
Verified Tail Bounds for Randomized
Programs

Joseph Tassarotti(B) and Robert Harper

Carnegie Mellon University, Pittsburgh, USA
jtassaro@andrew.cmu.edu

Abstract. We mechanize a theorem by Karp, along with several exten-
sions, that provide an easy to use “cookbook” method for verifying tail
bounds of randomized algorithms, much like the traditional “Master The-
orem” gives bounds for deterministic algorithms. We apply these results
to several examples: the number of comparisons performed by Quick-
Sort, the span of parallel QuickSort, the height of randomly generated
binary search trees, and the number of rounds needed for a distributed
leader election protocol. Because the constants involved in our symbolic
bounds are concrete, we are able to use them to derive numerical prob-
ability bounds for various input sizes for these examples.

1 Introduction

Formal verification of randomized algorithms remains a challenging problem. In
recent years, a number of specialized program logics [8,10,11,37,42] and auto-
mated techniques [6,19,20] have been developed to analyze these programs. In
addition, a number of randomized algorithms have been verified directly in inter-
active theorem provers [26,27,52] without using intermediary program logics.
Besides establishing correctness results, much of this work has focused on verify-
ing the expected or average cost of randomized algorithms. Although expectation
bounds are an important first step in cost analysis, there are other stronger prop-
erties that often hold. For many randomized algorithms, we can establish tail
bounds which bound the probability that the algorithm takes more than a given
amount of time.

For example, it is well known that randomized QuickSort performs O(n log n)
comparisons on average when sorting a list of length n, and this fact has been
verified in theorem provers before [27,52]. However, not only does it do O(n log n)
comparisons on average, but the probability that it does more than O(n log n)
comparisons is vanishingly small for sufficiently large lists. To be precise, let
Wn be the number of comparisons when sorting a list of length n. Then, for
any positive k there exists ck such that Pr [Wn > ckn log n] < 1

nk . When we say
that such ck exist, we mean so in a constructive and practical sense: we can

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-94821-8 33) contains supplementary material, which is
available to authorized users.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 560–578, 2018.
https://doi.org/10.1007/978-3-319-94821-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_33&domain=pdf
https://doi.org/10.1007/978-3-319-94821-8_33
https://doi.org/10.1007/978-3-319-94821-8_33

Verified Tail Bounds for Randomized Programs 561

actually determine them and they are not absurdly large, so that one can derive
interesting concrete bounds. For instance, when n is 10 million, the probability
that Wn is greater than 8n log2 n is less than 10−9. These kinds of tail bounds
hold for many other classical randomized algorithms and are often stronger than
asymptotic expectation bounds.

Despite this, there is a good reason for the prior emphasis on expectation
bounds rather than tail bounds in the field of formal methods: tail bounds on
running time are usually quite difficult to derive. Common approaches for deriv-
ing these bounds involve the use of methods from analytic combinatorics [31] or
the theory of concentration of measure [25]. Although these techniques are very
effective, to be able to use them in a theorem prover one would first need to be
able to mechanize the extensive body of results that they depend upon.

The Need for “Cookbook” Methods. Let us contrast the difficulty mentioned above
with the (relative) ease of analyzing deterministic algorithms. For deterministic
divide-and-conquer algorithms, the cost is often given by recurrences of the form

W (x) = a(x) +
n∑

i=1

W (hi(x)) (1)

where the “toll” function a(x) represents the cost to process an input and divide
it into subproblems of size h1(x), ... , hn(x), which are then solved recursively.
Every undergraduate algorithms course covers “cookbook” techniques such as
the Master Theorem [13,23] that can be used to straightforwardly derive asymp-
totic bounds on these kinds of recurrences. Moreover, these results can also be
used to easily analyze recurrences for other types of resource use, such as the
maximum stack depth or the span of parallel divide-and-conquer algorithms [15].
Recurrences for these kinds of resources have the form:

S(x) = b(x) +
n

max
i=1

S(hi(x)) (2)

We will call recurrences of the form in Eq. 1 “work recurrences” and those of
the form in Eq. 2 “span recurrences”. Although Eq. 2 does not fit the format
of the Master Theorem directly, when S is monotone the recurrence simplifies
to S(x) = b(x) + S(maxn

i=1(hi(x))) and so can be analyzed using the Master
Theorem.

What is nice about these methods is that they give a process for carrying
out the analysis: find the toll function, bound the size of recursive problems, and
then use the theorem. Even if the first two steps might require some ingenuity,
the method at least suggests an approach to decomposing the problem.

Besides being easy to use, results like the Master Theorem do not have many
mathematical prerequisites. This makes them ideal for use in interactive theorem
provers. Indeed, Eberl [28] has recently mechanized the more advanced Akra and
Bazzi [2] recurrence theorem in Isabelle and has used it to derive asymptotic
bounds for a number of recurrence relations.

For randomized divide-and-conquer algorithms, the same recurrence rela-
tions arise, except the hi(x) are random variables because the algorithms use
randomness to divide the input into subproblems. Because of the similarity

562 J. Tassarotti and R. Harper

between deterministic and probabilistic recurrences, textbook authors some-
times give the following heuristic argument before presenting a formal analy-
sis [23, pp. 175–177]: In an algorithm like QuickSort, the size of the sublists
generated by the partitioning step can be extremely unbalanced in the worst
case, but this happens very rarely. In fact, each sublist is unlikely to be much
more than 3

4 the length of the original list. And, for a deterministic recurrence
like W (n) = n + W (34n) + W (34n), the master theorem says the result will
be O(n log n). Thus, intuitively, we should expect the average running time of
Quicksort to be something like O(n log n).

This raises a natural question: Is there a variant of the Master Theorem that
can be used to justify this kind of heuristic argument? Moreover, because Eq. 2
does not simplify to a version of Eq. 1 in the randomized setting1, we ideally
want something that can be used to analyze recurrences of both forms.

For the case where there is only a single recursive call (so that n = 1 above),
Karp [38] developed such a result. At a high-level, using Karp’s theorem involves
two steps. First, bound the average size of the recursive subproblem by finding
a function m such that E [h1(x)] ≤ m(x). Next, find a solution u to the deter-
ministic recurrence relation

u(x) ≥ a(x) + u(m(x))

Then the theorem says that for all positive integers w,

Pr [W (x) > u(x) + wa(x)] ≤
(

m(x)
x

)w

There are a few side conditions on the functions m and u which are usually easy
to check. Although this method generally does not give the tightest possible
bounds, they are often strong. Recently, Karp’s technique has been extended [51]
to the case for n > 1 for both span and work recurrences.

Our Contribution. In this paper, we present a mechanization of Karp’s theorem
and these extensions in Coq, and use it to develop verified tail bounds for (1)
the number of comparisons in sequential QuickSort, (2) the span arising from
comparisons in parallel QuickSort, (3) the height of a randomly generated binary
search tree, and (4) the number of rounds needed in a distributed randomized
leader election protocol. By using the Coq-Interval library [41] we are able to
instantiate our bounds in Coq to establish numerical results such as the 10−9

probability bound for QuickSort quoted above. To our knowledge, this is the
first time these kinds of bounds have been mechanized.

We start by outlining the mechanization of probability theory that our work
is based on (Sect. 2). We then describe Karp’s theorem and its extensions in
more detail (Sect. 3). To demonstrate how Karp’s result is used, we describe our
verification of the examples mentioned above, with a focus on the sequential
QuickSort analysis (Sect. 4). Of course, formalization often requires changing
parts of a paper proof, and our experience with Karp’s theorem was no different.
We discuss the issues we encountered and what we had to change in Sect. 5.
1 This is because in general E [max(X1, X2)] ≥ max(E [X1] ,E [X2]).

Verified Tail Bounds for Randomized Programs 563

Finally, we compare our approach to related work (Sect. 6) and conclude by
discussing possible extensions and improvements to our development (Sect. 7).

The Coq development described in this paper is available at https://github.
com/jtassarotti/coq-probrec.

2 Probability Preliminaries

2.1 Discrete Probability

We first need a set of basic results and definitions about probabilities and expec-
tations to be able to even state Karp’s theorem. We had to decide whether to
use a measure-theoretic formulation or restrict ourselves to discrete distribu-
tions. Although the Isabelle standard library has an extensive formalization of
measure theoretic probability, we are not aware of a similarly complete set of
results in Coq (we discuss existing libraries later in Sect. 6). Moreover, the appli-
cations we had in mind only involved discrete distributions, so we did not need
the extra generality of the measure-theoretic approach. To keep things simple,
we decided to develop a small library for discrete probability theory. Defining
probability and expectation for discrete distributions still involves infinite series
over countable sets, which can raise some subtle issues involving convergence.
We use the Coquelicot real analysis library [16] to deal with infinite series.

The definition of probability distributions is given in Fig. 1. We repre-
sent them as a record type parameterized by a countable type. We use the
ssreflect [32] library’s definition of countable types (countType), which con-
sists of a type A equipped with a surjection from nat to A.

The distribution record consists of three fields: (1) a probability mass function
pmf : A → R that assigns a probability to each element of A, (2) a proof that pmf a
is non-negative for all a, and (3) a proof that the countable series that sums pmf a
over all a converges and is equal to 1.

Random variables on a distribution (rvar) are functions from the underlying
countable space A to some other type B. The expected value of a real-valued
random variable is defined in the usual way as the series

∑
r∈img(X) Pr [X = r] ·r.

Because the underlying distribution is discrete, the image of the random variable
is a countable set, so we can define such a series.

Of course, expectations of discrete random variables do not always exist,
because the above series may not converge absolutely. Because of this, even with
the restriction to discrete probability, dealing with infinite series and issues of
convergence can often be tedious. In actuality, many randomized algorithms only
involve finite distributions. For random variables defined on such distributions,
the expectation always exists, because the series is actually just a finite sum. For
our mechanization of Karp’s theorem, we restrict to these finite distributions.

2.2 Monadic Encoding

We represent sequential and parallel randomized algorithms in Coq using a
monadic encoding. Variants of this kind of representation have been used in
many prior formalizations and domain specific languages [3,9,46,48].

https://github.com/jtassarotti/coq-probrec
https://github.com/jtassarotti/coq-probrec

564 J. Tassarotti and R. Harper

Fig. 1. Basic definitions for discrete probability distributions and random variables.

The type ldist A represents probabilistic computations that result in val-
ues of type A. Such computations are represented as a finite list of values of
type A paired with the probabilities that these values occur. The bind operation
dist bind l f represents the process of performing the computation represented
by l to obtain a random element of type A (i.e., “sampling” from the distribution
represented by l), and then passing this to f. The return operation (dist ret)
applied to a corresponds to the probabilistic computation that simply returns a
with probability 1. We use Coq’s notation mechanism to represent binding m in
e by writing x ← m; e, and write mret a for returning a.

3 Karp’s Theorem

Now that we have a formalization of the basic concepts of probability theory
and a way to describe randomized algorithms in Coq, we can give a more careful
explanation of Karp’s theorem and its extensions.

3.1 Unary Recurrences

The setting for Karp’s theorem is more general than the informal account we
gave in the introduction. Specifically, he assumes that there is a set I of algorithm
inputs, a function size : I → R

≥0 such that size(z) is the “size” of input z, and
a family of random variables h(z) which correspond to the new problem that is
passed to the recursive call of the algorithm. The random variable W (z), which
represents the cost of the algorithm when run on input z, is assumed to obey
the following unary recurrence:

W (z) = a(size(z)) + W (h(z)) (3)

Verified Tail Bounds for Randomized Programs 565

Although the intent of this recurrence is clear, it requires some care to interpret:
on the right hand side, h(z) is a random variable, but it is given as an argument to
W , which technically has I as a domain, not I-valued random variables. Instead,
we should read this not as the composition W ◦ h applied to z, but rather as a
specification for the process which first generates a random problem according
to h(z) and then passes it to W . In other words, this part of the recurrence is
really describing a monadic process of the form:

z′ ← h(z);W (z′)

Already, Eq. 3 addresses a detail that is often glossed over in informal treat-
ments of randomized algorithms. In informal accounts, one often speaks about
a random variable W (n), which is meant to correspond to the number of steps
taken by an algorithm when processing an instance of size n. The issue is that
usually, the exact distribution depends not just on the size of the problem but
also the particular instance, so it is somewhat sloppy to regard W (n) as a ran-
dom variable (admittedly, we did so in Sect. 1). For instance, when randomized
QuickSort is run on a list containing duplicate elements, a good implementation
will generally perform fewer total comparisons. Even if one tries to avoid this
issue by, say, restricting only to lists that do not contain duplicates, one would
still need to prove that the distribution depends on the size of the list alone.
This is mostly harmless in informal treatments, but it is a detail that would
otherwise have to be dealt with in a theorem prover.

We assume there is some constant d that is the “cut-off” point for the recur-
rence: when the input’s size drops below d no further recursive calls are made.
The function a : R → R

≥0 is required to be continuous and increasing2 on
(d,∞), but equal to 0 on the interval [0, d]. In addition, it is required that
0 ≤ size(h(z)) ≤ size(z), i.e., the size of the subproblem is not bigger than the
original.

Then, assume there exists some continuous function m : R → R such that for
all z, E [size(h(z))] ≤ m(size(z)) and 0 ≤ m(size(z)) ≤ size(z)). Moreover, the
function m(x)/x must be non-decreasing. Karp then argues that if there exists
a solution to the deterministic recurrence relation τ(x) = a(x) + τ(m(x)), there
must be a continuous minimal solution u : R → R. He assumes such a solution
exists and derives the following tail bound for W in terms of u:

Theorem 1 ([38]). For all z and integer w such that size(z) > d,

Pr [W (z) > u(size(z)) + w · a(size(z))] ≤
(

m(size(z))
size(z)

)w

Because u is the minimal solution to the deterministic recurrence, we can
replace u with any other solution t in the above bound: if W (z) is greater than
the version with t, then by minimality of u, it must be bigger than the version

2 In fact, the assumptions in [38] are slightly stronger than this. But as we discuss in
Sect. 5, we discovered that the weaker assumptions mentioned here are sufficient.

566 J. Tassarotti and R. Harper

with u. This means we do not need to find a closed form for the minimal solution
u, because any solution will give us a bound.

It is important to note that m, a and u are all functions from R to R. This
means that we do not have to deal with subtle rounding issues that sometimes
come up when attempting to formalize solutions to recurrences for algorithms.
Eberl [28], in his formalization of the Akra-Bazzi theorem, has pointed out how
important this can be. The trade-off is that establishing that the recurrence
holds everywhere on the domain R can be harder, especially at the boundaries
where the recurrence terminates.

3.2 Extension to Binary Work and Span Recurrences

Although Theorem 1 makes it easier to get strong tail bounds, it cannot be used
in many cases because it only applies to programs with a single recursive call.

Tassarotti [51] describes an extension to cover the general case of work and
span recurrences with n > 1 recursive calls. In our mechanization, we only
handle the case where there are two recursive calls (so that n = 2) because this
is sufficient for many examples. In this setting, we now have two random variables
h1 and h2 giving the recursive subproblems. These variables are generally not
independent: for QuickSort, h1 would be the lower partition of the list and h2

would be the upper partition. However, it is assumed that there is some function
g1 : R → R such that for all z ∈ I and (z1, z2) in the support of (h1(z), h2(z)):

g1 (size(z1)) + g1 (size(z2)) ≤ g1 (size(z))

Informally, we can think of this function g1 as a kind of ranking function, and
the above inequality is saying that the combined rank of the two subproblems
is no bigger than that of the original problem. The function m is now required
to bound the expected value of the maximum size of the two subproblems:

E [max (size(h1(z)), size(h2(z)))] ≤ m(size(z))

For bounding span recurrences of the form:

S(z) ≤ a(size(z)) + max(S(h1(z)), S(h2(z))) (4)

we assume once more that u is a solution to the recurrence u(x) ≥ a(x)+t(m(x)).
Then we have:

Theorem 2. For all z and integer w such that size(z) > d and g1(size(z)) > 1,

Pr [S(z) > u(size(z)) + w · a(size(z))] ≤ g1(size(z)) ·
(

m(size(z))
size(z)

)w

The difference between the bound above and the one in Theorem 1 is the
additional factor g1(size(z)). Generally speaking, g1(size(z)) will be bounded

by a polynomial, so that in comparison to
(

m(size(z))
size(z)

)w

, which decreases expo-
nentially with respect to w, the effect is negligible.

Verified Tail Bounds for Randomized Programs 567

The bound for binary work recurrences is slightly different. Given the recur-
rence:

W (z) ≤ a(size(z)) + W (h1(z)) + W (h2(z)) (5)

we need a second “ranking” function g2 with the same property that
g2 (size(z1)) + g2 (size(z2)) ≤ g2 (size(z)) for all z1 and z2 in the support of
the joint distribution (h1(z), h2(z)) when size(z) > d. In the proof by Tassarotti
[51], this second ranking function is used to transform the work recurrence into
a span recurrence which is then bounded by Theorem 2, and this bound is
converted back to a bound on the original recurrence. From the perspective of
the user of the theorem, we now need u to solve the deterministic recurrence
u(x) ≥ a(x)

g2(x)
+ u(m(x)), and we obtain the following bound:

Theorem 3. For all z and integer w such that size(z) > d and g1(size(z)) > 1,

Pr [W (z) > g2(size(z)) · u(size(z)) + w · a(size(z))] ≤ g1(size(z)) ·
(
m(size(z))

size(z)

)w

Observe that on the left side of the bound, we re-scale u by a factor of g2(size(z))
because it was the solution to a recurrence in which we normalized everything
by g2.

The above results let us fairly easily obtain tail bounds for a wide variety
of probabilistic recurrences arising in the analysis of randomized divide-and-
conquer algorithms. In the next section, we demonstrate their use by verifying a
series of examples. After showing how they are used, we return to the discussion
of the results themselves in Sect. 5, where we describe issues we encountered
when trying to translate the paper proofs into Coq.

4 Examples

We now apply the results developed in the previous sections to several examples.

4.1 Sequential QuickSort

Our first example is bounding the number of comparisons performed by a sequen-
tial implementation of randomized QuickSort. To count the number of compar-
isons that the monadic implementation of the algorithm performs, we combine
the probabilistic monad from Sect. 2.2 with a version of the writer monad that
increments a counter every time a comparison is done. This cost monad is defined
by:

Definition cost A := (nat * A).

Definition cost_bind {A B} (f: A -> cost B) x :=

(x.1 + (f (x.2)).1, (f (x.2)).2).

Definition cost_ret {A} (x: A) := (0, x).

A computation of type cost A is just a pair of a nat, representing the count
of the number of comparisons, and an underlying value of type A. The bind oper-
ation sums costs in the obvious way. We can then define a version of comparison
in this monad:

568 J. Tassarotti and R. Harper

Definition compare (x y: nat) :=

(1, ltngtP x y).

where ltngtP is a function from the ssreflect library that returns whether
x < y, x = y, or x > y.

The code3 for QuickSort is given in Fig. 2. This is the standard randomized
functional version of QuickSort: For empty and singleton lists, qs simply returns
the input. Otherwise, it selects an element uniformly at random from the list
using draw pivot. It then uses partition to split the list into three parts:
elements smaller than the pivot, elements equal to the pivot, and elements larger
than the pivot. Elements smaller and larger than the pivot are recursively sorted
and then the results are joined together. Partition uses the compare operator
defined above, which implicitly counts the comparisons it performs.

Fig. 2. Simplified version of code for sequential QuickSort. In ssreflect, we write [::]
for the empty list and [:: a] for a list containing the single element a. Because random-
ized QuickSort is not structurally recursive, the actual definition in our development
defines it by well-founded recursion on the size of the input.

What is the probabilistic recurrence for this algorithm? In each round of the
recursion, the algorithm performs n comparisons to partition a list of length n.
So, taking the size function to be the length of the list, we have the toll function
a(x) = x. There are two recursive calls, and we have to sum the comparisons
performed by each to get the total, so we need to use Theorem 3.

The h1 and h2 functions giving the recursive subproblems correspond to the
lower and upper sublists returned by partition. We now need to bound the
expected value of the maximum of the sizes of these two lists. We first show:

E [max (size(h1(l)), size(h2(l)))] ≤ 1
size(l)

size(l)−1∑

i=0

max(i, size(l) − i − 1)

3 The definition in our development is actually defined by well-founded induction on
the size of the input, because the Coq termination checker cannot determine that
this definition always terminates.

Verified Tail Bounds for Randomized Programs 569

To get some intuition for this inequality, imagine the input list l was already
sorted. In this situation, if the pivot we draw is in position i, then the sublist of
elements less than i only contains elements to the left of i in l and the sublist of
elements larger than i contains only elements to the right of i in l. The size of each
sublist is therefore at most i and size(l)−i−1, respectively, which corresponds to
the ith term in the sum above. The factor of 1

size(l) is the probability of selecting
each pivot index, because they are all equally likely. Of course, the input list is
not actually sorted, but when we select pivot position i, we can consider where
its position would be in the final sorted list, and the result is just a re-ordering
of the terms in the sum.

Next we show by induction on n that:
n−1∑

i=0

max(i, n − i − 1) =
(

n

2

)
+

⌊n

2

⌋
·
⌈n

2

⌉
≤ 3n2

4

We combine the two inequalities to conclude:

E [max (size(h1(l)), size(h2(l)))] ≤ 3
4

· size(l)

The above bound is for the case when the list has at least 2 elements; other-
wise the recursion is over so that the sublists have length 0. Hence we can define
m to be m(x) = 0 for x < 4/3 and m(x) = 3x

4 otherwise. We use 4/3 as the
cut-off point rather than 2 because it makes the recurrence easier to solve.

To use Theorem 3, we need to come up with two “ranking” functions g1 and
g2 such that gi(size(h1(z))) + gi(size(h2(z))) ≤ gi(size(z)) for each i. Ideally,
we want g1 to be as small as possible, because it scales the final bound we
derive, whereas for g2 we want to pick something that makes it easy to solve
the recurrence t(x) ≥ a(x)/g2(x)+ t(m(x)). Like the derivation of the bound m,
these parts of the proof are not automatic and require some experimentation.
We define the following choices for the parameters of Theorem 3:

g1(x) = x g2(x) =

⎧
⎪⎨

⎪⎩

1
2 x ≤ 1
x

x−1 1 < x < 2
x x ≥ 2

t(x) =

{
1 x ≤ 1
log 4

3
x + 1 x > 1

We can check g1 and g2 satisfy the necessary conditions, and that t is a solution
to the resulting deterministic recurrence relation.

Writing T (x) for the total number of comparisons performed on input x,
Theorem 3 now gives us:

Pr
[
T (x) > size(x) · log4/3(size(x)) + 1 + w · size(x)

]
≤ size(x) ·

(
3
4

)w

for l such that size(x) > 1. More concisely, if we set n = size(x), then this
becomes:

Pr
[
T (x) > n log4/3 n + 1 + wn

]
≤ n ·

(
3
4

)w

In Coq, this is rendered as:

570 J. Tassarotti and R. Harper

Theorem bound x w:

rsize x > 1 ->

pr_gt (T x) (rsize x * (k * ln (rsize x) + 1) + INR w * rsize x)

<= (rsize x) * (3/4)^w.

where k = 1
ln 4/3 , rsize returns the length of a list as a real number, and

INR : nat → R coerces its input into a real number.
To understand the significance of these bounds, consider the case when w =

	c · log4/3 n
 for some constant c. Then, using the above we get:

Pr
[
T (x) > (c + 1)n log4/3 n + 1

]
≤ Pr

[
T (x) > n log4/3 n + 1 + wn

]
(6)

≤ n ·
(

3
4

)w

≤ n ·
(

3
4

)c log4/3 n−1

(7)

=
4
3

· 1
nc−1

(8)

so that when c > 2, the probability goes very quickly to 0 for lists of even
moderate size.

We can now use the Coq-Interval library, which provides tactics for estab-
lishing numerical inequalities, to compute the value of this bound for particular
choices of n. In particular, we can establish the claim from the introduction:
when sorting a list with 10 million elements, the probability that QuickSort
performs more than 8n log2 n comparisons is less than 10−9.

Remark concrete2:

forall l, rsize l = 10 ^ 7 ->

pr_gt (T l) (10^7 * (8 * 1/(ln 2) * ln (10^7))) <= 1/(10^9).

4.2 Other Examples

We have mechanized the analysis of three other examples using Karp’s theorem.
A discussion of these examples is given in the appendix of the full version of this
paper available as supplementary material. Here we give a brief description of
the examples:

1. Parallel QuickSort: using Theorem 2 we show that the longest chain of sequen-
tial dependencies from comparisons in a parallel version of QuickSort is
O(log(n)) with high probability.

2. Binary search tree: we analyze the height of a binary search tree which is
generated by inserting a set of elements under a random permutation. We
show the height is O(log(n)) with high probability using Theorem 2.

3. Randomized leader election: we consider a protocol for distributed leader
election that has been analyzed by several authors [30,47]. The protocol con-
sists of stages called “rounds”. At the beginning of a round, each active node
generates a random bit. If the bit is 1, the node remains “active” and sends
a message to all the other nodes; otherwise, if the bit is 0 it becomes inac-
tive and stops trying to become the leader. If every active node generates

Verified Tail Bounds for Randomized Programs 571

a 0 within a round, no messages are sent and instead of becoming inactive,
those nodes try again in the next round. When there is only one active node
remaining, it is deemed the leader. We use Theorem 1 to show that with high
probability at most O(log n) rounds are needed.

5 Changes Needed for Mechanization

Anyone who has mechanized something based on a paper proof has probably
encountered issues that make it harder than just “translating” the steps of the
proof into the formal system. Even when the paper proof is correct, there are
inevitably parts of the argument that are more difficult to mechanize than they
appear on paper, and this can require changing the strategy of the proof.

Our experience mechanizing Karp’s theorem and its extensions was no differ-
ent. In this section we describe obstacles that arose in our attempt to mechanize
the proof.

5.1 Overview of Proof

To put the following discussion in context, we need to give a sketch of the paper
proof. Recall that Theorem 1 says that if we have a probabilistic recurrence W
with a corresponding deterministic recurrence solved by u, then for all z and
integer w,

Pr [W (z) > u(size(z)) + w · a(size(z))] ≤
(

m(size(z))
size(z)

)w

The first thing one would naturally try to prove this is to proceed by induction
on the size of z. However, immediately one realizes that the induction hypoth-
esis needs to be strengthened: the bound above is only shown at each integer
w, so there are “gaps” in between where we do not have an appropriately tight
intermediate bound. To address this, Karp defines a function Dr which “interpo-
lates” the bound

(
m(size(z))
size(z)

)w

to fill in these gaps. This function Dr is somewhat
complicated, and is defined in a piecewise manner as follows:

1. If r ≤ 0 and x > 0, Dr(x) = 1
2. If r > 0:

(a) If x ≤ d then Dr(x) = 0
(b) If x > d and u(x) ≥ r then Dr(x) = 1
(c) If x > d and u(x) < r then

Dr(x) =
(

m(x)
x

)� r−u(x)
a(x) � x

u−1(r − a(x)
⌈
r−u(x)
a(x)

⌉
)

572 J. Tassarotti and R. Harper

This definition is intricate, especially the last case. However, if we set r =
u(size(z)) + w · a(size(z)), then Dr(size(z)) simplifies to

(
m(size(z))
size(z)

)w

, con-
firming the intuition that this is some kind of interpolation.

Next, define Kr(z) = Pr [W (z) > r]. Then, the result follows by showing that

Kr(z) ≤ Dr(size(z))

The probabilistic recurrence relation for W implies that:

Kr(z) ≤ E
[
Kr−a(size(z))(h(z))

]
(9)

when size(z) > d. Karp’s idea is to recursively define a sequence of functions
Ki

r for i ∈ N which approximate Kr. These are defined by:

K0
r (z) =

{
1 if r < u(d)
0 otherwise

Ki+1
r (z) = E

[
Ki

r−a(size(z))(h(z))
]

Note the similarity between the recursive case and the property in (9). For all i,
Ki

r(z) ≤ 1, so supi K
i
r(z) exists. Karp says then that Kr(z) ≤ supi K

i
r(z), so it

suffices to show that for all i, Ki
r(z) ≤ Dr(size(z)).

The proof is by induction on i. The base case is straightforward. For the
inductive case, the definition of Ki+1

r and the induction hypothesis give us:

Ki+1
r (z) = E

[
Ki

r−a(size(z))(h(z))
]

≤ E
[
Dr−a(size(z))(h(z))

]

So we just need to show that this final expected value is ≤ Dr(size(z)). The
key is the following simple lemma, which lets us bound the expected value of
suitable functions of random variables:

Lemma 1 ([38, Lemma 3.1]). Let X be a random variable with values in the
range [0, x]. Suppose f : R → R is a non-negative function such that f(0) = 0,
and there exists some constant c such that for all y ≥ c, f(y) = 1 and f(y)/y is
non-decreasing on the interval (0, c]. Then:

E [f(X)] ≤ E [X] f(min(x, c))
min(x, c)

Applying this with X = size(h(z)), f = Dr−a(size(z)), and suitable choice of
c gives us the desired result. Of course, we need to check that this choice of
f satisfies the conditions of the lemma. In particular, showing that f(y)/y is
non-decreasing is somewhat involved, and it is here that the various continuity
assumptions on parameters like a are used.

Once the inductive proof is finished, we set r = u(size(z)) + w · a(size(z)),
to get the form of the bound in the statement of the theorem.

Verified Tail Bounds for Randomized Programs 573

5.2 Changes

Termination Assumption. The first problem we had was that we were unable
to prove that Kr(z) ≤ supi K

i
r(z). In the original paper proof, this inequality is

simply stated without further justification. Young [53] has suggested that in fact
one may need stronger assumptions on W or h to be able to conclude this and
suggests two alternatives. Either W can be assumed to be a minimal solution to
the probabilistic recurrence, or one can assume that the recurrence terminates
with probability 1, that is Pr [hn(z) > d] → 0 as n → ∞. In the end, we chose
to make the latter assumption, because it is easy to show for most examples.

Existence of a Minimal Solution. Karp argues that if there is a solution to the
deterministic recurrence relation, there must be a minimal solution u. The results
in the theorem are then stated in terms of u. It seemed to us more efficient to
simply state the results in terms of any continuous and invertible solution t to the
recurrence relation. In this way, we avoid the need to prove the existence, conti-
nuity, and invertibility of the minimal solution. In fact, rather than assuming t
is invertible on its full domain, we merely assume that there exists a function t′

which is an inverse to t on the subdomain (d,∞), that is: t′(t(x)) = x for x > d
and t(t′(x)) = x for x > t(d). The definition of D is then changed to replace
occurrences of u with t.

Division by Zero. The original piecewise definition of D above involves division
by u−1(r − a(x)

⌈
r−u(x)
a(x)

⌉
). However, it is not clear that this is always non-zero

on the domain considered, and this is not explicitly discussed in the paper proof.
Since we replace the u−1 function with a user supplied function t′, we found it
easier to simply require an explicit assumption that t′ is non-zero everywhere.

Unneeded Assumptions. In the original paper proof, the toll function a is assumed
to be everywhere continuous and strictly increasing on [d,∞). This rules out
recurrences like W (z) = 1 + W (h(x)) which show up in examples such as the
leader election protocol. For that reason, there is actually an additional result
in Karp [38] for the particular case where a(x) = 0 for x ≤ d and 1 otherwise.

However, after finishing the mechanization of Theorem 1, we suspected that
the assumptions on a could be weakened, avoiding the need for the additional
lemma. We changed the assumptions to only require that a was monotone and
continuous on the interval (d,∞). In turn, we require the function t which solves
the deterministic recurrence to be strictly increasing on the interval (d,∞). Our
prior proof script worked mostly unchanged: most of the changes actually ended
up deleting helper lemmas we had needed under the original assumptions. This
is not because our proof scripts were highly automated or robust, but because
the original proof really was not exploiting these stronger assumptions. Checking
this carefully with respect to the original paper proof would have been rather
tedious, but was straightforward with a mechanized version.

Extending to the Binary Case. In a technical report, Karpinski and Zimmermann
[39] claimed to extend Karp’s result to work and span recurrences with multiple

574 J. Tassarotti and R. Harper

recursive calls, so we initially tried to verify their result. The argument is funda-
mentally like Karp’s original proof, so many steps were described briefly because
they were intended to be similar to the corresponding parts of the proof of
Theorem 1. However, we were unable to prove that their analogue of the Dr

function satisfied the assumptions of Lemma 1, and so we were stuck at the cor-
responding step of the induction argument. It was at this point that we mecha-
nized the results from Tassarotti [51] instead.

6 Related Work

6.1 Verification of Randomized Algorithms and Mechanized
Probability Theory

Audebaud and Paulin-Mohring [3] developed a different monadic encoding for
reasoning about randomized algorithms in Coq that can represent randomized
algorithms that do not necessarily terminate. It would be interesting to try to
generalize our version of Karp’s theorem and apply them to programs expressed
using this monad.

Barthe et al. [9] develop a probabilistic variant of Benton’s relational Hoare
logic [14] called pRHL to do relational reasoning about pairs of randomized
programs. Extensions to and applications of pRHL for reasoning about proba-
bilistic programs have been developed in a series of papers [7,10,11], and this
kind of relational reasoning has been implemented in the EasyCrypt tool [5].
There are many other formal logics for reasoning about probabilistic programs
(e.g., [8,40,44,49]). Kaminski et al. [37] presented a weakest-precondition logic
that can be used to establish expected running time. As an example, they proved
a bound on the expected number of comparisons used by QuickSort. The sound-
ness of their logic was later mechanized by Hölzl [34] in Isabelle.

Van der Weegen and McKinna [52] mechanized a proof of the average number
of comparisons performed by QuickSort in Coq, and used monad transformers to
elegantly separate reasoning about correctness and cost while still being able to
extract efficient code. Eberl [27] has recently mechanized a similar result, as well
as bounds on the expected depth and height of binary search trees [26]. Haslbeck
et al. [33] have verified expected height bounds for treaps, which requires mea-
sure theoretic probability because of the way that treap algorithms sample from
continuous distributions. See the overview by Eberl et al. [29] for a description of
the mechanizations from [26,27,33]. Eberl [28] also mechanized the Akra-Bazzi
theorem, a generalization of the Master Theorem for reasoning about determin-
istic divide and conquer recurrences.

More generally, multiple large developments of probability theory have been
carried out in several theorem provers, including large amounts of measure the-
ory [35,36], the Central Limit Theorem [4], Lévy and Hoeffding’s inequalities [24],
and information theory [1], to name just some of these results.

Verified Tail Bounds for Randomized Programs 575

6.2 Techniques for Bounds on Randomized Algorithms

There are a vast number of tools and results that have been developed for
analyzing properties of randomized algorithms; see [25,31,43,45] for expository
accounts of both simple and more advanced techniques. Different “cookbook”
methods like Karp’s also exist: Bazzi and Mitter [12] developed a variant of
the Akra-Bazzi master theorem for deriving asymptotic expectation bounds for
work recurrences. Roura [50] presented a master theorem that also applies to
recurrences like that of the expected work for QuickSort.

Chaudhuri and Dubhashi [22] extended the results of Karp [38] for unary
probabilistic recurrence relations by weakening some of the assumptions of
Theorem 1. Their proof used only “standard” techniques from probability theory
like Markov’s inequality and Chernoff bounds, so they argued that it is easier to
understand. Of course, this approach may be less beneficial for mechanization if
we do not have a pre-existing library of results.

7 Conclusion

We have described our mechanization of theorems by Karp [38] and Tassarotti
[51] that make it easier to obtain tail bounds for various probabilistic recurrence
relations arising in the study of randomized algorithms. To demonstrate the use
of these results, we have explained our verification of four example applications.
Moreover, we have shown that these results can be used to obtain concrete
numerical bounds, fully checked in Coq, for input sizes of practical significance.
To our knowledge, this is the first mechanization of these kinds of tail bounds
in a theorem prover.

In future work, it would be interesting to try to automate the inference of
the a, g1, and g2 functions used when applying Karp’s theorem. The resulting
deterministic recurrence could also probably be solved automatically, since more
complex recurrences have been analyzed automatically in related work (e.g.,
[21]). If these analyses are done as part of external tools, it would be useful
to be able to produce proof certificates that could be checked using the Coq
development we describe here, as in some other resource analysis tools [17,18].

It should also be possible to extend the applicability of our mechanization
by handling arbitrary probability distributions instead of finite ones. Moreover,
it may be possible to use tools like the probabilistic relational Hoare logic of
Barthe et al. [9] to prove suitable refinements between imperative randomized
algorithms and the functional versions we have analyzed here. This would allow
one to derive corresponding tail bounds on the imperative versions.

Acknowledgments. The authors thank Jean-Baptiste Tristan, Jan Hoffmann, Justin
Hsu, Guy Blelloch, Carlo Angiuli, Daniel Gratzer, Manuel Eberl, and the anonymous
reviewers of this work for their feedback. This research was conducted with U.S. Gov-
ernment support under and awarded by DoD, Air Force Office of Scientific Research,
National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR
168a. This work was also supported by a gift from Oracle Labs. Any opinions, findings

576 J. Tassarotti and R. Harper

and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of these organizations.

References

1. Affeldt, R., Hagiwara, M.: Formalization of Shannon’s theorems in SSReflect-Coq.
In: ITP, pp. 233–249 (2012)

2. Akra, M., Bazzi, L.: On the solution of linear recurrence equations. Comp. Opt.
Appl. 10(2), 195–210 (1998)

3. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589 (2009)

4. Avigad, J., Hölzl, J., Serafin, L.: A formally verified proof of the Central Limit
Theorem. CoRR abs/1405.7012 (2014). http://arxiv.org/abs/1405.7012

5. Barthe, G., Crespo, J.M., Grégoire, B., Kunz, C., Béguelin, S.Z.: Computer-aided
cryptographic proofs. In: ITP, pp. 11–27 (2012)

6. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic
invariants via Doob’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 43–61. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 3

7. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.: Proving uniformity and
independence by self-composition and coupling. In: LPAR (2017)

8. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.: A program logic for
union bounds. In: ICALP, pp. 107:1–107:15 (2016)

9. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In: POPL, pp. 90–101 (2009)

10. Barthe, G., Grégoire, B., Béguelin, S.Z.: Probabilistic relational hoare logics for
computer-aided security proofs. In: MPC, pp. 1–6 (2012)

11. Barthe, G., Grégoire, B., Hsu, J., Strub, P.: Coupling proofs are probabilistic prod-
uct programs. In: POPL, pp. 161–174 (2017)

12. Bazzi, L., Mitter, S.K.: The solution of linear probabilistic recurrence relations.
Algorithmica 36(1), 41–57 (2003)

13. Bentley, J.L., Haken, D., Saxe, J.B.: A general method for solving divide-and-
conquer recurrences. SIGACT News 12(3), 36–44 (1980)

14. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL (2004)

15. Blelloch, G., Greiner, J.: Parallelism in sequential functional languages. In: Pro-
ceedings of the 7th International Conference on Functional Programming Lan-
guages and Computer Architecture, pp. 226–237 (1995)

16. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real
analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015)

17. Carbonneaux, Q., Hoffmann, J., Reps, T., Shao, Z.: Automated resource analysis
with Coq proof objects. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 64–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63390-9 4

18. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: POPL, pp. 467–478 (2015)

19. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 34

http://arxiv.org/abs/1405.7012
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1007/978-3-642-39799-8_34

Verified Tail Bounds for Randomized Programs 577

20. Chatterjee, K., Fu, H., Murhekar, A.: Automated recurrence analysis for almost-
linear expected-runtime bounds. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 118–139. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 6

21. Chatterjee, K., Novotný, P., Zikelic, D.: Stochastic invariants for probabilistic ter-
mination. In: POPL, pp. 145–160 (2017)

22. Chaudhuri, S., Dubhashi, D.P.: Probabilistic recurrence relations revisited. Theor.
Comput. Sci. 181(1), 45–56 (1997)

23. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-
rithms, 3rd edn. MIT Press (2009). http://mitpress.mit.edu/books/introduction-
algorithms

24. Daumas, M., Lester, D., Martin-Dorel, É., Truffert, A.: Improved bound for
stochastic formal correctness of numerical algorithms. Innovations Syst. Softw.
Eng. 6(3), 173–179 (2010)

25. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press (2009). http://www.cambridge.
org/gb/knowledge/isbn/item2327542/

26. Eberl, M.: Expected shape of random binary search trees. Archive of Formal Proofs
2017 (2017). https://www.isa-afp.org/entries/Random BSTs.shtml

27. Eberl, M.: The number of comparisons in quicksort. Archive of Formal Proofs 2017
(2017). https://www.isa-afp.org/entries/Quick Sort Cost.shtml

28. Eberl, M.: Proving divide and conquer complexities in Isabelle/HOL. J. Autom.
Reasoning 58(4), 483–508 (2017)

29. Eberl, M., Haslbeck, M.W., Nipkow, T.: Verified analysis of random trees. In: ITP
(2018)

30. Fill, J.A., Mahmoud, H.M., Szpankowski, W.: On the distribution for the duration
of a randomized leader election algorithm. Ann. Appl. Probab. 6(4), 1260–1283
(1996)

31. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

32. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq system. Research Report RR-6455, Inria Saclay Ile de France (2016). https://
hal.inria.fr/inria-00258384

33. Haslbeck, M.W., Eberl, M., Nipkow, T.: Treaps. Archive of Formal Proofs (2018).
https://isa-afp.org/entries/Treaps.html

34. Hölzl, J.: Formalising semantics for expected running time of probabilistic pro-
grams. In: ITP, pp. 475–482 (2016)

35. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: ITP,
pp. 135–151 (2011)

36. Hurd, J.: Formal Verification of Probabilistic Algorithms. Ph.D. thesis. Cambridge
University, May 2003

37. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected run–times of probabilistic programs. In: Thiemann, P. (ed.)
ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49498-1 15

38. Karp, R.M.: Probabilistic recurrence relations. J. ACM 41(6), 1136–1150 (1994)
39. Karpinski, M., Zimmermann, W.: Probabilistic recurrence relations for parallel

divide-and-conquer algorithms. Technical report TR-91-067, International Com-
puter Science Institute (ICSI) (1991). https://www.icsi.berkeley.edu/ftp/global/
pub/techreports/1991/tr-91-067.pdf

https://doi.org/10.1007/978-3-319-63387-9_6
https://doi.org/10.1007/978-3-319-63387-9_6
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
https://www.isa-afp.org/entries/Random_BSTs.shtml
https://www.isa-afp.org/entries/Quick_Sort_Cost.shtml
https://hal.inria.fr/inria-00258384
https://hal.inria.fr/inria-00258384
https://isa-afp.org/entries/Treaps.html
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
https://www.icsi.berkeley.edu/ftp/global/pub/techreports/1991/tr-91-067.pdf
https://www.icsi.berkeley.edu/ftp/global/pub/techreports/1991/tr-91-067.pdf

578 J. Tassarotti and R. Harper

40. Kozen, D.: A probabilistic PDL. In: STOC, pp. 291–297 (1983)
41. Martin-Dorel, É., Melquiond, G.: Proving tight bounds on univariate expressions

with elementary functions in Coq. J. Autom. Reason. 57(3), 187–217 (2016)
42. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-

sure termination. PACMPL 2(POPL), 33:1–33:28 (2018). http://doi.acm.org/10.
1145/3158121

43. Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press (2005)

44. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (1996)

45. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

46. Petcher, A., Morrisett, G.: The foundational cryptography framework. In: Focardi,
R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 53–72. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46666-7 4

47. Prodinger, H.: How to select a loser. Disc. Math. 120(1), 149–159 (1993)
48. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability

distributions. In: POPL, pp. 154–165 (2002)
49. Ramshaw, L.H.: Formalizing the Analysis of Algorithms. Ph.D. thesis. Stanford

University (1979)
50. Roura, S.: Improved master theorems for divide-and-conquer recurrences. J. ACM

48(2), 170–205 (2001)
51. Tassarotti, J.: Probabilistic recurrence relations for work and span of parallel algo-

rithms. CoRR abs/1704.02061 (2017). http://arxiv.org/abs/1704.02061
52. van der Weegen, E., McKinna, J.: A machine-checked proof of the average-case

complexity of quicksort in Coq. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.)
TYPES 2008. LNCS, vol. 5497, pp. 256–271. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02444-3 16

53. Young, N.: Answer to: Understanding proof of theorem 3.3 in Karp’s probabilistic
recurrence relations. Theoretical Computer Science Stack Exchange (2016). http://
cstheory.stackexchange.com/q/37144

http://doi.acm.org/10.1145/3158121
http://doi.acm.org/10.1145/3158121
https://doi.org/10.1007/978-3-662-46666-7_4
http://arxiv.org/abs/1704.02061
https://doi.org/10.1007/978-3-642-02444-3_16
https://doi.org/10.1007/978-3-642-02444-3_16
http://cstheory.stackexchange.com/q/37144
http://cstheory.stackexchange.com/q/37144

	Verified Tail Bounds for Randomized Programs
	1 Introduction
	2 Probability Preliminaries
	2.1 Discrete Probability
	2.2 Monadic Encoding

	3 Karp's Theorem
	3.1 Unary Recurrences
	3.2 Extension to Binary Work and Span Recurrences

	4 Examples
	4.1 Sequential QuickSort
	4.2 Other Examples

	5 Changes Needed for Mechanization
	5.1 Overview of Proof
	5.2 Changes

	6 Related Work
	6.1 Verification of Randomized Algorithms and Mechanized Probability Theory
	6.2 Techniques for Bounds on Randomized Algorithms

	7 Conclusion
	References

