)

subject to

y(δ(Vk)) ≥ b(tk), k = 1, . . . , n− 1, (6)

ye ≥ 0, e ∈ E, (7)

270 F. Sharifov and H. Kutucu

Fig. 1 Cycle Cn, spanning
tree T , and n− 1
fundamental cuts

1

2

3

4n

where b(tk) = f (Vk) − l(δ(Vk)) for all k = 1, . . . , n − 1. We call this problem
LP-relaxation of NDPC1. By the similar way, the LP-relaxation of NDPC2 is the
following linear program:

ϕ2(T) = min
∑

e∈E
ceye, (8)

subject to

y(δ(Vk)) = b(tk), k = 1, . . . , n− 1, (9)

ye ≥ 0, e ∈ E. (10)

Both linear latter programs have m + n − 1 constraints and m variables. They will
be called fundamental cut set LP-relaxations of NDPC. Our NDPC algorithm in the
next section solves problems (5)–(7) or (8)–(10) for solving (1)–(3). To show that
which of two problems NDPC1 and NDPC would be suitable to solve NPDC, let
us consider NDPC1 and NDPC2 on the cycle Cn with n nodes and n edges, shown
in Figure 1, where the bold lines (1, 2), (2, 3),. . . , (n − 1, n) are the edges of the
spanning tree T . Let

b(12) = 1, b(23) = 2, . . . , b(n− 1, n) = n− 1

and let ce = 1 for all edges e of Cn. The vectors

y1 = (y1
n−1,n = 1, y1

1,n = n− 2, y1
e = 0 for other edges e)

and

y2 = (y2
12 = 0, y2

23 = 1, . . . , y2
n−1n = n− 2, y2

1n = 1)

are optimal solutions to the LP-relaxations of NDPC1 and NDPC2, respectively.
Clearly,

{v} = Sv /∈ F (T),

for nodes v = 1, . . . , n − 1 of Cn. From bt > 0 for edges of T , it follows that
l(δ(Sv)) < f (Sv) for v = 1, . . . , n− 1 of Cn. Hence,

x1(δ(Sv)) = l(δ(Sv)) < f (Sv)

Network Design Problem with Cut Constraints 271

for the vector x1 = y1 + l and

x2(δ(Sv)) > l(δ(Sv))

for the vector x2 = y2 + l.
The above examples illustrate that using (8)–(10) in our algorithm is more

successful than using (5)–(7). Because we can reduce the number of subproblems
obtained in solution of NDPC by the branch and cut techniques using (8)–(10).
Based on these observations, using (5)–(7) is reasonable if f (S)− l(δ(S)) is almost
a modular function, else using (8)–(10) is reasonable for solving NDPC.

Let A denote the (n− 1)×m constraint matrix of the problems (5)–(7) and (8)–
(10). Let the vector b = (b(tk); k = 1, . . . , n− 1). Since each edge tk is an edge of
the cut δ(Vk), the matrix A is in the form of (N, I), where I is (n − 1) × (n − 1)

identity matrix whose columns are indexed by edges tk of the tree T . The rows for
δ(Vk) of matrix A are the 0 or 1 characteristic vectors of the cuts δ(Vk), for any tk in
T (if e is an edge of the cut δ(Vk), then this row has 1 in the column e, 0 otherwise).
A column h in N contains 1 in a row δ(Vk), if the edge tk is an edge of the cycle
C(h) obtained by adding the edge h ∈ E \ T to the tree T . Conversely, if t1, . . . , tp
are edges of the cycle C(h), then h is just an edge of the cuts δ(V1), . . . , δ(Vp). So,
we have the following property.

Property 1 For any edge h ∈ E \ T , if t1, . . . , tp are edges of a cycle C(h), then
the column h has just 1 in the rows corresponding to cuts δ(Vk), k = 1, . . . , p. This
means that vector columns indexed by t1, . . . , tp and h are linearly dependent.

For any e ∈ E, we write e ∈ C(h) if e is an edge of the cycle C(h). For edges
e, h ∈ E \ T , if the cycle C(e) contains only edges tk ∈ C(h), then the cycle
C(e) is called a subcycle of C(h), that is, the edge e is a chord of C(h). Let ae

denote the column e of the matrix N for each edge e ∈ E \ T . It follows that
ah ≥ ae for any chord e of the cycle C(h). We also assume that b(tk) ≥ 0 for each
Vk ∈ F (T), since otherwise the problem (8)–(10) is infeasible. Hence, the variables
yt1 , . . . , ytn−1 corresponding to the columns of I form basis for (5)–(7) and (8)–(10).
The following propositions will be used for solving the problems (5)–(7) and (8)–
(10).

Proposition 1 For an edge h ∈ E \ T , if

∑

tk∈C(h)

ctk ≤ ch, (11)

then the edge h can be deleted in the graph G.

Proof The dual problems of (5)–(7) and (8)–(10)

max
∑

tk∈T
b(tk)u(tk), (12)

272 F. Sharifov and H. Kutucu

∑

δ(Vk)(e
u(tk) ≤ ce, e ∈ E (13)

include conditions u(tk) ≤ ctk associated with the edges tk ∈ T . By Property 1,

∑

δ(Vk)(e
u(tk) =

∑

tk∈C(e)

u(tk) ≤
∑

tk∈C(h)

ctk ≤ ch.

The constraints (13) for e = h is the sum of those for e = tk ∈ C(h). Hence, the
edge h can be deleted in G. ��
Proposition 2 Let C(h) be a cycle in T ∪ {h} and let e be a chord of C(h) for
e, h ∈ E \ T . If

∑

tk∈C(h)

ctk − ch ≤
∑

tk∈C(e)

ctk − ce, (14)

then the edge h can be deleted in the graph G.

Proof The dual problem of (5)–(7) can be represented as

min
∑

tk∈T
b(tk)z(tk), (15)

subject to
∑

δ(Vk)(e
z(tk) ≥

∑

tk∈C(e)

ctk − ce, e ∈ E \ T , (16)

z(tk) ≥ 0, Vk ∈ F (T), (17)

where

z(tk) = ctk − u(tk).

The dual problem of (5)–(7) is (15)–(17) with the following additional conditions

z(tk) ≤ ctk , Vk ∈ F (T).

Since the edge e is a chord of C(h), ah ≥ ae, that is,

∑

δ(Vk)(h
z(tk) ≥

∑

δ(Vk)(e
z(tk).

It follows that

∑

δ(Vk)(h
z(tk) ≥

∑

δ(Vk)(e
z(tk) ≥

∑

tk∈C(e)

ctk − ce ≥
∑

tk∈C(h)

ctk − ch,

Network Design Problem with Cut Constraints 273

where the last inequality is (14). Therefore, we can delete the constraints (16) for
e = h. In other words, the edge h can be deleted in the graph G. ��

By Proposition 2, if (14) holds for one of the chords e1, . . . , ep ∈ E \ T of any
cycle C(h), then the constraint (16) for e = h can be deleted. After the examination
of (14) for all cycles and for their chords, in the result, we have

∑

tk∈C(h)

ctk − ch >
∑

tk∈C(ei)

ctk − cei
(18)

for any cycle C(h) (h ∈ E \ T) and its chords e1, . . . , ep ∈ E \ T .
By Propositions 1 and 2, preliminary analysis is necessary in order to find edges

e ∈ E \ T for which the conditions (11) and (14) hold. We delete all these edges
from the graph G. It is clear that this analysis can be carried out in O(m − n + 1)

time. Therefore, it can be assumed that

∑

tk∈C(h)

ctk > ch, for all edges h ∈ E \ T (19)

and the condition (18) holds for any cycle C(h) and its chords e ∈ E \ T .
The linear relaxations of NDPC1 and NDPC2 can be solved by one of the well-

known simplex algorithms. Despite the fact that, theoretically, the number of pivot
steps of the simplex algorithms is exponential, the following theorem states that the
number of the classical simplex algorithm with Dantzig’s pivot rule is bounded by
a linear function of the number of edges for solving the linear program (8)–(10). It
seems that to find a polynomial time simplex method and the closely related Hirsch
conjecture proof are hard problems, in general.

Theorem 1 The simplex algorithm finds an optimal solution to the LP-
relaxation (8)–(10) of NDPC2 in at most m− n+ 1 iterations.

Proof Without loss of generality, we assume b > 0, since if b(tk) = 0 for some
tk , then x0

tk
= ltk in an optimal solution and hence the edges of the cut δ(Vk) can

be deleted in G and the problem (8)–(10) can be solved independently for each
connected component. Since b > 0, we can take

y0
tk
= b(tk) for all tk ∈ T ,

y0
e = 0 for all e ∈ E \ T

as the initial basic feasible solution for the problem (8)–(10). Hence, (8)–(10) has
an optimal solution by the theory of linear programming. According to (19), the
reduced cost is

ce = ce −
∑

tk∈C(e)

ctk < 0,

274 F. Sharifov and H. Kutucu

for each e ∈ E \ T . Because ye can be selected as the entering variable for any
e ∈ E \ T . From (8), it follows that the classical simplex algorithm selects yh for
which

ch = min{ce; e ∈ E \ T },

for entering into the basic y0 and y0
e = 0 for any chord e of the cycle C(h).

Moreover, y0
tq
= 0, since ytq = 0 is a leaving variable for some edge tq ∈ C(h),

since columns for edges tq ∈ C(h) and h as vectors are linearly dependent by
Property 1.

Let the simplex algorithm proceed to a basic solution y1 = (y1
e ; e ∈ E) by

choosing to bring yg into basic y and removing the variable yh from the basic y

for first time. Then, the following two cases are possible for the edges h and g with
respect to fundamental cuts.

Case 1: In some basis solutions generated before y1, when yh became a basic
variable and ytq nonbasic variable, there is a chord of C(h), such that yt > 0 for
edges t in C(e0) = e0 ∪ T and tq /∈ C(e0) and the edge e0 is not a basic edge, i.e.,
ye0 = 0. Since ytq = 0, C(e0) itself is some cycle and the edge e0 is entering into
some basic solution and some edge t1 ∈ C(e0) ∩ T is leaving. This can be repeated
for some chord e1 of the cycle C(e0), so that yt > 0 for edges t in C(e1) = e1 ∪ T

and t1 /∈ C(e1) and the edge e1 is not a basic edge and so on. Assume that this
process is carried out for edges ei , where i = 0, 1, . . . , p. By Proposition 1,

∑

tk∈C(ei)

ctk − cei
> 0,

for edges e = e0, e1, . . . , ep−1 and the variables for these edges are in the basic
solution generated before y1. When yh is a leaving basic variable from the basic
solution y and yg is an entering basic variable into y, the existing basic solution
can be improved by entering into basic yg for the chord g = ep of C(h), i.e., the
inequality

∑

ei

{
∑

tk∈C(ei)

ctk − cei
} >

∑

tk∈C(h)

ctk − ch

holds.
Figure 2 displays a piece of T whose edges are bold lines, where y1

t for bold
edges are in the basic solution y1 except tq = (6, 7). When yh = y17 entered into the
basic solution, ytq became a nonbasic variable. In some solutions generated before
y1, for edges e and t on the subcycles C(3, 6) and C(3, 5) of the cycle C(1, 7),
the variables ye and yt became a basic and a nonbasic variable, respectively, in the
following order:

• The y36 became a basic variable and t56 became nonbasic variable on the
subcycle C(3, 6) of C(1, 7);

Network Design Problem with Cut Constraints 275

Fig. 2 h = (1, 7),
tq = (6, 7), g = (3, 7),
e0 = (3, 6), t1 = (6, 5),
e1 = (3, 5), t2 = (4, 5)

1

7

6

5

43

2

Fig. 3 h = (1, 5),
tq = (3, 4), g = (4, 7) 1 5

6

4

7

3

2

• The y35 became a basic variable and t45 became nonbasic variable on the
subcycle C(3, 5) of C(1, 7);

After y36 and y35 became basic variables, yg = y37 is entering variable into the
basic solution y1 and yh = y17 is a leaving variable from y1 with respect to the
cycle with edges g = (3, 7), h = (1, 7), t = (1, 2), t = (2, 3).

Case 2: The edge tq is on the cycles C(h) and C(g) that are not subcycles of
C(h). As in Case 1, in some basic solutions generated before y1, for some edges
t in T ∩ C(h), the variables yt and ye became a nonbasic and a basic variable,
respectively, for some subcycles C(e) of C(h). Differently from Case 1, the cycle
C(g) is not a subcycle of C(h) and there is a cycle C in G such that the edges h,
g and some chords of C(h) are on C. Figure 3 indicates the cycle C with edges
h, (1, 3), (3, 7), g, (4, 5) for which y1

e (e = (1, 3), (4, 5), h) and y1
t = y1

37 (t =
(3, 7) ∈ T) are basic variables.

Now, from that yg is an entering basic variable to y implies

∑

δ(Vk)(g
u(tk) > cg,

for the simplex multipliers {u(tk)} as trial solution to the dual of (8)–(10) which
means that the dual constraint associated with the variable yg is violated. To enter
yg to the basic solution, the simplex algorithm defines new multipliers {u(tk)}
satisfying the following equation:

276 F. Sharifov and H. Kutucu

∑

δ(Vk)(g
u(tk) = cg.

This means that in both cases,

∑
{u(tk); for edges tk on C(h) and C(g)}

is decreasing after the simplex algorithm defined the basic y1. Therefore, each yh

can be a basic variable only once and hence the simplex algorithm finds an optimal
solution to the problem (8)–(10) in at most m− n+ 1 iterations. ��

Although the problems (5)–(7) and (8)–(10) have n − 1 constraints, the vector
x∗ = (x∗e = y∗e+le; e ∈ E) satisfies at least 2(n−1) constraints in (2) (see Lemma 2
in the next section), where y∗ denotes an optimal solution to the fundamental cut
sets of NDPC. We use this fact to determine an approximate solution to NDPC in
Section 3.

Consider the problem (5)–(7) on the graph G in Figure 4. Let T be the spanning
tree with bold edges (1, 4), (2, 5), (3, 6), (4, 5), (5, 6), for which

F (T) = {V14 = {1}, V25 = {2}, V36 = {3}, V45 = {1, 4}, V56 = {3, 6}}.

The edges crossing with the dashed lines represent edges of the corresponding
fundamental cuts whose numbers are shown in rectangles at the end of the dashed
lines. Let b(14) = 5, b(25) = 6, b(36) = 6, b(45) = 7, and b(56) = 8 for the
fundamental cut sets in F (T). The number next to each edge e indicates its cost ce.
Since conditions (18) and (19) do not hold at any edge of the cycles C(12), C(13),
C(23), C(46), any edge cannot be deleted in G. In this example, y14 = 5, y25 = 6,
y36 = 6, y45 = 7, and y56 = 8 are initial basic variables that correspond to the
edges in T . In the first iteration, the variable y13 is an entering basic variable, y14 is

Fig. 4 Graph G, spanning
tree T , and 5 fundamental
cuts

1

4

5

5

2

5

6

1

4

2
3

3
44

4

3

33

3
3

Network Design Problem with Cut Constraints 277

a leaving basic variable. In the next three iterations, y23 and y36, y46 and y56, y12
and y25 become basic and nonbasic variables, respectively. The optimal solution
y∗13 = 2.5, y∗32 = 3.5, y∗12 = 2.5, y∗46 = 2, and y∗e = 0 for the remainder edges.

Now, consider the problem (8)–(10) on the graph in Figure 2, but let ce = 1
for each edge of the graph G and b(tk) = 1 for each edge of the spanning tree
T in Figure 2. The simplex algorithm finds the following optimal solution to the
problem (8)–(10) in four iterations, where y∗13 = 1/2, y∗32 = 1/2, y∗12 = 1/2, and
y∗e = 0 for the remainder edges.

A related problem to NDPC2 is the following optimum communication tree
problem (OCTP) [8]. Let a set V of n nodes and a set of requirements rvw for pair of
distinct nodes v and w in V be given. The OCST problem is to build a spanning tree
connecting these n nodes such that the total cost of the spanning tree is minimum
among of all spanning trees. The cost of communication for a pair of nodes v and
w is rvw multiplied by the sum of the distances cij of edges on the unique path
connecting v and w in the spanning tree. The cost of a spanning tree is the sum of
communications for all pair of nodes in the spanning tree. In [8], it is noted without
a proof that the OCST problem is hard to solve, in general.

Let G = (V ,E) be a complete graph on n nodes with weight cij of edges and
let R = (V ,E(R)) denote a graph of given requirements, that is, (i, j) ∈ E(R) if
rij > 0. Let δR(S) denote a cut in the graph R determined by subset ∅
= S ⊂ V .
The OCST problem on graph G can be formulated as follows to find a spanning tree
T∗ of minimum cost:

c(T∗) =
∑

e∈E
cexe → min,

subject to

xe = r(δR(Ve)), Ve ∈ F (T∗).

For graphs G with cyclomatic number ν(G) = m−n+1 bounded by some small
constant, the spanning tree T∗ can be found by enumerating all spanning trees in G.

In order to solve the OCST problem in general, one can use the following
observations on the problem of OCST. The first observation is that, for a spanning
tree T0 of the graph G, as a feasible solution to the OCST problem, the vector
y with components yt = bt for each t ∈ T0 and ye = 0 for all e ∈ E \ T0
is the initial basic feasible solution to the problem ϕ1(T0) with right-hand vector
b = (bt = r(δR(Vt)); t ∈ T0), and y satisfies the above constraints when T∗ = T0.

Let T (T0) denote the set of spanning trees derived from tree T0 by adding any
edge e ∈ E \ T0 to T0 and deleting an edge t ∈ T0 on the unique cycle in T0 ∪ {e}.
The second observation is that if the basic solution y = (ye; e ∈ E) is an optimal
solution to ϕ1(T0), then c(T0) ≤ c(T) for any T ∈ T (T0). Note that heuristics
based on Propositions 1 and 2 can be used for defining the spanning tree T0.

It easy to see that the inequality c(T) ≤ ϕ1(T), as cutting plane, allows to
eliminate O(nν(G)) spanning trees from the set of feasible solutions. Taking into

278 F. Sharifov and H. Kutucu

account ν(G) = O(n2) for a complete graph G, the use of inequality c(T) ≤
ϕ1(T) essentially reduces the number of branching iterations for solving the OCST
problem on G.

Due to the second observation, we get a generalization of the following result.
For the case when rij is any nonnegative number and cij =1 for all edges (i, j),
it was shown that the well-known Gomory and Hu algorithm constructed spanning
tree T (GH) of the complete graph with the capacity rij of edges is an OCST [8].
Indeed, from Propositions 1 and 2, it follows that if nonnegative costs of edges
satisfy (11) with respect to T (GH), then the abovementioned initial basic feasible
solution for T (GH) = T0 is the optimal solution to the problem ϕ1(T (GH)) and
c(T (GH)) ≤ c(T) for any spanning tree T in G, that is, T (GH) = T∗. So, there
are a lot of nonnegative edge costs ch
= 1, that satisfy the inequality (11) for edges
h ∈ E \ T (GH).

Consider the problem

ϕ2(T∗) = min{ϕ2(T); T is a spanning tree in G}, (20)

when f (S) = r(δ(S))+b0 for some constant b0 > 0 in NDPC. We show that below
the problem (20) is NP -hard for arbitrary costs ce ≥ 0 of edges e ∈ E. So, the
Gomory and Hu algorithm constructed spanning tree may not be optimum for this
case of costs. Indeed, let ce ≥ 0 be arbitrary costs and let lij = rij in NDPC. Then,
b(tk) = b0 for all edges tk of any spanning tree T in G. Let ce0 = min{ce; e ∈ E}.
It is easy to see that

ce0b0 ≤ ϕ2(T)

for any spanning tree T in G. Let Π be the set of Hamiltonian paths connected the
end nodes v0 and w0 of the edge e0 = (v0, w0).

Lemma 1 If T is in Π , then ϕ2(T) = ce0b0, otherwise ϕ2(T) > ce0b0.

Proof Let T be Hamiltonian path connecting the end nodes of the edge e0 (T ∈ Π).
Hence, the cycle C(e0) contains all edges of T . Moreover, the vector y = (ye0 =
b0, ye = 0, e ∈ E \ e0) is a feasible solution to (8)–(10). Since T ∈ Π , any edge
e ∈ E \ T is a chord of C(e0). There is a feasible solution z = (z(tk) ≥ 0, tk ∈ T)

to the dual problem (15)–(17) such that

∑

δ(Vk)(e0

z(tk) =
∑

tk∈C(e0)

ctk − ce0 ,

by (18). It is easy to see that the complementary slackness conditions hold for the
vectors z and y. So, y is an optimal solution to (8)–(10) with the objective value
ϕ2(T) = ce0b0.

Now, let T /∈ Π . By the theory of linear programming, there exists a sufficiently
small number ε > 0 such that an optimal solution to (8)–(10) is not changed after

Network Design Problem with Cut Constraints 279

setting ce = ε for all ce = 0. So, we may assume that ce > 0 for all e ∈ E. From
T /∈ Π , it follows that there are at least two cycles C1 and C2 obtained by adding
some two edges of E\T to T and there are two edges e1 ∈ C1 and e2 ∈ C = C2\C1
for which ye1 > 0 and ye2 > 0. So, e1 ∈ E \ C and

ϕ2(T) =
∑

e∈E
ceye =

∑

e∈C
ceye +

∑

e∈E\C
ceye

≥ ce2ye2 + ce0

∑

e∈E\C
ye > ce0b0.

Thus, ϕ2(T) > ce0b0 for any T /∈ Π . ��
By Lemma 1, ϕ2(T∗) = ce0b0 if and only if T∗ is a Hamiltonian path connecting

the end nodes v0 and w0 of the edge e0 = (v0, w0). Therefore, the problem of
finding ϕ2(T∗) is equivalent to the NP -complete Hamiltonian path problem. It
follows that (20) is NP -hard in general. Similarly, it can be shown that the problem

ϕ1(T∗) = min{ϕ1(T); T is a spanning tree in G}

is NP -hard, too.
As a conclusion of Section 2, notice the following facts about the polytope

defined by (9) and (10). Let P(T) denotes this polytope and let its vertices vT

and vop correspond to initial and an optimal basic solutions. By Theorem 1, it
follows that the minimum distance between the vertices vT and vop is not greater
than m − n + 1 in P(T). Theorem 1 states that the Hirsch conjecture [5] holds for
the facet containing vertices vT , vop, if m ≤ 3(n− 1) in a graph G.

The above examples show that (5)–(7) and (8)–(10) have no integer-valued
optimal solutions for F (T) to be defined with respect to some spanning tree T .
Note that in (5)–(7) and (8)–(10) it is not required that f is a submodular function.
But, when T is any Hamiltonian path, the 1’s stay one after another in each column
in the matrix A from which it follows that the matrix A is unimodular [12]. This
means that the problem (8)–(10) has an integer-valued solution for an integer vector
b, when T is any Hamiltonian path. The problem (8)–(10) with the vector b = 1 is
the LP-relaxation of CFP when the proper function f (S) = 1 (f : 2V → {0, 1} [6])
for the fundamental cut sets S ∈ F (T). Hence, if the tree T is any Hamiltonian path,
then the LP-relaxation of this case of CFP has an integer-valued optimal solution.

3 Algorithms for NDPC

In this section, we give an algorithm for solution to NDPC by solving sequence
of the fundamental cut sets LP-relaxations of NDPC and the separation problem
Δ(w, x) for a given vector x when f is replaced by a modular function w defined on

280 F. Sharifov and H. Kutucu

subsets S ⊆ V . First, we need to prove the following useful results to solve NDPC.
We say that a node subset S is minimal cut set if the graph G has two connected
components after deleting the edges in δ(S), otherwise S is called non-minimal cut
set.

Lemma 2 If W ⊂ V is a minimal cut set, then the constraints (2) can be deleted
for S = W . If W is a non-minimal cut set, then the constraints (2) can be deleted
for S = W and S = W .

Proof Suppose that for some K,L ⊂ V , the graph G has no edges with one end
nodes in K and other end nodes in L. Then,

x(δ(F)) = x(δ(K))+ x(δ(L)) ≥ f (K)+ f (L),

where F = K ∪ L. Since

f (K)+ f (L) ≥ f (K ∪ L)+ f (K ∩ L) = f (F)+ f (∅) = f (F),

the constraints (2) can be deleted for S = F and S = F . So, if G has no edges
with one end node in K and other end nodes in L, the constraints (2) for S = F and
S = F are the sum of those for S = K and S = L.

Now, let W ⊂ V be a minimal cut set. Since δ(W) = δ(W) and f (W) = f (W),
the constraint (2) can be deleted for S = W . Suppose W ⊂ V is a non-minimal
cut set. We may assume that after deleting the edges of δ(W) the graph G has three
components G1, G2, and G3, since to prove the lemma one of subgraphs G1, G2,
and G3 can be disconnected. Either W = K ∪ L, W = V (G3) or W = V (G3),
W = K ∪ L for K = V (G1) and L = V (G2). Suppose that W = K ∪ L. Since
W is non-minimal cut set, there is not an edge with one end node in K and other
end node in L. As shown above, the constraints (2) for S = W and S = W can be
deleted. ��

Lemma 2 states that if a vector x satisfies constraints (2) only for minimal cut
sets in F (V), then x is a solution to NDPC. It can be easily shown that an optimal
solution to Δ(w, x) is a minimal cut for a modular function w defined on subsets
of V . Moreover, the following Lemma 3 also shows some advantages of using a
modular function in Δ(w, x).

An optimal solution to Δ(w, x) is a minimal cut. So, we want to define
appropriate modular function w close to f to treat the hard problem Δ(f, x).
Consider the extended polymatroid

EP = {w = (wv, v ∈ V) ∈ RV ; w(S) ≤ f (S), S ⊆ V }

associated with the function f . For each linear ordering of the elements in V , the
greedy algorithm defines different bases w1, . . . , wq of EP , that is, wi ∈ EP and
wi(V) = f (V). Let a vector w of dimension n is the convex hull of the bases
w1, . . . , wq . Then, w(S) ≤ f (S) and w(V) = f (V).

Network Design Problem with Cut Constraints 281

Consider the modular function w(S) defined on subsets S ⊆ V . When the
number q is taken larger and larger, the function w(S) becomes better approximation
to the function f (S). However, it makes good sense to take the number q = O(nk)

for some fixed integer k, for example, k = 3, 4.

Lemma 3 For the modular function w(S) defined on subsets of V , the Δ(w, x) can
be found by performing at most n minimum cut computations.

Proof First, note that from w(V) = f (V) = 0, it follows wv > 0 and wv < 0 for
some nodes in V . Let

V + = {v;wv > 0, v ∈ V }, V − = {v;wv < 0, v ∈ V }.

We introduce a source node s and a sink node r in the network G = (V ,E). We
connect the source s with each node v ∈ V + by edge (s, v) with the capacity xsv =
wv and the sink r with each node v ∈ V − by edge (v, r) with the capacity xvr =
−wv . All edges e in E have capacity xe. Let Gsr denote this network and let δsr (L)

be a cut in Gsr such that s ∈ L and r ∈ V (Gsr) \ L. It is clear that Gsr does not
contain edges (s, r) and paths s → v→ r for any v ∈ V . Let L = S ∪ {s} for some
S ⊂ V . By the construction of the network Gsr , if a node v is not adjacent to s or r ,
then wv = 0, that is, wv = 0 for each node v /∈ V + or v /∈ V −. Hence,

x(δsr (L)) = x(δ(S))+ w(V + \ S)− w(V − ∩ S).

From

w(V + \ S) = w(V +)− w(V + ∩ S),

it follows

x(δsr (L)) = x(δ(S))+ w(V +)− w(V + ∩ S)− w(V − ∩ S)

= x(δ(S))− w(S)+ w(V +),

where w(V +) is constant. The problem Δ(w, x) is reduced to the s − r minimum
cut problem

min{x(δsr (L)); L ⊂ V (Gsr)}

in the network Gsr , under conditions that L
= {s} and L
= {s} ∪ V , that is, L =
S ∪ {s} for some ∅
= S ⊂ V . So, it needs to consider the cases when L = {s} or
L = {s} ∪ V is a minimizer for above latter problem. If L = {s}, then we assign a
huge capacity for each edge (s, v) and each time define a minimum cut in Gsr . If
L = {s} ∪ V , then we do the same with respect to edges (v, r). Thus, after solving
the s−r minimum cut problem at most n time, we define a minimizer S∗ to Δ(w, x),
so that ∅
= S∗ ⊂ V . ��

282 F. Sharifov and H. Kutucu

To solve the separation problem for a given vector x ∈ RE and the constraints
(2), besides the above Lemmas, we use the binary branching techniques based on
the following result.

Let av = f (V − v) for each v ∈ V and let ω(S) = f (S) + a(S). The function
ω(S) = f (S) + a(S) is a polymatroid, that is, ω(S) is submodular, increasing
(ω(L) ≤ ω(S), for L ⊆ S), and normalized (ω(∅) = 0) [4]. We have

ω(S)+ a(S) = ω(S)− a(S)+ a(V) = f (S)+ a(V).

Hence, x(δ(S)) ≥ f (S) if x(δ(S)) ≥ ω(S)+a(S)−a(V). Since x(δ(S)) = x(δ(S)),
we consider the following problem

Δ(a, x) = min{x(δ(S))− a(S); S ⊆ V }.

Similarly to the above reduction of Δ(w, x), the problem Δ(a, x) can also be
computed by performing at most n minimum cut computations on the network Gs

constructed as follows. We add only one node s to G as source, since av ≥ 0 for
each v ∈ V , that is, V − is an empty set and a(V − ∩ S) = 0 for each S ⊆ V . By the
same way, it can be shown that computing Δ(a, x) is reduced to performing at most
n minimum cut computations on the network Gs . We need the following lemma on
a minimizer S∗ of Δ(a, x).

Lemma 4 The following statements hold for the minimizer S∗. From

x(δ(S∗))− a(S∗) ≥ 0, (21)

it follows x(δ(S)) ≥ f (S) for each nonempty S ⊂ V . If

x(δ(S∗))− a(S∗) ≥ ω(S∗)− a(V), (22)

then x(δ(K) ≥ f (K) for all K ⊆ S∗ and x(δ(L) ≥ f (L) for all L ⊇ S∗. From

x(δ(S∗))− a(S∗) ≥ ω(S∗)− a(V), (23)

it follows x(δ(S)) ≥ f (S) for all S ⊆ S∗.

Proof Let the inequality (21) hold for the vector x and the minimizer S∗. Then, for
any nonempty S ⊂ V , we obtain that

x(δ(S))− a(S) = x(δ(S))− a(S)

≥ x(δ(S∗))− a(S∗) ≥ 0 = ω(V)− a(V) ≥ ω(S)− a(V),

since 0 = f (V) = ω(V)− a(V) and x(δ(S)) = x(δ(S)). So, x(δ(S)) ≥ f (S).
Now, let the inequality (22) hold for the vector x and the minimizer S∗. Then, for

K ⊆ S∗,

Network Design Problem with Cut Constraints 283

x(δ(K)− a(K) = x(δ(K)− a(K)

≥ x(δ(S∗))− a(S∗)) ≥ ω(S∗)− a(V) ≥ ω(K)− a(V).

The last inequality follows from that ω(S∗) ≥ ω(K) for all K ⊆ S∗ (ω is
increasing). So, x(δ(K) ≥ f (K). Now, let L ⊇ S∗. Since L = K for some K ⊆ S∗,

x(δ(L)) = x(δ(L)) = x(δ(K)) ≥ f (K) = f (K) = f (L).

So, x(δ(L) ≥ f (L) for any L ⊇ S∗.
By the same way, it can be shown that x(δ(S) ≥ f (S) for any S ⊆ S∗, when the

inequality (23) is true. ��
We now turn to the problem (1)–(3). For each nonempty S ⊂ V and any solution

x = (xe; e ∈ E) of the problem (1)–(3), we have

f (S)− l(δ(S)) ≤ x(δ(S))− l(δ(S)) = z(δ(S)),

where z = x − l. It follows that z is a solution to the following problem,

min
∑

e∈E
ceze, (24)

subject to

z(δ(S)) ≥ f (S)− l(δ(S)), S ∈ F (V), (25)

ze ≥ 0, e ∈ E. (26)

It is easy to see that the problem (1)–(3) can be rewritten as (24)–(26) for z =
x − l. Consider the dual problem of (24)–(26).

ψ(DP) = max ψD(u) =
∑

S⊂V

(f (S)− l(δ(S)))uS, (27)

subject to
∑

S:e∈δ(S)

uS ≤ ce, e ∈ E, (28)

uS ≥ 0, ∅
= S ⊂ V. (29)

Now, let u = (uS; ∅
= S ⊂ V) be some solution to this dual problem. Then,
ψD(u)+∑

e∈E cele is a lower bound for NDPC, since

ψD(u)+
∑

e∈E
cele ≤ ψ(DP)+

∑

e∈E
cele = ψ(LP) ≤ ψ(IP)

284 F. Sharifov and H. Kutucu

by the duality theory of linear programming, for the optimal values ψ(LP) and
ψ(IP) of the objective functions of the problem (1)–(3) and NDPC. Based on
Lemma 3, a solution u to (27)–(29) can be found effectively by the following greedy
algorithm.

3.1 Defining an Initial Spanning Tree

1. Define Cut(S(e)) = max{w(S)− l(δ(S)); e ∈ δ(S), S ⊂ V } and a maximizer
set S(e), for each edge e ∈ E.

2. Let Cut(S(e1)) ≥ Cut(S(e2)) ≥ · · · ≥ Cut(S(em)).
3. For each h = e1, . . . , em, do:

• find c∗(h) = min{ce; h ∈ δ(S(e)), e ∈ E};
• set uS(h) = c∗(h);
• set ce := ce − c∗(h) for each e ∈ E such that h ∈ δ(S(e));

Theorem 2 The greedy algorithm that is presented above finds a feasible solution
to (27)–(29) in O(mM) time, where M is running time of a minimum cut algorithm.

Proof Let the above greedy algorithm produce a vector

u∗ = (u∗S; ∅
= S ⊂ V, S is a minimal set).

From the definition of uS(h) and ce in the for loop at Step 3, it follows that u∗ is
a feasible solution to (27)–(29). Δ(w, x) is the problem of finding minimum cut
δ(S) for which ∅
= S ⊂ V in the network Gsr which is constructed in the proof of
Lemma 3. This follows that, in Gsr , a minimum cut δ(S) (e = (v,w) is a minimum
one such that either s, v ∈ S and w, r ∈ S or s, w ∈ S and v, r ∈ S. Hence, a
minimum cut δ(S) (e can be defined by solving two minimum cut problems on
Gsr . The first problem is when the node v shrinking to s as the source and the node
w shrinking to r as the sink. The second one is when the node w shrinking to s as the
source and the node v shrinking to r as the sink. Thus, the above greedy algorithm
runs in O(mM) time. ��

Now, we can define a spanning tree T1 so that F (T1) includes the maximum
number of subsets S for which u∗S > 0. Let x = y1(T1) + l, where y1(T1) =
(y1

e ; e ∈ E) is an optimal solution to the problem (8)–(10) when F (T) = F (T1)

and b(tk) = f (Vk) − l(δ(Vk)) for each Vk ∈ F (T1). Since y1
e ≥ 0, x satisfies the

constraints (3). From (9), it follows that x satisfies (2) also for S if S ∈ F (T1). So,
it needs to decide whether x satisfies the constraints (2) for each S ∈ F (V) and
S /∈ F (T1).

Network Design Problem with Cut Constraints 285

3.2 Algorithm

By Lemma 4, the idea of the algorithm is the following. Let a given vector x =
(xe; e ∈ E) satisfy the constraints (3). First, it needs to define Δ(a, x), and if the
minimizer S∗ is a single node subset (S∗ = {v}), then from (22) it follows that
the constraints (2) hold for any S ⊂ V . Second, if S∗ is not a single set and the
inequality (21) does not hold, then the inequality (2) for S = S∗ may be violated or
held. In this case, it needs to check whether (22) is true for S∗.

Suppose that (22) holds. Lemma 4 says that the vector x is a solution of (1)–(3)
if it satisfies (2) for cuts δ(S) determined by subsets S such that either S ⊂ S∗ or S

contains some nodes in S∗ and in S∗.
Now, suppose that (22) does not hold for S∗, so x(δ(S∗)) < f (S∗), i.e., the

inequality (2) is violated for S = S∗. S∗ /∈ F (T∗), since x(δ(S)) = f (S) for all
S ∈ F (T∗). Thus, after yielding the vector x and the set S∗ by above way, the
algorithm proceeds its work as follows:

1. Set k = 1, xk
e = yk

e + le; e ∈ E and Sk = S∗.
2. If the inequality (21) holds for Sk and xk , the vector xk is a solution to (1)–(3).
3. If Sk is a single set (Sk = {v}) and the inequality (22) holds, then the vector xk is

a solution to (1)–(3).
4. If the inequality (22) does not hold for Sk and xk , call Cut procedure.
5. If the inequality (22) holds for xk and no single set Sk , call Branching procedure

to check whether xk is a solution to (1)–(3). Note that the branching procedure
proceeds by letting xe = ∞ or xe = xk

e for some fixed variable xe.

Cut Procedure

• Cut1. Define a spanning tree Tk+1 so that Sk ∈ F (Tk+1).
• Cut2. Set F (T) = F (Tk+1) and b(tj) = max{0, f (Vj) − xk(δ(Vj)) for Vj ∈

F (Tk+1).
• Cut3. Find an optimal solution y(Tk+1) = (yk+1

e ; e ∈ E) to (8)–(10).
• Cut4. Set xk+1 = xk

e + yk+1
e for e ∈ E.

• Cut5. Find minimizer S∗ of Δ(a, xk+1) and set Sk+1 = S∗.
• Cut6. Set k := k + 1 and go to 2.

Branching Procedure

• Branch1. Set i = 1 and L1 = Sk , xe = xk
e for all e ∈ E.

• Branch2. Set xe = ∞ for some edge e of δ(Li) and EDGE[i] = e (EDGE is
some array of size m).

• Branch3. Find a minimizer S∗ of Δ(a, x) and set Li+1 = S∗.
• Branch4. If (22) does not hold for Li+1, then call Cut procedure (in this case (2)

is violated for S = Li+1, since xk
e
= ∞ for the edges e of the cut δ(Li+1)).

• Branch4. If Li+1 is not single, set xe = ∞ for some edge e of δ(Li+1) and
EDGE[i + 1] = e.

286 F. Sharifov and H. Kutucu

• Branch5. If Li+1 is single, choose an edge e = EDGE[q] with the minimum
position q among edges for which xe = ∞ and then set xe = xk

e (the upward
step of the branching procedure in the branch and bound tree).

• Branch6. If xe
= ∞ for all e = EDGE[q], issue the vector xk as a solution of
NDPC and stop.

• Branch7. Set i := i + 1 and go to Branch3.

Note that an optimal solution y∗(Tk) to the problem (5)–(7) can be also used in
Cut procedure. Let this algorithm define the vector x∗ as an approximation solution
for (1)–(3). If x∗ is not integer solution, we can define integer solution of NDPC
by the standard branch and bound algorithm. However, with respect to required
accuracy ε of approximate solution, the integer vector x∗I obtained by rounding up
non-integer components of x∗ can be viewed as a solution to NDPC, if the following
relative error bound

ψI (x
∗
I)− ψD(u)−∑

e∈E cele

ψI (x∗)
≤ ε

holds for the values ψI (x
∗), ψI (x

∗
I) of (1) on the vectors x∗, x∗I and the value ψD(u)

of (27) on the vector u defined by the above greedy algorithm.

4 An Example for NDPC

In this section, we describe the key technical point of the algorithm and note its
flexibility by solving the NDPC on the graph G = (V ,E) shown in Figure 5, where
the number on an edge is its cost. Let le = 1 for edges e indicated by the wave lines
and lg = 0 for other edges g in the graph G. We consider the function

f (S) = |S||V \ S| for all ∅
= S ⊂ V

defined on subsets S of V . It can be shown that f (S) is a symmetric submodular
function.

Fig. 5 Graph G as example
for NDPC 3

3

33

2

2
4

2
2

2

2

6

7

5
1 4

1

Network Design Problem with Cut Constraints 287

S

4

2

2

5

7

6
3

r

0

0.5

1.5

1.5

2.5

1

1

1

1

1

1

1 1

1

0

0

0

0

Fig. 6 Network Gsr

• w1 = (6, 4, 2, 0,−2,−4,−6),

• w2 = (−6,−4,−2, 0, 2, 4,−6),

• w3 = (4, 6, 0, 2,−4,−6,−2),

• w4 = (2,−4, 4, 6,−6, 0− 2).

The vector

w = (1.5, 0.5, 1, 2,−2.5,−1.5,−1) = 1/4w1 + 1/4w2 + 1/4w3 + 1/4w4

is the convex hull of the bases w1, w2, w3, and w4. Thus, V + = {1, 2, 3, 4} and
V − = {5, 6, 7} for the base w. Clearly, for each edge e,

Cut(S(e)) = max{w(S)− l(δ(S)); e = (v,w) ∈ δ(S), S ⊂ V }

can be defined by computing the maximum flow from the node v to the node w. To
do so, we first construct the network Gsr shown in Figure 6, as it was shown in the
proof of Lemma 3.

• The maximum flow from the node 1 to the node 2 is 2.5 units, hence S(e) =
{1, 3, 4} and Cut(S(e)) = 2, 5 for the edge e = (1, 2).

• The maximum flow from the node 1 to the node 3 is 2.5 units, hence S(e) =
{1, 3, 4} and Cut(S(e)) = 2, 5 for the edge e = (1, 3).

• The maximum flow from the node 1 to the node 4 is 2 units, hence S(e) =
{1, 3, 4} and Cut(S(e)) = 2 for the edge e = (1, 4).

• For the edges e = (2, 3) and e = (2, 4), the sets S(e) and the cuts Cut(S(e)) are
the same as for the edges e = (1, 2) and e = (1, 4), respectively.

• For the edges e = (2, 3) and e = (2, 4), the sets S(e) and the cuts Cut(S(e)) are
the same as for the edges e = (1, 2) and e = (1, 4), respectively.

• For the edges (v,w) = (3, 6), (2, 6), (2, 5), (4, 5), the sets S(e) = {1, 2, 3, 4}
and the cuts Cut(S(e)) = 4, since the maximum flows are 4 from the end node
v to the end node w of these edges.

288 F. Sharifov and H. Kutucu

• The maximum flow from the node 5 to the node 7 is 2 units, hence the set S(e) =
{1, 2, 3, 4, 5} and the cut Cut(S(e)) = 2, for the edge (5, 7).

• The maximum flow from the node 6 to the node 7 is 1.5 units, hence the set
S(e) = {1, 2, 3, 4, 6} and the cut Cut(S(e)) = 1.5 for the edge (6, 7).

We obtain the solution u to the dual problem (27)–(29) by setting uS(e) = 2 for
S(e) = {1, 2, 3, 4}, uS(e) = 1 for S(e) = {1, 3, 4} and uS(e) = 0 for the other sets
S(e). Moreover, since ce := ce − c∗(h) > 0 for all edges e of the cuts determining
by the subsets {1} and {7}, we can define uS(e) = 1 for S = {1} and uS(e) = 2 for
S = {7}. So,

ψD(u)+
∑

e∈E
cele = 67.

It is easy to show that only the set S(e) = {1, 2, 3, 4} can be separated from
remainder nodes in G, by some fundamental cut, i.e., there is not a spanning tree
whose fundamental cut sets include S(e) = {1, 2, 3, 4} and S(e) = {2, 3, 4}. So, it
needs to find a spanning tree whose cut sets contain the subsets S(e) = {1, 2, 3, 4}.
There are a lot of such initial spanning trees. For example, the spanning tree T1
displayed in Figure 7 can be taken as an initial one, since its fundamental cut
sets include S(e) = {1, 2, 3, 4}. For F (T1), the problem (8)–(10) has the optimal
solution in which

y1
12 = 5, y1

25 = 6, y1
36 = 5, y1

57 = 3,

y1
e = 0 for remainder edges e and the optimal value of (8) is 44.

The algorithm defines a minimizer for Δ(a, x) on the graph G in Figure 8, where
the number x1

e = y1
e + le on each edge is its capacity.

Since av = 6 for each node, the capacity of each edge (s, v) is equal to 6. We
have S∗ = {1, 2, 3, 5, 6, 7}(S∗ = {4}) and

x(δ(S∗))− a(S∗) = 2− 36 = −34,

ω(S∗)− a(V) = 12− 42 = −30.

Fig. 7 Initial spanning
tree T1

Network Design Problem with Cut Constraints 289

S

6

6

6

6
6

6

6

6

4

1 25

3

6

7
5

5
0

1

1

1

4

1 1

1

Fig. 8 Network for finding minimum of Δ(a, x)

Fig. 9 Spanning tree T2

1 2

3
6

7

5

4

So, the constraints (2) are violated for S = {1, 2, 3, 5, 6, 7}. Cut procedure
constructs the spanning tree T2 in Figure 9, such that F (T2) contains the subset
S = {1, 2, 3, 5, 6, 7}.

For F (T2), the problem (8)–(10) has the optimal solution in which

y2
14 = 2, y2

24 = 2, y2
25 = 2, y2

26 = 6,

y2
e = 0 for remainder edges e and the optimal value of (8) is 22. Again, it needs to

find a minimizer to Δ(a, x) on the graph G in Figure 8, after replacing the capacity
x1
e with x2

e = y1
e + y2

e + le for each edge e of the graph G. At this time, S∗ =
{1, 2, 3, 5, 6, 7} or S∗ = {1, 2, 3, 4, 5, 6}. So,

x(δ(S∗))− a(S∗) = 6− 36 = −30,

ω(S∗)− a(V) = 12− 42 = −30.

Branch procedure results that the vector x2 is a solution to NDPC. The resulting
capacity x2

e is indicated on each edge e in Figure 10.

290 F. Sharifov and H. Kutucu

Fig. 10 Resulting capacity
of edges

1

1

11
1

3
8

2

5

4

4

5
5

7

6

7

3

2

Since

ψI (x
2)− ψD(u)

ψD(u)
= (74− 67)/67 = 7/67 = 0.10,

for ψI (x
∗
I) = ψI (x

2) = 74 and ψI (x
∗) = ψD(u)+∑

e∈E cele = 67, the vector x2

is a solution of NDPC with the relative error bound not more than 0.10.
Clearly, there are plenty possibles to choose a spanning tree whose fundamental

cut sets include the subset Sk in Cut1, but a way to handle the problem (8)–(10)
for F (Tk) is to make use of flexibility in choosing spanning tree. When choice
can be made over intuitions on practical situation, it is important to formalize
these intuitions with respect to practice applications of problem. On the other hand,
this flexibility allows to apply the algorithm for solving different network design
problems.

5 Concluding Remarks

In this paper, we have studied a network design problem with lower bound require-
ments. When the lower bounds are given with symmetric submodular function,
the above proposed Branch-and-Cut algorithm uses a simple linear program or
a minimum cut algorithm as a main subroutine to solve NDPC. There are the
following interesting questions as future works that we did not touch so far:

1. To prove that the simplex algorithm finds an optimal solution to (5)–(7) in at
most O(m) iterations.

2. It easy to see that the cyclomatic number ν(G) = m − n + 1 ≤ n for Halin
graphs [9]. Can it be used to show that the problem NDPC on Halin graphs is
polynomially solvable?

3. To show that optimal values of flows on edges (solution of Δ(a, xk)) can be used
as initial flow on the edges in solving Δ(a, xk+1) for edge capacities producing
by Cut procedure, and the separation problem Δ(a, xk+1) may be faster by this
way.

4. To emphasize a class of submodular functions which are approximated by a
modular function W such that W(S) ≤ f (S) and

max{f (S)−W(S),∅
= S ⊂ V } < ε

Network Design Problem with Cut Constraints 291

for some given number ε. For example, this inequality holds for f (S) = W(S)+
λ|S||V − S| when λ < 4ε/n2. Using the function W , ε-approximate solution
to (1)–(3) can be found as follows: let ẑ = (ẑe; e ∈ E) denote an optimal solution
to the problem (24)–(26) when w(S) = W(S). Since δ(S) ≥ 1 for any nonempty
S ⊂ V , it is not difficult to show that x̂ = (x̂e = ẑe + le + ε; e ∈ E) is a feasible
solution to the problem (1)–(3). Moreover, since f (S) ≥ W(S), the set of all
feasible solutions of the problem (24)–(26) contains the set of feasible solutions
of (1)–(3) for w(S) = W(S). Hence, an optimal solution x∗ to (1)–(3) can be
represented as x∗ = z∗ + l, where z∗ is a feasible solution of (24)–(26). Since
(c, z∗) ≥ (c, ẑ), then

(c, x̂) = (c, ẑ)+ (c, l)+ ε
∑

e∈E
ce

≤ (c, z∗)+ (c, l)+ ε
∑

e∈E
ce = (c, x∗)+ ε

∑

e∈E
ce,

that is

(c, x̂) ≤
∑

e∈E
ce(x

∗
e + ε).

From which it follows that

(c, x̂) ≤
∑

e∈E
cex
∗
e + ε,

for a given sufficiently small ε such that ε := ε∑
e∈E ce

.

References

1. M. Alicherry, R. Bhatia, Y.C. Wan, Designing networks with existing traffic to support fast
restoration, in Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques. Lecture Notes in Computer Science, vol. 3122 (Springer, Berlin, 2004), pp.
1–22

2. D. Bienstock, G. Muratore, Strong inequalities for capacitated survivable network design
problems. Math. Program. 89, 127–147 (2001)

3. W.H. Cunningham, Minimum cuts, modular functions, and matroid polyhedra. Networks 15,
205–215 (1985)

4. W.H. Cunningham, On submodular function minimization. Combinatorica 5(3), 185–192
(1985)

5. F. Fritzsche, F.B. Holt, More polytope meeting the conjectured Hirsch bound. Discret. Math.
205, 77–84 (1999)

6. M.X. Goemans, D.P., Williamson, A general approximation technique for constrained forest
problems. SIAM J. Comput. 24, 296–317 (1995)

292 F. Sharifov and H. Kutucu

7. M. Grotschel, C.L. Monma, M. Stoer, Polyhedral and computational investigations for
designing communication networks with high survivability requirements. Oper. Res. 43,
1012–1024 (1995)

8. T.C. Hu, Optimum communication spanning trees. SIAM J. Comput. 3(3) ,188–195 (1974)
9. H. Kerivin, A.R. Mahjoub, Separation of partition inequalities for (1, 2) survivable network

design problem. Oper. Res. Lett. 30(4), 265–268 (2002)
10. K.V. Marintseva, F.A. Sharifov, G.N. Yun, A problem of airport capacity definition. Aeronautic

5, 1–13 (2013)
11. G.L. Nemhauser, L.A. Wolsey, M.L. Fisher, An analysis of the approximation for maximizing

submodular set functions. Math. Program. 14, 265–294 (1978)
12. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency in Algorithms and

Combinatorics, vol. 24 (Springer, Berlin, 2003)
13. F.A. Sharifov, Determination of the minimum cut using the base of an extended polymatroid.

Cybern. Syst. Anal. 6, 856–867 (1997). Translated from Cybernetics and Systems Analysis 6,
138–152 (1996) (in Russian)

14. F.A. Sharifov, Submodular functions in synthesis of networks. Cybern. Syst. Anal. 37(4), 603–
609 (2001). Translated from Kibernetika i Systemnyi Analis 4, 166–174 (2001) (in Russian)

15. F.A. Sharifov, Network Design Problem When Edges of Isomorphic Subgraph Are Deleted,
Proceedings (Evry, Paris, 2003), pp. 521–525

16. F.A. Sharifov, Hulianytskyi L.F., Models and complexity of problems of design and reconstruc-
tion of telecommunication and transport systems. Cybern. Syst. Anal. 50(5), 693–700 (2014)
(in Russian)

17. H.D. Sherali, R. Sivanandan, A.G. Hobeika, A linear programming approach for synthesizing
origin-destination trip tables from link traffic volumes. Transp. Res. B 28(3), 213–233 (1994)

Process Sequencing Problem in
Distributed Manufacturing Process
Planning

Dusan Sormaz and Arkopaul Sarkar

1 Introduction

In modern manufacturing, products are generated by transforming raw materials
through various processes. Every product starts from design, which captures
requirements as geometry, dimensions, and tolerances (called GD&T), which are
normally embedded in the design itself. Traditionally, machinists select suitable
machine and tools to perform specific operations to transform the raw material
into physical replica of the design. With the advent of computer technologies in
the manufacturing (defined as computer-integrated manufacturing; CIM), prod-
uct designers use CAD applications to capture their design intent into digitally
interpretable format. On the other hand, the production adopted automation at
every phase of product life cycle; computer-aided manufacturing (CAM) applies
low-level part programming to generate series of machine instructions and tool
path. Computer-aided process planning (CAPP) automatically generates suitable
production plan based on the product design, thus acts as a bridge between
computer-aided design (CAD) and computer-aided manufacturing (CAM). Modern
factories handle numerous product varieties and huge production volume. These
factories need sophisticated CAPP systems to select the optimal process plans
in terms of cost and resource consumption among many alternative plans for
manufacturing a certain product design.

In past research, a number of generative CAPP systems were developed with
varying degrees of capabilities; some of which produce only a sequence of feasible
processes for manufacturing each feature; others consider machine and tools and

D. Sormaz · A. Sarkar (�)
Industrial and Systems Engineering, Russ College of Engineering and Technology,
Ohio University, Athens, OH, USA
e-mail: sormaz@ohio.edu; sarkara1@ohio.edu

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_12

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_12&domain=pdf
mailto:sormaz@ohio.edu
mailto:sarkara1@ohio.edu
https://doi.org/10.1007/978-3-319-94830-0_12

294 D. Sormaz and A. Sarkar

even specify setup instructions. More advanced process planners evaluate manu-
facturing cost and resource consumption to enumerate the best possible production
plan. Many such past investigations are presented at the end of this chapter. Most of
these investigations focus on a particular domain; therefore, constraints considered
in those researches vary from one another. Consequently, there is no unified theory,
which can serve as a model of process sequencing for any domain. The primary
purpose of this chapter to build such a model which considers intricate nuances of
process sequencing.

In general, generative process planning is performed in two phases: in the process
selection phase, a set of alternative machining processes is selected for each feature
of the part design; then, in the process sequencing phase, the sequence at which the
features will be machined is determined. This process sequence takes into account a
set of constraints imposed by both GD&T requirement and standard manufacturing
practice in order to determine the optimal process plan for a given set of machine–
tools. One way to represent these constraints is to generate precedence relationships
among different features of part design as well as machining processes. A graph
data structure is employed to capture these relationships in computer so that various
network optimization algorithms can be applied to this network of interlinking
alternative process routes to find the optimal process plan.

In this chapter, we will present a formal definition of process sequencing
problem, introducing feasibility and validity of a process plan. We will elaborate
two types of precedence constraints, strict and relaxed, in the process sequencing
problem and their implication in final process plan. Then, we will describe the
strategies of representing the solution space of process sequencing problem as a
network of alternative process plans. We will also analyze the complexity of such
network, and present process clustering method to reduce the size of network. Upon
formalizing the properties of such network, we present various network optimization
techniques to find the best process plans from the network of alternative process
plans. Search algorithms, such as state-space search and A*, will be presented in
light of process sequencing problem, along with their parameters, effectiveness,
and optimal conditions. A polynomial time transformation to Generalized Traveling
Salesman Problem is presented to represent the process sequence problem in the
form of a well-known NP-hard problem. In the end, we will describe the test bed
and experiments performed on a number of real-life part designs and discuss the
efficacy of our approaches by presenting the results of such experiments.

2 Problem Statement

As a prerequisite of process planning, a complete and unambiguous CAD design
should be available. Before process sequencing can be started, process selection
procedure for each feature needs to be performed. The procedure consists of
three steps (details of these steps are explained in [24, 25]: process instance
selection (based on capability matrix), machine–tool specification, and time and

Process Sequencing Problem in Distributed Manufacturing Process Planning 295

cost estimations. The process selection phase produces sets of alternative processing
routes for every feature of the subject part, along with inherent manufacturing
constraints.

The goal of process sequencing phase is to find the optimal route for every
feature and enumerate the order in which the features will be machined such that
the product can be manufactured to its desired quality, by consuming minimum
time and resource. In the next section, we formally present the process sequencing
problem.

2.1 Alternative Machine Routing

Given a mechanical part and a set of manufacturing resources, the process sequenc-
ing problem considered here can be described as “the problem of determining
the sequence of operations required for producing a part with the objective of
minimizing the sum of machine, setup, and tool change costs, while satisfying the
precedence constraints among operations” [12]. As we described in the previous
section, the precedence among machining operation arises from the precedence
among features. Next, we will define the relationship between features and machin-
ing process before presenting formal definition of precedence among features.

Let us assume a certain part design P has a set of p features denoted by F,
where F = {F1, F2, F3, . . . , Fp}. Also, at a certain shop floor, there is a set of m
machines available, where M = {M1, M2, M3, . . . , Mm}. As explained in the earlier
subsection, each feature can be produced by alternative process planning or routing.
A routing for a feature is defined as a sequence of v machining operations on a
subset of M machines, which the feature needs to pass through to be completely
manufactured. Although, in reality, many CNC cutting machines can perform
different machining process in the same machine (5-axis CNC), it is assumed here
that each machine is designated for only one type of machining, such as, drilling
machine, milling machine, etc. However, each machine can perform different types
of machining operations by using different tools and cutting speeds. A machining
operation is defined by the operation performed by certain machine on a workpiece
aiming to produce a particular feature without changing tool. It is also assumed that
one machine cannot process two machining operations at the same time.

We can represent the relationship between features, corresponding set of routing,
and the set of machining operations for individual routing by a Boolean three-
dimensional matrix; rows of which represent the features, columns represent
possible routing, and the depth represents the possible machining operations. In
Figure 1, the three-dimensional matrix is pictorially depicted. Number of rows in
this matrix is the total number of features in part P ; number of columns of this
matrix is the size of union of all possible routes for every feature in part P , i.e.,
and has depth of length equal to the number of available machining operations, i.e.,
m. The value of cell of the matrix of index i, j , and k, where i = {1..p}, j ∈

296 D. Sormaz and A. Sarkar

1

11

1 1

1

0 0

0

00F2

F1

m1

RoutingsM
ac

hi
ni

ng
 o

pe
ra

tio
ns

Fe
at

ur
es

m2

r1 r2

0

0

0

Fig. 1 Process selection matrix

∣
∣∪i∈1..|p| ∪j∈1..li rij

∣
∣, k ∈ {1..m}, is 1 if machining mk is part of routing rj , rj and

is a possible routing for feature Fi , and 0 otherwise. The k-th routing associated
with feature Fi is represented as an ordered set of machining operations, denoted
by rik , where rik =

{
mik1,mik2, . . , mikvk

}
, i = {1..p}, k ∈ {1..li}, vk is the

number of machining operations needed to produce feature Fi completely if k-th
routing is selected, and li is the number of all alternative routing possible for feature
Fi . Therefore, vk = |rik|, and mikg is g-th machining operation to be performed on
i-th feature if k-th route is followed, where g ∈ {1..vk}.

A production plan for part P is constructed by selecting one routing for every
feature in the part. A production plan Π is defined as a sequence of machining
operations, which is the union of all machining operations belonging to the routes
chosen for each feature.

Π = ∪i∈1..|F |r ′i , where r ′i is the route chosen for feature Fi .
The process plan Π should be valid. A valid process plan should cover every

feature in set F. That means there should be at least one routing available for each
feature. The validity conditions are strictly defined below.

For the sake of defining the order of machining operations in sequence rik , we
need to define a precedence operator “≺,” which is used to state “process x precedes
process y” as “x ≺ y.” In terms of scheduling, this means that the completion time
of process x should be strictly less than starting time of process y. It should be noted
that the completion time of process x takes into account the setup and part transfer

Process Sequencing Problem in Distributed Manufacturing Process Planning 297

time along with machining time for that particular process. However for simplicity,
we will consider that every machining operation also includes the setup and transfer
if necessary. Using the precedence operator, the order of machining operations in
routing rik can be defined as mikg ≺ mikg+1 , ∀g ∈ {1..vk−1}.

Due to the fact that every feature can have many different routing and the features
in part P can be processed in many different orders after maintaining the precedence
constraints mentioned above, it is possible to construe more than one complete
production plans for part P. The optimal production plan is the one which minimizes
the time and resource consumption. A generic evaluation function f w is defined
which maps a sequence of machining operation to a real value. Many different cost
functions, which take into account time, machining time, and setup and transfer
time, may be used as an evaluation function. A suitable cost function is introduced
in Section 3.2.

At this point, we can define the optimal production plan as Π ′ for
which f w

(
Π ′

) ≤ f w (Πi), where Πi is any other production plan. The order
of machining operations in the production plan Π should satisfy either of the two
precedence constraints, presented below.

The subset of machining operations in the sequence Π belonging to the same
route should also maintain the same order with other machining belonging to the
same parent routing, i.e., if mu,mw ∈ Π and mu,mw ∈ r ′i , then mu ≺ mw when
mu precedes mw in routing r ′i , and mw ≺ mu, if otherwise.

2.2 Feature Precedence

The features in part P also have precedence constraints on their processing order,
as described in the last subsection. These precedence constraints can be generalized
as follows. If route rik is selected for feature Fi and w-th route rjw is selected for
feature Fi in the final production plan ({j ∈ 1 · · ·p}, w ∈ {1 · · · li}), then Fi ≺
Fj imposes the constraint mik· ∈ rik ≺ mjw· ∈ rjw, which means that
every operation for the selected route for feature Fi should be finished before any
operation for feature Fj can be started. This constraint is called strict precedence
constraint. In reality, it may not be required to finish every machining operation of
routing rik before any operation of routing rjw can be started. In some planning
strategies, relaxing the strict precedence constraints among features may provide
greater flexibility in enumeration of optimum production plan. Such situations are
described in Section 3.1 in more detail. The strict precedence can be relaxed by
ensuring that for Fi ≺ Fj , ∃mik· ∈ rik ≺ ∀mjw· ∈ rjw, i.e., there is at least some
operations of routing rik need to be finished before any operation of routing rjw.

In the case of strict precedence constraint, the process sequencing problem trans-
lates to selecting the best routing for each feature among sets of alternative routing
available for that feature. Once the final sequence of all routing is found, every
routing can be replaced by the corresponding sequence of machining operations.
Therefore, three-dimensional matrix shown in Figure 1 section can be reduced to

298 D. Sormaz and A. Sarkar

just two-dimensional matrix to represent the available routing for every feature. In
this way, strict precedence constraint reduces the complexity of the process planning
problem as we do not need to consider the order of the machining operations for
individual routing. This simplification is also justified from practical point of view.
Every possible routing selected for a feature is a set of machining operations, which
are normally done on a single machine in phases, with different tools and speeds,
to achieve the desired tolerance specifications. In most of the cases, it is more
economical to process the entire routing on a single machine by changing tool before
each machining operations in that routing than moving the workpiece repeatedly
among different machines because setup and machine transfer time is usually more
than tool changing time. This idea is also reflected in the cost function, presented in
the Section 2.4.

Considering the above facts, we will only use strict precedence constraint in our
further discussions on the application of network optimization algorithms in process
sequencing problem. This implies that when any routing is chosen for a feature,
every operation in that routing should be finished before next routing can be started
for another feature. Following this consideration, we can aggregate the cost of entire
routing by a single machining cost. Earlier in Section 2.1, we defined machining
operation mikg as the g-th machining operation to be performed on i-th feature if
k-th route is followed. As we considered that the entire routing can be performed
on a single machine, we can redefine machining operation as: mik = 1, if Fi can
be completely processed by machine Mj , and mik = 0, otherwise. Table 1 shows
an example of a two-dimensional matrix, containing all possible assignments of
machines for every feature of the sample part design shown in Figure 2. Each cell
of the table can be considered as a machining operation as defined above.

Table 1 Machine allocation matrix for part shown in Figure 2

Features
Machine

M1(Milling) M2(Drilling) M3(Milling) M4(Milling) M5(Milling)

F1(Slab) 1 0 1 1 0

F2(Hole) 0 1 1 0 1

F3(Slab) 0 0 1 1 0

F4(Slot) 1 0 0 0 1

F2

F4 F3 S E

F1 F2

F3 F4

F1

Fig. 2 Example part design and corresponding FPN

Process Sequencing Problem in Distributed Manufacturing Process Planning 299

The precedence constraints among features can be captured in the form of a
graph. Such graph in which each node represents a feature and each arc represents
a precedence relationship is called feature precedence network (FPN). In rigorous
term, FPN is defined as a directed graph representing the precedence constraints
imposed on the features of a part. We can define FPN as a graph G =< N,A >,
where N is a set of nodes, each of which corresponds to one feature in the part
design. Therefore, N = ∪i∈{1···p}Fi ∪ {S, E}, where S, E are terminal nodes and A

is a set of arcs, each of which corresponds to a precedence relationship between two
nodes. Therefore, A = {

aij | Fi ≺ Fj ,∀Fi, Fj ∈ F
}
.

In other words, FPN is a graph in which the nodes represent the set of primitive
features while the edges represent the temporal order between two nodes, with
two terminal nodes S and E marking the start and end of the network traversal.
It is imperative that an FPN should have at least one node between start and end
(ase /∈ A), assuring that there is at least one feature to be processed and there is no
self-connecting arc (aii /∈ A, ∀i ∈ {1 · · ·p}), indicating that no feature can have
precedence relationship with self.

An example of FPN for the part model shown in Figure 2 is represented in the
same figure. The part consists of two slabs F1 and F3, a hole F2, and a slot F4. The
slabs, F1 and F3, should be machined before hole F2 and slot F4, respectively, in
order to reduce machining time for hole and slot and the hole F2 should be drilled
before the slot F4 is milled to avoid tool deflection. This information is obtained
from part model. The Feature F2 has F1, and F4 has F2 and F3 as its previous
attribute and it forms the basis for the feature precedence network generation. The
features that qualify to be processed first are F1 and F3. Feature nodes corresponding
to F1 and F3 are connected to the start node “S.” Thus, the feature node F1 is
connected to F2, F2 and F3 connected to F4, and finally F4 is connected to the
end node E.

Even though we will only consider strict precedence constraint in this chapter,
the precedence requirement among operations is sometimes inevitable for achieving
the specified tolerances for a particular design feature. As an exception, designs
containing large number of same type of features on the same level of accessibility
(Hole set) may benefit from finishing every machining operation with the current
tool before changing it for next machining operation. Relaxed precedence constraint
may be suitable in this case as the machining operations from different routing
can be grouped together. We can actually represent both these precedence with the
help of intermediate features by augmenting the initial feature precedence graph
with intermediate features. As every machining operation in a route improves the
target feature, we can consider the resultant feature, produced after each operation
as intermediate feature. The intermediate features can then be inserted into the
feature precedence network by maintaining either of strict and relaxed precedence
constraints. In this way, the precedence in machining operation can be transferred
to precedence of features.

300 D. Sormaz and A. Sarkar

2.3 Definition of Process Sequencing Problem

Furthermore, let T = Rm×m be a machine transfer cost matrix, for which Tij

denotes the cost of transporting the in-process workpiece from i-th machine to j -th
machine, and Tii = 0, for ∀i ∈ {1 · · ·m}, ∀j ∈ {1 · · ·m}.

As explained in the last section, every valid process plan also needs to maintain
the precedence relationship among features. Such precedence is represented as
two-dimensional matrix F = Zp×p, for which Fij = 1, if Fi ≺ Fj for ∀i ∈
{1 · · ·p}, ∀j ∈ {1 · · ·p}, and 0 otherwise.

Given matrices M , T , and F , an optimum production plan is defined by a valid
production plan Π ′ such that f w

(
Π ′

) ≤ f w (Πi), where

f w(Π) = Σi∈{1···p}
(
Mf c(Πi)f

m(Πi) + Tf m(Πi+1)f m(Πi+1)

)
(1)

where Πi is any other valid production plan, such that it maintains the following
constraints:

1. Every feature needs to be allocated but no feature is allocated twice in the
sequence.

2. If Ff c(Si)f
c(Sj) = 1, then i < j , for ∀i, j ∈ {1 · · ·p} (there are exactly p

allocations in the sequence due to constraint 1), where f c (Πi) is defined as the
feature index of the i-th allocation of the process sequence Π , and f m (Πi) is
defined as the machine index of the i-th allocation of the process sequence Π .

2.4 Cost Function

We defined the process sequencing problem in generalized form in the last section.
However, in reality that the cost of a realistic production plan depends not only
on just machining operations but also on workpiece setup, selection of tool, and
tool direction, and most importantly transfer cost of the part from one machine to
another. These additional planning dimensions increase the size of the search space,
for example, every unit machining operation may choose different tools to achieve
comparable results or different setup may be planned as prerequisite operation
before a set of machining operations. Moreover, the total cost of a production plan
depends on the order of the operations selected because good amount of transfer
and tool change cost may be saved by grouping sequence of machining operation
together to be processed by the same machine and same tools. Such complexities of
finding the optimum production plan are discussed more in Section 5.

However, if we assume that the production plan follows strict precedence
constraints and each feature is produced by a routing (sequence of machining
operations) without changing machine and setup, then we may express the total cost
of the production plan by equation 2, which is adopted from [11]. Notice that setup

Process Sequencing Problem in Distributed Manufacturing Process Planning 301

cost is applied before each routing is started and machine transfer cost is applied
in between every routing. Every machining operation for a routing, dedicated to
produce one feature, incurs tool change and part handling cost along with machining
and tool cost.

Recollecting from the last section, let a production plan Πp be a valid plan for
part P with p number of features, thus contains p number of routing, where j-th
routing contains vj machining operations. Then, the cost of Πp is given by:

f w
(
ΠP

)
= Σj∈{1..p}

(
Cs

P

Nb
P

+ Ctr
j−1,j

Nb
P

+Σk∈{1···vj }Ct
j

(

tmjk + thjk +
tmjk

Tjk

(

t tjk +
Co

jk

Ct
j

)))

(2)

where,

Cs
P = setup cost for part P

Ctr
ij = machine change cost occurs in between i-th and j-th routing.

Nb
p = batch size for part P

Ct
j = machine operation cost for j-th feature (or j-th machine as every feature is

processed by a single route dedicated to one machine).
tmjk = machining time of k-th operation of j-th routing

thjk= part handling time of k-th operation of j-th routing
Tjk= average lifetime of the tool used for k-th operation of j-th routing
t tjk = tool change time before k-th operation of j-th routing
Co

jk= cost of the tool used for k-th operation of j-th routing

3 Methodology

Any production plan should satisfy two precedence constraints, precedence in set of
machining operations needed to manufacture a single feature and precedence in the
set of features in the complete part design. The set of machining operations included
in a complete production plan should follow these two precedence constraints.
It is necessary that the part features, available machining operations, and their
interactions should be translated into a usable form. The graph data structure is
extremely suitable in this situation, admitting the fact that precedence relationship
between two processes can be represented by a directed arc between two nodes,
where each node depicts one of these two processes. In this way, every alternative
process plan route can be represented in a single network, which is named as
process planning network (PPN). The ultimate goal of process sequencing is to
find the optimal route among the network of alternate routes; the PPN acts as a
solution space for the process sequencing problem. The graph representation of the
solution space enables us to apply different graph optimization and network flow

302 D. Sormaz and A. Sarkar

algorithms in order to find the optimal process plan. The following sections describe
the methodologies to generate PPN, present some network optimization algorithms,
and describe various criterion of these algorithms.

3.1 Process Planning Network

The availability of more than one processing sequence from FPN leads to alternate
process plans. A process plan may be represented using a resource-based represen-
tation, where each node refers to a part feature that is produced using the resource
as specified by the node. Such a process plan node represents the machine and the
feature that is processed in it.

Using this strategy, a process plan with alternatives may be generated and
represented as a network. The PPN may be defined as graph G =< N,A >,
where N is a set of nodes, each of which corresponds to an ordered pair of a machine
and a feature < Mj, Fi >, signifying that the feature Fi is assigned to machine Mj .
N = ∪i∈1···p,j∈1···m < Mj , Fi > ∪ {S, E}, where S, E are terminal nodes: start,
and end, respectively; and A is a set of directed arcs, each of which connects one
feature–machine allocation to its next possible feature–machine allocation.

There may be more than one arc originating from one node or terminating at a
node. When such branching is available, it signifies that alternative process plans
can be constructed from PPN. The costs of subsequent machine allocation are
represented on the arcs. The cost includes machining cost at the sink node and setup
cost, and transportation cost that might be incurred during the machine transfer.
Traversing the network from start to end node through any one of the paths generates
a feasible process plan. Thus, a process plan can be defined as a path on the PPN,
from start node S to end node E. The total manufacturing cost that will be incurred
by use of a particular process plan can be computed by aggregating every cost on the
arcs of a path. The path that takes the least total processing time is the process plan
that will have least manufacturing cost; that is to say, it is the optimal process plan.

Let us consider the example part and corresponding FPN shown in Figure 2.
The part design has four machinable features, including two slabs (F1, F3), a hole
(F2), and a slot (F4). It is assumed that the process/machines for the respective
features are selected and the FPN is validated before process planning is started.
Process plan network generation starts from the node “S,” which marks the start of
the planning process. This node may be considered as the raw stock available for the
machining. From this node, a search is made to determine the list of features that can
be machined next. Table 2 provides a list of parents and their possible children. The
set of next possible features are checked against the machine allocation matrix given
in Table 1 for generating all possible combinations of feature–machine allocations.
Each of this combination is added as a neighbor of node “S.” In this example, it
may be noted that features F1 and F3 qualify to be produced first. Nodes with F1
along with its machine candidates and F3 with its machine candidates form the
children of the start node. Thus, five nodes are generated at this stage. These nodes

Process Sequencing Problem in Distributed Manufacturing Process Planning 303

Table 2 Parent–child
representation of FPN shown
in Figure 2

Parent node Children node

S F1, F3

F1 F3, F2

F2 F3, F4

F3 F1, F2, F4

F4 E

E

Fig. 3 A beginning of
process network for a
hypothetical part shown in
Figure 2

are connected to the start node “S,” which is the parent node at this stage. The cost
of manufacturing each of the features is represented on the arc connecting their
respective process plan nodes with their parent node. The portion of the PPN is
shown in Figure 3.

3.2 Complexity Analysis

The best known difficulty for an unconstrained assignment problem with n tasks
and m machine is NP-hard. The number of nodes in the PPN is directly related
to the FPN. In worst case, the part may have an exponential number of operation
sequences. Considering that all features in set F have equal or no precedence
constraints (i.e., features can be machined in any order as shown in FPN in Figure 4),
there are at least F ! different possible feature sequences. It is also shown by Sormaz
et al. that in general for parallel precedence network for p features with p′ features
in each parallel branch it may be shown that the number of sequences is: |F |!

Πi∈{1···b}p′i ! ,

304 D. Sormaz and A. Sarkar

Fig. 4 FPN with equal or no
precedence

S E

1

2

3

4

Fig. 5 Complete PPN for a three-feature and two-machine problem

where b is the number of parallel branches in the FPN [27]. The number of
process plan nodes generated for an FPN with every node having equal precedence
constraints has been shown to be 2 |F | (|F | − 1) |M| [28]. Figure 5 shows a process
plan network for three features and two machines, respectively. It can be noted that

Process Sequencing Problem in Distributed Manufacturing Process Planning 305

this PPN has exactly 3∗2∗22 = 24 nodes. Clearly, the factor 2 |F | (|F | − 1) |M| is
exponential and thus, the number of process planning node increases exponentially
with the number of features.

4 Process Clustering

The exponentially expanding solution space of PPN can be reduced by classifying
machine–feature nodes in groups that can be performed under the same conditions.
In fact, clustering features under the same machining condition has practical benefit
as it is always economical to avoid repetitive machining setup, tool change, and
part transfer time. These groups can be treated as a single operation in the final
process plan. Therefore, we can transform the entire PPN from a network of
machine–feature node to a network of process clusters. As the network size can
be significantly less in PPN of process cluster than machine–feature nodes [23],
process clustering strategy can be applied as a graph reduction algorithm.

Three types of conditions: tool, tool orientation, and machine are mentioned by
Šormaz and Khoshnevis [23], which can be used to apply hierarchically grouping
features first by the same tool directions, then each tool direction cluster by tools,
and then each tool and tool direction group by allocable machines. However, we
will consider process clustering only by machines in our reduced version of process
sequencing problem, which assumes that every feature will be assigned to a machine
and complete the feature before moving to next feature. Further in the discussion, we
imply to mean “process clusters by machine” by “process cluster.” Process cluster
PCj is defined below as a set of every feature that can be processed by machine Mj :

PCj =
{
< Mj, Fi >| mij = 1, ∀i ∈ {1 · · ·p} , ∀j ∈ {1 · · ·m}} (3)

Once the PPN is reduced by clustering the nodes by common machine, the
process sequencing problem is also translated as finding the least cost path from
start node to end node of the reduced PPN, traversing through a sequence of process
clusters.

In order to derive such path which is a valid process plan, we define a function
called f c, which can take a process cluster as input and return the set of features
covered by that cluster. If a sequence of l process clusters are selected in a certain
process plan Π , then Π is valid if ∪i∈{1···l}f c (PCi) = F , implying that every
feature should be machined, and f c (PCi) ∩ f c

(
PCj

) = ∅,∀i, j ∈ {1 · · · l} ,
implying that the same feature cannot be part of two clusters in the same process
plan.

As an example of the process clustering, let us consider a hypothetical part
with seven features and its feature precedence network, shown in Figure 6. In this
example, we first consider available features F1, F2, F3, and F4 for machining. For
these features, we consider a possible clustering of processes for the same machine

306 D. Sormaz and A. Sarkar

F5

F3

F1

F1

F2

F3

F4

a b c

F7

F6

F5

ES

F7

F4

F2

F6

Fig. 6 (a) Netex part design, (b) machining features, and (c) feature precedence network

Table 3 Machine allocation
matrix for part shown in
Figure 5

Features
Machines

M1 M2 M3 M4 M5

F1 1 1 1 0 0

F2 1 1 1 1 0

F3 0 1 1 0 0

F4 0 0 1 1 0

F5 0 1 0 1 0

F6 0 0 1 0 1

F7 0 1 0 0 1

E

S

M1/F1, F2

M3/F3, F4

M2/F3, F5

M4/F4, F5

M3/F4, F6

M4/F4, F5

M5/F6

M3/F6

M4/F5

M2/F5, F7

M1/F1

M2/F1, F3, F7

M3/F1, F3

M5/F7

F

M5/F6, F7

C

M5/F7

M4/F5

M3/F6

M2/F7

M2/F7

M5/F7

M2/F5

M4/F5

M5/F6

M3/F6

H
M2/F5, F7

M5/F6, F7

G

D

M2/F5

M2/F1, F2, F3

M3/F1, F2, F3, F4

M4/F2, F4

B

A

E

Fig. 7 Process clustering for the PPN generated for part design shown in Figure 6 [26]

(referring to Table 3). These process clusters are: PC1 (with F1 and F2), PC2 (with
F1, F2, and F3), PC3 (with F1, F2, F3, and F4), and P4 (with F2 and F4). The
beginning of the PPN generated is shown in Figure 7.

Process Sequencing Problem in Distributed Manufacturing Process Planning 307

5 Process Planning Network Optimization

Process planning network represents alternative process plans; any path from start
to finish node is a valid process plan. It is shown in the previous section that
a PPN expands exponentially if the network is not clustered. Therefore, a blind
search needs to check an exponential number of paths in worst case scenario to find
the path which incurs least cost, thus optimal. A number of network optimization
algorithms can be employed to improve the search time. We start with state-space
search which is an artificial intelligence technique which represents the problem as
a state-space graph. Finally, we will show how the process sequencing problem can
be represented as Generalized Traveling Salesman Problem.

5.1 Space Search

The state space of the process sequencing problem is defined as a set of 4 elements;
a state description, a function to return the set of next possible states based on the
current state, a function to find the best possible next state to transition among set
of next possible states, and lastly a state-transition function to change the current
state of the search with the information of new state. It is imperative that the state
description should represent the goal of the search. In this case, we are looking
for a complete path from start to end in process plan network. Every state of the
state-space search applied in this case should represent any unfinished path so far
explored. As the state-space search is applied on a PPN which has already been
clustered by machines, any unfinished path can be represented by a set of already
sequenced process clusters. Of course, we also need some extra information in the
state description which can clearly define at which state the search is currently in
and help in finding the next possible states.

5.2 State Description

Any state i in state-space search of PPN is defined by si = (Pi, UFi, UNFi, CFi),
where si is a state from the problem space, Pi is the list of process clusters along a
path in the process network, UFi is a set of used (already machined) features along
the path, UNFi is a set of already discovered features, which are still not processed
in the path so far, and CFi is a set of candidate features available to be processed
after state i. It is better to recall that each of the process clusters is a group of all
features which can be machined in a single machine. The set UF represents all the
features which were part of a cluster in set P , whereas the set UNF contains the
list of unused features, which could have been in one of the clusters selected and in
fact they were part of some clusters the state space already explored. They are still
not picked up because the cluster they were member of was not selected.

308 D. Sormaz and A. Sarkar

5.3 State-Space Operators

The state-space search starts from the stock. In this case, the starting state
is s0 = (∅, ∅,∅, f n ({S})), where S is the start node of the FPN, and
f n is a function, which can take a set of nodes belonging to an FPN as
input and return the set of next candidate features (CFi), therefore f n (F) ={
Fk | Fj ≺ Fk, ∃k ∈ 1 · · ·p,∀Fj ∈ F

}
.

Each feature in set CFi may be machined by more than one machine. Therefore,
the set of features returned by f n function can be clustered by grouping them under
the same machines. We define the function f pc, which can take a set of features and
return a set of process clusters{PCi+1}, by following definition of process cluster
given in section process cluster.

Having the state si = (Pi, UFi, UNFi, CFi) and new set of process clus-
ters {PCi+1}, the new state si+1 = (Pi+1, UFi+1, UNFi+1, CFi+1) is defined with
the following functions:

Pi+1 = append
(
Pi, f best (PCi+1)

)
, where f best function will select the best

process cluster to travel next

UFi+1 = UFi ∪ f c
(
f best (PCi+1)

)

UNFi+1 = CFi − f c
(
f best (PCi+1)

)

CFi+1 = UNFi ∪ f n
(
f c

(
f best (PCi+1)

))

By applying the state-transition procedure described above, we perform state
transitions from the start state s0 to all available states in the state space. As the part
has a finite number of features, and the above procedure keeps on discovering more
features at every step, it is guaranteed that the procedure will end after all features
have been exhausted. When we finish sequencing every feature in part P, the final or
goal state is reached; in other words, CFi is empty.

Every partial and complete sequence of process clusters stored in Ci may be
evaluated by a cost function as described in Section 3.2. The cost of each complete
and valid process plan found by state-space search can be stored as an upper bound
and can be used to prune a particular branch when the cost of the already sequenced
clusters is more than upper bound.

5.4 Heuristic Search

Intuitively, as the part has a finite number of features, and the above procedure
at each step adds more features to the state, it is guaranteed that the procedure
will end after all features have been machined in the final or goal state. However,
it largely depends on the find-best function, which decides the next best process
cluster to visit. Strategies like breadth-first search (BFS) and depth-first search
(DFS) exhaustively search the entire network, therefore not applicable in real-life
situations, where a part with hundreds or more features will generate a large network

Process Sequencing Problem in Distributed Manufacturing Process Planning 309

and the search will take long time to finish. Best-first search uses a heuristic function
to evaluate the promises of every node to reach the goal through an optimal path and
then chooses the node with the best promise as a next node to travel. This strategy
greatly reduces the search space. Still, certain quality of the heuristic needs to be
assured before it can be claimed that best-first search can find an optimal path by
using that heuristic.

We will use an evaluation function of form f (n) = g (n)+h (n), where n is any
state encountered in the search, g (n) is the total cost manufacturing features covered
from start to node n, and h (n) is the heuristic estimate of the cost of manufacturing
rest of the features. This summation eliminates ties when two candidate nodes have
the same heuristic estimates [15]. If the heuristic function h(n) is always less than
or equal to the actual cost (h∗ (n)) for manufacturing rest of the features (in some
path from node n to goal), i.e., h (n) ≤ h∗ (n), then the function h (n) is called the
lower bound and the BFS using evaluation function f(n) is called admissible. On the
other hand, any search algorithm always terminates in the optimal solution path if
such path exists. A*, which is an admissible search algorithm, is used in finding the
optimal process plan from the network of alternative process plans.

For computation of the heuristic function, which will estimate cost from the
current state to the goal state, it is necessary to consider the cost equations and
identify which components of the total cost can be estimated. As we have all the
candidate processes generated for each feature, the simplest heuristic function for
process sequencing may be defined as a sum of minimal possible cost over a set
of candidate processes for unfinished features for a given state. This function may
be represented as h′ (si) = Σj∈F\UFi

mink∈M|mjk=1 Cjk , where Cjk is the cost of
machining feature j on machine k.

The above heuristic indicates that for a given state we find all remaining features
and for each of the features, find a machine with the minimal machining cost.
The sum of these costs for remaining features is the minimum cost that has to
be added to the current state in order to machine the part completely. It can be
observed that this minimum cost can never be more than the actual cost for the
reason that any other allocation than the minimum cost machine will cost at least
as much as the minimum cost machine. Therefore, we can conclude that h′ (n) is
admissible. Admissibility of the heuristic is a proof of optimality if tree search is
used instead of graph search. However, it is also required to prove that h′ (n) is also
consistent. It can be easily shown that the function h′ (n) is monotonic in nature,
i.e., h′ (ni)−h′

(
nj

) ≤ g
(
nj

)− g (ni), where nj is one of the children nodes of ni .
The triangular inequality property of monotonicity always guarantees that h′ (n) is
also consistent [19].

More informed heuristic bound can be found in order to reduce the search space.
The purpose of finding such a heuristic function is motivated by the fact that, if the
estimation function is tighter or, in other words, closer to the real cost function, the
smaller space will be searched and the solution will be found faster. However, such
a function may become more complicated to compute, resulting in a slower search
process. A polynomial-time heuristic, heuristic similar to the one presented above,
is normally suitable.

310 D. Sormaz and A. Sarkar

5.5 Transformation to Generalized Traveling Salesman
Problem

The process sequencing problem so far discussed can also be represented as a
generalized version of Traveling Salesman Problem (TSP), where unlike TSP the
tour does not require to be Hamiltonian. We can derive two benefits from such
transformation. First, we can prove that process sequencing problem is as hard as a
TSP, an NP-complete problem, following several reductions from the Generalized
Traveling Salesman Problem (GTSP) to TSP [14, 17]. Second, the transformation
from an instance of process sequencing problem to an instance of GTSP can be
computed in polynomial time including as many planning variable required. We
will present the transformation scheme by considering both machining operation
cost and transportation cost for the process sequencing problem.

Given a set V of n vertices, weights w (x → y) of moving from x ∈ V to y ∈ V

and a partition V into m nonempty clusters C1, C2, · · · , Cm such that Ci∩Cj = ∅

for each i
= j and ∪iCi = V , the objective of GTSP is to find a feasible
tour t which is shortest in terms of the total length among all possible feasible
tours, where a feasible tour is defined as a cycle visiting exactly one vertex from
every cluster. More specifically, this particular version of GTSP is called GTSP
with nonoverlapping clusters, because no vertex is allowed to be the member of
two clusters. In our formulation of process sequencing problem, every machining
operation is a unique allocation of feature to the machine. A feasible process plan
should have exactly one such operation for every feature. We will consider machine
transfer cost along with machine allocation cost per feature in order to demonstrate
that such transformation can account for more than one planning dimension. We
defined such version of process sequencing problem below. We also transformed
the feature precedence constraint to precedence constraint applicable to the GTSP
instance, making it an ordered version of GTSP (GTSP-ORD).

Let M = Rp×m be a feature–machine allocation cost matrix for p features
and m machines, where Mij > 0, if i-th feature can be processed by j-th machine
and Mij = 0 if i-th feature cannot be processed by j -th machine for ∀i ∈
{1 · · ·p}, ∀j ∈ {1 · · ·m}. This matrix is similar to the machine allocation matrix
presented before for sample parts in Tables 1 and 3. However, if feature i is allowed
to be allocated to machine j , then Mij contains the cost of such assignment. This
cost may be calculated aggregating machine operation, tool change, handling, and
operator costs. Also, let T = Rm×m be a machine transfer cost matrix, for which Tij

denotes the cost of transporting the workpiece under making from i-th machine to
j -th machine, and Tii = 0, for ∀i ∈ {1 · · ·m}, ∀j ∈ {1 · · ·m}. Furthermore,
let F = Zp×p be a feature precedence matrix, for which Fij = 1, if i-th feature
should be processed before j -th feature for ∀i ∈ {1 · · ·p}, ∀j ∈ {1 · · ·p}. The
matrix T can be trivially created from the FPN as Fij = 1 when aij ∈ A and 0,
otherwise.

Process Sequencing Problem in Distributed Manufacturing Process Planning 311

The process sequence we want to find from the given matrices M , T , and F

will not impose any process clustering as constraint. As machine transfer cost is
considered in the problem, it is envisaged that the optimum process sequence Π

should allocate features on the same machine as consecutively as possible, as
machine transfer cost is 0 if the same machine is used for two consecutive
operations. However, an optimum process sequence should satisfy the following
constraints:

1. Every feature needs to be allocated but no feature is allocated twice in the
sequence.

2. If Ff c(Si)f
c(Sj) = 1, then i < j , for ∀i, j ∈ {1 · · ·p} (there are exactly p

allocations in the sequence due to constraint 1).
3. The total cost of the sequence cost (Π) = Σi∈{1···p}

(
Mf c(Πi)f

m(Πi)

+Tf m(Πi+1)f m(Πi+1)

)
is minimum.

f c (Πi) is defined as the feature index of the i-th allocation of the process
sequence Π , and f m (Πi) is defined as the machine index of the i-th allocation
of the process sequence Π .

Given a process sequencing instance < M, T , F >, we can transform such
instance into an instance of GTSP-ORD in the following way:

• Enumerate set A consisting every possible feature allocation and one termi-
nal allocation (τ), which is defined as the beginning and end position of
the sequence with no feature allocated to no machine; the machine allo-
cation cost of the terminal allocation is thus 0, and machine transfer cost
between terminal allocation and any other allocation is 0. Therefore, the num-
ber of nodes in the target GTSP-ORD problem is equal to |A| = | {τ } ∪{
< i, j >| Mij > 0, ∀i ∈ {1 · · ·p} , ∀j ∈ {1 · · ·m}} |.

• The distance from each node to the other node of the GTSP-ORD problem
instance is calculated by the following equation and stored in matrix P =
)|A|×|A| (row 0 and column 0 is marked as terminal allocation) as follows:

Pi∈A,j∈A =

⎧
⎪⎪⎨

⎪⎪⎩

Mf c(Aj)f m(Aj), when i = 0, j > 0

Mf c(Aj)f m(Aj) + Tf m(Ai)f
m(Aj), when i > 0, j > 0

0, otherwise

(4)

• The clusters of nodes are stored in matrix C = Z|A|×|A|, where Cij = 1, if
allocations Ai and Aj are in the same cluster and Cij = 0, if allocations Ai

and Aj are in different clusters. Matrix C can be constructed as follows:

Ci∈A,j∈A =
{

1, when f c(Ai) = f c(Aj), i > 0, j > 0

0, otherwise
(5)

312 D. Sormaz and A. Sarkar

• The precedence among nodes are stored in Matrix K = Z|A|×|A| as follows:

Ki∈A,j∈A =

⎧
⎪⎪⎨

⎪⎪⎩

1, when i = 0, j > 0, Ftf c(Aj) = 1,∀t ∈ 1 · · ·p
1, when i > 0, j > 0, Ff c(Ai)f

c(Aj) = 1

0, otherwise

(6)

Given an instance of process sequencing problem, IPSeq = (M, T , F), a
corresponding instance of IGT SP−ORD = (P,C,K) can be formed by the four
steps mentioned above. The minimum distance tour to be found in IGT SP−ORD is
of length p + 1 and should start from node τ .

Claim The optimum solution of IGT SP−ORD is equal to the optimum solution
for IP seq , where IPSeq ≤p IGT SP−ORD with help of the procedure described above.

Proof In order to prove that the optimal solution of IGT SP−ORD is equal to the
optimal solution for IPSeq , it is enough to show that every solution found in
IGT SP−ORD has a corresponding feasible solution for IPSeq . This is because if
any such tour is minimum of every other tour found in IGT SP−ORD , then the
corresponding process sequence is also the minimum of every other feasible process
sequence. A process sequence is feasible only when no feature is allocated to two
different machines and maintains the precedence constraint.

The allocations in any feasible tour t selected for IGT SP−ORD cannot have any
feature allocated to two different machines. This is true because any feasible tour for
IGT SP−ORD visits exactly one node from each cluster and following Equation (5),
every cluster is composed of allocations of only one feature. Therefore, t is also a
process sequence in which every feature is allocated to only one machine.

It follows from Equation (6) that if i < j , the feature of i-th allocation selected in
tour t either precedes feature of j-th allocation or have equal precedence, considering
that a feasible tour of GTSP-ORD will maintain the precedence stored in K matrix.
Therefore, the corresponding process sequence of t follows the feature precedence
constraint defined in F .

We present an example of the aforementioned transformation. For this example,
the sample part shown in Figure 2 is used. Table 4 contains the machine allocation
costs for every feature on five different possible machines. Notice that not all
machines are available for every feature. Table 5 contains the machine transfer costs
for five machines and we will follow the precedence constraint from the FPN shown
in Figure 2.

Table 4 Machine allocation
cost matrix (M) for four
features and five machines

M1 M2 M3 M4 M5

F1 1 0 3 15 0

F2 0 5 1 0 1

F3 0 0 2 13 0

F4 10 0 0 0 5

Process Sequencing Problem in Distributed Manufacturing Process Planning 313

Table 5 Machine transfer
cost matrix (T) for five
machines

M1 M2 M3 M4 M5

M1 0 4 4 9 2

M2 7 0 3 6 6

M3 2 7 0 5 8

M4 5 5 4 0 8

M5 1 1 3 3 0

Table 6 Matrix P storing the distance from one allocation to another

Allocations (A)
Af

τ

F1 F1 F1 F2 F2 F2 F3 F3 F4 F4

Am M1 M3 M4 M2 M3 M5 M3 M4 M1 M5

Af Am Idx 0 1 2 3 4 5 6 7 8 9 10

τ 0 0 1 3 15 5 1 1 2 13 10 5

F1 M1 1 0 0 0 0 9 5 3 6 22 10 7

F1 M3 2 0 0 0 0 12 1 9 2 18 12 13

F1 M4 3 0 0 0 0 10 5 9 6 13 15 13

F2 M2 4 0 8 6 21 0 0 0 5 19 17 11

F2 M3 5 0 3 3 20 0 0 0 2 18 12 13

F2 M5 6 0 2 6 18 0 0 0 5 16 11 5

F3 M3 7 0 3 3 20 12 1 9 0 0 12 13

F3 M4 8 0 6 7 15 10 5 9 0 0 15 13

F4 M1 9 0 1 7 24 9 5 3 6 22 0 0

F4 M5 10 0 2 6 18 6 4 1 5 16 0 0

Table 7 Matrix C storing the clusters of allocations

Allocations (A)
Af

τ

F1 F1 F1 F2 F2 F2 F3 F3 F4 F4

Am M1 M3 M4 M2 M3 M5 M3 M4 M1 M5

Af Am Idx 0 1 2 3 4 5 6 7 8 9 10

τ 0 1 0 0 0 0 0 0 0 0 0 0

F1 M1 1 0 1 1 1 0 0 0 0 0 0 0

F1 M3 2 0 1 1 1 0 0 0 0 0 0 0

F1 M4 3 0 1 1 1 0 0 0 0 0 0 0

F2 M2 4 0 0 0 0 1 1 1 0 0 0 0

F2 M3 5 0 0 0 0 1 1 1 0 0 0 0

F2 M5 6 0 0 0 0 1 1 1 0 0 0 0

F3 M3 7 0 0 0 0 0 0 0 1 1 0 0

F3 M4 8 0 0 0 0 0 0 0 1 1 0 0

F4 M1 9 0 0 0 0 0 0 0 0 0 1 1

F4 M5 10 0 0 0 0 0 0 0 0 0 1 1

After applying the transformation rules given in this section, we derive the
following three matrices P , C, and K , which are given in Tables 6, 7, and 8,
respectively.

314 D. Sormaz and A. Sarkar

Table 8 Matrix K storing the precedence relationship among allocations

Allocations (A)
Af

τ

F1 F1 F1 F2 F2 F2 F3 F3 F4 F4

Am M1 M3 M4 M2 M3 M5 M3 M4 M1 M5

Af Am Idx 0 1 2 3 4 5 6 7 8 9 10

τ 0 0 1 1 1 0 0 0 1 1 0 0

F1 M1 1 0 0 0 0 1 1 1 0 0 0 0

F1 M3 2 0 0 0 0 1 1 1 0 0 0 0

F1 M4 3 0 0 0 0 1 1 1 0 0 0 0

F2 M2 4 0 0 0 0 0 0 0 0 0 1 1

F2 M3 5 0 0 0 0 0 0 0 0 0 1 1

F2 M5 6 0 0 0 0 0 0 0 0 0 1 1

F3 M3 7 0 0 0 0 0 0 0 0 0 1 1

F3 M4 8 0 0 0 0 0 0 0 0 0 1 1

F4 M1 9 1 0 0 0 0 0 0 0 0 0 0

F4 M5 10 1 0 0 0 0 0 0 0 0 0 0

This transformation may enable various combinatorial and graph optimization
techniques suitable for GTSP and TSP to be applied in solving process sequencing
problem. However, research on GTSP-ORD, as defined here is sparse in the
literature. Still, many past investigations on ordered TSP may be extended for
solving GTSP-ORD. Even the space search algorithms, presented in this section,
can be modified to be suitable for solving IGT SP−ORD . Such treatments are beyond
the limit of this chapter.

For the example instance of process sequencing problem shown in Figure 2, the
ACS-PSEQ algorithm finds minimum cost sequence of allocation as <F3,M3>,
<F1,M1>, <F2,M5>, <F4,M5> with total cost 13. This is the optimum
sequence for this particular instance.

6 Experimentation and Results

In this section, we will present some quantitative analysis of process sequencing
methods discussed in Section 5. At first, we measured the size of the process
planning network as size of the search tree produced by a depth-first search
algorithm similar to space search algorithm. The only difference is that we did not
use the process-cluster function while generating the next possible states; instead,
every available feature machine combination is added in the candidate set PCi,i+1.
The first goal of our experiment is to show that PPN generated without any process
clustering and no or equal precedence among candidate features will generate
bigger network than in the cases where process clustering or unequal precedence
among features is present. Therefore, the size of the network and the performance
of space search can be measured in worst case situation. We generated different

Process Sequencing Problem in Distributed Manufacturing Process Planning 315

machine allocation matrices for a five-feature part and five-machine configuration
by varying a parameter called machine allocation percentage (mp), which defines
the percentage of total number of machines in a shop floor available to each feature.
The space search algorithm is written in Java and executed on a computer using Intel
Core i7-3630QM processor with 2.4 GHz clock speed and 8 GB physical memory.

Figure 8 shows the plot of PPN network size for different machine allocation
percentage. It can be observed that when number of machines available to features
increases, the search tree increases in size and thus computation time increases too
(see Figure 9). The larger standard error of mean for higher machine allocation
matrix is due to the fact that the variation of random assignment piles up when more
number of machines are allocated.

We observed in the previous experiment that the size of space search tree
increases exponentially. However, not all features are available for processing at the
same time due to the presence of precedence among features in a real-life product
design. Next, we will evaluate the effect of FPN on space search tree by using
two sample parts: (1) Netex part shown in Figure 6, and (2) sample part shown
in Figure 10, in Table 9.

It can be observed from Table 9 that inducing precedence among features cuts
the size of the space search tree, therefore generates a smaller PPN. This network
can further be minimized by employing process clustering described in Section 4.
Next experiments show the results of applying our process planning procedure and

Fig. 8 Space search tree size
in (a) number of nodes, (b)
number of arcs, for different
machine allocation
percentages in a five-features
and five-machines
configuration

316 D. Sormaz and A. Sarkar

Fig. 9 Computation time for generating PPNs for different machine allocation percentages in a
five features and five machines configuration

Fig. 10 Example parts: (a) Simple, (b) Bendix, and (c) Testnik

Table 9 Comparison of size
of PPN with and without
precedence

Part
No precedence With precedence

Node Arc Node Arc

Netex 78,608 121,358 23,654 34,089

USC 636 1034 1167 2024

generating the process plan network in the prototype of the process planning system
called 3I-PP (Intelligent Integrated Incremental Process Planner) which has been
implemented in KnowledgeCraft©and later ported to LispWorks©. First, several
examples for which the process plan network has been generated are provided. Next,
the issue of computational efficiency of the implemented space search algorithm is
discussed.

Process Sequencing Problem in Distributed Manufacturing Process Planning 317

Table 10 Number of
features in example part

Example Netex Bendix Testnik

of features 9 17 13

S

S17

S14

S12

S11

S10

S8

S7 S9

S13

H15

H16

P32 P13

H19 H21

S

H23H22

H17

St13

St11

S19 H19

H20

H22

H23

S18

S17

S14’

S14

Ls1

Sl10

H18

S18

S17

a
b

c

Ls1

Ls3

H11

H18 E
S

Ls2

S110

Fig. 11 The feature precedence network for: (a) USC example, (b) Bendix example, and (c)
Testniks example

We used three example parts shown in Figure 10 for generating their individual
PPNs, which are also used as problem instances to test the process sequencing
algorithm. For all examples, machining features were obtained by running the
feature recognition system OOFF (Object-oriented Feature Finder) (Vandenbrande
and Requicha 1993). It is interesting to note that one of the examples (shown in
c) has two alternative representations. The central slot and the two steps are one
representation, and the open pocket is another for the same portion of the removed
volume. This example was executed in two separate runs of the system (one for
slot-step representation and the other for pocket representation of this volume). We
used the FPN with Step representation. The number of features for individual parts
is given in Table 10.

Next, the FPN networks are formed for each part by evaluating the possible
feature interactions, accessibility, and other geometric constraints. The FPNs for
each part are given in Figure 11.

318 D. Sormaz and A. Sarkar

Table 11 Sample of process candidates

Features Process Machine Tool Time Cost

Lin_slot_3 SIDE-MILLING UNIV-MILL SLOTTING-
TOOL

7.7 10.1

Lin_slot_4 SIDE-MILLING PLAIN-MILL SLOTTING-
TOOL

7.7 9.33

Lin_slot_5 SIDE-MILLING CNC-V-MILL SLOTTING-
TOOL

7.7 11.64

Lin_slot_6 SIDE-MILLING CNC-H-MILL SLOTTING-
TOOL

7.7 11.64

Lin_slot_7 END-MILLING-SLOTTING UNIV-MILL END-MILLING-
TOOL

3.27 4.05

Lin_slot_8 END-MILLING-SLOTTING VERT-MILL END-MILLING-
TOOL

3.27 3.27

Lin_slot_9 END-MILLING-SLOTTING CNC-V-MILL END-MILLING-
TOOL

3.27 4.7

Lin_slot_10 END-MILLING-SLOTTING CNC-H-MILL END-MILLING-
TOOL

3.27 4.7

Fig. 12 PPN for Netex example

For each FPN, the corresponding PPNs are generated with machine clustering
already implemented. The number of process candidates is kept the same for every
test instance and a small subset of all process candidates are given in Table 11. The
optimal process plan for the example in Figure 11c that was generated by applying
the space search algorithm is shown in Figure 12. This plan is shown in the form of
a process plan tree that shows the process plan levels described in Section 4. For the
same example, a process plan network is generated as described in Section 1. The
resulting PPN network is the counterpart of the PPN shown in Figure 3. The PPN
generated after applying clustering is shown in Figure 13.

The first step in the evaluation of computational complexity of the procedure is
the estimation of the problem size for the given input conditions. In our process
sequencing problem, size parameters are number of features, number of process
candidates per feature (this includes number of processes and number of machines),
and the feature precedence network. This number of nodes exists on the highest

Process Sequencing Problem in Distributed Manufacturing Process Planning 319

Fig. 13 Clustered PPN for Netex example

(machine) layer and the number of arcs between them depends on the number of
constraints in the FPN. This network explosion seems to lead to the conclusion that
the creation of the process plan network will be computationally very expensive.
However, the clustering procedure essentially reduces the number of nodes in the
process plan network because of the fact that there is a significant overlap of
processes for machining features (e.g., end milling may be used for slots, pockets,
steps, etc.) and, more importantly, because there is also a significant overlap of
machines for machining processes (e.g., a vertical mill is capable of performing
end milling, face milling, drilling, and even side milling).

Another reason for a limited network growth is the existence of feature prece-
dence constraints. Due to precedence constraints, the number of features considered
at any stage is limited, and combinatorial generation of clusters may be performed
only on a small number of features. In a bounding case, where there is a complete
precedence constraint between features (i.e., the FPN produces a single sequence in
which features have to be machined), clustering is not performed at all and only one
feature is considered at each stage of network generation.

The conclusion of the above analysis is that the network growth depends
significantly on the particular part and its data (features and process candidates).
Consequently, the network procedure has been executed on several realistic exam-
ples in order to establish some meaningful relations between the problem size
(number of features), the process plan network size (number of nodes), and
computational time.

The procedures explained in Section 3 have been compared in the above
examples. The results of the comparison (execution times on Intel Pentium III/866
processor) are shown in Table 12. The table shows problem sizes and execution
times for both algorithms as applied to five examples. Several observations may be
made from this table:

320 D. Sormaz and A. Sarkar

Table 12 Metrics of process planning conducted on sample parts

Example Simple Bendix Testniks Netex-full Netex-simple

No. of features 9 17 11 7 7

Process selection procedure

No. of processes 102 300 144 100 17

Process selection time 12 s 43.6 s 17.5 s 12.6 s 12.0 s

Space search algorithm

No. of process plans 5 4 55 46 22

No. of activities 295 723 383 254 209

Number of states visited 113 341 168 80 87

Space search time 7.2 s 68.0 s 6.3 s 6.3 s 4.3 s

Network algorithm

Number of activities 923 944 759 430 194

Number of nodes 63 60 53 29 33

Number of arcs 358 361 351 144 85

Network generation 34.5 s 56 s 29.7 s 10.8 s 3.8 s

Network optimization 1.8 s 1.7 s 1.6 s 0.5 s 0.5 s

1. Problem size is proportional to the number of features, with the number of
process candidates in the range of 10–15X number of features (case Net-simple
is an exception because it is built with different goal).

2. The state-space search algorithm expands the network into a smaller number
of activities due to simultaneous evaluation of current state and avoidance of
unpromising paths.

3. Time of the space search algorithm depends also on the actual data in the
network.

7 Past Researches

During early eighties, generative CAPP system was still an emerging technology, as
pointed out by Eversheim and Schneewind in their review, published in 1984 [7].
Ham and Lu first recognized the importance of integrating design and manufacturing
as well as techniques of AI in generative process planning research [8]. In a very
significant survey published in the following year, Alting and Zhang supported the
claims of Ham and Lu as well as pointed machine learning systems as promising
candidate for integrated manufacturing [1].

Recent surveys classify various technologies and platforms, used in the last three
decades of research, into ten categories: (a) feature based, (b) knowledge based,
(c) neural networks, (d) genetic algorithm, (e) fuzzy set theory/logic, (f) Petri nets,
(g) agent based, (h) Internet based, (i) STEP-compliant, and (j) emerging/others
[29]; [30]. In this chapter, we represent our process sequencing problem assuming

Process Sequencing Problem in Distributed Manufacturing Process Planning 321

the part design as a collection of machining features. Therefore, the process
sequencing algorithms presented in this chapter should be part of feature-based
process planning. We will narrow our discussions on the past research in feature-
based process planning. Still, it should be noted that many feature-based process
planning systems heavily borrow techniques from other categories. In fact, past
research in process selection phase of generative process planning either used expert
systems which automatically select processes based on traditional process selection
practices, captured in a knowledge base, or employed different machine learning
techniques to train a process selection engine.

There are two primary ways features can be obtained from part design [22].
Feature-based part designs are extremely suitable for feature-based process planning
because features can be directly extracted from the part design. For part designs
with custom or nonstandard features, a feature recognition procedure needs to
be employed to identify the implicit features from the part design. In the past,
considerable amount of work has been devoted to transforming the design model
represented in CAD format into a feature model for process planning [2]. In the
feature model, various structural characteristics of a part design are mapped to one
or many standard machining features such as holes, slots, pockets, chamfer, bevel,
and many more (STEP AP256 provides an exhaustive list of features for subtractive
manufacturing). It has to be noted that the CAD design should also contain the
design specifications expressed in terms of tolerances for every feature. A number
of studies also investigated the problem of translating the design features, generally
having a predefined geometrical structure, into machining feature, which is more
suitable for process selection [21].

Earlier known process selection engines are built as expert systems. One of the
most frequently referenced rule-based generative process planning systems is GARI
[6] which performs planning of the sequence of machining processes for mechanical
parts. GARI uses as its input a symbolic representation of the part, features,
and relations between features in the form of LISP lists. Most early generative
process planning systems used this scheme (LISP list plus rules). HiMapp [3]
uses a revised form of a planner called Deviser in its core while RTCAPP
[18] is a relatively extended system in comparison to the previous work and
includes a manufacturing knowledge base which consists of frame representation
of knowledge that connects processes, machines, and tools. SIPS [16] are based on
a hierarchical abstraction technique called hierarchical knowledge clustering, where
the knowledge is organized in a taxonomic hierarchy of objects. AMPS (Automated
Machining Planning System) [4] is a process planning expert system that supports a
QTC (Quick Turnaround Cell), an automated manufacturing cell for prismatic parts
of one-of-kind type. AMPS uses both frames (in KEE) for declarative knowledge
representation and rules for procedural knowledge representation. The combination
of object-oriented approach (for feature classification) and rule base (for process
selection) was used in XCUT [9].

When the scheduling module receives several alternative process plans for each
part, it may implement the scheduling algorithm under a more relaxed set of
constraints, hence reaching the better solutions in terms of resource utilization or

322 D. Sormaz and A. Sarkar

production cycle minimization. The availability of alternative process plans provides
the scheduling module the flexibility to select different process plans for different
time windows depending on the status of production resources.

There have been several research efforts devoted to interface between automated
process planning systems and CAM (computer-aided manufacturing) and MRP
(manufacturing resource planning) software. The latter two activities rely heavily
on accurate and updated process plans to carry out manufacturing itself.

The issue of process sequencing and generation of alternative process plans has
received early attention in process planning research. Prabhu et al. [20] proposed a
method for generation of operations network for rotational parts based on feature
precedence constraints. They proposed a tree representation of allowed feature
sequences for turning operations. The approach provided directions for further
research in the area, but did not address several important issues: processing on
more than one machine, processing of prismatic parts (which have more complex
precedence relations), and multiple representation of the same process in the tree.
Lee et al. presented the precedence among machining operations selected for a part
manufacturing in a tree structure and alternative process sequences in a network.
Branch and fathoming styled search algorithm is applied to find the best machining
sequence from the network of alternative process plans [12]. In a separate study,
same authors also presented six different local search strategies, based on Simulated
Annealing and Tabu search in order to increase the performance of search [13].

The integration of process plan network into process planning and shop floor
control is reported in [5]. Authors describe two-step process planning (offline and
online) and hierarchy of manufacturing tasks. The algorithm for conversion of
feature graph into task graph is proposed for rotational components. Decomposition
of task graph into process hierarchy is based on ISO/STEP representation of process
planning.

One method of finding the number of possible paths in a given graph is by finding
the Hamiltonian paths. Hamiltonian path in a graph is a path that passes through
every vertex only once. Irani et al. [10] adopted Hamiltonian path method to find
the number of paths. Authors have described two algorithms for generation of valid
Hamiltonian paths from a feature graph. Prabhu et al. remarked that, though the
Hamiltonian method enumerates all the possible paths, it is inefficient [20]. This
is because it is possible that Hamiltonian path might not be a valid path when
precedence constraints are considered. It is important here to note that these reports
do not address issue of alternative processes for individual features, do not discuss
process network as permanent plan representation, nor completely analyze the fact
that more than one machine may be required for manufacturing. These important
factors introduce another complexity into process sequencing and require more
integrative approach as presented in this paper.

Process Sequencing Problem in Distributed Manufacturing Process Planning 323

References

1. L. Alting, H. Zhang, Computer aided process planning: the state-of-the-art survey. Int. J. Prod.
Res. 27(4), 553–585 (1989)

2. B. Babic, N. Nesic, Z. Miljkovic, A review of automated feature recognition with rule-based
pattern recognition. Comput. Ind. 59(4), 321–337 (2008)

3. H.R. Berenji, B. Khoshnevis, Use of artificial intelligence in automated process planning.
Comput. Mech. Eng. 5(2), 47–55 (1986)

4. T.-C. Chang, Expert Process Planning for Manufacturing (Addison-Wesley Pub. Co, Reading,
MA, 1990)

5. H. Cho, A. Derebail, T. Hale, R.A. Wysk, A formal approach to integrating computer-aided
process planning and shop floor control. J. Eng. Ind. 116(1), 108 (1994)

6. Y. Descotte, J.-C. Latombe, Gari: an expert system for process planning, in Solid Modeling by
Computers (Springer US, Boston, MA, 1984), pp. 329–346

7. W. Eversheim, J. Schneewind, Computer-aided process planning—State of the art and future
development. Robot. Comput. Integr. Manuf. 10(1–2), 65–70 (1993)

8. I. Ham, S.C.-Y. Lu, Computer-aided process planning: the present and the future. CIRP Ann.
Manuf. Technol. 37(2), 591–601 (1988)

9. K. Hummel, S.L. Brooks, XPS-E revisited: a new architecture and implementation approach
for an automated process planning system. CAM-I Publication, DR-88-PP-02 (1988)

10. S.A. Irani, H.-Y. Koo, S. Raman, Feature-based operation sequence generation in CAPP. Int.
J. Prod. Res. 33(1), 17–39 (1995)

11. B. Khoshnevis, J.Y. Park, D. Sormaz, A cost based system for concurrent part and process
design. Eng. Econ. 40(1), 101–124 (1994). https://doi.org/10.1080/00137919408903140

12. D.-H. Lee, D. Kiritsis, P. Xirouchakis, Branch and fathoming algorithms for operation
sequencing in process planning. Int. J. Prod. Res. 39(16), 1649–1669 (2001)

13. D.-H. Lee, D. Kiritsis, P. Xirouchakis, Search heuristics for operation sequencing in process
planning. Int. J. Prod. Res. 39(16), 3771–3788 (2001)

14. Y.-N. Lien, E. Ma, B.W. Wah, Transformation of the generalized traveling salesman problem
into the standard traveling salesman problem. Inf. Sci. 74(1–2), 177–189 (1993)

15. G.F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6th
edn. (Addison-Wesley, 2008)

16. D.S. Nau, M. Luce, Knowledge representation and reasoning techniques for process planning:
extending SIPS to do tool selection (1987)

17. C.E. Noon, J.C. Bean, An efficient transformation of the generalized traveling salesman
problem. Inf. Syst. Oper. Res. 31(1), 39–44 (1993)

18. J.Y. Park, B. Khoshnevis, A real-time computer-aided process planning system as a support
tool for economic product design. J. Manuf. Syst. 12(2), 181–193 (1993)

19. J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving (Addison-
Wesley Longman Publishing Co, Boston, MA, 1984)

20. P. Prabhu, S. Elhence, H. Wang, An operations network generator for computer aided process
planning. J. Manuf. Syst. 9(4), 283–291 (1990)

21. M. Sadaiah, D.R. Yadav, P.V. Mohanram, P. Radhakrishnan, A generative computer-aided
process planning system for prismatic components. Int. J. Adv. Manuf. Technol. 20(10),
709–719 (2002)

22. J.J. Shah, Conceptual development of form features and feature modelers. Res. Eng. Des. 2(2),
93–108 (1991)

23. D.N. Šormaz, B. Khoshnevis, Process sequencing and process clustering in process planning
using state space search. J. Intell. Manuf. 7(3), 189–200 (1996)

24. D.N. Šormaz, B. Khoshnevis, Process planning knowledge representation using an object-
oriented data model. Int. J. Computer Integr. Manuf. 10(1–4), 92–104 (1997)

25. D.N. Šormaz, B. Khoshnevis, Modeling of manufacturing feature interactions for automated
process planning. J. Manuf. Syst. 19(1), 28–45 (2000)

https://doi.org/10.1080/00137919408903140

324 D. Sormaz and A. Sarkar

26. D.N. Sormaz, B. Khoshnevis, Generation of alternative process plans in integrated manufac-
turing systems. J. Intell. Manuf. 14(6), 509–526 (2003)

27. D.N. Šormaz, S. Thiruppalli, Relationships between feature precedence complexity and
number of alternative processing sequences, in Proceedings of 10th Industrial Engineering
Research Conference, Dallas, TX (2001)

28. S. Thiruppalli, Incremental generation of alternative process plans for integrated manufactur-
ing. PhD thesis, Ohio university (2002)

29. X. Xu, L. Wang, S.T. Newman, Computer-aided process planning - a critical review of recent
developments and future trends. Int. J. Comput. Integr. Manuf. 24(1), 1–31 (2011)

30. Y. Yusof Kamran Latif, Y.K. Yusof Latif, K Latif, Survey on computer-aided process planning.
Int. J. Adv. Manuf. Technol. 75, 77–89 (2014)

Sharp Nordhaus–Gaddum-Type Lower
Bounds for Proper Connection Numbers
of Graphs

Yuefang Sun

1 Introduction

We refer to book [3] for graph theoretical notation and terminology not described
here. An edge-colored graph is said to be properly colored if no two adjacent edges
share a color. An edge-colored connected graph G is called properly connected if
between every pair of distinct vertices, there exists a path that is properly colored.
The proper connection number of a connected graph G, denoted by pc(G), is the
minimum number of colors needed to color the edges of G to make it properly
connected [4]. Clearly, pc(G) = 1 if and only if G = Kn and pc(G) = n−1 if and
only if G = K1,n−1.

The concept of proper connection is not only a natural combinatorial measure but
also has applications in communication network [15]: When building a communi-
cation network between wireless signal towers, one fundamental requirement is that
the network should be connected. If there cannot be a direct connection between
two towers A and B, for example, if there is a mountain in between, there must
be a route through other towers to get from A to B. As a wireless transmission
passes through a signal tower, to avoid interference, it would help if the incoming
signal and the outgoing signal do not share the same frequency. Suppose we assign
a vertex to each signal tower, an edge between two vertices if the corresponding
signal towers are directly connected by a signal, and assign a color to each edge
based on the assigned frequency used for the communication. Then, the number of
frequencies needed to assign frequencies to the connections between towers so that
there is always a path avoiding interference between each pair of towers is precisely
the proper connection number of the corresponding graph.

Y. Sun (�)
Department of Mathematics, Shaoxing University, Zhejiang, People’s Republic of China
e-mail: yuefangsun2013@163.com

© Springer Nature Switzerland AG 2018
B. Goldengorin (ed.), Optimization Problems in Graph Theory,
Springer Optimization and Its Applications 139,
https://doi.org/10.1007/978-3-319-94830-0_13

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94830-0_13&domain=pdf
mailto:yuefangsun2013@163.com
https://doi.org/10.1007/978-3-319-94830-0_13

326 Y. Sun

Aside from the above application, properly colored paths and cycles appear in a
variety of other fields including social sciences [7] and genetics [8–10]. The readers
can see a survey [1] dealing with the case where two colors are used on the edges.
Recently, there has also been another survey of the area in Chapter 16 of [2].

The definition and study of the proper connection number was inspired by the
concept of rainbow connection number which was introduced by Chartrand et al.
[5]. A path is called rainbow if no two edges in the path share a color. The rainbow
connection number of a graph G, denoted by rc(G), is the minimum number of
colors needed such that there is a rainbow path between each pair of vertices in
G. By replacing “rainbow” with “proper,” it is easy to see where the definition
of the proper connection number originated. There are more and more researchers
investigating the topic of rainbow coloring, the readers can see [17] for a survey and
[16] for a monograph on it.

The vertex-coloring version of the proper connection number has been defined
and studied independently in [6] and [14]. A vertex-colored graph G is called proper
vertex-connected if every pair of vertices is connected by a path which has no
two consecutive internal vertices of the same color. The proper vertex-connection
number of G, denoted by pvc(G), to be the smallest number of colors needed to
make G proper vertex-connected.

For the total-coloring version of the proper connection number, the authors in [6]
defined the concept of total proper connection number. Here, we introduce another
concept. A total-colored graph G is called proper total-connected if for every pair
of vertices, there is a path connecting them such that no two adjacent edges share
a color and no two consecutive internal vertices share a color. Define the proper
total-connection number of G, denoted by ptc(G), to be the smallest number of
colors needed to make G proper total-connected. By definition, we clearly have
ptc(G) ≥ max{pc(G), pvc(G)}.

A Nordhaus–Gaddum-type result is an upper or lower bound on the product or
sum of the values of a parameter for a graph G and its complement G. Nordhaus and
Gaddum [18] first established this type of result for the chromatic number of a graph
and many analogous results of other graph parameters are obtained since then, such
as [11, 12, 19]. In this paper, we will study the Nordhaus–Gaddum-type bounds for
the proper connection number pc(G), proper vertex-connection number pvc(G),
and proper total-connection number ptc(G) of a graph and get sharp lower bounds
for pc(G) + pc(G) (Theorem 1), pc(G)pc(G) (Theorem 2), pvc(G) + pvc(G)

(Theorem 4), pvc(G)pvc(G) (Theorem 5), ptc(G) + ptc(G) (Theorem 6), and
ptc(G)ptc(G) (Theorem 7), where G is a connected graph of order at least 8.

2 Main Results

For a set S, we use |S| to denote the size of S. Let c be an edge-coloring of G, we
use c(e) to denote the color of an edge e. For a subgraph H of G, let c(H) be the
set of colors of the edges in H .

Sharp Nordhaus-Gaddum-Type Lower Bounds 327

In [13], Huang, Li, and Wang proved that if G and G are both connected, then
4 ≤ pc(G) + pc(G) ≤ n, and the only graph attaining the upper bound is the tree
with maximum degree Δ = n−2. However, for the lower bound, they did not show
that whether it is sharp. Here, we confirm it by giving the following result.

Theorem 1 For a connected graph G of order n ≥ 8 with a connected complement,
we have

pc(G)+ pc(G) ≥ 4.

Moreover, the bound is sharp.

Proof We just consider the sharpness of this bound, it suffices to find a connected
graph G on n ≥ 8 vertices such that pc(G) = pc(G) = 2. We will distinguish four
cases.

Case 1. We first consider the case that n = 4k, where k ≥ 2.
For the subcase that k = 2, let G be a graph with vertex set {x}∪U ∪V and edge

set {xui | 1 ≤ i ≤ 3} ∪ {uivi | 1 ≤ i ≤ 3} ∪ {u1v2, u2v3, u3v4} ∪ {vivj | 1 ≤ i, j ≤
4}, where U = {ui | 1 ≤ i ≤ 3} and V = {vj | 1 ≤ j ≤ 4}. We provide an edge-
coloring c of G by letting c(u1v1) = c(u2v2) = c(u2v3) = c(xu3) = c(u3v3) = 1,
c(e) = 2 for each other edge. And, we provide an edge-coloring c∗ of G by letting
c∗(u1v3) = c∗(u2v4) = c∗(u2v1) = c∗(u3v2) = c∗(xv3) = c∗(xv4) = 1, c∗(e) =
2 for each other edge e. Clearly, both G and G are properly connected under above
colorings and then pc(G) = pc(G) = 2 in this case.

We now consider the subcase that k ≥ 3. Let U = {ui | 1 ≤ i ≤ 2k − 1} and
V = {vj | 1 ≤ j ≤ 2k}. Let G be a graph with vertex set {x} ∪ U ∪ V such that
N(x) = U , U is an independent set, G[V] is a clique, and for each vertex ui , ui is
adjacent to vi, vi+1, . . . , vi+k−1, where the subscripts are taken modulo 2k.

We provide an edge-coloring c of G by letting

c(e) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if e = xui f or k + 1 ≤ i ≤ 2k − 1,

1, if e = uivi f or 1 ≤ i ≤ 2k − 1,

1, if e = ukvk+1,

2, otherwise.

We then provide an edge-coloring c∗ of G by letting

c∗(e) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if e = vjuj+1 f or 1 ≤ j ≤ 2k − 2,

1, if e = uiuj f or 1 ≤ i, j ≤ 2k − 1,

1, if e = xvj f or k − 1 ≤ j ≤ 2k − 2,

1, if e ∈ {u1v2k, ukvk−2},
2, otherwise.

328 Y. Sun

Clearly, both G and G are properly connected under above colorings and so
pc(G) = pc(G) = 2 in this case.

Case 2. We next consider the case that n = 4k + 1, where k ≥ 2. Let U =
{ui | 1 ≤ i ≤ 2k} and V = {vj | 1 ≤ j ≤ 2k}. Let G be a graph with vertex set
{x} ∪ U ∪ V such that N(x) = U , U is an independent set, G[V] is a clique, and
for each vertex ui , ui is adjacent to vi, vi+1, . . . , vi+k−1, where the subscripts are
taken modulo 2k.

We provide an edge-coloring c of G by letting

c(e) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if e = xui f or k + 1 ≤ i ≤ 2k,

1, if e = uivi f or 1 ≤ i ≤ 2k,

1, if e = ukvk+1,

2, otherwise.

It is not hard to show that G ∼= G, furthermore, both G and G are properly
connected under above colorings. Thus, pc(G) = pc(G) = 2 in this case.

Case 3. We now consider the case that n = 4k + 2, where k ≥ 2.
For the subcase that k = 2, let G be a graph with vertex set {x} ∪ U ∪ V and

edge set {xui | 1 ≤ i ≤ 4} ∪ {uivi | 1 ≤ i ≤ 4} ∪ {u1v2, u2v3, u3v4, u4v5} ∪ {vivj |
1 ≤ i, j ≤ 5}, where U = {ui | 1 ≤ i ≤ 4} and V = {vj | 1 ≤ j ≤ 5}. We provide
an edge-coloring c of G by letting c(u1v1) = c(u2v2) = c(u2v3) = c(u3v3) =
c(u4v4) = c(xu3) = c(xu4) = 1, c(e) = 2 for each other edge. We then provide an
edge-coloring c∗ of G by letting c∗(u1v4) = c∗(u2v5) = c∗(u2v1) = c∗(u3v2) =
c∗(u4v3) = c∗(xv5) = c∗(xv4) = 1, c∗(e) = 2 for each other edge e. Clearly, both
G and G are properly connected under above colorings and so pc(G) = pc(G) = 2
in this case.

We now consider the subcase that k ≥ 3. Let U = {ui | 1 ≤ i ≤ 2k} and
V = {vj | 1 ≤ j ≤ 2k+ 1}. Let G be a graph with vertex set {x} ∪U ∪V such that
N(x) = U , U is an independent set, G[V] is a clique, and for each vertex ui , ui is
adjacent to vi, vi+1, . . . , vi+k−1, where the subscripts are taken modulo 2k + 1.

We provide an edge-coloring c of G by letting

c(e) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if e = xui f or k + 1 ≤ i ≤ 2k,

1, if e = uivi f or 1 ≤ i ≤ 2k,

1, if e = ukvk+1,

2, otherwise.

We then provide an edge-coloring c∗ of G by letting

c∗(e) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if e = vjuj+1 f or 1 ≤ j ≤ 2k − 1,

1, if e = uiuj f or 1 ≤ i, j ≤ 2k,

1, if e = xvj f or k − 1 ≤ j ≤ 2k − 1,

1, if e ∈ {ukvk−2, u1v2k+1},
2, otherwise.

Sharp Nordhaus-Gaddum-Type Lower Bounds 329

It is not hard to show that both G and G are properly connected under above
colorings and then pc(G) = pc(G) = 2 in this case.

Case 4. We finally consider the case that n = 4k+3, where k ≥ 2. Let U = {ui |
1 ≤ i ≤ 2k + 1} and V = {vj | 1 ≤ j ≤ 2k + 1}. Let G be a graph with vertex
set {x} ∪ U ∪ V such that N(x) = U , uk+1v2k+1 ∈ E(G), U is an independent
set, G[V] is a clique, and for each vertex ui , ui is adjacent to vi, vi+1, . . . , vi+k−1
where the subscripts are taken modulo 2k + 1.

We provide an edge-coloring c of G by letting

c(e) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if e = xui f or k + 1 ≤ i ≤ 2k + 1,

1, if e = uivi f or 1 ≤ i ≤ 2k + 1,

1, if e = ukvk+1,

2, otherwise.

Then, we provide an edge-coloring c∗ of G by letting

c∗(e) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if e = vjuj+1 f or 1 ≤ j ≤ 2k,

1, if e = xvj f or k ≤ j ≤ 2k,

1, if e ∈ {u1v2k+1, uk+1vk−1},
2, otherwise.

Clearly, both G and G are properly connected under above colorings and then
pc(G) = pc(G) = 2 in this case. �

We know that if both G and G are connected, then both of them are noncomplete,
so pc(G)pc(G) ≥ 4 by the fact that pc(G) = 1 if and only if G = Kn. Then, by
using the same graphs in Theorem 1, we can get the following result.

Theorem 2 For a connected graph G of order n ≥ 8 with a connected complement,
we have

pc(G)pc(G) ≥ 4.

Moreover, the bound is sharp.

There are some basic observations about pvc(G) including the following result.

Proposition 3 ([14]) If G is a nontrivial connected graph, then

(i) pvc(G) = 0 if and only if G is a complete graph;
(ii) pvc(G) = 1 if and only if diam(G) = 2.

By Proposition 3, we know that pvc(G) ≥ 1 for any connected noncomplete
graph, and furthermore, pvc(G)+ pvc(G) ≥ 2 and pvc(G)pvc(G) ≥ 1 if both G

and G are connected. Especially, we can get the following result.

330 Y. Sun

Theorem 4 For a connected graph G of order n ≥ 8 with a connected complement,
we have

pvc(G)+ pvc(G) ≥ 2.

Moreover, the bound is sharp.

Proof According to the above argument, we only need to prove that for n ≥ 8, there
are graphs G and G with n vertices such that diam(G) = diam(G) = 2. We just
use the graphs in Theorem 1, it is not hard to check that in each case, the graph G

we construct in Theorem 1 satisfies our requirement. �
With a similar argument to that of Theorem 4, the following result also holds.

Theorem 5 For a connected graph G of order n ≥ 8 with a connected complement,
we have

pvc(G)pvc(G) ≥ 1.

Moreover, the bound is sharp.

We now study the Nordhaus–Gaddum-type lower bounds for the proper total-
connected number and get the following result.

Theorem 6 For a connected graph G of order n ≥ 8 with a connected complement,
we have

ptc(G)+ ptc(G) ≥ 4.

Moreover, the bound is sharp.

Proof Recall the fact that ptc(G) ≥ max{pc(G), pvc(G)} and by Theorems 1
and 4, we have that ptc(G)+ ptc(G) ≥ 4.

For the sharpness of this bound, we use the graphs G in Theorem 1 and provide
an edge-coloring of G the same to that of Theorem 1. This procedure costs two
distinct colors, then we assign any of these two colors to each vertex of G. By the
argument of Theorem 1, we know that for every pair of vertices in G, there is a
path such that no two adjacent edges share a color, furthermore, the length of such
a path is exactly two, then G is properly total-connected, and so ptc(G) = 2. With
a similar argument, we can show that ptc(G) = 2. �

With a similar argument to that of Theorem 6, the following result holds.

Theorem 7 For a connected graph G of order n ≥ 8 with a connected complement,
we have

ptc(G)ptc(G) ≥ 4.

Moreover, the bound is sharp.

Sharp Nordhaus-Gaddum-Type Lower Bounds 331

Acknowledgements This work was supported by National Natural Science Foundation of China
(No. 11401389) and China Scholarship Council (No. 201608330111). The author is very grateful
to the referee for helpful comments and suggestions.

References

1. J. Bang-Jensen, G. Gutin, Alternating cycles and paths in edge-coloured multigraphs: a survey.
Discret. Math. 165/166, 39–60 (1997)

2. J. Bang-Jensen, G. Gutin, Digraphs Theory, Algorithms and Applications, 2nd edn. Springer
Monographs in Mathematics (Springer, London, 2009)

3. J.A. Bondy, U.S.R. Murty, Graph Theory. Graduate Texts in Mathematics, vol. 244 (Springer,
Berlin, 2008)

4. V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, Z. Tuza, Proper
connection of graphs. Discret. Math. 312(17), 2550–2560 (2012)

5. G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs. Math.
Bohem. 133(1), 85–98 (2008)

6. E. Chizmar, C. Magnant, P. Salehi Nowbandegani, Note on vertex and total proper connection
numbers. AKCE Int. J. Graphs Comb. 13(2), 103–106 (2016)

7. W.S. Chou, Y. Manoussakis, O. Megalakaki, M. Spyratos, Zs. Tuza, Paths through fixed
vertices in edge-colored graphs. Math. Inform. Sci. Hum. 127, 49–58 (1994)

8. D. Dorninger, On permutations of chromosomes, in Contributions to General Algebra, vol. 5
(Verlag Hölder-Pichler-Tempsky/Teubner, Wien/Stuttgart, 1987), pp. 95–103

9. D. Dorninger, Hamiltonian circuits determining the order of chromosomes. Discret. Appl.
Math. 50(2), 159–168 (1994)

10. D. Dorninger, W. Timischl, Geometrical constraints on Bennet’s predictions of chromosome
order. Heredity 58, 321–325 (1987)

11. F. Harary, T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs. Discret.
Math. 155, 99–100 (1996)

12. F. Harary, R.W. Robinson, The diameter of a graph and its complement. Am. Math. Mon. 92,
211–212 (1985)

13. F. Huang, X. Li, S. Wang, Proper connection number of complementary graphs.
Arxiv:1504.02414

14. H. Jiang, X. Li, Y. Zhang, Y. Zhao, On (strong) proper vertex-connection of graphs.
Arxiv:1505.04986

15. X. Li, C. Magnant, Properly colored notions of connectivity – a dynamic survey. Theory Appl.
Graphs 0(1), Art. 2, 1–16 (2015)

16. X. Li, Y. Sun, Rainbow Connections of Graphs. Springer Briefs in Mathematics (Springer,
New York, 2012)

17. X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: a survey. Graphs Combin. 29, 1–38
(2013)

18. E.A. Nordhaus, J.W. Gaddum, On complementary graphs. Am. Math. Mon. 63, 175–177
(1956)

19. Y. Sun, On rainbow total-coloring of a graph. Discret. Appl. Math. 194, 171–177 (2015)

	Preface
	Acknowledgements
	Contents
	Dr. Gregory Gutin – Short Bio
	Gregory Gutin and Graph Optimization Problems
	On Graphs Whose Maximal Cliques and Stable Sets Intersect
	1 Introduction
	1.1 CIS-Graphs and Simplicial Vertices
	1.2 Almost CIS-Graphs and Split Graphs
	1.3 P4-Free CIS-Graphs
	1.4 Combs and Anti-combs
	1.5 (n,k,)-Graphs and Their Complements
	1.6 Gallai's and CIS-d-Graphs
	1.7 Extending Cameron-Edmonds-Lovász' Theorem
	1.8 On families of Graphs Closed with Respect to Substitution
	1.9 Almost CIS-d-Graphs

	2 Proof of Theorem 2
	2.1 Plan of the Proof of Theorem 2
	2.2 Proof of Lemma 2
	2.3 Proof of Lemma 3
	2.4 Proof of Lemma 4

	3 Proof of Theorems 3 and 4
	4 More About CIS-d-Graphs
	4.1 Proofs of Propositions 6, 7, 11 and Theorem 5
	4.2 Settling Δ
	4.3 A Stronger Conjecture
	4.4 Even Cycles and Flowers

	References

	Computing the Line Index of Balance Using Integer Programming Optimisation
	1 Introduction
	2 Literature Review
	3 Preliminaries
	3.1 Basic Notation
	3.2 Node Colouring and Frustration Count
	3.3 Minimum Deletion Set and Switching Function
	3.4 Bounds for the Line Index of Balance

	4 Mathematical Programming Models
	4.1 A Quadratically Constrained Quadratic Programming Model
	4.2 An Unconstrained Binary Quadratic Programming Model
	4.3 The 0/1 Linear Model
	4.4 Additional Constraints for the 0/1 Linear Model

	5 Numerical Results in Random Graphs
	5.1 Performance of the 0/1 Linear Model on Random Graphs
	5.2 Impact of Negative Edges on the Frustration Index
	5.3 Impact of Graph Size and Density on the Frustration Index

	6 Numerical Results in Real Signed Networks
	7 Conclusion and Future Research
	References

	Optimal Factorization of Operators by Operators That Are Consistent with the Graph's Structure
	1 General Factorization Problem Statement
	2 Factorization of Linear Operators
	3 The Upper Bound of the Factorization Depth
	4 Conclusion
	References

	Branching in Digraphs with Many and Few Leaves: Structural and Algorithmic Results
	1 Introduction
	2 Terminology, Notation, and Preliminaries
	3 Minimum Leaf Out-Branchings
	3.1 Upper Bounds on min(D)
	3.2 Acyclic Digraphs
	3.3 FPT Algorithms for General Digraphs

	4 Maximum Leaf Out-Branchings
	References

	Dominance Certificates for Combinatorial Optimization Problems
	1 Introduction
	1.1 Previous Work
	1.2 Definitions

	2 Certified Dominance Bounds for Arbitrary Solutions
	2.1 TSP Certification
	2.2 MaxSat Certification
	2.3 A Confidence Interval for the Blackball Ratio

	3 Experimental Results
	3.1 Results on the Chebyshev's Bound-Based Technique
	3.2 Results on the Confidence Interval-Based Technique

	4 Discussion
	References

	Conditional Markov Chain Search for the Simple Plant Location Problem Improves Upper Bounds on Twelve Körkel–Ghosh Instances
	1 Introduction
	2 SPLP Components
	2.1 Data Structures
	2.2 Open Random (k)
	2.3 Close Random (k)
	2.4 Open Best
	2.5 Close Best
	2.6 Exchange Best
	2.7 Exchange Half Fixed

	3 Conditional Markov Chain Search
	3.1 Deterministic CMCS
	3.2 CMCS Generator

	4 Computational Results
	4.1 CMCS Configuration Generation for SPLP
	4.2 Experiments with the KG Instances

	5 Conclusions
	Appendix 1: Optimal Solutions for Instances Solved to Optimality
	Appendix 2: Best Known Solutions for Instances Not Yet Solved to Optimality

	References

	An Algorithmic Answer to the Ore-Type Version of Dirac's Question on Disjoint Cycles
	1 Introduction
	2 Preliminaries and Known Results
	2.1 Notation
	2.2 Gallai–Edmonds Theorem
	2.3 Results for Dk
	2.4 Results for DOk

	3 Main Results
	4 Proof of Theorem 14: Sufficiency
	5 Proof of Theorem 14: Necessity
	6 Proof of Theorem 15
	References

	Combinatorial and Graph-Theoretical Problems and Augmenting Technique
	1 Introduction
	2 Augmenting Graphs in Subclasses of (S2,2,l,bannerl)-Free Graphs
	2.1 Redundant Sets and Reduction Sets
	2.2 Augmenting Graphs in Subclasses of S2,k,l-Free Graphs
	2.3 Augmenting Graphs in Subclasses of S2,2,5-Free Graphs

	3 Finding Augmenting Graphs
	3.1 Augmenting Extended-Chain and Augmenting Trees
	3.2 The Maximum Independent Set Problem in Further Subclasses of S2,2,5-Free Graphs

	4 Augmenting Graphs in Other Problems
	5 Conclusion
	Appendix 1: Proof of Lemma 2
	Appendix 2: Proof of Lemma 3
	Appendix 3: Proof of Lemma 6
	Appendix 4: Proof of Lemma 7
	Appendix 5: Proof of Theorem 5
	References

	Optimal Patrol on a Graph Against Random and Strategic Attackers
	1 Background
	1.1 Problem Description
	1.2 Literature Review

	2 Single Patroller Against Random Attackers
	2.1 Patrol Model
	2.2 Optimal Policy
	2.2.1 Linear Program Formulation
	2.2.2 Size of State Space

	2.3 Heuristic Policies
	2.3.1 Single Vertex Problem
	2.3.2 Index Heuristic Time Method
	2.3.3 Index Heuristic Epoch Method

	2.4 Numerical Experiments
	2.4.1 Generation of Problem Instances
	2.4.2 Baseline Problems
	2.4.3 Recommendations Based on Numerical Experiments
	2.4.4 Sensitivity Analysis

	3 Single Patroller Against Strategic Attackers
	3.1 Patrol Model
	3.2 Optimal Policy
	3.3 Heuristic Policies
	3.3.1 Patrol Cost Determination
	3.3.2 Selection of Patrol Patterns
	3.3.3 Patrol Patterns Based on Shortest Path
	3.3.4 Patrol Patterns Based on Fictitious Play

	3.4 Lower Bound
	3.5 Numerical Experiments
	3.5.1 Baseline Problems
	3.5.2 Recommendations Based on Numerical Experiments
	3.5.3 Performance on Smaller and Larger Graphs
	3.5.4 Performance on Additional Graph Structures
	3.5.5 Sensitivity Analysis

	4 Conclusion
	References

	Network Design Problem with Cut Constraints
	1 Introduction
	2 Fundamental Cut Sets LP-Relaxations of NDPC
	3 Algorithms for NDPC
	3.1 Defining an Initial Spanning Tree
	3.2 Algorithm

	4 An Example for NDPC
	5 Concluding Remarks
	References

	Process Sequencing Problem in Distributed Manufacturing Process Planning
	1 Introduction
	2 Problem Statement
	2.1 Alternative Machine Routing
	2.2 Feature Precedence
	2.3 Definition of Process Sequencing Problem
	2.4 Cost Function

	3 Methodology
	3.1 Process Planning Network
	3.2 Complexity Analysis

	4 Process Clustering
	5 Process Planning Network Optimization
	5.1 Space Search
	5.2 State Description
	5.3 State-Space Operators
	5.4 Heuristic Search
	5.5 Transformation to Generalized Traveling Salesman Problem

	6 Experimentation and Results
	7 Past Researches
	References

	Sharp Nordhaus–Gaddum-Type Lower Bounds for Proper Connection Numbers of Graphs
	1 Introduction
	2 Main Results
	References

