l‘)

Check for
updates

A Formal Proof of the Minor-Exclusion
Property for Treewidth-Two Graphs

Christian Doczkal®) | Guillaume Combette, and Damien Pous

Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
{christian.doczkal,guillaume.combette,damien.pous}@ens-lyon.fr

Abstract. We give a formal and constructive proof in Coq/Ssreflect of
the known result that the graphs of treewidth two are exactly those that
do not admit K4 as a minor. This result is a milestone towards a formal
proof of the recent result that isomorphism of treewidth-two graphs can
be finitely axiomatized. The proof is based on a function extracting terms
from K4-free graphs in such a way that the interpretation of an extracted
term yields a treewidth-two graph isomorphic to the original graph.

Keywords: Graph theory - Graph minor theorem + Coq - Ssreflect

1 Introduction

The notion of treewidth [6] measures how close a graph is to a forest. Graph
homomorphism (and thus k-coloring) becomes polynomial-time for classes of
graphs of bounded treewidth [1,10,13], so does model-checking of Monadic Sec-
ond Order (MSO) formulae, and satisfiability of MSO formulae becomes decid-
able, even linear [4,5].

Robertson and Seymour’s graph minor theorem [18], a cornerstone of algo-
rithmic graph theory, states that graphs are well-quasi-ordered by the minor
relation. As a consequence, the classes of graphs of bounded treewidth, which
are closed under taking minors, can be characterized by finite sets of excluded
minors. Two standard instances are the following ones: the graphs of treewidth
at most one (the forests) are precisely those excluding the cycle with three ver-
tices (C3); those of treewidth at most two are those excluding the complete graph
with four vertices (Ka) [8].

O © A«

This work has been funded by the European Research Council (ERC) under the
European Union’s Horizon 2020 programme (CoVeCe, grant agreement No. 678157),
and was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de
Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) oper-
ated by the French National Research Agency (ANR).

© Springer International Publishing AG, part of Springer Nature 2018

J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 178-195, 2018.
https://doi.org/10.1007/978-3-319-94821-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_11&domain=pdf

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 179

We present a constructive and formal proof of the latter result in Coq/Ssreflect.
Amongst the open problems related to treewidth, there is the question of

finding finite axiomatisations of isomorphism for graphs of a given treewidth [5,

p. 118]. This question was recently answered positively for treewidth two [14]:

Ky-free graphs form the free 2p-algebra,)

where 2p-algebras are algebraic structures characterized by twelve equational
axioms. The proof is rather technical; it builds on a precise analysis of the
structure of Ky-free graphs and contains the specific form of the graph minor
theorem for treewidth two which we present here. Further, invalid proofs of
related claims have already been published in the literature (see [14]). Our long
term goal is to formalize (1): not only will this give us assurance about the
validity of the proof in [14], it will also allow for the development of automation
tactics for certain algebraic theories (e.g., 2p-algebra, allegories [11]). The Coq
development accompanying the present paper [7] is a milestone for this project.

Independently from the aforementioned specific objective, formalizing the
graph minor theorem for treewidth two requires us to develop a general Coq
library for graph theory which should also be useful in other contexts. This
library currently includes basic notions like paths, trees, subgraphs, and isomor-
phisms and also a few more advanced ones: minors, tree decompositions, and
checkpoints (a variant of cut vertices).

We had to design this library from scratch. Indeed, there are very few formaliza-
tions of graph theory results in Coq, and none of them were applicable. Gonthier’s
formal proof of the Four-Color Theorem [12] is certainly the most advanced, but it
restricts (by design) to planar graphs so that it cannot be used as a starting point
for graph theory in the large. Similarly, Durfourd and Bertot’s study of Delau-
nay triangulation [9] employs a notion of graphs based on hypermaps embedded
in a plane. There are more formalizations in other interactive theorem provers.
For instance, planar graphs were formalized in Isabelle/HOL for the Flyspeck
project [16]. Noschinski recently developed a library for both simple and multi-
graphs in Isabelle/HOL [17]. Chou developed a large part of undirected graph the-
ory in HOL [2]. Euler’s theorem was formalized in Mizar [15]. To the best of our
knowledge, the theory of minors and tree decompositions was never formalized.

Overview of the proof. We focus on connected graphs: Term
the general case follows by decomposing any given (i3/ ’\(iii)
graph into connected components. The overall strat-
egy of our proof of the minor exclusion theorem for TWaz ——— Ki-free
treewidth two is depicted in Fig. 1. i)

We first prove that treewidth two graphs exclude
K4 as a minor (i). This proof is standard and relatively
easy. For proving the converse implication, we intro-
duce a notion of term that allow us to denote graphs. We prove that graphs of
terms have treewidth at most two (ii) using properties of tree decompositions
and a simple induction on terms. The main difficulty then consists in proving
that every Ky-free graph can be represented by a term (iii).

Fig. 1. Structure of the
proof.

180 C. Doczkal et al.

(a) (b) (c)

el £ -
Fig. 2. The three main cases for extracting a term from a Ks-free graph.

Due to our long-term objective (1), the syntax we use for those terms is that
of 2p-algebras [14];

wovwz=wov | ulv | v | dom(u) | 1] T |a (a€eX)

This syntax makes it possible to denote directed multi-graphs, with edges labeled
by letters from an alphabet X' and with two designated vertices (the input and
the output). The binary operations in the syntax correspond to series and parallel
composition. The first unary operation, converse, exchanges input and output;
the second one, domain, relocates the output to the input. The constant 1 repre-
sents the graph with just a single vertex; T is the disconnected graph with just
two vertices. Letters represent single edges. For instance the graphs of the terms
a-(b]|c®) || d and 1| a-b are the following ones:

s~ N 0
<<d/

The second graph is also represented by the term dom(a || b°).

We use the concept of checkpoint to extract terms from graphs; those are the
vertices which every path between input and output must visit. Using those, we
get that every connected graph with distinct input and output has the shape
depicted in Fig. 2(a), where the checkpoints are the only depicted vertices. One
can parse such a graph as a sequential composition and proceed recursively once
we have proved that the green and yellow components are K4-free whenever the
starting graph is so.

If there are no proper checkpoints between input and output, we exploit a
key property of K4-free graphs: in such a case, either the graph is just an edge, or
it consists of at least two parallel components, which make it possible to proceed
recursively. This is case (b) in Fig. 2. Establishing this property requires a deep
analysis of the structure of Ky-free graphs.

The last case to consider (c) is when the input and the output of the graph
coincide. One can recursively extract a term for the graph obtained by relocating
the output to one of the neighbors of the input, and use the domain operation
to recover the starting graph.

Outline. We first discuss our representation of simple graphs and the associated
library about paths; there we make use of the support for finite types from the

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 181

Ssreflect library [20], and we rely on dependent types to provide a user-friendly
interface (Sect.2). Then we proceed with our formalization of tree decompo-
sitions, minors, and associated results. This leads to implication (i) in Fig. 1,
as a special instance of the fact that treewidth at most i graphs are K;o-free
(Sect. 3)

Once this basic infrastructure has been set up, we move to the formaliza-
tion of the concepts and results that are specific to our objective. This includes
terms as well as directed labeled and possibly pointed multigraphs. We prove the
implication (ii) there: terms denote graphs of treewidth at most two (Sect.4).

As explained above, the remaining implication (iii) is the most delicate. We
first establish preliminary lemmas about checkpoints and the structure of Ky-
free graphs (Sect.5), which are then used to define an extraction function from
graphs to terms (Sect. 6). Proving that this function is appropriate amounts to
exhibiting a number of isomorphisms (Sect. 7).

We conclude with general remarks and statistics about the development
(Sect. 8).

2 Simple Graphs

In this section we briefly describe how we represent finite simple graphs in Coq.
The representation is based on finite types as defined in the Mathematical Com-
ponent Libraries [20]. We start by briefly introducing finite types and the nota-
tions we are going to use in the mathematical development.

If X and Y are types, we write X + Y for the sum type (with elements
inlz and inry) and X, for the option type (with elements Somex and None).
As usual, we write g o f for the composition of f and ¢g. If f : X — Y, and
g:Y — Z,, we also write g o f for the result of the monadic bind operation
(with type X — Z). For functions f and g, we write f = g to mean that f
and g agree on all arguments.

A finite type is a type X together with a list enumerating its elements. Finite
types are closed under many type constructors (e.g., sum types and option
types). If X is a finite type, we write 2% for the (finite) type of sets (with
decidable membership) over X. If A : 2% is a set, we write A for complement of
A (in X). We slightly abuse notation and also write X for the full set over some
type X. Finite sets come with an operation pick : 2¥ — X yielding elements
of nonempty sets and None for empty sets. Moreover, if X is a finite type and
~: X — X — B is a boolean equivalence relation, the quotient [3] of X with
respect to ~, written X ,~, is a finite type as well. The type X,~ comes with
functions 7 : X — X,x and 7 : X x — X such that n(7Tz) = x for all v : X/~
and T(mx) ~ x for all x : X.

We use finite types as the basic building block for defining finite simple
graphs.

Definition 1. A (finite) simple graph is a structure (V, R) where V is a finite
type of vertices and R : V — V — B is a symmetric and irreflexive edge relation.

182 C. Doczkal et al.

In Coq, we represent finite graphs using dependently typed records where the
last two fields are propositions:

Record sgraph := SGraph { svertex : finType;
sedge : rel svertex;
sg_sym : symmetric sedge;
sg-irrefl : irreflexive sedge}.

We introduce a coercion from graphs to the underlying type of vertices allow-
ing us to write x : G to denote that z is a vertex of G. For vertices x,y : G we
write x—y if there is an edge between x and y. We write G + zy for the graph
G with an additional xy-edge.

For sets U : 2¢ of vertices of G, we write G|y for the subgraph of G induced
by U. This is formalized by taking the type Xz : G. x € U of (dependent) pairs
of vertices : G and proofs of x € U and lifting the edge relation accordingly.
Note that while, technically, the vertices of G and G|y have different types, we
will ignore this in the mathematical presentation. In Coq, we have a generic
projection from G|y to G. For the converse direction we, of course, need to
construct dependent pairs of vertices x : G and proofs of z € U.

Definition 2. Let G be a simple graph. An xy-path is a nonempty sequence of
vertices p beginning with x and ending with y such that z—z' for all adjacent
elements z and 2’ of p (if any). A path is irredundant if all vertices on the path
are distinct (i.e., the path contains no cycles). A set of vertices U is connected
if there exists a path in U between any two vertices of U.

The Mathematical Component Libraries include a predicate and a function
path : (VT : Type, rel T— T —seq T —bool) last: VT, T—list T—T

such that path e x ¢ holds if the list = :: ¢ represents a path in the relation e, and
last z ¢ returns the last element of x :: q. Note that path and last account for
the nonemptiness of paths though the use of two arguments: the first vertex x
and the (possibly empty) list of remaining vertices ¢. This asymmetric treatment
makes symmetry reasoning (using path reversal) rather cumbersome. We there-
fore package the path predicate and a check for the last vertex into an indexed
family of types Path xy whose elements represent zy-paths. Doing so abstracts
from the asymmetry in the definition of path, makes it possible to write more
compact (and thus readable) statements, helps us keeping the local context of
proofs shorter, and facilitates without loss of generality reasoning.

On these packaged paths we provide (dependently typed) concatenation and
reversal operations as well as an indexing operation yielding the position of the
first occurrence of a vertex on the path. We define a number of splitting lemmas
for packaged paths as exemplified by the lemma below.

Lemma 3. Let p be an irredundant xy-path such that zy occurs before zo on p.
Then there exists a zo-avoiding xz1-path, a z1z2-path and a z1-avoiding zey-path)
such that p = p1paps.

While the lemma above may seem overly specific, it is used in five different proofs
(usually following some without loss of generality reasoning to order z; and z3).

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 183

3 Treewidth and Minors

We now define the notions of treewidth and minors in order to state our main
result. Both notions appear in the literature with slight (but equivalent) varia-
tions. We choose variants that yield reasonable proof principles.

Definition 4. A forest is a simple graph where there is at most one irredundant
path between any two nodes.

Definition 5. A tree decomposition of a simple graph G is a forest T' together
with a function B : T — 2% such that:

T1. for every vertex x : G, there exists some t : T, such that x € B(t).
T2. for every x, the set of nodes t : T such that x € B(t) is connected in T.
T3. if x—y, then there exists a node t, such that {z,y} C B(t);

The width of a tree decomposition is the size of the largest set B(t) minus one;
the treewidth of a graph is the minimal width of a tree decomposition.

Note that we define the notion of tree decomposition using forests rather than
trees. The two notions are equivalent since every forest can be turned into a tree
by connecting arbitrary nodes of disconnected trees. Using forests rather than
trees has the advantage that tree decompositions for the disjoint union of two
graphs G and G’ can be obtained as the disjoint union of tree decompositions
for G and G'.

The minors of a graph G are customarily defined to be those graphs that
can be obtained by a series of the following operations: remove a vertex, remove
an edge, or contract an edge. We use instead a monolithic definition in terms of
partial functions inspired by [6].

Definition 6. Let G and G’ be simple graphs. A function ¢ : G — G'| is called
a minor map if:

M1. For everyy : G’, there exists some x : G such that ¢ x = Somey.

M2. For everyy:G', ¢~1(Somey) is connected in G.

Ms3. If x—y for x,y : G', there exist o € ¢~ (Somez) and yo € ¢~ !(Somey)
such that xo—1yo.

G’ is a minor of G, written G' < G if there exists a minor map ¢ : G — G| .

Intuitively, the (nonempty) preimage ¢~!(Somex) of a given vertex z is the
(connected) set of vertices being contracted to x and the vertices mapped to
None are the vertices that are removed. We sometimes use (total) minor maps
¢ : G — G’ corresponding to minor maps that do not delete nodes, allowing us
to avoid option types in certain cases.

Making the notion of minor map explicit is convenient in that it allows us to
easily construct minor maps for a given graph, starting from minor maps (with
extra properties) for some of its subgraphs (cf. Lemma 29 and Proposition 30).

184 C. Doczkal et al.

Definition 7. We write K4 for the complete graph with 4 vertices. A simple
graph G is Ka-free if K4 is not a minor of G.

Our main result is a formal proof that a simple graph is Ks-free iff if it has
treewidth at most two. We first sketch the proof that graphs of treewidth at
most two are always Ky-free.

Lemma 8. If ¢ : G — H, and ¢ : H — I, are minor maps, then ¥ o ¢ is a
minor map.

As a consequence of the lemma above, we obtain that < is transitive.
Lemma 9. If H < G, then the treewidth of H is at most the treewidth of G.

Lemma 10. Let T be a forest and let B : T — G be a tree decomposition of G.
Then every clique of G is contained in B(t) for somet:T.

The proof of Lemma 10 proceeds by induction on the size of (nonempty) cliques.
For cliques of size larger than two, the proof boils down to an analysis of the
set of nodes in the tree decomposition containing all vertices of the clique but
one (which is nonempty by induction hypothesis) and then arguing that (due
to condition T2) the removed vertex must also be present. As a consequence of
Lemma 10, we have:

Proposition 11. If G has treewidth at most two, then G is Ky-free.

This corresponds to the arrow (i) in the overall proof structure (Fig. 1).

4 Graphs

In this section we define labeled directed graphs following [6]. Then we show
how to interpret terms as such graphs and prove that the graphs of terms have
treewidth at most two. We fix some countably infinite type of symbols X.

Definition 12. A graph is a structure G = (V, E, s, t,1), where V is a finite type
of vertices, E is a finite type of edges, s,t : E — V are functions indicating the
source and target of each edge, and | : E — X is function indicating the label
of each edge. If G is a graph, we write x : G to denote that x is a verter of G.
A two-pointed graph (or 2p-graph for short) is a structure (G, ¢, 0) where v : G
and o : G are two vertices called input and output respectively.

Note that self-loops are allowed, as well parallel edges with the same label.
Recall the syntax of terms from the introduction:

wv,w = uv | ullv | v | dom(u) | 1| T | a (a € X)

For each term constructor we define an operation on 2p-graphs. Those oper-
ations are depicted informally on the right of Fig.3. For instance, G || H, the
parallel composition of G and H, consists of (disjoint) copies of G and H with
the respective inputs and outputs identified. Formally, we express these graph
operations in terms disjoint unions and quotients of graphs.

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 185

a =(({0,1}, {*}, 20,2 1,A_.a),0,1) —0—%»0—
Té(({o’ 1}7®7®’®7®>707 1> _>o o_>
1 é(({*}7®7®7®7®>7*7*> —>0—>
<G, L, O>O é<C1Y7 o, L> +—O0—(G—>0<+—
dom((G,¢,0)) (G, 1,1) >O—G—>O
(G, 1,0) [(G, 1,0 (G + G') j, m(inl 1), 7(inl 0)) —>o<§>o—>
where &~ £ {(inl¢,inr."), (inlo,inro") }*"
(G,1,0)(G", 1/, 0"y 2{(G + G") jw, m(inl L), 7 (inr o")) —-0—G—>0—H—>0—>

where &~ £ {(inl o, inr./) }**

Fig. 3. The algebra of 2p-graphs.

Definition 13. Let G = (V, E,s,t,l) and G' = (V' E',s',t',1"). The disjoint
union of G and G’, written G + G’, is defined to be the graph

(V+V E+FE s+s t+t,1+1)
Here, s + s’ is the pointwise lifting of s and s’ to the sum type E + E'.

Definition 14. Let G = (V, E,s,t,1) and let = : G — G — B be an equivalence
relation. The quotient of G' modulo =, written G), is defined to be the graph

(Vi E,mos,mot,l)

The precise definitions of the graph operations are given on the left side of Fig. 3
(A% denotes the equivalence relation generated by the pairs in A). This allows
us to interpret every term ¢ as a 2p-graph g(t), recursively. We now have to prove
that every 2p-graph of a term has treewidth at most two. In order to use the
definition of treewidth, we first need to abstract 2p-graphs into simple graphs.
This is achieved through the notion of a skeleton.

Definition 15. Let G = (V, E, s,t,1). The (weak) skeleton of G is the simple
graph (V,R) where xRy iff x # y and there exists an edge e : E such that
s(e) = x and t(e) = y or vice versa. The weak skeleton of the 2p-graph (G, ¢, 0)
is the skeleton of G. The strong skeleton of a 2p-graph (G, i, 0) is the skeleton
of G with an additional to-edge.

We remark that the operation of taking the weak or strong skeleton does not
change the type of vertices. This greatly simplifies lifting properties of the skele-
ton to the graph and vice versa. In practice, we turn the construction of taking
the weak skeleton into a coercion from graphs to simple graphs (leaving extrac-
tions of strong skeletons explicit).

The following lemma makes it possible to show that both series and parallel
composition preserve treewidth two.

186 C. Doczkal et al.

Lemma 16. Let G; = (G},t,0) and Go = (Gh,/,0') be 2p-graphs and let
(T3, Bi) (i € {1,2}) be tree decompositions of the strong skeletons of Gy and
Go respectively. Further let = be an equivalence relation on G1 + G identifying
at least two vertices from the set P = {inls,inr/ inlo,inro’'} and no other ver-
tices. Then there exists a tree decomposition of the skeleton of (G1 4 G2)/~ of
width at most two having a node t such that P~ C B(t).

Proof. We use the three following facts. (1) A tree decomposition for a disjoint
union of simple graphs can be obtained by taking the disjoint union of tree
decompositions for those graphs. (2) Two trees of a tree decomposition can be
joined through a new node containing the vertices of its neighbors. (3) A tree
decomposition can be quotiented (to give a tree decomposition of a quotiented
graph) as soon as it has nodes for all equivalence classes. O

Proposition 17. For all terms u, the strong skeleton of g(u) has a tree decomn-
position of width at most two.

Proof. By induction on u. The cases for || and - follow with Lemma 16. All other
cases are trivial. O

This finishes arrow (ii) of the overall proof structure (Fig.1). The rest of the
paper is concerned with arrow (iii), i.e., extracting for every 2p-graph G whose
skeleton is K4-free a term whose graph is isomorphic to G.

5 Checkpoints

Before we can define the function extracting terms from graphs, we need a num-
ber of results on simple graphs. These will allow us to analyze the structure of
graphs (via their skeletons), facilitating the termination and correctness argu-
ments for the extraction function.

For the remainder of this section, G refers to some connected simple graph.

Definition 18. The checkpoints between two vertices x,y are the vertices which
any ry-path must visit:

cpzy = {2 | every wy-path crosses z}

Two wvertices z,y are linked, written xQy, when x #y and cpaxy = {z,y}, i.e.,
when there are no proper checkpoints between x and y. The link graph of G is
the graph of linked vertices.

Consider the graph on the left in Fig. 4; its link graph is obtained by adding the
three dotted edges to the existing ones.

Note that every proper checkpoint z between vertices x and y (i.e., a vertex
z € cpry \ {z,y}) is a cut vertex (i.e., removing z disconnects G) and vice
versa. Also note that membership in cp is decidable (i.e., cpzy can be defined
as a finite set in the Ssreflect sense) since it suffices to check whether the finitely
many irredundant paths cross z.

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 187

e Sk

Fig. 4. Link graph, checkpoint graph, and decomposition into intervals and bags.

Lemma 19. 1. cpzz = {z}
2. {z,y} Ccpry=cpyx

Lemma 20. FEwvery irredundant cycle in the link graph is a clique.

For a set of vertices U C GG, we take G+ U to be the graph G with one additional
vertex, denoted e, whose neighbors are exactly the elements of U.

Lemma 21. If {z,y, z} is a triangle in the link graph, then Ky < G+ {x,y, z}.

Lemma 21 is first in a series of nontrivial lemmas required to justify the split-
ting of graphs into parallel components. Its proof boils down to an elaborate
construction on paths between z, y, and z that yields a minor map from G to
C3 (the cycle with three vertices), which is subsequently extended to a minor
map from G+ {z,y, z} to Kg. This is one instance where our definition of minors
using minor maps pays off.

Definition 22. Let U be a set of vertices of G. The checkpoints of U, written
CP U, are the vertices which are checkpoints of some pair in U.

CPU & U cpry

z,yeU

The checkpoint graph of U is the subgraph of the link graph induced by this set.
We also denote this graph by CPU.

The graph in the middle of Fig. 4 is the checkpoint graph of the one of the left,
when U consists of the blue square vertices.

Lemma 23. Let z,y € CPU. Then cpxy C CPU.

We give the proof of this lemma below. It is relatively simple, but indicative of the
type of reasoning required to prove checkpoint properties. Those proofs usually
contain a combination of the following: splitting paths at vertices, concatenating
paths, and without loss of generality reasoning. For the latter, Ssreflects wlog-
tactic proved extremely helpful.

Proof. Wehavex € cpxy zo and y € cpyy yo for some vertices {z1, z2,y1,y2} C U
by the definition of CP. Fix some z € cpzy. If z € {x,y}, the claim is trivial, so
assume z ¢ {xz,y}. Hence, we obtain either an zx-path or an zxe-path not con-
taining z by splitting some irredundant zxo-path at z. Without loss of generality,

188 C. Doczkal et al.

the zx1-path avoids z. Similarly, we obtain, again w.l.o.g., a yy;-path avoiding z.
Thus z € cpx; y; since the existence of an x;y;-path avoiding z would contradict
z € cpa y (by concatenation with the paths obtained above). a

Definition 24. Let x,y : G. The strict interval Jx;y[is the following set of
vertices.

lz;y[= {p | there is an zp-path avoiding y
and a py-path avoiding x}

The interval [z;y] is obtained by adding x and y to that set. We abuse notation
and also write [x;y] for the subgraph of G induced by the set [x;y].

Definition 25. The bag of a checkpoint x € CPU is the set of vertices that
need to cross x in order to reach the other checkpoints.

[z]v £ {p | Yy € CPU. every py-path crossesx}.
As before, we also write [x]y for the induced subgraph of G.

Note that [z]y depends on U and differs from [z;x] (which is always the sin-
gleton {z}). The main purpose of bags and intervals is to aid in decomposing
graphs for the term extraction function, as depicted on the right in Fig.4. We
first show that distinct bags and adjacent bags and strict intervals are disjoint.

Lemma 26. 1. Ify € CPU, then [z]uN]z; y[= 0.

2. Ifx,y € CPU and x # y, then [z]v N [y]v = 0.

8. If z € cpay, then [z;y] = [x; 2] U [2]fay) U [z 9]

4. If z € cpxy, then |x; 2, [2](z,y and Jz;y[are pairwise disjoint.

Lemma 27. Let x,y € CPU. Then there exist xo € U and yo € U such that
{z,y} C cpxo yo-

Lemma 28. Let {z,y,z} be a triangle in CPU. Then there exist xo, Yo, 20 € U
such that v € [2] (2,21, Yo € [Vl {a.y.2}, and 20 € [2](2,y.2}-

Proof. Follows with Lemma 27. O

Lemma 29. Let U be nonempty and let T £ U U (G \ U,y [z]v). Then there
exists a minor map ¢ : G — G| such that ¢ maps the elements of each bag [z]v
to © and every other vertex to itself.

The above series of lemmas leads us to the following proposition, that corre-
sponds to [14, Proposition 20(i)]; the proof given here is significantly simpler
than the proof given in [14].

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 189

Proposition 30. Let U C G such that G + U is Ky-free. Then CPU is a tree.

Proof. Assume that CPU is not a tree. Then CP U contains a triangle {z,y, z}
(Lemma 20). Let xg,yo, 20 as given by Lemma 28. We obtain a minor map col-
lapsing the bags for z, y, and z (Lemma 29 with U = {z,y, z}). This identifies
and xg and likewise for y and z. Since z,y, z is still a triangle in the link graph
of the collapsed graph and since e is adjacent to x,y, z in the collapsed graph,
Lemma 21 yields K4 < G + U, a contradiction. O

The following proposition establishes the key property of Ky-free graphs we
alluded to in the introduction. Its proof is particularly tricky to formalize due to
the number of different graphs with shared vertices (we have G, G’ = G ‘W and
G’ + U (the graph Proposition 30 is instantiated with). Consequently, we often
need to cast vertices from one graph to another.

Proposition 31. Let t,0 : G such that G + o is Ky-free, [t]{,0p = {t}, and
tQo, but not t—o. Then |;0[has at least two connected components.

Proof. Let G’ be the graph G with ¢ removed and let U C G’ be the set of
neighbors of ¢ (in G) plus o. By Proposition 30 (on G’ and U), CPU is a tree
in G’. The vertex o cannot be a leaf in CP U since if it were, its unique neighbor
would be a proper checkpoint between ¢ and o. Moreover, o is a checkpoint
between any distinct neighbors of 0. Removing o yields that]¢; o] has at least
two components. O

The above proposition is used for splitting paths into parallel components (case
(b) in Fig. 2); the one below allows us to proceed recursively in case (a).

Proposition 32. Let t,0 : G such that G 4 ro is Ky-free and let x,y € cpro
such x #vy. Then [x;y] + zy is Kq-free.

Proof. Without loss of generality x appears before y on every to-path. We obtain
that [z;y] + 2y is a minor of G + o by collapsing [x](,,,} (which contains ¢)
to 2 and [y, (which contains o) to y (Lemma 29). O

6 Extracting Terms from K,-free Graphs

We say that a 2p-graph G is CK4F if its skeleton is connected and its strong
skeleton is K4-free. We now define a function extracting terms from CK4F graphs.
Defining this function in Coq is challenging for a number of reasons. First, its
definition involves ten cases, most with multiple recursive calls. Second, we need
to argue that all the recursive calls are made on smaller graphs which are CK4F.

To facilitate the definition, we construct our own operator for bounded recur-
sion. The reason for this is that none of the facilities for defining functions in
Coq (e.g., Fixpoint, Function and Program) are suited to deal with the kind of
complex function definition we require. We define a bounded recursion operator
with the following type:

190 C. Doczkal et al.

Fix : VaT rT : Type, rT — (aT — N) — ((aT — rT) — aT — rT) — aT— T

Here the argument of type aT — N is a measure on the input to bound the
number of recursive calls, and the argument of type rT is the default value to be
returned when no more recursive calls are allowed.

We only need one lemma about the recursion operator, namely that the
operator satisfies the usual fixpoint equation provided that the functional it is
applied to calls its argument only on smaller arguments in the desired domain
of the function (here, CK4F).! That is, we have the following lemma:

Fix.eq : V (aT rT : Type) (P : aT — Prop) (x0: rT) (m: aT — N)
(F: (aT — ¢T) — aT — rT),
(V(fg:aT —rT) (x: aT),
Px— (Vy:aT,Py —>my<mx—>fy=gy) > Ffx=Fgx) —
Vx :aT,Px — Fixx0 mF x = F (Fix x0 m F) x

While its proof is straightforward, this lemma is useful in that it allows us to
abstract from the fact that we are using bounded recursion (i.e., neither the
default result nor the recursion on N are visible in the proofs).

We now define the extraction function using the recursion operator. The
various cases of the definition roughly correspond to the cases outlined in Fig. 2.
The main difference is that in case (a), rather than partitioning the graph as
shown in the picture, we only identify a single nontrivial bag or a single proper
checkpoint between input and output. This is sufficient to make recursive calls
on smaller graphs. In the case where input and output coincide (case (c)), we
relocate the output and proceed recursively. This requires a measure that treats
graphs with shared input and output as larger than those with distinct input
and output. We use the measure below to justify termination.

Definition 33. Let G = ((V, E, s,t,1),t,0) be a 2p-graph. The measure of G is
2|E| ift# 0 and 2|E|+ 1 if t = 0.

The term extraction is then defined as follows:

t £ Fix 1 measure F

where the definition of F is given in Fig. 5. This definition makes use of a number
of auxiliary constructions which we define below. For a set of vertices U and a set
of edges E (of some graph G) such that {s(e),t(e)} C U for all e, the subgraph of
G with vertices U and edges F is written G[U, E]. We write £(U) for the set of
edges with source and target in U and the induced subgraph for U, written G[U],
is defined as G[U, E(U)]. For 2p-graphs G, G[U] and G[U, E] are only defined if
{t,0} C U. In this case, G[U] and G[U, E] have the same input and output as G.

When instantiating the definitions above, U will sometimes be an interval or
a bag. In this case, the intervals and bags are computed on the weak skeleton

1 To be precise, F may call its argument on anything. However, the result of F may
only depend on calls to smaller arguments in the domain.

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 191

1: Definition F(¢ : 2p-graph — term)(G : 2p-graph) =
2 let ((V,E',s,t,1),1,0) := G in
3 if © = o then
4 let £:=£&({:}) in
5: if £ =0 then
6: if pick(components(V \ {i})) is Some C' then
7 dom(t(redirect C)) || t(G[C])
8: else 1
9: else (* E#0*)
10: (leeptm(e) Il GV, E]
11: else (*i#o0%*)
12: if E([e]y,0y) =0AE([o]y, ;) =0Acpro={i,0} then
13: let P := components(]¢;0[) in
14: let £ :=&({¢,0}) in
15: if £ =0 then
16: if pick P is Some C then
17: t(component(C)) || t(G[C])
18: else 1 (* never reached *)
19: else (* E#0 %)
20: if P =0 then
21: lec s tm(e)
22: else
23: (llec s tm(e)) I L(G[V, E))
24: else (* nontrivial ¢ or o-bag or proper checkpoint between ¢ and o *)
25: if E([e]y, ,y) # 0V E([0]y, ,,) # 0 then
26: t(G[e])t(G]e, o})-t(G[oﬁ)
27: else
28: if pick (cpeo\ {¢,0}) is Some z then
29: t(Ge, 2])-t(G[z])t(Gz, 0])
30: else 1 (* never reached *)

Fig. 5. The term extraction function

of G (not the strong skeleton). For a given 2p-graph G = (G’, ¢, 0), we also define:

(>

components(U) = {C | C connected component of U in the skeleton of G}
G[C U{¢,o0}]

redirect(C)) £(G'[C U {1}],i,x) where x is some neighbor of ¢ in C
G [z gl £z yD \ (E=H VERYHD, 2. 9)

(G [[2]00y)s 2 7)

{l(e) s(e) = L At(e) =
l

(e)° otherwise

(1>

)
component(C')
(@)

Glz,y

Glz

]
]

[I>

(1>

tm(e)

192 C. Doczkal et al.

Note that component(C) is obtained as induced subgraph of G whereas the
other constructions are obtained as subgraphs of G’ (with new inputs and out-
puts).

Before we can establish properties of t, we need to establish that all (relevant)
calls to t in F are made on CK4F graphs with smaller measure.

Lemma 34. Let t,t' be functions from graphs to terms. If t and t' agree on all
CKJF graphs with measure smaller than a CK/F graph G, then FtG = Ft' G.

The proof of this lemma boils down to a number of lemmas for the various
branches of F. For each recursive call, we need to establish both that the mea-
sure decreases and that the graph is indeed CK4F. When splitting of a parallel
component (line 17), Proposition 31 ensures that there are at least two nonempty
components, thus ensuring that the remainder of the graph is both smaller and
connected. Note that the case distinction in line 20 is required since if P = (),
removing the to-edges disconnects the graph (the remaining graph would be iso-
morphic to T). In the case where there is a proper checkpoint z between input
and output (line 29), Proposition 32 ensures that the strong skeletons of G|i, 2]
and Gz, o] are Ky-free.
As a consequence of Lemma 34, we obtain:

Proposition 35. Let G be CK4F. Then tG =FtG.

7 Isomorphism Properties

In this section we establish that interpreting the terms extracted from a 2p-
graph G yields a graph that is isomorphic to G. This is the part of the proof
where the difference of what one would find in a detailed paper proof and what
is required in order to obtain a formal proof is greatest.

Definition 36. A homomorphism from the graph G = (V, E, s,t,1) to the graph
G' = (V' E' ¢t is a pair {f,g) of functions f : V — V' andg: E — E'
that respect the various components: s'og= fos,t'og= fot,andl=10g. A
homomorphism from (G, t,0) to (G',//,0') is a graph homomorphism (f,g) from
G to G’ respecting inputs and outputs: f(t) =" and f(0) = 0'.

An isomorphism is a homomorphism whose two components are bijective
functions. We write G ~ G’ when there exists an isomorphism between graphs

G and G'.

The extraction function decomposes the graph into smaller graphs in order to
extract a term. The interpretation of this term then joins the graphs extracted by
the recursive calls back together using the graph operations || and -. We need to
establish that the decomposition performed during extraction is indeed correct
(i.e., that no vertices or edges are lost or misplaced). This requires establishing
a number of isomorphism properties.

We first establish that all graph operations respect isomorphism classes.

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 193

Lemma 37. Let G; ~ G} and Go ~ G4. Then we have G ||G2 ~ G} || G5,
G1-Gy ~ G-GY, and dom(G1) ~ dom(GY).

Lemma 37 allows rewriting with isomorphisms underneath the graph operations
using Coq’s generalized (setoid) rewriting tactic [19].

The proofs for establishing that two graphs (of some known shape) are iso-
morphic generally follow the same pattern: define the pair of functions (f, g)
(cf. Definition 36) as well as their respective inverses and then show all the
required equalities (including that the proposed inverses are indeed inverses).
This amounts to 9 equalities per isomorphism that all need to be verified.
Additional complexity is introduced by the fact that we are almost exclusively
interested in isomorphism properties involving || and - which are defined using
quotient constructions. Among others, we establish the following isomorphism
lemmas:

Lemma 38. Let G = (G’',1,0) such that v # o and the skeleton of G is con-
nected. Then G ~ G[i]-G[, 0]-G|o].

Lemma 39. Let G = (G',1,0) such that E([t](03) = 0, E([0]{1,03) = 0, and
t# o0, and let z € cpro\ {t,0}. Then G ~ G|, z|-G[z])-G|z, 0].

Lemma 40. Let G = (G',t,0) with E{t,0}) = 0 and let C €

components({¢,0}). Then G ~ component(C) || G[C].

For the following, let E, , = {e| s(e) = z,t(e) = y}.

Lemma 41. Let G = (V, E,s,t,1), let x,y : G and let E' £ E,,UE,, Then
G ~G[{z,y},E'"l|| G[V, £"].

Theorem 42. Let G be a 2p-graph. Then g(tG) ~ G.

Proof. By induction on the measure of G. We use Proposition 35 to unfold the
definition of t. Each of the cases follows with the induction hypothesis (using the
lemmas underlying the proof of Lemma 34 to justify that the induction hypoth-
esis applies) and some isomorphism lemmas (e.g., Lemmas 37 to 41). O

Note that Lemma 40 justifies both the split in line 7 and the split in line 17 (in
the latter case]¢; o[= {¢,0}).
Putting everything together, we obtain our main result.

Theorem 43. A simple graph is Kq-free iff if it has treewidth at most two.

Proof. Fix some simple graph G. The direction from right to left follows with
Proposition 11. For the converse direction we proceed by induction on |G|. If G
is connected (and nonempty; otherwise the claim is trivial), we construct a 2p-
graph (with ¢« = 0) whose (strong) skeleton is isomorphic to G. By Theorem 42,
the skeleton of g(t) is isomorphic to G and, hence, Ks4-free by Proposition 17.
If G contains disconnected vertices z and y, then G is isomorphic to the disjoint
union of the connected component containing x and the rest of the graph (which
must contain y). The claim then follows by induction hypothesis using the fact
that treewidth is preserved under disjoint union. O

194 C. Doczkal et al.

Note that Theorem 42 is significantly stronger than what is needed to establish
Theorem 43. To prove the latter, it would be sufficient to extract terms that
can be interpreted as simple graphs, thus avoiding the complexity introduced by
labels, edge multiplicities and loops. The fine-grained analysis we formalize here
is however crucial for our long-term objective (7).

8 Conclusion

We have developed a library for graph theory based on finite types as provided
by the Mathematical Components Libraries. As a major step towards proving
that Kg-free 2p-graphs form the free 2p-algebra (), we gave a proof of the graph-
minor theorem for treewidth two, using a function extracting terms from K;-free
graphs.

The Coq development accompanying this paper [7] consists of about 6700
lines of code, with a ratio of roughly 1:2 between specifications and proofs. It
contains about 200 definitions and about 550 lemmas. Many of these have short
proofs, but some proofs (e.g., the proof of Proposition31) are long intricate
constructions without any obvious lemmas to factor out. As mentioned before,
the isomorphism proofs for Sect. 7 mostly follows the same pattern. Hence, we
hope that they can be automated to some degree.

As it comes to proving (1), there are two main challenges to be solved. First
we should prove that the choices made by the extraction function are irrelevant
modulo the axioms of 2p-algebras (e.g., which neighbor is chosen in redirect(C')).
This is why we were careful to define this function as deterministically as pos-
sible. Second, we should prove that it is a homomorphism (again, modulo the
axioms of 2p-algebras). Those two steps seem challenging: their paper proofs
require a lot of reasoning modulo graph isomorphism [14].

References

1. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. The-
oret. Comput. Sci. 239(2), 211-229 (2000). https://doi.org/10.1016/S0304-
3975(99)00220-0

2. Chou, C.-T.: A formal theory of undirected graphs in higher-order logc. In:
Melham, T.F., Camilleri, J. (eds.) HUG 1994. LNCS, vol. 859, pp. 144-157.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58450-1_40

3. Cohen, C.: Pragmatic quotient types in COQ. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 213-228. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39634-2_17

4. Courcelle, B.: The monadic second-order logic of graphs. I: recognizable sets of
finite graphs. Inf. Comput. 85(1), 12-75 (1990). https://doi.org/10.1016/0890-
5401(90)90043-H

5. Courcelle, B.; Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach. Encyclopedia of Mathematics and Its Applications,
vol. 138. Cambridge University Press, Cambridge (2012)

https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1007/3-540-58450-1_40
https://doi.org/10.1007/978-3-642-39634-2_17
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 195

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Diestel, R.: Graph Theory, Graduate Texts in Mathematics. Springer, New York
(2005)

Doczkal, C., Combette, G., Pous, D.: Coq formalization accompanying this paper.
https://perso.ens-lyon.fr/damien.pous/covece/kdtw2

Duffin, R.: Topology of series-parallel networks. J. Math. Anal. Appl. 10(2), 303—
318 (1965). https://doi.org/10.1016/0022-247X (65)90125-3

Dufourd, J.-F., Bertot, Y.: Formal study of plane delaunay triangulation. In:
Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 211-226.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_16
Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems.
In: NCAI pp. 4-9. AAAT Press/The MIT Press (1990)

Freyd, P., Scedrov, A.: Categories, Allegories. North Holland, Elsevier, Amsterdam
(1990)

Gonthier, G.: Formal proof — the four-color theorem. Notices Amer. Math. Soc.
55(11), 1382-1393 (2008)

Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM 54(1), 1:1-1:24 (2007). https://doi.org/10.1145/
1206035.1206036

Llopez, E.C., Pous, D.: K4-free graphs as a free algebra. In: MFCS. LIPIcs, vol. 83,
pp. 76:1-76:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2017). https://
doi.org/10.4230/LIPIcs. MFCS.2017.76

Nakamura, Y., Rudnicki, P.: Euler circuits and paths. Formalized Math. 6(3), 417—
425 (1997)

Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: tame graphs. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 21-35. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814771_4

Noschinski, L.: A graph library for Isabelle. Math. Comput. Sci. 9(1), 23-39 (2015).
https://doi.org/10.1007/s11786-014-0183-z

Robertson, N., Seymour, P.: Graph minors. XX. Wagner’s conjecture. J. Comb.
Theor. Ser. B 92(2), 325-357 (2004). https://doi.org/10.1016/j.jctb.2004.08.001
Sozeau, M.: A new look at generalized rewriting in type theory. J. Form. Reason.
2(1), 41-62 (2009). https://doi.org/10.6092/issn.1972-5787 /1574

The Mathematical Components Team: Mathematical Components (2017). http://
math-comp.github.io/math-comp/

https://perso.ens-lyon.fr/damien.pous/covece/k4tw2
https://doi.org/10.1016/0022-247X(65)90125-3
https://doi.org/10.1007/978-3-642-14052-5_16
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.4230/LIPIcs.MFCS.2017.76
https://doi.org/10.4230/LIPIcs.MFCS.2017.76
https://doi.org/10.1007/11814771_4
https://doi.org/10.1007/s11786-014-0183-z
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.6092/issn.1972-5787/1574
http://math-comp.github.io/math-comp/
http://math-comp.github.io/math-comp/

	A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs
	1 Introduction
	2 Simple Graphs
	3 Treewidth and Minors
	4 Graphs
	5 Checkpoints
	6 Extracting Terms from K4-free Graphs
	7 Isomorphism Properties
	8 Conclusion
	References

