
Jeremy Avigad
Assia Mahboubi (Eds.)

 123

LN
CS

 1
08

95

9th International Conference, ITP 2018
Held as Part of the Federated Logic Conference, FloC 2018
Oxford, UK, July 9–12, 2018, Proceedings

Interactive
Theorem Proving

Lecture Notes in Computer Science 10895

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Jeremy Avigad • Assia Mahboubi (Eds.)

Interactive
Theorem Proving
9th International Conference, ITP 2018
Held as Part of the Federated Logic Conference, FloC 2018
Oxford, UK, July 9–12, 2018
Proceedings

123

Editors
Jeremy Avigad
Carnegie Mellon University
Pittsburgh, PA
USA

Assia Mahboubi
Inria
Nantes
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-94820-1 ISBN 978-3-319-94821-8 (eBook)
https://doi.org/10.1007/978-3-319-94821-8

Library of Congress Control Number: 2018947441

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018, corrected publication 2018
Chapters 2, 10, 26, 29, 30 and 37 are licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/). For further details see license informa-
tion in the chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The International Conference on Interactive Theorem Proving (ITP) is a premier venue
for publishing research in the area of logical frameworks and interactive proof assis-
tants. Its topics include both theoretical foundations and implementation aspects of the
technology, as well as applications to verifying hardware and software systems to
ensure their safety and security, and applications to the formal verification of mathe-
matical results.

ITP grew out of TPHOLs conferences and ACL2 workshops that began in the early
1990s. Previous editions of ITP have taken place in Brasília (Brazil), Nancy (France),
Nanjing (China), Vienna (Austria), Rennes (France), Princeton (USA), Berg en Dal
(The Netherlands), and Edinburgh (UK).

This ninth edition, ITP 2018, was part of the Federated Logic Conference (FLoC)
2018, and took place in Oxford, UK, during July 9–12, 2018. We thank the FLoC
Organizing Committee for undertaking the Herculean task of planning and organizing
the event.

In all, 55 regular papers and ten short papers were submitted to the conference. Each
paper was reviewed by at least three people, either members of the Program Committee
or external reviewers. The committee ultimately accepted 32 regular papers and five
short papers.

ITP 2018 included memorial lectures in honor of Mike Gordon and Vladimir
Voevodsky, two influential figures in interactive theorem proving who had passed away
over the course of the previous year. John Harrison was invited to present the lecture for
Gordon, and Daniel Grayson was invited to present the lecture for Voevodsky. In
addition, Jean-Christophe Filliâtre was invited to present a third keynote talk.

The present volume collects all the scientific contributions to the conference as well
as abstracts of the three keynote presentations. We are grateful to the members of the
ITP Steering Committee for their guidance and advice, and especially grateful to our
colleagues on the Program Committee and the external reviewers, whose careful
reviews and thoughtful deliberations served to maintain the high quality of the con-
ference. We extend our thanks to the authors of all submitted papers and the ITP
community at large, without whom the conference would not exist.

Finally, we are grateful for Springer for once again publishing these proceedings as
a volume in the LNCS series, and we thank the editorial team for the smooth
interactions.

June 2018 Jeremy Avigad
Assia Mahboubi

Organization

Program Committee

Andreas Abel Gothenburg University, Sweden
Benedikt Ahrens University of Birmingham, UK
June Andronick CSIRO’s Data 61 and UNSW, Australia
Jeremy Avigad Carnegie Mellon University, USA
Jasmin Christian Blanchette Vrije Universiteit Amsterdam, The Netherlands
Adam Chlipala Massachusetts Institute of Technology, USA
Thierry Coquand Chalmers University of Technology, Sweden
Karl Crary Carnegie Mellon University, USA
Leonardo de Moura Microsoft, USA
Delphine Demange University of Rennes 1/IRISA, France
Timothy Griffin University of Cambridge, UK
Thomas Hales University of Pittsburgh, USA
John Harrison Amazon Web Services, USA
Chung-Kil Hur Seoul National University, South Korea
Johannes Hölzl Vrije Universiteit Amsterdam, The Netherlands
Jacques-Henri Jourdan MPI-SWS, Germany
Cezary Kaliszyk University of Innsbruck, Austria
Ambrus Kaposi Eötvös Loránd University, Hungary
Chantal Keller LRI, Université Paris-Sud, France
Assia Mahboubi Inria, France
Panagiotis Manolios Northeastern University, USA
Mariano Moscato National Institute of Aerospace, USA
Magnus O. Myreen Chalmers University of Technology, Sweden
Tobias Nipkow Technical University of Munich, Germany
Lawrence Paulson University of Cambridge, UK
André Platzer Carnegie Mellon University, USA
Andrei Popescu Middlesex University London, UK
Matthieu Sozeau Inria, France
Pierre-Yves Strub École Polytechnique, France
Enrico Tassi Inria, France
Zachary Tatlock University of Washington, USA
Laurent Théry Inria, France
Cesare Tinelli The University of Iowa, USA
Alwen Tiu The Australian National University, Australia
Makarius Wenzel sketis.net, Germany
Freek Wiedijk Radboud University, The Netherlands

Additional Reviewers

Åman Pohjola, Johannes
Ahrendt, Wolfgang
Anguili, Carlo
Becker, Heiko
Booij, Auke
Bourke, Timothy
Brecknell, Matthew
Brunner, Julian
Chen, Zilin
Cordwell, Katherine
Czajka, Łukasz
Dawson, Jeremy
Eberl, Manuel
Filliâtre, Jean-Christophe
Fleury, Mathias
Fulton, Nathan
Gammie, Peter
Geuvers, Herman
Hou, Zhe
Immler, Fabian
Jung, Ralf
Komendantskaya, Ekaterina
Kovács, András Kovács
Kraus, Nicolai
Larchey-Wendling, Dominique
Le Roux, Stephane

Lewis, Robert
Martins, João G.
Mitsch, Stefan
Murray, Toby
Mörtberg, Anders
Nagashima, Yutaka
Naumowicz, Adam
Ringer, Talia
Rot, Jurriaan
Sanan, David
Scapin, Enrico
Schmaltz, Julien
Schürmann, Carsten
Sewell, Thomas
Sickert, Salomon
Sison, Robert
Sternagel, Christian
Tanaka, Miki
Tassarotti, Joseph
Thiemann, René
Traytel, Dmitriy
Turaga, Prathamesh
Verbeek, Freek
Villadsen, Jørgen

VIII Organization

Abstracts of Invited Talks

Deductive Program Verification

Jean-Christophe Filliâtre1,2

1 Lab. de Recherche en Informatique, Univ. Paris-Sud, CNRS, Orsay, F-91405
2 Inria Saclay – Île-de-France, Orsay, F-91893
Jean-Christophe.Filliatre@lri.fr

Abstract. Among formal methods, the deductive verification approach consists
in first building verification conditions and then resorting to traditional theorem
proving. Most deductive verification tools involve a high degree of proof
automation through the use of SMT solvers. Yet there may be a substantial part
of interactive theorem proving in program verification, such as inserting logical
cuts, ghost code, or inductive proofs via lemma functions. In this talk, I will
show how the Why3 tool for deductive verification resembles more and more a
traditional ITP, while stressing key differences between the two.

Keywords: Deductive verification � Theorem proving

Voevodsky’s Work on Formalization of Proofs
and the Foundations of Mathematics

Daniel R. Grayson

Abstract. A consistent thread running through the three decades of Voevod-
sky’s work is the application of the ideas of homotopy theory in new and
surprising ways, first to motives, and then to formalization of proofs and the
foundations of mathematics. I will present the story of the latter development,
focusing on the points of interest to mathematicians.

Mike Gordon: Tribute to a Pioneer
in Theorem Proving and Formal Verification

John Harrison

Amazon Web Services
jrh013@gmail.com

Abstract. Prof. Michael J. C. Gordon, FRS was a great pioneer in both
computer-aided formal verification and interactive theorem proving. His own
work and that of his students helped to explore and map out these new fields and
in particular the fruitful connections between them. His seminal HOL theorem
prover not only gave rise to many successors and relatives, but was also the
framework in which many new ideas and techniques in theorem proving and
verification were explored for the first time. Mike’s untimely death in August
2017 was a tragedy first and foremost for his family, but was felt as a shocking
loss too by many of us who felt part of his extended family of friends, former
students and colleagues throughout the world. Mike’s intellectual example as
well as his unassuming nature and personal kindness will always be something
we treasure. In my talk here I will present an overall perspective on Mike’s life
and the whole arc of his intellectual career. I will also spend time looking ahead,
for the research themes he helped to establish are still vital and exciting today in
both academia and industry.

Contents

Physical Addressing on Real Hardware in Isabelle/HOL 1
Reto Achermann, Lukas Humbel, David Cock,
and Timothy Roscoe

Towards Certified Meta-Programming with Typed TEMPLATE-COQ 20
Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau,
and Nicolas Tabareau

Formalizing Ring Theory in PVS . 40
Andréia B. Avelar da Silva, Thaynara Arielly de Lima,
and André Luiz Galdino

Software Tool Support for Modular Reasoning in Modal Logics
of Actions . 48

Samuel Balco, Sabine Frittella, Giuseppe Greco, Alexander Kurz,
and Alessandra Palmigiano

Backwards and Forwards with Separation Logic . 68
Callum Bannister, Peter Höfner, and Gerwin Klein

A Coq Formalisation of SQL’s Execution Engines 88
V. Benzaken, É. Contejean, Ch. Keller, and E. Martins

A COQ Tactic for Equality Learning in Linear Arithmetic 108
Sylvain Boulmé and Alexandre Maréchal

The Coinductive Formulation of Common Knowledge. 126
Colm Baston and Venanzio Capretta

Tactics and Certificates in Meta Dedukti . 142
Raphaël Cauderlier

A Formalization of the LLL Basis Reduction Algorithm 160
Jose Divasón, Sebastiaan Joosten, René Thiemann,
and Akihisa Yamada

A Formal Proof of the Minor-Exclusion Property
for Treewidth-Two Graphs . 178

Christian Doczkal, Guillaume Combette,
and Damien Pous

Verified Analysis of Random Binary Tree Structures 196
Manuel Eberl, Max W. Haslbeck, and Tobias Nipkow

HOL Light QE . 215
Jacques Carette, William M. Farmer, and Patrick Laskowski

Efficient Mendler-Style Lambda-Encodings in Cedille 235
Denis Firsov, Richard Blair, and Aaron Stump

Verification of PCP-Related Computational Reductions in Coq 253
Yannick Forster, Edith Heiter, and Gert Smolka

ProofWatch: Watchlist Guidance for Large Theories in E. 270
Zarathustra Goertzel, Jan Jakubův, Stephan Schulz,
and Josef Urban

Reification by Parametricity: Fast Setup for Proof by Reflection,
in Two Lines of Ltac. 289

Jason Gross, Andres Erbsen, and Adam Chlipala

Verifying the LTL to Büchi Automata Translation via Very Weak
Alternating Automata. 306

Simon Jantsch and Michael Norrish

CALCCHECK: A Proof Checker for Teaching the “Logical Approach
to Discrete Math” . 324

Wolfram Kahl

Understanding Parameters of Deductive Verification: An Empirical
Investigation of KeY . 342

Alexander Knüppel, Thomas Thüm, Carsten Immanuel Pardylla,
and Ina Schaefer

Software Verification with ITPs Should Use Binary Code Extraction
to Reduce the TCB (Short Paper) . 362

Ramana Kumar, Eric Mullen, Zachary Tatlock,
and Magnus O. Myreen

Proof Pearl: Constructive Extraction of Cycle Finding Algorithms. 370
Dominique Larchey-Wendling

Fast Machine Words in Isabelle/HOL . 388
Andreas Lochbihler

Relational Parametricity and Quotient Preservation
for Modular (Co)datatypes . 411

Andreas Lochbihler and Joshua Schneider

Towards Verified Handwritten Calculational Proofs (Short Paper) 432
Alexandra Mendes and João F. Ferreira

XVI Contents

A Formally Verified Solver for Homogeneous Linear
Diophantine Equations . 441

Florian Meßner, Julian Parsert, Jonas Schöpf,
and Christian Sternagel

Formalizing Implicative Algebras in Coq . 459
Étienne Miquey

Boosting the Reuse of Formal Specifications . 477
Mariano M. Moscato, Carlos G. Lopez Pombo, César A. Muñoz,
and Marco A. Feliú

Towards Formal Foundations for Game Theory . 495
Julian Parsert and Cezary Kaliszyk

Verified Timing Transformations in Synchronous
Circuits with kp -Ware . 504

João Paulo Pizani Flor and Wouter Swierstra

A Formal Equational Theory for Call-By-Push-Value 523
Christine Rizkallah, Dmitri Garbuzov, and Steve Zdancewic

Program Verification in the Presence of Cached Address Translation. 542
Hira Taqdees Syeda and Gerwin Klein

Verified Tail Bounds for Randomized Programs . 560
Joseph Tassarotti and Robert Harper

Verified Memoization and Dynamic Programming 579
Simon Wimmer, Shuwei Hu, and Tobias Nipkow

MDP + TA = PTA: Probabilistic Timed Automata, Formalized
(Short Paper) . 597

Simon Wimmer and Johannes Hölzl

Formalization of a Polymorphic Subtyping Algorithm 604
Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers

An Agda Formalization of Üresin & Dubois’ Asynchronous
Fixed-Point Theory . 623

Ran Zmigrod, Matthew L. Daggitt, and Timothy G. Griffin

Erratum to: Interactive Theorem Proving . E1
Jeremy Avigad and Assia Mahboubi

Author Index . 641

Contents XVII

Physical Addressing on Real Hardware
in Isabelle/HOL

Reto Achermann(B), Lukas Humbel, David Cock, and Timothy Roscoe

Department of Computer Science, ETH Zurich, Zürich, Switzerland
{reto.achermann,humbell,david.cock,troscoe}inf.ethz.ch

Abstract. Modern computing platforms are inherently complex and
diverse: a heterogeneous collection of cores, interconnects, programmable
memory translation units, and devices means that there is no single
physical address space, and each core or DMA device may see other
devices at different physical addresses. This is a problem because cor-
rect operation of system software relies on correct configuration of these
interconnects, and current operating systems (and associated formal
specifications) make assumptions about global physical addresses which
do not hold. We present a formal model in Isabelle/HOL to express
this complex addressing hardware that captures the intricacies of dif-
ferent real platforms or Systems-on-Chip (SoCs), and demonstrate its
expressivity by showing, as an example, the impossibility of correctly
configuring a MIPS R4600 TLB as specified in its documentation. Such
a model not only facilitates proofs about hardware, but is used to gen-
erate correct code at compile time and device configuration at runtime
in the Barrelfish research OS.

1 Introduction

The underlying models of system hardware used by both widely-used operat-
ing systems like Linux and verified kernels like seL4 [15] or CertiKOS [12] are
highly over-simplified. This leads to both sub-optimal design choices and flawed
assumptions on which correctness proofs are then based. Both of these systems
treat memory as a flat array of bytes, and model translation units (MMUs)
in a limited fashion, if at all. This model of the machine dates to the earliest
verified-systems projects (and earlier), and does not reflect the reality of mod-
ern hardware, in particular systems-on-chip (SoCs) and expansion busses such
as PCI.

Early verified CPUs such as CLI’s FM9001 [7] do not include anything beyond
what would today be described as the CPU core. The later Verisoft VAMP [6]
added a cache, but was still extremely simple, even compared to a mobile phone
processor of the same era. None of these models attempted to capture the com-
plexity of, for example, the PCI bus, or a multiprocessor NUMA interconnect:
both already commonplace by that time. Modern instruction-set models, such as

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-319-94821-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_1&domain=pdf

2 R. Achermann et al.

Fig. 1. The OMAP4460—A ‘Simple’ SoC (OMAP4460 TRM [21])

the HOL4 ARM model [10] or the ARM machine-readable specification [19] pro-
vide an excellent reference for reasoning about the behaviour of software, but say
nothing about the complex interconnects in modern SoCs (which now include
essentially all processor chips). No industrial projects [13] appear to claim to
have tackled this area.

The weak memory modeling work of Sewell et al. [4,9], goes deepest, defin-
ing the software-visible semantics of memory operations including the effects of
pipelining and reordering (e.g. write buffers), but nevertheless only gets us as
far as the last-level cache: once we go beyond that, we’re really in the Wild West
and, as we demonstrate, the path an address takes from the CPU core to its
final destination can be extremely complex (if it ever gets there at all)!

Addressing in a system is semantically far more complex than it first appears.
Both Linux and seL4 assume a per-core virtual address space translated, at page
granularity via a memory management unit (MMU), to a single global physical
address space containing all the random access memory (RAM) and memory-
mapped devices in the system. This model, found in many undergraduate
textbooks, has been hopelessly inaccurate for some time.

Figure 1 shows the manufacturer’s simplified block diagram for a 10-year-old
mobile phone SoC, the Texas Instruments OMAP4460. Already on this chip we
can identify at least 13 distinct interconnects, implementing complex address
remapping, and at least 7 cores (not counting DMA-capable devices) each with
a different view of physical addresses in the system. In addition, the SoC can
be configured such that a memory access enters the same interconnect twice,
effectively creating a loop.

Physical Addressing on Real Hardware in Isabelle/HOL 3

Correct OS operation requires software to configure all the address transla-
tion and protection elements in this (or any other) platform correctly, and hence
formal reasoning about the system requires a model which captures the complex-
ity of addressing. Such a model does not fully exist, but the need is recognized
even in the Linux community. The state of the art is DeviceTree [8], essentially a
binary file format encoding how a booting OS can configure platform hardware
in the absence of device discovery. However, DeviceTree’s lack of semantics and
narrow focus prevent both reasoning about correctness and runtime use beyond
initialization.

As we have shown [1,3,11], systems of various architectures and sizes have
no single physical address space, which may have been an illusion since early
on. Thus, those systems are better modeled as a network of address spaces. We
therefore introduced a “decoding net” model and demonstrated how it captures a
wide variety of complex modern hardware, from the OMAP SoC, to multi-socket
Intel Xeon systems with peripheral component interconnect (PCI)-connected
accelerators containing general-purpose cores (e.g. a Xeon Phi).

The contribution of this paper is our formal decoding-net model, mech-
anised in Isabelle/HOL and expanded relative to our previously-published
descriptions, particularly in the treatment of possibly-non-terminating decod-
ing loops. We show its utility in seL4-style refinement proofs by modeling the
MIPS4600 TLB [14] and demonstrating that the imprecision of its specification
prevents any proof of correct initialization.

2 Model

Our goals in formally specifying the addressing behavior of hardware include the
highly practical aim of more easily engineering code for a real OS (Barrelfish [5])
which we are confident operates correctly on a diverse range of hardware plat-
forms. Our model (accessible on Github [2]) is therefore a compromise between
the simplicity required to provide meaningful abstractions of the system, and
the detail needed to capture features of interest and make the model usable in
the OS at compile time and run time.

At the same time, the characteristics of the underlying formalism (here
Higher-Order Logic), and the kinds of reasoning efficiently supported by the
existing tools and libraries (Isabelle/HOL) also influence the choice of model.
Specifically, we make limited use of HOL’s relatively simple type system (a for-
malization in Coq would look very different), but exploit Isabelle’s extensive
automation for reasoning with relations and flexible function definitions.

Our core abstraction is the qualified name: An address is a name, defined
in the context of some namespace, identified by a natural number. As we have
previously shown [3], this suffices to model a large number of interesting real-
world examples.

In this view a processor’s page tables, for example, define a namespace n
by mapping names (addresses) qualified by the identifier n into another address
space n′, the “physical” address of the processor. In general, a name may be

4 R. Achermann et al.

mapped to any name in any address space (even itself) or to no name at all.
As addresses are discrete we also label them with natural numbers, and the
translation behavior of an address space is a function:

translate : N × N → {N × N}

mapping a fully-qualified name (n, a) (address a in address space n) to some
set of names {(n′, a′)} (address a′ in space n′). That translate returns a set,
not just an address, allows for nondeterminism and refinement e.g. the possible
configurations of a translation unit can be modeled as “any input may map to
any output”, of which any particular configuration is a refinement. We do not
yet use this feature of the model.

This process should end somewhere: any address should (hopefully) eventu-
ally refer to some device (e.g. RAM). To distinguish between this and the case
where the translation of an address is simply undefined, we add a per-address
space accept set :

accept : N → {N}

L3 Interconnect

M3 L2 Interconnect

M3 MIF

M3 L1 translation

M3 RAM M3 ROM

PCI address space

SMPT

Xeon Phi virtual address space

GDDR

System memory region

GDDR
BAR

Fig. 2. Existing loops in hardware. Xeon Phi left and OMAP 4460 on the right.

Address a ∈ accept n if a is accepted in address space n and thus address
resolution terminates in address space n. We deliberately allow an address space
to have both a non-empty accept set and non-empty translate sets to cover
the behavior of e.g. a cache: some addresses may hit in the cache (and thus be
accepted locally), while others miss and are passed through.

These two primitives define the entire semantics of the model: everything else
is derived from these. The combination implicitly defines a directed graph on
qualified names, where every well-defined translation path ends in an accepting
set. We explicitly construct the associated (one-step) relation as follows:

decodes_to = {((n, a), (n′, a′)). (n′, a′) ∈ translate (n, a)}

Physical Addressing on Real Hardware in Isabelle/HOL 5

Likewise the set of all fully-qualified names accepted anywhere in the network:

accepted_names = {(n, a). a ∈ accept n}

Finally we define the net to be a function from nodeid to node:

net : N → node

2.1 Views and Termination

One might think the model we have just described is overkill in generality for
modeling address spaces. To motivate it, we show some examples of the com-
plexity inherent in address resolution in modern hardware.

On the right of Fig. 2 is a subgraph of the interconnect of the OMAP4460
from Fig. 1, showing that it is not a tree. In fact, it is not even acyclic: For
example, there is both an edge from the Cortex M3 cores (the ISS megacell)
to the L3 interconnect, and another from the L3 back to the M3. The system
can be configured so that an address issued by the M3 passes through its local
address space twice before continuing to one of the L4 interconnects. There’s no
sensible reason to configure the system like this, but we must be able to express
the possibility, to verify that initialisation code doesn’t. The left of Fig. 2 shows
a similar situation arising with a PCI-attached Intel Xeon Phi accelerator. Both
examples are from our previous work [3], in which much more complex examples
are modeled using the formalism presented here.

Thus the absence of true loops is a property we must formally prove from
a description of the system, rather than an a priori assumption. Importantly,
this proof obligation is not manually appended to the model, but (as we will
see) arises naturally when attempting to define a functional representation of an
address space.

The possibility of loops, and thus undefined translations, is captured by the
general decodes_to relation above. While faithful, this relational model is not
particularly usable: for practical purposes we are more interested in deriving the
complete view of the system from a given processor: the eventual accepting set
(if any) for each unqualified name in the processor’s local name space.

This is expressible via the reflexive, transitive closure of the decoding
relation1 (R ‘ S is here the image of the set S under the relation R).

λ(n, a). accepted_names ∩ (decodes_to∗ ‘{(n, a)})

This is the set of names reachable in 0 or more steps from the root which are
accepted by the network. The view from a particular node (the local address
space) is then simply the curried function obtained by fixing a particular n.

1 Note that this defines only the decoding relation i.e. the set of (name, address) pairs.
We only need to show termination once we reformulate it as a recursive function:
relations in Isabelle/HOL need only be well-founded if used in a recursive definition
(or equivalent).

6 R. Achermann et al.

The model so far is still not quite what we want: we’d like to express the
resolution process as a function, preferably with an operational interpretation
corresponding (hopefully) meaningfully to the actual hardware behavior. For this
we exploit the flexibility of Isabelle’s function definition mechanism to separate
the simple operational definition of resolution from the more difficult proof of
termination:

resolve (n, a) =

({(n, a)} ∩ accepted_names) ∪
⋃

resolve ‘(decodes_to ‘{(n, a)})

The resolution of a name is the set containing that name (if it’s accepted here),
together with the resolutions of all names reachable in one step via the decode
relation. With this carefully-chosen definition, the correspondence with the rela-
tional model is trivial:

assumes resolve_dom (n, a)
shows resolve (n, a) = accepted_names ∩ (decodes_to∗ ‘(n, a))

The resolve_dom predicate is produced by the Isabelle function definition mech-
anism thanks to our incomplete definition of the resolve function. It asserts that
the name n is in the domain of the function resolve i.e. that the function ter-
minates for this argument (or equivalently that it lies in the reachable part of
the recurrence relation). Establishing a sufficient, and significantly a necessary,
condition for the domain predicate comprises the bulk of the proof effort.

The general termination proof for resolve (i.e. establishing the size of
resolve_dom) is roughly 500 lines of Isabelle, and consist of establishing a vari-
ant, or a well-formed ranking of addresses:

wf_rank f (n, a) =
∀x, y. (x, y) ∈ decodes_to ∧ ((n, a), x) ∈ decodes_to∗ −→ f(y) < f(x)

From the existence of a well-formed ranking it follows by a straightforward induc-
tive argument that resolve terminates. A rather more complex argument shows
that if each decoding step produces at most finitely many translations of a name
(trivially true for any actual hardware), then the converse also holds i.e. we can
find a well-formed ranking of names for any terminating resolution. This estab-
lishes a precise equivalence between relational and recursive-functional models:

∃f. wf_rank f (n, a) ←→ resolve_dom (n, a)

The argument proceeds by induction over the structure of the decode relation:
For any leaf node, finding a well-formed ranking is trivial; if a well-formed ranking
exists for all successors, then take the greatest rank assigned to any successor
by any of these rank functions (here is where the finite branching condition is
required), add one, and assign it to the current node.

Physical Addressing on Real Hardware in Isabelle/HOL 7

2.2 Concrete Syntax, Prolog, and Sockeye

The goal of our work is to model real hardware and verify the algorithms used
to configure it in the context of a real operating system. We therefore define a
simple concrete syntax for expressing decoding nets:

nets =
{
N is nodes

∣∣∣ N..N are nodes
}

nodes =
[
accept [

{
blocks

}
]
] [

map [
{
maps

}
]
] [

over N

]

maps := blocks to N

[
at N

] {
, N

[
at N

]}

blocks :=N− N

The interpretation of a decoding net expressed in this syntax is given by the
parse function, in the accompanying theory files [2].

We use this syntax in the next section, in showing that important operations
on the abstract model can be expressed as simply syntactic translations. It is
also the basis for the (much more expressive) Sockeye language [18,20], now used
for hardware description and configuration in Barrelfish. Programmers write
descriptions of a hardware platform, and the Sockeye compiler generates both
HOL and a first-order representation of the decode relation as Prolog assertions.

A set of Prolog inference rules is used to query or transform the model (for
example implementing the flattening described above), both offline (for example,
to preinitialize kernel page tables for bootstrap) and online (for device driver
resource allocation) in the Barrelfish OS. Representing the model in Prolog
allows it to be dynamically populated at run time in response to core and device
discovery, while retaining a formal representation. Establishing equivalence with
the HOL model (i.e. verifying the Sockeye compiler) should be straightforward,
and is an anticipated extension of this work.

2.3 View-Equivalence and Refinement

To use the model we need efficient algorithms to manipulate it. For example, to
preinitialize kernel page tables (as now occurs in Barrelfish) we need to know
where in the “physical” address space of a particular processor each device of
interest appears. This information is implicit in the decoding net model, but not
easily accessible.

To build this view, we transform the network in a way that preserves the
processor’s views while constructing an explicit physical address space for each.
We first split every node such that it either accepts addresses (is a resource), or
remaps them (is an address space), but not both. Next, we flatten the address
space nodes by mapping each input address directly to all names at which it
is accepted, i.e. construct the 1-step transitive closure of the decode relation.
Eventually, we terminate with a single address space whose translate function
maps directly to the resource of interest.

8 R. Achermann et al.

We say that two decoding networks are view-equivalent2, written
(f,net) ∼S (g,net′) if all observers (nodes) in S have the same view (i.e. the
results of resolve are the same), modulo renaming (f and g) of the accept-
ing nodes. Given some c greater than the label of any extant node, define the
accept and translate functions of the split net, (accept′

n and translate′
n, for

node n) as:

accept′
n = ∅

accept′
(n+c) = acceptn

translate′
n a = {(n + c, a) : a ∈ acceptn} ∪ translaten a

translate′
(n+c) a = ∅

This new net is view-equivalent to the original, with names that were accepted at
n now accepted at n + c, and no node both accepting and translating addresses:

(n �→ n + c,net) ∼S (∅, split(net)) (1)

Splitting on the concrete representation (splitC) is a simple syntactic operation:

n is accept A map M �→ [n + c is accept A, n is map M(n �→ n + c)]

Refinement (in fact equivalence) is expressed as the commutativity of the oper-
ations (here split and splitC) with the lifting function (parse):

split (parse s) = parse (splitC s) (2)

Combining Eq. 1 with Eq. 2 we have the desired result, that the concrete
implementation preserves the equivalence of the nets constructed by parsing:

(n �→ n + c, parse s) ∼S (∅, parse (splitC s)) (3)

Together with the equivalent result for flattening, we can verify that physical
address spaces read directly from the transformed model are exactly those that
we would have found by traversing the original hardware-derived model for all
addresses.

3 Refinement: Example of the MIPS R4600 TLB

Probably the most complex single translation element in a typical system is
the processor’s TLB, used to implement the abstraction of Virtual Memory.
Translation hardware, such as an MMU, intercepts any load and store to a
virtual address and maps it to a physical address, or triggers an exception (page
fault). The translation implemented by the MMU is generally under the control
of the operating system.

2 See definition view_eq in Equivalence.thy in the attached sources.

Physical Addressing on Real Hardware in Isabelle/HOL 9

As a demonstration of our decoding net model’s ability to capture real hard-
ware, and to support reasoning about it, we present a model of the MIPS R4600
TLB [14]; a well-understood and clearly documented, but still comparatively
simple such device.

In this section, we show that the behavior of the TLB can be captured by
the decoding net model, that we can use refinement to abstract the behavior of
a correctly-configured TLB, and prove that the manufacturer’s specification is
too vague to allow provably-correct initialization.

3.1 The TLB Model

The MIPS TLB is software-loaded: It does not walk page tables in memory for
itself, but rather generates a fault whenever a virtual address lookup fails, and
relies on the operating system to replace an existing entry with a mapping for
the faulting address.

Fig. 3. A MIPS R4600 TLB entry with non-zero fields labelled.

Figure 3 gives the layout of a TLB entry. There are 48 entries, each of which
maps two adjacent virtual pages (identified by their virtual page number, or
VPN) specified in EntryHi, to the physical frames (identified by their physical
frame number, or PFN) specified by EntryLo0 and EntryLo1. The TLB (and
our model) supports up to seven pre-defined page sizes, but here we consider
only the 4kiB case. Physical addresses are 36 bit, while virtual addresses are
40 bit. Addresses are matched against EntryHi i.e. on the VPN and address-
space identifier (ASID). An entry with the global bit set matches any ASID. We
represent a TLB entry with the following Isabelle record type:

TLBEntryHi = (region : N, vpn2 : N, asid : N)
TLBEntryLo = (pfn : N, v : bool, d : bool, g : bool)

TLBEntry = (hi : TLBEntryHi, lo0 : TLBEntryLo, lo1 : TLBEntryLo)

The TLB consists of an indexed set of entries, and two state terms (wired and
random) which we will describe shortly. The capacity of the TLB is static, and
is only included here to support our refinement proof.

MIPSTLB =(wired : N, capacity : N, random : N, entries : N → TLBEntry)

10 R. Achermann et al.

All TLB state changes are made by the OS via 4 special instructions:

tlbp TLB Probe performs an associative lookup using the contents of the
EntryHi register, and either returns the matching index or indicates a miss.
The result of a multiple match is undefined (this is important).

tlbr TLB Read returns any requested TLB entry.
tlbwi TLB Write Indexed updates the entry at a user-specified index.
tlbwr TLB Write Random updates the entry at the index specified by the

Random register, which is updated nondeterministically to some value in
[wired, capacity).

In HOL these are state updates with the following types:

tlbp : TLBENTRYHI → MIPSTLB → {N}
tlbr : N → MIPSTLB → {TLBENTRY}
tlbwi : N → TLBENTRY → MIPSTLB → {MIPSTLB}
tlbwr : TLBENTRY → MIPSTLB → {MIPSTLB}

The outcome of any of these operations may be undefined: Reading or writing
an out-of-bounds index and probes that match more than one entry are unpre-
dictable; moreover writing conflicting entries leaves the TLB in an unknown
state. Both are modeled as nondeterminism: All operations return a set of pos-
sible outcomes (UNIV, the universal set being complete underspecification). For
example, tlbwi returns UNIV for an out-of-bounds index (i ≥ capacity tlb),
and otherwise updates the specified entry3, the singleton set indicating that the
result is deterministic:

tlbwi i e tlb = if i < capacity tlb

then {tlb (entries := (entries tlb)(i := e))} else UNIV

A TLB random write is then the nondeterministic choice of some indexed
write:

tlbwr e tlb =
(capacity tlb)−1⋃

i=wired tlb

tlbwi i e tlb

3.2 The Validity Invariant

The MIPS TLB famously permits the programmer to configure the TLB in
an unsafe manner, such that the future behavior of the processor is undefined.
Indeed in early versions of the chip it was possible to permanently damage the
hardware in this way. The source of the problem is in the virtual-address match
process: this is implemented using a parallel comparison against all 48 entries.
The hardware to implement such an associative lookup is very expensive, and

3 f(x := y) is Isabelle/HOL syntax for the function f updated at x with value y.

Physical Addressing on Real Hardware in Isabelle/HOL 11

moreover is on the critical path of any memory access. It is therefore highly
optimized, taking advantage of the assumption that there will never be more
than one match. Violating this assumption leads to two buffers attempting to
drive the same wire to different voltages and, eventually, to smoke.

This assumption is exposed as a requirement that the programmer never
configure the TLB such that two entries match the same virtual address. Note,
the requirement is not just that two entries never do actually match a load or
store, but that they never can4. Also note, that a match occurs independently of
the value of the valid bit (V) and therefore even invalid entries must not overlap.
This will shortly become important.

We model the above condition with the following invariant on TLB state:

TLBValid tlb = wired tlb ≤ capacity tlb ∧
(∀i < capacity tlb. TLBEntryWellFormed (tlb i) ∧

TLBEntryConflictSet (entries (tlb i)) tlb ⊆ {i})
(4)

This predicate states that all entries of the TLB are well formed and do not
conflict (overlap) with each other. An entry is well formed if its fields are within
valid ranges. We further define the TLBEntryConflictSet function:

TLBEntryConflictSet :: TLBEntry ⇒ MIPSTLB ⇒ {N}

This returns the indices of TLB entries that overlap the provided entry. The cor-
rectness invariant is thus that either this set is empty, or contains just the entry
under consideration (e.g. the one being replaced). The TLB validity invariant is
preserved by all 4 primitives e.g.

assumes TLBValid tlb and TLBENTRYWellFormed e

and i < capacity tlb and TLBEntryConflictSet e tlb ⊆ {i}
shows ∀t ∈ tlbwi i e tlb. TLBValid t

3.3 Invariant Violation at Power On

After reset (e.g. after power on), it is software’s responsibility to ensure that the
TLB validity invariant is established. However, the specification of the power-on
state of the TLB is sufficiently loose to render this impossible!

The MIPS R4600 manual [14] describes the reset state as follows: “The Wired
register is set to 0 upon system reset.” The random register is set to capacity−1.
The state of the TLB entries is undefined: “The TLB may be in a random
state and must not be accessed or referenced until initialized”. As the MIPS
TLB is always on (the kernel is provided with a special untranslated region of

4 We can only speculate as to the writer’s intent here. One reason for such a restriction
would be speculative execution: The CPU might speculatively cause a TLB lookup
on an address that it never actually computes. The results would be discarded, but
the damage would be done.

12 R. Achermann et al.

virtual addresses to solve the bootstrapping problem), and a strict reading of
the invariant requires that there are never two matching entries for any address,
even if invalid, the unpredictable initial state cannot be guaranteed to satisfy
the invariant. We prove this formally by constructing a TLB state that satisfies
the reset condition but not the invariant. A plausible initial state is one where
all bits are zero (the null_entry):

(wired = 0, random = 47, capacity = 48, entries = λ . null_entry)

While this TLB does not actually translate anything as the valid bits of all entries
are zero, addresses from the first page in memory will match all entries of the
TLB. The straightforward reading of the manufacturer’s specification requires
that such a situation is impossible even if it doesn’t actually occur.

Of course, in practice, operating systems demonstrably do successfully ini-
tialize MIPS processors. This indicates that the obvious solution is likely also the
correct one: as long as two entries never actually match i.e. no translatable access
is issued before the TLB is configured, there’s no actual problem. In practice the
operating system will execute in the non-translated physical window (KSEG0)
until the TLB is configured.

This is an example of a specification bug, specifically an excessively cau-
tious abstraction that inadvertently hides a correctness-critical detail. While
this case is most likely harmless (and this hardware obsolete), recent expe-
rience (such as the Meltdown and Spectre attacks [16,17]) demonstrate that
supposedly-invisible behavior hidden by an abstraction can unexpectedly become
correctness- or security-critical. Indeed, the mechanism exploited by these
attacks (speculative execution), could expose this invariant violation: even if
no kernel code actually accesses a translatable address, the processor is free to
speculate such an access, thus triggering the failure.

3.4 What Does a Fully-Wired TLB Do?

The entries of the MIPS TLB can be wired (see Fig. 4). The lower w entries are
protected from being overwritten by the random write operation (tlbwr). The
manual states that “Wired entries are non-replaceable entries, which cannot be
overwritten by a TLB write random operation.” The number of wired entries w
can be configured.

Fig. 4. Wired TLB entries

Physical Addressing on Real Hardware in Isabelle/HOL 13

The random write operation uses the random register to select the entry
to be overwritten. This register is initialized to capacity − 1 at reset and is
decremented whenever the processor retires an instruction, skipping entries w−1
down to 0. As its reset value is capacity − 1, the random write operation will
always succeed regardless of the current value of value w. We can express the
bounds as:

RandomRange tlb = {x. wired tlb ≤ x ∧ x < capacity tlb}
This definition is problematic when we wire all entries of the TLB i.e. by set-
ting w to capacity. Note, hardware does not prevent wiring more entries than
the capacity. The manual does not mention this case at all. Assuming that
w = capacity we obtain RandomRange tlb = {x. capacity tlb ≤ x ∧ x <
capacity tlb} = {}. This suggests, that no entries will be replaced randomly
as intended. However, we know that upon reset the random register is set to
capacity − 1 which is not in the (empty) RandomRange set. This contradicts
the specification of either the semantics of the wired entries or the random write
instruction. We therefore express the random range as follows:

RandomRange tlb = {x. wired tlb ≤ x ∧ x < capacity tlb} ∪ {capacity tlb − 1}

3.5 The TLB Refines a Decoding Net

The preceding specification bugs notwithstanding, we can nevertheless use the
TLB model to do useful work. In the remainder of this section we first show that
with an appropriate lifting function, our operational model of the TLB refines
a decoding-net model of a translate-only node, such that the tlbwi operation
corresponds to simply updating the appropriate translation. Finally, in Sect. 3.6
through Sect. 3.9 we model the action of TLB refill handler and show that,
combined with a valid page table and the operational TLB model, that its action
is indistinguishable (again under decoding-net semantics) from that of a TLB
large enough to hold all translation entries at once (i.e. no TLB miss exceptions).

We lift a single TLB entry to a pair of address-range mappings as follows:

EntryToMap : nodeid ⇒ TLBENTRY ⇒ addr ⇒ {name}
EntryToMap n e va =

(if EntryIsValid0 e ∧ va ∈ EntryExtendedRange0 e

then {(n, EntryPA0 e + (va mod VASize) − EntryMinVA0 e)} else {}) ∪
(if EntryIsValid1 e ∧ va ∈ EntryExtendedRange1 e

then {(n, EntryPA1 e + (va mod VASize) − EntryMinVA1 e)} else {})

The EntryExtendedRange(0,1) functions consider the virtual address, the
address-space identifier and the global bit, by extending the virtual address with
the ASID bits such that the extended virtual address space contains all virtual
addresses for ASID 0, followed by those for ASID 1, and so forth.

14 R. Achermann et al.

The TLB’s representation is then the union of these translations:

ConvertToNode n tlb =
(
accept = {}, translate = λa.

⋃
EntryToMap n (entries tlb i) a

)

The abstract equivalent of tlbwi is the replace_entry function, which
replaces entry e1 with e2 by updating the translation as follows:

translate n a �→ (translate n a − EntryToMap n e1 a) ∪ EntryToMap n e2 a

The following lemma shows the equivalence of the tlbwi instruction and
the TLB indexed write (replace_entry) function, i.e. that commuting with the
lifting function maps one to the other:

assumes i < capacity tlb and TLBValid tlb and TLBEntryWriteable i e tlb

shows (ConvertToNode n) ′(tlbwi i e tlb) =

replace_entry n (entries tlb i) e (ConvertToNode n tlb)

3.6 Modeling TLB Lookups and Exceptions

An MMU provides the illusion of a large virtual address space, using a small
TLB, by loading entries on demand from a large in-memory translation table.
On the MIPS, this is handled in software, according to the exception flowchart in
Figure 4–19 of the MIPS manual [14]. The following three exceptions are defined:
TLB Refill: No entry matched the given virtual address.
TLB Invalid: An entry matched, but was invalid.
TLB Modified: Access violation e.g. a write to a read-only page.

Table 1. The outcome of the translate function.

Match Valid Entry writable/Memory write VPN even Result

No * * * TLB Refill Exception

Yes No * * TLB Invalid Exception

Yes No No and memory write * TLB Modified Exception

Yes Yes Yes or memory read Yes Translate using EntryLo0

Yes Yes Yes or memory read No Translate using EntryLo1

The possible outcomes of a TLB lookup are summarized in Table 1, and
modeled (for a particular entry) in our nondeterministic operational style as
follows:

TLBENTRY_translate e as vpn =
if EntryMatchVPNASID vpn as e then

if even vpn ∧ EntryIsValid0 e

then {(pfn (lo0 e)) + (vpn − EntryMin4KVPN e)}
else if odd vpn ∧ EntryIsValid1 e

then {(pfn (lo1 e)) + (vpn − EntryMin4KVPN1 e)} else {}
else {}

Physical Addressing on Real Hardware in Isabelle/HOL 15

Again exploiting nondeterminism, we define MIPSTLB_translate as follows:

MIPSTLB_translate tlb vpn as =⋃

i<capacity tlb

TLBENTRY_translate ((entries tlb) i) as vpn

The TLB invariant (Eq. 4) implies that at most one entry will match, and thus
the union is trivial.

3.7 Adding a Page Table

With a software-loaded TLB, the OS programmer is free to select any data
structure for the page tables. The simplest, and a very common, choice is an
array of TLBEntryLo values, indexed by address space and virtual page number:

MIPSPT : N → N → TLBENTRYLO

The replacement handler must then simply load the entry corresponding to the
faulting address (if any) and restart the faulting process. In order to guarantee
that the TLB invariant is maintained, we show that the following invariant holds
of the page table, which simply applies the invariant to all elements of the in-
memory representation:

assumes MIPSPT_valid pt and ASIDValid as and vpn < MIPSPT EntriesMax

shows TLBENTRYWellFormed (MIPSPT_mk_tlbentry pt as vpn)

3.8 Modeling Replacement Handlers

Combining the page table representation above with the TLB, we can model a
replacement handler that “caches” translations from the page table in the TLB:

MipsTLBPT =
(
tlb : MIPSTLB, pte : MIPSPT

)

The replacement handler writes entries constructed from the page table into the
TLB. The TLB should thus always be an “instance” of (hold a subset of entries
from) the page table:

MipsTLBPT_is_instance mt = ∀i < capacity (tlb mt).
entries (tlb mt) i = MIPSPT_mk_tlbentry (pte mt)

(asid (hi (entries (tlb mt) i)))
(vpn2 (hi (entries (tlb mt) i)))

This predicate ensures there are no other entries in the TLB than those
constructed from the page table—a property we will use later when we show
equivalence to a large TLB.

16 R. Achermann et al.

The replacement handler can either replace an entry deterministically by
choosing the index as a function of the entry’s VPN:

MIPSTLBIndex tlb entry = (vpn2 (hi entry)) mod (capacity tlb)

or make use of the nondeterministic random write function. The deterministic
update function implements a direct mapped replacement policy i.e. an entry
can only ever be present in a well defined slot which simplifies reasoning about
the TLB invariant.

However, this placement policy is not applicable in general e.g. when the OS
wants to divide the entries into wired and random (Sect. 3.4) or in the presence of
hardware table walkers and associative TLBs that non-deterministically replace
an entry. Hence, the location of the entry in the TLB is no longer fixed.

In the non-deterministic model of the replacement handler, we make sure
that we only ever change the state of the TLB when a translation attempt
would trigger a refill exception:

MipsTLBPT_fault mtlb as vpn =
if MIPSTLB_try_translate (tlb mtlb) as vpn = EXNREFILL
then MipsTLBPT_update_tlb mtlb as vpn else {mtlb}

Therefore, when we construct the new entry from the page table and update the
TLB by replacing an existing entry with the new one, we are guaranteed not to
cause and conflicts. Hence, we prove that MipsTLBPT_fault preserves the TLB
invariance:

assumes MipsTLBPT_valid mpt and ASIDValid as

and vpn < MIPSPT_EntriesMax

shows ∀m ∈ MipsTLBPT_fault mpt as vpn. MipsTLBPT_valid m

Note, we use a stricter definition of validity in this case requiring also the
is instance predicate and that the page tables are well formed.

MipsTLBPT_valid mt =MIPSPT_valid (pte mt) ∧ TLBValid (tlb mt)
∧ MipsTLBPT_is_instance mt

3.9 Equivalence to Infinitely Large TLB

The final result regarding the TLB is to show that, together with the refill
handler, it implements the expected abstraction: a single decoding-net node,
that maps the virtual address space to the physical. We do this by showing that
the TLB plus refill handler is equivalent, in the decoding-net semantics, to a
hypothetical giant TLB, large enough to hold all mappings at once, and that
therefore never faults.

Physical Addressing on Real Hardware in Isabelle/HOL 17

We construct the large TLB by pre-loading all entries from the page table,
according to our “extended virtual address” scheme, giving a unique, determin-
istic location for each entry:

MipsTLBLarge_create pt =
(
capacity = MaxEntries, wired = MaxEntries,

entries = λn. MIPSPT_mk_tlbentry pt (idx2asid n) (idx2vpn n)
)

We first define a translate function TLB ⇒ ASID ⇒ V PN ⇒ PFN for both,
the large TLB and the TLB with replacement handler, and we show that the
two are equivalent for any sensible VPN and ASID:

assumes vpn < MIPSPT EntriesMax and as < ASIDMax
and capacity (tlb mpt) > 0 and MipsTLBPT_valid mpt

shows MipsTLBPT_translate mpt as vpn =
MIPSTLB_translate (MipsTLBLarge_create(pte mpt)) as vpn(5)

We use the translate functions and the equivalence result above when lifting the
large TLB and the TLB with replacement handler to the decoding net node.
Here we show the variant for the real TLB:

MipsTLBPT_to_node nid mpt =
(
accept = {}, translate = (λa.(if AddrValid a then

(
⋃

x ∈ (MipsTLBPT_translate mpt (addr2asid a)(addr2vpn a)).

{(nid, pfn2addr x a)}) else {}))
)

The accept set is empty. The node’s translate function checks whether the
address falls within defined range (AddrValid) and then either return an empty
set or the result of the TLB’s translate function. Note, we need to convert
between addresses and VPN/ASID and PFN.

Lastly, we prove the equivalence of the lifting functions and their result when
applied to the large TLB and the TLB with replacement handler respectively:

assumes capacity (tlb mpt) > 0 and MipsTLBPT_valid mpt

shows MipsTLBPT_to_node nid mpt =
MIPSLARGE_to_node nid (MipsTLBLarge_create (pte mpt))

Recall, we have shown that the translate function of the two TLB’s have identical
behavior (Eq. 5) if the large TLB was pre-populated with the same page tables.
Therefore, applying the lifting functions produces equivalent nodes in decoding
net semantics.

4 Conclusion

In this paper, we have demonstrated the use of Isabelle/HOL to formally model
and reason about the increasingly complex process of address resolution and

18 R. Achermann et al.

mapping in modern processors. The traditional model of a single virtual address
space, mapped onto a global physical address space has been a gross oversimpli-
fication for a long time, and this is becoming more and more visible.

Our decoding-net model, and the Sockeye language that we have developed
from it, present an semantically rigorous and formally-verified alternative to
Device Trees. In our prior work, we have demonstrated that this model can be
applied to a wide range of very complex real hardware, and in this paper we
further demonstrate its application to modelling the MIPS TLB. That we were
able to prove that this correctly implements the virtual-memory abstraction
shows not just that this particular hardware is indeed correct, but that our
model is tractable for such proofs. That we discovered a number of specification
bugs demonstrates clearly the benefit of a rigorous formal proof, and is further
evidence in favor of the formal specification of the semantics of hardware.

The Sockeye language is already in use in the Barrelfish operating system,
and we anticipate verifying the Sockeye compiler, in particular that the Prolog
assertions generated are equivalent to the HOL model. Further, the model as
it stands is principally a static one: expressing the configuration space of the
system in a more systematic manner than simply allowing general functions
(for example to model region-based remapping units, as used in PCI), and rea-
soning about the dynamic behavior of requests as translations are updated (for
example that a series of updates to different translation units never leaves the
system in an intermediate state that violates invariants) is an exciting future
direction that we intend to explore. Likewise modelling request properties (read,
write, cacheable, etc.), and their interaction with existing weak memory models,
presents a challenge.

The ultimate prize is to model the memory system in sufficient detail to be
able to specify the behavior of a system including partly-coherent caches (such as
ARM) and table-walking MMUs that themselves load page table entries via the
cache and/or second-level translations (as in two-level paging for virtualization).
This goal is still a long way off, but the increasing quality and availability of
formal hardware models leaves us hope that it is indeed attainable.

References

1. Achermann, R.: Message passing and bulk transport on heterogenous multiproces-
sors. Master’s thesis, Department of Computer Science, ETH Zurich, Switzerland
(2017)

2. Achermann, R., Cock, D., Humebl, L.: Hardware Models in Isabelle/HOL, January
2018. https://github.com/BarrelfishOS/Isabelle-hardware-models

3. Achermann, R., Humbel, L., Cock, D., Roscoe, T.: Formalizing memory accesses
and interrupts. In: Proceedings of the 2nd Workshop on Models for Formal Analysis
of Real Systems, MARS 2017, pp. 66–116 (2017)

4. Alglave, J.: A formal hierarchy of weak memory models. Form. Methods Syst. Des.
41(2), 178–210 (2012)

5. The Barrelfish Operating System. https://www.barrelfish.org

https://github.com/BarrelfishOS/Isabelle-hardware-models
https://www.barrelfish.org

Physical Addressing on Real Hardware in Isabelle/HOL 19

6. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.J.: Putting it all
together – formal verification of the VAMP. Int. J. Softw. Tools Technol. Transf.
8(4), 411–430 (2006)

7. Bishop, M.K., Brock, C., Hunt, W.A.: The FM9001 Microprocessor Proof. Tech-
nical report 86, Computational Logic Inc. (1994)

8. devicetree.org: Devicetree Specification, May 2016. Release 0.1. http://www.
devicetree.org/specifications-pdf

9. Flur, S., Gray, K.E., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W.,
Sewell, P.: Modelling the ARMv8 architecture, operationally: concurrency and ISA.
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2016, pp. 608–621. ACM, St. Petersburg
(2016)

10. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14052-5 18

11. Gerber, S., Zellweger, G., Achermann, R., Kourtis, K., Roscoe, T., Milojicic, D.:
Not your parents’ physical address space. In: Proceedings of the 15th USENIX
Conference on Hot Topics in Operating Systems, HOTOS 2015, p. 16 (2015)

12. Gu, R., Shao, Z., Chen, H., Wu, X., Kim, J., Sjöberg, V., Costanzo, D.: Cer-
tiKOS: an extensible architecture for building certified concurrent OS kernels. In:
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI 2016, pp. 653–669. USENIX Association, Savannah (2016)

13. Hunt, W.A., Kaufmann, M., Moore, J.S., Slobodova, A.: Industrial hardware and
software verification with ACL2. Phil. Trans. R. Soc. A 375(2104), 20150399 (2017)

14. Integrated Device Technology, Inc.: IDT79R4600 TM and IDT79R4700 TM RISC
Processor Hardware User’s Manual, revision 2.0 edition, April 1995

15. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an OS kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009,
pp. 207–220. ACM, Big Sky (2009)

16. Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard,
S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre Attacks: Exploiting Speculative
Execution. ArXiv e-prints, January 2018

17. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher,
P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown. ArXiv e-prints, January 2018

18. T.B. Project: Sockeye in Barrelfish
19. Reid, A.: Trustworthy specifications of ARM V8-A and V8-M system level archi-

tecture. In: FMCAD 2016, pp. 161–168. FMCAD Inc., Austin (2016)
20. Schwyn, D.: Hardware configuration with dynamically-queried formal models. Mas-

ter’s thesis, Department of Computer Science, ETH Zurich, Switzerland (2017)
21. Texas Instruments: OMAP44xx Multimedia Device Technical Reference Manual,

April 2014. Version AB. www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf

http://www.devicetree.org/specifications-pdf
http://www.devicetree.org/specifications-pdf
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-642-14052-5_18
www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf

Towards Certified Meta-Programming
with Typed Template-Coq

Abhishek Anand1(B), Simon Boulier2, Cyril Cohen3, Matthieu Sozeau4,
and Nicolas Tabareau2

1 Cornell University, Ithaca, NY, USA
aa755@cs.cornell.edu

2 Gallinette Project-Team, Inria Nantes, Rennes, France
3 Université Côte d’Azur, Inria, Nice, France

4 Pi.R2 Project-Team, Inria Paris and IRIF, Paris, France

Abstract. Template-Coq (https://template-coq.github.io/template-
coq) is a plugin for Coq, originally implemented by Malecha [18], which
provides a reifier for Coq terms and global declarations, as represented
in the Coq kernel, as well as a denotation command. Initially, it was
developed for the purpose of writing functions on Coq’s AST in Gal-
lina. Recently, it was used in the CertiCoq certified compiler project
[4], as its front-end language, to derive parametricity properties [3], and
to extract Coq terms to a CBV λ-calculus [13]. However, the syntax
lacked semantics, be it typing semantics or operational semantics, which
should reflect, as formal specifications in Coq, the semantics of Coq’s
type theory itself. The tool was also rather bare bones, providing only
rudimentary quoting and unquoting commands. We generalize it to han-
dle the entire Calculus of Inductive Constructions (CIC), as implemented
by Coq, including the kernel’s declaration structures for definitions and
inductives, and implement a monad for general manipulation of Coq’s
logical environment. We demonstrate how this setup allows Coq users to
define many kinds of general purpose plugins, whose correctness can be
readily proved in the system itself, and that can be run efficiently after
extraction. We give a few examples of implemented plugins, including a
parametricity translation. We also advocate the use of Template-Coq
as a foundation for higher-level tools.

1 Introduction

Meta-programming is the art of writing programs (in a meta-language) that pro-
duce or manipulate programs (written in an object language). In the setting of
dependent type theory, the expressivity of the language permits to consider the
case were the meta and object languages are actually the same, accounting for
well-typedness. This idea has been pursued in the work on inductive-recursive (IR)
and quotient inductive-inductive types (QIIT) in Agda to reflect a syntactic model
of a dependently-typed language within another one [2,9]. These term encodings
include type-correctness internally by considering onlywell-typed terms of the syn-
tax, i.e. derivations. However, the use of IR or QIITs complicates considerably the
c© The Author(s) 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 20–39, 2018.
https://doi.org/10.1007/978-3-319-94821-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_2&domain=pdf
https://template-coq.github.io/template-coq
https://template-coq.github.io/template-coq

Towards Certified Meta-Programming with Typed Template-Coq 21

meta-theory of the meta-language which makes it difficult to coincide with the
object language represented by an inductive type. More problematically in prac-
tice, the concision and encapsulation of the syntactic encoding has the drawback
that it is very difficult to use because any function from the syntax can be built
only at the price of a proof that it respects typing, conversion or any other features
described by the intrinsically typed syntax right away.

Other works have taken advantage of the power of dependent types to do
meta-programming in a more progressive manner, by first defining the syntax of
terms and types; and then defining out of it the notions of reduction, conversion
and typing derivation [11,26] (the introduction of [11] provides a comprehensive
review of related work in this area). This can be seen as a type-theoretic version of
the functional programming language designs such as Template Haskell [22]
or MetaML [24]. This is also the approach taken by Malecha in his thesis [18],
where he defined Template-Coq, a plugin which defines a correspondence—
using quoting and unquoting functions—between Coq kernel terms and inhab-
itants of an inductive type representing internally the syntax of the calculus of
inductive constructions (CIC), as implemented in Coq. It becomes thus possi-
ble to define programs in Coq that manipulate the representation of Coq terms
and reify them as functions on Coq terms. Recently, its use was extended for the
needs of the CertiCoq certified compiler project [4], which uses it as its front-
end language. It was also used by Anand and Morissett [3] to formalize a modified
parametricity translation, and to extract Coq terms to a CBV λ-calculus [13].
All of these translations however lacked any means to talk about the semantics
of the reified programs, only syntax was provided by Template-Coq. This is
an issue for CertiCoq for example where both a non-deterministic small step
semantics and a deterministic call-by-value big step semantics for CIC terms had
to be defined and preserved by the compiler, without an “official” specification
to refer to.

This paper proposes to remedy this situation and provides a formal semantics
of Coq’s implemented type theory, that can independently be refined and stud-
ied. The advantage of having a very concrete untyped description of Coq terms
(as opposed to IR or QIITs definitions) together with an explicit type checker
is that the extracted type-checking algorithm gives rise to an OCaml program
that can directly be used to type-check Coq kernel terms. This opens a way to
a concrete solution to bootstrap Coq by implementing the Coq kernel in Coq.
However, a complete reification of CIC terms and a definition of the checker are
not enough to provide a meta-programming framework in which Coq plugins
could be implemented. One needs to get access to Coq logical environments.
This is achieved using a monad that reifies Coq general commands, such as
lookups and declarations of constants and inductive types.

As far as we know this is the only reflection framework in a dependently-
typed language allowing such manipulations of terms and datatypes, thanks to
the relatively concise representation of terms and inductive families in CIC.
Compared to the MetaCoq project [27], Lean’s tactic monad [12], or Agda’s
reflection framework [26], our ultimate goal is not to interface with Coq’s

22 A. Anand et al.

Inductive term : Set

| tRel : N → term

| tVar : ident → term

| tEvar : N → list term → term

| tSort : universe → term

| tCast : term → cast_kind → term → term

| tProd : name → term → term → term

| tLambda : name → term → term → term

| tLetIn : name → term → term → term → term

| tApp : term → list term → term

| tConst : kername → universe_instance → term

| tInd : inductive → universe_instance → term

| tConstruct: inductive → N → universe_instance → term

| tCase : inductive * N → term → term → list (N * term) → term

| tProj : projection → term → term

| tFix : mfixpoint term → N → term

| tCoFix : mfixpoint term → N → term.

Fig. 1. Representation of the syntax in Template-Coq

unification and type-checking algorithms, but to provide a self-hosted, boot-
strappable and verifiable implementation of these algorithms. On one hand, this
opens the possibility to verify the kernel’s implementation, a problem tackled
by Barras [6] using set-theoretic models. On the other hand we also advocate
for the use of Template-Coq as a foundation on which higher-level tools can
be built: meta-programs implementing translations, boilerplate-generating tools,
domain-specific proof languages, or even general purpose tactic languages.

Plan of the Paper. In Sect. 2, we present the complete reification of Coq terms,
covering the entire CIC and define in Sect. 3 the type-checking algorithm of
Coq reified terms in Coq. In Sect. 4, we show the definition of a monad for
general manipulation of Coq’s logical environment and use it to define plugins
for various translations from Coq to Coq (Sect. 5). Finally, we discuss related
and future work in Sect. 6.

2 Reification of Coq Terms

Reification of Syntax. The central piece of Template-Coq is the inductive
type term which represents the syntax of Coq terms, as defined in Fig. 1. This
inductive follows directly the constr datatype of Coq terms in the OCaml code
of Coq, except for the use of OCaml’s native arrays and strings; an upcoming
extension of Coq [5] with such features should solve this mismatch.

Constructor tRel represents variables bound by abstractions (introduced by
tLambda), dependent products (introduced by tProd) and local definitions (intro-
duced by tLetIn), the natural number is a De Bruijn index. The name is a printing
annotation.

Towards Certified Meta-Programming with Typed Template-Coq 23

Sorts are represented with tSort, which takes a universe as argument. A
universe is the supremum of a (non-empty) list of level expressions, and a level
is either Prop, Set, a global level or a De Bruijn polymorphic level variable.

Inductive level := lProp | lSet | Level (_ : string) | Var (_ : N).
Definition universe := list (level * bool). (* level+1 if true *)

The application (introduced by tApp) is n-ary. The tConst, tInd and tConstruct
constructors represent references to constants (definitions or axioms), inductives,
or constructors of an inductive type. The universe_instances are non-empty only
for polymorphic constants. Finally, tCase represents pattern-matchings, tProj
primitive projections, tFix fixpoints and tCoFix cofixpoints.

Quoting and Unquoting of Terms. Template-Coq provides a lifting from con-
crete syntax to reified syntax (quoting) and the converse (unquoting). It can
reify and reflect all kernel Coq terms.

The command Quote Definition reifies the syntax of a term. For instance,

Quote Definition f := (fun x ⇒ x + 0).

generates the term f defined as

f = tLambda (nNamed "x") (tInd {| inductive_mind := "Coq.Init.Datatypes.
nat"; inductive_ind := 0 |} []) (tApp (tConst "Coq.Init.Nat.add" [])
[tRel 0; tConstruct {| inductive_mind := "Coq.Init.Datatypes.nat";

inductive_ind := 0 |} 0 []) : term

On the converse, the command Make Definition constructs a term from its
syntax. This example below defines zero to be 0 of type N.

Make Definition zero := tConstruct (mkInd "Coq.Init.Datatypes.nat" 0)
0 [].

where mkInd n k is the kth inductive of the mutual block of the name n.

Reification of Environment. In Coq, the meaning of a term is relative to an
environment, which must be reified as well. Environments consist of three parts:
(i) a graph of universes (ii) declarations of definitions, axioms and inductives
(iii) a local context registering types of De Bruijn indexes.

As we have seen in the syntax of terms, universe levels are not given explic-
itly in Coq. Instead, level variables are introduced and constraints between
them are registered in a graph of universes. This is the way typical ambi-
guity is implemented in Coq. A constraint is given by two levels and a
constraint_type (Lt, Le or Eq):

Definition univ_constraint := Level * constraint_type * Level.

Then the graph is given by a set of level variables and one of constraints. Sets,
coming from the Coq standard library, are implemented using lists without
duplicates. LevelSet.t means the type t of the module LevelSet.

Definition uGraph := LevelSet.t * ConstraintSet.t.

24 A. Anand et al.

Functions to query the graph are provided, for the moment they rely on a naive
implementation of the Bellman-Ford algorithm. check_leq u1 u2 checks if the
graph enforces u1 ≤ u2 and no_universe_inconsistency checks that the graph
has no negative cycle.

Constant and inductive declarations are grouped together, properly ordered
according to dependencies, in a global context (global_ctx), which is a list of
global declarations (global_decl).

Inductive global_decl :=
| ConstantDecl : ident → constant_decl → global_decl
| InductiveDecl : ident → minductive_decl → global_decl.

Definitions and axioms just associate a name to a universe context, and two
terms for the optional body and type. Inductives are more involved:

(* Declaration of one inductive type *)
Record inductive_body := { ind_name : ident;

ind_type : term; (* closed arity *)
ind_kelim : list sort_family; (* allowed elimination sorts *)
(* names, types, number of arguments of constructors *)
ind_ctors : list (ident * term * nat);
ind_projs : list (ident * term) (* names and types of projections *)}.

(* Declaration of a block of mutual inductive types *)
Record minductive_decl := { ind_npars : nat; (* number of parameters *)

ind_bodies : list inductive_body; (* inductives of the mutual block *)
ind_universes : universe_context (* universe constraints *) }.

In Coq internals, there are in fact two ways of representing a declaration: either
as a “declaration” or as an “entry”. The kernel takes entries as input, type-check
them and elaborate them to declarations. In Template-Coq, we provide both,
and provide an erasing function mind_decl_to_entry from declarations to entries
for inductive types.

Finally, local contexts are just list of local declarations: a type for lambda
bindings and a type and a body for let bindings.

Quoting and Unquoting the Environment. Template-Coq provides the com-
mand Quote Recursively Definition to quote an environment. This command
crawls the environment and quote all declarations needed to typecheck a given
term.

The other way, the commands Make Inductive allows declaring an inductive
type from its entry. For instance the following redefines a copy of N:

Make Inductive (mind_decl_to_entry
{| ind_npars := 0; ind_universes := [];

ind_bodies := [{|
ind_name := "nat";
ind_type := tSort [(lSet, false)];
ind_kelim := [InProp; InSet; InType];
ind_ctors := [("O", tRel 0, 0);

Towards Certified Meta-Programming with Typed Template-Coq 25

("S", tProd nAnon (tRel 0) (tRel 1), 1)];
ind_projs := [] |}] |}).

Fig. 2. Typing judgment for terms, excerpt

More examples of use of quoting/unquoting commands can be found in the
file test-suite/demo.v.

26 A. Anand et al.

3 Type Checking Coq in Coq

In Fig. 2, we present (an excerpt of) the specification of the typing judgment of
the kernel of Coq using the inductive type typing. It represents all the typing
rules of Coq

1. This includes the basic dependent lambda calculus with lets,
global references to inductives and constants, the match construct and primitive
projections. Universe polymorphic definitions and the well-formedness judgment
for global declarations are dealt with as well.

The only ingredients missing are the guard check for fixpoint and productivity
of cofixpoints and the positivity condition of mutual (co-) inductive types. They
are work-in-progress.

The typing judgment typing is mutually defined with typing_spine to account
for n-ary applications. Untyped reduction red1 and cumulativity cumul can be
defined separately.

Implementation. To test this specification, we have implemented the basic algo-
rithms for type-checking in Coq, that is, we implement type inference: given
a context and a term, output its type or produce a type error. All the rules
of type inference are straightforward except for cumulativity. The cumulativity
test is implemented by comparing head normal forms for a fast-path failure and
potentially calling itself recursively, unfolding definitions at the head in Coq’s
kernel in case the heads are equal. We implemented weak-head reduction by
mimicking Coq’s kernel implementation, which is based on an abstract machine
inspired by the KAM. Coq’s machine optionally implements a variant of lazy,
memoizing evaluation (which can have mixed results, see Coq’s PR #555 for
example), that feature has not been implemented yet.

The main difference with the OCaml implementation is that all of the func-
tions are required to be shown terminating in Coq. One possibility could be to
prove the termination of type-checking separately but this amounts to prove in
particular the normalization of CIC which is a complex task. Instead, we simply
add a fuel parameter to make them syntactically recursive and make OutOfFuel
a type error, i.e., we are working in a variant of the option monad.

Bootstrapping It. We can extract this checker to OCaml and reuse the setup
described in Sect. 2 to connect it with the reifier and easily derive a (partialy
verified) alternative checker for Coq’s .vo object files. Our plugin provides a
new command Template Check for typechecking definitions using the alternative
checker, that can be used as follows:

Require Import Template.TemplateCoqChecker List. Import ListNotations.
Definition foo := List.map (fun x ⇒ x + 3) [0; 1].
Template Check foo.

Our initial tests indicate that its running time is comparable to the coqchk
checker of Coq, as expected.
1 We do not treat metavariables which are absent from kernel terms and require a

separate environment for their declarations.

http://github.com/coq/coq/pull/555

Towards Certified Meta-Programming with Typed Template-Coq 27

4 Reification of Coq Commands

Coq plugins need to interact with the environment, for example by repeatedly
looking up definitions by name, declaring new constants using fresh names, or
performing computations. It is desirable to allow such programs to be written
in Coq (Gallina) because of the two following advantages. Plugin-writers no
longer need to understand the OCaml implementation of Coq and plugins are
no longer sensitive to changes made in the OCaml implementation. Also, when
plugins implementing syntactic models are proven correct in Coq, they provide a
mechanism to add axioms to Coq without compromising consistency (Sect. 5.3).

In general, interactions with the environment have side effects, e.g. the dec-
laration of new constants, which must be described in Coq’s pure setting. To
overcome this difficulty, we use the standard “free” monadic setting to represent
the operations involved in interacting with the environment, as done for instance
in Mtac [27].

Fig. 3. The monad of commands

28 A. Anand et al.

Table 1. Main Template-Coq commands

Vernacular command Reified command with
its arguments

Description

Eval tmEval red t Returns the evaluation of t
following the evaluation strategy
red (cbv, cbn, hnf, all or lazy)

Definition tmDefinition id t Makes the definition id := t
and returns the created constant
id

Axiom tmAxiom id A Adds the axiom id of type A and
returns the created constant id

Lemma tmLemma id A Generates an obligation of type
A, returns the created constant
id after all obligations close

About or Locate tmAbout id Returns Some gr if id is a
constant in the current
environment and gr is the
corresponding global reference.
Returns None otherwise.

tmQuote t Returns the syntax of t (of type
term)

tmQuoteRec t Returns the syntax of t and all
the declarations on which it
depends

tmQuoteInductive kn Returns the declaration of the
inductive kn

tmQuoteConstant kn b Returns the declaration of the
constant kn, if b is true the
implementation bypass opacity
to get the body of the constant

Make Definition tmMkDefinition id tm Adds the definition id := t
where t is denoted by tm

Make Inductive tmMkInductive d Declares the inductive denoted
by the declaration d

tmUnquote tm Returns the pair (A;t) where t
is the term whose syntax is tm
and A it’s type

tmUnquoteTyped A tm Returns the term whose syntax
is tm and checks that it is indeed
of type A

TemplateMonad is an inductive family (Fig. 3) such that TemplateMonad A repre-
sents a program which will finally output a term of type A. There are special con-

Towards Certified Meta-Programming with Typed Template-Coq 29

structor tmReturn and tmBind to provide (freely) the basic monadic operations.
We use the monadic syntactic sugar x ← t ; u for tmBind t (fun x ⇒ u).

The other operations of the monad can be classified in two categories: the
traditional Coq operations (tmDefinition to declare a new definition, . . .) and
the quoting and unquoting operations to move between Coq term and their syn-
tax or to work directly on the syntax (tmMkInductive to declare a new inductive
from its syntax for instance). An overview is given in Table 1.

A program prog of type TemplateMonad A can be executed with the com-
mand Run TemplateProgram prog. This command is thus an interpreter for
TemplateMonadprograms, implemented in OCaml as a traditional Coq plugin.
The term produced by the program is discarded but, and it is the point, a pro-
gram can have many side effects like declaring a new definition or a new inductive
type, printing something,

Let’s look at some examples. The following program adds the definitions
foo := 12 and bar := foo + 1 to the current context.

Run TemplateProgram (foo ← tmDefinition "foo" 12 ;
tmDefinition "bar" (foo +1)).

The program below asks the user to provide an inhabitant of N (here we
provide 3 * 3) and records it in the lemma foo ; prints its normal form ; and
records the syntax of its normal form in foo_nf_syntax (hence of type term).
We use Program’s obligation mechanism2 to ask for missing proofs, running
the rest of the program when the user finishes providing it. This enables the
implementation of interactive plugins.

Run TemplateProgram (foo ← tmLemma "foo" N ;
nf ← tmEval all foo ;
tmPrint "normal form: " ; tmPrint nf ;
nf_ ← tmQuote nf ;
tmDefinition "foo_nf_syntax" nf_).

Next Obligation. exact (3 * 3). Defined.

5 Writing Coq Plugins in Coq

The reification of syntax, typing and commands of Coq allow writing a Coq

plugin directly inside Coq, without requiring another language like OCaml and
an external compilation phase.

In this section, we describe three examples of such plugins: (i) a plugin that
adds a constructor to an inductive type, (ii) a re-implementation of Lasson’s
parametricity plugin3, and (iii) an implementation of a plugin that provides an
extension of CIC—using a syntactic translation—in which it is possible to prove
the negation of functional extensionality [8].

2 In Coq, a proof obligation is a goal which has to be solved to complete a definition.
Obligations were introduced by Sozeau [23] in the Program mode.

3 https://github.com/parametricity-coq/paramcoq.

https://github.com/parametricity-coq/paramcoq

30 A. Anand et al.

5.1 A Plugin to Add a Constructor

Our first example is a toy example to show the methodology of writing plugins in
Template-Coq. Given an inductive type I, we want to declare a new inductive
type I’ which corresponds to I plus one more constructor.

For instance, let’s say we have a syntax for lambda calculus:

Inductive tm : Set :=
| var : nat → tm | lam : tm → tm | app : tm → tm → tm.

And that in some part of our development, we want to consider a variation of tm
with a new constructor, e.g., let in. Then we declare tm’ with the plugin by:

Run TemplateProgram
(add_constructor tm "letin" (fun tm’ ⇒ tm’ → tm’ → tm’)).

This command has the same effect as declaring the inductive tm’ by hand:

Inductive tm’ : Set :=
| var’ : nat → tm’ | lam’ : tm’ → tm’
| app’ : tm’ → tm’ → tm’ | letin : tm’ → tm’ → tm’.

but with the benefit that if tm is changed, for instance by adding one new con-
structor, then tm’ is automatically changed accordingly. We provide other exam-
ples in the file test-suite/add_constructor.v, e.g. with mutual inductives.

We will see that it is fairly easy to define this plugin using Template-Coq.
The main function is add_constructor which takes an inductive type ind (whose
type is not necessarily Type if it is an inductive family), a name idc for the new
constructor and the type ctor of the new constructor, abstracted with respect
to the new inductive.

Definition add_constructor {A} (ind : A) (idc : ident) {B} (ctor : B)
: TemplateMonad unit
:= tm ← tmQuote ind ;

match tm with
| tInd ind0 _ ⇒

decl ← tmQuoteInductive (inductive_mind ind0) ;
ctor ← tmQuote ctor ;
d’ ← tmEval lazy (add_ctor decl ind0 idc ctor) ;
tmMkInductive d’

| _ ⇒ tmFail "The provided term is not an inductive"
end.

It works in the following way. First the inductive type ind is quoted, the
obtained term tm is expected to be a tInd constructor otherwise the function fails.
Then the declaration of this inductive is obtained by calling tmQuoteInductive,
the constructor is reified too, and an auxiliary function is called to add the
constructor to the declaration. After evaluation, the new inductive type is added
to the current context with tmMkInductive.

It remains to define the add_ctor auxiliary function to complete the definition
of the plugin. It takes a minductive_decl which is the declaration of a block of
mutual inductive types and returns a minductive_decl.

Towards Certified Meta-Programming with Typed Template-Coq 31

Definition add_ctor (mind : minductive_decl) (ind0 : inductive)
(idc : ident) (ctor : term) : minductive_decl

:= let i0 := inductive_ind ind0 in
{| ind_npars := mind.(ind_npars) ;

ind_bodies := map_i (fun (i : nat) (ind : inductive_body) ⇒
{| ind_name := tsl_ident ind.(ind_name) ;

ind_type := ind.(ind_type) ;
ind_kelim := ind.(ind_kelim) ;
ind_ctors :=

let ctors := map (fun ’(id, t, k) ⇒ (tsl_ident id, t, k)
)

ind.(ind_ctors) in
if Nat.eqb i i0 then
let n := length mind.(ind_bodies) in
let typ := try_remove_n_lambdas n ctor in
ctors ++ [(idc, typ, 0)]

else ctors;
ind_projs := ind.(ind_projs) |})

mind.(ind_bodies) |}.

Fig. 4. Unary parametricity translation and soundness theorem, excerpt (from [7])

The declaration of the block of mutual inductive types is a record. The field
ind_bodies contains the list of declarations of each inductive of the block. We
see that most of the fields of the records are propagated, except for the names
which are translated to add some primes and ind_ctors, the list of types of
constructors, for which, in the case of the relevant inductive (i0 is its number),
the new constructor is added.

5.2 Parametricity Plugin

We now show how Template-Coq permits to define a parametricity plugin that
computes the translation of a term following Reynolds’ parametricity [21,25].
We follow the already known approaches of parametricity for dependent type
theories [7,15], and provide an alternative to Keller and Lasson’s plugin.

32 A. Anand et al.

The definition in the unary case is described in Fig. 4. The soundness theorem
ensures that, for a term t of type A, [t]1 computes a proof of parametricity of
[t]0 in the sense that it has type [A]1 [t]0. The definition of the plugin goes in two
steps: first the definition of the translation on the syntax of term in Template-

Coq and then the instrumentation to connect it with terms of Coq using the
TemplateMonad. It can be found in the file translations/tsl param.v.

The parametricity translation of Fig. 4 is total and syntax directed, the two
components of the translation []0 and []1 are implemented by two recursive
functions tsl param0 and tsl param1.

Fixpoint tsl param0 (n : nat) (t : term) {struct t} : term :=
match t with
| tRel k ⇒ if k >= n then (* global variable *) tRel (2*k-n+1)

else (* local variable *) tRel k
| tProd na A B ⇒ tProd na (tsl param0 n A) (tsl param0 (n+1) B)
| _ ⇒ ...
end.

Fixpoint tsl param1 (E : tsl_table) (t : term) : term :=
match t with
| tRel k ⇒ tRel (2 * k)
| tSort s ⇒ tLambda (nNamed "A") (tSort s)

(tProd nAnon (tRel 0) (tSort s))
| tProd na A B ⇒

let A0 := tsl param0 0 A in let A1 := tsl param1 E A in
let B0 := tsl param0 1 B in let B1 := tsl param1 E B in
tLambda (nNamed "f") (tProd na A0 B0)
(tProd na (lift0 1 A0)

(tProd (tsl_name na) (subst_app (lift0 2 A1) [tRel 0])
(subst_app (lift 1 2 B1) [tApp (tRel 2) [tRel 1]])))

| tConst s univs ⇒ match lookup_tsl_table E (ConstRef s) with
| Some t ⇒ t
| None ⇒ default_term
end

| _ ⇒ ...
end.

On Fig. 4, the translation is presented in a named setting, so the introduction
of new variables does not change references to existing ones. That’s why, []0
is the identity. In the De Bruijn setting of Template-Coq, the translation
has to take into account the shift induced by the duplication of the context.
Therefore, the implementation tsl param0 of []0 is not the identity anymore. The
argument n of tsl param0 represents the De Bruijn level from which the variables
have been duplicated. There is no need for such an argument in tsl param1, the
implementation of []1, because in this function all variables are duplicated.

The parametricity plugin not only has to be defined on terms of CIC but also
on additional terms dealing with the global context. In particular, constants are
translated using a translation table which records the translations of previously
processed constants.

Towards Certified Meta-Programming with Typed Template-Coq 33

Definition tsl_table := list (global_reference * term).

If a constant is not in the translation table we return a dummy default_term,
considered as an error (this could also be handled by an option monad).

We have also implemented the translation of inductives and pattern match-
ing. For instance the translation of the equality type eq produces the inductive
type:

Inductive eqt A (At : A → Type) (x : A) (xt : At x)
: ∀ H, At H → x = H → Prop :=
| eq_reflt : eqt A At x xt x xt eq_refl.

Then [eq]1 is given by eqt and [eq refl]1 by eq reflt.
Given tsl param0 and tsl param1 the translation of the declaration of a block

of mutual inductive types is not so hard to get. Indeed, such a declaration mainly
consists of the arities of the inductives and the types of constructors; and the
one of the translated inductive are produced by translation of the original ones.

Definition tsl_mind_decl (E : tsl_table) (kn : kername)
(mind : minductive_decl) : minductive_decl.

In a similar manner, we can translate pattern-matching. Note that the plugin
does not support fixpoints and cofixpoints for the moment.

Now, it remains to connect this translation defined on reified syntax term
to terms of Coq. For this, we define the new command tTranslate in the
TemplateMonad.

Definition tTranslate (E : tsl_table) (id : ident)
: TemplateMonad tsl_table.

When id is a definition, the command recovers the body of id (as a term) using
tmQuoteConstant and then translates it and records it in a new definition idt. The
command returns the translation table E extended by (id, idt). In the case id
is an inductive type or a constructor then the command does basically the same
but extends the translation table with both the inductive and the constructors.
If id is an axiom or not a constant the command fails.

Here is an illustration coming from the work of Lasson [16] on the automatic
proofs of (ω-)groupoid laws using parametricity. We show that all function of
type ID := ∀ A x y, x = y → x = y are identity functions. First we need to
record the translations of eq and ID in a term table of type tsl_table.

Run TemplateProgram (table ← tTranslate [] "eq" ;
table ← tTranslate table "ID" ;
tmDefinition "table" table).

Then we show that every parametric function on ID is pointwise equal to the
identity using the predicate fun y ⇒ x = y.

Lemma param_ID (f : ID) : IDt f → ∀ A x y p, f A x y p = p.
Proof.

intros H A x y p. destruct p.
destruct (H A (fun y ⇒ x = y) x eq_refl

34 A. Anand et al.

x eq_refl eq_refl (eq_reflt _ _)).
reflexivity.

Qed.

Then we define a function myf := p �→ p � p-1 � p and get its parametricity proof
using the plugin.

Definition myf : ID := fun A x y p ⇒ eq_trans (eq_trans p(eq_sym p)) p.

Run TemplateProgram (table ← tTranslate table "eq_sym" ;
table ← tTranslate table "eq_trans" ;
tTranslate table "myf").

It is then possible to deduce automatically that p � p-1 � p = p for all p : x = y.

Definition free_thm_myf: ∀ A x y p, myf A x y p = p := param_ID myf myft.

5.3 Intensional Function Plugin

Our last illustration is a plugin that provides an intensional flavour to functions
and thus allows negating functional extensionality (FunExt). This is a simple
example of syntactical translation which enriches the logical power of Coq,
in the sense that new theorems can be proven (as opposed to the parametric-
ity translation which is conservative over CIC). See [8] for an introduction to
syntactical translations and a complete description of the intensional function
translation.

Fig. 5. Intensional function translation, excerpt (from [8])

Even if the translation is very simple as it just adds a boolean to every
function (Fig. 5), this time, it is not fully syntax directed. Indeed the notation
for pairs hide some types:

[fun (x:A) ⇒ t] := pair (∀ x:[A]. ?T) bool (fun (x:[A]) ⇒ [t]) true

and we can not recover the type ?T from the source term. There is thus a mis-
match between the lambdas which are not fully annotated and the pairs which
are.4

However we can use the type inference algorithm of Sect. 3 implemented on
Template-Coq terms to recover the missing information.

[fun (x:A) ⇒ t] := let B := infer Σ (Γ, x:[A]) t in
pair (∀ (x:[A]). B) bool (fun (x:[A]) ⇒ [t]) true

4 Note that there is a similar issue with applications and projections, but which can
be circumvented this time using (untyped) primitive projections.

Towards Certified Meta-Programming with Typed Template-Coq 35

Compared to the parametricity plugin, the translation function has a more com-
plex type as it requires the global and local contexts. However, we can gen-
eralize the tTranslate command so that it can be used for both the para-
metricity and the intensional function plugins. The implementation is in the
files translations/translation_utils.v and translations/tsl_fun.v.

Extending Coq Using Plugins. The intensional translation extends the logical
power of Coq as it is possible for instance to negate FunExt. In this perspective,
we defined a new command:

Definition tImplement (Σ : global_ctx * tsl_table)
(id : ident) (A : Type)

: TemplateMonad (global_ctx * tsl_table).

which computes the translation A’ of A, then asks the user to inhabit the type
A’ by generating a proof obligation and then safely adds the axiom id of type A
to the current context. By safely, we mean that the correction of the translation
ensures that no inconsistencies are introduced.

For instance, here is how to negate FunExt. We use for that two pairs
(fun x ⇒ x; true) and (fun x ⇒ x; false) in the interpretation of functions
from unit to unit, which are extensionally both the identity, but differ inten-
sionally on their boolean.

Run TemplateProgram (TC ← tTranslate ([],[]) "eq" ;
TC ← tTranslate TC "False" ;
tImplement TC "notFunext"

((∀ A B (f g : A → B), (∀ x:A, f x = g x) → f = g) → False)).
Next Obligation.

tIntro H. tSpecialize H unit. tSpecialize H unit.
tSpecialize H (fun x ⇒ x; true). tSpecialize H (fun x ⇒ x; false).
tSpecialize H (fun x ⇒ eq_reflt _ _; true).
apply eqt_eq in H; discriminate.

Defined.

where tIntro and tSpecialize are special versions of the corresponding intro
and specialize tactics of Coq to deal with extra booleans appearing in the
translated terms. After this command, the axiom notFunext belongs to the envi-
ronment, as if it where added with the Axiom command. But as we have inhab-
ited the translation of its type, the correctness of the translation ensures that
no inconsistency were introduced.

Note that we could also define another translation, e.g. the setoid translation,
in which FunExt is inhabited. This is not contradictory as the two translations
induce two different logical extensions of Coq, which can not be combined.

36 A. Anand et al.

6 Related Work and Future Work

Meta-Programming is a whole field of research in the programming languages
community, we will not attempt to give a detailed review of related work here. In
contrast to most work on meta-programming, we provide a very rough interface
to the object language: one can easily build ill-scoped and ill-typed terms in our
framework, and staging is basic. However, with typing derivations we provide a
way to verify meta-programs and ensure that they do make sense.

The closest cousin of our work is the Typed Syntactic Meta-Programming [11]
proposal in Agda, which provides a well-scoped and well-typed interface to a
denotation function, that can be used to implement tactics by reflection. We
could also implement such an interface, asking for a proof of well-typedness on
top of the tmUnquoteTyped primitive of our monad.

Intrinsically typed representations of terms in dependent type-theory is an
area of active research. Most solutions are based on extensions of Martin-Löf
Intensional Type Theory with inductive-recursive or quotient inductive-inductive
types [2,9], therefore extending the meta-theory. Recent work on verifying sound-
ness and completeness of the conversion algorithm of a dependent type theory
(with natural numbers, dependent products and a universe) in a type theory with
IR types [1] gives us hope that this path can nonetheless be taken to provide
the strongest guarantees on our conversion algorithm. The intrinsically-typed
syntax used there is quite close to our typing derivations.

Another direction is taken by the Œuf certified compiler [19], which restricts
itself to a fragment of Coq for which a total denotation function can be defined,
in the tradition of definitional interpreters advocated by Chlipala [10]. This setup
should be readily accommodated by Template-Coq.

The translation + plugin technique paves the way for certified translations
and the last piece will be to prove correctness of such translations. By correctness
we mean computational soundness and typing soundness (see [8]), and both can
be stated in Template-Coq. Anand has made substantial attempts in this
direction to prove the computational soundness, in Template-Coq, of a variant
of parametricity providing stronger theorems for free on propositions [3]. This
included as a first step a move to named syntax that could be reused in other
translations.

Our long term goal is to leverage this technique to extend the logical and
computational power of Coq using, for instance, the forcing translation [14] or
the weaning translation [20].

When performance matters, we can extract the translation to OCaml and
use it like any ordinary Coq plugin. This relies on the correctness of extraction,
but in the untyped syntax + typing judgment setting, extraction of translations
is almost an identity pretty-printing phase, so we do not lose much confidence.
We can also implement a template monad runner in OCaml to run the plugins
outside Coq. Our first experiments show that we could gain a factor 10 for the
time needed to compute the translation of a term. Another solution would be to
use the certified CertiCoq compiler, once it supports a kind of foreign function
interface, to implement the TemplateMonad evaluation.

Towards Certified Meta-Programming with Typed Template-Coq 37

The last direction of extension is to build higher-level tools on top of the
syntax: the unification algorithm described in [28] is our first candidate. Once
unification is implemented, we can look at even higher-level tools: elaboration
from concrete syntax trees, unification hints like canonical structures and type
class resolution, domain-specific and general purpose tactic languages. A key
inspiration in this regard is the work of Malecha and Bengston [17] which imple-
mented this idea on a restricted fragment of CIC.

Acknowledgments. This work is supported by the CoqHoTT ERC Grant 64399 and
the NSF grants CCF-1407794, CCF-1521602, and CCF-1646417.

References

1. Abel, A., Öhman, J., Vezzosi, A.: Decidability of conversion for type theory in
type theory. PACMPL 2(POPL), 23:1–23:29 (2018). http://doi.acm.org/10.1145/
3158111

2. Altenkirch, T., Kaposi, A.: Type theory in type theory using quotient inductive
types. In: POPL 2016, pp. 18–29. ACM, New York (2016). http://doi.acm.org/10.
1145/2837614.2837638

3. Anand, A., Morrisett, G.: Revisiting parametricity: inductives and uniformity of
propositions. In: CoqPL 2018, Los Angeles, CA, USA (2018)

4. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R.,Belanger,
O.S., Sozeau, M., Weaver, M.: CertiCoq: a verified compiler for Coq. In: CoqPL,
Paris, France (2017). http://conf.researchr.org/event/CoqPL-2017/main-certicoq-
a-verified-compiler-for-coq

5. Armand, M., Grégoire, B., Spiwack, A., Théry, L.: Extending Coq with imperative
features and its application to SAT verification. In: Kaufmann, M., Paulson, L.C.
(eds.) ITP 2010. LNCS, vol. 6172, pp. 83–98. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14052-5_8

6. Barras, B.: Auto-validation d’un système de preuves avec familles inductives. Thèse
de doctorat, Université Paris 7, November 1999

7. Bernardy, J.P., Jansson, P., Paterson, R.: Proofs for free: parametricity for depen-
dent types. J. Funct. Program. 22(2), 107–152 (2012)

8. Boulier, S., Pédrot, P.M., Tabareau, N.: The next 700 syntactical models of type
theory. In: CPP 2017, pp. 182–194. ACM, Paris (2017)

9. Chapman, J.: Type theory should eat itself. Electron. Notes Theor. Comput. Sci.
228, 21–36 (2009). Proceedings of LFMTP 2008. http://www.sciencedirect.com/
science/article/pii/S157106610800577X

10. Chlipala, A.: Certified Programming with Dependent Types, vol. 20. MIT Press,
Cambridge (2011)

11. Devriese, D., Piessens, F.: Typed syntactic meta-programming. In: ICFP 2013, vol.
48, pp. 73–86. ACM (2013). http://doi.acm.org/10.1145/2500365.2500575

12. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogramming
framework for formal verification, pp. 34:1–34:29, September 2017

13. Forster, Y., Kunze, F.: Verified extraction from Coq to a lambda-calculus. In: Coq
Workshop 2016 (2016). https://www.ps.uni-saarland.de/forster/coq-workshop-
16/abstract-coq-ws-16.pdf

http://doi.acm.org/10.1145/3158111
http://doi.acm.org/10.1145/3158111
http://doi.acm.org/10.1145/2837614.2837638
http://doi.acm.org/10.1145/2837614.2837638
http://conf.researchr.org/event/CoqPL-2017/main-certicoq-a-verified-compiler-for-coq
http://conf.researchr.org/event/CoqPL-2017/main-certicoq-a-verified-compiler-for-coq
https://doi.org/10.1007/978-3-642-14052-5_8
https://doi.org/10.1007/978-3-642-14052-5_8
http://www.sciencedirect.com/science/article/pii/S157106610800577X
http://www.sciencedirect.com/science/article/pii/S157106610800577X
http://doi.acm.org/10.1145/2500365.2500575
https://www.ps.uni-saarland.de/forster/coq-workshop-16/abstract-coq-ws-16.pdf
https://www.ps.uni-saarland.de/forster/coq-workshop-16/abstract-coq-ws-16.pdf

38 A. Anand et al.

14. Jaber, G., Lewertowski, G., Pédrot, P.M., Sozeau, M., Tabareau, N.: The defini-
tional side of the forcing. In: LICS 2016, New York, NY, USA, pp. 367–376 (2016).
http://doi.acm.org/10.1145/2933575.2935320

15. Keller, C., Lasson, M.: Parametricity in an impredicative sort. CoRR
abs/1209.6336 (2012). http://arxiv.org/abs/1209.6336

16. Lasson, M.: Canonicity of weak ω-groupoid laws using parametricity theory. Elec-
tron. Notes Theor. Comput. Sci. 308, 229–244 (2014)

17. Malecha, G., Bengtson, J.: Extensible and efficient automation through reflective
tactics. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 532–559. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1_21

18. Malecha, G.M.: Extensible proof engineering in intensional type theory. Ph.D. the-
sis, Harvard University (2014)

19. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: mini-
mizing the Coq extraction TCB. In: Proceedings of CPP 2018, pp. 172–185 (2018).
http://doi.acm.org/10.1145/3167089

20. Pédrot, P., Tabareau, N.: An effectful way to eliminate addiction to dependence.
In: LICS 2017, Reykjavik, Iceland, pp. 1–12 (2017). https://doi.org/10.1109/LICS.
2017.8005113

21. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP
Congress, pp. 513–523 (1983)

22. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. SIGPLAN Not.
37(12), 60–75 (2002). http://doi.acm.org/10.1145/636517.636528

23. Sozeau, M.: Programming finger trees in Coq. In: ICFP 2007, pp. 13–24. ACM,
New York (2007). http://doi.acm.org/10.1145/1291151.1291156

24. Taha, W., Sheard, T.: Multi-stage programming with explicit annotations. In:
PEPM 1997, pp. 203–217. ACM, New York (1997). http://doi.acm.org/10.1145/
258993.259019

25. Wadler, P.: Theorems for free! In: Functional Programming Languages and Com-
puter Architecture, pp. 347–359. ACM Press (1989)

26. van der Walt, P., Swierstra, W.: Engineering proof by reflection in Agda. In: Hinze,
R. (ed.) IFL 2012. LNCS, vol. 8241, pp. 157–173. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41582-1_10

27. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac:
a monad for typed tactic programming in Coq. J. Funct. Program. 25 (2015).
https://doi.org/10.1017/S0956796815000118

28. Ziliani, B., Sozeau, M.: A comprehensible guide to a new unifier for CIC
including universe polymorphism and overloading. J. Funct. Program. 27,
e10 (2017). http://www.irif.univ-paris-diderot.fr/sozeau/research/publications/
drafts/unification-jfp.pdf

http://doi.acm.org/10.1145/2933575.2935320
http://arxiv.org/abs/1209.6336
https://doi.org/10.1007/978-3-662-49498-1_21
http://doi.acm.org/10.1145/3167089
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
http://doi.acm.org/10.1145/636517.636528
http://doi.acm.org/10.1145/1291151.1291156
http://doi.acm.org/10.1145/258993.259019
http://doi.acm.org/10.1145/258993.259019
https://doi.org/10.1007/978-3-642-41582-1_10
https://doi.org/10.1017/S0956796815000118
http://www.irif.univ-paris-diderot.fr/sozeau/research/publications/drafts/unification-jfp.pdf
http://www.irif.univ-paris-diderot.fr/sozeau/research/publications/drafts/unification-jfp.pdf

Towards Certified Meta-Programming with Typed Template-Coq 39

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Formalizing Ring Theory in PVS

Andréia B. Avelar da Silva1(B), Thaynara Arielly de Lima2,
and André Luiz Galdino3

1 Faculdade de Planaltina, Universidade de Braśılia, Braśılia D.F., Brazil
andreiaavelar@unb.br

2 Instituto de Matemática e Estat́ıstica, Universidade Federal de Goiás,
Goiânia, Brazil

thaynaradelima@ufg.br
3 Unidade Acadêmica Especial de Matemática e Tecnologia,

Universidade Federal de Goiás, Catalão, Brazil
andre galdino@ufg.br

Abstract. This work describes the ongoing specification and formal-
ization in the PVS proof assistant of some definitions and theorems of
ring theory in abstract algebra, and briefly presents some of the results
intended to be formalized. So far, some important theorems from ring
theory were specified and formally proved, like the First Isomorphism
Theorem, the Binomial Theorem and the lemma establishing that every
finite integral domain with cardinality greater than one is a field. The
goal of the project in progress is to specify and formalize in PVS the
main theorems from ring theory presented in undergraduate textbooks
of abstract algebra, but in the short term the authors intended to for-
malize: (i) the Second and the Third Isomorphism Theorems for rings;
(ii) the primality of the characteristic of a ring without zero divisors;
(iii) definitions of prime and maximal ideals and theorems related with
those concepts. The developed formalization applies mainly a part of the
NASA PVS library for abstract algebra specified in the theory algebra.

1 Introduction

Ring theory has a wide range of applications in the most varied fields of
knowledge. According to [18], the segmentation of digital images becomes more
efficiently automated by applying the Zn ring to obtain index of similarity
between images. Furthermore, according to [3] finite commutative rings has an
important role in areas like combinatorics, analysis of algorithms, algebraic cryp-
tography and coding theory. In particular in coding theory, finite fields (which
are commutative rings with unity) and polynomials over finite fields has been
widely applied in description of redundant codes [16].

Andréia B. Avelar da Silva was partially supported by District Federal Research
Foundation - FAPDF.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 40–47, 2018.
https://doi.org/10.1007/978-3-319-94821-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_3&domain=pdf

Formalizing Ring Theory in PVS 41

Fig. 1. Hierarchy of the PVS theory rings, which imports the theory algebra from
nasalib. The four main branches developed so far are highlighted.

The authors has the project that consists in to formalize in the PVS proof
assistant the basic theory for rings presented in undergraduate textbooks of
abstract algebra. This formalization would make possible the formal verification
of more complex theories involving rings in their scope. This is an ongoing for-
malization and the lemmas already verified constitute the theory rings, which
is a collection of subtheories that will be described in Sect. 2. The PVS is a
specification and verification system which provides an integrated environment
for development and analysis of formal specifications. An important and well-
known library for PVS is the NASA PVS Library1 (nasalib) that contains many
theories in several subjects, like analysis [5], topology [15], term rewriting sys-
tems [8], among others. In particular, a formal verification for basic abstract
algebra is part of nasalib, in the theory algebra [4], where basic concepts about
groups, rings and fields were specified. However the content of the theory algebra,
for instance about rings, is essentially definitions and basic results obtained from
such definitions. To the best knowledge of the authors, the only formalization
involving rings in PVS is the theory algebra. The project proposed by the authors
was motivated by the wish to contribute with the enrichment of mathematics
formalizations in the available PVS libraries, by formalizing non basic results
about rings that are not in nasalib.

The main contributions presented in this paper consist in the formalization
of important theorems such that the First Isomorphism Theorem, the Binomial
Theorem for rings and the result establishing that every finite integral domain
with cardinality greater than one is a field. Furthermore, important concepts
and lemmas from nasalib theories and prelude (the native library of PVS which
contains a collection of theories about functions, sets, predicates, logic, num-
bers, among others) were generalized in order to build the ongoing theory rings.
The present formalization follows the approach of the textbooks [2,7,11,12], but
mainly the Hungerford textbook [12].

1 Available at https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/.

https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/

42 A. B. Avelar da Silva et al.

2 The theory rings: Formalized so Far

In this section it will be described the collection of definitions, lemmas and the-
orems specified and formalized in the main theory rings. These results range
from basic properties for rings, like an alternative characterization for sub-
rings, to nontrivial formalizations, like the formalization of the classical First
Isomorphism Theorem for rings.

subring_equiv: LEMMA
subring?(S,R) IFF nonempty?(S) AND subset?(S,R)
AND (FORALL (x,y:(S)):

member(x-y,S) AND member(x*y,S))

R_sigma(low,high,F): Recursive T =
IF low > high THEN zero ELSIF high = low
THEN F(low) ELSE R_sigma(low,high-1,F)+F(high)

ENDIF MEASURE abs(high+1-low)

left_zd?(x: nz_T): bool =
EXISTS (y:nz_T): x*y = zero

nlzd: TYPE = {x:T | x = zero OR NOT left_zd?(x)}

nzd_cancel_left: LEMMA FORALL (a:nlzd, b,c:T):
a*b = a*c IMPLIES (a = zero OR b = c)

--
R_homomorphism?(R1,R2)(phi:[(R1)->(R2)]): bool =
FORALL(a,b:(R1)):phi(s1(a,b))=s2(phi(a),phi(b))

AND phi(p1(a,b))=p2(phi(a),phi(b))

R_monomorphism?(R1,R2)(phi:[(R1)->(R2)]): bool =
injective?(phi) AND R_homomorphism?(R1,R2)(phi)

R_epimorphism?(R1,R2)(phi:[(R1)->(R2)]): bool =
surjective?(phi) AND R_homomorphism?(R1,R2)(phi)

R_isomorphism?(R1,R2)(phi:[(R1)->(R2)]): bool =
R_monomorphism?(R1,R2)(phi)
AND R_epimorphism?(R1,R2)(phi)

R_kernel(R1,R2)(phi: R_homomorphism(R1,R2)):
subgroup[T1,s1,zero1](R1) = kernel(R1,R2)(phi)

--
multiple_char: LEMMA
(EXISTS (m:int): k = m * charac(R))
IFF (FORALL (x:(R)): times(x, k) = zero)

char_1_zero_ring: LEMMA
charac(R) = 1 IFF R = singleton(zero)

--
power_commute: LEMMA x*y = y*x IMPLIES
power(x,m)*power(y,i) = power(y,i)*power(x,m)

gen_times_int_one: LEMMA times(one,k) = zero
IMPLIES times(x, k) = zero

Fig. 2. Highlighted specifications in the
subtheories ring basic properties, ring

homomorphisms def, ring characteristic

def and ring with one basic properties.

The current state of formal-
ization of the PVS theory rings,
proposed by the authors, consists
of some subtheories divided in
four main branches (Fig. 1), each
one dedicated to formalize lem-
mas involving: (i) characteristic of
rings and rings with one; (ii) finite
integral domain; (iii) Binomial
Theorem for rings; (iv) homomor-
phism of rings. Those branches
will be described in the following
subsections. The basis of the devel-
opment is constituted by some
subtheories for fundamental defi-
nitions and results regarding ring
theory, namely:

ring basic properties: This sub-
theory contains basic results about
rings not specified in the theory
algebra. The main contributions of
this subtheory are: (i) An alterna-
tive characterization for subrings,
Lemma subring equiv (Fig. 2); (ii)
The formalization of the recur-
sive Function R sigma that per-
forms a summation of elements
of arbitrary types and its proper-
ties (Fig. 2). In order to ensure its
totality it was necessary to provide
a decreasing measure applied to
prove the TCC’s (type correctness
conditions - lemmas automatically
generated by the prover during the
process of type checking) for ter-
mination. Such function general-
izes the summation of reals defined
in the nasalib theory reals; and

Formalizing Ring Theory in PVS 43

(iii) The definition of a non zero divisor element type, necessary in the for-
malization of a more general cancellation law that holds in an arbitrary ring
since the cancelled element has the non zero divisor type (Fig. 2).

ring ideal def: The concepts of left and right ideal, as well as the type ideal
of a ring were established.

ring homomorphisms def: Such subtheory contains the definition of homomor-
phism of rings and its variants: injective, surjective and bijective homomorphism.
In addition, the kernel of a homomorphism of rings (Fig. 2) is defined from the
kernel of a homomorphism of groups specified in the theory algebra.

ring characteristic def: The specification of the notion of characteristic of a
ring and basic results were established. Two lemmas deserve to be highlighted:
multiple char and char 1 zero ring (Fig. 2). The former is a characterization of
multiples of the characteristic of a ring, and the latter states the characteristic
of the zero ring as being the integer 1.

ring with one basic properties: In this subtheory one has two important
results, power commute and gen times int one (Fig. 2), to formalize a version of
the Binomial Theorem for rings and properties involving characteristic of a ring.

Note that, in some specified lemmas in Fig. 2, the universal quantifier on
free variables is implicit. This is possible because the PVS syntax allows one to
declare free variables anywhere in the specification file before lemmas, functions
and definitions that use those variables. Furthermore, it is possible to use a set
inside parentheses to denote the type of its elements.

2.1 The subtheory ring general results

homomorphism_Z_to_R: LEMMA
charac(R) > 0 IMPLIES
(LET phi:[(fullset[int])->(R)] =

(LAMBDA (m:int): times(one, m)) IN
R_homomorphism?(fullset[int],R)(phi) AND
R_kernel(fullset[int],R)(phi)
={x:int | EXISTS (k:int): x = k*charac(R)})

R_bino_theo: LEMMA
FORALL(x,y:(R)): x*y = y*x IMPLIES
power(x+y,n) = R_sigma(0,n,F_bino(n,x,y))

F_bino(n,x,y): [nat -> T] = LAMBDA k:
IF k > n THEN zero ELSE
times(power(x,k)*power(y,n-k),C(n,k)) ENDIF

Fig. 3. Highlighted specifications in the sub-
theories ring general results and ring

binomial theorem.

The main result in this branch con-
sists in to determine the kernel of the
homomorphism from the ring of inte-
gers to a ring R, illustrated in the
Lemma homomorphism Z to R (Fig. 3),
as the set of multiples of the charac-
teristic of the ring R. Its proof follows
from the Lemmas gen times int one

and multiple char, respectively.
It is intended to extend this

subtheory establishing results about,
for instance, the characteristic of non
zero divisor rings and, in particular,
of integral domains.

2.2 The subtheory finite integral domain

The subtheory finite integral domain extends the subtheory integral domain

from algebra. The most important theorem states that every finite integral

44 A. B. Avelar da Silva et al.

domain with cardinality greater than 1 is a field. The formalization follows the
approach in [11]. However, it is important to remark that in [11] a necessary
hypothesis is omitted, since the author does not require that the cardinality of
the finite integral domain is greater than 1, and the lack of this requirement
makes the formal proof unachievable, once in this case the zero ring must be
consider and obviously such integral domain is not a field.

Also, in this subtheory it was necessary to formalize a result generalizing the
pigeonhole principle for an arbitrary set with elements of an arbitrary type, since
the pigeonhole principle in the prelude is restricted to subsets of N.

2.3 The subtheory ring binomial theorem

ideal_is_normal_subgroup: LEMMA
ideal?(I,R) IMPLIES normal_subgroup?(I,R)

cosets(R:ring,I:ideal(R)):TYPE
= left_cosets(R,I)

add(R:ring,I:ideal(R)):
[cosets(R,I),cosets(R,I)->cosets(R,I)]
= mult(R,I)

product(R:ring, I:ideal(R))
(A,B: cosets(R,I)):cosets(R,I) =

lc_gen(R,I,A)*lc_gen(R,I,B) + I

ring_cosets: LEMMA FORALL(R:ring,I:ideal(R)):
ring?[cosets(R,I),add(R,I),product(R,I),I]
({s:cosets(R,I) | EXISTS (a:(R)):s = a+I})

image_homo_is_subring: LEMMA
FORALL (phi: R_homomorphism(R1,R2)):

subring?(image(phi)(R1),R2)

monomorphism_charac: LEMMA
FORALL (phi: R_homomorphism(R1,R2)):

R_monomorphism?(R1,R2)(phi) IFF
R_kernel(R1,R2)(phi) = singleton(zero1))

kernel_homo_is_ideal: LEMMA
FORALL (phi: R_homomorphism(R1,R2)):

ideal?(R_kernel(R1,R2)(phi),R1)

first_isomorphism_th: THEOREM
FORALL(phi: R_homomorphism(R,S)):
R_isomorphic?[cosets(R, R_kernel(R,S)(phi)),

add(R,R_kernel(R,S)(phi)),
product(R,R_kernel(R,S)(phi)),
R_kernel(R,S)(phi),D,s,p,zerod]

(/[T,+,*,zero]
(R,R_kernel(R,S)(phi)),image(phi)(R))

Fig. 4. Highlighted specifications in the
subtheories ring ideal, quotient ring,
ring homomorphism lemmas and ring iso-

morphism theorems.

From the recursive Function R sigma

in ring basic properties and its
properties and the Lemma power

commute in ring with one basic proper-

ties one can formally prove the Bino-
mial Theorem for rings R bino theo

(Fig. 3), where F bino(n, x, y) =
(
n
k

) ·
xkyn−k.

2.4 The subtheory
ring isomorphism theorems

The subtheory ring isomorphism

theorems is the more elaborated one
among the four highlighted subtheo-
ries in Fig. 1. At this point, the most
important lemma of such subtheory
is the First Isomorphism Theorem
for rings. In order to formalize the
results in ring isomorphism theorems

relevant notions related with ide-
als, quotient rings and homomor-
phisms of rings were specified in the
subtheories:

ring ideal: The main lemma for-
malized in this subtheory states
that the ideal of ring is a nor-
mal subgroup (Fig. 4). This result
was strongly applied to verify the
TCC’s in the subtheory ring

isomorphism theorems, generated from
the specification of quotient rings, in
the subtheory quotient ring, which in turn imports the subtheory factor groups

Formalizing Ring Theory in PVS 45

from the theory algebra, where it is required that the type of the parameters in
the quotient of groups has to be a group G and a normal subgroup of G.

quotient rings: The algebra of quotient rings is builded by specifying the type
cosets and defining the operations of addition, add, and multiplication, product,
between two cosets (Fig. 4). From that it was formalized that the structure
(cosets(R,I),add(R,I),product(R,I),I) (Fig. 4) is a ring, where R is a ring and
I is an ideal of R.

ring homomorphism lemmas: Classical results were formalized, such as, given a
function φ : R → S from a ring (R,+R, ∗R, eR) to a ring (S,+S, ∗S, eS), if φ is
a homomorphism then: (i) the kernel of φ, denoted as ker(φ), is an ideal of R;
(ii) the image of φ is a subring of S; and (iii) φ is a monomorphism iff the kernel
of φ is the set ker(φ) = {eR} (Fig. 4).

Additionally, in order to formalize the First Isomorphism Theorem
(Theorem 1), whose specification is in Fig. 4 (Theorem first isomorphism th), it
was necessary to specify and prove, in the subtheory ring isomorphism theorems,
other six auxiliary lemmas corresponding to the Lemma 1.

Lemma 1. If φ : R → S is a homomorphism of rings and I is an ideal of R
which is contained in the kernel of φ, then there is a unique homomorphism of
rings f : R/I → S such that f(a + I) = φ(a) for all a ∈ R. The image of f is
equal to the image of φ and ker(f) = ker(φ)/I. f is an isomorphism if and only
if φ is an epimorphism and ker(φ) = I.

Theorem 1 (First Isomorphism Theorem). If φ : R → S is a homomor-
phism of rings then φ induces an isomorphism of rings from R/ker(φ) to the
image of φ.

3 Related Work

In the literature, abstract algebra formalizations are available. In Coq results
about groups, rings and ordered fields were formalized as part of the FTA project
[9]. Also in Coq, [6] presents a formalization of rings with explicit divisibility.
In Nuprl and in Mizar it is provided a formal proof of the Binomial Theorem
for rings, [13,17] respectively. In ACL2 it is builded a hierarchy of algebraic
structures ranging from setoids to vector spaces focused on the verification of
computer algebra systems [10]. The Algebra Library of Isabelle/HOL [1] presents
an interesting collection of results in the algebraic hierarchy of rings, mainly
about groups, factorization over ideals, ring of integers and polynomial ring. To
the best of the authors knowledge, only in Mizar it was formalized the First
Isomorphism Theorem for rings [14]. However, the Mizar formalization differs
from the one presented in this paper in the sense that Mizar is a system of first
order set theory whereas PVS is a higher order logic system.

46 A. B. Avelar da Silva et al.

4 Conclusions and Future Work

The formalization presented in this paper shows the beginning of a project where
it is planned to develop in PVS the specification and formal verification of the
main theorems from ring theory. Some important theorems were formalized, as
well as several auxiliary results necessary to complete the current formalization
(Sect. 2). In numbers the theory rings consists of 141 proved formulas, from
which 68 are TCC’s. The specification files have together 1134 lines and their
size is 64 KB; the proof files have 17503 lines and 1.2 MB.

The next step would be the formalization of: (i) the Second and the Third Iso-
morphism Theorems; (ii) the Correspondence Theorem for rings; (iii) a theorem
establishing the primality of the characteristic of a ring without zero divisors, in
particular of a integral domain; (iv) definitions of prime and maximal ideals and
theorems related with those concepts, as for example the equivalence between
fields and the non existence of a proper ideal in commutative rings with one.

Ring theory has a number of applications, for example, coding theory,
segmentation of digital images, cryptography, among others. In this sense, this
formalization forms a basis for future formal verifications of more elaborated
theories involving rings and their properties.

References

1. Aransay, J., Ballarin, C., Hohe, S., Kammüller, F., Paulson, L.C.: The
Isabelle/HOL Algebra Library. Technical report, University of Cambridge - Com-
puter Laboratory, October 2017. http://isabelle.in.tum.de/library/HOL/HOL-
Algebra/document.pdf

2. Artin, M.: Algebra, 2nd edn. Pearson, Upper Saddle River (2010)
3. Bini, G., Flamini, F.: Finite commutative rings and their applications, vol. 680.

Springer Science & Business Media (2012)
4. Butler, R., Lester, D.: A PVS Theory for Abstract Algebra (2007). http://shemesh.

larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html. Accessed 22 Jan 2018
5. Butler, R.W.: Formalization of the integral calculus in the PVS theorem prover.

J. Formalized Reasoning 2(1), 1–26 (2009)
6. Cano, G., Cohen, C., Dénès, M., Mörtberg, A., Siles, V.: Formalized linear algebra

over elementary divisor rings in coq. Logical Meth. Comput. Sci. 12(2), Jun 2016
7. Dummit, D.S., Foote, R.M.: Abstract Algebra, 3rd edn. Wiley, New York (2003)
8. Galdino, A.L., Ayala-Rincón, M.: A PVS theory for term rewriting systems. Elec-

tron. Notes Theoret. Comput. Sci. 247, 67–83 (2009)
9. Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic

hierarchy in coq. J. Symbolic Comput. 34(4), 271–286 (2002)
10. Heras, J., Mart́ın-Mateos, F.J., Pascual, V.: Modelling algebraic structures and

morphisms in acl2. Appl. Algebra Eng. Commun. Comput. 26(3), 277–303 (2015)
11. Herstein, I.N.: Topics in Algebra, 2nd edn. Xerox College Publishing, Lexington

(1975)
12. Hungerford, T.W.: Algebra, Graduate Texts in Mathematics, vol. 73. Springer-

Verlag, New York-Berlin (1980)
13. Jackson, P.B.: Enhancing the Nuprl Proof Development System and Applying it

to Computational Abstract Algebra. Ph.D. thesis, Cornell University (1995)

http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf
http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

Formalizing Ring Theory in PVS 47

14. Kornilowicz, A., Schwarzweller, C.: The first isomorphism theorem and other prop-
erties of rings. Formalized Math. 22(4), 291–301 (2014)

15. Lester, D.: A PVS Theory for Continuity, Homeomorphisms, Connected and Com-
pact Spaces, Borel sets/functions (2009). http://shemesh.larc.nasa.gov/fm/ftp/
larc/PVS-library/pvslib.html. Accessed 22 Jan 2018

16. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cam-
bridge University Press, Cambridge (1994)

17. Schwarzweller, C.: The binomial theorem for algebraic structures. Formalized
Math. 09(3), 559–564 (2001)

18. Suárez, Y.G., Torres, E., Pereira, O., Pérez, C., Rodŕıguez, R.: Application of
the ring theory in the segmentation of digital images. Int. J. Soft Comput. Math.
Control 3(4) (2014)

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

Software Tool Support for Modular
Reasoning in Modal Logics of Actions

Samuel Balco1(B), Sabine Frittella2, Giuseppe Greco3, Alexander Kurz1,
and Alessandra Palmigiano4,5

1 Department of Informatics, University of Leicester, Leicester, England
sb782@leicester.ac.uk

2 Laboratoire d’Informatique Fondamentale d’Orléans, Orléans, France
3 Department of Languages, Literature and Communication,

Utrecht Institute of Linguistics, Utrecht, Netherlands
4 Faculty of Technology, Policy and Management, Delft University of Technology,

Delft, Netherlands
5 Department of Pure and Applied Mathematics, University of Johannesburg,

Johannesburg, South Africa

Abstract. We present a software tool for reasoning in and about propo-
sitional sequent calculi for modal logics of actions. As an example,
we implement the display calculus D.EAK of dynamic epistemic logic.
The tool generates embeddings of the calculus in the theorem prover
Isabelle/HOL for formalising proofs about D.EAK. Integrating propo-
sitional reasoning in D.EAK with inductive reasoning in Isabelle/HOL,
we verify the solution of the muddy children puzzle for any number of
muddy children. There also is a set of meta-tools that allows us to adapt
the software for a wide variety of user defined calculi.

1 Introduction

This paper is part of a long ranging project which aims at developing the proof
theory of a wide variety modal logics of actions. The logical calculi to be devel-
oped should

– have ‘good’ proof theoretic properties,
– be built modularly from smaller calculi,
– have applications in a wide range of situations not confined to computer sci-

ence.

In [18,19,22], we started from the observation that modal logics of actions such as
propositional dynamic logic (PDL) or dynamic epistemic logic (DEL), despite
having Hilbert style axiomatisations, typically did not have Gentzen systems
with good proof theoretic properties. We found that a more expressive extension
of sequent calculi, the display calculi, allow us to give a proof system D.EAK
for a logic of action and knowledge, which enjoys the following properties that
typically come with display calculi:
c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 48–67, 2018.
https://doi.org/10.1007/978-3-319-94821-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_4&domain=pdf

Reasoning in Display Calculi 49

– a cut-elimination theorem that can be proved by instantiating a meta-theorem
à la Belnap [7],

– modularity in the sense that—without endangering the cut-elimination
theorem—connectives and rules can be added freely as long as one adheres to
the ‘display format’.

During this work we recognized that software tool support and interactive the-
orem provers will have to play an important role in our project in order to both

– perform proofs in which we reason in our calculi,
– formalise proofs about our calculi.

In this paper, we present a software tool providing the necessary infrastructure
and an illustrating case study. The case study is of interest in its own right,
even if Lescanne in [32] already provides a formalisation of the solution of the
muddy-children puzzle. The propositional reasoning required is performed in the
propositional calculus D.EAK and embedded into Isabelle in such a way that
the necessary induction can be performed and verified in Isabelle.

Contributions. One aim of our software tool is to support research on the proof
theory of modal logics of actions. The typical derivations may be relatively small,
but they should be presented in a user interface in LATEX in a style familiar
to the working proof theorist. Moreover, in order to facilitate experimenting
with different rules and calculi, meta-tools are needed that construct a calculus
toolbox from a calculus description file.

Second aim is to support investigations into the question whether a calculus
is suited to reasoning in some application area. To perform relevant case stud-
ies, one must deal with much bigger derivations and additional features such as
abbreviations and derived rules are necessary. Another challenge is that applica-
tions may require additional reasoning outside the given calculus (e.g. induction),
for which we provide an interface with the theorem prover Isabelle.

More specifically, in the work presented in this paper, we focus on D.EAK and
aim for applications to epistemic protocols. In detail, we provide the following.

– A calculus description language that allows the specification of the terms/rules
and their typesetting in ASCII, Isabelle and LATEX in a calculus description
file.

– A program creating from a calculus description file the calculus toolbox, which
comprises the following.

• A shallow embedding of the calculus in the theorem prover Isabelle. The
shallow embedding encodes the terms and the rules of the calculus and
allows us to verify in the theorem prover whether a sequent is derivable
in D.EAK.

• A deep embedding of the calculus in Isabelle. The deep embedding also
has a datatype for derivations and allows us to prove theorems about
derivations.

• A user interface (UI) that supports

50 S. Balco et al.

∗ interactive creation of proof trees,
∗ simple automatic proof search (currently only up to depth 5),
∗ export of proof trees to LATEX and Isabelle,
∗ the use of derived rules, abbreviations, and tactics.

– A full formalisation of the proof system for dynamic epistemic logic of [22],
which is the first display calculus of the logic of Baltag-Moss-Solecki [6] (with-
out common knowledge).

– A fully formal proof of the solution of the muddy children puzzle for any
number of dirty children. This is done by verifying in Isabelle that the solution
of the muddy children puzzle can be derived in D.EAK for any number of
muddy children.

– A set of meta-tools that enables a user to change the calculus.

Case Study: Muddy Children. The muddy children puzzle was chosen
because it is a well-known example of an epistemic protocol and required us
to extend the tool from one supporting short proofs of theoretical value to larger
proofs in an application domain. On the UI side, this led us to add features
including abbreviations, macros (derived rules), and two useful tactics. On the
Isabelle side, we added a shallow embedding of D.EAK in which we do the
inductive proof that the well-known solution of the muddy children puzzle holds
for arbitrary number of children. Whereas most of the proof is done in D.EAK
using the UI and then automatically translating to Isabelle, the induction itself
is based on the higher order logic of Isabelle/HOL.

Related Work. The papers [13,14] pioneered the application of interactive the-
orem proving and Isabelle to the proof theory of display calculi of modal logic.
A sequent calculus for dynamic epistemic logic was given by [15] and results on
automatically proving correct the solution of the muddy children puzzle for small
numbers of dirty children are reported in [39]. Tableau systems for automatic
reasoning in epistemic logics with actions are studied in [1,2,35]. Even though
tableaux are close relatives of sequent calculi, tableaux are designed towards
efficient implementation whereas display calculi are designed to allow for a gen-
eral meta-theory and uniform implementation. Their precise relationship needs
further investigation in future work.

Comparison of Isabelle to Other Proof Assistants. The papers [31–33]
implement epistemic logic in the proof assistant Coq. It would be interesting to
conduct the work of this paper based on Coq to enable an in-depth comparison.
Isabelle has some advantages for us, in particular, (1) the proof language Isar,
(2) the sledgehammer method, and (3) export of theories into programming
languages such as Scala. This allows us to build the user interface (UI) directly
on the deep embedding of the calculus in Isabelle, thus reusing verified code.
This will be important to us in Sect. 4, where we use (1) and (2) in order to
write the mathematical parts of the proof of the solution of the muddy children
puzzle in a mathematical style close to [34] and we use (3) and the UI to build
the derivations in D.EAK.

Reasoning in Display Calculi 51

Outline. Section 2 reviews what is needed about D.EAK. Section 3 presents
the main components of the DEAK calculus toolbox. Section 4 discusses the
implementation of the muddy children puzzle. Section 5 explains the efforts we
have made to keep the tool parametric in the calculus. Section 6 concludes with
lessons learned and directions of future research.

2 Display Calculi and D.EAK

In this section, we will introduce Belnap’s display calculi [7], which are a refine-
ment of Gentzen sequent calculi. Having received widespread application (e.g.
[9,12,23,30,43]), we will argue that display calculi form a good framework for
systematically studying modal logics. As a case study, we will also introduce
a formalisation of the Display calculus for Epistemic Actions and Knowledge
(D.EAK) [22]; a display version of the the dynamic epistemic logic [42] of
Baltag-Moss-Solecki [6] without common knowledge.

The current paper is part of a wider project that seeks to establish display
calculi as a suitable framework for a wide variety of modal logics, both from the
point of view of proof theory and from the point of view of tools supporting the
reasoning in and about such logics. We use the D.EAK logic as a guiding example
to show some of the features of the tools presented in the latter sections, but
the tools and approaches presented in this paper do not depend on a detailed
knowledge of display logics or D.EAK in particular. A complete description of
D.EAK is available in [22] (where it is called D’.EAK).

Display Calculi. A tool or a framework for investigating modal logics in a
systematic fashion should not only support as many of these logics as possible,
it should also do this in a uniform way. That is, it should allow the user an easy
way to define their own logic in a suitable calculus description language, as well
as an easy way to combine already defined logics. After defining a new logic,
either from scratch or by combining given logics, a reasoning tool for the new
logic should be compiled automatically from the calculus description file.

Display calculi support such a modular and uniform approach in several
ways. Firstly, the display format is restricted enough to allow us to define logics
in a simple way: The language is given by a context free grammar and the
inference rules by Horn clauses which only contain either logical connectives or
their structural counterparts (and typically do not refer to external mechanisms
such as side-conditions or labels encoding worlds in a Kripke model). Yet, display
calculi are more expressive than sequent calculi (a wide array of logical properties
in the language of display calculi is simply not expressible via Gentzen calculi
[10]).

Secondly, the display format was invented because it supports a cut-
elimination meta-theorem, that is, any display calculus will enjoy cut-
elimination. Intuitively, this is due to the meaning of a connective changing
in a controlled way when the logic is extended, which in turn makes modular-
ity useful. Adding or removing so-called analytic structural rules to a display
calculus captures different logics, whilst still preserving cut elimination [11,25].

52 S. Balco et al.

Finally, display calculi aim to be transparent : the design of inference rules cor-
responds to a programming discipline and leads to a well-understood class of
algebraic, and via correspondence theory, Kripke semantics [11,25].

D.EAK is a proof system for (intuitionistic or classical) dynamic epistemic logic,
the abstract syntax of formulas being defined by the grammar

φ ::= p | ⊥ | � | φ ∧ φ | φ ∨ φ | φ → φ | [a]φ | [α]φ | 〈a〉φ | 〈α〉φ | 1α (1)

where p ranges over atomic propositions, a ranges over agents, with [a]φ standing
for “agent a knows φ”, and α ranges over actions with [α]φ standing for “φ
holds after α”. 1α represents the precondition of the action α in the sense of [6].
Negation is expressed by φ → ⊥.

Operational Rules. Display calculi are sequent calculi in which the rules follow
a particular format that guarantees good proof theoretic properties such as cut
elimination. One of the major benefits is modularity: different calculi can be
combined and rules can be added while the good properties are preserved.

The rules of the calculus are formulated in such a way that, in order to
apply a rule to a formula, the formula needs to be ‘in display’. For example, the
following or-introduction on the left (where ‘contexts’ are denoted by W,X, Y, Z
and formulas by A,B)

W,A � X Z,B � Y
(∨′

L)
W,Z,A ∨ B � X ,Y

(2)

is not permitted in a display calculus, since the formula A∨B must be introduced
in isolation as, for example, in our rule

A � X B � Y(∨L)
A ∨ B � X ;Y

(3)

where A and B are formulas and X,Y are arbitrary ‘contexts’. Contexts are
formalised below as ‘structures’, that is, as expressions formed from structural
connectives. In sequent calculi, there is typically only one structural connective
“,” but display calculi generalise this. To emphasise that “,” is now only one of
many structural connectives we write it as “;”.

Display Rules. In order to derive a rule such as (∨′
L) from the rule (∨L),

it becomes necessary to isolate formulas by moving contexts to the other side.
This is achieved by pairing the structural connectives such as “,” (written ‘;’
in D.EAK) with so-called adjoint (aka residuated) operators such as “>” and
adding bidirectional display rules

X ;Y � Z
(; , >)

Y � X > Z

Z � X ;Y
(>, ;)

X > Z � Y

which allow us to isolate, in this instance, Y on the left or right of the turnstile.

Reasoning in Display Calculi 53

The name display calculus derives from the requirement that the so-called display
property needs to hold: Each substructure can be isolated on the left-hand side,
or, exclusively, on the right-hand side. This is the reason why we can confine
ourselves, without loss of generality, to the special form of operational rules
discussed above.

Structures. A systematic way of setting this up for the set of formulas (1) is
to introduce structural connectives corresponding to the operational connectives
as follows.

Structural < > ; I {α} {α

} Φα {a} {a

}

Operational ∧ ← ∧ → ∧ ∨ � ⊥ 〈α〉 [α] 〈α

〉
[α

]

1α 〈a〉 [a] 〈a〉 [a

]

This leads to a two tiered calculus which has formulas and structures, with
structures generalising contexts and being built from structural connectives. We
briefly comment on the particular choice of structural connectives above. Keeping
with the aim of modularity, D.EAK was designed in such a way that one can drop
the exchange rule for ‘;’ and treat non-commutative conjunction and disjunction,
in which case we need two adjoints of ‘;’ denoted by > and <.1 Similarly, negation
is formalised in terms of implication and bottom as in intuitionisitc and substruc-
tural logics. Following the symmetries inherent in this substructural analysis of
logic [37] suggests to add the operational connectives (but which are
only needed if one does not have the rule of commutativity of ‘;’). Similarly, the
modal operators [α] and [a] have structural counterparts {α} and {a} which in
turn have adjoints and . The formulas (1) do not have operational con-
nectives corresponding to the structural connectives and , but they can be
added and are indeed useful (in terms of Kripke semantics, the adjoint of a box
modality � for a relation R is the diamond modality for the converse relation
R−1 often denoted by �).

Structural Rules. The rules of D.EAK can be divided into operational rules
and display rules, as discussed above, and structural rules, to which we turn now.
The operational rules such as (∨L) specify how to introduce a logical operation.
Display rules such as (;>) are used to isolate formulas or structures to which we
want to apply a specific rule. The logical axiomatisation sits in the structural
rules. Apart from the structural rules like weakening, exchange, and contraction
for ‘;’ we have also other structural rules such as the display rules discussed
above and rules that express properties such as ‘actions are partial functions’
axiomatised by the rule2

1 For example, taking into account the correspondence between operational and struc-
tural connectives, the rule (; , >) above says precisely that the operation that maps
C to A → C is right-adjoint to the operation that maps B to A∧B. Similarly, (>, ;)
expresses that A

∧

is left adjoint to A ∨ .
2 which implies that one can derive 〈α〉X � [α]X.

54 S. Balco et al.

X � Y

{α}X � {α}Y (4)

and such as ‘if a knows Y , then Y is true’ axiomatised by the rule3

X � {a}Y
X � Y

(5)

The reason to axiomatise a logic via such structural rules instead of axioms is
that then cut-elimination is preserved.

Modularity of D.EAK and Related Calculi. We have seen that D.EAK
has a large number of connectives. But they arise according to clear princi-
ples: operational connectives have structural counterparts which in turn have
adjoints. Similarly, the fact that D.EAK as we defined it, due to being built sys-
tematically from substructural connectives, has a large number of rules does not
pose problems from a conceptual point as the rules fall into clearly delineated
classes each serving their own purpose. It is exactly this feature which enables
the modularity of the display logic approach to the proof theory of sequent cal-
culi. But, from the practical point of view of creating proof trees or of composing
a number of different calculi, this large number of connectives and rules makes
working with these calculi difficult. Moreover, the encoding of terms and proof
trees needed for automatic processing will not be readable to humans who would
expect to manipulate proof trees displayed from LATEX documents in an easy
interactive way. How we propose to solve these problems will be discussed in the
next section.

3 The D.EAK Calculus Toolbox

The aim of the D.EAK calculus toolbox4 is to support research on the proof
theory of dynamic epistemic logic as well as to conduct case studies exploring
possible applications. It provides a shallow and a deep embedding of D.EAK
into Isabelle and a user interface implemented in Scala.

The shallow embedding has an inductive datatype for the terms of the calcu-
lus and encodes the rules via a predicate describing which terms are derivable.
It is used to prove correct the solution of the muddy children puzzle in Sect. 4.

The deep embedding also has datatypes for rules and derivations and provides
functionality such as rule application (match and replace) as well as automatic
proof search and tactics. The corresponding Isabelle code is exported to Scala
and used in the user interface.

D.EAK proof trees can be constructed interactively in a graphical user inter-
face by manipulating trees typeset in LATEX. Proof trees can be exported to
LATEX/PDF and Isabelle. This was essential for creating the Isabelle proof in
3 which implies that one can derive [a]Y � Y .
4 Compiled version available for download at: https://github.com/goodlyrottenapple/

calculus-toolbox/raw/master/calculi/DEAK.jar.

https://github.com/goodlyrottenapple/calculus-toolbox/raw/master/calculi/DEAK.jar
https://github.com/goodlyrottenapple/calculus-toolbox/raw/master/calculi/DEAK.jar

Reasoning in Display Calculi 55

Sect. 4. Examples of typeset LATEX proof trees can be found at [5]: The .cs files
contain the proofs as done in the UI and the .tex-files the exported LATEX code.
The tag cleaned up was added after a small amount of manual post-processing
of the .tex-files.

3.1 Shallow Embedding (SE) in Isabelle

The shallow embedding of the calculus D.EAK is available in the files
DEAK SE.thy and DEAK SE core.thy. The file DEAK SE core.thy contains the
definitions of the terms via datatypes Atprop, Formula, Structure, Sequent.
For example,

datatype Sequent = Sequent Structure Structure ("
 ")

declares that an element of datatype Sequent consists of two structures. The anno-
tation ("
 ") allows us to use the familiar infix notation
 in the Isabelle IDE.

The file DEAK SE.thy encodes the rules of the calculus by defining a predicate
derivable

inductive derivable :: "Locale list ⇒ Sequent ⇒ bool" (" �d ")

by induction over the rules of D.EAK. For example, the rule (∨L) above is
encoded as

Or L: "l �d (B � Y) =⇒ l �d (A � X) =⇒ l �d (A ∨ B � X ; Y)"

which expresses in the higher-order logic of Isabelle/HOL that if B
 Y and
A
 X are derivable, then A ∨ B
 X;Y is derivable. Note that A,B,X, Y
are variables of Isabelle. The rule will be applied using the built-in reasoning
mechanism of Isabelle/HOL which includes pattern matching.

The datatype Locale is used to carry around all the information needed in
a proof that is not directly available, in a bottom up proof search, from the
sequent on which we want to perform a rule.

For example, in order to perform a cut, we need to specify the cut formula.
In the UI, when constructing a prooftree interactively, it will be given by the
user. Internally, cut-formulas are of type Locale and the cut-rule is given by

"(CutFormula f)∈ set l =⇒ l�d(X � f) =⇒ l�d(f � Y) =⇒ l�d(X � Y)"

Similarly, the rules that describe the interaction of the knowledge of agents with
epistemic actions depend on the so-called action structures, which define the
actions, but are not part of the calculus itself. These action structures, therefore,
are also encoded by data of type Locale.

Before coming to the deep embedding next, we would like to emphasise, that
in order to prove in the shallow embedding, that a certain sequent is derivable
in D.EAK, one shows in theorem prover Isabelle/HOL that the sequent is in the
extension of the predicate derivable. The proof itself is not available as data
that can be manipulated.

56 S. Balco et al.

3.2 Deep Embedding (DE) in Isabelle

The deep embedding is available in the files DEAK.thy and DEAK core.thy. The
latter contains the encoding of the terms of D.EAK, which differs only slightly
from the one of the shallow embedding. It also contains functions match and
replace, plus some easy lemmas about their behaviour. The functions match and
replace are used in DEAK.thy to define how rules are applied to sequents.

DEAK.thy starts out by defining the datatypes Rule and Prooftree. The function
der implements how to reason backwards from a goal:

fun der :: "Locale ⇒ Rule ⇒ Sequent ⇒ (Rule * Sequent list)"

takes a locale, a rule r, and a sequent s and outputs the list of premises needed to
prove the s via r.5 This function is then used to define the predicate isProofTree
and other functions that are used by the UI.

One reason to define the deep embedding in Isabelle (and not e.g. directly in
the UI) is that we want to use the deep embedding in future work, to implement
and prove correct the cut elimination for D.EAK and related calculi. Another is
that the UI then uses reliable code compiled from its specification in Isabelle.

3.3 Functionality of the User Interface (UI)

The UI is an essential part of the toolbox and provides the following functional-
ity:

– LATEX typesetting of the terms of the calculus, with user specified syntactic
sugar.

– Graphical representation of proof trees in LATEX.
– Exporting proof trees to LATEX/PDF and to Isabelle SE.
– Automatic proof search (to a modest depth of 5).
– Interactive proof tree creation and modification, including merging proof trees,

deleting portions of proof trees, and applying rules.
– Tactics for deriving the generalised identity/atom rules and applying display

rules.
– User defined abbreviations and macros (derived rules).

The UI is implemented in Scala. There were several reasons for choosing Scala,
one of which is Isabelle’s code export functionality which translates functions
written in Isabelle theory files to be exported into functional languages such
as Scala or Haskell, amongst others. This meant that the underlying formalisa-
tion of terms, rules and proof trees of the deep embedding of the calculus and
5 It is at this point where our implementation of the deep embedding is currently

tailored towards substructural logics: For each rule r and each sequent s, there is only
one list of premises to consider. Generalising the deep embedding to sequent calculi
with rules such as (2) would require a modification: If we interpret the structure
W,X,A∨B in (2) not as a structure (i.e. tree) but as a list, then matching the rule
(2) against a sequent would typically not determine the sublists matching W and X
in a unique way. More information is available at [3].

Reasoning in Display Calculi 57

the functions necessary for building and verifying proof trees could be built in
Isabelle and then exported for the UI into Scala.

Another advantage of using Scala is the fact that it is based on Java and runs
on the JVM, which makes code execution fast enough, and, more importantly,
it is cross platform and allows the use of Java libraries. This was especially
useful when creating the graphical UI for manipulating proof trees, as the UI
depends on two libraries, JLaTeXMath and abego TreeLayout, which allow for
easy typesetting and pretty-printing of the proof trees as well as simple visual
creation and modification of proof trees in the UI.

The UI was made more usable with the implementation of some simple tac-
tics, such as the display tactic, which simplifies the often tedious application of
display rules to isolate a particular structure in a sequent. This happens in a
display calculus every time the user wants to apply an operational rule, and can
be a bureaucratic pain point of little interest to the logician. Even though these
tactics are unverified, once the generated proof tree is exported to Isabelle, it
will be checked by the Isabelle core to ensure validity.

4 Case Study: The Muddy Children Puzzle

The muddy children puzzle is a classical example of reasoning in dynamic epis-
temic logic, since it highlights how epistemic actions such as public announce-
ments modify the knowledge of agents. We will recall the puzzle in some detail
below. The solution will state that, after k rounds of all agents announcing “I
don’t know”, all agents do in fact know.

The correctness of the solution has been established, for all k ∈ N using induc-
tion, by informal mathematical proof [16] and by mathematical proofs about a
formalisation in a Hilbert calculus [34]. It has also been automatically verified,
for small values of k, using techniques from model checking [29] (see also [40] for
related work) and automated theorem proving [15,39].

Here, we prove in Isabelle/HOL that for all k the solution is derivable in
D.EAK.

4.1 The Muddy Children Puzzle

There are n > 0 children and 0 < k ≤ n of them have mud on their foreheads.
Each child sees (and hence knows) which of the others is dirty. But they cannot
see (and therefore do not know at the beginning) whether they are dirty them-
selves (thus the number n is known to them but k is not). The first epistemic
action is the father announcing (publicly and truthfully) that at least one of
the children is dirty. From then on, the protocol proceeds in rounds. In each
round, all children announce (simultaneously, publicly and truthfully) whether
they know that they are dirty or not. How many rounds need to be played until
the dirty children know that they are dirty?

In case n = 1, k = 1 the only child knows that it must be dirty, since the
announcement by the father, as all announcements in this protocol, are assumed
to be truthful. We write this as

58 S. Balco et al.

[father]�1D1,

where Dj is an atomic proposition encoding that child j is dirty, �jp means
child j knows p and [father]p means that p holds after father’s announcement.
We use �j instead of [j] for both stylistic purposes (the box �, being the usual
notation in the literature), as well as to distinguish it from announcements like
[father].

The case n > 1 and k = 1 is similar. Let j be the dirty child. It sees,
and therefore knows, that all the other children are clean. Since, after father’s
announcement, child j knows that there is at least one dirty child, it must be j,
and j knows it.

In case n > 1 and k = 2 let J = {j, h} be the set of dirty children. After
father’s announcement both j and h see one dirty child. But they do not know
whether they are dirty themselves. So, according to the protocol, they announce
that they do not know whether they are dirty. From the fact that h announced
¬�hDh, child j can conclude Dj , that is, we have �jDj . To see this, j reasons
that if j was clean, then h would be in the situation of the previous paragraph,
that is, we had �hDh, in contradiction to the truthfulness of the announcement
of h. Summarising, we have shown

[father][no]�jDj ,

where [no] is the modal operator corresponding to the children announcing that
they don’t know whether they are dirty.

The cases for k > 2 follow similarly, so that we obtain for all dirty children j

[father][no]k−1 �jDj (6)

For example, for n = k = 100, after 99 rounds of announcements “I don’t know
whether I am dirty” by the children, they all do know that they are dirty.

4.2 Muddy Children in Isabelle

Our proof in Isabelle follows [34, Prop.24], which gives a mathematical proof that
for all n, k > 0 there is, in a Hilbert system equivalent to D.EAK, a derivation
of (6) from the assumption

dirty(n, J) ∧ E(n)k(vision(n)) (7)

which encodes the rules of the protocol. Specifically, dirty(n, J) encodes for each
J ⊆ {1, . . . n} that precisely the children j ∈ J are dirty, vision(n) expresses that
each child knows whether any of the other children are dirty, E(n)(φ) means that
‘every one of the n children knows φ’ and fk indicates k-fold application of the
function f so that E(n)k(vision(n)) says that ‘each child knowing whether the
others are dirty’ is common knowledge up to depth k.

Reasoning in Display Calculi 59

This means that we need to prove by induction on n and k that for all n, k
there is a derivation in the calculus D.EAK of the sequent

dirty(n, J),E(n)k(vision(n))
 [father][no]k−1 �jDj . (8)

where the actions father and no also depend on the parameter n.
For the cases k = 1, 2 the proofs can be done with a reasonable effort in the

UI of the tool, filling in all the details of the proof of [34].
But as a propositional calculus, D.EAK does not allow us to do induc-

tion. Therefore we use the shallow embedding of D.EAK and do the induc-
tion in the logic of Isabelle. The expressions dirty(n, J) and E(n)k(vision(n))
and [father][no]k−1 �jDj then are Isabelle functions that map the parame-
ters n, k to formulas (in the shallow embedding) of D.EAK, see the theory
MuddyChildren [5].

The first part of the theory MuddyChildren contains the definitions of the
formulas discussed above and establishes some of their basic properties. The
actual proof is given as lemma dirtyChildren. We have taken care to follow
[34] closely, so that the proof of its Proposition 24 can be read as a high-level
specification of the proof in Isabelle of lemma dirtyChildren.

The proof in MuddyChildren differs from its specification in [34] only in a
few minor ways. Instead of assuming the axiom of introspection [a]p → p, we
added the corresponding structural rules to the calculus. This seems justified as
it is a fundamental property of knowledge we are using and also illustrates a
use of modularity. Instead of introducing separate atomic propositions for dirty
and clean, we treat clean as an abbreviation for not dirty, which relieves us from
axiomatising the relationship between dirty and clean explicitly. But if we want
an intuitionistic proof, we need to add to our assumptions that ‘not not dirty’
implies dirty.

4.3 Conclusions from the Case Study

It took approximately 4 person-weeks to implement the proof of [34, Prop.24]
in Isabelle. Part of this went into providing some ‘infrastructure’ contained in
the theories NatToString and DEAKDerivedRules that could be reused for other
case studies. On the other hand, we should say that it took maybe half a year to
learn Isabelle and we couldn’t have learned it from documentation and tutorials
alone. At crucial points we had expert advice by Thomas Tuerk, Tom Ridge and
Christian Urban.

For the construction of the proof in Isabelle, we made extensive use of the
UI. Large parts of the Isabelle proof were constructed in the UI and exported to
Isabelle.

One use one can make of the formal proof is to investigate which proof princi-
ples are actually needed. For example, examining the proof in MuddyChildren, it
is easy to establish that the only point where a non-intuitionistic principle is used
is to prove ¬¬Dj → Dj . Instead we could have added this formula (which only
says that “not clean implies dirty”) to the logical description of the puzzle (7).

60 S. Balco et al.

It may be worth pointing out that this analysis is based on the substruc-
tural analysis of classical logic on which D.EAK is built. Accordingly, a proof in
D.EAK is intuitionistic if and only if it does not use the so-called Grishin rules
Grishin L and Grishin R (as defined in DEAK.json). Thus a simple text search
for ‘Grishin’ in the theory MuddyChildren suffices to establish the claim that
adding ¬¬Dj → Dj to the assumptions, our proof of the muddy children puzzle
follows the principles of intuitionistic logic.

5 Meta-toolbox - Building Your Own Calculus Toolbox

As discussed in Sect. 3, the D.EAK toolbox consists of a set of Isabelle theory
files that formalize the terms and rules of this calculus, providing a base for
reasoning about the properties of the calculus in the Isabelle theorem prover.
The toolbox also includes a UI for building proof trees in the calculus.

As this paper is part of a wider program of the study of modal logics, the
reader might naturally be interested in building her own calculus/logic, either
building on top of D.EAK or starting from scratch. To do this, we provide a
meta-toolbox, which consists of a set of scripts and utilities used for maintaining,
modifying and building your own calculus toolbox (we will use italics when
referring to the meta-toolbox, to avoid confusion with the toolbox generated by
the meta-toolbox for a specific logic).

The meta-toolbox supports building tools for a wide range of propositional
modal logics. Due to the display framework, constraints placed on the shape of the
calculus terms and rules allow us to build large portions of the Isabelle theory files
and the UI front-end in a generic, logic-agnostic way, from a calculus description
file.

However, there are cases in which the language used to specify calculus
description files may not be expressive enough to encode certain information
about the logic. For example, in the case of rules with side-conditions, the user
needs to implement the Isabelle code handling the side conditions manually.
To avoid reimplementation on each change of the calculus description file, we
provide the watcher utility, which builds a new calculus toolbox by weaving the
user-specific manual changes into the generic automatically created code without
breaking the user made modifications.

The main component of the meta-toolbox is the build script, which takes
in a description file and expands it into multiple Isabelle theories and Scala
code. Due to this centralised definition of the calculus, adding rules or logical
connectives becomes easy as the user only needs to change the calculus descrip-
tion file and does not need to worry about how these changes affect multiple
Isabelle and Scala files. The meta-toolbox thus allows for a more structured and
uniform maintenance of the different encodings along with the UI. A detailed
documentation and a tutorial is available [3].

Reasoning in Display Calculi 61

5.1 Describing a Calculus

We highlight some elements of how to describe a calculus such as D.EAK in the
format that can be read by the meta-toolbox.

The calculus is described in a calculus description file using the JavaScript
Object Notation (JSON), in our example DEAK.json. This file specifies the types
(Formula, Structure, Sequent, . . .), the operational and structural connectives,
and the rules. For example, linking up with the discussion in Sect. 3, in

"Sequent": {
"type" : ["Structure", "Structure"],

"isabelle" : " \\<turnstile> ",

"ascii" : " |- ",

"latex" : " {\\ {\\textcolor{magenta}\\boldsymbol{\\vdash}\\ } ",

"precedence": [311,311,310]

}
"type" specifies that a sequent consists of two structures.6 The next three lines
specify how sequents will be typeset in Isabelle, ASCII and LATEX. To make
proofs readable in the UI, the user can specify bespoke sugared notation using,
for example, LATEX commands such as colours and fonts.

Next we explain how rules are encoded. The encoding is divided into two
parts. In the first part, under the heading "calc structure rules" the rules
are declared. For example, we find

"Or L" : {
"ascii" : "Or L",
"latex" : "\\vee L"

}
telling us how the names of the rule are typeset in ASCII and LATEX. The rule
(3) itself is described in the second part under the heading "rules" by

"Or L" : ["F?A \\/ F?B |- ?X ; ?Y", "F?A |- ?X", "F?B |- ?Y"]

the first sequent of which is the conclusion, the following being the premises
of the rule. The ? has been defined in DEAK.json to indicate the placeholders
(a.k.a. free variables or meta-variables) that are instantiated when applying the
rule. The F marks placeholders that can be instantiated by formulas only.

The description of Or L above suffices to compile it to Isabelle. But some rules
of D.EAK need to be implemented subject to restrictions expressed separately.
For example, the so-called atom rule formalises that in D.EAK, actions do not
change facts (but they may change knowledge). Thus, whereas the rule is encoded
as

"Atom" : ["?X |- ?Y", ""]

6 The presence of the \\ instead of just one \ is unfortunate but \ is a reserved
character that needs to be escaped using \.

62 S. Balco et al.

we need to enforce the condition that ?X |- ?Y is of the form Γp
 Δp, where p
is an atomic proposition and Γ,Δ are strings of action modalities. This is done
by noting in the calculus description file the dependence on a condition called
atom as follows.

"Atom" : {
"condition" : "atom"

}
The condition atom itself is then implemented directly in Isabelle.

For bottom-up proof search, the deep embedding provides a function that,
given a sequent and a rule, computes the list of premises (if the rule is appli-
cable). For the cut rule, this is implemented by looking for a cut-formula in
the corresponding Locale, see Sect. 3.1. (As stated earlier, whilst the calculus
admits a cut free presentation, it is nonetheless useful to keep the cut rule in the
calculus when manually constructing proofs.)

"RuleCut" : {
"SingleCut" : {

"locale" : "CutFormula f",

"premise" : "(\\<lambda>x. Some [((?\\<^sub>S ’’X’’) ...",

"se rule" : "l \\<turnstile>d (X \\<turnstile>\\<^sub>S f ..."

}
}
After "premise" we find the Isabelle definition of the DE-version of the rule and
after "se rule" the SE-version of the rule.

The most complicated rules of D.EAK are those which describe the inter-
action of action and knowledge modalities and we are not going to describe
them here. They need all of the additional components condition, locale,
premise, se rule, to deal with side conditions which depend on actions being
agent-labeled relations on actions.

The ability to easily change the calculus description file will be useful in
the future, but also appeared already in this work. Compared to the version of
D.EAK from [22], we noticed during the work on the muddy children puzzle that
we wanted to add rules Refl ForwK expressing [a]p → p (i.e. that the knowledge-
relation is reflexive) and rules Pre L and Pre R allowing us to replace in a proof
the constant representing the precondition of an action by the actual formula
expressing the precondition. Using the meta-toolbox, this change was a simple
case of adding the rule to the JSON description file and recompiling the calculus.

5.2 The Build Script, the Template Files, and the Watcher Utility

To build the calculus toolbox from the calculus description file DEAK.json,
one runs the Python script, passing the description file to the script via the
--calculus flag. This produces the Isabelle code for the shallow and deep
embedding and the Scala code for the UI. By default, this toolbox is output
to a directory called gen calc.

Reasoning in Display Calculi 63

Template Files. The toolbox is generated from both the calculus description
file and template files. Template files contain the code that cannot be directly
compiled from the calculus description file, for example, the code of the UI. But
whereas the code of the UI, in the folder gui, is independent of the particular
calculus, the parser Parser.scala and the print class Print.scala consist of
code written by the developer as well as code automatically generated from the
calculus description file. Similarly, whereas parts of DEAK.thy are compiled from
the calculus description file, other parts, such as the lemmas and their proofs
are written by the developer.

The Isabelle and Scala Builder. In order to support the weaving of auto-
matically generated code into the template files, there are two domain specific lan-
guages defined in the files isabuilder.py and scalabuilder.py. For example, in
the template file Calc core.thy, from which DEAK.thy is generated, the line

(*calc structure*)

prompts the build script to call a method defined in isabuilder.py which inserts
the Isabelle definition of the terms of the calculus into DEAK.thy.

The Watcher Utility. In order to make the maintenance of the template files
easier there is a watcher utility which allows, instead of directly modifying the
template files, to work on the generated code. For example, if we want to change
how proof search works, we would make the changes to the Isabelle file DEAK.thy
and not directly to the template file Calc core.thy. The watcher utility, when
launched, runs in the background and monitors the specified folder. Any changes
made to a file inside this folder are registered and the utility decompiles this
file back into its corresponding template, each time a modification occurs. The
watcher utility decompiles a file by looking for any sections of the file that have
been automatically generated, and replacing these definitions by the special com-
ments that tell the build script where to put the auto-generated code. In order
for the decompiling to work correctly, the auto-generated code must be enclosed
by special delimiters. Looking back at the example of (*calc structure*),
when the template file is processed by the build script and expanded with the
definitions from a specific calculus description file, the produced code is enclosed
by the following delimiters:

(*calc structure-BEGIN*)

auto-generated code ...
(*calc structure-END*)

Hence, when the watcher utility decompiles a file into a template,
it simply replaces anything of the form (*<identifier>-BEGIN*) ...
(*<identifier>-END*) by the string (*<identifier>*).

6 Conclusion

We presented a software tool that makes interactive theorem proving available
for the proof theoretic study of modal logics of actions. From a calculus descrip-
tion file, shallow and deep embeddings of deductions are generated. The deep

64 S. Balco et al.

embedding is used to automatically generate verified code for the user interface,
which in turn allows us to make derivations in the calculus in a familiar proof
theoretic environment and then export it to Isabelle. This has been used to
develop a fully formalised proof of the correctness of the solution for the muddy
children puzzle, making use of Isabelle’s ability of inductive reasoning that goes
beyond the expressiveness of (propositional) modal logic.

An interesting lesson learned from using interactive theorem proving in the
proof theory of modal logics is that in our work the concerns of the software
engineer and the proof theorist can be seen as two sides of the same coin as we
will explain in the following.

From the point of view of proof theory, we are interested in developing ‘good’
calculi, which refers to, on the one hand, mathematical properties such as cut-
elimination, and, on the other hand, to the design criteria developed in the area
of proof theoretic semantics [36,38]. These design criteria include the following.
(i) The meaning of a connective should be defined, in the spirit of introduction
and elimination rules, in a way that renders their meaning independent of what
other connectives and rules may be added to the calculus. (ii) The rules should
be closed under uniform substitution and be free from extra-logical labels and
side-conditions. (See (3) for an example.)

From a software engineering point of view, we want to (I) build software for a
‘big’ logical calculus comprising many connectives in a modular way, connective
by connective and (II) provide the user with a domain specific language that
allows for a user-friendly specification of a calculus and its rules. In particular,
it should be possible to automatically build a set of tools that allows high-level
reasoning and implementation independent use of the calculus from a single
calculus description file.

A lesson learned is that (i) and (I) as well as (ii) and (II) are closely related.
While we admit that our domain specific language is rudimentary and the calcu-
lus description files in Sect. 5.1 could be much more user-friendly, the main issues
that need further research are extra-logical labels and side-conditions, see e.g.
page 14 where we write “The condition atom itself is then implemented directly
in Isabelle”. Indeed, such side-conditions are not easily formulated without know-
ing the lower-level implementation of the logics (in our case their implementation
in Isabelle) and therefore are in conflict with the software engineering principle
of shielding the user from implementation details. While we solved this problem
using a software engineering method (see Sect. 5.2), the next paragraph discusses
a possible proof-theoretic solution, namely multi-type display calculi.

The move to multi-type display calculi is akin to the move from one-sorted
algebras to many-sorted algebras. Multi-type display calculi, introduced in [19],
allow us to absorb extra-logical labels and side conditions into the types. For
example, by introducing a type for atoms, the condition on substitution becomes
uniform substitution (of formulas of the correct type). Similarly, the extra-
logical labels needed for actions can be eliminated. (In passing, we also note
that the well-known side conditions for the rules of first-order quantifiers can be

Reasoning in Display Calculi 65

eliminated in this way.) This methodology has, by now, been successfully applied
to a range of calculi [20,21,25–28].

Ongoing and future work arises from the discussion above. First, a new meta-
toolbox for multi-type sequent and display calculi (an alpha version providing
a more user-friendly interface to define calculi and manipulate derivations is
already available [4]). Second, following the work of [13,14] on proving cut elim-
ination of display calculi, a full formalisation of cut-elimination for D.EAK, or
rather of the cut-elimination meta-theorems of [18,19,22]. Third, integrating
interactive theorem proving with automatic proof search, much in the spirit of
Isabelle’s Sledgehammer. In particular, modal logics of actions can have tableau
systems that do efficient automatic proof search [1] . One question here is,
whether it will be possible to do this integration in a modular way: In the light
of our discussion above, tableau systems are closely related to sequent calculi
[17,24], but they typically do not do so well w.r.t. to property (II).

Acknowledgements. At several crucial points, we profited from expert advice on
Isabelle by Tom Ridge, Thomas Tuerk and Christian Urban. We thank Roy Crole and
Hans van Ditmarsch for valuable comments on an earlier draft.

References

1. Aucher, G., Schwarzentruber, F.: On the complexity of dynamic epistemic logic.
In: Proceedings of the 14th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK 2013)

2. Balbiani, P., van Ditmarsch, H., Herzig, A., de Lima, T.: Tableaux for public
announcement logic. J. Logic Comput. 20(1), 55–76 (2010)

3. Balco, S.: The calculus toolbox. https://goodlyrottenapple.github.io/calculus-
toolbox/

4. Balco, S.: The calculus toolbox 2. https://github.com/goodlyrottenapple/calculus-
toolbox-2

5. Balco, S., Frittella, S.: Muddy children in Isabelle. https://goodlyrottenapple.
github.io/muddy-children/

6. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge and private suspicious. Technical Report SEN-R9922, CWI, Amsterdam
(1999)

7. Belnap, N.: Display logic. J. Philos. Logic 11, 375–417 (1982)
8. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic.

Elsevier, Amsterdam (2006)
9. Brotherston, J.: Bunched logics displayed. Stud. Logica. 100(6), 1223–1254 (2012)

10. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical
logics. In: Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer
Science (LICS 2008)

11. Ciabattoni, A., Ramanayake, R.: Power and limits of structural display rules. ACM
Trans. Comput. Logic (TOCL) 17(3), 17 (2016)

12. Ciabattoni, A., Ramanayake, R., Wansing, H.: Hypersequent and display calculi -
a unified perspective. Stud. Logica. 102(6), 1245–1294 (2014)

13. Dawson, J.E., Goré, R.: Embedding display calculi into logical frameworks: com-
paring twelf and Isabelle. Electr. Notes Theor. Comput. Sci. 42, 89–103 (2001)

https://goodlyrottenapple.github.io/calculus-toolbox/
https://goodlyrottenapple.github.io/calculus-toolbox/
https://github.com/goodlyrottenapple/calculus-toolbox-2
https://github.com/goodlyrottenapple/calculus-toolbox-2
https://goodlyrottenapple.github.io/muddy-children/
https://goodlyrottenapple.github.io/muddy-children/

66 S. Balco et al.

14. Dawson, J.E., Goré, R.: Formalised cut admissibility for display logic. In: Proceed-
ings of 15th International Conference Theorem Proving in Higher Order Logics,
TPHOLs (2002)

15. Dyckhoff, R., Sadrzadeh, M., Truffaut, J.: Algebra, proof theory and applications
for an intuitionistic logic of propositions, actions and adjoint modal operators.
ACM Trans. Comput. Logic 14(4), 1–37 (2013)

16. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

17. Fitting, M.: Proof Methods for Modal and Intuitionistic Logic. Springer,
Netherlands (1983). https://doi.org/10.1007/978-94-017-2794-5

18. Frittella, S., Greco, G., Kurz, A., Palmigiano, A.: Multi-type display calculus for
propositional dynamic logic. J. Log. Comput. 26(6), 2067–2104 (2016)

19. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimic, V.: Multi-type display
calculus for dynamic epistemic logic. J. Log. Comput. 26(6), 2017–2065 (2016)

20. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: Multi-type sequent
calculi. In: Andrzej Indrzejczak, M.Z., Kaczmarek, J. (ed.) Trends in Logic XIII,
pp. 81–93. Lodź University Press (2014). https://arxiv.org/abs/1609.05343

21. Frittella, S., Greco, G., Palmigiano, A., Yang, F.: A multi-type calculus for inquis-
itive logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016.
LNCS, vol. 9803, pp. 215–233. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52921-8 14

22. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimic, V.: A proof-theoretic
semantic analysis of dynamic epistemic logic. J. Log. Comput. 26(6), 1961–2015
(2016)

23. Goré, R.: Substructural logics on display. Logic J. IGPL 6(3), 451–504 (1998)
24. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,

Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods.
Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1754-0 6

25. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence
as a proof-theoretic tool. J. Log. Comput. (2016). https://doi.org/10.1093/logcom/
exw022

26. Greco, G., Palmigiano, A.: Linear logic properly displayed. CoRR, abs/1611.04181
(2016)

27. Greco, G., Palmigiano, A.: Lattice logic properly displayed. In: Kennedy, J., de
Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 153–169. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2 11

28. Greco, G., Liang, F., Moshier, M.A., Palmigiano, A.: Multi-type display calculus
for semi de morgan logic. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC
2017. LNCS, vol. 10388, pp. 199–215. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-55386-2 14

29. Halpern, J.Y., Vardi, M.Y.: Model checking vs. theorem proving: a manifesto.
In: Proceedings of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning (KR 1991), pp. 325–334 (1991)

30. Kracht, M.: Power and weakness of the modal display calculus. In: Proof Theory
of Modal Logic, pp. 93–121. Kluwer, Netherlands (1996)

31. Lescanne, P.: Mechanizing common knowledge logic using COQ. Ann. Math. Artif.
Intell. 48(1–2), 15–43 (2006)

32. Lescanne, P.: Common knowledge logic in a higher order proof assistant. In: Pro-
gramming Logics - Essays in Memory of Harald Ganzinger, pp. 271–284 (2013)

33. Lescanne, P., Puisségur, J.: Dynamic logic of common knowledge in a proof assis-
tant. CoRR, abs/0712.3146 (2007)

https://doi.org/10.1007/978-94-017-2794-5
https://arxiv.org/abs/1609.05343
https://doi.org/10.1007/978-3-662-52921-8_14
https://doi.org/10.1007/978-3-662-52921-8_14
https://doi.org/10.1007/978-94-017-1754-0_6
https://doi.org/10.1093/logcom/exw022
https://doi.org/10.1093/logcom/exw022
https://doi.org/10.1007/978-3-662-55386-2_11
https://doi.org/10.1007/978-3-662-55386-2_14
https://doi.org/10.1007/978-3-662-55386-2_14

Reasoning in Display Calculi 67

34. Ma, M., Palmigiano, A., Sadrzadeh, M.: Algebraic semantics and model complete-
ness for intuitionistic public announcement logic. Ann. Pure Appl. Logic 165(4),
963–995 (2014)

35. Ma, M., Sano, K., Schwarzentruber, F., Velázquez-Quesada, F.R.: Tableaux for
non-normal public announcement logic. In: Banerjee, M., Krishna, S.N. (eds.)
ICLA 2015. LNCS, vol. 8923, pp. 132–145. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-45824-2 9

36. Piecha, T., Schroeder-Heister, P., (eds.): Advances in Proof-Theoretic Semantics.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-22686-6

37. Restall, G.: An Introduction to Substructural Logics. Routledge, London (2000)
38. Schroeder-Heister, P.: Proof-theoretic semantics. In: Zalta, E.N. (ed.) The Stan-

ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
winter 2016 edition (2016)

39. Truffaut, J.: Implementation and improvements of a cut-free sequent calculus for
dynamic epistemic logic. M.Sc. thesis, University of Oxford (2011)

40. van Ditmarsch, H., van Eijck, J., Hernández-Antón, I., Sietsma, F., Simon, S.,
Soler-Toscano, F.: Modelling cryptographic keys in dynamic epistemic logic with
DEMO. In: Proceedings of 10th International Conference on Practical Applications
of Agents and Multi-Agent Systems, PAAMS (2012)

41. van Ditmarsch, H.P., Kooi, B.: One Hundred Prisoners and a Light Bulb. Springer,
Switzerland (2015). https://doi.org/10.1007/978-3-319-16694-0

42. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic,
Springer, Netherlands (2007). https://doi.org/10.1007/978-1-4020-5839-4

43. Wansing, H.: Displaying Modal Logic. Kluwer, Netherlands (1998)

https://doi.org/10.1007/978-3-662-45824-2_9
https://doi.org/10.1007/978-3-662-45824-2_9
https://doi.org/10.1007/978-3-319-22686-6
https://doi.org/10.1007/978-3-319-16694-0
https://doi.org/10.1007/978-1-4020-5839-4

Backwards and Forwards
with Separation Logic

Callum Bannister1,2, Peter Höfner1,2(B), and Gerwin Klein1,2

1 Data61, CSIRO, Sydney, Australia
firstname.lastname@data61.csiro.au

2 Computer Science and Engineering, University of New South Wales,

Sydney, Australia

Abstract. The use of Hoare logic in combination with weakest pre-
conditions and strongest postconditions is a standard tool for program
verification, known as backward and forward reasoning. In this paper
we extend these techniques to allow backward and forward reasoning for
separation logic. While the former is derived directly from the standard
operators of separation logic, the latter uses a new one. We implement our
framework in the interactive proof assistant Isabelle/HOL, and enable
automation with several interactive proof tactics.

1 Introduction

The use of Hoare logic [19,21] in combination with weakest preconditions [16]
and strongest postconditions [19] is a standard tool for program verification,
known as backward and forward reasoning. These techniques are supported by
numerous tools, e.g. [1,6,33,36,37].

Although backward reasoning with weakest preconditions is more common
in practice, there are several applications where forward reasoning is more con-
venient, for example, for programs where the precondition is ‘trivial’, and the
postcondition either too complex or unknown. Moreover, “calculating strongest
postconditions by symbolic execution provides a smooth transition from test-
ing to full verification: by weakening the initial precondition one can make the
verification cover more initial states” [20].

Hoare logic lacks expressiveness for mutable heap data structures. To over-
come this deficiency, based on work of Burstall [8], Reynolds, O’Hearn and others
developed separation logic for reasoning about mutable data structures [38,40].
Separation logic allows for local reasoning by splitting memory into two halves:
the part the program interacts with, and the part which remains untouched,
called the frame.

The contribution of this paper is two-fold:

(i) Generic techniques for backward and forward reasoning in separation logic.
A kind of backward reasoning was already established by Reynolds [40].

The original version of this chapter was revised: On page 80 a typo was corrected. For
detailed information please see the erratum. The erratum to this chapter is available
at https://doi.org/10.1007/978-3-319-94821-8 38

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 68–87, 2018.
https://doi.org/10.1007/978-3-319-94821-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_5&domain=pdf
https://doi.org/10.1007/978-3-319-94821-8_38

Backwards and Forwards with Separation Logic 69

Although he states that for each command rules for backward reasoning
“can be given”, he only lists rules for the assignment of variables (called
mutation in [40]), and for the deallocation of memory. Reynolds does not
present a general framework that can transform any given Hoare triple
specification – enriched with a frame – into a rule that is ready to be used
for backward reasoning. We present such a general framework. Since it is
based on separation algebras [10] it not only applies to the standard heap
model of separation logic, but to all instances of this algebra.

Using similar algebraic techniques we also derive a generic technique for
forward reasoning in separation logic. To achieve this we introduce a new
operator, separating coimplication, which algebraically completes the set of
the standard operators of separating conjunction, separating implication,
and septraction. To the best of our knowledge, we are the first who provide
a technique for strongest postconditions in separation logic.

(ii) Proof tactics for the developed techniques in Isabelle/HOL [37].
To increase automation for both backward and forward reasoning we mech-
anise this framework in the interactive proof assistant Isabelle/HOL and
provide automated proof tactics. In particular, we provide tactics that make
it manageable to interactively reason about the separating implication,
which is widely considered unwieldy [5,32].

To show feasibility of our techniques we not only present standard examples such
as list reversal, but also look at a larger case study: a formally verified initialiser
for component-based systems built on the formally verified seL4 microkernel [28].
A proof of this initialiser using ‘standard’ manual separation logic reasoning can
be found in the literature [7]. Redoing parts of this proof illustrates the strength
of our tactics, gives an indication of how much automation they achieve, and
shows by how much they reduce manual proof effort.

2 Notation

In this section we present the notation of Isabelle/HOL [37] that deviate from
standard mathematical notation.

We denote the space of total functions by ⇒, and write type variables as
’a, ’b, etc. The option type

datatype ’a option = None | Some ’a

adjoins a new element None to type ’a. Hence ’a option models partial functions.
Separation logic assertions typically are functions from the state to bool,

i.e., ’s ⇒ bool. We lift the standard logical connectives ∧, ∨, ¬, and −→
point-wise to the function space in the spirit of standard separation logic, e.g.
(P =⇒ Q) = (∀ s. P s −→ Q s).

For the example programs in this paper, we use a deterministic state monad.
Since we are interested in distinguishing failed executions we add a flag in the
style of other monadic Hoare logic frameworks [14]. This means, a program
execution has the type ’s ⇒ ’r × ’s × bool, i.e., a function that takes a state
and returns as result a new state, and a flag indicating whether the execution

70 C. Bannister et al.

was successful (true) or not (false). Sequential composition, denoted by >>=, is
defined as

f >>= g ≡
λs. let (r’, s’, c) = f s; (r’’, s’’, c’) = g r’ s’

in (r’’, s’’, c ∧ c’)

Since our theory is based on abstract separation algebra (see below), we can
change the underlying monad without problems. In particular we use both a
nondeterministic state monad and an error monad for our case study.

For larger programs we use do-notation for sequential composition, e.g.

do { x ← f; g x; h x }

3 Hoare Logic and Separation Logic

Hoare logic or Floyd-Hoare logic [21], [19] is the standard logic for program
analysis, based on the eponymous Hoare triple: {|P|} m {|Q|} (originally denoted by
P {m} Q), where P and Q are assertions, called pre- and postcondition respectively,
and m is a program or command.

Initially, Hoare logic considered partial correctness only [21], ignoring termi-
nation. In our monadic context, where we identify non-termination and failed
execution, this translates to

{|P|} m {|Q|} ≡ ∀ h. P h −→ (let (r’, h’, c) = m h in c −→ Q r’ h’)

If the precondition P holds before the execution of m, and m terminates success-
fully (the flag c is true) then the postcondition Q holds afterwards. Successful
termination needs to be proven separately. If m fails to terminate successfully
under P, i.e., by non-termination or other program failure, then any postcondi-
tion forms a valid Hoare triple.

Total correctness combines termination with correctness.

{|P|} m {|Q|}t ≡ ∀ h. P h −→ (let (r’, h’, c) = m h in Q r’ h’ ∧ c)

For total correctness, whenever P holds, m will terminate successfully, and the
result satisfies Q.

Example 1. Assume the function delete_ptr p, which clears the allocated mem-
ory pointed to by p, and fails if p does not point to any location at all or to an
address outside the current heap.

Let emp be the empty heap. Then the triple {|p 	→ |} delete_ptr p {|emp|}
describes the situation where the heap has a single location p, and is otherwise
empty.1 After successful termination the heap is empty.

However, this specification is limiting since it only allows one particular heap
configuration as precondition. Consider two further scenarios, namely heap con-
figurations where p does not point to any location in the heap (e.g. the empty
heap), and heap configurations with additional memory.
1 We will explain the heap model in detail later in this section.

Backwards and Forwards with Separation Logic 71

In the first scenario, delete_ptr p fails. Hence {|emp|} delete_ptr p {|Q|} would
hold under partial correctness for any Q, but not under total correctness. In
the second scenario, with additional memory, that additional memory remains
unchanged during the execution of delete_ptr p. This is the case separation logic
deals with. ��

Separation logic (SL) (e.g. [40]) extends Hoare logic by assertions to express
separation between memory regions, which allows reasoning about mutable data
structures. It is built around separating conjunction _*_, which asserts that a
heap can be split into two disjoint parts where its two argument predicates hold.

The usual convention in SL is to require that even in partial correctness
the program is abort-free, in particular for pointer access. The semantics of our
slightly more traditional setting does not distinguish between non-termination
and failure. Hence partial correctness will not guarantee pointer safety, while
total correctness will.

A standard ingredient of SL is the frame rule

{|P|} m {|Q|}
{|P * R|} m {|Q * R|}

The rule asserts that a program m that executes correctly in a state with a
small heap satisfying its precondition P, with postcondition Q, can also execute
in any state with a larger heap (satisfying P * R) and that the execution will not
affect the additional part of the state. Traditionally, it requires as side condition
that no variable occurring free in R is modified by m. In our shallow monadic
setting, no such variables exist and hence no side condition is required. We differ
from tradition by proving that the frame rule holds for particular specifications
rather than over the program syntax as a whole. This allows us to talk about
programs that are not strictly local, but may be local with regards to a particular
precondition. When local specifications are given for the primitive operations of
a program, it is easy to compose them to show the locality of larger programs.

SL can be built upon separation algebras, which are commutative partial
monoids [10]. Such algebras offer a binary operation + and a neutral element 0,
such that whenever x + y is defined, + is commutative and associative, and
x + 0 = x. Our automation framework is built upon an existing Isabelle/HOL
framework [29,30], which uses a total function + together with another com-
mutative operation ## that weakly distributes over + [29], and expresses the
aforementioned disjointness.

Using these operations, separating conjunction is defined as

P * Q ≡ λh. ∃ h1 h2. h1 ## h2 ∧ h = h1 + h2 ∧ P h1 ∧ Q h2 (1)

which implies associativity and commutativity of *.
The standard model of SL, and separation algebra, uses heaps. The term

(p 	→ v) h indicates that the pointer p on heap h is allocated and points to
value v. The term p 	→ indicates an arbitrary value at location p.

A heap is a partial function from addresses (pointers) to values. The operation
h1 ## h2 checks whether the domains of h1 and h2 are disjoint. When h1 ## h2

72 C. Bannister et al.

evaluates to true, h1 + h2 ‘merges’ the heaps by forming their union. The formal
definitions are straightforward and omitted here.

In separation algebras, the operations ## and + define a partial order, which
formalises subheaps:

h1 � h ≡ ∃ h2. h1 ## h2 ∧ h1 + h2 = h

SL usually leads to simple proofs of pointer manipulation for data structures.
Classical examples of such data structures are singly- and doubly-linked lists,
trees, as well as directed acyclic graphs (DAGs) [22,39].

Separating implication P −→* Q, also called magic wand, is another operator
of SL. When applied to a heap h it asserts that extending h by a disjoint heap,
satisfying P, guarantees that Q holds on the combined heap:

P −→* Q ≡ λh. ∀ h1. h ## h1 ∧ P h1 −→ Q (h + h1) (2)

Ishtiaq andO’Hearn use this operator for reasoning in the presence of sharing [25].
The operations * and −→* are lower and upper adjoints of a Galois connec-

tion, e.g. [15]. This relationship implies useful rules, like currying (P * Q =⇒
R) =⇒ (P =⇒ Q −→* R), decurrying (P =⇒ Q −→* R) =⇒ (P * Q =⇒ R),
and modus ponens Q * (Q −→* P) =⇒ P. As we will see, separating implica-
tion is useful for backward reasoning.

The literature uses another ‘basic’ operator of SL, septraction [43]:

P −� Q ≡ λh. ∃ h1. h1 ## h ∧ P h1 ∧ Q (h1 + h) (3)

It is the dual of separating implication, i.e., P −� Q = ¬(P −→* ¬Q), and
expresses that the heap can be extended with a state satisfying P, so that the
extended state satisfies Q. Septraction plays a role in combining SL with rely-
guarantee reasoning [43], and for shared data structures such as DAGs [22].

4 Separating Coimplication

While separating conjunction, separating implication, and septraction, as well as
their relationships to each other are well studied and understood, one operation
is missing in SL.

We define separating coimplication, denoted by �*, as

P �* Q ≡ λh. ∀ h1 h2. h1 ## h2 ∧ h = h1 + h2 ∧ P h1 −→ Q h2 (4)

It states that whenever there is a subheap h1 satisfying P then the remaining
heap satisfies Q. To the best of our knowledge, we are the first to define this
operator and explore its properties.

It is the dual of separating conjunction, i.e., P �* Q = ¬(P * ¬Q), which is
the same relationship as the one between separating implication and septraction.

Special instances of �* (in the form of doubly negated conjunction) appear
in the literature: the dangling operator of Vafeiadis and Parkinson [43] uses

Backwards and Forwards with Separation Logic 73

P * Q P −→* Q

P * Q P− Q

dual

Galois

dual

Galois

Fig. 1. Relationship between operators of separation logic

subterms of the form ¬(p 	→ * True), which equals p 	→ �* False, and the
subtraction operator by Calcagno et al. [9], used for comparing bi-abduction
solutions, uses terms of the form P �* emp. These occurrences indicate that
separating coimplication is an important, yet unexplored operator for SL. As we
will show, it is also the crucial ingredient to set up forward reasoning for SL.

Separating coimplication forms a Galois connection with septraction.
Therefore, many useful theorems follow from abstract algebraic reasoning. For
example, similar to the rules stated above for * and −→*, we get rules for cur-
rying, decurrying and cancellation:

P −� Q =⇒ R

Q =⇒ P �* R
(curry)

Q =⇒ P �* R

P −� Q =⇒ R
(decurry)

Q −� (Q �* P)

P
(canc)

It follows that separating coimplication is isotone in one, and antitone in the
other argument:

P’ =⇒ P

P �* Q =⇒ P’ �* Q

Q =⇒ Q’

P �* Q =⇒ P �* Q’

Separating coimplication is not only interesting because it completes the set
of ‘nicely’ connected operators for SL (see Fig. 1), it is also useful to charac-
terise specific heap configurations. For example, (P �* False) h states that no
subheap of h satisfies P: P �* False = λh. ∀ h1. h1 � h −→ ¬ P h1.

While properties concerning �* and −� mostly follow from the Galois con-
nection, some need to be derived ‘manually’:

P �* Q P * R

P * (Q ∧ R)

P −→* (R ∧ (P �* False))

¬P * (P −→* ¬R)
The first rule states that whenever a heap satisfies P �* Q, and can be split
into two subheaps satisfying P and R, respectively, then the subheap satisfying
R has to satisfy Q as well. The second rule connects separating implication and
coimplication directly and states that if adding a heap satisfying P yields a heap
with no subheap containing P, then the underlying heap cannot satisfy P.

74 C. Bannister et al.

SL considers different classes of assertions [40]; each of them plays an impor-
tant role in SL, and usually gives additional information about the heap. For
example, a precise assertion characterises a unique heap portion (when such a
portion exists), i.e.,

precise P ≡ ∀ h h1 h2. h1 � h ∧ P h1 ∧ h2 � h ∧ P h2 −→ h1 = h2

P is precise iff the distributivity ∀ Q R. ((Q ∧ R) * P) = (Q * P ∧ R * P) holds
[15]. Separating coimplication yields a nicer characterisation:

precise P = ∀ R. P * R =⇒ (P �* R) (5)

On the one hand this equivalence eliminates one of the ∀ -quantifiers, which
simplifies reasoning; on the other hand it directly relates separating conjunction
with coimplication, stating that if P and R hold on a heap, and one pulls out
an arbitrary subheap satisfying P, the remaining heap must satisfy R. Obviously,
this relationship between * and �* does not hold in general since separating
coimplication may pull out the ‘wrong’ subheap satisfying P.

As a consequence, using (CANC), we immediately get

precise P

P −� (P * R) =⇒ R
(6)

Our Isabelle files [3] contain many more properties of separating coimplication.
The most important use of separating coimplication, however, is its application
in forward reasoning, as we will demonstrate in Sect. 6.

Example 2. Using separating coimplication we can fully specify delete_ptr p in
a way that matches intuition: {|p 	→ �* R|} delete_ptr p {|R|}. This rule states
that the final state should satisfy R, when the pointer is deleted, and the pointer
existed in the first place. ��

5 Walking Backwards

Backward reasoning [16] or reasoning in weakest-precondition style proceeds back-
wards from a given postcondition Q and a given program m by determining the
weakest precondition wp(m,Q) such that {|wp(m,Q)|} m {|Q|} is a valid Hoare triple.

Backward reasoning is well established for formal programming languages,
using classical logics. For example the weakest precondition wp(m1;m2,Q) for a
sequential program equals wp(m1,wp(m2,Q)); the full set goes back to Dijkstra [16].
Using these equations, backward reasoning in Hoare logic is straightforward.

Avoiding Frame Calculations. In SL, however, it comes at a price, since
reasoning has to work on Hoare triples of the form {|P * R|} m {|Q * R|} and has
to consider the frame. Whenever an arbitrary postcondition X is given, one needs
to split it up into the actual postcondition Q needed for reasoning about m, and the
(untouched) frame R. That means for given X and Q one has to calculate the frame
R such that X = Q * R. Frame calculations are often challenging in applications
since X can be arbitrary complex. The same holds for a given precondition.

Backwards and Forwards with Separation Logic 75

Example 3. Let copy_ptr p p’ = do { x ← get_ptr p; set_ptr p’ x }be theprogram
that copies the value at pointer p to the value at pointer p’. Its natural
specification is {|p 	→x * p’ 	→ |} copy_ptr p p’ {|p 	→x * p’ 	→x|}. The specification
we use is

∀ R. {|p 	→ x * p’ 	→ * R|} copy_ptr p p’ {|p 	→ x * p’ 	→ x * R|} (7)

In a larger program, the postcondition at the call site of copy_ptr will be more
complex than Q = p 	→ x * p’ 	→ x. Say it is {|p’ 	→ v * a 	→ * p 	→ v * R’|}, for
some heap R’. To determine the precondition, using Rule (7), the postcondition
needs to be in the form Q * R. One has to calculate the frame R = a 	→ * R’. ��

Phrasing specifications in the form {|P * R|} m {|Q * R|} (similar to Rule (7))
state that the frame rule holds for program m, i.e., that m only consists of local
actions with respect to P. In the monadic setting, where not all programs are
necessarily local, we find this form more convenient than a predicate on the
programs and a separate frame rule. That also means that our Isabelle/HOL
framework does not rely on the frame rule.

In the previous example the frame calculation uses only associativity and
commutativity of *, but in general such calculations can be arbitrarily com-
plex. A solution to this problem follows directly from the Galois connection and
‘rewrites’ the pre- and postcondition.

(∀ R. {|P * R|} m {|Q * R|}) = (∀ X. {|P * (Q −→* X)|} m {|X|}) (8)

The left-hand side coincides with the form we use to specify our programs. The
right-hand side has the advantage that it works for any postcondition X; no
explicit calculation of the frame is needed for the postcondition. Since Q −→* X

is the weakest [9] choice of frame, the calculation happens implicitly and auto-
matically in the precondition. This is a generalisation of what occurs in Reynolds’
work [40] for specific operations.

Since Rule (8) generates Hoare triples that can be applied to arbitrary post-
conditions, we can use these rules directly to perform backward reasoning in
the sense of Dijkstra [16]. That means that our calculations are similar to the
classical ones for reasoning with weakest preconditions, e.g. wp(m1,wp(m2,Q)). As
a consequence our framework can generate preconditions fully automatically. As
in the classical setting, applying the rules of Hoare logic is now separated from
reasoning about the content of the program and the proof engineer can focus
their effort on the part that requires creativity.

Example 4. Using Equivalence (8), the specification for copy_ptr (7) becomes

{|∃ x. p 	→ x * p’ 	→ * (p 	→ x * p’ 	→ x −→* X)|} copy_ptr p p’ {|X|} ��

Simplifying Preconditions. As mentioned above, Equivalence (8) allows us
to perform backward reasoning and to generate preconditions. However, the
generated formulas will often be large and hence automation for simplifying
generated preconditions is necessary. We provide such simplification tactics.

76 C. Bannister et al.

Both the right-hand side of (8) and the previous example show that generated
preconditions contain interleavings of * and −→*. A simplifier suitable for our
framework has to deal with such interleavings, in particular it should be able to
handle formulas of the type P * (Q −→* R), for any P, Q and R. Two rules that
are indispensable here are cancellation and currying, as introduced in Sect. 3:

R =⇒ R’

P * R =⇒ P * R’

P * Q =⇒ R

P =⇒ Q −→* R
(9)

Currently, not many solvers support the separating implication operator
[5,32]. Some automatic solvers for separating implication exist for formulas over
a restricted set of predicates [23]. Since we are aiming at a general framework
for arbitrary specifications, we do not want to restrict the expressiveness of pre-
and postconditions, and hence we cannot restrict our framework to such subsets.
Moreover, we cannot hope to develop fully automatic solvers for the problem at
hand at all, since it is undecidable for arbitrary pre- and postconditions [11].

We provide proof tactics for Isabelle/HOL that can simplify formulas of the
form P * (Q −→* R), for any P, Q and R, and hence can be used in the setting
of backward reasoning. Although we cannot expect full automation, the simpli-
fication achieved by the tactics is significant, as we will show. Our tactics can
make partial progress without fully solving the goal. As experience shows for
standard proof methods in Isabelle, this is the most useful kind, e.g. the method
simp, which rewrites the current goal and leaves a normal form, is much more
frequently used than methods such as blast or force that either have to fully
solve the goal or fail, but cannot make intermediate progress available to the
user. What we provide is a simplifier, not an entailment solver or semi-solver.

Our framework [3] offers support for backward reasoning in SL, and builds
on top of an existing library [30], which is based on separation algebras. This
brings the advantage that abstract rules, such as Q * (Q −→* P) =⇒ P, which
are indispensable for handling interleaving of * and −→* are immediately avail-
able. Since the framework is independent of the concrete heap model, we can
apply the tool to a wide range of problem domains. As usual, the tactics enable
the user to give guidance to complete proofs where other methods fail, and to
substantially reduce proof effort.

– The tactic sep_wp performs weakest-precondition reasoning on monads and
automatically transforms specification Hoare triples provided as arguments
into weakest-precondition format, using Equivalence (8). In addition to the
transformations already described, it can also handle further combinations,
e.g. with classical Hoare logic, or instances where the separation logic
only operates on parts of the monad state. We integrate sep_wp into
the existing tactic wp [14] of the seL4 proofs, which implements classical
weakest-precondition reasoning with additional features such as structured
decomposition of postconditions. The user sees a tactic that can handle both,
SL and non-SL goals, gracefully.

Backwards and Forwards with Separation Logic 77

– We develop the tactic sep_mp to support reasoning about separating implica-
tion, and sep_lift to support the currying rule of Sect. 3, eliminating sepa-
rating implication. These are both integrated into the existing sep_cancel [30]
method, for reducing formulas by means of cancellation rules.

Detailed Example. To illustrate backward reasoning in SL in more detail, we
show the correctness of the program swap_ptr p p’ that swaps the values p and
p’ point. Pointer programs are built from four basic operations that manipulate
the heap: new_ptr allocates memory for a pointer, delete_ptr removes a pointer
from the heap, set_ptr assigns a value, and get_ptr reads a value, respectively.

Their specifications are as follows:

{|R|} new_ptr {|λrv. rv 	→ * R|}
{|p 	→ * R|} delete_ptr p {|R|}

{|p 	→ * R|} set_ptr p v {|p 	→ v * R|}
{|∃ x. p 	→ x * R x|} get_ptr p {|λrv. p 	→ rv * R rv|}

As before we use specifications with frames, avoiding the use of the frame rule.
Recall that in our monadic setting the postcondition R is a predicate over two

parameters: the return value rv of the function, and the state s after termination.
When there is no return value (e.g. for set_ptr) we omit the first parameter.

Using Rule (8), or the tactic wp (which includes sep_wp), we transform these
specifications into a form to be used in backward reasoning (for partial and total
correctness), except delete_ptr, which already has the appropriate form.

{|∀ x. x 	→ −→* X x|} new_ptr {|X|}
{|p 	→ * (p 	→ v −→* X)|} set_ptr p v {|X|}

{|∃ x. p 	→ x * (p 	→ x −→* X x)|} get_ptr p {|X|}

p v * p’ v’ * R =⇒
∀ x. x −→*

(∃ pv. p pv *

(p pv −→* x *

(x pv −→*

(∃ pv’. p’ pv’ *

(p’ pv’ −→* p *

(p pv’ −→*

(∃ y. x y *

(x y −→* p’ *

(p’ y −→* x * p v’ * p’ v * R)))))))))

Fig. 2. Backward reasoning: generated proof goal for swap_ptr

78 C. Bannister et al.

The program swap_ptr, which involves all heap operations, is given as
swap_ptr p p’ = do {

np ← new_ptr;

copy_ptr p np;

copy_ptr p’ p;

copy_ptr np p’;

delete_ptr np

}

where copy_ptr p p’ = do { x ← get_ptr p; set_ptr p’ x }, as before. We use
the specifications of the basic operations to prove the specification

{|p 	→ v * p’ 	→ v’ * R|} swap_ptr p p’ {|p 	→ v’ * p’ 	→ v * R|}

Using equational reasoning of the form wp(m1;m2,Q) = wp(m1,wp(m2,Q)), and
starting from the (given) postcondition our framework automatically derives
a precondition pre. In case the given precondition p 	→ v * p’ 	→ v’ * R implies
pre, the specification of swap_ptr holds. The proof goal is depicted in Fig. 2.

Our tactics simplify this lengthy, unreadable formula, where major simplifi-
cations are based on the aforementioned rules (Eqs. (9)).

The tactic sep_cancel is able to simplify the generated goal automatically,
but gets stuck at existential quantifiers. Although resolving existential quantifiers
cannot be fully automated in general, our framework handles many common
situations. The left-hand side of Fig. 3 shows an intermediate step illustrating
the state before resolving the last existential quantifier. One of the assumptions
is x 	→ v and hence the obvious choice for y is v. Here, Isabelle’s simple existential
introduction rule is sufficient to allow sep_cancel to perform the match without
input. The tactic sep_cancel can then solve the proof goal fully automatically; for
completeness we show a state where all occurrences of −→* have been eliminated.

Case Study: System Initialisation. Boyton et al. [7] present a formally veri-
fied initialiser for component-based systems built on the seL4 kernel. The safety
and security of software systems depends heavily on their initialisation; if ini-
tialisation is broken all bets are off with regards to the system’s behaviour. The
previous proofs (about 15, 000 lines of proof script) were brittle, often man-
ual, and involved frequent specification of the frame. Despite an early form of
sep_cancel the authors note that “higher-level automation such as frame com-
putation/matching would have improved productivity” [7].

p v’ * p’ v’ * x v * R =⇒
∃ y. x y *

(x y −→* p’ *

(p’ y −→* x * p v’ *

p’ v * R))

x v * p v’ * p’ v * R =⇒
x * p v’ * p’ v * R

Fig. 3. Matching existential quantifier and eliminating −→* for swap_ptr

Backwards and Forwards with Separation Logic 79

In contrast to our earlier examples, the initialiser proofs operate on a non-
deterministic state monad, as well as the non-deterministic error state monad.
Our tactics required only the addition of two trivial interface lemmas to adapt
to this change of computation model, illustrating the genericity of our approach.

Substituting the previous mechanisation with our framework2 we substan-
tially reduce the proof effort: for commands specified in SL, the calculation
of the weakest precondition is automatic, without any significant user interac-
tion. Additionally, we find that calculating the frame indirectly via resolution
of separating implications is significantly easier to automate, as the separating
implication is the weakest choice of solution for in-place frame calculation. The
general undecidability of separating implication did not pose a problem.

Figure 4 presents a sample of the entire proof script for an seL4 API function
to give an indication of the improvements. For brevity Fig. 4 shortens some of
the names in the proof. The separation algebra in this statement lets * be used
inside larger heap objects, such as specifying the capabilities stored inside a

lemma restart_null_wp:

{|(tcb, pop_slot) c NullCap * (tcb, reply_slot) c _ * R|}
restart tcb

{|(tcb, reply_slot) c (MRCap tcb) * (tcb, pop_slot) c RCap * R|}

apply (clarsimp simp:restart_def)

apply (wp)

apply (rule hoare_strengthen_post)

apply (rule set_cap_wp[where R=

(tcb, reply_slot) c MRCap tcb * R])

apply (sep_cancel)+

apply (rule hoare_strengthen_post)

apply (rule set_cap_wp[where

R=(tcb, pop_slot) c _ * R])

apply (sep_cancel)+

apply (rule hoare_strengthen_post)

apply (rule ipc_cancel_ret[where

R=(tcb, reply_slot) c _ * R])

apply (sep_cancel)+

apply (wp)

apply (clarsimp)

apply (intro conjI impI)

apply (drule opt_cap_sep_imp)

apply (clarsimp)

apply (drule opt_cap_sep_imp)

apply (clarsimp)

done

apply (clarsimp simp:restart_def)

apply (wp sep_wp:set_cap_wp ipc_cancel_ret)

apply (sep_cancel | simp | safe)+

done

Fig. 4. Reducing user steps by a factor of 6 in system initialisation proofs

2 Updated proofs at https://github.com/seL4/l4v/tree/seL4-7.0.0/sys-init.

https://github.com/seL4/l4v/tree/seL4-7.0.0/sys-init

80 C. Bannister et al.

Thread Control Block (TCB) object using 	→c. The lemma models which seL4
capabilities are available to the user after a restart operation.

The left-hand side of Fig. 4 shows the original proof. Each application of an
SL specification rule required first a weakening of the postcondition to bring it
into the expected form, and often a manual specification of the frame. Not only
is this cumbersome and laborious for the proof engineer, it was highly brittle –
any change of the functionality or specification requires a new proof.

The right-hand side shows the simplified proof. It shortens eighteen lines of
proof script to three, without noticeable increase in prover time. By removing
the manual term specification, the tactics also make the proof more robust to
changes – we can rewrite parts of the code, while leaving the proof unchanged.

Another strength is that our tactics are incremental, i.e., we can use them
alongside others. In our example we use safe and simp. This design allows us to
attack arbitrary formulas of SL.

6 Walking Forwards

Forward reasoning uses strongest postconditions [19]. It proceeds forwards from
a given precondition P and a given program m by calculating the strongest post-
condition sp(m,P). Although backward reasoning with weakest preconditions is
more common in practice, there are several applications where forward reasoning
is more convenient, for example, for programs where the precondition is ‘trivial’,
and the postcondition either too complex or unknown.

Usually forward reasoning focuses on partial correctness. Recall that we admit
memory failures in partial correctness. In larger proofs it is convenient to show
absence of failure separately, e.g. during a refinement proof [14], and assume it in
multiple partial-correctness proofs, thereby avoiding proof duplication.

To enable forward reasoning for SL it is desirable to transform a Hoare triple
{|P * R|} m {|Q * R|} into the form {|X|} m {|post|}, similar to Equivalence (8).

Avoiding Frame Calculations. In [22] Hobor and Villard present the rule
FWRamify:

∀ F. {|P * F|} m {|Q * F|} R =⇒ P * True Q * (P −� R) =⇒ R’

{|R|} m {|R’|}
At first glance this rule looks like the frame calculation could be avoided,

since the conclusion talks about arbitrary preconditions R. It is a ‘complification’
of what we can more simply write as (∀ F. {|P * F|} m {|Q * F|}) ∧ (R =⇒ P *

True) =⇒ {|R|} m {|Q * (P−� R)|}, which states that a terminating program m,
specified by P * F and Q * F, will end up in a state satisfying Q * (P−� R) if R con-
tains a subheap satisfying P, which is characterised by R =⇒ P * True.

The reason FWRamify cannot be used to avoid the frame calculation is the
subheap-test R =⇒ P * True, which includes a frame calculation itself, and is as
hard to check as reasoning via weakening of the precondition.

Backwards and Forwards with Separation Logic 81

In general it seems impossible to transform triples {|P * R|} m {|Q * R|} into
strongest-postcondition form, without introducing additional proof burden, sim-
ilar to FWRamify. As discussed in Sect. 4, the term P �* R states that R holds,
whenever P is removed from the heap – removal is only feasible if P exists.

Separating coimplication implies an equivalence similar to (8):

(∀ R. {|P �* R|} m {|Q * R|}) = (∀ X. {|X|} m {|Q * (P−� X)|}) (10)

which we can use for forward reasoning. It is based on ‘reverse modus ponens’,
X =⇒ P �* (P−� X), which follows directly from the Galois connection. Intu-
itively, the postcondition is calculated from the heap satisfying X by subtracting
the part satisfying the precondition P and replacing it with a heap satisfying Q.

In practice, specifications {|P * R|} m {|Q * R|} can almost always be rewritten into
{|P �* R|} m {|Q * R|}, especially if P is precise.

For example, the precondition of {|p 	→ �* R|} set_ptr p v {|p 	→v * R|} assumes
the hypothetical case that if we had the required resource (p 	→), we would have
a predicate R corresponding to the rest of the heap. In the postcondition, the
resource does exist and is assigned to the correct value v.

Example 5. Using the specifications of the heap operations and Equivalence (10)
yields the following Hoare triples (for partial correctness).

{|X|} new_ptr {|λrv. rv 	→ * X|}
{|X|} delete_ptr p {|p 	→ −� X|}

{|X|} set_ptr p v {|p 	→v * (p 	→ −� X)|}
{|X|} get_ptr p {|λrv. p 	→rv * (p 	→rv−� X)|}

��
Simplifying Postconditions. Since Equivalences (8) and (10) have the same
shape, we can develop a framework for forward reasoning following the lines
of backward reasoning. As for backward reasoning, forward reasoning generates
lengthy postconditions that need simplification. This time we have to simplify
interleavings of * and−�.

∃ np. np −
(∃ x. p’ x *

(p’ − np x *

(np x −
(∃ x. p x *

(p − p’ x *

(p’ x −
(∃ x. np x *

(np − p x *

(p x − np * p v * p’ v’ * R)))))))))

=⇒ p v’ * p’ v * R

Fig. 5. Forward reasoning: generated proof goal for swap_ptr

82 C. Bannister et al.

Three laws are important for resolving interleavings of * and−�:

P =⇒ Q −→* R

P * Q =⇒ R

Q =⇒ P �* R

P−� Q =⇒ R

precise P

P * R =⇒ P �* R

The former two allow us to move subformulas from the antecedent to the con-
sequent, while the latter one is a cancellation law. Depending on which term is
precise different cancellation rules are needed.

We develop the following tactics for forward reasoning:
– sep_invert provides an ‘inversion’ simplification strategy, based on the afore-

mentioned laws. It transforms interleavings of * and−� into −→* and �*.
– septract_cancel simplifies �* by means of cancellation rules.
– sep_forward integrates septract_cancel and sep_cancel, alongside a few other

simple methods, to provide a simplification strategy for most formulas reason-
ing forwards.

– sep_forward_solve inverts, and then attempts to use sep_forward to fully solve
the goal.

Figure 5 depicts the generated proof goal for swap_ptr. The first ten lines show
the generated postcondition, whereas the last one is the given one. With the help
of the developed tactics, our framework proves swap_ptr. As before instantiation
of existential quantifiers is sometimes needed, and handled automatically for com-
mon cases.

Benchmark. One of the standard SL benchmarks is in-place list reversal:
list_rev p = do {

(hd_ptr, rev) ← whileLoop (λ(hd_ptr, rev) s. hd_ptr �= NULL)

(λ(hd_ptr, rev). do {

next_ptr ← get_ptr hd_ptr;

set_ptr hd_ptr rev;

return (next_ptr, hd_ptr)

})

(p, NULL);

return rev

}

For this example, the predicate list that relates pointers to abstract lists is
defined in the standard, relational recursive way [35]. We used septract_cancel

to verify the Hoare triple

{|list p ps * R|} list_rev p {|λrv. list rv (rev ps) * R|}
We only had to interact with our framework in a non-trivial way by adding the
invariant that the list pointed to by the previous pointer is already reversed.

Case Study: System Initialisation. To investigate the robustness of our tac-
tics in a real-world proof scenario, we again turn to the proof of system initialisa-
tion showcased earlier. We completed a portion of the proof, comprising of twenty
function specifications, to demonstrate that a forward approach could achieve the
same gains as our backward one, providing a degree of assurance that either app-
roach could be taken without incurring costs.

Backwards and Forwards with Separation Logic 83

As with weakest precondition, we are able to provide tactics enabling concise,
highly automatic proofs. We give an example using the error monad, where the
statement has a second postcondition {|P|} m {|Q|},{|E|}. When the code throws an
exception, E must hold. Leaving E free means no exception will occur. The follow-
ing lemma models the result of invoking the seL4 API call move on two capabilities:

lemma invoke_cnode_move_cap:

{|dest 	→c _ * src 	→c cap * R|}
invoke_cnode (MoveCall cap’ src dest)

{|dest 	→c cap’ * src 	→c NullCap * R|},{|E|}
apply (simp add:validE_def)

apply (clarsimp simp:invoke_cnode_def liftE_bindE validE_def[symmetric])

apply (sp sp:move_cap_sp)

apply (sep_forward_solve)

done

Most of the effort was in constructing the strongest-postcondition framework
akin to wp. This is generic and can be used outside of our SL framework. The only
work required to adapt our tactics to the proof was specialising the strongest post-
condition Hoare triple transformation to the monads used, which was trivial.

7 RelatedWork

Separata [23,24] is an Isabelle framework for separation logic based on a labelled
sequent calculus. It is a general reasoning tool for separation logic, and sup-
ports separating conjunction, separating implication, and septraction. While it
can prove a number of formulas that our tactics cannot, none of these formulas
appear in our verification tasks using backward and forward reasoning, and they
are unlikely to show up in these styles, owing to the highly regular shape of the
generated formulas of our framework. Conversely, Separata was not able to solve
the weakest-precondition formulas produced in our proof body. Our framework
can integrate solvers such as Separata for the generated pre- and postconditions;
hence we see these tools as additional support for our framework.

Other frameworks for reasoning in separation logic in an interactive setting
such as the Coq-based VeriSmall [2] or CFML [12] stand in a similar relationship.
One of the main strengths of our framework is its generality, which should allow
it to be easily combined with other frameworks.

Many other tools such as Space Invader [18], Verifast [26], HOLfoot [42] offer
a framework for forward reasoning within separation logic, based on variations of
symbolic execution. Since they do not provide support for separating implication,
they also do not perform backward reasoning in weakest-precondition style as pre-
sented. The few tools that do support separating implication are automatic full
solvers [34] and do not provide a user-guided interactive framework.

The only approach using strongest postcondition we are aware of is the rule
FWRamify by Hobor and Villard [22], which its authors find too difficult to use
in practice. Using separating coimplication, we do not find septraction to be fun-
damentally more difficult than the existing well-known SL fragments.

84 C. Bannister et al.

Many existing interactive tools perform frame inference [1,4,13,41], which is
the way SL was presented by O’Hearn et al. [38]. We take a different approach,
and automatically divide logical reasoning from program text achieving the same
separation of concerns standard Hoare logic enjoys. Our form of frame calcula-
tion is deferred to the purely logical part of the problem, where we can provide an
interactive proof tactic for calculating the frame incrementally as needed.

Iris Proof Mode was developed in Coq by Krebbers et al. [31], on top of the Iris
framework for Higher Order Concurrent Separation Logic [27]. They provide sup-
port for separating conjunction and implication, and use separating implication
for performing weakest-precondition reasoning. As Iris is based on affine separa-
tion logic, where resource leaks are not reasoned about, it is unclear whether their
tactics can be adopted in our linear setting.

Our framework operates entirely on the level of the abstract separation alge-
bra, leaving it to the user to provide facts about model-dependent predicates, such
as points-to predicates. This makes the tool highly adaptable. As we presented ear-
lier, we have used it for ordinary heap models, for fine-grained ‘partial’ objects, as
well as multiple different monad formalisations.

In the field of static analysis, bi-abduction is a promising technique in speci-
fication derivation, employed notably in the Infer tool [9], as well as in attempts
to detect memory leaks automatically in Java programs [17]. Since the frame cal-
culations happen in place, instead of separating logic from program as we do, it
would be interesting to employ our framework to this space.

8 Summary

We have presented a methodology for backward and forward reasoning in sepa-
ration logic. To support proof automation we have implemented our theoretical
results in a framework for automation-assisted interactive proofs in Isabelle/HOL.

The more traditional backward reasoning works for both partial and total cor-
rectness. It makes use of the standard separating implication rule for weakest pre-
conditions, which often counts as unwieldy. We, however, provide an interactive
tactic that successfully resolves the separating implications we have encountered
in sizeable practical applications.

The forward reasoning framework makes use of a new operator, the separat-
ing coimplication, which forms a nice algebraic completion of the existing oper-
ators of separating conjunction, separating implication, and septraction. The
framework relies on the fact that specifications can be (re)written into the form
{|P �* R|} m {|Q * R|}. This is always possible when P is precise. While we suspect
that this weaker specification will usually be true for partial correctness, we leave
the general case for future work.

We have demonstrated our new proof tactics in a case study for both forward
and backward reasoning. For backward reasoning, we have achieved substantial
improvements, reducing the number of user proof steps by a factor of up to six.
For forward reasoning, we have taken a portion of the same proof and completed it
with our strongest-postcondition framework, achieving similar gains. We believe

Backwards and Forwards with Separation Logic 85

this gives empirical grounds that users can decide which style of reasoning is suit-
able for their problem domain, without incurring costs in mechanisation.

References

1. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19718-5 1

2. Appel, A.W.: VeriSmall: verified smallfoot shape analysis. In: Jouannaud, J.-P.,
Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 231–246. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25379-9 18

3. Bannister, C., Höfner, P., Klein, G.: Forward and backward reasoning in separa-
tion logic. Isabelle theories (2018). https://github.com/sel4proj/Jormungand/tree/
ITP18

4. Bengtson, J., Jensen, J.B., Birkedal, L.: Charge! A framework for higher-order. In:
Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 315–331. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32347-8 21

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation logic.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg
(2005). https://doi.org/10.1007/11575467 5

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

7. Boyton, A., Andronick, J., Bannister, C., Fernandez, M., Gao, X., Greenaway, D.,
Klein, G., Lewis, C., Sewell, T.: Formally verified system initialisation. In: Groves,
L., Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 70–85. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41202-8 6

8. Burstal, R.: Some techniques for proving correctness of programs which alter data
structures. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 23–50.
Edinburgh University Press, Edinburgh (1972)

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis
by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011). https://doi.org/10.
1145/2049697.2049700

10. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: Logic in Computer Science (LICS 2007), pp. 366–378. IEEE (2007). https://doi.
org/10.1109/LICS.2007.30

11. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for a
spatial assertion language for data structures. In: Hariharan, R., Vinay, V., Mukund,
M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45294-X 10

12. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) International Conference
on Functional Programming (ICFP 2011), pp. 418–430. ACM (2011). https://doi.
org/10.1145/2034773.2034828

13. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: Hall, M.W., Padua, D.A. (eds.) Programming Language Design
and Implementation (PLDI 2011), pp. 234–245. ACM (2011). https://doi.org/10.
1145/1993498.1993526

https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-25379-9_18
https://github.com/sel4proj/Jormungand/tree/ITP18
https://github.com/sel4proj/Jormungand/tree/ITP18
https://doi.org/10.1007/978-3-642-32347-8_21
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-41202-8_6
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1007/3-540-45294-X_10
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/1993498.1993526

86 C. Bannister et al.

14. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable
refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS,
vol. 5170, pp. 167–182. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71067-7 16

15. Dang, H.H., Höfner, P., Möller, B.: Algebraic separation logic. J. Logic Algebraic
Programm. 80(6), 221–247 (2011). https://doi.org/10.1016/j.jlap.2011.04.003

16. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

17. Distefano, D., Filipović, I.: Memory leaks detection in java by bi-abductive infer-
ence. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 278–
292. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12029-9 20

18. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 287–
302. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 19

19. Floyd, R.W.: Assigning meanings to programs. Math. Aspects Comput. Sci. 19,
19–32 (1967)

20. Gordon, M., Collavizza, H.: Forward with hoare. In: Roscoe, A.W., Jones, C.B.,
Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare, pp. 101–121. Springer,
London (2010). https://doi.org/10.1007/978-1-84882-912-1 5

21. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

22. Hobor, A., Villard, J.: The ramifications of sharing in data structures. In: Gia-
cobazzi, R., Cousot, R. (eds.) Principles of Programming Languages (POPL 2013),
pp. 523–536. ACM (2013). https://doi.org/10.1145/2429069.2429131

23. Hóu, Z., Goré, R., Tiu, A.: Automated theorem proving for assertions in separation
logic with all connectives. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS
(LNAI), vol. 9195, pp. 501–516. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21401-6 34

24. Hóu, Z., Sanán, D., Tiu, A., Liu, Y.: Proof tactics for assertions in separation logic.
In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 285–303.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66107-0 19

25. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: Principles of Programming Languages (POPL 2001), vol. 36, pp. 14–26.
ACM (2001). https://doi.org/10.1145/373243.375719

26. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the verifast program verifier. In:
Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

27. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: monoids and invariants as an orthogonal basis for concurrent reasoning. In:
Principles of Programming Languages (POPL 2015), pp. 637–650. ACM (2015).
https://doi.org/10.1145/2676726.2676980

28. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. Trans. Com-
put. Syst. 32(1), 2:1–2:70 (2014). https://doi.org/10.1145/2560537

29. Klein, G., Kolanski, R., Boyton, A.: Mechanised separation algebra. In: Beringer,
L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 332–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32347-8 22

30. Klein, G., Kolanski, R., Boyton, A.: Separation algebra. Archive of Formal Proofs,
Formal proof development (2012). http://isa-afp.org/entries/Separation Algebra.
shtml

https://doi.org/10.1007/978-3-540-71067-7_16
https://doi.org/10.1007/978-3-540-71067-7_16
https://doi.org/10.1016/j.jlap.2011.04.003
https://doi.org/10.1007/978-3-642-12029-9_20
https://doi.org/10.1007/11691372_19
https://doi.org/10.1007/978-1-84882-912-1_5
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2429069.2429131
https://doi.org/10.1007/978-3-319-21401-6_34
https://doi.org/10.1007/978-3-319-21401-6_34
https://doi.org/10.1007/978-3-319-66107-0_19
https://doi.org/10.1145/373243.375719
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2560537
https://doi.org/10.1007/978-3-642-32347-8_22
http://isa-afp.org/entries/Separation_Algebra.shtml
http://isa-afp.org/entries/Separation_Algebra.shtml

Backwards and Forwards with Separation Logic 87

31. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order concur-
rent separation logic. In: Castagna, G., Gordon, A.D. (eds.) Principles of Program-
ming Languages (POPL 2017), pp. 205–217. ACM (2017). https://doi.org/10.1145/
3009837.3009855

32. Lee, W., Park, S.: A proof system for separation logic with magic wand. In: Jagan-
nathan, S., Sewell, P. (eds.) Principles of Programming Languages (POPL 2014),
pp. 477–490. ACM (2014). https://doi.org/10.1145/2535838.2535871

33. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–
370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4 20

34. Maclean, E., Ireland, A., Grov, G.: Proof automation for functional correctness in
separation logic. J. Logic Comput. 26(2), 641–675 (2016). https://doi.org/10.1093/
logcom/exu032

35. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. In: Baader,
F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 121–135. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45085-6 10

36. Nipkow, T.: Hoare logics in Isabelle/HOL. In: Schwichtenberg, H., Steinbrüggen,
R. (eds.) Proof and System-Reliability, pp. 341–367. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-94-010-0413-8 11

37. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL — A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

38. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter data
structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

39. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Logic in Computer Science (LICS 2002), pp. 55–74 (2002). https://doi.org/10.1109/
LICS.2002.1029817

40. Reynolds, J.C.: An introduction to separation logic. In: Broy, M., Sitou, W., Hoare,
T. (eds.) Engineering Methods and Tools for Software Safety and Security, NATO
Science for Peace and Security Series - D: Information and Communication Security,
vol. 22, pp. 285–310. IOS Press (2009). https://doi.org/10.3233/978-1-58603-976-
9-285

41. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: Grove, D., Blackburn, S. (eds.) Programming Language
Design and Implementation (PLDI 2015), pp. 77–87. ACM (2015). https://doi.org/
10.1145/2737924.2737964

42. Tuerk, T.: A Separation Logic Framework for HOL. Ph.D. thesis, University of Cam-
bridge, UK (2011)

43. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 18

https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/2535838.2535871
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1093/logcom/exu032
https://doi.org/10.1093/logcom/exu032
https://doi.org/10.1007/978-3-540-45085-6_10
https://doi.org/10.1007/978-94-010-0413-8_11
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.3233/978-1-58603-976-9-285
https://doi.org/10.3233/978-1-58603-976-9-285
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1007/978-3-540-74407-8_18

A Coq Formalisation of SQL’s
Execution Engines

V. Benzaken2, É. Contejean1(B), Ch. Keller2, and E. Martins2

1 CNRS, Université Paris Sud, LRI, Orsay, France
evelyne.contejean@lri.fr

2 Université Paris Sud, LRI, Orsay, France

Abstract. In this article, we use the Coq proof assistant to specify and
verify the low level layer of SQL’s execution engines. To reach our goals,
we first design a high-level Coq specification for data-centric operators
intended to capture their essence. We, then, provide two Coq implemen-
tations of our specification. The first one, the physical algebra, consists
in the low level operators found in systems such as Postgresql or Oracle.
The second, SQL algebra, is an extended relational algebra that provides
a semantics for SQL. Last, we formally relate physical algebra and SQL
algebra. By proving that the physical algebra implements SQL algebra,
we give high level assurances that physical algebraic and SQL algebra
expressions enjoy the same semantics. All this yields the first, to our
best knowledge, formalisation and verification of the low level layer of
an RDBMS as well as SQL’s compilation’s physical optimisation: funda-
mental steps towards mechanising SQL’s compilation chain.

1 Introduction

Data-centric applications involve increasingly massive data volumes. An impor-
tant part of such data is handled by relational database management systems
(RDBMS’s) through the SQL query language. Surprisingly, formal methods have
not been broadly promoted for data-centric systems to ensure strong safety guar-
antees about their expected behaviours. Such guarantees can be obtained by
using proof assistants like Coq [27] or Isabelle [28] for specifying, proving and
testing (parts of) such systems. In this article, we use the Coq proof assistant
to specify and verify the low level layer of an RDBMS as proposed in [26] and
detailed in [18].

The theoretical foundations for RDBMS’s go back to the 70’s where relational
algebra was originally defined by Codd [13]. Few years later, SQL, the standard
domain specific language for manipulating relational data was designed [10].
SQL was dedicated to efficiently retrieve data stored on secondary storage in
RDBMS’s, as described in the seminal work [26] that addressed the low level
layer as well as secondary memory access for such systems, known in the field
as physical algebra, access methods and iterator interface. SQL and RDBMS’s

Work funded by the DataCert ANR project: ANR-15-CE39-0009.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 88–107, 2018.
https://doi.org/10.1007/978-3-319-94821-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_6&domain=pdf

A Coq Formalisation of SQL’s Execution Engines 89

evolved over time but they still obey the principles described in those works and
found in all textbooks on the topic (see [5,15,18,25] for instance). In particu-
lar, the semantic analysis of a SQL query could yield an expression, e1, of an
(extended) relational algebra. The logical optimisation step rewrites this expres-
sion into another algebraic expression e2 (based on well-known rules that can be
found in [18]). Then physical optimisation takes place and an evaluation strat-
egy for expression e2, called a query execution plan (QEP) in this setting, is
produced. QEP’s are composed by physical algebra operators. Yet there are no
formal guarantees that the produced QEP and (optimised) algebraic expression
do have the same semantics. One contribution of our work is to open the way
to formally provide such evidences. To reach our goal, we adopt a very general
approach that is not limited to our specific problem. It consists in providing a
high-level pivotal specification that will be used to describe and relate several
lower-level languages.

In our particular setting, we first design a high-level, very abstract, generic,
thus extensible, Coq specification for data-centric operators intended to capture
their essence (which will be useful to address other data models and languages
than relational ones).

The first low-level language consists of physical operators as found in systems
such as Postgresql and described in main textbooks on the topic [18,25]. One
specificity and difficulty lied in the fact that, when evaluating a SQL query, all
those operators are put together, and for efficiency purposes, database systems
implement, as far as possible, on-line [22] versions of them through the iterator
interface. At that point there is a discrepancy between the specifications that
provide collection-at-a-time invariants and the implementations that account for
value-at-a-time executions. To fill up the gap, we exhibit non trivial invariants
to prove that our on-line algorithms do implement their high-level specification.
Moreover, those operators are shown to be exhaustive and to terminate.

The second low-level language (actually mid-level specification) is SQL alge-
bra (syntax and semantics), an algebra that hosts SQL. By hosting we mean that
there is an embedding of SQL into this algebra which preserves SQL’s seman-
tics. Due to space limitations, such an embedding is out of the scope of this
paper and is described in [7]. We relate each algebraic operator to our high level
specification by proving adequacy lemmas providing strong guarantees that the
operator at issue is a realization of the specification.

Last, we formally bridge both implementations. By proving that the physical
algebra does implement SQL algebra, we give strong assurances that the QEP
and the algebraic expression resulting from the semantics analysis and logical
optimisation do have the same semantics. This last step has been eased thanks
to the efforts devoted to the design of our high-level pivotal specification. All
this yields the first, to our best knowledge, executable formalisation and verifica-
tion of the low level layer of an RDBMS as well as SQL’s compilation’s physical
optimisation: fundamental steps towards mechanising SQL’s compilation chain.

90 V. Benzaken et al.

Organisation. We briefly recall in Sect. 2 the key ingredients of SQL compila-
tion and database engines: extended relational algebra, physical algebra opera-
tors and iterator interface. Section 3 presents our Coq high-level specification
that captures the essence of data-centric operators. In Sect. 4, we formalise
the iterator interface and physical algebra, detailing the necessary invariants.
Section 5 presents the formal specification of SQL algebra. We formally estab-
lish, in Sect. 6, that any given physical operator does implement its corresponding
logical operator. We draw lessons, compare our work, conclude and give perspec-
tives in Sect. 7.

2 SQL’s Compilation in a Nutshell

Following [18] SQL’s compilation proceeds into three broad steps. First, the
query is parsed, that is turned into a parse-tree representing its structure. Second,
semantics analysis is performed transforming the parse tree into an expression
tree of (extended) relational algebra. Third, the optimisation step is performed:
using relational algebraic rewritings (logical optimisation) and based on a cost
model1, a physical query execution plan (QEP) is produced. It not only indicates
the operations performed but also the order in which they will be evaluated, the
algorithm chosen for each operation and the way stored data is obtained and
passed from one operation to another. This last stage is data dependent.

We present the main concepts through the following example that models
a movie database gathering information about movies (relation movie), movies’
directors director, the movies they directed and relation role carrying infor-
mation about who played (identified by his/her pid) which role in a given movie

Fig. 1. A typical SQL query, its QEP and logical AST.

1 The model exploits system collected statistics about the data stored in the database.

A Coq Formalisation of SQL’s Execution Engines 91

(identified by its mid). On Fig. 1 we give for a typical SQL query the corre-
sponding (Postgresql)2 QEP issued as well as the AST obtained after semantic
analysis and logical optimisation.

The leaves (i.e., relations) are treated by means of access methods such as
Seq Scan or Index Scan (in case an index is available); a third access method
usually provided by RDBMS’s is the Sort Scan which orders the elements in the
result according to a given criteria. In the example, relations role and director
are accessed via Seq Scan, whereas people and movie are accessed thanks to
Index Scan. The product of relations in the from part is reordered and the
filtering condition is spread over the relevant (sub-product of) relations.

Intuitively, each physical operator corresponds to one or a combination of
algebraic operators: σ (selection), × (product), completed with π (projection)
and γ (grouping) (see Sect. 5.1 for their formal semantics).

Conversely, to each operator of the logical plan, σ,×, . . ., potentially corre-
sponds one or more operators of the physical plan: the underlying database sys-
tem provides several different algorithm’s implementations. For the cross prod-
uct, for instance, at least four such different algorithms are provided by main-
stream systems: Nested Loop, Index Join, Sort Merge Join and Hash Join.
For the selection operator the system may use the Filter physical operator.

The situation is made even more complex by the facts that a QEP contains
some strategy (top-down, left-most evaluation) and that some physical operators
are implemented via on-line algorithms. Hence a filtering condition which spans
over a cross-product between two operands, in an algebraic expression, may be
used in the corresponding QEP to filter the second one, by inlining the condition
for each tuple of the first operand. This is the case for instance with the second

Table 1. Synthesis

Iterator interface operators

Section 3 Section 4, φ algebra Section 5
data centric
operators

simple index based sort based
SQL

algebra

map Seq Scan
Index scan

Bitmap index scan
Sort scan r, π

join
Nested loop

Block nested loop

Hash join

Index join
Sort merge join ×

filter Filter σ

group Group γ

bind Subplan env

accumulator Aggregate, Hash, Hash aggregate aggregate

Intermediate results storage operators
Materialize

2 The IJ nodes are expressed in Postqresql as Nested loop combined with an Index
scan but corresponds to an index-based join.

92 V. Benzaken et al.

join of Fig. 1 where the second operand is an Index-Scan. Therefore the pattern
x ×IJ (Index Scan y Index Cond :a = x.a′) corresponds to σy.a=x.a′(x × y).

Unfortunately not all physical operators support the on-line approach and
materialising partial results (i.e., temporarily storing intermediate results) is
needed: the Materialise physical operator allows to express this in Postgresql
physical plans. Table 1 summarises our contributions where the colored cells
indicate the Coq specified and implemented operators.

3 A High-Level Specification for Data-Centric Operators

In the data-centric setting, data are mainly collections of values. Such values can
be combined and enjoy a decidable comparison. Operators allow for manipulating
collections, that is to extract data from a collection according to a condition
(filter), to iterate over a collection (map), to combine two collections (join) and,
last, to aggregate results over a collection (group).

Since collections may be implemented by various means (lists with or with-
out duplicates, AVL, etc.), in the following we shall call these implementations
containerX ’s. The content, that is the elements gathered in such a containerX,
may be retrieved with the corresponding function contentX and we also make a
last assumption, that there is a decidable equivalence equivX for elements. The
function nb_occX is defined as the number of occurrences of an element in the
contentX of a containerX modulo equivX3.

We then characterise the essence of data centric operations performed on
containers. Operators filter and map are a lifting of the usual operators on lists
to containers.
Definition is_a_filter_op contentA contentA’ (f: A → bool) (fltr: containerA → containerA’)

:= ∀ s, ∀ t, nb_occA’ t (fltr s) = (nb_occA t s) * (if f t then 1 else 0).

Definition is_a_map_op contentA contentB (f: A → B) (mp: containerA → containerB) :=
∀ s, ∀ t, nb_occB t (mp s) = nb_occ t (map f (contentA s)).

Unlike the first two operators which make no hypothesis on the nature of the
elements of a containerX, joins manipulate homogeneous containers i.e., their
elements are equipped with a support supX which returns a set of attributes,
and all elements in a containerX enjoy the same supX, which is called the sort of
the container. Let us denote by A1 (resp. A2, resp. A) the type of the elements of
the first operand (resp. the second operand, resp. the result) of a join operator
j. Elements of type A are also equipped with two functions projA1 and projA2,
which respectively project them over A1 and A2.

3 X will be A, A’, B, according to the various types of elements and various implemen-
tations for the collection. A particular case of nb_occX is nb_occ which denotes the
number of occurrences in a list.

A Coq Formalisation of SQL’s Execution Engines 93

Definition is_a_join_op sa1 sa2 contentA1 contentA2 contentA

(j : containerA1 → containerA2 → containerA) :=

∀ s1 s2, (∀ t, 0 < nb_occA1 t s1 → supA1 t = sa1) →
(∀ t, 0 < nb_occA2 t s2 → supA2 t = sa2) →

((∀ t, 0 < nb_occA t (j s1 s2) → supA t = (sa1 unionS sa2)) ∧
(nb_occA t (j s1 s2) = nb_occA1 (projA1 t) s1 * nb_occA2 (projA2 t) s2))

* (if supA t = (sa1 unionS sa2) then 1 else 0).

Intuitively, joins allow for combining two homogeneous containers by taking the
union of their sort and the product of their occurrence’s functions.

The grouping operator, as presented in textbooks [18], partitions, using mk_g,
a container into groups according to a grouping criteria g and then discards some
groups that do not satisfy a filtering condition f. Last for the remaining groups
it builds a new element.

Definition is_a_grouping_op (G : Type) (mk_g : G → containerA → list B) grp :=

∀ (g : G) (f : B → bool) (build : B → A) (s : containerA) t,

nb_occA t (grp g f build s) = nb_occ t (map build (filter f (mk_g g s))).

All the above definitions share a common pattern: they state that the num-
ber of occurences nb_occX t (o p s) of an element t in a container built from
an operator o applied to some parameters p and some operands s, is equal to
foopp(t, nb_occX (g t) s), where foopp is a function which depends only on the
operator and the parameters. This implies that any two operators satisfying the
same specification is_a_..._op are interchangeable. For grouping, the situation
is slightly more subtle, however the same interchangeability property shall hold
since nb_occA t (grp g f build s)) depends only on t and contentA s for the
grouping criteria used in the following sections.

Tuning those definitions was really challenging: finding the relevant level of
abstraction for containers and contents suitable to host both physical and logical
operators was not intuitive. Even for the most simple one such as filter, we
would have expected that the type of containers should be the same for input
and output. It was not possible as we wanted a simple, concise and efficient
implementation.

4 Physical Algebra

All physical operators that can be implemented by on-line algorithms rely on a
common iterator interface that allows them to build the next tuple on demand.

4.1 Iterators

A key aspect in our formalisation of physical operators is a specification of such
a common iterator interface together with the properties an iterator needs to
satisfy. We validate this interface by implementing standard iterative physical
operators, namely sequential scanning, filtering, and nested loop.

94 V. Benzaken et al.

Abstract Iterator Interface. An iterator is a data structure that iterates over a
collection of elements to provide them, on demand, one after the other. Following
the iterator interface given in [18] and in the same spirit of the formalisation of
cursors presented in [17], we define a cursor as an abstract object over some
type elt of elements that must support three operations: next, that returns the
next element of the iteration if it exists; has_next, that checks if such an element
does exist; and reset, that restarts the cursor at its beginning. In Coq, this can
be modelled as a record4 named Cursor that contains (at least) an abstract type
of cursors and these three operations:

Record Cursor (elt : Type) : Type :=

{ cursor : Type;

next : cursor → result elt * cursor;

has_next : cursor → Prop;

reset : cursor → cursor;

[...] (* Some properties, see below *) }.

Due to the immutable nature of Coq objects, the operations next and reset

must return the modified cursor. Moreover, since next must be a total function,
a monadic5 construction is used to wrap the element of type t that it outputs:

Inductive result (A : Type) := Result : A → result A | No_Result | Empty_Cursor.

The constructor Result corresponds to the case where an element can be
returned, and the two constructors No_Result and Empty_Cursor deal with the
cases where an element cannot be returned, respectively because it does not
match some selection condition (see Sect. 4.1) or because the cursor has been
fully iterated over.

We designed a sufficient set of properties that a cursor should satisfy in order
to be valid. These properties are expressed in terms of three high-level inspection
functions (that are used for specification only, not for computation): collection
returns all the elements of the cursor, visited returns the elements visited so
far, and coherent states an invariant that the given cursor must preserve:

Record Cursor (elt : Type) : Type := { [...]

collection : cursor → list elt;

visited : cursor → list elt;

coherent : cursor → Prop; [...] }.

collection

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tuple C1 (A1,. . .,An)

Tuple C2 (A1,. . .,An)

Tuple C3 (A1,. . .,An)
...

Tuple Cn (A1,. . .,An)

}
visited
cursor

4 We could also use a module type, but the syntax would be heavier and less general.
5 This construction is similar to the exception monad. There is no interest to write

the standard “return” and “bind” operators. The sequential scan and nested loop,
respecitvely, can be seen as online versions of them.

A Coq Formalisation of SQL’s Execution Engines 95

Given these operations, the required properties are the following:
Record Cursor (elt : Type) : Type := { [...]

(* next preserves the collection *)

next_col : ∀ c, coherent c → collection (snd (next c))) = collection c;

(* next adds the returned element to visited *)

next_visited_Result :

∀ a c c’, coherent c → next c = (Result a, c’) → visited c’ = a :: (visited c);

next_visited_No_Result :

∀ c c’, coherent c → next c = (No_Result, c’) → visited c’ = visited c;

next_visited_Empty_Cursor :

∀ c c’, coherent c → next c = (Empty_Cursor, c’) → visited c’ = visited c;

(* next preserves coherence *) next_coherent : ∀ c, coherent c → coherent (snd (next c));

(* when a cursor has no element left, visited contains all the elements of the collection *)

has_next_spec : ∀ c, coherent c → ¬ has_next c → (collection c) = (rev (visited c));

(* a cursor has new elements if and only if next may return something *)

has_next_next_neg : ∀ c, coherent c → (has_next c ↔ fst (next c) �= Empty_Cursor);

(* reset preserves the collection *)

reset_collection : ∀ c, collection (reset c) = collection c;

(* reset restarts the visited elements *) reset_visited : ∀ c, visited (reset c) = nil;

(* reset returns a coherent cursor *) reset_coherent : ∀ c, coherent (reset c); [...]}.

The ..._coherent and ..._collection axioms ensure that coherent and the
collection of elements are indeed invariants of the iterator. The ..._visited

axioms explain how visited is populated. Finally, the has_next_spec axiom is the
key property to express that all the elements have been visited at the end of the
iteration.

Last, we require a progress property on cursors (otherwise next could return
the No_Result value forever and still satisfy all the properties). Progress is stated
in terms of an upper bound on the number of iterations of next before reaching
an Empty_Cursor:

Record Cursor (elt : Type) : Type := { [...]

(* an upper bound on the number of iterations before the cursor has been fully visited *)

ubound : cursor → nat;

(* this upper bound is indeed complete *)

ubound_complete : ∀ c acc, coherent c → ¬ has_next (fst (iter next (ubound c) c acc)); }.

where iter f n c acc iterates n times the function f on the cursor c, returning
a pair of the resulting cursor and the accumulator acc augmented with the
elements produced during the iteration. The upper bound is not only part of the
specification (to state that cursors have a finite number of possible iterations)
but can also be used in Coq to actually materialize them.

We will see that these properties are strong enough both to combine iterators
and to derive their adequacy with respect to their algebraic counterparts.

First Instance: Sequential Scan. The base cursor implements sequential scan
by returning, tuple by tuple, all the elements of a given relation, represented by
a list in our high-level setting. It simply maintains a list of elements still to be
visited named to_visit and its invariant expresses that the collection contains
the elements visited so far and the elements that remain to be visited. A natural
upper bound on the number of iterations is the number of elements to visit.

96 V. Benzaken et al.

Definition coherent (c : cursor) := c.(collection) = rev c.(visited) ++ c.(to_visit).

Definition ubound (c : cursor) : nat := List.length c.(to_visit).

Second Instance: Filter. Filtering a cursor returns the same cursor, but with
a different function next and accordingly different specification functions. Given
a property on the elements f : elt → bool, the function next filters elements
of the underlying cursor:
Definition next (c : cursor) : result elt * cursor :=
match Cursor.next c with

| (Result e, c’) ⇒ if f e then (Result e, c’) else (No_Result, c’) | rc’ ⇒ rc’

end.

This is where No_Result is introduced when the condition is not met. Accord-
ingly, the functions collection and visited are the filtered collection and
visited of the underlying cursor and an upper bound on the number of iter-
ations is the upper bound of the underlying cursor:

Definition collection (c : cursor) := List.filter f (Cursor.collection c).

Definition visited (c : cursor) := List.filter f (Cursor.visited c).

Definition ubound (q : cursor) : nat := Cursor.ubound q.

Third Instance: Nested Loop. The nested loop operator builds the cross-
product between an outer cursor and an inner cursor: the next function returns
either the combination of the current tuple of the outer cursor with the next tuple
of the inner cursor (if this latter exists) or the combination of the next tuple of
the outer cursor with the first tuple of the reset outer cursor (see Fig. 2).

visited
cursor1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Collection cursor1

Tuple O1 (a1,b1,c1)

Tuple O2 (a2,b2,c2)

Tuple O3 (a3,b3,c3)

·
·

Tuple On (an,bn,cn)

current

tuple

(el)

}
visited
cursor2

Collection cursor2

Tuple I1

Tuple I2

Tuple I3

build (Tuple O1, Tuple I1)

build (Tuple O1, Tuple I2)

build (Tuple O1, Tuple I3)

build (Tuple O2, Tuple I1)

build (Tuple O2, Tuple I2)

build (Tuple O2, Tuple I3)

build (Tuple O3, Tuple I1)

build (Tuple O3, Tuple I2)

︸ ︷︷ ︸
visited

join cursor

Algorithm 1 Nested Loop-Join
for each tuple o ∈ O do

for each tuple i ∈ I do
Add the tuple <o,i> to visited

end for
end for

Fig. 2. Nested Loop-Join

Specifying such a cursor becomes slightly more involved. For correctness, one
has to show the invariant stating that the elements visited so far contain (i) the
last visited element of the outer cursor combined with all the visited elements of
the inner cursor; and (ii) the other visited elements of the outer cursor combined
with all the collection of the inner cursor.

A Coq Formalisation of SQL’s Execution Engines 97

Definition coherent (c: cursor) : Prop :=

(* the two underlying cursors are coherent *)

Cursor.coherent (outer c) ∧ Cursor.coherent (inner c) ∧
match Cursor.visited (outer c) with

(* if the outer cursor has not been visited yet, so as the inner cursor *)

| nil ⇒ visited c = nil ∧ Cursor.visited (inner c) = nil

(* otherwise, the visited elements are a partial cross-product *)

| el :: li ⇒ visited c = (cross (el::nil) (Cursor.visited (inner c))) ++

(cross li (rev (Cursor.collection (inner c))))

end.

where cross builds the cross product of two lists. For progress, an upper bound
for the length of this partial cross-product is needed:

Definition ubound (c:cursor) : nat :=

Cursor.ubound (inner c) +

(Cursor.ubound (outer c) * (S (Cursor.ubound (Cursor.reset (inner c))))).

where a successor on the upper bound on the inner cursor has been added for
simplicity reasons. The proof of completeness is elaborate and relies on key
properties on bounds for cursors stating in particular that the bound decreases
when next is applied to a non-empty cursor:

Lemma ubound_next_not_Empty:

∀ c, coherent c → fst (next c) �= Empty_Cursor → ubound (snd (next c)) < ubound c;

Materialisation. Independently from any specific operator, materialising an
iterator is achieved by resetting it, then iterating the upper bound number of
times while accumulating the returned elements. We can show the key lemma
for adequacy of operators: materialising an iterator produces all the elements of
its collection.
Definition materialize c :=

let c’ := reset c in List.rev (snd (iter next (ubound c’) c’ nil)).

Lemma materialize_collection c : materialize c = collection c.

We used the same technique to implement the grouping operator by, instead
of simply accumulating the elements, group them on the fly.

4.2 Index-Based Operators

Having an index on a given relation is modelled as a wrapper around cursors:
such a relation must be able to provide a (possibly empty) cursor for each value of
the index. The main components of an indexed relation are: (i) a type containers

of the internal representation of data (which can be a hash table, a B-tree, a
bitmap, . . .), (ii) a function proj, representing the projection from tuples to
their values on the attributes enjoying the index, (iii) a comparison function P

on these attributes (which can be an equality for hash-indices, a comparison for
tree-based indices, . . .) and (iv) an indexing function i that, given a container
and an index, returns the cursors of the elements of the container matched by
the index (w.r.t. P). This is implemented as the following record:

98 V. Benzaken et al.

Record Index (elt eltp : Type) : Type :=

{ containers : Type; (* representation of data *)

proj : elt → eltp; (* projection on the index *)

P : eltp → eltp → bool; (* comparison between two indices *)

i : containers → eltp → Cursor.cursor; (* indexing function *) [...] }.

As for sequential iterators, we state the main three properties that an index
should satisfy. Again, these properties are expressed in terms of the collection of
a container, used for specification purposes only.

Record Index (elt eltp : Type) : Type := { [...]

ccollection : containers → list elt; (* the elements of a container *)

(* the collection of an indexed cursor contains the filtered elements of the

container w.r.t. P *)

i_collection : ∀ c x, Cursor.collection (i c x) =

List.filter (fun y ⇒ P x (proj y)) (ccollection c);

(* a fresh indexed cursor has not been visited yet *)

i_visited : ∀ c x, Cursor.visited (i c x) = nil;

(* a fresh indexed cursor is coherent *) i_coherent : ∀ c x, Cursor.coherent (i c x) }.

First Instance: Sequential Scan. Let us start with a simple example: sequen-
tial scan can be seen as an index scan with a trivial comparison function that
always returns true, and a trivial indexing function that returns a sequential
cursor. It is thus sufficient to use the following definitions and the properties
follow immediately:

Definition containers := list elt.

Definition P := fun _ _ ⇒ true.

Definition i := fun c _ ⇒ SeqScan.mk_cursor c.

Let us see how this setting models more interesting index-based algorithms.

Second Instance: Hash-Index Scan. In this case, the comparison function
is an equality, and the underlying containers are hash tables whose keys are
the attributes composing the index. To each key is associated the cursor whose
collection contains elements whose projection on the index equals the key. In our
development, we use the Coq FMap library to represent hash tables, but we are
rather independent of the representation:

Record containers : Type := mk_containers

{ (* the hash table *) hash : FMapWeakList.Raw(Eltp) (cursor C);

(* the elements are associated to the corresponding key *)

keys : ∀ x es, MapsTo x es hash → ∀ e, List.In e (collection es) → P x (proj e) = true;

noDup : NoDup hash (* the hash table has no key duplicate *) }.

where MapsTo x es hash means that es is the cursor associated to the key x in
the hash table.

Given a particular index, the indexing function returns the cursor associated
to the index in the hash table. Its properties follow from the properties of hash
tables.

A Coq Formalisation of SQL’s Execution Engines 99

Third Instance: Bitmap-Index Scan In this case, the comparison function
can be any predicate, and the containers are arrays of all the possible elements
of the relation together with bitmaps (bit vectors) associated to each index,
stating whether the nth element of the relation corresponds to the index. In our
development, we use Coq vectors to represent this data structure:

Record containers : Type := mk_containers

{ size : nat; (* the number of elements in the relation *)

collection : Vector.t elt size; (* all the elements of the relation *)

bitmap : eltp → Bvector size;(* a bitmap associated to every index *)

(* each bitmap associates to true exactly the elements matching the corresponding index *)

coherent : ∀ n x0, nth (bitmap x0) n = P x0 (proj (nth collection n)) }.

Given a particular index, the indexing function returns the sequential cursor
built from the elements for which the bitmap associated to the index returns
true. Its properties follow by induction on the size of the relation.

Application: Index-Join Algorithm. The index-join algorithm is similar in princi-
ple to the nested loop algorithm but faster thanks to an exploitable index on the
inner relation: for each tuple of the outer relation, only matching tuples of the
inner relation are considered (see Fig. 3). Hence, our formal development is sim-
ilar as the one for nested loop, but more involved: (i) in the function next, each
time we get a new element from the outer relation, we need to generate the cur-
sor corresponding to the index from the inner relation (instead of resetting the
whole cursor) (ii) the collection is now a dependent cross-product between the
outer relation and the matching inner tuples; the invariant predicate coherent

has to be changed consequently (iii) the ubound is a dependent product of the
bound of the outer relation with each bound of the matching cursors of the inner
relation (obtained by materialising the outer relation).

visited
cursor1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Collection cursor1

Tuple O1 (a1,b1,c1)

Tuple O2 (a2,b2,c2)

Tuple O3 (a3,b3,c3)

·
·

Tuple On (an,bn,cn)

build (Tuple O1, Tuple 1 I1)

build (Tuple O2, Tuple 2 I1)

build (Tuple O2, Tuple 2 I2)

build (Tuple O2, Tuple 2 I3)

build (Tuple O2, Tuple 2 I4)

︸ ︷︷ ︸
visited

join cursor

Containers (ctn)

Col1

Tuple 1 I1

Col2

Tuple 2 I1

Tuple 2 I2

Tuple 2 I3

Tuple 2 I4

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Col3 = collection

(i ctn (proj O3))

Col3

Tuple 3 I1

Tuple 3 I2

Tuple 3 I3

Algorithm 2 Index-Join
for each tuple o ∈ O do

I ← index-lookup ()
for each tuple i ∈ I do

Add the tuple <o,i> to visited
end for

end for

Fig. 3. Index-based nested loop

100 V. Benzaken et al.

Derived Operators. Our high level of abstraction gives for free the specification of
common variants of the physical operators. For instance, the Block Nested Loop
algorithm is straightforwardly formalised by replacing, in the Nested Loop for-
malisation, the abstract type of elements by a type of “blocks” of elements (e.g.,
lists), and the function that combines two tuples by a function that combines
two blocks of tuples.

4.3 Adequacy

All physical operators specified and implemented so far are shown to fulfil the
high-level specification. For instance, if C is a cursor, f a filtering condition
compatible with the equivalence of elements in C, then the corresponding filter
iterator F:= (Filter.build f f_eq C) fulfils the specification of a filter:

Lemma mk_filter_is_a_filter_op :

is_a_filter_op (Cursor.materialize C) (Cursor.materialize F) f (Filter.mk_filter F).

Sometimes, there are some additional side conditions: if C1 and C2 are two
cursors, and NL := (NestedLoop.build [...] C1 C2) is the corresponding nested
loop which combines elements thanks to the combination function build_, not
only some hypotheses are needed to be able to build NL, but some extra ones are
needed to prove NL is indeed a join operator:

Hypothesis [...]

Hypothesis build_split_eq_1 :

∀ t1 u1 t2 u2, equivA (build_ t1 t2) (build_ u1 u2) → [...] → equivA1 t1 u1.

Hypothesis build_split_eq_2 :

∀ t1 u1 t2 u2, equivA (build_ t1 t2) (build_ u1 u2) → [...] → equivA2 t2 u2.

Lemma NL_is_a_join_op :

is_a_join_op [...] (Cursor.materialize C1) (Cursor.materialize C2) (Cursor.materialize NL)

[...] (fun c1 c2 ⇒ NestedLoop.mk_cursor C1 C2 nil c1 c2).

5 SQL Algebra

We now present SQL algebra, our Coq formalisation of an algebra that satisfies
the high-level specification given in Sect. 3 and that hosts SQL.

5.1 Syntax and Semantics

The extended relational algebra, as presented in textbooks, consists of the well-
known operators π (projection), σ (selection) and × (join) completed with the γ
(grouping) together with the set theoretic operators. We focus on the former four
operators. In our formalisation, formula mimics the SQL’s filtering conditions
expressed in the where and having clauses of SQL.

A Coq Formalisation of SQL’s Execution Engines 101

Inductive query : Type :=

| Q_Table : relname → query

| Q_Set : set_op → query → query →
query

| Q_Join : query → query → query

| Q_Pi : list select → query → query

| Q_Sigma : formula → query → query

| Q_Gamma :

list term → formula → list select →
query → query

with formula : Type :=

| Q_Conj :

and_or → formula → formula → formula

| Q_Not : formula → formula

| Q_Atom : atom → formula

with atom : Type :=

| Q_True

| Q_Pred : predicate → list term → atom

| Q_Quant :

quantifier → predicate → list term →
query → atom

| Q_In : list select → query → atom

| Q_Exists : query → atom.

We assume that there is an instance which associates to each relation a
multiset (bagT) of tuples, and that these multisets enjoy some list-like operators
such as empty, map, filter, etc (see the additional material for more details and
precise definitions). In order to support so-called SQL correlated queries, the
notion of environment is necessary.

Fixpoint eval query env q {struct q} : bagT :=

match q with

| Q_Table r ⇒ instance r

| Q_Set o q1 q2 ⇒ if sort q1 = sort q2

then interp_set_op o (eval_query env q1) (eval_query env q2)

else empty

| Q_Join q1 q2 ⇒ natural_join (eval_query env q1) (eval_query env q2)

| Q_Pi s q ⇒ map (fun t ⇒ projection_ (env_t env t) s) (eval_query env q)

| Q_Sigma f q ⇒ filter (fun t ⇒ eval_formula (env_t env t) f) (eval_query env q)

| Q_Gamma lf f s q ⇒ let g := Group_By lf in

mk_bag (map (fun l ⇒ projection_ (env_g env g l) s)

(filter (fun l ⇒ eval_formula (env_g env g l) f)

(make_groups_ env (eval_query env q) g)))

end

with eval formula env f := [...]

with eval atom env atm := [...]

end.

Let us detail the evaluation of Q_Sigma f q in environment env. It consists of
the tuples t in the evaluation of q in env which satisfy the evaluation of formula f

in env. In order to evaluate f one has to evaluate the expressions it contains. Such
expressions are formed with attributes which are either bound in env or occur
in tuple t’s support. This is why the evaluation of f takes place in environment
env_t env t which corresponds to pushing t over env yielding

Q_Sigma f q ⇒ filter (fun t ⇒ eval_formula (env_t env t) f) (eval_query env q)

Similarly, we use env_t env t for the evaluation of expressions of s in the
Q_Pi s q case. The grouping γ is expressed thanks to Q_Gamma. A group consists
of elements which evaluate to the same values for a list of grouping expressions.
Each group yields a tuple thanks to the list select part in which each (sub-
)term either takes the same value for each tuple in the group, or consists in an
aggregate expression. This usual definition (see for instance [18]) is not enough
to handle SQL’s having conditions, as having directly operates on the group

102 V. Benzaken et al.

that carry more information than the corresponding tuple. This is why Q_Gamma

has also a formula operand. Thus the corresponding expression for query

select avg(a1) as avg a1, sum(b1) as sum b1 from t1

group by a1+b1, 3*b1 having a1 + b1 > 3 + avg(c1);

is Q Gamma [a1 + b1; 3*b1] (Q Atom (Q Pred > [a1 + b1; 3 + avg(c1)]))

[Select As avg(a1) avg a1; Select As sum(b1) sum b1] (Q table t1)

5.2 Adequacy

The following lemmas assess that SQL algebra is a realisation of our high-level
specification. Note that, in the context of SQL algebra the notion of tuple cor-
responds to the high-level notion of elements’ type X, finite bag corresponds to
the high-level notion of containerX and elements to contentX.

Lemma Q_Sigma_is_a_filter_op : ∀ env f,

is_a_filter_op [...]

(* contentA := fun q ⇒ Febag.elements BTupleT (eval_query env q) *)

(* contentA’ := fun q ⇒ Febag.elements BTupleT (eval_query env q) *)

(fun t ⇒ eval_formula (env_t env t) f)

(fun q ⇒ Q_Sigma f q).

Lemma Q_Join_is_a_join_op : ∀ env s1 s2,

let Q_Join q1 q2 := Q_Join q1 q2 in

is_a_join_op (* contentA1 := fun q ⇒ elements (eval_query env q) *)

(* contentA2 := fun q ⇒ elements (eval_query env q) *)

(* contentA := fun q ⇒ elements (eval_query env q) *) [...] s1 s2 Q_Join.

Lemma Q_Gamma_is_a_grouping_op : ∀ env g f s ,

let eval_s l := projection_ (env_g env (Group_By g) l) (Select_List s) in

let eval_f l := eval_formula (env_g env (Group_By g) l) f in

let mk_grp g q := partition_list_expr (elements (eval_query env q))

(map (fun f t ⇒ interp_funterm (env_t env t) f) g) in

let Q_Gamma g f s q := eval_query env (Q_Gamma g f s q) in

is_a_grouping_op [...] mk_grp g eval_f eval_s (Q_Gamma g f s).

6 Formally Bridging Logical and Physical Algebra

We now formally bridge physical algebra to SQL algebra. Figure 4 describes the
general picture. As pointed out in Sect. 3, any two operators which satisfy the
same high-level specification are interchangeable. This means in particular that
physical algebra’s operators can be used to implement the evaluation of construc-
tors of SQL algebra’s inductive query. The fundamental nature of the proof
of such facts is the transitivity of equality of number of occurences. However,
there are some additional hypotheses in both lemmas φ _..._op_is_a_..._op and
SQL_..._op_is_a_..._op. Some of them are trivially fulfilled when the elements
are tuples, while others cannot be discarded.

For instance, for proving that NestedLoop implements Q_Join, we have to
check that the hypotheses for NL_is_a_filter_op are fulfilled. Doing so, the con-
dition that the queries to be joined must have disjoint sorts appeared mandatory
in order to prove the hypothesis build_split_eq_2 which assess that whenever

A Coq Formalisation of SQL’s Execution Engines 103

High-Level Spec

Definition is a ... op p o :=

∀ x t, nb occ t (o p x) = fo,p(t, nb occ t x)

φ-algebra

Lemma φ ... op is a ... op :

Hφ ⇒ ∀ x t, nb occ t (oφ p x) = fo,p(t, nb occ t x)

SQL Algebra

Lemma SQL ... op is a ... op :

HSQL ⇒ ∀ x t, nb occ t (oSQL p x) = fo,p(t, nb occ t x)

Bridge

Lemma φ ... op implements SQL ... op :

Hφ∧ HSQL ⇒ ∀ x t, nb occ t (oφ p x) = nb occ t (oSQL p x)

Fig. 4. Relating φ-algebra and SQL algebra.

two combined tuples are equivalent, their projections over the part corresponding
to the inner relation also have to be equivalent.

Lemma NL_implements_Q_Join :

(* Provided that the sorts are disjoined... *)

∀ C1 C2 env q1 q2, (sort q1 interS sort q2) = emptysetS →
(∀ t, 0 < nb_occ t (eval_query env q1) → support t = sort q1) →
(∀ t, 0 < nb_occ t eval_query env q2 → support t = sort q2) →
let NL := NestedLoop.build [...] C1 C2 in

∀ c1 c2, (* ... if the two cursors implement the queries... *)

(∀ t, nb_occ t (eval_query env q1) = nb_occ t (Cursor.materialize C1 c1)) →
(∀ t, nb_occ t (eval_query env q2) = nb_occ t (Cursor.materialize C2 c2)) →

(* ... then the nested loop implements the join *)

∀ t, nb_occ t (eval_query env (Q_Join q1 q2)) =

nb_occ t (Cursor.materialize NL (NestedLoop.mk_cursor C1 C2 nil c1 c2)).

This is an a posteriori justification that most systems implement combina-
tion of relations as cross-products whereas according to theory [1], combination
should be the natural join.

7 Related Works, Lessons, Conclusions and Perspectives

Related work. Our work is rooted on the many efforts to use proof assistants
to mechanise commercial languages’ semantics and formally verify their compi-
lation as done with the seminal work on Compcert [23]. The first attempt to
formalise the relational data model using Agda is described in [19,20] and a
first complete Coq formalisation of it is found in [8]. A SSreflect-based mecha-
nisation of the Datalog language has been proposed in [9]. The very first Coq
formalisation of RDBMSs’ is detailed in [24] where the authors proposed a ver-
ified source to source compiler for (a small subset) of SQL. In [14], an approach
which automatically compiles high-level SQL-like specifications down into per-
formant, imperative, low-level code is presented. Our goal is different as we aim
at verifying real-life RDBMS’s execution strategies rather than producing imper-
ative code. More recently, in [3,4] a Coq modelisation of the nested relational

104 V. Benzaken et al.

algebra is provided to assign a semantics to data-centric languages among which
SQL. Regarding logical optimisation, the most in depth proposal is addressed
in [12] where the authors describe a tool to decide whether two SQL queries are
equivalent. However, none of these works consider specifying and verifying the
low-level aspects of SQL’s compilation and execution as we did. Our work is,
thus, complementary to theirs and one perspective could be to join our efforts
along the line of formalising data-centric systems.

Lessons, Conclusions and Perspectives. While formalising the low level layer of
RDBMSs and SQL’s physical optimisation, we learnt the following lessons: (i) not
only finding the right invariants for physical operators was really involved but
proving them (in particular termination for nested loop) was indeed subtle. This
is due to the inherent difficulty to design on-line versions of even trivial off-line
algorithms. (ii) we are even more convinced by the relevance of designing such
a high-level specification that opens the way for accounting other data-centric
languages. More precisely, we first formalised SQL algebra then the physical
one, this implied revising the specification: in particular the introduction of
containersX was made. Then, while bridging both formalisms we slightly mod-
ified the specification but without questionning our fundamental choices about
abstracting over collections using containersX, only hypotheses were slightly
tuned. (iii) The need for higher-order and polymorphism was mandatory both
for the specification and physical algebra modelisation. This prevented us from
using deductive verification tools such as Why3 [16] for instance: it was quite
difficult to write down the algorithms and their invariants in this setting, even
worse the automated provers were of no use to discharge the proof obligations.
We tried tuning the invariants to help provers, without success. Hence our claim
is that it is easier to directly use a proof assistant, where one has the control
over the statements which have to be proven. (iv) The last point is that we
experimented records versus modules: records are simpler to use than modules
in our formalisation (no need of definitions’ unfolding, no need of intermediate
inductive types for technical reasons), the counterpart being that modules in the
standard Coq library, such as FSets or FMaps were not directy usable. The nice
feature which allows to hide part of their contents through module subtyping
was not needed here.

There are many points still to be addressed. In the very short term we plan to
specify the missing operators of Table 1 and enrich the physical algebra with more
fancy algorithms.Along this line twodirections remain to be explored. In our devel-
opment, the emphasis was put on specification rather than performance. Even if we
carefully separated functions used in specification (such as collection, coherent,
. . .) from the concrete algorithms, these latter are defined in the functional lan-
guage of Coq using higher-order data structures. We plan to refine these algorithms
into more efficient versions, in particular that manipulate the memory. We plan to
rely on CertiCoq [2] in order to produce fully certified C code. We are confident
that our specification is modular enough to be plugged on other system compo-
nents, such as buffer management, page allocation, disk access, already formalised

A Coq Formalisation of SQL’s Execution Engines 105

in Coq as in [11,21]. Back to the general picture of designing a fully certified SQL
compilation chain, in [6] we provided a Coq mechanised semantics pass that assigns
any SQL query its executable SQL algebra expression. What remains to be done
is to formally prove equivalence between SQL algebra expressions: those produced
by the logical optimisation phase and the one corresponding to the query execution
plan. Last, we are confident that our specification is general enough to host vari-
ous data-centric languages and will provide a framework for data-centric languages
interoperability which is our long term goal.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Bélanger-
Savary, O., Sozeau, M., Weaver, M.: Certicoq: a verified compiler for Coq. In:
The Third International Workshop on Coq for Programming Languages (CoqPL)
(2017)

3. Auerbach, J.S., Hirzel, M., Mandel, L., Shinnar, A., Siméon, J.: Handling environ-
ments in a nested relational algebra with combinators and an implementation in a
verified query compiler. In: Salihoglu, S., Zhou, W., Chirkova, R., Yang, J., Suciu,
D. (eds.) Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD Conference 2017, Chicago, IL, USA, 14–19 May 2017, pp. 1555–
1569. ACM (2017). https://doi.org/10.1145/3035918.3035961, http://doi.acm.org/
10.1145/3035918.3035961

4. Auerbach, J.S., Hirzel, M., Mandel, L., Shinnar, A., Siméon, J.: Q*cert: a plat-
form for implementing and verifying query compilers. In: Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, 14–19 May 2017, pp. 1703–1706 (2017)

5. Bailis, P., Hellerstein, J.M., Stonebraker, M. (eds.): Readings in Database Systems,
5th edn. MIT-Press (2015). http://www.redbook.io/

6. Benzaken, V., Contejean, E.: SQLCert: Coq mechanisation of SQL’s compilation:
formally reconciling SQL and (relational) algebra, October 2016. Working paper
available on demand

7. Benzaken, V., Contejean, E.: A Coq mechanised executable algebraic semantics for
real life SQL queries (2018, Submitted for Publication)

8. Benzaken, V., Contejean, E., Dumbrava, S.: A Coq formalization of the relational
data model. In: 23rd European Symposium on Programming (ESOP) (2014)

9. Benzaken, V., Contejean, É., Dumbrava, S.: Certifying standard and stratified
datalog inference engines in SSReflect. In: Ayala-Rincón, M., Muñoz, C.A. (eds.)
ITP 2017. LNCS, vol. 10499, pp. 171–188. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66107-0 12

10. Chamberlin, D.D., Boyce, R.F.: SEQUEL: a structured English query language. In:
Rustin, R. (ed.) Proceedings of 1974 ACM-SIGMOD Workshop on Data Descrip-
tion, Access and Control, Ann Arbor, Michigan, 1–3 May 1974, 2 vols., pp. 249–
264. ACM (1974). https://doi.org/10.1145/800296.811515, http://doi.acm.org/10.
1145/800296.811515

11. Chen, H., Wu, X.N., Shao, Z., Lockerman, J., Gu, R.: Toward compositional ver-
ification of interruptible OS kernels and device drivers. In: Krintz, C., Berger, E.

https://doi.org/10.1145/3035918.3035961
http://doi.acm.org/10.1145/3035918.3035961
http://doi.acm.org/10.1145/3035918.3035961
http://www.redbook.io/
https://doi.org/10.1007/978-3-319-66107-0_12
https://doi.org/10.1007/978-3-319-66107-0_12
https://doi.org/10.1145/800296.811515
http://doi.acm.org/10.1145/800296.811515
http://doi.acm.org/10.1145/800296.811515

106 V. Benzaken et al.

(eds.) Proceedings of the 37th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, 13–17
June 2016, pp. 431–447. ACM (2016).https://doi.org/10.1145/2908080.2908101,
http://doi.acm.org/10.1145/2908080.2908101

12. Chu, S., Weitz, K., Cheung, A., Suciu, D.: HoTTSQL: proving query rewrites with
univalent SQL semantics. In: Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2017, pp. 510–524.
ACM, New York (2017)

13. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970). https://doi.org/10.1145/362384.362685, http://doi.
acm.org/10.1145/362384.362685

14. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: Deductive synthesis of
abstract data types in a proof assistant. In: Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, pp. 689–700 (2015)

15. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 2nd edn. Benjam-
in/Cummings, Redwood City (1994)

16. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

17. Filliâtre, J.C., Pereira, M.: Itérer avec confiance. In: Journées Francophones des
Langages Applicatifs. Saint-Malo, France, January 2016. https://hal.inria.fr/hal-
01240891

18. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems - The Complete
Book, 2nd edn. Pearson Education, Harlow (2009)

19. Gonzaĺıa, C.: Towards a formalisation of relational database theory in constructive
type theory. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003.
LNCS, vol. 3051, pp. 137–148. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24771-5 12

20. Gonzalia, C.: Relations in dependent type theory. Ph.D. thesis, Chalmers Göteborg
University (2006)

21. Gu, R., Shao, Z., Chen, H., Wu, X.N., Kim, J., Sjöberg, V., Costanzo, D.: Cer-
tiKOS: an extensible architecture for building certified concurrent OS kernels. In:
Keeton, K., Roscoe, T. (eds.) 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA, 2–4 November 2016,
pp. 653–669. USENIX Association (2016). https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/gu

22. Karp, R.M.: On-line algorithms versus off-line algorithms: how much is it worth
to know the future? In: van Leeuwen, J. (ed.) Algorithms, Software, Architecture -
Information Processing 1992, vol. 1, Proceedings of the IFIP 12th World Computer
Congress, Madrid, Spain, 7–11 September 1992. IFIP Transactions, vol. A-12, pp.
416–429. North-Holland (1992)

23. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009)

24. Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a verified relational
database management system. In: ACM International Conference on POPL (2010)

25. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-
Hill, New York (2003)

26. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access
path selection in a relational database management system. In: Proceedings of the

https://doi.org/10.1145/2908080.2908101
http://doi.acm.org/10.1145/2908080.2908101
https://doi.org/10.1145/362384.362685
http://doi.acm.org/10.1145/362384.362685
http://doi.acm.org/10.1145/362384.362685
https://doi.org/10.1007/978-3-642-37036-6_8
https://hal.inria.fr/hal-01240891
https://hal.inria.fr/hal-01240891
https://doi.org/10.1007/978-3-540-24771-5_12
https://doi.org/10.1007/978-3-540-24771-5_12
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu

A Coq Formalisation of SQL’s Execution Engines 107

1979 ACM SIGMOD International Conference on Management of Data, Boston,
Massachusetts, 30 May–1 June 1979, pp. 23–34 (1979)

27. The Coq Development Team: The Coq Proof Assistant Reference Manual (2010).
http://coq.inria.fr, http://coq.inria.fr

28. The Isabelle Development Team: The Isabelle Interactive Theorem Prover (2010).
https://isabelle.in.tum.de/, https://isabelle.in.tum.de/

http://coq.inria.fr
http://coq.inria.fr
https://isabelle.in.tum.de/
https://isabelle.in.tum.de/

A Coq Tactic for Equality
Learning in Linear Arithmetic

Sylvain Boulmé1(B) and Alexandre Maréchal2

1 Univ. Grenoble-Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
sylvain.boulme@univ-grenoble-alpes.fr

2 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6,
75005 Paris, France

alexandre.marechal@lip6.fr

Abstract. Coq provides linear arithmetic tactics such as omega or lia.
Currently, these tactics either fully prove the current goal in progress, or
fail. We propose to improve this behavior: when the goal is not provable in
linear arithmetic, we strengthen the hypotheses with new equalities dis-
covered from the linear inequalities. These equalities may help other Coq
tactics to discharge the goal. In other words, we apply – in interactive
proofs – a seminal idea of SMT-solving: combining tactics by exchanging
equalities. The paper describes how we have implemented equality learn-
ing in a new Coq tactic, dealing with linear arithmetic over rationals. It
also illustrates how this tactic interacts with other Coq tactics.

1 Introduction

Several Coq tactics solve goals containing linear inequalities: omega and lia on
integers; fourier or lra on reals and rationals [4,22]. This paper provides yet
another tactic for proving such goals on rationals. This tactic – called vpl1 – is
built on the top of the Verified Polyhedra Library (VPL), aCoq-certified abstract
domain of convex polyhedra [14,15]. Its main feature appears when it cannot prove
the goal. In this case, whereas above tactics fail, our tactic “simplifies” the goal.
In particular, it injects as hypotheses a complete set of linear equalities that are
deduced from the linear inequalities in the context. Then, many Coq tactics – like
congruence, field or even auto – can exploit these equalities, even if they cannot
deduce them from the initial context by themselves. By simplifying the goal, our
tactic both improves the user experience and proof automation.

Let us illustrate this feature on the following – almost trivial – Coq goal,
where Qc is the type of rationals on which our tactic applies.

This work was partially supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant
Agreement nr. 306595 “STATOR”.

1 Available at http://github.com/VERIMAG-Polyhedra/VplTactic.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 108–125, 2018.
https://doi.org/10.1007/978-3-319-94821-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_7&domain=pdf
http://erc.europa.eu/
http://stator.imag.fr
http://github.com/VERIMAG-Polyhedra/VplTactic

A Coq Tactic for Equality Learning in Linear Arithmetic 109

Lemma ex1 (x:Qc) (f:Qc → Qc): x≤1 → (f x)<(f 1) → x<1.

This goal is valid on Qc and Z, but both omega and lia fail on the Z instance
without providing any help to the user. Indeed, since this goal contains an unin-
terpreted function f, it does not fit into the pure linear arithmetic fragment. On
the contrary, this goal is proved by two successive calls to the vpl tactic. As
detailed below, equality learning plays a crucial role in this proof: the rewrit-
ing of a learned equality inside a non-linear term (because under symbol f) is
interleaved between deduction steps in linear arithmetic. Of course, such a goal
is also provable in Z by SMT-solving tactics: the verit tactic of SMTCoq [2],
the hammer tactic of CoqHammer [11], or the one of Besson et al. [5]. However,
such SMT-tactics are also “prove-or-fail ”: they do not simplify the goal when
they cannot prove it. On the contrary, our tactic may help users in their inter-
active proofs, by simplifying goals that do not fully fit into the scope of existing
SMT-solving procedures. Note that our tactic does not intend to compete in
speed and power with SMT-based procedures. It mainly aims to ease interactive
proofs which involve linear arithmetic.

In short, this paper provides three contributions. First, we provide a Coq

tactic with equality learning, which seems a new idea in the Coq community.
Second, we provide a simple and efficient algorithm which learns these equali-
ties from conflicts between strict inequalities detected by a linear programming
solver. On most cases, it is strictly more efficient than the naive equality learning
algorithm previously implemented in the VPL [14]. In particular, our algorithm
is cheap when there is no equality to learn. At last, we have implemented this
algorithm in an Ocaml oracle, able to produce proof witnesses for these equal-
ities. The paper partially details this process, and in particular, how the proof
of the learned equalities is computed in Coq by reflection from these witnesses.
Actually, we believe that our tactic could be easily adapted to other interactive
provers, and, in particular, our oracle could be directly reused.

The paper follows a “top-down” presentation. Section 2 describes the spec-
ification of the vpl tactic. It also introduces a high-level specification of its
underlying oracle. Section 3 illustrates our tactic on a non-trivial example and
in particular how it collaborates with other tactics through equality learning.
Section 4 details the certificate format produced by our oracle, and how it is
applied in our Coq tactic. At last, Sect. 5 details the algorithm we developed to
produce such certificates.

2 Specification of the VPL Tactic

Let us now introduce the specification of the vpl tactic. As mentioned above, the
core of the tactic is performed by an oracle programmed in Ocaml, and called
reduce. This oracle takes as input a convex polyhedron P and outputs a reduced
polyhedron P ′ such that P ′ ⇔ P and such that the number of constraints in P ′

is lower or equal to that of P.

110 S. Boulmé and A. Maréchal

Definition 1 (Polyhedron). A (convex) polyhedron2 on Q is a conjunction
of linear (in)equalities of the form

∑
i aixi �� b where ai, b are constants in Q,

where xi are variables ranging over Q, and where �� represents a binary relation
on Q among ≥, > or =.

A polyhedron may be suboptimally written. In particular, one of its constraints
may be implied by the others: it is said redundant and can be discarded. More-
over, a set of inequalities can imply implicit equalities, such as x = 0 that can be
deduced from x ≥ 0∧ −x ≥ 0. This notion of implicit equalities is standard and
defined for instance in [19]. Definition 2 characterizes polyhedra without implicit
equalities.

Definition 2 (Complete set of linear equalities). Let E be a set of
linear equalities and I be a set of linear inequalities. E is said complete w.r.t.
I if any linear equality deduced from the conjunction E ∧ I can also be deduced
from E alone, meaning that I contains no equality, neither implicit nor explicit.
Formally, E is complete iff for all linear terms t1 t2,

(E ∧ I ⇒ t1 = t2) implies (E ⇒ t1 = t2) (1)

Definition 3 (Reduced Polyhedron). A polyhedron P is reduced iff it
satisfies the following conditions.

– If P is unsatisfiable, then P is a single constant constraint like 0 > 0 or 0 ≥ 1.
In other words, its unsatisfiability is checked by one comparison on Q.

– Otherwise, P contains no redundant constraint and is syntactically given as
a conjunction E ∧ I where polyhedron I contains only inequalities and where
polyhedron E is a complete set of equalities w.r.t. I.

Having a reduced polyhedron ensures that any provable linear equality admits
a pure equational proof which ignores the remaining inequalities.

2.1 The Three Steps of the Tactic

Roughly speaking, a Coq goal corresponds to a sequent Γ � T where context
Γ represents a conjunction of hypotheses and T a conclusion. In other words,
this goal is logically interpreted as the meta-implication Γ ⇒ T . The tactic
transforms the current goal Γ � T through three successive steps.

1. First, constraints are retrieved from the goal: it is equivalently rewritten into
Γ ′, �P� (m) � T ′ where P is a polyhedron and m an assignment of P variables.
For example, the ex1 goal is rewritten as �P1� (m1) � False, where

P1 := x1 ≤ 1 ∧ x2 < x3 ∧ x1 ≥ 1
m1 := { x1 �→ x; x2 �→ (f x); x3 �→ (f 1) }

Here, constraint x1 ≥ 1 in P1 comes from the negation of the initial ex1 goal
x<1. Hence, �P� (m) corresponds to a conjunction of inequalities on Q that

2 Dealing only with convex polyhedra on Q, we often omit the adjective “convex”.

A Coq Tactic for Equality Learning in Linear Arithmetic 111

are not necessarily linear, because m may assign variables of P to arbitrary
Coq terms on Q. Actually, �P� (m) contains at least all (in)equalities on Q

that appear as hypotheses of Γ . Moreover, if T is an inequality on Q, then an
inequality equivalent to ¬T appears in �P� (m) and T ′ is proposition False.3
This step is traditionally called reification in Coq tactics.

2. Second, polyhedron P is reduced. In other words, the goal is equivalently
rewritten into Γ ′, �P ′� (m) � T ′ where P ′ is the reduced polyhedron computed
from P by our reduce oracle. For instance, polyhedron P1 found above is
reduced into

P ′
1 := x1 = 1 ∧ x2 < x3

3. At last, if P ′ is unsatisfiable, then so is �P ′� (m), and the goal is finally dis-
charged. Otherwise, given E the complete set of equalities in P ′, equalities of
�E� (m) are rewritten in the goal. For example, on the ex1 goal, our tactic
rewrites the learned equality “x=1” into the remaining hypothesis. In sum-
mary, a first call to the vpl tactic transforms the ex1 goal into

x=1, (f 1)<(f 1) � False

A second call to vpl detects that hypothesis (f 1)<(f 1) is unsatisfiable
and finally proves the goal.

In the description above, we claim that our transformations on the goals are
equivalences. This provides a guarantee to the user: the tactic can always be
applied on the goal, without loss of information. However, in order to make the
Coq proof checker accept our transformations, we only need to prove implica-
tions, as detailed in the next paragraph.

2.2 The Proof Built by the Tactic

The tactic mainly proves the following two implications which are verified by
the Coq kernel:

Γ ′, �P� (m) � T ′ ⇒ Γ � T (2)

∀m, �P� (m) ⇒ �P ′� (m) (3)

Semantics of polyhedron �.� is encoded as a Coq function, using binary integers
to encode variables of polyhedra. After simple propositional rewritings in the
initial goal Γ � T , an Ocaml oracle provides m and P to the Coq kernel, which
simply computes �P� (m) and checks that it is syntactically equal to the expected
part of the context. Hence, verifying implication (2) is mainly syntactical.

For implication (3), our reduce oracle actually produces a Coq AST, that
represents a proof witness allowing to build each constraint of P ′ as a nonnegative
linear combination of P constraints. Indeed, such a combination is necessarily
a logical consequence of P. In practice, this proof witness is a value of a Coq

inductive type. A Coq function called reduceRun takes as input a polyhedron

3 Here, T ⇔ (¬T ⇒ False) because comparisons on Q are decidable.

112 S. Boulmé and A. Maréchal

P and its associated witness, and computes P ′. A Coq theorem ensures that any
result of reduceRun satisfies implication (3). Thus, this implication is ensured
by construction, while – for the last step of the tactic described above – the Coq

kernel computes P ′ by applying reduceRun.

3 Using the vpl Tactic

Combining solvers by exchanging equalities is one of the basis of modern SMT-
solving, as pioneered by approaches of Nelson-Oppen [17,18] and Shostak [20].
This section illustrates how equality learning in an interactive prover mimics
such equality exchange, in order to combine independent tactics. While much
less automatic than standard SMT-solving, our approach provides opportunities
for the user to compensate by “hand” for the weaknesses of a given tactic.

The main aspects of the vpl tactic are illustrated on the following single goal.
This goal contains two uninterpreted functions f and g such that f domain and
g codomain are the same uninterpreted type A. As we will see below, in order to
prove this goal, we need to use its last hypothesis – of the form “g (. . .) <> g (13) ”
– by combining equational reasoning on g and on Qc field. Of course, we also
need linear arithmetic on Qc order.

Lemma ex2 (A:Type) (f:A → Qc) (g:Qc → A) (v1 v2 v3 v4:Qc) :
6*v1 - v2 - 10*v3 + 7*(f(g v1)+1) ≤ -1
→ 3*(f(g v1)-2*v3)+4 ≥ v2 -4*v1
→ 8*v1 - 3*v2 - 4*v3 - f(g v1) ≤ 2
→ 11*v1 - 4*v2 > 3
→ v3 > -1
→ v4 ≥ 0
→ g((11-v2+13*v4)/(v3+v4)) <> g(13)
→ 3 + 4*v2 + 5*v3 + f(g v1) > 11*v1.

The vpl tactic reduces this goal to the equivalent one given below (where typing
of variables is omitted).

H5: g((11 -(11 -13*v3)+13* v4)/(v3+v4))=(g 13) → False
vpl: v1 = 4-4*v3
vpl0: v2 = 11-13*v3
vpl1: f(g(4-4*v3)) = -3+3*v3
______________________________________ (1/1)
0 ≤ v4 → (3#8) < v3 → False

Here, three equations vpl, vpl0 and vpl1 have been learned from the goal.
Two irredundant inequalities remain in the hypotheses of the conclusion – where
(3#8) is the Coq notation for 3

8 . The bound v3 > −1 has disappeared because
it is implied by (3#8) < v3. By taking v3 = 1, we can build a model satisfying
all the hypotheses of the goal – including (3#8) < v3 – except H5. Thus, using
H5 is necessary to prove False.

Actually, we provide another tactic which automatically proves the remaining
goal. This tactic (called vpl_post) combines equational reasoning on Qc field

A Coq Tactic for Equality Learning in Linear Arithmetic 113

with a bit of congruence.4 Let us detail how it works on this example. First,
in backward reasoning, hypothesis H5 is applied to eliminate False from the
conclusion. We get the following conclusion (where previous hypotheses have
been omitted).

______________________________________ (1/1)
g((11 -(11 -13*v3)+13* v4)/(v3+v4))=(g 13)

Here, backward congruence reasoning reduces this conclusion to

______________________________________ (1/1)
(11 -(11 -13*v3)+13* v4)/(v3+v4)=13

Now, the field tactic reduces the conclusion to

______________________________________ (1/1)
v3+v4 <> 0

Indeed, the field tactic mainly applies ring rewritings on Qc while generating
subgoals for checking that denominators are not zero. Here, because we have a
linear denominator, we discharge the remaining goal using the vpl tactic again.
Indeed, it gets the following polyhedron in hypotheses – which is unsatisfiable.

v4 ≥ 0 ∧ v3 >
3
8

∧ v3+ v4 = 0

Let us remark that lemma ex2 is also valid when the codomain of f and
types of variables v1 . . . v4 are restricted to Z and operator “/” means the
Euclidean division. However, both omega and lia fail on this goal without
providing any help to the user. This is also the case of the verit tactic of
SMTCoq because it deals with “/” as a non-interpreted symbol and can only
deal with uninterpreted types A providing a decidable equality. By assuming a
decidable equality on type A and by turning the hypothesis involving “/” into
“g((11-v2+13*v4)) <> g(13*(v3+v4))”, we get a slightly weaker version of
ex2 goal which is proved by verit. CoqHammer is currently not designed to
solve such a complex arithmetic goal [11].

This illustrates that our approach is complementary to SMT-solving: it pro-
vides less automation than SMT-solving, but it may still help to progress in an
interactive proof when SMT-solvers fail.

4 The Witness Format in the Tactic

Section 4.3 below presents our proof witness format in Coq to build a reduced
polyhedron P ′ as a logical consequence of P . It also details the implementation
of reduceRun and its correctness property, formalizing property (3) given in
Sect. 2.2. In preliminaries, Sect. 4.1 recalls the Farkas operations of the VPL, at
the basis of our proof witness format, itself illustrated in Sect. 4.2.

4 It is currently implemented on the top of auto with a dedicated basis of lemmas.

114 S. Boulmé and A. Maréchal

4.1 Certified Farkas Operations

The tactic uses the linear constraints defined in the VPL [13], that we recall here.
Type var is the type of variables in polyhedra. Actually, it is simply defined as
type positive, the positive integers of Coq. Module Cstr provides an efficient
representation for linear constraints on Qc, the Coq type for Q. Type Cstr . t
handles constraints of the form “t �� 0” where t is a linear term and ��∈ {=,≥
, >}. Hence, each input constraint “t1 �� t2” will be encoded as “t1 − t2 �� 0”.
Linear terms are themselves encoded as radix trees over positive with values
in Qc.

The semantics of Cstr . t constraints is given by predicate (Cstr . sat c m) ,
expressing that model m of type var→ Qc satisfies constraint c. Module Cstr
provides also the following operations

Add: (t1 ��1 0) + (t2 ��2 0) � (t1 + t2) �� 0 where ��� max(��1, ��2) for the
total increasing order induced by the sequence =, ≥, >;

Mul: n · (t �� 0) � (n · t) �� 0 assuming n ∈ Q and, if ��∈ {≥, >} then n ≥ 0;
Merge: (t ≥ 0) & (−t ≥ 0) � t = 0.

It is easy to prove that each of these operations returns a constraint that is
satisfied by the models of its inputs. For example, given constraints c1 and c2
and a model m such that (sat c1 m) and (sat c2 m) , then (sat (c1+c2) m)
holds. When invoked on a wrong precondition, these operations actually return
“0 = 0” which is satisfied by any model. Still, this precondition violation only
appears if there is a bug in the reduce oracle. These operations are called Farkas
operations, in reference to Farkas’ lemma recalled on page 11.

In the following, we actually handle each constraint with a proof that it
satisfies a given set s of models (encoded here by its characteristic function).
The type of such a constraint is (wcstr s) , as defined below.

Record wcstr (s: (var → Qc) → Prop) := {
rep: Cstr.t;
rep_sat: ∀ m, s m → Cstr.sat rep m

}.

Hence, all the Farkas operations are actually lifted to type (wcstr s) , for all s.

4.2 Example of Proof Witness

We introduce our syntax for proof witnesses on Fig. 1. Our oracle detects that P
is satisfiable, and thus returns the “proof script” of Fig. 1. This script instructs
reduceRun to produce P ′ from P . By construction, we have P ⇒ P ′.

This script has three parts. In the first part – from line 1 to 5 – the script
considers each constraint of P and binds it to a name, or skips it. For instance,
x1 ≥ −10 is skipped because it is redundant: it is implied by P ′ and thus not
necessary to build P ′ from P . In the second part – from line 6 to 9 – the script
builds intermediate constraints: their value is detailed on the right hand-side of

A Coq Tactic for Equality Learning in Linear Arithmetic 115

Fig. 1. Example of a proof script and its interpretation by reduceRun

Fig. 2. Definition of reduceRun and its Correctness

the figure. Each of these constraints is bound to a name. Hence, when a constraint
– like H4 – is used several times, we avoid a duplication of its computation.

In the last part – from line 10 to 14 – the script returns the constraints of
P ′. As further detailed in Sect. 5, each equation defines one variable in terms of
the others. For each equation, this variable is explicitly given between brackets
“ [.]” in the script of Fig. 1, such as x1 at line 11 and x2 at line 12. This instructs
reduceRun to rewrite equations in the form “x = t”.

4.3 The HOAS of Proof Witnesses

Our reduceRun function and its correctness are defined in Coq, as shown on
Fig. 2. The input polyhedron is given as a list of constraints l of type pedra.
The output is given as type (option pedra) where a None value corresponds
to the case where l is unsatisfiable.

116 S. Boulmé and A. Maréchal

Fig. 3. Farkas expressions and their interpreter

Given a value l : pedra, its semantics – noted �l� – is a predicate of type
(var→ Qc) → Prop which is defined from Cstr . sat. This semantics is extended
to type (option pedra) by the predicate answ. Property (3) of page 4 is hence
formalized by lemma reduceRun_correct with a minor improvement: when the
input polyhedron is unsatisfiable, a proof of False is directly generated.

The proof witness in input of reduceRun is a value of type ∀ v , script v.
Here, script – defined at Fig. 5 page 10 – is the type of a Higher-Order Abstract
Syntax (HOAS) parameterized by the type v of variables [9]. A HOAS avoids the
need to handle explicit variable substitutions when interpreting binders: those
are encoded as functions, and variable substitution is delegated to the Coq

engine.5 The universal quantification over v avoids exposing the representation
of v – used by reduceRun – in the proof witness p.

The bottom level of our HOAS syntax is given by type fexp defined at
Fig. 3 and representing “Farkas expressions”. Each constructor in this type
corresponds to a Farkas operation, except constructor Var that represents a
constraint name which is bound to a Bind or a BindHyp binder (see Fig. 1). The
function fexpEval computes any such Farkas expression c into a constraint of
type (wcstr s) – for some given s – where type v is itself identified with type
(wcstr s) .

Farkas expressions are combined in order to compute polyhedra. This is
expressed through “polyhedral expressions” of type pexp on Fig. 4 which are

5 For a prototype like our tactic, such a HOAS has mainly the advantage of simplicity:
it avoids formalizing in Coq the use of a substitution mechanism. The impact on
the efficiency at runtime remains unclear. On one side, typechecking a higher-order
term is more expensive than typechecking a first-order term. On the other side,
implementing an efficient substitution mechanism in Coq is currently not straight-
forward: purely functional data-structures induce a non-negligible logarithmic factor
over imperative ones. Imperative arrays with a purely functional API have precisely
been introduced by [3] in an experimental version of Coq with this motivation. But
this extension is not yet integrated into the stable release of Coq.

A Coq Tactic for Equality Learning in Linear Arithmetic 117

Fig. 4. Polyhedral computations and their interpreter

Fig. 5. Script expressions and their interpreter

computed by pexpEval into (option pedra) values. Type pexp has 3 con-
structors. First, constructor (Bind c (fun H ⇒ p)) is a higher-order binder
of our HOAS: it computes an intermediate Farkas expression c and stores the
result in a variable H bound in the polyhedral expression p. Second, construc-
tor (Contrad c) returns an a priori unsatisfiable constant constraint, which
is verified by function contrad in pexpEval. At last, constructor (Return l)
returns an a priori satisfiable reduced polyhedron, which is encoded as a list of
Farkas expressions associated to an optional variable of type var (indicating a
variable defined by an equation, see example of Fig. 1).

Finally, a witness of type script first starts by naming useful constraints of
the input (given as a value l : pedra) and then runs a polyhedral expression in
this naming context. This semantics is given by function scriptEval specified
at Fig. 5. On a script (SkipHyp p ’) , interpreter scriptEval simply skips the
first constraint by running recursively (scriptEval p ’ (List . tl l)) . Sim-
ilarly, on a script (BindHyp (fun H ⇒ p ’)) , it pops the first constraint of
l in variable H and then runs itself on p ’ . Technically, function scriptEval

118 S. Boulmé and A. Maréchal

assumes the following precondition on polyhedron l: it must satisfy all models m
characterized by s. As shown on Fig. 2, (reduceRun l p) is a simple instance
of (scriptEval (p (wcstr s)) l) where s :=�l�. Hence, this precondition is
trivially satisfied.

5 The Reduction Algorithm

The specification of the reduce oracle is given in introduction of the paper: it
transforms a polyhedron P into a reduced polyhedron P ′ with a smaller num-
ber of constraints and such that P ′ ⇔ P. Sections 5.3 and 5.4 describe our
implementation. In preliminaries, Sect. 5.1 gives a sufficient condition, through
Lemma 2, for a polyhedron to be reduced. This condition lets us learn equalities
from conflicts between strict inequalities as detailed in Sect. 5.2. In our proofs
and algorithms, we only handle linear constraints in the restricted form “t �� 0”.
But, for readability, our examples use the arbitrary form “t1 �� t2”.

5.1 A Refined Specification of the Reduction

Definition 4 (Echelon Polyhedron). An echelon polyhedron is written as
a conjunction E ∧ I where polyhedron I contains only inequalities and where
polyhedron E is written “

∧
i∈{1,...,k} xi − ti = 0” such that each xi is a variable

and each ti is a linear term, and such that the following two conditions are
satisfied. First, no variable xi appears in polyhedron I. Second, for all integers
i, j ∈ {1, . . . , k} with i ≤ j then xi does not appear in tj.

Intuitively, in such a polyhedron, each equation “xi − ti = 0” actually defines
variable xi as ti. As a consequence, E ∧ I is satisfiable iff I is satisfiable.

We recall below the Farkas’ lemma [10,12] which reduces the unsatisfiability
of a polyhedron to the one of a constant constraint, like 0 > 0. The unsatisfia-
bility of such a constraint is checked by a simple comparison on Q.

Lemma 1 (Farkas). Let I be a polyhedron containing only inequalities. I is
unsatisfiable if and only if there is an unsatisfiable constraint −λ �� 0, computable
from a nonnegative linear combination of constraints of I (i.e. using operators
“+” and “·” defined in Sect. 4.1), and such that ��∈ {≥, >} and λ ∈ Q

+.

From Farkas’ lemma, we derive the following standard corollary which
reduces the verification of an implication I ⇒ t ≥ 0 to the verification of a
syntactic equality between linear terms.

Corollary 1 (Implication Witness). Let t be a linear term and let I be a
satisfiable polyhedron written

∧
j∈{1,...,k} tj ��j 0 with ��j∈ {≥, >}.

If I ⇒ t ≥ 0 then there are k + 1 nonnegative rationals (λj)j∈{0,...,k} such
that t = λ0 + Σj∈{1,...,k}λjtj.

In the following, we say that the nonnegative coefficients (λj)j∈{0,...,k} define
a “Farkas combination of t in terms of I”.

A Coq Tactic for Equality Learning in Linear Arithmetic 119

Definition 5 (Strict Version of Inequalities). Let I be a polyhedron with
only inequalities. We note I> the polyhedron obtained from I by replacing each
non-strict inequality “t ≥ 0” by its strict version “t > 0”. Strict inequalities of I
remain unchanged in I>.

Geometrically, polyhedron I> is the interior of polyhedron I. Hence if I>

is satisfiable (i.e. the interior of I is non empty), then polyhedron I does not
fit inside a hyperplane. Lemma 2 formalizes this geometrical intuition as a con-
sequence of Farkas’ lemma. Its proof invokes the following corollary of Farkas’
lemma, which is really at the basis of our equality learning algorithm.

Corollary 2 (Witness of Empty Interior). Let us consider a satisfiable
polyhedron I written

∧
j∈{1,...,k} tj ��j 0 with ��j∈ {≥, >}. Then, I> is unsatis-

fiable if and only if there exists k nonnegative rationals (λj)j∈{1,...,k} ∈ Q
+ such

that Σj∈{1,...,k}λjtj = 0 and ∃j ∈ {1, . . . , k} , λj > 0.

Proof.
⇐: Suppose k nonnegative rationals (λj)j∈{1,...,k} such that Σj∈{1,...,k}λjtj = 0
and some index j such that λj > 0. It means that there is a Farkas combination
of 0 > 0 in terms of I>. Thus by Farkas’ lemma, I> is unsatisfiable.
⇒: Let us assume that I> is unsatisfiable. By Farkas’ lemma, there exists an
unsatisfiable constant constraint −λ �� 0, where −λ = Σj∈{1,...,k}λjtj , with all
λj ∈ Q

+, and such that there exists some j with λj > 0. Let m be an assignment
of I variables such that �I�m. By definition, we have

�
Σj∈{1,...,k}λjtj

�
m = λ′

with λ′ ∈ Q
+. Thus, −λ=λ′=0.

Lemma 2 (Completeness from Strict Satisfiability). Let us assume an
echelon polyhedron E ∧ I without redundant constraints, and such that I> is
satisfiable. Then, E ∧ I is a reduced polyhedron.

Proof. Let us prove property (1) of Definition 2, i.e. that E is complete w.r.t.
I. Because t1 = t2 ⇔ t1 − t2 = 0, without loss of generality, we only prove
property (1) in the case where t2 = 0 and t1 is an arbitrary linear term t. Let t
be a linear term such that E ∧ I ⇒ t = 0.

In particular, E ∧ I ⇒ t ≥ 0. By Corollary 1, there are k′ + 1 nonnegative
rationals (λj)j∈{0,...,k′} such that t = λ0 + Σj∈{1,...,k′}λjtj where E is written∧

j∈{1,...,k} tj = 0 and I is written
∧

j∈{k+1,...,k′} tj ��j 0. Suppose that there
exists j ∈ {k + 1, . . . , k′}, such that λj �= 0. Since I> is satisfiable, by Corollary
2, we deduce that Σj∈{k+1,...,k′}λjtj �= 0. Thus, we have E ∧ I> ⇒ t > 0 with
E ∧ I> satisfiable. This contradicts the initial hypothesis E ∧ I ⇒ t = 0. Thus,
t = λ0 + Σj∈{1,...,k}λjtj which proves E ⇒ t ≥ 0.

A similar reasoning from E ∧ I ⇒ −t ≥ 0 finishes the proof that E ⇒ t = 0.

Lemma 2 gives a strategy to implement the reduce oracle. If the input poly-
hedron P is satisfiable, then try to rewrite P as an echelon polyhedron E ∧ I
where I> is satisfiable. The next step is to see that from an echelon polyhedron
E ∧ I where I> is unsatisfiable, we can learn new equalities from a subset of I>

120 S. Boulmé and A. Maréchal

inequalities that is unsatisfiable. The inequalities in such a subset are said “in
conflict”. The Farkas witness proving the conflict is used to deduce new equali-
ties from I. This principle can be viewed as an instance of “conflict driven clause
learning” – at the heart of modern DPLL procedures [21].

5.2 Building Equality Witnesses from Conflicts

Consider a satisfiable set of inequalities I, from which we wish to extract implicit
equalities. First, let us build I> the strict version of I as described in Definition
5. Then, an oracle runs the simplex algorithm to decide whether I> is satisfiable.
If so, then we are done: there is no implicit equality to find in I. Otherwise, by
Corollary 2, the oracle finds that the unsatisfiable constraint 0 > 0 can be written
Σj∈Jλjtj > 0 where for all j ∈ J , λj > 0 and (tj > 0) ∈ I>. Since

∧
j∈J tj > 0

is unsatisfiable, we can learn that
∧

j∈J tj = 0. Indeed, since Σj∈Jλjtj = 0 (by
Corollary 2) and ∀j ∈ J, λj > 0, then each term tj of this sum must be 0. Thus,
∀j ∈ J, tj = 0.

Let us now detail our algorithm to compute equality witnesses. Let I be
a satisfiable inequality set such that I> is unsatisfiable. The oracle returns a
witness combining n+1 constraints of I> (for n ≥ 1) that implies a contradiction:

∑n+1

i=1
λi · I>

i where λi > 0

By Corollary 2, this witness represents a contradictory constraint 0 > 0. More-
over, each inequality Ii is non-strict (otherwise, I would be unsatisfiable). We
can thus turn each inequality Ii into an equality written I=i – proved by

Ii &
1
λi

·
∑

j∈{1...n+1}
j �=i

λj · Ij

Hence, each equality I=i is proved by combining n + 1 constraints. Proving
(I=i)i∈{1,...,n+1} in this naive approach combines Θ(n2) constraints.

We rather propose a more symmetric way to build equality witnesses which
leads to a simple linear algorithm. Actually, we build a system of n equalities
noted (Ei)i∈{1,...,n}, where – for i ∈ {1, . . . , n} – each Ei corresponds to the
unsatisfiability witness where the i-th “+” has been replaced by a “&”:

(∑i

j=1
λj · Ij

)

&
(∑n+1

j=i+1
λj · Ij

)

This system of equations is proved equivalent to system (I=i)i∈{1,...,n+1} thanks
to the following correspondence.

⎧
⎨

⎩

I=1 = 1
λ1

· E1

I=n+1 = − 1
λn

· En

for i ∈ {2, . . . , n} , I=i = 1
λi

· (Ei − Ei−1)

This also shows that one equality I=i is redundant, because (I=i)i∈{1,...,n+1} con-
tains one more equality than (Ei)i∈{1,...,n}.

A Coq Tactic for Equality Learning in Linear Arithmetic 121

In order to use a linear number of combinations, we build (Ei)i∈{1,...,n}
thanks to two lists of intermediate constraints (Ai)i∈{1,...,n} and (Bi)i∈{2,...,n+1}
defined by

{
A1 := λ1 · I1 for i from 2 up to n, Ai := Ai−1 + λi · Ii

Bn+1 := λn+1 · In+1 for i from n down to 2, Bi := Bi+1 + λi · Ii

Then, we build Ei := Ai & Bi+1 for i ∈ {1, . . . , n}.

5.3 Illustration on the Running Example

Let us detail how to compute the reduced form of polyhedron P from Fig. 1.

P :=

{
I1 : x1 + x2 ≥ x3, I2 : x1 ≥ −10, I3 : 3x1 ≥ x2, I4 : 2x3 ≥ x2, I5 : −1

2
x2 ≥ x1

}

P is a satisfiable set of inequalities. Thus, we first extract a complete set of
equalities E from constraints of P by applying the previous ideas. We ask a
Linear Programming (LP) solver for a point satisfying P>, the strict version of
P . Because there is no such point, the solver returns the unsatisfiability witness
I>
1 + 1

2 · I>
4 + I>

5 (which reduces to 0 > 0). By building the two sequences (Ai)
and (Bi) defined previously, we obtain the two equalities

E1 : x1 + x2 = x3 provedby (x1 + x2 ≥ x3)
︸ ︷︷ ︸

A1: I1

& (x3 ≥ x1 + x2)
︸ ︷︷ ︸

B2:
1
2 ·I4+I5

E2 : x1 = − 1
2x2 provedby (x1 ≥ − 1

2x2)
︸ ︷︷ ︸

A2: I1+
1
2 ·I4

& (− 1
2x2 ≥ x1)

︸ ︷︷ ︸
B3: I5

Thus, P is rewritten into E ∧ I with

E :=
{

E1 : x1 + x2 = x3, E2 : x1 = −1
2
x2

}

, I :=
{

I2 : x1 ≥ 10, I3 : 3x1 ≥ x2

}

To be reduced, the polyhedron must be in echelon form, as explained in
Definition 4. This implies that each equality of E must have the form xi −ti = 0,
and each such xi must not appear in I. Here, let us consider that E1 defines x2:
we rewrite E1 into x2 − (x3 − x1) = 0. Then, x2 is eliminated from E2, leading
to E′

2 : x1 + x3 = 0. In practice, we go one step further by rewriting x1 (using
its definition in E′

2) into E1 to get a reduced echelon system E′ of equalities:

E′ := {E′
1 : x2 − 2 · x3 = 0, E′

2 : x1 + x3 = 0}
Moreover, the variables defined in E′ (i.e. x1 and x2) are eliminated from I,
which is rewritten into

I ′ := {I ′
2 : −x3 ≥ −10, I ′

3 : −x3 ≥ 0}
The last step is to detect that I ′

2 is redundant w.r.t. I ′
3 with a process which is

indicated in the next section.

122 S. Boulmé and A. Maréchal

Fig. 6. Pseudo-code of the reduce oracle

5.4 Description of the Algorithm

The pseudo-code of Fig. 6 describes the reduce algorithm. For simplicity, the
construction of proof witnesses is omitted from the pseudo-code. To summarize,
the result of reduce is either “Contrad(c)” where c is a contradictory constraint
or “Reduced(P ′)” where P ′ is a satisfiable reduced polyhedron. The input poly-
hedron is assumed to be given in the form E∧I, where E contains only equalities
and I contains only inequalities. First, polyhedron E ∧ I is echeloned: function
echelon returns a new system E ∧ I where E is an echelon system of equalities
without redundancies (they have been detected as 0 = 0 during echeloning and
removed) and without contradiction (they have been detected as 1 = 0 during
echeloning). Second, the satisfiability of I is tested by function is_sat. If is_sat
returns “Unsat (λ)”, then λ is a Farkas witness allowing to return a contradictory
constant constraint written λT·I. Otherwise, I is satisfiable and reduce enters
into a loop to learn all implicit equalities.

At each step of the loop, the satisfiability of I> is tested. If is_sat returns
“Unsat (λ)”, then a new set E′ of equalities is learned from λ and I ′ contains
the inequalities of I that do not appear in the conflict. After echeloning the new
system, the loop continues.

Otherwise, is_sat returns “Sat(m)” where m is a model of I>. Geo-
metrically, m is a point in the interior of polyhedron I. Point m helps
rm_redundancies to detect and remove redundant constraints of I, by a ray-
tracing method described in [16]. At last, reduce returns E ∧ I, which is a
satisfiable reduced polyhedron because of Lemma 2.

Variant. In a variant of this algorithm, we avoid to test the satisfiability of I
before entering the loop (i.e. the first step of the algorithm). Indeed, the satis-
fiability of I can be directly deduced from the witness returned by is_sat(I>).
If the combination of the linear terms induced by the witness gives a negative
number instead of 0, it means that I is unsatisfiable. However, we could make
several loop executions before finding that I is unsatisfiable: polyhedron I may

A Coq Tactic for Equality Learning in Linear Arithmetic 123

contain several implicit equalities which do not imply the unsatisfiability of I
and which may be discovered first. We do not know which version is the most
efficient one. It probably differs according to applications.

6 Conclusion and Related Works

This paper describes a Coq tactic that learns equalities from a set of linear
rational inequalities. It is less powerful than Coq SMT tactics [2,5,11] and than
the famous sledgehammer of Isabelle [6,7]. But, it may help users to progress
on goals that do not exactly fit into the scope of existing SMT-solving procedures.

This tactic uses a simple algorithm – implemented in the new VPL [15] –
that follows a kind of conflict driven clause learning. This equality learning
algorithm only relies on an efficient SAT-solver on inequalities able to generate
nonnegativity witnesses. Hence, we may hope to generalize it to polyhedra on Z.

The initial implementation of the VPL [14] also reduces polyhedra as defined
in Definition 3. Its equality learning is more naive: for each inequality t ≥ 0 of
the current (satisfiable) inequalities I, the algorithm checks whether I ∧ t > 0 is
satisfiable. If not, equality t = 0 is learned. In other words, each learned equality
derives from one satisfiability test. Our new algorithm is more efficient, since
it may learn several equalities from a single satisfiability test. Moreover, when
there is no equality to learn, this algorithm performs only one satisfiability test.

We have implemented this algorithm in an Ocaml oracle, able to produce
proof witnesses for these equalities. The format of these witnesses is very similar
to the one of micromega [4], except that it provides a bind operator which avoids
duplication of computations (induced by rewriting of learned equalities). In the
core of our oracle, the production of these witnesses follows a lightweight, safe
and evolutive design, called polymorphic LCF style [8]. This style makes the
implementation of VPL oracles much simpler than in the previous VPL imple-
mentation. Our implementation thus illustrates how to instantiate “polymorphic
witnesses” of polymorphic LCF style in order to generate Coq abstract syntax
trees, and thus to prove the equalities in Coq by computational reflection.

The previous Coq frontend of the VPL [13] would also allow to perform
such proofs by reflection. Here, we believe that the HOAS approach followed in
Sect. 4.3 is much simpler and more efficient than this previous implementation
(where substitutions were very inefficiently encoded with lists of constraints).

Our tactic is still a prototype. Additional works are required to make it
robust in interactive proofs. For example, the user may need to stop the tactic
before that the rewritings of the learned equalities are performed, for instance
when some rewriting interferes with dependent types. Currently, the user can
invoke instead a subtactic vpl_reduce, and apply these rewritings by “hand”.
The maintainability of such user scripts thus depends on the stability of the gen-
erated equalities and their order w.r.t. small changes in the input goal. However,
we have not yet investigated these stability issues. A first step toward stability
would be to make our tactic idempotent by keeping the goal unchanged on a
already reduced polyhedron.

124 S. Boulmé and A. Maréchal

Another library, called Coq-Polyhedra [1], now formalizes a large part of
the convex polyhedra theory without depending on external oracles. Our work is
based on the VPL, because it wraps efficient external solvers [14]. In particular,
computations in VPL oracles mix floating-points and GMP numbers, which are
far more efficient than Coq numbers. However, the usability of the VPL would
probably increase by being linked to such a general library.

Acknowledgements. We thank anonymous referees for their useful feedback on a
preliminary version of this paper.

References

1. Allamigeon, X., Katz, R.D.: A formalization of convex polyhedra based on the
simplex method. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 28–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66107-0_3

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud,
J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25379-9_12

3. Armand, M., Grégoire, B., Spiwack, A., Théry, L.: Extending Coq with imperative
features and its application to SAT verification. In: Kaufmann, M., Paulson, L.C.
(eds.) ITP 2010. LNCS, vol. 6172, pp. 83–98. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14052-5_8

4. Besson, F.: Fast reflexive arithmetic tactics the linear case and beyond. In:
Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 48–62.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74464-1_4

5. Besson, F., Cornilleau, P.-E., Pichardie, D.: Modular SMT proofs for fast reflex-
ive checking inside Coq. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS,
vol. 7086, pp. 151–166. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25379-9_13

6. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT
solvers. J. Autom. Reason. 51(1), 109–128 (2013). https://doi.org/10.1007/s10817-
013-9278-5

7. Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 107–121. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14203-1_9

8. Boulmé, S., Maréchal, A.: Toward Certification for Free! July 2017. https://hal.
archives-ouvertes.fr/hal-01558252, preprint

9. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics.
In: International Conference on Functional Programming (ICFP). ACM Press
(2008)

10. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley, New York (1998)

11. Czajka, L., Kaliszyk, C.: Goal translation for a hammer for Coq. In: Proceedings
First International Workshop on Hammers for Type Theories, HaTT@IJCAR 2016.
EPTCS, vol. 210, pp. 13–20 (2016)

12. Farkas, J.: Theorie der einfachen Ungleichungen. Journal für die Reine und Ange-
wandte Mathematik, 124 (1902)

https://doi.org/10.1007/978-3-319-66107-0_3
https://doi.org/10.1007/978-3-319-66107-0_3
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-642-14052-5_8
https://doi.org/10.1007/978-3-642-14052-5_8
https://doi.org/10.1007/978-3-540-74464-1_4
https://doi.org/10.1007/978-3-642-25379-9_13
https://doi.org/10.1007/978-3-642-25379-9_13
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/978-3-642-14203-1_9
https://hal.archives-ouvertes.fr/hal-01558252
https://hal.archives-ouvertes.fr/hal-01558252

A Coq Tactic for Equality Learning in Linear Arithmetic 125

13. Fouilhe, A., Boulmé, S.: A certifying frontend for (sub)polyhedral abstract
domains. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol.
8471, pp. 200–215. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12154-3_13

14. Fouilhe, A., Monniaux, D., Périn, M.: Efficient generation of correctness certificates
for the abstract domain of polyhedra. In: Logozzo, F., Fähndrich, M. (eds.) SAS
2013. LNCS, vol. 7935, pp. 345–365. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38856-9_19

15. Maréchal, A.: New Algorithmics for Polyhedral Calculus via Parametric Linear
Programming. Theses, UGA - Université Grenoble Alpes, December 2017. https://
hal.archives-ouvertes.fr/tel-01695086

16. Maréchal, A., Périn, M.: Efficient elimination of redundancies in polyhedra by ray-
tracing. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp.
367–385. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0_20

17. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

18. Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comput.
Sci. 12, 291–302 (1980)

19. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester, New
York (1986)

20. Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)
21. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:

Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol.
185, pp. 131–153. IOS Press (2009)

22. The Coq Development Team: The Coq proof assistant reference manual - version
8.7. INRIA (2017)

https://doi.org/10.1007/978-3-319-12154-3_13
https://doi.org/10.1007/978-3-319-12154-3_13
https://doi.org/10.1007/978-3-642-38856-9_19
https://doi.org/10.1007/978-3-642-38856-9_19
https://hal.archives-ouvertes.fr/tel-01695086
https://hal.archives-ouvertes.fr/tel-01695086
https://doi.org/10.1007/978-3-319-52234-0_20

The Coinductive Formulation
of Common Knowledge

Colm Baston and Venanzio Capretta(B)

Functional Programming Lab, School of Computer Science,
University of Nottingham, Nottingham, UK

{colm.baston,venanzio.capretta}@nottingham.ac.uk

Abstract. We study the coinductive formulation of common knowledge
in type theory. We formalise both the traditional relational semantics and
an operator semantics, similar in form to the epistemic system S5, but at
the level of events on possible worlds rather than as a logical derivation
system. We have two major new results. Firstly, the operator semantics is
equivalent to the relational semantics: we discovered that this requires a
new hypothesis of semantic entailment on operators, not known in previ-
ous literature. Secondly, the coinductive version of common knowledge is
equivalent to the traditional transitive closure on the relational interpre-
tation. All results are formalised in the proof assistants Agda and Coq.

1 Introduction

Common knowledge is a modality in epistemic logic: a group of agents has com-
mon knowledge of an event if everyone knows it, everyone knows that everyone
knows it, everyone knows that everyone knows that everyone knows it, and so on
ad infinitum. Some famous logical puzzles (the muddy children or the cheating
husbands problem [8,9]) involve clever uses of this notion: the solution is based
on some information shared by the agents and on their ability to deduce other
people’s reasoning in a potentially unlimited reflection.

Type-theoretic logical systems allow the direct definition of coinductive types
which may contain infinite objects, constructed by guarded corecursion [2,7,11].
By the propositions-as-types interpretation that is standard in type theory, coin-
ductive types are propositions whose proofs may be infinite. Common knowledge
can be naturally expressed as a coinductive operator: common knowledge of an
event is recursively defined as universal knowledge of it in conjunction with com-
mon knowledge of the universal knowledge of it. Although it is well-known that
the common knowledge modality is a greatest fixed point [1,8], and some coin-
ductive methods have been tried with it before [4], our work [6] is the first direct
formalisation of this approach.

The traditional frame semantics [12,14] account of knowledge modalities
interprets them as equivalence relations on the set of possible states of the world:
the knowledge of an agent is represented as a relation identifying states that

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 126–141, 2018.
https://doi.org/10.1007/978-3-319-94821-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_8&domain=pdf

The Coinductive Formulation of Common Knowledge 127

cannot be distinguished by the agent. Common knowledge is interpreted as the
transitive closure of the union of the knowledge relations for all agents.

The authors of [4] develop an infinitary deductive system with the aim that
the system’s derivations serve as justification terms for common knowledge. The
derivations are finitely branching trees but, along coinductive lines, branches may
be infinitely deep. The authors establish the soundness and completeness of this
system with respect to a relational semantics where common knowledge is treated
as a transitive closure, but do not employ coinduction as a proof technique which
can generate such an infinite proof term from a finite specification.

We instead take an entirely semantic approach, which is shallowly embedded
in the logic of a type theory with coinductive types. This is in contrast to a
previous type-theoretic formalisation of common knowledge [15] which is deeply
embedded in the logic of the Coq proof assistant. This allows Coq to be used as
a metatheory to experiment with the target logic, but does not allow for all of
the features of Coq’s own logic, such as coinduction, to be used from within the
target logic.

Our formulation of epistemic logic is based on an underlying set of states of
the world; epistemic propositions are interpreted as events, that is, predicates
on states (Sect. 2). Knowledge modalities are then functions over events. Our
treatment of these knowledge modalities is similar to the syntactic encoding of
epistemic logic in the modal logic system S5 [16]. Its study on the semantics
side, as the algebraic structure of knowledge operators, is new (Sect. 3).

We give two main original contributions. Firstly, we prove that the operator
semantics is equivalent to the relational semantics (Sect. 4). In formalising the
equivalence, we discovered that it is necessary to assume a previously unknown
property for operators: preservation of semantic entailment, which states that
the knowledge operator preserves the consequences of a possibly infinite set of
events (S5 gives this only for finite sets). Secondly, we prove that the coinductive
formulation of common knowledge is equivalent to the relational representation
as transitive closure, and that the coinductive operator itself satisfies the prop-
erties of a knowledge operator (Sect. 5). All these results are formalised in two
type-theoretic proof assistants: Agda1 and Coq2.

2 Possible Worlds and Events

In this section, we present the semantic framework in which we will be working
throughout the paper. Our formalisation of epistemic logic is not axiomatic, but
definitional. Instead of postulating a set of axioms for a knowledge modality,
we define it using the logic of a proof assistant, like Agda or Coq, along the
semantic lines of possible-worlds models. In other words, we work with a shallow

1 https://colmbaston.co.uk/files/Common-Knowledge.agda.
2 http://www.duplavis.com/venanzio/publications/common knowledge.v.

https://colmbaston.co.uk/files/Common-Knowledge.agda
http://www.duplavis.com/venanzio/publications/common_knowledge.v

128 C. Baston and V. Capretta

embedding of epistemic logic in type theory. (The deep and shallow embedding
approaches to the formalisation of logics and domain-specific languages are well-
known and widespread. The first exposition of the concepts, but not the termi-
nology, that we can find is by Reynolds [17]. See, for example, [13] for a clear
explanation.)

We postulate a set of possible worlds, which we call states. A state encodes
all relevant information about the world we are modelling. In the semantics of
epistemic logic, a proposition may be true in some states, but false in others, so
we interpret a proposition as a predicate over states, called an event.

To avoid confusion with the propositions that are native to the type theory,
we shall refer to epistemic propositions only as events from this point on. By the
standard propositions-as-types interpretation, we identify type-theoretic propo-
sitions with the type of their proofs, adopting an Agda-like notation. That is,
we use the type universe Set for both data types and propositions.

State : Set Event = State → Set

An event can be seen extensionally as the set of states in which that event
occurs, or is true. It is convenient to define set-like operators to combine events
and make logical statements about them. In the following, the variable e ranges
over events and the variable w ranges over states. We obtain the truth assignment
of an event e in a state w by simply applying the event to the state, written ew.

� : Event → Event → Event
e1 � e2 = λw.e1 w ∧ e2 w

� : Event → Event → Event
e1 � e2 = λw.e1 w ∨ e2 w

� : Event → Event → Event
e1 � e2 = λw.e1 w → e2 w

∼ : Event → Event
∼ e = λw.¬(ew)

⊂ : Event → Event → Set
e1 ⊂ e2 = ∀w.e1 w → e2 w

≡ : Event → Event → Set
e1 ≡ e2 = (e1 ⊂ e2) ∧ (e2 ⊂ e1)

∀∀ : Event → Set
∀∀ e = ∀w.ew

The first three operators, �, �, and �, are binary operations on events:
they map two events to the event that is their conjunction, disjunction, and
implication, respectively; we can see them set-theoretically as intersection, union,
and exponent of sets of states. The fourth, ∼, is a unary operator expressing event
negation, set theoretically it is the complement.

The next two operators are relations between two events. The first of the two,
⊂, states that the first event logically implies the second, set-theoretically the
first is a subset of the second. The next, ≡, states that two events are logically
equivalent, their set extensions being equal. Finally, the operator ∀∀ expresses
the fact that an event is true in all states: that it is semantically forced to be
true. On the logical system side, it corresponds to a tautology. The operator ⊂
can also be expressed in terms of the equivalence: e1 ⊂ e2 ↔ ∀∀ (e1 � e2).

The Coinductive Formulation of Common Knowledge 129

As a simple example, imagine that we are modelling a scenario in which a
coin has been tossed and a six-sided die has been rolled. We have these primitive
events:

CH = “the coin landed heads side up”
CT = “the coin landed tails side up”

D1 = “the die rolled a 1”
...

D6 = “the die rolled a 6”

Then, for example, D3 � D4 is the event which is true in those states where the
die rolled a 3 or a 4, we might assume ∀∀ (∼(CH � CT)) so that there cannot be
a state in which the coin landed both heads side up and tails side up, and so on.

Now we come to introducing modal operators for knowledge, so let us intro-
duce two agents in our example, Alice and Bob. A modal operator in this setting
is a function Event → Event, so we give each agent an operator of this type, KA

and KB respectively. This allows us to also express events such as the following:

KA D1 = “Alice knows that the die rolled a 1”
KB (KA D2) = “Bob knows that Alice knows that the die rolled a 2”
∼(KB CH � KB CT) = “Bob does not know on which side the coin landed”

But not all operators on events are suitable to represent the knowledge of an
agent. In the next section, we will define a class of operators on events that can be
considered possible descriptions of an agent’s knowledge. Then, assuming there
is a set of agents, each with their own knowledge operator, we give a coinductive
definition of another operator expressing their common knowledge.

3 Knowledge Operator Semantics

For the moment we do not consider a set of agents, but just fix a single operator
K : Event → Event and specify a set of properties that it must satisfy to be a
possible interpretation of the knowledge of an agent. Traditionally, the modal
logic system S5 [16] is employed to provide an idealised model for knowledge
(modern presentations and historical overviews can be found in [3,8]). In short,
its properties state that agents are perfect reasoners, can only know events which
are actually true, and are aware of what they do and do not know. We posit a
version of this logic as the properties that the knowledge operator K must satisfy.

We discovered that an extra infinitary deduction rule is required to obtain
a perfect correspondence with the traditional relational interpretation which we
describe in Sect. 4. This cannot be expressed at the level of the syntactic logical
system, but it becomes essential at the semantic level of operators on events.
It states that the knowledge operator must preserve semantic entailments, even
if the conclusion follows from an infinite set of premises. Like other epistemic
postulates in the standard literature, this is a strong principle which may be
unrealistic to assume for real-world agents, but our discovery shows that it is
already an implicit feature of the classical frame semantics.

130 C. Baston and V. Capretta

Definition 1. A family of events indexed on a type X is a function E : X →
Event. Given a family of events E, we can generate the event ⊔E that is true in
those states where all members of the family are true:

⊔E = λw.∀(x : X).E x w

We can map K onto the whole family by applying it to every member: We
write KE for the family λx.K (E x). We say that K preserves semantic entailment
if, for every family E : X → Event and every event e, we have:

⊔E ⊂ e → ⊔(KE) ⊂ K e.

We require that K has this property and also satisfies the properties of S5.
Some of these are derivable from semantic entailment, but we formulate them all
in the definition to clearly reflect the relation with traditional epistemic logic.

Definition 2. An operator on events, K : Event → Event, is called a knowledge
operator if it preserves semantic entailment and satisfies the event-based version
of the properties of S5:

1. ∀∀ e → ∀∀ K e
This principle is known as knowledge generalisation (or necessitation in
modal logics with an operator � that is interpreted as “it is necessary that”).
It states that all derivable theorems are known, that is, the agent is capable of
applying pure logic to derive tautologies. Here we work on the semantics side:
instead of logical formulas, the objects of the knowledge operators are events,
that is, predicates on states. We understand an event to be a tautology if it is
true in every state. The unfolding of the principle is: (∀w.ew) → ∀v.K e v.

2. K (e1 � e2) ⊂ (K e1 � K e2)
Corresponding to Axiom K, this states that the knowledge operator distributes
over implication: The agent is capable of applying modus ponens to what they
know. Notice the use of the two operators �, mapping two events to the event
expressing the implication between the two, and ⊂, stating that the second
event is true whenever the first one is. If we unfold the definitions, this states
that: ∀w.K (e1 � e2)w → K e1 w → K e2 w. That is, if in a state w the agent
knows that e1 implies e2 and also knows e1, then they know e2.

3. K e ⊂ e
Corresponding to Axiom T, this states that knowledge is true: what distin-
guishes knowledge from belief or opinion is that when an agent knows an
event, that event must actually hold in the present state.

4. K e ⊂ K (K e)
Corresponding to Axiom 4, this is a principle of self-awareness of knowledge:
agents know when they know something.

5. ∼K e ⊂ K (∼K e)
Corresponding to Axiom 5, this negative version of the principle of self-
awareness could be called the Socratic Principle: When an agent does not
know something, they at least know that they do not know it.

The Coinductive Formulation of Common Knowledge 131

Lemma 1. The first two properties in the definition of knowledge operator
(knowledge generalisation and Axiom K) are consequences of preservation of
semantic entailment.

Proof. Assume that K preserves semantic entailment.

– Knowledge generalisation is immediate once we see that ∀∀ e is equivalent to
the semantic entailment from the empty family: ⊔∅ ⊂ e.

– Axiom K follows from applying preservation of the semantic entailment ver-
sion of modus ponens (using a family with just two elements): ⊔{e1 �
e2, e1} ⊂ e2.

(We have used set notation for the families: they indicate the trivial family
indexed on the empty type and a family indexed on the Booleans.) ��

Let us now return to a setting with a non-empty set of agents, ranged over by
the variable a. Each agent has an individual knowledge operator Ka satisfying
Definition 2. Recall that common knowledge of an event intuitively means that
everyone knows it, everyone knows that everyone knows it, everyone knows that
everyone knows that everyone knows it, and so on ad infinitum.

We define EK to be the “everyone knows” operator expressing universal
knowledge of an event:

EK : Event → Event
EK e = λw.∀a.Ka ew

EK is not itself a knowledge operator. It is possible to show that it satisfies
knowledge generalisation, Axiom K, and, with at least one agent, Axiom T. It
also preserves semantic entailment. The two introspective properties of Axioms
4 and 5, however, are not satisfied in general: if they were, there would be no
distinction between universal knowledge and common knowledge.

Common knowledge of an event e intuitively means the infinite conjunction:

EK e � EK (EK e) � EK (EK (EK e)) � . . .

This infinite conjunction can be expressed by a coinductive definition saying
that common knowledge of e means the conjunction of EK e and, corecursively,
common knowledge of EK e. In Agda or Coq, this can be defined directly by a
coinductive operator:

CoInductive cCK : Event → Event
cCK−intro : ∀e.EK e � cCK (EK e) ⊂ cCK e

This defines common knowledge at a high level without mentioning states,
naturally corresponding to the informal recursive notion. If we unfold the defi-
nitions so that we can see the constructor’s type in full, it becomes evident that
the definition satisfies the positivity condition of (co)inductive types:

cCK−intro : ∀e.∀w.(EK ew) ∧ (cCK (EK e)w) → cCK ew

132 C. Baston and V. Capretta

The meaning of the definition is that a proof of cCK e must have the form of
the constructor cCK−intro applied to proofs of EK e and cCK (EK e). The latter
must in turn be obtained by another application of cCK−intro. This process
proceeds infinitely, without end. To obtain such a proof, we can give a finite
corecursive definition that, when unfolded, generates the infinite structure.

The idea is that when proving that an event e is common knowledge, we
must prove EK e without any extra assumption, but we can recursively use the
statement that we are proving in the derivation of cCK (EK e). This apparently
circular process must satisfy a guardedness condition, ensuring that the unfolding
is productive. See, for an introduction, Chap. 13 of the Coq book by Bertot and
Casteran [2] or the application to general recursion by one of us [5]. We will soon
give an example in the proof of Lemma4.

Since a proof of cCK e must be constructed by a proof of EK e � cCK (EK e),
we can derive either conjunct if we have that e is common knowledge. That is,
we obtain the following trivial lemmas:

Lemma 2. For every event e we have: cCK e ⊂ EK e.

Lemma 3. For every event e we have: cCK e ⊂ cCK (EK e).

We now illustrate a proof by coinduction as a first simple example, showing
that common knowledge is equivalent to the family of events expressing finite
iterations of EK:

recEK : Event → N → Event
recEK e 0 = EK e
recEK e (n + 1) = EK (recEK e n)

Lemma 4. For every event e, the family recEK e semantically entails cCK e:

⊔(recEK e) ⊂ cCK e

Proof. In a coinductive proof, we are allowed to assume the statement we are
proving and use it in a restricted way:

CoInductive Hypothesis CH: ∀e. ⊔(recEK e) ⊂ cCK e.
Of course, we cannot just use the assumption CH directly to prove the the-

orem. We must make at least one step in the proof without circularity.
Unfolding the statement, we need to prove that for every state w we have:

(∀(n : N).recEK e nw) → cCK ew

So let us assume that for every natural number n, recEK e nw holds.
We must now prove cCK ew, which can be derived using the constructor

cCK−intro from EK ew and cCK (EK e)w.

– EK ew is just recEK e 0w, which is true by assumption;
– To prove cCK (EK e)w, we now invoke CH, instantiated for the event EK e:

⊔(recEK (EK e)) ⊂ cCK (EK e)

The Coinductive Formulation of Common Knowledge 133

That is:
∀w.(∀n.recEK (EK e)nw) → cCK (EK e)w

So we need to prove that for every n, recEK (EK e)nw. This is trivially equiva-
lent to recEK e (n+1)w, which is true by assumption. Therefore, Assumption
CH allows us to conclude cCK (EK e)w, as desired. ��
Let us observe the structure of this proof. We allowed ourselves to assume the

statement of the theorem as a hypothesis. But it can only be used in a limited
way. We used it immediately after applying the constructor cCK−intro, to prove
the recursive branch of it. This is the typical way in which guarded corecursion
works: we can make a circular call to the object we are defining immediately
under the application of the constructor.

The proof of the implication in the other direction, omitted here, is simply by
induction over natural numbers, repeatedly unfolding the definition of common
knowledge.

Lemma 5. For every event e and n : N: cCK e ⊂ recEK e n.

The equivalence of common knowledge with the family recEK gives an imme-
diate proof of the following useful property corresponding to Axiom 4 of S5.

Lemma 6. For every event e, we have: cCK e ⊂ cCK (cCK e).

Finally, the coinductive definition of common knowledge satisfies the proper-
ties of knowledge operators. We must prove all the S5 properties and preservation
of semantic entailment for cCK.

Theorem 1. Common knowledge, cCK, is itself a knowledge operator.

Proof. We can give a direct proof of the statement by deriving all the properties
of knowledge operators for cCK. Lemma 6 shows that Axiom 4 holds. Proofs of
all other S5 properties and of preservation of semantic entailment are interesting
applications of coinductive methods. These proofs are omitted here, but are used
in the Coq formalisation.

This theorem is also a consequence of Theorem 4 (equivalence of cCK with the
relational characterisation) and Theorem3 (equivalence relations define knowl-
edge operators). This proof is used in the Agda formalisation. ��

4 Relational Semantics

In this section, we present the traditional frame semantics of epistemic logic, the
knowledge operators being introduced through equivalence relations on states.
We prove that a knowledge operator semantics can be generated from an equiv-
alence relation and vice versa, additionally showing that these transformations
form an isomorphism.

Two states may differ by a number of events: some events may be true in one
of the states, but false in the other. If an agent has no knowledge of any of these

134 C. Baston and V. Capretta

discriminating events, only knowing events which are common to both states,
then those states are indistinguishable as far as the agent is aware. We say that
these states are epistemically accessible from one another: if the world were in
one of those states, the agent would consider either state to be plausible, not
having sufficient knowledge to inform them precisely in which state the world is
actually in.

To say that an agent has knowledge of an event in a particular state is then to
say that the event holds in all states that the agent finds epistemically accessible
from that state. We formalise this notion by defining a transformation from
relations on states to unary operators on events:

K[] : (State → State → Set) → (Event → Event)
K[R] = λe.λw.∀v.w R v → e v

Care must be taken to distinguish this notation from the notation of earlier
sections where each agent a had a knowledge operator Ka directly postulated.
When talking in terms of the relational semantics, we do not take these operators
as primitive. Here, K[R] refers to the operator generated when transforming some
relation R : State → State → Set.

It is a well known result in modal logic that applying this transformation
to an equivalence relation yields a knowledge operator satisfying the properties
of S5. We establish this fact here, assuming only the needed properties of the
relation (see [10] for a more extensive listing of which relational properties imply
which modal axioms). The proofs are omitted, but can be adapted from standard
expositions. They are also present in the Agda and Coq formalisations.

Lemma 7. If R is a relation on states, then the operator K[R] has the following
properties.

– K[R] satisfies knowledge generalisation: ∀∀ e → ∀∀ K[R] e
– K[R] satisfies Axiom K: K[R] (e1 � e2) ⊂ K[R] e1 � K[R] e2
– If R is reflexive, then K[R] satisfies Axiom T: K[R] e ⊂ e
– If R is transitive, then K[R] satisfies Axiom 4: K[R] e ⊂ K[R] (K[R] e)
– If R is symmetric and transitive, then K[R] satisfies Axiom 5: ∼K[R] e ⊂

K[R] (∼K[R] e)

To complete a proof that K[R] is a knowledge operator, we have to show
in addition that it preserves semantic entailment. As is the case with knowl-
edge generalisation and Axiom K, this does not require any hypothesis on the
properties of R.

Lemma 8. For every family E : X → Event and every event e, we have:

⊔E ⊂ e → ⊔(K[R] E) ⊂ K[R] e

Proof. Let us assume that ⊔E ⊂ e (Assumption 1).
We must prove ⊔(K[R] E) ⊂ K[R] e, that is, unfolding the definitions of ⊔

and ⊂, for every state w, ∀x.K[R] (E x)w → K[R] ew, where x ranges over the

The Coinductive Formulation of Common Knowledge 135

index of the family E. So let us assume that ∀x.K[R] (E x)w (Assumption 2).
We must then prove that K[R] ew.

Unfolding the definition of K[R], our goal becomes ∀v.w R v → e v. So let v
be any state such that w R v (Assumption 3). We must prove that e v.

To prove this goal we apply directly Assumption 1, which states (when
unfolded) that ∀v.(∀x.(E x) v) → e v. Therefore, to prove the goal, we just have
to show that ∀x.(E x) v.

For any index x, Assumption 2 tells us that K[R] (E x)w, that is, by defi-
nition of K[R], ∀v.w R v → (E x) v. But since our choice of v satisfies w R v by
Assumption 3, we have that (E x) v, as desired. ��

We can then put the two lemmas together to satisfy Definition 2.

Theorem 2. If R is an equivalence relation on states, then K[R] is a knowledge
operator.

The inverse transformation, taking a knowledge operator and returning a
relation on states is:

R[] : (Event → Event) → (State → State → Set)
R[K] = λw.λv.∀e.K ew ↔ K e v

This transformation always results in an equivalence relation, as ↔ is itself
an equivalence relation. In fact, if we admit classical reasoning, one direction of
the implication is sufficient.

Lemma 9. If K is a knowledge operator, then λw.λv.∀e.K ew → K e v is an
equivalence relation.

As an immediate corollary, it is equivalent to λw.λv.∀e.K ew ↔ K e v.

Proof. Reflexivity and transitivity are trivial. To show symmetry, we first
assume, for some states w and v, that ∀e.K ew → K e v and, for some event
e, K e v. We want to prove that K ew.

Suppose, towards a contradiction, that ¬(K ew), which can also be written as
(∼K e)w. By Axiom 5, we have K (∼K e)w. By instantiating the first assump-
tion with event ∼K e, we deduce that K (∼K e) v. By Axiom T, this implies
(∼K e) v, which can be written as ¬(K e v), contradicting the second assump-
tion: our supposition ¬(K ew) must be false. We conclude, by excluded middle,
that K ew is true, as desired. ��

We now prove that the mappings of knowledge operators to equivalence rela-
tions and vice versa are actually inverse: we can equivalently work with either
representation of knowledge. The proofs are mostly straightforward applications
of the properties of S5 and equivalence relations, except one direction, for which
we added the assumption of preservation of semantic entailment. We give the
proof of this.

In order to do this we first characterise the transformations of K using event
families generated by K on a fixed state w. Choose as index set the set of events

136 C. Baston and V. Capretta

that are known in w: X = {e | K ew} (in Coq or Agda, we use the dependent
sum type Σe.K ew whose elements are pairs 〈e, h〉 of an event e and a proof h
of K ew); the family itself is just the application of K. Formally:

KFamw : (Σe.K ew) → Event
KFamw 〈e, h〉 = K e

Intuitively, KFamw is the total amount of knowledge in state w. Set-theoretically
it is {K e | K ew}. One observation, whose proof we omit here, is that R[K] w v
is equivalent to ⊔(KFam

w) ≡ ⊔(KFam
v). Another observation will allow us to

replace K[R[K]] ew with an expression involving KFamw.

Lemma 10. For every event e and state w, the proposition K[R[K]] ew is equiv-
alent to ⊔(KFam

w) ⊂ e.

Proof. We just unfold the definitions and use the previous lemma:

K[R[K]] ew ⇔ ∀v.w R[K] v → e v by definition of K[]

⇔ ∀v.(∀e′.K e′ w ↔ K e′ v) → e v by definition of R[]

⇔ ∀v.(∀e′.K e′ w → K e′ v) → e v by Lemma 9
⇔ ⊔(KFam

w) ⊂ e by definition of KFam.

��
Lemma 11. For every knowledge operator K and every event e, we have:

K[R[K]] e ⊂ K e

Proof. Assume, for some state w, that K[R[K]] ew. We must prove K ew.
By Lemma 10, the assumption is equivalent to ⊔(KFam

w) ⊂ e. Since K pre-
serves semantic entailment, we also have ⊔(KKFamw) ⊂ K e.

We just need to prove that all elements of the family KKFamw are true
in state w to deduce that K ew holds, as desired. But in fact, given an index
〈e′, h〉 for the family KFamw, with h being a proof of K e′ w, this goal becomes
K (KFamw 〈e′, h〉)w = K (K e′)w which can be dispatched by applying Axiom 4
to h. ��

The other three directions of the isomorphisms are straightforward applica-
tions of the properties of knowledge operators and equivalence relations.

Theorem 3. For every knowledge operator K, K[R[K]] is equivalent to K: for
every event e and every state w, K[R[K]] ew ↔ K ew.

For every equivalence relation on states R, R[K[R]] is equivalent to R: for
every pair of states w and v, R[K[R]] w v ↔ R w v.

In this section we proved that the traditional frame semantics of epistemic
logic is equivalent with our notion of knowledge operator. This isomorphism
validates our discovery of the property of preservation of semantic entailments
and shows that it was already implicitly present in the relational view.

The Coinductive Formulation of Common Knowledge 137

5 Equivalence with Relational Common Knowledge

This section shows that the coinductive definition of common knowledge is equiv-
alent to the traditional characterisation as transitive closure of the union of
all the agents’ accessibility relations. We use the isomorphism of Theorem3 to
treat equivalence relations on states and their corresponding knowledge opera-
tors interchangeably.

We first equip our agents with individual knowledge operators by postulating
an equivalence relation �a: State → State → Set for each agent a as their
epistemic accessibility relation. The knowledge operator for an agent a is then
K[�a], which we shall write in shorthand as Ka.

Our formulation of the “everyone knows” operator, EK, and the coinductive
common knowledge operator, cCK, are as they appear in Sect. 3. The only dif-
ference is in the underlying definition of Ka, which had previously been taken as
primitive and assumed to satisfy the knowledge operator properties outlined in
Definition 2. The relations �a are equivalence relations, so we can conclude that
this new formulation of Ka also satisfies these properties by Theorem 2.

The relational definition of the common knowledge operator is given by its
own relation: the transitive closure of the union of all accessibility relations �a.
We write this relation as ∝. It is defined inductively as follows:

Inductive ∝ : State → State → Set
∝−union : ∀a.∀w.∀v.w �a v → w ∝ v
∝−trans : ∀w.∀v.∀u.w ∝ v → v ∝ u → w ∝ u

Lemma 12. ∝ is an equivalence relation.

Proof. Transitivity is immediate by definition of constructor ∝−trans. Reflexiv-
ity follows from the reflexivity of the agents’ underlying accessibility relations
included in ∝ by constructor ∝−union (it is essential that there is at least one
agent). Symmetry is proved by induction on the proof of ∝: the base case fol-
lows from the symmetry of the single agents’ accessibility relation, while the
recursive case is straightforward from the proof of transitivity and the inductive
hypotheses. ��

We can intuitively grasp how it gets us to common knowledge in the follow-
ing way. Observe that in an agent a’s accessibility relation, if each state were
alone in its own equivalence class, then a would be omniscient, able to perfectly
distinguish each state from all others. If a were to forget an event, however, then
all of those states which differ only by that event would collapse into an equiv-
alence class together. In general, the fewer the number of equivalence classes in
�a, the fewer the number of events a knows.

Taking the union of all agents’ accessibility relations is essentially taking the
union of their ignorance. This gets us as far as a relational interpretation of EK,
which is not necessarily transitive. We take the transitive closure to reobtain an
equivalence relation, further expanding the ignorance represented by the relation,

138 C. Baston and V. Capretta

but ensuring that we have the introspective properties of Axioms 4 and 5 that
are essential to common knowledge.

It is as if there were a virtual, maximally-ignorant agent whose accessibility
relation is ∝, knowing only those events which are common knowledge among
all agents and nothing more. With this in mind, we can define the relational
common knowledge operator, rCK, in the same way that we defined each agent’s
knowledge operator:

rCK : Event → Event
rCK = K[∝]

By Theorem 3 and Lemma 12, we can conclude that rCK satisfies all of the
knowledge operator properties: We can also verify that it has properties corre-
sponding to the two trivial properties of cCK, Lemmas 2 and 3.

Lemma 13. For every event e we have: rCK e ⊂ EK e.

Proof. Unfolding the statement, we need to prove that for every state w we have:

(∀v.w ∝ v → e v) → ∀a.∀u.w �a u → e u

So we assume the first statement, ∀v.w ∝ v → e v, and we also assume we have
an agent a and state u such that w �a u.

We are left to show that e holds in u. By the definition of constructor
∝−union, given w �a u, we can derive that w ∝ u, and then, instantiating
our first assumption with state u, we obtain e u as desired. ��
Lemma 14. For every event e we have: rCK e ⊂ rCK (EK e).

Proof. Unfolding the statement, we need to prove that for every state w we have:

(∀v.w ∝ v → e v) → ∀u.w ∝ u → ∀a.∀t.u �a t → e t

As in the previous proof, we have the assumption that for any state v such that
w ∝ v, e holds in v, so to reach our conclusion e t we can prove that w ∝ t. We
have the additional assumptions w ∝ u and u �a t.

From the latter, by ∝−union we derive u ∝ t. Then by the transitive property
of ∝, constructor ∝−trans, we conclude w ∝ t. ��

With these results, we are now able to prove the first direction of the equiv-
alence of rCK and cCK.

Lemma 15. For every event e we have: rCK e ⊂ cCK e.

Proof. The conclusion of this theorem is an application of the coinductive pred-
icate cCK, so we may proceed by coinduction, assuming the statement as our
coinductive hypothesis CH : ∀e.rCK e ⊂ cCK e

Unfolding the application of ⊂, we need to prove that, for every state w,
rCK ew → cCK ew. So we assume rCK ew, and use constructor cCK−intro
to derive the conclusion cCK ew, generating the proof obligations EK ew and
cCK (EK e)w.

The Coinductive Formulation of Common Knowledge 139

– EK ew comes from Lemma 13 applied to assumption rCK ew.
– To prove cCK (EK e)w we invoke assumption CH, instantiating it with event
EK e, leaving us to prove rCK (EK e)w. This is the conclusion of Lemma 14,
which we can apply to assumption rCK ew to complete the proof. ��
We need an additional property of cCK before we are able to complete the

other direction of the equivalence proof. The property is related to Axiom 4 of
knowledge operators, for example, for an agent a’s knowledge operator Ka:

∀e.Ka e ⊂ Ka (Ka e)

Unfolding ⊂ and the outermost application of Ka in the conclusion yields the
principle:

∀e.∀w.Ka ew → ∀v.w �a v → Ka e v

That is, if we have that Ka e holds at some state w, and we also have that
w �a v for some state v, then we can conclude that Ka e holds at state v too.
We call this transporting the agent’s knowledge across the relation �a.

Since rCK is also a knowledge operator, defined in the same way as Ka but
for a different equivalence relation, this transportation principle must hold for it
too: relational common knowledge of an event can be transported from one state
to another provided that those states are bridged by ∝. The additional property
of cCK that we are to prove is that it too can be transported across ∝.

Lemma 16. For every two states w and v and event e we have:

cCK ew → w ∝ v → cCK e v

Proof. We assume cCK ew and proceed by induction on w ∝ v:

– If w ∝ v is constructed by ∝−union, then there is some agent a for whom
w �a v holds. We can apply Lemma6, the Axiom 4 property for cCK, to obtain
cCK (cCK e)w, and then, by Lemma2, it follows that EK (cCK e)w. Since all
agents know this, we can instantiate this fact with agent a to conclude that
a must know it: Ka (cCK e)w. We use the transportation principle of Ka to
transport Ka (cCK e) from state w to state v as these states are bridged by
w �a v. Then, as a knows cCK e at state v, by Axiom T, it must actually hold
in state v.

– If w ∝ v is constructed by ∝−trans, then there is some state u for which w ∝ u
and u ∝ v hold. By induction hypothesis, we also have cCK ew → cCK e u and
cCK e u → cCK e v. We can simply use the transitivity of implication, induction
hypotheses, and our assumption cCK ew to reach our goal. ��

Lemma 17. For every event e we have: cCK e ⊂ rCK e.

Proof. Unfolding the statement we are to prove, for every event e and state w:
cCK ew → ∀v.w ∝ v → e v.

We assume cCK ew and w ∝ v. By Lemma 16 and these assumptions, we
can then transport cCK e from state w to v: cCK e v. From this, we can derive

140 C. Baston and V. Capretta

EK e v by Lemma 2. Since everyone knows e at state v, and our set of agents is
non-empty, there must be some agent who knows e at v. By Axiom T, e must
actually hold at v. ��

Combining Lemmas 15 and 17 gives the full equivalence.

Theorem 4. For all events e, rCK e ≡ cCK e, that is, K[∝] e ≡ cCK e.

6 Conclusion

We presented a type-theoretic formalisation of epistemic logic and a coinductive
implementation of the common knowledge operator. This was done through a
shallow embedding: we formulated knowledge operators as functions on events,
which are predicates on a set of possible worlds or states.

The coinductive version of common knowledge has some advantages with
respect to the traditional relational version.

– It is a straightforward formulation of the intuitive definition: common knowl-
edge of an event means that everyone knows it and the fact that everyone
knows it is itself common knowledge.

– It can be formulated at a higher level, using only the knowledge operators of
each agent and the connectives of epistemic logic: the coinductive definition
of cCK does not mention states.

– It gives us a new reasoning tool in the form of guarded corecursion. We demon-
strated its power in several proofs in this paper and in the previous work on
Aumann’s Theorem.

We proved that our coinductive formulation is equivalent to two other ver-
sions:

– The traditional one as transitive closure of the union of the accessibility rela-
tions of all agents;

– The recursive family of iterations of the “everyone knows” operator.

In the process of investigating this subject we discovered that knowledge oper-
ators obtained from equivalence relations satisfy a previously unknown property
of preservation of semantic entailment in addition to the properties of S5. We
proved that this fully characterises knowledge operators and gives an isomor-
phism between them and equivalence relations.

References

1. Barwise, J.: Three views of common knowledge. In: Vardi, M.Y. (ed.) Proceedings
of the 2nd Conference on Theoretical Aspects of Reasoning about Knowledge,
Pacific Grove, CA, March 1988, pp. 365–379. Morgan Kaufmann (1988)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-662-07964-5

https://doi.org/10.1007/978-3-662-07964-5

The Coinductive Formulation of Common Knowledge 141

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
New York (2001)

4. Bucheli, S., Kuznets, R., Struder, T.: Two ways to common knowledge. Electron.
Notes Theor. Comput. Sci. 262, 83–98 (2010)

5. Capretta, V.: General recursion via coinductive types. Log. Methods Comput. Sci.
1(2), 1–18 (2005). https://doi.org/10.2168/LMCS-1(2:1)2005

6. Capretta, V.: Common knowledge as a coinductive modality. In: Barendsen, E.,
Geuvers, H., Capretta, V., Niqui, M. (eds.) Reflections on Type Theory, Lambda
Calculus, and the Mind, pp. 51–61. ICIS, Faculty of Science, Radbout University
Nijmegen (2007). Essays Dedicated to Henk Barendregt on the Occasion of his
60th Birthday

7. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994). https://doi.
org/10.1007/3-540-58085-9 72

8. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

9. Gamow, G., Stern, M.: Puzzle Math. Viking Press, New York (1958)
10. Garson, J.: Modal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Phi-

losophy. Metaphysics Research Lab, Stanford University (2016)
11. Giménez, E.: Codifying guarded definitions with recursive schemes. In: Dybjer, P.,

Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60579-7 3

12. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
13. Keller, C., Werner, B.: Importing HOL light into Coq. In: Kaufmann, M., Paulson,

L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14052-5 22

14. Kripke, S.A.: A completeness theorem in modal logic. J. Symb. Logic 24(1), 1–14
(1959)

15. Lescanne, P.: Common knowledge logic in a higher order proof assistant. In:
Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp.
271–284. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-
1 11

16. Lewis, C.I., Langford, C.H.: Symbolic Logic. The Century Co., New York (1932)
17. Reynolds, J.C.: User-defined types and procedural data structures as complemen-

tary approaches to data abstraction. In: Gries, D. (ed.) Programming Methodol-
ogy. MCS, pp. 309–317. Springer, New York (1978). https://doi.org/10.1007/978-
1-4612-6315-9 22

https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1007/3-540-60579-7_3
https://doi.org/10.1007/978-3-642-14052-5_22
https://doi.org/10.1007/978-3-642-37651-1_11
https://doi.org/10.1007/978-3-642-37651-1_11
https://doi.org/10.1007/978-1-4612-6315-9_22
https://doi.org/10.1007/978-1-4612-6315-9_22

Tactics and Certificates in Meta Dedukti

Raphaël Cauderlier(B)

University Paris Diderot, Irif, Paris, France
raphael.cauderlier@irif.fr

Abstract. Tactics are often featured in proof assistants to simplify the
interactive development of proofs by allowing domain-specific automa-
tion. Moreover, tactics are also helpful to check the output of automatic
theorem provers because they can rebuild details that the provers omit.

We use meta-programming to define a tactic language for the Dedukti
logical framework which can be used both for checking certificates pro-
duced by automatic provers and for developing proofs interactively.

More precisely, we propose a dependently-typed tactic language for
first-order logic in Meta Dedukti and an untyped tactic language built
on top of the typed one. We show the expressivity of these languages on
two applications: a transfer tactic and a resolution certificate checker.

1 Introduction

Dedukti [23] is a logical framework implementing the λΠ-calculus modulo theo-
ries. It has been proposed as a universal proof checker [7]. In the tradition of the
Edinburgh Logical Framework, Dedukti is based on the Curry-Howard isomor-
phism: it reduces the problem of checking proofs in an embedded logic to the
problem of type-checking terms in a given signature. In order to express com-
plex logical systems such as the Calculus of Inductive Constructions, Dedukti
features rewriting: the user can declare rewrite rules handling the computational
part of the system.

Proof translators from the proof assistants HOL Light, Coq, Matita, FoCaL-
iZe, and PVS to Dedukti have been developed and used to recheck proofs of
these systems [1,2,10,16]. Moreover, Zenon Modulo [12] and iProver Modulo [9],
two automatic theorem provers for an extension of classical first-order logic with
rewriting known as Deduction modulo, are able to output proofs in Dedukti.

These proof-producing provers are helpful in the context of proof interoper-
ability between proof assistants. Independently developed formal libraries often
use equivalent but non identical definitions and these equivalences can often be
proved by automatic theorem provers [11]. Hence the stronger proof automation
in Dedukti is, the easiest it is to exchange a proof between proof assistants.

Dedukti is a mere type checker and it is intended to check machine-generated
proofs, not to assist human users in the formalisation of mathematics. It lacks

This work has been supported in part by the VECOLIB project of the French
national research organization ANR (grant ANR-14-CE28-0018).

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 142–159, 2018.
https://doi.org/10.1007/978-3-319-94821-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_9&domain=pdf

Tactics and Certificates in Meta Dedukti 143

many features found in proof assistants to help the human user such as meta
variables, implicit arguments, and a tactic language. However these features,
especially tactics implementing decision procedures for some fragments of the
considered logic, can be very helpful to check less detailed proof certificates
produced by automatic theorem provers and SMT solvers.

Fortunately, Dedukti already has all the features required to turn it into a
powerful meta-programming language in which tactics and certificates can be
transformed into proof objects. In this article, we propose a dependently typed
monadic tactic language similar to Mtac [25]. This tactic language can be used
for interactive proof development and certificate checking but because of the
lack of implicit arguments in Dedukti, it is still very verbose. For this reason, we
also introduce an untyped tactic language on top of the typed one to ease the
writing of tactics.

Since our goal is to check certificates from automatic theorem provers and to
construct proof object out of them, we focus in this article on the Dedukti encod-
ing of classical first-order logic. In Sect. 2, we present Dedukti and the encoding of
classical first-order logic. The typed and untyped tactic languages are respectively
presented in Sects. 3 and 4. Their applications to interactive proof development,
theorem transfer, and certificate checking are shown in Sects. 5, 6, and 7.

2 First-Order Logic in Dedukti

In this section, we present Dedukti by taking as example the encoding of first-
order logic. We consider a multisorted first-order logic similar to the logics of
the TPTP-TFF1 [5] and SMTLIB [3] problem formats; its syntax of terms, and
formulae is given in Fig. 1. The logic is parameterized by a possibly infinite
set of sorts S. Each function symbol f has to be declared with a domain – a
list of sorts [A1, . . . , An] – and with a codomain A ∈ S. A term of sort A is
either a variable of sort A or a function symbol f of domain [A1, . . . , An] and
codomain A applied to terms t1, . . . , tn such that each ti has sort Ai. Similarly,
each predicate symbol P has to be declared with a domain [A1, . . . , An]. A
formula is either an atom, that is a predicate symbol P of domain [A1, . . . , An]
applied to terms t1, . . . , tn such that each ti has sort Ai or is obtained from the
first-order logical connectives ⊥ (falsehood), ∧ (conjunction), ∨ (disjunction),
⇒ (implication) and the quantifiers ∀ (universal) and ∃ (existential). As usual,
we define negation by ¬ϕ := ϕ ⇒ ⊥, truth by 	 := ¬⊥, and equivalence by
ϕ1 ⇔ ϕ2 := (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1).

t := x | f(t1, . . . , tn)
ϕ := P (t1, . . . , tn)

| ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⇒ ϕ2 | ∀x : A. ϕ | ∃x : A. ϕ

Terms
Formulae

Fig. 1. Syntax of multisorted first-order logic

144 R. Cauderlier

In Dedukti, we declare symbols for each syntactic class to represent: sorts,
lists of sorts, terms, lists of terms, function symbols, predicate symbols, and
formulae.

is Dedukti’s builtin kind of types so the declaration means
that sort is a Dedukti type and the declaration means
that term is a type family indexed by a sort.

Then we require domain and codomains for the symbols.

The def keyword is used in Dedukti to indicate that the declared symbol
is definable: this means that it is allowed to appear as head symbol in rewrite
rules. In the case of the fun domain, fun codomain, and pred domain functions,
we do not give any rewrite rule now but each theory declaring new symbols is
in charge of extending the definitions of these functions for the new symbols by
adding the appropriate rewrite rules.

We then provide all the syntactic constructs, binding is represented using
higher-order abstract syntax:

Tactics and Certificates in Meta Dedukti 145

The types of cons term, fun apply, pred apply, all, and ex use the depen-
dent product Πx : A.B where x might occur in B; it is written x : A -> B in
Dedukti.

Finally, we define what it means to be a proof of some proposition. For this
we could declare symbols corresponding to the derivation rules of some proof
system such as natural deduction or sequent calculus. However, the standard
way to do this for first-order logic in Dedukti is to use the second-order definition
of connectives and then derive the rules of natural deduction.

Each rewrite rule in this definition of proof has the form
The context lists the free variables appearing in the left-

hand side, the left-hand side is a pattern (a first-order pattern in this case but
higher-order patterns in the sense of Miller [21] are also supported by Dedukti)
and the right-hand side is a term whose free variables are contained in the
context.

All the rules of natural deduction can now be proved, here is for example,
the introduction rule for conjunction:

The syntax x : A => b is used in Dedukti for the λ-abstraction λx : A.b.
To check the certificates found by automatic theorem provers for classical

logic, we need two axiom schemes: the law of excluded middle and the assumption
that all sorts are inhabited.

The Dedukti signature that we have described in this section is a faithful
encoding of classical first-order logic [14]: a first-order formula ϕ is provable in
classical natural deduction if and only if the Dedukti type proof ϕ is inhabited.

3 A Typed Tactic Language for Meta Dedukti

Unfortunately, writing Dedukti terms in the signature of the previous section is
tedious not only for human users but also for automated tools which typically

146 R. Cauderlier

reason at a higher level than natural deduction proofs. In this section, we propose
a first tactic language to ease the creation of terms in this signature.

Since Dedukti does not check for termination, it is very easy to encode
a Turing-complete language in Dedukti. For example, the untyped λ-calculus
can be encoded with only one declaration and one rewrite rule

Thanks to Turing-completeness, we can use Dedukti as a dependently-typed
programming language based on rewriting. The results of these programs are
Dedukti terms that need to be checked in a trusted Dedukti signature such as
the one of Sect. 2 if we want to interpret them as proofs. We distinguish two
different Dedukti signatures: the trusted signature of Sect. 2 and an untrusted
signature extending the one of Sect. 2 and used to elaborate terms to be checked
in the trusted one. Unless otherwise precised, all the Dedukti excerpts from now
on are part of this second, untrusted signature.

When using Dedukti as a meta-programming language, we are not so much
interested in the type-checking problem than in the normal forms (with respect
to the untrusted system) of some terms. For this reason, we use a fork of Dedukti
called Meta Dedukti [13] that we developed with Thiré. This tool outputs a copy
of its input Dedukti file in which each term is replaced by its normal form. The
produced file can then be sent to Dedukti to be checked in the trusted signature.

Fig. 2. The typed tactic language: declarations

In Figs. 2 and 3 we define our typed tactic language for Meta Dedukti inspired
by the MTac tactic language for Coq [25]. The main type of this development
is the type mtactic a (for monadic tactic) where a is a proposition. We call
tactical any function returning a term of type mtactic a for some a. A term t
of type mtactic a contains instructions to attempt a proof of the proposition a.
Each tactic can either fail, in which case its normal form is mraise a e where
e is of type exc, an extensible type of exceptions or succeed in which case its
normal form is mret a p where p is a proof of a. The tacticals mret and mraise

Tactics and Certificates in Meta Dedukti 147

can be seen as the two constructors of the inductive type family mtactic. When
evaluating a tactic is successful, we can extract the produced proof using the
mrun partial function which is undefined in the case of the mraise constructor.
Tactics can be chained using the mbind tactical and backtracking points can be
set using the mtry tactical.

Fig. 3. The typed tactic language: rewrite rules

The mbind tactical is enough to define tactics corresponding to all the rules
of natural deduction that do not change the proof context. As a simple example,
we can define a msplit tactical attempting to prove goals of the form and a b
from tactics t1 and t2 attempting to prove a and b respectively.

To handle the natural deduction rules that do modify the rule context such
as the introduction rules for implication and universal quantification, we add
two new tacticals mintro term and mintro proof. These tacticals are partial
functions only defined if their argument is a tactical that uniformly succeed on
all arguments or uniformly fail on all arguments.

4 An Untyped Tactic Language for Meta Dedukti

The main limitation of the typed tactic language presented in Sect. 3 is its ver-
bosity. Since Dedukti does not feature implicit arguments, each time the user
applies the msplit tactical, she has to provide propositions a and b such that

148 R. Cauderlier

the goal to be proved is convertible with and a b. Another issue is that this
tactic language does not permit to automate search among assumptions; new
assumptions can be introduced by the mintro proof tactical but the user of the
typed tactic language then has to refer explicitly to the introduced assumption.

The untyped1 tactic language that we now consider solves both issues. Tactics
are interpreted in a proof context, a list of terms and proofs, by the eval function
returning a typed tactic. For the common case of evaluating a tactic in the empty
context, we define the prove function.

Some of the most fundamental tacticals of the untyped language are defined
in Fig. 4 by the way eval behaves on them. The with goal tactical is used to get
access to the current goal, it takes another tactical as argument and evaluates it
on the goal. The with assumption tactical tries a tactical on each assumption of
the context until one succeeds. The exact, raise, try, bind and intro tacticals
are wrapper around the constructs of the typed language. The full definitions
of these tacticals and many other are available in the file https://gitlab.math.
univ-paris-diderot.fr/cauderlier/dktactics/blob/master/meta/tactic.dk.

On top of these basic tacticals, we have implemented tacticals corresponding
to the rules of intuitionistic sequent calculus. For example, Fig. 5 presents the
definitions of the tacticals about conjunction: match and deconstructs formulae
of the form and a b, split performs the right rule of conjunction in sequent
calculus and is defined very similarly to msplit, its typed variant of Sect. 3. The
tactical destruct and implements the following generalisation of the left rule
for conjunction:

Γ � A ∧ B Γ,A,B � C

Γ � C

The axiom rule of sequent calculus is implemented by the assumption tactic
defined as with assumption exact.

5 Example of Interactive Proof Development

Before considering sophisticated applications of our tactic languages in Sects. 6
and 7, we illustrate the interactive use of our untyped tactic language on a simple
example: commutativity of conjunction.
1 By “untyped” we do not mean that no type is assigned to the Dedukti terms of the

language but that typing is trivial: all the tactics have the same type (tactic).

https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktactics/blob/master/meta/tactic.dk
https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktactics/blob/master/meta/tactic.dk

Tactics and Certificates in Meta Dedukti 149

Fig. 4. Low-level untyped tacticals

Fig. 5. Conjunction tacticals

150 R. Cauderlier

We start with the following Dedukti file:

The undefined constant t0 is a placeholder for an unsolved goal. The inter-
active process consists in looking into the normal form of this file for blocked
applications of the eval function, adding some lines after the declaration of t0,
and repeating until the definition of and commutes is a term of the encoding of
Sect. 2.

At the first iteration, Meta Dedukti answers

We have one blocked call to eval on the last line:

; this means we have to prove � (a∧
b) ⇒ (b∧a). To apply the intro tactical, we introduce a new undefined subgoal
t1 and define t0 as intro t1 by adding the following line in the middle of our
file.

Normalising again produces a file containing the term

which means we
now have to prove a ∧ b � b ∧ a. To do this we add the following lines right
after the previously added line:

In other words we try to apply the destruct and tactical successively to
all assumptions of the proof context. Since we have only one assumption and
it is indeed a conjunction, the call reduces and Meta Dedukti tells us that
we are left with and

corresponding respectively to a ∧ b � a ∧ b and
b, a, a ∧ b � b ∧ a. The first subgoal is trivial and can be solved with the
assumption tactic that succeeds when the goal matches one of the assumptions.
For the second subgoal, we introduce the conjunction.

Tactics and Certificates in Meta Dedukti 151

We again have two subgoals,
and

cor-
responding to b, a, a∧b � b and b, a, a∧b � a. In both cases, the goal corresponds
to one of the assumptions so the assumption tactic does the job.

Our theorem is now proved; the following definition of and commutes given
by Meta Dedukti is accepted by Dedukti:

6 Theorem Transfer

When translating independently developed formal libraries in Dedukti, we end
up with two isomorphic copies A and B of the same notions. Contrary to the
mathematical habit of identifying isomorphic structures, in formal proof systems
a theorem ϕA on the structure A cannot be used without justification as a
theorem ϕB on the structure B. However this justification, a proof of ϕA ⇒
ϕB , can be automated in tactic based proof assistants. The automation of such
goals of the form ϕA ⇒ ϕB is called theorem transfer [17,26] and the tactic
implementing it is called a transfer tactic.

In Fig. 6, we adapt the higher-order transfer calculi of [17,26] to first-
order logic. The notations P (R1 × . . . × Rn)Q abbreviates the formula
∀x1, . . . xn, y1, . . . yn.x1R1y1 ⇒ . . . ⇒ xnRnyn ⇒ P (x1, . . . , xn) ⇒
Q(y1, . . . , yn) and the notation f(R1 × . . . × Rn → R)g abbreviates the formula
∀x1, . . . xn, y1, . . . yn.x1R1y1 ⇒ . . . ⇒ xnRnyn ⇒ f(x1, . . . , xn)Rg(y1, . . . , yn).

Implementing a proof search algorithm for this calculus in our untyped tactic
language is straightforward once we have proved the formula schemes ⊥ ⇒ ⊥,
(ϕ1 ⇒ ψ1) ⇒ (ϕ2 ⇒ ψ2) ⇒ (ϕ1 ∧ ϕ2) ⇒ (ψ1 ∧ ψ2), (ϕ1 ⇒ ψ1) ⇒ (ϕ2 ⇒ ψ2) ⇒
(ϕ1 ∨ ϕ2) ⇒ (ψ1 ∨ ψ2), . . . corresponding to the rules of the calculus.

Instead of deriving the proofs of these formula schemes in natural deduction
directly, we take benefit of our tactic language to define an auto tactic following a
rather naive strategy for sequent calculus: it applies right rules for all connectives
but the existential quantifier as long as possible and then applies left rules for

152 R. Cauderlier

all connectives but universal quantification until the goal matches one of the
assumptions. The auto tactic is able to prove the four first rules of our transfer
calculus. The four remaining rules require to instantiate universal assumptions
and are hence out of its scope but they are easy to prove directly.

Our implementation is available at the following URL: https://gitlab.math.
univ-paris-diderot.fr/cauderlier/dktransfer.

Γ � ⊥ ⇒ ⊥
Γ � ϕ1 ⇒ ψ1 Γ � ϕ2 ⇒ ψ2

Γ � (ϕ1 ∧ ϕ2) ⇒ (ψ1 ∧ ψ2)

Γ � ϕ1 ⇒ ψ1 Γ � ϕ2 ⇒ ψ2

Γ � (ϕ1 ∨ ϕ2) ⇒ (ψ1 ∨ ψ2)
Γ � ψ1 ⇒ ϕ1 Γ � ϕ2 ⇒ ψ2

Γ � (ϕ1 ⇒ ϕ2) ⇒ (ψ1 ⇒ ψ2)

Γ, a : A, c : C, a R c � ϕa ⇒ ψc � ∀c : C. ∃a : A. a R c

Γ � (∀a : A. ϕa) ⇒ (∀c : C. ψc)

Γ, a : A, c : C, a R c � ϕa ⇒ ψc � ∀a : A. ∃c : C. a R c

Γ � (∃a : A. ϕa) ⇒ (∃c : C. ψc)

Γ � t1 R1 u1 . . . Γ � tn Rn un � P (R1 × . . . × Rn) Q

Γ � P (t1, . . . , tn) ⇒ Q(u1, . . . , un)

Γ � t1 R1 u1 . . . Γ � tn Rn un � f (R1 × . . . × Rn → R) g

Γ � f(t1, . . . , tn) R g(u1, . . . , un)

Fig. 6. A first-order transfer calculus

7 Resolution Certificates

Robinson’s resolution calculus [22] is a popular proof calculus for first-order
automatic theorem provers. It is a clausal calculus; this means that it does not
handle the full syntax of first-order formulae but only the CNF (clausal normal
form) fragment.

A literal is either an atom (a positive literal) or the negation of an atom (a
negative literal). We denote by l the opposite literal of l defined by a := ¬a
and ¬a := a where a is any atom. A clause is a possibly empty disjunction of
literals. The empty clause corresponds to falsehood. Literals and clauses may
contain free variables which are to be interpreted as universally quantified. We
make this explicit by considering quantified clauses (qclauses for short) which
are formulae of the form ∀x1, . . . , xk.l1 ∨ . . . ∨ ln.

A resolution proof is a derivation of the empty clause from a set of clauses
assumed as axioms. The rules of the resolution calculus are given in Fig. 7. The
(Factorisation) and (Resolution) rules are standard, the (Unquantification) rule
is required to remove useless quantifications in the clauses produced by the two

https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktransfer
https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktransfer

Tactics and Certificates in Meta Dedukti 153

other rules. Note that the correctness of this (Unquantification) rule requires the
default value axiom that we introduced in Sect. 2.

We consider resolution certificates in which the assumed and derived clauses
are numbered and each line of the certificate indicates:

1. the name of the derivation rule (either “Factorisation” or “Resolution”),
2. the numbers identifying one or two (depending on the chosen derivation rule)

previously assumed or derived clauses,
3. the indexes i and j of the literals to unify, and
4. the number of the newly derived clause.

Fig. 7. The resolution calculus with quantified clauses

Fig. 8. Syntactic definitions for the CNF fragment of first-order logic

This level of detail is not unreasonable to ask from a resolution prover;
Prover9 [20] for example is able to produce such certificates. To express these cer-
tificates in Meta Dedukti, we have extended the trusted signature of first-order
logic with the definitions of the syntactic notions of atoms, literals, clauses,
and qclauses (see Fig. 8) and we have defined functions factor, resolve, and

154 R. Cauderlier

unquantify returning the qclause resulting respectively from the (Factorisa-
tion), (Resolution), and (Unquantification) rules and tacticals factor correct,
resolve correct, and unquantify correct attempting to prove the resulting
clauses from proofs of the initial clauses. Moreover, we defined a partial function
qclause of prop mapping propositions in the clausal fragment to quantified
clauses and we proved it correct on this fragment. The signature of these func-
tions is given in Fig. 9.

Fig. 9. Signature of the resolution tacticals

As a small example illustrating the use of these tacticals, we consider the
problem NUM343+1 from the TPTP benchmark [24]. Among the clauses resulting
from the clausification of the problem, two of them are used in the proof found
by Prover9: x ≤ y ∨ y ≤ x and ¬(x ≤ n). The translation of this problem in
Dedukti is given in Fig. 10. Here is a resolution certificate of the empty clause
from these axioms:

1. x ≤ y ∨ y ≤ x Axiom
2. ¬(x ≤ n) Axiom
3. x ≤ x Factorisation at positions 0 and 1 in clause 1
4. ⊥ Resolution at positions 0 and 0 in clauses 2 and 3

This certificate can be translated in our formalism by adding an (Unquantifi-
cation) step after each other step. The Meta Dedukti version of this certificate
is given in Fig. 11, once normalized by Meta Dedukti, we obtain a Dedukti file
of 518 lines that is successfully checked by Dedukti in the trusted signature.

During the definition of the tacticals of Fig. 9, we were happily surprised
to discover that the tacticals qclause of prop correct, factor correct,
resolve correct, and unquantify correct were not much harder to define

Tactics and Certificates in Meta Dedukti 155

than the corresponding clause computing functions because we did not prove
the soundness of the resolution calculus. In particular, we did not prove the cor-
rectness of our unification algorithm but we check a posteriori that the returned
substitution is indeed an unifier of the given literals. The main difficulty comes
from the application of substitution to qclauses which can be isolated in a rule
called specialisation:

∀x1. . . . ∀xn.C

∀x1. . . . ∀xn.σ(C)
(Specialisation)

If c is a proof of ∀−→x .C, then a proof of ∀−→x .σ(C) can be obtained
by first introducing all the quantifiers then applying c to σ(x1), . . . , σ(xn).

Fig. 10. The TPTP problem NUM343+1 in Meta Dedukti

Fig. 11. A resolution certificate for TPTP problem NUM343+1 in Meta Dedukti

156 R. Cauderlier

From our tactic languages, it is not easy to do this because the number
n of introduction and elimination rules to apply is unknown. To solve this
problem, we defined an alternative form of quantified clauses were instead
of quantifying over terms one by one, we quantify over lists of terms:

. We proved the spe-
cialisation rule on this type lqclause and the equivalence between lqclause
and qclause.

The tactic languages of Sects. 3 and 4 and the resolution certificate checker of
this section are available at the following URL: https://gitlab.math.univ-paris-
diderot.fr/cauderlier/dktactics.

8 Related Works

The main source of inspiration for the typed tactic language that we have pro-
posed in Sect. 3 is MTac [25], a typed monadic language for the Coq proof
assistant. Our language is a fragment of MTac; the missing MTac primitives
provide non-termination (the mfix construct) and give access to operations of
Coq refiner such as syntactic deconstruction of terms (mmatch), higher-order
unification, and handling of meta variables. To provide these features, the oper-
ational semantics of MTac is implemented inside Coq refiner. In this work in
contrast, we did not modify Dedukti at all. The mfix and mmatch operations
are not needed in our tactic languages because the user already has access to
Dedukti higher-order rewrite engine. Since Dedukti is not a full proof assistant
but only a proof checker, it does not currently feature a refiner from which we
could leverage higher-order unification or meta variables. However, as we have
seen in Sect. 5, we can simulate meta variables by definable symbols of type
tactic and as we have seen in Sect. 7 in the first-order case we can also define
the unification algorithm.

A second version of MTac is in preparation [19]. In MTac2, an untyped tactic
language is built on top of the MTac monad but contrary to our untyped language
in which tactics promise proofs of the current goal, MTac2 tactics promise lists
of subgoals and the actual proof is built by instanciation of meta variables. This
gives MTac2 the flexibility to define tactics generating a number of subgoals that
is not known statically.

Exceptions and backtracking are also implemented by a monad in the meta
language of Lean which is used to implement Lean tactics [15]. However, Lean
meta language is poorly typed making this tactic language closer to our untyped
tactic language: the way tactics manipulate the proof state in Lean is not made
explicit in their types and terms are all reified in the same type expr.

The tactics of the Idris [8] system, which are used to elaborate terms from
the full Idris syntax to the syntax of Idris’ kernel, are also implemented by a
monad in Haskell. However, this tactic monad is not reflected in Idris so Idris
users do not have access to an extensible tactic language.

To bridge the gap between automatic and interactive theorem proving, a lot
of efforts has been put to check the certificates of automatic theorem provers.

https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktactics
https://gitlab.math.univ-paris-diderot.fr/cauderlier/dktactics

Tactics and Certificates in Meta Dedukti 157

iProver Modulo [9], Zenon Modulo [12], and Metis [18] are first-order theorem
provers able to produce independently checkable proofs. Metis in particular can
be used as a tactic in Isabelle/HOL. The Sledgehammer tool [4] checks certifi-
cates from first-order provers and SMT solvers using Isabelle tactics implement-
ing decision procedures and the Metis tactic. These works have in common an
access to a deep representation of terms, typically using De Bruijn indices or
named variables, at proof producing time whereas our tactics for the resolution
calculus only use higher-order abstract syntax. Recently, the Foundational Proof
Certificate framework has been used to add enough details to Prover9 resolution
certificates that they can be checked by a simple tool that does not need to com-
pute the unifiers [6]. In our context, we have found that is was actually easier
to perform the unification in the certificate checker than to extend the format
of certificates to include the substitutions because the naming of free variables
in clauses (or the order in which variables are implicitly quantified) is hard to
predict.

9 Conclusion

We have shown that Dedukti could be used as an expressive meta language
for writing tactics and checking proof certificates. We have proposed two tactic
languages for Dedukti, a typed one and an untyped one and shown applications
of these languages to interactive proof development, automated theorem transfer,
and checking of resolution certificates.

For interactive proof development and tactic debugging, our languages would
greatly benefit from pretty-printing functions. We believe such functions can be
defined in a second meta signature used to transform blocked eval calls to
something more readable.

Our tactic and certificate languages are defined specifically for first-order
logic. Since it was inspired by tactic languages for the Calculus of Inductive
Constructions, we believe that most of the work presented in this article can
be adapted straightforwardly to richer logics with the notable exception of the
unification algorithm used to check resolution certificates.

Most clausal first-order theorem provers use an extra rule called paramod-
ulation to handle equality. We would like to extend our resolution certificate
language to take this rule into account. This would allow us to benchmark our
certificate checker on large problem sets such as TPTP.

References

1. Assaf, A.: A framework for defining computational higher-order logics. Ph.D. the-
sis, École Polytechnique (2015). https://tel.archives-ouvertes.fr/tel-01235303

2. Assaf, A., Burel, G.: Translating HOL to Dedukti. In: Kaliszyk, C., Paskevich,
A. (eds.) Proceedings Fourth Workshop on Proof eXchange for Theorem Proving,
Berlin, Germany, 2–3 August 2015. Electronic Proceedings in Theoretical Com-
puter Science, vol. 186, pp. 74–88. Open Publishing Association, Berlin, August
2015. https://doi.org/10.4204/EPTCS.186.8

https://tel.archives-ouvertes.fr/tel-01235303
https://doi.org/10.4204/EPTCS.186.8

158 R. Cauderlier

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). http://smtlib.cs.uiowa.edu

4. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in
Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS
(LNAI), vol. 6989, pp. 12–27. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24364-6 2

5. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with
rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 414–420. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38574-2 29

6. Blanco, R., Chihani, Z., Miller, D.: Translating between implicit and explicit ver-
sions of proof. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp.
255–273. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 16

7. Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus modulo as a uni-
versal proof language. In: David Pichardie, T.W. (ed.) The Second International
Workshop on Proof Exchange for Theorem Proving (PxTP 2012), Manchester,
vol. 878, pp. 28–43, June 2012. https://hal-mines-paristech.archives-ouvertes.fr/
hal-00917845

8. Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Program. 23(5), 552–593 (2013). https://
doi.org/10.1017/S095679681300018X

9. Burel, G.: A shallow embedding of resolution and superposition proofs into the
λΠ-calculus modulo. In: Blanchette, J.C., Urban, J. (eds.) Third International
Workshop on Proof Exchange for Theorem Proving, PxTP 2013, Lake Placid, NY,
USA, 9–10 June 2013. EPiC Series in Computing, vol. 14, pp. 43–57. EasyChair,
Lake Placid, June 2013. http://www.easychair.org/publications/paper/141241

10. Cauderlier, R., Dubois, C.: ML pattern-matching, recursion, and rewriting: from
FoCaLiZe to Dedukti. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol.
9965, pp. 459–468. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46750-4 26

11. Cauderlier, R., Dubois, C.: FoCaLiZe and Dedukti to the rescue for proof interop-
erability. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499,
pp. 131–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66107-0 9

12. Cauderlier, R., Halmagrand, P.: Checking Zenon Modulo proofs in Dedukti. In:
Kaliszyk, C., Paskevich, A. (eds.) Proceedings 4th Workshop on Proof eXchange
for Theorem Proving, Berlin, Germany, 2–3 August 2015. Electronic Proceedings in
Theoretical Computer Science, vol. 186, pp. 57–73. Open Publishing Association,
Berlin, August 2015. https://doi.org/10.4204/EPTCS.186.7

13. Cauderlier, R., Thiré, F.: Meta Dedukti. http://deducteam.gforge.inria.fr/
metadedukti/

14. Dorra, A.: Équivalence Curry-Howard entre le lambda-Pi-calcul et la logique intu-
itionniste (2010). Undergrad research intership report

15. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogramming
framework for formal verification. PACMPL 1(ICFP), 34:1–34:29 (2017). https://
doi.org/10.1145/3110278

16. Gilbert, F.: Proof certificates in PVS. In: Ayala-Rincón, M., Muñoz, C.A. (eds.)
ITP 2017. LNCS, vol. 10499, pp. 262–268. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66107-0 17

17. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp.
131–146. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 9

http://smtlib.cs.uiowa.edu
https://doi.org/10.1007/978-3-642-24364-6_2
https://doi.org/10.1007/978-3-642-24364-6_2
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-319-63046-5_16
https://hal-mines-paristech.archives-ouvertes.fr/hal-00917845
https://hal-mines-paristech.archives-ouvertes.fr/hal-00917845
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
http://www.easychair.org/publications/paper/141241
https://doi.org/10.1007/978-3-319-46750-4_26
https://doi.org/10.1007/978-3-319-46750-4_26
https://doi.org/10.1007/978-3-319-66107-0_9
https://doi.org/10.4204/EPTCS.186.7
http://deducteam.gforge.inria.fr/metadedukti/
http://deducteam.gforge.inria.fr/metadedukti/
https://doi.org/10.1145/3110278
https://doi.org/10.1145/3110278
https://doi.org/10.1007/978-3-319-66107-0_17
https://doi.org/10.1007/978-3-319-66107-0_17
https://doi.org/10.1007/978-3-319-03545-1_9

Tactics and Certificates in Meta Dedukti 159

18. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer,
M., Vito, B.D., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in
Higher Order Logics (STRATA 2003), pp. 56–68. No. NASA/CP-2003-212448 in
NASA Technical Reports, September 2003. http://www.gilith.com/papers

19. Kaiser, J.O., Ziliani, B., Krebbers, R., Régis-Gianas, Y., Dreyer, D.: Mtac2: Typed
tactics for backward reasoning in Coq (2018, submitted for publication)

20. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/∼mccune/
prover9/

21. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. Log. Comput. 1(4), 497–536 (1991). https://doi.
org/10.1093/logcom/1.4.497

22. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965). https://doi.org/10.1145/321250.321253

23. Saillard, R.: Type checking in the Lambda-Pi-Calculus Modulo: theory and prac-
tice. Ph.D. thesis, MINES Paritech (2015). https://pastel.archives-ouvertes.fr/tel-
01299180

24. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337–362 (2009). https://doi.org/10.1007/s10817-009-9143-8

25. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac:
a monad for typed tactic programming in Coq. J. Funct. Program. 25 (2015).
https://doi.org/10.1017/S0956796815000118

26. Zimmermann, T., Herbelin, H.: Automatic and Transparent Transfer of Theorems
along Isomorphisms in the Coq Proof Assistant. CoRR abs/1505.05028 (2015).
http://arxiv.org/abs/1505.05028

http://www.gilith.com/papers
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1145/321250.321253
https://pastel.archives-ouvertes.fr/tel-01299180
https://pastel.archives-ouvertes.fr/tel-01299180
https://doi.org/10.1007/s10817-009-9143-8
https://doi.org/10.1017/S0956796815000118
http://arxiv.org/abs/1505.05028

A Formalization of the LLL Basis
Reduction Algorithm

Jose Divasón1, Sebastiaan Joosten2, René Thiemann3(B),
and Akihisa Yamada4

1 University of La Rioja, Logroño, Spain
2 University of Twente, Enschede, The Netherlands

3 University of Innsbruck, Innsbruck, Austria
rene.thiemann@uibk.ac.at

4 National Institute of Informatics, Tokyo, Japan

Abstract. The LLL basis reduction algorithm was the first polynomial-
time algorithm to compute a reduced basis of a given lattice, and hence
also a short vector in the lattice. It thereby approximates an NP-hard
problem where the approximation quality solely depends on the dimen-
sion of the lattice, but not the lattice itself. The algorithm has several
applications in number theory, computer algebra and cryptography.

In this paper, we develop the first mechanized soundness proof of the
LLL algorithm using Isabelle/HOL. We additionally integrate one appli-
cation of LLL, namely a verified factorization algorithm for univariate
integer polynomials which runs in polynomial time.

1 Introduction

The LLL basis reduction algorithm by Lenstra, Lenstra and Lovász [8] is a
remarkable algorithm with numerous applications. There even exists a 500-page
book solely about the LLL algorithm [10]. It lists applications in number the-
ory and cryptology, and also contains the best known polynomial factorization
algorithm that is used in today’s computer algebra systems.

The LLL algorithm plays an important role in finding short vectors in lattices:
Given some list of linearly independent integer vectors f0, . . . , fm−1 ∈ Z

n, the
corresponding lattice L is the set of integer linear combinations of the fi; and
the shortest vector problem is to find some non-zero element in L which has the
minimum norm.

Example 1. Consider f1 = (1, 1 894 885 908, 0), f2 = (0, 1, 1 894 885 908), and
f3 = (0, 0, 2 147 483 648). The lattice of f1, f2, f3 has a shortest vector (−3, 17, 4).
It is the linear combination (−3, 17, 4) = −3f1+5684 657 741f2+5015 999 938f3.

Whereas finding a shortest vector is NP-hard [9], the LLL algorithm is a
polynomial time algorithm for approximating a shortest vector: The algorithm
is parametric by some α > 4

3 and computes a short vector, i.e., a vector whose
norm is at most α

m−1
2 times as large than the norm of any shortest vector.

c© The Author(s) 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 160–177, 2018.
https://doi.org/10.1007/978-3-319-94821-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_10&domain=pdf

A Formalization of the LLL Basis Reduction Algorithm 161

In this paper, we provide the first mechanized soundness proof of the LLL
algorithm: the functional correctness is formulated as a theorem in the proof
assistant Isabelle/HOL [11]. Regarding the complexity of the LLL algorithm, we
did not include a formal statement which would have required an instrumenta-
tion of the algorithm by some instruction counter. However, from the termination
proof of our Isabelle implementation of the LLL algorithm, one can easily infer
a polynomial bound on the number of arithmetic operations.

In addition to the LLL algorithm, we also verify one application, namely
a polynomial-time1 algorithm for the factorization of univariate integer poly-
nomials, that is: factorization into the content and a product of irreducible
integer polynomials. It reuses most parts of the formalization of the Berlekamp–
Zassenhaus factorization algorithm, where the main difference is the replacement
of the exponential-time reconstruction phase [1, Sect. 8] by a polynomial-time
one based on the LLL algorithm.

The whole formalization is based on definitions and proofs from a textbook
on computer algebra [16, Chap. 16]. Thanks to the formalization work, we figured
out that the factorization algorithm in the textbook has a serious flaw.

The paper is structured as follows. We present preliminaries in Sect. 2.
In Sect. 3 we describe an extended formalization about the Gram–Schmidt
orthogonalization procedure. This procedure is a crucial sub-routine of the LLL
algorithm whose correctness is verified in Sect. 4. Since our formalization of the
LLL algorithm is also executable, in Sect. 5 we compare it against a commercial
implementation. We present our verified polynomial-time algorithm to factor
integer polynomials in Sect. 6, and describe the flaw in the textbook. Finally, we
give a summary in Sect. 7.

Our formalization is available in the archive of formal proofs (AFP) [2,3].

2 Preliminaries

We assume some basic knowledge of linear algebra, but recall some notions
and notations. The inner product of two real vectors v = (c0, . . . , cn) and
w = (d0, . . . , dn) is v • w =

∑n
i=0 cidi. Two real vectors are orthogonal if their

inner product is zero. The Euclidean norm of a real vector v is ||v|| =
√

v • v. A
linear combination of vectors v0, . . . , vm is

∑m
i=0 civi with c0, . . . , cm ∈ R, and

we say it is an integer linear combination if c0, . . . , cm ∈ Z. Vectors are linearly
independent if none of them is a linear combination of the others. The span –
the set of all linear combinations – of linearly independent vectors v0, . . . , vm−1

forms a vector space of dimension m, and v0, . . . , vm−1 are its basis. The lattice
generated by linearly independent vectors v0, . . . , vm−1 ∈ Z

n is the set of integer
linear combinations of v0, . . . , vm−1.

The degree of a polynomial f(x) =
∑n

i=0 cix
i is degree f = n, the leading

coefficient is lc f = cn, the content is the GCD of coefficients {c0, . . . , cn}, and the
norm ||f || is the norm of its corresponding coefficient vector, i.e., ||(c0, . . . , cn)||.
1 Again, we only mechanized the correctness proof and not the proof of polynomial

complexity.

162 J. Divasón et al.

If f = f0 · . . . · fm, then each fi is a factor of f , and is a proper factor if f is
not a factor of fi. Units are the factors of 1, i.e., ±1 in integer polynomials and
non-zero constants in field polynomials. By a factorization of polynomial f we
mean a decomposition f = c ·f0 · . . . ·fm into the content c and irreducible factors
f0, . . . , fm; here irreducibility means that each fi is not a unit and admits only
units as proper factors.

Our formalization has been carried out using Isabelle/HOL, and we follow
its syntax to state theorems, functions and definitions. Isabelle’s keywords are
written in bold. Throughout Sects. 3 and 4, we present Isabelle sources in a way
where we are inside some context which fixes a parameter n, the dimension of
the vector space.

3 Gram–Schmidt Orthogonalization

The Gram–Schmidt orthogonalization (GSO) procedure takes a list of linearly
independent vectors f0, . . . , fm−1 from R

n or Qn as input, and returns an orthog-
onal basis g0, . . . , gm−1 for the space that is spanned by the input vectors. In
this case, we also write that g0, . . . , gm−1 is the GSO of f0, . . . , fm−1.

We already formalized this procedure in Isabelle as a function gram schmidt
when proving the existence of Jordan normal forms [15]. That formalization
uses an explicit carrier set to enforce that all vectors are of the same dimen-
sion. For the current formalization task, the usage of a carrier-based vector and
matrix library is important: Harrison’s encoding of dimensions via types [5] is
not expressive enough for our application; for instance for a given square matrix
of dimension n we need to multiply the determinants of all submatrices that
only consider the first i rows and columns for all 1 ≤ i ≤ n.

Below, we summarize the main result that is formally proven about
gram schmidt [15]. To this end, we open a context assuming common conditions
for invoking the Gram–Schmidt procedure, namely that fs is a list of linearly
independent vectors, and that gs is the GSO of fs. Here, we also introduce our
notion of linear independence for lists of vectors, based on an existing definition
of linear independence for sets coming from a formalization of vector spaces [7].

definition lin indpt list fs =
(set fs ⊆ carrier vec n ∧ distinct fs ∧ lin indpt (set fs))

context

fixes fs gs m

assumes lin indpt list fs and length fs = m and gram schmidt n fs = gs

begin

lemma gram schmidt:

shows span (set fs) = span (set gs) and orthogonal gs

and set gs ⊆ carrier vec n and length gs = m

A Formalization of the LLL Basis Reduction Algorithm 163

Unfortunately, lemma gram schmidt does not suffice for verifying the LLL
algorithm: We need to know how gs is computed, that the connection between
fs and gs can be expressed via a matrix multiplication, and we need recursive
equations to compute gs and the matrix. In the textbook the Gram–Schmidt
orthogonalization on input f0, . . . , fm−1 is defined via mutual recursion.

gi := fi −
∑

j<i

μi,jgj (1)

where

μi,j :=

⎧
⎪⎨

⎪⎩

1 if i = j

0 if j > i
fi•gj

||gj ||2 if j < i

(2)

and the connection between these values is expressed as the equality
⎡

⎢
⎣

f0
...

fm−1

⎤

⎥
⎦ =

⎡

⎢
⎣

μ0,0 . . . μ0,m−1

...
. . .

...
μm−1,0 . . . μm−1,m−1

⎤

⎥
⎦ ·

⎡

⎢
⎣

g0
...

gm−1

⎤

⎥
⎦ (3)

by interpreting the fi’s and gi’s as row vectors.
Whereas there is no conceptual problem in expressing these definitions and

proving the equalities in Isabelle/HOL, there still is some overhead because of the
conversion of types. For instance in lemma gram schmidt, gs is a list of vectors;
in (1), g is a recursively defined function from natural numbers to vectors; and
in (3), the list of gi’s is seen as a matrix.

Consequently, the formalized statement of (3) contains these conversions like
mat and mat of rows which convert a function and a list of vectors into matrices,
respectively. Note that in the formalization an implicit parameter to μ – the input
vectors f0, . . . , fm−1 – is made explicit as fs.

lemma mat of rows n fs = mat m m (λ(i, j). μ fs i j) · mat of rows n gs

A key ingredient in reasoning about the LLL algorithm are projections. We
say w ∈ R

n is a projection of v ∈ R
n into the orthocomplement of S ⊆ R

n,
or just w is an oc-projection of v and S, if v − w is in the span of S and w is
orthogonal to every element of S:

definition is oc projection w S v =
(w ∈ carrier vec n ∧ v − w ∈ span S ∧ (∀u ∈ S. w • u = 0))

A nice property of oc-projections is that they are unique up to v and the span
of S. Back to GSO, since gi is the oc-projection of fi and {f0, . . . , fi−1}, we con-
clude that gi is uniquely determined in terms of fi and the span of {f0, . . . , fi−1}.
Put differently, we obtain the same gi even if we modify some of the first i input
vectors of the GSO: only the span of these vectors must be preserved.

164 J. Divasón et al.

The connection between the Gram–Schmidt procedure and short vectors
becomes visible in the following lemma: some vector in the orthogonal basis
gs is shorter than any non-zero vector h in the lattice generated by fs. Here, 0v n
denotes the zero-vector of dimension n.

lemma gram schmidt short vector:

assumes h ∈ lattice of fs − {0v n}
shows ∃ gi ∈ set gs. ||gi||2 ≤ ||h||2

Whereas this short-vector lemma requires only a half of a page in the
textbook, in the formalization we had to expand the condensed paper-proof
into 170 lines of more detailed Isabelle source, plus several auxiliary lemmas.

For instance, on papers one easily multiplies two sums (
∑

. . . •
∑

. . . =
∑

. . .)
and directly omits quadratically many neutral elements by referring to orthog-
onality, whereas we first had to prove this auxiliary fact in 34 lines.

The short-vector lemma is the key to obtaining a short vector in the lattice.
It tells us that the minimum value of ||gi||2 is a lower bound for the norms of
the non-zero vectors in the lattice. If ||g0||2 ≤ α||g1||2 ≤ . . . ≤ αm−1||gm−1||2 for
some α ∈ R, then the basis is weakly reduced w.r.t. α. If moreover α ≥ 1, then
f0 = g0 is a short vector in the lattice generated by f0, . . . , fm−1: ||f0||2 = ||g0||2 ≤
αm−1||gi||2 ≤ αm−1||h||2 for any non-zero vector h in the lattice.

In the formalization, we generalize the property of being weakly reduced
by adding an argument k, and only demand that the first k vectors satisfy
the required inequality. This is important for stating the invariant of the LLL
algorithm. Moreover, we also define a partially reduced basis which additionally
demands that the first k elements of the basis are nearly orthogonal, i.e., the
μ-values are small.

definition weakly reduced α k gs = (∀i. Suc i < k −→ ||gs ! i||2 ≤ α · ||gs ! Suc i||2)
definition reduced α k gs μ = (weakly reduced α k gs ∧ ∀ j < i < k. |μ i j| ≤ 1

2)

lemma weakly reduced imp short vector:

assumes weakly reduced α m gs

and h ∈ lattice of fs − {0v n}
and 1 ≤ α

shows ||fs ! 0||2 ≤ αm−1 · ||h||2
end (* close context about fs, gs, and m *)

The GSO of some basis f0, . . . , fm−1 will not generally be (weakly) reduced,
but this problem can be solved with the LLL algorithm.

A Formalization of the LLL Basis Reduction Algorithm 165

4 The LLL Basis Reduction Algorithm

The LLL algorithm modifies the input f0, . . . , fm−1 ∈ Z
n until the corresponding

GSO is reduced, while preserving the generated lattice. It is parametrized by
some approximation factor2 α > 4

3 .

Algorithm 1. The LLL basis reduction algorithm, readable version
Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Z

n and α > 4
3

Output: A basis that generates the same lattice as f0, . . . , fm−1 and has
reduced GSO w.r.t. α

1 i := 0; g0, . . . , gm−1 := gram schmidt f0, . . . , fm−1

2 while i < m do
3 for j = i − 1, . . . , 0 do
4 fi := fi − �μi,j� · fj ; g0, . . . , gm−1 := gram schmidt f0, . . . , fm−1

5 if i > 0 ∧ ||gi−1||2 > α · ||gi||2 then
6 (i, fi−1, fi) := (i − 1, fi, fi−1); g0, . . . , gm−1 := gram schmidt f0, . . . , fm−1

else
7 i := i + 1

8 return f0, . . . , fm−1

A readable, but inefficient, implementation of the LLL algorithm is given
by Algorithm 1, which mainly corresponds to the algorithm in the textbook
[16, Chap. 16.2–16.3]: the textbook fixes α = 2 and m = n. Here, it is important
to know that whenever the algorithm mentions μi,j , it is referring to μ as defined
in (2) for the current values of f0, . . . , fm−1 and g0, . . . , gm−1. In the algorithm,
�x� denotes the integer closest to x, i.e., �x� := �x + 1

2.
Let us have a short informal view on the properties of the LLL algorithm.

The first required property is maintaining the lattice of the original input
f0, . . . , fm−1. This is obvious, since the basis is only changed in lines (4) and
(6), and since swapping two basis elements, and adding a multiple of one basis
element to a different basis element will not change the lattice. Still, the formal-
ization of these facts required 190 lines of Isabelle code.

The second property is that the resulting GSO should be weakly reduced.
This requires a little more argumentation, but is also not too hard: the algorithm
maintains the invariant of the while-loop that the first i elements of the GSO
are weakly reduced w.r.t. approximation factor α. This invariant is trivially
maintained in line (7), since the condition in line (5) precisely checks whether
the weakly reduced property holds between elements gi−1 and gi. Moreover,
being weakly reduced up to the first i vectors is not affected by changing the
value of fi, since the first i elements of the GSO only depend on f0, . . . , fi−1.
So, the modification of fi in line (4) can be ignored w.r.t. being weakly reduced.

2 The formalization also shows soundness for α = 4
3
, but then the polynomial runtime

is not guaranteed.

166 J. Divasón et al.

Hence, formalizing the partial correctness of Algorithm1 w.r.t. being weakly
reduced is not too difficult. What makes it interesting, are the remaining prop-
erties we did not yet discuss. The most difficult part is the termination of the
algorithm, and it is also nontrivial that the final basis is reduced. Both of these
properties require equations which precisely determine how the GSO will change
by the modification of f0, . . . , fm−1 in lines 4 and 6.

Once having these equations, we can drop the recomputation of the full GSO
within the while-loop and replace it by local updates. Algorithm2 is a more
efficient algorithm to perform basis reduction, incorporating this improvement.
Note that the GSO does not change in line 4, which can be shown with the help
of oc-projections.

Algorithm 2. The LLL basis reduction algorithm, verified version
Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Z

n and α > 4
3

Output: A basis that generates the same lattice as f0, . . . , fm−1 and has
reduced GSO w.r.t. α

1 i := 0; g0, . . . , gm−1 := gram schmidt f0, . . . , fm−1

2 while i < m do
3 for j = i − 1, . . . , 0 do
4 fi := fi − �μi,j� · fj

5 if i > 0 ∧ ||gi−1||2 > α · ||gi||2 then
6 g′

i−1 := gi + μi,i−1 · gi−1

7 g′
i := gi−1 − fi−1•g′

i−1
||g′

i−1||2 · g′
i−1

8 (i, fi−1, fi, gi−1, gi) := (i − 1, fi, fi−1, g
′
i−1, g

′
i)

else
9 i := i + 1

10 return f0, . . . , fm−1

Concerning the complexity, each μi,j can be computed with O(n) arithmetic
operations using its defining Eq. (2). Also, the updates of the GSO after swapping
basis elements require O(n) arithmetic operations. Since there are at most m
iterations in the for-loop, each iteration of the while-loop in Algorithm 2 requires
O(n ·m) arithmetic operations. As a consequence, if n = m and I is the number
of iterations of the while-loop, then Algorithm 2 requires O(n3 + n2 · I) many
arithmetic operations, where the cubic number stems from the initial computa-
tion of the GSO in line 1.

To verify that Algorithm2 computes a weakly reduced basis, it “only”
remains to verify its termination, and the invariant that the updates of gi’s
indeed correspond to the recomputation of the GSOs. These parts are closely
related, because the termination argument depends on the explicit formula for
the new value of gi−1 as defined in line 6 as well as on the fact that the GSO
remains unchanged in lines 3–4.

Since the termination of the algorithm is not at all obvious, and since it
depends on valid inputs (e.g., it does not terminate if α ≤ 0) we actually modeled

A Formalization of the LLL Basis Reduction Algorithm 167

the while-loop as a partial function in Isabelle [6]. Then in the soundness proof
we only consider valid inputs and use induction via some measure which in turn
gives us an upper bound on the number of loop iterations.

The soundness proof is performed via the following invariant. It is a simplified
version of the actual invariant in the formalization, which also includes a property
w.r.t. data refinement. It is defined in a context which fixes the lattice L, the
number of basis elements m, and an approximation factor α ≥ 4

3 . Here, the
function RAT converts a list of integer vectors into a list of rational vectors.

context ... begin

definition LLL invariant (i, fs, gs) = (
gram schmidt n fs = gs ∧
lin indpt list (RAT fs) ∧
lattice of fs = L ∧
length fs = m ∧
reduced α i gs (μ (RAT fs)) ∧
i ≤ m)

Using this invariant, the soundness of lines 3–4 is expressed as follows.

lemma basis reduction add rows:

assumes LLL invariant (i, fs, gs)
and i < m

and basis reduction add rows (i, fs, gs) = (i ′, fs ′, gs ′)
shows LLL invariant (i ′, fs ′, gs ′) and i ′ = i and gs ′ = gs

and ∀ j < i. |μ fs ′ i j| ≤ 1
2

In the lemma, basis reduction add rows is a function which implements
lines 3–4 of the algorithm. The lemma shows that the invariant is maintained
and the GSO is unchanged, and moreover expresses the sole purpose of lines 3–4:
they make the values μi,j small.

For the total correctness of the algorithm, we must prove not only that the
invariant is preserved in every iteration, but also that some measure decreases for
proving termination. This measure is defined below using Gramian determinants,
a generalization of determinants which also works for non-square matrices. This
is also the point where the condition α > 4

3 becomes important: it ensures that
the base 4α

4+α of the logarithm is strictly larger than 1.3

definition Gramian determinant fs k =
(let M = mat of rows n (take k fs) in det (M · MT))

definition D fs = (
∏

k < m. Gramian determinant fs k)
definition LLL measure (i, fs, gs) = max 0 (2 · � log (4·α

4+α) (D fs) + m − i)

3 4α
4+α

= 1 for α = 4
3

and in that case one has to drop the logarithm from the measure.

168 J. Divasón et al.

In the definition, the matrix M is the k× n submatrix of fs corresponding to
the first k elements of fs. Note that the measure solely depends on the index i
and the basis fs. However, for lines 3–4 we only proved that i and gs remain
unchanged. Hence the following lemma is important: it implies that the measure
can also be defined purely from i and gs, and that D fs will be positive.

lemma Gramian determinant:

assumes LLL invariant (i, fs, gs) and k ≤ m

shows Gramian determinant fs k = (
∏

j<k. ||gs ! j||2)
and Gramian determinant fs k > 0

With these preparations we are able to prove the most important property of
the LLL algorithm, namely that each loop iteration – implemented as function
basis reduction step – preserves the invariant and decreases the measure.

lemma basis reduction step:

assumes LLL invariant (i, fs, gs) and i < m

and basis reduction step α (i, fs, gs) = (i ′, fs ′, gs ′)
shows LLL invariant (i ′, fs ′, gs ′)
and LLL measure (i ′, fs ′, gs ′) < LLL measure (i, fs, gs)

Our correctness proofs for basis reduction add rows and basis reduction step
closely follows the description in the textbook, and we mainly refer to the for-
malization and the textbook for more details: the presented lemmas are based
on a sequence of technical lemmas that we do not expose at this point.

Here, we only sketch the termination proof: The value of the Gramian deter-
minant for parameter k �= i stays identical when swapping fi and fi−1, since it
just corresponds to an exchange of two rows which will not modify the absolute
value of the determinant. The Gramian determinant for parameter k = i will
decrease by using the first statement of lemma Gramian determinant, the explicit
formula for the updated gi−1 in line 6, the condition ||gi−1||2 > α · ||gi||2, and the
fact that |μi,i−1| ≤ 1

2 .
The termination proof together with the measure function shows that the

implemented algorithm requires a polynomial number of arithmetic operations:
we prove an upper bound on the number of iterations which in total shows
that executing Algorithm 2 for n = m requires O(n4 · log A) many arithmetic
operations for A = max {||fi||2 | i < m}.

lemma LLL measure approx:

assumes LLL invariant (i, fs, gs) and α > 4/3

and ∀ i < m. ||fs ! i||2 ≤ A

shows LLL measure (i, fs, gs) ≤ m + 2 · m · m · log (4·α
4+α) A

end (* context of L, m, and α *)

We did not formally prove the polynomial-time complexity in Isabelle. This
task would at least require two further steps: since Isabelle/HOL functions are

A Formalization of the LLL Basis Reduction Algorithm 169

mathematical functions, we would need to instrument them by an instruction
counter and hence make its usage more cumbersome; and we would need to
formally prove that each arithmetic operation can be performed in polynomial
time by giving bounds for the numerators and denominators in fi, gi, and μi,j .

Note that the reasoning on the number bounds should not be
under-estimated. To illustrate this, consider the following modification to the
algorithm, which we described in the submitted version of this paper: Since
the termination proof only requires that |μi,i−1| must be small, for obtaining
a weakly reduced basis one may replace the for-loop in lines 3–4 by a single
update fi := fi −�μi,i−1� · fi−1. Then the total number of arithmetic operations
will reduce to O(n3 · log A). However, we figured out experimentally that this
change is a bad idea, since then the bit-lengths of the norms of fi are no longer
polynomially bounded: some input lattice of dimension 20 with 20 digit numbers
led to the consumption of more than 64 GB of memory so that we had to abort
the computation.

This indicates that formally verified bounds would be valuable. And indeed,
the textbook contains informal proofs for bounds, provided that each μi,j is
small after executing lines 3–4. Here, a weakly reduced basis does not suffice.

With the help of basis reduction step it is now trivial to formally verify the
correctness of the LLL algorithm, which is defined as reduce basis in the sources.

Finally, recall that the first element of a (weakly) reduced basis fs is a short
vector in the lattice. Hence, it is easy to define a wrapper function short vector
around reduce basis, which is a verified algorithm to compute short vectors.

lemma short vector:

assumes α ≥ 4/3 and lin indpt list (RAT fs)
and short vector α fs = v and length fs = m and m �= 0

shows v ∈ lattice of fs − {0v n}
and h ∈ lattice of fs − {0v n} −→ ||v||2 ≤ αm−1 · ||h||2

5 Experimental Evaluation of the Verified LLL Algorithm

We formalized short vector in a way that permits code generation [4]. Hence,
we can evaluate the efficiency of our verified LLL algorithm. Here, we use a
fixed approximation factor α = 2, we map Isabelle’s integer operations onto the
unbounded integer operations of the target language Haskell, and we compile
the code with ghc version 8.2.1 using the -O2 parameter.

We consider the LatticeReduce procedure of Mathematica version 11.2 as an
alternative way to compute short vectors. The documentation does not specify
the value of α, but mentions that Storjohann’s variant [12] of the LLL basis
reduction algorithm is implemented.

For the input, we use lattices of dimension n where each of the n basis vectors
has n-digit random numbers as coefficients. So, the size of the input basis is cubic
in n; for instance the bases for n = 1, 10, and 100 are stored in files measured
in bytes, kilo-bytes, and mega-bytes, respectively.

170 J. Divasón et al.

Figure 1 displays the execution times in seconds for increasing n. The exper-
iments have all been run on an iMacPro with a 3.2 GHz Intel Xeon W running
macOS 10.13.4. The execution times of both algorithms can both be approxi-
mated by a polynomial c · n6 – the gray lines behind the dots – where the ratio
between the constant factors c is 306.5, which is also reflected in the diagrams
by using different scales for the time-axis.

Note that for n ≥ 50, our implementation spends between 28–67 % of its
time to compute the initial GSO on rational numbers, and 83–85 % of the total
time of each run is used in integer GCD-computations. The GCDs are required
for the verified implementation of rational numbers in Isabelle/HOL, which
always normalizes rational numbers. Hence, optimizing our verified implemen-
tation for random lattices is not at all trivial, since a significant amount of time
is spent in the cubic number of rational-number operations required in line 1 of
Algorithm 2. Integrating and verifying known optimizations of GSO computa-
tions and LLL [10, Chap. 4] also looks challenging, since they depend on floating-
point arithmetic. A corresponding implementation outperforms our verified algo-
rithm by far: the tool fplll version 5.2.0 [13] can reduce each of our examples in
less than 0.01 s.

Fig. 1. Execution time of short vector computation on random lattices

Besides efficiency, it is worth mentioning that we did not find bugs in fplll’s
or Mathematica’s implementation: the short vectors that are generated by both
tools have always been as short as our verified ones, but not much shorter: the
average ratio between the norms is 0.74 for fplll and 0.93 for Mathemathica.

Under http://cl-informatik.uibk.ac.at/isafor/LLL src.tgz one can access the
sources and the input lattices for the experiments.

6 Factorization of Polynomials in Polynomial Time

In this section we first describe how the LLL algorithm helps to factor integer
polynomials, by following the textbook [16, Chap. 16.4–16.5].

We only summarize how we tried to verify the corresponding factorization
Algorithm 16.22 of the textbook. Indeed, we almost finished it: after 1 500 lines

http://cl-informatik.uibk.ac.at/isafor/LLL_src.tgz

A Formalization of the LLL Basis Reduction Algorithm 171

of code we had only one remaining goal to prove. However, we were unable
to figure out how to discharge this goal and then also started to search for
inputs where the algorithm delivers wrong results. After a while we realized that
Algorithm 16.22 indeed has a serious flaw, with details provided in Sect. 6.2.

Therefore, we derive another algorithm based on ideas from the textbook,
which also runs in polynomial-time, and prove its soundness in Isabelle/HOL.

6.1 Short Vectors for Polynomial Factorization

In order to factor an integer polynomial f , we may assume a modular factoriza-
tion of f into several monic factors ui: f ≡ lc f · ∏i ui modulo m where m = pl

is some prime power for user-specified l. In Isabelle, we just reuse our verified
modular factorization algorithm [1] to obtain the modular factorization of f .

We briefly explain how to compute non-trivial integer polynomial factors h
of f based on Lemma 1, as also informally described in the textbook.

Lemma 1 ([16, Lemma 16.20]). Let f, g, u be non-constant integer polyno-
mials. Let u be monic. If u divides f modulo m, u divides g modulo m, and
||f ||degree g · ||g||degree f < m, then h = gcd f g is non-constant.

Let f be a polynomial of degree n. Let u be any degree-d factor of f mod-
ulo m. Now assume that f is reducible, so f = f1 · f2 where w.l.o.g., we assume
that u divides f1 modulo m and that 0 < degree f1 < n. Let the lattice Lu,k

be the set of all polynomials of degree below d + k which are divisible by u
modulo m. As degree f1 < n, clearly f1 ∈ Lu,n−d.

In order to instantiate Lemma 1, it now suffices to take g as the polynomial
corresponding to any short vector in Lu,k: u will divide g modulo m by definition
of Lu,k and moreover degree g < n. The short vector requirement will provide
an upper bound to satisfy the assumption ||f1||degree g · ||g||degree f1 < m.

||g|| ≤ 2(n−1)/2 · ||f1|| ≤ 2(n−1)/2 · 2n−1||f || = 23(n−1)/2||f || (4)

||f1||degree g·||g||degree f1 ≤ (2n−1||f ||)n−1 · (23(n−1)/2||f ||)n−1 (5)

= ||f ||2(n−1) · 25(n−1)2/2

Here, the first inequality in (4) is the short vector approximation (f1 ∈ Lu,k).
The second inequality in (4) is Mignotte’s factor bound (f1 is a factor of f).
Finally, Mignotte’s factor bound and (4) are used as approximations of ||f1|| and
||g|| in (5), respectively.

Hence, if l is chosen large enough so that m = pl > ||f ||2(n−1) ·25(n−1)2/2 then
all preconditions of Lemma 1 are satisfied, and h1 := gcd f1 g will be a non-
constant factor of f . Since f1 divides f , also h := gcd f g will be a non-constant
factor of f . Moreover, the degree of h will be strictly less than n, and so h is a
proper factor of f .

172 J. Divasón et al.

6.2 Bug in Modern Computer Algebra

In the previous section we have chosen the lattice Lu,k for k = n − d to find
a polynomial h that is a proper factor of f . This has the disadvantage that h
is not necessarily irreducible. In contrast, Algorithm 16.22 tries to directly find
irreducible factors by iteratively searching for factors w.r.t. the lattices Lu,k for
increasing k from 1 up to n − d.

We do not have the space to present Algorithm 16.22 in detail, but just
state that the arguments in the textbook and the provided invariants all look
reasonable. Luckily, Isabelle was not so convinced: We got stuck with the goal
that the content of the polynomial g corresponding to the short vector is not
divisible by the chosen prime p, and this is not necessarily true.

The first problem occurs if the content of g is divisible by p. Consider
f1 = x12 + x10 + x8 + x5 + x4 + 1 and f2 = x. When trying to factor f = f1 · f2,
then p = 2 is chosen, and at a certain point the short vector computation is
invoked for a modular factor u of degree 9 where Lu,4 contains f1. Since f1 itself
is a shortest vector, g = p·f1 is a short vector: the approximation quality permits
any vector of Lu,4 of norm at most αdegree f1/2 · ||f1|| = 64 · ||f1||. For this valid
choice of g, the result of Algorithm 16.22 will be the non-factorization f = f1 ·1.

We informed the authors of the textbook about this first problem. They
admitted the flaw and it is easy to fix.

There is however a second potential problem. If g is even divisible by pl,
then Algorithm 16.22 will again return wrong results. In the formalization we
therefore integrate the check |lc g| < pl into the factorization algorithm4, and
then this modified version of Algorithm 16.22 is correct.

We could not conclude the question whether the additional check is really
required, i.e., whether |lc g| ≥ pl can ever happen, and just give some indication
that the question is non-trivial. For instance, when factoring f1 above, then pl

is a number with 124 digits, ||u|| > pl, so in particular all basis elements of Lu,1

will have a norm of at least pl. Note that Lu,1 also does not have quite short
vectors: any vector in Lu,1 will have norm of at least 111 digits. However, since
the approximation factor in this example is only two digits long, the short vector
computation must result in a vector whose norm has at most 113 digits, which
is not enough for permitting pl with its 124 digits as leading coefficient of g.

6.3 A Verified Factorization Algorithm

To verify the factorization algorithm of Sect. 6.1, we formalize the two key facts
to relate lattices and factors of polynomials: Lemma 1 and the lattice Lu,k.

To prove Lemma 1, we partially follow the textbook, although we do the
final reasoning by means of some properties of resultants which were already
proved in the previous development of algebraic numbers [14]. We also formalize
Hadamard’s inequality, which states that for any square matrix A having rows

4 When discussing the second problem with the authors, they proposed an even more
restrictive check.

A Formalization of the LLL Basis Reduction Algorithm 173

vi, then |det A| ≤ ∏ ||vi||. Essentially, the proof of Lemma 1 consists of showing
that the resultant of f and g is 0, and then deduce degree (gcd f g) > 0. We
omit the full-detailed proof, the interested reader can see it in the sources.

To define the lattice Lu,k for a degree d polynomial u and integer k, we
define the basis v0, . . . , vk+d−1 of the lattice Lu,k such that each vi is the
(k + d)-dimensional vector corresponding to polynomial u(x) ·xi if i < k, and to
monomial m · xk+d−i if k ≤ i < k + d.

We define the basis in Isabelle/HOL as factorization lattice u k m as follows:

definition factorization lattice u k m = (let d = degree u in

map (λi. vec of poly n (u · monom 1 i) (d + k)) [k >..0] @

map (λi. vec of poly n (monom m i) (d + k)) [d >..0])

Here vec of poly n p n is a function that transforms a polynomial p into
a vector of dimension n with coefficients in the reverse order and completing
with zeroes if necessary. We use it to identify an integer polynomial f of degree
< n with its coefficient vector in Z

n. We also define its inverse operation, which
transforms a vector into a polynomial, as poly of vec. [a>..b] denotes the reversed
sorted list of natural elements from b to a−1 (with b < a) and monom a b denotes
the monomial axb. To visualize the definition, for u(x) =

∑d
i=0 uix

i we have
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vT
0
...

vT
k−1

vT
k
...

vT
k+d−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ud ud−1 · · · u0

.
ud ud−1 · · · u0

m
. . .

m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=: S (6)

and factorization lattice (x + 1894 885 908) 2 231 is precisely the basis (f1, f2, f3)
of Example 1.

There are some important facts that we must prove about factorization lattice.

– factorization lattice u k m is a list of linearly independent vectors as required
for applying the LLL algorithm to find a short vector in Lu,k.

– Lu,k characterizes the polynomials which have u as a factor modulo m:

g ∈ poly of vec (Lu,k) ⇐⇒ degree g < k + d and u divides g modulo m

That is, any polynomial that satisfies the right hand side can be transformed
into a vector that can be expressed as integer linear combination of the vec-
tors of factorization lattice. Similarly, any vector in the lattice Lu,k can be
expressed as integer linear combination of factorization lattice and corresponds
to a polynomial of degree < k + d which is divisible by u modulo m.

The first property is a consequence of obvious facts that the matrix S is upper
triangular, and its diagonal entries are non-zero if both u and m are non-zero.
Thus, the vectors in factorization lattice u k m are linearly independent.

174 J. Divasón et al.

Now we look at the second property. For one direction, we see the matrix S
in (6) as (a generalization of) the Sylvester matrix of polynomial u and constant
polynomial m. Then we generalize an existing formalization about Sylvester
matrices as follows:

lemma sylvester sub poly:

assumes degree u ≤ d and degree q ≤ k and c ∈ carrier vec (k+d)
shows poly of vec ((sylvester mat sub d k u q)T ∗v c) =

poly of vec (vec first c k) · u + poly of vec (vec last c d) · q
We instantiate q by the constant polynomial m. So for every c ∈ Z

k+d we get

poly of vec (STc) = r · u + m · s ≡ ru modulo m

for some polynomials r and s. As every g ∈ Lu,k is represented as STc for
some integer coefficient vector c ∈ Z

k+d, we conclude that every g ∈ Lu,k is
divisible by u modulo m. The other direction requires the use of the division
with remainder by the monic polynomial u. Although we closely follow the text-
book, the actual formalization of these reasonings requires some more tedious
work, namely the connection between the matrix-to-vector multiplication (∗v)
of Matrix.thy and linear combinations (lincomb) of HOL-Algebra. The former
is naturally described as a summation over lists (sumlist which we define via
foldr), while the latter is set-based finsum. We follow the existing connection
between sum list and sum of the class-based world to the locale-based world,
which demands some generalizations of the standard library.

Once those properties are proved, we implement an algorithm for the recon-
struction of factors within a context that fixes p and l:5

function LLL reconstruction f us =
(let u = choose u us; (* pick any element of us *)

g = LLL short polynomial (degree f) u;

f2 = gcd f g (* candidate factor *)

in if degree f2 = 0 then [f] (* f is irreducible *)

else let f1 = f div f2; (* f = f1 * f2 *)

(us1, us2) = partition (λ ui. poly mod.dvdm p ui f1) us

in LLL reconstruction f1 us1 @ LLL reconstruction f2 us2)

LLL reconstruction is a recursive function which receives two parameters: the
polynomial f that has to be factored and us, which is the list of modular factors
of the polynomial f. LLL short polynomial computes a short vector (and trans-
forms it into a polynomial) in the lattice generated by a basis for Lu,k and
suitable k, that is, factorization lattice u (degree f - degree u). us1 is the list of
elements of us that divide f1 modulo p, and us2 contains the rest of elements

5 The corresponding Isabelle/HOL implementation contains some sanity checks which
are solely used to ensure termination. We present here a simplified version.

A Formalization of the LLL Basis Reduction Algorithm 175

of us. LLL reconstruction returns the list of irreducible factors of f. Termination
follows from the fact that the degree decreases, that is, in each step the degree
of both f1 and f2 is strictly less than the degree of f.

In order to formally verify the correctness of the reconstruction algorithm
for a polynomial F we use the following invariants. They consider invocations
LLL reconstruction f us for every intermediate factor f of F.

1. f divides F
2. degree f > 0
3. lc f · ∏

us is the unique modular factorization of f modulo pl

4. lc F and p are coprime, and F is square-free in Zp[x]
5. pl is sufficently large: ||F||2(N−1)25(N−1)2/2 < pl where N = degree F

Concerning complexity, it is easy to see that if f splits into i factors, then
LLL reconstruction invokes the short vector computation for exactly i + (i − 1)
times: i − 1 invocations are used to split f into the i irreducible factors, and for
each of these factors one invocation is required to finally detect irreducibility.

Finally, we combine the new reconstruction algorithm with existing results
(the algorithms for computing an appropriate prime p, the corresponding expo-
nent l, the factorization in Zp[x] and its Hensel-lifting to Zpl [x]) presented in
the Berlekamp–Zassenhaus development to get a polynomial-time factorization
algorithm for square-free and content-free polynomials.

lemma LLL factorization:

assumes LLL factorization f = gs

and square free f and content free f and degree f �= 0
shows f = prod list gs and ∀g ∈ set gs. irreducible g

We further combine this algorithm with a pre-processing algorithm of earlier
work [1]. This pre-processing splits a polynomial f into c · f1

1 · . . . · fk
k where c is

the content of f which is not further factored. Each fi is square-free and content-
free, and will then be passed to LLL factorization. The combined algorithm factors
arbitrary univariate integer polynomials into its content and a list of irreducible
polynomials.

When experimentally comparing our verified LLL-based factorization algo-
rithm with the verified Berlekamp–Zassenhaus factorization algorithm [1] we
see no surprises. On the random polynomials from the experiments in [1],
Berlekamp–Zassenhaus’s algorithm performs much better: it can factor each
polynomial within a minute, whereas the LLL-based algorithm already fails on
the smallest example. It is an irreducible polynomial with 100 coefficients where
the LLL algorithm was aborted after a day when trying to compute a reduced
basis for a lattice of dimension 99 with coefficients having up to 7 763 digits.

7 Summary

We formalized the LLL algorithm for finding a basis with short, nearly orthog-
onal vectors of an integer lattice, as well as its most famous application to

176 J. Divasón et al.

get a verified factorization algorithm for integer polynomials which runs in
polynomial time. The work is based on our previous formalization of the
Berlekamp–Zassenhaus factorization algorithm, where the exponential recon-
struction phase is replaced by the polynomial-time lattice-reduction algorithm.
The whole formalization consists of about 10 000 lines of code, including a
2 200-line theory which contains generalizations and theorems that are not exclu-
sive to our development. This theory can extend the Isabelle standard library
and up to six different AFP entries. As far as we know, this is the first formal-
ization of the LLL algorithm and its application to factor polynomials in any
theorem prover. This formalization led us to find a major flaw in a textbook.

There are some possibilities to extend the current formalization, e.g., by
verifying faster variants of the LLL algorithm or by integrating other applications
like the more efficient factorization algorithm of van Hoeij [10, Chap. 8]: it uses
simpler lattices to factor polynomials, but its verification is much more intricate.

Acknowledgments. This research was supported by the Austrian Science Fund
(FWF) project Y757. Jose Divasón is partially funded by the Spanish projects
MTM2014-54151-P and MTM2017-88804-P. Akihisa Yamada is supported by ERATO
HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST. Some
of the research was conducted while Sebastiaan Joosten and Akihisa Yamada were
working in the University of Innsbruck. We thank Jürgen Gerhard and Joachim von
zur Gathen for discussions on the problems described in Sect. 6.2, and Bertram Felgen-
hauer for discussions on gaps in the paper proofs. The authors are listed in alphabetical
order regardless of individual contributions or seniority.

References

1. Divasón, J., Joosten, S.J.C., Thiemann, R., Yamada, A.: A formalization of the
Berlekamp–Zassenhaus factorization algorithm. In: CPP 2017, pp. 17–29. ACM
(2017)

2. Divasón, J., Joosten, S., Thiemann, R., Yamada, A.: A verified factorization algo-
rithm for integer polynomials with polynomial complexity. Archive of Formal
Proofs, Formal proof development, February 2018. http://isa-afp.org/entries/LLL
Factorization.html

3. Divasón, J., Joosten, S., Thiemann, R., Yamada, A.: A verified LLL algorithm.
Archive of Formal Proofs, Formal proof development, February 2018. http://isa-
afp.org/entries/LLL Basis Reduction.html

4. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-
4 9

5. Harrison, J.: The HOL light theory of Euclidean space. J. Autom. Reason. 50(2),
173–190 (2013)

6. Krauss, A.: Recursive definitions of monadic functions. In: PAR 2010. EPTCS, vol.
43, pp. 1–13 (2010)

7. Lee, H.: Vector spaces. Archive of Formal Proofs, Formal proof development,
August 2014. http://isa-afp.org/entries/VectorSpace.html

http://isa-afp.org/entries/LLL_Factorization.html
http://isa-afp.org/entries/LLL_Factorization.html
http://isa-afp.org/entries/LLL_Basis_Reduction.html
http://isa-afp.org/entries/LLL_Basis_Reduction.html
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
http://isa-afp.org/entries/VectorSpace.html

A Formalization of the LLL Basis Reduction Algorithm 177

8. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

9. Micciancio, D.: The shortest vector in a lattice is hard to approximate to within
some constant. SIAM J. Comput. 30(6), 2008–2035 (2000)

10. Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm - Survey and Applications.
Information Security and Cryptography. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-02295-1

11. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

12. Storjohann, A.: Faster algorithms for integer lattice basis reduction. Technical
report 249, Department of Computer Science, ETH Zurich (1996)

13. The FPLLL development team. fplll, a lattice reduction library (2016). https://
github.com/fplll/fplll

14. Thiemann, R., Yamada, A.: Algebraic numbers in Isabelle/HOL. In: Blanchette,
J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 391–408. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-43144-4 24

15. Thiemann, R., Yamada, A.: Formalizing Jordan normal forms in Isabelle/HOL. In:
CPP 2016, pp. 88–99. ACM (2016)

16. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge
University Press, New York (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/3-540-45949-9
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://doi.org/10.1007/978-3-319-43144-4_24
http://creativecommons.org/licenses/by/4.0/

A Formal Proof of the Minor-Exclusion
Property for Treewidth-Two Graphs

Christian Doczkal(B), Guillaume Combette, and Damien Pous

Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
{christian.doczkal,guillaume.combette,damien.pous}@ens-lyon.fr

Abstract. We give a formal and constructive proof in Coq/Ssreflect of
the known result that the graphs of treewidth two are exactly those that
do not admit K4 as a minor. This result is a milestone towards a formal
proof of the recent result that isomorphism of treewidth-two graphs can
be finitely axiomatized. The proof is based on a function extracting terms
from K4-free graphs in such a way that the interpretation of an extracted
term yields a treewidth-two graph isomorphic to the original graph.

Keywords: Graph theory · Graph minor theorem · Coq · Ssreflect

1 Introduction

The notion of treewidth [6] measures how close a graph is to a forest. Graph
homomorphism (and thus k-coloring) becomes polynomial-time for classes of
graphs of bounded treewidth [1,10,13], so does model-checking of Monadic Sec-
ond Order (MSO) formulae, and satisfiability of MSO formulae becomes decid-
able, even linear [4,5].

Robertson and Seymour’s graph minor theorem [18], a cornerstone of algo-
rithmic graph theory, states that graphs are well-quasi-ordered by the minor
relation. As a consequence, the classes of graphs of bounded treewidth, which
are closed under taking minors, can be characterized by finite sets of excluded
minors. Two standard instances are the following ones: the graphs of treewidth
at most one (the forests) are precisely those excluding the cycle with three ver-
tices (C3); those of treewidth at most two are those excluding the complete graph
with four vertices (K4) [8].

(C3) (K4)

This work has been funded by the European Research Council (ERC) under the
European Union’s Horizon 2020 programme (CoVeCe, grant agreement No. 678157),
and was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de
Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) oper-
ated by the French National Research Agency (ANR).

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 178–195, 2018.
https://doi.org/10.1007/978-3-319-94821-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_11&domain=pdf

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 179

We present a constructive and formal proof of the latter result in Coq/Ssreflect.
Amongst the open problems related to treewidth, there is the question of

finding finite axiomatisations of isomorphism for graphs of a given treewidth [5,
p. 118]. This question was recently answered positively for treewidth two [14]:

K4-free graphs form the free 2p-algebra, (†)
where 2p-algebras are algebraic structures characterized by twelve equational
axioms. The proof is rather technical; it builds on a precise analysis of the
structure of K4-free graphs and contains the specific form of the graph minor
theorem for treewidth two which we present here. Further, invalid proofs of
related claims have already been published in the literature (see [14]). Our long
term goal is to formalize (†): not only will this give us assurance about the
validity of the proof in [14], it will also allow for the development of automation
tactics for certain algebraic theories (e.g., 2p-algebra, allegories [11]). The Coq
development accompanying the present paper [7] is a milestone for this project.

Independently from the aforementioned specific objective, formalizing the
graph minor theorem for treewidth two requires us to develop a general Coq
library for graph theory which should also be useful in other contexts. This
library currently includes basic notions like paths, trees, subgraphs, and isomor-
phisms and also a few more advanced ones: minors, tree decompositions, and
checkpoints (a variant of cut vertices).

We had to design this library from scratch. Indeed, there are very few formaliza-
tions of graph theory results in Coq, and none of them were applicable. Gonthier’s
formal proof of the Four-Color Theorem [12] is certainly the most advanced, but it
restricts (by design) to planar graphs so that it cannot be used as a starting point
for graph theory in the large. Similarly, Durfourd and Bertot’s study of Delau-
nay triangulation [9] employs a notion of graphs based on hypermaps embedded
in a plane. There are more formalizations in other interactive theorem provers.
For instance, planar graphs were formalized in Isabelle/HOL for the Flyspeck
project [16]. Noschinski recently developed a library for both simple and multi-
graphs in Isabelle/HOL [17]. Chou developed a large part of undirected graph the-
ory in HOL [2]. Euler’s theorem was formalized in Mizar [15]. To the best of our
knowledge, the theory of minors and tree decompositions was never formalized.

Fig. 1. Structure of the
proof.

Overview of the proof. We focus on connected graphs:
the general case follows by decomposing any given
graph into connected components. The overall strat-
egy of our proof of the minor exclusion theorem for
treewidth two is depicted in Fig. 1.

We first prove that treewidth two graphs exclude
K4 as a minor (i). This proof is standard and relatively
easy. For proving the converse implication, we intro-
duce a notion of term that allow us to denote graphs. We prove that graphs of
terms have treewidth at most two (ii) using properties of tree decompositions
and a simple induction on terms. The main difficulty then consists in proving
that every K4-free graph can be represented by a term (iii).

180 C. Doczkal et al.

Fig. 2. The three main cases for extracting a term from a K4-free graph.

Due to our long-term objective (†), the syntax we use for those terms is that
of 2p-algebras [14];

u, v, w :: = u·v ∣
∣ u ‖ v

∣
∣ u◦ ∣

∣ dom(u)
∣
∣ 1

∣
∣ � ∣

∣ a (a ∈ Σ)

This syntax makes it possible to denote directed multi-graphs, with edges labeled
by letters from an alphabet Σ and with two designated vertices (the input and
the output). The binary operations in the syntax correspond to series and parallel
composition. The first unary operation, converse, exchanges input and output;
the second one, domain, relocates the output to the input. The constant 1 repre-
sents the graph with just a single vertex; � is the disconnected graph with just
two vertices. Letters represent single edges. For instance the graphs of the terms
a·(b ‖ c◦) ‖ d and 1 ‖ a·b are the following ones:

a

d

b

c
a b

The second graph is also represented by the term dom(a ‖ b◦).
We use the concept of checkpoint to extract terms from graphs; those are the

vertices which every path between input and output must visit. Using those, we
get that every connected graph with distinct input and output has the shape
depicted in Fig. 2(a), where the checkpoints are the only depicted vertices. One
can parse such a graph as a sequential composition and proceed recursively once
we have proved that the green and yellow components are K4-free whenever the
starting graph is so.

If there are no proper checkpoints between input and output, we exploit a
key property of K4-free graphs: in such a case, either the graph is just an edge, or
it consists of at least two parallel components, which make it possible to proceed
recursively. This is case (b) in Fig. 2. Establishing this property requires a deep
analysis of the structure of K4-free graphs.

The last case to consider (c) is when the input and the output of the graph
coincide. One can recursively extract a term for the graph obtained by relocating
the output to one of the neighbors of the input, and use the domain operation
to recover the starting graph.

Outline. We first discuss our representation of simple graphs and the associated
library about paths; there we make use of the support for finite types from the

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 181

Ssreflect library [20], and we rely on dependent types to provide a user-friendly
interface (Sect. 2). Then we proceed with our formalization of tree decompo-
sitions, minors, and associated results. This leads to implication (i) in Fig. 1,
as a special instance of the fact that treewidth at most i graphs are Ki+2-free
(Sect. 3)

Once this basic infrastructure has been set up, we move to the formaliza-
tion of the concepts and results that are specific to our objective. This includes
terms as well as directed labeled and possibly pointed multigraphs. We prove the
implication (ii) there: terms denote graphs of treewidth at most two (Sect. 4).

As explained above, the remaining implication (iii) is the most delicate. We
first establish preliminary lemmas about checkpoints and the structure of K4-
free graphs (Sect. 5), which are then used to define an extraction function from
graphs to terms (Sect. 6). Proving that this function is appropriate amounts to
exhibiting a number of isomorphisms (Sect. 7).

We conclude with general remarks and statistics about the development
(Sect. 8).

2 Simple Graphs

In this section we briefly describe how we represent finite simple graphs in Coq.
The representation is based on finite types as defined in the Mathematical Com-
ponent Libraries [20]. We start by briefly introducing finite types and the nota-
tions we are going to use in the mathematical development.

If X and Y are types, we write X + Y for the sum type (with elements
inlx and inr y) and X⊥ for the option type (with elements Somex and None).
As usual, we write g ◦ f for the composition of f and g. If f : X → Y⊥ and
g : Y → Z⊥, we also write g ◦ f for the result of the monadic bind operation
(with type X → Z⊥). For functions f and g, we write f ≡ g to mean that f
and g agree on all arguments.

A finite type is a type X together with a list enumerating its elements. Finite
types are closed under many type constructors (e.g., sum types and option
types). If X is a finite type, we write 2X for the (finite) type of sets (with
decidable membership) over X. If A : 2X is a set, we write A for complement of
A (in X). We slightly abuse notation and also write X for the full set over some
type X. Finite sets come with an operation pick : 2X → X⊥ yielding elements
of nonempty sets and None for empty sets. Moreover, if X is a finite type and
≈ : X → X → B is a boolean equivalence relation, the quotient [3] of X with
respect to ≈, written X/≈, is a finite type as well. The type X/≈ comes with
functions π : X → X/≈ and π : X/≈ → X such that π(π x) = x for all x : X/≈
and π(π x) ≈ x for all x : X.

We use finite types as the basic building block for defining finite simple
graphs.

Definition 1. A (finite) simple graph is a structure 〈V,R〉 where V is a finite
type of vertices and R : V → V → B is a symmetric and irreflexive edge relation.

182 C. Doczkal et al.

In Coq, we represent finite graphs using dependently typed records where the
last two fields are propositions:

Record sgraph := SGraph { svertex : finType;
sedge : rel svertex;
sg sym : symmetric sedge;
sg irrefl : irreflexive sedge}.

We introduce a coercion from graphs to the underlying type of vertices allow-
ing us to write x : G to denote that x is a vertex of G. For vertices x, y : G we
write x−y if there is an edge between x and y. We write G + xy for the graph
G with an additional xy-edge.

For sets U : 2G of vertices of G, we write G|U for the subgraph of G induced
by U . This is formalized by taking the type Σx : G. x ∈ U of (dependent) pairs
of vertices x : G and proofs of x ∈ U and lifting the edge relation accordingly.
Note that while, technically, the vertices of G and G|U have different types, we
will ignore this in the mathematical presentation. In Coq, we have a generic
projection from G|U to G. For the converse direction we, of course, need to
construct dependent pairs of vertices x : G and proofs of x ∈ U .

Definition 2. Let G be a simple graph. An xy-path is a nonempty sequence of
vertices p beginning with x and ending with y such that z−z′ for all adjacent
elements z and z′ of p (if any). A path is irredundant if all vertices on the path
are distinct (i.e., the path contains no cycles). A set of vertices U is connected
if there exists a path in U between any two vertices of U .

The Mathematical Component Libraries include a predicate and a function

path : (∀ T : Type, rel T → T → seq T → bool) last : ∀ T, T → list T → T

such that path e x q holds if the list x :: q represents a path in the relation e, and
lastx q returns the last element of x :: q. Note that path and last account for
the nonemptiness of paths though the use of two arguments: the first vertex x
and the (possibly empty) list of remaining vertices q. This asymmetric treatment
makes symmetry reasoning (using path reversal) rather cumbersome. We there-
fore package the path predicate and a check for the last vertex into an indexed
family of types Pathx y whose elements represent xy-paths. Doing so abstracts
from the asymmetry in the definition of path, makes it possible to write more
compact (and thus readable) statements, helps us keeping the local context of
proofs shorter, and facilitates without loss of generality reasoning.

On these packaged paths we provide (dependently typed) concatenation and
reversal operations as well as an indexing operation yielding the position of the
first occurrence of a vertex on the path. We define a number of splitting lemmas
for packaged paths as exemplified by the lemma below.

Lemma 3. Let p be an irredundant xy-path such that z1 occurs before z2 on p.
Then there exists a z2-avoiding xz1-path, a z1z2-path and a z1-avoiding z2y-path)
such that p = p1p2p3.

While the lemma above may seem overly specific, it is used in five different proofs
(usually following some without loss of generality reasoning to order z1 and z2).

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 183

3 Treewidth and Minors

We now define the notions of treewidth and minors in order to state our main
result. Both notions appear in the literature with slight (but equivalent) varia-
tions. We choose variants that yield reasonable proof principles.

Definition 4. A forest is a simple graph where there is at most one irredundant
path between any two nodes.

Definition 5. A tree decomposition of a simple graph G is a forest T together
with a function B : T → 2G such that:

T1. for every vertex x : G, there exists some t : T , such that x ∈ B(t).
T2. for every x, the set of nodes t : T such that x ∈ B(t) is connected in T .
T3. if x−y, then there exists a node t, such that {x, y} ⊆ B(t);

The width of a tree decomposition is the size of the largest set B(t) minus one;
the treewidth of a graph is the minimal width of a tree decomposition.

Note that we define the notion of tree decomposition using forests rather than
trees. The two notions are equivalent since every forest can be turned into a tree
by connecting arbitrary nodes of disconnected trees. Using forests rather than
trees has the advantage that tree decompositions for the disjoint union of two
graphs G and G′ can be obtained as the disjoint union of tree decompositions
for G and G′.

The minors of a graph G are customarily defined to be those graphs that
can be obtained by a series of the following operations: remove a vertex, remove
an edge, or contract an edge. We use instead a monolithic definition in terms of
partial functions inspired by [6].

Definition 6. Let G and G′ be simple graphs. A function φ : G → G′
⊥ is called

a minor map if:

M1. For every y : G′, there exists some x : G such that φ x = Some y.
M2. For every y : G′, φ−1(Some y) is connected in G.
M3. If x−y for x, y : G′, there exist x0 ∈ φ−1(Somex) and y0 ∈ φ−1(Some y)

such that x0−y0.

G′ is a minor of G, written G′ ≺ G if there exists a minor map φ : G → G′
⊥.

Intuitively, the (nonempty) preimage φ−1(Somex) of a given vertex x is the
(connected) set of vertices being contracted to x and the vertices mapped to
None are the vertices that are removed. We sometimes use (total) minor maps
φ : G → G′ corresponding to minor maps that do not delete nodes, allowing us
to avoid option types in certain cases.

Making the notion of minor map explicit is convenient in that it allows us to
easily construct minor maps for a given graph, starting from minor maps (with
extra properties) for some of its subgraphs (cf. Lemma29 and Proposition 30).

184 C. Doczkal et al.

Definition 7. We write K4 for the complete graph with 4 vertices. A simple
graph G is K4-free if K4 is not a minor of G.

Our main result is a formal proof that a simple graph is K4-free iff if it has
treewidth at most two. We first sketch the proof that graphs of treewidth at
most two are always K4-free.

Lemma 8. If φ : G → H⊥ and ψ : H → I⊥ are minor maps, then ψ ◦ φ is a
minor map.

As a consequence of the lemma above, we obtain that ≺ is transitive.

Lemma 9. If H ≺ G, then the treewidth of H is at most the treewidth of G.

Lemma 10. Let T be a forest and let B : T → G be a tree decomposition of G.
Then every clique of G is contained in B(t) for some t : T .

The proof of Lemma 10 proceeds by induction on the size of (nonempty) cliques.
For cliques of size larger than two, the proof boils down to an analysis of the
set of nodes in the tree decomposition containing all vertices of the clique but
one (which is nonempty by induction hypothesis) and then arguing that (due
to condition T2) the removed vertex must also be present. As a consequence of
Lemma 10, we have:

Proposition 11. If G has treewidth at most two, then G is K4-free.

This corresponds to the arrow (i) in the overall proof structure (Fig. 1).

4 Graphs

In this section we define labeled directed graphs following [6]. Then we show
how to interpret terms as such graphs and prove that the graphs of terms have
treewidth at most two. We fix some countably infinite type of symbols Σ.

Definition 12. A graph is a structure G = 〈V,E, s, t, l〉, where V is a finite type
of vertices, E is a finite type of edges, s, t : E → V are functions indicating the
source and target of each edge, and l : E → Σ is function indicating the label
of each edge. If G is a graph, we write x : G to denote that x is a vertex of G.
A two-pointed graph (or 2p-graph for short) is a structure 〈G, ι, o〉 where ι : G
and o : G are two vertices called input and output respectively.

Note that self-loops are allowed, as well parallel edges with the same label.
Recall the syntax of terms from the introduction:

u, v, w ::= u·v ∣
∣ u ‖ v

∣
∣ u◦ ∣

∣ dom(u)
∣
∣ 1

∣
∣ � ∣

∣ a (a ∈ Σ)

For each term constructor we define an operation on 2p-graphs. Those oper-
ations are depicted informally on the right of Fig. 3. For instance, G ‖ H, the
parallel composition of G and H, consists of (disjoint) copies of G and H with
the respective inputs and outputs identified. Formally, we express these graph
operations in terms disjoint unions and quotients of graphs.

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 185

Fig. 3. The algebra of 2p-graphs.

Definition 13. Let G = 〈V,E, s, t, l〉 and G′ = 〈V ′, E′, s′, t′, l′〉. The disjoint
union of G and G′, written G + G′, is defined to be the graph

〈V + V ′, E + E′, s + s′, t + t′, l + l′〉
Here, s + s′ is the pointwise lifting of s and s′ to the sum type E + E′.

Definition 14. Let G = 〈V,E, s, t, l〉 and let ≈ : G → G → B be an equivalence
relation. The quotient of G modulo ≈, written G/≈, is defined to be the graph

〈V/≈, E, π ◦ s, π ◦ t, l〉
The precise definitions of the graph operations are given on the left side of Fig. 3
(Aeqv denotes the equivalence relation generated by the pairs in A). This allows
us to interpret every term t as a 2p-graph g(t), recursively. We now have to prove
that every 2p-graph of a term has treewidth at most two. In order to use the
definition of treewidth, we first need to abstract 2p-graphs into simple graphs.
This is achieved through the notion of a skeleton.

Definition 15. Let G = 〈V,E, s, t, l〉. The (weak) skeleton of G is the simple
graph 〈V,R〉 where xRy iff x = y and there exists an edge e : E such that
s(e) = x and t(e) = y or vice versa. The weak skeleton of the 2p-graph 〈G, ι, o〉
is the skeleton of G. The strong skeleton of a 2p-graph 〈G, ι, o〉 is the skeleton
of G with an additional ιo-edge.

We remark that the operation of taking the weak or strong skeleton does not
change the type of vertices. This greatly simplifies lifting properties of the skele-
ton to the graph and vice versa. In practice, we turn the construction of taking
the weak skeleton into a coercion from graphs to simple graphs (leaving extrac-
tions of strong skeletons explicit).

The following lemma makes it possible to show that both series and parallel
composition preserve treewidth two.

186 C. Doczkal et al.

Lemma 16. Let G1 = 〈G′
1, ι, o〉 and G2 = 〈G′

2, ι
′, o′〉 be 2p-graphs and let

〈Ti, Bi〉 (i ∈ {1, 2}) be tree decompositions of the strong skeletons of G1 and
G2 respectively. Further let ≈ be an equivalence relation on G1 + G2 identifying
at least two vertices from the set P � {inl ι, inr ι′, inl o, inr o′} and no other ver-
tices. Then there exists a tree decomposition of the skeleton of (G1 + G2)/≈ of
width at most two having a node t such that P/≈ ⊆ B(t).

Proof. We use the three following facts. (1) A tree decomposition for a disjoint
union of simple graphs can be obtained by taking the disjoint union of tree
decompositions for those graphs. (2) Two trees of a tree decomposition can be
joined through a new node containing the vertices of its neighbors. (3) A tree
decomposition can be quotiented (to give a tree decomposition of a quotiented
graph) as soon as it has nodes for all equivalence classes. ��
Proposition 17. For all terms u, the strong skeleton of g(u) has a tree decom-
position of width at most two.

Proof. By induction on u. The cases for ‖ and · follow with Lemma 16. All other
cases are trivial. ��
This finishes arrow (ii) of the overall proof structure (Fig. 1). The rest of the
paper is concerned with arrow (iii), i.e., extracting for every 2p-graph G whose
skeleton is K4-free a term whose graph is isomorphic to G.

5 Checkpoints

Before we can define the function extracting terms from graphs, we need a num-
ber of results on simple graphs. These will allow us to analyze the structure of
graphs (via their skeletons), facilitating the termination and correctness argu-
ments for the extraction function.

For the remainder of this section, G refers to some connected simple graph.

Definition 18. The checkpoints between two vertices x, y are the vertices which
any xy-path must visit:

cpx y � {z | every xy-path crosses z}
Two vertices x, y are linked, written x♦y, when x = y and cpx y = {x, y}, i.e.,
when there are no proper checkpoints between x and y. The link graph of G is
the graph of linked vertices.

Consider the graph on the left in Fig. 4; its link graph is obtained by adding the
three dotted edges to the existing ones.

Note that every proper checkpoint z between vertices x and y (i.e., a vertex
z ∈ cpx y \ {x, y}) is a cut vertex (i.e., removing z disconnects G) and vice
versa. Also note that membership in cp is decidable (i.e., cpx y can be defined
as a finite set in the Ssreflect sense) since it suffices to check whether the finitely
many irredundant paths cross z.

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 187

Fig. 4. Link graph, checkpoint graph, and decomposition into intervals and bags.

Lemma 19. 1. cpxx = {x}
2. {x, y} ⊆ cpx y = cp y x

Lemma 20. Every irredundant cycle in the link graph is a clique.

For a set of vertices U ⊆ G, we take G+U to be the graph G with one additional
vertex, denoted •, whose neighbors are exactly the elements of U .

Lemma 21. If {x, y, z} is a triangle in the link graph, then K4 ≺ G + {x, y, z}.
Lemma 21 is first in a series of nontrivial lemmas required to justify the split-
ting of graphs into parallel components. Its proof boils down to an elaborate
construction on paths between x, y, and z that yields a minor map from G to
C3 (the cycle with three vertices), which is subsequently extended to a minor
map from G+{x, y, z} to K4. This is one instance where our definition of minors
using minor maps pays off.

Definition 22. Let U be a set of vertices of G. The checkpoints of U , written
CPU , are the vertices which are checkpoints of some pair in U .

CPU �
⋃

x,y∈U

cpx y

The checkpoint graph of U is the subgraph of the link graph induced by this set.
We also denote this graph by CPU .

The graph in the middle of Fig. 4 is the checkpoint graph of the one of the left,
when U consists of the blue square vertices.

Lemma 23. Let x, y ∈ CPU . Then cpx y ⊆ CPU .

We give the proof of this lemma below. It is relatively simple, but indicative of the
type of reasoning required to prove checkpoint properties. Those proofs usually
contain a combination of the following: splitting paths at vertices, concatenating
paths, and without loss of generality reasoning. For the latter, Ssreflects wlog-
tactic proved extremely helpful.

Proof. We have x ∈ cpx1 x2 and y ∈ cp y1 y2 for some vertices {x1, x2, y1, y2} ⊆ U
by the definition of CP. Fix some z ∈ cpx y. If z ∈ {x, y}, the claim is trivial, so
assume z /∈ {x, y}. Hence, we obtain either an xx1-path or an xx2-path not con-
taining z by splitting some irredundant x1x2-path at x. Without loss of generality,

188 C. Doczkal et al.

the xx1-path avoids z. Similarly, we obtain, again w.l.o.g., a yy1-path avoiding z.
Thus z ∈ cpx1 y1 since the existence of an x1y1-path avoiding z would contradict
z ∈ cpx y (by concatenation with the paths obtained above). ��
Definition 24. Let x, y : G. The strict interval �x; y� is the following set of
vertices.

�x; y� � {p | there is an xp-path avoiding y
and a py-path avoiding x}

The interval �x; y� is obtained by adding x and y to that set. We abuse notation
and also write �x; y� for the subgraph of G induced by the set �x; y�.

Definition 25. The bag of a checkpoint x ∈ CPU is the set of vertices that
need to cross x in order to reach the other checkpoints.

�x�U � {p | ∀y ∈ CPU. every py-path crosses x}.

As before, we also write �x�U for the induced subgraph of G.

Note that �x�U depends on U and differs from �x;x� (which is always the sin-
gleton {x}). The main purpose of bags and intervals is to aid in decomposing
graphs for the term extraction function, as depicted on the right in Fig. 4. We
first show that distinct bags and adjacent bags and strict intervals are disjoint.

Lemma 26. 1. If y ∈ CPU , then �x�U∩�x; y�= ∅.
2. If x, y ∈ CPU and x = y, then �x�U ∩ �y�U = ∅.
3. If z ∈ cpx y, then �x; y� = �x; z� ∪ �z�{x,y} ∪ �z; y�.
4. If z ∈ cpx y, then �x; z�, �z�{x,y} and �z; y� are pairwise disjoint.

Lemma 27. Let x, y ∈ CPU . Then there exist x0 ∈ U and y0 ∈ U such that
{x, y} ⊆ cpx0 y0.

Lemma 28. Let {x, y, z} be a triangle in CPU . Then there exist x0, y0, z0 ∈ U
such that x0 ∈ �x�{x,y,z}, y0 ∈ �y�{x,y,z}, and z0 ∈ �z�{x,y,z}.

Proof. Follows with Lemma 27. ��
Lemma 29. Let U be nonempty and let T � U ∪ (G \ ⋃

x∈U �x�U). Then there
exists a minor map φ : G → G|T such that φ maps the elements of each bag �x�U

to x and every other vertex to itself.

The above series of lemmas leads us to the following proposition, that corre-
sponds to [14, Proposition 20(i)]; the proof given here is significantly simpler
than the proof given in [14].

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 189

Proposition 30. Let U ⊆ G such that G + U is K4-free. Then CPU is a tree.

Proof. Assume that CPU is not a tree. Then CPU contains a triangle {x, y, z}
(Lemma 20). Let x0, y0, z0 as given by Lemma 28. We obtain a minor map col-
lapsing the bags for x, y, and z (Lemma 29 with U = {x, y, z}). This identifies x
and x0 and likewise for y and z. Since x, y, z is still a triangle in the link graph
of the collapsed graph and since • is adjacent to x, y, z in the collapsed graph,
Lemma 21 yields K4 ≺ G + U , a contradiction. ��
The following proposition establishes the key property of K4-free graphs we
alluded to in the introduction. Its proof is particularly tricky to formalize due to
the number of different graphs with shared vertices (we have G, G′ � G|{i} and
G′ + U (the graph Proposition 30 is instantiated with). Consequently, we often
need to cast vertices from one graph to another.

Proposition 31. Let ι, o : G such that G + ιo is K4-free, �ι�{ι,o} = {ι}, and
ι♦o, but not ι−o. Then �ι; o� has at least two connected components.

Proof. Let G′ be the graph G with ι removed and let U ⊆ G′ be the set of
neighbors of ι (in G) plus o. By Proposition 30 (on G′ and U), CPU is a tree
in G′. The vertex o cannot be a leaf in CPU since if it were, its unique neighbor
would be a proper checkpoint between ι and o. Moreover, o is a checkpoint
between any distinct neighbors of o. Removing o yields that �ι; o� has at least
two components. ��
The above proposition is used for splitting paths into parallel components (case
(b) in Fig. 2); the one below allows us to proceed recursively in case (a).

Proposition 32. Let ι, o : G such that G + ιo is K4-free and let x, y ∈ cp ι o
such x = y. Then �x; y� + xy is K4-free.

Proof. Without loss of generality x appears before y on every ιo-path. We obtain
that �x; y� + xy is a minor of G + ιo by collapsing �x�{x,y} (which contains ι)
to x and �y�{x,y} (which contains o) to y (Lemma 29). ��

6 Extracting Terms from K4-free Graphs

We say that a 2p-graph G is CK4F if its skeleton is connected and its strong
skeleton is K4-free. We now define a function extracting terms from CK4F graphs.
Defining this function in Coq is challenging for a number of reasons. First, its
definition involves ten cases, most with multiple recursive calls. Second, we need
to argue that all the recursive calls are made on smaller graphs which are CK4F.

To facilitate the definition, we construct our own operator for bounded recur-
sion. The reason for this is that none of the facilities for defining functions in
Coq (e.g., Fixpoint, Function and Program) are suited to deal with the kind of
complex function definition we require. We define a bounded recursion operator
with the following type:

190 C. Doczkal et al.

Fix : ∀ aT rT : Type, rT → (aT → N) → ((aT → rT) → aT → rT) → aT→ rT

Here the argument of type aT → N is a measure on the input to bound the
number of recursive calls, and the argument of type rT is the default value to be
returned when no more recursive calls are allowed.

We only need one lemma about the recursion operator, namely that the
operator satisfies the usual fixpoint equation provided that the functional it is
applied to calls its argument only on smaller arguments in the desired domain
of the function (here, CK4F).1 That is, we have the following lemma:

Fix eq : ∀ (aT rT : Type) (P : aT → Prop) (x0 : rT) (m : aT → N)
(F : (aT → rT) → aT → rT),
(∀ (f g : aT → rT) (x : aT),
P x → (∀ y : aT, P y → m y < m x → f y = g y) → F f x = F g x) →

∀ x : aT, P x → Fix x0 m F x = F (Fix x0 m F) x

While its proof is straightforward, this lemma is useful in that it allows us to
abstract from the fact that we are using bounded recursion (i.e., neither the
default result nor the recursion on N are visible in the proofs).

We now define the extraction function using the recursion operator. The
various cases of the definition roughly correspond to the cases outlined in Fig. 2.
The main difference is that in case (a), rather than partitioning the graph as
shown in the picture, we only identify a single nontrivial bag or a single proper
checkpoint between input and output. This is sufficient to make recursive calls
on smaller graphs. In the case where input and output coincide (case (c)), we
relocate the output and proceed recursively. This requires a measure that treats
graphs with shared input and output as larger than those with distinct input
and output. We use the measure below to justify termination.

Definition 33. Let G = 〈〈V,E, s, t, l〉, ι, o〉 be a 2p-graph. The measure of G is
2|E| if ι = o and 2|E| + 1 if ι = o.

The term extraction is then defined as follows:

t � Fix 1measure F

where the definition of F is given in Fig. 5. This definition makes use of a number
of auxiliary constructions which we define below. For a set of vertices U and a set
of edges E (of some graph G) such that {s(e), t(e)} ⊆ U for all e, the subgraph of
G with vertices U and edges E is written G[U,E]. We write E(U) for the set of
edges with source and target in U and the induced subgraph for U , written G[U],
is defined as G[U, E(U)]. For 2p-graphs G, G[U] and G[U,E] are only defined if
{ι, o} ⊆ U . In this case, G[U] and G[U,E] have the same input and output as G.

When instantiating the definitions above, U will sometimes be an interval or
a bag. In this case, the intervals and bags are computed on the weak skeleton

1 To be precise, F may call its argument on anything. However, the result of F may
only depend on calls to smaller arguments in the domain.

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 191

Fig. 5. The term extraction function

of G (not the strong skeleton). For a given 2p-graph G = 〈G′, ι, o〉, we also define:

components(U) � {C | C connected component of U in the skeleton of G}
component(C) � G[C ∪ {ι, o}]

redirect(C) �〈G′[C ∪ {ι}], i, x〉 where x is some neighbor of ι in C

G[x, y] �〈G′[�x; y�, E(�x; y�) \ (E({x}) ∪ E({y})]), x, y〉
G[x] �〈G′[�x�{ι,o}], x, x〉

tm(e) �
{

l(e) s(e) = ι ∧ t(e) = o

l(e)◦ otherwise

192 C. Doczkal et al.

Note that component(C) is obtained as induced subgraph of G whereas the
other constructions are obtained as subgraphs of G′ (with new inputs and out-
puts).

Before we can establish properties of t, we need to establish that all (relevant)
calls to t in F are made on CK4F graphs with smaller measure.

Lemma 34. Let t, t′ be functions from graphs to terms. If t and t′ agree on all
CK4F graphs with measure smaller than a CK4F graph G, then F tG = F t′ G.

The proof of this lemma boils down to a number of lemmas for the various
branches of F. For each recursive call, we need to establish both that the mea-
sure decreases and that the graph is indeed CK4F. When splitting of a parallel
component (line 17), Proposition 31 ensures that there are at least two nonempty
components, thus ensuring that the remainder of the graph is both smaller and
connected. Note that the case distinction in line 20 is required since if P = ∅,
removing the ιo-edges disconnects the graph (the remaining graph would be iso-
morphic to �). In the case where there is a proper checkpoint z between input
and output (line 29), Proposition 32 ensures that the strong skeletons of G[ι, z]
and G[z, o] are K4-free.

As a consequence of Lemma 34, we obtain:

Proposition 35. Let G be CK4F. Then tG = F tG.

7 Isomorphism Properties

In this section we establish that interpreting the terms extracted from a 2p-
graph G yields a graph that is isomorphic to G. This is the part of the proof
where the difference of what one would find in a detailed paper proof and what
is required in order to obtain a formal proof is greatest.

Definition 36. A homomorphism from the graph G = 〈V,E, s, t, l〉 to the graph
G′ = 〈V ′, E′, s′, t′, l′〉 is a pair 〈f, g〉 of functions f : V → V ′ and g : E → E′

that respect the various components: s′ ◦ g ≡ f ◦ s, t′ ◦ g ≡ f ◦ t, and l ≡ l′ ◦ g. A
homomorphism from 〈G, ι, o〉 to 〈G′, ι′, o′〉 is a graph homomorphism 〈f, g〉 from
G to G′ respecting inputs and outputs: f(ι) = ι′ and f(o) = o′.

An isomorphism is a homomorphism whose two components are bijective
functions. We write G � G′ when there exists an isomorphism between graphs
G and G′.

The extraction function decomposes the graph into smaller graphs in order to
extract a term. The interpretation of this term then joins the graphs extracted by
the recursive calls back together using the graph operations ‖ and ·. We need to
establish that the decomposition performed during extraction is indeed correct
(i.e., that no vertices or edges are lost or misplaced). This requires establishing
a number of isomorphism properties.

We first establish that all graph operations respect isomorphism classes.

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 193

Lemma 37. Let G1 � G′
1 and G2 � G′

2. Then we have G1 ‖ G2 � G′
1 ‖ G′

2,
G1·G2 � G′

1·G′
2, and dom(G1) � dom(G′

1).

Lemma 37 allows rewriting with isomorphisms underneath the graph operations
using Coq’s generalized (setoid) rewriting tactic [19].

The proofs for establishing that two graphs (of some known shape) are iso-
morphic generally follow the same pattern: define the pair of functions 〈f, g〉
(cf. Definition 36) as well as their respective inverses and then show all the
required equalities (including that the proposed inverses are indeed inverses).
This amounts to 9 equalities per isomorphism that all need to be verified.
Additional complexity is introduced by the fact that we are almost exclusively
interested in isomorphism properties involving ‖ and · which are defined using
quotient constructions. Among others, we establish the following isomorphism
lemmas:

Lemma 38. Let G = 〈G′, ι, o〉 such that ι = o and the skeleton of G is con-
nected. Then G � G[ι]·G[ι, o]·G[o].

Lemma 39. Let G = 〈G′, ι, o〉 such that E(�ι�{ι,o}) = ∅, E(�o�{ι,o}) = ∅, and
ι = o, and let z ∈ cp ι o \ {ι, o}. Then G � G[ι, z]·G[z]·G[z, o].

Lemma 40. Let G = 〈G′, ι, o〉 with E({ι, o}) = ∅ and let C ∈
components({ι, o}). Then G � component(C) ‖ G[C].

For the following, let Ex,y � {e | s(e) = x, t(e) = y}.

Lemma 41. Let G = 〈V,E, s, t, l〉, let x, y : G and let E′ � Ex,y ∪ Ey,x Then
G � G[{x, y} , E′] ‖ G[V,E′].

Theorem 42. Let G be a 2p-graph. Then g(tG) � G.

Proof. By induction on the measure of G. We use Proposition 35 to unfold the
definition of t. Each of the cases follows with the induction hypothesis (using the
lemmas underlying the proof of Lemma34 to justify that the induction hypoth-
esis applies) and some isomorphism lemmas (e.g., Lemmas 37 to 41). ��
Note that Lemma 40 justifies both the split in line 7 and the split in line 17 (in
the latter case �ι; o�= {ι, o}).

Putting everything together, we obtain our main result.

Theorem 43. A simple graph is K4-free iff if it has treewidth at most two.

Proof. Fix some simple graph G. The direction from right to left follows with
Proposition 11. For the converse direction we proceed by induction on |G|. If G
is connected (and nonempty; otherwise the claim is trivial), we construct a 2p-
graph (with ι = o) whose (strong) skeleton is isomorphic to G. By Theorem 42,
the skeleton of g(tG) is isomorphic to G and, hence, K4-free by Proposition 17.
If G contains disconnected vertices x and y, then G is isomorphic to the disjoint
union of the connected component containing x and the rest of the graph (which
must contain y). The claim then follows by induction hypothesis using the fact
that treewidth is preserved under disjoint union. ��

194 C. Doczkal et al.

Note that Theorem 42 is significantly stronger than what is needed to establish
Theorem 43. To prove the latter, it would be sufficient to extract terms that
can be interpreted as simple graphs, thus avoiding the complexity introduced by
labels, edge multiplicities and loops. The fine-grained analysis we formalize here
is however crucial for our long-term objective (†).

8 Conclusion

We have developed a library for graph theory based on finite types as provided
by the Mathematical Components Libraries. As a major step towards proving
that K4-free 2p-graphs form the free 2p-algebra (†), we gave a proof of the graph-
minor theorem for treewidth two, using a function extracting terms from K4-free
graphs.

The Coq development accompanying this paper [7] consists of about 6700
lines of code, with a ratio of roughly 1:2 between specifications and proofs. It
contains about 200 definitions and about 550 lemmas. Many of these have short
proofs, but some proofs (e.g., the proof of Proposition 31) are long intricate
constructions without any obvious lemmas to factor out. As mentioned before,
the isomorphism proofs for Sect. 7 mostly follows the same pattern. Hence, we
hope that they can be automated to some degree.

As it comes to proving (†), there are two main challenges to be solved. First
we should prove that the choices made by the extraction function are irrelevant
modulo the axioms of 2p-algebras (e.g., which neighbor is chosen in redirect(C)).
This is why we were careful to define this function as deterministically as pos-
sible. Second, we should prove that it is a homomorphism (again, modulo the
axioms of 2p-algebras). Those two steps seem challenging: their paper proofs
require a lot of reasoning modulo graph isomorphism [14].

References

1. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. The-
oret. Comput. Sci. 239(2), 211–229 (2000). https://doi.org/10.1016/S0304-
3975(99)00220-0

2. Chou, C.-T.: A formal theory of undirected graphs in higher-order logc. In:
Melham, T.F., Camilleri, J. (eds.) HUG 1994. LNCS, vol. 859, pp. 144–157.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58450-1 40

3. Cohen, C.: Pragmatic quotient types in Coq. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 213–228. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39634-2 17

4. Courcelle, B.: The monadic second-order logic of graphs. I: recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-
5401(90)90043-H

5. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach. Encyclopedia of Mathematics and Its Applications,
vol. 138. Cambridge University Press, Cambridge (2012)

https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1016/S0304-3975(99)00220-0
https://doi.org/10.1007/3-540-58450-1_40
https://doi.org/10.1007/978-3-642-39634-2_17
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H

A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs 195

6. Diestel, R.: Graph Theory, Graduate Texts in Mathematics. Springer, New York
(2005)

7. Doczkal, C., Combette, G., Pous, D.: Coq formalization accompanying this paper.
https://perso.ens-lyon.fr/damien.pous/covece/k4tw2

8. Duffin, R.: Topology of series-parallel networks. J. Math. Anal. Appl. 10(2), 303–
318 (1965). https://doi.org/10.1016/0022-247X(65)90125-3

9. Dufourd, J.-F., Bertot, Y.: Formal study of plane delaunay triangulation. In:
Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 211–226.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5 16

10. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems.
In: NCAI, pp. 4–9. AAAI Press/The MIT Press (1990)

11. Freyd, P., Scedrov, A.: Categories, Allegories. North Holland, Elsevier, Amsterdam
(1990)

12. Gonthier, G.: Formal proof – the four-color theorem. Notices Amer. Math. Soc.
55(11), 1382–1393 (2008)

13. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM 54(1), 1:1–1:24 (2007). https://doi.org/10.1145/
1206035.1206036

14. Llópez, E.C., Pous, D.: K4-free graphs as a free algebra. In: MFCS. LIPIcs, vol. 83,
pp. 76:1–76:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://
doi.org/10.4230/LIPIcs.MFCS.2017.76

15. Nakamura, Y., Rudnicki, P.: Euler circuits and paths. Formalized Math. 6(3), 417–
425 (1997)

16. Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: tame graphs. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 21–35. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814771 4

17. Noschinski, L.: A graph library for Isabelle. Math. Comput. Sci. 9(1), 23–39 (2015).
https://doi.org/10.1007/s11786-014-0183-z

18. Robertson, N., Seymour, P.: Graph minors. XX. Wagner’s conjecture. J. Comb.
Theor. Ser. B 92(2), 325–357 (2004). https://doi.org/10.1016/j.jctb.2004.08.001

19. Sozeau, M.: A new look at generalized rewriting in type theory. J. Form. Reason.
2(1), 41–62 (2009). https://doi.org/10.6092/issn.1972-5787/1574

20. The Mathematical Components Team: Mathematical Components (2017). http://
math-comp.github.io/math-comp/

https://perso.ens-lyon.fr/damien.pous/covece/k4tw2
https://doi.org/10.1016/0022-247X(65)90125-3
https://doi.org/10.1007/978-3-642-14052-5_16
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.4230/LIPIcs.MFCS.2017.76
https://doi.org/10.4230/LIPIcs.MFCS.2017.76
https://doi.org/10.1007/11814771_4
https://doi.org/10.1007/s11786-014-0183-z
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.6092/issn.1972-5787/1574
http://math-comp.github.io/math-comp/
http://math-comp.github.io/math-comp/

Verified Analysis of Random
Binary Tree Structures

Manuel Eberl(B) , Max W. Haslbeck , and Tobias Nipkow

Technische Universität München, 85748 Garching bei München, Germany
eberlm@in.tum.de

Abstract. This work is a case study of the formal verification and com-
plexity analysis of some famous probabilistic algorithms and data struc-
tures in the proof assistant Isabelle/HOL. In particular, we consider the
expected number of comparisons in randomised quicksort, the relation-
ship between randomised quicksort and average-case deterministic quick-
sort, the expected shape of an unbalanced random Binary Search Tree,
and the expected shape of a Treap. The last two have, to our knowledge,
not been analysed using a theorem prover before and the last one is of
particular interest because it involves continuous distributions.

1 Introduction

This paper conducts verified analyses of a number of classic probabilistic algo-
rithms and data structures related to binary search trees. It is part of a con-
tinuing research programme to formalise classic data structure analyses [1–3],
especially for binary search trees, by adding randomisation. The key novel con-
tributions of the paper are readable (with one caveat, discussed in the conclusion)
formalised analyses of

– the precise expected number of comparisons in randomised quicksort
– the relationship between the average-case behaviour of deterministic quicksort

and the distribution of randomised quicksort
– the expected path length and height of a random binary search tree
– the expected shape of a treap, which involves continuous distributions.

The above algorithms are shallowly embedded and expressed using the Giry
monad, which allows for a natural and high-level presentation. All verifications
were carried out in Isabelle/HOL [4,5].

After an introduction to the representation of probability theory in
Isabelle/HOL, the core content of the paper consists of three sections that anal-
yse quicksort, random binary search trees, and treaps, respectively. The corre-
sponding formalisations can be found in the Archive of Formal Proofs [6–8].

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 196–214, 2018.
https://doi.org/10.1007/978-3-319-94821-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_12&domain=pdf
http://orcid.org/0000-0002-4263-6571
http://orcid.org/0000-0002-9900-5746
http://orcid.org/0000-0003-0730-515X

Verified Analysis of Random Binary Tree Structures 197

2 Probability Theory in Isabelle/HOL

2.1 Measures and Probability Mass Functions

The foundation for measure theory (and thereby probability theory) in Isabelle/
HOL was laid by Hölzl [9]. This approach is highly general and flexible, allowing
also measures with uncountably infinite support (e. g. normal distributions on
the reals) and has been used for a number of large formalisation projects related
to randomisation, e. g. Ergodic theory [10], compiling functional programs to
densities [11], Markov chains and decision processes [12], and cryptographic
algorithms [13].

Initially we shall only consider probability distributions over countable sets.
In Isabelle, these are captured as probability mass functions (PMFs). A PMF is
simply a function that assigns a probability to each element, with the property
that the probabilities are non-negative and sum up to 1. For any HOL type α,
the type α pmf denotes the type of all probability distributions over values of
type α with countable support.

Working with PMFs is quite pleasant, since we do not have to worry about
measurability of sets or functions. Since everything is countable, we can always
choose the power set as the measurable space, which means that everything is
always trivially measurable.

Later, however, we will also need continuous distributions. For these, there
exists a type α measure, which describes a measure-theoretic measure over ele-
ments of type α. Such a measure is formally defined as a triple consisting of a
carrier set Ω, a σ-algebra on Ω (which we call the set of measurable sets), and
a measure function μ : α → ennreal, where ennreal is the type of extended non-
negative real numbers R≥0 ∪ {∞}. Of course, since we only consider probability
measures here, our measures will always return values between 0 and 1.

One problem with these general measures (which are only relevant for
Sect. 5), is that we often need to annotate the corresponding σ-algebras and
prove that everything we do with a distribution is in fact measurable. These
details are unavoidable on a formal level, but typically very uninteresting to a
human: There is usually a ‘natural’ choice for these σ-algebras and any set or
operation that can be written down is typically measurable in some adequate
sense. For the sake of readability, we will therefore omit everything related to
measurability in this presentation.

Table 1 gives an overview of the notation that we use for PMFs and general
measures. Although we allow ourselves some more notational freedoms in this
paper, these are purely syntactical changes designed to make the presentation
easier without introducing additional notation.

2.2 The Giry Monad

Specifying probabilistic algorithms compositionally requires a way to express
sequential composition of randomised choice. The standard way to do this is
the Giry monad [14]. A detailed explanation of this (especially in the context

198 M. Eberl et al.

Table 1. Basic operations on PMFs and general measures. The variables p :: α pmf
and M :: α measure denote an arbitrary PMF (resp. measure)

PMFs Measures Meaning

pmf p x probability of x in distribution p

set pmf p support of p, i. e. {x | p(x) > 0}
measure pmf.prob p X emeasure M X probability of set X

measure pmf.expectation p f expectation M f expectation of f :: α → R

map pmf g p distr g M image measure under g :: α → β

pmf of set A uniform measure A uniform distribution over A

pair pmf p q M ⊗ N binary product measure
⊗

x∈A M(x) indexed product measure

of Isabelle/HOL) can be found in an earlier paper by Eberl et al. [11]. For the
purpose of this paper, we only need to know that the Giry monad provides
functions

return :: α → α pmf bind :: α pmf → (α → β pmf) → β pmf

(and analogously for α measure) where return x gives us the singleton distribu-
tion where x is chosen with probability 1 and bind p f composes two distributions
in the intuitive sense of randomly choosing a value x according to the distribution
p and then returning a value randomly chosen according to the distribution f(x).

For better readability, Isabelle supports a Haskell-like do-notation as syntac-
tic sugar for bind operations where e. g.

bind A (λx. bind B (λy. return (x + y)))

can be written succinctly as

do {x ← A; y ← B; return (x + y)}.

3 Quicksort

We now show how to define and analyse quicksort [15,16] (in its functional
representation) within this framework. Since all of the randomisation is discrete
in this case, we can restrict ourselves to PMFs for the moment.

For the sake of simplicity (and because it relates to binary search trees, which
we will treat later), we shall only treat the case of sorting lists without repeated
elements. (See the end of this section for further discussion of this point.)

As is well known, quicksort has quadratic worst-case performance if the pivot
is chosen poorly. Using the true median as the pivot would solve this, but is
impractical. Instead, a simple alternative is to choose the pivot randomly, which
is the variant that we shall analyse first.

Verified Analysis of Random Binary Tree Structures 199

3.1 Randomised Quicksort

Intuitively, the good performance of randomised quicksort can be explained by
the fact that a random pivot will usually not be among the most extreme values
of the list, but somewhere in the middle, which means that, on average, the size
of the lists is reduced significantly in every recursion step.

To make this more rigorous, let us look at the definition of the algorithm in
Isabelle:

Definition 1 (Randomised quicksort)

rquicksort R xs =
if xs = [] then

return []
else do {

i ← pmf of set {0 . . . |xs| − 1}
let x = xs ! i

let xs′ = delete index i xs
ls ← rquicksort R [y | y ← xs′, (y, x) ∈ R]
rs ← rquicksort R [y | y ← xs′, (y, x) /∈ R]
return (ls @ [x] @ rs)

}

Here, @ denotes list concatenation and xs ! i denotes the i-th element of the list
xs, where 0 ≤ i < |xs|. The delete index function removes the i-th element of a
list, and the parameter R is a linear ordering represented as a set of pairs.

It is easy to prove that all of the lists that can be returned by the algorithm
are sorted w. r. t. R. To analyse its running time, its actual Isabelle definition was
extended to also count the number of element comparisons made, i. e. to return
an (α list × nat) pmf. The base case makes 0 comparisons and the recursive
case makes |xs| − 1 + n1 + n2 comparisons, where n1 and n2 are the numbers of
comparisons made by the recursive calls. This could easily be encapsulated in a
resource monad (as we have done elsewhere [3] for more complex code), but it
is not worth the effort in this case.

For an element x and some list xs, we call the number of elements of xs
that are smaller than x the rank of x w. r. t. xs. In lists with distinct elements,
each element can clearly be uniquely identified by either its index in the list or
its rank w. r. t. that list, so choosing an element uniformly at random, choosing
its index uniformly at random, or choosing a rank uniformly at random are all
interchangeable.

In the above algorithm, the length of ls is simply the rank r of the pivot, and
the length of rs is simply |xs|− 1− r, so choosing the pivot uniformly at random
means that the length of ls is also distributed uniformly between 0 and |xs| − 1.
From this, we can see that the distribution of the number of comparisons does

200 M. Eberl et al.

not actually depend on the content of the list or the ordering R at all, but only
on the length of the list, and we can find the following recurrence for it:

Definition 2 (Cost of randomised quicksort)

rqs cost 0 = return 0
rqs cost (n + 1) =

do {
r ← pmf of set {0 . . . n}
a ← rqs cost r

b ← rqs cost (n − r)
return (n + a + b)

}

For any list xs with no repeated elements and a linear ordering R, we can easily
show the equation

map pmf snd (rquicksort R xs) = rqs cost |xs| ,

i. e. projecting out the number of comparisons from our cost-aware randomised
quicksort yields the distribution given by rqs cost.

Due to the recursive definition of rqs cost, we can easily show that its
expected value, which we denote by Q(n), satisfies the characteristic recurrence

Q(n + 1) = n +
1

n + 1

(
n∑

i=0

Q(i) + Q(n − i)

)
,

or, equivalently,

Q(n + 1) = n +
2

n + 1

(
n∑

i=0

Q(i)

)
.

This is often called the quicksort recurrence. Cichoń [17] gave a simple way of
solving this by turning it into a linear recurrence

Q(n + 1)
n + 2

=
2n

(n + 1)(n + 2)
+

Q(n)
n + 1

,

which gives us (by telescoping)

Q(n)
n + 1

= 2
n∑

k=1

k − 1
k(k + 1)

= 4Hn+1 − 2Hn − 4

and thereby the closed-form solution

Q(n) = 2(n + 1)Hn − 4n,

Verified Analysis of Random Binary Tree Structures 201

where Hn is the n-th harmonic number. We can use the well-known asymp-
totics Hn ∼ ln n + γ (where γ ≈ 0.5772 is the Euler–Mascheroni constant) from
the Isabelle library and obtain Q(n) ∼ 2n ln n, which shows that the expected
number of comparisons is logarithmic.

Remember, however, that we only considered lists with no repeated elements.
If there are any repeated elements, the performance of the above algorithm can
deteriorate to quadratic time. This can be fixed easily by using a three-way par-
titioning function instead, although this makes things slightly more complicated
since the number of comparisons made now depends on the content of the list
and not just its length. The only real difference in the cost analysis is that the
lists in the recursive call no longer simply have lengths r and n − r − 1, but
can also be shorter if the pivot is contained in the list more than once. We can
still show that the expected number of comparisons is at most Q(n) in much
the same way as before (and our entry [6] in the Archive of Formal Proofs does
contain that proof), but we shall not go into more detail here.

Comparing our proof to those in the literature, note that both Cormen
et al. [18] and Knuth [19] also restrict their analysis to distinct elements. Cormen
et al. use a non-compositional approach with indicator variables and only derive
the logarithmic upper bound, whereas Knuth’s analysis counts the detailed num-
ber of different operations made by a particular implementation of the algorithm
in MIX. His general approach is very similar to the one presented here.

3.2 Average-Case of Non-randomised Quicksort

The above results carry over directly to the average-case analysis of non-ran-
domised quicksort (again, we will only consider lists with distinct elements).
Here, the pivot is chosen deterministically; we always choose the first element
for simplicity. This gives us the following definitions of quicksort and its cost:

Definition 3 (Deterministic quicksort and its cost)

quicksort R [] = []
quicksort R (x # xs) = quicksort R [y | y ← xs, (y, x) ∈ R] @

[x] @ quicksort R [y | y ← xs, (y, x) /∈ R]

qs cost R [] = 0
qs cost R (x # xs) = |xs| +

qs cost R [y | y ← xs, (y, x) ∈ R] + qs cost R [y | y ← xs, (y, x) /∈ R]

Interestingly, the number of comparisons made on a randomly-permuted input
list has exactly the same distribution as the number of comparisons in ran-
domised quicksort from before. The underlying idea is that when randomly per-
muting the input, the randomness can be ‘deferred’ to the first point where an
element is actually inspected, which means that choosing the first element of a
randomly-permuted list still makes the pivot essentially random.

202 M. Eberl et al.

The formal proof of this starts by noting that choosing a random permutation
of a non-empty finite set A is the same as first choosing the first list element
x ∈ A uniformly at random and then choosing a random permutation of A \ {x}
as the remainder of the list, allowing us to pull out the pivot selection. Then,
we note that taking a random permutation of A \ {x} and partitioning it into
elements that are smaller and bigger than x is the same as first partitioning the
set A \ {x} into {y ∈ A \ {x} | (y, x) ∈ R} and {y ∈ A \ {x} | (y, x) /∈ R} and
choosing random permutations of these sets independently.

This last step, which interchanges partitioning and drawing a random per-
mutation, is probably the most crucial one and one that we will need again later,
so we present the corresponding lemma in full here. Let partition P xs be the
function that splits the list xs into the pair of sub-sequences that satisfy (resp.
do not satisfy) the predicate P . Then, we have:

Lemma 1 (Partitioning a randomly permuted list)

assumes finite A

shows map pmf (partition P) (pmf of set (permutations of set A)) =
pair pmf (pmf of set (permutations of set {x ∈ A. P x}))

(pmf of set (permutations of set {x ∈ A. ¬P x}))

This lemma is easily proven directly by extensionality, i. e. fixing permutations
xs of {x ∈ A. P x} and ys of {x ∈ A. ¬P x} and computing their probabilities
in the two distributions and noting that they are the same.

With this, the proof of the following theorem is just a straightforward induc-
tion on the recursive definition of rqs cost:

Theorem 1 (Cost distribution of randomised quicksort). For every lin-
ear order R on a finite set A, we have:

map pmf (qs cost R) (pmf of set (permutations of set A)) = rqs cost |A|

Thus, the cost distribution of deterministic quicksort applied to a randomly-
permuted list is the same as that of randomised quicksort. In particular, the
results about the logarithmic expectation of rqs cost carry over directly.

4 Random Binary Search Trees

4.1 Preliminaries

We now turn to another average-case complexity problem that is somewhat
related to quicksort, though not in an obvious way. We consider node-labelled
binary trees, defined by the algebraic datatype

datatype α tree = Leaf | Node (α tree) α (α tree) .

We denote Leaf by 〈〉 and Node l x r by 〈l, x, r〉. When the values of the tree
have some linear ordering, we say that the tree is a binary search tree (BST)

Verified Analysis of Random Binary Tree Structures 203

if, for every node with some element x, all of the values in the left sub-tree are
smaller than x and all of the values in the right sub-tree are larger than x.

Inserting elements can be done by performing a search and, if the element
is not already in the tree, adding a node at the leaf at which the search ends.
We denote this operation by bst insert. Note that these are simple, unbalanced
BSTs and our analysis will focus on what happens when elements are inserted
into them in random order. We call the tree that results from adding elements
of a set A to an initially empty BST in random order a random BST. This can
also be seen as a kind of ‘average-case’ analysis of BSTs.

To analyse random BSTs, let us first examine what happens when we insert
a list of elements into an empty BST from left to right; formally:

Definition 4 (Inserting a list of elements into a BST)

bst of list xs = fold bst insert xs 〈〉
Let x be the first element of the list. This element will become the root of the

tree and will never move again. Similarly, the next element will become either
the left or right child of x and will then also never move again and so on. It is
also clear that no elements greater than x will end up in the left sub-tree of x
at any point in the process, and no elements smaller in the right sub-tree. This
leads us to the following recurrence for bst of list:

Lemma 2 (Recurrence for bst of list)

bst of list [] = 〈〉
bst of list (x # xs) =

〈bst of list [y | y ← xs, y < x], x, bst of list [y | y ← xs, y > x]〉
We can now formally define our notion of ‘random BST’:

Definition 5 (Random BSTs)

random bst A =
map pmf bst of list (pmf of set (permutations of set A))

By re-using Lemma 1, we easily get the following recurrence:

Lemma 3 (A recurrence for random BSTs)

random bst A =
if A = {} then return 〈〉 else do {

x ← pmf of set A

l ← random bst {y ∈ A | y < x}
r ← random bst {y ∈ A | y > x}
return 〈l, x, r〉

}
We can now analyse some of the properties of such a random BST. In partic-

ular, we will look at the expected height and the expected internal path length,
and we will start with the latter since it is easier.

204 M. Eberl et al.

4.2 Internal Path Length

The internal path length (IPL) is essentially the sum of the lengths of all the
paths from the root of the tree to each node. Alternatively, one can think of it
the sum of all the level numbers of the nodes in the tree, where the root is on
the 0-th level, its immediate children are on the first level etc.

One reason why this number is important is that it is related to the time it
takes to access a random element in the tree: the number of steps required to
access some particular element x is equal to the number of that element’s level,
so if one chooses a random element in the tree, the average number of steps
needed to access it is exactly the IPL divided by the size of the tree.

The IPL can be defined recursively by noting that ipl 〈〉 = 0 and ipl 〈l, x, r〉 =
ipl l + ipl r + |l| + |r|. With this, we can show the following theorem by a simple
induction over the recurrence for random bst:

Theorem 2 (Internal path length of a random BST)

map pmf ipl (random bst A) = rqs cost |A|

Thus, the IPL of a random BST has the exact same distribution as the number
of comparisons in randomised quicksort, which we already analysed before. This
analysis was also carried out by Ottman and Widmayer [20], who also noted its
similarity to the analysis of quicksort.

4.3 Height

The height of a random BST is more difficult to analyse. By our definition, an
empty tree (i. e. a leaf) has height 0, and the height of a non-empty tree is the
maximum of the heights of its left and right sub-trees, plus one. It is easy to
show that the height distribution only depends on the number of elements and
not their actual content, so let H(n) denote the height of a random BST with n
nodes.

The asymptotics of its expectation and variance were found by Reed [21],
who showed that E[H(n)] = α ln n − β ln lnn + O(1) and Var[H(n)] ∈ O(1)
where α ≈ 4.311 is the unique real solution of α ln(2e/α) = 1 with α ≥ 2 and
β = 3α/(2α − 2) ≈ 1.953. The proof of this is quite intricate, so we will restrict
ourselves to showing that E[H(n)] ≤ 3

ln 2 ln n ≈ 4.328 ln n, which is enough to
see that the expected height is logarithmic.

Before going into a precise discussion of the proof, let us first undertake
a preliminary exploration of how we can analyse the expectation of H(n).
The base cases H(0) = 0 and H(1) = 1 are obvious. For any n > 1, the recursion
formula for random bst suggests:

E[H(n)] = 1 +
1
n

n−1∑
k=0

E[max(H(k),H(n − k − 1))]

Verified Analysis of Random Binary Tree Structures 205

The max term is somewhat problematic, since the expectation of the maximum
of two random variables is, in general, difficult to analyse. A relatively obvious
bound is E[max(A,B)] ≤ E[A] + E[B], but that will only give us

E[H(n)] ≤ 1 +
1
n

n−1∑
k=0

(E[H(k)] + E[H(n − k − 1)])

and if we were to use this to derive an explicit upper bound on E[H(n)] by
induction, we would only get the trivial upper bound E[H(n)] ≤ n.

A trick suggested e. g. by Cormen et al. [18] (which they attribute to
Aslam [22]) is to instead use the exponential height (which we shall denote by
eheight) of the tree, which, in terms of our height, is defined as 0 for a leaf and
2height(t)−1 for a non-empty tree. The advantage of this is that it decreases the
relative error that we make when we bound E[max(A,B)] by E[A] + E[B]: this
error is precisely E[min(A,B)], and if A and B are heights, these heights only
differ by a small amount in many cases. However, even a height difference of 1
will lead to a relative error in the exponential height of at most 1

2 , and consid-
erably less than that in many cases. This turns out to be enough to obtain a
relatively precise upper bound.

Let H ′(n) be the exponential height of a random BST. Since x → 2x is
convex, any upper bound on H ′(n) can be used to derive an upper bound on
H(n) by Jensen’s inequality:

2E[H(n)] = 2 · 2E[H(n)−1] ≤ 2E[2H(n)−1] = 2E[H ′(n)]

Therefore, we have
E[H(n)] ≤ log2 E[H ′(n)] + 1 .

In particular, a polynomial upper bound on E[H ′(n)] directly implies a logarith-
mic upper bound on E[H(n)].

It remains to analyse H ′(n) and find a polynomial upper bound for it. As
a first step, note that if l and r are not both empty, the exponential height
satisfies the recurrence eheight 〈l, x, r〉 = 2 · max (eheight l) (eheight r). When
we combine this with the recurrence for random bst, the following recurrence
for H ′(n) suggests itself:

206 M. Eberl et al.

Definition 6 (The exponential height of a random BST)

eheight rbst 0 = return 0
eheight rbst 1 = return 1

n > 1 =⇒ eheight rbst n =
do {

k ← pmf of set {0 . . . n − 1}
h1 ← eheight rbst k

h2 ← eheight rbst (n − k − 1)
return (2 · max h1 h2)

}

Showing that this definition is indeed the correct one can be done by a straight-
forward induction following the recursive definition of random bst:

Lemma 4 (Correctness of eheight rbst)

finite A =⇒ eheight rbst |A| = map pmf eheight (random bst A)

Using this, we note that for any n > 1:

E[H ′(n)] =
2
n

n−1∑
k=0

E[max(H ′(k),H ′(n − k − 1))]

≤ 2
n

n−1∑
k=0

E[H ′(k) + H ′(n − k − 1)]

=
2
n

(
n−1∑
k=0

E[H ′(k)] +
n−1∑
k=0

E[H ′(n − k − 1)]

)
=

4
n

n−1∑
k=0

E[H ′(k)]

However, we still have to find a suitable polynomial upper bound to complete
the induction argument. If we had some polynomial P (n) that fulfils 0 ≤ P (0),
1 ≤ P (1), and the recurrence P (n) = 4

n

∑n−1
k=0 P (k) , the above recursive estimate

for E[H ′(n)] would directly imply E[H ′(n)] ≤ P (n) by induction. Cormen et al.
give the following polynomial, which satisfies all these conditions and makes
everything work out nicely:

P (n) =
1
4

(
n + 3

3

)
=

1
24

(n + 1)(n + 2)(n + 3)

Putting all of these together gives us the following theorem:

Theorem 3 (Asymptotic expectation of H(n))

E[H(n)] ≤ log2 E[H ′(n)] + 1 ≤ log2 P (n) + 1 ∼ 3
ln 2

ln n

Verified Analysis of Random Binary Tree Structures 207

5 Treaps

As we have seen, BSTs have the nice property that even without any explicit
balancing, they tend to be fairly balanced if elements are inserted into them
in random order. However, if, for example, the elements are instead inserted in
ascending order, the tree degenerates into a list and no longer has logarithmic
height. One interesting way to prevent this is to use a treap instead, which we
shall introduce and analyse now.

5.1 Definition

A treap is a binary tree in which every node contains both an element and an
associated priority and which is a BST w. r. t. the elements and a heap w. r. t. the
priorities (i. e. the root is always the node with the lowest priority). This kind
of structure was first described by Vuillemin [23], who called it a cartesian tree,
and independently studied further by Seidel and Aragon [24], who noticed its
relationship to random BSTs. Due to space constraints, we shall not go into how
insertion of elements (denoted by ins) works, but it is fairly easy to implement.

An interesting consequence of these treap conditions is that, as long as all of
the priorities are distinct, the shape of a treap is uniquely determined by the set
of its elements and their priorities. Since the sub-trees of a treap must also be
treaps, this uniqueness property follows by induction and we can construct this
unique treap for a given set using the following simple algorithm:

Lemma 5 (Constructing the unique treap for a set). Let A be a set of
pairs of type α × R where the second components are all distinct. Then there
exists a unique treap treap of A whose elements are precisely A, and it satisfies
the recurrence

treap of A =
if A = {} then 〈〉 else

let x = arg min on snd A

in 〈treap of {y ∈ A | fst y < fst x}, x, treap of {y ∈ A | fst y > fst x}〉

where arg min on f A is some a ∈ A such that f(a) is minimal on A. In our
case the choice of a is unique by assumption.

This is very similar to the recurrence for bst of list that we saw earlier. In fact,
it is easy to prove that if we forget about the priorities in the treap and consider
it as a simple BST, the resulting tree is exactly the same as if we had first sorted
the keys by increasing priority and then inserted them into an empty BST in
that order. Formally, we have the following lemma:

208 M. Eberl et al.

Lemma 6 (Connection between treaps and BSTs). Let p be an injective
function that associates a priority to each element of a list xs. Then

map tree fst (treap of {(x, p(x)) | x ∈ set xs}) = bst of list (sort key p xs) ,

where sort key sorts a list in ascending order w. r. t. the given priority function.

Proof. By induction over xs′ := sort key p xs, using the fact that sorting w. r. t.
distinct priorities can be seen as a selection sort: The list xs′ consists of the
unique minimum-priority element x, followed by sort key p (remove1 x xs),
where remove1 deletes the first occurrence of an element from a list.

With this and Lemma 2, the recursion structure of the right-hand side is
exactly the same as that of the treap of from Lemma 5. �

This essentially allows us to build a BST that behaves as if we inserted the
elements by ascending priority regardless of the order in which they were actually
inserted. In particular, we can assign each element a random priority upon its
insertion, which turns our treap (a deterministic data structure for values of type
(α × R) set) into a randomised treap, which is a randomised data structure for
values of type α that has the same distribution as a random BST with the same
content.

One caveat is that for all the results so far, we assumed that no two distinct
elements have the same priority, and, of course, without that assumption, we lose
all these nice properties. If the priorities in our randomised treap are chosen from
some discrete probability distribution, there will always be some non-zero prob-
ability that they are not distinct. For this reason, treaps are usually described in
the literature as using a continuous distribution (e. g. uniformly-distributed real
numbers between 0 and 1), even though this cannot be implemented faithfully
on an actual computer. We shall do the same here, since it makes the analysis
much easier.1

The argument goes as follows:

1. Choosing the priority of each element randomly when we insert it is the same
as choosing all the priorities beforehand (i. i. d. at random) and then inserting
the elements into the treap deterministically.

2. By the theorems above, this is the same as choosing the priorities i. i. d. at
random, sorting the elements by increasing priority, and then inserting them
into a BST in that order.

3. By symmetry considerations, choosing priorities i. i. d. for all elements and
then looking at the linear ordering defined by these priorities is the same as
choosing one of the n! possible linear orderings uniformly at random.

4. Thus, inserting a list of elements into a randomised treap is the same as
inserting them into a BST in random order.

1 In fact, any non-discrete probability distribution works, where by ‘non-discrete’ we
mean that all singleton sets have probability 0. In the formalisation, however, we
restricted ourselves to the case of a uniform distribution over a real interval.

Verified Analysis of Random Binary Tree Structures 209

5.2 The Measurable Space of Trees

One complication when formalising treaps that is typically not addressed in
pen-and-paper accounts is that since we will randomise over priorities, we need
to talk about continuous distributions of trees, i. e. distributions of type (α ×
R) tree measure. For example, if we insert the element x into an empty treap with
a priority that is uniformly distributed between 0 and 1, we get a distribution
of trees with the shape 〈〈〉, (x, p), 〈〉〉 where p is uniformly distributed between 0
and 1.

In order to be able to express this formally, we need a way to lift some
measurable space M to a measurable space T (M) of trees with elements from
M attached to their nodes. Of course, we cannot just pick any measurable space:
for our treap operations to be well-defined, all the basic tree operations need to
be measurable w. r. t. T (M); in particular:

– the constructors Leaf and Node, i. e. we need {Leaf } ∈ T (M) and Node must
be T (M) ⊗ M ⊗ T (M)–T (M)-measurable

– the projection functions, i. e. selecting the value/left sub-tree/right sub-tree
of a node; e. g. selecting a node’s value must be (T (M) \ {〈〉})–M -measurable

– primitively recursive functions involving only measurable operations must also
be measurable; we will need this to define e. g. the insertion operation

We can construct such a measurable space by taking the σ-algebra that is gen-
erated by certain cylinder sets: consider a tree whose nodes each have an M -
measurable set attached to them. Then this tree can be ‘flattened’ into the set of
trees of the same shape where each node has a single value from the correspond-
ing set in t attached to it. Then we define T (M) to be the measurable space
generated by all these cylinder sets, and prove that all the above-mentioned
operations are indeed measurable.

5.3 Randomisation

In order to achieve a good height distribution on average, the priorities of a treap
need to be chosen randomly. Since we do not know how many elements will be
inserted into the tree in advance, we need to draw the priority to assign to an
element when we insert it, i. e. insertion is now a randomised operation.

Definition 7 (Randomised insertion into a treap)

rins :: α → α treap → α treap measure
rins x t = do {p ← uniform measure {0 . . . 1}; return (ins x p t)}

Since we would like to analyse what happens when we insert a large number of
elements into an initially empty treap, we also define the following ‘bulk insert’
operation that inserts a list of elements into the treap from left to right:

rinss :: α list → α treap → α treap measure
rinss [] t = return t

rinss (x# xs) t = do {t′ ← rins x t; rinss xst′}

210 M. Eberl et al.

Note that, from now on, we will again assume that all of the elements that
we insert are distinct. This is not really a restriction, since inserting duplicate
elements does not change the tree, so we can just drop any duplicates from the
list without changing the result. Similarly, the uniqueness property of treaps
means that after deleting an element, the resulting treap is exactly the same as
if the element had never been inserted in the first place, so even though we only
analyse the case of insertions without duplicates, this extends to any sequence
of insertion and deletion operations (although we do not show this explicitly).

The main result, as sketched above, shall be that after inserting a certain
number of distinct elements into the treap and then forgetting about their prior-
ities, we get a BST that is distributed identically to a random BST with the same
elements, i. e. the treap behaves as if we had inserted the elements in random
order. Formally, this can be expressed like this:

Theorem 4 (Connecting randomised treaps to random BSTs)

distr (rinss xs 〈〉) (map tree fst) = random bst (set xs)

Proof. Let U denote the uniform distribution of real numbers between 0 and 1
and UA denote a vector of i. i. d. distributions U , indexed by A:

U := uniform measure {0 . . . 1} UA :=
⊗

A
U

The first step is to show that our bulk-insertion operation rinss is equivalent
to first choosing random priorities for all the elements at once and then inserting
them all (with their respective priorities) deterministically:

rinss xs t = distr U set xs (λp. foldl (λt x. ins x (p(x)) t) t xs)

= distr U set xs (λp. treap of [(x, p(x)) | x ← xs])

The first equality is proved by induction over xs, pulling out one insertion in
the induction step and moving the choice of the priority to the front. This is
intuitively obvious, but the formal proof is nonetheless rather tedious, mostly
because of the issue of having to prove measurability in every single step. The
second equality follows from the uniqueness of treaps.

Next, we note that the priority function returned by U set xs is almost surely
injective, so we can apply Lemma 6 and get:

distr (rinss xs 〈〉) (map tree fst) =

distr U set xs (λp. bst of list (sort key p xs)

The next key lemma is the following, which holds for any finite set A:

distr UA (linorder from keys A) = uniform measure (linorders on A)

This essentially says that choosing priorities for all elements of A and then
looking at the ordering on A that these priorities induce will give us the uniform

Verified Analysis of Random Binary Tree Structures 211

distribution on all the |A|! possible linear ordering relations on A. In particular,
this means that that relation will be linear with probability 1, i. e. the priorities
will almost surely be injective. The proof of this is a simple symmetry argument:
given any two linear orderings R and R′ of A, we can find some permutation π
of A that maps R′ to R. However, UA is stable under permutation. Therefore,
R and R′ have the same probability, and since this holds for all R, R′, the
distribution must be the uniform distribution.

This brings us to the last step: Proving that sorting our list of elements by
random priorities and then inserting them to a BST is the same as inserting
them in random order (in the sense of inserting them in the order given by a
randomly-permuted list):

distr U set xs (λp. bst of list (sort key p xs) =
distr (uniform measure (permutations of set (set xs))) bst of list

Here we use the fact that priorities chosen uniformly at random induce a uni-
formly random linear ordering, and that sorting a list with such an ordering pro-
duces permutations of that list uniformly at random. The proof of this involves
little more than rearranging and using some obvious lemmas on sort key etc.
Now the right-hand side is exactly the definition of a random BST (up to a
conversion between pmf and measure), which concludes the proof. �

6 Related Work

The earliest analysis of randomised algorithms in a theorem prover was probably
by Hurd [25] in the HOL system, who modelled them by assuming the existence
of an infinite sequence of random bits which programs can consume. He used
this approach to formalise the Miller–Rabin primality test.

Audebaud and Paulin-Mohring [26] created a shallowly-embedded formalisa-
tion of (discrete) randomised algorithms in Coq and demonstrate its usage on two
examples. Barthe et al. [27] used this framework to implement the CertiCrypt
system to write machine-checked cryptographic proofs for a deeply embedded
imperative language. Petcher and Morrisett [28] developed a similar framework
but based on a monadic embedding. Another similar framework was developed
for Isabelle/HOL by Lochbihler [29].

The expected running time of randomised quicksort (possibly including
repeated elements) was first analysed in a theorem prover by van der Weegen
and McKinna [30] using Coq. They proved the upper bound 2n�log2 n�, whereas
we actually proved the closed-form result 2(n+1)Hn−4n and its precise asymp-
totics. Although their paper’s title mentions “average-case complexity’, they, in
fact, only treat the expected running time of the randomised algorithm in their
paper. They did, however, later add a separate proof of an upper bound for the
average-case of deterministic quicksort to their GitHub repository. Unlike us,
they allow lists to have repeated elements even in the average case, but they
proved the expectation bounds separately and independently, while we assumed

212 M. Eberl et al.

that there are no repeated elements, but showed something stronger, namely
that the distributions are exactly the same, allowing us to reuse the results from
the randomised case.

Kaminski et al. [31] presented a Hoare-style calculus for analysing the
expected running time of imperative programs and used it to analyse a one-
dimensional random walk and the Coupon Collector’s problem. Hölzl [32] for-
malised this approach in Isabelle and found a mistake in their proof of the
random walk in the process.

At the same time as our work and independently, Tassarotti and Harper [33]
gave a Coq formalisation of a cookbook-like theorem based on work by Karp [34]
that is able to provide tail bounds for a certain class of randomised recurrences
such as the number of comparisons in quicksort and the height of a random
BST. In contrast to the expectation results we proved, such bounds are very
difficult to obtain on a case-by-case basis, which makes such a cookbook-like
result particularly useful.

Outside the world of theorem provers, other approaches exist for automating
the analysis of such algorithms: Probabilistic model checkers like PRISM [35]
can check safety properties and compute expectation bounds. The ΛΥΩ system
by Flajolet et al. [36] conducts fully automatic analysis of average-case running
time for a restricted variety of (deterministic) programs. Chatterjee et al. [37]
developed a method for deriving bounds of the shape O(ln n), O(n), or O(n ln n)
for certain recurrences that are relevant to average-case analysis automatically
and applied it to a number of interesting examples, including quicksort.

7 Future Work

We have closed a number of important gaps in the formalisation of classic prob-
abilistic algorithms related to binary search trees, including the thorny case of
treaps, which requires measure theory. Up to that point we claim that these
formalisations are readable (the definitions thanks to the Giry monad and the
proofs thanks to Isar [38]), but for treaps this becomes debatable: the issue of
measurability makes proofs and definitions significantly more cumbersome and
less readable. Although existing automation for measurability is already very
helpful, there is still room for improvement. Also, the construction of the mea-
surable space of trees generalises to other data types and could be automated.

All of our work so far has been at the functional level, but it would be
desirable to refine it to the imperative level in a modular way. The development
of the necessary theory and infrastructure is future work.

Acknowledgement. This work was funded by DFG grant NI 491/16-1. We thank
Johannes Hölzl and Andreas Lochbihler for helpful discussions, Johannes Hölzl for his
help with the construction of the tree space, and Bohua Zhan and Maximilian P. L.
Haslbeck for comments on a draft. We also thank the reviewers for their suggestions.

Verified Analysis of Random Binary Tree Structures 213

References

1. Nipkow, T.: Amortized complexity verified. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 310–324. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22102-1 21

2. Nipkow, T.: Automatic functional correctness proofs for functional search trees. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 307–322. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-43144-4 19

3. Nipkow, T.: Verified root-balanced trees. In: Chang, B.-Y.E. (ed.) APLAS 2017.
LNCS, vol. 10695, pp. 255–272. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-71237-6 13

4. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

5. Nipkow, T., Klein, G.: Concrete Semantics. With Isabelle/HOL. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10542-0

6. Eberl, M.: The number of comparisons in QuickSort. Archive of Formal Proofs, For-
mal proof development, March 2017. http://isa-afp.org/entries/Quick Sort Cost.
html

7. Eberl, M.: Expected shape of random binary search trees. Archive of Formal Proofs,
Formal proof development, April 2017. http://isa-afp.org/entries/Random BSTs.
html

8. Haslbeck, M., Eberl, M., Nipkow, T.: Treaps. Archive of Formal Proofs, Formal
proof development, March 2018. http://isa-afp.org/entries/Treaps.html

9. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: van
Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol.
6898, pp. 135–151. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22863-6 12

10. Gouëzel, S.: Ergodic theory. Archive of Formal Proofs, Formal proof development,
December 2015. http://isa-afp.org/entries/Ergodic Theory.html

11. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density func-
tions. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 80–104. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46669-8 4

12. Hölzl, J.: Markov chains and Markov decision processes in Isabelle/HOL. J. Autom.
Reason. 59, 345–387 (2017)

13. Basin, D.A., Lochbihler, A., Sefidgar, S.R.: Crypthol: game-based proofs in higher-
order logic. Cryptology ePrint Archive, report 2017/753 (2017). https://eprint.iacr.
org/2017/753

14. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. LNM, vol. 915, pp. 68–85. Springer,
Heidelberg (1982). https://doi.org/10.1007/BFb0092872

15. Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10 (1962)
16. Sedgewick, R.: The analysis of Quicksort programs. Acta Inf. 7(4), 327–355 (1977)
17. Cichoń, J.: Quick Sort - average complexity. http://cs.pwr.edu.pl/cichon/Math/

QSortAvg.pdf
18. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,

2nd edn. McGraw-Hill Higher Education, Boston (2001)
19. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3.

Addison Wesley Longman Publishing Co., Redwood City (1998)
20. Ottmann, T., Widmayer, P.: Algorithmen und Datenstrukturen, 5th edn. Spek-

trum Akademischer Verlag, Auflage (2012)

https://doi.org/10.1007/978-3-319-22102-1_21
https://doi.org/10.1007/978-3-319-22102-1_21
https://doi.org/10.1007/978-3-319-43144-4_19
https://doi.org/10.1007/978-3-319-71237-6_13
https://doi.org/10.1007/978-3-319-71237-6_13
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-10542-0
http://isa-afp.org/entries/Quick_Sort_Cost.html
http://isa-afp.org/entries/Quick_Sort_Cost.html
http://isa-afp.org/entries/Random_BSTs.html
http://isa-afp.org/entries/Random_BSTs.html
http://isa-afp.org/entries/Treaps.html
https://doi.org/10.1007/978-3-642-22863-6_12
https://doi.org/10.1007/978-3-642-22863-6_12
http://isa-afp.org/entries/Ergodic_Theory.html
https://doi.org/10.1007/978-3-662-46669-8_4
https://eprint.iacr.org/2017/753
https://eprint.iacr.org/2017/753
https://doi.org/10.1007/BFb0092872
http://cs.pwr.edu.pl/cichon/Math/QSortAvg.pdf
http://cs.pwr.edu.pl/cichon/Math/QSortAvg.pdf

214 M. Eberl et al.

21. Reed, B.: The height of a random binary search tree. J. ACM 50(3), 306–332
(2003)

22. Aslam, J.A.: A simple bound on the expected height of a randomly built binary
search tree. Technical report TR2001-387, Dartmouth College, Hanover, NH
(2001). Abstract and paper lost

23. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4), 229–239
(1980)

24. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16(4), 464–497
(1996)

25. Hurd, J.: Formal verification of probabilistic algorithms. Ph.D. thesis, University
of Cambridge (2002)

26. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589 (2009)

27. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based crypto-
graphic proofs. In: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, pp. 90–101 (2009)

28. Petcher, A., Morrisett, G.: The foundational cryptography framework. In: Focardi,
R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 53–72. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46666-7 4

29. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1 20

30. van der Weegen, E., McKinna, J.: A machine-checked proof of the average-case
complexity of quicksort in Coq. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.)
TYPES 2008. LNCS, vol. 5497, pp. 256–271. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02444-3 16

31. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest Precondition
reasoning for expected run–times of probabilistic programs. In: Thiemann, P. (ed.)
ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49498-1 15

32. Hölzl, J.: Formalising semantics for expected running time of probabilistic pro-
grams. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 475–
482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4 30

33. Tassarotti, J., Harper, R.: Verified tail bounds for randomized programs. In: Avi-
gad, J., Mahboubi, A. (eds.) Interactive Theorem Proving. Springer International
Publishing, Cham (2018)

34. Karp, R.M.: Probabilistic recurrence relations. J. ACM 41(6), 1136–1150 (1994)
35. Kwiatkowska, M.Z., Norman, G., Parker, D.: Quantitative analysis with the prob-

abilistic model checker PRISM. Electr. Notes Theor. Comput. Sci. 153(2), 5–31
(2006)

36. Flajolet, P., Salvy, B., Zimmermann, P.: Lambda-Upsilon-Omega: an assistant
algorithms analyzer. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 201–212.
Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51083-4 60

37. Chatterjee, K., Fu, H., Murhekar, A.: Automated recurrence analysis for almost-
linear expected-runtime bounds. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 118–139. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 6

38. Wenzel, M.: Isabelle/Isar – a versatile environment for human-readable formal
proof documents. Ph.D. thesis, Institut für Informatik, Technische Universität
München (2002). https://mediatum.ub.tum.de/node?id=601724

https://doi.org/10.1007/978-3-662-46666-7_4
https://doi.org/10.1007/978-3-662-49498-1_20
https://doi.org/10.1007/978-3-642-02444-3_16
https://doi.org/10.1007/978-3-642-02444-3_16
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-319-43144-4_30
https://doi.org/10.1007/3-540-51083-4_60
https://doi.org/10.1007/978-3-319-63387-9_6
https://doi.org/10.1007/978-3-319-63387-9_6
https://mediatum.ub.tum.de/node?id=601724

HOL Light QE

Jacques Carette, William M. Farmer(B), and Patrick Laskowski

Computing and Software, McMaster University, Hamilton, Canada
wmfarmer@mcmaster.ca

http://www.cas.mcmaster.ca/~carette

http://imps.mcmaster.ca/wmfarmer

Abstract. We are interested in algorithms that manipulate mathemati-
cal expressions in mathematically meaningful ways. Expressions are syn-
tactic, but most logics do not allow one to discuss syntax. cttqe is a
version of Church’s type theory that includes quotation and evaluation
operators, akin to quote and eval in the Lisp programming language.
Since the HOL logic is also a version of Church’s type theory, we decided
to add quotation and evaluation to HOL Light to demonstrate the imple-
mentability of cttqe and the benefits of having quotation and evaluation
in a proof assistant. The resulting system is called HOL Light QE. Here
we document the design of HOL Light QE and the challenges that needed
to be overcome. The resulting implementation is freely available.

1 Introduction

A syntax-based mathematical algorithm (SBMA) manipulates mathematical
expressions in a meaningful way. SBMAs are commonplace in mathematics.
Examples include algorithms that compute arithmetic operations by manipu-
lating numerals, linear transformations by manipulating matrices, and deriva-
tives by manipulating functional expressions. Reasoning about the mathematical
meaning of an SBMA requires reasoning about the relationship between how the
expressions are manipulated by the SBMA and what the manipulations mean.

We argue in [25] that the combination of quotation and evaluation, along with
appropriate inference rules, provides the means to reason about the interplay
between syntax and semantics, which is what is needed for reasoning about
SBMAs. Quotation is an operation that maps an expression e to a special value
called a syntactic value that represents the syntax tree of e. Quotation enables
expressions to be manipulated as syntactic entities. Evaluation is an operation
that maps a syntactic value s to the value of the expression that is represented
by s. Evaluation enables meta-level reasoning via syntactic values to be reflected
into object-level reasoning. Quotation and evaluation thus form an infrastructure
for integrating meta-level and object-level reasoning. Quotation gives a form of
reification of object-level values which allows introspection. Along with inference
rules, this gives a certain amount of logical reflection; evaluation adds to this
some aspects of computational reflection [23,35].

This research was supported by NSERC.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 215–234, 2018.
https://doi.org/10.1007/978-3-319-94821-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_13&domain=pdf

216 J. Carette et al.

Incorporating quotation and evaluation operators — like quote and eval in
the Lisp programming language — into a traditional logic like first-order logic
or simple type theory is not a straightforward task. Several challenging design
problems stand in the way. The three design problems that most concern us are
the following. We will write the quotation and evaluation operators applied to
an expression e as �e� and �e�, respectively.

1. Evaluation Problem. An evaluation operator is applicable to syntactic values
that represent formulas and thus is effectively a truth predicate. Hence, by the
proof of Tarski’s theorem on the undefinability of truth [53], if the evaluation
operator is total in the context of a sufficiently strong theory (like first-order
Peano arithmetic), then it is possible to express the liar paradox. Therefore,
the evaluation operator must be partial and the law of disquotation cannot
hold universally (i.e., for some expressions e, ��e�� �= e). As a result, reasoning
with evaluation can be cumbersome and leads to undefined expressions.

2. Variable Problem. The variable x is not free in the expression �x + 3� (or in
any quotation). However, x is free in ��x + 3�� because ��x + 3�� = x + 3.
If the value of a constant c is �x + 3�, then x is free in �c� because �c� =
��x + 3�� = x + 3. Hence, in the presence of an evaluation operator, whether
or not a variable is free in an expression may depend on the values of the
expression’s components. As a consequence, the substitution of an expression
for the free occurrences of a variable in another expression depends on the
semantics (as well as the syntax) of the expressions involved and must be
integrated with the proof system for the logic. That is, a logic with quotation
and evaluation requires a semantics-dependent form of substitution in which
side conditions, like whether a variable is free in an expression, are proved
within the proof system. This is a major departure from traditional logic.

3. Double Substitution Problem. By the semantics of evaluation, the value of �e�
is the value of the expression whose syntax tree is represented by the value
of e. Hence the semantics of evaluation involves a double valuation. This is
most apparent when the value of a variable involves a syntax tree that refers
to the name of that same variable. For example, if the value of a variable x is
�x�, then �x� = ��x�� = x = �x�. Hence the substitution of �x� for x in �x�
requires one substitution inside the argument of the evaluation operator and
another substitution after the evaluation operator is eliminated. This double
substitution is another major departure from traditional logic.

cttqe [26,27] is version of Church’s type theory [18] with quotation and
evaluation that solves these three design problems. It is based on Q0 [3], Peter
Andrews’ version of Church’s type theory. We believe cttqe is the first readily
implementable version of simple type theory that includes global quotation and
evaluation operators. We show in [27] that it is suitable for defining, applying,
and reasoning about SBMAs.

To demonstrate that cttqe is indeed implementable, we have done so by
modifying HOL Light [36], a compact implementation of the HOL proof assis-
tant [32]. The resulting version of HOL Light is called HOL Light QE. Here we

HOL Light QE 217

present its design, implementation, and the challenges encountered. (HOL2P [54]
is another example of a logical system built by modifying HOL Light.)

The rest of the paper is organized as follows. Section 2 presents the key ideas
underlying cttqe and explains how cttqe solves the three design problems.
Section 3 offers a brief overview of HOL Light. The HOL Light QE implementa-
tion is described in Sect. 4, and examples of how quotation and evaluation are
used in it are discussed in Sect. 5. Section 6 is devoted to related work. And the
paper ends with some final remarks including a brief discussion on future work.

The major contributions of the work presented here are:

1. We show that the logical machinery for quotation and evaluation embodied
in cttqe can be straightforwardly implemented by modifying HOL Light.

2. We produce an HOL-style proof assistant with a built-in global reflection
infrastructure for defining, applying, and proving properties about SBMAs.

3. We demonstrate how this reflection infrastructure can be used to express for-
mula schemas, such as the induction schema for first-order Peano arithmetic,
as single formulas.

2 CTTqe

The syntax, semantics, and proof system of cttqe are defined in [27]. Here we
will only introduce the definitions and results of that are key to understanding
how HOL Light QE implements cttqe. The reader is encouraged to consult [27]
when additional details are required.

2.1 Syntax

cttqe has the same machinery as Q0 plus an inductive type ε of syntactic values,
a partial quotation operator, and a typed evaluation operator.

A type of cttqe is defined inductively by the following formation rules:

1. Type of individuals: ι is a type.
2. Type of truth values: o is a type.
3. Type of constructions: ε is a type.
4. Function type: If α and β are types, then (α → β) is a type.

Let T denote the set of types of cttqe. A typed symbol is a symbol with a
subscript from T . Let V be a set of typed symbols such that, for each α ∈ T , V
contains denumerably many typed symbols with subscript α. A variable of type α
of cttqe is a member of V with subscript α. xα,yα, zα, . . . are syntactic variables
ranging over variables of type α. Let C be a set of typed symbols disjoint from V.
A constant of type α of cttqe is a member of C with subscript α. cα,dα, . . . are
syntactic variables ranging over constants of type α. C contains a set of logical
constants that include appε→ε→ε, absε→ε→ε, and quoε→ε.

An expression of type α of cttqe is defined inductively by the formation rules
below. Aα,Bα,Cα, . . . are syntactic variables ranging over expressions of type
α. An expression is eval-free if it is constructed using just the first five rules.

218 J. Carette et al.

1. Variable: xα is an expression of type α.
2. Constant : cα is an expression of type α.
3. Function application: (Fα→β Aα) is an expression of type β.
4. Function abstraction: (λxα . Bβ) is an expression of type α → β.
5. Quotation: �Aα� is an expression of type ε if Aα is eval-free.
6. Evaluation: �Aε�Bβ

is an expression of type β.

The sole purpose of the second component Bβ in an evaluation �Aε�Bβ
is to

establish the type of the evaluation; we will thus write �Aε�Bβ
as �Aε�β .

A construction of cttqe is an expression of type ε defined inductively by:

1. �xα� is a construction.
2. �cα� is a construction.
3. If Aε and Bε are constructions, then appε→ε→ε Aε Bε, absε→ε→ε Aε Bε, and

quoε→ε Aε are constructions.

The set of constructions is thus an inductive type whose base elements are quota-
tions of variables and constants, and whose constructors are appε→ε→ε, absε→ε→ε,
and quoε→ε. As we will see shortly, constructions serve as syntactic values.

Let E be the function mapping eval-free expressions to constructions that is
defined inductively as follows:

1. E(xα) = �xα�.
2. E(cα) = �cα�.
3. E(Fα→β Aα) = appε→ε→ε E(Fα→β) E(Aα).
4. E(λxα . Bβ) = absε→ε→ε E(xα) E(Bβ).
5. E(�Aα�) = quoε→ε E(Aα).

When Aα is eval-free, E(Aα) is the unique construction that represents the
syntax tree of Aα. That is, E(Aα) is a syntactic value that represents how Aα is
syntactically constructed. For every eval-free expression, there is a construction
that represents its syntax tree, but not every construction represents the syntax
tree of an eval-free expression. For example, appε→ε→ε �xα� �xα� represents the
syntax tree of (xα xα) which is not an expression of cttqe since the types are
mismatched. A construction is proper if it is in the range of E , i.e., it represents
the syntax tree of an eval-free expression.

The purpose of E is to define the semantics of quotation: the meaning of
�Aα� is E(Aα).

2.2 Semantics

The semantics of cttqe is based on Henkin-style general models [38]. An expres-
sion Aε of type ε denotes a construction, and when Aε is a construction, it
denotes itself. The semantics of the quotation and evaluation operators are
defined so that the following two theorems hold:

Theorem 2.21 (Law of Quotation). �Aα� = E(Aα) is valid in cttqe.

HOL Light QE 219

Corollary 2.22. �Aα� = �Bα� iff Aα and Bα are identical expressions.

Theorem 2.23 (Law of Disquotation). ��Aα��α = Aα is valid in cttqe.

Remark 2.24. Notice that this is not the full Law of Disquotation, since only
eval-free expressions can be quoted. As a result of this restriction, the liar para-
dox is not expressible in cttqe and the Evaluation Problem mentioned above is
effectively solved.

2.3 Quasiquotation

Quasiquotation is a parameterized form of quotation in which the parameters
serve as holes in a quotation that are filled with expressions that denote syn-
tactic values. It is a very powerful syntactic device for specifying expressions
and defining macros. Quasiquotation was introduced by Willard Van Orman
Quine in 1940 in the first version of his book Mathematical Logic [51]. It has
been extensively employed in the Lisp family of programming languages [5]1,
and from there to other families of programming languages, most notably the
ML family.

In cttqe, constructing a large quotation from smaller quotations can
be tedious because it requires many applications of the syntax constructors
appε→ε→ε, absε→ε→ε, and quoε→ε. Quasiquotation alleviates this problem. It can
be defined straightforwardly in cttqe. However, quasiquotation is not part of
the official syntax of cttqe; it is just a notational device used to write cttqe

expressions in a compact form.
As an example, consider �¬(Ao∧�Bε�)�. Here �Bε� is a hole or antiquotation.

Assume that Ao contains no holes. �¬(Ao ∧ �Bε�)� is then an abbreviation for
the verbose expression

appε→ε→ε �¬o→o� (appε→ε→ε (appε→ε→ε�∧o→o→o� �Ao�)Bε).

�¬(Ao ∧�Bε�)� represents the syntax tree of a negated conjunction in which the
part of the tree corresponding to the second conjunct is replaced by the syntax
tree represented by Bε. If Bε is a quotation �Co�, then the quasiquotation
�¬(Ao ∧ ��Co��)� is equivalent to the quotation �¬(Ao ∧ Co)�.

2.4 Proof System

The proof system for cttqe consists of the axioms for Q0, the single rule of
inference for Q0, and additional axioms [27, B1–B13] that define the logical
constants of cttqe (B1–B4, B5, B7), specify ε as an inductive type (B4, B6),
state the properties of quotation and evaluation (B8, B10), and extend the rules
for beta-reduction (B9, B11–13). We prove in [27] that this proof system is sound
for all formulas and complete for eval-free formulas.
1 In Lisp, the standard symbol for quasiquotation is the backquote (‘) symbol, and

thus in Lisp, quasiquotation is usually called backquote.

220 J. Carette et al.

The axioms that express the properties of quotation and evaluation are:

B8 (Properties of Quotation)

1. �Fα→β Aα� = appε→ε→ε �Fα→β� �Aα�.
2. �λxα . Bβ� = absε→ε→ε �xα� �Bβ�.
3. ��Aα�� = quoε→ε �Aα�.

B10 (Properties of Evaluation)

1. ��xα��α = xα.
2. ��cα��α = cα.
3. (is-exprα→β

ε→o Aε ∧ is-exprαε→o Bε) ⊃ �appε→ε→ε Aε Bε�β = �Aε�α→β �Bε�α.
4. (is-exprβε→o Aε ∧ ¬(is-free-inε→ε→o �xα� �Aε�)) ⊃

�absε→ε→ε �xα�Aε�α→β = λxα . �Aε�β .
5. is-exprεε→o Aε ⊃ �quoε→ε Aε�ε = Aε.

The axioms for extending the rules for beta-reduction are:

B9 (Beta-Reduction for Quotations)

(λxα . �Bβ�)Aα = �Bβ�.

B11 (Beta-Reduction for Evaluations)

1. (λxα . �Bε�β)xα = �Bε�β .
2. (is-exprβε→o ((λxα . Bε)Aα) ∧ ¬(is-free-inε→ε→o �xα� ((λxα . Bε)Aα))) ⊃

(λxα . �Bε�β)Aα = �(λxα . Bε)Aα�β .

B12 (“Not Free In” means “Not Effective In”)

¬IS-EFFECTIVE-IN(xα,Bβ)
where Bβ is eval-free and xα is not free in Bβ .

B13 (Beta-Reduction for Function Abstractions)

(¬IS-EFFECTIVE-IN(yβ ,Aα) ∨ ¬IS-EFFECTIVE-IN(xα,Bγ)) ⊃
(λxα . λyβ . Bγ)Aα = λyβ . ((λxα . Bγ)Aα)

where xα and yβ are distinct.

Substitution is performed using the properties of beta-reduction as Andrews
does in the proof system for Q0 [3, p. 213]. The following three beta-reduction
cases require discussion:

1. (λxα . λyβ . Bγ)Aα where xα and yβ are distinct.
2. (λxα . �Bβ�)Aα.
3. (λxα . �Bε�β)Aα.

HOL Light QE 221

The first case can normally be reduced when either (1) yβ is not free in Aα

or (2) xα is not free in Bγ . However, due to the Variable Problem mentioned
before, it is only possible to syntactically check whether a “variable is not free
in an expression” when the expression is eval-free. Our solution is to replace the
syntactic notion of “a variable is free in an expression” by the semantic notion of
“a variable is effective in an expression” when the expression is not necessarily
eval-free, and use Axiom B13 to perform the beta-reduction.

“xα is effective in Bβ” means the value of Bβ depends on the value of xα.
Clearly, if Bβ is eval-free, “xα is effective in Bβ” implies “xα is free in Bβ”.
However, “xα is effective in Bβ” is a refinement of “xα is free in Bβ” on eval-
free expressions since xα is free in xα = xα, but xα is not effective in xα = xα.
“xα is effective in Bβ” is expressed in cttqe as IS-EFFECTIVE-IN(xα,Bβ), an
abbreviation for

∃yα . ((λxα . Bβ)yα �= Bβ)

where yα is any variable of type α that differs from xα.
The second case is simple since a quotation cannot be modified by substitu-

tion — it is effectively the same as a constant. Thus beta-reduction is performed
without changing �Bβ� as shown in Axiom B9 above.

The third case is handled by Axioms B11.1 and B11.2. B11.1 deals with the
trivial case when Aα is the bound variable xα itself. B11.2 deals with the other
much more complicated situation. The condition

¬(is-free-inε→ε→o �xα� ((λxα . Bε)Aα))

guarantees that there is no double substitution. is-free-inε→ε→o is a logical con-
stant of cttqe such that is-free-inε→ε→o �xα� �Bβ� says that the variable xα is
free in the (eval-free) expression Bβ .

Thus we see that substitution in cttqe in the presence of evaluations may
require proving semantic side conditions of the following two forms:

1. ¬IS-EFFECTIVE-IN(xα,Bβ).
2. is-free-inε→ε→o �xα� �Bβ�.

2.5 The Three Design Problems

To recap, cttqe solves the three design problems given in Sect. 1. The Evaluation
Problem is avoided by restricting the quotation operator to eval-free expressions
and thus making it impossible to express the liar paradox. The Variable Problem
is overcome by modifying Andrews’ beta-reduction axioms. The Double Substi-
tution Problem is eluded by using a beta-reduction axiom for evaluations that
excludes beta-reductions that embody a double substitution.

222 J. Carette et al.

3 HOL Light

HOL Light [36] is an open-source proof assistant developed by John Harrison.
It implements a logic (HOL) which is a version of Church’s type theory. It
is a simple implementation of the HOL proof assistant [32] written in OCaml
and hosted on GitHub at https://github.com/jrh13/hol-light/. Although it is a
relatively small system, it has been used to formalize many kinds of mathematics
and to check many proofs including the lion’s share of Tom Hales’ proof of the
Kepler conjecture [1].

HOL Light is very well suited to serve as a foundation on which to build an
implementation of cttqe: First, it is an open-source system that can be freely
modified as long as certain very minimal conditions are satisfied. Second, it is
an implementation of a version of simple type theory that is essentially Q0,
the version of Church’s type theory underlying cttqe, plus (1) polymorphic
type variables, (2) an axiom of choice expressed by asserting that the Hilbert
ε operator is a choice (indefinite description) operator, and (3) an axiom of
infinity that asserts that ind, the type of individuals, is infinite [36]. The type
variables in the implemented logic are not a hindrance; they actually facilitate
the implementation of cttqe. The presence of the axioms of choice and infinity
in HOL Light alter the semantics of cttqe without compromising in any way
the semantics of quotation and evaluation. And third, HOL Light supports the
definition of inductive types so that ε can be straightforwardly defined.

4 Implementation

4.1 Overview

HOL Light QE was implemented in four stages:

1. The set of terms was extended so that cttqe expressions could be mapped
to HOL Light terms. This required the introduction of epsilon, the type
of constructions, and term constructors for quotations and evaluations. See
Subsect. 4.2.

2. The proof system was modified to include the machinery in cttqe for rea-
soning about quotations and evaluations. This required adding new rules of
inference and modifying the INST rule of inference that simultaneously sub-
stitutes terms t1, . . . , tn for the free variables x1, . . . , xn in a sequent. See
Subsect. 4.3.

3. Machinery — consisting of HOL function definitions, tactics, and theorems —
was created for supporting reasoning about quotations and evaluations in the
new system. See Subsect. 4.4.

4. Examples were developed in the new system to test the implementation and to
demonstrate the benefits of having quotation and evaluation in higher-order
logic. See Sect. 5.

https://github.com/jrh13/hol-light/

HOL Light QE 223

The first and second stages have been completed; both stages involved modifying
the kernel of HOL Light. The third stage is sufficiently complete to enable our
examples in Sect. 5 to work well, and did not involve any further changes to the
HOL Light kernel. We do expect that adding further examples, which is ongoing,
will require additional machinery but no changes to the kernel.

The HOL Light QE system was developed by the third author under the
supervision of the first two authors on an undergraduate NSERC USRA research
project at McMaster University and is available at

https://github.com/JacquesCarette/hol-light.

It should be further remarked that our fork, from late April 2017, is not fully
up-to-date with respect to HOL Light. In particular, this means that it is best
to compile it with OCaml 4.03.0 and camlp5 6.16, both available from opam.

To run HOL Light QE, execute the following commands in HOL Light QE
top-level directory named hol light:

1) install opam

2) opam init --comp 4.03.0

3) opam install "camlp5 =6.16"

5) opam ‘eval config env ‘

5) cd hol_light

6) make

7) run ocaml via

ocaml -I ‘camlp5 -where ‘ camlp5o.cma

8) #use "hol.ml";;

#use "Constructions/epsilon.ml";;

#use "Constructions/pseudoquotation.ml";;

#use "Constructions/QuotationTactics .ml";;

Each test can be run by an appropriate further #use statement.

4.2 Mapping of CTTqe Expressions to HOL Terms

Tables 1 and 2 illustrate how the cttqe types and expressions are mapped to the
HOL types and terms, respectively. The HOL types and terms are written in the
internal representation employed in HOL Light QE. The type epsilon and the
term constructors Quote and Eval are additions to HOL Light explained below.
Since cttqe does not have type variables, it has a logical constant =α→α→o

Table 1. Mapping of cttqe Types to HOL Types

https://github.com/JacquesCarette/hol-light

224 J. Carette et al.

Table 2. Mapping of cttqe Expressions to HOL Terms

representing equality for each α ∈ T . The members of this family of con-
stants are all mapped to a single HOL constant with the polymorphic type
a ty var->a ty var->bool where a ty var is any chosen HOL type variable.

The other logical constants of cttqe [27, Table 1] are not mapped to primitive
HOL constants. appε→ε→ε, absε→ε→ε, and quoε→ε are implemented by App, Abs,
and Quo, constructors for the inductive type epsilon given below. The remaining
logical constants are predicates on constructions that are implemented by HOL
functions. The cttqe type ε is the type of constructions, the syntactic values
that represent the syntax trees of eval-free expressions. ε is formalized as an
inductive type epsilon. Since types are components of terms in HOL Light, an
inductive type type of syntax values for HOL Light QE types (which are the
same as HOL types) is also needed. Specifically:

define_type "type = TyVar string

| TyBase string

| TyMonoCons string type

| TyBiCons string type type"

define_type "epsilon = QuoVar string type

| QuoConst string type

| App epsilon epsilon

| Abs epsilon epsilon

| Quo epsilon"

Terms of type type denote the syntax trees of HOL Light QE types, while the
terms of type epsilon denote the syntax trees of those terms that are eval-free.

The OCaml type of HOL types in HOL Light QE

type hol_type = Tyvar of string

| Tyapp of string * hol_type list

is the same as in HOL Light, but the OCaml type of HOL terms in
HOL Light QE

HOL Light QE 225

type term = Var of string * hol_type

| Const of string * hol_type

| Comb of term * term

| Abs of term * term

| Quote of term * hol_type

| Hole of term * hol_type

| Eval of term * hol_type

has three new constructors: Quote, Hole, and Eval.
Quote constructs a quotation of type epsilon with components t and α from

a term t of type α that is eval-free. Eval constructs an evaluation of type α with
components t and α from a term t of type epsilon and a type α. Hole is used
to construct “holes” of type epsilon in a quasiquotation as described in [27].
A quotation that contains holes is a quasiquotation, while a quotation without
any holes is a normal quotation. The construction of terms has been modified
to allow a hole (of type epsilon) to be used where a term of some other type is
expected.

The external representation of a quotation Quote(t,ty) is Q t Q. Simi-
larly, the external representation of a hole Hole(t,ty) is H t H. The external
representation of an evaluation Eval(t,ty) is eval t to ty.

4.3 Modification of the HOL Light Proof System

The proof system for cttqe is obtained by extending Q0’s with additional axioms
B1–B13 (see Sect. 2.4). Since Q0 and HOL Light are both complete (with respect
to the semantics of Henkin-style general models), HOL Light includes the rea-
soning capabilities of the proof system for Q0 but not the reasoning capabilities
embodied in the B1–B13 axioms, which must be implemented in HOL Light QE
as follows. First, the logical constants defined by Axioms B1–B4, B5, and B7
are defined in HOL Light QE as HOL functions. Second, the no junk (B6) and

Table 3. New Inference Rules in HOL Light QE

226 J. Carette et al.

no confusion (B4) requirements for ε are automatic consequences of defining
epsilon as an inductive type. Third, Axiom B9 is implemented directly in the
HOL Light code for substitution. Fourth, the remaining axioms, B8 and B10–
B13 are implemented by new rules of inference in as shown in Table 3.

The INST rule of inference is also modified. This rule simultaneously substi-
tutes a list of terms for a list of variables in a sequent. The substitution function
vsubst defined in the HOL Light kernel is modified so that it works like substi-
tution (via beta-reduction rules) does in cttqe. The main changes are:

1. A substitution of a term t for a variable x in a function abstraction Abs(y,s)
is performed as usual if (1) t is eval-free and x is not free in t, (2) there is
a theorem that says x is not effective in t, (3) s is eval-free and x is not free
in s, or (4) there is a theorem that says x is not effective in s. Otherwise, if
s or t is not eval-free, the substitution fails and if s and t are eval-free, the
variable x is renamed and the substitution is continued.

2. A substitution of a term t for a variable x in a quotation Quote(e,ty) where
e does not contain any holes (i.e., terms of the form Hole(e’,ty’)) returns
Quote(e,ty) unchanged (as stated in Axiom B9). If e does contain holes,
then t is substituted for the variable x in the holes in Quote(e,ty).

3. A substitution of a term t for a variable x in an evaluation Eval(e,ty) returns
(1) Eval(e,ty) when t is x and (2) the function abstraction application
Comb(Abs(x,Eval(e,ty)),t) otherwise. (1) is valid by Axiom B11.1. When
(2) happens, this part of the substitution is finished and the user can possibly
continue it by applying BETA REVAL, the rule of inference corresponding to
Axiom B11.2.

4.4 Creation of Support Machinery

The HOL Light QE system contains a number of HOL functions, tactics, and
theorems that are useful for reasoning about constructions, quotations, and eval-
uations. An important example is the HOL function isExprType that imple-
ments the cttqe family of logical constants is-exprαε→o where α ranges over
members of T . This function takes terms s1 and s1 of type epsilon and type,
respectively, and returns true iff s1 represents the syntax tree of a term t, s2
represents the syntax tree of a type α, and t is of type α.

4.5 Metatheorems

We state three important metatheorems about HOL Light QE. The proofs of
these metatheorems are straightforward but also tedious. We label the metathe-
orems as conjectures since their proofs have not yet been fully written down.

Conjecture 1. Every formula provable in HOL Light’s proof system is also prov-
able in HOL Light QE’s proof system.

Proof sketch. HOL Light QE’s proof system extends HOL Light’s proof system
with new machinery for reasoning about quotations and evaluations. Thus every
HOL Light proof remains valid in HOL Light QE. �

HOL Light QE 227

Note: All the proofs loaded with the HOL Light system continue to be valid
when loaded in HOL Light QE. A further test for the future would be to load a
variety of large HOL Light proofs in HOL Light QE to check that their validity
is preserved.

Conjecture 2. The proof system for HOL Light QE is sound for all formulas and
complete for all eval-free formulas.

Proof sketch. The analog of this statement for cttqe is proved in [27]. It should
be possible to prove this conjecture by just imitating the proof for cttqe. �

Conjecture 3. HOL Light QE is a model-theoretic conservative extension of
HOL Light.

Proof sketch. A model of HOL Light QE is a model of HOL Light with def-
initions of the type ε and several constants and interpretations for the
(quasi)quotation and evaluation operators. These additions do not impinge upon
the semantics of HOL Light; hence every model of HOL Light can be expanded
to a model of the HOL Light QE, which is the meaning of the conjecture. �

5 Examples

We present two examples that illustrate its capabilities by expressing, instanti-
ating, and proving formula schemas in HOL Light QE.

5.1 Law of Excluded Middle

The law of excluded middle (LEM) is expressed as the formula schema A ∨ ¬A
where A is a syntactic variable ranging over all formulas. Each instance of LEM
is a theorem of HOL, but LEM cannot be expressed in HOL as a single formula.
However, LEM can be formalized in cttqe as the universal statement

∀xε . is-exproε→o xε ⊃ �xε�o ∨ ¬�xε�o.

An instance of LEM may be written in HOL Light QE as

‘!x:epsilon. isExprType (x:epsilon) (TyBase "bool")

==> ((eval x to bool) \/ ~(eval x to bool))‘

that is readily proved. Instances of this are obtained by applying INST followed
by BETA REVAL, the second beta-reduction rule for evaluations.

5.2 Induction Schema

The (first-order) induction schema for Peano arithmetic is usually expressed as
the formula schema

(P (0) ∧ ∀x . (P (x) ⊃ P (S(x)))) ⊃ ∀x . P (x)

228 J. Carette et al.

where P (x) is a parameterized syntactic variable that ranges over all formulas
of first-order Peano arithmetic. If we assume that the domain of the type ι
is the natural numbers and C includes the usual constants of natural number
arithmetic (including a constant Sι→ι representing the successor function), then
this schema can be formalized in cttqe as

∀ fε . ((is-exprι→o
ε→o fε ∧ is-peanoε→o fε) ⊃

((�fε�ι→o 0 ∧ (∀xι . �fε�ι→o xι ⊃ �fε�ι→o (Sι→ι xι))) ⊃ ∀xι . �fε�ι→o xι))

where is-peanoε→o fε holds iff fε represents the syntax tree of a predicate of
first-order Peano arithmetic. The induction schema for Presburger arithmetic is
exactly the same as the induction schema for Peano arithmetic except that the
predicate is-peanoε→o is replaced by an appropriate predicate is-presburgerε→o.

It should be noted that the induction schemas for Peano and Presburger
arithmetic are weaker that the full induction principle for the natural numbers:

∀ pι→o . ((pι→o 0 ∧ (∀xι . pι→o xι ⊃ pι→o (Sι→ι xι))) ⊃ ∀xι . pι→o xι)

The full induction principle states that induction holds for all properties of the
natural numbers (which is an uncountable set), while the induction schemas for
Peano and Presburger arithmetic hold only for properties that are definable in
Peano and Presburger arithmetic (which are countable sets).

The full induction principle is expressed in HOL Light as the theorem

‘!P. P(0) / (!n. P(n) ==> P(SUC n)) ==> !n. P n‘

named num INDUCTION. However, it is not possible to directly express the Peano
and Presburger induction schemas in HOL Light without adding new rules of
inference to its kernel.

The induction schema for Peano arithmetic can be written in HOL Light QE
just as easily as in cttqe:

‘!f:epsilon.

(isExprType (f:epsilon) (TyBiCons "fun" (TyVar "num")

(TyBase "bool")))

/\ (isPeano f)

==>

(eval (f:epsilon) to (num ->bool)) 0

/\ (!n:num. (eval (f:epsilon) to (num ->bool)) n

==> (eval (f:epsilon) to (num ->bool)) (SUC n))

==> (!n:num. (eval (f:epsilon) to (num ->bool)) n)‘

peanoInduction is proved from num INDUCTION in HOL Light QE by:

1. Instantiate num INDUCTION with ‘P:num->bool’ to obtain indinst.
2. Prove and install the theorem nei peano that says the variable (n:num) is

not effective in (eval (f:epsilon) to (num->bool)).
3. Logically reduce peanoInduction, then prove the result by instantiat-

ing ‘P:num->bool’ in indinst with ‘eval (f:epsilon) to (num->bool)’
using the INST rule, which requires the previously proved theorem nei peano.

HOL Light QE 229

The induction schema for Presburger arithmetic is stated and proved in the same
way. By being able to express the Peano and Presburger induction schemas, we
can properly define the first-order theories of Peano arithmetic and Presburger
arithmetic in HOL Light QE.

6 Related Work

Quotation, evaluation, reflection, reification, issues of intensionality versus exten-
sionality, metaprogramming and metareasoning each have extensive literature —
sometimes in more than one field. For example, one can find a vast literature on
reflection in logic, programming languages, and theorem proving. Due to space
restrictions, we cannot do justice to the full breadth of issues. For a full discus-
sion, please see the related work section in [27]. The surveys of Costantini [23],
Harrison [35] are excellent. From a programming perspective, the discussion and
extensive bibliography of Kavvos’ D.Phil. thesis [44] are well worth reading.

Focusing just on interactive proof assistants, we find that Boyer and Moore
developed a global infrastructure [7] for incorporating symbolic algorithms into
Nqthm [8]. This approach is also used in ACL2 [43], the successor to Nqthm;
see [41]. Over the last 30 years, the Nuprl group has produced a large body of
work on metareasoning and reflection for theorem proving [2,4,20,40,45,47,57]
that has been implemented in the Nuprl [21] and MetaPRL [39] systems. Proof
by reflection has become a mainstream technique in the Coq [22] proof assistant
with the development of tactics based on symbolic computations like the Coq
ring tactic [6,33] and the formalizations of the four color theorem [29] and the
Feit-Thompson odd-order theorem [30]. See [6,9,14,31,33,42,49] for a selection
of the work done on using reflection in Coq. Many other systems also support
metareasoning and reflection: Agda [48,55,56], Idris [15–17] Isabelle/HOL [13],
Lean [24], Maude [19], PVS [37], reFLect [34,46], and Theorema [10,28].

The semantics of the quotation operator �·� is based on the disquotational
theory of quotation [11]. According to this theory, a quotation of an expression
e is an expression that denotes e itself. In cttqe, �Aα� denotes a value that
represents the syntactic structure of Aα. Polonsky [50] presents a set of axioms
for quotation operators of this kind. Other theories of quotation have been pro-
posed — see [11] for an overview. For instance, quotation can be viewed as an
operation that constructs literals for syntactic values [52].

It is worth quoting Boyer and Moore [7] here:

The basic premise of all work on extensible theorem-provers is that it
should be possible to add new proof techniques to a system without endan-
gering the soundness of the system. It seems possible to divide current work
into two broad camps. In the first camp are those systems that allow the
introduction of arbitrary new procedures, coded in the implementation
language, but require that each application of such a procedure produce
a formal proof of the correctness of the transformation performed. In the

230 J. Carette et al.

second camp are those systems that contain a formal notion of what it
means for a proof technique to be sound and require a machine-checked
proof of the soundness of each new proof technique. Once proved, the new
proof technique can be used without further justification.

This remains true to this day. The systems in the LCF tradition (Isabelle/HOL,
Coq, HOL Light) are in the “first camp”, while Nqthm, ACL2, Nuprl, MetaPRL,
Agda, Idris, Lean, Maude and Theorema, as well as our approach broadly fall
in the “second camp”. However, all systems in the first camp have started to
offer some reflection capabilities on top of their tactic facilities. Below we give
some additional details for each system, leveraging information from the papers
already cited above as well as the documentation of each system2.

SSReflect [31] (small scale reflection) is a Coq extension that works by locally
reflecting the syntax of particular kinds of objects — such as decidable predicates
and finite structures. It is the pervasive use of decidability and computability
which gives SSReflect its power, and at the same time, its limitations. An exten-
sion to PVS allows reasoning much in the style of SSReflect. Isabelle/HOL offers
a nonlogical reify function (aka quotation), while its interpret function is in
the logic; it uses global datatypes to represent HOL terms.

The approach for the second list of systems also varies quite a bit. Nqthm,
ACL2, Theorema (as well as now HOL Light QE) have global quotation and
evaluation operators in the logic, as well as careful restrictions on their use to
avoid paradoxes. Idris also has global quotation and evaluation, and the totality
checker is used to avoid paradoxes. MetaPRL has evaluation but no global quo-
tation. Agda has global quotation and evaluation, but their use are mediated by
a built-in TC (TypeChecking) monad which ensures soundness. Lean works sim-
ilarly: all reflection must happen in the tactic monad, from which one cannot
escape. Maude appears to offer a global quotation operator, but it is unclear if
there is a global evaluation operator; quotations are offered by a built-in module,
and those are extra-logical.

7 Conclusion

cttqe [26,27] is a version of Church’s type theory with global quotation and
evaluation operators that is intended for defining, applying, proving properties
about syntax-based mathematical algorithms (SBMAs), algorithms that manip-
ulate expressions in a mathematically meaningful ways. HOL Light QE is an
implementation of cttqe obtained by modifying HOL Light [36], a compact
implementation of the HOL proof assistant [32]. In this paper, we have pre-
sented the design and implementation of HOL Light QE. We have discussed the
challenges that needed to be overcome. And we have given some examples that
test the implementation and show the benefits of having quotation and evalua-
tion in higher-order logic.

2 And some personal communication with some of system authors.

HOL Light QE 231

The implementation of HOL Light QE was very straightforward since the
logical issues were worked out in cttqe and HOL Light provides good support
for inductive types. Pleasingly, and surprisingly, no new issues arose during the
implementation. HOL Light QE works in exactly the same way as HOL Light
except that, in the presence of evaluations, the instantiation of free variables may
require proving side conditions that say (1) a variable is not effective in a term or
(2) that a variable represented by a construction is not free in a term represented
by a construction (see Subsects. 2.4 and 4.3). This is the only significant cost we
see for using HOL Light QE in place of HOL Light.

HOL Light QE provides a built-in global reflection infrastructure [27]. This
infrastructure can be used to reason about the syntactic structure of terms and,
as we have shown, to express formula schemas as single formulas. More impor-
tantly, the infrastructure provides the means to define, apply, and prove proper-
ties about SBMAs. An SBMA can be defined as a function that manipulates con-
structions. The meaning formula that specifies its mathematical meaning can be
stated using the evaluation of constructions. And the SBMA’s meaning formula
can be proved from the SBMA’s definition. In other words, the infrastructure
provides a unified framework for formalizing SBMAs in a proof assistant.

We plan to continue the development of HOL Light QE and to show that it
can be effectively used to develop SBMAs as we have just described. In partic-
ular, we intend to formalize in HOL Light QE the example on the symbolic dif-
ferentiation we formalized in cttqe [27]. This will require defining the algorithm
for symbolic differentiation, writing its meaning formula, and finally proving the
meaning formula from the algorithm’s definition and properties about deriva-
tives. We also intend, down the road, to formalize in HOL Light QE the graph
of biform theories encoding natural number of arithmetic described in [12].

References

1. Hales, T., et al.: A formal proof of the Kepler conjecture. Forum Math. Pi 5 (2017)
2. Allen, S.F., Constable, R.L., Howe, D.J., Aitken, W.E.: The semantics of reflected

proof. In: Proceedings of the Fifth Annual Symposium on Logic in Computer Sci-
ence (LICS 1990), pp. 95–105. IEEE Computer Society (1990)

3. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof, 2nd edn. Kluwer, Dordrecht (2002)

4. Barzilay, E.: Implementing Reflection in Nuprl. Ph.D. thesis. Cornell University
(2005)

5. Bawden, A.: Quasiquotation in Lisp. In: Danvy, O. (ed.) Proceedings of the 1999
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pp. 4–12 (1999), Technical report BRICS-NS-99-1, University of
Aarhus (1999)

6. Boutin, S.: Using reflection to build efficient and certified decision procedures. In:
Abadi, M., Ito, T. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–529. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0014565

7. Boyer, R., Moore, J.: Metafunctions: proving them correct and using them effi-
ciently as new proof procedures. In: Boyer, R., Moore, J. (eds.) The Correctness
Problem in Computer Science, pp. 103–185. Academic Press, New York (1981)

https://doi.org/10.1007/BFb0014565

232 J. Carette et al.

8. Boyer, R., Moore, J.: A Computational Logic Handbook. Academic Press,
San Diego (1988)

9. Braibant, T., Pous, D.: Tactics for reasoning modulo AC in Coq. In: Jouannaud,
J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 167–182. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25379-9 14

10. Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa,
K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema:
towards computer-aided mathematical theory exploration. J. Appl. Logic 4, 470–
504 (2006)

11. Cappelen, H., LePore, E.: Quotation. In: Zalta, E.N. (ed.) The Stanford Encyclo-
pedia of Philosophy, Spring 2012

12. Carette, J., Farmer, W.M.: Formalizing mathematical knowledge as a biform theory
graph: a case study. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke,
O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 9–24. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6 2

13. Chaieb, A., Nipkow, T.: Proof synthesis and reflection for linear arithmetic. J.
Autom. Reason. 41, 33–59 (2008)

14. Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, Cambridge (2013)

15. Christiansen, D., Brady, E.: Elaborator reflection: Extending Idris in Idris. SIG-
PLAN Not. 51, 284–297 (2016). https://doi.org/10.1145/3022670.2951932, http://
doi.acm.org/10.1145/3022670.2951932

16. Christiansen, D.R.: Type-directed elaboration of quasiquotations: a high-level syn-
tax for low-level reflection. In: Proceedings of the 26nd 2014 International Sym-
posium on Implementation and Application of Functional Languages, IFL 2014,
pp. 1:1–1:9. ACM, New York (2014). https://doi.org/10.1145/2746325.2746326,
http://doi.acm.org/10.1145/2746325.2746326

17. Christiansen, D.R.: Practical Reflection and Metaprogramming for Dependent
Types. Ph.D. thesis. IT University of Copenhagen (2016)

18. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5, 56–68
(1940)

19. Clavel, M., Meseguer, J.: Reflection in conditional rewriting logic. Theoret. Com-
put. Sci. 285, 245–288 (2002)

20. Constable, R.L.: Using reflection to explain and enhance type theory. In: Schwicht-
enberg, H. (ed.) Proof and Computation. NATO ASI Series, vol. 139, pp. 109–144.
Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-79361-5 3

21. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F.,
Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki,
J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, Englewood Cliffs (1986)

22. Coq Development Team: The Coq Proof Assistant Reference Manual, Version 8.5
(2016). https://coq.inria.fr/distrib/current/refman/

23. Costantini, S.: Meta-reasoning: a survey. In: Kakas, A.C., Sadri, F. (eds.) Com-
putational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp.
253–288. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45632-5 11

24. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogramming
framework for formal verification. Proc. ACM Program. Lang. 1, 34 (2017)

25. Farmer, W.M.: The formalization of syntax-based mathematical algorithms using
quotation and evaluation. In: Carette, J., Aspinall, D., Lange, C., Sojka, P.,
Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 35–50. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39320-4 3

https://doi.org/10.1007/978-3-642-25379-9_14
https://doi.org/10.1007/978-3-319-62075-6_2
https://doi.org/10.1145/3022670.2951932
http://doi.acm.org/10.1145/3022670.2951932
http://doi.acm.org/10.1145/3022670.2951932
https://doi.org/10.1145/2746325.2746326
http://doi.acm.org/10.1145/2746325.2746326
https://doi.org/10.1007/978-3-642-79361-5_3
https://coq.inria.fr/distrib/current/refman/
https://doi.org/10.1007/3-540-45632-5_11
https://doi.org/10.1007/978-3-642-39320-4_3

HOL Light QE 233

26. Farmer, W.M.: Incorporating quotation and evaluation into church’s type theory:
syntax and semantics. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura,
L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 83–98. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-42547-4 7

27. Farmer, W.M.: Incorporating quotation and evaluation into Church’s type theory.
Inf. Comput. 260C, 9–50 (forthcoming, 2018)

28. Giese, M., Buchberger, B.: Towards practical reflection for formal mathematics.
RISC Report Series 07–05, Research Institute for Symbolic Computation (RISC).
Johannes Kepler University (2007)

29. Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 333–333. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87827-8 28

30. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2 14

31. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J.
Formalized Reason. 3, 95–152 (2010)

32. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, New York (1993)

33. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in
Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113.
Springer, Heidelberg (2005). https://doi.org/10.1007/11541868 7

34. Grundy, J., Melham, T., O’Leary, J.: A reflective functional language for hardware
design and theorem proving. Funct. Program. 16 (2006)

35. Harrison, J.: Metatheory and reflection in theorem proving: a survey and cri-
tique. Technical Report CRC-053. SRI Cambridge (1995). http://www.cl.cam.ac.
uk/∼jrh13/papers/reflect.ps.gz

36. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03359-9 4

37. von Henke, F.W., Pfab, S., Pfeifer, H., Rueß, H.: Case studies in meta-level theorem
proving. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 461–
478. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055152

38. Henkin, L.: Completeness in the theory of types. J. Symbolic Logic 15, 81–91
(1950)

39. Hickey, J., Nogin, A., Constable, R.L., Aydemir, B.E., Barzilay, E., Bryukhov, Y.,
Eaton, R., Granicz, A., Kopylov, A., Kreitz, C., Krupski, V.N., Lorigo, L., Schmitt,
S., Witty, C., Yu, X.: MetaPRL – a modular logical environment. In: Basin, D.,
Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 287–303. Springer, Heidelberg
(2003). https://doi.org/10.1007/10930755 19

40. Howe, D.: Reflecting the semantics of reflected proof. In: Aczel, P., Simmons,
H., Wainer, S. (eds.) Proof Theory, pp. 229–250. Cambridge University Press,
Cambridge (1992)

41. Hunt Jr., W.A., Kaufmann, M., Krug, R.B., Moore, J.S., Smith, E.W.: Meta rea-
soning in ACL2. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603,
pp. 163–178. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868 11

42. James, D.W.H., Hinze, R.: A reflection-based proof tactic for lattices in Coq. In:
Horváth, Z., Zsók, V., Achten, P., Koopman, P.W.M. (eds.) Proceedings of the
Tenth Symposium on Trends in Functional Programming (TFP 2009). Trends in
Functional Programming, vol. 10, pp. 97–112. Intellect (2009)

https://doi.org/10.1007/978-3-319-42547-4_7
https://doi.org/10.1007/978-3-540-87827-8_28
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/11541868_7
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.ps.gz
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.ps.gz
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/BFb0055152
https://doi.org/10.1007/10930755_19
https://doi.org/10.1007/11541868_11

234 J. Carette et al.

43. Kaufmann, M., Moore, J.S.: An industrial strength theorem prover for a logic based
on Common Lisp. IEEE Trans. Softw. Eng. 23, 203–213 (1997)

44. Kavvos, G.A.: On the Semantics of Intensionality and Intensional Recursion,
December 2017. http://arxiv.org/abs/1712.09302

45. Knoblock, T.B., Constable, R.L.: Formalized metareasoning in type theory. In:
Proceedings of the Symposium on Logic in Computer Science (LICS 1986), pp.
237–248. IEEE Computer Society (1986)

46. Melham, T., Cohn, R., Childs, I.: On the semantics of ReFLect as a basis for a
reflective theorem prover. Computing Research Repository (CoRR) abs/1309.5742
(2013). http://arxiv.org/abs/1309.5742

47. Nogin, A., Kopylov, A., Yu, X., Hickey, J.: A computational approach to reflec-
tive meta-reasoning about languages with bindings. In: Pollack, R. (ed.) ACM
SIGPLAN International Conference on Functional Programming, Workshop on
Mechanized Reasoning about Languages with Variable Binding (MERLIN 2005),
pp. 2–12. ACM (2005)

48. Norell, U.: Dependently typed programming in Agda. In: Kennedy, A., Ahmed, A.
(eds.) Proceedings of TLDI 2009, pp. 1–2. ACM (2009)

49. Oostdijk, M., Geuvers, H.: Proof by computation in the Coq system. Theor. Com-
put. Sci. 272 (2002)

50. Polonsky, A.: Axiomatizing the quote. In: Bezem, M. (ed.) Computer Science Logic
(CSL 2011) – 25th International Workshop/20th Annual Conference of the EACSL.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 12, pp. 458–469.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)

51. Quine, W.V.O.: Mathematical Logic, Revised edn. Harvard University Press,
Cambridge (2003)

52. Rabe, F.: Generic literals. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F.,
Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 102–117. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-20615-8 7

53. Tarski, A.: The concept of truth in formalized languages. In: Corcoran, J. (ed.)
Logic, Semantics, Meta-Mathematics, 2nd edn., pp. 152–278. Hackett (1983)

54. Völker, N.: HOL2P - a system of classical higher order logic with second order
polymorphism. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol.
4732, pp. 334–351. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74591-4 25

55. van der Walt, P.: Reflection in Agda. Master’s thesis, Universiteit Utrecht (2012)
56. van der Walt, P., Swierstra, W.: Engineering proof by reflection in agda. In: Hinze,

R. (ed.) IFL 2012. LNCS, vol. 8241, pp. 157–173. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41582-1 10

57. Yu, X.: Reflection and Its Application to Mechanized Metareasoning about Pro-
gramming Languages. Ph.D. thesis. California Institute of Technology (2007)

http://arxiv.org/abs/1712.09302
http://arxiv.org/abs/1309.5742
https://doi.org/10.1007/978-3-319-20615-8_7
https://doi.org/10.1007/978-3-540-74591-4_25
https://doi.org/10.1007/978-3-540-74591-4_25
https://doi.org/10.1007/978-3-642-41582-1_10

Efficient Mendler-Style
Lambda-Encodings in Cedille

Denis Firsov(B), Richard Blair, and Aaron Stump

Department of Computer Science, The University of Iowa, Iowa City, IA, USA
{denis-firsov,richard-blair,aaron-stump}@uiowa.edu

Abstract. It is common to model inductive datatypes as least fixed
points of functors. We show that within the Cedille type theory we can
relax functoriality constraints and generically derive an induction prin-
ciple for Mendler-style lambda-encoded inductive datatypes, which arise
as least fixed points of covariant schemes where the morphism lifting
is defined only on identities. Additionally, we implement a destructor
for these lambda-encodings that runs in constant-time. As a result, we
can define lambda-encoded natural numbers with an induction principle
and a constant-time predecessor function so that the normal form of a
numeral requires only linear space. The paper also includes several more
advanced examples.

Keywords: Type theory · Lambda-encodings · Cedille
Induction principle · Predecessor function · Inductive datatypes

1 Introduction

It is widely known that inductive datatypes may be defined in pure impredicative
type theory. For example, Church encodings identify each natural number n with
its iterator λ s. λ z. sn z. The Church natural numbers can be typed in System F
by means of impredicative polymorphism:

cNat � � = ∀ X : �. (X → X) → X → X.

The first objection to lambda-encodings is that it is provably impossible to derive
an induction principle in second-order dependent type theory [1]. As a conse-
quence, most languages come with a built-in infrastructure for defining inductive
datatypes and their induction principles. Here are the definitions of natural num-
bers in Agda and Coq:

data Nat : Set Inductive nat : Type :=
zero : Nat | 0 : nat
suc : Nat → Nat | S : nat → nat.

Coq will automatically generate the induction principle for nat, and in Agda it
can be derived by pattern matching and explicit structural recursion.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 235–252, 2018.
https://doi.org/10.1007/978-3-319-94821-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_14&domain=pdf

236 D. Firsov et al.

Therefore, we can ask if it is possible to extend the Calculus of Constructions
with typing constructs that make induction derivable for lambda-encoded
datatypes. Stump gave a positive answer to this question by introducing the
Calculus of Dependent Lambda Eliminations (CDLE) [2]. CDLE is a Curry-
style Calculus of Constructions extended with implicit products, intersection
types, and primitive heterogeneous equality. Stump proved that natural number
induction is derivable in this system for lambda-encoded natural numbers. Later,
we generalized this work by deriving induction for lambda-encodings of inductive
datatypes which arise as least fixed points of functors [3]. Moreover, we observed
that the proof of induction for Mendler-style lambda-encoding relied only on the
identity law of functors. In this paper, we exploit this observation to define a
new class of covariant schemes, which includes functors, and induces a larger
class of inductive datatypes supporting derivable induction.

Another objection to lambda-encodings is their computational inefficiency.
For example, computing the predecessor of a Church encoded Peano natural
provably requires linear time [4]. The situation was improved by Parigot who
proposed a new lambda-encoding of numerals with a constant-time predecessor,
but the size of the number n is exponential O(2n) [5]. Later, the situation was
improved further by the Stump-Fu encoding, which supports a constant-time
predecessor and reduces the size of the natural number n to O(n2) [6]. In this
paper, we show how to develop a constant-time predecessor within CDLE for a
Mendler-style lambda-encoded naturals that are linear in space.

This paper makes the following technical contributions:

1. We introduce a new kind of parameterized scheme using identity mappings
(function lifting defined only on identities). We show that every functor has
an associated identity mapping, but not vice versa.

2. We use a Mendler-style lambda-encoding to prove that every scheme with an
identity mapping induces an inductive datatype. Additionally, we generically
derive an induction principle for these datatypes.

3. We implement a generic constant-time destructor of Mendler-style lambda-
encoded inductive datatypes. To the best of our knowledge, we offer a first
example of typed lambda-encoding of inductive datatypes with derivable
induction and a constant-time destructor where normal forms of data require
linear space.

4. We give several examples of concrete datatypes defined using our develop-
ment. We start by giving a detailed description of lambda-encoded naturals
with an induction principle and a constant-time predecessor function that
only requires linear space to encode a numeral. We also give examples of
infinitary datatypes. Finally, we present an inductive datatype that arises
as a least fixed point of a scheme that is not a functor, but has an identity
mapping.

2 Background

In this section, we briefly summarize the main features of Cedille’s type theory.
For full details on CDLE, including semantics and soundness results, please see

Efficient Mendler-Style Lambda-Encodings in Cedille 237

the previous papers [2,7]. The main metatheoretic property proved in the previ-
ous work is logical consistency: there are types which are not inhabited. CDLE
is an extrinsic (i.e., Curry-style) type theory, whose terms are exactly those of
the pure untyped lambda calculus (with no additional constants or constructs).
The type-assignment system for CDLE is not subject-directed, and thus cannot
be used directly as a typing algorithm. Indeed, since CDLE includes Curry-style
System F as a subsystem, type assignment is undecidable [8]. To obtain a usable
type theory, Cedille thus has a system of annotations for terms, where the anno-
tations contain sufficient information to type terms algorithmically. But true
to the extrinsic nature of the theory, these annotations play no computational
role. Indeed, they are erased both during compilation and before formal reason-
ing about terms within the type theory, in particular by definitional equality
(see Fig. 1).

Fig. 1. Introduction, elimination, and erasure rules for additional type constructs

CDLE extends the (Curry-style) Calculus of Constructions (CC) with
primitive heterogeneous equality, intersection types, and implicit products:

– t1 � t2 , a heterogeneous equality type. The terms t1 and t2 are required
to be typed, but need not have the same type. We introduce this with a
constant β which erases to λ x. x (so our type-assignment system has no
additional constants, as promised); β proves t � t for any typeable term t .
Combined with definitional equality, β proves t1 � t2 for any βη-equal t1 and
t2 whose free variables are all declared in the typing context. We eliminate
the equality type by rewriting, with a construct ρ t’− t. Suppose t’ proves
t1 � t2 and we synthesize a type T for t, where T has several occurrences
of terms definitionally equal to t1. Then the type synthesized for ρ t’ − t is
T except with those occurrences replaced by t2. Note that the types of the
terms are not part of the equality type itself, nor does the elimination rule
require that the types of the left-hand and right-hand sides are the same to
do an elimination.

238 D. Firsov et al.

– ι x : T. T’, the dependent intersection type of Kopylov [9]. This is the type
for terms t which can be assigned both the type T and the type [t/x]T’,
the substitution instance of T’ by t. There are constructs t.1 and t.2 to
select either the T or [t.1/x]T’ view of a term t of type ι x : T. T’. We
introduce a value of ι x : T. T’ by construct [t1, t2 {p}], where t1 has type
T (algorithmically), t2 has type [t/x]T’, and p proves t1 � t2.

– ∀ x : T. T’, the implicit product type of Miquel [10]. This can be thought
of as the type for functions which accept an erased input of type x : T, and
produce a result of type T’. There are term constructs Λ x. t for introducing
an implicit input x, and t -t’ for instantiating such an input with t’. The
implicit arguments exist just for purposes of typing so that they play no
computational role and equational reasoning happens on terms from which
the implicit arguments have been erased.

It is important to understand that the described constructs are erased before
the formal reasoning, according to the erasure rules in Fig. 1.

We have implemented CDLE in a tool called Cedille, which we have used to
typecheck the developments of this paper. The pre-release version of Cedille and
the Cedille code accompanying this paper could be found here:

http://firsov.ee/efficient-lambda/

3 Preliminaries

We skip the details of the lambda-encoded implementation of basic datatypes
like Unit, Empty, sums (X + Y), and dependent sums (Σ x : X. Y x), for which
the usual introduction and elimination rules are derivable in Cedille.

In this paper, we use syntactical simplifications to improve readability. In
particular, we hide the type arguments in the cases when they are unambiguous.
For example, if x : X and y : Y then we write pair x y instead of fully type-
annotated pair X Y x y. The current version of Cedille requires fully annotated
terms.

3.1 Multiple Types of Terms

CDLE’s dependent intersection types allow propositionally equal values to be
intersected. Given x : X, y : Y x, and a proof p of x � y, we can introduce
an intersection value v := [x, y {p}] of type ι x : X. Y x. Every intersection
has two “views”: the first view v.1 has type X and the second view v.2 has type
Y v.1. The term [x, y {p}] erases to x according to the erasure rules in
Fig. 1. This allows us to see x as having two distinct types, namely X and Y x:

Indeed, the definition of phi erases to the term λ x. x. Hence, phi x -y -p
beta-reduces to x and has type Y x (dash denotes the application of implicitly

http://firsov.ee/efficient-lambda/

Efficient Mendler-Style Lambda-Encodings in Cedille 239

quantified arguments). Note that Π x. X. T is the usual “explicit” dependent
function space.

In our setting, we implemented the phi combinator by utilizing propositional
intersection types that allow us to intersect provably equal terms. The converse
is also possible: phi can be taken as a language primitive and then used to derive
propositional intersection types from definitional intersection types, where only
definitionally equal values are allowed to be intersected (this variation of CDLE
is described and used in [11]).

3.2 Identity Functions

In our setting, it is possible to implement a function of type X → Y so that it
erases to term λ x. x where X is different from Y. The simplest example is the
first (or second) “view” from an intersection value:

Indeed, according to the erasure rules view1 erases to the term λ x. x. We
introduce a type Id X Y, which is the set of all functions from X to Y that erase
to the identity function (λ x. x):

Introduction. The importance of the previously implemented combinator phi
is that it allows to introduce an identity function Id X Y from any extensional
identity f : X → Y (i.e., x � f x for any x):

Elimination. The identity function Id X Y allows us to see values of type X as
also having type Y. The implementation is in terms of phi combinator:

The subterm ρ (π2 c) − β proves x � π1 c x, where πi is the i-th pro-
jections from a dependent sum. Observe that elimId itself erases to λ x. x,
hence elimId -c x � x by beta-reduction. In other words, an identity function
Id X Y allows x : X to be seen as having types X and Y at the same time.

3.3 Identity Mapping

A scheme F : � → � is a functor if it comes equipped with a function fmap
that satisfies the identity and composition laws:

240 D. Firsov et al.

However, it is simple to define a covariant scheme for which the function fmap
cannot be implemented (below, x1 �= x2 is shorthand for x1 � x2 → Empty):

We introduce schemes with identity mappings as a new class of parameterized
covariant schemes. An identity mapping is a lifting of identity functions:

Intuitively, IdMapping F is similar to fmap of functors, but it needs to be
defined only on identity functions. The identity law is expressed as a requirement
that an identity function of type Id X Y is mapped to an identity function of
type Id (F X) (F Y).

Clearly, every functor induces an identity mapping (by the application of
intrId to fmap and its identity law):

However, UneqPair is an example of scheme which is not a functor, but has
an identity mapping (see example in Sect. 6.3).

In the rest of the paper we show that every identity mapping IdMapping
F induces an inductive datatype which is a least fixed point of F. Addition-
ally, we generically derive an induction principle and implement a constant-time
destructor for these datatypes.

4 Inductive Datatypes from Identity Mappings

In our previous paper, we used Cedille to show how to generically derive an
induction principle for Mendler-style lambda-encoded datatypes that arise as
least fixed points of functors [3]. In this section, we revisit this derivation to
show that it is possible to relax functoriality constraints and only assume that
the underlying signature scheme is accompanied by an identity mapping.

4.1 Basics of Mendler-Style Encoding

In this section, we investigate the standard definitions of Mendler-style
F-algebras that are well-defined for any unrestricted scheme F : � → �. To
reduce the notational clutter, we assume that F : � → � is a global (module)
parameter:

In the abstract setting of category theory, a Mendler-style F-algebra is a pair
(X,Φ) where X is an object (i.e., the carrier) in C and Φ : C(−,X) → C(F −,X)
is a natural transformation. In the concrete setting of Cedille, objects are types,

Efficient Mendler-Style Lambda-Encodings in Cedille 241

arrows are functions, and natural transformations are polymorphic functions.
Therefore, Mendler-style F-algebras are defined as follows:

Uustalu and Vene showed that initial Mendler-style F-algebras offer an alter-
native categorical model of inductive datatypes [12]. The carrier of an initial
F-algebra is an inductive datatype that is a least fixed point of F. It is known
that if F is a positive scheme then the least fixed point of it may be implemented
in terms of universal quantification [13]:

In essence, this definition identifies inductive datatypes with iterators and
every function on FixM is to be computed by iteration.

The natural transformation of the initial Mendler-style F-algebra denotes the
collection of constructors of its carrier [12]. In our setting, the initial Mendler-
style F-algebra AlgM FixM is not definable because F is not a functor [3]. Instead,
we express the collection of constructors of datatype FixM as a conventional
F-algebra F FixM → FixM:

The function inFixM is of crucial importance because it expresses construc-
tors of FixM without requirements of functoriality on F : � → �.

It is provably impossible to define the mutual inverse of inFixM (destructor
of FixM) without introducing additional constraints on F. Assume the existence
of function outFixM (which need not be an inverse of inFixM), typed as follows:

Next, recall that in the impredicative setting the empty type is encoded as
∀ X : � . X (its inhabitant implies any equation). Then, we instantiate F with
the negative polymorphic scheme NegF X := ∀ Y : � . X → Y, and exploit the
function outFixM to construct a witness of the empty type:

Hence, the existence of function outFixM contradicts the consistency of
Cedille. Hence, the inverse of inFixM can exist only for some restricted class
of schemes F : � → �.

242 D. Firsov et al.

4.2 Inductive Subset

From this point forward we assume that the scheme F is also accompanied by
an identity mapping imap:

In our previous work we assumed that F is a functor and showed how to
specify the “inductive” subset of the type FixM F. Then, we generically derived
induction for this subset. In this section, we update the steps of our previous
work to account for F : � → � not being a functor.

The dependent intersection type ι x : X. Y x can be understood as a subset
of X defined by a predicate Y. However, to construct the value of this type we
must provide x : X and a proof p : Y x so that x and p are provably equal
(x � p). Hence, to align with this constraint we use implicit products to
express inductivity of FixM as its “dependently-typed” version. Recall that FixM
is defined in terms of Mendler-style F-algebras:

In our previous work, we introduced the Q-proof F-algebras as a
“dependently-typed” counterpart of AlgM. The value of type PrfAlgM X Q alg
should be understood as an inductive proof that predicate Q holds for every X
where X is a least fixed point of F and alg : F X → X is a collection of construc-
tors of X.

Mendler-style F-algebras (AlgM) allow recursive calls to be explicitly stated by
providing arguments R → X and F R, where the polymorphically quantified type
R ensures termination. Similarly, Q-proof F-algebras allow the inductive hypothe-
ses to be explicitly stated for every R by providing an implicit identity function
c : Id R X, and a dependent function of type Π r : R. Q (elimId − c r) (recall
that elimId -c r reduces to r and has type X). Given the inductive hypoth-
esis for every R, the proof algebra must conclude that the predicate Q holds for
every X, which is produced by constructors alg from any given F R that has
been “casted” to F X.

Next, recall that FixM is defined as a function from AlgM X to X for every X.

To retain the analogy of definitions, we express the inductivity of value x :
FixM as a dependent function from a Q-proof F -algebra to Q x.

Efficient Mendler-Style Lambda-Encodings in Cedille 243

Now, we employ intersection types to define a type FixIndM as a subset of
FixM carved out by the “inductivity” predicate IsIndFixM:

Finally, we must explain how to construct the values of this type. As in the
case of FixM, the set of constructors of FixIndM is expressed by a conventional
F-algebra F FixIndM → FixIndM. The implementation is divided into three
steps:

First, we define a function from F FixIndM to FixM:

The implementation simply “casts” its argument to F FixM and then applies
the previously implemented constructor of FixM (inFixM). Because elimId -c x
reduces to x, the erasure of tc1 is the same as the erasure of inFixM which is a
term λ x. λ q. q (λ r. r q) x.

Second, we show that the same lambda term could also be typed as a proof
that every tc1 x is inductive:

Indeed, functions tc1 and tc2 are represented by the same pure lambda
term.

Finally, given any value x : F FixInd we can intersect tc1 x and the proof
of its inductivity tc2 x to construct an element of an inductive subset FixIndM:

Recall that erasure of intersection [x, y {p}] equals the erasure of x.
Therefore, functions inFixM, tc1, tc2, and inFixIndM all erase to the same
pure lambda term. In other words, in Cedille the term λ x. λ q. q (λ r. r q) x
can be extrinsically typed as any of these functions.

4.3 Induction Principle

We start by explaining why we need to derive induction for FixIndM, even though
it is definitionally an inductive subset of FixM. Indeed, every value x : FixIndM
can be “viewed” as a proof of its own inductivity. More precisely, the term x.2
is a proof of the inductivity of x.1. Moreover, the equational theory of CDLE
gives us the following equalities x.1 � x � x.2 (due to the rules of erasure).
But recall that the inductivity proof provided by the second view x.2 is typed
as follows:

Note that Q is a predicate on FixM and not FixIndM! This form of inductivity
does not allow properties of FixIndM to be proven.

244 D. Firsov et al.

Therefore, our goal is to prove that every x : FixIndM is inductive in its
own right. We phrase this in terms of proof-algebras parameterized by FixIndM,
a predicate on FixIndM, and its constructors (inFixIndM):

In our previous work, we already made an observation that the derivation
of induction for Mendler-style encodings relies only on the identity law of func-
tors [3]. Therefore, the current setting only requires minor adjustments of our
previous proof. For the sake of completeness, we present a main idea of this
derivation.

The key insight is that we can convert predicates on FixIndM to logically
equivalent predicates on FixM by using heterogeneous equality:

These properties allow us to convert a Q-proof algebra to a proof algebra for
a lifted predicate Lift Q, and then derive the generic induction principle:

Let Q be a predicate on FixIndM and p be a Q-proof algebra: we show that
Q holds for any e : FixIndM. Recall that every e : FixIndM can be viewed as
a proof of inductivity of e.1 via e.2 : IsIndFixM e.1. We use this to get a
proof of the lifted predicate Lift Q e.1 from the proof algebra delivered by
convIH p. Finally, we get Q e by using eqv2.

5 Constant-Time Destructors

An induction principle is needed to prove properties about programs, but
practical functional programming also requires constant-time destructors (also
called accessors) of inductive datatypes. Let us illustrate the problem using the
datatype of natural numbers. In Agda it is easy to implement the predecessor
function by pattern matching:

Efficient Mendler-Style Lambda-Encodings in Cedille 245

The correctness of pred trivially follows by beta-reduction:

Let us switch to Cedille and observe that it is much less trivial to implement
the predecessor for the impredicative encoding of Peano numerals. Here is the
definition of Church encoded Peano naturals and their constructors:

Next, we implement the predecessor for cNat which is due to Kleene:

The key to the Kleene predecessor is the function sCase, which ignores the
first item of the input pair, moves the second natural to the first position, and
then applies the successor of the second element within the second position.
Hence, folding a natural number n with sCase and zCase produces a pair (n-1,
n). In the end, predK n projects the first element of a pair.

Kleene predecessor runs in linear time. Also, predK (suc n) gets stuck
after reducing to π1 (pair (π2 (n sCase zCase)) (suc (π2 (n sCase zCase)))).
Hence, we must use induction to prove that predK (suc n) computes to n.

Furthermore, Parigot proved that any definition of predecessor for the
Church-style lambda-encoded numerals requires linear time [4].

5.1 Constant-Time Destructor for Mendler-Style Encoding

In previous sections we defined a datatype FixIndM for every scheme F that has
an identity mapping. Then, we implemented the constructors of the datatype
as the function inFixIndM, and defined an induction principle phrased in terms
of this function. In this section, we develop a mutual inverse of inFixIndM that
runs in constant time. As a simple consequence, we prove that FixIndM is a least
fixed point of F.

Let us start by exploring the computational behaviour of the function foldM.
The following property is a variation of the cancellation law for Mendler-style
encoded data [12], and its proof is simply by beta-reduction.

In other words, folding the inductive value inFixM x replaces its outermost
“constructor” inFixM with the partially applied F-algebra alg (foldM alg).

246 D. Firsov et al.

It is well-known that (computationally) induction can be reduced to iteration
(folding). Therefore, we can state the cancellation law for the induction rule in
terms of proof algebras.

Crucially, the proof of indHom is by reflexivity (β), which ensures that the left-
hand side of equality beta-reduces to the right-hand side in a constant number
of beta-reductions.

Next, we implement a proof algebra for the predicate λ . F FixIndM.

The identity mapping of F lifts the identity function c : Id R X to an iden-
tity function Id (F R) (F FixIndM), which is then applied to the argument
y : F R to get the desired value of F FixIndM.

The proof algebra outAlgM induces the constant-time inverse of inFixIndM:

We defined outFixIndM (inFixIndM x) as induction outAlgM (inFixInd
x), which reduces to outAlgM -c (induction outAlgM) x in a constant num-
ber of steps (indHom). Because outAlgM -c erases to λ f. λ y. y, it follows
that outFixIndM computes an inverse of inFixIndM in a constant number of
beta-reductions:

Furthermore, we show that outFixIndM is a post-inverse:

This direction requires us to invoke induction to “pattern match” on the
argument value to get x := inFixIndM y for some value y of type F FixIndM.
Then, inFixIndM (outFixIndM (inFixIndM y)) � inFixIndM y because the
inner term outFixIndM (inFixIndM y) is just y by beta reduction (lambek1).

6 Examples

In this section, we demonstrate the utility of our derivations on three examples.
First, we present a detailed implementation of natural numbers with a constant-
time predecessor function. Second, we show examples of infinitary datatypes.
Finally, we give an example of a datatype arising as a least fixed point of a
scheme that is not a functor, but has an identity mapping.

Efficient Mendler-Style Lambda-Encodings in Cedille 247

6.1 Natural Numbers with Constant-Time Predecessor

Natural numbers arise as a least fixed point of the functor NF:

Because every functor induces an identity mapping, we can use our framework
to define the natural numbers as follows:

If we assume that injections in1 and in2 erase to λ a. λ i. λ j. i a and
λ a. λ i. λ j. j a, then the natural number constructors have the following
erasures:

Intuitively, Mendler-style numerals have a constant-time predecessor because
every natural number suc n contains the previous natural n as its direct subpart
(which is not true for the Church encoding).

We implement the predecessor for Nat in terms of the generic constant-time
destructor outFixIndM:

Because elimination of disjoint sums (case) and outFixIndM are both
constant-time operations, pred is also a constant-time function and its correct-
ness is immediate (i.e., by beta-reduction):

We also show that the usual “flat” induction principle can be derived from
our generic induction principle (induction) by dependent elimination of NF:

6.2 Infinitary Trees

In Agda, we can give the following inductive definition of infinitary trees:

248 D. Firsov et al.

ITree is a least fixed point of functor IF X := Nat → Unit + X. In
Cedille, we can implement a functorial function lifting for IF:

To our best knowledge, it is impossible to prove that itfmap satisfies the func-
torial laws without functional extensionality (which is unavailable in Cedille).
However, it is possible to implement an identity mapping for the scheme IF:

The first element of a pair erases to λ x. λ n. λ n. x n, which is λ x. x by
the eta law. Because we showed that IF has an identity mapping, our generic
development induces the datatype ITree with its constructor, destructor, and
induction principle.

Below, the specialized induction is phrased in terms of the “empty tree”
iempty, which acts as a base case (projR “projects” a tree from a disjoint sum
or returns iempty):

Next, let us look at another variant of infinitary datatypes in Agda:

This definition will be rejected by Agda (and Coq) since it arises as a least
fixed point of the scheme PF X := Unit + ((X → Bool) → X) → X, which
is positive but not strictly positive. The definition is rejected because it is cur-
rently unclear if non-strict definitions are sound in Agda. For the Coq setting,
there is a proof by Coquand and Paulin that non-strict positivity combined with
an impredicative universe and a predicative universe hierarchy leads to inconsis-
tency [14]. In Cedille, we can implement an identity mapping for the scheme PF
in a similar fashion as the previously discussed UF. Hence, the datatype induced
by PF exists in the type theory of Cedille.

Efficient Mendler-Style Lambda-Encodings in Cedille 249

6.3 Unbalanced Trees

Consider the following definition of “unbalanced” binary trees in Agda:

The datatype UTree arises as a least fixed point of the following scheme:

Because the elements x1 and x2 must be different, lifting an arbitrary function
X → Y to UF X → UF Y is impossible. Hence, the scheme UF is not a functor.

However, we can show that UF has an identity mapping. We start by produc-
ing a function UF X → UF Y from an identity Id X Y:

We prove that uimap’ -i is extensionally an identity function:

This is enough to derive an identity mapping for UF by using the previously
implemented combinator intrId:

Therefore, we conclude that the datatype of unbalanced trees exists in Cedille
and can be defined as a least fixed point of the scheme UF:

The specialized constructors, induction principle, and a destructor func-
tion for UTree are easily derived from their generic counterparts (inFixIndM,
induction, outFixIndM).

7 Related Work

Pfenning and Paulin-Mohring show how to model inductive datatypes using
impredicative encodings in the Calculus of Constructions (CC) [15]. Because
induction is not provable in the CC, the induction principles are generated and
added as axioms. This approach was adopted by initial versions of the Coq proof
assistant, but later Coq switched to the Calculus of Inductive Constructions
(CIC), which has built-in inductive datatypes.

Delaware et al. derived induction for impredicative lambda-encodings in Coq
as a part of their framework for modular definitions and proofs (using the à la
carte technique [16]). They showed that a value v : Fix F is inductive if it is
accompanied by a proof of the universal property of folds [17].

250 D. Firsov et al.

Similarly, Torrini introduced the predicatisation technique, reducing
dependent induction to proofs that only rely on non-dependent Mendler
induction (by requiring the inductive argument to satisfy an extra predicati-
sation hypothesis) [18].

Traytel et al. present a framework for constructing (co)datatypes in HOL
[19,20]. The main ingredient is a notion of a bounded natural functor (BNF), or
a binary functor with additional structure. BNFs are closed under composition
and fixed points, which enables support for both mutual and nested (co)recursion
with mixed combinations of datatypes and codatatypes. The authors developed
a package that can generate (co)datatypes with their associated proof-principles
from user specifications (including custom bounded natural functors). In con-
trast, our approach provides a single generic derivation of induction within the
theory of Cedille, but does not address codatatypes. It would be interesting to
further investigate the exact relationship between schemes with identity map-
pings and BNFs.

Church encodings are typeable in System F and represent datatypes as their
own iterators. Parigot proved that the lower bound of the predecessor function
for Church numerals has linear time complexity [4].

Parigot designed an impredicative lambda-encoding that is typeable in
System Fω with positive-recursive type definitions. The encoding identifies
datatypes with their own recursors, allowing constant time destructors to be
defined, but the drawback is that the representation of a natural number n is
exponential in the call-by-value setting [5].

The Stump-Fu encoding is also typeable in System Fω with positive-recursive
type definitions. It improves upon the Parigot representation by requiring only
quadratic space, and it also supports constant-time destructors [6].

8 Conclusions and Future Work

In this work, we showed that the Calculus of Dependent Lambda Elimina-
tions is a compact pure type theory that allows a general class of Mendler-
style lambda-encoded inductive datatypes to be defined as least fixed points of
schemes with identity mappings. We also gave a generic derivation of induction
and implemented a constant-time destructor for these datatypes. We used our
development to give the first example (to the best of our knowledge) of lambda-
encoded natural numbers with: provable induction, a constant-time predecessor
function, and a linear size (in the numeral n) term representation. Our formal
development is around 700 lines of Cedille code.

For future work, we plan to explore coinductive definitions and to use the
categorical model of Mendler-style datatypes to investigate histomorphisms and
inductive-recursive datatypes in Cedille [12].

Additionally, we are investigating approaches to generic “proof reuse” in
Cedille. The key idea is that implicit products allow indexed and non-indexed
datatypes to be represented by the same pure lambda term. For example, this
allows the proof of associativity of append for lists to be reused as the proof of
associativity of append for vectors [11].

Efficient Mendler-Style Lambda-Encodings in Cedille 251

Acknowledgments. The first author is thankful to Anna, Albert, and Eldar for all
the joy and support. Authors are thankful to Larry Diehl for proof reading and numer-
ous grammatical adjustments. We gratefully acknowledge NSF support under award
1524519, and DoD support under award FA9550-16-1-0082 (MURI program).

References

1. Geuvers, H.: Induction is not derivable in second order dependent type theory. In:
Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 166–181. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45413-6 16

2. Stump, A.: The calculus of dependent lambda eliminations. J. Funct. Program.
27, e14 (2017)

3. Firsov, D., Stump, A.: Generic derivation of induction for impredicative encodings
in cedille. In: Proceedings of the 7th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2018, New York, NY, USA, pp. 215–227.
ACM (2018)

4. Parigot, M.: On the representation of data in lambda-calculus. In: Börger, E.,
Büning, H.K., Richter, M.M. (eds.) CSL 1989. LNCS, vol. 440, pp. 309–321.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52753-2 47

5. Parigot, M.: Programming with proofs: a second order type theory. In: Ganzinger,
H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 145–159. Springer, Heidelberg (1988).
https://doi.org/10.1007/3-540-19027-9 10

6. Stump, A., Fu, P.: Efficiency of lambda-encodings in total type theory. J. Funct.
Program. 26, e3 (2016)

7. Stump, A.: From realizability to induction via dependent intersection. Ann. Pure
Appl. Logic 169, 637–655 (2018)

8. Wells, J.B.: Typability and type checking in system F are equivalent and undecid-
able. Ann. Pure Appl. Logic 98(1–3), 111–156 (1999)

9. Kopylov, A.: Dependent intersection: a new way of defining records in type theory.
In: 18th IEEE Symposium on Logic in Computer Science (LICS), pp. 86–95 (2003)

10. Miquel, A.: The implicit calculus of constructions extending pure type systems
with an intersection type binder and subtyping. In: Abramsky, S. (ed.) TLCA
2001. LNCS, vol. 2044, pp. 344–359. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45413-6 27

11. Diehl, L., Firsov, D., Stump, A.: Generic zero-cost reuse for dependent types. CoRR
abs/1803.08150 (2018)

12. Uustalu, T., Vene, V.: Mendler-style inductive types, categorically. Nordic J. Com-
put. 6(3), 343–361 (1999)

13. Wadler, P.: Recursive types for free! (1990)
14. Coquand, T., Paulin, C.: Inductively defined types. In: Martin-Löf, P., Mints,

G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990).
https://doi.org/10.1007/3-540-52335-9 47

15. Pfenning, F., Paulin-Mohring, C.: Inductively defined types in the Calculus of
Constructions. In: Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS
1989. LNCS, vol. 442, pp. 209–228. Springer, New York (1990)

16. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436 (2008)
17. Delaware, B., d. S. Oliveira, B.C., Schrijvers, T.: Meta-theory à la carte. In: Pro-

ceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2013, New York, NY, USA, pp. 207–218. ACM
(2013)

https://doi.org/10.1007/3-540-45413-6_16
https://doi.org/10.1007/3-540-52753-2_47
https://doi.org/10.1007/3-540-19027-9_10
https://doi.org/10.1007/3-540-45413-6_27
https://doi.org/10.1007/3-540-45413-6_27
https://doi.org/10.1007/3-540-52335-9_47

252 D. Firsov et al.

18. Torrini, P.: Modular dependent induction in Coq, Mendler-style. In: Blanchette,
J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 409–424. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-43144-4 25

19. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional
(Co)datatypes for higher-order logic: category theory applied to theorem prov-
ing. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer
Science, LICS 2012, Dubrovnik, Croatia, 25–28 June 2012, pp. 596–605. IEEE
Computer Society (2012)

20. Biendarra, J., et al.: Foundational (Co)datatypes and (Co)recursion for higher-
order logic. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol.
10483, pp. 3–21. Springer, Cham (2017)

https://doi.org/10.1007/978-3-319-43144-4_25

Verification of PCP-Related
Computational Reductions in Coq

Yannick Forster(B), Edith Heiter, and Gert Smolka

Saarland University, Saarbrücken, Germany
{forster,heiter,smolka}@ps.uni-saarland.de

Abstract. We formally verify several computational reductions con-
cerning the Post correspondence problem (PCP) using the proof assistant
Coq. Our verification includes a reduction of the halting problem for Tur-
ing machines to string rewriting, a reduction of string rewriting to PCP,
and reductions of PCP to the intersection problem and the palindrome
problem for context-free grammars.

Keywords: Post correspondence problem · String rewriting
Context-free grammars · Computational reductions · Undecidability
Coq

1 Introduction

A problem P can be shown undecidable by giving an undecidable problem Q and
a computable function reducing Q to P . There are well known reductions of the
halting problem for Turing machines (TM) to the Post correspondence problem
(PCP), and of PCP to the intersection problem for context-free grammars (CFI).
We study these reductions in the formal setting of Coq’s type theory [16] with
the goal of providing elegant correctness proofs.

Given that the reduction of TM to PCP appears in textbooks [3,9,15] and in
the standard curriculum for theoretical computer science, one would expect that
rigorous correctness proofs can be found in the literature. To our surprise, this
is not the case. Missing is the formulation of the inductive invariants enabling
the necessary inductive proofs to go through. Speaking with the analogue of
imperative programs, the correctness arguments in the literature argue about the
correctness of programs with loops without stating and verifying loop invariants.

By inductive invariants we mean statements that are shown inductively and
that generalise the obvious correctness statements one starts with. Every sub-
stantial formal correctness proof will involve the construction of suitable induc-
tive invariants. Often it takes ingenuity to generalise a given correctness claim
to one or several inductive invariants that can be shown inductively.

It took some effort to come up with the missing inductive invariants for the
reductions leading from TM to PCP. Once we had the inductive invariants, we had
rigorous and transparent proofs explaining the correctness of the reductions in a
more satisfactory way than the correctness arguments we found in the literature.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 253–269, 2018.
https://doi.org/10.1007/978-3-319-94821-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_15&domain=pdf

254 Y. Forster et al.

Reduction of problems is transitive. Given a reduction P � Q and a reduc-
tion Q � R, we have a reduction P � R. This way, complex reductions can
be factorised into simpler reductions. Following ideas in the literature, we will
establish the reduction chain

TM � SRH � SR � MPCP � PCP

where TM is the halting problem of single-tape Turing machines, SRH is a gen-
eralisation of the halting problem for Turing machines, SR is the string rewriting
problem, and MPCP is a modified version of PCP fixing a first card. The most
interesting steps are SR � MPCP and MPCP � PCP.

We also consider the intersection problem (CFI) and the palindrome problem
(CFP) for a class of linear context-free grammars we call Post grammars. CFP
asks whether a Post grammar generates a palindrome, and CFI asks whether
for two Post grammars there exists a string generated by both grammars. We
will verify reductions PCP � CFI and PCP � CFP, thus showing that CFP and
CFI are both undecidable.

Coq’s type theory provides an ideal setting for the formalisation and verifi-
cation of the reductions mentioned. The fact that all functions in Coq are total
and computable makes the notion of computable reductions straightforward.

The correctness arguments coming with our approach are inherently con-
structive, which is verified by the underlying constructive type theory. The main
inductive data types we use are numbers and lists, which conveniently provide for
the representation of strings, rewriting systems, Post correspondence problems,
and Post grammars.

The paper is accompanied by a Coq development covering all results of this
paper. The definitions and statements in the paper are hyperlinked with their
formalisations in the HTML presentation of the Coq development at http://
www.ps.uni-saarland.de/extras/PCP.

Organisation
We start with the necessary formal definitions covering all reductions we con-
sider in Sect. 2. We then present each of the six reductions and conclude with a
discussion of the design choices underlying our formalisations. Sections 3, 4, 5,
6, 7 and 8 on the reductions are independent and can be read in any order.

We only give definitions for the problems and do not discuss the underlying
intuitions, because all problems are covered in a typical introduction to theoret-
ical computer science and the interested reader can refer to various textbooks
providing good intuitions, e.g. [3,9,15].

Contribution
Our reduction functions follow the ideas in the literature. The main contributions
of the paper are the formal correctness proofs for the reduction functions. Here
some ingenuity and considerable elaboration of the informal arguments in the
literature were needed. As one would expect, the formal proofs heavily rely on
inductive techniques. In contrast, the informal proof sketches in the literature

http://www.ps.uni-saarland.de/extras/PCP
http://www.ps.uni-saarland.de/extras/PCP

Verification of PCP-Related Computational Reductions in Coq 255

do not introduce the necessary inductions (in fact, they don’t even mention
inductive proofs). To the best of our knowledge, the present paper is the first
paper providing formal correctness proofs for basic reductions to and from PCP.

2 Definitions

Formalising problems and computable reductions in constructive type theory
is straightforward. A problem consists of a type X and a unary predicate p
on X, and a reduction of (X, p) to (Y, q) is a function f : X → Y such that
∀x. px ↔ q(fx). Note that the usual requirement that f is total and computable
can be dropped since it is satisfied by every function in a constructive type theory.
We write p � q and say that p reduces to q if a reduction of (X, p) to (Y, q) exists.

Fact 1. If p � q and q � r, then p � r.

The basic inductive data structures we use are numbers (n ::= 0 | Sn) and
lists (L ::= [] | s :: L). We write L1 ++L2 for the concatenation of two lists, L
for the reversal of a list, [fs | s ∈ A] for a map over a list, and [fs | s ∈ A ∧ ps]
for a map and filter over a list. Moreover, we write s ∈ L if s is a member of L,
and L1 ⊆ L2 if every member of L1 is a member of L2.

A string is a list of symbols, and a symbol is a number. The letters x, y, z, u,
and v range over strings, and the letters a, b, c range over symbols. We write xy
for x++ y and ax for a :: x. We use ε to denote the empty string. A palindrome
is a string x such that x = x.

Fact 2. xy = y x and x = x.

Fact 3. If xay = uav, a /∈ x, and a /∈ u, then x = u and y = v.

Proof. By induction on x. 	

A card x/y or a rule x/y a is a pair (x, y) of two strings. When we call x/y

a card we see x as the upper and y as the lower string of the card. When we call
x/y a rule we see x as the left and y as the right side of the rule.

The letters A, B, C, P , R range over list of cards or rules.

2.1 Post Correspondence Problem

A stack is a list of cards. The upper trace A1 and the lower trace A2 of a stack
A are strings defined as follows:

[]1 := ε []2 := ε

(x/y :: A)1 := x(A1) (x/y :: A)2 := y(A2)

Note that A1 is the concatenation of the upper strings of the cards in A, and
that A2 is the concatenation of the lower strings of the cards in A. We say that

http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.Definitions.html#reduces_transitive
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.Definitions.html#list_prefix_inv

256 Y. Forster et al.

a stack A matches if A1 = A2 and a match is a matching stack. An example for
a match is the list A = [ε/ab, a/c, bc/ε], which satisfies A1 = A2 = abc.

We can now define the predicate for the Post correspondence problem:

PCP (P) := ∃A ⊆ P. A �= [] ∧ A1 = A2

Note that PCP (P) holds iff there exists a nonempty match A ⊆ P . We then say
that A is a solution of P . For instance,

P = [a/ε, b/a, ε/bb]

is solved by the match

A = [ε/bb, b/a, b/a, a/ε, a/ε].

While it is essential that A is a list providing for order and duplicates, P
may be thought of as a finite set of cards.

We now define the predicate for the modified Post correspondence problem:

MPCP (x/y, P) := ∃A ⊆ x/y :: P. xA1 = yA2

Informally, MPCP (x/y, P) is like PCP (x/y :: P) with the additional constraint
that the solution for x/y :: P starts with the first card x/y.

Note that in contrary to most text books we leave open whether x/y is an
element of P and instead choose A as subset of x/y :: P . While this might first
seem more complicated, it actually eases formalisation. Including x/y into P
would require MPCP to be a predicate on arguments of the form (P, x/y,H :
x/y ∈ P), i.e. dependent pairs containing a proof.

2.2 String Rewriting

Given a list R of rules, we define string rewriting with two inductive predicates
x R y and x ∗

R y:

x/y ∈ R

uxv R uyv z ∗
R z

x R y y ∗
R z

x ∗
R z

Note that ∗
R is the reflexive transitive closure of R, and that x R y says

that y can be obtained from x with a single rewriting step using a rule in R.

Fact 4. The following hold:

1. If x ∗
R y and y ∗

R z, then x ∗
R z.

2. If x ∗
R y, then ux ∗

R uy.
3. If x ∗

R y and R ⊆ P , then x ∗
P y.

Proof. By induction on x ∗
R y. 	

Verification of PCP-Related Computational Reductions in Coq 257

Note that the induction lemma for string rewriting can be stated as

∀z. Pz → (∀xy. x R y → Py → Px) → ∀x. x ∗
R z → Px.

This is stronger than the lemma Coq infers, because of the quantification over z
on the outside. The quantification is crucial for many proofs that do induction
on derivations x R z, and we use the lemma throughout the paper without
explicitly mentioning it.

We define the predicates for the string rewriting problem and the generalised
halting problem as follows:

SR (R, x, y) := x ∗
R y

SRH (R, x, a) := ∃y. x ∗
R y ∧ a ∈ y

We call the second problem generalised halting problem, because it covers
the halting problem for deterministic single-tape Turing machines, but also the
halting problems for nondeterministic machines or for more exotic machines that
e.g. have a one-way infinite tape or can read multiple symbols at a time.

We postpone the definition of Turing machines and of the halting problem
TM to Sect. 8.

2.3 Post Grammars

A Post grammar is a pair (R, a) of a list R of rules and a symbol a. Informally,
a Post grammar (R, a) is a special case of a context-free grammar with a single
nonterminal S and two rules S → xSy and S → xay for every rule x/y ∈ R,
where S �= a and S does not occur in R. We define the projection σaA of a list
of rules A with a symbol a as follows:

σa[] := a

σa(x/y::A) := x(σaA)y

We say that a Post grammar (R, a) generates a string u if there exists a nonempty
list A ⊆ R such that σaA = u. We then say that A is a derivation of u in (R, a).

We can now define the predicates for the problems CFP and CFI:

CFP (R, a) := ∃A ⊆ R. A �= [] ∧ σaA = σaA

CFI (R1, R2, a) := ∃A1 ⊆ R1 ∃A2 ⊆ R2.

A1 �= [] ∧ A2 �= [] ∧ σaA1 = σaA2

Informally, CFP (R, a) holds iff the grammar (R, a) generates a palindrome, and
CFI (R1, R2, a) holds iff there exists a string that is generated by both grammars
(R1, a) and (R2, a). Note that as Post grammars are special cases of context-free
grammars, the reduction of PCP to CFG and CFI can be trivially extended to
reductions to the respective problems for context-free grammars. We prove this
formally in the accompanying Coq development.

258 Y. Forster et al.

2.4 Alphabets

For some proofs it will be convenient to fix a finite set of symbols. We represent
such sets as lists and speak of alphabets. The letter Σ ranges over alphabets.
We say that an alphabet Σ covers a string, card, or stack if Σ contains every
symbol occurring in the string, card, or stack. We may write x ⊆ Σ to say that
Σ covers x since both x and Σ are lists of symbols.

2.5 Freshness

At several points we will need to pick fresh symbols from an alphabet. Because we
model symbols as natural numbers, a very simple definition of freshness suffices.
We define a function fresh such that fresh Σ �∈ Σ for an alphabet Σ as follows:

fresh [] = 0
fresh (a :: Σ) = 1 + a + fresh Σ

fresh has the following characteristic property:

Lemma 5. For all a ∈ Σ, fresh Σ > a.

Proof. By induction on Σ, with a generalised. 	

The property is most useful when exploited in the following way:

Corollary 6. For all a ∈ Σ, fresh Σ �= a.

An alternative approach to this is to formalise alphabets explicitly as types
Σ. This has the advantage that arbitrarily many fresh symbols can be introduced
simultaneously using definitions like Γ := Σ + X, and symbols in Γ stemming
from Σ can easily be shown different from fresh symbols stemming from X by
inversion. However, this means that strings x : Σ∗ have to be explicitly embedded
pointwise when used as strings of type Γ ∗, which complicates proofs.

In general, both approaches have benefits and tradeoffs. Whenever proofs rely
heavily on inversion (as e.g. our proofs in Sect. 8), the alternative approach is
favorable. If proofs need the construction of many strings, as most of our proofs
do, modelling symbols as natural numbers shortens proofs.

3 SRH to SR

We show that SRH (the generalised halting problem) reduces to SR (string
rewriting). We start with the definition of the reduction function. Let R, x0, and
a0 be given.

We fix an alphabet Σ covering R, x0, and a0. We now add rules to R that
allow x ∗

R a0 if a0 ∈ x.

P := R ++ [aa0/a0 | a ∈ Σ] ++ [a0a/a0 | a ∈ Σ]

http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.Definitions.html#fresh_spec'
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.Definitions.html#fresh_spec

Verification of PCP-Related Computational Reductions in Coq 259

Lemma 7. If a0 ∈ x ⊆ Σ, then x ∗
P a0.

Proof. For all y ⊆ Σ, a0y ∗
P a0 and ya0 ∗

P a0 follow by induction on y. The
claim now follows with Fact 4 (1, 2). 	

Lemma 8. SRH (R, x0, a0) ↔ SR (P, x0, a0).

Proof. Let x0 ∗
R y and a0 ∈ y. Then y ∗

P a0 by Lemma 7. Moreover, x0 ∗
P y

by Fact 4 (3). Thus x0 ∗
P a0 by Fact 4 (1).

Let x0 ∗
P a0. By induction on x0 ∗

P a0 it follows that there exists y such
that x0 ∗

R y and a0 ∈ y. 	

Theorem 9. SRH reduces to SR.

Proof. Follows with Lemma 8. 	

4 SR to MPCP

We show that SR (string rewriting) reduces to MPCP (the modified Post corre-
spondence problem). We start with the definition of the reduction function.

Let R, x0 and y0 be given. We fix an alphabet Σ covering R, x0, and y0. We
also fix two symbols $,# /∈ Σ and define:

d := $ / $x0#
e := y0#$ / $
P := [d, e] ++ R ++ [#/#]++ [a/a | a ∈ Σ]

The idea of the reduction is as follows: Assume Σ = [a, b, c] and rules bc/a
and aa/b in R. Then abc R aa R b and we have d = $/$abc#, e = b#$/$,
and P = [d, e, bc/a, aa/b, . . . , a/a, b/b, c/c], omitting possible further rules in R.
Written suggestively, the following stack matches:

$

$abc#

a

a

bc

a

#

#

aa

b

#

#

b#$

$

And, vice versa, every matching stack starting with d will yield a derivation
of abc ∗

R b.
We now go back to the general case and state the correctness lemma for the

reduction function.

Lemma 10. x0 ∗
R y0 if and only if there exists a stack A ⊆ P such that d :: A

matches.

From this lemma we immediately obtain the reduction theorem (Theorem 13).
The proof of the lemma consists of two translation lemmas: Lemmas 11 and 12.
The translation lemmas generalise the two directions of Lemma 10 such that
they can be shown with canonical inductions.

http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.SRH_SR.html#x_rewt_a0
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.SRH_SR.html#equi
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.SRH_SR.html#reduction
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.SR_MPCP.html#SR_MPCP_cor

260 Y. Forster et al.

Lemma 11. Let x ⊆ Σ and x ∗
R y0. Then there exists A ⊆ P such that

A1 = x#A2.

Proof. By induction on x ∗
R y0. In the first case, x = y0 and [e]1 = x#[e]2.

In the second case, x y and y ∗ y0. By induction hypothesis there is
A ⊆ P such that A1 = y#A2. Let x = (a1 . . . an)u(b1 . . . bn) and y =
(a1 . . . an)v(b1 . . . bn) for u/v ∈ R. We define B := (a1/a1) . . . (an/an) ::
(u/v) :: (b1/b1) . . . (bn/bn) :: (#/#) :: A. Now B1 = x#A1 = x#y#A2 =
x#B2. 	

Lemma 12. Let A ⊆ P , A1 = x#yA2, and x, y ⊆ Σ. Then yx ∗

R y0.

Proof. By induction on A with x and y generalised. We do all cases in detail:

– The cases where A = [] or A = d :: B are contradictory.
– Let A = e :: B. By assumption, y0#$B1 = x#y$B2. Then x = y0, y = ε and

yx = y0 ∗
R y0.

– Let A = u/v :: B for u/v ∈ R. Because # is not in u and by assumption
uB1 = x#yvB2, x = u ++ x′. And yx = yux′ yvx′ ∗ y0 by induction
hypothesis.

– Let A = #/# :: B. By assumption, #B1 = x#y#B2. Then x = ε and we
have B1 = y#εB2. By induction hypothesis, this yields yx = εy ∗

R y0 as
needed.

– Let A = a/a :: B for a ∈ Σ and assume aB1 = x#yaB2. Then x = ax′ and
B1 = x′#yaB2. By induction hypothesis, this yields yx = yax′ ∗

R y0 as
needed. 	

Theorem 13. SR reduces to MPCP.

Proof. Follows with Lemma 10. 	

The translation lemmas formulate what we call the inductive invariants of

the reduction function. The challenge of proving the correctness of the reduction
function is finding strong enough inductive invariants that can be verified with
canonical inductions.

5 MPCP to PCP

We show that MPCP (modified PCP) reduces to PCP.
The idea of the reduction is that for a stack A = [x1/y1, . . . , xn, yn] and a

first card x0/y0 where xi = a0
i . . . ami

i we have

(a0
0 . . . am0

0)(a0
1 . . . am1

1) . . . (a0
n . . . amn

n)

= (b00 . . . bm0
0)(b01 . . . bm1

1) . . . (b0n . . . bmn
n)

if and only if we have

$(#a0
0 . . . #am0

0)(#a0
1 . . . #am1

1) . . . (#a0
n . . . #amn

n)#$

= $#(b00# . . . bm0
0 #)(b01# . . . bm1

1 #) . . . (b0n# . . . bmn
n #)$.

http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.SR_MPCP.html#SR_MPCP
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.SR_MPCP.html#MPCP_SR
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.SR_MPCP.html#reduction

Verification of PCP-Related Computational Reductions in Coq 261

The reduction function implements this idea by constructing a dedicated first
and a dedicated last card and by inserting #-symbols into the MPCP cards:

Let x0/y0 and R be given. We fix an alphabet Σ covering x0/y0 and R. We
also fix two symbols $,# /∈ Σ. We define two functions #x and x# inserting the
symbol # before and after every symbol of a string x:

#ε := ε ε# := ε
#(ax) := #a(#x) (ax)# := a#(x#)

We define:

d := $(#x0) / $#(y#
0)

e := #$ / $

P := [d, e] ++ [#x / y# | x/y ∈ x0/y0 :: R ∧ (x/y) �= (ε/ε)]

We now state the correctness lemma for the reduction function.

Lemma 14. There exists a stack A ⊆ x0/y0 :: R such that x0A
1 = y0A

2 if and
only if there exists a nonempty stack B ⊆ P such that B1 = B2.

From this lemma we immediately obtain the desired reduction theorem
(Theorem 19). The proof of the lemma consists of two translation lemmas
(Lemmas 17 and 18) and a further auxiliary lemma (Lemma 15).

Lemma 15. Every nonempty match B ⊆ P starts with d.

Proof. Let B be a nonempty match B ⊆ P . Then e cannot be the first card of
B since the upper string and lower string of e start with different symbols. For
the same reason #x / y# cannot be the first card of B if x/y ∈ R and both x
and y are nonempty.

Consider ε/ay ∈ R. Then ε/(ay)# cannot be the first card of B since no card
of P has an upper string starting with a.

Consider ax/ε ∈ R. Then #(ay)/ε cannot be the first card of B since no card
of P has a lower string starting with #. 	

For the proofs of the translation lemmas we need a few facts about #x and x#.

Lemma 16. The following hold:

1. (#x)# = #(x#).
2. #(xy) = (#x)(#y).
3. (xy)# = (x#)(y#).
4. #x �= #(y#).
5. x# = y# → x = y.

Proof. By induction on x. 	

Lemma 17. Let A ⊆ x0/y0 :: R and xA1 = yA2. Then there exists a stack
B ⊆ P such that (#x)B1 = #(y#)B2.

http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.MPCP_PCP.html#MPCP_PCP_cor
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.MPCP_PCP.html#match_start
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.MPCP_PCP.html#MPCP_PCP

262 Y. Forster et al.

Proof. By induction on A with x and y generalised. The case for A = [] follows
from Lemma 16 (1) by choosing [e].

For the other case, let A = x′/y′ :: A′. Then by assumption xx′A′1 = yy′A′2.
And thus by induction hypothesis there exists B ⊆ P such that #(xx′)B1 =
#(yy′)#B2. By Lemma 16 (2) and (3), (#x)(#x′)B1 = #(y#)(y′#)B2.

If (x′/y′) �= (ε/ε), then choosing #x′/y′# :: B ⊆ P works. Otherwise, B ⊆ P
works. 	

Lemma 18. Let B ⊆ P such that (#x)B1 = #(y#)B2 and x, y ⊆ Σ. Then
there exists a stack A ⊆ x0/y0 :: R such that xA1 = yA2.

Proof. By induction on B. The cases B = [] and B = d :: B′ yield contradictions
using Lemma 16 (4). For B = e :: B′, choosing A = [] works by Lemma 16 (5).

The interesting case is B =# x′/y′# :: B′ for x′/y′ ∈ x0/y0 :: R with
(x′/y′) �= (ε/ε). By assumption and Lemma 16 (2) and (3) we know that
#(xx′)B′1 = #(yy′)#B′2. Now by induction hypothesis, where all premises fol-
low easily, there is A ⊆ x0/y0 :: R with xx′A1 = yy′A2 and thus x′/y′ :: A
works. 	

Theorem 19. MPCP reduces to PCP.

Proof. Follows with Lemma 14. 	

6 PCP to CFP

We show that PCP reduces to CFP (the palindrome problem for Post grammars).
Let # be a symbol.

Fact 20. Let # /∈ x, y. Then x#y is a palindrome iff y = x.

Proof. Follows with Facts 2 and 3. 	

There is an obvious connection between matching stacks and palindromes: A

stack
[x1/y1, . . . , xn/yn]

matches if and only if the string

x1 · · · xn# yn · · · y1
is a palindrome, provided the symbol # does not appear in the stack (follows
with Facts 2 and 20 using yn · · · y1 = y1 · · · yn). Moreover, strings of the form
x1 · · · xn# yn · · · y1 with n ≥ 1 may be generated by a Post grammar having a
rule x/ y for every card x/y in the stack. The observations yield a reduction of
PCP to CFP.

We formalise the observations with a function

γA := [x/y | x/y ∈ A].

http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.MPCP_PCP.html#PCP_MPCP
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.MPCP_PCP.html#reduction

Verification of PCP-Related Computational Reductions in Coq 263

Lemma 21. σ#(γA) = A1 #A2.

Proof. By induction on A using Fact 2. 	

Lemma 22. Let A be a stack and # be a symbol not occurring in A. Then A
is a match if and only if σ#(γA) is a palindrome.

Proof. Follows with Lemma 21 and Facts 20 and 2. 	

Lemma 23. γ(γA) = A and A ⊆ γB → γA ⊆ B.

Proof. By induction on A using Fact 2. 	

Theorem 24. PCP reduces to CFP.

Proof. Let P be a list of cards. We fix a symbol # that is not in P and show
PCP (P) ↔ CFP (γP,#).

Let A ⊆ P be a nonempty match. It suffices to show that γA ⊆ γP and
σ#(γA) is a palindrome. The first claim follows with Lemma 23, and the second
claim follows with Lemma 22.

Let B ⊆ γP be a nonempty stack such that σ#B is a palindrome. By
Lemma 23 we have γB ⊆ P and B = γ(γB). Since γB matches by Lemma 22,
we have PCP (P). 	

7 PCP to CFI

We show that PCP reduces to CFI (the intersection problem for Post grammars).
The basic idea is that a stack A = [x1/y1, . . . , xn/yn] with n ≥ 1 matches if and
only if the string

x1 · · · xn#xn#yn# · · · #x1#y1#

equals the string
y1 · · · yn#xn#yn# · · · #x1#y1#

provided the symbol # does not occur in A. Moreover, strings of these forms can
be generated by the Post grammars ([x/x#y# | x/y ∈ A], #) and ([y/x#y# |
x/y ∈ A], #), respectively.

We fix a symbol # and formalise the observations with two functions

γ1A := [x/x#y# | x/y ∈ A] γ2A := [y/x#y# | x/y ∈ A]

and a function γA defined as follows:

γ[] := []
γ(x/y :: A) := (γA)x#y#

Lemma 25. σ#(γ1A) = A1#(γA) and σ#(γ2A) = A2#(γA).

Proof. By induction on A. 	

http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.PCP_CFP.html#sigma_gamma
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.PCP_CFP.html#tau_eq_iff
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.PCP_CFP.html#gamma_invol
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.PCP_CFP.html#PCP_CFP
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.PCP_CFI.html#sigma_gamma1

264 Y. Forster et al.

Lemma 26. Let B ⊆ γi C. Then there exists A ⊆ C such that γi A = B.

Proof. By induction on B using Fact 3. 	

Lemma 27. Let # not occur in A1 and A2. Then γA1 = γA2 implies A1 = A2.

Proof. By induction on A1 using Fact 3. 	

Theorem 28. PCP reduces to CFI.

Proof. Let P be a list of cards. We fix a symbol # not occurring in P and define
R1 := γ1P and R2 := γ2P . We show PCP (P) ↔ CFI (R1, R2,#).

Let A ⊆ P be a nonempty match. Then γ1A ⊆ R1, γ2A ⊆ R2, and σ#(γ1A) =
σ#(γ2A) by Lemma 25.

Let B1 ⊆ R1 and B2 ⊆ R2 be nonempty lists such that σ#B1 = σ#B2. By
Lemma 26 there exist nonempty stacks A1, A2 ⊆ P such that γi(Ai) = Bi. By
Lemma 25 we have A1

1#(γA1) = A2
2#(γA2). By Fact 3 we have A1

1 = A2
2 and

γA1 = γA2. Thus A1 = A2 by Lemma 27. Hence A1 ⊆ P is a nonempty match. 	

Hopcroft et al. [9] give a reduction of PCP to CFI by using grammars equiv-

alent to the following Post grammars:

γ1A := [x/i | x/y ∈ A at position i] γ2A := [y/i | x/y ∈ A at position i]

While being in line with the presentation of PCP with indices, it complicates
both the formal definition and the verification.

Hesselink [8] directly reduces CFP to CFI for general context-free grammars,
making the reduction PCP to CFI redundant. The idea is that a context-free
grammar over Σ contains a palindrome if and only if its intersection with the
context-free grammar of all palindromes over Σ is non-empty. We give a formal
proof of this statement using a definition of context-free rewriting with explicit
alphabets.

For Post grammars, CFP is not reducible to CFI, because the language of
all palindromes is not expressible by a Post grammar.

8 TM to SRH

A Turing machine, independent from its concrete type-theoretic definition,
always consists of an alphabet Σ, a finite collection of states Q, an initial state q0,
a collection of halting states H ⊆ Q, and a step function which controls the
behaviour of the head on the tape. The halting problem for Turing machines
TM then asks whether a Turing machine M reaches a final state when executed
on a tape containing a string x.

In this section, we briefly report on our formalisation of a reduction from TM
to SRH following ideas from Hopcroft et al. [9]. In contrast to the other sections,
we omit the technical details of the proof, because there are abundantly many,
and none of them is interesting from a mathematical standpoint. We refer the
interested reader to [7] for all details.

http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.PCP_CFI.html#gamma1_spec
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.PCP_CFI.html#gamma_inj
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.PCP_CFI.html#reduction

Verification of PCP-Related Computational Reductions in Coq 265

In the development, we use a formal definition of Turing machines from
Asperti and Ricciotti [1].

To reduce TM to SRH, a representation of configurations c of Turing
machines as strings 〈c〉 is needed. Although the content of a tape can get arbi-
trarily big over the run of a machine, it is finite in every single configuration.
It thus suffices to represent only the part of the tape that the machine has
previously written to.

We write the current state to the left of the currently read symbol and,
following [1], distinguish four non-overlapping situations: The tape is empty
(q��), the tape contains symbols and the head reads one of them (�xqay�), the
tape contains symbols and the head reads none of them, because it is in a
left-overflow position where no symbol has been written before (q�ax�) or the
right-overflow counterpart of the latter situation (�xaq�). Note the usage of left
and right markers to indicate the end of the previously written part.

The reduction from TM to SRH now works in three steps. Given a Tur-
ing machine M , one can define whether a configuration c′ is reachable from a
configuration c using its transition function [1,7]. First, we translate the tran-
sition function of the Turing machine into a string rewriting system using the
translation scheme depicted in Table 1.

Table 1. Rewriting rules x/y in R if the machine according to its transition function
in state q1 continues in q2 and reads, writes and moves as indicated. For example, if
the transition function of the machine indicates that in state q1 if symbol a is read,
the machine proceeds to state q2, writes nothing and moves to the left, we add the rule
�q1a / q2�a and rules cq1a / q2ca for every c in the alphabet.

Read Write Move x y x y x y

⊥ ⊥ L q1� q2� a q1� q2 a�

⊥ ⊥ N q1� q2� q1� q2�

⊥ ⊥ R q1�� q2�� q1� q2� q1� a � q1 a

⊥ �b� L q1� q2�b a q1� q2 a b�

⊥ �b� N q1� �q2 b q1� q2 b�

⊥ �b� R q1� �b q2 q1� b q2�

�a� ⊥ L �q1 a q2�a c q1 a q2 c a

�a� ⊥ N q1 a q2 a

�a� ⊥ R q1 a a q2

�a� �b� L �q1 a q2�b c q1 a q2 c b

�a� �b� N q1 a q2 b

�a� �b� R q1 a b q2

Lemma 29. For all Turing machines M and configurations c and c′ there is a
SRS R such that 〈c〉 ∗

R 〈c′〉 if and only if the configuration c′ is reachable from
the configuration c by the machine M .

http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.TM_SRH.html#reduction_reach_

266 Y. Forster et al.

In the development, we first reduce to a version of string rewriting with
explicit alphabets, and then reduce this version to string rewriting as defined
before.

This proof is by far the longest in our development. In its essence, it is only a
shift of representation, making explicit that transition functions encode a rewrit-
ing relation on configurations. The proof is mainly a big case distinction over all
possible shapes of configurations of a machine, which leads to a combinatorial
explosion and a vast amount of subcases. The proof does, however, not contain
any surprises or insights.

Note that, although we work with deterministic machines in the Coq develop-
ment, the translation scheme described in Table 1 also works for nondeterministic
Turing machines.

The second step of the reduction is to incorporate the set of halting states H.
We define an intermediate problem SRH′, generalising the definition of SRH to
strings:

SRH′(R, x, z) := ∃y. x ∗
R y ∧ ∃a ∈ z. a ∈ y

Note that SRH(R, x, a) ↔ SRH′(R, x, [a]). TM can then easily be reduced to
SRH′:

Lemma 30. TM reduces to SRH′.

Proof. Given a Turing machine M and a string x, M accepts x if and only if
SRH(R, q0�x�, z), where R is the system from the last lemma, q0 is the starting
state of M and z is a string containing exactly all halting states of M . 	

Third, we can reduce SRH′ to SRH:

Lemma 31. SRH′ reduces to SRH.

Proof. Given a SRS R, a string x and a string z, we first fix an alphabet Σ
covering R and x, and a fresh symbol #. We then have SRH′(R, x, z) if and only
if SRH(R ++ [a/# | a ∈ z] , x,#). 	

All three steps combined yield:

Theorem 32. TM reduces to SRH.

9 Discussion

We have formalised and verified a number of computational reductions to and
from the Post correspondence problem based on Coq’s type theory. Our goal
was to come up with a development as elegant as possible. Realising the design
presented in this paper in Coq yields an interesting exercise practising the verifi-
cation of list-processing functions. If the intermediate lemmas are hidden and just
the reductions and accompanying correctness statements are given, the exercise
gains difficulty since the correctness proofs for the reductions SR � MPCP � PCP
require the invention of general enough inductive invariants (Lemmas 11, 12,

http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.TM_SRH.html#halt_SRH'
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.TM_SRH.html#SRH'_SRH
http://www.ps.uni-saarland.de/extras/PCP/doc/PCP.TM_SRH.html#Halt_SRH

Verification of PCP-Related Computational Reductions in Coq 267

17, 18). To our surprise, we could not find rigorous correctness proofs for the
reductions TM � SR � MPCP � PCP in the literature (e.g., [3,9,15]). Teach-
ing these reductions without rigorous correctness proofs in theoretical computer
science classes seems bad practice. As the paper shows, elegant and rigorous
correctness proofs using techniques generally applicable in program verification
are available.

The ideas for the reductions TM � SRH � SR � MPCP � PCP are taken
from Hopcroft et al. [9]. They give a monolithic reduction of the halting problem
for Turing machines to MPCP. The decomposition TM � SRH � SR � MPCP is
novel. Davis et al. [3] give a monolithic reduction SR � PCP based on different
ideas. The idea for the reduction PCP � CFP is from Hesselink [8], and the idea
for the reduction PCP � CFI appears in Hopcroft et al. [9].

There are several design choices we faced when formalising the material pre-
sented in this paper.

1. We decided to formalise PCP without making use of the positions of the
cards in the list P . Most presentations in the literature (e.g., [9,15]) follow
Post’s original paper [13] in using positions (i.e., indices) rather than cards
in matches. An exception is Davis et al. [3]. We think formulating PCP with
positions is an unnecessary complication.

2. We decided to represent symbols as numbers rather than elements of finite
types serving as alphabets. Working with implicit alphabets represented as
lists rather than explicit alphabets represented as finite types saves bureau-
cracy.

3. We decided to work with Post grammars (inspired by Hesselink [8]) rather
than general context-free grammars since Post grammars sharpen the result
and enjoy a particularly simple formalisation. In the Coq development, we
show that Post grammars are an instance of context-free grammars.

Furthermore, we decided to put the focus of this paper on the elegant reduc-
tions and not to cover Turing machines in detail. While being a wide-spread
model of computation, even the concrete formal definition of Turing machines
contains dozens of details, all of them not interesting from a mathematical per-
spective.

The Coq development verifying the results of Sects. 3, 4, 5, 6 and 7 consists
of about 850 lines of which about one third realises specifications. The reduction
SR � SRH takes 70 lines, SR � MPCP takes 105 lines, MPCP � PCP takes 206
lines, PCP � CFP takes 60 lines, and PCP � CFI takes 107 lines. The reduction
TM � SRH takes 610 lines, 230 of them specification, plus a definition of Turing
machines taking 291 lines.

Future Work
Undecidability proofs for logics are often done by reductions from PCP or related
tiling problems. We thus want to use our work as a stepping stone to build a
library of reductions which can be used to verify more undecidability proofs. We
want to reduce PCP to the halting problem of Minsky machines to prove the

268 Y. Forster et al.

undecidability of intuitionistic linear logic [11]. Another possible step would be
to reduce PCP to validity for first-order logic [2], following the reduction from
e.g. [12]. Many other undecidability proofs are also done by direct reductions
from PCP, like the intersection problem for two-way-automata [14], unification
in third-order logic [10], typability in the λΠ-calculus [4], satisfiability for more
applied logics like HyperLTL [5], or decision problems of first order theories [17].

In this paper, we gave reductions directly as functions in Coq instead of
appealing to a concrete model of computation. Writing down concrete Turing
machines computing the reductions is possible in principle, but would be very
tedious and distract from the elegant arguments our proofs are based on.

In previous work [6] we studied an explicit model of computation based on
a weak call-by-value calculus L in Coq. L would allow an implementation of all
reduction functions without much overhead, which would also formally establish
the computability of all reductions.

Moreover, it should be straightforward to reduce PCP to the termination
problem for L. Reducing the termination problem of L to TM would take con-
siderable effort. Together, the two reductions would close the loop and verify the
computational equivalence of TM, SRH, SR, PCP, and the termination problem
for L. Both reducing PCP to L and implementing all reductions in L is an exer-
cise in the verification of deeply embedded functional programs, and orthogonal
in the necessary methods to the work presented in this paper.

References

1. Asperti, A., Ricciotti, W.: A formalization of multi-tape turing machines. Theor.
Comput. Sc. 603, 23–42 (2015)

2. Church, A.: A note on the Entscheidungsproblem. J. Symb. Log. 1(1), 40–41 (1936)
3. Davis, M.D., Sigal, R., Weyuker, E.J.: Computability, Complexity, and Languages:

Fundamentals of Theoretical Computer Science, 2nd edn. Academic Press, San
Diego (1994)

4. Dowek, G.: The undecidability of typability in the Lambda-Pi-calculus. In: Bezem,
M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 139–145. Springer, Hei-
delberg (1993). https://doi.org/10.1007/BFb0037103

5. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: CONCUR 2016, pp. 13:1–
13:14 (2016)

6. Forster, Y., Smolka, G.: Weak call-by-value lambda calculus as a model of com-
putation in Coq. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol.
10499, pp. 189–206. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66107-0 13

7. Heiter, E.: Undecidability of the Post correspondence problem in Coq. Bache-
lor’s Thesis, Saarland University (2017). https://www.ps.uni-saarland.de/∼heiter/
bachelor.php

8. Hesselink, W.H.: Post’s correspondence problem and the undecidability of
context-free intersection. Manuscript, University of Groningen (2015). http://
wimhesselink.nl/pub/whh513.pdf

9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2006)

https://doi.org/10.1007/BFb0037103
https://doi.org/10.1007/978-3-319-66107-0_13
https://doi.org/10.1007/978-3-319-66107-0_13
https://www.ps.uni-saarland.de/~heiter/bachelor.php
https://www.ps.uni-saarland.de/~heiter/bachelor.php
http://wimhesselink.nl/pub/whh513.pdf
http://wimhesselink.nl/pub/whh513.pdf

Verification of PCP-Related Computational Reductions in Coq 269

10. Huet, G.P.: The undecidability of unification in third order logic. Inf. Control
22(3), 257–267 (1973)

11. Larchey-Wendling, D., Galmiche, D.: The undecidability of Boolean BI through
phase semantics. In: LICS 2010, pp. 140–149. IEEE (2010)

12. Manna, Z.: Mathematical theory of computation. Dover Publications Incorporated,
Mineola (2003)

13. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc.
52(4), 264–268 (1946)

14. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114–125 (1959)

15. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston
(2012). International edition

16. The Coq Proof Assistant (2017). http://coq.inria.fr
17. Treinen, R.: A new method for undecidability proofs of first order theories. J.

Symbolic Comput. 14(5), 437–457 (1992)

http://coq.inria.fr

ProofWatch: Watchlist Guidance
for Large Theories in E

Zarathustra Goertzel1(B), Jan Jakub̊uv1, Stephan Schulz2, and Josef Urban1

1 Czech Technical University in Prague, Prague, Czech Republic
goertzar@fel.cvut.cz

2 DHBW Stuttgart, Stuttgart, Germany

Abstract. Watchlist (also hint list) is a mechanism that allows related
proofs to guide a proof search for a new conjecture. This mechanism
has been used with the Otter and Prover9 theorem provers, both for
interactive formalizations and for human-assisted proving of open con-
jectures in small theories. In this work we explore the use of watchlists in
large theories coming from first-order translations of large ITP libraries,
aiming at improving hammer-style automation by smarter internal guid-
ance of the ATP systems. In particular, we (i) design watchlist-based
clause evaluation heuristics inside the E ATP system, and (ii) develop
new proof guiding algorithms that load many previous proofs inside the
ATP and focus the proof search using a dynamically updated notion
of proof matching. The methods are evaluated on a large set of prob-
lems coming from the Mizar library, showing significant improvement of
E’s standard portfolio of strategies, and also of the previous best set of
strategies invented for Mizar by evolutionary methods.

1 Introduction: Hammers, Learning and Watchlists

Hammer -style automation tools connecting interactive theorem provers (ITPs)
with automated theorem provers (ATPs) have recently led to a significant
speedup for formalization tasks [5]. An important component of such tools is
premise selection [1]: choosing a small number of the most relevant facts that
are given to the ATPs. Premise selection methods based on machine learning
from many proofs available in the ITP libraries typically outperform manually
specified heuristics [1,2,4,7,17,19]. Given the performance of such ATP-external
guidance methods, learning-based internal proof search guidance methods have
started to be explored, both for ATPs [8,15,18,23,36] and also in the context of
tactical ITPs [10,12].

In this work we develop learning-based internal proof guidance methods for
the E [30] ATP system and evaluate them on the large Mizar Mathematical
Library [11]. The methods are based on the watchlist (also hint list) technique

Z. Goertzel, J. Jakub̊uv and J. Urban—Supported by the AI4REASON ERC
Consolidator grant number 649043, and by the Czech project AI&Reasoning
CZ.02.1.01/0.0/0.0/15 003/0000466 and the European Regional Development Fund.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 270–288, 2018.
https://doi.org/10.1007/978-3-319-94821-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_16&domain=pdf

ProofWatch: Watchlist Guidance for Large Theories in E 271

developed by Veroff [37], focusing proof search towards lemmas (hints) that were
useful in related proofs. Watchlists have proved essential in the AIM project [21]
done with Prover9 [25] for obtaining very long and advanced proofs of open
conjectures. Problems in large ITP libraries however differ from one another
much more than the AIM problems, making it more likely for unrelated watchlist
lemmas to mislead the proof search. Also, Prover9 lacks a number of large-theory
mechanisms and strategies developed recently for E [13,15,16].

Therefore, we first design watchlist-based clause evaluation heuristics for E
that can be combined with other E strategies. Second, we complement the inter-
nal watchlist guidance by using external statistical machine learning to pre-
select smaller numbers of watchlist clauses relevant for the current problem.
Finally, we use the watchlist mechanism to develop new proof guiding algorithms
that load many previous proofs inside the ATP and focus the search using a
dynamically updated heuristic representation of proof search state based on
matching the previous proofs.

The rest of the paper is structured as follows. Section 2 briefly summarizes
the work of saturation-style ATPs such as E. Section 3 discusses heuristic repre-
sentation of search state and its importance for learning-based proof guidance.
We propose an abstract vectorial representation expressing similarity to other
proofs as a suitable evolving characterization of saturation proof searches. We
also propose a concrete implementation based on proof completion ratios tracked
by the watchlist mechanism. Section 4 describes the standard (static) watchlist
mechanism implemented in E and Sect. 5 introduces the new dynamic watchlist
mechanisms and its use for guiding the proof search. Section 6 evaluates the static
and dynamic watchlist guidance combined with learning-based pre-selection on
the Mizar library. Section 7 shows several examples of nontrivial proofs obtained
by the new methods, and Sect. 8 discusses related work and possible extensions.

2 Proof Search in Saturating First-Order Provers

The state of the art in first-order theorem proving is a saturating prover based
on a combination of resolution/paramodulation and rewriting, usually imple-
menting a variant of the superposition calculus [3]. In this model, the proof state
is represented as a set of first-order clauses (created from the axioms and the
negated conjecture), and the system systematically adds logical consequences to
the state, trying to derive the empty clause and hence an explicit contradiction.

All current saturating first-order provers are based on variants of the given-
clause algorithm. In this algorithm, the proof state is split into two subsets of
clauses, the processed clauses P (initially empty) and the unprocessed clauses
U . On each iteration of the algorithm, the prover picks one unprocessed clause
g (the so-called given clause), performs all inferences which are possible with g
and all clauses in P as premises, and then moves g into P . The newly generated
consequences are added to U . This maintains the core invariant that all inferences
between clauses in P have been performed. Provers differ in how they integrate
simplification and redundancy into the system, but all enforce the variant that

272 Z. Goertzel et al.

P is maximally simplified (by first simplifying g with clauses in P , then back-
simplifying P with g) and that P contains neither tautologies nor subsumed
clauses.

The core choice point of the given-clause algorithm is the selection of the next
clause to process. If theoretical completeness is desired, this has to be fair, in
the sense that no clause is delayed forever. In practice, clauses are ranked using
one or more heuristic evaluation functions, and are picked in order of increasing
evaluation (i.e. small values are good). The most frequent heuristics are based on
symbol counting, i.e., the evaluation is the number of symbol occurrences in the
clause, possibly weighted for different symbols or symbols types. Most provers
also support interleaving a symbol-counting heuristic with a first-in-first-out
(FIFO) heuristic. E supports the dynamic specification of an arbitrary number
of differently parameterized priority queues that are processed in weighted round-
robbin fashion via a small domain-specific language for heuristics.

Previous work [28,31] has both shown that the choice of given clauses is
critical for the success rate of a prover, but also that existing heuristics are still
quite bad - i.e. they select a large majority of clauses not useful for a given proof.
Positively formulated, there still is a huge potential for improvement.

3 Proof Search State in Learning Based Guidance

A good representation of the current state is crucial for learning-based guid-
ance. This is quite clear in theorem proving and famously so in Go and Chess
[32,33]. For example, in the TacticToe system [10] proofs are composed from
pre-programmed HOL4 [34] tactics that are chosen by statistical learning based
on similarity of the evolving goal state to the goal states from related proofs.
Similarly, in the learning versions of leanCoP [26] – (FE)MaLeCoP [18,36] –
the tableau extension steps are guided by a trained learner using similarity of
the evolving tableau (the ATP proof search state) to many other tableaux from
related proofs.

Such intuitive and compact notion of proof search state is however hard to
get when working with today’s high-performance saturation-style ATPs such
as E [30] and Vampire [22]. The above definition of saturation-style proof state
(Sect. 2) as either one or two (processed/unprocessed) large sets of clauses is very
unfocused. Existing learning-based guiding methods for E [15,23] practically
ignore this. Instead, they use only the original conjecture and its features for
selecting the relevant given clauses throughout the whole proof search.

This is obviously unsatisfactory, both when compared to the evolving search
state in the case of tableau and tactical proving, and also when compared to the
way humans select the next steps when they search for proofs. The proof search
state in our mind is certainly an evolving concept based on the search done so
far, not a fixed set of features extracted just from the conjecture.

ProofWatch: Watchlist Guidance for Large Theories in E 273

3.1 Proof Search State Representation for Guiding Saturation

One of the motivations for the work presented here is to produce an intuitive,
compact and evolving heuristic representation of proof search state in the context
of learning-guided saturation proving. As usual, it should be a vector of (real-
valued) features that are either manually designed or learned. In a high-level way,
our proposed representation is a vector expressing an abstract similarity of the
search state to (possibly many) previous related proofs. This can be implemented
in different ways, using both statistical and symbolic methods and their combi-
nations. An example and motivation comes again from the work of Veroff, where
a search is considered promising when the given clauses frequently match hints.
The gaps between the hint matchings may correspond to the more brute-force
bridges between the different proof ideas expressed by the hints.

Our first practical implementation introduced in Sect. 5 is to load upon the
search initialization N related proofs Pi, and for each Pi keep track of the ratio
of the clauses from Pi that have already been subsumed during the search. The
subsumption checking is using E’s watchlist mechanism (Sect. 4). The N -long
vector p of such proof completion ratios is our heuristic representation of the
proof search state, which is both compact and typically evolving, making it
suitable for both hard-coded and learned clause selection heuristics.

In this work we start with fast hard-coded watchlist-style heuristics for focus-
ing inferences on clauses that progress the more finished proofs (Sect. 5). However
training e.g. a statistical ENIGMA-style [15] clause evaluation model by adding
p to the currently used ENIGMA features is a straightforward extension.

4 Static Watchlist Guidance and Its Implementation in E

E originally implemented a watchlist mechanism as a means to force direct,
constructive proofs in first order logic. For this application, the watchlist contains
a number of goal clauses (corresponding to the hypotheses to be proven), and all
newly generated and processed clauses are checked against the watchlist. If one of
the watchlist clauses is subsumed by a new clause, the former is removed from the
watchlist. The proof search is complete, once all clauses from the watchlist have
been removed. In contrast to the normal proof by contradiction, this mechanism
is not complete. However, it is surprisingly effective in practice, and it produces
a proof by forward reasoning.

It was quickly noted that the basic mechanism of the watchlist can also be
used to implement a mechanism similar to the hints successfully used to guide
Otter [24] (and its successor Prover9 [25]) in a semi-interactive manner [37].
Hints in this sense are intermediate results or lemmas expected to be useful in a
proof. However, they are not provided as part of the logical premises, but have to
be derived during the proof search. While the hints are specified when the prover
is started, they are only used to guide the proof search - if a clause matches a
hint, it is prioritized for processing. If all clauses needed for a proof are provided
as hints, in theory the prover can be guided to prove a theorem without any

274 Z. Goertzel et al.

search, i.e. it can replay a previous proof. A more general idea, explored in this
paper, is to fill the watchlist with a large number of clauses useful in proofs of
similar problems.

In E, the watchlist is loaded on start-up, and is stored in a feature vector
index [29] that allows for efficient retrieval of subsumed (and subsuming) clauses.
By default, watchlist clauses are simplified in the same way as processed clauses,
i.e. they are kept in normal form with respect to clauses in P . This increases the
chance that a new clause (which is always simplified) can match a similar watch-
list clause. If used to control the proof search, subsumed clauses can optionally
remain on the watchlist.

We have extended E’s domain-specific language for search heuristics with two
priority functions to access information about the relationship of clauses to the
watchlist - the function PreferWatchlist gives higher rank to clauses that sub-
sume at least one watchlist clause, and the dual function DeferWatchlist ranks
them lower. Using the first, we have also defined four built-in heuristics that
preferably process watchlist clauses. These include a pure watchlist heuristic,
a simple interleaved watch list function (picking 10 out of every eleven clauses
from the watchlist, the last using FIFO), and a modification of a strong heuristic
obtained from a genetic algorithm [27] that interleaves several different evalu-
ation schemes and was modified to prefer watchlist clauses in two of its four
sub-evaluation functions.

5 Dynamic Watchlist Guidance

In addition to the above mentioned static watchlist guidance, we propose and
experiment with an alternative: dynamic watchlist guidance. With dynamic
watchlist guidance, several watchlists, as opposed to a single watchlist, are loaded
on start-up. Separate watchlists are supposed to group clauses which are more
likely to appear together in a single proof. The easiest way to produce watchlists
with this property is to collect previously proved problems and use their proofs
as watchlists. This is our current implementation, i.e., each watchlist corresponds
to a previous proof. During a proof search, we maintain for each watchlist its
completion status, i.e. the number of clauses that were already encountered. The
main idea behind our dynamic watchlist guidance is to prefer clauses which
appear on watchlists that are closer to completion. Since watchlists now exactly
correspond to previous refutational proofs, completion of any watchlist implies
that the current proof search is finished.

5.1 Watchlist Proof Progress

Let watchlists W1, . . . ,Wn be given for a proof search. For each watchlist Wi we
keep a watchlist progress counter, denoted progress(Wi), which is initially set to
0. Whenever a clause C is generated during the proof search, we have to check
whether C subsumes some clause from some watchlist Wi. When C subsumes
a clause from Wi we increase progress(Wi) by 1. The subsumed clause from

ProofWatch: Watchlist Guidance for Large Theories in E 275

Wi is then marked as encountered, and it is not considered in future watchlist
subsumption checks.1 Note that a single generated clause C can subsume several
clauses from one or more watchlists, hence several progress counters might be
increased multiple times as a result of generating C.

5.2 Standard Dynamic Watchlist Relevance

The easiest way to use progress counters to guide given clause selection is
to assign the (standard) dynamic watchlist relevance to each generated clause
C, denoted relevance0(C), as follows. Whenever C is generated, we check it
against all the watchlists for subsumption and we update watchlist progress
counters. Any clause C which does not subsume any watchlist clause is given
relevance0(C) = 0. When C subsumes some watchlist clause, its relevance is the
maximum watchlist completion ratio over all the matched watchlists. Formally,
let us write C � Wi when clause C subsumes some clause from watchlist Wi. For
a clause C matching at least one watchlist, its relevance is computed as follows.

relevance0(C) = max
W∈{Wi:C�Wi}

(progress(W)
|W |

)

The assumption is that a watchlist W that is matched more is more relevant
to the current proof search. In our current implementation, the relevance is
computed at the time of generation of C and it is not updated afterwards. As
future work, we propose to also update the relevance of all generated but not yet
processed clauses from time to time in order to reflect updates of the watchlist
progress counters. Note that this is expensive, as the number of generated clauses
is typically high. Suitable indexing could be used to lower this cost or even to
do the update immediately just for the affected clauses.

To use the watchlist relevance in E, we extend E’s domain-specific language
for search heuristics with two priority functions PreferWatchlistRelevant and
DeferWatchlistRelevant. The first priority function ranks higher the clauses
with higher watchlist relevance2, and the other function does the opposite. These
priority functions can be used to build E’s heuristics just like in the case of the
static watchlist guidance. As a results, we can instruct E to process watchlist-
relevant clauses in advance.

5.3 Inherited Dynamic Watchlist Relevance

The previous standard watchlist relevance prioritizes only clauses subsuming
watchlist clauses but it behaves indifferently with respect to other clauses. In
1 Alternatively, the subsumed watchlist clause D ∈ Wi can be considered for future

subsumption checks but the watchlist progress counter progress(Wi) should not be
increased when D is subsumed again. This is because we want the progress counter
to represent the number of different clauses from Wi encountered so far.

2 Technically, E’s priority function returns an integer priority, and clauses with smaller
values are preferred. Hence we compute the priority as 1000 ∗ (1 − relevance0(C)).

276 Z. Goertzel et al.

order to provide some guidance even for clauses which do not subsume any
watchlist clause, we can examine the watchlist relevance of the parents of each
generated clause, and prioritize clauses with watchlist-relevant parents. Let
parents(C) denote the set of previously processed clauses from which C have
been derived. Inherited dynamic watchlist relevance, denoted relevance1, is a
combination of the standard dynamic relevance with the average of parents rel-
evances multiplied by a decay factor δ < 1.

relevance1(C) = relevance0(C) + δ ∗ avg
D∈parents(C)

(
relevance1(D)

)

Clearly, the inherited relevance equals to the standard relevance for the initial
clauses with no parents. The decay factor (δ) determines the importance of par-
ents watchlist relevances.3 Note that the inherited relevances of parents(C) are
already precomputed at the time of generating C, hence no recursive computa-
tion is necessary.

With the above relevance1 we compute the average of parents inherited rel-
evances, hence the inherited watchlist relevance accumulates relevance of all the
ancestors. As a result, relevance1(C) is greater than 0 if and only if C has some
ancestor which subsumed a watchlist clause at some point. This might have an
undesirable effect that clauses unrelated to the watchlist are completely ignored
during the proof search. In practice, however, it seems important to consider also
watchlist-unrelated clauses with some degree in order to prove new conjectures
which do not appear on the input watchlist. Hence we introduce two threshold
parameters α and β which resets the relevance to 0 as follows. Let length(C)
denote the length of clause C, counting occurrences of symbols in C.

relevance2(C) =

{
0 iff relevance1(C) < α and relevance1(C)

length(C) < β

relevance1(C) otherwise

Parameter α is a threshold on the watchlist inherited relevance while β combines
the relevance with the clause length.4 As a result, shorter watchlist-unrelated
clauses are preferred to longer (distantly) watchlist-related clauses.

6 Experiments with Watchlist Guidance

For our experiments we construct watchlists from the proofs found by E on a
benchmark of 57897 Mizar40 [19] problems in the MPTP dataset [35]5,6. These

3 In our experiments, we use δ = 0.1.
4 In our experiments, we use α = 0.03 and β = 0.009. These values have been found

useful by a small grid search over a random sample of 500 problems.
5 Precisely, we have used the small (bushy, re-proving) versions, but without ATP

minimization. They can be found at http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.
181.1147/MPTP2/problems small consist.tar.gz.

6 Experimental results and code can be found at https://github.com/ai4reason/
eprover-data/tree/master/ITP-18.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/MPTP2/problems_small_consist.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/MPTP2/problems_small_consist.tar.gz
https://github.com/ai4reason/eprover-data/tree/master/ITP-18
https://github.com/ai4reason/eprover-data/tree/master/ITP-18

ProofWatch: Watchlist Guidance for Large Theories in E 277

initial proofs were found by an evolutionarily optimized [14] ensemble of 32
E strategies each run for 5 s. These are our baseline strategies. Due to limited
computational resources, we do most of the experiments with the top 5 strategies
that (greedily) cover most solutions (top 5 greedy cover). These are strategies
number 2, 8, 9, 26 and 28, henceforth called A, B, C, D, E. In 5 s (in parallel)
they together solve 21122 problems. We also evaluate these five strategies in 10 s,
jointly solving 21670 problems. The 21122 proofs yield over 100000 unique proof
clauses that can be used for watchlist-based guidance in our experiments. We
also use smaller datasets randomly sampled from the full set of 57897 problems
to be able to explore more methods. All problems are run on the same hardware7

and with the same memory limits.
Each E strategy is specified as a frequency-weighted combination of parame-

terized clause evaluation functions (CEF) combined with a selection of inference
rules. Below we show a simplified example strategy specifying the term order-
ing KBO, and combining (with weights 2 and 4) two CEFs made up of weight
functions Clauseweight and FIFOWeight and priority functions DeferSOS and
PreferWatchlist.

-tKBO -H(2*Clauseweight(DeferSoS,20,9999,4),4*FIFOWeight(PreferWatchlist))

6.1 Watchlist Selection Methods

We have experimented with several methods for creation of static and dynamic
watchlists. Typically we use only the proofs found by a particular baseline strat-
egy to construct the watchlists used for testing the guided version of that strat-
egy. Using all 100000+ proof clauses as a watchlist slows E down to 6 given
clauses per second. This is comparable to the speed of Prover9 with similarly
large watchlists, but there are indexing methods that could speed this up. We
have run several smaller tests, but do not include this method in the evalua-
tion due to limited computational resources. Instead, we select a smaller set of
clauses. The methods are as follows:

(art) Use all proof clauses from theorems in the problem’s Mizar article8.
Such watchlist sizes range from 0 to 4000, which does not cause
any significant slowdown of E.

(freq) Use high-frequency proof clauses for static watchlists, i.e., clauses
that appear in many proofs.

(kNN-st) Use k-nearest neighbor (k-NN) learning to suggest useful static
watchlists for each problem, based on symbol and term-based fea-
tures [20] of the conjecture. This is very similar to the standard use
of k-NN and other learners for premise selection. In more detail,
we use symbols, walks of length 2 on formula trees and common
subterms (with variables and skolem symbols unified). Each proof
is turned into a multi-label training example, where the labels are

7 Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30 GHz with 256G RAM.
8 Excluding the current theorem.

278 Z. Goertzel et al.

the (serially numbered) clauses used in the proof, and the features
are extracted from the conjecture.

(kNN-dyn) Use k-NN in a similar way to suggest the most related proofs for
dynamic watchlists. This is done in two iterations.

(i) In the first iteration, only the conjecture-based similarity is used
to select related problems and their proofs.

(ii) The second iteration then uses data mined from the proofs
obtained with dynamic guidance in the first iteration. From
each such proof P we create a training example associating P ’s
conjecture features with the names of the proofs that matched
(i.e., guided the inference of) the clauses needed in P . On this
dataset we again train a k-NN learner, which recommends the
most useful related proofs for guiding a particular conjecture.

6.2 Using Watchlists in E Strategies

As described in Sect. 4, watchlist subsumption defines the PreferWatchlist
priority function that prioritizes clauses that subsume at least one watchlist
clause. Below we describe several ways to use this priority function and the newly
defined dynamic PreferWatchlistRelevant priority function and its relevance-
inheriting modifications. Each of them can additionally take the “no-remove”
option, to keep subsumed watchlist clauses in the watchlist, allowing repeated
matching by different clauses. Preliminary testing has shown that just adding a
single watchlist-based clause evaluation function (CEF) to the baseline CEFs9

is not as good as the methods defined below. In the rest of the paper we provide
short names for the methods, such as prefA (baseline strategy A modified by the
pref method described below).

1. evo: the default heuristic strategy (Sect. 4) evolved (genetically [27]) for static
watchlist use.

2. pref : replace all priority functions in a baseline strategy with the Prefer-
Watchlist priority function. The resulting strategies look as follows:
-H(2*Clauseweight(PreferWatchlist,20,9999,4),

4*FIFOWeight(PreferWatchlist))

3. const : replace all priority functions in a baseline strategy with ConstPrio,
which assigns the same priority to all clauses, so all ranking is done by weight
functions alone.

4. uwl : always prefer clauses that match the watchlist, but use the baseline
strategy’s priority function otherwise10.

5. ska: modify watchlist subsumption in E to treat all skolem symbols of the
same arity as equal, thus widening the watchlist guidance. This can be used
with any strategy. In this paper it is used with pref.

9 Specifically we tried adding Defaultweight(PreferWatchlist) and ConjectureRela-
tiveSymbolWeight(PreferWatchlist) with frequencies 1, 2, 5, 10, 20 times that of the
rest of the CEFs in the strategy.

10 uwl is implemented in E’s source code as an option.

ProofWatch: Watchlist Guidance for Large Theories in E 279

6. dyn: replace all priority functions in a baseline strategy with PreferWatch-
listRelevant, which dynamically weights watchlist clauses (Sect. 5.2).

7. dyndec: add the relevance inheritance mechanisms to dyn (Sect. 5.3).

6.3 Evaluation

First we measure the slowdown caused by larger static watchlists on the best
baseline strategy and a random sample of 10000 problems. The results are shown
in Table 1. We see that the speed significantly degrades with watchlists of size
10000, while 500-big watchlists incur only a small performance penalty.

Table 1. Tests of the watchlist size influence (ordered by frequency) on a random
sample of 10000 problems using the “no-remove” option and one static watchlist with
strategy prefA. PPS is average processed clauses per second, a measure of E’s speed.

Size 10 100 256 512 1000 10000

Proved 3275 3275 3287 3283 3248 2912

PPS 8935 9528 8661 7288 4807 575

Table 2 shows the 10 s evaluation of several static and dynamic methods on
a random sample of 5000 problems using article-based watchlists (method art
in Sect. 6.1). For comparison, E’s auto strategy proves 1350 of the problems in
10 s and its auto-schedule proves 1629. Given 50 s the auto-schedule proves 1744
problems compared to our top 5 cover’s 1964.

The first surprising result is that const significantly outperforms the baseline.
This indicates that the old-style simple E priority functions may do more harm
than good if they are allowed to override the more recent and sophisticated
weight functions. The ska strategy performs best here and a variety of strategies
provide better coverage. It’s interesting to note that ska and pref overlap only
on 1893 problems. The original evo strategy performs well, but lacks diversity.

Table 2. Article-based watchlist benchmark. A top 5 greedy cover proves 1964
problems (in bold).

Strategy baseline const pref ska dyn evo uwl

A 1238 1493 1503 1510 1500 1303 1247

B 1255 1296 1315 1330 1316 1300 1277

C 1075 1166 1205 1183 1201 1068 1097

D 1102 1133 1176 1190 1175 1330 1132

E 1138 1141 1141 1153 1139 1070 1139

Total 1853 1910 1931 1933 1922 1659 1868

280 Z. Goertzel et al.

Table 3 briefly evaluates k-NN selection of watchlist clauses (method
kNN-st in Sect. 6.1) on a single strategy prefA. Next we use k-NN to suggest
watchlist proofs11 (method kNN-dyn.i) for pref and dyn. Table 4 evaluates
the influence of the number of related proofs loaded for the dynamic strategies.
Interestingly, pref outperforms dyn almost everywhere but dyn’s ensemble of
strategies A-E generally performs best and the top 5 cover is better. We con-
clude that dyn’s dynamic relevance weighting allows the strategies to diversify
more.

Table 3. Evaluation of kNN-st on prefA

Watchlist size 16 64 256 1024 2048

Proved 1518 1531 1528 1532 1520

Table 5 evaluates the top 5 greedy cover from Table 4 on the full Mizar
dataset, already showing significant improvement over the 21670 proofs pro-
duced by the 5 baseline strategies. Based on proof data from a full-run of the
top-5 greedy cover in Table 5, new k-NN proof suggestions were made (method
kNN-dyn.ii) and dyn’s grid search re-run, see Table 6 and Table 7 for k-NN
round 2 results.

We also test the relevance inheriting dynamic watchlist feature (dyndec),
primarily to determine if different proofs can be found. The results are shown
in Table 8. This version adds 8 problems to the top 5 greedy cover of all the
strategies run on the 5000 problem dataset, making it useful in a schedule despite
lower performance alone. Table 9 shows this greedy cover, and then its evaluation
on the full dataset. The 23192 problems proved by our new greedy cover is a 7%
improvement over the top 5 baseline strategies.

7 Examples

The Mizar theorem YELLOW 5:3612 states De Morgan’s laws for Boolean lattices:

theorem Th36: :: YELLOW_5 :36
for L being non empty Boolean RelStr for a, b being Element of L
holds (’not ’ (a "∨" b) = (’not ’ a) "∧" (’not ’ b)

& ’not ’ (a "∧" b) = (’not ’ a) "∨" (’not ’ b))

Using 32 related proofs results in 2220 clauses placed on the watchlists. The
dynamically guided proof search takes 5218 (nontrivial) given clause loops done
in 2 s and the resulting ATP proof is 436 inferences long. There are 194 given
clauses that match the watchlist during the proof search and 120 (61.8%) of
them end up being part of the proof. I.e., 27.5% of the proof consists of steps
guided by the watchlist mechanism. The proof search using the same settings,
11 All clauses in suggested proofs are used.
12 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/yellow 5#T36.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/yellow_5#T36

ProofWatch: Watchlist Guidance for Large Theories in E 281

Table 4. k-NN proof recommendation watchlists (kNN-dyn.i) for dyn pref. Size is
number of proofs, averaging 40 clauses per proof. A top 5 greedy cover of dyn proves
1972 and pref proves 1959 (in bold).

Size dynA dynB dynC dynD dynE Total

4 1531 1352 1235 1194 1165 1957

8 1543 1366 1253 1188 1170 1956

16 1529 1357 1224 1218 1185 1951

32 1546 1373 1240 1218 1188 1962

64 1535 1376 1216 1215 1166 1935

128 1506 1351 1195 1214 1147 1907

1024 1108 963 710 943 765 1404

Size prefA prefB prefC prefD prefE Total

4 1539 1369 1210 1220 1159 1944

8 1554 1385 1219 1240 1168 1941

16 1572 1405 1225 1254 1180 1952

32 1568 1412 1231 1271 1190 1958

64 1567 1402 1228 1262 1172 1952

128 1552 1388 1210 1248 1160 1934

1024 1195 1061 791 991 806 1501

Table 5. K-NN round 1 greedy cover on full dataset and proofs added by each suc-
cessive strategy for a total of 22579. dynA 32 means strategy dynA using 32 proof
watchlists.

dynA 32 dynC 8 dynD 16 dynE 4 dynB 64

Added 17964 2531 1024 760 282

Total 17964 14014 14294 13449 16175

Table 6. Problems proved by round 2 k-NN proof suggestions (kNN-dyn.ii). The
top 5 greedy cover proves 1981 problems (in bold). dyn2A means dynA run on the 2nd
iteration of k-NN suggestions.

Size dyn2A dyn2B dyn2C dyn2D dyn2E Total Round 1 total

4 1539 1368 1235 1209 1179 1961 1957

8 1554 1376 1253 1217 1183 1971 1956

16 1565 1382 1256 1221 1181 1972 1951

32 1557 1383 1252 1227 1182 1968 1962

64 1545 1385 1244 1222 1171 1963 1935

128 1531 1374 1221 1227 1171 1941 1907

282 Z. Goertzel et al.

Table 7. K-NN round 2 greedy cover on full dataset and proofs added by each succes-
sive strategy for a total of 22996

dyn2A 16 dyn2C 16 dyn2D 32 dyn2E 4 dyn2B 4

Total 18583 14486 14720 13532 16244

Added 18583 2553 1007 599 254

Table 8. Problems proved by round 2 k-NN proof suggestions with dyndec. The top 5
greedy cover proves 1898 problems (in bold).

Size dyndec2A dyndec2B dyndec2C dyndec2D dyndec2E Total

4 1432 1354 1184 1203 1152 1885

16 1384 1316 1176 1221 1140 1846

32 1381 1309 1157 1209 1133 1820

128 1326 1295 1127 1172 1082 1769

Table 9. Top: Cumulative sum of the 5000 test set greedy cover. The k-NN based
dynamic watchlist methods dominate, improving by 2.1% over the baseline and article-
based watchlist strategy greedy cover of 1964 (Table 2). Bottom: Greedy cover run on
the full dataset, cumulative and total proved.

Total dyn2A 16 dyn2C 16 dyndec2D 16 dyn2E 4 dyndec2A 128

2007 1565 230 97 68 47

23192 18583 2553 1050 584 422

23192 18583 14486 14514 13532 15916

but without the watchlist takes 6550 nontrivial given clause loops (25.5% more).
The proof of the theorem WAYBEL 1:8513 is considerably used for this guidance:

theorem :: WAYBEL_1 :85
for H being non empty lower -bounded RelStr st H is Heyting holds
for a, b being Element of H holds ’not ’ (a "∧" b) >= (’not ’ a) "∨" (’not ’ b)

Note that this proof is done under the weaker assumptions of H being lower
bounded and Heyting, rather than being Boolean. Yet, 62 (80.5%) of the 77
clauses from the proof of WAYBEL 1:85 are eventually matched during the proof
search. 38 (49.4%) of these 77 clauses are used in the proof of YELLOW 5:36. In
Table 10 we show the final state of proof progress for the 32 loaded proofs after
the last non empty clause matched the watchlist. For each we show both the
computed ratio and the number of matched and all clauses.

An example of a theorem that can be proved in 1.2 s with guidance but
cannot be proved in 10 s with any unguided method is the following theorem
BOOLEALG:6214 about the symmetric difference in Boolean lattices:
13 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/waybel 1#T85.
14 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/boolealg#T62.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/waybel_1#T85
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/boolealg#T62

ProofWatch: Watchlist Guidance for Large Theories in E 283

Table 10. Final state of the proof progress for the (serially numbered) 32 proofs loaded
to guide the proof of YELLOW 5:36. We show the computed ratio and the number of
matched and all clauses.

0 0.438 42/96 1 0.727 56/77 2 0.865 45/52 3 0.360 9/25

4 0.750 51/68 5 0.259 7/27 6 0.805 62/77 7 0.302 73/242

8 0.652 15/23 9 0.286 8/28 10 0.259 7/27 11 0.338 24/71

12 0.680 17/25 13 0.509 27/53 14 0.357 10/28 15 0.568 25/44

16 0.703 52/74 17 0.029 8/272 18 0.379 33/87 19 0.424 14/33

20 0.471 16/34 21 0.323 20/62 22 0.333 7/21 23 0.520 26/50

24 0.524 22/42 25 0.523 45/86 26 0.462 6/13 27 0.370 20/54

28 0.411 30/73 29 0.364 20/55 30 0.571 16/28 31 0.357 10/28

for L being B_Lattice
for X, Y being Element of L holds (X \+\ Y) \+\ (X "∧" Y) = X "∨" Y

Using 32 related proofs results in 2768 clauses placed on the watchlists. The
proof search then takes 4748 (nontrivial) given clause loops and the watchlist-
guided ATP proof is 633 inferences long. There are 613 given clauses that match
the watchlist during the proof search and 266 (43.4%) of them end up being
part of the proof. I.e., 42% of the proof consists of steps guided by the watchlist
mechanism. Among the theorems whose proofs are most useful for the guidance
are the following theorems LATTICES:2315, BOOLEALG:3316 and BOOLEALG:5417

on Boolean lattices:

theorem Th23: :: LATTICES :23

for L being B_Lattice

for a, b being Element of L holds (a "∧" b)‘ = a‘ "∨" b‘

theorem Th33: :: BOOLEALG :33

for L being B_Lattice for X, Y being Element of L holds X \ (X "∧" Y) = X \ Y

theorem :: BOOLEALG :54

for L being B_Lattice for X, Y being Element of L

st X‘ "∨" Y‘ = X "∨" Y & X misses X‘ & Y misses Y‘

holds X = Y‘ & Y = X‘

Finally, we show several theorems18,19,20,21 with nontrivial Mizar proofs and
relatively long ATP proofs obtained with significant guidance. These theorems
cannot be proved by any other method used in this work.

15 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/lattices#T23.
16 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/boolealg#T33.
17 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/boolealg#T54.
18 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/boolealg#T68.
19 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/closure1#T21.
20 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/bcialg 4#T44.
21 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/xxreal 3#T67.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/lattices#T23
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/boolealg#T33
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/boolealg#T54
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/boolealg#T68
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/closure1#T21
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/bcialg_4#T44
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/xxreal_3#T67

284 Z. Goertzel et al.

theorem :: BOOLEALG :68

for L being B_Lattice for X, Y being Element of L

holds (X \+\ Y)‘ = (X "∧" Y) "∨" ((X‘) "∧" (Y‘))

theorem :: CLOSURE1 :21

for I being set for M being ManySortedSet of I

for P, R being MSSetOp of M st P is monotonic & R is monotonic

holds P ** R is monotonic

theorem :: BCIALG_4 :44

for X being commutative BCK -Algebra_with_Condition(S)

for a, b, c being Element of X st Condition_S (a,b) c= Initial_section c holds

for x being Element of Condition_S (a,b) holds x <= c \ ((c \ a) \ b)

theorem :: XXREAL_3 :67

for f, g being ext -real number holds (f * g)"=(f") * (g")

8 Related Work and Possible Extensions

The closest related work is the hintguidance in Otter and Prover9. Our focus is
however on large ITP-style theories with large signatures and heterogeneous facts
and proofs spanning various areas of mathematics. This motivates using machine
learning for reducing the size of the static watchlists and the implementation of
the dynamic watchlist mechanisms. Several implementations of internal proof
search guidance using statistical learning have been mentioned in Sects. 1 and 3.
In both the tableau-based systems and the tactical ITP systems the statistical
learning guidance benefits from a compact and directly usable notion of proof
state, which is not immediately available in saturation-style ATP.

By delegating the notion of similarity to subsumption we are relying on fast,
crisp and well-known symbolic ATP mechanisms. This has advantages as well as
disadvantages. Compared to the ENIGMA [15] and neural [23] statistical guiding
methods, the subsumption-based notion of clause similarity is not feature-based
or learned. This similarity relation is crisp and sparser compared to the similar-
ity relations induced by the statistical methods. The proof guidance is limited
when no derived clauses subsume any of the loaded proof clauses. This can be
countered by loading a high number of proofs and widening (or softening) the
similarity relation in various approximate ways. On the other hand, subsump-
tion is fast compared to the deep neural methods (see [23]) and enjoys clear
guarantees of the underlying symbolic calculus. For example, when all the (non
empty) clauses from a loaded related proof have been subsumed in the current
proof search, it is clear that the current proof search is successfully finished.

A clear novelty is the focusing of the proof search towards the (possibly
implausible) inferences needed for completing the loaded proofs. Existing sta-
tistical guiding methods will fail to notice such opportunities, and the static
watchlist guidance has no way of distinguishing the watchlist matchers that lead
faster to proof completion. In a way this mechanism resembles the feedback
obtained by Monte Carlo exploration, where a seemingly statistically unlikely
decision can be made, based on many rollouts and averaging of their results.
Instead, we rely here on a database of previous proofs, similar to previously

ProofWatch: Watchlist Guidance for Large Theories in E 285

played and finished games. The newly introduced heuristic proof search (proof
progress) representation may however enable further experiments with Monte
Carlo guidance.

8.1 Possible Extensions

Several extensions have been already discussed above. We list the most obvious.

More Sophisticated Progress Metrics: The current proof-progress criterion
may be too crude. Subsuming all the initial clauses of a related proof is unlikely
until the empty clause is derived. In general, a large part of a related proof may
not be needed once the right clauses in the “middle of the proof” are subsumed
by the current proof search. A better proof-progress metric would compute the
smallest number of proof clauses that are still needed to entail the contradiction.
This is achievable, however more technically involved, also due to issues such as
rewriting of the watchlist clauses during the current proof search.

Clause Re-evaluation Based on the Evolving Proof Relevance: As more
and more watchlist clauses are matched, the proof relevance of the clauses gen-
erated earlier should be updated to mirror the current state. This is in general
expensive, so it could be done after each N given clause loops or after a sig-
nificant number of watchlist matchings. An alternative is to add corresponding
indexing mechanisms to the set of generated clauses, which will immediately
reorder them in the evaluation queues based on the proof relevance updates.

More Abstract/Approximate Matching: Instead of the strict notion of sub-
sumption, more abstract or heuristic matching methods could be used. An inter-
esting symbolic method to consider is matching modulo symbol alignments [9].
A number of approximate methods are already used by the above mentioned
statistical guiding methods.

Adding Statistical Methods for Clause Guidance: Instead of using
only hard-coded watchlist-style heuristics for focusing inferences, a statistical
(e.g. ENIGMA-style) clause evaluation model could be trained by adding the
vector of proof completion ratios to the currently used ENIGMA features.

9 Conclusion

The portfolio of new proof guiding methods developed here significantly improves
E’s standard portfolio of strategies, and also the previous best set of strate-
gies invented for Mizar by evolutionary methods. The best combination of five
new strategies run in parallel for 10 s (a reasonable hammering time) will prove
over 7% more Mizar problems than the previous best combination of five non-
watchlist strategies. Improvement over E’s standard portfolio is much higher.
Even though we focus on developing the strongest portfolio rather than a single
best method, it is clear that the best guided versions also significantly improve
over their non-guided counterparts. This improvement for the best new strategy

286 Z. Goertzel et al.

(dyn2A used with 16 most relevant proofs) is 26.5% (=18583/14693). These are
relatively high improvements in automated theorem proving.

We have shown that the new dynamic methods based on the idea of proof
completion ratios improve over the static watchlist guidance. We have also
shown that as usual with learning-based guidance, iterating the methods to
produce more proofs leads to stronger methods in the next iteration. The first
experiments with widening the watchlist-based guidance by relatively simple
inheritance mechanisms seem quite promising, contributing many new proofs.
A number of extensions and experiments with guiding saturation-style proving
have been opened for future research. We believe that various extensions of the
compact and evolving heuristic representation of saturation-style proof search as
introduced here will turn out to be of great importance for further development
of learning-based saturation provers.

Acknowledgments. We thank Bob Veroff for many enlightening explanations and
discussions of the watchlist mechanisms in Otter and Prover9. His “industry-grade”
projects that prove open and interesting mathematical conjectures with hints and proof
sketches have been a great sort of inspiration for this work.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning
52(2), 191–213 (2014)

2. Alemi, A.A., Chollet, F., Eén, N., Irving, G., Szegedy, C., Urban, J.: DeepMath -
deep sequence models for premise selection. In: Lee, D.D., Sugiyama, M., Luxburg,
U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016,
5–10 December 2016, Barcelona, Spain, pp. 2235–2243 (2016)

3. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Logic Comput. 3(4), 217–247 (1994)

4. Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-
based fact selector for Isabelle/HOL. J. Autom. Reasoning 57(3), 219–244 (2016)

5. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reasoning 9(1), 101–148 (2016)

6. Eiter, T., Sands, D. (eds.): LPAR-21, 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Maun, Botswana, 7–12 May
2017, EPiC Series in Computing, vol. 46. EasyChair (2017)

7. Färber, M., Kaliszyk, C.: Random forests for premise selection. In: Lutz, C., Ranise,
S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 325–340. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24246-0 20

8. Färber, M., Kaliszyk, C., Urban, J.: Monte carlo tableau proof search. In: de Moura,
L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 563–579. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63046-5 34

9. Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In: Watt,
S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS
(LNAI), vol. 8543, pp. 267–281. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08434-3 20

https://doi.org/10.1007/978-3-319-24246-0_20
https://doi.org/10.1007/978-3-319-63046-5_34
https://doi.org/10.1007/978-3-319-08434-3_20
https://doi.org/10.1007/978-3-319-08434-3_20

ProofWatch: Watchlist Guidance for Large Theories in E 287

10. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4
tactics. In: Eiter and Sands [6], pp. 125–143

11. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized
Reasoning 3(2), 153–245 (2010)

12. Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: search for proofs using inferred
automata. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 246–255. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21401-6 16

13. Jakub̊uv, J., Urban, J.: Extending E prover with similarity based clause selection
strategies. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F.
(eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 151–156. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42547-4 11

14. Jakubuv, J., Urban, J.: BliStrTune: hierarchical invention of theorem proving
strategies. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th ACM SIG-
PLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France,
16–17 January 2017, pp. 43–52. ACM (2017)

15. Jakub̊uv, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6 20

16. Kaliszyk, C., Schulz, S., Urban, J., Vyskočil, J.: System description: E.T. 0.1. In:
Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 389–
398. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6 27

17. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reasoning 53(2), 173–213 (2014)

18. Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection
prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015.
LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48899-7 7

19. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reasoning 55(3), 245–
256 (2015)

20. Kaliszyk, C., Urban, J., Vyskočil, J.: Efficient semantic features for automated
reasoning over large theories. In: Yang, Q., Wooldridge, M. (eds.) IJCAI 2015, pp.
3084–3090. AAAI Press (2015)

21. Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with abelian inner mapping groups:
an application of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.)
Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 151–164.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36675-8 8

22. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

23. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: Eiter and Sands [6], pp. 85–105

24. McCune, W., Wos, L.: Otter: the CADE-13 competition incarnations. J. Autom.
Reasoning 18(2), 211–220 (1997). Special Issue on the CADE 13 ATP System
Competition

25. McCune, W.W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/
∼mccune/prover9/. Accessed 29 Mar 2016

26. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36(1–2), 139–161 (2003)

https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/978-3-319-42547-4_11
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1007/978-3-319-21401-6_27
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-642-36675-8_8
https://doi.org/10.1007/978-3-642-39799-8_1
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/

288 Z. Goertzel et al.

27. Schäfer, S., Schulz, S.: Breeding theorem proving heuristics with genetic algorithms.
In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) Global Conference on Artificial
Intelligence, GCAI 2015, Tbilisi, Georgia, 16–19 October 2015, EPiC Series in
Computing, vol. 36, pp. 263–274. EasyChair (2015)

28. Schulz, S.: Learning search control knowledge for equational theorem proving. In:
Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp.
320–334. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45422-5 23

29. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 45–67. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36675-8 3

30. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5 49

31. Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-
based theorem proving. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS
(LNAI), vol. 9706, pp. 330–345. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40229-1 23

32. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.P., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep
neural networks and tree search. Nature 529(7587), 484–489 (2016)

33. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T.P., Simonyan, K., Hassabis,
D.: Mastering Chess and Shogi by self-play with a general reinforcement learning
algorithm. CoRR, abs/1712.01815 (2017)

34. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

35. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reasoning 37(1–2), 21–43 (2006)

36. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection
prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI),
vol. 6793, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22119-4 21

37. Veroff, R.: Using hints to increase the effectiveness of an automated reasoning
program: case studies. J. Autom. Reasoning 16(3), 223–239 (1996)

https://doi.org/10.1007/3-540-45422-5_23
https://doi.org/10.1007/978-3-642-36675-8_3
https://doi.org/10.1007/978-3-642-36675-8_3
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-319-40229-1_23
https://doi.org/10.1007/978-3-319-40229-1_23
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-642-22119-4_21
https://doi.org/10.1007/978-3-642-22119-4_21

Reification by Parametricity

Fast Setup for Proof by Reflection, in Two Lines of Ltac

Jason Gross(B), Andres Erbsen, and Adam Chlipala

MIT CSAIL, Cambridge, MA, USA
{jgross,andreser}@mit.edu, adamc@csail.mit.edu

Abstract. We present a new strategy for performing reification in Coq.
That is, we show how to generate first-class abstract syntax trees from
“native” terms of Coq’s logic, suitable as inputs to verified compilers
or procedures in the proof-by-reflection style. Our new strategy, based
on simple generalization of subterms as variables, is straightforward,
short, and fast. In its pure form, it is only complete for constants and
function applications, but “let” binders, eliminators, lambdas, and quan-
tifiers can be accommodated through lightweight coding conventions or
preprocessing.

We survey the existing methods of reification across multiple Coq
metaprogramming facilities, describing various design choices and tricks
that can be used to speed them up, as well as various limitations. We
report benchmarking results for 18 variants, in addition to our own, find-
ing that our own reification outperforms 16 of these methods in all cases,
and one additional method in some cases; writing an OCaml plugin is
the only method tested to be faster. Our method is the most concise of
the strategies we considered, reifying terms using only two to four lines
of Ltac—beyond lists of the identifiers to reify and their reified variants.
Additionally, our strategy automatically provides error messages that are
no less helpful than Coq’s own error messages.

1 Introduction

Proof by reflection [2] is an established method for employing verified proof
procedures, within larger proofs. There are a number of benefits to using veri-
fied functional programs written in the proof assistant’s logic, instead of tactic
scripts. We can often prove that procedures always terminate without attempt-
ing fallacious proof steps, and perhaps we can even prove that a procedure gives
logically complete answers, for instance telling us definitively whether a proposi-
tion is true or false. In contrast, tactic-based procedures may encounter runtime
errors or loop forever. As a consequence, those procedures must output proof
terms, justifying their decisions, and these terms can grow large, making for

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-94821-8 17) contains supplementary material, which is
available to authorized users.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 289–305, 2018.
https://doi.org/10.1007/978-3-319-94821-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_17&domain=pdf
https://doi.org/10.1007/978-3-319-94821-8_17
https://doi.org/10.1007/978-3-319-94821-8_17

290 J. Gross et al.

slower proving and requiring transmission of large proof terms to be checked
slowly by others. A verified procedure need not generate a certificate for each
invocation.

The starting point for proof by reflection is reification: translating a “native”
term of the logic into an explicit abstract syntax tree. We may then feed that tree
to verified procedures or any other functional programs in the logic. The benefits
listed above are particularly appealing in domains where goals are very large.
For instance, consider verification of large software systems, where we might
want to reify thousands of lines of source code. Popular methods turn out to be
surprisingly slow, often to the point where, counter-intuitively, the majority of
proof-execution time is spent in reification – unless the proof engineer invests
in writing a plugin directly in the proof assistant’s metalanguage (e.g., OCaml
for Coq).

In this paper, we show that reification can be both simpler and faster than
with standard methods. Perhaps surprisingly, we demonstrate how to reify terms
almost entirely through reduction in the logic, with a small amount of tactic code
for setup and no ML programming. Though our techniques should be broadly
applicable, especially in proof assistants based on type theory, our experience is
with Coq, and we review the requisite background in the remainder of this intro-
duction. In Sect. 2, we summarize our survey into prior approaches to reification
and provide high-quality implementations and documentation for them, serving
a tutorial function independent of our new contributions. Experts on the subject
might want to skip directly to Sect. 3, which explains our alternative technique.
We benchmark our approach against 18 competitors in Sect. 4.

1.1 Proof-Script Primer

Basic Coq proofs are often written as lists of steps such as induction on some
structure, rewrite using a known equivalence, or unfold of a definition. Very
quickly, proofs can become long and tedious, both to write and to read, and hence
Coq provides Ltac, a scripting language for proofs. As theorems and proofs grow
in complexity, users frequently run into performance and maintainability issues
with Ltac. Consider the case where we want to prove that a large algebraic
expression, involving many let ... in ... expressions, is even:

Inductive is_even : nat -> Prop :=

| even_O : is_even O

| even_SS : forall x, is_even x -> is_even (S (S x)).

Goal is_even (let x := 100 * 100 * 100 * 100 in

let y := x * x * x * x in

y * y * y * y).

Coq stack-overflows if we try to reduce this goal. As a workaround, we might
write a lemma that talks about evenness of let ... in ..., plus one about
evenness of multiplication, and we might then write a tactic that composes such
lemmas.

Reification by Parametricity 291

Even on smaller terms, though, proof size can quickly become an issue. If we
give a naive proof that 7000 is even, the proof term will contain all of the even
numbers between 0 and 7000, giving a proof-term-size blow-up at least quadratic
in size (recalling that natural numbers are represented in unary; the challenges
remain for more efficient base encodings). Clever readers will notice that Coq
could share subterms in the proof tree, recovering a term that is linear in the size
of the goal. However, such sharing would have to be preserved very carefully, to
prevent size blow-up from unexpected loss of sharing, and today’s Coq version
does not do that sharing. Even if it did, tactics that rely on assumptions about
Coq’s sharing strategy become harder to debug, rather than easier.

1.2 Reflective-Automation Primer

Enter reflective automation, which simultaneously solves both the problem of
performance and the problem of debuggability. Proof terms, in a sense, are traces
of a proof script. They provide Coq’s kernel with a term that it can check to
verify that no illegal steps were taken. Listing every step results in large traces.

Fig. 1. Evenness checking

The idea of reflective automation is that, if
we can get a formal encoding of our goal, plus an
algorithm to check the property we care about,
then we can do much better than storing the
entire trace of the program. We can prove that
our checker is correct once and for all, removing
the need to trace its steps.

A simple evenness checker can just oper-
ate on the unary encoding of natural numbers
(Fig. 1). We can use its correctness theorem to
prove goals much more quickly:

Theorem soundness : forall n, check_is_even n = true -> is_even n.

Goal is_even 2000.

Time repeat (apply even_SS || apply even_O). (* 1.8 s *)

Undo.

Time apply soundness; vm_compute; reflexivity. (* 0.004 s *)

The tactic vm compute tells Coq to use its virtual machine for reduction, to
compute the value of check is even 2000, after which reflexivity proves that
true = true. Note how much faster this method is. In fact, even the asymptotic
complexity is better; this new algorithm is linear rather than quadratic in n.

However, even this procedure takes a bit over three minutes to prove is even
(10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10). To do better, we need a
formal representation of terms or expressions.

1.3 Reflective-Syntax Primer

Sometimes, to achieve faster proofs, we must be able to tell, for example, whether
we got a term by multiplication or by addition, and not merely whether its
normal form is 0 or a successor.

292 J. Gross et al.

Fig. 2. Simple expressions

A reflective automation procedure gen-
erally has two steps. The first step is to
reify the goal into some abstract syntac-
tic representation, which we call the term
language or an expression language. The
second step is to run the algorithm on the
reified syntax.

What should our expression language include? At a bare minimum, we must
have multiplication nodes, and we must have nat literals. If we encode S and
O separately, a decision that will become important later in Sect. 3, we get the
inductive type of Fig. 2.

Before diving into methods of reification, let us write the evenness checker.

Fixpoint check_is_even_expr (t : expr) : bool

:= match t with

| NatO => true

| NatS x => negb (check_is_even_expr x)

| NatMul x y => orb (check_is_even_expr x) (check_is_even_expr y)

end.

Before we can state the soundness theorem (whenever this checker returns true,
the represented number is even), we must write the function that tells us what
number our expression represents, called denotation or interpretation:

Fixpoint denote (t : expr) : nat

:= match t with

| NatO => O

| NatS x => S (denote x)

| NatMul x y => denote x * denote y

end.

Theorem check_is_even_expr_sound (e : expr)

: check_is_even_expr e = true -> is_even (denote e).

Given a tactic Reify to produce a reified term from a nat, we can time
check is even expr. It is instant on the last example.

Before we proceed to reification, we will introduce one more complexity.
If we want to support our initial example with let ... in ... efficiently,
we must also have let-expressions. Our current procedure that inlines let-
expressions takes 19 s, for example, on let x0 := 10 * 10 in let x1 := x0
* x0 in ... let x24 := x23 * x23 in x24. The choices of representation
include higher-order abstract syntax (HOAS) [11], parametric higher-order
abstract syntax (PHOAS) [4], and de Bruijn indices [3]. The PHOAS represen-
tation is particularly convenient. In PHOAS, expression binders are represented
by binders in Gallina, the functional language of Coq, and the expression lan-
guage is parameterized over the type of the binder. Let us define a constant
and notation for let expressions as definitions (a common choice in real Coq
developments, to block Coq’s default behavior of inlining let binders silently;

Reification by Parametricity 293

the same choice will also turn out to be useful for reification later). We thus
have:

Inductive expr {var : Type} :=
| NatO : expr
| NatS : expr -> expr

| NatMul : expr -> expr -> expr
| Var : var -> expr
| LetIn : expr -> (var -> expr) -> expr.
Definition Let_In {A B} (v : A) (f : A -> B) := let x := v in f x.
Notation "'dlet' x := v 'in' f" := (Let_In v (fun x => f)).
Notation "'elet' x := v 'in' f" := (LetIn v (fun x => f)).
Fixpoint denote (t : @expr nat) : nat

:= match t with
| NatO => O
| NatS x => S (denote x)
| NatMul x y => denote x * denote y
| Var v => v
| LetIn v f => dlet x := denote v in denote (f x)
end.

A full treatment of evenness checking for PHOAS would require proving well-
formedness of syntactic expressions; for a more complete discussion of PHOAS,
we refer the reader elsewhere [4]. Using Wf to denote the well-formedness predi-
cate, we could prove a theorem

Theorem check_is_even_expr_sound (e : ∀ var, @expr var) (H : Wf e)

: check_is_even_expr (e bool) = true -> is_even (denote (e nat)).

To complete the picture, we would need a tactic Reify which took in a term
of type nat and gave back a term of type forall var, @expr var, plus a tac-
tic prove wf which solved a goal of the form Wf e by repeated application of
constructors. Given these, we could solve an evenness goal by writing1

match goal with

| [|- is_even ?v]

=> let e := Reify v in

refine (check_is_even_expr_sound e _ _);

[prove_wf | vm_compute; reflexivity]

end.

2 Methods of Reification

We implemented reification in 18 different ways, using 6 different metaprogram-
ming facilities in the Coq ecosystem: Ltac, Ltac2, Mtac [8], type classes [12],

1 Note that for the refine to be fast, we must issue something like Strategy -10

[denote] to tell Coq to unfold denote before Let In.

294 J. Gross et al.

canonical structures [7], and reification-specific OCaml plugins (quote [5],
template-coq [1], ours). Figure 3 displays the simplest case: an Ltac script to
reify a tree of function applications and constants. Unfortunately, all methods
we surveyed become drastically more complicated or slower (and usually both)
when adapted to reify terms with variable bindings such as let-in or λ nodes.

Fig. 3. Reification without binders in Ltac

We have made detailed walk-
throughs and source code of these
implementations available2 in hope
that they will be useful for oth-
ers considering implementing reifi-
cation using one of these metapro-
gramming mechanisms, instructive
as nontrivial examples of multi-
ple metaprogramming facilities, or
helpful as a case study in Coq per-
formance engineering. However, we
do not recommend reading these
out of general interest: most of the complexity in the described implementa-
tions strikes us as needless, with significant aspects of the design being driven
by surprising behaviors, misfeatures, bugs, and performance bottlenecks of the
underlying machinery as opposed to the task of reification.

3 Reification by Parametricity

We propose factoring reification into two passes, both of which essentially
have robust, built-in implementations in Coq: abstraction or generalization, and
substitution or specialization.

Fig. 4. Abstraction and reification

The key insight to this factoring
is that the shape of a reified term is
essentially the same as the shape of
the term that we start with. We can
make precise the way these shapes
are the same by abstracting over the
parts that are different, obtaining a
function that can be specialized to
give either the original term or the
reified term.

That is, we have the commutative triangle in Fig. 4.

3.1 Case-By-Case Walkthrough

Function Applications and Constants. Consider the example of reifying
2 × 2. In this case, the term is 2 × 2 or (mul (S (S O)) (S (S O))).

2 https://github.com/mit-plv/reification-by-parametricity.

https://github.com/mit-plv/reification-by-parametricity

Reification by Parametricity 295

To reify, we first generalize or abstract the term 2 × 2 over the successor
function S, the zero constructor O, the multiplication function mul, and the
type N of natural numbers. We get a function taking one type argument and
three value arguments:

ΛN. λ(Mul : N → N → N) (O : N) (S : N → N). Mul (S (S O)) (S (S O))

We can now specialize this term in one of two ways: we may substitute N, mul,
O, and S, to get back the term we started with; or we may substitute expr,
NatMul, NatO, and NatS to get the reified syntax tree

NatMul (NatS (NatS NatO)) (NatS (NatS NatO))

This simple two-step process is the core of our algorithm for reification:
abstract over all identifiers (and key parts of their types) and specialize to syntax-
tree constructors for these identifiers.

Wrapped Primitives: “Let” Binders, Eliminators, Quantifiers. The
above procedure can be applied to a term that contains “let” binders to
get a PHOAS syntax tree that represents the original term, but doing so
would not capture sharing. The result would contain native “let” bindings of
subexpressions, not PHOAS let expressions. Call-by-value evaluation of any
procedure applied to the reification result would first substitute the let-bound
subexpressions – leading to potentially exponential blowup and, in practice,
memory exhaustion.

The abstraction mechanisms in all proof assistants (that we know about)
only allow abstracting over terms, not language primitives. However, primitives
can often be wrapped in explicit definitions, which we can abstract over. For
example, we already used a wrapper for “let” binders, and terms that use it can
be reified by abstracting over that definition. If we start with the expression

dlet a := 1 in a × a

and abstract over (@Let InN N), S, O, mul, and N, we get a function of one
type argument and four value arguments:

ΛN. λ (Mul : N → N → N). λ(O : N). λ(S : N → N).
λ(LetIn : N → (N → N) → N).LetIn (S O) (λa.Mul a a)

We may once again specialize this term to obtain either our original term or the
reified syntax. Note that to obtain reified PHOAS syntax, we must include a Var
node in the LetIn expression; we substitute (λx f. LetIn x (λv. f (Var v))) for
LetIn to obtain the PHOAS syntax tree

LetIn (NatS NatO) (λv. NatMul (Var v) (Var v))

Wrapping a metalanguage primitive in a definition in the code to be reified is
in general sufficient for reification by parametricity. Pattern matching and recur-
sion cannot be abstracted over directly, but if the same code is expressed using

296 J. Gross et al.

eliminators, these can be handled like other functions. Similarly, even though
∀/Π cannot be abstracted over, proof automation that itself introduces uni-
versal quantifiers before reification can easily wrap them in a marker definition
(forall T P := forall (x:T), P x) that can be. Existential quantifiers are
not primitive in Coq and can be reified directly.

Lambdas. While it would be sufficient to require that, in code to be reified,
we write all lambdas with a named wrapper function, that would significantly
clutter the code. We can do better by making use of the fact that a PHOAS
object-language lambda (Abs node) consists of a metalanguage lambda that
binds a value of type var, which can be used in expressions through constructor
Var : var → expr. Naive reification by parametricity would turn a lambda
of type N → N into a lambda of type expr → expr. A reification procedure
that explicitly recurses over the metalanguage syntax could just precompose
this recursive-call result with Var to get the desired object-language encoding
of the lambda, but handling lambdas specially does not fit in the framework of
abstraction and specialization.

First, let us handle the common case of lambdas that appear as arguments
to higher-order functions. One easy approach: while the parametricity-based
framework does not allow for special-casing lambdas, it is up to us to choose
how to handle functions that we expect will take lambdas as arguments. We
may replace each higher-order function with a metalanguage lambda that wraps
the higher-order arguments in object-language lambdas, inserting Var nodes as
appropriate. Code calling the function sum upto n f := f(0) + f(1) + · · · +
f(n) can be reified by abstracting over relevant definitions and substituting
(λn f. SumUpTon (Abs (λv. f (Var v)))) for sum upto. Note that the expression
plugged in for sum upto differs from the one plugged in for Let In only in
the use of a deeply embedded abstraction node. If we wanted to reify LetIn
as just another higher-order function (as opposed to a distinguished wrapper for
a primitive), the code would look identical to that for sum upto.

It would be convenient if abstracting and substituting for functions that
take higher-order arguments were enough to reify lambdas, but here is a
counterexample.

λ x y. x × ((λ z. z × z) y)

ΛN. λ(Mul : N → N → N). λ (x y : N). Mul x ((λ (z : N). Mul z z) y)

λ (x y : expr). NatMul x (NatMul y y)

The result is not even a PHOAS expression. We claim a desirable reified form is

Abs(λ x. Abs(λ y. NatMul (Var x) (NatMul (Var y) (Var y))))

Admittedly, even our improved form is not quite precise: λ z. z×z has been lost.
However, as almost all standard Coq tactics silently reduce applications of lamb-
das, working under the assumption that functions not wrapped in definitions will
be arbitrarily evaluated during scripting is already the norm. Accepting that lim-
itation, it remains to consider possible occurrences of metalanguage lambdas in

Reification by Parametricity 297

normal forms of outputs of reification as described so far. As lambdas in expr
nodes that take metalanguage functions as arguments (LetIn, Abs) are handled
by the rules for these nodes, the remaining lambdas must be exactly at the
head of the expression. Manipulating these is outside of the power of abstraction
and specialization; we recommend postprocessing using a simple recursive tactic
script.

3.2 Commuting Abstraction and Reduction

Sometimes, the term we want to reify is the result of reducing another term. For
example, we might have a function that reduces to a term with a variable number
of let binders.3 We might have an inductive type that counts the number of
let ... in ... nodes we want in our output.

Inductive count := none | one_more (how_many : count).

It is important that this type be syntactically distinct from N for reasons we will
see shortly.

Fig. 5. Abstraction, reification, reduction

We can then define a recur-
sive function that constructs some
number of nested let binders:

Fixpoint big (x:nat) (n:count)
: nat
:= match n with

| none => x
| one_more n'
=> dlet x' := x * x in

big x' n'
end.

Our commutative diagram in Fig. 4
now has an additional node,
becoming Fig. 5. Since generaliza-
tion and specialization are proportional in speed to the size of the term begin
handled, we can gain a significant performance boost by performing generaliza-
tion before reduction. To explain why, we split apart the commutative diagram
a bit more; in reduction, there is a δ or unfolding step, followed by a βι step that
reduces applications of λs and evaluates recursive calls. In specialization, there is
an application step, where the λ is applied to arguments, and a β-reduction step,
where the arguments are substituted. To obtain reified syntax, we may perform
generalization after δ-reduction (before βι-reduction), and we are not required

3 More realistically, we might have a function that represents big numbers using
multiple words of a user-specified width. In this case, we may want to specialize
the procedure to a couple of different bitwidths, then reifying the resulting partially
reduced term.

298 J. Gross et al.

to perform the final β-reduction step of specialization to get a well-typed term.
It is important that unfolding big results in exposing the body for generaliza-
tion, which we accomplish in Coq by exposing the anonymous recursive function;
in other languages, the result may be a primitive eliminator applied to the body
of the fixpoint. Either way, our commutative diagram thus becomes

Let us step through this alternative path of reduction using the example of
the unreduced term big 1 100, where we take 100 to mean the term represented
by (one more · · · (one more

︸ ︷︷ ︸

100

none) · · ·)
︸ ︷︷ ︸

100

.

Our first step is to unfold big, rendered as the arrow labeled δ in the
diagram. In Coq, the result is an anonymous fixpoint; here we will write it using
the recursor count rec of type ∀T. T → (count → T → T) → count → T . Per-
forming δ-reduction, that is, unfolding big, gives us the small partially reduced
term

(
λ(x : N). λ(n : count).

count rec (N → N) (λx. x) (λn′. λbign′ . λx. dlet x′ := x × x in bign′ x′)
)

1 100

We call this term small, because performing βι reduction gives us a much
larger reduced term:

dlet x1 := 1 × 1 in · · · dlet x100 := x99 × x99 in x100

Abstracting the small partially reduced term over (@Let In N N), S, O, mul,
and N gives us the abstracted unreduced term

ΛN. λ(Mul : N → N → N)(O : N)(S : N → N)(LetIn : N → (N → N) → N).
(

λ(x : N). λ(n : count). count rec (N → N) (λx. x)

(λn′. λbign′ . λx. LetIn (Mul x x) (λx′. bign′ x′))
)

(S O) 100

Note that it is essential here that count is not syntactically the same as
N; if they were the same, the abstraction would be ill-typed, as we have not
abstracted over count rec. More generally, it is essential that there is a clear

Reification by Parametricity 299

separation between types that we reify and types that we do not, and we must
reify all operations on the types that we reify.

We can now apply this term to expr, NatMul, NatS, NatO, and, finally,
(λv f. LetIn v (λx. f (Var x))). We get an unreduced reified syntax tree of
type expr. If we now perform βι reduction, we get our fully reduced reified
term.

We take a moment to emphasize that this technique is not possible with
any other method of reification. We could just as well have not specialized the
function to the count of 100, yielding a function of type count → expr, despite
the fact that our reflective language knows nothing about count!

This technique is especially useful for terms that will not reduce without
concrete parameters, but which should be reified for many different parameters.
Running reduction once is slightly faster than running OCaml reification once,
and it is more than twice as fast as running reduction followed by OCaml reifi-
cation. For sufficiently large terms and sufficiently many parameter values, this
performance beats even OCaml reification.4

3.3 Implementation in Ltac

ExampleMoreParametricity.v in the code supplement mirrors the development
of reification by parametricity in Subsect. 3.1.

Unfortunately, Coq does not have a tactic that performs abstraction.5 How-
ever, the pattern tactic suffices; it performs abstraction followed by application,
making it a sort of one-sided inverse to β-reduction. By chaining pattern with
an Ltac-match statement to peel off the application, we can get the abstracted
function.

Ltac Reify x :=

match(eval pattern nat, Nat.mul, S, O, (@Let_In nat nat) in x)with

| ?rx _ _ _ _ _ =>

constr:(fun var => rx (@expr var) NatMul NatS NatO

(fun v f => LetIn v (fun x => f (Var x))))

end.

Note that if @expr var lives in Type rather than Set, an additional step involv-
ing retyping the term is needed; we refer the reader to Parametricity.v in the
code supplement.

The error messages returned by the pattern tactic can be rather opaque at
times; in ExampleParametricityErrorMessages.v, we provide a procedure for
decoding the error messages.

4 We discovered this method in the process of needing to reify implementations of
cryptographic primitives [6] for a couple hundred different choices of numeric param-
eters (e.g., prime modulus of arithmetic). A couple hundred is enough to beat the
overhead.

5 The generalize tactic returns ∀ rather than λ, and it only works on types.

300 J. Gross et al.

Open Terms. At some level it is natural to ask about generalizing our method
to reify open terms (i.e., with free variables), but we think such phrasing is a red
herring. Any lemma statement about a procedure that acts on a representation
of open terms would need to talk about how these terms would be closed. For
example, solvers for algebraic goals without quantifiers treat free variables as
implicitly universally quantified. The encodings are invariably ad-hoc: the free
variables might be assigned unique numbers during reification, and the lemma
statement would be quantified over a sufficiently long list that these numbers
will be used to index into. Instead, we recommend directly reifying the natural
encoding of the goal as interpreted by the solver, e.g. by adding new explicit
quantifiers. Here is a hypothetical goal and a tactic script for this strategy:

(a b : nat) (H : 0 < b) |- ∃ q r, a = q × b + r ∧ r < b

repeat match goal with

| n : nat |- ?P =>

match eval pattern n in P with

| ?P’ _ => revert n; change (_forall nat P’)

end

| H : ?A |- ?B => revert H; change (impl A B)

| |- ?G => (* ∀ a b, 0 < b -> ∃ q r, a = q × b + r ∧ r < b *)

let rG := Reify G in

refine (nonlinear_integer_solver_sound rG _ _);

[prove_wf | vm_compute; reflexivity]

end.

Briefly, this script replaced the context variables a and b with universal quan-
tifiers in the conclusion, and it replaced the premise H with an implication in
the conclusion. The syntax-tree datatype used in this example can be found in
ExampleMoreParametricity.v.

3.4 Advantages and Disadvantages

This method is faster than all but Ltac2 and OCaml reification, and commuting
reduction and abstraction makes this method faster even than the low-level
Ltac2 reification in many cases. Additionally, this method is much more concise
than nearly every other method we have examined, and it is very simple to
implement.

We will emphasize here that this strategy shines when the initial term is
small, the partially computed terms are big (and there are many of them), and
the operations to evaluate are mostly well-separated by types (e.g., evaluate all
of the count operations and none of the nat ones).

This strategy is not directly applicable for reification of match (rather than
eliminators) or let ... in ... (rather than a definition that unfolds to let
... in ...), forall (rather than a definition that unfolds to forall), or when
reification should not be modulo βιζ-reduction.

Reification by Parametricity 301

4 Performance Comparison

We have done a performance comparison of the various methods of reifi-
cation to the PHOAS language @expr var from Fig. 1.3 in Coq 8.7.1. A
typical reification routine will obtain the term to be reified from the goal, reify
it, run transitivity (denote reified term) (possibly after normalizing the
reified term), and solve the side condition with something like lazy [denote];
reflexivity. Our testing on a few samples indicated that using change rather
than transitivity; lazy [denote]; reflexivity can be around 3X slower;
note that we do not test the time of Defined.

There are two interesting metrics to consider: (1) how long does it take to
reify the term? and (2) how long does it take to get a normalized reified term, i.e.,
how long does it take both to reify the term and normalize the reified term? We
have chosen to consider (1), because it provides the most fine-grained analysis
of the actual reification method.

4.1 Without Binders

We look at terms of the form 1 * 1 * 1 * ... where multiplication is associ-
ated to create a balanced binary tree. We say that the size of the term is the
number of 1s. We refer the reader to the attached code for the exact test cases
and the code of each reification method being tested.

We found that the performance of all methods is linear in term size.

Fig. 6. Performance of reification without binders

Sorted from slowest to fastest, most of the labels in Fig. 6 should be self-
explanatory and are found in similarly named .v files in the associated code; we
call out a few potentially confusing ones:

302 J. Gross et al.

– The “Parsing” benchmark is “reification by copy-paste”: a script generates a
.v file with notation for an already-reified term; we benchmark the amount
of time it takes to parse and typecheck that term. The “ParsingElaborated”
benchmark is similar, but instead of giving notation for an already-reified
term, we give the complete syntax tree, including arguments normally left
implicit. Note that these benchmarks cut off at around 5000 rather than at
around 20 000, because on large terms, Coq crashes with a stack overflow in
parsing.

– We have four variants starting with “CanonicalStructures” here. The Flat
variants reify to @expr nat rather than to forall var, @expr var and ben-
efit from fewer function binders and application nodes. The HOAS variants do
not include a case for let ... in ... nodes, while the PHOAS variants do.
Unlike most other reification methods, there is a significant cost associated
with handling more sorts of identifiers in canonical structures.

We note that on this benchmark our method is slightly faster than template-
coq, which reifies to de Bruijn indices, and slightly slower than the quote plugin
in the standard library and the OCaml plugin we wrote by hand.

4.2 With Binders

We look at terms of the form dlet a1 := 1 * 1 in dlet a2 := a1 * a1
in ... dlet an := an−1 * an−1 in an, where n is the size of the term. The
first graph shown here includes all of the reification variants at linear scale, while
the next step zooms in on the highest-performance variants at log-log scale.

In addition to reification benchmarks, the graph in Fig. 7 includes as a ref-
erence (1) the time it takes to run lazy reduction on a reified term already in
normal form (“identity lazy”) and (2) the time it takes to check that the reified
term matches the original native term (“lazy Denote”). The former is just barely
faster than OCaml reification; the latter often takes longer than reification itself.
The line for the template-coq plugin cuts off at around 10 000 rather than around
20 000 because at that point template-coq starts crashing with stack overflows.

A nontrivial portion of the cost of “Parametricity (reduced term)” seems to
be due to the fact that looking up the type of a binder is linear in the number of
binders in the context, thus resulting in quadratic behavior of the retyping step
that comes after abstraction in the pattern tactic. In Coq 8.8, this lookup will
be log n, and so reification will become even faster [10].

5 Future Work, Concluding Remarks

We identify one remaining open question with this method that has the potential
of removing the next largest bottleneck in reification: using reduction to show
that the reified term is correct.

Reification by Parametricity 303

Fig. 7. Performance of reification with binders

Fig. 8. Completing the commutative triangle

Recall our reification pro-
cedure and the associated
diagram, from Fig. 3.2. We
perform δ on an unreduced
term to obtain a small, par-
tially reduced term; we then
perform abstraction to get an
abstracted, unreduced term,
followed by application to
get unreduced reified syntax.
These steps are all fast. Finally, we perform βι-reduction to get reduced, reified
syntax and perform βιδ reduction to get back a reduced form of our original
term. These steps are slow, but we must do them if we are to have verified
reflective automation.

304 J. Gross et al.

It would be nice if we could prove this equality without ever reducing our
term. That is, it would be nice if we could have the diagram in Fig. 8.

The question, then, is how to connect the small partially reduced term with
denote applied to the unreduced reified syntax. That is, letting F denote the
unreduced abstracted term, how can we prove, without reducing F , that

F N Mul O S (@Let In N N) = denote (F expr NatMul NatO NatS LetIn)

We hypothesize that a form of internalized parametricity would suffice for prov-
ing this lemma. In particular, we could specialize F ’s type argument with
N × expr. Then we would need a proof that for any function F of type

∀(T : Type), (T → T → T) → T → (T → T) → (T → (T → T) → T) → T

and any types A and B, and any terms fA : A → A → A, fB : B → B → B,
a : A, b : B, gA : A → A, gB : B → B, hA : A → (A → A) → A, and
hB : B → (B → B) → B, using f × g to denote lifting a pair of functions to a
function over pairs:

fst (F (A × B) (fA × fB) (a, b) (gA × gB) (hA × hB)) = F A fA a gA hA ∧
snd (F (A × B) (fA × fB) (a, b) (gA × gB) (hA × hB)) = F B fB b gB hB

This theorem is a sort of parametricity theorem.
Despite this remaining open question, we hope that our performance results

make a strong case for our method of reification; it is fast, concise, and robust.

Acknowledgments and Historical Notes. We would like to thank Hugo Herbelin
for sharing the trick with type of to propagate universe constraints (https://github.
com/coq/coq/issues/5996#issuecomment-338405694) as well as useful conversations
on Coq’s bug tracker that allowed us to track down performance issues (https://github.
com/coq/coq/issues/6252). We would like to thank Pierre-Marie Pédrot for conversa-
tions on Coq’s Gitter and his help in tracking down performance bottlenecks in earlier
versions of our reification scripts and in Coq’s tactics. We would like to thank Beta
Ziliani for his help in using Mtac2, as well as his invaluable guidance in figuring out
how to use canonical structures to reify to PHOAS. We also thank John Wiegley for
feedback on the paper.

For those interested in history, our method of reification by parametricity was
inspired by the evm compute tactic [9]. We first made use of pattern to allow
vm compute to replace cbv-with-an-explicit-blacklist when we discovered cbv was too
slow and the blacklist too hard to maintain. We then noticed that in the sequence
of doing abstraction; vm compute; application; β-reduction; reification, we could move
β-reduction to the end of the sequence if we fused reification with application, and thus
reification by parametricity was born.

This work was supported in part by a Google Research Award and National Science
Foundation grants CCF-1253229, CCF-1512611, and CCF-1521584.

https://github.com/coq/coq/issues/5996#issuecomment-338405694
https://github.com/coq/coq/issues/5996#issuecomment-338405694
https://github.com/coq/coq/issues/6252
https://github.com/coq/coq/issues/6252

Reification by Parametricity 305

References

1. Anand, A., Boulier, S., Tabareau, N., Sozeau, M.: Typed Template Coq. CoqPL
2018, January 2018. https://popl18.sigplan.org/event/coqpl-2018-typed-template-
coq

2. Boutin, S.: Using reflection to build efficient and certified decision procedures. In:
Abadi, M., Ito, T. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–529. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0014565

3. de Bruijn, N.G.: Lambda-calculus notation with nameless dummies: a
tool for automatic formal manipulation with application to the Church-
Rosser theorem. Indagationes Mathematicae (Proceedings) 34(5), 381–392
(1972). https://doi.org/10.1016/1385-7258(72)90034-0. http://www.sciencedirect.
com/science/article/pii/1385725872900340

4. Chlipala, A.: Parametric higher-order abstract syntax for mechanized seman-
tics. In: Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2008, September 2008. http://adam.chlipala.net/
papers/PhoasICFP08/

5. Coq Development Team: The Coq Proof Assistant Reference Manual, chap. 10.3
Detailed examples of tactics (quote). INRIA, 8.7.1 edn. (2017). https://coq.inria.
fr/distrib/V8.7.1/refman/tactic-examples.html#quote-examples

6. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: Proceedings
of IEEE Symposium on Security & Privacy, May 2019

7. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system. Technical report, Inria Saclay Ile de France, November 2016. https://
hal.inria.fr/inria-00258384/

8. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc
proof automation less ad hoc. J. Funct. Programm. 23(4), 357–401 (2013).
https://doi.org/10.1017/S0956796813000051. https://people.mpi-sws.org/∼beta/
lessadhoc/lessadhoc-extended.pdf

9. Malecha, G., Chlipala, A., Braibant, T.: Compositional computational reflection.
In: Proceedings of the 5th International Conference on Interactive Theorem Prov-
ing, ITP 2014 (2014). http://adam.chlipala.net/papers/MirrorShardITP14/

10. Pédrot, P.M.: Fast REL lookup #6506, December 2017. https://github.com/coq/
coq/pull/6506

11. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: Proceedings of PLDI,
pp. 199–208 (1988). https://www.cs.cmu.edu/∼fp/papers/pldi88.pdf

12. Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz,
C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7 23.
https://www.irif.fr/∼sozeau/research/publications/

https://popl18.sigplan.org/event/coqpl-2018-typed-template-coq
https://popl18.sigplan.org/event/coqpl-2018-typed-template-coq
https://doi.org/10.1007/BFb0014565
https://doi.org/10.1016/1385-7258(72)90034-0
http://www.sciencedirect.com/science/article/pii/1385725872900340
http://www.sciencedirect.com/science/article/pii/1385725872900340
http://adam.chlipala.net/papers/PhoasICFP08/
http://adam.chlipala.net/papers/PhoasICFP08/
https://coq.inria.fr/distrib/V8.7.1/refman/tactic-examples.html#quote-examples
https://coq.inria.fr/distrib/V8.7.1/refman/tactic-examples.html#quote-examples
https://hal.inria.fr/inria-00258384/
https://hal.inria.fr/inria-00258384/
https://doi.org/10.1017/S0956796813000051
https://people.mpi-sws.org/~beta/lessadhoc/lessadhoc-extended.pdf
https://people.mpi-sws.org/~beta/lessadhoc/lessadhoc-extended.pdf
http://adam.chlipala.net/papers/MirrorShardITP14/
https://github.com/coq/coq/pull/6506
https://github.com/coq/coq/pull/6506
https://www.cs.cmu.edu/~fp/papers/pldi88.pdf
https://doi.org/10.1007/978-3-540-71067-7_23
https://www.irif.fr/~sozeau/research/publications/

Verifying the LTL to Büchi
Automata Translation via Very Weak

Alternating Automata

Simon Jantsch1(B) and Michael Norrish2

1 TU Dresden, Dresden, Germany
simon.jantsch@gmail.com

2 Data61, CSIRO and Australian National University, Canberra, Australia

Abstract. We present a formalization of a translation from LTL formu-
lae to generalized Büchi automata in the HOL4 theorem prover. Transla-
tions from temporal logics to automata are at the core of model checking
algorithms based on automata-theoretic techniques. The translation we
verify proceeds in two steps: it produces very weak alternating automata
at an intermediate stage, and then ultimately produces a generalized
Büchi automaton. After verifying both transformations, we also encode
both of these automata models using a generic, functional graph type,
and use the CakeML compiler to generate fully verified machine code
implementing the translation.

1 Introduction

As the goal of verification techniques is to give the user of a system guarantees
about its behaviour, bugs in verification tools can potentially have severe conse-
quences and considerably reduce the trust of users in the techniques. While new
verification algorithms are usually proven correct on paper, the gap between the
abstract proof and any actual implementation can be large. Many times different
representations are used and optimizations are added that are not considered in
the proofs.

Our aim is to bridge this gap for one standard algorithm used for automata-
basedLTLmodel checking.The algorithm, byGastin andOddoux [7] (G&Ohence-
forth), improves on the efficiency of the translation of LTL formulae into automata.
Rather than moving directly from such formulae into generalized Büchi automata
(GBA), it introduces an intermediate step, the rather complicated alternating
automata. Whereas the efficient translation from LTL to alternating automata was
knownbefore,G&Oshowed that a property, namely veryweakness, of the resulting
automata can be exploited for the translation to GBA.

This new step represents an advantage on earlier techniques in part because
automata-optimizations can be applied in both phases. Optimizing the alternat-
ing automaton is especially interesting as it is linear in the size of the formula,

The author was supported by the European Master’s Program in Computational
Logic (EMCL).

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 306–323, 2018.
https://doi.org/10.1007/978-3-319-94821-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_18&domain=pdf

Verifying the LTL Translation via Very Weak Alternating Automata 307

even though the final GBA may still be of exponential size. As noted in Schimpf
et al. [15], the original tool implementing this algorithm contained a bug that
went unnoticed for several years despite widespread use.

Translations of LTL formulae to automata play a core role in LTL model
checking. In the usual approach, an LTL formula ϕ is given together with a
labeled transition system S, and the questions is whether all executions of S
satisfy the formula ϕ. To check this, an automaton is constructed for ¬ϕ, which is
then combined with an automaton describing all executions of S. If the combined
automaton is empty, S indeed satisfies the property specified by ϕ, otherwise a
counterexample to this claim can be given.

To obtain a formally verified implementation of the algorithm in G&O, we
proceed as follows: first we formalize the procedure in an abstract way, using
set notation and mathematical functions. We prove correctness of this function,
which is a mechanization of the proof given in G&O. Then we implement another
version of the algorithm, now defined on concrete data structures that represent
the automata in a compact way. In contrast to the first function, this second
version describes an algorithm: a step-by-step expansion of a graph.

The relation between our two versions is established by defining abstraction
functions from our concrete automata to their abstract counterparts. Using these
functions, we show that the automata we obtain in our concrete algorithm coin-
cide with the abstract automata, for which we have proved the desired property.
One strength of this approach is that it lets us separate the correctness proofs of
the main function and the restriction to reachable states on the abstract level,
while still combining the two functions on the concrete level in a single expansion
algorithm. We believe that this idea can be extended to add optimizations to the
translation in a manageable way by defining them as seperate transformation
steps on the abstract level, and efficiently embedding them into the expansion
algorithm on the concrete level.

Finally, we compile our function into machine code using the CakeML com-
piler. This adds another guarantee to our implementation, as we do not have
to trust the translation of the algorithm as expressed in HOL4 into SML, nor
the correctness of an SML compiler. The proof scripts and definitions for our
translation are available as part of the HOL4 system, and the scripts to compile
the algorithm with CakeML are available on Gitlab.1

The paper is structured as follows: Sect. 2 introduces LTL and the automata
models we consider. Section 3 recalls the algorithm in G&O, and Sect. 4 discusses
our formalization in HOL4. Section 5 gives an overview of related work, and we
conclude in Sect. 6.

1 For the abstract and concrete algorithms, see the examples/logic/ltl directory in
HOL4 after commit b4576ed, and see https://gitlab.com/simon-jantsch/ltl2baHol-
paper/tree/master/cmlltl for our CakeML translations, which in turn depend on
CakeML commit 891cbf4a.

https://gitlab.com/simon-jantsch/ltl2baHol-paper/tree/master/cmlltl
https://gitlab.com/simon-jantsch/ltl2baHol-paper/tree/master/cmlltl

308 S. Jantsch and M. Norrish

2 Preliminaries

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic that extends propositional logic with
temporal operators. We define it using unary X (“next”) and binary U (“until”).

Definition 1 (Syntax of LTL). Given a set of atomic propositions AP , the
set of LTL formulae over AP is defined with the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ

where p ∈ AP

An interpretation of an LTL formula is a sequence of propositional valuations
over AP , one for each point in time. This sequence is viewed as an infinite word
over P(AP) (we write P(S) to mean the powerset of S). The symbol of w at
position i is denoted by w[i] and the suffix of w starting at position i by w[i..].
Given w ∈ (P(AP))ω, we define

Definition 2 (Semantics of LTL)

w |= p iff p ∈ w[0], for all p ∈ AP

w |= ¬ϕ iff w �|= ϕ

w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2

w |= Xϕ iff w[1..] |= ϕ

w |= ϕ1Uϕ2 iff ∃i. w[i..] |= ϕ2 and ∀j < i. w[j..] |= ϕ1

As we want to use a negation normal form we introduce the dual operators ∨
and ϕ1Rϕ2 = ¬(¬ϕ1U¬ϕ2). An LTL formula ϕ is in negation normal form if
all occurrences of ¬ are directly in front of an atomic proposition. We call a
formula a temporal formula if it is a (possibly negated) atomic proposition or if
its outermost operator is X, U or R. We use L(ϕ) = {w ∈ (P(AP))ω | w |= ϕ}
to denote the language of an LTL formula.

As the semantics of LTL is defined using infinite words, questions about LTL
formulae can often be formulated as word problems. This is where automata, in
our case recognizing languages of infinite words, come into play. In the following
sections we introduce the two automata types used in G&O, beginning with
alternating automata.

2.2 Co-Büchi Alternating Automata

In an alternating automaton, each state nondeterministically chooses between
sets of successor states. Intuitively, a word w = a0a1 . . . is accepted from a state
q if there exists a successor set S reachable via the symbol a0 such that a1a2 . . .
is accepted from all states in S.

Verifying the LTL Translation via Very Weak Alternating Automata 309

Definition 3. A co-Büchi alternating automaton is a tuple A = (Q,Σ, δ, I, F),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q → P(P(Σ) ×
P(Q)), I ⊆ P(Q) is the set of initial sets and F ⊆ Q is the set of final states.

Alternating automata can be defined with different acceptance conditions but
we will always mean co-Büchi alternating automata in what follows. In HOL4
we use the following datatype for abstract alternating automata:

(α, σ) ALTER_A = <|

states : σ set;
alphabet : α set;
trans : σ → (α set × σ set) set;
initial : σ set set;
final : σ set

|>

The transition function δ assigns to each state in the automaton a set of pairs
(A,S), where A ⊆ Σ and S ⊆ Q. Such a pair stands for a transition that is active
for every symbol in A and has successor set S. This definition of alternating
automata was introduced in G&O and differs from the more usual definition,
where the transition function is defined using positive boolean formulae over the
states (e.g. Löding [11] or Vardi [17]). As noted in G&O, the two can easily be
transformed into each other: the presented definition corresponds closely to the
disjunctive normal form of the positive boolean formula.

Following Löding [11] we define a run of an alternating automaton A on
a word w ∈ Σω as a directed acyclic graph ρ = (V,E), where V ⊆ Q × N,
E ⊆

⋃
i≥0(Q × {i}) × (Q × {i + 1}) and

– {q | (q, 0) ∈ V } ∈ I;
– for all (q, i) ∈ V there exists (A,S) ∈ δ(q) such that w[i] ∈ A and

{q′ | ((q, i), (q′, i + 1)) ∈ E} = S; and
– for all (q, i) ∈ V where i > 0, there exists some (qp, i − 1) ∈ V such that

((qp, i − 1), (q, i)) ∈ E.

For co-Büchi automata, acceptance is defined as follows: a run ρ is accepting
if there is no path through ρ that visits a state in F infinitely often. The lan-
guage of a co-Büchi alternating automaton is defined as L(A) = {w ∈ Σω |
there exists an accepting run of A on w}.

Note that the transition function allows empty successor sets. Such a transi-
tion corresponds to the empty conjunction (i.e. true) and leads to direct accep-
tance of any suffix word for which it is active.

An alternating automaton is very weak if there is a partial order R on Q,
such that whenever (A,S) ∈ δ(q) and q′ ∈ S then R q′ q. As Q is finite, this
implies that all loops in the automaton are self-loops and every path in a run ρ
ultimately stabilizes on some state.

310 S. Jantsch and M. Norrish

2.3 Generalized Büchi Automata

The algorithm we consider produces generalized Büchi automata (GBA), where
the acceptance condition is defined using the edges, rather than the states, of
the automaton.

Definition 4. A generalized Büchi automaton is a tuple G = (Q,Σ, δ, I, T),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q → P(P(Σ) × Q)
is the transition function, I ⊆ Q is the set of initial states and T = {T1, T2, . . .},
with Ti ⊆ Q × P(Σ) × Q, is a set of sets of accepting edges.

A run r = q0q1 . . . ∈ Qω of a GBA G on a word w ∈ Σω is a sequence of
states such that q0 ∈ I and for all i there exists a pair (A, qi+1) ∈ δ(qi) such that
w[i] ∈ A. It is accepting if for all T ∈ T there exist infinitely many positions
i such that for some A: (A, qi+1) ∈ δ(qi), w[i] ∈ A and (qi, A, qi+1) ∈ T . The
language of a GBA is defined accordingly: L(G) = {w ∈ Σω | there exists an
accepting run of G on w}.

GBA can be transformed into ordinary Büchi automata via a standard linear
transformation called degeneralization. The emptiness check, which is required
for LTL model checking, can be done on Büchi automata efficiently [2]. However,
approaches have been developed to use the GBA directly to check emptiness,
thereby omitting degeneralization [3].

3 Translating LTL to GBA

We now recall the translation presented in G&O. The algorithm proceeds in two
steps: it first translates an LTL formula into an equivalent very weak alternating
automaton (VWAA), and then translates that VWAA into a GBA. By “equiv-
alent”, we mean that the words accepted by the VWAA are exactly the words
that satisfy the formula, as per Definition 2.

We introduce two functions that we need for the definition, ϕ gives an approx-
imation of the DNF of ϕ without simplifying temporal subformulae. ⊗ is an oper-
ation on the transitions of the VWAA that corresponds to conjunction on the for-
mula level. From now on we consider all formulae to be in negation normal form.

Definition 5. Let ϕ be an LTL formula. ϕ = {{ϕ}} if ϕ is a temporal formula,
ϕ ∧ ψ = {S1 ∪ S2 | S1 ∈ ϕ and S2 ∈ ψ} and ϕ ∨ ψ = ϕ ∪ ψ.

Let D1,D2 ∈ P(P(Σ)×P(Q)). D1 ⊗D2 = {(A1 ∩A2, S1 ∪S2) | (A1, S1) ∈
D1 and (A2, S2) ∈ D2}.

Now we can define the first step of the translation. It models the boolean struc-
ture of the formulae with the transitions of the VWAA and makes use of the
equalities ϕUψ = ψ ∨ (ϕ ∧ X(ϕUψ)) and ϕRψ = ψ ∧ (ϕ ∨ X(ϕRψ)).

Verifying the LTL Translation via Very Weak Alternating Automata 311

Definition 6. Let ϕ be an LTL formula over AP . We define Aϕ =
(Q,Σ, δ, I, F), where Q is the set of temporal subformulae of ϕ, Σ = P(AP),
I = ϕ, F is the set of subformulae of ϕ of the type ψ1Uψ2 and δ is defined by:

δ(p) = {(Σp, ∅)}, where Σp = {A ∈ Σ | p ∈ A}
δ(¬p) = {(Σ¬p, ∅)}, where Σ¬p = Σ \ Σp

δ(Xψ) = {(Σ,S) | S ∈ ψ}
δ(ψ1Uψ2) = Δ(ψ2) ∪ (Δ(ψ1) ⊗ {(Σ, {ψ1Uψ2})})
δ(ψ1Rψ2) = Δ(ψ2) ⊗ (Δ(ψ1) ∪ {(Σ, {ψ1Rψ2})})

Δ(ψ) = δ(ψ), if ψ is a temporal formula
Δ(ψ1 ∧ ψ2) = Δ(ψ1) ⊗ Δ(ψ2)
Δ(ψ1 ∨ ψ2) = Δ(ψ1) ∪ Δ(ψ2)

As every transition contains only subformulae of the considered formula, we
see that Aϕ is very weak. In G&O the following theorem is stated without a
complete proof. We discuss our proof and its mechanization in Sect. 4. A proof
for the standard setting, which simplifies the proof, can be found in Vardi [17].

Theorem 1. L(Aϕ) = L(ϕ)

The second step of the algorithm is a translation of a VWAA into a GBA. We
first define a relation � on transitions that we use in the later definition. Let
t1 = (S,A1, S

′
1) and t2 = (S,A2, S

′
2) be transitions of the GBA. Then t1 � t2 if

A2 ⊆ A1, S′
1 ⊆ S′

2 and for all T ∈ T : t2 ∈ T ⇒ t1 ∈ T .

Definition 7. Let A = (Q,Σ, δ, I, F) be a VWAA. We define GA = (P(Q),
Σ, δ′, I, T), where

– δ′({q0, q1, . . . , qn}) is the set of �-minimal transitions in
⊗n

i=0 δ(qi)
– T = {Tf | f ∈ F}, where

Tf = {(S,A, S′) | f /∈ S′ or there is (B,X) ∈ δ(f) such that A ⊆ B and
f /∈ X ⊆ S′}

An example of the translations to VWAA and GBA is given in Fig. 1.

Theorem 2. L(GA) = L(A)

Proof. See G&O for a proof.

4 Verifying the Algorithm

Note that the way the translation is presented is far from an actual implementa-
tion. In particular the worst case complexity is always exhibited as nonreachable
states are not excluded. Also the way the transitions are defined, where the first

312 S. Jantsch and M. Norrish

Fig. 1. Translation of the formula GFa into a VWAA (left) and a GBA (right). Here
Fϕ (eventually) and Gϕ (always) abbreviate trueUϕ and ¬F¬ϕ respectively. Transi-
tions conjoined with • are conjunctive transitions to multiple successors. Recall that Σa

is the set of all elements in Σ that contain a. Arrows with no successor node indicate
transitions to the empty set. Final states in the VWAA are indicated by doubled circles
and accepting transitions (of the single acceptance set) in the GBA are indicated by a
dotted line.

component is a set of subsets of AP , is prohibitively inefficient. These repre-
sentations are convenient for the proofs, but the question is how exactly any
concrete algorithm relates to this abstract description. We introduce a more
compact representation and define its relation to the abstract one.

Figure 2 visualizes our approach. As in G&O, we do not worry about reach-
able states in our main correctness proof; rather we implement the restriction
on the reachable states as a separate function (restr states in Fig. 2).

Fig. 2. Dividing the formalization into abstract and concrete parts. Thick arrows rep-
resent concrete functions, thin arrows represent abstract functions, and dotted arrows
are abstractions from concrete to abstract automata. An r in the subscript stands for
a restriction to reachable states.

4.1 Mechanizing the Abstract Proofs

Our abstract formalizations in HOL4 are basically identical to the mathematical
definitions given in Sect. 2. This allows us to closely follow the proof of Theorem 2
from G&O. First, we discuss the proof of Theorem 1, which is not presented
in G&O:

� L φ = LAA (ltl2vwaa φ)

Verifying the LTL Translation via Very Weak Alternating Automata 313

In the proof we fix a formula φ and with it the alphabet we are considering,
namely P(props φ), where props is the function that collects all atomic proposi-
tions that occur in a formula. Then we show the claim for all subformulae of φ
by structural induction on LTL formulae.

The base case is the translation of an atomic proposition p ∈ props φ. The
corresponding automaton Ap has one state with transitions to the empty set for
all elements in P(props φ) that contain p. Thus the automaton accepts exactly
the words w for which such a transition is active, which is the case exactly if
p ∈ w[0].

In the other cases, we show how accepting runs of the sub-automata can
be used to build accepting runs of the automata of the current case. Consider
the case Xψ. For any word w such that w |= Xψ we get w[1..] |= ψ and by
induction hypothesis an accepting run of Aψ on w[1..]. By shifting this run by
one and adding the vertex (Xψ, 0), we get an accepting run of AXψ. For the
other direction we start with an accepting run of AXψ on w. By the structure
of AXψ we can extract a run of Aψ on the word w[1..]. This is done by again
shifting the run by one, but now in the other direction. Applying the induction
hypothesis yields w[1..] |= ψ, from which we can conclude w |= Xψ.

The existence of these two runs is shown in the proofs for the following
lemmata:2

� runOfAA (ltl2vwaaφ ψ) r w [1..] ∧ word range w ⊆ P(props φ) ⇒
∃ r ′. runOfAA (ltl2vwaaφ (X ψ)) r ′ w

� runOfAA (ltl2vwaaφ (X ψ)) r w ⇒ ∃ r ′. runOfAA (ltl2vwaaφ ψ) r ′ w [1..]

The expression ltl2vwaaφ ψ denotes the automaton for ψ, as defined by
Definition 6, with respect to the alphabet P(props φ). (In particular,
ltl2vwaa φ = ltl2vwaaφ φ.) The condition runOfAA aut r w states that r is a
run of aut on w .

To show acceptance of the runs we construct in this case we use the fact that
the final states of the automata Aψ and AXψ are the same, as no “until”-formula
is added to the automaton in the X case. So it is enough if we can map every
path in the run we construct to some path in the old run that visits the same set
of nodes infinitely often. This is clearly possible as the only way we transformed
the runs was to shift them by one.

The most interesting cases are the temporal operators U and R, where the
acceptance conditions become important. In ϕUψ, for example, we first show
that the automaton cannot stay in the state ϕUψ forever, as this would lead to
a rejecting path in the corresponding run. This is because all “until”-formulae
are final states in our automata, and the co-Büchi condition requires an accept-
ing run to have no paths visiting infinitely many final states. At the position
where ϕUψ no longer loops, its next transition needs to be a transition of ψ,
by Definition 6. Thus we can extract an accepting run of Aψ for the suffix word

2 We need the precondition word range w ⊆ P(props φ) to make sure that w is a
word over the alphabet P(props φ) as we have no restriction on w[0] otherwise.

314 S. Jantsch and M. Norrish

starting at that position. For all positions until that point we can extract runs
of Aϕ and thus, via induction hypothesis, show that the word satisfies ϕUψ.

The correctness of the second part, from VWAA to GBA, is captured in the
following theorem.

� isVeryWeakAA aAA ∧ FINITE aAA.alphabet ∧ FINITE aAA.states ∧
isValidAA aAA ⇒

LGB (vwaa2gba aAA) = LAA aAA

We have to show that for every accepting run of the VWAA on a word w,
there exists an accepting run of the GBA on w, and vice versa. By the way
the GBA transitions are defined it can be seen that the sequence of layers in a
run of the VWAA corresponds to a run of the GBA. The two main difficulties
are to cope with the reduction of transitions by � in Definition 7 and to show
acceptance of the runs. As our formalization follows the proof in G&O closely,
we omit the details here.

Finally we show that we can restrict our automata to reachable states, by
proving that no state that is not reachable can appear in any run of the corre-
sponding automaton. We define a function for each automata model, with the
overloaded name restr states, that implements this restriction.

� LAA aAA = LAA (restr states aAA)
� isValidGBA aGB ⇒ LGB aGB = LGB (restr states aGB)

4.2 Concrete Data Structures

We use the following generic finite graph type to implement concrete represen-
tations of our automata in HOL4:

(α, ε) gfg = <|

node info : α spt;
followers : (ε × num) list spt;
preds : (ε × num) list spt;
next : num

|>

The α spt type implements a dictionary with keys that are natural numbers
and values of type α. Thus, a graph contains a set of nodes uniquely labeled
with natural numbers. Each node is associated with “node information” (the α
type parameter). In addition, dictionaries map each node label to outgoing and
incoming edges, where each edge connects to another node (identified by the
num), and “edge information” (the ε parameter). Finally, the next field tracks
the next node label, to be used when a node is inserted. This representation is
inspired by Erwig [4], and is readily translated into CakeML.

Verifying the LTL Translation via Very Weak Alternating Automata 315

The types used to capture node and edge information are given in Fig. 3. As
the transition structure of alternating automata allows conjunctive transitions
to several successors we cannot directly map it into the transition structure of
the graph. To solve this we extend the edge labels by a field called edge grp.
Multiple edges with the same value of edge grp are meant to belong to the same
conjunctive edge of the alternating automaton. The set of symbols of Σ for which
the transition is active is represented using two lists of atomic propositions, one
for positive and one for negative occurrences. This is possible because the first
component of any transition is always the result of intersecting sets Σ, Σp and
Σ¬p, by Definition 6, which was observed in G&O. This explains the type of our
edge labels α edge_labelAA as defined in Fig. 3.

Fig. 3. Encoding the concrete representation of alternating automata.

Another aspect of alternating automata that cannot be captured immedi-
ately in the graph are transitions to an empty set of successors. One way to
handle them is to add a state representing true from which any suffix word is
accepted. As we do not have this state in our abstract automata in general, this
would break the direct correspondence of states in our abstract and concrete
models. We encode this information in the node labels of our concrete structure
(α node_labelAA). Any edge label that appears in the field true labels corresponds
to an edge with the empty successor set in our abstract model.

Fig. 4. The types used to encode the concrete representation of GBAs.

316 S. Jantsch and M. Norrish

Using these two types we define our concrete alternating automata by com-
bining the graph with a list of atomic propositions and an init field corresponding
to the set of sets given by I in the abstract automaton.

As the GBA transition structure corresponds to an ordinary graph, we can
define it in the natural way (see Fig. 4). By Definition 7, the states of the GBA
are sets of states of the VWAA, which are LTL formulae in our case, so we label
the GBA states by lists of LTL formulae. The acc set field is a list of formulae for
which the edge is accepting. So rather than grouping all the accepting edges in a
set Tf , every edge that is accepting for f should contain f in the field acc set. Addi-
tionally the field all acc frmls declares all acceptance sets that exist in the GBA.

4.3 Abstraction Functions

To establish the correspondence between our concrete and abstract automata
we define abstraction functions that take a concrete automaton and return its
abstract counterpart. These abstraction functions can be seen as defining the
semantics of the concrete structure.

To abstract the states of the automaton we visit all nodes in the graph and
read their labels. For the transitions we introduce the following function:

transform label AP pos neg =
FOLDR (λ a sofar . char (P(AP)) a ∩ sofar)

(FOLDR (λ a sofar . char neg (P(AP)) a ∩ sofar) (P(AP))
neg) pos

The functions char and char neg are defined exactly as the sets Σp and Σ¬p

in Definition 6, where Σ = P(AP) in this case. The function transform label

defines how the fields pos lab and neg lab of the concrete edge labels should be
interpreted. It computes all subsets of Σ that contain all atomic propositions in
pos and do not contain any atomic proposition in neg .

Note that different values of pos and neg can lead to the same abstract
interpretation by transform label. One reason is that the order of the lists does
not matter, the other is that whenever some atomic proposition appears in both
lists, the value of transform label is the empty set.

To abstract the transition function we have to compute a set of abstract
transitions given a formula ϕ. We do this by finding the node labeled by ϕ in
the graph, grouping its outgoing edges by the value of edge grp, looking up all
the identifiers of the successor states and computing the first components of
the transitions using transform label. If there is no such node in the graph, the
function returns the empty set. We call this function abstr transAA. The procedure
for the abstract GBA follows the same idea but does not have to bother with
conjunctive edges.

The final states are abstracted by collecting all states of the concrete VWAA
that have is final set to true. From the concrete GBA we get the sets Tf by
collecting all transitions where the acc set field in the edge label contains the
formula f .

Verifying the LTL Translation via Very Weak Alternating Automata 317

4.4 Concrete Translations

Concrete LTL to VWAA. First we describe our concrete algorithm for the
first part of the translation, from LTL formulae to VWAA, now encoded with the
concrete graph types described in Sect. 4.2. We reimplement the core functions
ϕ and ⊗ and a concrete version of δ, called concr trans, using lists, and show that
when abstracted with transform label, concr trans corresponds to δ.

Theorem 3

� set (MAP (abstr edge AP) (concr trans φ)) = trans (P(AP)) φ

Here trans is δ, computed for a specific alphabet, and abstr edge applies
transform label to the lists of positive and negative atomic propositions of a con-
crete edge, and transforms the list of successors into a set.

Additionally we specify functions for adding nodes and edges to the graph rep-
resenting the alternating automaton, add state and add edge. The function add state

is a wrapper around the generic function of the graph type for adding nodes that
additionally decides whether or not a state should be final by checking if the for-
mula is an “until”-formula. The function add edge decides whether to add the edge
to the true labels field of the node, which it does if the set of successors is empty, or
by using real edges in the graph. Because add edge may be called for a node that is
not in the graph, its return value uses the option type.

Using these auxiliaries, we define a recursive function called expand graph (see
Fig. 5). It maintains a list of nodes to process and the current state of the graph.
In every iteration the first element of the list is processed by computing its
outgoing transitions with concr trans and adding the successors and the edges to
the graph. The list of nodes that still need to be processed is extended by the
new successors if they have not been processed already. For a given formula ϕ,
expand graph is initially called with the list of formulae in ϕ (the set of initial
states by Definition 6), and, as its first parameter, the graph containing only
these formulae and no edges.

To show termination of expand graph we use the fact that in the list of nodes
to be processed we always remove one element f and replace it with its sucessors,
all of which are subformulae of f . As the “subformulae of” relation is a partial
order, this lets us use the multiset ordering to define a wellfounded order on the
second argument of expand graph that decreases in every iteration.

Concrete VWAA to GBA. The second part of the concrete translation, from
VWAA to GBA, takes a concrete alternating automaton as input and computes a
concrete GBA. The states of the GBA are labeled by lists of states of the VWAA.
As the set of outgoing transitions of a GBA state depends on the transitions of
the VWAA states in its label, we need to compute these from the input VWAA.
We do this by defining a concrete version of the function abstr transAA called
get concr transAA.

318 S. Jantsch and M. Norrish

Fig. 5. Concrete function implementing LTL to VWAA. The first argument is the
graph of an alternating automaton and the second argument is the list of nodes that
still need to be processed.

To compute the transition of a GBA state labeled by a list of VWAA states
L, we compute get concr transAA for every q in L and then apply a fold with our
concrete version of ⊗ to the list of transitions. For every edge we then need to
check for which of the final states f of the VWAA the conditions of Tf , given
in Definition 7, apply. Remember that this includes a check whether there is a
transition in δ(f) that does not contain f in its successor set. To perform these
checks more efficiently, we precompute the transitions for all final states of the
VWAA.

Finally we need to remove all transitions that are not �-minimal. To do this
we define a concrete counterpart of �. Having defined this relation, we find the
minimal elements by comparing all the computed transitions of a state pairwise.
We then add the successor states and the edges to the graph and extend the list
of nodes to be processed by the new nodes.

Showing termination of this function is more involved than for the first part.
The reason is that there is no partial order on the states of the GBA in general,
indeed it can have non trivial cycles. To show termination we use the following
insight: either the statespace of the graph grows, or it stays the same and the
list of nodes to be processed becomes shorter. The first part is a wellfounded
relation, as there is an upper bound on the total number of possible states,
namely the powerset of the states of the alternating automaton, P(Q). Here we
need to show that all new states computed by concr trans are really in P(Q).
If the statespace of the graph does not grow in some iteration of expand graph,
we know that all successors of the currently processed node must already have
been processed. Thus the list of nodes to be processed gets shorter by one, as

Verifying the LTL Translation via Very Weak Alternating Automata 319

the current node is removed. Combining these two orders lexicographically leads
to a wellfounded relation. The same approach to prove termination of a graph
expansion algorithm was adopted in Schimpf et al. [15].

4.5 Verifying the Concrete Functions

After having defined our concrete automata types and concrete functions that
implement the translations we show two things. First, they never return NONE

on any reasonable input. For the VWAA to GBA translation we require a con-
crete alternating automaton as produced by the concrete LTL to VWAA trans-
lation. Second, applying the abstraction functions gives us exactly the abstract
automata that we get by chaining the abstract translation function with the
restriction to reachable states. For the LTL to VWAA translation we prove
the following theorem, which essentially corresponds to the left hand side of
Fig. 2. The function concr ltl2vwaa computes the list of initial states and calls
expand graph.

� ∀ϕ.

∃ cAA.

concr ltl2vwaa ϕ = SOME cAA ∧
abstr AA cAA = restr states (ltl2vwaa ϕ)

To show the first part we need to show that we do not call add edge for a node
that is not in the graph, since this is the only possibility for expand graph to
return NONE (see Fig. 5). We do this by showing that all nodes in the list that
still have to be processed must have been added to the graph already.

The second part amounts to showing that, after applying the abstraction
functions, the states, the transition function, the initial and the final states are
equal to the corresponding fields in the result of the abstract translation.

Using Theorem 3 we show that for every state q that has already been pro-
cessed it holds that all states that are one step reachable from q are either already
in the graph, or in the list of nodes to be processed. Reachability here means
the reflexive and transitive closure of δ. From this lemma follows that we will
eventually include all reachable states of the abstract automaton. To show that
only such states are included we again use Theorem 3 and show the invariant
that every state in the graph is indeed reachable. In these two steps we use
the assumption that the initial states are computed correctly, which we prove
independently.

For the transition function we need to show that add edge adds the edges
computed by concr trans in the intended way. To show this we show that for all
nodes in the graph g that have been processed already, abstr transAA g q is equal
to δ(q).

The proofs for the abstractions of final and initial states amount to showing
that the concrete computation of ϕ corresponds to the abstract function, and
that exactly the nodes labeled by an “until” formula have is final set to true.

320 S. Jantsch and M. Norrish

For the second part of the translation, from concrete VWAA to concrete
GBA, we prove the following theorem, which corresponds to the right hand side
of Fig. 2:

� concr ltl2vwaa ϕ = SOME cAA ∧ aAA = abstr AA cAA ⇒
∃ cGB .

concr vwaa2gba cAA = SOME cGB ∧
abstr GBA cGB = restr states (vwaa2gba aAA)

We have similar proof obligations here as in the previous case, we need to show
that states, transition function and initial states are correctly abstracted. For
the acceptance condition we show that for all f in all acc frml of the concrete
automaton: if we collect all transitions in the concrete graph labeled by f , we get
exactly the set Tf . Additionally, for every f in all acc frml we show that Tf ∈ T ,
and for the other direction if Tf ∈ T , then f is in all acc frml.

The states are handled by showing that the concrete computation of the
transition function corresponds to the abstract definition and then using the
same ideas as in the first translation step. For the transition function we have
the advantage that it is more directly encoded in the edges of the graph. On the
other hand we need to compute the transition functions of the VWAA states,
that the GBA state is labeled by, correctly, and handle the minimization by �.
For the minimization we need to show that two concrete transitions are related
by our concrete version of � if and only if their abstract counterparts are related
by �. This implies that we are removing the right transitions in the concrete
function.

Translation to CakeML. The CakeML ecosystem includes a general mechanism
for translating (a subset of) HOL functions into provably equivalent CakeML
ASTs (Myreen and Owens [13]). We use this technology to transform our con-
crete algorithm into CakeML syntax, to which we can then apply the CakeML
compiler, generating assembly code. Under minimal assumptions (including:
CakeML’s model of the hardware corresponds to that of the chip that actu-
ally executes the code, and the correctness of the assembler and linker used to
generate the final executable), the correctness of the CakeML compiler lets us
conclude that this machine code will implement the algorithm exactly as written
in the HOL formulation. In turn, the abstraction proofs described earlier then
give us a high-assurance connection between the machine code that executes and
the mathematical results of G&O.

At this stage, we embody our algorithms in a simple tool that parses an
LTL formula on standard input, and prints out the two translated automata as
(typically rather large) S-expressions. We have not benchmarked our executable’s
performance to any degree. Certainly, we are confident that CakeML-compiled
code and a näıve representation of graphs/automata will not perform as well as
hand-tuned C tools that have had extensive development. On the other hand,
the development in HOL4 and CakeML gives us extremely high assurance that
our tool is correct.

Verifying the LTL Translation via Very Weak Alternating Automata 321

5 Related Work

The most complete verification effort of algorithms in the context of LTL model
checking was done by Esparza et al. [6]. They describe a fully verified imple-
mentation of an LTL model checker in the Isabelle theorem prover. The work
builds on a previously described verification [15] of the LTL to generalized Büchi
automata translation which was introduced by Gerth et al. [8]. The algorithm
uses a tableau construction and is more amenable to a direct verification as it
does not include the intermediate step of alternating automata. The work has
been extended to use Promela as input language to describe systems [14] and
to use partial order reductions [1]. Additional optimization techniques for Büchi
automata have been verified as independent functions in Schimpf and Smaus [16].
Another mechanization of a translation algorithm from LTL to automata was
reported on in Esparza et al. [5]. The authors introduce a new algorithm target-
ing deterministic automata and emphasize the importance of interactive theorem
provers, which allowed them to uncover errors in their original proofs.

One approach that has been developed to refine abstract definitions into
efficient code is the Isabelle Refinement Framework [9,10]. Both powerful and
generic, it allows the refinement of abstract types into more efficient data struc-
tures. We believe that our rather custom abstraction would have been hard to
achieve in this framework, as the structure of the abstract automata are quite
different to the concrete ones, and multiple abstract details are encoded in the
same concrete types. For example, consider the accepting edges of the GBA.
While the abstract automaton provides all these edges in a set of sets, in the
concrete world they are embedded in the graph using the edge labels.

Alternating automata in the context of interactive theorem proving were pre-
viously addressed by Merz [12]. This work mechanizes a proof of the closure of
weak alternating automata under complementation, using winning strategies of
logical games. As an application, Merz presents a translation from LTL into very
weak alternating automata. The translation mechanized by Merz generates more
states than G&O (all sub-formulae and negations vs. only temporal subformu-
lae), and he does not address the second, exponential, translation to GBAs. This
work also remains completely abstract, without mentioning concrete algorithms.

6 Conclusion

In this paper we have presented a formalization of the algorithm for translating
LTL formulae into generalized Büchi automata presented in G&O, which uses
very weak alternating automata as an intermediate representation.

We introduce an encoding of both alternating automata and generalized
Büchi automata in a compilable, generic graph type that uses an efficient lookup
structure. This is especially interesting for alternating automata, as they are a
powerful computational model leading to elegant algorithms, e.g., Vardi [18].

322 S. Jantsch and M. Norrish

To cope with the complexity of the algorithm, we divide the formalization
into an abstract and a concrete part. In the abstract part we mechanize the
proofs and show correctness of the translation as it is presented in G&O. The
correspondence between the abstract and concrete models is established using
abstraction functions that map concrete automata to abstract ones. We imple-
ment the algorithm on our concrete types and show that applying the abstrac-
tions to the resulting automata leads to the automata given by the abstract
translation.

This approach turned out to be fruitful: we were able to reproduce the
abstract correctness results fairly quickly. Not having to additionally cope with
arguments about concrete data structures, termination and details concerning
our graph type, made a big difference. We would like to extend our ideas to
include optimization steps in the translation, by showing independent correct-
ness in the abstract world and efficiently embedding them in the expansion
algorithm. So far, efficiency has not been a big concern for us; rather we have
focused on producing verified code for the algorithm in G&O. In future work we
would like to optimize the code and provide an empirical comparison to existing
tools.

Finally we use the CakeML compiler to produce fully verified code imple-
menting our concrete functions. This step significantly strengthens the confidence
we can have in the machine code, as we do not have to trust a standard compiler.
Translation of LTL formulae into automata is only one part of a complete model
checker, but our experience suggests that an extremely high assurance model
checker embodying sophisticated optimizations is entirely feasible.

References

1. Brunner, J., Lammich, P.: Formal verification of an executable LTL model checker
with partial order reduction. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016.
LNCS, vol. 9690, pp. 307–321. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40648-0 23

2. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Form. Meth. Syst. Des. 1(2),
275–288 (1992)

3. Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-fly emptiness checks for
generalized Büchi automata. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,
pp. 169–184. Springer, Heidelberg (2005). https://doi.org/10.1007/11537328 15

4. Erwig, M.: Functional programming with graphs. In: Simon, L., Jones, P., Tofte,
M., Berman, A.M. (eds.) Proceedings of the 1997 ACM SIGPLAN International
Conference on Functional Programming (ICFP 1997), Amsterdam, The Nether-
lands, 9–11 June 1997, pp. 52–65. ACM (1997)

5. Esparza, J., Křet́ınský, J., Sickert, S.: From LTL to deterministic automata - a
safraless compositional approach. Form. Meth. Syst. Des. 49(3), 219–271 (2016)

6. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8 31

https://doi.org/10.1007/978-3-319-40648-0_23
https://doi.org/10.1007/978-3-319-40648-0_23
https://doi.org/10.1007/11537328_15
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31

Verifying the LTL Translation via Very Weak Alternating Automata 323

7. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 6

8. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) Protocol
Specification, Testing and Verification XV, PSTV 1995. IFIP Advances in Informa-
tion and Communication Technology, pp. 3–18. Springer, Boston (1996). https://
doi.org/10.1007/978-0-387-34892-6 1

9. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39634-2 9

10. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol.
7406, pp. 166–182. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32347-8 12

11. Loding, C., Thomas, W.: Alternating automata and logics over infinite words. In:
van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS
2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44929-9 36

12. Merz, S.: Weak alternating automata in Isabelle/HOL. In: Aagaard, M., Harrison,
J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 424–441. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44659-1 26

13. Myreen, M.O., Owens, S.: Proof-producing synthesis of ML from higher-order logic.
In: Thiemann, P., Findler, R.B. (eds.) ACM SIGPLAN International Conference
on Functional Programming, ICFP 2012, Copenhagen, Denmark, 9–15 September
2012, pp. 115–126. ACM (2012)

14. Neumann, R.: Using promela in a fully verified executable LTL model checker.
In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp.
105–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12154-3 7

15. Schimpf, A., Merz, S., Smaus, J.-G.: Construction of Büchi automata for LTL
model checking verified in Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) Theorem Proving in Higher Order Logics: Proceedings of 22nd
International Conference, TPHOLs 2009, Munich, Germany, 17–20 August 2009,
pp. 424–439. Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-
9

16. Schimpf, A., Smaus, J.-G.: Büchi automata optimisations formalised in
Isabelle/HOL. In: Banerjee, M., Krishna, S.N. (eds.) ICLA 2015. LNCS, vol.
8923, pp. 158–169. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-45824-2 11

17. Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-57887-0 116

18. Vardi, M.Y.: Alternating automata: unifying truth and validity checking for tem-
poral logics. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 191–206.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63104-6 19

https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/3-540-44929-9_36
https://doi.org/10.1007/3-540-44929-9_36
https://doi.org/10.1007/3-540-44659-1_26
https://doi.org/10.1007/978-3-319-12154-3_7
https://doi.org/10.1007/978-3-642-03359-9
https://doi.org/10.1007/978-3-642-03359-9
https://doi.org/10.1007/978-3-662-45824-2_11
https://doi.org/10.1007/978-3-662-45824-2_11
https://doi.org/10.1007/3-540-57887-0_116
https://doi.org/10.1007/3-540-63104-6_19

CALCCHECK: A Proof Checker for Teaching
the “Logical Approach to Discrete Math”

Wolfram Kahl(B)

McMaster University, Hamilton, ON, Canada
kahl@cas.mcmaster.ca

Abstract. For calculational proofs as they are propagated by Gries
and Schneider’s textbook classic “A Logical Approach to Discrete Math”
(LADM), automated proof checking is feasible, and can provide useful
feedback to students acquiring and practicing basic proof skills. We report
on the CALCCHECK system which implements a proof checker for a mathe-
matical language that resembles the rigorous but informal mathematical
style of LADM so closely that students very quickly recognise the system,
which provides them immediate feed-back, as not an obstacle, but as an
aid, and realise that the problem is finding proofs.

Students interact with this proof checker trough the “web application”
front-end CALCCHECKWeb which provides some assistance for proof entry,
but intentionally no assistance for proof finding. Upon request, the sys-
tem displays, side-by-side with the student input, a version of that input
annotated with the results of checking each step for correctness.

CALCCHECKWeb has now been used twice for teaching an LADM-based
second-year discrete mathematics course, and students have been solving
exercises and submitting assignments, midterms, and final exams on the
system — for examinations, there is the option to disable proof checking
and leave only syntax checking enabled. CALCCHECK also performed the
grading, with very limited human overriding necessary.

1 Introduction

The textbook “A Logical Approach to Discrete Math” (referred to as “LADM”)
by Gries and Schneider (1993) is a classic introduction to reasoning in the calcu-
lational style, which allows for rigorous-yet-readable proofs. Gries and Schneider
(1995) establish a precise logical foundation for such calculations in propositional
logic, and Gries (1997) expands this also to predicate logic, so that we do not
need to dwell on these aspects in the current paper.

We present a mechanised theory language that has been designed to be as
close to the “informal” but rigorous language of LADM, and the proof checker
CALCCHECK designed for supporting teaching based on LADM. A predecessor
system (Kahl 2011) using LATEX-based interaction in the style of fUZZ (Spivey
2008) only supported checking isolated calculations in a hard-coded LADM-
like expression language, and recognised only hard-coded theorem numbers
in unstructured hints; the current version of CALCCHECK admits user-defined

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 324–341, 2018.
https://doi.org/10.1007/978-3-319-94821-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_19&domain=pdf

CALCCHECK: A Proof Checker for Teaching the “LADM” 325

operators, and has a completely new language for theories, structured proofs, and
structured calculation hints.

Since students still need to learn “what a proof is” and “how different proofs
can be”, we consciously do not offer any assistance in proof finding, but we turned
the proof checker into a web application, so that students can obtain instant
feedback for their proof attempts, all while writing proofs that are recognisably
in the style of the textbook.

For example, on p. 55 of LADM we find the following calculation (with rela-
tively detailed hints), reproduced here almost exactly (only with slightly different
spacing):

As an example, we prove theorem (3.44a): p ∧ (¬p ∨ q) ≡ p ∧ q :

p ∧ (¬p ∨ q)
= 〈 Golden rule (3.35), with q := ¬p ∨ q 〉

p ≡ ¬p ∨ q ≡ p ∨ ¬p ∨ q
= 〈 Excluded middle (3.28) 〉

p ≡ ¬p ∨ q ≡ true ∨ q
= 〈 (3.29), true ∨ p ≡ true 〉

p ≡ ¬p ∨ q ≡ true
= 〈 Identity of ≡ (3.3) 〉

p ≡ ¬p ∨ q
= 〈 (3.32), p ∨ ¬q ≡ p ∨ q ≡ p,

with p, q := q , p — to eliminate operator ¬ 〉
p ≡ p ∨ q ≡ q

= 〈 Golden rule (3.35) 〉
p ∧ q

In CALCCHECK, this theorem together with this proof can be entered as follows
in plain Unicode text:

Except for the comment “— to eliminate operator ¬”, everything here is formal
content, and checked by the system. We will explain some of the details in
Sect. 2. It should however be obvious that the correspondence is very close, with
the small differences mostly due to either the fact that we are using a plain

326 W. Kahl

text format, or to the requirement that the language needs to be unambiguously
parse-able for automatic checking to become feasible.

A student encountering only the theorem statement of this in their homework
might, if allowed to use two theorem references per hint, write the variant shown
below to the left in the CALCCHECKWeb interface in their web browser:

After sending this to the server for checking, the box to the right will be filled
in by the system as shown in the screen-shot above, and the student will likely
notice that they mis-typed the number of theorem (3.32), one of the few nameless
theorems in LADM that are emphasised as worth remembering the number of.

We proceed with explaining the basics of the CALCCHECK theory language in
Sect. 2. In Sect. 3 we strive to give an idea of how interaction with such theo-
ries works in practice, before proceeding to more advanced language features:
In Sect. 4 we present the main hard-coded proof structuring principles, and in
Sect. 5 we discuss our treatment of quantification, substitution, and metavari-
ables. More complicated hints are covered in Sect. 6, and mechanisms for selec-
tively making reasoning features available in Sect. 7. Finally, we highlight some
aspects of the implementation in Sect. 8 and discuss some related work in Sect. 9.
Some additional documentation is available at the CALCCHECK home page at
http://CalcCheck.mcmaster.ca/.

2 The Basic CALCCHECK Language

A CALCCHECK module consists of a sequence of top-level items (TLIs), which
include declarations, axioms, theorems, and several kinds of administrative
items, as for example precedence declarations.

http://CalcCheck.mcmaster.ca/

CALCCHECK: A Proof Checker for Teaching the “LADM” 327

The language is layout-sensitive: Everything after the first line in a top-level
item, or inside other high-level syntactic constructs, needs to be indented at
least two spaces farther than the first line. The only exception to this is the
“Proof:” for a theorem, which starts in the same column as the theorem.

Instead of the word Theorem, one may alternatively use Lemma, Corollary,
Proposition, or Fact without any actual differences. (Technically, Axioms are
theorems that are just not allowed to have proof.) A theorem may have any
number of theorem numbers (always in parentheses and without spaces, such as
(3.35) above and (3.44a) in Sect. 1) and theorem names (always in pretty dou-
ble quotes — as opposed to the plain double quotation mark character “"” —
such as ““Absorption”” in Sect. 1). The same names and numbers may be given
to several theorems, which implements the way LADM uses “Absorption (3.44)”
to refer to uses of either (3.44a) or (3.44b) or both.

A calculation, such as the proof body in Sect. 1, consists of a sequence of
expressions interleaved with calculation operators (in Sect. 1 only “≡”) attached
to a pair of hint brackets “〈 . . . 〉” enclosing a hint. A hint is a sequence of hint
items separated by commas or “and” or both; so far, we only have seen theorem
references as hint items. (Comments, such as “— to eliminate operator ¬” in
Sect. 1, are currently only supported inside hints.)

A theorem reference can be either a theorem name in pretty double quotes,
or a theorem number in parentheses, or an expression in back-ticks (‘. . . ‘), or
several theorem references separated by white-space. In Sect. 1 we have seen a few
examples of the latter in the LADM calculation; they refer to the intersection of
the sets of theorems referred to by the constituent atomic theorem references. It is
configurable whether theorem references in the shape of expressions can be used
alone; this is forbidden by default: Learning the theorem names is, for the most
part, learning the vocabulary of the language of discrete math, and therefore
part of the learning objectives. (With this setting, a theorem with no names nor
numbers cannot be referred to, but may still be useful for documentation, for
example as a Fact.)

For the expression syntax, almost arbitrary sequences of printable Unicode
characters are legal identifiers, as in Agda (Norell 2007), so that almost all lex-
emes need to be separated by spaces. (Parentheses need no spaces.)

CALCCHECK follows LADM in supporting conjunctional operators: The expres-
sion 1 < 2 ∈ S ⊆ T is considered shorthand for (1 < 2)∧(2 ∈ S)∧(S ⊆ T).
The set of conjunctional operators and their precedence is not hard-coded; for
emulating LADM we write in our “prelude”:

328 W. Kahl

As could be seen already in the example at the beginning of this section, such
declarations of operator precedence and associating behaviour come before the
actual declarations of the operator: Like LADM, CALCCHECK supports operator
overloading. Since operator precedence and associating behaviour have to be
declared before the actual Declarations, it is easy to enforce coherent precedences
also in larger developments. (In LADM, this declaration-independent precedence
table can be found on the inside cover.)

Underscores denote argument positions of mixfix operators. Arbitrary binary
infix operators can be used as calculation operators, that is, preceding hint brack-
ets 〈 . . . 〉. The calculation notation as such is considered conjunctional, which
enables us to use the non-conjunctional associative operator ≡ as calculation
operator in the examples in Sect. 1, or, later, also implication.

Two of the steps in the first calculation specify substitutions to variables in
the referenced theorem with expressions (containing variables of the currently-
proven theorem), for example “with p, q := q , p” in the second-last step. This
is also allowed in CALCCHECK, except that the substitution is delimited by back-
ticks. We choose back-ticks because they are also used in MarkDown for embed-
ding code in prose — CALCCHECK allows MarkDown blocks as top-level items for
“literate theories” documentation. We us backticks for embedding expressions,
and other expression-level material such as substitutions, inside “higher-level
structures” in many places. In theorems and proofs, essentially the only places
where backticks are not used are after the colon in the theorem statement, and
outside the hints in calculations.

3 The CALCCHECKWeb Front-End

Since CALCCHECK source files are just plain Unicode text files, editing them using
any editor is certainly possible. However, the preferred way to edit CALCCHECK

source, and the only way currently offered to students, is via the “web applica-
tion” CALCCHECKWeb, which can be accessed via websocket-capable web browsers.

A “notebook” style view is presented with a vertical sequence of “cells”. Mark-
Down TLIs are shown in cells containing a single box, and “code cells” with a
horizontal split into two boxes (as already shown in the screenshot at the end of
Sect. 1). The left box is for code entry, and the right box is populated with feed-
back from the server, which performs, upon request, syntax checking, or syntax
and proof checking combined. (For exams, proof checking can be disabled.)

For text and code entry, CALCCHECKWeb provides symbol input via mostly
LATEX-like escape sequences; typing a backslash triggers a pop-up displaying the
escape sequence typed so far, and the possible next characters. In experienced
use, this pop-up is irrelevant, and disappears when characters beyond the com-
pletion of the escape sequence are entered. Alternatively, upon a TAB key press,
this pop-up also displays a menu, as in the following screenshot:

CALCCHECK: A Proof Checker for Teaching the “LADM” 329

Similar completion is provided for theorem names, after typing a prefix (of at
least length three) of a theorem name preceded by either pretty opening double
quotes ‘“ ’ or the simple double-quote character ‘"’, hitting the TAB key brings
up a theorem name completion menu containing only theorem names currently
in scope, but intentionally not filtered in any other way.

Support for indentation currently provided includes toggling display of initial
spaces as “visible space” “␣”, and key bindings for increasing or decreasing the
indentation of whole blocks.

4 Structured Proofs

Calculations, as shown in Sect. 1, are just one kind of proof supported by
CALCCHECK. LADM emphasises the use of axioms (and theorems) in calcula-
tions over other inference rules, so not many other proof structures are needed.
Besides calculations, the other options for proof in CALCCHECK (explained in more
detail below) are:

– “By hint” for discharging simple proof obligations,
– “Assuming ‘expression’:” corresponding to implication introduction,
– “By cases: ‘expression1’,. . . ,‘expressionn ’” for proofs by case analysis,
– “By induction on ‘var : type’:” for proofs by induction,
– “For any ‘var : type’:” corresponding to ∀-introduction,
– “Using hint :” for turning theorems into inference rules, see Sect. 6.3.

With these (nestable) proof structures, we essentially formalise the slightly more
informal practices of LADM, which, in Chapt. 4, introduces what appears to be
formal syntax for proofs by cases, and for proofs of implications by assuming the
antecedents. However, in actual later LADM proofs, this syntax is typically not
used. For example, on p. 305 we find some cases listed in a way that does not
easily correspond to the pattern in LADM Chapt. 4, and the assumption of the
antecedent is almost hidden in the surrounding prose that replaces the explicit
proof structure. We can emulate the calculation there very closely again, and we
embed it into a fully formal proof that is, in our opinion, at least as clear and
readable as the arrangement in LADM:

330 W. Kahl

Our syntax for assuming the antecedent should be self-explaining — the keyword
assumption for producing hint items referring to an assumption (which may also
be given a local theorem name in double quotes) may also be written Assumption.
The assumed expression is again delimited by backticks.

For proof by cases, we follow the pattern proposed in LADM Chap. 4, except
that we insist on a proof of Completeness of the list of patterns to be explicitly
supplied. In the case above, we discharge this proof obligation via By “Excluded
middle” — this is another variant of proofs, where just a hint (that is, a sequence
of hint items) is provided after the keyword By. The expression of the current
Case is available in the proof via the Assumption keyword.

At the end of the calculation above, we have “— This is . . . ”; this is used in
LADM without the words “This is” as a “formal comment” indicating that the last
expression in the calculation is the indicated assumption, or, more frequently, an
instance of the indicated theorem. Later, Gries and Schneider (1995) explain this
via the inference rule “Equanimity”. For CALCCHECK, such “— This is . . . ” clauses
are not considered comments at all, but are part of the calculation syntax, and
require exactly this phrasing. As in LADM, this can be used at either end of a
calculation. Several further details of the above proof of “Positivity of squares”
will be explained below in Sects. 6 and 7.

The first proof structure beyond calculations that is introduced in the course
is actually successor-based natural induction, where natural numbers have been
introduced inductively from zero “0” and the successor operator “S_”, and the
inductive definitions for operations have been provided as sequences of axioms,
as the following for subtraction:

With this, even nested induction proofs such as the following become easy to
produce for the students:

CALCCHECK: A Proof Checker for Teaching the “LADM” 331

The proof goals for base case and induction step may optionally be made
explicit — we show this here only for the outer induction step. In nested induc-
tion steps where several induction hypotheses are available, the system currently
requires the keyword phrase Induction hypothesis to be accompanied by the
chosen induction hypothesis, but only for pedagogical reasons.

Currently, besides natural induction, also induction on sequences is supported
by this hard-coded By induction on proof format; the ‘m : N’ after this keyword
phrase above indicates the induction variable and its type, which selects the
induction principle, if one is implemented and activated for that type.

5 Quantification, Substitution, Metavariables

For quantification, CALCCHECK follows the spirit of LADM, but in the concrete
syntax is closer to the Z notation (Spivey 1989): The general pattern of quantified
expressions is “bigOp varDecls rangePredicate • body”, and we have, for
example:

(
∑

i 0 ≤ i < 5 • i !) = 0 ! + 1 ! + 2 ! + 3 ! + 4 !
(∀ k ,n : N k < n < 3 • k · n < 5) ≡ 0 · 1 < 5 ∧ 0 · 2 < 5 ∧ 1 · 2 < 5

The range predicate, when omitted together with the “ ”, defaults to true. As
in Z, parentheses around quantifications can be omitted, and the scope of the
variable binding then extends “as far as syntactically possible”. (This a conscious
notational departure from LADM, where parentheses around quantifications are
compulsory, and “:” is used instead of “•”.) In another notational departure,

332 W. Kahl

we denote function application by (typically space-separated) juxtaposition,
“f x ”, instead of “f .x ” for atomic arguments in LADM.

The following proof is for a stronger variant of the LADM theorem (8.22)
“Change of dummy”, which both LADM and Gries (1997) show without the
range predicate R in the assumption (but when LADM refers to (8.22) later, in
Chaps. 12 and 17, it actually always would have to use our variant). Here, as
in LADM, “�” is used as a metavariable for a quantification operator, that is, a
symmetric and associative binary operator (usually equipped with an identity).

LADM and Gries (1997) both refrain from formalising the assumption “f has
an inverse” as part of the theorem statement, since they present all general
quantification theorems before introducing universal quantification. With a dif-
ferent theory organisation, we introduce universal quantification as instance of a
restricted theory of general quantification, and then use universal quantification
to state and prove theorems like this about general quantification which mention
universal quantification.

This “Change of restricted dummy” theorem is really a metatheorem: Its state-
ment contains metavariables x and y for different variables, and P and R for
expressions that may have free occurrences of x , and it also contains explicit sub-
stitutions. Gries (1997) calls such proofs of metatheorems using metatheorems

CALCCHECK: A Proof Checker for Teaching the “LADM” 333

“schematic proofs”. 1 The fact that P and R must not have free occurrences of y
is expressed by Gries and Schneider as the proviso “¬occurs(‘y ’, ‘P ,R’)” in the
metalanguage.

CALCCHECK takes a slightly different approach to metavariables: For consis-
tency with LADM, we keep the inference rule substitution, and use only the
substitution notation E [v := G]. Once quantification is introduced, we empha-
sise that substitution binds variables, too (where only occurrences of v in E are
bound in E [v := G]), and application of substitution may need to rename bound
variables (in E) to avoid capture of free (in G) variables. Expression equality in
CALCCHECK is only up to renaming of bound variables; students are encouraged
to use “Reflexivity of =” calculation steps to document such renaming.

When introducing quantification and variable binding, we (re-)explain axiom
schemas, and emphasise that metavariables are instantiated (and not substituted),
but do not provide notation for that. (Instantiation of metavariables does not
rename binders and therefore can capture variables that are free in the instanti-
ating expression. Such capture is the point of metavariables — in (8.22a) above, R
is meant to be instantiated with expression containing free occurences of x.)

In a theorem statement, metavariables for expressions are defined (and recog-
nised by CALCCHECK) as looking like free variables in the scope of a variable
binder. Metavariables with occurrences in scope of different sets of variable
binders may only be instantiated with expressions in which only the intersection
of all these binders occurs free. Bound variables that are allowed to occur in
metavariables for expressions have to be considered metavariables for variables,
and matched consistently. Thus, the “¬occurs” provisos can be derived from
the theorem statement; for the theorem above, if metavariable reporting (by
default disabled) and proviso reporting are both enabled, CALCCHECK generates
the following output:

The proof above contains three steps where the hint is the keyword Substitution;
this hint item is used for performing substitutions. For both Substitution steps
here, it is necessary that ¬occurs(‘z ’, ‘R’); for such new variable binders, this is
handled automatically by remembering also which variables are allowed to occur
in R, as shown in the “Metavariables” information report above.

Above we used “Replacement” (3.84a): e = f ∧P [z := e] ≡ e = f ∧P [z :=
f] (called “Substitution” in LADM). This is another example for a metatheorem;
1 Gries (1997) restricts metavariables to be named by single upper-case letters, (non-
meta-)variables by single lower-case letters. Gries (1997) then distinguishes between
“uniform substitution” written E [V := G] for metavariables V , and “textual substi-
tution” written E v

G for variables v , where only the latter renames variable binders
to avoid capture of free variables of G. However, the use of “R[x := f y]” in the
statement and proof of (8.22) there is then unclear — it will have to be understood
as “textual substitution” since otherwise y might be captured by binders in R.

334 W. Kahl

its statement involves substitution, and the metavariables z for variables and P
for expressions that may have free occurrences of z . Since CALCCHECK currently
does not use second-order matching, the reverse Substitution step preceding the
application of “Replacement” (3.84a) is necessary for establishing the matching
of the metavariables z and P , here to the variable z and the expression R[x := z]
respectively. The second Substitution could be merged with the “Replacement”
(3.84a) step, but has been left separate here for readability.

Note that “Dummy list permutation” is a quantification axiom missing from
LADM and also not mentioned by Gries (1997), but used implicitly in the proof
of (8.22) in both places.

The proof above is almost identical to the proof for (8.22) of LADM, except
for the step using the assumption “Inverse” , where the proof for (8.22) only has
to invoke that assumption. In the proof above, we use the following lemma:

In the first step here, two different rules that are both called “Nesting for ∀”
are applied in sequence, and in opposite directions. The last hint here contains
a single Subproof hint item; inside such a subproof, any kind of proof can be
written.

The necessity to distinguish metavariables for variables becomes most obvi-
ous from considering theorem (11.7) of LADM (Gries (1997) does not cover set
comprehension):

If one were to consider the left-most x here as a normal free variable, then the
rule for deriving provisos given above would imply that x must not occur free in
P, since the right-most P does not occur in the scope of a binder for x.

CALCCHECK: A Proof Checker for Teaching the “LADM” 335

It is useful to consider (11.7) in the context of metatheorem (9.16) of LADM
and Gries (1997): “P is a theorem iff (∀x • P) is a theorem.” In the universally
quantified version, both occurrences of P are within scope of a binder for x, so
no proviso is derived:

This is really a theorem — in our development, we actually prove this version
first, and then obtain (11.7x) via instantiation.

By classifying x in (11.7x) as a metavariable for variables, we identify the
“free-looking” occurrence of x as a binder in the scope of which the right-most P
occurs. The effect of this approach is to let CALCCHECK derive the same metavari-
able occurrence and ¬occurs provisos for (11.7x) as for (11.7∀), compatible
with (9.16).

Note, however, that (9.16) talks about theorems, not metatheorems (or the-
orem schemas). A version that would make sense for metatheorems would need
to add the meta-proviso that the same provisos are derived. As a case in point,
consider the one-point rule:

Naïvely applying (9.16) to that would yield the following, where E always occurs
in scope of a binder for x:

This “axiom”-schema however is invalid for instantiations where x occurs free
in E — just try to instantiate P with (x < 4) and E with (5 · x).

6 Combined Hint Items

While in Sect. 1, the keyword “with” appeared followed by substitutions, in “Pos-
itivity of squares” in Sect. 4 as well as in “Change of restricted dummy” in Sect. 5
there are occurrences of the shape “hi1 with hi2” for two hint items hi1 and hi2.
This is the simplest case of the following pattern:

hi1 with hi2 and . . . and hin

In CALCCHECK, this pattern has the two formal interpretations explained in
Sects. 6.1 and 6.2, together covering probably most of the informal uses of the
word “with” in LADM.

336 W. Kahl

6.1 Conditional Rewriting

If among the theorems, assumptions, and induction hypotheses referred to by hi1
there is one that can be seen as an implication with an equality (or equivalence)
as consequent,

A1 ⇒ · · · ⇒ Am ⇒ L = R,

then this is used as a conditional rewrite rule: If rewriting using L −→ R succeeds
with substitution σ, then CALCCHECK attempts to prove the antecedents A1σ, . . . ,
Amσ using the hint items hi2, . . . , hin .

The with uses in Sects. 4 and 5 all are of this kind.

6.2 Rule Transformation

A different way the hint item construct above can be used is by extracting
rewriting rules from hi2 to hin and using these to rewrite the theorems referenced
by hi1. The results of that rewriting are then used to prove the goal of the hint.
The following proof contains two such cases:

The two instances of hi1 here are:

These are rewritten using:

In both cases, this rewriting produces precisely what is needed for the respective
calculation step.

6.3 Theorems as Proof Methods — “Using”

LADM contains, on p. 80, an example for the “proof method” proof by contrapos-
itive, almost completely in prose, with only a two-step calculation corresponding
to the third and fourth steps in the calculation part of our fully formal proof:

CALCCHECK: A Proof Checker for Teaching the “LADM” 337

The general pattern for keyword Using is with a hint item and followed by an
indented sequence of subproofs:

Using hi1:
sp1
...
spn

Technically, this is considered as syntactic sugar for a single-hint-item proof
using a combined hint item in the pattern explained above:

By hi1 with sp1 and . . . and spn
However, using the By shape would be quite awkward to write for larger sub-
proofs.

Pragmatically, one rather tends to consider “Using” as a proof method gen-
erator — mutual implication, antisymmetry laws, set extensionality, indirect
equality, etc. all are frequently used to produce readable proofs in this way.
Since hi1 can again be a combined hint item, the “Using” proof pattern intro-
duces considerable flexibility.

“Using” also liberates the user from the restriction to the induction principles
hard-coded for “By induction on”: Given, for example the induction principle for
sequences with empty sequence and list “cons” operator (as in LADM):

The example proof below Using this induction principle also is the first proof
we show containing our construct for ∀-introduction: “For any ‘vs‘: proof-for-P ”
proves ∀ vs • P , and “For any ‘vs‘ satisfying ‘R‘: proof-for-P ” proves ∀ vs R • P
while proof-for-P may use assumption R.

338 W. Kahl

7 Activation of Features

The CALCCHECK language has actually no hard-coded operators — everything
can be introduced by the user via “Declaration” TLIs.

To make available functionality of the proof checker that depends on certain
language elements, it is necessary to “Register” operators for built-in operators,
and to “Activate” theorems on which built-in functionality relies. For example:

– Equality = and equivalence ≡ need to be registered to become available
for extraction of equations for rewriting.

– true needs to be registered in particular for making it possible to omit
“— This is (3.4)” at the end of an equivalence calculation ending in true.

– Activation of associativity and symmetry (commutativity) properties is nec-
essary for using the internal AC representation and AC matching for the
respective operators, which enables the reasoning up to symmetry and asso-
ciativity that LADM also adapts throughout.

These first three items are already required for LADM Chap. 3, but only these — to
force students to produce proofs conforming to the setting of Chap. 3, the remain-
ing features need to be turned off.

LADM Chap. 4 “Relaxing the Proof Style” introduces the structured proof
mechanisms described in Sect. 4 together with a number of other relaxations, that
are all justified in terms of Chapter-3-style proofs. Correspondingly, CALCCHECK

needs to be made aware of these justifications:

– Implication needs to be registered for Assuming and conditional rewriting
(Sect. 6.1) to become available.

– Registration of conjunction is required in particular for implicit use of “Shunt-
ing” in conditional rewriting, and, as the operator underlying universal quan-
tification, also for implicit use of “Instantiation” (i.e., ∀-elimination) in rule
extraction from hint items.

– Transitivity of equality and equivalence is built-in, and also transitivity of
equality with other operators, as an instance of Leibniz. For two or more

CALCCHECK: A Proof Checker for Teaching the “LADM” 339

non-equality operators to be accepted as calculation operators in the same
calculation, the corresponding transitivity law needs to be activated.

– For equality (or equivalence) calculations to be accepted for example when
proving an implication, the relevant reflexivity law needs to be activated.

– Activation of converse laws, such as (3.58) “Consequence”: p ⇐ q ≡ p ⇒ q ,
makes mentioning their use superfluous.

– Activation of monotonicity and antitonicity laws makes it possible to use a
style similar to that explained by (Gries 1997, Sect. 4.1), but not restricted
to formulae: Writing “Monotonicity with . . . ” respectively “Antitonicity with
. . . ” then replaces the deeply-nested with-cascades of monotonicity laws that
otherwise are frequently necessary.

Beyond LADM Chap. 4, some further features also depend on declared corre-
spondence of user-defined operators with built-in constructors:

– Disjunction is required for representing set enumerations {1, 2} as set com-
prehensions {x x = 1 ∨ x = 2}.

– Arithmetic operators like + , − , · and Boolean operators including
also ¬ need to be registered for the keyword hint item Evaluation, seen in
the first proof in Sect. 6.3, to be able to evaluate ground expressions.

– The built-in induction mechanisms also require registration of the respective
operators.

8 Implementation Aspects

CALCCHECK is implemented in Haskell, with CALCCHECKWeb using Haste by Ekblad
(2016) to compile the client part from Haskell to JavaScript running in the user’s
web browser, and to generate the client server communication.

The core of proof checking in CALCCHECK consists in translating hints into
rewrite rules, and attempting to confirm the correctness of individual proof steps
by rewriting. For a calculation step “e1 op〈 hint 〉 e2”, the system will use the
rewriting rules derived from hint to search for a common reduct of e1 and e2
if op is an equality operator, and otherwise (respectively alternatively) attempt
to rewrite “e1 op e2” to true. Rewriting is mainly performed in depth-limited
breadth-first search.

Since the previous, LATEX-based version of CALCCHECK (Kahl 2011), the term
datastructure used in the AC-enabled rewriting engine has seen the addition of
binding structures essentially along the lines of Talcott (1993), and also a sepa-
rate representation of metavariables. As mentioned before, both syntax checking
and proof checking run on the server; each time a user triggers checking from
a cell, all preceding cells are sent along, since they might contain changes that
affect even parsing, and also changes in the theorem names they provide. For
each code cell, the theorem names it provides are sent back to the client in
addition to the visible feedback, and used for theorem name completion.

For typical use, in particular in the teaching context, CALCCHECK “notebooks”
consist of two parts: A “prefix” that is preloaded once by the server process,

340 W. Kahl

and contains all the theory imports, declarations, local theorems, activations,
etc., that should be available everywhere in the user view, and a “suffix” that
is displayed in the user’s browser as described in Sect. 3. In suffixes, import
declarations and certain other features (configurable) are not available, so that
the only interaction with the server file system is saving the user state of the suffix
into files with server-generated names; saving is restricted to users registered via
the local learning management system.

Each attempt to use a hint for justifying some goal (in particular calcula-
tion steps) is guarded by a time-out, and for grading, longer time-outs are used.
During the recent final exam written on 12 CALCCHECKWeb notebook server pro-
cesses by 199 students, the 6-core machine acting as server has been observed
to occasionally reach loads beyond the equivalent of one core being 100% busy,
peaking at 1.4 cores.

9 Discussion of Related Work

A system with apparently quite similar goals is Lurch (Carter and Monks 2017),
which lets users use conventional mathematical prose for the top-level structure
of proofs, with embedded mathematical formulae marked up (unobtrusively for
the prose reader) with their rôles in the mathematical development. Although
this may in a certain sense be perceived to be “nicer”, it is mainly nicer in the
sense of supporting students of mathematics who will be expected to confidently
write mathematical prose that will not normally be expected to be subjected to
mechanised checking. The goal of CALCCHECK however is different: It is targeting
future computer scientists and software professionals, who will need to be ready
to productively use formal specification languages and automated proof systems
of many different kinds, whether these are full-fledged proof assistants like Coq or
Isabelle, or model checkers or automated provers like Spin or Prover9, or “mod-
elling languages” like JML. For use of all these systems, precise understanding of
issues of scope and variable binding is needed; this is frequently “hand-waived” in
conventional mathematical prose. By offering a precise concept of what a proof
is, and by being able to force students to produce proofs with varying levels
of detail, CALCCHECK also strives to equip students with a mindset from which
understanding the limitations of other verification systems will be easier, so that
they will be better positioned to use them productively.

A flavour of calculational proof presentation that is slightly different from
LADM are the “structured derivations” of Back (2010). These share with
CALCCHECK the goal of readable fully formal, mechanically checkable proofs;
MathEdit by Back et al. (2007) appears to have been a first attempt to pro-
vide tool support for this.

10 Conclusion

The proofs we arrive at are perhaps not always the ultimate in the elegance
the calculational style is famous for, but they are coming close, and by virtue

CALCCHECK: A Proof Checker for Teaching the “LADM” 341

of providing formal syntax for useful kinds of structured proofs, frequently it is
actually easier to achieve elegance in CALCCHECK than in the calculational style
embedded in conventional mathematical prose for larger-scale proof structure.
Many students showed significant skills in finding quite elegant and widely dif-
ferent proofs even in exam settings, and student feedback about CALCCHECK has
been almost unanimously positive.

References

Back, R.-J.: Structured derivations: A unified proof style for teaching mathematics.
Formal Aspects Comput. 22(5), 629–661 (2010). https://doi.org/10.1007/s00165-
009-0136-5

Back, R.-J., Bos, V., Eriksson, J.: MathEdit: Tool support for structured calculational
proofs. TUCS Technical report 854, Turku Centre for Computer Science (2007)

Carter, N.C., Monks, K.G.: A web-based toolkit for mathematical word processing
applications with semantics. In: Geuvers, H., England, M., Hasan, O., Rabe, F.,
Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 272–291. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-62075-6_19

Ekblad, A.: High-performance client-side web applications through Haskell EDSLs. In:
Mainland, G., (ed) Proceedings 9th International Symposium on Haskell, Haskell
2016, pp. 62–73. ACM (2016). https://doi.org/10.1145/2976002.2976015

Gries, D.: Foundations for calculational logic. In: Broy, M., Schieder, B. (eds.) Mathe-
matical Methods in Program Development, pp. 83–126. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-60858-2_16

Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. Monographs in
Computer Science. Springer, New York (1993). https://doi.org/10.1007/978-1-4757-
3837-7

Gries, D., Schneider, F.B.: Equational propositional logic. Inform. Process. Lett. 53,
145–152 (1995). https://doi.org/10.1016/0020-0190(94)00198-8

Kahl, W.: The teaching tool CalcCheck a proof-checker for Gries and Schneider’s
“Logical Approach to Discrete Math”. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP
2011. LNCS, vol. 7086, pp. 216–230. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25379-9_17

Norell, U.: Towards a practical programming language based on dependent type theory.
Ph.D. thesis, Department of Computer Science and Engineering, Chalmers Univer-
sity of Technology (2007). http://wiki.portal.chalmers.se/agda/pmwiki.php

Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall International Series
in Computer Science. Prentice Hall (1989)

Spivey, M.: The fuzz type-checker for Z, Version 3.4.1, and the fuzz Manual, 2nd edn.
(2008). http://spivey.oriel.ox.ac.uk/corner/Fuzz. Accessed 15 April 2018

Talcott, C.L.: A theory of binding structures and applications to rewriting. Theoret.
Comput. Sci. 112, 68–81 (1993). https://doi.org/10.1016/0304-3975(93)90240-T

https://doi.org/10.1007/s00165-009-0136-5
https://doi.org/10.1007/s00165-009-0136-5
https://doi.org/10.1007/978-3-319-62075-6_19
https://doi.org/10.1145/2976002.2976015
https://doi.org/10.1007/978-3-642-60858-2_16
https://doi.org/10.1007/978-1-4757-3837-7
https://doi.org/10.1007/978-1-4757-3837-7
https://doi.org/10.1016/0020-0190(94)00198-8
https://doi.org/10.1007/978-3-642-25379-9_17
https://doi.org/10.1007/978-3-642-25379-9_17
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://spivey.oriel.ox.ac.uk/corner/Fuzz
https://doi.org/10.1016/0304-3975(93)90240-T

Understanding Parameters
of Deductive Verification: An Empirical

Investigation of KeY

Alexander Knüppel(B), Thomas Thüm, Carsten Immanuel Pardylla,
and Ina Schaefer

TU Braunschweig, Braunschweig, Germany
{a.knueppel,t.thuem,c.burmeister,i.schaefer}@tu-bs.de

Abstract. As formal verification of software systems is a complex task
comprising many algorithms and heuristics, modern theorem provers
offer numerous parameters that are to be selected by a user to control how
a piece of software is verified. Evidently, the number of parameters even
increases with each new release. One challenge is that default parameters
are often insufficient to close proofs automatically and are not optimal
in terms of verification effort. The verification phase becomes hardly
accessible for non-experts, who typically must follow a time-consuming
trial-and-error strategy to choose the right parameters for even triv-
ial pieces of software. To aid users of deductive verification, we apply
machine learning techniques to empirically investigate which parameters
and combinations thereof impair or improve provability and verification
effort. We exemplify our procedure on the deductive verification system
KeY 2.6.1 and specified extracts of OpenJDK, and formulate 53 hypothe-
ses of which only three have been rejected. We identified parameters that
represent a trade-off between high provability and low verification effort,
enabling the possibility to prioritize the selection of a parameter for either
direction. Our insights give tool builders a better understanding of their
control parameters and constitute a stepping stone towards automated
deductive verification and better applicability of verification tools for
non-experts.

Keywords: Deductive verification · Design by contract
Formal methods · Theorem proving · KeY · Control parameters
Automated reasoning

1 Introduction

Formal methods are intended to provide adequate solutions for software devel-
opers to rigorously prove that a piece of software is in line with a given specifica-
tion [6,9,40,41]. Besides light-weight methods intended to uncover the majority
of defects early, such as code reviews and testing, there is need for advanced
strategies to find the last defects. For instance, model checking is an automatic
c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 342–361, 2018.
https://doi.org/10.1007/978-3-319-94821-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_20&domain=pdf

Understanding Parameters of Deductive Verification 343

technique verifying that a given formal model (e.g., state machines) adheres to
its specification [8,39]. Although we expect our considerations to be more gen-
erally applicable to other formal verification techniques, we focus on deductive
verification, which is another technique that targets program verification directly
on source code [1,2,7,21,43]. Essentially, an implementation together with its
formal specification is translated into a logical formula and validity is proved by
a theorem prover [43].

Despite considerable advances over the last decades and the advantage to
be directly applied to source code, deductive verification is still only hesi-
tantly applied in industrial software projects. Reasons are manifold. For exam-
ple, there are doubts about the cost-effectiveness of formal methods [29]. In
particular, most legacy systems are not designed with formal verification in
mind, which makes post-hoc specification and verification expensive for indus-
trial projects [4]. Moreover, developing sufficient formal specifications is error-
prone and tedious [2,3], and typically requires high expertise of the underlying
proof theory. Even worse, full automation is not always possible because of the
undecidability of the halting problem.

However, when full automation is feasible, a subsequent and often overlooked
hurdle for inexperienced users is to parameterize the verification tool. Different
implementations and specifications have different needs and modern verification
tools provide parameters that are set by a user to control the verification process.
For example, the parameter loop treatment can be used to decide whether loops
are always unrolled or specified loop invariants are used. Consequently, successful
verification often depends on those parameters.

Understanding all parameters requires a considerable amount of knowledge.
Non-expert users may face problems when a piece of software cannot be ver-
ified even when implementation and specification are seemly correct. Further-
more, minimizing verification effort is important for industrial software. Complex
software systems are frequently changed and formal specifications are adapted
accordingly. In this process, past proof results may become invalid. A naive
solution is then to follow a trial-and-error strategy by applying different param-
eter configurations, after which verification is restarted. This strategy, however,
wastes a considerable amount of resources, making it less applied in industry.

We argue that a better understanding of parameterization allows tool builders
to better support users of deductive verification. In particular, we investigate
whether specific parameters have a larger influence on automated provability
and whether specific options increase or decrease the verification effort. We focus
on deductive verification following the Design by Contract paradigm [35]. Con-
tracts are an extension to Hoare triples [23] and constitute a methodology to
specify methods of imperative languages (i.e., Java or C) with preconditions and
postconditions, and classes with class invariants. Callers of a contract-specified
method have the obligation to fulfill the precondition and may therefore rely
on the postcondition. Class invariants have to hold before and after method
execution.

344 A. Knüppel et al.

There exist numerous languages with support for contracts, such as
Eiffel [36], Spec# [2], and the Java modeling language (JML) [31]. For the pur-
pose of this paper, we analyze parameters of the state-of-the-art verification
system KeY 2.6.1 [1]. KeY is a modern theorem prover with a large commu-
nity intended to verify JML-specified Java programs. To empricially investigate
KeY’s parameters, we formulate a total of 53 hypotheses in terms of provability
and verification effort derived from the literature and documentation of KeY.
Morever, we construct parameter-influence models based on our measurements
to reason about which options influence the verification effort the most. To this
end, we employ SPLConqueror [45], a framework which incorporates machine-
learning techniques to measure the influence of parameters on non-functional
properties. In summary, our contributions are the following.

– We formulate and empirically validate 53 hypotheses about parameterization
in KeY, which provide clear recommendations for users who aim to verify
pieces of software automatically.

– We empirically evaluate the influence of KeY’s parameters with respect to
provability and verification effort with machine learning.

– We identify parameters that depict a trade-off between higher provability and
lower verification effort and discuss consequences for users and tool builders.

2 Problem Statement

With formal verification, our goal is to identify the last remaining defects. When
automatic software verification fails, users are confronted with a diverse set of
reasons. Typically, most common reasons consist of (a) a wrong implementation,
(b) a wrong or insufficient specification (e.g., loop invariants are missing or too
weak), (c) insufficient heuristics of the verification tool (e.g., when automatically
inferring loop invariants or instantiating quantifiers), or (d) the verification task
times out after the maximum number of proof steps or heap memory is exceeded.

As if these hurdles are not enough, a subsequent challenge is that parameteri-
zation has also a great effect on the outcome and the default values are oftentimes
not sufficient. Getting the parameters right from the beginning makes deductive
verification significantly more successful and cost-effective.

We divide parameters of deductive verification broadly into two categories.
The first category describes qualitative parameters that explicitly change what
to prove. For instance, there is an option in KeY to ignore integer overflows.
Consequently, implementations that cause an integer overflow are not verifiable
with this setting. Depending on the context and how the implementation is
facilitated, however, verifying the absence of integer overflows is crucial. Those
parameters must be set by users or have at least a well-chosen default value.

The second category describes parameters that only influence provability
and verification effort (i.e., how to prove). For instance, there is a parameter in
KeY for method call treatment; a method call is either always replaced with an
existing contract (i.e., contracting), or its implementation is always inlined (i.e.,
method expand). Typically, contracting is faster and results in lower verification

Understanding Parameters of Deductive Verification 345

/∗@ public normal behavior
@ requires T > 0;
@ ensures \result < T;
@∗/

public /∗@ pure @∗/ int modT(int input, int T) {
return input % T;

}
Listing 1. Method Computing the Modulo of Integer Values

/∗@ public normal behavior
@ requires e != null;
@ ensures contains(e);
@ ensures collectionSize == \old(collectionSize) + 1;
@ ensures \result;
@ assignable elements;
@∗/

boolean add(/∗@nullable@∗/ Object e);

Listing 2. Method ArrayList.add(Object) Specified with Contracts in JML

effort. However, in case of missing or insufficient contracts, a method can only
be proved correct with method inlining.

To verify a piece of software automatically, a user must first identify what to
prove and has to set respective parameters accordingly (e.g., enabling detection
of integer overflows). In a second step, a user typically starts the verification
process with default parameters or the last used configuration to check whether
they suffice. In case of failure, oftentimes parameterization is changed and veri-
fication is restarted in a trial-and-error manner. Moreover, as frequent changes
to software systems are the common case, reducing the verification effort is
another important requirement. Hence, having a better understanding of the
control parameters and providing better tool support would tremendously help
inexperienced users to apply deductive verification more successfully.

In the following, we depict two examples, where default parameters are either
insufficient or result in an increased verification effort. In Listing 1, we illustrate
a small example of a formally specified method modT(int, int) that gets two inte-
ger values as input and computes the modulo between both. The precondition is
denoted by keyword requires and states that input parameter T must be greater
than 0. The postcondition is denoted by keyword ensures and states that the
return value will always be less than T given the precondition. Keyword \result
represents the return value. Notably, method modT(int, int) is not automatically
verifiable with KeY’s default parameters. As the example is small, implemen-
tation and specification are readily comprehensible and seemly fit together. In
particular, the reason is a parameter called Arithmetic treatment. The set of pos-
sible options is {Basic,DefOps,Model Search}, where Basic is the default value.
However, unlike DefOps, Basic is incapable of evaluating the modulo operator.

346 A. Knüppel et al.

Starting from the default parameters, choosing DefOps as value for Arithmetic
treatment suffices to verify method modT(int, int). Although it is possible to
modify the postcondition to \result== input%T and verify it indeed with the
default parameters, such modifications are hard to find for real-world software
systems.

In Listing 2, we depict another example, where we specified method
add(Object) of class ArrayList in JML. Class ArrayList is part of the Collection-
API and implements the interface Collection. The precondition states that callers
of add(Object) can only rely on the postcondition when they provide an instan-
tiated object. The postcondition states that (a) the input object is indeed part
of the list after successful method execution, (b) the list’s size is incremented
by one, and (c) the return value is true. In a postcondition, keyword \old evalu-
ates the expression before method execution. Keyword assignable represents the
framing condition (i.e., a set of locations). Implicitly, locations excluded from
the frame are not allowed to be modified. The example also contains queries,
which are side-effect free methods that can be called in specifications (e.g.,
method contains(Object)). Internally, method add(Object) calls method ensure-
Capacity(Object), which increases the capacity of the respective list by one, if
necessary. While the example depicts a trivial contract, the verification effort
with KeY’s default parameters can be reduced from 33,748 proof steps to 13,328
proof steps when changing the parameter Quantifier treatment from No Splits
with Progs to No Splits.

Ideally, with assistance of extended tooling, a developer is capable of under-
standing the influence of various control parameters on provability and verifica-
tion effort. For instance, a recommendation system may suggest to change the
option of parameter Arithmetic treatment for the example depicted in Listing 1,
as only after carefully studying the tool tips in KeY it becomes apparent that
Arithmetic treatment ::Basic cannot evaluate the modulo operator.

3 Parameters of Deductive Verification with KeY

As already mentioned, KeY provides numerous parameters to control what and
how a piece of software is verified. In particular, there exist three categories of
parameters in KeY, namely search strategy options, taclet options, and general
options. Search strategy options control to what extent and in which order KeY
applies inference rules to automatically verify a method. Taclet options control
rather what to prove (e.g., integer overflow) and, thus, are typically fixed for a
verification target. General options enable the employment of an SMT solver or
allow for one step simplification, which combines single inference rules into one.

Although KeY’s automated proof strategy algorithm is configurable, the
difficulty here is that it has grown over many years, with participation of
many different researchers and universities. The effect of some parameters on
provability and verification effort is therefore challenging to anticipate. We
aim to provide a better understanding on how specific parameters improve
or impair provability and verification effort. Based on our experience and

Understanding Parameters of Deductive Verification 347

observations combined with studying the online documentation1, numerous pub-
lications [13,15,17,18,26,27,32,42], all tool tips in KeY, and the KeY book [1],
we formulated a total of 38 assumptions that we empirically evaluate by deriv-
ing 51 statistical hypotheses in the next section. Related to Listings 1 and 2,
two examples for assumptions about the parameters Arithmetic treatment and
Quantifier treatment with respect to provability and verification effort are the
following.

Assumption 19 (Arithmetic Treatment - Basic and DefOps). If a specifi-
cation case is provable with option Basic, it is also provable with option DefOps.

Assumption 23 (Quantifier Treatment - Verification Effort). The veri-
fication effort with option Free is at least as great as with option No Splits with
Progs. The verification effort with option No Splits with Progs is at least as great
as with option No Splits. The verification effort with option No Splits is at least
as great as with option None.

In Table 1, we give an overview on all our assumptions in a short from. The
first column denoted by Assumption represents an identifier for the respective
assumption and the second column denoted by Parameter represents the param-
eter which is subject to the assumption. For our significance tests, we only relate
two values of a parameter with each other (i.e., fourth and fifth column). That
is why there exist more experiments (i.e., third column) than assumptions. For
instance, Assumption 23 relates four values with each other in terms of verifica-
tion effort. The type of the depended variable is represented in the sixth column,
where provability is denoted by P and verification effort is denoted by VE. In
particular, for reasoning about the verification effort we always assume that a
verification target is provable with both subjected options. The last column rep-
resents whether one option improves, impairs, or does not influence the outcome.
For provability, Oa ≤ Ob means that Ob provides a higher chance of provability
that Oa. For verification effort, Oa ≤ Ob means than Ob leads to a greater effort
than Oa. The opposite meaning for each depended variable is denoted by ≥ and
no significant influence is denoted by <>.
We considered Assumption 27 separately. The reason is that this assumption
does not compare options, but states that specification cases are not provable
based on particular conditions:

Assumption 27 (Class Axiom Rule). If a method writes onto a location on
the heap and there exists at least one class invariant that refers to this location,
then option Off is not sufficient to verify this method.

To summarize, we formulated a total of 38 assumptions on 47% of all available
parameters in KeY. In Fig. 1, we depict all assumptions about parameters for

1 https://www.key-project.org/applications/program-verification/ and http://i12
www.ira.uka.de/key/download/quicktour/quicktour-2.0.zip.

https://www.key-project.org/applications/program-verification/
http://i12www.ira.uka.de/key/download/quicktour/quicktour-2.0.zip
http://i12www.ira.uka.de/key/download/quicktour/quicktour-2.0.zip

348 A. Knüppel et al.

Table 1. Investigated parameters and formulated hypotheses

Assumption Parameter Hypothesis First

option

Second option Requirement Dependency

1 Stop at 1 Default Unclosable P <>

2 Stop at 2 Default Unclosable VE <>

3 One step simplification 3 Enabled Disabled P <>

4 One step simplification 4 Enabled Disabled VE ≤
5 Proof splitting 5 Delayed Free P ≤
6 Proof splitting 6 Delayed Free VE ≤
7 Proof splitting 7 Off Free P ≤

8 Off Delayed P ≤
8 Proof splitting 9 Off Free VE ≤

10 Off Delayed VE ≤
9 Loop treatment 11 Invariant Loop scope

invariant

P ≤

10 Loop treatment 12 Invariant Loop scope

invariant

VE ≥

11 Dependency contracts

without accessible-clauses

13 On Off P <>

12 Dependency contracts

without accessible-clauses

14 On Off VE <>

13 Query treatment without

queries

15 On Restricted P <>

16 On Off P <>

14 Query treatment without

queries

17 On Restricted VE <>

18 On Off VE <>

15 Query treatment 19 Off Restricted P ≤
20 Restricted On P ≤

16 Query treatment 21 Restricted On VE <>

17 Expand local queries 22 On Off VE ≥
18 Expand local queries 23 On Off P ≥
19 Arithmetic treatment 24 Basic DefOps P ≤
20 Arithmetic treatment 25 DefOps ModelSearch P <>

21 Quantifier treatment

without quantifiers

26 None No splits P <>

27 None No splits

with progs

P <>

28 None Free P <>

22 Quantifier treatment

without quantifiers

29 None No splits VE <>

30 None No splits

with progs

VE <>

31 None Free VE <>

23 Quantifier treatment 32 None No splits P ≤
33 No splits No splits

with progs

P ≤

34 No splits

with progs

Free P ≤

24 Quantifier treatment 35 Free No splits

with progs

VE ≥

36 No splits

with progs

No splits VE ≥

37 No Splits None VE ≥
(continued)

Understanding Parameters of Deductive Verification 349

Table 1. (continued)

Assumption Parameter Hypothesis First

option

Second option Requirement Dependency

25 Class axiom rule without

axioms

38 Free Delayed P <>

39 Free Off P <>

26 Class axiom rule without

axioms

40 Free Delayed VE <>

41 Free Off VE <>

27 Class axiom rule 52 Considered separately

28 Class axiom rule 53 Off Delayed P <>

29 Strings 42 On Off P ≥
30 Strings 43 On Off VE <>

31 BigInt 44 On Off P ≥
32 BigInt 45 On Off VE <>

33 IntegerSimplificationRules 46 Full Minimal P ≥
34 IntegerSimplificationRules 47 Full Minimal VE <>

35 Sequences 48 On Off P ≥
36 Sequences 49 On Off VE <>

37 MoreSeqRules 50 On Off P ≥
38 MoreSeqRules 51 On Off VE <>

Lo
w

 p
ro

va
bi

lit
y

H
ig

h
pr

ov
ab

ili
ty

Asm. 5: Proof Spli ng
Delayed Free

Asm. 7: Proof Spli ng
Off Free /

Delayed
Asm. 15: Query Treatment

Off OnRestricted
Asm. 18: Expand Local Queries*

Off On

* Queries must be verifiable with MethodTreatment: Expand

Asm. 19: Arithme c Treatment
Basic DefOps

Asm. 23: Quan fier Treatment

Asm. 29: Strings
Off On

Asm. 31: BigInt
Off On

Asm. 33: IntegerSimplifica onRules
Minimal Full

Asm. 35: Sequences
Off On

Asm. 33: MoreSeqRules
Off On

Lo
w

 v
er

ifi
ca

on
 e
ffo

rt

Hi
gh

 v
er

ifi
ca

on
 e
ffo

rt

Asm. 4: One Step Simplifica on
Enabled Disabled

Asm. 6: Proof Spli ng
Delayed Free

Asm. 8: Proof Spli ng
Off Delayed /

Free
Asm. 10: Loop Treatment

Loop Scope Invariant Invariant

Asm. 17: Expand local queries
On Off

Asm. 24: Quan fier Treatment

Fig. 1. Overview on assumptions for provability and verification effort

which we identified an order of their options with respect to higher and lower
provability and verification effort. Confirmation of these assumptions helps in
prioritizing parameters for fine-tuning in terms of provability and verification
effort.

350 A. Knüppel et al.

4 Empirical Evaluation of KeY’s Parameters

In a series of experiments, we evaluate the assumptions that we formulated in
the last section. All formulated assumptions, evaluation artifacts, results, and
the verification target can be found online.2

4.1 Experimental Setup

For our verification target, we formally specified parts of OpenJDK’s Collection-
API with JML. Reasons to focus on OpenJDK are threefold, namely (a) it
represents a widespread and highly applied real-world software, (b) there exists
already an informal specification in the JavaDocs comments that we utilize for
our formal specification, and (c) it is open-source and the only Java distribution
that allows us to add contracts and freely distribute it. A method can have
more than one contract (e.g., when different preconditions are connected with
distinct postconditions), which we refer to as specification cases in the following.
In total, our test study comprises 27 specification cases distributed over the
interface Collection and classes ArrayList, LinkList, Arrays, and Math, which we
specified in a complementary study [30]. To reduce bias in our experiments, we
only included specification cases that can be verified automatically with at least
one parameter configuration.

All assumptions refer either to provability or verification effort. For provabil-
ity, the dependent variable is whether a proof can be found automatically or
not. For verification effort, the dependent variable is the number of proof steps.
Independent variables are in both cases the current parameterization and the
specification cases.

While evaluating our assumptions on all possible parameter configurations
yields the most accurate result, it is impractical due to the combinatorial explo-
sion in the number of options. In total, there exist 1,990,656 valid parameter
configurations. To find a reasonable and meaningful number of configurations,
we apply pairwise interaction sampling [11], which requires that every pair of
options of different parameters is present at least once in the set of parame-
ter configurations. In essence, 1,084 configurations suffice. For assumptions that
compare at least two options related to the verification effort, we apply the non-
parametric paired Wilcoxon-Test [50]. The rationale for a non-parametric test
is that we cannot expect the distribution of the proof effort to be normal. For
assumptions that only consider one option (i.e., Assumption 27), we apply a
1-sample Wilcoxon-Test [50]. For assumptions that compare at least two values
related to provability, we apply a McNemar-Test [34]. For each experiment, we
define a significance level of 5% and we set the maximal number of proof nodes
to 500,000, after which a verification task times out.

2 http://github.com/AlexanderKnueppel/UnderstandingParametersInKeY.

http://github.com/AlexanderKnueppel/UnderstandingParametersInKeY

Understanding Parameters of Deductive Verification 351

4.2 Empricial Evaluation of Assumptions

In Table 2, we summarize all experiments together with their statistical hypothe-
ses, respective p-value, and outcome. Depending on the statistical test and for-
mulation of the assumption, we need to define and evaluate different kind of
statistical hypotheses. If the assumption states that there is no significant dif-
ference, we cannot formulate a null hypothesis H0 that we would like to reject
in favor of the assumption. In this case, we use the assumption itself as the null
hypothesis and denote the hypothesis type as H0. The consequence is that we
can only reject or not reject our assumption, but never accept it. The preferred
outcome is not rejected, as otherwise our assumption would be indeed wrong. If
we can formulate a null hypothesis, we use the hypothesis type H≤ and H≥ for
assumptions that paraphrase at least or at most relationships between options
(e.g., Assumption 23) or simply HA otherwise. In this case, the preferred out-
come is accepted. The result is always not rejected, if we could not reject the null
hypothesis.

Based on our results, we had to neglect two hypotheses, namely Assump-
tion 21 and Assumption 22 stating that Quantifier treatment does not effect
provability and verification effort if the logical formula under verification is
quantifier-free. We discovered that each verification of a program in KeY works
with quantification internally as soon as assignable-clauses are used, even when
no quantifiers are used in the contracts. Furthermore, we had to reject Assump-
tion 2 (i.e., parameter Stop at does not influence the verification effort), as the
statistical result was significant (p-value: 2, 488 ∗ 10−2).

Four hypotheses about how the verification effort is influenced were accepted
(i.e., Hypothesis 4, 6, 9, and 12). Six additional assumptions about how provabil-
ity is influenced were accepted after an additional manual inspection (Hypothe-
sis 7, 8, 23, 24, 32, 46). The reason for manual inspection is that the employed
McNemar-Test is always two-sided. This means that the direction of difference
(i.e., positive or negative) is not directly apparent. For the manual inspection,
we use contingency tables to decide whether the null hypothesis can indeed be
rejected. In Table 3, we depict the significant hypotheses, which were tested in
the McNemar-Test, with their contingency tables. A hypothesis can be accepted
if the sum of the first row is unequal to the sum of the first column, and analo-
gously for the second row and second column. Closed and Open refer to whether
a verification task was solved automatically or not. For instance, for Hypoth-
esis 7, a total of 114 verification tasks of all verification tasks performed were
solved automatically with Proof splitting ::Free and Proof splitting ::Off, whereas
142 verification tasks could not be solved automatically with either option.

One oddity is Assumption 37. 100% of the data correlates with its statement,
which is why we could not compute the p-value but accepted the hypothesis
nonetheless. In summary, three hypotheses were rejected and eleven hypotheses
were accepted. The remaining hypotheses could neither be rejected nor confirmed
and may have to be investigated in more detail and with additional verification
targets in future studies.

352 A. Knüppel et al.

Table 2. Experimental results with accepted and rejected assumptions

Parameter Assumption Experiment Hypothesis type p-value Result

Stop at 1 1 H0 NA Not rejected

2 2 H0 2, 488 ∗ 10−2 Rejected

One step simplification 3 3 H0 NA Not rejected

4 4 HA < 2, 2 ∗ 10−16 Accepted

Proof splitting 5 5 H≤ NA Not rejected

6 6 HA 7, 7 ∗ 10−9 Accepted

Proof splitting 7 7 H≤ 3, 252 ∗ 10−9 Accepted*

8 H≤ 3, 252 ∗ 10−9 Accepted*

8 9 HA 4, 147 ∗ 10−2 Accepted

10 HA 6, 063 ∗ 10−1 Not rejected

Loop treatment 9 11 H0 NA Not rejected

10 12 HA 9, 186 ∗ 10−3 Accepted

Dependency contracts 11 13 H0 NA Not rejected

12 14 H0 1 Not rejected

Query treatment 13 15 H0 NA Not rejected

16 H0 NA Not rejected

14 17 H0 1, 422 ∗ 10−1 Not rejected

18 H0 1 Not rejected

15 19 H≤ 1, 573 ∗ 10−1 Not rejected

20 H≤ NA Not rejected

16 21 HA 1, 706 ∗ 10−1 Not rejected

Expand local queries 17 22 HA 6, 601 ∗ 10−2 Not rejected

18 23 H≤ 4, 55 ∗ 10−2 Accepted*

Arithmetic treatment 19 24 H≥ 9, 237 ∗ 10−13 Accepted*

20 25 HA 3, 173 ∗ 10−1 Not rejected

Quantifier treatment 21 26–28 - - Rejected

22 29–31 - - Rejected

23 32 H≤ 4, 55 ∗ 10−2 Accepted*

33 H≤ 1, 573 ∗ 10−1 Not rejected

34 H≤ NA Not rejected

35 HA 7, 186 ∗ 10−1 Not rejected

24 36 HA 2, 869 ∗ 10−1 Not rejected

37 HA 1, 562 ∗ 10−1 Not rejected

Class axiom rules 25 38 H0 NA Not rejected

39 H0 NA Not rejected

26 40 H0 NA Not rejected

41 H0 NA Not rejected

27 52 H0 NA Not rejected

28 53 H0 NA Not rejected

Strings 29 42 H≥ NA Not rejected

30 43 H0 1 Not rejected

BigInt 31 44 H≥ NA Not rejected

32 45 H0 1 Not rejected

IntegerSimplificationRules 33 46 H≥ 5, 32 ∗ 10−4 Accepted*

34 47 H0 8, 783 ∗ 10−1 Not rejected

Sequences 35 48 H≥ NA Not rejected

36 49 H0 2, 61 ∗ 10−1 Not rejecte d

MoreSeqRules 37 50 H≥ NA Accepted*

38 51 H0 3, 458 ∗ 10−1 Not rejected

* After manual inspection

Understanding Parameters of Deductive Verification 353

Table 3. Contingency tables of manually inspected assumptions

Hypothesis 7 Off
Proof Splitting Closed Open

Free Closed 114 37
Open 0 142

Hypothesis 8 Off
Proof Splitting Closed Open

Delayed Closed 116 37
Open 0 143

Hypothesis 23 On
Expand local queries Closed Open

Off Closed 82 0
Open 4 105

Hypothesis 24 Basic
Query Treatment Closed Open

DefOps Closed 119 51
Open 0 164

Hypothesis 32 None
Quantifier Treatment Closed Open

No Splits Closed 132 4
Open 0 107

Hypothesis 46 Full
IntegerSimplificationRules Closed Open

Minimal Closed 122 0
Open 12 151

4.3 Learning a Parameter-Influence Model

Our assumptions only state which options do have or do not have an effect on
provability or verification effort. However, in terms of verification effort, it is also
interesting to know which options have a larger effect than others. While previous
assumptions help to exclude some options when optimizing the verification effort,
we are even interested in prioritizing options according to their impact.

Based on our experiments, we collected a considerable amount of data points,
which depict the verification effort with respect to different options. In a nutshell,
we decided to learn a parameter-influence model based on our data to draw these
relevant conclusions about which options have a larger impact on the verification
effort. To derive a general model, we use all of our specification cases as input
for machine-learning techniques. To this end, we employ SPLConqueror [45],
a framework which incorporates machine-learning techniques to measure the
influence of parameters on non-functional properties.

Our samples comprise only specification cases that are automatically verified,
as the number of proof steps in unclosed proofs is not meaningful. Moreover, to
increase our confidence in the performance-influence model, we applied cross-
validation to learn a total of ten models. To this end, we partitioned all verified
specification cases into ten subsets and used nine randomly chosen subsets to
train each of the ten models.

In Fig. 2, we depict the results of our ten prediction models using boxplots
that relate numerous options with verification effort. Each boxplot presents a
factor that indicates whether an option improves (negative value) or impairs
(positive value) the verification effort. Notably, there exist numerous options that
were discarded in the training process of all ten models, as too few verification
tasks could be closed with them automatically. Therefore, we also omitted them
in Fig. 2.

354 A. Knüppel et al.

Ar
ith

m
et

ic
 tr

ea
tm

en
t::

Ba
si

c

bi
gi

nt
::b

ig
in

t:o
ff

bi
gi

nt
::b

ig
in

t:o
n

C
la

ss
 a

xi
om

 ru
le

::D
el

ay
ed

D
ep

en
de

nc
y

co
nt

ra
ct

s:
:O

ff

Ex
pa

nd
 lo

ca
l q

ue
rie

s:
:O

ff

Lo
op

 tr
ea

tm
en

t::
In

va
ria

nt

Lo
op

 tr
ea

tm
en

t::
Lo

op
 S

co
pe

 In
va

ria
nt

m
or

eS
eq

R
ul

es
::m

or
eS

eq
R

ul
es

:o
ff

m
or

eS
eq

R
ul

es
::m

or
eS

eq
R

ul
es

:o
n

O
ne

 S
te

p
Si

m
pl

ifi
ca

tio
n:

:D
is

ab
le

d

O
ne

 S
te

p
Si

m
pl

ifi
ca

tio
n:

:E
na

bl
ed

Pr
oo

f s
pl

itt
in

g:
:D

el
ay

ed

Pr
oo

f s
pl

itt
in

g:
:F

re
e

Pr
oo

f s
pl

itt
in

g:
:O

ff

Q
ua

nt
ifi

er
 tr

ea
tm

en
t::

Fr
ee

Q
ue

ry
 tr

ea
tm

en
t::

R
es

tri
ct

ed

re
ac

h:
:re

ac
h:

on

St
op

 a
t::

D
ef

au
lt

St
op

 a
t::

U
nc

lo
sa

bl
e

St
rin

gs
::S

tri
ng

s:
of

f

−500

0

500

1000

M
od

e
C

oe
ffi

ci
en

t f
or

 V
er

ifi
ca

tio
n

Ef
fo

rt

Fig. 2. Influence of various options on verification effort

For most options, the median is close to zero, which is why we cannot rea-
son about their influence. Exceptions are Arithmetic treatment ::Basic, Class
axiom::Delayed, One Step Simplification::Disabled, Proof splitting ::Delayed, Proof
splitting ::Free, Proof splitting ::Off, and Query treatment ::Restricted. With respect
to the median, we achieve the largest improvement with Proof splitting ::Off fol-
lowed by Arithmetic treatment ::Basic. Class axiom::Delayed leads to the largest
deterioration of the verification effort.

While we did not make any assumptions about options Arithmetic treat-
ment ::Basic and Class axiom::Delayed with respect to verification effort, Fig. 2
reveals that Arithmetic treatment ::Basic almost always reduces the effort,
whereas Class axiom::Delayed always and significantly impairs it. Hence, we
can derive two new assumptions from our parameter-influence models. Nonethe-
less, these assumptions are not derived from the literature, but based on our
exploratory study and have to be evaluated in future studies.

To briefly summarize, we identified seven options that reasonably impact the
verification effort. Our results allow us to prioritize these options when prov-
ability is already ensured. However, we also discovered that Arithmetic treat-
ment ::Basic only insignificantly reduces the verification effort based on our spec-
ified extract of OpenJDK and we previously confirmed that what is provable with
Arithmetic treatment ::Basic is also provable with Arithmetic treatment ::DefOps
(cf. Assumption 19). Hence, Arithmetic treatment ::DefOps may be the better
choice for all verification tasks. Notably, numerous of our assumptions coincides
with the models’ predictions (i.e., Assumption 4, 6, 8, and 16).

Understanding Parameters of Deductive Verification 355

4.4 Threats to Validity

The measured verification effort may not be representative, as we decided to
count the proof nodes that KeY produces internally, which may vary in com-
plexity and execution time. One alternative is to measure the overall execution
time needed to verify a method. We decided against it, as execution timing
depends on numerous external factors, such as computing power, parallel pro-
cesses, and even the currently active virtual machine, whereas the number of
proof nodes is a reproducible measurement.

Our verification target (i.e., OpenJDK’s Collection API) may not comprise
enough representative specification cases, as we did not specify many loop invari-
ants or complex algorithms. Nevertheless, we specified real-world Java code, for
which the specification effort was already tremendously high (i.e., it took us
numerous iterations and months to be amenable for automatic verification). For
all employed specification cases there exist at least one parameter configuration,
which suffices to automatically verify it. Moreover, we computed all results on
high-end servers over a period of two months. Specifying and verifying more
specification cases would take considerably longer.

We only formulated assumptions about parameters that are used in KeY
2.6.1. It is thus questionable whether our considerations can be generalized to
other verification systems. However, parameterization for non-expert users is also
challenging for other techniques and tools, such as model checking with Java
Pathfinder [46]. Furthermore, the chosen dependent variables (i.e., provability
and verification effort) are typically most meaningful for users and tool builders
of other verification systems, too.

Quantifier Treatment

H
ig

h
pr

ov
ab

ili
ty

Lo
w

 v
er

ifi
ca

tio
n

ef
fo

rt

Proof Splitting

Arithmetic Treatment**

**Explorative Hypothesis

Fig. 3. Trade-off between lower verification effort and higher provability

5 Suggestions for Users and Tool Builders

Our assumptions depict numerous options that a user should prioritize for tuning
to increase provability and verification effort. For instance, parameters that need
to be changed (i.e., differ from the default option) are Quantifier Treatment and
Proof splitting, which can be set to Free, and Arithmetic Treatment, which can

356 A. Knüppel et al.

be set to DefOps. Moreover, Stop At should stay at Default and Expand Local
Queries should stay at On.

If provability is ensured, verification effort can be tweaked. Our hypotheses
state that One Step Simplification should be set to free,

Proof Splitting should be set to off, and Loop Treatment to Loop Scope Invari-
ant. In particular, the parameter-influence models illustrated that Proof Split-
ting::Off decreases verification effort the most compared to all options. More-
over, the models revealed that Arithmetic Treatment and Class Axiom Rule
have also an impact. Arithmetic Treatment::Basic is preferred to Arithmetic
Treatment::DefOps, whereas Class Axiom Rule::Delayed should be avoided when
possible. Nevertheless, our suggestion is to always start with Arithmetic Treat-
ment::DefOps, as it is often needed for provability and the gain in terms of
verification effort seems to be insignificant.

Based on our results, we can also identify parameters, whose options rep-
resent a trade-off between higher provability and lower verification effort. In
essence, these parameters are Quantifier treatment, Proof splitting, and Arith-
metic treatment, which are illustrated in Fig. 3.

Whenever provability is ensured, these options allow a user to decrease the
verification effort.

Derived from our assumptions, some options have no measured impact on the
verification effort but influence provability. It is thus questionable why a user is
confronted with these options. A solution would be to provide different modes
for different requirements, such as a simple view for inexperienced users that
hides specific options. In particular, such a view may discard parameters BigInt,
IntegerSimplificationRules, Sequences, MoreSeqRules, One Step Simplification,
and Stop At for the mentioned reason.

Another suggestion for tool builders is to implement a recommendation
system for parameterization, which enhances user experience. KeY could pro-
vide hints to users to increase provability if a method cannot be verified. For
instance, option Proof Splitting::Off may replace option Proof Splitting::Free or
option IntegerSimplificationRules::Minimal may replace option IntegerSimplifica-
tionRules::Full. Moreover, KeY could try to automatically fine-tune parameters
during verification based on the very same technique.

6 Related Work

A survey on different languages for behavioral contracts was done by Hatcliff
et al. [21]. Besides KeY with its specialization on Java source code, there exist
alternative tools for deductive program verification of other languages, such as
Spec# [2], VCC [10] for verifying concurrent C, and the Why platform [49],
which comprises tools for the verification of WhyML, Java, and C programs [12,
16,33]. For the purpose of this paper, we concentrated on KeY, as (a) it provides
numerous parameters, (b) it has an active community, and (c) we already gained
ample and practical experiences with it [24,46–48].

Understanding Parameters of Deductive Verification 357

Gouw et al. [14] investigated the correctness of OpenJDK’s TimSort with
KeY and discovered an exploitable bug in its implementation. They changed
parameterization even during the search for proofs, which is difficult as it requires
to find meaningful interruption points. This is an indicator that an advanced
understanding of the parameters is indispensable to verify real-world software
with deductive verification.

Another formal verification technique requiring an understanding about its
parameters is model checking. SPIN [25] is a software model checker that focuses
on finite state machines and provides numerous configurable options and opti-
mizations, such as partial order reduction, state compressions, and bitstate hash-
ing. Java Pathfinder (JPF) [22] is a software model checker focusing on Java
source code. JPF can be parameterized and extended in a variety of ways and is
build upon a general and uniform configuration management. Configuring JPF
for efficiently finding defects for a given verification task needs a considerable
amount of knowledge about model checking.

Optimizing the selection of parameters of configurable programs is a widely
researched area. Benavides et al. [5] analyzed the performance of CSP, SAT,
and BDD solvers in finding a valid configuration. Ochoa et al. [37] transform a
set of configurations into a CSP solver to find a non-conflicting set of configu-
rations that adhere to particular business objectives, such as costs, time, and
human resources, of multiple stakeholders. Siegmund et al. [45] proposed SPL
Conqueror, which we used to learn our prediction models. Despite its initial con-
nection to software product lines, SPL Conqueror is used by various researchers
to learn models that predict the influence of non-functional properties in con-
figurable software [19,20,28,38,44]. We provide an additional use case for SPL
Conqueror, as we learned parameter-influence models to argue about how the
selection of particular options influence the verification effort.

7 Conclusion

Our long-term goal is to make deductive verification accessible for mainstream
software developers. Although formal methods improved significantly over the
last decades, software developers still struggle to specify and verify even trivial
pieces of software. One often overlooked hurdle that inexperienced users face is
parameterization. While parameterization of formal method tools comes with the
promise to ease the process of automatic verification, we exhibited that setting
the right values for the ever growing amount of parameters is challenging.

In particular, our focus is on parameters of deductive verification, where we
used the verification system KeY 2.6.1 as an example.

We formulated a total of 38 assumptions how options in KeY improve or
impair provability and verification effort. We derived a total of 51 statistical
hypotheses and empirically measured the effect of different parameter configu-
rations by employing significance tests and machine-learning techniques.

358 A. Knüppel et al.

Our empirical investigation is a stepping stone towards automated deductive
verification and better applicability for non-experts. Only three of our initial
assumptions had been invalidated. We identified options that should be priori-
tized according to their impact on verification effort when provability is ensured.
Moreover, we identified three parameters (i.e., Quantifier Treatment, Proof Split-
ting, and Arithmetic Treatment), whose options represent a trade-off between
provability and verification effort. Our insights provide valuable recommenda-
tions to users on which parameters to prioritize given a verification requirement.
Moreover, tool builders can utilize our insights to improve on the user experience.
For instance, implementing a recommendation system for parameters based on
our investigation would help users to verify software more easily. Furthermore,
KeY may hide insignificant parameters in specific verification scenarios or fine-
tune parameters automatically during proofs.

For future work, it is necessary to employ more verification targets to investi-
gate the assumptions that could not be accepted. Moreover, it would be interest-
ing to implement a system for parameter recommendations that provides even
more fine-grained recommendations based on contracts and methods. Further-
more, we only measured the effect of single values of parameters on provability
and verification effort. However, specific values of different parameters may inter-
act with each other and therefore have a larger or even reversed effect when used
in combination. Finally, investigating parameterization of other verification tools
is indispensable to help more industrial software developers to integrate formal
methods in their everyday software development tasks.

Acknowledgments. This work was supported by the DFG (German Research Foun-
dation) under the Researcher Unit FOR1800: Controlling Concurrent Change (CCC).
We acknowledge Richard Bubel, Reiner Hähnle, Dominik Steinhöfel, Norber Siegmund,
Alexander Grebhahn, Christian Kästner, Sven Apel, and Stefan Krüger for fruitful dis-
cussion and valuable feedback throughout this work. We also thank all reviewers for
their valuable feedback and corrections.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich,
M.: Deductive Software Verification-The KeY Book: From Theory to Practice.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54, 81–91
(2011)

3. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from microker-
nel verification-specification is the new bottleneck. arXiv preprint arXiv:1211.6186
(2012)

4. Beckert, B., Bormer, T., Grahl, D.: Deductive verification of legacy code. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 749–765. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 53

5. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Using constraint programming to rea-
son on feature models. In: Proceedings of the International Conference on Software
Engineering and Knowledge Engineering (SEKE), pp. 677–682 (2005)

https://doi.org/10.1007/978-3-319-49812-6
http://arxiv.org/abs/1211.6186
https://doi.org/10.1007/978-3-319-47166-2_53

Understanding Parameters of Deductive Verification 359

6. Bowen, J., Stavridou, V.: Safety-critical systems, formal methods and standards.
Softw. Eng. J. 8(4), 189–209 (1993)

7. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. Int. J. Softw. Tools
Technol. Transf. (STTT) 7(3), 212–232 (2005)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

9. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. (CSUR) 28(4), 626–643 (1996)

10. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03359-9 2

11. Cohen, M.B., Dwyer, M.B., Shi, J.: Interaction testing of highly-configurable sys-
tems in the presence of constraints. In: Proceedings of the 2007 International Sym-
posium on Software Testing and Analysis, pp. 129–139. ACM (2007)

12. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

13. Darvas, Á., Mehta, F., Rudich, A.: Efficient well-definedness checking. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 100–115. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71070-7 8

14. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 16

15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

16. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 173–177. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73368-3 21

17. Gladisch, C.D.: Model generation for quantified formulas with application to test
data generation. Proc. Int. J. Softw. Tools Technol. Transfer 14(4), 439–459 (2012)

18. Gosling, J.: The Java Language Specification. Addison-Wesley Professional, Boston
(2000)

19. Grebhahn, A., Siegmund, N., Apel, S., Kuckuk, S., Schmitt, C., Köstler, H.: Opti-
mizing performance of stencil code with SPL conqueror. In: Proceedings of the 1st
International Workshop on High-Performance Stencil Computations (HiStencils),
pp. 7–14 (2014)

20. Guo, J., Czarnecki, K., Apely, S., Siegmundy, N., Wasowski, A.: Variability-aware
performance prediction: a statistical learning approach. In: Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering, pp.
301–311. IEEE Press (2013)

21. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral
interface specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012)

https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-540-71070-7_8
https://doi.org/10.1007/978-3-540-71070-7_8
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-540-73368-3_21

360 A. Knüppel et al.

22. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. J. Softw. Tools Technol. Transfer 2(4), 366–381 (2000)

23. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1(4),
271–281 (1972)

24. Holthusen, S., Nieke, M., Thüm, T., Schaefer, I.: Proof-carrying apps: contract-
based deployment-time verification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9952, pp. 839–855. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47166-2 58

25. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. (TSE) 23(5),
279–295 (1997)

26. Hubbers, E., Poll, E.: Reasoning about card tears and transactions in Java Card.
In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984,
pp. 114–128. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24721-0 8

27. Huisman, M., Mostowski, W.: A symbolic approach to permission accounting for
concurrent reasoning. In: 2015 14th International Symposium on Proceedings of
the Parallel and Distributed Computing (ISPDC), pp. 165–174. IEEE (2015)

28. Kienzle, J., Mussbacher, G., Collet, P., Alam, O.: Delaying decisions in variable
concern hierarchies. ACM SIGPLAN Not. 52, 93–103 (2016)

29. Knight, J.C., DeJong, C.L., Gibble, M.S., Nakano, L.G.: Why are formal meth-
ods not used more widely? In: Proceedings of the Fourth NASA Formal Methods
Workshop. Citeseer (1997)

30. Knüppel, A., Pardylla, C.I., Thüm, T., Schaefer, I.: Experience report on formally
verifying parts of openJDK’s API with KeY. In: Proceedings of the Fourth Work-
shop on Formal Integrated Development Environment. Springer, Heidelberg (2018)

31. Leavens, G.T., Cheon, Y.: Design by Contract with JML, September 2006
32. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,

Kiniry, J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML Reference Manual, May
2013

33. Marché, C., Moy, Y.: The Jessie Plugin for Deductive Verification in Frama-C.
INRIA Saclay Île-de-France and LRI, CNRS UMR (2012)

34. McNemar, Q.: Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika 12(2), 153–157 (1947)

35. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall Inc.,
Upper Saddle River (1988)

36. Meyer, B.: Applying design by contract. IEEE Comput. 25(10), 40–51 (1992)
37. Ochoa, L., González-Rojas, O., Thüm, T.: Using decision rules for solving conflicts

in extended feature models. In: Proceedings of the International Conference on
Software Language Engineering (SLE), pp. 149–160. ACM, October 2015

38. Olaechea, R., Stewart, S., Czarnecki, K., Rayside, D.: Modelling and multi-
objective optimization of quality attributes in variability-rich software. In: Proceed-
ings of the Fourth International Workshop on Nonfunctional System Properties in
Domain Specific Modeling Languages, p. 2. ACM (2012)

39. Robby, Rodŕıguez, E., Dwyer, M.B., Hatcliff, J.: Checking JML specifications using
an extensible software model checking. Framework 8(3), 280–299 (2006)

40. Rushby, J.: Formal methods and their role in the certification of critical systems.
In: Shaw R. (ed.) Safety and Reliability of Software Based Systems, pp. 1–42.
Springer, London (1997). https://doi.org/10.1007/978-1-4471-0921-1 1

41. Sannella, D.: A survey of formal software development methods. Department of
Computer Science, Laboratory for Foundations of Computer Science, University
of Edinburgh (1988)

https://doi.org/10.1007/978-3-319-47166-2_58
https://doi.org/10.1007/978-3-319-47166-2_58
https://doi.org/10.1007/978-3-540-24721-0_8
https://doi.org/10.1007/978-3-540-24721-0_8
https://doi.org/10.1007/978-1-4471-0921-1_1

Understanding Parameters of Deductive Verification 361

42. Scheurer, D., Hähnle, R., Bubel, R.: A general lattice model for merging symbolic
execution branches. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS,
vol. 10009, pp. 57–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47846-3 5

43. Schumann, J.M.: Automated Theorem Proving in Software Engineering. Springer,
Heiedelberg (2001). https://doi.org/10.1007/978-3-662-22646-9

44. Siegmund, N., Grebhahn, A., Apel, S., Kästner, C.: Performance-influence models
for highly configurable systems. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pp. 284–294. ACM (2015)

45. Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S., Saake,
G.: SPL conqueror: toward optimization of non-functional properties in software
product lines. Softw. Qual. J. 20(3–4), 487–517 (2012)

46. Thüm, T., Meinicke, J., Benduhn, F., Hentschel, M., von Rhein, A., Saake, G.:
Potential synergies of theorem proving and model checking for software prod-
uct lines. In: Proceedings of the International Software Product Line Conference
(SPLC), pp. 177–186. ACM (2014)

47. Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verifica-
tion of software product lines. In: Proceedings of the International Conference on
Generative Programming and Component Engineering (GPCE), pp. 11–20. ACM,
September 2012

48. Thüm, T., Winkelmann, T., Schröter, R., Hentschel, M., Krüger, S.: Variability
hiding in contracts for dependent software product lines. In: Proceedings of the
Workshop on Variability Modelling of Software-intensive Systems (VaMoS), pp.
97–104. ACM (2016)

49. Why Development Team: Why: a software verification platform. http://why.lri.fr/.
Accessed 16 Dec 2010

50. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.: Experimentation in
Software Engineering. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29044-2

https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-662-22646-9
http://why.lri.fr/
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Software Verification with ITPs
Should Use Binary Code Extraction

to Reduce the TCB
(Short Paper)

Ramana Kumar1,2(B), Eric Mullen3, Zachary Tatlock3,
and Magnus O. Myreen4

1 Data61, CSIRO, Sydney, Australia
ramana.kumar@cl.cam.ac.uk
2 UNSW, Sydney, Australia

3 University of Washington, Seattle, WA, USA
4 Chalmers University of Technology, Gothenburg, Sweden

Abstract. LCF-style provers emphasise that all results are secured by
logical inference, and yet their current facilities for code extraction or
code generation fall short of this high standard. This paper argues
that extraction mechanisms with a small trusted computing base (TCB)
ought to be used instead, pointing out that the recent CakeML and Œuf
projects show that this is possible in HOL and within reach in Coq.

1 Introduction

Software verification is a primary use of interactive theorem provers (ITPs). To
verify a system, one uses the logic of the prover to model the system, specify its
desired properties, and prove that the model satisfies the specification. To run
the verified system, many provers facilitate extracting code from the model, to
be compiled and executed in a mainstream functional language. While widely
used, this approach leads to an unsettlingly large trusted computing base (TCB)
– the unverified components a system depends on for correct construction and
execution. The TCB of conventional extraction includes pretty printers that
“massage” code into the target language (e.g., OCaml or Haskell) without proof,
as well as the target language implementation (unverified compiler and runtime).

Recently, two verification projects, CakeML and Œuf, have shown that code
extraction with a small TCB is possible without a significant increase in verifi-
cation effort. They enable ordinary software verification in a prover, and (mostly
automated) compilation of a verified system within the prover to extract binary
code for execution. The TCB of this approach no longer includes sophisticated
compilation or extraction machinery; binary “extraction” simply prints the lit-
eral bytes of verified machine code to a file outside of the ITP.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 362–369, 2018.
https://doi.org/10.1007/978-3-319-94821-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_21&domain=pdf

Software Verification with ITPs Should Use Binary Code Extraction 363

In this paper, our first contribution is to explain the principles of the binary
extraction approach taken by CakeML and Œuf to reduce the TCB. For CakeML,
this is the first demonstration of the toolchain outside of compiler bootstrapping.
Our second contribution is a detailed account of what remains in the TCB after
applying binary code extraction, including sketches of how to build a validation
story for the remaining assumptions. We argue that, given the feasibility of these
ideas, all ITP-based software verification projects should strive for a small TCB.

2 Binary Code Extraction Workflow

The main idea of binary extraction is to stay inside the prover until you have
binary code. We show how this workflow naturally extends the conventional
approach with a simple example: computing the frequencies of words in a file.

First, we specify correctness by defining valid wordfreq output, a predicate
that holds when output represents the word frequencies of file_contents :

valid wordfreq output file_contents output ⇐⇒
∃ws.

set ws = set (words of file_contents) ∧ sorted (λ x y . x < y) ws ∧
output = concat (map (λw . format output (w ,frequency file_contents w)) ws)

An output is correct if there is a list of words ws such that the set of words
in ws is the same as the set of words in file_contents ; each element in ws is
strictly less than the next one; and output is a concatenation of lines, each of
which corresponds to an element of ws and contains the frequency of that word
in file_contents formatted according to a format output function.

Next, we implement the specification as a functional program inside the logic.
The main function for our example, compute wordfreq output, is defined below
using helpers: insert line inserts each word from a line into an ordered binary
tree; to list flattens an ordered binary tree into a sorted list; and map and foldl
are the usual functions over lists. The format output and words of functions are
the same as in the specification.

compute wordfreq output input_lines =
map format output (to list (foldl insert line empty tree input_lines))

insert line t line = foldl insert word t (words of line)

After defining the functional implementation, we prove that it computes the
desired result. This is where most of the manual proof effort associated with
ITP-based verification is applied. However, by sticking with shallowly embedded
logical functions, we avoid the explosion of details that would arise in a program
logic over a deep embedding. For the word frequency example, we prove the
following theorem in about 100 lines of tactic-based proof script.

� valid wordfreq output file_contents
(concat (compute wordfreq output (lines of file_contents))) (1)

364 R. Kumar et al.

Conventional Approach. One would now use code extraction to pretty print
the verified program into a mainstream functional language like Haskell or
OCaml — crucially without any proof relating a formal semantics of the tar-
get language with either the ITP-generated code or the functions in the logic.

Binary Extraction Approach. The proposed binary extraction approach
takes a different route, which stays in the logic longer and produces proved
guarantees about the behaviour of the generated code. This route requires some
infrastructure — a synthesis tool and a verified compiler — but these need only
be built once. Here are the steps of binary extraction:

S1: Use proof-producing or verified synthesis to translate the shallowly embedded
logical functions, such as compute wordfreq output, into a deep embedding in a
programming language with a formal semantics. The result is a pure program
that is proved to perform the desired computation.

S2: Add some verified wrapper I/O code so that the program from S1 can inter-
act with its environment. The result is a complete standalone program. The
previous step (S1) is automatic, but this step (S2) might be interactive or
automatic depending on the desired I/O interaction.

S3: Compile the verified standalone program in the logic so that the compiler’s
correctness theorem can be applied to a theorem about its evaluation, i.e.,
�compile source = compiler output for a particular source and compiler output.

These steps yield a theorem stating that compiler output is a machine-code pro-
gram that performs I/O according to S2 and implements the computation from
S1, which will have been verified against its specification using typical ITP meth-
ods. For our example, the computation is compute wordfreq output, so we con-
nect the behaviour of compiler output to the valid wordfreq output property via
the algorithm-level theorem (1). Compared with the conventional approach, the
only extra manual effort in S1–S3 is the verification of the I/O wrapper in S2.

Below, we show how S1–S3 are realised in HOL4 by CakeML, and how they
are almost realised in Coq by Œuf. That these ideas are supported (or very
nearly supported) in both provers demonstrates cross-prover applicability.

Binary Extraction in CakeML. S1–S3 are supported by different parts of
the CakeML ecosystem and the underlying HOL4 theorem prover. (S1:) Func-
tional programs written in HOL are translated to pure CakeML functions by an
automatic proof-producing synthesis tool [21]; (S2:) the wrapper code is added
to the code from S1 manually and verified using characteristic formulae (CF)
for CakeML [8]; and (S3:) the verified CakeML compiler’s backend [23] is eval-
uated in the logic using HOL4’s evaluation engine by Barras [2]. S1 and S3 are
automatic, while S2 currently requires some expertise from the user.

For our example, S2 involves writing a wrapper like the code shown below
and proving a CF separation-logic-style correctness theorem for it.

Software Verification with ITPs Should Use Binary Code Extraction 365

val _ = (append_prog o process_topdecs) ‘

fun wordfreq u =

case TextIO.inputLinesFrom (List.hd (CommandLine.arguments()))

of SOME lines =>

TextIO.print_list (compute_wordfreq_output lines) ‘

The first line above instructs HOL4 to add code to the CakeML pro-
gram being constructed. The code between the quotation marks, ‘ . . . ’,
is CakeML concrete syntax for the top-level CakeML function. compute_-
wordfreq_output is the synthesised CakeML function corresponding to the
compute wordfreq output HOL function. Other names refer to functions in the
CakeML basis library.

Once S1–S3 have been completed, the theorems from each step are easily
composed to produce an end-to-end correctness theorem1, which we explain
below.

� wfCL [pname; fname] ∧ wfFS fs ∧ hasFreeFD fs ∧
get file contents fs fname = Some file_contents ∧
x64 installed compiler output (basis ffi [pname; fname] fs) mc ms ⇒
∃ io_events ascii_output .

machine sem mc (basis ffi [pname; fname] fs) ms ⊆
extend with resource limit { Terminate Success io_events } ∧
extract fs fs io_events = Some (add stdout fs ascii_output) ∧
valid wordfreq output file_contents ascii_output

(2)

The first two lines make assumptions about the environment, namely: the
command line must consist of two well-formed (wfCL) words, pname and
fname; the file system fs must be well-formed (wfFS) with a free file descriptor
(hasFreeFD); and fname must exist in fs with contents file_contents . The third
line is more interesting and concerns the initial machine state ms. We assume
that ms is an x86-64 machine state where compiler output has been installed into
memory and is ready to go; we also assume that CakeML’s foreign-function inter-
face (basis ffi) behaves according to our model of the file system and standard
streams.

If all these assumptions are true, then the machine-code level execution
(machine sem) will terminate. During execution the machine will perform some
io_events (or some prefix of them, if it runs out of memory). The extract fs line
states that running the file system model fs through the io_events has the effect
of adding some ascii_output to standard output. The last line states that this
ascii_output is correct according to our specification valid wordfreq output.

Binary Extraction in Œuf. Œuf accomplishes S1–S3 similarly to CakeML,
but in Coq and building on CompCert [16]. (S1:) A Gallina program is translated
to Œuf functions by an untrusted Coq plugin and translation validated to ensure
equivalence [20]. Œuf then compiles the code to CompCert’s Cminor IR. (S2:)
I/O wrapper code is written in C, compiled to Cminor via CompCert, and linked

1 https://code.cakeml.org/tree/master/tutorial/solutions.

https://code.cakeml.org/tree/master/tutorial/solutions

366 R. Kumar et al.

to the code from S1. (S3:) The combined stand-alone program is compiled to
assembly using CompCert, relying on tools like Valex to formally validate assem-
bling [13]. An extracted version of the Œuf compiler is still currently used, since
CompCert is not yet fully executable within Coq [17].

For our example, a user would write an I/O wrapper in C similar to:

int main(void) { union list* input = to_coq_str(read_stdin());

union list* freqs = OEUF_CALL(wordfreq, input);

write_stdout(of_coq_str(freqs)); return 0; }

The OEUF_CALL macro constructs a closure and passes arguments to Œuf-
extracted code while to_coq_str and of_coq_str translate between the Œuf
string representation (lists of Boolean 8-tuples) and the standard C representa-
tion (char*). Proving S2 requires showing that C data conversions and system
calls adhere to the Œuf ABI [20], which we have specified for this example.2

Assuming these specifications, composing theorems for S1–S3 yields an end-to-
end guarantee:

Oeuf.compile(wordfreq′) = OK c ∧ Oeuf.link(c, shim) = OK p ∧
CompCert.compile(p) = OK b ∧ initSt(b, s1) ⇒
∃ w τ s2. s1

τ−→ s2 ∧ finalSt(b, s2) ∧ stdIn(τ) = w ∧ stdOut(τ) = wordfreq(w)
(3)

The first two lines relate the original Gallina function, shim (wrapper), and
compiled output for the whole program; and require that state s1 is a valid
initial state, (i.e., that b has been correctly loaded). The final line guarantees
that, under these assumptions, the program will safely execute and terminate in a
final state3 (as CompCert assembly semantics are deterministic) while generating
trace τ of I/O events and that this trace corresponds to reading string w from
standard input and writing wordfreq(w) to standard output. stdIn and stdOut
filter the trace and relate low-level values to Gallina values.

3 Trusted Computing Base

The binary extraction approach yields both a proved result (theorem (2) or (3)),
and the verified binary executable itself (compiler output or b) printed into a file.
To show what remains in the TCB for correct execution, we analyse the CakeML
version of the word frequency example.

The ITP: Its Logic and Implementation. We trust our theorem prover: that
classical higher-order logic is consistent [10,14,22], and that the HOL4 kernel
implements this logic correctly. Trusting the ITP implementation means trust-
ing the ∼4000 lines of Standard ML code in the kernel, the rationale underlying
HOL4’s LCF-based design [19], and the compiler (Poly/ML), OS, and hardware
on which HOL4 runs. It is possible (though we have not done it here) to obtain

2 https://github.com/uwplse/oeuf/tree/master/demos/word freq.
3 No resource limits are assumed since CompCert semantics model infinite memory.

https://github.com/uwplse/oeuf/tree/master/demos/word_freq

Software Verification with ITPs Should Use Binary Code Extraction 367

externally checkable proof certificates from HOL4 (via OpenTheory [12]), miti-
gating the need to trust any specific ITP implementation. These kinds of trust
are intrinsic to any ITP-based approach.

The Specification. We need to correctly formalise the desired behaviour of
our program (valid wordfreq output), because it is not checked by any proofs.
However, a specification can be tested by proving sanity-checking theorems about
it and evaluating (the executable parts of) its definition on concrete examples.
Trust across this specification gap is intrinsic to any kind of formal verification.

The Extraction Procedure. To execute verified code, it must at some point
exit the theorem prover and appear in memory associated with a running process.
We trust the function — a very simple one for binary extraction — that reads
the code (as a term in logic) and prints it into an executable image template. We
trust that this file is not tampered with, and that the linker (next paragraph) and
OS loader operate correctly. These assumptions are captured in the x64 installed
predicate, which specifies the expected state of the machine after the executable
is loaded. In addition to carefully defining x64 installed, we could validate this
assumption using runtime checks on startup: e.g., that the registers pointing to
the ends of the CakeML heap are valid and aligned. Trusting something between
formal models and reality is unavoidable.

The Execution Environment. The final theorem is about execution of a for-
mal machine model (machine sem). We trust the hardware to behave according
to this model, and that the OS and other processes do not interfere with the
CakeML process. (We model interference and assume it avoids the CakeML pro-
cess’s memory [7].) Machine models, like Fox’s L3 models that we use, can be
validated by systematic testing against the hardware [4,6]. Our verified program
interacts with its environment, and we model how we expect the environment
to behave, with functions like basis ffi and extract fs. The I/O facilities (com-
mand line, files, and standard streams) available in CakeML’s basis library are
supported by a small C interface to the underlying system calls (e.g., open). We
trust our implementation of this interface, and the C compiler (on the interface
code only) and linker. The verified program may exit prematurely if it runs out
of memory: we eliminate this occurrence only by observation.

4 Broader Context and Vision

The ITP community is pursuing several approaches relevant to reducing the TCB
of code extraction. Important aspects of extraction have been proven correct for
Coq [18] and Isabelle/HOL [3,9]; the CertiCoq [1] team and Hupel and Nip-
kow [11] are working toward verified code generators for Coq and Isabelle/HOL
respectively; and frameworks like the Isabelle Refinement Framework [15] and
Fiat [5] are exploring other approaches to proof-producing code extraction.
CakeML and Œuf are distinguished by striving to be a natural replacement

368 R. Kumar et al.

for conventional extraction, using conventional programming languages for syn-
thesis, and aiming to completely eliminate the compiler from the TCB by prov-
ing results about the behaviour of the whole program binary including effectful
wrapper code.

Given the advances from throughout the community and the fact that sim-
ilar results are supported across different ITPs, we feel that extraction with a
small TCB is on the cusp of wide-scale feasibility for verified systems. Much is
left to study and build before these approaches achieve the convenience and per-
formance of conventional extraction techniques, but we have demonstrated that
it is already possible to rigorously connect facts established in the logic of an
ITP to binary executable code under a substantially smaller TCB, and without
substantial increase in verification effort. We enthusiastically urge the rest of the
ITP community to adopt and advance the ideas behind binary code extraction.

References

1. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Belanger,
O.S., Sozeau, M., Weaver, M.: CertiCoq: A verified compiler for Coq. In: CoqPL
(2017)

2. Barras, B.: Programming and computing in HOL. In: Aagaard, M., Harrison, J.
(eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 17–37. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44659-1 2

3. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z.,
McKinna, J., Pollack, R., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp.
24–40. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45842-5 2

4. Campbell, B., Stark, I.: Randomised testing of a microprocessor model using SMT-
solver state generation. SCP 118, 60–76 (2016)

5. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: deductive synthesis of
abstract data types in a proof assistant. In: POPL, pp. 689–700 (2015)

6. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14052-5 18

7. Fox, A.C.J., Myreen, M.O., Tan, Y.K., Kumar, R.: Verified compilation of CakeML
to multiple machine-code targets. In: CPP, pp. 125–137 (2017)

8. Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified characteristic for-
mulae for CakeML. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 584–610.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-1 22

9. Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. In:
TPHOLs (2007)

10. Harrison, J.: Towards self-verification of HOL light. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg
(2006). https://doi.org/10.1007/11814771 17

11. Hupel, L., Nipkow, T.: A verified compiler from Isabelle/HOL to CakeML. In:
Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 999–1026. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89884-1 35

12. Hurd, J.: The opentheory standard theory library. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5 14

https://doi.org/10.1007/3-540-44659-1_2
https://doi.org/10.1007/3-540-45842-5_2
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/11814771_17
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1007/978-3-642-20398-5_14

Software Verification with ITPs Should Use Binary Code Extraction 369

13. Kästner, D., Leroy, X., Blazy, S., Schommer, B., Schmidt, M., Ferdinand, C.:
Closing the gap - the formally verified optimizing compiler CompCert. In: Safety-
critical Systems Symposium 2017, SSS 2017, pp. 163–180. Developments in System
Safety Engineering: Proceedings of the Twenty-fifth Safety-critical Systems Sym-
posium, CreateSpace, Bristol, United Kingdom, February 2017. https://hal.inria.
fr/hal-01399482

14. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-order
logic - semantics, soundness, and a verified implementation. JAR 56(3), 221–259
(2016)

15. Lammich, P.: Refinement to imperative/HOL. ITP (2015)
16. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler

with a proof assistant. In: 33rd ACM Symposium on Principles of Programming
Languages, pp. 42–54. ACM Press (2006)

17. Leroy, X.: Using coq’s evaluation mechanisms in anger (2015). http://gallium.inria.
fr/blog/coq-eval/

18. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6 39

19. Milner, R.: LCF: a way of doing proofs with a machine. In: Bečvář, J. (ed.) MFCS
1979. LNCS, vol. 74, pp. 146–159. Springer, Heidelberg (1979). https://doi.org/10.
1007/3-540-09526-8 11

20. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: mini-
mizing the Coq extraction TCB. In: CPP 2018, pp. 172–185 (2018)

21. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into
pure and stateful ML. JFP 24(2–3), 284–315 (2014)

22. Pitts, A.M.: The HOL System: Logic, 3rd edn. https://hol-theorem-prover.org#
doc

23. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S., Norrish, M.: A new
verified compiler backend for CakeML. In: ICFP, pp. 60–73 (2016)

https://hal.inria.fr/hal-01399482
https://hal.inria.fr/hal-01399482
http://gallium.inria.fr/blog/coq-eval/
http://gallium.inria.fr/blog/coq-eval/
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1007/3-540-09526-8_11
https://doi.org/10.1007/3-540-09526-8_11
https://hol-theorem-prover.org#doc
https://hol-theorem-prover.org#doc

Proof Pearl: Constructive Extraction
of Cycle Finding Algorithms

Dominique Larchey-Wendling(B)

Université de Lorraine, CNRS, LORIA, Nancy, France
dominique.larchey-wendling@loria.fr

Abstract. We present a short implementation of the well-known Tor-
toise and Hare cycle finding algorithm in the constructive setting of Coq.
This algorithm is interesting from a constructive perspective because it
is both very simple and potentially non-terminating (depending on the
input). To overcome potential non-termination, we encode the given ter-
mination argument (there exists a cycle) into a bar inductive predicate
that we use as termination certificate. From this development, we extract
the standard OCaml implementation of this algorithm. We generalize the
method to the full Floyd’s algorithm that computes the entry point and
the period of the cycle in the iterated sequence, and to the more efficient
Brent’s algorithm for computing the period only, again with accurate
extractions of their respective standard OCaml implementations.

Keywords: Cycle finding · Bar inductive predicates
Partial algorithms in Coq · Correctness by extraction

1 Introduction

The Tortoise and the Hare (T&H for short) in particular and cycle detection [1] in
general are standard algorithms that will very likely cross the path of any would-
be computer scientist. They aim at detecting cycles in deterministic sequences
of values, i.e. when the next value depends only on the current value. They have
many applications, from pseudorandom number strength measurement, integer
factorization through Pollard’s rho algorithm [18] or more generally cryptogra-
phy, etc., even celestial mechanics. But our interest with those algorithms lies
more in the framework in which we want to implement and certify them:

– first we want to prove the partial correction of cycle detection algorithms
without assuming their termination. Hence, we do not restrict our study to
finite domains. In the finitary case indeed, the pigeon hole principle ensures
that there is always a cycle to detect and termination can be certified by
cardinality considerations [9];

Work partially supported by the TICAMORE project ANR grant 16-CE91-0002.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 370–387, 2018.
https://doi.org/10.1007/978-3-319-94821-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_22&domain=pdf
https://ticamore.logic.at
http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE91-0002

Proof Pearl: Constructive Extraction of Cycle Finding Algorithms 371

– inductive/constructive type theories constitute challenging contexts for these
algorithms because they are inherently partial. The reason for that is the
undecidability of the existence of a cycle in an arbitrary given sequence.
Hence, we need to work with partial recursive functions;

– Coq could wrongfully be considered being limited to total functions. To work
around this, Hilbert’s ε-operator (a non-constructive form of the axiom of
choice) is sometimes postulated as a convenient way to deal with partial
functions [7]. Why not, HOL is based on it? We argue that we can stay fully
constructive and we will show that axiom-free Coq can work with such partial
recursive functions provided they are precisely specified.

T&H was attributed to Robert W. Floyd by Donald E. Knuth [15] but may in
fact be a folk theorem (see [2], footnote 8 on page 21). The idea is to launch
from a starting point x0 both a slow tortoise (the tortoise steps once at each
iteration) and a quick hare (the hare steps twice at each iteration). Then the
hare will recapture the tortoise if and only if there is a cycle in the sequence from
x0. We refer to [1] for further visual explanations about the origin and intuition
behind this very well-known algorithm. The T&H algorithm computes only a
meeting point for the two fabulous animals. We will call Floyd’s cycle finding
the algorithm that builds on this technique to compute the entry point and
period of the cycle. We also consider Brent’s period only finding algorithm [6]
that proceeds with a slow hare and a so-called “teleporting tortoise.”

Because these algorithms do not always terminate, defining the corresponding
fully specified Coq fixpoints might be considered challenging. The folklore fuel
trick could be used to simulate general recursion in Coq. The idea is to use a
term of the type X → (fuel : nat) → option Y to represent a partial recursive
function f : X ⇁Y . The fuel argument ensures termination, as e.g. a bound on
the number of recursive sub-calls. This fuel trick has several problems: computing
a big-enough fuel value from the input x : X might be as complicated as showing
the termination of f(x) itself; but also, the fuel argument is informative and is
thus preserved by extraction, both as a parasitic argument and as a companion
program for computing the input value of fuel from the value of x; and finally,
the output type is now option Y instead of Y so an extra match construct is
necessary. We will show how to replace the informative fuel argument with a
non-informative bar inductive predicate to ensure termination. As such, it is
erased by extraction, getting us rid of parasitic arguments. In particular, we
obtain an OCaml extraction of T&H certified by less than 80 lines of Coq code.

2 Formalization of the Problem

Given a set X and a function f : X → X, we define the n-th iterate fn : X → X
of f by induction on n: f0 = x �→ x and fn+1 = f ◦ fn. In Coq, this definition
corresponds to the code of the iterator (with a convenient compact f n notation):

Fixpoint iter {X : Type} (f : X → X) n x : X :=
match n with O �→ x | S n �→ f (f n x) end

where “ f n ” := (iter f n).

372 D. Larchey-Wendling

We get the identity fa+b(x) = fa (f b(x)) by induction on a. Given a starting
point x0 ∈ X, we consider the infinite sequence x0, f(x0), f2(x0), . . . , fn(x0), . . .
of iterates of f on x0, i.e. the map n �→ fn(x0). From a classical logic perspective,
two mutually exclusive alternatives are possible:

A1 the sequence n �→ fn(x0) is injective, i.e. f i(x0) �= f j(x0) holds unless i = j.
In this case, there is no cycle in the iterated sequence from x0;

A2 there exist i �= j such that f i(x0) = f j(x0) and in this case, there is a cycle
in the iterated sequence from x0.

It is however not possible to computationally distinguish those two cases: no
cycle finding algorithm can be both correct and always terminating. To show this
undecidability result, one can reduce the Halting problem to the cycle detection
problem (see file cycle undec.v).

The T&H algorithm terminates exactly when Alternative A2 above holds and
loops forever when Alternative A1 holds. There are many equivalent character-
izations of the existence of a cycle, which we call the cyclicity property.

Proposition 1 (Cyclicity). For any set X, any function f : X → X and any
x0 ∈ X, the four following conditions are equivalent:

1. there exist i, j ∈ N such that i �= j and f i(x0) = f j(x0);
2. there exist λ, μ ∈ N such that 0 < μ and fλ(x0) = fλ+μ(x0);
3. there exist λ, μ ∈ N s.t. 0 < μ and for any i, j ∈ N, f i+λ(x0) = f i+λ+jμ(x0);
4. there exists τ ∈ N such that 0 < τ and fτ (x0) = f2τ (x0).

Proof. For 1 ⇒ 2, if i < j then choose λ = i and μ = j − i (exchange i and
j if otherwise j < i). For 2 ⇒ 3, first show fλ(x0) = fλ+jμ(x0) by induction
on j. Then f i+λ(x0) = f i(fλ(x0)) = f i(fλ+jμ(x0)) = f i+λ+jμ(x0). For 3 ⇒ 4,
choose τ = (1 + λ)μ and derive fτ (x0) = f2τ (x0) using i = (1 + λ)μ − λ and
j = 1 + λ. For 4 ⇒ 1, choose i = τ and j = 2τ . That proof is mechanized as
Proposition cyclicity prop in file utils.v. �	

The functional specification of T&H is to compute a meeting index τ ∈ N such
that 0 < τ and fτ (x0) = f2τ (x0) (corresponding to Item 4 of Proposition 1), pro-
vided such a value exists. Operationally, the algorithm consists in enumerating
the sequence of pairs (f(x0), f2(x0)), (f2(x0), f4(x0)), . . . , (fn(x0), f2n(x0)), . . .
in an efficient way until the two values fn(x0) and f2n(x0) are equal.

2.1 An OCaml Account of the Tortoise and the Hare

The T&H algorithm can be expressed in OCaml as the following two functions:

tort hare rec : (f : α → α) → (x : α) → (y : α) → int
tortoise hare : (f : α → α) → (x0 : α) → int
let rec tort hare rec f x y =

if x = y then 0 else 1 + tort hare rec f (f x) (f (f y))
let tortoise hare f x0 = 1 + tort hare rec f (f x0) (f (f x0))

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/cycle_undec.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/utils.v

Proof Pearl: Constructive Extraction of Cycle Finding Algorithms 373

In general, the tail-recursive version is preferred because tail-recursive functions
can be compiled into loops without the help of a stack. The code of the function
tortoise hare tail contains a sub-function loop where the first argument f
of tortoise hare tail is fixed and second argument x0 is unused.

tortoise hare tail : (f : α → α) → (x0 : α) → int
loop : (n : int) → (x : α) → (y : α) → int

let tortoise hare tail f x0 =
let rec loop n x y = if x = y then n else loop (1 + n) (f x) (f (f y))
in loop 1 (f x0) (f (f x0))

Notice that the pre-condition of cyclicity (any item of Proposition 1) is necessary
otherwise the above OCaml code does not terminate and is thus incorrect. Any
correctness proof must include that cyclicity pre-condition, or a stronger one.

2.2 Goals and Contributions

The goal of this work is double:

Goal 1: functional correctness. Using purely constructive means, build fully
specified Coq terms that compute a meeting point for the tortoise and the
hare, with the sole pre-condition of cyclicity. Reiterate this for Floyd’s and
Brent’s cycle finding algorithms;

Goal 2: operational correctness. Ensure that the extraction of the previ-
ous Coq terms give the corresponding standard OCaml implementations.
In particular, derive the above implementations of tortoise hare and
tortoise hare tail by extraction.

From these two goals, trusting Coq extraction mechanism, we get the functional
correctness of the standard OCaml implementations for free.

For T&H, solving Goal 1 can be viewed as constructing a term of type

th coq : (∃τ, 0 < τ ∧ f τ x0 = f 2τ x0) → {τ | 0 < τ ∧ f τ x0 = f 2τ x0}

from the assumptions of a type X : Type, a procedure =?
X for deciding equality

over X, and a sequence given by f : X → X and x0 : X. Notice the assumption
=?

X : ∀x y : X, {x = y}+{x �= y} of an equality decider for X that is necessary in
Coq. Indeed, unlike OCaml which has a built-in polymorphic equality decider,1

Coq does (and can) not have equality deciders for every possible type.
Solving Goal 2 means that after extraction of OCaml code from th coq, we

get the same function code as tortoise hare (resp. tortoise hare tail).
This paper is a companion for Coq implementations of cycle finding algo-

rithms. The corresponding source code can be found at

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare

1 OCaml equality decider is partially correct, e.g. it throws exceptions on functions.

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare

374 D. Larchey-Wendling

The implementation involves around 3000 lines of Coq code but this does not
reflect the compactness of our implementation of T&H. Indeed, it contains
Floyd’s and Brent’s algorithms as well, and there are several accompanying files
illustrating certified recursion through bar inductive predicates. To witness the
conciseness of our approach, we give a standalone tail-recursive implementation
of T&H of less than 80 lines, not counting comments (see th alone.v). This project
compiles under Coq 8.6 and is available under a Free Software license.

The designs of the cycle finding algorithms that we propose are all based
on bar inductive predicates used as termination certificates for Coq fixpoint
recursion. In Sect. 3, we give a brief introduction to these predicates from a
programmer’s point of view and show why they are suited for solving termination
problems. The corresponding Coq source code can be found in file bar.v.

In Sect. 4, we present two fully specified implementations of T&H, one non-
tail recursive and one tail-recursive. We give a detailed account of the algorithmic
part of the implementation that we isolate from logical obligations. We explain
how bar inductive predicates are used to separate/postpone termination proofs
from algorithmic considerations. The corresponding file is tortoise hare.v.

In Sect. 5, we give an overview of the implementation of the full Floyd cycle
finding algorithm that computes the characteristic index and period of an iter-
ated sequence. The corresponding Coq file is floyd.v. In Sect. 6, we give a brief
account of our implementation of Brent’s period finding algorithm, in fact two
implementations: one suited for binary numbers and one suited for unary num-
bers. The corresponding source code files are brent bin.v and brent una.v.

The T&H has already been the subject of implementations in Coq [9,11],
but under different requirements. In Sect. 7, we compare our development with
those alternative approaches. From a constructive point of view, we analyse the
pre-conditions under which correctness is established in each case.

3 Termination Using Bar Inductive Predicates

In this section, we explain how to use bar inductive predicates [12] — a construc-
tive and axiom-free form of bar induction2 — as termination certificates.

As explained in Sect. 3.2, in the context we use them (decidable terminated
cases), these predicates have the same expressive power as the accessibility predi-
cates used for well-founded recursion in Coq in the modules Wf and Wellfounded
from the standard library (see also left part of Fig. 1). But we think that bar
inductive predicates have several advantages over accessibility predicates:

– compared to the general accessibility predicates of [4], they do not need the
simultaneous induction/recursion schemes of Dybjer [10] (not integrated in
Coq so far) in case of nested/mutual recursion [17];

2 Conventional bar induction often requires Brouwer’s thesis which precisely postu-
lates that bar predicates are inductive.

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/th_alone.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/bar.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/tortoise_hare.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/floyd.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/brent_bin.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/brent_una.v

Proof Pearl: Constructive Extraction of Cycle Finding Algorithms 375

∀y,R y x → Acc y

Acc x

T x

bar x

∀y,R x y → bar y

bar x

Fig. 1. Inductive rules for Acc and bar termination certificates.

– unlike standard accessibility predicates (module Wf) which involve thinking
about termination before implementing the algorithm, or inductively defined
domain predicates (see [3] pp. 427–432) which involve thinking about termi-
nation together with the algorithm, bar inductive predicates focuses on ter-
minated cases and recursive sub-calls so termination proofs can be separated
from the algorithm.

We argue that separating/postponing the proof of termination makes the use of
bar inductive predicates more versatile. At least, we hope that we illustrate our
case here. Of course, a comprehensive comparison with [5] would be necessary to
complete our case. The reader could be interested in recent developments that
show that the method of bar inductive predicates scales well to more complicated
nested/mutual recursive schemes [17].

We do not really introduce new concepts in the section. But we want to
stress the links between the notion of cover-induction [8] and the notion of bar
inductive predicate (e.g. inductive bars [12]). We insist on these notions because
we will specialize the following generic implementation to get an “extraction
friendly” Coq definition of cycle finding algorithms.

3.1 Dependently Typed Recursion for Bar Inductive Predicates

Let us consider a type X, a unary relation T : X → Prop and a binary relation
R : X →X → Prop. Here are some possible intuitive interpretations of T and R:

T x: the computation at point x is terminated (no recursive sub-call);
R x y: a call at point x may trigger a recursive sub-call at point y.

We define the inductive predicate bar : X → Prop which covers points where
computation is warrantied to terminate, by the two rules on the right of Fig. 1:

Variables (X : Type) (T : X → Prop) (R : X → X → Prop).
Inductive bar (x : X) : Prop :=

| in bar 0 : T x → bar x
| in bar 1 : (∀y,R x y → bar y) → bar x.

The first rule in bar 0 states that a terminated computation terminates. The
second rule in bar 1 states that if every recursive sub-call y of x terminates then
so is the call at x. Notice that the predicate bar x : Prop carries no computational
content and thus cannot be used to perform computational choices. Termination
is only warrantied by the bar x predicate, it is not performed by it.

376 D. Larchey-Wendling

Hence we assume a decider term Tdec : ∀x, {T x} + {¬T x} for terminated
points. We then define bar rect, a dependently typed recursion principle for
bar x. For this, we need the following inductions hypotheses:

Hypothesis (Tdec : ∀x, {T x} + {¬T x}).
Variable (P : X → Type).
Hypothesis (HT : ∀x, T x → P x) (Hbar : ∀x, (∀y,R x y → P y) → P x).

where HT gives the value for terminated points and Hbar combines the values
of the recursive sub-calls into a value for the call itself. With these assumptions,
we get the following dependently typed induction principle:

Fixpoint bar rect x (H : bar x) {struct H} : P x :=
match Tdec x with

| left Hx �→ HT Hx

| right Hx �→ Hbar (fun y Hy �→ bar rect y G
?
1)

end.

where G
?
1 is a proof term for a logical obligation:

G
?
1 // . . . , x : X,H : bar x,Hx : ¬T x, y : X,Hy : R x y bar y

Notice that for Coq to accept such a Fixpoint definition as well-typed, one
must ensure that the given proof of goal G?

1 is a sub-term of the term H : bar x
because H is declared as the structurally decreasing argument of this fixpoint.
Hence, the first step in the proof of G?

1 is destruct H.
The above implementation of bar rect expects the proof term of G?

1 to be
given before the actual Fixpoint definition of bar rect. This can be mitigated
with the use of the very handy refine tactic that can delay the proof obliga-
tions after the incomplete proof term is given (see bar.v for details). As a final
remark concerning the term bar rect, there are two ways of stopping a chain
of recursive sub-calls: the first is obviously to reach a terminated point (i.e. T x)
but the chain can also stop when there is zero recursive sub-calls (i.e. R x y holds
for no y). While the first condition of terminated points is decidable, the sec-
ond condition of the nonexistence of recursive sub-calls is usually not decidable.
Hence when using the accessibility predicate Acc (fun u v �→ R v u ∧ ¬T v) x
which mixes both T and R (see Theorem bar Acc eq dec below), detecting the
first termination condition is less natural.

3.2 Accessibility vs. Bar Inductive Predicates

We show that bar inductive predicates generalize accessibility predicates defined
in the Coq standard library module Wf,

Theorem bar empty Acc eq (X : Type) (R : X → X → Prop) (x : X) :
bar (fun �→ False) R x ⇐⇒ Acc R−1 x

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/bar.v

Proof Pearl: Constructive Extraction of Cycle Finding Algorithms 377

which is obvious from the rules of Fig. 1 because when T = fun �→ False is
empty, one cannot use rule in bar 0. Then, we show that when T : X → Prop is
(logically) decidable, then bar T R can be encoded as an accessibility predicate:

Theorem bar Acc eq dec X (T : X → Prop) (R : X → X → Prop) :
(∀x, T x ∨ ¬T x) → ∀x, bar T R x ⇐⇒ Acc (fun u v �→ R v u ∧ ¬T v) x

From our point of view, the advantage of bar over Acc is that they keep the two
forms of termination separate (x is terminated by T vs. x generates no recur-
sive sub-call), making them easier to reason or compute with. Moreover, using
Acc incites at using only well-founded relations (or even decreasing measures)
whereas bar focuses on terminated points/recursive calls and thus can be used
more freely as exemplified in Sects. 4 and 5.

3.3 Constructive Epsilon via Bar Inductive Predicates

As a first illustration of using bar inductive predicates, we show how to imple-
ment Constructive Indefinite Ground Description defined in the standard library
module ConstructiveEpsilon.

Theorem Constructive Epsilon (Q : nat → Prop) :(∀n, {Qn} + {¬Qn}) → (∃n,Q n) → {n : nat | Q n}.

We instantiate bar rect with (T := Q), (R xy := Sx = y) and (P :=
{x | Q x}). We only have to transform the termination certificate ∃n,Qn into
a bar inductive predicate at the purely logical/Prop level. For this, we show
(∃n,Qn) → bar Q R 0: from Qn deduce bar Q R n using in bar 0 and then
bar Q R (n−1),... down to bar Q R 0 by descending induction3 using in bar 1.

Notice that using the previous development, we can already implement the
functional specification of the T&H algorithm:

th min : (∃τ, 0 < τ ∧ f τ x0 = f 2τ x0) → {τ | 0 < τ ∧ f τ x0 = f 2τ x0}
by application of Constructive Epsilon with (Q n := 0 < n ∧ f n x0 = f 2n x0).
Indeed, such Q : nat → Prop is computationally decidable as both < : nat →
nat → Prop and =X : X → X → Prop are computationally decidable.4

let th min f x0 =
let rec μmin n =

if (n = 0) or (f n x0 �= f 2n x0)
then μmin (1 + n)
else n

in μmin 0

However, this approach will not give
us the operational specification of T&H
because this implementation of th min
using Constructive Epsilon extracts
into the inefficient unbounded mini-
mization algorithm on the right-hand
side (see also th min.v). There, μmin
corresponds to unbounded minimiza-
tion. This th min program recomputes f n x0 and f 2n x0 for each value of n
before a cycle is detected, making it really inefficient.
3 Descending induction is implemented by nat rev ind in file utils.v.
4 For =X , this is precisely the assumption of the =?

X equality decider.

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/th_min.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/utils.v

378 D. Larchey-Wendling

4 The Tortoise and the Hare via Bar Inductive Predicates

In this section, we use the methodology of Sect. 3 (i.e. termination via bar induc-
tive predicates) to design a fully specified implementation of the T&H algorithm
that satisfies Goals 1 and 2 of Sect. 2.2. We could use bar rect to implement
this algorithm but we do not use it directly. Indeed, we want to finely control the
computational content of our terms so that we can extract the expected OCaml
code accurately. However, we will mimic the implementation of bar rect several
times. The corresponding file for this section is tortoise hare.v.

The T&H detects potential cycles in the iterated values of an endo-function
f : X→X. As explained in Sect. 2.2, for the remaining of this section, we assume
the following pre-conditions for the hare to recapture the tortoise:

Variables (X : Type) (=?
X : ∀x y : X, {x = y} + {x �= y})

(f : X → X) (x0 : X) (H0 : ∃τ, 0 < τ ∧ f τ x0 = f 2τ x0).

that is a type X with an equality decider =?
X , a sequence f starting at point x0

satisfying a cyclicity assumption H0 (see Proposition 1). These pre-conditions
are not minimal for establishing the correctness of T&H5 but we do think they
are general enough to accommodate most use cases of T&H.

4.1 A Non-tail Recursive Implementation

Let us start with the non-tail recursive implementation of T&H, as is done
in the OCaml code of tortoise hare (see Sect. 2.1). We define a bar induc-
tive predicate which will be used as termination certificate for the main loop
tort hare rec. Compared to the generic inductive definition of bar of Sect. 3,
barth is a binary (instead of unary) bar predicate specialized with (T x y :=
x = y) and (R xy u v := u = f x ∧ v = f (f y)):

Inductive barth (x y : X) : Prop :=
| in bar th 0 : x = y → barth x y
| in bar th 1 : barth (f x) (f (f y)) → barth x y

This definition matches the inductive rules of Fig. 2 (left part). We define a fully
specified Coq term tort hare rec mimicking both the OCaml code of Sect. 2.1
(with the addition of a termination certificate of type barth x y) and the code of
bar rect of Sect. 3:

Fixpoint tort hare rec x y (H : barth x y) : {k | f k x = f 2k y} :=
match x =?

X y with
| left E �→ exist 0 G

?
1

| right C �→ match tort hare rec (f x) (f (f y)) G
?
2 with

| exist k Hk �→ exist (S k) G
?
3

end
end.

5 See th rel.v where an arbitrary decidable relation R : X → X → Prop replaces =X .

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/tortoise_hare.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/th_rel.v

Proof Pearl: Constructive Extraction of Cycle Finding Algorithms 379

x = y

barth x y

barth (f x) (f (f y))

barth x y

x = y

bartl i x y

bartl (S i) (f x) (f (f y))

bartl i x y

Fig. 2. Inductive rules for barth : X → X → Prop and bartl : nat → X → X → Prop.

where G
?
1, G

?
2 and G

?
3 are three proof terms of the following types:

G
?
1 // . . . , E : x = y f 0 x = f 2.0 y

G
?
2 // . . . , C : x �= y,H : barth x y barth (f x) (f (f y))

G
?
3 // . . . ,Hk : f k (f x) = f 2k (f (f y)) f S k x = f 2(S k) y

These can be established before the Fixpoint definition of tort hare rec or else
(preferably), using the Coq refine tactic, after the statement of the computa-
tional part of tort hare rec, as remaining logical obligations (see tortoise hare.v
for exact Coq code). Recall that the termination certificate H must structurally
decrease, i.e. the proof term for G

?
2 must be a sub-term of H.

We can now define tortoise hare by calling tort hare rec but we need to
provide a termination certificate:

Definition tortoise hare : {τ | 0 < τ ∧ f τ x0 = f 2τ x0} :=
match tort hare rec (f x0) (f (f x0)) G

?
1 with

| exist k Hk �→ exist (S k) G
?
2

end.

There are two remaining logical obligations, G?
1 being the termination certificate:

G
?
1 // . . . ,H0 : ∃τ, 0 < τ ∧ f τ x0 = f 2τ x0 bar th (f x0) (f (f x0))

G
?
2 // . . . ,Hk : f k (f x0) = f 2k (f (f x0)) 0 < S k ∧ f S k x0 = f 2(S k) x0

We prove G
?
1 as follows: from H0, we (non-computationally) deduce m such

that 0 < m and f m x0 = f 2m x0. Using in bar th 0 we immediately get
barth (f m x0) (f 2m x0). Then using in bar th 1 repeatedly from m, m − 1, ...
down to 1 we get barth (f 1 x0) (f 2 x0). G?

2 is obtained by trivial computations
over nat using the f equal/omega tactics.

The Coq command Recursive Extraction tortoise hare produces the
corresponding OCaml code of Sect. 2.1 except that the OCaml type int is
replaced with nat and the OCaml built-in equality decider is replaced with
(a to be provided implementation of) =?

X .

4.2 A Tail-Recursive Implementation

Now we proceed with the tail-recursive implementation of T&H. We define a
ternary bar inductive predicate corresponding to the recursive call of the loop
in the OCaml code of tort hare tail in Sect. 2.1:

Inductive bartl (i : nat) (x y : X) : Prop :=
| in bar tl 0 : x = y → bartl i x y
| in bar tl 1 : bartl (S i) (f x) (f (f y)) → bartl i x y

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/tortoise_hare.v

380 D. Larchey-Wendling

the corresponding inductive rules being described in Fig. 2 (right part). Then
we can define the internal loop of tort hare tail by a (local) fixpoint over the
fourth argument of type bartl i x y:

Fixpoint loop i x y (H : bartl i x y) : {k | i � k ∧ f k−i x = f 2(k−i) y} :=
match x =?

X y with
| left E �→ exist i G?

1

| right C �→ match loop (S i) (f x) (f (f y)) G
?
2 with

| exist k Hk �→ exist k G
?
3

end
end.

where G
?
1,G

?
2 and G

?
3 are three proof terms of the following types:

G
?
1 // . . . , E : x = y � i � i ∧ f i−i x = f 2(i−i) y

G
?
2 // . . . , C : x �= y, H : bartl i x y � bartl (S i) (f x) (f (f y))

G
?
3 // . . . , Hk : S i � k ∧ f (k−S i) (f x) = f 2(k−S i) (f 2 y) � i � k ∧ f k−i x = f 2(k−i) y

and G
?
2 is the termination certificate and must be a sub-term of H. Then we

proceed with the implementation of tortoise hare tail which calls loop:

Definition tortoise hare tail : {τ | 0 < τ ∧ f τ x0 = f 2τ x0} :=
match loop 1 (f x0) (f (f x0)) G

?
1 with

| exist k Hk �→ exist k G
?
2

end.

We must provide a termination certificate G?
1 and establish the specification G

?
2:

G
?
1 // . . . , H0 : ∃τ, 0 < τ ∧ f τ x0 = f 2τ x0 � bartl 1 (f x0) (f (f x0))

G
?
2 // . . . , Hk : 1 � k ∧ f k−1 (f x0) = f 2(k−1) (f (f x0)) � 0 < k ∧ f k x0 = f 2k x0

G
?
1 is proved by descending induction much like what is done in the non-tail

recursive case and G
?
2 is quite trivial to obtain using the f equal/omega tactics.

The extracted OCaml code corresponds to the tortoise hare tail imple-
mentation of Sect. 2.1. The file th alone.v contains a standalone implementation
of tortoise hare tail in less than 80 lines, not counting comments.

5 Floyd’s Cycle Finding Algorithm in Coq

In this section, we give an overview of Floyd’s index and period finding algorithm
as implemented in the file floyd.v. It has the same pre-conditions as the T&H
algorithms of Sect. 4:

Variables (X : Type) (=?
X : ∀x y : X, {x = y} + {x �= y})

(f : X → X) (x0 : X) (H0 : ∃τ, 0 < τ ∧ f τ x0 = f 2τ x0).

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/th_alone.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/floyd.v

Proof Pearl: Constructive Extraction of Cycle Finding Algorithms 381

It does not only finds a meeting point for the tortoise and the hare but computes
the characteristic pair of values (λ, μ) of the cycle which satisfy the predicate
cycle spec with the following body:

Definition cycle spec (λ μ : nat) : Prop :=
0 < μ ∧ f λ x0 = f λ+μ x0 ∧ ∀i j, i < j → f i x0 = f j x0 → λ � i ∧ μ div (j − i).

where div represents the divisibility order over nat (i.e. d div n means ∃q, n =
qd). The index λ is such that fλ(x0) is the entry point of the cycle and μ > 0 is
the period (or length) of the cycle. The third conjunct (∀i j, i < j → . . .) states
that any (non-empty) cycle i � j occurs after λ and has a length divisible by μ.

Hence under the above pre-conditions, Floyd’s algorithm has the functional
specification floyd find cycle :

{
λ : nat & {μ : nat | cycle spec λ μ}}.

The operational specification is simply that the Coq term extracts to a standard
OCaml implementation derived from [1]. floyd find cycle is implemented as
the combination of three sub-terms, floyd meeting pt which first computes a
meeting point for the tortoise and the hare, then floyd index that computes
the index and finally floyd period that computes the period. We describe these
three sub-terms in specific sub-sections, each sub-section potentially having its
own set of additional pre-conditions, mimicking Coq sectioning mechanism. For
each of these terms, we use a tailored bar inductive predicate to ensure termi-
nation under the corresponding pre-conditions.

5.1 Computing a Meeting Point

The term floyd meeting pt needs no further pre-conditions. We use the induc-
tive barth : X →X →Prop of Fig. 2 as termination certificate, the same that we
used for the non-tail recursive tortoise hare implementation. However, we do
get a tail-recursive term here because we only compute a meeting point, not its
index in the sequence as in the bartl/tortoise hare tail case.

Let bar th meet : ∀x y, barth x y → {c : X | ∃k, c = f k x ∧ c = f 2k y}.
Definition floyd meeting pt : {c | ∃τ, 0 < τ ∧ c = f τ x0 ∧ c = f 2τ x0}.

We define bar th meet as a local fixpoint using the same technique as in the
barth/tortoise hare case. Then, we show H ′

0 : barth (f x0) (f (f x0)) as a
consequence of H0 and we derive floyd meeting pt from the following instance
bar th meet (f x0) (f (f x0)) H ′

0.

5.2 Computing the Index

The term floyd index uses the post-condition of floyd meeting pt as a further
pre-condition, i.e. a meeting point c for the tortoise and the hare. We use the
predicate barin : nat → X → X → Prop of Fig. 3 as termination certificate.

Variables (c : X) (Hc : ∃τ, 0 < τ ∧ c = f τ x0 ∧ c = f 2τ x0).
Let bar in inv (i : nat) (x y : X) :

barin i x y → least le (fun n �→ i � n ∧ f n−i x = f n−i y).
Definition floyd index : least le (fun l �→ ∃k, 0 < k ∧ f l x0 = f k+l x0).

382 D. Larchey-Wendling

x = y

barin i x y

barin (S i) (f x) (f y)

barin i x y

c = y

barpe i y

barpe (S i) (f y)

barpe i y

Fig. 3. Inductive rules for barin : nat → X → X → Prop and barpe : nat → X → Prop.

We define bar in inv as a local fixpoint where least le P is the least6 n : nat
which satisfies P n. We show H ′

c : barin 0 x0 c as a consequence of Hc and we
derive floyd index from the following instance bar in inv 0 x0 c H ′

c.

5.3 Computing the Period

The further pre-condition of floyd period is a point c which belongs to a (non-
empty) cycle, a direct consequence of the post-condition of floyd meeting pt.
Termination is certified by the predicate barpe : nat → X → Prop of Fig. 3.

Variables (c : X) (Hc : ∃k, 0 < k ∧ c = f k c).
Let bar pe inv i x : barpe i x → least le (fun n �→ i � n ∧ x = f n−i y).
Definition floyd period : least div (fun n �→ 0 < n ∧ c = f n c).

We define bar pe inv as a local fixpoint. We prove H ′
c : barpe 1 (f c) using Hc

and we get floyd period from the following instance bar pe inv 1 (f c) H ′
c.

Here, least div P is the least n s.t. P n for the divisibility order div.

5.4 Gluing all Together

We finish with the term floyd find cycle:

Definition floyd find cycle :
{
λ : nat & {μ : nat | cycle spec λ μ}}.

It needs no further pre-conditions than those given at the beginning Sect. 5. It is
composed of the successive applications of floyd meeting pt, floyd index and
floyd period where the post-condition of floyd meeting pt serves as input
for the extra pre-conditions of floyd index and floyd period. We conclude
with a short proof that the computed index and period satisfy cycle spec.
The extracted OCaml program corresponds to the following code with the same
remarks regarding =?

X and nat/int as with tortoise hare from Sect. 4.1.

let floyd meeting pt f x0 =
let rec loop x y = if x = y then x else loop (f x) (f2 y) in loop (f x0) (f2 x0)

let floyd index f x0 c =
let rec loop i x y = if x = y then i else loop (1 + i) (f x) (f y) in loop 0 x0 c

let floyd period f c =
let rec loop i y = if c = y then i else loop (1 + i) (f y) in loop 1 (f c)

let floyd find cycle f x0 =
let c = floyd meeting pt f x0 in (floyd index f x0 c, floyd period f c)

6 Least for the natural order � over nat.

Proof Pearl: Constructive Extraction of Cycle Finding Algorithms 383

6 Brent’s Period Finding Algorithm

In the file brent bin.v, we propose a correctness proof of Brent’s algorithm in
the same spirit as what was done for Floyd’s cycle finding algorithm of Sect. 5.
Brent’s algorithm [6] only computes the period μ of the cycle. The index λ can
be computed afterwards by using two tortoises separated by μ steps. Brent’s
algorithm is more efficient than T&H: it can be proved that a run of Brent’s
algorithm on (f, x0) always generates less calls to f than a run of the T&H (or
Floyd’s cycle finding) algorithm on the same input (see [14], Sect. 7.1.2).

In this section, we just describe the functional specification and the operational
specification (i.e. the extracted OCaml code) of Brent’s algorithm of which we pro-
pose two implementations. The first one in file brent bin.v is suited for a binary
representation of natural numbers, but it is not efficient with unary natural num-
bers. The other implementation in file brent una.v is also efficient on unary natural
numbers such as those of type nat.

Given a type X : Type, an equality decider =?
X : ∀x y : X, {x = y} +

{x �= y}, input values f : X → X and x0 : X, and a cycle existence certificate
(see Proposition 1), Brent’s algorithm computes a μ satisfying the specification
period spec : ∀μ : nat, Prop with the following body

0 < μ ∧ (∃λ, f λ x0 = f λ+μ x0) ∧ ∀i j, i < j → f i x0 = f j x0 → μ div (j − i)

that is, it computes the period of the cycle. The term brent bin extracts to
something close to the following OCaml code:

let brent bin f x0 =
let rec loop p l x y =

if x = y then l
else if p = l then loop 2p 1 y (f y)
else loop p (1 + l) x (f y)

in loop 1 1 x0 (f x0)

where int is replaced with nat, (x = y) with (x =?
X y) and (p = l) with

(eq nat dec x y). However this code is not optimal with a unary representation
of numbers such as nat: in particular 2p and p = l are slow (linear) to compute.

To get a more efficient implementation, one should either use a binary rep-
resentation of numbers or switch to brent una which has the same specification
as the binary version but extracts to the following OCaml code:

let brent una f x0 =
let rec loop l p m x y =

if x = y then l
else if m = 0 then loop 1 (1 + p) p y (f y)
else loop (1 + l) (1 + p) (m − 1) x (f y)

in loop 1 1 0 x0 (f x0)

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/brent_bin.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/brent_bin.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/brent_una.v

384 D. Larchey-Wendling

This code is much better suited for unary numbers. In particular, m = 0 and
m − 1 are computed via pattern-matching on m in constant time.

7 Correctness by Extraction and Related Works

Correctness is a property of programs with respect to a given specification. As
trivial as this remark may seem, it is important to keep it in mind because the
purpose of extraction is to erase the logical content of Coq programs and to
keep only their computational content: specifications are erased by extraction.
One cannot claim that a program extract(t) is correct just because it has been
extracted from a Coq term t : T . The correctness property is only ensured with
respect to the particular specification T that (by the way) had just been erased.

7.1 Correctness of the Tortoise and the Hare

We illustrate this critical aspect of extraction on the non-tail recursive OCaml
implementation of T&H. The type of tortoise hare is

Definition tortoise hare {X} (=?
X : ∀x y : X, {x = y} + {x �= y}) f x0 :

(H0 : ∃τ, 0 < τ ∧ f τ x0 = f 2τ x0) → {τ : nat | 0 < τ ∧ f τ x0 = f 2τ x0}.

as reported from Sect. 4. The pre-conditions of this specification are all the
logical properties of the input parameters, i.e. the fact that =?

X is an equality
decider for X and the cyclicity property H0. The post-condition is the fact
that τ is a meeting index for the fabulous animals. By extraction, the OCaml
code tortoise hare of Sect. 2.1 is correct w.r.t. to this specification. In the
extracted program however, the pre-conditions on =?

X and of cyclicity, and the
post-conditions 0 < τ and f τ x0 = f 2τ x0 have disappeared.

Now consider this “alternative” (and cheating) implementation of T&H:

Variables (X : Type) (=?
X : . . .) (f : X → X) (x0 : X) (H0 : False).

Fixpoint th false rec x y (H : False) : nat :=
match x =?

X y with
| left E �→ 0
| right C �→ S

(
th false rec (f x) (f (f y)) match H with end

)

end.
Definition th false := S

(
th false rec (f x0) (f (f x0)) H0

)
.

The pre-conditions for th false are the same as those of tortoise hare except
that cyclicity has been replaced with absurdity (H0 : False). The post-condition
has been erased. Yet, up to renaming, extraction of OCaml code from th false
and from tortoise hare yields the very same program. So the OCaml program
tortoise hare/th false is correct w.r.t. two very different specifications: one
is useful (cyclicity) and one is useless (absurdity).

The file infinite loop.ml contains th false and gives other illustrations of
abuses of extraction in absurd contexts. As a conclusion, before using or running

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/infinite_loop.ml

Proof Pearl: Constructive Extraction of Cycle Finding Algorithms 385

an extracted algorithm, one should first check for assumptions in the specifica-
tion using the Coq command Print Assumptions which lists all the potentially
hidden pre-conditions such as axioms or parameters which are usually not dis-
played in the types of terms in Coq to avoid bloating them.

7.2 Comparison with Related Works

Given the stunning simplicity of T&H, our implementation is hardly the first
attempt at certifying this algorithm. As for Coq, may be there are others,
but we are aware of two previous developments. One (unpublished) proof by
J.C. Filliâtre [11] and another, more recent, by J.F. Dufourd [9].

Illustrating how Hilbert’s ε-operator could be used to manage partial func-
tions within Coq was the main goal of his implementation [11] (private com-
munication with J.C. Filliâtre); and the correctness of T&H was not really a
goal of that project. The use of epsilon/epsilon spec to axiomatize Hilbert’s
ε-operator is, from a constructive point of view, our main criticism against that
implementation. Hence, while it is true that the term find cycle of fillia orig.v
extracts to some OCaml code very similar to tortoise hare tail of Sect. 2.1,
the corresponding specification has stronger pre-conditions than our own. Fol-
lowing the observations on correctness of Sect. 7.1, even if erased by extraction,
Hilbert’s ε-operator is still a pre-condition and a particularly strong form of the
axiom of choice. Anything that exists can be reified with this operator. While
not necessarily contradictory in itself, that kind of axiom is incompatible with
several extensions of Coq [7]. We do not think it can be accepted from a construc-
tive point of view because admitting the ε-operator allows to write non-recursive
functions in Coq. We suggest the interested reader to consult the file collatz.v
to see how the ε-operator “solves” the Halting problem or the Collatz prob-
lem [16]. It is our claim that although find cycle implements some correctness
property of T&H, the pre-conditions under which this correctness is achieved
cannot be constructively or computationally satisfied. In the file fillia modif.v,
we propose a modified version of [11] where the ε-operator is replaced with
Constructive Epsilon from Sect. 3.3. This requires in-depth changes, in par-
ticular, on the induction principle used to ensure termination. We additionally
mention a more recent Isabelle/HOL proof of P. Gammie [13] which seems to
reuse the technique of J.C. Filliâtre.

The work of J.F. Dufourd [9] is based on different assumptions and the cor-
rectness proof of T&H that he obtains derives from a quite large library on
functional orbits over finite domains of around 20 000 lines of code. The pre-
conditions do not assume cyclicity. Instead there is a stronger assumption of
finiteness of the domain, from which cyclicity can be derived using the pigeon
hole principle (PHP). Admittedly, this finiteness assumption is not unreasonable,
even constructively: most use cases of cycle finding algorithms occur over finite
domains. However, it is our understanding that Pollard’s rho algorithm [18]
is run on a finite domain of unkown (i.e. non-informative) cardinality. As far
as we can understand J.F. Dufourd’s code, his inductive proofs are cardinality

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/fillia_orig.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/collatz.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/fillia_modif.v

386 D. Larchey-Wendling

based. Hence an informative bound on the cardinal of the domain is likely a pre-
condition for correctness. Thus, we think that his correctness proof might not
be applicable to Pollard’s rho algorithm (non-informative finiteness, see below).

On the other hand, modifying our specification of tortoise hare tail to
replace cyclicity by finiteness involves the PHP (see php.v). In that case, finite-
ness could be expressed as the predicate (∃l : listX,∀x : X, In x l) which
postulates the non-informative existence of a list covering all the type X. Hence
we would obtain a specification compatible with the context of Pollard’s rho
algorithm. This short development can be found in th finite.v.

References

1. Cycle detection – Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/
wiki/Cycle detection

2. Aumasson, J.-P., Meier, W., Phan, R.C.-W., Henzen, L.: The Hash Function
BLAKE. ISC. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44757-4

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

4. Bove, A., Capretta, V.: Modelling general recursion in type theory. Math.
Structures Comput. Sci. 15(4), 671–708 (2005). https://doi.org/10.1017/
S0960129505004822

5. Bove, A., Krauss, A., Sozeau, M.: Partiality and recursion in interactive theorem
provers – an overview. Math. Structures Comput. Sci. 26(1), 38–88 (2016). https://
doi.org/10.1017/S0960129514000115

6. Brent, R.P.: An improved Monte Carlo factorization algorithm. BIT Numer. Math.
20(2), 176–184 (1980). https://doi.org/10.1007/BF01933190

7. Castéran, P.: Utilisation en Coq de l’opérateur de description (2007). http://jfla.
inria.fr/2007/actes/PDF/03 casteran.pdf

8. Coen, C.S., Valentini, S.: General Recursion and Formal Topology. In: PAR-2010,
Partiality and Recursion in Interactive Theorem Provers. EPiC Series in Comput-
ing, vol. 5, pp. 72–83. EasyChair (2012). https://doi.org/10.29007/hl75

9. Dufourd, J.F.: Formal study of functional orbits in finite domains. Theoret. Com-
put. Sci. 564, 63–88 (2015). https://doi.org/10.1016/j.tcs.2014.10.041

10. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions
in type theory. J. Symb. Log. 65(2), 525–549 (2000). https://doi.org/10.2307/
2586554

11. Filliâtre, J.C.: Tortoise and the hare algorithm (2007). https://github.com/coq-
contribs/tortoise-hare-algorithm

12. Fridlender, D.: An interpretation of the fan theorem in type theory. In: Altenkirch,
T., Reus, B., Naraschewski, W. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 93–105.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48167-2 7

13. Gammie, P.: The Tortoise and Hare Algorithm (2015). https://www.isa-afp.org/
entries/TortoiseHare.html

14. Joux, A.: Algorithmic Cryptanalysis. Cryptography and Network Security. Chap-
man & Hall/CRC (2009)

https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/php.v
https://github.com/DmxLarchey/The-Tortoise-and-the-Hare/blob/master/th_finite.v
https://en.wikipedia.org/wiki/Cycle_detection
https://en.wikipedia.org/wiki/Cycle_detection
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1017/S0960129505004822
https://doi.org/10.1017/S0960129505004822
https://doi.org/10.1017/S0960129514000115
https://doi.org/10.1017/S0960129514000115
https://doi.org/10.1007/BF01933190
http://jfla.inria.fr/2007/actes/PDF/03_casteran.pdf
http://jfla.inria.fr/2007/actes/PDF/03_casteran.pdf
https://doi.org/10.29007/hl75
https://doi.org/10.1016/j.tcs.2014.10.041
https://doi.org/10.2307/2586554
https://doi.org/10.2307/2586554
https://github.com/coq-contribs/tortoise-hare-algorithm
https://github.com/coq-contribs/tortoise-hare-algorithm
https://doi.org/10.1007/3-540-48167-2_7
https://www.isa-afp.org/entries/TortoiseHare.html
https://www.isa-afp.org/entries/TortoiseHare.html

Proof Pearl: Constructive Extraction of Cycle Finding Algorithms 387

15. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc., Boston (1997)

16. Lagarias, J.: The Ultimate Challenge: The 3x+1 Problem. American Mathematical
Society (2010). http://bookstore.ams.org/mbk-78

17. Larchey-Wendling, D., Monin, J.F.: Simulating Induction-Recursion for Partial
Algorithms. In: TYPES 2018, Braga, Portugal (2018). https://members.loria.fr/
DLarchey/files/papers/TYPES 2018 paper 19.pdf

18. Pollard, J.M.: A monte carlo method for factorization. BIT Numer. Math. 15(3),
331–334 (1975). https://doi.org/10.1007/BF01933667

http://bookstore.ams.org/mbk-78
https://members.loria.fr/DLarchey/files/papers/TYPES_2018_paper_19.pdf
https://members.loria.fr/DLarchey/files/papers/TYPES_2018_paper_19.pdf
https://doi.org/10.1007/BF01933667

Fast Machine Words in Isabelle/HOL

Andreas Lochbihler(B)

Institute of Information Security, Department of Computer Science, ETH Zurich,
Zurich, Switzerland

andreas.lochbihler@inf.ethz.ch

Abstract. Code generated from a verified formalisation typically runs
faster when it uses machine words instead of a syntactic representation
of integers. This paper presents a library for Isabelle/HOL that links
the existing formalisation of words to the machine words that the four
target languages of Isabelle/HOL’s code generator provide. Our design
ensures that (i) Isabelle/HOL machine words can be mapped soundly
and efficiently to all target languages despite the differences in the APIs;
(ii) they can be used uniformly with the three evaluation engines in
Isabelle/HOL, namely code generation, normalisation by evaluation, and
term rewriting; and (iii) they blend in with the existing formalisations of
machine words. Several large-scale formalisation projects use our library
to speed up their generated code. To validate the unverified link between
machine words in the logic and those in the target languages, we extended
Isabelle/HOL with a general-purpose testing facility that compiles test
cases expressed within Isabelle/HOL to the four target languages and
runs them with the most common implementations of each language.
When we applied this to our library of machine words, we discovered
miscomputations in the 64-bit word library of one of the target-language
implementations.

1 Introduction

Nowadays, algorithms are routinely verified formally using proof assistants and
many proof assistants support the generation of executable code from the formal
specification. The generated code is used for animating the formal specification
[10,38,41,45], validating the formal models [16,18,39], proving properties by
evaluation [1,21,23,48], and to obtain actual tools with formal guarantees such
as CompCERT [37], CakeML [30], CeTA [49], CAVA [15], Cocon [28], DRAT-
trim [25], and GRAT [34].

Usability of the generated code requires that it be efficient. This is mainly
achieved by using (i) optimised data structures, which have been verified in the
proof assistant, and (ii) hardware support for computing with data, in particular
integers and arrays. To that end, the code generators of many proof assistants
can be configured to map types and their operations to those provided by the
target language rather than to implement them according to their construction
in the logic. For example, integers can use optimised libraries like GMP instead
c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 388–410, 2018.
https://doi.org/10.1007/978-3-319-94821-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_23&domain=pdf

Fast Machine Words in Isabelle/HOL 389

of being implemented as lists of binary digits and arrays are translated to read-
only arrays with constant-time access instead of lists with linear-time access. In
today’s practice, such mappings are often unverified (an exception is CakeML’s
verified bignum library [30]) and are therefore part of the trusted code base
(TCB). As we discuss below, verified code generation could shrink the TCB, but
it has not yet reached maturity.

Apart from efficiency, such mappings bridge the gap between formal logic
and the real world. The mapped data types are used to exchange data with non-
verified code, e.g., drivers, application interfaces, test harnesses, and foreign func-
tion interfaces (FFI) in general [42,44]. The proof assistant Isabelle/HOL in ver-
sion Isabelle2017, e.g., provides the necessary mappings for arbitrary-precision
integers, booleans, lists, and strings.1

In this paper, we extend this list for Isabelle/HOL with machine words of 8,
16, 32, and 64 bits (Sect. 3), and with machine words of unspecified size (Sect. 4).
By reusing Isabelle/HOL’s formalisation of fixed-size words [11,12], our library
inherits the infrastructure for reasoning about machine words and integrates
smoothly with existing formalisations. The key challenge was to simultaneously
support all target languages of Isabelle/HOL’s code generator (Standard ML,
OCaml, Haskell, and Scala) with their varying APIs and all evaluation mecha-
nisms (code generation, normalisation by evaluation, and term rewriting). Sup-
porting all target languages and all evaluators is crucial to obtain a usable and
versatile library that works together with many other Isabelle/HOL libraries.

We have validated our unverified mappings by running many test cases. To
that end, we have developed a general-purpose framework for Isabelle/HOL to
run and test the generated code (Sect. 5.1). After we had fixed the initial mistakes
in our mappings, our test cases even found a bug in the implementation of 64-bit
words in PolyML 5.6.1 in 64-bit mode, which is the Standard ML implementation
that runs Isabelle2017 (Sect. 5.2).

Our library is available on the Archive of Formal Proofs [40], which includes
a user guide as documentation. Several projects and tools use it already.
Users report significant performance improvements over using arbitrary-precision
integers (Sect. 6). The testing framework is distributed with Isabelle2017 (file
HOL-Library.Code Test).

Contributions. The main contributions of this paper are the following:

1. We describe the design of an Isabelle/HOL library for fixed-size words that
are mapped to machine words in different target languages. By using our
library, users can generate faster code from their formalisations.

2. We analyse the pitfalls and subtleties of code adaptations and show how to
ensure that code adaptations work for all target languages and all evaluators.
Our library demonstrates the feasibility of our approach. This analysis is of

1 Immutable arrays are supported for Standard ML and Haskell, but not the other
target languages of Isabelle/HOL’s code generator. In the version for Isabelle2017,
the Collections framework by Lammich [33] provides mutable arrays for Standard
ML, Haskell, and Scala, but not OCaml.

390 A. Lochbihler

interest even to other proof assistants that provide code extraction: libraries
similar to ours suffer from such subtle soundness bugs although they target
just one language, not four (Sect. 7).

3. To justify the soundness of our mapping, we generalise the correctness notion
for code generation such that logical underspecification can be refined dur-
ing code generation. We argue that the new notion is meaningful and identify
conditions under which it coincides with the existing correctness notion. Such
refinements can also be used in other contexts where abstract types are imple-
mented by concrete data structures.

4. We develop a general-purpose framework for running and testing the gener-
ated code, which can be used independently of our machine word library. For
example, it can compute with infinite codatatype values using Haskell’s built-
in laziness. The existing ML-based evaluation mechanism does not terminate
for such computations.

Design choices. Our goal is to develop a practical and efficient library suitable for
large-scale projects, not a fragile research prototype. Thus, it must work with the
technology that is already mature. In our case, this is Isabelle’s existing code
generator with the four target languages and its unverified mappings, which
inflate the trusted code base. Although we cannot obtain formal guarantees
on the generated code itself, it is generated from a verified formalisation in a
systematic way supported by a sound theory. So our library merely adds the
correctness of the (validated) mappings to the TCB, which already includes the
compiler and library of the target language anyway.

The alternative would be to target the ongoing work on verified code genera-
tion such as CertiCoq [2], Œuf [43], and CakeML [30] with its Isabelle link [27].
Our mappings could then be verified down to assembly language or machine code
and would thus not enlarge the TCB. Given the present state of these projects,
such a library would be less versatile than ours. For example, the Isabelle link
to CakeML lacks abstract datatypes, which many Isabelle/HOL projects use for
code generation. Moreover, even CakeML, the most mature of the three, pro-
duces machine code that is often slower than the output of unverified compilers,
although the run times’ orders of magnitude are about equal [47].

More importantly, our approach will still be relevant when such mappings
will be verified in the future, as the key challenge of fitting different APIs under
one hood will persist. The reason is that there will be several verified compilation
chains, e.g., CertiCoq and Œuf for Coq, and a versatile library should support
code generation with all of them. Clearly, careful API design can avoid some of
the differences, e.g., signed vs. unsigned words. But others like the varying word
sizes will remain as they reflect crucial design choices in the compilation chain.
In Standard ML, e.g., the word size varies by compiler precisely because each
compiler organises the heap in its own way, stealing some bits of every word
for memory management. A performant library must deal with such compiler-
specific issues, as library users should not have to care about these details.

Fast Machine Words in Isabelle/HOL 391

2 Background on Isabelle/HOL

This section introduces aspects of the proof assistant Isabelle/HOL that are
relevant for this paper. Isabelle/HOL implements an extension of classical higher-
order logic (HOL) [46] with Haskell-style type classes for overloading [22]. Its
standard library formalises machine words [11,12] as a HOL type α word where
the type parameter α determines the number of bits via a type-class operation
len-ofα :: nat. More precisely, α word is defined as a copy of the integers from 0 to
2len-ofα − 1. For example, 32 word and 64 word denote the type of 32-bit and 64-
bit words, respectively, using an encoding of numbers as types. So, the arithmetic
and bit-wise operations on words are derived from those on the integers, i.e., the
results are truncated by taking the remainder w.r.t. 2len-ofα . Technically, these
operations are overloaded for integers and words using type classes.

The Lifting and Transfer tools [26] can lift definitions and transfer theorems
across quotients. We use them for the special case of subtypes (typedefs in HOL),
e.g., from integers to words. In this case, a lifted definition is executable if the
original term is.

The code generator [20,21] generates code from a fragment of HOL to func-
tional programming languages, mapping HOL types and functions to datatypes
and functions in the target language. Four languages are supported: Standard
ML, OCaml, Haskell, and Scala. The code generator ensures partial correctness
of the generated code. That is, if the code terminates successfully, then the result
satisfies the properties that have been proven about the HOL functions. This
guarantee relies on the code generator’s assumption that the generated func-
tional program behaves according to a higher-order rewrite system (HORS). In
this view, datatype constructors are uninterpreted function symbols and the
equations of a function yield a set of rewrite equations. Executing the generated
program in the target language corresponds to performing rewrite steps with the
corresponding equations on the term representation. Since the equations have
counterparts in HOL, all these steps could also have been taken in the logic, so
the result is derivable in HOL. Conversely, nothing can be said if the execution
raises an exception or does not terminate.2

Moreover, this approach decouples the logical definitions from the extracted
code, as the HORS does not attach logical meaning to the function symbols
themselves. Any HOL function of the right type can thus serve as a datatype
constructor and any HOL equation can be used to implement a function if the
constraints of the target language are met. They are therefore called code con-
structors and code equations. For example, one can change the implementation
of nat to a binary representation without changing the definition in the logic or
the proofs. This corresponds to data refinement [20].

Isabelle/HOL’s code generator also provides a minimalistic foreign function
interface (FFI) via code-printing declarations [19, Sect. 7]. These declarations
instruct the code generator to output a specified string instead of what it would

2 Non-termination does not affect logical soundness as the function definitions’ con-
sistency in HOL must have been established independently of the code generator.

392 A. Lochbihler

normally generate for a HOL type or HOL function in the specified target lan-
guage. As they act on the concrete syntax, such declarations are called code
adaptations. They are used to map integers,3 booleans, lists, unit, and strings
to their counterparts in the target language. Code adaptations lack a formal
semantics and are therefore part of the TCB.

The code equations can also be used to evaluate HOL terms and to prove
theorems by execution. Isabelle/HOL has three different mechanisms to do so: (i)
generating and running Standard ML code for ground terms and propositions;
(ii) symbolic normalisation by evaluation (NBE) [1]; and (iii) term rewriting
within Isabelle. The first mechanism uses the full power of the code generator,
mapping HOL types to Standard ML data types and functions to SML functions
using the code equations and the code adaptations. NBE represents HOL values
as a term data type in Standard ML and HOL functions as Standard ML func-
tions that manipulate terms according to code equations; no code adaptations
are used. Term rewriting uses only the code equations in a call-by-value strategy.
Note that the same set of code equations is used for all target languages and for
all mechanisms.

Only term rewriting is checked by Isabelle’s kernel and can thus be trusted.
When the other two evaluation mechanisms are used, code generation and pos-
sibly the code adaptations become part of the TCB. In return, they are much
faster than term rewriting. When proving theorems, Isabelle tags all theorems
whose derivation involved some step outside of the kernel, such as NBE or code
generation. So everyone can easily check whether Isabelle’s kernel has completely
checked all steps of a theorem’s derivation.

With the existing Isabelle/HOL setup for α word, the generated code repre-
sents words as arbitrary-precision integers and all operations take the remainder
modulo 2len-ofα . This sets the efficiency baseline for evaluating our library.

3 Fixed-Size Machine Words

We now introduce HOL types for words of 8, 16, 32, and 64 bits (Sect. 3.1),
present the code adaptations for all target languages (Sects. 3.2 and 3.3), and
argue why they are sound (Sect. 3.4).

3.1 Types of Unsigned Words

Recall that the type α word of Isabelle/HOL words is polymorphic in the num-
ber of bits. Yet, code adaptations can only be given for type constructors such
as word, not compound types like 32 word. As target languages provide only
monomorphic word types, we must map 32 word to a different target language
type than say 64 word. We therefore first introduce new HOL type constructors
3 Isabelle/HOL provides two types of integers: int and integer. The latter is always

mapped to target-language integers and the former can be implemented using the
latter. Here, we ignore this distinction and always assume that integers are imple-
mented by target-language integers.

Fast Machine Words in Isabelle/HOL 393

for (unsigned) machine words of 8, 16, 32, and 64 bits. In detail, we define types
uint8, uint16, uint32, and uint64 as type copies of the existing unsigned word
formalisation. As the construction is identical for all bit lengths, we only show
the one for uint32 and use uint∗ to refer to all four types.

All arithmetic and bit-wise operations are lifted from 32 word to uint32 using
the Lifting tool [26]. Cast operations between all uint∗ types are also available.
Here, we give just two examples: the overloaded addition operation (+) and the
conversion function word-of-int from integers.

lift-definition (+) :: uint32 ⇒ uint32 ⇒ uint32
is (+) :: 32 word ⇒ 32 word ⇒ 32 word .

lift-definition uint32-of-int :: int ⇒ uint32 is word-of-int .

In principle, we could easily transfer all the existing theorems about these
operations, too. But our library does not do so as we consider uint∗ primarily as
types for code generation, not for proving theorems. Instead, whenever we must
prove a theorem about uint∗, we first transfer the statement to α word (for the
appropriate choice of α) using Transfer and then use the existing, well-engineered
proof automation. This approach avoids duplicating theorems and tactics and
thus saves the subsequent maintenance efforts.

3.2 Setting up Code Generation

With the uint∗ types and their operations in place, we can now design the code
constructors, code equations, and code adaptations. Our design should achieve
three goals:

1. It should work simultaneously for all four target languages, all three evalu-
ation mechanisms, and all strategies of Quickcheck [5]. Recall that the code
constructors and equations are shared by all target languages and evaluation
mechanisms. So we must find constructors and equations that are suitable for
all of them.

2. The code adaptations for the uint∗ operations should yield very efficient code.
3. The adaptations should be as small as possible to reduce the chance of errors.

In case of conflicting goals, we will value the efficiency of the target language
mapping higher than the efficiency of the other evaluators (normalisation and
term rewriting). The evaluators are typically used only for small HOL programs,
where efficiency is not as crucial as in generated applications.

To support evaluation by normalisation and term rewriting, we design our code
equations such that they implement uint∗ in terms ofα word, which in turn is imple-
mented using arbitrary-precision integers. In detail, we declare uint∗ as abstract
datatypes to the code generator [20], such that code equations cannot pattern
match on the code constructor for uint∗. This ensures that code equations respect
the abstraction barrier of uint∗, so that we can later change the generated code
using adaptations without worrying that users of our library might have declared

394 A. Lochbihler

code equations that look into the internal construction of uint∗. In fact, all this
setup is already in place by the way we have defined uint∗ and their operations
using the Lifting tool. Moreover, the conversion function uint32-of-int from inte-
gers to uint32 acts as the “smart constructor” to create values of type uint32.

Table 1. Bounded integers in the standard library
by target language. Supported fixed sizes are marked
with

√
. The last row lists the bit size of the default

type. Grey cells indicate that only signed operations
are available.

bits PolyML SMLNJ mlton OCaml GHC Scala
32 64 32 64

8
√ √ √ √ √ √

16
√ √ √

32
√ √ √ √ √ √ √ √

64
√ √ √ √ √ √ √

? 31 63 31 32 31 63 ≥ 30 32

Next, we describe the
code adaptations that map
the uint∗ types and func-
tions to the target lan-
guage primitives. Yet, the
provided word types vary
across the target languages
and even across differ-
ent implementations of the
same language. Table 1 lists
the available word sizes for
the most common imple-
mentations of the four tar-
get languages (marked with√

). As can be seen, the support varies widely: only 32-bit words are provided
by all implementations. PolyML provides 64-bit words only when run in 64-bit
mode. For OCaml and Scala, most word types provide only signed operations,
which interpret the most significant bit as a sign (marked as grey cells). Follow-
ing α word, our library provides unsigned words, so extra effort will be needed in
these cases. The last row shows the bit widths of the languages’ standard word
type. We will look at this row in more detail in Sect. 4.

The code adaptations for the types and most operations are straightforward
as the libraries provide suitable functions. The type uint32, e.g., is mapped as
follows. In the remainder of this section, we discuss the non-trivial cases.

code-printing type-constructor uint32 →
(SML) Word32.word (OCaml) int32 (Haskell) Data.Word.Word32 (Scala) Int

If a target language does not provide a particular bit width (e.g., 8 and 16
bits in OCaml), we omit the code adaptations. The generated code will thus
follow the code equations that the evaluators use. So, 8- and 16-bit words are
implemented in OCaml using arbitrary-precision Big ints, taking the remainder
w.r.t. 28 or 216 after every operation. With some more effort, they could also be
implemented using 32-bit words.

Division and remainder require a more elaborate design of the code equa-
tions, which the drawing below illustrates. We define a cascade of constants
div, uint32-div, uint32-sdiv, . . . that model the division operators of the different
target languages. Code equations () implement each constant using the next
one. Code adaptations () map the constants to right target languages; they
thereby terminate the cascade early.

divuint32 uint32-div uint32-sdiv div32 word divint . . .

SML, Haskell OCaml, Scala SML, Haskell, OCaml, Scala

Fast Machine Words in Isabelle/HOL 395

We now look at the different constants implementing division. As is cus-
tomary in HOL, division by 0 yields 0 and taking the remainder w.r.t. 0 is the
identity function [24], but the target languages typically raise exceptions. To
avoid the exceptions and thus make the generated code fail less often, we define
a new constant uint32-div that is unspecified for 0 and add 0 as a special case to
div’s code equation (and the remainder’s):

definition uint32-div x y = (if y = 0 then undefined (div) x 0 else x div y)

lemma [code] : (x div y) = (if y = 0 then 0 else uint32-div x y)

Here, undefined is an unspecified, polymorphic HOL constant. By applying it to
the div function and the arguments x and 0, we get a fresh, unspecified formal
value x/0 for every x. This way, mapping uint32-div to target language operations
remains sound even if these return different results for dividing different x by
0—provided that the same value is consistently returned for the same x, if any.4

For example,

code-printing constant uint32-div →
(SML) Word32.div (,) (Haskell) Prelude.div

where (,) expresses that Standard ML’s Word32.div takes both arguments as
a tuple.

Unfortunately, mapping uint32-div to OCaml’s and Scala’s division opera-
tions directly would be unsound, as OCaml’s int32 and Scala’s Int are signed.
Therefore, we define another division operation uint32-sdiv on uint32 that inter-
prets uint32 as signed words and coincides with uint32-div when a division
by zero occurs. Next, we prove a code equation that implements uint32-div
using uint32-sdiv. The following equation expresses the algorithm adapted from
Hacker’s Delight [50, Sect. 9.3] on α word, where << and >> denote unsigned bit
shifts to the left and right, and sdiv denotes signed division. We prove the equa-
tion for all x and y of type α word with y �= 0, and then lift it to all the uint∗
types. This is possible thanks to the polymorphic α word.

(x div y, xmod y) = (if 1 << (len-ofα − 1) ≤ y then if x < y then (0, x) else (1, x − y)
else let q = ((x >> 1) sdiv y) << 1; r = x − q ∗ y in

if r ≥ y then (q + 1, r − y) else (q, r))

4 Alternatively, we could have (under-)specified uint32-div with a conditional definition
like

definition uint32-div where y �= 0 −→ uint32-div x y = x div y

lemma [code] : uint32-div x y = (if y = 0 thenCode.abort ”Div0” (λ . uint32-div x y) else x div y)

As the precondition makes the defining equation unsuitable for code generation, we
would have to manually state and derive an unconditional code equation like the
one shown, with which division by zero would make the normalisation evaluator
fail to terminate. The definition with undefined requires no further setup for code
generation and does not cause non-termination.

396 A. Lochbihler

Thus, we get the following OCaml and Scala code adaptations for division. Note
that there are no code adaptations for uint32-div for OCaml and Scala.

code-printing constant uint32-sdiv → (OCaml) Int32.div (Scala) /

The cascade of constants also applies to evaluation by normalisation and
term rewriting, as they use the same code equations. Since there are no code
adaptations, they follow the cascade until the end, i.e., arithmetic on integers.
That is, they perform division and remainder on uint32 by testing for the zero
divisor and only then performing a signed division according to the given algo-
rithm, which is implemented via 32 word and the arbitrary-precision integers.
This is an example of where we accept inefficiencies in the evaluators in favour
of better generated code. Accordingly, the same roundabout way of implement-
ing division also applies for uint∗ types that are not supported natively by the
target language. In OCaml, e.g., 8- and 16-bit words follow the cascade until the
code adaptations for arbitrary-precision integers branch off to OCaml’s Big int

library.
The other operations affected by the signed interpretation are dealt with in

a similar way. The smart constructor uint32-of-int :: int ⇒ uint32, in particular,
requires adjusting the integer range from HOL’s 0 to 232 − 1 to OCaml’s and
Scala’s −231 to 231 − 1. Like for division and remainder, we state and verify a
conversion algorithm for arbitrary bit lengths as a lemma on α word and lift it
to uint∗ using the Transfer package.

This simple idea of a cascade of constants with selective code adaptations
yields more efficient code than what Isabelle code generation experts had come
up with previously. Traditionally, code adaptations identified a domain on which
the implementations in all target languages behave the same. The division and
remainder operations on arbitrary-precision integers in Isabelle/HOL’s standard
library illustrate this approach. They are not directly mapped to the target
language operations because they differ on negative numbers: dividing −5 by
3, e.g., yields −1 in Scala and OCaml whereas it results in −2 in Haskell and
Standard ML (and Isabelle/HOL). Isabelle’s standard library instead defines a
special division-modulo operation divmod-abs that first takes absolute values and
serialises it to target-language expressions that do the same.

definition divmod-abs m n = (|m| div |n| , |m| mod |n|)
code-printing divmod-abs →

(SML) IntInf.divMod (IntInf.abs , IntInf.abs)

(Haskell) divMod (abs) (abs)

and similarly for OCaml and Scala. The original division and remainder oper-
ations are implemented using divmod-abs where signs and values for negative
numbers are adjusted as necessary. This approach clearly is not optimal with
respect to efficiency, as some computations such as taking the absolute value are
performed twice, once in the code equation for div (and mod) and once again
in the code adaptation. In particular, those operations are computed even if
the target language’s operations exactly fit Isabelle’s (like in the case of Haskell

Fast Machine Words in Isabelle/HOL 397

and Standard ML). For PolyML 5.6.1, we measured that the overhead of these
checks and additional operations is about 100%, i.e., a division operation takes
twice as long as it would have to. So users have to pay the performance penalty
even if they are not interested in generating code in languages with mismatching
operations.

In contrast, our cascading approach has no overhead for languages with per-
fectly matching operations (Standard ML and Haskell) and much less overhead
for the others, where we have precisely modelled the target language operations
in the logic and verified the implementation. The same could be done for division
and remainder on integers.

3.3 Dealing with Underspecification

The bit shift operations <<, >>, and >>> (right shift with sign extension) are
not affected by the signed interpretation, but they behave differently in different
target languages. In Scala, they only take the lower bits of the shift into account.
For example, shifting 1 by 65 bits to the left as a uint32 yields 2, as the lower
5 = log2 32 bits of 65 denote the value 1. In Haskell and OCaml, the result of
these operations is unspecified when the shift is negative or exceeds the word size.
In Standard ML, the bit shift operations correctly honour all bits of the shift,
but the shift must be given as a Word, whose size varies with the implementation
(as shown in the last row in Table 1). In Isabelle, however, the shifts are specified
as (unbounded) natural numbers, so we must take overflows into account.

Given the underspecification in Haskell and OCaml, we cannot model the
target language’s bit shifts exactly in HOL, as we do for sdiv. Instead, we resort
to underspecification in HOL, too. For each shift operation, we define a version
which is specified only for the bit shifts that do not exceed the word size. For <<
on uint32, e.g., we define

uint32-shiftl x i = (if i < 0 ∨ i ≥ 32 then undefined (<<) x i else x << nat i)

where we model the underspecification using undefined as we did for uint32-div
in Sect. 3.2. We prove a code equation for << (and one for uint32-shiftl for the
evaluators)

x << n = (if n < 32 then uint32-shiftl x (int n) else 0),

where nat and int convert between integers and natural numbers, and map
uint32-shiftl directly to the target languages.

3.4 Soundness of Code Adaptations for Underspecified HOL
Functions

Recall from Sect. 2 that the HORS view on code generation assumes that the
successful execution steps of the generated program corresponds to rewrite steps
in HOL. This guarantees partial correctness of the generated code. Clearly, code
adaptations violate this invariant. Fortunately, we can generalise the reasoning

398 A. Lochbihler

to code adaptations for fully specified HOL functions, by assuming that there
is a HOL proof tactic that can justify the result of a successful execution of the
mapped code. This assumption can either be validated using tests (Sect. 5) or
by giving a formal semantics to the generated code and verifying the translation
[30]. For our library, this approach works for all the arithmetic operations, as
the only such underspecified operations are division and remainder, where in the
underspecified cases the generated code fails with an exception.

Unfortunately, this argument does not carry over to the bit shifts described
in Sect. 3.3. Clearly, evaluating 1 << 65 in, say, Scala does return a specific
value—namely 2—and there is no way to prove that the unspecified HOL value
undefined (<<) 1 65 equals 2. The code adaptations thus tighten the specification,
i.e., they correspond to a kind of refinement. We now describe the correctness
guarantees obtained by such an implicit refinement and identify the necessary
assumptions on the target language operations.

The set-theoretic semantics of HOL assigns arbitrary values of the right type
to unspecified constants, i.e., constants that have been declared, but not (yet)
defined [32]. We can therefore consider the underspecification of a function as
picking sufficiently many freshly declared constants and returning one of them
for each argument where the underspecification occurs. Skolemizing over all the
arguments and even the intended HOL function, we end up with an equivalent
specification, e.g., the family λx i. undefined (<<) x i of unspecified uint32 values.
We can view this underspecification as model-theoretic non-determinism, which
code adaptations can refine. Like deferred Isabelle/HOL definitions of constants
that have been declared earlier, a code adaptation conceptually defines the fam-
ily of unspecified values as the values that the target language implementation
will compute. Clearly, these definitions are only conceptual, because they never
manifest as a definitional theorem that Isabelle’s kernel could check. Moreover,
the chosen values depend on the particular target language implementation that
will run the generated code. In this view, code adaptations constitute a deferred
definition mechanism that executes when code is generated and whose effect is
revoked at the end of code generation (as these definitions are not recorded in
the logic).

This interpretation shows that any result computed by the generated code
must be a possible value in some HOL model. Assuming that the formalisation
is consistent, we obtain a (weaker) version of partial correctness, namely every
theorem provable in HOL applies to the result. This is because the theorems hold
in all HOL models and the result lives in one of them. Yet, we can no longer
argue that the result is derivable from the HOL definitions, i.e., that all HOL
models enforce this result. In other words, the generated code can only produce
results which are consistent with the formalisation, but not necessarily enforced
by it. In summary, we obtain the guarantee that it is impossible to prove in HOL
that the result violates any provable property of the formalisation.

Our correctness argument hinges on three requirements, which our library
meets:

Fast Machine Words in Isabelle/HOL 399

1. The unspecified values are indeed logically unspecified. Otherwise, the refine-
ment can lead to inconsistencies.

2. The function computed by the code adaptation in the target language imple-
mentation must be definable in HOL. In particular, the function must be
pure, i.e., consistently return the same result for the same arguments, inde-
pendent of the calling context, and its HOL definition must not introduce
cyclic dependencies [31]. Obviously, it must also coincide with the mapped
HOL function on the domain where it is specified.5

3. The code must not be used to prove theorems in the logic. Theorems proven
by the refined code could silently introduce the implicit refinements as axioms
into the logic. That is, some theorems might actually not be derivable from
the stated axioms.

The last requirement means that implicit refinement via code adaptations
must not be used when we prove theorems by code generation. The proofs
of the code equations for the bit shift operations show that their results
do not depend on the unspecified behaviour of the auxiliary functions like
uint32-shiftl, i.e., we can use these operations in proofs by evaluation. However,
users might directly call these auxiliary functions with unintended arguments
(e.g., uint32-shiftl 1 232). To be safe, we ensure that in the code target Eval,
which is used for proving theorems, code adaptations never cause implicit refine-
ments. We achieve this by explicitly checking whether the arguments lie in the
specified domain and otherwise raise an exception. For example,

code-printing constant uint32-shiftl → (Eval)
(fn x => fn i => if i < 0 orelse i >= 32 then raise (Fail "<<")

else Word32.<<(x, Word.fromLargeInt(IntInf.toLarge i)))

Admittedly, it might have been easier to include the range checks for the
shift operations in the code adaptations of all targets, not just Eval. This would
have saved us from implicit refinements and their implications on soundness, at
the cost of two more integer comparisons per executed bit shift. But in the next
section, we take underspecification to the level of types, where we cannot avoid
it any more.

4 Machine Words of Unspecified Length

Words of 8, 16, 32, and 64 bits are not optimally efficient for all target languages.
Some implementations offer words of 31 and 63 bits, which are implemented
5 The bit shifts are underspecified only in Haskell and OCaml. In Haskell, this assump-

tion is satisfied as the bit shift operations belong to the Safe Haskell subset where
pure functions cannot have side effects, i.e., referential transparency holds. As OCaml
maps bit shifts directly to C, the interpretation of undefined behaviour would allow
to the compiler to violate this assumption. However, to our knowledge, none of the
state-of-the-art compilers exploits such technically undefined bit shifts badly. They
all map it consistently to some bit shift instructions on the hardware, which does
meet our requirements. The compilation strategy can change in the future though.

400 A. Lochbihler

more efficiently as they need not boxing in memory. They use the missing bit to
distinguish between primitive values and pointers, exploiting that the lowest bit
of a pointer is always 0 due to memory alignment constraints. Accordingly, the
bit length also depends on whether the runtime runs in 32-bit or 64-bit mode.
The last row in Table 1 shows these bit widths by implementation. The Haskell
API specifies only a lower bound of 30 bits; GHC in version 7.6.3 provides 32 bits
in 32-bit mode and 64 bits in 64-bit mode. This may change in future versions,
e.g., if the memory management starts to use some bits of a processor words
for tagging like PolyML and OCaml do. The table therefore shows only the API
constraint.

In this section, we introduce a type uint that maps to these machine words
in the target languages. Generated code can thus benefit from unboxing, i.e.,
run faster with less memory. As the exact bit width varies across target lan-
guage, implementation, and architecture, we again resort to underspecification
in HOL to achieve sound code adaptations. That is, uint denotes the type of
all machine words of a given non-zero length, but we do not specify the length
in HOL. Formally, we introduce an uninterpreted type default-size and specify
that len-ofdefault-size be some positive number.6 Then, uint denotes the type of all
words of length len-ofdefault-size, which the code generator maps to Word.word in
Standard ML, Data.Word.Word in Haskell, int in OCaml, and Int in Scala.

typedecl default-size

specification len-ofdefault-size > 0 by auto

typedef uint = UNIV :: default-size word set ..

code-printing type-constructor uint →
(SML) Word.word (Haskell) Data.Word.Word (OCaml) int (Scala) Int

The operations and code adaptations for uint are analogous to uint∗, as
described in Sect. 3. Signed and underspecified operations are handled in the
same way, too. We map len-ofdefault-size to the target language’s bit width, e.g.,
Word.wordSize in Standard ML.

The underspecification for uint is much more invasive than uint∗’s. For the
latter, only a few auxiliary operations like uint32-shiftl are underspecified, but
all of the official operations are fully specified. On uint, in contrast, we do not
even know what number 3 ∗ 5 denotes. For example, 3 ∗ 5 = 7 holds in HOL
models where len-ofdefault-size = 3. Evaluation by code generation therefore does
not make sense for uint and our code adaptations ensure that all uint operations
always raise exceptions in the evaluation target Eval. It might be possible to
configure the other evaluators (normalisation and term rewriting) such that they

6 Technically, the command specification defines the constant using Hilbert choice
ε and derives the given property, after the specification has been shown to be sat-
isfiable (by auto). So some unintended equations about len-ofdefault-size are provable,
e.g., len-ofdefault-size = (εx. x > 0). To avoid violating requirement 3.4 from Sect. 3.4, we
hide the defining equation and only work with the specification. Arthan [4] discusses
the problem of unintended identities for underspecified constants in detail.

Fast Machine Words in Isabelle/HOL 401

evaluate uint expressions symbolically, but we have not succeeded in doing so
yet. Therefore, evaluation and proving theorems by execution is currently not
supported for uint.

So, what can be done with those unspecified uint? Here are three useful appli-
cations. First, Lammich [33] has implemented bit vectors as a list of uint. He for-
malises bit vectors on polymorphic words α word, making no assumptions about
α. For example, the n-th bit of the bit vector is stored in the (nmod len-ofα)-
th bit of the (n div len-ofα)-th list element. So, v ! (n div len-ofα) !! (nmod len-ofα)
looks up the n-th bit in the bit vector v, where l ! i returns the i-th element of
the list or array l. Then, he lifts his formalisation to uint using the Transfer
tool. Thus, the generated code adapts the size of the list to the target language
implementation.

Second, hashing does not rely on the exact size of the values. Algorithms
based on hashing deal with clashes anyway, so their correctness does not depend
on the exact hash values. Yet, hashing must be fast. Taking uint for hash values
enables such fast hashing.

Third, finite rings Z/pZ can be implemented via uint if p2 < 2len-ofdefault-size ,
which can be tested dynamically. We evaluate such an implementation in Sect. 6.

5 Validation

The code adaptations in our library are rather complicated, with many subtleties
and corner cases. It is therefore imperative to validate the code adaptations. In
theory, as all word types are finite, we could certify the code adaptations by
running the generated code for all possible argument values and checking that
the mapped HOL term evaluates to the same result (unless it is unspecified).
In practice, this might be feasible for uint8 and uint16, but the argument space
for 32- and 64-bit words is too large. Therefore, we content ourselves by running
selected test cases.

In this section, we present a generic-purpose testing framework in
Isabelle/HOL (Sect. 5.1) and the design and results of our validation (Sect. 5.2).

5.1 Automating Regression Tests for Code Generation

To automate the testing, we have developed a general-purpose testing tool for
Isabelle/HOL’s code generator, which is distributed with Isabelle2017 (theory
HOL-Library.Code Test). Our tool provides a new command code-test that
takes a list of test cases and a list of target language implementations. A test
case is any boolean HOL term. The supported target language implementations
are PolyML, MLton, SMLNJ, GHC, OCaml, and Scala. For each target language
implementation, the command performs five steps:

1. It generates code for all the test cases in the corresponding target language.
2. It produces a test harness tailored to the target language implementation.
3. If necessary, it compiles the generated code and the test harness.

402 A. Lochbihler

4. It executes all test cases by running the (compiled) program.
5. It reports which test cases have succeeded or failed, and for the failed ones,

it outputs the evaluation result for selected subterms, e.g., the two sides of
(in)equalities.

If code generation or any of the test cases fails, the command raises an error in
Isabelle/HOL, which makes it suitable for regression testing.

For example, the following invocation tests that our code adaptations cor-
rectly use Scala’s signed division on bytes for computing the unsigned fraction:

code-test 251 div 3 = (83 :: uint8) in Scala

In case of a failure, code-test outputs to what the left and right-hand side
have evaluated in Scala. To that end, code-test also generates code for reifying
the result value as a HOL term in the target language. This HOL term is then
serialised as a YXML string in the same format that Isabelle/PIDE uses to
communicate with the prover process [51]. Term reification is shared with the
counter-example generator Quickcheck [8, Sect. 3.3.4], so it automatically works
for most user-defined types, in particular all (co)datatypes.

The different target language implementations are modularly supported by
drivers. A driver gets as input (i) the directory for the code, (ii) the names of
the generated files, and (iii) the name of the generated function that executes
all test cases. The driver outputs (i) the names and contents of its test harness
files, and (ii) bash commands for compiling and running the code and the test
harness.

Drivers must be registered with our tool under an identifier, e.g., PolyML
and MLton, and with an associated code target, e.g., SML. The tool then takes
care of all the rest, such as parsing the user’s input, invoking Isabelle/HOL’s
code generator, writing all files to a fresh temporary directory, compiling and
running the program, and showing the pretty-printed result to the user. Thus,
users can easily write and register their own drivers when they want to test other
implementations.

5.2 Test Case Selection and Validation Results

As is common practice, we partition the argument values into equivalence classes
and select only one representative from each equivalence class. For uint∗, we
consider the three classes {0, . . . , 2l−1 − 1}, {2l−1, . . . , 2l − 1}, and {2l, . . .}, where
l denotes the bit length of the word type. For bit indices, we choose the classes
{0, . . . , l − 2}, {l − 1}, and {l, . . .}. The most significant bit l − 1 has its own class
because of the signed operations.

We have run all these test cases with all implementations and all evalua-
tors. In fact, the test cases are routinely run by the regression test system of
the Archive of Formal Proofs. This ensures that incompatible changes in Isa-
belle/HOL’s code generator configuration are quickly detected.

During the development of our library, the test cases revealed many errors
in the code adaptations, both syntactic and semantic errors, e.g., forgetting

Fast Machine Words in Isabelle/HOL 403

appropriate casts in Scala to counter the automatic promotion to Int. Of course,
we have addressed all the errors and now all test cases pass. This indicates that
our test cases are reasonable.

Surprisingly, the tests did not only reveal errors in our code adapta-
tions. For PolyML 5.6.1, which Isabelle2017 runs on, one of our tests on 64-
bit words failed when PolyML runs in 64-bit mode. The problem is that
PolyML’s Word64 structure does not correctly implement division. For exam-
ple, Word64.div(0wxFFFFFFFFFFFFFFFB, 0wx3) evaluates to 0wx55555553 instead of
0wx5555555555555553. The error occurs only in 64-bit mode because PolyML does
not provide a Word64 structure in 32-bit mode. Meanwhile, Matthews has imple-
mented the Word64 structure differently in PolyML 5.7, thereby eliminating the
bug. Isabelle2017 itself is not affected by the error because its implementation
does not use 64-bit words. To support evaluation of uint64 terms in Isabelle2017,
our library tests at load time whether the underlying 64-bit PolyML system pro-
vides the incorrect Word64 structure and—if so—generates a replacement based
on arbitrary-precision integers.

6 Evaluation

We have been developing our library of machine words since 2013. Meanwhile,
it has been picked up by several other users in their projects. This shows that
our library is usable. Moreover, we can evaluate the performance by looking at
real-world use cases instead of unrealistic micro-benchmarks. In this section, we
describe how the projects used our library and comment on the performance
impact we are aware of. For one project, we also ran the benchmarks to measure
the performance impact of our library ourselves.

Divason et al. [14] have verified the Berlekamp-Zassenhaus algorithm for
factoring polynomials over the integers. The algorithm factors a given polynomial
over the finite rings Z/pkZ for k = 1, 2, 4, 8, . . . using Berlekamp’s algorithm and
Hensel’s lifting lemma. Zassenhaus’ algorithm then reconstructs the factorisation
over the integers. Divason et al. have parametrised the factorisation algorithm
and the Hensel lifting over the arithmetic operations. So they can choose the
most efficient implementation dynamically according to the following strategy.
If pk < 216, all computations are done in uint32 as multiplying two 16-bit numbers
stays below 232. If 216 ≤ pk < 232, their implementation uses uint64. Otherwise,
arbitrary-precision integers are used.

To quantify the performance gain by using uint∗, we ran three versions of the
factorisation algorithm (generated in Haskell from AFP version 70d9faada9d0).
The first version omits the range checks for pk and always uses arbitrary-precision
integers. This establishes the baseline. The second version chooses the imple-
mentation type according to the above strategy. The third version uses uint if
pk <

√
2len-ofdefault-size and arbitrary-precision integers otherwise. We used the bench-

marks by Divason et al. [14]: 400 randomly generated polynomials with 100 to
500 coefficients. The measurements were performed on an Intel i7 quad core at
2.4 GHz with 16 GB RAM running Ubuntu 14.04 LTS. The generated code was
compiled with GHC 7.6.3 with option -O2.

404 A. Lochbihler

Factoring all 400 polynomials using arbitrary-precision integers took
33.70 min in total. Using uint32/uint64 reduces the time to 27.42 min, i.e., a
reduction by 18.6%. Per polynomial, the time reduction ranged between 10.0%
and 39.9% with median 19.9% and relative standard deviation 5.9%. This shows
that our library consistently provides better efficiency than computing with
GMP integers, despite the additional range checks. The difference between
uint32/uint64 and uint was insignificant. This is because GHC 7.6.3 always boxes
machine words (Data.Word.Word). To measure the effect of boxing, we also ran
the second and third version with PolyML 5.7.1 in 64-bit mode, where uint is
only 63 bits, but unboxed: on average, uint is 4.0% faster than uint32/uint64.

Fleury et al. [17] are developing a verified SAT solver using Isabelle/HOL. For
efficiency reasons, uint32 words are used for propositional variables and literals,
where the positive and negative literals of a variable v are given by 2 · v and
2 · v + 1, respectively. Both literals of a variable can thus be computed efficiently
using bit operations. Fleury told us in personal communication that switching
from GMP integers to uint32 improved performance of the generated Standard
ML code considerably. Bit shifts on GMP integers are apparently significantly
slower, even if the values fit in GMP’s small integers.

The Isabelle Collections framework and the Monadic Refinement framework
[33,35,36] use our library for implementing hash functions, on which verified
hash sets and hash arrays build. Using these frameworks, Esparza et al. [15]
have generated an LTL model checker in Standard ML from their formalisation.
They observed a speed-up of one order of magnitude when they changed hashing
from arbitrary-precision integers to our library.

Lochbihler and Züst [42] obtain a Haskell implementation of the TLS protocol
generated from Isabelle/HOL. Unlike in the other projects, they use uint∗ not for
efficiency reasons, but for exchanging data with foreign Haskell functions and for
constructing the protocol messages. The socket API functions take arguments
that are machine words of 8, 16, or 32 bits, and some fields in the protocol
messages also have such bit lengths.

7 Related Work

Many proof assistants provide libraries for fixed-size words. Those that support
code generation to machine integers are all tailored to one particular target
language, usually the language the prover is implemented in. In contrast, our
library shows how to fit the varying APIs of four target languages into one
library while retaining efficiency.

The coq-bits library [6,29] by Blot et al. models signed 8-, 16-, and 32-bit words
in Coq. Using Coq’s code adaptation command Extract Inlined Constant, the
library maps all word types to OCaml’s int type. They program exhaustive test
cases in Coq and prove that the test cases suffice to establish that the translation is
correct. But they run the test cases only for 8- and 16-bit words, as exhaustively
testing 32- or 64-bit words is impractical. Thereby, they have missed that their
mapping is unsound for 32-bit integers when Ocaml runs in 32-bit mode as int

has only 31 significant bits then.

Fast Machine Words in Isabelle/HOL 405

Armand et al. [3] added OCaml’s 31-bit machine integers to Coq’s evalua-
tion engine, which is comparable to Isabelle/HOL’s normalisation evaluator [1].
Théry [48] relies on them to establish by evaluation that the Mini-Rubik cube
can always be solved in at most 11 steps. While we have made sure that our
library supports evaluation, the normalisation evaluator uses the symbolic rep-
resentation for the uint∗ types. Changing this representation to Standard ML
machine words would require a complete re-design of the evaluator since it does
not support any form of code adaptation. Our mappings therefore need not be
trusted for normalisation. Regarding execution times, code extraction is much
faster than normalisation in Isabelle anyway and even more so with our library.

Maude provides fixed-size words similar to Isabelle’s Word library [9,
Sect. 9.5]. Yet, they are not mapped to machine words, but emulated using
arbitrary-precision integers.

Greve et al. [18] describe how ACL2 code can be written in such a way that
the underlying LISP compiler uses unboxed machine words (fixnum) instead
of arbitrary-precision integers. They annotate their code with many declara-
tions that restrict the allowed integer range to signed 32 bit words. ACL2’s
guard checker accordingly demands a proof that the range is respected. Divason
et al. [14] had to prove similar respectfulness theorems when they implemented
the GF(pk) operations on the uint∗ types. Most proofs were automatic using
the Transfer package and the existing theorems for α word. Like for Haskell,
the exact range of fixnum in LISP is implementation-defined; at least 16 bits
are required. Greve et al. ignore this issue and assume that at least 32 bits are
provided.

PVS’s ground evaluator generates LISP code from PVS specifications. It also
supports unchecked code adaptations, which are called semantic attachments
[10]. Muñoz’ library PVSio [44] provides semantic attachments for, among oth-
ers, floating point arithmetic, which replaces exact arithmetic on reals. Semantic
attachments cannot be used to prove theorems by ground evaluation to pre-
vent inconsistencies, e.g., due to rounding errors. Isabelle/HOL’s code generator
allows code adaptations for proofs. We therefore carefully craft the adaptations
for the target Eval and raise exceptions in underspecified cases.

The problem of refining underspecified functions for code generation is also
addressed by the Isabelle Monadic Refinement framework [36] and its Coq coun-
terpart Fiat [13]. In both frameworks, programs must be written in a non-
determinism monad. They can then be refined within the logic towards a deter-
ministic implementation. This refinement approach could be used to model
the non-determinism due to the different bit sizes in the various target lan-
guage implementations. Users would however have to write all their functions
in the monad and refine the non-determinism way before code generation. This
would severely impair the usability of our library. We therefore opted for model-
theoretic refinement and accepted that this refinement is unverified.

406 A. Lochbihler

8 Conclusion and Future Work

We have presented a library for efficiently computing with machine words of
8, 16, 32, and 64 bits in Isabelle/HOL. It distinguishes itself from other such
libraries in that it simultaneously supports all four target languages of Isabelle’s
code generator and all of Isabelle’s evaluation mechanisms. Thus, formalisations
based on our library do not have to commit to a particular language and can
instead be used in any Isabelle context. We achieve this flexibility using a model-
theoretic refinement semantics for code adaptations. To validate our library, we
have developed a general-purpose regression test framework for Isabelle/HOL
and tested the correctness of our code adaptations. Our library has successfully
boosted the performance of the generated code in several projects.

We have also used the test framework to obtain HOL evaluators in Haskell,
OCaml, and Scala. Haskell in particular is useful as its lazy evaluation semantics
handles infinite codatatype values, on which the existing call-by-value evaluators
do not terminate.

Our code adaptations are unverified—like all code adaptations for Isa-
belle/HOL. The adaptations and the machine word implementations in the tar-
get languages are therefore in the trusted code base whenever our library is
used for code generation. This applies to (i) tools obtained by code generation
and (ii) proofs by evaluation. As Isabelle tags all theorems whose proof has not
been checked by the kernel, users can always check whether a theorem has gone
through the kernel. If they do not want to trust the adaptations, they can always
prove their theorems by term rewriting (or normalisation).

We will add more word types, e.g., signed words, on demand. While their
formalisation is very easy thanks to the length-polymorphic Word library, getting
the code adaptations right requires a careful study of the language specifications.

When the projects on verified code generation reach maturity, we hope to
formally verify our mappings to reduce the TCB. In the meantime, it would be
interesting to systematize the test case generation, e.g., by model-driven testing
as implemented in HOL-Testgen [7]. We could validate the code adaptations fur-
ther and check whether target language implementations correctly implement the
operations. In this scenario, our library is only the starting point. Other libraries
like Yu’s formalisation of IEEE floating point numbers [52] could also benefit
from validation. Although testing can never formally establish the correctness
of code adaptations, it is a very practical approach to ensuring soundness.

Acknowledgements. Peter Lammich contributed an initial formalisation of machine
words of unspecified length. Rafael Häuselmann helped to implement the code test
command. René Thiemann and Mathias Fleury encouraged us to develop the library
further. The author was supported by the Swiss National Science Fund under grant
153217.

Fast Machine Words in Isabelle/HOL 407

References

1. Aehlig, K., Haftmann, F., Nipkow, T.: A compiled implementation of normalisation
by evaluation. J. Funct. Program. 22(1), 9–30 (2012)

2. A. Anand, A. Appel, G. Morrisett, Z. Paraskevopoulou, R. Pollack, O. Savary
Belanger, M. Sozeau, and M. Weaver. CertiCoq: A verified compiler for Coq. In:
CoqPL 2017 (2017)

3. Armand, M., Grégoire, B., Spiwack, A., Théry, L.: Extending Coq with imperative
features and its application to SAT verification. In: Kaufmann, M., Paulson, L.C.
(eds.) ITP 2010. LNCS, vol. 6172, pp. 83–98. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14052-5 8

4. Arthan, R.: On definitions of constants and types in HOL. J. Autom. Reason.
56(3), 205–219 (2016)

5. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in Isa-
belle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS
(LNAI), vol. 6989, pp. 12–27. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24364-6 2

6. Blot, A., Dagand, P.É., Lawall, J.: From sets to bits in Coq. In: Kiselyov, O.,
King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 12–28. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29604-3 2

7. Brucker, A.D., Wolff, B.: hol-TestGen: an interactive test-case generation frame-
work. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 417–
420. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00593-0 28

8. Bulwahn, L.: Counterexample Generation for Higher-Order Logic Using Functional
and Logic Programming. Ph.D. thesis, Fakultät für Informatik, Technische Uni-
versität München (2013)

9. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

10. Crow, J., Owre, S., Rushby, J., Shankar, N., Stringer-Calvert, D.: Evaluating, test-
ing, and animating PVS specifications. Technical report, Computer Science Labo-
ratory. SRI International, Menlo Park, CA (2001)

11. Dawson, J.: Isabelle theories for machine words. In: Goldsmith, M., Roscoe, B.
(eds.) AVOCS 2007, vol. 250(1). ENTCS, pp. 55–70. Elsevier (2009)

12. Dawson, J., Graunke, P., Huffman, B., Klein, G., Matthews, J.: Machine words
in Isabelle/HOL (2017). http://isabelle.in.tum.de/dist/library/HOL/HOL-Word/
document.pdf

13. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: Deductive synthesis of
abstract data types in a proof assistant. In: POPL 2015, pp. 689–700. ACM, New
York (2015)

14. Divasón, J., Joosten, S., Thiemann, R., Yamada, A.: A formalization of the
Berlekamp-Zassenhaus factorization algorithm. In: CPP 2017, pp. 17–29. ACM,
New York (2017)

15. Esparza, J., et al.: A fully verified executable LTL model checker. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 31

16. Farzan, A., Meseguer, J., Roşu, G.: Formal JVM code analysis in JavaFAN. In:
Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp.
132–147. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27815-
3 14

https://doi.org/10.1007/978-3-642-14052-5_8
https://doi.org/10.1007/978-3-642-14052-5_8
https://doi.org/10.1007/978-3-642-24364-6_2
https://doi.org/10.1007/978-3-642-24364-6_2
https://doi.org/10.1007/978-3-319-29604-3_2
https://doi.org/10.1007/978-3-642-00593-0_28
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
http://isabelle.in.tum.de/dist/library/HOL/HOL-Word/document.pdf
http://isabelle.in.tum.de/dist/library/HOL/HOL-Word/document.pdf
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-540-27815-3_14
https://doi.org/10.1007/978-3-540-27815-3_14

408 A. Lochbihler

17. Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver with watched
literals using imperative HOL. In: CPP 2018, pp. 158–171. ACM (2018)

18. Greve, D., Wilding, M., Hardin, D.: High-speed, analyzable simulators. In: Kauf-
mann, M., Manolios, P., Strother Moore, J. (eds.) Computer-Aided Reasoning:
ACL2 Case Studies. Advances in Formal Methods, vol. 4, pp. 113–135. Springer,
Boston (2000). https://doi.org/10.1007/978-1-4757-3188-0 8

19. Haftmann, F.: Code generation from Isabelle/HOL theories (2017). http://isabelle.
in.tum.de/dist/Isabelle2017/doc/codegen.pdf

20. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isa-
belle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS,
vol. 7998, pp. 100–115. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39634-2 10

21. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-
4 9

22. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch,
T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74464-1 11

23. Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A
revision of the proof of the Kepler conjecture. Disc. Comput. Geom. 44(1), 1–34
(2010)

24. Harrison, J.: Theorem Proving with the Real Numbers. Springer, London (1998).
https://doi.org/10.1007/978-1-4471-1591-5

25. Heule, M., Hunt, W., Kaufmann, M., Wetzler, N.: Efficient, verified checking of
propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 269–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66107-0 18

26. Huffman, B., Kunčar, O.: Lifting and Transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp.
131–146. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 9

27. Hupel, L., Nipkow, T.: A verified compiler from Isabelle/HOL to CakeML. In:
Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 999–1026. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89884-1 35

28. Kanav, S., Lammich, P., Popescu, A.: A conference management system with ver-
ified document confidentiality. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 167–183. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 11

29. Kennedy, A., Benton, N., Jensen, J.B., Dagand, P.-E.: Coq: the world’s best macro
assembler? In: PPDP 2013, pp. 13–24. ACM, New York (2013)

30. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: POPL 2014, pp. 179–191. ACM, New York (2014)

31. Kunčar, O.: Correctness of Isabelle’s cyclicity checker: implementability of over-
loading in proof assistants. In: CPP 2015, pp. 85–94. ACM, New York (2015)

32. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. In: Urban, C.,
Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 234–252. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22102-1 16

33. Lammich, P.: Collections framework. Archive of Formal Proofs (2009). http://isa-
afp.org/entries/Collections.html, Formal proof development

https://doi.org/10.1007/978-1-4757-3188-0_8
http://isabelle.in.tum.de/dist/Isabelle2017/doc/codegen.pdf
http://isabelle.in.tum.de/dist/Isabelle2017/doc/codegen.pdf
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-540-74464-1_11
https://doi.org/10.1007/978-1-4471-1591-5
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1007/978-3-319-08867-9_11
https://doi.org/10.1007/978-3-319-08867-9_11
https://doi.org/10.1007/978-3-319-22102-1_16
http://isa-afp.org/entries/Collections.html
http://isa-afp.org/entries/Collections.html

Fast Machine Words in Isabelle/HOL 409

34. Lammich, P.: The GRAT tool chain. In: Gaspers, S., Walsh, T. (eds.) SAT 2017.
LNCS, vol. 10491, pp. 457–463. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66263-3 29

35. Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14052-5 24

36. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol.
7406, pp. 166–182. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32347-8 12

37. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009)

38. Liu, H., Moore, J.S.: Executable JVM model for analytical reasoning: a study. In:
IVME 2003, pp. 15–23. ACM (2003)

39. Lochbihler, A.: A Machine-Checked, Type-Safe Model of Java Concurrency : Lan-
guage, Virtual Machine, Memory Model, and Verified Compiler. Ph.D. thesis, Karl-
sruher Institut für Technologie, Fakultät für Informatik, July 2012

40. Lochbihler, A.: Native word. Archive of Formal Proofs (2017). http://devel.isa-
afp.org/entries/Native Word.html, Formal proof development

41. Lochbihler, A., Bulwahn, L.: Animating the formalised semantics of a Java-like
language. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP
2011. LNCS, vol. 6898, pp. 216–232. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22863-6 17

42. Lochbihler, A., Züst, M.: Programming TLS in Isabelle/HOL. Isabelle Workshop
(2014). http://www.andreas-lochbihler.de/pub/lochbihler14iw.pdf

43. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: Mini-
mizing the Coq extraction TCB. In: CPP 2018, pp. 172–185. ACM (2018)

44. Muñoz, C.: Rapid prototyping in PVS. Contractor Report NASA/CR-2003-212418,
NASA, Langley Research Center, Hampton VA 23681–2199, USA (2003)

45. Nipkow, T.: Teaching semantics with a proof assistant: no more LSD trip proofs.
In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 24–38.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9 3

46. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

47. Owens, S., Norrish, M., Kumar, R., Myreen, M.O., Tan, Y.K.: Verifying efficient
function calls in CakeML. In: ICFP 2017, Proc. ACM Program. Lang., vol. 1, pp.
18:1–18:27. ACM (2017)

48. Théry, L.: Proof pearl: revisiting the Mini-Rubik in Coq. In: Mohamed, O.A.,
Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 310–319. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7 25

49. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 452–468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 31

50. Warren, H.S.: Hacker’s Delight, 2 edn. Addison-Wesley (2012)

https://doi.org/10.1007/978-3-319-66263-3_29
https://doi.org/10.1007/978-3-319-66263-3_29
https://doi.org/10.1007/978-3-642-14052-5_24
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
http://devel.isa-afp.org/entries/Native_Word.html
http://devel.isa-afp.org/entries/Native_Word.html
https://doi.org/10.1007/978-3-642-22863-6_17
https://doi.org/10.1007/978-3-642-22863-6_17
http://www.andreas-lochbihler.de/pub/lochbihler14iw.pdf
https://doi.org/10.1007/978-3-642-27940-9_3
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-71067-7_25
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31

410 A. Lochbihler

51. Wenzel, M.: Isabelle as document-oriented proof assistant. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS (LNAI), vol. 6824, pp.
244–259. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22673-
1 17

52. Yu, L.: A formal model of IEEE floating point arithmetic. Archive of Formal Proofs
(2013). http://isa-afp.org/entries/IEEE Floating Point.html, Formal proof devel-
opment

https://doi.org/10.1007/978-3-642-22673-1_17
https://doi.org/10.1007/978-3-642-22673-1_17
http://isa-afp.org/entries/IEEE_Floating_Point.html

Relational Parametricity and Quotient
Preservation for Modular (Co)datatypes

Andreas Lochbihler(B) and Joshua Schneider(B)

Institute of Information Security, Department of Computer Science, ETH Zürich,
Zürich, Switzerland

{andreas.lochbihler,joshua.schneider}@inf.ethz.ch

Abstract. Bounded natural functors (BNFs) provide a modular frame-
work for the construction of (co)datatypes in higher-order logic. Their
functorial operations, the mapper and relator, are restricted to a subset
of the parameters, namely those where recursion can take place. For cer-
tain applications, such as free theorems, data refinement, quotients, and
generalised rewriting, it is desirable that these operations do not ignore
the other parameters. In this paper, we generalise BNFs such that the
mapper and relator act on both covariant and contravariant parameters.
Our generalisation, BNFCC, is closed under functor composition and least
and greatest fixpoints. In particular, every (co)datatype is a BNFCC. We
prove that subtypes inherit the BNFCC structure under conditions that
generalise those for the BNF case. We also identify sufficient conditions
under which a BNFCC preserves quotients. Our development is formalised
abstractly in Isabelle/HOL in such a way that it integrates seamlessly
with the existing parametricity infrastructure.

1 Introduction

Datatypes and codatatypes are a fundamental tool in functional programming
and proof assistants. Proof assistants based on type theory usually provide
(co)datatypes as a built-in concept (e.g. Coq [31], Agda [29], Lean [28]), whereas
other tools defer the construction to definitional (Isabelle [7], HOL [36]) or
axiomatic packages (PVS [30], Dafny [23]). Traytel et al. [38] proposed bounded
natural functors (BNFs) as a semantic criterion for (co)datatypes that are con-
structible in higher-order logic, which was subsequently implemented as a defini-
tional package in Isabelle/HOL [7]. Notably, the BNF class includes important
non-free types such as finite sets and discrete probability distributions. The pack-
age allows a modular approach: Once a type constructor has been proved to be
a BNF, it can be used to define new (co)datatypes.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-94821-8 24) contains supplementary material, which is
available to authorized users.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 411–431, 2018.
https://doi.org/10.1007/978-3-319-94821-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_24&domain=pdf
https://doi.org/10.1007/978-3-319-94821-8_24
https://doi.org/10.1007/978-3-319-94821-8_24

412 A. Lochbihler and J. Schneider

For example, following the coalgebraic theory of systems [34], deterministic
discrete systems are modelled as elements of a codatatype (a, b) dds, where a is
the type of inputs, and b is the type of outputs of the system. In Isabelle/HOL,
the following command defines this type with constructor Dds and destructor run.

codatatype (a, b) dds = Dds (run : a ⇒ b × (a, b) dds)

Note that (a, b) dds on the right-hand side occurs inside a product (b × ◊) and
a function type (a ⇒ ◊), which both are BNFs. Yet, not all recursive specifi-
cations produce valid HOL (co)datatypes [13]. For example, a datatype must
not recurse through the domain of predicates ◊ ⇒ bool. Otherwise, HOL’s set-
theoretic semantics would have to contain an injection into a non-empty set from
its powerset. To avoid such inconsistencies, BNFs distinguish live type param-
eters from dead ones, and (co)recursion is limited to live parameters. For the
function space a ⇒ b, b is live and a is dead, and the same holds for (a, b) dds.

Many type constructors come with a map operation (mapper) that lifts unary
functions on the type parameters to the whole type. For lists, e.g., the mapper
maplist :: (a ⇒ b) ⇒ a list ⇒ b list applies the given function to all elements in
the list. The function space’s mapper map⇒ g h f = h ◦ f ◦ g transforms both
the domain and the range of f . Every BNF has a mapper, but it acts only
on the live parameters. For the function space, the BNF mapper map⇒ id h
therefore transforms only the range, but not the domain. Similarly, the BNF
mapper mapdds for DDS’s has type (b ⇒ b′) ⇒ (a, b) dds ⇒ (a, b′) dds, i.e., it can
transform a system’s outputs. But it is useless if we want to transform the inputs.
For example, consider a system S turning integers into booleans (e.g., testing
whether the partial sum of inputs is even). Then, we cannot easily use it on
natural numbers. In contrast, if the mapper acted also on the contravariant type
parameter a, i.e., mapdds :: (a′ ⇒ a) ⇒ (b ⇒ b′) ⇒ (a, b) dds ⇒ (a′, b′) dds, then
the new system could be written as mapdds int id S, where int :: nat ⇒ int embeds
the natural numbers in the integers.

This limitation of the BNF mapper is pervasive. First of all, it also affects the
derived relator, which lifts relations rather than functions. For example, the list
relator rellist R relates two lists iff they have the same length and the elements
at the same indices are related by R. The function space relator A �⇒ B takes
a relation A on the domain and a relation B on the codomain. It relates two
functions if they map A-related inputs to B-related outputs. But when seen as
a BNF, A is always fixed to the identity relation (=). Accordingly, due to the
modular construction of (co)datatypes, the DDS relator lifts only a relation on
outputs, and the input’s relation is fixed to (=).

Mappers and relators are used by many reasoning tools built on relational
parametricity [33]. A polymorphic term is relationally parametric if its instances
for related types are related, too. This requires an interpretation of types as
relations and, thus, relators. The BNF restriction to live parameters hampers
many applications of the interpretation: Quotients cannot be lifted through dead
parameters [17], data refinement cannot happen in dead parameter positions
[9,21], rewriting with equivalence relations must not affect dead parameters [37],

Relational Parametricity and Quotient Preservation 413

free theorems can talk only about live parameters [39], and so on. Whenever—
today in Isabelle/HOL—any of this is needed for dead parameters, too, one has
to manually define more general mappers and relators ad hoc for the affected
types.

In this paper, we generalise the BNF notion to BNFCC, where dead parame-
ters are refined into covariant, contravariant, and fixed parameters—“CC” stands
for covariance and contravariance. While live parameters are technically covari-
ant, we reserve the latter term for non-live parameters. For example, the type
of second-order functions (a ⇒ b) ⇒ c is a BNF where only c is live and a and b
are dead. Considered as a BNFCC, c is live, b is contravariant because it occurs
at a negative position with respect to the function space, and a is covariant as it
occurs at a positive, but not strictly positive position. The BNFCC mapper and
relator act on all type parameters but the fixed ones. For dds, e.g., we do obtain
the desired mapper that lets us transform both the inputs and the outputs. The
BNFCC notion coincides with the BNF notion when there are only live and fixed
parameters.

The key feature of BNFs is that they are closed under composition and
least and greatest fixpoints, i.e., (co)datatypes. BNFCCs also enjoy these proper-
ties. So, they are as modular as the BNFs and can be integrated into Isabelle’s
(co)datatype package. We emphasise that BNFCCs do not allow users to define
more (co)datatypes than BNFs do. The difference is that BNFCCs yield more
versatile mappers and relators with useful properties. Moreover, they integrate
nicely with the rest of the functor-based infrastructure.

The main contributions of this paper are the following:

– We introduce the notion of BNFCC as a generalisation of BNF (Sect. 2).
BNFCCs are equipped with more general relators and mappers than what
the underlying natural functor provides. These operations are useful for vari-
ous reasoning tasks (Sect. 1.2).

– We prove that BNFCCs are closed under composition (Sect. 3) and least and
greatest fixpoints (Sect. 4). This makes BNFCCs modular and avoids syntac-
tic conditions on definitions. In particular, every (co)datatype defined with
Isabelle/HOL’s (co)datatype package [7,8] is a BNFCC.

– We prove that subtypes preserve the BNFCC structure under certain con-
ditions (Sect. 5). Consequently, non-uniform (co)datatypes [8] are BNFCCs,
too. If there are no covariant and contravariant parameters, our conditions
are equivalent to those for BNFs.

– We prove that BNFCCs lift quotients unconditionally through live parameters
and under mild conditions through covariant and contravariant parameters
(Sect. 6). This makes Isabelle’s Lifting package more powerful, as the BNF
theory only proves lifting for live parameters.

We formalised all our constructions and proofs in Isabelle/HOL [25]. Since
reasoning about abstract functors is impossible in HOL, we axiomatised two
generic BNFCCs with sufficiently many parameters of each kind, and used them
for the concrete constructions. The formalisation includes the examples from
Sects. 1 and 2. In addition, we give informal proof sketches for most propositions

414 A. Lochbihler and J. Schneider

and theorems in Appendix A (Online Resource). The implementation of BNFCCs
as an extension of the existing packages is left as future work (Sect. 8).

1.1 Background: Bounded Natural Functors

A bounded natural functor (BNF) [38] is a type constructor F of some arity
equipped with a mapper, conversions to sets, and a cardinality bound on those
sets. A type parameter of F is either live or dead ; dead parameters are ignored
by the BNF operations. The mapper is given by the polymorphic operation
mapF :: (l ⇒ l′) ⇒ (l, d) F ⇒ (l′, d) F on the live parameters l, whereas the dead
parameters d remain fixed.1 We assume without loss of generality that all live
parameters precede the dead ones in the parameter list. For each live type param-
eter li, a BNF comes with a polymorphic setter setiF :: (l, d) F ⇒ li set. The car-
dinality bound bdF is assumed to be infinite and may depend only on non-live
parameters. The BNF operations must satisfy the following laws [7]:

mapF id = id mapF (f ◦ g) = mapF f ◦ mapF g i. |setiF| ≤ bdF (1)

i. setiF (mapF f x) = fi ‘ setiF x
i. ∀y ∈ setiF x. fi y = gi y

mapF f x = mapF g x
(2)

relF R � relF S � relF (R � S) (3)

Here, f ‘ A = {y | ∃x ∈ A. y = f x} denotes A’s image under f, |A| is A’s cardi-
nality, � is relation composition, and � is relation containment. Relations are
represented as binary predicates of type a ⊗ b = (a ⇒ b ⇒ bool). The relator relF
is defined as

relF R x y = (∃z. (i. setiF z ⊆ {(a, b) | Ri a b}) ∧ mapF π1 z = x ∧ mapF π2 z = y) (4)

where π1 and π2 project a pair to its components. The relator extends mapF to
relations, interpreting functions f by their graphs Gr f = (λx y. y = f x):

Lemma 1. If F is a BNF, then Gr (mapF f) = relF (Gr f).

BNFs are closed under various operations: functor composition, “killing” of
live type parameters, and least and greatest fixpoints. Examples of basic BNFs
are the identity functor, products (×), sums (+), and function spaces (⇒), where
the domain is dead. Finite lists a list are a datatype and hence a BNF, too, with
mapper maplist, relator rellist, and bound ℵ0. The setter setlist returns the set of
elements in the list.
1 The notation x stands for a meta-syntactic list of formal entities x1, x2, . . . , xn. We

use this notation quite liberally, such that the expanded type of mapF reads

(l1 ⇒ l′1) ⇒ (l2 ⇒ l′2) ⇒ . . . ⇒ (lm ⇒ l′m) ⇒ (l1, . . . , lm, d1, . . . , dn) F ⇒ (l′1, . . . , l
′
m, d1, . . . , dn) F.

Similarly, we write i. ϕ for the conjunction of all instances of ϕ over the index i.
Superscripts select a subsequence, e.g., x>2 represents x3, x4, . . . , xn.

Relational Parametricity and Quotient Preservation 415

1.2 Examples and Applications

We now illustrate the benefits of parametricity-based reasoning using small exam-
ples, which all require the generalised mappers and relators. Although all our
examples revolve around the DDS codatatype, parametricity-based reasoning is
not restricted to coalgebraic system models. It can equally be used for all the
other (co)datatypes, and whenever a type parameter is covariant or contravariant
(e.g., a in (a, b) tree = Leaf b | Node (a ⇒ (a, b) tree)), the BNFCC theory makes
the reasoning more powerful than the BNF theory.

Free Theorems. Wadler [39] showed how certain theorems can be derived from
parametricity by instantiating the relations with the graphs of functions and
using Lemma 1, which we generalise to BNFCCs in Sect. 2. As shown in the
introduction, the inputs and outputs of a DDS can be transformed with the
mapper mapdds. Parallel || and sequential • composition for DDS’s, e.g., are
defined corecursively by

primcorec (||) :: (a, b) dds ⇒ (c, d) dds ⇒ (a + c, b + d) dds where
run (S1 || S2) = (λx. case x of

Inl a ⇒ let (b, S′
1) = run S1 a in (Inl b, S′

1 || S2)
| Inr c ⇒ let (d, S′

2) = run S2 c in (Inr d, S1 || S′
2))

primcorec (•) :: (a, b) dds ⇒ (b, c) dds ⇒ (a, c) dds where
run (S1 • S2) = (λa. let (b, S′

1) = run S1 a; (c, S′
2) = run S2 b in (c, S′

1 • S′
2))

where Inl and Inr denote the injections into the sum type.
The following “free” theorems are derived from the parametricity laws by

rewriting only; no coinduction is needed. Note that the BNF mapper on live
parameters only would not be any good for • as the function g occurs both in
the live and dead positions.

mapdds f h S1 || mapdds g k S2 = mapdds (map+ f g) (map+ h k) (S1 || S2)
mapdds f g S1 • S2 = mapdds f id (S1 • mapdds g id S2)
S1 • mapdds g h S2 = mapdds id h (mapdds id g S1 • S2)

Reasoning with parametricity is especially useful in larger applications. The
first author formalised a cryptographic algebra based on sub-probabilistic dis-
crete systems (sPDS) similar to Maurer’s random systems [26]. Deriving the
free theorems from parametricity pays off particularly for transformers of sPDS,
which are formalised as a codatatype that recurses through another codatatype
of probabilistic resumptions. Proofs by coinduction would require substantially
more effort even for such simple theorems.

Data Refinement. Data refinement changes the representation of data in a pro-
gram. It offers a convenient way to go from abstract data structures like sets to
efficient ones like red-black trees, which are the key to generate efficient code
from a formalisation. Several tools automate the data refinement and synthesise

416 A. Lochbihler and J. Schneider

an implementation from an abstract specification in this way [9,10,14,21]. As
these tools are based on parametricity, (nested) data refinement is only possi-
ble in type parameters on which the relators act. A more general relator thus
increases the refinement capabilities.

For example, consider a DDS traverse G parametrised by a finite graph G.
Upon input of a node set A, it returns all successor nodes G[A] of A that have
not yet been visited. Such a DDS can be used to implement a breadth-first or
depth-first search traversal of a graph. Suppose that the correctness proof works
with abstract graphs, say, represented by a finite set of edges (type (a × a) fset),
whereas the refinement traversei represents the graph as a list of edges and
the inputs and outputs as lists (we use Haskell-style list comprehension syn-
tax). Using the canonical DDS coiterator dds-of and the refinement relation
fset-as-list :: a list ⊗ a fset for implementing finite sets by lists, we get the follow-
ing refinement theorem. Note that we need the general relator reldds to lift the
refinement relations on the inputs and outputs. (Recall that �⇒ is the function
space relator.)

primcorec dds-of :: (s ⇒ a ⇒ b × s) ⇒ s ⇒ (a, b) dds where
run (dds-of f s) = map× id (dds-of f) ◦ f s

definition traverse :: (a × a) fset ⇒ (a fset, a fset) dds where
traverse G = dds-of (λV A. (G[A] − V, V ∪ A)) ∅

definition traversei :: (a × a) list ⇒ (a list, a list) dds where
traversei E = dds-of (λV A. [y | (x, y) ← E, x ∈ setlist A, y /∈ V], V ∪ setlist A)) ∅

lemma Refinement : (fset-as-list �⇒ reldds fset-as-list fset-as-list) traversei traverse

Quotients. Quotient preservation theorems are used to modularly construct quo-
tient types and to lift functions and lemmas to them [16,17,20]. For example,
the type of finite sets fset is a quotient of lists where the order and multiplic-
ity of the elements are ignored. Given the quotient preservation theorems for
⇒ and dds, Isabelle’s Lifting package can lift this fset-list quotient to traverse’s
type. It can thus synthesise a definition for traverse using traversei and prove
the Refinement lemma automatically given a proof that traversei respects the
quotient.

The refinement relation fset-as-list can additionally be parametrised by a
refinement relation R on the elements [20]: fset-as-list′ R = rellist R � fset-as-list.
Combining traversei’s parametricity with Refinement using some BNFCC rela-
tor properties, one can then automatically derive a stronger refinement rule,
where the node type can simultaneously be refined; the assumption expresses
that R must preserve the identity of nodes, as expected from traversei’s implicit
dependence on the equality operation.

(R �⇒ R �⇒ (=)) (=) (=)
(fset-as-list′ R �⇒ reldds (fset-as-list′ R) (fset-as-list′ R)) traversei traverse

Relational Parametricity and Quotient Preservation 417

Generalised Rewriting. Rewriting replaces subterms with equal terms. In gener-
alised rewriting, relations other than equality are considered, and the context in
which rewriting takes place must have an appropriate congruence property [37].
For example, the DDS seen outputs all the elements in the current input set
that it has seen before. It is a monotone system with respect to the subset rela-
tion, which we express using the DDS relator. The graph traversal traverse is
also monotone in the underlying graph provided that the input sets remain the
same.

definition seen :: (a fset, a fset) dds where seen = dds-of (λS A. (S ∩ A, S ∪ A)) ∅
lemma Seen-Mono : reldds (⊆) (⊆) seen seen
lemma Traverse-Mono : reldds (=) (⊆) (traverse G) (traverse H) if G ⊆ H

Now suppose that H is a supergraph of G, or equivalently G ⊆ H.
Using the parametricity of sequential composition, we can thus rewrite
traverse G • seen to traverse H • seen, where the systems are related by
reldds (=) (⊆).

2 Bounded Natural Functors with Co- and
Contravariance

The operations specified by a BNF act only on live type parameters. As discussed
in the introduction, many types admit more general operations, for example
the function space’s mapper map⇒ g h f = h ◦ f ◦ g. Yet, the BNF structure is
restricted to the mapper map⇒ id h, which targets only the range, but not the
domain.

In this section, we define bounded natural functors with covariance and con-
travariance (BNFCC) as a generalization of BNFs. A BNFCC has a mapper
and relator which take additional covariant and contravariant arguments corre-
sponding to (a subset of) the dead parameters d. Thus d is refined into three
disjoint sequences: c for covariant, k for contravariant, and f for the remaining
fixed parameters which are ignored by the generalised operations. The names
covariant and contravariant indicate whether the mapper preserves the order of
composition or swaps it, and whether the relator is monotone or anti-monotone in
the corresponding argument, respectively. (Live parameters behave like covariant
parameters in this regard. We use “covariant” only for parameters that are not
live.) For example, the function space k ⇒ l is a BNFCC that is live in l and con-
travariant in k, as map⇒’s type (k′ ⇒ k) ⇒ (l ⇒ l′) ⇒ (k ⇒ l) ⇒ (k′ ⇒ l′) indicates.
Similarly, the BNFCC (c ⇒ k) ⇒ l is live in l, covariant in c, and contravariant
in k.

Definition 1 (BNFCC). A BNFCC is a type constructor F with operations

mapF :: (l ⇒ l′) ⇒ (c ⇒ c′) ⇒ (k′ ⇒ k) ⇒ (l, c, k, f) F ⇒ (l′, c′, k′, f) F

relF :: l ⊗ l′ ⇒ c ⊗ c′ ⇒ k ⊗ k′ ⇒ (l, c, k, f) F ⊗ (l′, c′, k′, f) F

418 A. Lochbihler and J. Schneider

and, like for plain BNFs, a cardinality bound bdF and set functions setiF for all
live parameters li. The cardinality bound may depend on c, k, and f, but not on
l. We define two conditions posF, negF for the relator relF subdistributing over
relation composition:2

posF, negF :: (c ⊗ c′) × (c′ ⊗ c′′) ⇒ (k ⊗ k′) × (k′ ⊗ k′′) ⇒ bool

posF (C, C′) (K, K′) ←→
(∀L L′. relF L C K � relF L′ C′ K′ � relF (L � L′) (C � C′) (K � K′)

)
(5)

negF (C, C′) (K, K′) ←→
(∀L L′. relF (L � L′) (C � C′) (K � K′) � relF L C K � relF L′ C′ K′) (6)

The BNFCC operations must satisfy the conditions shown in Fig. 1:

1. The mapper mapF is functorial with respect to all non-fixed parameters (7)
and relationally parametric (8).

2. The BNF laws about the setters (the cardinality bound, naturality, and con-
gruence) are satisfied for the mapper map�

F � = mapF � id id restricted to live
arguments (9).

3. The relator relF is monotone in live and covariant arguments, and anti-
monotone in contravariant arguments; the relator re Fl

� L = re Fl
� L (=) (=)

restricted to live arguments is strongly monotone (10).3

4. The relator preserves equality and distributes over converses −1 (11).
5. The relator distributes over relation composition if the relations for covariant

and contravariant parameters are equality (12).

In comparison to plain BNFs, the BNFCC relator is a primitive operation
because it is not obvious how to generalise the characterisation (4) in terms of
the mapper and setters to covariant and contravariant arguments. We therefore
require several properties of the relator. Note that strong monotonicity (10) and
negative composition subdistributivity (12) on live arguments are equivalent to
the characterisation of re Fl

�, given the other axioms.
Distributivity over relation composition is split into two directions (positive

and negative) because concrete functors satisfy the directions under different
conditions and some theorems only need one of the two directions. The names
positive and negative stem from Isabelle’s Lifting package, which needs the appro-
priate direction for positive or negative positions in types. In this paper, we often

2 In our formalisation, posF and negF take type tokens to avoid issues with hidden
polymorphism in the live and fixed type parameters. We omit this detail in the
paper to simplify the notation.

3 When posF ((=), C) ((=), K) = negF ((=), C) ((=), K) = True for all C and K, then
the two monotonicity rules (10) are equivalent to the following combined rule:

i. ∀a ∈ setiF x. ∀b ∈ setiF y. Li a b −→ L′
i a b i. Ci C′

i i. K′
i Ki

relF L C K x y −→ relF L′ C′ K′ x y
.

Relational Parametricity and Quotient Preservation 419

mapF id id id= id mapF (�◦ �′) (c◦ c′) (k′ ◦ k) =mapF � c k ◦mapF �′ c′ k′ (7)

(L L′) (C C′) (K′ K) relF L C K relF L′ C′ K′) mapF mapF (8)

i. |setiF| ≤ bdF i. setiF (map�
F � x) = �i ‘ set

i
F x

i. ∀y ∈ setiF x. �i y= �′
i y

map�
F � x=map�

F �′ x
(9)

i. Li � L′
i i.Ci �C′

i i. K′
i � Ki

relF L C K � relF L′ C′ K′
i. ∀a ∈ setiF x. ∀b ∈ setiF y. Li a b −→ L′

i a b

re Fl
� L x y −→ re Fl

� L′ x y
(10)

relF (=) (=) (=) = (=) (relF L C K)−1 = relF L−1 C−1 K−1 (11)

posF ((=),(=)) ((=),(=)) negF ((=),(=)) ((=),(=)) (12)

Fig. 1. Conditions on the operations of a BNFCC

derive sufficient criteria for each direction, for concrete functors and BNFCC con-
structions. For example, the function space k ⇒ l satisfies the positive direction
unconditionally, i.e., pos⇒ = True. In contrast, the negative direction does not
always hold. But it does if the contravariant relations are functional, i.e., graphs
of functions:

left-unique K right-total K right-unique K ′ left-total K ′

neg⇒ (K,K ′)
, (13)

where left-unique R = (∀x z y. R x z ∧ R y z −→ x = y) and left-total R = (∀x.
∃y. R x y), and right-unique and right-total are defined analogously.

The precise relationship between BNFs and BNFCCs is as follows:

Proposition 1. 1. Every BNF (l, d) F is a BNFCC where l are live, d are fixed,
and mapF, setF, bdF, and relF are inherited from the BNF. So posF = negF =
True’.

2. Every BNFCC (l, c, k, f) F is a BNF with live parameters l and dead parameters
c, k, f for the mapper map�

F, setters setF, bound bdF, and relator re Fl
�.

The BNFCC axioms are either BNF axioms or routinely proved from them, and
vice versa. The only exception is re Fl

�’s equational characterisation (4) for a
BNFCC, which implies, e.g., that negF = True [7]. To show the characterisation,
we use the following property, which generalises Lemma 1 to the BNFCC mapper
and relator. It follows from the functor laws (7), parametricity (8), and equality
preservation (11).

Lemma 2. For a BNFCC F, the graph of mapF � c k is the relator applied
to the graphs of �, c, and the converse graphs of k: Gr (mapF � c k) =
relF (Gr �) (Gr c) (Gr k)−1.

We now give some examples of BNFCCs. Every BNF without dead param-
eters is also a BNFCC with all parameters being live by Proposition 1. This
includes all sums-of-product (co)datatypes, which are also known as polynomial

420 A. Lochbihler and J. Schneider

(co)datatypes. Many other BNFs such as distinct lists, finite and countable sets,
and discrete probability distributions fall into this class, too. For these, our
BNFCC generalisation would not have been necessary. But there are other types
where BNFCCs do make a difference:

(a) We previously mentioned the function type k ⇒ l with mapper map⇒ and
relator �⇒, where l is live and k is contravariant.

(b) The powerset functor c set has the image operation as the mapper and the
relator

relset C X Y = (∀x ∈ X. ∃y ∈ Y. C x y) ∧ (∀y ∈ Y. ∃x ∈ X. C x y).

The parameter c is covariant and not live only because there is no bound on
the cardinality. We have posset = negset = True.

(c) Sets c bsetb with a finite cardinality bound b ∈ N are a subtype of the power-
set functor c set. For b > 2, bsetb is not a BNF in c [15]. We will see in Sect. 5
that we obtain the BNFCC properties by composition and subtyping. We have
posbsetb = True, and right-unique C ∨ left-unique C ′ implies negbsetb (C,C ′).

(d) Predicates k pred = k ⇒ bool are the contravariant powerset functor with
mapper map⇒ k id and relator K �⇒ (=). Interestingly, the negative subdis-
tributivity condition negpred is weaker than neg⇒ because the live parame-
ter of ⇒ has been instantiated to bool. We thus get that negpred (K,K ′) is
implied by left-unique K ∧ right-total K ∨ right-unique K ′ ∧ left-total K ′, i.e.,
only one of the two relations must be functional, not both as in (13). Clearly,
pospred = True.

(e) Filters c filter (sets of sets closed under finite intersections and supersets) can
be viewed as a semantic subtype of c pred pred = (c ⇒ bool) ⇒ bool. Here, c
is covariant because we go twice through ⇒’s left-hand side.

These examples propagate: whenever one of these types occurs inside a larger
type, this type also benefits from BNFCC’s greater generality over BNF’s.

3 Simple Operations on BNFCCs

We now show that BNFCCs are closed under functor composition, like BNFs
are. This property is crucial for a modular construction of (co)datatypes.
It allows us to construct arbitrarily complex signatures from simple build-
ing blocks, because the BNFCC properties follow by construction. For exam-
ple, the type k option ⇒ (c1 × c2) set is a composition of the type constructors
⇒, option, set, and ×. For BNFCCs, we distinguish three kinds of composition
depending on whether the composition occurs in a live (set in k ⇒ ◊), covariant
(× in ◊ set), or contravariant parameter (option in ◊ ⇒ l).

Before we turn to composition, we discuss two technical issues: demoting and
merging parameters. For BNFs, demotion is known as killing, which transforms
a live parameter into a dead. For BNFCCs, there are three kinds of demotion
():

Relational Parametricity and Quotient Preservation 421

live covariant

contravariant
fixed

Demotion is a preparatory step for composition: If composition happens in a
covariant or contravariant position, the live parameters of the inner functor
are no longer live. Demotion first transforms all live parameters into covariant
ones. During composition in a covariant or contravariant parameter, we can thus
assume that the inner functor has no live parameters.

Merging unifies two type parameters of a BNFCC. Both type parameters
must be of the same kind (live, covariant, contravariant, or fixed)—otherwise,
they must be demoted first. For example, we can merge c1 and c2 in (c1 × c2) set
directly to obtain the unary covariant functor (c × c) set. In contrast, before
merging k and l in k ⇒ l, we must demote the live parameter l and the con-
travariant parameter k to fixed. Treating merging as a separate operation simpli-
fies the composition theorem (Theorem 1 below) as we can assume without loss
of generality that the two functors do not share any parameters.

Proposition 2. BNFCCs are closed under all kinds of demotion and merging.

Demoting a live parameter adds an argument to the conditions for com-
position distribution, i.e., it removes the corresponding relations from the uni-
versal quantifiers in (5 and 6). So the conditions become weaker. It may
therefore be useful to associate one type constructor with several BNFCC

instances that differ in the live parameters. In k ⇒ l, e.g., demoting l to c
allows us to relax the conditions on k’s relations by imposing some on c’s.
In the covariant case, negative distributivity neg⇒ (C,C ′) (K,K ′) holds if
right-unique K ′, left-total K ′, left-unique C ′, and right-total C ′. But in the live
case, neg⇒ (K,K ′) does not hold for right-unique K ′, left-total K ′ in general.
This difference will be crucial for quotient preservation (Sect. 6).

We now return to composition and show that the class BNFCC of functors
is closed under composition. We only discuss composition in a single parameter.
This is not a restriction because composing with multiple functors simultaneously
is equivalent to a sequence of single compositions, independent of the order. We
also assume that the two functors do not share any parameters. A subsequent
merge step can always introduce the sharing. We distinguish four different kinds
of composition depending on which parameter the inner functor instantiates. For
each case, we obtain different sufficient criteria for relator subdistributivity, as
shown in the next theorem.

Theorem 1. BNFCCs are closed under composition in all kinds of parameters.
Formally, let (lF, cF, kF, fF) F and (lG, cG, kG, fG) G be BNFCCs such that no param-
eter is shared between F and G. We consider four kinds of composing F with G
into a new functor FG, where i denotes the position of the composition in F’s
corresponding parameter list:4

4 For example, if we instantiate the third covariant parameter of F with G, then i = 3.

422 A. Lochbihler and J. Schneider

Live. (l<i
F , (lG, cG, kG, fG) G, l>i

F , cF, kF, fF) F is a BNFCC with l�=i
F , lG live,

cF, cG covariant, kF, kG contravariant, and fF, fG fixed.
posF (CF, C ′

F) (KF,K ′
F) and posG (CG, C ′

G) (KG,K ′
G) are sufficient for

posFG (CF, C ′
F) (CG, C ′

G) (KF,K ′
F) (KG,K ′

G); it is the same for negFG.
Covariant. If lG is empty, then (lF, c<i

F , (cG, kG, fG) G, c>i
F , kF, fF) F is a

BNFCC with lF live, c �=i
F , cG covariant, kF, kG contravariant, and fF, fG

fixed. posG (CG, C ′
G) (KG,K ′

G) and posF (CF, C ′
F)<i (relG CG KG, relG C ′

G K ′
G)

(CF, C ′
F)>i (KF,K ′

F) are sufficient for posFG (CF, C ′
F)�=i (CG, C ′

G) (KF,K ′
F)

(KG,K ′
G); it is the same for negFG.

Contravariant. If lG is empty, then (lF, cF, k<i
F , (cG, kG, fG) G, k>i

F , fF) F is a

BNFCC with lF live, cF, kG covariant, k �=i
F , cG contravariant, and fF, fG

fixed. negG (CG, C ′
G)(KG, K ′

G) and posF (CF, C ′
F) (KF,K ′

F)<i (relG CG KG,
relG C ′

G K ′
G) (KF,K ′

F)>i are sufficient for posFG (CF, C ′
F) (KG,K ′

G) (KF,
K ′

F)�=i (CG, C ′
G); it is the same for negFG. (Note that in the new functor,

CG, C ′
G are now contravariant and KG,K ′

G covariant.)
Fixed. If lG, cG, kG are all empty, then (lF, cF, kF, f<i

F , fG G, f>i
F) F is a

BNFCC with lF live, cF covariant, kF contravariant, and f �=i
F , fG fixed.

posF (CF, C ′
F) (KF,K ′

F) is sufficient for posFG (CF, C ′
F) (KF,K ′

F); it is the
same for negFG.

For example, consider the composition of (l1, k1) F = k1 ⇒ l1 with
(c1, k2) G = k2 ⇒ c1 in the contravariant parameter k1. In G, the range c1 is nor-
mally live, but it has already been demoted such that there are no more live
parameters. We obtain the BNFCC (k2 ⇒ c1) ⇒ l1, where k2 is now covariant and
c1 is contravariant, while l1 remains live. The conditions pos⇒ (K2,K2) = True
and neg⇒ (K2 �⇒ C1,K

′
2 �⇒ C ′

1) are sufficient for negative subdistributivity of the
composed relator (K2 �⇒ C1) �⇒ L1, i.e., they imply neg(⇒)⇒ (K2,K

′
2) (C1, C

′
1).

4 Least and Greatest Fixpoints

Bounded natural functors have been introduced mainly to construct
(co)datatypes modularly in HOL. A (co)datatype a T defined by the command

(co)datatype a T = ctorT (dtorT : (a T, a) F)

corresponds to the least (greatest) solution X of the fixpoint equation
a X ∼= (a X, a) F, up to the (co)algebra isomorphism given by the constructor
ctorT and destructor dtorT. Whenever the (co)recursion goes through a live type
parameter of F, the fixpoint exists and it is again a BNF for the remaining live
parameters—this is the closure property under fixpoints.5

5 For mutually recursive (co)datatypes, the solutions are taken over a system of equa-
tions instead of a single fixpoint equation. The BNFCC theory generalises to systems
of equations in the same way as the BNF theory does.

Relational Parametricity and Quotient Preservation 423

In this section, we show that every (co)datatype defined over a BNFCC can
be extended to a BNFCC in a meaningful way, namely such that the following
primitive (co)datatype operations are parametric with respect to the generalised
relator: the constructor ctorT, the destructor dtorT, and a (co)recursor, which
witnesses initiality or finality of the (co)algebra. In the following, we consider
a BNFCC F and its least fixpoint T taken over the first live parameter. We
define T’s generalised mapper by primitive (co)recursion according to the fixpoint
equation

mapT � c k (ctorT x) = ctorT (mapF (mapT � c k) � c k x),

and T’s generalised relator (co)inductively as the least or greatest predicate
closed under

relF (relT L C K) L C K x y

relT L C K (ctorT x) (ctorT y)
.

Note that relT is well-defined since relF is monotone in the live arguments. This
choice of the relator (and therefore of the mapper, due to Lemma 2) is intuitively
correct as we obtain a general form of parametricity to the extent permitted
by relF:

Proposition 3. The constructor, destructor, and (co)recursor for T are para-
metric with respect to relT.

The canonical BNF map function for T, which acts only on T’s live
parameters, is equal to map�

T by definition. Similarly, the restricted rela-
tor re Tl

� satisfies the BNF characterisation (4). The setters setT satisfy
only the restricted parametricity law (re Tl

� L �⇒ relset Li) setiT setiT. As they
ignore the covariant and contravariant parameters, the general parametric-
ity law (relT L C R �⇒ relset Li) setiT setiT does not make sense and does not
hold in general either. For example, the setter for the function space k ⇒ l
takes the range of the function. Choosing K = ⊥, where ⊥ is the empty
relation, and L = (=), then (K �⇒ L) (λ . True) (λ . False), but clearly not
relset (=) (range (λ . True)) (range (λ . False)).

Theorem 2. BNFCCs are closed under least and greatest fixpoints through live
parameters. In particular, if T is the least or greatest fixpoint through one of F’s
live parameters, then posF (C,C ′) (K,K ′) implies posT (C,C ′) (K,K ′), and the
same for negF and negT.

5 Subtypes

In HOL, a new type a T is defined by carving out a non-empty subset S of
an already existing type a F. Such a type definition creates an embedding iso-
morphism RepT :: a T ⇒ a F between a T and S with inverse AbsT :: a F ⇒ a T,
where AbsT is unspecified outside of S. If F is a BNF, then the new type T can
inherit F’s BNF structure provided that S is “well-behaved.” Biendarra [6] iden-
tified the following two conditions on S, from which his Isabelle/HOL command
lift-bnf derives the BNF properties.

424 A. Lochbihler and J. Schneider

– Closed under the BNF mapper: whenever x ∈ S, then map�
F � x ∈ S; and

– Reflects projections: if map�
F π1 z ∈ S and map�

F π2 z ∈ S, then z ∈ S.

Meanwhile, Popescu [32] weakened the second condition as follows: when-
ever map�

F π1 z ∈ S and map�
F π2 z ∈ S, then there exists y ∈ S such that

setiF y ⊆ setiF z for all i, map�
F π1 y = map�

F π1 z, and map�
F π2 y = map�

F π2 z.
In this section, we generalise Biendarra’s and Popescu’s conditions to

BNFCCs:

Theorem 3 (BNFCC inheritance for subtypes). Let (l, c, k, f) F be a
BNFCC and let (l, c, k, f) T be isomorphic to the non-empty set S :: (l, c, k, f) F set
via the morphisms RepT and AbsT. The type T inherits the BNFCC structure
from F via

mapT � c k = AbsT ◦ mapF � c k ◦ RepT setiT = setiF ◦ RepT bdT = bdF

relT L C K x y = relF L C K (RepT x) (RepT y)

if relT (L � L′) (=) (=) � relT L (=) (=) � relT L′ (=) (=) for all L,L′, and
x ∈ S implies mapF � c k x ∈ S. Moreover, posF (C,C ′) (K,K ′) implies
posT (C,C ′) (K,K ′).

Negative subdistributivity can often be reduced to proving closedness
under zippings, which generalises reflection of projections in the BNF case.
We allow a condition neg′

T that is stronger than negF, assuming that
neg′

T ((=), (=)) ((=), (=)) still holds. The set S is closed under zippings for neg′
T

iff

x ∈ S y ∈ S relF L (C � C′) (K � K′) x y

relF (λa (a′, b). a′ = a ∧ L a b) C K x z relF (λ(a, b′) b. b′ = b ∧ L a b) C′ K′ z y

z ∈ S

for all x, y, z and all L,C,C ′,K,K ′ such that neg′
T (C,C ′) (K,K ′).

Lemma 3. Let S be closed under zippings for neg′
T. Then neg′

T (C,C ′) (K,K ′)
implies negT (C,C ′) (K,K ′).

Corollary 1. BNFCCs are closed under subtypes that are closed under the
BNFCC mapper and zippings (for some condition on negative subdistributivity).

Non-uniform (co)datatypes are therefore also BNFCCs, as they are defined as
subtypes of ordinary (co)datatypes [8], and the subtype predicate is invariant
under the mapper.

The assumptions on S in Theorem 3 and Corollary 1 are indeed generali-
sations of Popescu’s and Biendarra’s conditions, respectively. For when there
are neither covariant nor contravariant parameters, the assumptions on S in
Theorem 3 are equivalent to Popescu’s conditions, given the BNF relator char-
acterisation (4). Similarly, closure under zippings is equivalent to Biendarra’s
reflecting projections in that case.

Relational Parametricity and Quotient Preservation 425

Note that closure under zippings strictly implies negative subdistributivity.
For example, sets of cardinality at most two are a BNF and a subtype of the
finite powerset BNF fset. Yet, the cardinality restriction to at most two does not
reflect projections (take z = {a, b} × {0, 1}). Our Theorem3 handles this case,
but Lemma 3 cannot be used as closedness under zippings is not provable. The
current implementation of lift-bnf cannot handle this case either.

Since BNFCCs do not require the relator distributing unconditionally over
relation composition, there can be several relators that extend the mapper
in the sense of Lemma 2. For example, filters (Sect. 2) are a subtype of the
BNFCC obtained by composing the contravariant powerset functor with itself.
This view yields the mapper mapfilter c F = {X | c−1(X) ∈ F} from the litera-
ture. (We omit the conversions between sets and predicates for clarity). Yet,
there are two relator canditates for filter: First, the construction in Theorem 3
gives rel1filter R F G = relpred (relpred R) F G. Second, the canonical categorical
extension of a functor on SET to REL [12,34] gives

rel2filter R F G = (∃Z. R ∈ Z ∧ F = {U | π−1
1 (U) ∩ R ∈ Z} ∧ G = {V | π−1

1 (V) ∩ R ∈ Z})

F G

Rwhere f−1(V) denotes the preimage of V under f . The lat-
ter relator is strictly stronger than the former. For example,
the drawing on the right shows a filter F = {{a1, a2, a3}} on
a three-element type, a filter G = {{b1}, {b1, b2}} on a two-
element type, and a relation R between the elements. We have
rel1filter R F G, but not rel2filter R F G. In this case, rel2filter is the right choice as it
gives posfilter = negfilter = True [12]. But sometimes the relator definition from
Theorem 3 is better. Probability distributions with a finite cardinality bound
on the support, e.g., preserve quotients only with the relator from Theorem 3
(Sect. 6).

6 Quotient Preservation

We now consider quotient relationships between types and how BNFCCs preserve
such relationships. This allows a modular construction of quotients by composing
BNFCCs.

A type a is a quotient of another type r under a partial equivalence relation R
on r iff a is isomorphic to r’s equivalence classes. A quotient a can thus be viewed
as an abstraction of r, and, conversely, r as a refinement of a. (This definition sub-
sumes both subtypes and total quotients. One must consider partial equivalence
relations in a higher-order setting for reasons similar to why parametricity uses
relations instead of functions [16].) A type constructor b F preserves quotients
in the type parameters b∈I = bi1 , . . . , bim iff a F is a quotient of r F whenever
a∈I are quotients of r∈I and a/∈I = r/∈I (for some construction of the equivalence
relation; we provide the details below). For lists, e.g., a quotient between element
types a and r yields a quotient between lists of such elements, a list and r list.
Note that quotient preservation is different from the construction of a quotient

426 A. Lochbihler and J. Schneider

type or subtype from a BNFCC. The former, which we discuss in this section,
deals with type instantiation, while the latter produces a truly new type.

In HOL, a quotient between types is described by a relation Q :: r ⊗ a that is
right-total and right-unique. Such a relation induces (i) an embedding morphism
rep :: a ⇒ r, (ii) an abstraction morphism abs :: r ⇒ a, and (iii) the underlying
partial equivalence relation R = Q � Q−1.

The embedding rep picks an unspecified element in the equivalence class,
which may require the axiom of choice, and abs r is unspecified if no equivalence
class contains r. Due to this underspecification, it is useful to keep track of rep
and abs as primitive operations, e.g., for code generation. Similarly, Isabelle’s
Lifting package [17] maintains the explicit characterisation of the equivalence
relation R to simplify the respectfulness proof obligations presented to the user.
The predicate Quot formalises these relationships:

Quot R abs rep Q ←→ (Q ≤ Gr abs ∧ Gr rep ≤ Q−1∧ R = Q � Q−1). (14)

Quotient preservation can thus be expressed as an implication. For
lists, e.g., we have that Quot R abs rep Q implies Quot (rellist R) (maplist abs)
(maplist rep) (rellist Q). Note how the relator and mapper lift the relations and
morphisms from elements to lists. BNFs preserve quotients in all live parameters;
this is an easy consequence of relator monotonicity and distributivity.

Theorem 4 ([20, Sect. 4.7]). BNFs preserve quotients in live parameters, in the
following sense: Quot (relF R) (mapF abs) (mapF rep) (relF Q) holds whenever
(l, d) F is a BNF and i. Quot Ri absi repi Qi.

This theorem does not fully generalise to BNFCCs with covariant and con-
travariant parameters, as the counterexample in Appendix B (Online Resource)
shows. We obtain the following result, however, which shows that positive sub-
distributivity of the relator over the quotient relations and their converses is a
sufficient condition for quotient preservation.

Theorem 5. Let (l, c, k, f) F be a BNFCC. Assume that i. Quot Ri
χ

absi
χ repi

χ T i
χ for all χ ∈ {L,C,K}. If posF (QC, Q−1

C) (QK, Q−1
K), then

Quot (relF RL RC RK) (mapF absL absC repK) (mapF repL repC absK) (relF QL QC QK).

We now illustrate how this theorem applies to different BNFCCs. Note that
it applies to all the BNFCCs mentioned at the end of Sect. 2, as their relators
all positively distribute over all relation compositions (if we use the right rela-
tor for filters as dicussed in Sect. 5). For a BNFCC F constructed from these
primitives, posF = True need not hold, though, as BNFCC composition in neg-
ative positions swaps the positive and negative conditions. Nevertheless, we
can derive posF (Q,Q−1) for quotient relations Q by using our composition
theorems, as the following two examples illustrate. First, predicates over predi-
cates c pp = (c ⇒ bool) ⇒ bool do preserve quotients. By the contravariant case

Relational Parametricity and Quotient Preservation 427

of Theorem 1, pospp (Q,Q−1) follows from pospred (Q �⇒ (=), Q−1
�⇒ (=)) and

negpred (Q,Q−1). The former is trivial as pospred = True. For the latter, observe
that predicates k pred are obtained from the function space k ⇒ c by instanti-
ating c with the nullary BNFCC bool. So, by Theorem 1 (the covariant case),
negpred (Q,Q−1) follows from negbool = True and neg⇒ ((=), (=)) (Q,Q−1),
which is easily proved using Q being a quotient relation. In this reasoning,
it is essential that we do not use the function space BNFCC with the live
codomain. Instead, we first demote the codomain to a covariant parameter
(fixed would also do). For in the live case, Theorem1 gives us only the impli-
cation from neg⇒ (Q,Q−1) (without the live parameter relations as arguments)
to negpred (Q,Q−1), but neg⇒ (Q,Q−1) does not hold as it quantifies over all
live parameter relations. This illustrates the weakening by demotion that we
discussed below Proposition 2.

The second example shows that it is important to associate several BNFCCs
with one type constructor, even in a single type expression. The codatatype

codatatype (c, k) T = ctorT ((c ⇒ k) ⇒ (c, k) T)

is the final coalgebra of the functor (l, c, k) F = (c ⇒ k) ⇒ l and it preserves
quotients. To derive posT (C,C ′) (K,K ′) modularly from the construction, we
must treat F’s outer function space with live codomain (as the corecursion goes
through this parameter) and F′s inner function space with covariant codomain
(for the same reason as in the pp case).

7 Related Work

We have already discussed the related work on bounded natural functors [6–
8,20,38] in the previous sections. Here, we discuss how BNFCCs fit into the
Isabelle ecosystem, and compare our approach to previous work for other theo-
rem provers.

The Transfer package by Huffman and Kunčar [17] implements Mitchell’s rep-
resentation independence [27] using a database of parametricity theorems and
(conditional) respectfulness theorems for equality and quantifiers. BNFCC rela-
tors can be directly used in the parametricity rules, making them more versatile
than BNF relators thanks to the generalisation to covariant and contravariant
arguments. The respectfulness theorems follow from monotonicity and positive
or negative relator distributivity, whose preconditions our composition theorems
carefully track. Moreover, Gilcher’s automatic derivation of parametricity theo-
rems [11] also benefits from the generalised relators.

The Lifting package [17] lifts constants over quotients and derives appropri-
ate transfer rules using databases of quotient preservation theorems and rela-
tor monotonicity and distributivity. Like for Transfer, our theorems can be fed
directly into these databases, making the Lifting package more useful.

Lammich’s Autoref tool [21,22] performs data refinement based on para-
metricity. Currently, Lammich must manually derive relators for (co)datatypes.

428 A. Lochbihler and J. Schneider

BNFCCs offer a systematic way to define relators and to derive their fundamental
properties.

Apart from HOL, parametricity has recently received a lot of attention in
dependent type theories as implemented in Coq, Agda, and Lean. In these rich
logics, it is possible to internalise Reynolds’ relational interpretation of types [5].
So, the parametricity theorem is just a syntactic translation of a type and its
proof can be systematically programmed. Various such translations have been
studied for different subsets of the logics [2,3,19]; Anand and Morrisett provide a
good overview [2]. These works prove (by induction over the syntax of the logic)
that all functions defineable in the logic are parametric and then implement
this proof as a tool such as ParamCoq [19] and ParamCoq-iff [2]. As HOL lacks
the syntactic nature of type theories and its classical axioms forbid a general
parametricity result, we follow a semantic approach using BNFCCs instead. This
has the advantage that our approach is modular: only semantic properties matter,
but not the particular way that something was defined in.

Moreover, most of the syntax-directed type-theoretic works hardly study how
the relational interpretation can be used. At best, free theorems are derived (e.g.,
Anand and Morrisett derive respectfulness of α-equivalence of λ-terms from an
operational semantics being parametric). Parametricity is also the foundation
for two data refinement frameworks in Coq, Fiat [10] and CoqEAL [9], similar
to Autoref [22] in Isabelle/HOL. They define the relators manually in an ad hoc
way and it is unclear whether the syntax-directed works could be used instead.
In contrast, BNFCCs provide a framework to systematically define mappers and
relators and to derive their rich properties. They thus directly lead to a wealth
of applications, including free theorems, data refinement, and type abstraction
through quotients.

8 Conclusion and Future Work

BNFCCs generalise the concept of bounded natural functors, which are motivated
by the construction of (co)datatypes in HOL. They equip both covariant and con-
travariant type parameters with a functorial structure, even when they do not
meet the requirements of bounded naturality. Hence, the mapper and relator of
a BNFCC act on these type parameters, too. We have shown that BNFCCs are
closed under the most important type construction mechanisms in HOL: com-
position, datatypes, codatatypes, and subtypes. This way, we obtain canonical
definitions of the mapper and the relator for these constructions, together with
proofs of some useful properties. For (co)datatypes, it is crucial that we stay
compatible with the BNF restrictions, which motivates our unified view on the
functorial structure of types. Applications of parametricity, such as data refine-
ment, quotients, and generalised rewriting, benefit from the extended operations.

We have not yet automated the BNFCC construction in Isabelle/HOL, but
we have formalised the constructions and proofs in an abstract setting. Moreover,
we applied the BNFCC theory manually in a few applications. In the CryptHOL
framework [4,24], e.g., the first author manually defined the generalised mapper
and relator for the codatatype

Relational Parametricity and Quotient Preservation 429

codatatype (a, b, c) gpv = GPV ((a + (b × (c ⇒ (a, b, c) gpv))) option pmf)

which models sub-probabilistic discrete systems, and proved properties like rela-
tor monotonicity and distributivity. Following the BNFCC theory, we have refac-
tored the definitions and proofs. By exploiting the modularity, they became
cleaner, simpler, and shorter.

BNFCCs are functors on the category of sets, but for covariant and contravari-
ant parameters, they need not be functors on the category of relations, as the
relator need not distribute unconditionally over relation composition [17]. This
is a necessary consequence of dealing with the full function space. Therefore, the
relator is not uniquely determined by the mapper, either, and one must choose
the relator that fits one’s needs best.

There are now four groups of type parameters: live, covariant, contravariant,
and fixed. Are they enough or do we need further refinements? In the category of
sets, this is as far as we can possibly get while retaining the functorial structure.
But in some cases, we would like to go beyond. For example, the state s in a state
monad (s, a) stateM = s ⇒ a × s occurs in a positive and a negative position, so
demotion makes s fixed. The BNFCC mapper and relator therefore ignore it.
One could generalise the mapper to s if we restrict the morphisms to bijections,
i.e., change the underlying category to bijections. Similarly, if a type parameter
has a type class constraint, only type class homomorphisms can be mapped in
general. Extending BNFCCs into this direction is left as future work.

Moreover, we have not studied whether quotient types [17,18] can be
equipped with a BNFCC structure in general. We are still working on identi-
fying the conditions under which a quotient inherits the BNF structure from
the raw type. For the extension to BNFCCs, we conjecture that we must first
generalise the setter concept from live to covariant and contravariant parame-
ters, as unsound (set) functors seem to require repair even in the BNF case [1].
Furthermore, we are interested in lifting a family of quotient relations between
two BNFCCs to a quotient relation between their fixpoints. This is necessary for
refining a whole collection of types that is closed under (co)datatype formation,
as needed, e.g., in [35].

Acknowledgements. The authors thank Dmitriy Traytel, Andrei Popescu, and the
anonymous reviewers for inspiring discussions and suggestions how to improve the
presentation. The authors are listed alphabetically.

References

1. Adámek, J., Gumm, H.P., Trnková, V.: Presentation of set functors: a coalgebraic
perspective. J. Log. Comput. 20, 991–1015 (2010)

2. Anand, A., Morrisett, G.: Revisiting parametricity: inductives and uniformity of
propositions. CoRR abs/1705.01163 (2017). http://arxiv.org/abs/1705.01163

3. Atkey, R., Ghani, N., Johann, P.: A relationally parametric model of dependent
type theory. In: POPL 2014, pp. 503–515. ACM (2014)

http://arxiv.org/abs/1705.01163

430 A. Lochbihler and J. Schneider

4. Basin, D., Lochbihler, A., Sefidgar, S.R.: CryptHOL: game-based proofs in higher-
order logic. Cryptology ePrint Archive: Report 2017/753 (2017). https://eprint.
iacr.org/2017/753

5. Bernardy, J.P., Jansson, P., Paterson, R.: Proofs for free: parametricity for depen-
dent types. J. Funct. Program. 22(2), 107–152 (2012)

6. Biendarra, J.: Functor-preserving type definitions in Isabelle/HOL. Bachelor thesis,
Fakultät für Informatik, Technische Universität München (2015)

7. Blanchette, J.C., et al.: Truly modular (Co)datatypes for Isabelle/HOL. In: Klein,
G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08970-6 7

8. Blanchette, J.C., Meier, F., Popescu, A., Traytel, D.: Foundational nonuniform
(co)datatypes for higher-order logic. In: LICS 2017, pp. 1–12. IEEE (2017)

9. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free!. In: Gonthier, G.,
Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 147–162. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03545-1 10

10. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: deductive synthesis of
abstract data types in a proof assistant. In: POPL 2015, pp. 689–700. ACM (2015)

11. Gilcher, J., Lochbihler, A., Traytel, D.: Conditional parametricity in Isabelle/HOL
(extended abstract). Poster at TABLEAU/FroCoS/ITP 2017 (2017). http://www.
andreas-lochbihler.de/pub/gilcher2017ITP.pdf

12. Gumm, H.P.: Functors for coalgebras. Algebra Univ. 45, 135–147 (2001)
13. Gunter, E.L.: Why we can’t have SML-style datatype declarations in HOL. In:

TPHOLs 1992. IFIP Transactions, vol. A-20, pp. 561–568. Elsevier, North-Holland
(1992)

14. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in
Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39634-2 10

15. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic system
types. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 203–220.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1 13

16. Homeier, P.V.: A design structure for higher order quotients. In: Hurd, J., Melham,
T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 130–146. Springer, Heidelberg (2005).
https://doi.org/10.1007/11541868 9

17. Huffman, B., Kunčar, O.: Lifting and Transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp.
131–146. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 9

18. Kaliszyk, C., Urban, C.: Quotients revisited for Isabelle/HOL. In: SAC 2011, pp.
1639–1644. ACM (2011)

19. Keller, C., Lasson, M.: Parametricity in an impredicative sort. CoRR
abs/1209.6336 (2012). http://arxiv.org/abs/1209.6336

20. Kunčar, O.: Types, abstraction and parametric polymorphism in higher-order logic.
Ph.D. thesis, Fakultät für Informatik, Technische Universität München (2016)

21. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39634-2 9

22. Lammich, P., Lochbihler, A.: Automatic refinement to efficient data structures: a
comparison of two approaches. J. Autom. Reasoning (2018). https://doi.org/10.
1007/s10817-018-9461-9

https://eprint.iacr.org/2017/753
https://eprint.iacr.org/2017/753
https://doi.org/10.1007/978-3-319-08970-6_7
https://doi.org/10.1007/978-3-319-03545-1_10
http://www.andreas-lochbihler.de/pub/gilcher2017ITP.pdf
http://www.andreas-lochbihler.de/pub/gilcher2017ITP.pdf
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-319-22102-1_13
https://doi.org/10.1007/11541868_9
https://doi.org/10.1007/978-3-319-03545-1_9
http://arxiv.org/abs/1209.6336
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/s10817-018-9461-9
https://doi.org/10.1007/s10817-018-9461-9

Relational Parametricity and Quotient Preservation 431

23. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–
370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4 20

24. Lochbihler, A.: CryptHOL. Archive of Formal Proofs (2017). http://isa-afp.org/
entries/CryptHOL.html, Formal proof development

25. Lochbihler, A., Schneider, J.: Bounded natural functors with covariance and con-
travariance. Archive of Formal Proofs (2018). http://isa-afp.org/entries/BNF CC.
html, Formal proof development

26. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-46035-7 8

27. Mitchell, J.C.: Representation independence and data abstraction. In: POPL 1986,
pp. 263–276. ACM (1986)

28. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean
theorem prover (System Description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 26

29. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers
University of Technology (2007)

30. Owre, S., Shankar, N.: Abstract datatypes in PVS. Technical Report CSL-93-9R,
Computer Science Laboratory, SRI International (1993)

31. Paulin-Mohring, C.: Inductive definitions in the system Coq – rules and proper-
ties. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345.
Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0037116

32. Popescu, A.: Personal communication (2017)
33. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP 1983.

Information Processing, vol. 83, pp. 513–523. IFIP, North-Holland (1983)
34. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.

249(1), 3–80 (2000)
35. Schneider, J.: Formalising the run-time costs of HOL programs. Master’s thesis,

Department of Computer Science, ETH Zurich (2017)
36. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,

Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

37. Sozeau, M.: A new look at generalized rewriting in type theory. J. Formalized
Reasoning 2(1), 41–62 (2009)

38. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional
(co)datatypes for higher-order logic. In: LICS 2012, pp. 596–605. IEEE (2012)

39. Wadler, P.: Theorems for free! In: FPCA 1989, pp. 347–359. ACM (1989)

https://doi.org/10.1007/978-3-642-17511-4_20
http://isa-afp.org/entries/CryptHOL.html
http://isa-afp.org/entries/CryptHOL.html
http://isa-afp.org/entries/BNF_CC.html
http://isa-afp.org/entries/BNF_CC.html
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/BFb0037116
https://doi.org/10.1007/978-3-540-71067-7_6

Towards Verified Handwritten
Calculational Proofs

(Short Paper)

Alexandra Mendes1,2(B) and João F. Ferreira1,3

1 School of Computing, Teesside University, Middlesbrough, UK
alexandra@archimendes.com

2 HASLab/INESC TEC, Universidade do Minho, Braga, Portugal
3 INESC-ID/IST, University of Lisbon, Lisbon, Portugal

Abstract. Despite great advances in computer-assisted proof systems,
writing formal proofs using a traditional computer is still challenging due
to mouse-and-keyboard interaction. This leads to scientists often resort-
ing to pen and paper to write their proofs. However, when handwriting
a proof, there is no formal guarantee that the proof is correct. In this
paper we address this issue and present the initial steps towards a sys-
tem that allows users to handwrite proofs using a pen-based device and
that communicates with an external theorem prover to support the users
throughout the proof writing process. We focus on calculational proofs,
whereby a theorem is proved by a chain of formulae, each transformed
in some way into the next. We present the implementation of a proof-
of-concept prototype that can formally verify handwritten calculational
proofs without the need to learn the specific syntax of theorem provers.

Keywords: Handwritten mathematics · Interactive theorem proving
Mathematical proof · Calculational method · Handwriting

1 Introduction

Mathematical proof is at the core of many scientific disciplines, but the develop-
ment of correct mathematical proofs is still a challenging activity. In recent years,
there have been great advances in computer-assisted proof systems that support
the development of formally verified proofs (e.g. Isabelle/HOL [25] and Coq [8]).
However, writing proofs using a traditional computer poses difficulties due to
mouse-and-keyboard interaction. That is why scientists often resort to pen and
paper to support them in their thinking process and to record their proofs. The
problem is that when handwriting a proof, there is no formal guarantee that the
proof is correct.

To formally verify a handwritten proof, one has to translate it into a theorem
prover’s language. This process takes considerable time and effort and requires
a good knowledge of the theorem prover’s syntax. This makes the writing of

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 432–440, 2018.
https://doi.org/10.1007/978-3-319-94821-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_25&domain=pdf

Towards Verified Handwritten Calculational Proofs 433

verified proofs feel unnatural and difficult, further encouraging scientists to use
the pen and paper approach.

To the best of our knowledge, the problem of formally verifying handwrit-
ten proofs is still open. In this paper, we present a proof-of-concept research
prototype that attempts to bridge the gap between the natural mathematical
practice of handwriting proofs and their mechanical verification. This is the
first step towards a system for pen-based devices that allows users to handwrite
proofs and that communicates with an external theorem prover to support the
users throughout the proof writing process. We focus on calculational proofs [3],
whereby a theorem is proved by a chain of formulae, each transformed in some
way into the next. We used the method of rapid prototyping [29] to demonstrate
the feasibility of the system. Since innovations communicated verbally can be
difficult to imagine, a prototype can give the prospective users a better sense of
what can be achieved as well as giving us proof that our goal is attainable.

In the next sections, we present some background and related work (Sect. 2),
summarise requirements taken from existing literature (Sect. 3), present a
proof-of-concept prototype (Sect. 4), and conclude by discussing the next steps
(Sect. 5).

2 Background and Related Work

This work is being developed in the context of teaching and research on correct-
by-construction program design. Starting with the pioneering work of Dijkstra
and Gries [9,14], a calculational method emerged, emphasising the use of sys-
tematic mathematical calculation in the design of algorithms. Proofs written in
the calculational format consist of a chain of formulae, each transformed in some
way into the next, with each step optionally accompanied by a hint justifying
the validity of that step (see Fig. 1(c) for an example).

Calculational proofs are known for their readability and for helping to avoid
mistakes, but errors can still occur. Indeed, the need for mechanical verification of
calculational proofs has been widely recognised. For example, in [22], the authors
point out errors in some of Dijkstra’s calculations and send a clear message to
the calculational community: “If your proofs are so rigorous and so amenable to
mechanization, stop just saying so and do it”. However, they question how hard
it would be to learn and use a proof checker and whether transforming proofs
for mechanical checking would make them ugly and hard to understand.

Some work has been done towards mechanised calculational proofs. For exam-
ple, Leino and Polikarpova [20] extended Dafny [19] to support proof calculations.
The authors state that “It would be wonderful if we could just take a pen-and-
paper calculational proof and get it machine-checked completely automatically”,
further supporting the need for verified handwritten proofs. Also, Tesson et al.
[28] design and implement a set of tactics for the Coq proof assistant to help
writing proofs in calculational form.

With the advent of pen-input devices the possibilities to improve on the inter-
action limitations of traditional computers are enormous, in particular when

434 A. Mendes and J. F. Ferreira

it comes to mathematical input. These devices enable software tools such as
MathBrush [18] and Microsoft’s ink math assistant [26], which allow the recog-
nition, evaluation, and manipulation of handwritten mathematical input (for an
extended list of pen-based mathematical tools, see [23,24]). Our work differs
from these tools on the emphasis and domain of application: while these empha-
sise the recognition and evaluation of expressions, our focus is on supporting the
handwriting, manipulation, and verification of calculational proofs. As far as we
know, there is only one system that supports the manipulation of handwritten
calculational proofs using pen-based devices: the MST editor [23,24]. This editor
provides structured manipulation of handwritten expressions and provides fea-
tures to enable flexible and interactive presentations. A limitation, however, is
that proofs remain unverified. We attempt to address this limitation by support-
ing computer-assisted verification of handwritten proofs. Proof assistants such
as Isabelle/HOL [25] and Coq [8] can be used to achieve this, but the use of these
requires knowledge of the theorem prover’s syntax and its intricacies, which has
the reputation of being a demanding task. Our work attempts to overcome this
by providing a system to interface with a theorem prover without any specific
knowledge of the backend proof assistant.

The availability of several different IDEs for existing theorem provers indi-
cates that the human-prover interaction is a concern. For Isabelle/HOL alone
there are several IDEs available, including Proof General [2], Isabelle/jEdit [31],
and Isabelle/Clide [21]. All of these require the use of keyboard and/or mouse
and the knowledge of the, often idiosyncratic, theorem prover’s syntax. In fact,
the community is still investigating how to improve current IDEs, as demon-
strated by the development of PIDE [31–33], a framework for prover interaction
and integration, and by Company-Coq [27], an extension of Proof General’s Coq
mode. Moreover, the support provided by these IDEs for auto-completion of
mathematical symbols suggests that typing these does not come naturally.

3 Requirements

The scope of the requirements presented in this section is limited to the con-
text of our work (teaching and research on calculational methods for correct-
by-construction program design) and is mostly based on comments found on
research papers written by exponents of the calculational method.

R1: Support for calculational mathematics. Given the context of our work,
the system should allow the user to write calculational proofs. It should be
easy to input mathematical symbols and unconventional mathematical for-
mulae (e.g. the Eindhoven quantifier notation [5]).

R2: Support for structure editing. Similarly to Math∫pad and MST [6,24],
the system should provide structure editing operations to assist the user in
effectively writing handwritten calculational proofs and to ensure that human
errors are less likely to be introduced. Frequently used structural operations
like selection and copy of expressions and sub-expressions, group/ungroup of
sub-expressions, and distributivity operations should be supported.

Towards Verified Handwritten Calculational Proofs 435

R3: Support for handwritten input. It should be possible to handwrite
calculational proofs as one would normally do when using pen and paper.
Moreover, as identified in [24], the result of structure editing rules on hand-
written expressions should remain handwritten, since it is undesirable to
mix different writing and font styles, as doing so, can make presentations
confusing.

R4: Support for learning, teaching and research. The system should sup-
port learning, teaching, and research on calculational methods for correct-by-
construction program design. It has already been argued that calculational
proofs offer some pedagogic advantages over conventional informal proofs
[12,13,15] and that students prefer or understand better calculational proofs
[10]. Moreover, a structure editor can assist students and teachers in learning
and explaining how certain rules are applied [23]. A structure editor can also
assist researchers who use the calculational method, since they usually write
calculations that involve a great deal of syntactic manipulations of unin-
terpreted and unconventional mathematical formulae (e.g. [4,11,16]). It is
desirable for the system to reduce the cognitive load of its users by providing
intelligent visual hints throughout the proof writing process.

R5: Support for formal verification. The system should allow mechani-
cal verification of handwritten calculational proofs. The need for mechan-
ical verification of calculational proofs has been identified many years ago
[22,30]. More recently, there has been work on mechanisation of calculational
proofs [7,17,20], but the problem of verifying handwritten calculational proofs
remains open. Moreover, any provers should be used transparently, i.e. the
system should hide all the knowledge required to translate handwritten input
into syntax accepted by provers. It is important to note that this includes
usability aspects other than just syntax—for example, the system should be
able to represent mathematical objects in a way that is appropriate in the
context of the proof and in the context of the theorem prover. Similar to
the idea put forward by Verhoeven and Backhouse [30], our system could be
seen as a user interface to a theorem prover. Ideally, the system should allow
expert users to define new interaction methods with the backend provers.

4 Proof-of-Concept Prototype

Our proof-of-concept research prototype is implemented in C# and is based on
an extension of Classroom Presenter (CP) [1] that uses the library MST [24].
Reusing these existing tools provides us with a structured editor of handwritten
mathematics that immediately meets the requirements R1, R2, R3, and, to a
certain extent, R4 (for example, intelligent visual hints are still missing).

The novelty of our prototype is that it adds preliminary support for verifica-
tion (R5): we added a new tool to CP’s toolbar that transforms individual steps
of a calculation into lemmas that can be proved by Isabelle/HOL. An example
of a proof that can be verified by our system is shown in Fig. 1(c). The user
can select the new tool by clicking on the new toolbar button, and after clicking

436 A. Mendes and J. F. Ferreira

Fig. 1. System overview. Users handwrite calculational proofs and proof steps are
translated into Isabelle/HOL to be verified. Invalid steps will be flagged (a), allowing
users to fix them (b). Full proofs can be verified on a step-by-step basis (c). (Color
figure online)

on a step relation (e.g. equality), the system performs verification of the cor-
responding individual step. Depending on the validity of the step, the system
either shows a green check-mark or a red cross (as illustrated). The proof shown
depends on the definition of implication, which can be defined either as

P ⇒ Q ≡ P ≡ P∧Q or as P ⇒ Q ≡ Q ≡ P∨Q

This means that P ⇒ Q can be replaced by either P ≡ P∧Q or by Q ≡ P∨Q.
However, a common mistake done by students is to swap the conjunction by the
disjunction (and vice-versa). This common mistake is illustrated in Fig. 1(a),
where we can also see an overview of the steps taken by our prototype to verify
a proof step. Once the structure of the handwritten input is created (using
the features available in the MST library), our system converts the recognised
structure of the step into a lemma that can be interpreted by Isabelle/HOL.
We also attach a proof to each generated lemma. In the current version of the
system, we simply instruct Isabelle/HOL to try and prove the goal automatically
(achieved by apply(auto)). In Fig. 1(a), Isabelle/HOL fails to prove the step
automatically and the user is informed. In Fig. 1(b), Isabelle/HOL succeeds in
verifying the step.

More specifically, the first step of the calculation shown in Fig. 1(b) would
be translated into the following:

lemma

" P \<or> (P \<longrightarrow> Q)

=

P \<or> (Q = (P \<or> Q))"

apply (auto)

done

Towards Verified Handwritten Calculational Proofs 437

Currently, this translation only supports calculational propositional logic
operators [9,14], but our code can easily be extended to include a larger mathe-
matical domain (however, other proof tactics may be needed). Other translations
are possible and will be explored in future iterations of this work. Communica-
tion with Isabelle/HOL is currently performed via an external process that we
programmed. This process accepts plain-text input encoding a lemma and its
proof. It then embeds the input into a generated Isabelle/HOL theory file cre-
ated on the fly, attempts to verify the theory, and returns a modified version of
Isabelle/HOL’s output to the user interface. The handwritten step is then anno-
tated with either a green check-mark or a red cross, depending on the result
of the verification. Figure 2 shows a screenshot of our current prototype in use
when writing the proof discussed above. It shows that the first step has already
been verified and the user is currently applying the distributivity rule using a
gesture (this is one of MST’s features that we imported into our system).

Fig. 2. Screenshot of our prototype in action. The first step of the calculation was
verified using the new tool (highlighted button). The user is currently applying the
distributivity rule using a gesture. (Color figure online)

5 Conclusion and Future Work

We have described our first steps towards a system that allows users to ver-
ify handwritten calculational proofs. Our proof-of-concept prototype supports
propositional logic proofs and uses Isabelle/HOL as the backend prover. The
major novelty of this work lies on the implementation of the requirement for
formal verification (R5): the prototype can formally verify handwritten calcu-
lational proofs without the need to learn how to use a theorem prover. The
implementation of the prototype shows that the system we envisage is feasible
and that it has the potential to assist its users in writing correct proofs.

Having a prototype will now allow us to demonstrate the potential of such
a tool to target users. Our next step will be to demonstrate the prototype in

438 A. Mendes and J. F. Ferreira

learning, teaching, and research environments to obtain user feedback. This will
enable us to understand further requirements of likely users of this tool. Once this
step is completed, we will implement a more complete system that will improve
the interaction with the backend prover (e.g. feedback from the background proof
assistant to include hints for completing proof steps or counter-examples). For
this, we plan to use PIDE [31–33]. We also intend to use hints handwritten by
users to justify proof steps in the verification process, allowing the detection
of inconsistent justifications. The feedback from users will inform the way in
which hints will be dealt with. We further plan to support multiple backend
provers and to link proofs of programs with the code generation mechanisms
available in some theorem provers, such as Isabelle/HOL and Coq. We will take
into account the feedback received from users and adapt the system to meet any
further requirements that arise. We plan to continue using rapid prototyping to
demonstrate any new features to users before providing complete implementa-
tions. We anticipate that several iterations of rapid prototyping and evaluations
will be needed before we complete the first full implementation.

References

1. Anderson, R., Anderson, R., Chung, O., Davis, K.M., Davis, P., Prince, C.,
Razmov, V., Simon, B.: Classroom presenter - a classroom interaction system for
active and collaborative learning. In: WIPTE (2006)

2. Aspinall, D.: Proof general: a generic tool for proof development. In: Graf, S.,
Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 38–43. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0 3

3. Backhouse, R.: The calculational method. Inf. Process. Lett. 53(3), 121 (1995)
4. Backhouse, R., Ferreira, J.F.: On Euclid’s algorithm and elementary number the-

ory. Sci. Comput. Program. 76(3), 160–180 (2011). https://doi.org/10.1016/j.scico.
2010.05.006. http://joaoff.com/publications/2010/euclid-alg

5. Backhouse, R., Michaelis, D.: Exercises in quantifier manipulation. In: Uustalu, T.
(ed.) MPC 2006. LNCS, vol. 4014, pp. 69–81. Springer, Heidelberg (2006). https://
doi.org/10.1007/11783596 7

6. Backhouse, R., Verhoeven, R.: Math
∫
pad: a system for on-line preparation of math-

ematical documents. Softw. Concepts Tools 18, 80–89 (1997)
7. Bauer, G., Wenzel, M.: Calculational reasoning revisited an Isabelle/Isar experi-

ence. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp.
75–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44755-5 7

8. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-662-07964-5

9. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, New York (1990). https://doi.org/10.1007/978-1-4612-3228-5

10. Ferreira, J.F., Mendes, A.: Students’ feedback on teaching mathematics through
the calculational method. In: 39th ASEE/IEEE Frontiers in Education Conference.
IEEE (2009)

https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.1016/j.scico.2010.05.006
https://doi.org/10.1016/j.scico.2010.05.006
http://joaoff.com/publications/2010/euclid-alg
https://doi.org/10.1007/11783596_7
https://doi.org/10.1007/11783596_7
https://doi.org/10.1007/3-540-44755-5_7
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-1-4612-3228-5

Towards Verified Handwritten Calculational Proofs 439

11. Ferreira, J.F., Mendes, A.: A calculational approach to path-based prop-
erties of the Eisenstein-Stern and Stern-Brocot trees via matrix alge-
bra. J. Log. Algebraic Methods Program. 85(5, Part 2), 906–920 (2016).
https://doi.org/10.1016/j.jlamp.2015.11.004. http://www.sciencedirect.com/sci
ence/article/pii/S2352220815001418. Articles dedicated to Prof. J. N. Oliveira on
the occasion of his 60th birthday

12. Ferreira, J.F., Mendes, A., Backhouse, R., Barbosa, L.S.: Which mathematics for
the information society? In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS,
vol. 5846, pp. 39–56. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04912-5 4

13. Ferreira, J.F., Mendes, A., Cunha, A., Baquero, C., Silva, P., Barbosa, L.S.,
Oliveira, J.N.: Logic training through algorithmic problem solving. In: Black-
burn, P., van Ditmarsch, H., Manzano, M., Soler-Toscano, F. (eds.) TICTTL 2011.
LNCS (LNAI), vol. 6680, pp. 62–69. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21350-2 8

14. Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. Springer,
New York (1993)

15. Gries, D., Schneider, F.B.: Teaching math more effectively, through calculational
proofs. Am. Math. Mon. 102(8), 691–697 (1995)

16. Hinze, R.: Scans and convolutions—a calculational proof of Moessner’s theorem.
In: Scholz, S.-B., Chitil, O. (eds.) IFL 2008. LNCS, vol. 5836, pp. 1–24. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24452-0 1

17. Kahl, W.: Calculational relation-algebraic proofs in Isabelle/Isar. In: Berghammer,
R., Möller, B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 178–190.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24771-5 16

18. Labahn, G., Lank, E., MacLean, S., Marzouk, M., Tausky, D.: Mathbrush: a system
for doing math on pen-based devices. In: Proceedings of the 2008 The Eighth IAPR
International Workshop on Document Analysis Systems, DAS 2008, pp. 599–606.
IEEE Computer Society, Washington, DC (2008). https://doi.org/10.1109/DAS.
2008.21

19. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

20. Leino, K.R.M., Polikarpova, N.: Verified calculations. In: Cohen, E., Rybalchenko,
A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 170–190. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54108-7 9

21. Lüth, C., Ring, M.: A web interface for Isabelle: the next generation. In: Carette,
J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS
(LNAI), vol. 7961, pp. 326–329. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39320-4 22

22. Manolios, P., Moore, J.S.: On the desirability of mechanizing calculational
proofs. Inf. Process. Lett. 77(2–4), 173–179 (2001). https://doi.org/10.1016/S0020-
0190(00)00200-3

23. Mendes, A.: Structured editing of handwritten mathematics. Ph.D. thesis, School
of Computer Science, University of Nottingham (2012)

24. Mendes, A., Backhouse, R., Ferreira, J.F.: Structure editing of handwritten math-
ematics: improving the computer support for the calculational method. In: Pro-
ceedings of the Ninth ACM International Conference on Interactive Tabletops and
Surfaces, ITS 2014, pp. 139–148. ACM, New York (2014). https://doi.org/10.1145/
2669485.2669495

https://doi.org/10.1016/j.jlamp.2015.11.004
http://www.sciencedirect.com/science/article/pii/S2352220815001418
http://www.sciencedirect.com/science/article/pii/S2352220815001418
https://doi.org/10.1007/978-3-642-04912-5_4
https://doi.org/10.1007/978-3-642-04912-5_4
https://doi.org/10.1007/978-3-642-21350-2_8
https://doi.org/10.1007/978-3-642-21350-2_8
https://doi.org/10.1007/978-3-642-24452-0_1
https://doi.org/10.1007/978-3-540-24771-5_16
https://doi.org/10.1109/DAS.2008.21
https://doi.org/10.1109/DAS.2008.21
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-54108-7_9
https://doi.org/10.1007/978-3-642-39320-4_22
https://doi.org/10.1007/978-3-642-39320-4_22
https://doi.org/10.1016/S0020-0190(00)00200-3
https://doi.org/10.1016/S0020-0190(00)00200-3
https://doi.org/10.1145/2669485.2669495
https://doi.org/10.1145/2669485.2669495

440 A. Mendes and J. F. Ferreira

25. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2016). https://doi.org/10.1007/3-540-
45949-9. https://isabelle.in.tum.de/doc/prog-prove.pdf

26. Microsoft OneNote. https://www.onenote.com. Accessed 02 Feb 2018
27. Pit-Claudel, C., Courtieu, P.: Company-Coq: taking proof general one step closer

to a real IDE. In: CoqPL 2016: International Workshop on Coq for Programming
Languages (2016)

28. Tesson, J., Hashimoto, H., Hu, Z., Loulergue, F., Takeichi, M.: Program calculation
in Coq. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp.
163–179. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-
5 10

29. Tripp, S.D., Bichelmeyer, B.: Rapid prototyping: an alternative instructional design
strategy. Educ. Tech. Res. Dev. 38(1), 31–44 (1990)

30. Verhoeven, R., Backhouse, R.: Interfacing program construction and verification.
In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709,
pp. 1128–1146. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48118-
4 10. http://dl.acm.org/citation.cfm?id=647545.730778

31. Wenzel, M.: Isabelle/jEdit – a prover IDE within the PIDE framework. In: Jeuring,
J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS (LNAI), vol. 7362, pp. 468–471. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31374-5 38

32. Wenzel, M.: Asynchronous user interaction and tool integration in Isabelle/PIDE.
In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 515–530. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08970-6 33

33. Wenzel, M., Wolff, B.: Isabelle/PIDE as platform for educational tools. arXiv
preprint arXiv:1202.4835 (2012)

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://isabelle.in.tum.de/doc/prog-prove.pdf
https://www.onenote.com
https://doi.org/10.1007/978-3-642-17796-5_10
https://doi.org/10.1007/978-3-642-17796-5_10
https://doi.org/10.1007/3-540-48118-4_10
https://doi.org/10.1007/3-540-48118-4_10
http://dl.acm.org/citation.cfm?id=647545.730778
https://doi.org/10.1007/978-3-642-31374-5_38
https://doi.org/10.1007/978-3-319-08970-6_33
http://arxiv.org/abs/1202.4835

A Formally Verified Solver
for Homogeneous Linear Diophantine

Equations

Florian Meßner, Julian Parsert, Jonas Schöpf, and Christian Sternagel(B)

University of Innsbruck, Innsbruck, Austria
{florian.g.messner,julian.parsert,jonas.schoepf,

christian.sternagel}@uibk.ac.at

Abstract. In this work we are interested in minimal complete sets of
solutions for homogeneous linear diophantine equations. Such equations
naturally arise during AC-unification—that is, unification in the presence
of associative and commutative symbols. Minimal complete sets of solu-
tions are for example required to compute AC-critical pairs. We present
a verified solver for homogeneous linear diophantine equations that we
formalized in Isabelle/HOL. Our work provides the basis for formalizing
AC-unification and will eventually enable the certification of automated
AC-confluence and AC-completion tools.

Keywords: Homogeneous linear diophantine equations
Code generation · Mechanized mathematics · Verified code
Isabelle/HOL

1 Introduction

(Syntactic) unification of two terms s and t, is the problem of finding a substi-
tution σ that, applied to both terms, makes them syntactically equal: sσ = tσ.
For example, it is easily verified that σ = {x �→ z , y �→ z} is a solution to the
unification problem f(x , y) ≈? f(z , z). Several syntactic unification algorithms
are known, some of which have even been formalized in proof assistants.

By throwing a set of equations E into the mix, we arrive at equational or
E-unification, where we are interested in substitutions σ that make two given
terms equivalent with respect to the equations in E, written sσ ≈E tσ. While
for syntactic unification most general solutions, called most general unifiers, are
unique, E-unification is distinctly more complex: depending on the specific set
of equations, E-unification might be undecidable, have unique solutions, have
minimal complete sets of solutions, etc.

For AC-unification we instantiate E from above to a set AC of associativity
and commutativity equations for certain function symbols. For example, by tak-
ing AC = {(x · y) · z ≈ x · (y · z), x · y ≈ y · x}, we express that · (which we write

This work is supported by the Austrian Science Fund (FWF): project P27502.

c© The Author(s) 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 441–458, 2018.
https://doi.org/10.1007/978-3-319-94821-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_26&domain=pdf

442 F. Meßner et al.

Table 1. An example HLDE and its minimal complete set of solutions

x + y = 2z

solution x y z

z1 2 0 1
z2 0 2 1
z3 1 1 1

infix, for convenience) is the only associative and commutative function symbol.
Obviously, the substitution σ from above is also a solution to the AC-unification
problem x ·y ≈?

AC z ·z (since trivially z ·z ≈AC z ·z). You might ask: is it the only
one? It turns out that it is not. More specifically, there is a minimal complete
set (see Sect. 2 for a formal definition) consisting of the five AC-unifiers:

{x �→ z3 , y �→ z3 , z �→ z3}
{x �→ z1 · z1 , y �→ z2 · z2 , z �→ z1 · z2}
{x �→ z1 · z1 · z3 , y �→ z3 , z �→ z1 · z3}
{x �→ z3 , y �→ z2 · z2 · z3 , z �→ z2 · z3}
{x �→ z1 · z1 · z3 , y �→ z2 · z2 · z3 , z �→ z1 · z2 · z3}

But how can we compute it? The answer involves minimal complete sets of
solutions for homogeneous linear diophantine equations (HLDEs for short). From
the initial AC-unification problem x · y ≈?

AC z · z we derive the equation in
Table 1, which basically tells us that, no matter what we substitute for x , y ,
and z , there have to be exactly twice as many occurrences of the AC-symbol ·
in the substitutes for x and y than there are in the substitute for z .

The minimal complete set of solutions to this equation, labeled by fresh vari-
ables, is depicted in Table 1, where the numbers indicate how many occurrences
of the corresponding fresh variable are contributed to the substitute for the vari-
able in the respective column. The AC-symbol · is used to combine fresh variables
occurring more than once. For example, the solution labeled by z1 contributes
two occurrences of z1 to the substitute for x and one occurrence of z1 to the
substitute for z , while not touching the substitute for y at all.

Now each combination of solutions for which x , y , and z are all nonzero1

gives rise to an independent minimal AC-unifier (in general, given n solutions,
there are 2n combinations, one for each subset of solutions). The unifiers above
correspond to the combinations:{z3}, {z1 , z2}, {z1 , z3}, {z2 , z3}, {z1 , z2 , z3}. We
refer to the literature for details on how exactly we obtain unifiers from sets of
solutions to HLDEs and why this works [1,12]. Suffice it to say that minimal
complete sets of solutions to HLDEs give rise to minimal complete sets of AC-
unifiers. 2 The main application we have in mind, relying on minimal complete
sets of AC-unifiers, is computing AC-critical pairs. This is for example useful for
1 The “nonzero” condition naturally arises from the fact that substitutions cannot

replace variables by nothing.
2 Actually, this only holds for elementary AC-unification problems, which are those

consisting only of variables and one specific AC-symbol. However, arbitrary AC-
unification problems can be reduced to sets of elementary AC-unification problems.

A Formally Verified Solver for Homogeneous Linear Diophantine Equations 443

proving confluence of rewrite systems with and without AC-symbols [6,10,11]
and required for normalized completion [8,14].

In this paper we investigate how to compute minimal complete sets of solu-
tions of HLDEs, with our focus on formal verification using a proof assistant.
In other words, we are only interested in verified algorithms (that is, algorithms
whose correctness has been machine-checked). More specifically, our contribu-
tions are as follows:

• We give an Isabelle/HOL formalization of HLDEs and their minimal complete
sets of solutions (Sect. 3).

• We describe a simple algorithm that computes such minimal complete sets of
solutions (Sect. 2) and discuss an easy correctness proof that we formalized
in Isabelle/HOL (Sect. 4).

• After several rounds of program transformations, making use of standard
optimization techniques and improved bounds from the literature (Sect. 5),
we obtain a more efficient solver (Sect. 6)—to the best of our knowledge, the
first formally verified solver for HLDEs.

Our formalization is available in the Archive of Formal Proofs [9] (development
version, changeset d5fabf1037f8). Through Isabelle’s code generation feature
[4] a verified solver can be obtained from our formalization.

2 Main Ideas

For any formalization challenge it is a good idea to start from as simple a ground-
ing as possible: trying to reduce the number of involved concepts to a bare
minimum and to keep the complexity of involved proofs in check.

When formalizing an algorithm, once we have a provably correct implemen-
tation, we might still want to make it more efficient. Instead of doing all the
(potentially hard) proofs again for a more efficient (and probably more involved)
variant, we can often prove that the two variants are equivalent and thus carry
over the correctness result from a simple implementation to an efficient one. This
is also the general plan we follow for our formalized HLDE solver.

To make things simpler when computing minimal complete sets of solutions
for an HLDE a • x = b • y (where a and b are lists of coefficients and v • w
denotes the dot product of two lists v = [v1, . . . , vk] and w = [w1, . . . , wk] defined
by v1w1 + · · · + vkwk), we split the task into three separate phases:

• generate a finite search-space that covers all potentially minimal solutions
• check necessary criteria for minimal solutions (throwing away the rest)
• minimize the remaining collection of candidates

Generate. For the first phase we make use of the fact that for every minimal
solution (x , y) the entries of x are bounded by the maximal coefficient in b, while
the entries of y are bounded by the maximal coefficient in a (which we will prove
in Sect. 3).

444 F. Meßner et al.

Moreover, we generate the search-space in reverse lexicographic order, where
for arbitrary lists of numbers u = [u1, . . . , uk] and v = [v1, . . . , vk] we have
u <rlex v iff there is an i ≤ k such that ui < vi and uj = vj for all i < j ≤ k.
This allows for a simple recursive implementation and can be exploited in the
minimization phase.

Assuming that x-entries of solutions are bounded by A and y-entries are
bounded by B, we can implement the generate-phase by the function

generate A B m n = tl [(x, y). y ← gen B n, x ← gen A m]

where we use Haskell-like list comprehension and tl is the standard tail func-
tion on lists dropping the first element—which in this case is the trivial (and
non-minimal) solution consisting only of zeroes—and gen B n computes all lists
of natural numbers of length n whose entries are bounded by B, in reverse lexi-
cographic order.

gen B 0 = [[]]
gen B (Suc n) = [x#xs. xs ← gen B n, x ← [0..B]]

Our initial example x + y = 2z can be represented by the two lists of
coefficients [1,1] and [2] and the corresponding search-space is generated by
generate 2 1 2 1, resulting in

[([1,0],[0]),([2,0],[0]),([0,1],[0]),([1,1],[0]),
([2,1],[0]),([0,2],[0]),([1,2],[0]),([2,2],[0]),
([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),
([1,1],[1]),([2,1],[1]),([0,2],[1]),([1,2],[1]),([2,2],[1])]

Check. Probably the most obvious necessary condition for (x , y) to be a minimal
solution is that it is actually a solution, that is, a • x = b • y (taking the later
minimization phase into account, it is in fact also a sufficient condition). We can
implement the check-phase, given two lists of coefficients a and b, by

check a b = filter (λ(x, y). a • x = b • y)

using the standard filter function on lists that only preserves elements satisfying
the given predicate.

For our initial example check [1,1] [2] (generate 2 1 2 1) computes the
first two phases, resulting in [([2,0],[1]),([1,1],[1]),([0,2],[1])].

Minimize. It is high time that we specify in what sense minimal solutions are
to be minimal. To this end, we use the pointwise less-than-or-equal order ≤v on
lists (whose strict part <v is defined by x <v y iff x ≤v y but not y ≤v x). Now
minimization can be implemented by the function

minimize [] = []
minimize ((x,y)#xs) =

(x,y) # filter (λ(u,v). x@y �<v u@v) (minimize xs)

A Formally Verified Solver for Homogeneous Linear Diophantine Equations 445

where @ is Isabelle/HOL’s list concatenation. This is also where we exploit the
fact that the input to minimize is sorted in reverse lexicographic order: then,
since (x,y) is up front, we know that all elements of xs are strictly greater with
respect to <rlex; moreover, u <v v implies u <rlex v for all u and v; and thus,
x@y is not <v-greater than any element of xs, warranting that we put it in the
resulting minimized list without further check.

A Simple Algorithm. Putting all three phases together we obtain a straightfor-
ward algorithm for computing all minimal solutions of an HLDE given by its
lists of coefficients a and b

solutions a b =
let A = max b; B = max a; m = length a; n = length b in
minimize (check a b (generate A B m n))

where length xs—which we sometimes write |xs|—computes the length of a list
xs. We will prove the correctness of solutions in Sect. 4.

Performance Tuning. There are several potential performance improvements
over the simple algorithm from above. In a first preparatory step, we categorize
solutions into special and non-special solutions (Sect. 5). The former are minimal
by construction and can thus be excluded from the minimization phase. For the
latter, several necessary conditions are known that are monotone in the sense
that all prefixes and suffixes of a list satisfy them whenever the list itself does.
Now merging the generate and check phases by “pushing in” these conditions
as far as possible has the potential to drastically cut down the explored search-
space. We will discuss the details in Sect. 6.

3 An Isabelle/HOL Theory of HLDEs and Their
Solutions

In this section, after putting our understanding of HLDEs and their solutions
on firmer grounds, we obtain bounds on minimal solutions that serve as a basis
for the two algorithms we present in later sections.

A homogeneous linear diophantine equation is an equation of the form

a1 x1 + a2 x2 + · · · + amxm = b1y1 + b2y2 + · · · + bnyn

where coefficients ai and bj are fixed natural numbers. Moreover, we are only
interested in solutions (x , y) over the naturals.

That means that all the required information can be encoded into two lists of
natural numbers a = [a1 , . . . , am] and b = [b1 , . . . , bn]. From now on, let a and b
be fixed, which is achieved by Isabelle’s locale mechanism in our formalization:3

locale hlde = fixes a b :: nat list assumes 0 /∈ set a and 0 /∈ set b
3 For technical reasons (regarding code generation) we actually have the two locales
hlde-ops and hlde in our formalization.

446 F. Meßner et al.

In the locale, we also assume that a and b do not have any zero entries (which
is useful for some proofs; note that arbitrary HLDEs can be transformed into
equivalent HLDEs satisfying this assumption by dropping all zero-coefficients).

Solutions of the HLDE represented by a and b are those pairs of lists (x , y)
that satisfy a • x = b • y . Formally, the set of solutions S(a, b) is given by

S(a, b) = {(x , y) | a • x = b • y ∧ |x | = m ∧ |y | = n}
A solution is (pointwise) minimal iff there is no nonzero solution that is

pointwise strictly smaller. The set of (pointwise) minimal solutions is given by

M(a, b) = {(x , y) ∈ S(a, b) | x �= 0 ∧ �(u, v) ∈ S(a, b). u �= 0 ∧ u @ v <v x @ y}
where we use the notation v �= 0 to state that a list v is nonzero, that is, does not
exclusively consist of zeroes. While the above definition might look asymmetric,
since we only require x and u to be nonzero, we actually also have that y and
v are nonzero, because (x , y) and (u, v) are both solutions and a and b do not
contain any zeroes.

Huet [5, Lemma 1] has shown that, given a minimal solution (x , y), the entries
of x and y are bounded by maxb and maxa, respectively. In preparation for the
proof of this result, we prove the following auxiliary fact.

Lemma 1. If x is a list of natural numbers of length n, then either

(1) xi ≡ 0 (mod n) for some 1 ≤ i ≤ n, or
(2) xi ≡ xj (mod n) for some 1 ≤ i < j ≤ n.

Proof. Let X be the set of elements of x and M = {y mod n | y ∈ X}. If
|M | < |X| then property (2) follows by the pigeonhole principle. Otherwise,
|M | = |X| and either x contains already duplicates and we are done (again
by establishing property (2)), or the elements of x are pairwise disjoint. In the
latter case, we know that |M | = n. Since all elements of M are less than n by
construction, we obtain M = {0, . . . , n − 1}. This, in turn, means that property
(1) is satisfied. ��

Now we are in a position to prove a variant of Huet’s Lemma1 for improved
bounds (which were, to the best of our knowledge, first mentioned by Clausen
and Fortenbacher [2]), where, given two lists u and v of same length, we use
max�=0

v (u) to denote max({0} ∪ {ui | 1 ≤ i ≤ |v| ∧ vi �= 0}), that is, the maximum
of those u-elements whose corresponding v-elements are nonzero.

Lemma 2. Let (x , y) be a minimal solution. Then we have xi ≤ max�=0
y (b) for

all 1 ≤ i ≤ m and yj ≤ max�=0
x (a) for all 1 ≤ j ≤ n.

Proof. Since the two statements above are symmetric, we concentrate on the
first one. Let M = max�=0

y (b) and assume that there is xk > M with 1 ≤ k ≤ m.
We will show that this contradicts the minimality of (x , y). We have

M ·
n∑

j=1

yj ≥ b • y = a • x ≥ akxk > ak · M

A Formally Verified Solver for Homogeneous Linear Diophantine Equations 447

and thus
∑n

j=1 yj > ak .
At this point we give an explicit construction for a corresponding existential

statement in Huet’s original proof. The goal is to construct a pointwise increasing
sequence of lists u = u1, . . . ,uak such that for all v ∈ set u we have (1) v ≤v y
and also (2) 0 <

∑n
i=1 vi ≤ ak . This is achieved by taking u i = (inc y 0)i 0|y|

where 0n denotes a list of n zeroes and we employ the auxiliary function

inc y i v =
if i < length y then
if v ! i < y ! i then v[i := v ! i + 1]
else inc y (Suc i) v

else v

that, given two lists y and v, increments v at the smallest position j ≥ i such
that vj < yj (if this is not possible, the result is v). Here x ! i denotes the ith
element of list x and x[i := v] a variant of list x, where the ith element is v.

As long as there is “enough space” (as guaranteed by
∑n

j=1 yj > ak), u i is
pointwise smaller than y and the sum of its elements is i for all 1 ≤ i ≤ ak ,
thereby satisfying both of the above properties.

Now we obtain a list u that in addition to (1) and (2) also satisfies (3) b•u ≡ 0
(mod ak). This is achieved by applying Lemma1 to the list of natural numbers
map(λx. b • x)u , and analyzing the resulting cases. Either such a list is already
in u and we are done, or u contains two lists u i and uj with i < j, for which
b • u i ≡ b • uj (mod ak) holds. In the latter case, the pointwise subtraction
uj −v u

i satisfies properties (1) to (3).
Remember that xk > M . Together with properties (1) and (2) we know

b • u ≤ M ·
n∑

j=1

uj ≤ M · ak < akxk

By (3), we further have b • u = akc for some 0 < c < xk , showing that (x , y) is
strictly greater than the nonzero solution (0|m|[k := c], u). Finally, a contradic-
tion to the minimality of (x , y). ��
As a corollary, we obtain Huet’s result, namely that all xi are bounded by maxb
and all yj are bounded by maxa, since max�=0

v (c) ≤ maxc for all lists v and c.

4 Certified Minimal Complete Sets of Solutions

Before we prove our algorithm from Sect. 2 correct, let us have a look at a char-
acterization of the elements of minimize that we require in the process (where
<rlex as well as <v are extended to pairs of lists by taking their concatenation).

Lemma 3. set (minimize xs) = {x ∈ set xs | �y ∈ set xs. y <v x} whenever
xs is sorted with respect to <rlex.

448 F. Meßner et al.

Proof. An easy induction over xs shows the direction from right to left. For the
other direction, let x be an arbitrary but fixed element of minimize xs. Another
easy induction over xs shows that then x is also in xs. Thus it remains to show
that there is no y in xs which is <v-smaller than x. Assume that there is such
a y for the sake of a contradiction and proceed by induction over xs. If xs = []
we are trivially done. Otherwise, xs = z # zs and when x is in minimize zs and
y is in zs, the result follows by IH. In the remaining cases either z = x or z = y,
but not both (since this would yield z <v z). For the former we have x ≤rlex y
by sortedness and for the latter we obtain y �<v x by the definition of minimize
(since x is in minimize zs), both contradicting y <v x. ��

In the remainder of this section, we will prove completeness (all minimal
solutions are generated) and soundness (only minimal solutions are generated)
of solutions.

Lemma 4 (Completeness). M(a, b) ⊆ set (solutions a b)

Proof. Let (x , y) be a minimal solution. We use the abbreviations A = maxb,
B = maxa, and C = set (check a b (generate A B m n)). Then, by Lemma 3,
we have set (solutions a b) = {x ∈ C | �y ∈ C. y <v x}. Note that (x , y)
is in C (which contains all solutions within the bounds provided by A and B,
by construction) due to Lemma2. Moreover, y �<v x @ y for all y ∈ C follows
from the minimality of (x , y), since C is clearly a subset of S(a, b). Together,
the previous two statements conclude the proof. ��
Lemma 5 (Soundness). set (solutions a b) ⊆ M(a, b)

Proof. Let (x , y) be in solutions a b. According to the definition of M(a, b) we
have to show that (x , y) is in S(a, b) (which is trivial), x is nonzero, and that
there is no <v-smaller solution (u, v) with nonzero u. Incidentally, the last part
can be narrowed down to: there is no <v-smaller minimal solution (u, v) (since
for every solution we can find a ≤v-smaller minimal solution by well-foundedness
of <v, and the left component of minimal solutions is nonzero by definition).

We start by showing that x is nonzero. Since there are no zeroes in a and
b, and (x , y) is a solution, x can only be a zero-list if also y is. However, the
elements of solutions a b are sorted in strictly increasing order with respect to
<rlex and the first one is already not the pair of zero-lists, by construction.

Now, for the sake of a contradiction, assume that there is a minimal solution
(u, v) <v (x , y). By Lemma 4, we obtain that (u, v) is also in solutions a b. But
then, due to its minimality, (u, v) is also in C (the same set we already used in
the proof of Lemma 4). Moreover, (x , y) is in C by construction. Together with
Lemma 3 and (u, v) <v (x , y), this results in the desired contradiction. ��
As a corollary of the previous two results, we obtain that solutions computes
exactly all minimal solutions, that is set (solutions a b) = M(a, b).

A Formally Verified Solver for Homogeneous Linear Diophantine Equations 449

5 Special and Non-special Solutions

For each pair of variable positions i and j , there is exactly one minimal solu-
tion such that only the x-entry at position i and the y-entry at position j are
nonzero. Since all other entries are 0, the equation collapses to aixi = bj yj .
Taking the minimal solutions (by employing the least common multiple) of
this equation, we solve for xi and then for yj and obtain the nonzero x-entry
dij = lcm(ai , bj)/ai and the nonzero y-entry eij = lcm(ai , bj)/bj , respectively.
Given i and j , we obtain the special solution (x , y) where x is [0, . . . , dij , . . . , 0]
and y is [0, . . . , eij , . . . , 0].

All special solutions can be computed in advance and outside of our min-
imization phase, since special solutions are minimal (the only entries where a
special solution could decrease are dij and eij , but those are minimal due to the
properties of least common multiples). We compute all special solutions by the
following function

special_solutions a b =
[sij a b i j. i ← [1..length a], j ← [1..length b]]

where

sij a b i j = ((replicate (length a) 0)[i := dij a b i j],
(replicate (length b) 0)[j := eij a b i j])

dij a b i j = lcm (a ! i) (b ! j) div (a ! i)
eij a b i j = lcm (a ! i) (b ! j) div (b ! j)

We have already seen a relatively crude bound on minimal solutions in Sect. 3.
A further bound, this time for minimal non-special solutions, follows.

Lemma 6. Let (x , y) be a non-special solution such that xi ≥ dij and yj ≥ eij
for some 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then (x , y) is not minimal.

Proof. Assume that (x , y) is a minimal solution and consider the special solution
(u, v) = ([0, . . . , dij , . . . , 0], [0, . . . , eij , . . . , 0]). Due to xi ≥ dij and yj ≥ eij we
obviously have u @ v ≤v x @y . Since (x , y) is not special itself, we further obtain
u @ v <v x @ y , contradicting the supposed minimality of (x , y). ��
This result allows us to avoid all candidates that are pointwise greater than
or equal to some special solution during our generation phase, which is the
motivation for the following functions for bounding the elements of non-special
minimal solutions. The function max_y, bounding entries of y , is directly taken
from Huet [5]. Moreover, max_x is our counterpart to max_y bounding entries of
x . As max_x is symmetric to max_y, we only give details for the latter, which is

max_y x j =
if j < n ∧ Ej x �= ∅ then min (Ej x)
else max a

where Ej is defined by

450 F. Meßner et al.

Ej x = {eij − 1 | i < |x | ∧ xi ≥ dij}
from which we can show that all minimal solutions satisfy the following bounds

boundr x y ←→ (∀1 ≤ j ≤ n. yj ≤ max_y x j)

subdprodl x y ←→ (∀k ≤ m. [a]k • [x]k ≤ b • y)

subdprodr y ←→ (∀l ≤ n. [b]l • [y]l ≤ a •map (max_x [y]l) [1..m])

where boundr, subdprodl, and subdprodr are mnemonic for bound on entries of
right component, bound on sub dot product of left component, and bound on sub
dot product of right component, respectively.

Lemma 7. Let (x , y) ∈ M(a, b) be a non-special minimal solution. Then, all
of the following hold:

(1) boundr x y,
(2) subdprodl x y, and
(3) subdprodr x y.

Proof. Property (1) directly corresponds to condition (c) of Huet. Thus, we refer
to our formalization for details but note that this is where Lemma6 is employed
(apart from motivating the definitions of max_x and max_y in the first place).

Property (2), which is based on Huet’s condition (d), follows from (x , y)
being a solution and the fact that the dot product cannot get larger by dropping
(same length) suffixes from both operands.

The last property (3) is based on condition (b) from Huet’s paper. Again, we
refer to our formalization for details. ��

Given a bound B and a list of coefficients as, the function alls computes
all pairs whose first component is a list xs of length |as| with entries at most B
and whose second component is as • xs. Note that the resulting list is sorted in
reverse lexicographic order with respect to first components of pairs.4

alls B [] = [([], 0)]
alls B (a#as) = [(x # xs, s + a * x).

(xs, s) ← alls B as, x ← [0..B]]

Example 1. For a = [1,1] (corresponding to the left-hand side coefficients of
our initial example) and B = 2 the list computed by allsB a is

[([0,0],0),([1,0],1),([2,0],2),([0,1],1),([1,1],2),([2,1],3),
([0,2],2),([1,2],3),([2,2],4)]

4 Also, in case you are wondering, the second component of the pairs will only play a
role in Sect. 6, where it will avoid unnecessary recomputations of sub dot products.
However, including these components already for alls serves the purpose of enabling
later proofs of program transformations (or code equations as they are called in
Isabelle).

A Formally Verified Solver for Homogeneous Linear Diophantine Equations 451

Since for a potential solution (x , y) elements of x and of y have different
bounds, we employ

generate A B a b =
tl (map (λ(x, y). (fst x, fst y)) (alls2 A B a b))

where

alls2 A B a b = [(xs, ys). ys ← alls B b, xs ← alls A a]

Note that the result of generate is sorted with respect to <rlex. If we use max b
and max a as bounds for x and y , respectively, then generate takes care of the
new generate phase.

The static bounds on individual candidate solutions we obtain from Lemma2
can be checked by the predicate

static_bounds x y ←→
(∀1 ≤ i ≤ m. xi ≤ max�=0

y (b)) ∧ (∀1 ≤ j ≤ n. yj ≤ max�=0
x (a))

The new check phase is based on the following predicate, which is a combination
of these static bounds, the fact that we are only interested in solutions, and the
three further bounds from Lemma 7

check_cond (x, y) = static_bounds x y ∧ a • x = b • y ∧
boundr x y ∧ subdprodl x y ∧ subdprodr y)

and implemented by check' = filter check_cond.
The new minimization phase finally, is still implemented by minimize, only

that this time its input will often be a shorter list.
Combining all three phases, non-special solutions are computed by

non_special_solutions =
let A = max b; B = max a in
minimize (check' (generate' A B a b))

By including all special solutions we arrive at the intermediate algorithm solve,
which already separates special from non-special solutions, but still requires
further optimization:

solve a b = special_solutions a b @ non_special_solutions a b

The proof that solvea b correctly computes the set of minimal solutions, that is
set (solvea b) = M(a, b), is somewhat complicated by the additional bounds,
but structurally similar enough to the corresponding proof of solutions that we
refer the interested reader to our formalization.

Having covered the correctness of our algorithm, it is high time to turn
towards performance issues.

452 F. Meßner et al.

6 A More Efficient Algorithm for Code Generation

While the list of non-special solutions computed in Sect. 5 lends itself to for-
malization (due to its separation of concerns regarding the generate and check
phases), it may waste a lot of time on generating lists that will not pass the later
checks.

Example 2. Recall our initial example with coefficients a = [1,1] and b = [2].
Let A = maxb = 2 and B = maxa = 1. Then, the list generated by allsB b
contains for example a y-entry ([0],0). This is combined with all nine elements
of allsAa (listed in Example 1) before filtering takes place, even though only a
single x-entry, namely ([0,0],0), will survive the check phase (since all others
exceed the bound max�=0

[0](b) = 0 for some entry).

We now proceed to a more efficient variant of non_special_solutionswhich
computes the same results (alas, we cannot hope for better asymptotic behavior,
since computing minimal complete sets of solutions of HLDEs is NP-complete).

While all of the following has been formalized, we will not give any proofs
here, due to their rather technical nature and a lack of further insights. We start
with the locale

locale bounded gen check =
fixes C and B
assumes C (x# xs) s = False if x > B
and C (x′ # xs) s′ if C (x# xs) s, x′ ≤ x, s′ ≤ s

which takes a condition C, a bound B, and defines a function gen_check that
combines (to a certain extent) generate' and check' from the previous section.

gen_check [] = [([], 0)]
gen_check (a # as) = concat (map (incs a 0) (gen_check as))

Here, the auxiliary function incs is defined by (note that termination of this
function relies on the fact that there is an upper bound—namely B, as ensured
by the first assumption of the locale—on the entries of the generated lists):

incs a x (xs, s) =
let t = s + a*x in
if C (x#xs) t then (x#xs, t) # incs a (x+1) (xs, s) else []

The idea of gen_check is to length-incrementally (starting with rightmost ele-
ments) generates all lists whose elements are bounded by B, such that only
intermediate results that satisfy C are computed.

For us, the crucial property of gen_check is its connection to alls, which is
covered by the following result (for which we need the second locale assumption).

Lemma 8. gen_check a = filter (suffs C a) (alls B a)

A Formally Verified Solver for Homogeneous Linear Diophantine Equations 453

Where suffs C a (x, s) ensures that |x| = |a|, s = a • x and all non-empty
suffixes of the list x (including x itself) satisfy condition C.

Now we can define generate_check in terms of two instantiations of the
locale bounded gen check (meaning that each time the locale parameters C
and B are replaced by terms for which all assumptions of the locale are sat-
isfied), using appropriate conditions C1, C2 and bounds B1, B2, respectively.
This results in the two instances gen_check1 and gen_check2 of gen_check,
where gen_check1 receives a further parameter y, which stands for a fixed
y-entry against which we are trying to generate x-entries.

To be more precise, we use the following instantiations

B1 = λb. maxb

B2 = maxa

C1 b y x s ←→ x = [] ∨ s ≤ b • y ∧ x ≤ max�=0
y (b)

C2 y s ←→ y = [] ∨ (y ≤ maxa ∧ s ≤ a •map (max_x y) [1..|a|])
Combining gen_check1 and gen_check2 we obtain a function that computes

candidate solutions as follows:

generate_check a b = [(x, y) | y ← gen_check2 b, x ← gen_check1 y a]

Using Lemma 8 it can be shown that generate_check behaves exactly the
same way as first generating candidates using alls2 and then filtering them
according to conditions C1 and C2.

generate_check a b =
[(x, y) ← alls2 (B1 b) B2 a b.suffs (C1 b (fst y)) a x ∧suffs C2 b y]

We further filter this list of candidate solutions in order to get rid of superfluous
entries, resulting in the function fast_filter defined by

filter P (map (λ(x, y). (fst x,fst y)) (tl (generate_check a b)))

where P (x, y) = static_bounds x y ∧ a • x = b • y ∧boundr x y.
Extensionally fast_filter is equivalent to what non_special_solutions of

our intermediate algorithm above does before minimization.

Lemma 9. Let A = maxb and B = maxa. Then

fast_filter a b = check' a b (generate' A B a b)

This finally allows us to use the following more efficient definition of solve for
code generation (of course all results on solve carry over, since extensionally the
two versions of solve are the same, as shown by Lemma 9).

solve a b = special_solutions a b @ minimize (fast_filter a b)

Generating the Solver. At this point we generate Haskell code for solve (and
also for the library functions integer_of_nat and nat_of_integer, which will
be used in our main file) by

454 F. Meßner et al.

export-code solveinteger_of_natnat_of_integer
in Haskell module-name HLDE file“generated/”

(For this step a working Isabelle installation is required.)
The only missing part is the (hand written) main entry point to our program

in Main.hs (it takes an HLDE as command line argument in Haskell syntax,
makes sure that the coefficients are all nonzero, hands the input over to solve,
and prints the result):

main = getArgs >>= parse

parse [s] = start s parse _ = do
hPutStrLn stderr usage
exitWith (ExitFailure 1)

start input = do
let (a, b) = read input :: ([Integer], [Integer])
if 0 èlem̀ a || 0 èlem̀ b then do
hPutStrLn stderr "0-coefficients are not allowed"
exitWith (ExitFailure 2)

else if null a || null b then do
hPutStrLn stderr "empty lists coefficients are not allowed"
exitWith (ExitFailure 3)

else
mapM_ (putStrLn . show . (\(x, y) ->

(map integer_of_nat x, map integer_of_nat y))) (
solve (map nat_of_integer a) (map nat_of_integer b))

usage = {- ... -}

A corresponding binary hlde can be compiled using the command (provided
of course that our AFP entry and a Haskell compiler are both installed):

isabelle afp_build HLDE

We conclude this section by an example run (joining output lines to save space):

$./hlde "([2,1],[1,1,2])"
([1,0],[2,0,0]) ([1,0],[0,2,0]) ([1,0],[0,0,1]) ([0,1],[1,0,0])
([0,1],[0,1,0]) ([0,2],[0,0,1]) ([1,0],[1,1,0])

7 Evaluation

We compare our verified algorithms—the simple algorithm (S) of Sect. 4, the
intermediate algorithm of Sect. 5 (I), and the efficient algorithm of Sect. 6 (E)—
with the fastest unverified implementation we are aware of: a graph algorithm
(G) due to Clausen and Fortenbacher [2].

A Formally Verified Solver for Homogeneous Linear Diophantine Equations 455

Table 2. Comparing runtimes of verified algorithms and fastest known algorithm

smhtirogladefiirevhtiwEDLH

coefficients S I E G

a b #sols time (s) time (s) time (s) time (s)

[1,1] [2] 3 0.001 0.001 0.001 n/a
[1,1] [3] 4 0.001 0.001 0.001 n/a
[1,1,1] [3] 10 0.001 0.002 0.001 n/a
[1,1,1] [3,3,2] 26 0.002 0.003 0.002 n/a
[1,2,5] [1,2,3,4] 39 0.2 0.3 0.07 0.012
[1,1,1,2,3] [1,1,2,2] 44 0.2 0.01 0.01 0.006
[2,5,9] [1,2,3,7,8] 119 188.00 212.00 21.00 0.081
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 262.00 49.00 0.07 0.012
[1,4,4,8,12] [3,6,9,12,20] 232 - - 221.00 0.180

In Table 2 we give the resulting runtimes (in seconds) for computing minimal
complete sets of solutions of a small set of benchmark HLDEs (in increasing
order of number of solutions; column #sols): the first four lines cover our initial
example and three slight modifications, while the remaining examples are taken
from Clausen and Fortenbacher).

However, there are two caveats: on the one hand, the runtimes for G are
direct transcriptions from Clausen and Fortenbacher (hence also the missing
entries for the first four examples), that is, they where generated on hardware
from more than two decades ago; on the other hand, G uses improved bounds
for the search-space of potential solutions, which are not formalized and thus
out of reach for our verified implementations.

Anyway, our initial motivation was to certify minimal complete sets of AC-
unifiers. Which is, why we want to stress the following: already for the first
four examples of Table 2 the number of AC-unifiers goes from five, over 13, then
981, up to 65 926 605. For the remaining examples we were not even able to
compute the number of minimal AC-unifiers (running out of memory on 20 GB
of RAM); remember that in the worst case for an elementary unification problem
whose corresponding HLDE has n minimal solutions, the number of minimal AC
unifiers is in the order of 2n. Thus, applications that rely on minimal complete
sets of AC-unifiers will most likely not succeed on examples that are much bigger
than the one in line three of Table 2, rendering certification moot.

On the upside, we expect HLDEs arising from realistic examples involving
AC-unification to be quite small, since the nesting level of AC-symbols restricts
the length of a and b and the multiplicity of variables restricts individual entries.

8 Related Work

In the literature, there are basically three approaches for solving HLDEs: lexico-
graphic algorithms, completion procedures, and graph theory based algorithms.

456 F. Meßner et al.

Already in the 1970s Huet devised an algorithm to generate the basis of solu-
tions to homogeneous linear diophantine equations in a paper of the same title
[5], the first instance of a lexicographic algorithm. Our formalization of HLDEs
and bounds on minimal solutions is inspired by Huet’s elegant and short proofs.
We also took up the idea of separating special and non-special solutions from
Huet’s work. Moreover, the structure of our algorithm mostly corresponds to
Huet’s informal description of his lexicographic algorithm: a striking difference
is that we use a reverse lexicographic order. This facilities a construction relying
on recursive list functions without the need of accumulating parameters. Com-
pared to the beginning of our work, where we tried to stay with the standard
lexicographic order, this turned out to lead to greatly simplified proofs.

In 1989, Lankford [7] proposed the first completion procedure solving HLDEs.
Fortenbacher and Clausen [2] give an accessible survey of these earlier

approaches and in addition present the first graph theory based algorithm. They
conclude that any of the existing algorithms is suitable for AC-unification: on
the one hand there are huge performance differences for some big HLDEs; on
the other hand AC-unification typically requires only relatively small instances;
moreover, if the involved HLDEs grow too big the number of minimal AC-unifiers
explodes massively, dwarfing the resource requirements for solving those HLDEs.

Later, Contejean and Devie [3] gave the first algorithm that was able to
solve systems of linear diophantine equations (and is inspired by a geometric
interpretation of the algorithm due to Fortenbacher and Clausen).

In contrast to our purely functional algorithm, all of the above approaches
have a distinctively imperative flavor, and to the best of our knowledge, none of
them have been formalized using a proof assistant.

9 Conclusions and Further Work

We had two main reasons for choosing a lexicographic algorithm (also keeping
in mind that the problem being NP-complete, all approaches are asymptotically
equivalent): (1) our ultimate goal is AC-unification and as Fortenbacher and
Clausen [2] put it “How important are efficient algorithms which solve [HLDEs]
for [AC-unification]? [. . .] any of the algorithms presented [. . .] might be chosen
[. . .],” and (2) Huet’s lexicographic algorithm facilitates a simple purely func-
tional implementation that is amenable to formalization.

Structure and Statistics. Our formalization comprises 3353 lines of code. These
include 73 definitions and functions as well as 281 lemmas and theorems, most
of which are proven using Isabelle’s Intelligible Semi-Automated Reasoning lan-
guage Isar [13]. The formalization is structured into the following theory files:

List Vector covering facts (about dot products, pointwise subtraction, several
orderings, etc.) concerning vectors represented as lists of natural numbers.

Linear Diophantine Equations covering the abstract results on HLDEs
discussed in Sect. 3.

A Formally Verified Solver for Homogeneous Linear Diophantine Equations 457

Sorted Wrt, Minimize Wrt covering some facts about sortedness and mini-
mization with respect to a given binary predicate.

Simple Algorithm containing the simple algorithm of Sect. 2 and its correct-
ness proof (Sect. 4).

Algorithm containing an intermediate algorithm (Sect. 5) that separates spe-
cial from non-special solutions, as well as a more efficient variant (Sect. 6).

Solver Code issuing a single command to generate Haskell code for solve and
compiling it into a program hlde.

Future Work. Our ultimate goal is of course to reuse the verified algorithm in
an Isabelle/HOL formalization of AC-unification.

Another direction for future work is to further improve our algorithm. For

example, the improved bounds
m
i=1 xi max b and n

j=1 yj max a are dis-
cussed by Clausen and Fortenbacher [2]. Moreover, already Huet [5] mentions
the optimization of explicitly computing x1 after ([x2 , . . . , xm], y) is fixed (which
potentially divides the number of generated lists by the maximum value in b).

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
New York (1998)

2. Clausen, M., Fortenbacher, A.: Efficient solution of linear diophantine equa-
tions. J. Symbolic Comput. 8(1), 201–216 (1989). https://doi.org/10.1016/S0747-
7171(89)80025-2

3. Contejean, É., Devie, H.: An efficient incremental algorithm for solving systems of
linear diophantine equations. Inf. Comput. 113(1), 143–172 (1994). https://doi.
org/10.1006/inco.1994.1067

4. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-
4 9

5. Huet, G.: An algorithm to generate the basis of solutions to homogeneous linear
diophantine equations. Inf. Process. Lett. 7(3), 144–147 (1978). https://doi.org/
10.1016/0020-0190(78)90078-9

6. Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termi-
nation. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp.
258–273. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-
6 21

7. Lankford, D.: Non-negative integer basis algorithms for linear equations with inte-
ger coefficients. J. Autom. Reasoning 5(1), 25–35 (1989). https://doi.org/10.1007/
BF00245019

8. Marché, C.: Normalized rewriting: an alternative to rewriting modulo a set of
equations. J. Symbolic Comput. 21(3), 253–288 (1996). https://doi.org/10.1006/
jsco.1996.0011

9. Meßner, F., Parsert, J., Schöpf, J., Sternagel, C.: Homogeneous Linear Diophantine
Equations. The Archive of Formal Proofs, October 2017. https://devel.isa-afp.org/
entries/Diophantine Eqns Lin Hom.shtml, Formal proof development

https://doi.org/10.1016/S0747-7171(89)80025-2
https://doi.org/10.1016/S0747-7171(89)80025-2
https://doi.org/10.1006/inco.1994.1067
https://doi.org/10.1006/inco.1994.1067
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1016/0020-0190(78)90078-9
https://doi.org/10.1016/0020-0190(78)90078-9
https://doi.org/10.1007/978-3-642-28717-6_21
https://doi.org/10.1007/978-3-642-28717-6_21
https://doi.org/10.1007/BF00245019
https://doi.org/10.1007/BF00245019
https://doi.org/10.1006/jsco.1996.0011
https://doi.org/10.1006/jsco.1996.0011
https://devel.isa-afp.org/entries/Diophantine_Eqns_Lin_Hom.shtml
https://devel.isa-afp.org/entries/Diophantine_Eqns_Lin_Hom.shtml

458 F. Meßner et al.

10. Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: new evidence – a progress report.
In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 385–397.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 24

11. Shintani, K., Hirokawa, N.: CoLL: a confluence tool for left-linear term rewrite sys-
tems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195,
pp. 127–136. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6 8

12. Stickel, M.: A unification algorithm for associative-commutative functions. J. ACM
28(3), 423–434 (1981). https://doi.org/10.1145/322261.322262

13. Wenzel, M.: Isabelle/Isar - a versatile environment for human-readable formal proof
documents. Ph.D. thesis, Institut für Informatik (2002)

14. Winkler, S., Middeldorp, A.: Normalized completion revisited. In: Proceedings
of the 24th International Conference on Rewriting Techniques and Applications
(RTA). Leibniz International Proceedings in Informatics, vol. 21, pp. 319–334.
Schloss Dagstuhl (2013). https://doi.org/10.4230/LIPIcs.RTA.2013.319

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-63046-5_24
https://doi.org/10.1007/978-3-319-21401-6_8
https://doi.org/10.1145/322261.322262
https://doi.org/10.4230/LIPIcs.RTA.2013.319
http://creativecommons.org/licenses/by/4.0/

Formalizing Implicative Algebras in Coq

Étienne Miquey(B)

Équipe Gallinette Inria, LS2N (CNRS), Nantes, France
etienne.miquey@inria.fr

Abstract. We present a Coq formalization of Alexandre Miquel’s
implicative algebras [18], which aim at providing a general algebraic
framework for the study of classical realizability models. We first give
a self-contained presentation of the underlying implicative structures,
which roughly consist of a complete lattice equipped with a binary law
representing the implication. We then explain how these structures can
be turned into models by adding separators, giving rise to the so-called
implicative algebras. Additionally, we show how they generalize Boolean
and Heyting algebras as well as the usual algebraic structures used in
the analysis of classical realizability.

1 Introduction

Krivine Classical Realizability. It is well-known since Griffin’s seminal
work [10] that a classical Curry-Howard correspondence can be obtained by
adding control operators to the λ-calculus. Several calculi were born from this
idea, amongst which Krivine λc-calculus [13], defined as the λ-calculus extended
with Scheme’s call/cc operator (for call-with-current-continuation). Elaborat-
ing on this calculus, Krivine’s developed in the late 90s the theory of classical
realizability [13], which is a complete reformulation of its intuitionistic twin. Orig-
inally introduced to analyze the computational content of classical programs, it
turned out that classical realizability also provides interesting semantics for clas-
sical theories. While it was first tailored to Peano second-order arithmetic (i.e.
second-order type systems), classical realizability actually scales to more com-
plex classical theories, e.g. ZF [14], and gives rise to surprisingly new models.
In particular, its generalizes Cohen’s forcing [14,17] and allows for the direct
definition of a model in which neither the continuum hypothesis nor the axiom
of choice hold [16].

Algebraization of Classical Realizability. During the last decade, the study
of the algebraic structure of the models that classical realizability induces have
been an active research topic. This line of work was first initiated by Streicher,
who proposed the concept of abstract Krivine structure [24], followed by Ferrer,

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-94821-8 27) contains supplementary material, which is
available to authorized users.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 459–476, 2018.
https://doi.org/10.1007/978-3-319-94821-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_27&domain=pdf
https://doi.org/10.1007/978-3-319-94821-8_27
https://doi.org/10.1007/978-3-319-94821-8_27

460 É. Miquey

Frey, Guillermo, Malherbe and Miquel who introduced other structures peculiar
to classical realizability [5–9]. In addition to the algebraic study of classical
realizability models, these works had the interest of building the bridge with
the algebraic structures arising from intuitionistic realizability. In particular,
Streicher showed in [24] how classical realizability could be analyzed in terms of
triposes [21], the categorical framework arising from intuitionistic realizability
models, while the later work of Ferrer et al. [6,7] connected it to Hofstra and Van
Oosten’s notion of ordered combinatory algebras [12]. More recently, Alexandre
Miquel introduced the elegant concepts of implicative structure and implicative
algebra[18]1, which appear to encompass the previous approaches and which we
present in this paper.

Implicative Structures. In addition to providing an algebraic framework con-
ducive to the analysis of classical realizability, an important feature of implica-
tive structures is that they allow us to identify realizers (i.e. λ-terms) and truth
values (i.e. formulas). Concretely, implicative structures are complete lattices
equipped with a binary operation a → b satisfying properties coming from the
logical implication. As we will see, they indeed allow us to interpret both the
formulas and the terms in the same structure. For instance, the ordering relation
a ≤ b will encompass different intuitions depending on whether we regard a and
b as formulas or as terms. Namely, a ≤ b will be given the following meanings:

– the formula a is a subtype of the formula b;
– the term a is a realizer of the formula b;
– the realizer a is more defined than the realizer b.

The last item corresponds to the intuition that if a is a realizer of all the formulas
of which b is a realizer, a is more precise than b, or more powerful as a realizer.

In terms of the Curry-Howard correspondence, this means that not only do
we identify types with formulas and proofs with programs, but we also identify
types and programs.

Implicative Algebras. Because we consider formulas as realizers, any formula
will be at least realized by itself. In particular, the lowest formula ⊥ is realized.
While this can be dazzling at first sight, it merely reflects the fact that implicative
structures do not come with an intrinsic criterion of consistency. To overcome
this, we will introduce the notion of separator, which is similar to the usual notion
of filter for Boolean algebras. Implicative algebras will be defined as implicative
structures equipped with a separator. As we shall see, they capture the algebraic
essence of classical realizability models. In particular, we will embed both the
λc-calculus and its second-order type system in such a way that the adequacy
is preserved. Implicative algebras therefore appear to be the adequate algebraic
structure to study classical realizability and the models it induces.

Coq Formalization. The formalization of implicative algebras that we present
in this paper has been written using the Coq proof assistant. It was written
1 Independently, very similar structures can be found in Frédéric Ruyer’s Ph.D. the-

sis [22] under the name of applicative lattices.

Formalizing Implicative Algebras in Coq 461

during the author’s PhD, as a way of (1) checking the correctness of implicative
algebras properties (which, at the time, were neither published nor formally
written with their proofs), and (2) easing the further study of similar structures2.

Technically, it relies on Charguéraud’s locally nameless representation of λ-
terms [2]. and the corresponding LN library3, which was developed at the occa-
sion of the POPLmark challenge [1]. As for the different algebraic structures
evoked in the paper, we systematically represent them as classes using Sozeau-
Oury’s Class mechanism [23]. Interestingly, apart from the technical details men-
tioned above to define terms (and types), the formalization of the different results
mostly follows the corresponding pen and paper proofs.

Outline of the paper. We begin by briefly recalling the structures of classical
realizability models in Sect. 2. We then present in Sect. 3 the concept of implica-
tive structures and explain how it generalizes well-known algebraic structures4.
We then show in Sect. 4 how λc-terms and second-order types can be adequately
embedded within implicative structures. Finally, we introduce implicative alge-
bras in Sect. 5. We study their internal logic and finally explain how they give
rise to models. It should be clear to the reader that the notion of implicative
algebra and its properties are due to Alexandre Miquel [18].

The theorems in the paper are hyperlinked with their formalizations in the
Coq development5. Detailed proofs can be found in [19, Chapter 10] from which
this paper is partially taken.

2 Krivine Classical Realizability

Due to the lack of space, it is not possible to fully introduce here Krivine classi-
cal realizability and its models defined using the machinery of the λc-calculus6.
Rather than that, we choose to present it through the lenses of Streicher’s
abstract Krivine structures (AKS), which are merely an axiomatization of the
Krivine abstract machine for the λc-calculus viewed as an algebraic structure:

Definition 1 (AKS). An abstract Krivine structure is given by a septuple
(Λ,Π, app, push, k ,k, s, cc,PL,⊥⊥) where:

1. Λ and Π are non-empty sets, called the terms and the stacks of the AKS;
2. app : t, u �→ tu is a function (called application) from Λ × Λ to Λ;
3. push : t, π �→ t · π is a function (called push) from Λ × Π to Π;
4. k : π �→ kπ is a function from Π to Λ (kπ is called a continuation);

2 Namely, one goal of the author’s PhD work was to define similar algebras based on
the decomposition of the implication as ¬A ∨ B and ¬(A ∧ ¬B) (see [19]).

3 In doing so, our development implicitly relies on assumptions of functional and
propositional extensionnality, which we do not need nor use.

4 We will not recall the definition of lattices, Heyting algebras and so on, for a more
detailed introduction we refer the reader to [19, Chapter 9].

5 Available at https://gitlab.com/emiquey/ImplicativeAlgebras/.
6 For a detailed introduction on this topic, we refer the reader to [13] or [19].

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.AKS.html#AKS
https://gitlab.com/emiquey/ImplicativeAlgebras/

462 É. Miquey

5. k, s and cc are three distinguished terms of Λ;
6. ⊥⊥ ⊆ Λ × Π (called the pole) is a relation between terms and stacks, also

written t � π ∈ ⊥⊥. This relation fulfills the following axioms for all terms
t, u, v ∈ Λ and all stacks π, π′ ∈ Λ:

t � u · π ∈ ⊥⊥ ⇒ tu � π ∈ ⊥⊥
t � π ∈ ⊥⊥ ⇒ k � t · u · π ∈ ⊥⊥

tv(uv) � π ∈ ⊥⊥ ⇒ s � t · u · v · π ∈ ⊥⊥
t � kπ · π ∈ ⊥⊥ ⇒ cc � t · π ∈ ⊥⊥

t � π ∈ ⊥⊥ ⇒ kπ � t · π′ ∈ ⊥⊥

7. PL ⊆ Λ is a subset of Λ (whose elements are called the proof-like terms),
which contains k, s, cc and is closed under application.

Given any subset of stacks X ⊆ Π (which we call a falsity value), we write X⊥⊥

for its orthogonal set with respect to the pole:

X⊥⊥ � {t ∈ Λ : ∀π ∈ X, t � π ∈ ⊥⊥}

Orthogonality for subsets X ⊆ Λ (i.e. a truth value) is defined identically. Intu-
itively, classical realizability models are mainly given by the choice of the sets
⊥⊥ and PL together with the interpretation of formulas as falsity values. Valid
formulas are the one admitting a proof-like realizer, that is to say a term t ∈ PL
such that t ∈ ‖A‖⊥⊥ where ‖A‖ ∈ P(Π) is the falsity value of A.

3 Implicative Structures

3.1 Definition

Intuitively, implicative structures are tailored to represent both the formulas of
second-order logic and realizers arising from Krivine’s λc-calculus. We shall see in
the sequel how they indeed allow us to define λ-terms, but let us introduce them
by focusing on their logical facet. We are interested in formulas of second-order
logic, that is to say of system F , which are defined by a simple grammar:

A,B :: = X | A ⇒ B | ∀X.A

Implicative structures are therefore defined as meet-complete lattices (for the
universal quantification) with an internal binary operation satisfying the prop-
erties of the implication:

Definition 2. An implicative structure is a complete meet-semilattice (A,�)
equipped with a binary operation (a, b) �→ (a → b), called the implication of A,
that fulfills the following axioms:

1. Implication is anti-monotonic with respect to its first operand and monotonic
with respect to its second operand, in the sense that for all a, a0, b, b0 ∈ A:

(V ariance) Ifa0 � a and b � b0 then (a → b) � (a0 → b0).

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#ImplicativeStructure

Formalizing Implicative Algebras in Coq 463

2. Arbitrary meets distribute over the second operand of implication, in the sense
that for all a ∈ A and for all subsets B ⊆ A :

(Distributivity)
�

b∈B

(a → b) = a →
�

b∈B

b

Remark 3. In the particular case where B = ∅, the axiom of distributivity
states that a → � = � for all a ∈ A.

3.2 Examples of Implicative Structures

Complete Heyting Algebras. The first example of implicative structures is
given by complete Heyting algebras. Indeed, the axioms of implicative structures
are intuitionistic tautologies verified by any complete Heyting algebra. Therefore,
every complete Heyting algebra induces an implicative structure with the same
arrow:

Proposition 4. Every complete Heyting algebra is an implicative structure.

Proof. Since H is complete, by definition we have a → b =
�{x ∈ H : a∧x � b},

from which we deduce that a � c � b ⇔ a � c → b. The axioms defining
implicative structures are straightforward to prove using these observations.

The converse is obviously false, since the implication of an implicative struc-
ture A is in general not determined by the lattice structure of A. Besides, since
any (complete) Boolean algebra is in particular a (complete) Heyting algebra, a
fortiori any complete Boolean algebra induces an implicative structure:

Proposition 5. If B is a complete Boolean algebra, then B induces an implica-
tive structure where the implication is defined for all a, b ∈ B by a → b � ¬a� b.

Dummy Structures. Given a complete lattice L, it is easy to check that the
following definitions induce dummy implicative structures:

Proposition 6. If L is a complete lattice, the following definitions give rise to
implicative structures: 1. a → b � � 2. a → b � b (for all a, b ∈ L)

Both definitions lead to implicative structures which are meaningless from
the point of view of logic. Nonetheless, they will provide us with useful counter-
examples.

Ordered Combinatory Algebras. We recall the notion of ordered combi-
natory algebra, abbreviated in OCA, which is a variant7 of Hofstra and Van
Oosten’s notion of ordered partial combinatory algebras [12]. Ferrer et al. struc-
tures to represent Krivine realizability, called IOCA or KOCA, are particular
cases of OCA [5–7].
7 In partial combinatory algebras, the application is defined as a partial function.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#arrow_bot
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.HeytingAlgebras.html#CHA_IS
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.BooleanAlgebras.html#CBA_IS
https://www.irif.fr/~emiquey/ITP/Dummies.html#dummy_imp_top
https://www.irif.fr/~emiquey/ITP/Dummies.html#dummy_imp_r

464 É. Miquey

Definition 7 (OCA). An ordered combinatory algebra is given by a quintuple
(A,≤, app,k, s), where:

– ≤ is a partial order over A,
– app : (a, b) �→ ab is a monotonic function8 from A × A to A,
– k ∈ A is such that kab ≤ a for all a, b ∈ A,
– s ∈ A is such that sabc ≤ ac(bc) for all a, b, c ∈ A.

Given any ordered combinatory algebra, we can define an implication on the
complete lattice P(A) which give rise to an implicative structure:

Proposition 8. If A is an ordered combinatory algebra, then the complete lat-
tice P(A) equipped with the implication9:

A → B � {r ∈ A : ∀a ∈ A.ra ∈ B} (∀A,B ⊆ A)

is an implicative structure.

Proof. Both conditions (variance/distributivity) are trivial from the definition.

Implicative Structure of Classical Realizability. Our final example of
implicative structure—which is the main motivation of this work—is given by
classical realizability. As we saw in Sect. 2, the construction of classical realiz-
ability models, whether it be from Krivine’s realizability algebras [14–16] in a
set-theoretic like fashion or in Streicher’s AKS [24], takes place in a structure
of the form (Λ,Π, ·,⊥⊥) where Λ is the set of realizers; Π is the set of stacks;
(·) : Λ × Π → Π is a binary operation for pushing a realizer onto a stack and
⊥⊥ ⊆ Λ × Π is the pole. Given such a quadruple, we can define for all a, b ∈ A:

A � P(Π) a � b � a ⊇ b a → b � a⊥⊥ · b = {t · π : t ∈ a⊥⊥, π ∈ b}

where as usual a⊥⊥ is {t ∈ Λ : ∀π ∈ a, (t, π) ∈ ⊥⊥} ∈ P(Λ), the orthogonal set of
a ∈ P(Π) with respect to the pole ⊥⊥. It is easy to verify that:

Proposition 9. The triple (A,�,→) is an implicative structure.

Proof. The proof is again trivial. Variance conditions correspond to the usual
monotonicity of truth and falsity values in Krivine realizability [13], while the
distributivity follows directly by unfolding the definitions.

8 Observe that the application, which is written as a product, is neither commutative
nor associative in general.

9 This definition is related with the consttruction of a realizability tripos from an OCA
A. Indeed, given a set X, the ordering on predicates of P(A)X is defined by:

ϕ �X ψ � ∃r ∈ A.∀x ∈ X.∀a ∈ A.(a ∈ ϕ(x) ⇒ ra ∈ ψ(x))

where r is broadly a realizer of ∀x ∈ X.ϕ(x) ⇒ ψ(x). See [12] for further details.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.OCA.html#OCA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.OCA.html#OCA_IS
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.AKS.html#AKS_IS

Formalizing Implicative Algebras in Coq 465

4 Interpreting the λ-calculus

4.1 Interpretation of λ-terms

We motivated the definition of implicative structures with the aim of obtaining a
common framework for the interpretation both of types and programs. We shall
now see how λ-terms can indeed be defined in implicative structures.

From now on, let A = (A,�,→) denotes an arbitrary implicative structure.

Definition 10 (Application). Given two elements a, b ∈ A, we call the appli-
cation of a to b and write ab the element of A that is defined by:

ab �
�

{c ∈ A : a � (b → c)}.

If we think of the order relation a � b as “a is more precise than b”, the above
definition actually defines the application ab as the meet of all the elements
c such that b → c is an approximation of a. This definition fulfills the usual
properties of the λ-calculus:

Proposition 11 (Properties of application). For all a, a′, b, b′, c ∈ A :

1. If a � a′ and b � b′, then ab � a′b′ (Monotonicity)
2. (a → b)a � b (β-reduction)
3. a � (b → ab) (η-expansion)
4. ab = min{c ∈ A : a � (b → c)} (Minimum)
5. ab � c ⇔ a � (b → c) (Adjunction)

Proof. Simple lattice manipulations using the properties of the arrow.

Remark 12 (Galois connection). The adjunction ab � c ⇔ a � (b → c)
expresses the existence of a family of Galois connections fb � gb indexed by all
b ∈ A, where the left and right adjoints fb, gb : A → A are defined by:

fb : a �→ ab and gb : c �→ (b → c) (for all a, b, c ∈ A)

Recall that in a Galois connection, the left adjoint is fully determined by the
right one (and vice-versa). In the particular case of a complete Heyting algebra
(H,�,→), this implies that the application is characterized by ab = a � b for all
a, b ∈ H. Indeed, in any Heyting algebra, the adjunction a�b � c ⇔ a � (b → c)
holds for all a, b, c ∈ H, by uniqueness of the left adjoint, ab and a � b are thus
equal.

Definition 13(Abstraction). Given a function f : A → A, we call abstraction
of f and write λf the element of A defined by:

λf �
�

a∈A
(a → f(a))

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app_mon
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app_beta
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app_eta
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#app_min
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#adjunction
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.HeytingAlgebras.html#app_CHA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#abs

466 É. Miquey

Once again, if we think of the order relation a � b as “a is more precise than b”,
the meet of the elements of a set S is an element containing the union of all the
informations given by the elements of S. With this in mind, the above definition
sets λf as the union of all the step functions a → f(a). This definition, together
with the definition of the application, fulfills again properties expected from the
λ-calculus:

Proposition 14 (Properties of the abstraction). The following holds for
any f, g : A → A:

1. If for all a ∈ A, f(a) � g(a), then λf � λg. (Monotonicity)
2. For all a ∈ A, (λf)a � f(a). (β-reduction)
3. For all a ∈ A, a � λ(x �→ ax). (η-expansion)

Proof. Again, the proof consists in easy lattices manipulations.

We call λ-term with parameters (in A) any term defined from the following
grammar (see Footnote 11):

t, u::=x | a | λx.t | tu

where x is a variable and a is an element of A. We can thus associate to each
closed λ-term with parameters t an element tA of A, defined by induction on
the size of t as follows (where a ∈ A):

aA � a (tu)A � tAuA (λx.t)A � λ(a �→ (t[a/x])A)

Thanks to the properties of the application and of the abstraction in implicative
structures that we proved, we can check that the embedding of λ-term is sound
with respect to the β-reduction:

Proposition 15. For all closed λ-terms t and u with parameters, if t −→β u,
then tA � uA.

Proof. By induction on the reduction t −→β u using Propositions 11 and 14.

Again, if we think of the order relation a � b as “a is more precise than b”, it
makes sense that the β-reduction t −→β u is reflected in the ordering tA � uA:
the result of a computation contains indeed less information than the computa-
tion itself10.

4.2 Adequacy

We now dispose of a structure in which we can interpret types and λ-terms. We
saw that the interpretation of terms was intuitively sound with respect to the
β-reduction. We shall now prove that the typing rules of System F are adequate
with respect to the interpretation of terms, that is to say that if t is a closed
λ-term of type T , then tA � TA. The last statement can again be understood
as the fact that a term (i.e. a computation) carries more information than its
type, just like a realizer of a formula is more informative about the formula than
the formula itself.
10 For instance, 0 contains less information than 15 − (3 × 5) or than 1Q(

√
(2)).

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#abs_mon
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#betarule
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#etarule
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#imp_betared

Formalizing Implicative Algebras in Coq 467

Adequacy of the Interpretation. We shall now sketch the formalization of
the former result. First, we extend the usual formulas of System F by defining
second-order formulas with parameters as:

A,B ::= a | X | A ⇒ B | ∀X.A (a ∈ A)

We can then embed closed formulas with parameters into the implicative
structure A. The embedding is trivially defined by:

aA � a (A ⇒ B)A � AA → BA (∀X.A)A �
�

a∈A(A{X := a})A

where a ∈ A. We define a type system for the λc-calculus with parameters11

(that is λ-terms with parameter plus an instruction cc). Typing contexts are
defined as usual by finite lists of hypotheses of the shape (x : A) where x is a
variable and A a formula with parameters. The inference rules, given in Fig. 1,
are the same as in System F (with the extended syntaxes of terms and formulas
with parameters), plus the additional rules for cc.

In order to prove the adequacy of the type system with respect to the embed-
ding, we define substitutions, which we write σ, as functions mapping variables
(of terms and types) to element of A:

σ::=ε | σ[x �→ a] | σ[X �→ a] (a ∈ A, x,X variables)

In the spirit of the proof of adequacy in classical realizability, we say that
a substitution σ realizes a typing context Γ , which we write σ � Γ , if for all
bindings (x : A) ∈ Γ we have σ(x) � (A[σ])A.

(x : A) ∈ Γ

Γ � x : A

Γ, x : A � t : B

Γ � λx . t : A → B
Γ � t : A → B Γ � t : A

Γ � tu : B

Γ � t : A
Γ � t : ∀X.A

(X /∈FV (Γ))
Γ � t : ∀X.A

Γ � t : A{X := B} Γ � cc : ((A → B) → A) → A

Fig. 1. Second-order type system for the λc-calculus

Theorem 16(Adequacy). The typing rules of Fig. 1 are adequate with respect
to the interpretation of terms and formulas: if t is a λc-term with parameters,
A a formula with parameters and Γ a typing context such that Γ � t : A then
for all substitutions σ � Γ , we have (t[σ])A � (A[σ])A.
11 In practice, we use Charguéraud’s locally nameless representation [2] for terms

and formulas. Without giving too much details, we actually define pre-terms and
pre-types which allow both for names (for free variables) and De Bruijn indices (for
bounded variables). Terms and types are then defined as pre-terms and pre-types
without free De Bruijn indices. As for the embedding from pre-terms (resp. pre-
types) into an implicative structure, we define them by means of inductive predicates:

for which we proved the expected
properties.

https://www.irif.fr/~emiquey/ITP/Lambda.html#env
https://www.irif.fr/~emiquey/ITP/Adequacy.html#substitution
https://www.irif.fr/~emiquey/ITP/Adequacy.html#realize
https://www.irif.fr/~emiquey/ITP/Lambda.html#typing_trm
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#adequacy
https://www.irif.fr/~emiquey/ITP/Lambda.html#trm
https://www.irif.fr/~emiquey/ITP/Lambda.html#typ
https://www.irif.fr/~emiquey/ITP/Lambda.html#term
https://www.irif.fr/~emiquey/ITP/Lambda.html#type

468 É. Miquey

Proof. The proof resembles the usual proof of adequacy in classical realizability
(see [13,19]), namely by induction on typing derivations.

Corollary 17. For all λ-terms t, if � t : A, then tA � AA.

4.3 Combinators

The previous results indicate that any closed λ-term is, through the interpreta-
tion, lower than the interpretation of its principal type. We give here some exam-
ples of closed λ-terms which are in fact equal to their principal types through
the interpretation in A. Let us now consider the following combinators:

i � λx.x k � λxy.x s � λxyz.xz(yz) w � λxy.xyy

It is well-known that these combinators can be given the following polymor-
phic types:

i : ∀X.X ⇒ X
k : ∀XY.X ⇒ Y ⇒ X

s : ∀XY Z.(X ⇒ Y ⇒ Z) ⇒ (X ⇒ Y) ⇒ X ⇒ Z
w : ∀XY.(X ⇒ X ⇒ Y) ⇒ X ⇒ Y

Through the interpretation these combinators are identified with their types:

Proposition 18. The following equalities hold in any implicative structure A:

1. iA =
�

a∈A(a → a)
2. kA =

�
a,b∈A(a ⇒ b ⇒ a)

3. sA =
�

a,b,c∈A((a → b → c) → (a → b) → a → c)
4. wA =

�
a,b,c∈A((a → a → b) → a → b)

Proof. The inequality from left to right are consequences of the adequacy. The
converse inequalities are proved by hands, using the properties of application
and abstraction in implicative structures (Propositions 11 and 14).

Finally, in the spirit of the previous equalities, we define the interpretation of cc
by the interpretation of its principal type, that is:

ccA �
�

a,b

(((a → b) → a) → a)

Remark 19. It is not always the case that a term is equal to its principal type.
Consider for instance a dummy implicative structure A where a → b = � for all
elements a, b ∈ A. Suppose in addition that A has at least two distinct elements,
so that ⊥ �= �. Then the following holds:

1. For any a, b ∈ A, we have ab =
�{c : a � b → c} =

� A = ⊥.
2. For any f : A → A, we have λf =

�
a∈A(a → f(a)) =

�
a∈A � = �.

3. ii : ∀X.X → X, yet (ii)A = ⊥ �= � = (∀X.X → X)A.
4. iA = � �= ⊥ = (skk)A.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Adequacy.html#adequacy_empty
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#lambda_Id
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#lambda_K
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#lambda_S
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#lambda_W
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#dummy_top_app
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#dummy_top_abs
https://www.irif.fr/~emiquey/ITP/Dummies.html#II_neq_I
https://www.irif.fr/~emiquey/ITP/Dummies.html#I_neq_SKK_dum

Formalizing Implicative Algebras in Coq 469

4.4 The Problem of Consistency

The last remark shows us that not all implicative structures are suitable for
interpreting intuitionistic or classical logic. We thus need to introduce a criterion
of consistency.

Definition 20 (Consistency). We say that an implicative structure is:

– intuitionistically consistent if tA �= ⊥ for all closed λ-terms;
– classically consistent if tA �= ⊥ for all closed λc-terms.

We shall now relate the previous definition to the usual definition of consistency
in classical realizability models. Recall that any abstract Krivine structure K =
(Λ,Π, app, push, k ,k, s, cc,PL,⊥⊥) induces an implicative structure (A,�,→)
where A = P(Π), a � b ⇔ a ⊇ b and a → b = a⊥⊥ · b. A realizability model is
said to be consistent when there is no proof-like term realizing ⊥. In terms of
abstract Krivine structures, the consistency can then be expressed by this simple
criterion:

K is consistent if and only if {⊥}⊥⊥ ∩ PL = Π⊥⊥ ∩ PL = ∅

We thus need to check that this criterion of consistency for the AKS implies the
consistency of the induced implicative structure, i.e. that if t is a closed λc-term,
then tA �= ⊥. By definition of the implicative structure A induced by K, we have
that tA ∈ A = P(Π). Therefore, tA is a falsity value from the point of view of
the AKS. To ensure that it is not equal to ⊥ (i.e. Π), it is enough to find a
realizer of tA in K. The consistency of K precisely states that ⊥ does not have
any realizer.

Our strategy to find a realizer for tA in K is to use t itself. First, we reduce
the problem to the set of terms that are identifiable with the combinatory terms
of K. We call a combinatory term any term that is obtained by combination of
the combinators (k, s, cc). To each combinatory term t we associate a term tΛ

in Λ, whose definition by induction is trivial:

kΛ � k sΛ � s ccΛ � cc (tu)Λ � app(tΛ , uΛ)

Since the set PL is closed under application, for any combinatory term t,
its interpretation tΛ is in PL. The combinatory completeness of (k, s, cc) with
respect to closed λc-terms ensures us that there exists a combinatory term t0
(viewed as a λ-term) such that t0 −→β t. By Proposition 15, we thus have
tA0 � tA. It is thus enough to show that tA0 �= ⊥: we reduced the original problem
for closed λc-terms to combinatory terms.

It only remains to show that for any combinatory term t0, its interpretation
tA0 is not ⊥. For the reasons detailed above, it is sufficient to prove that tA0 is
realized. We prove that tA0 is in fact realized by tΛ0 :

Lemma 21. For any combinatory term t, tΛ realizes tA, i.e. tΛ � tA.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.Combinators.html#Kreal

470 É. Miquey

Proof. By induction on the structure of t, by combining usual results of classical
realizability and properties of implicative structures.

We can thus conclude that the consistency of K induces the one (in the sense
of Definition 20) of the associated implicative structure:

Proposition 22. If K is a consistent abstract Krivine structure, then the
implicative structure it induces is classically consistent.

Proof. Let t be any closed λc-term. We want to show that tA �= ⊥ = Π. We
show that tA, which belongs to P(Π) is realized by a proof-like term.

It is worth noting that the criterion of consistency is defined with respect to
the set PL together with the pole. These sets are already at the heart of the
definition of Krivine’s realizability models, where valid formulas are precisely the
formulas realized by a proof-like term. We shall then introduce the corresponding
ingredient for implicative structures.

5 Implicative Algebras

5.1 Separation

Definition 23 (Separator). Let (A,�,→) be an implicative structure. We call
a separator over A any set S ⊆ A such that for all a, b ∈ A, the following
conditions hold:

1. kA ∈ S, and sA ∈ S. (Combinators)
2. If a ∈ S and a � b, then b ∈ S. (Upwards closure)
3. If (a → b) ∈ S and a ∈ S, then b ∈ S. (Closure under modus ponens)

A separator S is said to be classical if ccA ∈ S and consistent if ⊥ /∈ S.
Remark 24 (Alternative definition) . In presence of condition (2), it is
easy to show that condition (3) is equivalent to the following condition:

(3’) If a ∈ S and b ∈ S then ab ∈ S. (Closure under application)

Intuitively, thinking of elements of an implicative structure as truth values, a
separator should be understood as the set which distinguishes the valid formulas.
Considering the elements as terms, it should rather be viewed as the set of valid
realizers. Indeed, conditions (1) and (3’) ensure that all closed λ-terms are in
any separator. Reading a � b as “the formula a is a subtype of the formula
b”, condition (2) ensures the validity of semantic subtyping. Thinking of the
ordering as “a is a realizer of the formula b”, condition (2) states that if a
formula is realized, then it is in the separator.

Definition 25(Implicative algebra). We call implicative algebra any quadru-
ple (A,�,→,S) where (A,�,→) is an implicative structure and S is a separator
over A. We say that an implicative algebra is classical if its separator is.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#separator
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeStructures.html#mod_pon_app
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#ImplicativeAlgebra

Formalizing Implicative Algebras in Coq 471

Example 26 (Complete Boolean algebras) . It is easy to verify that for
any complete Boolean algebra B, combinators are interpreted by the maximal
element in the induced implicative structure: kB = sB = ccB = �. Therefore, the
singleton {�} is a classical separator for the induced implicative structure. Any
non-degenerated complete Boolean algebras thus induces a classically consistent
implicative algebra.

Example 27 (Abstract Krivine structure). Recall that any AKS induces
an implicative structure (A,�,→) where A = P(Π), a � b ⇔ a ⊇ b and
a → b = a⊥⊥ ·b. The set of realized formulas, namely S = {a ∈ A : a⊥⊥∩PL �= ∅},
defines a valid separator.

5.2 λc-terms

The first property that we shall state about classical separators is that they
contain the interpretation of all closed λc-terms. This follows again from the
combinatory completeness of the basis (k, s, cc) for the λc-calculus12. Indeed, if
S is a classical separator over an implicative structure (A,�,→), it is clear that
any combinatory term is in the separator. Again, by combinatory completeness,
if t is a closed λc-term, there exists a combinatory term t0 such that t0 −→β t,
and therefore tA0 � tA (by Proposition 15). By upward closure of separators, we
deduce that:

Proposition 28. If (A,�,→,S) is a (classical) implicative algebra and t is a
closed λ-term (resp. λc-term), then tA ∈ S.

From the previous proposition and the adequacy of second-order typing rules
for the λc-calculus (Theorem 16), we obtain that:

Corollary 29. If (A,�,→,S) is a (classical) implicative algebra, t is a closed
λ-term (resp. λc-term) and A is a formula such that � t : A, then AA ∈ S.
Remark 30. The latter corollary provides us with a methodology for proving that
an element of a given implicative algebra is in the separator. In the spirit of realiz-
ability, where the standard methodology to prove that a formula is realized consists
in using typed terms and adequacy as much as possible, we can use typed terms to
prove automatically that the corresponding formulas belongs to the separator. We
shall use this methodology abundantly in the sequel. In the Coq development, this
corresponds to a tactic called realizer which allows us to prove that an element
belongs to the separator simply by furnishing a realizer:

Lemma composition: ∀ a b c, (a 	→ b) 	→ (b 	→ c) 	→ a 	→ c ∈ S
Proof. intros. realizer ((λ+ λ+ λ+([$1] ([$2] $0)))). Qed. (** λxyz.y(xz) *)

12 In order to avoid the certification of the corresponding compilation function, we state
this well-known fact as an axiom (the only one) in our development.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.BooleanAlgebras.html#BA_IA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.AKS.html#AKS_IA
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#sep_sclosed
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#sep_typ
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#composition
https://www.irif.fr/~emiquey/ITP/ImplicativeAlgebras.html#realizer

472 É. Miquey

5.3 Internal Logic

In order to be able to define triposes from implicative algebras, the first step is
to equip them with a structure of Heyting algebra. To this end, we begin with
defining an entailment relation in the spirit of filtered OCAs [12]. We then define
quantifiers and connectives as usual in classical realizability (see [13]), and we
verify that they satisfy the usual logical rules. In the rest of this section, we work
within a fixed implicative algebra (A,�,→,S).

Definition 31(Entailment). For all a, b ∈ A, we say that a entails b and write
a �S b if a → b ∈ S. We say that a and b are equivalent and write a ∼=S b if
a �S b and b �S a.

Proposition 32 (Properties of �S). For any a, b, c ∈ A, the following holds:

1. a �S a (Reflexivity)
2. If a �S b and b �S c then a �S c. (Transitivity)
3. If a � b then a �S b. (Subtyping)
4. If a ∼=S b, then a ∈ S if and only if b ∈ S. (Closure under ∼=S)
5. If a �S b → c then a � b �S c. (Half-adjunction property)
6. ⊥ �S a (Ex falso quod libet)
7. a �S � (Maximal element)

Proof. Straightforward from the definitions, using λxyz.y(xz) to realize the sec-
ond item and λxy.xyy to realize the fifth.

Besides, the entailment relation behaves like Heyting’s arrow with respect to
the preorder relation �S in terms of monotonicity:

Proposition 33 (Compatibility with →). For all a, a′, b, b′ ∈ A, we have:

1. If b � b′ then a → b � a → b′. 2. If a � a′ then a′ → b � a → b.

Proof. Direct using λxyz.x(yz) and λxyz.y(xz) as realizers.

Negation. We define the negation by ¬a � a → ⊥. If the separator is classical,
we can prove that for any a ∈ A, we have:

Proposition 34 (Double negation). If S is a classical separator, for any
a ∈ A we have: 1. a �S ¬¬a 2. ¬¬a �S a

Proof. The first item is realized by λxk.kx, while the second follows from the
inequality ((a → ⊥) → a) → a � ((a → ⊥) → ⊥) → a, whose left member is
realized by cc.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#entails
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#entails_refl
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#entails_trans
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#subtyping
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#equiv_sep
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#entails_half_adj
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#exfalso_S
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#true_S
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#arrow_entails_mon_r
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#arrow_entails_mon_l
https://www.irif.fr/~emiquey/ITP/ImplicativeAlgebras.html#dni
https://www.irif.fr/~emiquey/ITP/ImplicativeAlgebras.html#dne

Formalizing Implicative Algebras in Coq 473

Quantifiers. Following the usual definitions in classical realizability (see [13,
19]), the universal quantification of a family of truth values is naturally defined
as its meet while the existential quantification is defined through a negative
encoding:

∀
i∈I

ai �
�

i∈I

ai ∃
i∈I

ai �
�

c∈A

(
�

i∈I

(ai → c) → c)

While it could have seemed more natural to define existential quantifiers
through joins, we should recall that the arrow does not commute with joins in
general13. It is clear that these definitions are compatible with the expected
semantic rules:

Proposition 35. (Universal quantifier). The following semantic typing rules
are valid in any implicative structures:

Γ � t : ai for all i ∈ I

Γ � t : ∀i∈I ai

Γ � t : ∀i∈I ai i0 ∈ I

Γ � t : ai0

Proposition 36.(Existential quantifier). The following semantic typing rules
are valid in any implicative structures:

Γ � t : ai0 i0 ∈ I

Γ � λx.xt : ∃i∈I ai

Γ � t : ∃i∈I ai Γ, x : ai � u : c (for all i ∈ I)
Γ � t(λx.u) : c

Proof. Straightforward using the adjunction of the application (Proposition 11).

Sum and Product. We define it by the usual encodings in System F:

a × b �
�

c∈A
((a → b → c) → c) a + b �

�

c∈A
((a → c) → (b → c) → c)

Recall that the pair 〈a, b〉 is encoded by the λ-term λx.xab, while first and second
projections are respectively defined by π1 � λxy.x and π2 � λxy.y. We can check
that the expected semantic typing rules are valid.

Proposition 37 (Product). The following semantic typing rules are valid:

Γ � t : a Γ � u : b
Γ � λz.ztu : a × b

Γ � t : a × b
Γ � tπ1 : a

Γ � t : a × b
Γ � tπ2 : b

Proposition 38 (Sum). The following semantic typing rules are valid

Γ � t : a
Γ � λlr.lt : a + b

Γ � t : b
Γ � λlr.rt : a + b

Γ � t : a1 + a2 Γ, xi : ai � ui : c

Γ � t(λx1.u1)(λx2.u2) : c

13 When it does, the realizability tripos actually collapses to a forcing tripos, see [18,19].

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#type_fa_intro
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#type_ex_intro
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#type_pair
https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#sumt

474 É. Miquey

Proof. Straightforward lattices manipulations, similar to the proof for the exis-
tential quantifier.

The natural candidate to computationally represents a “meet” of a and b is
the product type a × b. We can verify that it satisfies the expected property (in
Heyting algebras) with respect to the arrow:

Proposition 39 (Adjunction). For any a, b, c ∈ A, we have a �S b → c if and
only if a × b �S c.

Proof. Both directions are proved using the expected realizer and subtyping:
from left to right, we use λxy.yx to realize (a → b → c) → a × b → c; from right
to left, we realize (a × b → c) → a → b → c with λpxy.p(λz.zxy).

5.4 Implicative Tripos

It is clear from the properties of implicative algebras presented in the last sec-
tions that the entailment relation together with the sum and products induce a
structure of Heyting prealgebra (indeed, the entailment relation only defines a
preorder). By considering the quotient A/∼=S of the former Heyting prealgebra by
the relation ∼=S , and lifting the previous definitions of connectives and quantifiers
to equivalence classes, we thus obtain a Heyting algebra14. This construction is
actually the main step towards the definition of the implicative tripos [18,19],
which allows us to recover the usual categorical interpretation of realizability
models. In particular, it provides us with a framework in which simple criteria
allows us to compare classical realizability and forcing models.

6 Conclusion and Future Work

6.1 Conclusion

We presented in this paper Miquel’s concept of implicative algebra [18], that relies
on the primitive notion of implicative structure. These structures are defined
as a particular class of meet-complete lattices equipped with an arrow, where
this arrow satisfies commutations with arbitrary meets which are the counter-
part of the logical commutation between the universal quantification and the
implication. We showed that implicative algebras are a generalization Streicher’s
AKSs [24] and Ferrer et al.’s KOCAs [6,7]. Besides, they provide us with a frame-
work in which both λc-terms and their types can be interpreted. This has the
nice consequence that we really consider the elements of the implicative structure
as λc-terms and that we can compute with truth values. Through the formal-
ization, this is reflected by a tactic allowing us to prove that elements belong to
the separator simply by furnishing realizers.
14 If the implicative algebra is classical, for all a ∈ A we saw that ¬¬a ∼=S a. Through

the same quotient, this implies that ¬¬[a] = [a] for all a ∈ A, and that the induced
Heyting algebra is actually a Boolean algebra.

https://emiquey.gitlab.io/ImplicativeAlgebras/ImpAlg.ImplicativeAlgebras.html#ha_adjunction

Formalizing Implicative Algebras in Coq 475

6.2 Future Work

For future work, it would be interesting to push the formalization further to
be able to represent implicative triposes. However, this poses the challenge of
manipulating quotients and equivalent classes. The safe definition of quotients
within CIC (and thus Coq) is indeed a tricky question [3,4,11], and as for now,
we do not know which solution (reasoning modulo setoids, quotient as types
classes, etc.) would be the more adapted to our situation.

In a more theoretic perspective, implicative algebras take position on a pre-
sentation of logic through universal quantification and the implication. The com-
putational counterpart of this choice is that the presentation relies on the call-
by-name λc-calculus. This raises the question of knowing whether it is possible
to have alternative presentations with similar structures based on different con-
nectives (and thus different calculi). We partially undertook this investigation
in [19] by studying different presentations based on disjunctive and conjunctive
connectives and related to Munch-Maccagnoni’s system L [20]. Yet, the equiva-
lence between all presentations still remains to prove.

Acknowledgments. The author wishes to thank Assia Mahboubi for pushing him to
write the current paper.

References

1. The POPLmark Challenge. https://www.seas.upenn.edu/∼plclub/poplmark/
2. Charguéraud, A.: The locally nameless representation. J. Autom. Reason. 49(3),

363–408 (2012). https://doi.org/10.1007/s10817-011-9225-2
3. Chicli, L., Pottier, L., Simpson, C.: Mathematical quotients and quotient types

in Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp.
95–107. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39185-1 6

4. Cohen, C.: Types quotients en Coq. In: Hermann (ed.) Actes des 21éme journées
francophones des langages applicatifs (JFLA 2010). INRIA, Vieux-Port La Ciotat,
France (2010). http://jfla.inria.fr/2010/actes/PDF/cyrilcohen.pdf

5. Ferrer, W., Malherbe, O.: The category of implicative algebras and realizability.
ArXiv e-prints, December 2017. https://arxiv.org/abs/1712.06043

6. Ferrer Santos, W., Guillermo, M., Malherbe, O.: Realizability in OCAs and AKSs.
ArXiv e-prints (2015). https://arxiv.org/abs/1512.07879

7. Ferrer Santos, W., Frey, J., Guillermo, M., Malherbe, O., Miquel, A.: Ordered
combinatory algebras and realizability. Math. Struct. Comput. Sci. 27(3), 428-458
(2017). https://doi.org/10.1017/S0960129515000432

8. Frey, J.: Realizability toposes from specifications. In: Altenkirch, T. (ed.) 13th
International Conference on Typed Lambda Calculi and Applications (TLCA
2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 38, pp.
196–210. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2015). https://doi.org/10.4230/LIPIcs.TLCA.2015.196

9. Frey, J.: Classical realizability in the CPS target language. Electron. Notes Theor.
Comput. Sci. 325(Suppl. C), 111–126 (2016), The Thirty-second Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXXII). https://
doi.org/10.1016/j.entcs.2016.09.034

https://www.seas.upenn.edu/~plclub/poplmark/
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/3-540-39185-1_6
http://jfla.inria.fr/2010/actes/PDF/cyrilcohen.pdf
https://arxiv.org/abs/1712.06043
https://arxiv.org/abs/1512.07879
https://doi.org/10.1017/S0960129515000432
https://doi.org/10.4230/LIPIcs.TLCA.2015.196
https://doi.org/10.1016/j.entcs.2016.09.034
https://doi.org/10.1016/j.entcs.2016.09.034

476 É. Miquey

10. Griffin, T.G.: A formulae-as-type notion of control. In: Proceedings of the 17th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1990, pp. 47–58. ACM, New York (1990). https://doi.org/10.1145/96709.
96714

11. Hofmann, M.: Extensional Concepts in Intensional Type Theory. Ph.D. thesis,
University of Edinburgh (1995)

12. Hofstra, P., Van Oosten, J.: Ordered partial combinatory algebras. Math.
Proc. Cambridge Philos. Soc. 134(3), 445-463 (2003). https://doi.org/10.1017/
S0305004102006424

13. Krivine, J.L.: Realizability in classical logic. In: Interactive Models of Computation
and Program Behaviour. Panoramas et synthèses 27 (2009)

14. Krivine, J.L.: Realizability algebras: a program to well order r. Log. Methods Com-
put. Sci. 7(3) (2011). https://doi.org/10.2168/LMCS-7(3:2)2011

15. Krivine, J.L.: Realizability algebras II : new models of ZF + DC. Log. Methods
Comput. Sci. 8(1), 10, 28 p. (2012). https://doi.org/10.2168/LMCS-8(1:10)2012

16. Krivine, J.L.: Quelques propriétés des modèles de réalisabilité de ZF, February
2014. http://hal.archives-ouvertes.fr/hal-00940254

17. Miquel, A.: Existential witness extraction in classical realizability and via a neg-
ative translation. Log. Methods Comput. Sci. 7(2), 188–202 (2011). https://doi.
org/10.2168/LMCS-7(2:2)2011

18. Miquel, A.: Implicative algebras: a new foundation for realizability and forcing.
ArXiv e-prints (2018). https://arxiv.org/abs/1802.00528

19. Miquey, É.: Classical realizability and side-effects. Ph.D. thesis, Université Paris
Diderot; Universidad de la República, Uruguay, November 2017. https://hal.inria.
fr/tel-01653733

20. Munch-Maccagnoni, G.: Focalisation and classical realisability. In: Grädel, E.,
Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 409–423. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04027-6 30

21. Pitts, A.M.: Tripos theory in retrospect. Math. Struct. Comput. Sci. 12(3), 265–
279 (2002). https://doi.org/10.1017/S096012950200364X

22. Ruyer, F.: Proofs, Types and Subtypes. Ph.D. thesis, Université de Savoie, Novem-
ber 2006. https://tel.archives-ouvertes.fr/tel-00140046

23. Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 23

24. Streicher, T.: Krivine’s classical realisability from a categorical perspective.
Math. Struct. Comput. Sci. 23(6), 1234–1256 (2013). https://doi.org/10.1017/
S0960129512000989

https://doi.org/10.1145/96709.96714
https://doi.org/10.1145/96709.96714
https://doi.org/10.1017/S0305004102006424
https://doi.org/10.1017/S0305004102006424
https://doi.org/10.2168/LMCS-7(3:2)2011
https://doi.org/10.2168/LMCS-8(1:10)2012
http://hal.archives-ouvertes.fr/hal-00940254
https://doi.org/10.2168/LMCS-7(2:2)2011
https://doi.org/10.2168/LMCS-7(2:2)2011
https://arxiv.org/abs/1802.00528
https://hal.inria.fr/tel-01653733
https://hal.inria.fr/tel-01653733
https://doi.org/10.1007/978-3-642-04027-6_30
https://doi.org/10.1017/S096012950200364X
https://tel.archives-ouvertes.fr/tel-00140046
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1017/S0960129512000989
https://doi.org/10.1017/S0960129512000989

Boosting the Reuse of Formal
Specifications

Mariano M. Moscato1(B), Carlos G. Lopez Pombo2(B), César A. Muñoz3(B),
and Marco A. Feliú1(B)

1 National Institute of Aerospace, Hampton, VA, USA
{mariano.moscato,marco.feliu}@nianet.org

2 Instituto de Investigación En Ciencias de la Computación (ICC),
CONICET–Universidad de Buenos Aires, Buenos Aires, Argentina

3 NASA Langley Research Center, Hampton, VA, USA
cesar.a.munoz@nasa.gov

Abstract. Advances in theorem proving have enabled the emergence of
a variety of formal developments that, over the years, have resulted in
large corpuses of formalizations. For example, the NASA PVS Library
is a collection of 55 formal developments written in the Prototype
Verification System (PVS) over a period of almost 30 years and contain-
ing more than 28000 proofs. Unfortunately, the simple accumulation of
formal developments does not guarantee their reusability. In fact, in for-
mal systems with very expressive specification languages, it is often the
case that a particular conceptual object is defined in different ways. This
paper presents a technique to establish sound connections between formal
definitions. Such connections support the possibility of (partial) borrow-
ing of proved results from one formal description into another, improving
the reusability of formal developments. The technique is described using
concepts from the field of universal algebra and algebraic specification.
The technique is illustrated with concrete examples taken from formal-
izations available in the NASA PVS Library.

1 Introduction

Proof assistants have been actively used for decades now. Advances in formal
verification techniques have enabled their use in the development cycle of critical
systems. The routine use of proof assistants in some domains has resulted in the
generation of a large number of formalizations. This generation of content can be
seen as an unguided collective effort, since it includes the work of very different
actors, from purely academic environments to industrial organizations. Thus,
each formalization is biased by the particular background, goals, and style of its
creators and the subtleties of each theorem prover.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 477–494, 2018.
https://doi.org/10.1007/978-3-319-94821-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_28&domain=pdf

478 M. M. Moscato et al.

With the aim of promoting the reuse of existing efforts, large corpuses of
formal models have been created and augmented by accumulating individual
endeavors. For instance, the NASA PVS Library1 is a collection of formal mod-
els written in the Prototype Verification System (PVS) [1] and maintained by
the NASA Langley Formal Methods Team. While this library is extensively used
at NASA and other places, it falls short in reusability. This is often the case of
formal systems featuring powerful formalisms such as higher-order logic. In such
settings, the same conceptual object can be described in different and, some-
times, incompatible ways. While some of these differences can be avoided, they
are often intentional. For example, a particular way of stating some definition
could help the construction of a proof for a specific property, but could make
the definition not suitable for computation. Examples of this phenomenon arise
naturally when working with structured data types. Depending on the objectives
of a particular project, it may be more convenient to represent a graph with a
set of nodes and a set of edges, while in a different context, it may be preferable
to use an adjacency list instead. Several examples of multiple definitions for the
same conceptual element can be found in the NASA PVS Library.

This paper proposes a technique for (1) stating a formal connection between
(parts of) different specifications, which provide the same functionality, and (2)
supporting the transference of properties (and their proofs) between these spec-
ifications. From a practical point of view, the proposed technique improves the
possibility of reuse of existing developments. This technique has the following
distinguishing features: it is explicitly verifiable, since it provides a formal proof
of the correctness of the link between definitions that can be checked in the
same environment (PVS), it is nonintrusive, since its use does not require any
modification of existing developments, it is automatable, since most of the steps
of the proposed technique are suitable for automation, and it is general enough
to deal with cases that could not be addressed by similar techniques.

The rest of the paper is devoted to the description of the representation
technique and the illustration of its use by means of a practical case study. In
Sect. 2, basic definitions are presented in order to state the notation to be used
in the following sections. Section 3 describes formally the datatype connection
technique. A real case study with significative practical consequences is detailed
in Sect. 4. Section 5 discusses related work. Finally, Sect. 6 summarizes the results
and discusses further work.

2 Preliminary Definitions

Most of the definitions and results presented in this section are taken and adapted
from [2,3]. The formalism used throughout the rest of the paper is based on
higher-order logic and its syntax and semantics follows mainly [4].

A concrete PVS specification is used to illustrate the notions and concepts
introduced in this and the next section. PVS supports a strongly-typed higher-
order language with several additional features intended to provide the user
1 https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/.

https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/

Boosting the Reuse of Formal Specifications 479

fseqs [T: TYPE+]: THEORY BEGIN

[. . .]

default: T = choose({t:T | TRUE})
barray(n: nat): TYPE = {f: [nat->T] |

FORALL (i: nat): i >= n => f(i) = default}
fseq:TYPE = [#length:nat, seq:barray(length)#]

empty? fseq(f): bool = (f‘length = 0)

[. . .]

END fseqs

list [T: TYPE]: DATATYPE BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

Fig. 1. Fragments of different PVS theories representing finite-sized containers. Left:
finite sequences (NASA PVS Library). Right: finite lists (PVS Prelude).

with a rich set of tools for the formalization of concepts. Regarding datatype
definitions, PVS includes built-in support for structured, algebraic, and enu-
meration types, among other characteristics. As in the vast majority of mod-
ern computerized deduction systems, specifications in PVS must be grouped in
syntactic constructions called theories. A comprehensive battery of theories con-
taining fundamental definitions and properties is provided under the name of
PVS prelude. There, notions for basic datatypes such as booleans, numbers,
and characters, and well-known data structures, such as arrays and lists, can
be found. All the definitions in the prelude are implicitly available to any
user-defined theory. Additionally, the NASA PVS Library is an ongoing effort
that collects a significant amount of both elemental and specialized PVS
developments. In order to use definitions from user-defined theories, they must
be explicitly imported. To improve the presentation of the notions needed to
describe the representation technique, practical aspects such as the structured
nature of PVS specifications are not reflected in the theoretical development.
Nevertheless, comments on how to bridge that gap are provided when it is con-
sidered adequate.

Figure 1 presents the running example for this and the next section2. On its
left-hand side, an excerpt from a formalization of finite sequences by Butler and
Maddalon is depicted. This theory, which is part of the NASA PVS Library, takes
as parameter the type (T) of the elements being contained in the sequence. The
definition of the type of the finite sequences (fseq) is based on an auxiliary type
named barray, for bounded array. The arrays in PVS are formalized as functions
from natural numbers to T. The barray datatype depends on a natural number,
which represents the bound of the array; queries for an index beyond the bound
are defined to result in an arbitrary, but constant, value (default). The existence
of such value is guaranteed by the declaration of T as TYPE+, which forces T to
be a nonempty type. The right side of the figure shows the formalization of an
algebraic datatype representing finite lists of a generic type T. In this case, the
DATATYPE construct is used as an abbreviation for the definition of a regular PVS

2 Keywords in PVS are not case sensitive. Uppercase is used here to differentiate them
from the rest of the tokens.

480 M. M. Moscato et al.

theory, containing a type (list), a constant (null), three functions (cons, car,
and cdr) and two predicates (null? and cons?). The constant null denotes the
empty list and the function cons can be used to construct a list from an element
and another list. The predicates null? and cons? determine whether a given
list is empty or not, respectively. The function car returns the first element of
a list. The function cdr returns the rest of its elements.

Definition 1 (Type). Let T be a set of sort symbols. Type(T) is defined as the
smallest set satisfying: (1) T ⊆ Type(T), and (2) if t1, · · · , tk ∈ Type(T), then
the list [t1, · · · , tk] ∈ Type(T).

Definition 2 (Signature of Symbols). Let T be a set of sort symbols and
s, t ∈ Type(T). The signature (or type) of a function symbol f is of the form
[s, t] and is also written as [s → t], while the signature (or type) of a predicate
symbol p is of the form [t].

Definition 3 (Signature of a Language). Let T be a set of sort symbols.
The signature of a language is a structure 〈C,F ,P〉 where C is a set of constant
symbols and F (resp. P) is an indexed set of function (resp. predicate) symbols,
each one with its corresponding type over Type(T) accessible through the function
type : C ∪ F ∪ P → Type(T).

Henceforth, whenever a signature Π is used, its sets of symbols will be referred
to as CΠ , FΠ and PΠ . The notion of language signature refers to the available
symbols in the context of a given PVS theory. Thus, for example, the signature
Πfseqs includes all the symbols defined in the PVS prelude, the constant symbol
default, and the predicate symbol empty? fseq. The set Tfseqs of sort symbols,
on which the signature Πfseqs stands, contains all the sort symbols defined in
the prelude plus barray and fseq. Because list is part of the PVS prelude, its
corresponding set of sort symbols Tlist and signature Πlist contain the sort and
language symbols previously defined, plus the sort symbol list and the constant,
function, and predicate symbols mentioned above. Thus, Πlist ⊂ Πfseqs.

Definition 4 (The Language of Higher-Order Logic with Equality). Let
T be a set of sort symbols and Π a language signature over Type(T). Let X be
a set of flexible symbols for which the function type : X → Type(T) reports the
type of each symbol. Term(Π,X) is defined as the smallest set satisfying:

– X ⊆ Term(Π,X), CΠ ⊆ Term(Π,X), and FΠ ⊆ Term(Π,X),
– for any function symbol f in FΠ s.t. type(f) = [t → tk+1] and t = [t1, · · · , tk],

for all ri ∈ Term(Π,X) with 1 ≤ i < k s.t. type(ri) = ti, f(r1, · · · , rk) ∈
Term(Π,X) and type(f(r1, · · · , rk)) = tk+1, and

– for any flexible symbol x in X s.t. type(x) = [t → tk+1] and t = [t1, · · · , tk],
for all ri ∈ Term(Π,X) with 1 ≤ i < k s.t. type(ri) = ti, x(r1, · · · , rk) ∈
Term(Π,X) and type(x(r1, · · · , rk)) = tk+1.

Boosting the Reuse of Formal Specifications 481

In its turn, Form(Π,X) is the smallest set satisfying:

– for any type t in Type(T), {r, r′} ⊆ Term(Π,X), and type(r) = type(r′) = t,
r = r′ ∈ Form(Π,X), and

– for any predicate symbol p in PΠ s.t. type(p) = [t1, · · · , tk], for all ri ∈
Term(Π,X) with 1 ≤ i < k s.t. type(ri) = ti, p(r1, · · · , rk) ∈ Form(Π,X)

– for any formulas ϕ and ψ in Form(Π,X), t ∈ Type(T) and x ∈ X , {¬ϕ,ϕ ∨
ψ, (∃x : t)ϕ} ⊆ Form(Π,X).

The language of higher-order logic over signature Π and a set of flexible symbols
X will be denoted LΠ,X .

Due to space limitations, and because it is not central to the proposed work,
a formal definition of model theory for the language of higher-order logic of
Definition 4 is not explicitly presented. The next definition presents the classical
proof calculus for higher-order logics which mainly follows [5, Chap. 11].

Definition 5 (Proof Theory). Let T be a set of sort symbols and Π be a
language signature over Type(T). The notion of syntactic deduction is expressed
by the relation � ⊆ 2Form(Π,X) ×Form(Π,X) and defined by the following set of
rules: (1) the usual rules for first-order logic [5, Sect. 2.1.1] and (2) rules for the
introduction and elimination of higher-order quantifiers: see [5, Sect. 11.1.1] for
a description of the rules and its interpretation in terms of substitution using
lambda expressions and their application [6, Sect. 3.1] or [7, Chap. 4].

The calculus implemented in PVS is a version of sequent calculus for higher-
order logic, which fulfill the requisites stated by the Definition 5.

Definition 6 (Theory Presentation). Let T a set of sort symbols and Π a
language signature over Type(T). A theory presentation over flexible symbols X
is a structure 〈T,Π, Γ,Δ〉, where Γ ∪ Δ ⊆ LΠ,X and {Γ � ϕ}ϕ∈Δ.

A theory presentation in the context of PVS involves all the symbols defined
in a given theory as well as all the symbols available from other (imported)
theories, along with all the explicit and implicit axioms, introduced for example
by defining types, constants, predicates, or functions, and the properties stated
as theorems.

3 Representation Technique

Both types from the example of Fig. 1, list and fseq, can be seen as
formalizations of the same ideal object: an ordered finite-sized container. Nev-
ertheless, they are fairly different from a practical point of view. PVS supports
the evaluation of ground expressions through a translation to Common Lisp,
which enables useful features such as rapid prototyping and computational reflec-
tion [8]. Expressions involving fseq cannot be evaluated since they are based
on total functions over the infinite domain of natural numbers. On the other
hand, expressions involving list are completely amenable to evaluation because

482 M. M. Moscato et al.

of its recursive definition. However, proving properties of list often requires
induction, while the same properties in fseq are proven by straightforward
instantiations of existential or universal quantifications. Hence, it is useful to
have a connection between fseq and list in order to transfer the functions and
properties defined on fseq to list with minimum human interaction.

The representation of theory presentations, as stated in this paper, finds
its theoretical foundations in the field of algebraic specification [9,10] and
more specifically in its subsequent development through the use of category
theory [11,12]. The definitions shown below constitute the basic elements used in
constructing representations between theory presentations.

Definition 7 (Type Map). Let T and T ′ be sets of sort symbols. The function
τ : T → Type(T ′) is a type map if it is a total function mapping sort symbols in
T to types in Type(T ′). Given a type map τ , its homomorphic extension to lists
of types will be denoted by ̂τT ′

T :Type(T) → Type(T ′).

Continuing with the example of Fig. 1, the following equations should hold: (1)
̂τ list
fseq(fseq) = list and (2) ̂τ list

fseq(t) = t for any other t ∈ Tfseqs. The extension of
̂τ list
fseq to lists of types is done positionwise.

Definition 8 (Language Signature Map). Let T and T ′ be sets of sort
symbols and Π = 〈C,F ,P〉 and Π ′ = 〈C′,F ′,P ′〉 be language signatures over
Type(T) and Type(T ′) respectively. Let X and X ′ be sets of flexible symbols and
τ : T → Type(T ′) be a type map.

A total function 〈σC , σF , σP〉τ : Π → Term(Π ′,X ′)∪Form(Π ′,X ′) is a lan-
guage signature map if it satisfies: (1) σC : C → Term(Π ′,X ′) is a total function
s.t. ̂τT ′

T (type(c)) = type(r′), whenever σC(c) = r′, (2) σF : F → Term(Π ′,X ′)
is a total function s.t. ̂τT ′

T (type(f)) = type(r′), whenever σF (f) = r′, and (3)
σP : P → Form(Π ′,X ′) is a total function s.t. ̂τT ′

T (type(p)) = [t′1, . . . , t
′
k], when-

ever σP (p) = ϕ′, fv(ϕ′) = {x′
1, . . . , x

′
k}, where fv : Form(Π ′,X ′) → X ′ is a

function that yields the free variables of a formula and type(x′
i) = t′i.

Language signature maps show how constants, functions and predicates from
the source theory presentation are interpreted in the target one. As the target
theory presentation is not guaranteed to have the exact same signature, constant
and function symbols from the source theory can be represented by terms in the
target. The same consideration applies to predicate symbols from the source
theory. In the example, the only predicate defined in the source theory (fseqs)
is empty? fseq and holds when the sequence is empty. This symbol is represented
by the term null?(l), whose free variable l is of type list, as stated by the type
map ̂τ list

fseq . The notion of term representation, defined below, relates a term in the
source language with its intended representation in the target language.

Definition 9 (Term Representation). Let T and T ′ be two sets of sort
symbols and Π = 〈C,F ,P〉 and Π ′ = 〈C′,F ′,P ′〉 be language signatures over
Type(T) and Type(T ′) respectively. Let τ : T → Type(T ′) be a type map,
σ = 〈σC , σF , σP〉τ be a language signature map, and X and X ′ be sets of flexible

Boosting the Reuse of Formal Specifications 483

symbols. The term representation relation Reprσ ⊆ Term(Π,X)×Term(Π ′,X ′)
is the smallest relation such that:

(1) it relates flexible symbols in X to flexible symbols in X ′ preserving:
(a) typing, i.e., for all x ∈ X and x′ ∈ X ′, if Reprσ(x, x′) then ̂τT ′

T (type(x)) =
type(x′), and

(b) free occurrences of symbols, i.e., if Reprσ(t, t′) each free flexible symbol
in t is related to the same flexible symbol from X ′ via Reprσ,

(2) it is homomorphic with respect to language signature representation, i.e.,
– for all function symbol f in F such that type(f) = [t1, · · · , tk → tk+1],

and for all ri ∈ Term(Π,X) and r′
i ∈ Term(Π ′,X ′) s.t. type(ri) = ti,

type(r′
i) = t′i, and Reprσ(ri, r

′
i) holds for each i ∈ N such that 1 ≤ i ≤ k,

Reprσ(f(r1, · · · , rk), (λx′
1 · · · x′

k.σF (f))(r′
1, · · · , r′

k)) holds,

being x′
1, · · · , x′

k−1 the free flexible symbols occurring in σF (f).
– for all predicate symbol p in P such that type(p) = [t1, · · · , tk], and for all

ri ∈ Term(Π,X) and r′
i ∈ Term(Π ′,X ′) s.t. type(ri) = ti, type(r′

i) = t′i,
and Reprσ(ri, r

′
i) holds for each i ∈ N such that 1 ≤ i ≤ k,

p(r1, · · · , rk) iff σP(p)
∣

∣

∣

[r′
1,··· ,r′

k]

[x′
1,··· ,x′

k]

being x′
1, · · · , x′

k the free flexible symbols occurring in σP(p).

A term representation relation Reprσ relies on the signature map σ on which
it is constructed. In fact, Reprσ inherits several of the properties fulfilled by
σ. For example, since signature maps are type-preserving (see Definition 8) and
condition (1) above assures type-preservation in the case of representation of
flexible symbols, it can be assured that Reprσ preserves typing as well, i.e., if
Reprσ(t, t′) then ̂τT ′

T (t) = t′. Additionally, properties such as totality, injectivity
and surjectivity can be inherited from signature maps to term representation
relations. In the following, the case of surjective term-representation relations is
addressed first in order to ease the reading. A more general case is explained
later.

The representation of formulas is just a translation between two different
theory presentations but within the same logical language. The only nontrivial
cases require the application of language signature maps, for the case of predicate
symbols, and term representation as it was defined above.

Definition 10 (Formula Representation). Let T and T ′ be sets of sort sym-
bols, Π = 〈C,F ,P〉 and Π ′ = 〈C′,F ′,P ′〉 be language signatures over Type(T)
and Type(T ′) respectively, τ : T → Type(T ′) be a type map, σ = 〈σC , σF , σP〉τ

be a surjective language signature map, and X and X ′ be sets of flexible symbols.
A formula representation Trσ : L(Π,X) → L(Π ′,X ′) is defined as follows:

Trσ(r1 = r2) = r′
1 = r′

2 , s.t. Reprσ(ri, r
′
i) for i ∈ {1, 2}.

Trσ(p(r1, · · · , rk)) = σP(p)
∣

∣

∣

[r′
1,··· ,r′

k]

[x′
1,··· ,x′

k]
, for all p ∈ P and

Reprσ(ri, r
′
i) for i ∈ {1, · · · , k}.

Trσ(ϕ ∨ ψ) = Trσ(ϕ) ∨ Trσ(ψ)
Trσ((∃x : t)ϕ) = (∃ x′ : ̂τT ′

T (t))Trσ(ϕ), for all x ∈ X .

484 M. M. Moscato et al.

Trσ extends to sets of formulas as Trσ(Δ) = {Trσ(ϕ) | ϕ ∈ Δ}.

The next definition provides the means for connecting two theory presenta-
tions. This type of map was introduced in [13] under the name map of entailment
system. More recently, a similar type of map used to connect the semantics of
two theory presentations, was given the name of theoroidal co-morphisms of
institutions by Goguen and Roçu [14].

Definition 11 (Theoroidal Representation). Let T and T ′ be sets of sort
symbols, Π and Π ′ be language signatures over Type(T) and Type(T ′) respec-
tively, τ : T → Type(T ′) be a type map, σ be a language signature map, and
T = 〈T,Π, Γ,Δ〉 and T ′ = 〈T ′,Π ′, Γ ′,Δ′〉 two theory presentations. Then, a for-
mula representation Trσ is said to be a theoroidal representation if Γ ′ � Trσ(Γ).
It is said to be axiom preserving if Trσ(Γ) ⊆ Γ ′.

Note that if σ is a surjective signature map, Trσ is axiom preserving. It can be
shown that theoroidal representations compose in a very smooth component-wise
form yielding theoroidal representations (see [13, p. 24] for details). Theorem1
states that theoroidal representations preserve deductibility, i.e., the existence
of a proof, while axiom preserving theoroidal representations are stronger by
providing proof representation.

Theorem 1 (Deductibility Preservation). Let T and T ′ be sets of sort
symbols, Π and Π ′ be language signatures over Type(T) and Type(T ′) respec-
tively, τ : T → Type(T ′) be a type map, σ be a language signature map, and
T = 〈T,Π, Γ,Δ〉 and T ′ = 〈T ′,Π ′, Γ ′,Δ′〉 two theory presentations related by
the theoroidal representation Trσ. Then,

Γ � ϕ implies Γ ′ � Trσ(ϕ).

Proof. First observe that Γ ′ � Trσ(Γ) holds by Definition 11 and then, Trσ(Γ) �
Trσ(ϕ) follows by induction on the structure of the proof. The base case is when
ϕ ∈ Γ , which holds by definition of Trσ(Γ) in Definition 10. The inductive
steps follow by considering each of the rules for introducing and eliminating
logical symbols (i.e., ¬, ∨ and ∃). The inductive hypothesis guarantees that the
hypothesis of the rule follow from Trσ(Γ). After applying the same rule, and
considering that Trσ preserve the logical structure of the formula, its definition
can be fold to obtain the translation of the original formula. �

Corollary 1 (Theorem Preservation). Let T and T ′ be sets of sort symbols
and Π and Π ′ be language signatures over Type(T) and Type(T ′) respectively,
τ : T → Type(T ′) be a type map, σ be a language signature map, and T =
〈T,Π, Γ,Δ〉 and T ′ = 〈T ′,Π ′, Γ ′,Δ′〉 two theory presentations related by the
axiom preserving theoroidal representation Trσ. Then,

ϕ ∈ Δ implies Trσ(ϕ) ∈ Δ′.

Proof. The proof follows trivially from Theorem1 and by definition of axiom
preserving theoroidal representations in Definition 11. �

Boosting the Reuse of Formal Specifications 485

A mechanizable method for transferring theorems between theory presentations
can be inferred from the structure of the proof of Theorem1. The mechanization
is particularly easier to achieve when dealing with conditions compatible with
the hypothesis of Corollary 1.

Up to this point, some strong restrictions were posed on mapping notions
presented in this section, i.e., type maps, language signature maps, term repre-
sentations, formula representations, and theoroidal representations, in order to
ease the presentation of the technique. These restrictions are totality and sur-
jectivity. Establishing a theorem preserving representation from one theory to
another should be more flexible.

Relaxing the restriction about surjectivity of representations implies that
no every element in the target domain is required to represent an element in
the source domain. To allow such relaxation, the way in which formulas are
translated (Definition 10) needs to be modified. In particular, quantified variables
appearing in the representation of a quantified formula must range only over
those elements from ̂τT ′

T (t) that in fact represent elements from t. Then, a way
to refer to representability of elements must be included at the logical level of
the language of the signatures. While in higher-order settings such as the one
provided by PVS is possible to define the notions needed at that level (symbol,
term, formula, term representation, etc.), an alternative way is proposed in order
to reduce the amount of practical effort needed to apply the technique. This
alternative approach is based on the semantic counterpart of the Repr relation.
Given a source and a target theory representation, Π and Π ′ respectively, the
semantic version of the term representation relation (Repr) can be stated as a
relation repr ⊆ Type(T) × Type(T ′) such that:

(1) for every pair of predicates p ∈ {p}p∈P and p′ ∈ {p′}p′∈P′ s.t. σP(p) = p′,
and for all xi ∈ Type(T), with 1 ≤ i ≤ n and n = arity(p), and x′

i ∈
Type(T ′) s.t. repr(xi, x

′
i),

p(x1, · · · , xn) iff p′(x′
1, · · · , x′

n) and

(2) for every pair of functions f ∈ {f}f∈F and f ′ ∈ {f ′}f ′∈F ′ s.t. σF (f) = f ′,
and for all xi ∈ Type(T) and x′

i ∈ Type(T ′) s.t. repr(xi, x
′
i) with 1 ≤ i ≤ n

and n = arity(f),

repr(f(x1, · · · , xn), f ′(x′
1, · · · , x′

n)).

The similarity between the conditions on repr and Repr is not casual and can be
used to prove its equivalence. The PVS definition shown in the left side of Fig. 2
can be proposed to denote repr for the example. The lemma depicted on the
right side is to be proved to assure that it is in fact a good candidate. Then, the
representation of a quantified formula (∃x : t)ϕ in Definition 10 can be stated as
(∃ x′ : ̂τT ′

T (t))(((∃x : t)repr(x, x′)) ∧ Trσ(ϕ)).
Another restriction that needs to be relaxed in the definitions above, is the

totality of the maps. It is not unusual that different formalisations, responding
to different needs, only specify the portion of the language signature, i.e., types,

486 M. M. Moscato et al.

constants, functions and predicates, required by the context where that partic-
ular specification is used. This observation means that the approach presented
before should be able to cope with partial language signature maps.

repr(f:fseq,l:list): bool =

length(l) = f‘length AND

FORALL(i:nat): i < length(l)

IMPLIES nth(l,i) = f‘seq(i)

empty? fseq homomorphic: LEMMA

FORALL(f:fseq,l:list|repr(f,l)):

empty? fseq(f) IFF null?(l)

Fig. 2. PVS implementation of the repr for the example of Fig. 1 (left) and the lemma
about its homomorphism w.r.t. the empty? fseq function (right).

From a practical point of view, a possible way to support this feature with
minimum impact in the definitions above is to restrict the sets of syntactic
symbols taken into consideration in the representation process. First, note that
not every type in the source theory is needed in the context of the target the-
ory. For example, when constructing the representation of fseqs using list
elements, the type barray is just an auxiliary concept that needs no counter-
part on the list side. Then, the domain of the intended type map ̂τ list

fseq should be
Type(Tfseqs)\barray. Secondly, the domain of the total functions σC , σF and σP

in the language signature map (Definition 8) would be a subset of the whole set
of constant (resp. function and predicate) symbols of the source theory presen-
tation. In the example, the domain of σC should be Cfseqs \ {default}. Finally,
the term, formula, and theoroidal representation relation is now restricted to
accept those terms and formulas that can be constructed using only the symbols
of interest. It is important to note that this restriction on the symbols could pro-
voke that some proofs from the source theory can not be preserved in the target
theory. This occurs when terms or formulas that can only be constructed using
discarded symbols are explicitly provided during the application of a proof step,
such as in the introduction of a new hypothesis (cut rule, for example) or in the
instantiation of existential-strength quantifiers. While there is no automatic way
to solve this kind of problem, it is easily and even mechanically discoverable.

When language signatures are analysed in detail, it is possible to recognize
that function and predicate symbols play different roles depending on their log-
ical definition. Some symbols may be axiomatized defining the result of their
application to terms and performing observations of their properties that can-
not be obtained by other means. Some other symbols may be defined as the
composition of other functions (resp. predicates) leading to conservative exten-
sions [15, Sect. 2.3.3] of a theory presentation where such a symbol does not
exists. The representation of a symbol in the latter group can be automatically
generated whenever the representation of those symbols in the former group have
already been provided. In such case, the result of the language signature map
applied to the constituent parts of the symbol’s definition can be used to extend
the language signature map to apply to both sets of symbols. Additionally, the
proof that the representation of the symbol does not invalidate the correctness

Boosting the Reuse of Formal Specifications 487

of the term representation relation (second item in Definition 9) can be automat-
ically constructed. It should proceed as a proof by induction on the complexity
of the term. This technique is particularly useful when defining representations
for algebraic datatypes, since once representations for the constructors, selectors,
and recognizers are defined, the rest of the definitions are stated in terms of them
or some other symbol whose definition relies on them. Thus, the representation
of such symbols can be mostly automated.

Like most modern proof-assistance environments, PVS provides a variety of
features intended to help the user in writing complex formalizations. Some of
these features include the ability of structuring specifications through the use of
specific clauses (EXPORTING and IMPORTING) and the definition of theory schemas
through the use of theory parameters, among others. While specific uses for both
characteristics are mentioned above, they can also be used for different purpose.
For instance, the IMPORTING clause can be used to extend a PVS theory for which
a representation is already defined. In such case, the theoretical notion of theory
extension needs to be further studied in order to establish how the theoroidal rep-
resentation is affected by this relationship between theories. Theory extensions
can be formalized by considering a special kind of (axiom preserving) theoroidal
representations relying on language signature maps whose components are injec-
tive functions, and term representation relations that are total and one-to-one.
These conditions force the formula representation to be analogue to an injective
translation, forcing the target theory to extend the source one. Conservativity
can also be posed in terms of conditions imposed to language signature maps
and term representation relations.

The use of theory parameters to define theory schema is one of the most use-
ful PVS features regarding the development of formalizations. When the theory
parameters are not part of the representation, i.e., when they are trivially rep-
resented, no further consideration is needed. Such is the case of the fseqs and
list example presented in the previous section. However, the theory parameters
can also be represented in a non-trivial way in the target theory, as illustrated by
the case study presented in the next Section. To formally cope with the impact
that both features could impose on the proposed technique, a complete study
of the ways theory presentations can be related is necessary, but left as further
work.

4 Case Study

Polynomials are widely used to provide smooth approximations of non-linear
functions. At the beginning of the last century, Bernstein developed a novel way
to represent polynomials in his proof of the StoneWeierstrass approximation
theorem [16]. This representation has proved to be specially useful in the field
of computerized graphics. Muñoz and Narkawicz [17] developed a formalization
based on Bernstein polynomials that can be effectively used to find minimum
and maximum values for arbitrary polynomial expressions. Such formalization,
provided as a PVS specification available as part of the NASA PVS Library,
relied on the fragment of PVS that can be soundly evaluated [8].

488 M. M. Moscato et al.

Polynomial: TYPE = [nat->Coefficient]

Polyproduct: TYPE = [nat->Polynomial]

MultiPolynomial : TYPE = [nat->Polyproduct]

mpoly eval(bspoly,degmono,cf,m,n)(X) : real =

sigma(0,n-1,LAMBDA(i:nat):cf(i)*pprod eval(bspoly(i),degmono,m)(X))

Fig. 3. Excerpt from the original multipolynomial formalization part of the Bernstein
development.

As part of the upgrade from the version 5 to 6 of PVS, the internal implemen-
tation of some PVS data structures was changed. While this change improved
the overall performance of the system, it also affected the ground evaluation used
in proof strategies developed as part of the Bernstein development. To overcome
this problem, it was necessary to change the way in which polynomials were
modeled in the formalization. Because of this, the Bernstein development and
its strategies were not originally ported from PVS 5 to PVS 6. Recently, the
technique proposed in this paper was applied and a new version of the Bernstein
algorithms were developed in just a fraction of the time originally estimated.
In this section, the case study of the representation of Bernstein polynomials is
presented.

The Bernstein development was built around a formalization of multivariate
polynomials, or multipolynomials for short. Any multipolynomial in m variables
(denoted by P below) can be seen as a sum of a finite number, say n, of products
between a real coefficient ci and a so-called polyproduct, which is a product of
univariate polynomials (pi,j).

P (x1, · · · , xm) =
n

∑

i=1

ci

m
∏

j=1

pi,j(xj) (1)

In the first version of the Bernstein development, multipolynomials were mod-
eled using arrays, i.e., functions from natural numbers into a type, as shown in
Fig. 3. Every index k of a Polynomial array p provides access to the coefficient
of the k-th power in the univariate polynomial p. Indices i and j in Eq. 1 would
be used to access Multipolynomial and Polyproduct arrays respectively. The
type Coefficient is a renaming for real, the PVS type denoting real numbers.
Figure 3 also shows the formalization of the evaluation function mpoly eval. Its
parameters are respectively: the multipolynomial to be evaluated, the degree of
the polynomials in each polyproduct, the coefficients ci and the values m and
n from Eq. 1; X represents the variables x1, · · · , xm. The function pprod eval,
omitted for brevity, is the function used to evaluate polyproducts and it is for-
malized similarly to mpoly eval.

The way in which arrays are used in the algorithms defined as part of the
Bernstein development are not amenable for evaluation in PVS. However, only a
finite prefix of every array is really used. Therefore, a new formalization is pro-
posed where the array prefixes are represented as finite lists. The additional diffi-

Boosting the Reuse of Formal Specifications 489

culty of this case with respect to the example of Fig. 1 is that MultiPolynomial
is in fact formalized by a nesting of arrays. Thus, the proposed representation is
to be applied at each level of this nesting in order to mimic every type in Fig. 3
with the types depicted in Fig. 4.

Consequently, this representation of arrays as finite lists is formalized in PVS
as shown in Fig. 5. The theory arrays into lists, in fact, uses finite lists of ele-
ments of a given unrestricted type (T2) to represent arrays containing elements
of a possibly different type (T1). The relation between the type of contained ele-
ments T2 and T1 needs to be explicitly stated by a corresponding representing
function, inner repr in the figure. Once these three formal elements (T1,T2, and
inner repr) are provided to arrays into lists as theory parameters, the rep-
resentation relation between arrays and finite lists is stated in the repr relation:
a list l represents an array if every element of the list represents the element in
the corresponding position of the array.

Note that the proposed representation, in contrast to the example of the pre-
vious section, is not injective. Each list l of elements of type T2 can be used to rep-
resent any of an infinite number of arrays starting with T1 elements in the order
induced by l. For instance, the empty list can be used to represent any array. This
coarse-grain property of the representation has to be taken care of by the theory
using it to establish the representation relation between MultiPolynomial and
MultiPolynomialList.

Figure 6 shows such a theory. The theory parameters are, respectively, two
natural numbers representing the number of terms in the sum and the degree
of the polynomial (n and m in Eq. 1) and the degree of the polynomials in each
polyproduct. Note how every importing of the arrays into lists theory is ade-
quately instantiated using, at each nesting level, the representation of the nested
type stated by the previous importing clause. Then, the representation relation
states that a MultipolynomialList represents a MultiPolynomial if for every
list in MultipolynomialList at every nesting level: (1) it represents the corre-
sponding array in MultiPolynomial according to the arrays into list theory
and (2) its length is correct according to the theory parameters. This latter
condition assures that the lists being used to represent the MultiPolynomial
are exactly those that have to be used. Finally, the equivalence between evalu-
ation functions of both formalizations is stated and proved. The proof proceeds
by exploring symmetrically the structure of both functions and leveraging the
equivalence lemmas from the auxiliary functions.

PolynomialList : TYPE = list[Coefficient]

PolyproductList : TYPE = list[PolynomialList]

MultiPolynomialList : TYPE = list[PolyproductList]

a2l mpoly eval(bsplist,degmono,cf,m,n)(X) : real =

sigma(0,n-1,LAMBDA(i:nat):cf(i)*pprod eval(nth(bsplist,i),degmono,m)(X))

Fig. 4. Excerpt from the new formalization for multipolynomials based on lists.

490 M. M. Moscato et al.

arrays into lists[T1,T2: TYPE, inner repr: [T1,T2->bool]]: THEORY BEGIN

repr(A:[nat->T1], l:list[T2]): bool =

FORALL(i:below(length(l))): inner repr(A(i), nth(l,i))

END arrays into lists

Fig. 5. PVS theory for the representation of arrays using finite lists.

multipoly into polylist[n,m:posnat, degmono: [nat->nat]]: THEORY BEGIN

IMPORTING

arrays into lists[Coefficient,Coefficient,=] AS polynomial,

arrays into lists[Polynomial,PolynomialList,polynomial.repr]

AS polyproduct,

arrays into lists[Polyproduct,PolyproductList,polyproduct.repr]

AS multipolynomial

repr(mp: MultiPolynomial, pl: MultipolynomialList): bool =

multipolynomial.represents(pl,mp) AND

n = length(pl) AND

(FORALL (pp i: below(n)): m = length(nth(pl,pp i))) AND

(FORALL (pp i: below(n), var i: below(m)):

length(nth(nth(pl,pp i),var i)) = degmono(var i) + 1)

a2l multibs eval equivalence: LEMMA

FORALL(mp: MultiPolynomial, pl: MultiPolynomialList):

repr(mp,pl) IMPLIES

FORALL(X: Vars, cf: [nat->real]):

multibs eval(mp,dm,cf,m,n)(X) = a2l multibs eval(pl,dm,cf,m,n)(X)

END multipoly into polylist

Fig. 6. Representation of multipolynomials on arrays using multipolynomials as lists.

New versions of the Bernstein algorithms and proof strategies were also
defined, changing only the few places where explicit references to the datatype
representing multipolynomials were found. As the correctness theorems for such
algorithms were expressed in terms of the evaluation of the multipolynomial, the
equivalence lemma a2l multibs eval equivalence was used to easily show
that all the algorithms on MultipolynomialList are also correct. The proposed
translation of multipolynomials had the direct impact of providing an executable
and proven correct version of the Bernstein algorithms in a small fraction of the
time it was estimated just for fixing the previous version. Moreover, the new
version outperformed the previous one. This is the case because lists are trans-
lated to Lisp in a much more efficient way than arrays, and because the original
definition also performed some internal conversions to lists that are unnecessary
in the new version.

Boosting the Reuse of Formal Specifications 491

5 Related Work

The idea of establishing formal connections between datatypes has been
approached from different flanks and support for related features has been added
to a variety of formal systems. Notably, much of the effort has been posed on the
connection between isomorphic datatypes. The goal of the technique presented
in this paper is more general. Since its main motivation emerged from the prac-
tical problem of facilitate the reuse of existent formalizations, limiting the scope
of application to isomorphic types would be too restrictive. The downside of such
design decision is that automatization is harder to achieve.

For the sake of brevity, the universe of comparison explored in the following is
restricted to the context of higher-order logic environments, such as Isabelle [18]
and Coq [19]. In such context, the technique presented in this paper is closely
related to the formalization of quotients in Isabelle [20]. There, the connection
between a so-called raw type and a more abstract type is established through the
lifting of terms from the raw to the abstract type and the transfer of theorems
between them. Besides the similarities, there are some important differences.
First, conceptually the work on quotients appears to be designed with a direc-
tionality in mind. While this directionality is not explicit in the transfer-related
features, since theorems can be transfered from raw to abstract and vice versa,
such notion is still present in the lifting functionalities. On the other hand, in
the technique presented in this paper the roles of abstract and raw type are
not forced explicitly. Indeed, the representation presented in this paper is not
just about abstraction (or concretization) relations, but it allows for more gen-
eral relationships between types of different nature. More concretely, the lifting
of terms described in [20] is based on the existence of two functions, Abs and
Rep, that relate an abstract instance with its raw counterpart. Meanwhile, the
corresponding relations in the technique proposed in this paper are not neces-
sarily functional. This feature makes it easy to apply the proposed technique
to the example presented in the Sect. 4. Nevertheless, there is a cost associated:
the level of automation described in [20] is not reachable, in general, for the
proposed technique. For particular cases, as those identified in the NASA PVS
Library, automation seems feasible and it is work in progress.

Also addressing the problem of transfering theorems along isomorphic types,
Zimmermann and Herbelin [21] have proposed a technique for Coq that shares
much of the spirit of the one presented here. Nevertheless, similarly to [20], their
work also relies in a functional notion to relate elements from different datatypes.
Again, while automation is easier to achieve, in fact a simple algorithm to trans-
late proofs is explicitely presented in the mentioned paper, the use of a rela-
tional representation mechanism makes the technique presented here applicable
to cases that can not be addressed in functional representation settings. Addi-
tionally, the transfer mechanism in [21] does not support some features already
supported in this paper, such as the compositionality of the technique showed
in the case study. Other similar approaches have been proposed in the context
of the Coq system. For example, the concept of signature for higher-order func-
tions by Sozeau [22] resembles the idea of transfer of theorems proposed in this

492 M. M. Moscato et al.

paper. Furthermore, the work of Magaud [23] on translation of proof terms for
Coq also addressed the problem of minimizing the effort in sharing theorems of
related datatypes. Both approaches are less general than the work presented in
this paper.

Regarding PVS, the system provides native support for theory interpreta-
tions [24]. This feature allows for the instantiation of uninterpreted symbols
such as constant, function, and even type symbols. The necessary proof obli-
gations are automatically generated by the type-checker in order to ensure the
validity of the interpretation. While this feature greatly improves reusability of
theories, the examples described in this paper fall out of its scope of application
because interpretations are limited to refinement of uninterpreted symbols.

A typical instantiation of the problem of formal connections is the refinement
of abstract into concrete datatypes. In this practical but more restricted case,
elaborated features can be developed and a higher level of automation can be
achieved. Notable examples of refinement in higher-order logic systems were
developed by Lammich [25] for Isabelle/HOL and Cohen et al. [26] for Coq,
among others.

There are also similar techniques that were specially developed with the aim
to connect different dependent types. From the observation that when work-
ing with dependent types is not unusual to find cases were the only difference
between them is given by its logical description, while the structural definition
is almost or directly the same, McBride have developed the notion of Orna-
ments [27], which allows to handle type declarations as first-order citizens of
the formal setting and establish relationships between them. These relationships
are particularly aimed at qualifying one of the types as more informative than
the other. Ornaments are specially designed to relate inductive structures, for
instance, natural numbers (defined inductively using zero and successor) and
finite-length lists. On the contrary, the technique presented in this paper does
not suffer from such restriction: the (possible dissonant) nature of the datatypes
being connected does not limit the applicability of the connection process. Some-
how in the same line of Ornaments but motivated by the extraction of code from a
formally verified description, Dagand et al. have presented a technique grounded
on an application of the notion of Galois connections that outperforms Orna-
ments in that it supports the connection between more general datatypes [28].
The constructive setting in which such technique is developed makes it very
different from the approach explained in these pages.

6 Conclusion

This paper presents a formal study of the concept of connections between theory
presentations in a higher-order logic setting. The concept is approached in a
way as general as possible in order to maximize the range of application of the
representation technique. In particular, the proposed approach does not only
apply to refinement of abstract into concrete types, but also to more general
relationships between types. A non-trivial case study is presented to illustrate
the usefulness of the proposed technique.

Boosting the Reuse of Formal Specifications 493

While the technique is not implemented as an automatic procedure yet, the
systematic nature of the approach hints that automation can be achieved for a
considerable part of the process. For specific cases, such as when dealing with
structured and algebraic datatypes, the automation of a significant part of the
technique is planned to be undertaken as future work. On the theoretical side,
further research is needed to understand how the technique presented in this
paper is affected by the various theory extension mechanisms provided by mod-
ern proof assistants.

Acknowledgments. Research by the first, second, and forth author was supported
by the National Aeronautics and Space Administration under NASA/NIA Coopera-
tive Agreement NNL09AA00A. Research by the second author was also supported by
the Agencia Nacional de Promoción Cient́ıfica y Tecnológica (ANPCyT) under grant
PICT 2013-2129 and by the Consejo Nacional de Investigaciones Cient́ıficas y Técnicas
(CONICET) under grant PIP 11220130100148CO.

References

1. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

2. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts
in Mathematics. Springer, Berlin (1981)

3. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, New York
(1972)

4. van Benthem, J., Doets, K.: Higher-order logic. In: Gabbay, D., Guenthner, F.
(eds.) Handbook of Philosophical Logic, 2nd edn., vol. 1, pp. 189–243. Kluwer
Academic Publishers (2001)

5. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Number 43 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge
(1996)

6. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Number 7 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge
(1989)

7. Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, Volume II.
Oxford University Press (1999)

8. Muñoz, C.: Rapid prototyping in PVS. Contractor report NASA/CR-2003-212418,
NASA, Langley Research Center, Hampton VA 23681–2199, USA, May 2003

9. Ehrig, H., Mahr, B., Orejas, F.: Introduction to algebraic specification. Part 1:
formal methods for software development. Comput. J. 35(5), 468–477 (1992)

10. Ehrig, H., Mahr, B., Orejas, F.: Introduction to algebraic specification. Part 2: from
classical view to foundations of system specifications. Comput. J. 35(5), 468–477
(1992)

11. McLane, S.: Categories for Working Mathematician. Graduate Texts in Mathe-
matics. Springer, Berlin (1971)

12. Pierce, B.C.: Basic Category Theory for Computer Scientists. MIT Press, Cam-
bridge (1991)

https://doi.org/10.1007/3-540-55602-8_217

494 M. M. Moscato et al.

13. Meseguer, J.: General logics. In: Ebbinghaus, H.D., Fernandez-Prida, J., Garrido,
M., Lascar, D., Artalejo, M.R. (eds.) Proceedings of the Logic Colloquium 1987,
Granada, Spain, North Holland, vol. 129, pp. 275–329 (1989)

14. Goguen, J.A., Roşu, G.: Institution morphisms. Formal Aspects Comput. 13(3–5),
274–307 (2002)

15. Turski, W.M., Maibaum, T.S.E.: The Specification of Computer Programs. Inter-
national Computer Science Series. Addison-Wesley Publishing Co., Inc., Boston
(1987)

16. Bernstein, S.: Démonstration du théorème de weierstrass fondée sur le calcul des
probabilités. Commun. Kharkov Math. Soc. 13(1), 1–2 (1912)

17. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polyno-
mials and applications to global optimization. J. Autom. Reasoning 51(2), 151–196
(2013)

18. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL – A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

19. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
CoqArt: The Calculus of Inductive Constructions. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-07964-5

20. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp.
131–146. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 9

21. Zimmermann, T., Herbelin, H.: Automatic and transparent transfer of theorems
along isomorphisms in the Coq proof assistant. arXiv preprint arXiv:1505.05028
(2015)

22. Sozeau, M.: A new look at generalized rewriting in type theory. J. Formalized
Reasoning 2(1), 41–62 (2010)

23. Magaud, N.: Changing data representation within the Coq system. In: Basin, D.,
Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 87–102. Springer, Heidelberg
(2003). https://doi.org/10.1007/10930755 6

24. Owre, S., Shankar, N.: Theory interpretations in PVS. Technical report SRI-CSL-
01-01, Computer Science Laboratory, SRI International, Menlo Park, CA (2001)

25. Lammich, P.: Refinement based verification of imperative data structures. In: Pro-
ceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs,
CPP 2016, pp. 27–36. ACM, New York (2016)

26. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free!. In: Gonthier, G., Nor-
rish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 147–162. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03545-1 10

27. McBride, C.: Ornamental algebras, algebraic ornaments (2010). Unpublished
28. Dagand, P.É., Tabareau, N., Tanter, É.: Foundations of dependent interoperability.

J. Funct. Program. 28 (2018)

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-03545-1_9
http://arxiv.org/abs/1505.05028
https://doi.org/10.1007/10930755_6
https://doi.org/10.1007/978-3-319-03545-1_10

Towards Formal Foundations
for Game Theory

Julian Parsert(B) and Cezary Kaliszyk

Department of Computer Science, University of Innsbruck, Innsbruck, Austria
{julian.parsert,cezary.kaliszyk}@uibk.ac.at

Abstract. Utility functions form an essential part of game theory and
economics. In order to guarantee the existence of these utility functions
sufficient properties are assumed in an axiomatic manner. In this paper
we discuss these axioms and the von-Neumann-Morgenstern Utility
Theorem, which names precise assumptions under which expected utility
functions exist. We formalize these results in Isabelle/HOL. The formal-
ization includes formal definitions of the underlying concepts including
continuity and independence of preferences. We make the dependencies
more precise and highlight some consequences for a formalization of game
theory.

1 Introduction

Utility theory seeks to describe how humans evaluate and compare alternatives or
outcomes using mathematical tools. This theory forms the basis of game theory
and therefore several fields in economics. Hence, we believe that formalizations
in either of those areas require a solid base in utility theory.

In their pioneering work “Theory of Games and Economic Behavior” von
Neumann and Morgenstern axiomatically describe, how actors evaluate uncer-
tain outcomes [22]. They developed the theory of expected utility, which
describes a scheme based on the expected value of outcomes. Utility functions
allow the use of many mathematical tools for optimization etc. Hence, much
effort is put into precisely specifying properties which guarantee the existence
of such functions. To this end, von Neumann and Morgenstern dedicate the
first chapters of [22] to specifying the assumptions necessary (and sufficient)
for preference relations to admit expected utility representation. This is now
known as the von-Neumann-Morgenstern Utility Theorem. These assumptions
are introduced as axioms upon which the entire book is based. Kahneman and
others criticized [20] the theory of expected utility and developed alternatives [7].
Moreover, impossibility results were proven [19]. Nevertheless, it still remains
the standard theory in game theory [14] and the most common tool in economic
reasoning [9].

Our goal is to provide a solid foundation of utility theory upon which fur-
ther work in both economics and game theory can be conducted. We do so
by introducing formal definitions in Isabelle/HOL and deriving results that not
c© The Author(s) 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 495–503, 2018.
https://doi.org/10.1007/978-3-319-94821-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_29&domain=pdf

496 J. Parsert and C. Kaliszyk

only support the intuition of expected utility, but also help automated theorem
provers in proving subsequent results. With that we prove the von-Neumann-
Morgenstern Expected Utility Theorem.

Related Work. Arrow’s impossibility theorem has been formalized by
Wiedijk [25] and Nipkow [13]. Gammie has formalized some results in social
choice theory, as well as stable matching [4,5]. Kuhn’s theorem has been formal-
ized by Vestergaard [21] and generalized by Le Roux [17]. The same author later
worked on a formalization of Nash equilibria for two player games [18]. Recently,
Martin-Dorel and Soloviev formalized boolean games with non-deterministic
aspects. In addition, algorithmic game theory results have been formalized in
Coq [1].

The concepts we discuss are also relevant for the formalization of eco-
nomic concepts. Related work includes the verification of financial systems [16]
and binomial pricing models [3]. As part of the ForMaRE project [10] VCG-
Auctions [8] have been formalized. In microeconomics we discussed a formaliza-
tion of two economic models and the First Welfare Theorem [15].

To our knowledge the only work that uses expected utility theory is that of
Eberl [2]. The focus there is not the underlying utility theory, but rather its use
in social decision schemes. Since our focus is the this underlying theory and in
particular the von Neumann-Morgenstern Utility Theorem, we found that there
is only little overlap.

2 Isabelle/HOL, Probability, and Notations

Isabelle/HOL [24] is an Interactive Theorem Prover based on higher-order logic.
Due to space limitations, we refer the reader to the Isar reference manual [23]
for Isabelle’s foundations and notations. We introduce a few reoccurring notions
of HOL-Probability, but we refer to [6] for a more detailed explanation.

It is common to denote the composition of probability mass functions (pmfs)
p and q with a probability α as follows α p+(1−α) q. This notation corresponds
to the following Isabelle definition:

definition mix pmf :: real ⇒ ′a pmf ⇒ ′a pmf ⇒ ′a pmf where
mix pmf a p q = (bernoulli − pmf a) �= (λb. if b then p else q)

In particular, we compose a Bernoulli distribution that returns either True or
False with probability a, with a function that returns p if the random variable
is True or q otherwise. We use Isabelle’s standard definition for the support of a
pmf, set pmf, while return pmf applied to x returns a pmf yielding x with the
probability 1.

A preference relation is a transitive and reflexive binary relation (i.e. a pre-
order). The notations x � y, x �[R] y, and R(x, y) are equivalent and denote a
preference relation where x is weakly preferred to y. Despite its potential ambi-
guity, we will be using the first alternative if the specific relation can be inferred

von-Neumann-Morgenstern Utility Theorem 497

from context. Similarly, the symbols x � y and x �[R] y denote the strict pref-
erence relation where x � y iff x � y ∧ ¬y � x, whereas x ≈ y and x ≈[R] y
denote the indifference relation where x ≈ y iff x � y ∧ y � x.

We will use the terms “pmf” and “lottery” interchangeably. In economic and
game theoretic literature the latter is more common, while the former is used in
probability theory and Isabelle/HOL.

3 Preference Relations and Their Properties

We present and discuss important definitions which we will use in subsequent
sections.

First we briefly introduce rational preferences and Utility functions. How-
ever, since both have been thoroughly discussed and formalized in the authors’
previous work [15] we will not go into detail or mention results involving these.

Definition 1 (Rational Preferences). A binary relation R over a carrier set
C is called a rational preference relation, if R is a total preorder on C. Hence R
is total, transitive, and reflexive.

We refer to [15] or the sources for a more detailed account of the Definitions 1
and 2 as well as derived results.

Definition 2 (Utility function). A function u : C �→ R is said to represent a
rational preference relation R over C, if

∀x y ∈ C. x �[R] y ⇐⇒ u(x) ≥ u(y).

The function u is called utility function.

Based on these two definitions we continue with the new additions. Firstly,
we consider continuous preferences. Definition 3 is sometimes also called the
Archimedean axiom.

Definition 3 (Continuous Preferences). A binary relation R over a carrier
set C, is said to be continuous if, ∀ p q r ∈ C,

p �[R] q ∧ q �[R] r −→ ∃α ∈ [
0 . . . 1

]
.(mix pmf α p r) ≈[R] q.

Intuitively this means that if p � q, then lotteries that are close to p are also
preferred to q. An alternative interpretation would be, that if preferences are
continuous, there are no outcomes that are so bad (not preferred with respect
to R) that no probability is small enough to “redeem” them by composing with
a better alternative.

Next, we define independence of preferences. Informally, we want indepen-
dence to entail that the (preference) relation between two elements p and q only
depends on the parts where p and q differ.

498 J. Parsert and C. Kaliszyk

Definition 4 (Independence of Preferences). A binary relation R over a
carrier set C, is independent if, ∀p q x ∈ C. ∀α ∈ (0 . . . 1

]
,

p �[R] q ←→ (mix pmf α p x) �[R] (mix pmf α q x).

Independence implies that the relation between α p+(1−α) x and α q+(1−α) x
only depends on the relation of p and q rather than their combination with x.

Even though utility functions have been defined, the special case of expected
utility functions has not been discussed. We will do so now.

Definition 5 (Expected Utility Form1). Given a set P of probability mass
functions over a set of outcomes O and a preference relation R over P , a utility
function U : P �→ R representing R has expected utility form, if there exists a
utility function u2 : O �→ R such that for all p ∈ P ,

U(p) :=
∑

x∈O
p(x) ∗ u(x).

Notice that Definition 5 introduces two kinds of utility functions, the expected
utility function U and the Bernoulli utility function u. The function U assigns a
utility value to lotteries/pmfs that range over outcomes, while u assigns a utility
value to outcomes themselves. The utility of a lottery p which equals U(p) is then
defined to be the expected value of the utility function u with the lottery p.

4 The Setup

In this section we introduce notations that we use and discuss further concepts
and assumptions.

First, we assume the set of outcomes O to be a non-empty finite set3. Next,
we define the carrier set P to be the set of all probability mass functions (pmf)
over the finite set of outcomes O, P := {l | support l ⊆ O}. This set can be
visualized using a probability simplex. Figure 1 shows such a simplex with three
outcomes. Note, that if |O| > 1 then the set P is uncountable. Now, we can define
degenerate lotteries to be all lotteries that yield one outcome with the probability
1. In Fig. 1 these are simply the corner points (i.e., the points O1−3). A rational
preference relation over P is denoted with R. Since the final result requires R to
be continuous and independent (cf. Definitions 3 and 4) most literature assumes
these from the get go. We found that not all assumptions were necessary for
the results. Therefore, in the formalization we chose to introduce assumptions
only when necessary. Nevertheless, for the sake of readability we assume R to
be rational (1), continuous (3), and independent (4) in the subsequent sections.
For more detail on the necessity of assumptions we refer to the formalization.

With this setup, we can state the theorem we are aiming for, the von-
Neumann-Morgenstern Utility Theorem (Theorem 1).
1 This form is also known as the von-Neumann-Morgenstern utility function.
2 This function is sometimes referred to as Bernoulli utility function.
3 The discussed theorem also holds for infinite sets [9]. However, this has not been

formalized.

von-Neumann-Morgenstern Utility Theorem 499

Theorem 1 (von-Neumann-Morgenstern Utility Theorem). The prefer-
ence relation R over the carrier set P can be represented by a utility function of
expected utility form (Definition 5) if and only if R is rational (1), continuous
(3), and satisfies independence (4). More formally, R satisfies (1), (3), (4), if
and only if, ∃u : O �→ R such that ∀p q ∈ P,

p � q ⇐⇒
∑

x∈O
p(x) ∗ u(x) ≥

∑

x∈O
q(x) ∗ u(x).

Fig. 1. This is the probability simplex for the case where |O| = 3. The set {l |
support l ⊆ O} is exactly the set of all points on this simplex. The point e is the
pmf with the probability 1

3
for all three outcomes (1

3
O1 + 1

3
O2 + 1

3
O3).

5 The Proof Outline

We will present the key insights and ideas leading to a proof of Theorem 1. All
the definitions and proofs can be found in the formalization. Since we use the
setup introduced in the previous section all assumptions and notations carry
over. In particular � will denote the previously introduced relation R.

Theorem 1 is proved by showing two implications. Both directions can be
found in the formalization. However, we will discuss the more difficult direction.
That is, a preference relation satisfying (1), (3), and (4) admits expected utility
representation.

The set of degenerate lotteries is finite, trivially there exists at least one most
preferred element (with respect to R). Moreover, we can prove Lemma 1.

Lemma 1. Every best4 degenerate lottery Bdeg is at least as good as any other
lottery in P.

∀y ∈ P. Bdeg � y

The same can be shown for the worst (least preferred) elements. Thus proving
that there exists at least one best B and one worst W element in P such that

∀x ∈ P. B � x ∧ x � W. (1)

4 We will use the “best” and “worst” to denote most and least preferred with respect
to R.

500 J. Parsert and C. Kaliszyk

If B ≈ W any constant function would represent the preference relation R, thus
proving Theorem 1 for this special case. Hence, we will assume B � W.

From the assumption of continuity and Property 1, we know that ∀p ∈ P,

∃α. α B + (1 − α) W ≈ p.

Moreover, we can show that such an α is unique. If it was not, we could create
two distinct lotteries p = α B + (1 − α) W and q = β B + (1 − β) W with α > β
and p ≈ q. However, since B � W and p has a higher chance of the best outcome
than q, we deduce p � q, a contradiction. This shows that for all lotteries p ∈ P,
there exists a unique calibration probability α, such that, αB + (1 − α)W ≈ p.

The key idea is to define a function that assigns the unique calibration proba-
bility to every lottery in P. This is realised with the utility function util. Given
a pmf p its unique calibration α is obtained (using the indefinite choice operator
SOME) and returned.

definition util :: ′a pmf ⇒ real where
util p = (SOME α. α ∈ {

0 . . . 1
} ∧ p ≈[R] mix pmf α B W)

The next lemma shows that util indeed is a utility function as per Definition 2.

Lemma 2. For all p and q in P,

p � q ⇐⇒ util(p) ≥ util(q)

Lemma 2 is already an important result. However, since we are not only inter-
ested in general utility functions, but utility functions that adhere to expected
utility form (Definition 5), we also need to prove the following Lemma.

Lemma 3. util is linear. That is, for all p, q in P,

util(α p + (1 − α) q) = α util(p) + (1 − α) util(q)

Proof Outline. First, we generate two lotteries that have the same preference as
p and q using util, B, and W. After substituting these generated lotteries in
the left hand side of the equation, we can distribute α, rearrange the terms and
apply the definition of util to derive the right hand side. For a detailed account
of this lemma, we refer to the formalization. ��
One of the most prominent modern books on game theory [11] defines von-
Neumann-Morgenstern utility functions simply as linear functions which util
indeed is (Lemma 3). Since linearity is the defining property of expected util-
ity functions Lemma 4 can be proven. Note, that util has the wrong type
′α pmf ⇒ real. Therefore, we simply define the Bernoulli utility function u with
the following lambda abstraction (λx. util(return pmf x)) of type ′α ⇒ real.

Lemma 4. Given a p ∈ P
U(p) =

∑

x∈O
p(x) ∗ u(x)

This shows the existence of an expected utility function assuming (1), (3), and
(4), thus proving one direction of Theorem 1.

von-Neumann-Morgenstern Utility Theorem 501

6 Conclusions

As mentioned in Sect. 1 multiple prominent books including [11,22], introduce
the theory of expected utility as a set of axioms upon which their work is based.
Thus, a formalization of utility theory is crucial for further development in game
theory and economics. The presented formalization amounts to almost 2400 lines
of code including over 120 lemmas. These can be used for future work such as
Nash’s theorem [12] on the existence of mixed strategy equilibria.

Acknowledgments. We thank Manuel Eberl for his help with Isabelle’s HOL-
Probability. This work is supported by the European Research Council (ERC) grant
no 714034 SMART and the Austrian Science Fund (FWF) project P26201.

References

1. Bagnall, A., Merten, S., Stewart, G.: A library for algorithmic game theory in
Ssreflect/Coq. J. Formalized Reasoning 10(1), 67–95 (2017). https://jfr.unibo.it/
article/view/7235

2. Eberl, M.: Randomised social choice theory. Archive of Formal Proofs, May 2016.
http://isa-afp.org/entries/Randomised Social Choice.shtml. Formal proof devel-
opment

3. Echenim, M., Peltier, N.: The binomial pricing model in finance: a formalization
in Isabelle. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp.
546–562. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 33

4. Gammie, P.: Some classical results in social choice theory. Archive of Formal
Proofs, November 2008. http://isa-afp.org/entries/SenSocialChoice.html. Formal
proof development

5. Gammie, P.: Stable matching. Archive of Formal Proofs, October 2016. http://isa-
afp.org/entries/Stable Matching.html. Formal proof development

6. Hölzl, J.: Construction and stochastic applications of measure spaces in higher-
order logic. Ph.D. thesis, Technical University Munich (2013). http://nbn-
resolving.de/urn:nbn:de:bvb:91-diss-20130219-1116512-0-6

7. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk.
Econometrica 47(2), 263–291 (1979). http://www.jstor.org/stable/1914185

8. Kerber, M., Lange, C., Rowat, C., Windsteiger, W.: Developing an auction theory
toolbox. AISB, pp. 1–4 (2013)

9. Kreps, D.: Notes on the Theory of Choice. Underground Classics in Economics.
Avalon Publishing (1988). https://books.google.at/books?id=9D0Oljs5GrQC

10. Lange, C., Rowat, C., Kerber, M.: The ForMaRE project – formal mathematical
reasoning in economics. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Wind-
steiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 330–334. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39320-4 23

11. Maschler, M., Solan, E., Zamir, S.: Game Theory. Cambridge University Press,
New York (2013)

12. Nash, J.F.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. U.S.A.
36, 48–49 (1950)

13. Nipkow, T.: Arrow and Gibbard-Satterthwaite. Archive of Formal Proofs (2008).
https://www.isa-afp.org/entries/ArrowImpossibilityGS.shtml

https://jfr.unibo.it/article/view/7235
https://jfr.unibo.it/article/view/7235
http://isa-afp.org/entries/Randomised_Social_Choice.shtml
https://doi.org/10.1007/978-3-319-63046-5_33
http://isa-afp.org/entries/SenSocialChoice.html
http://isa-afp.org/entries/Stable_Matching.html
http://isa-afp.org/entries/Stable_Matching.html
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20130219-1116512-0-6
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20130219-1116512-0-6
http://www.jstor.org/stable/1914185
https://books.google.at/books?id=9D0Oljs5GrQC
https://doi.org/10.1007/978-3-642-39320-4_23
https://www.isa-afp.org/entries/ArrowImpossibilityGS.shtml

502 J. Parsert and C. Kaliszyk

14. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, New York (2007)

15. Parsert, J., Kaliszyk, C.: Formal microeconomic foundations and the first welfare
theorem. In: Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2018, pp. 91–101. ACM (2018). https://doi.
org/10.1145/3167100

16. Passmore, G.O., Ignatovich, D.: Formal verification of financial algorithms. In: de
Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 26–41. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63046-5 3

17. Roux, S.: Acyclic preferences and existence of sequential nash equilibria: a formal
and constructive equivalence. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M.
(eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 293–309. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03359-9 21

18. Roux, S.L., Martin-Dorel, É., Smaus, J.: An existence theorem of Nash equilibrium
in Coq and Isabelle. In: Bouyer, P., Orlandini, A., Pietro, P.S. (eds.) Proceedings
Eighth International Symposium on Games, Automata, Logics and Formal Verifi-
cation, GandALF 2017, EPTCS, vol. 256, Roma, Italy, 20–22 September 2017, pp.
46–60 (2017). https://doi.org/10.4204/EPTCS.256.4

19. Roux, S.L., Pauly, A.: Extending finite-memory determinacy to multi-player
games. Inf. Comput. (2018). http://www.sciencedirect.com/science/article/pii/
S0890540118300270

20. Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases.
Science 185(4157), 1124–1131 (1974). http://science.sciencemag.org/content/185/
4157/1124

21. Vestergaard, R.: A constructive approach to sequential nash equilibria. Inf. Process.
Lett. 97(2), 46–51 (2006). https://doi.org/10.1016/j.ipl.2005.09.010

22. von Neumann, J., Morgenstern, O.: Theory of Games and Economic
Behavior. Princeton University Press (1947). https://books.google.at/books?
id=AUDPAAAAMAAJ

23. Wenzel, M.: The Isabelle/Isar Reference Manual (2017)
24. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed,

O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7 7

25. Wiedijk, F.: Formalizing Arrow’s theorem. Sadhana 34(1), 193–220 (2009).
https://doi.org/10.1007/s12046-009-0005-1

https://doi.org/10.1145/3167100
https://doi.org/10.1145/3167100
https://doi.org/10.1007/978-3-319-63046-5_3
https://doi.org/10.1007/978-3-642-03359-9_21
https://doi.org/10.4204/EPTCS.256.4
http://www.sciencedirect.com/science/article/pii/S0890540118300270
http://www.sciencedirect.com/science/article/pii/S0890540118300270
http://science.sciencemag.org/content/185/4157/1124
http://science.sciencemag.org/content/185/4157/1124
https://doi.org/10.1016/j.ipl.2005.09.010
https://books.google.at/books?id=AUDPAAAAMAAJ
https://books.google.at/books?id=AUDPAAAAMAAJ
https://doi.org/10.1007/978-3-540-71067-7_7
https://doi.org/10.1007/s12046-009-0005-1

von-Neumann-Morgenstern Utility Theorem 503

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Verified Timing Transformations
in Synchronous Circuits with λπ -Ware

João Paulo Pizani Flor(B) and Wouter Swierstra

Utrecht University, Utrecht, The Netherlands
{J.P.PizaniFlor,W.S.Swierstra}@uu.nl

Abstract. We define a DSL for hardware description, called λπ-Ware,
embedded in the dependently-typed language Agda, which makes the
DSL well-scoped and well-typed by construction. Other advantages of
dependent types are that circuit models can be simulated and verified
in the same language, and properties can be proven not only of spe-
cific circuits, but of circuit generators describing (infinite) families of
circuits. This paper focuses on the relations between circuits computing
the same values, but with different levels of statefulness. We define com-
mon recursion schemes, in combinational and sequential versions, and
express known circuits using these recursion patterns. Finally, we define
a notion of convertibility between circuits with different levels of state-
fulness, and prove the core convertibility property between the combina-
tional and sequential versions of our vector iteration primitive. Circuits
defined using the recursion schemes can thus have different architectures
with a guarantee of functional equivalence up to timing.

1 Introduction

Modelling electronic circuits has been a fertile ground for functional program-
ming (Sheeran 2005) and theorem proving (Hanna and Daeche 1992). There have
been numerous efforts to describe, simulate, and verify circuits using functional
languages such as MuFP (Sheeran 1984) and more recently CλaSH (Baaij 2015)
and ForSyDe (Sander and Jantsch 2004).

Functional languages have also been used to host an Embedded Domain-
Specific Language (EDSL) for hardware description. Some of these EDSLs, such
as Wired (Axelsson et al. 2005), capture low-level information about the layout
of a circuit; others aim to use the host language to provide a higher-level of
abstraction to describe the circuit’s intended behaviour. A notable example of
the latter approach is Lava (Bjesse et al. 1999) and its several variants (Gill et al.
2009; Singh 2004).

Also interactive theorem proving and programming with dependent types have
been fruitfully used to support hardware verification efforts, with some based on
HOL (Melham 1993; Boulton et al. 1992), some on Coq (Braibant 2011; Braibant
and Chlipala 2013) and some on Martin-Löf Type Theory (Brady et al. 2007)

c© The Author(s) 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 504–522, 2018.
https://doi.org/10.1007/978-3-319-94821-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_30&domain=pdf

Verified Timing Transformations in Synchronous Circuits with λπ -Ware 505

Following this line of research, we utilize a dependently-typed programming lan-
guage (Agda) as the host of our hardware EDSL, for its proving capabilities and
convenience of embedding.

In particular, this paper focuses on verification related to timing, that is,
the behaviour of a circuit in terms of its inputs over time. When designing
hardware, a compromise must be made between the area occupied by a circuit
and the number of clock cycles it takes to produce its results.

A combinational (stateless) architecture better harnesses potential paral-
lelism but might negatively influence other constraints such as frequency and
power consumption. A more sequential circuit (stateful), on the other hand, will
occupy less area but might be a bottleneck in computational throughput and
impact other parts of the design that depend on its outputs.

There are many different ways to implement any specific functional
behaviour, and it can be difficult to find the right spot in the design space
upfront. Timing-related circuit transformations are quite invasive and error-
prone – making it difficult to correct bad design decisions a posteriori. With
this paper, we attenuate some of these issues by defining a language for circuit
description that facilitates the exploration of different points in the timing design
space. More concretely, this paper makes the following contributions:

– We show how to embed a typed hardware DSL, λπ-Ware, in the general
purpose dependently typed programming language Agda (Sect. 3), together
with an executable semantics based on state transitions (Sect. 4).

– Next, we define common recursion patterns to build circuits in both combina-
tional and sequential architectures (Sect. 5). We show how some well-known
circuits can be expressed in terms of these recursion patterns.

– Finally, we define a precise relation between the combinational and sequential
versions of circuits that exhibit equivalent behaviour (Sect. 5.1). By proving
that different versions of our recursion schemes are convertible, we allow hard-
ware designers to enable different levels of parallelism while being certain that
semantics are being preserved up to timing.

Altogether, these contributions help to separate the concerns between the
values a circuit must produce and the timing with which they are produced. In
this way, timing decisions can more easily be modified later in the design process.

The codebase in which the ideas exposed in this paper are developed is avail-
able online.1 For the sake of presentation, code excerpts in this paper may differ
slightly from the corresponding ones in the repository.

2 Overview

We begin by shortly demonstrating the usage of λπ-Ware. Although inspired by
our previous work (Π - Ware (Pizani Flor et al. 2016)), λπ-Ware uses variable
binding for sharing and loops, instead of pointfree combinators. Furthermore,
1 https://gitlab.com/joaopizani/lambda1-hdl/tree/paper-2017-comb-seq.

https://gitlab.com/joaopizani/lambda1-hdl/tree/paper-2017-comb-seq

506 J. P. Pizani Flor and W. Swierstra

λπ-Ware has a universe of (simply-)structured types, whereas the types of Π-
Ware were vectors only. In this section, we illustrate the language by means of
two variations on a simple circuit. Later sections cover the syntax and semantics
of λπ-Ware in greater detail.

Example: Horner’s Method. We look at two circuits for calculating the value of a
polynomial at a given point, one with a combinational architecture and another
sequential, both based on Horner’s method.

For any coefficients a0, . . . , an in N, we can define a polynomial as follows:

p(x) =
n∑

i=0

aix
i = a0 + a1x + a2x

2 + a3x
3 + · · · + anxn,

In order to compute the value of the polynomial at a specific point x0 of its
domain, Horner’s method proceeds by using the following sequence of values:

bn := an

bn−1 := an−1 + bnx0

...
b0 := a0 + b1x0.

Then b0 is the value of our polynomial at x0, that is, p(x0). By iteratively
expanding definitions for each of the bi in the equations above, one arrives at a
factorized form of the polynomial clearly equivalent to the usual series of powers.

Combinational Version. Horner’s method is easily expressed as a fold, and in
λπ-Ware we can build a combinational (stateless) circuit to compute this fold, for
any given degree n. When reading the signature of the horner-comb definition
below, one must note that only the parameters with the type former λH are
circuit inputs, and the others are synthesis parameters.

horner-comb : ∀ n (x0 : λH N) (an : λH N) (as : Vec (λH N) n) → λH N
horner-comb x0 = foldl-comb (λ s a → a :+: x0 :*: s)

This circuit computes the value of a polynomial of degree n at a given point.
It has three inputs: the point at which to evaluate the polynomial (x0), the
coefficient of highest degree (an) and the remaining coefficients (as). Later in
Sect. 4 we present the detailed semantics of circuits, but for now we can say that
horner-comb n behaves similarly to foldl from Agda’s standard library.

Figure 1 shows the architecture of horner-comb, where we can clearly see that
the circuit contains no loops nor memory cells and that the body of the foldl is
replicated n times. In the horner-comb model, area is linearly proportional to the
degree of the polynomial, and if we want to reduce area occupation, we need to
introduce state into the picture somehow.

Verified Timing Transformations in Synchronous Circuits with λπ -Ware 507

Fig. 1. Block diagram of the horner-comb circuit.

Sequential Version. Next, we describe a fully sequential circuit to do the same
calculation, using internal state to produce a sequence of outputs. With this
architecture the area is constant (independent of the degree of the polynomial).
The output value of the circuit at clock cycle i corresponds to the sum of all
polynomial terms with degree smaller than or equal to i, evaluated at point x0.

horner-seq : ∀ (x0 : λH N) (a : λH N) → λH N
horner-seq x0 = foldl-seq (λ s a → a :+: x0 :*: s)

The circuit takes two inputs: x0, the point at which we desire to evaluate the
polynomial; and a, a single input containing the n- (i+1)-th coefficient at the i-th
clock cycle. The circuit is defined using the foldl-seq combinator, that iterates
its argument function. This function corresponds to the loop body, mapping
the current approximation, s, and the current value of the input a to a new
approximation. As we shall see, to execute this sequential circuit, we will need
to provide an initial value for the state, s.

Fig. 2. Block diagram of the horner-seq circuit.

Figure 2 shows the architecture of horner-seq, where we see that the body
of the foldl is the same as in the combinational version. But now instead of n
instances of the body we have a single instance, with one of its outputs tied back
in a loop with a memory cell (shift register).

We have seen that the combinational and sequential definitions are syntacti-
cally similar, but have very different timing behaviour and generate very different
architectures. First of all, the coefficients input of horner-comb is a vector (a bus
in hardware parlance), while the corresponding input of horner-seq is a single
number. Also, all the coefficients are consumed by horner-comb in a single clock

508 J. P. Pizani Flor and W. Swierstra

cycle, while horner-seq consumes the sequence of coefficients over n clock cycles.
It is only after these n cycles that the results of the two circuits will coincide.

3 λπ-Ware

We begin by fixing the universe of types, U, for the elements that circuits may
produce or consume. This type is parameterized by the type of data carried over
the circuit’s wires (B). A typical choice of B would be bits or booleans, with
other choices possible when modelling a higher-level circuit, such as integers or
a datatype representing assembly instructions for a microprocessor.

data U (B : Set) : Set where
unit : U B
ι : U B
⇒ : (σ τ : U B) → U B
⊗ : (σ τ : U B) → U B
⊕ : (σ τ : U B) → U B
vec : (τ : U B) (n : N) → U B

The collection of type codes consists of a unit (1) and base (ι) types, closed
under function space (⇒), products (⊗), coproducts (⊕) and homogeneous
arrays of fixed size (vec). Each element of U B is mapped to the correspond-
ing Agda type, in particular the code ι is mapped to B, the base type in our
type universe.

Core Datatype. As mentioned before, our language is a deep-embedding in Agda,
and circuits are elements of the λB datatype. Let us start by discussing the
most fundamental constructors of λB, shown below. Additional constructors are
discussed further ahead.

data λB : (Γ : Ctxt B) (τ : U B) → Set where
〈_〉 : (g : Gate τ) → λB Γ τ
var : (i : Γ 	 τ) → λB Γ τ
$: (f : λB Γ (σ⇒ τ)) (x : λB Γ σ) → λB Γ τ
let′ : (x : λB Γ σ) (b : λB (σ :: Γ) τ) → λB Γ τ
loop : (c : λB (σ :: Γ) (σ ⊗ τ)) → λB Γ τ

We use typed De Bruijn indices for variable binding, however, there is a
convenience layer on top of λB, called λH, as seen in the overview section. Defi-
nitions using λH are essentially a shallow embedding of circuits into Agda (using
Higher-Order Abstract Syntax (HOAS)), offering a more convenient program-
ming interface by having named variables. The unembedding technique (Atkey
et al. 2009) guarantees that it is always possible to go from a circuit definition
using λH to an equivalent one using λB.

Verified Timing Transformations in Synchronous Circuits with λπ -Ware 509

Returning to the λB datatype itself, it is indexed by a context (Γ : Ctxt B)
representing the arguments to the circuit or any free variables currently in scope.
The datatype is also indexed by the circuit’s output type, (τ : U B).

The whole development is parameterized by a type of primitive gates, Gate :
U B → Set, and the 〈_〉 constructor creates a circuit from such a fundamental
gate. One example of such type of gates is the usual triple ({NOT,AND,OR})
with Bool as the chosen base type; circuit designers, however, are free to choose
the fundamental gates that best fit their domain.

Our language does have an eliminator (_$_) for arrow types, but no intro-
duction form. Arrow types can only be introduced by using gates, and this is by
design, as we target synthesizability and circuits must be first-order to be syn-
thesized. Using arrow types for gates allows for convenient partial application,
while for general abstraction we use host language definitions as metaprograms.

While the constructors shown above form the heart of the λB datatype, there
are also constructors for products, coproducts and vectors:

, : λB Γ τ1 → λB Γ τ2 → λB Γ (τ1 ⊗ τ2)
case⊗_of_ : λB Γ (σ1 ⊗ σ2) → λB (σ1 :: σ2 :: Γ) τ→ λB Γ τ
inl : λB Γ τ1 → λB Γ (τ1 ⊕ τ2)
inr : λB Γ τ2 → λB Γ (τ1 ⊕ τ2)
case⊕_either_or_ : λB Γ (σ1 ⊕ σ2) → λB (σ1 :: Γ) τ → λB (σ2 :: Γ) τ

→ λB Γ τ
nil : λB Γ (vec τ zero)
cons : λB Γ τ→ λB Γ (vec τ n) → λB Γ (vec τ (suc n))
mapAccumL-comb : λB (σ :: ρ :: Γ) (σ ⊗ τ) → λB Γ σ → λB Γ (vec ρ n)

→ λB Γ (σ ⊗ vec τ n)

We give the elimination forms for both products and coproducts uniformly
as case constructs, instead of projections that matches on its argument and
introduces newly bound variables to the context. For vectors, λB has the two
usual introduction forms: one to produce an empty vector of any type (nil) and to
extend an existing vector with a new element (cons). Finally, the accumulating
map, mapAccumL-comb, performs a combination of map and foldl: The input
vector with elements of type ρ is pointwise transformed into one with elements
of type τ, all the while threading an accumulating parameter of type σ from left
to right.

This eliminator is less general than the usual type theoretic elimination prin-
ciple for vectors; embedding this more general eliminator would require depen-
dent types and higher-order functions in our circuit language. To keep our object
language simple, however, we chose a more simple elimination principle capable
of expressing the most common hardware constructs.

510 J. P. Pizani Flor and W. Swierstra

4 Semantics and Properties

Where the previous section defined the syntax of our circuit language, we now
turn our attention to its semantics. Although there are many different interpre-
tations that we could assign to our circuits, for the purpose of this paper we will
focus on describing a circuit’s input/output behaviour.

State Transition Semantics. Circuits defined in λB can be classified in two ways.
Combinational circuits do not have any loops; sequential circuits may contain
loops. To define the semantics of sequential circuits, we will need to define the
type of state associated with a particular circuit. To do so, we define the inductive
family λs:

data λs : (c : λB Γ τ) → Set where
s, : (sx : λs x) (sy : λs y) → λs (x , y)
sLoop : {c : λB (σ :: Γ) (σ ⊗ τ)} → (si : El σ) → (sc : λs c) → λs (loop c)
. . .

This family has a constructor for each constructor of λB. Most of these con-
structors either contain no significant information, or simply follow the structure
of the circuit, like in the clause for pairs, _s,_, shown above. The most inter-
esting case is sLoop, in which the state required to simulate a circuit of the form
loop c consists of a value of type El σ — where σ is the type of the state that
the circuit produces — together with any additional state that may arise from
the loop body.

One other constructor of λs deserves special attention: sMapAccumL-comb. A
circuit built with mapAccumL-comb consists of n copies of a subcircuit f connected
in a row. Hence, the state of such a circuit consists of a vector of states, one for
each of the copies of f. Correspondingly, we define the state associated with such
an accumulating map as follows:

sMapAccumL-comb : (sf : Vec (λs f) n) (se : λs e) (sxs : λs xs)
→ λs (mapAccumL-comb f e xs)

With this definition of state in place, we turn our attention to the semantics
of our circuits. We will sketch the definition of our single step semantics, �_|�s,
mapping a circuit, initial state and environment to a new state and the value
produced by the circuit.

�_|�s : (c : λB Γ τ) (m : λs c) (γ : Env El Γ) → λs c × El τ

The environment γ assigns values to any free variables in our circuit definition.
The base cases for our semantics are as follows:

� 〈 g 〉 |�s m γ = m , (�–�g g)
� var i |�s m γ = m , lookup i γ

Verified Timing Transformations in Synchronous Circuits with λπ -Ware 511

In the case for gates, we apply the semantics of our atomic gates, described by
the auxiliary function �–�g; in the case for variables, we lookup the correspond-
ing value from the environment. Both these cases do not refer to the circuit’s
state. This state becomes important when simulating loops. In the clauses for
application, let′ and loop, shown in Listing 1, we do need to consider the circuit’s
state.

� f $ x |�s (mf s$ mx) γ = let (mx′ , rx) = � x |�s mx γ
(mf′ , rf) = � f |�s mf γ

in ((mf′ s$ mx′) , (rf rx))

� let′ x b |�s (sLet mx mb) γ = let (mx′ , rx) = � x |�s mx γ
(mb′ , rb) = � b |�s mb (rx :: γ)

in ((sLet mx′ mb′) , rb)

� loop f |�s (sLoop ml mf) γ = let (mf′ , (ml′ , rl)) = � f |�s mf (ml :: γ)
in ((sLoop ml′ mf′) , rl)

Listing 1: State-combining clauses of the single-step state transition semantics.

In the cases of application and let, each subcircuit simply “takes a step”
independently and the next state of the whole circuit is a combination of the
next states of each subcircuit. The case for loop is slightly more interesting: the
loop body,f, takes an additional input, namely the current state given by the ml
parameter of sLoop constructor.

The further clauses of the transition function handle the introduction and
elimination forms of products, coproducts and vectors. They are all defined sim-
ply by recursive evaluation of the subcircuits, and are straightforward enough
to omit from the presentation here. For example, the clause for coproduct elim-
ination is shown below:

� case⊕ x∨y either f or g |�s (sCase⊕ mxy mf mg) γ =
let (mxy′ , rx∨ry) = � x∨y |�s mxy γ
in [map× (flip (sCase⊕ mxy′) mg) id ◦ (� f |�s1 mf γ)

, map× ((sCase⊕ mxy′) mf) id ◦ (� g |�s1 mg γ)
] rx∨ry

First the coproduct value (x∨y) is evaluated, computing a result value and
its next state. The result of the evaluation (rx∨ry) is then fed to Agda’s coprod-
uct eliminator ([_,_]); the functions that process the left and right injections
proceed accordingly. In either case, the value is fed into evaluation of the appro-
priate body (either f or g), and the result is then used as the result of the whole
coproduct evaluation.

Similarly our elimination principle for vectors, mapAccumL-comb, is worth
highlighting:

512 J. P. Pizani Flor and W. Swierstra

� mapAccumL-comb f e xs |�s (sMapAccumL-comb mfs me mxs) γ =
let (me′ , re) = � e |�s me γ

(mxs′ , rxs) = � xs |�s mxs γ
(rz , mfs′ , rys) = mapAccumL2 (transformF � f |�s2 γ) re mfs rxs

in (sMapAccumL-comb mfs′ me′ mxs′ , (rz , rys))

The above clause is key in the relation that we later establish (Sect. 5.1)
between combinational and sequential versions of circuits. The three key sub-
steps involved in this clause are: evaluation of the left identity element (e), the
evaluation of the row of inputs (xs) and the row of step function copies (f).

The first two steps are as expected: both the identity and row of inputs take
a step, and we thus obtain the next state and result values of each. The core
step is then evaluating the row of copies of f, and its semantics are given using
the auxiliary function mapAccumL2.

The mapAccumL2 function is simply a two-input version of an accumulating
map, which works by simply zipping the pair of input vectors and calling the
mapAccumL function from Agda’s standard library.

mapAccumL : (σ → α → (σ × β)) → σ → Vec α n → σ × Vec β n
mapAccumL f s [] = s , []
mapAccumL f s (x :: xs) = let s′ , y = f s x

s′′ , ys = mapAccumL f s′ xs
in s′′ , (y :: ys)

mapAccumL2 : (σ → α → γ → (σ × β × δ)) → σ → Vec α n → Vec γ n
→ σ × Vec β n × Vec δ n

mapAccumL2 f s xs ys
= map× id unzip $ mapAccumL (uncurry ◦ f) s (zip xs ys)

In the semantics of mapAccumL-comb, we apply mapAccumL2 to the vector
with the result of xs (called rxs) as well as the vector with states for the copies
of f (called mfs). Then, as the result of the application we obtain the final accu-
mulator value and vector of result values, together with the vector of next state
values (mfs′).

Multi-step Semantics. To describe the behaviour of a circuit over time, we need
to define another semantics. More specifically, in this work we consider only
discrete-time synchronous circuits, and thus we will show how to use �_|�s to
define a multi-step state-transition semantics.

�_|�n : (c : λB Γ τ) (m : λs c) n (γ : Vec (Env El Γ) n) → λs c × Vec (El τ) n
�_|�n c m n = mapAccumL � c |�s m

When simulating a circuit for n cycles, we need to take not one input envi-
ronment but n, and instead of producing a single value, the simulation returns
a vector of n values. Just as we saw for mapAccumL-comb, we ensure that the
newly computed state is threaded from one simulation cycle to the next.

Verified Timing Transformations in Synchronous Circuits with λπ -Ware 513

This is exactly the behaviour of an accumulating map, thus the use of
mapAccumL here. The use of mapAccumL here is the key to the connection
between the multi-cycle of circuits using loop and the single-cycle behavior of
circuits using mapAccumL-comb.

5 Combinational and Sequential Combinators

With λπ-Ware we intend to give a hardware developer more freedom to explore
the trade-offs between area, frequency and number of cycles that a circuit might
take to complete a computation. This freedom comes from the proven guarantees
of convertibility between combinational and sequential versions of circuits.

To make it easier to explore this design space, we provide some circuit combi-
nators for common patterns. Each of these patterns comes in a pair of sequential
and combinational versions, with a lemma relating the two. If a circuit is defined
using one of these combinators, changing between architectures is as easy as
changing the combinator version used. The associated lemma guarantees the
relation between the functional behaviour of the versions.

All combinators in this section are derived from the two primitive construc-
tors loop and mapAccumL-comb. By appropriate partial application and the use
of “wrappers” to create the loop body, all sequential combinators are derived
from loop. Similarly, using the same wrappers but with mapAccumL-comb, we
derive all combinational combinators.

Of notice is also the fact that, in this section, we present the combinators in
De Bruijn style, as this is the most useful representation to use when evaluating
circuit (generators), which is covered in 5.1.

The map Combinators. For example, we might want to easily build circuits that
map a certain function over its inputs. We will define both the sequential and
combinational map combinators in terms of a third circuit, mapper. The sequen-
tial version is given by map-seq:

mapper : (f : λB (ρ :: Γ) τ) → λB (σ :: ρ :: Γ) (σ ⊗ τ)
mapper f = #0 , K1 f
map-seq : (f : λB (ρ :: Γ) τ) → λB (ρ :: Γ) τ
map-seq f = loop {σ = 1} (mapper f)

We define map-seq by applying loop to the mapper f circuit. In mapper, the
next state (first projection of the pair) is a copy of its first input (#0), whereas
the second projection is made by the weakened f, which discards its first input.

The combinational version of the same combinator (map-comb) is defined in
terms of mapAccumL-comb and mapper:

map-comb : (f : λB (ρ :: Γ) τ) (xs : λB Γ (vec ρ n)) → λB Γ (vec τ n)
map-comb f xs = snd (mapAccumL-comb (mapper f) unit xs)

514 J. P. Pizani Flor and W. Swierstra

In the above definition we note that we are free to choose the type of the
“initial element” (2nd argument), but we use 1 (value unit), as units can always
be used regardless of the base type chosen in the development. Furthermore, we
use snd to extract only the second element of the pair (the output vector), and
discard the “final element” outputted.

The foldl-scanl Combinators. Perhaps even more useful than mapping is scanning
and folding over a vector of inputs. To obtain the sequential and combinational
versions of such combinators, we again apply the loop and mapAccumL-comb
primitives to a special body which wraps the binary operation (f) of the
scan/fold.

folder : (f : λB (σ :: ρ :: Γ) σ) → λB (σ :: ρ :: Γ) (σ ⊗ σ)
folder f = #0 , f
foldl-scanl-seq : (f : λB (σ :: ρ :: Γ) σ) → λB (ρ :: Γ) σ
foldl-scanl-seq f = loop (folder f)

The wrapper called folder makes the next state equal to the first input of the
binary operator, and the output be the result of applying the binary operator.
In the above definition of foldl-scanl-seq, we get the behaviour of scanl and foldl
combined : The circuit outputs from clock cycle 0 to n form the result of the scanl
operation, and the last one at cycle n+1 is the value of the foldl.

The combinational version also has such a combined behaviour:

foldl-scanl-comb : (f : λB (σ :: ρ :: Γ) σ) (e : λB Γ σ) (xs : λB Γ (vec ρ n))
→ λB Γ (σ ⊗ vec σ n)

foldl-scanl-comb f e xs = mapAccumL-comb (folder f) e xs

In foldl-scanl-comb, we obtain a pair as output, of which the first element is
the foldl component, and the second element is the scanl (vector) component.
Thus by simply applying the fst and snd functions we can obtain the usual foldl
and scanl.

Whereas these combinators capture some common patterns in hardware
design, their usefulness also depends on lemmas relating their combinational
and sequential versions.

5.1 Convertibility of Combinational and Sequential Versions

In this section we make precise the relation between circuits with different levels
of statefulness. For conciseness, only the extreme cases are handled: completely
stateless (combinational) versus completely sequential. However, nothing in the
following treatment precludes it from being used for partial unrolling.

We will show that when two circuits are deemed “convertible up to timing”,
they can be substituted for one another with minor interface changes in the
surrounding context but no alteration of the values ultimately produced.

Verified Timing Transformations in Synchronous Circuits with λπ -Ware 515

The relation of convertibility relies on the fact that any sequential circuit
will have an occurrence of the loop constructor. As such, a less stateful variant
of such a circuit can be obtained by substituting the occurrence of loop with
one of mapAccumL-comb, thereby unrolling the loop. The fundamental relation
between loop and mapAccumL-comb is what we now establish. First, recall the
types of the single- and multi-step semantic functions:

�_|�s : (c : λB Γ τ) (m : λs c) (γ : Env El Γ) → λs c × El τ
�_|�n : (c : λB Γ τ) (m : λs c) n (γ : Vec (Env El Γ) n) → λs c × Vec (El τ) n

Now, to establish the desired relation, we apply both the single and multi-
cycle semantics. The step function subcircuit (called f) is equal in both cases,
and the mapAccumL-comb case takes 2 extra parameters besides f.

� mapAccumL-comb f (val m) xs |�s (sMapAccumL-comb (replicate mf)) γ : Tpar
� loop f |�n (sLoop m mf) n (map (_:: γ) xs) : Tloop

where Tpar = λs (. . .) × Tp σ × Vec (Tp τ) n
Tloop = λs (. . .) × Vec (Tp τ) n

The second parameter of mapAccumL-comb must be a circuit whose value is
the same as the first parameter of sLoop, and we use here the simplest possible
such circuit: (val m). The third parameter (xs) is the input vector of size n, and
is used to build the vector of environments used by the multi-cycle semantics
(map (_:: γ) xs).

Finally, the state of the mapAccumL-comb case is built by simply replicating
one state of f by n times. Stating the convertibility property in this way makes it
be valid only for a state-independent f, that is, when the input/output semantics
of f is independent of the state.

state-independent : ∀ (c : λB Γ τ) → Set
state-independent c = ∀ sa sb γ → � c |�s sa γ ≡ � c |�s sb γ

This restriction on f could be somewhat further loosened (as is discussed in
Sect. 6.2), but we work here with state-independent loop bodies to simplify the
presentation.

As we have seen, the results from applying each semantic function have dif-
ferent types (Tpar and Tloop), so the relation comparing these results is more
subtle than just equality. We define this relation, called _=*_, as follows:

=* : Tpar → Tloop → Set
(, s′ , xs′) =* (sm′′ , xs′′) = (s′ ≡ gets0 sm′′) × (xs′ ≡ xs′′)

Both sides of (_=*_) consist of a pair of next state and circuit outputs. In
the mapAccumL-comb case, the next state can be ignored in the comparison, but
in the loop case, the value stored in the loop state (obtained by gets0) must be

516 J. P. Pizani Flor and W. Swierstra

equal to the first output of evaluating mapAccumL-comb. With the comparison
function defined, we can finally completely express the relation we desire:

� mapAccumL-comb f (val m) xs |�s (sMapAccumL-comb (replicate mf)) γ
=* � loop f |�n (sLoop m mf) n (map (_:: γ) xs)

Proof of the Basic Relation. The proof of the basic convertibility relation
between mapAccumL-comb and loop proceeds by induction on the input vec-
tor xs. Due to the deliberate choice of semantics for both constructors involved,
and the choice of the right parameters for the application of each, a considerable
part of the proof is achieved by just the built-in reduction behaviour of the proof
assistant (Agda).

The only key lemma involved is shown below. Namely, the state-independence
principle is shown to hold for a whole vector, assuming that it holds for the body
circuit f.

state-independent-vec : ∀ (mfas mfbs : Vec (λs f) n) (p : state-independent f)
→ mapAccumL2 (transformF � f |�s2 γ) e mfas xs

≡ mapAccumL2 (transformF � f |�s2 γ) e mfbs xs

This lemma is useful because both left-hand side and right-hand side of the
convertibility relation can be transformed into applications of mapAccumL2 sim-
ply by reduction, but with different state vector parameters. Thus the lemma
is used to bring the sub-goals to a state where they can be closed by using the
induction hypothesis.

mapAccumL-comb-seq :
� mapAccumL-comb f (val m) xs |�s (sMapAccumL-comb (replicate mf)) γ

=* � loop f |�n (sLoop m mf) n (map (_:: γ) xs)
mapAccumL-comb-seq f mf m (x :: xs) γ p = g:m , g:ys where

m′ , mf′ , y = (transformF � f |�s2 γ) m mf x -- take one step
ih:m , ih:ys = mapAccumL-comb-seq f mf′ m′ xs γ p -- ind. hyp.
lemma = state-independent-vec f xs (replicate mf) (replicate mf′) p

g:m : p1 (p2 (� mapAccumL-comb f . . . |�s . . .)) ≡ gets0 (p1 (� loop f |�n . . .))
g:ys : p2 (p2 (� mapAccumL-comb f . . . |�s . . .)) ≡ p2 (� loop f |�n . . .)

g:m = (cong . . . lemma) 〈 trans 〉 ih:m
g:ys = cong2 . . . ((cong . . . lemma) 〈 trans 〉 ih:ys)

Convertibility of Derived Combinators. When building circuits using the derived
combinators (map, foldl-scanl, etc.), the convertibility between different (more or
less stateful) variants of such circuits rely on the convertibility between the
different variants of the combinators themselves.

Verified Timing Transformations in Synchronous Circuits with λπ -Ware 517

The basic convertibility principle shown above between mapAccumL-comb
and loop is the most general one, and can be directly applied to the derived com-
binators as well, as they are all just a specialized instance of mapAccumL-comb
or loop. However, for the derived combinators, some more specific properties are
useful.

With regards to the map combinators, for example, we wish that the vectors
produced by the combinational and sequential versions be equal, without any
regard for initial or final states. This can be succinctly expressed as:

snd (� map-comb f xs |�s units γ)
≡ snd (� map-seq f |�n units′ (map (_:: γ) xs))

Where units and units′ are simply the states (composed of units) that need to
be passed to the semantic function but are irrelevant for the computed vectors.

On the other hand, when comparing foldl-comb to foldl-seq, the intermediate
values produced in the output of foldl-seq are disregarded, and only the final
state matters.

fst (� foldl-comb f (val e) xs |�s m γ)
≡ fst (� foldl-seq f |�n (sFoldl e m) (map (_:: γ) xs))

Both of these properties (for map and for foldl) can simply be proven by appli-
cation of the general property shown above for mapAccumL-comb and loop. This
is because the definition of the derived combinators is just a partial application
of mapAccumL-comb and loop, along with projections.

5.2 Applications of the Combinational and Sequential Combinators

In this section we describe several variants of circuit families that compute matrix
multiplication, as a commonly used application of the aforementioned techniques.

The first design choice involved in this example application is how to represent
matrices, i.e., the choice of the matrix type. Traditionally in computing contexts,
matrices are mostly represented in two ways: row major (vector of rows) and
column major (vector of columns). As it turns out, both representations are
useful for our purposes, so we show both here:

RMat CMat : (r c : N) → U N
RMat r c = vec (vec N c) r
CMat r c = vec (vec N r) c

Here, RMat r c and CMat r c both represent matrices with r rows and c
columns, the difference being only whether they are row- or column-major. Going
further with the example, we need to define the basic ingredient of matrix mul-
tiplication: the dot product of two equally-sized vectors.

518 J. P. Pizani Flor and W. Swierstra

dp : λH (vec N n) → λH (vec N n) → λH N
dp xs ys = foldl-comb _:+:_ (val 0) (zipWith-comb _:*:_ xs ys)

The dot product is simply defined as element-wise multiplication of the vec-
tors and summing up the results. We can then use the dot product m times in
order to multiply a vector by a compatibly-sized matrix.

vec×mat-comb : λH (vec N n) → λH (CMat n m) → λH (vec N m)
vec×mat-comb v m = map-comb (dp v) m

Here an important detail resides: as the dot product is done for each col-
umn of the matrix, the matrix argument of vec×mat must be in column-major
representation. Also, here we start having choices: we may either have the com-
putation done combinationally as above, or sequentially as below:

vec×mat-seq : λH (vec N n) → λH (vec N n) → λH N
vec×mat-seq v m = map-seq (dp v) m

With the multi-step semantics in mind, we know that each of the m columns
of the matrix will be present on the circuit’s second input, one per clock cycle,
and that collecting the output values for m cycles gives the same vector of results
as the one from the combinational version.

For defining the multiplication of two matrices, we simply use vec×mat on
each row of the left matrix. If using vec×mat-comb, we obtain a matrix multi-
plication circuit with area proportional to r * c, whereas by using vec×mat-seq
the area is proportional to r * 1.

mat×mat-comb : λH (RMat n m) → λH (CMat m p) → λH (RMat n p)
mat×mat-comb mr mc = map-comb (flip vec×mat-comb mc) mr
mat×mat-seq : λH (RMat n m) → λH (vec N m) → λH (vec N n)
mat×mat-seq mr mc = map-comb (flip vec×mat-seq mc) mr

In the combinational version (mat×mat-comb), all the rows in the resulting
matrix are computed in parallel, with the column-positioned values inside each
row computed also in parallel. In the sequential version, at each clock cycle one
whole column is produced, with the row-positioned values inside each column
computed in parallel.

Matrix multiplication as defined here has two nested recursion blocks, and
thus four ways in which it could be sequentialized. Above we have shown two
possible such choices, and the other two can simply be obtained by swapping
map-comb for map-seq.

6 Discussion

6.1 Related Work

There is a rich tradition of using functional programming languages to model
and verify hardware circuits, Sheeran (2005) gives a good overview – we restrict

Verified Timing Transformations in Synchronous Circuits with λπ -Ware 519

ourselves to the most closely related languages here. Languages embedded in
Haskell, such as Lava and Wired, typically rely on automated theorem provers
and testing using QuickCheck for verification. In λπ-Ware, however, we can per-
form inductive verification of our circuits. Existing embeddings in most theorem
provers, such as Coquet (Braibant 2011) and Π - Ware (Pizani Flor et al. 2016),
have a more limited treatment of variable scoping and types. More recent work
by Choi et al. (2017) is higher level, but sacrifices the ability to be simulated
directly (using denotational semantics) in the theorem prover.

6.2 Future Work

Other Timing Transformations. While our language easily lets you explore possi-
ble designs, trading time and space, there are several alternative transformations,
such as pipelining that we have not yet tried to describe in this setting.

While we have a number of combinators for transforming between combina-
tional and sequential circuits, these are mostly aimed at linear, list-like data.
Even though these structures are the most prevalent in hardware design, we
would like to explore related timing transformations on tree-structured circuits.
To this end, it would be interesting to look into the formalization and verification
of flattening transformations, and of the work done in the field of nested data
parallelism.

Relaxed Unrolling Restriction. In Sect. 5.1 we mention that the proof of seman-
tics preservation for loop unrolling relies on the premise that the loop body is
state-independent, that is, it has the same input/output behaviour for any given
state. This premise can be relaxed somewhat, and proving that loop unrolling
still preserves semantics under this relaxed premise is (near-)future work.

The relaxed restriction on the body f of a loop to be unrolled is as follows:

state-input-independent : ∀ (c : λB Γ τ) → Set
state-input-independent c = fst (� c |�s sa γ) ≡ fst (� c |�s sa δ)

That is, the next state (fst projection) is equal even with evaluation taking
different input environments. This condition is necessary because when writing
the combinational version of a loop construct we must give each copy of f its
own initial state. As the desired initial state for each such copy must be known
at verification time, it cannot depend on input.

Using the definitions from Sect. 5.1 along with the relaxed hypotheses above,
we can show that not only total, but also partial unrolling preserves semantics
up to timing.

520 J. P. Pizani Flor and W. Swierstra

7 Conclusion

There are several advantages to be gained by embedding a hardware design
DSL in a host language with dependent types, such as Agda. Among these
advantages are the easy enforcement of some well-formedness characteristics of
circuits, the power given by the host’s type system to express object language
types and design constraints. The crucial advantage though, is the ability to have
modelling, simulation, synthesis and theorem proving in the same language.

By using the host language’s theorem-proving abilities, we are able not only
to show properties of individual circuits, but of (infinite) classes of circuits,
defined by using circuit generators. Particularly interesting is the ability to have
verified transformations, preserving some semantics.

The focus of this paper lies on timing-related transformations, but we also
recognize the promise of theorem proving for the formalization of other non-
functional aspects of circuit design, such as power consumption, error correction,
fault-tolerance and so forth. The formal study of all these aspects of circuit con-
struction and program construction could benefit from mechanized verification.

Acknowledgments. We would like to thank the very helpful feedback gathered
during the visit to Chalmers University of Technology, funded by COST Action
EUTypes CA15123. Especially valuable were the meetings and discussions with Mary
Sheeran, whose deep knowledge of the field oriented this work in its beginning stage.
Also, we are very thankful to the feedback given during our presentation on this topic
at the TFP2017 conference in Canterbury.

This work was supported by the Netherlands Organization for Scientific Research
(NWO) project on A Dependently Typed Language for Verified Hardware.

References

Atkey, R., Lindley, S., Yallop, J.: Unembedding domain-specific languages. In: Pro-
ceedings of the 2nd ACM SIGPLAN Symposium on Haskell, Haskell 2009, pp. 37–
48. ACM, New York (2009). https://doi.org/10.1145/1596638.1596644. ISBN 978-1-
60558-508-6

Axelsson, E., Claessen, K., Sheeran, M.: Wired: wire-aware circuit design. In: Borrione,
D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 5–19. Springer, Heidelberg
(2005). https://doi.org/10.1007/11560548_4

Baaij, C.P.R.: Digital circuits in CλaSH: functional specifications and type-directed
synthesis. info:eu-repo/semantics/doctoralThesis. University of Twente, Enschede,
January 2015. https://doi.org/10.3990/1.9789036538039

Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: hardware design in Haskell. ACM
SIGPLAN Not. 34(1), 174–184 (1999). https://doi.org/10.1145/291251.289440.
ISSN 03621340

Boulton, R.J., Gordon, A.D., Gordon, M.J.C., Harrison, J., Herbert, J., Van Tassel,
J.: Experience with embedding hardware description languages in HOL. In: TPCD,
vol. 10, pp. 129–156 (1992)

Brady, E., Mckinna, J., Hammond, K.: Constructing correct circuits: verification of
functional aspects of hardware specifications with dependent types. In: Trends in
Functional Programming 2007 (2007)

https://doi.org/10.1145/1596638.1596644
https://doi.org/10.1007/11560548_4
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.1145/291251.289440

Verified Timing Transformations in Synchronous Circuits with λπ -Ware 521

Braibant, T.: Coquet: a Coq library for verifying hardware. In: Jouannaud, J.-P., Shao,
Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 330–345. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25379-9_24

Braibant, T., Chlipala, A.: Formal verification of hardware synthesis. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 213–228. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8_14

Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., Arvind: Kami: a plat-
form for high-level parametric hardware specification and its modular verification.
Proc. ACM Program. Lang. 1(ICFP), 24:1–24:30 (2017). https://doi.org/10.1145/
3110268.. ISSN 2475-1421

Gill, A., Bull, T., Kimmell, G., Perrins, E., Komp, E., Werling, B.: Introducing Kansas
Lava. In: Morazán, M.T., Scholz, S.-B. (eds.) IFL 2009. LNCS, vol. 6041, pp. 18–35.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16478-1_2

Hanna, F.K., Daeche, N.: Dependent types and formal synthesis. Philos. Trans. Phys.
Sci. Eng. 339(1652), 121–135 (1992). http://www.jstor.org/stable/54016. ISSN
0962-8428

Melham, T.: Higher Order Logic and Hardware Verification. Cambridge Tracts in
Theoretical Computer Science, vol. 31. Cambridge University Press, Cambridge
(1993). https://doi.org/10.1017/CBO9780511569845. http://www.cs.ox.ac.uk/tom.
melham/pub/Melham-1993-HOL.html. ISBN 0-521-41718-X

Pizani Flor, J.P., Sijsling, Y., Swierstra, W.: π-ware: hardware description and veri-
fication in Agda. In: Uustalu, T. (ed.) 21th International Conference on Types for
Proofs and Programs (TYPES 2015). Leibniz International Proceedings in Informat-
ics (LIPIcs) (2016)

Sander, I., Jantsch, A.: System modeling and transformational design refinement in
ForSyDe [formal system design]. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 23(1), 17–32 (2004). https://doi.org/10.1109/TCAD.2003.819898. ISSN 0278-
0070

Sheeran, M.: Hardware design and functional programming: a perfect match
(2005). http://www.jucs.org/jucs_11_7/hardware_design_and_functional/jucs_
11_7_1135_1158_sheeran.pdf

Sheeran, M.: muFP, a language for VLSI design. In: Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming, pp. 104–112. ACM Press (1984).
https://doi.org/10.1145/800055.802026. ISBN 0897911423

Singh, S.: Designing reconfigurable systems in lava. In: Proceedings 17th Interna-
tional Conference on VLSI Design 2004, pp. 299–306 (2004). https://doi.org/10.
1109/ICVD.2004.1260941

https://doi.org/10.1007/978-3-642-25379-9_24
https://doi.org/10.1007/978-3-642-39799-8_14
https://doi.org/10.1145/3110268.
https://doi.org/10.1145/3110268.
https://doi.org/10.1007/978-3-642-16478-1_2
http://www.jstor.org/stable/54016
https://doi.org/10.1017/CBO9780511569845
http://www.cs.ox.ac.uk/tom.melham/pub/Melham-1993-HOL.html
http://www.cs.ox.ac.uk/tom.melham/pub/Melham-1993-HOL.html
https://doi.org/10.1109/TCAD.2003.819898
http://www.jucs.org/jucs_11_7/hardware_design_and_functional/jucs_11_7_1135_1158_sheeran.pdf
http://www.jucs.org/jucs_11_7/hardware_design_and_functional/jucs_11_7_1135_1158_sheeran.pdf
https://doi.org/10.1145/800055.802026
https://doi.org/10.1109/ICVD.2004.1260941
https://doi.org/10.1109/ICVD.2004.1260941

522 J. P. Pizani Flor and W. Swierstra

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Formal Equational Theory
for Call-By-Push-Value

Christine Rizkallah1(B), Dmitri Garbuzov2, and Steve Zdancewic2

1 University of New South Wales, Sydney, Australia
c.rizkallah@unsw.edu.au

2 University of Pennsylvania, Philadelphia, USA
{dmitri,stevez}@cis.upenn.edu

Abstract. Establishing that two programs are contextually equivalent
is hard, yet essential for reasoning about semantics preserving program
transformations such as compiler optimizations. We adapt Lassen’s nor-
mal form bisimulations technique to establish the soundness of equational
theories for both an untyped call-by-value λ-calculus and a variant of
Levy’s call-by-push-value language. We demonstrate that our equational
theory significantly simplifies the verification of optimizations.

1 Introduction

Establishing program equivalence is a well-known and long-studied problem [15].
Programmers informally think about equivalences when coding: For example, to
convince themselves that some refactoring doesn’t change the meaning of the
program. Tools such as compilers rely on program equivalences when optimizing
and transforming code.

Contextual equivalence is the gold standard of what it means for two (poten-
tially open) program terms M1 and M2 to be equal. Although the exact technical
definition varies from language to language, the intuition is that M1 is contextu-
ally equivalent to M2 if for every closing context C[−], C[M1] “behaves the same”
as C[M2]. Such contextual equivalences justify program optimizations where we
can replace a less-optimal program M1 by a better M2 in the program context
C[−], without affecting the intended behavior of the program.

While the literature is full of powerful and general techniques for establish-
ing program equivalences using pen-and-paper proofs, not many of these general
techniques have been mechanically verified (with some notable exceptions [4]).
Moreover, some of these techniques are difficult to apply in practice. For example,
complete methods, such as applicative bisimulation [1,2], environmental bisimu-
lation [17], and “closed-instances of uses” (CIU) techniques [13], typically require

C. Rizkallah—Work done while at University of Pennsylvania
This work is supported by NSF grant 1521539. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 523–541, 2018.
https://doi.org/10.1007/978-3-319-94821-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_31&domain=pdf

524 C. Rizkallah et al.

quantification over all closed function arguments or closing contexts, which sig-
nificantly complicates the proofs, especially in the presence of mutually recursive
function definitions.

Building on his earlier work [9], Lassen introduced the notion of eager nor-
mal form bisimulations [10], which is applicable to the call-by-value (CBV) λ-
calculus and yet avoids quantification over all arguments or contexts. Lassen’s
normal form bisimulation N is sound with respect to contextual equivalence
but it is not complete—this is the price to be paid for the easier-to-establish
equivalences. However, N is still useful for many equivalence proofs because the
relation includes reduction and is a congruence. Lassen defines an equational
theory for CBV that is included in N and hence, it is also sound. This approach
is appealing for formal verification because N is a simple co-inductive relation
defined in terms of the operational semantics—mathematical objects that are
relatively straightforward to work with in theorem provers.

Here, our aim is to use a similar technique to verify typical compiler opti-
mizations. We introduce a proof structure based on N and use it to establish the
correctness of suitable equational theories. Our development makes a key techni-
cal simplification compared to Lassen’s work [10]: it does not rely on establishing
that N is itself sound. Instead, we use a variant of N to prove that two related
terms co-terminate. We then directly prove that the equational theory is a con-
gruence, and is therefore sound—we explain this in precise detail below.

We demonstrate our development in two settings. First, we use the untyped
call-by-value (CBV) λ-calculus as a familiar vehicle for explaining the ideas in
a way that allows for comparison with other approaches. Next, we scale up the
development to the more complex setting of an untyped variant of Levy’s call-by-
push-value (CBPV) λ-calculus [12] that includes an explicit letrec construct—
this formalization is much more challenging and is our central contribution.

CBPV is a well-known formalism whose metatheory is well-behaved with
respect to many extensions. We choose this particular CBPV variant because
its features and semantics are closely related to the intermediate languages used
by modern compilers [6,7,14]. This makes it attractive for formal verification,
since the results can be made applicable to compiler intermediate representations
without much extra effort. Our CBPV equational theory is not complete but it
includes β-reduction, the operational semantics, and it is a congruence. We show
that it nevertheless trivializes verifying many typical compiler optimizations.

To summarize, we present sound equational theories for CBV (Sect. 2) and
for a “lower-level” CBPV calculus that includes mutually recursive definitions
(Sect. 3). Our CBPV theory makes it trivial to verify various standard compiler
optimizations (Sect. 4). All of our results are formalized [16] in Coq.

2 The Pure Untyped Call-by-Value λ-calculus

In this section, we first demonstrate our proof technique in the case of the
untyped call-by-value λ-calculus, which serves as a way to introduce the ideas
and as a model of how to proceed in more complex languages.

A Formal Equational Theory for Call-By-Push-Value 525

Fig. 1. Evaluation context closure and canonical forms

The set Term of λ-terms are variables (x, y, z), applications, and λ-
abstractions:

s, t ::= x | s t | λx. t

We identify terms up to α-equivalence. Variables and λ-abstractions are val-
ues V (represented by u and v) and applications are not. If s and t are terms
then s[x := v] is defined to be the result of substituting a value v for x in s via
capture-avoiding substitution. A term of the form (λx.s) t is called a β-redex ,
and has β-reduct s[x := t]. We say s β-reduces to t, written s →β t, if a sub-
term of s is a β-redex such that t is the result of replacing this subterm by its
β-reduct. We define s ∼β t to be the least equivalence relation containing →β .
When s ∼β t holds, we say s and t are β-equivalent .

Given s and t, these rules define the small step operational semantics s −→ t:

(λx. t) v −→ t[x := v]
s1 −→ s2

s1 t −→ s2 t

t1 −→ t2

v t1 −→ v t2

We prove that, as expected, values do not step and that the operational semantics
is deterministic. A term t is in normal form, written nf t, iff � ∃t′ : t −→ t′.

2.1 Progress and Canonical Forms

The bisimulation relation that we will construct relies on relating programs in
normal form. We therefore define the predicate canon that holds for terms that
are “canonical” in the sense that they are either values or stuck computations.
To identify stuck computations, the intuitive idea is to identify terms whose
evaluation is blocked because a free variable is in active position.

The set of evaluation contexts for λ-calculus is typically given by the following
grammar, where [] is a “hole” indicating where the next evaluation step will occur:

E ::= [] | E t | v E

For formalization purposes, we will need to work with terms t of the form E[s],
where s (typically a redex) replaces the hole in E. However, rather than reifying
evaluation contexts as a datatype and defining corresponding “plugging” and
“unique decomposition” operations, we find it more convenient to work with a
relational definition of the same concepts.

The higher-order predicate E , whose type is (Term → P) → Term → P

(where P is the type of propositions), helps us identify the evaluation context of
terms that satisfy a certain property. The E predicate is defined inductively, as
shown in Fig. 1. It is parameterized by a proposition P and its structure mirrors

526 C. Rizkallah et al.

Fig. 2. Linearly compatible closure P of a (binary) relation R.

that of the grammar of evaluation contexts. Intuitively, the predicate E P t holds
if the term t is equal to a term of the form E[s] and P s holds. We call E P the
evaluation context closure of the predicate P .

Using E , it is easy to define stuck computations as the evaluation context
closure of an appropriate predicate. The canonical forms predicate canon is
defined to hold for values or stuck computations as shown in Fig. 1. Note that
the expression λs. ∃x v : s = x v that appears in the third rule is a meta-level
abstraction: it is a proposition that holds of s when there exists some x and v
such that s is of the form x v (i.e. s is a variable applied to some value).

We prove that canon is the predicate we want, by showing that it captures
(all and only) terms that are in normal form. More formally, we show that for
any term t, nf t ↔ canon t. The proof directly follows from the progress theorem
which states that for any term t, either canon t holds or ∃t′ : t −→ t′ holds.

2.2 Contextual Equivalence

Contextual equivalence is the standard way of defining program equality. Two
programs s and t are contextually equivalent if C[s] and C[t] either both termi-
nate or both diverge for every closing context C[−]. Note that for the untyped
λ-calculus in which divergence is the only effect, it is not necessary to explicitly
check that they always compute the same result. The intuition is that if there is
any situation where they can return different results, one can craft a context in
which one terminates and the other diverges. Hence from co-termination in any
context one can conclude that they can always be used interchangeably [15].

We define contextual equivalence for CBV. To start, we define a predicate P
that lifts a binary relation R on terms into a relation P R linearly compatible
with the λ-calculus syntax, as shown in Figure 2. A relation R that is closed
under such a lifting is called linearly compatible i.e., if ∀s t : P R s t → R s t.

We define what it means for terms s and t to appear in the same context
C[−] by taking C s t s′ t′ ↔ P(λu v. u = s ∧ v = t) s′ t′. We call (C s t) the
contextual closure of s and t. Intuitively, C s t s′ t′ holds exactly when there
exists a context C[−] such that s′ = C[s] and t′ = C[t]. Note that quantifying
over all such s′ and t′ precisely captures the idea of quantifying over all contexts.

A term s terminates at t, written s ⇓ t, if s −→∗ t ∧ nf t. Two terms s and t
co-terminate, written co-terminate s t, if (∃ s′ : s ⇓ s′) ↔ (∃ t′ : t ⇓ t′). Two terms
s and t are contextually equivalent when for all contexts C[−], C[s] halts if and
only if C[t] does too. More formally, terms s and t are contextually equivalent,
written s ≡ t, if ∀s′ t′ : C s t s′ t′ → co-terminate s′ t′. It will be useful to have
a separate notion of when a relation R implies co-termination: A relation R is
adequate if ∀a b : R a b → co-terminate a b.

A Formal Equational Theory for Call-By-Push-Value 527

Fig. 3. Equivalence closure of a relation R

Fig. 4. Alternative formulation of compatible closure Ṗ.

2.3 Equational Theory

With these definitions in mind, we can now define what it means for a program
transformation, or more generally for an arbitrary relation, to be sound with
respect to contextual equivalence. A term transformation function f : Term →
Term is sound if ∀ t : t ≡ (f t). A relation R is sound if ∀s t : R s t → s ≡ t.

To reach our goal of easily verifying various program optimizations, which
are often reduction or β-reduction in context, we next develop a sound equa-
tional theory. We want an equational theory that is sound (with respect to
contextual equivalence) and that includes the operational semantics. Moreover,
the equational theory should be a congruence relation (i.e. a linearly compati-
ble equivalence relation). Given an equational theory that is congruent and that
includes β-reduction, we can conclude that it also includes β-equivalence. Hence,
even though it is not complete, it still relates a sufficient number of terms.

Our equational theory simplifies verifying optimizations. We just need to
prove that the optimization is included in the equational theory (rather than
directly in contextual equivalence). Such a proof can be obtained by verifying
and contextually lifting simple transformations—Sect. 4 gives several examples.

We intuitively want our equational theory to be the congruence closure of
the operational step reduction. This way the theory includes the semantics and
is a congruence. For terms s and t, a single-step reduction, written s⇒ t, holds
if P(−→) s t. The equivalence closure of a relation R, defined using the rules
in Fig. 3, is the reflexive, symmetric, and transitive closure over R. The equiv-
alence closure of the single-step reduction relation defines the equational theory
for λ-calculus. Two terms s and t are equal according to the equational the-
ory for λ-calculus, written s⇔ t, if Eq (⇒) s t. It is straightforward to see that
our equational theory includes the operational semantics. Proving soundness is
significantly more involved and is explained in the next section.

Although the definition of P given in Fig. 2 is a good way to understand the
concept of closing a relation under contexts, working with it directly in proofs can
be cumbersome. However, because we only care about the equivalence closure of
single-step reduction, we can refactor the definitions to build in reflexivity and
a bit of transitivity in a way that simplifies the proofs. The resulting variation
of P, called Ṗ, is shown in Fig. 4. The equivalence closure of Ṗ is the same as
that of P (i.e., ∀R s t : Eq (P R) s t ↔ Eq (Ṗ R) s t), but we no longer need to

528 C. Rizkallah et al.

deal with the nested proof structure needed for the reflexive-transitive closure of
P—instead we can work directly by induction on Ṗ, which is already reflexive
and transitive. We prove that both versions yield the same equational theory.

2.4 Soundness of the Equational Theory for CBV

Recall that proving that a relation R is sound involves proving that terms related
by R are contextually equivalent. This is done by proving that R is a linearly
compatible relation and by proving that terms related by R co-terminate. Lassen
defines a normal form bisimulation relation and uses it to assist in proving sound-
ness of an equational theory for λ-calculus. Similar to Lassen, we also make use
of normal form bisimulations in our proof technique. Our proof structure, how-
ever, is different than Lassen’s. We prove that our equational theory is linearly
compatible directly rather than proving that the normal form bisimulation is
linearly compatible—we expand on this comparison at the end of this section.
This proof follows directly due to the way we define the equational theory, and
is, hence, simpler to extend to the more complex call-by-push-value language.

Normal Form Bisimulation. A normal form bisimulation is a bisimulation
between executions of terms that either terminate at related normal forms, or
diverge. Since program executions can be infinite, normal form bisimulation is
defined co-inductively. We first define N s, which defines one step in the bisimu-
lation, and then use it to define our normal form bisimulation N .

Fig. 5. Normal form bisimulation steps

Figure 5 defines the normal form bisimulation step N s of a relation R. The
normal form bisimulation N is the greatest relation such that if N s t then there
exists a relation R such that ∀s′ t′ : R s′ t′ → N s′ t′ and N s R s t.

The co-induction lemma for N intuitively states that to establish N , we need
to find a bisimulation relation R that is preserved by N s. We prove that N is
an equivalence, as we need this in our soundness proof.

Theorem 1. N is adequate. ∀ s t : N s t → co-terminate s t.

Congruence of Equational Theory. A relation is a congruence if it is a lin-
early compatible equivalence. By definition, our equational theory is an equiva-
lence.

A Formal Equational Theory for Call-By-Push-Value 529

Theorem 2. The relation ⇔ is linearly compatible.

Proof. By induction on P. The proof heavily relies on the way P is defined. �

Soundness of the Equational Theory for CBV

Theorem 3. N includes reduction. ∀ s t : s⇒ t → N s t.

Theorem 4. N includes the equational theory. ∀ s t : s⇔ t → N s t.

Theorem 5. The equational theory is sound. ∀ s t : s⇔ t → s ≡ t.

Proof. Given s⇔ t, we want to show that ∀s′ t′ : C s t s′ t′ → co-terminate s′ t′.
For any terms s′ and t′ such that C s t s′ t′, we know P(λu v. u = s ∧ v = t) s′ t′

by definition of C. From s⇔ t and P(λu v. u = s ∧ v = t) s′ t′ we can infer
P(⇔) s′ t′. Since ⇔ is linearly compatible (Theorem 2) we know s′ ⇔ t′. Since
N includes ⇔ (Theorem 4) it follows that N s′ t′, and by adequacy (Theorem 1),
we can conclude co-terminate s′ t′. �

Comparison. Similar to Lassen we make use of N but the structure of our
soundness proof differs. Lassen defines N and proves that it is sound. He proves
that his equational theory is included in N and is, therefore, also sound.

We show that our equational theory is sound by directly showing it is linearly
compatible and only using N to assist in proving that the equational theory is
adequate. In fact, our CBV version of N is adequate yet unsound for contextual
equivalence. It relates (λy.y)(xλz.z) and (λy.Ω)(xλz.z) which are both stuck on
x (as N s’s (∗) rule allows the evaluation contexts on each side to be unrelated),
and the context (λx.[−])λu.u distinguishes them. Our proof method does not
rely on N being sound and this simpler definition suffices for proving adequacy.

We decided to take this approach because the way we define our equational
theory makes proving that it is a linearly compatible relation entirely straight-
forward. The definition of N is designed to ease the adequacy proof.

3 A Call-by-Push-Value Language

We show how the same essential proof structure can be applied to a more complex
language to establish the soundness of its equational theory. We choose a variant
of Levy’s call-by-push-value (CBPV) language as our target because it is a “low-
level” language with a rich equational theory. We redefine and reuse some of the
notation that was introduced for CBV in the context of CBPV.

3.1 Syntax

The top of Fig. 6 shows the syntax for our variant of Levy’s call-by-push-value
calculus (CBPV) [12], which serves as the basis for our definitions. CBPV is a

530 C. Rizkallah et al.

Fig. 6. Syntax, operational semantics, and wellformedness for the CBPV language.

somewhat lower level and more structured functional language than the ordi-
nary λ-calculus. The key feature is that it distinguishes values from compu-
tations. Values include variables x , natural numbers n, and suspended com-
putations thunkM , whereas computations include: forceV , which runs a sus-
pended thunk; mutually recursive definitions, letrec xi = Mi

i
inM ; monadically-

structured sequences of computations, written M to x inN , which runs M to pro-
duce a computation of the form prdV and then binds V as x in N ; λ-abstraction
λx .M and application V ·M (V is the argument and M is the function); binary
arithmetic operations V1 ⊕ V2, where ⊕ is addition, subtraction, or less-than;
and finally, conditional statements if0 V M1 M2 that run M1 if V is 0, otherwise,
run M2.

The most difficult aspect of formalizing this language is dealing with the
letrec xi = Mi

i
inM form. The intended semantics of this term is that each of

the xi’s is bound in all of the Mi ’s and in M . As a consequence, we have to define
a multiway substitution operation, which we denote {Vi/xi

i }M . It means the

A Formal Equational Theory for Call-By-Push-Value 531

simultaneous substitution of each Vi for xi in M . Our Coq code uses de Bruijn
indices, but we present the language with named variables for better readability.

3.2 Wellformedness

In Levy’s presentation, the value and computation terms are separated syn-
tactically, with distinct grammars for each. In our Coq formulation, we have
found it simpler to combine both syntaxes into one recursive definition, which
avoids combining nested recursion (for the lists of bindings found in letrec) with
mutual recursion. As a consequence, we separately define (mutually recursive)
wellformedness predicates that distinguish values from computations; we say
values have sort V and computations have sort C.

A term M is wellformed when there exists a sort S such that wfS M according
to the rules in Fig. 6. Thanks to this separation, many of our definitions later
on are adapted to account for an extra condition parameter in order to only
account for wellformed terms. As a matter of notation, we use the metavariable
V to mean values and M ,M ′,N , etc. to mean computations.

In another departure from Levy’s original presentation of CBPV, our version
is untyped. Because most of our results pertain to the dynamic semantics of the
language, we have eschewed types here; however, incorporating a type system
should be a fairly straightforward adaptation of our formalism. In particular, the
parameters necessary to account for wellformedness can simply be instantiated
with a typing predicate instead.

3.3 Structural Operational Semantics

The value-computation distinction is a key feature of the CBPV design: its
evaluation order is completely determined thanks to restrictions that ensure
there is never a choice between a substitution step and a congruence rule. The
middle portion of Fig. 6 gives the details of the operational semantics, whose
small-step evaluation relation is denoted by M −→ M ′.

Once again, the real challenge for our formalization is how to deal with letrec.
The usual approach is to allow the structural operational semantics to unroll a
letrec as a step of computation, which, in our setting would amount to using the

following rule: letrec xi = Mi
i
inM −→ { thunk (letrec xi = Mi

i
inMi)/xi

i

}M .
Note that because the variables xi range over values but the right-hand sides of
the letrec bindings are computations Mi , we have to wrap each computation in a
thunk during the unrolling. However, rather than using this rule directly, we have
opted to construct the operational semantics in such a way that letrec unrolling
doesn’t “count” as an operational step. Therefore the operational semantics rules
in Fig. 6 rely on an auxiliary relation � that unrolls a letrec to expose either a
prd or a λ term. The operational semantics rules are otherwise straightforward
and consist of three “real” steps of computation: forcing a thunk, sequencing,
and β-substitution, and three congruence rules that search for the next redex.
Our choice to handle letrec in this way is not strictly necessary (our techniques

532 C. Rizkallah et al.

would apply with the “standard” interpretation above); however, we prefer this
formulation, despite its slight cost in complexity, because we anticipate that
treating letrec as having no runtime cost is more consistent with the semantics
of low-level compiler intermediate representations [7].

Given the definitions of the wellformedness relation and operational seman-
tics, it is easy to establish some basic facts. A term M is in normal form, written
nf M , if � ∃M ′ : M −→ M ′. We prove that the step relation is deterministic and
hence each term has at most one normal form:

– For terms M , N , and N ′, if M −→ N and M −→ N ′, then N = N ′.
– For terms M , N , and N ′, if M −→∗ N , M −→∗ N ′, nf N , and nf N ′, then
N = N ′.

The step relation also preserves wellformedness (note that values do not step):

– For terms M and M ′, if wfC M and M −→ M ′, then wfC M ′.
– For terms M and M ′, if wfC M and M −→∗ M ′, then wfC M ′.

3.4 Progress, and Canonical and Error Forms

Similar to CBV, the bisimulation relation for CBPV also relies on relating terms
in normal form However, for CBPV there are also certain erroneous terms, that
are not considered to be “good” CBPV programs and that cannot step. In this
pure setting, such programs could be ruled out by using a type system, but
similar issues arise if we extended the language with nontrivial constants and
partial operations (such as division or array lookup). We therefore define two
predicates error and canon, which partition normal terms into two sets: those
that we consider “erroneous” and those that are “canonical” in the sense that
they are good CBPV terms that are nevertheless stuck. Canonical terms arise
because we want to be able to relate open terms. For example, (force x) to x ′ inM
cannot step because it is blocked on trying to evaluate the term force x .

To define these predicates, the intuitive idea would be to identify terms whose
evaluation is blocked because the next step of computation must force a vari-
able (or, perform an ill-typed action). Setting aside letrec for the moment, the
evaluation contexts for our CBPV language are given by the following grammar:

E ::= [] | E to x inN | V ·E
We want terms of the form E [force x] to be canonical, and, similarly, terms
like E [(λx .M) to x ′ inN] to be erroneous. However, as our operational semantics
treats letrec as transparent, we must account for unrolling of recursive definitions.

We introduce a higher-order predicate E whose type is (Term → P) → Term
→ P (similar to the one we defined for the CBV λ-calculus). E is defined induc-
tively, as shown in Fig. 7. It is parameterized by a proposition P and its structure
mirrors that of the grammar of evaluation contexts, except that it also builds in
a case for unrolling letrec. Intuitively, the predicate E P M holds if the term M
unrolls to a term of the form E[M ′] and P (M ′) holds. We call E P the evaluation
context closure of the predicate P .

A Formal Equational Theory for Call-By-Push-Value 533

Fig. 7. Evaluation context closure, and canonical and error forms

Using E , it is straightforward to define error M as the evaluation context clo-
sure of a predicate errorP that picks out the ill-formed terms. Similarly, canonM
instantiates E with the predicate forcevar, which holds of a term M exactly when
M is force x for some variable x . We prove that these predicates form a partition
of wellformed computations (note that values do not step):

– For a term M , if wfC M and canon M , then nf M ∧ ¬error M .
– For a term M , if wfC M and error M , then nf M ∧ ¬canon M .
– For a term M , if wfC M , then canon M or error M or ∃N : M −→ N .

3.5 Contextual Equivalence

Recall that contextual equivalence equates two terms if their behavior is the
same in all program contexts. In the context of CBPV, we are only interested
in reasoning about wellformed terms. We therefore define a conditional linearly
compatible closure that restricts the context to that of terms which respect a
condition. The condition is later used to restrict the context to wellformed terms.

We define conditional linearly compatible closure, P, similar to that of CBV
but with an additional condition P . It lifts a relation R into a relation P R P lin-
early compatible with the CBPV syntax and that relates terms for which P holds
(defined in Appendix A). A relation that is closed under such lifting for well-
formed terms is called wellformed linearly compatible. Formally, a relation R on
terms is wellformed linearly compatible if ∀M N : P R (λx. ∃ S : wfS x)M N →
RM N . The conditional contextual closure C is defined as follows:

C P M N M ′ N ′ ↔ P(λu v. u = M ∧ v = N) P M ′ N ′

Intuitively, C P M N M ′ N ′ holds exactly when there exists a context C[−] such
that M ′ = C[M], N ′ = C[N], P (C[M]), and P (C[N]). Instantiating P with
(λx. ∃ S : wfS x) and quantifying over all M ′ and N ′ captures the idea of
quantifying over all contexts for wellformed terms.

534 C. Rizkallah et al.

Fig. 8. Conditional equivalence closure of a relation R over a predicate P

A term M terminates to N , written M ⇓ N , if M −→∗ N ∧ nf N . Two terms
M and N co-terminate, written co-terminate M N , if (∃M ′ : M ⇓ M ′) ↔ (∃N ′ :
N ⇓ N ′). Two terms M and N are contextually equivalent, written M ≡ N , if
∀M ′ N ′ : C (λx. ∃ S : wfS x)M N M ′ N ′ → co-terminate M ′ N ′. The definitions
of soundness and adequacy are identical to the ones in Sect. 2 except that they
operate on CBPV terms.

3.6 Equational Theory

The equational theory for CBPV is defined in a similar fashion to that for CBV.
Once again, we are interested in a theory that is sound and that includes the
operational semantics. As mentioned earlier, also ensuring that the equational
theory is a congruence relation results in a theory that includes β-equivalence.
Once again all our definitions in the CBPV context are parameterized with a
condition, which is in turn used to limit our scope to wellformed terms.

A relation R is conditionally reflexive on a predicate P if ∀x : P x → R xx.
A relation R is conditionally symmetric on a predicate P if ∀x y : P x →
P y → R xy → R y x. A relation R is conditionally transitive on a predicate
P if ∀x y z : P x → P y → P z → R xy → R y z → R xz. A relation R is a con-
ditional equivalence on a predicate P if it is conditionally reflexive, conditionally
symmetric, and conditionally transitive on P .

Our CBPV operational semantics does not explicitly unroll letrec as a step of
computation. Nevertheless, we would like our equational theory to equate letrec
terms to their unrolled version. Therefore, we first define a reduction relation.

Definition 1. Given two terms M and N , the reduction relation M −̇→N is
defined using the following two rules:

M −→ N
M −̇→N

letrec xi = Mi
i
inM −̇→{ thunk (letrec xi = Mi

i
inMi)/xi

i

}M
Definition 2. For wellformed terms M and N , the parallel reduction relation,
written M ⇒N , holds if P(−̇→)M N .

The conditional equivalence closure of a relation R over a predicate P is the
reflexive, symmetric, and transitive closure of R where P holds. It is defined using
the rules in Fig. 8 where the second rule combines symmetry and transitivity.

Lemma 1. For any two elements x and y related by the conditional equivalence
closure of a relation R on P , P x holds and P y holds.

A Formal Equational Theory for Call-By-Push-Value 535

Lemma 2. Given two relations R and R′, and given a predicate P , if ∀x′ y′ :
P x′ → P y′ → R x′ y′ → R′ x′ y′ and R′ is a conditional equivalence on P , then
for any two elements x and y related using the conditional equivalence closure
of R on P , R′ x y holds.

Two terms M and N are equal according to the equational theory for CBPV,
written M ⇔S N , if Eq (⇒)wfS M N . Once again, it is straightforward to see
that our equational theory includes the operational semantics. We present the
soundness proof of the equational theory for CBPV in the next section.

3.7 Soundness of the Equational Theory for CBPV

The soundness proof of the equational theory for CBPV follows the same struc-
ture as that for CBV. The proof development is restricted to wellformed terms.

Normal Form Bisimulation. Similar to CBV, N s defines one step in the
bisimulation for CBPV and is used to co-inductively define our bisimulation N
for CBPV. One difference to the CBV definition is that N also takes a sort as
input and relates two terms at that sort. Moreover, the definition relies on EC ,
which lifts a binary relation R across two terms and ensures that they share an
evaluation context up to R. Namely, EC RM N M ′ N ′ holds if RM ′ N ′ and if
M ′ N ′ are evaluation contexts over M and N , respectively.

Figure 9 defines the normal form bisimulation step N s of a relation R (that
given a sort relates terms). The normal form bisimulation N is the greatest
relation such that if N S M N then there exists a relation R such that ∀S′ M ′ N ′ :
R S′ M ′ N ′ → N S′ M ′ N ′ and N s R S M N .

Theorem 6. N is a conditional equivalence on wellformed terms.

Congruence of Equational Theory. A relation is called a congruence if it is
both an equivalence over wellformed terms and wellformed linearly compatible.
By definition, our equational theory is an equivalence over wellformed terms.

Theorem 7. The relation (λM N : ∃S : M ⇔S N) is wellformed linearly com-
patible.

Soundness of Equational Theory for CBPV

Theorem 8. N includes parallel reduction

∀S M N : wfS M → wfS N → M ⇒N → N S M N

Theorem 9. N includes the equational theory

∀S M N : M ⇔S N → N S M N

Proof. Follows directly from Lemma 2 along with Theorems 6 and 8. �

536 C. Rizkallah et al.

Fig. 9. Normal form bisimulation steps

Theorem 10. N is adequate

∀S M N : wfS M → wfS N → N S M N → co-terminate M N

We only prove and rely on the adequacy and equivalence of N . Although unnec-
essary, we suspect our CBPV N is a congruence, thus, is sound. Unlike CBV, N
here uses EC which, unlike E , only relates terms that share an evaluation context.

Theorem 11. The equational theory is sound. ∀S M N : M ⇔S N → M ≡ N .

Proof. Given M ⇔S N , we want to show

∀M ′ N ′ : C (λx. ∃ S : wfS x)M N M ′ N ′ → co-terminate M ′ N ′.

For any terms M ′ and N ′ such that C (λx. ∃ S : wfS x)M N M ′ N ′, we know
P(λu v. u = M ∧ v = N) (λx. ∃ S : wfS x) M ′ N ′ by definition of C. From
M ⇔S N and P(λu v. u = M ∧ v = N) (λx. ∃ S : wfS x) M ′ N ′ we can
infer P (λM N : ∃S : M ⇔S N) (λx. ∃ S : wfS x) M ′ N ′. Since (λM N :
∃S : M ⇔S N) is linearly compatible (Theorem 7) we know M ′ ⇔S′ N ′ for some
sort S’. From Lemma 1 we know wfS′ M ′ and wfS′ N ′. Since N includes the
equational theory (Theorem 9) it follows that N S′ M ′ N ′. Since N is adequate
(Theorem 10) we conclude that co-terminate M ′ N ′. �

A Formal Equational Theory for Call-By-Push-Value 537

4 Verifying Optimizations Using Our Equational Theory

Compilers rely on program equivalences when optimizing and transforming pro-
grams. In the context of verified compilation, as found in the CompCert [11]
and CakeML [8] projects, formal verification of particular program equivalences
is crucial: the correctness of classic optimizations like constant folding, code
inlining, loop unrolling, etc., hinges on such proofs. Therefore, techniques that
facilitate such machine-checked proofs have the potential for a broad impact.

We demonstrate how our CBPV equational theory makes it trivial to verify
many typical compiler optimizations and indicate which imperative optimiza-
tions correspond to our results.

Connection to Compilers for Imperative Languages. In separate work [7],
we prove an equivalence between our functional CBPV language and control flow
graphs (CFG), which many compilers for imperative languages use to represent
low-level programs. Control flow graphs are suited to program analysis and opti-
mizations. However, formalizing the behavior and metatheory of CFG programs
is non-trivial: CFG programs don’t compose well, their semantics depends on
auxiliary state, and, as a consequence, they do not enjoy a simple equational
theory that can be used for reasoning about the correctness of program trans-
formations. The equational theory developed in this paper can also be used to
reason about CFG optimizations.

Optimizations. Figure 10 summarizes various desirable CBPV compiler opti-
mizations that are easily proven sound using our equational theory by term
rewriting. We give a short C description of the optimizations before explaining
how we verified them in Coq.

Fig. 10. CBPV equations and corresponding imperative optimizations

Block merging “direct jump case”: merges two blocks of the control-flow-graph if
the first is the unique predecessor of the second and jumps directly.

538 C. Rizkallah et al.

Block merging “phi case”: replaces functions applied to arguments with their
result (does one step of β-reduction). At the CFG level, this optimization cor-
responds to eliminating a jump to a block containing a “phi” node.

Move elimination: eliminates a move by substituting the target register’s value.

Function inlining: replaces function calls in the program with the bodies of
the called functions. Note that the function inlining CBPV equation is just an
instance of the block merging “phi case” equation.

Dead branch elimination: removes dead branches in conditional statements.

Branch elimination: replaces conditional statements that have identical branches
with the code of one of the branches. Unlike the three previous optimizations,
this one does not follow directly from one step in the operational semantics.
However, it still falls in our equational theory and it was easy to verify it using
an additional case analysis on n in the proof.

Proof Technique. We define a function mk-cmp that takes an optimization
function f : Term → Term and a program M and returns an optimized program
M ′ where the optimization function f has been applied recursively throughout
the program (first on all subprograms then again recursively on the result). The
equations in Fig. 10 are examples of such functions f . Given the term on the
left-hand side of the equation as input, f returns the right-hand side; given any
other term, f acts as the identity. Applying mk-cmp to these functions applies
them throughout the program repeatedly and results in the actual optimizations
that we verify.

We first prove two general theorems about mk-cmp, one about preserving
wellformedness and the other about preserving soundness.

Theorem 12. mk-cmp preserves wellformedness

∀f S M : (∀S′ N : wfS′ N → wfS′ (f N)) →
wfS M → wfS (mk-cmp f M)

This theorem intuitively states that if f preserves wellformedness then so does
mk-cmp f .

Theorem 13. mk-cmp preserves soundness

∀f S M : (∀S′ N : wfS′ N → wfS′ (f N)) →
(∀S′ N : wfS′ N → N ≡ (f N)) →
wfS M → M ≡ (mk-cmp f M)

This theorem states that if f preserves wellformedness and is sound then
mk-cmp f is also sound.

A Formal Equational Theory for Call-By-Push-Value 539

Corollary 1. mk-cmp preserves soundness using the CBPV equational theory

∀f S M : (∀S′ N : wfS′ N → wfS′ (f N)) →
(∀S′ N : wfS′ N → N ⇔S′ (f N)) →
wfS M → M ≡ (mk-cmp f M)

This corollary states that if f preserves wellformedness and is included in the
CBPV equational theory, then mk-cmp f is sound. This corollary follows directly
from Theorem 13 along with the fact that the equational theory is sound
(Theorem 11).

The proof structure for the optimizations mk-cmp f , where f is any of the
eight optimizations described in Fig. 10, proceeds as follows:
First, we prove that f preserves wellformedness:

∀S M : wfS M → wfS (f M).

Then, we prove that the equational theory includes f :

∀S M : wfS M → M ⇔S (f M).

Finally, using the mk-cmp corollary (Corollary 1) along with these results we can
conclude that the optimization is correct:

∀S M : wfS M → M ≡ (mk-cmp f M).

Our CBPV equational theory made it simple to prove all these optimizations
correct in Coq with a minimal amount of effort. This demonstrates the power of
our approach in reducing the cost of verifying compiler optimizations. The same
approach will similarly facilitate reasoning about more complex optimizations.

5 Conclusion and Future Work

We developed a sound equational theory for a variant of Levy’s low-level CBPV
language and showed how it makes verifying several typical optimizations trivial.
For the sake of explaining and comparing our proof method, we also applied it to
the pure untyped CBV λ-calculus. Similar to prior work on proving equivalences
using N we did not target completeness (w.r.t contextual equivalence). We rather
focused on sound reasoning techniques that are ideal for verified compilers.

The adequacy of reduction, that we rely on in our soundness proof, can
alternatively be derived from the Standardization Theorem for λ-calculus [5,18],
which states that there is a “standard” reduction sequence for any multi-step
reduction [3]. Takahashi gave a simple proof of the Standardization Theorem
for call-by-name [18] and Crary adapted and formalized her proof for call-by-
value [5]. We plan to investigate whether adapting and scaling this proof method
to our CBPV language, which allows mutual recursion, provides a simpler proof
than using N .

540 C. Rizkallah et al.

A Appendix: Definition of P for CBPV

Fig. 11. Rules defining conditional compatible closure P of a (binary) relation R and
a (unary) predicate P.

A Formal Equational Theory for Call-By-Push-Value 541

References

1. Abramsky, S.: The lazy λ- calculus. In: Research Topics in Functional Program-
ming, pp. 65–116. Addison Wesley (1990)

2. Abramsky, S., Ong, C.H.L.: Full abstraction in the lazy lambda calculus. Inf. Com-
put. 105(2), 159–267 (1993)

3. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. Studies in Logic
and the Foundations of Mathematics. Elsevier Science, New York (2013)

4. Biernacki, D., Lenglet, S., Polesiuk, P.: Proving soundness of extensional normal-
form bisimilarities. In: Mathematical Foundations of Program Semantics (MFPS).
Electronic Notes in Theoretical Computer Science (2017)

5. Crary, K.: A simple proof of call-by-value standardization. Technical report CMU-
CS-09-137, Carnegie Mellon University (2009). https://www.cs.cmu.edu/~crary/
papers/2009/standard.pdf

6. Downen, P., Maurer, L., Ariola, Z.M., Jones, S.P.: Sequent calculus as a compiler
intermediate language. In: Proceedings of the Sixth ACM SIGPLAN International
Conference on Functional Programming (ICFP), pp. 74–88 (2016)

7. Garbuzov, D., Mansky, W., Rizkallah, C., Zdancewic, S.: Structural operational
semantics for control flow graph machines. CoRR abs/1805.05400 (2018). http://
arxiv.org/abs/1805.05400

8. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: Cakeml: a verified imple-
mentation of ML. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2014, pp. 179–191. ACM,
New York (2014). https://doi.org/10.1145/2535838.2535841, http://doi.acm.org/
10.1145/2535838.2535841

9. Lassen, S.B.: Bisimulation in untyped lambda calculus: Böhm trees and bisimula-
tion up to context. Electron. Notes Theor. Comput. Sci. 20, 346–374 (1999)

10. Lassen, S.B.: Eager normal form bisimulation. In: 20th Annual IEEE Symposium
on Logic in Computer Science (LICS 2005), pp. 345–354 (2005)

11. Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363–
446 (2009). https://doi.org/10.1007/s10817-009-9155-4

12. Levy, P.B.: Call-by-push-value: a subsuming paradigm. In: Girard, J.-Y. (ed.)
TLCA 1999. LNCS, vol. 1581, pp. 228–243. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48959-2_17

13. Mason, I., Talcott, C.: Equivalence in functional languages with effects. J. Funct.
Program. 1(3), 287–327 (1991)

14. Maurer, L., Downen, P., Ariola, Z.M., Peyton Jones, S.: Compiling without contin-
uations. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 482–494. ACM (2017)

15. Morris, J.H.: Lambda calculus models of programming languages. Ph.D. thesis,
Massachusets Institute of Technology (1968)

16. Rizkallah, C., Garbuzov, D., Zdancewic, S.: Accompanying Coq formaliza-
tion (2018). http://www.cse.unsw.edu.au/~crizkallah/publications/equational_
theory_cbpv.tar.gz

17. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. In: 22nd Annual IEEE Symposium on Logic in Computer Science,
LICS 2007, pp. 293–302. IEEE (2007)

18. Takahashi, M.: Parallel reductions in lambda-calculus. Inf. Comput. 118(1), 120–
127 (1995). https://doi.org/10.1006/inco.1995.1057

https://www.cs.cmu.edu/~crary/papers/2009/standard.pdf
https://www.cs.cmu.edu/~crary/papers/2009/standard.pdf
http://arxiv.org/abs/1805.05400
http://arxiv.org/abs/1805.05400
https://doi.org/10.1145/2535838.2535841
http://doi.acm.org/10.1145/2535838.2535841
http://doi.acm.org/10.1145/2535838.2535841
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
http://www.cse.unsw.edu.au/~crizkallah/publications/equational_theory_cbpv.tar.gz
http://www.cse.unsw.edu.au/~crizkallah/publications/equational_theory_cbpv.tar.gz
https://doi.org/10.1006/inco.1995.1057

Program Verification in the Presence
of Cached Address Translation

Hira Taqdees Syeda1,2(B) and Gerwin Klein1,2(B)

1 Data61, CSIRO, Eveleigh, Australia
{Hira.Syeda,Gerwin.Klein}@data61.csiro.au

2 School of Computer Science and Engineering, UNSW, Sydney, Australia

Abstract. Operating system (OS) kernels achieve isolation between
user-level processes using multi-level page tables and translation looka-
side buffers (TLBs). Controlling the TLB correctly is a fundamental secu-
rity property—yet all large-scale formal OS verification projects leave
correct functionality of the TLB as an assumption. We present a logic
for reasoning about low-level programs in the presence of TLB address
translation. We extract invariants and necessary conditions for correct
TLB operation that mirror the informal reasoning of OS engineers. Our
program logic reduces to a standard logic for user-level reasoning, reduces
to side-condition checks for kernel-level reasoning, and can handle typical
OS kernel tasks such as context switching and page table manipulations.

1 Introduction

We present a program logic in the interactive proof assistant Isabelle/HOL [15]
for verifying programs in the presence of an ARMv7-style memory manage-
ment unit (MMU), consisting of multi-level page tables and a translation looka-
side buffer (TLB) for caching page table walks. This logic builds on our ear-
lier work [17], a machine model with a sound abstraction of the ARMv7-style
TLB. While program logics for reasoning in the presence of address translation
exist [11], reasoning in the presence of a TLB has so far remained hard, and is
left as an assumption in all large-scale operating system (OS) kernel verification
projects such as seL4 [7] and CertiKOS [6].

Page table data structures encode a mapping from virtual to physical memory
addresses. The OS kernel manages these, e.g. by adding, removing, or changing
mappings, by keeping a page table structure per user process, and by maintaining
invariants, such as never giving a user access to kernel-private data structures,
ensuring that certain mappings are always present, or ensuring non-overlapping
mappings between different page tables if so desired.

Since the TLB caches address translation, each of these operations may leave
the TLB out of date w.r.t. the page table in memory, and the OS kernel must
flush (or invalidate) the TLB before that lack of synchronisation can affect pro-
gram execution. Since flushing the TLB is expensive, OS kernel designers work
hard to delay and minimise flushes and to make them as specific as possible,

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 542–559, 2018.
https://doi.org/10.1007/978-3-319-94821-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_32&domain=pdf

Program Verification in the Presence of Cached Address Translation 543

using additional TLB features such as process-specific address space identifiers
(ASIDs) to only invalidate specific sets of entries. If this management is done
correctly, the TLB has no effect other than speeding up execution. If it is done
incorrectly, machine execution will diverge from the semantics usual program
logics assume, e.g. wrong memory contents will be read/written, or unexpected
memory access faults might occur.

The main contribution of this paper apart from the logic itself and its sound-
ness is to show that it can be used to reason effectively and efficiently about
kernel code, that it reduces to simple side-condition checks on kernel code that
does not modify page tables, and that the logic reduces to standard Hoare logic
for user-level code. The development of the logic, and the case study presented
in the paper have led us to significantly extend the TLB model of our previ-
ous work [17], which provided soundness for memory operations, but not for
ASID maintenance and page table root switches. The previous model would
have required TLB invalidation where current kernel code (correctly) does not
perform any. The case study that flushed out this deficiency is inspired by the
seL4 kernel [7], and systematically covers all significant interactions with the
TLB. In fact, we chose to model the ARMv7 TLB, because we aim to eventually
integrate this logic with the existing seL4 proofs on ARM.

The logic is generic and can easily be adapted to, for instance, the shallow
embedding the seL4 specifications use, or the more deeply embedded C semantics
of the same project. It should also transfer readily to other settings such as the
lower levels of CertiKOS in Coq.

After related work in Sect. 2, we introduce the Isabelle/HOL notation we
use in Sect. 3. Section 4 presents the syntax and semantic operations of a small
example language, as well as the program logic. Section 5 shows the main reduc-
tion theorems that simplify reasoning, and Sect. 6 concludes with the case study
examples. The corresponding Isabelle/HOL theories are available online [18].

2 Related Work

The TLB has the nice property that it has no effect on the execution of a program
apart from making it faster, if it is used correctly. For this reason, all large-scale
formal OS kernel verifications so far have left correct TLB management as an
assumption. This includes the OS kernel verification work in seL4 [7,8] and
CertiKOS [6], which both do reason about page table structures, but omit the
TLB. Similarly, Daum et al. [4] reason about user-level programs on top of seL4,
including page tables, but not about the TLB.

Kolanski et al. [9–11] develop an extension of separation logic to for-
mally reason about page tables, virtual memory access, and shared memory in
Isabelle/HOL. We build directly on the abstract interface to page table encod-
ings Kolanski developed, which makes our work independent of the precise page
table format the architecture uses. Kolanski’s model does not include the TLB
and does not address TLB caching, consistency and invalidation, which we add
here.

544 H. T. Syeda and G. Klein

Nemati et al. [14] show the design, implementation and verification of a
direct paging mechanism in a virtualization platform for ARMv7-A in HOL4 [16].
Similarly to others, they model the state parameters of the MMU, such as page
table walks, but not the TLB or its maintenance operations.

Kovalev [12] and Alkassar et al. [1] do provide a TLB model, in particular
a model of the Intel x64 TLB including selected maintenance operations and
partial walks. Kovalev [12] states a reduction theorem for page table walks in
ASID 0 for a specific hypervisor setup, which is based on ideas similar to the ones
presented here. However, while other parts of this development are mechanised,
this reduction theorem is not. As we will see in Sect. 4, the restriction to one
ASID makes the model too conservative for usual OS code.

Barthe et al. [3] present an abstract TLB model including TLB flushes and
invariants for enforcing isolation between guest operating systems, but stop short
of a program logic and a proof that the abstraction is sound.

We build directly on our earlier work [17] which provides a detailed opera-
tional TLB model based on the ARM architecture manual [2] integrated with
the ARM instruction set architecture (ISA) semantics of Fox and Myreen [5].
Reasoning directly about this detailed model is hard, because the TLB intro-
duces non-determinism, because global state changes even on memory reads,
and because it introduces new failure modes that need to be avoided. Our
earlier work provides a tower of abstractions from this model, including sound-
ness proof. The final abstraction is similar to the ideas by Kovalev [12] and
Kolanski [10], but the case study in this paper shows that making efficient use of
ASIDs requires additional complexity. We have therefore extended the existing
tower of abstractions and soundness proofs and arrive at the TLB model we will
show in Sect. 4.

3 Notation

This section introduces Isabelle/HOL syntax used in this paper, where different
from standard mathematical notation. Isabelle denotes the space of total func-
tions by ⇒, and type variables are written ’a, ’b, etc. The notation t::τ means
that HOL term t has HOL type τ . The option type

datatype ’a option = None | Some ’a

adjoins a new element None to a type ’a. We use ’a option to model partial
functions, writing �a� instead of Some a and ’a ⇀ ’b instead of ’a ⇒ ’b option.
Some has an underspecified inverse called the, satisfying the �x� = x.

Isabelle’s type system does not include dependent types, but can encode
numerals and machine words of fixed length. The type ’n word represents a word
with n bits; concrete types include e.g. 32 word and 64 word. Function update
is written f(x := y) where f::’a ⇒ ’b, x::’a and y::’b, f(x �→ y) stands for
f (x:= Some y). We model the program state as a record type state. For every
record field, there is a selector function of the same name. For example, if s has
type state then heap s denotes the value of the heap field of s, and s(|heap := id|)
will update heap of s to be the identity function id.

Program Verification in the Presence of Cached Address Translation 545

4 Logic

This section presents a program logic for reasoning in the presence of cached
address translation. We define the syntax of a simple Turing-complete heap
language with TLB management primitives, introduce the abstract TLB and
memory model the language works on, and show the rules of program logic.

4.1 Syntax and Program State

Figure 1 shows the Isabelle data types for the abstract syntax of the language.
Control structures are the standard SKIP, IF, WHILE and assignment, where
assignment expects the left-hand side to evaluate to a heap address. In addition,
we have specific privileged commands for flushing the TLB, updating the current
page table root, the current ASID, and the processor mode. The Flush operation
has a number of variants: invalidate all entries, invalidate by virtual address or
by virtual address/ASID pair, and invalidate an entire ASID [2, Chap. B3].

For simplicity, there are no local variables in this language, only the global
heap. We identify values and pointers and admit arbitrary HOL functions for
comparison, binary, and unary arithmetic expressions.

datatype aexp =
Const val

| UnOp (val ⇒ val) aexp
| BinOp (val ⇒ val ⇒ val) aexp aexp
| HeapLookup aexp

datatype bexp =
BConst bool

| BComp (val ⇒ val ⇒ bool) aexp aexp
| BBinOp (bool ⇒ bool ⇒ bool) bexp bexp
| BNot bexp

datatype mode_t = Kernel | User

datatype com =
SKIP

| aexp := aexp
| com ;; com
| IF bexp THEN com ELSE com
| WHILE bexp DO com
| Flush flush_type
| UpdateRoot aexp
| UpdateASID asid
| SetMode mode_t

type synonym asid = 8 word
type synonym val = 32 word

datatype flush_type = flushTLB | flushvarange (val set)
| flushASID asid | flushASIDvarange asid (val set)

Fig. 1. Syntax of the heap based WHILE language.

Figure 2 illustrates the program state. It consists of the heap (physical mem-
ory), the set of inconsistent virtual addresses, the active page table root, the
active ASID, the last known page table state for all inactive ASIDs (page tables
snapshot), and the processor mode.

The first of these is for traditional heap manipulation, the rest for keeping
track of the TLB. This state model is similar to the TLB-relevant machine state
in our previous work on the ISA level [17], but it is not the same. The main

546 H. T. Syeda and G. Klein

Fig. 2. Abstracted TLB memory model

idea of this previous work was that it is sufficient to keep track of the addresses
on which the TLB and the in-memory page table may disagree. The logic pre-
sented in the present paper made case studies feasible and showed that this is
not sufficient: to soundly model the effect of the UpdateASID command without
requiring unnecessary flushes, this new model keeps track of a conservative esti-
mate of what the TLB might remember from the time an ASID was last active.
Essentially this is, for each ASID, a snapshot of the current page table state
when that ASID was last active modulo all addresses that were inconsistent
at that time. An ASID becomes active when the UpdateASID command updates
the corresponding machine register. In addition, this model also relaxes which
addresses become inconsistent when page tables are modified. Section 4.2 will
provide more details.

Using the types vaddr and paddr for virtual and physical addresses from
Kolanski’s page table interface [11] we can declare the following:

datatype lookup_type = Miss | Incon | Hit tlb_entry

type synonym iset = vaddr set

type synonym ptable_snapshot = asid ⇒ vaddr ⇒ lookup_type

where it suffices for this paper to see tlb_entry as the result of a page table walk
(see [17] for details).

With these, the record state has the components heap :: paddr ⇀ val,
iset :: iset, pt_snpshot :: ptable_snapshot, root :: paddr, asid :: asid, and
mode :: mode_t. Most of these are straightforward. The iset is the set of TLB-
inconsistent addresses, and the snapshot is a function from ASID a to address
va to lookup_type, where Miss encodes that the snapshot has no information for
va, Incon encodes that va should not be used, and Hit is the result of the page
table walk for va when a was last active.

Program Verification in the Presence of Cached Address Translation 547

4.2 Semantic Operations

This section presents the main semantic operations of the language. They
describe the effects of memory accesses and the new TLB operations on the
state.

We interpret the values val of the language as virtual addresses, which means
memory read and write first undergo address translation. Both operations are
sensitive to the current mode of the machine, since some mappings might be
accessible in kernel mode only and lead to a page fault otherwise. To decode page
tables, we reuse Kolanski’s existing ARM page table formalisation [11], extended
with this additional access control behaviour. Our interface to this formalisation
is the function pt_lookup, which takes a heap, a page table root, and the current
mode, and yields a partial function from virtual address to physical address.
With this, we can formalise address translation, read, and write under a TLB.

Adding a TLB to address translation only adds a check that the virtual
address is not part of the iset:

phy_ad :: iset ⇒ heap ⇒ root ⇒ mode_t ⇒ vaddr ⇀ paddr

phy_ad IS hp rt m va ≡ if va /∈ IS then pt_lookup hp rt m va else None

The memory read and write functions are then simply:

read :: iset ⇒ heap ⇒ root ⇒ mode_t ⇒ vaddr ⇀ val

read IS hp rt m va ≡ phy_ad IS hp rt m va � load_value hp

write :: iset ⇒ heap ⇒ root ⇒ mode_t ⇒ vaddr ⇒ val ⇀ heap

write IS hp rt m va v ≡
case phy_ad IS hp rt m va of None ⇒ None | �y� ⇒ �hp(y �→ v)�
where x � g ≡ case x of None ⇒ None | �y� ⇒ g y. Both functions first per-
form address translation, then access the physical heap. Read returns None when
the translation failed, write returns a new heap if successful and None otherwise.

The effect of a write operation extends further than the heap. If the operation
modified the active page table, we may have to add new addresses to the TLB
iset. For this, we compare the page table before and after:
pt_comp wlk wlk’ =

{va | ¬ is_fault (wlk va) ∧ ¬ is_fault (wlk’ va) ∧ wlk va
= wlk’ va ∨
¬ is_fault (wlk va) ∧ is_fault (wlk’ va)}

incon_comp a hp hp’ rt rt’ = pt_comp (pt_walk a hp rt) (pt_walk a hp’ rt’)

where a is the current ASID and pt_walk is a version of pt_lookup that returns
more information, including whether the walk resulted in a page fault (missing
mapping). We compare the results of page table walks in a heap hp from a root
rt with walks in a different, updated heap hp’ and potentially different root rt’.
For heap writes, the root will be the same, and for root updates, the heaps will
be the same. Two scenarios might add inconsistent entries: changing an existing

548 H. T. Syeda and G. Klein

mapping (first disjunct), or removing an existing mapping (second disjunct).
Note that a single heap write can affect multiple mappings at once, for instance
when it changes the pointer to an entire page table level. It is the effect of this
comparison that OS engineers reason about informally when they compute which
address need to be flushed from the TLB. We will show examples in Sect. 6.

The effect of a write is then

heap_iset_updates (pp �→ v) ≡
let hp = heap s; hp’ = hp(pp �→ v); rt = root s; a = asid s

in s(|heap := hp’, iset := iset s ∪ incon_comp a hp hp’ rt rt|)
and the effect of a page table root update is

root_iset_updates rt’ ≡
let rt = root s; hp = heap s; a = asid s

in s(|root := rt’, iset := iset s ∪ incon_comp a hp hp rt rt’|)
For changing the current ASID, we will make use of the page table snapshots

to determine which addresses become inconsistent, and we need to update the
snapshot for the ASID we are switching away from.

lift_pt walk ≡ λva. if is_fault (walk va) then Miss else Hit (walk va)

to_incon V walk ≡ λva. if addr_val va ∈ V then Incon else walk va

snap_pt s = to_incon (IC s) (lift_pt (pt_walk (asid s) (heap s) (root s)))

new_snp s = (pt_snpshot s)(asid s := snap_pt s)

where IC s ≡ {vp | Addr vp ∈ iset s} and addr_val (Addr a) = a and Addr is
the constructor for addresses.

Taking a snapshot is taking the pt_walks in the current state, marking all
unmapped entries as Miss, and everything in the iset as Incon, and then storing
that function under the current ASID in new_snp.

snp_comp a snp walk ≡ {va | snp a va
= Miss ∧ snp a va
= Hit (walk va)}

snp_incon a s ≡ snp_comp a (new_snp s) (pt_walk a (heap s) (root s))

Determining the iset for the new ASID a compares the Hit entries in the
snapshot for a with the current pt_walk. We use new_snp s instead of pt_snpshot
s, because a could also be the current ASID. The UpdateASID command then
executes

asid_pt_snpshot_updates a ≡
s(|asid := a, iset := snp_incon a s, pt_snpshot := new_snp s|)

The final set of semantic effects are flush operations. The functions

flush_iset :: flush_type ⇒ iset ⇒ asid ⇒ iset and
flush_snpshot :: flush_type ⇒ pt_snpshot ⇒ asid ⇒ pt_snpshot

simply remove the relevant entries from the iset, and set them to Miss in the
pt_snpshot respectively. The flush instruction does both simultaneously:

Program Verification in the Presence of Cached Address Translation 549

iset_pt_snpshot_updates f ≡
let is = iset s; snp = pt_snpshot s; a = asid s

in s(|iset := flush_iset f is a, pt_snpshot := flush_snpshot f snp a|)

4.3 Hoare Logic

With the syntax and the semantic operations of the previous sections it is
straightforward to define an operational semantics for the language. We omit
the details here and only briefly summarise the salient points before we focus on
the rules of the program logic.

The semantics of arithmetic and Boolean expressions, [[A]] s and [[B]]b s, are
partial functions from program state to val and bool, respectively. While the
rest is standard and omitted here, HeapLookup goes through virtual memory:

[[HeapLookup vp]] s =

(case [[vp]] s of None ⇒ None

| �v� ⇒ read (iset s) (heap s) (root s) (mode s) (Addr v))

For commands, we write (c, s) ⇒ s’ for command c executed in state s termi-
nates in state s’, where s’ is of type state option with None indicating failure.
More details about the semantics can be found at [18].

Our Hoare triples are partial for termination, but demand absence of failure.

{|P|} c {|Q|} ≡ ∀ s s’. (c, s) ⇒ s’ ∧ P s −→ (∃ r. s’ = �r� ∧ Q r)

Figures 3 and 4 show the rules of the program logic. Their soundness derives
directly from the operational semantics. Figure 3 summarises the rules for tra-
ditional commands such as SKIP, WHILE, etc. and Fig. 4 gives the rules for the
commands that interact with the TLB. We note that the traditional rules are
completely standard, as intended. We write 〈〈b〉〉 s to denote that [[b]]b s
= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

Fig. 3. Hoare logic rules for standard commands.

550 H. T. Syeda and G. Klein

Fig. 4. Hoare logic rules for commands with TLB effects.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /∈ IC s) and vp is mapped (Addr vp ↪→s pp), where

vp ↪→s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = �pp�)
The effect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateRoot, only available in kernel mode, updates
the current page table root to the value of the expression rte. The effect is
modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sections 5 and 6 will show that we can ignore the TLB for kernel-level code,
if we can assume that these memory areas (code, stack, globals) are statically
known and that the compiler will not generate additional memory accesses

Program Verification in the Presence of Cached Address Translation 551

outside these static areas. This is a reasonable assumption—otherwise kernel
code could never be sure that privileged memory areas such as memory-mapped
devices are not randomly overwritten by compiler-generated accesses. We will
then have to prove that we never remove or change active mappings for these
areas (adding new mappings for e.g. the stack would be fine). For user-level code,
we will see that the issue becomes irrelevant.

The logic could be made slightly more precise by distinguishing between
situations that must always be avoided, such as using inconsistent TLB entries,
and page faults, which can be recoverable by executing a page fault handler. In
kernel-level code, page faults are usually unwanted as modelled here, in user-level
code they will usually be recoverable. We omit the distinction here for simplicity.
Page fault handlers could for instance be modelled as exceptions in the logic.

In summary, we have so far provided a Hoare logic for reasoning about pro-
grams in the presence of cached address translation. The model as shown is
specific to the ARMv7 architecture, but should generalise readily to similar
architectures, since it uses an abstract interface for page table encoding. So far,
reasoning is possible, and is at the right level of abstraction for code that manip-
ulates page tables, but it is not yet convenient for code that does not interfere
with virtual memory mappings or even runs in user mode.

5 Safe Set

This section introduces a reduction theorem that restricts and simplifies the
assignment rule, which is the most frequent reasoning step in any usual program.
The general assignment rule reasons about (a) consistency of the target address
in the current state (b) valid address translation, and (c) potential update of
the iset. The rule explicitly mentions page table walks, which means the proof
engineer has to discharge page table obligations even if the memory write has
nothing to do with page tables. This is not what systems programmers do. They
instead establish invariants under which most of the code can be reasoned about
without awareness of the TLB or page tables.

Given a TLB-consistent set of virtual addresses, this set can only become
unsafe to write to when we change one of the page table mappings that translate
the addresses in this set. If none of these are contained in the set, any write to
the set is safe, even if it may change other mappings and increase the TLB iset.
To formalise this notion, we re-use another function from Kolanski’s page table
interface [11]: ptable_trace. It takes a heap, a root, and a virtual address va,
and returns the set of physical addresses visited in the page table walk for va.
Memory writes outside the ptable_trace for va will not change the outcome of
the walk for va. Generalising this notion to a set of virtual addresses, we define

ptrace_set V s =
⋃

ptable_trace (heap s) (root s) ‘ V

where f ‘ V applies f to all elements of the set V, and
⋃

is the union of a set
of sets. The ptrace_set V gives us the set of physical addresses that encode the
translation for the virtual addresses in V. We can now define what a safe set is:

552 H. T. Syeda and G. Klein

safe_set V s ≡ ∀ va∈V. va ∈ C s ∧ (∃ p. va ↪→s p ∧ p /∈ ptrace_set V s)

where C s ≡ {va | va /∈ iset s}. In words, a set V is a safe set in state s iff all
addresses va ∈ V are consistent in the current state, if they map to a physical
address p, and if that address is not part of the page table encoding for any of
the addresses in V.

Our first observation is that once a set V is a safe set, assignments in V can
no longer make it unsafe, and the safe set property will remain invariant:

Theorem 1. Any write to the safe set will preserve the safe set. Formally:

{|λs. safe_set V s ∧
(∃ vp v. [[lval]] s = �vp� ∧ [[rval]] s = �v� ∧ Addr vp ∈ V)|}

lval ::= rval {|λs. safe_set V s|}

Proof. See lemma safe_set_preserved in [18].

Our previous work [17] already contains a corresponding theorem for the con-
crete machine model. The following theorem is new. It develops the concept
further into a simpler assignment rule where it is sufficient to check that the
address is part of the safe set. We know with Theorem 1 that the safe set will
remain invariant, so we could now ignore the iset completely, but since the
proof engineer might want to keep track of it for other purposes, we still record
it in the rule. However, in contrast to the general assignment rule, if the post
condition does not mention the TLB, now neither will the precondition.

Theorem 2. In the assignment rule, it is sufficient to check the static safe set
instead of the dynamic inconsistency set IC.

{|λs. (∃ vp v. [[lval]] s = �vp� ∧ [[rval]] s = �v� ∧ Addr vp ∈ V ∧
Q (heap_iset_updates (the_phy_ad vp s �→ v))) ∧ safe_set V s|}

lval ::= rval {|Q|}
where
the_phy_ad vp s ≡ the (pt_lookup (heap s) (root s) (mode s) (Addr vp))

Proof. See lemma weak_pre_write in [18].

For code that is not interested in TLB effects, i.e. outside context switching
and page table manipulations, this rule enables proof engineers to reason as
if no TLB was present. The majority of OS and user-level code satisfies this
condition. The rule still mentions address translation, but the translation is now
static within V, i.e. can be computed once. The reduction to checking a static set
of addresses also give us justification that compilers do not introduce additional
complexity into reasoning under the TLB, they merely add addresses that need
to be part of this safe set, e.g. the area of virtual memory that contains code,
stack, and global variables.

Program Verification in the Presence of Cached Address Translation 553

6 Case Studies

In this section, we apply the program logic and its reduction theorems to the
main scenarios where TLB effects are relevant. These are: kernel-level code
without TLB or page table manipulations, standard user-level code, context-
switching, and page table manipulations. Of these, page table manipulations
turn out to be the least interesting, so we only summarise them, while we present
the rest in more detail.

The case study uses the seL4 microkernel as inspiration to distill out code
sequences for a toy kernel that manages page tables and the TLB, and prevents
users from accessing these, as well as other kernel data structures, directly. It
maintains a set of page tables, typically one per user, potentially shared. This
setting applies to all major protected-mode OS kernels, e.g. Linux, Windows,
MacOS, as well microkernels. While simplified, the case study aims to be realistic
in demonstrating popular techniques for avoiding TLB flushes, such as ASIDs,
and uses a so-called kernel window to reduce page tables switches. The kernel
window is a set of virtual addresses, unavailable to the user, backed by kernel
mappings with permissions that make them available only in kernel mode.1 It
is the combination of ASID use, context switching, and flush avoidance that led
us to adjust our previous model [17] for this case study.

As is customary, the mappings for this kernel window are constant, and each
user-level page table that the kernel maintains has a number of known kernel
mapping entries which reside at the same position in the page table encoding.
This gives us a ready candidate for safe-set reasoning about kernel code: all
addresses in the kernel window minus the addresses that are used to encode the
kernel mappings in page table data structures.

Since the aim is to show reasoning principles, not to prove correctness of
a particular kernel, the examples below use two-level ARMv7 page tables and
with a simple concrete encoding, and a specific layout. The encoding and layout
should generalise readily to larger settings. In addition to the page tables (one
per user) that are stored in the kernel window, we assume the existence of one
further kernel data structure: a map root_map from page table roots to the ASID
for the user of this page table. A real OS kernel might maintain these as part of a
larger data structure. We ignore the details here, and use them only to formulate
basic invariants the kernel must maintain.

The main invariants we use in this example are (a) all kernel data structures
reside in physical kernel memory, (b) they do not overlap, (c) the current ASID is
associated correctly with the current page table root, (d) all page tables contain
the kernel mappings, (e) no page table contains mappings that allows user mode
to resolve to physical kernel memory, and (f) the mapping from page table roots
to ASIDs is injective.

1 This is the technique attacked by Meltdown [13]. Since hardware manufacturers are
promising to fix this major flaw, we present the more interesting setting instead of
the less complex and slower scenario with a separate kernel address space.

554 H. T. Syeda and G. Klein

The following two properties are true for most of the execution of the system,
but are invalidated temporarily: (g) The kernel window minus the entries that
encode kernel mappings is a safe set. This property only holds in kernel mode.
(h) The ASID snapshots agree with the page table for that ASID/user. This
property is invalidated for a specific ASID between page table manipulations
and flush instructions.

Formally:

mmu_layout s ≡
kernel_data_area s ⊆ kernel_phy_mem ∧ non_overlapping (kernel_data s) ∧
root_map s (root s) = �asid s� ∧ kernel_mappings s ∧
user_mappings s ∧ partial_inj (root_map s)

where we define partial injectivity as
partial_inj f ≡ ∀ x y. x
= y −→ f x
= f y ∨ f x = None ∧ f y = None

The restriction on user mappings is easily phrased with our previous address
translation predicates, where roots s = set (root_log s), root_log is a list of
page table roots with root_map s r
= None, and set turns a list into a set.
user_mappings s ≡
∀ rt∈roots s.

∀ va pa. pt_lookup (heap s) rt User va = �pa� −→ pa /∈ kernel_phy_mem

The presence of kernel mappings is more technical. We spare the reader the
details of the formal page table encoding, but note that it represents a constant
offset translation, such that for all virtual addresses va in the kernel window, we
get Addr va ↪→s Addr (va - offset) for a constant offset, i.e. the outcome of
the translation is easily described statically. This is a simple yet realistic setup,
similar to what e.g. seL4 uses.

The memory area of the kernel data structures is the union of the footprint
of all static data structures plus the footprint of all page tables. The memory
area of a page table starting at root rt is the set of all addresses that can be
produced by a ptable_trace.

pt_area s rt ≡ ⋃
ptable_trace (heap s) rt ‘ UNIV

kernel_data s ≡ map (pt_area s) (root_log s) @ [rt_map_area]

kernel_data_area s ≡ ⋃
set (kernel_data s)

The definition of non-overlapping is:
non_overlapping [] = True

non_overlapping (x · xs) = (x ∩ ⋃
set xs = ∅ ∧ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the addi-
tional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

Program Verification in the Presence of Cached Address Translation 555

asids_consistent S s ≡
∀ r a. root_map s r = �a� ∧ a /∈ S ∪ {asid s} −→

(∀ v. pt_snpshot s a v = Miss ∨
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any effect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse effect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3. When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|λs. mmu_layout s ∧ mode s = User ∧
IC s = ∅ ∧ [[lval]] s = �vp� ∧ [[rval]] s = �v� ∧ Addr vp ↪→s p|}

lval ::= rval

{|λs. mmu_layout s ∧ mode s = User ∧ IC s = ∅ ∧ heap s p = �v�|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by
a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,

556 H. T. Syeda and G. Klein

minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a different
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a
short, closed form of translation for addresses in kernel_safe: k_phy_ad
vp = Addr vp - offset. With these, we can formulate a theorem for assignments
in kernel mode that do not touch any of the virtual memory data structures,
i.e. when the write does not take place in any of the addresses covered by
kernel_data.

Theorem 4. If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
effect is a simple heap update with known constant address translation.

{|λs. mmu_layout s ∧ mode s = Kernel ∧ safe_set (kernel_safe s) s ∧
asids_consistent s ∧ [[lval]] s = �vp� ∧ [[rval]] s = �v� ∧
Addr vp ∈ kernel_safe s ∧ k_phy_ad vp /∈ kernel_data_area s|}

lval ::= rval

{|λs. mmu_layout s ∧ mode s = Kernel ∧ safe_set (kernel_safe s) s ∧
asids_consistent s ∧ heap s (k_phy_ad vp) = �v�|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.
There are many ways for the OS to implement context switching—our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chap. B3.10] even gives a specific sequence of instruc-
tions to achieve this. The manual uses this sequence, because speculative exe-
cution might otherwise contaminate the new ASID with mappings from the

Program Verification in the Presence of Cached Address Translation 557

old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5. The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|λs. mmu_layout s ∧ asids_consistent s ∧ mode s = Kernel ∧
IC s = ∅ ∧ 0 /∈ ran (root_map s) ∧ root_map s (Addr r) = �a�|}

UpdateASID 0;; UpdateRoot (Const r);; UpdateASID a;; SetMode User

{|λs. mmu_layout s ∧ IC s = ∅ ∧ mode s = User ∧ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

7 Summary

We have presented a program logic for reasoning about low-level OS code in the
presence of cached address translation.

The model and case study use the ARMv7 architecture, but our interface
to page table encodings is generic and should apply to all architectures with
conventional multi-level page tables. The details of TLB maintenance may differ
between architectures, i.e. Intel x86 does not require an explicit TLB flush on
context switch, but the ideas of the model should again transfer readily.

558 H. T. Syeda and G. Klein

The model can also capture the effect of defective hardware, such as the
recent Meltdown attack [13] which exploits the fact that permission bits of TLB
entries are not checked during speculative execution on some platforms, and uses
a cache side channel to thereby make kernel-only TLB mappings readable to user
space. To conservatively formalise the effect of this attack, one could change the
model to ignore read restrictions in TLB entries. A system that can be proved
safe under that conservative model, should then be safe under Meltdown.

We currently do not treat global locked (pinned) TLB entries, and the TLB
in this version of the logic does not cache partial page table walks (as in e.g.
ARMv7-A). Our previous work does cover partial walks—the main influence on
the model is that the update of the iset becomes slightly more conservative.
Pinned TLB entries would have the effect of explicitly allowing inconsistency
between the TLB and the page table, with the TLB taking preference.

Our logic does not address concurrency aspects—they are orthogonal. In a
multi-core setting, each core has its own TLB which reads from global memory.
Modifying a page table that is active on another core is almost never safe, unless
the change merely adds new mappings or the change happens in the same safe
set style presented here, where the execution on all cores must adhere to the
intersection of all safe sets.

Weak memory and caches do have an interaction point with the TLB, because
page table walks are subject to both and caches can be either virtually or phys-
ically indexed. We expect our safe set reasoning to transfer directly, requiring
cache flushes and/or barrier instructions in addition to TLB flushes. We leave a
cache formalisation for future work.

The strength of the model and logic is its simplicity, which took multiple
iterations to achieve, finding a balance between abstraction soundness, not too
complex reasoning, and not too much conservatism for allowing optimisations
and idioms used in real OS code, resulting in a program logic that feels familiar
to proof engineers.

The logic allows us to prove reduction theorems that mirror the informal
reasoning OS engineers perform when they write kernel code. It also allows us
to drop into a simpler setting when we reason about code that does not affect
virtual memory mappings. In these cases, we only need to show that memory
accesses are within a set of safe addresses. Our work shows that reasoning in the
presence of a TLB does not need to be significantly more onerous than without.

References

1. Alkassar, E., Cohen, E., Kovalev, M., Paul, W.J.: Verification of TLB virtualization
implemented in C. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS,
vol. 7152, pp. 209–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-27705-4 17

2. ARM Ltd.: ARM Architecture Reference Manual, ARM v7-A and ARM v7-R,
aRM DDI 0406B, April 2008

3. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Cache-leakage resilient OS isola-
tion in an idealized model of virtualization. In: 25th CSF, pp. 186–197 (2012)

https://doi.org/10.1007/978-3-642-27705-4_17
https://doi.org/10.1007/978-3-642-27705-4_17

Program Verification in the Presence of Cached Address Translation 559

4. Daum, M., Billing, N., Klein, G.: Concerned with the unprivileged: user programs
in kernel refinement. Form. Aspects Comput. 26(6), 1205–1229 (2014)

5. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14052-5 18

6. Gu, L., Vaynberg, A., Ford, B., Shao, Z., Costanzo, D.: CertiKOS: a certified kernel
for secure cloud computing. In: 2nd APSys (2011)

7. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. Trans. Comp.
Syst. 32(1), 2:1–2:70 (2014)

8. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an OS kernel. In: SOSP, Big Sky, MT,
USA, October 2009, pp. 207–220 (2009)

9. Kolanski, R.: A logic for virtual memory. In: SSV, Sydney, Australia, July 2008,
pp. 61–77 (2008)

10. Kolanski, R.: Verification of programs in virtual memory using separation logic.
Ph.D. thesis, UNSW, Sydney, Australia, July 2011. http://ts.data61.csiro.au/

11. Kolanski, R., Klein, G.: Types, maps and separation logic. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
276–292. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-
9 20

12. Kovalev, M.: TLB virtualization in the context of hypervisor verification. Ph.D.
thesis, Saarland University, Saarbrücken, Germany (2013)

13. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher,
P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown. ArXiv e-prints 1801.01207,
January 2018

14. Nemati, H., Guanciale, R., Dam, M.: Trustworthy virtualization of the ARMv7
memory subsystem. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J.,
Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp.
578–589. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-
8 48

15. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9

16. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

17. Syeda, H.T., Klein, G.: Reasoning about translation lookaside buffers. In: 21st
LPAR. EPiC Series in Computing, vol. 46, pp. 490–508 (2017)

18. Syeda, H.T., Klein, G., Kolanski, R.: Isabelle/HOL Program Logic for Cached
Address Translation, January 2018. https://github.com/SEL4PROJ/tlb/tree/
ITP18. https://doi.org/10.5281/zenodo.1246933

https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-642-14052-5_18
http://ts.data61.csiro.au/
https://doi.org/10.1007/978-3-642-03359-9_20
https://doi.org/10.1007/978-3-642-03359-9_20
http://arxiv.org/abs/1801.01207
https://doi.org/10.1007/978-3-662-46078-8_48
https://doi.org/10.1007/978-3-662-46078-8_48
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-71067-7_6
https://github.com/SEL4PROJ/tlb/tree/ITP18
https://github.com/SEL4PROJ/tlb/tree/ITP18
https://doi.org/10.5281/zenodo.1246933

Verified Tail Bounds for Randomized
Programs

Joseph Tassarotti(B) and Robert Harper

Carnegie Mellon University, Pittsburgh, USA
jtassaro@andrew.cmu.edu

Abstract. We mechanize a theorem by Karp, along with several exten-
sions, that provide an easy to use “cookbook” method for verifying tail
bounds of randomized algorithms, much like the traditional “Master The-
orem” gives bounds for deterministic algorithms. We apply these results
to several examples: the number of comparisons performed by Quick-
Sort, the span of parallel QuickSort, the height of randomly generated
binary search trees, and the number of rounds needed for a distributed
leader election protocol. Because the constants involved in our symbolic
bounds are concrete, we are able to use them to derive numerical prob-
ability bounds for various input sizes for these examples.

1 Introduction

Formal verification of randomized algorithms remains a challenging problem. In
recent years, a number of specialized program logics [8,10,11,37,42] and auto-
mated techniques [6,19,20] have been developed to analyze these programs. In
addition, a number of randomized algorithms have been verified directly in inter-
active theorem provers [26,27,52] without using intermediary program logics.
Besides establishing correctness results, much of this work has focused on verify-
ing the expected or average cost of randomized algorithms. Although expectation
bounds are an important first step in cost analysis, there are other stronger prop-
erties that often hold. For many randomized algorithms, we can establish tail
bounds which bound the probability that the algorithm takes more than a given
amount of time.

For example, it is well known that randomized QuickSort performs O(n log n)
comparisons on average when sorting a list of length n, and this fact has been
verified in theorem provers before [27,52]. However, not only does it do O(n log n)
comparisons on average, but the probability that it does more than O(n log n)
comparisons is vanishingly small for sufficiently large lists. To be precise, let
Wn be the number of comparisons when sorting a list of length n. Then, for
any positive k there exists ck such that Pr [Wn > ckn log n] < 1

nk . When we say
that such ck exist, we mean so in a constructive and practical sense: we can

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-94821-8 33) contains supplementary material, which is
available to authorized users.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 560–578, 2018.
https://doi.org/10.1007/978-3-319-94821-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_33&domain=pdf
https://doi.org/10.1007/978-3-319-94821-8_33
https://doi.org/10.1007/978-3-319-94821-8_33

Verified Tail Bounds for Randomized Programs 561

actually determine them and they are not absurdly large, so that one can derive
interesting concrete bounds. For instance, when n is 10 million, the probability
that Wn is greater than 8n log2 n is less than 10−9. These kinds of tail bounds
hold for many other classical randomized algorithms and are often stronger than
asymptotic expectation bounds.

Despite this, there is a good reason for the prior emphasis on expectation
bounds rather than tail bounds in the field of formal methods: tail bounds on
running time are usually quite difficult to derive. Common approaches for deriv-
ing these bounds involve the use of methods from analytic combinatorics [31] or
the theory of concentration of measure [25]. Although these techniques are very
effective, to be able to use them in a theorem prover one would first need to be
able to mechanize the extensive body of results that they depend upon.

The Need for “Cookbook” Methods. Let us contrast the difficulty mentioned above
with the (relative) ease of analyzing deterministic algorithms. For deterministic
divide-and-conquer algorithms, the cost is often given by recurrences of the form

W (x) = a(x) +
n∑

i=1

W (hi(x)) (1)

where the “toll” function a(x) represents the cost to process an input and divide
it into subproblems of size h1(x), ... , hn(x), which are then solved recursively.
Every undergraduate algorithms course covers “cookbook” techniques such as
the Master Theorem [13,23] that can be used to straightforwardly derive asymp-
totic bounds on these kinds of recurrences. Moreover, these results can also be
used to easily analyze recurrences for other types of resource use, such as the
maximum stack depth or the span of parallel divide-and-conquer algorithms [15].
Recurrences for these kinds of resources have the form:

S(x) = b(x) +
n

max
i=1

S(hi(x)) (2)

We will call recurrences of the form in Eq. 1 “work recurrences” and those of
the form in Eq. 2 “span recurrences”. Although Eq. 2 does not fit the format
of the Master Theorem directly, when S is monotone the recurrence simplifies
to S(x) = b(x) + S(maxn

i=1(hi(x))) and so can be analyzed using the Master
Theorem.

What is nice about these methods is that they give a process for carrying
out the analysis: find the toll function, bound the size of recursive problems, and
then use the theorem. Even if the first two steps might require some ingenuity,
the method at least suggests an approach to decomposing the problem.

Besides being easy to use, results like the Master Theorem do not have many
mathematical prerequisites. This makes them ideal for use in interactive theorem
provers. Indeed, Eberl [28] has recently mechanized the more advanced Akra and
Bazzi [2] recurrence theorem in Isabelle and has used it to derive asymptotic
bounds for a number of recurrence relations.

For randomized divide-and-conquer algorithms, the same recurrence rela-
tions arise, except the hi(x) are random variables because the algorithms use
randomness to divide the input into subproblems. Because of the similarity

562 J. Tassarotti and R. Harper

between deterministic and probabilistic recurrences, textbook authors some-
times give the following heuristic argument before presenting a formal analy-
sis [23, pp. 175–177]: In an algorithm like QuickSort, the size of the sublists
generated by the partitioning step can be extremely unbalanced in the worst
case, but this happens very rarely. In fact, each sublist is unlikely to be much
more than 3

4 the length of the original list. And, for a deterministic recurrence
like W (n) = n + W (34n) + W (34n), the master theorem says the result will
be O(n log n). Thus, intuitively, we should expect the average running time of
Quicksort to be something like O(n log n).

This raises a natural question: Is there a variant of the Master Theorem that
can be used to justify this kind of heuristic argument? Moreover, because Eq. 2
does not simplify to a version of Eq. 1 in the randomized setting1, we ideally
want something that can be used to analyze recurrences of both forms.

For the case where there is only a single recursive call (so that n = 1 above),
Karp [38] developed such a result. At a high-level, using Karp’s theorem involves
two steps. First, bound the average size of the recursive subproblem by finding
a function m such that E [h1(x)] ≤ m(x). Next, find a solution u to the deter-
ministic recurrence relation

u(x) ≥ a(x) + u(m(x))

Then the theorem says that for all positive integers w,

Pr [W (x) > u(x) + wa(x)] ≤
(

m(x)
x

)w

There are a few side conditions on the functions m and u which are usually easy
to check. Although this method generally does not give the tightest possible
bounds, they are often strong. Recently, Karp’s technique has been extended [51]
to the case for n > 1 for both span and work recurrences.

Our Contribution. In this paper, we present a mechanization of Karp’s theorem
and these extensions in Coq, and use it to develop verified tail bounds for (1)
the number of comparisons in sequential QuickSort, (2) the span arising from
comparisons in parallel QuickSort, (3) the height of a randomly generated binary
search tree, and (4) the number of rounds needed in a distributed randomized
leader election protocol. By using the Coq-Interval library [41] we are able to
instantiate our bounds in Coq to establish numerical results such as the 10−9

probability bound for QuickSort quoted above. To our knowledge, this is the
first time these kinds of bounds have been mechanized.

We start by outlining the mechanization of probability theory that our work
is based on (Sect. 2). We then describe Karp’s theorem and its extensions in
more detail (Sect. 3). To demonstrate how Karp’s result is used, we describe our
verification of the examples mentioned above, with a focus on the sequential
QuickSort analysis (Sect. 4). Of course, formalization often requires changing
parts of a paper proof, and our experience with Karp’s theorem was no different.
We discuss the issues we encountered and what we had to change in Sect. 5.
1 This is because in general E [max(X1, X2)] ≥ max(E [X1] ,E [X2]).

Verified Tail Bounds for Randomized Programs 563

Finally, we compare our approach to related work (Sect. 6) and conclude by
discussing possible extensions and improvements to our development (Sect. 7).

The Coq development described in this paper is available at https://github.
com/jtassarotti/coq-probrec.

2 Probability Preliminaries

2.1 Discrete Probability

We first need a set of basic results and definitions about probabilities and expec-
tations to be able to even state Karp’s theorem. We had to decide whether to
use a measure-theoretic formulation or restrict ourselves to discrete distribu-
tions. Although the Isabelle standard library has an extensive formalization of
measure theoretic probability, we are not aware of a similarly complete set of
results in Coq (we discuss existing libraries later in Sect. 6). Moreover, the appli-
cations we had in mind only involved discrete distributions, so we did not need
the extra generality of the measure-theoretic approach. To keep things simple,
we decided to develop a small library for discrete probability theory. Defining
probability and expectation for discrete distributions still involves infinite series
over countable sets, which can raise some subtle issues involving convergence.
We use the Coquelicot real analysis library [16] to deal with infinite series.

The definition of probability distributions is given in Fig. 1. We repre-
sent them as a record type parameterized by a countable type. We use the
ssreflect [32] library’s definition of countable types (countType), which con-
sists of a type A equipped with a surjection from nat to A.

The distribution record consists of three fields: (1) a probability mass function
pmf : A → R that assigns a probability to each element of A, (2) a proof that pmf a
is non-negative for all a, and (3) a proof that the countable series that sums pmf a
over all a converges and is equal to 1.

Random variables on a distribution (rvar) are functions from the underlying
countable space A to some other type B. The expected value of a real-valued
random variable is defined in the usual way as the series

∑
r∈img(X) Pr [X = r] ·r.

Because the underlying distribution is discrete, the image of the random variable
is a countable set, so we can define such a series.

Of course, expectations of discrete random variables do not always exist,
because the above series may not converge absolutely. Because of this, even with
the restriction to discrete probability, dealing with infinite series and issues of
convergence can often be tedious. In actuality, many randomized algorithms only
involve finite distributions. For random variables defined on such distributions,
the expectation always exists, because the series is actually just a finite sum. For
our mechanization of Karp’s theorem, we restrict to these finite distributions.

2.2 Monadic Encoding

We represent sequential and parallel randomized algorithms in Coq using a
monadic encoding. Variants of this kind of representation have been used in
many prior formalizations and domain specific languages [3,9,46,48].

https://github.com/jtassarotti/coq-probrec
https://github.com/jtassarotti/coq-probrec

564 J. Tassarotti and R. Harper

Fig. 1. Basic definitions for discrete probability distributions and random variables.

The type ldist A represents probabilistic computations that result in val-
ues of type A. Such computations are represented as a finite list of values of
type A paired with the probabilities that these values occur. The bind operation
dist bind l f represents the process of performing the computation represented
by l to obtain a random element of type A (i.e., “sampling” from the distribution
represented by l), and then passing this to f. The return operation (dist ret)
applied to a corresponds to the probabilistic computation that simply returns a
with probability 1. We use Coq’s notation mechanism to represent binding m in
e by writing x ← m; e, and write mret a for returning a.

3 Karp’s Theorem

Now that we have a formalization of the basic concepts of probability theory
and a way to describe randomized algorithms in Coq, we can give a more careful
explanation of Karp’s theorem and its extensions.

3.1 Unary Recurrences

The setting for Karp’s theorem is more general than the informal account we
gave in the introduction. Specifically, he assumes that there is a set I of algorithm
inputs, a function size : I → R

≥0 such that size(z) is the “size” of input z, and
a family of random variables h(z) which correspond to the new problem that is
passed to the recursive call of the algorithm. The random variable W (z), which
represents the cost of the algorithm when run on input z, is assumed to obey
the following unary recurrence:

W (z) = a(size(z)) + W (h(z)) (3)

Verified Tail Bounds for Randomized Programs 565

Although the intent of this recurrence is clear, it requires some care to interpret:
on the right hand side, h(z) is a random variable, but it is given as an argument to
W , which technically has I as a domain, not I-valued random variables. Instead,
we should read this not as the composition W ◦ h applied to z, but rather as a
specification for the process which first generates a random problem according
to h(z) and then passes it to W . In other words, this part of the recurrence is
really describing a monadic process of the form:

z′ ← h(z);W (z′)

Already, Eq. 3 addresses a detail that is often glossed over in informal treat-
ments of randomized algorithms. In informal accounts, one often speaks about
a random variable W (n), which is meant to correspond to the number of steps
taken by an algorithm when processing an instance of size n. The issue is that
usually, the exact distribution depends not just on the size of the problem but
also the particular instance, so it is somewhat sloppy to regard W (n) as a ran-
dom variable (admittedly, we did so in Sect. 1). For instance, when randomized
QuickSort is run on a list containing duplicate elements, a good implementation
will generally perform fewer total comparisons. Even if one tries to avoid this
issue by, say, restricting only to lists that do not contain duplicates, one would
still need to prove that the distribution depends on the size of the list alone.
This is mostly harmless in informal treatments, but it is a detail that would
otherwise have to be dealt with in a theorem prover.

We assume there is some constant d that is the “cut-off” point for the recur-
rence: when the input’s size drops below d no further recursive calls are made.
The function a : R → R

≥0 is required to be continuous and increasing2 on
(d,∞), but equal to 0 on the interval [0, d]. In addition, it is required that
0 ≤ size(h(z)) ≤ size(z), i.e., the size of the subproblem is not bigger than the
original.

Then, assume there exists some continuous function m : R → R such that for
all z, E [size(h(z))] ≤ m(size(z)) and 0 ≤ m(size(z)) ≤ size(z)). Moreover, the
function m(x)/x must be non-decreasing. Karp then argues that if there exists
a solution to the deterministic recurrence relation τ(x) = a(x) + τ(m(x)), there
must be a continuous minimal solution u : R → R. He assumes such a solution
exists and derives the following tail bound for W in terms of u:

Theorem 1 ([38]). For all z and integer w such that size(z) > d,

Pr [W (z) > u(size(z)) + w · a(size(z))] ≤
(

m(size(z))
size(z)

)w

Because u is the minimal solution to the deterministic recurrence, we can
replace u with any other solution t in the above bound: if W (z) is greater than
the version with t, then by minimality of u, it must be bigger than the version

2 In fact, the assumptions in [38] are slightly stronger than this. But as we discuss in
Sect. 5, we discovered that the weaker assumptions mentioned here are sufficient.

566 J. Tassarotti and R. Harper

with u. This means we do not need to find a closed form for the minimal solution
u, because any solution will give us a bound.

It is important to note that m, a and u are all functions from R to R. This
means that we do not have to deal with subtle rounding issues that sometimes
come up when attempting to formalize solutions to recurrences for algorithms.
Eberl [28], in his formalization of the Akra-Bazzi theorem, has pointed out how
important this can be. The trade-off is that establishing that the recurrence
holds everywhere on the domain R can be harder, especially at the boundaries
where the recurrence terminates.

3.2 Extension to Binary Work and Span Recurrences

Although Theorem 1 makes it easier to get strong tail bounds, it cannot be used
in many cases because it only applies to programs with a single recursive call.

Tassarotti [51] describes an extension to cover the general case of work and
span recurrences with n > 1 recursive calls. In our mechanization, we only
handle the case where there are two recursive calls (so that n = 2) because this
is sufficient for many examples. In this setting, we now have two random variables
h1 and h2 giving the recursive subproblems. These variables are generally not
independent: for QuickSort, h1 would be the lower partition of the list and h2

would be the upper partition. However, it is assumed that there is some function
g1 : R → R such that for all z ∈ I and (z1, z2) in the support of (h1(z), h2(z)):

g1 (size(z1)) + g1 (size(z2)) ≤ g1 (size(z))

Informally, we can think of this function g1 as a kind of ranking function, and
the above inequality is saying that the combined rank of the two subproblems
is no bigger than that of the original problem. The function m is now required
to bound the expected value of the maximum size of the two subproblems:

E [max (size(h1(z)), size(h2(z)))] ≤ m(size(z))

For bounding span recurrences of the form:

S(z) ≤ a(size(z)) + max(S(h1(z)), S(h2(z))) (4)

we assume once more that u is a solution to the recurrence u(x) ≥ a(x)+t(m(x)).
Then we have:

Theorem 2. For all z and integer w such that size(z) > d and g1(size(z)) > 1,

Pr [S(z) > u(size(z)) + w · a(size(z))] ≤ g1(size(z)) ·
(

m(size(z))
size(z)

)w

The difference between the bound above and the one in Theorem 1 is the
additional factor g1(size(z)). Generally speaking, g1(size(z)) will be bounded

by a polynomial, so that in comparison to
(

m(size(z))
size(z)

)w

, which decreases expo-
nentially with respect to w, the effect is negligible.

Verified Tail Bounds for Randomized Programs 567

The bound for binary work recurrences is slightly different. Given the recur-
rence:

W (z) ≤ a(size(z)) + W (h1(z)) + W (h2(z)) (5)

we need a second “ranking” function g2 with the same property that
g2 (size(z1)) + g2 (size(z2)) ≤ g2 (size(z)) for all z1 and z2 in the support of
the joint distribution (h1(z), h2(z)) when size(z) > d. In the proof by Tassarotti
[51], this second ranking function is used to transform the work recurrence into
a span recurrence which is then bounded by Theorem 2, and this bound is
converted back to a bound on the original recurrence. From the perspective of
the user of the theorem, we now need u to solve the deterministic recurrence
u(x) ≥ a(x)

g2(x)
+ u(m(x)), and we obtain the following bound:

Theorem 3. For all z and integer w such that size(z) > d and g1(size(z)) > 1,

Pr [W (z) > g2(size(z)) · u(size(z)) + w · a(size(z))] ≤ g1(size(z)) ·
(
m(size(z))

size(z)

)w

Observe that on the left side of the bound, we re-scale u by a factor of g2(size(z))
because it was the solution to a recurrence in which we normalized everything
by g2.

The above results let us fairly easily obtain tail bounds for a wide variety
of probabilistic recurrences arising in the analysis of randomized divide-and-
conquer algorithms. In the next section, we demonstrate their use by verifying a
series of examples. After showing how they are used, we return to the discussion
of the results themselves in Sect. 5, where we describe issues we encountered
when trying to translate the paper proofs into Coq.

4 Examples

We now apply the results developed in the previous sections to several examples.

4.1 Sequential QuickSort

Our first example is bounding the number of comparisons performed by a sequen-
tial implementation of randomized QuickSort. To count the number of compar-
isons that the monadic implementation of the algorithm performs, we combine
the probabilistic monad from Sect. 2.2 with a version of the writer monad that
increments a counter every time a comparison is done. This cost monad is defined
by:

Definition cost A := (nat * A).

Definition cost_bind {A B} (f: A -> cost B) x :=

(x.1 + (f (x.2)).1, (f (x.2)).2).

Definition cost_ret {A} (x: A) := (0, x).

A computation of type cost A is just a pair of a nat, representing the count
of the number of comparisons, and an underlying value of type A. The bind oper-
ation sums costs in the obvious way. We can then define a version of comparison
in this monad:

568 J. Tassarotti and R. Harper

Definition compare (x y: nat) :=

(1, ltngtP x y).

where ltngtP is a function from the ssreflect library that returns whether
x < y, x = y, or x > y.

The code3 for QuickSort is given in Fig. 2. This is the standard randomized
functional version of QuickSort: For empty and singleton lists, qs simply returns
the input. Otherwise, it selects an element uniformly at random from the list
using draw pivot. It then uses partition to split the list into three parts:
elements smaller than the pivot, elements equal to the pivot, and elements larger
than the pivot. Elements smaller and larger than the pivot are recursively sorted
and then the results are joined together. Partition uses the compare operator
defined above, which implicitly counts the comparisons it performs.

Fig. 2. Simplified version of code for sequential QuickSort. In ssreflect, we write [::]
for the empty list and [:: a] for a list containing the single element a. Because random-
ized QuickSort is not structurally recursive, the actual definition in our development
defines it by well-founded recursion on the size of the input.

What is the probabilistic recurrence for this algorithm? In each round of the
recursion, the algorithm performs n comparisons to partition a list of length n.
So, taking the size function to be the length of the list, we have the toll function
a(x) = x. There are two recursive calls, and we have to sum the comparisons
performed by each to get the total, so we need to use Theorem 3.

The h1 and h2 functions giving the recursive subproblems correspond to the
lower and upper sublists returned by partition. We now need to bound the
expected value of the maximum of the sizes of these two lists. We first show:

E [max (size(h1(l)), size(h2(l)))] ≤ 1
size(l)

size(l)−1∑

i=0

max(i, size(l) − i − 1)

3 The definition in our development is actually defined by well-founded induction on
the size of the input, because the Coq termination checker cannot determine that
this definition always terminates.

Verified Tail Bounds for Randomized Programs 569

To get some intuition for this inequality, imagine the input list l was already
sorted. In this situation, if the pivot we draw is in position i, then the sublist of
elements less than i only contains elements to the left of i in l and the sublist of
elements larger than i contains only elements to the right of i in l. The size of each
sublist is therefore at most i and size(l)−i−1, respectively, which corresponds to
the ith term in the sum above. The factor of 1

size(l) is the probability of selecting
each pivot index, because they are all equally likely. Of course, the input list is
not actually sorted, but when we select pivot position i, we can consider where
its position would be in the final sorted list, and the result is just a re-ordering
of the terms in the sum.

Next we show by induction on n that:
n−1∑

i=0

max(i, n − i − 1) =
(

n

2

)
+

⌊n

2

⌋
·
⌈n

2

⌉
≤ 3n2

4

We combine the two inequalities to conclude:

E [max (size(h1(l)), size(h2(l)))] ≤ 3
4

· size(l)

The above bound is for the case when the list has at least 2 elements; other-
wise the recursion is over so that the sublists have length 0. Hence we can define
m to be m(x) = 0 for x < 4/3 and m(x) = 3x

4 otherwise. We use 4/3 as the
cut-off point rather than 2 because it makes the recurrence easier to solve.

To use Theorem 3, we need to come up with two “ranking” functions g1 and
g2 such that gi(size(h1(z))) + gi(size(h2(z))) ≤ gi(size(z)) for each i. Ideally,
we want g1 to be as small as possible, because it scales the final bound we
derive, whereas for g2 we want to pick something that makes it easy to solve
the recurrence t(x) ≥ a(x)/g2(x)+ t(m(x)). Like the derivation of the bound m,
these parts of the proof are not automatic and require some experimentation.
We define the following choices for the parameters of Theorem 3:

g1(x) = x g2(x) =

⎧
⎪⎨

⎪⎩

1
2 x ≤ 1
x

x−1 1 < x < 2
x x ≥ 2

t(x) =

{
1 x ≤ 1
log 4

3
x + 1 x > 1

We can check g1 and g2 satisfy the necessary conditions, and that t is a solution
to the resulting deterministic recurrence relation.

Writing T (x) for the total number of comparisons performed on input x,
Theorem 3 now gives us:

Pr
[
T (x) > size(x) · log4/3(size(x)) + 1 + w · size(x)

]
≤ size(x) ·

(
3
4

)w

for l such that size(x) > 1. More concisely, if we set n = size(x), then this
becomes:

Pr
[
T (x) > n log4/3 n + 1 + wn

]
≤ n ·

(
3
4

)w

In Coq, this is rendered as:

570 J. Tassarotti and R. Harper

Theorem bound x w:

rsize x > 1 ->

pr_gt (T x) (rsize x * (k * ln (rsize x) + 1) + INR w * rsize x)

<= (rsize x) * (3/4)^w.

where k = 1
ln 4/3 , rsize returns the length of a list as a real number, and

INR : nat → R coerces its input into a real number.
To understand the significance of these bounds, consider the case when w =

	c · log4/3 n
 for some constant c. Then, using the above we get:

Pr
[
T (x) > (c + 1)n log4/3 n + 1

]
≤ Pr

[
T (x) > n log4/3 n + 1 + wn

]
(6)

≤ n ·
(

3
4

)w

≤ n ·
(

3
4

)c log4/3 n−1

(7)

=
4
3

· 1
nc−1

(8)

so that when c > 2, the probability goes very quickly to 0 for lists of even
moderate size.

We can now use the Coq-Interval library, which provides tactics for estab-
lishing numerical inequalities, to compute the value of this bound for particular
choices of n. In particular, we can establish the claim from the introduction:
when sorting a list with 10 million elements, the probability that QuickSort
performs more than 8n log2 n comparisons is less than 10−9.

Remark concrete2:

forall l, rsize l = 10 ^ 7 ->

pr_gt (T l) (10^7 * (8 * 1/(ln 2) * ln (10^7))) <= 1/(10^9).

4.2 Other Examples

We have mechanized the analysis of three other examples using Karp’s theorem.
A discussion of these examples is given in the appendix of the full version of this
paper available as supplementary material. Here we give a brief description of
the examples:

1. Parallel QuickSort: using Theorem 2 we show that the longest chain of sequen-
tial dependencies from comparisons in a parallel version of QuickSort is
O(log(n)) with high probability.

2. Binary search tree: we analyze the height of a binary search tree which is
generated by inserting a set of elements under a random permutation. We
show the height is O(log(n)) with high probability using Theorem 2.

3. Randomized leader election: we consider a protocol for distributed leader
election that has been analyzed by several authors [30,47]. The protocol con-
sists of stages called “rounds”. At the beginning of a round, each active node
generates a random bit. If the bit is 1, the node remains “active” and sends
a message to all the other nodes; otherwise, if the bit is 0 it becomes inac-
tive and stops trying to become the leader. If every active node generates

Verified Tail Bounds for Randomized Programs 571

a 0 within a round, no messages are sent and instead of becoming inactive,
those nodes try again in the next round. When there is only one active node
remaining, it is deemed the leader. We use Theorem 1 to show that with high
probability at most O(log n) rounds are needed.

5 Changes Needed for Mechanization

Anyone who has mechanized something based on a paper proof has probably
encountered issues that make it harder than just “translating” the steps of the
proof into the formal system. Even when the paper proof is correct, there are
inevitably parts of the argument that are more difficult to mechanize than they
appear on paper, and this can require changing the strategy of the proof.

Our experience mechanizing Karp’s theorem and its extensions was no differ-
ent. In this section we describe obstacles that arose in our attempt to mechanize
the proof.

5.1 Overview of Proof

To put the following discussion in context, we need to give a sketch of the paper
proof. Recall that Theorem 1 says that if we have a probabilistic recurrence W
with a corresponding deterministic recurrence solved by u, then for all z and
integer w,

Pr [W (z) > u(size(z)) + w · a(size(z))] ≤
(

m(size(z))
size(z)

)w

The first thing one would naturally try to prove this is to proceed by induction
on the size of z. However, immediately one realizes that the induction hypoth-
esis needs to be strengthened: the bound above is only shown at each integer
w, so there are “gaps” in between where we do not have an appropriately tight
intermediate bound. To address this, Karp defines a function Dr which “interpo-
lates” the bound

(
m(size(z))
size(z)

)w

to fill in these gaps. This function Dr is somewhat
complicated, and is defined in a piecewise manner as follows:

1. If r ≤ 0 and x > 0, Dr(x) = 1
2. If r > 0:

(a) If x ≤ d then Dr(x) = 0
(b) If x > d and u(x) ≥ r then Dr(x) = 1
(c) If x > d and u(x) < r then

Dr(x) =
(

m(x)
x

)� r−u(x)
a(x) � x

u−1(r − a(x)
⌈
r−u(x)
a(x)

⌉
)

572 J. Tassarotti and R. Harper

This definition is intricate, especially the last case. However, if we set r =
u(size(z)) + w · a(size(z)), then Dr(size(z)) simplifies to

(
m(size(z))
size(z)

)w

, con-
firming the intuition that this is some kind of interpolation.

Next, define Kr(z) = Pr [W (z) > r]. Then, the result follows by showing that

Kr(z) ≤ Dr(size(z))

The probabilistic recurrence relation for W implies that:

Kr(z) ≤ E
[
Kr−a(size(z))(h(z))

]
(9)

when size(z) > d. Karp’s idea is to recursively define a sequence of functions
Ki

r for i ∈ N which approximate Kr. These are defined by:

K0
r (z) =

{
1 if r < u(d)
0 otherwise

Ki+1
r (z) = E

[
Ki

r−a(size(z))(h(z))
]

Note the similarity between the recursive case and the property in (9). For all i,
Ki

r(z) ≤ 1, so supi K
i
r(z) exists. Karp says then that Kr(z) ≤ supi K

i
r(z), so it

suffices to show that for all i, Ki
r(z) ≤ Dr(size(z)).

The proof is by induction on i. The base case is straightforward. For the
inductive case, the definition of Ki+1

r and the induction hypothesis give us:

Ki+1
r (z) = E

[
Ki

r−a(size(z))(h(z))
]

≤ E
[
Dr−a(size(z))(h(z))

]

So we just need to show that this final expected value is ≤ Dr(size(z)). The
key is the following simple lemma, which lets us bound the expected value of
suitable functions of random variables:

Lemma 1 ([38, Lemma 3.1]). Let X be a random variable with values in the
range [0, x]. Suppose f : R → R is a non-negative function such that f(0) = 0,
and there exists some constant c such that for all y ≥ c, f(y) = 1 and f(y)/y is
non-decreasing on the interval (0, c]. Then:

E [f(X)] ≤ E [X] f(min(x, c))
min(x, c)

Applying this with X = size(h(z)), f = Dr−a(size(z)), and suitable choice of
c gives us the desired result. Of course, we need to check that this choice of
f satisfies the conditions of the lemma. In particular, showing that f(y)/y is
non-decreasing is somewhat involved, and it is here that the various continuity
assumptions on parameters like a are used.

Once the inductive proof is finished, we set r = u(size(z)) + w · a(size(z)),
to get the form of the bound in the statement of the theorem.

Verified Tail Bounds for Randomized Programs 573

5.2 Changes

Termination Assumption. The first problem we had was that we were unable
to prove that Kr(z) ≤ supi K

i
r(z). In the original paper proof, this inequality is

simply stated without further justification. Young [53] has suggested that in fact
one may need stronger assumptions on W or h to be able to conclude this and
suggests two alternatives. Either W can be assumed to be a minimal solution to
the probabilistic recurrence, or one can assume that the recurrence terminates
with probability 1, that is Pr [hn(z) > d] → 0 as n → ∞. In the end, we chose
to make the latter assumption, because it is easy to show for most examples.

Existence of a Minimal Solution. Karp argues that if there is a solution to the
deterministic recurrence relation, there must be a minimal solution u. The results
in the theorem are then stated in terms of u. It seemed to us more efficient to
simply state the results in terms of any continuous and invertible solution t to the
recurrence relation. In this way, we avoid the need to prove the existence, conti-
nuity, and invertibility of the minimal solution. In fact, rather than assuming t
is invertible on its full domain, we merely assume that there exists a function t′

which is an inverse to t on the subdomain (d,∞), that is: t′(t(x)) = x for x > d
and t(t′(x)) = x for x > t(d). The definition of D is then changed to replace
occurrences of u with t.

Division by Zero. The original piecewise definition of D above involves division
by u−1(r − a(x)

⌈
r−u(x)
a(x)

⌉
). However, it is not clear that this is always non-zero

on the domain considered, and this is not explicitly discussed in the paper proof.
Since we replace the u−1 function with a user supplied function t′, we found it
easier to simply require an explicit assumption that t′ is non-zero everywhere.

Unneeded Assumptions. In the original paper proof, the toll function a is assumed
to be everywhere continuous and strictly increasing on [d,∞). This rules out
recurrences like W (z) = 1 + W (h(x)) which show up in examples such as the
leader election protocol. For that reason, there is actually an additional result
in Karp [38] for the particular case where a(x) = 0 for x ≤ d and 1 otherwise.

However, after finishing the mechanization of Theorem 1, we suspected that
the assumptions on a could be weakened, avoiding the need for the additional
lemma. We changed the assumptions to only require that a was monotone and
continuous on the interval (d,∞). In turn, we require the function t which solves
the deterministic recurrence to be strictly increasing on the interval (d,∞). Our
prior proof script worked mostly unchanged: most of the changes actually ended
up deleting helper lemmas we had needed under the original assumptions. This
is not because our proof scripts were highly automated or robust, but because
the original proof really was not exploiting these stronger assumptions. Checking
this carefully with respect to the original paper proof would have been rather
tedious, but was straightforward with a mechanized version.

Extending to the Binary Case. In a technical report, Karpinski and Zimmermann
[39] claimed to extend Karp’s result to work and span recurrences with multiple

574 J. Tassarotti and R. Harper

recursive calls, so we initially tried to verify their result. The argument is funda-
mentally like Karp’s original proof, so many steps were described briefly because
they were intended to be similar to the corresponding parts of the proof of
Theorem 1. However, we were unable to prove that their analogue of the Dr

function satisfied the assumptions of Lemma 1, and so we were stuck at the cor-
responding step of the induction argument. It was at this point that we mecha-
nized the results from Tassarotti [51] instead.

6 Related Work

6.1 Verification of Randomized Algorithms and Mechanized
Probability Theory

Audebaud and Paulin-Mohring [3] developed a different monadic encoding for
reasoning about randomized algorithms in Coq that can represent randomized
algorithms that do not necessarily terminate. It would be interesting to try to
generalize our version of Karp’s theorem and apply them to programs expressed
using this monad.

Barthe et al. [9] develop a probabilistic variant of Benton’s relational Hoare
logic [14] called pRHL to do relational reasoning about pairs of randomized
programs. Extensions to and applications of pRHL for reasoning about proba-
bilistic programs have been developed in a series of papers [7,10,11], and this
kind of relational reasoning has been implemented in the EasyCrypt tool [5].
There are many other formal logics for reasoning about probabilistic programs
(e.g., [8,40,44,49]). Kaminski et al. [37] presented a weakest-precondition logic
that can be used to establish expected running time. As an example, they proved
a bound on the expected number of comparisons used by QuickSort. The sound-
ness of their logic was later mechanized by Hölzl [34] in Isabelle.

Van der Weegen and McKinna [52] mechanized a proof of the average number
of comparisons performed by QuickSort in Coq, and used monad transformers to
elegantly separate reasoning about correctness and cost while still being able to
extract efficient code. Eberl [27] has recently mechanized a similar result, as well
as bounds on the expected depth and height of binary search trees [26]. Haslbeck
et al. [33] have verified expected height bounds for treaps, which requires mea-
sure theoretic probability because of the way that treap algorithms sample from
continuous distributions. See the overview by Eberl et al. [29] for a description of
the mechanizations from [26,27,33]. Eberl [28] also mechanized the Akra-Bazzi
theorem, a generalization of the Master Theorem for reasoning about determin-
istic divide and conquer recurrences.

More generally, multiple large developments of probability theory have been
carried out in several theorem provers, including large amounts of measure the-
ory [35,36], the Central Limit Theorem [4], Lévy and Hoeffding’s inequalities [24],
and information theory [1], to name just some of these results.

Verified Tail Bounds for Randomized Programs 575

6.2 Techniques for Bounds on Randomized Algorithms

There are a vast number of tools and results that have been developed for
analyzing properties of randomized algorithms; see [25,31,43,45] for expository
accounts of both simple and more advanced techniques. Different “cookbook”
methods like Karp’s also exist: Bazzi and Mitter [12] developed a variant of
the Akra-Bazzi master theorem for deriving asymptotic expectation bounds for
work recurrences. Roura [50] presented a master theorem that also applies to
recurrences like that of the expected work for QuickSort.

Chaudhuri and Dubhashi [22] extended the results of Karp [38] for unary
probabilistic recurrence relations by weakening some of the assumptions of
Theorem 1. Their proof used only “standard” techniques from probability theory
like Markov’s inequality and Chernoff bounds, so they argued that it is easier to
understand. Of course, this approach may be less beneficial for mechanization if
we do not have a pre-existing library of results.

7 Conclusion

We have described our mechanization of theorems by Karp [38] and Tassarotti
[51] that make it easier to obtain tail bounds for various probabilistic recurrence
relations arising in the study of randomized algorithms. To demonstrate the use
of these results, we have explained our verification of four example applications.
Moreover, we have shown that these results can be used to obtain concrete
numerical bounds, fully checked in Coq, for input sizes of practical significance.
To our knowledge, this is the first mechanization of these kinds of tail bounds
in a theorem prover.

In future work, it would be interesting to try to automate the inference of
the a, g1, and g2 functions used when applying Karp’s theorem. The resulting
deterministic recurrence could also probably be solved automatically, since more
complex recurrences have been analyzed automatically in related work (e.g.,
[21]). If these analyses are done as part of external tools, it would be useful
to be able to produce proof certificates that could be checked using the Coq
development we describe here, as in some other resource analysis tools [17,18].

It should also be possible to extend the applicability of our mechanization
by handling arbitrary probability distributions instead of finite ones. Moreover,
it may be possible to use tools like the probabilistic relational Hoare logic of
Barthe et al. [9] to prove suitable refinements between imperative randomized
algorithms and the functional versions we have analyzed here. This would allow
one to derive corresponding tail bounds on the imperative versions.

Acknowledgments. The authors thank Jean-Baptiste Tristan, Jan Hoffmann, Justin
Hsu, Guy Blelloch, Carlo Angiuli, Daniel Gratzer, Manuel Eberl, and the anonymous
reviewers of this work for their feedback. This research was conducted with U.S. Gov-
ernment support under and awarded by DoD, Air Force Office of Scientific Research,
National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR
168a. This work was also supported by a gift from Oracle Labs. Any opinions, findings

576 J. Tassarotti and R. Harper

and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of these organizations.

References

1. Affeldt, R., Hagiwara, M.: Formalization of Shannon’s theorems in SSReflect-Coq.
In: ITP, pp. 233–249 (2012)

2. Akra, M., Bazzi, L.: On the solution of linear recurrence equations. Comp. Opt.
Appl. 10(2), 195–210 (1998)

3. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589 (2009)

4. Avigad, J., Hölzl, J., Serafin, L.: A formally verified proof of the Central Limit
Theorem. CoRR abs/1405.7012 (2014). http://arxiv.org/abs/1405.7012

5. Barthe, G., Crespo, J.M., Grégoire, B., Kunz, C., Béguelin, S.Z.: Computer-aided
cryptographic proofs. In: ITP, pp. 11–27 (2012)

6. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic
invariants via Doob’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 43–61. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 3

7. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.: Proving uniformity and
independence by self-composition and coupling. In: LPAR (2017)

8. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.: A program logic for
union bounds. In: ICALP, pp. 107:1–107:15 (2016)

9. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In: POPL, pp. 90–101 (2009)

10. Barthe, G., Grégoire, B., Béguelin, S.Z.: Probabilistic relational hoare logics for
computer-aided security proofs. In: MPC, pp. 1–6 (2012)

11. Barthe, G., Grégoire, B., Hsu, J., Strub, P.: Coupling proofs are probabilistic prod-
uct programs. In: POPL, pp. 161–174 (2017)

12. Bazzi, L., Mitter, S.K.: The solution of linear probabilistic recurrence relations.
Algorithmica 36(1), 41–57 (2003)

13. Bentley, J.L., Haken, D., Saxe, J.B.: A general method for solving divide-and-
conquer recurrences. SIGACT News 12(3), 36–44 (1980)

14. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL (2004)

15. Blelloch, G., Greiner, J.: Parallelism in sequential functional languages. In: Pro-
ceedings of the 7th International Conference on Functional Programming Lan-
guages and Computer Architecture, pp. 226–237 (1995)

16. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real
analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015)

17. Carbonneaux, Q., Hoffmann, J., Reps, T., Shao, Z.: Automated resource analysis
with Coq proof objects. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 64–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63390-9 4

18. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: POPL, pp. 467–478 (2015)

19. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 34

http://arxiv.org/abs/1405.7012
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1007/978-3-642-39799-8_34

Verified Tail Bounds for Randomized Programs 577

20. Chatterjee, K., Fu, H., Murhekar, A.: Automated recurrence analysis for almost-
linear expected-runtime bounds. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 118–139. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 6

21. Chatterjee, K., Novotný, P., Zikelic, D.: Stochastic invariants for probabilistic ter-
mination. In: POPL, pp. 145–160 (2017)

22. Chaudhuri, S., Dubhashi, D.P.: Probabilistic recurrence relations revisited. Theor.
Comput. Sci. 181(1), 45–56 (1997)

23. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-
rithms, 3rd edn. MIT Press (2009). http://mitpress.mit.edu/books/introduction-
algorithms

24. Daumas, M., Lester, D., Martin-Dorel, É., Truffert, A.: Improved bound for
stochastic formal correctness of numerical algorithms. Innovations Syst. Softw.
Eng. 6(3), 173–179 (2010)

25. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press (2009). http://www.cambridge.
org/gb/knowledge/isbn/item2327542/

26. Eberl, M.: Expected shape of random binary search trees. Archive of Formal Proofs
2017 (2017). https://www.isa-afp.org/entries/Random BSTs.shtml

27. Eberl, M.: The number of comparisons in quicksort. Archive of Formal Proofs 2017
(2017). https://www.isa-afp.org/entries/Quick Sort Cost.shtml

28. Eberl, M.: Proving divide and conquer complexities in Isabelle/HOL. J. Autom.
Reasoning 58(4), 483–508 (2017)

29. Eberl, M., Haslbeck, M.W., Nipkow, T.: Verified analysis of random trees. In: ITP
(2018)

30. Fill, J.A., Mahmoud, H.M., Szpankowski, W.: On the distribution for the duration
of a randomized leader election algorithm. Ann. Appl. Probab. 6(4), 1260–1283
(1996)

31. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

32. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq system. Research Report RR-6455, Inria Saclay Ile de France (2016). https://
hal.inria.fr/inria-00258384

33. Haslbeck, M.W., Eberl, M., Nipkow, T.: Treaps. Archive of Formal Proofs (2018).
https://isa-afp.org/entries/Treaps.html

34. Hölzl, J.: Formalising semantics for expected running time of probabilistic pro-
grams. In: ITP, pp. 475–482 (2016)

35. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: ITP,
pp. 135–151 (2011)

36. Hurd, J.: Formal Verification of Probabilistic Algorithms. Ph.D. thesis. Cambridge
University, May 2003

37. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected run–times of probabilistic programs. In: Thiemann, P. (ed.)
ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49498-1 15

38. Karp, R.M.: Probabilistic recurrence relations. J. ACM 41(6), 1136–1150 (1994)
39. Karpinski, M., Zimmermann, W.: Probabilistic recurrence relations for parallel

divide-and-conquer algorithms. Technical report TR-91-067, International Com-
puter Science Institute (ICSI) (1991). https://www.icsi.berkeley.edu/ftp/global/
pub/techreports/1991/tr-91-067.pdf

https://doi.org/10.1007/978-3-319-63387-9_6
https://doi.org/10.1007/978-3-319-63387-9_6
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
https://www.isa-afp.org/entries/Random_BSTs.shtml
https://www.isa-afp.org/entries/Quick_Sort_Cost.shtml
https://hal.inria.fr/inria-00258384
https://hal.inria.fr/inria-00258384
https://isa-afp.org/entries/Treaps.html
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
https://www.icsi.berkeley.edu/ftp/global/pub/techreports/1991/tr-91-067.pdf
https://www.icsi.berkeley.edu/ftp/global/pub/techreports/1991/tr-91-067.pdf

578 J. Tassarotti and R. Harper

40. Kozen, D.: A probabilistic PDL. In: STOC, pp. 291–297 (1983)
41. Martin-Dorel, É., Melquiond, G.: Proving tight bounds on univariate expressions

with elementary functions in Coq. J. Autom. Reason. 57(3), 187–217 (2016)
42. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.: A new proof rule for almost-

sure termination. PACMPL 2(POPL), 33:1–33:28 (2018). http://doi.acm.org/10.
1145/3158121

43. Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press (2005)

44. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (1996)

45. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

46. Petcher, A., Morrisett, G.: The foundational cryptography framework. In: Focardi,
R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 53–72. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46666-7 4

47. Prodinger, H.: How to select a loser. Disc. Math. 120(1), 149–159 (1993)
48. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability

distributions. In: POPL, pp. 154–165 (2002)
49. Ramshaw, L.H.: Formalizing the Analysis of Algorithms. Ph.D. thesis. Stanford

University (1979)
50. Roura, S.: Improved master theorems for divide-and-conquer recurrences. J. ACM

48(2), 170–205 (2001)
51. Tassarotti, J.: Probabilistic recurrence relations for work and span of parallel algo-

rithms. CoRR abs/1704.02061 (2017). http://arxiv.org/abs/1704.02061
52. van der Weegen, E., McKinna, J.: A machine-checked proof of the average-case

complexity of quicksort in Coq. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.)
TYPES 2008. LNCS, vol. 5497, pp. 256–271. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02444-3 16

53. Young, N.: Answer to: Understanding proof of theorem 3.3 in Karp’s probabilistic
recurrence relations. Theoretical Computer Science Stack Exchange (2016). http://
cstheory.stackexchange.com/q/37144

http://doi.acm.org/10.1145/3158121
http://doi.acm.org/10.1145/3158121
https://doi.org/10.1007/978-3-662-46666-7_4
http://arxiv.org/abs/1704.02061
https://doi.org/10.1007/978-3-642-02444-3_16
https://doi.org/10.1007/978-3-642-02444-3_16
http://cstheory.stackexchange.com/q/37144
http://cstheory.stackexchange.com/q/37144

Verified Memoization and Dynamic
Programming

Simon Wimmer(B) , Shuwei Hu , and Tobias Nipkow

Fakultät für Informatik, Technische Universität München, Munich, Germany
wimmers@in.tum.de

Abstract. We present a lightweight framework in Isabelle/HOL for the
automatic verified (functional or imperative) memoization of recursive
functions. Our tool constructs a memoized version of the recursive func-
tion and proves a correspondence theorem between the two functions. A
number of simple techniques allow us to achieve bottom-up computation
and space-efficient memoization. The framework’s utility is demonstrated
on a number of representative dynamic programming problems.

1 Introduction

Verification of functional properties of programs is most easily performed on
functional programs. Performance, however, is more easily achieved with imper-
ative programs. One method of improving performance of functional algo-
rithms automatically is memoization. In particular dynamic programming is
based on memoization. This paper presents a framework and a tool [24] (for
Isabelle/HOL [16,17]) that memoizes pure functions automatically and proves
that the memoized function is correct w.r.t. the original function. Memoization
is parameterized by the underlying memory implementation which can be purely
functional or imperative. We verify a collection of representative dynamic pro-
gramming algorithms at the functional level and derive efficient implementations
with the help of our tool. This appears to be the first tool that can memoize
recursive functions (including dynamic programming algorithms) and prove a
correctness theorem for the memoized version.

1.1 Related Work

Manual memoization has been used in specific projects before, e.g. [3,21], but
this did not result in an automatic tool. One of the few examples of dynamic pro-
gramming in the theorem proving literature is a formalization of the CYK algo-
rithm where the memoizing version (using HOL functions as tables) is defined
and verified by hand [2]. In total it requires 1000 lines of Isabelle text. Our
version in Sect. 3.4 is a mere 120 lines and yields efficient imperative code.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 579–596, 2018.
https://doi.org/10.1007/978-3-319-94821-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_34&domain=pdf
http://orcid.org/0000-0001-5998-4655
http://orcid.org/0000-0002-1819-3723
http://orcid.org/0000-0003-0730-515X

580 S. Wimmer et al.

Superficially very similar is the work by Itzhaky et al. [9] who present a sys-
tem for developing optimized DP algorithms by interactive, stepwise refinement
focusing on optimizations like parallelization. Their system contains an ad-hoc
logical infrastructure powered by an SMT solver that checks the applicability
conditions of each refinement step. However, no overall correctness theorem is
generated and the equivalent of our memoization step is performed by their
backend, a compiler to C++ which is part of the trusted core.

We build on existing infrastructure in Isabelle/HOL for generating executable
code in functional and imperative languages automatically [1,6,7].

2 Memoization

2.1 Overview

The workhorse of our framework is a tool that automatically memoizes [15] recur-
sive functions defined with Isabelle’s function definition command [11]. More
precisely, to memoize a function f , the idea is to pass on a memory between
invocations of f and to check whether the value of f for x can already be found
in the memory whenever f x is to be computed. If f x is not already present in
the memory, we compute f x using f ’s recursive definition and store the result-
ing value in the memory. The memory is threaded through with the help of a
state monad. Starting from the defining equations of f , our algorithm produces a
version f ′

m that is defined in the state monad. The only place where the program
actually interacts with the state is on recursive invocations of f ′

m. Each defining
equation of f of the form

f x = t

is re-written to

f ′
m x =m tm

where tm is a version of t defined in the state monad. The operator =m encapsu-
lates the interaction with the state monad. Given x, it checks whether the state
already contains a memoized value for f x and returns that or runs the compu-
tation tm and adds the computed value to the state. Termination proofs for f ′

m

are replayed from the termination proofs of f . To prove that f still describes the
same function as f ′

m, we use relational parametricity combined with induction.
The following subsections will explain in further detail each of the steps involved
in this process: monadification (i.e. defining f ′

m in the state monad), replaying the
termination proof, proving the correspondence of f and f ′

m via relational para-
metricity, and implementing the memory. Moreover, we will demonstrate how
this method can be adopted to also obtain a version fh that is defined in the heap
monad of Imperative HOL [4] and allows one to use imperative implementations
of the memory.

Verified Memoization and Dynamic Programming 581

2.2 Monadification

We define the state monad with memory of type ′m and pure (result) type ′a:

datatype (′m, ′a) state = State (run state : ′m → ′a × ′m).

That is, given an initial state of type ′m, a computation in the state monad
produces a pair of a computation result of type ′a and a result state (of type
′m). To make type (′m, ′a) state a monad, we need to define the operators
return (〈-〉) and bind (�=):

return :: ′a → (′m, ′a) state
bind :: (′m, ′a) state → (′a → (′m, ′b) state) → (′m, ′b) state

〈a〉 = State (λM. (a,M))
s �= f = State (λM. case run state s M of (a,M ′) ⇒ run state (f a) M ′)

The definition of �= describes how states are threaded through the program.
There are a number of different styles of turning a purely functional program

into a corresponding monadified version (see e.g. [5]). We opt for the call-by-
value monadification style from [8]. This style of monadification has two distinct
features: it fixes a strict call-by-value monadification order and generalizes suit-
ably to higher-order functions. The type M(τ) of the monadified version of a
computation of type τ can be described recursively as follows:

M(τ) = (′m,M ′(τ)) state

M ′(τ1 → τ2) = M ′(τ1) → M(τ2)
M ′(τ1 ⊕ τ2) = M ′(τ1) ⊕ M ′(τ2) where ⊕ ∈ {+,×}

M ′(τ) = τ otherwise

As a running example, consider the map function on lists. Its type is

(′a → ′b) → (′a list → ′b list)

and its monadified version mapm has type

(′m, (′a → (′m, ′b) state) → (′m, ′a list → (′m, ′b list) state) state) state.

The definitions of mapm and map′
m are

mapm = 〈λf ′
m. 〈λxs. map′

m f ′
m xs〉〉

map′
m f ′

m [] = 〈[]〉
map′

m f ′
m (Cons x xs) = Consm • (〈f ′

m〉 • 〈x〉) • (map′
m • 〈f ′

m〉 • 〈xs〉)
Consm = 〈λ x. 〈λ xs. 〈Cons x xs〉〉〉

582 S. Wimmer et al.

compared to map:

map f [] = []
map f (Cons x xs) = Cons (f x) (map f xs).

As can be seen in this definition, the idea of the translation is to wrap up all
bound variables in a return, to replace function application with the “•”-operator
(see below), and to replace constants by their corresponding monadified versions.
The combinator map′

m follows the recursive structure of map and combinator
mapm lifts map′

m from type M ′(τ) to M(τ) where τ is the type of map.
The lifted function application operator “•” simply uses �= to pass along

the state:
fm • xm = fm �= (λf. xm �= f).

Our monadification algorithm can be seen as a set of rewrite rules, which are
applied in a bottom-up manner. The algorithm will maintain a mapping Γ from
terms to their corresponding monadified versions. If we monadify an equation
of the form f x = t into f ′

m x ′
m = tm1, then the initial mapping Γ0 includes the

bindings f 	→ 〈f ′
m〉 and x 	→ 〈x ′

m〉. Let Γ
 t � tm denote that t is monadified to
tm given Γ . Moreover, we say that a term is Γ -pure if none of its subterms are
in the domain of Γ . Our monadification rules are the following:

e :: τ0 → τ1 → . . . → τn e is Γ -pure ∀i. M ′(τi) = τi

Γ
 e � 〈λt0. 〈λt1. · · · 〈λtn−1. e t0 t1 · · · tn−1〉 · · ·〉〉 Pure

Γ [x 	→ 〈x ′
m〉]
 t � tm

Γ
 (λx :: τ . t) � 〈λx ′
m ::M ′(τ). tm〉 λ

Γ
 e � em Γ
 x � xm
Γ
 (e x) � (em • xm)

App

g ∈ domΓ

Γ
 g � Γ (g)
Γ

The rules are ordered from highest to lowest priority.
An additional rule specifically treats case-expressions:

g is a case-combinator with n branches
Γ
 t1 �η t′1 . . . Γ
 tn �η t′n

Γ
 g t1 . . . tn � 〈g t′1 . . . t′n〉 Comb

Here Γ
 t �η t′ denotes that t is fully η-expanded to λx1 . . . xk. s first, and if
Γ [x1 	→ 〈x′

1〉, . . . , xk 	→ 〈x′
k〉]
 s � s′, then Γ
 t �η λx′

1 . . . x′
k. s′. The value

that is subject to the case analysis is another argument tn+1, and the arguments
to t1, . . . , tn are produced by the case-combinator.

As an example, consider the following unusual definition of the Fibonacci
sequence:

fib n = 1 + sum ((λf. map f [0..n − 2])fib) .

1 If f has type τ1 → · · · → τn and x has type τ , the variables f ′
m and xm are assumed

to have types M ′(τ1) → · · · → M ′(τn) and M(τ), respectively. For a term x :: τ that
satisfies M ′(τ) = τ , x and x ′

m are used interchangeably.

Verified Memoization and Dynamic Programming 583

Its right-hand side can be transformed via the following derivation:

· · ·

map ∈ domΓ ′

Γ ′
 map � mapm

Γ
f ∈ domΓ ′

Γ ′
 f � 〈f ′
m〉 Γ [0..n − 2] � . . .

�

〈λf ′
m. mapm•〈f ′

m〉•(�)〉 λ
fib

〈fib′
m〉 Γ

Γ
 fib n � 〈λx. 〈1 + x〉〉•(〈λxs. 〈sum xs〉〉•(〈λf ′
m. mapm•〈f ′

m〉•(. . .)〉•〈fib′
m〉))

([..]) 0
〈λr. 〈[0..r]〉〉 Pure

(−)
〈λx. 〈λy. 〈x − y〉〉〉 Pure

n
〈n ′

m〉 Γ
2

〈2〉 Pure

[0..n − 2] � 〈λr. 〈[0..r]〉〉•(〈λx. 〈λy. 〈x − y〉〉〉•〈n ′
m〉•〈2〉) =: �

where Γ ′ = Γ [f 	→ 〈f ′
m〉] and Γ = [fib 	→ 〈fib′

m〉,n 	→ 〈n ′
m〉]. Parts of the

derivation tree have been elided, and the left-hand side and Γ have been left
out where they are clear from the context. A double line represents multiple
applications of the App-rule. Note that the term λf. map f [0..n−2] falls through
the Pure-rule before being processed by the λ-rule. This is because the bound
variable f has the function type τ = int → int, which means M ′(τ) = τ .

2.3 Reasoning with Parametricity

We want to use relational parametricity [19,22] to prove the correspondence
between a program and its memoized version. A memory m is said to be con-
sistent with a pure function f :: ′a → ′r, if it only memoizes actual values of f :
if m maps a to r, then r = f a. We will use a relation ⇓R v s to assert that,
given a consistent state m, run state s m will produce a consistent state and
a computation result v′ with R v v′. Formally, ⇓ is defined with respect to the
function f that we want to memoize, and an invariant invm on states:

⇓R v s = ∀m. cmem m ∧ invm m −→
(case run state s m of (v′, m′) ⇒ R v v′ ∧ cmem m′ ∧ invm m′)

where cmem m expresses that m is consistent with f and invm m expresses that
m correctly represents a memory. Using the function relator

R ��� S = λf g. ∀x y. R x y −→ S (f x) (g y),

one can state the parametricity theorems for our fundamental monad combina-
tors as (the relations can be understood as types):

(R ��� ⇓R) (λx. x) return

(⇓R ��� (R ��� ⇓S) ��� ⇓S) (λv g. g v) (�=)
(⇓(R��� ⇓S) ��� ⇓R ��� ⇓S) (λ g x. g x) (•).

To prove the parametricity theorem, e.g. for map and map′
m, one needs only

the first and third property, and the parametricity theorems for all previously
monadified constants that appear in map and map′

m.

584 S. Wimmer et al.

To prove the correspondence theorem for a monadification result, we use
induction (following the recursion structure of the monadified function) together
with parametricity reasoning.

Automating this induction proof is non-trivial. The reason is that the func-
tion definition command uses an elaborate extraction procedure based on congru-
ence rules [11,20] to extract recursive function calls and a surrounding context,
which is used to prove termination of the function and to prove the induction
theorem. This may lead to complex (and necessary) assumptions in the induc-
tion hypotheses that specify for which sets of function arguments the hypotheses
are valid. The challenge is to integrate the specific format of these assumptions
with parametricity reasoning.

To combat this problem, we opt for a more specialized approach that per-
forms an induction proof by exploiting parametricity but that goes beyond the
infrastructure that is provided by Isabelle’s integrated parametricity reasoning
facility [12]. The main difference is that we use special variants of parametric-
ity theorems that resemble the structure of the congruence theorems used by
the function definition command. These produce the right pre-conditions to dis-
charge the induction hypotheses.

Consider the fib function defined at the end of Sect. 2.2. Both its termination
and its generated induction rule are based on the information that fib n can call
fib x only if x is between 0 and n − 2. This information is extracted with the
help of this congruence rule:

xs = ys ∀x. x ∈ set ys −→ f x = g x

(map f xs) = (map g ys)
map cong

Similarly, for the monadified version fib′
m, its recursive calls are extracted by a

pre-registered congruence rule:

xs = ys ∀x. x ∈ set ys −→ f ′
m x = g ′

m x

(mapm • 〈f ′
m〉 • 〈xs〉) = (mapm • 〈g ′

m〉 • 〈ys〉) mapm cong

After initiating the induction proof of the correspondence theorem with our
tool, we are left with a goal that grants us the induction hypothesis

∀x. x ∈ set [0, . . . , n − 2] −→ ⇓= (fib x) (fib′
m x)

and asks us to prove

⇓list all2 (=) (map fib [0, . . . , n − 2]) (mapm • 〈fib′
m〉 • 〈[0, . . . , n − 2]〉)

where list all2 S compares two lists of equal length elementwise by relation S. To
solve this goal, our tool will apply another pre-registered parametricity theorem
for map and mapm (which is derived from mapm cong following a canonical
pattern):

xs = ys ∀x. x ∈ set ys −→ ⇓S (f x) (f ′
m x)

⇓list all2 S (map f xs) (mapm • 〈f ′
m〉 • 〈ys〉) map mapm

It generates the same pre-condition as the congruence rule and yields a goal
that exatcly matches the aforementioned induction hypothesis.

Verified Memoization and Dynamic Programming 585

2.4 Termination

When monadifying a recursive function f that was defined with the function
definition command [11], we need to replay the termination proof of f to define
f ′
m. The termination proof—whether automatic or manual—relies on exhibiting a
well-founded relation that is consistent with the recursive function calls of f . To
capture the latter notion, the function definition command defines a relation f rel
between values in the domain of f . The idea for replaying the termination proof
is that f and f ′

m share the same domain and the same structure of recursive
function calls. Thus, one tries to prove f rel = f ′

m rel , and if this succeeds,
the termination relation for f is also compatible with the one for f ′

m, yielding
termination of f ′

m.
However, the structure of f rel is sometimes too dissimilar to f ′

m rel , and
thus an automated proof of the equality fails. The main reason for that is that
monadification can reorder the control flow and thus can alter the order in which
the function definition commands encounters the recursive function calls when
analyzing f ′

m rel . Moreover, sometimes a congruence rule is unnecessarily used
while defining f , causing our tool to fail if a corresponding parametric version
has not been registered with our tool. In such cases, we try to fall back to
the automated termination prover that is provided by the function definition
command.

2.5 Technical Limitations

While the monadification procedure that was presented in the previous sec-
tions is designed to run automatically, it is not universally applicable to any
Isabelle/HOL function without previous setup. This encompasses the following
limiations:

– As outlined above, higher-order combinators such as map generally need to be
pre-registered together with their corresponding congruence and parametric-
ity theorems.

– Just like Isabelle’s function definition command, our tool relies on a context
analysis for recursive calls. If we define (note the id)

fib n = 1 + sum (id (λf. map f [0..n − 2])fib)

it becomes impossible to prove termination with the function definition com-
mand because the information that recursive calls happen only on values
between 0 and n − 2 is lost, and similarly our parametricity reasoner fails.

– Currently, our parametricity reasoner can only prove goals of the form

(R ��� S)(λx. f x)(λy. g y)

if Isabelle’s built-in parametricity reasoner can automatically show R = (=).
We plan to relax this limitation in the future.

Nevertheless, our tool works fully automatically for our case studies consist-
ing of functions on lists and numbers that involve different higher-order combi-
nators and non-trivial termination proofs.

586 S. Wimmer et al.

2.6 Memoization

Compared to monadification, memoization of a program simply differs by replac-
ing = in each defining equation by =m of type

(′a → (′m, ′r) state) × ′a → (′m, ′r) state → bool.

The memoized version of a function of type ′a → ′r then is of type ′a → M ′(′r)
where ′a should not contain function types. This seems to work only for functions
with exactly one argument but our tool will automatically uncurry the function
subject to memoization whenever necessary.

Concerning the memory type ′m, we merely assume that it comes with two
functions with the obvious intended meaning:

lookup :: ′a → (′m, ′r option) state

update :: ′a → ′r → (′m,unit) state

We use a memoizing operation retrieve or run to define =m:
(
(f ′
m, x) =m t

)
=

(
f ′
m x = retrieve or run x (λ . t)

)

retrieve or run x t′ = lookup x �=
(
λr. case r of

Some v ⇒ 〈v〉
| None ⇒ t′ () �= (λv. update x v �= λ . 〈v〉)).

Note that it is vital to wrap the additional λ-abstraction around t: otherwise
call-by-value evaluation would build up a monadic expression that eagerly follows
the full recursive branching of the original computation before any memoization
is applied.

In order to specify the behavior of lookup and update we define an abstraction
function map of :: ′m → ′a → ′r option that turns a memory into a function:

map of heap k = fst (run state (lookup k) heap).

To guarantee that retrieve or run always produces a consistent memory,
lookup k should never add to the mapping, and update k v should add at most
the mapping k 	→ v. (We will exploit the permissiveness of this specification in
Sect. 2.9.) Formally, for all m with invm m:

map of (snd (run state (lookup k) m)) ⊆m map of m

map of (snd (run state (update k v) m)) ⊆m (map of m)(k 	→ v)

where (m1 ⊆m m2) ←→ (∀a ∈ dom m1. m1 a = m2 a). Additionally, invm
is required to be invariant under lookup and update. This allows us to prove
correctness of retrieve or run:

⇓= (f x) s −→ ⇓= (f x) (retrieve or run x s).

Verified Memoization and Dynamic Programming 587

Given that this is not a parametricity theorem, our method to inductively prove
parametricity theorems for memoized functions needs to treat equations defined
via =m specially before parametric reasoning can be initiated.

From the correctness of retrieve or run and the correspondence theorem for
f ′
m we can derive correctness of f ′

m:

⇓= (f x) (f ′
m x).

As a corollary, we obtain:

run state (f ′
m x) empty = (v, m) −→ f x = v ∧ cmem m.

A simple instantiation of our memory interface can be given with the help of the
standard implementation of mappings via red-black trees in Isabelle/HOL.

2.7 Imperative Memoization

This section outlines how our approach to monadification and memoization can
be extended from a purely functional to an imperative memory implementation.
Imperative HOL [4] is a framework for specifying and reasoning about imperative
programs in Isabelle/HOL. It provides a heap monad

datatype ′a Heap = Heap (execute : heap → (′a × heap) option)

in which imperative programs can be expressed. The definition shows that the
heap monad merely encapsulates a state monad (specialized to heaps) in an
option monad to indicate failure. Our approach is simple: assuming that none
of the operations in the memoized program fail (failures could only arise from
lookup or update), the heap monad is equivalent to a state monad. This can be
stated formally, where invh is a heap invariant:

⇓h
R fm fh = ∀ heap. invh heap −→

(case run state fm heap of (v1, heap1) ⇒ case execute fh heap of
Some (v2, heap2) ⇒ R v1 v2 ∧ heap1 = heap2 ∧ invh heap2

| None ⇒ False)

One could now be tempted to combine ⇓ and ⇓h into a relation between pure
values and the heap monad by defining ⇓′ as a composition of the two:

⇓′
R = ⇓R ◦◦ ⇓h

=

where ◦◦ is the composition of binary relations. However, this would prohibit
proving the analogue of the parametricity theorem for �=. The reason is that
⇓′ would demand too strong a notion of non-failure: computations are never
allowed to fail, no matter whether we start the computation with a consistent
state or not. Instead we use a weaker notion (analogous to ⇓)

⇓′
R v fh = ∀heap. invm heap ∧ invh heap ∧ cmem heap −→

(case execute fh heap of None ⇒ False
| Some (v′, heap′) ⇒ invm heap′ ∧ invh heap′ ∧ R v v′ ∧ cmem heap′)

588 S. Wimmer et al.

where invm and invh correspond to ⇓ and ⇓h, respectively. The advantage is
that one can prove

(⇓R ◦◦ ⇓h
=) v fh =⇒ ⇓′

R v fh,

to exploit compositionality where necessary, while still obtaining the analogous
theorems for the elementary monad combinators (though not through reasoning
via compositionality for �=). Using ⇓′

R instead of ⇓R, one can now use the same
infrastructure for monadification and parametricity proofs to achieve imperative
memoization.

2.8 Bottom-up Computation

In a classic imperative setting, dynamic programming algorithms are usually
not expressed as recursive programs with memoization but rather as a com-
putation that incrementally fills a table of memoized values according to some
iteration strategy (typically in a bottom-up manner), using the recurrences to
compute new values. The increased control over the computation order allows
one to reduce the size of the memory drastically for some dynamic programming
algorithms—examples of these can be found below. We propose a combination of
two simple techniques to accomplish a similar behaviour and memory efficiency
within our framework. The first, which is described in this section, is a notion
of iterators for computations in the state monad that allows one to freely spec-
ify the computation order of a dynamic program. The second is to exploit our
liberal interface for memories to use implementations that store only part of the
previously seen computation results (to be exemplified in the next section).

Our interface for iterators consists of two functions cnt :: ′a → bool and
nxt :: ′a → ′a that indicate whether the iterator can produce any more ele-
ments and yield the next element, respectively. We can use these to iterate a
computation in the state monad:

iter state f = wfrec {(nxt x, x) | cnt x}
(λrec x. if cnt x then f x �= (λ . rec (nxt x)) else 〈()〉)

where wfrec takes the well-founded termination relation as its first argument.
Given a size function on the iterator value, we can prove termination if

finite {x | cnt x} and ∀ x. cnt x −→ size x < size (nxt x).

Provided that a given iteration strategy terminates in this sense, we can use it
to compute the value of a memoized function:

(= ��� ⇓R) g f −→ ⇓R (g x) (iter state cnt nxt f x �= (λ . f x)).

As an example, a terminating iterator that builds up a table of n rows and m
columns in a row-by-row, left-to-right order can be specified as:

size (x, y) = x ∗ (m + 1) + y
cnt (x, y) = x ≤ n ∧ y ≤ m
nxt (x, y) = if y < m then (x, y + 1) else (x + 1, 0)

Verified Memoization and Dynamic Programming 589

If the recursion pattern of f is consistent with nxt, the stack depth of the
iterative version is at most one because every recursive call is already memoized.

2.9 Memory Implementations

To achieve a space-efficient implementation for the Minimum-Edit Distance
problem or the Bellman-Ford algorithm, one needs to complement the bottom-
up computation strategy from the last section with a memory that stores only
the last two rows. We will showcase how such a memory can be implemented
generically within our framework, and how to exploit compositionality to get an
analogous imperative implementation without repeating the correctness proof.

Abstractly, we will implement a mapping ′k → ′v option and split up ′k
using two key functions key1 :: ′k → ′k2 and key2 :: ′k → ′k1. We demand that
together, they are injective:

∀k k′. key1 k = key1 k′ ∧ key2 k = key2 k′ −→ k = k′.

For a rectangular memory, for instance, key1 and key2 could map a key to its
row and column index. We use two pairs of lookup and update functions, (l1, u1)
and (l2, u2) to implement the memory for the two rows. We also store the row
keys k1 and k2 that the currently stored values correspond to in the memory.

For the verification it is crucial that we have previously introduced a memory
invariant. The invariant states that k1 and k2 are different, and that the first and
second row only store key-value pairs that correspond to k1 and k2, respectively.
The main additional insight that is used in the correctness proof for this memory
implementation is the following monotonicity lemma, where ∪m denotes map
union:

(m1 ∪m m2) ⊆m (m′
1 ∪m m′

2)
if m1 ⊆m m′

1, m2 ⊆m m′
2, and dom m1 ∩ dom m′

2 = {}.
We now extend this formalization towards an imperative implementation that

stores the two rows as arrays. To this end, assume we are also given a function
idx of :: ′k2 → nat with

mem update k v = (let i = idx of f k in

if i < size then (Array.upd i (Some v) mem �= (λ . return ()))
else return ()

To verify this implementation, we wrap lookup, update, and move in

state of s = State (λ heap. the (execute s heap))

where the (Some x) = x, and prove that these correctly implement the interface
for the previous implementation in the state monad. As the second step, one
relates—via parametricity reasoning—this implementation with an implementa-
tion in the heap monad, where lookup, update and move are used without the
state of wrapper: we can prove ⇓h

= (state of m) m if m never fails and preserves
the memory invariant.

590 S. Wimmer et al.

3 Examples

This section presents five representative but quite different examples of dynamic
programming. We have also applied the tool to further examples that are not
explained here, for instance the optimal binary search tree problem [18] and
the Viterbi algorithm [23]. For the first example, Bellman-Ford, we start with a
recursive function, prove its correctness and refine it to an imperative memoized
algorithm with the help of the automation described above. Because the refine-
ment steps are automatic and the same for all examples, they are not shown for
the other examples.

The examples below employ lists: x · xs is the list with head x and tail xs;
xs @ ys is the concatenation of the lists xs and ys; xs ! i is the ith element of xs;
[i..j] is the list of integers from i to j, and similarly for the set {i..j}; slice xs i j
is the sublist of xs from index i (starting with 0) to (but excluding) index j.

For the verification of the Knapsack problem and the Bellman-Ford algo-
rithm, we followed Kleinberg and Tardos [10]. In both cases, the crucial part of
the correctness argument involves a recurrence of the form

OPT (Suc n) t1 . . . tk = Π{u1, . . . , um}
where each of the ui involve terms of the form OPT n and Π ∈ {Min,Max}.
We prove this equality by proving two inequalities (≤, ≥). The easier direction
is the one where we just need to show that the left-hand side covers all the
solutions that are covered by the right-hand side. This direction is not explicitly
covered in the proof by Kleinberg and Tardos. For the other direction, we first
prove that the unique minimum or maximum exist and then analyze the solution
that computes the minimum or maximum, directly following the same kind of
argument as Kleinberg and Tardos.

3.1 Bellman-Ford Algorithm

The Bellman-Ford Algorithm solves the single-destination shortest path problem
(and the single-source shortest path problem by reversing the edges): given nodes
1, . . . , n, a sink t ∈ {1, . . . , n}, and edge weights W ::nat → nat → int, we have
to compute for each source v ∈ {1, . . . , n} the minimum weight of any path
from v to t. The main idea of the algorithm is to consider paths in the order
of increasing path length. Thus we define OPT i v as the weight of the shortest
path leading from v to t, and using at most i edges:

OPT i v = Min ({if t = v then 0 else ∞} ∪
{weight (v · xs) | length xs + 1 ≤ i ∧ set xs ⊆ {0..n}}).

If OPT (n + 1) s = OPT n s for all s ∈ {1, . . . , n}, then there is no cycle of
negative weight (from which t can be reached), and OPT n represents shortest
path lengths. Otherwise, we know that there is a cycle of negative weight.

Following Kleinberg and Tardos, we prove

OPT (Suc i) v = min (OPT i v) (Min {OPT i w + W v w | w. w ≤ n}),

Verified Memoization and Dynamic Programming 591

yielding a recursive solution (replacing sets by lists):

BF 0 j = (if t = j then 0 else ∞)
BF (Suc k) j = min list (BF k, j · [W j i + BF k, i . i ← [0..n]]).

Applying our tool for memoization, we get:

BFm
′ 0 j =m if m 〈t = j〉 〈0〉 〈∞〉

BFm
′ (Suc k) j =m 〈λxs. 〈min list xs〉〉 • (〈λx. 〈λxs. 〈x · xs〉〉〉 • BFm

′ k j •

(mapm • 〈λi. 〈λx. 〈W j i + x〉〉 • BFm
′ k i〉 • 〈[0..n]〉)).

Using the technique described in Sect. 2.8, we fill the table in the order
(0, 0), (0, 1), . . . , (n, 0), . . . , (n, n). The pairwise memory implementation from
Sect. 2.9 is used to only store two rows corresponding to the first part of the
pair, which are in turn indexed by the second one. Together, this yields a pro-
gram that can compute the length of the shortest path in O(n) space. The final
correctness theorem for this implementation is (with explicit context parameters
n and W):

BF n W t i j = fst (run state
(iter BF n W t (i, j) �= (λ . BFm

′ n W t i j)) Mapping .empty).

Isabelle can be instructed to use this equation when generating code for BF.
Thus the efficient implementation becomes completely transparent for the user.

Lastly, we can choose how to implement the parameter for the edge weights
W . A common graph representation are adjacency lists of type (nat×int) list list
that contain for each node v an association list of pairs of a neighbouring node
and the corresponding edge weight. To obtain an efficient implementation, the
outer list can be realized with Isabelle’s immutable arrays. They come with a
function IArray that maps ′a list to an immutable array and with the infix !!
array subscript function. Thus we can transform a list into an immutable array
first and then run the Bellman-Ford algorithm:

BF ia n W t i j = (let W ′ = graph of (IArray W) in fst (run state
(iter BF n W ′ t (i, j) �= (λ . BFm

′ n W ′ t i j))
Mapping .empty))

graph of a i j = case find (λp. fst p = j) (a !! i) of
None ⇒ ∞ | Some x ⇒ snd x.

Note that the defining equation for BFh
′ looks exactly the same as for BFm

′

but for different underlying constants for the heap monad. For imperative mem-
oization, the final theorems for BF or BF ia would just differ in that run state
would be replaced by execute and the initial memory would be replaced by a
correctly initialized empty heap memory.

3.2 Knapsack Problem

In the Knapsack Problem, we are given n items 1, . . . , n, a weight assignment
w ::nat → nat, and a value assignment v ::nat → nat. Given a Knapsack, which

592 S. Wimmer et al.

can carry at most weight W, the task is to compute a selection of items that fits
in the Knapsack and maximizes the total value. Thus we define:

OPT n W = Max

{
∑

i∈S

v i

∣
∣
∣
∣ S ⊆ {1..n} ∧

∑

i∈S

w i ≤ W

}

.

Again following Kleinberg and Tardos, we prove:

OPT (Suc i) W = (if W < w (Suc i) then OPT i W
else max (v (Suc i) + OPT i (W − w (Suc i))) (OPT i W)).

This directly yields the following recursive solution:

knapsack 0 W = 0
knapsack (Suc i) W = (if W < w (Suc i) then knapsack i W

else max (knapsack i W) (v (Suc i) + knapsack i (W − w (Suc i)))).

Like Bellman-Ford, the algorithm can be memoized using a bottom-up compu-
tation and a memory, which stores only the last two rows. However, the algo-
rithm’s running time and space consumption are still exponential in the input
size, assuming a binary encoding of W .

3.3 A Counting Problem

A variant of Project Euler problem #1142 was posed in the 2018 edition of the
“VerifyThis” competition3 [14]. We consider a row consisting of n tiles, which can
be either red or black, and we impose the condition that red tiles only come in
blocks of three consecutive tiles. We are asked to compute count(n), the number
of valid rows of size n. This is an example of counting problems that can be
solved with memoization.

Besides the base cases count(0) = count(1) = count(2) = 1, and count(3) =
2, one gets the following recursion:

count(n) = count(n − 1) + 1 +
n−1∑

i=3

count(n − i − 1) if n > 3.

These equations directly yield a recursive functional solution, which can be mem-
oized as described for the examples above. The reasoning to prove the main
recursion, however, is different. We define

count(n) = card {l | length l = n ∧ valid l}
where valid is an inductively defined predicate describing a well-defined row. The
reasoning trick is to prove the following case analysis on the validity of a single
row

valid l ←→ l = [] ∨ (l ! 0 = B ∧ valid (tl l)) ∨
length l ≥ 3 ∧ (∀i < length l. l ! i = R) ∨

2 https://projecteuler.net/problem=114.
3 http://www.pm.inf.ethz.ch/research/verifythis.html.

https://projecteuler.net/problem=114
http://www.pm.inf.ethz.ch/research/verifythis.html

Verified Memoization and Dynamic Programming 593

that is then used to split the defining set of count(n) into disjoint subsets that
correspond to the individual terms on the right-hand side of the recursion.

3.4 The Cocke-Younger-Kasami Algorithm

Given a grammar in Chomsky normal form, the CYK algorithm computes the set
of nonterminals that produce (yield) some input string. We model productions
in Chomsky normal form as pairs (A, r) of a nonterminal A and a r.h.s. r that is
either of the form T a, where a is a terminal (of type ′t), or NN B C, where B and
C are nonterminals (of type ′n). Below, P :: (′n, ′t) prods is a list of productions.
The yield of a nonterminal is defined inductively as a relation:

(A, T a) ∈ set P
yield P A [a]

(A, NN B C) ∈ set P yield P B u yield P C v
yield P A (u @ v)

A functional programmer will start out with an implementation CYK ::
(′n, ′t) prods → ′t list → ′n list of the CYK algorithm defined by recursion on
lists and prove its correctness: set (CYK P w) = {N | yield P N w}. However,
memoizing the list argument leads to an inefficient implementation. An efficient
implementation can be obtained from a version of the CYK algorithm that
indexes into the (constant) list and memoizes the index arguments. Our starting
point is the following function CYK ix where w is not of type ′a list but an
indexing function of type nat → ′t . Isabelle supports list comprehension syntax:

CYK ix :: (′n, ′t) prods → (nat → ′t) → nat → nat → ′n list
CYK ix P w i 0 = []
CYK ix P w i (Suc 0) = [A . (A, T a) ← P , a = w i]
CYK ix P w i n =
[A. k ← [1..n−1], B ← CYK ix P w i k , C ← CYK ix P w (i+k) (n−k),

(A, NN B ′ C ′) ← P , B ′ = B , C ′ = C]

The correctness theorem (proved by induction) explains the meaning of the
arguments i and n:

set (CYK ix P w i n) = {N | yield P N (slice w i (i + n))}
As for Bellman-Ford, we obtain an imperative memoized version CYK ix ′

m

and a correctness theorem that relates it to CYK ix and parameter w is realized
by an immutable array.

3.5 Minimum Edit Distance

The minimum edit distance between two lists xs and ys of type ′a list is the
minimum cost of converting xs to ys by means of a sequence of the edit operations
copy, replace, insert and delete:

datatype ′a ed = Copy | Repl ′a | Ins ′a | Del

594 S. Wimmer et al.

The cost of Copy is 0, all other operations have cost 1. Function edit defines how
an ′a ed list transform one ′a list into another:

edit (Copy · es) (x · xs) = x · edit es xs
edit (Repl a · es) (· xs) = a · edit es xs
edit (Ins a · es) xs = a · edit es xs
edit (Del · es) (· xs) = edit es xs
edit [] xs = xs

We have omitted the cases where the second list becomes empty before the first.
This time we start from two functions defined by recursion on lists:

min ed :: ′a list → ′a list → nat
min eds :: ′a list → ′a list → ′a ed list

Function min ed computes the minimum edit distance and min eds :: ′a list →
′a list → ′a ed list computes a list of edits with minimum cost. We omit
their definitions. The relationship between them is trivial to prove:
min ed xs ys = cost (min eds xs ys). Therefore the following easy correctness
and minimality theorems about min eds also imply correctness and minimality
of min ed :

edit (min eds xs ys) xs = ys cost (min eds xs (edit es xs)) ≤ cost es

As for CYK, we define a function by recursion on indices

min ed ix :: (nat → ′a) → (nat → ′a) → nat → nat → nat → nat →nat
min ed ix xs ys m n i j =
(if m ≤ i then if n ≤ j then 0 else n − j
else if n ≤ j then m − i

else min list
[1 + min ed ix xs ys m n i (j + 1),
1 + min ed ix xs ys m n (i + 1) j ,
(if xs i = ys j then 0 else 1) +
min ed ix xs ys m n (i + 1) (j + 1)])

and prove that it correctly refines min ed : min ed ix xs ys m n i j = min ed
(slice xs i m) (slice ys j n). Although one can prove correctness of this indexed
version directly, the route via the recursive functions on lists is simpler.

As before we obtain an imperative memoized version min ed ix′
m and a cor-

rectness theorem that relates it to min ed ix.

4 Future Work

We plan to expand our work in two major directions in the future. Firstly, we
want to use our memoization tool to allow for other monads than the state and
the heap monad. The main task here is to find monads that play well with our
style of parametric reasoning. In simple monads such as reader or writer monads,

Verified Memoization and Dynamic Programming 595

the monadic operations do not interfere with the original computation, so they
fit well in this framework. For the state monad, we can give correspondence
proofs because we thread an invariant—values stored in the state are consistent
with the memoized functions—through our relations. For other monads, such as
an IO monad, it is less clear what these invariants would look like. Moreover, our
tool currently only adds monadic effects at recursive invocations of a function—
for other monads one would certainly want to insert these in other places, too.
This added flexibility would also allow us to save recursive function invocations in
memoized functions: instead of performing the memoization at the equality sign,
we could wrap memoization around each recursive invocation of the function.
Furthermore, this would allow one to memoize repeated applications of non-
recursive functions in the context of an enclosing function.

Our second goal is to integrate the memoization process with the Imperative
Refinement Framework [13]. It allows stepwise refinement of functional programs
and to replace functional by imperative data structures in a final refinement
step. The main obstacle here is that the framework already comes with its own
nondeterminism monad to facilitate refinement reasoning. This means that high-
level programs are already stated in terms of this monad. We have started work
to allow automated monadification of these programs by adding the state via a
state transformer monad.

Acknowledgments. Tobias Nipkow is supported by DFG Koselleck grant NI 491/
16-1. The authors would like to thank Andreas Lochbihler for a fruitful discussion on
monadification.

References

1. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z.,
McKinna, J., Pollack, R., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp.
24–40. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45842-5 2

2. Bortin, M.: A formalisation of the Cocke-Younger-Kasami algorithm. Archive of
Formal Proofs (2016). http://isa-afp.org/entries/CYK.html, Formal proof devel-
opment

3. Braibant, T., Jourdan, J., Monniaux, D.: Implementing and reasoning about
hash-consed data structures in Coq. J. Autom. Reasoning 53(3), 271–304 (2014).
https://doi.org/10.1007/s10817-014-9306-0

4. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71067-7 14

5. Erwig, M., Ren, D.: Monadification of functional programs. Sci. Comput. Pro-
gram. 52(1), 101–129 (2004). http://www.sciencedirect.com/science/article/pii/
S0167642304000486, special Issue on Program Transformation

6. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in
Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39634-2 10

https://doi.org/10.1007/3-540-45842-5_2
http://isa-afp.org/entries/CYK.html
https://doi.org/10.1007/s10817-014-9306-0
https://doi.org/10.1007/978-3-540-71067-7_14
http://www.sciencedirect.com/science/article/pii/S0167642304000486
http://www.sciencedirect.com/science/article/pii/S0167642304000486
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-642-39634-2_10

596 S. Wimmer et al.

7. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-
4 9

8. Hatcliff, J., Danvy, O.: A generic account of continuation-passing styles. In: Conf.
Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 458–471 (1994), http://doi.acm.org/10.1145/174675.
178053

9. Itzhaky, S., Singh, R., Solar-Lezama, A., Yessenov, K., Lu, Y., Leiserson, C.,
Chowdhury, R.: Deriving divide-and-conquer dynamic programming algorithms
using solver-aided transformations. In: Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, pp. 145–164. ACM (2016). http://doi.acm.org/
10.1145/2983990.2983993

10. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley (2006)
11. Krauss, A.: Automating recursive definitions and termination proofs in higher-

order logic. Ph.D. thesis, Technical University Munich (2009). http://mediatum2.
ub.tum.de/doc/681651/document.pdf

12. Kuncar, O.: Types, abstraction and parametric polymorphism in higher-order logic.
Ph.D. thesis, Technical University Munich, Germany (2016). http://nbn-resolving.
de/urn:nbn:de:bvb:91-diss-20160408-1285267-1-5

13. Lammich, P.: Refinement to Imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 253–269. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22102-1 17

14. Lammich, P., Wimmer, S.: VerifyThis 2018 – Polished Isabelle solutions. Archive of
Formal Proofs, April 2018. http://isa-afp.org/entries/VerifyThis2018.html, Formal
proof development

15. Michie, D.: Memo functions and machine learning. Nature 218, 19–22 (1968)
16. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer, Cham

(2014). https://doi.org/10.1007/978-3-319-10542-0. http://concrete-semantics.org
17. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.

Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9
18. Nipkow, T., Somogyi, D.: Optimal binary search tree. Archive of Formal Proofs

(2018). http://isa-afp.org/entries/Optimal BST.html, Formal proof development
19. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP

Congress, pp. 513–523 (1983)
20. Slind, K.: Reasoning about terminating functional programs. Ph.D. thesis, Tech-

nical University Munich, Germany (1999). https://mediatum.ub.tum.de/node?
id=601660

21. Verma, K.N., Goubault-Larrecq, J., Prasad, S., Arun-Kumar, S.: Reflecting BDDs
in Coq. In: Jifeng, H., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 162–181.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44464-5 13

22. Wadler, P.: Theorems for free! In: Proceedings of the Fourth International Confer-
ence on Functional Programming Languages and Computer Architecture, FPCA
1989, pp. 347–359. ACM (1989). http://doi.acm.org.eaccess.ub.tum.de/10.1145/
99370.99404

23. Wimmer, S.: Hidden Markov models. Archive of Formal Proofs (2018). http://isa-
afp.org/entries/Hidden Markov Models.html, Formal proof development

24. Wimmer, S., Hu, S., Nipkow, T.: Monadification, memoization and dynamic pro-
gramming. Archive of Formal Proofs (2018). http://isa-afp.org/entries/Monad
Memo DP.html, Formal proof development

https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
http://doi.acm.org/10.1145/174675.178053
http://doi.acm.org/10.1145/174675.178053
http://doi.acm.org/10.1145/2983990.2983993
http://doi.acm.org/10.1145/2983990.2983993
http://mediatum2.ub.tum.de/doc/681651/document.pdf
http://mediatum2.ub.tum.de/doc/681651/document.pdf
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20160408-1285267-1-5
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20160408-1285267-1-5
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-319-22102-1_17
http://isa-afp.org/entries/VerifyThis2018.html
https://doi.org/10.1007/978-3-319-10542-0
http://concrete-semantics.org
https://doi.org/10.1007/3-540-45949-9
http://isa-afp.org/entries/Optimal_BST.html
https://mediatum.ub.tum.de/node?id=601660
https://mediatum.ub.tum.de/node?id=601660
https://doi.org/10.1007/3-540-44464-5_13
http://doi.acm.org.eaccess.ub.tum.de/10.1145/99370.99404
http://doi.acm.org.eaccess.ub.tum.de/10.1145/99370.99404
http://isa-afp.org/entries/Hidden_Markov_Models.html
http://isa-afp.org/entries/Hidden_Markov_Models.html
http://isa-afp.org/entries/Monad_Memo_DP.html
http://isa-afp.org/entries/Monad_Memo_DP.html

MDP + TA = PTA: Probabilistic Timed
Automata, Formalized

(Short Paper)

Simon Wimmer1(B) and Johannes Hölzl2

1 TU München, Munich, Germany
wimmers@in.tum.de

2 VU Amsterdam, Amsterdam, Netherlands
jhl890@vu.nl

Abstract. We present a formalization of probabilistic timed automata
(PTA) in which we try to follow the formula “MDP + TA = PTA” as far
as possible: our work starts from existing formalizations of Markov deci-
sion processes (MDP) and timed automata (TA) and combines them
modularly. We prove the fundamental result for probabilistic timed
automata: the region construction that is known from timed automata
carries over to the probabilistic setting. In particular, this allows us to
prove that minimum and maximum reachability probabilities can be
computed via a reduction to MDP model checking, including the case
where one wants to disregard unrealizable behavior.

1 Introduction

Timed automata (TA) [1] are a widely used formalism for modeling nonde-
terministic real-time systems. Markov decision processes (MDPs) with discrete
time are popular for modeling probabilistic systems with nondeterminism. Prob-
abilistic timed automata (PTA) fuse the concepts of TA and MDPs and allow
probabilistic modeling of nondeterministic real-time systems. PRISM [3] imple-
ments model checking functionality for MDPs and PTA and has successfully
been applied to a number of case studies [6].

We have previously formalized MDPs [2] and TA [8] in Isabelle/HOL. This
paper presents an Isabelle/HOL formalization of PTA, which follows the formula
“MDP + TA = PTA” as far as possible by combining our existing formalizations
modularly. We prove the fundamental result for PTA: the region construction
that is known from TA carries over to the probabilistic setting. In particular,
we prove that minimum and maximum reachability probabilities (with respect
to possbile resolutions of nondeterminism) can be computed via a reduction to
MDP model checking, including the case where one wants to disregard unrealiz-
able behavior. This work is a necessary first step towards our long-term goal of
certifying the computation results of PRISM’s backward reachability algorithm
[4] for reducing PTA to MDP model checking. The formalization can be found
in the Archive of Formal Proofs [9].
c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 597–603, 2018.
https://doi.org/10.1007/978-3-319-94821-8_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_35&domain=pdf
http://orcid.org/0000-0001-5998-4655
http://orcid.org/0000-0003-0869-9250

598 S. Wimmer and J. Hölzl

2 Preliminaries

Markov Chains. A probability mass function (PMF, or discrete distribution)
μ : : σ pmf is a function σ ⇒ R≥0 with countable support {x | μ x �= 0} whose
range sums to 1. Any PMF forms a monad, thus we have (mappmf f μ) y =
μ {x | f x = y} and (retpmf x)x = 1. A Markov chain (MC) is represented by
the transition system K : : σ ⇒ σ pmf (its kernel, which is commonly repre-
sented by a transition matrix R

|σ|×|σ|), mapping each state to a distribution of
next states. The trace space TK s is the probability measure with the property
TK s (x0 · · · xn) = K s x0 ∗ · · · ∗ K xn−1 xn (where (x0 · · · xn) is the set of state
traces starting with x0, · · · , xn). A probabilistic coupling with respect to a rela-
tion R exists between two PMFs μ and μ′ (written relpmf R μ μ′) if there exists
a distribution ν on the product type, such that the support of ν is a subset of R
and the marginal distributions of ν are μ = mappmf π1 ν and μ′ = mappmf π2 ν.
Probabilistic couplings allow us to relate two Markov chains.

Markov Decision Processes. MDPs are automata allowing probabilistic and non-
deterministic choice. An MDP is represented by the transition system K : : σ ⇒
σ pmf set , where σ is the type of states, and the probability distributions over
the next states of type σ pmf are called actions. Each MDP gives rise to a set
of MCs, each showing one possible behaviour. We introduce, coinductively, con-
figurations σ cfg , where each c : : σ cfg consists of a state σ, an action σ pmf ,
and a continuation σ ⇒ σ cfg . The configurations give rise to a Markov chain
Kc : : σ cfg ⇒ σ cfg pmf , by mapping the continuations over the actions. Each
c : : σ cfg whose actions are closed under K and which is in state s induces a
MC showing a possible behavior of the MDP K starting in s. To simplify the
theory, we assume that K x �= ∅. See [2] for details.

Timed Automata. Compared to standard finite automata, TA introduce a notion
of clocks. Clocks are indexed by natural numbers and do not have any structure.
A clock valuation u is a function of type N ⇒ R. Locations and transitions are
guarded by clock constraints, which have to be fulfilled to stay in a location or to
take a transition. Clock constraints are conjunctions of constraints of the form
c ∼ d for a clock c, an integer d, and ∼∈ {<,≤,=,≥, >}. We write u
 cc if the
clock constraint cc holds for the clock valuation u. We define a timed automaton
A as a pair (T , I) where I is an assignment of clock constraints to locations (also
named invariants) and T is a set of transitions written as A
 l −→g,r l′ where l
and l′ are the start and successor location, g is the guard of the transition, and
r is a set of clocks that will be reset to zero when the transition is taken. States
of TA are pairs of a location and a clock valuation. The operational semantics
define two kinds of steps:

Delay: (l, u) → (l, u ⊕ d) if d ≥ 0 and u ⊕ d
 I l;
Action: (l, u) → (l′, [r → 0]u) if A
 l −→g,r l′, u
 g, and [r → 0]u
 I l′;

where (u ⊕ d) c = u c + d and ([r → 0]u) c = if c ∈ r then 0 else u c.

MDP + TA = PTA: Probabilistic Timed Automata, Formalized 599

Regions. The initial decidability result [1] partitioned the set of clock valuations
into a quotient of sets of clock valuations, the so-called regions, and showed that
these yield a sound and complete abstraction1. Our formalization [8] proves this
fundamental result and decidability of reachability properties for ordinary TA.

3 Probabilistic Timed Automata

PTA fuse the concepts of TA and MDPs: discrete transitions are replaced by
probability distributions over pairs of a set of clocks to be reset and a successor
location. An example of a PTA is depicted in the left part of Fig. 1.

l1

c ≤ 1

l2

c < 1

l3

c < 1

0 < c < 1 0.3
c := 0

0.7

c := 0

c := 0

c < 1
c := 0

l1
c = 0

l1
0 < c < 1

l1
c = 1

l3
0 < c < 1

l2
c = 0

l2
0 < c < 1

1

1

0.3

0.7

1

1

1 1

1 1

1

1

1

1

Fig. 1. Example of a PTA with one clock and its region graph

Definition. Consequently, the syntactic definition of PTA is very similar to TA.
The only difference is that now transitions are of the form A
 l −→g μ for μ of
type (N set × σ) pmf (the clocks to reset and σ for the type of locations).

Typical presentations define the semantics of PTA based on the notion of so-
called probabilistic timed structures, which are just a special type of MDP. We
omit this detour and directly formalize PTA in terms of MDPs. Consequently,
to formalize the semantics of a PTA, we define its kernel K as the smallest set
that is compatible with

(l, u) ∈ S t ≥ 0 u ⊕ t
 I l

retpmf (l, u ⊕ t) ∈ K (l, u)
Delay

(l, u) ∈ S A
 l −→g μ u
 g

mappmf (λ(r, l). (l, [r → 0]u))μ ∈ K (l, u)
Action

where S is the set of valid states. A state (l, u) is valid if l belongs to A and if
u
 I l. For technical reasons there is a third rule to add self loops for non-valid
1 We use the same notions as in [8]. Soundness: for every abstract run, there is a
concrete instantiation. Completeness: every concrete run can be abstracted.

600 S. Wimmer and J. Hölzl

states. These do not change the semantics as they are not reachable from valid
states. The MDP K is uncountably infinite as S is generally infinite.

Region Graph. We want to reduce the computation of reachability probabilities
for A to a computation on a finite MDP. Analogous to TA, this reduction can
be obtained through the region quotient. More precisely, we will partition S into
a finite set of states S of the form (l, R), for l a location of A, and R a region
of A such that ∀u ∈ R. u
 I l. With this notion, the finite MDP, coined region
graph in [5], is defined through its kernel K:

(l, R) ∈ S R′ ∈ Succ R ∀u ∈ R′. u
 I l

retpmf (l, R′) ∈ K (l, R)
DelayR

(l, R) ∈ S A
 l −→g μ ∀u ∈ R. u
 g

mappmf (λ(r, l). (l, {[r → 0]u | u ∈ R})μ ∈ K (l, R)
ActionR

Here Succ R denotes the set of regions that can be reached from R by delaying
for an arbitrary amount of time. Again, for technical reasons there is a third rule
to add self loops for non-valid states. The maximum probability (under all valid
initial configurations) to reach the state in the upper right of the region graph
depicted in Fig. 1 is 0.7, while the minimum probability is 0.

4 Bisimulation

We relate the infinite MDP that defines the PTA with the finite region graph in
a way that directly allows us to prove correctness of the reduction for maximum
and minimum reachability probabilities in one go. Concretely, our agenda is to
first define abstraction and representation functions that map between config-
urations of the infinite MDPs and the finite region graph, and vice versa. We
then prove a more general bisimulation theorem on MDPs which states that the
path measure assigned to related paths is the same for related configurations.

Representation and Abstraction. We will use the overloaded notations α and
rep to denote the abstraction and representation functions for states, actions,
and configurations. The main difficulty of our formalization effort was to define
these such that one obtains the desired properties. What are these properties?
Chiefly, for a valid configuration c, the probability distributions of the successors
of c and α c should expose a probabilistic coupling w.r.t. the relation λc a. α c = a.
Moreover, the abstraction of a representative should yield the original object:
α (rep x) = x. Finally, validity should be preserved, i.e. α (l, u) ∈ S ↔ (l, u) ∈ S.

The elementary abstraction functions are easy to define: α (l, u) = (l, [u]R)
for [u]R the unique region with u ∈ [u]R, and α t = mappmf α t for an action t.
For a configuration c, α c is defined co-recursively in terms of c: the concrete
configuration c is maintained as the internal state of α c and states and actions
are simply mapped with α; the internal successor configuration however is deter-
mined by the continuation of c for the unique successor state s of c such that α s
is the successor state of α c. The definition of rep is more involved and omitted
for brevity.

MDP + TA = PTA: Probabilistic Timed Automata, Formalized 601

Bisimulation Theorem. At the core of our argument lies the following bisimula-
tion theorem on Markov chains:

TK x A = TL y B if R x y and ∀ω ω′. rel stream R ω ω′ −→ (ω ∈ A ↔ ω′ ∈ B)
and ∀x y. R x y −→ relpmf R (K x) (L y)

where T{K,L} denotes the trace space induced by Markov chains K and L, respec-
tively; x and y are states of K and L; rel stream R compares two traces pointwise
by R; and A and B are sets of infinite traces of K and L. Finally, R has to be
of the form R s t = (s ∈ S ∧ f s = t) for some S and f .

For a configuration c with state s, we can instantiate this theorem by taking
K = Kc, L = Kc, x = s, y = α s, f = α, and S as the set of valid configurations
of the PTA. The coupling property of K and L follows because

Kc (α c) = mappmf α (Kc c) .

For this instantiation, rel stream R x y essentially means that y is the pointwise
abstraction of x. We consider reachability properties on state traces of the form
ϕ U ψ (where ϕ and ψ can be a mixture of predicates on location and clock), so

A = {ω | ϕ U ψ (smap, ω)} and B = {ω | (ϕ ◦ rep)U (ψ ◦ rep) (smap ω)}

where smap ω maps traces of configurations to traces of MDP states. Conse-
quently, the premise on A and B is easily satisfied if

∀s t. α s = α t −→ ϕ s ↔ ϕ t ∧ ψ s ↔ ψ t ,

which matches exactly the property that is delivered by the region construction.

5 Taking Zenoness into Account

So far, we have considered bisimulation properties between trace spaces of pairs
of related configurations. Minimum and maximum reachability probabilities,
however, are considered in relation to a set of configurations C. To compute
these probabilities, one can consider the set of configurations Cα on the finite
MDP such that ∀c ∈ C.α c ∈ Cα and ∀c ∈ Cα. rep c ∈ C. If C is the set of
valid configurations, for instance, then Cα is easily proved to be the set of valid
configurations of the region graph.

Often one wants to restrict C such that unrealizable behaviors are excluded:
a configuration should not be able to keep time from passing beyond a fixed
deadline. A configuration is zeno if it admits such behaviours. In the example,
a zeno configuration could continuously take the loop transition on l1 without
letting any time pass. In [5] a computable description of Cα is given for the case
that C is restricted to configurations that only yield non-zeno behaviors with
probability 1.

The critical component of our proof for the correctness of Cα (in the sense
outlined above) is that rep chooses the successor states always such that at least
half of the amount of time that could possibly elapse does elapse.

602 S. Wimmer and J. Hölzl

Interestingly, the proof of ∀c ∈ Cα. rep c ∈ C was much harder to formalize
than the other direction, although roles seem to flipped in the argument of [5].
For the harder direction, we illustrate the structure of our proof on the part that
is concerned with the single region R∞ in which all clocks have elapsed beyond
the maximal clock constant of the automaton (the region c > 1 in the example):
any run on the region graph that stays in R∞ forever is classified as non-zeno.

Our argument establishes that for a transition (l, R∞) → (l′, R∞) of the
region graph, the representing transition (l, u) → (l′, u′) will incur a time delay of
0.5 if u �= u′. An informal argument can get away by claming that the transition
can always be chosen such that the latter condition is satisfied. Unfortunately,
this is not immediately true for the semantics given above as the abstract tran-
sition could always be a reset transition and thus time would never be allowed
to elapse. A possible remedy is to fuse delay and action transitions into a single
step. We rather want to keep them separate and instead employ a probabilistic
argument: assuming that a transition with l = l′ occurs infinitely often, with
probability 1 a step with u �= u′ has to occur infinitely often.

6 Conclusion

Discussion. Our bisimulation argument neatly separates discrete, TA-related
reasoning from probabilistic, MDP-related reasoning. In fact, most of the proofs
take place on the discrete side, because none of the arguments to satisfy the
bisimulation theorem are predominantly of probabilistic nature. As seen above,
only the reasoning on zenoness needs to break with this style.

We found it crucial to carry out each argument on the right level of abstrac-
tion. There are three main levels to consider here (from low to high): Markov
chains, MDPs and configuration traces, and states and state traces of the PTA.
The theorem is usually stated on the highest level possible, and often we can
move easily from a higher to a lower level by applying a number of rewrite rules.
For the divergence argument, we even introduce another level of abstraction:
since we are only concerned with time, the location part can be dropped, and
thus we consider traces of clock valuations. The probabilistic argument described
in the last section manifests a rare case where one needs to put in some upfront
work on a lower level to hold the argument on the higher level together.

It is not yet clear to us whether it is necessary or advantageous to work with
rep. In the current formalization it still plays an important rule by providing the
diverging concrete witness for a diverging configuration of the region graph. The
bisimulation argument in Sect. 4, however, can be made relying only on α.

Lastly, our simple definition of the PTA semantics and of the region graph
shows that derived concepts can be surprisingly easy to define —even compared
to an informal definition— if the necessary foundations have already been laid.

Related Work. We are not aware of any previous proof-assistant formalizations of
PTA. There is, however, another formalization of TA and the region construction
using PVS [11]. A formalization in Coq [7] is aimed at modeling a subclass of
TA and proving properties of concrete automata.

MDP + TA = PTA: Probabilistic Timed Automata, Formalized 603

Future Work. We conjecture that many further results for PTA can be formalized
by following the formula “MDP + TA = PTA” in the style that we outlined
above. In particular, most of the more practical zone based (as opposed to region
based) exploration methods for the reduction to a finite MDP should lie within
the scope of this technique. The backward reachability algorithm of PRISM [4]
is an instance. This also means that verified or certified model checkers for PTA
can be devised from a modular combination of verified tools for MDPs and
TA. Work in this direction already exists for the latter [10] but not the former
formalism.

Acknowledgments. We want to thank David Parker and Gethin Norman for clar-
ifying our understanding of PTA model checking w.r.t. divergence. This project has
received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No 713999 -
Matryoshka).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Th. Comp. Sci. 126(2), 183–235
(1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Hölzl, J.: Markov chains and Markov decision processes in Isabelle/HOL. J. Autom.
Reasoning 59(3), 345–387 (2017). https://doi.org/10.1007/s10817-016-9401-5

3. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

4. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)

5. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Th. Comp. Sci. 282(1)

6. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Formal Methods Syst. Des. 43(2), 164–190 (2013)

7. Paulin-Mohring, C.: Modelisation of timed automata in Coq. In: Kobayashi, N.,
Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 298–315. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45500-0 15

8. Wimmer, S.: Formalized timed automata. In: Blanchette, J.C., Merz, S. (eds.) ITP
2016. LNCS, vol. 9807, pp. 425–440. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-43144-4 26

9. Wimmer, S., Hölzl, J.: Probabilistic timed automata. Archive of Formal
Proofs (2018). Formal proof development. http://isa-afp.org/entries/Probabilistic
Timed Automata.html

10. Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: Beyer,
D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 61–78. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89960-2 4

11. Xu, Q., Miao, H.: Formal verification framework for safety of real-time system
based on timed automata model in PVS. In: Proceedings of IASTED 2006, pp.
107–112 (2006)

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/s10817-016-9401-5
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/3-540-45500-0_15
https://doi.org/10.1007/978-3-319-43144-4_26
https://doi.org/10.1007/978-3-319-43144-4_26
http://isa-afp.org/entries/Probabilistic_Timed_Automata.html
http://isa-afp.org/entries/Probabilistic_Timed_Automata.html
https://doi.org/10.1007/978-3-319-89960-2_4

Formalization of a Polymorphic
Subtyping Algorithm

Jinxu Zhao1(B), Bruno C. d. S. Oliveira1, and Tom Schrijvers2

1 The University of Hong Kong, Pokfulam, Hong Kong
{jxzhao,bruno}@cs.hku.hk

2 KU Leuven, Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

Abstract. Modern functional programming languages such as Haskell
support sophisticated forms of type-inference, even in the presence of
higher-order polymorphism. Central to such advanced forms of type-
inference is an algorithm for polymorphic subtyping. This paper for-
malizes an algorithmic specification for polymorphic subtyping in the
Abella theorem prover. The algorithmic specification is shown to be
decidable, and sound and complete with respect to Odersky and Läufer’s
well-known declarative formulation of polymorphic subtyping.

While the meta-theoretical results are not new, as far as we know our
work is the first to mechanically formalize them. Moreover, our algorithm
differs from those currently in the literature by using a novel approach
based on worklist judgements. Worklist judgements simplify the propaga-
tion of information required by the unification process during subtyping.
Furthermore they enable a simple formulation of the meta-theoretical
properties, which can be easily encoded in theorem provers.

1 Introduction

Most statically typed functional languages support a form of (implicit) para-
metric polymorphism [28]. Traditionally, functional languages have employed
variants of the Hindley-Milner [5,14,23] type system, which supports full type-
inference without any type annotations. However the Hindley-Milner type system
only supports first-order polymorphism, where all universal quantifiers only occur
at the top-level of a type. Modern functional programming languages such as
Haskell go beyond Hindley-Milner and support higher-order polymorphism. With
higher-order polymorphism there is no restriction on where universal quantifiers
can occur. This enables more code reuse and more expressions to type-check,
and has numerous applications [12,15,17,18].

Unfortunately, with higher-order polymorphism full type-inference becomes
undecidable [35]. To recover decidability some type annotations on polymor-
phic arguments are necessary. A canonical example that requires higher-order
polymorphism in Haskell is:

hpoly = (\f :: forall a. a -> a) -> (f 1, f ’c’)
c© Springer International Publishing AG, part of Springer Nature 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 604–622, 2018.
https://doi.org/10.1007/978-3-319-94821-8_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_36&domain=pdf

Formalization of a Polymorphic Subtyping Algorithm 605

The function hpoly cannot be type-checked in Hindley-Milner. The type of hpoly
is (forall a. a -> a) -> (Int, Char). The single universal quantifier does
not appear at the top-level. Instead it is used to quantify a type variable a used in
the first argument of the function. Notably hpoly requires a type annotation for
the first argument (forall a. a -> a). Despite these additional annotations,
the type-inference algorithm employed by GHC Haskell [16] preserves many of
the desirable properties of Hindley-Milner. Like in Hindley-Milner type instan-
tiation is implicit. That is, calling a polymorphic function never requires the
programmer to provide the instantiations of the type parameters.

Central to type-inference with higher-order polymorphism is an algorithm for
polymorphic subtyping. This algorithm allows us to check whether one type is
more general than another, which is essential to detect valid instantiations of
a polymorphic type. For example, the type forall a. a -> a is more general
than Int -> Int. A simple declarative specification for polymorphic subtyping
was proposed by Odersky and Läufer [26]. Since then several algorithms have
been proposed that implement it. Most notably, the algorithm proposed by Pey-
ton Jones et al. [16] forms the basis for the implementation of type inference
in the GHC compiler. Dunfield and Krishnaswami [9] provided a very elegant
formalization of another sound and complete algorithm, which has also inspired
implementations of type-inference in some polymorphic programming languages
(such as PureScript [30] or DDC [6]).

Unfortunately, while many aspects of programming languages and type sys-
tems have been mechanically formalized in theorem provers, there is little work
on formalizing algorithms related to type-inference. The main exceptions to the
rule are mechanical formalizations of algorithm W and other aspects of tradi-
tional Hindler-Milner type-inference [7,8,11,24,33]. However, as far as we know,
there is no mechanisation of algorithms used by modern functional languages
like Haskell, and polymorphic subtyping included is no exception. This is a
shame because recently there has been a lot of effort in promoting the use
of theorem provers to check the meta-theory of programming languages, e.g.,
through well-known examples like the POPLMark challenge [3] and the Com-
pCert project [21]. Mechanical formalizations are especially valuable for proving
the correctness of the semantics and type systems of programming languages.
Type-inference algorithms are arguably among the most non-trivial aspects
of the implementations of programming languages. In particular the informa-
tion discovery process required by many algorithms (through unification-like or
constraint-based approaches), is quite subtle and tricky to get right. Moreover,
extending type-inference algorithms with new programming language features
is often quite delicate. Studying the meta-theory for such extensions would be
greatly aided by the existence of a mechanical formalization of the base language,
which could then be extended by the language designer.

Handling variable binding is particularly challenging in type inference,
because the algorithms typically do not rely simply on local environments, but
instead propagate information across judgements. Yet, there is little work on
how to deal with these complex forms of binding in theorem provers. We believe

606 J. Zhao et al.

Fig. 1. Syntax of declarative system

that this is the primary reason why theorem provers have still not been widely
adopted for formalizing type-inference algorithms.

This paper advances the state-of-the-art by formalizing an algorithm for
polymorphic subtyping in the Abella theorem prover. We hope that this work
encourages other researchers to use theorem provers for formalizing type-
inference algorithms. In particular, we show that the problem we have identified
above can be overcome by means of worklist judgments. These are a form of
judgement that turns the complicated global propagation of unifications into a
simple local substitution. Moreover, we exploit several ideas in the recent induc-
tive formulation of a type-inference algorithm by Dunfield and Krishnaswami [9],
which turn out to be useful for mechanisation in a theorem prover.

Building on these ideas we develop a complete formalization of polymor-
phic subtyping in the Abella theorem prover. Moreover, we show that the
algorithm is sound, complete and decidable with respect to the well-known declar-
ative formulation of polymorphic subtyping by Odersky and Läufer. While these
meta-theoretical results are not new, as far as we know our work is the first to
mechanically formalize them.

In summary the contributions of this paper are:

– A mechanical formalization of a polymorphic subtyping algorithm.
We show that the algorithm is sound, complete and decidable in the Abella
theorem prover, and make the Abella formalization available online1.

– Information propagation using worklist judgements: we employ work-
lists judgements in our algorithmic specification of polymorphic subtyping to
propagate information across judgements.

2 Overview: Polymorphic Subtyping

This section introduces Odersky and Läufer declarative subtyping rules, and
discusses the challenges in formalizing a corresponding algorithmic version. Then
the key ideas of our approach that address those challenges are introduced.

2.1 Declarative Polymorphic Subtyping

In implicitly polymorphic type systems, the subtyping relation compares the
degree of polymorphism of types. In short, if a polymorphic type A can always
1 https://github.com/JimmyZJX/Abella-subtyping-algorithm.

https://github.com/JimmyZJX/Abella-subtyping-algorithm

Formalization of a Polymorphic Subtyping Algorithm 607

Fig. 2. Well-formedness of declarative types and declarative subtyping

be instantiated to any instantiation of B, then A is “at least as polymorphic as”
B, or we just say that A is “more polymorphic than” B, or A ≤ B.

There is a very simple declarative formulation of polymorphic subtyping due
to Odersky and Laüfer [26]. The syntax of this declarative system is shown
in Fig. 1. Types, represented by A,B,C, are the unit type 1, type variables
a, b, universal quantification ∀a.A and function type A → B. We allow nested
universal quantifiers to appear in types, but not in monotypes. Contexts Ψ collect
a list of type variables.

In Fig. 2, we give the well-formedness and subtyping relation for the declara-
tive system. The cases without universal quantifiers are handled by Rules ≤Var,
≤Unit and ≤→. The subtyping rule for function types (≤→) is standard, being
contravariant on the argument types. Rule ≤∀R says that if A is a subtype of
B under the context extended with a, where a is fresh in A, then A ≤ ∀a.B.
Intuitively, if A is more general than the universally quantified type ∀a.B, then
A must instantiate to [τ/a]B for every τ .

Finally, the most interesting rule is ≤∀L, which instantiates ∀a.A to [τ/a]A,
and concludes the subtyping ∀a.A ≤ B if the instantiation is a subtype of B.
Notice that τ is guessed, and the algorithmic system should provide the means to
compute this guess. Furthermore, the guess is a monotype, which rules out the
possibility of polymorphic (or impredicative) instantiation. The restriction to
monotypes and predicative instantiation is used by both Peyton Jones et al. [16]
and Dunfield and Krishnaswami’s [9] algorithms, which are adopted by several
practical implementations of programming languages.

2.2 Finding Solutions for Variable Instantiation

The declarative system specifies the behavior of subtyping relations, but is not
directly implementable: the rule ≤∀L requires guessing a monotype τ . The core
problem that an algorithm for polymorphic subtyping needs to solve is to find
an algorithmic way to compute the monotypes, instead of guessing them. An
additional challenge is that the declarative rule ≤→ splits one judgment into

608 J. Zhao et al.

two, and the (partial) solutions found for existential variables when processing
the first judgment should be transfered to the second judgement.

Dunfield and Krishnaswami’s Approach. An elegant algorithmic solution to com-
puting the monotypes is presented by Dunfield and Krishnaswami [9]. Their
algorithmic subtyping judgement has the form:

Ψ � A ≤ B � Φ

A notable difference to the declarative judgement is the presence of a so-called
output context Φ, which refines the input context Ψ with solutions for existential
variables found while processing the two types being compared for subtyping.
Both Ψ and Φ are ordered contexts with the same structure. Ordered contexts
are particularly useful to keep track of the correct scoping for variables, and are a
notable different to older type-inference algorithms [5] that use global unification
variables or constraints collected in a set.

Output contexts are useful to transfer information across judgements in Dun-
field and Krishnaswami’s approach. For example, the algorithmic rule corre-
sponding to ≤→ in their approach is:

Ψ � B1 <: A1 � Φ Φ � [Φ]A2 <: [Φ]B2 � Φ′

Ψ � A1 → A2 <: B1 → B2 � Φ′ <:→

The information gathered by the output context when comparing the input types
of the functions for subtyping is transfered to the second judgement by becoming
the new input context, while any solution derived from the first judgment is
applied to the types of the second judgment.

Example. If we want to show that ∀a.a → a is a subtype of 1 → 1, the declarative
system will guess the proper τ = 1 for Rule ≤∀L:

· � 1 · � 1 → 1 ≤ 1 → 1
· � ∀a.a → a ≤ 1 → 1

≤∀L

Dunfield and Krishnaswami introduce an existential variable—denoted with
α, β—whenever a monotype τ needs to be guessed. Below is a sample derivation
of their algorithm; we omit the full set of algorithmic rules due to lack of space:

α � 1 ≤ α � α = 1
InstRSolve

α = 1 � 1 ≤ 1 � α = 1
<:Unit

α � α → α ≤ 1 → 1 � α = 1
<:→

· � ∀a.a → a ≤ 1 → 1 � · <:∀L

Formalization of a Polymorphic Subtyping Algorithm 609

The first step applies Rule <:∀L, which introduces a fresh existential variable,
α, and opens the left-hand-side ∀-quantifier with it. Next, Rule <:→ splits the
judgment in two. For the first branch, Rule InstRSolve satisfies 1 ≤ α by solving
α to 1, and stores the solution in its output context. The output context of the
first branch is used as the input context of the second branch, and the judgment
is updated according to current solutions. Finally, the second branch becomes
a base case, and Rule <:Unit finishes the derivation, makes no change to the
input context and propagates the output context back.

Dunfield and Krishnaswami’s algorithmic specification is elegant and contains
several useful ideas for a mechanical formalization of polymorphic subtyping.
For example ordered contexts and existential variables enable a purely inductive
formulation of polymorphic subtyping. However the binding/scoping structure
of their algorithmic judgement is still fairly complicated and poses challenges
when porting their approach to a theorem prover.

2.3 The Worklist Approach

We inherit Dunfield and Krishnaswami’s ideas of ordered contexts, existential
variables and the idea of solving those variables, but drop output contexts.
Instead our algorithmic rule has the form:

Γ � Ω

where Ω is a list of judgments A ≤ B instead of a single one. This judgement
form, which we call worklist judgement, simplifies two aspects of Dunfield and
Krishnaswami’s approach.

Firstly, as already stated, there are no output contexts. Secondly the form of
the ordered contexts become simpler. The transfer of information across judge-
ments is simplified because all judgements share the input context. Moreover the
order of the judgements in the list allows information discovered when process-
ing the earlier judgements to be easily transfered to the later judgements. In the
worklist approach the rule for function types is:

Γ � B1 ≤ A1;A2 ≤ B2;Ω
Γ � A1 → A2 ≤ B1 → B2;Ω

≤a→

The derivation of the previous example with the worklist approach is:

· � · a nil

· � 1 ≤ 1; · ≤aunit

α � 1 ≤ α;α ≤ 1; · ≤asolve ex

α � α → α ≤ 1 → 1; · ≤a→

· � ∀a.a → a ≤ 1 → 1; · ≤a∀L

610 J. Zhao et al.

Fig. 3. Syntax and well-formedness judgement for the algorithmic system.

To derive · � ∀a.a → a ≤ 1 → 1 with the worklist approach, we first introduce
an existential variable and change the judgement to α � α → α ≤ 1 → 1; ·. Then,
we split the judgment in two for the function types and the derivation comes
to α � 1 ≤ α;α ≤ 1; ·. When the first judgment is solved with α = 1, we
immediately remove α from the context, while propagating the solution as a
substitution to the rest of the judgment list, resulting in · � 1 ≤ 1; ·, which
finishes the derivation in two trivial steps.

With this form of eager propagation, solutions no longer need to be recorded
in contexts, simplifying the encoding and reasoning in a proof assistant.

Key Results. Both the declarative and algorithmic systems are formalized in
Abella. We have proven 3 important properties for this algorithm: decidability,
ensuring that the algorithm always terminates; and soundness and completeness,
showing the equivalence of the declarative and algorithmic systems.

3 A Worklist Algorithm for Polymorphic Subtyping

This section presents our algorithm for polymorphic subtyping. A novel aspect
of our algorithm is the use of worklist judgments: a form of judgement that
facilitates the propagation of information.

3.1 Syntax and Well-Formedness of the Algorithmic System

Figure 3 shows the syntax and the well-formedness judgement.

Existential Variables. In order to solve the unknown types τ , the algorithmic
system extends the declarative syntax of types with existential variables α.
They behave like unification variables, but are not globally defined. Instead, the
ordered algorithmic context, inspired by Dunfield and Krishnaswami [9], defines
their scope. Thus the type τ represented by the corresponding existential variable
is always bound in the corresponding declarative context Ψ .

Formalization of a Polymorphic Subtyping Algorithm 611

Fig. 4. Algorithmic subtyping

Worklist Judgements. The form of our algorithmic judgements is non-standard.
Our algorithm keeps track of an explicit list of outstanding work: the list Ω of
(reified) algorithmic judgements of the form A ≤ B, to which a substitution can
be applied once and for all to propagate the solution of an existential variable.

Hole Notation. To facilitate context manipulation, we use the syntax Γ [ΓM] to
denote a context of the form ΓL, ΓM , ΓR where Γ is the context ΓL, •, ΓR with
a hole (•). Hole notations with the same name implicitly share the same ΓL and
ΓR. A multi-hole notation like Γ [α][β] means Γ1, α, Γ2, β, Γ3.

3.2 Algorithmic Subtyping

The algorithmic subtyping judgement, defined in Fig. 4, has the form Γ � Ω,
where Ω collects multiple subtyping judgments A ≤ B. The algorithm treats Ω
as a worklist. In every step it takes one task from the worklist for processing,
possibly pushes some new tasks on the worklist, and repeats this process until

612 J. Zhao et al.

Fig. 5. Successful and failing derivations for the algorithmic subtyping relation

the list is empty. This last and single base case is handled by Rule a nil. The
remaining rules all deal with the first task in the worklist. Logically we can
discern 3 groups of rules.

Firstly, we have five rules that are similar to those in the declarative system,
mostly just adapted to the worklist style. For instance, Rule ≤a→ consumes
one judgment and pushes two to the worklist. A notable difference with the
declarative Rule ≤∀L is that Rule ≤a∀L requires no guessing of a type τ to
instantiate the polymorphic type ∀a.A, but instead introduces an existential
variable α to the context and to A. In accordance with the declarative system,
where the monotype τ should be bound in the context Ψ , here α should only be
solved to a monotype bound in Γ . More generally, for any algorithmic context
Γ [α], the algorithmic variable α can only be solved to a monotype that is well-
formed with respect to ΓL.

Secondly, Rules ≤ainstL and ≤ainstR partially instantiate existential types
α, to function types. The domain and range of the new function type are unde-
termined: they are set to two fresh existential variables α1 and α2. To make sure
that α1 → α2 has the same scope as α, the new variables α1 and α2 are inserted
in the same position in the context where the old variable α was. To propagate
the instantiation to the remainder of the worklist, α is substituted for α1 → α2

in Ω. The occurs-check side-condition is necessary to prevent a diverging infinite
instantiation. For example 1 → α ≤ α would diverge with no such check.

Thirdly, in the remaining six rules an existential variable can be immediately
solved. Each of the six similar rules removes an existential variable from the
context, performs a substitution on the remainder of the worklist and continues.

The algorithm on judgment list is designed to share the context across all
judgments. However, the declarative system does not share a single context in its
derivation. This gap is filled by strengthening and weakening lemmas of both sys-
tems, where most of them are straightforward to prove, except for the strength-
ening lemma of the declarative system, which is a little trickier.

Example. We illustrate the subtyping rules through a sample derivation in the
left of Fig. 5, which shows that ∀a. a → 1 ≤ (∀a. a → a) → 1. Thus the derivation
starts with an empty context and a judgment list with only one element.

Formalization of a Polymorphic Subtyping Algorithm 613

In step 1, we have only one judgment, and that one has a top-level ∀ on
the left hand side. So the only choice is rule ≤a∀L, which opens the universally
quantified type with an unknown existential variable α. Variable α will be solved
later to some monotype that is well-formed within the context before α. That is,
the empty context · in this case. In step 2, rule ≤a→ is applied to the worklist,
splitting the first judgment into two. Step 3 is similar to step 1, where the left-
hand-side ∀ of the first judgment is opened according to rule ≤a∀L with a fresh
existential variable. In step 4, the first judgment has an arrow on the left hand
side, but the right-hand-side type is an existential variable. It is obvious that
α should be solved to a monotype of the form σ → τ . Rule instR implements
this, but avoids guessing σ and τ by “splitting” α into two existential variables,
α1 and α2, which will be solved to some σ and τ later. Step 5 applies Rule
≤a→ again. Notice that after the split, β appears in two judgments. When the
first β is solved during any step of derivation, the next β will be substituted by
that solution. This propagation mechanism ensures the consistent solution of the
variables, while keeping the context as simple as possible. Steps 6 and 7 solve
existential variables. The existential variable that is right-most in the context is
always solved in terms of the other. Therefore in step 6, β is solved in terms of
α1, and in step 7, α2 is solved in terms of α1. Additionally, in step 6, when β
is solved, the substitution [α1/β] is propagated to the rest of the judgment list,
and thus the second judgment becomes α1 ≤ α2. Steps 8 and 9 trivially finish
the derivation. Notice that α1 is not instantiated at the end. This means that
any well-scoped instantiation is fine.

A Failing Derivation. We illustrate the role of ordered contexts through another
example: ∀a. 1 → a ≤ 1 → ∀b. b. From the declarative perspective, a should be
instantiated to some τ first, then b is introduced to the context, so that b /∈
FV (τ). As a result, we cannot find τ such that τ ≤ b. The right of Fig. 5 shows
the algorithmic derivation, which also fails due to the scoping—α is introduced
earlier than b, thus it cannot be solved to b.

4 Metatheory

This section presents the 3 main meta-theoretical results that we have proved
in Abella. The first two are soundness and completeness of our algorithm with
respect to Odersky and Läufer’s declarative subtyping. The third result is our
algorithm’s decidability.

4.1 Transfer to the Declarative System

To state the correctness of the algorithmic subtyping rules, Fig. 6 introduces
two transfer judgements to relate the declarative and the algorithmic system.
The first judgement, transfer of contexts Γ → Ψ , removes existential variables
from the algorithmic context Γ to obtain a declarative context Ψ . The second
judgement, transfer of the judgement list Γ | Ω � Ω′, replaces all occurrences of

614 J. Zhao et al.

Fig. 6. Transfer rules

existential variables in Ω by well-scoped mono-types. Notice that this judgment
is not decidable, i.e. a pair of Γ and Ω may be related with multiple Ω′. However,
if there exists some substitution that transforms Ω to Ω′, and each subtyping
judgment in Ω′ holds, we know that Ω is potentially satisfiable.

The following two lemmas generalize Rule �exvar from substituting the first
existential variable to substituting any existential variable.

Lemma 1 (Insert). If Γ → Ψ and Ψ � τ and Γ, Γ1 | [τ/α]Ω � Ω′, then
Γ, α, Γ1 | Ω � Ω′.

Lemma 2 (Extract). If Γ, α, Γ1 | Ω � Ω′, then ∃τ s.t. Γ → Ψ, Ψ � τ and
Γ, Γ1 | [τ/α]Ω � Ω′.

In order to match the shape of algorithmic subtyping relation for the following
proofs, we define a relation Ψ � Ω for the declarative system, meaning that all
the declarative judgments hold under context Ψ .

Definition 1 (Declarative Subtyping Worklist)

Ψ � Ω := ∀(A ≤ B) ∈ Ω,Ψ � A ≤ B

4.2 Soundness

Our algorithm is sound with respect to the declarative specification. For any
derivation of a list of algorithmic judgments Γ � Ω, we can find a valid transfer
Γ | Ω � Ω′ such that all judgments in Ω′ hold in Ψ , with Γ → Ψ .

Theorem 1 (Soundness). If Γ � Ω and Γ → Ψ , then there exists Ω′, s.t.
Γ | Ω � Ω′ and Ψ � Ω′.

The proof proceeds by induction on the derivation of Γ � Ω, finished off by
appropriate applications of the insertion and extraction lemmas.

Formalization of a Polymorphic Subtyping Algorithm 615

4.3 Completeness

Completeness of the algorithm means that any declarative derivation has an
algorithmic counterpart.

Theorem 2 (Completeness). If Ψ � Ω′ and Γ → Ψ and Γ | Ω � Ω′, then
Γ � Ω.

The proof proceeds by induction on the derivation of Ψ � Ω′. As the declar-
ative system does not involve information propagation across judgments, the
induction can focus on the subtyping derivation of the first judgment without
affecting other judgments. The difficult cases correspond to the ≤ainstL and
≤ainstR rules. When the proof by induction on Ψ � Ω′ reaches the ≤→ case,
the first declarative judgment has a shape like A1 → A2 ≤ B1 → B2. One of the
possibile cases for the first corresponding algorithmic judgement is α ≤ A → B.
However, the case analysis does not indicate that α is fresh in A and B. Thus
we cannot apply Rule ≤ainstL and make use of the induction hypothesis. The
following lemma helps us out in those cases: it rules out subtypings with infinite
types as solutions (e.g. α ≤ 1 → α) and guarantees that α is free in A and B.

Lemma 3 (Prune Transfer for Instantiation). If Ψ � A1 → A2 ≤ B1 →
B2;Ω′ and Γ → Ψ and Γ | (α ≤ A → B;Ω) � (A1 → A2 ≤ B1 → B2;Ω′),
then α /∈ FV (A) ∪ FV (B).

A similar lemma holds for the symmetric case (A → B ≤ α;Ω).

4.4 Decidability

The third key result for our algorithm is decidability.

Theorem 3 (Decidability). Given any well-formed judgment list Ω under Γ ,
it is decidable whether Γ � Ω or not.

We have proven this theorem by means of a lexicographic group of induction
measurements 〈|Ω|∀, |Γ |α, |Ω|→〉 on the worklist Ω and algorithmic context Γ .
The worklist measures | · |∀ and | · |→ count the number of universal quantifiers
and function types respectively.

Definition 2 (Worklist Measures)

|1|∀ = |a|∀ = |α|∀ = 0 |1|→ = |a|→ = |α|→ = 0
|A → B|∀ = |A|∀ + |B|∀ |A → B|→ = |A|→ + |B|→ + 1

|∀x.A|∀ = |A|∀ + 1 |∀x.A|→ = |A|→
|Ω|∀ =

∑
A≤B∈Ω |A|∀ + |B|∀ |Ω|→ =

∑
A≤B∈Ω |A|→ + |B|→

The context measure | · |α counts the number of unsolved existential variables.

Definition 3 (Context Measure)

| · |α = 0 |Γ, a|α = |Γ |α |Γ, α|α = |Γ |α + 1

616 J. Zhao et al.

It is not difficult to see that all but two of the algorithm’s rules decrease one
of the three measures. The two exceptions are the Rules ≤ainstL and ≤ainstR;
both increment the number of existential variables and the number of function
types without affecting the number of universal quantifiers. To handle these rules,
we handle a special class of judgements, which we call instantiation judgements
Ωi, separately. They take the form:

Definition 4 (Ωi)

Ωi := · | α ≤ A;Ω′
i | A ≤ α;Ω′

i where α /∈ FV (A) ∪ FV (Ω′
i)

These instantiation judgements are these ones consumed and produced by the
Rules ≤ainstL and ≤ainstR. The following lemma handles their decidability.

Lemma 4 (Instantiation Decidability). For any context Γ and judgment
list Ωi, Ω, it is decidable whether Γ � Ωi, Ω if both of the conditions hold

(1) ∀Γ ′, Ω′ s.t. |Ω′|∀ < |Ωi, Ω|∀, it is decidable whether Γ ′ � Ω′.
(2) ∀Γ ′, Ω′ s.t. |Ω′|∀ = |Ωi, Ω|∀ and |Γ ′|α = |Γ |α − |Ωi|, it is decidable whether

Γ ′ � Ω′.

In other words, for any instantiation judgment prefix Ωi, the algorithm either
reduces the number of ∀’s or solves one existential variable per instantiation
judgment. The proof of this lemma is by induction on the measure 2∗|Ωi|→+|Ωi|
of the instantiation judgment list.

In summary, the decidability theorem can be shown through a lexicographic
group of induction measurements 〈|Ω|∀, |Ω|α, |Ω|→〉. The critical case is that,
whenever we encounter an instantiation judgment at the front of the worklist, we
refer to Lemma 4, which reduces the number of unsolved variables by consuming
that instantiation judgment, or reduces the number of ∀-quantifiers. Other cases
are relatively straightforward.

5 The Choice of Abella

We have chosen the Abella (v2.0.5) proof assistant [10] to develop our formal-
ization. Our development is only based on the reasoning logic of Abella, and
does not make use of its specification logic. Abella is particularly helpful due
to its built-in support for variable bindings, and its λ-tree syntax [22] is a
form of HOAS, which helps with the encoding and reasoning about substitu-
tions. For instance, the type ∀x.x → a is encoded as all (x\ arrow x a),
where x\ arrow x a is a lambda abstraction in Abella. An opening [b/x](x →
a) is encoded as an application all (x\ arrow x a), which can be simpli-
fied(evaluated) to arrow b a. Name supply and freshness conditions are controlled
by the ∇-quantifier. The expression nabla x, F means that x is a unique variable
in F, i.e. it is different from any other names occurring elsewhere. Such variables
are called nominal constants. They can be of any type, in other words, every
type may contain unlimited number of such atomic nominal constants.

Formalization of a Polymorphic Subtyping Algorithm 617

Encoding of the Declarative System. As a concrete example, our declarative
context and well-formedness rules are encoded as follows.

Kind ty type.
Type i ty. % the unit type

Type all (ty → ty) → ty. % forall-quantifier

Type arrow ty → ty → ty. % function type

Type bound ty → o. % variable collection in contexts

Define env : olist → prop by

env nil;
nabla x, env (bound x :: E) := env E.

Define wft : olist → ty → prop by

wft E i;
nabla x, wft (E x) x := nabla x, member (bound x) (E x);
wft E (arrow A B) := wft E A ∧ wft E B;
wft E (all A) := nabla x, wft (bound x :: E) (A x).

We use the type olist just as normal list of o with two constructors, namely
nil : olist and (::) : o → olist → olist, where o purely means “the element
type of olist”. The member : o → olist → prop relation is also pre-defined. The
second case of the relation wft states rule wfdvar. The encoding (E x) basically
means that the context may contain x. If we write (E x) as E, then the context
should not contain x, and both wft E x and member (bound x) E make no sense.
Instead, we treat E : ty → olist as an abstract structure of a context, such as
x\ bound x :: bound a :: nil For the fourth case of the relation wft, the type ∀x.A
in our target language is expressed as (all A), and its opening A, (A x).

Encoding of the Algorithmic System. In terms of the algorithmic system, notably,
Abella handles the ≤ainstL and ≤ainstR rules in a nice way:

% sub_alg_list : enva → [subty_judgment] → prop

Define subal : olist → olist → prop by

subal E nil;
subal E (subt i i :: Exp) := subal E Exp;
% some cases omitted ...

% <: instL

nabla x, subal (E x) (subt x (arrow A B) :: Exp x) :=
exists E1 E2 F, nabla x y z, append E1 (exvar x :: E2) (E x) ∧

append E1 (exvar y :: exvar z :: E2) (F y z) ∧
subal (F y z) (subt (arrow y z) (arrow A B) :: Exp (arrow y z));

% <: instR is symmetric to <: instL, omitted here

% other cases omitted ...

Thanks to the way Abella deals with nominal constants, the pattern
subt x (arrow A B) implicitly states that x /∈ FV (A) ∧ x /∈ FV (B). If the
condition were not required, we would have encoded the pattern as
subt x (arrow (A x) (B x)) instead.

618 J. Zhao et al.

Fig. 7. Statistics for the proof scripts

5.1 Statistics and Discussion

Some basic statistics on our proof script are shown in Fig. 7. The proof consists
of 3627 lines of code with a total of 33 definitions and 267 theorems. We have
to mention that Abella provides few built-in tactics and does not support user-
defined ones, and we would reduce significant lines of code if Abella provided
more handy tactics. Moreover, the definition of natural numbers, the plus oper-
ation and less-than relation are defined within our proof due to Abella’s lack
of packages. However, the way Abella deals with name bindings is very helpful
for type system formalizations and substitution-intensive formalizations, such as
this one.

6 Related Work

Type Inference for Polymorphic Subtyping. Higher-order polymorphism is a
practical and important programming language feature. Due to the undecidabil-
ity of type-inference for System F [35], different decidable partial type-inference
approaches were developed. The subtyping relation of this paper, originally pro-
posed by Odersky and Laüfer [26], is predicative (∀’s only instantiate to mono-
types), which is considered a reasonable and practical trade-off. There is also
work on partial impredicative type-inference algorithms [19,20,34]. However,
unlike the predicative subtyping relation for System F, the subtyping for impred-
icative System F is undecidable [31]. Therefore such algorithms have to navigate
through the design space to impose restrictions that allow for a decidable algo-
rithm. As a result such algorithms tend to be more complex, and are less adopted
in practice.

Gundry et al. [13] revisited the Hindley-Milner type system. They make use
of ordered contexts on the unification during type inference, and their algorithm
works differently from algorithm W. Dunfield and Krishnaswami [9] adopted
a similar idea on ordered contexts and presented an algorithmic approach for
predicative polymorphic subtyping that tracks the (partial) solutions of exis-
tential variables in the algorithmic context—this denotes a delayed substitution

Formalization of a Polymorphic Subtyping Algorithm 619

that is incrementally applied to outstanding work as it is encountered. Their
algorithm comes with 40 pages of manual proofs on the soundness, complete-
ness and decidability. We have tried to mechanize these proofs directly, but have
not been successful yet because most proof assistants do not naturally support
output contexts and their more complex ordered contexts. Their theorems have
statements that are more complex than those in the worklist approach. One of
the reasons for the added complexity is that, when the constraints are not strict
enough, the algorithm may not instantiate all existential variables. However in
order to match the declarative judgement, all the unsolved variables should be
properly assigned. For example, their generalized completeness theorem is:

Theorem 4 (Generalized Completeness of Subtyping [9]). If Ψ −→ Φ
and Ψ � A and Ψ � B and [Φ]Ψ � [Φ]A ≤ [Φ]B then there exist Δ and Φ′ such
that Δ −→ Φ′ and Φ −→ Φ′ and Ψ � [Ψ]A <: [Ψ]B � Δ.

Here, the auxiliary relation Ψ −→ Ψ ′ extends a context Ψ to a context Ψ ′. This is
used to extend the algorithm’s input and output contexts Ψ and Δ, with possibly
unassigned existential variables, to a complete (i.e., fully-assigned) contexts Φ
and Φ′ suitable for the declarative specification.

While we are faced with a similar gap between algorithm and specification,
which we tackle with our transfer relations Γ → Ψ , our completeness statement
is much shorter because our algorithm does not return an output context which
needs to be transferred. Moreover, we have cleanly encapsulated any substitu-
tions to the worklist in the worklist transfer judgement Γ | Ω � Ω′.

Peyton Jones et al. [16] developed a higher-rank predicative bidirectional
type system. They enriched their subtyping relations with deep skolemisation,
while other relations remain similar to ours. Their algorithm is unification-based
with a structure similar to algorithm W’s.

Unification Algorithms. Our algorithm works similarly to some unification algo-
rithms that use a set of unification constraints and single-step simplification tran-
sitions. Some work [1,27] adopts this idea in dependently typed inference and
reconstruction. These approaches collect a set of constraints and nondeterminis-
tically process one of them at a time. Those approaches consider various forms of
constraints, including term unification, context unification and solution for meta-
variables. In contrast, our algorithm is presented in a simpler form, using ordered
(worklist) judgements, which is sufficient for the subtyping problem.

Formalizations of Type-Inference Algorithms in Theorem Provers. The well-
known POPLMark challenge [3] has encouraged the development of new proof
assistant features for facilitating the development and verification of type sys-
tems. As a result, many theorem provers and packages now provide methods for
dealing with variable binding [2,4,32], and more and more type system designers
choose to formalize their proofs with these tools. Yet, difficulties with mecha-
nising algorithmic aspects, like unification and constraint solving, have received
very little attention. Moreover, while most type system judgements only feature

620 J. Zhao et al.

local (input) contexts, which have a simple binding/scoping structure, many tra-
ditional type-inference algorithms require more complex binding structures with
output contexts.

Naraschewski and Nipkow [24] published the first formal verification of algo-
rithm W in Isabelle/HOL [25]. The treatment of new variables is a little tricky
in their formalization, while most other parts follow the structure of Damas’s
manual proof closely. Following Naraschewski and Nipkow other researchers [7,8]
prove a similar result in Coq [29]. Nominal techniques [32] in Isabelle/HOL have
also been used for a similar verification [33]. Moreover, Garrigue [11] mechanized
a type inference algorithm for Core ML extended with structural polymorphism
and recursion.

7 Conclusion and Future Work

In this paper we have shown how to mechanise an algorithmic subtyping relation
for higher-order polymorphism, together with its proofs of soundness, complete-
ness and decidability, in the Abella proof assistant. In ongoing work we are
extending our mechanisation with a bidirectional type inference algorithm. The
main difficulty there is communicating the instantiations of existential variables
from the subtyping algorithm to the type inference. To make this possible we are
exploring a continuation passing style formulation, which generalises the worklist
approach. Another possible extension is to have the algorithm return an explicit
witness for the subtyping as part of type-directed elaboration into System F.

Acknowledgement. We sincerely thank the anonymous reviewers for their insightful
comments. This work has been sponsored by the Hong Kong Research Grant Council
projects number 17210617 and 17258816, and by the Research Foundation - Flanders.

References

1. Abel, A., Pientka, B.: Higher-order dynamic pattern unification for dependent
types and records. In: Ong, L. (ed.) TLCA 2011. LNCS, vol. 6690, pp. 10–26.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21691-6 5

2. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering
formal metatheory. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008 (2008)

3. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P.,
Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory
for the masses: The POPLmark challenge. In: The 18th International Conference
on Theorem Proving in Higher Order Logics (2005)

4. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics.
In: Proceedings of the 13th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2008 (2008)

5. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1982 (1982)

https://doi.org/10.1007/978-3-642-21691-6_5

Formalization of a Polymorphic Subtyping Algorithm 621

6. Disciple Development Team: The Disciplined Disciple Compiler (2017). http://
disciple.ouroborus.net/

7. Dubois, C.: Proving ML type soundness within Coq. In: Aagaard, M., Harrison, J.
(eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 126–144. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44659-1 9

8. Dubois, C., Menissier-Morain, V.: Certification of a type inference tool for ML:
Damas-Milner within Coq. J. Autom. Reasoning 23(3), 319–346 (1999)

9. Dunfield, J., Krishnaswami, N.R.: Complete and easy bidirectional typechecking
for higher-rank polymorphism. In: Proceedings of the 18th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2013 (2013)

10. Gacek, A.: The abella interactive theorem prover (system description). In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 154–161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71070-7 13

11. Garrigue, J.: A certified implementation of ML with structural polymorphism and
recursive types. Mathe. Struct. Comput. Sci. 25(4), 867–891 (2015)

12. Gill, A., Launchbury, J., Peyton Jones, S.L.: A short cut to deforestation. In: Pro-
ceedings of the Conference on Functional Programming Languages and Computer
Architecture, FPCA 1993 (1993)

13. Gundry, A., McBride, C., McKinna, J.: Type inference in context. In: Proceedings
of the Third ACM SIGPLAN Workshop on Mathematically Structured Functional
Programming, MSFP 2010 (2010)

14. Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans.
Am. Mathe. Soc. 146, 29–60 (1969)

15. Jones, M.P.: Functional programming with overloading and higher-order polymor-
phism. In: Jeuring, J., Meijer, E. (eds.) AFP 1995. LNCS, vol. 925, pp. 97–136.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59451-5 4

16. Peyton Jones, S., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference
for arbitrary-rank types. J. Funct. Program. 17(1), 1–82 (2007)

17. Lämmel, R., Jones, S.P.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Proceedings of the 2003 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, TLDI 2003 (2003)

18. Launchbury, J., Peyton Jones, S.L.: State in Haskell. LISP Symbolic Comput. 8(4),
293–341 (1995)

19. Le Botlan, D., Rémy, D.: MLF: raising ML to the power of system F. In: Pro-
ceedings of the Eighth ACM SIGPLAN International Conference on Functional
Programming, ICFP 2003 (2003)

20. Leijen, D.: HMF: Simple type inference for first-class polymorphism. In: Proceed-
ings of the 13th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2008 (2008)

21. Leroy, X., et al.: The CompCert verified compiler. Documentation and user’s man-
ual, INRIA Paris-Rocquencourt (2012)

22. Miller, D.: Abstract syntax for variable binders: an overview. In: Lloyd, J., et al.
(eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 239–253. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44957-4 16

23. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17(3), 348–375 (1978)

24. Naraschewski, W., Nipkow, T.: Type inference verified: algorithm W in
Isabelle/HOL. J. Autom. Reason. 23(3), 299–318 (1999)

http://disciple.ouroborus.net/
http://disciple.ouroborus.net/
https://doi.org/10.1007/3-540-44659-1_9
https://doi.org/10.1007/978-3-540-71070-7_13
https://doi.org/10.1007/978-3-540-71070-7_13
https://doi.org/10.1007/3-540-59451-5_4
https://doi.org/10.1007/3-540-44957-4_16

622 J. Zhao et al.

25. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for High-
erorderlogic, vol. 2283. Springer Science & Business Media, Heidelberg (2002).
https://doi.org/10.1007/3-540-45949-9

26. Odersky, M., Läufer, K.: Putting type annotations to work. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1996 (1996)

27. Reed, J.: Higher-order constraint simplification in dependent type theory. In: Pro-
ceedings of the Fourth International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, LFMTP 2009 (2009)

28. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Information
Processing, pp. 513–523 (1983)

29. The Coq development team: The Coq proof assistant (2017). https://coq.inria.fr/
30. The PureScript development team: PureScript (2017). http://www.purescript.org/
31. Tiuryn, J., Urzyczyn, P.: The subtyping problem for second-order types is undecid-

able. In: Proceedings 11th Annual IEEE Symposium on Logic in Computer Science
(1996)

32. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356
(2008)

33. Urban, C., Nipkow, T.: Nominal verification of algorithm W. from semantics to
computer science. In: Essays in Honour of Gilles Kahn, pp. 363–382 (2008)

34. Vytiniotis, D., Weirich, S., Peyton Jones, S.: FPH: first-class polymorphism for
Haskell. In: Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2008 (2008)

35. Wells, J.B.: Typability and type checking in system F are equivalent and undecid-
able. Ann. Pure Appl. Logic 98(1–3), 111–156 (1999)

https://doi.org/10.1007/3-540-45949-9
https://coq.inria.fr/
http://www.purescript.org/

An Agda Formalization
of Üresin & Dubois’ Asynchronous

Fixed-Point Theory

Ran Zmigrod, Matthew L. Daggitt(B), and Timothy G. Griffin

Computer Laboratory, University of Cambridge, Cambridge, UK
mld46@cam.ac.uk

Abstract. In this paper we describe an Agda-based formalization of
results from Üresin & Dubois’ “Parallel Asynchronous Algorithms for
Discrete Data.” That paper investigates a large class of iterative algo-
rithms that can be transformed into asynchronous processes. In their
model each node asynchronously performs partial computations and
communicates results to other nodes using unreliable channels. Üresin
& Dubois provide sufficient conditions on iterative algorithms that guar-
antee convergence to unique fixed points for the associated asynchronous
iterations. Proving such sufficient conditions for an iterative algorithm
is often dramatically simpler than reasoning directly about an asyn-
chronous implementation. These results are used extensively in the liter-
ature of distributed computation, making formal verification worthwhile.

Our Agda library provides users with a collection of sufficient condi-
tions, some of which mildly relax assumptions made in the original paper.
Our primary application has been in reasoning about the correctness of
network routing protocols. To do so we have derived a new sufficient con-
dition based on the ultrametric theory of Alexander Gurney. This was
needed to model the complex policy-rich routing protocol that maintains
global connectivity in the internet. Additionally we highlight and discuss
two propositions from Üresin & Dubois, which during the course of the
formalisation, turned out to be false.

1 Introduction

Many applications work with an iterative algorithm F and an initial state x(0)
where successive states are computed as

x(t + 1) = F(x(t))

until a fixed point ξ is reached at some time t′ when x(t′) = ξ = F(ξ). Here we
assume that x(t) represents an n-dimensional vector in some state space. If we
rewrite F as

F(x) = (F1(x), . . . , Fn(x)),

The original version of this chapter was revised: Two proofs were corrected. For detailed
information please see the erratum. The erratum to this chapter is available at
https://doi.org/10.1007/978-3-319-94821-8_38
c© The Author(s) 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, pp. 623–639, 2018.
https://doi.org/10.1007/978-3-319-94821-8_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_37&domain=pdf
https://doi.org/10.1007/978-3-319-94821-8_38

624 R. Zmigrod et al.

then we can imagine that it may be possible to assign the computation of each
Fi to a distinct processor. This might be performed in parallel with shared
memory or in a completely distributed manner. However, enforcing correctness
using global synchronization mechanisms may incur performance penalties that
negate the gains from the parallelization. Furthermore, global synchronization
is infeasible for applications such as network routing.

This leads to the question: When can we use the Fi to correctly implement
an asynchronous version of F-iteration? There are many answers to this question
that depend on properties of the state space and the function F – see the survey
paper by Frommer & Syzld [9].

Many of the approaches discussed in [9] rely on the rich structure of vector
spaces over continuous domains. However, our motivation arises from network
routing protocols where the state space is comprised of discrete data. Happily,
Üresin and Dubois [21] have developed a theory of asynchronous iterations over
discrete state spaces. They prove that if F is an Asynchronously Contracting
Operator (ACO, see Sect. 3), then the associated asynchronous iteration will
always converge to the correct fixed point. Their proof uses very weak assump-
tions about inter-process communication (indeed, in the case that the state
space is finite they show that ACO is a necessary condition as well). These
weak assumptions are a good model for the case of distributed routing protocols
where messages can be delayed, lost, duplicated or reordered. Henceforth we will
refer to Üresin and Dubois [21] as UD.

Proving that a given F is an ACO can be dramatically simpler than reasoning
directly about an asynchronous implementation. However, in many cases it still
remains non-trivial and so UD also derive several sufficient conditions that imply
the ACO condition. These conditions are typically easier to prove for many
common iterative algorithms. For example, they provide sufficient conditions for
special cases where the state space is a partial order and F is order preserving.

In this paper we describe an Agda [3] formalization of the sufficient conditions
and associated proofs from UD. This represents one part of a larger project
in which we are developing formalized proofs of the asynchronous convergence
for policy-rich distributed Bellman-Ford routing protocols (see [5]). This work
required formalizing a new sufficient condition not found in UD, based on the
ultrametric theory of Gurney [11]. During formalization it also became apparent
that two of the other sufficient conditions in the original paper are incorrect. We
provide a counter-example. In addition we suggest how to strengthen one of the
sufficient conditions so that correctness is still guaranteed.

Many other applications of the results of UD can be found in the literature
(for example, [4,6,7,16]). The proofs in UD are mathematically rigorous in the
traditional sense, but their definitions are somewhat informal and they occasion-
ally claim the existence of objects without providing an explicit construction. In
our opinion a formal verification of the results is therefore a useful exercise.

There have been other efforts to formalize asynchronous computation such
as Meseguer and Ölveczky [17] for real-time systems and Henrio, Khan, and
Kammüller [13,14] for distributed languages. However, as far as we know our
work is the first attempt to formalize the results of UD.

An Agda Formalization of Üresin & Dubois 625

Our Agda development can be found on Github [1]. We hope that this will
be a valuable resource for others interested in asynchronous iterations.

2 Preliminaries

In this section we introduce the components of the model of asynchronous com-
putation that underpin UD’s results together with their Agda formalizations.
Naturally, when formalizing mathematical proofs, there are concerns over steps
that are considered trivial in the informal proof. We therefore highlight key fea-
tures in the proof which are in practice significantly more complex than perhaps
implied by the original reasoning.

Definition 1. An iterative algorithm consists of an initial state x(0) and an
operator F such that ∀t ∈ N, x(t + 1) = F(x(t)).

We begin by formalizing the product state space S = S1 × · · · × Sn. This is
encoded by a Fin n-indexed family of Setoids. The type S is a function that
takes i and returns the Carrier type of the i-th setoid. We can now formalize the
iterative algorithm as follows:

sync-iter : S → N → S
sync-iter x0 zero = x0
sync-iter x0 (suc K) = F (sync-iter x0 K)

Routing Example. We briefly outline how this work can be applied to reason-
ing about convergence of a very general class of internet routing protocols. Full
details can be found in Daggitt et al. [5].

Routing problems can be formalized as a tuple (R, ⊕, E, 0̄, ∞), where:

– R is the set of routes,
– ⊕ : R → R → R is the choice operator, returning the preferred route,
– E is a set of functions of the form R → R representing generalized edge

weights,
– 0̄ is the trivial route from a node to itself,
– ∞ is the invalid route.

A network configuration is represented as an n × n adjacency matrix A over
E. The state space is made up of n × n matrices X over R. Matrix addition,
X ⊕ X′, is just the pointwise application of ⊕. The application of A to state X
is defined as

(A(X))ij =

(⊕
k

Aik(Xkj)

)
.

That is, each node i choose the best extensions of the routes to j advertised by
its neighbors. Finally, the iterative algorithm F is defined as

F(X) = A(X) ⊕ I, (1)

626 R. Zmigrod et al.

where I is the matrix defined as Iii = 0̄, and Iij = ∞ for i �= j. As explained in [5],
an asynchronous version of F provides a good model of Distributed Bellman-
Ford (DBF) routing protocols. At each asynchronous iteration in the distributed
setting, each node i will compute only the i-th row of F(X) from the rows
communicated by its adjacent neighbors.

Shortest paths routing is probably the simplest example where ⊕ = min and
E is the set of all fw with fw(r) = w + r.

2.1 Schedules

Schedules determine the asynchronous behaviour; they dictate when nodes
release new information and the timing of that information propagating to other
nodes. Let I be the set of nodes participating in the asynchronous process.

Definition 2. A schedule ζ is a pair of functions α : N → P(I) and β : N →
I → I → N which satisfy the following properties:

A1 : ∀t ∈ N, i, j ∈ I. β(t + 1, i, j) ≤ t
A2 : ∀t ∈ N, i ∈ I. ∃t′. t < t′ ∧ i ∈ α(t′)
A3 : ∀t ∈ N, i, j ∈ I. ∃t′. ∀t′′. t′ < t′′ ⇒ β(t′′, i, j) �= t

The activation function α takes a time t and returns a subset of I containing
the nodes that updated their value at time t. The data flow function β takes a
time t and two nodes i and j and returns the time at which the data used by i
at time t was generated by j.

Assumption A1 captures the notion of causality by ensuring that data can
only be used after it was generated. A2 says that each node continues to activate
indefinitely. Lastly, A3 says that the data generated at time t will only be used
for a finite number of future updates.

Generalization 1. UD use a shared-memory model with all nodes communi-
cating via shared memory, and so their definition of β takes only a single node
i. However this model does not capture processes in which nodes communicate
in a pairwise fashion without shared memory (e.g. internet routing). We have
therefore augmented our definition of β to take two nodes, a source and desti-
nation. Their original definition can be recovered by providing a β function that
is constant in its third argument.

Generalization 2. UD assumed that all nodes are active initially (i.e. α(0) =
I), which is unlikely to be true in a distributed context. Fortunately this assump-
tion turns out to be unnecessary.

We formalize schedules in Agda as a dependent record. The number of
nodes in the computation is passed as a parameter and the nodes them-
selves are represented by the Fin n type. The three properties are named
causality, nonstarvation, and finite respectively.

An Agda Formalization of Üresin & Dubois 627

record Schedule (n : N) : Set where
field
α : (t : T) → Subset n
B : (t : T)(i j : Fin n) → T

causality : ∀ t i j → B (suc t) i j ≤ t
nonstarvation : ∀ t i → ∃ ń k → i ∈ α (t + suc k)
finite : ∀ t i j → ∃ ń k → ∀ l → B (k + l) i j �≡ t

In the definition we use T as an alias for N to help semantically differentiate
between times and other natural numbers. It would also be possible to implicitly
capture causality by changing the return type of B to Fin t instead of T. However,
it turns out that in practice when using B we nearly always want a regular time,
and therefore each call to B would require a conversion to T. We thus decide to
keep causality as an explicit field of Schedule.

Another choice made when designing the formalisation of nonstarvation and
finite was to replace the conditions such as ∀y. x ≤ y =⇒ P (y) with ∀y. P (x+y).
This removes the need to pass around proof terms, and consequently often makes
using these properties easier to use. This same technique is used throughout the
rest of our library.

An asynchronously iteration can be constructed by combining an iterative
algorithm with a schedule.

Definition 3. An asynchronous iteration over a schedule S = (α, β), an initial
state x(0), and an operator F, is denoted as (F, x(0), S) such that ∀t ∈ N, i ∈ I

xi(t + 1) =

{
xi(t) if i /∈ α(t + 1)
Fi(x0(β(t + 1, i, 0)), . . . ,xn−1(β(t + 1, i, n − 1))) otherwise

We formalize this in Agda as follows:

async-Iter’ : Schedule n → S → ∀ {t} → Acc _<_ t → S
async-Iter’ S x0 {zero} _ i = x0 i
async-Iter’ S x0 {suc t} (acc rec) i with i ∈? α S (suc t)
... | yes _ = F (ń j → async-Iter’ S x0

(rec (B S (suc t) i j) (s≤s (causality S t i j))) j) i
... | no _ = async-Iter’ S x[0] (rec t ≤-refl) i

Those unfamiliar with Agda may wonder why the Acc argument is necessary.
While we can see that this function will terminate as each recursive call goes
from time t to time β(t, i, j) which is strictly smaller due to causality, the Agda
termination checker cannot detect this without help. Acc is a data-type found
in the Agda standard library that helps the termination checker by providing
an argument to the function that always becomes structurally smaller with each
recursive call. Using the proof that the natural numbers are well-founded, this
complexity is hidden from the user in the main function:

628 R. Zmigrod et al.

async-iter : Schedule n → S → T → S
async-iter S x0 t = async-iter’ S x0 (<-wellFounded t)

3 Convergence Theorem

UD define a class of Fs called Asynchronously Contracting Operators (ACOs).
They then prove that if an operator is an ACO, then it will converge to the
correct fixed point for all possible schedules.

Definition 4. An operator F is an asynchronously contracting operator (ACO)
on a subset D(0) of the state space S = S0 × S1 × · · · × Sn−1 iff there exists a
sequence of sets D(K) such that

(i) ∀K ∈ N. D(K) = D0(K) × D1(K) × · · · × Dn−1(K)
(ii) ∃ξ ∈ S. ∃T ∈ N. ∀K ∈ N.

K < T ⇒ D(K + 1) ⊆ D(K)
K ≥ T ⇒ D(K) = {ξ}

(iii) ∀K ∈ N. x ∈ D(K) ⇒ F(x) ∈ D(K + 1)

The sequence D(K) can be seen as a form of approximation for the process with
each iteration providing a higher accuracy. Each set contains the possible states
at a moment in time. D(0) contains many possible states as the algorithm has
just begun, and each set in the sequence removes some incorrect states. This
occurs until D(T) = {ξ} when the converged state has been found.

Generalization 3. The definition of ACO in UD used the clause K < T ⇒
D(K +1) ⊂ D(K), where we have relaxed this to K < T ⇒ D(K +1) ⊆ D(K).
This relaxation is also found in the survey by Frommer and Szyld [9].

The definition of an ACO is captured in the following record type:

record ACO p : Set _ where
field
D : N → ∀ i → Si i → Set p
D-decreasing : ∀ K → D (suc K) ⊆ D K
D-finish : ∃2 ń T ξ → ∀ K → IsSingleton ξ (D (T + K))
F-monotonic : ∀ K {t} → t ∈ D K → F t ∈ D (suc K)

The variable p represents the universe level of the family of sets D, while the
universe level of ACO is inferred automatically (Set _). The sets themselves are
implemented as a double-indexed family of predicates over Si i.

The following theorem is the main sufficient condition proved in UD.

An Agda Formalization of Üresin & Dubois 629

Theorem 1. If F is an ACO on a set D(0), then for all schedules S , any
asynchronous iteration x(k) = (F,x(0),S) with x(0) ∈ D(0), converges to the
unique fixed point ξ of F in D(0).

In order to prove this theorem, UD consider the concept of a pseudo-periodic
schedule. It is then proved that every schedule (Definition 2) is in fact pseudo-
periodic, which greatly simplifies reasoning about schedules. This is perhaps the
least rigorous aspect of the work of UD, as they state this without proof.

Definition 5. A schedule S = (α, β) is pseudo-periodic if there exists an
increasing function ϕ : N → N such that:

(i) ϕ(0) = 0
(ii) ∀K ∈ N, i ∈ I. ∃t ∈ N. i ∈ α(t) ∧ ϕ(K) ≤ t < ϕ(K + 1)
(iii) ∀K, t ∈ N, i, j ∈ I. t ≥ ϕ(K + 1) =⇒ β(t, i, j) ≥ τi(K) ≥ ϕ(K)

where τi(K) is the earliest time after ϕ(K) that element i is updated.

The intuition behind ϕ is that by time ϕ(K + 1) every node is guaranteed
to be using data generated at least as recently as ϕ(K). Hence the interval
(ϕ(K), ϕ(K + 1)] is known as the kth pseudo-period.

We formalize the pseudo-periodic property in Agda as follows:

record IsPseudoperiodic {n : N} (S : Schedule n) : Set where
open Schedule S
field

ϕ : N → T

τ : N → Fin n → T

ϕ-increasing : ∀ K → K ≤ ϕ K
τ-active : ∀ K i → i ∈ α (τ K i)
τ-after-ϕ : ∀ K i → ϕ K ≤ τ K i
τ-expired : ∀ K t i j → τ K j ≤ B (ϕ (suc K) + t) i j

Note that this represents a simplification of UD’s definition. We worked
backwards from the proof of Theorem 1 and identified only those properties
required. This simplification may have to change if we extend our library to
include UD’s proof that the ACO condition is also necessary (in the case of
finite state spaces).

UD assert that for any schedule there exist an infinite number of possible
functions ϕ, but they do not provide any explicit constructions. This is one area
where we had initial concerns when planning our proof strategy in Agda.

We start by defining nextActive, which takes a time t and a node index i and
returns the first time after t for which that i is active.

630 R. Zmigrod et al.

nextActive’ : (t k : T) {i : Fin n} → i ∈ α (t + suc k) → Acc _<_ k → T

nextActive’ t zero {i} _ _ = suc t
nextActive’ t (suc k) {i} i∈α[t+1+K] (acc rs) with i ∈? α t
... | yes i∈α = t
... | no i/∈α rewrite +-suc t (suc k) = nextActive’ (suc t) k i∈α[t+1+K] _

nextActive : T → Fin n → T

nextActive t i with nonstarvation t i
... | (K , i∈α[t+1+K]) = nextActive’ t K i∈α[t+1+K] (<-wellFounded K)

We then define allActive, which returns the first time after t such that all nodes
have activated since t.

allActive : T → T

allActive t = max t (nextActive t)

We then need to define three auxiliary functions: pointExpiryij returns a time
after which i does not use the data generated by j at time t.

pointExpiryij : Fin n → Fin n → T → T

pointExpiryij i j t = proj1 (finite t i j)

expiryij returns a time after which i only uses data generated by j after time t.

expiryij : T → Fin n → Fin n → T

expiryij t i j = List.max t (applyUpTo (pointExpiryij i j) (suc t))

expiryi returns a time after which i only uses data generated after time t.

expiryi : T → Fin n → T

expiryi t i = max t (expiryij t i)

Using these we can define the function expiry that returns a time after which all
nodes only use data generated after time t.

expiry : T → T

expiry t = max t (expiryi t)

Finally, we construct ϕ as follows:

ϕ : N → T

ϕ zero = zero
ϕ (suc K) = suc (expiry (allActive (ϕ K)))

An Agda Formalization of Üresin & Dubois 631

Therefore we find a time t such that all nodes have been activated after ϕ(K)
and then ϕ(K+1) is defined as the time after which all data used was generated
after t. The function τ (as defined in property (iii) of pseudo-periodic schedules)
is simply a special call to nextActive.

τ : N → Fin n → T

τ K i = nextActive (ϕ K) i

We now prove that ϕ and τ satisfy the properties required to be pseudo-periodic
as given in Definition 5. The property ϕ-increasing is relatively simple, given that
proofs that the various functions are increasing:

ϕ-increasing : ∀ K → K ≤ ϕ K
ϕ-increasing zero = z≤n
ϕ-increasing (suc K) = s≤s (begin

K ≤〈 ϕ-increasing K 〉
ϕ K ≤〈 allActive-increasing (ϕ K) 〉
allActive (ϕ K) ≤〈 expiry-increasing (allActive (ϕ K)) 〉
expiry (allActive (ϕ K)) �)

The second property says that τ is always active and it can be satisfied by using
properties of nextActive:

τ-active : ∀ K i → i ∈ α (τ K i)
τ-active K = nextActive-active (ϕ K)

The third property can be easily proved using the fact that nextActive is increas-
ing:

τ-after-ϕ : ∀ K i → ϕ K ≤ τ K i
τ-after-ϕ zero i = z≤n
τ-after-ϕ (suc K) i = nextActive-increasing (ϕ (suc K)) i

The final property states that at all points during a pseudo-period, no nodes use
information generated in a previous pseudo-period. This is the most complex of
the four properties to prove.

τ-expired : ∀ K t i j → τ K j ≤ B (ϕ (suc K) + t) i j
τ-expired K t i j = expiry-expired (begin
expiry (nextActive _ j) ≤〈 expiry-monotone (nextActive≤allActive _ j) 〉
expiry (allActive (ϕ K)) ≤〈 n≤1+n (expiry (allActive (ϕ K))) 〉
ϕ (suc K) ≤〈 m≤m+n (ϕ (suc K)) t 〉
ϕ (suc K) + t �) i j

632 R. Zmigrod et al.

As previously mentioned the construction of ϕ is not discussed in UD. Never-
theless, filling this gap required significant effort in our Agda development.

The proof of Theorem 1 requires an additional fact about the functions τi:
for each K, once all i have been updated after some time t, then x(t) ∈ D(K).

Lemma 1. ∀t, K ∈ N, i ∈ I. τi(K) ≤ t =⇒ xi(t) ∈ Di(K).

In UD Lemma 1 is proved by a fairly easy induction on K. However, in
Agda the construction, called τ-stability, turned out to be more difficult. Several
smaller lemmas were required, the biggest of which is that the asynchronous
iteration remains within D(0), the proof of which is called async[t]’∈D0.

async[t]’∈D0 : ∀ {t} (acct : Acc _<_ t) → async-Iter’ S x0 acct ∈ D 0
async[t]’∈D0 {zero} _ i = x0∈D0 i
async[t]’∈D0 {suc t} (acc rec) i with i ∈? α (suc t)
... | yes i∈α = D-decreasing 0 (F-monotonic 0 (ń j →

async[t]’∈D0 (rec (B (suc t) i j) (s≤s (causality t i j))) j)) i
... | no i/∈α = async[t]’∈D0 (rec t (s≤s ≤-refl)) i

τ-stability’ : ∀ {t K i} (acct : Acc _<_ t) → τ K i ≤ t →
async-Iter’ S x0 acct i ∈u D K i

τ-stability’ {_} {zero} {i} acct _ = async[t]’∈D0 acct i
τ-stability’ {zero} {suc K} {i} _ τ≤0 =

contradiction τ≤0 (<⇒� 0<τ[1+K])
τ-stability’ {suc t} {suc K} {i} (acc rec) τ≤1+t with i ∈? α (suc t)
... | yes _ = F-monotonic K (ń j → τ-stability’ _ (τ[1+K]-expired τ≤1+t)) i

... | no i/∈α with τ (suc K) i ?= suc t

... | no τ�≡1+t = τ-stability’ _ (<⇒≤pred (≤+�≡⇒< τ≤1+t τ�≡1+t))

... | yes τ≡1+t =
contradiction (subst (i ∈s_) (cong α τ≡1+t) (τ-active (suc K) i)) i/∈α

τ-stability : ∀ {t K i} → τ K i ≤ t → asyncIter S x0 t i ∈u D K i
τ-stability {t} = τ-stability’ (<-wellFounded t)

We now construct the final proof of convergence. To do this we must construct
a time after which the result of the asynchronous iteration is always equal to
the fixed point. UD prove that ϕ(T + 1), where T is from the ACO, is the
convergence time. This is because each pseudo-period, every node is updated at
least once and a total of T updates must occur before convergence. In the Agda,
we first extract T and ξ from D-Finish. We then prove Theorem 1 as follows.

An Agda Formalization of Üresin & Dubois 633

T : T

T = proj1 D-finish

ξ : S
ξ = proj1 (proj2 D-finish)

tc : T

tc = F (suc T)

async[tc]∈D[T] : ∀ t → asyncIter S x0 (tc + t) ∈ D T
async[tc]∈D[T] t j = τ-stability (begin
τ T j ≤〈 τ-expired T 0 j j 〉
B (tc + 0) j j ≡〈 cong (ń v → B v j j) (+-identityr tc) 〉
B tc j j ≤〈 B-decreasing j j 1≤tc 〉
tc ≤〈 m≤m+n tc t 〉
tc + t �)
where open ≤-Reasoning

async-converge : ∀ K → asyncIter S x0 (tc + K) ≈ ξ
async-converge K = D[T]≈{ξ} (async[tc]∈D[T] K)

4 The Library

UD show that being an ACO is a sufficient (and sometimes a necessary) condi-
tion for convergence. However in practice, constructing the sets D(K) can still
be a non-trivial exercise. Therefore, an extensive array of sufficient (but often
not necessary) conditions have been constructed that in practice can be simpler
and more intuitive to apply. These conditions are nearly always a reduction back
to ACOs.

In this section we discuss three different proposed sufficient conditions. The
first two are from UD and the third is a modified version of a new sufficient
condition found in a recent paper by Gurney [11] (which was essential for the
results described in Daggitt et al. [5]). During the formalization process, we
discovered counterexamples to the two conditions from UD.

4.1 Synchronous Iteration Conditions

The first set of sufficient conditions makes use of the synchronous iteration of the
algorithm, which UD refer to as y(t), as opposed to the asynchronous iteration
x(t). The conditions involve the existence of partial orderings, �i, over each Si,
which are lifted to the partial order � over S in the usual point-wise manner.
UD then make the following claim (Proposition 3 in UD):

634 R. Zmigrod et al.

Claim 1. An operator F has a fixed-point ξ to which every asynchronous iter-
ation converges for every starting state y(0) ∈ D(0) if:

(i) ∀a ∈ D(0). F(a) ∈ D(0)
(ii) ∀a , b ∈ D(0). a � b =⇒ F(a) � F(b)
(iii) ∀K ∈ N. y(K + 1) � y(K)
(iv) The sequence {y(K)} converges.

They attempt to prove this by first showing a reduction from these conditions
to an ACO and then using Theorem 1 to obtain the required result.

However this claim is not true. While the asynchronous iteration does con-
verge from every starting state in D(0), it does not necessarily converges to the
same fixed point. The flaw in the original proof is that UD tacitly assume that
the set D(0) for the ACO they construct is the same as the original D(0) speci-
fied in the conditions above. However the only elements that are provably in the
ACO’s D(0) is the set {y(t) | t ∈ N}. We now present a counter-example to the
claim.

Consider the degenerate asynchronous environment that contains only a sin-
gle node (i.e. I = {0}) and let F be the identity function (i.e. F(a) = a). Let
D(0) = {x, y} where the only relationships in the partial order are x � x and
y � y. Clearly (i), (ii), (iii) and (iv) all trivially hold as F is the identity function.
However x and y are both fixed points, and which fixed point is reached depends
on whether the iteration starts at x or y. Hence Claim 1 cannot be true.

We can strengthen the conditions by changing requirement (iv) to “There
exists a ξ such that for all y(0) the sequence {y(K)} converges to ξ”. The
library formalises these conditions in Agda as:

record SynchronousConditions p o : Set (lsuc (a � � � p � o)) where

field
D0 : Pred Si p
D0-cong : ∀ {x y} → x ∈ D0 → x ≈ y → y ∈ D0

D0-closed : ∀ {x} → x ∈ D0 → F x ∈ D0

≤ : Rel Si o
≤-isPartialOrder : IsIndexedPartialOrder S _≈_ _≤_

F-monotone : ∀ {x y} → x ∈ D0 → y ∈ D0 → x ≤ y → F x ≤ F y
F-cong : ∀ {x y} → x ≈ y → F x ≈ F y
iter-decreasing : ∀ {x} → x ∈ D0 → ∀ K → syncIter x (suc K) ≤ syncIter x K

ξ : S
ξ-fixed : F ξ ≈ ξ
iter-converge : ∀ {x} → x ∈ D0 → ∃ ń T → syncIter x T ≈ ξ

The reduction of these conditions to an ACO runs as follows. The sequence
of sets D required by the definition of an ACO are defined as follows:

D(K) = {x | ξ � x � y(K) ∧ x ∈ D0}

An Agda Formalization of Üresin & Dubois 635

which is directly translated in Agda as:

D : N → ∀ i → Mi i → Set p
D K i = (ń x → (ξ i � x) × (x � sync-iter x0 K i)) ∩ D0 i

The field D-decreasing can be proven using iter-decreasing and D-finish is a
consequence of iter-converge and ξ-fixed. F-monotonic is the same for both ACO
and SynchronousConditions.

Routing Example. Classical routing theory [2] assumes that distributivity
holds:

∀e ∈ E : x, y ∈ S : e(x ⊕ y) = e(x) ⊕ e(y) (2)

and under this assumption one can prove that every entry of every routing table
improves monotonically with each iteration when the protocol starts from the
initial state I. Therefore for classical routing problems such as shortest-paths, it
is relatively easy to construct an instance of SynchronousConditions.

4.2 Finite Conditions

Another set of sufficient conditions proposed by UD are applicable when the
initial set D(0) is finite. Like Proposition 1, it requires that F is monotonic and
D(0) be closed over F. Instead of reasoning about the synchronous iteration of
the operator, it adds an additional requirement that F is non-expansive over
D(0).

Claim 2. An operator F has a fixed-point ξ to which every asynchronous iter-
ation converges for every starting state y(0) ∈ D(0) if:

(i) D(0) is finite
(ii) ∀a ∈ D(0). F (a) ∈ D(0)
(iii) ∀a ∈ D(0). F (a) � a
(iv) ∀a , b ∈ D(0). a � b =⇒ F (a) � F (b)

UD’s attempted proof for Claim 2 is a reduction to the conditions for Claim 1.
Like Claim1, the conditions therefore guarantee convergence but not to a unique
solution. Similarly the counterexample for Claim 1 is also a counterexample for
Claim 2.

Unlike Claim 1, we do not have a proposed strengthening of Claim 2 which
would guarantee the uniqueness of the fixed point. The reason is that the finite-
ness condition, while guaranteeing the existence of a fixed point when combined
with the other conditions, does not help to prove uniqueness. Instead much
stronger conditions would be required, for example the assumption of the exis-
tence of a metric space over the computation as discussed in the next subsection.
Any such stronger conditions tend to make finiteness superfluous.

636 R. Zmigrod et al.

4.3 Ultrametrics

The notion of convergence has an intuitive interpretation in metric spaces. In
such spaces, convergence is equivalent to every application of the operator F
moving you closer (in discrete steps) to the fixed point ξ.

There already exist results of this type. For instance El Tarazi [8] shows
that if there is a normed linear space over each the values at each node i, then
convergence occurs if there exists a fixed point x∗ and a γ ∈ (0, 1] such that:

||F(x) − x∗|| � γ||x − x∗||
However in many ways this is a very strong sufficient condition as the existence
of a norm requires the existence of an additive operator on the space. For many
processes, including our example of network routing, this may not be true.

Instead there is a more general result by Gurney [11] based on ultrametrics.
An ultrametric [19] is a metric where the standard triangle inequality has been
replaced by the strong triangle inequality. As far as we are aware, this result
seems to have appeared only in [11]. The work proves that the ultrametric con-
ditions not only imply the existence of an ACO but are actually equivalent to the
existence of an ACO and therefore equivalent to saying the process converges.
As with the theorems of UD we are primarily concerned with the usability of
the theorems and therefore only prove the forwards direction.

Definition 6. An ultrametric space (S, Γ, d) is a set S, a totally ordered set Γ
with a least element 0, and a function d : S → S → Γ such that:

M1 : d(x, y) = 0 ⇔ x = y
M2 : d(x, y) = d(y, x)
M3 : d(x, z) � max(d(x, y), d(y, z))

Definition 7. A function f : S → S is strictly contracting on orbits in an
ultrametric space (S, Γ, d) if:

x �= f(x) =⇒ d(x, f(x)) > d(f(x), f(f(x)))

i.e. the distance between iterations strictly decreases.

Definition 8. An operator f : S → S is strictly contracting on a fixed point
x∗ in an ultrametric space (S, Γ, d) if:

x �= x∗ =⇒ d(x∗, x) > d(x∗, f(x))

Theorem 2 (Gurney [11]). If there exists (Si, Γ, di), and we take S =
∏

i Si

and d(x,y) = maxi di(xi,yi) then F is an ACO if:

1. Γ is finite
2. F is strictly contracting on orbits over (S, Γ, d)
3. F is strictly contracting on a fixed point over (S, Γ, d)
4. S is non-empty

An Agda Formalization of Üresin & Dubois 637

These conditions are constructed in Agda as:

record UltrametricConditions : Set (a �
) where
field
di : ∀ {i} → Si i → Si i → N

d : S → S → N

d x y = max 0 (ń i → di (x i) (y i))

field
di-isUltrametric : ∀ {i} → IsUltrametric (Si i) di
F-strContrOnOrbits : F StrContrOnOrbitsOver d
F-strContrOnFP : F StrContrOnFixedPointOver d
d-bounded : Bounded d

element : S

_ ?=_ : Decidable _≈_
F-cong : F Preserves _≈_ −→ _≈_

Note that in our formalisation we currently assume Γ = Fin n for some n in
order to simplify the theory. We plan to generalize this at some point.

Our Agda proof is very similar to the original proof by Gurney [11]. One of
the key differences is that Gurney assumes that F is contracting where as we
assume that F is strictly contracting on a fixed point. This is because in our
use-case it is not possible to construct a contracting metric. The relationship
between the two properties is not entirely clear, but the resulting proofs are
very similar.

Routing Example. The Border Gateway Protocol [18] is used by all Inter-
net Service Providers (ISPs) to maintain connectivity in the global internet.
As explained in [5], distributivity (Eq. 2) cannot be guaranteed in this setting
primarily because of the competing interests of service providers and the very
expressive policy languages needed to implement these interests in routing.

Consequently, a great deal of research has been directed at finding sufficient
conditions that guarantee convergence for policy-rich protocols such as BGP (see
for example [10,20]). One reasonable condition is that the algebra be strictly
increasing :

∀e ∈ E : x ∈ S : x = x ⊕ e(x) �= e(x) (3)

This says that a route x must be strictly more preferred than any extension e(x).
However, now individual routing table entries are no longer guaranteed to

improve monotonically, and so there is no natural ordering on the state space.
Assuming Eq. 3, [5] show how to construct suitable ultrametrics di over the rout-
ing tables in such a way that they fulfill the properties required by Theorem 2.
It is based on the observation that the worst routing table entry in the state will
always improve after each iteration.

638 R. Zmigrod et al.

5 Conclusion

In this paper we have taken the mathematically rigorous yet informal proof
of Üresin and Dubois’ theory regarding the convergence of asynchronous itera-
tions [21] and formalized it constructively in Agda. After explicitly constructing
the previously unspecified pseudo-periodic sequences and mildly weakening some
assumptions, we have succeeded in formalizing the core theorem of the paper.
However some of the auxiliary propositions proposed in the original paper turned
out to be false. In our opinion this alone justifies the formalization process.

Furthermore, we have described our library of proofs and sufficient conditions
for asynchronous convergence, including a recent, new ultrametric condition. We
hope that the library of sufficient conditions will be a valuable resource for those
wanting to formally verify the convergence of a wide range of asynchronous
iterations. The library is available on Github [1].

We are primarily interested in proving convergence and therefore we have
thus far only formalized the sufficient conditions from Üresin and Dubois and
not their proof that the ACO condition is also necessary in the case of finite state
spaces. This would be an interesting extension to our development. In addition
it would be interesting to see if other related work such as [15,22,23], using
different models, could be integrated into our formalization.

References

1. Agda routing library. https://github.com/MatthewDaggitt/agda-routing/tree/
itp2018

2. Baras, J.S., Theodorakopoulos, G.: Path problems in networks. Synth. Lect. Com-
mun. Netw. 3(1), 1–77 (2010)

3. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03359-9_6

4. Chau, C.K.: Policy-based routing with non-strict preferences. SIGCOMM Comput.
Commun. Rev. 36(4), 387–398 (2006)

5. Daggitt, M.L., Gurney, A.J.T., Griffin, T.G.: Asynchronous convergence of policy-
rich distributed bellman-ford routing protocols. In: SIGCOMM Proceedings. ACM
(2018, to appear)

6. Ducourthial, B., Tixeuil, S.: Self-stabilization with path algebra. Theor. Comput.
Sci. 293(1), 219–236 (2003). Max-Plus Algebras

7. Edwards, S.A., Lee, E.A.: The semantics and execution of a synchronous block-
diagram language. Sci. Comput. Program. 48(1), 21–42 (2003)

8. El Tarazi, M.N.: Some convergence results for asynchronous algorithms. Numer.
Math. 39(3), 325–340 (1982)

9. Frommer, A., Szyld, D.B.: On asynchronous iterations. J. Comput. Appl. Math.
123(1), 201–216 (2000)

10. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdo-
main routing. IEEE/ACM Trans. Network. 10(2), 232–243 (2002)

11. Gurney, A.J.T.: Asynchronous iterations in ultrametric spaces. Technical report
(2017). https://arxiv.org/abs/1701.07434

https://github.com/MatthewDaggitt/agda-routing/tree/itp2018
https://github.com/MatthewDaggitt/agda-routing/tree/itp2018
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://arxiv.org/abs/1701.07434

An Agda Formalization of Üresin & Dubois 639

12. Hendrick, C.: Routing information protocol (RIP), RFC 1058 (1988)
13. Henrio, L., Kammüller, F.: Functional active objects: typing and formalisation.

Electron. Notes Theor. Comput. Sci. 255, 83–101 (2009). FOCLASA
14. Henrio, L., Khan, M.U.: Asynchronous components with futures: semantics and

proofs in Isabelle/HOL. Electron. Notes Theor. Comput. Sci. 264(1), 35–53 (2010)
15. Lee, H., Welch, J.L.: Applications of probabilistic quorums to iterative algorithms.

In: Proceedings 21st International Conference on Distributed Computing Systems,
pp. 21–28, April 2001

16. Lee, H., Welch, J.L.: Randomized registers and iterative algorithms. Distrib. Com-
put. 17(3), 209–221 (2005)

17. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS architec-
tural pattern for distributed real-time systems. In: ICFEM, pp. 303–320 (2010)

18. Rekhter, Y., Li, T.: A Border Gateway Protocol (BGP) (1995)
19. Schörner, E.: Ultrametric fixed point theorems and applications. Valuat. Theory

Appl. 2, 353–359 (2003)
20. Sobrinho, J.L.: An algebraic theory of dynamic network routing. IEEE/ACM

Trans. Netw. 13(5), 1160–1173 (2005)
21. Üresin, A., Dubois, M.: Parallel asynchronous algorithms for discrete data. J. ACM

37(3), 588–606 (1990)
22. Üresin, A., Dubois, M.: Effects of asynchronism on the convergence rate of iterative

algorithms. J. Parallel Distrib. Comput. 34(1), 66–81 (1996)
23. Wei, J.: Parallel asynchronous iterations of least fixed points. Parallel Comput.

19(8), 887–895 (1993)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Erratum to: Interactive Theorem Proving

Jeremy Avigad and Assia Mahboubi

Erratum to:
J. Avigad and A. Mahboubi (Eds.):
Interactive Theorem Proving, LNCS 10895,
https://doi.org/10.1007/978-3-319-94821-8

Erratum to “Backwards and Forwards with Separation Logic”:

In the original version the following typo was introduced on page 80, line 30: “In [22]
fHobor”. In the updated version this typo was corrected to “In [22] Hobor”.

Erratum to “An Agda Formalization of Üresin and Dubois’ Asynchronous Fixed-Point
Theory”:

Our work formalised several proofs by Uresin & Dubois. In the original version of our
paper two of the subsidiary proofs, while being technically correct, didn't actually
prove what Uresin & Dubois say they prove. This was not made clear in our paper,
which repeats their incorrect claim. The updated version lays out the corrected proofs
and outlines why our original proofs were wrong.

The updated online version of these chapters can be found at
https://doi.org/10.1007/978-3-319-94821-8_5
https://doi.org/10.1007/978-3-319-94821-8_37

© Springer Nature Switzerland AG 2018
J. Avigad and A. Mahboubi (Eds.): ITP 2018, LNCS 10895, p. E1, 2018.
https://doi.org/10.1007/978-3-319-94821-8_38

https://doi.org/10.1007/978-3-319-94821-8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94821-8_38&domain=pdf
https://doi.org/10.1007/978-3-319-94821-8_5
https://doi.org/10.1007/978-3-319-94821-8_37

Author Index

Achermann, Reto 1
Anand, Abhishek 20
Avelar da Silva, Andréia B. 40

Balco, Samuel 48
Bannister, Callum 68
Baston, Colm 126
Benzaken, V. 88
Blair, Richard 235
Boulier, Simon 20
Boulmé, Sylvain 108

C. d. S. Oliveira, Bruno 604
Capretta, Venanzio 126
Carette, Jacques 215
Cauderlier, Raphaël 142
Chlipala, Adam 289
Cock, David 1
Cohen, Cyril 20
Combette, Guillaume 178
Contejean, É. 88

Daggitt, Matthew L. 623
de Lima, Thaynara Arielly 40
Divasón, Jose 160
Doczkal, Christian 178

Eberl, Manuel 196
Erbsen, Andres 289

Farmer, William M. 215
Feliú, Marco A. 477
Ferreira, João F. 432
Firsov, Denis 235
Forster, Yannick 253
Frittella, Sabine 48

Galdino, André Luiz 40
Garbuzov, Dmitri 523
Goertzel, Zarathustra 270
Greco, Giuseppe 48
Griffin, Timothy G. 623
Gross, Jason 289

Harper, Robert 560
Haslbeck, Max W. 196
Heiter, Edith 253
Höfner, Peter 68
Hölzl, Johannes 597
Hu, Shuwei 579
Humbel, Lukas 1

Jakubův, Jan 270
Jantsch, Simon 306
Joosten, Sebastiaan 160

Kahl, Wolfram 324
Kaliszyk, Cezary 495
Keller, Ch. 88
Klein, Gerwin 68, 542
Knüppel, Alexander 342
Kumar, Ramana 362
Kurz, Alexander 48

Larchey-Wendling, Dominique 370
Laskowski, Patrick 215
Lochbihler, Andreas 388, 411
Lopez Pombo, Carlos G. 477

Maréchal, Alexandre 108
Martins, E. 88
Mendes, Alexandra 432
Meßner, Florian 441
Miquey, Étienne 459
Moscato, Mariano M. 477
Mullen, Eric 362
Muñoz, César A. 477
Myreen, Magnus O. 362

Nipkow, Tobias 196, 579
Norrish, Michael 306

Palmigiano, Alessandra 48
Pardylla, Carsten Immanuel 342
Parsert, Julian 441, 495
Pizani Flor, João Paulo 504
Pous, Damien 178

Rizkallah, Christine 523
Roscoe, Timothy 1

Schaefer, Ina 342
Schneider, Joshua 411
Schöpf, Jonas 441
Schrijvers, Tom 604
Schulz, Stephan 270
Smolka, Gert 253
Sozeau, Matthieu 20
Sternagel, Christian 441
Stump, Aaron 235
Swierstra, Wouter 504
Syeda, Hira Taqdees 542

Tabareau, Nicolas 20
Tassarotti, Joseph 560
Tatlock, Zachary 362
Thiemann, René 160
Thüm, Thomas 342

Urban, Josef 270

Wimmer, Simon 579, 597

Yamada, Akihisa 160

Zdancewic, Steve 523
Zhao, Jinxu 604
Zmigrod, Ran 623

642 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Deductive Program Verification
	Voevodsky’s Work on Formalization of Proofs and the Foundations of Mathematics
	Mike Gordon: Tribute to a Pioneer in Theorem Proving and Formal Verification
	Contents
	Physical Addressing on Real Hardware in Isabelle/HOL
	1 Introduction
	2 Model
	2.1 Views and Termination
	2.2 Concrete Syntax, Prolog, and Sockeye
	2.3 View-Equivalence and Refinement

	3 Refinement: Example of the MIPS R4600 TLB
	3.1 The TLB Model
	3.2 The Validity Invariant
	3.3 Invariant Violation at Power On
	3.4 What Does a Fully-Wired TLB Do?
	3.5 The TLB Refines a Decoding Net
	3.6 Modeling TLB Lookups and Exceptions
	3.7 Adding a Page Table
	3.8 Modeling Replacement Handlers
	3.9 Equivalence to Infinitely Large TLB

	4 Conclusion
	References

	Towards Certified Meta-Programming with Typed Template-Coq
	1 Introduction
	2 Reification of Coq Terms
	3 Type Checking Coq in Coq
	4 Reification of Coq Commands
	5 Writing Coq Plugins in Coq
	5.1 A Plugin to Add a Constructor
	5.2 Parametricity Plugin
	5.3 Intensional Function Plugin

	6 Related Work and Future Work
	References

	Formalizing Ring Theory in PVS
	1 Introduction
	2 The theory rings: Formalized so Far
	2.1 The subtheory ring_general_results
	2.2 The subtheory finite_integral_domain
	2.3 The subtheory ring_binomial_theorem
	2.4 The subtheory ring_isomorphism_theorems

	3 Related Work
	4 Conclusions and Future Work
	References

	Software Tool Support for Modular Reasoning in Modal Logics of Actions
	1 Introduction
	2 Display Calculi and D.EAK
	3 The D.EAK Calculus Toolbox
	3.1 Shallow Embedding (SE) in Isabelle
	3.2 Deep Embedding (DE) in Isabelle
	3.3 Functionality of the User Interface (UI)

	4 Case Study: The Muddy Children Puzzle
	4.1 The Muddy Children Puzzle
	4.2 Muddy Children in Isabelle
	4.3 Conclusions from the Case Study

	5 Meta-toolbox - Building Your Own Calculus Toolbox
	5.1 Describing a Calculus
	5.2 The Build Script, the Template Files, and the Watcher Utility

	6 Conclusion
	References

	Backwards and Forwards with Separation Logic
	1 Introduction
	2 Notation
	3 Hoare Logic and Separation Logic
	4 Separating Coimplication
	5 Walking Backwards
	6 Walking Forwards
	7 Related Work
	8 Summary
	References

	A Coq Formalisation of SQL's Execution Engines
	1 Introduction
	2 SQL's Compilation in a Nutshell
	3 A High-Level Specification for Data-Centric Operators
	4 Physical Algebra
	4.1 Iterators
	4.2 Index-Based Operators
	4.3 Adequacy

	5 SQL Algebra
	5.1 Syntax and Semantics
	5.2 Adequacy

	6 Formally Bridging Logical and Physical Algebra
	7 Related Works, Lessons, Conclusions and Perspectives
	References

	A Coq Tactic for Equality Learning in Linear Arithmetic
	1 Introduction
	2 Specification of the VPL Tactic
	2.1 The Three Steps of the Tactic
	2.2 The Proof Built by the Tactic

	3 Using the vpl Tactic
	4 The Witness Format in the Tactic
	4.1 Certified Farkas Operations
	4.2 Example of Proof Witness
	4.3 The HOAS of Proof Witnesses

	5 The Reduction Algorithm
	5.1 A Refined Specification of the Reduction
	5.2 Building Equality Witnesses from Conflicts
	5.3 Illustration on the Running Example
	5.4 Description of the Algorithm

	6 Conclusion and Related Works
	References

	The Coinductive Formulation of Common Knowledge
	1 Introduction
	2 Possible Worlds and Events
	3 Knowledge Operator Semantics
	4 Relational Semantics
	5 Equivalence with Relational Common Knowledge
	6 Conclusion
	References

	Tactics and Certificates in Meta Dedukti
	1 Introduction
	2 First-Order Logic in Dedukti
	3 A Typed Tactic Language for Meta Dedukti
	4 An Untyped Tactic Language for Meta Dedukti
	5 Example of Interactive Proof Development
	6 Theorem Transfer
	7 Resolution Certificates
	8 Related Works
	9 Conclusion
	References

	A Formalization of the LLL Basis Reduction Algorithm
	1 Introduction
	2 Preliminaries
	3 Gram–Schmidt Orthogonalization
	4 The LLL Basis Reduction Algorithm
	5 Experimental Evaluation of the Verified LLL Algorithm
	6 Factorization of Polynomials in Polynomial Time
	6.1 Short Vectors for Polynomial Factorization
	6.2 Bug in Modern Computer Algebra
	6.3 A Verified Factorization Algorithm

	7 Summary
	References

	A Formal Proof of the Minor-Exclusion Property for Treewidth-Two Graphs
	1 Introduction
	2 Simple Graphs
	3 Treewidth and Minors
	4 Graphs
	5 Checkpoints
	6 Extracting Terms from K4-free Graphs
	7 Isomorphism Properties
	8 Conclusion
	References

	Verified Analysis of Random Binary Tree Structures
	1 Introduction
	2 Probability Theory in Isabelle/HOL
	2.1 Measures and Probability Mass Functions
	2.2 The Giry Monad

	3 Quicksort
	3.1 Randomised Quicksort
	3.2 Average-Case of Non-randomised Quicksort

	4 Random Binary Search Trees
	4.1 Preliminaries
	4.2 Internal Path Length
	4.3 Height

	5 Treaps
	5.1 Definition
	5.2 The Measurable Space of Trees
	5.3 Randomisation

	6 Related Work
	7 Future Work
	References

	HOL Light QE
	1 Introduction
	2 CTTqe
	2.1 Syntax
	2.2 Semantics
	2.3 Quasiquotation
	2.4 Proof System
	2.5 The Three Design Problems

	3 HOL Light
	4 Implementation
	4.1 Overview
	4.2 Mapping of CTTqe Expressions to HOL Terms
	4.3 Modification of the HOL Light Proof System
	4.4 Creation of Support Machinery
	4.5 Metatheorems

	5 Examples
	5.1 Law of Excluded Middle
	5.2 Induction Schema

	6 Related Work
	7 Conclusion
	References

	Efficient Mendler-Style Lambda-Encodings in Cedille
	1 Introduction
	2 Background
	3 Preliminaries
	3.1 Multiple Types of Terms
	3.2 Identity Functions
	3.3 Identity Mapping

	4 Inductive Datatypes from Identity Mappings
	4.1 Basics of Mendler-Style Encoding
	4.2 Inductive Subset
	4.3 Induction Principle

	5 Constant-Time Destructors
	5.1 Constant-Time Destructor for Mendler-Style Encoding

	6 Examples
	6.1 Natural Numbers with Constant-Time Predecessor
	6.2 Infinitary Trees
	6.3 Unbalanced Trees

	7 Related Work
	8 Conclusions and Future Work
	References

	Verification of PCP-Related Computational Reductions in Coq
	1 Introduction
	2 Definitions
	2.1 Post Correspondence Problem
	2.2 String Rewriting
	2.3 Post Grammars
	2.4 Alphabets
	2.5 Freshness

	3 SRH to SR
	4 SR to MPCP
	5 MPCP to PCP
	6 PCP to CFP
	7 PCP to CFI
	8 TM to SRH
	9 Discussion
	References

	ProofWatch: Watchlist Guidance for Large Theories in E
	1 Introduction: Hammers, Learning and Watchlists
	2 Proof Search in Saturating First-Order Provers
	3 Proof Search State in Learning Based Guidance
	3.1 Proof Search State Representation for Guiding Saturation

	4 Static Watchlist Guidance and Its Implementation in E
	5 Dynamic Watchlist Guidance
	5.1 Watchlist Proof Progress
	5.2 Standard Dynamic Watchlist Relevance
	5.3 Inherited Dynamic Watchlist Relevance

	6 Experiments with Watchlist Guidance
	6.1 Watchlist Selection Methods
	6.2 Using Watchlists in E Strategies
	6.3 Evaluation

	7 Examples
	8 Related Work and Possible Extensions
	8.1 Possible Extensions

	9 Conclusion
	References

	Reification by Parametricity
	1 Introduction
	1.1 Proof-Script Primer
	1.2 Reflective-Automation Primer
	1.3 Reflective-Syntax Primer

	2 Methods of Reification
	3 Reification by Parametricity
	3.1 Case-By-Case Walkthrough
	3.2 Commuting Abstraction and Reduction
	3.3 Implementation in Ltac
	3.4 Advantages and Disadvantages

	4 Performance Comparison
	4.1 Without Binders
	4.2 With Binders

	5 Future Work, Concluding Remarks
	References

	Verifying the LTL to Büchi Automata Translation via Very Weak Alternating Automata
	1 Introduction
	2 Preliminaries
	2.1 Linear Temporal Logic
	2.2 Co-Büchi Alternating Automata
	2.3 Generalized Büchi Automata

	3 Translating LTL to GBA
	4 Verifying the Algorithm
	4.1 Mechanizing the Abstract Proofs
	4.2 Concrete Data Structures
	4.3 Abstraction Functions
	4.4 Concrete Translations
	4.5 Verifying the Concrete Functions

	5 Related Work
	6 Conclusion
	References

	CALCCHECK: A Proof Checker for Teaching the ``Logical Approach to Discrete Math''
	1 Introduction
	2 The Basic CALCCHECK Language
	3 The CALCCHECKWeb Front-End
	4 Structured Proofs
	5 Quantification, Substitution, Metavariables
	6 Combined Hint Items
	6.1 Conditional Rewriting
	6.2 Rule Transformation
	6.3 Theorems as Proof Methods — ``Using''

	7 Activation of Features
	8 Implementation Aspects
	9 Discussion of Related Work
	10 Conclusion
	References

	Understanding Parameters of Deductive Verification: An Empirical Investigation of KeY
	1 Introduction
	2 Problem Statement
	3 Parameters of Deductive Verification with KeY
	4 Empirical Evaluation of KeY's Parameters
	4.1 Experimental Setup
	4.2 Empricial Evaluation of Assumptions
	4.3 Learning a Parameter-Influence Model
	4.4 Threats to Validity

	5 Suggestions for Users and Tool Builders
	6 Related Work
	7 Conclusion
	References

	Software Verification with ITPs Should Use Binary Code Extraction to Reduce the TCB
	1 Introduction
	2 Binary Code Extraction Workflow
	3 Trusted Computing Base
	4 Broader Context and Vision
	References

	Proof Pearl: Constructive Extraction of Cycle Finding Algorithms
	1 Introduction
	2 Formalization of the Problem
	2.1 An OCaml Account of the Tortoise and the Hare
	2.2 Goals and Contributions

	3 Termination Using Bar Inductive Predicates
	3.1 Dependently Typed Recursion for Bar Inductive Predicates
	3.2 Accessibility vs. Bar Inductive Predicates
	3.3 Constructive Epsilon via Bar Inductive Predicates

	4 The Tortoise and the Hare via Bar Inductive Predicates
	4.1 A Non-tail Recursive Implementation
	4.2 A Tail-Recursive Implementation

	5 Floyd's Cycle Finding Algorithm in Coq
	5.1 Computing a Meeting Point
	5.2 Computing the Index
	5.3 Computing the Period
	5.4 Gluing all Together

	6 Brent's Period Finding Algorithm
	7 Correctness by Extraction and Related Works
	7.1 Correctness of the Tortoise and the Hare
	7.2 Comparison with Related Works

	References

	Fast Machine Words in Isabelle/HOL
	1 Introduction
	2 Background on Isabelle/HOL
	3 Fixed-Size Machine Words
	3.1 Types of Unsigned Words
	3.2 Setting up Code Generation
	3.3 Dealing with Underspecification
	3.4 Soundness of Code Adaptations for Underspecified HOL Functions

	4 Machine Words of Unspecified Length
	5 Validation
	5.1 Automating Regression Tests for Code Generation
	5.2 Test Case Selection and Validation Results

	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Relational Parametricity and Quotient Preservation for Modular (Co)datatypes
	1 Introduction
	1.1 Background: Bounded Natural Functors
	1.2 Examples and Applications

	2 Bounded Natural Functors with Co- and Contravariance
	3 Simple Operations on BNFCCs
	4 Least and Greatest Fixpoints
	5 Subtypes
	6 Quotient Preservation
	7 Related Work
	8 Conclusion and Future Work
	References

	Towards Verified Handwritten Calculational Proofs
	1 Introduction
	2 Background and Related Work
	3 Requirements
	4 Proof-of-Concept Prototype
	5 Conclusion and Future Work
	References

	A Formally Verified Solver for Homogeneous Linear Diophantine Equations
	1 Introduction
	2 Main Ideas
	3 An Isabelle/HOL Theory of HLDEs and Their Solutions
	4 Certified Minimal Complete Sets of Solutions
	5 Special and Non-special Solutions
	6 A More Efficient Algorithm for Code Generation
	7 Evaluation
	8 Related Work
	9 Conclusions and Further Work
	References

	Formalizing Implicative Algebras in Coq
	1 Introduction
	2 Krivine Classical Realizability
	3 Implicative Structures
	3.1 Definition
	3.2 Examples of Implicative Structures

	4 Interpreting the -calculus
	4.1 Interpretation of -terms
	4.2 Adequacy
	4.3 Combinators
	4.4 The Problem of Consistency

	5 Implicative Algebras
	5.1 Separation
	5.2 c-terms
	5.3 Internal Logic
	5.4 Implicative Tripos

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

	Boosting the Reuse of Formal Specifications
	1 Introduction
	2 Preliminary Definitions
	3 Representation Technique
	4 Case Study
	5 Related Work
	6 Conclusion
	References

	Towards Formal Foundations for Game Theory
	1 Introduction
	2 Isabelle/HOL, Probability, and Notations
	3 Preference Relations and Their Properties
	4 The Setup
	5 The Proof Outline
	6 Conclusions
	References

	Verified Timing Transformations in Synchronous Circuits with -Ware
	1 Introduction
	2 Overview
	3 -Ware
	4 Semantics and Properties
	5 Combinational and Sequential Combinators
	5.1 Convertibility of Combinational and Sequential Versions
	5.2 Applications of the Combinational and Sequential Combinators

	6 Discussion
	6.1 Related Work
	6.2 Future Work

	7 Conclusion
	References

	A Formal Equational Theory for Call-By-Push-Value
	1 Introduction
	2 The Pure Untyped Call-by-Value -calculus
	2.1 Progress and Canonical Forms
	2.2 Contextual Equivalence
	2.3 Equational Theory
	2.4 Soundness of the Equational Theory for CBV

	3 A Call-by-Push-Value Language
	3.1 Syntax
	3.2 Wellformedness
	3.3 Structural Operational Semantics
	3.4 Progress, and Canonical and Error Forms
	3.5 Contextual Equivalence
	3.6 Equational Theory
	3.7 Soundness of the Equational Theory for CBPV

	4 Verifying Optimizations Using Our Equational Theory
	5 Conclusion and Future Work
	A Appendix: Definition of P for CBPV
	References

	Program Verification in the Presence of Cached Address Translation
	1 Introduction
	2 Related Work
	3 Notation
	4 Logic
	4.1 Syntax and Program State
	4.2 Semantic Operations
	4.3 Hoare Logic
	4.4 Discussion

	5 Safe Set
	6 Case Studies
	6.1 User Execution
	6.2 Kernel Execution
	6.3 Context Switch

	7 Summary
	References

	Verified Tail Bounds for Randomized Programs
	1 Introduction
	2 Probability Preliminaries
	2.1 Discrete Probability
	2.2 Monadic Encoding

	3 Karp's Theorem
	3.1 Unary Recurrences
	3.2 Extension to Binary Work and Span Recurrences

	4 Examples
	4.1 Sequential QuickSort
	4.2 Other Examples

	5 Changes Needed for Mechanization
	5.1 Overview of Proof
	5.2 Changes

	6 Related Work
	6.1 Verification of Randomized Algorithms and Mechanized Probability Theory
	6.2 Techniques for Bounds on Randomized Algorithms

	7 Conclusion
	References

	Verified Memoization and Dynamic Programming
	1 Introduction
	1.1 Related Work

	2 Memoization
	2.1 Overview
	2.2 Monadification
	2.3 Reasoning with Parametricity
	2.4 Termination
	2.5 Technical Limitations
	2.6 Memoization
	2.7 Imperative Memoization
	2.8 Bottom-up Computation
	2.9 Memory Implementations

	3 Examples
	3.1 Bellman-Ford Algorithm
	3.2 Knapsack Problem
	3.3 A Counting Problem
	3.4 The Cocke-Younger-Kasami Algorithm
	3.5 Minimum Edit Distance

	4 Future Work
	References

	MDP + TA = PTA: Probabilistic Timed Automata, Formalized (Short Paper)
	1 Introduction
	2 Preliminaries
	3 Probabilistic Timed Automata
	4 Bisimulation
	5 Taking Zenoness into Account
	6 Conclusion
	References

	Formalization of a Polymorphic Subtyping Algorithm
	1 Introduction
	2 Overview: Polymorphic Subtyping
	2.1 Declarative Polymorphic Subtyping
	2.2 Finding Solutions for Variable Instantiation
	2.3 The Worklist Approach

	3 A Worklist Algorithm for Polymorphic Subtyping
	3.1 Syntax and Well-Formedness of the Algorithmic System
	3.2 Algorithmic Subtyping

	4 Metatheory
	4.1 Transfer to the Declarative System
	4.2 Soundness
	4.3 Completeness
	4.4 Decidability

	5 The Choice of Abella
	5.1 Statistics and Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

	An Agda Formalization of Üresin & Dubois' Asynchronous Fixed-Point Theory
	1 Introduction
	2 Preliminaries
	2.1 Schedules

	3 Convergence Theorem
	4 The Library
	4.1 Synchronous Iteration Conditions
	4.2 Finite Conditions
	4.3 Ultrametrics

	5 Conclusion
	References

	Erratum to: Interactive Theorem Proving
	Erratum to: J. Avigad and A. Mahboubi (Eds.): Interactive Theorem Proving, LNCS 10895, https://doi.org/10.1007/978-3-319-94821-8

	Author Index

