
The Coinductive Formulation
of Common Knowledge

Colm Baston and Venanzio Capretta(B)

Functional Programming Lab, School of Computer Science,
University of Nottingham, Nottingham, UK

{colm.baston,venanzio.capretta}@nottingham.ac.uk

Abstract. We study the coinductive formulation of common knowledge
in type theory. We formalise both the traditional relational semantics and
an operator semantics, similar in form to the epistemic system S5, but at
the level of events on possible worlds rather than as a logical derivation
system. We have two major new results. Firstly, the operator semantics is
equivalent to the relational semantics: we discovered that this requires a
new hypothesis of semantic entailment on operators, not known in previ-
ous literature. Secondly, the coinductive version of common knowledge is
equivalent to the traditional transitive closure on the relational interpre-
tation. All results are formalised in the proof assistants Agda and Coq.

1 Introduction

Common knowledge is a modality in epistemic logic: a group of agents has com-
mon knowledge of an event if everyone knows it, everyone knows that everyone
knows it, everyone knows that everyone knows that everyone knows it, and so on
ad infinitum. Some famous logical puzzles (the muddy children or the cheating
husbands problem [8,9]) involve clever uses of this notion: the solution is based
on some information shared by the agents and on their ability to deduce other
people’s reasoning in a potentially unlimited reflection.

Type-theoretic logical systems allow the direct definition of coinductive types
which may contain infinite objects, constructed by guarded corecursion [2,7,11].
By the propositions-as-types interpretation that is standard in type theory, coin-
ductive types are propositions whose proofs may be infinite. Common knowledge
can be naturally expressed as a coinductive operator: common knowledge of an
event is recursively defined as universal knowledge of it in conjunction with com-
mon knowledge of the universal knowledge of it. Although it is well-known that
the common knowledge modality is a greatest fixed point [1,8], and some coin-
ductive methods have been tried with it before [4], our work [6] is the first direct
formalisation of this approach.

The traditional frame semantics [12,14] account of knowledge modalities
interprets them as equivalence relations on the set of possible states of the world:
the knowledge of an agent is represented as a relation identifying states that

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 126–141, 2018.
https://doi.org/10.1007/978-3-319-94821-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_8&domain=pdf

The Coinductive Formulation of Common Knowledge 127

cannot be distinguished by the agent. Common knowledge is interpreted as the
transitive closure of the union of the knowledge relations for all agents.

The authors of [4] develop an infinitary deductive system with the aim that
the system’s derivations serve as justification terms for common knowledge. The
derivations are finitely branching trees but, along coinductive lines, branches may
be infinitely deep. The authors establish the soundness and completeness of this
system with respect to a relational semantics where common knowledge is treated
as a transitive closure, but do not employ coinduction as a proof technique which
can generate such an infinite proof term from a finite specification.

We instead take an entirely semantic approach, which is shallowly embedded
in the logic of a type theory with coinductive types. This is in contrast to a
previous type-theoretic formalisation of common knowledge [15] which is deeply
embedded in the logic of the Coq proof assistant. This allows Coq to be used as
a metatheory to experiment with the target logic, but does not allow for all of
the features of Coq’s own logic, such as coinduction, to be used from within the
target logic.

Our formulation of epistemic logic is based on an underlying set of states of
the world; epistemic propositions are interpreted as events, that is, predicates
on states (Sect. 2). Knowledge modalities are then functions over events. Our
treatment of these knowledge modalities is similar to the syntactic encoding of
epistemic logic in the modal logic system S5 [16]. Its study on the semantics
side, as the algebraic structure of knowledge operators, is new (Sect. 3).

We give two main original contributions. Firstly, we prove that the operator
semantics is equivalent to the relational semantics (Sect. 4). In formalising the
equivalence, we discovered that it is necessary to assume a previously unknown
property for operators: preservation of semantic entailment, which states that
the knowledge operator preserves the consequences of a possibly infinite set of
events (S5 gives this only for finite sets). Secondly, we prove that the coinductive
formulation of common knowledge is equivalent to the relational representation
as transitive closure, and that the coinductive operator itself satisfies the prop-
erties of a knowledge operator (Sect. 5). All these results are formalised in two
type-theoretic proof assistants: Agda1 and Coq2.

2 Possible Worlds and Events

In this section, we present the semantic framework in which we will be working
throughout the paper. Our formalisation of epistemic logic is not axiomatic, but
definitional. Instead of postulating a set of axioms for a knowledge modality,
we define it using the logic of a proof assistant, like Agda or Coq, along the
semantic lines of possible-worlds models. In other words, we work with a shallow

1 https://colmbaston.co.uk/files/Common-Knowledge.agda.
2 http://www.duplavis.com/venanzio/publications/common knowledge.v.

https://colmbaston.co.uk/files/Common-Knowledge.agda
http://www.duplavis.com/venanzio/publications/common_knowledge.v

128 C. Baston and V. Capretta

embedding of epistemic logic in type theory. (The deep and shallow embedding
approaches to the formalisation of logics and domain-specific languages are well-
known and widespread. The first exposition of the concepts, but not the termi-
nology, that we can find is by Reynolds [17]. See, for example, [13] for a clear
explanation.)

We postulate a set of possible worlds, which we call states. A state encodes
all relevant information about the world we are modelling. In the semantics of
epistemic logic, a proposition may be true in some states, but false in others, so
we interpret a proposition as a predicate over states, called an event.

To avoid confusion with the propositions that are native to the type theory,
we shall refer to epistemic propositions only as events from this point on. By the
standard propositions-as-types interpretation, we identify type-theoretic propo-
sitions with the type of their proofs, adopting an Agda-like notation. That is,
we use the type universe Set for both data types and propositions.

State : Set Event = State → Set

An event can be seen extensionally as the set of states in which that event
occurs, or is true. It is convenient to define set-like operators to combine events
and make logical statements about them. In the following, the variable e ranges
over events and the variable w ranges over states. We obtain the truth assignment
of an event e in a state w by simply applying the event to the state, written ew.

� : Event → Event → Event
e1 � e2 = λw.e1 w ∧ e2 w

� : Event → Event → Event
e1 � e2 = λw.e1 w ∨ e2 w

� : Event → Event → Event
e1 � e2 = λw.e1 w → e2 w

∼ : Event → Event
∼ e = λw.¬(ew)

⊂ : Event → Event → Set
e1 ⊂ e2 = ∀w.e1 w → e2 w

≡ : Event → Event → Set
e1 ≡ e2 = (e1 ⊂ e2) ∧ (e2 ⊂ e1)

∀∀ : Event → Set
∀∀ e = ∀w.ew

The first three operators, �, �, and �, are binary operations on events:
they map two events to the event that is their conjunction, disjunction, and
implication, respectively; we can see them set-theoretically as intersection, union,
and exponent of sets of states. The fourth, ∼, is a unary operator expressing event
negation, set theoretically it is the complement.

The next two operators are relations between two events. The first of the two,
⊂, states that the first event logically implies the second, set-theoretically the
first is a subset of the second. The next, ≡, states that two events are logically
equivalent, their set extensions being equal. Finally, the operator ∀∀ expresses
the fact that an event is true in all states: that it is semantically forced to be
true. On the logical system side, it corresponds to a tautology. The operator ⊂
can also be expressed in terms of the equivalence: e1 ⊂ e2 ↔ ∀∀ (e1 � e2).

The Coinductive Formulation of Common Knowledge 129

As a simple example, imagine that we are modelling a scenario in which a
coin has been tossed and a six-sided die has been rolled. We have these primitive
events:

CH = “the coin landed heads side up”
CT = “the coin landed tails side up”

D1 = “the die rolled a 1”
...

D6 = “the die rolled a 6”

Then, for example, D3 � D4 is the event which is true in those states where the
die rolled a 3 or a 4, we might assume ∀∀ (∼(CH � CT)) so that there cannot be
a state in which the coin landed both heads side up and tails side up, and so on.

Now we come to introducing modal operators for knowledge, so let us intro-
duce two agents in our example, Alice and Bob. A modal operator in this setting
is a function Event → Event, so we give each agent an operator of this type, KA

and KB respectively. This allows us to also express events such as the following:

KA D1 = “Alice knows that the die rolled a 1”
KB (KA D2) = “Bob knows that Alice knows that the die rolled a 2”
∼(KB CH � KB CT) = “Bob does not know on which side the coin landed”

But not all operators on events are suitable to represent the knowledge of an
agent. In the next section, we will define a class of operators on events that can be
considered possible descriptions of an agent’s knowledge. Then, assuming there
is a set of agents, each with their own knowledge operator, we give a coinductive
definition of another operator expressing their common knowledge.

3 Knowledge Operator Semantics

For the moment we do not consider a set of agents, but just fix a single operator
K : Event → Event and specify a set of properties that it must satisfy to be a
possible interpretation of the knowledge of an agent. Traditionally, the modal
logic system S5 [16] is employed to provide an idealised model for knowledge
(modern presentations and historical overviews can be found in [3,8]). In short,
its properties state that agents are perfect reasoners, can only know events which
are actually true, and are aware of what they do and do not know. We posit a
version of this logic as the properties that the knowledge operator K must satisfy.

We discovered that an extra infinitary deduction rule is required to obtain
a perfect correspondence with the traditional relational interpretation which we
describe in Sect. 4. This cannot be expressed at the level of the syntactic logical
system, but it becomes essential at the semantic level of operators on events.
It states that the knowledge operator must preserve semantic entailments, even
if the conclusion follows from an infinite set of premises. Like other epistemic
postulates in the standard literature, this is a strong principle which may be
unrealistic to assume for real-world agents, but our discovery shows that it is
already an implicit feature of the classical frame semantics.

130 C. Baston and V. Capretta

Definition 1. A family of events indexed on a type X is a function E : X →
Event. Given a family of events E, we can generate the event ⊔E that is true in
those states where all members of the family are true:

⊔E = λw.∀(x : X).E x w

We can map K onto the whole family by applying it to every member: We
write KE for the family λx.K (E x). We say that K preserves semantic entailment
if, for every family E : X → Event and every event e, we have:

⊔E ⊂ e → ⊔(KE) ⊂ K e.

We require that K has this property and also satisfies the properties of S5.
Some of these are derivable from semantic entailment, but we formulate them all
in the definition to clearly reflect the relation with traditional epistemic logic.

Definition 2. An operator on events, K : Event → Event, is called a knowledge
operator if it preserves semantic entailment and satisfies the event-based version
of the properties of S5:

1. ∀∀ e → ∀∀ K e
This principle is known as knowledge generalisation (or necessitation in
modal logics with an operator � that is interpreted as “it is necessary that”).
It states that all derivable theorems are known, that is, the agent is capable of
applying pure logic to derive tautologies. Here we work on the semantics side:
instead of logical formulas, the objects of the knowledge operators are events,
that is, predicates on states. We understand an event to be a tautology if it is
true in every state. The unfolding of the principle is: (∀w.ew) → ∀v.K e v.

2. K (e1 � e2) ⊂ (K e1 � K e2)
Corresponding to Axiom K, this states that the knowledge operator distributes
over implication: The agent is capable of applying modus ponens to what they
know. Notice the use of the two operators �, mapping two events to the event
expressing the implication between the two, and ⊂, stating that the second
event is true whenever the first one is. If we unfold the definitions, this states
that: ∀w.K (e1 � e2)w → K e1 w → K e2 w. That is, if in a state w the agent
knows that e1 implies e2 and also knows e1, then they know e2.

3. K e ⊂ e
Corresponding to Axiom T, this states that knowledge is true: what distin-
guishes knowledge from belief or opinion is that when an agent knows an
event, that event must actually hold in the present state.

4. K e ⊂ K (K e)
Corresponding to Axiom 4, this is a principle of self-awareness of knowledge:
agents know when they know something.

5. ∼K e ⊂ K (∼K e)
Corresponding to Axiom 5, this negative version of the principle of self-
awareness could be called the Socratic Principle: When an agent does not
know something, they at least know that they do not know it.

The Coinductive Formulation of Common Knowledge 131

Lemma 1. The first two properties in the definition of knowledge operator
(knowledge generalisation and Axiom K) are consequences of preservation of
semantic entailment.

Proof. Assume that K preserves semantic entailment.

– Knowledge generalisation is immediate once we see that ∀∀ e is equivalent to
the semantic entailment from the empty family: ⊔∅ ⊂ e.

– Axiom K follows from applying preservation of the semantic entailment ver-
sion of modus ponens (using a family with just two elements): ⊔{e1 �
e2, e1} ⊂ e2.

(We have used set notation for the families: they indicate the trivial family
indexed on the empty type and a family indexed on the Booleans.) ��

Let us now return to a setting with a non-empty set of agents, ranged over by
the variable a. Each agent has an individual knowledge operator Ka satisfying
Definition 2. Recall that common knowledge of an event intuitively means that
everyone knows it, everyone knows that everyone knows it, everyone knows that
everyone knows that everyone knows it, and so on ad infinitum.

We define EK to be the “everyone knows” operator expressing universal
knowledge of an event:

EK : Event → Event
EK e = λw.∀a.Ka ew

EK is not itself a knowledge operator. It is possible to show that it satisfies
knowledge generalisation, Axiom K, and, with at least one agent, Axiom T. It
also preserves semantic entailment. The two introspective properties of Axioms
4 and 5, however, are not satisfied in general: if they were, there would be no
distinction between universal knowledge and common knowledge.

Common knowledge of an event e intuitively means the infinite conjunction:

EK e � EK (EK e) � EK (EK (EK e)) � . . .

This infinite conjunction can be expressed by a coinductive definition saying
that common knowledge of e means the conjunction of EK e and, corecursively,
common knowledge of EK e. In Agda or Coq, this can be defined directly by a
coinductive operator:

CoInductive cCK : Event → Event
cCK−intro : ∀e.EK e � cCK (EK e) ⊂ cCK e

This defines common knowledge at a high level without mentioning states,
naturally corresponding to the informal recursive notion. If we unfold the defi-
nitions so that we can see the constructor’s type in full, it becomes evident that
the definition satisfies the positivity condition of (co)inductive types:

cCK−intro : ∀e.∀w.(EK ew) ∧ (cCK (EK e)w) → cCK ew

132 C. Baston and V. Capretta

The meaning of the definition is that a proof of cCK e must have the form of
the constructor cCK−intro applied to proofs of EK e and cCK (EK e). The latter
must in turn be obtained by another application of cCK−intro. This process
proceeds infinitely, without end. To obtain such a proof, we can give a finite
corecursive definition that, when unfolded, generates the infinite structure.

The idea is that when proving that an event e is common knowledge, we
must prove EK e without any extra assumption, but we can recursively use the
statement that we are proving in the derivation of cCK (EK e). This apparently
circular process must satisfy a guardedness condition, ensuring that the unfolding
is productive. See, for an introduction, Chap. 13 of the Coq book by Bertot and
Casteran [2] or the application to general recursion by one of us [5]. We will soon
give an example in the proof of Lemma4.

Since a proof of cCK e must be constructed by a proof of EK e � cCK (EK e),
we can derive either conjunct if we have that e is common knowledge. That is,
we obtain the following trivial lemmas:

Lemma 2. For every event e we have: cCK e ⊂ EK e.

Lemma 3. For every event e we have: cCK e ⊂ cCK (EK e).

We now illustrate a proof by coinduction as a first simple example, showing
that common knowledge is equivalent to the family of events expressing finite
iterations of EK:

recEK : Event → N → Event
recEK e 0 = EK e
recEK e (n + 1) = EK (recEK e n)

Lemma 4. For every event e, the family recEK e semantically entails cCK e:

⊔(recEK e) ⊂ cCK e

Proof. In a coinductive proof, we are allowed to assume the statement we are
proving and use it in a restricted way:

CoInductive Hypothesis CH: ∀e. ⊔(recEK e) ⊂ cCK e.
Of course, we cannot just use the assumption CH directly to prove the the-

orem. We must make at least one step in the proof without circularity.
Unfolding the statement, we need to prove that for every state w we have:

(∀(n : N).recEK e nw) → cCK ew

So let us assume that for every natural number n, recEK e nw holds.
We must now prove cCK ew, which can be derived using the constructor

cCK−intro from EK ew and cCK (EK e)w.

– EK ew is just recEK e 0w, which is true by assumption;
– To prove cCK (EK e)w, we now invoke CH, instantiated for the event EK e:

⊔(recEK (EK e)) ⊂ cCK (EK e)

The Coinductive Formulation of Common Knowledge 133

That is:
∀w.(∀n.recEK (EK e)nw) → cCK (EK e)w

So we need to prove that for every n, recEK (EK e)nw. This is trivially equiva-
lent to recEK e (n+1)w, which is true by assumption. Therefore, Assumption
CH allows us to conclude cCK (EK e)w, as desired. ��
Let us observe the structure of this proof. We allowed ourselves to assume the

statement of the theorem as a hypothesis. But it can only be used in a limited
way. We used it immediately after applying the constructor cCK−intro, to prove
the recursive branch of it. This is the typical way in which guarded corecursion
works: we can make a circular call to the object we are defining immediately
under the application of the constructor.

The proof of the implication in the other direction, omitted here, is simply by
induction over natural numbers, repeatedly unfolding the definition of common
knowledge.

Lemma 5. For every event e and n : N: cCK e ⊂ recEK e n.

The equivalence of common knowledge with the family recEK gives an imme-
diate proof of the following useful property corresponding to Axiom 4 of S5.

Lemma 6. For every event e, we have: cCK e ⊂ cCK (cCK e).

Finally, the coinductive definition of common knowledge satisfies the proper-
ties of knowledge operators. We must prove all the S5 properties and preservation
of semantic entailment for cCK.

Theorem 1. Common knowledge, cCK, is itself a knowledge operator.

Proof. We can give a direct proof of the statement by deriving all the properties
of knowledge operators for cCK. Lemma 6 shows that Axiom 4 holds. Proofs of
all other S5 properties and of preservation of semantic entailment are interesting
applications of coinductive methods. These proofs are omitted here, but are used
in the Coq formalisation.

This theorem is also a consequence of Theorem 4 (equivalence of cCK with the
relational characterisation) and Theorem3 (equivalence relations define knowl-
edge operators). This proof is used in the Agda formalisation. ��

4 Relational Semantics

In this section, we present the traditional frame semantics of epistemic logic, the
knowledge operators being introduced through equivalence relations on states.
We prove that a knowledge operator semantics can be generated from an equiv-
alence relation and vice versa, additionally showing that these transformations
form an isomorphism.

Two states may differ by a number of events: some events may be true in one
of the states, but false in the other. If an agent has no knowledge of any of these

134 C. Baston and V. Capretta

discriminating events, only knowing events which are common to both states,
then those states are indistinguishable as far as the agent is aware. We say that
these states are epistemically accessible from one another: if the world were in
one of those states, the agent would consider either state to be plausible, not
having sufficient knowledge to inform them precisely in which state the world is
actually in.

To say that an agent has knowledge of an event in a particular state is then to
say that the event holds in all states that the agent finds epistemically accessible
from that state. We formalise this notion by defining a transformation from
relations on states to unary operators on events:

K[] : (State → State → Set) → (Event → Event)
K[R] = λe.λw.∀v.w R v → e v

Care must be taken to distinguish this notation from the notation of earlier
sections where each agent a had a knowledge operator Ka directly postulated.
When talking in terms of the relational semantics, we do not take these operators
as primitive. Here, K[R] refers to the operator generated when transforming some
relation R : State → State → Set.

It is a well known result in modal logic that applying this transformation
to an equivalence relation yields a knowledge operator satisfying the properties
of S5. We establish this fact here, assuming only the needed properties of the
relation (see [10] for a more extensive listing of which relational properties imply
which modal axioms). The proofs are omitted, but can be adapted from standard
expositions. They are also present in the Agda and Coq formalisations.

Lemma 7. If R is a relation on states, then the operator K[R] has the following
properties.

– K[R] satisfies knowledge generalisation: ∀∀ e → ∀∀ K[R] e
– K[R] satisfies Axiom K: K[R] (e1 � e2) ⊂ K[R] e1 � K[R] e2
– If R is reflexive, then K[R] satisfies Axiom T: K[R] e ⊂ e
– If R is transitive, then K[R] satisfies Axiom 4: K[R] e ⊂ K[R] (K[R] e)
– If R is symmetric and transitive, then K[R] satisfies Axiom 5: ∼K[R] e ⊂

K[R] (∼K[R] e)

To complete a proof that K[R] is a knowledge operator, we have to show
in addition that it preserves semantic entailment. As is the case with knowl-
edge generalisation and Axiom K, this does not require any hypothesis on the
properties of R.

Lemma 8. For every family E : X → Event and every event e, we have:

⊔E ⊂ e → ⊔(K[R] E) ⊂ K[R] e

Proof. Let us assume that ⊔E ⊂ e (Assumption 1).
We must prove ⊔(K[R] E) ⊂ K[R] e, that is, unfolding the definitions of ⊔

and ⊂, for every state w, ∀x.K[R] (E x)w → K[R] ew, where x ranges over the

The Coinductive Formulation of Common Knowledge 135

index of the family E. So let us assume that ∀x.K[R] (E x)w (Assumption 2).
We must then prove that K[R] ew.

Unfolding the definition of K[R], our goal becomes ∀v.w R v → e v. So let v
be any state such that w R v (Assumption 3). We must prove that e v.

To prove this goal we apply directly Assumption 1, which states (when
unfolded) that ∀v.(∀x.(E x) v) → e v. Therefore, to prove the goal, we just have
to show that ∀x.(E x) v.

For any index x, Assumption 2 tells us that K[R] (E x)w, that is, by defi-
nition of K[R], ∀v.w R v → (E x) v. But since our choice of v satisfies w R v by
Assumption 3, we have that (E x) v, as desired. ��

We can then put the two lemmas together to satisfy Definition 2.

Theorem 2. If R is an equivalence relation on states, then K[R] is a knowledge
operator.

The inverse transformation, taking a knowledge operator and returning a
relation on states is:

R[] : (Event → Event) → (State → State → Set)
R[K] = λw.λv.∀e.K ew ↔ K e v

This transformation always results in an equivalence relation, as ↔ is itself
an equivalence relation. In fact, if we admit classical reasoning, one direction of
the implication is sufficient.

Lemma 9. If K is a knowledge operator, then λw.λv.∀e.K ew → K e v is an
equivalence relation.

As an immediate corollary, it is equivalent to λw.λv.∀e.K ew ↔ K e v.

Proof. Reflexivity and transitivity are trivial. To show symmetry, we first
assume, for some states w and v, that ∀e.K ew → K e v and, for some event
e, K e v. We want to prove that K ew.

Suppose, towards a contradiction, that ¬(K ew), which can also be written as
(∼K e)w. By Axiom 5, we have K (∼K e)w. By instantiating the first assump-
tion with event ∼K e, we deduce that K (∼K e) v. By Axiom T, this implies
(∼K e) v, which can be written as ¬(K e v), contradicting the second assump-
tion: our supposition ¬(K ew) must be false. We conclude, by excluded middle,
that K ew is true, as desired. ��

We now prove that the mappings of knowledge operators to equivalence rela-
tions and vice versa are actually inverse: we can equivalently work with either
representation of knowledge. The proofs are mostly straightforward applications
of the properties of S5 and equivalence relations, except one direction, for which
we added the assumption of preservation of semantic entailment. We give the
proof of this.

In order to do this we first characterise the transformations of K using event
families generated by K on a fixed state w. Choose as index set the set of events

136 C. Baston and V. Capretta

that are known in w: X = {e | K ew} (in Coq or Agda, we use the dependent
sum type Σe.K ew whose elements are pairs 〈e, h〉 of an event e and a proof h
of K ew); the family itself is just the application of K. Formally:

KFamw : (Σe.K ew) → Event
KFamw 〈e, h〉 = K e

Intuitively, KFamw is the total amount of knowledge in state w. Set-theoretically
it is {K e | K ew}. One observation, whose proof we omit here, is that R[K] w v
is equivalent to ⊔(KFam

w) ≡ ⊔(KFam
v). Another observation will allow us to

replace K[R[K]] ew with an expression involving KFamw.

Lemma 10. For every event e and state w, the proposition K[R[K]] ew is equiv-
alent to ⊔(KFam

w) ⊂ e.

Proof. We just unfold the definitions and use the previous lemma:

K[R[K]] ew ⇔ ∀v.w R[K] v → e v by definition of K[]

⇔ ∀v.(∀e′.K e′ w ↔ K e′ v) → e v by definition of R[]

⇔ ∀v.(∀e′.K e′ w → K e′ v) → e v by Lemma 9
⇔ ⊔(KFam

w) ⊂ e by definition of KFam.

��
Lemma 11. For every knowledge operator K and every event e, we have:

K[R[K]] e ⊂ K e

Proof. Assume, for some state w, that K[R[K]] ew. We must prove K ew.
By Lemma 10, the assumption is equivalent to ⊔(KFam

w) ⊂ e. Since K pre-
serves semantic entailment, we also have ⊔(KKFamw) ⊂ K e.

We just need to prove that all elements of the family KKFamw are true
in state w to deduce that K ew holds, as desired. But in fact, given an index
〈e′, h〉 for the family KFamw, with h being a proof of K e′ w, this goal becomes
K (KFamw 〈e′, h〉)w = K (K e′)w which can be dispatched by applying Axiom 4
to h. ��

The other three directions of the isomorphisms are straightforward applica-
tions of the properties of knowledge operators and equivalence relations.

Theorem 3. For every knowledge operator K, K[R[K]] is equivalent to K: for
every event e and every state w, K[R[K]] ew ↔ K ew.

For every equivalence relation on states R, R[K[R]] is equivalent to R: for
every pair of states w and v, R[K[R]] w v ↔ R w v.

In this section we proved that the traditional frame semantics of epistemic
logic is equivalent with our notion of knowledge operator. This isomorphism
validates our discovery of the property of preservation of semantic entailments
and shows that it was already implicitly present in the relational view.

The Coinductive Formulation of Common Knowledge 137

5 Equivalence with Relational Common Knowledge

This section shows that the coinductive definition of common knowledge is equiv-
alent to the traditional characterisation as transitive closure of the union of
all the agents’ accessibility relations. We use the isomorphism of Theorem3 to
treat equivalence relations on states and their corresponding knowledge opera-
tors interchangeably.

We first equip our agents with individual knowledge operators by postulating
an equivalence relation �a: State → State → Set for each agent a as their
epistemic accessibility relation. The knowledge operator for an agent a is then
K[�a], which we shall write in shorthand as Ka.

Our formulation of the “everyone knows” operator, EK, and the coinductive
common knowledge operator, cCK, are as they appear in Sect. 3. The only dif-
ference is in the underlying definition of Ka, which had previously been taken as
primitive and assumed to satisfy the knowledge operator properties outlined in
Definition 2. The relations �a are equivalence relations, so we can conclude that
this new formulation of Ka also satisfies these properties by Theorem 2.

The relational definition of the common knowledge operator is given by its
own relation: the transitive closure of the union of all accessibility relations �a.
We write this relation as ∝. It is defined inductively as follows:

Inductive ∝ : State → State → Set
∝−union : ∀a.∀w.∀v.w �a v → w ∝ v
∝−trans : ∀w.∀v.∀u.w ∝ v → v ∝ u → w ∝ u

Lemma 12. ∝ is an equivalence relation.

Proof. Transitivity is immediate by definition of constructor ∝−trans. Reflexiv-
ity follows from the reflexivity of the agents’ underlying accessibility relations
included in ∝ by constructor ∝−union (it is essential that there is at least one
agent). Symmetry is proved by induction on the proof of ∝: the base case fol-
lows from the symmetry of the single agents’ accessibility relation, while the
recursive case is straightforward from the proof of transitivity and the inductive
hypotheses. ��

We can intuitively grasp how it gets us to common knowledge in the follow-
ing way. Observe that in an agent a’s accessibility relation, if each state were
alone in its own equivalence class, then a would be omniscient, able to perfectly
distinguish each state from all others. If a were to forget an event, however, then
all of those states which differ only by that event would collapse into an equiv-
alence class together. In general, the fewer the number of equivalence classes in
�a, the fewer the number of events a knows.

Taking the union of all agents’ accessibility relations is essentially taking the
union of their ignorance. This gets us as far as a relational interpretation of EK,
which is not necessarily transitive. We take the transitive closure to reobtain an
equivalence relation, further expanding the ignorance represented by the relation,

138 C. Baston and V. Capretta

but ensuring that we have the introspective properties of Axioms 4 and 5 that
are essential to common knowledge.

It is as if there were a virtual, maximally-ignorant agent whose accessibility
relation is ∝, knowing only those events which are common knowledge among
all agents and nothing more. With this in mind, we can define the relational
common knowledge operator, rCK, in the same way that we defined each agent’s
knowledge operator:

rCK : Event → Event
rCK = K[∝]

By Theorem 3 and Lemma 12, we can conclude that rCK satisfies all of the
knowledge operator properties: We can also verify that it has properties corre-
sponding to the two trivial properties of cCK, Lemmas 2 and 3.

Lemma 13. For every event e we have: rCK e ⊂ EK e.

Proof. Unfolding the statement, we need to prove that for every state w we have:

(∀v.w ∝ v → e v) → ∀a.∀u.w �a u → e u

So we assume the first statement, ∀v.w ∝ v → e v, and we also assume we have
an agent a and state u such that w �a u.

We are left to show that e holds in u. By the definition of constructor
∝−union, given w �a u, we can derive that w ∝ u, and then, instantiating
our first assumption with state u, we obtain e u as desired. ��
Lemma 14. For every event e we have: rCK e ⊂ rCK (EK e).

Proof. Unfolding the statement, we need to prove that for every state w we have:

(∀v.w ∝ v → e v) → ∀u.w ∝ u → ∀a.∀t.u �a t → e t

As in the previous proof, we have the assumption that for any state v such that
w ∝ v, e holds in v, so to reach our conclusion e t we can prove that w ∝ t. We
have the additional assumptions w ∝ u and u �a t.

From the latter, by ∝−union we derive u ∝ t. Then by the transitive property
of ∝, constructor ∝−trans, we conclude w ∝ t. ��

With these results, we are now able to prove the first direction of the equiv-
alence of rCK and cCK.

Lemma 15. For every event e we have: rCK e ⊂ cCK e.

Proof. The conclusion of this theorem is an application of the coinductive pred-
icate cCK, so we may proceed by coinduction, assuming the statement as our
coinductive hypothesis CH : ∀e.rCK e ⊂ cCK e

Unfolding the application of ⊂, we need to prove that, for every state w,
rCK ew → cCK ew. So we assume rCK ew, and use constructor cCK−intro
to derive the conclusion cCK ew, generating the proof obligations EK ew and
cCK (EK e)w.

The Coinductive Formulation of Common Knowledge 139

– EK ew comes from Lemma 13 applied to assumption rCK ew.
– To prove cCK (EK e)w we invoke assumption CH, instantiating it with event
EK e, leaving us to prove rCK (EK e)w. This is the conclusion of Lemma 14,
which we can apply to assumption rCK ew to complete the proof. ��
We need an additional property of cCK before we are able to complete the

other direction of the equivalence proof. The property is related to Axiom 4 of
knowledge operators, for example, for an agent a’s knowledge operator Ka:

∀e.Ka e ⊂ Ka (Ka e)

Unfolding ⊂ and the outermost application of Ka in the conclusion yields the
principle:

∀e.∀w.Ka ew → ∀v.w �a v → Ka e v

That is, if we have that Ka e holds at some state w, and we also have that
w �a v for some state v, then we can conclude that Ka e holds at state v too.
We call this transporting the agent’s knowledge across the relation �a.

Since rCK is also a knowledge operator, defined in the same way as Ka but
for a different equivalence relation, this transportation principle must hold for it
too: relational common knowledge of an event can be transported from one state
to another provided that those states are bridged by ∝. The additional property
of cCK that we are to prove is that it too can be transported across ∝.

Lemma 16. For every two states w and v and event e we have:

cCK ew → w ∝ v → cCK e v

Proof. We assume cCK ew and proceed by induction on w ∝ v:

– If w ∝ v is constructed by ∝−union, then there is some agent a for whom
w �a v holds. We can apply Lemma6, the Axiom 4 property for cCK, to obtain
cCK (cCK e)w, and then, by Lemma2, it follows that EK (cCK e)w. Since all
agents know this, we can instantiate this fact with agent a to conclude that
a must know it: Ka (cCK e)w. We use the transportation principle of Ka to
transport Ka (cCK e) from state w to state v as these states are bridged by
w �a v. Then, as a knows cCK e at state v, by Axiom T, it must actually hold
in state v.

– If w ∝ v is constructed by ∝−trans, then there is some state u for which w ∝ u
and u ∝ v hold. By induction hypothesis, we also have cCK ew → cCK e u and
cCK e u → cCK e v. We can simply use the transitivity of implication, induction
hypotheses, and our assumption cCK ew to reach our goal. ��

Lemma 17. For every event e we have: cCK e ⊂ rCK e.

Proof. Unfolding the statement we are to prove, for every event e and state w:
cCK ew → ∀v.w ∝ v → e v.

We assume cCK ew and w ∝ v. By Lemma 16 and these assumptions, we
can then transport cCK e from state w to v: cCK e v. From this, we can derive

140 C. Baston and V. Capretta

EK e v by Lemma 2. Since everyone knows e at state v, and our set of agents is
non-empty, there must be some agent who knows e at v. By Axiom T, e must
actually hold at v. ��

Combining Lemmas 15 and 17 gives the full equivalence.

Theorem 4. For all events e, rCK e ≡ cCK e, that is, K[∝] e ≡ cCK e.

6 Conclusion

We presented a type-theoretic formalisation of epistemic logic and a coinductive
implementation of the common knowledge operator. This was done through a
shallow embedding: we formulated knowledge operators as functions on events,
which are predicates on a set of possible worlds or states.

The coinductive version of common knowledge has some advantages with
respect to the traditional relational version.

– It is a straightforward formulation of the intuitive definition: common knowl-
edge of an event means that everyone knows it and the fact that everyone
knows it is itself common knowledge.

– It can be formulated at a higher level, using only the knowledge operators of
each agent and the connectives of epistemic logic: the coinductive definition
of cCK does not mention states.

– It gives us a new reasoning tool in the form of guarded corecursion. We demon-
strated its power in several proofs in this paper and in the previous work on
Aumann’s Theorem.

We proved that our coinductive formulation is equivalent to two other ver-
sions:

– The traditional one as transitive closure of the union of the accessibility rela-
tions of all agents;

– The recursive family of iterations of the “everyone knows” operator.

In the process of investigating this subject we discovered that knowledge oper-
ators obtained from equivalence relations satisfy a previously unknown property
of preservation of semantic entailment in addition to the properties of S5. We
proved that this fully characterises knowledge operators and gives an isomor-
phism between them and equivalence relations.

References

1. Barwise, J.: Three views of common knowledge. In: Vardi, M.Y. (ed.) Proceedings
of the 2nd Conference on Theoretical Aspects of Reasoning about Knowledge,
Pacific Grove, CA, March 1988, pp. 365–379. Morgan Kaufmann (1988)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-662-07964-5

https://doi.org/10.1007/978-3-662-07964-5

The Coinductive Formulation of Common Knowledge 141

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
New York (2001)

4. Bucheli, S., Kuznets, R., Struder, T.: Two ways to common knowledge. Electron.
Notes Theor. Comput. Sci. 262, 83–98 (2010)

5. Capretta, V.: General recursion via coinductive types. Log. Methods Comput. Sci.
1(2), 1–18 (2005). https://doi.org/10.2168/LMCS-1(2:1)2005

6. Capretta, V.: Common knowledge as a coinductive modality. In: Barendsen, E.,
Geuvers, H., Capretta, V., Niqui, M. (eds.) Reflections on Type Theory, Lambda
Calculus, and the Mind, pp. 51–61. ICIS, Faculty of Science, Radbout University
Nijmegen (2007). Essays Dedicated to Henk Barendregt on the Occasion of his
60th Birthday

7. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994). https://doi.
org/10.1007/3-540-58085-9 72

8. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

9. Gamow, G., Stern, M.: Puzzle Math. Viking Press, New York (1958)
10. Garson, J.: Modal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Phi-

losophy. Metaphysics Research Lab, Stanford University (2016)
11. Giménez, E.: Codifying guarded definitions with recursive schemes. In: Dybjer, P.,

Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60579-7 3

12. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
13. Keller, C., Werner, B.: Importing HOL light into Coq. In: Kaufmann, M., Paulson,

L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14052-5 22

14. Kripke, S.A.: A completeness theorem in modal logic. J. Symb. Logic 24(1), 1–14
(1959)

15. Lescanne, P.: Common knowledge logic in a higher order proof assistant. In:
Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp.
271–284. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-
1 11

16. Lewis, C.I., Langford, C.H.: Symbolic Logic. The Century Co., New York (1932)
17. Reynolds, J.C.: User-defined types and procedural data structures as complemen-

tary approaches to data abstraction. In: Gries, D. (ed.) Programming Methodol-
ogy. MCS, pp. 309–317. Springer, New York (1978). https://doi.org/10.1007/978-
1-4612-6315-9 22

https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1007/3-540-60579-7_3
https://doi.org/10.1007/978-3-642-14052-5_22
https://doi.org/10.1007/978-3-642-37651-1_11
https://doi.org/10.1007/978-3-642-37651-1_11
https://doi.org/10.1007/978-1-4612-6315-9_22
https://doi.org/10.1007/978-1-4612-6315-9_22

	The Coinductive Formulation of Common Knowledge
	1 Introduction
	2 Possible Worlds and Events
	3 Knowledge Operator Semantics
	4 Relational Semantics
	5 Equivalence with Relational Common Knowledge
	6 Conclusion
	References

